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RÉSUMÉ EN FRANÇAIS

Des ordinateurs aux équipements médicaux en passant par les montres

et les voitures, depuis plusieurs décenies les logiciels occupent une place

de plus en plus importante dans tous les aspects de notre vie. Ils peuvent

nous assister dans notre quotidien (appareils ménagers, voitures, etc.), nous

permettre de communiquer avec les autres grâce à des outils connectés (or-

dinateurs, smartphones, montres, etc.) et nous divertir par le biais de jeux,

de films et de musique.

Ces changements ont certes eu des effets bénéfiques sur notre mode

de vie dans de nombreux domaines : santé, transports, science, agricul-

ture, etc., mais il ne faut pas oublier que les logiciels peuvent ne pas avoir

le comportement exact que nous attendons en raison de la complexité des

mécanismes mis en place. Ces soi-disant bogues peuvent avoir des consé-

quences critiques : ils peuvent soit être la cause d’accidents, comme ce fut

le cas pour l’échec du lancement d’Ariane 5 en 1996 [31], soit être une faille

pour des attaques malveillantes telles que le bogue Heartbleed apparu en

2012 et divulgué en 2014 [1] permettant à un attaquant d’écouter et de voler

des données de communications cryptées.

Méthodes formelles

Pour surmonter les bugs, les informaticiens ont d’abord mis au point des

méthodes de test dans le but de détecter les comportements erronés. Les

techniques de test présentent l’avantage que, lorsqu’un bogue est détecté,

il est généralement possible de retracer la trace d’éxécution et de renvoyer

automatiquement les informations nécessaires à sa résolution. Cependant,

cela présente un inconvénient : ne pas trouver un bogue dans un programme

ne garantit pas que celui-ci n’en comporte pas, car dans le cas général, le

nombre des exécutions possibles est infini.

Inversement, les méthodes formelles permettent de prouver des proprié-

tés et d’assurer qu’un programme ne présente pas certains comportements.

7



Résuma en français

Contrairement aux méthodes de test, elles garantissent qu’aucun bogue lié

à la propriété prouvée ne peut apparaître lors de l’exécution du programme

analysé. Un autre avantage des méthodes formelles est qu’elles ne néces-

sitent pas l’exécution du programme et reposent sur des outils purement ma-

thématiques.

Bien que les tests aient été largement utilisés dans l’industrie depuis de

nombreuses décennies, les méthodes formelles sont maintenant suffisam-

ment développées pour rivaliser avec les tests sur des projets de niveaux

industriels : depuis 2011, Amazon utilise des spécifications formelles et des

vérifications de modèles pour résoudre des problèmes concrets [32].

Vie privée et protection des données

Les logiciels étant partout, cela signifie qu’ils ont accès à de plus en plus

de données. Combiné au fait que ces outils ont souvent la capacité de dif-

fuser des données vers d’autres périphériques (via Internet par exemple),

cela soulève une question de confidentialité importante. Il est souvent né-

cessaire de fournir une certaine quantité de donnée aux logiciels pour leur

bon fonctionnement mais nous voudrions que ces données ne soient pas

envoyés n’importe où. Par exemple, une personne qui se connecte à son

compte bancaire à partir d’un navigateur ne veut certainement pas que son

mot de passe soit envoyé partout sur Internet. Inversement, certains logiciels

ont pour but de recevoir des données et de ne pas les afficher à l’utilisateur.

C’est le cas, par exemple, des bloqueurs de publicités essayant de bloquer

les publicités et des outils de sécurité parentale visant à ne pas afficher de

contenu sensible. Le point commun de ces deux problèmes est la gestion du

flux de données dans les logiciels.

