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    Flexible electronic is a novel challenge for the electronic market and attract numerous 

research laboratories and industrial companies. The main applications of flexible electronic 

include rollable displays (LCD, OLED and EPD), RFID tags and flexible sensors. Beside 

low temperature compatible with flexible substrate, these applications require also high field 

effect mobility, good electrical stability and high flexibility of thin film transistors (TFT).  

    However, the conventional amorphous silicon TFT (a-Si:H TFT) used for industry TFT-

LCD has well-known drawbacks as low field effect mobility and poor electrical stability. 

Therefore, several novel low temperature TFT technologies such as organic TFTs, metallic 

oxide TFTs and crystalline silicon TFTs have been emerged in order to obtain better 

electrical performances. 

    All these technologies have their advantages and drawbacks. Organic TFTs (OTFT) can 

have extreme flexibility and can be fabricated with several low-temperature technologies 

such as evaporation, spin-coating or inkjet-printing. Their mobility has been largely 

increased in the recent years. But TFTs are still suffered from several problems. Metallic 

oxide TFTs provide very high mobility. The metallic oxide semiconductors are transparent 

and can be deposited at low temperature. But before their commercialization, the electrical 

instability under the positive or negative bias stress should be carefully studied. Low 

temperature polycrystalline silicon (LTPS) TFTs have high mobility and good electrical 

stability, but laser crystallization increases their fabrication cost and limits their uniformity.  

    The present work focuses on the microcrystalline silicon technology. In IETR laboratory, 

microcrystalline silicon technology on glass and plastic substrates has been developed. The 

deposition has been performed at a temperature lower than 180 °C in order to be compatible 

with plastic substrate such as PEN. These flexible and transparent substrates are provided by 

DuPont Teijin Film. Precedent works in IETR have already demonstrated the possibility to 

fabricate microcrystalline silicon TFTs on this PEN substrate. This thesis deals with the 

improvement of field effect mobility, electrical stability and mechanical flexibility of these 

TFTs. The organization of this thesis is shown below:  

    In the first chapter, the state-of-the-art for flexible electronic applications will be 

introduced. Flexible displays, RFID tags and flexible sensors will be described. Afterwards, 
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different flexible substrates used for these applications will be presented. Their properties 

such as maximum process temperature, transparency and mechanical flexibility will be 

detailed. Finally, different low-temperature TFT technologies, including organic TFT, 

metallic oxide TFT and silicon TFT, will be presented by discussing their semiconducting 

principles, electrical performances and limitations.   

    In the second chapter, the fabrication process of microcrystalline silicon TFTs will be 

described. First, the technologies of thin film materials (especially for undoped 

microcrystalline silicon) deposition and characterization will be detailed. Afterwards, an 

introduction of microcrystalline silicon TFTs technology will be given. This introduction 

includes the fabrication steps, the basic working principles and characterization of TFTs. and 

will be finished by the electrical characteristics of microcrystalline silicon TFTs on glass and 

on plastic substrate presented by previous works in IETR.    

    Before the third and fourth chapter, a state-of-the-art and problematic of microcrystalline 

silicon TFT technology will be presented. This short introduction will summarize the 

previous works on flexible microcrystalline silicon TFT and give the motivation of the 

studies in the third and fourth chapter. 

    In the third chapter, electrical stability and mechanical flexibility of microcrystalline 

silicon TFTs will be studied. Firstly, the TFTs will be fabricated on glass substrate. They 

will be electrically stressed under different gate voltages at different temperatures in order to 

explain the mechanism of electrical characteristics shift of TFTs. Secondly, the TFTs will be 

fabricated on PEN substrate. They will be electrically characterized during mechanical 

bending, for both tension and compression for different curvature radii. The variation of their 

electrical characteristics under mechanical bending will be studied and discussed. The 

minimum curvature radius of TFTs will be also determined in this part.    Moreover, the 

method to obtain lowest possible curvature radius of TFTs will be discussed in the end of 

this chapter.  

    In the fourth chapter, the microcrystalline silicon TFTs will be fabricated with different 

gate insulator materials in order to increase field effect mobility of TFTs. The gate insulator 

materials include silicon oxide deposited by sputtering and ECR-CVD, alumina deposited by 
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thermal ALD and silicon nitride deposited by PECVD. Electrical characteristics of TFTs 

using these gate insulators will be presented and discussed. The possibility of increasing 

field effect mobility of microcrystalline silicon TFTs to at least 5 cm²/Vs, which is the 

mobility needed for AMOLED, without sacrificing electrical stability, will be discussed at 

the end of this chapter. 
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1. Introduction 
    The display industry has benefited from a large development in the past 20 years. Today‟s 

display devices trend to be more bright, flat, with high resolution and efficient. The flexible 

displays fabricated on the plastic or paper substrate, turned out to be a very interesting target 

for the future. Moreover, the other applications of flexible electronics, such as RFID and 

flexible sensors, have attracted large attention of numerous research laboratories supported 

by industries.  To fabricate electronic devices on flexible substrate which could not be 

maintained at high temperature, there are 2 different types of technologies. The first one is to 

fabricate devices on glass or silicon substrate and then transfer to flexible one (paper, 

plastic). For this method, the low temperature fabrication is not necessary but the cost is 

higher. The second one is to fabricate directly on the flexible substrate. For these 

technologies, a low temperature thin film transistor (TFT) technology compatible with such 

substrate, without sacrificing electrical or mechanical performance, is needed. With this 

background, several novel low temperature TFT technologies such as organic TFTs, metallic 

oxide TFTs and silicon TFTs have been emerged envisaging the challenge of 

commercialization, not only for flexible displays, but also for the other applications of 

flexible electronics. These TFT technologies have different mechanisms, performances, 

advantages and drawbacks. In this chapter, the applications and the properties of such low 

temperature TFT technologies are introduced.    

2. Low temperature TFTs for display applications 

2.1 TFTs for liquid crystal display 

    The TFT LCDs have superiors performances compared to CRT (cathode ray tube) 

displays in terms of flatness, lightness, and low power consumption. LCD has replaced CRT 

and became the leading display technology in recent year .  

    The configuration of a LCD display panel is shown in figure 1.1 [1]. The Liquid crystal is 

deposited between the two polarization panels, one is covered by uniform conductive layer 

while another is covered by the TFT matrix. The TFT matrix containing lines and columns 
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plays an important role in the LCD operation. The TFTs are located between each line and 

column respectively to control the LC pixel. The TFT is also connected with a capacitance. 

So the role of TFT is: (1) in the on state of TFT, data current goes though the TFT to drive 

the liquid crystal of each pixel. (2) In the off state of TFT, the voltage applied on the liquid 

crystal in the passing state is kept by the capacitor until all the pixels are addressed. Figure 

1.2 shows typical structure and manufacturing process of TFT matrix for LCD display [2].   

    To drive a LCD display panel, the voltages should be applied on the lines and columns 

following a regular timing. As shown in Figure 1.3, when a positive voltage (should be 

superior to the threshold voltage of TFT) is applied to the gate electrode, which is connected 

to the scan line, TFT will be turned on. Then the data voltage can be delivered from data line 

to LC and storage capacitor. On the other hand, if there is no voltage applied to the scan line, 

the TFTs are in their blocked state. The charges kept in the capacitors, which are connected 

with the drain of TFTs, can make a conservation of precedent pixel image.    

 

Figure 1.1: Structure of TFT-LCD [1] 

    For high resolution or large area LCD displays, high mobility of TFT is needed to 

maintain the display quality because of the short response time required for each pixel. With 

high mobility, charge carriers can move easily in the device to make a reduction of delay 

time of pixel refreshing. High stability and good uniformity are also demanded for the 

display long-term reliability and for the large size display, respectively.  
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Figure 1.2: Typical TFT matrix structure and manufacturing process [2] 

 

Figure 1.3 Pixel circuit for TFT-LCD [3]   

    Today, most of industrial productions of TFT-LCD displays are based on hydrogenated 

amorphous silicon (a-Si:H). They are inexpensive, reliable, and can be fabricated at low 

temperature [4]. However, the application of a-Si:H TFTs in the large area devices is limited 

by their low carrier mobility and their threshold voltage shift.  Therefore, alternative TFT 

technologies with higher carrier mobility and electrical stability are needed. In the recent 

years, organic TFT, metallic oxide TFT, low temperature poly-silicon TFT (LTPS TFT) and 
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microcrystalline silicon TFT (µc-Si TFT) technologies have been developed. Their features 

and advantages will be detailed thereafter.  

2.2 TFTs for OLED  

    With their high brightness, low power consumption, wide viewing angle and so on, 

OLEDs make themselves a leading next-generation technology compared to the other flat 

panel displays [5]. Moreover, an active-matrix OLED (AMOLED) has lower power 

consumption and faster refresh rate than other driving system.   

The structure of OLED unite is shown in figure 1.4 [6]. The organic material is sandwiched 

between two conductors (anode and cathode). When a voltage is applied on the electrodes, 

electrons are injected from cathode and holes are injected from anode. The recombination of 

electron-hole is taken place into the emissive layer and release energy to produce the light.    

 

Figure 1.4: OLED unit pixel structure [6] 

    Since the luminance of OLED is proportional to the driving current, two TFTs at least are 

needed in order to supply a constant current during each frame period. Figure 1.5 shows a 

conventional pixel structure [7]. One transistor (T1) is switched on to charge a capacitor and 

the other (T2) deliver a constant current from the capacitance voltage to illuminate the pixel. 

In most of researches, more complicated pixel circuits are always designed using 3 TFTs, 4 

TFTs and even more. (Figure 1.6) [8]. The TFT should have long-term stability under bias 



                              Chapter 1: Microcrystalline silicon thin film transistors: Applications and technologies  

16 

 

stress and ambient environment.  Electrical instability could lead to a threshold voltage shift 

that causes a reduction in the pixel luminance. In addition, the high mobility of TFT is also 

needed to realize a large size OLED display. 

 

Figure 1.5: AMOLED conventional 2-TFTs pixel structure [7] 

 

Figure 1.6: A 3-TFTs OLED pixel structure [8] 

    The a-Si:H TFT AMOLED suffers from their low carrier mobility and high threshold 

voltage shift which are related to the display degradation. One method to solve this problem 

is to use more complicated configurations. This way leads to an increase of electronics 

devices surface. The aperture ratio, which means the ratio of electronic device surface to 

total display surface, is thus sacrificed. In addition, an alternative technology with higher 

mobility and mainly better stability are needed. The µc-Si TFT could be an alternative 

technology. Indeed, we demonstrated the possibility to use µc-Si TFT in an AMOLED 

circuit with Thomson R&D France [9].  
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2.3 Quantum-dot light emitting display (QLED) 

    Since the first report in 1994 [10], quantum-dot LEDs have attracted much attention in the 

past years. Thanks to their unique properties, such as solution process [11], low energy 

consummation, compatibility with flexible substrate, tunable emitting wavelength over the 

entire visible spectrum [12] and improved color saturation, the quantum-dot LEDs become 

an interesting candidate for the application of thin film displays. 

    The mechanisms of quantum-dot light emitting diode (QLED) and OLED are very closed. 

The only difference is the material used as the active luminescent layer. For OLED display, 

organic material is used as the luminescent layer. For the QLED display, the luminescent 

layer is made of particularly treated II- VI or III-V component based semiconductor. Figure 

1.7 shows an example of a blue QLED device.  

 

Figure 1.7: Structure of blue quantum-dot LED [13] 

    In this structure, the ZnCdS/Zns quantum dot (QDs) is used as active luminescent layer. 

The ZnO NPs, PVK and PEDOT:PSS are used as electron transport , hole transport and hole 

injection layer, respectively. In the other report, CdSe/Cds QDs [14] and ZnCdSeS QDs [11] 

have been used as QDs luminescent layer. In the common QDs fabrications, different QDs 

size can be obtained by controlling the reaction temperature and time. Moreover, the band-

gap of QDs is governed by their size. Therefore, size-controlled tunable light emitting can be 

achieved. This might be the most interesting property of QLED device.  
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   Since their first report in 1994 [10], the light emitting efficiency of QLEDs has been 

increased by a factor of more than 1800, from less than 0.01% to around 18% [Yasuhiro 

Shirasaki Nature Photonics 7 13-23 (2013) ], which are comparable to those of OLEDs. The 

major challenge is their lifetime. Today‟s QLEDs lifetime at the initial brightness can reach 

1,000 hours while more than 10,000 hours is needed for displays.  

   The Southeast University of Nanjing, China, has begun their studies on QLEDs very 

recently. They developed an all solution-processed method to fabricate blue and green 

QLEDs by optimizing the thickness of all the electron transport, the hole transport and the 

hole injection layers [11]. The collaboration between Southeast University and University of 

Rennes 1gives us a possibility to carry out on a novel TFT application: the QLED display 

addressed by microcrystalline silicon TFT fabricated at low temperature. 

3 TFTs for Flexible electronics 

3.1 Flexible displays 

The flexible displays have been extensively studied by a large number of electronics 

manufacturers to transfer this concept to the market in the recent years. A lot of flexible 

display production has begun to enter into our horizon. In 2005, Arizona State University 

created a flexible display center by receiving 43.5 million dollars from Army Research Lab. 

With Hewlett Packard, their partnership, they have presented a flexible e-paper [15]. In 

2010, Samsung has begun to develop a 4.5-inch flexible AMOLED and try to start mass 

production of this kind of displays. On 8 October 2013, they announced the world‟s first 

flexible-display phone that carries a 5.7-inch touchscreen with a resolution of 1080×1092 

[16]. However, this kind of screen cannot be strictly seen as „flexible‟, but merely „bendable‟ 

displays. In the underside of figure 1.8 is the 4.1-inch rollable OLED displays reported by 

Sony [17]. 
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Figure 1.8: Applications of flexible displays. a) Electronic paper by HP and ASU [15]. b) Smart 
phone by Samsung [16]. c) Rollable screen by Sony [17]. 

The development of low temperature TFT is also a key issue for the progress of flexible 

displays. The low temperature fabrication makes plastics possible as substrate of flexible 

display. In many research laboratories, flexible displays using low temperature fabricated TFT 

have been reported. For flexible OLED displays, the organic TFTs and silicon TFTs have been 

used since more than 10 years [18, 19]. These flexible displays present matrix with low pixel 

resolutions. Recently, as the device fabrication technologies have been well developed, some 

research laboratories demonstrate their flexible TFT with higher resolution [20, 21]. The 

electrical and mechanical stabilities of these TFTs are also improved. Indeed, the mobility and 

the flexibility of TFTs, especially for organic TFTs, have been largely improved based on 

numerous efforts of researchers.  
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Figure 1.9 Flexible displays in research laboratories: a) OLED using a-Si:H TFTs on metal foil 
substrate [18], b) OLED using bottom gate OTFTs on plastic substrate [19], c) EPD using 

solution-processed OTFT [20], d) Flexible OLED device [21].  

3.2 Flexible sensors 

    The flexible sensors are also important in flexible electronics. The main flexible sensors 

include the bio-chemical sensors, the medical patches, the artificial skin and other as 

temperature, pH and gas sensors. A research group has developed a flexible chemical sensor 

[22, 23]. This sensor is based on bottom gated TFT using SWNTs (Single-Wall Carbon 

Nanotube) as active layer. The sensor is stable when functioned in the water. The high 

sensitivity of the sensor permits the detection of poison in water or explosive compounds 

such as TNT (Figure 1.10 a)). Another application field is the artificial skin.  In 2013, C. 

Wang et al [24] presented a user-interactive electronic sensor. During their experiment, 

finger pressure upon surface of sample can be detected and visualized by illuminating OLED 

pixel on the opposite side of sample. The light intensity corresponds with the pressure. A 

a) b) 

c) d) 
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research group at Tokyo University has developed a matrix based on organic TFT sensors 

[25]. This tactile sensor can be used for health care and monitoring (Figure 1.10 c). The 

organic TFTs used for the sensor matrix has extreme flexibility (Figure 1.10 d). They 

maintain stable function even after some extreme bending conditions such as bending 

curvature radius of 5µm within the active area and tensile strain of 233%.  

 

Figure 1.10 Different types of flexible sensors: a) chemical compound sensor [22], b) user-
interactive electronic skin [24], c) and d) ultra-flexible organic TFT sensor [25]. 

3.3 RFID tags 

    The RFID tag (Radio Frequency Identification) is a wireless system used for the 

identification with certain distance using electromagnetic signal. The data of an item or an 

animal can be saved inside the RFID tag with electromagnetic format. Then a special reader 

will be used to identify it. The RFID is used like a barcode but the RFID is not necessary to 

be in the sight of the reader. 

    Now, two types of RFID exist: active RFID and passive RFID. The active RFID has a 

local power source like a battery, which supplies the power consummation for reading or 

a) b) 

c) d) 
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writing data. Therefore, the data of an active RFID can be modified. On the other hand, the 

power source, which is need to be inside the active RFID, makes the flexible devices more 

expensive. 

    The second type, passive RFID, need to be powered by electromagnetic fields produced 

by or near the reader. The battery-free passive RFID is possible to be flexible.  Figure 1.11 

presents simplified schema of a RFID system. This system is composed by 3 parts: RF 

antenna, rectifier and CMOS circuit. The RF antenna is used for the communication between 

reader and RFID by sending or receiving RF signal. Then the AC signal is converted to DC 

signal by rectifier. The CMOS circuit, which has some oscillators and logic gates, will save 

the converted DC signal. 

 

Figure 1.11 Simplified schema of RFID 

    Recently W. Huang et al [26] integrated RFID and flexible sensor technologies by 

realizing a passive RF pH-sensor. The flexible pH-sensor tag can measure the pH value in 

food and the data can be sent to a reader (computer terminal) by RF technology. This kind of 

devices provides an open way for the researchers to further exploration of novel and 

interesting applications based on flexible electronics.   

4. Different flexible substrates  
   There are mainly 4 types of different flexible substrates for the flexible electronics devices: 

thin glass, stainless steel foil, plastic and paper. The choice of substrate is depending on the 

application. For example, the flexible displays require the substrate to be transparent. For the 

flexible display applications, the surface quality of substrate is also needed to be sufficient. 
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On the other hand, the low-cost substrate is needed for some disposal electronics. To choose 

a flexible substrate, these factors are generally considered: 

 The maximum temperature that substrate can hold. 

 The thermal expansion coefficient of substrate 

 The transparency 

 The cost 

 The surface roughness 

 The robustness with environment 

4.1 The thin glass 

    The glass will be flexible when its thickness reduced less than 200 μm [27]. Some 

commercialized thin glass‟s thickness can be reduced until 25 μm [28]. The main advantages 

of thin glass as flexible substrate include the quasi-perfect surface with roughness normally 

less than 0.5 nm, the high optical transparency, the high process temperature without thermal 

deformation, the impermeability of water or oxygen and the high chemical resistance. 

Benefiting from these properties, the TFTs or LCD and OLED can be fabricated on thin 

glass substrate with high performances. For example, S. M. Garner et al [29] present a high-

quality and high-resolution electrophoretic display driven by organic TFT on flexible glass 

substrate. Benefit from the high quality of glass surface, the organic TFTs are electrically 

stable. S. Hoehla et al [30] use 75-µm-thick flexible glass for an active matrix LCD display. 

The TFTs have been directly fabricated on the glass substrate without degradation compared 

to the TFTs fabricated on thicker glass. On the other hand, the main drawback of thin glass 

substrate is its fragility and the high fabrication cost.  

4.2 Flexible stainless steel foil  

    The flexible stainless steel foils have normally a thickness around 100 μm. They are 

impermeable to oxygen and water. They can be processed at high temperature without 

deformation. They also offer high mechanical strength. Therefore, the TFTs fabricated on 

flexible stainless steel foil are suitable for some high performance and/or large area 
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applications. For example, T. Serikawa and F. Omata [31] reported poly-Si TFTs on flexible 

stainless steel foil. The silicon is crystallized by excimer laser and has high mobility of 106 

cm²/Vs. D. Jin et al [32] demonstrated a very thin AMOLED display based on LTPS TFT 

which has a mobility of 71.2 cm²/Vs. High quality display images have been shown in this 

work. The main drawback of flexible stainless steel foil is its opacity, the need of 

encapsulation layer due to its conducting nature and the high surface roughness. The opacity 

restricts its applications in certain situation in which transparency of substrate is required. 

