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ABSTRACT

Nowadays the respect of the environment is an obligation in maritime works. Vertical concrete caissons with
porous plates are often the number one technical solution to enlarge existing ports and/or to improve the agi-
tation of the basins. The footprint is reduced and the demand in quarry materials is less important compared
to classical riprap breakwaters. Recently, alternative systems to vertical concrete caissons have been designed.
Vertical riprap breakwaters are made of a metal framework enclosing blocks. This kind of structure offers envi-
ronmental benefits, permeability for currents and a good hydrodynamic performance. This thesis work looks
at developing a new 3D-BEM code that is easy to use and integrates porous media. Innovative geometries are
tested like spaced gabions with damping chamber or a mix of porous plates and porous media.

Describing flows in porous media is an complex issue. Volume averaging method is the common mathemat-
ical process used to model porous media flows without drawing every grain of a porous medium. The well-
known extended Forchheimer equation describes the volumetric forces applied to the flow by a porous medium
through resistance and inertial coefficients. These researches were the occasion to look into this coefficients,
especially the one of poorly understood inertia in the case of a porous medium. It plays a major role in very
low-KC flows currently occurring in porous breakwaters apart from armour layer.

First, a literature review on porous media flows was undertaken. In parallel, the numerical code called Diffra3D

was produced. It was then used to look for resistance coefficients of porous media through data coming from
three experimental campaigns : one sloshing test on hexapode and two classical reflection-transmission stud-
ies in a wave tank. These campaigns were also the occasion to test and calibrate the code. New geometries of
porous structures were then tested experimentally and numerically.

Two new values of resistance coefficients of a porous medium are proposed. Some interesting features con-
cerning the inertia coefficient CM of a porous medium are also developed. In simulations, we observe that the
hydrodynamic behaviour of porous structures in low-KC flows is very sensitive to the coefficient of inertia. This
research topic would still deserve further studies in order to find empirical law(s) for the inertia coefficient of a
porous medium. The code Diffra3D performs well to model porous media flows. However, it is limited to waves
with low steepness. The challenge is to properly characterise the porous medium. This research has shown that
innovative porous structures like spaced gabions have proven their place as environmentally-friendly damping
breakwaters. They may be commonly used in the future.
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ABSTRACT

De nos jours, le respect de l’environnement est une obligation dans le cadre de travaux maritimes. Les caissons
en béton verticaux à plaques poreuses sont souvent la solution technique privilégiée pour agrandir les ports
existants et / ou améliorer l’agitation des bassins. L’empreinte au sol est réduite et la demande en matériaux de
carrière est moins importante par rapport aux digues en enrochement classiques. Récemment, des systèmes
alternatifs aux caissons en béton verticaux ont été conçus. Les structures amortisseuses de la houle à enroche-
ments verticalisés sont constituées d’une structure métallique entourant des blocs. Ce type de structure offre
des avantages environnementaux, une perméabilité aux courants et une bonne performance hydrodynamique.
Ce travail de thèse visait à développer un nouveau code 3D-BEM facile à utiliser et intégrant les écoulements
en milieux poreux. Des géométries innovantes sont testées comme des gabions espacés avec une chambre
d’expansion ou un mélange de plaques poreuses et de milieux poreux.

La description des écoulements dans un milieu poreux est une question complexe. Navier-Stokes moyenné
au sens de Reynolds (RANS) est le processus mathématique communément utilisé pour modéliser les écoule-
ments en milieux poreux. Ce dernier est considéré comme un milieu continu homogène. L’équation bien
connue de Forchheimer étendue décrit les forces volumiques appliquées à l’écoulement par un milieu poreux
à travers des coefficients de résistance et d’inertie. Ces recherches ont été l’occasion d’examiner ces coeffi-
cients, notamment celui d’inertie mal connu dans le cas d’un milieu poreux. Il joue un rôle majeur pour les
écoulements à très faible KC se produisant dans les couches internes des digues poreuses.

Une analyse de la littérature sur les écoulements de milieux poreux a été entreprise. Le code numérique ap-
pelé Diffra3D a été développé. Il a ensuite été utilisé pour rechercher des coefficients de résistance de milieux
poreux à l’aide de données provenant de trois campagnes expérimentales : un test de sloshing sur hexapode
et deux études classiques de transmission/réflexion en canal à houle. Celles-ci ont également été l’occasion de
tester et de calibrer le code. De nouvelles géométries de structures poreuses ont ensuite été testées expérimen-
talement et numériquement.

Deux nouvelles valeurs de coefficients de résistance d’un milieu poreux sont proposées pour les écoulements
à très faibles KC. Certaines caractéristiques intéressantes concernant le coefficient d’inertie CM d’un milieu
poreux sont également développées. Ce sujet de recherche mériterait encore d’être approfondi pour tenter
de trouver une ou plusieurs loi(s) empirique(s) décrivant l’évolution du coefficient d’inertie dans ce régime
spécifique d’écoulement. Le code Diffra3D fonctionne de façon satisfaisante pour modéliser les écoulements
en milieu poreux. Il est cependant limité aux vagues à faibles cambrures. Tout l’enjeu est de bien caractériser
le milieu poreux étudié. L’utilisation de Diffra3D a permis de montrer que les structures poreuses verticales
innovantes, telles que les gabions espacés, ont entièrement leur place en tant que digues amortisseuses de la
houle respectueuses de l’environnement. Elles pourraient être couramment utilisées dans le futur.
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INTRODUCTION

Design studies for new maritime structures in the french coastal zone are generally carried out within the
framework of existing port developments. Surface extension of basins in terms of parking space and reduction
of the agitation form the major axis of economical development for harbour and marina. This often justifies
the need for new infrastructures. For instance, the redevelopment of the port of Banyuls-sur-Mer on the south
french coast was the occasion to significantly improve the quality of the harbour basin with, amongst others,
the lengthening of the principal seawall. Large commercial ports also continue to invest in new maritime in-
frastructures to adapt to new markets. Recently, the Grand Port Maritime of Marseille reconfigured all its north
pass to accommodate the new giant cruise ships.

The renovation and the extension of breakwaters has involved for a long time the duty of respect of the en-
vironment. The classical wide breakwaters built in the beginning of the 20th century to delimit the basins in
deep water have progressively been replaced by vertical concrete caisson which are more economical and less
demanding in quarry materials. The footprint on the seabed is drastically reduced. Swell damping through
porous plate of Jarlan chamber type were rapidly incorporated into vertical caissons, offering many advan-
tages : low reflection of the swell energy around navigation zones and into harbour basins, low hydrodynamic
impact on marine life and reduction of over-topping efforts. The port of Marseille chose this technical solution
to modify its north pass. The ports of Cannes and Cap d’Ail recently built vertical damping caissons into their
basins. They are easily incorporated below quays or existing pontoons.

Alternative systems to vertical concrete caissons have been recently designed : vertical riprap structures. This
kind of structure is innovative and offers many advantages beside being often cost attractive compared to con-
crete caissons. The blocks are enclosed by a metal framework or bored piles occupying a reduced ground foot-
print. A little groyne was designed following this method in order to protect the port of La Ciotat in the middle
of the protected sea grass. The concept was approved by the french environmental authorities, then built. We
observe now a reduction of the agitation conform to the numerical studies conducted beforehand. This is a
kind of prototype reconciling the needs for heavy breakwaters and environmental obligations in terms of sea
grass protection. As Mediterranean ports are surrounded by protected areas, the concept of environmentally-
friendly vertical structures deserves further study, which is the aim of the presented work.

Environmental benefits

Vertical structures allow engineers to implant breakwater near areas of marine life without significant impact
while offering a better damping protection to swell. In Banyuls-sur-Mer, the construction of a 20m large vertical
riprap head breakwater is a solution to stop the significant agitation problems met with south-east storm swells.
The metallic framework of the structure keep the blocks at least 5m away from the protected aquatic plant
habitat (see figure 1). The main dyke could then be extended to the maximum allowed.
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2 INTRODUCTION

Figure 1: Vertical riprap head breakwater in the future port of Banyuls-sur-Mer

The use of coarse granular material to fill the structure’s framework generate lower construction impact by
preventing a too high turbidity.

The porous structure of such breakwaters makes up for the occupied sea bed by offering new environments
favourable to young fishes. Porous media and concrete caissons can also be mixed in order to create this kind
of environment. The future counter jetty and the two damping caissons of the port of Banyuls-sur-mer (see
figure 2) is an example where vertical gabions are installed at the back of a damping chamber. In this case,
gabions also act as ballast and bring some sea damping.

Figure 2: Vertical gabions incorporated inside a concrete caisson.
From left to right : a damping caisson installed inside the harbour and the future counter jetty of the port of
Banyuls-sur-Mer

Permeability for currents

Maintaining a good quality of water is a relevant issue for ports to avoid toxic bacteria to proliferate in their
basins with the consequence of bad odours bothering clients. That is why the design of a harbour basin has
to take into account the natural and artificial current flow. Vertical riprap breakwaters have the advantage to
be porous structures. They offer a positive permeability which enables a better current flow than concrete
caissons. The extension project of Heures Claires harbour in Istres was the occasion to integrate a damping
vertical porous structure (Fig. 3) all along a new pontoon in order to reduce lapping. This choice of structure
instead of concrete caisson was guided by the quality of water necessity and the construction cost.
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Figure 3: Damping riprap pontoon on bored piles in the future port of Istres

An easier navigation

Vertical breakwaters are in the interest of sailors because they mark a clear waterways delimitation. The groyne
installed in La Ciotat and in Banyuls-sur-Mer make the port entry easier, especially when wind and swell are
unfavourable.

Figure 4: Vertical riprap breakwater in the entry of the port of La Ciotat.
Left : Installation of the riprap. Middle : the breakwater finished. Right : The bored piles holding the rocks

Hydrodynamic performance

The hydrodynamic performance of damping breakwaters is a important studied field in order to best protect
harbours and coastal zones. While a classical wide breakwater reflects about 50% of incident wave height, the
design of a Jarlan type caisson, with a porous plate and an adapted chamber size, can dissipate until 70% to
80% of the incident wave height.

Vertical riprap breakwaters are innovative damping structures. Until now, only quite simple geometries have
been the subject of academic research. Today, most of the last numerical developments to understand the
hydrodynamic comportment of porous breakwaters are based on two different technologies :

• the Volume Of Fluid (VOF) method which solves the eulerian Navier-Stockes equations;

• the Smoothed Particle Hydrodynamics (SPH) technique which resolve the lagrangian Navier-Stockes
equations.

These two models are very advanced because they take into account a lot of non-linear phenomena and best
describe the flow. The first 3D two-phase flows VOF models were developed in 2014 by Higuera (2014) & al.
[23] and B. Jensen & al. (2014) [25]. The other side of the coin is their complexity and their high computational
requirement for real cases especially in the context of studies in engineering offices where the computational
resources and time are limited. For example, engineering offices can consider using a 1D propagation wave
channel with a VOF method but even in that case, they are rapidly limited in the number and duration of
simulations and cases that can be run.



4 INTRODUCTION

On the other hand, little effort has been made to develop more flexible and user-friendly numerical tools such
as those based on integral methods used to solve potential flow problems. This numerical method can be
easily associated with porous media flows through averaging techniques. The development of a 3D numerical
tool Diffra3D headed to coastal engineering office was one of the two main issues of this thesis work. The
second issue was to investigate dissipation coefficients of a porous medium to better understand the role they
respectively play on a low-KC flow that we frequently retrieve in porous media apart from the armour layers of
breakwaters. Several innovative and practical applications to coastal protection with porous media were also
investigated and presented in this thesis.

The work consisted of five successive main parts :

• A state-of-art review to establish and understand theory of flow through porous media.

• The development of a 3D diffraction numerical tool based on Rankine integrals method implementing
porous breakwaters.

• Sloshing tests with porous media placed in a tank with water to astutely analyse dissipation coefficients.

• Three scale-model campaigns to acquiring data in order to test and calibrate the numerical model.

• A comparison of the results with those obtained through two others models, a numerical one based on
the VOF method and a simple analytical one.
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1 BREAKWATER MODELLING

The interaction of water waves with porous coastal structures is a long-standing issue and a richly studied field.
Coastal engineers need tools to predict physical processes in order to ensure the stability of infrastructures at
sea in the long term and optimise their hydrodynamic performances. Both the transmission and the reflec-
tion characteristics of a porous structure are important. Thus, the severity of the wave motion resulting from
the partial reflection on the standing breakwater will determine the accessibility of the harbor during storm
conditions and will also determine the sediment transport patterns near the structure.

In 1972, Sollitt & Cross [50] linearised the problem of porous media flow in a classical breakwater. One of the
objectives of the research was to quickly and reliably evaluate the reflection and transmission coefficients of the
structures. Numerous publications have attempted to assess analytically, experimentally and later numerically
the coefficients of inertia and friction of a porous medium as well as the hydrodynamic characteristics of the
studied structures. The development of numerical techniques to model porous media flows in breakwaters
has progressed in term of complexity and computational needs. It started with linearised solutions based on
potential theory to very sophisticated eulerian or lagrangian solvers of the Navier-Stokes equations ; the VOF
and the SPH methods. The latest developments include turbulence within porous media and 3D simulations.
Dentale et al. (2014) [17] model the outer layer of a rubble-mound breakwater by describing every individual
3D blocks. This approach remains a laboratory test and it is unlikely to be easily exported to industry in the
very near future. Readers can refereed to the review of Losada & al. (2016) [38] for more details.

A multitude of configurations of rockfill structures were studied in order to find better effectiveness through
innovative geometries or compositions. For example, studies with breakwaters using arbitrary sections, Sulisz
(1985)[52], vertically stratified, Twu (2002)[56] and Azhar (2008)[2] and with non-uniform porosity Tao (2009)[54]
were found. The repetition of porous structures has also been explored by Twu (2004)[55]. Wave damping struc-
tures designed from porous vertical screens (slotted or with holes) have been the subject of research following
their development in petroleum, coastal and port engineering, Crowley (2011) [47], Suh (2011) [51], Molin
(2014)[43] and (2015)[44]. The research deepened with the arrival of the Jarlan caisson with double porous
plates, Lajoie (2008)[33] & (2014)[34]. The porous thick wall is a recently explored track, Tamrin (2014)[53] and
presents the advantages cited in the context of this subject.

Nevertheless, performing a scale-model tests for the interaction of waves with a porous structure is still today
an essential phase of validating a numerical model or an innovative design and it is not a simple matter.

7
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2 WAVE: GENERAL EQUATIONS

Commonly, gravity waves, triggered by wind offshore, propagate. The diversity of the external strains lead to a
very large range of wave heights and periods. Swell periods count in seconds.

Wave action is the major factor in coastal engineering design. The hydrodynamic efforts received by coastal
structures are estimated thanks to mathematical descriptions of swell. In the literature, many of them exist,
each one suitable in a particular context. This thesis work mainly uses linear wave theory, which is the basic
theory of ocean surface waves applied in ocean, coastal engineering and naval architecture. The integral meth-
ods, cited in the introduction and implemented in Diffra3D to quickly resolve porous media flow problems,
can only handle linear equations. The linear waves are modelled by pure sine (or cosine) functions.

In shallow water, the properties of waves, height and period, change. The shape of waves also transforms as
water depth decreases. The waves are less and less sinusoidal. We also observe this in deep water when the size
of the waves increases significantly. Linear wave theory leads then to more and more important approximations
which an engineer must know how to estimate. Stokes wave theory and cnoidal wave theory are two other wave
theories which take into account non-linearities. They describe better the waves in these cases. Le Méhauté
(1976) worked on the applicability of wave theories depending on three parameters : the wave height H , the
wavelength λ and the water depth h (see section 1.2.2.1.5).

First of all, linear wave theory is described. Secondly, Stokes and cnoidal wave theories are briefly mentioned.
Finally, hydrostatic shallow water equations are introduced because they are used in a simple analytical model.

2.1 Potential theories

The interaction between molecules on the free surface can be discarded because they play a very minor role at
the scale of this study. The fluid compressibility, which is essential to acoustic waves, can be ignored, just like
the Coriolis force because common swell wavelengths are short enough. Finally, the effect of swell on water
molecules all along the water depth decrease quickly enough to ignore density stratification of oceans.

In addition to previous assumptions, an ideal flow is considered. The fluid viscosity is discarded. Only constant
gravity and constant atmospheric pressure are applied on swell.

An orthonormal coordinate system Oxyz such as Oxy coincide with the mean free surface and Oz is upward
(Fig. 2.1).

9
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Figure 2.1: Definition sketch, General equations of wave theory

2.1.1 Description of the problem

Continuity equation

The mass conservation or continuity equation, with the hypothesis of incompressible flow, can be expressed
as :

−→∇ .~v(x, y, z, t) = 0 (2.1)

For an ideal flow with constant density, an irrotational flow indefinitely stays irrotational. Far enough from a
perturbation, it is usual to consider an irrotational flow (Eq. (2.2)). A velocity potential Φ(x, y, z, t) can then be
introduced (Eq. (2.3)).

−−→
r ot ~v(x, y, z, t) =~0 (2.2)

then ∃Φ(x, y, z, t), such as ~v(x, y, z, t) =−→∇ Φ(x, y, z, t) (2.3)

With these hypothesis, the continuity equation yields the Laplace equation :

∆Φ(x, y, z, t) = 0 (2.4)

The Laplace equation is associated with boundary conditions. Two are expressions for the free surface. The
free surface is denoted by z = η(x, y, z, t) (Fig. 2.1).

Kinematic condition

The first one express that a fluid particle at the free surface stays at the free surface. This leads to :

Dη

Dt
=

∂η

∂t
+
∂Φ

∂x

∂η

∂x
+
∂Φ

∂y

∂η

∂y
=

∂Φ

∂z

∣

∣

∣

∣

z=η
(2.5)

Dynamic condition

The second one comes from the Bernouilli equation expressed at the free surface where the pressure p = patm .

p =−ρgη−ρ
∂Φ

∂t
−

1

2
ρ(
−→∇ Φ)2 at z = η (2.6)
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Bottom condition

The last boundary condition is written at the bottom z = −h(x, y) and expressed that the bottom is a solid
boundary :

∂Φ

∂n

∣

∣

∣

∣

z=−h

=
∂Φ

∂z
+
∂h

∂x

∂Φ

∂x
+
∂h

∂y

∂Φ

∂y

∣

∣

∣

∣

z=−h

= 0 (2.7)

2.1.2 Linear theory

The previous system of equations ((2.4), (2.5), (2.6) & (2.7)) is non linear. It can be linearised by the use of the
following assumptions.

The dispersion effects are large compared to non-linear effects. The relative weight of these two effects is given
by the Ursell number defined in shallow water as :

Ur =
A

h

1

(kh)2
=

ǫ

µ2
(shallow water) (2.8)

where ǫ = A/h is characteristic of non-linearities in shallow water (relative wave amplitude compared to wa-
ter depth) and µ = kh is the dispersion parameter. k is the wave number. In deep water, the characteristic
parameter of non-linearities is the wave steepness k A. The Ursell number is then differently defined :

Ur =
k A

(kh)3
=

ǫ′

µ3
(deep water) (2.9)

If Ur << 1, a solution to the problem can be searched by developing the potential Φ with the small parameter
ǫ. It is called the perturbation method :

Φ= ǫφ(1) +ǫ2φ(2) +ǫφ(3) + ... (2.10)

On the contrary, Ursell number much bigger than 1 comes to non-linear wave theories.

The linear theory or Airy wave theory is the truncation to the first order of equation (2.10). The parameter ǫ

is small enough to discard higher orders. The dynamic and kinematic conditions can be linearised and the
kinematic equation is written at z = 0 instead of z = η. The combination of these two equations (Eq. 2.5 & 2.6)
leads to the linear free surface condition on a flat bottom :

∂2φ(1)

∂t 2
+ g

∂φ(1)

∂z

∣

∣

∣

∣

z=0
= 0 ⇐⇒

{

∂η
∂t

− ∂φ
∂z

= 0
∂φ
∂t + gη= 0

(2.11)

This theory will be used further in the diffraction-refraction numerical model at chapter 2.1.

Formulation of the progressive monochromatic wave

An analytic solution of the harmonic problem can be found with the method of separation of variables. φ(1) is
replaced by the simplified notation φ. It can be now written as :

φ(x, y, z, t) = A(x)B(y)C (z)D(t) (2.12)

The elementary solution is a progressive monochromatic wave which heads towards the direction making an
angle β with the Ox axis and is given by :

φ(x, y, z, t) =ℜ
[

−
i Ag

ω

cosh(k(z +h))

cosh(kh)
ei(k(x cos(β)+y sin(β))−ωt )

]

(2.13)

The verification of the free surface condition leads to the so-called linear dispersion relation, which links the
wave-number k to the pulsation ω :
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k tanh(kh) =
ω2

g
(2.14)

Profile of the free surface

The profile of the free surface is sinusoidal with :

η=ℜ
[

iω

g
φ

]

z=0
= A cos(k(x cos(β)+ y sin(β))−ωt) (2.15)

Orbital velocity

The elements of the orbital velocity are deduced from the expression of the potential :

u(x, y, z, t) =
Ag k cos(β)

ω

cosh(k(z +h))

cosh(kh)
cos(k(x cos(β)+ y sin(β))−ωt)

= Aωcos(β)
cosh(k(z +h))

sinh(kh)
cos(k(x cos(β)+ y sin(β))−ωt)

(2.16)

v(x, y, z, t) =
Ag k sin(β)

ω

cosh(k(z +h))

cosh(kh)
cos(k(x cos(β)+ y sin(β))−ωt)

= Aωsin(β)
cosh(k(z +h))

sinh(kh)
cos(k(x cos(β)+ y sin(β))−ωt)

(2.17)

w(x, y, z, t) =
Ag k

ω

sinh(k(z +h))

cosh(kh)
sin(k(x cos(β)+ y sin(β))−ωt)

= Aω
sinh(k(z +h))

sinh(kh)
sin(k(x cos(β)+ y sin(β))−ωt)

(2.18)

Trajectory of particles

The trajectory of particles is obtained by integrating the velocity field in time in the Langrange system :

d x

d t
= u(x, y, z, t) (2.19)

d y

d t
= v(x, y, z, t) (2.20)

d z

d t
= w(x, y, z, t) (2.21)

The linear theory is valid for "very small" displacements of the fluid. We can thus integrate u, v and w at the
point (x0,y0,z0) :

x(t) = x0 − A cos(β)
cosh(k(z0 +h))

sinh(kh)
sin(k(x0 cos(β)+ y0 sin(β))−ωt) (2.22)

y(t)= y0 − A sin(β)
cosh(k(z0 +h))

sinh(kh)
sin(k(x0 cos(β)+ y0 sin(β))−ωt) (2.23)

z(t) = z0 + A cos(β)
sinh(k(z0 +h))

sinh(kh)
cos(k(x0 cos(β)+ y0 sin(β))−ωt) (2.24)

The trajectories of particles, under the assumptions of the linear theory, are ellipses. For a very large depth,
they form circles for which the radius exponentially decrease with kz. In practice, we assume that the bottom
has no influence if kh > 3. In other words : if the depth is larger than half of the wavelength. On the contrary,
the ellipsis flatten as depth decreases. For waves with a long wavelength compared to depth, the trajectories
are almost rectilinear.
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Phase velocity and group velocity

The phase velocity is the velocity of displacement of the crests and troughs. It is defined as :

cp =
ω

k
=

√

g

k
tanh(kh) (2.25)

The sea is a dispersive medium. The velocity of waves depends on their wavelength. This assertion is well
checked when water depth is deep enough in regards to wavelength. In that case, kh ≫ 1, then ω2 ≈ g k. The

phase velocity cp , velocity of the fluid particles, is then cp = ω
k
≈

√

g
k

. When kh ≪ 1, when the wavelength

is large in comparison to the water depth, then ω2 ≈ g hk2. We obtain cp ≈
√

g h. The sea is not a dispersive
medium any more.

