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Abstract

1



The Wireless Body Area Network (WBAN), consisting of multiple small wire-

less sensor nodes embedded on human body, represent a remarkable milestone of

personal network. This network widely enhances the quality of life not only in the

entertainment industry, multimedia, sport training, military, security... but also in

the medical domain, where it provides an innovative method to monitor the health

more flexibly and more efficiently. As wireless communications represent the major

energy consumption in the network, the objective of this thesis is to propose a high

energy-efficient transmission protocol that is suitable for the WBAN.

The latter induces severe channel fading that can be counterbalanced by the

diversity provided by relay and MIMO techniques. Moreover, precoding techniques

are investigated to adapt the signals to be transmitted to the propagation channel.

Owing to the difficulty of embedding several antennas in a small-size sensor node,

the cooperation manner has to be adopted to deploy the MIMO precoding technique

into WBAN. Regarding the performance, the minimum Euclidean distance based

precoding is chosen due to its advantages in reducing the error probability.

In this thesis, we propose therefore the deployment of a minimum Euclidean dis-

tance based precoding, called Distributed max-dmin Precoding (DMP) into WSN

in general and in WBAN in particular. We will especially focus on the link be-

tween the WBAN and a base station equipped with two antennas, and two relay-

ing protocols are considered: Decode-and-Forward (DF) and Amplify-and-Forward

(AF). By nature of the spatial multiplexing, the DMP offers higher spectral effi-

ciency than a distributed Space Time Coding (STC). As far as the DMP-AF is

concerned, we introduce different manners to handle the local channel that changes

significantly the precoder. The latter can be designed taking into account this local

channel or adapted afterwards, and we can exchange two symbols in once or con-

secutively [68], [70]. The Monte Carlo simulations show out impressive performance

of proposed transmission schemes in comparison to conventional scheme such as

Single Input Single Output (SISO) and Single Input Multiple Output (SIMO). An

energy model, taking into account the circuit consumption and transmission con-

sumption, was used to compare the considered DMP and the existing protocols in

terms of energy consumption. The results point out the interest of using the DMP
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for medium distances between transmitter and receiver. Besides these simulations,

the theoretical performance of our DMP schemes is derived. For the DF relaying,

the system can be transformed equivalently to an interference system, where the

appearing interference is determined to be signal-dependent. As a result, the com-

bination of interference approach and the minimum Euclidean distance distribution

allows adopting the upper bound for the error probability in the DMP-DF [69]. For

the AF relaying, we carry out an equivalent system model, taking the local channel

into account of precoding design, before the analysis on Euclidean distance distri-

bution is established. Based on that, the evaluation on the ergodic capacity and

outage probability are performed [70]. The performance analysis not only confirms

the simulation results but also does help to allocate the power more efficiently, for

both DMP-DF and DMP-AF. Moreover, in the DMP-DF, we propose new maximum

likelihood decoder at the destination that improves the receiving performance [69].

This decoder considers the decoding information of relay to adjust the log-likelihood

ratio, hence the decoding error is reduced.
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Over the past couple of decades, the life expectancy of people has increased to a

great extent due to the amelioration of science and medicine especially in the devel-

oped countries [61]. This is a result of the quality of life and medical improvement

through the new treatments for sicknesses as well as the advancement in technol-

ogy. Accordingly people have started living longer, leading to the increasing of an

aging population. This means in near future people will be facing to the overload

of the health care systems. Besides the growth of health care demands for elderly

people, medical researches [101] have proved that most of the diseases for instance

cancers, asthma, chronic or fatal diseases, can be prevented if they are detected in

their early stages. This requires a new medical treatment that allows to track the

physiology data in real time. Fortunately, recent technology achievements as inte-

grated circuits, wireless protocols, physiological sensors will allow us to tackle with

these demands. These motivations create a new type of Wireless Sensor Network

(WSN): Wireless Body Area Network (WBAN) [21, 41, 51, 72, 76]. Along with the

rapid growth of micro-electronic technology, personal electronic devices are more

diverse and modern. Meanwhile, a significant improvement in terms of miniatur-

ization allows putting electronic devices onto/into the human body. Basically, the

WBAN is a specific kind of WSN, targeted to the human body. The WBAN, which

is known as a new way of doing things, does not only provide a new health care

generation but also can be used in other areas such as: home entertainment, office

application, sport training, and security supports...

The WBAN uses small light smart sensors placed on/in the human skin. The

term ”smart” herein refers their capability to collect, process information; commu-

nicate each other, and sometimes assist the medical treatment. These sensors have

the task of taking the vital information to help analyzing the health situation of

the object being tracked. In medicine, physiological sensors collect data of temper-

ature, blood pressure, heart rate, electrocardiogram (ECG), electroencephalogram

(EEG), respiration rate . . . In a conventional health care, these parameters are usu-

ally obtained by medical tests that suffer many inconveniences in terms of cost,

flexibility and timeliness. With the growth of aging population, the current medical

system will not be able to sustain this expansion, and WBAN are seen as a potential
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solution.

A WBAN provides a monitoring method that prevents patients from sudden

infant death syndromes or enables proper dosing and reduces the risk of fainting

for diabetes patient. In addition, data provided by WBAN is continuous, real-

time and during a large-interval time, therefore its medical information should be

more accurate and complete. Besides, WBAN also offers intelligent solution to

support patients in the emergency situation or assist people with disabilities. For

example, a paralyzed patient can recover the ability to move by the interaction of

a sensors network that connect the nerves system and muscles of patients with an

artificial actuator. The WBAN integrated within an overall eHealth solution could

bring a step change in the remote management of patient healthcare. Generally

speaking, there are two types of devices; sensors which are used to measure certain

parameters of the human body, either externally or internally, and actuators which

act as a drug delivery system according to the data they receive from the sensors or

through interaction with the user. The medicine can be delivered on predetermined

moments, triggered by an external source, in other words a doctor who analyzes the

data, or when a sensor notices a problem. For example, if a patient suffering from

diabetes has a sudden drop of glucose, a signal will be sent to the actuator in order

to start an injection of insulin. In short, WBANs will be a key solution in early

diagnosis, monitoring and treatment of patients with possibly fatal diseases of many

types, including diabetes, hypertension and cardiovascular related disease.

Besides medical applications, the WBAN can also be found in non-medical do-

mains. The first one is the real time streaming which involves video streaming,

audio streaming as well as stream transfer which are used for vital sign and body

information-based entertainment service, body gesture motion capture, remote con-

trol of entertainment devices, identification, emotion detection and to monitor for-

gotten things by sending an alert to the owner. Nexts are the entertainment appli-

cations, which consist of gaming applications and social networking. The devices

integrated in WBANs are appliances such as microphones, MP3-players, cameras

and advanced computer. They can be used in virtual reality, personal item track-

ing, exchanging digital business card, consumer electronics and gaming purposes, for
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instance game control with hand gesture (such as wii’s or xbox’s games) or mobile

body motion game and virtual world game. The third one is called emergency (non-

medical), which are on-body sensors capable of detecting a non-medical emergency

such as fire or poisonous gas to urgently warn the user in that emergency condition.

Furthermore, there is the emotion detection which, via simple bio-sensors, measures

the induction of physical manifestations throughout the body. The last one is called

Secure Authentication; it uses both physiological and behavioral biometrics such as

iris recognition, fingerprints and facial patterns. This is one of the key applications

of WBANs due to duplicability and forgery, which has motivated the use of new

physical characteristics of the human body.

Sensors in the WBAN are required at key positions to enable effective monitor-

ing of the relevant physiological conditions. They operate cooperatively, forming

a sensor network, which is a deployment of several devices equipped with sensors

that perform a collaborative measurement process. A WBAN needs a communica-

tion module that supports a wireless protocol such as wifi, bluetooth, zigbee. . . The

wireless nature will not only help the network be more flexible for daily activities

but also facilitate the communication to an external system such as a surveillance

system, internet, and cellular networks. On the other hand, it also brings real

challenges on communication reliability, security, safety, and power consumption.

Given the WBAN context, this thesis focuses on the study of communication, es-

pecially on energy consumption aspects. In practice, the wireless communication

has to deal with more complex problems than the wired one. Firstly, the wireless

channels should be subject to various unfavorable factors such as fading, shadow-

ing, attenuating... Energy loss when wireless communication performed on human

body is stronger due to the absorption of body tissues. Furthermore, the nature

of daily application, human movement and posture changes will affect substantially

the wireless channels. A further constraint on size has to be taken into consider-

ation, leading to the limitation of energy source, e.g. batteries. Consequently the

optimization of energy must be ultimately focused. Moreover, reducing the trans-

mit power also offers the advantage in limiting the interference between devices as

well as networks. In addition, the safety standards on microwave power must be an
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important consideration. Thereby, for wireless personal devices, the radiated waves

have to be controlled to prevent the damage to the vital organs and tissues. The

low power constraint allows a long life battery capability, which is a key requirement

because a patient could have to undergo an operation each time of battery failure.

BoWI project: Body World Interactions [1]

BoWi is a CominLabs project, focused on the society challenge called Digital Envi-

ronment for the Citizen. It is also related to the social challenge Information and

Communications Technology (ICT) for Personalized Medicine and to the research

track Energy Efficiency in ICT.

Figure 1: An overview of BoWI project [1]

The main objective of the BoWI project is to develop a pioneer interfaces for an

emerging interacting world based on smart environments (house, media, informa-

tion and entertainment systems...). The Wireless Body Areas Sensor Networks is
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focused for the aim of estimating accurately the gesture and body movement. The

ultimate requirements are determined on the device size and the ultra-low power

consumption. In BoWI, the geolocation approach will be the combination of the

radio communication distance measurement and inertial sensors data. The health

care, activity monitoring, and environment control can be considered as applications

of BoWI.

In the first step, the Zyggie (Figure 2) prototype was developed as a wearable

device. Three sensors are integrated inside: the accelerometer, gyrometer, and

magnetometer. The project’s initial task is to use the data from these sensors to

detect the posture. To do so, Zyggie nodes will be set on a specific location then

transmit its data to the station. This station gathers and analyzes data then gives

out the posture/gesture. This thesis’s objective is to propose a high energy efficient

wireless communication protocol that is suitable for BoWI project.

Figure 2: Zyggie prototype, version 1

Within BoWI, four works are proposed to be investigated. The first one is aiming

to design an ultra-low power architecture for WBAN. The configurable architecture

is considered and the ultra-low power can be achieved by the aggressive use of dy-

namic power management [1]. On another aspect, the antenna and propagation are

tackled. The objective is to obtain the channel models of WBAN by measurements,

and afterwards use them in order to design an antenna that is suitable for the Zyggie

prototype. In addition, a work on the multi-sensor and radio based geolocation is

carried out. The aim is to propose an algorithm that exploits effectively the data of

inertial sensors (magnetometer, accelerometer, and gyroscope) to detect the user’s

gesture. In the next step, the Ultra-Wide Band (UWB) geolocation can be studied

for more accuracy and probably more energy efficiency.
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This thesis is in charge of the wireless communication which is the key factor

connecting devices in BoWI project. The ultimate objective is to reduce the power

consumption meanwhile maintain the reliability. To manage these requirements,

the spatial diversity is a good approach to study. However, the size constraint of

WBAN cannot allow to equip multiple antennas to deploy the spatial diversity.

For this reason, the cooperative technique is proposed to be investigated. In fact,

this technique is already well-studied in the WSN context, and exists almost in

two main categories: cooperative relay and cooperative Multiple-Input Multiple-

Output (MIMO). Our contribution is to go in deep on the implementation of a

MIMO precoding into the WBAN via the cooperative technique. In this term, we

set an eye on the minimum Euclidean distance based precoding with an impressive

performance in reducing the error probability.

Thesis contributions

− Thanks to measurements on the channel characteristics for BoWI prototype

(Zyggie), the nature of channel fading in WBAN is analyzed. The distribution

fitting process is carried out to obtain the suitable model for the considered

system.

− With the aim to obtain a high energy efficient network, we focus on the wire-

less communication protocol. As a result, we have proposed and investigated

the distributed precoding scheme, based on the cooperative deployment of a

minimum Euclidean distance precoder. Two forwarding strategies are consid-

ered: Decode-and-Forward and Amplify-and-Forward. In terms of DMP-AF,

we introduce different uses of signal processing in the local exchange phase.

The numerical evaluation (Matlab simulation) pointed out the outperformance

of the proposed protocol compared to the conventional system such as SISO,

MISO, distributed Space-Time Block Code (STBC) in terms of error rate, or

energy efficiency. An energy model has been studied for the DMP scheme,

the comparison to conventional schemes is derived afterwards. Thereby, the

energy consumption is in favor of the DMP for medium distances (several
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meters).

− As far as DMP-DF is concerned, the performance analysis approach is carried

out based on the classification of hypothesis, occurring in the cooperative

node when decoding. As a result, an equivalent system is presented with the

appearance of the interference. The upper bound on the error probability is

then achieved. Based on that the power allocation can be accomplished.

− If the decoding information at the cooperative node is available at the desti-

nation, an advanced Maximum Likelihood (ML) decoder will be performed,

taking the decoding error of cooperative node into the computation of Log-

Likelihood Ratio (LLR). In expense of higher complexity, the new decoder

offers significantly a performance improvement.

− Regarding the DMP-AF, to obtain the performance analysis, we transformed

the system model to achieve the corresponding system. The spectral-advantageous

AF scheme was picked up, then the distribution of minimum Euclidean dis-

tance was investigated. Afterward, some evaluations were derived, based upon

the probability density function (pdf) of dmin such as: ergodic capacity and

outage probability. We performed the power allocation analytically, aiming to

maximizing the system capacity.

Thesis structure

Chapter 1: Communication in WBAN

Aiming to develop a network that is easily deployable on human body, the wireless

communication is an important requirement, but it suffers from the effects of the

channel such as path loss, fading, shadowing... In WBAN these factors are even more

particular due to the nature of human body environment and the mobility induced

by the daily activities (walking, running, standing...). Thus, in this chapter a view

on the elements that affect the wireless communication will be described. Regarding

the existing communication protocols, a literature review will be provided on well-

known cooperative protocols, such as cooperative relay and cooperative MIMO.
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Chapter 2: How to benefit from channel feedback

Looking at the MIMO categories, the precoding technique emerges as a closed-

loop system that can use the channel feedback efficiently. Moreover, by nature of a

spatial multiplexing system, this technique achieves an impressive spectral efficiency,

compared to the STBC. More advantageously, the feedback information can be

exploited to satisfy a pertinent requirement such as: Minimum Mean Square Error

(MMSE), equal-error, Quality of Service (QoS), SNR-maximization, maximization

of capacity...

An overview of MIMO precoding techniques is introduced in this chapter, and

the idea to bring the MIMO precoding into the WSN via the cooperation manner

is tackled. In this latter work, we mention an application of a minimum Euclidean

distance based precoding with the huge advantage in diminishing the error rate.

The numerical evaluation on the performance and energy efficiency is also provided.

Chapter 3: Distributed maxdmin precoding: Decode and Forward

In this chapter, we specifically consider the Decode-and-Forward structure. We

address the performance analysis of the distributed precoding scheme, deploying

the Euclidean distance based precoding via cooperative technique in a general WSN;

the implementation into WBAN is totally similar. The decode-and-forward relaying

is focused on the basic case with one single relay node, one source node and a

destination which possesses two co-located antennas. The given methodology in

this chapter, is obviously extendable for larger systems. These extensions might be

considered in the future works with more relay nodes and/or more antennas at the

destination.

In addition, we propose to examine the possibility to use the information of the

relay performance at the destination. This information is adopted in calculating the

log-likelihood ratio to detect more efficiently the symbol in the maximum likelihood

(ML) decoder at the destination. A new maximum likelihood decoder is introduced,

exploiting the decoding error probability of the relay to enhance the detection at the

destination. In the light of the fact that the complexity of ML decoder augments

severely in a full use of this information, we propose a suboptimal and less complex
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solution taking advantage of the max-log approximation.

Chapter 4: Distributed maxdmin precoding: Amplify and Forward

Similarly to the previous chapter, the Amplify-and-Forward scheme performance

analysis is derived, to further obtain the practical power allocation. The Local

precoded transmission with the channel customizing scheme will be selected due

to its spectral efficiency and performance. The theoretical performance analysis

on the channel capacity and outage probability are carried out, based upon the

statistical distribution of minimum Euclidean distance between two received vectors.

We address out also the power allocation strategy, defining the power apportionment

between two phases of a distributed scheme that offers the best channel capacity

performance.
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Chapter 1

Communication in WBAN
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Introduction

The WBAN can be consider as a specific type of WSN where the devices, network

topology, communication scenarios are different. Aiming to develop a network that is

easily deployable on human body, the wireless property is an important requirement.

The communication in WBAN therefore is carried out via the wireless channel.

Unlike the wire communication, the wireless communication suffers from affects of

the channel such as path loss, fading, shadowing... Especially, in WBAN these

factors are more particular due to the nature of human body environment.

In WBAN, one of most important constraint is the ultra-low power consump-

tion. Regarding this term, two components are considered: circuit and transmission

consumption. Like other electronic system, the components such as processor, am-

plifier, mixer, filter... consumes the energy for signal processing. In recent years, the

explosive growth of micro-electronic technology empowers the processing capability

while reduces the power consumption. This positive trend offers more opportunity

to obtain a flexible, powerful WBAN with small size and long-term operation. The

second kind of power consumption is due to wireless wave propagation. According

to the nature of wireless, we emit wirelessly an electromagnetic wave to create the

communication among devices. The energy consumed by this operation depends on

the physical algorithm, environment, frequency band, etc. In the light of the fact

that the consumption of the circuit is more and more diminished along with the

semiconductor technology advancement, the transmission takes an important part

in the energy diagram. For this reason, to propose an ultra low power wireless net-

work, it is obvious to focus on the wireless communication. In general, the wireless

communication is more complicated than the wire one owing to the sophisticated

channel. Especially in WBAN, this issue becomes more difficult due to the human

body is not an ideal media for radio frequency propagation.

Consequently, in this chapter a view on the elements of a WBAN is provided

including the description of the wireless communication aspects in section 1.1. Af-

terwards, the state of the art of cooperative technique that is capable to reduce the

transmission power, is described in section 1.1.2. Section 1.3 finally concludes the
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(a) Star topology

Center node  

 

Sensor node 

(b) Cluster tree topology

Figure 1.1: Two common topologies used in WBAN

chapter.

1.1 Overview on WBAN

1.1.1 WBAN architecture

1.1.1.1 Network topology

Generally, the WBAN can be organized as a star, cluster tree, mesh or ring topology.

However, the two former topologies star and cluster tree are used most commonly

in WBAN. Star topology (see Figure 1.1a) is suitable for applications supported

by small network, whereas cluster tree (see Figure 1.1b) one is more convenient for

larger scale physical size network. Obviously, the star topology is well suitable for

WBAN due to the dimensions. All nodes in network are connected to a central

coordinator (center node), this node responds to gather, process, and forward the

data to an access point that is capable to analyze them. Consequently, the center

node in this topology is supposed to be more powerful in terms of energy, processing

capability, and memory than the other nodes in the network.
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1.1.1.2 Types of devices

1. Sensor node: This device is mounted on the body. All information such as vital

signal, location data, environment condition, audio, video signal. in WBAN

is recorded by this device. Additionally, a sensor node must be capable to do

some simple signal processing and transmit wirelessly the data to an external

access point [4]. Two kinds of sensor node are existing: implant and on-body

sensor. Most of implant nodes are used in medical application to monitoring

the vital signal, whereas on-body nodes can be used for both medical or non-

medical application.

2. Actuator node: In general, an actuator node is similar to a sensor node (also

on-body device), except it is able to execute some particular task according to

the information it receives or the order from external access point [48].

3. Personal access point: This device responds to gather all data in a network

then forward to the external access point, located far away from human body.

In some cases, it is used to inform user for warning or providing information.

Basically, a personal access point acts like a center node in a WBAN. As a

result, it is more powerful than the other node in terms of processing capability,

memory, energy resource [86]. In some applications, the smart phone or the

Personal Digital Assistance (PDA) can be personal access point.

4. External access point: This device is the center of the network, it undertakes

the analysis of all data received from the sensors, and keeps them for the future

needs. It can also take decisions or make the data available on the internet.

1.1.1.3 Transmission scenarios

The potential of WBAN is evident, it is still in the early time of development.

Therefore, the subgroup IEEE 802.15.6 was formed, aiming to develop WBAN for

medical and non-medical devices. In summary, four main scenarios are listed by this

standard in the Table 1.1 [105]:

The BoWI project considers only on-body sensors: accelerometer, gyro-meter,
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Scenarios Description Frequency Band

S1 Implant to Implant 402-405 MHz

S2 Implant to Body Surface 402-405 MHz

S3 Implant to External 402-405 MHz

S4 Body Surface to Body Surface
13.5, 50, 400, 600, 900 MHz,

2.4, 3.1-10.6 GHz

S5 Body Surface to External
900 MHz,

2.4, 3.1-10.6 GHz

Table 1.1: List of scenarios in WBAN and their frequency band

magnetometer. The data from these sensors, combined with Received Signal Strength

Indicator (RSSI) information is collected by an external Access Point (AP) (com-

puter). This AP is supposed to be a powerful station with outstanding capability in

terms of processing, memory and energy. Therefore, two transmission scenarios are

concerned to be studied herein. The first one is the communication among on-body

nodes in a WBAN, called intra-BAN. This scenario is crucially affected by human

body, the surround environment as well as the gesture. The second scenario is the

communication between the center node and the AP. This kind of communication

is called: extra-BAN.

1.1.1.4 Intra-BAN communication

For the reason that WBAN is a small network, the star topology is advantageous.

Consequently, there is only the connection between the center node and sensor nodes

(sensor nodes do not communicate to each other). The most important constraint

on this communication is the simplicity, not only to reduce energy consumption and

delay time but also because the distance between two nodes is small. A simple direct

transmission SISO is an obvious possibility. This is the simplest way to transmit

a signal, therefore we drain less energy for the circuit. However the drawback is

that to obtain a sufficient performance, we emit a significant power. Besides, the

multi-hop transmission could be considered. This protocol is used popularly in a
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tree or cluster-tree topology. For example, in [49] a cascading multi-hop scheme

proposes low delays, low packet loss and high energy efficiency while the flexibility

is preserved. In another study [82], a scheduling provides multihop support through

the division of the network into timezones. Thanks to this, a shortest path routing

from a node to the gateway is obtained.

In addition, the gesture and human movement have important impact on the

channel properties and the path loss. Adapting the transmission protocol with the

change of the gesture provides the opportunity to enhance the link quality and reduce

the energy consumption. For example, in [29] a packet transmission scheduling is

addressed, based on the behavior of RSSI between transmitter and receiver. Thanks

to some periodical movement of the human body, this protocol predicts the peak in

the RSSI diagram to send packets. As a result, the Packet Received Rate (PRR)

between 50% and 90% of an outdoor intermediate link is increased to above 90%.