Non-interférence

Une façon de donner des garanties sur le flux de données est d’assurer

la Non-Interférence. La non-interférence est une propriété de sécurité qui

garantit l’indépendance de certaines sorties spécifiques par rapport à des

entrées spécifiques d’un programme. Pour revenir à l’exemple de saisie d’un

mot de passe dans un navigateur, nous voudrions garantir que les données

envoyées à tous les sites internet autres que le site internet de la banque (les

8



Résuma en français

sorties spécifiques) ne dépendent pas du mot de passe saisi dans le champ

"mot de passe" de la page internet de la banque (l’entrée spécifique).

La non-interférence est une hyperpropriété [17] : pour donner un contre-

exemple à la propriété il ne suffit pas de montrer une exécution particulière

du programme (contraire au accès mémoire illégaux par exemple) mais en

comparant les résultat d’au moins deux exécutions.

But

Le but de cette thèse est de fournir un cadre permettant de prouver des

analyseurs de non-interférence. Etant donné un langage avec sa séman-

tique, nous visons à construire une sémantique alternative dans laquelle une

interférence peut être détectée par une seule dérivation, permettant ainsi des

preuves simples par induction sur de telles dérivations.

Considérer qu’une seule exécution de la sémantique d’origine n’est clai-

rement pas suffisant pour déterminer si un programme est non interférent.

Étonnamment, étudier chaque exécution indépendamment et collecter des

informations sur les dépendances n’est toujours pas suffisant. Nous propo-

sons donc une approche formelle qui construit, à partir de toute sémantique

respectant une certaine structure, une multisémantique permettant de rai-

sonner simultanément sur plusieurs exécutions. L’ajout d’annotations à cette

multisémantique nous permet de capturer les dépendances entre les entrées

et les sorties d’un programme.

Nous montrons que notre approche est correcte, c’est-à-dire que les

annotations capturent correctement la non-interférence. Cela nous permet

de certifier des analyses correctes sans nous fier à la propriété de

non-ingérence, mais plutôt à la multisémantique annotée. Pour illustrer notre

approche, nous présentons un petit langage While et sa sémantique, nous

construisons sa multisémantique annotée et nous prouvons un analyseur de

ce langage.

Plan

Le reste du manuscrit est rédigé en anglais et est séparé en chapitre de

la manière suivante : Le chapitre 1 introduit les notions préliminaires : la

non-interférence, l’assistant de preuve Coq et Pretty-Big-Step. Le chapitre 2

9



Résuma en français

formalise Pretty-Big-Step en Coq et un exemple concret de language WHILE.

Le chapitre 3 décrit comment construire automatiquement une multiséman-

tique. Le chapitre 4 annote cette multisémantique et explique le fonctionne-

ment des annotations. Enfin, le chapitre 5 prouve la correction des annota-

tions et montre comment utiliser la multisémantique annotée pour prouver un

analyseur.
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INTRODUCTION

From computers to medical equipment via watches and cars, since a few

decades software has been taking an increasing place in every aspect of our

lives. It can help our personal routines (as in household appliance, cars, ...),

communicate with others thanks to connected tools (as computers, smart-

phones, watches), and entertain us through games, films and music. This

changes have certainly brought benefits in our way of life in many domains :

health, transport, science, agriculture, ... but it must not be forgotten that soft-

ware may not have the exact behaviour we expect because of the complexity

of the mechanisms at stake. These so-called bugs may have critical conse-

quences : they can either be the cause of accidents as it has been the case

for the Ariane 5 launch failure in 1996 [31] or be a backdoor for malicious at-

tacks as the Heartbleed bug allowing an attacker to eavesdrop and steal data

from encrypted communications introduced in 2012 and disclosed in 2014

[1].

Formal methods

To overcome bugs, computer scientists firstly developed testing methods

with the intent of finding wrong behaviours. Testing techniques have the ad-

vantage that, when a bug is found, it is generally possible to track back its

source and automatically return the needed information to fix it. However this

comes with a downside : not finding a bug in a program does not ensure that

the program will always behave correctly since in the general case the set of

all the possible executions is infinite.