The concept of group velocity is the velocity of propagation of the wave energy. At sea, the waves are not
strictly monochromatic ones. They form a random field, which can be modelled, inside the linear theory, by
a superposition of monochromatic waves with different pulsations ω. If we suppose that every wave has a
pulsation close to a pulsation ω0, we can write :

cg =
ω−ω0

k −k0
(2.26)

And if ω−ω0 → 0 :

cg =
dω

dk
=

g

2ω

(

tanh(kh)+
kh

cosh2(kh)

)

(2.27)

The group velocity is thus the velocity of the envelope of a group of waves with close frequencies. The relation
between the phase velocity and the group velocity is given by :

cg

cp
=

1

2
+

kh

sinh(2kh)
(2.28)

If kh →+∞ : cg =
cp

2
If kh → 0 : cg = cp

Energy of waves

The total amount of energy of the waves is the sum of the potential energy Ep and of the kinetic energy Ec . They
are computed for a surface unit of one period. The potential energy is expressed by :

Ep =
1

T

ˆ T

0

ˆ η

−h

ρg z dt dz =
1

4
ρg A2 −

1

4
ρg h2 (2.29)

The term − 1
4ρg h2 is the static contribution, the energy of the fluid at rest. It does not have any interest here.

The kinematic energy is expressed in deep water by :

Ec =
1

T

ˆ T

0

ˆ η

−h

ρ
v2

2
dz =

1

4
ρg A2 (2.30)

The upper bound of the spacial integral is taken to 0 instead of η because we assume the assumptions of the
linear theory. The value of energy is thus valid to the first order of steepness.

The mean of the total energy of a wave for one surface unit is equally shared between its potential energy and
its kinetic energy. Its expression is given by :

E =
1

2
ρg A2 (2.31)
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The energy flow through an oriented surface of one width unit and for all the water depth is obtained by writing
the variation of energy in time. Its definition is given by :

F (t)=
ˆ 0

−h

∂φ

∂t

−→∇ φ .~n dz =
ˆ 0

−h

−ρ
∂φ

∂t

[

∂φ

∂x
+
∂φ

∂y

]

dz (2.32)

The mean value for one period is :

F̄ =
1

2
ρg A2cp

[

1

2
+

kh

sinh(2kh)

]

= Ecg (2.33)

The relation F̄ /E is thus the mean velocity of the energy. The velocity of the energy is equal to the group velocity.

2.1.3 Stokes wave theory

If the amplitude rises or the depth reduces, the little parameter ǫ = A/h or ǫ′ = k A rises. The crests become
progressively sharper and the troughs flatter. The linear theory is then less and less accurate in defining regular
waves and the development of the equation (2.10) to higher orders is required (Fig. 2.2). The dispersion relation
then becomes dependent on the wave amplitude.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x/

-1

-0.5

0

0.5

1

1.5

/a

1er ordre

2nd ordre

3eme ordre

Stokes 3eme ordre

Figure 2.2: Third order Stocks wave and harmonics

The expansion to higher orders can be numerically done following the stream function method. The flow
velocity components are expressed as the derivatives of a scalar stream function Ψ(x, z) such as u = − ∂Ψ

∂x
and

w = ∂Ψ
∂z

. In our case, the free surface elevation η(x) is assumed to be periodic and symmetric in relation to the
crest. The stream function can then be solved as (following Molin (2002) [42]) :

kΨ(x, z)

CPE
=−k(z +h)+

N
∑

j=1
a j

sinh
(

j k(z +h)
)

cosh( j kh)
cos( j kx) (2.34)

where N is the truncation order, CPE is the phase velocity and a j some coefficients.
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The slip condition on the bottom (Ψ(x,−h) = 0) and the continuity condition (∆Ψ= 0) are automatically veri-
fied. Then, the kinematic and dynamic conditions can respectively be expressed as :

Ψ(x,η(x)) =−Q (2.35)

1

2
(Ψ2

x +Ψ
2
z )+ gη= R (2.36)

Q and R are two unknowns constants.

The interval [0,L/2] is discretisated in M +1 points of abscissa i L/(2M) of unknown elevations ηi . We obtain
2M+2 equations for M+N +4 unknowns. The mean value of the free surface, the height of the wave H and the
period T give 3 more equations to add to the previous linear system :

η0 +ηM +2
M−1
∑

i=1
ηi = 0 (2.37)

η0 −ηM = H (2.38)

T =
L

CPE +UC
(2.39)

with UC the eulerian stream velocity.

Examples of solution are shown in figure 2.2.

The development to high orders shows that there is a maximum wave steepness. The limit is reached when the
wave orbital velocity at the crest is equal to the phase velocity. At this moment, the shape of the wave at the
crest corresponds to a dihedral with an angle of strictly 120°.

The wave of Stokes is subject to a breaking criterion which applies when the velocity of the fluid particles
exceeds the wave phase velocity. It is determined by (Miche 1944) :

H

λ
= 0.14tanh(kh) (2.40)

The stream function method described above makes the link between the Stokes wave theory and the Cnoidal
wave theory, which is used to model waves in shallow water.

2.1.4 Cnoidal wave theory

The Cnoidal wave theory is developed under the assumption of shallow water, always in regards to the wave-
length. It may occur when the waves are ready to end up on the beach. In that case, kh is small (kh < 0.3) and
the Ursell number becomes high (Ur ≫ 1).
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Figure 2.3: Cnoidal waves (m=0.34 : black, m=0.98 : red, m=1 : blue)

By adopting the origin of the vertical coordinate at the bottom (Z = z −h), we can assume that the potential
can be developed as a power series of the vertical coordinate (Boussinesq) :

Φ(x, Z , t)=
+ inf
∑

n=0

Z n

n!

∂Φ

∂Z n

∣

∣

∣

∣

Z=0
(2.41)

This form of potential is introduced in the Laplace equation, associated to the boundary conditions. The trun-
cation of series after the first order in ǫ′ and µ2 leads to the well-known non-linear equation of Korteweg-de
Vries (1985) [29] (Whitam (1974) [63]) :

∂η

∂t
+

√

g h
∂η

∂x
+
∂η

∂x
+

3

2

√

g

h
η
∂η

∂x
+

h2

6

√

g h
∂3η

∂x3
= 0 (2.42)

The analytical solution, under the form of a progressive wave of velocity c, exists. A rigorous demonstration
can be found in Lajoie (1996) [32]. It is expressed through a Jacobi elliptic function of the first kind with a m

parameter as :

η= η2 +H cn2
[

K (m)

π
k(x −ct),m

]

(2.43)

with :

• η2 the trough elevation defined as :

η2 =
H

m

(

1−m −
E (m)

K (m)

)

(2.44)

• E is the complete elliptic integral of second kind of parameter m.

• K is the complete elliptic integral of first kind of parameter m.

• cn is the cosine function of Jacobi of parameters u, m.

• c the phase velocity is defined by c =
√

g h
(

1+ H
h
− 2

3 K 2(m)k2h2
)

.

• k = 2π/λ the wave number.
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The shape of the wave depends on the wave height H and on the wavelength λ. It depends also on the param-
eter 0 ≤ m ≤ 1. This parameter is directly linked to H , λ and h as :

K (m)=
p

3

2

√

H

h

1
p

m

λ

2h
, from where Ur =

16

3
mK 2(m) (2.45)

As the other non-linear wave theories, the wave amplitude is included in the dispersion relation. If the parame-
ter m decreases towards 0, the Cnoidal wave theory meets the linear theory for long waves and the limit for the
celerity is c =

√

g h (Fig. 2.3). The other limit corresponds to the solitary wave theory (Fig. 2.4) and is obtained
for m = 1. The elevation of the wave becomes :

η=
H

cosh2
[

3a
4h2 (x −ct)

] with c =

√

g h(1+
H

2h
) ≈

√

g (h+H) (2.46)
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Figure 2.4: Solitary wave (a/h = 0.4 : black, a/h = 0.2 : red, a/h = 0.1 : blue)
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2.1.5 Validity of different waves theories

Every wave theory has its own scope to best describe the different effects involved. Le Mehauté (1976) worked
on the applicability of the different theories function of the wave steepness and of the relative depth. For
example, the diagram 2.5 below has a direct application in the analysing method of reflection-transmission
experimental tests described and used further in this work, see chapter 1.5. The characteristics of the waves
performed in the experimental campaigns of Vintimille (Chap. 3.3) and Banyuls & Istres (Chap. 3.4) are showed
on the figure.

Figure 2.5: Applicability of wave theories, Le Mehauté (1976)
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2.2 Hydrostatic Shallow water equations

The hydrostatic shallow water equations or also known as the 2D Saint-Venant equations are a set of equations
derived from depth-integrating the general equations of fluid mechanics. A simple form of these equations are
used in the analytical model presented in the chapter 2.4.

We start again with the continuity equation (2.47), the Euler equation Eq. (2.48) and the three boundary condi-
tions Eq. (2.49), (2.50) and (2.51)

Continuity
−→∇ .~v = 0 (2.47)

Conservation of momentum
∂~v

∂t
+ (~v .

−→∇ )~v =−
1

ρ

−→∇ p −~g (2.48)

No-slip bottom condition
~v|z=−h =~0 (2.49)

Kinematic condition
∂η

∂t
+~v .

−→∇ η

∣

∣

∣

∣

z=η
= vz (2.50)

Dynamic condition
p

∣

∣

z=η = patm (2.51)

where the bottom is defined by a function h(x, y). The water depth is thus defined as h′ = h+η.

Now, we deal with the main assumption of the shallow water equations : the horizontal length scale is much
greater than the vertical length scale. We introduce λ, the wavelength for the horizontal direction and h′, the
water depth for the vertical direction. The continuity equation shows that the order of magnitude of the ver-

tical velocity component is given by vz = O( h′

λ vx ). The vertical velocity scale is thus small compared to the

horizontal velocity scale. This assumption suggests that Dvz

Dt can be neglected in equation (2.48) as the term in

vz
∂
∂z

.

Now, it is rational to assume a hydrostatic pressure distribution. It follows that :

∂p

∂x
= ρg

∂η

∂x
(2.52)

∂p

∂y
= ρg

∂η

∂y
(2.53)

∂p

∂z
=−ρg (2.54)

Substituting these equations into equation (2.48) leads to :

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
=−g

∂η

∂x
(2.55)

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
=−g

∂η

∂y
(2.56)

We introduce the depth-average speeds v̄x and v̄y such as :

v̄x =
1

h′

ˆ η

−h

vx dz (2.57)

v̄y =
1

h′

ˆ η

−h

vy dz (2.58)

The equations (2.55) and (2.56) can be integrated over the depth using the Leibniz’s rule and the boundary
conditions. It becomes :

∂v̄x

∂t
+ v̄x

∂v̄x

∂x
+ v̄y

∂v̄x

∂y
=−g

∂η

∂x
(2.59)



20 Chapter 2: WAVE: GENERAL EQUATIONS

∂v̄y

∂t
+ v̄x

∂v̄y

∂x
+ v̄y

∂v̄y

∂y
=−g

∂η

∂y
(2.60)

Integrating the continuity equation over the depth, we obtain :

0=
ˆ η

−h

−→∇ .~v dz

=
∂

∂x

ˆ η

−h

vx dz +
∂

∂y

ˆ η

−h

vy dz −
[

vx |z=η
∂η

∂x
+ vy

∣

∣

z=η
∂η

∂z
− vz |z=η

]

+
[

vx |z=−h

∂η

∂x
+ vy

∣

∣

z=−h

∂η

∂z
− vz |z=−h

]

=
∂(h′ v̄x )

∂x
+
∂(h′ v̄y )

∂y
+
∂h′

∂t

Here, the three dimensional shallow water equations :

∂(h′ v̄x )

∂x
+
∂(h′ v̄y )

∂y
+
∂h′

∂t
= 0 (2.61)

∂v̄x

∂t
+ v̄x

∂v̄x

∂x
+ v̄y

∂v̄x

∂y
=−g

∂η

∂x
(2.62)

∂v̄y

∂t
+ v̄x

∂v̄y

∂x
+ v̄y

∂v̄y

∂y
=−g

∂η

∂y
(2.63)

The analytical model presented in chapter 2.4 uses a linear form of these equations for a 1D linear reflection-
transmission problem. Assuming very small amplitudes of waves to depth, we can discard the advection terms
and take h′ ≈ h. The linearised 1D shallow water equations becomes :

∂η

∂t
+h

v̄x

∂x
= 0 (2.64)

∂v̄x

∂t
+ g

∂η

∂x
= 0 (2.65)



3 DESCRIPTION OF A SIZE DISTRIBUTION

3.1 Rock description

The simplest measurement of a block is its mass, which is determined by weighing. Thus, the geometric pa-
rameter of a granular material varies between different references, d , dE , d15, d50 and dn50 defined as follows
:

• d can refer to two definitions :

– The diameter of spheres or cylinders authors work with to model idealised porous medium in nu-
merical or experimental researches.

– The dimension of square sieve fitting with the block.

• dE is the diameter of a sphere that has a volume equal to the average volume of the grains.

• d50 corresponds to median diameter of rocks. d15 is the diameter bound for which 85% of grains are
bigger.

• dn50 is the nominal median diameter which is the diameter of the cube that has a volume equal to d50.

The nominal diameters dn50, dn15 and dn85 are today the most used parameters to define a specific size distri-
bution (set of rocks).

The diameter d and the diameter dn are proportional for a given type of rocks. The usual ratio is :

dn = 0.84d (3.1)

3.2 Gradation of a size distribution

The overall slope of the grading curve is an indicator of the uniformity of the size distribution and is generally
referred to a gradation or granular extent. A quantitative estimate of this uniformity can be made using the ratio
M85/M15 or d85/d15. As for d15 concerning the stones diameters, M15 is the weight bound for which 85% of the
stones are heavier. The table 3.1 describes the different gradations, expressed as mass and diameter ratios.

Type of size distribution dn85/dn15 M85/M15

Low gradation or narrow size
distribution

<1.5 1.7–2.7

High gradation or spread size
distribution

1.5–2.5 2.7–16

Very high gradation or very
spread size distribution

2.5–5.0 16–125+

Table 3.1: Gradation of rocks in terms of uniformity, Rock manual [9]
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According to the Rock manual [9], the size distribution plays a major role :

• on the filtration characteristics,

• in the final porosity n of a layer of bulk blocks.

The porosity of a porous layer in a classical breakwaters (under layer or core) depends on the uniformity of the
size distribution and on the shape of the rocks. The porosity n of bulk materials can be estimated by (Tsirel
(1997) [9]) :

e =
1

90
e0 arctan(0.645nRRD ) (3.2)

n =
e

1+e
(3.3)

where e is the void ratio of the size distribution and e0 is the void ratio if all blocks were one size. eo for different
shapes of rocks is given in the table below.

Type of
materials

Cubic Elongated Flat Crushed Shingles

Void ratio e0 0.88–0.92 0.93–0.96 1.00–1.03 0.92–0.96 0.65–0.80

Table 3.2: Coefficient e0, Rock manual [9]

nRRd is another indicator for measuring the gradation of a size distribution. nRRd is called coefficient of uni-
formity and it is defined by :

nRRd = log

(

log(1− yNU L )

log(1− yN NL )

)/

log(NU L/N LL) (3.4)

with yNU L = 0.9 the upper nominal limit and yNLL = 0.06 the lower nominal limit. NU L and N LL are the
nominal diameters associated with the limits yNU L and yNLL .

The figure 3.1 is an example of a size distribution. This one is used for the experimental tests of chapter 3.3.
The coefficient of uniformity represents the slope of the grading curve. The coefficient of consistency can also
be expressed as the function of the weight of the stones. nRRd becomes nRRM with nRRd ≈ 3nRRM .
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Figure 3.1: Size distribution, Vintimille

In practise, the equation (3.3) has be to used with caution. The mode of discharge of the blocks also plays a role
in the final porosity of a layer. In addition, the empirical law of Tsirel was not developed for discharge in water
[9].
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For the innovative vertical riprap structures which are mentioned in this thesis work, the operators laying
method depends on the size of the blocks. Little stones (shingles) will be just discharged in the cage. Big-
ger stones must be placed one by one. The constraint of the walls of the cage compared to a free stack of stones
also changes the porosity of the final porous medium.
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4 FLOW THROUGH POROUS MEDIA

Flow inside porous medium has been studied since the latter half of the 19th century. The first theoretical
formulation is the well-known Darcy law (1856) [13]. The Darcy equation is an empirical relation based on
experimental observations of 1D flow through a porous medium that is assumed to be homogeneous. It in-
troduces the intrinsic permeability constant K of the medium to the steady laminar flow. The Darcy equation

expresses the hydraulic gradient − 1
ρg

∂p
∂x

as :

−
1

ρg

∂p

∂x
=

ν

g K
vd (4.1)

with :

• vd is the Darcy velocity, or filter velocity (m.s−1).

• K is the intrinsic permeability of the porous medium (m2).

• ν is the kinematic viscosity (m2.s−1).

Kozeny-Carman law details the parameter K in order to describe filtration phenomenon through a packed bed
of solids. The equation was derived by Kozeny (1927) [30] and Carman (1937, 1956) [6] & [7]. The equation is
still only valid for laminar flow. The notion of specific surface area S is used in their formulation. expressed as :

−
1

ρg

∂p

∂x
= ko

(1−n)2

n3

νS2
c

g
vd (4.2)

with :

• ko is the Kozeny constant (commonly between 3 and 6).

• n is the porosity.

• Sc is the specific surface area of the grains (m−1).

The intrinsic permeability can be now expressed by :

K =
1

ko

n3

(1−n)2

1

S2
c

(4.3)

If we consider d = 6/Sc the mean diameter for the spherical solid particles forms an idealised porous medium
with the same specific surface area S. The equation (4.2) can be further expressed as :

K =
1

36ko

n3

(1−n)2 d2 (4.4)

The Kozeny-Carman equation is widely used to evaluate soil permeability. Nowadays, in order to improve this
equation, a lot of publications try to better estimate the permeability-porosity relationship of porous media by
means of fractal geometry : Costa (2006) [11], Xu & Yu (2008) [65], Valdes-Parada et al. (2009) [57], Henderson
et al. (2010) [22], Latief & Fauzi (2012) [35], Kun-Can et al. (2017) [31] and Chen & al. (2018) [8].
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Forchheimer (1901), following Dupuit’s work (1863), expressed the hydraulic gradient through a porous medium
for a non-Darcy flow (non-laminar flow) by adding a quadratic term bvd . The Forchheimer equation is then

extended by Polubarinova-Kochina (1962) [46] with an inertial term c
∂vd

∂t
in order to describe non-steady flow.

The extended equation of Forchheimer expressed the hydraulic gradient as :

−
1

ρg

∂p

∂x
= avd +bvd |vd |+c

∂vd

∂t
(4.5)

where a, b and c are coefficients that correspond to the considered porous medium.

This empirical expression of resistance terms is still frequently used to model the hydraulic gradient through
porous media. The scientific emulation about this field has been important in order to give a theoretical back-
ground to the formulation by averaging the Navier-Stokes equation (Van Gent (1991) [58]) and to give a physical
meaning to the coefficients a, b and c (Hassanizadeh & Gray (1987) [21]). The porous medium is considered as
a continuous medium. This technique avoids modelling the complex network of pores and rocks (Fig. 4.1).

Figure 4.1: Sketch of the volume-averaging process for resolution of the porous flow, Losada & al. (2016) [38]

As observed by Van Gent (1991) [58], the equation (4.5) does not include a possible resistance force due to
the presence of a convective term (H1). A resistance term may be important when considering flow through a
porous medium that has considerable large-scale convective transport. Such a resistance term could be incor-
porated in the b term, because it would be quadratic in velocity.

We have also to note that the viscous and turbulence shear stress are also neglected (H2). Considering the vis-
cous shearing effect between the fluid and the pore walls, Brinkman (1947) added the second-order derivatives
of the velocity to the Darcy equation, resulting in the Brinkman equation (Civan & Tiab (1991) [10]) :

−
1

ρg

∂p

∂x
=

ν

g K
vd −

ν

g

(

∂2vd

∂y2
+
∂2vd

∂z2

)

(4.6)

For flow with a high Reynolds number, a new dominating term mest be added. It corresponds to the turbulent
shear stress or Reynolds stress. As Van Gent (1991-1995) and Burcharth & Andersen (1995), we assume the
hypothesis (H1) and (H2) for our porous flow model.

The model presented in equation (4.5) was recently updated by Lin & Karunarathna (2007) [37] by including a
new drag term. This experimental new porous flow model is an extension of the extended Forchheimer equa-
tion to consider the drag component that appears in the transition from laminar to turbulent flow. Equation
Eq. (4.5) can then be transformed into :

−
1

ρg

∂p

∂x
= avd +bvd |vd |+d vd

p
vd +c

∂vd

∂t
(4.7)

where d is the new coefficient.

To determine the magnitude of the frictional forces, porous flow parameters a, b, c and d need to be defined.
Most of the works existing in the literature are focused on the analysis of a, b, and c. The porous flow model
presented by Lin & Karunarathna (2007) is not yet broadly used, mainly because it requires the determination
of a new parameter, d, as suggested by Losada & al. (2016) [38].
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4.1 Forces of inertia

By considering only the inertia loads that apply to the fluid in a small closed porous domain Σ of volume VΣ

(Fig. 4.1), we can write the momentum equation. With a simplified notation for the small volume VF and VP , it
yields :

VF

∂~vp

∂t
=−

1

ρ
(VP +VF )

−→∇ pI − (1+Ca )VP

∂~vp

∂t
(4.8)

where :

• F is the fluid domain of volume VF (Fig. 4.1).

• P the rock domain of volume VP .

• ~vp the pore velocity. The relation with the filter velocity is given by ~vp = n ~vd .

•
−→∇ pI the pressure gradient corresponding to the inertial part, applying thus on the global exterior surface
∂Σ.

Following Burcharth & Andersen (1995) [4] : "for a fixed body exposed to a flow, CM = 1+Ca . CM is the inertia

coefficient, 1 relates to the Froude-Krylov force and Ca is the added mass coefficient. For a single smooth cylinder

Ca = 1 and CM = 2. Ca and CM correspond to the conventional definition of the Morison equation and depend on

Re , KC, and the relative surface roughness k
d

. However, for an array of cylinders, the drag coefficient, Cm depends

also on n".

Dividing equation (4.8) by VΣ =VF +VP , it yields :

n
∂~vp

∂t
=−

1

ρ

−→∇ pI − (1+Ca )(1−n)
∂~vp

∂t
(4.9)

With the introduction of the filter velocity ~vd , we obtain :

1

n
(1+Ca (1−n))

∂~vd

∂t
=−

1

ρ

−→∇ pI (4.10)

Here, two different formulations are proposed in the literature. The first is derived by Sollit & Cross (1972) [50]
and re-expressed by Van Gent (1993) [59] :

(1+γp
1−n

n
)

n

∂~vd

∂t
=−

1

ρ

−→∇ pI (4.11)

with γp an empirical coefficient (Van Gent 1993 [59]). γp is often taken equal to 0.34 but it has also its own
expression :

γp = 0.85−
0.015

Ac
for Ac >

0.015
n

1−n +0.85
with Ac =

v̂d

T ng
(4.12)

However authors like Burcharth & Andersen (1995) [4] declared this formulation incorrect because it is divided
by n. In his development Van Gent (1993) [59] exclusively expressed the pressure gradient on the fluid domain
F when it applies on the global domain Σ.