The need of encapsulation or planarization layer limits the maximum temperature of process. 

Moreover, the fabrication cost of flexible stainless steel is high. 

4.3 Paper substrate 

    The paper is human-friendly, low-cost and disposable material. Recently the paper begins 

to be employed as substrate for flexible electronics including flexible display, flexible sensor 

and RFID [33]. The paper is a good candidate for some low-cost and disposable applications. 

The main drawbacks of paper for flexible electronics include the opacity, the high surface 

roughness and the weak chemical resistance. The printing technology might be the best way 

to use paper as substrate for flexible electronics because it can reduce the cost compared with 

conventional photolithograph process. Different printing technologies exist in the research 

area, including inkjet printing, screen printing and gravure cylinder, etc. Unfortunately the 

printing technologies are not matured yet. So the electronics on paper substrate have still 

large challenge to be considered in a mass-production.  

4.4 Plastics  

    The plastics present better flexibility compared to thin glass and flexible stainless steel 

foil. The mainly used plastics for flexible electronics are PET, PEN and Kapton. The 

maximum process temperatures for PET, PEN and Kapton are 150°C, 180°C and 400°C, 

respectively. These plastics present high deformation under high temperature process 

because of their high thermal expansion coefficient. For example, the PEN Q65FA produced 

by DuPont Teijin Film has deformation of 0.2% after heating at 200 °C during 10 minutes 
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[34]. This deformation causes alignment error during the photolithography masking process. 

Therefore, the maximum temperature during process using these substrates should be well 

controlled.  

    The PET and PEN substrates are transparent with optical transparency higher than 80% 

for visible light, while the Kapton is yellow-colored. The water and oxygen permeability of 

Kapton is also higher than that of PET and PEN. For this reason, an encapsulation layer is 

probably necessary for their application.   

4.5 Conclusion 

    As a conclusion of all flexible substrates, the Table 1.1 gives the material properties of 

substrates and the Table 1.2 summarizes the main advantages and drawbacks of the 4 types 

of flexible substrate. 

Properties Thin glass 
Stainless 
steel foil 

Paper Kapton PEN PET 

Maximum process 
temperature (°C) 

>600°C 800°C 
Very 
low 

400 180 150 

Transparency (%) >91 0 0 
Yellow-
colored 

>80 >80 

Young‟s module 
(GPa) 

70 200 10-20 2.5 6.5 5.3 

Chemical resistance Good good weak good good weak 

Impermeability Good good weak weak weak weak 

Planarization No Yes No No No No 

           Table 1.1 Material properties of mentioned flexible substrates for flexible electronics  
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Substrates Advantages Drawbacks 

Thin glass 

High transparency, low 
surface roughness, high 

process temperature, strong 
chemical resistance and 

water, oxygen 
impermeability, low thermal 

expansion coefficient. 

Expensive, fragile 

Stainless steel 
foil 

High process temperature, 
strong chemical resistance 

and water, oxygen 
impermeability, robust 

mechanical strength, low 
thermal expansion coefficient. 

Opacity, high surface roughness, 
expensive. 

Paper 
Low-cost, disposable, low 

thermal expansion coefficient, 
flexibility. 

Opacity, high surface roughness, 
low process temperature, low 

chemical resistance, high water 
and oxygen permeability 

Plastic 
Low-cost, transparency, 

flexibility. 
High thermal expansion coefficient, 

low process Temperature 

Table 1.2 Advantages and drawbacks of mentioned flexible substrate for flexible electronics 

5. State-of-the-arts of low temperature TFTs 
    As mentioned before, flexible electronics can be fabricated by two technologies: 1) 

directly fabricate on flexible substrate, and 2) fabricate on glass or silicon substrate and then 

transfer to flexible one. For the 1st technology which has lower cost, the devices should be 

fabricated at a low temperature compatible with flexible substrate. This section will describe 

the state-of-the-art of such low temperature fabricated TFTs using different semiconductors.   
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5.1 Organic thin film transistors 

    Recently organic TFT has been largely studied because of their advantages such as low 

fabrication cost, light weight, low fabrication temperature and mechanical flexibility that 

made them a promising candidate for the applications of large area and/or flexible displays. 

They have been drastically improved in the last 20 years. Before 1990, the typical mobility 

value was 10-5-10-3cm²/V.s [35, 36]. Recently, it has been demonstrated field effect mobility 

as high as 2.8 cm²/V.s [37]. A high resolution AMLCD driven by organic TFTs has also 

been reported, in which the organic TFTs show an average mobility of 0.3cm²/V.s and good 

uniformity [38]. 

    Obviously, to make OTFT, the active layer of TFT should be made of organic 

semiconductor. A key role to get high mobility is the use of thin organic films with high 

structural order as active layer [39]. Therefore, many organic materials have been researched 

such as pentacene, FPTBBT, DNTT, poly (3-hexylthiophene) (P3HT), Poly (3-

octylthiophene) (P3OT) and C60. Figure 1.12 shows some structures of organic materials 

used as transistor active layers.  

 

 

Figure1.12: Structure of some organic semiconductors used as active layer of TFT: a) Pentacene, 
b) FPTBBT, c) DNTT 

    Among these materials, pentacene, a p-type channel, shows the best TFT performance. 

There are two methods to fabricate pentacene, vacuum deposition and solution-based 

deposition. Vacuum thermal deposition has some advantages such as solvent-free deposition 

and compatibility with well-established OTFT technology. The solution-processed OTFT 

a) b) c) 
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has attracted much attention thanks to their low-cost non-vacuum process ability. Among 

several solution-process methods, inkjet-printing technology is one of the most promising 

candidates because the patterns with size of tens-of-micrometers can be directly printed 

without any photomasks. The inkjet-printing technology is studied for various applications 

such as active-matrix display, radio-frequency identification and sensor [40]. Moreover, a 

vapor-inkjet method which combines the benefits of jet printing and thermal evaporation has 

been demonstrated [41]. Today, the mobility of solution-processed OTFT can be around 1 

cm²/V.s. [42]  

    Beside of p-type channel material like pentacene, the enhancement of n-type channel 

OTFT is especially needed to enable OTFT-based technologies. N-channel OTFT exhibiting 

high mobility (2-3cm²/V s) and exceptional stability has been reported [43].  

    The materials for OTFT dielectric are also studied. These materials need high resistivity to 

avoid too high leakage current and high dielectric constant to have enough capacitance [40]. 

There are some important materials for OTFT dielectric: Thermal SiO2 polymide, PMMA 

(polymethylmethacrylate), Al2O3, and SOG (spin on glass). In addition, meeting the 

requirements of flexible displays using plastic substrate, gate insulator should be organic to 

reduce the thermal stress induced by the difference in the thermal expansion coefficient 

between TFT organic semiconductor and substrate [40].   

    The source/drain(S/D) contact should also be optimized to enhance the OTFT 

performance. Changhun Yun et al [42] have optimized their OTFT by using a reverse offset 

printing (ROP) method instead of vacuum thermal evaporation to enhance the S/D contact. 

In their work, high work function and small dipole of pentacene-metal interface of ROP-

based Ag lead to a low interfacial energy barrier. 

    In spite of their advantages, the OTFTs suffer from some limitations. Firstly, the organic 

semiconductors or organic gate insulators that have good performances are very expensive. 

For example, the N1200 produced by Polyera corporation (organic semiconductor) and the 

Cytop (organic gate insulator). Secondly, the OTFTs using organic gate insulator are usually 

operated under high VDS and have high threshold voltage. Thus, the power consumption is 

increased. Finally, the instability of OTFTs such as the degradation with environmental 
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conditions after long duration should be explored and optimized. These instabilities maybe 

due to the chemical structure of OTFT compound [40]. Bias and thermal stress stable OTFT 

devices are needed [43]. 

5.2 Oxide semiconductor thin film transistors 

    TFTs fabricated using oxide semiconductors exhibit good mobility as high as 5 to 50 

cm²/Vs. Except the high mobility, this relative new class of materials possesses other 

advantages such as: 1) amorphous crystal structure can make a good uniformity and easier 

fabrication; 2) low-temperature processing which is compatible with flexible substrate; and 

3) transparency in visible region. These make them a good candidate for the AMLCD, 

AMOLED and other large-area electronics applications.  

    Another unique feature of oxide semiconductor TFT is that they can have large electron 

mobility even in the amorphous structure, while amorphous silicon exhibits much poor 

mobility compared with crystallized silicon. This is attributed to the difference between 

covalent and ionic semiconductors. For covalent semiconductors like silicon, the chemical 

bonds are made of sp3 or p orbitals that have strong spatial directivity. In contrast, the 

transport properties of the ionic semiconductors that have the s orbitals to form the ionic 

bonds are not affected largely by amorphous structure. That is why the amorphous oxide 

semiconductors (AOSs) show large moblities even in amorphous structure.    

   Normally, Zn-based oxide materials have been used to make TFT or transparent TFT [44], 

including In2O3, SnO2, InGaZnO (IGZO), ZnSnO (ZTO), ZnInO (ZIO), SnGaZnO (TGZO), 

InGaO (IGO), ZnInSnO (ZITO) and ZnON. All of these materials are n-type. Among these 

materials, IGZO is one of the most promising materials to make TFT for display application 

because the IGZO-TFT combines good uniformity and high mobility. In fact, the 

incorporation of Ga into an In-rich IGZO film leads to obtain stable TFTs. Moreover, it is 

reported that the mobility degradation along with the channel length, which was a 

disadvantage of a-Si:H TFTs, is not observed for short channel a-IGZO TFTs. This may 

benefit the a-IGZO TFTs in the area of „retina-like‟ AM-LCD, which means higher pixel 

density [45]. Besides IGZO, the other multi-component oxide (MCO) TFT shows also 
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promising performances. For example, Eugene Chong et al. [46] reported the use of 

Hafnium into active layer for their HfInZnO TFTs can make an increase of stability under 

light and bias conditions thank to the presence of Hf4+. Se Yeob Park et al. [47] fabricated 

IZO TFTs with high mobility and improved stability using oxygen high-pressure annealing.   

    Today, oxide TFTs could not replace a-Si:H in AMLCD industry. However, they are good 

candidate for upcoming and potential applications such as AMOLED display [48], flexible 

electronics [49] and photosensor-based interactive display [50]. In order to be sufficient for 

these novel applications especially for AMOLED, instability problem of oxide TFTs should 

be identified and characterized. Today, this work is still at an early stage.  

    The instabilities of oxide TFTs can be caused by bias stress, illumination, impact of 

surface passivation and so on. Most of the instability studies focus on staggered bottom gate 

(SBG) structure because it is the mostly used structure.   

    The studies of gate-drain bias stress effect on oxide TFTs can be subdivided [44] into low-

field (<1MV/cm) positive gate bias stress [51]-[53], high-field (>1MV/cm) positive gate bias 

stress [54, 55], negative bias stress [56, 57], dynamic bias stress, bias stress under 

illumination and process dependence. The recovery when unbiased is also considered, 

because the transistor is not always turned on for AMLCD application. The results can be 

summarized as below: 1) In contrast to a-Si:H/Si3N4 TFTs, the majority of oxide TFT 

present recoverable shift of threshold voltage under low-field gate bias stressing without any 

annealing. This may be explained by the trapping at pre-existing defects at or near 

dielectric/channel interface with little creation of new defects [44], while the a-Si:H/Si3N4 

TFTs degraded irreversibly with creation of new defects in the channel or at the 

dielectric/channel interface under gate bias stress. 2) After high-field gate bias stress, the 

annealing might be needed for the recovery of oxide TFTs. More researches are needed for 

these topics. 

    The unpassivated SBG oxide TFTs exhibit the sensitivity of ambient environment [58] 

and molecules interaction with O2 and H2O. Therefore, proper passivation is needed to 

realize stable SBG oxide TFT. Now, it is also a critical issue for the commercialization of 

oxide TFTs.  
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5.3 Silicon thin film transistors 

5.3.1 Amorphous silicon thin film transistors 

The hydrogenated amorphous silicon thin film transistors (a-Si:H TFT) has dominated the 

flat-panel display industry for a long time. This may be attributed to these five reasons [59]: 

1) Amorphous silicon has all the typical semiconducting properties; 2) Possibility of plasma 

deposition on large area; 3) Good reproducibility; 4) Good interface properties between a-

Si:H and other thin films; 5) Low temperature fabrication. The typical threshold voltages are 

in the range 2-4V and state-of-the-art motilities are in the range 0.4-1.0 cm2/V.s [60].  

A-Si:H has a random covalent network structure in which the Si-Si and Si-H have 

different lengths and angles. Figure 1.11 shows a model of a-Si:H structure.  Despite its 

importance for the electronic properties of a-Si:H, hydrogen has some negative effects. If the 

Si-H bond is broken, Si dangling bond generate and act as a trap in the a-Si:H. The Si 

dangling bonds correspond to the deep states in the a-Si:H, while another localized states 

was recognized as tails states which is situated  just below the conduction band mobility 

edge. Figure 1.12 gives an example of density of states for a-Si:H [59].     

 

Figure 1.11:  Model of a-Si:H network structure [59] 
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Figure 1.12: Density of states for a-Si:H [59] 

 A-Si:H TFTs show threshold voltage shift under gate bias stressing which has been 

studied extensively [60]-[62]. Two instability mechanisms have been investigated to explain 

these phenomena: 1) defect state creation in the a-Si:H and 2) charge trapping in the gate 

dielectric or at the dielectric/channel interface . M. J. Powell et al [60] reported that the 

defect state creation is the dominant mechanisms at low gate bias stress and the charge 

trapping in the gate dielectric is dominant at high gate bias stress. They reported also a power 

law time dependence for defect creation in the a-Si:H film and a logarithmic dependence for 

charge trapping in the gate dielectric. N. Nickel et al [62] reported that the state creation in 

the a-Si:H has much weaker influence than charge trapping. They have found that the density 

of state is enhanced by a factor of two only even with strong bias stress. They have 

investigated the activation energy for defect formation which is about 0.7eV. They suggested 

that the charge trapping in the gate dielectric causes more limitations of a-Si:H TFT 

applications.   

As mentioned in section 1.1, a-Si:H TFTs suffer from their low mobility and instability 

which limit their applications of AMLCD and AMOLED. Although there are some studies 

on the realization of high-quality a-Si:H TFTs for AMOLED [63, 64], they might be 

replaced by the other TFT technology in the future.   

5.3.2 Low-temperature polycrystalline silicon (LTPS) thin film transistors 

Recently, the low-temperature polycrystalline silicon thin film transistor (LTPS TFTs) has 

been used for the TFT-LCD applications with high resolution [65]. This type of TFT has 
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several orders of magnitude higher carrier mobility comparing with a-Si:H TFT [65]-[67]. 

The high mobility leads to a simplification of integrated driving circuit for active matrix 

addressed displays. This advantage can be attributed to their relatively larger grain size. This 

is also the reason why LTPS TFT is a promising choice for the advanced display applications.  

The conventional way to get LTPS TFTs is crystallizing an a-Si:H film after its deposition. 

There are many crystallization methods: solid-phase crystallization [66], metal-induced 

lateral crystallization [67] and excimer laser crystallization [65]. Different crystallization 

technologies result in different grain structure which causes different device behaviors [68]. 

In addition, these methods need high temperature or laser crystallization. Consequently the 

fabrication cost increase. Therefore the application of LTPS TFTs for large area electronics 

is limited [68].  

Another limitation of LTPS TFTs is the presence of many grain boundaries between the 

poly-grains. A great number of grain boundaries exist in the channel and act as traps. The 

performance of LTPS TFTs is strongly suffered from them. The enlargement of grain size 

can reduce the reduction of performance by the grain boundaries. Changing the thickness of 

LTPS film or controlling the deposition conditions affects the grain size or the grain 

boundaries‟ degradation effect [69, 70]. Moreover, the grain boundaries make also the LTPS 

TFTs less uniform. That is another reason why the application of LTPS TFTs in large area is 

limited.  

The instability of LTPS TFTs is also a key issue that has to be well studied for their 

applications. For example, J. C. Liao et al [71] found the frequency dependence of dynamic 

negative bias temperature instability of LTPS TFTs, which means the operation frequency of 

LTPS TFTs influences threshold voltage shift of TFT.  I. H. Peng et al [72] investigated the 

influence of mechanical strain on LTPS TFTs fabricated on stainless steel substrate. They 

found that the mobility and threshold voltage shift after bias stress of TFT are influenced by 

tensile and compressive strain due to the variation of electrical properties of drain region 

caused by mechanical strain. C. A. Dimitriadis [73] has investigated the gate bias instability 

with different stressing durations. For short stress duration, the degradation of transfer 

characteristics is due to electron tunneling into gate oxide and interface states. For longer 
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stress duration, the degradation is due to enhancement of the donor-like interface states 

generation. 

5.3.3 Microcrystalline silicon thin film transistors 

5.3.3.1 Performances of microcrystalline silicon TFTs 

      The microcrystalline silicon TFTs show better mobility and stabilities than those 

obtained with a-Si:H TFTs. In some reports, the mobility of microcrystalline silicon TFTs is 

in the range from 0.5 cm²/Vs to 30 cm²/Vs [74]–[77]. Beside their mobility, some groups 

investigated the stabilities of microcrystalline silicon TFTs and found: 

    1) The shift of threshold voltages after positive and negative gate bias stress for 

microcrystalline silicon TFTs towards the same direction of stress, respectively. The 

recovery of the initial characteristics has been observed without annealing. In contrast, the a-

Si:H TFTs shows only the shift towards positive gate voltage and the device cannot be 

recovered without annealing. This phenomenon has been attributed to different instability 

mechanisms. Shift of threshold voltages for microcrystalline silicon TFTs is caused by 

charge trapping in the gate dielectric [77].  

    2) R. B. Wehrspohn et al [78] compared the electrical stability of a-Si:H and 

microcrystalline silicon TFTs. In their research, the microcrystalline silicon TFT is more 

stable. They found that the a-Si:H and microcrystalline silicon TFTs have almost the same 

defect creation barrier energy. The better electrical stability of microcrystalline silicon TFTs 

compared with amorphous silicon TFTs is due to a much lower attempt frequency which 

means the probability that an electron attempts to break the bond. 

   3) M. Oudwan et al [79] reported that the bottom gate microcrystalline silicon TFTs show 

lower threshold voltage shift (0.05V after 10h stress under the conditions: Vg=12V and 

Vd=10V) compared with polymorphous and amorphous silicon TFTs. They concluded that 

the main degradation mechanism is due to charge trapping in the gate dielectric while defect 

state creation is almost absent. In the case of polymorphous and amorphous silicon TFTs, 

both charge trapping and defect creation mechanisms existed.  
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      With their high mobility and good stability, microcrystalline silicon TFTs is an 

interesting and promising candidate for the active matrix display applications. In fact, the 

study on microcrystalline silicon is one of the main research topics in microelectronic and 

micro-sensors group in Institute of Electronics and Telecommunications of Rennes (IETR). 

The optimization of the material and the realization of devices using PECVD at low 

temperature (<200°C) have been carried out by previous works in different PhD thesis. In 

the thesis of K. Kandoussi [80], the optimized PECVD deposition parameters, especially the 

argon flow added to the reaction gas mixture, are obtained at temperature lower than 200°C. 

The stable n-type Top-gate TFTs with mobility of 10 cm²/Vs are obtained. P-type TFTs, 

bottom TFTs and TFTs on the plastic substrate are also fabricated.  