Conversely, formal methods allow to prove properties and ensure that a

program may not have some behaviours. Unlike testing methods, they give

guarantees that no bug related to the proven property can appear during an

execution of the analyzed program. Another advantage of formal methods is

that they do not require to execute the program and rely on purely mathema-

tical tools.
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Introduction

While testing has been widely used in the industry since many decades,

formal methods are now developed enough to compete testing in industrial

projects : since 2011, Amazon has used formal specification and model che-

cking to solve real-life challenges [32].

Privacy and data protection

Software being everywhere, it implies that it has access to more and more

data. Combined with the fact that those tools often have the ability to broad-

cast data to other devices (through the internet for example), it raises an

important privacy issue. There is a lot of kind of data that we have to give

to a software but at the same time that we don’t want the software to send

anywhere. For example, someone who logs in to his/her bank account from

a browser certainly does not want his/her password to be send all over the

internet. Conversely, there is software that has the purpose of receiving data

an not display it to the user. For instance it is the case of ad-blockers trying to

block ads and parental security tools that aim to not display sensitive content.

The common point of these two issues is managing the data flow in software.

Non-interference

One way to give guarantees over the flow of data is to ensure

Non-Interference. Non-interference is a program security property that gives

guarantees on the independence of specific outputs from specific inputs of a

program. Going back to the example of entering a password in a browser,

we would want to guarantee that the data sent to every website that is not

the bank’s website (the specific outputs) does not depend on the password

entered in the "password" field on the bank’s web-page (the specific input).

Non-interference is a hyperproperty [17] : giving a counter-example to the

property cannot be done by exhibiting one particular execution of the program

(unlike illegal memory access for example), but by comparing the results of

at least two executions.

Goal

The goal of this thesis is to provide a framework to prove analyzers of non-

interference. When given a language with its semantics, we aim at building an
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alternative semantics where interference may be detected through a single

derivation, hence enabling simple proofs by induction on such derivations.

Considering a single execution of the original semantics is clearly not

sufficient to determine if a program is non-interferent. Surprisingly, studying

every execution independently and gathering dependency information is also

not sufficient. We thus propose a formal approach that builds, from any se-

mantics respecting a certain structure, a multisemantics that allows to reason

on several executions simultaneously. Adding annotations to this multiseman-

tics lets us capture the dependencies between inputs and outputs of a pro-

gram.

We show that our approach is correct, i.e., annotations correctly capture

non-interference. This lets us certify sound analyses without relying on the

non-interference property, but relying instead on the annotated multiseman-

tics. To illustrate our approach, we present a small While language and its

semantic, we build its annotated multisemantics, and we prove an analyzer

over this language.

Outline

Chapter 1 presents general background related to the non-interference

property, the Coq proof assistant and Pretty-Big-Step. Chapter 2 gives the

coq formalization of Pretty-Big-Step and a concrete WHILE language written

in this formalization. Chapter 3 describes how to automatically build a multi-

semantics given a Pretty-Big-Step. Chapter 4 annotates the multisemantics

and explains the annotation mechanism. Finally Chapter 5 proves the correct-

ness of the annotations and shows how the framework is used in an analyzer

proof.

Source code

Each theorem, lemma, hypothesis or definition that appears in the thesis

and that has been formalized in coq comes with a symbol indicating a link

to the online proofs scripts.
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CHAPITRE 1

BACKGROUND

This first chapter focuses on giving some background on three main

things : the non-interference property, the Coq proof assistant and the

Pretty-Big-Step semantics.

In all the document we will follow some usual notations listed in Figure

1.1 in case of any ambiguity. The notations directly coming from our work are

defined in the corresponding sections.

— For any function f : E → F , and elements x ∈ E, v ∈ F ,

f [x �→ v] denotes the function y �→





v if x = y

f(y) otherwise
.

— For any function f : E → F , and subset H ⊂ E,
f(H) is the image of H through f .

— For any partial function f : E → F ,
Dom(f) ⊆ E denotes the domain on which f is defined ;

— The symbol :: is used for adding an element to a list and the symbol @
is used for list concatenation.

