
HAL Id: tel-02384086
https://theses.hal.science/tel-02384086

Submitted on 28 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Advances in Broadcast Encryption and Traitor
Tracing

Duong Hieu Phan

To cite this version:
Duong Hieu Phan. Some Advances in Broadcast Encryption and Traitor Tracing. Cryptography and
Security [cs.CR]. Ecole normale supérieure - ENS PARIS, 2014. �tel-02384086�

https://theses.hal.science/tel-02384086
https://hal.archives-ouvertes.fr

DI/ENS – École Doctorale de LAGA, Département Mathématiques
Sciences Mathématiques de Paris Centre Université de Paris 8

Some Advances in

Broadcast Encryption and Traitor Tracing

THÈSE D’HABILITATION
présentée pour l’obtention du

Diplôme d’Habilitation à Diriger des Recherches
de l’École normale supérieure

(Spécialité Informatique)

par

Duong Hieu Phan

Soutenue publiquement le 19 Novembre 2014 devant le jury composé de

Michel Abdalla .Examinateur
Claude Carlet .Examinateur
Jean-Sébastien Coron .Rapporteur
Louis Goubin . Examinateur
Marc Joye .Rapporteur
Aggelos Kiayias .Rapporteur
David Pointcheval . Directeur de recherches
Jacques Stern .Examinateur

Travaux effectués au sein de LAGA, UMR 7539, Université Paris 8 - Université Paris 13
et de l’Équipe de Cryptographie de l’École normale supérieure

Remerciements

Le travail présenté dans ce mémoire est un travail collectif, je tiens à remercier tous ceux qui
m’ont accompagné dans l’aventure de la recherche depuis de nombreuses années.

Mes remerciements les plus chaleureux vont à David Pointcheval pour son soutien sans faille
depuis le jour où il m’a accueilli comme premier thésard. Ses encouragements ont été décisifs à
l’aboutissement de cette thèse !

J’adresse ma grande reconnaissance aux membres du jury : Michel Abdalla, Claude Carlet,
Louis Goubin, Jacques Stern et en particulier aux rapporteurs : Aggelos Kiayias, Jean-Sébastien
Coron et Marc Joye pour leur patience et leurs suggestions. Je suis honoré que la thèse ait été
revue par de tels experts.

Un grand et amical merci à Phong Nguyen, qui m’a fait découvrir la recherche en cryptogra-
phie en France (pour la première fois lors d’un match de football au stade de Hanoï il y a une
vingtaine d’années) et qui a toujours été de bon conseils depuis.

Mon tout premier cours de cryptographie en France a été avec Jacques Stern, je le remercie
de m’avoir m’accueilli ensuite dans le laboratoire de l’ENS, c’est le point de départ de mon petit
chemin en cryptographie.

La relecture de cette thèse est un travail dur, je tiens à remercier Olivier Billet, Malika
Izabachène, David Pointcheval, et en particulier mon épouse Thuy-Linh.

Depuis plus de dix ans, j’ai eu le plaisir de collaborer avec de nombreux chercheurs brillants.
Je tiens tout d’abord à remercier Trinh Viet Cuong, mon thésard, Damien Stehlé, mon ami
de DEA, et mes co-auteurs : Michel Abdalla, Olivier Billet, Angelo De Caro, Hervé Chabanne,
Benoît Chevallier-Mames, Alexander W. Dent, Yvo Desmedt, Nelly Fazio, Philippe Guillot, San
Ling, John Malone-Lee, Helger Lipmaa, Gregory Neven, Antonio Nicolosi, Ngo Quang Hung,
Nguyen Thanh Thuy, Abdelkrim Nimour, David Pointcheval, Reihaneh Safavi-Naini, Siamak
Fayyaz Shahandashti, Nigel P. Smart, Ron Steinfeld, Mario Strefler, Dongvu Tonien et Takahiro
Yamanoi.

L’Université Paris 8, l’ENS, France Telecom et l’University College London sont d’excel-
lents environnements de recherche dans lesquels j’ai eu la chance de travailler. Je tiens à re-
mercier mes collègues Claude Carlet, Farid Mokrane, Philippe Guillot, Sihem Mesnager, Wolf-
gang Schmid, Nadia El Mrabet, Serge Larrivière, Maarten Bullynck, Mariou Benoît, Marie-José
Durand-Richard, Damien Vergnaud, Dario Catalano, Vadim Lyubashevsky, David Naccache,
Pierre-Alain Fouque, Emmanuel Bresson, Louis Granboulan, Céline Chevalier, Hoeteck Wee,
Oded Regev, Sorina Ionica, Elizabeth Quaglia, Angelo De Caro, Itai Dinur, Fabrice Ben Ha-
mouda, Mario Cornejo, Alain Passelègue, Olivier Blazy, Henri Gilbert, Olivier Billet, Thomas
Peyrin, Matt Robshaw, Yannick Seurin, Ryad Benadjila, Côme Berbain, Gilles Macario-Rat,
David Arditti, Jonathan Etrog, Stanislas Francfort, Marc Girault, Sébastien Canard, Jacques
Traoré, Brigitte Vallée, Fabien Laguillaumie, Ayoub Otmani et Marine Minier.

Une partie de cette thèse a été réalisée dans le cadre du projet ANR BEST dont je suis pilote
pour l’Université Paris 8. Cécile Delerablée, Pascal Paillier, Aurore Guillevic, Renaud Dubois,
Jean-Bernard Fischer et Régis Bevan ont eux aussi contribué à la thèse à travers des discussions
très fructueuses.

Je suis redevable aux nombreuses personnes qui m’ont permis de conduire mon activité
de recherche dans les meilleures conditions. Ainsi, je remercie les membres du département de
mathématiques de l’Université Paris 8 et du département d’informatique de l’École normale
superieure, et tout particulièrement Emmanuelle Najjar, Jöelle Isnard et Valérie Mongiat qui
répondent toujours présentes au moindre problème.

Je remercie Lionel Schwartz et Phan Ha Duong de m’avoir impliqué dans plusieurs projets
avec le Vietnam. Une grande partie de cette thèse a été rédigée au Vietnam cet été 2014, lors

— i —

de ma visite à VIASM. Je remercie Ngo Bao Chau, Nguyen Huu Du et Le Tuan Hoa pour leur
accueil et aussi aux chercheurs vietnamiens avec qui j’ai eu des discussions très constructives,
notamment Vu Duc Thang, Le Minh Ha, Nguyen Quoc Khanh, Nguyen Duy Lan, Nguyen
Manh Ha, Le Trieu Phong, Le Duc Phong, Le Thanh Ha, Hoang Viet Tung, Vu Ha Van, et les
étudiants Ngo Manh Cuong et Do Xuan Thanh. L’aventure continue, on se donne rendez-vous
à l’ASIACRYPT 2016 au Vietnam !

Mes pensées le plus profondes vont à ma famille ; à mon père Ðình Diê.u qui est une source
d’inspiration dès mon enfance, à ma mère Xuân Hương pour son soutien continue, à mes soeurs
Quỳnh Dương et Hà Dương et leur famille pour m’avoir toujours soutenu depuis mes premiers
pas en France. Enfin, mes plus tendres mercis à Thùy Linh et à Ðình Khánh, la seule personne
citée dans cette thèse qui ne sait pas encore lire, cette thèse est à toi, mon petit.

— ii —

Abstract

In this thesis, we consider a generalization of the encryption from “one-to-one” to “one-to-
many” communication. The objective is to allow a center to send secret messages to a large
number of receivers. The security notions in “one-to-many” communications need to be extended
beyond the notion of confidentiality in “one-to-one” encryption to meet practical requirements.
Two main functionalites are studied: traitor tracing which identifies malicious users who leak
their secrets to a pirate and broadcast encryption which prevents non-legitimate or revoked users
from decrypting broadcasted information.

In the first part of this thesis, we focus on combinatorial schemes. Our objective is to de-
sign solutions that support both the functionalities of broadcast encryption and traitor tracing
against various pirate strategies. In one direction, we introduce a trace&revoke code and a trac-
ing technique called “shadow group testing” to deal with “smart” pirates. In another direction,
we propose a method to integrate revocation into some code-based schemes.

The second part discusses the techniques for constructing algebraic schemes. We first extend
some well-known schemes, in particular the pairing-based BGW one, in order to enhance the
security and to capture new properties. We then propose the first lattice-based traitor tracing
of which the security is based on the hardness of the Learning With Errors problem. We
finally consider the combination of algebraic and combinatorial methods and propose an optimal
ciphertext rate traitor tracing scheme.

Finally, in the third part of the thesis, we propose an extended attack model, namely Pirates
2.0, that goes beyond the formalism of the conventional attacks. We also propose some gener-
alized primitives for broadcast encryption and traitor tracing to fit new practical requirements
such as multi-channel and decentralized broadcast encryption.

Keywords: Provable security, broadcast encryption, traitor tracing, lattice, pairings, combina-
toric.

— iii —

— iv —

Résumé

Nous considérons dans cette thèse une généralisation du chiffrement au cas d’utilisateurs
multiples, à savoir la diffusion de données chiffrées. Cette généralisation du chiffrement intro-
duit deux nouveaux problèmes au-delà de la confidentialité : comment le centre peut-il identifier
les abonnés malhonnêtes (qui fabriquent des décodeurs pirates et sont appelés traîtres) et com-
ment le centre peut-il révoquer les abonnés malhonnêtes sans avoir besoin de mettre à jour les
paramètres du système.

Dans un premier temps, nous prenons l’approche combinatoire dans le but de construire
des schémas qui supportent à la fois la traçabilité et la révocation. Nous avons en particulier
introduit un nouveau type de code, nommé trace&revoke code, et la technique de “shadow group
testing” pour contrer les pirates “intelligents”. Nous avons en outre proposé une méthode pour
intégrer la révocation à quelques schémas de traçage de traîtres fondés sur les codes.

Dans un deuxième temps, nous suivons l’approche algébrique. Tout d’abord, en considérant
les schémas fondés sur les couplages sur des courbes elliptiques, nous renforçons la sécurité du
schéma de Boneh-Gentry-Waters et le rendons dynamique. Nous étudions ensuite l’application
des réseaux euclidiens et proposons un schéma de traçage de traîtres dont la sécurité est assurée
sous l’hypothèse bien connue de LWE (Learning with errors).

La dernière partie de la thèse est consacrée à la présentation d’un nouveau type d’attaque
en collaboration publique, appelé attaque Pirates 2.0 et quelques extensions du modèle de diffu-
sion de données qui répondent aux exigences pratiques comme les schémas décentralisés ou les
schémas multi-canaux.

Mots-clés : Sécurité prouvée, diffudion de donées chiffrées, traçage de traîtres,réseaux eucli-
diens,couplages sur des courbes elliptiques.

— v —

Contents

I Some Advances in Broadcast Encryption and Traitor Tracing 1

1 Introduction 3
1.1 Broadcast Encryption & Traitor Tracing . 3
1.2 Provable Security: a Rigorous Analysis of Security in Cryptographic Systems . . 4
1.3 Security Notions for Broadcast Encryption & Traitor Tracing 5

1.3.1 Definitions . 6
1.3.2 Security notions . 7

1.4 Short Overview of Broadcast Encryption & Traitor Tracing 8

2 Combinatorial Approach 11
2.1 Tree-based Constructions . 11

2.1.1 Brief Description of the Subset-Cover Framework 11
2.1.2 Complete Subtree Scheme . 12
2.1.3 Subset Difference Scheme . 12

2.2 Code based Traitor tracing . 13
2.2.1 IPP codes . 14
2.2.2 Tardos’ construction . 15
2.2.3 Code-based traitor tracing . 15

2.3 Black-Box Trace & Revoke Codes [NPP13] . 16
2.3.1 The construction . 17
2.3.2 Summary . 19

2.4 Trace&Revoke from linear codes . 19

3 Algebraic Approach 25
3.1 From ElGamal encryption to multi-receiver encryption, trator tracing and revoke

schemes . 26
3.1.1 Boneh-Franklin method for traitor tracing [BF99b] 26
3.1.2 Naor-Pinkas method for revocation [NP00] 27

3.2 Dealing with Full Collusion . 27
3.2.1 Broadcast encryption: BGW scheme . 27
3.2.2 Traitor Tracing: BSW scheme . 29

3.3 Some variants of BGW . 30
3.3.1 Adaptive CCA Security with Constant-size Secret Keys and Ciphertexts

[PPSS13] . 30
3.3.2 BGW in Multi-Channel setting [PPT13] 31

3.4 Lattice-based Approach: `-LWE and Projective Sampling [LPSS14] 33
3.4.1 Tracing traitors . 35
3.4.2 Hardness of k-LWE . 36
3.4.3 Hardness proof of Boneh-Freeman with exponential loss 36

— vii —

3.4.4 Our reduction with polynomial loss . 37
3.4.5 Public traceability . 37

3.5 Optimal transmission rate in Traitor tracing . 38
3.5.1 Constant Transmission Rate in Traitor Tracing 38
3.5.2 Optimal Transmission Rate [FNP07b] . 39
3.5.3 Message Tracing with Optimal Transmission Rate [PPS12b] 40
3.5.4 2-user Anonymous Broadcast Encryption 41

4 Discussions and Perspectives 43
4.1 Extended Attack Models . 43
4.2 Generalised Primitives . 44
4.3 Some Remarks and Open Problems . 45
4.4 Perspectives . 46

II Curriculum vitæ & publications 49

III Appendix: Articles 59

A Black-box Trace&Revoke Codes 61
A.1 Introduction . 61
A.2 Revocable Codes . 64
A.3 Traceable Codes . 67
A.4 Trace&Revoke Codes . 72
A.5 Constructions of black-box Trace and Revoke with (r, s)-disjunct matrices 74
A.6 Discussions . 82
A.7 Appendix: Basic Definitions . 83

B Traitor Tracing with Optimal Transmission Rate 87
B.1 Introduction . 87
B.2 Preliminaries . 90
B.3 Public-Key Traitor Tracing Scheme with Public Traceability 90
B.4 Public-Key Traitor Tracing with Public Traceability, Black-Box Tracing and Op-

timal Transmission Rate . 92
B.5 Space and Time Parameters in a Concrete Instantiation 102
B.6 Conclusion . 102
B.7 Appendix . 103

C Hardness of k-LWE and Applications in Traitor Tracing 115
C.1 Introduction . 115
C.2 Preliminaries . 117
C.3 New lattice tools . 121
C.4 A lattice-based public-key traitor tracing scheme 126
C.5 Projective sampling and public traceability . 128
C.6 Appendix . 130
C.7 Traitor Tracing . 130
C.8 Basic results on lattices . 136
C.9 Missing proofs of Section C.3 . 136
C.10 Missing proof of Section C.5 . 141

— viii —

D Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts 143
D.1 Introduction . 143
D.2 Preliminaries . 146
D.3 CCA from Generic Transforms? . 147
D.4 An Efficient Selective CCA Broadcast Encryption 148
D.5 Inclusive-Exclusive Broadcast Encryption . 150
D.6 Achieving Adaptive CCA Security . 151
D.7 Concluding Remarks . 154
D.8 Appendix . 155

E Message Tracing with Optimal Ciphertext Rate 165
E.1 Definitions . 168
E.2 A Generic Construction from PKE . 171
E.3 A Construction With Shorter Keys . 175
E.4 Conclusion . 181
E.5 Appendix . 181

F Traitors Collaborating in Public: Pirates 2.0 185
F.1 Introduction . 185
F.2 Formalization of Pirates 2.0 . 188
F.3 Pirates 2.0 and the Subset-Cover Framework . 190
F.4 Pirates 2.0 and Code Based Schemes . 196
F.5 Conclusion . 197

G Identity-Based Traitor Tracing 199
G.1 Introduction . 199
G.2 Preliminaries . 200
G.3 Identity-Based Traitor Tracing . 201
G.4 The Scheme . 203
G.5 Security Results . 206
G.6 Appendix: Waters’ HIBE with Asymmetric Pairings 210

H Multi-Channel Broadcast Encryption 213
H.1 Introduction . 213
H.2 Multi-Channel Broadcast Encryption . 216
H.3 Preliminaries . 218
H.4 Multi-Channel Broadcast Encryption I – MCBE1 220
H.5 Multi-Channel Broadcast Encryption II – MCBE2 223
H.6 Conclusion . 227

I Decentralized Dynamic Broadcast Encryption 229
I.1 Introduction . 229
I.2 Definitions . 231
I.3 Generic Decentralized Broadcast Encryption . 236
I.4 Tree-based Subgroup Key Exchange . 238
I.5 Concrete Instantiations . 241
I.6 Appendix . 242

Bibliography 253

— ix —

— x —

Part I

Some Advances in Broadcast
Encryption and Traitor Tracing

— 1 —

Chapter 1

Introduction

1.1 Broadcast Encryption & Traitor Tracing

The oldest goal of cryptography is to allow parties to communicate in a secured manner over an
insecure channel which might be under adversarial control. Nowadays, confidentiality remains
one of the main goals, besides authentication and integrity. Almost all standard protocols for
confidentiality, termed encryption, are implemented in a “one-to-one” communication frame-
work: a sender encrypts the message and sends the ciphertext to a receiver who has the secret
key to decrypt the ciphertext. The objective, from a security point of view, is to prevent an
outside attacker (who observes and may be able to interact with the system) to break the con-
fidentiality, i.e. to recover some information about the original message. The situation will not
be exactly the same when one generalises “one-to-one” to “one-to-many” communication, aka
multi-receiver encryption where the sender needs to send a secret message to many receivers.
One might think that the trivial solution consisting of sharing a common secret key among all le-
gitimate receivers would be sufficient. However, this is not the case, mainly because the security
notions in “one-to-many” communications need to be extended to meet practical requirements.
As the old saying goes: when a secret is known by more than one person, it is not a secret
anymore. Therefore, if a common secret key is shared among all the receivers, then one of the
receivers can give it to the adversary. Consequently, on the one hand, the confidentiality of the
whole system is totally broken and on the other hand, we have no idea who the source of secret
leakage is and we can not detect and exclude this dishonest user (commonly called a traitor),
since all the receivers have the same secret key.

In “one-to-many” communications, there are new fundamental security requirements for the
security to deal with access control and traceability.

• Access control assures that only legitimate or targeted users have the right to decrypt the
message. The resulting schemes are generally called broadcast encryption (BE in short).
In practical applications such as pay-TV, the targeted set is often very large and contain
almost all users except some non-paying ones (who should be revoked from the system),
the targeted set is implicitly determined via the revoked set and the corresponding system
is commonly called a revoke scheme.

• While access control is quite natural to be considered in broadcast encryption, traceability
is really a new property which is “orthogonal” to the main objectives of classical crypto-
graphic systems. Since one cannot totally prevent receivers from leaking their secret keys
in “one-to-many” communications, we should discourage them from doing this. In fact,
when a user joins the system and commits himself to respect the security requirement by
not revealing any secret information; and if the user knows that the source of any secret in-

— 3 —

Chapter 1. Introduction

formation leakage will be detected, then dishonest users are deterred from revealing their
secret. A multi-receiver encryption scheme with the ability to trace traitors is called a
traitor tracing (TT in short).

More formally, in “one-to-many” communications, two main primitives have been studied:
broadcast encryption prevents non-legitimate users from decrypting broadcasted information
and traitor tracing discourages malicious users from leaking their secrets to a pirate. In these
primitives, each user receives a decryption box, called a decoder, containing the secrets that help
to decrypt the broadcasted ciphertext. Broadcast encryption enables the center (i.e. broad-
caster) to choose any set of legitimate users to decrypt the broadcasted information. Traitor
tracing provides a way of embedding different secrets into each user’s decryption box so that
even if several traitors collude to produce a pirate decoder, the authority will still have the
capacity to trace at least one of them.

Before giving an overview of broadcast encryption and traitor tracing, let us discuss some
impacts in practice of these primitives.

Practical impact. Among many cryptographic primitives which have been proposed since the
introduction of public-key encryption, broadcast encryption and traitor tracing have received
quite a lot of attention due to their practical impact, especially in pay-TV and in positioning
systems. In the context of pay-TV, piracy has an increasingly alarming and direct impact on the
revenues of broadcasters. According to AEPOC (“Association Européenne pour la Protection
des Oeuvres et services Cryptés”), about e 1 billion are spent in the EU alone to acquire pirate
equipments every year. Another report from Datamonitor estimates that between 2004 and
2010, the loss for broadcast operators would have been around e 681 millions for a e 3.2 billions
benefit over the same period. Recent years have witnessed the emergence of a growing global
black economy based on piracy. In the context of positioning system, we can look at GALILEO
European project to build a global navigation satellite system (whose cost is estimated at e 3.4
billions). This project aims to be an alternative to the American GPS and broadcast encryption
schemes are at the core of Galileo to operate group management i.e. to allow or deny access
to some of its services. Depending on the practical requirements, the prime objective might be
very different from one system to another:

• in the commercial domain, the quality of service is more important than security: the
overall goal is to maintain a good quality of service while minimising the financial loss due
to piracy;

• in the military domain, the safety and preservation of governmental interests are the prime
concerns. If a technical solution cannot achieve a sufficient level of security with respect
to that purpose, it will not be implemented.

Due to a large number of potential multi-receiver scenarios, it is highly unlikely that a single
solution will fit them all. This motivates a trade-off between efficiency parameters and security
levels. Our goal is to construct schemes which are flexible enough to fit a variety of scenarios
in a way that is optimal (or close to optimal) and of which the security levels are rigorously
investigated. For the latter, we provide a quick overview of the vast domain of provable security.

1.2 Provable Security: a Rigorous Analysis of Security in Cryp-
tographic Systems

Cryptography has a very long history and the traditional way to design a cryptographic protocol
is by “trial and error”: a protocol is proposed and one tries to break it; if the protocol resists

— 4 —

1.3. Security Notions for Broadcast Encryption & Traitor Tracing

all attacks for a while then it is considered secure. Unfortunately, history has taught us that
this is not an appropriate way: many protocols (for example the Chor-Rivest scheme) have been
broken many years after they were believed secure. Only about 30 years ago, a fundamental and
radical idea was proposed by Goldwasser and Micali [GM84], followed by Blum, Micali [BM84]
and Yao [Yao82], suggesting that the security could be proved under standard and well believed
complexity theoretic assumptions, e.g. the assumed hardness of factoring. The methodology
they proposed has come to be known as provable security.

Security notions have been defined for cryptographic primitives. In our context of broadcast
encryption, we will mainly focus on confidentiality. The main goal for any encryption scheme is
secrecy: ideally, such a notion means that a ciphertext should not reveal any information about
the plaintext, no matter how powerful the adversary is. This had been defined under the term
“perfect secrecy” [Sha49], but also showed to be impossible unless one uses one-time pad, which
is a symmetric encryption that uses a secret key as long as the message to be encrypted. That
is, if one wants either to use a small symmetric key in order to protect many plaintexts or a
long message, or to use an asymmetric encryption, such perfect secrecy is impossible.

To overcome this theoretical impossibility which has no real practical impact (since adver-
saries are computationally limited), several security notions have thereafter been defined, namely
the polynomial security [GM84], a.k.a. indistinguishability of ciphertexts or semantic security.
The semantic security intuitively means that no polynomially bounded adversary can extract
any information about the plaintext from the ciphertext. Indistinguishability was indeed de-
fined in the basic scenario only, where the adversary only has access to public information (in
the public-key encryption setting, the adversary can thus encrypt any plaintext of its choice,
hence the name of chosen-plaintext attacks, denoted CPA.) Naor and Yung [NY90] introduce
the notion of chosen-ciphertext attacks. However, they restrict the chosen-ciphertext attacks
to be non-adaptive, in the sense that the decryption queries can not depend on the challenge
ciphertext (a.k.a. lunchtime attacks, denoted CCA1.) Rackoff and Simon [RS91] extend this
notion, with an unlimited access to the decryption oracle (excepted on the challenge cipher-
text), denoted CCA2, and provide a candidate with non-interactive zero-knowledge proofs of
knowledge. By now, the widely admitted appropriate security level for asymmetric encryption
is the chosen-ciphertext security (IND-CCA2, or CCA) which is actually the semantic security
against adaptive chosen-ciphertext attacks. In order to achieve semantic security, even in the
basic chosen-plaintext scenario, the encryption algorithm must be probabilistic, which means
that a given plaintext (with a fixed public key) could be encrypted in many different ways (at
least 2k different ciphertexts if 2−k is the expected security level).

In the context of multi-receiver encryption, the most desired security level remains the se-
mantic security against adaptive chosen-ciphertext attacks. However, the adversarial model
needs to be extended. Indeed, the adversaries can have access to encryption/decryption oracles
but they can also corrupt legitimate users. In fact, in classical (single-receiver) encryption, if the
receiver is corrupted then the system collapses but in multi-receiver encryption, it is required
that even if a pirate corrupts many receivers, the security should still hold for the remaining
users. In the third part of this introduction, we will discuss the security notions for broadcast
encryption and traitor tracing which are the basis of our results.

1.3 Security Notions for Broadcast Encryption & Traitor Trac-
ing

The main goal of a BE scheme is to enable the sender of a message to choose any subset of users
(called the target set or the privileged set) to which the message will be encrypted. The target
set can be directly determined by the sender or can be implicitly determined via its complement

— 5 —

Chapter 1. Introduction

- the revoked set. In the latter case, the resulting scheme is called a revoke scheme.
Theoretically, it requires N bits to uniquely identify a subset of a set of size N . However, if

the size r of the revoked set is small, it is sufficient to identify the revoked users, which can be
done using r logN bits. The same technique applies if the target set is small. In practice, we
should notice that the target set is quite stable (for example, in pay-TV, the target set is almost
stable during the whole month) and we only need to communicate the modification of the target
set between two periods. It was often sufficient to consider group key distribution where one
user is added to or removed from the target group: it corresponds to a broadcast encryption
where one user is added or removed from the target set. In general, it is widely accepted that
the size of the description of the target set is not taken into account when broadcast encryption
schemes are compared.

We now give formal definitions for BE schemes as key encapsulation mechanisms and define
the relevant security notions.

1.3.1 Definitions

Broadcast encryption is conventionally formalised as broadcast encapsulation in which a session
key is produced and this session key is required to be indistinguishable from random, under the
adversarial view. Such a scheme can provide public encryption functionality in combination with
a symmetric encryption through the hybrid encryption (a.k.a. KEM-DEM) paradigm [CS03]. We
hence use the terms encryption and encapsulation, key header and ciphertext interchangeably.

Definition 1.3.1 [Broadcast Encryption Scheme] a (public-key) dynamic broadcast encapsula-
tion scheme is a tuple of four algorithms BE = (Setup, Join,Encaps,Decaps) where:

• Setup(1k) outputs (msk, ek) containing the master secret key and the (initial) encryption
key;

• Join(msk, i) outputs the key pair (ski, pki) for user i, and updates system parameters to
include the information of the users i (by appending pki to ek and ski to msk).

• Encaps(ek, S) for a set of users S outputs (H,K) containing a ciphertext (a.k.a. key header)
and a session key (for a revoke scheme, replace S with R.)

• Decaps(ek, ski, S,H) outputs K if i ∈ S (or i /∈ R in a revoke scheme) and ⊥ otherwise.

In some static schemes, the setup algorithm takes as input N as the number of users and
returns the secret keys for all users. This can be made to fit our definition by defining msk to
contain the concatenation of the user secret keys and defining Join to simply return the i-th key
contained in msk.

The correctness requirement is that for all subset S of users and for any i ∈ S:
If [(msk, ek) ← Setup(1k),Ki ← Join(msk, i), (H,K) ← Encaps(ek, S)] then Decaps(Ki, S,H) =
K. For revoke schemes, the definition is the same except that S is replaced with R, and we
require that i /∈ R.

We now discuss traitor tracing and more generally, trace&revoke schemes.

Definition 1.3.2 [Trace&Revoke Scheme] A trace&revoke encapsulation scheme is a broad-
cast encapsulation scheme with an additional tracing algorithm TraceD(RD, pk,msk): the traitor
tracing algorithm interacts in a black-box manner with a pirate decoder D that is built from a
certain set T of traitors. The algorithm takes as input a subset RD ⊂ [N] (suppose that, at the
time of tracing, there are N users in the system and RD can be adversarially chosen), the public
key pk, the master key msk, and outputs a set TD ⊆ [N]. Precisely, under the conditions:

— 6 —

1.3. Security Notions for Broadcast Encryption & Traitor Tracing

• There are at most t traitors: |T | ≤ t;

• The minimal revoked set does not contain all the traitors: T 6⊆ RD, or equivalently SD =
([N]−RD) contains at least one traitor;

• D is “efficient” to decrypt ciphertexts (i.e. decrypts with some non-negligible probability)
for some revoked sets R that include the minimal revoked set RD but do not contain all
the traitors (RD ⊆ R but T * R);

then the tracing algorithm outputs at least one traitor in SD, i.e. ∅ 6= TD ⊆ T ∩ SD.

The above definition captures both the functionalities of revoking users and tracing traitors in
a general black-box model. However, there are many others models for tracing such as non-
black-box tracing, single-key black box tracing [BF99b] models and tracing for stateful pirates
[KY02b]. The objective of the tracing procedure could also be relaxed in some situation where
it might be sufficient for the authority to disable pirate decoders. We would refer to the Kiayias
and Pehliganoglu’s book [KP10] for an overview of different types of tracing games.

A traitor tracing scheme is in fact a trace&revoke scheme without the possibility to revoke
users, namely the target set is always set to be the whole set of users. The combination of
traceability and revocability is challenging and they are often studied in separated ways. In our
works, on the one hand, we continue to investigate these properties in independent ways and on
the other hand, we try to combine them to achieve trace&revoke schemes.

1.3.2 Security notions

We define the strongest security model, namely the adaptive CCA security game for a dynamic
broadcast encryption ExpaBE−CCAk . The game involves five phases:

1. Setup. The environment runs Setup(1k) to initialise the system and gives the adversary the
encryption key. (For symmetric schemes, the adversary receives access to an encryption
oracle instead.)

2. Query 1. The adversary has access to an ODecaps, an OJoin and an OCorrupt oracles. He
can query these oracles adaptively to: decrypt a chosen ciphertext; join new users to the
system; corrupt a subset of them and receive all their secrets. (In a BE scheme that is not
dynamic, there is no Join oracle as all users are created during setup.)

3. Challenge. The adversary outputs a set S of receivers it wants to attack. S must not
contain any user for which the adversary has already obtained the decryption keys. The
environment obtains (H,K)← Encaps(ek, S). It flips a coin b $←− {0, 1} and sets Kb = K,
K1−b

$←− K. Then it returns (S,H,K0,K1) to the adversary.

4. Query 2. This is the same as the key query 1 phase, except that the adversary cannot
corrupt users in S.

5. Guess. The adversary outputs his guess bit b′. If he has corrupted users in the set S or
queried the decryption oracle on the challenge header, the experiment aborts and outputs
⊥. The experiment outputs 1 if b = b′, else 0.

We define the advantage of the adversary as

AdvaBE−CCAk (A) = |Pr[ExpaBE−CCAN,k = 1]− 1
2 |.

— 7 —

Chapter 1. Introduction

Definition 1.3.3 A BE scheme is (t, ε, qD, qK)-secure, if for any t-time adversary A who makes
a total of qD decryption queries and qK key queries AdvaBE−CCAk (A) < ε.

In some security models, the adversary is given only one key, which is either the correct key
or a random element from the key set. We call this version the “real-or-random” (ROR) game,
and the experiment described above the “left-or-right” (LOR) game, in analogy to the security
definitions for encryption in [BDJR97]. We can show in the same fashion that the two notions
are essentially equivalent, with a factor 2-loss in the reduction from LOR to ROR.

We dropped the requirement that S′ ⊂ S for the decryption oracle from [BGW05]. The
notions are equivalent in the static security model used in the BGW paper, because the adversary
already knows all the decryption keys for users not in S and can therefore decrypt all the other
messages himself. The restriction seems artificial and is probably an artifact of the security
proof.

In the CCA1 version, the adversary has access to the decryption oracle only before the
challenge phase. In the CPA version, the adversary does not have access to the decryption
oracle.

1.4 Short Overview of Broadcast Encryption & Traitor Tracing

In the next chapters, we will discuss the most relevant techniques in designing a BE or TT
scheme and our contributions. Here we only give a short overview of the domain.

Broadcast encryption has first been described by Fiat and Naor in [FN93]. BE has not
received much attention until the last decade, when Naor, Naor, and Lotspiech presented their
(symmetric-key) subset-cover framework along with a security model and a security analy-
sis [NNL01]. Since then, many BE schemes have been proposed and the subset cover framework
has become the basis for many subsequent proposals, including [DF03] which proposes the first
public key broadcast encryption.

Boneh, Gentry, and Waters [BGW05] are first to propose a fully collusion-resistant public
key broadcast encryption in which the ciphertext size is constant. They proposed two schemes,
respectively CPA and CCA secure, both in the selective model of security where the adversary
is required to choose the corrupted users before the set up.

Adaptive security is proposed by [GW09] where the authors give several schemes which
achieve adaptive CPA security, including two broadcast encryption schemes and two identity-
based broadcast encryption (IBBE) schemes, one of them achieves constant-size ciphertexts in
the random oracle model. The schemes proposed in [Wat09] and [LSW10], respectively a broad-
cast encryption and a revocation scheme, are the only secure schemes under static assumptions
(as opposed to the so called q-based ones). [LSW10] also proposes an identity-based revocation
scheme which is proved selective CPA secure.

Dynamic broadcast encryption is proposed in [DPP07] where they design CPA secure schemes
that are only partially adaptive secure. Strictly speaking, their scheme is a revocation scheme in
which the set of revoked users is selected at the time of encryption, and in turn, any user outside
of the revoked set is able to decrypt. [Del07] proposes identity-based broadcast encryption and
gives a selective CPA secure scheme. Based on BGW scheme, we propose in [PPSS13] a constant
size adaptive CCA secure inclusive-exclusive broadcast encryption scheme which can act both
as a broadcast encryption and as a revocation scheme at the same time.

The first formal definition of traitor tracing scheme appears in Chor et al. [CFN94b,
CFNP00] in which the construction requires storage, decryption time complexity of
O(t2 log2 t log(N/t)) and communication complexity of O(t3 log4 t log(N/t)), where N is the size
of the users and t is the upper bound on the number of traitors. Stinson and Wei latter suggest

— 8 —

1.4. Short Overview of Broadcast Encryption & Traitor Tracing

in [SW98a] explicit combinatorial constructions that achieve better efficiency for small values of
t and N .

In [BF99b], Boneh and Franklin present an efficient public-key traitor tracing scheme with
deterministic t-tracing based on an algebraic approach. Its communication, storage and decryp-
tion complexities are all O(t). The authors also introduce the notion of non-black-box traceability:
given a “valid” key extracted from a pirate device (constructed using the keys of at most t users),
recover the identity of at least one traitor. This is in contrast with the notion of black-box tracing
where the traitor’s identity can be uncovered by only observing the pirate decoder’s replies on
“well crafted” ciphertexts. Unfortunately, Kiayias and Yung [KY01c] show that black-box trac-
ing cannot be efficient (say, in poly-time) in this type of scheme whenever the number of traitors
is superlogarithmic. The Boneh-Franklin scheme can however achieve black-box confirmation:
given a superset of the traitors, it is guaranteed to find at least one traitor and no innocent
suspect is incriminated. Boneh et al. [BSW06b, BW06b] propose traitor tracing schemes that
withstand any number of traitors (full traceability) while requiring a sub-linear ciphertext length
(O(
√
N)). Very recently, Boneh and Zhandry [BZ14] propose a fully collusion resistant scheme

with poly-log size parameters. It relies on indistinguishability obfuscation [GGH+13c], of which
security foundation remains to be studied and practicality remains to be exhibited.

In [Pfi96], Pfitzmann introduces the notion of asymmetric traitor tracing. In this model,
the tracer uncovers some secret information about the traitor that was a priori unknown to the
system manager. Thus, the result of the tracing algorithm provides evidence of the treachery.
Further results in this direction are in [KD98b, KY02d, KY02a]. We put forth the notion
of public traceability, i.e., the possibility of running tracing procedure on public information.
Some schemes [CPP05a, PSNT06b, BW06b, BZ14, LPSS14] achieve public traceability and some
others achieve a stronger notion than public traceability, namely the non-repudation, but the
setup in these schemes require some interactive protocol between the center and each user such
as a secure 2-party computation protocol in [Pfi96], a commitment protocol in [PW97] or an
oblivious polynomial evaluation in [WHI01, KWHI01, KY02a].

Alternative traitor tracing solutions [FT01, BPS00, SW03] have also been proposed to fight
rather leakage of the decrypted content than leakage of the decryption capabilities.

A class of schemes relying on the use of collusion secure codes [BS95, BS98, Tar03] has
been introduced by Kiayias and Yung in [KY02c]. These code-based schemes enjoy many nice
and desirable properties: they support black-box tracing and the ratio between the ciphertexts
and the plaintexts is constant. However, since these schemes use collusion secure codes for
both the ciphertext and the key used in the decoders, the sizes of the ciphertexts and keys are
quite large. Another drawback of [KY02c, CPP05a] comes from the use of an all-or-nothing
transform (AONT [Riv97]) to prevent deletion of keys from the pirate decoders as a way to
escape the tracing procedure based on the underlying collusion secure code. Based on robust
codes [SNW03b, Sir07a, BN08b, Nui09], Boneh and Naor [BN08b] and us [BP08] independently
improve the Sirvent scheme to make the ciphertext size constant. These schemes become quite
competitive but their drawbacks remain the large private key size and their weak resistance to
collaborative attacks [BP09].

Recently, in [LPSS14], we introduce the first lattice based traitor tracing in the bounded
model in which the security relies on the hardness of a new variant of the LWE problem, called
k-LWE.

As originally observed in [GSY99], traitor tracing schemes are most useful when combined
with revocation schemes; such trace&revoke approach consists in first uncovering the compro-
mised decryption keys and then revoking their decryption capabilities, thus making pirate de-
coders useless. We can name some schemes in this category [NP00, TT01, NNL01, DF02, DF03,
KHL03, DFKY05, BW06b, NPP13]. The construction of practical trace&revoke schemes still

— 9 —

Chapter 1. Introduction

remains a challenge.

Organisation of the thesis. Overall, broadcast encryption and traitor tracing schemes can
be categorised into two main classes: combinatoric schemes and algebraic schemes. The first
chapter is devoted to combinatorial schemes; the second one deals with algebraic schemes and
also with schemes that combine both algebraic and combinatorial structures. In each chapter,
we present the state of the art and our contributions. Finally, the third chapter is devoted to
discussing about new attack models, generalised models of broadcast encryption and perspectives
for our future works.

— 10 —

Chapter 2

Combinatorial Approach

Combinatorial broadcast encryption schemes are mainly based on a tree structure or on a fin-
gerprinting code. Tree-based schemes support revocation but have limited capacity dealing with
tracing traitors, while code based ones provide traceability but not revocation. Our objective
is to propose methods that can support both traceability and revocation. In one direction, we
introduce a trace&revoke code and in another direction, we integrate revocation into some code
based schemes. We also propose efficient code based schemes with optimal transmission rate
but because these schemes require a combination with some algebraic structures, we postpone
the presentation to the end of the next chapter on algebraic schemes.

In Sections 2.1 and 2.2 we present the state of the art in constructing combinatorial schemes
and then, in Sections 2.3 and 2.4, we present our contributions.

2.1 Tree-based Constructions

The subset-cover framework proposed by Naor, Naor, and Lotspiech in [NNL01] is a powerful
tool to design efficient trace&revoke systems. It captures the ideas in previously proposed traitor
tracing systems and forms the basis of the so called NNL scheme used in the content protection
system for HD-DVDs known as AACS [AACa].

2.1.1 Brief Description of the Subset-Cover Framework

The subset-cover framework is a powerful mean to capture several trace&revoke designs. It
encompasses several traitor tracing schemes proposed to date and maybe even more importantly,
serves as the basis for two of the most efficient trace&revoke schemes: the complete subtree
scheme and the subset difference scheme.

In the subset-cover framework, the set N of users in the system is covered by a collection of
subsets Si such that ∪iSi ⊃ N and Si∩N 6= ∅. This covering is not a partition of N and the sets Si
rather overlap. To every subset Si corresponds a long term secret key Li, and every user that
belongs to Si is provided with this secret key—or in an equivalent way, with some materials that
allow him to derive this secret key. Therefore, every user u of the system is given a collection of
long term keys {Lik} that together form his secret key which we denote by sku.

In order to broadcast a content M , the center uses a standard hybrid scheme: a session
key K is first drawn randomly and used to encrypt the content (with an encryption scheme E′)
before being encapsulated under multiple long term keys (with another encryption scheme E).
The long term keys Lik , k = 1, . . . , l are chosen so that the corresponding subsets Si1 , . . . , Sil
only cover the set of users entitled to decrypt. Therefore, the center broadcasts ciphertexts of

— 11 —

Chapter 2. Combinatorial Approach

Figure 2.1: Complete subtree: leaves correspond to users, S1, . . . , S6 consist of the covering that
excludes revoked users (in black) while allowing other users to decrypt.This is derived from the
Steiner tree associated to the set of revoked users R.

the form: [(
i1, ELi1 (K)

)
,
(
i2, ELi2 (K)

)
, . . . ,

(
il, ELil (K)

)
‖ E′K(M)

]
To decrypt, a valid decoder for user u performs the following sequence of operations: it first
looks for an index ij in the first element of each of the l couples (ik, Eik(K)) in turn such
that Sij ⊂ sku. If no index corresponds, the decoder does not decrypt; otherwise, the decoder
retrieves the corresponding long term key Lij and uses it to decrypt the associated encrypted
session key Eij (K) and then decrypts the payload E′K(M).

Since the system is built to handle revoked users, let us also denote by R the set of revoked
users in the system at any point in time. In order to prevent them (individually but also
together as a collusion) from accessing the encrypted content E′K(M), the collection Si1 , . . . , Sil
is specially crafted so that:

l⋃
k=1

Sik = N \ R .

2.1.2 Complete Subtree Scheme

In this scheme, the users correspond to the leaves of a complete binary tree whereas the collection
of subsets Si exactly corresponds to all the possible subtrees in the complete tree. When |N| = 2n,
the complete binary tree is of length n and there are exactly n subtrees that contain a given
leaf. Figure 2.1 shows a covering using six subsets of twelve users that excludes four revoked
users (depicted in black). This subset scheme complies with the bifurcation property since any
subset (or equivalently any subtree of the complete binary tree) can be split into two subsets of
equal size (the two subtrees rooted at the two descendants of the root of the original subtree).
Regarding the key assignment, each user represented by a leaf u in the complete binary tree is
provided with the keys Li associated to the nodes i on the path from the leaf u to the root.

Covering algorithm. In the case of the complete subtree, the covering used to exclude the
r = |R| revoked users from N is the collection of subsets that hang off the Steiner tree of the
revoked leaves. (The Steiner tree of the revoked leaves is the minimal subtree of the complete
binary tree that connects all the revoked leaves to the root and it is unique.) Since any user
only knows the keys from its leaf to the root and since this path is included in the Steiner
tree for revoked users, these users cannot decrypt anymore. This algorithm produces covers of
size O(r log(N/r)).

2.1.3 Subset Difference Scheme

The subset difference scheme has been introduced to lower the number of subsets required to
partition the set of legitimate users N \ R. It improves the above presented complete subtree
scheme by a factor of log(N/r) in terms of bandwidth usage for the headers.

— 12 —

2.2. Code based Traitor tracing

Figure 2.2: Key assignment. User u receives all the labels LABELi,j such that i is a parent of j
and i is on the path from the leaf of u to the root.

To attain this level of performance, the number of possible subsets has been tremendously
increased. Remember that Si denotes the full binary subtree of the complete binary tree rooted
at node i. Now, for each node j in Si different from i, let us denote by Si,j the binary subtree
rooted at node i of which the full binary subtree rooted at node j has been removed. (See
examples in Figure 2.3.) A user will need to know all the keys Li,j such that he belongs to the
subtree rooted at i but not to the subtree rooted at j. However, it would be impossible for each
device to store such a large number of long term keys. This is why a key derivation procedure
has been designed to allow the derivation of most of the O(N) long term keys: a user only
needs to store O(log2(N)) keys. Each node i in the full binary tree is first assigned a random
label LABELi, then labels LABELi,j together with their corresponding long term keys Li,j are
deduced (in a pseudo-random way) from label LABELi. The key derivation procedure then works
as follows: from each LABELi, a pseudo-random value LABELi,j is obtained for each sub-node j
using the tree based construction proposed by Goldreich, Goldwasser, and Micali [GGM84];
from this value LABELi,j , a long term key Li,j is eventually deduced (in a pseudo-random way).
Each user is then provided with labels LABELi,j for all nodes i that are on the path from the
leaf that represents the user to the root and all nodes j hanging off this path as described on
Fig. 2.2. This key assignment ensures that every user in the subtree rooted at node i but not
in the subtree rooted at node j is able to derive Li,j while every user in the subtree rooted at
node j is not able to derive Li,j .

Covering algorithm. The covering algorithm works by maintaining a subtree T of the Steiner
tree of R and removes nodes from it at each step:
init: Make T the Steiner tree of R.
select: If there is only one leaf vk in T and it is not the root (or node 0), add the subset S0,k

and return. If there is only the root in T , return. Otherwise, select two leaves vj1
and vj2 from T so that their least common ancestor v does not contain any other
leaves of T than vj1 and vj2 . Call vi1 and vi2 the children of v such that vi1 is the
ancestor of vj1 and vi2 the ancestor of vj2 . Then, if vi1 6= vj1 , add Si1,j1 to the partition
and similarly if vi2 6= vj2 , add Si2,j2 to the partition. Remove all the descendants of v
from T , which makes v a leaf of T . Reiterate the step ‘select’.

An example output of this procedure is shown in Figure 2.3.

2.2 Code based Traitor tracing
Fingerprinting with collusion secure codes allows one to identify a digital document among
several copies of it by embedding a fingerprint (a codeword). Such an identification scheme
must be resilient to collusions of traitors trying to remove their fingerprints so as to escape
identification. Therefore, collusion secure codes share some properties with traitor tracing;
However, the main assumption here (called the marking assumption) is that the traitors from a
collusion are only able to identify the positions where the digits from their respective codewords
differ; such positions are called detectable positions. This assumption especially makes sense

— 13 —

Chapter 2. Combinatorial Approach

S4,19 S5,10

S3,28

Figure 2.3: Subset difference: leaves correspond to users and black nodes are not able to derive
the necessary information to decrypt. Therefore S4,19 prevents user 19 from decrypting, S5,10
prevents users 20 and 21 from decrypting, and S3,28 prevents user 28 from decrypting. All other
users are able to decrypt.

with fingerprinting data: apart from the codewords, the documents are identical, and it is easy
to uncover places where two copies of a document differ.

Among the first constructions are the identifiable parent property (IPP) codes introduced
in [CFN94b]. These codes are defined over large alphabets and can be obtained from linear
codes or from combinatorial constructions. If the condition that a traitor is always correctly
identified in IPP can be relaxed, i.e. tracing algorithm may fail with some negligible probability,
then more efficient construction can be achieved. Randomized collusion secure codes, which can
be seen as “relaxed” binary IPP codes, have first been proposed by Boneh and Shaw in [BS95].
These codes are more efficient than linear codes based IPP codes. In Boneh-Shaw codes, the
length of the codewords is O(N3 log(N/ε)) for fully-collusion resistant codes and O(c4 log(N/ε))
for codes resisting collusions of at most c traitors. Tardos latter introduces a new construction
in [Tar03] and proves that the size of its codewords is optimal: a length of O(c2 log(N/ε)) is
enough to resist collusions of at most c traitors. This obviously gives fully-collusion secure codes
of length O(N2 log(N/ε)).

We will first give a definition of an IPP code, then a description of Tardos’ construction and
finally explain the general framework of constructing traitor tracing schemes which relies on any
IPP code, including the most important case of collusion secure code.

2.2.1 IPP codes

Let Q be an alphabet set containing q symbols. If C = {w1, w2, . . . , wN} ⊂ Q`, then C is
called a q-ary code of size N and length `. Each wi ∈ C is called a codeword and we write
wi = (wi,1, wi,2, . . . , wi,`) where wi,j ∈ Q is called the jth component of the codeword wi.

We define descendants of a subset of codewords as follows. Let X ⊂ C and u = (u1, . . . , u`) ∈
Q`. The word u is called a descendant of X if for any 1 ≤ j ≤ `, the jth component uj of u
is equal to a jth component of a codeword in X. In this case, codewords in X are called
parent codewords of u. For example, (3, 2, 1, 3) is a descendant of the three codewords (3, 1, 1, 2),
(1, 2, 1, 3) and (2, 2, 2, 2). We denote by Desc(X) the set of all descendants of X. For a positive
integer c, denote by Descc(C) the set of all descendants of subsets of up to c codewords. Codes
with identifiable parent property (IPP codes) are defined below.

Definition 2.2.1 A code C is called c-IPP if, for any u ∈ Descc(C), there exists w ∈ C such
that for any X ⊂ C, if |X| ≤ c and u ∈ Desc(X) then w ∈ X.

In a c-IPP code, given a descendant u ∈ Descc(C), we can always identify at least one of
its parent codewords. It is also required that the tracing is error-free and a traitor is always
correctly identified. There are many constructions [SW98d, SSW01b, TM05] of c-IPP codes.

Binary c-IPP codes (with more than two codewords) do not exist, thus in any c-IPP code, the
alphabet size q ≥ 3. However, if we relax the condition on error-free tracing then we can obtain

— 14 —

2.2. Code based Traitor tracing

binary codes which are called collusion secure codes. Therefore, in collusion secure codes, there
is an error parameter that specifies the probability that the tracing algorithm fails to output the
correct parent codeword. As mentioned, the most efficient codes are Tardos’s collusion secure
codes.

2.2.2 Tardos’ construction

We now briefly describe the generation of a Tardos collusion secure code as proposed in [Tar03].
We additionally describe the associated tracing procedure.

Code generation. In order to generate a code for N users that resists c-collusions, set
the length ` = 100c2 log(Nε) where ε is the false-positive error probability (i.e. the probability
that an innocent user is accused) of the tracing algorithm and randomly draw a sequence of
probabilities pi as follows:

pi = sin2(ri), i ∈ J1, ` K

where ri is randomly drawn from [t, π/2− t] and 0 < t < π/4 is chosen so that 300 c sin2 t = 1.
Each binary codeword w of the code is then constructed by setting its i-th digit to be either ‘1’

or ‘0’ according to probability pi, that is: Pr[wi = 1] = pi.
Tracing procedure. The authority traces a subset of traitors from a collusion (of at most

c traitors) that has produced a binary word v by computing an accusation sum Zw for each
possible codeword w via:

Zw =
∑̀
i=1

vi ·
(
w̄i

√
1− pi
pi

+ (w̄i − 1)
√

pi
1− pi

)
,

where w̄i is the bit wi viewed as an integer. Then, users corresponding to codewords w such
that Zw > 20 c log(Nε) are declared traitors. Tardos proves that the probability of false-negative
alarms (i.e. the probability that no traitor is found) is then εc/4.

2.2.3 Code-based traitor tracing

At a high level, the idea is to first define a q-user sub-scheme which is resilient against a single
traitor, and then “concatenate” v instantiations of this sub-scheme according to the q-ary IPP
code C; in particular, each user i ∈ [1, n] is associated to a codeword ω(i) in C, and given the
decryption key ski := (k1,ω(i)

1
, . . . , k

v,ω
(i)
v

), where ω(i)
j is the j-th bit of the codeword ω(i), and

kj,0, . . . , kj,q−1 are the keys for the j-th instantiation of the basic 2-user sub-scheme. The session
key K is decomposed into random sub-keys as K = K1 ⊕ K2 · · · ⊕ Kl and then each Ki is
encrypted with each of the ki,j to form a sub-ciphertext ci,j . The whole ciphertext contains
all sub-ciphertexts and the decryption is realised in a natural way: each user i decrypts sub-
ciphertext c

j,ω
(i)
j

with its secret key k
j,ω

(i)
j

to get Kj for any j = 1, . . . l and finally gets K. Here
is an example of a traitor tracing with 3-ary IPP code.

— 15 —

Chapter 2. Combinatorial Approach

Key assignment :
Table 0 k0,1 k0,2 k0,3 k0,4 k0,5 ... k0,`

Table 1 k1,1 k1,2 k1,3 k1,4 k1,5 ... k1,`

Table 2 k2,1 k2,2 k2,3 k2,4 k2,5 ... k2,`

Codeword i 1 2 0 2 0 ... 1
user i k1,1 k2,2 k0,3 k2,4 k0,5 ... k1,`

Encryption :
Session Key K1⊕ K2⊕ K3⊕ K4⊕ K5⊕ ... ⊕K` = K
Ciphertext c0,1 c0,2 c0,3 c0,4 c0,5 ... c0,`

c1,1 c1,2 c1,3 c1,4 c1,5 ... c1,`

c2,1 c2,2 c2,3 c2,4 c2,5 ... c2,`

Construction of traitor tracing with robust fingerprinting codes [BP08]. Indepen-
dently from Boneh-Naor [BN08b], we consider an efficient way to construct a traitor tracing
from robust fingerprinting codes [BP08]: instead of decomposing the session key K into l
parts, we simply decompose it into u parts, for some u much smaller than l. This helps
us to reduce the ciphertext size from O(lq) to O(uq). However, under this encryption, if
the adversary erases some position in his codeword then he still can decrypt a large part of
the ciphertexts and with fingerprinting codes, one cannot trace back the traitors. This re-
quires us to use robust fingerprinting codes which exactly deals with adversaries who can
erase some parts of their codewords. This requires a stronger definition of a feasible set:
FS?(w1, . . . , wt) = {w ∈ {0, 1}n | ∀i ∈ [n] : (w[i] = ?) ∨ (∃j ∈ [t] : w[i] = wj [i])}. Robust
fingerprinting codes are constructed by Safavi-Naini and Wang [SNW03b] and Sirvent [Sir07a].
Nuida [Nui09] gives the most efficient construction to date.

2.3 Black-Box Trace & Revoke Codes [NPP13]

NNL schemes, though described as trace&revoke schemes, work better for revocation than for
tracing traitors. In fact, the tracing works well if we suppose that the decoder is naive, i.e.
it decrypts (with some non-negligible probability) all the ciphertexts as it can, without any
strategy. For smarter decoders, the scheme may not be able to identify a traitor but achieve
a medium goal of making the pirate box useless by finding a “pattern” that does not allow
decryption using the pirate box but still allows broadcasting to the legitimate users.

In practice, we certainly cannot assume that a decoder will accept to decrypt any signal
because the pirate might be able to distinguish a normal ciphertext from an abnormal ciphertext
which is probably only used in a tracing procedure. The pirate surely prefers an imperfect
decoder that decrypts “almost” all ciphertexts and is untraceable rather than a perfect but
traceable decoder. For example, considering the Complete Subtree scheme, let us first notice
that the complete subtree scheme can be casted in terms of a binary code as follows: there is
a codeword for each leaf of the N -leaf full binary tree T . The code length is ` = 2N − 1, each
position (i.e. coordinate) of the code corresponds to a node of the tree. For each codeword w, 1
is put in a position if and only if the corresponding node is on the path from w to the root. We
will refer this code as the CS-code (see figure 2.3). The pirate decoder can employ the following
strategy: it does not decrypt any weight-1 signal where the 1 is in the position of a traitor leaf
node. Under this strategy, the CS-code is not traceable, unless with error probability of at least
1/2 because no tracing algorithm can distinguish a traitor (a leaf node) from its sibling in the
full binary tree. Note that the sibling may very well be a non-traitor. The CS-Code cannot
deal with this type of pirate strategy because the code has a rigid structure where each position
plays a specific role and corresponds to a subset of users of different sizes.

— 16 —

2.3. Black-Box Trace & Revoke Codes [NPP13]

u1 u2 u3 u4 u5 u6 u7 u8
S1 1 1 1 1 1 1 1 1
S2 1 1 1 1 0 0 0 0
S3 0 0 0 0 1 1 1 1
S4 1 1 0 0 0 0 0 0
S5 0 0 1 1 0 0 0 0
S6 0 0 0 0 1 1 0 0
S7 0 0 0 0 0 0 1 1
S8 1 0 0 0 0 0 1 0
S9 0 1 0 0 0 0 0 0
S10 0 0 1 0 0 0 0 0
S11 0 0 0 1 0 0 0 0
S12 0 0 0 0 1 0 0 0
S13 0 0 0 0 0 1 0 0
S14 0 0 0 0 0 0 1 0
S15 0 0 0 0 0 0 0 1

Figure 2.4: Complete Subtree Scheme (for 8 users) can be viewed as a binary code with high
structure (each subtree corresponds to a line which defines a binary codeword)

Our objective is to propose probabilistic constructions of codes where all the code positions
have the same role and thus the strategy of refusing to decrypt some positions has no significant
impact on the tracing algorithm. Our probabilistic constructions, described in the next sections,
can deal with the above pirate strategy against CS-Code for that reason.

However, the pirate strategy can certainly be smarter than rejecting some position(s) of the
code. For example, for a probabilistic code where the codewords are chosen independently from
the same distribution and all positions play the same role, a non-trivial pirate can estimate the
(Hamming) weight of signals used in broadcast encryption and refuse to decrypt a ciphertext
that corresponds to a signal containing too few or too many 1s. This pirate strategy, called the
“weight-limited pirate”, is formalised as follows:

Definition 2.3.1 [Weight-Limited Decoder] A Weight-Limited Decoder is a decoder that
only decrypts signals c with Hamming weight in an interval [a, b].

It seems to us that for probabilistic constructions of codes where all the code positions have
the same role, it is hard for a pirate to employ any other strategy than the Weight-Limited
Decoder because the codewords look random and the most important information seems to be
the Hamming weight. We therefore focus on Weight-Limited Decoder and construct a scheme in
which in the tracing procedure we randomly sample tracing signals that have the same weight
as in the ciphertext.

2.3.1 The construction

We first indicate a simple connection between traceability of codes with the so-called disjunct
matrices, a classical combinatorial object originally used in group testing, which has “built-
in” tracing capability. Roughly speaking, a r-disjunct matrix is a binary matrix satisfying the
following property: given the (boolean) union of at most r unknown columns of the matrix, we
can identify all the unknown columns. This concept is used to design non-adaptive group tests
in the following sense: there is a set of at most r positive items in a population of N items

— 17 —

Chapter 2. Combinatorial Approach

and the rest of the items are negative; we must identify the positives using as few non-adaptive
“tests” as possible; each test is a subset of items; a test returns positive iff at least one positive
item is contained in the test. In the original group testing application [Dor43], each item is a
blood sample, and a test is a pool of blood samples which indicates if any sample in the pool is
positive for syphilis. That application explains the “positive” and “negative” terms.

The problem with disjunct matrices is that they have no “built-in” efficient revocation capa-
bility. Indeed, disjunct matrices or equivalently cover-free families [EFF85] have been used for
traitor tracing in [TSN06]. However, by following the tracing framework of [BF99b] it cannot
be used for revocation. We deal with this problem by considering a combinatorial object called
(r, s)-disjunct matrices which retains the tracing-capability of disjunct matrices while also sup-
ports revocation. Intuitively, a matrix M is said to be (r, s)-disjunct if for an arbitrary set R of
up to r columns of M, there is a set I ⊆ [`] of at most s rows which eliminates R, or equivalently,
covers N − R. It is not hard to see that (r, s)-disjunct matrices, while attain efficient revoca-
tion capability, also retain the traceability of disjunct matrices. It turns out that (r, s)-disjunct
matrices are equivalent to exclusive set systems (ESS for short), first introduced by Aiello et al.
[ALO98] under the name complement cover families and independently latter by Kumar and
Russell [KR03]. In [GSY99], the authors consider traitor tracing for exclusive set systems but
only in white-box model where the pirate key is supposed to be known. This somewhat looses
the main advantage of supporting black-box tracing in code-based systems.

Our main contribution is to present good (r, s)-disjunct matrices which allow for black-box
tracing and efficient revocation.

In fact, we generate a matrix M ∈ M(N, b, n) with ` = bn rows and N columns, and
independently generate columns of M where each column of M, viewed as a subset of [`], is
chosen by picking uniformly (with probability 1/b) and exactly one bin from each part. In
particular, each column of M has exactly n elements.

We can think of each column as a “ball” and each part is a collection of b bins. The
distribution M(N, b, n) is defined by throwing N balls to b bins belonging to a part, and by
repeating that experiment n times, one for each part. This type of matrix distribution is used
in constructing compressed sensing matrices. The resulting random matrix can also be thought
of as the incidence matrix of concatenating a random code of length n with the identity code
[NPR12]. The idea is to choose a matrix M at random from M(N, b, n) with suitably chosen
parameters n and b, and show that M is (r, s)-disjunct with high probability.

Tracing smart pirate with shadow group testing If we consider naïve pirates who decrypt
any ciphertext as they can then we are done. Indeed, the properties of (r, s)-disjunct matrices
directly allow us to do both revocation (as for r-disjunct matrices) and tracing (by sending
special weight-1 tracing signals to the pirate decoder and then we can cover the union vector
of the traitors’ codewords, which is sufficient for tracing). However, it is a challenging problem
to deal with a smart pirate, namely the Weight-Limited Decoder as discussed above. We first
remark that if the tracing algorithm works for a weight-limited decoder with interval [a, a], then
it a fortiori works for a weight-limited decoder with interval [u, v], for any u ≤ a ≤ v. Therefore,
the most interesting case is a singleton interval. The main problem for tracing procedure is that
we can now ask the decoder random queries of the same weight, say a, with normal ciphertexts.
The point is that, instead of identifying a traitor, we can only identify a vector w ∈ {0, 1}` that
is contained in the union of all traitors’ codewords and contains at least one traitor’s codeword.
Identifying w = (w1, · · · , w`) is then equivalent to identifying all the coordinates i of w for which
wi = 1. Thus, there is a subset U ⊆ [`] of at most D unknown coordinates that we want to
identify. We need to query the pirate decoder with weight-a signals c to identify U . Each query
c is the characteristic vector of a subset of size a of [`]. So we think of each query as an a-subset

— 18 —

2.4. Trace&Revoke from linear codes

Figure 2.5: Construction of (r, s)-disjunct matrices

A of [`]. The decoder is able to decrypt query A if and only if there is at least one traitor whose
codeword intersects A. In other words, each query A is a group test for the “positives” U in the
population [`]. The queries then form a matrix which, interestingly, is also a disjunct matrix.
We thus have a group testing problem “inside” another group testing problem. We refer to
the “inner” group tests as the shadow tests, because they are not used to directly identify the
traitors: they are rather used to identify the shadow U of the traitors.

The resulting code yields a trace&revoke scheme with private key size and ciphertext length
O((t+r) log(N/(t+r))) forN users, at most r revoked users and at most t traitors. The constants
hidden in the big-O are small (≤ 8). This randomized construction yields a key assignment
scheme where users independently pick their keys from the same distribution and all keys have
the same role. Thus, unlike the complete-subtree method which leads to a highly asymmetric
key assignment making it suitable for a more relaxed tracing model (called semi-BB in the
comparison table 2.3.2) but unable to dealing with tracing a traitor for smart pirate decoders,
our code has better “built-in” support for traceability against non-trivial pirate strategies.

2.3.2 Summary

Table 2.3.2 summarizes some known results on combinatorial constructions.

2.4 Trace&Revoke from linear codes

Linear codes can be used for traitor tracing. It is shown [SSW00] that any (n, k,∆)q-code is
an q-ary c-IPP code with ∆ > n(1− 1/c2). However, it is not known how we can achieve both
tracing and revoking ability with linear codes. We propose a method for this goal by generalising
the previous framework of constructing traitor tracing from IPP codes. We then instantiate the
generic scheme with concrete linear codes, namely Reed-Solomon code and Porat-Rothschild
codes.

In fact, we generalise the code based traitor tracing in section 2.2.3 in two aspects:

— 19 —

Chapter 2. Combinatorial Approach

Figure 2.6: The shadow technique

Paper ` s k (keys per user) Constraints Traceability Eff. dec?
[KR03] O(s3(Ns)r/s logN) s ≥ r O(s3(Ns)r/s logN) N large ??? No
[ALO98] N2c

(c−1) s = O(r logc(N/r)) 2n any c ≥ 2 ??? No

[GSY99]
(
r logN
log r

)2
s =
(
r logN
log r

)2 (
r logN
log r

)2
Com White-Box No

[KRS99] r3 logN
log r s = r3 logN

log r
r3 logN

log r ??? Yes
[NNL01] 2N s = O(r log(N/r)) logN semi-BB Yes
[NNL01] N logN s = 2r log2N Com semi-BB Yes
[HS02] s = O(r) log1+εN Com semi-BB Yes
[GST04] s = O(r) O(logN) Com semiBB Yes
[JHC+05] s = r

p+1 + N−r
c

O(cp+1) for any p, c, No Yes
Com

[GRW06] Poly(r, s)
(
N
r

)1/s
s = r log(N/r) Poly(r, logN) ??? No

[GRW06] O

(
rs
(
N
r

)1/s)
2r Poly(r)N1/2 ??? Yes

Ours 8r2 log(N/r) s = 4r log(N) k = 2r log(N/r) Black-Box Yes

Table 2.1: Known results on combinatorial constructions. “Com”: the security is based on
computational assumption. “???”: not considered in the paper. “semi-BB”: tracing can either
trace a traitor or output a partition that the pirate decoder cannot decrypt.

— 20 —

2.4. Trace&Revoke from linear codes

• In each position, we do not encrypt the sub-key Kj with all the keys ki,j . Instead, we
encrypt Kj with a subset of the keys ki,j . By this way, we can revoke users by not
encrypting Kj with the key ki,j if the user i has been revoked.

• By “revoking” the key ki,j of a revoked user in a sub q-user scheme, legitimate users are
also affected because the key ki,j is shared among many users and some of them might
also be revoked. The decomposition of the session key K as K = K1 ⊕K2 · · · ⊕Kl does
not work anymore. However, we can show that legitimate users still get sufficiently large
number of non-revoked sub-keys and therefore, if we decompose the session key K with
an appropriate secret sharing then non-revoked users can still decrypt.

We illustrate our modification of the code based traitor tracing in section 2.2.3 to achieve a code
based trace&revoke as follows:

Key assignment:
Table 0 k0,1 k0,2 k0,3 k0,4 k0,5 ... k0,`

Table 1 k1,1 k1,2 k1,3 k1,4 k1,5 ... k1,`

Table 2 k2,1 k2,2 k2,3 k2,4 k2,5 ... k2,`

Revoker 1 k1,1 k2,2 k0,3 k1,4 k0,5 ... k1,`

Revoker 2 k2,1 k0,2 k0,3 k2,4 k0,5 ... k1,`

Encryption:
Session Key K1 K2 K3 K4 K5 ... K` ←secret sharing K
Ciphertext c0,1 c0,4 ... c0,`

c1,2 c1,3 c1,5 ...
c1,3 c1,5 ... c1,`

The analysis in this section is based on our on-going work and we would give some details
of our solution.

Let C be a (n, k,∆)q-code, over an alphabet Σ of q symbols. A mixture S = (S1, . . . , Sn)
over Σn is a sequence of n subsets of Σ, i.e. Si ⊆ Σ. Given a vector w = (w1, . . . , wn) ∈ Σn,
the agreement between w and a mixture S is defined to be the number of positions i ∈ [n] for
which wi ∈ Si:

agr(w, S) =
n∑
i=1

1wi∈Si .

We consider the following broadcast system. For each i ∈ [n] and each symbol a ∈ Σ, there
is a key k(i,a). There are N = qk users in the system. Each user corresponds to a codeword
c ∈ C, where the user is given n keys k(i,ci).

Let s be a secret message to be broadcasted. Let s1, . . . , sn be the shares of a (ρn, n)-secret
sharing scheme. At least ρn shares are needed to recover the secret s. Let S be a mixture over
Σn. We broadcast using mixture S by encrypting each si with all the |Si| keys ki,a for a ∈ Si.
Thus, if anyone is able to decrypt the message, that person has to possess at least ρn keys from
separate sets Si of the mixture S.

Revocation To revoke r users R = {cj | j ∈ [r]}, where cj ∈ C are codewords, we do the
following. Define

R[i] = ∪j∈[r]{cj [i]}.

And, we broadcast using the following mixture:

S = (S1, . . . , Sn) = (Σ−R[1], . . . ,Σ−R[n]).

— 21 —

Chapter 2. Combinatorial Approach

Now, we need to make sure that for every user w /∈ R, w is able to decrypt the message, which
means we want

agr(w, S) ≥ ρn.

What property must the code satisfy for this to happen? Note that w shares at most n − ∆
positions with any codeword in R. Hence, there are at least n− r(n−∆) positions i for which
wi /∈ Ri. In other words, agr(w, S) ≥ n− r(n−∆). Thus, a non-revoked user can decrypt if

n− r(n−∆) ≥ ρn

which is equivalent to
∆ ≥ n ·

(
1− 1− ρ

r

)
.

Tracing Suppose we are broadcasting using some mixture S. Let T be the set of traitors.
Now, using the blackbox method described in [CFN94b], we obtain a set F of at least ρn keys
ki,ai for which ai ∈ Si for each such key.

Naturally, we will view F as a mixture (F1, . . . , Fn) which has ρn singletons (Fi = {ai} if
ki,ai ∈ F) corresponding to the keys and the rest are empty sets. Let w be the codeword which
agrees with F in the most number of positions. We want w ∈ T .

Let t be the (maximum) number of traitors. We know that there must be one traitor c who
contributed at least ρn/t keys to F . Thus, it is sufficient to ensure that, for every user u /∈ T ,
agr(u, F) < ρn/t. But we know that agr(u, c) ≤ n−∆ for any traitor c ∈ T . Hence,

agr(u, F) ≤
∑
c∈T

agr(u, c) ≤ t(n−∆).

Thus, it is sufficient that
t(n−∆) < ρn/t,

which is equivalent to
∆ > n(1− ρ/t2).

Trace&revoke So, for the system to be able to trace&revoke, we need a (n, k,∆)q-code in
which

∆ > n ·max
{(

1− 1− ρ
r

)
, (1− ρ/t2)

}
= n ·

(
1−min{1− ρ

r
, ρ/t2}

)
.

The number of keys per user is n. The broadcast key size is at most nq We just proved the
following theorem.

Theorem 2.4.1 Let ρ ∈ (0, 1) be an arbitrary real number. Let r, t ≤ N be postive integers.
Suppose there exists a (n, k, δ)q-code for which

δ > 1−min
{1− ρ

r
,
ρ

t2

}
,

and qk ≥ N . Then, there exists a trace&revoke system which can support up to r revoked users
and t traitors in which the user key size is n and the broadcast key size is s ≤ nq.

Example 2.4.2 (Using a code meeting GV-bound) Let’s pick ρ = 1/2.
Set d = max{2r, 2t2}. As we have seen above from the application of Porat-Rothschild derandom-
ization of the Gilbert-Varshamov bound, we can explicitly construct a code with relative distance
δ = ∆/n > 1− 1/d where q = Θ(d), n = O(d logN).

— 22 —

2.4. Trace&Revoke from linear codes

The number of keys per user is

n = O
(
max{2r, 2t2} logN

)
which is probably not too bad. The broadcast key size

s ≤ qn = O
(
(max{2r, 2t2})2 logN

)
is bad.

Example 2.4.3 (Using RS-code) Again pick ρ = 1/2 and set d = max{2r, 2t2}. The RS-
code has δ = n−k+1

n = 1− k
n + 1

n . In this case, if we choose n = kd then ρ > 1− 1/d. Hence, to
use RS-code, we need to pick q ≥ n = kd such that qk ≥ N or, equivalently, n log q ≥ d logN .

For example, we can pick q = n ≈ 2d logN
log(d logN) and k ≈ logN

log q . In this case, the number of keys
per user is

n = O

(2d logN
log(d logN)

)
and the broadcast key size is

s = O(n2).

Or, if we only want to reduce the number of keys per user we can do something extravagant such
as picking q = 2n. In this case, we have

n =
√
d logN

and
s = n2n =

√
d logNNd.

Final remark. The parameter ρ characterises in fact the trade-off between the capacity of
tracing and the capacity of revoking. Indeed:

• When ρ = 1, the above code is the Tracing traitor system in [CFN94b]. The (n, n)-secret
sharing could be very efficiently implemented (the xor of n parts).

• When 1 < ρn < n, as shown above, we could combine the functionalities of an ESS system
(for revocation) and a black-box tracing against any pirate strategy. However, we should
note that the (ρn, n)-secret sharing makes the scheme less efficient than in the cases where
ρn = 1 or ρn = n.

• When ρ = 1
n , the above code is an ESS system. The (1, n)-secret sharing becomes trivial.

Each singleton Si = {ai} defines a subset covering all users who have the key ki,ai . This
corresponds to the case we consider in the previous section and the results lead to a
(N, 4r2 log2N, r, 4r2 log2N)−disjunct matrix. As shown in the previous section, the code
can be used for revocation in a very efficient way and the shadow technique helps us
to trace weight-limited decoders. Even though the tracing complexity is expensive, the
resulting system enjoys the nice properties of an ESS system with constant decryption
time complexity at the receiver.

— 23 —

Chapter 2. Combinatorial Approach

— 24 —

Chapter 3

Algebraic Approach

While most combinatoric schemes deal with bounded collusions (the number of revoked users and
the number of traitors have been assumed to be below some threshold), algebraic schemes can
deal with both bounded collusions and full collusions. However, the situation is quite different
when it comes to broadcast encryption and traitor tracing:

Broadcast encryption: Boneh, Gentry, and Waters [BGW05] are first to propose a fully
collusion-resistant public key broadcast encryption in which the ciphertext size is constant.
They proposed two schemes, respectively CPA and CCA secure, both in the selective model
of security. Dynamic fully collusion-resistant broadcast encryption is proposed in [DPP07]
where the authors designed CPA secure schemes that were only partially adaptive secure.
In brief, full collusion broadcast encryption can be made quite practical.

Traitor Tracing: The first non-trivial fully collusion resistant scheme is proposed by Boneh
et al. [BSW06b]. However, its ciphertext size is still large (Ω(

√
N), where N is the total

number of users) and it relies on pairing groups of composite order. Very recently, Boneh
and Zhandry [BZ14] propose a fully collusion resistant scheme with poly-log size parame-
ters. This scheme relies on indistinguishability obfuscation [GGH+13c] of which security
foundation remains to be studied and practicality remains to be investigated. Unsurpris-
ingly, the most efficient schemes are in the bounded collusion model where the number of
malicious users is limited. The most efficient algebraic traitor tracing schemes remain the
Boneh-Franklin scheme, Naor-Pinkas scheme and their variants.

In this chapter, we first summarise in Sections 3.1 and 3.2 the main techniques for construct-
ing algebraic schemes, in bounded collusion model and full collusion model. We then present
our contributions:

• We first consider in Section 3.3 some extensions of the BGW scheme in extended security
model and in multi-channel setting.

• We then introduce in Section 3.4 the first lattice based traitor tracing in the bounded model
in which the security is based on a new variant of the Learning With Errors problem (LWE)
problem, called k-LWE.

• We finally propose in Section 3.5 optimal ciphertext rate traitor tracing schemes that
extend the Kiayias-Yung strategy for integrating combinatorial methods with algebraic
methods.

— 25 —

Chapter 3. Algebraic Approach

3.1 From ElGamal encryption to multi-receiver encryption, tra-
tor tracing and revoke schemes

Desmedt and Kurosawa are the first to propose a method to transform Elgamal encryption into
a traitor tracing but their scheme was latter pointed out to be insecure. Boneh and Franklin
then propose another transformation that is based on a representation problem and linear space
tracing; Naor and Pinkas propose a revoke method that is based on polynomial interpolation.
The main idea in the construction of these schemes is to modify the form of the public key
in ElGamal encryption in such a way that it corresponds to many different secret keys. At
this stage, it suffices to distribute each secret key to a user and we will get a multi-receiver
encryption. The traceability is much more difficult to achieve though. We will briefly describe
the main ideas in Boneh-Frabklin and Naor-Pinkas traitor tracing schemes. Let us first recall
the ElGamal encryption.

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order q, and a
randomly chosen generator g ∈ G.

Key setup Generate α← Zq. Set sk← α and pk← y = gα.

Encryption: Given a message m ∈ G, randomly choose r ← Zq and output the ciphertext
(gr, yrm)

Decryption: Given a ciphertext (c1, c2), return c2/c
α
1 .

3.1.1 Boneh-Franklin method for traitor tracing [BF99b]

In addition to the element y = gα as in ElGamal scheme, one also chooses a vector (h1, . . . , h2t)
of 2t (where t is the bound on the number of traitors) random elements in G, say hi = gri ,
for ri ← Zq. The public key is then set to be pk ← (y, h1, . . . , h2t). This allows the center to
represent the same y in different ways in the basis (h1, . . . , h2t). Indeed, by knowing the discrete
logarithm of y and of hi to the base g, it is easy for the center to generate a random representation
(α1, . . . , α2t) of y in the basis (h1, . . . , h2t) such that: y = hα1

1 . . . hα2t
2t . Each individual key is

a representation (α1, . . . , α2t) which allows the user to compute yr from (hr1, . . . , hr2t). The
encryption and the decryption work then in a natural manner: by adding (hr1, . . . , hr2t) to the
ciphertext, any legitimate user (who holds a representation) can compute yr and recover the
plaintext.

We now discuss the traceability. Boneh and Franklin show that, unless breaking the discrete
logarithm problem, the only way for the adversary to produce a new representation of y is to
linearly combine its known representations. This leads to the idea of using linear error-correcting
code for tracing. Indeed, consider any linear error-correcting code A (codewords generated by
the columns of A) that can correct up to k errors and its parity check matrix H. If we associate
each user to a row of H then from any linear combination of up to k corrupted rows of H, one
can trace back the corrupted rows. This is derived directly from the error-correcting property:
given d which is a linear combination of up to k corrupted rows of H, i.e. d = wB for an
unknown vector w of weight ≤ k; the goal is to find w. We can do this by first computing any
v satisfying vB = d by linear algebra; we know then v − w is a codeword of A and thus v is
deviated from a codeword with at most k errors; the correction of the error of v will directly
provide us with the “error” w.

In fact, Boneh and Franklin use for A as a Reed-Solomon code corresponding to a Vander-
monde matrix and the white-box tracing follows the above intuition. A more challenging point
is the black-box tracing where one does not know any pirate key d. The black-box tracing, which

— 26 —

3.2. Dealing with Full Collusion

is in fact quite expensive, relies on the black-box confirmation: given a superset of the traitors,
it is guaranteed to find at least one traitor and no innocent suspect is incriminated.

3.1.2 Naor-Pinkas method for revocation [NP00]

At a high level, the main idea is to use a t-out-of-N secret sharing and the scheme can revoke
up to t − 1 users. For simplicity, we can suppose that the number of revoked users r is equal
to t − 1 (if the effective number of revoked users is less than t − 1 then we can add “dummy”
users to the revoked list). The system works as follows: a secret is divided into N shares and
each user who joins the system receives a share; the ciphertext contains t− 1 shares that cover
all the revoked users; each non-revoked user adds its share to have t shares that can decrypt the
ciphertext while the revoked users only get t− 1 shares in total and cannot decrypt even if they
all collude. In order to implement this idea, Naor and Pinkas use secret sharing in the exponent
and randomise the ciphertext.

More formally, the authority chooses a global polynomial P of degree t − 1 in the setup,
then chooses and publishes a random element xi for each user i. The secret key for user i is
P (xi) and all the values gP (xi) and gP (0) are published. To revoke a set of users (1, 2, ..., t− 1),
a broadcaster chooses a random element r then sets the session key K = grP (0). The ciphertext
is composed of t− 1 elements grP (xj), j ∈ 1, . . . , t− 1. Each non-revoked user has in possession
t shares and can perform a polynomial interpolation in the exponent to recover the session key,
while the revoked users have at most t − 1 shares and get no information from the ciphertext.
It is worth noticing that the Naor-Pinkas method can be combined with the Boneh-Franklin
method to achieve a trace&revoke scheme.

3.2 Dealing with Full Collusion
We recall that, in full collusion of broadcast or traitor tracing schemes, the maximum number
of corrupted users is unbounded. As we mentioned at the beginning of the chapter, we will see
that full collusion broadcast encryption schemes are quite practical while full collusion traitor
tracing schemes remain inefficient.

3.2.1 Broadcast encryption: BGW scheme

We can explain the idea at a high level as follows: suppose that there are 2N + 1 slots on a line
and there is only a hole at the position N + 1. Each user is attributed a slot and a user at the
slot N − i is capable to push the hole exactly i positions to the left.

Now, for the encryption, the center simply puts the balls into the positions of the non-revoked
users. In the decryption phase, each user i pushes to move the hole to his position: if there
is a ball in the hole then the decryption succeeds (see Figure 3.1). The use of pairings allows
the center to limit the capacity of the users: each user i can only move the hole by exactly i
positions.

How is this implemented? We can imagine that each slot i is attributed an element gi = gα
i

and the magic element gN+1 corresponds to the hole at position N + 1. We can rewrite this
element for any set of users S ⊆ [N] as:

gN+1 = Πj∈SgN+1−j+i/Πj∈S,j 6=igN+1−j+i

In order to exploit this representation, one has to work in a bilinear group: the randomised
session key (with a random r) is set to be e(g, gN+1)r. We can then rewrite it as:

e(g, gN+1)r = e(gi, (Πj∈SgN+1−j+i)r)/e(gr,Πj∈S,j 6=igN+1−j+i)

— 27 —

Chapter 3. Algebraic Approach

Figure 3.1: High-level view of the BGW method.

Actually, if the public key contains g, g1, . . . , g2N (so that the encryption is publicly com-
putable) and the ciphertext contains (gr, (Πj∈SgN+1−j+i)r), then the session key can be publicly
computed. The main idea is to make the session key individually computable. This can be
achieved by adding an element v = gγ to the public key and give each user a secret key gγi . The
session key is then computed as:

e(g, gN+1)r = e(gi, (vΠj∈SgN+1−j+i)r)/e(gr, gγi Πj∈S,j 6=igN+1−j+i)

It is not hard to see that if the ciphertext contains gr, (vΠj∈SgN+1−j+i)r, then only users i ∈ S
can recover the session key by adding its secret key gγi to the element Πj∈S,j 6=igN+1−j+i. We can
imagine the way we put the balls in the positions in S is characterised by (vΠj∈SgN+1−j+i)r.
Each user i can then move the hole by i positions by using the secret key gγi to compute
gγi Πj∈S,j 6=igN+1−j+i: only users in S can put a ball in the hole and recover the session key.
If v is not used then each user can move the hole to any position and everyone can decrypt.
However, by using the element v, each user is forced to use its secret key to move the hole and
in consequence, each user can only move the hole by exactly i positions. As some of our works
are based on this scheme, we give a detailed description of the scheme as follow:

Setup(λ): Let G be a bilinear group of prime order p. The algorithm first picks a random
generator g ∈ G and a random scalar α ∈ Zp. It computes gi = gα

i ∈ G for i =
1, 2, . . . , n, n+ 2, . . . , 2n. Next, it picks a random scalar γ ∈ Zp and sets v = gγ ∈ G.
The public key is EK = (g1, . . . , gN , gN+2, . . . , g2n, v), whereas the private decryption key
of user i ∈ {1, . . . , n} is di = vα

i . These decryption keys are sent by the Extract algorithm.

Encrypt(S,EK): Pick a random scalar r ∈ Zp and set K = e(gN+1, g)r, where e(gN+1, g) can
be computed as e(gN , g1) from EK. Next, set: Hdr = (gr, (v ·

∏
j∈S gN+1−j)r) and output

(Hdr,K).

Decrypt(S,Hdr, i, di,EK): Parse Hdr = (C1, C2), output

K = e(gi, C2)/e(di ·
∏

j∈S,j 6=i
gN+1−j+i, C1)

Inversion technique. Delerablée, Paillier, and Pointcheval introduced the inversion technique
which helps to construct the first dynamic revoke scheme [DPP07]. The main idea is to generate
a value xu to each user u and then, in the decryption phase, to force the user to multiply a
group element by 1

xr−xu for each revoked user r. This means that every revoked user has to

— 28 —

3.2. Dealing with Full Collusion

divide by 0 during decryption, which leads to a procedure failure. The construction requires
a pairing in prime-order groups, but it does not matter whether the pairing is symmetric or
not. The security guarantee is actually stronger than the static security level: The adversary
is allowed to corrupt users immediately before they join. The master secret key and the user
secret keys consist of a scalar value and one group element from each of the base groups G1,G2,
the encryption key consists of one group element from each of the base groups and one from the
target group GT . For each user, a scalar, an element from the base group G2 and an element
from the target group are added to the encryption key. The ciphertext consists of one element
from each of the base groups plus a scalar and an element from G2 for each revoked user.

Another modification of the public-key scheme makes it non-dynamic, but allow to achieve
constant-size ciphertexts at the expense of linear size decryption keys.

3.2.2 Traitor Tracing: BSW scheme

We recall that a trivial way to construct a multi-receiver scheme is to encrypt independently to
each user: the ciphertext contains many components, each of them is an individual encryption
of the session key for a user. We can then apply the linear tracing technique which consists of
replacing step by step each component by a random element: when we modify a component, it
only affects one user and therefore, if the pirate decoder decrypts differently from one step to the
next, we can detect a traitor. Now, in order to achieve a sub-linear size ciphertext, we should
deal with “dependent” component problems because a component in the ciphertext must be
related to many users. The task of the tracer becomes quite challenging because each time the
ciphertext is modified, many users are affected and it is not easy to detect the traitor. Boneh,
Sahai and Waters [BSW06b] introduce a method to deal with this problem in which they took
benefit from the bilinearlity of pairings to arrange the users in a matrix. In such a way, each user
is identified by a couple of parameters: row position and column position. The main idea that
allows to use the linear tracing technique is to produce a probe ciphertext for any position (i, j)
in such a way that: any user at position (x, y) will be able to decrypt the message if and only if
(x > i) or (x = i, y ≥ j). This requires to randomise row components and column components in
a smart way. In fact, Boneh, Sahai and Waters need to use pairings on composite order groups,
say e : G×G→ GT such that G is of composite order pq and if gp is an element from the order
p subgroup (which is called Gp) and gq is an element from the order q subgroup (which is called
Gq), then e(gp, gq) = 1. Each ciphertext contains m =

√
N “well-formed” row components in

G and m “well-formed” column components in G. The user (x, y) can successfully decrypt if
the row component and the column component are of type (well-formed,well-formed). Now, the
tracer produces a probe ciphertext in which:

• Column ciphertext components are well formed in both Gp and Gq subgroups for columns
greater than or equal to j ; well formed in the Gq subgroup but random in the Gp subgroup
for a column that is less than j.

• Row ciphertext components are completely random for rows less than i ; well formed
elements in the Gq subgroup for rows greater than i; and are well formed in both subgroups
for row i.

We can see that, the ciphertext structure will lead to restrictions on the decryption: it can be
successful for a user (x, y) if and only if x > i or x = i, y ≥ j. Indeed:

• If x > i then, because the row ciphertext components are well formed elements in the Gq
subgroup, even if the column ciphertext components are randomized with an element in
Gp, the randomized part is cancelled out and the (row component, column component)
for (x, y) looks like (well-formed, well-formed).

— 29 —

Chapter 3. Algebraic Approach

Figure 3.2: High-level view of the BSW’s method.

• If x = i and y ≤ j then the (row component, column component) for (x, y) looks like
(well-formed, well-formed).

• If x = i and y < j or x < i then the (row component, column component) are randomized
either inGq or inGp and are thus not of type (well-formed, well-formed) and the decryption
fails.

The idea is summarized in Figure 3.2. However, the detailed description is quite complicated
and the security analysis requires some assumptions, in particular the Bilinear Subgroup De-
cision Assumption which requires that: given gp, gq ∈ G, a random order p element in GT is
indistiguishable from a random element in GT . We remark however that, because the ciphertext
size is of O(

√
N), the scheme is more about theoretical interest than of practical interest.

Trace&Revoke: Boneh-Waters scheme. Boneh and Waters [BW06b] further improve the
BSW scheme by providing broadcast functionality. Their scheme is a combination of the BGW
scheme and the BSW scheme, in which they make use of the broadcast technique from the BGW
and of the tracing technique from the BSW scheme.

3.3 Some variants of BGW

3.3.1 Adaptive CCA Security with Constant-size Secret Keys and Cipher-
texts [PPSS13]

BGW is clearly a very interesting broadcast encryption (i.e. an inclusive scheme) but it still has
some inconveniences: i) the security is considered in the selective model and ii) it is not trivial for
the scheme to efficiently revoke users (i.e. not an exclusive scheme) when the number of revoked
users is relatively small compared to the total number of users. Our objective is to make BGW
more secure and more flexible by transforming it into an inclusive-exclusive broadcast encryption
scheme. Our contribution is realised in several steps:

— 30 —

3.3. Some variants of BGW

• We first propose an efficient dynamic broadcast encryption scheme (called OurBE) and
prove that it is selective CCA secure based on the widely-used bilinear Diffie-Hellman
exponent (BDHE) assumption and a universal one-way hash function (UOWHF). The
proposed scheme has constant-size ciphertexts (only two group elements), constant-size
secret keys (only one group element), and a public key which increases linearly with the
number of users in the system. Our scheme is a variant of the selective CPA secure BGW.
The modification from BGW is minimal in the sense that our scheme has exactly the
same ciphertext and secret key sizes as those of the BGW schemes and is proved secure
under the same assumptions, plus the relatively weak UOWHF assumption. The minor
difference is that our scheme has one extra element in the linearly-growing public key.

• We then propose an inclusive-exclusive broadcast encryption scheme which can simul-
taneously work both as a broadcast encryption and a revocation scheme, as it has the
flexibility to specify either the target set or the revoked set at the time of encryption. The
time complexity (in encryption and in decryption) can be made proportional to the size
of the target set or to the size of the revoked set. The ciphertext and the secret key still
contain respectively two and one group elements. We need to add one group element per
user to the already linear size public key of the BGW scheme though.

• Finally, we show that it is possible to prove the adaptive CCA security of our scheme under
generalised versions of existing assumptions. In particular, we propose generalised versions
of the BDHE and the knowledge-of-exponent (KEA) assumptions, and prove that both
hold in the generic group model. Under these assumptions which are reasonable generali-
sations of accepted assumptions, we can achieve the highest level of security with highly-
efficient parameters. Namely, OurBE is provably adaptive CCA secure with constant-size
ciphertexts and secret keys, and it is the first scheme to achieve such properties.

Comparison. Table 3.1 summarises our comparison between the broadcast encryption schemes
that that are at least adaptive CPA or selective CCA secure in the full collusion model. The
schemes in the literature with constant-size ciphertexts include a selective CCA secure scheme
from [BGW05], and three adaptive CPA (ACPA) secure ones from [GW09] and [Wat09]. The
schemes that do not have constant-size ciphertexts include adaptive CPA secure schemes from
[DF02], [GW09] (identity-based) and [LSW10] (revocation scheme), and adaptive CCA (ACCA)
secure schemes from [PPS12a].

We list plain and identity-based (IB) broadcast encryption (BE) and revocation (R) schemes.
The schemes from [DF02] and [PPS12a] are generic schemes based on (hierarchical) identity-
based encryption ((H)IBE), and encryption schemes (implemented under DDH), respectively.
Since (H)IBE can be based on various assumptions, we simply use it in parentheses in the table.
All other schemes are explicit proposals based on various bilinear Diffie-Hellman assumptions,
sometimes relying upon extra assumptions such as strong unforgeability (SUF), pseudo-random
functions (PRF), and the random oracle model (ROM).

For further details on parameters, we would refer to [DDG13] where our scheme has been
implemented and suggested for a standardisation.

3.3.2 BGW in Multi-Channel setting [PPT13]

The context. We focus on the pay-TV scenario, in which users own decoders to decode only
the channels they have subscribed to. In this context, the broadcaster sends several channels at
the same time to different groups of users or target sets.

Unfortunately, previous broadcast encryption models only dealt with a single content and
a single target set at a time. This was a reasonable goal but not quite suitable for pay-TV in

— 31 —

Chapter 3. Algebraic Approach

Scheme O(|ski|) O(|H|) Security Assumption
[DF02] BE logn r log N

r ACCA1 (IBE)
BE log1+ε n r

ε ACCA1 (HIBE)

[BGW05] BE 1 1 SCCA n-BDHE, SUF
[GW09] BE 1 1 ACPA n-BDHES, PRF, ROM

BE 1 s ACPA n-BDHES, PRF
IBBE 1 1 ACPA n-BDHES, PRF, ROM
IBBE 1

√
s ACPA n-BDHES, PRF

[Wat09] BE n 1 ACPA dBDH, dLin
[LSW10] R 1 r ACPA dBDH, dLin
[PPS12a] BE 1 r log N

r ACCA DDH
BE 1 r ACCA DDH

OurBE BE 1 1 SCCA
ACCA

n-BDHE, UOWHF
n-OBDHE, GKEA, UOWHF

O(| · |): order of size, n, s, r: number of total, targeted, revoked users.

Table 3.1: Comparison of adaptive or CCA secure broadcast encryption schemes

practice. In fact, television systems contain many channels with different sets of privileged users.
One could argue that this scenario is covered by the usual systems via the use of independent
broadcast encryption schemes for each channel. However, this results in a very inefficient scheme:
the bandwidth or header size grows linearly in the number of channels, which could be very large;
when the users zaps to another channel, one has to start from scratch and wait for the reception
of the new appropriate header, which can take some time unless the decoder stores all the
headers all the time.

These two problems of the limited bandwidth and limited zapping time lead to new efficiency
criteria with a common solution: a broadcast encryption with a short global header. Our new
primitive MCBE (Multi-Channel Broadcast Encryption) addresses these problems. In the fol-
lowing, we show that it is possible to achieve this goal in an optimal way by proposing a scheme
with constant-size global header, independently of the number of channels.

The technique. In the BGW scheme, we recall that each channel can be interpreted as slots
in a line and each user owns one of the slots and the user can decrypt if he/she can move the
hole so that a ball falls in the hole. The trivial solution for multi-channel problem consist in
making many parallel lines, each corresponding to a channel and we can encrypt line by line
for each channel. Then, because the lines are independently treated, each user of a channel can
move the hole in the corresponding line. However this increases the ciphertext size linearly to
the number of channels. We propose a method to combine all the lines together and this reduces
the ciphertext size. The main idea is that, during decryption, each user can cancel out all the
balls in all lines except in the line that corresponds to the channel he/she would like to decrypt.
This implicitly reduces the multi-channel framework to a single-channel one while preserving
the constant ciphertext size.

Due to constraints between the various target sets, we introduce the dummy-helper technique
that helps proving security. We eventually propose two constructions derived from the BGW

— 32 —

3.4. Lattice-based Approach: `-LWE and Projective Sampling [LPSS14]

scheme. They are private broadcast encryption schemes with the following properties:

• The first construction is, asymptotically, very competitive with the BGW scheme. In
fact, it achieves constant-size headers, while the private decryption key size remains linear
in the number of the channels that a user has subscribed to. In addition, it is fully
collusion resistant against basic selective adversaries, i.e. the adversaries who can only
ask corruption queries to get the decryption keys of users in the selective security model
(the challenge target set is announced before the setup of the global parameters). This is
also the security level that the original BGW scheme achieves and our security proof holds
under the standard assumption n− BDHE, as in the original BGW scheme.

• The second construction is an improvement of the previous one in order to resist strong
selective adversaries who have the power of basic selective adversaries plus unlimited access
to encryption and decryption queries, while keeping the parameter sizes and computational
assumptions unchanged. To this aim, we introduce the dummy-helper technique and make
use of a random oracle [BR93]. Our scheme is more efficient than the CCA version of the
BGW scheme but our dummy-helper technique actually works in the random oracle model
only.

Dummy-helper technique. In the multi-channel setting, because the session keys of all chan-
nels are compacted in only one ciphertext, there exists an implicit relationship between the
session keys of the channels which could be known by the simulator without the entire knowl-
edge of the master key. By introducing the dummy-helper technique, which consists of adding a
new channel for one additional dummy user, we get the following interesting properties:

1. it gives our simulator the possibility to decrypt this channel and get the corresponding
session key which is sufficient for the simulator to derive the other session keys and suc-
cessfully answer any decryption queries.

2. by eventually publishing the decryption key of the dummy user, the center introduces a
channel that can be decoded by all the users registered in the system (to send the program
or ads).

We implement this dummy-helper technique in the random oracle model. It is worth noting
that, despite the more complex setting of multi-channel broadcast encryption, the security is
achieved under the standard assumption n− BDHE as in the BGW scheme.

3.4 Lattice-based Approach: `-LWE and Projective Sampling
[LPSS14]

Since the pioneering work of Ajtai [Ajt96b], there have been a number of proposals of cryp-
tographic schemes with security relying on the worst-case hardness of standard lattice prob-
lems, such as the decision Gap Shortest Vector Problem with polynomial gap (see the sur-
veys [MR09, Reg10]). These schemes enjoy unmatched security guarantees: security relies on
worst-case hardness assumptions for problems expected to be exponentially hard to be solved
(with respect to the lattice dimension n), even with quantum computers. At the same time, they
often enjoy great asymptotic efficiency, as the basic operations are matrix-vector multiplications
in dimension Õ(n) over a ring of cardinality ≤ Poly(n). A breakthrough result in that field is
the introduction of the Learning With Errors problem by Regev [Reg05, Reg09], who shows it
to be at least as hard as worst-case lattice problems and exploited it to derive an elementary
encryption scheme. Gentry et al. shows in [GPV08] that Regev’s scheme may be adapted so

— 33 —

Chapter 3. Algebraic Approach

that a center can generate a large number of secret keys for the same public key. As a result, the
latter encryption scheme, called dual-Regev, can be naturally extended into a multi-receiver en-
cryption scheme. We build traitor tracing schemes from this dual-Regev LWE-based encryption
scheme which also enjoys public traceability. To show that we can trace the traitors, we extend
the LWE problem and introduce the k-LWE problem, in which k hint vectors (the leaked keys)
are given out.

The k-LWE problem. We extensively use q-ary lattices. The q-ary lattice associated to A ∈
Zm×nq is defined as Λ⊥(A) = {~x ∈ Zm : ~xt · A = ~0 mod q}. It has dimension m, and a basis
can be computed in polynomial-time from A. For ~u ∈ Zmq , we define Λ⊥~u (A) as the coset
{~x ∈ Zm : ~xt ·A = ~ut mod q} of Λ⊥(A).