If we rewrite the equation (4.10) by replacing the added mass coefficient Ca with the inertia coefficient CM =
1+Ca , we obtain the expression of Burcharth & Anderson (1995) [4] :

(1+CM
1−n

n
)
∂~vd

∂t
=−

1

ρ

−→∇ pI (4.13)
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4.2 Formulation of drag coefficients

A lot of scientists have suggested their own developments of drag coefficients based on empirical, semi-empirical
and theoretical formulations. The table Tab. 4.1 is a sum-up of the different and most important formulations
which have been used in coastal engineering.

Author(s) a b d

Carman (1937) α (1−n)2

n3
ν

g d 2 0 0

α= 180

Ergün (1952) α (1−n)2

n3
ν

g d 2 β (1−n)
n3

1
g d 0

α= 150 β= 1.75

Engelund (1953) [58] α (1−n)3

n2
ν

g d 2
E

β (1−n)
n3

1
g dE

0

α= 780−1500 β= 1.8−3.6

Le Méhauté (1957) α 1
n5

ν
g d 2 β 1

n5
1

g d 0

α= 14 β= 0.1

Ward (1964) [62]
ν

g K
C f

g
p

(K )
0

C f = 0.55

Keulegan (1973) [27] 0
C f

g d 0

C f =C
(

vd d
ν

)n(Red )

Koenders (1985) [28] α (1−n)2

n3
ν

g d 2
15

β 1
n5

1
g d15 0

Den Adel (1987) [16] α (1−n)2

n3
ν

g d 2
15

β 1
n2

1
g d15

0

Shih (1990) [48] α (1−n)2

n3
ν

g d 2 β (1−n)
n3

1
g d 0

α= 1684+3.12 ·
10−3

(

g

ν2

) 2
3

d2
15

β= 1.72+

1.57exp

(

−5.1 ·10−3
(

g

ν2

) 1
3

d15

)

Van Gent (1993) [59] α (1−n)2

n3
ν

g d 2
n50

β
(

1+ 7.5
KC

) (1−n)
n3

1
g dn50

0

Burcharth & Andersen
(1995) [4]

α (1−n)2

n3
ν

g d 2 β (1−n)
n3

1
g d 0

Lin & Karunarathna
(2007) [37]

α (1−n)2

n3
ν

g d 2
n50

β
(

1+ 7.5
KC

) (1−n)
n3

1
g dn50

4.5 (1−n)
n3

ν
1
2

g d
3
2

n50

Table 4.1: Parameter formulations, Literature review.
α and β are tortuosity coefficients. C f is a resistance coefficient.

The relation between friction coefficients presented by Burcharth & Andersen (1995) [4] and those used by
Ward (1964) [62] are :

K =
n3d2

n50

α(1−n)2
(4.14)

C f =
β
p
α

n− 3
2 (4.15)
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The expression of the intrinsic permeability K is almost the same as the one in Kozeny-Carman equation (4.3).

Nowadays, the widely admitted and applied form of resistance model for steady and non-steady flow through
granular porous media is the one proposed by Ergün (1952) and re-express by Van Gent (1993) [59] and Bur-
charth & Andersen (1995) [4]. As mentioned before, Van Gent derived the equations from averaging the Navier-
Stokes equation by applying a cylinder analogy to model the pores of the porous medium. As it is previously
noted, the formulation is incorrect as the pressure applied on the fluid domain gives a wrong apparent depen-
dence in the porosity for the coefficient c, and also necessarily for a and b. However, Burcharth & Andersen
(1995) [4], pointed this error out but use the derived formulation anyway. They justify it by stating that a "di-

mensionless factor, like n, can be applied to the parameters without violating the dimensional analysis. It will

still give combined parameters which in a mathematical sense are correct, but not necessarily physically the most

relevant or meaningful. It is difficult from theory to verify which is the best formulation of the factor b with re-

spect to the dependency on the porosity". That is why they kept the experimental formulation done by Ergün
(1952) where the variation with the porosity conforms to the coefficients re-expressed by Van Gent (1993).

α and β are empirical coefficients which can be called tortuosity coefficients. They still depend on many dif-
ferent types of parameters (Van Gent 1993 [59] and Burcharth & Andersen 1995 [4]) such as :

• Flow parameters : Reynolds number Re (defined in equation (4.18)), Keulegan Carpenter number KC

(defined in equation (4.16)), and steady or non-steady flow.

• Stone parameters : grading, aspect ratio, shape and orientation

Hannoura & McCorquodale (1978) [20], Smith (1991) [49], Burcharth & Christensen (1991) [5], and Van Gent
(1993, 1995) [59] & [60] performed a limited set of experiments using U-tube water tunnels for different stone
and sphere sizes. The flow is oscillating, which is closer to a flow generated by waves, except that there are only
horizontal velocities. One of the most important aspects from the Van Gent parametrisation for the a, b, and
c parameters is the dependence to the Keulegan-Carpentar number (KC) in the non-linear drag term. KC is
defined as :

KC =
v̂p T

dn50
(4.16)

with v̂p = nv̂d the maximal pore oscillating velocity and T the period of the oscillating flow. We can rewrite the
expression of the pressure gradient due to friction avd +bv2

d
as :

avd +bv2
d =α

(1−n)2

n3

ν

g d2
n50

vd +β

(

1+
7.5

KC

)

1−n

n

1

g dn50
v2

d

=α
(1−n)2

n3

ν

g d2
n50

vd +β
7.5ndn50

v̂d T

1−n

n3

1

g dn50
v2

d +β
1−n

n

1

g dn50
v2

d

=
(

α+
7.5δn

1−n
βS

)

(1−n)2

n3

ν

g d2
n50

vd +β
1−n

n

1

g dn50
v2

d

= a′vd +b′v2
d

(4.17)

where :

• βS is the Stokes parameter defined in equation (4.22).

• δ = vd

v̂d
. δ can be considered constant as it is the relation between the maximal and the average elliptic

velocities.

The expression of b proposed by Van Gent (1995) results in an increase in the α coefficient with the parameter
βS .

It is found that the non-linear drag term has relatively small variations in b coefficient values. A numerical
study is performed by B. Jensen et al. (2014) [25] to analyse the variation of coefficients α and β in cases where
an initial volume of water is released to a porous damn. The formulation of Van Gent (1993) [59] is used.
They conclude that α = 500 and β= 2 would be the best pair of values for the different turbulent flow regimes
described by Burcharth & Andersen (1995) [4], see section 1.4.4.3 Criterion for non-Darcy flow.

It should be noted that the tests with U-tube water tunnels are conducted with no free surface and the numer-
ical study previously mentioned does not integrate oscillatory flows. These results have thus to be used with
caution. As Losada et al. (2016) [38] said, the problem remains open and work is required in modelling flow
inside porous media using averaging methods.
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4.3 Criterion for non-Darcy flow

Flow can be categorized into several specific regimes within a physical phenomenon dominates the others. The
parameters a and b will differ in importance depending on the flow regime. The appreciation of a flow regime
is especially important given that we often work with scaled models. Two criteria have been developed in the
literature, the Reynolds number criterion and the Forchheimer number criterion (Zeng & Grigg (2006) [67]).

4.3.1 Reynolds number criterion

The Reynolds number inside a porous medium is derived from the Reynolds number for identifying turbu-
lent flow. The pores of a porous medium are modelled as cylinders like in the averaging of the Navier-Stokes
equation. The Reynolds number is defined as :

Re =
vd

ν
(4.18)

where d is a characteristic length of the porous media and v a characteristic velocity. In this work, we consider
d = dn50 and v = v̂p the maximum pore velocity.

According to Zeng & Grigg review (2006) [67], critical values for non-Darcy flow vary from 1 to 100 for the
Reynolds number criterion. This is mainly applied for columns of packed particles when the characteristics
length, usually the representative particle diameter, is available.

We find similar values amongst the specific studies in the coastal engineering field. Van Gent (1995) [60], taking
the results of Gu & Wang (1991) [19] use a characteristic particle size of the porous material d and the maximum
pore velocity v̂p to defined the Reynolds number. Gu & Wang (1991) respectively find the values 10 and 1000
to delimit laminar flow regime (Re < 10), transitional flow regime (10 < Re < 1000) and turbulence flow regime
(Re > 1000).

Burcharth & Andersen (1995) [4] follow the conclusion of Burcharth & Cristensen (1991). They mention 5 dif-
ferent flow regimes which are depicted in the figure 4.2. The laminar (Darcy) flow regime is defined for Re < 1.
There is a transition zone for 1 < Re < 10 where a boundary layer appears around the grains. For 10 < Re < 150,
the flow resistance becomes partly non-linear. This regime is referred as the Forchheimer flow regime. There
is a new transition zone from Re = 150 to 300 where the flow becomes turbulent. For Re > 300, the resistance
drag term is exclusively quadratic.

Figure 4.2: Conventional representation of flow regimes for porous flow based on a Forchheimer equation
analysis, Burcharth & Cristensen (1991) [5]
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4.3.2 Forchheimer number criterion

For its part, the Forchheimer number is defined as the relation between the turbulence drag term and the
laminar drag term. It was firstly defined with the intrinsic permeability K and a new non-Darcy flow coefficient
βo as :

Fo =
turbulent resistance

laminar resistance
=

Kβo v

ν
(4.19)

If we rewrite the Forchheimer number with the coefficients expressed by Burcharth & Andersen (1995) [4], we
obtain :

Fo =
bv̂p

2

av̂p
=

βd v̂p

α(1−n)ν
=

βRe

α(1−n)
∼ 10−4Re to 10−2Re (4.20)

where α= O(1000) and β= O(1) inside porous breakwaters.

Zeng & Grigg (2006) [67] give values from the literature where non-Darcy flow regime vary from Fo = 0.005 to
Fo = 0.2. For Burcharth & Andersen (1995) [4], the fully turbulent regime starts from Fo = 5 for Re = 300. With
the coefficients α= 500 and β= 2 proposed by B. Jensen et al. (2014) [25] and with a mean porosity n = 0.4, we
obtain Fo = 2. The quadratic resistance is twice as important than the laminar resistance. Now, if we take the
coefficients α = 2950 and β = 0.3 found from sloshing experimental tests presented in chapter 3.2, they lead
to Fo = 0.05. This time, the laminar resistance is much bigger than the quadratic resistance. Numerically, the
nature of the flow at a given Reynolds number depends a lot on the tortuosity coefficients.

The Forchheimer number criterion has been used mainly in numerical models. Nevertheless, in the laboratory,
the Reynolds number is more easily computable. The limit of the different flow regimes defined by Burcharth
& Andersen (1995) [4] depends thus on the tortuosity coefficients of the porous medium used for the tests.

4.4 Relative importance of the inertia term

Another non-dimensional number was designed in order to appreciate the relative importance of the inertia
term, the Keulegan-Carpenter number KC , which estimates the magnitude of the resistance term due to tur-
bulence in regards to the inertial resistance. It is defined as :

KC =
turbulent resistance

inertial resistance
=

v̂p T

dn50
(4.21)

The relative importance of the inertial resistance compared to the laminar resistance can thus be estimated by
the Stokes parameter βS :

βS =
inertial resistance

laminar resistance
=

Re

KC
=

d2
n50

νT
(4.22)

Gu & Wang (1991) [19] estimated the importance of the different resistance terms for different coarse materials,
in different flows cases, see figure 4.3.
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Figure 4.3: Flow regions with predominant resistance terms, Gu & Wang (1991) [19]

The tests with U-tube water tunnels performed by Smith (1991) [49] and Van Gent (1993, 1995) [59] & [60] were
located in regions Fine gravel and Large rock where the effects of both turbulence and inertial resistances play
an important role.



5 ANALYSING METHOD

Usually, new configurations of damping structures are tested numerically or experimentally. For a 2D case,
the typical setup is given in figure 5.1. To characterise the hydrodynamic performance, the reflected and the
transmitted wave fields need to be measured.

Figure 5.1: Reflected-Transmitted waves, Analysing Method

The signal of the free surface is acquired by several conductive or capacitive probes upstream and downstream
from the scale-model. The incident and the reflective waves with their higher harmonics are then decomposed
by data processing methods. The technique used later in this work is the one from Andersen & al. (2017) [39]
which is an extension of the Lin & Huang method (2004) [36]. The incident and reflective waves may be highly
non-linear regular waves due to shallow water or interaction between waves and structures.

Lin & Huang (2004) method was already an extension of the method by Mansard & Funke (1980) [41]. The latter
separate the complex waves into individual frequency components using the Fourier transform, as already
done by Goda & Suzuki (1976) [18]. They then use a least square method in order to reduce the error caused
by the noise signal. That’s why four or more spatially spaced probes are required. The probes have to respect
some spacing conditions to prevent singularities. Contrary to the method of Mansard & Funke (1980), the one
of Lin & Huang (2004) enables it to catch the full modes on a regular wave field, including free and bound waves
in the higher harmonics. The separation in bound and free harmonics is very relevant when analysing model
tests.

Lin-Huang method

The mathematical model of the surface for N th order waves as function of time (t) and coordinate of gauge
number m (xm ) measured positive in the incident wave direction is taken as :

η(xm , t) = a(1)
I

cos
(

kxm −ωt +φ(1)
I

)

+a(1)
R

cos
(

kxm +ωt +φ(1)
R

)

+
∑

n≥2
a(n)

I ,B cos
[

n(kxm −ωt)+φ(n)
I ,B

]

+
∑

n≥2
a(n)

R ,B cos
[

n(kxm +ωt)+φ(n)
R ,B

]

+
∑

n≥2
a(n)

I ,F cos
[

n(k(n)xm −nωt)+φ(n)
I ,F

]

+
∑

n≥2
a(n)

R ,F cos
[

n(k(n) xm +nωt)+φ(n)
R ,F

]

+em(t)

(5.1)
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where em(t) is the noise. Subscripts I and R represent incident and reflected components, receptively. Sub-
scripts B and F denote bound and free components. a is the amplitude, k the wave number, ω the pulsation
and φ the phase, of the primary component. Exponent n denotes the nth order component. These are deter-
mined by linear dispersion :

(nω)2 = g k(n) tanh(k(n)h) (5.2)

with g the gravity acceleration and h the water depth.

As Andersen et al. (2017) [39] explain, "the primary component k appears to be based on linear dispersion too,

equation (5.2) with n = 1. The linear dispersion is only valid to 2nd order so Lin & Huang [36] indirectly have

assumed mildly non-linear waves (2nd order theory valid)".

The complete procedure of this method is exposed in Lin & Huang (2004) [36]. The Andersen et al. [39] method
is more deeply developed. Finally, the reflection coefficient is defined by :

Kr =

√

√

√

√

√

√

√

(a(1)
R

)2 +
∑

n≥2

[

(a(n)
R ,B )2 + (a(n)

R ,F )2
]

(a(1)
I

)2 +
∑

n≥2

[

(a(n)
I ,B )2 + (a(n)

I ,F )2
] (5.3)

The transmission coefficient is expressed in the same way as the ratio of the transmitted and incident wave
amplitude.

Andersen & al. method

The most advanced separation method proposed by Andersen et al. (2017) [39] overcomes the limitation of Lin
& Huang (2004) method [36] to treat highly non-linear waves by replacing the linear dispersion formulation
by a non-linear one in order to take into account the amplitude dispersive effect of non-linear waves (3r d and
higher order). Moreover, a problematic region where bound and free components have identical celerity is
identified and a correction is suggested.

Following Andersen et al., the wave numbers of the primary component (and bound components) depends
additionally on the wave height (H) and will be different for incident and reflected waves. The wave period to
be applied in the dispersion relation is usually known beforehand. It can also be estimated based on the signals
for example by zero down crossing analysis or from the frequency of the first Fourier coefficient with significant
energy. However, the incident and reflected wave height needed for the non-linear dispersion relation is part
of the solution and is thus unknown to begin with. Therefore, an iterative procedure (fully described in [39]) is
used for the wave length estimation.

The applied mathematical model is thus :

η(xm , t) = a(1)
I

cos
(

kI xm −ωt +φ(1)
I

)

+a(1)
R

cos
(

kR xm +ωt +φ(1)
R

)

+
∑

n≥2
a(n)

I ,B cos
[

n(kI xm −ωt)+φ(n)
I ,B

]

+
∑

n≥2
a(n)

R ,B cos
[

n(kR xm +ωt)+φ(n)
R ,B

]

+
∑

n≥2
a(n)

I ,F cos
[

n(k(n) xm −nωt)+φ(n)
I ,F

]

+
∑

n≥2
a(n)

R ,F cos
[

n(k(n) xm +nωt)+φ(n)
R ,F

]

+em(t)

(5.4)

The only difference with equation (5.1) is the wave numbers used for the incident and reflected bound waves
(kI and kR ). Non-linear dispersion applied is Stokes V order theory when it is valid (deep water). If Stokes V is
not valid, the wave number is calculated by stream function theory.

Equation (5.4) can then be written up in the frequency domain. For primary component (n = 1), the following
is obtained :
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η̂(1)(xm ) =C (1)
I

X (1)
I

+C (1)
R

X (1)
R

+Ω
(1)
m

X (1)
I

= a(1)
I

exp
[

−i (kI x1 +φ(1)
I

)
]

X (1)
R

= a(1)
R

exp
[

i (kR x1 +φ(1)
R

)
]

C (1)
I

= exp(−i kI∆xm )

C (1)
R

= exp(i kR∆xm )

(5.5)

where ∆xm = xm − x −1 and Ω
(1)
m is the Fourier transformation of em(t) at frequency ω. For higher harmonics

(n > 1) the Fourier transformation at frequency nω gives :

η̂(n)(xm) =C (n)
I ,B X (n)

I ,B +C (n)
R ,B X (n)

R ,B +C (n)
I ,F X I ,F (n)+C (n)

R ,F X (n)
R

+Ω
(n)
m

X (n)
I ,B = a(n)

I ,B exp
[

−i (nkI x1 +φ(n)
I ,B )

]

X (n)
R ,B = a(n)

R ,B exp
[

i (nkR x1 +φ(n)
R ,B )

]

X (n)
I ,F = a(n)

I ,F exp
[

−i (k(n)x1 +φ(n)
I ,F )

]

X (n)
R ,F = a(n)

R ,F exp
[

i (k(n)x1 +φ(n)
R ,F )

]

C (n)
I ,B = exp(−i nkI∆xm )

C (n)
R ,B = exp(i nkR∆xm )

C (n)
I ,F = exp(−i k(n)

∆xm )

C (n)
R ,F = exp(i k(n)

∆xm )

(5.6)

where Ω
(n)
m is the Fourier transformation of em(t) at frequency nω.

The values of the complex parameters X (1)
I

, X (1)
R

, X (n)
I ,B , X (n)

R ,B , X (n)
I ,F and X (n)

R ,F are determined by fitting the equa-

tion to the measurement by minimising of the noise term Ω
(n)
m .

The correction applied when bound and free super-harmonics have almost identical celerity is not developed
here. It can be found in Andersen et al. (2017) [39]. The coefficients of reflection and transmission are defined
in the same way as for Lin & Huang (2004) method [36] in equation (5.3).
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In this part, we present the three different models used in this work to simulate the interaction of waves with
porous breakwaters. First, the equations of a flow through a porous medium based on linear wave theory are
presented. These equations are the ones coded in the developed diffraction code Diffra3D described in the
second part. Another numerical code based on the VOF method will be used to compare the results and catch
sight of non-linear effects that the first code can not reproduce. Finally, a simple analytical model based on
long wave theory will be presented and used. The models are based on different wave theories but with the
same theory to model porous media.
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1 SOLUTION BASED ON LINEAR WAVE THEORY

The solution based on linear wave theory to solve flow inside porous structures using the extended Forch-
heimer equation were historically first derived in literature by Sollitt & Cross (1972) [50]. The solution was ap-
plied to the analysis of wave motion through a rectangular mound in 2D wave tank. This theory was then used
by other authors. Sulisz (1985) [52] studied the Wave reflection and transmission at permeable breakwaters of
arbitrary cross-section. Dalrymphe & al. (1991) [12] studied the behaviour of porous structures under oblique
waves and Yu and Chwang (1994) [66] studied the phenomena of wave-induced oscillations in harbours with
porous breakwaters.

The numerical tool developed in this work implements this theory. The model is also designed, amongst other
factors, to integrate a new concept in the boundary conditions between two continuous media : the surface
porosity concept which is different from the traditional volume porosity concept.

The pressure drop through a porous wall is also derived following Lajoie & Bougis (2008-2014) [33] & [34] and
from experimental tests performed by Molin & Remy (2015) [44].

1.1 Equation of flow through a porous medium

Consider a closed volume strictly including a homogenised porous medium. For this volume, the conservation
of momentum is applied :

Ñ

Σ

(

∂~vd

∂t
+

1

n
(~vd .

−→∇ )~vd

)

dV =−
1

ρ

Ï

∂Σ

p
−→
dS +

Ñ

Σ

(

~g +~fr

)

dV (1.1)

where Σ is the closed volume, ∂Σ the exterior surface, ~vd the filter velocity and ~fr are volumetric resistant
forces. As noticed in chapter 1.4, for a non-steady flow in a porous medium, volumetric resistant forces may be
modelled by the extended Forchheimer equation :

1

ρg
~fr =−

[

a ~vd +b‖~vd‖~vd +c
∂~vd

∂t

]

(1.2)

The equation (1.1), averaged at the macroscopic scale, becomes :

S
∂~vd

∂t
+

1

2n

−→∇ ~vd
2 =−

1

ρ

−→∇ p − g~z −
ν

K
~vd −

C fp
K
|~vd |~vd (1.3)

with S = 1+CM
1

1−n
, and to remind that K = n3d 2

n50
α(1−n)2 and C f =

βp
α

n− 3
2 .

Equation (1.3) is linearised. The convective term 1
2n

−→∇ ~vd
2 is small compared to ∂ ~vd

∂t
and can be discarded.

Then, using the Lorentz procedure and by introducing a dimensionless dissipation coefficient f such that it
yields :

41



42 Chapter 1: SOLUTION BASED ON LINEAR WAVE THEORY

f ω=
ν

K
+

C fp
K

f (1.4)

with :

f =
´ T

0 |~vd |3 dt
´ T

0 |~vd |2 dt
=

8

3π

p
a +b

[

E (m)−
1

4

(

1−
a

b

)

K (m)

]

(1.5)

where a = 1
T

´ T
0 |~vd |2 dt , b = maxt∈[0,T ] [|~vd |−a] and m = 2b

a+b . K (m) and E (m) represent respectively the ellip-
tic integrals of first and second kinds.

The equation (1.3) becomes :

S
∂~vd

∂t
=−

1

ρ

−→∇ p − g~z − f ω~vd (1.6)

In a pure fluid domain, we would have S = 1 and f = 0.

The flow in the fluid medium external to the porous medium is assumed to be irrotational with a velocity
potential Φd1. The flow inside the porous medium, which is assumed a continuous domain, is also considered
irrotational and a velocity potential Φd2 is also introduced (see figure 1.1).

Fluid Medium Porous Medium

∆Φd1 = 0 ∆Φd2 = 0

Figure 1.1: Geometry, Flow inside porous medium

By introducing the potential of velocity Φd , it yields :

S
∂Φd

∂t
+

p

ρ
+ g z + f ωΦd = 0 (1.7)

with Φd equal to Φd1 or Φd2.