    In the thesis of S. Janfaoui [81], both N-type and P-type microcrystalline silicon TFTs are 

fabricated on PEN Q65FA (Polyethylene naphthalate), a flexible and transparent substrate. 

N-type TFTs are stable but P-type TFTs show large threshold voltage shift under gate bias 

stress. Furthermore, both types of TFTs are mechanically stressed and their behaviors are 

studied.  

5.3.3.2 Material properties of microcrystalline silicon 

    a) Structure and growth mechanisms of microcrystalline silicon 

    Microcrystalline silicon films have crystalline structure but the grain size is smaller than 

polycrystalline silicon. Beside the crystalline structure, they have also amorphous phase and 

voids. The distribution of crystalline phase, amorphous phase and voids depends on the 

deposition conditions.  

    The four-phase growth mechanism of microcrystalline silicon has been demonstrated by 

P. Roca i Cabarrocas [82] as below:  

    1) Incubation 

       In the beginning of microcrystalline silicon growth, an amorphous layer is formed. This 

incubation layer is highly porous and hydrogen-rich. The thickness of incubation layer can 
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be reduced by the use of highly diluted silane-in-hydrogen or by the modification of 

interface using argon and hydrogen plasma.  

    2) Nucleation  

       The nucleation of crystallites takes place after the highly porous and hydrogen-rich 

incubation layer has been formed. The density of nucleation depends on the quantity of 

active site on the interface which is created during the incubation phase. The nucleation 

needs the incorporation between hydrogen plasma and SiHx radicals.  

    3) Growth 

       In the growth phase, the crystalline volume fraction increase until a steady-state. This 

phase leads an expense of amorphous phase.  

    4) Steady-state  

       The steady-state can be seen as equilibrium between competing factors such as hydrogen 

flux and quantity of radicals. The crystalline volume fraction at steady-state is influenced by 

the plasma conditions.  

    b) Density of states in microcrystalline silicon 

    It is well known that the subthreshold slope of TFTs is closely related to density of deep 

states [83]. The density of states can be measured directly using the isothermal capacitance 

transient spectroscopy (ICTS) [84]. A comparison between the state distributions in 

microcrystalline silicon and a-Si:H is shown in figure 1.13. The density of deep states (away 

from conduction band more than 0.5eV [83]) in microcrystalline is smaller than in a-Si:H.  
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Figure 1.13: Density of states in microcrystalline silicon and a-Si:H measured by ICTS [83]. 

    The density of states in microcrystalline can also be calculated from the analysis of the 

TFT field-effect conductance, which has been used in the case of a-Si:H and polycrystalline 

silicon [85]. In some previous works [86], the densities of states in the microcrystalline 

silicon films fabricated by different gas mixture conditions have been calculated using an 

incremental method [85], as shown in figure 1.11 [86].  

 

Figure 1.14 Density of states in microcrystalline silicon calculated using incremental method. 
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    c) Crystalline volume fraction of microcrystalline silicon 

    The microstructure of microcrystalline as a function of crystalline volume fraction is 

shown in figure 1.15 [87]. The crystalline volume fraction can be influenced by the 

deposition conditions. For example, K. Y. Chan et al [87] change the crystalline volume 

fraction of microcrystalline silicon by varying the silane concentration during the deposition.  

 

Figure 1.15: Microstructure of microcrystalline silicon as a function of crystalline volume 
fraction.  

    It is commonly assumed that the highest charge carrier mobility of thin film transistor will 

be achieved for films with high or very high crystalline volume fraction. However, in some 

reports [77][87][88], the best characteristics of microcrystalline silicon films have been 

obtained for material near the transition to the amorphous growth regime. K. Y. Chan et al 

[87] reported that the microcrystalline silicon thin film transistor with best characteristics 

such as mobility, subthreshold slope and defect density is found for near the transition to the 

amorphous growth. 

6. Conclusion 
     The TFTs used for flexible electronics should be fabricated at low temperature. The main 

potential applications include flexible display, flexible sensor and RFID, etc. To realize these 

applications, the TFTs fabricated at low temperature should have sufficient mobility and be 

electrically stable. Several low-temperature TFT technologies have been largely studied to 
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overcome the well-known drawbacks, low mobility and electrical instability, of conventional 

a-Si TFTs which have been regarded insufficient for the future display devices.  

    The lightweight and inherently flexible organic TFT can be solution-processed at very low 

temperature thereby decreases the cost. Their mobility has been remarkably increased in the 

recent years and reaches the same or higher magnitude of order of a-Si TFT. However, they 

need more robust fabrication process and deeper understanding of function mechanism to up 

onto the next stage of final mass production.   

   Oxide TFTs exhibit promising performances for the application of AMLCD or AMOLED. 

They have also the challenges: 1) Finding the dielectric and channel material; 2) Instabilities 

identification; 3) finding the proper passivation. This technology is also in an early stage. 

    The LTPS TFTs has very high mobility and good stability. But the excimer laser 

crystallization process limits their uniformity and increases the cost.  

    The microcrystalline silicon TFTs has higher mobility and better electrical stability than a-

Si TFT. Therefore the TFTs using the microcrystalline silicon fabricated at low temperature 

and optimized in our laboratory might be a good candidate for the applications of high-

resolution and flexible display.    
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1. Introduction 
    The studies on the technologies for the microcrystalline silicon TFT fabrication at 

microelectronic and micro-sensor department of IETR were started from the thesis of K. 

Kandoussi in 2004. The main goal of this thesis was to develop a microcrystalline silicon 

process at low temperature, lower than 180 °C, which is compatible with flexible substrates 

like PEN. The microcrystalline silicon layer deposited by PECVD was optimized during this 

work. The TFTs use undoped microcrystalline silicon layer deposited at 165 °C as active 

layer and silicon oxide layer as gate insulator. The TFTs have high mobility but are 

electrically unstable. 

    Envisaging the electrical stability problematic for the TFTs with silicon oxide as gate 

insulator, K. Belarbi has worked on an alternative material, silicon nitride, as gate insulator 

of TFTs in order to improve the electrical stability. This silicon nitride layer was deposited 

by PECVD at 150 °C, an optimized temperature compatible with PEN substrate. The 

electrical stability has been largely improved by replacing silicon oxide with silicon nitride 

as gate insulator of TFT but the mobility, ranging from 0.49 cm2/Vs to 2 cm2/Vs, was 

decreased.  

    Then the microcrystalline silicon TFTs with silicon nitride gate insulator has been 

fabricated on flexible substrate in the thesis of S. Janfaoui. Both N-type and P-type TFTs 

have been fabricated on 125 µm thick PEN Q65FA substrate produced by DuPont Teijin 

Film. The microcrystalline silicon and silicon nitride have been used as active layer and gate 

insulator. The electrical characteristics of TFTs on PEN have been investigated and 

degradations in terms of mobility, subthreshold slope and electrical stability, compared with 

TFT on glass, have been discussed. Then the mechanical behavior of TFTs on PEN has been 

studied. The N-type microcrystalline silicon TFTs showed an increase of mobility and a 

decrease of threshold voltage with tensile bending and a decrease of mobility and an increase 

of threshold voltage with compressive bending. In the case of P-type TFTs, the trends are 

contrary. The TFTs on 125 µm thick PEN could work until bending radius of 10 mm. 

    In this chapter, these works are summarized. The material used and the process developed 

by these precedent works were presented in this chapter. The techniques and equipment 
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utilized for the deposition and characterization of thin film, and basic working principle and 

characterization of TFT was also presented in this chapter.           

  

2. Deposition technologies and material properties for the 

realization of low temperature microcrystalline silicon thin 

film transistor 

2.1 Undoped and doped microcrystalline silicon 

2.1.1 Deposition of undoped and doped microcrystalline silicon film 

    There are many methods to fabricate microcrystalline silicon films: HWCVD (Hot-wire 

chemical vapor deposition), photo-CVD, microwave CVD and PECVD (Plasma enhanced 

chemical vapor deposition). The last one, PECVD, is the mostly used technology to fabricate 

microcrystalline silicon. Because PECVD is also the current industrial technology of the a-

Si:H deposition, the microcrystalline silicon TFTs fabricated by PECVD provide an 

inexpensive way to replace the a-Si:H TFT in industry.  

A PECVD system uses chemical reaction of plasma, which is created from the 

dissociation of reaction gases, to deposit thin film from vapor to solid phase. The gases used 

for the deposition of microcrystalline silicon film are SiH4 diluted in the H2 or Ar or (H2 + 

Ar) mixture. The plasma is generally created by RF frequency at 13.56 MHz discharging 

between two electrodes. The space between these two electrodes is filled with the reaction 

gases.  

Figure 2.5 presents the PECVD system used in IETR for the deposition of 

microcrystalline silicon thin film at low temperature. It is composited by 3 parts: deposition 

reactor, pumping system and gases management system. 

http://en.wikipedia.org/wiki/Plasma_(physics)
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Electrode
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Figure 2.5: Schematic of the PECVD system in IETR 

The deposition reactor has two electrodes in parallel which have 15 cm of diameter. These 

two electrodes are the anode and cathode used for the plasma generation. The anode supports 

the samples and is connected to ground. A heating system, which contains a heater and a 

thermocouple, is placed under the anode for the temperature controlling during the 

deposition. The inter-electrodes distance can also be adjusted by moving vertically the anode. 

The cathode is connected with a RF source. Between the cathode and the RF source, there is 

a resonance box. By adjusting this resonance box, an optimum RF power is applied on the 

plasma. 

The pumping system is constituted by a primary pump, „Varian‟, and a secondary pump, 

„Edward‟. The primary pump provides a vacuum level at about 2.10-2 mbar. Then secondary 

pump continues until the vacuum level arrives at an order of magnitude of 10-6 mbar.  

The gases used for the deposition of undoped or doped microcrystalline silicon are 

introduced into the reactor during the deposition. These gases flow are controlled by flow 

meters which situated behind the reactor. Gases used for the undoped film deposition are the 

SiH4, H2 and Ar. For the N-type and P-type doped film, AsH3 and B2H6 are added 

respectively.       
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The work on the microcrystalline silicon deposited by PECVD in IETR was started with 

the thesis of K. Kandoussi. The optimized microcrystalline silicon was deposited at 165 °C. 

Using this microcrystalline silicon as the active layer and silicon oxide as the gate insulator, 

the N-type TFTs have mobility of 6 cm2/Vs. In the thesis of S. Janfaoui, the TFTs use this 

undoped microcrystalline silicon as active layer are fabricated on PEN substrate. The P-type 

TFTs was also realized. 

2.1.2 Material properties of undoped and doped microcrystalline silicon  

2.1.2.1 Undoped microcrystalline silicon  

    The undoped microcrystalline silicon is used as active layer of TFTs. This layer is 

optimized by K. Kandoussi [1]. In his works, the effect of argon gas in the gas mixture 

during the deposition was studied. Moreover, the influence of the other deposition 

parameters such as pressure, RF power and gas ratio has been also evaluated. The 

temperature of this deposition is fixed at 165 °C because the goal of this study is to develop a 

reproducible fabrication process of microcrystalline silicon TFTs on flexible substrate. The 

deposition pressure and RF power have firstly been studied. Indeed, when the pressure 

increases, the number of ions collision increases and the ions bombard energy decreases. The 

best quality of microcrystalline silicon has been obtained with high pressure. On the other 

hand, the increase of RF power leads to an increase of plasma sheath. The ions energy 

increases consequently. The best microcrystalline silicon has been deposited with weak RF 

power. The pressure and RF power have been fixed at 0.9 mbar and 15 W, respectively. 

    The gas ratio has also been studied. The gases used for the microcrystalline silicon 

deposition are SiH4, Ar and H2. The influence of the addition of Ar in the gas mixture (Ar-H2) 

is studied by fixing SiH4 at 1% of the Ar-H2 mixture. Therefore, the studies have been 

realized by varying Ar ratio in the Ar-H2 mixture. According to this study, the optimum 

microcrystalline silicon is obtained when the Ar-H2 mixture is composited by 50 % of argon 

and 50% of hydrogen. Figure 2.6 presents the crystalline fraction of microcrystalline as a 

function of Ar ratio in the Ar-H2 mixture. This film is deposited with pressure p = 0.9 mbar, 
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RF power P = 15W, and SiH4/(Ar+H2) = 1%. The result shows that the best crystalline 

fraction is obtained when Ar/(Ar+H2) ratio is 50 %. 

 

Figure 2.6: Crystalline fraction of microcrystalline silicon as a function of argon ration in the 

(Ar-H2) mixture [1]. 

    The benefit of adding Ar in the reaction gases is then studied. The added Ar is excited by 

plasma charging into metastable state Ar*. The metastable argon ions accelerate the 

dissociation of silane by the following reaction:    

SiHn + Ar* → SiHn-1 + H +Ar 

The hydrogen dissociation is also accelerated by: 

H2 + Ar* → 2H + Ar 

    These accelerated dissociation reactions cause the improvement of crystalline fraction of 

microcrystalline silicon and the increase of the deposition rate. However, if the Ar ratio in 

mixture (Ar-H2) is overmuch, the number of hydrogen atoms decreases and the surface 

roughness increases. The overmuch Ar causes also powders during the deposition. This 

explains why the optimum film is obtained with Ar/(Ar+H2) = 50 %.  
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    Then the microcrystalline silicon deposited using silane diluted only in hydrogen and in 

Ar-H2 mixture are compared. Figure 2.7 a) shows crystalline fraction of these 2 types of 

deposition with different thicknesses. Figure 2.7 b) shows the transfer characteristics of TFT 

using these 2 types of microcrystalline silicon as active layer. These results reveal the 

improvement benefited from the adding of argon in terms of the quality of microcrystalline 

silicon film and the electrical performance of TFTs using these films as active layer.   

 

Figure 2.7 a): Crystalline fraction as a function of microcrystalline silicon thickness for 
deposition with Ar+H2 and with only H2, b): Transfer characteristics of microcrystalline silicon 

TFTs fabricated using Ar+H2 and using only H2 

    The deposition conditions of microcrystalline silicon using Ar-H2 mixture have been 

optimized by R. Cherfi [2] in 2009. Table 2.1 presents these conditions. 

RF power 
(W) 

Pressure 

(mbar) 

DA-K 
(cm) 

Temperature 
(°C) 

SiH4 
(sccm) 

Ar 
(sccm) 

H2 
(sccm) 

32 0.9 4.5 165 1 40 60 

DA-K: Distance between two electrodes 

Table 2.1: Deposition conditions of undoped microcrystalline silicon 

a) b) 

SiH4 +Ar+H2 

SiH4+H2 
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    By using these deposition conditions, undoped microcrystalline silicon film has crystalline 

fraction varying between 73% and 78% for a thickness varying between 50 nm and 200 nm, 

and has an activation energy varying between 0.4 eV and 0.6 eV.  

    In this work, undoped microcrystalline silicon film deposited for active layer of TFT have 

been achieved in these conditions. 

2.1.2.2 N-type doped microcrystalline silicon 

    The N-type doped microcrystalline silicon is used to form the source and drain region of 

TFTs. This layer is deposited using same technology as undoped film deposition. The 

deposition conditions are always following the optimization of undoped microcrystalline 

silicon deposition. Here, doping gases should be added during the deposition. In our case, the 

doping gas used is AsH3. Moreover, two deposition technologies have been used. The first 

one is monolayer deposition. By this technology, undoped silicon and doped silicon are 

deposited without breaking vacuum and interrupting plasma. Only the doping gas is added 

for the doped silicon deposition. The second one is bilayer deposition. This technology 

achieves undoped and doped silicon deposition in two different machines. The bilayer 

deposition may create an interface between undoped and doped layer reducing the mobility 

of final TFT device. 

    In microelectronic and micro-sensor department of IETR, the studies on the optimization 

of N-type doped microcrystalline silicon have been started from the thesis of K. Kandoussi. 

Then in the thesis of K. Belarbi [3], the quality of N-type doped microcrystalline silicon has 

also been improved. Since 2009, the optimum N-type doped microcrystalline silicon layer 

has been deposited using gas mixture composited by 50% of argon and 50% of hydrogen. 

The maximum conductivity obtained is 55 S.cm-1 for a thickness of 200 nm. The following 

table illustrates the N-type doped microcrystalline silicon deposition conditions which are 

used for the N-type TFTs in this work. 
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RF power 
(W) 

Pressure 

(mbar) 

DA-K 
(cm) 

Temperature 
(°C) 

SiH4 
(sccm) 

Ar 
(sccm) 

H2 
(sccm) 

AsH3 
(sccm) 

15 0.9 4.5 165 1.5 75 75 10 

Table 2.2: Deposition conditions of N-type doped microcrystalline silicon 

2.2 Deposition of gate insulator  

The gate insulator plays an important role for the TFT performances. These performances 

depend on both quality of gate insulator and interface between gate insulator and silicon. The 

quality of a gate insulator is studied using a MIS capacitor (metal insulator semiconductor), 

by measuring C-V curve in quasi-static regime (QS-C(V)) and in high-frequency regime 

(HF-C(V)). For a gate insulator with good quality, its MIS capacitor characteristics should 

present: 

 Capacity saturation in the quasi-static regime 

 Same value of capacitance in both accumulation and inversion regimes of QS-C(V) 

 Identical HF-C(V) and QS-C(V) curves in both depletion and accumulation regimes 

 A minimum depth of the QS-C(V) characteristics 

 Weak flat band voltage (VFB) 

There are some choices for the gate insulator: silicon oxide (SiO2), alumina (Al2O3) or 

silicon nitride (Si3N4). Lots of technologies can achieve the low temperature deposition for 

these gate insulator materials. Silicon oxide can be fabricated by sputtering, PECVD or 

ECR-CVD (electron cyclone resonance CVD), etc. Alumina can be deposited by ALD 

(atomic layer deposition). Silicon nitride can be obtained by sputtering, PECVD or ECR-

CVD, etc.  
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2.2.1 Silicon oxide deposited by sputtering 

The sputtering system uses ions bombardments to capture atoms on the surface of the 

target, which is made by the materials that we want to deposit. Then the atoms are projected 

on the substrate to form the gate insulator film. This system usually has two electrodes to 

produce plasma. The target and the substrate are installed on the cathode and anode 

respectively. This technology provides the fabrication of silicon oxide film used as gate 

insulator of TFT at very low temperature. 

 

Figure 2.8: Schematic of sputtering system 

The deposition of silicon oxide by sputtering at room temperature has been developed 

during the internship work of A. Gorin [4]. Figure 2.8 shows the schematic of this sputtering 

deposition. The gases used for the deposition is a mixture of Ar-O2 without heating. H2 and 

O2 mixture is used for the post-treatment in order to improve the film quality. Finally, a 

180°C annealing under nitrogen is performed to improvee the electrical characteristics. Table 

2.3 a) and b) present the conditions of these deposition and post-treatment. 

Deposition Power (W) Pressure (mbar) DA-K (cm) Mixture Ar-O2 

SiO2 200 5 10-3 8 30%(O2) 

Table 2.3 a): Deposition conditions of sputtering SiO2 

HMDSO
(10°C)
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Post-treatment Power (W) Pressure (mbar) DA-K (cm) H2 (sccm) O2 (sccm) 

SiO2 100 5 10-3 8 20 10 

Table 2.3 b): Post-treatment conditions of sputtering SiO2   

The result of the capacity-voltage characteristics measurement at 1MHz and quasi-static of 

MIS capacitor fabricated by using this type of silicon oxide is shown in the following figure: 

 

Figure 2.9: C-V characteristics of N-type sputtering silicon oxide MIS capacitors, measured at 
1MHz (HF-CV) and quasi-static (QS-CV). The thickness of silicon oxide is 70nm. [4]  

    This figure shows clearly identical HF and QS characteristics in depletion and in 

accumulation regime, a large slope of HF characteristic in depletion regime, and a presence 

of a peak in QS characteristic. These properties indicate a good quality of sputtering silicon 

oxide as gate insulator. 