The k-LWE problem can be interpreted as a dual of the k-SIS problem introduced by Boneh
and Freeman [BF11]. Intuitively, in both k-LWE and k-SIS, it is given as input A ∈ Zm×nq along
with k small hints ~x1, . . . , ~xk ∈ Zm s.t ~xiA = ~0 mod q. The k-SIS solver is required to output a
new vector ~x, linearly independent from ~x1, . . . , ~xk such that ~xA = ~0 mod q, while the k-LWE
solver is required to distinguish between

1
q
· U
(
Im
(
A
))

+ νmα and 1
q
· U
(
Spani≤k

(
~xi
)⊥)

+ νmα .

where Im(A) = {A~s : ~s ∈ Znq } ⊆ Zmq , U(X) denotes the uniform distribution over X, Span(X)
denotes the set of all linear combinations of elements of X, να denotes the one-dimensional
Gaussian distribution with standard deviation α.

These problems look hard and their hardness will be discussed latter. At the first glance, we
see that one can linearly combine the hints to get a new hint and the k-SIS essentially says that
this is the only way the adversary can get a new solution for the SIS problem. Regarding the
k-LWE, once these hint vectors are revealed, it becomes easy to distinguish the left distribution
from the uniform distribution: take one of the vectors ~xi, get a challenge sample ~y and com-
pute 〈~xi, ~y〉; if ~y is a sample from the left distribution, then the centered residue is expected to
be of small size which is� 1 for standard parameter settings; on the other hand, if ~y is sampled
from the uniform distribution, then 〈~x, ~y〉 should be uniform. The definition of k-LWE handles
this issue by replacing U(Zmq) by U(Spani≤k(~xi)⊥).

The Scheme. The scheme is designed for a given security parameter n, a number of users N
and a collusions of maximum size t. It then involves several parameters q,m, α, S. These
parameters are set so that the scheme is correct (decryption works properly on honestly generated
ciphertexts) and secure (semantically secure encryption and possibility to trace traitors). In
particular, we set S = Diag(σ, . . . , σ, σ′, . . . , σ′) ∈ Rm×m where σ′ > σ and their respective
numbers of iterations are set so that t-LWE is hard to solve.
Setup. The trusted authority applies the algorithm in [AP11] to generate a pair (A, T) ∈
Zm×nq × Zm×m such that A ∈ Zm×nq and T ∈ Zm×m such that the distribution of A is within
statistical distance 2−Ω(n) from U(Zm×nq); the rows of T form a basis of Λ⊥(A); each row of T
has norm ≤ 3mqn/m. We additionally sample ~u uniformly in Znq . Matrix T will be part of the
tracing key tk, whereas the public key is pk = (A, u).

Each user Ui for i ≤ N obtains a secret key ski from the trusted authority, as follows. The
authority executes the GPV algorithm using the basis of Λ⊥(A) which consists of the rows of T ,
and the standard deviation matrix S. The authority obtains a sample ~xi from DΛ⊥−~u(A),S . The
standard deviations σ′ > σ may be chosen as small as 3mqn/m

√
(2m+ 4)/π. The user secret

— 34 —

3.4. Lattice-based Approach: `-LWE and Projective Sampling [LPSS14]

key is ~xi ∈ Zm. Using the Gaussian tail bound and the union bound, we have ‖~xi‖ ≤
√
mσ′ for

all i ≤ N , with probability ≥ 1−N · 2−Ω(m).
The tracing key tk consists of the matrix T and all pairs (Ui, ski).

Encrypt. The encryption algorithm is exactly the 1-bit encryption scheme from [GPV08, Se. 7.1],
which we recall, for readability.1 The plaintext and ciphertext domains are P = {0, 1} and C =
Zm+1
q respectively, and:

Enc : M 7→
[
~ut

A

]
· ~s+ ~e+

[
M · bq/2c

~0

]
, where ~s←↩ U(Znq) and ~e←↩ bναqem+1.

(note that we use (A|B) or
[
A

B

]
to denote the horizontal concatenation of A and B).

As explained in [GPV08], this scheme is semantically secure under chosen plaintext attacks
(IND-CPA), under the assumption that LWE is hard to solve.
Decrypt. To decrypt a ciphertext ~c ∈ Zm+1

q , user Ui uses its secret key ~xi and evaluates the
following function Dec from Zm+1

q to {0, 1}: Map ~c to 0 if 〈(1‖~xi),~c〉 mod q is closer to 0 than
±bq/2c.

If ~c is a honestly generated ciphertext of a plaintext M ∈ {0, 1}, we have 〈(1‖~xi),~c〉 =
〈(1‖~xi), ~e〉+M · bq/2c mod q, where ~e←↩ bναqem+1. It can be shown that the latter has magni-
tude ≤ 2

√
mαq‖(1‖~xi)‖ with probability 1−2−Ω(n) over the randomness of ~e. This is ≤ 3mαqσ′

for all i, with probability ≥ 1−N · 2−Ω(n). To ensure the correctness of the scheme, it suffices
to set q ≥ 4mαqσ′. Note that other constraints will be added to enable tracing.

3.4.1 Tracing traitors

We now present a black-box confirmation algorithm Trace.2 It is given access to an oracle OD
that provides black-box access to a decryption device D. It takes as inputs the tracing key tk =
(T, (Ui, (1‖~xi))i≤N) and a set of suspect users {Ui1 , . . . ,Uik} of cardinality k ≤ t, where t is the
a priori bound on any collusion size. Wlog, we may consider that k = t and ij = j for all j ≤ k.

Algorithm Trace gathers information about which keys have been used to build decoder D
by feeding different carefully designed distributions to oracle OD. We consider the following
t+ 1 distributions Tr0, . . . , T rt over C = Zm+1

q :

Tri = U
(
Span((1‖~x1), . . . , (1‖~xi))⊥

)
+ bναqem+1.

The first distribution Tr0 is the uniform distribution, whereas the last distribution Trt is
meant to be computationally indistinguishable from Enc(0). We define p∞ as the probabil-
ity Pr[OD (~c,M) = 1] that the decoder can decrypt the ciphertexts, over the randomness of
M ←↩ U({0, 1}) and ~c ←↩ Enc(M). We define pi as the probability the decoder decrypts the
signals in Tri, for i ∈ [0, t]:

pi = Pr
~c←↩ T ri

M ←↩ U({0, 1})

[
OD

(
~c+

[
M · bq/2c

~0

]
,M

)
= 1

]
.

A gap between pi−1 and pi is meant to indicate that Ui is a traitor. The tracing works if the
pirate can not distinguish between Tri−1 and Tri, unless the user i is a traitor. This condition
directly comes from the hardness of the k-LWE which we will now discuss.

1As usual, the encryption algorithm may be used to encapsulate session keys which are then fed into an efficient
data encapsulation mechanism to encrypt the data.

2Note that minimal access is equivalent to standard access in our context: since the plaintext domain is small,
plaintext messages can be tested exhaustively.

— 35 —

Chapter 3. Algebraic Approach

3.4.2 Hardness of k-LWE

We will briefly explain the main idea to show that the security of traitor tracing relies on
the hardness of LWE, which is known to be at least as hard as standard worst-case lattice
problems [Reg09, Pei09, BLP+13].

3.4.3 Hardness proof of Boneh-Freeman with exponential loss

The general framework for a hardness proof is a transformation from a SIS or LWE instance to
a k-SIS or k-LWE instance. More precisely, the main steps are:

• Input: SIS or LWE instance corresponding to A

• From A, construct A∗ along with k hints for A∗

• Give A∗ and k hints to a k-SIS or k-LWE solver

• Based on a k-SIS or k-LWE solution for A∗, derive a SIS or LWE solution for A

In the Boneh-Freeman approach, by extending the LWE matrix A (by k lines) to a larger
matrix A∗, one can sample k hint vectors ~x∗1, . . . , ~x∗k (which forms the matrix X∗ in the above
figure) in the q-ary lattice Λ⊥(A∗) = {~b : ~btA∗ = ~0 mod q}. The simulator then receives a
solution from k-SIS solver ~x∗ = (h || g) s.t ~x∗×A∗ = 0 mod q and ~x∗ is linearly independent to
~x∗1, . . . , ~x

∗
k, it can derive a solution ~x for the SIS problem: ~x×A = 0 mod q, i.e., (~x || 0)×A∗ = 0

mod q which can be computed as

(~x || 0) = (h || g) det(G)− (H || G)(det(G)G−1)g

Unfortunately, with this approach, the reduction involves a multiplication by the cofactor
matrix det(G) · G−1 over Z of a k × k full-rank submatrix G of the hint vectors matrix. Even
though the entries of G are small, the entries of its cofactor matrix are almost as large as detG,
which is exponential in k. The Boneh-Freeman reduction also applies to the k-LWE case but the
transformation from a LWE sample with respect to A to a k-LWE sample with respect to A∗
also involves a multiplication by the cofactor matrix det(G) ·G−1. This leads to an “exponential
noise blowup” which restrains the applicability range to k ≤ Õ(1) if one wants to rely on the
hardness of LWE with noise rate 1/α ≤ Poly(n) (otherwise, LWE is not exponentially hard to
solve).

— 36 —

3.4. Lattice-based Approach: `-LWE and Projective Sampling [LPSS14]

3.4.4 Our reduction with polynomial loss

We do not directly extend the matrix A but rather introduce a small transformation matrix T
such that it is easy to generate a Gaussian X∗ (k hints matrix): X∗ × T = 0. We can thus
transform LWE(A,A~s+~e) into k−LWE(TA, T (A~s+~e)). We consequently avoid the “exponential
noise blowup” because T~e is of polynomial size in ~e.

The main step in constructing such a transformation matrix is via the sampling of a Gaussian
X with a small basis of ker(X). It consists of sampling a k×m Gaussian matrix X along with
a small unimodular matrix U such that X ×U = Ik || 0. We notice that X is the first k rows of
U−1. This tool (which is explained in details in the paper C) will allow us to define the matrix
T and X∗ as required:

1. Sampling a Gaussian matrix V

2. Define X∗ as the first k rows of V || U−1, i.e., the first k rows of V concatenated with X.

3.4.5 Public traceability

The full functionality of black-box tracing in both the Boneh-Franklin scheme and our scheme are
of high complexity as both schemes rely on the black-box confirmation: given a superset of the
traitors, it is guaranteed to find at least one traitor and no innocent user is incriminated. Boneh
and Franklin leave the improvement of the black-box tracing as an interesting open problem.
We showed that in lattice setting, the black-box tracing can be accelerated by running the
tracing procedure in parallel on untrusted machines. This is a direct consequence of the public
traceability property, i.e., the possibility to run the tracing procedure on public information, that
our scheme enjoys. We note that almost all traitor tracing systems require the tracing key to be
kept secret. Some schemes [CPP05a, PSNT06b, BW06b, BZ14] achieve public traceability and

— 37 —

Chapter 3. Algebraic Approach

some others achieve an even stronger security notion, namely the non-repudation. However, the
setup in these schemes require some interactive protocols between the center and each user: a
secure 2-party computation protocol in [Pfi96], a commitment protocol in [PW97] or an oblivious
polynomial evaluation in [WHI01, KWHI01, KY02a].

In order to obtain public traceability and inspired from the notion of projective hash fam-
ily [CS02], we introduce a new notion of projective sampling family in which each sampling
function is keyed and, with a projection of the key on a well chosen space, one can simulate
the sampling function in a computationally indistinguishable way. The construction of a set of
projective sampling families from k-LWE allows us to publicly sample the tracing signals.

The main idea is to associate a public matrix Gi (which is characterised by a projection of
~xi on a hyper plan H) to each secret key ~xi. It is then hard to distinguish U(Span(1‖~xi)⊥) +νmα
from Im(Gk) + νmα and we can publicly sample a signal in U(Span(1‖~xi)⊥) + νmα from pubic
information Gi. We finally show that it is hard to distinguish U(Spanji=1(1‖~xi)⊥) + νmα from
Im(G1) ∩ . . . ∩ Im(Gj) + νmα , for any1 ≤ j ≤ k and therefore, we can publicly sample tracing
signals from G1, . . . , Gk

3.5 Optimal transmission rate in Traitor tracing

3.5.1 Constant Transmission Rate in Traitor Tracing

All algebraic proposals mentioned so far result in schemes that are not quite communication-
efficient: the length of each ciphertext is (at least) t times or

√
N longer than the embedded

plaintext.
As pointed out by Kiayias and Yung in [KY02c], an important problem in designing practical

traitor tracing schemes is to ensure a low transmission rate, defined as the asymptotic ratio of
the size of ciphertexts over the size of plaintexts, while at the same time minimize the secret-key
and the public-storage rates, similarly defined as the asymptotic ratio of the size of user-keys
and of public-keys over the size of plaintexts. Under this terminology, the transmission rate of
all the above mentioned solutions is linear w.r.t. the maximal number t of traitors or sub-linear
in the number of users, whereas in [KY02c] Kiayias and Yung show that if the plaintexts to be
distributed are large (which is the case in most traitor tracing applications such as distribution
of multimedia content), then it is possible to obtain ciphertexts with constant expansion rate.

In addition to the clear benefit in terms of communication efficiency, schemes with constant
transmission rate also enjoy efficient black-box traceability, while schemes with linear transmis-
sion rate are inherently more limited in this regard [KY01c] (e.g. the black-box traitor tracing
of [BF99b] takes time proportional to

(n
t

)
).

Depending on the specific application, one may decide to use a scheme with constant trans-
mission rate or a scheme with linear/sub-linear transmission rate: if one wants to directly
distribute large messages, the first category is much more suitable; however if one simply wants
to exchange a session key of is relatively small size, the second category enjoys better efficiency
parameters.

— 38 —

3.5. Optimal transmission rate in Traitor tracing

One could think that traitor tracing schemes with linear transmission rate (e.g. [BF99b])
could easily be turned into schemes with constant transmission rate by means of hybrid en-
cryption: to send a large message, pick a random session key, encrypt it with the given traitor
tracing scheme, and append a symmetric encryption of the message under the chosen anony-
mous session key. This approach suffers however from a simple yet severe untraceable pirate
strategy: decrypt the session key and make it available to the “customers” on the black market,
e.g. via anonymous e-mail, or via text-messaging from a pre-paid cellphone. Clearly, when a
traitor tracing scheme is directly used to encrypt the content, this “re-broadcasting” strategy
becomes much less appealing for would-be pirates, because of the higher costs and exposure risk
associated with running a high-bandwidth darknet.

The technique. The solution of Kiayias and Yung is to integrate combinatoric with alge-
braic methods: first construct an algebraic traitor tracing sub-scheme for two users then use
collusion-secure fingerprint codes [BS98, Tar03] to combine l-sub schemes, where l is the length
of codewords. The message is then decomposed into l sub-messages and each of them is en-
crypted by a sub-scheme. Tracing in the resulting multi-user scheme can then be performed
iteratively as a sequence of l stages. In each stage, the pirate decoder is queried with cipher-
texts that are valid in all l components, except for one which is crafted according to the tracing
algorithm of the 2-user construction. In this way, if the decoder does not have both sub-keys for
the component currently being tested, it will be unable to tell that the ciphertext is invalid, and
so the tracing procedure of the 2-user subscheme will determine which of the two sub-keys the
decoder holds for that component. The tracer can thus get the pirate codeword and identify a
traitor from the tracing property of the embedded collusion-secure fingerprint code. In order to
prevent the adversary to replay some parts of the message, Kiayias and Yung propose to apply
an all-or-nothing-transform (AONT) to all the sub-messages. We propose two new techniques
to optimise the transmission rate and to make the schemes of this type more practical:

• We first introduce in [FNP07b] a technique to reduce the transmission rate from 3 in
Kiayias and Yung to 1 (thus optimal). However, we still need to use an AONT.

• We then propose in [PPS12b] a method to avoid AONT while preserving the optimal
transmission rate. The use of AONT has some shortcomings due to the receiver having to
keep the whole bunk of sub-ciphertexts to launch the decryption procedure. By avoiding
AONT, the proposed scheme can be used for message tracing. Our technique requires an
efficient construction of a 2-user anonymous broadcast encryption.

3.5.2 Optimal Transmission Rate [FNP07b]

As mentioned above, a common approach to extending a 2-user construction to a multi-user
setting is to concatenate several instantiations (say, v) of the basic 2-user scheme. In Kiayias-
Yung scheme, since tracing requires the ability to set up each component of the ciphertext to be
independent from all the others, it may seem necessary to use completely unrelated instantia-
tions of the 2-user sub-scheme for each component. Having independent components, however,
clearly leads to a multi-user scheme with the same transmission rate as the underlying basic
2-user scheme, and so it would not help us attaining optimal transmission rate. In fact, our
scheme at Eurocrypt ’05 [CPP05a] manages to get transmission rate 1 by sacrificing component
independence, and by using component-instances all very closely related to each other instead
but the resulting scheme does not support black-box traceability.

To resolve the tension between transmission rate and black-box traceability, we move from
the observation that, at each stage, it is sufficient that a single component can be appropriately

— 39 —

Chapter 3. Algebraic Approach

and independently set up from the rest; the remaining v − 1 can all be closely related to each
other. Therefore, ciphertexts in our construction include a “special” position `, where encryption
is performed with the instance of our 2-user scheme that is specific to the `-th component; the
remaining (v − 1) positions, instead, are encrypted using a “shared” 2-user scheme.

To prevent pirate decoders from selectively ignoring the “special” position (which is the only
part of the ciphertext that encodes tracing information), we follow the approach proposed in
[KY02c] by which the encryption algorithm preliminarily processes the plaintext with an AONT
[Riv97, Boy99, CDH+00]. This will force decoders to decrypt all blocks of the ciphertext, ig-
noring even a single one would result in missing at least one block of the AONT-transformed
plaintext, so that, by the properties of AONT’s, such decoders would fail to recover any infor-
mation about the original plaintext being transmitted. The scheme is described in Appendix
B.

3.5.3 Message Tracing with Optimal Transmission Rate [PPS12b]

We propose the term “message-based traitor tracing” as a generic term that subsumes earlier
variants and emphasize on the fact that we do not trace from pirate decoders but from the infor-
mation embedded in the content. Fiat and Tassa are the first to consider message-based traitor
tracing in [FT99], they develop dynamic traitor tracing to deal with pirates that rebroadcast
decrypted content. They assume that there is a real-time feedback from the broadcast content
to the center, so that the watermarks can be adapted to the feedback. Safavi-Naini and Wang
[SNW03a] note that in this setting, dynamic TT can be prevented by delaying the rebroad-
casting of the content. To take this counter-measure into account, they proposed sequential
traitor tracing, where the mark allocation is precomputed, but users are removed according to
the feedback received. They constructed a sequential TT scheme by combining error-correcting
codes and watermarking. Jin and Lotspiech [JL07] claim that protection should not increase
the bandwidth by more than 10 %. To solve this problem, they proposed to extend the tracing
procedure over several movies (using “inner” and “outer” codes) and assumed that the pirates
will not drop any block. Their sequence key block scheme permits the revocation of users after
they have been traced through the rebroadcasted messages. Kiayias and Pehlivanoglu [KP09]
show that the sequence key block scheme only allowed to trace and to revoke a limited number
of users, and proposed a message-trace-and-revoke scheme without this limitation.

We remark that, without aiming to optimize the ciphertext rate, the use of AONT can
be avoided by using robust collusion-secure code which allows the pirate to drop a fraction of
the positions. This is used in [Sir07a, BP08, BN08b] to reduce the ciphertext size.However, in
order to get optimal ciphertext rate in [FNP07b], AONT is compulsory, otherwise the pirate
could simply drop the particular block to defeat the tracing procedure. We also notice that in
all the above methods for classical tracing, each user finally gets the same plaintext and if a
user redistributes this plaintext, we have no way to trace back the traitor from the distributed
message. Therefore, the necessary condition for message tracing is that each user receives a
different (marked) version of the plaintext. However, when the plaintext is different for each
user, one cannot apply AONT for a whole fixed plaintext, otherwise all but at most one user
can decrypt. The use of AONT for message tracing is thus irrelevant. Fortunately, we can
still use the method of doubling one particular block by finding a way to hide this block. Our
method consists in using a 2-user anonymous broadcast encryption scheme and then randomly
permutting the blocks. With a 2-user anonymous broadcast encryption scheme, the pirate
cannot detect any difference between an encryption for both users (which is used for all blocks
but the particular block) and an encryption for one of the two users that is used for the particular
protected block. Combining with the permutation of the blocks, we can show that the pirate is
prevented from detecting the particular protected block. Moreover, beyond the optimisation of

— 40 —

3.5. Optimal transmission rate in Traitor tracing

π

* 0 * 1 * * * *

* * * * 1* * 0

*
1

0
* ****

m m m m m mm
4 5 6 7321

Figure 3.3: Hiding a mark at position 5 in a sequence of 7 blocks.

the ciphertext rate, by not using AONT, our scheme also enjoys the property of the sequential
decryption via robust collusion secure codes as in [BP08, BN08b]: the user can sequentially
decrypt the sub-ciphertexts, and does not need to wait to receive the whole ciphertext and to
apply the AONT transform to start the decryption procedure.

We describe a generic construction that accomplishes this by encrypting a message consisting
of n sequences of ` blocks, each in such a way that in sequence i, `− 1 blocks can be decrypted
by both users; these blocks are not used for tracing. The remaining block is duplicated using
different marks and encrypted at two positions v0[i], v1[i], each time for one key only: the message
at position v1[i] can only be decrypted by users with key 0, and the message at position v0[i]
only by users with key 1. By doing this, the ciphertext will have a length of (1 + 1/l)-times the
length of the message, plus the overhead for encryption.

3.5.4 2-user Anonymous Broadcast Encryption

We first remark that the naive way to construct a message tracing scheme is to use a PKE
scheme Π and assign user keys according to the codewords of the collusion-secure code T . If the
codewords have length n, we need 2n instances of the PKE scheme. The main disadvantage of
the PKE-based construction is the length of the user keys, which must contain one PKE key for
each block. To achieve shorter keys, we use a primitive that allows encryption to either of the
two users or to both of them: 2-user broadcast encryption.

Our message-traceable encryption scheme makes use of codes where the bits of the codewords
are embedded in a message by doubling some parts of it, the so-called protected blocks. Because
we do not want the adversary to learn which parts of the message contain bits of the codeword,
we need a broadcast encryption scheme where a user cannot tell whether a block is destined
only for his key or for both keys, a 2-user anonymous broadcast encryption (2ABE).

This requires the symmetric cipher used with this construction to be weakly robust [ABN10],
since one of the decapsulated keys will be either ⊥ or an unusable key. The construction uses
one instance of the 2ABE scheme Π per bit of the codeword, encrypting `+1 messages at a time
in one sequence, with the target sets determined by the positions v, w where the watermarks
are embedded. In this construction, the lengths of the EK and USK are n times that of Π, and
to encrypt a sequence of ` blocks we need ` + 1 Π key-encapsulations plus ` + 1 symmetrically
encrypted message blocks.

A 2-user Anonymous Broadcast Encryption Scheme. We consider the 2-key
1-copyrighted public-key encryption scheme of Kiayias and Yung [KY02c] as a 2-user 1-collusion-
secure anonymous broadcast encryption scheme (2ABE). For clarity of exposition, we model the
scheme as a KEM.

Let G be a group of prime order q, with a generator g. The public parameters consist of
(G, q, g). Since we consider the 2-user case, we drop the N parameter:

— 41 —

Chapter 3. Algebraic Approach

• Setup(1κ) picks α, β $← Z×q . For the two user-keys, one chooses d′0, d′1 ∈ Zq, and sets
usku

def= (du = α − d′u · β, d′u), for u = 0, 1. The encryption key is ek def= {(f = gα, h =
gβ), upk0 = hd

′
0 , upk1 = hd

′
1}.

• Encaps(ek, S; r) where r ∈ Z×q

– if S = {0, 1} then c = (gr, hr),K = f r

– else if S = {u} then r′ $← Z×q , and c = (gr, hr′),K = (f/upku)r × upkr′u

• Decaps(usku, c) computes K = cdu0 c
d′u
1 . This is equal to grdu × hr′d′u = (f/upku)r × hr′ . In

the latter encryption case, one gets the same session key. In the former encryption case,
since r′ = r, one also gets f r.

This is a broadcast encryption, because when S = {u} user 1 − u decapsulates differently.
Anonymity comes from the fact that a ciphertext is either a Diffie-Hellman pair when S = {0, 1},
or a random pair in the other case.

The security analysis of our 2ABE and traitor tracing are referred to the appendix E. We
note that the construction of an efficient anonymous BE in the general case remains an open
problem.

— 42 —

Chapter 4

Discussions and Perspectives

Provable Security remains a young branch of research in cryptography. It often happens that
the formalised security notions do not capture all the scenarios. In some cases, new security
models need to be formalised to deal with new attacks and in some other cases, new primitives
need to be introduced to better address practical demands.

In Chapter 2 and Chapter 3, we have dealt with constructions of BE/TT schemes. In this
final chapter, we discuss further security models and generalisations of the BE/TT. We conclude
the thesis with perspectives for further works.

4.1 Extended Attack Models

In encryption, the standard security notion is semantic security against chosen-ciphertext attacks
in which the secret key is assumed to be totally hidden from adversaries’ view. This assumption
is not realistic in many scenarios, especially in the presence of side-channel attacks. Therefore,
new security models have been proposed, namely key-leakage resilience. Since then, there have
been a lot of works devoted to this new model and new methods have been proposed for proving
the security under this attack model.

The same situation occurs in broadcast encryption and traitor tracing. There are new
attack models that go beyond the standard formalisations and that have impacts in practice, in
particular Pirate Evolution [KP07] and Pirates 2.0. Pirate evolution [KP07] is an attack concept
against a trace&revoke scheme that exploits the combined properties of the functionalities of
tracing and revocation in a tree-based scheme. By using a set of users’ keys, the pirate produces
an initial pirate decoder and then, whenever this pirate decoder is seized, the pirate evolves
the decoder to a new one which can successfully decrypt ciphertexts. The same step can be
repeated again and again, allowing to produce more and more decoders. This kind of attack
has real impact on NNL schemes, which forces the designer to downgrade the efficiency of the
original schemes to avoid them.

Pirates 2.0. We introduce a new concept of attacks against traitor tracing schemes [BP09].
We call attacks of this type Pirates 2.0 as they result from traitors collaborating together in a
public way. In other words, traitors do not secretly collude but display part of their secret keys
in a public place; pirate decoders are then built from this public information. The distinguishing
property of Pirates 2.0 attacks is that traitors only contribute partial information about their
secret key material, which suffices to produce (possibly imperfect) pirate decoders while allow-
ing them to remain anonymous. The side-effect is that traitors can publish their contributed
information without the risk of being traced; giving strong incentives to some of the legitimate
users to become traitors. This allows coalitions to attain very large sizes, this scenario has been

— 43 —

Chapter 4. Discussions and Perspectives

Figure 4.1: Compairison between Asano’s method and our method.

deemed unrealistic in some previously considered models of coalitions.

We propose a generic model to deal with this new threat, which we use to assess the secu-
rity of some of the most practical traitor tracing schemes, namely tree-based and code-based
schemes. We exhibit several Pirates 2.0 attacks against these schemes, providing new theoret-
ical insights with respect to their security. We also describe practical attacks against various
instances of these schemes. The main characteristics of our new Pirates 2.0 threat are as follows:

• Anonymity Guarantee: traitors who participate in a Pirates 2.0 attack are provided with
a guarantee (through the exhibition of a mathematical proof) that they cannot be traced
by the authority.

• Partial Contributions: Traitors never need to reveal their whole secret key.

• Public Collusions: Traitors operate in a public environment, they publish secret data from
their decoders.

• Large Coalitions: Traitors take part in unusually large coalitions.

• Dynamic Coalitions: Traitors can come into action only when necessary.

Counter-measures for Pirate Evolution and Pirates 2.0 [PT11, PT13]. Several meth-
ods have been proposed to limit the impacts of Pirate Evolution and Pirates 2.0. [JL09] proposes
a new method of protection against pirate evolution attacks in the subset cover framework and
[ZZ11, Dd11] propose some methods to deal with Pirates 2.0 but their methods significantly
decrease the efficiency of the original schemes. We also propose in [PT11] a method to deal with
both types of attack. The main idea is to perform in two steps: the first step is to combine
all the sub-keys into a unique key which is based on the idea of Asano in [Asa02] (which has
then been extended in [AK05]); the second step is to make the user key undecomposible which
is not achieved in Asano’s scheme but we can achieve this feature with the help of Wildcarded
WIBE (WIBE) [ABC+11], via a mechanism of delegating ciphertexts to the suitable leaf where
the user has the key to decrypt. Our method can be seen thus as a top-down method while
Asano’s method can be seen as a bottom-up method (a key at a leaf can be used to derive a key
at a higher node to decrypt the corresponding ciphertext and therefore when the intermediate
key is leaked, it is un traceable), see Figure 4.1. All these methods can however deal with par-
ticular forms of Pirates 2.0. A step forward dealing with the general form of Pirates 2.0 is via
key-leakage resilience that we propose in [PT13].

4.2 Generalised Primitives
In recent years, more and more generalised primitives for encryption have been introduced, the
most general one being Functional Encryption. At first, it may seem a redundant direction

— 44 —

4.3. Some Remarks and Open Problems

because we already have Multi-Party Computation (MPC) [Yao82] protocols allowing users to
compute and learn arbitrary functions of their joint messages without revealing anything except
for the final answer. However, multi-party computation is normally an interactive protocol
while one of the advantages of a typical encryption scheme is that it is non-interactive. In fact,
functional encryption combines the benefits of the two worlds: define any kind of access control
to the data while optimise low communication round complexity.

The same situation can be observed when comparing Functional Encryption and Broadcast
Encryption. While Broadcast Encryption is formally a particular case of Functional Encryption,
it plays an independent role because it has its own practical impacts and because the general
solution for Functional Encryption becomes inefficient when one simplifies it to fit the broadcast
encryption framework. An interesting step would be to generalise Broadcast Encryption to some
new primitives that have practical impact and that are not too general to loose efficiency. In
this direction, we proposed the Multi-channel BE that has been described in Chapter 3 and
Decentralised model for Broadcast Encryption.

Decentralised Dynamic Broadcast Encryption [PPS12a]. A broadcast encryption sys-
tem generally involves three types of entities: the group manager that manages the membership,
the encryptor that encrypts the data to the registered users according to a specific policy (the
target set), and the users that decrypt the data if they are authorized by the policy. Public-key
broadcast encryption can be seen as removing the special role of the encryptor by allowing any-
body to send encrypted data. We go a step further in the decentralisation process by removing
the group manager: the initial setup of the group, as well as the addition of further members
to the system, do not require any central authority. Our construction makes use of well-known
primitives and can be considered as an extension of the subset-cover framework. It allows for
efficient concrete instantiations with parameter sizes that match those of the subset-cover con-
structions, while at the same time achieving the highest security level in the standard model
under the DDH assumption.

4.3 Some Remarks and Open Problems
On Full Collusion in TT As mentioned, there is currently no efficient fully collusion resistant

traitor tracing, even with the minimal one-wanness security level. Very recently, Boneh and
Zhandry [BZ14] have proposed a scheme with poly-log size parameters. This scheme relies
on indistinguishability obfuscation [GGH+13c] of which the security foundation remains
to be studied and practicality remains to be investigated. An efficient construction of a
fully collusion resistant traitor tracing scheme remains one of the main open problems in
multi-user cryptography.

On Full Collusion in BE In Section 3.3.1, we propose an efficient fully collusion resistant
broadcast encryption scheme which is a variant of the BGW scheme. The sizes of the secret
keys and ciphertexts in this scheme are asymptotically optimal, i.e., constant. Considering
only the standard assumptions, our scheme provides shorter ciphertexts than the known
CCA secure schemes. Considering the extended assumptions, our scheme is the first scheme
to achieve constant size secret keys and ciphertexts along side with adaptive CCA security,
see Table 3.1. However, the problem of designing adaptive CCA schemes that achieve
constant size secret keys and ciphertexts under standard assumptions remains open.

On Lattice-based Schemes The proposed lattice-based traitor tracing scheme resists Chosen
Plaintext Attacks. It seems quite challenging to devise such an CCA-secure scheme under
lattice hardness assumptions. Intuitively, in a traitor tracing scheme the users own parts

— 45 —

Chapter 4. Discussions and Perspectives

of a master secret (e.g., each user owns a short vector in a shared lattice, or a discrete log
representation with respect to a shared set of group elements), and we attempt to prevent
traitors from gaining knowledge of more than their share of the secret information. This
requirement seems to be in opposition with the underlying design of all known lattice-
based CCA-secure encryption schemes [Pei09, PW08, CHKP10, ABB10a, ABB10b], as
the receiver uses the full secret information (a short basis of lattice) to verify the well-
formedness of the ciphertext it decrypts.

Our scheme can be directly adapted to broadcast to a small group of users (the tracing
signals may be used for sending messages to users who own one of these keys, as if they
were suspect keys). This possibility of broadcasting to a small set of the sub-keys can then
be combined with the complete subtree framework in [NNL01] to deal with revocation (in
which each tree node is associated with a sub-key ~xi and the key of each user is a set
of sub-keys on the path from the root to the user). However, this leads to an inefficient
scheme that can only handle a small set of the revoked users (while maintaining security).
An algebraic construction of a lattice-based trace and revoke scheme is a challenging open
problem.

On Additional Features The construction of an efficient Decentralised BE with constant
round complexity interaction or of an efficient anonymous BE remains open problems.

4.4 Perspectives

Our objective is to deepen and broaden the subject of this HdR to the more general case of
multi-user communications. We will continue to work in part on encryption but also to focus on
group signature, functional encryption, distributed cryptography and applications that combine
different primitives, in particular electronic voting. The main directions are:

Security versus efficiency: Sometimes we have to sacrifice the effectiveness of a scheme in
favour of its security level. The first objective of our project is to consider a balance
between security and efficiency according to the requirements of practical applications.
Firstly, we study the trade-off between security and efficiency in new attack models and
security notions which might not reach the maximum level of security but would reflect the
practical requirements. Secondly, we continue to improve the effectiveness of the schemes
with a high level of security, in particular by using some recently developed tools being
non-committing encryption techniques and lossy trapdoor functions. Finally, we continue
the work started in the master thesis of Manh Cuong Ngo to propose a scheme of electronic
voting which would better meet the practical requirements by minimising the intervention
of the authorities (via the introduction of a new concept of traceability in electronic voting).

Security against quantum attacks: The ultimate implementation of quantummachine would
make many cryptographic schemes vulnerable. For cryptographic propose, there are ac-
tually some algorithmic problems which remain unresolved by quantum machines, e.g.
decoding of linear codes, problems on Euclidean networks and the LWE problem. The
efficiency of the schemes that are based on those problems is still quite limited. Many
interesting directions have been explored to improve the efficiency of these schemes. For
example, an interesting direction, initiated by Lyubashevsky-Peikert-Regev, is to consider
the LWE problem in a ring of integers of cyclotomic extensions (Ring-LWE). One of our
objectives is to improve the efficiency of our lattice based traitor tracing scheme (described
in Chapter 3) by adapting it into Ring-LWE setting. This is a challenge in itself because

— 46 —

4.4. Perspectives

in the multi-user case in particular, the pirate is strengthened when we work in Ring set-
ting. Indeed, once the pirate gets a key, it can generate several other keys via the ring
automorphisms. Another objective we are working on is to consider the difficulty of the
LWE problem in other algebraic extensions than the cyclotomic extension.

Relationship between the primitives: Relationship between primitives is an important area
that helps us to better understand the challenge of designing these primitives. Regarding
the multi-receiver encryption, it is shown that a construction of a traitor tracing scheme
generically leads to a group signature [KY03] and a traitor tracing scheme can be gener-
ically constructed from a collusion secure code and a symmetric encryption, as described
in Chapter 2. The opposite cases are however neither disproved nor confirmed. It is also
interesting to note that relationships exist not only between multi-user communication
schemes but also between a multi-user scheme and a “one-to-one” scheme. Our goal is to
study in more details the relationships between the multi-user primitives and those be-
tween these primitives and other more traditional primitives such as encryption, signature
and identification.

— 47 —

Chapter 4. Discussions and Perspectives

— 48 —

Part II

Curriculum vitæ & publications

— 49 —

Curriculum vitæ

État civil
Duong Hieu PHAN, né le 12 juin 1978 à Hanoi (Vietnam), marié, 1 enfant (Dinh-Khanh, né le
4 juin 2009).

Formation
2002 – 2005 Doctorat dirigé par David Pointcheval, sur Sécurité et efficacité de schémas cryp-

tographiques. Diplôme obtenu le 16 septembre 2005 – mention Très Honorable.

2001 – 2002 DEA Algorithmique à l’Université Paris 7 et ENS – mention Bien.

1996 – 2001 Licence et Maîtrise d’Informatique – Ecole Polytechnique de Hanoi – mention
Très Bien.

1993 – 1996 Lycée annexe de l’École normale supérieure de Hanoi, spécialité Mathématique
– mention Très Bien.

Cursus professionnel
2007 – présent Maître de conférences à l’Université Paris 8

2006 – 2007 Ingénieur de recherche à France Télécom R&D, Issy-les-Moulineaux.

2005 – 2006 Post-doc à l’University College London.

2002 – 2005 Allocataire de recherche à l’Ecole normale supérieure.

Valorisation de la recherche
2016 General co-Chair d’Asiacrypt 2016

2006 Membre du Comité d’organisation deVietcrypt 2006

2013– présent Membre du Steering Committee d’Asiacrypt

2014 Membre du comité de programme d’Asiacrypt ’14
Membre du comité de programme d’Africacrypt ’14

2010 Membre du comité de programme de PKC ’10

— 51 —

2009 Membre du comité de programme d’Eurocrypt ’09

2007 Membre du comité de programme de ProvSec ’07
Membre du comité de programme de WISA ’07

2006 Membre du comité de programme de VietCrypt ’06
Membre du comité de programme d’InsCrypt’06
Membre du comité de programme de RIVF’06

2005 Membre du comité de programme de CISC ’05

Séminaires invités (depuis 2006) : Congrès SMF-VMS de Mathématiques France / Viet-
nam (2012), Vietnam Institute for Advanced Study in Mathematics (2012, 2013), Univer-
sité Nationale du Vietnam (2010, 2012), Ecole normale supérieure (2009, 2012), Université
Paris 13 (2010), Université Paris 8 (2007, 2014), Université de Caen (2007, 2009, 2013),
University of Bristol, UK (2006), University College London, UK (2006 et 2007), France
Telecom Paris et Caen (2007, 2008), Telecom Paris (2007).

Prime : PES 2009 (Prime d’Excellence Scientifique du Ministère de l’Education Supérieure et
de la Recherche)

Jurys et rapports de thèses

Membre de jury de thèse

2013 Mario Strefler (Ecole normale supérieure)
Diffusion chiffrée avec traçage de traîtres.

2013 Amar SIAD (Université Paris 8)
Protocoles de génération des clés pour le chiffrement basé sur de l’identité.

Encadrement de la recherche

2009–2013 Thèse de Doctorat (co-direction) :
Viet-Cuong Trinh

2011–2013 Stage postdoctoral (encadrement partiel) :
Siamak Fayyaz Shahandashti, Université Paris 8 & ENS
Elizabeth A. Quaglia, Université Paris 8 & ENS

2012–2013 Stage de Master 2 (encadrement partiel)
Ngo Manh-Cuong, Ecole Polytechnique

Enseignement

2013 –2014
Cours/TD de Master 2 “Sécurité prouvable en cryptographie”,Université Paris 8
Cours/TD de Licence de Combinatoire à l’Université Paris 8

— 52 —

2012 – 2013
Cours/TD de Master 2 “Sécurité prouvable en cryptographie”,Université Paris 8
Cours/TD de Licence de Combinatoire à l’Université Paris 8

2011– 2012
Cours/TD de Master 2 “Sécurité prouvable en cryptographie ”, Université Paris 8

2010 – 2011
Cours/TD de Master 2 “Sécurité prouvable en cryptographie ”, Université Paris 8

2009 – 2010
Cours/TD de Master 2 “Sécurité prouvable en cryptographie ”, Université Paris 8
Cours/TD de Master 1 “Théorie de la complexité”, Université Paris 8
Cours/TD de Licence “Algèbre linéaire ”, Université Paris 8
Cours/TD de Licence “Combinatoire”,Université Paris 8

2008 – 2009
Cours/TD de Master 2 “Sécurité prouvable en cryptographie ”, Université Paris 8
Cours/TD de Master 1 “Théorie de la complexité”, Université Paris 8
Cours/TD de Licence “Aanalyse ”, Université Paris 8

2007 – 2008
Cours/TD de Master 2 “Sécurité prouvable en cryptographie ”, Université Paris 8
Cours/TD de Master 1 “Théorie de la complexité”, Université Paris 8
Cours/TD de Licence “Algèbre linéaire ”, Université Paris 8
TD de Licence “Mathématiques générales”, Université Paris 8

2004 – 2005
TD “Les bases de la programmation et de l’algorithmique”, École polytechnique (1ère an-
née)
TD “La programmation en C”,École Nationale Supérieure de Techniques Avancées (2ième
année)

2003 – 2004
TD “Les bases de la programmation et de l’algorithmique”, École polytechnique (1ère an-
née)
TD “La programmation en C”, École Nationale Supérieure de Techniques Avancées (2ième
année)

— 53 —

— 54 —

Personal Publications

Refereed papers

1. San Ling, Duong Hieu Phan, Damien Stehlé and Ron Steinfeld, Hardness of k-LWE and
Applications in Traitor Tracing, Advances in Cryptology - CRYPTO 2014, LNCS
8616, pages 315-334, Springer-Verlag, 2014.

2. Hung Q. Ngo, Duong Hieu Phan and David Pointcheval, Black-box Trace & Revoke Codes,
Algorithmica, Springer, vol. 67, no. 3, Pages 418-448, 2013.

3. Duong Hieu Phan, David Pointcheval, Siamak F Shahandashti and Mario Strefler, Adaptive
CCA Broadcast Encryption with Constant-Size Secret Keys and Ciphertexts, In IJIS -
International Journal of Information Security, vol. 12„ no. 4, Pages 251-265, 2013.

4. Duong Hieu Phan, David Pointcheval and Viet Cuong Trinh, Multi-Channel Broadcast
Encryption, ASIACCS 2013, ACM Symposium on Information, Computer and
Communications Security, ACM Press, Pages 277-286, 2013.

5. Philippe Guillot, Abdelkrim Nimour, Duong Hieu Phan and Viet Cuong Trinh, Optimal
Public Key Traitor Tracing Scheme in Non-Black Box Model, AFRICACRYPT 2013,
LNCS 7918, pages 140-155, Springer-Verlag, 2013.

6. Duong Hieu Phan and Viet Cuong Trinh, Key-Leakage Resilient Revoke Scheme Resisting
Pirates 2.0 in Bounded Leakage Model, AFRICACRYPT 2013, LNCS 7918, pages 342-
358, Springer-Verlag, 2013.

7. Michel Abdalla, Angelo De Caro and Duong Hieu Phan, Generalized Key Delegation for
Wildcarded Identity-Based and Inner-Product Encryption, IEEE-TIFS, IEEE Transac-
tions on Information Forensics & Security, Volume 7, Issue: 6, Pages 1695 - 1706,
2012.

8. Duong Hieu Phan, David Pointcheval and Mario Strefler, Message Tracing with Optimal
Ciphertext Rate, LatinCrypt 2012, LNCS 7533, pages 56-77, Springer-Verlag, 2012.

9. Duong Hieu Phan, David Pointcheval and Mario Strefler, Decentralised Dynamic Broadcast
Encryption, SCN 2012, LNCS 7485, pages 166-183, Springer-Verlag, 2012.

10. Duong Hieu Phan, David Pointcheval and Mario Strefler, Security Notions for Broadcast
Encryption, ACNS 2011, LNCS 6715, pages 377-394, Springer-Verlag, 2011.

11. Duong Hieu Phan and Viet-Cuong Trinh, Identity-Based Trace and Revoke Schemes,
ProvSec 2008, LNCS 5339, pp. 133–148, Springer.

— 55 —

12. Olivier Billet and Duong Hieu Phan, Traitors Collaborating in Public: Pirates 2.0, Ad-
vances in Cryptology - EUROCRYPT 2009, LNCS 5479, pages 189-205, Springer-
Verlag, 2009.

13. Olivier Billet and Duong Hieu Phan, Efficient Traitor Tracing from Collusion Secure
Codes, The 3rd International Conference on Information Theoretic Security-
ICITS 2008, LNCS 5155, pages 171-182, Springer-Verlag, 2008.

14. Yvo Desmedt and Duong Hieu Phan, A CCA Secure Hybrid Damgaard’s ElGamal Encryp-
tion, ProvSec 2008,, LNCS 5324, pages 68-92, Springer-Verlag, 2008.

15. Yvo Desmedt, Helger Lipmaa and Duong Hieu Phan, Hybrid DamgŇrd Is CCA1-Secure
under the DDH Assumption, The 7th International Conference on Cryptology and
Network Security–CANS 2008, LNCS 5339, pages 18-30, Springer-Verlag, 2008.4284,
pp. 332–347.

16. Nelly Fazio, Antonio Nicolosi and Duong Hieu Phan, Traitor Tracing with Optimal Trans-
mission Rate, 10th International Conference on Information Security – ISC 2007,
LNCS 4779, pages 71-88, Springer-Verlag, 2007.

17. Michel Abdalla, Alex Dent, John Malone-Lee, Gregory Neven, Duong Hieu Phan and
Nigel Smart., Identity-Based Traitor Tracing, Public Key Cryptography - PKC 2007,
LNCS 4450, pages 361-376, Springer-Verlag, 2007.

18. Duong Hieu Phan, Traitor Tracing for Stateful Pirate Decoders with Constant Ciphertext
Rate, Vietcrypt 2006, LNCS 4341, pages 354-365, Springer-Verlag, 2006.

19. Duong Hieu Phan, Rei Safavi-Naini and Dongvu Tonien, Generic Construction of Hy-
brid Public Key Traitor Tracing with Full-Public-Traceability, 33rd International Col-
loquium on Automata, Languages and – ICALP 2006, LNCS 4052, pages 264–275,
Springer-Verlag, 2006.

20. Hervé Chabanne and Duong Hieu Phan and David Pointcheval, Public Traceability in
Traitor Tracing Schemes, Advances in Cryptology – EUROCRYPT 2005, LNCS
3494, pages 542–558, Springer-Verlag, 2005.

21. Benoît Chevallier-Mames and Duong Hieu Phan and David Pointcheval, Optimal Asym-
metric Encryption and Signature Paddings, ACNS ’05, LNCS 3531, pages 254–268,
Springer-Verlag, 2005.

22. Duong Hieu Phan and David Pointcheval, OAEP 3-Round: A Generic and Secure Asym-
metric Encryption Padding, Advances in Cryptology – ASIACRYPT 2004, LNCS
3329, pages 63–77, Springer-Verlag, 2004.

23. Duong Hieu Phan and David Pointcheval, On the Security Notions for Public-Key Encryp-
tion Schemes, SCN 2004, LNCS 3352, pages 33–47, Springer-Verlag, 2004.

24. Duong Hieu Phan and David Pointcheval, About the Security of Ciphers (Semantic Security
and Pseudo-Random Permutations), SAC 2004, LNCS 3357, pages 185–200, Springer-
Verlag, 2004.

25. Duong Hieu Phan and David Pointcheval, Chosen-Ciphertext Security without Redundancy,
Advances in Cryptology – ASIACRYPT 2004, LNCS 2894, pages 1–18, Springer-
Verlag, 2003.

— 56 —

26. Duong Hieu Phan and David Pointcheval, A Comparison between two Methods of Security
Proof, RIVF 2003, Proceeding of RIVF, pages 1–18

27. Thanh Thuy Nguyen, Duong Hieu Phan and Yamanoi Takahiro, Some Preliminary Results
on the Stableness of Extended F-rule Systems., Journal of Advanced Computational
Intelligence, Pages 252-259, Vol.7 No.3, 2003.

Patent Applications
1. Olivier Billet and Duong Hieu Phan, Traceable System for Encrypting/Decrypting Broad-

cast Digital Data, WO2009053605

2. Olivier Billet and Duong Hieu Phan, Obtaining Derived Values Depending on a Secret
Master Value, EP2153575

— 57 —

— 58 —

Part III

Appendix: Articles

— 59 —

Appendix A

Black-box Trace&Revoke Codes

Algorithmica 2013
[NPP13] with Hung Q. Ngo and David Pointcheval

Abstract : We address the problem of designing an efficient broadcast encryption scheme which
is also capable of tracing traitors. We introduce a code framework to formalize the problem.
Then, we give a probabilistic construction of a code which supports both traceability and revoca-
tion. Given N users with at most r revoked users and at most t traitors, our code construction
gives rise to a Trace&Revoke system with private keys of size O((r+ t) logN) (which can also be
reduced to constant size based on an additional computational assumption), ciphertexts of size
O((r + t) logN), and O(1) decryption time. Our scheme can deal with certain classes of pirate
decoders, which we believe are sufficiently powerful to capture practical pirate strategies.

In particular, our code construction is based on a combinatorial object called (r, s)-disjunct ma-
trix, which is designed to capture both the classic traceability notion of disjunct matrix and the
new requirement of revocation capability. We then probabilistically construct (r, s)-disjunct ma-
trices which help design efficient Black-Box Trace & Revoke systems. For dealing with “smart”
pirates, we introduce a tracing technique called “shadow group testing” that uses (close to) legit-
imate broadcast signals for tracing. Along the way, we also proved several bounds on the number
of queries needed for black-box tracing under different assumptions about the pirate’s strategies.

A.1 Introduction

In many real-world applications such as Pay-TV, satellite radio, and the distribution of copyright-
protected materials, a content provider needs to broadcast digital information to a specific set
of users (e.g., subscribers) who were given key(s) for decrypting the content. Two natural re-
quirements arise in such setting. First, the broadcast system should be able to painlessly revoke
the receiving rights of an arbitrary subset of subscribers, probably because they unsubscribed
from the service or violated some rules. This is the essence of the broadcast encryption prob-
lem [Ber91, FN93]. Second, some users might collude to build a pirate decoder and distribute
it, for a fee or not. Or, a pirate might achieve similar effects via hacking accounts of legitimate
users. Either way, such users are called traitors. It is thus desirable for the system to be able to
trace (and then revoke) at least one traitor by examining the pirate decoder. This is the traitor

— 61 —

Chapter A. Black-box Trace&Revoke Codes

tracing problem [CFN94b]. All in all, broadcast encryption systems which are capable of both
tracing and revoking would be widely useful.

Many existing works studied the two problems separately, leading to inefficiency when ap-
plying the solution to one problem to cope with the other. For example, collusion-secure codes
[BS95] provide a powerful tool against the illegal distribution of fingerprinted material in set-
tings satisfying the so-called Marking Assumption [BS95, Tar03]. Though designed for finger-
printing large digital objects, these codes have been widely applied in the context of multi-
user encryption for tracing traitor, motivated by the work of Kiayias and Yung [KY02c] in
which a black-box tracing scheme with constant ciphertext rate was proposed. The schemes
in [FNP07b, Sir07a, BN08b, BP08] belong to this class.

A drawback of employing collusion-secure codes for multi-user encryption is the resulting
relatively large key size. For the marking assumption to be valid, each user – characterized
by a codeword – should be assigned one out of two (or one out of many, with larger alphabet
such as in IPP codes [SSW00]) keys for each position of the codeword. Indeed, the lower bound
established in [Tar03] shows that the code length must be Ω(t2 log(N/ε)) for a system of N
users with at most t traitors and with the failure probability ε of the tracing procedure. This
means the private key sizes of users cannot be improved beyond this bound. The construction
in [Tar03] has a code length of about 100t2 log(N/ε), making the schemes inefficient for general
practical usage.

Due to the quadratic dependency on the number of traitors, code-based schemes are only
suitable for applications where the number of traitors is relatively small, say t = O(logN).
For example, in the Pay-TV application the users’ secret keys are stored in tamper-resistant
smartcards, making it difficult and time-consuming to recover a key: recovering one key in a
tamper-resistant smartcard does not necessarily help speed up the recover of another key in
another tamper-resistant smartcard. In such applications, it is probably reasonable to assume
a small value of t. However, even when the number of traitors is small, collusion-secure codes
can still be quite inefficient. For instance, for a system of four millions users and at most t = 22
traitors, Tardos’ code induces a system where each user’s private key is composed of more than
one million sub-keys.

Recently, schemes based on collusion-secure codes allowing erasure have been made more
practical in terms of ciphertext size (as small as a constant, as shown in [BN08b, BP08]).
However, in this case the code length and thus the private key size should be even longer.

A relatively small number of proposed systems, called trace&revoke systems [NP00, NNL01,
BW06b], do address both traitor tracing and broadcast encryption. These schemes can roughly
be classified into three categories: schemes based on some forms of polynomial interpola-
tion [NP00, DF03], schemes in the tree-based subset-cover framework [NNL01, HS02, DF02],
and pairing-based schemes that support full collusion [BW06b].

However, there are still fundamental shortcomings. The schemes in [NP00, DF03] have to
fix an a-priori bound of the size of the collusion and as soon as the pirate could collect more
than this bound of keys, from traitors or revoked users, it can totally break the schemes (by
reconstructing the master secret key). The schemes [NNL01, DF02] are rather efficient but they
can only deal with a non-standard notion of traitor tracing where the tracer can either identify
a traitor or render pirate decoder useless (this is mentioned in [NNL01]). The scheme [BW06b]
can deal with full collusion but with a large ciphertext size of O(

√
N) even when there is no

traitor in the system.
The major objective of our paper is to propose a new code-based framework for constructing

black-box Trace&Revoke systems which have small private key and ciphertext sizes. We will
deal with black-box tracing, which means the traitors are traced by simple interactions with the
pirate decoder. The decoder can be reset as many times as we want, i.e. it is stateless.

— 62 —

A.1. Introduction

Contributions and paper outline. Section A.2 formalizes the notion of revocable codes,
and efficient conjunction revocable codes in particular. The Complete-Subtree scheme [NNL01]
is a type of conjunction revocable code. The decoding possibility of a user (i.e. a codeword) is
captured by a predicate, which is a binary relation indicating whether a codeword is capable of
decrypting a signal.

Section A.3 formalizes the traceability of codes. We introduce two notions in order to
formalize the capability and the strategy of pirate decoders:

• Each pirate decoder, produced by a collusion C, is associated to a word in a Useful Feasible
Set of C. Roughly, this set is defined such that if a signal can be decrypted by every
member of C then it can also be decrypted by a word in the useful feasible set. This notion
formalizes useful pirate decoders because the pirate decoder should assure the “minimum"
capability of the collusion: when all members in the collusion can decrypt a signal, the
pirate decoder should also be able to decrypt that same signal. However, Useful Feasible
Set alone does not capture “smart" decoders in the sense that it does not use any strategy:
whenever it can decrypt, it will decrypt.

• The pirate decoder could of course choose an anti-tracing strategy by refusing to decrypt
signals that it considers abnormal or coming from a tracing procedure. We introduce the
notion of qualified signals to formalize the anti-tracing strategies of pirates.

We borrow the notion of useful feasible set from collusion-secure codes to formalize the capability
of the colluders. We note that, in collusion-secure codes, a word in the feasible set is also
associated to a perfect decoder and in order to deal with smarter pirate decoders, one should
use a collusion-secure code with an all-or-nothing transform [KY02c] or one should use a robust
collusion-secure codes that allow erasure [Sir07a, BP08, BN08b]. In our setting, the pirate’s
strategy is formalized by the notion of qualified signals.

In Section A.3, we also indicate a simple connection between traceability of codes with the
so-called disjunct matrices, a classic combinatorial object which has “built-in" tracing capability.

The problem with disjunct matrices is that they have no “built-in" efficient revocation ca-
pability. Indeed, disjunct matrices or equivalently cover-free families have been used for traitor
tracing in [TSN06]. However, by following the tracing framework of [BF99b] it cannot be used
for revocation. We deal with this problem in Section A.4 by introducing a new combinatorial
object called (r, s)-disjunct matrices, which retains the tracing-capability of disjunct matrices
while also supports revocation. As disjunct matrices have applications in diversely many areas
[DH00], we believe that the new and stronger notion of (r, s)-disjunct matrices will be widely
applicable as well.

Section A.5 is the heart of the paper, where we present a method for constructing good (r, s)-
disjunct matrices which allow for tracing and efficient revocation. The resulting code yields a
Trace&Revoke scheme with private key size and ciphertext length O((t+ r) log(N/(t+ r))) for
N users, at most r revoked users and at most t traitors. The constants hidden in the big-O are
small (≤ 8). This randomized construction yields a key assignment scheme where users pick their
keys independently from the same distribution and all keys have the same role. Thus, unlike
the complete-subtree method which leads to a highly asymmetric key assignment making it not
suitable for tracing smart pirate decoders, our code has better “built-in" support for traceability
against non-trivial pirate strategies.

Rigorously, we deal with non-trivial pirates (that are characterized by some qualified pred-
icates). For a probabilistic code where codewords are picked independently from the same
distribution and all keys used in encryption have the same role, a non-trivial pirate can estimate
the number of keys used in a normal encryption and can refuse to decrypt a ciphertext that
contains too few or too many keys that lies outside its estimated interval. This strategy of pirate,

— 63 —

Chapter A. Black-box Trace&Revoke Codes

called weight-limited pirate, is formalized under interval qualified predicate. To cope with this
strategy of pirate decoder, we introduce a tracing technique called shadow group testing that
uses (close to) legitimate broadcast signals for tracing. In particular, in one setting, we con-
sider general pirate decoders that can used any strategy. We show that the problem of deciding
whether a given signal is a legitimate broadcast signal (here, broadcast signal is a ciphertext
targeted to all users) or a tracing signal is NP-hard. We thus establish that the shadow group
testing technique can be used in conjunction with our code to construct revocable codes that are
traceable against non-trivial pirates (modulo the computational hardness), in the conventional
stateless setting where the pirate decoder could be resettable. This does not show that our
trace&revoke code can be used to deal with any pirate decoder but it can be seen as a step
toward this goal.

For tracing a particular type of pirate decoder which only decrypts signals of certain weights,
we prove upper and lower bounds on the number of tests needed for a variant of group testing
where each test must consist of a given number of items.

Last but not least, we prove upper- and lower-bounds for the number of black-box queries
necessary in the information-theoretic limit when the pirate only decrypts signals which are legiti-
mate broadcast signals (and when it has the keys). This result applies to arbitrary Trace&Revoke
system, not just code-based ones like ours, as long as the pirate decryption assumption is valid.

Section A.6 discusses the questions of how to optimize code lengths (using multi-user tracing
families), private key size (down to a constant using Asano’ method [Asa02]), and how to deal
with unbounded number of traitors/revoked users.

A.2 Revocable Codes

A.2.1 General settings

Broadcast encryption (BE) schemes enable the sender of a message to specify a subset of the
users the message will be sent to, called the target set or the privileged set. The complement
of the target set is called the revoked set. To revoke the receiving rights of some desired subset
of users, a BE scheme typically generates three pieces of data: (a) the Id Header, which is a
bit-string that unambiguously identifies the target set/revoked set; (b) the Key Header, which
encapsulates a session key for the privileged users; and (c) the Message Body, which contains
the payload encrypted with the session key.

In what follows, we describe a BE scheme based on codes. Roughly speaking, each user is
associated with a “codeword” which determines the private key(s) assigned to that user. To
revoke a subset of users, a code-based BE scheme generates a “signal” c which is a word (not
necessarily a codeword) from which the Key Header will be constructed. The signal c will
have to be “compatible” with the codewords assigned to privileged users and “incompatible”
with revoked users so that only privileged users can decode. The notation of compatibility is
captured by a Boolean predicate associated with the code. The formal definitions of broadcast
encapsulation, public-key encryption and secret sharing schemes are given in Appendix A.7.

Definition A.2.1 [(`,N)-Code] Given a finite alphabet Σ, and positive integers ` and N , an
(`,N)-code Γ is an N -subset of Σ`, namely Γ ⊆ Σ` and |Γ| = N . Members of Σ` are called
words. Members of Γ are called codewords. The quantity ` is called the length, and N the size
of the code.

In order to build a BE scheme, we associate a codeword w to each user. Henceforth, without
loss of generality we use codewords to identify users. Given a set R ⊆ Γ of revoked users, the
code-based BE scheme broadcasts by first generates a signal c ∈ Σ` which is not necessarily a

— 64 —

A.2. Revocable Codes

codeword. The signal will be used to generate the session key for broadcasting. A user w is
“compatible” with a signal w iff a corresponding predicate is true:

Definition A.2.2 [Predicate] We associate a code Γ with a predicate D : Σ` × Σ` → {0, 1}.
The boolean value D(w, c) indicates whether the word/user w is compatible with the signal c.
The practical semantic is that user w is able to recover the content associated with the signal c
iff D(w, c) = 1.

Given signal c, the predicate D specifies the target set (the set {w | w ∈ Γ ∧ D(w, c) = 1}),
or equivalently the revoked set. A subset of revoked users might somehow be able to collude,
and combine their keys to recover the content. By combining their codewords, the colluders can
generate new words (not necessarily codewords) which potentially can be used to decode signals
which were not meant to be decodable by any one of them. We formalize this capability of a
collusion by the following notion.

Definition A.2.3 [Feasible Set] A collusion C of users can produce new words from their own
codewords. This derivation of new words depends on the structure of the code. The set of words
that can be derived from a subset C of codewords is called the feasible set, and is denoted by
F(C; Γ). When there is no ambiguity, we omit Γ and use F(C) to denote the feasible set.

We can now define the notion of revocable code which is a basic building block for BE
schemes.

Definition A.2.4 [(Efficiently) Revocable Code] Let Γ = {w1, · · · , wN} be an (`,N)-code. The
code Γ is called r-revocable if there is a predicate D such that for all R ⊆ Γ of size |R| ≤ r,
there exists a signal c ∈ Σ` satisfying the following conditions: ∀u ∈ Γ − R : D(u, c) = 1 and
∀v ∈ F(R) : D(v, c) = 0. If, in addition, there is a poly-time algorithm Rev that, given R, outputs
a signal c satisfying the above condition, then the code is said to be efficiently r-revocable.

A.2.2 Conjunction Codes and Broadcast Encryption

In order to clarify the above formalism, we now present a specific family of binary revocable
codes called k-conjunction codes and a BE scheme based on this family. For any two vectors
u, c ∈ {0, 1}`, let u ∧ c (resp. u ∨ c) denote the bitwise AND (resp. OR) of two vectors u and c.
Let wH(c) denote the Hamming weight of any word c ∈ {0, 1}`.

Let k ≤ ` be a positive integer, a k-conjunction code is a subset of {0, 1}` with the following
associated predicate and feasible set.

Definition A.2.5 [Predicate for k-Conjunction Codes] For any u, c ∈ {0, 1}`, the predicate
Dk(u, c) := (wH(u ∧ c) ≥ k) is called the k-conjunction predicate.

Definition A.2.6 [Feasible Set for k-Conjunction Codes] For any set C = {u1, · · · , uc} ⊆ Γ.
Define

F(C) = F (C; Γ) =

w ∈ {0, 1}` s.t ∀i ∈ [l], wi ∈ {0} ∪
c⋃
j=1
{uji}

 .
Each word w = (wi)`i=1 ∈ {0, 1}` can be thought of as a subset of [`]: the subset of indices

i for which wi = 1. Then, the above definitions can be translated as: Dk(u, c) = 1 iff the
intersection of u and c has size at least k, and F (C) is the collection of all subsets of the union⋃
c∈C c.
The notion of revocable codes can now be made more precise for this family.

— 65 —

Chapter A. Black-box Trace&Revoke Codes

Definition A.2.7 [(Efficiently) Revocable k-Conjunction Code] A binary (`,N)-code Γ is called
(r, s)-Revocable k-Conjunction if for all R ⊆ Γ and |R| ≤ r, there exists a signal c ∈ {0, 1}`,
with wH(c) ≤ s satisfying the following conditions: ∀u ∈ Γ − R : Dk(u, c) = 1 and ∀v ∈ F(R) :
Dk(v, c) = 0. If in addition there is a polynomial time algorithm Rev that computes c given R,
then the code is said to be efficiently revocable.

Example A.2.8 [The Complete-subtree scheme as a 1-conjunctive code] The Complete-Subtree
scheme [NNL01] can be roughly described as follows. Imagine a full binary tree T with N
nodes. Each user is associated with a leaf of the three. To each tree node there corresponds a
distinguished encryption key. A user is given the set of keys corresponding to all the internal
nodes from the leaf to the root of the tree. To revoke a subset R of users (i.e. leaves of the tree),
we first construct a minimal subtree T ′ of T that spans R and the root. Let K be the set of
nodes of T that are “hanging off” of T ′. Then, it is easy to see that each non-revoked user has
some key in the set K, and no revoked user has any key in the set K. The system can then use
the set K of keys to encrypt the broadcast message, whose length will be proportional to |K|,
which can be shown to be O(|R| log(N/|R|)).

The above key assignment scheme can be casted in terms of a 1-conjunction code as follows.
There is a codeword for each leaf of the N -leaf full binary tree T . The code length is ` = 2N−1,
each position (i.e. coordinate) of the code corresponds to a node of the tree. For each codeword
w, there is a 1 in a position if the corresponding node is on the path from w to the root. We
will refer to this code the CS-code.

Following the results in [NNL01] and our brief description above, the following proposition
is straightforward.

Proposition A.2.9 For any r ∈ [N], the CS-Code is a 1-conjunction (r, r log(N/r))-revocable
(2N − 1, N)-code.

We now present a broadcast encryption scheme that implements our above predicate for a
general k-conjunction binary code. The new trick is to combine the secret sharing with the k-
conjunction code such that only legitimate users possesses sufficient shares to be able to decrypt.
This is a generalization of the previous schemes [NNL01] where the secret sharing is not involved.
In fact, under our construction, the previous schemes [NNL01] correspond to the case k = 1 and
the 1-out-of-m secret sharing becomes trivial.

Definition A.2.10 [BE from Conjunction Codes] Let us be given a generator of Efficiently
(r, s)-Revocable k-Conjunction binary (`,N)-Codes, a secret sharing scheme SSS, and a secure
public-key encryption scheme PKE . We build a BE scheme Π that can revoke up to r users in
the following way.

• Setup(1λ, N)

1. Run the code generating algorithm on (N, k, r) to obtain an Efficiently (r, s)-Revocable
k-Conjunction (`,N)-Code Γ.

2. Run PKE .Setup(1λ) to get the public parameters param for the encryption scheme;
3. For i = 1, . . . , `, run the key generation algorithm PKE .KeyGen(param) to get the

pair (dki, eki).
4. Set MSK = (Γ, {dki}), and EK = {eki}.
5. For i = 1, . . . , N , the user i is associated with the codeword wi ∈ Γ, we write wi =
wi1 . . . w

i
` and set uski ← {dkj/wij = 1, j = 1, . . . , `}.

— 66 —

A.3. Traceable Codes

• Encaps(EK, R):

1. For a revoked set R of size at most r, since the code Γ is efficiently (r, s)-revocable, one
can find out a signal c of weight at most s, such that Dk(u, c) = 0, for any u ∈ F (R),
and D(u, c) = 1 for any u ∈ [N]−R. We denote by m = wH(c) this weight;

2. Denote by i1, . . . , im the positions of m 1-bits in c, i.e., cij = 1, for j = 1, . . . ,m;
3. Call Share(κ, k,m), a k-out-of-m secret sharing scheme of a κ-bit secret.

The Share(κ, k,m) algorithm outputs a secret K $← {0, 1}κ and m shares s1, . . . sm;
4. Set eij = PKE .Enc(pkij , sj), for j = 1, . . . ,m.
5. Output K and H = (c, (eij), j = 1, . . . ,m).

• Decaps(uskj , R,H):

1. If j is in [N]−R, then Dk(wj , c) = 1. This means wH(wj ∧ c) ≥ k.
2. Denote by i1, . . . , ik the positions of the first k 1-bit in wj ∧ c.
3. Compute sj = PKE .Dec(skij , eij), for j = 1, . . . , k. With the Combine algorithm on

these k shares, reconstruct K.

The case k = 1 is the simplest case: the secret sharing scheme simply consists in choosing a
random K

$← {0, 1}κ, and then to set si = K for all i.

A.3 Traceable Codes

Traitors are users who collude to build (and distribute) a pirate decoder. The goal of traitor
tracing schemes is to allow an authority to trace back, from a pirate decoder, at least one
codeword which was used and thus at least one traitor. More precisely, let T ⊂ Σ` denote the
set of (codewords of) at most t traitors. From this set of codewords the “pirate” produces a
pirate decoder D that efficiently decrypts some broadcast signals c ∈ {0, 1}`. We view D as
boolean function on predicates c ∈ {0, 1}`: D(c) = 1 means D correctly decrypts c, and D(c) = 0
otherwise.

The main task of the traitor tracing scheme is to identify at least one codeword in T (i.e.
one traitor) by “examining” the pirate decoder. In this paper we are only concerned with the
commonly used “blackbox tracing” model, where the tracer can only query the decoder function
D [CFN94b, KY02c]. In reality, querying D is roughly equivalent to the act of sending a
broadcast signal to the physical decoding device, examining its output (whether it decrypts the
content correctly), and then resetting the device. While it is true that some devices may not be
stateless (say, some data is stored in a ROM), the blackbox tracing model is still a reasonably
practical model.

Our plan is as follows. We first define the notion of a traceable code. The code is designed
such that from a word w belonging to the “useful feasible set” of words, the code allows us to
trace back at least one traitor. Recall that the feasible set F(T) is the set of all words that the
traitors can derive. (We can roughly think of F(T) as the set of decryption keys that the traitors
can derive from their private keys.) The useful feasible set UF(T) is a subset of the feasible
set, whose meaning is define below. Then, we give a specific family of 1-conjunction traceable
codes based on disjunct matrices. Finally, we describe how we might possibly get a hold of a
word from the UF(T). This task is highly dependent on the “anti-tracing” strategy used by the
pirate, and thus we will model the anti-tracing strategy with the notion of “qualified signals.”

— 67 —

Chapter A. Black-box Trace&Revoke Codes

A.3.1 Traceable Codes

The feasible set models the collection of all words which can be “constructed” by the traitors
from their codewords. A word in the feasible set F(T) may or may not be useful for decrypting
broadcast contents. We consider a word w from a collusion T useful if it satisfies the following
condition: for any signal, if every user in T is able to decrypt it, then w should be also able to
decrypt it.

Definition A.3.1 [Useful Feasible Set] The useful feasible set, denoted by UF(T ; Γ) (or
UF(T)) from a collusion T is the subset of words w in F(T) such that, for any signal c ∈ Σ`, if
D(u, c) = 1, ∀u ∈ T , then D(w, c) = 1.

It follows from the definition that T ′ ⊆ T implies UF(T ′) ⊆ UF(T). To see this, consider a
word w ∈ UF(T ′) ⊆ F(T) and an arbitrary signal c. If D(u, c) = 1∀u ∈ T , then D(u, c) = 1∀u ∈
T ′, which in turns implies D(w, c) = 1. Hence, w ∈ UF(T). Roughly, adding more traitors to a
traitor set leads to more useful words. Intuitively, the pirate should at least be able to decrypt
signals that all traitors are able of decrypting. Hence, the above definition is in some sense the
weakest requirement of being useful.

Useful Feasible Set of 1-conjunction codes To illustrate the concept of useful feasible
set, let us characterize the useful feasible sets of 1-conjunction codes. Let Γ be a 1-conjunction
(`,N)-code, and T ⊆ Γ be an arbitrary set of traitors. Recall that the alphabet is binary in this
case. Each word w = (wi)`i=1 ∈ {0, 1}` can naturally be viewed as a subset of [`]: the set of all
positions i ∈ [`] for which wi = 1. This way, the intersection and union of words are also words
in {0, 1}`. Also, we can write w ⊂ v for two words w, v ∈ {0, 1}` without ambiguity.

Proposition A.3.2 Let T ⊆ Γ be an arbitrary non-empty set of codewords of a 1-conjunction
(`,N)-code. Then,

UF(T) = {w ∈ F(T) | ∃u ⊂ T, u ⊆ w} .

In words, a word w in the feasible set F(T) is useful if w contains some member of T .

Proof: The fact that {w ∈ F(T) | ∃u ⊂ T, u ⊆ w} ⊆ UF(T) is straightforward from definitions.
We prove the converse. Assume to the contrary that there is some w ∈ UF(T) what does not
contain any u ∈ T . Let c be a signal, viewed as a subset of [`], constructed by collecting
arbitrarily one member from each of the set u \ w for each u ∈ T . Then, D1(u, c) = 1 for all
u ∈ T yet D1(w, c) = 0 because w ∩ c = ∅. This is a contradiction.

We are now ready to formalize the notion of traceable codes.

Definition A.3.3 [(Efficiently) Traceable Code] An (`,N)-code Γ is t-traceable if from any
collusion T ⊂ Γ of size at most t, and any word w in the useful feasible set UF(T), there is an
algorithm that on input w outputs a codeword in T . This algorithm is a tracing algorithm. If
there is a polynomial time tracing algorithm, then the code is said to be efficiently traceable.

We have not specified how one might be able to construct a traceable code, efficiently or not,
even in the 1-conjunction code case. Given a generic 1-conjunction code, and a word w ∈ UF(T),
we can construct a set Tw of candidate codewords which are all codewords u which contains w.
However, we can not be sure which of the words in Tw belong to the traitor set T . We will enlist
the help of disjunct matrices to construct 1-conjunction traceable codes.

— 68 —

A.3. Traceable Codes

A.3.2 Traceable codes from disjunct matrices

The classic combinatorial structure allowing for a very common type of tracing is the so-called
disjunct matrices [DH00]. Roughly speaking, an r-disjunct matrix is a binary matrix satisfying
the following property: given the (boolean) union of at most r unknown columns of the matrix
we can identify all the unknown columns in time linear in the size of the matrix. Disjunct
matrices turn out to be very useful in constructing efficiently traceable 1-conjunction codes, so
we formally define and discuss their properties next.

Let M be an `×N binary matrix. As in the previous section, we will also view each column
of M as a subset of [`], In particular, the set of columns of M is a family of subsets of [`].
Similarly, the rows of M form a family of subsets of [N].

Definition A.3.4 [r-Disjunct Matrix] An ` × N binary matrix M is said to be r-disjunct if
no column (viewed as a subset of [`]) is contained in the union of any r other columns.

This concept is equivalent to the notion of r-cover-free set family [EFF85]. Disjunct matrices
are used to design non-adaptive group tests in the following sense. There is a set of at most r
positive items in a population of N items. The rest of the items are negatives. We must identify
the positives using as few non-adaptive “tests" as possible. Each test is a subset of items. A
test returns positive iff at least one positive item is contained in the test. In the original group
testing application [Dor43], each item is a blood sample, and a test is a pool of blood samples
which indicates if any sample in the pool is positive for syphilis. That application explains the
“positive" and “negative" terms.

Associate each column of an `×N binary matrix M with an item. Each row of M represents
a test, which consists of all columns with a 1 on the row. The test outcome vector is precisely
the union of the positive columns, where 1 represents positive test outcome and 0 negative.
It is well-known [DH00] that, if M is r-disjunct, then there is a O(`N)-time algorithm that
identifies all the positives given the test outcome vector. The algorithm eliminates all items
that participate in a negative test. The remaining items are identified as positives. The matrix
is r-disjunct if and only if this elimination procedure returns the correct positive set, for an
arbitrary set of at most r positives.

The following proposition explains a slightly stronger capability of disjunct matrices. The
proposition allows for a disjunct matrix to identify a subset of positives when the outcome vector
which is not necessarily an exact union of some positives.

Proposition A.3.5 Let M be an r-disjunct matrix with dimension `×N . Let M(j) denote the
jth column of M. Let T be any (unknown) subset of at most r columns of M. Let ∅ 6= S ⊂ T
and w ∈ {0, 1}` be a vector such that

⋃
j∈S M(j) ⊆ w ⊆

⋃
j∈T M(j). Then, from the vector w

we can identify a set of columns U in time O(`N) such that S ⊆ U ⊆ T .

Proof: Let M = (mij), and w = (wi)`i=1. Remove any column j such that mij = 1 and wi = 0
for some i ∈ [`]. Let U be the set of remaining columns. We claim that S ⊆ U ⊆ T . First,
consider any column j /∈ T . By the definition of r-disjunctness, column M(j) is not contained in
the union of columns in T . In particular, M(j) is not contained in w. Thus, there is some row
i ∈ [`] such that mij = 1 and wi = 0. Column j is thus removed by the algorithm. We conclude
that U ⊆ T . Next, consider any column j ∈ S. Since M(j) ⊆ w column j is not removed.
Consequently, S ⊆ U as desired.

We can also think of an ` × N binary matrix as an (`,N)-code where the codewords are
defined to be the columns of the matrix. The following corollary follows from Propositions A.3.5
and A.3.2.

— 69 —

Chapter A. Black-box Trace&Revoke Codes

Corollary A.3.6 Let Γ be the collection of columns of an `×N t-disjunct matrix. Then, Γ is
an efficiently t-traceable 1-conjunction code.

A.3.3 Black-box Traceability and Decoders’ Strategies

So far, we have defined traceable codes and specified how to obtain efficiently traceable 1-
conjunction codes from disjunct matrices. Traceable codes allow us to pin-point at least one
traitor from any given useful feasible word. So the remaining question is how to get a hold of a
useful feasible word.

Our ability to identify a useful feasible word depends intimately on the “anti-tracing” strategy
adopted by the pirate (decoder). The anti-tracing strategy attempts to decrypt some signal
while ignores others. We call the set of signals that the pirate (decoder) attempts to decrypt
the “qualified signals,” and this set is modeled with a relation as in the following definition.

Definition A.3.7 [Qualified signals] Let T ⊂ Γ be the set of traitors. Let Q to be the binary
relation Q over T ⊂ Γ and signals c ∈ {0, 1}` defined by Q(T, c) = 1 if the pirate decoder
attempts to decrypt broadcast messages associated with the signal c, and Q(T, c) = 0 otherwise.

Recall that D denotes the pirate decoder, which is a boolean function, where D(c) = 1 iff the
decoder successfully decode signal c. For any subset T of words, define D(T, c) = ∧u∈TD(u, c).
We certainly can not hope to trace pirate decoders that do not decode any signal at all. Our aim
is to be able to trace decoders which decode signals that it aims to decode with a non-negligible
probability.

Definition A.3.8 [Effective Decoder] A pirate decoder D is called (Q, p)-effective if for any
signal c ∈ Σ`, Pr[D(c) = 1 | D(T, c) = 1 and Q(T, c) = 1] ≥ p, where T is the set of codewords
(traitors) used to build the decoder.

We will consider black-box tracing procedures, which trace traitors by simple interactions
with the pirate decoder. We assume that the decoder can be reset as many time as one wants,
thus is it stateless and can be modeled with the function D as described earlier. However, the
decoder can have a specific strategy Q. The only thing that is going for us is that the pirate
decoder has to be (Q, p)-effective.

Definition A.3.9 [Black-box (Efficiently) Traceable Code] An (`,N)-code Γ is
(Q, p, δ)-blackbox t-traceable if there exists a tracing algorithm Trace such that, for any
collusion T of size at most t, and any (Q, p)-effective decoder D, the tracing algorithm TraceD,
with oracle access to the decoder, outputs a traitor in T with probability at least δ. If there is
a tracing algorithm which runs in time poly(N), then the code is said to be (Q, p, δ)-blackbox
efficiently t-traceable code. In particular, such an algorithm can only issue poly(N) queries to
the decoder.

To illustrate the above concepts, let us consider several anti-tracing strategies.

Example A.3.10 [Naive Decoder] We first consider the case when the pirate has no strategy
at all. The following decoder was called a “perfect decoder" in [BN08b]. A naive decoder is a
decoder that tries to decrypt any word c with no strategy: Q(T, c) = 1 for any collusion T and
any signal c.

This is of course the weakest adversary for a tracing algorithm. For example, the CS-
Code [NNL01] described in Example A.2.8 and the disjunct matrix-based code described in
Corollary A.3.6 are both black-box efficiently traceable. Assuming the decoder D is naive, the

— 70 —

A.3. Traceable Codes

tracing algorithm works as follows. It queries the decoder D with all weight-1 signals c ∈ {0, 1}`.
These are the signals with 1 in some coordinate and 0s elsewhere. By repeating the queries
many times, we can amplify the success probability (to be more than δ, see Lemma A.3.11
below) of identifying the set of positions i ∈ [`] at which some codeword in T has a 1. From
these positions, we obtain a useful feasible word w for which u ⊆ w for every codeword u ∈ T .
This useful feasible word w is precisely the union of the traitor codewords. Hence, the set of all
traitors can be traced if the code is based on a t-disjunct matrix.

For the CS-code, we apply the tracing algorithm described in [NNL01]. Recall that in the CS-
code codewords are constructed from leaves of a full binary tree with N leaves. Each codeword
is of length ` = 2N−1, one position for each node in the tree. A codeword has 1s in the positions
corresponding to the nodes from the associated leaf up to the root. Now, from the feasible word
w above, we know of all the paths from the traitors to the root and thus we can easily identify
the traitors.

The following simple lemma shows us how to amplify the success probability of a tracing
procedure. Each query to a pirate decoder is some signal c, and we would like to know whether
D(c) = 1 or 0 with high confidence.

Lemma A.3.11 Consider a probabilistic pirate decoder that, for each query c, if it is able to
decrypt c then it gives the correct answer D(c) = 1 with probability at least p, and if it cannot
decrypt c then it always outputs D(c) = 0. Suppose we want to issue q different queries c1, · · · , cq
to this pirate decoder. Then, by repeating each query O

(
ln(q

1−δ)
ln
(

1
1−p

)) times, we will obtain all q

correct answers with probability more than δ. (If p = 1 then each query is issued once only, for
a total of q queries.)

Proof: Suppose we repeat each query m times, and outputs 1 only if at least one of the m
copies of the query returns D(c) = 1. Then, we will be wrong with probability at most (1−p)m.
Hence, for q different queries c1, · · · , cq we will be wrong on some of them with probability at

most q(1− p)m by the union bound. By picking m = O

(
ln(q

1−δ)
ln
(

1
1−p

)) we then can ensure that the

probability that we are wrong is less than 1− δ.

We have been relatively brief in the above description on the naive decoder because the
decoder is too simple to spend much space on. In practice, we certainly cannot assume that a
decoder will accept to decrypt any signal, even if it could. For example, against the CS-code
the pirate decoder can employ the following strategy: it does not decrypt any weight-1 signal
where the 1 is in the position of a traitor leaf node. Under this strategy, the CS-Code is not
blackbox-traceable, unless with error probability greater the 1/2 because no tracing algorithm
can distinguish between a traitor (a leaf node) and its sibling in the full binary tree. Note that
the sibling may very well be a non-traitor. The CS-Code cannot deal with this type of pirate’s
strategy because the code has a rigid structure where each position in the code plays a specific
role and corresponds to a subset of users of different sizes. For probabilistic constructions of
codes where all the code positions have the same role, the strategy of refusing to decrypt some
position has no significant impact on the tracing algorithm. Our probabilistic constructions,
described in the next sections, can deal with the above pirate’s strategy against CS-Code for
that reason.

However, the pirate’s strategy can certainly be smarter than rejecting some position(s) of the
code. For example, for a probabilistic code where the codewords are chosen independently from
the same distribution and all positions play the same role, a non-trivial pirate can estimate the
(Hamming) weight of signals used in broadcast encryption and can refuse to decrypt a ciphertext

— 71 —

Chapter A. Black-box Trace&Revoke Codes

that correspond to a signal containing too few or too many 1s. This strategy of pirate, called
the “weight-limited pirate," is formalized as follow:

Definition A.3.12 [Weight-Limited Decoder] A Weight-Limited Decoder is a decoder that
only decrypts signals c with Hamming weight in an interval [a, b]: Q(T, c) := (wH(c) ∈ [a, b]).

If the tracing algorithm works for a weight-limited decoder with interval [a, a], then it a
fortiori works for a weight-limited decoder with interval [u, v], for any u ≤ a ≤ v. Therefore, the
most interesting case is a singleton interval. We will denote Qa the Weight-Limited Strategy Q
for the singleton interval [a, a]. The following simple proposition should help clarify the concepts
of weight-limited decoder and blackbox efficiently traceable codes.

Proposition A.3.13 The column set of a t-disjunct `×N matrix is a 1-conjunction code which
is (Q1, p, δ)-blackbox efficiently t-traceable code, where the number of queries the tracer issues
to the decoder is O

(
`

ln(`
1−δ)

ln
(

1
1−p

)).
Proof: We issue ` different weight-1 queries (with repetitions) to a (Q1, p)-effective decoder D.
From Lemma A.3.11, the total number of queries issued is O

(
`

ln(`
1−δ)

ln
(

1
1−p

)). From the results of
these queries, we will be able to recover a useful feasible word w which is the boolean union of all
the traitors participated in constructing the decoder. From Proposition A.3.5, we can identify
all the traitors in O(`N) time.

A.4 Trace&Revoke Codes

A.4.1 1-Conjunction Trace&Revoke Codes and (r, s)-disjunct matrices

Sections A.2 and A.3 defined and presented basic examples of revocable and traceable codes.
This section defines trace&revoke codes which are capable of both revoking users and tracing
traitors. Roughly, in a trace and revoke code, one can still trace traitors even after revoking a
set of users. The codes we discuss from this section on will be 1-conjunction codes.

As usual, we interchangeably think of w ∈ {0, 1}` as a subset of [`]. In particular, for any
position j ∈ [`], we write j ∈ w iff wj = 1 and j /∈ w otherwise. Let Γ be an (`,N)-code. For
any subset P ⊂ [`], let ΓP ⊆ ΣP denote the restrictions of all codewords in Γ onto positions in
P ; namely ΓP = {w|P : w ∈ Γ}, where w|P denotes the projection of w onto positions in P .

Let R ⊆ Γ be any set of codewords, then P (R) denotes the positions i ∈ [`] for which wi = 1
for some w ∈ R. Let P̄ (R) = [`] − R. Then, define ΓR̄ = (Γ − R)P̄ (R). In words, ΓR̄ is the set
of all codewords not in R restricted to the positions not in P (R). We can think of ΓR̄ as Γ with
R being “modded out.”

Definition A.4.1 [1-Conjunction Trace&Revoke Code] An (`,N)-code Γ is called an (efficient)
1-conjunction (r, s, t)-trace&revoke if:

1. Γ is a 1-conjunction (efficiently) (r, s)-revocable code;

2. For any subset R ∈ Γ of at most r codewords, the code ΓR̄ is a (efficiently) t-traceable
code.

— 72 —

A.4. Trace&Revoke Codes

The main intuition behind the definition should be clear: after revoking users in R, the
remaining codewords form a t-traceable code so that we can trace after revoke. But how do we
construct (r, s, t)-trace&revoke codes? We will impose an extra constraint on disjunct matrices
to add revoking capability to disjunct matrices.

In Section A.3.2, we motivated the use of disjunct matrix for tracing. However, general
disjunct matrices do not necessarily have efficient revocation capability. For example, the iden-
tity matrix is r-disjunct for any r, but it would represent a horrible 1-conjunction revoke code
because a broadcast signal must have weight Ω(N) leading to large broadcast messages.

This section introduces “(r, s)-disjunct matrices” that retain the traceability of disjunct
matrices yet also attain efficient revocation capability. Constructions of good (r, s)-disjunct
matrices are presented in Section A.5.

Let R ⊆ [N] be a non-empty subset of columns of a binary matrix M with ` rows and N
columns. A row set I ⊆ [`] is said to eliminate R if the union of the rows in I is precisely
[N]−R.

Definition A.4.2 [(r, s)-disjunct] An `×N matrix M is said to be (r, s)-disjunct if it satisfies
the following property. Given an arbitrary set R of up to r columns of M, there is a set I ⊆ [`]
of at most s rows which eliminates R.

Finally, we show how the new notion of disjunct matrices leads to 1-conjunction trace and
revoke codes.

Theorem A.4.3 For any (r + t, s)-disjunct matrix M with ` rows and N columns. Then, the
set of columns of M forms a 1-conjunction (r, s, t)-trace&revoke code.

Proof: Let Γ denote the set of columns of M. Let R be any subset of columns of M with size
|R| ≤ r < r + t. Then, there is a subset I ⊆ [`] of at most s rows that eliminates R because M
is (r + t, s)-disjunct. Let c ∈ {0, 1}` be the characteristic vector of I, i.e. ci = 1 for i ∈ I and
ci = 0 for i ∈ [`]− I. Then, c is a signal for which D1(c, w) = 0 for all w ∈ R and D1(c, w) = 1
for all w /∈ R. Furthermore, the Hamming weight of c is at most s. Consequently, Γ is an
(r, s)-revocable code.
Next, we show that for any set R of at most r columns of M, ΓR̄ is t-traceable. Let MR̄ denote
the matrix obtained from M by removing all columns in R and all rows in P (R). Then, by
Corollary A.3.6 it is sufficient to show that MR̄ is t-disjunct. Let T be an arbitrary set of at
most t columns of MR̄, which by extension is also a set of at most t columns of M. Let w be
a column of MR̄ not in T . If w – as a column of MR̄ is contained in the union of columns in
T , then w – as a column of M – is contained in the union of all columns in R ∪ T because all
positions in P (R) are covered by columns in R. This means M is not (r + t)-disjunct; and in
particular M is not (r + t, s)-disjunct, a contradiction!

A.4.2 Trace&revoke schemes from 1-conjunction blackbox trace&revoke codes

Finally, we incorporate the notion of blackbox tracing and pirate strategy Q into the code
definition.

Definition A.4.4 [Black-box 1-Conjunction Trace&Revoke Code] An (`,N)-code Γ is
(r, s,Q, p, δ, t)-blackbox (efficient) trace&revoke if

1. Γ is a 1-conjunction (efficient) (r, s)-revocable code, and

— 73 —

Chapter A. Black-box Trace&Revoke Codes

2. For any set R of at most r codewords, the code ΓR̄ is a 1-conjunction (Q, p, δ)-blackbox
(efficiently) t-traceable code.

Given such a blackbox trace and revoke code, we can transform it into a trace and revoke
system in a similar fashion to the the one from a revocable code to a broadcast encryption in
Definition A.2.10. The details (definition of a trace&revoke scheme and the transformation) can
be found in Appendix A.7 (Definitions A.7.2 and A.7.6).

A.5 Constructions of black-box Trace and Revoke with (r, s)-
disjunct matrices

We have shown that (r, s)-disjunct matrices give rise to trace and revoke codes. In this section
we first show how to construct (r, s)-disjunct matrices probabilistically. Then, we use these
matrices to construct blackbox trace and revoke codes.

A.5.1 Constructions of 1-Conjunction (r, s, t)-trace&revoke codes

A distribution of binary matrices.

Let N, b, n be arbitrary positive integers. Let ` = nb, andM(N, b, n) denote the distribution of
` × N binary matrices generated as follows. Partition the set [`] into n parts, each part has b
“bins." The parts are P1 = {1, · · · , b}, · · · , Pn = {(n− 1)b+ 1, · · · , nb}.

To generate a matrix M ∈M(N, b, n) with ` = bn rows and N columns, we generate columns
of M independently in the following way. Each column of M, viewed as a subset of [`], is chosen
by picking uniformly (with probability 1/b) exactly one bin from each part. In particular, each
column of M has exactly n elements.

We can think of each column as a “ball," and each part is a collection of b bins. The distri-
butionM(N, b, n) is defined by throwing N balls to b bins belonging to a part, and repeat that
experiment n times, one for each part. This type of matrix distribution is used in construct-
ing compressed sensing matrices. The resulting random matrix can also be thought of as the
incidence matrix of concatenating a random code of length n with the identity code [NPR12].

Construction of (r, s)-disjunct matrices.

Given two integer parameters 1 ≤ r < N , our goal is to (randomly) construct a ` × N binary
matrix M which is (r, s)-disjunct with s as small as possible. The idea is to choose a matrix
M at random from M(N, b, n) with suitably chosen parameters n and b, and show that M is
(r, s)-disjunct with high probability.

Theorem A.5.1 Let 1 ≤ r < N be given positive integers. Let z, b, n be positive integers such
that r < b and z | n. Let M be a matrix chosen from the distributionM(N, b, n). (Recall that
M has ` = nb rows and N columns. And, each column of M has weight exactly n.) Then, with
probability at least

1−
(
Ne

r

)r
Nn/z(r/b)n

the matrix M satisfies both of the following conditions:

(i) let R be an arbitrary set of at most r columns of M. Then there is a set I of rows which
eliminates R, where |I| ≤ zb and I ⊆ {zb(i − 1) + 1, · · · , zbi} for some i ∈ {1, · · · , n/z}.
In particular, M is (r, zb)-disjunct.

— 74 —

A.5. Constructions of black-box Trace and Revoke with (r, s)-disjunct matrices

(ii) finding I given R takes time at most O(`N).

Proof: Recall that [`] is partitioned into n parts, each part has b “bins": Pj = {(j − 1)b +
1, · · · , jb}, j ∈ [n]. Fix a set R of at most r columns of M. Let R ⊆ [`] be the union of columns
in R. Define

I = P1 ∪ · · · ∪ Pz \R.

In other words, I is the set of bins in the first z parts which contain none of the columns in R. In
each of the first z parts, the columns in R can be in at most r bins. Hence, z(b− r) ≤ |I| ≤ zb.
We bound the probability that I does not eliminate R, which happens if some column in [N]−R
belongs to no bin in I. A fixed column in [N] − R belongs to no bin in I with probability at
most (r/b)z. Hence, by the union bound the probability that some column in [N] − R belongs
to no bin in I is at most (N − r)(r/b)z < N(r/b)z. In other words, I does not eliminate R with
probability at most N(r/b)z.
Now, if we define I to be

I = Pz+1 ∪ · · · ∪ P2z \R,

then by the same reasoning the probability that I does not eliminate R is also at most N(r/b)z.
The same conclusion holds for the next group of z parts, and so forth. Since n parts can be
partitioned in to n/z groups of z parts each, and they are all independent, the probability that
R cannot be eliminated by any one of these I is at most (N(r/b)z)n/z = Nn/z(r/b)n.
Finally, by the union bound over all choices of R (including R = ∅) we conclude that M does
not satisfy property (i) with probability at most

r∑
j=0

(
N

j

)
Nn/z(r/b)n ≤

(
Ne

r

)r
Nn/z(r/b)n.

Property (ii) follows straightforwardly from the above analysis, because we can simply check
each block of z consecutive parts, one by one, and verify if I satisfies the desired property.

Corollary A.5.2 [Concrete parameters for an (r, s, t)-trace&revoke code] For any 1 ≤ r+t < N ,
there exists an efficient 1-conjunction (r, s, t)-trace&revoke (`,N)-code of length ` = 2(2(r+t)2+
r + t)(log2N + 1), where s = (4r + 4t+ 2)(log2N + 1).

The above corollary was obtain from Theorem A.4.3 and Theorem A.5.1 by setting n =
(r+ t) log2(N2e/(r+ t)), b = 2(r+ t) + 1, and z = n/(r+ t). However, the corollary only shows
the existence of such codes, it does not give an efficient strategy for constructing such codes.
There are several directions one can take.

• Deterministically, in exponential time we can easily construct a matrix satisfying all con-
ditions in the theorem with the parameters in the corollary because the theorem shows
that such a matrix exists.

• Probabilistically, by slightly worsen some parameters, the theorem implies that we can
construct probabilistically a good (r, s)-disjunct matrix with overwhelmingly large proba-
bility. For example, by setting n = (r+t) log2(N2e/(r+t)), b = 4(r+t), and z = n/(r+t),
the probability that a random matrix from M(N, b, n) satisfies all properties in the the-
orem is at least 1 −

(
(r+t)
N2e

)r+t
. In this case, we obtain with extremely high probability

an efficient 1-conjunction (r+ t, 8(r+ t)(log2N + 1))-revocable code of size N and length
` = 8(r + t)2(log2N + 1).

— 75 —

Chapter A. Black-box Trace&Revoke Codes

• If desired, we can obtain a deterministic construction with a Las Vegas algorithm by
repeating the above experiment independently multiple times. In each iteration, we can
check in time O(NO((r+t))) whether the randomly selected matrix satisfies the properties.

A.5.2 Combinatorial Group Testing with Prescribed-Weight Tests

From Corollary A.5.2, we knows how to construct a trace and revoke code where after revoking
at most r users R, we can identify at least one out of t traitors if we have access to a useful
feasible word of the code ΓR̄. The identification of a useful feasible word, of course, depends
intimately on the anti-tracing strategy of the pirate decoder. In this section, we develop the
shadow group testing technique for identifying a useful feasible word when the pirate decoder is a
limited-weight decoder (recall Definition A.3.12). As we have observed earlier, it is sufficient to
deal with constant-weight decoder strategy Qa. To describe the shadow group testing technique,
we first derive some results regarding group testing where all pools have the same given size.

The non-adaptive case. Given positive integers r, z,N where r+ z ≤ N , the following gives
upper and lower bounds the optimal number of non-adaptive tests for identifying ≤ r unknown
items from the population of N items, where each test must have weight exactly z. Furthermore,
the proof also presents two methods for constructing the tests achieving the upper-bound, one
deterministic and the other randomized.

Theorem A.5.3 Let M be an `×N matrix which is r-disjunct with a uniform row weight of
z. Then,

` ≥ N − r
z
· ezr/N . (A.1)

Given parameters r+z ≤ N , there is a deterministic algorithm which constructs a `×N matrix
which is r-disjunct with a uniform row weight of z, where

` = N − r
z

e
rz

N−r−z+1

(
1 + r + ln z + r ln

((N − z)
r

))
. (A.2)

Furthermore, by choosing weight-z rows uniformly at random, we can also construct such a
matrix with success probability ≥ 1− ε, for any given ε ∈ (0, 1), where

` = O

(
N

z
r ln

(
N

εr

)
e

rz
N−r−z+1

)
. (A.3)

Proof: Let X be the set of all pairs (j, A) where A ⊂ [N] is an r-subset of [N], and j ∈ [N]−A.
Note that |X| =

(N
r

)
(N − r) = N

(N−1
r

)
.

To prove the lower bound (A.1), fix an ` ×N r-disjunct matrix M = (mij) with constant row
weight z. A row i of M is said to mask a member (j, A) ∈ X if row i “intersects" column j
(i.e. mij = 1) and does not intersect any column j′ ∈ A (i.e. mij′ = 0,∀j′ ∈ A). In order for
M = (mij) to be r-disjunct, every member of X must be masked by some row. A weight-z row
masks exactly z

(N−z
r

)
members of X. Thus,

` ≥
(N − r)

(N
r

)
z
(N−z

r

) = N − r
z
· N

N − z
· N − 1
N − z − 1 · · ·

N − r + 1
N − z − r + 1

>
N − r
z
·
(

N

N − z

)r
= N − r

z
· 1

(1− z/N)r >
N − r
z
· ezr/N

— 76 —

A.5. Constructions of black-box Trace and Revoke with (r, s)-disjunct matrices

We next derive an upperbound, we present two methods of constructing constant row-weight
disjunct matrices, one deterministic and one probabilistic.
The deterministic construction works by casting the problem as an instance of the set cover
problem and using the well-known greedy algorithm for set cover. The construction problem
can be viewed as a set cover instance as follows. The universe to be covered is X. Each “set"
is represented by a weight-z row s. The elements in the universe that belong to the set s are
precisely the members of X which s masks. Thus, each “set" s contains exactly z

(N−z
r

)
elements.