FIGURE 1.1 – Notations used in the whole document

1.1 Non-interference

Static analyses of non-interference take their roots in 1977 with E. Cohen

[18] and D. E. Denning & P. J. Denning [21]. They both propose static me-

thods to track the flow of sensitive data in a program. The property is then

formalized in 1982 by J. A. Goguen & J. Meseguer [23] as following :

One group of users, using a certain set of commands, is non-
interfering with another group of users if what the first group does
with those commands has no effect on what the second group of
users can see.

15



Partie , Chapitre 1 – Background

This formalization oversteps the programming languages domain and can

be applied in network security, social interactions, ...

1.1.1 Definition

In our case, we define non-interference specifically for programming lan-

guages. Suppose we have a programming language in which variables can

be private or public. We say a program is non-interferent if, for any pair of exe-

cution that initially agree on the public variables, then the values of the public

variables are the same after the execution. In other words, changing the va-

lue of the private variables does not influence the final public variables. Or in

yet other words, the public variables do not depend on the private variables :

there is no leak of private information.

Definition 1 (Termination-Insensitive Non-interference - TINI). A program is

non-interferent if, for any pair of terminating executions starting with same

value in the public variables, the executions end with the same value in

the public variables.

This definition only considers finite program executions. We illustrate

through four examples of increasing complexity where leaks of private

information may happen and how one may detect them. In all of them

public is a public variable and secret is a private variable.

If we look back at Goguen & Meseguer’s definition, the first group of users

is the private variables, the second group is the public variables and the com-

mands are the terms of the language. It is important to notice that what the

second group can see is the value in the public variables at the beginning

and the end of an execution ; it does not includes what happens during the

execution.

1.1.2 Undecidability

Before trying to capture non-interference, it is necessary to understand

how hard it is and we show that it is undecidable. To prove that the non-

interference property is undecidable, we reduce the problem of knowing if

16



1.1. Non-interference

a program is terminating-insensitive non-interferent to the halting problem

which is known to be undecidable.

We suppose we have an algorithm A determining if a program is TINI or

not and we build a new one solving the halting problem.

Let us consider a program P and an input I of the program. We also

consider two variables public and private not appearing in P and I and that

are respectively public and private. With these elements we build the program

P � defined as

P (I); public := private

We claim that P (I) halts if and only if P � is not TINI.

— On one hand, if P (I) halts, then considering two executions (one with

true and the other one with false in the variable private) will end up

with different values in the variable public. This is ensured by the fact

that the computation of P (I) doesn’t modify the value of private since

it doesn’t appear in P and I. The definition of TINI doesn’t hold for P �.

— On the other hand, if P (I) doesn’t halt, then the set of all terminating

executions of P � is empty. Thus P � is TINI.

This way we can construct the following algorithm to solve the halting

problem :

Input: P,I
if A(P (I); public := private) then

return false
else

return true
end

Thus, TINI is undecidable.

Knowing that TINI is undecidable makes impossible the existence of a

complete and correct analysis.

1.1.3 Flow patterns

There are different ways to leak information and to make a program inter-

ferent (or not non-interferent). In order to introduce the initial idea behind the
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Partie , Chapitre 1 – Background

multisemantics, we give a non-exhaustive list of program patterns that can

leak information.

Direct flow As a simple first example, the program of Figure 1.2 is clearly

interferent : changing the value of secret changes the value of public. If we

stick to the definition, we can say this program is interferent because there

exists two executions starting in the environments {public : true; private :

false} and {public : true; private : true} (in which the values of the public

variable are the same), and respectively ending in the environments {public :

false; private : false} and {public : true; private : true} (in which the values

of the public variable are different).

public := secret

FIGURE 1.2 – Direct information flows

This is a direct flow of information because the value of secret is directly

assigned into public.