We suppose Φd =φd e−iωt according to the hypothesis of monochromatic waves. Using this expression for the
potential, the previous equation becomes :

( f − i S)ωφd +
p

ρ
+ g z = 0 (1.8)

1.1.1 The free surface condition

The free surface condition of a continuous medium must respect the dynamic and kinematic conditions.

The dynamic free surface condition reflects the equal pressure at the free surface. It is obtained from equation
(1.8) by putting p = 0 in z = η :

( f − i S)ωφd + gη= 0
∣

∣

z=η (1.9)

The kinematic condition of free surface reflects the mass conservation :
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n
dη

d t
=

d zpar ticle

d t

∣

∣

∣

∣

z=η
(1.10)

where n is the volume porosity.

The concept of surface porosity in porous media as opposed to volume porosity is introduced and defined by

µ= 1− (1−n)
2
3 . Equation (1.10) in projection on the cartesian axes yields :

n
∂η

∂t
+ (

−→∇ φd .
−→∇ )η=

µ

n

∂φd

∂z

∣

∣

∣

∣

z=η
(1.11)

After linearisation around z = 0 and with the hypothesis of harmonic response, the kinematic condition is given
by :

−iωη=
µ

n2

∂φd

∂z

∣

∣

∣

∣

z=0
(1.12)

By combining the two boundary conditions, we find the linear free surface condition in a porous medium :

∂φd

∂z
− (S + i f )

ω2

g

n2

µ
φd = 0

∣

∣

∣

∣

z=0
(1.13)

The interface between two continuous media

The interface between two continuous media must respect the conservation of flow and the continuity of pres-
sures, namely :

Conservation of the flow
µ1

n1

∂φd1

∂n
=−

µ2

n2

∂φd2

∂n

∣

∣

∣

∣

at the interface

(1.14)

Pressure conservation (S1 + i f1)φd1 = (S2+ i f2)φd2
∣

∣

at the interface (1.15)

The elevation of the free surface

The elevation of the free surface is expressed by :

η=
ω

g
(i S − f )φd (1.16)

1.2 Porous Wall

The penetration of flow through a porous wall is treated in a different manner than for a porous medium. The
linear potential theory is considered, except for the dissipation zones caused by the holes of the porous wall.

The pressure gradient on both sides of the wall can thus be expressed after integrating the Bernoulli-Lagrange
equation all along a stream line passing through a hole, see Lajoie & Bougis (2014) [34]. The terms of the equa-
tion (1.17) correspond respectively to singular and linear pressure losses. The added mass effects mentioned
by Molin (2014) [43] when the number of slots becomes smaller with constant porosity can also be included in
the second term.

∆p =
1

2
ρKp |vdn |vdn +

ˆ

al

ρ(1−τ)

τkc

∂ ~vdn

∂t

−→
dl (1.17)
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where :

• vdn is the normal filter velocity upstream or downstream from the wall. The crossing velocity can thus
be written as vcdn = vdn

τkc
.

• τ is the wall’s porosity.

• kc is a coefficient of flow restriction due to the passage of the flow through a hole. Usually, kc value is
taken to 0.8 for a slot and 0.65 for a circular hole. In fact, kc also depends on the nature of the flow, hence
on Re .

• Kp is a coefficient of pressure loss. An expression can be given by Kp = 1−τ
τ2k2

c
.

• al = l + lm . l is the wall’s width and lm is a small term corresponding to the added mass effects1.

l

d
NS

τ = 0.3

Φ1 Φ2∆Φ1 = 0 ∆Φ2 = 0

1 2

x

y
z

Figure 1.2: Geometry, normals are outwards facing for each domain

The porous wall (Fig. 1.2) is idealised as a continuous porous boundary. With the velocity potential written as :

Φd (x, y, z, t) =ℜ{φd (x, y, z)e−iωt } (1.18)

The pressure gradient relation at the porous wall, with the shorter notation ǫ= S + i f can be expressed, as :

iωρ(ǫ1φd1 −ǫ2φ2) =
1

2
ρK

8

3π

∣

∣

∣

∣

µ1

n1

∂φd1

∂n

∣

∣

∣

∣

µ1

n1

∂φd1

∂n
− iω

ρal (1−τ)

τkc

µ1

n1

∂φd1

∂n
(1.19)

It yields :

∂φd1

∂n
=

ǫ1φd1 −ǫ2φd2

−i 4K
3πω

µ2
1

n2
1
| ∂φd1

∂n |− al (1−τ)
τkc

µ1
n1

(1.20)

By taking the absolute value and taking the square, we get a second degree equation with
∣

∣

∣

∂φd1
∂n

∣

∣

∣

2
as unknown :

(

4K

3πω

µ2
1

n2
1

)2 ∣

∣

∣

∣

∂φ1

∂n

∣

∣

∣

∣

4

+
a2

l
(1−τ)2

τ2k2
c

µ2
1

n2
1

∣

∣

∣

∣

∂φd1

∂n

∣

∣

∣

∣

2

−|ǫ1φd1 −ǫ2φd2|2 = 0 (1.21)

The solution is given by :

1 According to Molin & Remy (2015) [44], the added mass coefficients depending on the type of holes are :

– Slot openings : lm = τkc (1−τ)πCa (τ) d
4NS

with NS the number of slots over the width d of the wall.

– Circular openings : lm = kc
p
τCa (τ)a

π(1−τ) with a the radius of a hole.

– Ca (τ) =− 8
(1−τ)2π2 ln

(

sin(πτ2 )
)
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∣

∣

∣

∣

∂φd1

∂n

∣

∣

∣

∣

2

=
−( al (1−τ)

τkc

µ1
n1

)2 +
√

( al (1−τ)
τkc

µ1
n1

)4 +4( 4K
3πω

µ2
1

n2
1

)2|ǫ1φd1 −ǫ2φd2|2

2( 4K
3πω

µ2
1

n2
1

)2
(1.22)
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This equation first proposed by Lajoie (2008) [33] gives a relation between ∂φd1
∂n

and φd1 :

∂φd1

∂n
=

ǫ2φd2 −ǫ1φd1

al (1−τ)
τkc

µ1
n1

+ ip
2

√

−( al (1−τ)
τkc

µ1
n1

)2 +
√

( al (1−τ)
τkc

µ1
n1

)4 +4( 4K
3πω

µ2
1

n2
1

)2|ǫ2φd2 −ǫ1φd1|2
(1.23)



2 DIFFRACTION NUMERICAL MODEL

A 3D diffraction numerical tool, integrating porous media and porous plates, was developed from scratch in
the object-oriented programming language Python. Even if Python is an interpreted language that makes it
slower than compiled languages such as C++ or Fortran, the language has the advantage to use pre-compiled
C functions that allow fast computations. Furthermore, Python is a very user-friendly code and python-code is
easy to maintain. A lot of optimisations can still be made to support bigger meshes and to make the code faster,
mainly for the computation of the influence coefficients and for the creation of the main matrix to inverse.

The implemented equations for every modelled media are linear but an iteration on the filter velocities vdi for
every medium is necessary to solve the global problem. The following paragraphs present the main equations
of a diffraction numerical model with Rankine integrals. The basic equations of the BEM method for diffraction
problems are derived in G. Delhommeau (1987) [15].

2.1 Theoretical background

The geometry of a 3D diffraction problem is sketched in the figure 2.1 with the following boundaries :

• FS is the free surface.

• Σ represents a structure boundary.

• I represents an interface with another domain fluid or porous, and can modelled a porous plate.

• G is the ground.

• C is the control boundary with conditions of inlet and outlet boundaries.

Figure 2.1: Geometry, Diffraction model
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The third Green Formula is expressed as :

∀M ∈D\∂D : 1

∀M ∈ ∂D : 1
2

∀M ∉D : 0



































Φ(M) =
"

∂D

Φ(M ′)
∂GM (M ′)

∂n(M ′)
dS(M ′)−

"

∂D

∂Φ(M ′)

∂n(M ′)
GM (M ′)dS(M ′) (2.1)

with GM (M ′) =− 1
4π

1
|M M ′ | and ~n : normal pointing outside of domain D.

Every potential can be expressed by a distribution of sources σ=− ∂Φ
∂n

and normal dipoles χ=Φ on ∂D.

The structure is assumed fixed. Potential Φ on the border meet the following characteristics :

• ∆Φ= 0

• ∂Φ
∂n

∣

∣

∣

F
= 0

• ∂Φ
∂n − (S + i f )ω

2

g
µ

n2 Φ

∣

∣

∣

F S
= 0

• ∂Φ
∂n

∣

∣

∣

Σ
= 0

On the control cylinder, the potential Φ is decomposed in the form of :

∀M ∈ ∂D,Φ(M) =ΦI (M)+ΦD (M) (2.2)

with :

• ΦI the incident potential, known on the control cylinder.

• ΦD the diffraction potential, checking the condition of equation (2.3).

In our case, the control cylinder is placed far enough from the structure (at a distance of R) to neglect the the
near field. We keep the first order of local conditions on the far field (Lajoie (1996) [32]) :

∂ΦD

∂n

∣

∣

∣

∣

C

=αΦD with α=
(

−
1

2R
+ i k

)

(2.3)

Now, the diffraction problem can be expressed in this way :

−
1

2
Φ(M)+

Ï

F S

Φ(M ′)

[

∂GM (M ′)

∂n(M ′)
− (S + i f )

ω2

g

µ

n2
GM (M ′)

]

dS(M ′)

+
Ï

C

Φ(M ′)

[

∂GM (M ′)

∂n(M ′)
−α(M ′)GM (M ′)

]

dS(M ′)

+
Ï

G+I+Σ

Φ(M ′)
∂GM (M ′)

∂n(M ′)
dS(M ′)−

Ï

I

∂Φ(M ′)

∂n(M ′)
GM (M ′)dS(M ′)

=
Ï

G+Σ

∂Φ(M ′)

∂n(M ′)
GM (M ′)dS(M ′)

+
Ï

C

[

∂ΦI (M ′)

∂n(M ′)
−α(M ′)ΦI (M ′)

]

GM (M ′)dS(M ′)

(2.4)

The previous equation 2.4 is discretisated, Si j and Di j are the influence coefficients of sources and normal
dipoles of panel i in relation to panel j. They are computed in every point Mi , center of gravity of every panel i .

Si j =
∑

j

GMi
(M j )S(M j ) (2.5)
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Di j =
∑

j

∂GMi
(M j )

∂n(M j )
S(M j ) (2.6)

By introducing the source σi and the normal dipole χi on every panel i , the discretisated diffraction problem
can be written as follows :

−
1

2
χi+

∑

j∈F S

χ j

(

Di f − (S + i f )
ω2

g

µ

n2
Si j

)

+
∑

j∈C

χi

(

Di j −α j Si j

)

+
∑

j∈F+I+Σ
χ j Di j +

∑

I

σ j Si j =−
∑

j∈F+I+Σ
σ j Si j (2.7)

with ∀ j ∈C , σ j =−
[

∂ΦI (M j )
∂n(M j ) −α(M j )Φ(M j )

]

. M j =











x j

y j

z j

the gravity center of panel j .

On the control cylinder, by assuming it far enough from structures, the complex potential corresponds to the
linear solution on every panel j :

ΦI (M j ) =−i
Ag

ω

cosh(k(z j +h))

cosh(kh)
eik(x j cos(β)+y j sin(β)) (2.8)

with β the incident angle in relation to (Ox) axis.

By derivation of the previous expression, we obtain the expression of ∂ΦI

∂n(M j ) (M j ) = ~n(M j ) ·−→∇ ΦI (M j ) on every

panel j :

∂ΦI

∂n(M j )
(M j ) =

ag k

ωcosh(kh)
[p j cos(β)+q j sin(β)− i r j sinh(k(z j +h))]eik(x j cos(β)+y j sin(β)) (2.9)

with ∀ j ∈C , ~n(M j ) =











p j

q j

r j

. ~n(M j ) is the normal vector of panel j .

In the cases where several domains are connected, with porous plates or porous domains, some equations are
added to the linear system in order to keep n independent equations with n unknowns.

The conservation of the flow and the continuity of pressure have to be verified through 2 porous named do-
mains 1 and 2. With the source and normal dipole notation, it comes :

µ1
n1

σC1 ,i =−µ2
n2
σC2 , j Flow conservation

(S1 + i f1)χC1 ,i = (S2 + i f2)χC2 , j Continuity of pressure

(2.10)

where panel i of domain 1 is blended into panel j of domain 2.

Through a porous plate, the interface respects flow conservation and pressure gradient caused by hole crossing
:

µ1
n1
σC1 ,i =−µ2

n2
σC2 , j Flow conservation

σC1 ,i =
(S1+i f1)χC1 ,i−(S2+i f2)χC2 ,i

al (1−τ)
τkc

µ1
n1

+ ip
2

√

√

√

√−(
al (1−τ)
τkc

µ1
n1

)2+

√

(
al (1−τ)
τkc

µ1
n1

)4+4( 4K
3πω

µ2
1

n2
1

)2|(S1+i f1)χ1−(S2+i f2)χ2|2
Pressure gradient

(2.11)



50 Chapter 2: DIFFRACTION NUMERICAL MODEL

2.2 Sensitivity on parameters

In this section, we test the sensitivity of our model to four main parameters in a basic configuration described
in figure 2.2. The tested parameters are :

• The mesh size l l .

• The length of the wave channel lc upstream and downstream the structure.

• The porosity n of the porous medium.

• The stones size dn50 of the porous medium.

Porous medium
Porosity n

Stones size dn50

H = 7m

B = 7mlc

Open boundary : inlet Open boundary : outlet

Figure 2.2: Basic configuration, Sensitivity of Diffra3D model to l l , lc , n and dn50

2.2.1 Mesh size

The mesh elements are triangles or quadrangles. We vary the size of the elements from l l ≈ 2m to l l ≈ 0.1m

(Fig. 2.3 and 2.4). The influence on the reflection and the transmission coefficients for waves with an incident
amplitude of Ai = 250mm are checked for these two configurations. The interior meshes of pure fluid domains
on either side of the porous medium are not use. The problem is defined on the boundaries using the bound-
aries using the boundary element method (BEM). Inside the porous structure, the nodes of the mesh are used
only to compute velocities in order to define the characteristic flow velocity vd .

Figure 2.3: Mesh size l l ≈ 2m, lc = 20m, n = 40%, dn50 = 60cm, Basic configuration

Figure 2.4: Mesh size l l ≈ 0.5m, lc = 20m, n = 40%, dn50 = 60cm, Basic configuration

The yellow, green, red and blue curves (Fig. 2.5 and 2.6) correspond respectively to results obtained with
meshes more and more refined : l l ≈ 2m, l l ≈ 1m, l l ≈ 0.5m and l l ≈ 0.1m. The yellow curve stands com-
pletely out from the others curves for periods T ≤ 3.5s, which corresponds to λ/l l = 9.4. The green curve also
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starts to diverge below T ≤ 2.5s (λ/l l = 9.7). A minimum of 10 meshes per wavelength is a criterion to respect.
For the next sensitivity cases, we adopt a refined mesh with l l ≈ 0.5m. The BEM method enables the use of big
meshes.
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Mesh size : 1m
Mesh size : 2m

Figure 2.5: Reflection coefficient, Ai = 250mm

Sensitivity to mesh size
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Figure 2.6: Transmission coefficient, Ai = 250mm

Sensitivity to mesh size

2.2.2 Length of the wave tank

Now, we vary the length of the wave channel upstream and downstream from the structure to see if the near
field has major influence. The reflection and transmission are presented on figures 2.7 and 2.8. The wave tank
is varied between lc = 5m (blue curve) to lc = 50m (yellow curve). In a common case like this, the near field is
quickly negligible. It does not greatly perturb the results. The length of the wave channel on either side of the
structure is not a critical parameter.
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Figure 2.7: Reflection coefficient, Ai = 250mm

Sensitivity to channel’s length
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Figure 2.8: Transmission coefficient, Ai = 250mm

Sensitivity to channel’s length

2.2.3 Porosity

For a specific geometry, we want to know how much the porosity of a porous medium plays a role on its hy-
drodynamic performance. The results for three porosities are displayed in figures 2.9 and 2.10 : n = 36% (blue
curve), n = 40% (red curve) and n = 44% (green curve). We observe that a variation of ±4% of porosity leads to
consequential changes (≫ 10%) on reflection and transmission coefficients. This is a crucial parameter. The
porosity of a porous medium depends greatly on the operators laying method. A reliable control of the porosity
during the laying is necessary to get close to the hydrodynamic behaviour of a designed porous structure.
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Figure 2.9: Reflection coefficient, Ai = 250mm

Sensitivity to porosity
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Figure 2.10: Transmission coefficient, Ai = 250mm

Sensitivity to porosity

2.2.4 Porosity surface

The concept of porosity surface defined as µ= 1− (1−n)2/3 was introduced in :

• The free surface equation (1.13).

• The equation of conservation of the flow between two continuous media (1.14).

The basic configuration of figure 2.2 is tested with two cases. The results are displayed in figure 2.11 and 2.12
: µ = n = 40% (red curve) and µ = 1− (1−n)2/3 = 29% (blue curve). The porosity surface µ is smaller than the
volumetric porosity n. Its implementation modifies the dispersion relation inside the porous medium. The
blue curve is shifted towards the larger periods. The reflection is increased and the transmission decreased.
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Figure 2.11: Reflection coefficient, Ai = 250mm

Sensitivity to porosity surface
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Figure 2.12: Transmission coefficient, Ai = 250mm

Sensitivity to porosity surface

2.2.5 Size of the stones

The size of the rocks is the second parameter defining a porous medium. The figures 2.13 and 2.14 show the
results of this sensitivity. We start with dn50 = 60cm (green curve) and we vary it by ±10% (orange and red
curves) and ±50% (yellow and blue curves). The porosity is fixed to n = 40%. The variation by ±10% of the size
of the stones does not greatly change the hydrodynamic coefficients (a few percent). Nevertheless, a variation
in stone size by −50% leads to a more significant change than a variation of +50%. At some point, the flow
becomes less turbulent and the viscous dissipation is dominating. We have to note that the viscous part of
Forchheimer law is a = f (d2

n50) when the turbulent part is b = g (dn50).
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Figure 2.13: Reflection coefficient, Ai = 250mm

Sensitivity to rocks’ size
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Figure 2.14: Transmission coefficient, Ai = 250mm

Sensitivity to rocks’ size
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3 EULERIAN NAVIER-STOKES MODEL

As stated in chapter 1.1, one of the most broadly used approaches in simulating flow in porous medium is the
VOF method which solve the global equation of the fluid mechanics with all the non-linearities. The procedure
to derive the Navier-Stokes equation for a fluid with a free surface is called the volume-averaging Reynolds-
averaged (VARANS) equations. A detailed mathematical derivation of the VARANS equations can be found in
del Jesus et al. (2012) [14]. Jensen et al. (2014) [25] and Higuera et al. (2014) [23] & [24] implemented the set
of equations in the open-source software OPENFOAM. Jensen added his developments to the wave module
called Wave2Foam. Higuera’s developments are available in the latest OPENFOAM’s versions under the name
of IHFOAM.

In this body of work, we only use Wave2Foam with the developments of Jensen et al. (2014) as a tool in order
to compare the results of our diffraction code Diffra3D with those obtained with a VOF code. The comparisons
have only been done for the reflection-transmission experimental tests (Chap. 3.3).

Porous media resistance forces

The resistance forces inside a porous medium are also modelled by the extended Forchheimer equation (4.5).
The extended Forchheimer equation is introduced to the Navier-Stokes equations as a closure model for han-
dling the porous media resistance force. They can not be computed directly. This is similar to the concept of a
closure model for turbulence modelling.

The resistance coefficients of Burcharth & Andersen (1995) [4] implemented in Diffra3D were also integrated
in Wave2Foam. They are as follows :

a =α
(1−n)2

n3

ν

g d2
n50

b =β
1−n

n3

1

g dn50

c =CM
1−n

n

1

g

(3.1)

where α, β and CM are some empirical coefficients depending on flow parameters and stone parameters, see
section 1.4.2.

The concept of surface porosity µ was not implemented.

Turbulence

The implementation of Jensen et al. (2014) [25] uses no turbulence closure. The eddy viscosity is not taken into
account. No wave breaking occurred in the test cases. A turbulence closure model would give negligible effects.
Higuera et al. (2014-1) [23] where validation tests were performed applying a k − ǫ turbulence closure model
and Higuera et al. (2014-2) [24] where a k −ω−SST closure model was applied, have confirmed the validity of
this approximation.
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The above hypotheses concern the flow outside the porous media. Inside a porous medium, the actual turbu-
lence levels are not small enough to be neglected. However, they are directly included through the extended
Forchheimer equation. If the resistance coefficients α and β are found from measurements, they already in-
clude the effects of turbulence. Coefficients found from a numerical calibration including a turbulence model
may not be comparable with coefficients found from experiments.



4 ANALYTICAL MODEL

One of the first analytical models to describe reflection-transmission problem through an idealised vertical
porous structure was developed by Madsen and White (1976) [40]. The solution of the simple test case (Fig.
4.1) is based on a harmonic method under long wave theory presented at chapter Chap 2.2. The procedure was
tested against experimental reflection and transmission coefficients (Wilson (1971) [64], Keulegan (1973) [27]).

Figure 4.1: Definition sketch, Analytical model

Outside of the structure and inside it, the flow respects the following linearised governing equations, with the
notation used previously :

Continuity n
∂η

∂t
+h

∂Vd

∂x
= 0 (4.1)

Conservation of momentum S
∂Vd

∂t
+ g

∂η

∂x
+ f ωVd = 0 (4.2)

where h is the water depth before and after the structure, Vd the horizontal filter velocity. We have n = 0, S = 1
and f = 0 in the pure fluid domain.

The governing equation are linear. Thus, we can look for a harmonic solution with the variables η(x, t) and
Vd (x, t) :

η(x, t) =ℜ
(

ζ(x)eiωt
)

(4.3)

Vd (x, t) =ℜ
(

vd (x)eiωt
)

(4.4)

The general solution for the free surface and the motion outside the structure is given by :
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For x ≤ 0

{

ζ(x) = Ai e−ikx +Ar eikx

vd (x) =
√

g
h

(

Ai e−ikx −Ar eikx
) (4.5)

For x ≥ l

{

ζ(x) = At e−ik(x−l )

vd (x) =
√

g
h At e−ik(x−l )

(4.6)

where Ai , Ar and At are respectively the amplitudes of the incident, reflected and transmitted waves. Ai is
taken as a real number. Ar and At are complex. k is the complex wave number given by :

k =
ω

√

g h

p
n

√

S − i f (4.7)

The general solution for the flow in the porous structure is found as :

For 0≤ x ≤ l







ζ(x) = A+e−ikx +A− eik(x−l )

vd (x) =
√

g

h

p
np

S−i f

(

A+ e−ikx +A− eik(x−l )
) (4.8)

where A+ and A− are respectively the amplitudes of the waves propagating in the positive and negative x-
direction inside the porous structure.

The problem involve four unknowns that are the complex wave amplitudes Ar , At , A+ and A−. They are deter-
mined by matching surface elevations and velocities at the common boundaries :

For x = 0







Ai + Ar = A++ A− e−ikl

Ai − Ar =
p

np
S−i f

(

A++ A− e−ikl
) (4.9)

For x = l







At = A+ e−ikl +A−

At =
p

np
S−i f

(

A+ e−ikl +A−
) (4.10)

Madsen and White solve this system to obtain the complex amplitudes Ar , At and the velocity inside the struc-
ture :

At

Ai
=

4ǫ

(1+ǫ)2 eikl −(1−ǫ)2 e−ikl
(4.11)

Ar

Ai
=

(1−ǫ2)
(

eikl −e−ikl
)

(1+ǫ)2 eikl −(1−ǫ)2 e−ikl
(4.12)

For 0 ≤ x ≤ l , vd (x) =
√

g

h

At

2

[

(1+ǫ)e−ik(x−l ) +(1−ǫ)eik(x−l )
]

(4.13)

where ǫ is the shorthand notation for
p

np
S−i f

.