A member (j, A) ∈ X is covered by exactly
(N−r−1

z−1
)
sets. A classic result by Lovasz [Lov75]

(and independently by Chvatal [Chv79]) implies that the greedy algorithm finds a set cover for
X of size at most

` ≤
(N
z

)(N−r−1
z−1

) (1 + ln
(
z

(
N − z
r

)))

= N − r
z
· N

N − r
· N − 1
N − r − 1 · · ·

N − z + 1
N − r − z + 1

(
1 + ln

(
z

(
N − z
r

)))

<
N − r
z

(
N − z + 1

N − r − z + 1

)z (
1 + ln z + r ln

(
e(N − z)

r

))
= N − r

z

(
1 + r

N − r − z + 1

)z (
1 + r + ln z + r ln

((N − z)
r

))
<

N − r
z

e
rz

N−r−z+1

(
1 + r + ln z + r ln

((N − z)
r

))
.

This fact can also be seen from the dual-fitting analysis of the greedy algorithm for set cover.
This set cover is exactly the set of rows of the r-disjunct matrix we are looking for. The final
expression might seem a little unwieldy. Note, however, that compared to the lower bound
(A.1), we are only off by a factor of about O(r ln(N/r)). For most meaningful ranges of z and r,
the factor

(
1 + r + ln z + r ln

(
(N−z)
r

))
can safely be thought of as O(r ln(N/r)). Last but not

least, if rz = O(N) then e
rz

N−r−z+1 = O(1) and the number of rows l is not exponential. Also,
when rz = Θ(N) the overall cost is l = O(r2 log(N/r)), matching the best known bound for
disjunct matrices. This optimality only applies when we are free to choose z in terms of N and
r; in particular, when we have this freedom we will pick z = Θ(N/r).
The probabilistic construction works as follows. We think of members of X as “coupons" and
the weight-z row vectors as boxes of coupons. Each box has precisely z

(N−z
r

)
different coupons

in it. We want to collect as few boxes as possible to have a complete coupon collection. Let’s
pick the boxes uniformly at random, one by one. The probability that a given coupon is chosen
in each round is (N−r−1

z−1)
(Nz) . Hence, by the union bound, after ` rounds the probability that at

least one coupon is not collected is at most

|X|
(

1−
(N−r−1

z−1
)(N

z

))`
≤ N

(
N − 1
r

)
e
−`(

N−r−1
z−1)
(Nz) .

This is an upper bound on our failure probability. If we want a guarantee of at most ε < 1
failure probability, then we can simply choose ` such that

N

(
N − 1
r

)
e
−t(

N−r−1
z−1)
(Nz) ≤ ε.

— 77 —

Chapter A. Black-box Trace&Revoke Codes

Similar to the above analysis,

` = O

(
N

z
r ln

(
N

εr

)
e

rz
N−r−z+1

)
is sufficient.

The adaptive case. One might hope that adaptive tests may help overcome the Ω̃(erz/N)-
barrier. Unfortunately, such is not the case.

Theorem A.5.4 Any adaptive group testing strategies for a population of N items with less
than r positives in which each test has weight z must use Ω(erz/N) tests. Furthermore, there
exists a randomized testing strategy which uses, in expectation, erz/(N−r) +N − z tests.

Proof: We will show that if there are ` < 1
2e
rz/N adaptive tests, then there are at least two

different sets of positive items which give identical (adaptive) test results and thus the adaptive
tests cannot distinguish between these two sets of positive items.
Each adaptive test is a z-subset Fi ⊆ [N]. Consider any sequence of ` adaptive tests F1, · · · , F`,
where ` < 1

2e
rz/N . We will show that there are two different r-sets of items S and T such that S

intersects all of the Fi and T also intersects all of the Fi. Thus, if S were the set of positives then
all of the tests return positive. And, if T were the set of positives then all of the tests also return
positive. Consequently, ` tests are not sufficient to distinguish between S and T . (Remark: to
be a little more rigorous, we could model the adaptive test strategy as a binary tree, where each
node represents a z-subset, and the two children of a node correspond to whether a test turns
positive or not. Here, the sequence F1, · · · , F` corresponds to the all-positive branch of the tree.)
We use the probabilistic method. We pick a subset S of size r of [N] uniformly at random, and
show that the probability that S intersects all of the Fi is at least 2/

(N
z

)
, which would establish

the claim.
For a fixed Fi, we have

Pr[S ∩ Fi = ∅] =
(N−z

r

)(N
r

) = N − z
N

· N − z − 1
N − 1 · · · N − z − r + 1

N − r + 1 ≤
(
N − z
N

)r
< e−zr/N .

By the union bound,
Pr [S ∩ Fi = ∅, for some i] < ` · e−rz/N ≤ 1

2 .

Thus,
Pr [S ∩ Fi 6= ∅, for all i] >

1
2 ≥

2(N
r

) .
For the upper-bound, we can pick a random test T (of size z) until the test returns negative.
Let S be the set of positive items, then

Pr[T returns negative] = Pr[S ∩ T = ∅] ≥
(N−r

z

)(N
z

) .

Hence, the expected number of random tests we need is at most(N
z

)(N−r
z

) = N

N − r
· · · N − z + 1

N − r − z + 1 ≤
(

1 + r

N − r

)z
≤ ezr/(N−r).

After the negative test T is obtained, we can then construct new tests by replacing a negative
item in T with an item outside of it one at a time until we found all of the positive items.

— 78 —

A.5. Constructions of black-box Trace and Revoke with (r, s)-disjunct matrices

A.5.3 The shadow group testing technique and 1-Conjunction Qa-blackbox
trace&revoke codes

When the pirate decoder only answers queries with weight a (this is the meaning of the Qa
qualified signals), we will only use weight-a queries to trace because other signals do not give
reliable answers. The following theorem explains how we can trace such pirate decoders.

Theorem A.5.5 [Qa tracing with shadow group tests] Let 1 ≤ t < N and ` be integers, and
let Γ be the 1-conjunction code formed by the columns of a t-disjunct matrix with ` rows and
N columns. Additionally, suppose the union of any t codewords has weight at most D. Then,
the code Γ is also a (Qa, 1, 1, t)-traceable code where the number of queries the tracer issues to
the decoder is at most O

(
`
aD log

(
`
t

)
e

Da
`−D−a+1

)
.

Proof: Thanks to Proposition A.3.5, instead of identifying a traitor, we can just identify a
vector w ∈ {0, 1}` that is contained in the union of all traitors’ codewords and that contains at
least one traitor’s codeword. Such a vector is in the useful feasible set (see Proposition A.3.2)
of the code.
Identifying w = (w1, · · · , w`) is equivalent to identifying all the coordinates i of w for which
wi = 1. Thus, there is a subset U ⊆ [`] of at most D unknown coordinates that we want to
identify. We need to query the pirate decoder with weight-a signals c to identify U . Each query
c is the characteristic vector of a subset of size a of [`]. So we think of each query as an a-subset
A of [`]. The decoder is able to decrypt query A if and only if there is at least one traitor whose
codeword intersects A. In other words, each query A is a group test for the “positives” U in the
population [`]. We thus have a group testing problem “inside” another group testing problem.
We refer to the “inner” group tests as the shadow tests, because they are not used to identify
the traitors directly; rather, they are used to identify the shadow U of the traitors.
Finally, we directly apply Theorem A.5.3 and use the non-adaptive (but deterministic) construc-
tion in the theorem (equation (A.2)) to attain the desired number of queries.

Now, we incorporate the shadow group testing technique to construct blackbox trace and
revoke codes. From Corollary A.5.2 and the discussion after that we know how to construct a
1-conjunction (r, s, t)-trace&revoke code Γ. This code can easily be turned into a trace&revoke
system as described in Section A.4.2. Let R be any set of at most r traitors, we know that
ΓR̄ is a 1-conjunction t-traceable code. In fact, from the construction of the (r + t, s)-disjunct
matrix that leads to the (r, s, t)-trace&revoke code, we know that the Hamming weight of each
codeword is n = O((r + t) log(N/(r + t))); hence, the Hamming weight of the union of at most
t columns is D = tn = O(t(r + t) log(N/(r + t))). Now, if the pirate decoder applies the Qa
anti-tracing strategy, then we will only trace with weight-a signals using the shadow group
test technique from Theorem A.5.5. The number of queries the tracer needs is going to be
q = O

(
`
aD log

(
`
t

)
e

Da
`−D−a+1

)
.

The question is, which value of weight a makes the most sense to the pirate? The answer to
this question depends on how we broadcast after revoking the users in R. Looking back at the
proof of Theorem A.5.1, we chose a subset I that eliminates R where the size of I is at most bz.
In fact, once I eliminates R we can add more elements to I so that |I| = bz. We use the set I to
construct a broadcast signal c; I is the support set of c. Hence, all broadcast signals will have
weight s = bz (before or after revoking R). In other words, it will only make sense for the pirate
decoder with the anti-tracing strategy Qa to set a = s = Θ((r + t) log(N/(r + t))). Also recall
that ` = Θ((r + t)2 log(N/(r + t))). Hence, `/a = O(r + t), and e

Da
`−D−a+1 = O((N/(r + t))O(t)).

Combining with Lemma A.3.11, we obtain the following corollary.

— 79 —

Chapter A. Black-box Trace&Revoke Codes

Corollary A.5.6 For any 1 ≤ r+ t < N , there exists an (r, s,Qs, p, δ, t)-blackbox trace&revoke
code Γ, where s = O((r+ t) logN) is the weight of broadcast signals, and the number of queries
issued to the pirate decoder is O

(
q · ln(q

1−δ)
ln
(

1
1−p

)), where
q = O

(
t(t+ r)2 log(N/(r + t)) log

(
(r + t)2 log((N/(r + t))

t

)
·
(

N

r + t

)O(t)
)
.

A.5.4 Toward Traceability Against Arbitrary Pirate Decoders

We now discuss the case of arbitrary pirate decoders. Our goal is to be able to deal with any
qualified predicate Q. We propose a slightly modified version of the main scheme described in
Corollary A.5.6 for this aim. However, we have to introduce an additional assumption: the pirate
decoder should decrypt (with non-negligible probability) broadcast signals that correspond to
the case of non-revocation, i.e., when R = ∅. The tracing process in our Trace&Revoke scheme
is thus not in the standard model but it seems still practical as it requires the pirate decoder to
be able to decrypt ciphertexts in the most usual case (at least in some applications) where there
is no detected malicious users in the system. Anyway, our scheme satisfies both the definition
of a traitor tracing scheme (in which the revoked set is by definition an empty set) for arbitrary
pirate decoders and the definition of a revoke system (in which the scheme can revoke users and
does not require a tracing procedure).

As shown in Theorem A.5.3, we can ask random queries to the pirate decoder, the number
of queries is asymptotically similar to the deterministic case. Each random query consists of a
set of β4r rows randomly chosen from ` rows of the matrix M. In our code based trace&revoke
scheme (Definition A.7.6 in Appendix A.7), the number of chosen rows in a ciphertext (the
weight of the signal c) varies from 4r (when there is no revoked users, 4r rows from any block
cover all users) to 8r log(N/r) (when there are r revoked users).

Assume the pirate knows our strategy of choosing rows in the encapsulation and if it can
detect whether a query – though corresponding to an encapsulation for some R – cannot be an
output of the Encaps(EK, R), then it will not decrypt. The key point here is to issue (random)
tracing queries so that it is computationally hard for the pirate to distinguish between a given
tracing query and an output of Encaps(EK, ∅) (i.e. broadcast signals in the non-revoke mode).

We now described the modified scheme. To impose the computational hardness on the
pirate, we first permute randomly the rows of the matrix M to obtain a matrix M∗. We will
use the matrix M∗ as the code, instead of M, as the (`,N)−code in our encryption in Definition
A.7.6 (appendix A.7). We also slightly change the Encaps(EK, R) in Definition A.7.6 when there
is no revoked users, i.e., R = ∅. In this case, 4r rows from a block cover all users and the
Encaps(EK, ∅) procedure will normally use these rows for encryption. However, in this case, we
will add (β − 1)4r more random rows and let Encaps(EK, ∅) procedure uses the total β4r rows
for encryption. Note that the (β − 1)4r additional rows have no impact on the validity of the
broadcast because the original 4r rows already covered all users.

We argue that no pirate decoder can distinguish a broadcast signal and a signal in the tracing
procedure. In fact, in order to distinguish between a broadcast signal constructed this way and
a random set of β4r rows, the pirate must be able to tell whether a given set A of β4r rows
contains a subset B ⊆ A of 4r rows which might come from the same row block. We next argue
that, even if the pirate has as many as b = 4r = ω(t) codewords, it is computationally hard to
detect whether a given set of β4r rows contains 4r rows from the same block.

Consider the case where the matrix M∗ is not public and the pirate decoder is resettable,
thus can be reset to the initial state after each query. The pirate has a set T of b = 4r codewords
(each codeword is a column of the matrix M∗ = (mij)). Each row i in the set A of βb rows of

— 80 —

A.5. Constructions of black-box Trace and Revoke with (r, s)-disjunct matrices

the random query corresponds to a subset of the set T : the subset of traitors j in T for which
mij = 1. The problem of detecting whether there are b rows of A belonging to the same block
thus becomes precisely an instance of the NP-hard exact cover problem [GJ79] which is like
set cover but each element in the universe is to be covered exactly once. To cover b columns
we do not need more than b rows, and hence a solution to the exact cover problem with
additional empty rows will be a solution to the pirate’s problem. Conversely, a solution to the
pirate’s problem obviously is a solution to the exact cover instance. It is not hard to derive
a reduction from 3-sat to exact cover. (See, e.g., [BM08].) Furthermore, if we start from
3-sat-5 (known to be NP-hard [Fei98]) where each clause has at most 3 literals and each literals
appear in at most 5 clauses, then we obtain instances of exact cover where the number of
sets is bounded by a constant (β in our case) times the size of the universe. Therefore, there is
no known algorithm in polynomial time of b = 4r that can solve this problem, even when β is a
constant (about 15 or so).

We should however notice that our assumption requires in fact the average case hardness.
On the other hand, we also notice that the pirate possesses only t users’ keys but not b keys,
and b = 4r = ω(t). Therefore, we believe that our assumption is reasonable.

A.5.5 Trace&Revoke in the Information-Theoretic Limit

In the tracing procedure of our scheme, as well as in the tracing procedures of almost all known
schemes in the literature, we rely on the fact that the pirate accepts to decrypt the tracing
queries, as it is hard to distinguish a query in tracing mode and a normal ciphertext. A natural
question is, without any computational assumption about the pirate, can we still trace?

To be concrete, assume the pirate can always verify whether a query comes from Encaps(EK, R),
for some R, and that the pirate decoder only decrypts if and only if this is indeed the case. We
can prove that, for this powerful pirate, the number of queries can no longer be poly(N) for
most reasonable values of r and t. In particular, with q ≤

(N
t

)
(1 − t

N)/
(r
t

)
queries it is not

possible to always identify correctly at least one traitor. Moreover, in this model of pirate, we
present a randomized tracing strategy that matches this bound in expectation. Note that our
lower-bounds apply to any Trace&Revoke systems given the powerful pirate assumption.

Considering a trace&revoke schemes against the pirates who decrypt, if possible, a ciphertext
if and only if this ciphertext is an output of the algorithm Encaps(EK, R) for some R. We then
have a lower bound of the number of queries for the tracing algorithm.

Theorem A.5.7 Let t ≤ r < N such that t + r < N . If we pose at most q ≤
((N

t

)
− 2

)
/
(r
t

)
queries, then it is not possible to always identify correctly the entire traitor set T . If we pose
at most q ≤ (Nt)

(rt)
(1− t

N) queries, then it is not possible to always identify correctly at least one
traitor.

Proof: Let c = Encaps(EK, R) for some R. Let T be the set of traitors. If T ⊆ R then no
traitor can decode c. If T \R 6= ∅, then some traitor will be able to decode. Thus, the blackbox
query can be represented by subsets R ⊆ [N], |R| ≤ r. A query returns yes if T \R 6= ∅ and no
otherwise.
Let us first consider the case when we want to identify all traitors in T , |T | ≤ t. Suppose we
pose q adaptive (!) black-box queries F1, · · · , Fq. Recall that each query can be represented by a
set Fi ⊆ [N], where |Fi| ≤ r. We will prove that if q ≤ (Nt)−2

(rt)
, then there are two distinct traitor

sets T1 and T2 such that the series of queries F1, · · · , Fq all return yes, and thus no algorithm
can distinguish between T1 and T2.

— 81 —

Chapter A. Black-box Trace&Revoke Codes

To this end, fix arbitrary F1, · · · , Fq and pick a set T ⊆ [N] of size t uniformly at random. For
each i ∈ [q], Pr[T ⊂ Fi] ≤

(rt)
(Nt)

. Thus, by the union bound PrT [some query Fi returns no] ≤

q
(rt)
(Nt)

. Put it another way,

Pr
T

[all queries Fi return yes] ≥ 1− q
(r
t

)(N
t

) ≥ 2(N
t

) .
Thus, there exist two different sets T1, T2 such that all queries return yes.
Next, we consider the case when at least one traitor in T need to be identified. Our strategy is to
show that, for an arbitrary query sequence F1, · · · , Fq, there are potential traitor sets T1, · · · , Tk,
all of size t, satisfying the following conditions: (i) for each Tj , all queries Fi returns yes, (ii)
there is no single user that belongs to all the Tj . Thus, the identification of some user in some
Tj will be wrong for some other Tj′ .

To guarantee (ii), we simply pick k =
(N−1
t−1

)
+ 1. Because

(N−1
t−1

)
is the maximum number

of t-subsets of [N] which contain a given element. To guarantee (ii), we use the probabilistic
argument as above: pick T uniformly at random.

Pr
T

[all queries Fi return yes] ≥ 1− q
(r
t

)(N
t

) ≥ t

N
=
(N−1
t−1

)(N
t

) .

The last inequality holds because q ≤ (Nt)
(rt)

(1 − t
N). The following upper-bound is asymp-

totically as good as the above lower-bounds for most practically meaningful ranges of r and t.
However, it is an upper-bound in expectation only.

Theorem A.5.8 Let t ≤ r < N such that t+ r ≤ N . There is an adaptive strategy which uses
on average at most q = (Nt)

(rt)
+N − r queries.

Proof: We pose random “queries" R of size r to the blackbox decoder. (In reality, the queries
are actually Encaps(EK, R)) until the answer is no. The expected number of such queries is the
inverse of the probability that R contains the traitor set T , which is(N

r

)(N−t
r−t
) = N

r

N − 1
r − 1 · · ·

N − t+ 1
r − t+ 1 =

(N
t

)(r
t

) .
After some R containing T is found, we can test each j ∈ R individually as follows. Fix
j′ ∈ [N] − R Let R′ = R − {j} ∪ {j′}. If the answer to query R′ is yes then j ∈ T . This way,
we will be able to identify all members of T with an additional N − r queries.

A.6 Discussions
Optimization of the Code Length.

Given N and r < N , we presented a randomized construction of ` ×N (r, s)-disjunct matrices
with s = O(r log(N/r) and ` = O(r2 log(N/r). Note that, even for r-disjunct matrices which do
not address revocation, no other known construction, including randomized ones, has asymptot-
ically smaller number of rows. It is also known that ` = Ω(r2 logrN) for any r-disjunct matrix.

— 82 —

A.7. Appendix: Basic Definitions

Hence, if we use this matrix for broadcasting then the broadcaster’s key size (or the total number
of keys that will be attributed to users) is O(r2 log(N/r)). In this setting, we can trace back all
“active” traitors (the traitors included in the pirate’s codeword).

We can reduce the broadcaster’s key size by using a related notion called multiple user
tracing (MUT) families. Given positive integers u ≤ r, an (r, u)-MUT family is a non-adaptive
group testing matrix which, given the test outcomes imposed by an arbitrary set of v ≤ r
positives, there is a decoding algorithm that outputs at least min(u, v) out of the v positives. It is
known [AA07] that, given N, r, u, an `×N (r, u)-MUT matrix exists with ` = O

(
(r + u2) logN

)
.

There is a method for constructing the MUT matrix so that even sublinear-time decoding is
also reachable. Hence, we can use MUT families to design broadcast codes which can be used
for tracing (assuming the naive pirate) up to

√
r of the traitors while keeping the broadcaster’s

key size O(r logN). Note that in Complete Subtree, the broadcaster’s key size is 2N − 1.

Optimization of the Private Key Size.

In the above construction, the users’ private key size is linear in the weight of its associated
codeword. We can optimize this, for the case of 1−conjunction revocable code, by using Asano’s
method [Asa02]. The users’ private key size then becomes constant. In this case, the security
should also be based on a computational assumption that the RSA inversion is hard. This
optimization is described in Appendix A.7 (Definition A.7.5).

On the a priori-Bounds of Revoked Users and Traitors.

Our scheme assumed an a priori-bounds r, t of revoked users and traitors. If the bound is
unknown, a natural way to get around the problem is to “stack" on top of each other (r, s)-
disjunct matrices for different values of r. This way, the resulting matrix will serve as (r, s)-
codes for different r. The sacrifice is in code length. In the encryption mode, depending on the
number of revoked users, we can use the appropriate matrix.

Acknowledgments

This work was supported in part by the French ANR-09-VERS-016 BEST Project, and by NSF
CCF-1161196.

A.7 Appendix: Basic Definitions

Definition A.7.1 [Broadcast Encapsulation] A broadcast encapsulation scheme is a 3-tuple of
algorithms DBE = (Setup,Encaps,Decaps):

• Setup(1k, N), where k is the security parameter, and N the number of users, it generates
the global parameters param of the system (omitted in the following); and returns a master
secret key MSK and an encryption key EK. It also generates users’ keys upki, for i =
1, . . . , N .

• Encaps(EK, R) takes as input a revoked set R and outputs a key header H and a session
key K ∈ {0, 1}k.

• Decaps(uski, R,H) takes as input the revoked set R and a user secret key. If i ∈ [N]−R,
outputs the session key K.

— 83 —

Chapter A. Black-box Trace&Revoke Codes

The correctness requirement is that for any revoked set R and for any user i ∈ [N]−R then the
decapsulation algorithm gives back the ephemeral session key.

Definition A.7.2 [Trace&Revoke Encapsulation] A trace&revoke encapsulation scheme is a
broadcast encapsulation scheme with an additional tracing algorithm TraceD(RD, pk,msk): the
traitor tracing algorithm interacts in a black-box manner with a pirate decoder D that is built
from a certain set T of traitors. The algorithm takes as input a subset RD ⊂ [N] (could be
adversarially chosen), the public key pk, the master key msk and outputs a set TD ⊆ [N].

More precisely, under the conditions:

• there are at most t traitors: |T | ≤ t;

• The minimal revoked set does not contain all the traitors: T 6⊆ RD, or equivalently SD =
([N]−RD) contains at least a traitor;

• D is “efficient” to decrypt ciphertexts (i.e., decrypts with some non-negligible probability)
for some revoked sets R that include the minimal revoked set RD but do not contain all
the traitors (RD ⊆ R but T * R);

then the tracing algorithm outputs at least a traitor in SD, i.e., : ∅ 6= TD ⊆ T ∩ SD.

Definition A.7.3 [Public-Key Encryption Scheme] PKE = (Setup,KeyGen,Enc,Dec):

• Setup(1k), where k is the security parameter, generates the global parameters param of the
system;

• KeyGen(param) generates a pair of keys, the public (encryption) key ek and the associated
private (decryption) key dk;

• Enc(ek,m; r) produces a ciphertext c on the input message m and the public key ek, using
the random coins r (we may omit r when the notation is obvious);

• Dec(dk, c) decrypts the ciphertext c under the private key dk. It outputs the plaintext, or
⊥ if the ciphertext is invalid.

Definition A.7.4 [Secret Sharing Scheme] SSS = (Share,Combine):

• Share(k,m, n), outputs a secret bit string K of length k, as well as n shares s1, . . . , sn, so
that any m of them will allow to recover K.

• Combine({(i, si)}), from m pairs (i, si), it recovers the bit string K.

The correctness requirement is that from any m-subset of {(i, si)} generated by Share(k,m, n),
the Combine algorithm outputs the bit string K generated by Share. Furthermore, the bit string
K must be perfectly uniformly distributed.

Definition A.7.5 [Constant Size Private Key] Suppose there exists an algorithm that generates
1−Conjunction (r, s)−Revocable (`,N)−Code.We build a BE scheme Π that can revoke up to
r users in the following way.

• Setup(1λ, N)

1. Run the Code generating algorithm on (N, r, d) to obtain a 1−Conjunction (r, s)
Revocable (`,N)−Code Γ.

2. Generate two large primes of the same size p, q and publish M = pq

— 84 —

A.7. Appendix: Basic Definitions

3. Generate ` pairs (dki, eki), i = 1, . . . , ` such that ekdk = 1(mod (p− 1)(q − 1));

4. Choose a random X
$← Z∗M

5. Set MSK = (Γ, X, {dki}), EK = (N, {eki}), and Reg = ∅.

• Extract(MSK, i)

1. The user i is associated with the codeword wi ∈ Γ.

2. Set uski ← X
∏`

j=1 dk
wi
j

j ; upki ← i; Reg← Reg ∪ {i}.

• Encaps(EK, R):

1. The revoked set R should contain at most r users;
2. Because Γ is 1−conjunction (r, s)−revocable, one can find out an word c such that

D1(R, c) = 0 and D1(u, c) = 1 for any u ∈ [N]−R, and m = H(c) ≤ d.
3. Denote by i1, . . . , im the positions of m bits 1 in c, i.e., cij = 1, for j = 1, . . . ,m

4. Set eij = Xdkij , for j = 1, . . . ,m.
5. Output Ke and Header = (c, (eij), j = 1, . . . ,m).

• Decaps(uskj , R,Header):

1. If j is in [N] − R, then D1(wj , c) = 1. There exists thus an index 1 ≤ z ≤ m such
that ciz = wjiz = 1

2. Compute siz = usk
∏`

s=1,s6=iz
ekw

i
s

j

j . From the siz , reconstruct Ke

Definition A.7.6 [Trace&Revoke System from 1-Conjunction Trace&Revoke Codes] Let us be
given a generator of (r, s,Q, p, δ, t, τ)-blackbox Trace&Revoke 1-Conjunction (`,N)-Codes, and
a secure public-key encryption scheme PKE . We build a Trace&Revoke encapsulation scheme
Π that can revoke up to r users, and tracing traitor for a pirate decoder having up to t traitors’
keys, in the following way.

• Setup(1λ, N)

1. Run the code generating algorithm on (Q, N, k, r, t, s) to obtain an (r, s,Q, p, δ, t, τ)-
blackbox Trace&Revoke 1-Conjunction (`,N)-Codes.

2. Run PKE .Setup(1λ) to get the public parameters param for the encryption scheme;
3. For i = 1, . . . , `, run the key generation algorithm PKE .KeyGen(param) to get the

pair (dki, eki).
4. Set MSK = (Γ, {dki}), and EK = {eki}.
5. For i = 1, . . . , N , the user i is associated with the codeword wi ∈ Γ: we set uski ←
{dkj/wij = 1, j = 1, . . . , `}.

• Encaps(EK, R):

1. For a revoked set R of size at most r, since the code Γ is efficiently (r, s)-revocable, one
can find out a signal c of weight at most s, such that D1(u, c) = 0, for any u ∈ F (R),
and D1(u, c) = 1 for any u ∈ [N]−R. We denote by m = wH(c) this weight;

2. Denote by i1, . . . , im the positions of m 1-bits in c, i.e., cij = 1, for j = 1, . . . ,m;

— 85 —

Chapter A. Black-box Trace&Revoke Codes

3. Choose a random session key K $← {0, 1}κ.
4. Set eij = PKE .Enc(pkij ,K), for j = 1, . . . ,m.
5. Output K and H = (c, (eij), j = 1, . . . ,m).

• Decaps(uskj , R,H):

1. If j is in [N] − R, then D1(wj , c) = 1. This means wH(wj ∧ c) ≥ 1 and there exists
thus ij in wj ∧ c

2. Compute K = PKE .Enc(skij , eij).

• TraceD(RD, pk,msk): Running the tracing algorithm for the code, each time the tracer asks
a qualified query c to the pirate decoder, we do as follows: run Encaps(EK, R) but directly
use the signal c (in fact, the revoked set R in this case corresponds to the set of the users
that cannot decrypt c) and query the pirate decoder on the R,H. If the pirate decoder
exactly recovers the session key K, we return 1 to the tracer for the code, and otherwise
we return 0.

It is straightforward that if the pirate decoder RD answers all ciphertexts constructed from
qualified signal c for Q, then the tracing procedure can be directly reduced to the tracing for
the code, and thus we can identify traitors, as in the (r, s,Q, p, δ, t, τ)-blackbox Trace&Revoke.

In the particular case of Qa, the fact that the pirate decoder RD answers all ciphertexts
constructed from qualified signal c for Qa implies that the pirate decoder decrypts all ciphertext
with a header H containing a encapsulations of the session key, each is encrypted by a key at a
row of the matrix.

— 86 —

Appendix B

Traitor Tracing with Optimal
Transmission Rate

ISC 2011
[FNP07b] with Nelly Fazio, and Antonio Nicolosi

Abstract : We present the first traitor tracing scheme with efficient black-box traitor tracing
in which the ratio of the ciphertext and plaintext lengths (the transmission rate) is asymptot-
ically 1, which is optimal. Previous constructions in this setting either obtained constant (but
not optimal) transmission rate [KY02c], or did not support black-box tracing [CPP05a].

Our treatment improves the standard modeling of black-box tracing by additionally accounting for
pirate strategies that attempt to escape tracing by purposedly rendering the transmitted content
at lower quality.

Our construction relies on the decisional bilinear Diffie-Hellman assumption, and attains the
same features of public traceability as (a repaired variant of) [CPP05a], which is less efficient
and requires non-standard assumptions for bilinear groups.

B.1 Introduction
Traitor tracing schemes constitute a very useful tool against piracy in the context of digital
content distribution. They are multi-recipient encryption schemes that can be employed by
content providers that wish to deliver copyrighted material to an exclusive set of users. Each
user holds a decryption key that is fingerprinted and bound to his identity. If a group of
subscribers (the traitors) collude to construct an illegal device (the pirate decoder), the security
manager can run a specialized traitor tracing algorithm to uncover the source of the leakage.
Therefore, a traitor tracing scheme deters subscribers of a distribution system from leaking
information by the mere fact that the identities of the leaking entities can then be revealed.

The first formal definition of traitor tracing scheme appears in Chor et al. [CFN94b,
CFNP00], whose construction requires storage and decryption complexity O(t2 log2 t log(n/t))
and communication complexity O(t3 log4 t log(n/t)), where n is the size of the universe of users
and t is an upper bound on the number of traitors. Stinson and Wei later suggested in [SW98a]
explicit combinatorial construction that achieve better efficiency for small values of t and n.

— 87 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

The work of [NP98, CFNP00] introduced the notion of threshold traitor tracing scheme,
where the tracing algorithm is only required to guarantee exposure of the traitors’ identities for
pirate decoders whose decryption probability is better than a given threshold β. The scheme
of [NP98] achieves storage complexity O(t/β log(t/ε)), where ε is the probability of successfully
tracing one of the traitors. Moreover, the scheme has communication complexity linear in t and
constant decryption complexity.

In [BF99b], Boneh and Franklin present an efficient public-key traitor tracing scheme with
deterministic t-tracing based on an algebraic approach. Its communication, storage and decryp-
tion complexities are all O(t). The authors also introduce the notion of non-black-box traceability:
given a “valid” key extracted from a pirate device (constructed using the keys of at most t users),
recover the identity of at least one traitor. This is in contrast with the notion of black-box trac-
ing (on which we focus in this paper), where the traitor’s identity can be uncovered by just
observing the pirate decoder’s replies on “well crafted” ciphertexts. More recently, Boneh et
al. [BSW06b, BW06b] proposed traitor tracing schemes that withstand any number of traitors
(full traceability), while requiring a sub-linear ciphertext length (O(

√
n)). In [Pfi96], Pfitzmann

introduces the notion of asymmetric traitor tracing. In this model, tracing uncovers some secret
information about the traitor that was a priori unknown to the system manager. Thus, the
result of the tracing algorithm provides actual evidence of the treachery. Further results in this
direction are in [KD98b, KY02d, KY02a].

Alternative traitor tracing solutions [FT01, BPS00, SW03] have also been proposed to fight
leakage of the decrypted content, rather then leakage of the decryption capabilities.

As originally observed in [GSY99], traitor tracing scheme are most useful when combined with
a revocation scheme; such trace-and-revoke approach consists in first uncovering the compro-
mised decryption keys and then revoking their decryption capabilities, thus rendering the corre-
sponding pirate decoder useless [NP00, TT01, NNL01, DF02, DF03, KHL03, DFKY05, BW06b].
Constant Transmission Rate. All proposals mentioned so far result into schemes that are
not quite communication-efficient: the length of each ciphertext is (at least) t times longer than
the embedded plaintext. As pointed out by Kiayias and Yung in [KY02c], an important problem
in designing practical traitor tracing schemes is to ensure a low transmission rate, defined as
the asymptotic ratio of the size of ciphertexts over the size of plaintexts, while at the same time
minimize the secret- and the public-storage rates, similarly defined as the asymptotic ratio of
the size of user-keys and of public-keys over the size of plaintexts.1 Under this terminology, the
transmission rate of all the above mentioned solutions is linear w.r.t. the maximal number t of
traitors, whereas in [KY02c], Kiayias and Yung show that if the plaintexts to be distributed are
large (which is the case for most applications of traitor tracing, such as distribution of multimedia
content), then it is possible to obtain ciphertexts with constant expansion rate. Their solution
is based on collusion-secure fingerprint codes [BS98, Tar03] and its parameters are summarized
in Figure B.1.

Besides the clear benefit in terms of communication efficiency, schemes with constant trans-
mission rate also enjoy efficient black-box traceability, while schemes with linear transmission
rate are inherently more limited in this regard [KY01c] (e.g., the black-box traitor tracing of
[BF99b] takes time proportional to

(n
t

)
).

In [CPP05a], Chabanne et al. extend the setting of [KY02c] with the notion of public
traceability: Whereas traditional tracing algorithms require knowledge of the system’s secret
information, in a scheme with public traceability everyone can run the tracing algorithm. In this

1We adopt a terminology slightly different from the one of [KY02c], which uses the term ciphertext/user-
key/public-key rates, for what we called transmission/secret-storage/public-storage rates. Moreover, in [KY02c]
transmission rate refers to the sum of the all the three rates. Our choice is of course mostly a matter of taste:
we prefer the terminology of this paper as it makes more evident the role played by each quantity in a concrete
implementation of the system.

— 88 —

B.1. Introduction

Trans. S-Storage P-Storage BB Public Hardness
Rate Rate Rate Tracing Traceability Assumption

BF[BF99b] 2t+ 1 2t 2t+ 1 × × DDH
KY[KY02c] 3 2 4

√
∗ × DDH

CPP[CPP05b] 1 2 1 × × DBDH2-E
∧DBDH1-M

PST[PSNT06c] 7 1 1
√

full DDH
Repaired CPP 3 2 6

√
local DBDH2-E

∧DBDH1-M
Our Scheme 1 2 10

√
local DBDH

Figure B.1: Comparison of rates (transmission, secret- and public-storage rates) and tracing features (black-
box tracing and public traceability) between existing schemes and our construction. The “*” in the row labeled
“[KY02c]” refers to the fact that the scheme of [KY02c] can support black-box tracing using the tracing algorithm
that we describe in Appendix B.7.3. The row labeled “[PSNT06b]” refers to instantiating their generic construction
with ternary IPP codes and ElGamal-style encryption. The row labeled “Repaired [CPP05a]” refers to the variant
of the scheme of [CPP05a] that we suggest in Appendix B.7.3 to support black-box tracing.

paper, we also consider local public traceability, whereby public information suffices to carry out
the preliminary phase of tracing, which requires interaction with the pirate decoder, and results
in an encoding of the traitor’s identity that can be decoded with a master key. This separation
of tasks ensures that the system’s secret information is only needed for off-line operations (i.e.,
user registration and possibly the final phase of tracing), thus improving the overall security of
the system by allowing for safer storage solutions.
The work of [PSNT06b] describes a traitor tracing scheme with constant (but not optimal)
transmission rate and (full) public traceability based on Identifiable Parent Property (IPP)
codes. Figure B.1 also reports on these two schemes. One could think that traitor tracing
schemes with linear transmission rate (e.g. [BF99b]) could easily be turned into schemes with
constant transmission rate by means of hybrid encryption: To send a large message, pick a
random session key, encrypt it with the given traitor tracing scheme, and append a symmetric
encryption of the message under the chosen anonymous session key. This approach, however,
suffers from a simple yet severe untraceable pirate strategy: Just decrypt the session key and
make it available to the “customers” on the black market, e.g., via anonymous e-mail, or via
text-messaging from a pre-paid cellphone. Clearly, when a traitor tracing scheme is used to
encrypt the content directly, this “re-broadcasting” strategy becomes much less appealing for
would-be pirates, because of the higher costs and exposure risks associated with running a
high-bandwidth darknet.
Our Contributions. We present the first public-key traitor tracing scheme with efficient black-
box traitor tracing and local public traceability in which the transmission rate is asymptotically
1, which is optimal. Encryption involves the same amount of computation as in [CPP05a];
decryption is twice as fast. We also considerably simplify the computational hardness require-
ments, relying just on the DBDH assumption—much weaker and more widely accepted than the
non-standard bilinear assumptions employed in [CPP05a].

Our treatment improves the standard modeling of black-box tracing by additionally account-
ing for pirate strategies that attempt to escape tracing by purposedly rendering the transmitted
content at lower quality (e.g. by dropping every other frame from the decrypted video-clip, or
skipping few seconds from the original audio file).

As additional contribution, we point out and resolve an issue in the black-box tracing
of [KY02c] (which was also independently addressed in a revised version of their work [KY06]).

— 89 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

We then show that [CPP05a], which extends [KY02c] and inherits its tracing mechanism, inherits
in fact the above-mentioned problem, too. In this case, however, fixing the black-box function-
ality requires changes that intrinsically conflict with the optimizations put up by [CPP05a]
to achieve optimal transmission rate. In other words, [CPP05a] can either provide optimal
transmission rate with only non-black-box tracing, or support local public traceability with
sub-optimal transmission rate, but cannot achieve both at the same time.
Organization. Section B.2 introduces the tools needed for our construction. Section B.3 defines
the syntactic, security, and traceability properties of traitor tracing schemes. We present our
new traitor tracing scheme and its security analysis in Section B.4, and Section B.5 discusses a
concrete choice of parameters. In the Appendix, we point out a flaw in the tracing algorithms
of [KY02c] and [CPP05a] and propose fixes.

B.2 Preliminaries
The security properties of our construction hinge upon the decisional bilinear Diffie-Hellman
assumption (DBDH) for (G1,G2). We refer the reader to Appendix B.7.1. for the relevant
definitions.
Collusion-Secure Codes. Collusion-secure codes [BS98] provide a powerful tool against illegal
redistribution of fingerprinted material in settings satisfying the following Marking Assumption:
1) it is possible to introduce small changes to the content at some discrete set of locations (the
marks), while preserving the “quality” of the content being distributed; but 2) it is infeasible to
apport changes to a mark without rendering the entire content “useless” unless one possesses
two copies of the content that differ at that mark. Below, we include a formalization of the
notion of collusion-secure codes, adapted from [BS98].

Definition B.2.1 Let Σ be a finite alphabet, and n, v ∈ Z≥ 0. An (n, v)-code over Σ is a set
of n v-tuples of symbols of Σ: C = {ω(1), . . . , ω(n)} ⊆ Σv.

Definition B.2.2 Let T be a subset of indices in [1, n]. The set of undetectable positions for
T is: RT = {` ∈ [1, v] | (∀i, j ∈ T).[ω(i)

` = ω
(j)
`]}.

Notice that for each i ∈ T , the projection of each codeword ω(i) over the undetectable
positions for T is the same; we denote this common projected sub-word as ω|RT . By the Marking
Assumption, any “useful” copy of the content created by the collusion of the users in T must
result in a tuple ω̄ whose projection over RT is also ω|RT . This is captured by the following:

Definition B.2.3 The set of feasible codewords for T is: FT = {ω̄ ∈ (Σ∪{?})v | ω̄|RT = ω|RT }.

Definition B.2.4 Let ε > 0 and t ∈ Z≥ 0. C is an (ε, t, n, v)-collusion-secure code over Σ
if there exists a probabilistic polynomial-time algorithm T such that for all T ⊆ [1, n] of size
| T |≤ t, and for all ω̄ ∈ FT , it holds that: Pr[T (rC , ω̄) ∈ T] ≥ (1 − ε), where the probability
is over the random coins rC used in the construction of the (n, v)-code C, and over the random
coins of T .

B.3 Public-Key Traitor Tracing Scheme with Public Traceabil-
ity

Definition B.3.1 [Public-Key Traitor Tracing Scheme] A public-key traitor tracing scheme is a
5-tuple of probabilistic polynomial-time algorithms (Setup, KeyDer, Encaps, Decaps, Trace),
where:

— 90 —

B.3. Public-Key Traitor Tracing Scheme with Public Traceability

Setup: On input a security parameter 1κ, a collusion threshold 1t, and a bound n on the max-
imum number of users, returns a public key pk along with some master secret information
msk (cf. KeyDer and Trace);

KeyDer: Given msk and a user index i ∈ [1, n], outputs a “fingerprinted” user key ski;2

Encaps: On input key pk and a message m (from the appropriate message spaceM, implicitly
described by pk), returns a (randomized) ciphertext ψ;

Decaps: On input a user key ski and a ciphertext ψ, recovers the message encrypted within ψ;

Trace: Given the master secret key msk, the public key pk, and black-box access to a “pirate”
decoder capable of inverting the Encaps(pk, ·) functionality, returns the user index of one
of the traitors that contributed his/her user key for the realization of the pirate decoder,
or the special user index 0 upon failure.

For correctness, decryption with any user key output by KeyDer should “undo” encryption:

Pr

Decaps(ski,Encaps(pk,m)) = m

∣∣∣∣∣∣(pk,msk) $← Setup(1κ, 1t, n),m $←M,

i
$← [1, n], ski

$← KeyDer(msk, u)

 = 1,

where the probability is over the random coins of Setup, KeyDer, Encaps, Decaps, and over
the random selection of m fromM and of i from [1, n].

Definition B.3.2 [Full/Local Public Traceability] A public-key traitor tracing scheme is said
to support: 1) public traceability if the Trace algorithm can be implemented without the master
secret key msk; or 2) local public traceability if the Trace algorithm can be split in an on-line
phase, in which the pirate decoder can be queried without knowledge of the secret key, and an
off-line phase, without access to the pirate decoder, that can retrieve the identity of the traitor
from the master secret key and the output of the publicly executable on-line phase.

Requirements on the Encryption Functionality. For security, encryption of distinct mes-
sages under a traitor tracing scheme should look indistinguishable to any efficient algorithm
that is allowed to pick the two messages based on the public key of the system, but without
knowledge of any user key:

Definition B.3.3 [Indistinguishability under Chosen-Plaintext Attack] A public-key traitor
tracing scheme satisfies εind-indistinguishability if, for any pair of probabilistic polynomial-time
algorithms (A1,A2), it holds that:

Pr

A2(state, ψ∗) = b∗

∣∣∣∣∣∣∣∣
(pk,msk) $← Setup(1κ, 1t, n),

(m0,m1, state) $← A1(pk),
b∗

$← {0, 1}, ψ∗ $← Encaps(pk,mb∗)

 ≤ 1
2 + εind,

where the probability is over b∗, and the random coins of A1, A2, Setup, and Encaps.

Requirements on the Tracing Functionality. Existing literature usually models black-
box traceability as the ability to “extract” the identity of (at least) one traitor from pirate
decoders that correctly invert the decryption algorithm (under appropriate efficiency and success
probability constraints). This approach, however, is often criticized because it leaves the way

2Equivalently, we can think of Setup as outputting a vector of user keys, one per each user in the system; we
will refer to either formalization interchangeably.

— 91 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

open for pirate decoders that decrypt ciphertexts into plaintexts that closely resemble (but are
not identical to) the original plaintexts. For example, in the context of media distribution, the
pirate could purposedly remove few frames from the original video clip, or play the correct audio
file at a lower sampling rate. Such pirates could still attract a share of the black market, and
since they actually do not correctly invert the encryption functionality, the scheme’s traceability
guarantees often would do not apply to them. To account for pirate strategies of this sort, we
allow traitors to specify a notion of “resemblance” in the form of a polynomial-time reflexive,
symmetric binary relation R over plaintexts, with R(m,m′) = 1 if customers would accept
m′ as a reasonable replacement for m.3 The only semantic constraint on R is that it shall
not be so lax as to deem random4 plaintexts similar to fixed ones, i.e., the quantity pR

.=
maxm∈M Pr[R(m,m′) = 1 | m′ $←M] shall be negligible (otherwise tracing is impossible, since
a keyless decoder could simply output a random plaintext as a “reasonable” decryption of any
ciphertext). Similarly, tracing needs only be effective against efficient decoders D whose success
probability pD

.= Pr[R(m,D(Encaps(pk,m))) = 1 | m $←M] is non-negligible.

Definition B.3.4 A public-key traitor tracing scheme is εtrac-traceable if for any probabilistic
polynomial-time traitor strategy A, it holds that:

Pr

TraceD(·)(pk,msk) 6∈ T

∣∣∣∣∣∣(pk,msk) $← Setup(1κ, 1t, n),
(D,R) $← A(pk)KeyDer(msk,·)

 ≤ εtrac

where M is the message space, T ⊆ [1, n] is the set of up to t indices on which A queried the
KeyDer(msk, ·) oracle, D and R both run in probabilistic polynomial-time and are such that pD
is non-negligible and pR is negligible, and the probability is over the coins of Setup, KeyDer,
A, D and Trace.

Notice that Definition B.3.4 subsumes the case that the traitor strategy A only produces a
“good” pirate decoder D with a low (but non-negligible) probability: indeed, any such strategy
can be “boosted” by simply keeping executing A on fresh random coins, until the pirate decoder
D that A outputs is a good one (which can be efficiently tested by estimating D’s decryption
capability on the encryption of a random plaintext).

B.4 Public-Key Traitor Tracing with Public Traceability, Black-
Box Tracing and Optimal Transmission Rate

Similarly to the schemes of [KY02c] and [CPP05a], our construction is based on the use of an
(ε, t, n, v)-collusion-secure code C over the alphabet {0, 1} (cf. Definition B.2.4). At a high
level, the idea is to first define a two-user sub-scheme resilient against a single traitor, and
then “concatenate” v instantiations of this sub-scheme according to the code C; in particular,
each user i ∈ [1, n] is associated to a codeword ω(i) in C, and given decryption key ski

.=
(K1,ω(i)

1
, . . . ,K

v,ω
(i)
v

), where ω(i)
j is the j-th bit of the codeword ω(i), and Kj,0,Kj,1 are the keys

for the j-th instantiation of the basic two-user sub-scheme. Although the overall architecture
that we follow is well-known, achieving optimal transmission rate along these lines requires
solving a number of technical problems, on which we elaborate in Section B.4.4.

3Alternatively, the resemblance relation R could be specified as a parameter of the scheme in the definition of
the Trace algorithm.

4For the sake of simplicity, in this paper we discuss only the case of random sampling from M, but the
treatment generalizes to the case of other plaintext distribution with high min-entropy.

— 92 —

B.4. Public-Key Traitor Tracing with Public Traceability, Black-Box Tracing and Optimal
Transmission Rate

B.4.1 Our Two-User Sub-Scheme

Setup: Given a security parameter 1κ, the algorithm works as follows:

Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admissible
bilinear map e : G1 ×G1 → G2. Choose an arbitrary generator P ∈ G1.

Step 2: Pick random elements a, b, c ∈ Z∗q, and set Q .= aP,R
.= bP, h

.= e(P, cP).
Compute two linearly independent vectors (α0, β0) and (α1, β1) in Zq such that bασ+
aβσ = c mod q, for σ ∈ {0, 1}. The private key of the security manager is set to be
msk .= (a, b, α0, β0, α1, β1).

Step 3: For σ ∈ {0, 1}, let Aσ
.= ασR and Bσ

.= βσP . Choose a universal hash function
H : G2 → {0, 1}κ, and set the public key of the scheme to be the tuple

pk .= (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1).5

The associated message space isM .= {0, 1}κ.

KeyDer: For σ ∈ {0, 1}, the secret key of user σ is set to be skσ
.= ασ. Notice that cP =

ασR + βσQ and hence h = e(P, cP) = e(P, ασR) · e(Q, βσP) = e(P,Aσ) · e(Q,Bσ), for
σ ∈ {0, 1}.

Encaps: Given pk, anybody can encrypt a message m ∈ M by first selecting a random k ∈ Zq
and then creating the ciphertext ψ .= 〈U, V,W 〉 ∈ G2 ×G1 ×M where

U
.= e(P,R)k, V

.= kQ, W
.= m⊕H(hk)

Decaps: Given a ciphertext ψ = 〈U, V,W 〉, user σ computes hk = Uασ · e(V,Bσ) and recovers
m = W ⊕H(hk). Correctness of the decryption algorithm is clear by inspection.

Trace: To trace a decoder D with resemblance relation, feed D with the “illegal” ciphertext
ψ̂
.= 〈e(P,R)k′ , kQ, m̂ ⊕H(e(P,Aσ)k′e(Q,Bσ)k)〉, for random σ ∈ {0, 1}, k, k′ ∈ Zq, m̂ ∈

M. If the output m∗ of D satisfies R(m̂,m∗) = 1, then return σ as the traitor’s identity;
otherwise, pick fresh random σ ∈ {0, 1}, k, k′ ∈ Zq, m̂ ∈M and repeat.

Before moving on to the security and traceability of our two-user scheme in the sense of
Definitions B.3.3 and B.3.4 (cf. Section B.3), we remark that Trace does not require knowledge
of the master secret key msk, and thus it supports full public traceability (cf. Definition B.3.2).
Also, notice that decryption requires only one pairing computation.

B.4.2 Indistinguishability under Chosen-Plaintext Attack

Theorem B.4.1 Under the DBDH assumption for (G1,G2), the scheme in Section B.4.1 is
secure w.r.t. indistinguishability under chosen-plaintext attack (cf. Definition B.7.1 and Defini-
tion B.3.3).

Proof: To a contradiction, let us assume that the scheme does not satisfy Definition B.3.3 i.e.,
there is an adversary A = (A1,A2) that, given the public key

5Note that there is no need to explicitly include h in the public key, as it can be derived as h = e(P,Aσ) ·
e(Q,Bσ). Caching the value of h, however, is recommendable when public storage is not at a premium, as that
would save two pairing computations during encryption.

— 93 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

pk = (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1), can break the scheme with non-negligible advan-
tage εind. We then construct an algorithm B (whose running time is polynomially related to
A’s) that breaks the DBDH assumption with probability εDBDH = εind.
Algorithm B is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH problem in (G1,G2);
its task is to determine whether h′ = e(P ′, P ′)xyz, or h′ is a random element in G2. B proceeds
as follows:

Setup: B sets P .= xP ′ and Q
.= P ′. Then, B picks r $← Z∗q, and sets R .= rQ. B now

chooses β0, β1
$← Z∗q and computes B0

.= β0P and B1
.= β1P . Then, B sets A0

.= zP ′

and h
.= e(P,A0) · e(Q,B0). Finally, B sets A1

.= A0 + β0Q − β1Q, so that in fact
h = e(P,Aσ) · e(Q,Bσ), for σ ∈ {0, 1}, as required.
B can now set pk .= (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1) and send it to A1.

Challenge: A1 outputs two messages m0,m1 on which it wishes to be challenged, along with
some state state to be passed to A2. To prepare the ciphertext, B picks random b∗ ∈ {0, 1},
and sets

U
.= e(P, yP ′)r (= e(P,R)y), V .= yP ′ (= yQ),W .= mb∗ ⊕H(h′ · e(yP ′, xP ′)β0).

(Notice that this implicitly defines k = y.) Then, B sends A2 the challenge ciphertext
ψ∗

.= (U, V,W), along with the state information state.

Guess: Algorithm A2 outputs a guess b′ ∈ {0, 1}. B returns 1 if b′ = b∗ and 0 otherwise.

If h′ = e(P ′, P ′)xyz, then A2 gets a valid encryption of mb∗ , since (as we verify below) in this
case the input to the hash function in the computation of W is just hk:

h′ · e(yP ′, xP ′)β0 = e(P ′, P ′)xyz · e(yP ′, β0(xP ′)) = e(xP ′, zP ′)y · e(P ′, β0(xP ′))y

= e(P,A0)y · e(Q,B0)y = [e(P,A0) · e(Q,B0)]y = hy = hk,

as required by the encryption algorithm. Therefore, in this case A will successfully guess b′ = b∗

with probability εind + 1/2.
On the other hand, when h′ is a random element of G2, the input to H is a random value,
independent of any other information in the adversary’s view. Since H is chosen from a universal
hash function family, its output is also (almost) uniformly random in {0, 1}κ, so that the value
of W (and hence the whole challenge ciphertext ψ∗) is completely independent from mb∗ . Thus,
in this case b′ = b∗ holds with probability 1/2.
It follows that adversary B breaks the DBDH assumption with non-negligible advantage εDBDH =
εind, contradicting our hardness assumption.

B.4.3 Traceability

To assess the effectiveness of the Trace algorithm from Section B.4.1, we start with some
observations about the illegal ciphertexts that Trace uses in querying the decoder D:

Definition B.4.2 [Valid and Probe Ciphertexts] Let σ ∈ {0, 1}, m̂ ∈ M, Û ∈ G1, V̂ ∈ G2,
Ŵ =m̂⊕H(Ûασe(V̂ , Bσ)), and ψ̂ = 〈Û , V̂ , Ŵ 〉. We say that the ciphertext ψ̂ is:

• valid, if Û = e(P,R)k, V̂ = kQ, for some k ∈ Zq;

— 94 —

B.4. Public-Key Traitor Tracing with Public Traceability, Black-Box Tracing and Optimal
Transmission Rate

• σ-probe, if Û = e(P,R)k′ , V̂ = kQ, for distinct k, k′ ∈ Zq.

Lemma B.4.3 [Indistinguishability of Valid vs. Probe Ciphertexts] Under the DBDH assump-
tion for (G1,G2), given the public key pk = (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1) and the
secret key skτ = ατ of user τ ∈ {0, 1} (where Aτ = ατR), it is infeasible to distinguish a valid
ciphertext from a τ -probe.

Proof: For simplicity, assume τ = 0. We proceed by contradiction: assume there is an adversary
A that, given the public key pk = (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1) and the secret key α0
of user 0, can distinguish valid ciphertexts from probes with probability ε. We then construct
an algorithm B (whose running time is polynomially related to A’s) that breaks the DBDH
assumption with probability εDBDH = ε.

Algorithm B is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH problem in (G1,G2);
its task is to determine whether h′ = e(P ′, P ′)xyz or h′ is a random element in G2. B proceeds
as follows:

Setup: B lets P .= xP ′, Q .= P ′, R .= yP ′, chooses α0, β0, β1
$← Z∗q and computes A0

.= α0R,
B0

.= β0P and B1
.= β1P . B also sets A1

.= A0 + β0Q − β1Q, which implicitly defines
h = e(P,A0) · e(Q,B0) = e(P,A1) · e(Q,B1). B now defines pk .= (q, G1, G2, e, H, P , Q,
R, A0, B0, A1, B1). Then, B prepares a challenge ciphertext ψ̂ .= 〈Û , V̂ , Ŵ 〉 by setting
Û

.= h′, V̂ .= zP ′(= zQ, thus implicitly defining k = z) and Ŵ .= m̂ ⊕ H(Ûα0e(V̂ , B0)),
for m̂ $←M. At this point, B feeds A with pk, ψ̂, and α0.

Attack: A returns her guess to whether ψ̂ is a valid ciphertext or a probe (w.r.t. the public key
pk).

Break: B outputs yes or no accordingly.

If h′ = e(P ′, P ′)xyz, then A gets a valid ciphertext since h′ = e(xP ′, yP ′)z = e(P,R)z, consis-
tently with the value of V̂ = zQ, as required by the encryption algorithm. Otherwise, h′ is a
random value in G2, of the form h′ = e(P,R)k′ , for some k′ totally independent from k = z,
and thus ψ̂ is a 0-probe. Therefore, B breaks the DBDH assumption with the same advantage
as A’s i.e., εDBDH = ε.

An important consequence of Lemma B.4.3 is that pirate decoders created by user τ reply
to τ -probes with an m∗ such that R(m̂,m∗) = 1 with non-negligible probability p̂D:

Corollary B.4.4 Let D, R be the pirate decoder and resemblance relation output by a traitor
strategy A based on the user key ατ , such that pD is non-negligible and pR is negligible (cf.
Definition B.3.4). Let ψ̂ be a τ -probe for a message m̂ $← M. Under the DBDH assumption,
p̂D

.= Pr[R(m̂,m∗) = 1 | m∗ $← D(ψ̂)] is non-negligible.

Proof: To a contradiction, assume p̂D to be negligible. We then construct an efficient algorithm
B that, given pk and the secret key ατ of a single user, distinguishes valid ciphertexts from τ -
probes as follows: on input a ciphertext ψ̂ = 〈Û , V̂ , Ŵ 〉, B computes m̂ .= Ŵ ⊕H(Ûατ ·e(V̂ , Bτ))
from ατ and ψ̂. Notice that this value m̂ is correct regardless of whether ψ̂ is a valid ciphertext
or a τ -probe. Then, B feeds D with ψ̂, getting back a value m∗. If R(m̂,m∗) = 1, then B
concludes that ψ̂ must be valid; otherwise, B concludes that ψ̂ is a τ -probe. In other words, B
“interpolates” between the experiment defining probabilities pD and p̂D, so that B’s advantage

— 95 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

in discerning valid ciphertext from τ -probes is clearly pD − p̂D. But if p̂D were negligible, such
algorithm B would violate the statement of Lemma B.4.3, proving our argument.

The next lemma addresses the case of pirate decoders fed with probes of the “wrong type”:

Lemma B.4.5 Replacing ψ̂ with a (1−τ)-probe in the setting of Corollary B.4.4, Pr[R(m̂,m∗) =
1] is negligible.

Proof: We start with the observation that if we could somehow remove the message m̂ from
the pirate decoder’s view, then our thesis would follow immediately, since m̂ would then be
independent from the message m∗ output by D, and hence, by definition of pR, R(m̂,m∗) = 1
would hold with probability pR, which is negligible.
In fact, m̂ occurs in D’s view only in the third component of the (1−τ)-probe ψ̂ .= 〈Û , V̂ , Ŵ 〉, as
Ŵ = m̂⊕H(Ûα1−τ e(V̂ , B1−τ)), so it suffices to show that Ûα1−τ e(V̂ , B1−τ) is indistinguishable
from random in D’s view. Since B0, B1 both appear in the public key pk of the system,
this boils down to proving that D cannot distinguish Ûα1−τ from random. It also holds that
Ûα1−τ = e(P,R)k′α1−τ = e(P,A1−τ)k′ , so that the task faced by D is to tell e(P,A1−τ)k′ apart
from random, given e(P,R), e(P,A1−τ), and Û = e(P,R)k′ . But this is just the DDH problem
for group G2, whose hardness is implied by the DBDH assumption.
The above argument can be easily rephrased along the lines of the reductions described in the
proofs of Theorem B.4.1 and Lemma B.4.3; we refrain from doing so due to space limitations.

Theorem B.4.6 Under the DBDH assumption for (G1,G2), our Trace algorithm has a negli-
gible traceability error.

Proof: Let D, R be the pirate decoder and resemblance relation on which the Trace algorithm
is being run, and let τ be the traitor index. Corollary B.4.4 guarantees that Trace will on
average terminate after 2/pD queries to D. Upon termination, Trace’s output will be wrong
only if it happens that D replies to a (1− τ)-probe ψ̂ with an m∗ satisfying R(m̂,m∗) = 1, i.e.,
Pr[TraceD(·)(pk,⊥) 6∈ T] = Pr[ψ̂ is a (1− τ)-probe | R(m̂,m∗) = 1], which by Corollary B.4.4,
Lemma B.4.5, and Bayes’ theorem is easily seen to equal pR/(pD + pR), which is negligible.

B.4.4 Our Multi-User Scheme

As mentioned at the beginning of Section B.4, a common approach to extending a two-user
construction to the multi-user setting is to concatenate several instantiations (say, v) of the basic
two-user scheme. Tracing in the resulting multi-user scheme can then be performed iteratively
as a sequence of v stages; in each stage, the pirate decoder is queried with ciphertexts that
are valid in all v components, except for one, which instead is crafted according to the Trace
algorithm of the two-user construction. In this way, if the decoder does not have both sub-keys
for the component currently under testing, it will be unable to tell that the ciphertext is invalid,
and so the tracing procedure of the two-user subscheme will determine which of the two sub-keys
the decoder holds for that component.

Since tracing requires the ability to set up each component of the ciphertext independently of
all the others, it may seem necessary to use completely unrelated instantiations of the two-user
sub-scheme for each component. This is done, for example, in [KY02c]. (cf. Appendix B.7.2).
Having independent components, however, clearly leads to a multi-user scheme with the same
transmission rate as the underlying basic two-user scheme, and so it would not help us attaining

— 96 —

B.4. Public-Key Traitor Tracing with Public Traceability, Black-Box Tracing and Optimal
Transmission Rate

optimal transmission rate. In fact, the scheme of [CPP05a] (cf. Appendix B.7.2) manages to
get transmission rate 1 by sacrificing component independence, and instead using component-
instances all very closely related to each other. As we show in Appendix B.7.3, though, their
scheme does not support black-box traceability.

To solve this tension between transmission rate and black-box traceability, we move from
the observation that, at each stage, it suffices that a single component can be appropriately set
up independently from the rest; the remaining v − 1 can all be closely related to each other.
Therefore, ciphertexts in our construction include a “special” position `, where encryption is
performed with instance of our two-user scheme that is specific to the `-th component; the
remaining (v − 1) positions, instead, are encrypted using a “shared” two-user scheme.

To prevent pirate decoders from selectively ignoring the “special” position (which is the only
part of the ciphertext that encodes tracing information), we follow the approach proposed in
[KY02c], by which the encryption algorithm preliminarily processes the plaintext with an All-
Or-Nothing transform (AONT) [Riv97, Boy99, CDH+00]. This will force decoders to decrypt
all blocks of the ciphertext, since ignoring even a single one would result in missing at least one
block of the AONT-transformed plaintext, so that, by the properties of AONT’s, such decoders
would fail to recover any information about the original plaintext being transmitted. We remark
that reliance on AONT’s to force the pirate to include (at least) one key for each component
was suggested in [KY02c], but later dismissed by the authors in [KY06] as ineffective for the
black-box setting, since it cannot prevent cropping of the plaintext once it has been decrypted.
However, we believe their critique to be misleading, since traitor strategies in which the pirate
decoder tampers with the decrypted plaintexts are dealt with the use of the resemblance relation
R (see discussion in Section B.3), while AONT’s prevent the pirate from learning anything about
the plaintext if even a single block cannot be decrypted.

For the sake of clarity, we first describe the scheme without explicitly mentioning the AONT
pre-processing, and later discuss the details regarding the use of AONT’s.

Setup: Given the security parameters 1κ, 1t and ε, the algorithm works as follows:

Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admissible
bilinear map e : G1 × G1 → G2. Generate an (ε, t, n, v)-collusion-secure code C =
{ω(1), . . . , ω(n)}.

Step 2a: Generate v independent copies of the 2-user scheme described in Section B.4.1
(call these copies the special schemes). In particular, for j = 1, . . . , v, let Pj be a
generator of G1; pick random elements aj , bj , cj ∈ Z∗q , and set Qj

.= ajPj , Rj
.=

bjPj , hj
.= e(Pj , cjPj). Also, for j = 1, . . . , v, compute linearly independent vectors

(αj,0, βj,0), (αj,1, βj,1) ∈ Zq2 such that bjαj,σ + ajβj,σ = cj mod q, for σ ∈ {0, 1}.
Step 2b: Generate one more independent copy of the 2-user scheme of Section B.4.1, in

which we additionally select v values for h (call this the shared scheme). At a high
level, the shared scheme can be thought of as v parallel copies of the 2-user scheme
of Section B.4.1, sharing the same values P , Q and R. More precisely, draw P

$← G1,
a, b

$← Z∗q, and set Q .= aP , and R .= bP ; then, for each j = 1, . . . , v, select c̄j ∈ Z∗q
and set h̄j

.= e(P, c̄jP). Also, for each j = 1, . . . , v, compute two linearly independent
vectors (ᾱj,0, β̄j,0), (ᾱj,1, β̄j,1) in Zq2 such that bᾱj,σ+aβ̄j,σ = c̄j mod q, for σ ∈ {0, 1}.

Step 2c: The master secret key msk of the security manager is set to be:

((aj , bj , (αj,0, βj,0, αj,1, βj,1))j=1,...,v, a, b, (ᾱj,0, β̄j,0, ᾱj,1, β̄j,1)j=1,...,v)

Step 3: For j = 1, . . . , v and σ ∈ {0, 1}, let Aj,σ
.= αj,σRj , Bj,σ

.= βj,σPj , Āj,σ
.= ᾱj,σR

and B̄j,σ
.= β̄j,σP . Choose a universal hash function H : G2 → {0, 1}κ, and set pk

— 97 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

to:6
(H, (Pj , Qj , Rj , Aj,0, Bj,0, Aj,1, Bj,1), P,Q,R, (Āj,0, B̄j,0, B̄j,1))

for all j = 1, . . . , v. The associated message space isM .= ({0, 1}κ)v.

KeyDer: For each user i, the security manager first retrieves the corresponding codeword
ωi ∈ C and sets his/her secret key to: ski

.= ((α
j,ω

(i)
j

)j=1,...,v, (ᾱj,ω(i)
j

)j=1,...,v). Notice that,
for j = 1, . . . , v, it holds that:

cjPj = α
j,ω

(i)
j

Rj + β
j,ω

(i)
j

Qj and hence hj = e(Pj , Aj,ω(i)
j

) · e(Qj , Bj,ω(i)
j

),

c̄jP = ᾱ
j,ω

(i)
j

R+ β̄
j,ω

(i)
j

Q and hence h̄j = e(P, Ā
j,ω

(i)
j

) · e(Q, B̄
j,ω

(i)
j

).

Encaps: Given pk, anybody can encrypt a message m = (m(1)‖ . . . ‖m(v)) ∈M as follows:
First, select ` $← {1, . . . , v} and k`

$← Zq, and compute the special component of the
ciphertext (U`, V`,W`) ∈ G2 × G1 × {0, 1}κ, where U`

.= e(P`, R`)k` , V
.= k`Q` and

W`
.= m(`) ⊕H(hk``).

Then, select k $← Zq, and compute the remaining pieces of the ciphertext as:
(U, V,W1, . . . ,W`−1,W`+1, . . . ,Wv), where U

.= e(P,R)k, V .= kQ, andWj
.= m(j)⊕H(h̄kj),

for j = 1, . . . , v, j 6= `. The ciphertext is set to be the tuple ψ .= 〈`, U`, V`, U, V,W1, . . . ,Wv〉.

Decaps: Given a ciphertext ψ = 〈`, U`, V`, U, V,W1, . . . ,Wv〉 ∈ Z× (G2×G1)2×M, ui computes
for each j = 1, . . . , v, j 6= `:

hk`` = (U`)
α
`,ω

(i)
` · e(V`, B`,ω(i)

`

) and h̄kj = (U)
ᾱ
j,ω

(i)
j · e(V, B̄

j,ω
(i)
j

)

recovers m(`) = W`⊕H(hk``) and m(j) = Wj⊕H(h̄kj) (for j ∈ {1, . . . , v}\{`}) and outputs
m

.= (m(1)‖ . . . ‖m(v)).

Trace: Given pk, anybody can extract the “traitor codeword” ω̂ .= (ω̂(1), . . . , ω̂(v)) ∈ {0, 1}v
from a decoder D by making O(v) queries to D. At a high level, the idea is to itera-
tively derive each ω̂(`) by feeding D with an invalid ciphertext that looks valid in the
“shared” components, but is actually a probe (in the sense of Section B.4.3) on the `-th
“special” component. In this way, if D contains only one of the two user-keys for the
`-th “special” two-user component (say, α`,τ (`)), its reply will reveal the value of τ (`).
More in detail, to extract τ (`) from D, Trace queries D with ciphertexts of the form
ψ̂(`) .= 〈`, Û`, V̂`, U (`), V (`),W

(`)
1 , . . . , Ŵ

(`)
` , . . . ,W

(`)
v 〉, where k`, k′`, k(`) $← Zq, m̂(`) = m̂

(`)
1 ,

. . . , m̂(`)
v is drawn at random from M, σ(`) is a random bit, W (`)

j
.= m̂

(`)
j ⊕ H(hk(`)

j) for
each j = 1, . . . , v, j 6= `, and

Û`
.= e(P`, R`)k

′
` V̂`

.= k`Q` U (`) .= e(P,R)k(`)
V (`) .= k(`)Q

Ŵ
(`)
`

.= m̂
(`)
` ⊕H(e(P`, A`,τ (`))k

′
` · e(V̂`, B`,τ (`))).

Let m∗(`) .= (m∗(`)1 ‖ . . . ‖m∗(`)v) be the plaintext output by D when fed with the ciphertext
ψ̂(`). If R(m̂(`),m∗(`)) = 1, then set ω̂(`) = σ(`); otherwise, pick fresh random k`, k

′
`, k

(`)

from Zq, m̂(`) from M, σ(`) from {0, 1}, and repeat, until either R(m̂(`),m∗(`)) = 1, or
6The shared scheme is not used for tracing, so Āj,1 can be safely omitted (Āj,0 is included only so that h̄j can

be computed.)

— 98 —

B.4. Public-Key Traitor Tracing with Public Traceability, Black-Box Tracing and Optimal
Transmission Rate

the iteration has failed some fixed polynomial number of time, in which case ω̂(`) is set
arbitrarily.
After this process has been repeated for ` = 1, . . . , v, the resulting “traitor codeword” ω̂
is handed to the tracer, who (knowing the random coins rC used in generating C) can run
it through the tracing algorithm T (rC , ·) of the collusion-secure code C, thus obtaining a
value in {1, . . . , n, 0}, which is the output of Trace.

Remark B.4.7 Since the Trace algorithm needs msk only in the off-line phase, which does
not access the pirate decoder and is much less computation-intensive,7 our multi-user scheme
supports local public traceability.

Remark B.4.8 We bound the number of trials that Trace performs to extract each bit ω̂(`)

because a pirate decoder holding both keys for position ` could cause the test R(m̂(`),m∗(`)) = 1
to fail with probability 1. A suitable value for this bound is O(1/pD), where pD is the success
probability (over random valid ciphertexts) of the decoder under tracing, which can be efficiently
estimated using Chernoff bounds.

Remark B.4.9 Notice that the size of the message blocks can be shrunk to any κ′ ≤ κ, by
choosing a universal hash function H : G2 → {0, 1}κ

′ . This is possible as long as κ′ > log v +
log(1/ε) = O(log t+ log log(n/ε) + log(1/ε)), which ensures that, during tracing, the probability
of a hash collision in any of the v components of the scheme is bounded by ε. For a typical
choice of parameters (n = 230, ε = 2−30, t = 30), κ′ can be chosen as low as 64 bits.

Pre-Processing Messages with AONT’s.

An AONT is an efficient, unkeyed, randomized transformation, with the property that it is hard
to invert unless the entire output is known. (For a formal definition, see [Boy99, CDH+00].) As
for specific instantiations, Boyko showed in [Boy99] that the Optimal Asymmetric Encryption
Padding (OAEP)[BR94] can be proven secure as an AONT in the Random Oracle Model. In
[CDH+00], Canetti et al. described constructions in the standard model based on the notion of
Exposure-Resilient Functions.

For our purposes, it suffices to think of an AONT as a length-preserving algorithm AONT(m; r),
wherem ∈ ({0, 1}κ)v−1 is the message to be processed and r is an additional random value, of the
same length as each message block i.e., |r| = κ. In what follows, we denote by M $← AONT(m)
the process of selecting a random r from {0, 1}κ and setting M ← AONT(m; r). The resulting
AONT-transformed message M = (M1, . . . ,Mv) is an element of ({0, 1}κ)v, so that it can be
encrypted with the Encaps algorithm described above. We can thus define a multi-user scheme
with AONT pre-processing by modifying the Encaps and Decaps algorithms as:

Encaps′(m) .= Encaps(AONT(m)) Decaps′(ψ) .= AONT−1(Decaps(ψ))

Notice that the use of AONT pre-processing in the full-blown scheme implies an expansion in
the message size by roughly a factor 1 + 1/v, which still results in an asymptotical unitary
ciphertext-to-plaintext ratio.

B.4.5 Indistinguishability under Chosen-Plaintext Attack

In this section, we assess the security of the multi-user scheme of Section B.4.4. (For lack of
space, we defer all proofs for this section to Appendix B.7.4.)

We start by verifying the intuition that AONT pre-processing does not hurt security:
7For the scheme of [Tar03], for example, such computation consists just of a matrix-vector multiplication.

— 99 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

Lemma B.4.10 If the multi-user scheme without AONT pre-processing is secure w.r.t. in-
distinguishability under chosen-plaintext attack, then the multi-user scheme with AONT pre-
processing is secure w.r.t. the same notion.

Next, we observe that the security of the multi-user scheme from Section B.4.4 can be reduced
(via a hybrid argument) to the security of the two-user scheme from Section B.4.1:

Lemma B.4.11 If our two-user scheme is secure w.r.t. indistinguishability under chosen-plaintext
attack, then our multi-user scheme without AONT pre-processing is secure w.r.t. the same no-
tion.

In light of Theorem B.4.1, our main security theorem follows immediately from Lemmas
B.4.10 and B.4.11:

Theorem B.4.12 Under the DBDH assumption for (G1,G2), the scheme in Section B.4.4 is
secure w.r.t. indistinguishability under chosen-plaintext attack.

B.4.6 Traceability

Similarly to the case of the 2-user scheme of Section B.4.1, the traceability of our multi-user
scheme (with AONT pre-processing) is based on the notions of valid and probe ciphertexts:

Definition B.4.13 Let ` ∈ [1, v], σ ∈ {0, 1}, m̂ ∈ M, M̂ = (M̂1, . . . , M̂v)
$← AONT(m̂),

Û` ∈ G2, V̂` ∈ G1, k ∈ Zq, U = e(P,R)k, V = kQ, Wj = M̂j ⊕ H(hkj) (j = 1, . . . , v, j 6= `),
Ŵ` = M̂` ⊕H(Ûα`,σ` e(V̂`, B`,σ)), and ψ̂ = 〈`, Û`, V̂`, U, V,W1, . . . , Ŵ`, . . . ,Wv〉. We say that the
ciphertext ψ̂ is:

• valid, if Û` = e(P`, R`)k` , V̂` = k`Q`, for some k` ∈ Zq;

• (`, σ)-probe, if Û` = e(P`, R`)k
′
` , V̂` = k`Q`, for distinct k`, k′` ∈ Zq.

Our analysis is organized as follows. Let T denote the set of indices of the t traitors.
Lemma B.4.14 proves the computational indistinguishability of valid ciphertexts vs. (`, τ `)-
probes when only the τ ` subkey is known for position `. It follows (Corollary B.4.15) that pirate
decoders must decrypt such (`, τ `)-probes correctly (w.r.t. the chosen resemblance relation).
Lemma B.4.16 then shows that instead (`, 1 − τ `)-probes cannot be properly decrypted, and
Lemma B.4.17 combines Corollary B.4.15 and Lemma B.4.16 to argue that the chances that
the `-th stage of tracing fails to extract the correct bit ω̂(`) = τ ` from D are negligible, which
implies the overall traceability of our scheme (Theorem B.4.18).

Lemma B.4.14 [Indistinguishability of Valid vs. Probe Ciphertexts] Under the DBDH as-
sumption for (G1,G2), given the public key pk = (q, G1, G2, e, H, Pj , Qj , Rj , (Aj,0, Bj,0,
Aj,1, Bj,1)j=1,...,v, P,Q,R, (Āj,0, B̄j,0, B̄j,1)j=1,...,v) and the secret keys ski

.= ((α
j,ω

(i)
j

)j=1,...,v,

(ᾱ
j,ω

(i)
j

)j=1,...,v) for each i ∈ T , it is infeasible to distinguish valid ciphertexts from (`, τ `)-probes,

if the codewords of all traitors in T have bit τ ` at position `.

Proof: Since the `-th “special” sub-schemes is completely independent from the rest of our
construction, the thesis follows as a simple reduction to Lemma B.4.3.

— 100 —

B.4. Public-Key Traitor Tracing with Public Traceability, Black-Box Tracing and Optimal
Transmission Rate

Corollary B.4.15 Let D, R be the pirate decoder and resemblance relation output by a traitor
strategy A based on the user keys of the traitors in T , such that pD is non-negligible and pR is
negligible (cf. Definition B.3.4). Assume the codewords of all the traitors in T have bit τ ` at
position `, and let ψ̂ be an (`, τ `)-probe for a message m̂ $←M. Under the DBDH assumption,
p̂D

.= Pr[R(m̂,m∗) = 1 | m∗ $← D(ψ̂)] is non-negligible.

Proof: Reduces to Lemma B.4.14 exactly as Corollary B.4.4 reduces to Lemma B.4.3.

Lemma B.4.16 Replacing ψ̂ with an (`, 1 − τ `)-probe in the setting of Corollary B.4.15,
Pr[R(m̂,m∗) = 1] is negligible, if the AONT employed in the system is secure.

Proof: The argument described in the proof of Lemma B.4.5 implies that the AONT-transformed
message block M̂` is computationally hidden from the pirate decoder’s view. By the properties
of AONT’s, the whole original message m̂ is then also computationally hidden from D, so that in
fact m̂ is just a random message independent from the output m∗ of D, and hence R(m̂,m∗) = 1
holds with probability pR, which is negligible.

Lemma B.4.17 Consider the `-th stage of the Trace algorithm, when the tracer queries the
decoder D with (`, σ)-probes for random σ ∈ {0, 1}. If all codewords of the traitors in T have
bit τ ` in the `-th position, then the `-th stage will terminate setting ω̂` = 1− τ ` with negligible
probability.

Proof: The assumption that D does not contain both keys for position ` implies, by Corol-
lary B.4.15, that the `-th stage of Trace will on average terminate after 2/pD queries to D. Upon
termination, Trace’s output will be wrong only if it happens that D replies to an (`, 1 − τ `)-
probe ψ̂ with an m∗ satisfying R(m̂,m∗) = 1, which by Corollary B.4.15, Lemma B.4.16, and
Bayes’ theorem is easily seen to equal pR/(pD + pR), which is negligible.

Theorem B.4.18 Under the DBDH assumption for (G1,G2), the multi-user Trace algorithm
from Section B.4.4 has a negligible traceability error.

Proof: Let ω̂ = (ω̂(1), . . . , ω̂(v)) be the “traitor codeword” recovered at the end of the publicly
traceable phase of Trace (cf. Section B.4.4). By the union bound, Lemma B.4.17 implies that
ω̂ will be correct in all positions ` where all traitors show the same bit, except with negligible
probability. By the collusion resistance of the code C underlying the key assignment of Setup,
the codeword-tracing algorithm T (cf. Definition B.2.4) will then be able to tie such traitor
codeword ω̂ to the identity of one of the traitors in T (except with negligible probability ε), as
required.

Remark B.4.19 As noted above, by employing AONT’s, the security and tracing capabilities
of our multi-user scheme follow almost directly from those of the embedded “special” sub-
scheme. In fact, even if we were to suppress the shared sub-scheme (e.g., by setting Wj = Mj ,
for j = 1, . . . , v, j 6= `), the multi-user scheme would still be secure and tracing would still be
possible (thanks also to the random rotation of the special position ` between 1 and v). Using
the shared sub-scheme, however, reinforces the semantic security of the scheme, though at the
cost of a greater computational load, due to the larger number of pairing computations needed
for encryption and decryption.

— 101 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

B.5 Space and Time Parameters in a Concrete Instantiation

Existing constructions of constant-rate traitor tracing schemes (including ours) are based on
the use of collusion-secure fingerprint codes8 [BS98, Tar03], and in particular are applicable for
messages of size proportional to the length of the code, which in the case of the optimal codes due
to Tardos [Tar03] is O(t2(logn+log 1

ε)). For a typical choice of parameters, e.g. user population
n = 230, tracing error probability ε = 2−30 and traceable threshold t = 30, the resulting code
length is about 5 million bits. Instantiating our construction with such codes yields a scheme
with plaintext and ciphertext of size 41 MBytes. (The ciphertext size is equal to the plaintext
size, as the additive overhead is less than 1 KByte.) These values are well within the range of
multimedia applications, since 41 MBytes roughly corresponds to 33 seconds of DVD-quality
(high-resolution) video, 4 minutes of VCD-quality (low-resolution) video and 25–50 minutes
of audio. The resulting public and secret keys roughly require respectively 1.5GByte and 206
MBytes. Although quite large, such a public key could be stored in commodity hardware (e.g.,
it would fit in the hard disk of an iPod), whereas user secret keys could be kept in Secure Digital
memory cards, like those commonly available for PDAs.

Another important issue for a concrete instantiation is the rate at which encrypted content
can be processed. In our scheme, decryption requires one paring per 1024 bits of content, which,
using the PBC Library [Lyn] on a desktop PC, takes approximately 16 msec. However, in
our context, the pairings to be computed all have one of their two input-points in common:
as reported in [BLS04], pre-processing in similar settings more than halves the computation
time, so that one easily gets in the order of 128 pairings/sec, corresponding to a near-CD-
quality audio rate of 128 Kbits/sec. More specialized software implementations [BGhCS04]
of the pairing operation can further reduce its computational cost to around 3 msec; whereas
hardware implementations, even under conservative assumptions on the hardware architecture
[KMPB05], can obtain running time below 1 msec, attaining the 1Mbits/sec data rate needed
for VCD-quality video.

B.6 Conclusion

We present the first public-key traitor tracing scheme with efficient black-box tracing and op-
timal transmission rate. Our treatment improves the standard modeling of black-box tracing
by additionally accounting for pirate strategies that attempt to escape tracing by purposedly
rendering the transmitted content at lower quality (e.g. by dropping every other frame from the
decrypted video-clip, or skipping few seconds from the original audio file). We also point out and
resolve an issue in the black-box traitor tracing mechanism of both the previous schemes in this
setting [KY02c, CPP05a]. Our construction is based on the decisional bilinear Diffie-Hellman
assumption, and additionally provides the same features of public traceability as (a repaired
version of) [CPP05a], which is less efficient and requires non-standard assumptions for bilinear
groups.

8[PSNT06b] actually employs IPP codes, but similar considerations on code length and message size apply to
such codes as well.

— 102 —

B.7. Appendix

B.7 Appendix

B.7.1 Bilinear Maps and Intractability Assumptions

Bilinear Maps

Let G1 and G2 be two groups of order q, for some large prime q. In our construction, we will
make use of a bilinear map e : G1 ×G1 → G2, satisfying the following properties:

Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Zq;

Non-degeneracy: The map does not send all pairs in G1 ×G1 to the unit in G2;

Computable: There is an efficient algorithm to compute e(P,Q) for any elements P,Q ∈ G1.

A bilinear map satisfying the three above properties is said to be an admissible bilinear map.
Throughout the paper, we view G1 as an additive group and G2 as a multiplicative group. We
remark that since G1,G2 are groups of prime order and e is non-degenerated, e(P, P) generates
G2 whenever P generates G1. It follows that e(P, ·) is an isomorphism from G1 into G2. Typical
examples of constructions of admissible bilinear maps satisfying the above properties are based
on the modified Weil and Tate pairings (cf. e.g., [BF99b]).

Assumptions for Our Scheme

DBDH (the decisional bilinear Diffie-Hellman problem in (G1,G2)):
Given (P, aP, bP, cP, h) for random P ∈ G1, a, b, c ∈ Zq and h ∈ G2, output yes if h =
e(P, P)abc and no otherwise.

Definition B.7.1 [DBDH Assumption] The DBDH problem is εDBDH-hard in (G1,G2) if, for all
probabilistic polynomial-time algorithms A, we have

|Pr[A(P, aP, bP, cP, h) = yes | P $← G1, a, b, c
$← Zq, h = e(P, P)abc]−

Pr[A(P, aP, bP, cP, h) = yes | P $← G1, a, b, c
$← Zq, h $← G2]| < εDBDH

where the probability is over the random selection of P from G1, of a, b, c from Zq, and over A’s
random coins.

Assumption for the Schemes of [KY02c]

DDH (the decisional Diffie-Hellman problem in G):
Given (P, aP, bP, S) for random P ∈ G, a, b ∈ Zq and S ∈ G, output yes if S = abP and
no otherwise.

Assumptions for the Schemes of [CPP05a]

DBDH2-E (the extended decisional bilinear Diffie-Hellman problem):
Given (P, aP, bP, cP, ab2P, h) for random P ∈ G1, a, b, c ∈ Zq and h ∈ G2, output yes if
h = e(P, P)cb2 and no otherwise.

DBDH1-M (the modified decisional bilinear Diffie-Hellman problem in G1):
Given(P, aP, bP, S) for random P ∈ G1, a, b ∈ Zq and S ∈ G1, output yes if S = ab2P and
no otherwise.

— 103 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

B.7.2 The Public-Key Traitor Tracing Schemes of [KY02c] and [CPP05a]

The Two-User Sub-Scheme of [KY02c]

Setup: Given a security parameter 1κ, the algorithm works as follows:

Step 1: Generate a κ-bit prime q and a group G of order q in which the DDH problem is
difficult. Let P be a generator of G.9

Step 2: Pick random elements a, c ∈ Z∗q , and set Q .= aP , Z .= cP . The private key of
the security manager is set to be the pair msk .= (a, c).

Step 3: Choose a universal hash function H : G → {0, 1}κ, and set the public key as
pk .= (q, G, H, P , Q, Z). The message space isM .= {0, 1}κ.

KeyDer: The security manager selects two linearly independent vectors (α0, β0), (α1, β1) ∈ Z2
q

such that ασ + aβσ = c mod q, for σ ∈ {0, 1}. This implies: Z = cP = ασP + βσQ, for
σ ∈ {0, 1}. The secret key of user σ is then set to be skσ

.= (ασ, βσ), for σ ∈ {0, 1}.

Encaps: Given pk, anybody can encrypt a message m ∈ M by first selecting a random k ∈ Zq
and then creating the ciphertext ψ .= 〈U, V,W 〉 ∈ G2 ×M where

U
.= kP, V

.= kQ, W
.= m⊕H(kZ)

Decaps: Given a ciphertext ψ = 〈U, V,W 〉 ∈ G2 ×M, user σ computes kZ = ασU + βσV and
recovers m = W ⊕H(kZ).

Trace: To trace a decoder D back to the identity of the traitor, the security manager picks two
distinct random values k, k′ ∈ Zq, along with a random m̂ ∈ M, and feeds D with the
“illegal” ciphertext ψ̂ .= 〈k′P, kQ, m̂〉. If the output of D is m̂ ⊕H(k′ασP + kβσQ), then
the algorithm returns the identity σ as the traitor; otherwise it outputs 0.

In [KY02c], the authors show that the above two-user scheme is secure and traceable (for
up to 1 traitor) in the sense of Definitions B.3.3 and B.3.4 under the DDH assumption (cf.
Appendix B.7.1).

The Multi-User Scheme of [KY02c]

Setup: Given security parameters 1κ, 1t and ε, the algorithm works as follows:

Step 1: Generate a κ-bit prime q and a group G in which the DDH problem is difficult.10
Generate an (ε, t, n, v)-collusion-secure code C = {ω(1), . . . , ω(n)} over {0, 1}.

Step 2: For each j = 1, . . . , v, let Pj be a generator of G, pick random aj , cj ∈ Z∗q , and set
Qj

.= ajPj , Zj
.= cjPj . For each j = 1, . . . , v, compute two linearly independent vec-

tors (αj,0, βj,0), (αj,1, βj,1) in Zq2 such that αj,σ+aβj,σ = cj mod q, for σ ∈ {0, 1}. The
private key of the security manager is set to be msk .= (aj , αj,0, βj,0, αj,1, βj,1)j=1,...,v.

Step 3: Choose a universal hash function H : G → {0, 1}κ, and set the public key to
pk .= (q, G, H, (P1, Q1, Z1), . . ., (Pv, Qv, Zv)). The message space isM .= ({0, 1}κ)v.

9Even though [KY02c] used the multiplicative notation, we use here the additive notation for the sake of
consistency with the rest of the paper (cf. Footnote 10).

10Even though [KY02c] used the multiplicative notation, we use here the additive notation for the sake of
consistency with the rest of the paper. Notice, however, that G should not be identified with the group G1 used
elsewhere in this paper, and in particular G should not be equipped with a bilinear map, for that would violate
the required hardness of the DDH problem in G.

— 104 —

B.7. Appendix

KeyDer: For each user i, the security manager first retrieves the corresponding codeword
ω(i) ∈ C, and then, for each j = 1, . . . , v, gives ui one of the two pairs (αj,0, βj,0) or
(αj,1, βj,1), according to the value of ω(i)

j (the j-th bit of the codeword ω(i)). The secret
key of user i is then set to be ski

.= (α
j,ω

(i)
j

, β
j,ω

(i)
j

)j=1,...,v. Notice that, for j = 1, . . . , v,
Zj = cjPj = α

j,ω
(i)
j

Pj + β
j,ω

(i)
j

Qj .

Encaps: Given pk, anybody can encrypt a message m = (m(1)‖ . . . ‖m(v)) ∈M by first selecting
random k1, . . . , kv ∈ Zq and then creating a ciphertext ψ .= (〈U1, V1,W1〉, . . . , 〈Uv, Vv,Wv〉) ∈
(G2 × {0, 1}κ)v where Uj

.= kjPj , Vj
.= kjQj and Wj

.= m(j) ⊕H(kjZj), j = 1, . . . , v.

Decaps: Given a ciphertext ψ = (〈U1, V1,W1〉, . . . , 〈Uv, Vv,Wv〉), user i computes kjZj = α
j,ω

(i)
j

Uj+

β
j,ω

(i)
j

Vj and recovers m(j) = Wj ⊕H(kjZj), for j = 1, . . . , v.

Trace: To trace a decoder D back to the identity of one of the traitors, the security manager
prepares an illegal ciphertext ψ̂ .= (ψ̂1, . . . , ψ̂v), where each ψ̂j is constructed as in the
tracing algorithm from Appendix B.7.2 (i.e., ψ̂j

.= 〈k′jPj , kjQj , m̂j〉, for random kj , k
′
j

$←
Zq and m̂j

$← {0, 1}κ). Let m .= (m(1)‖ . . . ‖m(v)) be the plaintext output by D when fed
with the ciphertext ψ̂.
The security manager forms a “traitor codeword” ω̂ .= (ω̂(1), . . . , ω̂(v)) ∈ {0, 1, ‘?’}v, where
each ω̂(j) is derived from m(j) as in the tracing algorithm for the two-user scheme (i.e.,
ω̂(j) .= σj ifm(j) = m̂j⊕H(k′jαj,σjPj+kjβj,σjQj) (for σj = {0, 1}), or ω̂(j) .= ‘?’ otherwise).
At this point, the “traitor codeword” ω̂ is run through the tracing algorithm T (rC , ·) of
the collusion-secure code C (where rC are the random coins used by the security manager
in generating C). Finally, Trace outputs whichever value in {1, . . . , n, 0} returned by
T (rC , ω̂).

The Two-User Sub-Scheme of [CPP05a]

Setup: Given a security parameter 1κ, the algorithm works as follows:

Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admissible
bilinear map e : G1 ×G1 → G2. Let P be a generator of G1 and set g .= e(P, P).

Step 2: Pick random elements a, c ∈ Z∗q , and set Q .= aP , h .= gc. The private key of the
security manager is set to be the pair msk .= (a, c).

Step 3: The security manager selects two linearly independent vectors (α0, β0) and (α1, β1)
in Z2

q such that ασ + aβσ = c mod q, for σ ∈ {0, 1}. It chooses a universal hash func-
tion H : G2 → {0, 1}κ, and set the public key of the scheme to be the tuple pk .=
(q,G1,G2, e,H, g, P,Q, h, α0P, β0P, α1P, β1P). The message space isM .= {0, 1}κ.

KeyDer: The secret key of user σ is set to be skσ
.= (ασ). Notice that: cP = ασP + βσQ and

hence e(P, cP) = e(P, ασP) · e(Q, βσP) = e(P,Aσ) · e(Q,Bσ), for σ ∈ {0, 1}.

Encaps: Given pk, anybody can encrypt a message m ∈ M by first selecting a random k ∈ Zq
and then creating the ciphertext ψ .= 〈U, V,W 〉 ∈ G2

1 ×M where

U
.= kP, V

.= k2Q, W
.= m⊕H(hk2)

Decaps: Given a ciphertext ψ = 〈U, V,W 〉, user σ computes hk2 = e(U,ασU) · e(V,Bσ) and
recovers m = W ⊕H(hk2).

— 105 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

Trace: To trace a decoder D back to the identity of the traitor, the tracer picks two distinct
random values k, k′ ∈ Zq, along with a random m̂ ∈ M, and feeds D with the “illegal”
ciphertext ψ̂ .= 〈k′P, k2Q, m̂〉. If the output of D is m̂ ⊕ H(e(ασP, P)k′2 · e(βσP,Q)k2),
then the algorithm returns the identity σ as the traitor; otherwise it outputs 0.

In [CPP05a], the above two-user scheme is proven secure and traceable (for up to 1 traitor)
in the sense of Definitions B.3.3 and B.3.4 under two non-standard assumptions for bilinear
groups, respectively called DBDH2-E and DBDH1-M in [CPP05a] (cf. Appendix B.7.1).

The Multi-User Scheme of [CPP05a]

We now describe the multi-user scheme11 of [CPP05a], which is based on the use of bilinear
maps. The key difference from the multi-user scheme of [KY02c] is the idea of proxy quantity:
the security manager selects the master secret key roughly as in [KY02c], but now some secret
information is removed from the users’ secret keys and a derived value (the proxy quantity) is
lifted to the public key.

These public proxy quantities are sufficient to decrypt and contain less information about
the master secret key. This makes it (seemingly) safe to reuse the same parameters P and Q
(in the public key) and the same randomness k (in the ciphertext) for all v components of the
multi-user scheme. This (seemingly) results in a significant bonus, as it allows for considerably
shorter public keys and ciphertexts.

Setup: Given the security parameters 1κ, 1t and ε, the algorithm works as follows:

Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admissible
bilinear map e : G1 ×G1 → G2. Let P be a generator of G1 and set g .= e(P, P).
Generate an (ε, t, n, v)-collusion-secure code C = {ω(1), . . . , ω(n)} over {0, 1}.

Step 2: Pick random elements a, cj ∈ Z∗q (j = 1, . . . , v), and set Q .= aP , hj
.= gcj , j =

1, . . . , v. For each j = 1, . . . , v, compute two linearly independent vectors (αj,0, βj,0),
(αj,1, βj,1) in Zq2 such that αj,σ + aβj,σ = cj mod q, for σ ∈ {0, 1}. The private key
of the security manager is set to be msk .= (a, (αj,0, βj,0, αj,1, βj,1)j=1,...,v).

Step 3: For j = 1, . . . , v and σ ∈ {0, 1}, let Aj,σ
.= αj,σP and Bj,σ

.= βj,σP . Choose a
universal hash function H : G2 → {0, 1}κ, and set the public key to: pk .= (q, G1, G2,
e, H, P , Q, (hj , Aj,0, Bj,0, Aj,1, Bj,1)j=1,...,v). The message space isM .= ({0, 1}κ)v.

KeyDer: For each user i, the security manager retrieves the corresponding codeword ω(i) ∈ C,
and sets the secret key of user i to be: ski

.= (α
j,ω

(i)
j

)j=1,...,v. Notice that, for j = 1, . . . , v,
cjP = α

j,ω
(i)
j

P + β
j,ω

(i)
j

Q and hence, hj = e(P, cjP) = e(P, α
j,ω

(i)
j

P) · e(Q, β
j,ω

(i)
j

P) =
e(P,A

j,ω
(i)
j

) · e(Q,B
j,ω

(i)
j

).

Encaps: Given pk, anybody can encrypt a message m = (m(1)‖ . . . ‖m(v)) ∈M by first selecting
a random k ∈ Zq and then creating a ciphertext ψ .= 〈U, V, (W1, . . . ,Wv)〉 ∈ G2

1 ×M,
where U .= kP , V .= k2Q and Wj

.= m(j) ⊕H(hk2
j), j = 1, . . . , v.

Decaps: Given a ciphertext ψ = 〈U, V, (W1, . . . ,Wv)〉 ∈ G2
1 × M, user i computes (for j =

1, . . . , v) the mask hk2
j = e(U,α

j,ω
(i)
j

U) · e(V,B
j,ω

(i)
j

) and then recovers each m(j) as m(j) =

Wj ⊕H(hk2
j).

11In [CPP05a], the authors present two schemes with the same parameters. For conciseness, here we only report
the second scheme, which was claimed to also support local public traceability.

— 106 —

B.7. Appendix

Trace: Although [CPP05a] present a tracing algorithm only for their two-user scheme, the
authors suggested therein that their multi-user scheme inherits the tracing capabilities of
[KY02c]. In particular, we sketch here the obvious necessary modifications to the Trace al-
gorithm in Appendix B.7.2: the illegal ciphertext has the form ψ̂

.= 〈k′P, k2Q, (m̂1, . . . , m̂v)〉,
where k, k′ $← Zq, and each m̂j is random in {0, 1}κ; and the “traitor codeword” ω̂ .=
(ω̂(1), . . . , ω̂(v)), is constructed from D’s response m .= (m(1)‖ . . . ‖m(v)) by defining each
ω̂(j) ∈ {0, 1, ‘?’} as in the tracing for the two-user scheme (i.e., ω̂(j) .= σj if m(j) =
m̂j ⊕H(e(αj,σjP, P)k′2 · e(βj,σjP,Q)k2) (for σj = {0, 1}), or ω̂(j) .= ‘?’ otherwise).