Moreover, a power control mechanism can be used to manage the transmit power

in function of the link quality [44, 80]. Specifically, based on the information about

RSSI/Link Quality Indicator (LQI), the transmission power is adapted to prevent

the energy waster in the case the link is strong and assure the link reliability when

the link goes bad. Furthermore, the power control can also be deployed using the

knowledge of body posture on the transmission.

Figure 1.2: Two categories of communication in WBAN: red dash arrow denotes

the intra-BAN and green solid arrow denotes the extra-BAN
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Instead of using radio frequency wave to transmit the signal, the human body

can be used as a transmission medium for electrical signals [107], call intra-body

communication. Therefore, the body becomes a channel to perform a coupling

between transmitter and receiver. In general, we can classify the coupling of intra-

body communication into 2 main categories: capacitive coupling [23,24,27,77,78,107]

and galvanic coupling [28, 50, 71]. In the first method the use of the near field and

the capacitive coupling of human body to its environment make the human body

acting as a transmission medium. Whereas, the latter method exploits the coupling

current into human body via two electrodes. This intra-body coupling proposes

an ultra-low power transmission, benefiting from the utilization of dielectric body

parameters to send the data. In contrast, its drawback is that he data rate is limited

and the system is less convenient due to the requirement of direct contact of sensor

node and human tissue.

1.1.1.5 Extra-BAN communication

The requirement of sending out the data to the external station makes the extra-

BAN communication happening (see Figure 1.2). The extra-BAN is defined as the

communication between a node in WBAN and an external AP. In WBAN, there is

a center node responds to gather and send out all data in the network. Different

to the intra-BAN communication, the channel in extra-BAN communication is less

particular. It can be considered similarly as the context of cellular network or any

personal device network. Basically, the direct transmission SISO and multi-hop

technique are applicable. Nonetheless, the demand on a low-power system make

them less feasible due to the reason that they require significant power to obtain a

sufficient performance. On this aspect, the MIMO is considered as a good candidate

in proposing the spatial diversity to increase the performance with the same power

level as the conventional protocols. However, the constraint on the physical size

of sensor node limits this spatial diversity technique (the most feasible diversity

technique) to enhance the communication quality. To overcome this challenge, the

need of cooperation is obvious [11]. This technique exploits the help of one or

multiple additional nodes to create the spatial diversity. We provide the state of the
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art on the cooperative technique in the section 1.2.

1.1.2 WBAN channel characteristics

In order to deploy the wireless communication, the obligation is to investigate the

wireless channel, in which the electromagnetic wave is propagated. To study the

physical layer, the channel model, consisting of characteristics such as path loss,

fading, shadowing, power delay profile..., is required. In this section, we discuss

some typical characteristics of propagation channel in the WBAN.

1.1.2.1 Body tissues

The human body, in general, got many characteristics that influence on the radio

frequency propagation such as conductive factors, dielectric constant, impedance...

As a result, the wireless transmission suffers high losses caused by the power ab-

sorption, frequency shift, radiation pattern destruction... The effects are obvious,

however the variation of human tissue characteristics (owing to the different body

size, sex, age, fat percentage. . . ) makes the investigation more complicated.

1.1.2.2 Antenna effect

Basically, human body possesses strong dielectric characteristic, thus it affects sig-

nificantly on the antenna radiation pattern. Moreover this characterization varies

with different individual body, causing the difficulty in being described in a unique

manner. The change of human gesture and posture affect also the propagation na-

ture of antenna. Therefore, it is obliged to understand all these aspects to adapt

the wireless communication into body area environment. In addition, the antenna

design is strongly depending on the application of WBAN. That means the form,

the size, and the characteristic of antenna must be suitable with the purpose and

situation. For example, for the on-body node, the dipole antenna might be suitable,

whereas, in pacemaker implant, the circular antenna might be selected. In conclu-

sion, the antenna design must take into account the dielectric elements of human

body tissues as well as the application in which it is being used.
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1.1.2.3 Path loss

Regarding the extra-BAN links, the path loss is easily modeled as a distance-

dependent model. In other words, this link is totally similar to other classical

systems such as cellular network, multimedia communication, wifi communication...

Unlikely, the intra-BAN links propose the complicated attenuation behavior. The

reason is not only the sophisticated absorption of body tissues (due to different

tissue characteristics: body size, sex, age. . . ), but also the continuous gesture that

changes in daily activities. The attempt to model the path loss in function of sepa-

rated distance is poorly suitable [58,92]. A path loss model must take into account

not only the distance, but also the sensor placement and human movement.

1.1.2.4 Fading

Due to many reasons, the wireless signal in WBAN is faded. The fading phenomenon

might be created by the multipath of surround environment, the energy absorption,

the reflection, or the shadowing of body parts. The fading causes the deviation

of the attenuation affecting the received signal. In a wireless system, the principle

of the fading behavior must be determined in order to evaluate a certain trans-

mission protocol. In literature, there are some studies on modeling the statistical

channel distribution [92, 93] , [85], [22], [91], [18] for WBAN. These investigations

attempted to fit the measured or simulated data of the channel gain with the fading

distributions such as Rayleigh, Ricean, lognormal, Weibull... Generally, the on-

body channel can be modeled as a lognormal fading in most of cases. Besides, the

Weibull or gamma distribution can be listed for providing the quite good fitting.

Two well-known distributions Rayleigh or Nakagami seems to be poor-fitting in the

context of WBAN. Regarding the indoor environment, the most applicable case for

the WBAN, the Weibull and gamma distribution are two best candidatures.

On attempting to study the characteristics on the fading property which crucially

affect the wireless communication, we carry out some measurements on the on-body

channels. These measurements are implemented with the Zyggie prototype [1], with

the help of the Vector Network Analyzer (VNA). The environment is supposed to be

indoor. Two scenarios will be focused: 1) extra-BAN : between a node on the chest
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and an external node; 2) intra-BAN : between a node on the chest and a node on the

wrist. The channel gain will be recorded by the VNA at 2.45 GHz. To determine the

best-fitting fading distribution, the minimum Akaike Information Criterion (AIC)

is applied [3]. This parameter is computed based on the data of 1000 channel gains

collected in each scenarios. The following models (with their pdf) will be selected

to be examined:

1. Lognormal

f(x|µ, σ) = 1

xσ
p
2⇡
e

−(ln(x)−µ)2

2σ2 (1.1)

2. Gamma

f(x|a, b) = 1

baΓ(a)
xa−1e

−x
b (1.2)

3. Weibull

f(x|a, b) = x

b2
e

−x

2b2 (1.3)

4. Rayleigh

f(x|b) = x

b2
e

−x

2b2 (1.4)

5. Nakagami-m

f(x|m,Ω) = 2mm

Γ(m)Ωm
x2m−1e

−mx2

Ω , (1.5)

where Γ(.) is the gamma function. Thereby, the AIC is expressed as

AIC = −2 ln(l(δ̂/data)) + 2Z +
2Z(Z + 1)

nδ − Z − 1
, (1.6)

where ln(l(δ̂/data)) denotes the maximum log-likelihood over unknown parameters

δ, given the data and the model; Z is number of parameters in the model; and nδ is

number of sampling data.

In Figure 1.3, the distribution fitting for the extra-BAN channel is illustrated.

As we can see for the case of Line Of Sight (LOS), the channel varies slightly. In

this situation, the Rayleigh fading proposes the worst fitting. The best candidates

would be lognormal or gamma fading. If the LOS can not be performed, the channel

gain deviation becomes stronger, and the fading behavior changes. At this point,

the Weibull can be the best-fitting distribution. The lognormal and gamma fading

23



are probably considered as a good model for this channel. In intra-BAN, for a

communication between the chest and the wrist, the transmitter is placed on the

chest, the receiver is on the wrist. Two situations are studied: the body stands

still, and the body moves. As can be seen in the Figure 1.4, the lognormal, Weibull,

gamma and Nakagami fading can be the candidates.
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Figure 1.3: The distribution fitting for the extra-BAN channel: the transmitter on

the chest and receiver on the external
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Figure 1.4: The distribution fitting for intra-BAN channel: the transmitter on the

chest and receiver on the wrist
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Table 1.2: The AIC for the considered models, the minimum value determines the

best fitting model

Model
AIC

extra-BAN

LOS

extra-BAN

NLOS

intra-BAN

static

intra-BAN

motion

Lognormal 0.1972 5.9700 5.5158 6.1649

Gamma 0.9245 5.2522 4.9686 5.3265

Weibull 0.3789 5.2198 4.8763 5.3203

Rayleigh 2.6203 3.2037 2.9805 3.3492

Nakagami-m 0.2029 5.2198 4.8933 5.3255

To determine the best-fitting model, the table of AIC for each model is provided

(see table 1.2). Based upon that, we can select the lognormal for the extra-BAN

channel with LOS and the Rayleigh fading for the remaining cases.

1.2 Cooperative technique

The demand on high data rate communication or less energy consumption leads to

the use of some diversity techniques that provide multiple versions of data helping

to enhance the transmission quality. The diversity techniques can be classified into

three main categories: frequency diversity, time diversity and spatial diversity. The

latter technique that exploits the space by using typically multiple antennas, is most

commonly used. The data, transmitted by different paths, is therefore assured to

be more reliable than a single path with the direct transmission SISO. In a co-

located point to point system, the spatial diversity is obtained thanks to a MIMO

technique, where each terminal could be equipped by multiple antennas. However,

in WSN (WBAN in particular), the sensor size constraint does not allow to put two

or more antennas on a sensor, so a classical MIMO technique could not be directly

applied. Thus, to perform the diversity technique, the cooperative technique can be

carried out.

25



1.2.1 Cooperative relay

The cooperative relay is the well-known cooperative technique in the early time.

This technique is first introduced by E.C. van der Meulen [102], using a relay to

assist the transmission between a transmitter and a receiver. Afterward, many

works have studied its achievable advantages [19], [47], [88], [89]. In principle, the

relay system is described in the Figure 1.5. Whereby, it consists of one or multiple

relays that forward the signal from the source to the destination. Based on the

signal processing at relays, some categories could be listed: Decode-and-Forward

(DF), Amplify-and-Forward (AF), Compress-and-Forward (CF), Coded Coopera-

tion (CC). The advantage of a relaying technique is to enhance the diversity since

the destination receive two or more versions of information from the source and from

relays. Consequently, the transmission quality (such as error rate, outage probabil-

ity, channel capacity. . . ) is improved. Thanks to this, the energy consumption is

decreased for a target quality requirement.

To deploy a relaying system, two main bases are considered: repetition-based and

Distributed Space-Time Coding (DSTC)-based. In the repetition-based relaying, re-

lays receive the information from the source, they forward afterward identically that

information to the destination. The received information at the destination thereby

includes different versions from independent paths (relays and source). Therefore,

the probability that the destination fails to detect the signal is reduced. Whereas,

the DSTC-based relaying benefits from the space time coding protocol to obtain the

quality enhancement.

The cooperative relay technique can be realized in many areas: cellular network,

ad-hoc network, satellite communication, radio media and WSN. Different from the

other systems, a WSN in general and a WBAN in particular, is restricted by many

constraints, especially in terms of size, and energy source. Due to the small-size,

each sensor can be equipped only with a single antenna. Thus, in order to obtain

the uniformity and the consistence with our context, from this moment we focus

only on the node with single antenna . Whereas, the center AP can be supposed to

be a robust station. That means the constraint in terms of computation and power

could be ignored. Furthermore, two or more antennas could be equipped on AP
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Figure 1.5: Relaying system model with source S, destination D and n relays R1..Rn

that supports facilitating the space diversity in the reception side.

We consider a simple relaying system with a source node, a relay node and a

destination (see Figure 1.6a). The role of relay is to help forwarding the signal from

the source to destination. The transmission in a relaying system consists of two

phases. In the first time-slot, the source transmit its data to both relay node and

the destination. The destination buffers the data from the source and waits for the

second version of it in next time slot. In the second time slot, the relay node after

receiving the data from source node, will forward it to the destination. At the desti-

nation, two versions of data are obtained, afterward some techniques of combination

can be used such as Selection Combining (SC), Maximal Ratio Combining (MRC),

Equal Gain Combining (EGC) [12]...

Let us define dSR, dSD, dRD the distances from S ! R, S ! D, R ! D, respec-

tively. Due to the difference in distance, the transmission links S ! R and R ! D

obtain gains GSR, GRD in power in respect with S ! D link. Considering that

these gains depend on the path loss environment, let K be the path loss exponent.

The mentioned gains are expressed as

GSR =

✓
dSD
dSR

◆K

, (1.7)

GRD =

✓
dSD
dRD

◆K

. (1.8)

Owing to existing of two transmission phases, the power allocation must be regarded.

To be fair, let us define E the total energy to transmit one symbol. This energy will

be divided into two parts: El, and Ed for first and second time slot, respectively.
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1.2.1.1 Decode and Forward relaying

In DF relaying, the relay detects the received signal from the source then re-transmits

the detected signal to the destination. Let s be the signal from the source, in the

first time slot the relay and the destination receive, respectively:

ysr =
p

ElGSRhsrs+ nsr, (1.9)

ysd =
p

Elhsds+ nsd, (1.10)

where hsr denotes the source to relay channel, hsd denotes the source to destination

channel; nsr, nsd are the Additive White Gaussian Noise (AWGN) at the relay and

destination, correspondingly.
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(a) Decode-and-Forward
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(b) Amplify-and-Forward
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R 

D

dSR dRD

dSD

(c) Compress-and-Forward

Figure 1.6: Three common types of relaying: dashed arrow denotes the first time

slot, the solid arrow denotes the second time slot
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In the second time slot, after receiving the signal from the source node, the relay

node uses the ML decoder to detect it. The detected signal ŝ then is resent to the

destination through the channel hrd. The received signal at the destination is:

yrd =
p
EdGRDhrdŝ+ nrd, (1.11)

where nrd denotes the AWGN in this phase at the destination. From two versions

of data from source and from relay, a MRC scheme is supposed to be utilized. The

combined signal is expressed as

ycom = ysdh
⇤
sd + yrdh

⇤
rd = |hsd|2s+ |hrd|2ŝ+ nsdh

⇤
sd + nrdh

⇤
rd, (1.12)

where |.|⇤ denotes the complex conjugate. Apparently, two possibilities happen: the

relay node decodes s correctly, meaning ŝ = s, or wrongly ŝ 6= s. As a result,

in the case the link between source and relay is good, the DF relay improves the

performance at the destination, with respect to a single direct transmission. In

contrast, if the signal is decoded imperfectly, it will affect the MRC.

1.2.1.2 Amplify and Forward relaying

In general, this technique is similar to the previous technique. However at the

relay node, the signal is not decoded. Instead, it is amplified then retransmitted

to the destination (see Figure 1.6b). Depending on the availability of the channel

information at the relay, it can choose one corresponding amplifying factor among

the cases as follows:

− If, at the relay, the instantaneous Channel State Information (CSI) is not

present, except its statistical parameter, the amplifying factor is given as [38]

g =

s
Ed

ElGSR↵2
sr +Nsr

, (1.13)

where ↵2
sr is the statistical variance of the channel hsr, and Nsr denotes the

noise variance at the relay node in the transmission from the source node.

Using this amplifying factor, the average energy is balanced, whereas the in-

stantaneous power might exceed or fall behind the average value.
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− In the case the CSI is known at the relay, we can use the following amplifying

factor [39]

g =
h⇤sr
|hsr|

s
Ed

ElGSR↵2
sr +Nsr

. (1.14)

− Also in the case the relay is capable to obtain the channel coefficient, it uses

the amplifying factor:

g =
h⇤sr
|hsr|

s
Ed

ElGSR|hsr|2 +Nsr

, (1.15)

to assure the output power at the relay is always controlled [5].

Therefore, the destination will receive the signal from the relay as

yrd =
p
gEdGRDhrds+ nrd. (1.16)

The combining scheme is performed the same way as the DF relaying. Apparently,

the noise at the relay is also amplified along with the signal. However, two versions

of data are obtained at the destination. The diversity is consequently enhanced,

helping improving the detection at the destination.

1.2.1.3 Compress and Forward relaying

Totally corresponding to the name, this technique compresses the data at the relay,

then forward it to the destination. This idea is first introduced in [19]; instead of

retransmitting a replica of the signal, we can consider quantizing and sending it as

a sequence of bits. Thanks to this, the relay observation could be reconstructed at

the destination.

In CF relaying [33], [90], the source node sends a message which is encoded into

n symbols: s(1), ..., s(n). The relay therefore receives

ysr(i) = hsrs(i) + nsr(i). (1.17)

In order to aid the transmission between source and destination, the relay node

encodes its received signal ysr into sr. This encoded message is built successively,
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meaning sr(i) is constructed by ysr(1), ..., ysr(i−1). At the destination, the received

signal could be expressed as

yd(i) = hsds(i) + hrdsr(i) + nd(i), (1.18)

where nd denotes the AWGN at the destination. Then the decompression is per-

formed at the destination with the aim to model the signal from relay and from

source as a reconstructed relay observation.

In conclusion, each kind of relaying, in practice, will be suitable for a certain

network configuration. Given that the link between the source and destination is

weak, whereas relay offers a reliable path. The DF relaying, in this case, takes

the advantage since the detection at the relay proposes very few errors. In contrast,

when the link between source and relay does not allow to decode the signal properly,

the CF or AF scheme can be selected.

1.2.2 Opportunistic relay

By creating the cooperation between the source and relay node, relaying techniques

will suffer from the inter-node propagation channel. This effect degrades the perfor-

mance comparing to a co-located system with the same diversity technique. More-

over, regarding the network, there are many nodes operating simultaneously but all

of them can not participate at the same time to cooperate with source node. This

leads to the idea, called opportunistic relaying, to select the more suitable nodes in

network to aid the communication between source and destination node [9]. It is

considered as an advanced relaying technique. Therefore, it can be combined with

all kinds of relaying DF, AF or CF. To select the relay nodes, two main approaches

are proposed: with or without the feedback from the destination.

1.2.2.1 Without feedback selection

This technique of selection does not require the channel information from the des-

tination. In other words, it is open loop opportunistic relay. Thereby the relay

is chosen, based on the simple information from preamble phase, geographic char-
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acteristic, residual power source... Herein, we present some well-known selections

technique without the feedback from the destination.

Simple relay selection :

In [7], the authors describe a relay section based on the instantaneous SNR

information at the source node among all its possible relays in the network. Hereby,

all nodes will decode the signal from the source, and decide if they will be in the

possible relay set. This decision is addressed out based on the correct detection of

its received signal. In this set, the source then determines the relay that proposes

the strongest SNR.

Power-aware relay selection :

The power-aware relay selection aims to extend the network lifetime [13]. Specifi-

cally, the optimal power allocation will be applied to determine the optimal transmit

power at the potential relays and source. The source then calculates the timeout

based on this transmit power and the residual power on each node, and a node is

decided to be the relay so that the network lifetime is maximized.

Geographic based relay selection :

As the name of this technique, the relay selection is based on the geographical in-

formation of the network [104]. Thereby, the distance between the nodes is assumed

to be available. Then to determine the best relay, the source derives a minimization

of a metric which is computed in function of the distances and modulation scheme.

The objective is to maximize the cooperation gain, thus reduce the error rate at the

destination.

CSI-timer mapping relay selection In this method [9], the channel infor-

mation is deduced by the received Request To Send (RTS), or Clear To Send (CTS)

sequences at the potential relays. Afterward, an initial timer value is set in function

of the source - relay and relay - destination channel. A node which has the timer

reaches to zero first, is selected. When a node knows its timer expires first, it broad-

casts a flag packet to claim itself as the relay for the source. The remaining nodes
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then stop their timer and back off.

1.2.2.2 With feedback selection

When feedback information is available at the transmission side, the transmitter can

choose its relay more efficiently. In return, the feedback process is required, causing

an expense on power consumption as well as the delay time.

Switched and examined node selection :

This selection [35] is almost similar to the CSI-timer mapping relay selection in

the previous section. Meaning a node considers the channel information between

source-itself and itself-destination to claim itself to be the relay. However, in the case

of collision when there are two or more nodes declare as the relay, this technique can

reduce the collision thanks to the information from the feedback data to the source.

In return, it consumes more energy.

Opportunistic relay with limited feedback :

In this scheme [98], the source broadcasts its signal to the potential relays and the

destination. All potential relays confirm the success or failure of its signal detection

to the destination. Secondly, based on the value of SNR, the destination determines

the relay with the strongest SNR among relays that acknowledgedly receive the

signal from the source node. Then it informs its decision to all relays. This protocol

could achieve the same diversity-multiplexing trade-off as the space-time coding.

Opportunistic cooperative diversity with feedback :

This protocol consists of two main principles: the timer mapping selection (sim-

ilar to the CSI-timer mapping relay selection) and the Automatic Repeat reQuest

(ARQ) [10]. After selecting the best candidate for relaying, the destination will send

back a bit, indicating that the received message from source is decoded correctly or

not. In the case the message is unsuccessfully received at the destination, the relay

transmits the signal to help the destination. In the contrary case, the transmission

from relay is unnecessary, and the relaying phase does not occur, saving energy

efficiency.
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Incremental transmission relay selection :

In this protocol [99], firstly, the source broadcasts its signal to all potential relays

and destination. If the detection at the destination is successful, there is no need

to pick up a relay. If the reception failed, then the destination selects among the

potential relays that successfully receive the message, and even the source. If a

relay is chosen, it forwards the signal to the destination. In another case, the source

retransmits its message.

Outage optimal relay selection :

When the transmission from the source to the destination is unsuccessful, the

relaying or retransmitting is required. Thus, the outage optimal relay selection

identifies the relay as the node that offers the minimum outage probability with

the destination (i.e the node that has the maximum mutual information with the

destination) [97]. The set of potential relays is determined as all the nodes in the

network that successfully detect the signal from the source. If there is not a relay

that could receive the signal from source, the destination demands the source to

retransmit.

1.2.3 Cooperative open-loop MIMO

In recent years, the explosive growth of media demands the high data rate com-

munication. Therefore, the MIMO technology is well-known as a technique that

exploits multiple antennas to increase the rate and quality of communication. Bene-

fiting from the spatial diversity, the MIMO technology offers undeniable advantages.

They can be used to enhance the link quality, the data rate at the same transmis-

sion power level, or reduce the power consumption at the same quality target. The

MIMO technology is applied more and more widely such as in wireless ad hoc, cellu-

lar network, satellite communication [46,75,79]. . . However, in the WSN, in general,

and in WBAN, in particular, this technique can not be deployed directly due to the

limitation on the size of sensor as mentioned in the beginning of this section. This

obstacle leads us to the potential of cooperation to realize the MIMO technology in

WSN. Specifically, to carry out the MIMO technique in WSN, we use a set of nodes
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Figure 1.7: A simple cooperative MIMO system with one cooperative node at the

transmission side and one cooperative node at the reception side

in the reception side and transmission side as multiple antennas. In other words,

each relay plays the role of an antenna in the point-to-point system.