The transmission coefficient T and a reflection coefficient R are given by :

T =
|At |
Ai

(4.14)

R =
|Ar |
Ai

(4.15)

The dissipated energy by the breakwater is such as :

Ed = 1−T 2 −R2 (4.16)

The higher dissipation of energy, the more effective the breakwater is.
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EXPERIMENTS AND COMPARISONS
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1 SIMILARITY AND SCALE FACTORS

Small-scale test campaigns involve the respect of physical quantities in order to be representative of reality. The
numerical modelling of a porous structure exposed to an incident swell theoretically involves a formulation
which distinguishes different flow regimes. It is necessary to verify that the scaling of the model keeps the
characteristics of the real-scale flow.

The Reynolds-number defined in section 1.4.4.3.1 estimates the relative importance of a turbulent resistance
over a laminar one. The flow is considered fully turbulent when Re > 300. Nevertheless, out of the armour layer
of a breakwater where very high KC numbers are found during violent wave conditions, the flow in a porous
media inside breakwaters are mainly part of the low-KC flows.

Downscaling also requires attention to be paid to a second parameter, namely the conservation of Froude
number, which is characteristic of free-surface flows. Froude number specifies the relative importance of the
inertial forces (kinetic energy of the particles) relative to the gravitational force applied to the fluid (potential
energy of the particles). It is defined as follows :

Fr =
u

√

g h
(1.1)

with :

• u a characteristic fluid velocity (m.s−1).

• h the water depth (m).

• g the gravitational acceleration (m.s−2).

We define the scale-factor λ between the scale-model dimensions Ls and the real-scale model Lr . The respect
of Froude number implements a scale-factors for :

• Length : Lr

Ls
= λ.

• Time : tr

ts
=
p
λ.

• Velocity : vr

vs
=
p
λ.

• Force : Fr

Fs
= λ3.

Now, we apply the scale transformation to the Forchheimer equation. The kinematic viscosity of water and
the gravitational acceleration are fixed. We assume the porosity and the tortuosity coefficients α and β are
preserved while downscaling, so we get the following scale factors corresponding to the :

• Laminar term a~v :
p
λ

λ2 =λ
−3
2 .

• Turbulent term b|~v |~v :
p
λ

2

λ = 1.

• Inertial term c ∂~v
∂t

:
p
λp
λ
= 1.

The Froude scale procedure tends to overestimate the dissipation due to the laminar term but maintains the
good ratio for turbulence and inertia dissipations.
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1.1 Steady laminar flow

Consider, at the real scale, a steady pure laminar flow through a porous medium. The turbulent and the inertia
terms are negligible. It is then possible to choose a specific scale to apply to the stone diameters to keep the
laminar hydraulic gradient constant :

p
λ

λ2
stones

= 1 →
dr

ds
=λstones =λ

1
4 (1.2)

In this specific case, it is necessary to take artificially bigger stones than simple Froude scaling λ would have
given.

1.2 Steady turbulent flow

Breakwater scale-models are usually designed at scales between 1/10th and 1/30th. Out of the armour layer
where the flow is without doubt fully turbulent, the situation in the core of a porous structure is different. In
order to keep the dissipation rate in a porous medium scale-model equal to a real one, authors, like Jensen and
Klinting (1983) [26], looked for a stone scale that keeps the hydraulic gradient av + bv2 constant. This time
again, we assume a steady flow. Using the Burcharth and Andersen (1995) [4] dissipation coefficients, it yields :

Ir

Is
=

α (1−n)2

n3
ν

g d 2
r

vr +β 1−n
n3

1
g dr

v2
r

α (1−n)2

n3
ν

g d 2
s

vs +β 1−n
n3

1
g ds

v2
s

(1.3)

As Jensen and Klinting, we define a scale for the stone diameters λstones = dr /ds . Inserting vr /vs = λ required
by Froude’s model, it yields a second-degree equation in λstones :

λ2
stones +

Forp
λ
λstones −

p
λ(1+For ) = 0 (1.4)

with For the Forchheimer number for the scale-model defined as :

For =
β 1−n

n3
1

g dr
u2

r

α (1−n)2

n3
ν

g d 2
r

ur

=
β

α

1

1−n
Rer (1.5)

The solution of the equation (1.4) is given by :

λstones =
For

2
p
λ

[√

1+4λ
3
2

1+For

F 2
or

−1

]

(1.6)

It appears that if For → 0 (pure laminar flow), λstones →λ
1
4 and if For →+∞ (fully turbulent flow), λstones →λ.

1.3 Porous plate

The value of pressure loss is kept by scaling using the Froude’s similarity because the theoretical expression is
the sum of a turbulent term (in v2) and an inertia one (in ∂v

∂t
).



2 FIRST CAMPAIGN : SLOSHING

This chapter is devoted to the experimental tests on a hexapode in order to extract the characteristics of a given
porous medium. In the literature, recent investigations performed by Molin & al. (2016) [45] and Arnaud& al.
(2017) [1]) deal with damping effects of porous media trough sloshing tests. The porous media are idealised
by dense arrays of smooth vertical cylinders emerging from the free surface. The porosity of the media, the
cylinder diameter and the specific surface are finely controlled. The cylinder diameter is small compared with
the wavelength. The modification of the dispersion relation is studied through a semi-analytical model. The
arrays of cylinders are supposed homogeneous porous media and a linearised potential flow approach is used.
Friction and inertia coefficients are added a posteriori to account for viscous flow effects and for added inertia
effects.

In our case, we are dealing with irregular stones. The semi-empirical coefficients a, b and c of the extended
Forchheimer equation introduced in the developed numerical diffraction model are not the same than those
used for cylinders. The numerical model is calibrated to fit the data. Laws for the inertia and dissipation
coefficients are proposed. Three porous media sharing the same parameter Dn50 were investigated in order to
observe the influence of size distribution spreading on the dissipation coefficients.

2.1 Experimental set-up

Sloshing tests are performed with a tank filled with water and a porous medium at the bottom. The tank mea-
sures L = 60cm long and B = 50cm wide. The porous medium fits these dimensions and the vertical dimension
is 12.5cm high. The water depth is either 26.8cm or 40.0cm (including the porous medium). In this configura-
tion, our porous media don’t emerge from the free surface. We choose this configuration of tests to simplify the
problem as much as possible. We are mainly interested in the values of the dissipation and inertia coefficients.
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Figure 2.1: The tank on the hexapod, h = 40.0cm, Sloshing tests

The system is installed on the hexapod of Ecole Centrale de Marseille (Fig. 2.1). The hexapod is a dynamic
system providing six degrees of freedom. The six independent actuators allow motion generation for up to 1T
of load. The maximum acceleration is 1g and the maximum speed is 1m.s−1. The displacements as part of
the tests are harmonic in the longitudinal direction of the tank, with amplitudes from A = 1mm to A = 5mm.
Several frequencies around the resonance peak (Eq. (2.1)) are scanned. The free surface elevation at one end of
the tank is measured with a capacitive probe. The RAO can then be computed. The global loads on the hexapod
tray are also measured through loads cells installed between each actuators and the tray.

The natural frequency of the first sloshing mode of a tank with water is merely obtained by :

ω2 =
gπ

L
tanh

(

hπ

L

)

(2.1)

Placing a porous medium in the tank attenuates the resonance and shifts the natural frequency to lower fre-
quencies. The three tested porous media share the same dn50 but have different size distribution spreading.
The table Tab. 2.1 gathers the experimental configurations. The size distribution curves are placed in Appendix
A. Figure 2.2 shows the size distribution number 3.

Size dis-
tribution

Porosity
n

dn50 dn85 dn15
dn85
dn15

nRRd
Water

depth h

1 46.6% 4.1cm 4.6cm 3.6cm 1.26 12.3 26.8cm

2 47.5% 4.0cm 4.9cm 2.9cm 1.67 5.9 26.8cm

2 47.5% 4.0cm 4.9cm 2.9cm 1.67 5.9 40.0cm

3 47.5% 4.1cm 6.3cm 2.7cm 2.31 3.9 26.8cm

Table 2.1: Size distributions, Sloshing

As mentioned in chapter 1.3, the ratio dn85/dn15 and the coefficient of uniformity nRRd are measures of the
spreading of the size distribution in terms of rock diameters ; the higher the slope, the less spread the size
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distribution. The three samples have coefficients of uniformity significantly different, from nRRd = 3.9 to
nRRd = 12.3, but according to table Tab. 3.1, they are still all part of size distribution type with high gradation
1.5 < dn85/dn15 < 2.5.

The porosity is kept almost constant despite the change of the gradation. The constraint of the walls of the cage
could explain the high porosity values we obtained during the tests. They are a little bit higher than the realistic
porosity rates defined by Van Gent [60], 35% ≤ n ≤ 45%. .

Figure 2.2: Porous medium, Sloshing tests

2.2 Theoretical model

Consider a 2D vertical situation in the (x, z) plan, with a rectangular tank of length L, and inside a porous
medium of height d, named sub-domain 1 (Fig. 2.3). The total water depth is h, and the free fluid domain,
above the porous medium, is named sub-domain 2.

h

L

d 1

2∆Φd2 = 0

∆Φd1 = 0

x

z

Figure 2.3: Geometry, Sloshing tests

The harmonic displacements of the tank are along the (Ox) axis, with an amplitude A and a pulsation ω.

X (t) = A sin(ωt) (2.2)

First, only the inertia loads that apply to the fluid in a moving frame of reference are considered. A new inertia
force is applied and can be added in equation (1.1) of section 2.1.1.1 that leads to :
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Ñ

F
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1

ρ

Ï
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dS −

Ñ
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CM

∂vpR

∂t
dV −

Ñ

Σ

∂vE

∂t
dV (2.3)

where F refers to the fluid domain, P to the rock domain and Σ= F +P the overall domain, vpR = vp −vE is the
relative pore velocity, vE is the velocity of the hexapod.

The equation (2.4) is obtained in a similar way as equation (4.8) of section 1.4.4.1. The surface integral is trans-
formed into a volume integral thanks to Ostrogradski theorem. By expressing the equation (2.3) exclusively on
Σ and with the relative filter velocity vdR = nvpR = vd −nvE = vd − vdE , it yields :

1

ρ

−→∇ pI =−(1+CM
1−n

n
)
∂ ~vdR

∂t
−
∂~vE

∂t

=−(1+CM
1−n

n
)
∂~vd

∂t
+ (1+CM

1−n

n
)
∂ ~vdE

∂t
−

1

n

∂ ~vdE

∂t

=−(1+CM
1−n

n
)
∂~vd

∂t
+CM

1−n

n

∂ ~vdE

∂t
−

1−n

n

∂ ~vdE

∂t

(2.4)

The previous equation demonstrates that the complete momentum equation can be expressed with the abso-
lute velocity in the relative coordinate system of the moving tank, such as :
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with the relative filter velocity vdR used in the Forchheimer equation, such as :

1

ρg
~fr R =−

[

a ~vdR +b‖ ~vdR‖ ~vdR +c
∂ ~vdR

∂t

]

(2.6)

The porous medium is assumed continuous and the potential flow theory is applied to equation (2.5). The

convective terms are neglected. Introducing the potential Φd =φd e−iωt such as ~vd =−→∇ Φd , the equation (2.5)
yields :

− iωφd =−
p

ρ
− g z − f ′ω(φd − Anωx)+ iωCM

1−n

n
(φd − Anωx)+ i Anω2x

1−n

n
(2.7)

with :

f ′ω=
ν

K
+

C fp
K

f ′ and f ′ =
´ T

0 | ~vdR |3 dt
´ T

0 | ~vdR |2 dt
(2.8)

By introducing the variable S = 1+CM
1−n

n = S = 1+ (1+Ca ) 1−n
n , the equation (2.7) becomes :

( f ′− i S)ωφd +
p

ρ
+ g z −

(

f ′− iCa
1−n

n
)

)

ω2 Anx = 0 (2.9)

In our case, the boundaries conditions are :

• for the free surface condition : the domain 2 is a pure fluid domain (n2 =µ2 = 1, S2 = 1 and f ′
2 = 0) :

∂φd2

∂z
−
ω2

g
φd2 = 0

∣

∣

∣

∣

z=0
(2.10)

• for the flow condition between the two domains :

µ1
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∂n
=−
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∂n

∣

∣

∣

∣

at the interface

(2.11)
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• for the condition of pressure conservation between the two domains :

(S1 + i f ′
1)φd1 − (Ca1

1−n

n
+ i f ′

1)Anωx = (S2 + i f ′
2)φd2

∣

∣

∣

∣

at the interface

(2.12)

The efforts measured by the hexapod sensors are obtained by integrating p1 and p2 on the sides of the tank
without forgetting to add the efforts transmitted by the rocks to the tank :
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Finally, we obtain :
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Ï
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The inertia of the empty tank needs to be subtracted from the measured loads. Tests with an empty tank are
performed prior to experimental testing.

2.3 Experimental results

Fourier analysis is applied to the measurement to obtain the RAO of the free surface elevation and the hydro-
dynamic coefficients of the tank, following :

Fx (t) =ℜ{i ρLBh Aω2 (C ′
a + iC ′

b) e−iωt } (2.15)

with X (t) = A sin(ωt) the imposed motion, C ′
a the added mass coefficient and C ′

b
the damping coefficient of

the global system (see Molin & Remy 2014 [43]). The coefficients C ′
a and C ′

b
does not directly correspond to

coefficients S and f of the porous medium. They are respectively proportional to the in-phase and quadrature
hydrodynamic efforts.

The figures 2.4, 2.5 and 2.6 show the experimental results for the amplitude RAO and the dissipation coefficients
of the system for the four amplitudes and the three size distributions. The different excitation amplitudes are
represented by distinct colors and every size distribution has a distinct marker.
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Figure 2.4: RAO, h = 26.8cm, Sloshing tests
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Figure 2.5: C ′
a , h = 26.8cm, Sloshing tests
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Figure 2.6: C ′
b

, h = 26.8cm, Sloshing tests

We already notice that the system has a non-linear damping law. The RAO and the damping coefficient C ′
b

increases with the excitement amplitude whereas the inertial coefficient becomes smaller.

We also observe that the resonance peak moves a little between the three size distributions. This may suggest
dissipation depends on some characteristics of the size distribution other than the nominal diameter Dn50

and the porosity (both were constants). Unfortunately, these raw results make it difficult to give qualitative
conclusions on the influence of the size distribution spreading. The curves of the third size distribution (the
most spread one) are located between the two others.

The results for the second water depth h = 40cm and for the size distribution 2 are presented in the following
figures 2.7, 2.8 and 2.9. Due to matching resonant frequencies, the tests with a displacement A = 5mm were
not performed as it resulted in overtopping. The peak of the resonance at h = 40cm naturally shifted to the
higher frequencies according to equation (2.1).
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Figure 2.7: RAO, h = 40.0cm, Sloshing tests
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Figure 2.8: C ′
a , h = 40.0cm, Sloshing tests
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, h = 40.0cm, Sloshing tests

2.4 Parameters’ investigation of a porous medium

In this section, the dissipation coefficients S and f of the porous medium are investigated using the numerical
model Diffra3D.

The problem of finding numerical coefficients S and f to match with the measured coefficients C ′
a and C ′

b
has

an unique solution. We decide to use the coefficients proposed by Burcharth and Andersen (1995). They are as
follows :

a =α
(1−n)2

n3

ν

g d2
n50

b =β
1−n

n3

1

g dn50

c =CM
1−n

n

1

g

(2.16)

where α, β and CM are some empirical coefficients depending on flow parameters and stone parameters, see
section 1.4.2.

For the amplitudes A = 2mm to A = 5mm, according to Burcharth and Andersen (1995), the flow generated by
the motion of the tank corresponds to low KC numbers (KC < 10) and to fully turbulent regime. For A = 1mm,
far from the resonance, Re is close to 300. In the literature, this is the limit of a fully turbulent flow. For these
reasons, the coefficient α is set to 500. The a coefficient is now a constant value. This value theoretically
corresponds to the laminar part of the dissipation. For the tests performed with the hexapod, we want to
determine the better values of (b,c), or in the same way (β,CM ) by minimising the root square error (RMS)
defined as :
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where C ′
am and C ′

bm
correspond to values of measured C ′

a and C ′
b

and C ′
ac and C ′

bc
are the values computed

with Diffra3D.

Figures 2.10 represent two examples of RMS ranges for the second size distribution, T = 1.22s and T = 1.35s,
Ai = 3mm. The blue points show the couple (β,CM ) for which the RMS is minimal.
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Figure 2.10: RMS for size distribution 2, A = 3mm, h = 26.8cm, Sloshing tests

This optimisation shows that β depends on the adimensional numbers KC and βS . In this way, we observe
a variation of the coefficients (β,CM ) function of the flow inside the porous medium, and that for every size
distribution and amplitude. Some curve fittings were performed in order to determine the best dependences
with adimensional numbers. Finally, we propose β= f (Re ) and CM = g (KC ) as :

β= 0.3+
3200

KCβS
= 0.3+

3200
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CM = 1.6−0.2KC

(2.18)

We introduced this new value of β in (2.16), leading to :
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(2.19)

where δ= vd

v̂d
≈ 0.9 and n ≈ 0.47.

From equation (2.19), new values for α and β are determined : α = 2950 and β = 0.3. The new value for α is
large compared to the original value (α = 500). This corresponds to a higher dissipation due to the laminar
flow.

As we can see in the figures 2.11, 2.12, 2.13 and 2.14, the numerical results with the parameters α= 2950, β= 0.3
and CM = 1.6−0.2KC compare well with the experimental results for h = 26.8cm.
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Figure 2.11: Experimental and numeric results, A = 1mm, h = 26.8cm, Sloshing tests
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Figure 2.12: Experimental and numeric results, A = 2mm, h = 26.8cm, Sloshing tests
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Figure 2.13: Experimental and numeric results, A = 3mm, h = 26.8cm, Sloshing tests

4.4 4.6 4.8 5.0 5.2 5.4 5.6
Pulsation (rad/s)

 6

 4

 2

0

2

4

6

8

Ca

Experimental Gr 1
Experimental Gr 2
Experimental Gr 3
Simulations

4.4 4.6 4.8 5.0 5.2 5.4 5.6
Pulsation (rad/s)

0

2

4

6

8

10

12

Cb

Experimental Gr 1
Experimental Gr 2
Experimental Gr 3
Simulations

Figure 2.14: Experimental and numeric results, A = 5mm, h = 26.8cm, Sloshing tests

If we now look at the results for the higher water depth h = 40cm, the proposed expressions are still valid (see
figures 2.15, 2.16 and 2.17). Nevertheless, we observe small discrepancies at the resonance.
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Figure 2.15: Experimental and numeric results, A = 1mm, h = 40.0cm, Sloshing tests
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Figure 2.16: Experimental and numeric results, A = 2mm, h = 40.0cm, Sloshing tests
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Figure 2.17: Experimental and numeric results, A = 3mm, h = 40.0cm, Sloshing tests

2.5 Discussions

Now, the question is : are these new expressions exportable to others situations with different flow characteris-
tics ?

2.5.1 Flow characteristics

First of all, let’s start by looking at the values of the adimensional numbers. The ranges of these values for every
sloshing test is given in table Tab. 2.2. The values of Ursell numbers are a little overestimated because we use
h = 26.8cm and h = 40.0cm to compute them (the porous medium is not taken into account).
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Water depth
h

A Re Fo KC βS Ur

26.8cm 5mm 1666–5568 0.32–1.07 1.42–4.20 1176–1513 0.04–0.17

26.8cm 3mm 988–3927 0.19–0.75 0.84–3.00 1176–1513 0.03–0.12

26.8cm 2mm 655–2913 0.13–0.56 0.56–2.22 1176–1513 0.02–0.080

26.8cm 1mm 326–1665 0.06–0.32 0.28–1.27 1176–1513 0.01–0.06

40.0cm 3mm 932–8355 0.18–1.62 0.66–5.34 1412–1681 0.02–0.09

40.0cm 2mm 615–6526 0.12–1.26 0.44–4.17 1412–1681 0.01–0.084

40.0cm 1mm 304–4040 0.06–0.78 0.22–2.59 1412–1681 0.01–0.05

Table 2.2: Adimensional numbers, Sloshing tests

From Burcharth & Andersen (1995) criterion (Re > 300), the flow for our tests is fully turbulent. However, with
Gu & Wang (1991) criterion (Re > 1000), part of the tests correspond to the transition between laminar and
turbulent.

In term of KC number, values are small, less than 5.3. So, the flow through the porous media are not necessarily
separated even though the Reynolds number exceeds the criterion for turbulent flow of Burcharth & Andersen.

This may explain, for the tests with h = 26.8cm, why the laminar part of the dissipation is higher than the
turbulent part (Fo << 1) outside the resonance. At the resonance, the viscous and turbulent efforts theoretically
divide equally (Fo ≈ 1). This emphasises the advantage of the Forchheimer number compared to the Reynolds
number.

The range of Stokes parameter βS is quite constant (1100 < βS < 1700). The periods of tests do not vary much.

These values show that the flow can be considered a little more inertial than laminar. The third term c
∂vd

∂t
of

the extended equation of Forchheimer (Eq. 4.5) also plays an important role here.

These sloshing tests place themselves in the FINE GRAVEL region of figure 4.3 proposed by Gu and Wang (1991),
in the transition zone. The three kinds of resistances, laminar, turbulent and inertial are all to be considered.
The tests performed by Smith (1991) and Van Gent (1993, 1995) in U-tube water tunnels were located a little
further from the laminar zone.

2.5.2 Evolution of the inertia parameter : a simple case

In order to better understand our formulation with regards to the inertia parameter, we propose to consider a
simple case : a smooth cylinder in uniform oscillatory flow positioned far from the free surface and the bottom
of the tank.

Inertia coefficient CM

In Bougis (2015) [3], we learn that CM = 1+Ca strongly depends on Keulegan-Carpenter number KC . The figure
2.18 shows the evolution of CM function of KC for a smooth cylinder in an uniform oscillatory flow positioned
far from the free surface and the bottom. We observe the following points :

1. When KC tends towards 0, CM tends asymptotically to 2, with a slight overshoot. The coefficient of inertia
admits the following asymptotic expansion :

CM = 2+
4

√

πβS

+O

(

1
√

βS

)

(2.20)

2. CM decreases linearly until CM admits a minimum for KC of the order of 10 to 15. CM values can be less
than unity for Stokes parameters less than 2500 (Ca admits negative values).
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3. CM tends to a constant value when KC becomes large enough. This means that for a given period, beyond
a minimum value of KC , the amplitude of the oscillations has no more influence on the value of the
inertia force.

Figure 2.18: CM of a smooth cylinder function of KC and βS , Sarpkaya et Isaacson [3], Sloshing tests

If we try a comparison with a porous medium, we also find that CM decreases linearly with KC but for smaller
KC numbers (< 5.4) instead of 5 < KC < 15. There are many possible explanations. The inertia coefficient of
a simple cylinder depends on its relative distance to bottom or on its roughness. The type of flow also plays a
role. In the experimental tests, the flow is not a simple horizontal oscillatory flow . At a low KC number, the
vertical velocities are of the same order as the horizontal ones. An orbital flow has major effects on the inertia
coefficient of a cylinder when KC is small. It corresponds to the "orbital" curve in figure 2.18. The effect of
orbital trajectory works as though the curves were shifted towards smaller KC-values.