B.7.3 On the Query Complexity of Black-Box Tracing in [KY02c]

Appendix B.7.2 reports the multi-user scheme of [KY02c], which includes a black-box tracing
algorithm making a single query to the pirate decoder D. Below we show that such algorithm
is broken, and we present a simple traitor strategy that allows a coalition of just 2 < t users
to escape tracing with probability 1. We also propose a variation of their black-box tracing
algorithm, which requires v queries but is successful in tracing up to the desired threshold of
traitors, thus suggesting that the query complexity of black-box tracing in [KY02c] is higher
than what claimed therein.

A Simple Untraceable Traitor Strategy

Consider the coalition of 2 users, which for simplicity we will suppose associated with the first
two codewords ω(1), ω(2) of C. Since ω(1) 6= ω(2), they must differ in at least one of their v bits,
say the first bit.

This means that by pooling their secret keys, the two traitors can construct a pirate decoder
D containing both user-keys (α1,0, β1,0), (α1,1, β1,1) for the two-user sub-scheme associated to
index 1, plus at least one user-key for each of the remaining (v− 1) components. When given a
ciphertext ψ .= 〈ψ1, . . . , ψv〉, D starts by decrypting ψ1 twice: once using (α1,0, β1,0), and then
again using (α1,1, β1,1). If the two resulting plaintexts coincide, then D decrypts the rest of ψ
and output the resulting message; otherwise, D can conclude that it is being traced, and can
just output a predetermined message (e.g., the all-zero message).

Notice that D perfectly decrypts ciphertext distributed according to Encaps(pk, ·) since, by
correctness of decryption, D’s “integrity” check will always pass on a valid ciphertext. Moreover,
D escapes tracing with probability 1, since the Trace algorithm of [KY02c] prepares the invalid
ciphertext ψ̂ by concatenating invalid ciphertexts ψ̂j for each of the v components of the scheme.
This will result in different decryptions of ψ̂1 under (α1,0, β1,0) and (α1,1, β1,1), and thus D will
reply with a plaintext containing no information about the identities of the traitors.

The Fix

The problem with the Trace algorithm of [KY02c] is that it implicitly assumed that pirate
decoders would decrypt each component of the ciphertext independently from each other, which
clearly does not need to be the case. Bearing this in mind, the fix is immediate: it suffices for
Trace to iteratively query the decoder with v ciphertexts, each constructed to be invalid in just
one component, but valid elsewhere. Now, the independence of the v component sub-schemes
implies that D will be unable to tell valid and invalid ciphertexts apart, unless it possesses
both user-keys for the single sub-scheme “under testing.” As a consequence, Trace will end up
extracting a traitor codeword from D with at most t unreadable marks ‘?’, and thus the tracing
algorithm T (·, ·) of the collusion-secure code C will successfully recover the identity of one of the
traitor (with probability 1− ε).

— 107 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

Consequences for the Multi-User Scheme of [CPP05a]

Being based on the techniques of [KY02c], the multi-user scheme of [CPP05a] inherits the
problem pointed out in Appendix B.7.3. As it turns out, however, in this case the consequences
are more severe. In particular, the easy fix that we proposed for the scheme of [KY02c] in
Appendix B.7.3 does not apply: interestingly, the higher correlation between the parameters
used in the v components of the scheme of [CPP05a], which proved crucial to attain optimal
transmission rate, at the same time poses a serious impediment to black-box tracing.

Indeed, ciphertexts in the multi-user scheme of [CPP05a] (cf. Appendix B.7.2) have the
form ψ

.= 〈kP , k2Q, (W1, . . ., Wv)〉, in which the same “randomization” values kP, k2Q are
used for all the v two-user sub-schemes. Hence, it is not possible to make the ciphertext invalid
in just one component, while preserving its validity in the remaining (v − 1) ones (which was
the idea behind our fix in Appendix B.7.3). Therefore, it seems that the scheme of [CPP05a],
as given, does not support black-box tracing. Since the notion of local public traceability is
only meaningful in the black-box setting, this also voids the claimed traceability features of the
multi-user scheme of [CPP05a].

To salvage black-box tracing and local public traceability, one could modify the scheme of
[CPP05a] and revert to the “parallel” composition of sub-schemes (exactly as in [KY02c]), thus
“undoing” the optimization that enabled short ciphertexts. The resulting scheme, however,
would just be a variant of [KY02c] with the same parameters, but with the additional need of
bilinear maps and reliance on non-standard bilinear-related assumptions.

As a result, it seems appropriate to regard the multi-user scheme of [CPP05a] as a scheme
with optimal transmission rate, but with only non-black-box tracing and no public traceability
features.

B.7.4 Proofs from Section B.4.5

Proof of Lemma B.4.10

Lemma. If the multi-user scheme without AONT pre-processing is secure w.r.t. indistinguisha-
bility under chosen-plaintext attack (cf. Theorem B.4.1), then the multi-user scheme with AONT
pre-processing is secure w.r.t. the same notion.

Proof: The proof is by a straightforward reduction argument: given any efficient adversary
A = (A1,A2), having advantage ε in attacking the multi-user scheme with AONT pre-processing,
we construct an adversary B, with essentially the same running time as A’s, having the same
advantage ε in attacking the multi-user scheme without AONT pre-processing.

Adversary B just forwards A1 the public key for the scheme that it wants to attack. A1 will reply
with two messages m0

.= (m(1)
0 , . . . ,m

(v)
0) and m1

.= (m(1)
1 , . . . ,m

(v)
1) on which to be challenged.

Then B applies the all-or-nothing transform to both messages, obtaining m′0
$← AONT(m0) and

m′1
$← AONT(m1). B then submits m′0 and m′1 to its challenger, and gets back a challenge

ciphertext ψ∗. Notice that ψ∗ is also a valid challenge ciphertext for A, and so B directly
forwards it to A2 as challenge (along with any state information that A1 might have output).
Finally, B outputs whichever bit b′ is returned by b.

Since B perfectly simulates the attack game that adversary A expects, B’s advantage against
the scheme without AONT pre-processing equals ε, completing the proof.

— 108 —

B.7. Appendix

Proof of Lemma B.4.11

Lemma. If the two-user scheme in Section B.4.1 is secure w.r.t. indistinguishability under
chosen-plaintext attack (cf. Theorem B.4.1), then the multi-user scheme in Section B.4.4 is
secure w.r.t. the same notion. Proof: For the sake of clarity, in the security proof, we will follow

the structural approach advocated in [Sho04]. Starting from the actual attack scenario (as
defined in Definition B.3.3), we consider a sequence of hypothetical games, all defined over the
same underlying probability space. In each game, the adversary’s view is obtained in a slightly
different way, but its distribution is maintained (computationally) indistinguishable across the
games. In the last game, it will be clear that the adversary has (at most) a negligible advantage;
by the indistinguishability of any two consecutive games, it will follow that also in the original
game the adversary’s advantage is negligible.
Fix any efficient adversary A = (A1,A2), along with its random tape. Fix also the randomness
used by the challenger in the execution of the Setup and Encaps algorithms, and the random
bit b∗ used in creating the challenge ciphertext ψ∗. In each game Gi, the goal of adversary is
to guess such bit b∗. Let b′ be the random variable denoting the bit output by A2 at the end of
the game, and denote with Si the event that b′ = b∗ in game Gi.

Game G0. Define G0 to be the original game as described in Definition B.3.3.

Game G1. This game is identical to game Game G0, except that the Encaps algorithm in G1
is modified so that the “special component” of the ciphertext is computed as follows:

k`
$← Zq, U` ← e(P`, R`)k` , V` ← k`Q`, W`

$← {0, 1}κ

In other words, rather than being set as W` ← m
(`)
b∗ ⊕H(hk``), in game G1 W` is a random κ-bit

value.

Claim B.7.2 [1] |Pr[S0]−Pr[S1]| ≤ 2ε(1), where ε(1) is the advantage of some efficient adversary
attacking the security of the 2-user scheme from Section B.4.1.
The proof of this is by a standard reduction argument, by which any non-negligible difference
in behavior between game G0 and G1 can be used to construct an efficient adversary B(1)

successfully attacking the security of the 2-user scheme from Section B.4.1. More precisely, B(1)

gets in input a 2-user public key (P̃ , Q̃, R̃, Ã0, B̃0, Ã1, B̃1), and proceeds as follows:

Setup: To create the public key for the multi-user scheme to be fed to A1, B(1) proceeds exactly
according to the corresponding key generation algorithm, except that, for the parameters
corresponding to the `-th special component,12 B(1) uses the values from the public key
that it received as its own input:

P` ← P̃ , Q` ← Q̃, R` ← R̃, A`,0 ← Ã0, B`,0 ← B̃0, A`,1 ← Ã1, B`,1 ← B̃1

B(1) then sends A1 the resulting multi-user public key.

Challenge: A1 outputs two messages m0
.= (m(1)

0 ‖ . . . ‖m
(v)
0),m1

.= (m(1)
1 ‖ . . . ‖m

(v)
1) on which

it wishes to be challenged, along with some state τ to be passed to A2. Now B(1), in turn,
12Notice that the value of ` is fixed within this proof, since we fixed the randomness for Encaps across the

games.

— 109 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

has to choose two messages, m̃0 and m̃1, for its own challenge. So B(1) chooses b∗ ∈ {0, 1}
at random, sets m̃b∗

.= m
(`)
b∗ , and picks m̃1−b∗

$← {0, 1}κ. At this point, B(1) is given a
challenge ciphertext ψ̃ .= 〈Ũ , Ṽ , W̃ 〉, where Ũ .= e(P̃ , R̃)k̃, Ṽ .= k̃Q̃, h̃ = e(P̃ , Ã0) · e(Q̃, B̃0)
and W̃ .= m̃b̃⊕H(h̃k̃). Recall that B(1)’s job is to guess the bit b̃ that was used to create its
challenge. To this end, B(1) prepares a challenge ciphertext ψ∗ for A2 by faithfully running
the Encaps algorithm on the message mb∗

.= (m(1)
b∗ ‖ . . . ‖m

(v)
b∗), except that, for the special

component, rather than choosing a random k` and properly encrypting the message block
m`
b∗ , B(1) uses the values contained in its own challenge ψ̃:

U`
.= Ũ , V`

.= Ṽ , W`
.= W̃ .

Then, B(1) sends A2 the challenge ciphertext ψ∗ .= 〈`, U`, V`, U, V,W1, . . . ,Wv〉 so com-
puted, along with the state information τ .

Guess: Algorithm A2 outputs a guess b′ ∈ {0, 1}, which B(1) also gives in output as its own
guess to b̃.

It should be clear by inspection that adversary B(1) ‘interpolates’ between games G0 and G1
for A, in the sense that if b∗ = b̃, then the view of adversary A is computed exactly as in G0,
whereas if b∗ = 1− b̃, then the computation proceeds according to G1. Thus, it holds that:

Pr[S0] = Pr[b′ = b∗ | b∗ = b̃] and Pr[S1] = Pr[b′ = b∗ | b∗ = 1− b̃].

Now, let ε(1) be adversary B(1)’s advantage in guessing b̃: ε(1) .= |Pr[b′ = b̃]− 1/2|. Splitting the
probability according to the event space partition (b∗ = b̃) ∨ (b∗ = 1− b̃), we get

Pr[b′ = b̃] = Pr[b′ = b̃ | b∗ = b̃] · Pr[b∗ = b̃] + Pr[b′ = b̃ | b∗ = 1− b̃] · Pr[b∗ = 1− b̃]

= 1
2(Pr[b′ = b̃ | b∗ = b̃] + Pr[b′ = b̃ | b∗ = 1− b̃])

= 1
2(Pr[b′ = b̃ | b∗ = b̃] + 1− Pr[b′ = 1− b̃ | b∗ = 1− b̃])

= 1
2 + 1

2(Pr[b′ = b∗ | b∗ = b̃]− Pr[b′ = b∗ | b∗ = 1− b̃])

= 1
2 + 1

2(Pr[S0]− Pr[S1])

It thus follows that |Pr[S0]− Pr[S1]| = 2|Pr[b′ = b̃]− 1/2| = 2ε(1), as claimed.

Game Gi, 2 ≤ i ≤ `. This game is identical to game Game Gi−1, except that the Encaps
algorithm in Gi−1 is modified so that Wi−1, rather than properly encrypting the message block
m

(i−1)
b∗ , is chosen as a random κ-bit value:

Wi−1
$← {0, 1}κ

Claim B.7.3 [i] |Pr[Si−1]−Pr[Si]| ≤ 2ε(i), where ε(i) is the advantage of some efficient adver-
sary attacking the security of the 2-user scheme from Section B.4.1.
Again, we will prove the claim by showing how any non-negligible difference in behavior between
game Gi−1 and Gi can be used to construct an efficient adversary B(i) successfully attacking
the security of the 2-user scheme from Section B.4.1.

— 110 —

B.7. Appendix

More precisely, B(i) gets in input a 2-user public key (P̃ , Q̃, R̃, Ã0, B̃0, Ã1, B̃1), and proceeds as
follows:

Setup: To create the public key for the multi-user scheme to be fed to A1, B(i) proceeds exactly
according to the corresponding key generation algorithm, except that for the parameters
corresponding to the “shared scheme,” B(i) bases its computations on the values included
in the 2-user public key that it received as its own input:

P ← P̃ , Q← Q̃, R← R̃
Āi,0 ← Ã0, B̄i,0 ← B̃0, Āi,1 ← Ã1, B̄i,1 ← B̃1

β̄j,0
$← Zq, B̄j,0 ← β̄j,0P̃ (j = 1, . . . , v, j 6= i)

ᾱj,0
$← Zq, Āj,0 ← ᾱj,0R̃ (j = 1, . . . , v, j 6= i)

β̄j,1
$← Zq, B̄j,1 ← β̄j,1P̃ (j = 1, . . . , v, j 6= i)

Āj,1 ← Āj,0 + β̄j,0Q̃− β̄j,1Q̃ (j = 1, . . . , v, j 6= i)

(Notice that the last set of positions guarantee that, for all values of j, it holds that:

e(P, Āj,0) · e(Q, B̄j,0) = e(P, Āj,1) · e(Q, B̄j,1),

so that in fact we can define h̄j
.= e(P, Āj,σ) · e(Q, B̄j,σ), for σ ∈ {0, 1}, j = 1, . . . , v, as in

the actual Setup algorithm for the multi-user scheme (cf. Section B.4.4).)

B(1) then sends A1 the resulting multi-user public key.

Challenge: A1 outputs two messages m0
.= (m(1)

0 ‖ . . . ‖m
(v)
0),m1

.= (m(1)
1 ‖ . . . ‖m

(v)
1) on which

it wishes to be challenged, along with some state τ to be passed to A2. Now B(1), in turn,
has to choose two messages, m̃0 and m̃1, for its own challenge. So B(1) chooses b∗ ∈ {0, 1}
at random, sets m̃b∗

.= m
(i−1)
b∗ , and picks m̃1−b∗

$← {0, 1}κ. At this point, B(1) is given a
challenge ciphertext ψ̃ .= 〈Ũ , Ṽ , W̃ 〉, where Ũ .= e(P̃ , R̃)k̃, Ṽ .= k̃Q̃, h̃ = e(P̃ , Ã0) · e(Q̃, B̃0)
and W̃ .= m̃b̃ ⊕H(h̃k̃). Recall that B(1)’s job is to guess the bit b̃ that was used to create
its challenge. To this end, B(1) prepares a challenge ciphertext ψ∗ for A2 as follows:

k`
$← Zq, U` ← e(P`, R`)k` , V` ← k`Q`, W`

$← {0, 1}κ
U ← Ũ , V ← Ṽ , Wi−1 ← W̃

Wj
$← {0, 1}κ, (j = 1, . . . , i− 2)

Wj ← m
(j)
b∗ ⊕H(Ũ ᾱj,0 · e(Ṽ , B̄j,0)), (j = i, . . . , v, j 6= `)

Notice that, for j = i, . . . , v, j 6= `, the Wj values computed by B(i) are proper encryptions
of the corresponding m(j)

b∗ , since:

Wj ← m
(j)
b∗ ⊕H(Ũ ᾱj,0 · e(Ṽ , B̄j,0))

= m
(j)
b∗ ⊕H((e(P̃ , R̃)k̃)ᾱj,0 · e(k̃Q̃, B̄j,0))

= m
(j)
b∗ ⊕H((e(P̃ , ᾱj,0R̃) · e(Q̃, B̄j,0))k̃)

= m
(j)
b∗ ⊕H((e(P, Āj,0) · e(Q, B̄j,0))k̃)

= m
(j)
b∗ ⊕H(h̄k̃j).

12Clarify that ` has been fixed when we fixed the randomness for Encaps across the games.

— 111 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

At this point, B(i) sends A2 the challenge ciphertext ψ∗ .= 〈`, U`, V`, U, V,W1, . . . ,Wv〉 so
computed, along with the state information τ .

Guess: Algorithm A2 outputs a guess b′ ∈ {0, 1}, which B(1) also gives in output as its own
guess to b̃.

Before arguing about the success probability of B(i), notice that, by the definitions of games
Gi−1 and Gi, the challenge ciphertexts that adversary A is given in both games have the same
overall structure: they are completely random in the first few Wj components (as well as in the
special componentW`), whereas they are properly formed in the last fewWj components, j 6= `.
The only difference is in the position where such “transition” from “random Wj” to “properly
formed Wj” takes place: between indices (i − 2, i − 1), in the case of game Gi−1; and between
indices (i− 1, i),13 in the case of game Gi−1.
It should then be clear, by the way adversary B(i) prepares the challenge ciphetext ψ∗ for
adversary A, that B(i) effectively ‘interpolates’ between games Gi−1 and Gi for A, in the sense
that: if b∗ = b̃, then Wi−1 is properly formed, and the view of adversary A is computed exactly
as in game Gi−1; whereas if b∗ = 1 − b̃, then Wi−1 is completely random, so that A’s view is
distributed as in game G1. It thus follows that:

Pr[Si−1] = Pr[b′ = b∗ | b∗ = b̃] and Pr[Si] = Pr[b′ = b∗ | b∗ = 1− b̃].

Now, let ε(i) be adversary B(i)’s advantage in guessing b̃: ε(i) .= |Pr[b′ = b̃]− 1/2|. Splitting the
probability according to the event space partition (b∗ = b̃) ∨ (b∗ = 1− b̃), we get

Pr[b′ = b̃] = Pr[b′ = b̃ | b∗ = b̃] · Pr[b∗ = b̃] + Pr[b′ = b̃ | b∗ = 1− b̃] · Pr[b∗ = 1− b̃]

= 1
2(Pr[b′ = b̃ | b∗ = b̃] + Pr[b′ = b̃ | b∗ = 1− b̃])

= 1
2(Pr[b′ = b̃ | b∗ = b̃] + 1− Pr[b′ = 1− b̃ | b∗ = 1− b̃])

= 1
2 + 1

2(Pr[b′ = b∗ | b∗ = b̃]− Pr[b′ = b∗ | b∗ = 1− b̃])

= 1
2 + 1

2(Pr[Si−1]− Pr[Si])

It thus follows that |Pr[Si−1]− Pr[Si]| = 2|Pr[b′ = b̃]− 1/2| = 2ε(i), as claimed.

Game Gi, `+ 1 ≤ i ≤ v. This game is identical to game Game Gi−1, except that the Encaps
algorithm in Gi−1 is modified so that Wi, rather than properly encrypting the message block
m

(i)
b∗ , is chosen as a random κ-bit value:

Wi
$← {0, 1}κ

Claim B.7.4 [i] |Pr[Si−1]−Pr[Si]| ≤ 2ε(i), where ε(i) is the advantage of some efficient adver-
sary attacking the security of the 2-user scheme from Section B.4.1.
The proof of this is by a reduction argument completely analogous to the one used in proving
the claims for the cases 2 ≤ i ≤ `, the only difference being a notational one, since now the

13For i = `, the transition is actually between indices (` − 1, ` + 1), since we are dealing with the special
component W` separately.

— 112 —

B.7. Appendix

reduction will embed the challenge from the 2-user scheme into the component Wi (rather than
Wi−1).14

To conclude the proof, observe that, in game Gv, all the Wj components in the challenge
ciphertext ψ∗ .= 〈`, U`, V`, U, V,W1, . . . ,Wv〉 are just drawn at random from {0, 1}κ, so that
no information about the random bit b∗ is present in adversary A’s view. It follows that the
probability of a correct guess b′ = b∗ by A in game Gv is just 1/2, i.e.:

Pr[Sv] = 1
2

Combining the last equation with the intermediate results from Claims 1–v, we can conclude
that

Pr[S0] ≤ 1
2 + 2vε2-userind ,

where ε2-userind is an upper bound on the advantage of any efficient adversary attacking the security
of the 2-user scheme from Section B.4.1, which is negligible by the hypothesis of the lemma,
completing the proof.

B.7.5 A Comparison with [BSW06b, BW06b]

Recently, Boneh et al. [BSW06b, BW06b] proposed traitor tracing schemes that withstand any
number of traitors (full traceability), while requiring a sub-linear ciphertext length (O(

√
n)).

While the schemes of [BSW06b, BW06b] are the most efficient ones supporting full collusion,
they are not well suited for the more practical case of small number of traitors (say, logarithmic
in the size of the entire user population). Indeed, in this case, the ciphertext in these schemes
still contains O(

√
n) elements. In our scheme, assuming the number of traitors t is logarithmic

in the number of users n, the ciphertext has poly-logarithmic length v = O(t2(logn+ log 1
ε)) =

O(log3 n), which is asymptotically superior to the O(
√
n)-ciphertexts of [BSW06b, BW06b].

More importantly, the tracing algorithms of [BSW06b, BW06b] require O(n2) decryption
queries to the pirate decoder, whereas our scheme employs O(v) = O(log3 n) decryption queries,
and is completely parallelizable.

In brief, the schemes of [BSW06b, BW06b] are preferable in case of full collusions, whereas
our scheme has advantages in term of efficiency and of complexity of black-box tracing when
the number of traitors is logarithmic.

14The reason for this notational change is just to “jump” over the special component `, which is treated
separately in game G1.

— 113 —

Chapter B. Traitor Tracing with Optimal Transmission Rate

— 114 —

Appendix C

Hardness of k-LWE and Applications
in Traitor Tracing

CRYPTO 2014
[LPSS14] with San Ling, Damien Stahlé and Ron Steinfeld

Abstract : We introduce the k-LWE problem, a Learning With Errors variant of the k-SIS
problem. The Boneh-Freeman reduction from SIS to k-SIS suffers from an exponential loss in k.
We improve and extend it to an LWE to k-LWE reduction with a polynomial loss in k, by relying
on a new technique involving trapdoors for random integer kernel lattices. Based on this hardness
result, we present the first algebraic construction of a traitor tracing scheme whose security relies
on the worst-case hardness of standard lattice problems. The proposed LWE traitor tracing is
almost as efficient as the LWE encryption. Further, it achieves public traceability, i.e., allows
the authority to delegate the tracing capability to “untrusted” parties. To this aim, we introduce
the notion of projective sampling family in which each sampling function is keyed and, with
a projection of the key on a well chosen space, one can simulate the sampling function in a
computationally indistinguishable way. The construction of a projective sampling family from
k-LWE allows us to achieve public traceability, by publishing the projected keys of the users. We
believe that the new lattice tools and the projective sampling family are quite general that they
may have applications in other areas.

C.1 Introduction
Since the pioneering work of Ajtai [Ajt96a], there have been a number of proposals of crypto-
graphic schemes with security provably relying on the worst-case hardness of standard lattice
problems, such as the decision Gap Shortest Vector Problem with polynomial gap (see the sur-
veys [MR09, Reg10]). These schemes enjoy unmatched security guarantees: Security relies on
worst-case hardness assumptions for problems expected to be exponentially hard to solve (with
respect to the lattice dimension n), even with quantum computers. At the same time, they often
enjoy great asymptotic efficiency, as the basic operations are matrix-vector multiplications in
dimension Õ(n) over a ring of cardinality ≤ Poly(n). A breakthrough result in that field was
the introduction of the Learning With Errors problem (LWE) by Regev [Reg05, Reg09], who
showed it to be at least as hard as worst-case lattice problems and exploited it to devise an
elementary encryption scheme. Gentry et al. showed in [GPV08] that Regev’s scheme may be

— 115 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

adapted so that a master can generate a large number of secret keys for the same public key.
As a result, the latter encryption scheme, called dual-Regev, can be naturally extended into a
multi-receiver encryption scheme. In the present work, we build traitor tracing schemes from
this dual-Regev LWE-based encryption scheme.
Traitor tracing. A traitor tracing scheme is a multi-receiver encryption scheme where mali-
cious receiver coalitions aiming at building pirate decryption devices are deterred by the existence
of a tracing algorithm: Using the pirate decryption device, the tracing algorithm can recover
at least one member of the malicious coalition. Such schemes are particularly well suited for
fighting copyright infringement in the context of commercial content distribution (e.g., Pay-TV,
subscription news websites, etc). Since their introduction by Chor et al. [CFN94a], much work
has been devoted to devising efficient and secure traitor tracing schemes. The most desirable
schemes are fully collusion resistant: they can deal with arbitrarily large malicious coalitions.
But, unsurprisingly, the most efficient schemes are in the bounded collusion model where the
number of malicious users is limited. The first non-trivial fully collusion resistant scheme was
proposed by Boneh et al. [BSW06b]. However, its ciphertext size is still large (Ω(

√
N), where

N is the total number of users) and it relies on pairing groups of composite order. Very re-
cently, Boneh and Zhandry [BZ14] proposed a fully collusion resistant scheme with poly-log
size parameters. It relies on indistinguishability obfuscation [GGH+13b], whose security foun-
dation remains to be studied, and whose practicality remains to be exhibited. In this paper,
we focus on the bounded collusion model. The Boneh-Franklin scheme [BF99a] is one of the
earliest algebraic constructions but it can still be considered as the reference algebraic trans-
formation from the standard ElGamal public key encryption into traitor tracing. This trans-
formation induces a linear loss in efficiency, with respect to the maximum number of traitors.
The known transformations from encryption to traitor tracing in the bounded collusion model
present at least a linear loss in efficiency, either in the ciphertext size or in the private key
size [BF99a, NP00, KY02c, Sir07b, BP08, BN08b]. We refer to [KP10] for a detailed introduc-
tion to this rich topic. Also, in Appendix C.7.1, we give a short overview of traitor tracing
schemes with their properties, in particular the public traceability.
Our Contributions. We describe the first algebraic construction of a public-key lattice-based
traitor tracing scheme. It is semantically secure and enjoys public traceability. The security
relies on the hardness of LWE, which is known to be at least as hard as standard worst-case
lattice problems [Reg09, Pei09, BLP+13].

The scheme is the extension, described above, of the dual-Regev LWE-based encryption
scheme from [GPV08] to a multi-receiver encryption scheme, where each user has a different
secret key. In the case of traitor tracing, several keys may be leaked to a traitor coalition. To
show that we can trace the traitors, we extend the LWE problem and introduce the k-LWE
problem, in which k hint vectors (the leaked keys) are given out.

Intuitively, k-LWE asks to distinguish between a random vector ~t close to a given lattice Λ
and a random vector ~t close to the orthogonal subspace of the span of k given short vectors
belonging to the dual Λ∗ of that lattice. Even if we are given (~b∗i)i≤k small in Λ∗, computing the
inner products 〈~b∗i ,~t〉 will not help in solving this problem, since they are small and distributed
identically in both cases. The k-LWE problem can be interpreted as a dual of the k-SIS prob-
lem introduced by Boneh and Freeman [BF11], which intuitively requests to find a short vector
in Λ∗ that is linearly independent with the k given short vectors of Λ∗. Their reduction from SIS
to k-SIS can be adapted to the LWE setup, but the hardness loss incurred by the reduction is
gigantic. We propose a significantly sharper reduction from LWEα to k-LWEα. This improved
reduction requires a new lattice technique: the equivalent for kernel lattices of Ajtai’s simul-
taneous sampling of a random q-ary lattice with a short basis [Ajt99] (see also Lemma C.2.2).
We adapt the Micciancio-Peikert framework from [MP12] to sampling a Gaussian X ∈ Zm×n

— 116 —

C.2. Preliminaries

along with a short basis for the lattice ker(X) = {~b ∈ Zm : ~btX = ~0}. Kernel lattices also play
an important role in the re-randomization analysis of the recent lattice-based multilinear map
scheme of Garg et al. [GGH13a], and we believe that our new trapdoor generation tool for such
lattices is likely find additional applications in future. We also remark that our technique can
be adapted to the SIS to k-SIS reduction. We thus solve the open question left by Boneh and
Freeman of improving their reduction [BF11]: from an exponential loss in k to a polynomial
loss in k. Consequently, their linearly homomorphic signatures and ordinary signature schemes
enjoy much better efficiency/security trade-offs.

Our construction of a traitor tracing scheme from k-LWE can be seen as an additive and
noisy variant of the (black-box) Boneh-Franklin traitor tracing scheme [BF99a]. While the
Boneh-Franklin scheme is transformed from the ElGamal encryption with a linear loss (in the
maximum number of traitors) in efficiency, our scheme is almost as efficient as standard LWE-
based encryption, as long as the maximum number of traitors is bounded below n/(c logn),
where n is the LWE dimension determined by the security parameter, and c is a constant. The
full functionality of black-box tracing in both the Boneh-Franklin scheme and ours are of high
complexity as they both rely on the black-box confirmation: given a superset of the traitors,
it is guaranteed to find at least one traitor and no innocent suspect is incriminated. Boneh
and Franklin left the improvement of the black-box tracing as an interesting open problem. We
show that in lattice setting, the black-box tracing can be accelerated by running the tracing
procedure in parallel on untrusted machines. This is a direct consequence of the property of
public traceability, i.e., the possibility of running tracing procedure on public information, that
our scheme enjoys. We note that almost all traitor tracing systems require that the tracing
key must be kept secret. Some schemes [CPP05a, PSNT06a, BW06a, BZ14] achieve public
traceability and some others achieve a stronger notion than public traceability, namely the non-
repudation, but the setup in these schemes require some interactive protocol between the center
and each user such as a secure 2-party computation protocol in [Pfi96], a commitment protocol
in [PW97], an oblivious polynomial evaluation in [WHI01, KWHI01, KY02a].

To obtain public traceability and inspired from the notion of projective hash family [CS02],
we introduce a new notion of projective sampling family in which each sampling function is keyed
and, with a projection of the key on a well chosen space, one can simulate the sampling function
in a computationally indistinguishable way. The construction of a set of projective sampling
families from k-LWE allows us to publicly sample the tracing signals.

Independently, our new lattice tools may have applications in other areas. The k-LWE
problem has a similar flavour to the Extended-LWE problem from [OPW11]. It would be
interesting to exhibit reductions between these problems. On a closely-related topic, it seems
our sampling of a random Gaussian integer matrix X together with a short basis of ker(X) is
compatible with the hardness proof of Extended-LWE from [BLP+13]. In particular, it should
be possible to use it as an alternative to [BLP+13, Def 4.5] in the proof of [BLP+13, Le 4.7], to
show that Extended-LWE remains hard with many hints independently sampled from discrete
Gaussians.

C.2 Preliminaries

If x is a real number, then bxe is the closest integer to x (with any deterministic rule in case x
is half an odd integer). All vectors will be denoted in bold. By default, our vectors are column
vectors. We let 〈·, ·〉 denote the canonical inner product. For q prime, we let Zq denote the field
of integers modulo q. For two matrices A,B of compatible dimensions, we let (A|B) and (A‖B)
respectively denote the horizontal and vertical concatenations of A and B. For A ∈ Zm×nq , we
define Im(A) = {A~s : ~s ∈ Znq } ⊆ Zmq . For X ⊆ Zmq , we let Span(X) denote the set of all

— 117 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

linear combinations of elements of X. We let X⊥ denote the linear subspace {~b ∈ Zmq : ∀~c ∈
X, 〈~b,~c〉 = 0}. For a matrix S ∈ Rm×n, we let ‖S‖ denote the norm of its longest column. If S
is full column-rank, we let σ1(S) ≥ . . . ≥ σn(S) denote its singular values. We let T denote the
additive group R/Z.

IfD1 andD2 are distributions over a countable setX, their statistical distance 1
2
∑
x∈X |D1(x)−

D2(x)| will be denoted by ∆(D1, D2). The statistical distance is defined similarly if X is mea-
surable. If X is of finite weight, we let U(X) denote the uniform distribution over X. For
any invertible S ∈ Rm×m and ~c ∈ Rm, we define the function ρS,~c(~b) = exp(−π‖S−1(~b − ~c)‖2).
For S = sIm, we write ρs,~c, and we omit the subscripts S and ~c when S = Im and ~c = ~0. We let
να denote the one-dimensional Gaussian distribution with standard deviation α.

C.2.1 Euclidean lattices and discrete Gaussian distributions

A lattice is a set of the form {
∑
i≤n xi

~bi : xi ∈ Z} where the ~bi’s are linearly independent
vectors in Rm. In this situation, the ~bi’s are said to form a basis of the n-dimensional lattice.
The n-th minimum λn(L) of an n-dimensional lattice L is defined as the smallest r such that
the n-dimensional closed hyperball of radius r centered in ~0 contains n linearly independent
vectors of L. The smoothing parameter of L is defined as ηε(L) = min{r > 0 : ρ1/r(L̂ \~0) ≤ ε}
for any ε ∈ (0, 1), where L̂ = {~c ∈ Span(L) : ~ct · L ⊆ Z} is the dual lattice of L. It was proved
in [MR07, Le. 3.3] that ηε(L) ≤

√
ln(2n(1 + 1/ε))/π · λn(L) for all ε ∈ (0, 1) and n-dimensional

lattices L.
For a lattice L ⊆ Rm, a vector ~c ∈ Rm and an invertible S ∈ Rm×m, we define the Gaussian

distribution of parameters L, ~c and S byDL,S,~c(~b) ∼ ρS,~c(~b) = exp(−π‖S−1(~b−~c)‖2) for all~b ∈ L.
When S = σ · Im, we simply write DL,σ,~c. Note that DL,S,~c = St ·DS−tL,1,S−t~c. Sometimes, for
convenience, we use the notation DL+~c,S as a shorthand for ~c+DL,S,−~c. Gentry et al. [GPV08]
gave an algorithm, referred to as GPV algorithm, to sample from DL,S,~c when given as input a
basis (~bi)i of L such that

√
ln(2n+ 4)/π ·maxi ‖S−t~bi‖ ≤ 1 (see Lemma C.8.1).

We extensively use q-ary lattices. The q-ary lattice associated to A ∈ Zm×nq is defined
as Λ⊥(A) = {~x ∈ Zm : ~xt · A = ~0 mod q}. It has dimension m, and a basis can be computed in
polynomial-time from A. For ~u ∈ Zmq , we define Λ⊥~u (A) as the coset {~x ∈ Zm : ~xt ·A = ~ut mod q}
of Λ⊥(A).

C.2.2 Random lattices

We consider the following random lattices, called q-ary Ajtai lattices. They are obtained by
sampling A←↩ U(Zm×nq) and considering Λ⊥(A). The following lemma provides a probabilistic
bound on the smoothing parameter of Λ⊥(A).

Lemma C.2.1 [Adapted from [GPV08, Le. 5.3]] Let q be prime and m,n integers with m ≥ 2n
and ε > 0, then ηε(Λ⊥(A)) ≤ 4q

n
m

√
log(2m(1 + 1/ε))/π, for all except a fraction 2−Ω(n) of

A ∈ Zm×nq .

It is possible to efficiently sample a close to uniform A along with a short basis of Λ⊥(A)
(see [Ajt99, AP11, Pei10, MP12]).

Lemma C.2.2 [Adapted from [AP11, Th. 3.1]] There exists a ppt algorithm that given n,m, q ≥
2 as inputs samples two matrices A ∈ Zm×nq and T ∈ Zm×m such that: the distribution of A is
within statistical distance 2−Ω(n) from U(Zm×nq); the rows of T form a basis of Λ⊥(A); each row
of T has norm ≤ 3mqn/m.

— 118 —

C.2. Preliminaries

For A ∈ Zm×nq , S ∈ Rm×m invertible, ~c ∈ Rm and ~u ∈ Znq , we define the distribu-
tion DΛ⊥

~u
(A),S,~c as ~̄c + DΛ⊥(A),S,−~̄c+~c, where ~̄c is any vector of Zm such that ~̄ct · A = ~ut mod q.

A sample ~x from DΛ⊥
~u

(A),S can be obtained using the GPV algorithm along with the short ba-
sis of Λ⊥(A) provided by Lemma C.2.2. Boneh and Freeman [BF11] showed how to efficiently
obtain the residual distribution of (A, ~x) without relying on Lemma C.2.2.

Theorem C.2.3 [Adapted from [BF11, Th. 4.3]] Let n,m, q ≥ 2, k ≥ 0 and S ∈ Rm×m be such
thatm ≥ 2n, q is prime with q > σ1(S)·

√
2 log(4m), and σm(S) = q

n
m ·max(Ω(

√
n logm), 2σ1(S)

k
m).

Let ~u1, . . . , ~uk ∈ Znq and ~c1, . . . ,~ck ∈ Rm be arbitrary. Then the residual distributions of the tuple
(A, ~x1, . . . , ~xk) obtained with the following two experiments are within statistical distance 2−Ω(n).

Exp0 : A←↩ U(Zm×nq); ∀i ≤ k : ~xi ←↩ DΛ⊥
~ui

(A),S,~ci .

Exp1 : ∀i ≤ k : ~xi ←↩ DZm,S,~ci ; A←↩ U
(
Zm×nq |∀i ≤ k : ~xti ·A = ~uti mod q

)
.

This statement generalizes [BF11, Th. 4.3] in three ways. First, the latter corresponds to
the special case corresponding to taking all the ~ui’s and ~ci’s equal to ~0. This generalization
does not add any extra complication in the proof of [BF11, Th. 4.3], but is important for our
constructions. Second, the condition on m is less restrictive (the corresponding assumption
in [BF11, Th. 4.3] is that m ≥ max(2n log q, 2k)). To allow for such small values of m, we refine
the bound on the smoothing parameter of the Λ⊥(A) lattice (namely, we use Lemma C.2.1).
Third, we allow for a non-spherical Gaussian distribution, which seems needed in our generalized
Micciancio-Peikert trapdoor gadget used in the reduction from LWE to k-LWE in Section C.3.2.

We also use the following result on the probability of the Gaussian vectors ~xi from Theo-
rem C.2.3 being linearly independent over Zq.

Lemma C.2.4 [Adapted from [BF11, Le. 4.5]] With the notations and assumptions of Theo-
rem C.2.3, the k vectors ~x1, . . . , ~xk sampled in Exp0 and Exp1 are linearly independent over Zq,
except with probability 2−Ω(n).

C.2.3 Rényi Divergence

We use Rényi Divergence (RD) in our analysis, relying on techniques developed in [LPR13,
LSS14a, LSS14b]. For any two probability distributions P and Q such that the support of P
is a subset of the support of Q over a countable domain X, we define the RD (of order 2) by
R(P‖Q) =

∑
x∈X

P (x)2

Q(x) , with the convention that the fraction is zero when both numerator and
denominator are zero. We recall that the RD between two offset discrete Gaussians is bounded
as follows.

Lemma C.2.5 [[LSS14a, Le. 4.2]] For any n-dimensional lattice L ⊆ Rn and invertible matrix
S, set P = DL,S,~w and Q = DL,S,~z for some fixed ~w, ~z ∈ Rn. If ~w, ~z ∈ L, let ε = 0. Otherwise, fix
ε ∈ (0, 1) and assume that σn(S) ≥ ηε(L). Then R(P‖Q) ≤

(
1+ε
1−ε

)2
· exp

(
2π‖~w − ~z‖2/σn(S)2).

We use this bound and the fact that the RD between the parameter distributions of two distin-
guishing problems can be used to relate their hardness, if they satisfy a certain public sampla-
bility property.

Lemma C.2.6 [[LSS14b]] Let Φ,Φ′ denote two distributions, and D0(r) and D1(r) denote two
distributions determined by some parameter r. Let P, P ′ be two decision problems defined as
follows:

— 119 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

• P : Assess whether input x is sampled from distribution X0 or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

• P ′: Assess whether input x is sampled from distribution X ′0 or X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

Assume that D0(·) and D1(·) have the following public samplability property: there exists a
sampling algorithm S with run-time TS such that for all r, b, given any sample x from Db(r) we
have:

• S(0, x) outputs a sample distributed as D0(r) over the randomness of S.

• S(1, x) outputs a sample distributed as D1(r) over the randomness of S.

If there exists a T -time distinguisher A for problem P with advantage ε, then, for every
λ > 0, there exists an O(λε−2 · (TS + T))-time distinguisher A′ for problem P ′ with advantage
ε′ ≥ ε3

8R(Φ‖Φ′) −O(2−λ).

C.2.4 Learning with errors

Let ~s ∈ Znq and α > 0. We define the distribution A~s,α as follows: Take ~a←↩ U(Znq) and e←↩ να,
and return (~a, 1

q 〈~a,~s〉+ e) ∈ Znq × T. The Learning With Errors problem LWEα, introduced by
Regev in [Reg05, Reg09], consists in assessing whether an oracle produces samples from U(Znq×T)
or A~s,α for some constant ~s ←↩ U(Znq). Regev [Reg09] showed that for q ≤ Poly(n) prime
and α ∈ (

√
n

2q , 1), LWE is (quantumly) not easier than standard worst-case lattice problems in
dimension n with approximation factors Poly(n)/α. This hardness proof was partly dequantized
in [Pei09, BLP+13], and the requirements that q should be prime and Poly(n) were waived.

In this work, we consider a variant LWE where the number of oracle samples that the
distinguisher requests is a priori bounded. If m denotes that bound, then we will refer to this
restriction as LWEα,m. In this situation, the hardness assumption can be restated in terms of
linear algebra over Zq: Given A←↩ U(Zm×nq), the goal is to distinguish between the distributions
(over Tm)

1
q
U (Im(A)) + νmα and 1

q
U
(
Zmq
)

+ νmα .

Under the assumption that αq ≥ Ω(
√
n), the right hand side distribution is indeed within sta-

tistical distance 2−Ω(n) to U(Tm) (see, e.g., [MR07, Le. 4.1]). The hardness assumption states
that by adding to them a small Gaussian noise, the linear spaces Im(A) and Zmq become compu-
tationally indistinguishable. This rephrasing in terms of linear algebra is helpful in the security
proof of the traitor tracing scheme. Note that by a standard hybrid argument, distinguishing
between the two distributions given one sample from either, and distinguishing between them
given Q samples (from the same distribution), are computationally equivalent problems, up to
a loss of a factor Q in the distinguishing advantage.

Finally, we will also use a variant of LWE where the noise distribution να is replaced
by Dq−1Z,α, and where U(T) is replaced by U(Tq) with Tq being q−1Z with addition mod 1.
This variant, denoted by LWE′, was proved in [Pei10] to be no easier than standard LWE (up
to a constant factor increase in α).

— 120 —

C.3. New lattice tools

C.3 New lattice tools
The security of our constructions relies on the hardness of a new variant of LWE, which may be
seen as the dual of the k-SIS problem from [BF11].

Definition C.3.1 Let k ≤ m, S ∈ Rm×m invertible and C = (~c1‖ · · · ‖~ck) ∈ Rk×m. The (k, S, C)-
LWEα,m problem (or (k, S)-LWE if C = 0) is as follows: Given A←↩ U(Zm×nq), ~u←↩ U(Znq) and
~xi ←↩ DΛ⊥−~u(A),S,~ci for i ≤ k, the goal is to distinguish between the distributions (over Tm+1)

1
q
· U
(
Im
(~ut
A

))
+ νm+1

α and 1
q
· U
(
Spani≤k

(1
~xi

)⊥)
+ νm+1

α .

The classical LWE problem consists in distinguishing the left distribution from uniform,
without the hint vectors ~x+

i = (1‖~xi). These hint vectors correspond to the secret keys obtained
by the malicious coalition in the traitor tracing scheme. Once these hint vectors are revealed,
it becomes easy to distinguish the left distribution from the uniform distribution: take one of
the vectors ~x+

i , get a challenge sample ~y and compute 〈~x+
i , ~y〉 ∈ T; if ~y is a sample from the left

distribution, then the centered residue is expected to be of size ≈ α · (
√
mσ1(S) + ‖~ci‖), which

is � 1 for standard parameter settings; on the other hand, if ~y is sampled from the uniform
distribution, then 〈~x+, ~y〉 should be uniform. The definition of (k, S)-LWE handles this issue by
replacing U(Zm+1

q) by U(Spani≤k(~x+
i)⊥).

Sampling ~x+
i fromDΛ⊥((~ut‖A)),S,~ci may seem more natural than imposing that the first coordi-

nate of each ~x+
i is 1. Looking ahead, this constraint will prove convenient to ensure correctness

of our cryptographic primitives. Theorem C.3.5 below and its proof can be readily adapted
to this hint distribution. They may also be adapted to improve the SIS to k-SIS reduction
from [BF11]. Setting C = 0 is also more natural, but for technical reasons, our reduction from
LWE to (k, S, C)-LWE works with unit vectors ~ci. However, we show that for small ‖~ci‖, there
exist polynomial time reductions between (k, S, C)-LWE and (k, S)-LWE.

In the proof of the hardness of (k, S)-LWE problem, we rely on a gadget integral matrix G
that has the following properties: its first rows have Gaussian distributions, it is unimodular
and its inverse is small. Before going to this proof, we shall build such a gadget matrix by
extending Ajtai’s simultaneous sampling of a random q-ary lattice with a short basis [Ajt99]
(see also Lemma C.2.2) to kernel lattices. More precisely, we adapt the Micciancio-Peikert
framework [MP12] to sampling a Gaussian X ∈ Zm×n along with a short basis for the lat-
tice ker(X) = {~b ∈ Zm : ~btX = ~0}.

C.3.1 Sampling a Gaussian X with a small basis of ker(X)
The Micciancio-Peikert construction [MP12] relies on a leftover hash lemma stating that with
overwhelming probability over A ←↩ U(Zm×nq) and for a sufficiently large σ, the distribution
of At · DZm,σ mod q is statistically close to U(Znq). We use a similar result over the integers,
starting from a Gaussian X ∈ Zm×n instead of a uniform A ∈ Zm×nq . The proof of the following
lemma relies on [AR13], which improves over a similar result from [AGHS13]. The result would
be neater with σ2 = σ1, but, unfortunately, we do not know how to achieve it. The impact of
this drawback on our results and constructions is mostly cosmetic.

Lemma C.3.2 Let m ≥ n ≥ 100 and σ1, σ2 > 0 satisfying σ1 ≥ Ω(
√
mn logm), m ≥

Ω(n log(σ1n)) and σ2 ≥ Ω(n5/2√mσ2
1 log3/2(mσ1)). Let X ←↩ Dm×n

Z,σ1
. There exists a ppt al-

gorithm that takes n,m, σ1, σ2, X and ~c ∈ Zn as inputs and returns ~x ∈ Zn, ~r ∈ Zm such
that ~x = ~c+Xt~r with ‖~r‖ ≤ O(σ2/σ1), with probability 1− 2−Ω(n), and

∆
(
(X,~x), Dm×n

Z,σ1
×DZn,σ2,~c

)
≤ 2−Ω(n).

— 121 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

We now adapt the trapdoor construction from [MP12] to kernel lattices.

Theorem C.3.3 Let n,m1, σ1, σ2 be as above, and m2 ≥ m1 bounded as nO(1). There exists
a ppt algorithm that given n,m1,m2 (in unary), σ1 and σ2, returns X1 ∈ Zm1×n, X2 ∈ Zm2×n,
and U ∈ Zm×m with m = m1 +m2, such that:

• the distribution of (X1, X2) is within statistical distance 2−Ω(n) of the distributionDm1×n
Z,σ1

×
(DZm2 ,σ2,~δ1

×· · ·×DZm2 ,σ2,~δn
), where ~δi denotes the ith canonical unit vector in Zm2 whose

ith coordinate is 1 and whose remaining coordinates are 0.

• we have |detU | = 1 and U ·X = (In‖0) with X = (X1‖X2),

• every row of U has norm ≤ O(√nm1σ2) with probability ≥ 1− 2−Ω(n).

The second statement implies that the last m − n rows of U form a basis of the random
lattice ker(X).

Proof: We first sample X1 from Dm1×n
Z,σ1

using the GPV algorithm. We run m2 times the
algorithm from Lemma C.3.2, on the input n,m1, σ1, σ2, X1 and ~c running through the columns
of C = [In|0n×(m2−n)]. This givesX2 ∈ Zm2×n and R ∈ Zm1×m2 such thatXt

2 = [In|0n×(m2−n)]+
Xt

1 ·R. One can then see that U ·X = [In‖0], where

U =
[

~0 Im2

Im1 −(X1|~0)

]
·
[
Im1

~0
−Rt Im2

]
=
[

−Rt Im2

Im1 + (X1|~0)Rt −(X1|~0)

]
, X =

[
X1
X2

]
.

The result then follows from Gaussian tail bounds (to bound the norms of the rows of X1) and
elementary computations.

Our gadget matrix G is U−t. In the following corollary, we summarize the properties we will
use.

Corollary C.3.4 Let n,m1,m2,m, σ1, σ2 be as in Theorem C.3.3. There exists a ppt algorithm
that given n,m1,m2 (in unary), and σ1, σ2 as inputs, returns G ∈ Zm×m such that:

• the top n×m submatrix of G is within statistical distance 2−Ω(n) of Dn×m1
Z,σ1

×(DZm2 ,σ2,~δ1
×

· · · ×DZm2 ,σ2,~δn
)t,

• we have | detG| = 1 and ‖G−1‖ ≤ O(√nm2σ2), with probability 1− 2−Ω(n).

C.3.2 Hardness of k-LWE

The following result shows that this LWE variant, with S a specific diagonal matrix, is no easier
than LWE.

Theorem C.3.5 There exists c > 0 such that the following holds for k = n/(c logn). Let
m, q, σ, σ′ be such that σ ≥ Ω(n), σ′ ≥ Ω(n3σ2/ logn), q ≥ Ω(σ′

√
logm) is prime, and

m ≥ Ω(n log q) (e.g., σ = Θ(n), σ′ = Θ(n5/ logn), q = Θ(n5) and m = Θ(n logn)). Then
there exists a probabilistic polynomial-time reduction from LWEm+1,α in dimension n to (k, S)-
LWEm+2n,α′ in dimension 4n, with α′ = Ω(mn3/2σσ′α) and S =

[
σ · Im+n 0

0 σ′ · In

]
. More con-

cretely, using a (k, S)-LWEm+2n,α′ algorithm with run-time T and advantage ε, the reduction
gives an LWEm+1,α algorithm with run-time T ′ = O(Poly(m)·(ε−2−Ω(n/ logn))−2 ·(T+Poly(m))
and advantage ε′ = Ω((ε− 2−Ω(n/ logn))3)−O(2−n).

— 122 —

C.3. New lattice tools

The reduction takes an LWE instance and extends it to a related k-LWE instance for which
the additional hint vectors (~xi)i≤k are known. The major difficulty in this extension is to restrain
the noise increase, as a function of k.

The existing approach for this reduction (that we improve below) is the technique used in
the SIS to k-SIS reduction from [BF11]. In the latter approach, the hint vectors are chosen
independently from a small discrete Gaussian distribution, and then the LWE matrix A is
extended to a larger matrix A′ under the constraint that the hint vectors are in the q-ary
lattice Λ⊥(A′) = {~b : ~btA′ = ~0 mod q}. Unfortunately, with this approach, the transformation
from an LWE sample with respect to A, to a k-LWE sample with respect to A′, involves a
multiplication by the cofactor matrix det(G) ·G−1 over Z of a k×k full-rank submatrix G of the
hint vectors matrix. Although the entries of G are small, the entries of its cofactor matrix are
almost as large as detG, which is exponential in k. This leads to an “exponential noise blowup,”
restraining the applicability range to k ≤ Õ(1) if one wants to rely on the hardness of LWE with
noise rate 1/α ≤ Poly(n) (otherwise, LWE is not exponentially hard to solve). To restrain the
noise increase for large k, we use the gadget of Corollary C.3.4. Ignoring several technicalities,
the core idea underlying our reduction is that the latter gadget allows us to sample a small
matrix X2 with X

−1
2 also small, which we can then use to transform the given LWE matrix

A+ = (~ut‖A) ∈ Z(m+1)×n
q into a taller k-LWE matrix A′+ = T · A+, using a transformation

matrix T of the form

T =
[

Im+1

−X−1
2 X1

]
,

for some small independently sampled matrix X1 = [~1|X1]. We can accordingly transform the
given LWE sample vector ~b = A+~s+~e for matrix A+ into an LWE sample ~b′ = T~b = A′+~s+ T~e
for matrix A′+ by multiplying the given sample by T . Since [X1|X2] · T = 0, it follows that
[X1|X2] · A′+ = 0, so we can use k small rows of [X1|X2] as the k-LWE hints ~x+

i for the new
matrix A′+, while, at same time, the smallness of T keeps the transformed noise ~e′ = T~e small.

Proof: For a technical reason related to the non-zero centers ~δi in the distribution of the
hint vectors produced by our gadget from Corollary C.3.4, we decompose our reduction from
LWEm+1,α to (k, S)-LWE into two subreductions. The first subreduction (outlined above) re-
duces LWEm+1,α in dimension n to (k, S, C)-LWEm+2n,α′ in dimension 4n, where the ith row of
C is the unit vector ~ci = (0m+n|~δi) ∈ Rm+2n for i = 1, . . . , k. The second subreduction reduces
(k, S, C)-LWEm+2n,α′ in dimension 4n to (k, S)-LWEm+2n,α′ in dimension 4n. We first describe
and analyze the first subreduction, and then explain the second subreduction.

Description of the first subreduction. Let (A+,~b) with A+ = (~ut‖A) denote the given
LWEα,m+1 input instance, where A+ ←↩ U(Z(m+1)×n

q), and ~b ∈ Tm+1 comes from either the
“LWE distribution” 1

qU
(
Im(A+)

)
+ νm+1

α or the “Uniform distribution” 1
qU

(
Zm+1
q

)
+ νm+1

α .

The reduction maps (A+,~b) to (A′, ~u′, X,~b′) with A′ ∈ Z(m+2n)×4n
q and ~u′ ∈ Z4n

q independent
and uniform, X ∈ Zk×(m+2n) with its ith row ~xi independently sampled from DΛ⊥−~u′ (A

′),S for

i ≤ k, and ~b′ ∈ Tm+1+2n coming from either the “k-LWE distribution” 1
qU

(
Im(A′+)

)
+ νm+1+2n

α

if ~b is from the “LWE distribution,” or the “k-Uniform distribution” 1
qU

(
Spani≤k(~x+

i)⊥
)
if ~b

is from the “Uniform distribution.” Here A′+ = (~u′t‖A′), and ~x+
i denotes the vector (1‖~xi)

for i ≤ k. The reduction is as follows.

1. Sample gadget X2 ∈ Z2n×2n using Corollary C.3.4 (with parameters n,m1,m2, σ1 and σ2

respectively set to k, n, n, σ and σ′), and sampleX1 ←↩ D2n×m
Z,σ . Define T =

[
Im+1

−X−1
2 · (1|X1)

]
∈

— 123 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

Z(m+1+2n)×(m+1), where ~1 is the all-1 vector. Let X ∈ Zk×(m+2n) denote the matrix made
of the top k rows of (X1|X2).

2. Sample C+ ∈ Z(m+1+2n)×3n
q with independent columns uniform orthogonally to Im((1|X))

modulo q. Let ~utC ∈ Z3n
q be the top row of C+, and C ∈ Z(m+2n)×3n

q denote its remaining
m+ 2n rows.

3. Compute Σ = α′ · Im+1+2n − T · T t and
√

Σ such that
√

Σ ·
√

Σt = Σ; if Σ is not positive
definite, abort.

4. Compute A′+ = (T ·A+|C+) and ~b′ = T~b+ 1
qC

+ · ~s′ +
√

Σ~e′, with ~s′ ←↩ U(Z3n
q) and ~e′ ←↩

νm+1+2n
1 . Let (~u′)t = (~u‖~uC)t ∈ Z4n

q be the top row of A′+.

5. Return (A′, ~u′, X,~b′).

Step 1 aims at building a transformation matrix T that sends A+ to the left n columns of A′+.
Two properties are required from this transformation. First, it must be a linear map with small
coefficients, so that when we map the LWE right hand side to the k-LWE right hand side, the
noise component does not blow up. Second, it must contain some vectors (1‖~xi) in its (left)
kernel, with ~xi normally distributed. These vectors are to be used as k-LWE hints. For this, we
use the gadget of the previous subsection. This ensures that the ~xi’s are (almost) distributed
as independent Gaussian samples from DZn,σ ×DZn,σ′ , and that the matrix T is integral with
small coefficients. We define B ∈ Z2n×n

q by [A+‖B] = TA+, so that we have:

[
1|X1|X2

]
·
[
A+

B

]
=
[
1|X1|X2

]
·
[

Im+1

−X−1
2 · (1|X1)

]
·A+ = 0 mod q.

This means each row of
(
X1|X2

)
belongs to Λ⊥−~u(A′′), where A′′ = [At|Bt]t.

At this stage, it is tempting to define the k-LWE matrix as A′′ and give away the k-LWE
hint vectors ~xi ∈ Λ⊥−~u(A′′) making up the matrix X. However, this approach does not quite
work: we have extended A by 2n rows, but we give only k hint vectors (we cannot output them
all, as the bottom rows of X2 may not be normally distributed). This creates a difficulty for
mapping “Uniform” to “k-Uniform” in the reduction. Step 2 circumvents the above difficulty by
sampling extra column vectors C+ ∈ Z(m+1+2n)×3n

q that are uniform in the subspace orthogonal
to the hint vectors ~x+

i modulo q. When the parameters are properly set, the columns of [T |C+]
span the full subspace orthogonal to the ~xi’s mod q, with overwhelming probability. We finally
set A′+ =

[
A+

B

∣∣∣C+
]
.

It remains to see how to map “LWE” to “k-LWE.” The main problem, when multiplying ~b by T ,
is that the LWE noise gets skewed. If its covariance matrix was of the form α2 · Im+1, then it
becomes α2T · T t. To compensate for that, in Step 3, we add to T ·~b an independent Gaussian
noise with well-chosen covariance Σ = α′2 · Im+1+2n−α2T ·T t. We set α′ large enough to ensure
that this symmetric matrix is positive definite. This noise unskewing technique was adapted to
discrete Gaussians and used in cryptography in [Pei10].

Analysis of the first subreduction. All steps of the reduction can be implemented in
polynomial time. Its correctness follows from the following three lemmas. The proofs can
be found in the appendix.

— 124 —

C.3. New lattice tools

Lemma C.3.6 The tuple (A′, ~u′, X) is within statistical distance 2−Ω(n/ logn) of the distribution
in which A′ ∈ Z(m+2n)×4n

q and ~u′ ∈ Z4n
q are independent and uniform, and the rows of X ∈

Zk×(m+2n) are fromDΛ⊥−~u′ (A
′),S,~ci , where ~ci = (0m+n|~δi) ∈ Rm+2n and ~δi denotes the ith canonical

unit vector in Zn for i = 1, . . . , k.

Next, we assume that (A′+, X) is fixed and consider the distribution of ~b′ in the two cases of
the distribution of ~b. First we consider the “LWE” to “k-LWE” distribution mapping.

Lemma C.3.7 The following holds with probability 1− 2−Ω(n/ logn) over the choice of X1 and
X2. If ~b ∈ Tm+1 is sampled from 1

qU(ImA) + νm+1
α , then ~b′ ∈ Tm+1+2n is within statistical

distance 2−Ω(n) of 1
qU

(
ImA′+

)
+ νm+1+2n

α′ .

Finally, we consider the “Uniform” to “k-Uniform” distribution mapping.

Lemma C.3.8 The following holds with probability 1− 2−Ω(n/ logn) over the choice of X1 and
X2. If ~b is sampled from 1

qU
(
Zm+1
q

)
+ νm+1

α , then ~b′ is within statistical distance 2−Ω(n) of
1
qU

(
Spani≤k(~x+

i)⊥
)

+ νm+1+2n
α′ .

Overall, we have described a reduction that maps the “LWE distribution” to the “k-LWE dis-
tribution,” and the “Uniform distribution” to the “k-Uniform distribution,” up to statistical
distance 2−Ω(n/ logn).

Second subreduction. It remains to reduce the (k, S, C)-LWE with non-zero centers for the
hint distribution, to (k, S)-LWE with zero-centered hints. For this, we use Lemma C.2.6 to
obtain the following.

Lemma C.3.9 Let m′ = m + 2n, n′ = 4n, and assume that σm′(S) ≥ ω(
√
n). If there exists

a distinguisher against (k, S)-LWEm′,α′ in dimension n′ with run-time T and advantage ε, then
there exists a distinguisher against (k, S, C)-LWEm′,α′ with run-time T ′ = O(Poly(m′) · (ε −
2−Ω(n))−2 · T) and advantage ε′ = Ω((ε− O(2−n))3/R − O(2−n)), where R = exp(O(k · (2−n +
‖C‖2/σm′(S)2))).

The main idea of the proof of Lemma C.3.9, given in the appendix, is to apply Lemma C.2.6 with
P, P ′ being the (k, S)-LWE and (k, S, C)-LWE problems respectively, which have instances of
the form x = (r, ~y), where r = (A, ~u, {~xi}i≤k) and the hints ~xi for i ≤ k sampled from either the
zero-centered distribution ←↩ DΛ⊥−~u(A),S,~0 (distribution Φ of r, in (k, S)-LWE) or the non-zero
center distribution ←↩ DΛ⊥−~u(A),S,~ci (distribution Φ′ of r, in (k, S, C)-LWE), and ~y ∈ Tm+1 is a
sample from either the distribution

D0(r) = 1
q
· U
(
Im
(~ut
A

))
+ νm+1

α

or the distribution

D1(r) = 1
q
· U
(
Spani≤k

(1
~xi

)⊥)
+ νm+1

α .

Given x = (r, ~y), is possible to efficiently sample ~y′ from either D0(r) or D1(r), so the public-
samplability property assumed by Lemma C.2.6 is satisfied. This Lemma gives the desired

— 125 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

reduction between (k, S)-LWE and (k, S, C)-LWE, as long as the RD R(Φ‖Φ′) between the
distribution of r in the two problems is polynomially bounded. The latter reduces to obtaining
a bound on the RD between a Gaussian distribution and a small offset thereof, which is given
by Lemma C.2.5.

In our application of Lemma C.3.9, the (k, S, C)-LWE problem resulting from the first subre-
duction has ‖C‖ = 1, and σm′(S) = σ, so that R = exp(O(k · (2−n + 1/σ2))) = O(1) using
σ = Ω(n) and k ≤ n. This shows that the second subreduction is probabilistic polynomial time.

Our technique can be applied to improve the Boneh-Freeman reduction from SIS to k-SIS,
from an exponential loss in k to a polynomial loss in k. In fact, we map A to A′′ in the same
way (except that we do not use and add ~u on top of the matrix A) and then also use the top k
rows of (X1|X2) as the k-SIS hints for the new matrix A′′. Then, whenever the adversary
can output a short vector ~x1‖ ~x2 that is orthogonal to A′′, we can also output a short vector
(~x1 − ~x2 ·X

−1
2 X1) which is orthogonal to A. As the rows of X1 are distributed as independent

Gaussian samples and the adversary is only given its first k rows, it can be shown that, if ~x1‖ ~x2
is linearly independent from the k-SIS hints, then the vector (~x1 − ~x2 · X

−1
2 X1) is null with a

negligible probability. RD may also be used to reduce k-SIS with non-zero-centered hints (with
small centers) to k-SIS with zero-centered hints.

C.4 A lattice-based public-key traitor tracing scheme

In this section, we describe and analyze our basic traitor tracing scheme. First, we give the
underlying multi-user public-key encryption scheme. We then explain how to implement black-
box confirmation tracing.

C.4.1 A multi-user encryption scheme

The scheme is designed for a given security parameter n, a number of users N and a maximum
malicious coalition size t. It then involves several parameters q,m, α, S. These are set so that
the scheme is correct (decryption works properly on honestly generated ciphertexts) and secure
(semantically secure encryption and possibility to trace members of malicious coalitions). In
particular, we set S = Diag(σ, . . . , σ, σ′, . . . , σ′) ∈ Rm×m where σ′ > σ and their respective
numbers of iterations are set so that (t, S)-LWEm+1,α is hard to solve.
Setup. The trusted authority generates a master key pair using the algorithm from Lemma C.2.2.
Let (A, T) ∈ Zm×nq ×Zm×m be the output. We additionally sample ~u uniformly in Znq . Matrix T
will be part of the tracing key tk, whereas the public key is pk = A+, with A+ = (~ut‖A).

Each user Ui for i ≤ N obtains a secret key ski from the trusted authority, as follows.
The authority executes the GPV algorithm using the basis of Λ⊥(A) consisting of the rows
of T , and the standard deviation matrix S. The authority obtains a sample ~xi from DΛ⊥−~u(A),S .
The standard deviations σ′ > σ may be chosen as small as 3mqn/m

√
(2m+ 4)/π. The user

secret key is ~x+
i = (1‖~xi) ∈ Zm+1. Using the Gaussian tail bound and the union bound, we

have ‖~xi‖ ≤
√
mσ′ for all i ≤ N , with probability ≥ 1−N · 2−Ω(m).

The tracing key tk consists of the matrix T and all pairs (Ui, ski).
Encrypt. The encryption algorithm is exactly the 1-bit encryption scheme from [GPV08, Se. 7.1],
which we recall, for readability.1 The plaintext and ciphertext domains are P = {0, 1} and C =

1As usual, the encryption algorithm may be used to encapsulate session keys which are then fed into an efficient
data encapsulation mechanism to encrypt the data.

— 126 —

C.4. A lattice-based public-key traitor tracing scheme

Zm+1
q respectively, and:

Enc : M 7→
[
~ut

A

]
· ~s+ ~e+

[
M · bq/2c

~0

]
, where ~s←↩ U(Znq) and ~e←↩ bναqem+1.

As explained in [GPV08], this scheme is semantically secure under chosen plaintext attacks
(IND-CPA), under the assumption that LWEm+1,α is hard to solve.
Decrypt. To decrypt a ciphertext ~c ∈ Zm+1

q , user Ui uses its secret key ~x+
i and evaluates the

following function Dec from Zm+1
q to {0, 1}: Map ~c to 0 if 〈~x+

i ,~c〉 mod q is closer to 0 than
±bq/2c.

If ~c is an honestly generated ciphertext of a plaintextM ∈ {0, 1}, we have 〈~x+
i ,~c〉 = 〈~x+

i , ~e〉+
M · bq/2c mod q, where ~e ←↩ bναqem+1. It can be shown that the latter has magnitude ≤
2
√
mαq‖~x+

i ‖ with probability 1 − 2−Ω(n) over the randomness of ~e. This is ≤ 3mαqσ′ for
all i, with probability ≥ 1 − N · 2−Ω(n). To ensure the correctness of the scheme, it suffices to
set q ≥ 4mαqσ′. Note that other constraints will be added to enable tracing.

Theorem C.4.1 Letm,n, q andN be integers such that q is prime andN ≤ 2o(n). Let α, σ, σ′ >
0 such that σ′ ≥ σ ≥ Ω(mqn/m

√
logm) and α ≤ 1/(4mσ′). Then the scheme described above is

IND-CPA under the assumption that LWEm+1,α is hard. Further, the decryption algorithm is
correct:

∀M ∈ {0, 1},∀i ≤ N : Dec (Enc(M,pk), ski) = M

holds with probability ≥ 1− 2−Ω(n) over the randomness used in Setup and Enc.

C.4.2 Tracing traitors

We now present a black-box confirmation algorithm Trace.2 It is given access to an oracle OD
that provides black-box access to a decryption device D. It takes as inputs the tracing key tk =
(T, (Ui, ~x+

i)i≤N) and a set of suspect users {Ui1 , . . . ,Uik} of cardinality k ≤ t, where t is the a
priori bound on any coalition size. Wlog, we may consider that k = t and ij = j for all j ≤ k.

Algorithm Trace gathers information about which keys have been used to build decoder D,
by feeding different carefully designed distributions to oracle OD. We consider the following
t+ 1 distributions Tr0, . . . , T rt over C = Zm+1

q :

Tri = U
(
Span(~x+

1 , . . . , ~x
+
i)⊥

)
+ bναqem+1.

The first distribution Tr0 is the uniform distribution, whereas the last distribution Trt is
meant to be computationally indistinguishable from Enc(0). We define p∞ as the probabil-
ity Pr[OD (~c,M) = 1] that the decoder can decrypt the ciphertexts, over the randomness of
M ←↩ U({0, 1}) and ~c ←↩ Enc(M). We define pi as the probability the decoder decrypts the
signals in Tri, for i ∈ [0, t]:

pi = Pr
~c←↩ T ri

M ←↩ U({0, 1})

[
OD

(
~c+

[
M · bq/2c

~0

]
,M

)
= 1

]
.

A gap between pi−1 and pi is meant to indicate that Ui is a traitor.
The confirmation and soundness properties are proved in the full version. We now concen-

trate on a new feature of our scheme: public traceability.
2Note that in our context, minimal access is equivalent to standard access: since the plaintext domain is small,

plaintext messages can be tested exhaustively.

— 127 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

C.5 Projective sampling and public traceability
We now modify the scheme of the Section C.4 so that the tracing signals can be publicly sampled.
For this purpose, we introduce the concept of projective sampling family.

C.5.1 Projective sampling

Inspired from the notion of projective hash family [CS02], we propose the notion of projective
sampling family in which each sampling function is keyed and, with a projected key, one can
simulate the sampling function in a computationally indistinguishable way. Let X be a finite
non-empty set. Let F = (Fk)k∈K be a collection of sampling functions indexed by K, so that
Fk is a sampling function over X, for every k ∈ K. We call Sam = (F,K,X) a sampling family.
We now introduce the concept of projective sampling.

Definition C.5.1 [Projective Sampling] Let Sam = (F,K,X) be a sampling family. Let J be
a finite, non-empty set, and let π : K → J be a (probabilistic) function. Let also P = (Pj)j∈J
be a collection of sampling functions over X, and D be a distribution over K. Then PSam =
(F,K,X, P, J, π,D) is called a projective sampling family if, with overwhelming probability over
the choice of k, k′ ←↩ D, and given the secret key k and its projected key π(k), 1) the distributions
obtained using Fk and Pπ(k) are computationally indistinguishable, and 2) the distributions
obtained using Fk and Pπ(k′) can be efficiently distinguished.

The first condition means that for k ←↩ D, the value π(k) “encodes” the sampling distribution
of Fk, so that when π(k) is made public, the sampled signal Fk can be publicly simulated
by Pπ(k). The security requirement is very strong because the adversary is not only given the
projected key, as in projective hashing, but also the secret key k. We require that sampling
signals from the secret key and from its projected key are indistinguishable for the insiders who
know the secret key. This is relevant for traitor tracing, as the traitors are system insiders and
they possess secret data. The second condition (that we actually do not directly use in our
cryptographic application) allows to prevent the trivial solution consisting in setting Pπ(k) as an
efficient sampling function that is independent of k: the simulation signal Pπ(k) must be specific
to k.3

C.5.2 Projective sampling from k-LWE

We construct a set of projective sampling families (PSami)0≤i≤t. The parameters are almost iden-
tical to the parameters in the Setup of the multi-user scheme of Section C.4. A further difference,
required for simulation purposes in the security proof, is that σ′ > σ must be set Ω̃(

√
mn+πq).

We let A ←↩ U(Zm×nq) and ~u ←↩ U(Znq) be public parameters. For each i, we define Ki =
(Zmq)i and Di as the distribution on Ki that samples k = (~xj)j≤i with ~xj ←↩ DΛ⊥−~u(A),σ for
all j ≤ i. The sampling function Fi,k is defined as U(Spanj≤i(~x+

j)⊥) + bναqem+1. The projected
key πi(k) is defined as follows:
• Sample H ∈ Zm×(m−n)

q uniformly, conditioned on Im(A) ⊆ Im(H).
• For each j ≤ i, define ~htj = −~xtj ·H.
• Finally, set J = Zm×(m−n)

q × (Zm−nq)i and set πi(k) = (H, (~hj)j≤i).

We now define the sampling Pi,πi(k) with projected key πi(k) = (H, (~hj)j≤i), as follows:

• Set Hj = (~htj‖H) ∈ Z(m+1)×(m−n)
q . We have ~x+t

j ·Hj = ~0 and Im(A+) ⊆ Im(Hj).
3Another trivial situation occurs when π(k) = k: the projected key leaks the full information about the original

key and one cannot safely publish the projected key.

— 128 —

C.5. Projective sampling and public traceability

• Set Pi,πi(k) = U (∩j≤iIm(Hj)) + bναqem+1, with ∩j≤0Im(Hj) = Zm+1
q by convention. Note

that ∩j≤iIm(Hj) ⊆ Spanj≤i(~x+
j)⊥.

Theorem C.5.2 For each i = 0, . . . , t, PSami is a projective sampling family. Concretely, under
the (i, S)-LWEα,m hardness assumptions, given the uniformly sampled public parameters (A, ~u),
the secret key k = (~xj)j≤i ←↩ Di and its projected key πi(k) = (H, (~hj)j≤i), the distributions Fi,k
and Pi,πi(k) are indistinguishable. Moreover, they are both indistinguishable from U(Im(A+)) +
bναqem+1. Finally, with overwhelming probability, the distributions Fi,k and Pi,πi(k′) can be
efficiently distinguished, when k′ is independently sampled from Di.

Proof: For the last statement, observe that with overwhelming probability, the secret key k′
contains an ~x′j ∈ Zmq that does not belong to Spanj≤i(~xj) (by Lemma C.2.4). In that case, taking
the inner product of all ~x′j ’s of k′ with a sample from Pi,πi(k′) gives small residues modulo q,
whereas one of the inner products of the ~x′j ’s with a sample from with a sample from Fi,k will
be uniform modulo q.

We now consider the first statement. From the hardness of (i, S)-LWEm,α, given k, the distri-
butions

Fi,k = U(Spanj≤i(~x+
j)⊥) + bναqem+1 and U(Im(A+)) + bναqem+1

are indistinguishable. Further, given k = (~xj)j≤i, the projected key πi(k) = (H, (~hj)j≤i) can be
sampled from Di. Therefore, given both k and πi(k), the distributions Fi,k and U(Im(A+)) +
bναqem+1 remain indistinguishable.

Now, we have Im(A+) ⊆ ∩j≤iIm(Hj) ⊆ (Spanj≤i(~x+
j))⊥. Hence:

U(Im(A+)) + U(∩j≤iIm(Hj)) = U(∩j≤iIm(Hj)),

U(Spanj≤i(~x+
j)⊥) + U(∩j≤iIm(Hj)) = U(Spanj≤i(~x+

j)⊥).

We note that given ~h1, . . . ,~hi, one can efficiently sample from U(∩j≤iIm(Hj)). Therefore, under
the hardness of (i, S)-LWEm,α, this shows that Fi,k, Pi,πi(k) and U(Im(A+)) + bναqem+1 are
indistinguishable.

C.5.3 Public traceability from projective sampling

In the scheme of Section C.4, the tracing key tk = (T, (Ui, ~xi)i≤N) must be kept secret, as it would
reveal the secret keys of the users. The tracing signals are samples from U(Spanj≤i(~x+

j)⊥) +
bναqem+1, which exactly matches Fi,k. By publishing the projected key πi(k), anyone can use
the projective sampling Pi,πi(k): by Theorem C.5.2, given (k, πi(k)), Fi,k and Pi,πi(k) are indistin-
guishable and they are both indistinguishable from the original sampling U(Im(A+))+bναqem+1.
We are thus almost done with public traceability.

However, a subtle point is that we have to use all the projective samplings (Pi,πi(k)) for
transforming the secret tracing to the public tracing: all the projected keys (~hj)j≤N should be
published. Because the keys k in Fi,k are not independent, it could occur that the adversary
exploits a projected key πi(k) for distinguishing Pi′,πi′ (k′) from the original signals. To handle
this, we prove that, given (~xj)j≤i and all the keys (~hj)j≤N , the adversary cannot distinguish
Pi,πi(k) from the original signals. For this purpose, we exploit a technique from [GKV10] to
simulate (~hj)i<j≤N from the public information.

— 129 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

Theorem C.5.3 Set i ≤ t. Under the (i, S)-LWEα,m and the LWE′α,m hardness assumptions,
given the secret key k = (~xj)j≤i and the projected keys (H, (~hj)j≤N), the following two distri-
butions are indistinguishable

Pi,α(k) = U(∩j≤iIm(Hj)) + bναqem+1 and U(Im(A+)) + bναqem+1.

Proof:
Assume a ppt attacker is given (~xj)j≤i (with the ~xj ’s independently sampled fromDΛ⊥−~u(A),σ) and

all the projected keys (~hj)j≤N)). We are to prove that, under the (i, S)-LWEα,m and LWE′α,m
hardness assumptions, it cannot distinguish between the distributions (over Zm+1

q)

U(Im(A+)) + bναqem+1 and Pi,πi(k) = U(∩j≤iIm(Hj)) + bναqem+1.

We proceed by a sequence of games.

Game G0: This is the above distinguishing game. We let ε0 denote the adversary’s distin-
guishing advantage. The goal is to show that ε0 is negligible.

Game G1: In this second game, we sample ~x1, . . . , ~xi from DΛ⊥−~u(A),σ as in Game0, but

the ~xj ’s for j > i are sampled uniformly in Znq , conditioned on ~xtj · A = −~ut. The ~hj ’s for j >
i are modified accordingly, but the rest is as in Game0. We let ε1 denote the adversary’s
distinguishing advantage.
The main point is that in Game1, no secret information is required for sampling the projected
keys ~hj ’s for j > i. The proof of the following lemma may be found in the full version.

Lemma C.5.4 Under the LWE′α,m hardness assumption, the quantity |ε1 − ε0| is negligible.

We note that, in Game1, the ~hj ’s can be sampled publicly from the available data. There-
fore, from Theorem C.5.2, under the (i, S)-LWEα,m hardness assumptions, the advantage ε1 is
negligible.

Semantic security of the updated scheme. We modify the public information of the
scheme of Section C.4, so that we can use the set of projective sampling families described
above. For this aim, we simply add the projected key (H, (~hi)i≤N) to the public key. The scheme
becomes publicly traceable because the tracing signals can be sampled from the projected keys,
as explained above. Finally, as the public key has been modified, we should prove that the
knowledge of these projected keys provides no significant advantage for an adversary towards
breaking the semantic security of the encryption scheme. Fortunately, the semantic security
directly follows from Theorem C.5.3, for the particular case of i = 0.

C.6 Appendix

C.7 Traitor Tracing

C.7.1 A short overview

Combinatorial schemes versus algebraic schemes. There are two main approaches for
devising a traitor tracing encryption scheme. Many constructions are combinatorial in nature

— 130 —

C.7. Traitor Tracing

(see [CFN94a, SW98b, CFNP00, SSW01a, PSNT06a, BP08, BN08a], among others): They
typically combine an arbitrary encryption scheme with a collusion-resistant fingerprinting code.
The most interesting property in combinatorial schemes is the capacity of dealing with black-
box tracing. However, the efficiency of these traitor tracing schemes is curbed by the large
parameters induced by even the best construction of such codes [Tar08a]: To resist coalitions of
up to t malicious users among N users, the code length is ` = Θ(t2 logN). Lower bounds with
the same dependence with respect to t have been given in [PSS03, Tar08a], leaving little hope
of significant improvements.

An alternative approach was initiated by Kurosawa and Desmedt in [KD98a] (whose con-
struction was shown insecure in [SW98c]), and by Boneh and Franklin [BF99a]: The tracing
functionality directly stems from the algebraic properties of the encryption scheme. As opposed
to the combinatorial approach, this algebraic approach is not generic and requires designing ad
hoc encryption schemes. We will concentrate on the algebraic approach in this paper. Prior to
this work, all known algebraic traitor tracing schemes relied on variants of the Discrete Logarithm
Problem: For instance, the earlier constructions (including [KD98a, BF99a, KY02c, KY02d])
rely on the assumed hardness of the Decision Diffie Hellman problem (DDH), whereas oth-
ers (including [CPP05a, BSW06a, BW06a, ADML+07a, FNP07a]) rely on variants of DDH on
groups admitting pairings. The former provide strong security when instantiating with groups
for which DDH is expected to be very hard (such as generic elliptic curves over prime fields),
whereas the latter achieve improved functionalities while lowering the performance (as a function
of the security level).

Public traceability. An important problem on traitor tracing is to handle the case where the
tracer is not trusted. In this scenario, the tracing procedure must be run in a way that enables
verification of the traitor implication, by a system outsider. The strongest notion for this is non-
repudiation: the tracing procedure must produce an undeniable proof of the traitors implication.
However, a necessary condition for achieving non-repudiation is that the setup involves some
interactive protocol between the center and each user. Indeed, if the center generates all the
parameters for the users, then any pirate decoder produced by a collusion of traitors can also be
produced by the center and there is no way for the center to trustworthily prove the culpability
of the traitors. All the existing schemes enjoying non-repudiation involve complex interactive
proofs: a secure 2-party computation protocol in [Pfi96], a commitment protocol in [PW97], an
oblivious polynomial evaluation in [WHI01, KWHI01, KY02a].

When considering the standard setting of non-interactive setup, we cannot get the full
strength of non-repudiation, but we can still achieve a weaker but very useful property: pub-
lic traceability. This notion allows anyone to perform the tracing from the public parameters
only and hence the traitors implication can be publicly verified. Moreover, public traceabil-
ity implies the capacity of delegating the tracing procedure: the tracer can run the tracing
procedure in parallel on untrusted machines without leaking any secret information. This
can prove crucial for the schemes with high tracing complexity. In fact, there are very few
(non-interactive) schemes that achieve this property [PSNT06a, BW06a] (some schemes, such
as [CPP05a, BP08, BN08a], partially achieve: some parts of the tracing procedure can be run
publicly). The scheme [PSNT06a] is generic, based on IPP-codes, and is thus quite impractical.
The Boneh-Waters scheme [BW06a] achieves resistance against unbounded coalitions, but has
a large ciphertext size of Θ(

√
N) group elements. All known efficient algebraic schemes are in

the bounded collusion model and so far, none of them enjoys public traceability. In this paper,
we achieve public traceability without downgrading the efficiency of the proposed sheme.

— 131 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

C.7.2 Public key traitor tracing encryption

A public-key traitor tracing scheme consists of four probabilistic algorithms Setup, Enc, Dec
and Trace.

• Algorithm Setup is run by a trusted authority. It takes as inputs a security parameter λ,
a list of users (Ui)i≤N and a bound t on the size of traitor coalitions. It computes a public
key pk, descriptions of the plaintext and ciphertext domains P and C, secret keys (ski)i≤N ,
and a tracing key tk (which may contain the ski’s and additional data). It publishes pk,P
and C, and sends ski to user Ui for all i ≤ N .

• Algorithm Enc can be run by any party. It takes as inputs a public key pk and a plaintext
message M ∈ P. It computes a ciphertext C ∈ C.

• Algorithm Dec can be run by any user. It takes as inputs a secret key ski and a ciphertext
message C ∈ C. It computes a plaintext P ∈ P.

• Algorithm Trace is explained below. If the input of Trace, i.e., the tracing key tk, is
public then we say that the scheme supports public traceability.

We require that Setup, Enc and Dec run in polynomial time, and that with overwhelming
probability over the randomness used by the algorithms, we have

∀M ∈ P,∀i ≤ N : Dec(ski, Enc(pk,M)) = M,

where pk and the ski’s are sampled from Setup. We also require the encryption scheme to be
IND-CPA.

Algorithm Trace aims at deterring coalitions of malicious users (traitors) from building an
unauthorized decryption device. It takes as input tk and has access to a decryption device D.
Trace aims at disclosing the identity of at least one user that participated in building D.

We consider the minimal black-box access model [BF99a]. In this model, the tracing au-
thority has access to an oracle OD that itself internally uses D. Oracle OD behaves as follows:
It takes as input any pair (C,M) ∈ C × P and returns 1 if D(C) = M and 0 otherwise; the
oracle only tells whether the decoder decrypts C to M or not. We assume that if M is sampled
from U(P) and C is the output of algorithm Enc given pk and M as inputs, then the decryption
device decrypts correctly with probability significantly more than 1/|P|:

Pr
M ←↩ U(P)
C ←↩ Enc(M)

[
OD(C,M) = 1

]
≥ 1
|P|

+ 1
λc
,

for some constant c > 0. This assumption is justified by the fact that otherwise the decryption
device is not very useful. Alternatively, we may force the correct decryption probability to be
non-negligibly close to 1, by using an all-or-nothing transform (see [KY02c]). We also assume
that the decoder D is stateless/resettable, i.e., it cannot see and adapt to it being tested and
replies independently to successive queries. Handling stateful pirate boxes has been investigated
in [KY01b, KY01a].

In our scheme, algorithm Trace will only be a confirmation algorithm. It takes as input a
set of (suspect) users (Uij)j of cardinality k ≤ t, and must satisfy the following two properties:

• Confirmation. If the traitors are all in the set of suspects (Uij)j≤k, then it returns
“User Uij0 is guilty” for some j0 ≤ k;

— 132 —

C.7. Traitor Tracing

• Soundness. If it returns “User Uij0 is guilty” for some j0 ≤ k, then user Uij0 should
indeed be a traitor.

The confirmation algorithm should run in polynomial-time. It may be converted into a (costly)
full-fledge tracing algorithm by calling it on all subsets of users of cardinality t.

C.7.3 Confirmation and soundness of the proposed traitor tracing

We define the usefulness of the decoder as ε := p∞− 1
|P| = p∞− 1

2 . It can be estimated to within
a factor 2 with probability ≥ 1− 2−Ω(n) via the Chernoff bound.

We can now formally describe algorithm Trace. It proceeds in three steps, as follows.

1. It computes an estimate ε̃ of the usefulness ε of the decoder to within a multiplicative
factor of 2, which holds with probability ≥ 1− 2−n. This can be obtained via Chernoff’s
bound, and costs O(ε−2n).

2. For i from 0 to t, algorithm Trace computes an approximation p̃i of pi to within an absolute
error ≤ ε̃

16t , which holds with probability ≥ 1− 2−n (also using Chernoff’s bound).

3. If p̃i − p̃i−1 >
ε̃
8t for some i ≤ t, then Trace returns “User Ui is guilty.” Otherwise, it

returns “⊥.”

Note that we are implicitly using the fact that D is stateless/resettable. Also, if ε is n−c for
some constant c, then Trace runs in polynomial time.

We start with the confirmation property.

Theorem C.7.1 Assume that decoder D was built using {skij}j≤k ⊆ {ski}i≤t. Under the
assumption that (t, S)-LWEm+1,α is hard, algorithm Trace returns “User Ui is guilty” for
some i ≤ t.

Proof:Wlog we may assume that the traitors in the coalition know all the secret keys sk1, . . . , skt.
The hardness of (t, S)-LWEm+1,α implies that the distributions Enc(0) and Trt are computa-
tionally indistinguishable. As a consequence, we have that pt is negligibly close to p∞ (the
rounding to nearest of the samples from ναq can be performed directly on the challenge samples,
obliviously to any secret data, as in the proof of semantic security of Section C.4.1).
On the other hand, the acceptance probability p0 is ≤ 1

2 . As pt − p0 >
ε
2 and |p̃i − pi| ≤ ε

8 for
all i, we must have p̃t− p̃0 >

ε
4 ≥

ε̃
8 , with probability exponentially close to 1. As a consequence,

there must exist i ≤ t such that p̃i − p̃i−1 >
ε̃
8t , and algorithm Trace returns “User Ui is guilty.”

Proving the soundness property is more involved. We exploit the hardness of (t, S)-LWE
and rely on Theorem C.2.3 several times.

Theorem C.7.2 Assume that decoder D was built using {skij}j≤k. Under the parameter
assumptions of Theorem C.2.3 with (k, n) in Theorem C.2.3 set to (t + 1, n + t + 1), and the
computational assumption that (t+1, S)-LWEm+1,α is hard: if algorithm Trace returns “User Ui0
is guilty”, then i0 ∈ {ij}j≤k.

Proof: Assume (by contradiction) that the traitors {Uij}j≤k with k ≤ t succeed in having Trace
incriminate an innocent user Ui0 (with i0 6∈ {ij}j≤k). We show that the algorithm T the traitors

— 133 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

use to build the pirate decoder may be exploited for solving (t + 1, S)-LWEm+1,α. First, note
that algorithm T provides an algorithm A that wins the following game.

Game0. The game consists of three steps, as follows:
• Initialize0: Sample A←↩ U(Zm×nq), ~u←↩ U(Znq) and ~xi ←↩ DΛ⊥−~u(A),S for i ≤ t+ 1.
• Input0: Send A+ = (~ut‖A) and (~xi)i≤t+1,i 6=i0 to A.
• Challenge0: Sample b←↩ U({0, 1}). Send to A arbitrarily many samples from
U
(
Spani≤i0−1+b(~x+

i)⊥
)

+ bναqem+1.

We say that A wins Game0 if it finds the value of b with non-negligible advantage.

Algorithm A can be obtained from algorithm T by sampling plaintext M uniformly in {0, 1},
and giving (~c+ (M |~0t)t,M) as input to OD, where ~c is any sample from Challenge0. We now
introduce two variations of Game0, which differ in the Initialize and Challenge steps.

Game1. The game consists of three steps, as follows:
• Initialize1: Sample A ←↩ U(Zm×nq), ~u ←↩ U(Znq), ~xi ←↩ DΛ⊥−~u(A),σ for i ≤ t + 1, and
~b+j ←↩ U(Spani<i0(~x+

i)⊥) for j ≤ t− i0 + 2.
• Input1: Send A+ = (~ut‖A) and (~xi)i≤t+1,i 6=i0 to A.
• Challenge1: Sample b ←↩ U({0, 1}). If b = 0, then send to A arbitrarily many samples from
U
(
Spani<i0(~x+

i)⊥
)

+ bναqem+1. If b = 1, then send to A arbitrarily many samples from:

U
(
Im
[
A+|~b+1 | . . . |~b

+
t−i0+2

])
+ bναqem+1.

As in Game0, algorithm A wins Game1 if it guesses b with non-negligible advantage.

Game′1 is as Game1, except that if b = 0 in the challenge step, then the samples sent to A are from
the distribution U

(
Spani≤i0(~x+

i)⊥
)

+ bναqem+1. (The ~bj ’s are sampled from U(Spani<i0(~x+
i)⊥)

in both cases.)
Note that A’s inputs in Game0, Game1 and Game′1 are identical (only the distributions of the
Challenge steps vary). By the triangle inequality, if A wins Game0 with some non-negligible
advantage, then it may be used to win either Game1 or Game′1 with non-negligible advantage. In
our use of A to solve (t+ 1, S)-LWE, we may guess in which situation we are. We now consider
the two situations separately.

First situation: Algorithm A wins Game1 with non-negligible advantage. Then it may be used
to solve (t + 1, S)-LWE. Indeed, assume we have a (t + 1, S)-LWE input (A, ~u, (~xi)i≤t+1), and
that we aim at distinguishing between the following distributions over Zm+1

q :

U
(
Im(A+)

)
+ νm+1

αq and U
(
Spani≤t+1(~x+

i)⊥
)

+ νm+1
αq .

To solve this problem instance, we sample ~bj for j ≤ t−i0 +2 as in Initialize1. Then we add a
uniform Zq-linear combination of the ~bj ’s to the (t+ 1, S)-LWE input samples. Since m ≥ t+n,
these (t−i0+2) vectors are linearly independent and none of them belongs to Spani0≤i≤t+1(~x+

i)⊥,
with probability≥ 1−2−Ω(n). In that case, the transformation maps U

(
Spani≤t+1(~x+

i)⊥
)

+νm+1
αq

to U
(
Spani<i0(~x+

i)⊥
)

+νm+1
αq , and maps U(Im(A+))+νm+1

αq to U(Im[A+|~b+1 | . . . |~b
+
t−i0+2])+νm+1

αq .
We then round the samples to the nearest integer vectors, and AlgorithmA distinguishes between

— 134 —

C.7. Traitor Tracing

the resulting distributions, and its output is forwarded as output to the initial (t + 1, S)-LWE
instance.

Second situation: Algorithm A wins Game′1 with non-negligible advantage. It seems quite similar
to the first situation, but the following observation hints why its handling is somewhat more
complex. In the first situation, the domains of the noiseless variants of the distributions to be
distinguished are contained into one another: Im([A+|~b1| . . . |~bt−i0+2]) ⊆ Spani<i0(~x+

i)⊥. In the
second situation, no such inclusion holds. The purpose of the sequence of games below is to
map Game′1 to recover such an inclusion setting.

Let us define Game2 as being the same as Game′1, but with the following updated first step:

• Initialize2: Sample A ←↩ U(Zm×nq), ~u ←↩ U(Znq), ~bj ←↩ U(Zmq) and vj ←↩ U(Zq) for j ≤
t− i0 + 2, ~xi ←↩ DΛ⊥−~u(A),S for i ≥ i0 and ~xi ←↩ DΛ⊥−~u′ (A

′),S for i < i0, with

A′ =
[
A|~b1| . . . |~bt−i0+2

]
and ~u′ = (~u‖v1‖ . . . ‖vt−i0+2).

We show that the residual distributions at the end of Initialize1 and Initialize2 are essen-
tially the same. For that, we use Theorem C.2.3 twice. First, starting from Initialize1, we
swap the samplings of A and ~u with those of (~xi)i<i0 . This ensures that the residual distribu-
tion of Initialize1 is within statistical distance 2−Ω(n) from the residual distribution of the
following experiment: Sample ~xi ←↩ DZm,S for i < i0, A+ = (~ut‖A)←↩ U(Z(m+1)×n

q) conditioned
on ~x+t

i · A+ = ~0 for all i < i0, ~xi ←↩ DΛ⊥−~u(A),S for i ∈ [i0, t + 1], and ~b+j ←↩ U(Spani<i0(~x+
i)⊥)

for j ≤ t − i0 + 2. The samplings of the last ~x+
i ’s and those of the ~b+j ’s being independent,

their order can be exchanged. We can now apply Theorem C.2.3 a second time, to postpone
the samplings of (~xi)i<i0 after those of the ~b+j ’s. This gives us that the residual distributions of
the above experiment and that of Initialize2 are within statistical distance 2−Ω(n). Overall,
we have shown that the residual distributions of (A, ~u, (~bj)j , (vj)j , (~xi)i) after Initialize1 and
Initialize2 are within exponentially small statistical distance. Hence algorithm A wins Game2
with non-negligible advantage.

Now, consider Game3, which differs from Game2 only in that ~xi0 is also sampled from DΛ⊥−~u′ (A
′),S .

• Initialize3: Sample A ←↩ U(Zm×nq), ~u ←↩ U(Znq), ~bj ←↩ U(Zmq) and vj ←↩ U(Zq) for
j ≤ t− i0 + 2, ~xi ←↩ DΛ⊥−~u(A),S for i > i0 and ~xi ←↩ DΛ⊥−~u′ (A

′),S for i ≤ i0

As ~xi0 is not given to A at step Input3 and as it is not involved in the challenge distributions
U
(
Spani<i0(~x+

i)⊥
)

+bναqem+1 and U(Im[A+|~b1| . . . |~bt−i0+2])+bναqem+1, this modification does
not alter the winning probability of A: algorithm A also wins Game3 with non-negligible ad-
vantage. Now, we again use Theorem C.2.3 twice, but with (~xi)i≤i0 : once for swapping the
samplings of these ~xi’s with A+ and the ~b+j ’s, and once for swapping the samplings of A+ and
these ~xi’s. This shows that algorithm A wins Game4 with non-negligible advantage, where Game4
differs from Game3 only in its first step, as follows.

• Initialize4: Sample A ←↩ U(Zm×nq), ~u ←↩ U(Znq), ~xi ←↩ DΛ⊥−~u(A),S for i ≤ t, and ~b+j ←↩
U(Spani≤i0(~x+

i)⊥) for j ≤ t− i0 + 2.

The situation we are in now is very similar to that in the first situation, where A was sup-
posed to win Game1. The arguments used in the first situation readily carry over here (up to

— 135 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

replacing Spani<i0~x
+
i and Spani≥i0~x

+
i by Spani≤i0~x

+
i and Spani>i0~x

+
i , respectively).

C.8 Basic results on lattices
Gentry et al. [GPV08] showed that Klein’s algorithm [Kle00] can be used to sample from DL,S,~c.
This discrete Gaussian sampler was later refined in [BLP+13].

Lemma C.8.1 [[BLP+13, Le. 2.3]] There exists a ppt algorithm that, given a basis (~bi)i of
an n-dimensional lattice L, ~c ∈ Span(L) and S ∈ Rm×m invertible satisfying

√
ln(2n+ 4)/π ·

maxi ‖S−t~bi‖ ≤ 1, returns a sample from DL,S,~c.

The following basic results on lattice Gaussians are usually stated for full-rank lattices. As
we consider lattices that are not full-rank, we adapt them. The proofs can be modified readily to
handle this more general setup, by relying on an isometry from Span(L) to Rn with n = dimL.

Lemma C.8.2 [Adapted from [AGHS13, Le. 3]] For any n-dimensional lattice L ⊆ Rm, ~c ∈
Span(L) and S ∈ Rm×m invertible satisfying σm(S) ≥ ηε(L) with ε ∈ (0, 1/2), we have
Pr~b←↩DL,S,~c [‖

~b− ~c‖ ≥ σ1(S) ·
√
n] ≤ 2−n+2.

Lemma C.8.3 [Adapted from [MR07, Le. 4.4]] For any lattice L ⊆ Rm, ~c ∈ Span(L) and S ∈
Rm×m invertible satisfying σm(S) ≥ ηε(L) with ε ∈ (0, 1/2), we have ρS,~c(L) ∈ (1−ε

1+ε , 1) · ρS(L).

Lemma C.8.4 [Special case of [Pei10, Th. 3.1]] Let S1, S2 ∈ Rm×m invertible, ~c ∈ Rm,
and Λ1,Λ2 ⊆ Rm be full-rank lattices. Assume that 1 ≥ ηε(S−1

1 Λ1) and
1 ≥ ηε(

√
(S1S

t
1)−1 + (S2S

t
2)−1 · Λ2) for some ε ∈ (0, 1/2). If ~x2 ←↩ DΛ2,S2,~0 and ~x1 ←↩

DΛ1,S1,~c−~x2 , then the residual distribution of ~x1 is within statistical distance 8ε of DΛ1,S,~c,
with S =

√
S1S

t
1 + S2S

t
2.