A simple system model is illustrated in the Figure 1.7, where we only have the

virtual 2 ⇥ 2 MIMO system. The source node cooperates with its neighbor node

to form a virtual multiple antenna transmitter, and the destination cooperates with

its neighbor node to form a virtual multiple antenna receiver. Afterward, a MIMO

transmission can be applied. To accomplish this transmission, three steps are obliged

to be performed.

1. Step 1: Local data exchange

The data of the source node will be shared with its cooperative node

2. Step 2: Cooperative MIMO transmission

After receiving the data, the cooperative node will encode it by a MIMO coding

such as STBC, Space-Time Trellis Code (STTC)...) with the source node. In

the second time slot, the encoded signals are transmitted simultaneously to

the reception side.

3. Step 3: Cooperative reception

Each node in the reception set will receive the data from the two transmis-

35



sion nodes. The destination’s cooperative node then forward its received data

to the destination. The destination decodes the MIMO signal to obtain the

information.

Generally, the cooperative MIMO is an attempt to deploy the MIMO technique

in the distributed manner when the antennas can not be located in the same com-

ponent. Even though it benefits from the advantage of spatial diversity, it also

suffers the impairment of inter-channel between the cooperative nodes and the need

of precise synchronization of transmitters when applying STBC.

1.3 Conclusion

In this chapter, we attempt to characterize the context of this thesis: wireless body

area sensor network. It can be seen as a particular type of WSN with typical

features such as: wireless operation, small-scaling network, dedicated to human

body, strictly small size nodes... Focusing on the wireless communication aspect,

the WBAN wireless nature is briefly described. Thereby, the communication can

be classified into 2 categories: intra-BAN and extra-BAN. The channel properties

are also investigated by measurements according to each kind of communication.

Firstly, the intra-BAN channel can be considered as log-normal fading in most of

cases of body posture. The attenuation behavior between two terminals on WBAN

can not be distance-dependent as common wireless system. It is possibly addressed

as gesture-based path loss model. Whereas, the extra-BAN can be seen less special,

and the Rayleigh fading might be selected for most of situations (except the case of

static and LOS).

The focal point of this thesis is to propose a high energy-efficient communica-

tion protocol. Literally, this issue of intra-BAN communication can be coped by

cascading multi-hop transmission, RSSI/LQI based scheduling, or intra-body cou-

pling method. Regarding the extra-BAN communication, we suggest the cooperative

technique as the solution. Basically, some existing cooperative schemes can be per-

formed in the WBAN context such as: cooperative relay and distributed STBC.

The spatial diversity created by these techniques is undeniable to obtain better
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performance. However, we are setting the eyes on the more promising approach:

distributed precoding. Profiting from the CSI at the transmitter, the MIMO pre-

coding can manage to reduce the bad effects of fading channel, thereby improving

the Bit-Error-Rate (BER). Moreover, thanks to the spatial multiplexing protocol,

the data rate can be upgrade up to twice compared to a distributed STBC system.

In the next chapter, an overview on the precoding system will be introduced. Based

upon that, we propose its implementation into the WBAN.
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Chapter 2

How to benefit from channel

feedback
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Introduction

Since the MIMO technology has been proposed so far, it is more and more widely

applied in wireless communications. Benefiting from the spatial diversity, this tech-

nique provides the huge advantage to improve the transmission quality. Basically,

MIMO techniques can be classified into two main categories: spatial multiplexing

(or data rate maximization) and space-time coding (or diversity maximization). The

first category aims to increase the transmission speed thanks to the simultaneous

transmission of multiple independent data via multiple antennas. Meanwhile, the

space-time block coding system obtains a better diversity when transmitting multi-

ple versions of a data. This diversity gain reduces the error rate at the destination

advantageously, equivalently enhance the communication quality [25].

Within the spatial multiplexing category [100], [26], the MIMO precoding [43,59,

84,95] technique exploits the Channel State Information at the Transmitter (CSIT)

to deal with the impairments of propagation channel. This technique is also called

as closed-loop MIMO technique. Generally, the CSI is estimated at the receiver in

the training phase then the transmitter can obtain this information via a feedback

link. Based on CSIT, we precode the transmit signal in order to decrease the neg-

ative effects of the fading channel. At the destination, the decoding process allows

to obtain the signal in better condition, compared to the conventional transmission.

As expected with the nature of a spatial multiplexing system, the MIMO precoding

technique proposes high data rate, whereas error rate is prevented thanks to the use

of CSIT to cope with the fading channel. The design of the precoder can be quite

various, relying on the system requirement. We can list some well-known precod-

ing designs as follows: MMSE, equal-error, QoS-Based, beamforming, waterfilling...

More details on these precoders will be given in the next section.

In this chapter, we provide an overview of MIMO precoding techniques. Firstly,

some existing well-known precoding designs are presented. After that, the idea to

bring the MIMO precoding into the WSN via the cooperation manner is tackled. In

this latter work, we present our first contribution that consists in the application of

minimum Euclidean distance based precoding to a AF and DF protocol in a WBAN.
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2.1 Closed-loop precoding for co-located MIMO

system

The system model of a closed-loop precoding is shown in the Figure 2.1. The

transmitter, after receiving the CSIT from the receiver via the feedback link, will

generate a precoder F. The transmit signal is encoded by this precoder, then prop-

agated through the fading channel H. At the destination, the receiver decodes the

signal thanks to the decoding matrix G, which is paired with the precoding matrix

F. Thus, the system model is expressed as follows

y = GHFs+Gn, (2.1)

where y, s, n denote the received, transmit, and AWGN vector, respectively. As-

suming that the transmitter and receiver possess nT , nR antennas, respectively. If

b is the number of data streams, then the constraint on b is set as b  min(nT , nR).

In the literature, the precoding design exists mostly in the form of linear precoding.

The virtual transformation of the channel is generally applied to obtain a diagonal-

ized virtual channel composed of the singular values. As a result, we obtain a virtual

channel composed of the singular values of the real channel. Thanks to these values,

the precoding design is built based on a specific criterion among those described in

section 2.1.2
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2.1.1 Virtual channel transformation

When the channel knowledge is available at the transmitter, we can fully generate

2 matrices Fv, Gv to make the channel matrix diagonal. This new matrix is called

the virtual channel, given as

Hv= GvHFv (2.2)

This transformation undergoes three steps [16]: noise whitening, channel diagonal-

ization and dimensionality reduction.

2.1.1.1 Noise whitening

The noise covariance matrix is eigenvalue-decomposed:

E[nn⇤] = Rn = QΛQ⇤ (2.3)

where Q is a unitary matrix and Λ is a diagonal matrix. Let us define

F1 = InT
, G1 = Λ− 1

2 , Hv1 = G1HF1. (2.4)

2.1.1.2 Channel diagonalization

After noise whitening, we obtain the matrix Hv1= G1HF1. The singular value

decomposition (SVD) is used to diagonalize the intermediate channel matrix Hv1:

Hv1= A2Σ2B
⇤
2 (2.5)

where A2 and B2 are unitary matrices, and Σ2 is a diagonal matrix whose elements

represent the square roots of all eigenvalues of the matrix Hv1H
⇤
v1. One should note

that these eigenvalues are real positive numbers and sorted in decreasing order. We

continue defining two matrices F2 and G2:

F2 = B2 , G2 = A2
⇤ (2.6)

The second intermediate channel matrix can be expressed as

Hv2= G2Hv1F2 (2.7)

41



2.1.1.3 Dimensionality reduction

The matrix Hv2 is in the diagonal form and presents the gains of the channel. In this

step, we need to reduce the dimension corresponding to the number of data-streams

b. To obtain the dimensionality reduction, two matrices F3 and G3 are defined as

F3 =

0
@ Ib

0

1
A and G3 = (Ib 0) (2.8)

These operations are only available if b  min(nT , nR). The obtained virtual channel

matrix is given by

Hv= G3Hv2F3 (2.9)

Finally, the system model becomes:

y = GdHvFds+Gdnv (2.10)

where Hv = G3G2G1HF1F2F3= GvHFv is the diagonal virtual channel matrix,

nv = Gvn is the b ⇥ 1 virtual noise vector. Following all transformations above,

we have F⇤
vFv = I, thus the power constraint of the considered precoding system is

described as

trace(FF⇤) = trace(FdF
⇤
d) = 1. (2.11)

After performing the virtual transformation, the virtual channel is under the

following form:

Hv = diag(σ1, ..., σb), (2.12)

where σi denotes the subchannel gain and is sorted in the decreasing order. The

equivalent system is shown in Fig. 2.2. In order to satisfy the requirement of system,

the precoding matrix Fd is designed to optimize a pertinent criterion. The next

subsection will provide some well-known precoding designs that are popularly used

in MIMO systems so far.

2.1.2 Existing precoders

2.1.2.1 (Unweighted) MMSE Design

The MMSE (minimum mean-square error) precoder is presented to minimize the

sum of the symbol estimation errors across all subchannels [84]. This kind of design
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Figure 2.2: The virtual representation of a linear precoding system

does not minimize MSE for each subchannel. So maybe the best subchannel can

have a higher MSE than the worst subchannel. Moreover, the MMSE precoder can

cancel the weakest subchannel and pour the power to the others.

2.1.2.2 Equal-error Design

Different from MMSE design precoder, Equal-error design guarantees the same error

for all subchannels. For fixed rate systems that require the reliable transmission of

b symbol streams using identical modulation and coding scheme, we need that all

b subchannels have equal errors. In this case, each subchannel is poured power.

More power is allocated to the weakest subchannel, while less power is poured to

the strongest subchannel to make sure that all MSEs remain the same [84].

2.1.2.3 QoS-Based Design

The QoS (Quality of service)-based precoder forces each datastream to a certain

target performance required by the application. For example, the multimedia signal

consists of video and audio signal that have different quality requirements. There-

fore, the use of QoS-based precoding allows to adapt each data stream to its demand

.
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2.1.2.4 Beam forming Design

This precoder pours the power only on the strongest subchannel corresponding to

the maximum eigenvalue [43]. The structure of this design is simple but the data

rate is decreased because only one symbol is transmitted in each time slot.

2.1.2.5 Waterfilling Design

The Water-filling precoder is presented to maximize the system capacity. The data

rate can be improved significantly. Similar to the beam forming precoder, the Water-

filling precoder removes some subchannels and pours power on the others.

2.1.2.6 X- and Y- codes precoder

In order to improve the diversity gain of the precoding scheme, prior to the singular

value decomposition, the X- and Y- codes precoder has been proposed by jointly

coding information across a pair of subchannels [59]. The X-, Y-Codes/Precoders

achieve higher diversity gains at lower encoding/decoding complexity for both well-

and ill-conditioned channels.

The system model can be simply described as follows: the original signal is

first mapped to the information vector s =(s1, ..., sb), then mapped by using matrix

Fc : z = Fcs. So, the received signal is expressed as

y = HvFcs+ n, (2.13)

where n is the noise. The matrix Fc is characterized by the list of pairings and the

2⇥ 2 encoder matrices for each pair.

Each information vector consists of b symbols, and they are divided into b/2

pairs. The k-th pair of information symbols, sik and sjk, is jointly coded by using a

real 2⇥ 2 matrix Ak = ak,i,j and each Ak is a submatrix of coding matrix Fc

8
<
:

fik,ik = ak,1,1 fik,jk = ak,1,2

fjk,ik = ak,2,1 fjk,jk = ak,2,2
(2.14)
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For example, in the case b = 6 the X-codes structure is written as

Fc =

0
BBBBBBBBBBBB@

a1,1,1 a1,1,2

a2,1,1 a2,1,2

a3,1,1 a3,1,2

a3,1,1 a3,1,2

a2,1,1 a2,1,2

a1,1,1 a1,1,2

1
CCCCCCCCCCCCA

. (2.15)

Among the diverse precoding techniques, we found an interesting idea in [16],

where the minimum Euclidean distance (dmin) between two received point is tar-

geted. Thereby, this distance will be maximized by a precoding matrix, leading to

a significant improvement of system performance. Next subsection will describe in

details.

2.1.3 Max-dmin precoder

Some recent studies [16], [65], [63], [2], [62], [64] mention about a precoding design

that proposes very impressive performance in terms of reducing the error rate of

MIMO system. This precoder is based on the maximization of the minimum Eu-

clidean distance (max-dmin) between signal points at the reception side. Thanks to

this advantage, the decoder at the receiver has a lower probability to detect erro-

neously since the received constellation is stretched out. In general, the solution

for max-dmin precoder depends on the modulation structure used at transmitter

(BPSK, QPSK, QAM). The higher level of modulation requires a more complicated

solution to obtain the maximum Euclidean distance. Moreover, the number of data

streams (representing the dimension of MIMO spatial multiplexing) likewise affects

the maximization. Currently, the solution is available for solely two and three data

streams. For larger dimensions, the max-dmin precoder could be organized under

multiple sub-systems of two or three data streams.

From the received signal in equation (2.1), the minimum squared Euclidean

distance (d2min) is accordingly defined as [16]

d2min = min
sk,sl2S,sk 6=sl

kHvFd(sk − sl)k2 (2.16)
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where sk, sl are two different transmit signals, S is the set of all possible transmit

vectors. The max-dmin precoder is therefore obtained by maximizing this distance:

Fdmin
= argmax dmin

F0
d

, (2.17)

under the power constraint: trace{FdF
⇤
d} = 1. As mentioned above, the solution

for the precoders depends on the modulation level and channel knowledge. Let us

consider the system with 2 datastreams, after the virtual transformation, the virtual

channel matrix is given by

Hv =

0
@ σ1 0

0 σ2

1
A = ⇢

0
@ cos γ 0

0 sin γ

1
A (2.18)

where ⇢ =
p
σ2
1 + σ2

2 is called channel gain and γ = atan σ2

σ1
is called channel angle.

Apparently, because σ1  σ2, the channel angle is always 0  γ  ⇡/4 because

the diagonal line of Hv is in decreasing order. The general precoder solution can

be expressed by the product of power allocation, rotation, and scaling matrices as

shown as

Fd =
p
Es

0
@ cos 0

0 sin 

1
A
0
@ cos θ sin θ

− sin θ cos θ

1
A
0
@ 1 0

0 eiφ

1
A , (2.19)

where ψ, θ, φ stand for the power allocation, rotation and scaling parameter, re-

spectively. They will be generated in function of channel condition. Otherwise,

the solution for the max-dmin precoding matrix is also relying on the modulation

scheme. In the following, we present the max-dmin precoding design for the common

modulation scenarios in wireless communication.

2.1.3.1 The max-dmin precoder solution for BPSK modulation

The precoding matrix is expressed as follows [16]

Fd =

r
p0
2

0
@ 1 i

0 0

1
A (2.20)

After passing the numerical search for the values of ψ, θ, and ϕ, the authors

from [16] have confirmed that whatever the channel condition, i.e, for all channel
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angle γ, the precoder solution that maximizes the minimum Euclidean distance is

obtained for  = 0o, θ = 45o and ϕ = 90o. It can be seen that the precoder for

BPSK modulation only uses the strongest eigenmode of the channel. In other words

this design is equivalent to the beamforming design.

2.1.3.2 The max-dmin precoder solution for QPSK modulation

The solution for QPSK modulation can be divided into two cases. If the channel

angle stays under the channel angle threshold γ0, the precoder can be seen as a

beamforming design, similar to to BPSK modulation case. Otherwise, if the channel

angle is larger than the threshold, the precoder leads to an octagonal constellation

at the receiver.

If 0  γ  γ0( γ is channel angle) [16]:

Fd = Fr1 =

0
@
q

3+
p
3

6

q
3+

p
3

6
ei

π
12

0 0

1
A (2.21)

If γ0  γ  π/4 :

Fd = Focta =

r
Es

2

0
@ cosψ 0

0 sinψ

1
A
0
@ 1 ei

π
4

−1 ei
π
4

1
A (2.22)

where

8
<
:

ψ = atan
p
2−1

tan γ

γ0 ' 17, 280

2.1.3.3 The max-dmin precoder solution for 16-QAM modulation

Through two modulation schemes above, we can see that the complexity of max-dmin

precoder is exponential to the modulation level. With no exception, for 16-QAM

modulation, its solution is obviously complicated [65]. In the Table 2.1, in each

interval of channel angle, we provide the value of parameters for constructing the

max-dmin precoding given in (2.19).
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Precoder γ  φ θ

Fr1 (0, 5.128o) 0 atan 1
6+

p
3

atan(2 sinφ)

FT1 (5.128o, 5.26o) atan 5
p
2−7

tan γ
45o 45o

FT2 (5.26o, 8.40o)
arcos ↵−↵ cos2 γ

↵−2 cos2 γ

(α = 1 + 6p
34
)

atan3
5

45o

FT3 (8.40o, 15.38o) atan

p
10/

p
14−1

tan γ
p

10/
p
14+1

atan 3
5

1
2
atan

p
10
2

FT4 (15.38o, 45o) atan
p
2−1

tan γ
45o 45o

Table 2.1: Parameter values for max-dmin precoder in 16-QAM modulation

2.1.3.4 General expression of max-dmin precoder for high QAM modula-

tion levels

The optimal solutions of max-dmin precoder propose heavier complexity for higher

modulation levels. As seen in the previous subsection, the max-dmin precoding ma-

trix for 16-QAM carries out a sophisticated structure. Logically, for higher modula-

tion levels such as 64-QAM or 128-QAM, the solution is hyper complicated. Aiming

to propose a general solution that is suitable for every QAM modulation, whereas

maintaining the simplicity, the authors in [62] provide the general expression of

max-dmin precoder.

Precoder F1 :

When the channel angle is in the interval 0  γ  γ0, the max-dmin precoder

pours power only on the first virtual subchannel, it means that the angle ψ = 0.

The precoding matrix is simplified as

F1 =
p
Es

0
@ cos θ sin θeiφ

0 0

1
A (2.23)

where

8
<
:

φ = arctan 1
2N+

p
3

θ = arctan(2 sinφ)
(N = 2k − 1)

Precoder F2 :
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For the remaining values of γ the optimized max-dmin solution for a 4k-QAM

modulation can be considered in the case with θ = π/4, φ = π/4. The precoding

matrix is expressed as:

F2 =

p
Es

2

0
@ cosψ 0

0 sinψ

1
A
0
@

p
2 1 + i

−
p
2 1 + i

1
A (2.24)

where ψ = arctan
p
2−1

tan γ
.

Channel threshold γ0 :

The general expression above is the simplified version of the max-dmin precoder

thus the threshold γ0 corresponds to the modulation level, and it can be expressed

as:

tan γ0 =

s p
2− 1p

2N2 +
p
6N +

p
2− 1

. (2.25)

To point out the impressive performance of max-dmin precoded with respect to the

other precoders, we plot in Figure 2.3 the BER of four well-known precoding designs:

max-dmin, MMSE, beamforming, and waterfilling. As we can see, the max-dmin

precoder outperforms the others.

2.1.4 Feedback link requirement

Since it requires the CSI at the transmitter to design the corresponding precoder, the

precoding MIMO is by nature a closed loop system. Generally, the CSI is estimated

at the reception side, then fed back to transmitter. Usually, the receiver feeds

channel matrix back to the transmitter which operates the remaining calculations

to get the precoding. Meaning that the transmitter possesses a powerful enough

processor to do all the computations to generate the precoding matrix. However,

being in the context of WBAN, this method is inefficient in a node with small size

and very limited power source. Therefore, the precoding matrix is computed at the

reception and fed back to transmitter. On the other hand, the receiver should also

know this matrix for the decoding process.

The hypothesis of a perfect CSI at the transmitter can not be real, since the

channel estimation, quantification and feed back process always suffer from errors.
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Figure 2.3: BER performance of different precoding designs

In reality, the number of feedback bits is finite, we must trade it off with the delay

as well as energy consumption to ensure a highest transmission efficiency. A new

approach in recent years, named ”Limited Feedback” [52], creating a codebook in

both transmission and reception sides allows to achieve a sufficient performance with

several feedback bits. More specifically, after obtaining the channel knowledge, the

reception chooses from codebook (pre-created for both the transmitter and receiver)

a precoding matrix corresponding to its design. Afterwards, it feeds back the matrix

index to the transmitter. By this way, the feedback process is more practical and

economical since only the index of precoding matrix is sent back instead of the entire

matrix as in the conventional methods.

In this Section, we present the feedback process according to the max-dmin pre-

coding system. Specifically, two methods will be studied. In the first one, we perform

all operations at the reception then obtain the precoding matrix F. We quantize

directly this matrix, then feed back entry by entry to the transmitter. This work

demands many bits for the quantization, because each entry is a complex number.

In the second one, we pre-construct a codebook, choose a matrix in it following the
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max-dmin criterion and feed the index back. The performance of both methods will

be compared and evaluated under Matlab simulations.

2.1.4.1 Direct feedback

The matrix F that maximizes the Euclidean distance at the reception side will be

completely quantized element by element. If taking 2 bits of quantization for each

real part and imaginary part, it means we spend totally 16 bits for a 2⇥2 precoding

matrix. But to obtain sufficient performance (compared to perfect CSIT system),

we need at least 32 bits in total (see Figure 2.4). Feeding back the precoding matrix

directly is a classical method. However as we can see the expense for a satisfactory

performance is significant. For that reason, we consider the limited feed back [52,53]

that is able to reduce the number of feed back bits by using a codebook.

2.1.4.2 Limited feedback

To carry out the limited feedback, we create in both transmission and reception side,

a codebook containing precoding matrices. Once the receiver obtains the channel

information, it chooses, among matrices in the codebook, a precoding matrix that fits

the predefined criteria. The index of this matrix is then fed back to the transmitter.

This method requires memory in both the transmitter and receiver to store the

codebook. In return, it reduces the power consumption, as well as the delay time

for feedback process.

Herein, we describe the construction of the codebook for the precoding matrix F

and the selection at the receiver when the channel information is available [55]. The

set of matrices Fv is built, whose size depends on the number of bits fed back. For

the reason that this matrix is used to singular-value-decompose the channel matrix

H, it must take into account the distribution of this channel matrix H. Based on the

study of Ghadir Madi in [55] and D. J. Love in [52], for a Rayleigh fading channel

H, the set Fv for all values of Fv is proposed as follows

Fv = (FDFT ,ΘFDFT , ...,Θ
N−1FDFT ), (2.26)

51



where N = 2n, n is the number of bits for codebook, FDFT and Θ are 2x2 matrices

defined by 8
>>><
>>>:

FDFT (k, l) = (1/
p
2)ej⇡kl

Θ =

0
@ ej(2⇡/N)u1 0

0 ej(2⇡/N)u2

1
A , (2.27)

where vector u = [u1, u2]
T is integer vector that satisfies 0  u1, u2  N − 1. They

are chosen to maximize the minimum Chordal distance between the matrix FDFT

and ΘlFDFT :

u = argmax{ min
1lN−1

d(FDFT ,Θ
lFDFT )}, (2.28)

where the Chordal distance d is given by

d(A,B) =
1p
2
||AA⇤ − BB⇤||F , (2.29)

where ||.||F denotes the Frobenius matrix norm.