2.2.2 Silicon oxide deposited by ECR-CVD 

The ECR is a phenomenon observed in plasma physics. An electron in a static and 

uniform magnetic field will move in a circle due to the Lorentz force. The ECR-CVD uses 

HF-CV (1MHz) 

QS-CV  
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ECR condition to excite gases into plasma, using commonly a microwave at 2.45 GHz and a 

magnetic field of 875 gauss. Then the chemical reaction occurs by the incorporation of the 

ionized gases to form the material wanted.  

 

Figure 2.10: Schematic of ECR-CVD system [5] 

Figure 2.10 shows an example of ECR-CVD system [5] for SiO2 deposition. This system 

consists of two chambers, microwave chamber used for plasma forming and downstream 

chamber for chemical reaction. The oxygen and argon are excited to ions by magnetic field 

and then enter the downstream chamber. After that, silane reacts with oxygen to form SiO2 

with the assistance of argon.   

2.2.3 Alumina deposited by ALD 

The ALD deposition technology is based on the sequential use of self-terminating gas-

solid reaction [6, 7]. The basic 4 steps of ALD deposition is: the first surface reaction on the 

substrate, the removing of the residual non-reacted gases, the second surface reaction and the 
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purge. The whole ALD deposition is the repeating of these 4 steps which could be referred as 

an ALD reaction cycle until sufficient thickness will be deposited. By using this method, 

ALD presents good film uniformity even on a complex substrate surface. The deposition 

temperature of ALD could also be lower than 180°C which is compatible for a flexible 

substrate. Figure 2.11 presents an example of ALD system used for low temperature Zno, 

TiO2 and Al2O3 deposition [8]. 

 

Figure 2.11 ALD system used for ZnO, TiO2 and Al2O3 deposition. tetrakis (dimethylamino) 
titanium (TDMAT), trimethylaluminum (TMA), and diethylzinc (DEZ) are employed as 

precursors for ALD TiO2, Al2O3, and ZnO, respectively [8]. 

The Al2O3 is one of the most studied materials of ALD deposition. The deposition usually 

uses trimethylaluminum (TMA) and H2O in order to perform an overall reaction: 

2Al(CH3)3 + 3H2O → Al2O3 + 3CH4              

Figure 2.12 [9] presents the C-V characteristic for serials frequencies of a N-type and a N-

type MIS capacitor using ALD Al2O3 deposited in IMEC, Leuven, Belgium. The thickness 

of this ALD AL2O3 film is 10nm.    
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Figure 2.12: C-V characteristic of N-type ALD alumina MIS capacitors measured from 3 KHz to 
1 MHz. Inset: P-type C-V characteristic measured from100 Hz to 1 MHz. [9] 

2.2.4 Silicon nitride deposited by PECVD 

The PECVD is also used for the silicon nitride deposition in IETR. The deposition 

parameters have been optimized by K. Belarbi [2]. For this optimization, SiH4, N2 and NH3 

have been used as the reaction gases. The temperature has been fixed at 150 °C. Table 2.4 

presents the detailed deposition conditions. 

Deposition 
Power 
(W) 

Pressure 
(mbar) 

DA-K 
(cm) 

Temperature 
(°C) 

SiH4 
(sccm) 

N2 
(sccm) 

NH3 
(sccm) 

Si3N4 30 0.6 4.5 150 2 80 40 

Table 2.4 Deposition conditions of silicon nitride 

After the deposition, annealing at 180°C under nitrogen gas is carried out during 2 hours 

to densify the layer. The C-V characteristic at 1MHz and the quasi-static C-V characteristic 

of a MIS capacitor using Si3N4 deposited in the precedent conditions are shown in the figure 

2.13. The thickness of this Si3N4 layer is 300 nm.    
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Figure 2.13: C-V characteristics of N-type PECVD silicon nitride MIS capacitors, measured at 
1MHz (HF-CV) and quasi-static (QS-CV). The thickness of silicon nitride is 3000nm. [2] 

    This figure presents same capacitance value of QS-C(V) and HF-C(V) in accumulation 

regime, large slope of HF-C(V) in depletion regime and a presence of a small peak in QS-

C(V). These results indicate interesting quality of silicon nitride as gate insulator of TFT.  

3. Technologies for thin film characterization 

3.1 Thickness measurement by profilometer   

    The thicknesses of different thin films, which are deposited for TFT architecture, have 

been measured by profilometer. To measure the thickness of a thin film, which covers 

normally an entire surface of substrate, a step between thin film and substrate should be 

realized by photolithography etching. Then, a scanning stylus moves across the step 

vertically to get profile information of the thin film.  

    In the microelectronic and micro-sensor group of IETR, the profilometers utilized is a 

KLA-TENCOR P6 [10]. This profilometer has a high resolution with order of magnitude of 
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Angstrom. The P6 offers serials benefiting features such as low noise, top view objective 

lens of 4.0X, step height repeatability of 6Å, etc [11]. The applications of P6 include 3D 

imaging, 2D stress analysis, surface roughness measurement, etc.  

3.2 Roughness and morphologies measurement by AFM 

    The atomic force microscopy (AFM) is used to characterize the thin film surface 

morphology and to measure the surface roughness. The AFM can analyze very weak 

thickness variation on the sample surface and realize 3D images. The AFM uses a probe, 

which can scan the film surface. The probe has a sharp tip which is usually on the scale of a 

few nanometers to a few tens of nanometers and is fabricated typically with piezoresistive 

element acting like a strain gauge [12]. Depending on the different area on the surface, the 

deflection of the probe is different. The most common method for the detection of this 

deflection is producing a laser beam from a laser diode. The laser beam will be reflected 

from the probe into a photodiode array. The photodiode array treats the reflected laser and 

produces an output signal to create the 3D image of scanned surface. 

    In microelectronic and micro-sensor department of IETR, a VEECO model AFM caliber 

is used. This microscopy has been used to measure the surface roughness of microcrystalline 

silicon deposited by PECVD, as shown in Figure 2.1 a). This AFM is also used for the 

determination of surface roughness of PEN or Kapton, as shown in Figure 2.1 b).  

 

Figure 2.1 a): AFM image of microcrystalline silicon thin film [1], b): AFM image of planarized 
PEN Q65FA [13] 

a) b) 
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3.3 Scanning electron microscopy (SEM) 

    The scanning electron microscopy (SEM) is a simple and fast way to detect the 

morphology of thin film with high resolution lower than 1 nanometer. The SEM produces 

electron beam on the sample surface. The electrons interact with atoms in the sample and 

produce different signal depending on the surface topography. The signal produced is 

detected by SEM to create an image of sample surface.  

    In microelectronic and micro-sensor department of IETR, a SEM model JSM 6301 which 

has a magnification until 1,000,000 times has been used for the analysis of microcrystalline 

silicon thin film deposited by PECVD [1] and the structure of TFTs fabricated on PEN [13]. 

The mechanical behavior of TFTs on PEN substrate has been investigated by observing SEM 

image of TFTs on PEN after mechanical bending. Figure 2.2 presents a mechanical failure of 

TFTs on PEN after a mechanical bending with curvature radius R = 5 mm from the thesis of 

S. Janfaoui. 

 

Figure 2.2: SEM image of TFT suffered from a mechanical bending with R = 5 mm [13] 

3.4 Measurement of the electrical conductivity  

    There are 2 methods for electrical conductivity measurement of microcrystalline silicon 

thin film deposited by PECVD. 



                                                      Chapter 2: Technologies for the microcrystalline silicon TFT fabrication  

68 

 

    The first technology is I-V characteristics measurement. The metallic contact is thermally 

deposited on the microcrystalline silicon thin film surface. Then, a voltage V is applied 

between 2 neighboring contacts. By measuring the current passed through these 2 contacts, 

the conductivity σ is expressed as: 

 

where d is the distance between 2 contacts, I is the measured current, L is the length of the 

contact pattern, t is the thickness of the film, V is the applied voltage. 

    This technology is also used for the determination of activation energy of undoped 

microcrystalline silicon. For this measurement, the microcrystalline silicon thin film will be 

put under vacuum condition, around 10-6 mbar. By measuring the current passing through 2 

metal contacts at different temperature, from -150°C to 200°C, the activation energy of 

undoped microcrystalline silicon can be determined. Indeed, pure and un-contaminated 

microcrystalline silicon presents activation energy of 0.5 eV. If the sample has some oxygen 

injection or contamination which will acts like donor in the semiconductors, the activation 

energy will be lower. Therefore this measurement can be used for the oxygen contamination 

detection of microcrystalline silicon.  

    The second method is 4-points measurement [14]. Figure 2.3 shows the simplified 

demonstration of the 4-points method. For a sample with thickness t, the 4 points are placed 

on the sample surface with same distance. A current is applied on the two outside points. 

Then the voltage between the two inside points is measured. The expression of conductivity 

is: 

 

with                                                

    This expression will be used only when t<<d, the distance between 2 contacts. This 

technology has been used for the conductivity measurement of doped microcrystalline 

silicon. 



                                                      Chapter 2: Technologies for the microcrystalline silicon TFT fabrication  

69 

 

 

Figure 2.3: Simplified schema of 4-points method for the conductivity measurement [14] 

3.5 Measurement of the crystalline fraction of microcrystalline 

silicon by Raman spectroscopy 

    The Raman spectroscopy is a common method to analyze the molecular properties of 

material. The mechanism of this technology is described as follow: when a monochromatic 

light is induced on a molecule, it will be absorbed or dispersed.  Most of the dispersed part of 

the light is diffused with same frequency υ0 than incident light. This part is called Rayleigh 

diffusion or elastic diffusion. Another part of light is diffused with different frequency and is 

called Raman diffusion or inelastic diffusion. The phenomenon is called Raman Effect. A 

Raman spectroscopy measures the diffused light as a function of the frequency. The 

measured Raman spectra presents different vibration mode of analyzed material.    

    In precedent work, a micro Raman HR 800 (Jobin Yvon) has been used at wave length of 

632.8 nm. The crystalline fraction of microcrystalline silicon deposited by PECVD is 

analyzed by this Raman spectroscopy. Figure 2.4 shows the Raman spectra of a 

microcrystalline silicon film. This spectrum is dissociated by 3 Gaussian contributions as 

shown in the figure.    

d d 
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Figure 2.4: Raman spectra of microcrystalline silicon deposited by PECVD [13]  

    In this figure, the 3 Gaussian contributions represent different crystalline state of the 

microcrystalline silicon.  

 The Gaussian contribution centered at 520 cm-1 corresponds to the crystallized phase 

of the material. The position and the width of the Gaussian contribution is depending 

on the grain size [15, 16] and the stress inside the material [17].  

 The Gaussian contribution centered at 510 cm-1 corresponds to the grain joints [18] 

and the crystallized phase with grain size less than 10 nm [19, 20]. 

 The Gaussian contribution centered at 480 cm-1 corresponds to the amorphous phase.  

    The crystalline fraction FC is expressed by the following equation: 

 

where, the IC, II, and IA are the intensity in the Raman spectra for Gaussian contribution 

centered at 520 cm-1, 510 cm-1, and 480 cm-1, respectively. y is a corrective term. The value 

of y depends on the crystalline size and the excitation wave length [21]. In this thesis, the 

value of y is fixed at y = 1 for the sample analyzed. 
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4 Fabrication of microcrystalline silicon thin film transistor 
The Top-gate TFT, which uses microcrystalline silicon as its active layer needs not only 

the low temperature deposition technologies, but also the photolithographic equipment which 

has to be used in the clean-room. The fabrication procedure presented here is not only 

available for TFT on glass, but also for TFT on plastic. The detailed fabrication steps are:  

4.1 Preparation of substrate 

The glass or plastic substrate is cleaned by acetone and alcohol for 10 minutes 

respectively before all the manipulation on the samples in order to eliminate the impurities 

on the substrate surface. Then the substrate is dried by N2.  

 

Figure 2.14: Structure obtained after the cleaning of substrate 

4.2 Deposition of undoped microcrystalline silicon used as TFT 

channel 

Undoped microcrystalline silicon film used as active layer of TFT is deposited by 

PECVD. For this deposition, mixture gas of SiH4, H2 and Ar is injected in the reactor. The 

deposition rate is about 3.3nm/minute. Because the deposition temperature is lower than 

180°C, TFT fabrication on plastic substrate can be realized. The thickness of this layer is 50 

nm or 100 nm.  

 

Figure 2.15: Structure obtained after deposition of undoped microcrystalline silicon  

Substrate 

Undoped silicon 

silicon 
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4.3 Deposition of doped microcrystalline silicon 

    N-type doped microcrystalline silicon film for drain and source region is deposited 

directly on the undoped film by PECVD using arsine as doping gas. The conductivity of this 

70 nm-thick film is about 5S/cm at ambient temperature. 

 

Figure 2.16: Structure obtained after the deposition of doped microcrystalline silicon 

4.4 Definition of channel area (Mask 1) 

    To form the TFT channel area, the doped film has to be etched until the undoped film. 

This etching can be performed by plasma etching method, RIE (Reactive ion etching). SF6 is 

used as the plasma gas. The plasma discharging space is formed between two electrodes 

using a radio frequency source at 13.56 MHz. Ions are formed and accelerated to the silicon 

film surface and then react with it. The gas produced from this reaction is then evacuated by 

the pumping system.  

    The plasma etching is anisotropic comparing with the wet etching. It means, in the plasma 

etching, the vertical etching rate is largely faster than the lateral one, providing good 

reproduction of mask pattern. 

    In this etching step doped silicon should be completely and carefully removed. The end of 

this etching can be confirmed by measuring the current level on the etched region. 

    In IETR, we use a plasma etching machine, Microsys 400 provide by Roth & Rau. By 

using this machine, thickness of etched material can be known by counting the wave number 

of reflected interfered laser. The etching conditions are shown in the table 2.5: 

  

Doped silicon 
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Etched 
material 

Reactive 
gas 

Gas flow 
(sccm) 

Pressure 
(mTorr) 

Power (W) 
Etching rate 

(nm/min) 

μc-Si SF6 10 4 20 ≈120 

Table 2.5: Plasma etching conditions for μc-Si 

 

Figure 2.17: Structure obtained after the definition of channel area 

4.5 Definition of TFT geometry (Mask 2) 

    After the channel region has been formed, the undoped silicon is etched until the substrate 

to define the TFT geometry. The end of this step is clearly visible from the etching 

machine‟s monitor. 

 

Figure 2.18: Structure obtained after the definition of TFT geometry 

4.6 RCA cleaning of the silicon surface 

It is well known that the silicon-insulator interface quality is critical for the TFT 

performance. A RCA cleaning method which ameliorates silicon surface quality is done to 

improve the interface by eliminating the organic and metallic impurities in the TFT active 

area. 
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The mechanism of this RCA cleaning is: create an oxide layer on the silicon surface with a 

few nanometers thickness in which the organic and metallic impurities are trapped. Then this 

thin oxide layer is removed. Silicon surface obtained has less contamination. Table 2.6 

summarized the operation steps of this RCA cleaning. 

Step description Solution used Time 

Preparation of the solution SC1 

Hold the solution at 70°C, then add 
H2O2 solution 

Put the samples into the solution SC1 

H2O(200mL) + 
NH4OH(10mL) + 

H2O2(40mL) 
10 minutes 

Cleaning in the DI water  10 minutes 

Preparation of the solution SC2 

Hold the solution at 80°C, then add 
H2O2 solution 

Put the samples into the solution SC2 

H2O(200mL) + HCL(40mL) 
+ H2O2(40mL) 

10 minutes 

Cleaning in the DI water  10 minutes 

Preparation of the deoxidation 
solution 

Put the samples into the deoxidation 
solution based on HF 

H2O(400mL) + HF(16mL) Until hydrophobia 

Cleaning in the DI water  10 minutes 

Table 2.6: Detailed steps of RCA cleaning 

4.7 Deposition of gate insulator 

    As mentioned in 2.2 of this chapter, for the gate insulator deposition, different low 

temperature technologies and materials could be chosen. The materials used as gate 

insulators are SiO2, Al2O3 and Si3N4.     
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Figure 2.19 Structure obtained after the deposition of gate insulator 

4.8 Gate insulator etching for source and drain contact (Mask 3) 

    The gate insulator material is etched by either plasma or wet etching method in order to 

get source and drain contact. Table 2.7 a) and b) summarized etching parameters for these 

two types of etching. The finish of plasma etching is visible from interfered laser monitor of 

the Microsys 400. On the other hand, the stop of wet etching is determined by hydrophobic 

phenomena on the silicon surface.     

 

Figure 2.20 Structure obtained after the etching of gate insulator 

Material to 
etch 

Reactive 
gas 

Gas flow 
(sccm) 

Pressure 
(mTorr) 

Power (W) 
Etching 

rate 
(nm/min) 

SiO2 SF6 10 4 50 ≈25 

Si3N4 SF6 10 4 20 ≈180 

Table 2.7 a): Plasma etching parameters for gate insulators 

  

Gate insulator 
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Material to etch Etching solution 
Etching rate 

(nm/min) 

SiO2 Buffered HF (7%) 200 

Al2O3 Buffered HF (7%) 70 

Si3N4 HF (2%) 900 

Table 2.7 b): Wet etching parameters for gate insulators 

4.9 Deposition of aluminum and definition of source, drain and gate 

electrode. (Mask 4) 

    The deposition of aluminum, which is used as source, drain and gate electrode, is 

deposited by thermal evaporation utilizing joule effect under vacuum condition (10-6mbar). -

The aluminum is then wet etched using the conditions as shown in Table 2.8. The etching is 

finished when the TFT pattern becomes visible by eyes. After the etching, an annealing 

under nitrogen gas at 180°C is processed in order to improve the contact between doped 

silicon and aluminum. 

Material to etch Etching solution Temperature (°C) 
Etching rate 

(nm/min) 

Aluminum 

701 vol. H3PO4(85%) + 28 
vol. HNO3(70%) + 139 vol. 
CH3COOH + 132 vol. H2O 

DI 

50 300 

Table 2.8: Wet etching parameters for aluminum 
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Figure 2.21: Structure obtained after the deposition and etching of aluminum as drain, source and 
gate electrode 

 

5. Basic working principle and characterization of 

microcrystalline silicon TFTs 

5.1 Basic working principle of TFTs 

    The basic working principle of microcrystalline silicon TFTs is similar with MOSFET 

transistors. The performance of microcrystalline silicon TFTs is evaluated by studying some 

crucial electrical parameters. These parameters that we will analyze for fabricated TFTs are: 

 The threshold voltage VTH 

 The field effect mobility of carriers at on state µFET  

 The subthreshold slope S 

 The on/off ratio ION/IOFF and RDSON/RDSOFF 

    The working of TFT depends on enrichment of carriers. It means when the gate voltage 

reaches a certain value (VTH), a conductor channel is created by accumulation of major 

carriers (electrons or holes) in the semiconductor. This channel allows the current passing 

from source to drain.  

a) Off state 

D 
Aluminum 

G S 
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    When the gate voltage is insufficient to create a channel (|VGS|<|VTH|), there is only a 

weak leakage current, which is called `IOff`, between drain and source. This is due to the 

inverse polarization of drain-channel junction.   

b) On state 

    When the gate voltage becomes lager than VTH, a channel of carriers is created between 

drain and source. Current can pass through the channel by drain-source polarization. The 

TFT is in on state.  

    When TFT is in on state, two operation regimes, linear regime and saturation regime, are 

defined as shown in the figure 2.23. 

 

5.1.1 Linear regime 

    For a weak drain voltage (VDS ≤VGS – VTH), the drain-source current IDS is expressed by: 

 

W (μm) : channel width 

L (μm) : channel length 

μ (cm2/V.s) : field effect mobility 

COX (F/cm2 ) : capacity of gate insulator per unit area 

VTH (V) : threshold voltage 

    For a very weak drain voltage (VDS << VGS – VTH), the channel has a constant 

conductance so the TFT acts like a simple resistance. The value of this resistance is directly 

depending on the TFT dimension (W/L). The current variation is proportional to the drain-

source voltage VDS. Equation (2.2) describes the drain current under very weak drain 

voltage: 
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    From the equation (2), the transconductance gm and the conductance gt of the drain are 

defined as following: 

 

5.1.2 Saturation regime 

    When the VDS reaches the value of (VGS – VTH), a pinch-off happens on the drain side. 