Lemma C.8.5 [[AR13, Th. 5.1]] Let n ≥ 100, ε ∈ (0, 1/1000), σ ≥ 9
√

ln(2n(1 + 1/ε))/π
and m ≥ 30n log(σn). Let ~c ∈ Rm and X ←↩ Dm×n

Z,σ . Let S ∈ Rm×m with σm(S) ≥
10nσ log3/2(nmσ/ε). Then, with probability≥ 1−2−n over the choice ofX, we haveXt·Zm = Zn
and ∆(Xt ·DZm,S,~c, DZn,SX,St~c) ≤ 2ε.

Lemma C.8.6 [[AGHS13, Le. 8]] Let n ≥ 1, m ≥ 2n, and σ ≥ C ·
√
n for some absolute

constant C. Let X ←↩ Dm×n
Z,σ . Then, except with probability 2−Ω(m), we have σn(X) ≥ Ω(σ

√
m).

C.9 Missing proofs of Section C.3
Proof of Lemma C.3.2.

We apply Lemma C.8.5 with S invertible chosen so that SX = σ2In for some σ2 > σ1, thus
obtaining an unskewed Gaussian distribution DZn,σ2 . The scaling σ2 is chosen sufficiently large
so that the assumptions of Lemmas C.8.5 and C.8.6 hold.

We first sample X from Dm×n
Z,σ1

, using Lemma C.8.1. By Lemma C.8.5 (that we use with ε =
2−n), its row Z-span is Zn with probability ≥ 1 − 2−n: we now assume that we are in this
situation. Then we sample ~r from DZm,S , using Lemma C.8.1 again, for some invertible ma-
trix S ∈ Rm×m chosen as described below. Finally, we set ~x = ~c+Xt · ~r. If the assumptions of
Lemma C.8.5 are satisfied, we know that, except with probability ≤ 2−n over X, the distribution
of ~x is, conditioned on X, within statistical distance 2ε of DZn,SX,~c.

— 136 —

C.9. Missing proofs of Section C.3

We build S using the singular value decompositionX = UX ·Diag((σi(X))i≤n)·VX , where UX ∈
Rm×n and VX ∈ Rn×n are orthogonal matrices. We define S = US · Diag((si)i≤m) · VS as fol-
lows: we set U tS =

[
VX ~0
~0 Im−n

]
and V t

S = [UX |U⊥X], where U⊥X is an orthonormal basis for the
orthogonal of UX ·Rn; we also set si = σ2/σi(X) for i ≤ n and si = σn(S) for i > n. This leads
to SX = σ2 · In, as required.

To check that the assumptions of Lemma C.8.5 are satisfied, note that the smallest singular
value of S is σm(S) = s1 = σ2/σ1(X). Hence the assumption σm(S) ≥ 10nσ1 log3/2(nmσ1/ε) is
satisfied if σ2 ≥ σ1(X) · 10nσ1 log3/2(nmσ1/ε). The latter holds by the choice of σ2, using the
fact that σ1(X) ≤ ‖X‖ ≤

√
m · σ1. The second inequality holds with probability ≥ 1−n2−m+2,

using the union bound and Lemma C.8.2.
Finally, the bound on ‖~r‖ follows from Lemma C.8.2 and the facts that σ1(S) = σ2/σn(X)

and σn(X) ≥ Ω(σ1
√
m) except with probability 2−Ω(m), by Lemma C.8.6.

Proof of Lemma C.3.6.

Let D0 denote the desired distribution for (A′, ~u′, X). We first apply Theorem C.2.3 (with the
theorem parameters m,n, k, σ1(S), σm(S) having the values m + 2n, 3n, n/(c logn), σ′ and σ,
respectively) to show that D0 is within statistical distance 2−Ω(n) of the distribution D1 on
tuples (A′, ~u′, X) defined as follows: ~u′ ∈ Z3n

q is sampled uniformly, X ∈ Zk×(m+2n) has its ith
row ~xi independently sampled from DZm+2n,S,~ci , and A

′ ∈ Z(m+2n)×3n
q is sampled uniformly from

the set of solutions to ~xti ·A′ = −~u′t mod q. Indeed, the assumptions of the theorem are satisfied
by our choice of parameters.

Next, let A′ =
(
A

B

∣∣∣∣∣C
)
, where A ∈ Zm×nq , B ∈ Z2n×n

q and C ∈ Z(m+2n)×3n
q . Note that

in the distribution D1, all of A′ is chosen uniformly from the set of solutions to X · A′ =
U ′ mod q (where U ′ ∈ Zk×3n

q consists of k copies of ~u′t). We now show that D1 is within
statistical distance 2−Ω(n) to the distribution D2 that is defined as D1, except that in D2, the
submatrix A ∈ Zm×nq is chosen independently uniformly at random, and then B,C are chosen
uniformly from the set of solutions to X · A′ = U ′ mod q. The distribution of (C, ~u′, X) is the
same in D1 and D2, by definition. The condition on (A,B) in D1 is X1 ·A+X2 ·B = U mod q,
where X1 ∈ Zk×m and X2 ∈ Zk×2n are the left and right submatrices of X, respectively,
and U ∈ Zk×nq consists of the n left columns of U ′. If X2 has full rank k over Zq, then for every
choice of A ∈ Zm×nq , the latter equation has the same number of solutions for B ∈ Z2n×n

q (namely
q(2n−k)·n). Hence, conditioned on X2 having rank k, the distribution of (A,B) is the same in D1
and D2. Therefore, the statistical distance ∆(D1, D2) is 2−Ω(n) if the probability that X2 has
rank k in D1 is 2−Ω(n). The latter holds by Lemma C.2.4 and our choice of parameters.

Finally, let D3 denote the distribution of (A′, ~u′, X) in the reduction. We show below that
∆(D2, D3) ≤ 2−Ω(n/ logn), which completes the proof.

First, we consider the distribution of X. By Corollary C.3.4, we have that, in distribu-
tion D3, the last 2n columns of X are within statistical distance ε1 = 2−Ω(n/ logn) of Dk×n

Z,σ ×
DZ,σ′,~δ1‖ . . . ‖DZ,σ′,~δk

. Since the first m columns of X are independently distributed as Dk×m
Z,σ

in both D2 and D3, it follows that the distribution of X in D3 is within statistical distance
ε1 = 2−Ω(n/ logn) of its distribution DZm+2n,S in D2.

Next, we consider the distribution of A′ given some fixed (~u′, X). Observe that the only
difference between these conditional distributions inD2 andD3 is that inD3, matrix B is defined
as the unique solution to (1|X1) · (~ut‖A) +X2 ·B = 0 mod q, whereas in D2, matrix B is chosen
uniformly among the solutions to (1|X1) · (~ut‖A)+X2 ·B = 0 mod q, where X1, X2 are the top k
rows of X1, X2, respectively. We show that these conditional distributions are within statistical

— 137 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

distance ε2 = 2−Ω(n), which immediately implies that ∆(D2, D3) ≤ ε1 + ε2 = 2−Ω(n/ logn), as
required.

To see this, letX ′1, X ′2 denote the bottom 2n−k rows ofX1, X2, respectively. FixX1, X2, X
′
2, ~u,

A, with A such that η2−n(Λ⊥(A)) = O(
√
n logm) · q

n
m . By Lemma C.2.1, this condition holds

with probability 1 − 2−Ω(n) over the uniform choice of A. Let B∗ denote any solution to
(1|X1) · (~ut‖A) + X2 · B = 0 mod q. Let p(B∗) denote the probability that B = B∗ in dis-
tribution D3, conditioned on X1, X2, X

′
2, ~u,A. We show that p(B∗) is of the form (1 + εB∗) ·K

for any such B∗, for εB∗ ≤ 2−Ω(n) and some normalization constant K independent of B∗. From
this it follows immediately that, in D3, the conditional distribution of B is within distance
2−Ω(n) of the uniform distribution on the set of solutions to (1|X1) · (~ut‖A) +X2 ·B = 0 mod q,
which is the conditional distribution of B in D2, and our claim follows immediately. The proba-
bility p(B∗) is the probability that X ′1 ·A+X ′2 ·B = U mod q, conditioned on X1, X2, X

′
2, ~u,A.

Let ~x′1,i ∈ Zm and ~x′2,i ∈ Z2n denote the ith rows of X ′1 and X ′2, respectively, for i ≤ 2n − k.
Observe that the set of solutions for ~x′1,i ∈ Zm to ~x′t1,i · A + ~x′t2,i · B∗ = −~ut mod q is the coset
Λ⊥−~u−~x′2,i·B∗(A) and, since ~x′1,i is independently distributed as DZm,σ for each i, it follows that

p(B∗) =
∏

i≤2n−k
DZm,σ(Λ⊥−~u−~x′t2,i·B∗(A)) =

∏
i≤2n−k

ρσ,~ci(Λ
⊥(A))/ρσ(Zm),

for some ~ci ∈ Zmq such that ~cti · A = ~ut + ~x′t2,i · B∗ mod q. By Lemma C.8.3, using the choice of
σ ≥ η2−n(Λ⊥(A)) = O(

√
n logm) · q

n
m , we have ρσ,~ci(Λ⊥(A)) = (1 + ε′B∗) · ρσ(Λ⊥(A)) for some

ε′B∗ ≤ 2−Ω(n). It follows that p(B∗) ∼ 1 + εB∗ for some εB∗ ≤ n2−Ω(n).

Proof of Lemma C.3.7.

In our proof, we need to use a bound on the probability that a collection of vectors ~t1, . . . ,~td+w
uniformly and independently sampled from a linear subspace X of dimension d over Zq, spans X.
This is given by the following proposition.

Proposition C.9.1 Let d,w, q > 0 with q prime. LetX denote a d-dimensional Zq-linear space.
Let ~t1, . . . ,~td+w ∈ X be independently sampled from U(X). Then we have Spani≤d+w(~ti) = X,
with probability ≥ 1− 2d+w/qw+1.

Proof: For i ≤ d+ w, let χi denote the Bernoulli random variable that is 0 if ~ti ∈ Spanj<i(~tj)
and 1 else. Let ri denote the rank of Spanj≤i(~tj). Since ri = ri−1 +χi, we have rd+w =

∑d+w
i=1 χi.

Let S denote the set of binary vectors of length d+w and weight < d. Then it suffices to bound
the probability that ~χ = (χ1, . . . , χd+w) ∈ S. To do so, let ~χ′ = (χ′1, . . . , χ′d+w) ∈ {0, 1}d+w

denote any fixed vector in S. Note that for any i ≤ d + w, we have Pr[χi = 0|χj = χ′j for j <
i] = q

∑
j<i

χ′j/qd ≤ 1/q, since ~χ′ ∈ S. It follows that Pr[~χ = ~χ′] ≤ 1/qz, where z denotes the
number of zero entries in ~χ′. Since the weight of ~χ′ is < d, we have z > d + w − d = w, so
Pr[~χ = ~χ′] ≤ 1/qw+1. Taking a union bound over all ~χ′ ∈ S, and using |S| ≤ 2d+w completes
the proof.

— 138 —

C.9. Missing proofs of Section C.3

We now prove the lemma. We have ~b = 1
qA

+ · ~s+ ~e ∈ Tm+1 with ~e sampled from νm+1
α and

~s from U(Znq), so

~b′ = T ·~b+ 1
q
C+ · ~s′ +

√
Σ · ~e′

= 1
q
TA+ · ~s+ 1

q
C+ · ~s′ + T · ~e+

√
Σ · ~e′

= 1
q
A′+ ·

[
~s
~s′

]
+ T · ~e+

√
Σ · ~e′.

Now, since ~s and ~s′ are uniform and independent, we have 1
qA
′+ · [~s‖~s′] is uniformly distributed

in Im(A′+). Moreover, the vector T · ~e is normally distributed with covariance matrix α2 · TT t,
while

√
Σ~e′ is independent and normally distributed with covariance matrix Σ = α′2Im+1+2n −

α2TT t (we show below that Σ is indeed a valid covariance matrix, i.e., is positive definite, so
that

√
Σ exists, except with probability 2−Ω(n/ logn)). Therefore, the vector T · ~e +

√
Σ~e′ has

distribution νm+1+2n
α′ , as required.

It remains to show that Σ = α′2Im+1+2n − α2TT t is a positive definite matrix, with over-
whelming probability over the choice of X1 and X2. By definition, the singular values of Σ are
of the form α′2 − α2σi(T)2, where the σi(T)’s are the singular values of T . It therefore suffices
to show that α′2 > α2σ1(T)2, where σ1(T) is the largest singular value of T . We have σ1(T) ≤
√
m+ 1‖T‖ (by Schwarz’s inequality). Each column of T has norm ≤

√
1 + (m+ 1)‖X−1

2 ‖2t2,
where t denotes the maximum column norm of the matrix (~1|X1). Since the columns of X1
are sampled from DZ2n,σ, we have by Lemma C.8.2 that t ≤ σ ·

√
2n, and by Corollary C.3.4

that ‖X−1
2 ‖ = O(σ′n), with both bounds holding with probability ≥ 1− 2−Ω(n/ logn). It follows

that σ1(T) = O(mn3/2σσ′), and hence the assumption that α′ = Ω(mn3/2σσ′α) allows us to
complete the proof.

Proof of Lemma C.3.8.

We have ~b = 1
q~y + ~e ∈ Tm+1 with ~e sampled from νm+1

α and ~y from U(Zm+1
q), so

~b′ = 1
q
T · ~y + 1

q
C+ · ~s′ + T · ~e+

√
Σ~e′ = 1

q
[T |C+] ·

[
~y
~s′

]
+ T · ~e+

√
Σ~e′.

Now, since ~y and ~s′ are uniform and independent, we have that 1
q [T |C+] · [~y‖~s′] is uniform

in Im([T |C+]).
By construction of T and C, we have that Im([T |C+]) is a subspace ofX⊥ =

(
Spani≤k(~x+

i)⊥
)
.

We claim that in fact Im([T |C+]) = X⊥, except with probability 2−Ω(n/ logn) over the choice
of the ~xi’s and C+. Indeed, by Lemmas C.3.6 and C.2.4, with probability ≥ 1 − 2−Ω(n/ logn),
the vectors ~x+

1 , . . . , ~x
+
k are linearly independent over Zq and hence the subspace X⊥ has dimen-

sion m+ 1 + 2n−k. Now, the m+ 1 columns of T are linearly independent. Hence, it suffices to
show that the 3n projections of the columns of C+ on the orthogonal complement of Im(T) ⊆ X⊥
span that (2n− k)-dimensional space. As these projections are uniform, we can apply Proposi-
tion C.9.1, which tells us this is the case with probability ≥ 1− 23n/qn+k+1 ≥ 1− 2−Ω(n).

We have showed that 1
q [T |C+] · [~y‖~s′] is within statistical distance ≤ 2−Ω(n) of 1

qU(X⊥), with
probability ≥ 1−2−Ω(n/ logn) over the choice of X. As shown in Lemma C.3.7, we also have that
the noise term T · ~e+

√
Σ~e′ is within statistical distance 2−Ω(n) of the distribution νm+1+2n

α , as
required.

— 139 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

Proof of Lemma C.3.9.

Consider the following sequence of games.
Let Game0 denote the original (k, S)-LWE game, in which the distinguisher B receives an in-

stance of the form (r, ~y), where r = (A, ~u, {~xi}i≤k) with A←↩ U(Zm′×n′q), ~u←↩ U(Zn′q) and ~xi ←↩
DΛ⊥−~u(A),S,~0 for i ≤ k, and ~y ∈ Tm′+1 is a sample from either the distribution

D0(r) = 1
q
· U
(
Im
(~ut
A

))
+ νm

′+1
α

or the distribution

D1(r) = 1
q
· U
(
Spani≤k

(1
~xi

)⊥)
+ νm

′+1
α .

Let ε0(B) = ε denote the advantage of B in distinguishing between these distributions in
Game0. Similarly, in the following, we let εi(B) denote the corresponding attacker advantage in
Gamei.

Let Game1 denote a modification of Game0 in which we change the distribution of A by
rejection sampling as follows: we sample A uniformly from Zm′×n′q , but reject and resample A
if η2−n(A) > 4qn′/m′

√
log(2m′(1 + 2n))/π = O(

√
n). By Lemma C.2.1, the rejection probability

is 2−Ω(n), and therefore, the distinguishing advantage ε1(B) satisfies ε1(B) ≥ ε0(B)− 2−Ω(n).
Let Game2 denote a modification of Game1 in which we change the distribution of the hint

~xi’s in r from the zero-centered distribution DΛ⊥−~u(A),S,~0 of (k, S)-LWE to the non-zero centered
distribution DΛ⊥−~u(A),S,~ci of (k, S, C)-LWE. We observe that, since given r = (A, ~u, {~xi}i≤k), one
can efficiently sample a vector ~y from either distribution D0(r) or D1(r), the (k, S, C)-LWE
problem has the public samplability property needed to apply Lemma C.2.6. It follows that
there exists a distinguisher B′ in Game2 with run-time T ′ = O(Poly(m′) · ε1(B)−2 · T) and
advantage ε2(B′) ≥ Ω((ε1(B)−O(2−n))3/R), where R = R(Φ1‖Φ2) denotes the RD between the
distributions Φ1 and Φ2 of r in Game1 and Game2, respectively. Since the ~xi’s are independent,
and conditioning on ~u and A, we have, from the multiplicative property of the RD, that

R ≤ max
~u∈Zn′q

∏
i≤k

R

(
DΛ⊥−~u(A),S,~0‖DΛ⊥−~u(A),S,~ci

)

≤ max
~̄c∈Rm′

∏
i≤k

R
(
DΛ⊥(A),S,~̄c‖DΛ⊥(A),S,~̄c+~ci

)
.

The latter can be bounded from above by applying Lemma C.2.5. The smoothing condition of
the lemma holds since σm′(S) ≥ ω(

√
n), so we have by the rejection step of the previous game

that σm′(S) ≥ η2−n(A). This leads to

R ≤
∏
i≤k

exp(2−n+3 + 2π‖~ci‖2/σm′(S)2) ≤ exp(k · (2−n+3 + 2π‖C‖2/σm′(S)2)).

Finally, let Game3 denote a modification of Game2, in which we undo the rejection sampling
of A introduced in Game1, sampling it uniformly instead. By the same argument as in the
change from Game0 to Game1, the advantage of B′ in Game3 satisfies ε3(B′) ≥ ε2(B′) − 2−Ω(n).
Note that the instance distribution in Game3 is identical to that of the (k, S, C)-LWE game, so
B′ has advantage ε3(B′) against (k, S, C)-LWE, as required.

— 140 —

C.10. Missing proof of Section C.5

C.10 Missing proof of Section C.5
Proof of Lemma C.5.4.

Our aim is to reduce LWE′α,m+1 to distinguishing Game1 and Game0. Assume we have the
following multiple LWE′ input (B, ~yi+1, . . . , ~yN) where B ←↩ U(Zm×nq), and ~yj = B~sj + ~ej with
~sj ←↩ U(Znq) and either ~ej ←↩ U(Zmq) for all j, or ~ej ←↩ DZm,αq for all j. Our goal is to exploit
a distinguisher between Game0 and Game1 to decide whether the ~ej ’s are Gaussian or uniform.
We simulate Game1 and Game0 as follows (depending on the nature of ~ei):

• Sample A ∈ Zm×nq and T ∈ Zm×m such that A is uniform conditioned on Bt ·A = 0 and T
is a full-rank basis of Λ⊥(A) satisfying ‖T‖ ≤ O(

√
mn log q logm). This can be performed

in ppt using [GKV10, Le. 4].

• DefineH as a randomized basis of the kernel of B. It ism×(m−n) with probability 2−Ω(n).
The distribution of the pair (A,H) is within statistical distance 2−Ω(n) of its distribution
in Game0 and Game1.

• Sample ~u ←↩ U(Znq) and sample the keys ~x1, . . . , ~xi ←↩ DΛ⊥−~u(A),S by using the trapdoor

matrix T (this is why σ′ must be set sufficiently large). Compute ~htj = −~xtj ·H for j ≤ i.

• Using linear algebra, find ~c such that ~ct ·A = ~ut. For each j ∈ [i+ 1, N]:

– Compute ~utj = ~ytj ·A. Since ~yj = B · ~sj + ~ej , we have ~utj = ~etj ·A (although we would
prefer ~ut = ~etj ·A).

– Sample ~e′j ←↩ ~c−~yj+DΛ⊥(A),S2,−~c+~yj where S2 =
√
SSt − α2q2Im (these are diagonal

matrices), using T . Since ~yj − ~ej ∈ Λ⊥(A), we can rewrite the latter as ~e′j ←↩
~c− ~ej +DΛ⊥(A),S2,−~c+~ej .

– Compute ~zj = ~yj + ~e′j . We now have (~etj + ~e′tj) ·A = ~ztj ·A = ~ct ·A = ~ut.

– Set ~htj = −~ztj ·H. Note that ~htj = −(~etj + ~e′tj) ·H.

• Return A, ~u,H, (~xj)j≤i and (~hj)j≤N .

We observe that for each j ∈ [i+ 1, N], we have ~zj = ~yj + ~e′j = B · sj + (~ej + ~e′j). We consider
two cases.

• When ~ej ←↩ DZm,αq, the residual distribution of DΛ⊥(A),S2,−~c+~ej is within negligible sta-
tistical distance to DΛ⊥(A),S,−~c; this is provided by Lemma C.8.4, whose assumptions are
satisfied (thanks to the second lower bound on σ′) and to Lemma C.2.1; consequently, the
residual distribution of ~ej + ~e′j is negligibly close to the distribution ~c + DΛ⊥(A),S,−~c, and
hence the distribution of ~zj is statistically close to DΛ⊥

~u
(A),S . Overall, the data available

to the adversary follows the same distributions as in Game0, up to negligible statistical
distance.

• When ~ej ←↩ U(Zmq), the residual distribution of ~zj is uniform (by adapting the argument
above). The data available follows the same distributions as in Game1, up to negligible
statistical distance.

This completes the proof of the lemma.

— 141 —

Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

— 142 —

Appendix D

Adaptive CCA Broadcast
Encryption with Constant-Size
Secret Keys and Ciphertexts

Journal of Information Security 2013
[PPSS13] with David Pointcheval, Siamak F. Shahandashti, and

Mario Streflerr

Abstract : We consider designing public-key broadcast encryption schemes with constant-size
secret keys and ciphertexts, achieving chosen-ciphertext security. We first argue that known
CPA-to-CCA transforms currently do not yield such schemes. We then propose a scheme, mod-
ifying a previous selective CPA secure proposal by Boneh, Gentry, and Waters. Our scheme has
constant-size secret keys and ciphertexts and we prove that it is selective chosen-ciphertext secure
based on standard assumptions. Our scheme has ciphertexts that are shorter than those of the
previous CCA secure proposals. Then we propose a second scheme that provides the functionality
of both broadcast encryption and revocation schemes simultaneously using the same set of pa-
rameters. Finally we show that it is possible to prove our first scheme adaptive chosen-ciphertext
secure under reasonable extensions of the bilinear Diffie-Hellman exponent and the knowledge of
exponent assumptions. We prove both of these extended assumptions in the generic group model.
Hence, our scheme becomes the first to achieve constant-size secret keys and ciphertexts (both
asymptotically optimal) and adaptive chosen-ciphertext security at the same time.

D.1 Introduction

A broadcast encryption is a cryptographic scheme that enables encryption of broadcast content
such that only a set of target users, selected at the time of encryption, can decrypt the content.
Apparent applications include group communication, pay TV, content protection, file system
access control, and geolocation.

A crucial aspect of any cryptographic scheme, which arguably decides its fate of being used in
practice, is its efficiency. Since one of the most prominent applications of broadcast encryption is
real-time broadcasting, ciphertext size is at the heart of efficiency measures for such schemes, and
constructions with constant-size ciphertexts are desirable. Indeed, if one allows the ciphertext

— 143 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

size to grow linearly with the number of target users, construction of secure broadcast encryption
becomes trivial. Other important measures of efficiency for broadcast encryption include the
secret and public key sizes and the encryption and decryption times.

A broadcast encryption scheme can be static or dynamic, depending on if the system users
need to be fixed once and for all at the setup stage or if it supports new users joining the
system at an arbitrary time, incurring only incremental parameter changes. Evidently, dynamic
schemes are more flexible and hence more desirable in practical applications.

An important security paradigm for broadcast encryption schemes is that of adaptive security.
This paradigm captures the fact that an adversary might choose to compromise keys in the
system adaptively, based on its acquired knowledge of the system parameters and previously
compromised keys and ciphertexts. Such a definition is widely accepted as the proper notion of
security for broadcast encryption schemes and there are schemes proposed in the literature that
provably achieve security against adaptive adversaries.

On the other hand, security against chosen ciphertext attacks (CCA) is a fundamental notion
of security for any encryption scheme, broadcast encryption included. Although there have been
a number of proposed broadcast encryption schemes that are secure against chosen plaintext
attacks (CPA), the CPA-to-CCA transformations in the literature do not seem to yield CCA
secure broadcast encryption schemes with constant-size ciphertexts.

Adaptive and CCA security, and constant-size ciphertexts, have all three been separately
achieved for broadcast encryption. However, there has not been any proposal that achieves all
three simultaneously. In this paper, we propose a broadcast encryption with constant-size cipher-
texts and prove it adaptive CCA secure under assumptions that are reasonable generalizations
of previous assumptions in the literature.

The literature on broadcast encryption mainly considers two categories of such schemes and
each work usually provides solutions that are efficient only for one of the two cases, depending
on whether the content is broadcast to a very small or a very large proportion of registered users.
The party who encrypts the content, hence either determines their intended set of target users
or that of revoked users, respectively, as an input to the encryption algorithm. Consequently,
the latter category of schemes are sometimes called revocation schemes.

Consider the pay-TV application in which the content of the broadcast consists of several
TV channels. Normally, there are a number of basic channels that are usually bundled together
and provided to most of the customers in different packages, and also there are a number of
more specialized channels (e.g., pay-per-view) that are of the interest of a small proportion
of customers. Hence we face a scenario in which both of the above categories of schemes are
simultaneously needed to broadcast the content. Nevertheless, there has been no proposal in the
literature that provides both functionalities efficiently, and hence the existing efficient solution
to the above scenario is to set up two parallel schemes, each covering part of the broadcast
content. In this paper, we propose a scheme that can handle both cases efficiently, providing
a solution to the above scenario that does not require maintaining two parallel sets of system
parameters.

D.1.1 Related Work

Broadcast encryption was first formalized by Fiat and Naor [FN93]. Their scheme is a private
key scheme and proved secure against an upper bounded number of colluders. Fully collusion
secure (private-key) broadcast encryption was first proposed in [NNL01], which introduced the
subset cover framework that became the basis for many subsequent proposals, including [DF03]
which proposed the first public key broadcast encryption.

Boneh, Gentry, and Waters [BGW05] were first to propose a fully collusion-resistant public
key broadcast encryption in which the ciphertext size is constant. In all the previous schemes,

— 144 —

D.1. Introduction

the size of the ciphertext is linear in the size of the target set. In this paper we limit our attention
to such schemes. They proposed two schemes, respectively CPA and CCA secure, both in the
selective model of security. Dynamic broadcast encryption was proposed in [DPP07] where
they designed CPA secure schemes that were only partially adaptive secure. Strictly speaking,
their scheme is a revocation scheme, in which the set of revoked users is selected at the time of
encryption, and in turn, any user outside of the revoked set is able to decrypt. [Del07] proposed
identity-based broadcast encryption and gave a selective CPA secure scheme.

Adaptive security was first proposed by [GW09] where they gave several schemes achiev-
ing adaptive CPA security, including two broadcast encryption schemes and two identity-based
broadcast encryption (IBBE) schemes, one of each achieving constant-size ciphertexts in the
random oracle model. The schemes proposed in [Wat09] and [LSW10], respectively a broadcast
encryption scheme and a revocation scheme, are the only schemes secure under static assump-
tions (as opposed to the so called q-based ones). The latter work also proposes an identity-based
revocation scheme which is proved selective CPA secure. Recently, the first adaptive CCA se-
cure schemes were proposed by [PPS12a], although their schemes do not have constant-size
ciphertexts.

D.1.2 Our Contributions

In this paper, we propose an efficient dynamic broadcast encryption scheme (called OurBE)
and prove that it is selective CCA secure assuming the widely-used bilinear Diffie-Hellman
exponent (BDHE) assumption and a universal one-way hash function (UOWHF). The scheme
has constant-size ciphertexts (only two group elements), constant-size secret keys (only one
group element), and a public key which grows linearly with the number of users in the system.
We construct our scheme by modifying a selective CPA secure scheme (dubbed BGW1 from now
on) by Boneh, Gentry, and Waters [BGW05]. Our modification is minimal in the sense that
our scheme has exactly the same ciphertext and secret key sizes as that of BGW1, and is proved
secure under the same assumption, plus the comparatively weak UOWHF assumption. The
minor difference is that our scheme has one extra element in the linearly-growing public key.
The only other CCA secure scheme with constant-size ciphertexts is a modified version of BGW1
by the same authors (dubbed BGW2 from now on), which has ciphertexts that are double the
size of our scheme (i.e., four group elements vs. our two). BGW2 is proved selective CCA secure
under BDHE, plus the assumption that a signature scheme used in the construction is strongly
unforgeable, which is an assumption of comparable strength as UOWHF.

We also propose an inclusive-exclusive broadcast encryption scheme which can act as both
a broadcast encryption and a revocation scheme at the same time, as it allows the flexibility to
specify either the target set or the revoked set at the time of encryption. The ciphertext and
the secret key are still only two and one group elements, respectively, but we need to add one
group element per user to the already linearly-growing public key which results in a public key
which is 1.5 times that of BGW1.

Next, we show that it is possible to prove OurBE adaptive CCA secure under generalized
versions of existing assumptions. Particularly, we propose generalized versions of the BDHE and
the knowledge-of-exponent (KEA) assumptions, and prove that both hold in the generic group
model. We argue that both of these are intuitive and reasonable generalizations of accepted
assumptions, and in turn, enable achieving the highest level of security with highly-efficient
parameters. Namely, OurBE is provably adaptive CCA secure with constant-size ciphertexts
and secret keys, and it is the first scheme to achieve such properties.

— 145 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

D.2 Preliminaries

In this section we review the notation we use, the BDHE and GBDHE assumptions, and the
notions of security for dynamic broadcast encryption and universal one-way hash function.

Notation We use the following typefaces: Roman X for constants, italic X for variables, sans
serif X for algorithms, and calligraphic X for oracles. Let G and GT be groups of order p, and
e : G×G 7→ GT be a bilinear map. Let g be a generator of G and gT = e(g, g).

D.2.1 Dynamic Broadcast Encapsulation

Broadcast encryption is conventionally formalized as broadcast encapsulation in which, instead of
a ciphertext, a session key is produced, which is required to be indistinguishable from random.
Such a scheme can provide public encryption functionality in combination with a symmetric
encryption through the hybrid encryption (a.k.a. KEM-DEM) paradigm [CS03]. We hence use
the terms encryption and encapsulation interchangeably.

Following [DPP07], we define a (public-key) dynamic broadcast encapsulation scheme as a
tuple of four algorithms BE = (Setup, Join,Encaps,Decaps) where:

• Setup(1k) outputs (msk, ek) containing the master secret key and the (initial) encryption
key;

• Join(msk, i) outputs the key pair (ski, pki) for user i, and appends pki to ek;

• Encaps(ek, S) for a set of users S outputs (H,K) containing a ciphertext (a.k.a. header)
and a session key; and

• Decaps(ek, ski, S,H) outputs K if i ∈ S and ⊥ otherwise.

Adaptive CCA security for BE is defined via the following experiments for b ∈ {0, 1} between
the challenger C and the adversary A:

1. Setup: C runs Setup(1k) and gives ek to A;

2. Query: A arbitrarily issues the following oracle queries:

• join oracle query Join(i): C runs Join(msk, i) and gives pki to A;

• corruption oracle query Cor(i): C gives ski to A;

• decapsulation oracle query Dec(i, S,H): C runs
Decaps(ek, ski, S,H) and gives K to A;

3. Challenge: A outputs a set S∗ on which it wants to be challenged; C runs Encaps(ek, S∗)
and gets (H∗,K∗), then sets K = K∗ if b = 0 or picks a random K if b = 1, and finally
gives (H∗,K) to A;

4. Query: A issues further oracle queries as the previous query phase;

5. Guess: A outputs a guess b′. The experiment outputs 1 if b′ = b and there is no i∗ ∈ S∗
for which there has been a Cor(i∗) or Dec(i∗, S∗, H∗) query. The experiment outputs 0
otherwise.

— 146 —

D.3. CCA from Generic Transforms?

For any adversary A, we define its advantage against BE in an adaptive CCA attack to be
the difference between the probability that the above experiment for b = 0 outputs 1 and the
probability that the experiment for b = 1 outputs 1. The scheme is said to be adaptive CCA
secure if for any adversary A its advantage against BE in an adaptive CCA attack is negligible
in k.

Selective security is defined via similar games with the difference that A commits to the set
S∗ before the setup phase. For CPA security, A does not get to query the decryption oracle.
We sometimes use SCPA, SCCA, ACPA, and ACCA as shorthands referring to selective CPA,
selective CCA, adaptive CPA, and adaptive CCA security.

Note that the above definition (which is based on that of [PPS11]1) is stronger than that of
[BGW05] since they require that the adversary does not make any decryption oracle query with
i ∈ S∗ for which H = H∗, but we relax the constraint and only require no query with i ∈ S∗ for
which (S,H) = (S∗, H∗).

D.2.2 The BDHE and GBDHE Assumptions

Let us define the two sets of polynomials P = (p1, . . . , ps) and Q = (q1, . . . , qt), with p1 =
q1 = 1, and a polynomial f , where ∀i, k : pi, qk, f ∈ Fp[X1, . . . , Xn]. Let us also define
gP = (gp1 , . . . , gps). We say that f is independent of (P,Q) if it cannot be written as f =∑s
i,j=1 ai,jpipj +

∑t
k=1 bkqk for constants ai,j and bk.

The generalized decision bilinear Diffie-Hellman exponent (GBDHE) problem is defined in
[BBG05] as follows: given the input gP (x1,...,xn) and gQ(x1,...,xn)

T for random choices of x1, . . . , xn ∈
Fp, decide between gf(x1,...,xn)

T and a random T ∈ GT. The GBDHE assumption says that it is
hard to solve the GBDHE problem if f is independent of (P,Q).

The decision bilinear Diffie-Hellman exponent assumption (parameterized by n and de-
noted by n-BDHE), which is an instance of the GBDHE assumption, says that given the input
g, h, {gαk}k∈{1,...,2n}\{n+1} for random h ∈ G and α ∈ Zp, it is hard to decide between e(g, h)αn+1

and a random T ∈ GT.

D.2.3 Universal One-Way Hash Function

Consider a keyed hash function H. H is called a universal one-way hash function (UOWHF)2 if
there is no efficient adversary winning the following security game. First, the adversary chooses
a message and outputs it. Then, the challenger chooses a random key for H and gives it to
the adversary. Finally, the adversary outputs a second message and terminates. The adversary
wins if the two messages are different, but their hashes under the chosen key are the same.
This notion was first proposed in [NY89], and is shown to be strictly weaker than collision
resistance [Sim98, RS04]. In fact, one-way functions are shown to be sufficient for UOWHF
[Rom90], whereas collision resistant hash functions are only known to be constructed from claw-
free permutations [Dam87] or lattice-based assumptions [GGH96].

D.3 CCA from Generic Transforms?

In this section we consider the two types of general standard model CPA-to-CCA transforms,
namely NY-like and CHK-like, and argue that applying these transforms to the proposed broad-
cast encryption schemes in the literature does not give us CCA security and constant-size ci-
phertexts.

1Note that, in comparison with [PPS11], we ignore the Reg parameter here as it can be regarded as part of ek.
2UOWHF is also known as target collision resistance (TCR).

— 147 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

NY-like Transforms The Naor-Yung paradigm ([NY90] and [Sah99, DDN00, Lin03]) pro-
vides a construction for CCA secure encryption from CPA secure encryption along with non-
interactive zero-knowledge proofs. To apply any NY-like transform to a broadcast encryption,
one needs to make a NIZK proof of a statement containing the session key K. Such proofs
tend to be long and inefficient. Furthermore, all the proposed schemes that have a constant-size
ciphertext are pairing-based, and in all these schemes the session key is a member of the target
set GT, but NIZK proofs of statements containing members of GT are not known. In particular,
Groth-Sahai constructions [GS08] only provide witness indistinguishable proofs for such state-
ments, whereas zero knowledge, and in particular the ability to simulate proofs without knowing
a witness, seems to be essential to the security proofs of NY-like constructions.

CHK-like Transforms The Canetti-Halevi-Katz paradigm
([CHK04] and [BK05, Kil06]) provides a construction for CCA secure encryption from CPA
secure identity-based encryption and an extra authenticating primitive such as signature or
message authentication code (MAC). Essential to the paradigm is that any encryption to an
identity can be decrypted by the secret key generated for the same identity. However, in the
broadcast encryption case, encryptions are made to a set and decryptions are possible by the
secret key of any member of that set. Hence, such transforms are not readily applicable to
identity-based broadcast encryptions.

D.4 An Efficient Selective CCA Broadcast Encryption
Let Hκ : G 7→ Zp be a hash family indexed by κ. We define a broadcast encryption scheme
OurBE in the following. We describe the system for (at most) n − 1 users to be notationally
consistent with the original scheme of [BGW05], on which the system is based. The system for
n users can be defined accordingly.

• Setup(1k, n − 1) picks a random generator g ∈ G, two random quantities α, γ ∈ Zp, and
a random index κ for hash function H, computes v = gγ , and outputs msk = (α, γ) and
ek = (g, v, κ).

• Join(msk, i) computes gk = g(αk) for k = i, i+ 1, n+ 1− i, and n+ 1 + i, and di = gγi , and
outputs ski = di and pki = (gi, gi+1, gn+1−i, gn+1+i). The secret key ski is given to the
user, and ek is updated by appending pki.

• Encaps(ek, S) picks a random element t ∈ Zp and sets K = e(gn+1, g)t, which can be
equivalently computed as K = e(gn+1−i, gi)t for any i, computes H as follows, and outputs
(H,K).

H = 〈gt, (v · gHκ(gt)
1 ·

∏
j∈S

gn+1−j)t〉.

• Decaps(ek, ski, S,H) parses the header as H = (C0, C1), checks if the following equation
holds:

e(C1, g) = e(v · gHκ(C0)
1 ·

∏
j∈S

gn+1−j , C0), (D.1)

and if it does, then calculates the session key as follows:

K = e(C1, gi)
e(di · gHκ(C0)

1+i ·
∏

j∈S\{i}
gn+1−j+i, C0)

.

— 148 —

D.4. An Efficient Selective CCA Broadcast Encryption

In the following we bring a theorem which states that if the hash function H is a universal
one-way hash function, then the proposed scheme satisfies selective CCA security under the same
assumption as that of the original scheme, namely n-BDHE. Intuitively, the main modification
we make in (the encryption algorithm of) the original scheme is the introduction of gHκ(gt)

1 . If this
element is not present, as it is in the original scheme, given a header H = (C0, C1) corresponding
to a key K, one can compute the header (Cr0 , Cr1) that corresponds to the key Kr, and hence
the scheme is malleable. We show that a UOWHF is sufficient to eradicate malleability and
get CCA security. This modification is inspired by a similar technique in [BMW05] which, in
contrast, was shown to be applicable to an identity-based scheme. Here we show that a similar
idea is applicable to BGW1. The proof of the following theorem can be found in Appendix D.8.1.
In the proof we use the structure of the keys in the scheme to simulate decryption queries.

Theorem D.4.1 The above scheme is selective CCA secure if the n-BDHE decision problem is
hard and H is a universal one-way hash function.

On Dynamicity Note that the bound on the number of users in OurBE does not prevent the
system from being able to handle more than n− 1 users. That is, as long as the system “jumps
over” the users number n and n + 1 (i.e., after user number n − 1, the next user is numbered
n + 2), the system can handle polynomially many users more than n − 1 and remains secure.
The security of the scheme with more than n − 1 users can be proved based on the following
assumption: given the input h, and {gk = gα

k} for k ∈ {n + 1 −m, . . . , n + 1 + m} \ {n + 1}
for random g, h ∈ G and α ∈ Zp, it is hard to decide between e(gn+1, h) and a random T ∈ GT.
It is not hard to see that this assumption is equivalent to the following assumption: given the
input g, h, and {gk = gα

k} for k ∈ {1, . . . , 2m} \ {m} for random h ∈ G and α ∈ Zp, it is hard
to decide between e(gm, h) and a random T ∈ GT. Here m ≥ n + 2 is the last user number
to join. This assumption is comparable to the m-BDHE assumption. In fact, like the BDHE
assumption, it is an instance of the GBDHE assumption. In view of this observation, OurBE
is a dynamic broadcast encryption in the sense that: (1) the system setup and the ciphertext
size are independent of the upper bound on the number of users; (2) a new user can join
anytime without incurring modification of other user secret keys; and (3) the encryption key is
incrementally updated by an operation of O(1) complexity.

Comparison The only broadcast encryption scheme in the literature that provides CCA se-
curity with constant-size ciphertexts is BGW2. It has similar secret and public key sizes as our
scheme. However, there are differences in terms of security assumptions and ciphertext size.
BGW2 uses a signature or a message authentication code (MAC) and is proved secure under
n-BDHE plus the strong unforgeability (SUF) of the signature or the MAC, whereas OurBE
needs n-BDHE plus a universal one-way hash function (UOWHF). In theory, SUF and UOWHF
are equivalent (both are equivalent to one-wayness), but in practice, hash functions are gener-
ally much more efficient than signatures. In terms of ciphertext size, BGW2 has a ciphertext
whose size is (about) double that of BGW1’s ciphertext: a BGW2 ciphertext consists of a BGW1
ciphertext of two G elements, plus an element in Zp and a signature (or a MAC tag). OurBE
has the same ciphertext size as that of BGW1, i.e., only two G elements. We summarize this
comparison in Table D.1. For simplification, we show the total number of elements without the
details of the groups to which each element belongs. Note that although pki in OurBE includes
four group elements, since there are some repeating values the final ek includes the three initial
values plus only 2n− 1 extra values of gi.

— 149 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

Table D.1: Comparison of CCA secure schemes with constant-size ciphertexts
Scheme |ski| / |ek| |H| Security Assumption
[BGW05] 1 / 2n+1 4 SCCA n-BDHE, SUF

OurBE 1 / 2n+2 2 SCCA n-BDHE, UOWHF

| · |: size in number of elements n: number of users plus one.

D.5 Inclusive-Exclusive Broadcast Encryption

In this section we show that OurBE can be slightly modified to provide both the broadcast
encryption and the revocation functionality simultaneously; that is, we propose a scheme in
which the encrypter may choose to determine either a target set S or a revoked set R of users
at the time of encryption, without the need to set up two parallel systems. The decryption
naturally goes ahead only if the user is either in S or not in R. In the following we (ab)use
the notation “S/R” to indicate “either S or R” as input to the encapsulation and decapsulation
algorithms. In practice this can be implemented using the first bit of the input to indicate the
inclusive or exclusive mode of operation.

• Setup(1k, n − 1) picks random g ∈ G, α, γ ∈ Zp, and κ for H, computes v = gγ , sets
π0 = gα(αn−1)/(α−1), and outputs msk = (α, γ) and ek = (g, v, π0, κ).

• Join(msk, i) computes gi, gi+1, gn+1−i, gn+1+i, and di = gγi , sets πi = πα
i

0 /gn+1, and
outputs ski = di and pki = (gi, gi+1, gn+1−i, gn+1+i, πi). Now, ski is given to the user, and
ek is updated by appending pki.

• Encaps(ek, S/R) picks a random t ∈ Zp and sets K = e(gn+1, g)t, computes H as either of
the following accordingly, and outputs (H,K).

H =

〈gt, (v · gHκ(gt)

1 ·
∏
j∈S

gn+1−j)t〉 if S given

〈gt, (v · gHκ(gt)
1 · π0/

∏
j∈R

gn+1−j)t〉 if R given

• Decaps(ek, ski, S/R,H) parses H = (C0, C1), checks if the either of the following equation
accordingly holds:

e(C1, g) =

e(v · gHκ(C0)

1 ·
∏
j∈S

gn+1−j , C0) if S given

e(v · gHκ(C0)
1 · π0/

∏
j∈R

gn+1−j , C0) if R given

and if it does, then calculates the session key accordingly as follows:

K = e(C1, gi)
e(di · gHκ(C0)

1+i ·
∏

j∈S\{i}
gn+1−j+i, C0)

, or

K = e(C1, gi)
e(di · gHκ(C0)

1+i · πi/
∏
j∈R

gn+1−j+i, C0)
.

— 150 —

D.6. Achieving Adaptive CCA Security

Correctness Let N = {1, . . . , n− 1}. We have

π0 =
∏
j∈N

gn+1−j and πi =
∏

j∈N\{i}
gn+1−j+i.

Hence in the exclusive mode, for any i /∈ R we have:

π0/
∏
j∈R

gn+1−j =
∏

j∈N\R
gn+1−j and

πi/
∏
j∈R

gn+1−j+i =
∏

j∈(N\R)\{i}
gn+1−j+i.

Hence, if i /∈ R, the session key the user i calculates in the exclusive mode is effectively the
same as the session key it would have calculated if it were decrypting a ciphertext encrypted to
S = N \R in the inclusive mode, and therefore the scheme is correct.

Note that the parameters are set in a way that the scheme properly excludes users that join
after the time of encryption from inclusive-mode ciphertexts, and includes such users in the
exclusive-mode ciphertexts. Unfortunately, the system appears to lose full dynamicity.

Efficiency The scheme enjoys similar desirable efficiency measures as the inclusive-only scheme;
that is, the ciphertext and the user secret key sizes are both constant and the public key size is
linear in the number of users.

Security A similar security definition to that of broadcast encryption can be defined for such
schemes, with the difference that the adversary is now allowed to ask decryption oracle queries
for both modes. Naturally exclusive-mode decryption oracle queries Dec(i∗, N \ S∗, H∗) for
i∗ ∈ S∗ are also not allowed. It is not hard to see that the security of OurBE translates into the
above scheme satisfying this security definition.

D.6 Achieving Adaptive CCA Security
Since we have a very efficient scheme with asymptotically optimal size secret keys and ciphertexts
which is already proved selective CCA secure based on standard assumptions, in this section
we try to see how further we can achieve in terms of security by considering reasonable gener-
alizations of some standard assumptions, while retaining the same optimally efficient secret key
and ciphertext sizes. We first propose reasonable generalizations of the GBDHE and prove that
they hold in the generic group model; then we prove that OurBE can be proved ACCA secure
under these assumptions; and finally we compare our scheme to existing adaptive or CCA secure
broadcast encryptions.

D.6.1 The OBDHE Assumption

We consider extending the GBDHE problem assuming that an extra resource is also given: the
Diffie-Hellman computation oracle ODH

g,e , that takes two inputs u, v ∈ G and outputs w ∈ G
such that e(u, v) = e(g, w). Let us call this the Oracle BDHE problem, or OBDHE for short.
Formally, we define:

The OBDHE Problem: Given the input gP (x1,...,xn) and gQ(x1,...,xn)
T for random choices of

x1, . . . , xn ∈ Fp, and access to the ODH
g,e oracle, decide between gf(x1,...,xn)

T and a random T ∈ GT.
Note that the GBDHE assumption implies that the only elements (dependent on x1, . . . , xn

and) in G that can be computed are those in the form g
∑

aipi . Thus, for any ODH
g,e query

— 151 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

(dependent on x1, . . . , xn) we can assume u = gσu and v = gσv , where σu and σv are polynomials.
Then we will have w = ODH

g,e (u, v) = gσuσv . Hence, by providing access to ODH
g,e , basically a

number of “free multiplications” in the exponent are given. Let us define p′ = σuσv. If we
consider q′ queries to ODH

g,e , and the output to the i-th query represented as wi = gp
′
i , we can

define P ′ = (p′1, . . . , p′q′). Our extension of the GBDHE assumption says that it is still hard to
solve the GBDHE problem if these “free multiplications” in the exponent do not help breaking
the independence property. Formally, letting ‖ denote concatenation, we define:

Assumption D.6.1 [OBDHE] It is hard to solve the decision (P,Q, f)-OBDHE problem if f
is independent of (P ‖ P ′, Q).

In Appendix D.8.2 we prove that the assumption holds in the generic group model [Sho97,
BBG05]. We prove an upper bound on the success of any generic algorithm trying to solve
the OBDHE problem which is negligible if p, the order of Fp is super-polynomial. Leaving
technicalities to the appendix, we prove the following theorem:

Theorem D.6.2 The OBDHE Assumption holds in the generic group model.

In fact, our proof is similar to that of [BBG05], suggesting that our assumption is a natural
and closely-related extension of GBDHE. It is also worth to note that OBDHE is falsifiable by
simply solving the corresponding (P ‖ P ′, Q, f)-GBDHE problem efficiently.

D.6.2 The GKEA Assumption

We propose the generalized knowledge of exponent assumption (GKEA) as follows and prove
that it holds in the generic group model.

In the following we use p to denote a polynomial (suppressing the random variables) and
p(x1, . . . , xn) to denote the evaluation of p on the input (x1, . . . , xn). Let the tuple P =
(p1, . . . , ps) be in Fp[X1, . . . , Xn]s. Let the linear span of P , denoted by Span(P), be defined as
the vector space containing all the polynomials in the form

∑s
k=1 akpk.

Assumption D.6.3 [GKEA] Let the tuple P = (p1, . . . , ps) be in Fp[X1, . . . , Xn]s, where p1 =
1. Let A be an algorithm that given gP (x1,...,xn) for a random (x1, . . . , xn), outputs

((ak)sk=1, h, h
q(x1,...,xn)), such that

q(x1, . . . , xn) =
s∑

k=1
akpk(x1, . . . , xn).

Consider the subspace of Span(P) defined as Vq = {r | r, rq ∈ Span(P)} and let {ri}ti=1 be a
basis for Vq. Then, there exists an extractor E that given the same input as A outputs

(bi)ti=1, such that dlogg(h) =
t∑
i=1

biri(x1, . . . , xn).

This assumption basically says that the only way an adversary can produce pairs of the form
(h, hq) is to pick given pairs of the form (hi, hqi) and output (

∏
hbii ,

∏
(hqi)bi) for some known

values of bi.
For P = (1, X) and q(X) = X, this becomes the original KEA of [Dam91], which basically

says that given (g, gx) the only way an adversary can produce pairs of the form (h, hx) is to output
(gb, (gx)b) for some known value of b. This assumption is referred to KEA1 in [HT98, BP04]
and as Diffie-Hellman Knowledge (DHK) in [Den06]. A similar problem is formalized as strong
Diffie-Hellman (SDH) in [ABR01].

— 152 —

D.6. Achieving Adaptive CCA Security

Table D.2: Comparison of adaptive or CCA secure broadcast encryption schemes
Scheme O(|ski|) O(|H|) Security Assumption
[DF02] BE logn r log n

r ACCA1 (IBE)
BE log1+ε n r

ε ACCA1 (HIBE)

[BGW05] BE 1 1 SCCA n-BDHE, SUF
[GW09] BE 1 1 ACPA n-BDHES, PRF, ROM

BE 1 s ACPA n-BDHES, PRF
IBBE 1 1 ACPA n-BDHES, PRF, ROM
IBBE 1

√
s ACPA n-BDHES, PRF

[Wat09] BE n 1 ACPA dBDH, dLin
[LSW10] R 1 r ACPA dBDH, dLin
[PPS12a] BE 1 r log n

r ACCA DDH
BE 1 r ACCA DDH

OurBE BE 1 1 SCCA
ACCA

n-BDHE, UOWHF
n-OBDHE, GKEA, UOWHF

O(| · |): order of size, n, s, r: number of total, targeted, revoked users.

For P = (1, X, Y, Y X) and q(X,Y) = X, this becomes the KEA3 assumption of [BP04],
which basically says that given (g, gx, f, fx) the only way an adversary can produce pairs of the
form (h, hx) is to output (gbf c, (gx)b(fx)c) for some known values of b and c. This assumption
is referred to as Extended KEA (XKEA) in [AF07] and as Extended Diffie-Hellman Knowledge
(EDHK) in [DP08].

The above two instances of the assumption have already been proved to hold in the generic
group model [Den06, AF07, DP08]. In the following we propose a theorem stating the generic
assumption and prove it in Appendix D.8.3.

Theorem D.6.4 The GKEA Assumption holds in the generic group model.

D.6.3 Adaptive CCA Security

In this section we prove OurBE adaptive CCA secure under our generalized versions of the BDHE
and knowledge of exponent assumptions. To prove adaptive CCA security, we basically show
that a decryption query by the adversary that contains a valid ciphertext does not increase
the (cryptographic) ‘knowledge’ of the adversary. Also note that since ciphertext validity is
publicly verifiable, a decryption query that contains an invalid ciphertext does not increase the
adversary’s knowledge either. Hence we basically show that a CCA attack against the system
is equivalent to a CPA attack, under the GKEA assumption and the hash function being a
UOWHF. Furthermore, the access to ODH

g,e enables answering adaptive corruption queries.
Formally, we prove adaptive CCA security assuming that the OBDHE and the GKEA as-

sumptions hold and H is a UOWHF. Intuitively, selective CPA security stems from the BDHE
assumption underlying the OBDHE assumption along with the hash function being a UOWHF;
the Diffie-Hellman oracle enables adaptive security; and the CCA security is achieved from the

— 153 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

GKEA assumption along with the hash function being a UOWHF. The following theorem is
proved in Appendix D.8.4.

Theorem D.6.5 OurBE is adaptive CCA secure if the OBDHE and the GKEA assumptions
hold and H is a universal one-way hash function.

We note that we prove CCA security based on the GKEA assumption, an assumption which
is much weaker than the generic model itself (and instances of it are shown to be falsifiable
[BP04]), and in fact, proving the equivalence of CPA and CCA security is trivial if the generic
group model is used directly, since on a decryption query with a first element gt, we may assume
that t is known.

D.6.4 Comparison

Since our scheme is the first to achieve adaptive CCA security with constant-size ciphertexts,
we compare our scheme with those from the literature that are adaptive CPA or selective CCA
secure. We do not consider schemes that are not fully collusion resistant. The schemes in the
literature with constant-size ciphertexts include a selective CCA secure scheme from [BGW05],
and three adaptive CPA secure schemes from [GW09] and [Wat09]. The schemes in the literature
that do not have constant-size ciphertexts include adaptive CPA secure schemes from [DF02],
[GW09] (identity-based) and [LSW10] (revocation scheme), and recent adaptive CCA secure
schemes from [PPS12a]. Table D.2 summarizes our comparison. We consider plain and identity-
based (IB) broadcast encryption (BE) and revocation (R) schemes. Among these, schemes
from [DF02] and [PPS12a] are generic schemes based on (hierarchical) identity-based encryption
((H)IBE), and encryption schemes (implemented under DDH), respectively. Since (H)IBE can
be based on various assumption, we simply use it in parentheses in the table. All other schemes
are explicit proposals based on various bilinear Diffie-Hellman assumptions, in some cases plus
extra assumptions such as strong unforgeability (SUF) of signatures, pseudo-random functions
(PRF), and the random oracle model (ROM). To accommodate more information, we omit the
O notation and write O(f(n, s, r)) as f(n, s, r). Comparatively more desirable quantities are
highlighted in boldface.

D.7 Concluding Remarks

We proposed a very efficient broadcast encryption scheme. The sizes of the secret keys and ci-
phertexts in the scheme are asymptotically optimal, i.e., constant. We showed that the scheme
can be proved selective CCA secure assuming BDHE and a universal one-way hash function.
Furthermore, we showed that proving adaptive CCA security is possible if we consider extended
versions of the GBDHE and knowledge of exponent assumptions. Considering only the standard
assumptions, our scheme provides shorter ciphertexts than the only other known CCA secure
scheme. Considering the extended assumptions, our scheme is the first scheme to achieve con-
stant size secret keys and ciphertexts and adaptive CCA security at the same time. The problem
of designing schemes that achieve such properties under standard assumptions remains open.

Acknowledgments

This work was supported by the French ANR-09-VERS-016 BEST Project. The authors would
like to thank the anonymous reviewers of the ACISP 2012 conference and the International
Journal of Information Security.

— 154 —

D.8. Appendix

D.8 Appendix

D.8.1 Proof of Theorem D.4.1

Proof: Suppose there exist a selective CCA adversary A that is able to distinguish the above
scheme’s keys from random elements. We construct an algorithm B that either outputs a collision
for a given key κ or solves the n-BDHE decision problem.
Let B be given an n-BDHE challenge (g, h, {gi}i∈{1,...,2n}\{n+1}, T) and has to decide whether
T = e(gn+1, h) or it is random. B runs A and receives a set S∗ of honest users on which it wishes
to be challenged. As a UOWHF adversary, B also gives out h as the first message on which it
wishes to be challenged and receives a key κ for the hash function. B chooses a random β ∈ Zp,
calculates v as follows, and gives ek = (g, v, κ) to A.

v = gβ · g−Hκ(h)
1 ·

∏
j∈S∗

g−1
n+1−j . (D.2)

On any join query for user i made by the adversary, B gives pki = (gi, gn+1−i, gn+1+i) to A.
On any private key query for user i made by A (note that i /∈ S∗), B calculates the private key
as follows and gives it to A.

di = gβi · g
−Hκ(h)
1+i ·

∏
j∈S∗

g−1
n+1−j+i.

Note that di is properly simulated since we have di = vα
i .

On a decryption query (i, S, (C0, C1)) by A (note that S ⊂ S∗ and i ∈ S), B first checks the
validity of the ciphertext using Equation D.1. If the ciphertext is valid then it checks whether
Hκ(h) = Hκ(C0) which in case of validity provides a collision for the hash function Hκ and hence
B can output C0 as the second message and break the UOWHF property.
If Equation D.1 holds and Hκ(h) 6= Hκ(C0), then let δ = Hκ(C0)− Hκ(h). B calculates the key
as follows:

K = e(C1, g · g1/δ
n)

e(gβ · gβ/δn · gδ1 ·
∏

j∈S∗\S
(gn+1−j · g1/δ

2n+1−j)
−1, C0)

.

Now since Equation D.1 holds, the ciphertext is in the form

(gt, (v · gHκ(gt)
1 ·

∏
j∈S

gn+1−j)t)

for some (unknown) t. Hence, the above calculated K will be as follows:

K =

e((v · gHκ(gt)
1 ·

∏
j∈S

gn+1−j)t, g · g1/δ
n)

e(gβ · gβ/δn · gδ1 ·
∏

j∈S∗\S
(gn+1−j · g1/δ

2n+1−j)
−1, gt)

=
(e(gβ · gδ1 ·

∏
j∈S∗\S

g−1
n+1−j , g · g

1/δ
n)

e(gβ · gβ/δn · gδ1 ·
∏

j∈S∗\S
(gn+1−j · g1/δ

2n+1−j)
−1, g)

)t

— 155 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

=
(e(gβ · gδ1 ·

∏
j∈S∗\S

g−1
n+1−j , g

1+αn/δ)

e(gβ(1+αn/δ) · gδ1 ·
∏

j∈S∗\S
g
−(1+αn/δ)
n+1−j , g)

)t

=
(
e(gδ1, g1+αn/δ)

e(gδ1, g)

)t
= e(g1, g)αnt = e(gn+1, g)t

and hence it is properly simulated. In the above, we have substituted v from Equation D.2 and
used the fact that ∀k : gn+k = gα

n

k .
At some point, A declares that it is ready to receive the challenge. B calculates the challenge
ciphertext as C = (h, hβ) and gives C along withK = T to A. First, note that from Equation D.2
we have

v · gHκ(h)
1 ·

∏
j∈S∗

gn+1−j = gβ,

and hence C is a valid ciphertext satisfying Equation D.1. Furthermore, assuming that h = gt

for some t, we have
hβ = (gβ)t = (v · gHκ(h)

1 ·
∏
j∈S∗

gn+1−j)t,

which means that if T = e(gn+1, h) = e(gn+1, g)t, then K is the key corresponding to the
ciphertext C, and if T is random, then K is a random key.
In the second phase of the attack, B answers A’s queries as in the first phase.
At the end, A outputs its guess b. B outputs b as its decision for the n-BDHE challenge. Based
on the above discussion, if A is successful in its CCA attack, then either B is able to compute a
collision for Hκ and win the UOWHF game, or it is able to solve the n-BDHE decision problem
successfully.

D.8.2 Proof of the OBDHE Assumption

In this section, we prove Theorem D.6.2. Let dP , dP ′ , dQ, and df be respectively the maximum
degrees of the polynomials in P , P ′, Q, and f . We prove the following upper bound in the
generic bilinear group model. We consider two random encodings ξ, ζ : Z+

p 7→ {0, 1}m and write
G = {ξ(x)|x ∈ Z+

p } and GT = {ζ(x)|x ∈ Z+
p }. The following theorem is a sufficient condition

for Theorem D.6.2.

Theorem D.8.1 For P , Q, P ′ f , ξ, ζ, G, GT defined above, let |P | = s, |Q| = t, and ` = s+ t.
Let d = max(2dP , dQ, df). If f is independent of (P ‖ P ′, Q), then for any A making a total of
at most q queries to the oracles computing the group operations and the bilinear pairing, and
at most q′ queries to the ODH

g,e oracle, we have:

∣∣∣∣∣Pr

A

 p, ξ(P (x1, . . . , xn)),
ζ(Q(x1, . . . , xn)),

ζ(t0), ζ(t1);ODH
g,e (·, ·)

 = b :

x1, . . . , xn, y
R← Fp,

b
R← {0, 1},

tb ← f(x1, . . . , xn),
t1−b ← y

− 1
2

∣∣∣∣∣
≤ (q + q′ + `+ 2)2 ·max(2dP ′ , d)

2p

— 156 —

D.8. Appendix

Proof: Assume that we are given the algorithm A. Consider an algorithm B that interacts with
A as follows. B maintains two lists of pairs:

L = {(pi, ξi) : i = 1, . . . , τ0} and LT = {(qi, ζi) : i = 1, . . . , τ1},

such that at step τ of its interaction with A: τ0 + τ1 = τ + ` + 2. Here, pi ∈ Fp[X1, . . . , Xn],
qi ∈ Fp[X1, . . . , Xn, Y0, Y1], and ξi, ζi ∈ {0, 1}m.

B also maintains a counter τ ′, initialized at zero, to count the number of ODH
g,e oracle queries,

and a list of polynomials:
P ′ = {p′i : i = 1, . . . , τ ′}

to store the polynomial output of the ODH
g,e oracle queries.

At step τ = 0, B initializes the lists by setting p1, . . . , ps in L equal to the polynomials in P ,
q1, . . . , qt in LT equal to the polynomials in Q, qt+1 = Y0, and qt+2 = Y1. It also chooses ` + 2
random strings in {0, 1}m and initializes {ξi}si=1 and {ζi}t+2

i=1.

B then runs A under the input p, {ξi}si=1, {ζi}ti=1, ζt+1, and ζt+2. B answers A’s oracle queries
as follows. We are assuming that A’s queries can only be strings obtained from B since B can,
by increasing m, make the strings in G and GT arbitrarily hard to guess.

Group operations: For a G operation query (ξi, ξj), B calculates pτ0+1 ← pi ± pj depending
on whether multiplication or division is requested. If pτ0+1 = pl for some l ≤ τ0, then B sets
ξτ0+1 ← ξl; otherwise it sets ξτ0+1 equal to a new random string different from all the previous
ξi. Then it appends the new pair (pτ0+1, ξτ0+1) to L, replies to A’s query with ξτ0+1, and finally
increments the counter τ0. GT operation queries are dealt with analogously by updating the list
LT and counter τ1.

Bilinear pairings: For a pairing query of the form (ξi, ξj), B calculates qτ1+1 ← pi · pj . If
qτ1+1 = ql for some l ≤ τ1, then B sets ζτ1+1 ← ζl; otherwise it sets ζτ1+1 equal to a new random
string different from all the previous ζi. Then it appends the new pair (qτ1+1, ζτ1+1) to LT,
replies to A’s query with ζτ1+1, and finally increments the counter τ1.

ODH
g,e queries: For a ODH

g,e query (ξi, ξj), B calculates pτ0+1 ← pi · pj . If pτ0+1 = pl for some
l ≤ τ0, then B sets ξτ0+1 ← ξl; otherwise it sets ξτ0+1 equal to a new random string different
from all the previous ξi. B also sets p′τ ′+1 ← pτ0+1, appends p′τ ′+1 to P ′, and increments the
counter τ ′. Then it appends the new pair (pτ0+1, ξτ0+1) to L, replies to A’s query with ξτ0+1,
and finally increments the counter τ0.

A terminates after at most q + q′ queries and returns a guess b′.

Now B chooses x1, . . . , xn, y
R← Fp and b R← {0, 1}, and sets yb ← f(x1, . . . , xn) and y1−b ← y.

Setting Xi = xi for all i = 1, . . . , n, Y0 = y0, and Y1 = y1, we see that B’s interaction provides
a perfect simulation for A as long as the chosen random values for the random variables do not
result in any equality of the values of the intermediate different polynomials. In other words,
the simulation is perfect unless for some i and j we have one of the following:

1. pi(x1, . . . , xn) = pj(x1, . . . , xn), yet the polynomials pi and pj are not equal, or

2. qi(x1, . . . , xn, y0, y1) = qj(x1, . . . , xn, y0, y1), yet the polynomials qi and qj are not equal.

— 157 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

Let Fail be the event that one of the above conditions holds. We bound the probability of this
event.

First, if we set Yb = f(X1, . . . , Xn), this does not raise the probability that Fail happens. This
is because the above substitution does not create any new equalities between polynomials qi and
qj . In general, qi − qj is in the form

s∑
k=1

s∑
l=1

ak,lpkpl +
s∑

k=1

q′∑
l=1

a′k,lpkp
′
l +

q′∑
k=1

q′∑
l=1

a′′k,lp
′
kp
′
l +

t∑
u=1

buqu + cY0 + dY1.

Let us define
P ∗ = P ‖ P ′ = (p∗1, . . . , p∗s+q′) = (p1, . . . , ps, p

′
1, . . . , p

′
q′).

Now we can write qi − qj in the form

s+q′∑
k=1

s+q′∑
l=1

ak,lp
∗
kp
∗
l +

t∑
u=1

buqu + cY0 + dY1.

Hence assuming that the substitution Yb = f(X1, . . . , Xn), does create a new equality, then
qi − qj , which is in the above form, is a non-zero polynomial, yet setting Yb = f(X1, . . . , Xn)
makes it zero. Thus, f must be dependent on (P ‖ P ′, Q), which is a contradiction.

Now that we made the substitution Yb = f(X1, . . . , Xn), our polynomials are only in X1, . . . , Xn,
and Y1−b. The maximum degree of any polynomial in the form pi − pj or qi − qj is
max(2dP , 2dP ′ , dQ, df) = max(2dP ′ , d). Hence, for each pair (i, j), the probability that a ran-
dom assignment of the random variables is a root of one of the above polynomials is at most
max(2dP ′ , d)/p. Since there are at most 2

(q+q′+`+2
2

)
pairs of (pi, pj) and (qi, qj) in total, we have

Pr[Fail] ≤
(
q + q′ + `+ 2

2

)
2 max(2dP ′ , d)

p

≤ (q + q′ + `+ 2)2 max(2dP ′ , d)
p

.

Now we would like to bound A’s success probability, i.e., |Pr[b = b′]− 1
2 |. We know that

Pr[b = b′] = Pr[b = b′|Fail] · Pr[Fail] + Pr[b = b′|¬Fail] · Pr[¬Fail].

If Fail does not happen, then B’s simulation is perfect. In this case, since b is chosen after the
simulation ends, Pr[b = b′|¬Fail] = 1

2 . Substituting this and Pr[¬Fail] = 1 − Pr[Fail] in the
above equation, we get the following after rearrangement:

Pr[b = b′]− 1
2 = (Pr[b = b′|Fail]− 1

2) · Pr[Fail].

Hence we have

|Pr[b = b′]− 1
2 | = |Pr[b = b′|Fail]− 1

2 | · Pr[Fail] ≤ 1
2 Pr[Fail],

which gives us the claimed bound and finishes the proof.

— 158 —

D.8. Appendix

D.8.3 Proof of Theorem D.6.4

Proof: Let dP be the maximum degree of the polynomials in P . We consider a random encoding
ξ : Z+

p 7→ {0, 1}m and write G = {ξ(x)|x ∈ Z+
p }.

Given an algorithm A we construct the extractor E as follows. E maintains a list L of pairs
(pi, ξi), initialized with pairs containing the elements of P and random strings, respectively as
the first and second elements.

E runs A on input (ξi)si=1. Any group operation query (ξi, ξj) is responded by computing pi + pj
and checking if the resulting polynomial already exists in the list. If it does, E returns the
corresponding encoding, and if not, it chooses a new random string as the encoding to be
returned, and adds pi + pj and the encoding to the list L.

When A terminates and returns (ξi, ξj) as its output, E finds the corresponding polynomial pair
(pi, pj). If pj 6= piq, E outputs ⊥. Otherwise, let {ri}ti=1 be defined as above. E decomposes pi
as a linear combination of {ri}ti=1, that is, it finds coefficients (bi)ti=1 such that pi =

∑t
i=1 biri,

and outputs (bi)ti=1.

Assume that A asks σ queries. E’s list contains s + σ pairs at the end of the execution of
A. All the polynomials in this list are in Span(P). Since both pi and pj are in Span(P),
if pj = piq, then pi ∈ Vq, and hence pi can be written as a linear combination of {ri}ti=1.
Furthermore, the discrete logarithm of A’s first input ξi is equal to pi(x1, . . . , xn), which in turn
equals

∑t
i=1 biri(x1, . . . , xn). Therefore, E succeeds if its simulation of A’s environment is perfect

and pj = piq.

Note that if A’s environment is simulated perfectly, then it outputs a pair for which we have
pj(x1, . . . , xn) = pi(x1, . . . , xn)q(x1, . . . , xn), but not necessarily pj = piq.

Let Fail be the event that E fails. Based on the above discussion, E fails if either it fails to sim-
ulate A’s environment perfectly or if pj 6= piq but pj(x1, . . . , xn) = pi(x1, . . . , xn)q(x1, . . . , xn).
E’s simulation of the environment for A is perfect unless a set of random values (x1, . . . , xn)
result in some equality of the values of the different polynomials in L. Hence, if we add piq as
the polynomial number s + σ + 1 to the list L, E’s overall probability of failure is bounded by
the probability that a set of random values (x1, . . . , xn) result in some equality of the values of
the different polynomials in the augmented list of s+ σ + 1 polynomials. Hence we have:

Pr[Fail] ≤
(
s+ σ + 1

2

)
dP
p
≤ (s+ σ + 1)2dP

p
,

and the proof is complete.

The above proof is in the plain generic group model. It is easy to extend the proof to the
bilinear generic group model. Furhtermore, one can see that the proof still works (with some
natural modifications) in the model where the adversary is allowed to query the oracles on
any encoding, rather than only those it has received before (either as input or as responses to
previous oracle queries).

Another point to note is that, in the bilinear group model, any input to the adversary in the
target group can be disregarded and hence does not change the assumption.

D.8.4 Proof of Theorem D.6.5

Proof: We make our proof in two stages.

— 159 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

Stage 1: First, we prove that if H is a UOWHF, then the following specific assumption is an
instance of the OBDHE assumption as per our definition in Section D.6.1: let ODH

g,e be an oracle
that given (x1, x2) outputs y s.t. e(x1, x2) = e(g, y). Given the following quantities:

g, h, {gk = gα
k}k∈{1,...,2n}\{n+1}, v,

and oracle access to ODH
g,e , it is hard to distinguish e(gαn+1

, h) from a random value if the queries
to ODH

g,e are restricted to the following, where C ∩ S = ∅:

(1) |C| queries {ODH
g,e (gk, v)}k∈C , and

(2) one query ODH
g,e (w, h), where w = vg

Hκ(h)
1

∏
j∈S

gn+1−j .

Consider the hash function Hκ : G 7→ Zp and define the function µ(h) = hHκ(h). In the generic
group model, the input to Hκ is an encoding representing h, which is considered to be an encoding
that may be chosen independently of h. Therefore, we may assume Hκ(h) independent of h. Of
course this is true only if the sole way to calculate µ(h) is through computing Hκ(h) first and
then raising h to the power of the hash output. Otherwise, if µ(h) cannot be computed through
group operations, without computing Hκ(h) separately, then the encoding of h cannot be chosen
independently of h. For a “good” hash function we may assume that µ(h) cannot be computed
through group operations, without computing Hκ(h) separately.
To be more precise, consider Theorem D.8.1 and its presented proof in Appendix D.8.2. Assume
that P also includes an extra element which is a multiplication of a polynomial and the function
η(y) = Hκ(gy). Now, if the encoding of h = gy is chosen independently of h, the proof will still
work, i.e., Pr[Fail] can be shown to be upper-bounded by a negligible bound, unless for some
considerable portion of possible y’s we have ρ1(y)η2(y) + ρ2(y)η(y) + ρ3(y) = 0, where ρ1, ρ2,
and ρ3 are polynomials of degree at most max(2dP ′ , d). This condition implies that η(y) can be
calculated for some considerable portion of possible y’s by solving the above equation.
Formally, let us define a δ-good hash family as follows: We say a hash family Hκ : G 7→ Zp
indexed by κ is δ-good if for a random κ there does not exist polynomials ρ1, ρ2, and ρ3 of
degree at most δ such that for a non-negligible portion of possible y’s we have: ρ1(y) H2

κ(gy) +
ρ2(y) Hκ(gy) + ρ3(y) = 0. Now since max(2dP ′ , d) = 4n, we conclude that if H is at least
4n-good, then its output can be considered independent of the encoding of its input, and hence
we may treat it as a constant.
Now assume that for a given random κ and Y , we wish to find a pre-image X, such that
Hκ(X) = Y . Assume X = gx. If H is not a δ-good hash family, for a random κ there exist
polynomials ρ1, ρ2, and ρ3 of degree at most δ such that with a non-negligible probability:
ρ1(x) Y 2 + ρ2(x) Y + ρ3(x) = 0. This is a polynomial of order at most δ, and its roots can
be found in time which is polynomial in δ and log p [Ber70, Sho90]. For each root x, one can
check whether Hκ(gx) = Y and find the pre-image X with at most δ checks. Hence, if H is not
a δ-good hash family, then it is not a pre-image resistant (a.k.a. one-way) hash function. Since
UOWHF implies pre-image resistance, we have the following lemma:

Lemma D.8.2 Let Hκ : G 7→ Zp be hash function for which p is super-polynomial in k. If H
is a universal one-way hash function, then it is δ-good (as per our definition above) for all δ
polynomial in k.

Hence, if H is a UOWHF, then the following claim proves that the specific assumption above
is an OBDHE assumption as per our definition in Section D.6.1, in which the output of H is

— 160 —

D.8. Appendix

treated as a constant. Note that alternatively one may make the stronger assumption that H is
modeled as a non-programmable random oracle [BR93, Nie02]. Also note that since the system
is defined for n− 1 users, S and C are subsets of {1, . . . , n− 1}.

Claim D.8.3 For the following polynomials and S,C ⊆ {1, . . . , n− 1}, and for any constant c,
f is independent of (P ‖ P ′, Q) if C ∩ S = ∅.

P = (1, y, {xk}k∈{1,...,2n}\{n+1}, z, η, zy + cxy + y
∑
j∈S

xn+1−j),

P ′ = {zxi}i∈C , Q = (1), and f = yxn+1.

Proof: We have at most one multiplication of polynomials at our disposal. Let us define

Px = {xk}k∈{1,...,2n}\{n+1}, Pzx = {zxi}i∈C , and

Pyx = Pyz = zy + cxy + y
∑
j∈S

xn+1−j .

To make f = yxn+1, since there is a y factor, one of our multiplicands needs to be either y
or Pyx. Choosing y will not help because we do not have an xn+1 to make f , so one of our
multiplicands is definitely Pyx. The only choice for a second multiplicand that can give us f is
one from Px. Multiplying these terms gives us terms of the form zyxi+cyxi+1+y

∑
j∈S x

n+1−j+i,
which includes yxn+1 if i ∈ S, but then we have to be able to produce the term zyxi for some
i ∈ S to be able to cancel it out.

To get zyxi, using only two multiplicands, we have the following four possibilities:

• use y and zxi to get yzxi for some i ∈ C, but since C ∩S = ∅ we can not get yzxi for any
i ∈ S.

• use xi and Pyz again, but this cancels out our desired term yxn+1 as well since we have to
use the same i.

• use z and Pyx to get z2y+ cxyz + zy
∑
j∈S x

n+1−j , which includes zyxi if n+ 1− i ∈ S or
if i = 1, but then, in either case, we have to cancel z2y and the only way to get z2y is to
use the same terms again which cancels our desired term zyxi as well.

• use Pzx and Pyx to get z2xky + cxk+1yz + zy
∑
j∈S x

n+1−j+k, which includes zyxi if n +
1 − i + k ∈ S or if k + 1 = i, but then, in either case, we have to cancel z2xky and the
only way to get z2xky is to use the same terms again with the same k which cancels our
desired term zyxi as well.

Hence f is independent of (P ‖ P ′, Q) and the proof of Claim D.8.3 is complete.

Stage 2: Now that we have proved our specific assumption is an OBDHE assumption, we
prove that under this assumption, the GKEA assumption, and the UOWHF assumption OurBE
is adaptive CCA secure.
Let A be an adaptive CCA adversary for OurBE. We construct an adversary B that success-
fully breaks our specific assumption, if A is successful in its attack against OurBE, the GKEA
assumption holds, and H is a UOWHF.

— 161 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

First of all, note that, based on Lemma D.8.2 and a discussion similar to that of Stage 1, as
long as Hκ is a UOWHF, it can be indistinguishably simulated independently of its input in
the generic group model, and hence hashed values can be considered constant for this proof.
Jumping ahead, we treat c = Hκ(C0) and c∗ = Hκ(C∗0) as constant coefficients for polynomials.

Let B be given the following quantities:

g, h, {gk = gα
k}k∈{1,...,2n}\{n+1}, v, T,

and (restricted) oracle access toODH
g,e as specified by the assumption. It is supposed to distinguish

whether T = e(gαn+1
, h) or T is random. As a UOWHF adversary, B gives out h as the first

message on which it wishes to be challenged and receives a key κ for the hash function. B runs
A on input ek = (g, v, κ).

On a join query for user i made by the adversary, B gives pki = (gi, gn+1−i, gn+1+i) to A.

On any private key query for user i made by A, B queries the oracle ODH
g,e (gi, v) and and gives

the oracle output to A. Note that if we assume v = gγ , then the oracle output is equal to gγi .

On a decryption oracle query (i, S,H), whereH = (C0, C1), B first checks the ciphertext validity.
If the ciphertext is invalid it replies with ⊥. Let c = Hκ(C0). If the ciphertext is valid, then it
is in the following form:

H = (C0, C
q
0), where q = γ + cα+

∑
j∈S

αn+1−j . (D.3)

Let us assume, without loss of generality, that all the potential n− 1 users are initiated. Let C
denote the set of corrupted users by A and N∗ = {1, . . . , 2n} \ {n+ 1}. Now A can be viewed as
an algorithm that on input g, v, κ, {gi}i∈N∗ , and {di}i∈C outputs H = (C0, C

q
0) as above. Note

that the input to A (excluding κ /∈ G) can be written as follows:

gP , where P = (1, γ, {αi}i∈N∗ , {γαi}i∈C).

To apply the GKEA assumption, note that here Span(P) includes all the elements of the fol-
lowing form:

ρ = u+ xγ +
∑
i∈N∗

yiα
i + γ

∑
i∈C

ziα
i, for random u, x, yi, zi. (D.4)

Consider ρq for some ρ and the q defined above, respectively in Equations D.3 and D.4. For ρq
to be in Span(P), we should have x = 0 and ∀i ∈ C : zi = 0 because otherwise ρq will have
either the factor xγ2 or ziγ2αi for some i and would not fall in Span(P). Hence any ρ satisfying
ρq ∈ Span(P) should be in the form

ρ = u+
∑
i∈N∗

yiα
i, for random u, yi. (D.5)

A basis for such a subspace is the set {1, {αi}i∈N∗}. Therefore the GKEA assumption guarantees
that there exists an extractor that outputs the values {β, {bi}i∈N∗} such that

C0 = g

β+
∑
i∈N∗

biα
i

= gβ
∏
i∈N∗

gbii .

— 162 —

D.8. Appendix

Now note that K = e(gn+1, C0). Hence the session key can be calculated based on the known
representation of C0 in terms of g and gi, e.g., as follows:

K = e(gn+1, g
β
∏
i∈N∗

gbii) = e(gn+1, g)β
∏
i∈N∗

e(gn+1, gi)bi

= e(gn, g1)βe(g2n, g1)bne(gn+2, g2n−1)b2n
∏

i∈N∗\{n,2n}
e(gn, gi+1)bi .

At some point, the adversary A terminates the first query phase and outputs a set S∗ on which
it wants to be challenged. B calculates w = vg

Hκ(h)
1

∏
j∈S∗ gn+1−j , makes the oracle query

ODH
g,e (w, h), receives the oracle output h′, sets the challenge ciphertext as H∗ = (C∗0 , C∗1) =

(h, h′), and gives H∗ along with K = T to A. Let c∗ = Hκ(C∗0). Note that, Equation D.1 (see
page 148) holds, hence C is a valid ciphertext, and C∗1 should be equal to C∗0 raised to a power
of the following form:

γ + c∗α+
∑
j∈S∗

αn+1−j .

Furthermore, if T = e(gn+1, h), then K is the correct key corresponding to the ciphertext H∗,
and if T is random, then K is a random key.
In the second phase of the attack, B answers A’s join and corruption oracle queries as in the first
phase, and A’s decryption oracle queries, in a fashion similar to that of prior to the challenge,
as follows.
On a decryption oracle query (i, S,H), where H = (C0, C1), B first checks its validity, and if
valid, it is in the form of Equation D.3.
Now the input to A can be listed as g, v, κ, {gi}i∈N∗ , and {di}i∈C , plus H∗ = (C∗0 , C∗1). Let
C∗0 = gt

∗ . The input to A can be written as gP , where P is as follows (κ, K0, and K1 can be
disregarded as they are not in G):

P = (1, γ, {αi}i∈N∗ , {γαi}i∈C , t∗, t∗(γ + c∗α+
∑
j∈S∗

αn+1−j)).

Span(P) includes all the linear combinations ρ of the above terms. Similarly, we argue that ρ
cannot include any γ or γαi terms because they would induce γ2 or γ2αi terms respectively in
the product ρq. Furthermore, ρ cannot include the last term because it would induce a non-
cancelable t∗γ2 term in the product ρq. In addition, note that if ρ includes the term t∗, then ρq
would include the term

t∗(γ + cα+
∑
j∈S

αn+1−j).

The only way a ρ including this term can be contained in Span(P) is if c∗ = c (i.e., Hκ(C∗0) =
Hκ(C0)) and S = S∗ (note that j ≤ n−1, so n+1−j ≥ 2), which contradicts H being a UOWHF.
Therefore, ρ cannot include the term t∗, and again ρ should be in the form of Equation D.5,
and hence the session key can be calculated similarly as before.
At the end, A outputs its guess b. B outputs b as its decision for its received challenge. Based
on the above discussion, if A is successful in its adaptive CCA attack, then B is able to either
contradict H being a UOWHF or distinguish T = e(gn+1, h) from a random element successfully.
Hence the proof of Theorem D.6.5 is complete.

— 163 —

Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

— 164 —

Appendix E

Message Tracing with Optimal
Ciphertext Rate

Latincrypt ’12
[PPS12b] with David Pointcheval, and Mario Strefler

Abstract : Traitor tracing is an important tool to discourage defrauders from illegally broad-
casting multimedia content. However, the main techniques consist in tracing the traitors from
the pirate decoders they built from the secret keys of dishonest registered users: with either a
black-box or a white-box tracing procedure on the pirate decoder, one hopes to trace back one of
the traitors who registered in the system. But new techniques for pirates consist either in send-
ing the ephemeral decryption keys to the decoders for real-time decryption, or in making the full
content available on the web for later viewing. This way, the pirate does not send any personal
information. In order to be able to trace the traitors, one should embed some information, or
watermarks, in the multimedia content itself to make it specific to the registered users.
This paper addresses this problem of tracing traitors from the decoded multimedia content or
rebroadcasted keys, without increasing too much the bandwidth requirements. More precisely, we
construct a message-traceable encryption scheme that has an optimal ciphertext rate, i. e. the
ratio of global ciphertext length over message length is arbitrarily close to one.

E.0.5 Introduction

Traitor tracing (TT) [CFN94b] is a cryptographic primitive used to broadcast content only to
a set of authorized users, with an additional tracing property. The two main goals of such a
primitive are

• confidentiality: only the registered users should have access to the broadcast content;

• traceability: if registered users share their secrets to allow unregistered users to access the
content, one should be able to trace back at least some of these traitors.

The former property is guaranteed by an encryption procedure, so that only registered users can
decrypt and access the content. But an encryption scheme does not prevent users from giving
away their secret keys. Even in case several users combine their secret keys in order to make a
decryption box (a “pirate decoder”), it should be possible to identify one of the traitors from

— 165 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

the code/secrets in the decoder (white-box tracing) or by simply interacting with the decoder
(black-box tracing). The tracing property should indeed guarantee that even if several users
collude to construct a pirate decoder, at least one of the traitors could be found. It should also
guarantee non-frameability: an honest user should not be wrongly declared as a traitor.

To circumvent tracing, pirates might try not to make the decoder available, which excludes
both white-box and black-box tracing. Instead, they could make only the decrypted content
available, or, in case a hybrid encryption scheme is used, the symmetric keys used to encrypt
the content: by message tracing, we aim at tracing traitors from this information only, the
decoded content.

Message tracing. Fiat and Tassa were the first to consider message tracing; in [FT99], they
developed dynamic traitor tracing to deal with pirates that rebroadcast decrypted content. They
assume that there is a real-time feedback from the broadcast content to the center, so that the
watermarks can be adapted to the feedback. Safavi-Naini and Wang [SNW03a] noted that
in this setting, dynamic TT can be prevented by delaying the rebroadcasting of the content.
To take this counter-measure into account, they proposed sequential traitor tracing, where the
mark allocation is precomputed, but users are removed according to the feedback received. They
construct a sequential TT scheme by combining error-correcting codes and watermarking. Jin
and Lotspiech [JL07] claimed that protection should not increase the bandwidth by more than
10 %. To solve this problem, they proposed to extend the tracing procedure over several movies
(using “inner” and “outer” codes) and assumed that the pirates will not drop any block. Their
sequence key block scheme permits the revocation of users after they have been traced through
the rebroadcasted messages. Kiayias and Pehlivanoglu [KP09] showed that the sequence key
block scheme allows only to trace and to revoke a limited number of users, and proposed a
message-trace-and-revoke scheme without this limitation.

Optimal ciphertext rate. Contrary to the classical tracing where schemes with optimal
ciphertext rate exist, the problem of constructing a scheme with optimal cipheretxt size for
message tracing is still open. We explain why the solutions for classical tracing fails when
applied to message tracing and we then describe our approach.

Boneh and Franklin [BF99b] developed a traitor tracing scheme with a ciphertext size linear
in the maximal number of colluding users. Kiayias and Yung [KY02c] further integrated a version
of this scheme for two users with a collusion-secure code into the first TT scheme with a constant
ciphertext rate. This method can be summarized as follows. The sender essentially encrypts
all the blocks twice, so that the recipient can only decrypt one of the two ciphertexts for each
block. The tracing procedure consists in using the decrypted ciphertext or the distributed keys
to extract a word associated to the pirate decoder. Granted the tracing capability of a collusion-
secure code, one can then trace back one of the traitors. Kiayias and Yung’s scheme leads to a
ciphertext three times bigger than the initial content. Fazio, Nicolosi, and Phan [FNP07b] then
achieved a ciphertext rate asymptotically 1. Their method is to encrypt just one particular block
twice each time and then apply an all-or-nothing transform (AONT), which guarantees that the
pirate cannot drop this particular block because missing just one block makes the pirate unable
to get any information on the plaintext. The use of AONT in [KY02c, FNP07b] is interesting
but quite impractical because the receiver should wait until he has received n blocks (where n is
the code length of the code in use, and thus quite large) to start the decryption procedure. We
note that, without aiming to optimize the ciphertext rate, the use of AONT can be avoided by
using robust collusion-secure code which allows pirate to drop a fraction of the positions. This
is used in [Sir07a, BP08, BN08b] to reduce the ciphertext size. However, in order to get optimal
ciphertext rate in [FNP07b], the use of AONT is compulsory, otherwise the pirate could simply

— 166 —

drop the particular block to defeat the tracing procedure.
Focusing now on message tracing, one natural question is why we do not simply apply the

above method of optimizing the ciphertext rate. We argue that this method cannot work for
message tracing. We first notice that in all the above methods for classical tracing, each user
finally gets the same plaintext and if a user redistributes this plaintext, we have no way to trace
back the traitor from the distributed message. Therefore, the necessary condition for message
tracing is that each user receives a different (marked) version of the plaintext. However, when the
plaintext is different for each user, one cannot apply AONT for a whole fixed plaintext, otherwise
all but at most one user can decrypt. The use of AONT for message tracing is thus irrelevant.
Fortunately, we can still use the method of doubling one particular block by finding out a way to
hide this block. Our method consists in using a 2-user anonymous broadcast encryption scheme
and then randomly permuting the blocks. With a 2-user anonymous broadcast encryption
scheme, the pirate cannot detect any difference between an encryption for both users (which is
used for all blocks but the particular block) and an encryption for one of the two users that is used
for the particular protected block. Combining with the permutation of the blocks, we can show
that the pirate is prevented from detecting the particular protected block. Moreover, beyond
the optimization of ciphertext rate, by not using AONT, our scheme also enjoys the property of
the sequential decryption via the use of robust collusion secure code as in [BP08, BN08b]: the
user can sequentially decrypt the sub-ciphertexts, and does not need to wait to have received
the whole ciphertext and to apply the AONT transform to start the decryption procedure.

Our Contribution. Our goal is to improve the technique which consists in distributing two
versions of each message block, but without doubling all the blocks. The naive way, presented in
section E.2.1, indeed consists, for each message block mi, to have two equivalent blocks m0

i and
m1
i , so that any sequence {mwi

i }, whatever w ∈ {0, 1}n is, corresponds to a valid content m. The
two versions m0

i and m1
i can be provided by either adding watermarks to the original message

block mi, or directly when recording with different angles or distances of the shots [BS98]. The
blocks, m0

i or m1
i , are both sent over the public channel. However, the user secret keys, usk0

i

or usk1
i , have been distributed to the users according to codewords in a traceable code. This

means when the authority sees the decoded message m′ or the symmetric keys, from each block
m′i, it can tell whether it is m0

i , m1
i , or the block has been dropped, and then learns which

decryption key has been used: usk0
i , usk1

i , or none. From this, it can derive one bit of a word:
0, 1, or ‘erasure’ respectively. Granted the collusion-resistance of the code with erasures, if not
too many traitors colluded, at least one of them can be traced back. We can make the number
of erasures as low as possible. The naive way thus consists in encrypting each pair of blocks
with two keys. Each user owns only one of the two according to the codeword he received from
a traceable code. This results in a ciphertext twice the length of the original message, plus the
cost for two key encapsulations per block.

To reduce the length of the encrypted payload, the only way is to protect only a few blocks,
not all of them (section E.2.2). However, if an adversary can detect which blocks are protected,
he can drop some of them without impacting too much the quality of the original message (i. e.
a few seconds from a movie). If he knows which blocks are protected, he will simply drop them
after decryption, meaning that the output contains no information about the keys that were
used. We thus propose a way to achieve this partial protection so that the adversary cannot
detect which part is protected or not: even if we protect 1% of the blocks and the adversary
drops 20% of the blocks, it will basically drop 20% of the protected blocks only, and not all of
them.

A second improvement, presented in section E.2.3 can take advantage of some public-key
encryption schemes where we can reuse the randomness in both key encapsulations, as one can

— 167 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

do with ElGamal: given gr and two different public keys X0 = gx0 and X1 = gx1 , one can
derive two sessions keys Y0 = Xr

0 = grx0 and Y1 = Xr
1 = grx1 . Knowing either x0 or x1 only, a

user can extract one session key only and thus either m0
i or m1

i only. It does not cost two key
encapsulations per block, but one only.

This scheme still suffers from long user keys. In section E.3, we use anonymous BE as a
primitive to achieve shorter key lengths. We first focus on the two-user case (one message block).
A message block either consists of a unique message mi (not protected) or of two versions m0

i

and m1
i : in the former case, mi should be encrypted for the two users, whereas in the latter case,

m0
i has to be encrypted for user 0, and m1

i for user 1. To this aim, we use a 2-user anonymous
broadcast encryption scheme (2ABE). Anonymous broadcast encryption allows the selection of
any subset of the user set that should be able to decrypt the ciphertext, while hiding who is able
to decrypt [LPQ12]. Suppose we have a 2ABE scheme, and we consider ` blocks (m1, . . . ,m`),
among which the k-th block only is protected and thus is provided as a pair (m0

k,m
1
k). We

encrypt all the unique blocks mi for both users, whereas we encrypt m0
k for user 0, and m1

k for
user 1. The ciphertexts are thereafter randomly permuted (but we assume that the message
blocks contain indices to reorder them). User 0 and user 1 will both be able to decrypt `
ciphertexts among the `+ 1, and after reordering will be able to get the original message. Due
to the anonymity, they have no idea which block the other user cannot decrypt, therefore they
have no idea which block is protected.

The encrypted payload is only (1 + 1/`)-times as long as the original message, plus the cost
of 2ABE key encapsulations. Viewing the decrypted message, the authority can extract one bit.
To achieve full message tracing, we need to allocate the user secret keys for the 2ABE using
a collusion-secure code [BS98] or a even robust collusion-secure code [BKM10] if we consider
dropped blocks, and thus erasures.

Organization In section E.1, we define the primitives we are going to use and their security
notions. Using these primitives, we then present a black-box construction of a message-tracing
schemewith optimal ciphertext rate in section E.2. Section E.3 contains concrete constructions
from anonymous BE that has short keys in addition to the optimal ciphertext rate. Section E.4
concludes with some efficiency considerations.

E.1 Definitions

In this section, we define message tracing schemes and the building blocks we will use in their
construction. We follow an approach similar to [NSS99] by defining first a two-user primitive
which we then extend to the multi-user case using collusion-secure codes.

We first state the marking assumption, which provides a way to embed a bit in a message
block. This will be applied to blocks we protect, whereas no bit will be embedded in non-
protected blocks. Then, from the decoded message, the authority will be able to extract the bits
involved in the decryption keys in the pirate decoder, unless the decoder drops the protected
blocks. We will thus need the property that nobody can detect which blocks are protected so
that if the pirate decoder decides to drop some blocks, the choice will be independent from the
protection of the blocks. We will show that we can build such a message-traceable encryption
from a 2-user anonymous broadcast encryption scheme. Eventually, from all the bits extracted
from the protected blocks (and erasures in case of dropped blocks), using the tracing algorithm
of a collusion-secure code, we can trace back some of the traitors.

— 168 —

E.1. Definitions

E.1.1 Primitives

A more formal definition of PKE is given in section E.5.1 of the appendix. A more formal
definition of ABE is given in section E.5.1 of the appendix.

E.1.2 Marking Content

In order to trace from the message content itself, we need to be able to distribute different
versions of a message to different users in an undetectable way. One way is to use watermarks.
Another way could exploit different camera shots (angle and distance) of the same scene in a
movie[BS98]. We abstract away from the concrete way to create versions and use the marking
assumption that has been introduced by [BS98] and has become standard since. In the following
we assume that, given two blocks m0 and m1,

• we can double mb (for a random b ∈ {0, 1}) into two equivalent messages m0
b and m1

b

• when a user receives m′0 and m′1 (such that m′b ∈ {m0
b ,m

1
b} and m′b̄ = mb̄, where b̄ = 1− b)

one cannot guess b. This essentially means that it is possible to mark a message to protect it,
but it is not possible to tell apart protected and unprotected blocks.

In addition, we also assume robustness with respect to a symmetric, reflexive relation ≈ρ: for
two equivalent blocks m0 ≈ρ m1, when the user receives mb, and tries to alter it (but without
changing the meaning or content), he has only a negligible chance to output m′ ≈ρ mb that
is closer to mb̄ than to mb. This reflects that the user cannot change a watermark without
completely changing the message.

These two quite practical assumptions guarantee that

• protected blocks are indistinguishable from non-protected blocks;

• when a user has access to one version of the protected block only, we can learn from its
output which bit was embedded: the detected bit;

• when a user has access to both versions of the protected block, we either detect from its
output one explicit bit as above, or we note that both versions have been used: in either
case we can output one bit, associated to at least one version of the block available to the
user.

Of course, the user can drop some blocks, but this impacts the quality of the message: we will
assume that not too many blocks are dropped: at most a fraction η.

E.1.3 Collusion-Secure Codes

Collusion-secure codes [BS98] allow to trace a subset of the users (the traitors) that colluded
to produce a word (pirate word) from the codewords they were given. This of course depends
on the way traitors can derive words from their codewords: the feasible set is the set of the
useful words that can be derived from the legitimate codewords. We focus on binary codes,
defined over the alphabet {0, 1}. In our context, each bit-value is associated to a decryption
key, and a receiver has to decrypt at least one block in each pair of variants to be able to
get the global content. If all the codewords in a set agree on a position (i. e. they all have
the same bit at this position), then the collusion owns only one decryption key, and thus all
the words in the feasible set must have the same bit at this position. However, if some of the
words differ at a given position, then the collusion owns both decryption keys, and thus both
values are possible at this position. More formally, for any list of t words w1, . . . , wt ∈ {0, 1}n,
FS(w1, . . . , wt) = {w ∈ {0, 1}n | ∀i ∈ {1, . . . , n}, ∃j ∈ {1, . . . , t}, w[i] = wj [i]}.

— 169 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

Definition E.1.1 An (N, t, ε, n)-collusion-secure code T for FS is defined by a pair of algorithms
(Gen,Trace), where

• Gen(N, ε) takes as input the number N of codewords to output and an error probability
ε, it outputs a tracing key tk and a code Γ ⊂ {0, 1}n of size N .

• Trace(tk, w) takes as input the tracing key tk and a word w ∈ FS(C), where C is a collusion
of at most t codewords, it outputs a codeword w.

The running time of both algorithms must be polynomial in N log(1/ε), and the tracing algo-
rithm should not be wrong too often: with probability less than ε, w 6∈ C.

More precisely, an (N, t, ε, n)-collusion-secure code for FS guarantees that

• given (Γ, tk)← Gen(N, ε), with Γ ⊂ {0, 1}n of size N

• for any collusion C ⊂ Γ of size at most t, for any w ∈ FS(C), Trace(tk, w) outputs a word
in C with probability 1− ε.