For each matrix Fvi in the dictionary Fv = (Fv1,Fv2, ...,FvN), i = (1, ..., N)

which is already generated at the destination, the following steps are proposed to

create the dictionary Fd for the matrices Fd:

1. A set of random MIMO Rayleigh channel matrices H is generated.

2. For each matrix H, we calculate the matrix Fd through the max-dmin opti-

mization criterion mentioned in Appendix A. Then the following criterion is

applied to find out the matrix Fdi corresponding to Fvi :

Fdi = argmax( min
(H,Fd)2∆,(xk,xl)2S

|HFviFde(xk, xl)|2), (2.30)

where ∆ is the set of matrices H extracted and matrices Fd associated.

In this method, the dictionary of Fd is obtained according to the considered

MIMO channel model, and has the same size as the dictionary Fv:

Fd = (Fd1,Fd2, ...FdN), i = (1..N) (2.31)

Afterwards, the codebook F for the matrix F = FvFd will be built as follows:

F = (Fv1Fd1,Fv2Fd2, ...,FvNFdN) = (F1,F2, ...,FN). (2.32)
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This codebook is created offline, and available at both the transmission and reception

sides. During transmission, after obtaining the channel information, the destination

will choose, from this codebook, a corresponding precoder matrix then send its index

to the transmitter.

To determine which precoder in the codebook is optimal for a certain channel

H, the following criterion will be applied

F = argmax

⇢
min

Fi2F ,(xk,xl)2S
|HFie(xk, xl)|2

}
. (2.33)
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Figure 2.4: BER performance of direct feedback and limited feedback in comparison

to a perfect CSIT system for max-dmin precoder.

Figure 2.4 exhibits the performance of the direct feedback (i.e. the whole matrix

F, but quantized thanks to a finite number of bits) and the limited feedback (i.e.

the codebook index), compared to the perfect CSIT. This simulation is carried over

a 2⇥2 MIMO system, with a QPSK modulation, and Rayleigh fading channel.As we

can see, to obtain a sufficient performance, a direct feedback system needs at least 32

bits in total to send back the precoding matrix. Instead, with only 5 bits the limited

feedback proposes an approximate performance. However, the counterpart is that it
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requires a flash memory at the transmitter and receiver to store the codebook. But

this memory is totally feasible to be implemented for a codebook containing only

32 precoding matrices.

2.2 Distributed max-dmin precoding (DMP)

As mentioned in the previous chapter, to tackle the power consumption issue in WSN

(or in WBAN in particular), the cooperative technique is presented with two typical

scenarios: cooperative relay and cooperative MIMO. However, with the advantages

in exploiting the CSIT, we are exploring the potential of the MIMO precoding

technique in WSN. Especially, the max-dmin precoding, with the expense of more

complicated precoder structure, is very promising in this point of view.

Although showing the promising interest to be applied to cooperative relay net-

work, the existing studies on the distributed precoding are still very limited, es-

pecially in WSN. Most of distributed precoders are dedicated to cellular networks,

and particularly the downlink via the coordination of multiple base stations. Some

interesting structures can be cited such as weight sum rate maximization, leakage

projected dirty paper coding, layered virtual SINR (signal to interference plus noise

ratio) maximization [31] [15] [106]. Unlike WSN, where the energy efficiency is one

of the most important constraints, in the cellular network the distributed precoding

aims to increase the data rate in the downlink. Another fundamental difference is

the insignificant space limitation at the base station in the downlink, where multiple

antennas can be easily deployed. The base station collaboration then enhances the

spectral efficiency.

The distributed precoding in WSN exists mostly in the form of distributed beam-

forming [6] [30]. This distributed scheme shows an impressive SNR gain but always

suffers from the synchronization problem. Moreover, the survey on the energy effi-

ciency issues have not been carefully investigated on the distributed beamforming

for WSN. The authors in [56] have presented also a distributed approach for WSN

by using the max-dmin precoder and P-OSM (precoding for orthogonalized spatial

multiplexing). But the investigations on the cooperation and forwarding is still lim-
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ited. There is also the lack of a spectral-efficient representation due to the use of

MIMO precoding (compared to other cooperative schemes).

Thanks to the outstanding BER performance of max-dmin precoder, we introduce

the distributed max-dmin precoding as a cooperative scheme in WSN. Different to the

study in [56], herein we propose to investigate different protocols using a cooperating

node (Decode-Forward, Amplify-Forward). Regarding the local data exchange of a

cooperative scheme, we propose the transmission of the precoded signal between the

source and cooperative node aiming to enhance significantly the spectral efficiency.

The energy efficiency is also studied with a global energy model containing the

circuit and transmission consumption.

2.2.1 System model

We consider a simplified network, described in Figure 2.5, involving three nodes:

a source, a cooperative node and a destination. The source and the cooperative

nodes are sensor nodes, equipped with single antenna and constrained to low energy

consumption to limit battery replacement. The destination is supposed to be an

external AP without power constraint and neither stringent complexity constraint,

comparatively to the sensor nodes. By allowing two antennas at the access point, the

network is equivalent to a virtual 2⇥ 2 MIMO system. An error-free and delay-free

feedback link provides the CSIT. Thanks to this CSIT, MIMO precoding techniques

can be applied to the virtual MIMO system to deal with the channel impairments

such as fading, antenna correlation, shadowing, path loss. We propose to apply the

general max-dmin precoder, described in details in Section 2.1.3.4, to this virtual

MIMO system. Like for all cooperative techniques, two phases are needed:

− Local data exchange: the source node shares its data with the cooperative

node via the SISO channel h.

− Precoding transmission: thanks to the spatial multiplexing properties of the

precoder, the source and the cooperative node transmit the precoded signals

simultaneously to the access point via the virtual MIMO channel matrix H.
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Figure 2.5: System model of a distributed precoded scheme

In the second phase, the general expression of the max-dmin precoder, described

in section 2.1.3.4, will be picked up. Even though this is not an optimal solution, it

performs outstandingly with a huge reduction of complexity for all 4k-QAM modu-

lation. We assume that the signal in the transmit constellation is normalized. For

4k-QAM modulation the transmitted symbol s belong to the set

S =
1p
M

{a+ bi; a− bi;−a+ bi;−a− bi} , (2.34)

where M = 2
3

(
4k − 1

)
and a, b 2 (1, 3..., 2k − 1), meaning E{ss⇤} = 1. In our

precoding system, a vector of two symbols will be transmitted. Equivalently, in

a SISO transmission, the total energy for this vector is equal to 2. Whereas, in

our precoding system, with the constraint trace(FF⇤) = 1, the average total energy

for 2 symbols E[trace((Fs)(Fs)⇤)] = 1. Therefore, to make a fair comparison in

energy consumption, the transmit signal in the precoding system is multiplied by a

coefficient
p
2 such that x =

p
2Fs.

Power allocation in DMP :

In order to investigate the effects of the relay position on the cooperative schemes,

we take into account the path loss explicitly in the transmission model. The dis-

tances S!D, S!C, C!D (Figure 2.5) are denoted by dSD, dSC , dCD, respectively.

Then the relative power gain of S ! C and C ! D links, with respect to S ! D

link, are given by GSC = (dSD/dSC)
K , GCD = (dSD/dCD)

K [83], where K is a path

loss exponent, varying from 1.6 to 6 in indoor wireless channel. Due to the fact that

56



two transmission phases are carried out in the DMP, an allocation strategy must

be considered to pour reasonably the power between two phases. As an example,

in the case of the local channel is good, we set lower power for the local exchange

phase, in contrast we pour more power if this link goes worse. The aim is to always

maintain the best performance given the channel knowledge. To have a fair com-

parison between various schemes, we assume the overall energy for each modulated

symbol used in both local transmission (EL) and precoding transmission (ED) is E .
It means EL = βE , ED = (1 − β)E , where β denotes the power allocation param-

eter. This parameter can be optimized, based on various criterion such as: BER

minimization [103], capacity maximization [40], outage minimization [54], network

lifetime maximization, total transmit power minimization [34]...

2.2.2 Decode and Forward relaying (DMPDF)

The Decode and Forward scheme will transmit 2 symbols within 3 time slots. In the

first and second time slots, the first transmission phase is performed. Two symbols

s0, s1 are sent one by one through a SISO channel, represented by h. Hence, the

cooperative node (also called relay node) receives

yc = h
p
ELGSC [s0 s1 ]

T + nc, (2.35)

where nc denotes the AWGN noise vector at the cooperative node. The received

signal is then decoded to ŝ0 and ŝ1. With the presence of AWGN in this phase,

errors always occur randomly on ŝ0 and ŝ1.

Then the precoding signal is built as follows

8
<
:

F11s0 + F12s1 at the source node

F21ŝ0 + F22ŝ1 at the cooperative node
. (2.36)

Due to a different distance to the destination, the relay has a gain GCD in received

energy, referenced to the source. If in a co-located precoding based system with 2

antennas on both receiver and transmitter, the energy received at the sink is 2ED [68].

In the considered distributed precoding system, this value is absolutely larger if the

cooperative node is closer than the source node (with respect to the destination).
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In addition, we have an objective of obtaining the same energy at the destination

from both nodes. Supposing that source and cooperative nodes have the knowledge

of all the distances (i.e they know the relative power gains). Let us define the EDS

and EDC
are respectively the transmit energy at the source and cooperative nodes.

We assume the synchronization of two nodes is perfect, thus in the third time-slot,

both nodes transmit this signal simultaneously. Therefore, we have constraints as
8
<
:

EDS
+ EDC

= 2ED
EDS

= EDC
GCD

,

8
<
:

EDS
= 2 GCD

GCD+1
ED

EDC
= 2 1

GCD+1
ED

. (2.37)

By writing the aforementioned process in a matrix form, the received signal at the

destination will be

y =
p
2GH

0
@

q
2 GCD

GCD+1
ED(f11s0 + f12s1)q

2 1
GCD+1

ED(f21ŝ0 + f22ŝ1)
p
GCD

1
A+Gn. (2.38)

The precoding matrix F is designed only according to the channel H so that F =

max-dmin(H) [65] [16]. There is no need to estimate the SISO channel h at the

destination.

2.2.3 Amplify and Forward relaying (DMPAF)

Instead of decoding the signal received from the source node, the cooperative node

amplifies it with a designed factor and forwards it to the destination. Clearly,

as in DMP-DF, both channels h and H have a significant influence on the system

performance. Therefore, we propose two schemes with different uses of matrixH and

h for the design of the precoding matrix and the amplifying factor at the cooperative

node. The first scheme, called factor multiplying, constructs the matrix F based on

the channel H. The effect of channel h will be taken into account at the cooperative

node by the amplifying factor. The design of the second scheme, called channel

customizing, is based on an equivalent representation of the received signal, bringing

out a customized channel matrix containing both H and h. This scheme assumes

the knowledge of h and H at the destination.

Regarding the local data exchange between the source and the cooperative node,

two configurations can be carried out: 1) Local Successive Transmission (LST): the
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transmission of the non precoded symbols on orthogonal channels, typically thanks

to TDMA; 2) Local Precoded Transmission (LPT): the transmission of a part of the

precoded signal, i.e. a linear combination of the symbols. For this configuration,

the signal sent from the source during the local data exchange is not useful at the

destination.

2.2.3.1 Factor multiplying

We design the precoding matrix according to the channel matrix H such that F =

max-dmin(H) and reduce the effect of channel h by multiplying the received signal

with an amplifying factor.

− Configuration 1: Local successive transmission: s0 and s1 will be sent one

by one to the cooperative node, according to TDMA. The cooperative node

receives

yc =

0
@yc0
yc1

1
A =

0
@h

pELGSCs0 + nc0

h
p
ELGSCs1 + nc1

1
A . (2.39)

At the cooperative node, the received signal is normalized by its energy, pre-

coded, and retransmitted to the destination. At the same time, the source

node also transmits its precoded signal to the destination. Then the received

vector at destination is written as

y = GH

0
@
p
2ED(F11s0 + F12s1)

g1(F21yc0 + F22yc1)

1
A+Gn, (2.40)

where amplifying factor g1 is chosen as

g1 =
h⇤

|h|

s
2EDGCD

ELGSC |h|2 +Nnc

, (2.41)

where Nnc
is the noise variance at the cooperative node. The factor g1 is aimed

to reduce the effect of the AWGN noise and the channel h [47] and to prevent

the power saturation at the cooperative node.

− Configuration 2: Local precoded transmission : Instead of transmitting symbol

by symbol in the local exchange phase, the source sends s0 and s1 simultane-

ously, thanks to the linear combination spre = F21s0+F22s1, to the cooperative
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node. Then the cooperative node receives

ycpre = h
p

2ELGSCspre + nc, (2.42)

The remaining steps are similar to the local successive transmission. The

destination then receives

y = GH

0
@
p
2ED(F11s0 + F12s1)

g2ycpre

1
A+Gn, (2.43)

where g2 =
h⇤

|h|

q
2EDGCD

2ELGSC |h|2+Nnc
.

2.2.3.2 Channel customizing

In this scheme, we take the channel h into account by a customized channel via an

equivalent transformation of the received constellation. Like in the factor multiply-

ing scheme, two configurations will be studied regarding the local data exchange.

The received signals during the precoding transmission for the two configurations

are as follows.

− Configuration 1: Local successive transmission By replacing (2.39) into 2.40

we obtain

y = GH

0
B@

p
2ED 0

0
p
2ED

r
GCD

1+
N0

ELGSC |h|2

1
CAFs+

+

0
@H12(g1F21nc0 + g1F22nc1)

H22(g1F21nc0 + g1F22nc1)

1
A+ nv

=
p

2EDGH

0
@1 0

0 w1

1
AFs+ n0

c + nv,

(2.44)

where w1 =
r

GCD

1+
N0

ELGSC |h|2
,

n0
c =

0
@H12(g1F21nc0 + g1F22nc1)

H22(g1F21nc0 + g1F22nc1)

1
A.

− Configuration 2: Local precoded transmission Similarly, equation (2.43) is

rewritten as

y =
p

2EDGH

0
@1 0

0 w2

1
AFs+

0
@H12g2nc

H22g2nc

1
A+ nv, (2.45)
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where w2 =
r

GCD

1+
N0

2ELGSC |h|2
.

Therefore, the precoding matrix will be designed based on a customized channel

matrix involving the contribution of both H and h such as

F = max-dmin

0
@H

0
@1 0

0 wi

1
A
1
A , i = 1, 2. (2.46)

Regarding the complexity on the signal processing at the sensor nodes, thanks to

limited feedback, the sensor nodes are absolved from the computation. Therefore,

there is not any complexity difference in terms of signal processing at the sensor

nodes between our distributed precoding and the cooperative STBC scheme. Like

in other cooperative system, the main problem in our system is the asynchronous

that may seriously affects the system performance [67], and the need of feedback

link. The second term can be managed by using the limited feedback as mentioned

in subsection 2.1.4. The effect of the asynchronous on the performance is crucially

important in MIMO system. As reported, the max-dmin precoding less degradation

in terms of BER, compared to the other MIMO system.

2.2.4 Energy model

The total energy of a wireless system consists of two elements: transmission energy

and circuit consumption energy. For a same BER target, a cooperative scheme re-

quires less transmission energy; reversely it demands more power for cooperative

data exchange and circuit consumption on cooperative nodes. Certainly, for short

distances, the cooperative scheme will not offer a better energy efficiency than non

cooperative transmission. For the long distances, where the transmission consump-

tion dominates the total energy, we expect that cooperative systems provide high

energy efficiency. In this section we describe the energy model used to estimate the

energy consumption of both cooperative and non cooperative systems.

2.2.4.1 Circuit energy consumption model

In a wireless system, both the transmitter and the receiver possess radio frequency

blocks such as filter, power amplifier, digital-to-analog converter, mixer... [20]. The
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circuit power consumption for each transmitter and receiver is then given by

PTx = PDAC + Pmix + Pfilt + Psyn, (2.47)

PRx = PLNA + Pmix + PIFA + Pfilr + PADC + Psyn, (2.48)

where PDAC , Pmix, Pfilt, Psyn, PLNA, PIFA, Pfilr, PADC denote the power of digital-

analog converter, mixer, filter at transmitter, synthesizer, low noise amplifier, in-

termediate frequency amplifier, filter at receiver and analog-digital converter, re-

spectively. The amplifier power Ppa for emission relates directly to the transmission

power Ppa = (1 + ↵)Ptrans, where ↵ = ⇠
⌘
− 1 with ⌘ is the drain efficiency of the RF

power amplifier and ⇠ is the Peak-to-Average Ratio (PAR) which depends on the

modulation scheme and the associated constellation size [20].

2.2.4.2 Transmission power consumption

We suppose the radio signal is impaired by a path loss following a K-law since the

extra-BAN link is always considered. Therefore the required transmission power is

given by

Ptrans(d) = ÊbRb ⇥
(4⇡d)K

GtGrλ2
MlNf , (2.49)

where d denotes the transmission distance, Êb denotes the needed energy per bit for

a BER target, Rb is the bit rate, Gt and Gr are the antenna gains of transmission

and reception sides, respectively. λ is the carrier wavelength, Ml is the link margin,

Nf is the receiver noise figure defined as Nf = Mn/N0 with N0 = −174 dBm/Hz

the single side thermal noise Power Spectral Density (PSD) and Mn denotes the

PSD of the total effective noise at receiver input [20].

2.2.4.3 Spectral efficiency and bit rate

The total spectral efficiency with QPSK modulation is shown in the Table 2.2 for

the different schemes, cooperative and non cooperative.

The bit rate in the wireless system relates directly to the spectral efficiency and

the bandwidth. In addition, the bit rate Rb of each transmission phase affects the

total energy consumption as follows

Etotal =
PcL + PpaL

RbL

+
PcD + PpaD

RbD

, (2.50)
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Table 2.2: Spectral efficiency of different cooperative schemes with QPSK

SISO MRC
Distributed

Alamouti

DMP

DF

DMPAF

LPT

⌘S(b/s/Hz) 2 2 1 1.5 2

where PcL , PpaL and PcD , PpaD denote the total circuit power consumption and ampli-

fier power for local data exchange phase and precoding transmission phase, respec-

tively. RbL and RbD are the bit rates of the local data exchange and the precoding

transmission respectively. Normally, the bit rate in a precoding system will be twice

the one of a SISO system because it transmits 2 symbols in 1 time slot instead of

only 1 symbol. However, the DMP involves two phases with different bit rates ac-

cording to the considered scheme. The Distributed Alamouti scheme is carried out

by the Alamouti code in the virtual 2⇥2 MIMO system [66]. This scheme consumes

4 time slots for transmitting 2 symbols s0, s1. In the local exchange phase, the Dis-

tributed Alamouti, the DMPDF, and the DMPAF-LST schemes achieve the same

spectral efficiency as the SISO transmission. Whereas, with 2 modulated symbols

transmitted in a precoded symbol, the DMPAF-LPT represents twice the bit rate

of the others. In the second phase, corresponding to the precoding transmission,

all DMP schemes transmit the signal twice as fast as the non cooperative schemes

(SISO and SIMO), while the Distributed Alamouti scheme achieves the same bit

rate as the SISO scheme.

2.2.5 Simulation results

We evaluate the schemes proposed in Section 2.2.2, and 2.2.3 by Monte Carlo sim-

ulations. In our system, we use the QPSK modulation, the channels h and H are

Rayleigh fading channels. We transmit 150 000 frames, each frame contains 100

bits. The channel is assumed to be stable for the transmission time of one frame.

The distance dSC is supposed to be 5% of dSD.

In the power allocation problem, we need to minimize the BER with respect to
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power allocation parameter β:

min
β

BER(β)

subject to EL + ED = constant .

(2.51)

The BER approximation is not a simple issue in the max-dmin precoding system

and especially complicated in the distributed max-dmin precoding system. In a first

approximation, the power allocation parameter β will be found by a numerical search

for the Optimal Power Allocation (OPA). For the Equal Power Allocation (EPA),

β = 0.5. Thanks to the analytical derivation error problem in Chapters 3 and 4,

we will be able to propose a less consuming computation resource for this power

allocation.
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Figure 2.6: BER performance comparison: DMP vs. traditional schemes

For QPSK modulation, Eb/N0 = (E/2)/N0. The BER performance comparison

between various schemes is given in Figure 2.6 . The DMPDF proposes a significant

transmission power reduction compared to the SISO transmission and the MRC

1 ⇥ 2, for the same BER target. Comparing the distributed Alamouti and the

DMPDF, a loss of 1 dB occurs at a BER equal to 10−3. We recall that they operate

at different spectral efficiencies (see Table 2.2). Figure 2.6 also shows the advantage

of the optimal power allocation on the DMP performance , the OPA always provides

a 3 dB gain compared to the EPA scheme. In Figure 2.7, the DMPDF and DMPAF

schemes propose equivalent performance. In terms of BER, even though it saves 1
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Figure 2.7: BER performance comparison of DMP schemes

time slot, the DMPAF-LPT schemes still has same performance as DMPAF-LST.

Besides, there is no difference between the DMPAF with amplifying factor and the

DMPAF with customizing channel.
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Figure 2.8: Total energy consumption vs. distance (10−5 BER)

Anyhow, our final objective is the energy optimization. Thus a complete in-

vestigation of all power aspects of a wireless system must be studied to have a

comprehensive view on the energy performance. We consider the energy efficiency

with the parameters given in Table 2.3. Particularly for our system, because the

access point is a powerful computer plugged directly to the power source, then we

do not take into account the power constraint of the destination. The required BER

at the destination is supposed to be 10−5 and the path loss exponent is assumed
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to be 2.6, for all schemes. Figure 2.8 shows the total energy consumption per bit

for different schemes versus distances from 1 to 27 meters. There is no difference

between the DMPAF-factor multiplying and DMPAF-channel customizing in terms

of BER performance and spectral efficiency, consequently we homogenize them in

the energy efficiency investigation in Figure 2.8. By reducing 1 time slot in the

local exchange phase, the DMPAF-LPT always provides an improvement in energy

efficiency compared to the DMPDF and DMPAF-LST. Moreover, regarding the dis-

tributed Alamouti scheme, even though it achieves an impressive BER performance,

its low spectral efficiency makes it consuming more energy. On the other side, thanks

to a good BER performance and higher spectral efficiency, the DMPAF-LPT always

has the best energy efficiency compared to other DMPs. For a small distance, we

only need a low transmission power to obtain the targeted performance, thus the

circuit consumes most of energy. Therefore the more simple scheme will outperform

the more complicated ones and the MRC 1⇥ 2 transmission takes the advantage in

terms of energy efficiency. In contrast, when the distance increases, the transmission

energy dominates the total energy consumption. Hence, optimizing transmission en-

ergy is more valuable. If the distance is longer than 16 meters, the DMPAF-LPT

shows the best energy efficiency.