Only small ranges of Re -values, KC-values and βS -values were investigated through sloshing tests. As we see
in figure 2.18, the inertia coefficient also depends on Re and βS which makes it difficult to propose an universal
law in this context.

2.5.3 Conclusion

Sloshing tests were very instructive. First, we find that at low-KC flows, the inertial dissipation plays a major
role. This is necessarily transferable to problems of reflection-transmission coefficients of a porous structure
submitting to waves. Having a good dissipation rate is not enough to reproduce the correct hydrodynamic
behaviour. Reflection may be overestimated and transmission underestimated or the opposite. At low KC flow,
both parameters, resistance (a,b) and inertial c ones have to be adjusted.

For the resistance coefficients (a, b), we find another couple of parameters (α = 2950, β = 0.3) deduced from
Burcharth and Andersen (1995) [4] equations. The criterion for turbulent flow Re > 300 is not suitable for our
tests. The limit is for higher Reynolds numbers.

Concerning the inertia coefficient CM , we show that it presents the same shape as a simple cylinder at very
small KC-values. CM is decreasing with KC .
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3.1 Context of project

The operating company of Monaco harbour acquired the Cala del Forte port concession in Ventimiglia (Fig.
3.1). The initial project for this harbour was designed for small boating. Unfortunately the construction was
stopped before this was achieved. The Ventimiglia port Cala Forte provides numerous posts for pleasure craft
and mega-yachts, including a "longside" berth along the main dike. This post will receive a 70m long mega-
yacht (Fig. 3.2).

Figure 3.1: State of the port before further constructions, Vintimille

The post is delimited by a 30m long groyne, perpendicular to the main dike. It is a vertical structure of partic-
ular design, consisting of rocks caged by a metal framework or by slightly spaced piles. The structure has the
advantage of occupying a small footprint, compared to a conventional rubble-mound groyne. It is also com-
patible with mooring yachts. On one side of the pass, the 70m long yacht is moored longside. And on the other
side, 30 to 45m long yachts are moored perpendicular to the main dike (Fig. 3.2).

75



76 Chapter 3: SECOND CAMPAIGN : VINTIMILLE

Figure 3.2: Ground plane, Vintimille

The vertical breakwater dissipates energy of the incident waves and partially protects the mooring area along
the main dike. It also has the advantage of promoting local biodiversity through the wall of natural crevices
presented by the stack of rocks.

The objective of this study was to optimise the hydrodynamic performance of the upright riprap breakwater,
which must provide sufficient protection for moorings of the 30 to 45m long yachts in the downstream zone.
The objective is also to limit reflections towards the 70m longside station, even if the megayacht may more
easily accept a relatively high agitation.

Small-scale tests were conducted to meet the following objectives :

• Evaluate the hydrodynamic performance of the vertical rock structure. The acquired data are used to test
and validate the diffraction code again. We finally take advantage of the code to extend the characteristics
of the structure for longer waves (not described here).

• Modify the setup by adding a vertical plate at the back face of the structure. Two configurations are
considered : with a full plate or a porous plate.

3.2 Similarity and scale factors

By choosing to keep constant the Froude number, the proportion of the main forces applied to a fluid in turbu-
lent flow are preserved at the same time. So we have to pay attention that the flow stays turbulent while scaling
the rocks. The choice of the scale has been adjusted to the following constraints :

• To respect the turbulent state of the flow inside the porous medium, even for the relatively low wave
heights encountered in the port. We observed Hs = 25cm to 100cm for frequent sea states upstream of
the groyne.

• To be compatible with the wave tank dimensions and the wave maker characteristics.

For reliable measurements over a wide range of periods T = [3s−12s], a scale of 1
40 , generally adopted in coastal

engineering, would have been suitable. Nevertheless, it is important here to reproduce the reflection and the
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transmission of energy through a dissipative medium receiving a turbulent flow. Therefore, our choice was on a
larger scale 1

20 , with the aim of identifying the effects of transmission over a smaller range of periods T = [2−9s],
with a better confidence in the analyses.

3.3 Experimental set-up

The small-scale tests were conducted at the wave tank of Ecole Centrale de Marseille, for a duration of two
weeks. The water depth at the foot of the structure is about h0 = 7.6m (real-scale), which corresponds to h =
38cm at the test-scale.

Figure 3.3: Schematic cross-section of the wave tank with scale model of Vintimille

3.3.1 Scale-model of the structure

The scale-model is representative of a section of the upright riprap structure. One of the basic sections is
illustrated in figure 3.4.

Figure 3.4: Section of the verticalized stone groyne, Vintimille

The structure is 5m wide, with an inner area of 3m for the caged riprap. The diameter of the piles is 0.8m.
Several solutions are possible in order to contain the blocks. The sketch below proposes a system of spaced
piles, on which links are fixed (Fig. 3.3.1). The use of sufficiently tight piles (gap of about 50cm between piles)
to maintain the blocks is a possible alternative.
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Figure 3.5: Elevation view. Staggered piles with intermediate links, Vintimille

The yellow structure of the scale-model built for the tests of Banyuls-sur-Mer and Istres (Chap. 3.4) was reused
but, in this case, the stones are constrained by simple vertical metal rods. The system of piles, more or less
spaced, with or without links, is not represented. Compared to the effective width of caged rock, the presence
of piles has a minimal impact on the overall hydrodynamic behaviour. They achieve very little dissipation.

The model could be modified in its downstream part by inserting a porous or not porous plate. The figures 3.6,
3.7 and 3.8 illustrate the three setups, with successively : without a plate, with a plate of porosity n = 5% and
with a solid plate.

Figure 3.6: Empty cage, Vintimille
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Figure 3.7: With a porous plate at the back face, Vin-
timille

Figure 3.8: With a solid plate at the back face, Vin-
timille

The three configurations have been tested and compared in terms of hydrodynamic performances :

• The simple groyne, filled with vertical stones.

• The same structure with a downstream sealed plate, so as to prevent any downstream energy transfer.

• The same structure, with a slightly perforated plate (porosity n = 5%), partially transmitting energy down-
stream.

3.3.2 Rock description

Stones were weighed one-by-one before being laid, also one-by-one (akin to the real-scale process conducted
by a crane), in the vertical cage. The curve of size distribution is given in Appendix B for the distribution of the
stones used in this experimental test. The table below summarises the essential values.

Percentile Mass M Nominal diameter dn Porosity

15% 48g 2.6cm

45.0%
50% 69g 3.0cm

85% 94g 3.3cm

Coefficient of
uniformity nRR

4.4 13.2 N/A

Table 3.1: Size distribution, Vintimmille

3.3.3 Summary of the test parameters

The different test parameters are summarised below :

• The test scale is 1/20th.

• The water depth is h=38cm.

• The dimensions of the model at this scale are :

– Height : 41cm (between -7m LMM and 1.2m LMM).

– Width : 15cm (3m wide).

– Length : 65cm (13m long of the groyne)

• Porous medium characteristics are :
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– Porosity 45.0%

– dn50 = 3.0cm, dn85/dn15 = 1.25 (narrow size distribution), nRRdn50 = 13.2

• The generated incident waves are :

– H=[12.5mm, 25.0mm, 50.0mm]

– T=[0.45s 0.67s 0.89s 1.34s 1.79s 2.10s]

The table 3.2 summarises the wave characteristics that are also reported in the diagram of Le Mehauté (1976)
on the applicability of wave theories (Fig. 3.9). We notice that only the tests with the smallest amplitude Ai =
6.25mm and T ≥ 0.89s are inside or close to the range of the linear wave theory. The others performed waves
for T ≥ 0.89s are better described by the Stokes 2nd order wave theory.

Figure 3.9: Applicability of wave theories, Le Mehauté (1976)
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Wave period T

Amplitude
Ai

Variable 0.45s 0.67s 0.89s 1.34s 1.79s 2.10s

6.25mm
H/(gλ2) 1.27e-2 2.61e-3 8.96e-4 2.59e-4 1.26e-4 9.64e-5

Ur 3.00e-4 1.45e-3 4.27e-3 1.48e-2 3.03e-2 3.96e-2

12.50mm
H/(gλ2) 2.54e-2 5.22e-3 1.79e-3 5.18e-4 2.52e-4 1.93e-4

Ur 5.77e-4 2.82e-3 8.20e-3 2.84e-2 5.83e-2 7.62e-2

25.00mm
H/(gλ2) 5.18e-2 1.44e-2 3.58e-3 1.36e-3 5.04e-4 3.86e-4

Ur 1.15e-3 5.64e-3 1.64e-2 5.68e-2 1.17e-2 1.52e-1

- h/(gλ2) 3.87e-1 7.92e-2 2.72e-2 7.90e-3 3.80e-3 2.90e-3

Table 3.2: Wave characteristics of experimental tests, Vintimille

3.4 Comparisons between numerical and experimental results

The reflection and the transmission coefficients of experimental tests are measured thanks to Andersen’s method
(2017) [39]. The experimental results are compared with the numerical models Diffra3D, Wave2Foam and with
the analytical model of Madsen & White (1976) previously presented.

Before the comparisons, we need to fix the parameters that describe the porous medium in the numerical
models. We compare two selections of parameters :

1. Selection 1

The resistance coefficients used to describe the porous medium of the structure are those highlighted in
the sloshing tests, a = 2950 and b = 0.3. With this couple, the inertia coefficient CM is optimised, as in
the sloshing campaign, by minimising the RMS error defined as :

ǫ(T ) =

√

(Rc −Rm )2

R2
m

+
(Tc −Tm)2

T 2
m

(3.1)

where T is the period, Rm and Tm corresponds to values of measured reflection and transmission coeffi-
cients. Rc and Tc are the computed values.

This optimisation is performed to verify that the evolution of the inertia coefficient as function of the
period is similar to the previous results.

2. Selection 2

The values of α = 500, β = 2 and CM = 1.8 are used. α = 500 and β = 2 correspond to the values pro-
posed by B. Jensen et al. (2014) [25] after steady flow experimental tests (see section 1.4.4.2). CM = 1.8
corresponds to the coefficient γp = 0.34 suggested by Van Gent (1993) [59], see section 1.4.4.1).

The figures in the following results section abide by the legend summarised here:

• Experimental data : blue

• Diffra3D + Selection 1 : red

• Diffra3D + Selection 2 : purple

• Wave2Foam + Selection 1 : green

• Analytical model + Selection 1 : orange
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The results of the model Wave2Foam are only available for the simple porous case without plate for Ai =
12.5mm and Ai = 25.0mm, T ≥ 0.67s. The smallest amplitude Ai = 5.62mm requires a very important re-
finement of the mesh at the level of the free surface in order to catch the transmitted waves. The smallest
period T = 0.45s also requires a very thin mesh in the horizontal direction. The VOF model requires at least 20
to 30 cells per amplitude and 30 to 50 cells per wavelength. The calculation time on a machine with over 60
cores lasts more than a few days for the smallest period. This constraint demonstrates the difficulty of using
VOF method to model small wavelets (small amplitude and small period) commonly found in ports.

3.4.1 A simple porous medium

The first configuration corresponds to the porous structure without plate (see figures 3.6 and 3.10 for the mod-
els).

Porous medium

Porosity n = 45%
H = 38cm

B = 15cm

Figure 3.10: Geometry, Simple porous medium, Vintimille

Discussion on CM

The figure 3.11 shows the RMS error function of CM for Ai = 6.25mm. The minimum are indicated by dots on
the figure. These dots correspond to the chosen values of CM .
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Figure 3.11: RMS, A = 6.25mm, Simple porous medium, Vintimille

The values of the inertia coefficient CM function of the periods for the three wave heights are presented in
figure 3.12. The figures 3.13, 3.14, 3.15, 3.16 and 3.17 show the different non-dimensional numbers Re , Fo , KC ,
βS and Ac associated with the same tests. The table 3.3 summarises these values.
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Figure 3.12: Inertia coefficient CM , Simple porous medium

Apart from the first period T = 0.45s and for the smallest amplitude Ai = 6.25mm, a fully turbulent flow con-
dition with respect to the Reynolds number (Re > 300) is verified. KC number is increasing over the range of
tested periods but stays low (0.1 < KC < 4 for Ai = 6.25mm and 0.1 < KC < 12.3 for Ai = 25.0mm).

We observe a decrease of CM for very little KC numbers (small periods). Then there is a second part where CM

increases until it becomes stable. CM = 1.8 for higher KC-numbers (larger periods) is the value proposed by
Van Gent.

It appears that the tendency of CM is similar to the one of a smooth cylinder in uniform oscillatory flow as in
figure 2.18. However CM is here a function of the period T and not of KC . This difference comes from the type
of dissipation in these tests. As it was emphasised, the linear part of the dissipation is predominant (α very
large compared to β). Then CM is not a function of the amplitude.

The inertia coefficient CM may play an important role in this range of KC numbers. The behaviour of a porous
structure may have a strong inertial component for low-KC flows. However, we need to keep in mind that the
waves performed for the two smallest periods (T = 0.45s and T = 0.67s) can not be well described by the linear
wave theory. The wave steepness is too large. Others experimental tests could be performed with constant
steepness to confirm this behaviour.

For the simulations with the parameters of Selection 1, we took a best fit of CM values (the black dashed curve
of figure 3.12) as a law for the inertia coefficient.
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Figure 3.13: Re number, Simple porous medium
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Figure 3.14: KC number, Simple porous medium
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Figure 3.15: βS number, Simple porous medium
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Figure 3.16: kh, Simple porous medium

An interesting number to describe the flow in the porous medium can be displayed. This number, the acceler-
ation number Ac , is introduced by Van Gent (1995) [60] and defined by :

Ac =
v̂p

g T
(3.2)

According to Van Gent, the coefficient γp (S =
(

1+γp
1−n

n

)

/n) could depend on this non-dimensional number
as γp = 0.85−0.015/Ac . γp increases when Ac increases. In our case, there are also some interesting features
to observe. The inflexion point on the CM curve corresponds to the one of the Ac number. CM decreases when
Ac increases. A theoretical law has not been found because Ac number is a very small number (< 0.015 here)
which makes it difficult to establish coefficients.
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Figure 3.17: Ac number, Simple porous medium

Simple porous medium

Ai Re Fo KC βS

6.25mm 139–1518 0.02–0.28 0.07–3.39 448–2000

12.50mm 244–2953 0.04–0.55 0.12–6.60 448–2000

25.00mm 536–5497 0.10–1.02 0.27–12.3 448–2000

Table 3.3: Simple porous medium, Adimensional numbers, Vintimille

Hydrodynamic coefficients

The results of the experimental versus numerical tests for the reflection and transmission coefficients are pre-
sented for the three amplitudes A=[6.25mm, 12.50mm, 25.00mm] and for the range of periods T=[0.45s 0.67s
0.89s 1.34s 1.79s 2.01s] in figures 3.18 to 3.23.
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Figure 3.18: Reflection curve, Ai=6.25mm
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Figure 3.19: Transmission curve, Ai=6.25mm
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Figure 3.20: Reflection curve, Ai=12.5mm
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Figure 3.21: Transmission curve, Ai=12.5mm
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Figure 3.22: Reflection curve, Ai=25.0mm
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Figure 3.23: Transmission curve, Ai=25.0mm

The experimental hydrodynamic coefficients are commonly found values. The porous structure is more effec-
tive when the amplitude of the incident waves is high. The range of reflection is from R = 40% to R = 60%.
The transmission is increasing with the period of incident waves. The higher the periods are, the higher the
transmission is. The transmission reaches a maximum of about T = 60% for high periods.

The numerical results from Diffra3D with parameters of Selection 1 (in red) correspond well with the exper-
iment results. The behaviour for the smallest period T = 0.45s is well reproduced. We also notice that this
couple of parameters give lower values of the reflection and the transmission for Ai = 6.25mm and T > 0.45s.
On the contrary, for Ai = 25mm, it gives values a little higher.

The parameters of Selection 2 (in purple) also perform well for T > 0.89s but are less accurate. It overestimates
the transmission for the smallest period 0.45s.

Wave2Foam (in green) with the parameters of Selection 1 gives the good trend for reflection and transmission.
It underestimates the reflection and overestimates the transmission. The dissipation rate corresponds well.

The simple analytical model (in orange) gives large values for the transmission. The refection is good for T >
0.67s. For the smallest periods, the reflection and the transmission are really too large. It shows the limits of
the analytical model based on long wave theory.
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A transmission level of T > 40% is anyway not acceptable for the future vertical porous breakwater of Vintimille
harbour. The main objective is to protect the mooring places located behind, all along the main dike. This
configuration was not chosen. The configurations with a solid plate and a porous plate have then been tested.

3.4.2 A porous medium with a solid plate

Setting a solid plate at the back of the porous structure prevents all transmission. This next configuration is
described below in figure 3.24.

Porous medium

Porosity τ = 45%
Solid plateH = 38cm

B = 15cm

Figure 3.24: Geometry, Porous medium with a solid plate behind, Vintimille

Discussion on CM

When these tests are compared to the Diffra3D model with CM set as previously, the results for larger periods
are not satisfying. Then, as in the previous section, we have performed a new optimisation for CM . Figure
3.25 shows the evolution of the optimised inertia coefficient CM depending on the period. The parameters of
Selection 1 are used (α= 2950, bet a = 0.3). For KC numbers lower than 1.4, we observe the same tendency as
previously. However, for the first period T = 0.45s, CM is a function of the amplitude. For KC numbers larger
than 1.4, the inertia coefficient increases and differs from the previous case where CM were constant.
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Figure 3.25: Inertia coefficient CM , Porous medium with a solid plate

A study of Riaan van’t Veer & Alessio Pistidda (2012) [61] proposes a comparison (Fig. 3.26) of the inertia coeffi-
cient CM for a wall-bounded plate with published data from Sarpkaya & O’Keefe (1996). The inertia coefficient
of a free cylinder from Keulegan & Carpenter (1958) is also added for comparison. From a certain value of KC ,
the inertia coefficient of a wall-bounded plate starts increasing significantly. The presence of a solid plate at
the back of the porous medium would modify the inertial behaviour of the system for the largest KC numbers.
It justifies the fact we use a different best fit (black dashed curve in Fig. 3.25) for CM-values in this case than
the one found for a simple porous medium.
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Figure 3.26: Comparison of inertia coefficient for free and wall-bounded plates, Riaan van’t Veer & Alessio
Pistidda (2012)

The table 3.4 summarises the adimensional numbers of this configuration. They are close to the adimensional
numbers computed with a simple porous medium.

Porous medium with solid plate

Ai Re Fo KC βS

6.25mm 337–934 0.06–0.17 0.17–2.08 448–2000

12.50mm 510–1978 0.09–0.37 0.26–4.42 448–2000

25.00mm 623–3745 0.12–0.69 0.31–8.36 448–2000

Table 3.4: Porous medium with solid plate, Adimensional numbers, Vintimille
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Hydrodynamic coefficients

The results of experimental tests versus Diffra3D simulations are presented for the three same amplitudes
A=[6.25mm, 12.50mm, 25.00mm] in figures 3.27, 3.28 and 3.29.
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Figure 3.27: Reflection curve, Ai=6.25mm
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Figure 3.28: Reflection curve, Ai=12.5mm
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Figure 3.29: Reflection curve, Ai=25.0mm

Diffra3D with parameters of Selection 1 gives good comparisons for the three amplitudes. The Selection 2 gives
also a good tendency but overestimates the reflection for most cases.

A vertical porous medium with a small width and with a solid plate at the back is a bad damping structure. Little
amount of energy is dissipated. The boats behind are well protected but the area in the front of the structure
where the 70m long mega-yacht is moored would become too much agitated. An intermediary solution is
needed and tested by adding a porous plate instead of a solid one.
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3.4.3 A porous medium with a porous plate τ= 5%

The plate installed at the back of the porous structure is slightly porous with a porosity value of τ = 5%. The
figure 3.30 shows this configuration.

Porous medium

Porosity τ = 45%

Porous plate

Porosity τ = 5%
H = 38cm

B = 15cm

Figure 3.30: Geometry, Porous medium with a porous plate (τ= 5%) behind, Vintimille

Discussion on CM

This configuration is between the two previous configurations : simple porous medium without a solid plate
and with a solid plate. The values of CM for the Selection 1 are then chosen as the average of the values of the
two previous configurations (see the black curve in figure 3.31).
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Figure 3.31: Inertia coefficient CM , Porous medium with a porous plate

The table below gives the adimensional numbers for this set of experiments.

Porous medium with porous plate

Ai Re Fo KC βS

6.25mm 176–1020 0.03–0.19 0.09–2.28 448–2000

12.50mm 350–1877 0.06–0.35 0.18–4.19 448–2000

25.00mm 688–3378 0.13–0.62 0.34–7.54 448–2000

Table 3.5: Porous medium with porous plate, Adimensional numbers, Vintimille
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Hydrodynamic coefficients

The results of experimental versus numerical tests are presented for the three same amplitudes A=[6.25mm,
12.50mm, 20.00mm] in figures 3.32 to 3.37.
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Figure 3.32: Reflection curve, Ai=6.25mm
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Figure 3.33: Transmission curve, Ai=6.25mm
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Figure 3.34: Reflection curve, Ai=12.5mm
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Figure 3.35: Transmission curve, Ai=12.5mm
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Figure 3.36: Reflection curve, Ai=25.0mm
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Figure 3.37: Transmission curve, Ai=25.0mm

With a porous plate, the reflection is almost constant for T ≥ 1.34s. Around R = 60%, it corresponds to the
upper limit of the configuration without a plate. For the smallest periods, the reflection is nearly untouched.
The transmission is kept lower than 40% for almost every amplitude and period. Finally, a porous medium
with a porous plate gives the required performance. It has quite good damping properties for a large range of
periods and does not transmit too much energy behind. This configuration was chosen for construction.

The two selections 1 and 2 of parameters give good transmission levels. The reflection is a little overestimated.
For the smallest periods T ≤ 0.89s, the two simulations are not accurate especially for Ai = 6.25mm.

3.5 Conclusion

The construction of a breakwater in the entry of the harbour of Vintimille was required to protect the boats
moored all along the main dike. This breakwater was chosen as a vertical structure to take the least space
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possible. A 70m-long mega-yacht is moored on the left side. On the right side, 30 to 45m-long yachts are also
moored. The porous nature of the structure is adopted for environmental purposes. A porous plate at the back
of the porous medium is placed to prevent too much transmission of the waves and to avoid a too high level of
reflection. This solution is a compromise.

The numerical model Diffra3D reproduces well the hydrodynamic performance of the tested configurations
for all the range of periods and amplitudes with the Selection 1 of the resistance parameters : α= 2950, β= 0.3
and CM function of the period.

The parameters of Selection 2 (α = 500, β = 2 and CM = 1.8) give relatively good results too for the largest
periods. As the inertia coefficient CM tends to a constant value when T or KC increases, it is often justifiable
to fix constant the inertial parameter for real cases where KC numbers are high. For example, if we look at the
literature, the experimental parameters of Van Gent (1993) [59], γp such as S = (1+γp

1−n
n

)/n is often fixed to
0.34 in numerical tests. With our expression, the value of CM would be ≈ 1.8.