Efficient constructions of such codes can be found in [Tar08b]: the resulting code length n for a
c-collusion secure code is O(c2 log(N/ε)), where ε is the tracing error probability.

When we consider adversaries that can drop some blocks, we need more powerful codes. A
word w? ∈ {0, 1, ?}n is in FS?(C) if there is a word w ∈ FS(C) such that w equals w? at all the
non-? positions. The extended feasible set FS?(w) is the set of all words that are ?-feasible for w.
Such a code that is traceable even in case of erasures is called robust code. Efficient constructions
of codes for FS? can be found in [BKM10]: the resulting code length n for a c-collusion secure
code with a fraction δ of the erasures is O(c2 log(N/ε)/(1− δ)2).

E.1.4 Message-Traceable Encryption

A message-traceable encryption scheme Ψ is a multi-cast encryption scheme which allows all
the registered users (with a legitimate secret key) to decrypt a ciphertext. In addition, from the
decrypted content, it is possible to derive the key (or even the keys) used for the decryption. In
the following description, we focus on static schemes (the maximum number of users is set from
the beginning):

• Setup(1κ, N, t), where κ is the security parameter, N the number of users and t the maximal
size of a collusion, generates the global parameters param of the system (omitted in the
following), N user secret keys {USKid}id=1,...,N , an encryption key EK, and a tracing key
TK.

• Encrypt(EK,m) takes as input the encryption key EK and a message m to be sent, it
generates a ciphertext c.

• Decrypt(USK, c) takes as input a decryption key USK and a ciphertext c, it outputs a
message m, or the error symbol ⊥.

• Trace(TK, c,m) takes as input the tracing key TK, with a ciphertext c and the decrypted
message m, it returns an index id ∈ [1, N] of a user secret key USKid.

— 170 —

E.2. A Generic Construction from PKE

Security Notions. As for any encryption scheme, the first security notion to define is the
semantic security, whose security game is presented in figure E.1. Of course, to make tracing
possible, the encryption algorithm will possibly derive several equivalent versions of the message
mb to be encrypted, which will decrypt to slightly different messages depending on the key used
to decrypt. For this reason, we allow the adversary to choose which decryption key should be
used, hence the additional input id.

Definition E.1.2 [Semantic Security] A message-traceable encryption scheme Ψ is said to be
(τ,N, t, qD, ε)-IND-CCA-secure (semantic security against chosen-ciphertext attacks) if in the
security game presented in figure E.1, the advantage, denoted Advind−cca

Ψ (κ, τ,N, t, qD), of any
τ -time adversary A asking for at most qD decryption queries (ODecrypt oracle) is bounded by
ε:

Advind−cca
Ψ (κ, τ,N, t, qD) = max

A
{Pr[Expind−cca−1

Ψ,A (κ,N, t) = 1]−Pr[Expind−cca−0
Ψ,A (κ,N, t) = 1]} ≤ ε.

This definition includes IND-CPA (for Chosen-Plaintext Attacks) when qD = 0, and thus we
denote the advantage Advind−cpa

Ψ (κ, τ,N, t).

Expind−cca−b
Ψ,A (κ,N, t)

({USKid},EK,TK)← Setup(1κ, N, t); QD ← ∅;
(state,m0,m1)← AODecrypt(·,·)(FIND; EK);
c∗ ← Encrypt(EK,mb);
b′ ← AODecrypt(·,·)(GUESS; state, c∗);
if c∗ ∈ QD then return 0 else return b′;

ODecrypt(id, c)
QD ← QD ∪ {c};
m← Decrypt(USKid, c); return m;

Figure E.1: IND-CCA for message-traceable encryption

We now formalize the additional security notion of traceability: after having received at most
t secret keys (the collusion C of traitors), the adversary asks for a ciphertext c? of a random
message m?, and outputs a plaintext m that should be equivalent to m∗. The tracing algorithm
should then output one of the traitors, otherwise the adversary has won the game. We use the
relation m ≈ρ m′ from section E.1.2 to denote that two messages are “similar” in the current
context. If the adversary sends a random message (hence m 6≈ρ m?) or alternatively outputs an
empty message, we say the adversary lost the game:

Definition E.1.3 [Traceability] A message-traceable encryption scheme Ψ is said to be (τ,N, t, ε)-
traceable if in the security game presented in figure E.2, the success probability, denoted
SuccTrace

Ψ,A (κ, τ,N, t), of any τ -time adversary asking for at most t secret keys is bounded by
ε:

SuccTrace
Ψ (κ, τ,N, t) = max

A
{Pr[ExpTrace

Ψ,A (κ,N, t) = 1]} ≤ ε.

E.2 A Generic Construction from PKE

E.2.1 Naive Construction

To have a baseline against which to compare our later constructions, we first outline the naive
way to construct a message tracing scheme. The construction uses a PKE scheme Π and assigns
user keys according to the codewords of the collusion-secure code T . If the codewords have
length n, we need 2n instances of the PKE scheme.

— 171 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

ExpTrace
Ψ,A (κ,N, t)

({USKid},EK,TK)← Setup(1κ, N, t); QC ← ∅;
(state, C)← A(FIND; EK);
m? $←M; c? ← Encrypt(EK,m?);
m← A(GUESS; state, c?, {USKid}id∈C);
T ← Trace(TK, c?,m);
if m = ⊥ or m 6≈ρ m? then return 0;
if T ∩ C = ∅ then return 1 else return 0;

Figure E.2: Traceability

• Setup(1κ, N, t)

1. It first generates a (N, t, ε, n)-traceable code, using (Γ, tk) ← T .Gen(N, ε), with a
low error value ε. We thus denote n the length of a codeword in Γ, and enumerate
codewords with indices associated to each users: Γ = {wid}id=1,...,N ⊂ {0, 1}n.

2. it then calls 2n times Π.Setup(1κ) to obtain (dkbi , ekbi)b=0,1,i=1...n.

3. it sets EK ← {ekbi}b=0,1,i=1...n, USKid ← (dkwid[i]
i)i=1...n for all id ∈ [1, N], TK ←

({dk0
i , dk1

i }i=1,...,n, tk).

• Encrypt(EK,m) first splits m into n blocks m1, . . .mn. For each block,

1. it creates two versions m0
i ,m

1
i of each block mi

2. it then encrypts the versions as cbi = Π.Encrypt(ekbi ,mb
i)

3. it sets c = (c0
1, c

1
1, . . . , c

0
n, c

1
n).

• Decrypt(USKid, c)

1. it parses c = (c0
1, c

1
1, . . . , c

0
n, c

1
n)

2. it decrypts mwid[i]
i = Π.Decrypt(dkwid[i]

i , c
wid[i]
i) to recover m.

• Trace(TK, c,m) extracts the word w′ from m and calls T .Trace(tk, w′) to get the codeword
wid of a colluder.

E.2.2 Improved Construction

We can reduce the ciphertext rate for long messages by watermarking only some blocks. We
now describe a generic construction that accomplishes this by encrypting a message consisting
of n sequences of ` blocks each in such a way that in sequence i, `−1 blocks can be decrypted by
both users; these blocks are not used for tracing. The other block is duplicated using to different
marks and encrypted at two positions v0[i], v1[i], each time for one key only: the message at
position v1[i] can only be decrypted by users with key 0, and the message at position v0[i] only
by users with key 1. By doing this, the ciphertext will have a length of (1+1/l)-times the length
of the message, plus the overhead for encryption.

To reduce the overhead for encryption for long messages, we now model the PKE scheme
as a KEM. Given any symmetric cipher E = (Enc,Dec), a PKE Π, and a traceable code T , we
construct a message-traceable encryption scheme Ψ̂(`, n) as follows:

• Setup(1κ, N, t, `):

— 172 —

E.2. A Generic Construction from PKE

π

* 0 * 1 * * * *

* * * * 1* * 0

*
1

0
* ****

m m m m m mm
4 5 6 7321

Figure E.3: Hiding a mark at position 5 in a sequence of 7 blocks.

1. It first generates a (N, t, ε, n)-traceable code, using (Γ, tk) ← T .Gen(N, ε), with a
low error value ε. We thus denote n the length of a codeword in Γ, and enumerate
codewords with indices associated to each users: Γ = {wid}id=1,...,N ⊂ {0, 1}n.

2. It then calls Π.Setup(1κ) n(`+1) times to obtain, for i = 1, . . . , n and j = 1, . . . , `+1,
eki,j , dki,j . It draws to random vectors v0, v1 ∈ [1, ` + 1]n with the condition that
v0[i] 6= v1[i] for all i = 1, . . . n. The position vb[i] describes the secret key that the
users with wid[i] = b do not have. We set

USKid ← {dki,j} i=1,...,n
j 6=vwid[i][i]

,

EK ← ({eki,j} i=1,...,n
j=1,...,`+1

, v0, v1),

TK ← ({dk0
i,j , dk1

i,j} i=1,...,n
j=1,...,`+1

, tk).

• Encrypt(EK,m) first splits m in n` blocks {mi,j} i=1,...,n
j=1,...,`

. For each sequence, at position
i ∈ {1, . . . , n}:

1. it chooses a random position k ∈ {1, . . . , `}, to protect block mi,k;
2. it generates two equivalent versions m0

i,k,m
1
i,k, of this block (see figure E.3), resulting

in a list of `+ 1 blocks;
3. it prepends the position to the block: Mj = j‖mi,j , for j = 1, . . . , `, j 6= k, Mk =
k‖m0

i,k, M`+1 = k‖m1
i,k;

4. it chooses a random permutation π ∈ S`+1 with the restriction that the position of
the marked blocks is v1[i] = π(k) and v0[i] = π(` + 1); and permutes the blocks:
M ′j = Mπ(j).

5. it generates the session keys: (ci,j ,Ki,j)← Π.Encaps(eki,j),
6. It then encrypts the blocks under the symmetric keys: Ci,j ← (ci,j , c′i,j = EncKi,j (M ′j))

for j = 1, . . . , `+ 1.

The final ciphertext consists of all the pairs Ci,j for i = 1, . . . , n and j = 1, . . . , `+ 1.

• Decrypt(USKid, C) takes as input the key USKid = {dki,j} i=1,...,n
j 6=vwid[i][i]

and a ciphertext C =

{Ci,j}. For each sequence, at position i ∈ {1, . . . , n}:

1. it calls Π.Decaps(uskwid[i]
i,j , ci,j), for j 6= vwid[i][i], to obtain the session key Ki,j ;

2. it decrypts the message with Dec(Ki,j , c
′
i,j), which outputs M ′i,j ;

— 173 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

3. it should be able to parse the M ′i,j = pj‖mi,j , with {pj} = {1, . . . , `}, otherwise it
stops and outputs ⊥;

4. it eventually reorders the messages according to pj , and concatenates the other parts.

It concatenates the ` blocks in each sequences, and the n sequence-results to output the
full message m.

• Trace(TK, C,m) can detect the protected blocks using the decryption keys in TK. From
the block that was actually decrypted in each sequence i, it can learn the value of the bit
w[i]. Then, granted the traceability of the code T , the T .Trace(tk, w) outputs a traitor.

Remark E.2.1 The traceability of the scheme rests on the fact that a user does not know
which of the keys are common to all users and which are specific to those with the same bit
in the codeword. While a user that shares the information which positions he cannot decrypt
with other users is considered to be misbehaving and thus corrupted in our security model, the
real-life cost of sharing some of these positions is quite low. The scheme is thus susceptible to
a Pirates 2.0-attack as described in [BP09].

E.2.3 Reusing Randomness

To further reduce the ciphertext rate, we can try to reduce the size of the key encapsulation, by
reusing the random coins in all the ciphertexts of a sequence or even the complete ciphertext.

We need to make sure that the PKE scheme in the construction remains secure if randomness
us reused. If we instantiate the PKE scheme with ElGamal, we can use the results of Bellare,
Boldyreva, Kurosawa, and Staddon [BBKS07, sec. 7.1].

The only change is in the encryption:

• Encrypt(EK,m): it first splits m in n` blocks {mi,j} i=1,...,n
j=1,...,`

. For each sequence, at position
i ∈ {1, . . . , n}:

5. it draws the common randomnessR $←− R, then generates the session keys: (ci,j ,Ki,j)←
Π.Encaps(eki,j ;R),

The final ciphertext consists, as above, of all the pairs Ci,j = (ci,j , c′i,j), but where all the ci,j in
the same sequence use a common part that can be included once only.

Reusing randomness incurs a loss in the security reduction for the PKE scheme that is equal
to the number of ciphertexts that share the same randomness [BBKS07, th. 7.3]. This means
that e. g. for ElGamal, the group has to be larger. If all n` blocks share the same randomness,
then for 80-bit security, the group size needs to provide 80+log(n`) bits. To balance the increase
in the length of the group elements against the reduced number of group elements necessary, we
need to minimize the overall overhead spent for the randomness, which is equal to the number
of group elements needed times their bitlength, or n`

x |Gκ+log(x)|.

E.2.4 Security

For reasons of space, and since these constructions are not the main result of this paper, we
do not give a security proof for them. We believe that given the security proof of our final
construction, the security of the above constructions is an easy corollary.

— 174 —

E.3. A Construction With Shorter Keys

E.3 A Construction With Shorter Keys
The main disadvantage of the PKE-based construction is the length of the user keys, which
must contain a PKE key for each block. To achive shorter keys, we use a primitive that allows
encryption to either of two users or to both of them: 2-user broadcast encryption.

Our message-traceable encryption scheme makes use of codes, where the bits of the codewords
are embedded in a message by doubling some parts of it, the so-called protected blocks. Because
we do not want the adversary to learn which parts of the message contain bits of the codeword,
we need a broadcast encryption scheme where a user cannot tell whether a block is destined
only for his key or for both keys, a 2-user anonymous broadcast encryption (2ABE).

This requires the symmetric cipher used with this construction to be weakly robust[ABN10],
since one of the decapsulated keys will be either ⊥ or an unusable key. The construction uses
one instance of the 2ABE scheme Π per bit of the codeword, encrypting `+1 messages at a time
in one sequence, with the target sets determined by the positions v, w where the watermarks
are embedded. In this construction, the length of the EK and USK is n times that of Π, and
to encrypt a sequence of ` blocks, doubling one block, we need `+ 1 Π key-encapsulations plus
`+ 1 symmetrically encrypted message blocks.

E.3.1 Construction of a Message-Traceable Encryption Scheme

Our first construction combines a traceable code T with a 2ABE scheme Π. If the codewords
have length n, we need n instances of the 2ABE scheme. Given any weakly robust[ABN10]
symmetric cipher E = (Enc,Dec), a 2-user anonymous broadcast encryption Π, and a traceable
code T , we construct a message-traceable encryption scheme Ψ(`, n) as follows:

• Setup(1κ, N, t, `):

1. It first generates a (N, t, ε, n)-traceable code, using (Γ, tk) ← T .Gen(N, ε), with a
low error value ε. We thus denote n the length of a codeword in Γ, and enumerate
codewords with indices associated to each users: Γ = {wid}id=1,...,N ⊂ {0, 1}n.

2. It then calls Π.Setup(1κ, 2) n times to obtain, for i = 1, . . . , n, eki, usk0
i , usk1

i . We set

USKid ← (uskwid[1]
1 , . . . , uskwid[n]

n),

EK ← (ek1, . . . , ekn),

TK ← ({usk0
i , usk1

i }i=1,...,n, tk).

• Encrypt(EK,m): it first splits m in n` blocks {mi,j} i=1,...,n
j=1,...,`

. For each sequence, at position
i ∈ {1, . . . , n}:

1. it chooses a random position k ∈ {1, . . . , `}, to protect block mi,k;
2. it generates two equivalent versions m0

i,k,m
1
i,k, of this block (see figure E.3), resulting

in a list of `+ 1 blocks;
3. it prepends the position to the block: Mj = j‖mi,j , for j = 1, . . . , `, j 6= k, Mk =
k‖m0

i,k, M`+1 = k‖m1
i,k;

4. it chooses a random permutation π ∈ S`+1 and permutes the blocks: M ′i = Mπ(i).
We note v = π(k) and w = π(`+ 1), the positions of the two equivalent blocks;

5. it generates session keys for all the blocks, except M ′v and M ′w, with the 2ABE
scheme Π, with the full target set {0, 1}, whereas M ′v is targeted to {0} only, and
M ′w is targeted to {1} only. More precisely, it first generates the session keys:

— 175 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

(ci,j ,Ki,j) ← Π.Encaps(eki, {0, 1}), for j 6= v, w, (ci,v,Ki,v) ← Π.Encaps(eki, {0}),
and (ci,w,Ki,w)← Π.Encaps(eki, {1}).

6. It then encrypts the blocks under the symmetric keys: Ci,j ← (ci,j , c′i,j = EncKi,j (M ′j))
for j = 1, . . . , `+ 1.

The final ciphertext consists of all the pairs Ci,j for i = 1, . . . , n and j = 1, . . . , `+ 1.

• Decrypt(USKid, C) takes as input the key USKid = (uskwid[1]
1 , . . . , uskwid[n]

n) and a ciphertext
C = {Ci,j}. For each sequence, at position i ∈ {1, . . . , n}:

1. it calls Π.Decaps(uskwid[i]
i , ci,j), for j = 1, . . . , `+ 1, to obtain the session key Ki,j ;

2. it decrypts the message with Dec(Ki,j , c
′
i,j), which outputs either M ′i,j or ⊥ (because

of the robustness);
3. it should be able to parse the M ′i,j = pj‖mi,j , with {pj} = {1, . . . , `}, otherwise it

stops and output ⊥;
4. it eventually reorders the messages according to pj , and concatenates the other parts.

It concatenates the ` blocks in each sequences, and the n sequence-results to output the
full message m.

• Trace(TK, C,m) can detect the protected blocks using the decryption keys in TK. From
the block that was actually decrypted in each sequence i, it can learn the value of the bit
w[i]. Then, granted the traceability of the code T , the T .Trace(tk, w) outputs a traitor.

E.3.2 Security of the Construction

Theorem E.3.1 If the 2ABE scheme Π is IND-CPA and the symmetric encryption scheme E is
IND-CPA, then our construction Ψ(`, n) is IND-CPA, and

Advind−cpa
Ψ(`,n) (κ, τ,N, t) ≤ n · (`+ 1)×

(
2 ·Advind−cpa

Π (κ, τ1, 2) + Advind−cpa
E (κ, τ2)

)
.

Proof: Let A be an adversary against the IND-CPA-security of our construction Ψ. We provide
a bound on its advantage using a series of games. The simulator first asks for n public keys
eki, for i = 1, . . . , n, to Π.Setup(1κ, 2), and thus sends the public key EK to the adversary
A. The latter sends back two messages m0 = (m0

1,1, . . . ,m
0
1,`, . . . ,m

0
n,1, . . . ,m

0
n,`) and m1 =

(m1
1,1, . . . ,m

1
1,`, . . . ,m

1
n,1, . . . ,m

1
n,`):

• In game G0, the simulator encrypts m0, with ki the indices of the protected blocks for
sequences i = 1, . . . , n, and πi the permutations;

• In game G1, the simulator still encrypts m0, but with random keys for all the key encap-
sulations of the 2ABE scheme: with an hybrid sequence of games, we can show that the
distance between game G1 and game G0 is bounded by n(`+ 1) ·Advind−cpa

Π (κ, τ1, 2);

• In gameG2, the simulator encryptsm1, still with random keys for all the key encapsulations
of the 2ABE scheme: with an hybrid sequence of games, we can show that the distance
between game G2 and game G1 is bounded by n(`+ 1) ·Advind−cpa

E (κ, τ2);

• In game G3, the simulator encrypts m1, with ki the indices of the protected blocks for
sequences i = 1, . . . , n, and πi the permutations: with an hybrid sequence of games, we
can show that the distance between game G3 and game G2 is bounded by n(` + 1) ·
Advind−cpa

Π (κ, τ1, 2);

— 176 —

E.3. A Construction With Shorter Keys

This concludes the proof.

Before we prove traceability, we prove a lemma that will help us in the main proof. The
lemma states that no adversary can tell which blocks are not encrypted to all users, if he only
has one of the two keys, w.l.o.g. usk0

i .

Lemma E.3.2 If the 2ABE scheme Π is both IND-CPA and ANO-CPA, and the symmetric
encryption scheme E is IND-CPA, then an adversary who only has the usk0

i for a sequence i
cannot distinguish between the case where the block at position v is encrypted to the target
set {0} and the block at position w is encrypted to the target set {1} and the case where the
block at position v is encrypted to the target set {0, 1} and the block at position w contains
a random message. If we denote by Advfind

Ψ (κ, τ,N, t) the maximal advantage of any adversary
within time τ , on any index i, then

Advfind
Ψ (κ, τ,N, t) ≤ Advano−cpa

Π (κ, τ1, 2) + Advind−cpa
Π (κ, τ2, 2) + Advind−cpa

E (κ, τ3).

Proof: Let A be an adversary who can distinguish the two cases for our construction Ψ. We
provide a bound on its advantage using a series of games. The simulator first asks for n public
keys eki, for i = 1, . . . , n, to Π.Setup(1κ, 2), and thus sends the public key EK to the adversary
A, together with USKid, that corresponds to a codeword wid. The latter sends back a message
M = (M1,1, . . . ,M1,`, . . . ,Mn,1, . . . ,Mn,`). For all the sequences, except the i-th sequence, for
any i, the simulator does as in the real encryption of message M , but we denote m the sequence
Mi,1 . . .Mi,`.

• In game G0, the simulator encrypts m, with k the index of the protected block, and (v, w)
the positions of the specific ciphertexts to key 0 and key 1 respectively.

• In game G1, the simulator encrypts m, with k the index of the protected block, and (v, w)
the two above positions, but v-th block is encrypted for the two keys, and w-th block is
encrypted for the key 1 only. Since the simulator can choose the index v to be the same as
the one asked to the anonymity-game, in an indistinguishable way, the distance between
game G1 and game G0 is bounded by Advano−cpa

Π (κ, τ1, 2);

• In game G2, the simulator encrypts m, with k the index of the protected block, and (v, w)
the two above position, but v-th block is encrypted for the two keys, and a random session
key is used for the w-th block, while a key encapsulation is sent for key 1 only. Under the
semantic security of the 2ABE scheme, since the adversary does not know key 1, the two
games are indistinguishable: the distance between game G2 and game G1 is bounded by
Advind−cpa

Π (κ, τ2, 2);

• In game G3, the simulator encrypts m, with k the index of the protected block, and (v, w)
the two above position, but the v-th block is encrypted for the two keys, and at position
w, a truly random block (with no position appended) is encrypted under a random session
key, while a key encapsulation is sent for key 1 only. Under the semantic security of E , the
two games are indistinguishable: the distance between game G3 and game G2 is bounded
by Advind−cpa

E (κ, τ3).

Theorem E.3.3 Even if the adversary can drop a fraction η of the message, if the 2ABE scheme
Π is both IND-CPA and ANO-CPA, the symmetric encryption scheme E is IND-CPA, and the code

— 177 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

T is (N, t, ε, n)-traceable for FS? for a fraction δ > η of erasures, then our construction Ψ is
traceable. More precisely, one needs

(δ − η)2 ≥ 1
2 ×Advfind

Ψ (κ, τ,N, t).

Proof: We first fix some notation. Let ηi,j
def= Pr[drop(i, j)] be the probability that block j

in sequence i is dropped. We denote by η def= E[ηi,j] the global average probability of a block
to be dropped. This means that overall, n`η =

∑
i,j ηi,j blocks will be dropped. We also

consider the average in a sequence i: ηi
def= E[ηi,j]. Then η = E[ηi]. Now we consider only

the protected blocks. Analogously, let θi
def= Pr[drop(i, ki)] be the probability for the protected

block in sequence i to be dropped. The average probability of a protected block to be dropped
is θ def= E[θi]. This means that the global number of erasures (dropped protected blocks) is
nθ =

∑
i θi. We also consider the gap between protected blocks and any block, by first defining

γi
def= θi − ηi. We additionally define γ def= E[γi] = θ − η, we want to show to be small.

Let us define the subset of the sequences in which the gap γi is greater than γ − α for some α:
I

def= {i|γi ≥ γ − α}. We choose a random sequence index i ∈ {1, . . . , n}, and by the splitting
lemma [PS00, lemma 1], we know that Pr[i ∈ I] = Pr[γi ≥ γ − α] ≥ α, so with probability
greater than α, the gap γi = θi − ηi between the probabilities for the protected block and any
block in sequence i to be dropped is greater than γ − α.

We now focus on this sequence i and the sub-message m = m1 . . .m`, where mk is the protected
block. We consider the probability of the adversary to drop block k. If the adversary drops the
block k, the simulator outputs 1, otherwise the simulator outputs 0. When interacting with the
real scheme, the advantage of the simulator (defined as Pr[1← S]− Pr[0← S]) in this game is
θi − (1 − θi) = 2θi − 1. If we change the scheme so that now mk is encrypted to both parties,
and instead of doubling it, a random block is added, then the advantage is 2ηi − 1.

By lemma E.3.2, the difference between these games is bounded by Advfind
Ψ (κ, τ,N, t). We

conditioned on i ∈ I, or, equivalently, θi − ηi = γi ≥ γ − α, which happens with probability α.

2θi − 1− (2ηi − 1) ≤ 1
α
×Advfind

Ψ (κ, τ,N, t)

2(γ − α) ≤ 1
α
×Advfind

Ψ (κ, τ,N, t)

γ ≤ α+ 1
2α ×Advfind

Ψ (κ, τ,N, t)

θ ≤ (α+ η) + 1
2α ×Advfind

Ψ (κ, τ,N, t).

Then, except when it drops blocks, the adversary outputs messages for the protected blocks, and
under the assumptions we did on the marking of contents, we can detect a bit. Furthermore,
the detected bit follows the rule for the feasible set FS, and erasures (dropped blocks) extend
it to FS?. Since the code T is (N, t, ε, n)-traceable for FS? for a fraction δ of erasures, then our
construction Ψ is traceable with tracing-error probability less than ε if the average fraction θ of

— 178 —

E.3. A Construction With Shorter Keys

dropped protected blocks is less than δ: this is, if it exists α such that

(α+ η) + 1
2α ×Advfind

Ψ (κ, τ,N, t) ≤ δ

α+ (η − δ) + 1
2α ×Advfind

Ψ (κ, τ,N, t) ≤ 0

2α2 − 2(δ − η)α+ Advfind
Ψ (κ, τ,N, t) ≤ 0.

To find the minimum, we take the derivative:

4α− 2(δ − η) = 0

α = δ − η
2 .

This is possible as soon as

2α2 − 2(δ − η)α+ Advfind
Ψ (κ, τ,N, t) ≤ 0

(δ − η)2

2 − (δ − η)2 + Advfind
Ψ (κ, τ,N, t) ≤ 0

Advfind
Ψ (κ, τ,N, t) ≤ (δ − η)2

2 .

This means that we can trace as long as we choose

δ ≥ η +
√

2Advfind
Ψ (κ, τ,N, t).

E.3.3 A 2-user Anonymous Broadcast Encryption Scheme

We view the 2-key 1-copyrighted public-key encryption scheme of Kiayias and Yung [KY02c],
as a 2-user 1-collusion-secure anonymous broadcast encryption scheme (2ABE). For ease of
exposition, we model the scheme as a KEM.

Let G be a group of prime order q, with a generator g. The public parameters consist of
(G, q, g). Since we consider the 2-user case, we drop the N parameter:

• Setup(1κ) picks α, β $← Z×q . For the two user-keys one chooses d′0, d′1 ∈ Zq, and sets
usku

def= (du = α − d′u · β, d′u), for u = 0, 1. The encryption key is ek def= {(f = gα, h =
gβ), upk0 = hd

′
0 , upk1 = hd

′
1}.

• Encaps(ek, S; r) where r ∈ Z×q

– if S = {0, 1} then c = (gr, hr),K = f r

– else if S = {u} then r′ $← Z×q , and c = (gr, hr′),K = (f/upku)r × upkr′u

• Decaps(usku, c) computes K = cdu0 c
d′u
1 . This is equal to grdu × hr′d′u = (f/upku)r × hr′ . In

the latter encryption case, one gets the same session key. In the former encryption case,
since r′ = r, one also gets f r.

This is a broadcast encryption, because when S = {u} user 1 − u decapsulates differently.
Anonymity comes from the fact that a ciphertext is either a Diffie-Hellman pair, when S = {0, 1},
and a random pair in the other case.

— 179 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

E.3.4 Security of the 2ABE

Theorem E.3.4 If solving the DDH problem in the underlying group is hard, then the 2ABE
scheme presented in section E.3.3 is ANO-ACPA-secure and

Advano−acpa
2ABE (κ, τ) ≤ 4 ·Advddh(κ, τ + τ ′).

Proof: The simulator is given a tuple (g,A = ga, B = gb, C = gc). First the simulator will
guess the target set. There are only three possibilities (up to the order of the target sets). The
simulator chooses

1. {0}, {1} with probability 1/2.
In this case, we implicitly set d′u = a for a user u, and r = b for the challenge random coins.
The simulator proceeds as follows. It first flips a bit u to determine where it will embed
the challenge. It chooses random α, β

$← Z×q , and defines f = gα, h = gβ. It generates
usk1−u = (d1−u, d

′
1−u) as usual, and thus upk1−u = hd

′
1−u , but upku = A. It thus defines

ek = ((f, h), upk0, upk1). The simulator then draws a random r′ and sets the challenge
ciphertext to (B, hr′). It also returns K = BαAr

′
/C.

If the tuple (g,A,B,C) was a DH tuple, we have a ciphertext c = (gb, hr′) and a key
K = gbα+ar′−ab = (f/upku)b× upkr′u , that is for S = {u}. If the tuple was a random tuple,
then the key is random.

2. {0}, {0, 1} with probability 1/4.
In this case, we implicitly set β = a, and r = b for the challenge random coins. In this case,
the simulator knows that only user 0 can be corrupted, so it chooses the secret key for user
0 in advance and uses it to compute a group element that implicitly has a matching α.

The simulator proceeds as follows. It sets h = A, chooses random d0, d
′
0

$← Zq and
computes f def= gd0Ad

′
0 . It sets usk0 = (d0, d

′
0), upk0 = Ad

′
0 , and upk1 = X for a random

group element X. It thus defines ek = ((f,A), upk0, upk1). The challenge ciphertext is set
to c = (B,C), for the key K = Bd0Cd

′
0 .

If the tuple (g,A,B,C) was a DH tuple, we have a ciphertext c = (gb, gab = hb) and a
key K = gbd0+abd′0 = gb(d0+ad′0) = f b, that is for S = {0, 1}. If the tuple was a random
tuple, then c = (gb, gab′ = hb

′) where b′ = c/a 6= b and a key K = gbd0+ab′d′0 = gb(d0+ad′0) ×
gad
′
0(b′−b) = (f/upk0)b × upkb′0 , that is for S = {0}.

3. {1}, {0, 1} with probability 1/4.
This case is done analogously to case 2, exchanging user 0 and 1.

Theorem E.3.5 If solving the DDH problem in the underlying group is hard, then the 2ABE
scheme presented in section E.3.3 is a 2-user IND-CPA-secure BE scheme and

Advind−cpa
2ABE (κ, τ) ≤ Advddh(κ, τ + τ ′).

Proof: The simulator is given a tuple (g,A = ga, B = gb, C = gc).
If there is no corruption, a ciphertext is c = (gr, hr) for a key f r. We can implicitly set h = gx

for a known x, r = a, f = B, c = (A,Ax) and K = C, which is a real key if C is the actual
Diffie-Hellman value, or a random key otherwise.
In case of corruption, we proceed as in the cases 2 and 3 above, where u is the user for which
we know the secret key for corruption.

— 180 —

E.4. Conclusion

|EK| |USK| |PTXT| |KeyHeader| |CTXT| Ciphertext Rate
Plain ElGamal 2`nG `nG `nB 2`nG 2`nB 2 + 2G/B
Plain ElGamal + RR 2`nG `nG `nB `nG 2`nB 2 + G/B
Imp. ElGamal 2(`+ 1)nG `nG `nB 2(`+ 1)nG (`+ 1)nB 1 + 1/`+ (2 + 2/`)G/B
Imp. ElGamal + RR 2(`+ 1)nG `nG `nB (`+ 1)nG (`+ 1)nB 1 + 1/`+ (1 + 1/`)G/B
ABE-Construction 4nG 2nG `nB 2(`+ 1)nG (`+ 1)nB 1 + 1/`+ (2 + 2/`)G/B

Table E.1: Comparison

E.4 Conclusion

Table E.1 shows a comparison of several ways to do message-traceable encryption. The simplest
way is to use any public-key encryption scheme to encrypt each message block twice: two pairs
of keys are generated for each message block. Using ElGamal, we have one group element for
the key header (the key encapsulation) per message-version block: PTXT is the plaintext and
CTXT is the message-block ciphertext (data encryption). We can reduce the key header to one
group element per two versions of a block by reusing randomness. However, using this method
it is impossible to reduce the ciphertext rate below 2 without leaving some part of the message
unprotected and exposed to untraceable rebroadcasting, since each message block is encrypted
twice with the symmetric keys.

Using our construction 1, we immediately cut the number of blocks that must be sent almost
in half with only a small constant increase in the key header as compared to plain ElGamal. Our
construction 2, which reuses the randomness in the ciphertext, further shrinks the key header
that must be transmitted with every message. The cost for this is an increase in the key size by
a factor of `+ 1. But asymptotically, with growing message-block size B and constant length G
of a group element (or a scalar), the global ciphertext / plaintext ratio is 1 + 1/`, where ` is our
efficiency parameter, the number of blocks in a sequence.

E.5 Appendix

E.5.1 Definitions

Public-Key Encryption

Definition E.5.1 [Encryption Scheme] A public-key encryption scheme is a 4-tuple of algo-
rithms PKE = (Setup,KeyGen,Encrypt,Decrypt):

• Setup(1k), where k is the security parameter, generates the global parameters param of the
system;

• KeyGen(param) generates a pair of keys, the public (encryption) key ek and the associated
private (decryption) key dk;

• Encrypt(ek,m; r) produces a ciphertext c on the input message m and the public key ek,
using the random coins r (we may omit r when the notation is obvious);

• Decrypt(dk, c) decrypts the ciphertext c under the private key dk. It outputs the plaintext,
or ⊥ if the ciphertext is invalid.

The correctness requirement is that Decrypt(dk,Encrypt(ek,m)) = m if
(ek, dk)← KeyGen(param) for all parameters.

— 181 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

Such an encryption scheme is said to be (t, qD, ε)-IND-CCA-secure (semantic security against
chosen-ciphertext attacks) if in the security game presented in figure I.3, the advantage, denoted
Advind−cca

PKE (k, t, qD), of any t-time adversary A asking at most qD decryption queries to the
ODecrypt oracle is bounded by ε:

Advind−cca
PKE (k, t, qD) = max

A
{Pr[Expind−cca−1

PKE,A (k) = 1]− Pr[Expind−cca−0
PKE,A (k) = 1]}.

This definition includes IND-CPA (for Chosen-Plaintext Attacks) when qD = 0.

Expind−cca−b
PKE,A (k)

param← Setup(1k);
QD ← ∅, (ek, dk)← KeyGen(param);
(state,m0,m1)← AODecrypt(·)(FIND; param, ek);
c∗ ← Encrypt(ek,mb);
b′ ← AODecrypt(GUESS, state; c∗);
if c∗ ∈ QD then return 0;
else return b′;

ODecrypt(c)
QD ← QD ∪ {c};
m← Decrypt(dk, c);
return m;

Figure E.4: PKE : Semantic Security against Chosen-Ciphertext Attacks (IND-CCA)

Anonymous Broadcast Encryption

Anonymous broadcast encryption (ABE) allows to address a message to a subset of the users,
without revealing this target set even to users who successfully decrypted the message. We
define an ABE as a key encapsulation mechanism (KEM), following the definitions found in
[PPS11, LPQ12], and we focus again on the static case:

• Setup(1κ, N), where k is the security parameter, and N the number of users, generates
the global parameters param of the system (omitted in the following), N user secret keys
{uski}i=1,...,N , and an encryption key ek.

• Encaps(ek, S; r) takes as input the encryption key ek, the target set S ⊂ {1, . . . , N}, and
some random coins r (which are sometimes omitted). It outputs a session key K, and an
encapsulation c of K;

• Decaps(uski, c) takes as input a decryption key and a ciphertext c. It outputs the session
key K, or the error symbol ⊥.

For correctness, we require that for any c that encapsulates a key K for a target set S, if i ∈ S,
then Decaps(uski, c) outputs K. Then, semantic security and anonymity should be satisfied.

Definition E.5.2 [Semantic security] An anonymous broadcast encryption (ABE) scheme Π is
said to be (τ,N, qC , qD, ε)-IND-ACCA-secure (semantic security against adaptive corruption and
chosen-ciphertext attacks) if in the security game presented in figure E.5, the advantage, denoted
Advind−acca

Π (κ, τ,N, qC , qD), of any τ -time adversary A corrupting at most qC users (OCorrupt
oracle), and asking for at most qD decryption queries (ODecrypt oracle), is bounded by ε:

Advind−acca
Π (κ, τ,N, qC , qD) = max

A
{Pr[Expind−acca−1

Π,A (κ,N) = 1]− Pr[Expind−acca−0
Π,A (κ,N) = 1]}.

This definition includes IND-ACPA (for Chosen-Plaintext Attacks) when qD = 0, and thus we
denote the advantage Advind−acpa

Π (κ, τ,N, qC). When no corruption is allowed, we denote the
advantage Advind−cpa

Π (κ, τ,N).

— 182 —

E.5. Appendix

ODecrypt(i, c)
QD ← QD ∪ {(i, c)};
K ← Decaps(uski, c); return K;

OCorrupt(i)
QC ← QC ∪ {i};
return uski;

Expind−acca−b
Π,A (κ,N)

({uski}, ek)← Setup(1κ, N); QC ← ∅; QD ← ∅;
(state, S)← AODecrypt(·,·),OCorrupt(·)(FIND; ek);
(K1, c

∗)← Encaps(ek, S); K0
$←− K

b′ ← AODecrypt(·,·),OCorrupt(·)(GUESS; state,Kb, c
∗);

if ∃i ∈ S : (i, c∗) ∈ QD or S ∩QC 6= ∅
then return 0; else return b′;

Expano−acca−b
Π,A (κ,N)

({uski}, ek)← Setup(1κ, N); QC ← ∅; QD ← ∅;
(state, S0, S1)← AODecrypt(·,·),OCorrupt(·)(FIND; ek);
(K, c∗)← Encaps(ek, Sb);
b′ ← AODecrypt(·,·),OCorrupt(·)(GUESS, state;K, c∗);
if ∃i ∈ S04S1 : (i, c∗) ∈ QD or (S04S1) ∩QC 6= ∅
then return 0; else return b′;

Figure E.5: Security games for ABE

Definition E.5.3 [Anonymity] An anonymous broadcast encryption (ABE) scheme Π is said
to be (τ,N, qC , qD, ε)-ANO-ACCA-secure (anonymity against adaptive corruption and chosen-
ciphertext attacks) if in the security game presented in figure E.5, the advantage, denoted
Advano−acca

Π (κ, τ,N, qC , qD), of any τ -time adversary A corrupting at most qC users (OCorrupt
oracle), and asking for at most qD decryption queries (ODecrypt oracle), is bounded by ε:

Advano−acca
Π (κ, τ,N, qC , qD) = max

A
{Pr[Expano−acca−1

Π,A (κ,N) = 1]−Pr[Expano−acca−0
Π,A (κ,N) = 1]}.

This definition includes ANO-ACPA (for Chosen-Plaintext Attacks) when qD = 0, and thus we
denote the advantage Advano−acpa

Π (k, τ,N, qC). When no corruption is allowed, we denote the
advantage Advano−cpa

Π (κ, τ,N).

— 183 —

Chapter E. Message Tracing with Optimal Ciphertext Rate

— 184 —

Appendix F

Traitors Collaborating in Public:
Pirates 2.0

EUROCRYPT 2009
[BP09] with Olivier Billet

Abstract : This work introduces a new concept of attack against traitor tracing schemes. We
call attacks of this type Pirates 2.0 attacks as they result from traitors collaborating together in
a public way. In other words, traitors do not secretly collude but display part of their secret keys
in a public place; pirate decoders are then built from this public information. The distinguishing
property of Pirates 2.0 attacks is that traitors only contribute partial information about their
secret key material which suffices to produce (possibly imperfect) pirate decoders while allowing
them to remain anonymous. The side-effect is that traitors can publish their contributed infor-
mation without the risk of being traced; giving such strong incentives to some of the legitimate
users to become traitors allows coalitions to attain very large sizes that were deemed unrealistic
in some previously considered models of coalitions.

This paper proposes a generic model for this new threat, that we use to assess the security
of some of the most famous traitor tracing schemes. We exhibit several Pirates 2.0 attacks
against these schemes, providing new theoretical insights with respect to their security. We also
describe practical attacks against various instances of these schemes. Eventually, we discuss
possible variations on the Pirates 2.0 theme.

F.1 Introduction
Traitor tracing is a cryptographic primitive introduced by Chor, Fiat, and Naor in [CFN94b] in
the context of secure content distribution. This context covers for instance multimedia content
rental, or broadcasting to a very large number of subscribers like in pay-TV systems, mass
distribution of high value DVDs, or in web-based distribution of various multimedia contents.
In all of these settings, the content is encrypted before its distribution in order to prevent illegal
access which helps ensuring the revenues of the distributor. To decrypt the content, every
legitimate user is provided with a decryption means, commonly called decoder. The main issue
faced by the distributor is the construction and dissemination of unauthorized decoders, possibly
creating a parallel market.

— 185 —

Chapter F. Traitors Collaborating in Public: Pirates 2.0

Hardware tamper resistant solutions are often too expensive compared to the price of the
offered services. Furthermore, it would not prevent an organization from breaking into one box
and extracting the necessary information to build and resell unauthorized decoders.

This is where traitor tracing schemes step into the game: the key material embedded in the
decoders is diversified on a user basis. Thus, decoders are ‘marked’ with the identity of the
user and traitor tracing allows the authority to trace a user that produced a pirate decoder.
Such users, called traitors, are more powerful when they collude to create a pirate decoder. In
this case, traitor tracing should allow the tracing of at least one of the traitors that took part
in the coalition. A trivial solution to the problem of traitor tracing is to provide every user
with a randomly chosen key that identifies him and encrypt the content as many times as there
are users in the system. Obviously, such a solution is totally impracticable due to bandwidth
restrictions. Hence, bandwidth preservation in traitor tracing schemes is of crucial importance.

Since the seminal work of Chor, Fiat, and Naor, there have been several proposals and
improvements in traitor tracing schemes. We give a few landmarks of the work in traitor tracing
but this list is of course not exhaustive. Boneh and Franklin exposed an elegant algebraic
construction coming with a deterministic tracing procedure in [BF99b]. Fiat and Tassa proposed
a way to dynamically remove traitors from the system once they are caught, see [FT99]. Kiayias
and Yung gave a powerful method to turn black-box tracing against stateless decoders into
black-box tracing against stateful decoders in [KY02b]. In [BSW06b], Boneh, Sahai, and Waters
introduced a full collusion traitor tracing scheme with sub-linear ciphertext size and constant
size private keys. Traitor tracing schemes based on codes have been much investigated since
the seminal work of Boneh and Shaw [BS95]: Kiayias and Yung [KY02c] proposed a scheme
with constant rate, [CPP05a, Pfi96] relaxed the assumption that the tracer is a trusted third
party, and [BP08, BN08b] recently achieved constant size ciphertexts. Among the most famous
traitor tracing schemes are schemes from the NNL framework [NNL01] as they were used as a
basis to design the widely spread content protection system for HD-DVDs and Blu-ray disks
called AACS [AACa]. These are not exactly traitor tracing schemes, but rather very efficient
broadcast encryption schemes with some black-box tracing abilities.

Pirates 2.0 attacks are primarily targeted to code based schemes and schemes from the NNL
framework, but might be used against other combinatoric schemes.

F.1.1 Collaborative Traitors: Pirates 2.0

From the point of view of the attack model for traitor tracing schemes, there has been no
radical change since the introduction of the concept in [CFN94b]. One remarkable exception
is Pirate Evolution from [KP07] which exposes a new threat against trace and revoke schemes
such as [NNL01]. In this paper, we introduce another new threat that we call Pirates 2.0 against
both traitor tracing schemes and the trace and revoke schemes from [NNL01].

The main characteristics of our new Pirates 2.0 threat are as follows:

Anonymity Guarantee: Traitors that participate in a Pirates 2.0 attack are provided with a
guarantee (through the exhibition of a mathematical proof) that they cannot be traced by
the authority.

Partial Contributions: Traitors never need to reveal their whole secret key.

Public Collusions: Traitors operate in a public environment: they publish secret data from
their decoders.

Large Coalitions: Traitors take part in unusually large coalitions.

Dynamic Coalitions: Traitors can come into action only when necessary.

— 186 —

F.1. Introduction

The anonymity guarantee together with considerations on imperfect decoders makes the basis
of our attack scenario and everything else heavily relies on it. The anonymity guarantee indeed
gives strong incentives to potential traitors to actually take the plunge: With ubiquitous access
to the Internet, leaking secret data, say, in a peer-to-peer network without further action can
be done very quickly and in a straightforward way. This makes it an appealing scenario among
the ever growing [Ele, Def, Sto] set of users hostile to the currently deployed Digital Rights
Management systems (DRM). The characteristic that large coalitions can easily be achieved is
therefore a direct consequence of the fact that traitors are guaranteed not to be traced by an
authority.

Considerations on imperfect decoders are the other determinant ingredient: A pirate de-
coder is considered to be useful if it can decrypt (resp. decrypt with a high probability) valid
ciphertexts; such a pirate decoder is called perfect (resp. imperfect) decoder. In previous work,
it is assumed that a pirate decoder always decrypts ciphertexts from the tracer when it is not
able to detect the presence of the tracing procedure, i.e. it is assumed that the pirate decoder
is either perfect or only slightly imperfect. This assumption makes sense in the classical model
of coalitions since any coalition, knowing at least one legitimate key, is able to decrypt all valid
ciphertexts anyway. However, in the Pirates 2.0 setting, we show that another trade-off is possi-
ble for the pirates when the scheme uses variable length ciphertexts: the pirate decoder is only
required to decrypt ciphertexts reasonably shaped. As an example of this scenario, consider the
NNL scheme where the expansion of valid ciphertexts can vary a lot: A pirate decoder that can
decrypt ciphertexts of size lower than, say 1 GB, is highly imperfect, but still useful to pirates.

In this paper, we show that some traitor tracing schemes and trace and revoke schemes
(including the NNL scheme from [NNL01] and code based schemes) are susceptible to Pirates 2.0
attacks. We give several practical attacks against various instances of such schemes, most
notably against the AACS. We then derive the theoretical implications for all these traitor
tracing schemes.

F.1.2 Comparing Pirates 2.0 and the Classical Setting

We summarize below the main differences between our new attack model and the classical one:

Motivation: The classical model for coalitions captures the fact that pirates might invest some
amount of money in order to sell unauthorized decoder to the black market. In the case
of Pirates 2.0, the motivation might be to get rid of a protection system to which a large
number of users are hostile. In the history of DVDs for instance, the main motivation to
crack the system came from compatibility issues: the protection was thought to be too
restrictive.

Static vs. Adaptive: The classical model of pirates is static. The coalitions consist of ran-
domly chosen decoders. Therefore it is not possible to bias the collection process. In a
Pirates 2.0 attack, traitors are able to contribute information adaptively, that is, depending
on the current state of affair at the moment of the contribution. Therefore, even if during
the publication process each traitor operates isolated (i.e. without communication with
the other traitors), having access to published information at the time of the contribution
makes it a collaborative process.

Anonymity: In the classical model of coalitions, traitors colluding must trust each other, or
at least, one third party (say the pirate who collects the secret data). In contrast, the
Pirates 2.0 attack only requires that the partial secret information provided by the traitors
guarantees their anonymity.

— 187 —

Chapter F. Traitors Collaborating in Public: Pirates 2.0

Size of Coalitions: In the classical models, one usually assumes a small number of traitors
(especially for combinatorial schemes like those relying on codes or those based on trees).
This assumption seems reasonable in the classical model because each traitor must trust a
third party and even in the case of an isolated traitor, getting a large number of decoder
legally might be very expensive. In Pirates 2.0, this assumption becomes wrong, since the
traitors guaranteed to remain anonymous can form a very large coalition.

F.2 Formalization of Pirates 2.0

There are many possible settings for a Pirates 2.0 attack. For instance, the construction of
a pirate decoder can be active or passive. In the active case, the contributions made by the
traitors are driven by the pirate upon building the pirate decoder. In the passive case, the
traitors contribute information at their discretion. In this work, we focus on the last of these
scenarios which leaves more freedom to the traitors and makes the attack even more realistic.

Also, there are two possible ways of collecting the information contributed by the traitors: in
a centralized way or in a distributed way. Again, the distributed way leads to a stronger attack
with less constraints in practice: traitors can easily use peer-to-peer networks to contribute their
information, whereas a centralized server is more susceptible to shut down by legal action. We
therefore choose to focus on the distributed setting, though in some cases, assuming a centralized
entity like a pirate server would render the work of contributing for the traitors and of building
a pirate decoder easier than in a peer-to-peer network. In the rest of the paper, we point out
where it is relevant to use the facilities that a pirate server would provide.

F.2.1 A Setting for Pirates 2.0

We now describe several concepts that we use in the Pirates 2.0 setting:
Traitors and Pirates. As usual, a traitor is a legitimate user in possession of some secret

data that we call his secret key and who leaks part of this secret key. Pirates are not legitimate
users: they are not entitled to secret data but are able to collect relevant information from their
public environment in order to produce a pirate decoder. We naturally assume that pirates and
traitors respectively collect and contribute information in a stateful way: a traitor keeps track
of (all) the information he contributed to the public, whereas both pirates and traitors can keep
track of all of the information that was contributed to the public.

Contributed Information. The contributed information is the sum of information that
was put into the public domain by the traitors at a given point in time, i.e. the secret data
leaked from the system. The current contributed information at any point in time is denoted
by C. Initially, C = ∅.

Traitor’s Strategy. A traitor’s strategy is a publicly available probabilistic algorithm
Contribute that traitors execute to provide information to pirates. A traitor’s strategy comes
with a certificate that information leaked following this strategy allows the traitors to preserve
some anonymity level. Traitors might in principle use different strategies, but for simplicity we
only consider in the following the case where all traitors implement the same strategy.

The strategy Contribute, takes as input the traitor’s secret key sk, some information I already
contributed by other traitors (for instance the set C of all contributed information at the time
Contribute is run) as well as the history H of the contributions made by the traitor. The
traitor’s strategy returns Contribute(sk, I,H) as the traitor’s contribution to the public. (And
therefore, the overall information contributed to the public C is accordingly updated: C ←
C ∪ Contribute(sk, I,H).)

Public Information. The public information P consists of all the public data available

— 188 —

F.2. Formalization of Pirates 2.0

from the broadcaster (such as for instance its public key, the public key of users if any, etc.)
together with the contributed information C.

Anonymity Level. The public procedure Anonymity provides the level of anonymity
Anonymity(sk, S,P) of a traitor with the secret key sk who leaked an information S (which
corresponds to the sum of all his contributions) following a public strategy (we refine this notion
later on by using extraction functions). The anonymity level output by the procedure corre-
sponds to the uncertainty on the traitor’s identity from the tracing authority point of view when
provided with the sequence of contributed information S. At level 1 the traitor is known, while
at level N , the traitor is undistinguishable from another user.

Pirate Decoder. We think of a pirate decoder as the output of an algorithm called Pirate.
If the amount of information available from P is large enough, Pirate produces a pirate de-
coder Pirate(P) and simply outputs ‘failed’ otherwise.

In the following we assume that the contribution of secret data to the public domain C by
the traitors is a discrete process.

Definition F.2.1 [Security against Pirates 2.0] A traitor tracing scheme is said to be α−secure
against Pirates 2.0 if it prevents the construction of pirate decoders from information published
by traitors with an anonymity level greater than α.

Note that not all traitor tracing (or trace and revoke) schemes are susceptible to Pirates 2.0
attacks. On the other hand, even fully collusion resistant schemes might be at risk as Pi-
rates 2.0 attacks allow highly imperfect decoders: decoder can refuse to decrypt classes of
specific ciphertexts—e.g. depending on their size. As we will show in the next sections, some
of the most famous schemes, including the one used in the AACS, are susceptible to our new
attack strategy.

F.2.2 A Concrete Treatment of Anonymity Estimation

The basic idea behind Pirates 2.0 attacks is that traitors are free to contribute some piece
of secret data as long as several users of the system could have contributed exactly the same
information following the same (public) strategy: this way, they are able to remain somewhat
anonymous. The anonymity level is meant to measure exactly how anonymous they remain.

Definition F.2.2 [Extraction Function] An extraction function is an efficiently computable
function f that outputs information about the secret key.

Definition F.2.3 [Masked Traitor] A traitor t is said to be masked by a user u for an extraction
function f if f(sku) = f(skt).

This notion of a traitor being masked by another user in the system is the basic undistinguisha-
bility notion that allows us to estimate the level of anonymity of a traitor after his contribution:

Definition F.2.4 [Anonymity Level] The level of anonymity of a traitor t after a contribu-
tion ∪1≤i≤nfi(skt) is defined as the number α of users masking t for each of the n extraction
functions fi simultaneously:

α = #{u | ∀i, fi(skt) = fi(sku)} .

In the previous definitions, we use the equality between each extraction function fi to derive
the anonymity level. One can wonder why not simply consider equality between the global
information leaked by a traitor and the global information another user u could extract like

— 189 —

Chapter F. Traitors Collaborating in Public: Pirates 2.0

∪ifi(skt) = ∪jgj(sku) with any set of extraction functions {gj}. The answer is that we do
not want to keep the traitor strategy secret and therefore, the authority can, at least from a
theoretical point of view, use its knowledge of the set of extraction functions {fi} used by the
traitors to gain additional information and to trace the traitors. (It might well be that there
exists another user u such that ∪ifi(skt) = ∪jgj(sku) holds, but ∪ifi(skt) = ∪ifi(skv) would
have been impossible for any user v other than t.)

F.3 Pirates 2.0 and the Subset-Cover Framework

The subset-cover framework proposed by Naor, Naor, and Lotspiech in [NNL01] is a powerful
tool to design efficient trace and revoke systems. It captures many previously proposed traitor
tracing systems and forms the basis of the so called NNL scheme used in the content protection
system for HD-DVDs known as AACS [AACa]. However, as we show in this section, this scheme
is susceptible to our attack and we explain how to defeat the AACS system.

F.3.1 Brief Description of the Subset-Cover Framework

The subset-cover framework is a powerful means to capture several trace and revoke designs. It
encompasses several traitor tracing schemes proposed to date and maybe even more importantly,
serves as the basis for two of the most efficient trace and revoke schemes: the complete subtree
scheme and the subset difference scheme.

In the subset-cover framework, the set N of users in the system is covered by a collection of
subsets Si such that ∪iSi ⊃ N and Si∩N 6= ∅. This covering is not a partition of N and the sets Si
rather overlap. To every subset Si corresponds a long term secret key Li, and every user that
belongs to Si is provided with this secret key—or in an equivalent way, with some material that
allows him to derive this secret key. Therefore, every user u of the system is given a collection
of long term keys {Lik} that together form his secret key which we denote by sku.

In order to broadcast some content M , the center uses a standard hybrid scheme: a session
key K is first drawn randomly and used to encrypt (with an encryption scheme E′) the content,
before being encrypted under multiple long term keys (with another encryption scheme E). The
long term keys Lik , k = 1, . . . , l are chosen so that the corresponding subsets Si1 , . . . , Sil only
cover the set of users entitled to decrypt. Therefore, the center broadcasts ciphertexts of the
form: [(

i1, ELi1 (K)
)
,
(
i2, ELi2 (K)

)
, . . . ,

(
il, ELil (K)

)
‖ E′K(M)

]
To decrypt, a valid decoder for user u performs the following sequence of operations: It first
looks for an index ij in the first element of each of the l couples (ik, Eik(K)) in turn such that
Sij ⊂ sku. If no index correspond, the decoder does not decrypt; otherwise, the decoder retrieves
the corresponding long term key Lij and uses it to decrypt the associated encrypted session key
Eij (K) and then decrypts the payload E′K(M).

Since the system is built to handle revoked users, let us also denote by R the set of revoked
users in the system at any point in time. In order to prevent them (independently, but also
working together as a coalition) from accessing the encrypted content E′K(M), the collection
Si1 , . . . , Sil is specially crafted so that:

l⋃
k=1

Sik = N \ R .

The tracing procedure. Now that we showed how the system deals with revoked users, we
have to describe the way it disables pirate decoders. As is usual, the tracing procedure works

— 190 —

F.3. Pirates 2.0 and the Subset-Cover Framework

with black-box access to the pirate decoder only. The idea is to refine the covering initially used
to broadcast ciphertexts so that the pirate decoder cannot decrypt with probability p higher
than some threshold. To this end, the authors of [NNL01] suggest to use an hybrid argument:
the pirate box is provided with “ciphertexts” with payload E′K(M) and headers of type j (for
j = 1, . . . , l): (

i1, ELi1 (R)
)
, . . . ,

(
ij , ELij (R)

)
,
(
ij+1, ELij+1

(K)
)
, . . . ,

(
il, ELil (K)

)
where R is some randomly chosen element independent from K. If we denote by pj the prob-
ability that the pirate box correctly decrypts the specially crafted ciphertexts of type j, there
must exist an index t such that |pt − pt−1| ≥ p

l and therefore some traitor belongs to Sit . The
tracer then iterates this basic procedure, applying it to an arbitrary covering of Sit until either
Sit contains a single element (which thus matches a traitor) or the pirate box cannot decrypt
above the threshold (and no one is accused of being a traitor, but the new partition renders the
pirate box useless).

The authors of [NNL01] showed that this tracing procedure is correct as soon as the revo-
cation scheme satisfies a so-called “bifurcation property”: every subset can be split into two
subsets of roughly the same size. As we will see, this is the case for the two schemes complete
subtree and subset difference.

F.3.2 General Attack Strategy against Subset-Cover Schemes

The generic process for the attack is relatively simple and runs in a few steps:

Elaborating the strategy
The main idea is to select a collection of subsets Sι1 , . . . , Sιw such that:

• The number of users in each subset Sιk is large, so that the anonymity level of the
traitors is guaranteed to remain high enough when they contribute the associated
long term key Lιk ;
• For any set R of revoked users and any method used by the broadcaster to partition

N\R into subsets Si1 , . . . , Sim , the probability that one of the subsets Sιk belongs to the
partition Si1 , . . . , Sim is high—say exceeds a given threshold τ—or the broadcaster
exceeds its available bandwidth.

Contributing data
Let us define the extraction functions fi to be fi(sk) = Li if Li ∈ sk and ‘missing’
otherwise. To contribute part of his private key skt, a traitor t performs the following
sequence of lookups: for each index i from {ι1, ι2, . . . , ιw} (taken in any order) the traitor
computes C = fi(skt) and if C 6= failed and C 6∈ P returns and outputs C. The
information H about skt that the traitor already contributed to the public is included in
the argument list so that the contribution is Contribute(skt,P, H).

Building pirate decoders
A pirate decoder simply embeds the public keys Lι1 , . . . , Lιw . Upon reception of a cipher-
text [(

i1, ELi1 (K)
)
,
(
i2, ELi2 (K)

)
, . . . ,

(
il, ELil (K)

)
‖ E′K(M)

]
from the center, the pirate checks whether {ι1, . . . , ιw} ∩ {i1, . . . , im} = ∅. If not, that is if
there is an index ιk = il in both sets (which was assumed to occur with high probability),
the pirate box recovers the corresponding key Lιk , uses it to decrypt the session key K
from ELil (K), and therefore is able to correctly decrypt the payload.

— 191 —

Chapter F. Traitors Collaborating in Public: Pirates 2.0

S1

S2

S3

S5

S6

S4

node hanging off the Steiner tree node covered by one Si node of a revoked user

Figure F.1: Complete subtree: leaves correspond to users, S1, . . . , S6 is the covering that
excludes revoked users in black while allowing other users to decrypt derived from the Steiner
tree associated to the set of revoked users R.

Anonymity

The level of anonymity of a given traitor t in a subset cover scheme is related to the number
of users of the system that know the complete list of subsets St1 , . . . , Stl for which the
traitor contributed the keys Lt1 , . . . , Ltl to the public.

F.3.3 Pirates 2.0 against the Complete Subtree Scheme

The complete subtree scheme. In this scheme, the users correspond to the leaves of a
complete binary tree whereas the collection of subsets Si exactly corresponds to all the possible
subtrees in the complete tree. When |N| = 2n, the complete binary tree is of length n and there
are exactly n subtrees that contain a given leaf. Figure F.1 shows a covering using six subsets of
twelve users that excludes four revoked users (depicted in black). This subset scheme complies
with the bifurcation property since any subset (or equivalently any subtree of the complete
binary tree) can be split into two subsets of equal size (the two subtrees rooted at the two
children of the root of the original subtree). Regarding key assignment, each user represented
by a leaf u in the complete binary tree is provided with the keys Li associated to the nodes i on
the path from the leaf u to the root.

Covering algorithm. In the case of the complete subtree, the covering used to exclude the
r = |R| revoked users from N is the collection of subsets that hang off the Steiner tree of the
revoked leaves. (The Steiner tree of the revoked leaves is the minimal subtree of the complete
binary tree that connects all the revoked leaves to the root and it is unique.) Since any user
only knows the keys from its leaf to the root and since this path is included in the Steiner
tree for revoked users, these users cannot decrypt anymore. This algorithm produces covers of
size O(r log(N/r)).

We now give a version of our attack against subset cover schemes in the case of the complete
subtree scheme:

Theorem F.3.1 On average, a randomly chosen group of ρ log ρ traitors (operating isolated) is
able to mount a Pirates 2.0 attack against a complete subtree scheme in which the center wants
to ensure a ciphertext rate1 of at most ρ(N − r)/N . Moreover, each traitor is guaranteed an
anonymity level of N/ρ.

Proof: For simplicity we assume that no collision occurs during the contribution process (the
traitors contribute sequentially, although in a completely random way, their share of secret data)
and that the contribution of a traitor is readily available to the public. (It is obviously possible

1the ciphertext rate is the number of subsets used by the center

— 192 —

F.3. Pirates 2.0 and the Subset-Cover Framework

to deal with these refinements by considering statistical processes instead and then bounding
the loss in efficiency that would occur in such a general case.)

Following the general attack strategy described in the previous section, define Sι1 , . . . , Sιw to be
the subsets corresponding to all the subtrees of the complete tree having more than N/ρ leaves
so that for each ιk more than N/ρ users share the corresponding long term keys Lιk . These
subsets also correspond to all the nodes between level 0 (the root) and the level λ = blog ρc
and thus, there are w = 2bρc of them. Then, a traitor contributing one of the Lιk at level λ
together with every Lιj on the path from node ιk to the root has a level of anonymity2 higher
than N/ρ. (As mentioned above, more than N/ρ users share the key Lιk and moreover the same
users also know about Lιi for every node ιi on the path from node ιk to the root because of the
assignment scheme.) Now, the number of traitors needed to collect the bρc long term keys (and
those above) is given by the answer to the classical coupon collection problem: to collect all the
m possible items when one receives a uniformly chosen item at each draw requires m logm draws
on average. This demonstrates the first part of the theorem.

It only remains to show that either a pirate is able to produce a working decoder, or the center
uses too much bandwidth (the ciphertext rate is bigger than ρ). Let r be the number of revoked
users. Let us assume that the broadcaster only uses subsets rooted at a level l ≥ λ since
otherwise the priate decoder is able to decrypt the ciphertexts. Now every subset can cover at
most N/2λ users so that ρ(N − r)/N of them are needed to cover the N − r legitimate users.

Theoretical and practical impact. From a theoretical point of view, Theorem F.3.1 shows
that instead of the O(r log(N/r)) complexity that was first derived, the bandwidth required for
the complete subtree scheme to operate securely actually is O(ρ(N − r)/N + r log(N/r)) for a
number of ρ log ρ traitors taking part in a Pirates 2.0 attack.

From a practical point of view, we note that we assumed that every long term key can be
leaked by at least one traitor. For a system accommodating 232 users and a long term key at
the 12th level, this assumption translates into the fact that among a million of users there is at
least one that takes the step of contributing it to the public (with the guarantee of remaining
anonymous!); this hypothesis seems reasonable to us.

Also, note that even in the case where one long term key is not contributed by any user,
the attack remains valid: the pirate box will not be able to decrypt only with a very small
probability.

F.3.4 Pirates 2.0 against the Subset Difference Scheme

The subset difference scheme has been introduced to lower the number of subsets required to
partition the set of legitimate users N \ R. It improves on the complete subtree scheme exposed
above by a factor of log(N/r) in terms of bandwidth usage for the headers.

To attain this level of performance, the number of possible subsets has been tremendously
increased. Remember that Si denotes the full binary subtree of the complete binary tree rooted
at node i. Now, for each node j in Si different from i, let us denote by Si,j the binary subtree
rooted at node i of which the full binary subtree rooted at node j has been removed. (See
examples in Figure F.3.) A user will need to know all the keys Li,j such that he belongs to
the subtree rooted at i but not in the subtree rooted at j. However, it would be impossible
for each device to store such a huge number of long term keys. This is why a key derivation
procedure has been designed to allow the derivation of most of the O(N) long term keys a

2having a lot of revoked users in the subtree does not affect the level of anonymity: revoked users know the
keys on their path to the root and could have contributed them as well. This, however, affects the decryption
threshold of the pirate decoder

— 193 —

Chapter F. Traitors Collaborating in Public: Pirates 2.0

u

Figure F.2: Key assignment. User u receives all the labels LABELi,j such that i is a parent of j
and i is on the path from the leaf of u to the root.

S4,19 S5,10

S3,28

Figure F.3: Subset difference: leaves correspond to users and black nodes are not able to derive
the necessary information to decrypt. Therefore S4,19 prevents user 19 from decrypting, S5,10
prevents users 20 and 21 from decrypting, and S3,28 prevents user 28 from decrypting. All other
users are able to decrypt.

user is entitled from a much smaller set of keys: a user only needs to store O(log2(N)) keys.
Each node i in the full binary tree is first assigned a random label LABELi and labels LABELi,j
together with their corresponding long term keys Li,j are deduced (in a pseudo-random way)
from label LABELi. The key derivation procedure then works as follows: from each LABELi, a
pseudo-random value LABELi,j is obtained for each sub-node j using the tree based construction
proposed by Goldreich, Goldwasser, and Micali [GGM84]; from this value, a long term key Li,j is
eventually deduced (in a pseudo-random way). Each user is then provided with labels LABELi,j
for all nodes i that are on the path from the leaf that represents the user to the root, and all
nodes j hanging off this path as described on Fig. F.2. This key assignment ensures that every
user in the subtree rooted at node i but not in the subtree rooted at node j is able to derive Li,j
while every user in the subtree rooted at node j is not able to derive Li,j .

Covering algorithm. The covering algorithm works by maintaining a subtree T of the Steiner
tree of R and removes nodes from it at each steps:
init: Make T the Steiner tree of R.
select: If there is only one leaf vk in T and it is not the root (or node 0), add the subset S0,k

and return. If there is only the root in T , return. Otherwise, select two leaves vj1
and vj2 from T so that their least common ancestor v does not contain any other
leave of T than vj1 and vj2 . Call vi1 and vi2 the children of v such that vi1 is the
ancestor of vj1 and vi2 the ancestor of vj2 . Then, if vi1 6= vj1 add Si1,j1 to the partition
and similarly if vi2 6= vj2 add Si2,j2 to the partition. Remove all the descendants of v
from T , which makes v a leaf of T . Reiterate the step ‘select’.

An example output of this procedure is shown in Figure F.3.

Theorem F.3.2 On average, a randomly chosen group of ρ log ρ traitors (operating isolated) is
able to mount a Pirates 2.0 attack against a subset difference scheme in which the center wants
to ensure a ciphertext rate of at most ρ(N − r)/N . Moreover, each traitor is guaranteed a level
of anonymity of at least N/2ρ.

Proof:

— 194 —

F.3. Pirates 2.0 and the Subset-Cover Framework

Figure F.4: Direct labels

In the following proof we make use of labels of a special type, that we call direct labels. Direct
labels are LABELi,j such that the node j is a direct descendant of the node i. The first six direct
labels of the tree are described in the figure F.4.
First, note that a pirate knowing all the keys Li,j where the node i lies in the first λ = blog ρ

2c
levels, is able to decrypt all the ciphertexts where the rate is lower than ρ(N − r)/N where r is
the number of revoked users. Indeed, the broadcaster must use subsets Sk,l where the node k
does not lie in the first λ levels in order to prevent the pirate from decrypting the ciphertexts.
Since each of these subsets covers less than N/2λ+1 users (those who are in the subtree rooted
at node k), the center must use at least ρ(N − r)/N subsets to cover all the legitimate users.
Collecting all the keys rooted at a level l ≤ λ is however totally unpractical since there are
a tremendous number of such keys. The pirate can nevertheless go around this difficulty by
collecting labels LABELi,j instead of keys Li,j and using the derivation procedure to lower the
minimum information to be kept: the labels that users possess allow to derive a large number
of keys. Therefore, we claim that it is enough for the pirate to collect all direct labels LABELi,j
where i is located in the first λ levels in order to derive all keys Li,k. (Once the pirate knows
the two direct labels at node i, he can derive all keys Li,k where k is in the subtree rooted at i.)
To prove the theorem, we show that on average, ρ log ρ randomly chosen traitors are able to
contribute all the direct labels of the first λ levels. Each traitor contributes all his direct labels
LABELi,j for the nodes i located in the first λ levels. Note that at each level, a traitor has been
assigned exactly one of the direct labels. Thus, when all direct labels at level exactly λ have been
contributed, so have the direct labels of all the first λ− 1 levels. As a randomly chosen traitor
knows a uniformly chosen direct label out of the ρ

2 direct labels of level λ, a randomly chosen
group of ρ log ρ traitors (operating isolated) is able to contribute all direct labels LABELi,j where
i is located in the first λ levels.
Moreover, such traitors share their contribution with every user in the same subtree rooted at
level λ+ 1: each traitor is covered by N/ρ users.

Remark F.3.3 Theorem F.3.2 is proven in the case of static attacks: traitors submit informa-
tion non-adaptively, such as in a peer-to-peer scenario. However, the number of required traitors
to mount a Pirate 2.0 attack can be lowered to ρ in the case of an adaptive attack such as in a
server-based scenario.

Impact on AACS. In the case of AACS, the subset difference scheme is used with N =
231 users. The header is written in a so-called Media Key Block or MKB for short which
(among other) encodes the indices for the difference subsets as well as the media key encrypted
once for each of the corresponding long term keys. These keys are 16 bytes long and the indices
are encoded using 5 bytes. According to Section 3.2.5.5 of AACS specifications [AACb]: “For
the purposes of designing performance, a one megabyte buffer is sufficient to process the MKB.”
Although this is not an intrinsic limitation of the system, very large MKBs would decrease the
performances of hardware devices and would increase their price. This is why applications like
disk replicators often only allocate 1MB space for the MKB. In the case of AACS, this means that
only 211.6 = 220/21 encrypted keys will be able to fit this space and thus a Pirates 2.0 attack

— 195 —

Chapter F. Traitors Collaborating in Public: Pirates 2.0

against the AACS would only require some thousand collaborating traitors which, given the
guarantee offered to traitors (a million of other users cover each traitor), seems very practicable.

Also note that once again the attack given here is just an illustration of our general concept
of attack. There are several possible improvements and refinements such as taking advantage of
the partition algorithm (remember that the scheme is a trace and revoke scheme and not a full
traitor tracing scheme, so that it might fail to single out a traitor).

F.4 Pirates 2.0 and Code Based Schemes

Traitor tracing schemes based on codes (be it collusion secure codes [BS95, Tar03] or identi-
fiable parent property codes [HvLLT98, SS01]) have been proposed during more than half a
decade [KY02c, CPP05a, PSNT06b, Pha06, Sir07a, BN08b]. Their main advantage is their effi-
ciency in terms of bandwidth requirements, but their main drawback is that their efficiency (in
terms of the size of the private key) is highly sensitive to the number of traitors in the coalition.

F.4.1 General Framework of Codes Based Schemes

Traitor tracing schemes built on codes more or less fit in the following framework:

Setup: The scheme generates a code C of length ` which is either a collusion secure code or a
q-ary c-IPP code. The alphabet for the code is A = {0, 1} in the case of a collusion secure
code and A = {1, . . . , q} in the case of an IPP code. Then, for each position i = 1, . . . , ` in
a codeword and for each possible letter a from A, a key Ki,a is randomly chosen. Hence,
there are 2` possible keys (resp. q` possible keys) in the system in the case of collusion
secure codes (resp. IPP codes).

Key assignment: Each user u is given a codeword Wu from C. Then, for each position i =
1, . . . , ` in this codeword, the user is provided with the key Ki,Wu[i] where Wu[i] is the
letter at position i in the codeword Wu. Thus, each user gets ` keys in its decoder.

Decoder: A ciphertext usually contains a header that specifies the positions of the keys involved
in the decryption process. For instance, in the case of the scheme [KY02c] proposed by
Kiayias and Yung, all the keys of the user are involved. In the case of the scheme [BN08b]
proposed by Boneh and Naor only one key is involved during a decryption process.

F.4.2 Pirates 2.0 against Code Based Schemes

Our goal is to show how our generic attack can be applied to this class of schemes. We do not
focus on any concrete construction but rather deal with the underlying codewords. For ease of
exposition, we describe an attack when the underlying code is a Tardos’ code [Tar03] but this
attack might easily translate to other codes.

First, recall that a Tardos’ code secure against coalitions of size at most c is built as follows.
First, the code length is set to be ` = d100c2 log(N/ε)e. Then, for each integer i in the inter-
val [1, . . . , `] a (secret) value 0 < pi < 1 heavily biased towards 0 or 1 is randomly drawn. Then,
any of the N codewords is constructed by randomly choosing for each position i in [1, . . . , `] the
bit ‘0’ or the bit ‘1’ according to the probability pi.

Theorem F.4.1 For any traitor tracing scheme that relies on Tardos’ code for its set of keys, a
set of T traitors collaborating to mount a Pirates 2.0 attack allows to produce a pirate decoder
while maintaining a level of anonymity higher than N · 2−`/T on the average.

— 196 —

F.5. Conclusion

Proof: Since contributing large amounts of a codeword makes your level of anonymity drop
a lot, a strategy that handles every traitor with equity is to make them contribute the same
amount of secret data. Since there are T traitors, let them each contribute `/T elements of (the
secret data associated with) their codeword. Of course, people are then already able to construct
pirate decoders with the collected material. The anonymity level α a traitor can expect is easy
to assess: if m = d`/T e,

α = N
∏m
i=1

(
p2
σ(i) + (1− pσ(i))2

)
. (F.1)

Indeed, for a randomly chosen traitor, there is a probability pi that the letter at position i is ‘0’
and for any other codeword randomly chosen a probability pi that the letter at that position
is also ‘0’. Similarly there is a probability 1 − pi that the letter at position i is ‘1’ and the
same probability that another codeword gets the same letter at that position. Therefore, the
probability that another codeword gets the same letter as that of the traitor for some position i
is qi = p2

i +(1−pi)2. The probability that a block of size m of the traitor’s codeword is the same
as that of another user is thus

∏m
i=1 qσ(i), where σ is a permutation of {1, . . . , `} that accounts

for the particular selection of the block of size m.
The sum from Eq. (F.1) takes into account every possible block of codeword of length m and
by multiplying by the total number of users in the system, we get the average number of users
masking a randomly chosen traitor, that is its level of anonymity in the system. Now since
p2
i + (1− pi)2 ≥ 1

2 we get a (very loose) bound on the level of anonymity: α ≥ N · 2−`/T .

Theoretical and practical impact. From a theoretical point of view, the above theorem shows
that the number of traitors required to mount a Pirates 2.0 is only linear in the size of the
decoder and only logarithmic in the number of users in the system. From a practical point of
view, it would require about 217 traitors to mount a Pirate 2.0 attack against a traitor tracing
scheme that relies on a 30-collusion secure code with 232 users. Each traitor would be masked
by about a few thousand users in this case.

F.5 Conclusion
Throughout this paper we presented a novel concept of attack against combinatorial traitor
tracing schemes. We focused on the main ideas behind this concept of attack, but some variations
could be further investigated. For instance, it is possible to consider the case of dishonest
traitors (a common threat to collaborative work is bad contributions which have to be tracked
and eliminated). Dishonest traitors capture the fact that the authority could try to perturb the
creation of pirate decoders by publishing incorrect information. However, one of the traitors
might use its own authorized decoder to verify the contribution of the other traitors: after having
sorted out these contributions, he is able to produce a pirate decoder.

Another direction is to consider probabilistic guarantees for the level of anonymity of con-
tributing traitors: the traitors are only certified to have a high level of anonymity with some
(possibly very high) probability. This is useful if the authority tries to embed markers specific
to a single user. However, there is a trade-off for the authority between the effectiveness of this
process against Pirates 2.0 and the efficiency of the scheme.

Eventually, the most interesting direction is probably to provide modified versions of the
common traitor tracing schemes that resist Pirates 2.0 attacks without sacrificing the efficiency
of the original schemes.

— 197 —

Chapter F. Traitors Collaborating in Public: Pirates 2.0

— 198 —

Appendix G

Identity-Based Traitor Tracing

PKC 2007
[ADML+07b] with M. Abdalla, A. W. Dent, J. Malone-Lee, G. Neven,

and N. P. Smart

Abstract : We present the first identity-based traitor tracing scheme. The scheme is shown
to be secure in the standard model, assuming the bilinear decision Diffie-Hellman (DBDH) is
hard in the asymmetric bilinear pairing setting, and that the DDH assumption holds in the
group defining the first coordinate of the asymmetric pairing. Our traitor tracing system allows
adaptive pirates to be traced. The scheme makes use of a two level identity-based encryption
scheme with wildcards (WIBE) based on Waters’ identity-based encryption scheme.

G.1 Introduction

In 1984 Shamir proposed the concept of identity-based cryptography [Sha84]. However, it took
nearly twenty years for the problem of designing an efficient method to implement identity-
based encryption (IBE) to be solved. In 2000 and 2001 respectively Sakai, Ohgishi and Kasa-
hara [SOK00] and Boneh and Franklin [BF01] proposed IBE schemes based on elliptic curve
pairings. Also, in 2001 Cocks proposed a system based on the quadratic residuosity prob-
lem [Coc01].

Identity-based encryption is often justified as a useful technology by its possible use in
an e-mail application. However, many people, whilst having a small set of e-mail identities,
often belong to a larger set of e-mail groups. An e-mail group, or shared address, is an e-
mail address which allows the sender to send a message to a large number of individual e-mail
addresses without needing to know the actual individual addresses. Using existing identity-
based encryption techniques one can easily implement such a scheme by giving each member of
the e-mail group the same ID-private key. Thus all members of the group will share the same
private key.

A common business model in PKI world is that the certificate authority charges for each
certificate, or block of certificates, issued. In the ID-based world this model corresponds to the
trust authority charging for each private key, or block of private keys. However, in our group
e-mail example this would mean that the trust authority would only be able to charge for one
private key for the whole group, since as soon as one person had the private key they could

— 199 —

Chapter G. Identity-Based Traitor Tracing

share it with the other members of the group. What is needed is a disincentive for the group
members to collaborate in this manner.

A similar situation occurs in the traditional symmetric or public key setting in broadcast
encryption. Here one solves the associated problem by using a traitor tracing scheme, which
allows any person (or set of colluding people) who creates a new decryption device, or key, to
be traced. Thus combining the above ideas together we see that there is a possible need for an
identity-based traitor tracing scheme.

Surprisingly since the invention of identity-based cryptography by Shamir [Sha84] in 1984,
no one seems to have considered this issue. Thus in this paper we present the first identity-
based traitor tracing scheme. Our scheme is based on the Waters’ WIBE from [ACD+06],
which is based on Waters’ identity-based encryption scheme [Wat05]. A WIBE is a variant of
a hierarchical IBE (HIBE) scheme in that it encrypts to an identity string which is defined on
various layers. However, unlike a HIBE, which allows only a single recipient, a WIBE allows
one to encrypt to a string which is “wildcarded” on a given set of levels. A WIBE allows one to
target a ciphertext at a given group of users by applying the appropriate wildcards.

Our construction is relatively simple: we use a two level WIBE in which the first level
represents the name of the group and the second level represents the unique index of a user.
This allows e-mails to be addressed to the entire group via the use of a wildcard in the second
level. Group membership is ‘policed’ by the trust authority, which only releases a decryption
key to a user if the user is entitled to decrypt messages sent to a particular group. The subtlety
of our construction is in the construction of a traitor tracing algorithm.

We prove that our scheme protects the confidentiality of encrypted messages against passive
attackers in the standard model, and show that it allows traitor tracing against an adaptive
traitor.

Unfortunately, our scheme is not practical due to the combination of Waters’ IBE and collu-
sion secure codes [BS95], which results in infeasibly large public key and ciphertext sizes. Thus
we leave the construction of a truly efficient identity-based traitor tracing scheme, even in the
random oracle model [BR93], as an open problem. In addition we leave as open the problem of
creating a scheme which allows a greater number of key extraction queries by the pirate than
ours allows. Furthermore, our scheme does not protect against pirate decoder manufacturers
mounting chosen-ciphertext attacks, however this later stronger pirate has not been considered
in the public-key setting either.

G.2 Preliminaries

G.2.1 Notation

Let N = {0, 1, 2, . . .} be the set of natural numbers and {0, 1}∗ the set of all bit strings. If
k ∈ N then {0, 1}k is the set of bit strings of length k and 1k is the string of k ones. If A is a
randomized algorithm, then y $← AO(x) denotes the assignment to y of the output of A when
run on input x with fresh random coins and with access to oracle O; we write y ← AO(x) if A
is deterministic. If S is a finite set, then x $← S denotes the random generation of an element
x ∈ S using the uniform distribution. A function ν : N → [0, 1] is said to be negligible if for all
c ∈ N there exists a kc ∈ N such that ν(k) < k−c for all k > kc. It is said to be non-negligible if
there exists a c ∈ N such that ν(k) > k−c for all k ∈ N.

G.2.2 Computational Assumptions

Our scheme employs asymmetric pairings, which we now recall. Let G1, G2 and GT denote
three finite multiplicative abelian groups of prime order p > 2k. Let g and h be generators of

— 200 —

G.3. Identity-Based Traitor Tracing

G1 and G2, respectively, and let ψ : G2 → G1 be an efficiently computable isomorphism such
that ψ(h) = g. We assume that there exists an admissible bilinear map ê : G1 × G2 → GT,
meaning that for all a, b ∈ Zp (1) ê(ga, hb) = ê(g, h)ab, (2) ê(ga, hb) = 1 iff a = 0 or b = 0, and
(3) ê(ga, hb) is efficiently computable.

The advantage of an algorithm A in solving the computational bilinear Diffie–Hellman
(CBDH) problem in G2 is defined as

Advcbdh
A,G2(k) = PrZ = ê(g, h)xyz : x, y, z $← Zp ; Z $← A(hx, hy, hz) .

The advantage of A in solving the decisional variant of this problem, called the decisional bilinear
Diffie–Hellman (DBDH) problem in G2, is

Advdbdh
A,G2(k) =

∣∣∣∣ PrA(hx, hy, hz, Z) = 1 : x, y, z $← Zp ; Z ← ê(g, h)xyz

− PrA(hx, hy, hz, Z) = 1 : x, y, z $← Zp ; Z $← GT

∣∣∣∣ .
We say that the CBDH and DBDH problems in G2 are hard if the respective advantages are
negligible functions in k for all algorithms A with running time polynomial in k.

We also require that the DDH problem inG1 is hard, namely we require that for all algorithms
A, with running time polynomial in k, the following advantage is a negligible function in k,

Advxddh
A,G1(k) =

∣∣∣∣ PrA(gx, gy, Z) = 1 : x, y $← Zp ; Z ← gxy

− PrA(gx, gy, Z) = 1 : x, y $← Zp ; Z $← G1

∣∣∣∣ .
Note that if the DDH problem in G1 is hard, then there cannot exist a computable isomorphism
from G1 to G2 and thus we must be working in the asymmetric pairing setting. The assumption
that the DDH problem is hard in G1 is referred to as the external DDH problem (XDDH) and
has been used before in [BGdMM05, BBS04, Sco02].

G.3 Identity-Based Traitor Tracing

G.3.1 Syntax

In this section we will describe the general model for an identity-based traitor tracing scheme.
Broadcast groups are referred to by an identity string ID ∈ {0, 1}∗, individual users are referred
to by an index i ∈ N. To make user i member of the group ID, the trusted key distribution
centre provides it with a personal decryption key dID,i. Anyone can encrypt a message to the
general group ID such that all individual users belonging to the group can recover the message.

Formally, an identity-based traitor tracing scheme IBT T consists of five polynomial-time
algorithms:

• A randomised key generation algorithm G(1k) taking as input the security parameter k.
This algorithm generates a set of domain parameters consisting of a master public key
mpk and a master secret key msk.

• A key extraction algorithm X (msk, ID, i) which given the master secret key msk, a group
identity ID ∈ {0, 1}∗ and a user index i generates a user secret key dID,i. This algorithm
could be probabilistic.

— 201 —

Chapter G. Identity-Based Traitor Tracing

• A probabilistic encryption algorithm E(mpk, ID,M) which on input of the master public
key mpk, a group identity ID and a messageM outputs a ciphertext C.

• A decryption algorithm D(dID,i, C) which on input of a user secret key dID,i and a cipher-
text C outputs a plaintext messageM, or ⊥ to indicate a decryption error.

• A traitor tracing algorithm T D(msk, ID) which has oracle access to a “pirate” decryption
box D. The tracing algorithm takes as input the master secret key msk and a group identity
ID, and outputs a set of user identifiers (called “traitors”) T ⊂ N.

An identity-based traitor tracing scheme whose tracing algorithm takes as input mpk instead of
msk is said to be publicly-traceable, since then anyone can execute the tracing algorithm. We
shall assume that all “pirate” decryption boxes are resettable [KY02b], meaning that they retain
no state between decryptions. In particular, pirate boxes cannot self-destruct.

For correctness we require that D(d, E(mpk, ID,M)) =M with probability one for all k ∈ N,
ID,M∈ {0, 1}∗, i ∈ N, (mpk,msk) $← G(1k) and d $← X (msk, ID, i).

G.3.2 Secrecy

We require that our ID-based traitor tracing scheme is semantically secure in the presence of
adaptive adversaries who have access to a key extraction oracle and, in a chosen-ciphertext at-
tack, a decryption oracle. These are standard notions in ID-based cryptography first introduced
in [BF01]. The extension to the setting we have here is immediate, but for completeness we
clarify it here.

Secrecy is defined by a two-stage game. The challenger first runs the key generation algorithm
to generate a master key pair (mpk,msk) $← G(1k). The master public key mpk is passed to
the adversary. In the first stage of the game the adversary has access to a key extraction
oracle X (msk, ·, ·), which it can query on arbitrary pairs (ID, i) of group identities ID and user
indices i. In a chosen-ciphertext attack, the adversary can also has access to a decryption oracle
D(X (msk, ·, ·), ·) from which it can obtain the decryption of any ciphertext C using the key to
any pair (ID, i). The first stage ends when the adversary outputs two messages of equal length
M0 andM1, plus a challenge group identity ID∗.

The challenger then selects a bit b and encrypts Mb under the group identity ID∗ to form
the challenge ciphertext C∗ ← E(mpk, ID∗,Mb). The challenge ciphertext is returned to the
adversary for the second stage of the game. In this second stage the adversary can perform
further queries to its oracles. At the end of the second stage the adversary outputs its guess b′
as to the bit b. The adversary wins the game if b = b′, if ID∗ never appeared in any of the key
extraction oracle queries, and, in a chosen-ciphertext attack, if C∗ was never submitted to the
decryption oracle with group identity ID∗.

The advantage Advind-id-cpa
A,IBT T (k), respectively Advind-id-cca

A,IBT T (k), of an adversary A in break-
ing the indistinguishability of scheme IBT T is defined as the probability of A winning the
corresponding game minus one-half. We say that the traitor tracing scheme is IND-ID-CPA,
respectively IND-ID-CCA secure, if this advantage is a negligible function in k for any adversary
A with running time polynomial in k.

G.3.3 Traceability

We extend the notion of traceability defined for the public key setting in [BSW06b] to the
identity-based setting. We provide definitions for both chosen-plaintext and chosen-ciphertext
attack; our scheme however is only proved secure in the chosen-plaintext setting. We note that

— 202 —

G.4. The Scheme

to our knowledge there is no public-key traitor tracing system which has been considered in the
presence of (the natural analogue of) chosen-ciphertext attacks against the traceability property.

Let k, c ∈ N be two security parameters associated to the experiment. The challenger first
generates a master key pair (mpk,msk) $← G(1k) and gives mpk to the adversary. The adversary
has access to a key extraction oracle X (msk, ·, ·) to which it can submit pairs (ID, i) of its
choosing. In a chosen-ciphertext attack, it can also perform queries to a decryption oracle
D(X (msk, ·, ·), ·) specifying a group identity ID, a user index i and an arbitrary ciphertext C as
in the above secrecy game. The adversary terminates by outputting a group identity ID∗ and a
pirate decoder D, which is the description of a probabilistic circuit that takes as input ciphertexts
and outputs messages. The challenger then runs the tracing algorithm with black-box access to
D to obtain a set of user identifiers S $← T D(msk, ID∗).

By modelling the pirate decoder as a probabilistic circuit, we assume that the decoder is
resettable or stateless [KY02b] in that it does not retain information from previous decryptions,
and in particular that it cannot self-destruct. Thus, when being subjected to a series of tracing
queries, the pirate decoder responds to each query as if it were the first.

If we let T denote the set of user indices i that the adversary submitted to the key extraction
oracle in combination with the group identity ID∗, then we say that the adversary wins the
game if the following conditions hold:

• The decryption box decrypts a non-negligible fraction of random ciphertexts encrypted
under the group identity ID∗, i.e. for random messages M we have that Pr[D(E(mpk,
ID∗,M)) =M] ≥ δ(k) where δ(k) is a non-negligible function and where the probability is
taken over the random choice ofM and over the random coins of the encryption algorithm
E and the pirate box D.

• Either S = ∅ or S 6⊆ T .

• A queried the key extraction oracle for at most c different user indices i. We do not restrict
the number of different group identities ID for which A can obtain keys for each of these
users (apart from being polynomial in k of course). This reflects that colluding users can
use all their decryption keys to construct the pirate box, not just the key corresponding
to ID∗. It also means that the number of different groups a single user subscribes to is not
limited by c.

• In the chosen-ciphertext variant there are no restrictions on A’s queries to the decryption
oracle.

The advantage Advtra-id-cpa[c]
A,IBT T (k), respectively Advtra-id-cca[c]

A,IBT T (k), of A in breaking the traceability
of the scheme IBT T is defined as its probability of winning the above game. We say that IBT T
is c-TRA-ID-CPA, respectively c-TRA-ID-CCA secure, if this advantage is a negligible function
in k for all adversaries A with running time polynomial in k.

The above definition is essentially a full access model. One can, following [BF99b]
and [BSW06b], define a minimal access model in which the oracle available to the tracing
algorithm only outputs whether the decoder successfully decrypted the input ciphertext or not,
but does not give it the resulting plaintext.

G.4 The Scheme
Our scheme makes use of the two-level WIBE scheme [ACD+06] based on Waters’ HIBE
scheme [Wat05]. We assume that group identities ID are given by strings of length n1. As
user identifiers we associate to each user an element of a code. The mapping between individual

— 203 —

Chapter G. Identity-Based Traitor Tracing

users, their indices and their codewords is maintained by the trust authority. In practice the
code will be a (c,N, ε)-collusion secure code [BS95], where N is the maximum number users
in the system, c is the maximum number of colluders our tracing algorithm can tolerate, and
ε is the probability of error that a colluder is not traced. A (c,N, ε) collusion secure code can
be produced using codewords of size ` = O(c2(log(N) + log(1/ε))) over an alphabet of size
s = 2 [Tar03]. Our use of collusion secure codes will result in a scheme which is not publicly
traceable, since the tracing algorithm for collusion secure codes requires secret randomness.

Before giving a more precise definition of collusion-secure codes, we need to introduce some
additional notation. Let Σ be a symbol alphabet of size |Σ| = s. If x = x1 . . . x` ∈ Σ` is a
string of ` symbols and I = {1 ≤ i1 < . . . < in ≤ `} is a set of indices, then x|I is the substring
xi1 . . . xin containing only those symbols of x at positions in I. Let W = {w1, . . . , wc ∈ Σ`} be a
set of symbol strings, and let I be the set of all positions where all strings in W are equal, i.e. I
is the maximal set such that w1|I = w2|I = . . . = wc|I . Then the feasible set of W is defined as
the set of all strings that are equal to w1, . . . , wc at positions in I, i.e.

FS(W) = {x ∈ Σ` : x|I = w1|I = . . . = wc|I} .

A (c,N, ε) collusion-secure code of length ` over alphabet Σ consists of a set C, called the
codebook, of indexed codewords w(i)

r for 1 ≤ i ≤ N and r ∈ {0, 1}ρ, and a tracing algorithm TC.
These are such that for all collusions C ⊆ {1, . . . , N} of size at most c, W = {w(i)

r : i ∈ C}, and
for all (unbounded) algorithms A it holds that

PrTC(x, r) ∈ C | x ∈ FS(W)x $← A(W)r $← {0, 1}ρ > 1− ε ,

where the probability is taken over the choice of r and the random coins of TC and A. Our
scheme uses codewords as “identity strings”. This presents a small problem: the definition
insists that the set C is chosen before A’s execution; whereas, we will allow the adversary to
chose the set C adaptively via key extraction queries. We solve this problem by introducing a
randomly chosen permutation on {1, 2, . . . , N}, denoted π

$← Perm(N) (or if it is desired for
efficiency a pseudo-random permutation). We associate the codeword w(π(i))

r with the i-th user.
It is therefore sufficient that

PrTC(x, r) ∈ C
∣∣∣ x ∈ FS(W)x $← A(W)
C

$← P(C, c, r)r $← {0, 1}ρ
> 1− ε ,

where P(C, c, r) is the set of subsets of {wr ∈ C} of size c.

For non-binary alphabets, we use the natural encoding of symbols as bit strings of length
dlog2 se, so that codewords are represented by bit strings of length n2 = dlog2 se · `.

To set up the scheme we define two sets V1 and V2 of random elements in G2, denoted by
Vi = (vi,0, vi,1, . . . , vi,ni). We let ui,j ← ψ(vi,j) and let Ui denote the image of the set Vi under
the isomorphism ψ, i.e. Ui = (ui,0, ui,1, . . . , ui,ni). For a bit string B of length ni we use these
sets to define the so-called Waters’ hash functions

Hi(B)← vi,0
∏
j∈B

vi,j ,

where the product is computed over all values of j for which the j-th bit of B is one. To simplify
notation we define

Gi(B)← ui,0
∏
j∈B

ui,j = ψ(Hi(B)).

— 204 —

G.4. The Scheme

Note that Gi(B) can be computed either from the set Vi using the isomorphism ψ, or from the
set Ui directly. Also note that vi,j = hκi,j and ui,j = gκi,j for some, unknown, values κi,j ∈ Zp.

Our ID-based traitor tracing scheme can now be defined via the following algorithms:

Setup G(1k) : The key distribution centre generates a set of pairing groups G1,G2 as above at
the security level k, along with the sets Vi

$← (G∗2)ni for i = 1, 2. A random value α $← Zp is
selected, and one sets g1 ← gα ∈ G1 and h1 ← hα ∈ G2. We require a second random element
h2

$← G∗2 and we let g2 ← ψ(h2). Finally, the secret random permutation π $← Perm(N) and
the secret randomness r $← {0, 1}ρ for the code C is chosen. The master public key is defined to
be mpk = (g, g1, h2, U1, U2) and the master secret key is msk = (h, hα2 , V1, V2, π, r).

Key Extraction X (msk, ID, i) : Let id be the codeword corresponding to index i, i.e. the
bit string of length n2 = dlog2 se · ` that is the binary encoding of codeword w

(π(i))
r . The key

distribution centre first select random values r1, r2
$← Zp and then define the private key as

dID,i = (id, a0, a1, a2) ← (id , hα2H1(ID)r1H2(id)r2 , hr1 , hr2)

Encryption E(mpk, ID,M) : Amessage is defined as an element inGT. The sender first chooses
a t $← Zp and then computes the ciphertext C = (C1, C2, C3, C4) ∈ G1 ×G1 ×GT ×Gn2+1

1 as

C1 ← gt , C2 ← G1(ID)t , C3 ←M · ê(g1, h2)t , C4 ← (ut2,j)j=0,...,n2 .

Decryption D(dID,i, C) : Decryption works as follows, on input of C we first compute

C ′2 ← C
(0)
4 ·

∏
j∈id

C
(j)
4 = G2(id)t ,

where the last equality follows since C(j)
4 = ut2,j . Then we compute

C3 ·
ê(C2, a1) · ê(C ′2, a2)

ê(C1, a0)

= M · ê(g1, h2)t · ê(G1(ID)t, hr1) · ê(G2(id)t, hr2)
ê(gt, hα2H1(ID)r1H2(id)r2)

= M · ê(g1, h2)t · ê(G1(ID)r1 , ht) · ê(G2(id)r2 , ht)
ê(gt, hα2) · ê(gt, H1(ID)r1H2(id)r2)

= M · ê(g
α, h2)t

ê(gt, hα2) ·
ê
(
gσ, ht

)
ê (gt, hσ)

where σ = r1(κ1,0 +
∑
j∈ID

κ1,j) + r2(κ2,0 +
∑
j∈id

κ2,j)

= M · ê(g
α, h2)t

ê(gt, hα2)
= M.

Traitor Tracing Algorithm T D(msk, ID) : Since we use a collusion-secure code, the tracing
step requires the secret randomness r, so tracing can only be done by the key distribution centre.
The tracing algorithm has access to a pirate box D that correctly decrypts ciphertexts for ID
with probability δ(k). For convenience, we let C(i,j)

4 denote the (dlog2 se(i−1)+j)-th element of
C4. For each 1 ≤ i ≤ ` and 1 ≤ j ≤ dlog2 se, initialise counter ctr i,j ← 0 and run the following
test n = 16k/δ(k) times:

— 205 —

Chapter G. Identity-Based Traitor Tracing

1. Choose a random messageM.

2. EncryptM under the group identity ID to form a ciphertext

C ← (C1, C2, C3, C4).