The drain-source voltage is called saturation voltage (VDsat). From VDsat, if the drain-source 

voltage continues to increase, the pinch-off point moves from drain to source. The resistance 

of the depletion region is very superior compared with channel region, so the drain current 

retains its value at an approximately constant value called saturation current (IDsat). The 

expression of IDsat is: 

 

    Thus the transconductance can be deduced from the relation as below: 
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5.2 TFTs electrical characteristics 

5.2.1 Transfer characteristics 

    The transfer characteristics corresponds to the measurement of current IDS as a function of 

the gate voltage VGS for a constant drain voltage VDS. Figure 2.22 presents a typical transfer 

characteristic of a TFT. From this curve, we can define 4 operation zones of TFT. 

 

Figure 2.22: Typical transfer characteristic of N-type TFT on semi-logarithmic scale. 

The zone 1 represents the TFT behavior in off state with a current (IDS=IOFF) caused by the 

generation of carriers trapped and accelerated by the strong negative polarization at drain 

region. 

The zone 2 represents the ohmic conduction for the intrinsic materials.  

The zone 3 represents that the formation of the channel and the drain current increases 

rapidly with the gate voltage. 

The zone 4 presents the on state of TFT (IDS = ION). 



                                                      Chapter 2: Technologies for the microcrystalline silicon TFT fabrication  

81 

 

5.2.2 Output characteristics 

    The transfer characteristics corresponds to the measurement of current IDS as a function of 

the gate voltage VDS for a constant gate voltage VGS. Figure 2.23 presents a typical output 

characteristic of a TFT. This figure presents clearly the linear regime under a weak drain 

voltage and the saturation regime occurs when VDS becomes lager then (VGS - VTH). This 

figure shows also the drain current variation with different gate voltages. 

Figure 2.23: Output characteristic of an N-type TFT 

5.3 Extraction of characteristics parameters 

    The characteristics parameters that we can extract from transfer and output characteristics 

are: 

5.3.1 Threshold voltage: 

    Threshold voltage is a gate voltage value. For a TFT, the strong accumulation of carriers 

forming the channel happens when the gate voltage applied is superior to threshold voltage. 
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Threshold voltage represents the limit of TFT conduction. The threshold voltage can be 

extracted by 2 methods.  

    In the first method, the threshold voltage is extracted graphically from transfer 

characteristic IDS = f(VGS) of TFT in linear scale. Figure 2.24 presents an example of the 

extraction of TFT threshold voltage.  

 

Figure 2.24: Extraction of threshold voltage from IDS=f(VGS) of an N-type TFT.   

The curve IDS=f(VGS) presents a linear part. From this linear part, we draw a tangent line of 

the curve IDS=f(VGS). The threshold voltage value is then read from the node of the tangent 

line and drain current axis (IDS=0).  

    The second method uses output characteristic to extract the threshold voltage. As 

mentioned in equation (2.5), the saturation current of TFT can be expressed as: 

 

    Output characteristic of TFT presents IDS = f(VDS) under different VGS. On the other hand, 

from Output characteristic, we can extract IDS = f(VGS) for a fixed VDS. Figure 2.25 shows an 
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example of IDS = f(VGS) in saturation regime. According to equation (2.5), the saturation 

current of TFT, IDSsat = f(VGS) can be fitted as: 

 

where, P1, P2 and P3 are the fitting parameters. The threshold voltage value is equal to the 

fitting parameter P2.  

 

Figure 2.25: Example of the extraction of threshold voltage from output characteristic of an N-
type TFT. Fitting of IDSsat = f(VGS) using equation (2.5) in order to extract VTH of TFT. 

5.3.2 Field effect mobility 

    The field effect mobility represents how fast transport the carriers in the TFT active layer. 

The expression of field effect mobility is: 

 

where the gm is the transconductance (Equation (2.3)) which corresponds the slope of curve 

IDS=f(VGS). The mobility is expressed in cm2/V.s. 

  The mobility can also be extracted from output characteristic of TFT using the same 

method for VTH extraction. Indeed, in equation (2.7), the fitting parameter P2 corresponds to 
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the threshold voltage and P1 corresponds to the value of µCOXW/L. Therefore, the mobility 

can be expressed as:  

 

    Like threshold voltage, the mobility is an important parameter which gives us the TFT 

performance information. Higher is the mobility, lager is the drain current can be driven by 

TFT. As shown in equation (1) and (5), the drain current of TFT is proportional to µW/L. 

For a fixed drain current of TFT, higher mobility leads to lower value of W/L. Therefore, 

high mobility makes TFT smaller when the drain current is fixed. The smaller TFT is 

important for high integration applications such as high-resolution displays. The high 

mobility is thus need for these applications. 

    On the other hand, the high mobility can increase the response speed of TFT. Indeed, the 

cutoff frequency of TFT, FC, can be expressed as: 

 

    Obviously, the cutoff frequency of TFT is proportional to mobility. High mobility is 

essential for some high-frequency applications of TFT. 

5.3.3 Subthreshold slope 

    The subthreshold slope corresponds to the gate voltage value applied for increase the drain 

current for one decade (when the voltage is inferior to the threshold voltage). The 

subthreshold slope depends largely on the defects in the silicon and at the interface 

insulator/semiconductor. Its value is extracted from the log-linear plot of the transfer 

characteristics. This value is expressed in V/dec. and corresponds to the facility of the 

channel forming. 
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  The subthreshold slope depends largely on the defects in the silicon and at the interface 

insulator/semiconductor. Indeed, the subthreshold slope can also be expressed as: 

 

where CINS is the capacity per unit area of the gate insulator, CIT and CEP present the 

capacitance corresponds to trap sites at gate insulator/active layer interface and inside the 

grain boundary, respectively. Therefore, a high subthreshold slope value of TFT indicates a 

large number of trap sites in the channel of TFT or at the gate insulator/active layer interface.  

5.3.4 The ION/IOFF and RDSON/RDSOFF ratio 

    The ION/IOFF ratio presents the difference between off state and on state current. Higher is 

the ION/IOFF, better is the TFT performance. These two current value, ION and IOFF, are 

extracted from the curve IDS=f(VGS) in linear-logarithmic plot. ION corresponds to the 

maximum current on the transfer characteristic and IOFF represents the minimum current at 

off state. 

  Another important parameter to distinguish the on/off state of TFT is RDSON/RDSOFF ratio. 

This parameter is extracted from output characteristic of TFT. RDSON and RDSOFF present the 

drain-source resistance in saturation regime and linear regime of TFT, respectively. Higher is 

the RDSON/RDSOFF, better is the TFT performance. RDSON is extracted from the slope of output 

characteristic of TFT in saturation regime, where the VDS is high and VGS is low, and the 

RDSOFF is form the slope in linear regime, where the VDS is low and VGS is high, as shown in 

Figure 2.25.  
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Figure 2.25: Extraction of RDSON and RDSOFF from output characteristic of TFT. 

6. Conclusion  
    The technology of microcrystalline silicon TFTs fabricated at temperature lower than 

180 °C have been developed and optimized in the microelectronic and micro-sensor 

department of IETR since 2004. The substrates used for this process are glass and PEN.  

    The active layer of TFTs is undoped microcrystalline silicon. This layer is deposited at 

165 °C using silane, hydrogen and argon. The quality of the active layer is benefited from 

the adding of argon into the deposition gases. The activation energy of the active layer is in 

the range of 0.4 eV to 0.6 eV. The crystalline fraction is in the range of 73% to 78%. 

    There are several low-temperature deposited materials that can be used as gate insulator of 

TFT, including SiO2 deposited by sputtering and ECR-CVD, Al2O3 deposited by ALD and 

Si3N4 deposited by PECVD.  

RDSON = 1/SlopeSaturation 

RDSOFF = 1/Slopelinear 
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    The low temperature deposition technologies of active layer and gate insulators will be 

utilized in Chapter 3 and Chapter 4 for the fabrication of microcrystalline silicon TFT on 

glass and PEN substrate. 
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State-of-the-art of microcrystalline silicon TFT technology in IETR 

laboratory 

    Microcrystalline silicon TFTs fabricated on flexible substrate, PEN, have been realized 

and studied in the precedent works in IETR [1-3]. The main goal of these previous works 

was the development of low temperature TFT’s process based on microcrystalline silicon. 

The maximum temperature of the process that is compatible with usual flexible and 

transparent plastic substrate, was fixed at 180°C. This temperature is compatible with 

PolyEthylene Naphtalate (PEN) substrate developed by Dupont Teijin Films under the 

reference TEONEX Q65FA. Its thermal shrinkage is lower than 0.1% at 180°C. 

Microcrystalline silicon was chosen due to the ability to produce both N-Type and P-type 

transistors leading to efficient CMOS electronics when using it. The other reason was its 

assumed much better stability than amorphous silicon. 

    Firstly the TFTs on glass substrate were fabricated at temperature lower than 180 °C. Two 

gate insulator materials, silicon nitride deposited by PECVD and silicon oxide deposited by 

sputtering, have been studied. The following figures present microcrystalline silicon TFTs, 

fabricated in previous thesis in IETR [2], using these two gate insulators.  

 

Figure 1 a): Transfer characteristic of TFTs using silicon oxide as gate insulator [2], b): Transfer 
characteristic of TFTs using silicon nitride as gate insulator [2] 

 

a) b) 
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    The TFTs with silicon oxide as gate insulator present high mobility, 40 cm²/V.s. But their 

electrical stability was very poor. On the contrary, the mobility is very weak (on the order of 

1 cm2/V.s) and the electrical stability very excellent when using silicon nitride deposited by 

PECVD at 150°C as gate insulator.  

    CMOS simple circuits as inverters and ring oscillators were also fabricated on glass at a 

maximum temperature of 180 °C during the process [1, 2]. The process was transferred on 

PEN sheets leading to first TFTs and CMOS inverters produced on flexible and transparent 

substrate. Their behavior under mechanical strain was studied [3]. Although the maximum 

process temperature used by K. Kandoussi and K. Belarbi is sufficiently low for the 

substrate, some technical issues exist concerning the PEN substrate. S. Janfaoui has studied 

on the technical optimization of fabrication process of TFTs on PEN substrate. Then he has 

also studied the electrical stability and mechanical behavior of TFTs on PEN substrate. 

    Figure 2 presents a comparison of our microcrystalline silicon TFTs on glass and on PEN 

substrate. Their electrical parameters are summarized in Table 1. 

 

Figure 2: Comparison between the mean transfer characteristics of TFTs fabricated on glass and 
on PEN 
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    The TFTs on glass present higher Ion/Ioff ratio, higher mobility and lower subthreshold slop 

than TFTs on PEN. Moreover, The TFTs on PEN present higher standard deviation of 

threshold voltage and mobility than that of TFTs on glass. This comparison indicates the 

degradations happened when the TFTs are fabricated on PEN substrate. To explain these 

degradations, S. Janfaoui demonstrated 2 explications. The first one is higher surface 

roughness of PEN. The second one might be more important. That is the different detail 

during RCA cleaning. For the glass substrate, a typical RCA cleaning process as mentioned 

in Table 2.6 is used, i.e. 10 minutes in SC1, 10 minutes in SC2 and 10 second in HF. On the 

other hand, the TFTs on PEN have silicon nitride, which are easily attacked by acid solution 

like HF, as encapsulation layer on the substrate. The time of HF deoxidation has been forced 

to be reduced to 2 second in order to protect device from acid attack. This 2 second 

deoxidation might be insufficient for the remove of all the oxidations and contaminations on 

the silicon surface. 

 
Mean VTH 

(V) 

Standard 
deviation of 

VTH (V) 

Mean µ 
(cm²/Vs) 

Standard 
deviation of 
µ (cm²/Vs) 

Mean S 
(V/Dec) 

Mean 
ION/IOFF 

glass 11.68 0.17 0.7 0.006 0.66 >107 

PEN 12.19 0.52 0.46 0.013 1.35 >106 

Table 1: Comparison of electrical parameters of TFTs fabricated on glass and on PEN 

    The mechanical behavior of TFTs on PEN substrate is studied by applying tensile and 

compressive deformations with different curvature radii. Different curvature radii induce 

different mechanical strain in tension and in compression. The mechanical strain causes the 

variation of characteristics of TFTs. In the thesis of S. Janfaoui, uniaxial tensile and 

compressive strain is applied on TFTs on PEN and the transfer characteristics are measured 

during the bending. Figure 3 a) and b) represent the relative variation of threshold voltage 

and mobility of TFTs on PEN as a function of tensile strain. Indeed, different trends of both 

parameters have been found N-type or P-type, crystallized or non-crystallized silicon TFTs. 

These trends depend on the type of TFTs and the type of bending. Table 2 summarized the 

different trends of both parameters.  
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Figure 3: Relative variation of a) threshold voltage and b) mobility of microcrystalline silicon 
TFTs on PEN as a function of tensile strain  

Stress TFT VTH trend µ trend 

Tensile 
N Decrease Increase 

P Increase Decrease 

Compressive 
N Increase Decrease 

P Decrease Increase 

Table 2.7: Trend of the threshold voltage VTH and the mobility µ for N-type and P-type 
microcrystalline silicon TFTs fabricated on PEN under tensile and compressive stress [3] 
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Problematic of works on microcrystalline silicon TFT in IETR laboratory 

    From these previous works, it can be possible to notice 2 main problems. 

    The first one concerns the mechanical behavior of the TFTs fabricated on flexible 

substrate. The minimum curvature radius that can hold these TFTs without losing their 

performance was found higher than 1 cm. The main goal of the previous works and the 

present one is the development of flexible electronics requiring high flexibility and 

bendability to be able to be fold nearly in two. Curvature radius of a few millimeters is then 

needed. 

    The second problem concerns the field effect mobility value and its link with the electrical 

stability. As mentioned before, when using silicon dioxide deposited by RF sputtering as 

gate insulator, TFTs present thigh mobility but very poor electrical stability [2]. On the 

contrary, the mobility is very weak and the electrical stability very excellent when using 

silicon nitride deposited by PECVD at 150°C as gate insulator. Silicon dioxide deposited on 

microcrystalline silicon produces high interface quality leading to high mobility but poor 

stability due to oxygen penetration in silicon during the Sputtering deposition [1]. 

    Both problems will be addressed in the following chapters 3 and 4. 
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1. Introduction 
    Present chapter is devoted to flexible TFTs that can hold lowest possible curvature radius. 

TFTs fabricated on glass will be presented first. These TFTs were previously studied in 

IETR. Here, complementary studies, concerning the important problem of the electrical 

stability, will be described.  

    Then new TFT’s process leading to high flexibility will be described and the mechanical 

behavior of these TFTs presented and discussed 

2. TFTs fabricated at low temperature compatible with the 

use of transparent flexible substrate 
    Before fabricating TFTs on flexible substrate, we will optimize the TFT’s process on glass 

substrate that has to be easily transferred on plastics. Previous works made in IETR have 

developed this process. Here, we continue this development studying particularly the TFT’s 

reliability and trying to explain the origin of the slight change of TFT’s characteristics during 

the functioning.  

2.1 Electrical characterization of TFTs  

    µc-Si TFTs was fabricated following the process described in chapter 2. The process used 

in this work starts by cleaning the glass substrate and then depositing 2 successive 

microcrystalline silicon films. The first 100 µm thick one is undoped. The second 70 µm 

thick one is arsenic doped (N-type). 

    Then the doped film is totally but carefully removed by SF6 etching to define the channel 

zone. The success in this etching step determines the reproducibility of the process. 

    After removing both doped and undoped films to define the total area of the TFT, the 

surface of undoped film in the channel zone is cleaned to prepare it for the gate insulator 

deposition. This cleaning and the time between it and the deposition of the insulator are the 

second challenge contributing to the success of the process. 
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    Silicon nitride was chosen here as gate insulator. Its deposition was previously optimized 

at 150°C in IETR [1]. TFTs using silicon nitride as gate insulator presents outstanding 

stability comparing with the TFTs using silicon oxide as gate insulator. The thickness of 

silicon nitride was chosen to be 300 nm here. 

    Windows were opened in this gate insulator to define the zones of drain and source 

contacts. Deposition of aluminum and its etching followed, forming then source, drain and 

gate contacts.  

    An example of the transfer characteristics of the TFTs fabricated here is shown in Figure 

3.1. The electrical parameters of this TFT are summarized in Table 3.1. The off-current is 

very weak for this type of TFT, 1.6 pA at VGS = -20 V and 23 pA at VGS = -30V, 

demonstrating the high quality of the gate insulator. 

 

Figure 3.1: 2 successive measurements of transfer characteristic of microcrystalline silicon using 
silicon nitride as gate insulator 
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Mobility 

(cm²/Vs) 

Subthreshold slope 

(V/Dec) 

Threshold voltage 

(V) 

0.77 1.1 10.12 

Table 3.1: Electrical parameters of microcrystalline TFT using PECVD deposited silicon nitride 
as gate insulator 

    Even if the off-current is very low and the subthreshold slope and threshold voltage 

acceptable, the mobility is low, lower than 1 cm2/V.s.  Low mobility can be acceptable when 

not so high working frequency is needed. Particularly, mechanical or chemical sensors do 

not need high frequency. In this case, reliable electronics is much more important. It is 

important to check now the reliability of present TFTs. 

2.2 Electrical stability of microcrystalline silicon TFTs 

    Reliability of TFTs can concern their long term functioning. An accelerated ageing 

consists on applying high gate voltage, higher than its value in usual functioning, during a 

long time, following the behavior of the TFT’s parameters.  This ageing, named gate bias 

stress, causes threshold voltage shift in disordered material based transistors. Amorphous 

silicon (a-Si:H) based TFTs, for example, are known for the large shift of the threshold 

voltage during this stress. Microcrystalline silicon TFTs are less sensitive to this stress due to 

their crystallinity. As mentioned in Chapter 1, two instability mechanisms are widely 

accepted for a-Si:H TFTs: 1) defect creation in a-Si:H and 2) charge trapping in the gate 

insulator. However these mechanisms are also involved for other materials. The first 

mechanism is involved in most of disordered materials. The second mechanism describes the 

trapping of carriers coming from the transistor channel inside gate insulator containing 

defects. In this section, the same mechanisms and instability models are induced for 

microcrystalline silicon TFTs in order to define the dominant mechanism of instability.  
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2.2.1 Threshold voltage shift models  

    The defect creation in a-Si:H or in disordered regions in microcrystalline silicon is caused 

by reaction between electron and weak Si-Si bonds, producing dangling bonds, which is 

negatively charged and will trap electrons. The defect creation and the band-banding caused 

by the dangling bonds are shown in Figure 3.2 a) [2] and b) [3], respectively. By applying 

gate bias stress, these dangling bonds are created and then the TFT need higher gate voltage 

to be turned on. Therefore, the threshold voltage shifts. The defect creation in disordered 

silicon involves mainly the behavior of hydrogen inside the material using diffusion 

controlled models [4]. However, other models involve only an exponential distribution of 

weak Si-Si bond energies without hydrogen diffusion [5]. 

 

 

Figure 3.2: a) Defect creation in silicon [2] b) Band-bending diagram after defect creation [3] 

a) 

b) 
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    Both types of models occur on the same equation giving the kinetics of defect-creation 

and relaxation with the same parameters. This equation, named stretched exponential law, is 

given by:     

β)(t/texp-1 (0))VV((0)V(t)V 0T HGStressT HT H    (3.1) 

where VGstress is the gate voltage applied during the stress, VTH(0) is the initial threshold 

voltage, t0 and  are fit parameters. 