However, Diffra3D is unable to perfectly fit the experimental data for the smallest periods with the parameters
of Selection 2, CM as constant. The smallest periods are of laminar and inertial nature.
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4 THIRD CAMPAIGN : ISTRES AND
BANYULS-SUR-MER

The new project of Istres harbour (FRANCE, 13) and the renovation project of Banyuls-Sur-Mer harbour (FRANCE,
66) provided the occasion to implement innovative vertical breakwaters.

Experimental tests on a small-scale model have been undertaken in order to answer the following issues :

• To understand the hydrodynamic performance of a simple vertical rocks structure, in terms of reflection
and transmission, with parameters like stone size.

• To evaluate global loads on the overall structures and local efforts on the metal framework or on the bored
piles which keep the stones vertical.

• To validate the diffraction code Diffra3D with real case study data.

To solve these issues, three different size distributions dn50 were tested.

In this chapter, first, the context of the projects are presented in order to identify and locate appropriate posi-
tions for the breakwaters, and to consider environmental and other specific issues that justify the use of these
alternative and innovative technical solutions. Then, the experimental set-up for the small-scale model of a
vertical rockfill breakwater is described. The experimental results are compared to the simulation results.

4.1 Context of projects

4.1.1 Istres’ harbour

The extension project of Heures Claires’ harbour in Istres is a part of a global plan to upgrade existing infras-
tructures in order to welcome new pleasure craft and harmonise maritime and urban areas.

The preliminary studies resulted in a few principles for the restructuring of the port’s maritime infrastructures.
The task that draws our attention is the wave-damping breakwater that will equip the first pontoon, which is
shown in figure 4.1.

The breakwater is an innovative design, adopting the principle of a vertical rockfill breakwater. A sketch of this
innovative breakwater is presented in the introduction (Fig. 3). The rocks that form the porous medium are
enclosed by bored piles and dissipate the energy of short-period waves approaching from the south. It has a
low 2.4m wide footprint under the 3m wide pontoon and hence, it does not encroach on the mooring surfaces.
The vertical riprap structure is naturally integrated into the marine environment, promoting biodiversity.

93



94 Chapter 4: THIRD CAMPAIGN : ISTRES AND BANYULS-SUR-MER

Figure 4.1: 3D view of Istres harbour with the spot of the interested pontoon

The new breakwater is necessary to complete the protection provided by the main elongated dike and to get
residual agitation at least equivalent to that currently met. At this location a classical breakwater was pre-
viously installed and boats were only moored behind it. The incident waves at Istres are coming from the
east-southeast region and are listed in the table 4.1. Their characteristics are determined at the port’s entrance.

Period of return Sector East to Southeast

1 year Hs = 1.05m, Tp = 4.0s, N 105

5 years Hs = 1.20m, Tp = 4.3s, N 105

10 years Hs = 1.25m, Tp = 4.5s, N 105

20 years Hs = 1.35m, Tp = 4.9s, N 105

50 years Hs = 1.45m, Tp = 4.9s, N 105

100 years Hs = 1.50m, Tp = 5.0s, N 110

Table 4.1: Istres incident waves

4.1.2 Banyuls-Sur-Mer’s harbour

The harbour of Banyuls-sur-Mer is open to the northwest, allowing part of the energy of the offshore swells to
enter. The security of the water body is currently not assured throughout the western part of the port. Boats
usually moored in this area are moved ashore or to other ports in winter. The Georges Petit wharf and all the
pontoons are in poor condition and need to be renovated or replaced.

The municipality of Banyuls-sur-Mer commissioned HydroGC SAS as a Research Department to conduct hy-
drodynamic studies. A numerical study is conducted to evaluate the impact of new configurations in relation
to the current one. The main objective, together with the refurbishment of the pontoons, is to secure the port
and to extend the calm area of the harbour.

There are many solutions suited to the coastal infrastructure at Banyuls. Here are the principal ones in terms
of hydrodynamics protection, which correspond to our interest :

• The extension of the current main dike with at the end the creation of a circular vertical riprap structure
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(;= 20m) that remains 5m away from the protected sea grasses and makes the harbour entrance calmer,
see figure 1. The circular breakwater has a solid wall in its center facing the biggest swells coming from
the east to prevent any transmission backwards.

• The extension of the 20m counter-jetty by the addition of a prefabricated caisson, with a damping cham-
ber at the front and spaced gabions at the back, see figure 2.

• The installation of two damping caissons inside the port, with a similar design as the new counter-jetty.
These are located to avoid encroaching on the protected sea grass in green in figure 4.2.

These three kinds of breakwaters include porous media and/or damping chambers in order to attenuate the
incident waves but also for environmental purposes in the case of the spaced gabions placed at the back of the
three caissons.

Figure 4.2: Ground plane of Banyuls-sur-Mer harbour

The incident waves at Banyuls are coming from the east region. Their characteristics, used for design, are
defined close to the port’s entry. They are reported in table 4.2.

Period of return Sector East

1 year Hs = 3.1m, Tp = 9.4s, N 71

5 years Hs = 4.4m, Tp = 11.0s, N 71

10 years Hs = 5.0m, Tp = 12.0s, N 73

50 years Hs = 7.4m, Tp = 12.8s, N 79

100 years Hs = 7.9m, Tp = 13.8s, N 79

Table 4.2: Banyuls incident waves
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4.2 Similarity and scale factors

Because of the small amplitudes of incident waves in Istres’ project, a adapted scale is required. The 2.4m wide
porous structure enables us to chose a 1/10 scale that leads to a model width of 24cm (see figure 4.5) and a
water depth of 20cm.

The same scale-model is used to model the cross-section of the 20m large circular head breakwater of Banyuls-
sur-Mer’s. A 20m diameter corresponds to 15m width in 2D equivalent. A new scale of 1/31 is adopted. The
scale-model of the porous medium is doubled to 48cm, which corresponds at real scale to approximately 15m
in width. The water depth at the real scale becomes 6.2m. This is the water depth in front of the structure in
Banyuls-sur-Mer. This second configuration enables us to compare the impact of widening a vertical breakwa-
ter.

4.3 Experimental set-up

4.3.1 Wave tank

The wave tank of the Ecole Centrale de Marseille was used for 6 weeks between the end of September to the end
of November 2017. The wave tank is 17m long. It is equipped at one end with a flat wavemaker and at the other
end with a porous damping structure (Fig. 4.3).

The water depth is set to h = 20cm. At this water level, the characteristics of the wavemaker does not enable
the generation of the design waves. To fix this problem, a flat PVC floor of 22cm in height and with an initial
slope of about 7% over 3m (Fig. 4.4) was installed bringing the water depth at the wavemaker to 42cm.

Figure 4.3: Schematic cross-section of the wave tank with scale model, Istres & Banyuls

Figure 4.4: False floor and breakwater model, Istres & Banyuls
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4.3.2 The experimental model

The model is a cage with a steel structure to contain the blocks. Two plexiglass plates delimit the side edges
and a plywood board constitutes the bottom (see figures 4.5 and 4.6).

Figure 4.5: Experimental model, Istres & Banyuls

Figure 4.6: Oblique and top view of the cage, B=24cm, Istres & Banyuls

Rock description

The stones selected for the test campaign are limestone rock with a mean density of a typical sample measuring
ρ = 2620kg .m−3. Three typical grain sizes were selected to explore the influence of rock size and porosity rate
on the hydrodynamic performance of the structure (Fig. 4.7). The spread of the porosity rates is in the end
41.5% ≤ n ≤ 46.1%. The stones are of course irregular. They were weighed one by one before each series of
tests in order to determine the particle size curve corresponding to the sample in place as well as to determine
the porosity. The porosity is also determined by measuring a water volume displacement. For this purpose,
the dry stones are introduced in a small tank, and the variation in water level is measured. Particle size curves
are reported in Appendix A. The sample of blocks, which had the smallest stones (G1), was then extended with
smaller blocks to form a new distribution (G4). However, the stones in the new distribution, G4, were not laid
one-by-one in the 48cm wide scale-model and so the porosity level obtained is not lower than for the original
particle sizes, but quite the opposite.
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Figure 4.7: From left to right : Size distribution 1, 2 and 3, Istres & Banyuls

The table below summarises the characteristics of the different size distribution used in this campaign. The
porosity could not be kept constant by modifying dn50.

Granulo
metry

M10 M50 M85 dn50 nRRd
1 Porosity

G1 170g 233g 282g 4.5cm 17.2 41.5%

G2 527g 617g 716g 6.2cm 28.4 43.6%

G3 1204g 1861g 2647g 8.9cm 11.0 44.8%

G4 114g 182g 258g 4.1cm 10.6 46.1%

Table 4.3: Size distributions, Istres & Banyuls

4.3.3 Summary of the test parameters

Here is a summary of the different test parameters :

• The test scale is 1/10 for Istres and 1/31 for Banyuls.

• The water depth is h=20cm.

• The dimensions of the model are :

– Height : 41cm

– Width : 24cm (2.4m at scale 1/10). Then 48cm (≈15m at scale 1/31).

• Three different size distributions are tested :

– Porosity 41.5% ≤ n ≤ 44.8%

– 4.5cm ≤ dn50 ≤ 8.9cm

– 11.0 ≤ nRRd ≤ 28.4 : narrow to very narrow size distribution

• The generated incident waves are :

– H=[5mm, 12.5mm]

– T=[0.63s 0.95s 1.26s 1.58s 1.90s 2.21s]

The table 4.4 gives the wave characteristics that are also reported in the diagram of Le Mehauté (1976). The
performed waves are shown on figure 4.8. We notice that they are all part of Stokes 2nd order wave theory.
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Figure 4.8: Applicability of wave theories, Le Mehauté (1976)

Wave period T

Amplitude
Ai

Variable 0.63s 0.95s 1.26s 1.58s 1.90s 2.21s

5.00mm
H/(gλ2) 2.82e-3 7.95e-4 3.91e-4 2.32e-4 1.55e-4 1.12e-4

Ur 5.72e-3 2.03e-2 4.13e-3 6.94e-2 1.04e-1 1.43e-1

12.50mm
H/(gλ2) 7.05e-3 1.99e-3 9.77e-4 5.81e-4 3.88e-4 2.81e-4

Ur 1.43e-2 5.08e-2 1.03e-1 1.73e-1 2.60e-1 3.59e-1

- h/(gλ2) 5.64e-2 1.59e-2 7.80e-3 4.70e-3 3.10e-3 2.30e-3

Table 4.4: Wave characteristics of experimental tests, Banyuls & Istres
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4.4 Comparisons between numerical and experimental results

This section compares the results between the numerical simulations and the physical experiments. The pa-
rameters used for the numerical simulations are the same as those used during the Vintimille experimental
campaign, and are summarised here:

1. Selection 1

The resistance coefficients of the porous medium from the sloshing tests, namely a = 2950 and b = 0.3.
The Inertia coefficient CM is found by analysing a large range of values [0, 10] and minimising RMS error.
This optimisation is performed in order to confirm the evolution of CM found in the tests for Vintimille
(Sec. 3.3.3.4.1).

2. Selection 2

The resistance parameters α= 500, β= 2 and CM = 1.8.

The figures in the following results section abide by the legend summarised here:

• Experimental data : blue

• Diffra3D + Selection 1 : red

• Diffra3D + Selection 2 : purple

• Analytical model : orange

4.4.1 A simple porous medium

The tested geometry is a vertical porous medium located in the wave tank (Fig. 4.9).

Porous medium
Porosity n

Size distribution dn50

H = 20cm

B = 24cm

Figure 4.9: Geometry, Simple porous medium, Istres & Banyuls

Discussion on CM

The figures 4.10 and 4.11 give the evolution of the optimised CM as a function of the period for the two am-
plitudes Ai = 5.0mm and Ai = 12.5mm for the three distribution of stones G1, G2 and G3. The values of CM

obtained for the first configuration in the campaign of Vintimille (paragraph 3.3.3.4.1) are shown for the largest
amplitude for comparison.
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Figure 4.10: Inertia coefficient CM , Ai=5.0mm, Istres &
Banyuls
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Figure 4.11: Inertia coefficient CM , Ai=12.5mm, Vin-
timille, Istres & Banyuls
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We notice that the evolution of CM for the distribution G1 follows a similar evolution as a function of the period
than the values found in Vintimille tests. G1 decreases for the smallest periods to a lowest value before increas-
ing to a constant value around 2 for T ≥ 1.1s. However, the period where CM reaches its minimum is slightly
shifted to higher periods.

The differences of configuration between tests G1 and Vintimille tests are reminded in the table below :

- Banyuls & Istres (G1) Vintimille

Water depth h 20cm 38cm

Width B 24cm 15cm

Porosity n 41.5% 45%

dn50 4.5cm 3.0cm

nRRd 17.2 13.2

Table 4.5: Differences of configuration between Banyuls & Istres (G1) and Vintimille

We compare in table 4.6 the adimensional numbers Re and βS of this set of tests with the Vintimille tests. The
range of periods is 0.65s ≤ T ≤ 2.21s.

Vintimille

Ai Re Fo KC βS

12.5mm 1421–2057 0.26–0.38 1.03–5.05 407–1385

Size distribution 1

Ai Re Fo KC βS

5mm 1055–2056 0.18–0.36 0.33–2.28 900–3157

12.5mm 1459–4813 0.25–0.84 0.46–5.34 900–3157

Size distribution 2

Ai Re Fo KC βS

5mm 1023–3528 0.18–0.63 0.16–2.04 2010–6062

12.5mm 2285–7805 0.41–1.41 0.38–4.51 2010–6062

Size distribution 3

Ai Re Fo KC βS

5mm 1843–5521 0.34–1.02 0.15–1.54 3576–12544

12.5mm 4268–12180 0.79–2.24 0.34–3.41 3576–12544

Table 4.6: B = 24cm, Adimensional numbers, Istres & Banyuls

The Stokes parameters is d2
n50B I /d2

n50V = 4.5cm2/3.0cm2 = 2.25 times bigger for distribution G1 of Banyuls &
Istres tests than for Vintimille tests. The Reynolds parameters is about the same at T = 0.65s. It rises then more
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faster in Banyuls & Istres tests. We have to keep in minds that the two porous media have not the same porosity
making the comparison not straightforward.

If we look again to figure 4.12 which shows the evolution of the inertia coefficient of a simple cylinder in os-
cillatory flow, we notice that the curve of CM as a function of KC depends on Re and βS . The increase of Re

(dashed curves) tends to remove the inflexion point of the curves between KC = 10 and KC = 20. CM reaches
its constant for higher KC . The increase of βS rises the inflexion point to higher CM at KC constant. Figures
4.10 and 4.11 show similar results, by increasing dn50 the inertia coefficient evolves as in figure 4.12 when the
diameter of the cylinder increases.

Figure 4.12: CM of a smooth cylinder function of KC and βS , Sarpkaya et Isaacson [3], Sloshing tests

The inertia coefficient CM of a porous medium may also depend on the nature of the flow, especially for small
periods. For high periods, CM is around 2.0–2.4 instead of 1.4–1.8 In Vintimille tests. Further experimental tests
may be conducted to confirm this relation.

As the porosity n and the median nominal diameter dn50 modify the adimensional numbers Re , KC and βS , it
may be possible to find a relation between CM , n and dn50. For these reasons, we choose to use a different best
fit (black curves in figures 4.13, 4.18 and 4.23) for CM for the three distributions of stones.

Results for Size Distribution 1

The figure 4.13 displays the best fit retained for the distribution G1.
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Figure 4.13: Inertia coefficient CM , Simple porous medium, Size distribution 1

The figures 4.14 to 4.17 show the hydrodynamic performance for R and T with size distribution G1 (in blue) for
Ai = 5.0mm and Ai = 12.5mm. The results obtained with the different models are also displayed.
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Figure 4.14: Reflection curve, Ai=5.0mm
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Figure 4.15: Transmission curve, Ai=5.0mm
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Figure 4.16: Reflection curve, Ai=12.5mm
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Figure 4.17: Transmission curve, Ai=12.5mm

The reflection and the transmission increase with the period until they reach a constant value between 60%–70%
for the reflection and between 35%–45% for the transmission. The increase of the amplitude naturally brings a
better dissipation. The reflection and the transmission are slightly lower for Ai = 12.5mm than for Ai = 5.0mm.

The numerical model Diffra3D with parameter Selection 1 and Selection 2 is fairly faithful to the experimental
data for large periods. For the smallest periods, CM needs to be adjusted to obtain the good behaviour. This is
why the Selection 1 of parameters works better than Selection 2.

The analytical model gives results that fit reasonably the experimental data for large periods. It produces no
correct results for the small periods, especially if we look at the transmission.

Results for Size Distribution 2

The figure 4.18 shows the best fit used for the distribution G2.
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Figure 4.18: Inertia coefficient CM , Simple porous medium, Size distribution 2

The results are displayed in figures 4.19 to 4.22 for the two same amplitudes.
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Figure 4.19: Reflection curve, Ai=5.0mm
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Figure 4.20: Transmission curve, Ai=5.0mm
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Figure 4.21: Reflection curve, Ai=12.5mm
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Figure 4.22: Transmission curve, Ai=12.5mm

For Ai = 5.0mm, Selection 1 and Selection 2 of parameters give good results for long periods. The results for
the amplitude Ai = 12.5mm are of more interest. The Selection 2 gives better results than the Selection 1 for
the transmission and the reflection despite the optimisation of CM . The Selection 1 overestimates the results.
A possible explication is that the flow becomes more turbulent. The porosity and the nominal medium diam-
eter are higher for the distribution G2 (n = 43.6% and dn50 = 6.2cm) than for the distribution G1 (n = 45.5%
and dn50 = 4.5cm). It results in higher Re numbers, KC numbers and βS number. The couple of resistance
parameters α = 2950 and β = 0.3 are maybe not well adapted for this case. The parameters α and β may also
depend on the nature on the flow. It may explain why every author in the literature has its own values. B. Jensen
et al. (2014) [25] draw the same conclusion. α = 500 and β = 2 are the best compromise of parameters which
correspond to the different flow conditions they tested.

Results for Size Distribution 3

The figure 4.23 shows the best fit used for the distribution G3.
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Figure 4.23: Inertia coefficient CM , Simple porous medium, Size distribution 3

The reflection and the transmission are displayed in figures 4.24 to 4.27.
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Figure 4.24: Reflection curve, Ai=5.0mm
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Figure 4.25: Transmission curve, Ai=5.0mm
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Figure 4.26: Reflection curve, Ai=12.5mm
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Figure 4.27: Transmission curve, Ai=12.5mm

The third distribution G3, the largest, gives slightly less reflection and then slightly more transmission, than
with the distributions G1 and G2. The porosity and the nominal medium diameter of the distribution G3 are
higher than the ones of G2 and G3.

This test confirms what we have observed with the distribution G2. The parameters of Selection 2 fit better
than the parameters of Selection 1 for almost every period. The adimensional numbers Re and βS are higher.

The main objective of the vertical porous breakwater located under the first pontoon in Istres harbour is the
dissipation of swell energy. The figures 4.28 and 4.29 display the dissipation rate for the three distributions of
stones G1, G2 and G3 and for the two amplitudes Ai = 5.0mm and Ai = 12.5mm. The dissipation rate is mostly
better for the highest amplitude. The velocities are higher in the porous medium and therefore the dissipation
is higher.

Drawing a conclusion on which distribution of stones gives the best dissipation rate is not straightforward. The
dn50 are different and the porosity rates of G1, G2 and G3 are close. However, we notice that the best effective
distribution for large period (G1 in blue) is the worst distribution for very small periods. The size of the rocks
does not play an critical role in the performance of porous breakwater for the range of amplitudes and periods
tested. Any size of rocks can be used to fill the vertical porous breakwater installed under the first pontoon in
Istres harbour.
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Figure 4.28: Dissipation rate, Ai=12.5mm
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Figure 4.29: Dissipation rate, Ai=12.5mm
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4.4.2 The porous medium’s width is double

The porous medium’s width is now doubled to 48cm in comparison to a width of 24cm previously (Fig. 4.30).
Figure 4.31) shows the installation in the wave tank. The distribution of stones G4 is used.

Porous medium
Porosity n

Size distribution dn50

H = 20cm

B = 48cm

Figure 4.30: Geometry, Widened porous medium, Istres & Banyuls

Figure 4.31: Lateral view of the cage, B=48cm, Istres & Banyuls

The experimental and numerical results of the reflection and the transmission are displayed in figures 4.32 to
4.35. In this case, the values of CM for the parameters of Selection 1 are those used for the distribution G1
because the two distributions have close dn50 (dn50 = 4.1cm for G4 and dn50 = 4.5cm for G1).
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Figure 4.32: Reflection curve, Ai=5.0mm
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Figure 4.33: Transmission curve, Ai=5.0mm
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Figure 4.34: Reflection curve, Ai=12.5mm
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Figure 4.35: Transmission curve, Ai=12.5mm

Doubling the width does not decrease the transmission because the porosity of the stone distribution G4 is
higher (n = 46.1%) than for the porosity of G1 (n = 41.5%). The reflection is also better. This shows experimen-
tally that the porosity is the critical parameter to respect in order to achieve a targeted performance.

The two selections of parameters fit well the experimental data. The Selection 1 tends to underestimate the
transmission for Ai = 5.0mm. The Selection 2 underestimates the transmission for Ai = 12.5mm.

The analytical model corresponds better with the reflection than the transmission for large periods. For small
periods, the transmission is incorrect.

Preventing the waves that propagate from the east from entering the harbour of Banyuls is the main objective
of the vertical circular breakwater that will be built at the end of the main dike. Experiments with a 48cm wide
porous medium show that the transmission stays important (> 40%) despite the width of the porous medium.
For the port of Banyuls, it means that a simple porous medium, even a wide one, is not an adequate solution. To
overcome this problem, it was decided to integrate a solid concrete wall at the center of the circular breakwater.
The reflection is degraded but transmission is not possible..
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4.5 Conclusion

Experiments for the harbour of Istres shows that the size of the stones is not a critical design parameter for a
porous breakwater, contrary to porosity. However, the trend is that large stone size tend to give less reflection,
and on the contrary, small sizes enable less transmission.

The tests for the port of Banyuls-sur-Mer show that a wide porous medium still allows high transmission. A
simple circular porous breakwater is not enough in this case. A solid wall must be included inside the break-
water to prevent any transmission.

This set of tests highlights the fact that the inertia coefficient of a porous medium CM may depend on the
nature of the crossing flow. The figure 4.36 displays the different measured values of CM for the experiments of
Vintimille, Istres and Banyuls.
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Figure 4.36: Overview of the different values of CM

Increasing the amplitude tends to increase the inertia coefficient for the small periods. Increasing dn50 also
tends to increase CM for the small periods. For the range of periods, T ∈ [0,1.3]s, we notice a significant evo-
lution in the inertial coefficient, from 0 to 10. On the contrary, from a period around T ≥ 1.3s, CM tends to
get close to values between 1.6 to 2.4. We have to keep in mind that these observations are drawn with the
parameters α and β kept constant. Further studies can fix CM and vary α and β.

We need systematic and methodical testing to confirm these observations and to find a quantitative law for the
evolution of CM for small periods. This could be an opportunity for a future study.



5 FOURTH CAMPAIGN : SPACED GABIONS

As noticed in chapter 3.4, the project of Banyuls-sur-Mer’s harbour was the occasion to imagine two kinds of
innovative vertical structures integrating porous media ; the big circular vertical riprap structure and the three
damping caissons with a porous wall in the front and spaced gabions at the back (see figure 2).