Indirect flow Unfortunately, direct flows are not the only sources of inter-

ference. It may also come from the context in which a particular instruction

is executed. For example, the program of Figure 1.3 shows a program with

an indirect flow. The value of secret is not directly stored into public but

the condition in the if statements ensures that in each case secret receives

the value of public. One may thus detect interference by taking into account

the context in which an assignment takes place. Any single execution of this

program would then witness the interference.

if secret

then public := true

else public := false

FIGURE 1.3 – Indirect information flows
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Masking Another source of interference is the fact that not executing a part

of the code can provide information. This is often called masking. The pro-

gram of Figure 1.4 illustrates the phenomenon. In the case where secret is

false, the variable public is not modified, so this execution does not witness

the interference, even when taking the context into account. The other exe-

cution, where secret is true, does witness the interference. Hence a further

refinement to detect interference would be to consider all possible executions

of a program.

public := false

if secret

then public := true

else skip

FIGURE 1.4 – Masking

Double masking Unfortunately again, this is not sufficient. In this last

example, in Figure 1.5, we can see that there exists no single execution

where the flow can be inferred. We will refer to this example as the running

example. In the case secret = true, public depends on y, which is not

modified by the execution. In the other case secret = false, public still

depends on y, which itself depends by indirect flow on x, which is not

modified by the execution. Hence in both cases there seems to be no

dependency on secret. Yet, we have public = secret at the end of both

execution, so the secret is leaked. Looking at every execution independently

is not enough.

1.1.4 Conclusion

To retrieve the interference of information flow as a property of an execu-

tion, we propose a different semantics where multiple executions are consi-

dered in lock-step, so that one may combine the information gathered by

several executions. In the case of the last example, we can see that x de-

pends on secret in the first execution at the end of the first if. Hence, in the

second execution, x must also depend on secret, because not modifying x
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x := true

y := true

if secret

then x := false

else skip

if x

then y := false

else skip

public := y

FIGURE 1.5 – Double masking

leaks information about secret. We can similarly deduce that y depends on

x in both executions, hence public transitively depends on secret.

We thus propose to transform the non-interference hyperproperty in a pro-

perty of a refined semantics. Our approach gives the ability to reason induc-

tively on the refined semantics and construct formal proofs of correctness of

analyses.

secret = true

x := true

y := true

if secret

then x := false

else skip

if x

then y := false

else skip

public := y

public = true

secret = false

x := true

y := true

if secret

then x := false

else skip

if x

then y := false

else skip

public := y

public = false

(executed code, non-executed code)

FIGURE 1.6 – Running Example

1.1.5 Related work

A major inspiration of this work is the 2003 paper by A. Sabelfeld & A.

C. Myers [35]. They give an overview of the information-flow techniques and
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show the many sources of potential interference. Our long-term goal is to

evaluate our approach with the full PBS semantics of JavaScript [13] and to

show that Sabelfeld and Myers listed every possible source of information

leak.

Dynamic analyses

The first dynamic mechanism to control information flow by D. Denning

[20] was based on tainting methods : when modifying a variable, the security

level of that variable becomes the highest security level of the variables used

to produce the value to store in the variable.

The thesis of G. Le Guernic [29] proposes and proves a precise dynamic

analysis for non-interference. The monitor keeps up to date the set of entities

(variables, program counter, ...) that may be different in other executions and

authorize, denies or edits the outputs depending on the state of the monitor.

T. Austin and C. Flanagan also propose sound dynamic analyses for non-

interference based on the no-sensitive-upgrade policy [5] and the permissive

upgrade policy [7].

In 2010, D. Devriese and F. Piessens [22] introduced the notion of se-

cure multi-execution allowing a sound and precise technique for information

flow verification by executing a program multiple times with different security

levels. Inspired by this work, T. Austin and C. Flanagan [6] present a new

dynamic analysis for information flow based on faceted values : they contain

two values to be used in different situations, one for each security level of

the current execution. Our approach lies between secure multi-execution and

faceted execution : we do not tag data but spawn multiple executions. In our

pretty-big-step setting, however, the continuations of those executions are

shared, in a way reminiscent of faceted execution.