    This stretched exponential law is usually involved generally to describe relaxation 

phenomena in glasses towards equilibrium under different stresses [6]. It was established that 

considered particles diffuse in a medium containing randomly distributed states in the space, 

able to trap these particles [7]. It is involved in disordered structures to describe the time 

behavior of different parameters like the conductivity [8], the threshold voltage of TFTs [4] 

or the magnetization [6]. In amorphous silicon TFTs, this effect has been associated to a 

dispersive diffusion coefficient of atomic hydrogen [4]. This dispersion comes from the 

nature of any disordered medium where the trapping sites present a distribution of energy 

states. The β parameter is linked to this distribution of states and to the temperature.   

    This law is general enough to be used in the effect description of any stress applied to a 

wide panel of situations like in glasses, at the disordered interface between the gate insulator 

and the channel in single crystalline silicon based MOSFETs [9], and in polycrystalline 

silicon based TFTs, where dispersive diffusion in disorder structure can be involved. We can 

assume that in disordered structures, any energy absorption inducing new charge carriers 

distribution can change the state of the weakest bonds disturbing the not-stable equilibrium. 

The deformation can diffuse leading to a new equilibrium characterized by new defect 

distribution. 

    The second model is the trapping one. It involves an injection of carriers inside the gate 

insulator due to the applied gate bias. These carriers are trapped inside the insulator fixing an 

electrical charge inside it. Consequently, the effective gate voltage inducing the charge 

accumulation in the channel changes leads to a variation of the drain-source current 



                                                    Chapter 3: Flexible microcrystalline silicon TFTs: Stability and flexibility 

105 

 

    Figure 3.3 a) and b show the charge trapping mechanism and the induced band-banding 

diagram, respectively.  

 

 

Figure 3.3: a) Charge trapping in gate insulator [6] b) Band-bending diagram after charge 

trapping [8]  

    When this trapping mechanism is involved, the threshold voltage shift vs. time can be 

expressed by a logarithmic law as following [10]. 

)
t
t(1 log r(0)V(t)V
0

dT HT H   (3.2) 

a) 

b) 
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where VTH(t) is the threshold voltage at the stress time t, VTH(0) is its initial threshold, rd and 

t0 are fit parameters. rd is a decay rate constant which is proportional to density of traps 

inside the gate insulator Ntr (cm-3)  and λ (cm) a tunneling constant [11]. 

    It is difficult to define the dominant mechanism that causing the threshold voltage shift in 

microcrystalline silicon TFT. However, the crystalline structure insures a much better 

stability to microcrystalline silicon comparing to amorphous silicon. In this case, trapping 

inside the gate insulator can be dominant for microcrystalline silicon TFTs. 

2.2.2 Gate bias stress for microcrystalline silicon TFTs  

    Gate bias stress has been applied on microcrystalline silicon TFTs fabricated as described 

before. The stresses have been realized with different gate bias stress voltages and 

measurement temperatures. Fixed 35V stress gate voltage (VGSstress) is applied to the 

transistor when source and drain contacts are short-circuited. 35V is much higher than the 

threshold voltage that is around 11V for this type of TFTs. This means that TFTs are 

strongly in on-state during the stress even if the source-drain voltage is 0. The duration of the 

stress is 5.5 hours. During the stress, the transfer characteristics are measured each 10 

minutes. At the end of this stress, gate and source are short-circuited and then the transfer 

characteristics are measured each 10 minutes. 

 

Figure 3.4: a) transfer characteristics of TFTs plotted some times during the 35V gate bias stress 
at 40°C, or b) during the relaxation (VGS=0, VDS=0) after the previous stress. 
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    Figure 3.4 a) shows the transfer characteristics of TFTs plotted some times during the 35V 

gate bias stress at 40°C. The TFT’s channel is 100 µm wide (W) and 20 µm long (L). The 

curves shift towards higher gate voltage during the stress. However the shift is very small 

comparing to the threshold voltage. Figure 3.4 b) shows the behavior of the transfer 

characteristics during the relaxation. The curves shift towards lower gate voltage. It seems 

the threshold voltage comes back towards its initial value before the stress. However, the 

shift during the relaxation is low, meaning a not complete recovery. The behavior of the shift 

of the threshold voltage during both the stress and the relaxation is shown if figure 3.5. 

 

Figure 3.5: Shift of the threshold voltage during a 35V gate bias stress at 40°C and during the 
following relaxation with VGS=0V. 

    Firstly, the threshold voltage variation during the stress is fitted by the stretched 

exponential law (equation 3.1), describing a state creation. The fit is shown in figure 3.6. The 

fitting parameters, β, describing the extent of the defect distribution inside the active layer, 

and t0, the time constant for the defect creation, are 0.20 and 4.5x1010 seconds respectively. 

The time constant is similar to the usual value found for a-Si:H TFTs [12]. However, the 

present experimental threshold voltage shift, 1.1V after 5.5 hours of 35V gate bias stress at 

40°C, is much weaker than the usual one found for a-Si:H TFTs [12]. The structure of µc-Si 

films deposited in the present work is obviously well crystallized with a Raman crystalline 

fraction higher than 70% and then it is far from amorphous. Moreover, in the defect creation 
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model the parameter β is given by the ratio T/T0 [13] where T is the temperature during the 

stress and T0 is the characteristic temperature of hydrogen hopping energies that are around 

600-700K. With β=0.20 and T=40°C=313K, the experimental value of T0 is 1565K, much 

higher than expected. 

    Finally, making the same stress but at other temperatures, 30°C and 50°C for example, 

and fitting the threshold voltage shift by stretched exponential law, we obtain 0.18 and 0.17 

for β parameter and 6.8x1011 s and 4.6x1010 s for t0 parameter. β values are much lower than 

expected giving incredible values for T0. Moreover β is lower than its value at 40°C for both 

30°C and 50°C temperatures. t0 at 50°C is the same than its values at 40°C. β value have to 

increase with the temperature and t0 value to decrease with the temperature in the defect 

creation model. Here no such behaviors are observed. It seems the fit fully not reliable. 

    Similarly to the fit of the shift during the stress, the shift of the threshold voltage during 

the relaxation has been fitted by a stretched exponential curve. Here, exactly we used the 

next equation:   

β)
t

)t-(t
(exp-1 (0))VV( V(t)VV

0

Stress
T HT HStressT HStressT HT H  (3.3) 

where VTHStress and tStress are the threshold voltage and the time at the end of the stress 

respectively.  

    The fit is shown in figure 3.6. The fitting parameters, β and t0, 0.49 and 9.7x103 seconds 

respectively. The time constant is much lower than its value during the stress. This means 

that the kinetics of the defect creation and relaxation are very different in the contrary of the 

expected result where both kinetics are similar [4, 5]. 

    With all these arguments, it seems difficult to attribute the present threshold shift to defect 

creation. 
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Figure 3.6: Fit of the shift of the threshold voltage during a 35V gate bias stress at 40°C and 
during the following relaxation with VGS = 0. The fit uses the stretched exponential law 

(equation 3.2). The fitting parameters  and t0 are given in the insets. 

    The second possible model to explain the shift of the threshold voltage is carrier trapping 

inside the gate insulator. To check this possibility, gate bias stress has been performed also at 

constant temperature 25°C and 3 values of the stress bias, 30V, 35V, and 40V. 

    Figure 3.7 a) to c)   represent the transfer characteristics measured at different time during 

these gate bias stresses. Obviously, the shift increases with the stress voltage but stays very 

low. Plotting the threshold voltage shift vs. time at these different stress voltages (Figure 3.8) 

confirms this observation. The other observation is that the curves seem parallel indicating 

constant subthreshold slope. 

    The fit with the carrier trapping equation 3.2 is very good as demonstrated by the 

correlation factor of the fit R2 given inside figure 3.8. 

    Similarly, the fit with the carrier trapping equation 3.2 of the threshold voltage shift during 

the gate bias stress made at 35V stress gate voltage and 30°C, 40°C and 50°C is obtained 

with very good correlation factor as shown in Figure 3.9. 
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Figure 3.7:  Transfer characteristics during gate bias stress at 25°C and stress biases (a) +30V, (c) 
+35V and (d) +40V.  

 

    Figure 3.8: Threshold voltage shift during 30V, 40V, and 50V stress gate biases made at 25°C. 
The dashed curves are the fit with carrier trapping equation 3.3. The correlation factor R2 of the 

fit is also given.     

    At constant stress time, the threshold voltage shift increases with the stress temperature 

(Figure 3. 19). Plotting shift as a function of the reverse temperature, we found that it is 

thermally activated with activation energy of 0.12 eV (Figure 3.10). Thermal activation of 

the threshold voltage shift means that the trapping of electrons inside silicon nitride is 
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followed by conduction inside the insulator [11]. The temperature behavior of the shift is 

mainly dominated by the charge conduction via hopping inside the insulator.   

 

    Figure 3.9: Threshold voltage shift during 35V stress gate bias made at 30°C, 40°C and 50°C. 
The dashed curves are the fit with carrier trapping equation 3.3. The correlation factor R2 of the 

fit is also given.     

 

Figure 3.10: Thermal activation of the threshold voltage variation after 5.5 hours gate bias stress. 
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2.2.3 Conclusion on the electrical stability of microcrystalline silicon TFTs 

using silicon nitride as gate insulator 

    All these experimental and fitting stress results lead to attribute the shift of the threshold 

voltage of the present microcrystalline silicon TFTs to carrier trapping inside the silicon 

nitride gate insulator. The shift is thermally activated that suggests a shift behavior 

dominated by charge conduction inside silicon nitride. This conclusion is not surprising. 

Indeed firstly, microcrystalline silicon used here is very well crystallized as shown from the 

high crystalline fraction, 73%, deduced from Raman measurements. High crystalline fraction 

means low influence of the disordered regions and then high stability of the film. The second 

argument favoring the trapping model is the quality of silicon nitride deposited at low 

temperature 150°C. It is not surprising that this low temperature deposited film contains 

much more defects than usual silicon nitride deposited at 350°C favoring a hopping 

conduction inside the material.  

    However as the final purpose of the present work are to fabrication these microcrystalline 

TFTs on flexible low temperature plastic substrate, we have to continue to deposit silicon 

nitride at such low temperature. Moreover, even when using this low temperature deposited 

silicon nitride, the shift of the threshold voltage under extreme stress (high stress temperature 

50°C and high stress bias VGSstres-VTH=35V-12V=23V) is only 1.2V. This low shift confirms 

the good stability of present TFTs. Moreover, if we take the usual definition of the lifetime 

that is the time needed for the drain current in saturation to decrease by 50%, we find more 

than 1014 years of functioning to reach this limit! 
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3. Microcrystalline silicon TFTs on flexible substrates  
    After checking the performance and the electrical stability of microcrystalline silicon 

TFTs fabricated at low temperature, it is now the time to fabricate these TFTs on flexible 

substrate. The purpose here is to reach the maximum flexibility when using such inorganic 

material as microcrystalline silicon. 

    Indeed, other materials as organic ones which have ideal elastic properties and Young 

modulus in the range of 0.1 – 10 GPa [14], are considered as ultra-flexible materials. Thus, 

organic TFTs (OTFTs) are nowadays a major research axis and have been widely reported 

with high flexibility and extreme curvature radii R until 1 – 0.1 mm [15]–[18]. However 

these materials are far from commercial availability. A lot of reproducibility and stability 

problems are still a drawback in the commercial use of OTFTs. This is why coming back to 

inorganic materials can be interesting. Inorganic materials are known to be much more stable 

and reproducible.  

    From these inorganic materials, silicon is the favor material. Silicon on any substrate is 

still the most reliable material to build efficient commercially available large area 

electronics. Silicon is vastly available; it is the second available element in the earth. It has 

no problem for recycling. It contains only one chemical element so that its chemistry is 

simple. Its forbidden band-gap is compatible with the mean temperature in the earth. Since 

first Silicon transistor on 1954 (60 years ago), the death of silicon is announced periodically. 

It overcame many issues as the working frequency (>4 Ghz now) and the low temperature 

process on glass and on plastics.   

    It is usually used in its amorphous structure or after laser crystallization to produce the 

most widely used active matrix for displays. It can be deposited at low temperature 

producing CMOS electronics on plastic substrate.   

    In IETR Laboratory (thesis of S. Janfaoui [19]), microcrystalline silicon TFTs have been 

successfully fabricated on 125 μm thick PEN substrate. The electrical performance, such as 

mobility, threshold voltage, substreshold slope, and electrical stability, of TFTs on PEN is 

comparable with that on glass substrate. However, the flexibility of these TFTs is poor. The 
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TFTs are destroyed by mechanical bending with R = 10 mm. The dysfunction is explained 

by the mechanical failure in the silicon nitride gate insulator. 

    The purpose of the present work is to go down in curvature radius leading to highly 

resilient silicon electronics.  

3.1 Fabrication of microcrystalline silicon TFTs on PEN substrate. 

    Reaching highly resilient µc-Si TFTs needs to change some steps in previous TFT’s 

process (thesis of S. Janfaoui [19]), in order to reduce the strain induced in the TFT’s 

structure when bending it. To describe these changes, it is important to give first the 

mechanical model leading to the calculation of the strain. 

3.1.1 Strain calculation 

    Figure 3.11 shows the structure of previous TFTs. 

 

Figure 3.11: Structure of TFT fabricated on PEN substrate in the thesis of S. Janfaoui [19]. 

    The 125 µm thick PEN substrate was embedded first between two 250 nm thick silicon 

nitride films. Then usual TFT process was made following the description given in chapter 2. 

On the center of the structure where the channel occurs, from mechanical point of view, the 

total structure is a stack of 6 layers: 250 nm thick silicon nitride, 125 µm thick PEN sheet, 

250 nm thick silicon nitride, 100 nm thick undoped microcrystalline silicon, 300 nm thick 

silicon nitride and 250 nm thick Aluminum.  
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    Calculation of the strain developed inside the structure when it is bent at some curvature 

radius is not easy. However, from mechanical point of view, the 6-films structure can be 

simplified taking into account the thickness and the Young modulus of the 6 films. 

    Considering the much higher Young modulus of silicon nitride (270 GPa) and the 

different thicknesses, the total bended structure is considered constituted by 3 layers only: 

bottom 250nm thick silicon nitride, 125 µm PEN substrate and a top 550 nm thick silicon 

nitride (Figure 3.12).  

 

Figure 3.12: Mechanical model of the total TFT structure. 

    The strain developed in this simplified structure can be calculated using a model reported 

by the Princeton Group [20]. In this model, the strain in 3 films stack is given by equation 

(3.4). 

 

    In this equation, dS, df1 and df2 are the thicknesses of substrate, top and bottom silicon 

nitride films respectively. χ and η are defined by
S

f

S

f

S

f

d

d

d

d

Y

Y 2
2

1
1 ;; where YS 

and Yf are the Young modulus of the substrate (6.45 GPa) and the silicon nitride film (270 

GPa) respectively. R and R0 are the present and the initial curvature radii. 

    Figure 3.13 presents the strain in the structure as a function of the curvature radius. 
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Figure 3.13: Strain developed in the structure as a function of the curvature radius. 

    As written before, this structure cannot hold a curvature radius lower than 10 mm. The 

purpose here is to simplify more the structure, reducing the thicknesses and removing some 

films. 

    First, the thickness 125µm of PEN substrate is too large, limiting the flexibility. Lastly, 

Dupont Teijin Films developed 25 µm thick of the same PEN substrate with one adhesive 

face (reference TEONEX Q831A). Indeed, 25 µm thick substrate cannot be handled freely as 

can be done with 125 µm thick sheet. 25 µm thick PEN sheet has to be stuck on rigid 

substrate during the TFT process. This sticking is an advantage as usual process on rigid 

substrate can be made. Only the stick has to do not change during the thermal and chemical 

treatments of the process. 

    The second possibility to reduce the strain is to remove the highest Young modulus films 

or to reduce their thickness. Silicon nitride has the highest Young modulus in the structure. 

We have 3 silicon nitride films in the previous structure. The behavior of PEN substrate, 

when submitted to the different chemical and thermal treatments, which are involved in the 

process, shows that it resists to these steps. The idea is then to remove both passivation 

silicon nitride films used in previous process. The other possibility is to reduce the thickness 
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of the silicon nitride gate insulator. Previously in IETR, 150 nm thick silicon nitride has been 

shown to act efficiently as gate insulator. 

    Following these observations, TFT process was simplified to keep TFTs more flexible. 

Before fabricating TFTs, the strain inside the new structure was calculated using the same 

model as previously. 

    The new structure is presented in Figure 3.14. 

 

Figure 3.14:  Structure of TFT fabricated on 25 µm thick PEN substrate. 

    From mechanical point of view, the total structure is a stack of 4 layers: 25 µm thick PEN 

sheet, 100 nm thick undoped microcrystalline silicon, 150 nm thick silicon nitride and 250 

nm thick Aluminum. As previously, the structure can be simplified taking into account the 

thickness of each film and its Young modulus. The total bended structure can be considered 

constituted by 2 layers only: 25 µm PEN substrate and a top 150 nm thick silicon nitride 

(Figure 3.15).  

 

Figure 3.15: Mechanical model of TFT on 25µm PEN. 
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    The strain developed in this simplified structure can be calculated using previous model 

reported by the Princeton Group [20]. For a stack of 2 layers, equation (3.4) can be 

simplified into equation (3.5). 

 

    In this equation, dS, df are the thicknesses of substrate and silicon nitride film respectively. 

 and  are defined by
S
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Y
; where YS and Yf are the Young modulus of the 

substrate (6.45 GPa) and the silicon nitride film (270 GPa) respectively. R and R0 are the 

present and the initial curvature radii. 

    Figure 3.16 presents the strain in the structure as a function of the curvature radius. The 

strain in previous structure is also represented in this Figure. Obviously, the strain developed 

in the new structure is lower than the strain developed in previous structure for the same 

curvature radius. 

 

Figure 3.16: Strain developed in the new structure (black filled squares) and in previous structure 
(red open squares) as a function of the curvature radius. 
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    Present calculation shows the possibility to bend TFTs at lower curvature radius by using 

the new structure. It is the time now to fabricate TFTs following this new structure and to 

check their mechanical behavior. 

3.1.2 TFT’s process 

    TFTs are fabricated directly on 25 μm thick PEN (Polyethylene Naphthalate) using same 

steps than that on glass substrate. The only difference is that here thinner (150 nm thick) 

silicon nitride is used as gate insulator. The difficulty to handle and process on very thin 

plastic substrates is well-known: 125 µm thick plastics can be handled freely but thinner 

ones (< 50 µm) require to be spin-coated (e.g. Polyimide) or reported on a rigid carrier. Here, 

the PEN sheet with an adhesive back face has been stuck on a glass carrier wafer before 

processing and released only at the end of the process. 

    Before starting the process, PEN sheet attached on glass is cleaned by acetone and alcohol 

for 10 minutes respectively. As presented in Chapter 2, the process involves: 

- deposition of undoped and doped µc-Si layers, here 100 nm and 70 nm thick respectively,  

- 2 photolithography steps to define the TFT geometry,  

- a RCA cleaning process to remove the organic and metallic impurities in the undoped 

silicon layer, 

- deposition of 150 nm thick silicon nitride layer, which will be the gate insulator of TFT, 

and then 2 hours annealing at 180°C under N2 gas 

- photolithography step to open windows onto source and drain 

- deposition of aluminum and then patterning to from the drain, source and gate electrodes.  

- Final 2 hours annealing of the TFT at 180°C under N2. 

    After the process, the PEN sheet is removed from the holding glass and TFTs 

characterized. 