3. Replace C(i,j)
4 with a random element from G1.

4. Query the pirate decoder D on the altered ciphertext C.

5. If the decoder outputs the messageM (or a valid ciphertext in the case of minimal access)
then increase ctr i,j .

After these iterations, reconstruct the bit string id′ of length n2 as follows. Let id′i,j denote the
bit of id′ at position dlog2 se(i − 1) + j. Set id′i,j ← 1 if ctr i,j < 4k, or set id′i,j ← 0 otherwise.
Next, decode the bit string id′ as a symbol string x of length `, choosing any symbol if the
corresponding bit string is not a valid encoding of a symbol in Σ. Finally, use the tracing
algorithm of the code to compute S $← TC(x, r) and return the set of traitors π−1(S).

G.5 Security Results
The IND-ID-CPA security of our scheme under the DBDH assumption follows from the security
of the Waters’ HIBE from [Wat05] and an analogue of Theorem 6 of [ACD+06]. As one notices
that the scheme is simply the Waters WIBE from [ACD+06] specialised to the 2-level case. In
Appendix G.6 we outline the asymmetric version of Waters’ HIBE scheme that we are using.

The scheme as it stands is only secure against adversaries who do not make decryption oracle
queries. However, extending to chosen-ciphertext security can be done using the techniques
described in [ACD+06] based on the techniques of Canetti, Halevi and Katz [CHK04]. This
extension will not affect our traitor tracing algorithm given above.

We now turn to showing that our tracing algorithm works. Intuitively, for the TC algorithm
to work (with error probability ε), we need the reconstructed symbol string x to fall within
the feasible set of the codewords corresponding to the collusion. This means that on those
positions where all the codewords in the collusion are the same, the symbols of x have to be
the same as well. We prove that if the ciphertext component C(i,j)

4 that is being “tampered”
with corresponds to a bit position where all traitors’ codewords have a zero, then the pirate
box decrypts correctly, unless it can solve the DDH problem in G1. We also prove that if the
tampered component corresponds to an all-one position, then the pirate box is unable to decrypt
correctly, unless it can solve the CBDH problem. The 8k/δ(k) iterations are needed because the
pirate box only decrypts correctly with probability δ(k); we use a Chernoff bound to analyse
the overall success probability of our tracing algorithm.

Theorem G.5.1 The IBT T scheme described above is c-TRA-ID-CPA secure under the as-
sumptions that the underlying code is (c,N, ε) collusion-secure code of length ` over an alphabet
of size s, that the DDH problem in G1 is hard, and that the CBDH problem in G2 is hard. More
specifically, the advantage of any polynomial-time adversary A in building an untraceable de-
coder that correctly decrypts a fraction δ(k) of ciphertexts using the keys of a collusion of at
most c users is at most

Advtra-id-cpa[c]
A,IBT T (k) ≤ ε+ `dlog2 se ·

(
Advcbdh

B2,G2(k) + e−k
)

whenever δ(k) ≥ 2 · Advxddh
B1,G1(k) where B1,B2 are polynomial-time algorithms depending on A

and e is the base of the natural logarithm.

— 206 —

G.5. Security Results

Proof: Let A be an attacker against the tracing property of the encryption scheme; i.e. A takes
as input mpk and outputs a pirate decryption box D. We use A to define an attacker A′ against
the tracing property of the collusion-secure code; i.e. A′ will take as input a collection of c
random codewords W = {w1, . . . , wc} and output a value x. We will prove that if A successfully
avoids being traced, then, with high probability, A′ will successfully output a codeword x that
cannot be traced. This will provide the required contradiction.
A′ runs as follows. It chooses random unique indices i1, . . . , ic ∈ {1, . . . , N} and mounts the
following attack for the collusion C = {i1, . . . , ic}. On input codewords W = {w(ij)

r : j =
1, . . . , c}, it first generates a public key mpk ← (g, g1, h2, U1, U2) as described in the setup
algorithm G of the identity-based traitor tracing scheme. A′ then runs A. A may query a key
extraction oracle for identities (ID, i) for at most c values of i. A′ responds to the j-th such
query as normal using the codeword w

(ij)
r . Since W contains codewords corresponding to a

random collusion C, and π is meant to be a random permutation, this response is identically
distributed to the response of a correct key extraction algorithm. A terminates by outputting a
pirate decryption box D.
A′ then applies the identity-based traitor tracing scheme’s tracing algorithm T D to D, halting
after T D determines the value of the symbol string x. A′ outputs the value x. We prove that
the symbol string x ∈ Σ` reconstructed by our tracing algorithm falls outside the feasible set
FS(W) with probability at most

Prx 6∈ FS(W) ≤ `dlog2 se ·
(
Advcbdh

B2,G2(k) + e−k
)
.

The theorem statement then directly follows from the properties of the (c,N, ε) collusion-secure
code’s tracing algorithm TC.

Let I ⊆ {1, . . . , `} be the maximal set of symbol positions such that w(i)
r |I = w

(j)
r |I for all

i, j ∈ C. For positions of x not in I there is nothing to prove, because they do not affect
membership of FS(W). So we focus on the symbols xi of x at positions i ∈ I. Let idi,j for
i ∈ I and 1 ≤ j ≤ dlog2 se be the bits in the binary representation of codewords corresponding
to symbols at positions i ∈ I. Because of the way we defined I, these bits are the same for
all users in the coalition. For a single iteration in the tracing algorithm at position (i, j), the
following lemmas upper-bound the probability that the decryption box correctly decrypts M
in case idi,j = 0 and that it does not correctly decrypt M in case idi,j = 1. Hence, we can
distinguish between bit positions which are all zeros and all ones. This means we can recover
the symbols which are the same in all the codewords for which the attacker has the keys. If
the bits in a given bit position are different in the attacker’s codewords, then the attacker can
detect the tracing attempt and may output whatever they like. However, this does not matter
as we only need to recover the symbols which are the same for all codewords in order to apply
the code’s tracing algorithm. We postpone the proofs of these lemmas until after the proof of
the theorem.

Lemma G.5.2 If idi,j = 0 in the codewords of all users in the collusion C, then D correctly
decrypts a random ciphertext that has been tampered with at position (i, j) with probability

p0 ≥ δ(k)−Advxddh
B1,G1(k) .

Lemma G.5.3 If idi,j = 1 in the codewords of all users in the collusion C, then D correctly
decrypts a random ciphertext that has been tampered with at position (i, j) with probability

p1 ≤ Advcbdh
B2,G2(k) .

— 207 —

Chapter G. Identity-Based Traitor Tracing

We also use the following adaptation of the Chernoff bound from [MR95].

Lemma G.5.4 Let X1, . . . , Xn be independent, 0/1 valued random variables with expected
value p. Let X = X1 + . . .+Xn, let µ = E[X] = np and let 0 ≤ α ≤ 1 be a real number. Then
we have

PrX < (1− α)µ < e−µα
2/2 .

We want to upper-bound the probability that xi 6= wi. For a position i, j where idi,j = 0, we
can see the final value of ctr i,j as the outcome of the sum of n = 16k/δ(k) independent 0/1
random variables with expected value p = p0. The expected value of ctr i,j is µ = np0. From
Lemma G.5.2 and the assumption that Advxddh

B1,G1(k) ≤ δ(k)/2, we know that

µ = np0 ≥ n
(
δ(k)−Advxddh

B1,G1(k)
)
≥ nδ(k)

2 = 8k .

We can then apply the Chernoff bound of Lemma G.5.4 with α = 1/2 to upper-bound the
probability that the tracing algorithm incorrectly decides that id′i,j = 1 by

Prctr i,j < 4k ≤ Prctr i,j < µ/2

< e−µ/8

≤ e−k .

On the other hand, for a position i, j where idi,j = 1, the probability that the tracing algorithm
incorrectly decides that id′i,j = 0 can be upper-bounded by

Prctr i,j ≥ 4k ≤ Prctr i,j ≥ 1 = p1 ≤ Advcbdh
B2,G2(k) .

The probability that xi 6= wi is upper-bounded by the probability that the tracing algorithm
makes an incorrect decision at any of the bit positions. Since there are dlog2 se bits in the
encoding of xi, we have that

Prxi 6= wi ≤ dlog2 se ·
(
Advcbdh

B2,G2(k) + e−k
)
,

so that the overall probability that the symbol string x reconstructed by the tracing algorithm
is not within the feasible set of W is

Prx 6∈ FS(W) ≤ `dlog2 se ·
(
Advcbdh

B2,G2(k) + e−k
)
,

from which the theorem follows.

We have left to prove the two lemmas that we used above.

Proof of Lemma G.5.2: For the sake of contradiction, let A denote an adversary against the
traitor tracing scheme that produces a decryption box that correctly decrypts random cipher-
texts with probability δ(k), but that correctly decrypts ciphertexts that have been tampered
with at position (i′, j′) with probability p0 ≤ δ(k) − γ for some γ > 0. We will construct an
algorithm B1 which uses A to gain an advantage γ in solving the DDH problem in G1.
Let (gx, gy, Z) denote the input to our DDH algorithm B1 and let k′ = s(i′ − 1) + j′ − 1. It
constructs the master public keys of the ID-based by choosing random exponents α, κi,j

$← Z∗p
for a = 1, 2 and b = 0, . . . , na and a random element h2

$← G∗2. It sets g1 ← gα, h1 ← hα,
ui,j ← gκi,j , vi,j ← hκi,j , except for u2,k′ and v2,k′ which it sets to u2,k′ ← gx and v2,k′ ← ⊥,
respectively. It also chooses secret randomness r $← {0, 1}ρ for the collusion-secure code.

— 208 —

G.5. Security Results

B1 runs A on input mpk = (g, g1, h2, U1 = (u1,0, . . . , u1,n1), U2 = (u2,0, . . . , u2,n2)), responding
to its key extraction queries (ID, i) as follows. Let id be the encoding of the codeword w(i)

r . We
know from the preconditions of the lemma that idk′ = 0. B1 chooses r1, r2

$← Zp and computes
the secret key dID,i = (id, a0, a1, a2) = (id, hα2H1(ID)r1H2(id)r2 , hr1 , hr2). Note that because
idk′ = 0, B1 can compute H2(id), even though it does not know v2,k′ .

At the end of this stage A will output a pirate decoder D with respect to a group identity ID of
its choice.

All the identities used to create the box D will have the k′-th bit of their binary code word id
set to zero. Algorithm B then generates a random messageM and forms the ciphertext

C1 ← gy , C2 ← (gy)κ1,0 ·
∏
i∈ID(gy)κ1,i ,

C3 ← M · ê(gy, h2)α , C
(i)
4 ←

{
(gy)κ2,i for 0 ≤ i ≤ n2, i 6= k′ ,

Z for i = k′ .

This ciphertext is then passed to the decoder D. Algorithm B1 outputs 1 if the decoder correctly
decryptsM, or outputs 0 otherwise.

If Z = gxy, then the ciphertext C is a correctly-formed random ciphertext, so D will correctly
decrypt it with probability δ(k). If Z is random, then C looks exactly like a ciphertext that has
been tampered with at position (i′, j′), so D will correctly decrypt it with probability at most
δ(k)−γ. The advantage of an algorithm in solving the DDH problem is defined as the difference
of the probability that it outputs 1 if Z = gxy and if Z is random, so for our algorithm B1 we
have that

Advxddh
B1,G1(k) ≥ δ(k)− (δ(k)− γ) = γ ,

from which the lemma follows.

Proof of Lemma G.5.3: For the sake of contradiction, let A denote an adversary against the
traitor tracing scheme that will produce a decryption box D that correctly decrypts ciphertexts
that have been tampered with at position (i′, j′) with probability p1. We will construct an
algorithm B2 which uses A as a subroutine to solve the bilinear computational Diffie–Hellman
problem.

Let hx, hy, hz, be B2’s input for the CBDH problem. Algorithm B2 chooses random integers
κi,j

$← Zp for i = 1, 2 and 0 ≤ j ≤ ni. Let k′ = s(i′ − 1) + j′ − 1. It sets

g1 ← ψ(hx) h2 = hz

vi,j ← hκi,j and ui,j ← gκi,j for i = 1, 2 and 0 ≤ j ≤ ni

except for u2,k′ and v2,k′ which it sets to

v2,k′ ← hκ2,k′/hx = hκ2,k′−x u2,k′ ← ψ(v2,k′) = gκ2,k′−x .

It also chooses secret randomness r $← {0, 1}ρ for the collusion-secure code. It then runs A on
input mpk = (g, g1, h2, (u1,0, . . . , u1,n1), (u2,0, . . . , u2,n2)).

Algorithm A will make c key extraction queries (ID, i). Let id be the codeword corresponding to
user i; we know from the preconditions of the lemma that idk′ = 1 for all users in the collusion.
The decryption key dID,i = (id, a0, a1, a2) is generated by choosing r1, r2

$← Zp at random and

— 209 —

Chapter G. Identity-Based Traitor Tracing

computing

a0 ← (hz)κ2,k′ · (hx)−r2 · hκ2,k′r2 ·H1(ID)r1 · (hz · hr2)κ2,0 ·
∏

i∈id,i 6=k′
(hz · hr2)κ2,i

= hzκ2,k′−xr2+κ2,k′r2 ·H1(ID)r1 ·
(
hκ2,0

∏
i∈id,i 6=k′

hκ2,i

)z+r2

= hxz−xz+zκ2,k′−xr2+κ2,k′r2 ·H1(ID)r1 ·
(
v2,0

∏
i∈id,i 6=k′

v2,i

)z+r2
= hxz ·H1(ID)r1 ·H2(id)z+r2

a1 ← hr1 ,

a2 ← hz · hr2 = hz+r2

At the end of this stage A will output a pirate decoder D with respect to a group identity ID of
its choice. Algorithm B2 then generates the challenge ciphertext with

C1 ← ψ(hy) , C2 ← ψ(hy)κ1,0 ∏
i∈ID ψ(hy)κ1,i ,

C3
$← GT , C

(i)
4 ←

{
ψ(hy)κ2,i for 0 ≤ i ≤ n2, i 6= k′ ,

Z where Z $← G1 for i = k′ .

By our assumption on the pirate decoder D with this ciphertext will output, with probability
p1, the corresponding plaintextM as if C(k′)

4 were chosen correctly as uy2,k′ . In this case B2 can
recover ê(g, h)xyz by computing C3/M. Algorithm B2 then returns this value as its solution to
the bilinear computational Diffie–Hellman problem, giving it an advantage

Advcbdh
B2,G2(k) ≥ p1 ,

from which the lemma follows.

Acknowledgements.

We would like to thank Yevgeniy Dodis and Aggelos Kiayias for suggesting that a simple method
for the converting the q-ary alphabet into binary is sufficient for our purposes.

G.6 Appendix: Waters’ HIBE with Asymmetric Pairings
Our scheme is built out of the HIBE suggested by Waters in [Wat05], but in the asymmetric
pairing setting and using a scheme of depth 2. In this section we describe the underlying HIBE
in full generality.

G.6.1 Scheme Description

Suppose that we want a scheme of depth L. We define L sets V1, . . . , VL of random elements in
G2, with elements denoted Vi = (vi,0, vi,1, . . . , vi,ni). We let ui,j = ψ(vi,j) and let Ui denote the
image of the set Vi under the isomorphism ψ, i.e. Ui = (ui,0, ui,1, . . . , ui,ni).

Just as in our traitor tracing scheme for a bit string B of length ni we use these sets to define
the Waters’ hash functions:

Hi(B) = vi,0
∏
j∈B

vi,j ,

— 210 —

G.6. Appendix: Waters’ HIBE with Asymmetric Pairings

where the products are over all the set bits in B. To simplify notation we define

Gi(B) = ui,0
∏
j∈B

ui,j = ψ(Hi(B)).

Note that ψ(Hi(B)) = Gi(B) can be computed either from the set Vi using the isomorphism ψ,
or from the set Ui directly. Also note that vi,j = hκi,j and ui,j = gκi,j for some, unknown, values
κi,j ∈ Zp.

Using the entities above, the various algorithms that make up Waters’ HIBE scheme are as
follows. We assume that id is a tuple (id1, . . . , idl) where l ≤ L and idi is a bit string of length
ni, applying a collision resistant hash function if necessary.

Setup G(1k) : We generate a set of pairing groups as above at the security level k, along with the
sets V1, . . . , VL and U1, . . . , UL. We require a random element h $← G2 and let g ← ψ(h) ∈ G1.
A random value α $← Zp is selected, and we set g1 ← gα and h1 ← hα. We require a second
random element h2 ∈ G2 and we let g2 ← ψ(h2). The master public key is defined to be
mpk = {g, g1, h2, U1, . . . , UL} and the master secret key is msk = {h, hα2 , V1, . . . , VL}.

Key Extraction X (id,msk) : We first select random values r1, . . . , rl ← Zp and then define
the private key as

did = (a0, a1, . . . , al)←
(
hα2

l∏
i=1

Hi(idi)ri , hr1 , . . . , hrl
)
∈ Gl+1

2 .

Encryption E(id,mpk,M) : A message is defined as an element in GT . The sender first choose
a t← Zp and then computes the ciphertext

C = (C1, C2, C3) ∈ G1 ×Gl
1 ×GT

as
C1 ← gt, C2 ←

(
C2,i = Gi(idi)t

)l
i=1

, C3 ←M · ê(g1, h2)t.

Decryption D(C, did) : Compute

C3 ·
∏l
i=1 ê(C2,i, ai)
ê(C1, a0) =M.

— 211 —

Chapter G. Identity-Based Traitor Tracing

— 212 —

Appendix H

Multi-Channel Broadcast Encryption

ASIA CCS’13
[PPT13] with David Pointcheval, and Viet Cuong Trinh

Abstract : Broadcast encryption aims at sending a content to a large arbitrary group of users
at once. Currently, the most efficient schemes provide constant-size headers, that encapsulate
ephemeral session keys under which the payload is encrypted. However, in practice, and namely
for pay-TV, providers have to send various contents to different groups of users. Headers are
thus specific to each group, one for each channel: as a consequence, the global overhead is linear
in the number of channels. Furthermore, when one wants to zap to and watch another channel,
one has to get the new header and decrypt it to learn the new session key: either the headers are
sent quite frequently or one has to store all the headers, even if one watches one channel only.
Otherwise, the zapping time becomes unacceptably long.

This paper deals with encapsulation of several ephemeral keys, for various groups and thus var-
ious channels, in one header only, and we call this new primitive Multi-Channel Broadcast
Encryption – MCBE: one can hope for a much shorter global overhead and a much shorter zap-
ping time since the decoder already has the information to decrypt any available channel at once.
Our candidates are private variants of the Boneh-Gentry-Waters scheme, with a constant-size
global header, independently of the number of channels.

H.1 Introduction
Broadcast encryption has been widely and deeply studied as it is a core primitive for many
concrete applications. In the following, we focus on the pay-TV scenario, in which users own
decoders to decode only the channels they subscribed to. In this context, the broadcaster sends
several channels at the same time, to different groups of users or target sets.

Unfortunately, previous broadcast encryption models only dealt with one single content
and one single target set at a time. This was a first reasonable goal to get such an efficient
broadcast encryption scheme, but not quite relevant to practice. In fact, TV systems contain
many channels, with different sets of privileged users. One could argue that this scenario is
covered by the usual systems, applying independent broadcast encryption schemes for each
channel. However, even with a constant-size ciphertext (header) broadcast encryption, this
results in a very inefficient scheme: the bandwidth, or header size, linearly grows in the number

— 213 —

Chapter H. Multi-Channel Broadcast Encryption

of channels, which could be very large. Of course, one header is enough to decrypt one channel,
but in case of zapping from one channel to another channel, one has to start from scratch, and
namely to wait for the reception of the new appropriate header, which can take some time,
unless the decoder stores all the headers all the time.

These bandwidth and zapping-time problems lead to new efficiency criteria, with a common
solution: a broadcast encryption with a short global header for multiple channels. The problem
of optimizing the bandwidth already appeared in the context of classical (one-channel) broadcast
encryption: a broadcast encryption can trivially be constructed from any encryption scheme,
by encrypting the session key under each user’s key. But this induces a cost that is linear in
the number of users. It took more than a decade from the introduction of the primitive [FN93]
to come up with an optimal solution: without considering the description of the target set, the
header is of constant size [BGW05]. This BGW solution [BGW05] is particularly interesting
even if it is still not practical, due to the high decryption complexity: the latter is indeed linear
in the size of the target set.

Our new primitive MCBE, for Multi-Channel Broadcast Encryption, addresses the bandwidth
and zapping-time problems. In the following, we show that it is possible to solve these problems
in an optimal way: a constant-size global header, independently of the number of channels (and
of the users too). Unfortunately, this is still an asymptotic result, with room for improvement
in practice. Actually, our solutions suffer from the same weakness as the above BGW scheme:
the decryption has to take into account all the public keys of the users involved in all the target
sets. It is thus not quite efficient. However, it seems that this problem is unavoidable when one
compacts the information for all the targeted users into one constant-size ciphertext. We also
notice that there is a simple and similar trade-off between the ciphertext size and the decryption
time as in [BGW05] by partionning the set of channels into different subsets and then encrypting
to each of these subsets. The union of the target sets in a ciphertext is smaller, but there are
more ciphertexts. Our objective is therefore to show that the bandwidth and zapping-time
problems in the multi-channel setting can be improved from trivial techniques, as BGW did in
the one-channel setting.

Finally, we emphasize that the solution requires some new techniques that we will develop
in the section H.1.2. In particular, we have to deal with the problem of encapsulating different
and independently-looking session keys for the different channels into one constant-size element
only. We will then prove the security in the new multi-channel setting.

H.1.1 Broadcast Encryption Schemes

Broadcast encryption was first described by Fiat and Naor in [FN93] but receives much attention
since the work of Naor, Naor, and Lotspiech [NNL01] in which they presented a symmetric-
key subset-cover framework along with a security model and a security analysis. Dodis and
Fazio [DF03] presented the first public-key CCA-secure scheme. Boneh, Gentry, and Wa-
ters [BGW05] designed a fully collusion-resistant scheme and proposed a security model where
the adversary can corrupt any user, except the users in the challenge target set. With their
scheme, the adversary had to precise this challenge target set before knowing the parameters
of the system, hence the so-called selective model. Delerablée constructed a selectively secure
ID-based BE [Del07] in the random oracle model. Thereafter, Gentry and Waters [GW09] de-
fined the adaptive model, where the adversary can corrupt users and then adaptively choose the
challenge target set, and provided adaptively secure schemes in the standard and the random
oracle models. Waters [Wat09] and Lewko et. al. [LSW10] used dual system encryption to
achieve adaptive security. Recently, a scheme that achieves all desired properties (constant-size
ciphertexts, adaptive and CCA security) has been presented in [PPSS12] but it relies on rather
non-standard assumptions.

— 214 —

H.1. Introduction

Phan, Pointcheval and Strefler [PPS11] recently gave a global picture of the relations between
the security notions for broadcast encryption. However, our setting of multi-channel broadcast
encryption goes beyond their considerations, because the adversary could corrupt some users of
one channel to break the security of the other channels. The sessions keys of all channels should
indeed be compacted into one ciphertext only, there are thus some relations between these keys
inside one session and the security model has to take these relations into account.

H.1.2 Contributions

We first propose a formalization of the problem, with the so-called Multi-Channel Broadcast
Encryption – MCBE. Because of some constraints between the various target sets, we introduce
the dummy-helper technique that helps to prove the security. We eventually propose two con-
structions, derived from the Boneh-Gentry-Waters (BGW) [BGW05] scheme. They are private
broadcast encryption schemes, with the following properties:

• The first construction is, asymptotically, very competitive with the BGW scheme. In fact,
it achieves the constant-size header, independently of the number of channels, while the
private decryption key size remains linear in the number of the channels that a user has
subscribed to. In addition, it is fully-collusion resistant against basic selective adversaries,
i.e. adversaries who can only ask corruption queries to get the decryption keys of users in
the selective security model (the challenge target set is announced before having seen the
global parameters). This is also the security level that the original BGW scheme achieves
and our security proof holds under the standard assumption n− BDHE, as in the original
BGW scheme [BGW05].

• The second construction improves on the previous one, to resist to strong selective adver-
saries who have the power of basic selective adversaries plus unlimited access to encryption
and decryption queries, while keeping the parameter sizes and computational assumptions
unchanged. To this aim, we introduce the dummy-helper technique and make use of a
random oracle [BR93]. Our scheme is more efficient than the CCA version of the BGW
scheme [BGW05] but our dummy-helper technique actually requires the random oracle
model.

Dummy-helper technique. In the multi-channel setting, since the session keys of all channels
are compacted in only one ciphertext, even if they have to look independent for adversaries, there
exists an implicit relation between them, which could be known by the simulator without the
whole knowledge of the master key. The dummy-helper technique consists in adding a new
channel for one additional dummy user. We then get the following interesting properties:

1. For the security analysis: it gives our simulator the possibility to decrypt this channel and
get the corresponding session key. This is then sufficient for the simulator to derive the
other session keys and successfully answer any decryption query, if the simulator knows
the above implicit relation between the encapsulated keys;

2. In practice: by eventually publishing the decryption key of the dummy user, it introduces
a channel that can be decoded by all the users registered in the system. It can then be
used to send them the program or ads.

We implement this dummy-helper technique in the random oracle model. It is worth noting that,
though working in a more complex setting of multi-channel broadcast encryption, the security
is achieved under the standard assumption n− BDHE as in the BGW scheme.

— 215 —

Chapter H. Multi-Channel Broadcast Encryption

H.2 Multi-Channel Broadcast Encryption

H.2.1 Syntax

In this section we describe the model for a multi-channel broadcast encryption system. Formally,
such a system consists of four probabilistic algorithms:

Setup(λ): Takes as input the security parameter λ, it generates the global parameters param of
the system, including n the maximal number of users (receivers are implicitly represented
by integers in {1, . . . , n}), and returns a master key MSK and an encryption key EK. If
the scheme allows public encryption, EK is public, otherwise EK is kept private, and can
be seen as part of MSK.

Extract(i,MSK): Takes as input the user’s index i, together with the master key, and outputs
the user’s private key di.

Encrypt(S1, S2, . . . , Sm,EK): Takes as input m subsets (or target sets) S1, S2, . . . , Sm where, for
i = 1, . . . ,m, Si ⊆ {1, . . . , n}, and the encryption key EK. It outputs (Hdr,K1,K2, . . . ,Km)
where Hdr encapsulates the ephemeral keys (Ki)i=1,...,m ∈ K. The keyKi will be associated
to the subset Si. We will refer to Hdr as the broadcast ciphertext, or header, whereas this
header together with the description of all the target sets is called the full header.

Decrypt(S1, S2, . . . , Sm,Hdr, j, dj , i) : Takes as input a full header (S1, S2, . . . , Sm,Hdr), a user
j ∈ {1, . . . , n} and its private key dj , together with a subgroup index i ∈ {1, . . . ,m}. If
j ∈ Si, then the algorithm outputs the ephemeral key Ki ∈ K.

For correctness, we require that for all Si ⊆ {1, . . . , n} and j ∈ Si, if (EK,MSK) ← Setup(λ),
dj ← Extract(j,MSK) and (Hdr,K1, . . . ,Km) ← Encrypt(S1, S2, . . . , Sm,EK), one then should
get Ki = Decrypt(S1, S2, . . . , Sm,Hdr, j, dj , i).

In practice, the goal of such ephemeral keys is to encrypt the payload, which consists of m
messages M1, . . . ,Mm to be broadcast to the sets S1, . . . , Sm respectively. They will thus be
encrypted under the symmetric keysK1, . . . ,Km into the ciphertexts CM1, . . . ,CMm respectively.
The overall data the broadcaster sends consists of (S1, S2, . . . , Sm, Hdr, CM1,CM2, . . . ,CMm)
where (S1, S2, . . . , Sm, Hdr) is the full header and (CM1,CM2, . . . ,CMm) is often called the
encrypted payload.

H.2.2 Security Model

We define the security of a multi-channel broadcast encryption system by the following game
between an attacker A and a challenger, in the Real-or-Random setting:

Setup. The challenger runs the Setup algorithm to generate the global parameters param of
the system, and returns a master key MSK and an encryption key EK. If the scheme
is asymmetric, EK is given to A, otherwise it is part of the MSK, and thus kept secret.
Corruption and decryption lists ΛC ,ΛD are set to empty lists.

Query phase 1. The adversary A adaptively asks queries:

1. Corruption query for the i-th user: the challenger runs Extract(i,MSK) and forwards
the resulting private key to the adversary. The user i is appended to the corruption
list ΛC ;

2. Decryption query on the full header (S1, . . . , Sm, Hdr) with u ∈ {1, . . . , n} and j ∈
{1, . . . ,m}. The challenger answers with Decrypt(S1, . . . , Sm, Hdr, u, du, j). The pair
(Hdr, Sj) is appended to the decryption list ΛD;

— 216 —

H.2. Multi-Channel Broadcast Encryption

3. Encryption query (if EK is private) for the target sets (S1, S2, . . . , Sm). The challenger
answers with Encrypt(S1, S2, . . . , Sm,EK).

Challenge. The adversary A outputs t target sets S∗1 , . . . , S∗t ⊆ {1, . . . , n} and an index j,
which specifies the attacked target set S∗j .
The challenger runs Encrypt(S∗1 , S∗2 , . . . , S∗t ,EK) and gets (Hdr∗,K∗1 ,K∗2 , . . . ,K∗t). Next,
the challenger picks a random b

$← {0, 1}. If b = 1, it picks a random K∗j
$← K. It outputs

(Hdr∗,K∗1 , . . . ,K∗t) to A.
Note that if b = 0, K∗j is the real key, encapsulated in Hdr∗, and if b = 1, K∗j is random,
independent of the header.

Query phase 2. The adversary A continues to adaptively ask queries as in the first phase.

Guess. The adversary A eventually outputs its guess b′ ∈ {0, 1} for b.

We say the adversary wins the game if b′ = b, but only if S∗j ∩ΛC = ∅ and (Hdr∗, S∗j) 6∈ ΛD. We
then denote by Succind(A) = Pr[b′ = b] the probability that A wins the game, and its advantage
is

Advind(A) = 2× Succind(A)− 1

= Pr[1← A|b = 1]− Pr[1← A|b = 0].

Definition H.2.1 [Full Security] A multi-channel broadcast encryption scheme is said
(t, ε, qC , qD, qE)-secure if for any t-time algorithm A that makes at most qC corruption queries,
qD decryption queries, and qE encryption queries, one has Advind(A) ≤ ε. We denote by
Advind(t, qC , qD, qE) the advantage of the best t-time adversary.

There are two classical restricted scenarios: a selective attacker provides the target sets
S∗1 , S

∗
2 , . . . , S

∗
t ⊆ {1, . . . , n} and index j, which specifies the attacked target set S∗j , at the

beginning of the security game, and one can also restrict the adversary not to ask some queries.

Definition H.2.2 [Basic Selective Security] A multi-channel broadcast encryption scheme is
said to be (t, ε, qC)-selectively secure if it is (t, ε, qC , 0, 0)-secure against a selective adversary.
We denote by Advb−ind(t, qC) the advantage of the best t-time basic selective adversary.

Note that in the public broadcast setting (where encryption is public), this just excludes de-
cryption queries: we allow CPA adversaries.

Definition H.2.3 [Strong Selective Security] A multi-channel broadcast encryption scheme is
said to be (t, ε, qC , qD, qE)-selectively secure if it is (t, ε, qC , qD, qE)-secure against a selective
adversary. We denote by Adv≈s (t, qC , qD, qE) the advantages of the best t-time strong selective
adversaries.

This definition is much stronger since it not only allows decryption queries in the public setting,
but also encryption queries in the private setting.

H.2.3 Disjoint Target Sets

Before presenting our construction in details, we want to stress that our solution requires that
all the target sets of the distinct channels are disjoint. Fortunately, this is compatible with
our target application of Pay-TV: whenever a user subscribes for a new channel, he is given
a new key for decrypting that channel, and it is resonable to consider that the two keys are

— 217 —

Chapter H. Multi-Channel Broadcast Encryption

independent. More formally, in our systems, we assume there are several channels, which are
encrypted to independent target sets of users. The users in the appropriate target sets own
decryption keys specific to each channel:

• When a user u registers to the system, he receives a smart card with decryption keys (diu)
for every channel i. But at the broadcast time, channel i is encrypted for the target set
with the subscribers to this channel only (a subset of the decryption keys);

• Another possibility is to first define Ui the set of all the possible decryption keys for the
channel i. When a user u subscribes to a channel i, he receives a key diu ∈ Ui.

In both above cases, the target sets are subsets of predetermined and disjoint sets of keys. As a
consequence, the target sets Si are disjoint too. The drawback is that we have to define many
keys in the system.

In a more general setting, in order to limit this number of keys, one could think about sharing
keys for several channels. Then, it would make the setting incompatible with our solutions which
require disjoint target sets. On the other hand, will reducing the number of keys, it would reduce
privacy protection too since would be able to know which channels are registered by similar users,
and derive some profiles. Alternatively, in order to limit the global number of keys, one could
reassign keys when a user unsubscribes from a channel to another channel.

Anyway, in the following, at a time t, when the broadcaster encapsulates keys for several
target sets Si, we assume them to be disjoint.

H.3 Preliminaries

H.3.1 Computational Assumptions

We first recall the definition of the classical Computational Diffie-Hellman (CDH) assumption:

Definition H.3.1 [CDH Assumption] The (t, ε) − CDH assumption says that for any t-time
adversary A that is given (g, gr, h) ∈ G, its probability to output hr is bounded by ε:

Succcdh(A) = Pr[A(g, gr, h) = hr] ≤ ε.

Stronger assumptions have been introduced by Boneh-Gentry-Waters [BGW05]. They both
imply the above CDH assumption.

Definition H.3.2 [BDHE Assumption] The (t, n, ε) − BDHE assumption says that for any t-
time adversary A that is given (g, h, gα1

, . . . , gα
n
, gα

n+2
, . . . , gα

2n) ∈ G2n+1, its probability to
output e(g, h)αn+1 ∈ G is bounded by ε:

Succbdhe(A) = Pr[A(g, h, g1, . . . , gn, gn+2, . . . , g2n) = e(gn+1, h)] ≤ ε.

Definition H.3.3 [DBDHE Assumption] The (t, n, ε) − DBDHE assumption says that for any
t-time adversary A that is given (g, h, gα1

, . . . , gα
n
, gα

n+2
, . . . , gα

2n) ∈ G2n+1, and a candidate to
the BDHE problem, that is either e(g, h)αn+1 ∈ G or a random value T , cannot distinguish the
two cases with advantage greater than ε:

Advdbdhe(A) =
∣∣∣∣∣ Pr[A(g, h, g1, . . . , gn, gn+2, . . . , g2n, e(gn+1, h)) = 1]
−Pr[A(g, h, g1, . . . , gn, gn+2, . . . , g2n, T)) = 1]

∣∣∣∣∣ ≤ ε.
— 218 —

H.3. Preliminaries

H.3.2 BGW Overview

To warm up, we first recall the BGW scheme [BGW05], on which our constructions will rely.

Setup(λ): Let G be a bilinear group of prime order p. The algorithm first picks a random
generator g ∈ G and a random scalar α ∈ Zp. It computes gi = gα

i ∈ G for i =
1, 2, . . . , n, n+ 2, . . . , 2n. Next, it picks a random scalar γ ∈ Zp and sets v = gγ ∈ G.
The public key is EK = (g1, . . . , gn, gn+2, . . . , g2n, v), whereas the private decryption key of
user i ∈ {1, . . . , n} is di = vα

i . These decryption keys are sent by the Extract algorithm.

Encrypt(S,EK): Pick a random scalar r ∈ Zp, and set K = e(gn+1, g)r, where e(gn+1, g) can
be computed as e(gn, g1) from EK. Next, set: Hdr = (gr, (v ·

∏
j∈S gn+1−j)r), and output

(Hdr,K).

Decrypt(S,Hdr, i, di,EK): Parse Hdr = (C1, C2), outputK = e(gi, C2)/e(di·
∏
j∈S,j 6=i gn+1−j+i, C1).

Trivially, when one wants to broadcast m different messages to m different sets S1, S2, . . . , Sm,
one can combine m independent BGW schemes:

Setup(λ): As in the BGW scheme.

Encrypt(S1, S2, . . . , Sm,EK): Pick random scalars r1, . . . , rm ∈ Zp, and set

K1 = e(gn+1, g)r1 , . . . ,Km = e(gn+1, g)rm
Hdr =

(
(gr1 , (v ·

∏
j∈S1 gn+1−j)r1), . . . , (grm , (v ·

∏
j∈Sm gn+1−j)rm)

)
.

Decrypt(S1, . . . , Sm,Hdr, i, (EK, di), j): Extract C1 = grj , C2 = (v ·
∏
j∈Sj gn+1−j)rj from Hdr and

decrypt as in BGW.

H.3.3 Intuition

One can note that, in the above “trivial” construction, the number of elements in the header is
2m, and we want to reduce it. A first attempt is by reusing the same random scalar in all the
ciphertexts, which leads to a header of size m+ 1:

Hdr =

gr, (v · ∏
j∈S1

gn+1−j)r, . . . , (v ·
∏
j∈Sm

gn+1−j)r
 .

However, this reuse of random coins suffers from a simple attack: the same random coins result
in the same session keys for all channels and a subscriber of a channel can decrypt all channels,
since the session key is e(gn+1, g)r. Different r’s are thus required in each session keys, but
not necessarily totally independent. Our idea is to add an element Xi ∈ G corresponding to
users i = 1, . . . , n, and to adapt the session key and Hdr using scalars xi, where Xi = gxi , for
i = 1, . . . , n,

K1 = e(gn+1, g)r+
∑

j∈S1
xj , . . . ,Km = e(gn+1, g)r+

∑
j∈Sm

xj ,

Hdr =
(
gr, (v ·

∏
j∈S1 gn+1−j)

r+
∑

j∈S1
xj , . . . , (v ·

∏
j∈Sm gn+1−j)r+

∑
j∈Sm

xj
)

The above step shorten the header to m+ 1 elements, with no more easy attack. But our goal
is to have a constant number of elements:

Hdr =

gr, (v · ∏
j∈S1

gn+1−j)
r+
∑

j∈S1
xj × · · · × (v ·

∏
j∈Sm

gn+1−j)r+
∑

j∈Sm
xj

— 219 —

Chapter H. Multi-Channel Broadcast Encryption

where we essentially multiply all the ciphertexts together. And, magically, it works because a
user in a set Si can cancel out all the terms (v ·

∏
j∈Sk gn+1−j)

r+
∑

j∈Sk
xj for k 6= i in this product

and transform it into his corresponding ciphertext in Si.

Of course, security has to be proven, this is the goal of the next section to prove the basic
selective security. Limitation not to ask decryption nor encryption queries is quite strong, and
is the main drawback of the first scheme MCBE1. And thus, we provide a second construction
MCBE2 that covers strong selective adversaries. For that, we replace

∏
j∈Sk Xj by a value

outputted by a random oracle on the set Sk and the value gr at the time of encryption. It will
prevent malleability. The dummy-helper technique will make the rest.

H.4 Multi-Channel Broadcast Encryption I – MCBE1

H.4.1 Description

Let us now describe formally our first construction MCBE1. We will then prove its basic selective
security.

Setup(λ): The algorithm takes as input the security parameter λ, it generates the global param-
eters param of the system as follows: Let G be a bilinear group of prime order p. The algo-
rithm first picks a random generator g ∈ G and a random α ∈ Zp. It computes gi = gα

i ∈ G
for i = 1, 2, . . . , n, n+2, . . . , 2n. Next, it picks a random γ ∈ Zp and sets v = gγ ∈ G. It also
picks additional random scalars x1, x2, . . . , xn ∈ Zp and sets X1 = gx1 , X2 = gx2 , . . . , Xn =
gxn . The master secret key is MSK = (g, v, α, γ, x1, x2, . . . , xn), while the encryption key
(that is private to the broadcaster) is EK = (g, v, gn+1, x1, x2, . . . , xn). The public global
parameters are (g1, . . . , gn, gn+2, . . . , g2n, X1, X2, . . . , Xn), whereas the private decryption
key is di = vα

i , for i ∈ {1, . . . , n}. These decryption keys are sent by the Extract algorithm.
We note that if a user registers to t different channels, he will possess t different private
decryption keys: n will be the product of the number of users and the number of channels.

Encrypt(S1, S2, . . . , Sm,EK): Pick a random scalar r $← Zp, set Kk = e(gn+1, g)r+
∑

j∈Sk
xj for

k = 1, . . . ,m. Next, set

Hdr =

gr, k=m∏
k=1

(v ·
∏
j∈Sk

gn+1−j)
r+
∑

j∈Sk
xj

 .

The broadcaster knows gn+1, x1, . . . , xn from EK. It eventually outputs (Hdr,K1,K2, . . . ,Km).

— 220 —

H.4. Multi-Channel Broadcast Encryption I – MCBE1

Decrypt(S1, . . . , Sm,Hdr, i, di, k): Parse Hdr = (C1, C2). If i ∈ Sk then one computes

Kk = e(gi, C2)
e(di ·

∏
j∈Sk
j 6=i

gn+1−j+i, C1 ·
∏
j∈Sk Xj) ·

∏`=m
`=1
` 6=k

e(di ·
∏
j∈S` gn+1−j+i, C1 ·

∏
j∈S` Xj)

= e(gi, C2)

e(di ·
∏

j∈Sk
j 6=i

gn+1−j+i, g
r+
∑

j∈Sk
xj) ·

∏`=m
`=1
` 6=k

e(di ·
∏
j∈S` gn+1−j+i, g

r+
∑

j∈S`
xj)

=
e(gαi ,

∏`=m
`=1 (v ·

∏
j∈S` gn+1−j)

r+
∑

j∈S`
xj)

e(vαi · (
∏

j∈Sk
j 6=i

gn+1−j)αi , g
r+
∑

j∈Sk
xj) ·

∏`=m
`=1
6̀=k

e(vαi · (
∏
j∈S` gn+1−j)αi , g

r+
∑

j∈S`
xj)

=
e(gαi , (v ·

∏
j∈Sk gn+1−j)

r+
∑

j∈Sk
xj)

e(vαi · (
∏

j∈Sk
j 6=i

gn+1−j)αi , g
r+
∑

j∈Sk
xj)
·
`=m∏
`=1
` 6=k

e(gαi , (v ·
∏
j∈S` gn+1−j)

r+
∑

j∈S`
xj)

e(vαi · (
∏
j∈S` gn+1−j)αi , g

r+
∑

j∈S`
xj)

=
e((v ·

∏
j∈Sk gn+1−j)α

i
, g
r+
∑

j∈Sk
xj)

e((v ·
∏

j∈Sk
j 6=i

gn+1−j)αi , g
r+
∑

j∈Sk
xj)
·
`=m∏
`=1
` 6=k

e((v ·
∏
j∈S` gn+1−j)α

i
, g
r+
∑

j∈S`
xj)

e((v ·
∏
j∈S` gn+1−j)αi , g

r+
∑

j∈S`
xj)

= e(gαin+1−i, g
r+
∑

j∈Sk
xj) = e(gn+1, g

r+
∑

j∈Sk
xj) = e(gn+1, g)r+

∑
j∈Sk

xj

We used the relations di = vα
i
, gn+1−j+i = gα

i

n+1−j , and gα
i

n+1−i = gn+1.

Remark H.4.1 In MCBE1, the encryption key EK contains gn+1, x1, x2, . . . , xn and thus cannot
be public: this is a private variant of BGW scheme. Actually, gn+1 is not really required, but
the x′is would be enough to break the semantic security, and thus cannot be public either.
However, the broadcaster does not need to know α, γ to encrypt, and without them it cannot
generate decryption keys for users. We can separate the role of group manager (who generates
the decryption keys) and broadcaster (who encrypts and broadcasts the content).

H.4.2 Security Result

We now prove the semantic security of the first scheme.

Theorem H.4.2 The MCBE1 system achieves the basic selective security under the DBDHE
assumption in G. More precisely, if there are n users,

Advb−ind(t, qC) ≤ 2×Advdbdhe(t′, n),

for t′ ≤ t+ (mn+nqC)Te where Te is the time complexity for computing an exponentiation and
m is the maximum number of channels in the system.

Proof: Let us assume there exists an adversary A which breaks the semantic security of our first
scheme, we build an algorithm B that has the same advantage in deciding the DBDHE problem
in G. This algorithm B proceeds as follows:

Init. Algorithm B first takes as input a DBDHE instance (g,G, g1, . . . , gn, gn+2, . . . , g2n, T),
where T is either e(gn+1, G) or a random element of G. It implicitly defines α: gi = gα

i .
B then runs A, and since we are in the selective model, it receives m sets S1, . . . , Sm and
an index k that A wishes to be challenged on.

— 221 —

Chapter H. Multi-Channel Broadcast Encryption

Setup. B now generates the public global parameters and private keys di, for i /∈ Sk: it first
chooses a random scalar r ∈ Zp and sets h = gr, and hi = gri , for i = 1, . . . , n. One chooses
a random index η in Sk, and for i ∈ {1, . . . , n}\{η}, one chooses a random scalar xi ∈ Zp,
and computes Xi = gxi . One eventually sets Xη

def= G/
∏
i∈Sk\{η}Xi = gxη : All the scalars

xi are known, excepted xη. B gives A the public global parameters:

(g1, . . . , gn, gn+2, . . . , g2n, X1, X2, . . . , Xn)

B has to compute all the private decryption keys di except for i ∈ Sk: It chooses a random
u ∈ Zp and sets

v
def= gu · (

∏
j∈Sk

gn+1−j)−1 di
def= gui /(

∏
j∈Sk

gn+1−j+i) = gu·α
i · (

∏
j∈Sk

gn+1−j)−α
i = vα

i

On can remark that B can compute, without explicitly knowing α,
∏
j∈Sk gn+1−j+i for any

i 6∈ Sk, and cannot when i ∈ Sk. Moreover, since di = vα
i , it satisfies the specifications of

the schemes.

Challenge. To generate the challenge for A, B first computes Hdr = (C1, C2) by setting C1 = h,
and

C2 = (hu ·Gu) ·
`=m∏
`=1
6̀=k

hu · (∏j∈S` hn+1−j∏
j∈Sk hn+1−j

)
· (v ·

∏
j∈S`

gn+1−j)
∑

j∈S`
xj

= (gu)r+
∑

i∈Sk
xi ·

`=m∏
`=1
6̀=k

gur · (∏j∈S` gn+1−j∏
j∈Sk gn+1−j

)r
·

v ∏
j∈S`

gn+1−j

∑

j∈S`
xj

=

v ∏
j∈Sk

gn+1−j

r+
∑

i∈Sk
xi `=m∏

`=1
` 6=k

v ∏
j∈S`

gn+1−j

rv ∏
j∈S`

gn+1−j

∑

j∈S`
xj

=

v ∏
j∈Sk

gn+1−j

r+
∑

i∈Sk
xi `=m∏

`=1
6̀=k

v ∏
j∈S`

gn+1−j

r+
∑

j∈S`
xj

=
`=m∏
`=1

v ∏
j∈S`

gn+1−j

r+
∑

j∈S`
xj

We used the following notations and relations h = gr and grn+1−j = hn+1−j . Note that B

knows all the values xi, excepted xik,t , that appears in hu·Gu = (v·
∏
j∈Sk gn+1−j)

r+
∑

j∈Sk
xj .

To generate session keys, B first computes, for all i 6= k, Ki = e(gn, g1)
∑

j∈Si
xj · e(gn, h1),

and sets Kk = T · e(gn, h1). It outputs (Hdr,K1, . . . ,Km) as the challenge to A.

Note that, for i 6= k, Ki = e(gn+1, g)r+
∑

j∈Si
xj , and, if T is the correct value, Kk =

e(gn+1, G) · e(gn, h1) = e(gn+1, g
∑

j∈Sk
xj) · e(gn+1, g

r) = e(gn+1, g)r+
∑

j∈Sk
xj . If T is

random, the latter is also random.

Guess. A outputs its guess b′ for b. If b′ = b the algorithm B outputs 0 (indicating that
T = e(gn+1, G)). Otherwise, it outputs 1 (indicating that T is random in G1). From the
above remark, if T is the correct value, Pr[B = 1] = Pr[b′ = b] = (Advind(A) + 1)/2.
However, if T is a random value, Pr[B = 1] = 1/2: Advdbdhe(B) = Advind(A)/2.

— 222 —

H.5. Multi-Channel Broadcast Encryption II – MCBE2

H.5 Multi-Channel Broadcast Encryption II – MCBE2

We now improve the previous scheme to allow encryption and decryption queries. To this aim,
we will need a random oracle.

H.5.1 Dummy-Helper Technique

First, in order to achieve semantic security, we still have to embed the critical element from the
n− BDHE instance in the challenge header related to the specific target set Sk. In the previous
scheme, it was implicitly embedded in the Xη, or at least in one of them. But then, if this
element is involved in a decryption query, the simulator cannot answer, hence the limitation for
the adversary not to ask decryption queries. For the same reason, it was not possible to simulate
encryption queries with this critical value.

Using a random oracle, it is possible to embed this element at the challenge time only, and
then, instead of a deterministic

∑
i∈Sj xi one can use a random yj implicitly defined by Yj given

by a random oracle. With the knowledge of the discrete logarithm yj (excepted in the challenge
ciphertext), the simulator is able to answer all encryption queries, but this is still not enough to
answer decryption queries: the simulator has no idea about the random scalar r involved in the
ciphertext, whereas it has to compute e(gn+1, g)r. But this can be done by adding a dummy
set for which the session key can be computed by the simulator. In this case, we apply the
dummy-helper technique to prove the security.

H.5.2 Description

Setup(λ): it takes as input the security parameter λ, and generates the global parameters param
of the system as follows: Let G be a bilinear group of prime order p; pick a random
generator g ∈ G and a random scalar α ∈ Zp; compute gi = gα

i ∈ G for i = 1, 2, . . . , 2n;
pick a random scalar γ ∈ Zp and set v = gγ ∈ G and dn = vα

n . The algorithm also uses a
random oracle H onto G.
The master key is MSK = (g, v, α, γ), the private encryption key is EK = MSK and the
public global parameters are (g1, . . . , gn, gn+2, . . . , g2n, dn), whereas the private decryption
key is di = vα

i , for i ∈ {1, . . . , n}. These decryption keys are sent by the Extract algorithm.

Encrypt(S1, . . . , Sm,EK): Pick a random scalar r ∈ Zp; set Sm+1 = {n}, for each set Si, for
i = 1, . . . ,m+ 1 compute Yi = H(i, gr) (Yi = gyi , for some unknown scalar yi), and

Ki = e(gn+1, Yi) · e(gn+1, g)r = e(gn+1, g)r+yi , i = 1, . . . ,m+ 1

Eventually compute Hdr = (C1, C2, C3) as follows:

C1 = gr

C2 =
i=m+1∏
i=1

Y γ+
∑

j∈Si
αn+1−j

i ·

v · ∏
j∈Si

gn+1−j

r =
i=m+1∏
i=1

v · ∏
j∈Si

gn+1−j

r+yi

C3 = H(C1, C2)r

Note that the broadcaster knows both α and γ to compute C2. It outputs (Hdr,K1, . . . ,Km+1).

— 223 —

Chapter H. Multi-Channel Broadcast Encryption

Decrypt(S1, . . . , Sm,Hdr, i, di, k): Set Sm+1 = {n}, parse Hdr = (C1, C2, C3). If i ∈ Sk then
one first checks whether e(C1,H(C1, C2)) = e(g, C3), computes Yi = H(i, gr), for i =
1, . . . ,m+1, and computes (as in the previous scheme, where the Yj ’s replace some products
of the Xi’s)

Kk = e(gi, C2)
e(di ·

∏
j∈Sk
j 6=i

gn+1−j+i, C1 · Yk) ·
∏`=m+1

`=1
6̀=k

e(di ·
∏
j∈S` gn+1−j+i, C1 · Y`)

= e(gn+1, g)r+yk

Note that di = vα
i
, gn+1−j+i = gα

i

n+1−j , and gα
i

n+1−i = gn+1.

H.5.3 Security

Theorem H.5.1 The MCBE2 system achieves the strong selective security under the DBDHE
assumption in G. More precisely, if there are n users,

Adv≈s (t, qC , qD, qE) ≤ 2×Advdbdhe(t′, n) + 2× Succcdh(t′′) + 2/p,

for t′ ≤ t+(nqC+nmqD+nmqE)Te+(mqD+mqE)Tp+mqDTlu and t′′ ≤ t+(qC+qD+nmqE)Te+
(qD +mqE)Tp + qDTlu, where Te, Tp are the time complexity for computing an exponentiation,
a pairings, Tlu is the time complexity for a look up in a list, and m is the maximum number of
channels in the system.

Proof: We organize our proof in three games:

1. Game 0: The real strong selective security game between an adversary and a challenger.

2. Game 1: This is similar to Game 0 with a following exception: if we denote Hdr =
(C1, C2, C3) the challenge header, then any decryption query on a different header Hdr′ =
(C1, C

′
2, C

′
3), but with the same C1, we answer ⊥ (i.e. invalid ciphertext). We can show

that this exception happens with negligible probability under the CDH assumption.

3. Game 2: We can now safely answer all decryption queries Hdr′ = (C1, C
′
2, C

′
3) by ⊥ and

the others using either a valid decryption key or dn. Using the programmability of the
random oracle, and thus the knowledge of the yi, one can easily simulate the encryption
queries. Eventually, the semantic security then relies on the DBDHE assumption.

Game 1: In this game, we know all the secret keys, but answer ⊥ to a decryption query
Hdr′ = (C1, C

′
2, C

′
3), with the same first C1 as in the challenge header. Our algorithm B is given

a CDH instance g,A = gr
∗
, B, and should answer C = Br∗ . It runs the adversary A:

• since we consider selective attacks only, the target sets are known from the beginning, and
B can thus first generate the challenge header using r∗ as random scalar, without knowing
it: C1 = A. Since B knows MSK, and namely α and γ, it can compute the appropriate
C2: vr

∗ = Aγ and gri = Aα
i . It then programs H(C1, C2) = gu for a random scalar u and

sets C3 = Au. The triple (C1, C2, C3) is a perfect header;

• answers all the hash queries H(A,X), for any X, by Bt for some randomly chosen scalar
t;

• answers all the other queries with MSK.

— 224 —

H.5. Multi-Channel Broadcast Encryption II – MCBE2

Let now assume that A asks for a valid decryption query (S′1, . . . , S′m′+1, k
′,Hdr′) in which

C ′1 = A. Since C ′3 = H(C1, C
′
2)r∗ = Br∗·t for a known value t, one can extract C = Br∗ = (C ′3)1/t,

which breaks the CDH assumption. Succind(A)− Succ1(A) ≤ Succcdh(B).
Game 2: We now assume there exists a selective adversary A that breaks the semantic security
of our scheme while decryption queries with the same C1 as in the challenge are answered by ⊥.
We build an algorithm B that has twice the advantage in deciding the DBDHE in G. As said
above, the programmability of the random oracle will help simulating the encryption queries,
and the dummy set will help answering the decryption queries. In game 2.1, the algorithm B is
defined as follows:

Init. Algorithm B first takes as input a DBDHE instance (g,G, g1, . . . , gn, gn+2, . . . , g2n, T) where
T = e(gn+1, G). It implicitly defines α: gi = gα

i . B then runs A to receive m∗ sets
S∗1 , . . . , S

∗
m∗ and an index k∗ that A wishes to be challenged on. Note that n /∈ S∗k∗

because the decryption key dn is public. B makes use of a random oracle H which output
is a random element in G, and a hash List is initially set empty list, to store all the query-
answer, with additional information, when possible. Namely, for a query q, with answer
Y = gy, the tuple (q, Y, y) is stored. Sometimes, y will not be known, and thus replaced
by ⊥.

Setup. B needs to generate the public global parameters and decryption keys di, i /∈ S∗k∗ : it
chooses a random u ∈ Zp and sets v def= gu/

∏
j∈S∗

k∗
gn+1−j . It then computes

di
def= gui /

∏
j∈S∗

k∗

gn+1−j+i = gu·α
i ·

 ∏
j∈S∗

k∗

gn+1−j

−αi = vα
i

Eventually, B gives A the public global parameters (g1, . . . , gn, gn+2, . . . , g2n, dn).

Phase 1. Since we now allow encryption and decryption queries, let show how they can be
answered. We first start by the hash queries:

1. There are two kinds of useful hash queries, (j, u) ∈ Zp ×G or (u1, u2) ∈ G2. But for
any query q, if it has already been asked, the same answer is sent back. Otherwise,
B chooses a random scalar y $← Zp and sets H(q) = gy. It appends the appropriate
tuple (q, gy, y) to the hash List.

2. For an encryption query (S1, S2, . . . , Sm), B makes the ciphertext as follows: it first
chooses a random scalar r ∈ Zp and sets Sm+1 = {n}, and Yi = H(i, gr) = gyi for
i = 1, . . . ,m + 1: yi is obtained from the hash List. To generate Hdr = (C1, C2, C3),
B sets C1 = gr, and computes

C2 =
m+1∏
i=1

v · ∏
j∈Si

gn+1−j

r+yi C3 = H(C1, C2)r

and Ki = e(gn, g1)r+yi , for i = 1, . . . ,m+ 1.
3. For a decryption query (S1, . . . , Sm+1,Hdr, i, k) in the name of user i ∈ Sk, B decrypts

as follows: it first checks whether Sk ⊆ S∗k∗ or not. In the negative case, it finds
j ∈ Sk\S∗k∗ , and using dj it can decrypt as the decryption oracle would do; in the
positive case
• B uses dn to decrypt, using the decryption oracle, and obtain
Km+1 = e(gn+1, g)r+ym+1 ;

— 225 —

Chapter H. Multi-Channel Broadcast Encryption

• B extracts, from the hash List for H(m+ 1, C1), the value ym+1, and computes

L = Km+1
e(gn+1, g)ym+1

= e(gn, g1)r

• B extracts, from the hash List forH(k,C1), the value yk, and computes the session
key

Kk = L× e(gn, g1)yk = e(gn+1, g)r+yk

Challenge. The challenge has to be generated on the target sets S∗1 , . . . , S∗m∗ , with the index
k∗ for the indistinguishability of the key:

• B first chooses a random scalar r∗ ∈ Zp and sets h = gr
∗ , and hi = gr

∗
i for i = 1, . . . , n;

• it chooses a random scalar z∗ ∈ Zp and sets H(k∗, h) = Y ∗k∗ = G/gz
∗ , which is the

value Y ∗k∗ = gy
∗
k∗ for an unknown y∗k∗ . The tuple ((k∗, h), Y ∗k∗ ,⊥) is appended to the

hash List;
• B asks for the other values Y ∗i = H(i, h) = gy

∗
i , for i = 1, . . . , k∗−1, k∗+1, . . . ,m∗+1

Note that S∗m∗+1 = {n}, then B generates Hdr∗ = (C∗1 , C∗2 , C∗3) by setting C∗1 = h and
C∗3 = H(C∗1 , C∗2)r∗ , where (as in the previous proof)

C∗2 =
(
hu · (Y ∗k∗)u

) `=m∗∏
`=1
` 6=k∗

hu · (∏j∈S∗
`
hn+1−j∏

j∈S∗
k∗
hn+1−j

)v ∏
j∈S∗

`

gn+1−j

y∗`

=
`=m∗∏
`=1

v ∏
j∈S∗

`

gn+1−j

r∗+y∗`

To generate the session keys, B first computes

K∗i = e(gn, g1)y∗i · e(gn, h1) = e(gn+1, g)r∗+y∗i , i 6= k∗.

It then sets
K∗k∗ = T · e(gn, h1)

e(gn+1, gz
∗)

It gives (Hdr∗,K∗1 , . . . ,K∗m∗+1) as the challenge to A.
Note that when T = e(gn+1, G), with G = Y ∗k∗g

z∗ ,

K∗k∗ = e(gn+1, Y
∗
k∗g

z∗) · e(gn, h1)
e(gn+1, gz

∗) = e(gn+1, g)y∗k∗ · e(gn+1, g)r∗ = e(gn+1, g)r∗+y∗k∗

Phase 2. B responds as in the first phase. Note that, if A asks a decryption query with
C1 = C∗1 , B simply answers ⊥.

In this game 2.1, the advantage of A is unchanged, except in case of problem during the program-
mation of H, which is required once only, and the query has already been asked with probability
1/p: Succ1(A) − Succ2.1(A) ≤ 1/p. In a game 2.2, we replace T by a random element in G:
Succ2.2(A) = 1/2, whereas Succ2.1(A)− Succ2.2(A) ≤ Advdbdhe(B).
As a consequence,

Succ≈s (A) ≤ Succcdh(B1) + Advdbdhe(B2) + 1/p+ 1/2,

where Bi denotes the simulator B in Game i.

— 226 —

H.6. Conclusion

H.6 Conclusion
We initiate the new research line on multi-channel broadcast encryption. Our objective is
to optimize the ciphertext size while maintaining the polynomial-time complexity of all the
algorithms. We propose two efficient schemes with constant-size ciphertexts and leave some
challenging open problems:

• As already mentioned in the introduction, our schemes share the same weakness as with
BGW scheme: the decryption takes into account of all the corresponding public keys of the
users in all the target sets. It is thus not quite efficient. A trade-off between the ciphertext
size and the decryption time can be done by partitioning the sets for each channel into
subsets and then encrypting to each of these subsets. A better solution than this trade-off
would definitely be very interesting.

• While privacy concerns imply independent keys for all the channels a user subscribed to,
this however also leads to large decryption keys for users (linear in the number of channels).
One could prefer to have shorter or even constant-size keys, sacrificing on privacy. This
problem is quite related to the above one.

• Our first scheme achieves the basic selective security level in the standard model while
our second scheme achieves the strong selective security level, which resists to both CPA
and CCA, but in the random oracle model. Ruling out the random oracle seems quite
challenging because of the implicit relations between session keys.

Acknowledgments
This work was partially supported by the French ANR-09-VERSO-016 BEST Project, the Eu-
ropean Commission through the ICT Program under Contract ICT-2007-216676 ECRYPT II
and partially conducted within the context of the International Associated Laboratory Formath
Vietnam (LIAFV).

— 227 —

Chapter H. Multi-Channel Broadcast Encryption

— 228 —

Appendix I

Decentralized Dynamic Broadcast
Encryption

SCN 2012
[PPS12a] with David Pointcheval, and Mario Stroller

Abstract : A broadcast encryption system generally involves three kinds of entities: the group
manager that deals with the membership, the encryptor that encrypts the data to the registered
users according to a specific policy (the target set), and the users that decrypt the data if they are
authorized by the policy. Public-key broadcast encryption can be seen as removing this special
role of encryptor, by allowing anybody to send encrypted data. In this paper, we go a step
further in the decentralization process, by removing the group manager: the initial setup of the
group, as well as the addition of further members to the system, do not require any central
authority. Our construction makes black-box use of well-known primitives and can be considered
as an extension to the subset-cover framework. It allows for efficient concrete instantiations,
with parameter sizes that match those of the subset-cover constructions, while at the same time
achieving the highest security level in the standard model under the DDH assumption.

I.1 Introduction
Broadcast encryption (BE), introduced by Fiat and Naor [FN93] in 1993, allows a sender to
securely send private messages to a subset of users, the target set. In 2001, Naor, Naor, and
Lotspiech (NNL [NNL01]) introduced the subset-cover framework, where for any target set, the
sender can find a partition of the user set, encrypt a session key using the keys associated to each
subset in the partition, and finally encrypt the content using the session key. The ciphertext
length of the subset-difference (SD) version of NNL depends linearly on the number of users
in the revoked set, which was considered to be efficient enough for use in the AACS DRM
standard [AAC09]. We generalize the subset-cover framework of NNL to deal with both public-
key encryption and dynamic changes of the registered user sets. We furthermore remove the
need for trusted authorities by eliminating the group manager, who typically interacts with users
to distribute keys at the setup phase or when users join the system. Our approach makes use
of group key exchange with subgroup keys [Man09, ACMP10], a primitive that simultaneously
distributes different keys to certain subsets of the user group and applies well to the subset-cover
framework if one can assign keys for the subgroups involved in the subset cover.

— 229 —

Chapter I. Decentralized Dynamic Broadcast Encryption

We first instantiate our construction with the Diffie-Hellman key agreement for the key
generation and the ElGamal encryption for the public-key encryption, which leads to quite an
efficient scheme. The complete-subtree (CS) tree construction resembles the tree-based group
key agreement in [KPT04], with the exception that we also create key pairs for internal nodes,
and we go beyond their scheme in our construction of SD trees. We then show how our scheme
can be extended to achieve the strongest security notion by using Cramer-Shoup encryption,
which allows adaptive corruptions and chosen-ciphertext attacks, in the standard model, under
the DDH assumption. In addition, we consider various criteria of efficiency: ciphertext size,
private part and public part of the decryption keys, number of rounds for the key generation,
etc. Thanks to the modularity of our approach, we can use any appropriate group key exchange
with subgroup keys: our initial technique iteratively uses the two-party Diffie-Hellman key
exchange in a binary tree, which requires a logarithmic number of rounds; we can replace
it by logarithmically many parallel executions of the Burmester-Desmedt group key exchange
protocol [BD05], which reduces the number of rounds to two. Besides allowing members to
join the system, we also sketch how groups could merge at low cost, and how to permanently
revoke some users, but we cannot elaborate on this due to space constraints. Our scheme thus
achieves a maximum of functionality and security under minimal assumptions, while still being
reasonably efficient.

Related Work. Dodis and Fazio [DF02] already constructed a public-key version of the
subset-cover framework using IBE for the Complete-Subtree (CS) structure and HIBE of depth
logN for the Subset-Difference (SD) structure. They retain the same efficiency, using (H)IBE
keys instead of symmetric keys, and achieve generalized CCA security. In the same year, Dodis
and Fazio presented a dynamic, IND-CCA-secure BE scheme [DF03], where the adversary may
corrupt users before the challenge phase. IND-CPA-security under adaptive corruption was first
achieved by Boneh and Waters [BW06b], who presented a fully-collusion resistant trace-and-
revoke scheme. More recently, Gentry and Waters [GW09] described another adaptively IND-
CPA-secure scheme. For both schemes, there is no obvious way to make them IND-CCA-secure
in the standard model.

Delerablée [Del08] constructed selectively IND-CPA-secure ID-based BE, which allows adding
users after the setup. The only existing dynamic BE scheme was developed by Delerablée,
Paillier, and Pointcheval[DPP07]. However, their scheme does not provide forward-secrecy, i. e. a
new user can decrypt all ciphertexts sent before he joined. Because our scheme provides forward-
secrecy, we have to relax their definition of “dynamic”. Forward-security has been considered by
Yao, Fazio, Dodis, and Lysyanskaya [YFDL04], first for HIBE and then by extension for BE.
Their notion of forward-security refers to security of ciphertexts against later corruption of users,
which means that user keys must evolve so that previously sent messages remain secure. This
is distinct from our notion of forward-secrecy, where we only require that newly joined users
cannot decrypt previously sent ciphertexts. However, when a user gets corrupted, messages this
user received prior to corruption can be read by the adversary, since the adversary gets the
same power as the user. The scheme in [YFDL04] is IND-CCA-secure, but the adversary is more
restricted in corrupting users after the challenge phase than in our setting.

Broadcast encryption without a central authority replaces the traditional setup with a group
key exchange process that can be an interactive protocol. It was proposed under the name
“contributory broadcast encryption” (CBE) in [WQZ+11], along with a semi-adaptively IND-
CPA-secure scheme that is not dynamic. A possible application of this could be communication
in a social network, where some private information is meant to be read only be a subset of
a user’s acquaintances, and the network is either peer-to-peer or the service provider is not
trusted. The first steps toward subgroup key exchange were done by Manulis [Man09], who

— 230 —

I.2. Definitions

extended a group key exchange (GKE) protocol to allow any two users to compute a common
key after the initial phase in which the group key is computed. Following this work, Abdalla et
al. [ACMP10] generalized this approach to allow the computation of session keys for arbitrary
subsets. We use such a group key exchange protocol with subgroup keys to derive asymmetric
encryption keys for subsets. Something similar has been done under the name of “asymmetric
group key agreement” (ASGKA) [WMS+09]. In [WMS+09], ASGKA is defined in a way that
guarantees only that the keys held by the participants are good for use with a specific encryption
scheme. We want to generalize this requirement so that at the end of the protocol run, each
user has some randomness, which can thereafter be used for any key generation, and namely
to generate key pairs for any key encapsulation mechanism. Since this randomness is shared
between various subgroups, we call the scheme we use for the setup “subgroup key exchange”
(SKE). Kurnio, Safavi-Naini, and Wang [KSNW03] explicitly consider sponsorship of group
candidates by existing members. In our scheme, because of the tree structure, each user can act
as a sponsor, and only one sponsor is required for a candidate to join the user set.

Contributions and Organization. In section I.2, we define decentralized dynamic broadcast
encryption and subgroup key exchange, a building block we use in our construction that may
be of independent interest. We extend the security notions of adaptive IND-CPA and IND-
CCA from [PPS11] to our case. We describe a black-box construction of decentralized dynamic
broadcast encryption using the subset-cover framework in section I.3 and prove the security of
the construction, assuming that the building blocks are secure. In section I.4, we construct
a subgroup key exchange protocol based on any secure two-party key exchange protocol. We
give two concrete instantiations using our methodology in section I.5, that provide keys for
subgroups in the CS and SD structures. Combined with the Cramer-Shoup encryption scheme,
this gives us a decentralized dynamic broadcast encryption schemes which additionally achieves
the highest security level (fully adaptive IND-CCA-security) in the standard model under the
DDH-assumption.

I.2 Definitions

In the following, we describe some generic constructions for broadcast encryption that make
use of standard definitions of well-known primitives. We briefly review the notations here, but
provide full definitions in the Appendix I.6.1.

A public-key encryption scheme is defined by a tuple of four algorithms
PKE = (Setup,KeyGen,Encrypt,Decrypt). A two-party key exchange protocol is a tuple of
two algorithms/protocols KE = (Setup,CommonKey). Note that CommonKey is an interactive
protocol, but we expect it to be one-round only for the efficiency of our constructions. A message
authentication code is a tuple of three algorithms MAC = (KeyGen,GenMac,VerifMac). A
pseudo-random generator is a function F : X → Y with |X| ≤ |Y |.

I.2.1 Decentralized Broadcast Encryption

Let us start with the main protocol we want to build: a broadcast encryption scheme, which
aims at encrypting a message for a group of users, with a fine-grained selection of the target
group. As in [FN93], broadcast encryption generally involves a group manager, that deals with
the membership of the users, and an encryptor that specifies the target group (a subgroup of
the registered members) for a ciphertext. The encryptor is either a specific person in case of
secret-key broadcast encryption, or anybody in case of public-key broadcast encryption. The
group manager is either involved once only, at the setup phase, in static schemes, or at any

— 231 —

Chapter I. Decentralized Dynamic Broadcast Encryption

time a new member wants to join the system, in dynamic schemes [DPP07]. The latter dynamic
situation is the most realistic, but makes the group manager quite sensitive, for both security
and availability. Our goal is to get rid of such a centralized system.

We thus extend the dynamic broadcast encryption setting [DPP07] so that the membership
management can be decentralized. At the same time, we would like to keep everything as small
as possible.

1. The ciphertext size should be as small as possible: the ciphertext has to contain the target
group structure, and so cannot be smaller than the representation of this structure, which
can either be encoded on N bits, where N is the total number of users, and each bit tells
whether a user is in the target group or not, or on r logN bits (resp. s logN bits), where
r (resp. s) is the number of revoked users (resp. included users) among the N registered
users. This is sometimes considered independently from the ciphertext, in the header, but
anyway both the target set and the encrypted data have to be sent. Our goal is to make
the global length as small as possible.

2. When a new user joins the system, it should have minimal impact on other users’ secret
information and the public information: no impact at all on the keys as in [DPP07] is of
course optimal, but when one wants to achieve forward secrecy, it is not possible: some of
the keys have to be modified. We will try to keep the impact as small as possible too.

Since we want to avoid any centralized group manager, we will also focus on public-key broadcast
encryption, in which a public key is enough to target any subgroup at the encryption time. In
addition, instead of encrypting a message, our schemes will generate an encapsulation (or key
header) and session keys to be used with any symmetric encryption scheme [Sho00].

Definition I.2.1 [Decentralized Dynamic Broadcast Encapsulation] A decentralized dynamic
broadcast encapsulation scheme is a tuple of five algorithms or protocols DBE = (Setup,
KeyGen, Join, Encaps,Decaps):

• Setup(1k), where k is the security parameter, generates the global parameters param of the
system.

• KeyGen(param, U) is an interactive protocol between the users in the set U . After the
protocol run, it returns the public encryption key EK and a list Reg of the registered users
with additional public information. Each user u ∈ U eventually gets a secret decryption
key dku.

• Join(v, {u(dku)}u∈U ,Reg,EK) is an interactive protocol run between a user v and the set
of users U , described in Reg. Each user takes as input his secret key and/or some random
coins, the list Reg, and the encryption key EK. After the protocol, Reg and EK are
updated, and each user (including v) has a secret decryption key.

• Encaps(EK,Reg, S) takes as input the encryption key EK, the user register Reg, and a
target set S. It outputs a key header H and a session key K ∈ {0, 1}k.

• Decaps(dku, S,H) takes as input the target set S and a user decryption key dku together
with a key header H. If dku corresponds to a recipient user, it outputs the session key K,
else it outputs the error symbol ⊥.

The correctness requirement is that for all N , any target set S ⊂ UN = [1, N] and for any
u ∈ UN , if u ∈ S then the decapsulation algorithm gives back the key. A decentralized scheme
requires that no authority is involved in the KeyGen and Join protocols.

— 232 —

I.2. Definitions

Expind−acca−b
DBE,A (k)
QC ← ∅; QD ← ∅;
param← Setup(1k);
(state, U)← A(SETUP; param);
(EK,Reg, τ)← OExecute(U);
(state, S)← AOJoin(·),OCorrupt(·),ODecaps(·,·,·)(state; EK,Reg, τ);
(H,K)← Encaps(EK,Reg, S);
Kb ← K; K1−b

$← K;
b′ ← AOJoin(·),OCorrupt(·),ODecaps(·,·,·)(state;H,K0,K1);
if ∃i ∈ S, (i, S,H) ∈ QD or i ∈ QC ;
then return 0
else return b′;

OExecute(U)
(EK,Reg)← KeyGen(param, U);
return EK,Reg, τ ;

OJoin(v)
(EK,Reg)← Join(v, U,Reg,EK);
return EK,Reg, τ ;

OCorrupt(u)
QC ← QC ∪ {u}; return dku;

ODecaps(u, S,H)
QD ← QD ∪ {(u, S,H)};
K ← Decaps(dku, S,H);
return K;

Figure I.1: DBE : Key Indistinguishability (IND-ACCA)

Security Notions A general overview of the security notions for broadcast encryption has
been done in [PPS11]. We extend the strongest one to the decentralized setting. The adversary
is still given unlimited access to the Join oracle (dynamic), the Corrupt oracle (adaptive) and
Decaps oracle (chosen-ciphertext security). For the group key generation, the definition from
[PPS11] models passive adversaries only, since they only receive the public keys. Since in our
case this group key generation may be an interactive protocol, we make it more explicit with a
Execute-oracle that outputs the public transcript of the full run of this protocol. The security
game for DBE is presented in figure I.1: the restriction for the adversary is not to ask for the
decapsulation of the challenge ciphertext (which includes the target set S) nor corrupt any user
in the target set.

The adversary can ask once the generation of the group structure with a single call to
OExecute on a group U of its choice, from which it gets the transcript τ , the encryption key EK
and the register Reg. It can thereafter make as many calls it wants to OJoin, to add a user to
the structure Reg, which updates EK. The adversary also gets the transcript τ of this interactive
protocol. At any time, the adversary can also corrupt a user with a key pair, calling OCorrupt
and getting back all the secret information of the user, and decapsulate a ciphertext H, calling
ODecaps in the name of a user u.

The main security goal of an encryption scheme (or an encapsulation scheme) is the indis-

— 233 —

Chapter I. Decentralized Dynamic Broadcast Encryption

tinguishability of a challenge ciphertext: at some point, the adversary thus gets a challenge
(H,K0,K1), where H encapsulates either K0 or K1 for a target set S chosen by the adversary.
It has to guess which key is actually encapsulated. Of course, there are the natural restrictions,
which are controlled granted the lists QC and QD:

• (S,H) has not been asked to the decapsulation oracle for a user u in S

• none of the users in S have been corrupted

A dynamic broadcast encapsulation scheme is (t,N, qC , qD, ε)-IND-ACCA-secure (security
against adaptive corruption and chosen-ciphertext attacks) if in the security game presented in
figure I.1, the advantage Advind−acca

DBE (k, t,N, qC , qD), of any t-time adversary A creating at most
N users (OJoin oracle), corrupting at most qC of them (OCorrupt oracle), and asking for at most
qD decapsulation queries (ODecaps oracle), is bounded by ε.

Advind−acca
DBE (k, t,N, qC , qD) = max

A
{Pr[Expind−acca−1

DBE,A (k) = 1]− Pr[Expind−acca−0
DBE,A (k) = 1]}.

This definition includes IND-ACPA (for adaptive chosen-plaintext attacks) when qD = 0.

Remark I.2.2 [Forward-secrecy] This definition includes forward-secrecy against new users,
i. e. a new user cannot decrypt ciphertexts that were created before he joined. For a definition
without forward secrecy, the adversary is prohibited from corrupting users that joined after the
challenge phase.

I.2.2 Subgroup Key Exchange

The novelty of our definition is the decentralized key generation procedure, that should also
generate keys for certain subgroups in order to be able to broadcast to any target set. This
is thus in the same vein as the notion of group key exchange with on-demand computation of
subgroup keys (GKE+S) from [ACMP10], that allows some subgroups of users to run a protocol
to establish keys between them. But we extend this definition by allowing for keys of some
subgroups to be computed during the first protocol run that establishes the global key, without
any additional interaction.

Since we want to remain independent of the encryption scheme to be used with the session
key, we require that for each subgroup a proto-key is computed, whose entropy can be used as
input to a PKE key-pair generation, or to generate a symmetric encryption key.

Definition I.2.3 [Dynamic S-Subgroup Key Exchange Protocol] For a collection S : N→ P(N)
of subsets of the user set, where for any N , S(N) ∈ P(N), a dynamic S-subgroup key exchange
protocol SKE is a tuple of three algorithms and interactive protocols:

• Setup(1k), where k is the security parameter, generates the global parameters param of the
system;

• KeyGen(param, U) is an interactive protocol run between all users in U . It outputs a register
Reg that contains a description of U and the subsets for which keys were established
according to S, and for each user u ∈ U a secret usku that contains the proto-keys ptS for
all the sub-groups S containing u.

• Join(v, U,Reg) is an interactive protocol run between user v and the group of users U . It
outputs an updated register Reg and for user v and some of the users in U a new secret
usku that contains the proto-keys ptS of all the subgroups S they are part of.

— 234 —

I.2. Definitions

Expind−b
SKE,A(k)

Reg← ∅; QT ← ∅;
param← Setup(1k);
(state, U)← A(param);
(EK,Reg, τ)← OExecute(U);
b′ ← AOJoin(·),OTest(·,·)(state; EK,Reg, τ);
return b′;

OExecute(U)
t← 0;
Reg← KeyGen(param, U);
return Reg, τ ;

OTest(t, S)
if ∃(t′,K) ∧ t ≡S t′ ∧ (t′, S,K) ∈ QT

then return K;
elseif b = 0 then K ← ptS(t);

else K
$←− K;

QT ← QT ∪ {(t, S,K)};
return K;

OJoin(v)
t← t+ 1;
Reg← Join(v, U,Reg);
return Reg, τ ;

Figure I.2: SKE : Key Indistinguishability (IND)

We require that all the users u ∈ U that run KeyGen(param, U) receive the same register Reg
and compute matching proto-keys for the subsets they have in common. The same is required
of Join.

For the security definition, we extend the definition given in [ACMP10], which seems to be most
applicable to our case. Since the protocol is dynamic, the user set can change over time. As
in the previous section, we stick to passive adversaries. This is a way of modularizing protocol
construction, as passively secure protocols can be made secure against active adversaries using
constructions such as [KY07], with additional authentication mechanisms.

The adversary can ask once the generation of the group structure with a unique call to
OExecute, at time t = 0, on a group U of its choice from which it gets the transcript τ and the
register Reg. It can thereafter make as many calls as it wants to OJoin, to add a user to the
structure Reg. Each query increases the time index t. The adversary also gets the transcripts τ
of these interactive protocols.

The main security goal of key exchange is the indistinguishability of the keys, and their
independence. Hence, we use the stronger notion proposed in [AFP05], similar to the Real-
or-Random [BDJR97] for encryption. The adversary has access to many OTest(t, S) queries,
that are either answered by the real keys or by truly random and independent keys. Note that
according to the protocol, some keys may remain unchanged even when the time period evolves.
We even hope to have as many keys as possible that do not evolve, since we want that not too
many users are impacted by a new member in the system. We thus say that two pairs (t1, S)
and (t2, S) are equivalent (denoted by t1 ≡S t2) if S is unchanged between the time periods
and therefore they should have the same key. For such equivalent pairs, the same random key
is output. We do not provide direct access to a OReveal oracle, which returns the secret key of
a user, because as explained in [AFP05], having access to many OTest queries annihilates the
advantage provided by OReveal queries.

A subgroup key exchange scheme is said to be (t,N, qT , ε)-IND-secure if, in the security game
presented in figure I.2, the advantage Advind

SKE(k, t,N, qT) of any t-time adversary A creating at
most N users (the final size of the set U), testing at most qT keys is bounded by ε.

Advind
SKE(k, t,N, qT) = max

A
{Pr[Expind−1

SKE,A(k) = 1]− Pr[Expind−0
SKE,A(k) = 1]}.

— 235 —

Chapter I. Decentralized Dynamic Broadcast Encryption

I.3 Generic Decentralized Broadcast Encryption
As already remarked, in the first definition of dynamic broadcast encryption schemes [DPP07],
it is required that the existing users are not affected by a join: their decryption keys should not
be modified. Only the encryption key could be modified. This constraint is actually achieved
by their scheme, but this is possible because the scheme is not forward-secure: a new user can
decrypt all ciphertexts that were sent before he joined (since he cannot be in any revoked set).

To achieve forward-secrecy, we have to relax their definition and allow updates of the user
decryption keys. Namely, updates of the decryption keys are necessary for forward-secrecy in
the subset-cover framework [NNL01], because some keys are shared by several users. With an
appropriate subset-cover structure, it can reach asymptotically optimal overall ciphertext size.
On the other hand, the naive scheme, where each user has a single key specific to him, can be
made dynamic without decryption key updates, but has ciphertexts whose length is linear in the
number of users. As soon as keys are shared between users, forward-secrecy makes it necessary
to update these shared keys. Hence our relaxation of the model. However, we require these
updates of existing keys to be made via public channels.

I.3.1 Generic Public-Key Subset Cover

A subset-cover structure SC = {Si}i∈I is a set of subsets Si of a user set U such that for any
subset S ⊂ U there is a subset L ⊂ I such that S can be partitioned as S =

⋃
i∈L Si. In

particular, this implies that for all users u ∈ U , {u} ∈ SC. In [NNL01], a secret key is assigned
to each set Si, so a message can be encrypted to any subset S ⊂ U by finding the cover L of S.
Then a session key is encrypted under all the keys associated to the selected subsets. All the
other users are then implicitly revoked, since they cannot decrypt the session key. Because of
the partition property, a user in S is in one subset Si only. Efficiency will thereafter depend on
the subset-cover structure.

We extend this framework in three directions:

1. First, we transfer this approach to the public-key world. Each Si is assigned a key pair of
some PKE scheme by some key assignment procedure. This means that the assignment
of keys to the subsets depends on the PKE scheme used as well as the assignment proce-
dure. For example, for a subset-cover structure SC and a PKE PKE , we can use the key
assignment that assigns each subset with a key pair drawn independently at random by
the trusted center.

2. Second, we replace the trusted center by an interactive protocol, a subgroup key exchange.

3. Third, we allow for the addition of users, hence using a dynamic subgroup key exchange to
generate the keys for a dynamic subset-cover structure.

We first deal with a dynamic subset-cover structure, assuming a subgroup key exchange as a
black box. Thereafter, we will consider concrete structures and efficient subgroup key exchanges.

I.3.2 Dynamic Subset-Cover

We define a dynamic subset-cover as a sequence of subset-covers {SCi} for i ≥ 0 users, where
each SCi contains subsets Sj . These subsets never change, so instead of adding a user to a
subset, we remove the old one and add a new one. This also means that the same subset Sj can
occur in different time periods (the time period changes each time a new user joins). We start
with SC0 = ∅ and an empty user set U0 = ∅, and then have Un+1 = Un ∪ {un+1}. From the
definition, it is clear that |Un| = n, and w.l.o.g. Un = [1, n].

— 236 —

I.3. Generic Decentralized Broadcast Encryption

For subset-cover based dynamic broadcast encryption, we will have to generate the keys for
all the subsets that are involved in SCn. The following property will optimize efficiency, in the
sense that a minimal number of existing users will be impacted by a new member.

Definition I.3.1 [Splitting Property] We say that a dynamic subset cover SC has the splitting
property, if the subset cover at time n + 1 is composed of subsets that either were part of the
subset cover at time n, or contain the new user. SCn+1 = SC′n+1 ∪ SC′′n+1, where SC′n+1 ⊂ SCn
and Si ∈ SC′′n+1 ⇒ un+1 ∈ Si.

With this property, if a subset changes, it is either removed, or it contains un+1. Then only sets
with the new user need new key generation, which is a minimal requirement anyway.

I.3.3 SC-based Decentralized Dynamic Broadcast Encryption

We first assume we have a dynamic subgroup key exchange SKE that is compatible with our
dynamic subset-cover structure. It means that for any n, the subgroup key exchange provides
keys for all the subsets S in SCn. We will later instantiate such a dynamic subgroup key exchange
for some dynamic subset-cover structures.

Let us recall that the SC-based broadcast encryption [NNL01] consists in encrypting the same
message under the keys of all the subsets that cover the target set. Since one of our goals is to
achieve the highest security level, adaptive chosen-ciphertext security, any modification of the
description of the target set or one of the ciphertexts in the list should make the global ciphertext
invalid, otherwise the scheme is somewhat malleable, and thus insecure against chosen-ciphertext
attacks. We will add a MAC to bind the target header and the ciphertexts together. A similar
approach has been used by [BK05, DK05]. Instead of a master secret key, our scheme needs
only a public register Reg to keep track of the users currently enrolled in the system and their
public keys.

We first present in details our construction, and then state the security of the construction. It
is important to remember that the subgroup key exchange scheme is only assumed to be passively
secure, meaning that the protocol requires authenticated channels. This can be achieved in
several ways that we will not discuss here. Because the subset cover is a fixed part of the
protocol and defines the subsets for each number of users, and we assume that the number of
users in the system is always known, the number of a new user and the subsets he belongs to
can be computed deterministically by all users. Meta-issues like trust between users and how
they should agree on which users to allow into the group are beyond the scope of this paper.

Definition I.3.2 [dBE] Let PKE be a PKE, MAC a MAC, F : K → R a pseudo-random
generator, SC a dynamic subset-cover, and SKE a dynamic subgroup key exchange compatible
with SC with keys in K. Our Broadcast Encryption Scheme is defined as follows.

• Setup(1k):

1. Run PKE .Setup(1k) to get paramPKE ;
2. Run SKE .Setup(1k) to get paramSKE ;
3. Publish param = (paramPKE , paramSKE).

• KeyGen(param, Un), for some integer n:

1. Run SKE .KeyGen(paramSKE , Un) to get Reg; Each user u ∈ Un gets as output of the
protocol the proto-keys ptS for all subsets S he belongs to according to SC. The
decryption key dku consists of all these ptS .

— 237 —

Chapter I. Decentralized Dynamic Broadcast Encryption

2. He computes (dkS , ekS) ← PKE .KeyGen(paramPKE ;F(ptS)), where we use the PRG
to generate from the proto-key the random coins of the key generation algorithm;

3. All the encryption keys ekS are published as EK;
4. The decryption keys dkS can be either stored in dku for users u ∈ S, or deleted since

they can be recomputed;

• Join(v, {u(dku)}u∈Un ,Reg,EK):

1. Run SKE .Join(v, {u(dku)}u∈Un ,Reg) to get the new Reg;
2. Each user u does as above to compute dkS , ekS and dku. Note that granted the

splitting properties, only dkS , and thus ekS , for S that contain v are affected;

• Encaps(EK,Reg, S):

1. From the target set S, generate the partition L with S = ∪LSi;
2. Generate a session key Ke and a MAC key Km;
3. For each subset i ∈ L, generate ci = PKE .Encrypt(ekSi ,Ke||Km);
4. Compute σ =MAC.GenMac(Km, S||(ci)i∈L);
5. Output Ke and H = ((ci)i∈L, σ).

• Decaps(dku, S,H):

1. If u ∈ S, then there is a unique i such that u ∈ Si, and then dku allows to derive
dk = dkSi ;

2. Extract Ke||Km = PKE .Decrypt(dk, ci);
3. Check if σ is a valid MAC under key Km;
4. In case of validity, output Ke, otherwise output ⊥.

The scheme is a correct dynamic broadcast encryption scheme, because of the correctness of the
basic primitives PKE ,MAC and F , but also SKE .

Theorem I.3.3 Let us consider the scheme BEPKE,MAC,F ,SKE from definition I.3.2. We define
LN to be the total number of distinct subsets over all time periods and `N to be the maximal
number of subsets necessary to cover any authorized target set S in SCi for any i. If PKE is an
IND-CCA-secure PKE, MAC is a SUF-CMA-secure MAC, SKE is a IND-secure SKE, and F is
a pseudo-random generator, then this scheme is a forward-secure IND-ACCA-secure BE scheme:

Advind−acca
DBE (k, t,N, qC , qD) ≤ 2Advind

SKE(k, t, LN , LN) + 3`NLNAdvind−cca
PKE (k, t, qD)

+ 2LNAdvprg
F (k, t) + 2Succsuf−cma

MAC (k, t, 1, qD).

The variables LN and `N depend on the type of subset cover used in the scheme. For CS,
LN is less than N logN (since at most logN sets change in each of the at most N steps), and
`N is r log N

r , which is bounded by N/2 (the worst-case ciphertext length). For SD, we have
LN ≤ N log2N and `N = 2r−1. The complete security proof can be found in the Appendix I.6.2.

I.4 Tree-based Subgroup Key Exchange
In this section, we define two subgroup key exchange protocols compatible with the efficient
tree-based methods defined in [NNL01]. The tree-based methods are special cases in the subset-
cover framework, where the users are organized as leaves in a binary tree, and the subsets Si
can be described in terms of subtrees of this tree.

— 238 —

I.4. Tree-based Subgroup Key Exchange

Complete Subtree. We first review the static complete subtree (CS) structure for N users
{u0, . . . , uN−1}. For simplicity, we assume N = 2d, but the description can be generalized to
any N . All the users are leaves of the tree, and can be seen as singletons S2d+i = {ui}, for
i = 0, . . . , 2d − 1. Then, for i = 2d − 1 to 1, Si = S2i ∪ S2i+1 which contains all the leaves below
the node with index i.

Subset Difference. The subset difference (SD) method uses subsets Si,j = Si \ Sj , where
Si, Sj are defined as in the CS method, and Sj is a subtree of Si. All sets Si from the CS tree
are also contained in the SD method, because Si = Sparent(i),sibling(i); S0 is included as a special
set.

I.4.1 Static Tree Construction

Let us show how such subset-cover structures naturally give rise to subgroup key exchange
protocols. The main tools for our construction of the subgroup key exchange are two primitives:
a 2-party key exchange protocol KE that outputs keys in KKE and a pseudo-random generator
G : KKE → K×RKE .

Two users start from random coins in RKE , and run a key exchange protocol KE .CommonKey
in order to derive a secret value ck for the subset represented by the node in the tree that is
their parent. This common key ck is used as the seed for the PRG G to derive the two secret
keys, the proto-key pt ∈ K and the random coins r ∈ RKE for the next key exchange at the
level above. Internal nodes thus involve “virtual” users. In summary, the tree is constructed
by executing KE .CommonKey, then computing G, at each level from the bottom up. We derive
generic instantiations of the complete subtree (CS) and subset difference (SD) methods on binary
trees described in [NNL01].

CS Tree. We define the neighbour of user u with identifier i to be the user u′ with identifier
i+ 1 if i ≡ 0 mod 2, i− 1 else and its parent to be the user w with identifier bi/2c. At round r,
each (virtual) user u created in round r− 1 has a uniquely defined neighbour u′ and a parent w.
If he does not, the protocol run is completed: we are either at the root of the tree, or the tree
is not complete. The users u and u′ have random coins ru and ru′ , which they use to run the
KE protocol, resulting in a common key ckw. From this common key, they derive the proto-key
of node w and the randomness for the virtual user w to participate in the next round of key
exchanges. The user with the smaller identifier then plays the role of the virtual user w in the
next round. As a consequence, for N users, there are logN rounds. Round r involves N/2r−1

(virtual) users.

• KeyGen(Un): In round r, for r = 1, . . . , logn, the users u, u′ with parent w at level (logn−r)
proceed as follows:

1. ckw ← KE .CommonKey(u, u′);

2. (ptw, rw)← G(ckw);

3. If u < u′, set u def= w;

A similar construction is possible for the more efficient SD scheme. Due to lack of space, we
present this construction in the Appendix I.6.4.

— 239 —

Chapter I. Decentralized Dynamic Broadcast Encryption

I.4.2 Dynamic Tree Construction

Dynamic CS. We define a join procedure for the CS tree described above. We go from SCn
to SCn+1 by taking the leaf u′ with the lowest distance to the root, and if there are several with
that property, the one with the lowest index. We then replace it with an inner node w, to which
we append both the leaf u′ and the new user v. We note that the user identifiers will not be
in the same order as the node numbers in the tree.Then we replace the subsets Sj where j is
an ancestor of the new user with the new subsets. This ensures that our dynamic CS scheme is
forward-secure and has the splitting property of definition I.3.1. The CS key assignment is done
as follows.

First the new user v derives a common key cw with its sibling u′. From this common key, he
derives the proto-key of node w and the randomness for the virtual user w to participate in the
next round of key exchanges. The user with the smaller identifier then plays the role of w in the
next round. This procedure is repeated until the keys of all ancestors of v are recomputed.

• Join(v, Un) In the first round, set u def= v. In round r, for r = 1, . . . , log(n+ 1), the user u
with neighbour u′ and parent w at level (log(n+ 1)− r) proceeds as follows:

1. ckw ← KE .CommonKey(u, u′);

2. (ptw, rw)← G(ckw);

3. set u def= w, u′ def= neighbour(w), w def= parent(w);

A similar construction is possible for the more efficient SD scheme. Due to lack of space, we
present this construction in the Appendix I.6.4. We state exactly the security of the dynamic
CS construction. Because of the similarities in the construction, a similar result can be obtained
for SD.

Theorem I.4.1 Let KE be an IND-secure KE scheme with session keys in KKE , and G : KKE →
K×RKE be a PRG. Then our dynamic CS construction of a SKE is IND-secure and

Advind
SKE(k, t,N, qT) ≤ (N logN)

(
Advind

KE(k, t) + Advprg
G (k, t)

)
.

The full proof can be found in the Appendix I.6.3.

I.4.3 Efficiency Properties

One of the main advantages of the NNL constructions [NNL01] is the efficient revocation with
small ciphertext lengths (O(r logN/r) for CS, O(2r− 1) for SD) which is immediately inherited
in our public-key scheme. The decryption key is the same length for CS, where each user has
to store logN keys only, and longer (O(N logN) for SD), where we cannot use the same key
derivation.

In our scheme, for many instantiations of the 2-party key exchange, the private part of the
decryption key can even be constant-size: each user keeps his secret random coins ri, which is
enough to iteratively generate all the private information from the public transcript of the key
exchange protocols (stored in Reg or in the public key). Then, granted the key exchange scheme
and logN public keys, each user can iteratively compute the decryption keys along the path to
the root of the tree, and it is in this sense that the user random coins “contain” the keys used
to decrypt, as required by the decapsulation algorithm.

— 240 —

I.5. Concrete Instantiations

Permanent Revocation. Because the length of the ciphertext for SC schemes depends on
the number of revoked users, it is desirable to be able to completely remove users from a group.
To permanently remove a user at leaf 2i, we remove it and its sibling leaf 2i + 1 and simply
move the user at 2i + 1 to be at node i which becomes a leaf. The keys of the user now at i
remain the same as his own key before (at node 2i+ 1) and we thus have to update the keys of
all subsets in which the revoked user was a member. Concerning the security, it is easy to see
that the user 2i, not having the key of the user 2i+1, can not learn anything about the updated
keys, and this ensures the forward secrecy.

The only problem we face is that we need to keep the tree balanced. Fortunately, our
constructions allow a re-organization of the tree in a very efficient manner. Indeed, the tree
could be maintained to be an AVL tree at low cost [AVL62]. Whenever a user leaves the system
and makes the tree unbalanced, by using logN rotations, we can re-balance the tree. Note that
a rotation needs logN update operations at worst, so the total cost for a re-balancing is just
log2N update operations at worst.

Merging Groups. Instead of joining a single user, we can also efficiently merge two existing
groups by executing the key exchange protocol for their root nodes. This will allow every user
in the two groups to compute the keys of the new root node.

I.5 Concrete Instantiations

We now give two instantiations of our scheme. The first one is probably the simplest possible
case, and achieves IND-ACPA-security under the DDH-assumption. We use the Diffie-Hellman
protocol [DH76] as our KE (where the users publish gx and gy from their random coins x and
y, and get gxy as common key) and ElGamal [ElG85] as the PKE where ek = gdk, for a random
scalar dk). A similar idea can be found in [KPT04], where the authors use a group key exchange
protocol on a DH-tree. Because the random coin spaces of both protocols are identical, when
we run both in the same group G of order q (scalars in Zq), if we only want to prove IND-ACPA-
security, we can identify dk with the random coins for the key exchange, and thus ek is part of
the transcript of the key exchange protocol, leaving us with a single key pair for both schemes.
There are several alternatives for the PRG, the simplest one being a hash function modeled by
a random oracle, to extract dk ∈ Zq from the proto-key pt ∈ G. But we can avoid it, and even
any computational assumption, by using a deterministic randomness extractor, as described in
[CFGP06, Th. 7], that is a bijection and thus a perfect generator(see definition I.6.4):

Definition I.5.1 If p = 2q + 1, and G is defined as the sub-group of the squares in Z∗p, then
ord(G) = q and f is a bijection from G onto Zq: f(x) = x (if x ≤ q) or p− x (if x > q).