Table 2.3: Parameter values of the consumption model [20]

fc = 2, 5GHz Pmix = 30.3mW ⌘ = 0.35

GtGr = 5dBi Pfilt = Pfilr = 2.5mW

B = 10kHz PDAC = 15.4mW Psyn = 50mW

Nf = 10dB Ts =
1
B

Ml = 40dB

PADC = 6.7mW N0

2
= −174dBm/Hz PLNA = 20mW

The path loss exponent K = 2.6 is just an assumption. The environment can

be more intricate: indoor, outdoor, crowded, or an echoic environment. Obviously,

in each path loss environment our distributed scheme responds differently. For an

overall view, in Figure 2.9 we investigate the crossing point for different path loss

exponents. The Crossing point (Figure 2.8) represents the distance from which the
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DMPAF-LPT outperforms the others. We observe that when the path loss goes

heavier, the DMP takes the advantage for shorter distances.

DMP

MRC

Figure 2.9: The crossing points for different path loss exponents

2.3 Conclusion

The cooperative technique is already well-investigated but is often presented in

the form of distributed space-time block code, seen as an open-loop virtual MIMO

system. In this chapter, we introduce the idea to adapt the closed-loop system to

the cooperative system, named: the distributed precoding. The CSIT is exploited to

design a precoding matrix according to a specific criterion. We select the max-dmin

precoding to go further since its outstanding performance is already demonstrated

for point-to-point colocated MIMO system.

Aiming to achieve a high energy efficiency, we have proposed and investigated

the distributed precoding schemes based on max-dmin criterion. Two relaying types

- Decode and Forward, Amplify and Forward - with different data exchanges (local

successive transmission, local precoded transmission) have been defined and stud-

ied. Based on an overall energy model, we have derived their energy efficiency in

WSN context. With respect to other cooperative techniques, the DMP proposes

a high spectral efficiency, typically doubled compared to the Distributed Alamouti
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one. Whatever the distance, the DMP always achieve a lower energy consumption

than the Distributed Alamouti scheme. For a BER equal to 10−5 and a path loss

exponent equal to 2.6, the DMPAF-LPT achieves a lower energy consumption than

the MRC 1⇥2 scheme for a distance between the source to access point greater than

16 m. Moreover, when the path loss exponent increases, transmission energy be-

comes preponderant with respect to circuit energy and the DMP takes the advantage

for smaller distances, typically few meters.

Furthermore, the obtained performance analysis will be used advantageously to

allocate the transmit power between two phases of considered DMP. However, be-

sides the numerical evaluation, the mathematical basis need is obvious to rigorously

confirm the considered DMP performance. For this reason, the two next chapters

provide the theoretical performance analysis for both forwarding type of the DMP:

DF and AF. Due to different natures in forwarding the signal of relay, two separate

approaches will be proposed. For the DMP-DF, we base on the decoding error prob-

ability at the cooperative node to derive the equivalent system model. The DMP-AF

leads to a transformation of channel matrix and the total noise at the destination.

To obtain the bit error probability, we investigate the statistical distribution of the

minimum Euclidean distance between two received points.
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Chapter 3

Distributed max-dmin precoding:

Decode-and-Forward
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3.1 Introduction

In this chapter, we specifically consider the Decode-and-Forward structure (the

Amplify-and-Forward will be targeted in next chapter). We address the perfor-

mance analysis of the distributed precoding scheme, deploying the Euclidean dis-

tance based precoding via cooperative technique in a general WSN (described in

subsection 2.2.2 of Chapter 2); the implementation into WBAN is totally similar.

The decode-and-forward relaying is focused on the basic case with one single relay

node, one source node and a destination which possesses two co-located antennas.

The given methodology in this chapter is however obviously extendable for the larger

systems. These extensions might be considered in the future works with more relay

nodes and/or more antennas at the destination.

In addition, we propose to examine the possibility to use the information of the

relay performance at the destination [8]. This information is adopted by calculat-

ing the log-likelihood ratio to detect more efficiently the symbol in the maximum

likelihood (ML) decoder at the destination. A new maximum likelihood decoder

is introduced, exploiting the decoding error probability of the relay to enhance the

detection at the destination. In the light of the fact that the complexity of ML de-

coder augments severely in a full use of this information, we propose a suboptimal

and less complex solution taking advantage of the max-log approximation.

Accordingly, our contributions in this chapter are listed as follows:

1. Without the relay decoding information at the destination

− The performance analysis for the distributed max-dmin precoder is pro-

posed that takes into account the errors at the relay.

− Based upon that, the power allocation is then derived to maximize the

total system performance at the destination with a constant power.

2. With the knowledge of relay decoding information at the destination, we pro-

pose a new ML decoder for the distributed max-dmin precoder that can improve

the symbol detection.

The rest of this chapter is organized as follows: In Section 3.2, we introduce
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the Decode and Forward scheme for the distributed max-dmin precoding. In Section

3.3, the performance of this protocol is analyzed. The new ML decoder that takes

advantage of the relay decoding information is described in Section 3.5. Section 4.5

concludes the chapter.

3.2 Decode and Forward for the distributed max-dmin

precoding

3.2.1 Distributed scheme description

We consider the cooperative relay network given in Figure 4.1a, involving a source

S, a cooperative node (also called relay) C and a destination D. The destination is

typically an access point, with no stringent constraints on size, energy consumption

or signal processing. On the contrary, the source and the cooperative node are

typically sensor nodes, with limited size and limited bulk of energy. To enhance

transmission reliability, and potentially reduce the energy consumption, we would

like to take profit of the CSI at the transmitter side thanks to MIMO precoding.

However, as both source and cooperative nodes are equipped with a single antenna,

due to their limited size, the precoding scheme is deployed in a distributed manner

over S and C. The destination supports the implementation of two antennas so

that the considered network can be seen as a virtual 2 ⇥ 2 MIMO system. The

MIMO precoding consists in the multiplication of the 2 ⇥ 2 precoder matrix F by

the symbol vector to transmit s = [s0 s1]
T , where [.]T stands for matrix transpose.

Thus, the cooperative MIMO scheme needs two transmission phases, illustrated in

Figure 4.1b. The local phase corresponds to the transmission of s from the source

to the cooperative node, via a SISO (Single-Input Single-Output) channel h. Two

time slots are thus needed. The precoding phase deploys the distributed precoding

scheme over the source and the cooperative node, via a virtual MIMO channel H,

in one time slot.

The different distances between S, C, and D are referred as dSC , dCD, and dSD,

for S ! C, C ! D, S ! D, respectively. We define the power gain relative to the
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S ! C distance and the C ! D distance, by GSC =
⇣

dSD

dSC

⌘K
and GCD =

⇣
dSD

dCD

⌘K
,

respectively. K is the path loss exponent, varying from 1.6 to 6 according to the

propagation environment.

In terms of energy, during the local transmission and the precoding transmission,

the energy per symbol is equal to EL and ED, such that the energy constraint EL +

ED = E is satisfied, where E is the total energy to transmit one symbol. One of the

parameters to optimize is the parameter β that allocates the power over the two

phases, such that EL = βE , and ED = (1− β)E .

S"

C"

D 

CSI 

d SC
 

d
SD

 

d
CD  

(a) System model with involved distances.

Time-slot 1! Time-slot 2!

s
0

  Time-slot 3!
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DMP-DF!

SOURCE!

COOPERATIVE! Receive, 
Decode!
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0
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]

Local exchange via  
channel h!

Precoding via 
channel H!

(b) Time resource used in DMP-DF.

Figure 3.1: Distributed scheme description with a source node, a relay node and a

destination.

3.2.2 System model

During the local phase, the cooperative node receives

yc = h
p
ELGSCs+ nc, (3.1)

where nc denotes a 2 ⇥ 1 vector containing the AWGN (Additive White Gaussian

Noise) noise at C. The received signals are then decoded to ŝ.

In the next phase, both S and C precode the signal s and ŝ, by the 2 ⇥ 2

matrix F with the power constraint trace(FF⇤) = 1 (defined as the sum of the
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elements on the main diagonal). As E is the total energy for one symbol, therefore

E[trace((Fs)(Fs)H)] = E . That implies that the total energy in the precoding system

for transmitting 2 symbols is only E , whereas in a SISO system this value is 2E
(E[trace(ss⇤)] = 2E). Therefore, to make a fair comparison in energy consumption,

the transmit signal in the precoding system is x =
p
2Fs, such that the consumed

energy will be trace(xx⇤) = 2E . As a result, in the phase of precoding transmission

of our distributed scheme, the transmit power is 2ED.
As described in section 2.2.2, due to a different distance to the destination, the

relay has a gain GCD in received energy, referenced to the source. Supposing that

source and cooperative nodes have the knowledge of all the distances, by writing

the aforementioned process in a matrix form with the mentioned power statement,

the received signal at the destination will be

y =
p
2GH

0
@

q
2 GCD

GCD+1
ED(f11s0 + f12s1)q

2 1
GCD+1

ED(f21ŝ0 + f22ŝ1)
p
GCD

1
A+Gn (3.2)

= 2

r
GCD

GCD + 1
EDGH

0
@ f1s

f2ŝ

1
A+Gn, (3.3)

where n denotes the AWGN noise vector at the destination, f1 = [f11 f12] and

f2 = [f21 f22] are row vectors of the designed precoding matrix F accordingly to the

MIMO channel matrix H [65] based on the maximization of minimum Euclidean

distance (max-dmin) between two points in the received constellation. This design

process is described in details in section 3.2.3.

To obtain the precoding matrix, the CSI can be made available at the transmit-

ter through a feedback link. However, instead of a full CSI feedback, we consider

a limited feedback that reduces significantly the load on the feedback link, typi-

cally 3 or 4 bits for 2 ⇥ 2 MIMO system. The limited feedback approach relies on

a codebook, created at both transmission and reception sides [52, 53, 60]. Before

the precoded transmission occurs, the receiver estimates the channel via a training

phase. Afterward, it chooses from the precoding codebook, generated offline, a ma-

trix that maximizes the minimum Euclidean distance between the received vectors

in the constellation. The precoding matrix index is then fed back to the transmitter.

Besides the reduction of the feedback link rate, this method liberates the transmitter
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from the computation of the precoding matrix and reduces the energy needed for

the reception of feedback data at the transmitter.

3.2.3 Precoder design

In this study, we focus on the QPSK modulation that is very popular in WSN.

Indeed, thanks to its low peak-to-average power ratio, the power amplifier can be

more energy efficient and low cost. Therefore, the optimal solution of the precoding

matrix for this modulation is provided in subsection 2.1.3.2 of chapter 2. However,

interested readers would find the optimal solution of the max-dmin criterion for other

modulation schemes and numbers of data streams in [16,65]. In higher level modu-

lations, such as 16-QAM or 64-QAM, a general suboptimal solution can be proposed

in a similar 2-matrix form [62].

3.2.4 Theoretical error probability

Because of the presence of two forms Fr1 and Focta in (2.21) and (2.22), the per-

formance analysis of the max-dmin precoder becomes very complicated. In this sub-

section, we discuss about the dmin based performance analysis for the max-dmin pre-

coding system. Considering a colocated MIMO precoding system with the general

expression of max-dmin precoder given in subsection 2.1.3.4, the performance anal-

ysis was studied in [73] based on the distribution of minimum Euclidean distance

(dmin) between two points in the received constellation. The authors addressed out

the probability density function (pdf) of d2min, then the average bit error probability

was derived as

P̃ e ⇡
Z

D
d2
min

NbNn

2blog2M
erfc

 r
SNR.x

4

!
fd2min

(x)@x, (3.4)

where Nn denotes the average number of neighbors, Nb is the average of difference

bits between two neighbors, and b is the number of transmit symbols (i.e number of

data streams). fd2min
(x) denotes the pdf of d2min, where the distance d

2
min is calculated

by

d2min = min
sk,sl2S

||GHF(sk − sl)||2, (3.5)
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Table 3.1: Value of Nb and Nn for QPSK and 16-QAM

Nb QPSK Nn QPSK Nb 16-QAM Nn 16-QAM

Fr1 3.5 1.471 4.313 2.032

Focta 7 1.488 13.875 2.291

where S denotes the modulated constellation [16]. Because the precoding matrix is

given by two forms, its pdf is also expressed in two forms and the integral is splitted

into two parts. The details for the derivation of equation (3.4) are given in [73].

With the same justification, Nb and Nn get two different values for the two cases

Fr1 and Focta (see table 3.1).

In terms of performance analysis, the distributed scheme is more intricate com-

pared to a colocated system. Indeed, the local transmission phase as well as the

precoding phase have impacts on the total system performance. During the local

transmission phase, decoding errors at the cooperative node occur. This information

on decoding errors then could be used or not at the destination. In Section 3.3, the

performance is analyzed without the decoding information of the cooperative node;

knowing the error probability at the cooperative node, we propose to enhance the

performance of the ML decoder in section 3.5.

3.3 Performance analysis

3.3.1 Definition of the different hypothesis

If the error probability at the cooperative node is unavailable at the destination,

the ML decoder will detect the received signal as if the local transmission phase is

error free, like in the colocated precoding system. Let us call ✏ the symbol error rate

for the local transmission between the source and the relay. Hence, four hypothesis

can be enumerated for a QPSK modulation, depending on the error event at the

cooperative node.

1. Θ0: during the local transmission phase, both symbols are correctly decoded at

the cooperative node. Consequently, the probability of this event is P (Θ0) =
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(1−✏)2. This event corresponds to the colocated system case. In the precoding

transmission, the symbol error probability is given by P{s̃ 6= s|Θ0}.

2. Θ1 and Θ2: for these two events we consider that, during the local transmission

phase, one of the decoded symbol is wrong whereas the other one is correct.

The event probability is equal to P (Θi) = (1 − ✏)✏, i = 1, 2, and the error

probability at the destination will be denoted as P{s̃ 6= s|Θi; i = 1, 2}.

3. Θ3: both symbols are decoded wrongly. Therefore P (Θ3) = ✏2, and the error

probability at the destination is denoted as P{s̃ 6= s|Θ3}.

All channel in this paper is supposed to be normalized Rayleigh-fading. The

source-relay is solely a SISO channel h, meaning the pdf of channel amplitude is

written as

f|h|2(x) = e−x (3.6)

For a QPSK modulation, the bit error probability is given by p = Q (SNRl) (Q(x) =

1
2⇡

R1
x
e−

u2

2 @u), where SNRl denotes the signal-to-noise ratio for the considered

channel. In our case SNRl = ELGSC |h|2. We get the symbol error probability

expressed as ps = 1− (1−p)2 = 2p−p2. Thus, the average symbol error probability

for the local transmission phase can be written as

✏ =

Z 1

0

(
2Q(ELGSCx)−Q2(ELGSCx)

)
e−x@x (3.7)

= 1− & − 1

2

✓
2

⇡
& arctan (&)− & +

1

2

◆
, (3.8)

where & =
q

ELGSC

ELGSC+2
=
q

βEGSC

βEGSC+2
.

Finally, the error probability at the destination is written as

P{s̃ 6= s} =
4X

i=1

P (Θi)P{s̃ 6= s|Θi} (3.9)

3.3.2 Study of hypothesis Θ0

Since there is no error at the relay, we fall into the case of a colocated system. By

taking into account the energy received during the precoding phase, equation (2.10)
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is slightly modified to get the received signal at the destination expressed as

y = 2

r
GCD

GCD + 1
EDGHFs+ nv. (3.10)

In this case, the error probability P{s̃ 6= s|Θ0} at the destination is computed with

the same methodology as given in Subsection 3.2.4.

3.3.3 Study of Hypothesis Θ1 & Θ2

Without loss of generality, we focus on the event Θ2. The analysis of the event

Θ1 will be trivially derived afterwards. The QPSK constellation is defined as

S = {1, j,−1,−j}. For the event Θ2, during the local transmission phase, the

first symbol s0 is decoded correctly whereas the second one s1 is wrong. Whatever

the transmitted symbol s1, the decoded symbol ŝ1 belongs to {−s1, js1,−js1}. Con-
sequently, the signal transmitted from the source and the relay during the precoding

phase is given by

x(i) =

0
@ f11s0 + f12s1

f21s0 + f22ŝ1

1
A =

0
@ f11 f12

f21 aif22

1
A s, (3.11)

where ai = {−1, j,−j}. The received signal at the destination is then

y(i) = 2

r
GCD

GCD + 1
EDGH

0
@ f11 + f12

f21 + aif22

1
A s+ nv (3.12)

= 2

r
GCD

GCD + 1
EDGH

0
@F+

0
@0 0

0 (ai − 1)f22

1
A
1
As+ nv. (3.13)

Since the ML decoder has no information about the error probability at the relay,

ai is not known at the destination. Consequently, the ML decoder considers that

the precoding matrix utilized at the transmitter side is F whereas the system model

is correctly defined by equation (3.13), corresponding to an erroneous precoding

matrix F2(i) as below

F2(i) = F+

0
@ 0 0

0 (ai − 1)f22

1
A . (3.14)
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This equivalent precoding matrix accounts for the decoding errors at the relay.

Equation (3.13) can be rewritten to bring out an interference term as follows

y(i) = 2

r
GCD

GCD + 1
EDGHFs

+ (ai − 1)2

r
GCD

GCD + 1
EDGH

0
@ 0 0

0 f22

1
A s

| {z }
Interference

+nv. (3.15)

The interference term denoted by I2(i) depends on the signal strength at the desti-

nation and the erroneous symbol detected by the relay, represented by the value of

ai.

We assume that all three events corresponding to the 3 values of ai are equiprob-

able so that the symbol error probability at the destination for the event Θ2 is

expressed as

P{s̃ 6= s|Θ2} =
1

3

3X

1

P{s̃ 6= s|Θ2, ai}, i = 1, 2, 3. (3.16)

Similarly, for the event Θ1, the ML decoder utilizes the precoding matrix F instead

of the actual precoding matrix given by

F1(i) = F+

0
@ 0 0

(ai − 1)f21 0

1
A, ai 2 {−1, j,−j}, i = 1, 2, 3. (3.17)

For the event Θ1, the interference term is expressed as

I1(i) = (ai − 1)2

r
GCD

GCD + 1
EDGH

0
@ 0 0

f21 0

1
A s, (3.18)

and the error probability is then written

P{s̃ 6= s|Θ1} =
1

3

3X

1

P{s̃ 6= s|Θ1, ai}. (3.19)

Because of the interference term given in equations (3.15) and (3.18), the symbol

error probability P{s̃ 6= s|Θ◆, ai}; ◆ = 1, 2; i = 1, 2, 3 is not trivially derived from

the methodology presented in section 3.2.4. The section 3.3.5 will present the new

methodology based on the approximation of the SINR (signal to interference and

noise ratio).
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3.3.4 Study of hypothesis Θ3

If the relay wrongly decodes both symbols, the erroneous precoding matrix then

becomes

F3(i, z) = F+

0
@ 0 0

(ai − 1)f21 (az − 1)f22

1
A , (3.20)

with i, z = 1..3; ai,z 2 {−1, j,−j}. According to the hypothesis 3, the interference

could be expressed as

I3(i, z) = 2

r
GCD

GCD + 1
EDGH

0
@ 0 0

(ai − 1)f21 (az − 1)f22

1
A s. (3.21)

Subsequently, the symbol error probability for the event Θ3 is written as

P{s̃ 6= s|Θ3} =
1

9

9X

1

P{s̃ 6= s|Θ3, a{i,z}}. (3.22)

3.3.5 Interference investigation

In order to derive a closed-form of the bit error probability of our DMP-DF scheme

we propose to investigate the interference terms in the system model obtained for

the events Θ1, Θ2, and Θ3.

Taking into account the interference term, the bit error probability in the hy-

pothesis Θ◆ (◆ = 1..3) is given as

P{Θ◆, ai}⇡
NbNn

2blog2M
erfc

 r
SINR◆(i)d2min

4

!
, (3.23)

where the signal to interference plus noise ratio SINR is calculated by

SINR◆(i) =
(GCD + 1)ED
||I◆(i)||2 +N0

, (3.24)

with N0 denoting the noise variance at the destination. The interferences defined

in the previous section are the random variables. Moreover, there is no doubt that

they vary dependently with the minimum Euclidean distance. At this point, we

assign that

||I◆(i)||2 = r◆(i).d
2
min, (3.25)
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where r◆(i) is a random variable representing the dependence.
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Figure 3.2: Illustration the correlation between d2min and r in the hypothesis 1 (sim-

ilar results for both remaining hypothesis)

The theoretical study is now arduous and we consider the arbitrary simplifying

hypothesis that r◆(i) and d2min are independent. The figure 3.2 can illustrate this

independence by plotting out the points determined by the large number of r◆(i)

and d2min, generated numerically. As can be seen in this figure, these two variables

are almost uncorrelated. In addition, a numerical study reenforces this supposition

with low co-variance values. As a result, the average error probability is rewritten

as

P̃ e{Θ◆, ai}⇡
Z 1

0

Z 1

0

NbNn

2blog2M
(r◆(i), d

2
min)frι(i)(r◆(i))fd2min

(d2min)@d
2
min@r◆(i), (3.26)

where (r◆(i), d
2
min) = erfc

⇣q
(GCD+1)ED

(GCD+1)EDrι(i)d2min+N0

d2min

4

⌘
. If we consider the outer

integral in (3.26) as an expectation with respect to r◆(i), we obtain

P̃ e{Θ◆, ai}⇡
1Z

0

Erι(i)

{
g(r◆(i), d

2
min)

 
fd2min

(d2min)@d
2
min, (3.27)
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where

g(r◆(i), d
2
min) =

NbNn

2blog2M
erfc

0
@

vuut 4 GCD

GCD+1
ED

4 GCD

GCD+1
EDr◆(i)d2min +N0

.
d2min

4

1
A . (3.28)

The last hard point is the last mathematical expectation over r◆(i) and we propose

2 methods to solve this problem in the next paragraphs.