3.1.3 TFT’s electrical characterization   
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    Figure 3.17 shows the transfer characteristics of the microcrystalline silicon TFT on 25 

μm thick PEN with a W/L ratio of 40/20 µm. Even if the thickness of gate insulator is 

reduced to 150 nm for this new structure, the gate leakage current is only 4 pA at VGS = 30V, 

indicating a good dielectric property of this gate insulator. The electrical parameters have 

been summarized in Table 3.2. We present here also the electrical parameters of 

microcrystalline silicon TFT fabricated on 125 µm thick PEN substrate using previous 

structure [19]. The electrical parameters, such as mobility and subthreshold slope, of both 

TFTs on 25 µm thick PEN using new structure and on 125 µm thick PEN using previous 

structure, are similar. Even if the thickness of silicon nitride gate insulator and device 

structure are different for both TFTs, the consistency of these electrical parameters indicates 

a good reproducibility of our microcrystalline silicon TFT process on PEN substrate. 

 

Figure 3.17: Transfer characteristic of microcrystalline TFT on 25 μm thick PEN. Leakage gate 
current IGS is also given in the figure. 
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Mobility 

(cm²/Vs) 

Subthreshold 
slope 

(V/Dec) 

Threshold voltage 

(V) 

New structure on 
25µm PEN 0.45 1.3 17 

Previous structure on 
125 µm PEN 0.46 1.35 12 

Table 3.2: Electrical parameters of microcrystalline TFT fabricated on 25μm thick PEN (new 
structure) in comparison with previous structure fabricated on 125 µm thick PEN [19]. 

    As the electrical stability is an important factor contributing in the validation of the process, 

gate bias stress has been applied on the present microcrystalline silicon TFTs fabricated on 25 

µm thick PEN substrate.  TFTs were submitted to +20V stress gate voltage during 6 hours at 

ambient temperature. Figure 3.18 shows the transfer characteristics plotted at different stress 

times. The behavior is similar to what we foud previously when studying the electrical stability 

of our usual µc-Si TFTs (paragraph 2.2 of Chapter 3). Positive shift of the characteristics is 

observed. The characteristics are parallel implying constant subthreshold slope and then 

probably dominant effect of carrier trapping inside the insulator. 

 

Figure 3.18: Transfer characteristics during 6 hours and +20V stress gate voltage and the 
resulting shift of the threshold voltage. This shift is fitted by carrier trapping equation. 
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    The shift of the threshold voltage is presented in the same figure 3.18. It is well fitted with 

the carrier trapping equation 3.2 leading to the same conclusion as previously. However, we 

note slightly larger shift 1.6V than previously (<1V) where TFTs were fabricated on glass. 

3.2 Mechanical behavior of microcrystalline silicon TFTs on PEN 

substrate. 

    TFTs fabricated on 25 µm thick PEN presents more or less similar electrical parameters 

and electrical stability than same TFTs fabricated on glass. The next step is to check these 

performances under mechanical (tensile and compressive stress) bending and particularly the 

lowest curvature radius they can hold. 

3.2.1 Mechanical stress tools 

    The mechanical behavior to evaluate the flexibility is studied by bending TFTs to tensile 

and compressive stress with different curvature radii using static homemade tools (Figure 

3.19). We focus here only on the longitudinal strain, which means a channel (i.e. the current 

flow) oriented in the same direction of the bending. Electrical characteristics are measured 

during and after bending tests.  

 

Figure 3.19:  Homemade tools for tensile and compressive strain. TFTs are bended outward and 
inward in the same direction of the channel. 
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    The procedure of the TFT’s characterization under bending consists in sticking the 

substrate with TFTs on half cylinder tools with different radii. The channel of TFTs is 

oriented in the direction of the bending. Then TFTs are characterized under probes as usual. 

Figure 3.20 shows the PEN substrate-TFT structure stack mounted on half cylinder tool in 

the case of tensile stress. 

      

Figure 3.20: PEN substrate with TFTs mounted on half-cylinder tool. In this case TFT is 
submitted to tensile stress in the direction of its channel due to the curvature radius R.  

3.2.2 TFTs behavior during bending tests 

    TFTs are bent for different radii R in tension (ranging from 25 mm to 5 mm). Figure 3.21 

shows an example of transfer characteristics of TFTs in flat position and bent at these 

different tensile curvature radii.  

    The first important result is that present TFTs can hold 5 mm curvature radius without 

breaking.  5 mm is lower than the minimum curvature radius (10 mm) that can hold TFTs 

fabricated in previous structure. This experimental result confirms the calculation of the 

strain made before in paragraph 1.1 of Chapter 4. This calculation has shown that the strain 

developed is lower in the new structure for the same curvature radius, leading to functioning 

TFTs at lower curvature radius. 
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    The on-current increases when the curvature radius decreases that means when the tensile 

stress increases. This figure 3.21 shows also the relative variation of the on-current with the 

strain. The strain is calculated using the model described before.  

 

Figure 3.21: Transfer characteristics of TFTs bent under different tensile curvature radii and the 
relative increase of the on-current as a function of the developed tensile strain 

    The increase of on-current with tensile strain for N-type TFTs is known. It is common in 

silicon TFTs whatever the amorphous [21], micro(poly)-crystalline [22,23] or single 

crystalline structure [24]. The effect of tensile stress on µc-Si TFTs deposited on PEN was 

extensively studied in the thesis of S. Janfaoui [19]. The increase was attributed to a change 

in the energy bands due to the uniaxial stress, decreasing mainly the conductivity effective 

mass. 

    On-current increases nearly linearly with the strain with a slope of 93%. The on-current 

increases by 28% when TFT is bent until 5 mm curvature radius. The variation is too 

important to conclude that present TFTs cannot be used in functioning electronics submitted 

to dynamic variation of the mechanical stress. However presents TFTs can be operational 

under high static mechanical deformation. 
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3.2.3 TFTs critical radii under tension and compression 

    The homemade tools to study the TFT’s characteristics under bending are limited to R = 5 

mm under tensile stress. It is not possible to use probes when measuring TFTs characteristics 

at lower curvature radius. 

    However it is important to check the behavior of these TFTs under lower curvature radii, 

until their breaking.  The solution to make this study is to bend mechanically the TFTs at 

very low curvature radius and to check their functioning when coming back in flat position. 

If any breaking occurred under mechanical deformation, TFTs cannot work after this 

breaking.  

    TFTs are then bent tensely and compressively until R = 2.5, 1.5 and 0.75 mm using steel 

cylinders and measured while re-flatten after every bending. Figure 3.22 shows the transfer 

characteristics together with the leakage gate current IGS behavior of TFTs in flat position 

after each bending. Note that the sample was previously cut in two so that transistors from 

the same process were subjected to only tensile or compressive stress. 

    Remarkably, the transfer characteristics are exactly similar after either tensile or 

compressive bending until R = 1.5 mm. The gate current leakage increases a bit for R = 1.5 

mm but stays very low (maximum of 50 pA for VGS = 30 V). For lower radius, i.e. 0.75 mm, 

an obvious degradation of ION and IGS is observed but TFTs remains functional in both 

tension and compression. 

    However, a slight difference can be observed between tension and compression. The 

degradation is more important under tension, as shown from the behavior of IGS and can be 

impacted to a mechanical degradation of the films, such as cracks. Under compression it may 

be caused by a delamination of the films from the substrate. This phenomenon has indeed 

been suggested in [25].  
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Figure 3.22: Transfer characteristics and gate current measured in flat position after bending for 
different curvature radii: a) tensile stress and b) compressive stress 

    Present results highlight the possibility to bend microcrystalline silicon TFTs in tension or 

compression without changing their electrical properties until R = 1.5 mm at least (since no 

tests have been performed between 1.5 and 0.75 mm). 1.5 mm radius means practically the 

possibility to bend TFT in 2 without losing their performance in flat position. This value is 

comparable with some organic TFTs, even all the layers of our TFTs are inorganic. 

3.2.4 TFTs reliability under multiple bending 

    Previous result on the minimum curvature radius that can hold present TFTs is an 

important one. However, it may be useful to test this ability to hold such curvature radius by 

making multiple tensile bending tests, simulating a fatigue test. Figure 3.23 a) shows the 

transfer characteristics of 3 differently sized TFTs (W/L = 60/20, 40/20, 20/20 µm) 

measured in flat position, initially and after various bending cycles: 20, 50 and 100 times for 

R = 5 mm. Figure 3.23 b) focus on the transfer characteristic of the TFT with W/L = 40/20 

µm in flat position also initially and after various bending cycles: 20, 50, 100 and 200 times 

for R = 2.5 mm. 
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Figure 3.23: Transfer characteristics of TFTs measured flatten before and after tensile bending 
stress applied: a) 20, 50 and 100 times for 3 different W/L ratios at R = 5 mm, b) 20, 50, 100 and 

200 times for W/L = 40/20 µm at R = 2.5 mm. 

    One can observe that transfer characteristics stay nearly unchanged after 100 cycles at R = 5 

mm and even 200 cycles at R = 2.5 mm. An ION analysis of the 40/20 µm TFT at VGS = 30V 

shows a nearly constant value with a relative variation of 1 % even after 200 cycles at R = 2.5 

mm, as shown in Figure 3.24. 

 

Figure 3.24: Relative variation of the on-current at VGS=30 V of the 40/20µm TFT when 
submitted to Flat – Tensile cycles at R=2.5mm until 200 cycles. 
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3.2.5 Discussion of the high flexibility of microcrystalline silicon TFT on PEN 

substrate 

    These previous results demonstrate the possibility to bend TFTs made of inorganic 

materials (microcrystalline silicon, silicon nitride and aluminum) until R = 1.5 mm without 

losing electrical performances and support R = 0.75 mm but with lower electrical 

performances. It seems that the main effect limiting the radius is a high increase of IGS at 

high VGS as shown in Figure 3.22. The origin of IGS degradation can be the mechanical 

behavior of the silicon nitride layer due to its highest Young modulus. 

    As expected from the discussion on the limiting factors in the mechanical behavior of the 

TFT structure developed before in IETR [19], and from the calculation of the strain 

developed in previous and present TFT structures, present TFT structure holds lower 

curvature radius than the previous one. 

    To understand more the origin of the mechanical limit, it may useful to reproduce here 

figure 3.25 showing the strain developed in both structures by curvature radius. This figure is 

renumbered 3.25 here. 

 

Figure 3.25: Strain developed in the new structure (black open squares) and in previous structure 
(red filled squares) as a function of the curvature radius. 
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    We observe well that for an equal curvature radius, the new TFT structure is much less 

strained than the previous one. The previous structure holds 10 mm minimum curvature 

radius. At this curvature radius, the value of the strain developed inside the structure is about 

0.6-0.7%. The 1.5 mm minimum curvature radius held by the new structure corresponds to 

similar strain of 0.6-0.7%. This means that both structures are limited by the same origin 

defined by the maximum strain (0.6-0.7%) than can hold silicon TFT using microcrystalline 

silicon as active layer and silicon nitride as gate insulator.  

    This value of strain limit is approximately the same reported by the Princeton Group [20] 

for amorphous silicon TFTs on polyimide using silicon nitride as gate insulator. This means 

that microcrystalline silicon and amorphous silicon TFTs are limited by the same strain 

value. The other possibility is that silicon can hold higher strain but silicon nitride cannot. 

Indeed, silicon nitride was used in both amorphous and microcrystalline silicon TFTs. 

Moreover, its Young modulus, 270 GPa, is higher than its value for silicon 160 GPa.  

The conclusion is that the main limitation of silicon TFTs comes from the mechanical 

behavior of silicon nitride material. 

4. Conclusion 
    Following the long way of IETR towards not only flexible but also reliable electronics, the 

results given in chapter constitute an important milestone. We demonstrated the possibility to 

build highly flexible electronics than can be bent many times nearly in two and that works 

after that.  

    This electronics is based on silicon that is the most used semiconductor and that is known 

for its reliability and reproducibility. 

    The reliability of microcrystalline silicon TFTs made at low temperature that is 

compatible with the use of transparent plastic substrate, as PEN, was studied and 

demonstrated. The study attributed the slight change of the TFT’s parameters during 

functioning to carrier trapping in silicon nitride gate insulator.  
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    These reliable TFTs present, however, low field effect mobility, slightly lower than 1 

cm2/V.s. Increasing this mobility while maintaining the high reliability is the new challenge 

we will try to reach in next chapter.  
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1. Introduction 
    As presented in the issues addressed in the present work, the other problem concerns the 

field effect mobility value and its link with the electrical stability. Indeed, when using silicon 

dioxide deposited by RF sputtering as gate insulator, TFTs present thigh mobility (from 20 to 

150 cm2/V.s for electrons) but very poor electrical stability [1]. On the contrary, the mobility 

is very weak (on the order of 1 cm2/V.s) and the electrical stability very excellent when using 

silicon nitride deposited by PECVD at 150°C as gate insulator. Silicon dioxide deposited on 

microcrystalline silicon produces high interface quality leading to high mobility but poor 

stability due to oxygen penetration in silicon during the Sputtering deposition [2]. 

    The problem of simultaneous both high mobility and high stability is addressed here 

through the use of different gate insulators leading to channel - gate insulator interface 

change. 

2. Microcrystalline silicon TFTs using different gate 

insulators 
    To check the only effect of changing the gate insulator, the process to fabricate all TFTs is 

keep exactly the same. Only the gate insulator is changed. The process was already described 

in chapter 2. After deposition of 100 nm thick un-doped and 70 nm thick doped µc-Si films 

always in the same conditions, doped µc-Si film is plasma etched to define source and drain 

regions. Then gate insulator is deposited and plasma etched to open the source and drain 

vias. After that, aluminum film is deposited and wet etched to define the source, gate and 

drain contacts.  

2.1 RF sputtered silicon dioxide as gate insulator 

     Silicon dioxide was used as gate insulator in the first experiments due to its known 

properties and particularly to the electrical quality of its interface with silicon.   
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2.1.1 Reviews of previous TFTs using silicon oxide deposited at ambient 

temperature (without heating the substrate) by RF sputtering  

    K. Kandoussi [1] and K. Belarbi [2] used silicon dioxide deposited by RF sputtering 

without heating the substrate during their PhD works. The deposition conditions and the 

post-annealing process were optimized through the performance of Metal-Oxyde-Silicon 

wafer MOS capacitance. Table 4.1 gives the deposition conditions. The post-annealing was 

made under 20 sccm H2 and 10 sccm O2. 

Power (W) Pressure (mbar) DA-K (cm) Mixture Ar-O2 

200 5 10-3 8 30%(O2) 

Table 4.1: Deposition conditions of sputtering silicon oxide 

    An example [2] of transfer characteristics of TFTs when using this silicon dioxide as gate 

insulator is given in Figure 4.1. The electrical parameters calculated from this curve are 

presented in Table 4.2. 

 

Figure 4.1: Transfer characteristics of microcrystalline silicon TFTs when using silicon dioxide 
deposited without heating the substrate and behavior of such characteristics under low stress gate 

voltage during shift time (2 minutes). 
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Mobility 
(cm2/V.s) 

Subthreshold slope 
(V/Dec) 

Threshold voltage 
(V) 

40 0.5 3.2 

Table 4.2: Electrical parameters of N-type TFT extracted for transfer characteristic presented in 
Figure 4.1. 

    Interesting parameters were found with high mobility, low subthreshold slope and low 

threshold voltage. However, these TFTs were fully instable as shown in Figure 4.1 where the 

threshold voltage shifts by 5V under positive stress after 2 minutes only. 

    This non-stability was explained by the behavior of oxygen present in the first nanometers 

of the active layer and coming from the bombardment of silicon by oxygen during the 

sputtering. 

2.1.2 Silicon dioxide deposited at fixed temperature RF sputtering 

    Previous silicon dioxide was deposited without heating the substrate in a RF sputtering 

reactor where it is not possible to make this heating. Heating the substrate is known to help 

in better quality of the deposited film. Then new silicon dioxide was deposited during the 

present thesis work in another reactor at 150°C. This temperature was chosen in order to be 

compatible with the use of PEN substrate.  

2.1.2.1 MOS capacitance using SiO2 deposited at 150°C 

    Before fabricating TFTs, the quality of SiO2 film and its interface with silicon were 

checked through the characteristics of Aluminum-SiO2-N type silicon wafer MOS structure. 

Figure 4.2 presents High frequency (1 MHz) and Quasi-static C-V characteristics of this 

structure, after post-annealing at 180°C and 250°C during 1 hour or 4 hours. SiO2 films were 

deposited with a power of 75W and a gas mixture of 40 sccm Ar and 20 sccm O2. 
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Figure 4.2: High frequency 1 MHz (black full square curves) and Quasi-static (red open 
square curves) C-V characteristics of Al-SiO2-N type Si wafer MOS structures after 1h and 

4h annealing at 180°C or 250°C. 

    To discuss on this figure 3.2, we need to remember that a modulation of the quasi-static 

characteristic means the surface voltage is not pinned by interface defects due mainly to the 

low content of such defects. Deeper is the modulation, lower is the defect content. After 

annealing at 180°C, weak modulation can be observed. The modulation is much deeper after 

the 250°C annealing. This means the interface is greatly improved after 250°C annealing. 
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    The other observation is the near flat quasi-static (QS) curves in the accumulation and 

deep inversion regimes after 250°C annealing. This means very weak leakage current. After 

180°C annealing, the quasi-static (QS) characteristic is also near flat but we can observe a 

very slight slope meaning higher leakage current after 180°C annealing than after 250°C. 

    After 250°C annealing, a shoulder appears in the QS characteristic in the weak inversion 

regime. This means an energetically localized interface defect appears. It slows down the 

decrease of the capacitance from accumulation to weak inversion regime. The shoulder is 

more important after 250°C annealing than after 180°C. 

    The improvement of the characteristics after these annealing can be quantified by the 

slope of the high frequency capacitance in the weak inversion regime and the value of the 

flat-band voltage FB. Table 3.3 summarizes these quantities after the annealing. 

Annealing 
temperature (°C) 

Annealing time 
(hour) 

HF C-V slope 
(pF/V) 

Flat-band voltage 
(V) 

180 
1 45 -4 

4 52 -3 

250 
1 92 -0.1 

4 114 -0.3 

Table 4.3: Slope of the high frequency capacitance in the weak inversion regime and Flat- band 
voltage after annealing at 180°C and 250°C during 1h and 4h. 

    The C-V slope improves after each annealing. However and as expected, the temperature 

effect is higher than the time effect. The FB voltage shifts to lower negative voltage arriving 

at nearly 0 after 250°C annealing.  

    These CV experiments led us to determine what can be the best annealing conditions 

giving the highest quality SiO2 film. It seems here that 250°C annealing during 1h are the 

optimum conditions in the low temperature domain of the TFT process. Even if 250°C is too 

high when using PEN substrate, it was chosen here only to check the improvement of the 
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TFT characteristic in terms of mobility value and stability. Moreover, 250°C is not too high 

temperature so that polyimide substrate can be used at this temperature. 

2.1.2.2 TFTs using SiO2 deposited at 150°C and then annealed at 250°C during 

1h under forming gas. 

    As described before, present TFTs uses 100 nm thick undoped µc-Si film as active layer, 

70 nm thick N-type doped µc-Si film as source and drain regions. After the µc-Si processing 

steps, 150 nm thick Silicon dioxide is deposited at 150°C and then annealed at  250°C during 

1 hour under forming gas.  

    Transfer characteristics of these TFTs are presented in Figure 3.3. The channel width W 

and the channel length L are 100 µm and 20 µm respectively. Leakage gate current is also 

given in the same figure. 

      

Figure 4.3: Transfer characteristic of microcrystalline silicon TFT (100/20 µm) with 150 nm 
thick sputtered silicon dioxide deposited at 150°C as gate insulator 

    Very low off-current at low gate voltage is shown. However, it increases nearly 

exponentially when the reverse gate voltage increases. The leakage gate current is very low 
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until a gate voltage value of +15V, from which it increases a lot. At a gate voltage of 30V, it 

reaches 1.2 nA. 

    The electrical parameters of this type of TFT are summarized in the Table 4.4.  

Mobility 

(cm²/Vs) 

Subthreshold slope 

(V/Dec) 

Threshold voltage 

(V) 
ION/IOFF 

2.5 1.25 17.2 >107 

Table 4.4: Electrical parameters of TFT presented in Figure 4.3. 