The conception of a Jarlan chamber through optimisations with numerical methods is not new since equation
(1.17) was developed by Lajoie & Bougis (2008). What’s is innovative is the idea to create a kind of a porous
plate with several spaced gabions in order to end up with the damping characteristics of the Jarlan cham-
ber. Additionally, the porous media are favourable to young fishes and bring weight for stability in the case of
weight-structures. This fourth campaign explores the hydrodynamic characteristics of such breakwaters. The
experimental data are then compared to the results from Diffra3D. Some other practical applications are pre-
sented, for example how a damping chamber works without a floor or how a porous medium inside a Jarlan

chamber modifies its reflection curve.

In Appendix B, sensitivity tests to design parameters of a classic Jarlan caisson such as porosity of the porous
plate, hole’s type, water depth and chamber’s size are presented to regard how such breakwaters work. Com-
monly, reflection and transmission coefficients of damping caissons are the function of the non-dimensional
value B/λ with B the width of the chamber and λ the wavelength. The range of operation of a classical damp-
ing caisson takes place when 0.10 ≤ B/λ ≤ 0.15. In this section, hydrodynamic coefficients are displayed as a
function of the period because they are usually presented in this form to industry clients.

5.1 Experimental set-up

The scale model does not correspond to the structures of the project of Banyuls-sur-Mer’s harbour. The geom-
etry was especially chosen for our experimental tests to look into our problem. The tests take place once again
in the tank at Centrale Marseille. The structure is located at approximately 11.4m from the wavemaker. A PVC
wall cuts the tank and forms the opaque background of the breakwater. In front of the scale-model, the water
depth is h=45.6cm.

Figure 5.1: Schematic cross-section of the wave tank with the spaced gabions

109
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5.1.1 The scale model

The stones which constitute the gabions (in yellow in figure 5.2) are held by a framework of stainless steel rods
(see figure 5.3). The whole structure is raised by 30cm on a opaque plywood structure (in purple). Inside the
structure, the water depth is equal to 15.6cm. The bottom of the damping chamber (in green) can be removed.

Figure 5.2: View from above - Sketch of spaced gabions

In the picture below (Fig. 5.3), the holes above plywood plate are to place the stones to form the gabions, one-
by-one. There are in total five slots for five gabions. The global width of the slots corresponds to τ= 23% of the
breakwater’ width.

Figure 5.3: Oblique view of the scale-model, Spaced gabions

5.1.2 Rock description

The characteristics of the porous media forming the gabions are described in table 5.1. Please refer to Appendix
B for the size distribution of the stones used in this experimental test. The relation dn85/dn15 = 1.16 as nRRdn50 =
18.3 correspond to a narrow size distribution parameter. The porosity n = 41% is a commonly found value.
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M15 M50 M85 nRR M Porosity

25g 40g 53g 6.1

41%
dn15 dn50 dn85 nRRdn50

2.5cm 2.7cm 2.9cm 18.3

Table 5.1: Size distribution, Spaced gabions

5.1.3 Performed experimental tests

Four configurations were investigated for a constant water depth h = 45.6cm :

1. The gabions’ size is b = 13cm. The chamber’s size is B = 8.6cm. The water depth inside the chamber is
hc = 15.6cm. A sketch is designed in figure 5.12.

2. The bottom of the damping chamber is removed compared to the previous configuration, see figure 5.16.
The other parameters stay the same.

3. There is no damping chamber. The other parameters stay the same, see figure 5.18.

4. We start again from the configuration 1. For this setup, the gabions’ size is divided by 2, b = 6.8cm. The
other parameters stay the same, see figure 5.21.

Only regular waves were generated. The range of periods is 0.6s ≤ T ≤ 2.0s. and the wave heights are Ai = 8mm

and Ai = 16mm. The wave steepness is then in the range 0.4% ≤ H/λ ≤ 2.8% for Ai = 8mm and 0.8% ≤ H/λ≤
5.6% for Ai = 16mm.

5.2 Theoretical model

Before our experimental results, some numerical investigations were conducted using two different approaches
in order to model a porous plate : a 2D theoretical formulation of a porous plate and a 3D modelling. This jus-
tifies the use of our numerical model to describe spaced gabions in 3D.

5.2.1 Comparison of 2D theoretical formulation of a porous plate with a 3D modelling

The code Diffra3D makes it possible to simulate a porous plate through two methods :

• The 2D theoretical formulation of a porous plate described in section 2.1.1.2. For section and top view,
refer to figures 5.4 and 5.6.

• A 3D modelling of a porous plate with modelled holes. Section and top views are presented in figures 5.5
and 5.7.

Porosity τ = 23%

H = 45.6cm

B = 8.6cm

Hcaisson = 15.6cm

Figure 5.4: Section : 2D model

Porosity τ = 23%

H = 45.6cm

B = 8.6cm

b = 2cm

Hcaisson = 15.6cmm

Figure 5.5: Section : 3D model
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Channel

H = 45.6cm

Caisson
Hcaisson=15.6cm

Porosity τ = 23%

Theoritical formulation

B = 8.6cm

Figure 5.6: Top view : 2D model

Channel

H = 45.6cm

Caisson

Hcaisson = 15.6cm
Porosity τ = 23%

bsolid = 10cm

bsolid
2

bslit = 3cm

B = 8.6cmb = 2cm

Figure 5.7: Top view : 3D model

We are looking for comparable results with the two models. Then we need to be sure to have similar theo-
retical backgrounds of how each computes the pressure loss in the two cases. The global pressure loss of the
theoretical formulation is given in equation (1.17). Only the singular pressure loss is recalled here :

∆p =
1

2
Kp v2

dn (5.1)

with Kp = 1−τ
k2

c τ
2 .

In the 3D modelling of a porous plate, the inertial term of the pressure loss is directly computed by the model.
The singular loss of pressure is added to every hole to match the singular pressure loss of the 2D modelling.
This pressure loss can be for this case written by :

∆p ′ =
1

2
K ′

p v2
dn (5.2)

with K ′
p = 1

k2
c

.

As the singular loss of pressure takes place when water jets come out of the slots, we put half of this loss of
pressure on either side of the slots. This corresponds to the filling and the emptying of the damping chamber.
The results of the comparison are presented in figure 5.8 for two wave heights Ai = 8mm and Ai = 16mm. They
show similar reflection coefficients for both methods, validating the 3D modelling of a thin porous plate.
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Figure 5.8: Reflection curves - Theoretical formulation (2D) of a porous plate (blue dashed) vs 3D model (red),
b = 2cm, Ai = 8mm and Ai = 16mm

5.2.2 The porous plate is widened

The porous plate is now widened to b = 13cm to be equal to the gabions’ size of the experimental tests, see
figure 5.10. We want to know if the 2D theoretical formulation remains valid for a large porous plate.
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Figure 5.9: Top view : 3D model, b = 2cm
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Figure 5.10: Top view : 3D model, b = 13cm

The results of the reflection coefficients are presented in figure 5.11 for the two wave heights Ai = 8mm and
Ai = 16mm. The results of the previous test with a thin porous plate are also displayed for comparison (in
transparency). Widening the wall naturally shifts the damping peak to higher periods because it raises the
inertial term of the loss of pressure.
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Figure 5.11: Reflection curves - Thicker porous plate, Ai = 8mm and Ai = 16mm - b = 2cm (blue dashed) vs
b = 13 (red)

We observe that the similarity between the 2D theoretical expression and the 3D modelling is degraded for
periods T > 1.4s in comparison to the case with a thin porous plate. A possible explanation comes from the
transition between the incoming and the reverse flow. There is a duration while the flow is not homogeneous
in the slots. The theoretical 2D formulation can not model this phenomenon.

5.3 Comparisons between numerical and experimental results

5.3.1 Set-up 1 : Classical Jarlan chamber with spaced gabions as thick porous plate

The basic experimental configuration is a damping chamber with a porous plate using spaced gabions. The
parameters for the experimental set-up 1 are listed below and visually shown in figures 5.12 and 5.13 :

• Gabions’ size : b = 10cm

• Chamber’s size : B = 8.6cm

• Water depth inside the chamber : hc = 15.6cm

• Porosity of the gabions : n = 41%

• Global slots’ width compared to breakwater’ width : τ= 23%



114 Chapter 5: FOURTH CAMPAIGN : SPACED GABIONS

Caisson

Hcaisson = 15.6cmP
o
ro
si
ty

τ
=

2
3
%

Porosity n = 41% bgabion = 10cm

bgabion

2

bslit = 3cm

B = 8.6cmb = 13cm

Figure 5.12: Top view : Spaced gabions, b = 13cm
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Figure 5.13: Section : Spaced gabions, b = 13cm

The experimental coefficients of reflection (in blue) are compared in figure 5.14 with the results from simu-
lations (in red). For comparison, the results from the previous porous plate computations are displayed in
translucent color.
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Figure 5.14: Reflections curves - Ai = 8mm and Ai = 16mm - Set-up 1

There is a good fit between the numerical data and experimental results. The model Diffra3D reproduces well
enough the main hydrodynamic phenomena in this case, even if the minimum for the numerical reflection
is lightly shifted for Ai = 16mm. We see that incorporating porous media to form the porous plate increases
the performance of the damping structure by flattening the curve of reflection. It also shifts the peak towards
smaller periods. The inertial term of pressure loss may be less important.

5.3.2 Set-up 2 : The bottom of the damping chamber is removed

The experimental set-up 2 checks a result found from simulations. The floor of a damping caisson does not
play a major role. The wavelength in the damping chamber is defined by the water depth at the porous plate.

The only modification with previous configuration is that the water depth inside the chamber is now greater :
hc = 45.6cm instead of hc = 15.6cm. We removed the floor of the damping chamber as shown in figure 5.16.

Porosity τ = 23%

H = 45.6cm

B = 8.6cmb = 13cm

Hcaisson = 15.6cm

Figure 5.15: Spaced gabions

Porosity τ = 23%

H = 45.6cm

B = 8.6mb = 13cm

Hgabions = 15.6m

Figure 5.16: Spaced gabions, no floor
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The experimental results of the reflection coefficients (in blue) and the computed ones (in red) are presented
in figure 5.17. They are compared with the results from the previous configuration (in translucent color).
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Figure 5.17: Reflections curves - Ai = 8mm and Ai = 16mm - Set-up 1 vs Set-up 2

The reflection coefficient of the damping caisson does not change a lot by removing the floor in the chamber.
The reflection curve from the configuration without a floor is a little better for the highest periods (blue and
light blue curves). This could be explained by the fact that some turbulences may appear at the new edge
inside the chamber. The discrepancy between the experimental results and the numerical ones confirms this
explanation. The numerical results are fully identical in the two cases, with and without a floor. A perfect fluid
does not create any turbulence. The water particles held by the solid wall stay immobile. This problem could
be solved by adding a theoretical pressure drop at the entrance of the lower part of the dissipation chamber.

This configuration opens an innovative and practical way of designing damping caissons with only sheet piles
when the soil enables it.

5.3.3 Set-up 3 : Spaced gabions without damping chamber

Firstly, this configuration highlights the effectiveness of a damping chamber but also shows an interesting ad-
vantage of using spaced gabions instead of a simple porous plate. We tested the hydrodynamic performance
of spaced gabions without any damping chamber behind (Fig. 5.18) and we compare the results with a simple
gabion in front of a solid wall as described in figure 5.19.
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Figure 5.18: Spaced gabions with no chamber (red
curve on figure 5.20)
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Figure 5.19: Simple gabion in front of a solid wall
(green curve on figure 5.20)

Only the experimental coefficients of reflection (in blue) for Ai = 16mm are available. We compare them with
the computed results in figure 5.20.
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Figure 5.20: Reflections curves - Ai = 8mm and Ai = 16mm - Set3

The results show that spaced gabions in front of a solid wall is more advantageous than a simple porous
medium because it brings a better damping for small periods. The waves can certainly expand in the slots
and are subjected to the singular pressure loss on the way out.

5.3.4 Set-up 4 : The gabions’ size is divided by 2

The fourth set-up is similar to set-up 1 but with the size of gabions divided by 2 (see in figure 5.21).
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Figure 5.21: A thinner porous wall, b = 6.8cm
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Figure 5.22: Large porous wall, b = 13cm

The experiment results of the reflection coefficients of the configuration b = 6.8cm are shown in blue in figure
5.23 for Ai = 16mm. The computed results are in red in the same figure. For comparison, the results of the
configuration b = 13cm (set-up 1) are copied in translucent.
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Figure 5.23: Reflections curves - Ai = 8mm and Ai = 16mm - Set-up 4 vs Set-up 1

The results of the numerical tests performed in introduction of this part are found again. The width of the
porous plate affects the inertial term of the loss of pressure. The minimum reflection shifts toward lower peri-
ods with a smaller porous wall.

5.4 Practical applications

The experimental tests explored three innovations which could easily be built inside a harbour to bring down
the agitation and for some of them improve the natural environment for young fishes. We proved that :
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1. Spaced Gabions are more efficient for small periods compared to a simple porous medium in front of a
solid wall.

2. Building a damping caisson with spaced gabions as a thick porous wall can provide a very good hydro-
dynamic performance. At peak efficiency the structure has a reflection rate of less than 20%.

3. Removing the floor of the damping chamber does not greatly change the hydrodynamic behaviour of a
damping chamber but it may improve it.

A fourth direct application is to incorporate a porous medium inside the damping chamber. One advantage is
to add weight to increase the stability of the device. Some numerical tendencies of this application are devel-
oped below.

5.4.1 Porous medium inside a damping chamber

We start with the Jarlan caisson configuration of Appendix B which has a large damping chamber B = 7m (see
figure 5.24). Two sets of configurations are tested :

1. The bottom of the damping chamber is raised using a porous medium (see figure 5.25).

2. The chamber’s width is reduced through a porous medium at the background (see figure 5.29).

The porosity of the porous plate is set to τ = 40%. Slots are used as holes. The characteristics of the porous
medium are n = 40% and dn50 = 30cm. In the case of the configuration 2, the porous plate is next to the porous
medium. At this location, for the lower half of the porous plate, only half of the pressure drop created by the
porous plate is implemented in order not to overestimate the global loss of pressure.

Porous medium at bottom

The figures 5.24, 5.25 and 5.26 present the geometrical characteristics of the first set of configurations 1, 2 and
3.
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Figure 5.24: Configuration 1
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Figure 5.25: Configuration 2
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Figure 5.26: Configuration 3

Figure 5.27 displays the reflection coefficients. Results show that configuration 2 achieves a better perfor-
mances than the configuration 3. However configuration 1 works better but only for small periods.
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Figure 5.27: Reflection curves - Comparison of configurations 1, 2 and 3
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Porous medium at background

The porous medium is now placed at the background of the damping chamber. The figures 5.29 and 5.30
correspond to configurations 4 and 5.
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Figure 5.28: Configuration 1
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Figure 5.29: Configuration 4
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Figure 5.30: Configuration 5

A porous medium inside a damping chamber modulates the hydrodynamic behaviour. The reflection curve of
configuration 4 (in red) is in-between the two classical configurations. But it seems that this configuration does
not bring any advantages.
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Figure 5.31: Reflection curves - Comparison of configurations 1, 4 and 5
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Conclusions

Respect of the environment is a motivation to look for new kinds of breakwaters. The vertical porous breakwa-
ters designed from a metal framework and filled with rocks greatly fit this obligation. This thesis aims to test
innovative geometries of porous breakwaters through the investigation of porous media characteristics and the
development of a new 3D diffraction code that implements porous media and porous walls.

This numeric tools, called Diffra3D and based on BEM, addresses the needs of engineering offices. It enables
to obtain quick computations for testing different models of porous breakwaters, without a large computing
capacity.

Its development allows us to :

• Provide a theoretical overview of modelling porous media flow.

The porous medium is assumed homogeneous. The volumetric forces applied to the flow is expressed
by the well-known extended Forchheimer equation. Three coefficients, two of resistance (a, b) and one
of inertia c, need to be defined. They characterise the porous medium. a corresponds to the linear
part of the hydraulic gradient and b to the quadratic part. Burcharth and Andersen (1995) [4] found the
most adapted formulation to express the coefficients of Forchheimer. They depend on parameters such
as porosity, size of the stones and empirical coefficients. The parameter of inertia c is less studied. It
depends on the porosity and on the inertia coefficient CM .

• Investigate the characteristics of a porous medium through three experimental campaigns : sloshing
testing on a hexapod and two classical reflection-transmission studies in a wave tank.

Having a good dissipation rate is not enough to reproduce the correct hydrodynamic performance of a
porous breakwater. We find that at low Re and KC numbers, the inertial dissipation plays a major role.

For this type of flow, a new selection of tortuosity parameters is suggested, α = 2950 and β = 0.3. We
found that the inertia coefficient CM of a porous medium has the same shape as a simple cylinder in
oscillatory flow. It decreases at very small KC and it reaches a constant value between 1.6 and 2.4 for
higher KC numbers. The evolution of CM may also depend on the nature of the flow and hence on the
size of the stones and on the porosity.

Nevertheless, no expression for CM has been found but a general trend has been drawn. More experi-
mental data are needed to have a more precise formulation. Experimental data are missing. In the future,
systematic testing on a cylinder network as a idealised porous medium could help to find an appropriate
law for CM .

We also learn that the hydrodynamic performance of a porous breakwater is very sensitive to the porosity.
Its estimation is a critical issue. Its must be finely controlled during the laying operator.

• Compare the code with experimental data.

The code Diffra3D allows to simulate with good confidence porous media flow when the characteristics
of the porous structure are well known.

The selection of parameters α= 2950 and β= 0.3 gives good results for low Re and KC numbers. The in-
ertia coefficient CM must then be well defined to model porous media flow when the regime is of inertial
nature.

The selection suggested by B. Jensen [25] α= 500 and β= 2, with CM = 1.8, also gives good results in cases
where the flow is not of inertial nature.

Finally, innovative geometries of porous breakwaters have been tested, such as :
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• Spaced gabions. They can be used to form porous plates. If built in front of a damping chamber, it results
in breakwaters with hydrodynamic performance similar to Jarlan caissons. Additionally, the gabions offer
an adequate environment for young fish.

• An damping chamber without a floor. The performance of a Jarlan caisson depends on the character-
istics of its porous plate and on the wavelength inside compared to its dimensions. We learn that the
wavelength inside the chamber does not depend on the water depth of the chamber. It only depends on
the vertical size of the porous plate. A Jarlan caisson with no floor gives similar performance to a classical
one.

• A mix of Jarlan caissons and porous media. The integration of a porous medium inside the damping
chamber modulates the hydrodynamic behaviour. It can enable to smooth the operational window to
wider frequencies.

• A simple vertical porous breakwater. These kinds of breakwaters could also be installed under pontoons
inside harbours. It provides dissipation and an eco-friendly environment again.

Perspectives

In order to better control the different parameters of the porous medium, we suggest to perform tests with
a cylinder network with various rugosities to mimic tortuosity. For this systematic study with no rugosity,
a numerical study is privileged as the different characteristics of the idealised porous medium can be easily
modified.

A VOF model will be used. The parametrisation of the model is the first step. The classical values of CM and CD

of the literature for a simple cylinder in an oscillatory flow should be retrieved. The efforts on the cylinder are
computed. From them, the inertia coefficient and drag coefficient are determined through the Equation of a
Line Method (ELM) and through the Optimised Cubic Spline Method (OCSM). The kind of turbulence closure
model must also be investigated.

Then, a cylinder network is of interest. This network is placed in a tank. For a oscillatory flow with no vertical
velocities, the orientation of the cylinders may not have importance. They can be placed vertically or horizon-
tally but must be perpendicular to the tank.

First, only oscillatory flows are performed. The range of KC numbers to investigate are from 0 to 200. Values be-
tween 0 and 12 must be precisely defined to reproduce the observed phenomena. The dimensional parameters
to vary are :

1. The diameter of the cylinders d from 3cm to 8cm.

2. The porosity of the network n from 35% to 50%.

3. The width of the network b from 20cm to 40cm.

4. The water depth h from 20cm to 60cm.

In a second part, waves could be performed to observe how orbital velocities modify the efforts. Is it still pos-
sible to easily separate inertia coefficient and drag coefficient ? In the case of orbital flow with a free surface,
it is of interest to modify the orientation of the cylinders. The orientation may have an effect on the orbital
velocities and on the free surface.

Nevertheless, to introduce rugosity in our model, physical tests are needed, as this kind of surface is difficult to
model numerically.



A SLOSHING

A.1 SIZE DISTRIBUTIONS
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Figure A.1: Granulometry 1, Sloshing tests
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Figure A.2: Granulometry 2, Sloshing tests
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Figure A.3: Granulometry 3, Sloshing tests



B SPACED GABIONS

B.1 DESIGNING A DAMPING CAISSON

The aim of a damping caisson is to dissipate as much energy as possible by turbulence in its chamber as well as
by induction of energy losses trough acceleration and deceleration of fluid by contraction/expansion creating
water jets and the formation of vortices at the holes.

There actually are four designing parameters an engineer can play with in order to optimise the damping re-
sponse of a Jarlan chamber :

1. The porosity τ of the porous plate.

2. The type of the holes of the porous plate, usually slit or circular openings. We saw in section 2.1.2 that the
coefficient of flow restriction kc and the added inertial term in the pressure gradient equation depends on
the type of hole. The size of the holes at fixed porosity, width for slits and diameter for circular openings,
also play a role in the inertial term.

3. The width b of the porous plate. This parameter, rarely discussed in the literature because it is gener-
ally fixed between 30 and 50cm by civil engineering, is investigated prior to presenting the experimental
results of spaced gabions model.

4. The depth Hcai sson inside the chamber, which can be smaller than the depth just in front of the structure.

5. The size B of the chamber.

The three first parameters play on the pressure loss that the porous plate creates bringing a phase difference
between the wave outside and inside the structure.

The two last parameters previously mentioned play on the ratio B/λ inside the chamber. The peak of operation
of a damping caisson takes place when 0.10 ≤ B/λ≤ 0.15. The figure B.1 is a sketch of the damping caisson we
start with as a reference for our sensitivity tests to design parameters. The parameter kc of flow restriction is
taken to 0.8 for slits and 0.65 for circular holes.

Porosity τ

H = 6m

B = 7mb = 0.3m

Hcaisson = 4m

Figure B.1: Geometry of the caisson
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B.1.1 Influence of the wall porosity

In our case study, the influence of the wall porosity on the reflection coefficients is presented below on figure
B.2. The holes are set to slits. There is a porosity value for which damping is better at the peak of operation.
Here it’s for τ = 40% for T = 5.5s. However we notice that the red curve then rises faster than the green curve
(τ= 30%) which finally present a better global damping over a larger range of periods.
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Figure B.2: Slit holes, Reflection curve

B.1.2 Influence of hole’s type

We arbitrarily set the porosity to τ = 40% and we compare the influence of the form of the holes on reflection
coefficients.
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Figure B.3: Porosity τ= 0.4, Reflection curve

B.1.3 Influence of the chamber’s depth

The greater the depth in the damping chamber, the longer the wavelength will be. The relation B/λ becomes
lower with the depth. That’s why our curves of reflection coefficients shift towards higher periods when the
depth of the chamber is reduced.
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Figure B.4: Porosity τ= 0.4, Slit holes, Reflection curve

B.1.4 Influence of the chamber’s size

This time we change the ratio B/λ by varying B .
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Figure B.5: Porosity τ= 0.4, Slit holes, Reflection curve
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Figure B.6: Size distribution, Spaced gabions
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C VINTIMILLE

C.1 SIZE DISTRIBUTION

2.4cm 2.5cm 2.6cm 2.8cm 2.9cm 3.1cm 3.2cm 3.4cm 3.5cm 3.7cm
Nominal Diameter (Dn)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pa
ss
in
g 
st
on

es

Figure C.1: Size distribution, Vintimille
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