3.3.6 Solution 1: Derive an upper-bound

The function g(r◆(i), d
2
min) is a concave function with respect to r◆(i). Therefore,

Jensen’s inequality [37] allows to state:

Erι(i)

⇥
g(r◆(i), d

2
min)

⇤
 g

(
E[r◆(i)], d

2
min

)
(3.29)

Without loss of generality, we study the ratio r1(j) in the event Θ1 then derive

similarly for Θ2 and Θ3. As assumed above that r1(i) and d
2
minare independent, we

obtain

E[r1(i)] ⇡
E[||I1(i)||2]
E[d2min]

. (3.30)

We can observe in the Figure 3.3 that the value of two sides in the equation (3.30)

are always equivalent. This figure is obtained numerically by generating a huge

number of data then analyzing statistically them.
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Figure 3.3: Close values of the expectations in different hypothesis.
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Due to the fact that GTG = I2, and |s0|2 = |s1|2 = 1, the ratio r1(i) becomes

E[r1(i)] ⇡
|ai − 1|2E[|f21|2(|h12|2 + |h22|2)]

E [d2min]
. (3.31)

Applying the Cauchy-Schwarz inequality [94] for the numerator in the equation

(3.32) leads to:

E[r1(i)] 
|ai − 1|2

p
E[|f21|4]E[(|h12|2 + |h22|2)2]

E [d2min]
. (3.32)

Since, the channel is supposed to be Rayleigh fading, we can easily obtain the value

E{(|h12|2 + |h22|2)2} = 6. Then the expectation value of r1(i) is bounded as

E[r1(i)] 
|ai − 1|2

p
6E[|f21|4]

E [d2min]
. (3.33)

Similarly, results for hypothesis Θ2 and Θ3 are respectively:

E[r2(i)] 
|ai − 1|2

p
6E[|f22|4]

E [d2min]
, (3.34)

E[r3(i, z)] 
|ai − 1|2

p
6E[|f21|4] + |az − 1|2

p
6E[|f22|4]

E [d2min]
. (3.35)

From the study in [73], the expectation value of d2min can be calculated theoretically.

The value of E[|f21|4], E[|f22|4] is provided in the Appendix A, for both two forms

of precoder.

Finally, the average probability of the max-dmin and its two forms can be upper-

bounded by:

P̃{Θ◆, ai}
1Z

0

g
(
E{rr1◆ (i)}, d2min

)
f r1
d2min

(d2min)@d
2
min

+

1Z

0

g
(
E{rocta◆ (i)}, d2min

)
f octa
d2min

(d2min)@d
2
min.

(3.36)

3.3.6.1 Solution 2: Estimate the pdf

The upper bound, mentioned above, dresses out the dependence of the interference

on the dmin by a constant. However, in practice, this dependence varies in a certain

interval. Setting r◆(i) =
||I1(i)||2
d2min

, we aim to investigate this ratio in three hypothesis,

proposed in previous subsections.
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Figure 3.4: Distribution of r1(i) in Hypothesis 1: decoding erroneously the first

symbol and correctly the second one

As we can see in figures 3.4, 3.5, 3.6, the values of ri are not constant, they vary

in all three hypothesis. Realizing that finding theoretically the distribution function

of the ratio r◆(i) is complicated, therefore we propose to discover the distribution

of r◆(i) by a numerical method. That means we generate a big number of data

and channels, afterwards we collect all the value of r◆(i) at each single time. With

the help of Matlab, we can analyze the histogram of r◆(i) as shown in the figures

3.4, 3.5, 3.6 for the case of hypothesis Θ1, Θ2, and Θ3, respectively. As shown by

these figures, the distribution function of the ratio r◆(i) is not simple, especially

in the case of the precoder Focta. Therefore it is really difficult to describe them

via a mathematical function. However, this problem can be solved numerically by

Matlab.
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Figure 3.5: Distribution of r2(i) in Hypothesis 2: correctly decoding the first symbol

and erroneously the second one

3.4 Results and discussions
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Figure 3.7: BER performance comparison between simulation result, upper bound

and interfering estimation method in the configuration of dSC = 5%dSD, dCD =

97.5%dSD

From the upper bound in the equation (3.36) and the study on the pdf of d2min

in [73], we derive the performance in BER of our distributed Decode-and-Forward

precoding scheme. As a result, we plot below the performances in 3 configura-

tions: (dSC = 5%dSD, dCD = 97.5%dSD), (dSC = 25%dSD, dCD = 85%dSD), and
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Figure 3.6: Distribution of r3(i) in Hypothesis 3: decoding erroneously both symbols

(dSC = 50%dSD, dCD = 60%dSD) (Figure 3.7, 3.8, 3.9). For each configuration, we

select three fixed values of β : 0.05, 0.25, 0.5 to exhibit the performance. In the

figures, the curves Approx denote the performance using the numerical investigation

in section 3.3.6.1 and the equation (3.26). As seen in the figures, in all cases there

is always a gap between the closed-form error probability (and upper bound also)

and simulation results. The reason that explains this gap could be addressed out

from the approximation in [73] where there exists always the difference between the

approximation and simulation, especially prominent in the case of 2 ⇥ 2 system.

However, the variation in both approaches is totally the same. In other words, the

upper bound in (3.23) proposes a good correspondence of the behavior to evaluate

our distributed scheme.
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Figure 3.8: BER performance comparison between simulation result, upper bound

and interfering estimation method in the configuration of dSC = 25%dSD, dCD =

85%dSD
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Figure 3.9: BER performance comparison between simulation result, upper bound

and interfering estimation method in the configuration of dSC = 50%dSD, dCD =

60%dSD

Clearly, the performance of our distributed precoding is affected by both phases:

local exchange and precoding transmission. Therein, the decoding error probability

✏ at the relay stands for the local exchange phase and the error probability P{s̃ 6=

86



s|Θi} stands for for the precoding transmission phase. Our distributed deployment

allows a power allocation that pours separately the power for each phase.

In [68], the authors proposed to optimize the power allocation upon a numerical

search when a closed-form approximation was not available. For each Eb/N0, the

simulation of BER for DMP Decode-and-Forward is carried out for many values of

β, then we choose among them a value of β that offers the best BER. This work

actually takes time and is unpractical if for each system configuration we have to

process the numerical search. Subsequently, based on the analysis that we described

in the previous section, we would like to optimally allocate the power for each

transmission phase in our distributed scheme.

When the closed-form performance of our DMP Decode-and-Forward is derived

approximately as above, we would like to optimize the power allocation by choosing

the parameter β0 that minimizes the BER performance. Using the upper bound in

equation (3.23) for each hypothesis, we can obtain approximately the performance

for every β. Consequently, the optimal power allocation will be easily and rapidly

derived. In Figure 3.10, both β0 obtained by simulation and by this approximation

are plotted. As we can see that they are very close together and generally, the β0

increases with Eb/N0. Conclusively, using the theoretical upper bound, derived in

the previous section, the power is optimally allocated without difficulty.
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Figure 3.10: Power allocation parameter β0 for best performance
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After obtaining the best power allocation for our DMP-DF, in the Figure 3.11, we

plot out the performance comparison between our DMP and conventional schemes

such as SISO (Single-input Single-output), MRC (maximum ratio combining), and

distributed Alamouti. In this Figure, we study two power allocations: 1) OPA

(optimal power allocation) that provide best BER performance corresponding to

each value β0 at each Eb/N0; 2) EPA (equal power allocation) that sets the same

power for two phases, meaning β = 0.5. Comparing two power allocations, the OPA

offers about 3 dB in gain with the EPA. In terms of BER, when the cooperative

node is close to the source node ((dSC = 5%dSD, dCD = 97.5%dSD)) the DMP

with OPA outperforms significantly the SISO and MRC, and proposes a very slight

degradation referenced to a colocated precoding system (multiple antennas on the

transmitter). As a cooperative scheme, the distributed Alamouti OPA always offers

better performance in the same configuration. However, it is important to notice

that the spectral efficiency in schemes are different. To transmit 1 symbol, in SISO

and MRC, we spend 1 time-slot; the DMP Decode-and-Forward takes 1.5 time-slots;

whereas the distributed Alamouti takes 2 (see Figure 3.1b). In addition, on the study
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Figure 3.11: DMP vs. conventional schemes

of the relay position impact, we plot in the Figure 3.12, the BER performance in

the three configurations above in the case of β0 (OPA). The results show that closer
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relays offer better benefits from the precoding.
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Figure 3.12: Relay position impact on DMP performance

3.5 Decoder design with the side information

If in the training phase between two nodes and the destination before effecting the

transmission, the channel between the source and the relay nodes is obtained at the

destination. Thereby, the error probability of decoding signal from source node at

the relay ✏ could be calculated at the destination by equation (3.8). Since ✏ is avail-

able, the probability that we receive the value y at the destination is decomposed

into the four hypothesis mentioned in the previous section as follows

Py|H,✏,s=sp = (1− ✏)2Py|H,✏,Θ0 + ✏(1− ✏)Py|H,✏,Θ1

+✏(1− ✏)Py|H,✏,Θ2 + ✏2 Py|H,✏,Θ3 .
(3.37)

Since y is a 2-dimensional complex standard normal vector, the probability Py|H,✏,Θι

with ◆ = 0..3 is derived as

Py|H,✏,Θ0 =
1

⇡2N0

e
− 1

N0
|y−HTFsp|2 , (3.38)

Py|H,✏,Θ1 =
1

⇡2N0(M − 1)

M−1X

i=1

e
− 1

N0
|y−HTF1(i)sp|2 , (3.39)
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Py|H,✏,Θ2 =
1

⇡2N0(M − 1)

M−1X

i=1

e
− 1

N0
|y−HTF2(i)sp|2 , (3.40)

Py|H,✏,Θ3 =
1

⇡2N0(M − 1)2

(M−1)2X

i=1

e
− 1

N0
|y−HTF3(i,z)sp|2 , (3.41)

where M = 4 for QPSK modulation. The probability Py|H,s=sq is derived similarly

when we replace sp in the equations (3.37), (3.39), (3.40), (3.41) by sq. At the

destination, a maximum likelihood decoder is utilized to detect the received signal.

This means the log-likelihood ratio must be calculated in pairs to determine which

point in the constellation is more likely to be transmitted. The LLR is expressed as

follows

Λ✏
p,q = ln

✓
Py|H,✏,s=sp

Py|H,✏,s=sq

◆
(3.42)

= ln

✓
(1− ✏)2Py|H,✏,Θ0 + ✏(1− ✏)(Py|H,✏,Θ1 + Py|H,✏,Θ2) + ✏2 Py|H,✏,Θ3

(1− ✏)2Py|H,✏,Θ0 + ✏(1− ✏)(Py|H,✏,Θ1 + Py|H,✏,Θ2) + ✏2 Py|H,✏,Θ3

◆
. (3.43)

Observation: With the consideration of ✏ in equation (3.37), the LLR obtained

in (3.43) takes more advantage than the conventional ML for decoding the signal.

The performance therefore is surely enhanced. In contrast, as seen in the equation

(3.43), the computational complexity is clearly augmented, referencing to a conven-

tional ML. Regarding the significance of the terms in (3.37) we see that in general

cases, the value of ✏ is small enough to make the term of ✏2 Py|H,✏,ŝ0 6=sp0,ŝ1 6=sp1 in-

significant to the others in Py|H,s=sp of equation (3.37). The proposed decoder now

steps to a huge complexity reduction as

Λ✏
p,q⇡ln

0
BB@
(1− ✏)2e

− |y−HTFsp|2
N0 + ✏(1−✏)

M−1

M−1P
i=1

(e
− |y−HTFi

1sp|
2

N0 + e
− |y−HTFi

2sp|
2

N0 )

(1− ✏)2e
− |y−HTFsq |2

N0 + ✏(1−✏)
M−1

M−1P
i=1

(e
− |y−HTFi

1sq |
2

N0 + e
− |y−HTFi

2sq |
2

N0 )

1
CCA . (3.44)

Even though (3.44) still seems to be very complicated compared to the conven-

tional ML. In the literature, the max-log approximation is widely used thanks to its

substantial simplicity but still maintaining an impressive accuracy [42], [32], [17]:

ln

 
KX

i=1

exp(ai)

!
⇡ max

i2{1,2,...,K}
(ai). (3.45)

Based upon that we can have a simplified ML as below:

Λ✏
p,q ⇡ max

ap2ϑp

(ap) − max
aq2ϑq

(aq), (3.46)
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where #p contains {ln(1− ✏)2− 1
N0

|y−HTFsp|2, ln( ✏(1−✏)
M−1

)− 1
N0

|y−HTF
i
jsp|2}, with

i = 1, 2, 3 and j = 1, 2. Similarly, we obtain the #q by replacing sq for sp.
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Figure 3.13: Performance comparison between different ML decoders for different

values of β

We carry out a DMP Decode and Forward system with two configurations: dSC =

50%dSD, dCD = 60%dSD and dSC = 5%dSD, dCD = 97.5%dSD. With the use of ✏ in

the ML decoder, the performance analysis issue becomes very complicated, thus the

closed-form of the error probability is not available for our proposed ML decoder and

its simplifications. Therefore, we compare the performance of conventional ML with

proposed ML in (3.43) and simplified ML in (3.44) under 2 values of β: 0.05 and 0.25

in Figure 3.13 by simulations. The illustration shows that our proposed MLs only

take the advantage when the link between the source and cooperative nodes is weak.

In that case, the use of ✏ affects more significantly the detection at the destination.

However, our proposed MLs offer a significant improvement as the expense of higher

complexity as shown in the Table 3.2. Comparing the proposed full ML and two

simplified MLs, there is only a tiny degradation in terms of performance, meanwhile

the complexity is reduced notably.
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Table 3.2: Complexity comparison between different ML decoder

Numerical

computations

Summation Multiplication Exponential Logarithm

Conventional

ML

1808 1824 16 15

Full proposed

ML

29200 29312 256 15

Simplified

ML

12784 12848 112 15

Max-log sim-

plified ML

12658 12883 0 2

3.6 Conclusion

To optimize the life time of a WSN or WBAN, it is always necessary to bring out

an energy-efficient transmission strategy. The DMP could be a good candidate

which benefits the advantages from the max-dmin precoding. Aiming to confirm the

numerical results of DMP-DF claimed in the previous chapter, a theoretical basis

is proposed. The performance analysis is not a simple issue in a MIMO precoding

system in general, and especially in the distributed system. Our analysis is basically

based on the minimum distance evaluation [73], combined with the approximate

interfering transformation. From this basis, we derive analytically the upper bound

of the error probability then perform the optimal power allocation that provides

the best performance of a DMP scenario, managing the power between transmission

phases. Moreover, we propose the use of the decoding error information of the

relay to enhance the detection performance at the destination. A new ML decoder,

which fully exploits this information significantly improves the decoding error rate

but suffers from the hyper complexity. Consequently, we simplify it by eliminating

some minor terms in the ML detection expression; or by an approximated function.

This complexity issue might be solved in the future with an application of a sphere

decoder by zoning a group of constellation points around the received point. At
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the expense of a higher complexity, the use of our proposed ML decoder takes the

advantage for the cases where the separating distance of two nodes is significant.

Besides the decode-and-forward relaying, we mentioned also the amplify-and-

forward scheme which provides more flexibility in signal processing as well as more

benefit of spectral efficiency. The performance analysis for this structure would be

different to the methodology that is studied in this chapter. The next chapter will

tackle with this issue.
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Chapter 4

Distributed max-dmin precoding:

Amplify-and-Forward
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4.1 Introduction

In section 2.2.5, the simulations show that the DMP apparently offers the advantage

of precoding technique, using the CSIT to enhance the transmission quality. With

two possibilities of processing data at the cooperative node: DF and AF, the DF

is investigated in the previous chapter. The DMP-AF is already introduced and

evaluated numerically in chapter 2. Various scenarios have been considered with

different local transmission phases as well as different methods of constructing the

precoding matrix (whether taking the local channel into account or not). In terms

of performance and energy efficiency, the DMP-AF Local Precoded Transmission is

the best candidate among them (see figures 2.6, 2.8). In this scheme the spectral

efficiency is improved thanks to the transmission of a precoded signal in the local

exchange phase. In addition, a custom channel matrix, based on an equivalent

transformation of system model, is considered to design the precoding matrix.

Besides the numerical performance evaluation provided in the chapter 2, this

chapter presents the performance analysis of the DMP Amplify-and-Forward proto-

col. The Local precoded transmission with the channel customizing scheme is selected

due to its higher spectral efficiency and performance. The theoretical performance

analysis on the channel capacity and outage probability are carried out, based upon

the statistical distribution of minimum Euclidean distance between two received vec-

tors. We also address out the power allocation strategy, defining the power applied

to the two phases of the DMP-AF protocol that offers the best channel capacity

performance.

Accordingly, we propose the following contributions:

− The probability density function (pdf) of minimum Euclidean distance between

two received vectors (dmin) in a DMP Amplify-and-Forward is carried out.

− Thanks to the pdf of dmin we obtain the channel capacity and outage proba-

bility analytically.

− The power allocation strategy that maximizes the channel capacity or the

outage probability is established.
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The rest of this chapter is organized as follows: In Section 4.2, we introduce

the distributed precoding in a WBAN. Then the Amplify and Forward scheme is

described using the distributed max-dmin precoding. Section 4.3 analyzes the distri-

bution of d2min and based on that, in Section 4.4, the performance analysis on the

channel capacity and outage probability is given. Afterward, the power allocation

is derived based on the maximization of channel capacity. Section 4.5 concludes the

chapter.

4.2 System description

The system is proposed similarly to the DF scheme where the virtual MIMO system

is established allowing the precoding to be deployed. The system model is illustrated

in Figure 4.1a with a source node, a cooperative node (both equipped with one single

antenna) and a station (equipped with two or more antennas). The virtual MIMO

system is then formed and the considered distributed precoding is deployed via the

cooperative protocol by two transmission phases: local data exchange and precoding

transmission as in section 2.2.3 of chapter 2.

The max-dmin precoding solution is already described in the subsection 3.2.3, and

the DMP-AF uses the same principle to design the precoder as the DMP-DF. The

difference in the AF scheme is that the system model can be transformed equivalently

to obtain a customizing channel matrix containing the local channel. The precoding

design will take into account this new channel to generate the precoding matrix.

Let us consider the signal processing in the Amplify-and-Forward scheme. After

receiving the signal from the source node, the cooperative node amplifies it with a

designed factor and forwards it to the destination. Supposing that s = [s0 s1]
T is the

vector of symbols from the source node. Since the cooperative node does not decode

the incoming signal, a precoded data that combines two symbols can be expressed

as

spre = f21s0 + f22s1. (4.1)

Then the cooperative node receives

yc = h
p

2ELGSCspre + nc, (4.2)
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Figure 4.1: Distributed scheme description with a source node, a relay node and a

destination.

where h and nc denote the channel between two nodes and the AWGN noise at

the cooperative node, respectively. As we can see, thanks to the precoded signal,

we save one time slot with respect to the transmission of symbol by symbol. Also

for maximizing the spectral efficiency, the system with only one relay is chosen.

Actually, the system with more relays can be deployed, however we lose one more

time slot for each added relay. This expense diminishes the spectral efficiency, and

also means that the energy efficiency is decreased. There is no doubt that with

additional relays the error probability is decreased due to the diversity increment.

However, more relays mean the consuming energy is increased for the electronic

circuit and signal processing. In addition, the network topology will suffer from

high complexity when multiple relays exist. Therefore, the system with one relay

offers the best compromise of low energy consumption, high spectral efficiency and

performance in the WBAN context.

Satisfying the power constraint at the cooperative node, the received signal is
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normalized by its power, then re-transmitted to the destination as

xc =
h⇤

|h|2
p
2EDGCDp

2ELGSC +N0

yc

=
h⇤

|h|2
p
2EDGCDp

2ELGSC +Nc0

(h
p

2ELGSCspre + nc),

(4.3)

where Nc0 is the noise variance at the cooperative node. If we ignore the synchro-

nization issue, simultaneously the source node transmits:

xs =
p
2ED(f11s0 + f12s1). (4.4)

Then the destination receives

y = GH

0
@xs
xc

1
A+Gn, (4.5)

where n denotes the AWGN vector at the destination. We already assumed in the

previous section that the destination is a powerful access point, which is able to

embed two or more antennas. Therefore, the channel matrix H 2 CnR⇥2 is given by

H =

0
BBBBBB@

h11 h12

h21 h22

... ...

hnR1 hnR2

1
CCCCCCA
, where nR is the number of antennas at the destination. The

received signal in (4.5) can be rewritten as

y = GH

0
@
p
2ED(f11s0 + f12s1)

gh
p
2ELGSCspre

1
A+G

0
BBBBBB@

h12gnc

h22gnc

...

hnR2gnc

1
CCCCCCA

+Gn,

=
p

2EDGH

0
@ 1 0

0 w

1
AFs+G

0
BBBBBB@

h12gnc

h22gnc

...

hnR2gnc

1
CCCCCCA

+Gn.

(4.6)

where

g =
h⇤

|h|2
p
2EDGCDp

2ELGSC +Nc0

, (4.7)
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w =

r
2ELGSCGCD

2ELGSC +N0

. (4.8)

In this scheme, we take the channel h into account by a customized channel

via an equivalent transformation of the received constellation as above. Then the

precoding matrix is designed based on a customized channel matrix involving the

contribution of both H and h as below

F = max-dmin

0
@H

0
@1 0

0 w

1
A
1
A . (4.9)

As mentioned in the chapter 2, the limited feedback is a suitable solution to obtain

this precoding matrix at the transmission side.

As mentioned in section 2.2.5, the simulations point out the advantage in BER

performance of this distributed scheme in comparison with the conventional point-to-

point system (SISO, MRC). Additionally, with respect to DMP-DF and the DMP-

AF Local successive transmission, it reduces the transmission time by one time

slot by allowing the transmission of two symbols simultaneously, but still proposes

the same performance. Subsequently, it achieves the best energy efficiency among

the DMPs. Obviously, the theoretical basis is indispensable besides this numerical

result. Thus, the performance analysis will be mentioned in the next section.

4.3 Euclidean distance distribution analysis

In general, the performance analysis for a precoding system is not a simple issue.

Particularly for the considered max-dmin precoding, the complication comes from two

forms of precoder Fr1 and Focta that are present in its design. Moreover, because of

its distributed version, the appearance of an alternative local phase sophisticates the

theoretical study on the performance substantially. In the detection’s point of view,

the dmin shows out how far the received points are separated in the constellation.