    The off-current behavior is similar to what it was found when using silicon dioxide 

deposited without heating the substrate. The mobility value is lower than its previous value. 

However, it can be acceptable if high TFT electrical stability is obtained. 

    The TFT electrical stability was investigated by applying positive gate bias stress VGSstress 

= + 20V for 6 hours at room temperature. A negative shift of the threshold voltage and a 

nearly constant subthreshold slope are observed. The threshold voltage shift can be due to 

displacement of positive charge inside the insulator towards the insulator-channel interface.  

However, the most important observation is the weak value of the shift, 1.45 V, particularly 

if this behavior is compared to that of previous TFTs when using silicon dioxide deposited 

without heating the substrate during the deposition. 

    Depositing silicon dioxide in the present conditions can be one way to improve the 

stability of microcrystalline silicon TFTs. However, we have to check if an annealing at 

180°C that is compatible with the use of PEN substrate can be enough to insure some 

stability. 
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Figure 4.4 Microcrystalline silicon TFTs using sputtering silicon oxide as gate insulator after 
prolonged gate bias stress, VGSstress= +20V, stress for 6 hours. 

2.2 TFTs using ECR-CVD deposited SiO2 as gate insulator 

    Depositing SiO2 by chemical vapor deposition techniques can present some advantages in 

comparison of sputtering techniques. The deposition is more “soft” leading to only slight 

bombardment of silicon by oxygen. TFTs can be more stable. 

    To check only the possibility to use such deposition techniques, some microcrystalline 

silicon TFTs were processed first in IETR, then SiO2 films were deposited in the Institute for 

Microelectronics and Microsystems – CNR – Roma (Italy) using ECR-CVD reactor and 

finally TFT’s process was finished in IETR. 

    SiO2 deposited by ECR-CVD in IMM was previously optimized by the IMM team as gate 

insulator of polycrystalline silicon TFTs [3]. The best gate insulator was obtained after a 

post-annealing at 450°C. 

    In the present work, SiO2 films were deposited as usual in IMM without heating the 

substrate. As usual also, the deposition was followed by a post annealing in IETR. However, 

-10 0 10 20

100f

1p

10p

100p

1n

10n

100n

1µ

 

 

I D
S
(V

)

VGS(V)

VGSstress= +20 V



                                                                Chapter 4: Increasing the mobility of microcrystalline silicon TFT 

144 

 

the annealing temperature was limited to 180°C following the goal of this work. Then final 

annealing was made at 180°C under forming gas. 

    Figure 4.5 shows the transfer characteristic of microcrystalline silicon TFT using 100 nm 

thick silicon oxide deposited by ECR-CVD as gate insulator. Table 4.5 concludes the 

electrical parameters of the TFT. The mobility value, 0.85 cm2/Vs is, much weaker than that 

of previously fabricated TFT using sputtering silicon oxide as gate insulator. The leakage 

gate current increases from 15V gate voltage. However, it stays very low and its value at 

25V is only 40 pA, much lower than its value with previous sputtered silicon dioxide. 

    Even if the mobility value is low, it has been useful to check the electrical stability of 

these transistors. 

 
Figure 4.5: Transfer characteristic of microcrystalline silicon TFT (100/20 µm) with ECR-CVD 

deposited silicon oxide as gate insulator 

Mobility 

(cm²/Vs) 

Subthreshold slope 

(V/Dec) 

Threshold voltage 

(V) 
ION/IOFF 

0.85 2 14.5 107 

Table 4.5: Electrical parameters of TFT using ECR-CVD deposited silicon oxide as gate insulator 
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    Figure 4.6 shows the behavior of the transfer characteristics of such TFT during +20V 

gate bias stress. The shift is nearly parallel indicating constant subthreshold slope. This 

means that the shift is more probably due to charge trapping and/or displacement of charges 

inside the gate insulator. The shift is important, a little bit less than 4V after 40 minutes of 

stress. 

     

Figure 4.6: Shift of the characteristics of ECR-CVD SiO2 based TFTs during +20V gate bias 
stress. 

    Together with the first previous results obtained by the IMM group, present results seem 

indicate that present ECR-CVD SiO2 not able to reach our goal if the maximum annealing 

temperature is limited to 180°C.  

2.3 TFTs using ALD deposited Al2O3 as gate insulator 

    Other possibility to reach our goal was to check other insulators than silicon dioxide. 

Alumina can be the solution, particularly when deposited by Atomic Layer Deposition 

(ALD) technique. The very low deposition rate will insure a “smooth” deposition and then 

good interface with the active layer of TFTs. 
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    Thermal ALD Technique was used by IMEC-Leuven (Belgium) team to deposit Al2O3 

layer for us at 150°C using tri-methyl aluminum (TMA) and H2O as precursors. The 

deposition conditions are summarized in Table 4.6. 

Pulse time (s) Chamber 
pressure (mbar) 

Flow rate 
(sccm) TMA Purge H2O Purge 

0.5 15 0.5 15 0.3 500 

Table 4.6: Deposition conditions of Al2O3 by Thermal ALD in IMEC. 

    To check only the possibility to use this Al2O3 film as gate insulator for ours TFTs, some 

silicon TFTs were processed first in IETR, then Al2O3 films were deposited in IMEC Leuven 

using their ALD reactor and finally TFT’s process was finished in IETR. 

    Before fabricating TFTs, the quality of Al2O3 film and its interface with silicon were 

checked through the characteristics of Aluminum-Al2O3-N type silicon wafer MOS structure. 

Figure 4.7 presents High frequency (1 MHz) and Quasi-static C-V characteristics of this 

structure, after post-annealing at 180°C during 1 hour. Important modulation of the quasi-

static capacitance is observed; that means high electrical quality of the interface alumina-

silicon. This result is not surprising as low interface defect density was previously found 

when using thermal ALD. TMA can provide hydrogen for the passivation role of silicon 

surface by hydrogen. Moreover, alumina was found as hydrogen reservoir providing 

hydrogen to silicon surface during post-annealing steps [4].  
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Figure 4.7: High frequency 1 MHz (black full square curves) and Quasi-static (red open square 
curves) C-V characteristics of Al-Al2O3-N type Si wafer MOS structures after 1h annealing at 

180°C. 

    However and unfortunately, quasi static capacitance curve is not flat, meaning important 

leakage current in the structure. This leakage current can be reduced by annealing at higher 

temperature that is not the purpose of the present work.  

    Using the HF capacitance in accumulation regime, the relative dielectric constant of 

present alumina film was found to be 5.2. 

    As such alumina insulator film was not used before as gate insulator of silicon TFTs, we 

checked its use with Solid Phase Crystallized (SPC) Polycrystalline silicon based TFTs as 

well as with present microcrystalline silicon based TFTs. Indeed, SPC process is well 

established in IETR and it is used as reference process when testing new material. 

    The SPC process starts with a deposition of undoped and doped amorphous silicon layers 

by LPCVD at 550°C and then both layers are solid phase crystallized at 600°C under 

vacuum during 8 hours [5]. The following process steps are similar to the description of the 

µc-Si TFT’s process.  
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    Figure 4.8 presents the transfer characteristics of same size (W/L = 100/20µm) SPC TFTs, 

one using silicon dioxide deposited by sputtering as gate insulator [6] and the other using 

ALD-Al2O3 as gate insulator. Both TFTs were annealed under forming gas at 200°C at the 

end of the process. This temperature is the maximum temperature during both processes. 

Table 4.7 summarizes the electrical parameters of both TFTs. 

    Even if the mobility is lower when using alumina, the electrical parameters of alumina 

based SPC TFTs, subthreshold slope and threshold voltage can be considered as very 

interesting.  

 

Figure 4.8: Transfer characteristics of W/L = 100/20 µm solid phase crystallized polycrystalline 
silicon TFTs, one using silicon dioxide deposited by sputtering as gate insulator [6] (dashed blue 

curve) and the other using ALD-Al2O3 as gate insulator (continuous black line). 

Gate insulator 
Mobility 

(cm²/Vs) 

Subthreshold slope 

(V/Dec) 

Threshold voltage 

(V) 

ALD Al2O3 65 0.76 7.67 

Sputtered SiO2 120 0.24 5.2 

Table 4.7: Electrical parameters of polycrystalline TFT using ALD Al2O3 and sputtering SiO2 as 
gate insulator 
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    After checking the quality of alumina-silicon interface through C-V measurements and the 

quality of alumina as gate insulator of silicon TFTs, the next step was to use it as gate 

insulator of microcrystalline silicon TFTs. Figure 4.9 shows a transfer characteristic of 

100/20 µm µc-Si TFT using 100 nm thick Al2O3 as gate insulator. Leakage gate current is 

also represented in this figure. The electrical parameters of this TFT are shown in the Table 

4.8. 

 

Figure 4.9: Transfer characteristic of microcrystalline silicon TFT using ALD deposited Al2O3 as 
gate insulator (continuous black line) and behavior of the leakage gate current (dashed red line) 

Mobility 

(cm²/Vs) 

Subthreshold slope 

(V/Dec) 

Threshold voltage 

(V) 

0.5 1.3 7.51 

Table 4.8: Electrical parameters of microcrystalline TFT using ALD deposited Al2O3 as gate 
insulator 

    The gate current stays very low until +20V gate voltage. It increases at higher gate votage 

but stays low, reaching 8 nA at 30V. The threshold voltage and subthreshold slope are not 
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too large. However, the mobility is lower than 1 cm2/V.s and the off-current increases highly 

when reverse gate voltage increases.  

2.4 TFTs using PECVD deposited Si3N4 as gate insulator 

    As the stability of silicon nitride based TFTs was shown to be very important, it may 

useful to keep silicon nitride as gate insulator, changing only the deposition parameters and 

then trying to improve the interface between silicon nitride and microcrystalline silicon. The 

purpose is always to increase the mobility. The final goal is to reach at least a mobility of 5 

cm2/V.s., needed for the use of these TFTs in high resolution Displays. 

    We present here first tentative to change this interface. The idea of this study is to create 

more efficient Si/SiN interface using multilayer silicon nitride. By this idea, the deposition of 

silicon nitride is divided into 2 runs. During the first run of silicon nitride deposition, we 

remove the NH3 gas injection in order to ameliorate the interface quality. During the second 

run, the NH3 is added in the reaction gases for complete the whole silicon nitride layer.  

    The deposition conditions of these 2 runs are summarized in Table 4.9. In this study, the 

deposition times for the 1st run and the 2nd run are 7.5 minutes and 22.5 minutes, 

respectively. The thickness of the whole silicon nitride layer is 300 nm. After the deposition, 

the silicon nitride is annealed at 180 °C during 2 hours under N2. 

Run 
Power 

(W) 

Pressure 

(mbar) 

DA-K 

(cm) 

Temperature 

(°C) 

SiH4 

(sccm) 

N2 

(sccm) 

NH3 

(sccm) 

1st 30 0.6 4.5 150 2 80 - 

2nd 30 0.6 4.5 150 2 80 40 

Table 4.9: Deposition conditions of multilayer silicon nitride by PECVD 
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2.4.1 Transfer characteristic of TFTs using multilayer silicon nitride as gate 

insulator 

    Figure 4.10 presents transfer characteristic of µc-Si TFT using multilayer silicon nitride as 

gate insulator. The channel size of measured TFT is W/L = 100/20 µm. The drain voltage is 

VDS = 1V. The TFT is measured for 2 times successively in order to investigate its stability. 

Table 4.10 summarizes the electrical parameters of this TFT for each measurement.  

 

Figure 4.10: 2 successive measurements of transfer characteristics of µc-Si TFT using multilayer 
silicon nitride as gate insulator. 

Measurement 
Mobility 

(cm²/Vs) 

Subthreshold slope 

(V/Dec) 

Threshold voltage 

(V) 

1st 8.6 1.03 17.92 

2nd  7.6 0.95 17.88 

     

Table 4.10: Electrical parameters of µc-Si TFT using multilayer silicon nitride as gate insulator 
for 2 successive measurements. 
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    Obviously, the mobility of this TFT with multilayer silicon nitride as gate insulator has 

been largely increased comparing to the TFT using monolayer silicon nitride, which is 

presented in the Chapter 3. From the transfer characteristic of first measurement, we extract 

a mobility of 8.6 cm²/Vs, while the TFT using monolayer silicon nitride demonstrated in 

Chapter 3 has only a mobility of 0.77 cm²/Vs which is very similar to that of amorphous 

silicon TFT. Indeed, the mobility of the TFTs using monolayer silicon nitride is insufficient 

for some applications such as the high resolution AMLCD and especially the AMOLED. 

Normally, the mobility needed for AMOLED or high resolution AMLCD should be at least 

in the range of 2 – 5 cm²/Vs [7]. Therefore, the mobility obtained from this study might be 

useful for some applications that need high mobility.    

    Additionally, these 2 types of TFT use exactly same material, microcrystalline silicon, as 

active layer. The thickness of the active layer is 100 nm for both TFTs. The improvement of 

mobility can be attributed to the insertion of a silicon nitride layer, which is deposited 

without NH3 gas, between microcrystalline silicon and the silicon nitride presented in 

Chapter 3. This study indicates the possibility to increase the mobility of TFT by the 

amelioration of the usually used silicon nitride. 

2.4.2 TFTs using multilayer silicon nitride as gate insulator under prolonged 

gate bias stress 

    Figure 4.11 shows the transfer characteristics of microcrystalline silicon TFT using 

multilayer silicon nitride as gate insulator after a prolonged gate bias stress. The stress gate 

voltage is fixed at VGSstress = +20 V.  
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Figure 4.11: Microcrystalline silicon TFT using multilayer silicon nitride as gate insulator under 
prolonged gate bias stress 

    The prolonged gate bias stress is highly detrimental for the transfer characteristic of TFT. 

The off-current is significantly increased and the subthreshold slope is largely degraded to 10 

V/dec after 10 minutes stress. After 4 hours stress, the degradation became more significant 

in terms of inverse current and subthreshold slope. These degradations are shown in Table 

4.11 

Stress time 

(s) 

Off-current @ VGS 
= -15V 

Subthreshold slope 

(V/Dec) 

0 26 pA 1.16 

600 38 nA 5.68 

14400 85 nA 12.96 

Table 4.11: Off-current at VGS=-15V and subthreshold slope of TFT using multilayer silicon 
nitride as gate insulator under gate bias stress 
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    It is well-know that the subthreshold slope of TFT is closely relative to the quality of the 

interface between active layer and gate insulator. Here, the subthreshold slope of 

microcrystalline silicon TFT using multilayer silicon nitride as gate insulator is largely 

deteriorated after prolonged gate bias stress. Indeed, the subthreshold slope of TFT can be 

expressed as follow: 

                        

where, CINS is the capacity per unit area of the gate insulator. Nep and NSS are the densities of 

deep states in the channel and at the insulator/channel interface, respectively. 

    This expression indicates that the increase of subthreshold slope might be due to the 

creation of deep states in the channel or at the interface. It seems that the accumulation of 

electrons, which is caused by positive gate bias stress, results on defects in the channel or at 

the insulator/channel interface. Considering that the microcrystalline silicon material is 

stable, as shown in Chapter 3, the defect creation seems to be located at the interface or even 

inside the silicon nitride layer deposited by 1st run. 

3. Conclusion 
    Envisaging the low mobility of TFT presented in Chapter 3, in this chapter, µc-Si TFTs 

have been fabricated using different gate insulators in order to improve the mobility.  

    The gate insulators used here include RF sputtered and ECR-CVD deposited SiO2, thermal 

ALD deposited Al2O3, and PECVD deposited multilayer Si3N4. It is found that the electrical 

performance of µc-Si TFTs, which have same active layer, is impacted by different gate 

insulators and deposition conditions used. Unfortunately, all these gate insulators used 

couldn’t improve mobility without sacrificing electrical stability of TFT.  

(4.1) 
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    However, silicon dioxide deposited by RF sputtering at fixed temperature seems one of 

the best ways to reach both acceptable mobility and stability. Silicon nitride can be the other 

way if working on the deposition conditions.  
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    The goal of this thesis was to fabricate microcrystalline silicon TFT, with high electrical 

stability and good mechanical flexibility, on flexible and transparent substrate. 

    Firstly we have fabricated N-type microcrystalline silicon TFT on glass substrate using 

silicon nitride as gate insulator. This type of TFT benefits from a weak off-current, 1.6 pA at 

VGS = -20 V and 23 pA at VGS = -30V. In addition, the subthreshold slope (1.1 V/Dec) and 

the threshold voltage (10.12 V) are acceptable. Inspite of the relative lower mobility (0.77 

cm²/V.s), it can be acceptable for some sensor applications. 

    We have studied the electrical stability of this TFT by applying gate bias stress. The 

results of this experiment manifested the electrically stable property. The shift of the 

threshold voltage is only 1.2 V under extreme stress conditions (high stress temperature 

50°C and high stress bias 35V). It was also investigated to research the origin of instability 

as follow. These threshold voltage shifts followed a logarithmic law, indicating that the shifts 

are mainly caused by carrier trapping mechanism in the gate insulator. 

    Secondly we have transferred the same microcrystalline silicon technology on PEN 

substrate. We have chosen a 25 µm thick PEN (Provided by Dupont Teijin Films, reference 

TEONEX Q831A) as substrate. This type of PEN is transparent and has a maximum process 

temperature of 180 °C. The TFT fabricated on this PEN has a mobility of 0.45 cm2/Vs, a 

subthreshold slope of 1.3 V/Dec and a threshold voltage of 17 V. A prolonged gate bias 

stress has also been performed for the TFT on PEN, where threshold voltage shift is 1.6 V 

after 6 hours gate bias stress under VGS = +20V at room temperature. 

    We have measured the transfer characteristics of this TFT during mechanical tensile 

bending with different curvature radius. The minimum curvature radius in this measurement 

is R = 5 mm. It was observed that the on-current of TFT increases when the curvature radius 

decreases, which means the mechanical strain on TFT surface increases. On-current increase 

featured an approximate linear growth under the strain with a slope of 93, indicating a high 

sensitivity of TFT’s parameter to mechanical strain. 

    After the PEN substrate was re-flattened from tensile and compressive bending (with 

different curvature radii), the transfer characteristics of TFT were also measured. The 
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minimum curvature radius in this measurement for both tension and compression is R = 0.75 

mm. The transfer characteristics of TFTs were kept exactly similar after either tensile or 

compressive bending until 1.5 mm, except a slight increase of gate current leakage for R = 

1.5 mm withstood to tensile bending. For R = 0.75 mm, obvious degradations of on-current 

and gate leakage current have been observed. Here, the degradation after tensile stress was 

more important than compressive stress. All the results above illustrated that the possibility 

to bend microcrystalline silicon TFT, for both tension and compression, even subjected to a 

low curvature radius, which is comparable with organic TFTs. 

    We have calculated the mechanical strain on the TFT using a model developed by 

Princeton Group. At minimum curvature radius, 1.5 mm, for both tension and compression, 

the TFT holds a mechanical strain about 0.6 – 0.7 %. This value is consistent with the 

previous result found in IETR. This means that both types of TFTs are limited by the same 

strain value even if lower curvature radius was reached in this thesis. We have assumed that 

the main limitation of silicon TFTs comes from the mechanical behavior of silicon nitride 

material. In order to reach smaller curvature radius, the best solution is to reduce even more 

substrate thickness. 

    Finally, we have tried to improve mobility of microcrystalline silicon TFT without 

sacrificing electrical stability by fabricating TFTs using different gate insulators. The active 

layers of all the TFTs are the same microcrystalline silicon film deposited at low 

temperature. The gate insulators used include RF sputtered and ECR-CVD deposited SiO2, 

thermal ALD deposited Al2O3 and PECVD deposited multilayer Si3N4. However, all these 

gate insulators used couldn’t improve mobility without sacrificing electrical stability of TFT.  
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