Our approach is similar to these works in the sense that it is based on

actual executions, but we consider every execution whereas they monitor

a single execution, modifying it if it is interferent. Our goals are also quite

different : they provide a monitor, we provide a framework to simplify the

certification of analyses.
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Static Analyses

A. Sabelfeld and A. Russo [34, 36] prove several properties comparing sta-

tic and dynamic approaches of non-interference. In particular, purely dynamic

monitors can not be sound and permissive but it is possible for an hybrid mo-

nitor. Our framework could be a way to certify the correctness of such hybrid

monitors.

G. Barthe, P.R. D’Argenio & T. Rezk [9] reduce the problem of

non-interference of a program into a safety property of a transformation of

the program. It allows to use standard techniques based on program logic

for information flow verification. Our work is similar in the sense that we both

transform a hyperproperty into a property. Self-composition achieves it by

transforming the program, whereas we achieve it by extending the

semantics in a mechanical way. In addition, our approach never inspects the

values produced by the program, but only how it manipulates them. This is

the reason why our approach is incomplete. For instance, we do not identify

when two branches of a conditional do the same thing and we may flag it as

interferent.

S. Hunt & D. Sands [27] present a family of semantically sound type sys-

tem for non-interference. The main relation between their paper and this work

is the use of dependencies : a mapping from a variable to sets of variables

they depend on in [27], a mapping from variables and outputs to set of inputs

in our case. Our work is more precise as it does not use program points but

actual executions. We also never consider the dependencies from branches

of conditionals that are taken by no execution. Once again, we do not propose

an analysis, but a generic way to mechanically build the refined semantics.

Different types of non-interference

There are several modern definitions of non-interference. In particular,

non-interference may take into account the termination of an execution of

the program (termination-insensitive non-interference [3], termination-aware

non-interference [12]), or the time elapsed during the execution of the

program (timing- and termination-sensitive non-interference [28]). Our work

only considers termination-insensitive non-interference, but to be able to

deal with non-terminating executions, we speculate we would only need to
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consider a co-inductive version of the semantics we give here. We did not

go further into this conjecture and all the theorems would require different

formal proofs to fit the termination-sensitive definition of the non-interference

property.

Other hyperproperties E. Cecchetti, A.C. Myers and O. Arden [15] introdu-

ced nonmalleable information flow, a property generalizing non-interference.

They show it is a 4-safety hyperproperty, the first formation security property

based on more than two executions. We believe the annotations in our work

may be adapted to fit to this hyperproperty.

1.2 Coq proof assistant

Every formal proof has been conducted thanks to the coq proof assistant.

We briefly describe what Coq is and present some features used in our work.

1.2.1 A proof assistant

Coq is a tool providing a language to formalize mathematical problems,

state properties and then prove them semi-automatically.

The development of Coq started in 1984 and is based on the Calculus Of

Construction by T. Coquand and G. Huet [19]. Among many theorems and

properties, it is notable that Coq has been used to prove the 4-color theorem

[24], the Feit-Thompson theorem [25] (or odd order theorem) and the certified

C compiler CompCert [30].

Coq allows to formalize mathematics with type theory thanks to the Curry-

Howard correspondence relating types with properties and programs of a

type with proofs of the corresponding theorem. Then it is possible to prove

property about that formalization thanks to instructions called tactics. These

instructions, if correctly executed, will build a proof of the desired property.

For example let us try to prove the following commutativity property of

the or operator over the formulas of the propositional calculus. First of all we

must state the property :
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Lemma or_comm : forall A B : Prop, A \/ B -> B \/ A.

We can start the proof mechanism by the keyword Proof :

Proof.

This instruction triggers a goal (initially the property to prove) and and envi-

ronment of hypotheses. We begin by introducing 2 proposition A and B in the

environment and removing them from the goal.

intros A B.

Then we can introduce the hypothesis and call it HAB.

intros HAB.