Hence, once the statistical property of dmin is achieved, the system performance

can be derived afterwards. To tackle with this issue, the study on the minimum

Euclidean distance (dmin) is proposed to be investigated [73]. In this section, we

aim to derive the probability density function of dmin and based upon that some
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evaluations such as ergodic capacity, outage probability could be established. We

continue with the equivalent system model given in (4.6):

y =
p
2EDHvFds+G

0
BBBBBB@

0
BBBBBB@

h12gnc

h22gnc

...

hnR2gnc

1
CCCCCCA

+ n

1
CCCCCCA
, (4.10)

where Hv = GvH

0
@ 1 0

0 w

1
AFv = diag(σ1, σ2), and σ1, σ2 are the eigenvalues in

decreasing order of the equivalent channel matrix Heq = H

0
@ 1 0

0 w

1
A , and F =

FvFd. They can be rewritten as
8
<
:

σ1 = ⇢ cos γ

σ2 = ⇢ sin γ
$

8
<
:

γ = atan(σ2

σ1
)

⇢ =
p
σ2
1 + σ2

2

(4.11)

The minimum Euclidean distance between signal points at the reception side is

defined as

d2min(Fd) = min
sk,sl2S,sk 6=sl

||HvFd(sk − sl)||2, (4.12)

where S denotes the constellation of the transmitted vectors. From [16], dmin can

be derived for the Amplify and Forward as
8
<
:

d2min(Fr1) =
4p
3+3

ED⇢2 cos2 γ
d2min(Focta) = 4(2−

p
2)ED⇢2 cos2 γ sin2 γ

1+(2−2
p
2) cos2 γ

(4.13)

We propose the variable substitution:
8
<
:

Γ = λ1 + λ2 = ⇢2

Ω = λ1−λ2

λ1+λ2
= cos 2γ

, (4.14)

where λ1 = σ2
1, λ2 = σ2

2 are the eigenvalues of the matrix Z =

0
@H

0
@ 1 0

0 w

1
A
1
A

†

⇥

H

0
@ 1 0

0 w

1
A. The shortened square distance then is expressed as

d2min = ↵Γδ(Ω), (4.15)
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where 8
<
:

↵ = ↵r1 =
EDp
3+3

, δ(Ω) = δr1(Ω) = 1 + Ω for Fr1 ,

α = αocta = ED, δ(Ω) = δocta(Ω) =
1−Ω2

2−
p
2Ω

for Focta.
(4.16)

Our analysis obviously requires the joint pdf of Γ and Ω to derive the pdf of d2min.

However, at first we need to find out the joint pdf of the eigenvalues λ1, λ2 of

the customized matrix Z. Since H is supposed to be an uncorrelated normalized

Rayleigh fading channel, its entries are the complex normal distribution random

variables CN (0, 1). We consider the equivalent channel Heq = H

0
@ 1 0

0 w

1
A as a

correlated channel at the reception side. As a result, the joint pdf of the eigenvalues

λ = [λ1, λ2] of Z = H†
eqHeq is derived as [14]:

fλ1,λ2(λ) = K(w).|U(λ, w)|.|V (λ)|.
2Y

i=1

λnR−2
i , (4.17)

where

K =
w−2nR+2

(w2 − 1)(nR − 1)!(nR − 2)!
, (4.18)

U(λ, w) =

0
@ e−λ1 e−λ2

e−λ1

w2
e−λ2

w2

1
A , (4.19)

V (λ) =

0
@ 1 1

λ1 λ2

1
A . (4.20)

Then the joint pdf of the two eigenvalues is written as

fλ1,λ2(λ1,λ2) =

w−2nR+2(λ1 − λ2)λ
nR−2
1 λnR−2

2

(w2 − 1)(nR − 1)!(nR − 2)!

⇣
e−(λ2+

λ1
w2 ) − e−(λ1+

λ2
w2 )

⌘
.

(4.21)

Since the joint pdf of λ1 and λ2 is available, we apply the change of variable rule
8
<
:

λ1 = Γ1+Ω
2

λ2 = Γ1−Ω
2

, (4.22)

to find out the joint pdf of Γ and Ω as

fΓ,Ω(Γ,Ω) = fλ1,λ2(Γ
1 + Ω

2
,Γ

1− Ω

2
)⇥ Γ

2
=

w−2nR+2Γ2nR−2Ω(1− Ω2)nR−2

22nR−3(w2 − 1)(nR − 1)!(nR − 2)!
⇥
✓
e−

Γ
2

(1−Ω)w2+1+Ω

w2 − e−
Γ
2

(1+Ω)w2+1−Ω

w2

◆
.

(4.23)
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Afterward, it is necessary to derive the pdf of d2min by applying the substitution in

(4.15):

Γ =
d2min

αδ(Ω)
, (4.24)

then obtaining

fd2min,Ω
(d2min,Ω) = Υ(Ω, ED, w, nR, d

2
min)⇥

✓
e−

d2min
2αδ(Ω)

(1−Ω)w2+1+Ω

w2 − e−
d2min

2αδ(Ω)
(1+Ω)w2+1−Ω

w2

◆
.

(4.25)

where

Υ(Ω, ED, w, nR, d
2
min) =

w−2nR+2Ω(1− Ω2)nR−2(d2min)
2nR−2

22nR−3(w2 − 1)(nR − 1)!(nR − 2)!(αδ(Ω))2nR−1
(4.26)

Notice that our precoding scheme proceeds two structures Fr1 and Focta correspond-

ing to two intervals of Ω, therefore the pdf function in (4.25) must be studied sepa-

rately for the two cases.

From (4.25), the pdf of d2min is expressed as

fd2min
(d2min) =

Z

DΩ

fd2min,Ω
(d2min,Ω)dΩ, (4.27)

where DΩ denotes the integrating domain of Ω for each precoder. The threshold Ω0

that separates two domains has to be determined. Thus, based on the threshold γ0

and the equation (4.14): Ω0 is equal to cos(2γ0), the precoder Fr1 takes Ω0  Ω  1

and the precoder Focta takes 0  Ω  Ω0. The pdf of d2min is finally expressed as

fd2min
(d2min) =

Z Ω0

0

fd2min,Ω
(d2min, δocta(Ω),αocta)dΩ

+

Z 1

Ω0

fd2min,Ω
(d2min, δr1(Ω),αr1)dΩ.

(4.28)

In order to derive the final expression of the pdf of d2min, it is necessary to integrate of

the function fd2min,Ω
with respect to Ω in each interval corresponding to each precoder

Fr1 or Focta. The expression of fd2min,Ω
is effectively different for the two precoders

Fr1 and Focta due to the difference of δ(Ω) and α in each precoder. We propose to

resolve the integrals separately.
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4.3.1 The case of Fr1

According to (4.16), ↵r1 = EDp
3+3

, δr1(Ω) = 1 + Ω. Then the joint pdf of d2min and

Ω for Fr1 is rewritten as

f r1
d2min,Ω

(d2min,Ω) = A
(d2min)

2nR−2

α2nR−1
r1

Ω(1− Ω2)nR−2

(1 + Ω)2nR−1
⇥

 
e
− d2min

2αr1w2
(1−Ω)w2+1+Ω

1+Ω − e
− d2min

2αr1w2
(1+Ω)w2+1−Ω

1+Ω

!
,

(4.29)

where A = w−2nR+2

22nR−3(w2−1)(nR−1)!(nR−2)!
. Then the pdf of d2min is calculated by:

f r1
d2min

(d2min) =

Z 1

Ω0

A
(d2min)

2nR−2

α2nR−1
r1

Ω(1− Ω2)nR−2

(1 + Ω)2nR−1
⇥

 
e
− d2min

2αr1w2
1−Ω
1+Ω

w2

e
− d2min

2αr1w2 − e
− d2min

2αr1w2
1−Ω
1+Ω e

− d2minw2

2αr1w2

!
dΩ.

(4.30)

We substitute
8
>>><
>>>:

t = 1−Ω
1+Ω

) Ω = 1−t
1+t

) dΩ = − 2
(1+t)2

dt

Ar1 = A
(d2min)

2nR−2

↵
2nR−1
r1

Br1 =
d2min

2↵r1w
2

. (4.31)

The equation (4.30) is rewritten as

f r1
d2min
(d2min)=

Ar1

4

Z 0

t0

tnR−2(t− 1)
⇣
e−Br1w

2te−Br1−e−Br1 te−Br1w
2
⌘
dt

=
Ar1

4

✓
e−Br1

(Br1w
2)nR−1

γinc(nR − 1, Br1w
2t0)

−e
−Br1w

2

BnR−1
r1

γinc(nR − 1, Br1t0)

− e−Br1

(Br1w
2)nR

γinc(nR, Br1w
2t0)

+
e−Br1w

2

BnR
r1

γinc(nR, Br1t0)

!
,

(4.32)

where t0 =
1−Ω0

1+Ω0
and γinc(a, x) =

R x

0
ta−1e−tdt is the lower incomplete gamma func-

tion.
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Figure 4.2: The pdf of d2min for Fr1 simulation approach vs. theoretical approach.

The network is set as dSD = dCD, dSC = 5%dSD; Eb/N0 = 0dB; and β = 0.05. The

solid line denotes for theoretical results, the cross mark denotes for simulations

The result in the equation (4.32) would be computed and then compared to the

simulation in the figure 4.2. The network configuration is determined as: dSD = dCD,

and dSC = 5%dSD. The path loss exponent is supposed to be 2.6, and the noise is

always normalized (noise variances N0 and Nc0 are equal to 1). The power allocation

parameter in this evaluation is set to be 0.05. We plot the distribution of d2min in

the case of Fr1. The data is taken from two approaches: simulation and analysis

(equation (4.32)). As shown in the figure, the theoretical result is totally matching

the numerical result in all scenarios of receiver (nR = 2, 3, 4).

4.3.2 The case of Focta

Using the same methodology, we obtain the pdf of d2min of the precoder Focta by

taking substitutions as follows
8
>>>>>><
>>>>>>:

↵octa = ED
δocta(Ω) =

1−Ω2

2−
p
2Ω

Aocta = A
(d2min)

2nR−2

↵
2nR−1
octa

Bocta =
d2min

2↵octaw2

. (4.33)
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Hence,

f octa
d2min

(d2min) = Aocta

Z Ω0

0

Ω(2−
p
2Ω)2nR−1

(1− Ω2)nR+1
⇥

⇣
e−Boctaw2 2−

p
2Ω

1+Ω
−Bocta

2−
p
2Ω

1−Ω −e−Boctaw2 2−
p
2Ω

1−Ω
−Bocta

2−
p
2Ω

1+Ω

⌘
dΩ.

(4.34)

The solution of the integral in (4.34) is provided in the Appendix B. Accordingly,

the matching of the numerical and theoretical result is illustrated in the Figure 4.3.

The configuration parameters are set similarly as in the previous case. Furthermore,

figures 4.2 and 4.3 also point out the benefit of a larger number of antennas at the

receiver to improve d2min, and thus the BER performance
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Figure 4.3: The pdf of d2octa: simulation vs. theoretical approach. The network is set

as dSD = dCD, dSC = 5%dSD; Eb/N0 = 0dB; and β = 0.05. The solid line denotes

for approximations, the cross mark denotes for simulations

4.3.3 The complete form of d2min

Combining the two forms mentioned in the section 4.3.2 and 4.3.1, the total pdf of

d2min in (4.28) is finally calculated as

fd2min
(d2min) = f r1

d2min
(d2min) + f octa

d2min
(d2min). (4.35)

In order to confirm the precision of our analysis, we establish a WBAN, described in

section 4.2, supposing dSC = 0.05dCD, dCD = dSD. We compute the pdf of d2min with
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multiple values of power allocation parameter β (β = [0.05, 0.25, 0.5]). Afterwards,

the simulations with the same parameters are deployed. We plot in Figures 4.4,

4.5, 4.6 the distribution of d2min obtained by numerical approach and theoretical

computation. These figures demonstrate the validity of the theoretical analysis. In

addition, with respect to the power allocation, it seems that d2min distributes more

beneficially when the parameter β is close to the value dSC

dCD
= 0.05.
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Figure 4.4: The pdf of d2min: theoretical vs. simulation approach. The network is set

as dSD = dCD, dSC = 5%dSD; Eb/N0 = 0dB; and β = 0.05. The solid line denotes

for approximations, the cross mark denotes for simulations
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Figure 4.5: The pdf of d2min: theoretical vs. simulation approach.The network is set

as dSD = dCD, dSC = 5%dSD; Eb/N0 = 0dB; and β = 0.25. The solid line denotes

for approximations, the cross mark denotes for simulations
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Figure 4.6: The pdf of d2min: theoretical vs. simulation approach.The network is set

as dSD = dCD, dSC = 5%dSD; Eb/N0 = 0dB; and β = 0.5. The solid line denotes

for approximations, the cross mark denotes for simulations
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4.4 Euclidean distance based evaluation

Regardless the noise at the destination, the d2min represents the condition of the

received signal, the greater d2min corresponds the better condition. That means

when the points in the received constellation are farther apart, the probability of

detecting erroneously is lower. Therefore, from the analysis of the distribution of

Euclidean distance in the considered distributed scheme, the performance evaluation

could be derived. Herein, we propose to apply it on evaluating the ergodic capacity

and outage probability. Afterward, a power allocation strategy will be carried out

based on the maximization of system ergodic capacity.

4.4.1 Ergodic capacity and power allocation strategy

By separating the points of the received constellation, the goal of the max-dmin pre-

coder is to enhance the system quality, and thereby decrease the power consumption.

However, in a distributed scheme, the system model is obviously changed; and in

accordance with that, a modified noise appears (see equation (4.6)). Therefore, the

system performance is affected by both dmin and modified noise, compared to a colo-

cated system. In this subsection, the ergodic capacity will be studied in function of

these both factors. From (4.6), we express the total noise at the destination as

ntotal = Gv

0
BBBBBB@

0
BBBBBB@

h12gnc

h22gnc

...

hnR2gnc

1
CCCCCCA

+ n

1
CCCCCCA
. (4.36)

According to the power constraint, the decoding matrix Gv must satisfy GvG
H
v = I2

and its entries’s norm distributes uniformly [16]. The effective noise becomes more

complicated as it is a correlated noise with the covariance matrix expressed as

Σntotal
= Gv

0
BBBBBB@

|h12|2|g|2 +N0 h12h
⇤
22|g|2 ... h12h

⇤
nR2|g|2

h⇤12h22|g|2 |h22|2|g|2 +N0 ... h22h
⇤
nR2|g|2

... ... ... ...

h⇤12hnR2|g|2 h⇤22hnR2|g|2 ... |hnR2|2|g|2 +N0

1
CCCCCCA

GH
v .

(4.37)
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Defined as the maximum mutual information, the instantaneous ergodic capacity

can be expressed as [45, 87]

C = log2

∥∥∥∥I2 +
2ED
nt

Σ−1
ntotal

(HvFd)
H HvFd

∥∥∥∥ , (4.38)

where nt denotes the number of transmit antenna, and ||.|| denotes the determinant

operation. Applying an eigenvalue decomposition to Σ−1
ntotal

and (HvFd)
H HvFd, the

average ergodic capacity can be then derived as

C̃ = E[C] = E

"
log2

2Y

i=1

(1 +
2ED
nt

⌧iυi)

#
, (4.39)

where ⌧i and υi denote the eigenvalues of Σ
−1
ntotal

and (HvFd)
H HvFd in the decreased

order, respectively. In order to finalize the calculation in (4.39), υi and ⌧i are re-

quired. Therefore, in the next subsection we compute successively them.

4.4.1.1 The values of υi

The eigenvalues υi of (HvFd)
H HvFd are different for the two precoders: Fr1 and

Focta. Thus, they will be provided separately as follows.

The case of Fr1

We now have

HvFd =

0
@ σ1 0

0 σ2

1
A
0
@

q
3+

p
3

6

q
3−

p
3

6
ei

π
12

0 0

1
A . (4.40)

As a result, the two eigenvalues of matrix (HvFd)
H HvFd are expressed in the de-

creasing order as 8
<
:

υ1 = σ2
1,

υ2 = 0
. (4.41)

The case of Focta

The precoding matrix in this case is

Fd = Focta =
1p
2

0
@cos 0

0 sin 

1
A
0
@ 1 ei

π
4

−1 ei
π
4

1
A (4.42)
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Consequently, we obtain the two decreasing eigenvalues of (HvFd)
H HvFd as

8
<
:

υ1 = σ2
1 cos

2  ,

υ2 = σ2
2 sin

2  
. (4.43)

4.4.1.2 The values of ⌧i

The problem of determining the eigenvalues of matrix Σ−1
ntotal

is not a simple question.

For instant, we do not have the solution for the general case of nR. However, in the

simplest case, when the destination possesses two antennas (i.e nR = 2), the noise

covariance matrix is simply becoming

Σ2⇥2
ntotal

= Gv

0
@ |h12|2|g|2 +N0 h12h

⇤
22|g|2

h⇤12h22|g|2 |h22|2|g|2 +N02

1
AGH

v . (4.44)

Thus, the eigenvalues of Σ−1
ntotal

could be easily determined as

8
<
:

⌧1 = 1,

⌧2 =
1

|h12|2|g|2+|h22|2|g|2+N0

. (4.45)

After all, the final purpose is to express the capacity in function of d2min then to

derive the analytical result of ergodic capacity thanks to the pdf of d2min. Because

the values of ⌧i are available for the case nR = 2 till now, we propose to study

the ergodic capacity for this particular case. The generalization problem will be

suggested for the future work. In next parts, we present separately the derivation

for the precoder forms, then combine them to obtain the total ergodic capacity.

4.4.1.3 The average ergodic capacity

The case of Fr1

From (4.41) and (4.45) the instantaneous capacity in this case will be derived as

follow

Cr1 = log2

✓
1 +

2ED
nt

σ2
1

◆
= log2

 
1 +

p
3 + 3

2nt

d2min

!
. (4.46)
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The case of Focta

The instantaneous capacity will be derived based on (4.43) and (4.45) as

Cocta = log2

✓
1 +

2ED
nt

σ2
1 cos

2  

◆✓
1 +

2ED
nt

σ2
2 sin

2  

Ψ

◆

= log2

✓
1 +

2ED
nt

✓
σ2
1 cos

2  +
σ2
2 sin

2  

Ψ

◆

+
(2ED)2
(nt)2

σ2
1 cos

2  σ2
2 sin

2  

Ψ

◆
,

(4.47)

where Ψ = |h12|2|g|2+ |h22|2|g|2+N0. With  = atan(
p
2−1

tan γ
), we have tan =

p
2−1

tan γ
.

Then, we can obtain easily:

8
<
:

cos2  = tan2 γ

tan2 γ+3−2
p
2

sin2  = 3−2
p
2

tan2 γ+3−2
p
2

. (4.48)

Hence, the equation (4.47) is rewritten as

Cocta = log2

 
1 +

2ED
nt

⇢2 sin2 γ

tan2 γ + 3− 2
p
2

 
1 +

3− 2
p
2

Ψ

!

+

✓
2ED
nt

⇢2 sin2 γ

(tan2 γ + 3− 2
p
2)

◆2
3− 2

p
2

Ψ

!
.

(4.49)

And finally, the instantaneous capacity is given by

Cocta = log2

 
1 +

d2minocta

nt

 
3− 2

p
2

(4− 2
p
2)Ψ

+
1

4− 2
p
2

!
+
d4minocta

8n2
tΨ

!
. (4.50)

In (4.50), besides the random variable d2min, there is additionally Ψ that varies.

Regarding the context of WBAN, where the distance between the two local nodes

is effectively small compared to the distance to the external access point, and for

an indoor path loss environment then GSC >> GCD. Moreover, all channels are

assumed to follow the Rayleigh distribution. Consequently, the variable Ψ in (4.47)

could be approximated as a constant as

Ψ = |h12|2|g|2 + |h22|2|g|2 +N0 ⇡ 2
2EDGCD

2ELGSC +Nc0

+N0. (4.51)

The complete form of ergodic capacity will take into account the two partial

capacities above given in (4.46) and (4.50). Finally, the average ergodic capacity
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is obtained by integrating the ergodic capacity with respect to the pdf of d2min,

representing the statistical channel variations.

C̃ =

Z 1

0

log2

 
1 +

p
3 + 3

2nt

x

!
f r1
d2min

(x)@x +

Z 1

0

log2

 
1+

x

nt

 
3− 2

p
2

(4− 2
p
2)Ψ

+
1

4− 2
p
2

!
+

x2

8n2
tΨ

!
f octa
d2min

(x)@x.

(4.52)

4.4.2 Outage probability

In this subsection, we aim to analyze the outage event and the outage probability

proposed in [74]. The outage event is defined as the mutual information falls under

a predefined rate R, meaning C < R. Based on the capacity analysis above, we

could derive the outage event separately for the two forms of precoder. Afterwards,

the outage probability is established and computed in function of the pdf of d2min.

4.4.2.1 The case of Fr1

The outage event for the spectral efficiency R is defined as

Cr1 = log2

 
1 +

p
3 + 3

2nt

d2min

!
< R. (4.53)

, d2min < (2R − 1)
2ntp
3 + 3

. (4.54)

Meaning that the outage probability in this case will be

P r1
out = P{d2min < (2R − 1)

2ntp
3 + 3

} =

Z (2R−1)
2ntp
3+3

0

f r1
d2min

(x)@x. (4.55)

4.4.2.2 The case of Focta

With the same definition of outage event, we obtain

Cocta=log2

 
1 +

d2min

nt

 
3− 2

p
2

(4− 2
p
2)Ψ

+
1

4− 2
p
2

!
+
d4min

8n2
tΨ

!
<R (4.56)

, acd
4
min + bcd

2
min + cc < 0, (4.57)

where 8
>>><
>>>:

ac =
1

8n2
tΨ

bc =
1
nt

⇣
3−2

p
2

(4−2
p
2)Ψ

+ 1
4−2

p
2

⌘

cc = 1− 2R.

(4.58)
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After resolving the inequality in (4.57), we obtain d2min <
−bc+

p
b2c−4accc

2ac
. As a result,

the outage probability for this precoder is written as

P octa
out = P{d2min <

−bc +
p
b2c − 4accc
2ac

} =

Z −bc+

p
b2c−4accc

2ac

0

f octa
d2min

(x)@x. (4.59)

The integrals in (4.55) and (4.59) can be trivially computed since the pdf f r1
d2min

and f octa
d2min

is already provided in the equations (4.32) and (4.34). The total outage

probability in a DMP amplify and forward system therefore could be derived as

Pout = P r1
out + P octa

out . (4.60)

In the considered distributed scheme, the theoretical results do not only evaluate

the system performance, but they also help to achieve an efficient power allocation.

As mentioned in the chapter 2, the power allocation can be derived by numerical

search. In other words, the simulation is carried out for many values of power

allocation parameter β then we choose among them the β0 value that proposes the

best system performance, in terms of BER. Herein, since the analytical ergodic

capacity and outage probability are now available, we are able to allocate the power

w.r.t. these theoretical figures of merit in the next subsection.

4.4.3 Power allocation

The power allocation strategy is aiming to optimize the system performance with

respect to a pertinent criterion by dividing the power between the two transmis-

sion phases. That means the transmission power could be adapted to the system

configuration. For example, when the cooperative node moves closer to the source

node, the local phase should be poured less energy, and vice versa. The criterion

could be diverse depending on the desired performance such as minimizing of total

transmit power, maximizing the network lifetime, maximizing the channel capacity,

minimizing the error rate [34, 40, 54, 96, 103]...