The second instantiation is more involved. To achieve IND-ACCA-security, we use Cramer-
Shoup encryption [CS98] as our PKE. Because the keys in Cramer-Shoup are larger, our KE is a
3-to-8 parallel Diffie-Hellman, where we use public and private keys consisting of three elements
each to generate a shared key consisting of eight elements, which allows us to generate additional
pseudo-randomness in each step. Our PRG is an embedding function G8 → Z3

q×Z5
q that applies

the above function f to all components. The first part in Z3
q will be used again as random coins

for the key exchange, whereas the second part in Z5
q leads to the Cramer-Shoup decryption key.

To counter malleability of our scheme, we also need a SUF-CMA-secure MAC scheme. As the
first scheme, this one relies only on the DDH assumption.

When using the Cramer-Shoup PKE, the decryption key of node i is the tuple dki =
(vi, wi, xi, yi, zi), the corresponding encryption key eki is (Xi, Yi, Hi) = (gxihvi , gyihwi , gzi). We

— 241 —

Chapter I. Decentralized Dynamic Broadcast Encryption

need to generate more pseudo-randomness than before, so we define a new key exchange that is
essentially a parallel Diffie-Hellman.

Definition I.5.2 [3-8-DHKE] We define a modified Diffie-Hellman key exchange scheme.

• User i draws ai, bi, ci
$← Zq, and sends (Ai, Bi, Ci) = (gai , gbi , gci);

• User j draws aj , bj , cj
$← Zq, and sends (Aj , Bj , Cj) = (gaj , gbj , gcj);

• Then ck = (Aaji , A
bj
i , A

cj
i , B

aj
i , B

bj
i , B

cj
i , C

aj
i , C

bj
i).

This easily defines the CommonKey protocol. Its key indistinguishability follows from the fol-
lowing theorem.

Theorem I.5.3 [3-8-DDH] Under the DDH assumption, it is infeasible to distinguish the 14-
tuple
(ga, gb, gc, ga′ , gb′ , gc′ , gaa′ , gab′ , gac′ , gba′ , gbb′ , gbc′ , gca′ , gcb′) from a random 14-tuple even when
given g, and Adv3−8−ddh(k, t) ≤ 8 ·Advddh(k, t+ 11τexp), where τexp is the time for an exponen-
tiation.

Proof: We define tuple T0 to be the tuple as defined above, Ti as the same tuple with all
“combined” elements up to the i-th one replaced by a random element. T8 is therefore a tuple of
14 random elements. Given a distinguisher A between Ti and Ti+1, we construct a solver B for
DDH as follows. Let (X,Y, Z) = (gx, gy, gz) be a DDH challenge tuple. Let gde′ be the i + 1-st
combined element. B chooses a tuple Ti and replaces gd with X, ge′ with Y , and gde′ with Y .
All other combined elements can be constructed because at least one exponent is known, which
takes 11 exponentiations (11τexp) time. If z = xy, T ′ = Ti, else T ′ = Ti+1 and the theorem
follows. As a PRG we use the PRG of definition I.5.1 on each component of the common key.
This gives us all the components we need to construct an IND-ACCA-secure BE scheme, whose
security is based only on the DDH-assumption. (The DDH-assumption implies the existence of
OWF, which is sufficient for MACs.)

Constant-Round Key Generation. While this construction achieves constant-size secrets
for the users and requires very little interaction during the Join-procedure, it requires a loga-
rithmic number of rounds for the subgroup key exchange protocol to complete. The Burmester-
Desmedt group key exchange protocol[BD05] is, like the above scheme, passively secure in the
standard model under the DDH assumption [KY07]. It requires only two rounds, and several
instances could be run in parallel to compute keys for all subsets in two rounds. This would
however require interaction between all the users each time a new users wants to join.

Acknowledgments
This work was supported by the French ANR-09-VERS-016 BEST Project and the European
Commission through the ICT Programme under Contract ICT-2007-216676 ECRYPT II.

I.6 Appendix

I.6.1 Definitions

Definition I.6.1 [Encryption Scheme] A public-key encryption scheme is a 4-tuple of algo-
rithms PKE = (Setup,KeyGen,Encrypt,Decrypt):

— 242 —

I.6. Appendix

Expind−cca−b
PKE,A (k)

param← Setup(1k);
QD ← ∅, (ek, dk)← KeyGen(param);
(state,m0,m1)← AODecrypt(·)(FIND; param, ek);
c∗ ← Encrypt(ek,mb);
b′ ← AODecrypt(GUESS, state; c∗);
if c∗ ∈ QD then return 0;
else return b′;

ODecrypt(c)
QD ← QD ∪ {c};
m← Decrypt(dk, c);
return m;

Figure I.3: PKE : Semantic Security against Chosen-Ciphertext Attacks (IND-CCA)

• Setup(1k), where k is the security parameter, generates the global parameters param of the
system;

• KeyGen(param; r) generates a pair of keys, the public (encryption) key ek and the associated
private (decryption) key dk, using the random coins r (we may omit r when the notation
is obvious);

• Encrypt(ek,m; r) produces a ciphertext c on the input message m and the public key ek,
using the random coins r (we may omit r when the notation is obvious);

• Decrypt(dk, c) decrypts the ciphertext c under the private key dk. It outputs the plaintext,
or ⊥ if the ciphertext is invalid.

We require that Decrypt(dk,Encrypt(ek,m)) = m if (ek, dk) ← KeyGen(param) for some param-
eters.

Such an encryption scheme is said to be (t, qD, ε)-IND-CCA-secure (semantic security against
chosen-ciphertext attacks) if in the security game presented in figure I.3, the advantage, denoted
Advind−cca

PKE (k, t, qD), of any t-time adversary A asking at most qD decryption queries to the
ODecrypt oracle is bounded by ε:

Advind−cca
PKE (k, t, qD) = max

A
{Pr[Expind−cca−1

PKE,A (k) = 1]− Pr[Expind−cca−0
PKE,A (k) = 1]}.

This definition includes IND-CPA (for Chosen-Plaintext Attacks) when qD = 0.

Definition I.6.2 [Two-Party Key Exchange] A two-party key exchange protocol is a 2-tuple
KE = (Setup,CommonKey):

• Setup(1k), where k is the security parameter, generates the global parameters param of the
system;

• CommonKey(u, v) is an interactive protocol between two users u and v. Both take as
private input their random coins, and obtain a common key ck.

We require that users u and v that run CommonKey(u, v) both get the same ck.

For the sake of clarity, we might omit param in the rest of the paper, but global parameters are
always implicit for all the primitives. Such a key exchange scheme is said to be (t, ε)-IND-secure
(semantic security or key indistinguishability) if in the security game presented in figure I.4, the

— 243 —

Chapter I. Decentralized Dynamic Broadcast Encryption

Expind−b
KE,A(k)

param← Setup(1k);
(K, τ)← CommonKey(u, v); Kb ← K; K1−b

$← K;

b′ ← A(τ,K0,K1);
return b′;

Figure I.4: KE : Key Indistinguishability (IND)

advantage Advind
KE(k, t) of any t-time adversary A is bounded by ε, where the adversary gets the

transcript τ of the communications between u and v during the execution of CommonKey:

Advind
KE(k, t) = max

A
{Pr[Expind−1

KE,A (k) = 1]− Pr[Expind−0
KE,A (k) = 1]}.

In our construction, we will need two additional classical primitives: a message authentication
code and pseudo-random functions.

Definition I.6.3 [Message Authentication Code] A message authentication code is a 3-tuple of
algorithmsMAC = (KeyGen,GenMac,VerifMac):

• KeyGen(1k), where k is the security parameter, generates a secret key sk $← Km.

• GenMac(sk,m) takes as input the secret key and a message, and generates the MAC value
σ.

• VerifMac(sk,m, σ) takes as input the secret key, the message and the alleged signature. It
checks the validity of the signature and returns 1 if it is valid, 0 else.

In the following, we will require the strong unforgeability of a one-time MAC: even after one
MAC generation query, the adversary cannot generate a new valid pair, even for the already
authenticated message. This strong unforgeability is formalized in the security game presented
in figure I.5, where the adversary wins if it successfully verifies a pair that has not been generated
by the authentication algorithm. Such a message authentication code is said to be (t, qM , qV , ε)-
SUF-CMA-secure (strong existential unforgeability against chosen-message attacks) if in the
security game presented in figure I.5, the success probability Succsuf−cma

MAC (k, t, qM , qV) of any
t-time adversary A, asking at most qM MAC values (OGenMac oracle) and qV verifications
(OVerifMac oracle) is bounded by ε:

Succsuf−cma
MAC (k, t, qM , qV) = max

A
{Pr[Expsuf−cma

MAC,A (k) = 1]}.

This definition includes one-time MAC when qM = 1.

Definition I.6.4 [Pseudo-Random Generator] A generator F : X → Y is (t, ε)-pseudo-random
if the advantage, denoted Advprg

F (k, t), of any t-time adversary A is bounded by ε:

Advprg
F (k, t) = max

A
{Pr[A(y) = 1 | y $← Y]− Pr[A(F(x)) = 1 |x $← X]}.

In the following, Y may be the product of two sets Y1 × Y2. We will then parse F(x) =
(f1(x), f2(x)). If F is a bijection (which implies that the PRG is not expanding), then F is a
perfect generator, with ε = 0 and no computational assumption.

— 244 —

I.6. Appendix

Expsuf−cma
MAC,A (k)

sk← KeyGen(1k);
QS ← ∅; QV ← ∅;
AOGenMac(·),OVerifMac(·,·)(1k);
if ∃(m,σ) ∈ QV , (m,σ) 6∈ QS then return 1;
else return 0;

OGenMac(m)
σ ← GenMac(sk,m);
QS ← QS ∪ {(m,σ)}
return σ;

OVerifMac(m,σ)
c = VerifMac(sk,m, σ);
if c = 1 then QV ← QV ∪ {(m,σ)};
return c;

Figure I.5: MAC: Unforgeability (SUF-CMA)

I.6.2 Proof of Theorem I.3.3

We assume that A is an adversary against the IND-ACCA security game. We define a sequence
of games, G2, . . . , G11, where G2 is the IND-ACCA experiment with b = 0 and G11 is the
IND-ACCA experiment with b = 1. Let ` be the number of components in a challenge ciphertext
(the size of the partition L∗ of the challenge target set S∗). By definition, ` is not greater than
`N .

Game G2: This is the IND-ACCA-Experiment with b = 0. We just recall the generation of
the challenge ciphertext (the Encaps oracle), and the simulation of the ODecaps oracle:

Setup(1k):

1. Run PKE .Setup(1k) to get paramPKE ;

2. Run SKE .Setup(1k) to get paramSKE ;

3. Publish param = (paramPKE , paramSKE).

— 245 —

Chapter I. Decentralized Dynamic Broadcast Encryption

KeyGen(param, Un):

1. All the proto-keys ptS , for all the subsets S in SCn, are generated using the
SKE .KeyGen protocol;

2. Each user u ∈ Un gets the proto-keys for all subsets S he belongs to.
The decryption key dku consists of all these ptS ;

3. He computes (dkS , ekS) ← PKE .KeyGen(paramPKE ;F(ptS)), where we use
the PRG to generate the random coins of the key generation algorithm;

4. The adversary receives the transcript of the execution of the SKE .KeyGen
protocol.

Join(v, {u(dku)}u∈Un ,Reg,EK): similar to KeyGen

Encaps(EK,Reg, S∗):

1. From the target set S∗, generate a partition S∗ = ∪L∗Si, we assume of size
`;

2. Generate two session keys K0
e and K1

e , as well as a MAC key K0
m;

3. For each subset i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K0
e ||K0

m);

4. Then, compute σ∗ =MAC.GenMac(K0
m, S

∗||(c∗i)i∈L∗);

5. Outputs K0
e , K1

e and H∗ = ((c∗i)i∈L∗ , σ∗).

ODecaps(u, S,H):

1. If u is in S, then there is a unique i such that u ∈ Si, and then dku allows
to derive dkSi ;

2. Extract Ke||Km = PKE .Decrypt(dkSi , ci);

3. If i ∈ L∗ and ci = c∗i , check if σ is a valid MAC under key Km;

4. Else, check if σ is a valid MAC under key Km;

5. In case of validity, output Ke, otherwise output ⊥.

Game G3: We first replace all the proto-keys by random keys: we thus apply the key
indistinguishability of the SKE scheme:

KeyGen(param, Un):

1. All the proto-keys ptS are drawn independently at random for all subsets S;

The difference between G3 and G2 is bounded by

Pr
3

[A → 1]− Pr
2

[A → 1] ≤ Advind
SKE(k, t, LN , LN).

— 246 —

I.6. Appendix

Game G4: We now replace all PKE keys by random keys: we thus apply the pseudo-
randomness of the PRG F :

KeyGen(param, Un):

3. Each user gets (dkS , ekS)← PKE .KeyGen(paramPKE ; rS), where rS are ran-
dom coins, for all subsets S he belongs to;

Using a classical hybrid proof, the difference between G4 and G3 is bounded by

Pr
4

[A → 1]− Pr
3

[A → 1] ≤ LN ×Advprg
F (k, t).

Game G5: We introduce an additional MAC key that will be used later in the sub-ciphertexts:

Encaps(EK,Reg, S∗):

2. Generate two session keys K0
e and K1

e , as well as two MAC keys K0
m and

K1
m;

G5 and G4 are perfectly indistinguishable:

Pr
5

[A → 1] = Pr
4

[A → 1].

Game G6: We now use the additional MAC key K1
m in the challenge sub-ciphertexts, but

still use K0
m for the MAC computation:

Encaps(EK,Reg, S∗):

3. For each subset i ∈ L∗, generate c∗i = PKE .Encrypt(eki,K0
e ||K1

m);

Lemma I.6.5 The difference between G6 and G5 is bounded by

Pr
6

[A → 1]− Pr
5

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD).

Game G7: In this game, we reject decryption queries that should decrypt a sub-ciphertext
from the challenge ciphertext.

ODecaps(u, S,H = ((ci)i∈L, σ)):

3. If i ∈ L∗ and ci = c∗i , output ⊥;

Lemma I.6.6 The difference between G7 and G6 is bounded by

Pr
7

[A → 1]− Pr
6

[A → 1] ≤ Succsuf−cma
MAC (k, t, 1, qD).

Game G8: We define the game G8 as the game G7, but we encapsulate K1
e instead of K0

e :

Encaps(EK,Reg, S∗):

3. For each subset i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K1
e ||K1

m);

— 247 —

Chapter I. Decentralized Dynamic Broadcast Encryption

Lemma I.6.7 The difference between G8 and G7 is bounded by

Pr
8

[A → 1]− Pr
7

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD).

Game G9: Previous game is similar to G7, but with K1
e in the challenge ciphertext. We now

go back, as in game G6: we check MAC values of sub-ciphertexts of the challenge ciphertext
under K0

m:

ODecaps(u, S,H):

3. If i ∈ L∗ and ci = c∗i , check if σ is a valid MAC under key K0
m.

Since we have the same gap as from G6 to G7:

Pr
9

[A → 1]− Pr
8

[A → 1] ≤ Succsuf−cma
MAC (k, t, 1, qD).

Game G10: We eventually change back the use of the MAC key K0
m in the challenge sub-

ciphertexts:

Encaps(EK,Reg, S∗):

3. For each subset i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K1
e ||K0

m);

Since we have the same gap as from G5 to G6:

Pr
10

[A → 1]− Pr
9

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD).

We do not use anymore the key K1
m: this is exactly the IND-ACCA security game with b = 1,

except for the generation of the encryption keys.
Game G11: We now change back the generation of the encryption keys, using the SKE
protocol and the PRG:

Pr
11

[A → 1]− Pr
10

[A → 1] ≤ Advind
SKE(k, t, LN , LN) + LN ×Advprg

F (k, t).

If we sum up all the gaps, we obtain:

Pr
3

[A → 1]− Pr
2

[A → 1] ≤ Advind
SKE(k, t, LN , LN)

Pr
4

[A → 1]− Pr
3

[A → 1] ≤ LN ×Advprg
F (k, t)

Pr
6

[A → 1]− Pr
4

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD)

Pr
7

[A → 1]− Pr
6

[A → 1] ≤ Succsuf−cma
MAC (k, t, 1, qD)

Pr
8

[A → 1]− Pr
7

[A → 1] ≤ `× LN ×Advind−cca
E (k, t, qD)

Pr
9

[A → 1]− Pr
8

[A → 1] ≤ Succsuf−cma
MAC (k, t, 1, qD)

Pr
10

[A → 1]− Pr
9

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD)

Pr
11

[A → 1]− Pr
10

[A → 1] ≤ Advind
SKE(k, t, LN , LN) + LN ×Advprg

F (k, t)

And this concludes the proof, since ` ≤ `N .

— 248 —

I.6. Appendix

Proof of Lemma I.6.5.

Let ` be the size of the partition L∗. In order to so show that the adversary cannot detect
whether we use the same MAC key that is part of the ciphertext or not, we proceed by another
sequence of hybrid games: We define the game Gj (for j = 0, . . . , `), in which the j-first sub-
ciphertexts c∗i are defined as in G6, that is c∗i = PKE .Encrypt(eki,K0

e ||K1
m), and the next ones

are defined as in G5, that is c∗i = PKE .Encrypt(ekSi ,K0
e ||K0

m). It is clear that G0 = G5, whereas
G` = G6.

For any J ∈ [0, `], let us play the following game against the IND-CCA challenger of the PKE
encryption scheme:

• Setup/KeyGen:

1. We receive the challenge public key ek;

2. We randomly choose one subset I ∈ [1, LN] (we bet it will correspond to the J-th
ciphertext in the target partition L∗. This guess is correct with probability 1/LN ,
otherwise we abort the game and make B output 0);

3. We generate all the pairs (dkSi , ekSi) at random, except for i = I, where ekSI = ek;

• Encaps(EK,Reg, S∗):

1. From the target set S∗, generate a partition S∗ = ∪L∗Si, we assume of size `;

2. If our guess at setup time was correct, the J-th element in L∗ is I;

3. Generate two session keys K0
e and K1

e , as well as two MAC keys K0
m and K1

m;

4. For the J − 1-first elements i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K0
e ||K1

m);

5. For the J-th element i ∈ L∗, assumed to be I, ask to the IND-CCA-challenger on the
two plaintexts K0

e ||K0
m and K0

e ||K1
m, and set c∗I to be the answer, according to the

internal bit b of the IND-CCA challenger;

6. For the next elements i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K0
e ||K0

m);

7. Then, compute σ∗ =MAC.GenMac(K0
m, S

∗||(c∗i)i∈L∗);

8. Output K0
e , K1

e and H∗ = ((c∗i)i∈L∗ , σ∗).

• OCorrupt Queries: Since we condition on the good choice for I, we can answer all the
OCorrupt queries by outputting the corresponding decryption keys (they cannot be for I,
otherwise the challenge target set would contain corrupted players);

• ODecaps Queries:

1. If this is for a player that lies in a set Si 6∈ SI , we can easily decrypt ci;

2. If this is for a player that lies in SI ,

– either cI 6= c∗I , and then we can ask the decryption query to the decryption oracle
– or cI = c∗I , then check the MAC value with K0

m. If it is valid, output K0
e , otherwise

output ⊥.

— 249 —

Chapter I. Decentralized Dynamic Broadcast Encryption

Our adversary B against IND-CCA simply forwards the output b′ of A (or outputs zero in case
of abort):

Pr[B → 1|b = 0]− Pr[B → 1|b = 1] = Pr[B → 1 ∧ I|b = 0]− Pr[B → 1 ∧ I|b = 1]

+ Pr[B → 1 ∧ ¬I|b = 0]− Pr[B → 1 ∧ ¬I|b = 1]

= 1
LN
× (Pr[B → 1|b = 0 ∧ I]− Pr[B → 1|b = 1 ∧ I])

= 1
LN
× (Pr[A → 1|b = 0 ∧ I]− Pr[A → 1|b = 1 ∧ I]) .

In the RHS, the output is independent of the correct guess of I, whereas the LHS is bounded
by the best advantage against IND-CCA within time t:

1
LN
× |Pr[A → 1|b = 0]− Pr[A → 1|b = 1]| ≤ Advind−cca

PKE (k, t, qD).

Furthermore, the above game with b = 0 is exactly GJ−1, whereas with b = 1 this is GJ :∣∣∣∣ Pr
GJ−1

[A → 1]− Pr
GJ

[A → 1]
∣∣∣∣ ≤ LN ×Advind−cca

PKE (k, t, qD).

This concludes the proof.

Proof of Lemma I.6.6.

In order to show that the adversary cannot detect whether we reject a valid MAC under the
unknown key K0

m, we use the following game against the MAC: more precisely, we play the
SUF-CMA security game against the MAC, using the challenge MAC key sk as the unknown
K0
m key. All the other keys are known to the simulator. The MAC generation oracle OGenMac

is called for the challenge MAC value by the Encaps oracle, and the MAC verification oracle
OVerifMac is called in case of a challenge sub-ciphertext in a decapsulation ODecaps oracle query.
A valid MAC value asked to OVerifMac is a forgery, otherwise it should be a reject. Hence, the
probability that a valid MAC value is refused is bounded by Succsuf−cma

MAC (k, t, 1, qD).

Proof of Lemma I.6.7.

Let ` be the size of the partition L∗. In order to so show that the adversary cannot detect
whether we encrypt K0

e or K1
e , we proceed as for the proof of Lemma I.6.5, by a sequence of

hybrid games: We define the game Gj (for j = 0, . . . , `), in which the j-first sub-ciphertexts
c∗i are defined as in G8, that is c∗i = PKE .Encrypt(eki,K1

e ||K1
m), and the next ones are defined

as in G7, that is c∗i = PKE .Encrypt(eki,K0
e ||K1

m). It is clear that G0 = G7, whereas G` = G8.
Exactly the same analysis as in the proof of Lemma I.6.5 leads to the result. The trick comes
from the simulation of ODecaps Queries, in which we output ⊥ in case a sub-ciphertext of the
challenge ciphertext is involved. We do not have to care whether this is K0

e or K1
e .

I.6.3 Proof of Theorem I.4.1

Let A be an adversary against the IND-security of our CS construction SKE that invokes at
most N users, among them, the user set UM that runs the KeyGen protocol (where M = |UM |
denotes its size) and T users that join once at a time, in T time steps. Since in each of the T
time periods at most logN nodes are updated, at most N logN keys will be generated overall
(for M = 1). Game Expind−0

SKE,A(k) is the experiment where all keys are generated as usual.

— 250 —

I.6. Appendix

This will be our initial game. Game Expind−1
SKE,A(k) is the experiment where all keys are chosen

uniformly at random. This will be our final game. To go from the first game to the final one,
we define intermediate games, in which we first replace the session keys that are produced by
the two-player key exchange protocols by random keys, and then we replace the proto-keys by
random keys.
Game G0: This is the initial game, that appears in the experiment where b = 0.

KeyGen(UM): In round r, for r = logM, . . . , 1, the simulator executes the follow-
ing steps for each node w at level (logM − r) of the tree with children u, u′:

1. ckw ← KE .CommonKey(u, u′);

2. (ptw, rw)← G(ckw);

3. If u < u′, set u def= w.

Join(v, Un) In the first round, set u = v. In round r, for r = log(n+ 1), . . . , 1, the
simulator executes the following steps for user u with neighbour u′ and parent w
at level (log(n+ 1)− r):

1. ckw ← KE .CommonKey(u, u′);

2. (ptw, rw)← G(ckw);

3. set u def= w, u′ def= neighbour(w), w def= parent(w);

Game G1: We replace all KE session keys on level 1 of the tree with random keys.

KeyGen(UM): In round 1, the simulator executes the following steps for each node
w at level 1 of the tree with children u, u′:

1. ckw ← KE .CommonKey(u, u′); ckw
$←− KKE ;

With a classical hybrid proof, where we successively replace all the real keys by random keys in
the M/2 two-party key exchanges, we get that the difference between G1 and G0 is bounded by

Pr
1

[A → 1]− Pr
0

[A → 1] ≤ M

2 Advind
KE(k, t).

Game G2: We replace all proto-keys on level 1 of the tree with random keys.

KeyGen(UM): In round 1, the simulator executes the following steps for each node
w at level 1 of the tree with children u, u′:

2. (ptw, rw) $←− K×RKE ;

With a classical hybrid proof, where we successively replace all the real values by random values
in the M/2 key derivations, we get that the difference between G2 and G1 is bounded by

Pr
2

[A → 1]− Pr
1

[A → 1] ≤ M

2 Advprg
G (k, t).

— 251 —

Chapter I. Decentralized Dynamic Broadcast Encryption

Game G3: We replace all proto-keys in the initial tree with random keys.

KeyGen(UM): In round r, the simulator executes the following steps for each node
w at level r of the tree with children u, u′:

1. ckw ← KE .CommonKey(u, u′); ckw
$←− KKE ;

2. (ptj , rj)
$←− K×RKE ;

By applying iteratively the 2 previous hops at level 2 on M/22 pairs, and at level 3 on M/23

pairs, etc, we get that the difference between G3 and G2 is bounded by

Pr
3

[A → 1]− Pr
2

[A → 1] ≤ (M2 − 1)
(
Advind

KE(k, t) + Advprg
G (k, t)

)
.

Game G4: We replace all proto-keys created during joins with random keys. The result
is a protocol where all proto-keys are drawn independently at random, which describes the
experiment with b = 1.

Join(v, Un)

1. ckw ← KE .CommonKey(u, u′); ckw
$←− KKE ;

2. (ptj , rj)
$←− K×RKE ;

Lemma I.6.8 The difference between G4 and G3 is bounded by

Pr
4

[A → 1]− Pr
3

[A → 1] ≤ (T logN)
(
Advind

KE(k, t) + Advprg
G (k, t)

)
.

In summary, we have

Pr
3

[A → 1]− Pr
0

[A → 1] ≤ (M − 1)
(
Advind

KE(k, t) + Advprg
G (k, t)

)
Pr
4

[A → 1]− Pr
3

[A → 1] ≤ (T logN)
(
Advind

KE(k, t) + Advprg
G (k, t)

)
.

Because M + T = N , we obtain

Advind
SKE(k, t,N, qT) ≤ (N logN)

(
Advind

KE(k, t) + Advprg
G (k, t)

)
.

Note that this is independent of qT , because we change all the keys.

Proof of Lemma I.6.8.

Let G0 be the game G3, GT be the game G4. We define T − 1 intermediate hybrid games Gj
(j = 1 . . . T − 1), in which we replace all session keys and proto-keys computed during the first
j joins with random keys. We proceed as in the previous proofs and obtain

Pr
j

[A → 1]− Pr
j−1

[A → 1] ≤ logN ·
(
Advind

KE(k, t) + Advprg
G (k, t)

)
.

— 252 —

I.6. Appendix

�������
�������
�������
�������

�������
�������
�������
�������

j

j/2

j+1

j/2+1

j/4

Figure I.6: SD Key Assignment for Sj/4,j

I.6.4 Constructions for the Subset Difference Method

SD Tree. We can modify the construction of the above CS tree to obtain keys for any subset
Si,j = Si \Sj , when Sj ⊂ Si: To exclude all leaves below node j (w.l.o.g. j ≡ 0 mod 4), we skip
the key exchange between j and j + 1 and directly compute a common key ckj/2+1,j+1 between
j/2 + 1 (j’s uncle) and j+ 1 (j’s sibling). Basically, we identify the public key of j+ 1 with that
of Sj/2,j . After applying G, we have the two key pairs for Sj/4,j , which we treat as being at node
j/4. We then continue with KE .CommonKey and G as normal up to node i, to get Si,j . This
allows us to construct an SD tree in much the same way as a CS tree, except that we “omit”
one node in the computation of the key (see figure I.6). Each node i at depth ` (2` ≤ i < 2`+1)
contains 2d−`+1 − 4 blocks of keys that can be computed iteratively, excluding all the possible
subtrees, from depth `+ 2 (4 of them) to d (2d−` of them).

We define the neighbour and parent of user i as for the CS scheme, and the neighbour of
(i, j) to be the neighbour of i. At round r, each user (i, j) created in round r− 1 has a uniquely
defined neighbour i′ (if he does not, the protocol run is completed). They both have random
coins ri and ri′ :

• If j 6= i′, it runs cki/2,j ← KE .CommonKey((i, j)(ri), i′(ri′)) and sets (pti/2, ri/2,j) ←
G(ci/2,j) to derive the information for the node (i/2, j).

• If j = i′, it runs cki/2 ← KE .CommonKey((i, j)(ri), i′(ri′)) and sets (pti/2, ri/2) ← G(ci/2)
to derive the information for the node i/2.

If i < i′, it plays the role of the virtual user i/2 in the next round.

Dynamic SD. To join a user, we go from SCn to SCn+1 by appending the new user as
described for CS. Then we replace those subsets Si,j that contain the new user with the new
subsets.

We show that our dynamic SD scheme has the splitting property of definition I.3.1. All Si,j
for which i is not an ancestor of the new node are unchanged. All Si,j for which i, but not j
is an ancestor of the new node contain the new user. All Si,j for which i is an ancestor of the
new node and j is a true ancestor of the new node are unchanged as well. All Si,j for which i is
an ancestor and j is the new node correspond to full subtrees Sparent(i),sibling(i) in the old subset
cover. The key assignment for SD is similar to the CS key assignment, but we cannot identify
nodes and subsets, and must “jump” the omitted subtree in the computation (figure I.6).

— 253 —

Chapter I. Decentralized Dynamic Broadcast Encryption

— 254 —

Bibliography

[AA07] Noga Alon and Vera Asodi. Tracing many users with almost no rate penalty.
IEEE Trans. Inform. Theory, 53(1):437–439, 2007. (Cited on page 83.)

[AACa] AACS LA. AACS Specifications. At http://www.aacsla.com/specifications/.
(Cited on page 11, 186, 190.)

[AACb] AACS LA. Introduction and Common Cryptographic Elements. At
http://www.aacsla.com/specifications/specs091/AACS. (Cited on page 195.)

[AAC09] AACS Consortium. Advanced Access Content System (AACS) - introduc-
tion and common cryptographic elements book. http://www.aacsla.com/
specifications/, September 2009. Revision 0.951. (Cited on page 229.)

[ABB10a] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard
model. In Proc. of EUROCRYPT, volume 6110 of LNCS, pages 553–572. Springer,
2010. Full version available from the authors upon request. (Cited on page 46.)

[ABB10b] S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension
and shorter-ciphertext hierarchical IBE. In Proc. of CRYPTO, volume 6223 of
LNCS, pages 98–115. Springer, 2010. (Cited on page 46.)

[ABC+11] Michel Abdalla, James Birkett, Dario Catalano, Alexander W. Dent, John
Malone-Lee, Gregory Neven, Jacob C. N. Schuldt, and Nigel P. Smart. Wild-
carded identity-based encryption. Journal of Cryptology, 24(1):42–82, January
2011. (Cited on page 44.)

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele
Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 480–497. Springer,
2010. (Cited on page 41, 175.)

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, Topics in
Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science,
pages 143–158, San Francisco, CA, USA, April 8–12, 2001. Springer, Berlin, Ger-
many. (Cited on page 152.)

[ACD+06] Michel Abdalla, Dario Catalano, Alex Dent, John Malone-Lee, Gregory Neven,
and Nigel Smart. Identity-based encryption gone wild. In Michele Bugliesi, Bart
Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP 2006: 33rd Inter-
national Colloquium on Automata, Languages and Programming, Part II, volume
4052 of Lecture Notes in Computer Science, pages 300–311, Venice, Italy, July 10–
14, 2006. Springer, Berlin, Germany. (Cited on page 200, 203, 206.)

— 255 —

http://www.aacsla.com/specifications/
http://www.aacsla.com/specifications/

BIBLIOGRAPHY

[ACMP10] Michel Abdalla, Céline Chevalier, Mark Manulis, and David Pointcheval. Flexible
group key exchange with on-demand computation of subgroup keys. In Daniel J.
Bernstein and Tanja Lange, editors, AFRICACRYPT 10: 3rd International Con-
ference on Cryptology in Africa, volume 6055 of Lecture Notes in Computer Sci-
ence, pages 351–368, Stellenbosch, South Africa, May 3–6, 2010. Springer, Berlin,
Germany. (Cited on page 229, 231, 234, 235.)

[ADML+07a] M. Abdalla, A. W. Dent, J. Malone-Lee, G. Neven, D. H. Phan, and N. P. Smart.
Identity-based traitor tracing. In Proceedings of PKC, volume 4450 of LNCS,
pages 361–376. Springer, 2007. (Cited on page 131.)

[ADML+07b] Michel Abdalla, Alexander W. Dent, John Malone-Lee, Gregory Neven,
Duong Hieu Phan, and Nigel P. Smart. Identity-based traitor tracing. In Tatsuaki
Okamoto and Xiaoyun Wang, editors, PKC 2007: 10th International Conference
on Theory and Practice of Public Key Cryptography, volume 4450 of Lecture Notes
in Computer Science, pages 361–376, Beijing, China, April 16–20, 2007. Springer,
Berlin, Germany. (Cited on page 199.)

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Salil P.
Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392
of Lecture Notes in Computer Science, pages 118–136, Amsterdam, The Nether-
lands, February 21–24, 2007. Springer, Berlin, Germany. (Cited on page 153.)

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based
authenticated key exchange in the three-party setting. In Serge Vaudenay, editor,
PKC 2005: 8th International Workshop on Theory and Practice in Public Key
Cryptography, volume 3386 of Lecture Notes in Computer Science, pages 65–84,
Les Diablerets, Switzerland, January 23–26, 2005. Springer, Berlin, Germany.
(Cited on page 235.)

[AGHS13] S. Agrawal, C. Gentry, S. Halevi, and A. Sahai. Sampling discrete gaussians
efficiently and obliviously. In Proc. of ASIACRYPT (1), volume 8269 of LNCS,
pages 97–116. Springer, 2013. (Cited on page 121, 136.)

[Ajt96a] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proc. of STOC, pages 99–108. ACM, 1996. (Cited on page 115.)

[Ajt96b] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In 28th Annual ACM Symposium on Theory of Computing, pages 99–108, Philade-
phia, Pennsylvania, USA, May 22–24, 1996. ACM Press. (Cited on page 33.)

[Ajt99] M. Ajtai. Generating hard instances of the short basis problem. In Proc. of
ICALP, volume 1644 of LNCS, pages 1–9. Springer, 1999. (Cited on page 116,
118, 121.)

[AK05] Tomoyuki Asano and Kazuya Kamio. A tree based one-key broadcast en-
cryption scheme with low computational overhead. In Colin Boyd and Juan
Manuel González Nieto, editors, ACISP 05: 10th Australasian Conference on
Information Security and Privacy, volume 3574 of Lecture Notes in Computer
Science, pages 89–100, Brisbane, Queensland, Australia, July 4–6, 2005. Springer,
Berlin, Germany. (Cited on page 44.)

— 256 —

BIBLIOGRAPHY

[ALO98] William Aiello, Sachin Lodha, and Rafail Ostrovsky. Fast digital identity revo-
cation (extended abstract). In Hugo Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 137–152,
Santa Barbara, CA, USA, August 23–27, 1998. Springer, Berlin, Germany. (Cited
on page 18, 20.)

[AP11] J. Alwen and C. Peikert. Generating shorter bases for hard random lattices.
Theor. Comput. Science, 48(3):535–553, 2011. (Cited on page 34, 118.)

[AR13] D. Aggarwal and O. Regev. A note on discrete gaussian combinations of lat-
tice vectors, 2013. Draft. Available at http://arxiv.org/pdf/1308.2405v1.pdf.
(Cited on page 121, 136.)

[Asa02] Tomoyuki Asano. A revocation scheme with minimal storage at receivers. In
Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501
of Lecture Notes in Computer Science, pages 433–450, Queenstown, New Zealand,
December 1–5, 2002. Springer, Berlin, Germany. (Cited on page 44, 64, 83.)

[AVL62] Georgii M. Adelson-Velskii and Evgenii M. Landis. An algorithm for the orga-
nization of information. Proc. USSR Academy of Sciences, 146:263–266, 1962.
(Cited on page 241.)

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryp-
tion with constant size ciphertext. In Ronald Cramer, editor, Advances in Cryp-
tology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 440–456, Aarhus, Denmark, May 22–26, 2005. Springer, Berlin, Germany.
(Cited on page 147, 152.)

[BBKS07] Mihir Bellare, Alexandra Boldyreva, Kaoru Kurosawa, and Jessica Staddon. Mul-
tirecipient encryption schemes: How to save on bandwidth and computation with-
out sacrificing security. IEEE Trans. Inf. Th., 53(11):3927–3943, November 2007.
(Cited on page 174.)

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152
of Lecture Notes in Computer Science, pages 41–55, Santa Barbara, CA, USA,
August 15–19, 2004. Springer, Berlin, Germany. (Cited on page 201.)

[BD05] Mike Burmester and Yvo Desmedt. A secure and scalable group key exchange
system. Inf. Proc. Letters, 94(3):137–143, May 2005. (Cited on page 230, 242.)

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations
of Computer Science, pages 394–403, Miami Beach, Florida, October 19–22, 1997.
IEEE Computer Society Press. (Cited on page 8, 235.)

[Ber70] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Mathematics
of Computation, 24(111):pp. 713–735, 1970. (Cited on page 160.)

[Ber91] Shimshon Berkovits. How to broadcast a secret (rump session). In Donald W.
Davies, editor, Advances in Cryptology – EUROCRYPT’91, volume 547 of Lec-
ture Notes in Computer Science, pages 535–541, Brighton, UK, April 8–11, 1991.
Springer, Berlin, Germany. (Cited on page 61.)

— 257 —

http://arxiv.org/pdf/1308.2405v1.pdf

BIBLIOGRAPHY

[BF99a] D. Boneh and M. K. Franklin. An efficient public key traitor tracing scheme. In
Proc. of CRYPTO, volume 1666 of LNCS, pages 338–353. Springer, 1999. (Cited
on page 116, 117, 131, 132.)

[BF99b] Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing
scheme. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, vol-
ume 1666 of Lecture Notes in Computer Science, pages 338–353, Santa Barbara,
CA, USA, August 15–19, 1999. Springer, Berlin, Germany. (Cited on page vii, 7,
9, 18, 26, 38, 39, 63, 88, 89, 103, 166, 186, 203.)

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 213–229, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Berlin, Germany. (Cited on page 199, 202.)

[BF11] D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary
fields and new tools for lattice-based signatures. In Proc. of PKC, volume 6571
of LNCS, pages 1–16. Springer, 2011. Full version available at http://eprint.
iacr.org/2010/453.pdf. (Cited on page 34, 116, 117, 119, 121, 123.)

[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose.
Correlation-resistant storage via keyword-searchable encryption. Cryptology
ePrint Archive, Report 2005/417, 2005. http://eprint.iacr.org/. (Cited on
page 201.)

[BGhCS04] P. Barreto, S. Galbraith, hEigeartaigh C., and M. Scott. Efficient
Pairing Computation on Supersingular Abelian Varieties. Available at
http://eprint.iacr.org/2004/375, 2004. (Cited on page 102.)

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast en-
cryption with short ciphertexts and private keys. In Victor Shoup, editor, Ad-
vances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 258–275, Santa Barbara, CA, USA, August 14–18, 2005. Springer,
Berlin, Germany. (Cited on page 8, 25, 31, 32, 144, 145, 147, 148, 150, 153, 154,
214, 215, 218, 219.)

[BK05] Dan Boneh and Jonathan Katz. Improved efficiency for CCA-secure cryptosys-
tems built using identity-based encryption. In Alfred Menezes, editor, Topics in
Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science,
pages 87–103, San Francisco, CA, USA, February 14–18, 2005. Springer, Berlin,
Germany. (Cited on page 148, 237.)

[BKM10] Dan Boneh, Aggelos Kiayias, and Hart William Montgomery. Robust fingerprint-
ing codes: a near pptimal construction. In Proceedings of ACM DRM ’10, pages
3–12, New York, NY, USA, 2010. ACM. (Cited on page 168, 170.)

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness
of learning with errors. In STOC, pages 575–584. ACM, 2013. (Cited on page 36,
116, 117, 120, 136.)

[BLS04] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Efficient implementation
of pairing-based cryptosystems. Journal of Cryptology, 17(4):321–334, September
2004. (Cited on page 102.)

— 258 —

http://eprint.iacr.org/2010/453.pdf
http://eprint.iacr.org/2010/453.pdf
http://eprint.iacr.org/

BIBLIOGRAPHY

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudorandom bits. SIAM Journal on Computing, 13(4):850–864,
1984. (Cited on page 5.)

[BM08] J. A. Bondy and U. S. R. Murty. Graph theory, volume 244 of Graduate Texts in
Mathematics. Springer, New York, 2008. (Cited on page 81.)

[BMW05] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security
from identity-based techniques. In Vijayalakshmi Atluri, Catherine Meadows, and
Ari Juels, editors, ACM CCS 05: 12th Conference on Computer and Communica-
tions Security, pages 320–329, Alexandria, Virginia, USA, November 7–11, 2005.
ACM Press. (Cited on page 149.)

[BN08a] D. Boneh and M. Naor. Traitor tracing with constant size ciphertext. In Proc. of
ACM CCS, pages 501–510. ACM, 2008. (Cited on page 131.)

[BN08b] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 08: 15th Conference
on Computer and Communications Security, pages 501–510, Alexandria, Virginia,
USA, October 27–31, 2008. ACM Press. (Cited on page 9, 16, 40, 41, 62, 63, 70,
116, 166, 167, 186, 196.)

[Boy99] Victor Boyko. On the security properties of OAEP as an all-or-nothing transform.
In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 503–518, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Berlin, Germany. (Cited on page 40, 97, 99.)

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. In Matthew Franklin, editor, Advances in
Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 273–289, Santa Barbara, CA, USA, August 15–19, 2004. Springer, Berlin,
Germany. (Cited on page 152, 153, 154.)

[BP08] Olivier Billet and Duong Hieu Phan. Efficient traitor tracing from collusion secure
codes. In Reihaneh Safavi-Naini, editor, ICITS 08: 3rd International Conference
on Information Theoretic Security, volume 5155 of Lecture Notes in Computer
Science, pages 171–182, Calgary, Canada, August 10–13, 2008. Springer, Berlin,
Germany. (Cited on page 9, 16, 40, 41, 62, 63, 116, 131, 166, 167, 186.)

[BP09] Olivier Billet and Duong Hieu Phan. Traitors collaborating in public: Pirates 2.0.
In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume
5479 of Lecture Notes in Computer Science, pages 189–205, Cologne, Germany,
April 26–30, 2009. Springer, Berlin, Germany. (Cited on page 9, 43, 174, 185.)

[BPS00] O. Berkman, M. Parnas, and J. Sgall. Efficient Dynamic Traitor Tracing. In
Proceedings of the 11th Symposium on Discrete Algorithms, pages 586–595, 2000.
(Cited on page 9, 88.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press. (Cited on page 33, 161, 200, 215.)

— 259 —

BIBLIOGRAPHY

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Al-
fredo De Santis, editor, Advances in Cryptology – EUROCRYPT’94, volume 950
of Lecture Notes in Computer Science, pages 92–111, Perugia, Italy, May 9–12,
1994. Springer, Berlin, Germany. (Cited on page 99.)

[BS95] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data
(extended abstract). In Don Coppersmith, editor, Advances in Cryptology –
CRYPTO’95, volume 963 of Lecture Notes in Computer Science, pages 452–465,
Santa Barbara, CA, USA, August 27–31, 1995. Springer, Berlin, Germany. (Cited
on page 9, 14, 62, 186, 196, 200, 204.)

[BS98] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data.
IEEE Trans. Inf. Th., 44(5):1897–1905, 1998. A preliminary version appeared in
Crypto ’95. (Cited on page 9, 39, 88, 90, 102, 167, 168, 169.)

[BSW06a] D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In Proc. of EUROCRYPT, volume 4004 of
LNCS, pages 573–592. Springer, 2006. (Cited on page 131.)

[BSW06b] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor trac-
ing with short ciphertexts and private keys. In Serge Vaudenay, editor, Advances
in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 573–592, St. Petersburg, Russia, May 28 – June 1, 2006. Springer,
Berlin, Germany. (Cited on page 9, 25, 29, 88, 113, 116, 186, 202, 203.)

[BW06a] D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke
system. In Proc. of ACM CCS, pages 211–220. ACM, 2006. (Cited on page 117,
131.)

[BW06b] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and re-
voke system. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimer-
cati, editors, ACM CCS 06: 13th Conference on Computer and Communications
Security, pages 211–220, Alexandria, Virginia, USA, October 30 – November 3,
2006. ACM Press. (Cited on page 9, 30, 37, 62, 88, 113, 230.)

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616
of Lecture Notes in Computer Science, pages 480–499, Santa Barbara, CA, USA,
August 17–21, 2014. Springer, Berlin, Germany. (Cited on page 9, 25, 37, 45, 116,
117.)

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai.
Exposure-resilient functions and all-or-nothing transforms. In Bart Preneel, ed-
itor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture
Notes in Computer Science, pages 453–469, Bruges, Belgium, May 14–18, 2000.
Springer, Berlin, Germany. (Cited on page 40, 97, 99.)

[CFGP06] Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry, and David Pointcheval.
The twist-augmented technique for key exchange. In M. Yung, editor, PKC 2006,
volume 3958 of LNCS, pages 410–426. Springer, 2006. Full version at http:
//eprint.iacr.org/2005/061. (Cited on page 241.)

— 260 —

http://eprint.iacr.org/2005/061
http://eprint.iacr.org/2005/061

BIBLIOGRAPHY

[CFN94a] B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Proc. of CRYPTO, volume
839 of LNCS, pages 257–270. Springer, 1994. (Cited on page 116, 131.)

[CFN94b] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt,
editor, Advances in Cryptology – CRYPTO’94, volume 839 of Lecture Notes in
Computer Science, pages 257–270, Santa Barbara, CA, USA, August 21–25, 1994.
Springer, Berlin, Germany. (Cited on page 8, 14, 22, 23, 62, 67, 87, 165, 185, 186.)

[CFNP00] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing Traitors. IEEE
Transactions on Information Theory, 46(3):893–910, 2000. (Cited on page 8, 87,
88, 131.)

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes
in Computer Science, pages 207–222, Interlaken, Switzerland, May 2–6, 2004.
Springer, Berlin, Germany. (Cited on page 148, 206.)

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate
a lattice basis. In Proc. of EUROCRYPT, volume 6110 of LNCS, pages 523–552.
Springer, 2010. (Cited on page 46.)

[Chv79] V. Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res.,
4(3):233–235, 1979. (Cited on page 77.)

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Bahram Honary, editor, Cryptography and Coding, 8th IMA International
Conference, volume 2260 of Lecture Notes in Computer Science, pages 360–363,
Cirencester, UK, December 17–19, 2001. Springer, Berlin, Germany. (Cited on
page 199.)

[CPP05a] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability
in traitor tracing schemes. In Ronald Cramer, editor, Advances in Cryptology –
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
542–558, Aarhus, Denmark, May 22–26, 2005. Springer, Berlin, Germany. (Cited
on page 9, 37, 39, 87, 88, 89, 90, 92, 97, 102, 103, 104, 105, 106, 107, 108, 117,
131, 186, 196.)

[CPP05b] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public Traceability
in Traitor Tracing Schemes. In Ronald Cramer, editor, Advances in Cryptology—
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
542–558. Springer, 2005. (Cited on page 89.)

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, edi-
tor, Crypto ’98, volume 1462 of LNCS, pages 13–25. Springer, 1998. (Cited on
page 241.)

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor,
Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 45–64, Amsterdam, The Netherlands, April 28 – May 2,
2002. Springer, Berlin, Germany. (Cited on page 38, 117, 128.)

— 261 —

BIBLIOGRAPHY

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003. (Cited on page 6, 146.)

[Dam87] Ivan Damgård. Collision free hash functions and public key signature schemes.
In David Chaum and Wyn L. Price, editors, Advances in Cryptology – EURO-
CRYPT’87, volume 304 of Lecture Notes in Computer Science, pages 203–216,
Amsterdam, The Netherlands, April 13–15, 1987. Springer, Berlin, Germany.
(Cited on page 147.)

[Dam91] Ivan Damgård. Towards practical public key systems secure against chosen cipher-
text attacks. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91,
volume 576 of Lecture Notes in Computer Science, pages 445–456, Santa Barbara,
CA, USA, August 11–15, 1991. Springer, Berlin, Germany. (Cited on page 152.)

[Dd11] Paolo D’Arco and Angel L. Pérez del Pozo. Fighting pirates 2.0. In Javier Lopez
and Gene Tsudik, editors, ACNS 11: 9th International Conference on Applied
Cryptography and Network Security, volume 6715 of Lecture Notes in Computer
Science, pages 359–376, Nerja, Spain, June 7–10, 2011. Springer, Berlin, Germany.
(Cited on page 44.)

[DDG13] Renaud Dubois, Margaux Dugardin, and Aurore Guillevic. Golden sequence for
the PPSS broadcast encryption scheme with an asymmetric pairing. Cryptology
ePrint Archive, Report 2013/477, 2013. http://eprint.iacr.org/2013/477.
(Cited on page 31.)

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000. (Cited on page 148.)

[Def] DefectiveByDesign. http://www.defectivebydesign.org/. (Cited on page 187.)

[Del07] Cécile Delerablée. Identity-based broadcast encryption with constant size cipher-
texts and private keys. In Kaoru Kurosawa, editor, Advances in Cryptology –
ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages
200–215, Kuching, Malaysia, December 2–6, 2007. Springer, Berlin, Germany.
(Cited on page 8, 145, 214.)

[Del08] CÃľcile DelerablÃľe. Identity-based broadcast encryption with constant size ci-
phertexts and private keys. In K. Kurosawa, editor, Asiacrypt 2007, volume 4833
of LNCS, pages 200–215. Springer, 2008. (Cited on page 230.)

[Den06] Alexander W. Dent. The hardness of the dhk problem in the generic
group model. Cryptology ePrint Archive, Report 2006/156, 2006.
http://eprint.iacr.org/2006/156. (Cited on page 152, 153.)

[DF02] Yevgeniy Dodis and Nelly Fazio. Public-key broadcast encryption for stateless
receivers. In ACM Digital Rights Management—DRM ’02, pages 61–80, Heidel-
berg, 2002. Springer. LNCS 2696. (Cited on page 9, 31, 32, 62, 88, 153, 154,
230.)

[DF03] Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme secure
against adaptive chosen ciphertext attack. In Yvo Desmedt, editor, PKC 2003:
6th International Workshop on Theory and Practice in Public Key Cryptography,

— 262 —

http://eprint.iacr.org/2013/477

BIBLIOGRAPHY

volume 2567 of Lecture Notes in Computer Science, pages 100–115, Miami, USA,
January 6–8, 2003. Springer, Berlin, Germany. (Cited on page 8, 9, 62, 88, 144,
214, 230.)

[DFKY05] Y. Dodis, N. Fazio, A. Kiayias, and M. Yung. Scalable Public-Key Tracing and
Revoking. Journal of Distributed Computing, 17(4):323–347, 2005. (Cited on
page 9, 88.)

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Trans. Inf. Th., 22(6):644–654, November 1976. (Cited on page 241.)

[DH00] Ding-Zhu Du and Frank K. Hwang. Combinatorial group testing and its applica-
tions, volume 12 of Series on Applied Mathematics. World Scientific Publishing
Co. Inc., River Edge, NJ, second edition, 2000. (Cited on page 63, 69.)

[DK05] Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext security of multiple en-
cryption. In J. Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 188–209.
Springer, 2005. (Cited on page 237.)

[Dor43] R. Dorfman. The detection of defective members of large populations. The Annals
of Mathematical Statistics, 14(4):436–440, 1943. (Cited on page 18, 69.)

[DP08] Yvo Desmedt and Duong Hieu Phan. A CCA secure hybrid Damgård’s ElGamal
encryption. In Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia Lai, editors,
ProvSec 2008: 2nd International Conference on Provable Security, volume 5324 of
Lecture Notes in Computer Science, pages 68–82, Shanghai, China, October 31 –
November 1, 2008. Springer, Berlin, Germany. (Cited on page 153.)

[DPP07] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion secure
dynamic broadcast encryption with constant-size ciphertexts or decryption keys.
In Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji Okamoto, and Takeshi Okamoto,
editors, PAIRING 2007: 1st International Conference on Pairing-based Cryptog-
raphy, volume 4575 of Lecture Notes in Computer Science, pages 39–59, Tokyo,
Japan, July 2–4, 2007. Springer, Berlin, Germany. (Cited on page 8, 25, 28, 145,
146, 230, 232, 236.)

[EFF85] P. Erdos, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered
by the union of r others. Israel J. Math., 51(1-2):79–89, 1985. (Cited on page 18,
69.)

[Ele] Electronic Frontier Foundation. http://www.eff.org/. (Cited on page 187.)

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.
(Cited on page 241.)

[Fei98] Uriel Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–
652, 1998. (Cited on page 81.)

[FN93] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor,
Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer
Science, pages 480–491, Santa Barbara, CA, USA, August 22–26, 1993. Springer,
Berlin, Germany. (Cited on page 8, 61, 144, 214, 229, 231.)

— 263 —

BIBLIOGRAPHY

[FNP07a] N. Fazio, A. Nicolosi, and D. H. Phan. Traitor tracing with optimal transmission
rate. In Proc. of ISC, volume 4779 of LNCS, pages 71–88. Springer, 2007. (Cited
on page 131.)

[FNP07b] Nelly Fazio, Antonio Nicolosi, and Duong Hieu Phan. Traitor tracing with opti-
mal transmission rate. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo,
and René Peralta, editors, ISC 2007: 10th International Conference on Informa-
tion Security, volume 4779 of Lecture Notes in Computer Science, pages 71–88,
Valparaíso, Chile, October 9–12, 2007. Springer, Berlin, Germany. (Cited on
page viii, 39, 40, 62, 87, 166.)

[FT99] Amos Fiat and Tamir Tassa. Dynamic traitor training. In Michael J. Wiener,
editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in
Computer Science, pages 354–371, Santa Barbara, CA, USA, August 15–19, 1999.
Springer, Berlin, Germany. (Cited on page 40, 166, 186.)

[FT01] Amos Fiat and Tamir Tassa. Dynamic traitor tracing. Journal of Cryptology,
14(3):211–223, 2001. (Cited on page 9, 88.)

[GGH96] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing
from lattice problems. Cryptology ePrint Archive, Report 1996/009, 1996.
http://eprint.iacr.org/1996/009. (Cited on page 147.)

[GGH13a] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In EUROCRYPT, volume 7881 of LNCS, pages 1–17, 2013. (Cited on page 117.)

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In Proc.
of FOCS, pages 40–49. IEEE Computer Society Press, 2013. (Cited on page 116.)

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional encryp-
tion for all circuits. In 54th Annual Symposium on Foundations of Computer
Science, pages 40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer
Society Press. (Cited on page 9, 25, 45.)

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct ran-
dom functions (extended abstract). In Symposium on Foundations of Computer
Science—FOCS 84, pages 464–479. IEEE, 1984. (Cited on page 13, 194.)

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability. W.
H. Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of NP-
completeness, A Series of Books in the Mathematical Sciences. (Cited on page 81.)

[GKV10] S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from
lattice assumptions. In Proc. of ASIACRYPT, volume 2647 of LNCS, pages 395–
412. Springer, 2010. (Cited on page 129, 141.)

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984. (Cited on page 5.)

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Proc. of STOC, pages 197–206. ACM, 2008.
Full version available at http://eprint.iacr.org/2007/432.pdf. (Cited on
page 33, 35, 115, 116, 118, 126, 127, 136.)

— 264 —

http://eprint.iacr.org/2007/432.pdf

BIBLIOGRAPHY

[GRW06] Craig Gentry, Zulfikar Ramzan, and David P. Woodruff. Explicit exclusive set
systems with applications to broadcast encryption. In 47th Annual Symposium on
Foundations of Computer Science, pages 27–38, Berkeley, CA, USA, October 21–
24, 2006. IEEE Computer Society Press. (Cited on page 20.)

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 415–432, Istanbul,
Turkey, April 13–17, 2008. Springer, Berlin, Germany. (Cited on page 148.)

[GST04] Michael T. Goodrich, Jonathan Z. Sun, and Roberto Tamassia. Efficient tree-
based revocation in groups of low-state devices. In Matthew Franklin, editor,
Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Com-
puter Science, pages 511–527, Santa Barbara, CA, USA, August 15–19, 2004.
Springer, Berlin, Germany. (Cited on page 20.)

[GSY99] Eli Gafni, Jessica Staddon, and Yiqun Lisa Yin. Efficient methods for integrating
traceability and broadcast encryption. In Michael J. Wiener, editor, Advances in
Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science,
pages 372–387, Santa Barbara, CA, USA, August 15–19, 1999. Springer, Berlin,
Germany. (Cited on page 9, 18, 20, 88.)

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption sys-
tems (with short ciphertexts). In Antoine Joux, editor, Advances in Cryptology –
EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
171–188, Cologne, Germany, April 26–30, 2009. Springer, Berlin, Germany. (Cited
on page 8, 31, 32, 145, 153, 154, 214, 230.)

[HS02] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In Moti
Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 47–60, Santa Barbara, CA, USA, August 18–
22, 2002. Springer, Berlin, Germany. (Cited on page 20, 62.)

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge
protocols. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98, vol-
ume 1462 of Lecture Notes in Computer Science, pages 408–423, Santa Barbara,
CA, USA, August 23–27, 1998. Springer, Berlin, Germany. (Cited on page 152.)

[HvLLT98] Henk D. L. Hollmann, Jack H. van Lint, Jean-Paul M. G. Linnartz, and Ludo
M. G. M. Tolhuizen. On Codes with the Identifiable Parent Property. J. Comb.
Theory, Ser. A, 82(2):121–133, 1998. (Cited on page 196.)

[JHC+05] Nam-Su Jho, Jung Yeon Hwang, Jung Hee Cheon, Myung-Hwan Kim, Dong Hoon
Lee, and Eun Sun Yoo. One-way chain based broadcast encryption schemes. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 559–574, Aarhus, Denmark,
May 22–26, 2005. Springer, Berlin, Germany. (Cited on page 20.)

[JL07] Hongxia Jin and Jeffery Lotspiech. Renewable traitor tracing: A trace-revoke-
trace system for anonymous attack. In ESORICS, volume 4734 of LNCS, pages
563–577. Springer, 2007. (Cited on page 40, 166.)

— 265 —

BIBLIOGRAPHY

[JL09] Hongxia Jin and Jeffrey Lotspiech. Defending against the pirate evolution at-
tack. In ISPEC ’09: Proceedings of the 5th International Conference on Informa-
tion Security Practice and Experience, pages 147–158, Berlin, Heidelberg, 2009.
Springer-Verlag. (Cited on page 44.)

[KD98a] K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmetric schemes.
In Proc. of EUROCRYPT, LNCS, pages 145–157. Springer, 1998. (Cited on
page 131.)

[KD98b] Kaoru Kurosawa and Yvo Desmedt. Optimum traitor tracing and asymmetric
schemes. In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98,
volume 1403 of Lecture Notes in Computer Science, pages 145–157, Espoo, Fin-
land, May 31 – June 4, 1998. Springer, Berlin, Germany. (Cited on page 9, 88.)

[KHL03] Chong Hee Kim, Yong Ho Hwang, and Pil Joong Lee. An efficient public key trace
and revoke scheme secure against adaptive chosen ciphertext attack. In Chi-Sung
Laih, editor, Advances in Cryptology – ASIACRYPT 2003, volume 2894 of Lecture
Notes in Computer Science, pages 359–373, Taipei, Taiwan, November 30 – De-
cember 4, 2003. Springer, Berlin, Germany. (Cited on page 9, 88.)

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi
and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, vol-
ume 3876 of Lecture Notes in Computer Science, pages 581–600, New York, NY,
USA, March 4–7, 2006. Springer, Berlin, Germany. (Cited on page 148.)

[Kle00] P. N. Klein. Finding the closest lattice vector when it’s unusually close. In Proc.
of SODA, pages 937–941. ACM, 2000. (Cited on page 136.)

[KMPB05] Tim Kerins, William P. Marnane, Emanuel M. Popovici, and Paulo S. L. M. Bar-
reto. Efficient hardware for the Tate pairing calculation in characteristic three.
In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and Embed-
ded Systems – CHES 2005, volume 3659 of Lecture Notes in Computer Science,
pages 412–426, Edinburgh, UK, August 29 – September 1, 2005. Springer, Berlin,
Germany. (Cited on page 102.)

[KP07] Aggelos Kiayias and Serdar Pehlivanoglu. Pirate evolution: How to make the
most of your traitor keys. In Alfred Menezes, editor, Advances in Cryptology –
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 448–
465, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Berlin, Germany.
(Cited on page 43, 186.)

[KP09] Aggelos Kiayias and Serdar Pehlivanoglu. Tracing and revoking pirate rebroad-
casts. In ACNS 2009, volume 5536 of LNCS, pages 253–271. Springer, 2009.
(Cited on page 40, 166.)

[KP10] A. Kiayias and S. Pehlivanglu. Encryption For Digital Content. Springer, 2010.
(Cited on page 7, 116.)

[KPT04] Yongdae Kim, Adrian Perrig, and Gene Tsudik. Tree-based group key agreement.
ACM Trans. Inf. Syst. Sec., 7(1):60–96, May 2004. (Cited on page 230, 241.)

[KR03] Ravi Kumar and Alexander Russell. A note on the set systems used for broad-
cast encryption. In 14th Annual ACM-SIAM Symposium on Discrete Algorithms,

— 266 —

BIBLIOGRAPHY

pages 470–471, Baltimore, Maryland, USA, January 12–14, 2003. ACM-SIAM.
(Cited on page 18, 20.)

[KRS99] Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for
blacklisting problems without computational assumptions. In Michael J. Wiener,
editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in
Computer Science, pages 609–623, Santa Barbara, CA, USA, August 15–19, 1999.
Springer, Berlin, Germany. (Cited on page 20.)

[KSNW03] Hartono Kurnio, Rei Safavi-Naini, and Huaxiong Wang. A group key distribution
scheme with decentralised user join. In SCN 2003, volume 2576 of LNCS, pages
146–163. Springer, 2003. (Cited on page 231.)

[KWHI01] Hirotaka Komaki, Yuji Watanabe, Goichiro Hanaoka, and Hideki Imai. Efficient
asymmetric self-enforcement scheme with public traceability. In Kwangjo Kim,
editor, PKC 2001: 4th International Workshop on Theory and Practice in Public
Key Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 225–
239, Cheju Island, South Korea, February 13–15, 2001. Springer, Berlin, Germany.
(Cited on page 9, 38, 117, 131.)

[KY01a] A. Kiayias and M. Yung. On crafty pirates and foxy tracers. In Proc. of
DRM Workshop, volume 2320 of LNCS, pages 22–39. Springer, 2001. (Cited
on page 132.)

[KY01b] A. Kiayias and M. Yung. Self protecting pirates and black-box traitor tracing. In
Proc. of CRYPTO, volume 2139 of LNCS, pages 63–79. Springer, 2001. (Cited
on page 132.)

[KY01c] Aggelos Kiayias and Moti Yung. Self protecting pirates and black-box traitor
tracing. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 63–79, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Berlin, Germany. (Cited on page 9, 38, 88.)

[KY02a] A. Kiayias and M. Yung. Breaking and Repairing Asymmetric Public-Key Traitor
Tracing. In Digital Rights Management—DRM ’02, pages 32–50, Heidelberg,
2002. Springer. LNCS 2696. (Cited on page 9, 38, 88, 117, 131.)

[KY02b] Aggelos Kiayias and Moti Yung. On Crafty Pirates and Foxy Tracers. In Tomas
Sander, editor, Security and Privacy in Digital Rights Management—DRM 2001,
volume 2320 of Lecture Notes in Computer Science, pages 22–39. Springer, 2002.
(Cited on page 7, 186, 202, 203.)

[KY02c] Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmission rate.
In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, vol-
ume 2332 of Lecture Notes in Computer Science, pages 450–465, Amsterdam,
The Netherlands, April 28 – May 2, 2002. Springer, Berlin, Germany. (Cited on
page 9, 38, 40, 41, 62, 63, 67, 87, 88, 89, 90, 92, 96, 97, 102, 103, 104, 106, 107,
108, 116, 131, 132, 166, 179, 186, 196, 268.)

[KY02d] Kaoru Kurosawa and Takuya Yoshida. Linear code implies public-key traitor
tracing. In David Naccache and Pascal Paillier, editors, PKC 2002: 5th Inter-
national Workshop on Theory and Practice in Public Key Cryptography, volume
2274 of Lecture Notes in Computer Science, pages 172–187, Paris, France, Febru-
ary 12–14, 2002. Springer, Berlin, Germany. (Cited on page 9, 88, 131.)

— 267 —

BIBLIOGRAPHY

[KY03] Aggelos Kiayias and Moti Yung. Extracting group signatures from traitor tracing
schemes. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, pages 630–648, Warsaw, Poland,
May 4–8, 2003. Springer, Berlin, Germany. (Cited on page 47.)

[KY06] A. Kiayias and M. Yung. Copyrighting Public-key Functions and Applications
to Black-box Traitor Tracing. Full revised version of [KY02c]. Available at:
http://eprint.iacr.org/2006/458/, 2006. (Cited on page 89, 97.)

[KY07] Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key
exchange. Journal of Cryptology, 20(1):85–113, January 2007. (Cited on page 235,
242.)

[Lin03] Yehuda Lindell. A simpler construction of cca2-secure public-key encryption un-
der general assumptions. In Eli Biham, editor, Advances in Cryptology – EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 241–254,
Warsaw, Poland, May 4–8, 2003. Springer, Berlin, Germany. (Cited on page 148.)

[Lov75] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math.,
13(4):383–390, 1975. (Cited on page 77.)

[LPQ12] Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Anonymous
broadcast encryption: Adaptive security and efficient constructions in the stan-
dard model. In PKC 2012, volume 7293 of LNCS, pages 206–224. Springer, 2012.
(Cited on page 168, 182.)

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. J. ACM, 60(6):43, 2013. (Cited on page 119.)

[LPSS14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-
LWE and applications in traitor tracing. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 315–334, Santa Barbara, CA, USA, August 17–
21, 2014. Springer, Berlin, Germany. (Cited on page vii, 9, 33, 35, 37, 115.)

[LSS14a] A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More efficient multilinear
maps from ideal lattices. In Proc. of EUROCRYPT, LNCS, pages 239–256.
Springer, 2014. (Cited on page 119.)

[LSS14b] A. Langlois, D. Stehlé, and R. Steinfeld. Improved and simplified security proofs in
lattice-based cryptography: using the Rényi divergence rather than the statistical
distance, 2014. Available on the webpages of the authors. (Cited on page 119.)

[LSW10] Allison B. Lewko, Amit Sahai, and Brent Waters. Revocation systems with very
small private keys. In 2010 IEEE Symposium on Security and Privacy, pages
273–285, Berkeley/Oakland, California, USA, May 16–19, 2010. IEEE Computer
Society Press. (Cited on page 8, 31, 32, 145, 153, 154, 214.)

[Lyn] B. Lynn. PBC Library. Available at http://crypto.stanford.edu/pbc/. (Cited
on page 102.)

[Man09] Mark Manulis. Group key exchange enabling on-demand derivation of peer-to-
peer keys. In ACNS 2009, volume 5536 of LNCS, pages 1–19. Springer, 2009. Full
version at http://www.manulis.eu/pub.html. (Cited on page 229, 230.)

— 268 —

http://www.manulis.eu/pub.html

BIBLIOGRAPHY

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Proc. of EUROCRYPT, volume 7237 of LNCS, pages 700–718.
Springer, 2012. (Cited on page 116, 118, 121, 122.)

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995. (Cited on page 208.)

[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput, 37(1):267–302, 2007. (Cited on page 118,
120, 136.)

[MR09] D. Micciancio and O. Regev. Lattice-based cryptography. In Post-Quantum
Cryptography, D. J. Bernstein, J. Buchmann, E. Dahmen (Eds), pages 147–191.
Springer, 2009. (Cited on page 33, 115.)

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 111–126, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Berlin,
Germany. (Cited on page 161.)

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 41–62, Santa Barbara,
CA, USA, August 19–23, 2001. Springer, Berlin, Germany. (Cited on page 8, 9,
11, 20, 46, 62, 63, 66, 70, 71, 88, 144, 186, 187, 190, 191, 214, 229, 236, 237, 238,
239, 240.)

[NP98] Moni Naor and Benny Pinkas. Threshold traitor tracing. In Hugo Krawczyk,
editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in
Computer Science, pages 502–517, Santa Barbara, CA, USA, August 23–27, 1998.
Springer, Berlin, Germany. (Cited on page 88.)

[NP00] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In Yair Frankel,
editor, FC 2000: 4th International Conference on Financial Cryptography, volume
1962 of Lecture Notes in Computer Science, pages 1–20, Anguilla, British West
Indies, February 20–24, 2000. Springer, Berlin, Germany. (Cited on page vii, 9,
27, 62, 88, 116.)

[NPP13] Hung Q. Ngo, Duong Hieu Phan, and David Pointcheval. Black-box trace&revoke
codes. Algorithmica, 67(3):418–448, 2013. (Cited on page vii, 9, 16, 17, 61.)

[NPR12] Hung Q. Ngo, Ely Porat, and Atri Rudra. Efficiently decodable compressed sens-
ing by list-recoverable codes and recursion. In STACS, pages 230–241, 2012.
(Cited on page 18, 74.)

[NSS99] David Naccache, Adi Shamir, and Julien P. Stern. How to copyright a function?
In PKC ’99, volume 1560 of LNCS, pages 188–196. Springer, 1999. (Cited on
page 168.)

[Nui09] Koji Nuida. A general conversion method of fingerprint codes to (more) robust
fingerprint codes against bit erasure. In Kaoru Kurosawa, editor, ICITS 09: 4th

— 269 —

BIBLIOGRAPHY

International Conference on Information Theoretic Security, volume 5973 of Lec-
ture Notes in Computer Science, pages 194–212, Shizuoka, Japan, December 3–6,
2009. Springer, Berlin, Germany. (Cited on page 9, 16.)

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In 21st Annual ACM Symposium on Theory of Computing,
pages 33–43, Seattle, Washington, USA, May 15–17, 1989. ACM Press. (Cited on
page 147.)

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd Annual ACM Symposium on Theory of Com-
puting, pages 427–437, Baltimore, Maryland, USA, May 14–16, 1990. ACM Press.
(Cited on page 5, 148.)

[OPW11] A. O’Neill, C. Peikert, and B. Waters. Bi-deniable public-key encryption. In Proc.
of CRYPTO, volume 6841 of LNCS, pages 525–542. Springer, 2011. (Cited on
page 117.)

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In Proc. of STOC, pages 333–342. ACM, 2009. (Cited on page 36, 46, 116, 120.)

[Pei10] C. Peikert. An efficient and parallel Gaussian sampler for lattices. In Proc. of
CRYPTO, volume 6223 of LNCS, pages 80–97. Springer, 2010. (Cited on page 118,
120, 124, 136.)

[Pfi96] B. Pfitzmann. Trials of traced traitors. In Information Hiding, volume 1174 of
LNCS, pages 49–64. Springer, 1996. (Cited on page 9, 38, 88, 117, 131, 186.)

[Pha06] Duong Hieu Phan. Traitor tracing for stateful pirate decoders with con-
stant ciphertext rate. In Phong Q. Nguyen, editor, Progress in Cryptology—
VIETCRYPT 2006, volume 4341 of Lecture Notes in Computer Science, pages
354–365. Springer, 2006. (Cited on page 196.)

[PPS11] Duong Hieu Phan, David Pointcheval, and Mario Strefler. Security notions for
broadcast encryption. In Javier Lopez and Gene Tsudik, editors, ACNS 11: 9th
International Conference on Applied Cryptography and Network Security, volume
6715 of Lecture Notes in Computer Science, pages 377–394, Nerja, Spain, June 7–
10, 2011. Springer, Berlin, Germany. (Cited on page 147, 182, 215, 231, 233.)

[PPS12a] Duong Hieu Phan, David Pointcheval, and Mario Strefler. Decentralized dynamic
broadcast encryption. In Ivan Visconti and Roberto De Prisco, editors, SCN
12: 8th International Conference on Security in Communication Networks, vol-
ume 7485 of Lecture Notes in Computer Science, pages 166–183, Amalfi, Italy,
September 5–7, 2012. Springer, Berlin, Germany. (Cited on page 31, 32, 45, 145,
153, 154, 229.)

[PPS12b] Duong Hieu Phan, David Pointcheval, and Mario Strefler. Message-based traitor
tracing with optimal ciphertext rate. In Alejandro Hevia and Gregory Neven,
editors, Progress in Cryptology - LATINCRYPT 2012: 2nd International Confer-
ence on Cryptology and Information Security in Latin America, volume 7533 of
Lecture Notes in Computer Science, pages 56–77, Santiago, Chile, October 7–10,
2012. Springer, Berlin, Germany. (Cited on page viii, 39, 40, 165.)

— 270 —

BIBLIOGRAPHY

[PPSS12] Duong Hieu Phan, David Pointcheval, Siamak Fayyaz Shahandashti, and Mario
Strefler. Adaptive CCA broadcast encryption with constant-size secret keys and
ciphertexts. In Willy Susilo, Yi Mu, and Jennifer Seberry, editors, ACISP 12: 17th
Australasian Conference on Information Security and Privacy, volume 7372 of
Lecture Notes in Computer Science, pages 308–321, Wollongong, NSW, Australia,
July 9–11, 2012. Springer, Berlin, Germany. (Cited on page 214.)

[PPSS13] Duong Hieu Phan, David Pointcheval, Siamak Fayyaz Shahandashti, and Mario
Strefler. Adaptive cca broadcast encryption with constant-size secret keys and
ciphertexts. Int. J. Inf. Sec., 12(4):251–265, 2013. (Cited on page vii, 8, 30, 143.)

[PPT13] Duong Hieu Phan, David Pointcheval, and Viet Cuong Trinh. Multi-channel
broadcast encryption. In Kefei Chen, Qi Xie, Weidong Qiu, Ninghui Li, and
Wen-Guey Tzeng, editors, ASIACCS 13: 8th Conference on Computer and Com-
munications Security, pages 277–286, Hangzhou, China, May 8–10, 2013. ACM
Press. (Cited on page vii, 31, 213.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. J. Crypto, 13(3):361–396, 2000. (Cited on page 178.)

[PSNT06a] D. H. Phan, R. Safavi-Naini, and D. Tonien. Generic construction of hybrid public
key traitor tracing with full-public-traceability. In Proc. of ICALP (2), volume
4052 of LNCS, pages 264–275. Springer, 2006. (Cited on page 117, 131.)

[PSNT06b] Duong Phan, Reihaneh Safavi-Naini, and Dongvu Tonien. Generic construction of
hybrid public key traitor tracing with full-public-traceability. In Michele Bugliesi,
Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP 2006: 33rd
International Colloquium on Automata, Languages and Programming, Part II,
volume 4052 of Lecture Notes in Computer Science, pages 264–275, Venice, Italy,
July 10–14, 2006. Springer, Berlin, Germany. (Cited on page 9, 37, 89, 102, 196.)

[PSNT06c] Duong Hieu Phan, Reihaneh Safavi-Naini, and Dongvu Tonien. Generic Con-
struction of Hybrid Public Key Traitor Tracing with Full-Public-Traceability. In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
Automata, Languages and Programming—ICALP 2006, volume 4052 of Lecture
Notes in Computer Science, pages 264–275. Springer, 2006. (Cited on page 89.)

[PSS03] C. Peikert, A. Shelat, and A. Smith. Lower bounds for collusion-secure finger-
printing. In Proc. of SODA, pages 472–479, 2003. (Cited on page 131.)

[PT11] Duong Hieu Phan and Viet Cuong Trinh. Identity-based trace and revoke schemes.
In Xavier Boyen and Xiaofeng Chen, editors, ProvSec 2011: 5th International
Conference on Provable Security, volume 6980 of Lecture Notes in Computer Sci-
ence, pages 204–221, Xi’an, China, October 16–18, 2011. Springer, Berlin, Ger-
many. (Cited on page 44.)

[PT13] Duong Hieu Phan and Viet Cuong Trinh. Key-leakage resilient revoke scheme
resisting pirates 2.0 in bounded leakage model. In Amr Youssef, Abderrahmane
Nitaj, and Aboul Ella Hassanien, editors, AFRICACRYPT 13: 6th International
Conference on Cryptology in Africa, volume 7918 of Lecture Notes in Computer
Science, pages 342–358, Cairo, Egypt, June 22–24, 2013. Springer, Berlin, Ger-
many. (Cited on page 44.)

— 271 —

BIBLIOGRAPHY

[PW97] Birgit Pfitzmann and Michael Waidner. Asymmetric fingerprinting for larger
collusions. In ACM CCS 97: 4th Conference on Computer and Communications
Security, pages 151–160, Zurich, Switzerland, April 1–4, 1997. ACM Press. (Cited
on page 9, 38, 117, 131.)

[PW08] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In
Proc. of STOC, pages 187–196. ACM, 2008. (Cited on page 46.)

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Proc. of STOC, pages 84–93. ACM, 2005. (Cited on page 33, 115,
120.)

[Reg09] O. Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM, 56(6), 2009. (Cited on page 33, 36, 115, 116, 120.)

[Reg10] O. Regev. The learning with errors problem, 2010. Invited survey in CCC 2010,
available at http://www.cims.nyu.edu/~regev/. (Cited on page 33, 115.)

[Riv97] Ronald L. Rivest. All-or-nothing encryption and the package transform. In Eli
Biham, editor, Fast Software Encryption – FSE’97, volume 1267 of Lecture Notes
in Computer Science, pages 210–218, Haifa, Israel, January 20–22, 1997. Springer,
Berlin, Germany. (Cited on page 9, 40, 97.)

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In 22nd Annual ACM Symposium on Theory of Computing, pages 387–394,
Baltimore, Maryland, USA, May 14–16, 1990. ACM Press. (Cited on page 147.)

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, Advances
in Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer Science,
pages 433–444, Santa Barbara, CA, USA, August 11–15, 1991. Springer, Berlin,
Germany. (Cited on page 5.)

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function ba-
sics: Definitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In Bimal K. Roy and Willi Meier,
editors, Fast Software Encryption – FSE 2004, volume 3017 of Lecture Notes
in Computer Science, pages 371–388, New Delhi, India, February 5–7, 2004.
Springer, Berlin, Germany. (Cited on page 147.)

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th Annual Symposium on Foundations of Computer
Science, pages 543–553, New York, New York, USA, October 17–19, 1999. IEEE
Computer Society Press. (Cited on page 148.)

[Sco02] Mike Scott. Authenticated id-based key exchange and remote log-in with simple
token and pin number. Cryptology ePrint Archive, Report 2002/164, 2002. http:
//eprint.iacr.org/. (Cited on page 201.)

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656–715, 1949. (Cited on page 5.)

— 272 —

http://www.cims.nyu.edu/~regev/
http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blak-
ley and David Chaum, editors, Advances in Cryptology – CRYPTO’84, volume
196 of Lecture Notes in Computer Science, pages 47–53, Santa Barbara, CA, USA,
August 19–23, 1984. Springer, Berlin, Germany. (Cited on page 199, 200.)

[Sho90] Victor Shoup. On the deterministic complexity of factoring polynomials over
finite fields. Information Processing Letters, 33(5):261 – 267, 1990. (Cited on
page 160.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of
Lecture Notes in Computer Science, pages 256–266, Konstanz, Germany, May 11–
15, 1997. Springer, Berlin, Germany. (Cited on page 152.)

[Sho00] Victor Shoup. Using hash functions as a hedge against chosen ciphertext attack.
In B. Preneel, editor, Eurocrypt 2000, volume 1807 of LNCS, pages 275–288.
Springer, 2000. (Cited on page 232.)

[Sho04] V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security
Proofs. Manuscript. Available at shoup.net/papers/games.pdf, 2004. (Cited
on page 109.)

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash func-
tions be based on general assumptions? In Kaisa Nyberg, editor, Advances in
Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Sci-
ence, pages 334–345, Espoo, Finland, May 31 – June 4, 1998. Springer, Berlin,
Germany. (Cited on page 147.)

[Sir07a] Thomas Sirvent. Traitor tracing scheme with constant ciphertext rate against
powerful pirates. In Proc. of Workshop on Coding and Cryptography (WCC’07),
pages 379–388, 2007. Full version at http://eprint.iacr.org/2006/383. (Cited
on page 9, 16, 40, 62, 63, 166, 196.)

[Sir07b] Thomas Sirvent. Traitor tracing scheme with constant ciphertext rate against
powerful pirates. In Daniel Augot, Nicolas Sendrier, and Jean-Pierre Tillich,
editors, Workshop on Coding and Cryptography—WCC ’07, pages 379–388, April
2007. (Cited on page 116.)

[SNW03a] Reihaneh Safavi-Naini and Yejing Wang. Sequential traitor tracing. IEEE Trans.
Inf. Th., 49(5):1319–1326, May 2003. A preliminary version appeared at Crypto
2000. (Cited on page 40, 166.)

[SNW03b] Reihaneh Safavi-Naini and Yejing Wang. Traitor tracing for shortened and cor-
rupted fingerprints. In DRM 2003, volume 2696 of LNCS, pages 81–100. Springer,
2003. (Cited on page 9, 16.)

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on
pairing. In SCIS 2000, Okinawa, Japan, January 2000. (Cited on page 199.)

[SS01] Palash Sarkar and Douglas R. Stinson. Frameproof and IPP Codes. In
C. Pandu Rangan and Cunsheng Ding, editors, Progress in Cryptology—
INDOCRYPT 2001, volume 2247 of Lecture Notes in Computer Science, pages
117–126. Springer, 2001. (Cited on page 196.)

— 273 —

http://eprint.iacr.org/2006/383

BIBLIOGRAPHY

[SSW00] J.N. Staddon, D.R. Stinson, and Ruizhong Wei. Combinatorial properties of
frameproof and traceability codes. IEEE Transactions on Information Theory,
47:1042–1049, 2000. (Cited on page 19, 62.)

[SSW01a] A. Silverberg, J. Staddon, and J. L. Walker. Efficient traitor tracing algorithms
using list decoding. In Proc. of ASIACRYPT, volume 2248 of LNCS, pages 175–
192. Springer, 2001. (Cited on page 131.)

[SSW01b] Alice Silverberg, Jessica Staddon, and Judy L. Walker. Efficient traitor tracing
algorithms using list decoding. In Colin Boyd, editor, Advances in Cryptology
– ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages
175–192, Gold Coast, Australia, December 9–13, 2001. Springer, Berlin, Germany.
(Cited on page 14.)

[Sto] Stop DRM Now! http://stopdrmnow.org/. (Cited on page 187.)

[SW98a] D. R. Stinson and R. Wei. Combinatorial Properties and Constructions of Trace-
ability Schemes and Frameproof Codes. SIAM Journal on Discrete Mathematics,
11(1):41–53, 1998. (Cited on page 9, 87.)

[SW98b] D. R. Stinson and R. Wei. Combinatorial properties and constructions of trace-
ability schemes and frameproof codes. SIAM J. Discrete Math., 11(1):41–53, 1998.
(Cited on page 131.)

[SW98c] D. R. Stinson and R. Wei. Key preassigned traceability schemes for broadcast
encryption. In Proc. of SAC, volume 1556 of LNCS, pages 144–156. Springer,
1998. (Cited on page 131.)

[SW98d] Douglas R. Stinson and Ruizhong Wei. Key preassigned traceability schemes for
broadcast encryption. In Stafford E. Tavares and Henk Meijer, editors, SAC 1998:
5th Annual International Workshop on Selected Areas in Cryptography, volume
1556 of Lecture Notes in Computer Science, pages 144–156, Kingston, Ontario,
Canada, August 17–18, 1998. Springer, Berlin, Germany. (Cited on page 14.)

[SW03] R. Safavi-Naini and Y. Wang. Sequential Traitor Tracing. IEEE Transactions
on Information Theory, 49(5):1319–1326, 2003. (Cited on page 9, 88.)

[Tar03] Gábor Tardos. Optimal probabilistic fingerprint codes. In 35th Annual ACM
Symposium on Theory of Computing, pages 116–125, San Diego, California, USA,
June 9–11, 2003. ACM Press. (Cited on page 9, 14, 15, 39, 62, 88, 99, 102, 196,
204.)

[Tar08a] G. Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2), 2008. (Cited
on page 131.)

[Tar08b] Gábor Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2), May 2008.
A preliminary version appeared in STOC ’03. (Cited on page 170.)

[TM05] Tran Van Trung and Sosina Martirosyan. New Constructions for IPP Codes. Des.
Codes Cryptography, 35(2):227–239, 2005. (Cited on page 14.)

[TSN06] Dongvu Tonien and Reihaneh Safavi-Naini. An efficient single-key pirates tracing
scheme using cover-free families. In Jianying Zhou, Moti Yung, and Feng Bao,
editors, ACNS 06: 4th International Conference on Applied Cryptography and

— 274 —

BIBLIOGRAPHY

Network Security, volume 3989 of Lecture Notes in Computer Science, pages 82–
97, Singapore, June 6–9, 2006. Springer, Berlin, Germany. (Cited on page 18,
63.)

[TT01] Wen-Guey Tzeng and Zhi-Jia Tzeng. A public-key traitor tracing scheme with
revocation using dynamic shares. In Kwangjo Kim, editor, PKC 2001: 4th Inter-
national Workshop on Theory and Practice in Public Key Cryptography, volume
1992 of Lecture Notes in Computer Science, pages 207–224, Cheju Island, South
Korea, February 13–15, 2001. Springer, Berlin, Germany. (Cited on page 9, 88.)

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 114–127, Aarhus, Denmark,
May 22–26, 2005. Springer, Berlin, Germany. (Cited on page 200, 203, 206, 210.)

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE
under simple assumptions. In Shai Halevi, editor, Advances in Cryptology –
CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 619–
636, Santa Barbara, CA, USA, August 16–20, 2009. Springer, Berlin, Germany.
(Cited on page 8, 31, 32, 145, 153, 154, 214.)

[WHI01] Yuji Watanabe, Goichiro Hanaoka, and Hideki Imai. Efficient asymmetric public-
key traitor tracing without trusted agents. In David Naccache, editor, Topics
in Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer Sci-
ence, pages 392–407, San Francisco, CA, USA, April 8–12, 2001. Springer, Berlin,
Germany. (Cited on page 9, 38, 117, 131.)

[WMS+09] Qianhong Wu, Yi Mu, Willy Susilo, Bo Qin, and Josep Domingo-Ferrer. Asym-
metric group key agreement. In Antoine Joux, editor, Eurocrypt 2009, volume
5479 of LNCS, pages 153–170. Springer, 2009. (Cited on page 231.)

[WQZ+11] QianhongWu, Bo Qin, Lei Zhang, Josep Domingo-Ferrer, and Oriol Farras. Bridg-
ing broadcast encryption and group key agreement. In D.H. Lee and X. Wang,
editors, Asiacrypt 2011, volume 7073 of LNCS, pages 143–160. Springer, 2011.
(Cited on page 230.)

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd Annual Symposium on Foundations of Computer Science, pages
80–91, Chicago, Illinois, November 3–5, 1982. IEEE Computer Society Press.
(Cited on page 5.)

[YFDL04] Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. ID-based
encryption for complex hierarchies with applications to forward security and
broadcast encryption. In ACM CCS ’04. ACM Press, 2004. Full version at
http://www.cs.brown.edu/~anna/research.html. (Cited on page 230.)

[ZZ11] Xingwen Zhao and Fangguo Zhang. Traitor tracing against public collaboration.
In ISPEC ’11: The 7th International Conference on Information Security Practice
and Experience, Guangzhou / China, 2011. (Cited on page 44.)

— 275 —

http://www.cs.brown.edu/~anna/research.html

BIBLIOGRAPHY

— 276 —

Abstract

In this thesis, we consider a generalization of the encryption from “one-to-one” to “one-to-
many” communication. The objective is to allow a center to send secret messages to a large
number of receivers. The security notions in “one-to-many” communications need to be extended
beyond the notion of confidentiality in “one-to-one” encryption to meet practical requirements.
Two main functionalites are studied: traitor tracing which identifies malicious users who leak
their secrets to a pirate and broadcast encryption which prevents non-legitimate or revoked users
from decrypting broadcasted information.

In the first part of this thesis, we focus on combinatorial schemes. Our objective is to de-
sign solutions that support both the functionalities of broadcast encryption and traitor tracing
against various pirate strategies. In one direction, we introduce a trace&revoke code and a trac-
ing technique called “shadow group testing” to deal with “smart” pirates. In another direction,
we propose a method to integrate revocation into some code-based schemes.

The second part discusses the techniques for constructing algebraic schemes. We first extend
some well-known schemes, in particular the pairing-based BGW one, in order to enhance the
security and to capture new properties. We then propose the first lattice-based traitor tracing
of which the security is based on the hardness of the Learning With Errors problem. We
finally consider the combination of algebraic and combinatorial methods and propose an optimal
ciphertext rate traitor tracing scheme.

Finally, in the third part of the thesis, we propose an extended attack model, namely Pirates
2.0, that goes beyond the formalism of the conventional attacks. We also propose some gener-
alized primitives for broadcast encryption and traitor tracing to fit new practical requirements
such as multi-channel and decentralized broadcast encryption.

Résumé

Nous considérons dans cette thèse une généralisation du chiffrement au cas d’utilisateurs
multiples, à savoir la diffusion de données chiffrées. Cette généralisation du chiffrement intro-
duit deux nouveaux problèmes au-delà de la confidentialité : comment le centre peut-il identifier
les abonnés malhonnêtes (qui fabriquent des décodeurs pirates et sont appelés traîtres) et com-
ment le centre peut-il révoquer les abonnés malhonnêtes sans avoir besoin de mettre à jour les
paramètres du système.

Dans un premier temps, nous prenons l’approche combinatoire dans le but de construire
des schémas qui supportent à la fois la traçabilité et la révocation. Nous avons en particulier
introduit un nouveau type de code, nommé trace&revoke code, et la technique de “shadow group
testing” pour contrer les pirates “intelligents”. Nous avons en outre proposé une méthode pour
intégrer la révocation à quelques schémas de traçage de traîtres fondés sur les codes.

Dans un deuxième temps, nous suivons l’approche algébrique. Tout d’abord, en considérant
les schémas fondés sur les couplages sur des courbes elliptiques, nous renforçons la sécurité du
schéma de Boneh-Gentry-Waters et le rendons dynamique. Nous étudions ensuite l’application
des réseaux euclidiens et proposons un schéma de traçage de traîtres dont la sécurité est assurée
sous l’hypothèse bien connue de LWE (Learning with errors).

La dernière partie de la thèse est consacrée à la présentation d’un nouveau type d’attaque
en collaboration publique, appelé attaque Pirates 2.0 et quelques extensions du modèle de diffu-
sion de données qui répondent aux exigences pratiques comme les schémas décentralisés ou les
schémas multi-canaux.

	I Some Advances in Broadcast Encryption and Traitor Tracing
	Introduction
	Broadcast Encryption & Traitor Tracing
	Provable Security: a Rigorous Analysis of Security in Cryptographic Systems
	Security Notions for Broadcast Encryption & Traitor Tracing
	Definitions
	Security notions

	Short Overview of Broadcast Encryption & Traitor Tracing

	Combinatorial Approach
	Tree-based Constructions
	Brief Description of the Subset-Cover Framework
	Complete Subtree Scheme
	Subset Difference Scheme

	Code based Traitor tracing
	IPP codes
	Tardos' construction
	Code-based traitor tracing

	Black-Box Trace & Revoke Codes Algorithmica:NgoPhaPoi13
	The construction
	Summary

	Trace&Revoke from linear codes

	Algebraic Approach
	From ElGamal encryption to multi-receiver encryption, trator tracing and revoke schemes
	Boneh-Franklin method for traitor tracing C:BonFra99
	Naor-Pinkas method for revocation FC:NaoPin00

	Dealing with Full Collusion
	Broadcast encryption: BGW scheme
	Traitor Tracing: BSW scheme

	Some variants of BGW
	Adaptive CCA Security with Constant-size Secret Keys and Ciphertexts PPSS13
	BGW in Multi-Channel setting ASIACCS:PhaPoiTri13

	Lattice-based Approach: -LWE and Projective Sampling C:LPSS14
	Tracing traitors
	Hardness of k-LWE
	Hardness proof of Boneh-Freeman with exponential loss
	Our reduction with polynomial loss
	Public traceability

	Optimal transmission rate in Traitor tracing
	Constant Transmission Rate in Traitor Tracing
	Optimal Transmission Rate ISC:FazNicPha07
	Message Tracing with Optimal Transmission Rate LC:PhaPoiStr12
	2-user Anonymous Broadcast Encryption

	Discussions and Perspectives
	Extended Attack Models
	Generalised Primitives
	Some Remarks and Open Problems
	Perspectives

	II Curriculum vitæ & publications
	III Appendix: Articles
	Black-box Trace&Revoke Codes
	Introduction
	Revocable Codes
	General settings
	Conjunction Codes and Broadcast Encryption

	Traceable Codes
	Traceable Codes
	Traceable codes from disjunct matrices
	Black-box Traceability and Decoders' Strategies

	Trace&Revoke Codes
	1-Conjunction Trace&Revoke Codes and (r,s)-disjunct matrices
	Trace&revoke schemes from 1-conjunction blackbox trace&revoke codes

	Constructions of black-box Trace and Revoke with (r,s)-disjunct matrices
	Constructions of 1-Conjunction (r,s,t)-trace&revoke codes
	Combinatorial Group Testing with Prescribed-Weight Tests
	The shadow group testing technique and 1-Conjunction Qa-blackbox trace&revoke codes
	Toward Traceability Against Arbitrary Pirate Decoders
	Trace&Revoke in the Information-Theoretic Limit

	Discussions
	Appendix: Basic Definitions

	Traitor Tracing with Optimal Transmission Rate
	Introduction
	Preliminaries
	Public-Key Traitor Tracing Scheme with Public Traceability
	Public-Key Traitor Tracing with Public Traceability, Black-Box Tracing and Optimal Transmission Rate
	Our Two-User Sub-Scheme
	Indistinguishability under Chosen-Plaintext Attack
	Traceability
	Our Multi-User Scheme
	Indistinguishability under Chosen-Plaintext Attack
	Traceability

	Space and Time Parameters in a Concrete Instantiation
	Conclusion
	Appendix
	Bilinear Maps and Intractability Assumptions
	The Public-Key Traitor Tracing Schemes of EC:KiaYun02 and EC:ChaPhaPoi05
	On the Query Complexity of Black-Box Tracing in EC:KiaYun02
	Proofs from Section B.4.5
	A Comparison with EC:BonSahWat06,CCS:BonWat06

	Hardness of k-LWE and Applications in Traitor Tracing
	Introduction
	Preliminaries
	Euclidean lattices and discrete Gaussian distributions
	Random lattices
	Rényi Divergence
	Learning with errors

	New lattice tools
	Sampling a Gaussian X with a small basis of ker(X)
	Hardness of k-LWE

	A lattice-based public-key traitor tracing scheme
	A multi-user encryption scheme
	Tracing traitors

	Projective sampling and public traceability
	Projective sampling
	Projective sampling from k-LWE
	Public traceability from projective sampling

	Appendix
	Traitor Tracing
	A short overview
	Public key traitor tracing encryption
	Confirmation and soundness of the proposed traitor tracing

	Basic results on lattices
	Missing proofs of Section C.3
	Missing proof of Section C.5

	Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and Ciphertexts
	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Dynamic Broadcast Encapsulation
	The BDHE and GBDHE Assumptions
	Universal One-Way Hash Function

	CCA from Generic Transforms?
	An Efficient Selective CCA Broadcast Encryption
	Inclusive-Exclusive Broadcast Encryption
	Achieving Adaptive CCA Security
	The OBDHE Assumption
	The GKEA Assumption
	Adaptive CCA Security
	Comparison

	Concluding Remarks
	Appendix
	Proof of Theorem D.4.1
	Proof of the OBDHE Assumption
	Proof of Theorem D.6.4
	Proof of Theorem D.6.5

	Message Tracing with Optimal Ciphertext Rate
	Introduction
	Definitions
	Primitives
	Marking Content
	Collusion-Secure Codes
	Message-Traceable Encryption

	A Generic Construction from PKE
	Naive Construction
	Improved Construction
	Reusing Randomness
	Security

	A Construction With Shorter Keys
	Construction of a Message-Traceable Encryption Scheme
	Security of the Construction
	A 2-user Anonymous Broadcast Encryption Scheme
	Security of the 2ABE

	Conclusion
	Appendix
	Definitions

	Traitors Collaborating in Public: Pirates 2.0
	Introduction
	Collaborative Traitors: Pirates 2.0
	Comparing Pirates 2.0 and the Classical Setting

	Formalization of Pirates 2.0
	A Setting for Pirates 2.0
	A Concrete Treatment of Anonymity Estimation

	Pirates 2.0 and the Subset-Cover Framework
	Brief Description of the Subset-Cover Framework
	General Attack Strategy against Subset-Cover Schemes
	Pirates 2.0 against the Complete Subtree Scheme
	Pirates 2.0 against the Subset Difference Scheme

	Pirates 2.0 and Code Based Schemes
	General Framework of Codes Based Schemes
	Pirates 2.0 against Code Based Schemes

	Conclusion

	Identity-Based Traitor Tracing
	Introduction
	Preliminaries
	Notation
	Computational Assumptions

	Identity-Based Traitor Tracing
	Syntax
	Secrecy
	Traceability

	The Scheme
	Security Results
	Appendix: Waters' HIBE with Asymmetric Pairings
	Scheme Description

	Multi-Channel Broadcast Encryption
	Introduction
	Broadcast Encryption Schemes
	Contributions

	Multi-Channel Broadcast Encryption
	Syntax
	Security Model
	Disjoint Target Sets

	Preliminaries
	Computational Assumptions
	BGW Overview
	Intuition

	Multi-Channel Broadcast Encryption I – MCBE1
	Description
	Security Result

	Multi-Channel Broadcast Encryption II – MCBE2
	Dummy-Helper Technique
	Description
	Security

	Conclusion

	Decentralized Dynamic Broadcast Encryption
	Introduction
	Definitions
	Decentralized Broadcast Encryption
	Subgroup Key Exchange

	Generic Decentralized Broadcast Encryption
	Generic Public-Key Subset Cover
	Dynamic Subset-Cover
	SC-based Decentralized Dynamic Broadcast Encryption

	Tree-based Subgroup Key Exchange
	Static Tree Construction
	Dynamic Tree Construction
	Efficiency Properties

	Concrete Instantiations
	Appendix
	Definitions
	Proof of Theorem I.3.3
	Proof of Theorem I.4.1
	Constructions for the Subset Difference Method

	Bibliography