4.4.3.1 Capacity based power allocation

In this study, we introduce the power allocation with the objective of obtaining

maximum capacity for a certain total transmit power. At this point, the problem
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statement can be described as

max
βC
0

C̃

subject to E = EL + ED = constant .

(4.61)

The theoretical capacity result given in subsection 4.4.1.3 is used to evaluate the

performance of the considered system efficiently, for many values of β from 0 to

1. Then the optimal power allocation βC
0 offering the maximum ergodic capacity is

selected.

4.4.3.2 Outage based power allocation

Similarly, this approach optimizes the outage probability, based on the analytical

result given in subsection 4.4.2, as follows

min
β
Pout
0

Pout

subject to E = EL + ED = constant .

(4.62)

The βPout

0 is obtained by choosing, among many values of β, the one that achieves

the minimum outage probability, evaluated according to 4.60.

4.4.3.3 Simulation results

In the figure 4.7, we plot the ergodic capacity for the considered DMP-AF. From the

analysis of the pdf of d2min in section 4.3, the integral in (4.52) could be numerically

computed. For equal power allocation (i.e EPA), the parameter β is equal to 0.5 as

defined in section 2.2.1.

In this figure, the comparison between the numerical and theoretical approach

is demonstrated. We can see there is only a slight difference between the theoretical

ergodic capacity and the simulation result. This slight difference is due to the

approximation in the equation (4.51). In addition, we illustrate how beneficial the

capacity based optimal power allocation is w.r.t. the EPA case. As we can see, 3 dB

of transmit power can be reduced when OPA is carried out.

114



−2 0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

EbN0

E
rg

o
d

ic
 c

a
p

a
c
it
y
 o

n
 b

it
/s

/H
z

 

 

Capacity β =0.5 simul

Capacity β =0.5 approx
Capacity β

0
 simul

Capacity β
0
 approx

Figure 4.7: The ergodic capacity performances: comparison between the equal and

optimal power allocation, dSD = dCD, dSC = 5%dSD

We define two rates: R = 1 and R = 2 then illustrate the outage probability

behavior in the Figure 4.8. Herein, we consider also two power allocations: EPA

with β = 0.5 and OPA βPout

0 . As we can see, the outage probability results for the

two approaches are totally matching. In addition, this figure points out how benefit

the power allocation provides in terms of outage probability. Regarding the OPA,

3 dB is gained w.r.t. EPA to obtain the same outage performance.
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Figure 4.8: The outage probability for simulation and theoretical approximation

with β = 0.5 and two values of threshold R=1; 2 bit/s/Hz; the network is set as

dSD = dCD, dSC = 5%dSD; blue and black color denote for the OPA and EPA,

respectively; the solid line with mark denotes the simulation result, and the dash

line denotes the theoretical result.

Using the close form of the average capacity in (4.52), and the outage proba-

bility in (4.60), the optimization problem can be established rapidly to address out

the value of βC
0 , and βpout

0 . In figure 4.9, we plot these values obtained thanks to

simulation and theoretical approaches, such that the capacity is maximized and the

outage probability is minimized. As seen in this figure, the theoretical results of

the optimal power allocation parameter are totally identical in both approaches.

However, there is a small difference with the simulated results.
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Figure 4.9: Values of β0 versus Eb/N0 to obtain the maximum capacity in the context

of WBAN:dSD = dCD, dSC = 5%dSD

4.5 Conclusion

Thanks to the amplify and forward protocol, the transmitted signal on the local

transmission is directly a precoded signal, which is a liner combination of two sym-

bols. By this way, one time slot is reduced, improving the spectral and energy

efficiency. In addition, the precoding design is performed thanks to an equivalent

transformation of the system model and the local channel is thus taken into account

in the precoding matrix. The performance results pointed out the advantage of the

DMP-AF in terms of spectral efficiency, and energy consumption with respect to

the DMP-DF.

In chapter 2, we evaluated the BER performance of the considered DMP-AF

by numerical method. Afterward based on that, the power allocation is computed

numerically. To complement the performance evaluation, we propose in this chap-

ter the theoretical study of the performance analysis. We investigate the statistical

distribution of the minimum Euclidean distance on the equivalent system model.

Based upon that, the ergodic capacity and the outage probability are derived ana-

lytically. The results show the judiciousness of our methodology. Considering the
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power allocation strategy, we can adopt either the maximum ergodic capacity based

approach or the outage probability. The result is that we gain 3 dB in comparison

with an equal power allocation system.

118



Conclusions and future works
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The development of high-tech medical health-care and the modernization of per-

sonal devices are leading to the intensive growth of WBAN, where the energy con-

straint is very important. Low-power wireless systems do not only enable long term

operation, but also ensure the safety of body tissues. On the other side, the micro

electronic technology is more and more reaching a new level, which offers miniature

sizes for ultra low power devices. Since the energy consumption on electrical circuit

can be coped with, the wireless transmission consumption becomes the most crucial

issue to obtain an ultra-low-power system.

Distributed scheme proposition

This thesis takes place within the BoWI project, whose aim is to develop a new gen-

eration of WBAN. The wireless communication among the sensor nodes in BoWI is

focused, and the most important objective is the design of an ultra-low power con-

sumption system. In such a context, the wireless communication can be decomposed

into two categories: intra-BAN and extra-BAN. As far as the extra-BAN is con-

cerned, we proposed the DMP scheme by adopting the minimum Euclidean distance

based precoding into the WBAN via cooperation. Two forwarding schemes were con-

sidered: Decode-and-Forward and Amplify-and-Forward. Regarding the DMP-AF,

we also investigated various configurations based on different local exchanges as well

as precoding design. By simulations, we pointed out the out-performance of both

DF and AF DMP in terms of error rate. Besides, thanks to the exploitation of

spatial multiplexing in the precoding transmission phase, the DMP was shown to

offer a gain in spectral efficiency with respect to the cooperative relay or STBC.

Especially with the DMP-AF, we even reached the data rate of a non-cooperative

transmission.

Energy efficiency investigation

In terms of energy efficiency, we addressed out the comparison among various possi-

bilities including SISO, SIMO, and distributed STBC. Considering the energy con-

sumption, two elements were taken into account: the circuit consumption and the

transmit consumption. The transmit consumption is affected firstly by the perfor-

mance of the considered system, then by the distance separating the source and
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destination. Differently, the circuit consumption is determined by the complexity

of transmission protocol. For that reason, the SISO transmission takes the advan-

tage according to the highest simplicity. However, assuming a powerful data station

without energy constraint at the destination, we also considered the SIMO trans-

mission with the same circuit consumption as SISO transmission. Another factor

that affects the consumption is the data rate of the considered scheme, or in other

words the spectral efficiency, which defines how fast the data is transmitted for a

given scenario. Due to the nature of a point-to-point system, the SISO and SIMO

achieve the highest spectral efficiency, whereas this parameter is divided by two in

the distributed STBC owing to the two transmission phases. To summarize, the

SIMO transmission is the best choice for small distances where the circuit consump-

tion is dominating, meanwhile for medium and slightly high distances, the DMP

takes the advantage. For very long distances, where the system requires ultimately

a lot of power for the wireless transmission. The distributed STBC, with very good

BER performance, consumes less power transmission than the remaining schemes,

thereby might be selected.

Performance analysis

We also carried out the performance analysis for both DMP-DF and DMP-AF

schemes, and different approaches were adopted for each forwarding technique. For

the DMP-DF, we transformed the system to an equivalent interfering system, where

the interference appears due to the decoding error event at the cooperative node.

Based on that, the error probability at the destination was analyzed according to

the distribution of Euclidean distance. However, the interference is the obstacle

that prevented us obtaining a closed form for error probability. For this reason, we

derived an upper bound which proposes the same behavior as the system BER. This

upper bound is mandatory and sufficient not only to evaluate the considered DMP

system but also to perform the power allocation, i.e. minimize the error rate by rea-

sonably pouring power among both local exchange phase and precoding transmission

phase.

For the DMP-AF, the system model was expressed according to an equivalent
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model, incorporating the effects of the local exchange phase. Consequently, the

effective channel was established, before the statistical pdf of dmin was computed.

Through this analysis, we carry out dmin-based performance evaluations such as er-

godic capacity and outage probability. These performance criteria were expressed

in function of dmin, then derived theoretically thanks to the available pdf. Another

purpose of this work is again to optimally allocate the power resource in the dis-

tributed scheme. Herein, we carried out the power allocation strategy based on the

capacity maximization and outage probability minimization. The results highlighted

the outstanding performance of the optimal power allocation compared to the equal

one.

New maximum likelihood decoder with side information

We considered an evolution for the decode-and-forward relaying when side informa-

tion, namely the probability of erroneously decoding the signal at the cooperative

node, is available. This decoding information can be used at the destination in our

new ML decoder, where the computation of log-likelihood ratio allows to detect

the income signal with less failure probability. However, a full use of this side in-

formation affects crucially the receiver complexity. Therefore, a simplification was

obviously necessary to obtain a reasonable trade-off between complexity and perfor-

mance. We suggested two simplifications: neglecting insignificant terms and max-log

approximation. The comparisons in terms of BER showed that the side information

offers a significant advantage only when the distance between the source and the

cooperative node is large enough. Moreover, the max-log ML decoder was shown

to achieve performance close to the full proposed ML decoder, while substantially

reducing complexity.

Future works

Extension of the DMP

This thesis was proposed in the context of BoWI project, focusing on the cooperative

communications for WBAN. If the suggested DMP scheme was therefore investigated
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in this context, in our point of view the DMP is a promising cooperative technique

for large-scale WSN as well as other communication systems. In a general WSN,

we would probably need to study the extension of a DMP system with a larger

number of nodes participating at both transmission and reception sides. The system

model will undoubtedly be more complex regarding the total channel and noise at

the destination. In terms of energy consumption, the circuit consumption will be

augmented due to multiple nodes operating. Moreover, the spectral efficiency is also

an important factor that one needs to set an eye on. Regarding the DMP-AF, the

multiple relays will disable the advantage of Local Precoded Transmission, because

the precoded signal for each relay is different. Thus, we cannot gain the spectral

efficiency when the number of relay is larger than 1.

On the other hand, the extension about the modulation level can be established.

Thereby, the performance analysis of DMP-DF will become more complex due to

diverse possibilities of error decoding at the relays. However, we can consider fix-

ing the modulation for the local phase as QPSK, and the remaining phase can be

adjusted to higher modulation level.

As we can see in both DMP-AF and DMP-DF, after transforming equivalently

the system model, we obtain the new noise (DMP-AF) or new interference plus noise

(DMP-DF). But in the considered system, these factors were not taken into account

for the precoder design. If in the noise whitening step during the design, we take

into account the effective noise plus interference, the system performance may be

enhanced.

Perspectives on DMP-DF

Regarding the new ML decoder proposed in the context of DMP-DF, the sphere

decoding algorithm can be considered as a sub-optimal solution. Unlike the proposed

simplifications, this method reduces the complexity by searching inside a sphere

covering the received point (Figure 4.10). The trade-off between complexity and

performance can be flexibly obtained depending on the considered sphere radius

unlike the static one proposed in section 3.5.
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Figure 4.10: Sphere decoding principle

Intra-BAN communication

The intra-BAN communication is not a simple issue due to the channel model of

body area network and the body movements that make the network changing ran-

domly. As mentioned in the Chapter 1, some techniques such as intra-body com-

munication, power control, RSSI-based scheduling, etc, can be listed as candidates

for enhancing the performance, thereby reducing the energy consumption. In recent

years, wake-up radio solutions were achieved and may become the future for the com-

munication in many domains such as WSN, Internet of Things, wearable devices...

The main idea is to avoid wasting energy by using a receiver dedicated to sense a

wake-up command from the co-ordinator (see Figure 4.11). In WBAN context, the

authors in [81], [57] designed a Wake-Up Receiver (WUR) that is capable to trigger

the main radio transceiver with a specific address. Besides the constraint on the

ultra-low power, the WUR is required to reject false wake up signal (meaning to de-

tect correctly the wake up signal or non wake up signal). The addressing capability

is also considered as an important need to obtain the efficiency and flexibility.
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Figure 4.11: Wake Up Radio overview

Regarding the Zyggie prototype (proposed in BoWI project), there are many op-

erating phases: RSSI phase, measuring phase, communicating phase. The perspec-

tive wake up radio module would probably wake up not only the main transceiver,

but also the other modules such as sensors, RSSI module, Ultra Wideband distance

measuring module... Thanks to the WUR, the communication can be performed

when the RSSI/LQI reach an advantageous value. The comparison between this

work and other energy efficient MAC protocol needs to be investigated in the fu-

ture.
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Appendix A

Calculation of E{|f21|4} and

E{|f22|4}

In order to derive the bound in the equations (3.33), (3.34), (3.35), this appendix

carries out the calculation of E{|f21|4} and E{|f22|4} for the two cases of precoder

Fr1 and Focta.

A.1 The case of Fr1

F=FvFr1=

0
@fv11 fv12

fv21 fv22
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0
@
q

3+
p
3
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0 0
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ei
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12fv21
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(A.1)

Thus, we obtain

8
<
:

f21 =
q

3+
p
3

6
fv21 ) |f21| =

q
3+

p
3

6
|fv21|

f22 =
q

3−
p
3

6
ei

π
12fv21 ) |f22| =

q
3−

p
3

6
ei

π
12 |fv21|

. (A.2)

To calculate Er1{|f21|4} and Er1{|f22|4}, it is sufficient to establish the expectation

of |fv21|4. Due to the fact that the norm of the entries of Fv distributes uniformly

in [0, 1], the pdf of |fvij|2 can be expressed as

f|fvij |2(x) =

8
<
:

1 if 0  x  1

0 otherwise.
(A.3)
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Then the calculation is derived as

E{|fvij |4} =

Z 1

0

x2@x =
x3

3

∣∣∣∣
1

0

=
1

3
. (A.4)

Finally, the expectation of Er1{|f21|4} and Er1{|f22|4} are written as follows

8
<
:
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⇣
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1
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⇣

3−
p
3

6

⌘2
1
3
= 2−

p
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. (A.5)

A.2 The case of Focta

F = FvFocta =
1p
2
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In this case, f21 = 1p
2
(fv21 cos − fv22 sin ) and f22 =

1p
2

(
fv21 cos e

iπ
4 + fv22 sin e

iπ
4

)
, thus

|fv21|2 = 1
2

(
|fv21|2 cos2  + |fv22|2 sin2  − sin cos (fv⇤21fv22 + fv21fv

⇤
22)
)

|fv22|2 = 1
2
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⇤
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)

(A.7)

then we obtain

|fv21|4 =
1

4

(
(|fv21|2 cos2  + |fv22|2 sin2  )2 + sin2  cos2  (fv⇤21fv22 + fv21fv
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)
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⇤
22)

2

+2 sin cos (fv⇤21fv22 + fv21fv
⇤
22)(|fv21|2 cos2  + |fv22|2 sin2  )

)
.

(A.8)

Since the entries of matrix Fv are independent, therefore E{fv⇤21fv22} = E{fv21fv⇤22} =

0. Then, the expectation of |fv21|4 is equal to the expectation of |fv22|4 and is ex-
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pressed as

Eocta{|f21|4} =
1

4
E
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(A.9)

The expectation of |fvij|2 is derived easily as
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Therefore, the equation (A.9) becomes
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In the next step, we provide the method to calculate the expectation of sin2  cos2  .

Firstly, we have

tan =

p
2− 1

tan γ
, sin2  

cos2  
=

3− 2
p
2

tan2 γ
. (A.12)

Easily, we can derive 8
<
:

cos2  = sin2 γ
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p
2) cos2 γ+1

sin2  = (3−2
p
2) cos2 γ
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p
2) cos2 γ+1

. (A.13)

Afterward, the product sin2  cos2  is determined as
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p
2) sin2 γ cos2 γ

((2− 2
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1− cos2 2γ

(cos 2γ −
p
2)2
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By definition, we have 8
<
:

λ1 = ⇢2 cos2 γ

λ2 = ⇢2 sin2 γ,
(A.16)

where λ1 and λ2 are two eigenvalues of matrix HH†. Due to this fact, the joint pdf

of λ1 and λ2 is provided as [36]

fλ1,λ2(λ1, λ2) = e−(λ1+λ2) (λ1 − λ2)
2 . (A.17)
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As shown in the equation (A.15), to derive the expectation of sin2  cos2  our

objective is to determine the distribution law of cos 2γ. For this reason, we take the

variable substitution as 8
<
:

Γ = λ1 + λ2 = ⇢2

Ω = λ1+λ2

λ1−λ2
= cos 2γ

. (A.18)

As a result, we set the joint pdf of Γ and Ω as follows

fΓ,Ω(Γ,Ω) = fλ1,λ2
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Thus, the probability density function of Ω = cos 2γ is derived as

fΩ(Ω) =

Z 1

0

1

2
Ω2Γ3e−Γ@Γ = 3Ω2. (A.20)

We notice that, because 0  γ  ⇡
4
, Ω distributes in the interval [0 1]. However,

for the case of Focta, when γ0  γ  ⇡
4
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⌘
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Then the expectation of sin2  cos2  in the equation (A.15) is expressed as
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Finally, we obtain
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Appendix B

Proof of pdf of d2
min

for precoder

Focta

We take the change of variables for the integral in (4.34) as below
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Then, the equation (4.34) can be rewritten as
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As a result, we can rewrite the pdf of d2min in the case of Focta as
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where 8
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>>>>>>>>>>>>>>>>:
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Observing in equation (B.4) that we have the integral form
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solved in [73], the solution is expressed as
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where A0 =
R 1
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e−(at+ b
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) 1
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dt, A1 =

R 1
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dt are of similar form than zero

and first order modified Bessel function of second kind, respectively; and the coeffi-

cients !l, βK0 , βK1 are determined in [73] as follows:
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where ⌧a = µ−3 + 2!−2 + a!−3, ⌧b = µ−2 + a!−2, ⌧c = µ−1, ⌧d = µ0 − b!2, ⌧e =

µ1 − 2!2 − b!3.
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In the next step, we need to calculate the integral
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Obviously, this form is the same as K0(x), the zero order modified Bessel function

of the second kind. On the other hand, t0
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where eKd(c, u) denotes the approximation:
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Let us now consider the integral
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Applying a similar method as for A0 in deriving the close form of A1, we get
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where K1(x) denotes te first order modified Bessel function of the second kind and

ek1(c, u) = u
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sertation, University of Poitiers, 2012.

[56] G. Madi, B. Vrigneau, A.-M. Poussard, R. Vauzelle et al., “Cooperative MIMO

precoders for energy-efficient transmission in wireless sensor network,” Pro-

ceedings of EusipCo, 2011.

[57] S. J. Marinkovic and E. M. Popovici, “Nano-power wireless wake-up receiver

with serial peripheral interface,” IEEE Journal on Selected Areas in Commu-

nications, vol. 29, no. 8, pp. 1641–1647, 2011.

[58] D. Miniutti, L. Hanlen, D. Smith, A. Zhang, D. Lewis, D. Rodda, and

B. Gilbert, “Narrowband channel characterization for body area networks,”

IEEE P802, pp. 15–08, 2008.

[59] S. K. Mohammed, E. Viterbo, Y. Hong, and A. Chockalingam, “Mimo precod-

ing with x-and y-codes,” IEEE Transactions on Information Theory, vol. 57,

no. 6, pp. 3542–3566, 2011.

[60] A. Moldovan, G. Madi, B. Vrigneau, T. Palade, and R. Vauzelle, “Different

Criteria of Selection for Quantized Feedback of Minimum-Distance Based

MIMO Precoder,” ICWMC, p. 254 to 258, Jun. 2012. [Online]. Available:

https://hal.archives-ouvertes.fr/hal-00714218

141



[61] S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour,

“Wireless body area networks: A survey,” IEEE Communications Surveys

& Tutorials, vol. 16, no. 3, pp. 1658–1686, 2014.

[62] Q. Ngo, O. Berder, and P. Scalart, “Minimum euclidean distance based pre-

coders for MIMO systems using rectangular QAM modulations,” IEEE Trans-

actions on Signal Processing, vol. 60, no. 3, pp. 1527–1533, 2012.

[63] Q.-T. NGO, “Generalized minimum euclidean distance based precoders for

mimo spatial multiplexing systems,” Ph.D. dissertation, University of Rennes

1, 2011.

[64] Q.-T. Ngo, O. Berder, and P. Scalart, “Minimum euclidean distance-based

precoding for three-dimensional multiple input multiple output spatial multi-

plexing systems,” IEEE Transactions on Wireless Communications, vol. 11,

no. 7, pp. 2486–2495, 2012.

[65] Q.-T. Ngo, O. Berder, B. Vrigneau, and O. Sentieys, “Minimum distance

based precoder for MIMO-OFDM systems using a 16-qam modulation,” IEEE

International Conference on Communications (ICC), pp. 1–5, 2009.

[66] T.-D. Nguyen, O. Berder, and O. Sentieys, “Cooperative MIMO schemes opti-

mal selection for wireless sensor networks,” IEEE Vehicular Technology Con-

ference Spring (VTC-Spring), pp. 85–89, 2007.

[67] ——, “Impact of transmission synchronization error and cooperative reception

techniques on the performance of cooperative mimo systems,” IEEE Interna-

tional Conference on Communications (ICC), pp. 4601–4605, 2008.

[68] V.-H. Nguyen, O. Berder, C. Langlais, and B. Vrigneau, “Distributed mini-

mum euclidean distance based precoding for wireless sensor network,” Interna-

tional Conference on Computing, Networking and Communications (ICNC),

pp. 918–923, 2015.

[69] V.-H. Nguyen, B. Vrigneau, M. Bhatnagar, O. Berder, and C. Langlais, “Dis-

tributed precoding for decode-and-forward protocol based wireless sensor net-

142



works,” To be submitted to IEEE Transaction on Wireless Communication,

2015.

[70] V.-H. Nguyen, B. Vrigneau, C. Langlais, and O. Berder, “On the performance

of distributed precoding amplify-and-forward in wireless body area sensor

network,” submitted to IEEE International Conference on Communications

(ICC), 2016.

[71] M. OBERLE, “Low power system-on-chip for biomedical application,” Ph.D.

dissertation, IIS/ETH Zurich, 2002.

[72] C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov, “System architecture of a

wireless body area sensor network for ubiquitous health monitoring,” Journal

of Mobile Multimedia, vol. 1, no. 4, pp. 307–326, 2006.

[73] O. J. Oyedapo, B. Vrigneau, and R. Vauzelle, “Performance analysis of closed-

loop mimo precoder based on the probability of minimum distance,” IEEE

Transactions on Wireless Communications, 2014.

[74] L. H. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic consider-

ations for cellular mobile radio,” IEEE Transactions on Vehicular Technology,

vol. 43, no. 2, pp. 359–378, 1994.
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