This hypothesis gives us the information that either A is true or B is true. The

tactic destruct allows to destruct the hypothesis in two parts (HA and HB)

and also to duplicate the goals. In both goals, HAB is replaced by either HA

or HB.

destruct HAB as [HA HB].

We now have to prove B \/ A in an environment where A is true and in

another environment where B is true. We use the symbol + to focus on the

first subgoal and once it will be proved, we will be able to focus on the other

one.

+ right.

assumption.

In the first case, the tactic right explicitly ask to prove only the right part of

the goal when the goal is a disjunction and assumption declares that the new

goal is exactly one of our hypotheses, i.e. A in that case.

+ left.

assumption.

Finally, the second proof is taken care of in a similar way.

Another important feature of the Coq language that we used in the deve-

lopments of this thesis is the type class mechanism.

24



1.2. Coq proof assistant

1.2.2 Type classes

Type classes were first introduced in Haskell in 1979 [39] and adapted to

Coq in 2008 by M. Sozeau and N. Oury [37]. The goal of type classes is to

be able to program with a abstract description of a type. It perfectly fits our

case since we want to mechanically derive a multisemantics for any language

given in PBS form.

As an example let us define monoids in coq. A monoid is a mathematical

structure made of a set of elements, an associative binary operator and an

identity element.

Class Monoid : Type := {

A: Type;

dot : A -> A -> A;

e : A;

}.

This definition does not perfectly fit the monoid definition since we only

gave the fields of our class. In coq, since properties are types, we can add

proofs in the fields. This way we can specify the associativity of dot and the

identity property of one.

Class Monoid : Type := {

A: Type;

dot : A -> A -> A;

e : A;

dot_associative : forall x y z : A,

dot (dot x y) z = dot x (dot y z);

identity_left : forall x : A, dot e x = x;

identity_right : forall x : A, dot x e = x;

}.

This definition of monoids allows to state properties over monoids and prove

them. For instance, let us prove that the neutral element is idempotent.
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Lemma e_idempotent :

dot e e = e

.

Proof.

refine (identity_left e).

Qed.

Later, we may want to concretize the type class to use our lemma on a parti-

cular monoid. In our case we can instantiate our monoids with natural num-

bers :

Require Import NArith.

Instance myZ : Monoid := {

A := nat;

dot := plus;

e := 0;

dot_associative := PeanoNat.Nat.add_assoc;

identity_left := PeanoNat.Nat.add_0_l;

identity_right := PeanoNat.Nat.add_0_r;

}.

To have access to the proofs of associativity and identity in nat, we import the

NArith module. We can then fill each field of the monoid with the correspon-

ding elements in the particular case of the natural numbers.

Now we can use the proven lemma over all the monoids to prove the

following lemma :

Lemma plus00 : 0+0=0.

Proof.

refine (e_idempotent myNat).

Qed.

Another way to verify the concretization of this lemma is simply checking

if the type of the instantiated lemma is the expected one :

Check (e_idempotent myNat : 0+0=0).
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1.2.3 Partial functions

For clarity reasons, and in this section only, we emphasis the difference

between mathematical objects and their encodings by using different fonts.

There are two main ways to formally encode partial functions. The enco-

ding restricts either the domain or the image of the function. In the first case,

one could define a new type to represent the domain on which the function is

mathematically defined and encode the Coq function on this new type. In our

work, we have a lot of partial functions and their domains are various there-

fore parameterizing a function by a type representing its domain is uselessly

complex. Instead, we chose to represent them by restricting the image of the

functions with the option type.

For instance a mathematical partial function

f : E → F

is encoded by a function

f : E -> option F

such that, for all elements x ∈ E, y ∈ F , if f(x) = y then f(x) returns Some

y ; and for all element x out of the domain of f , f(x) returns None.

1.3 Pretty-Big-Step

As we aim to provide a generic framework independent of a specific pro-

gramming language, we need a precise and simple way to describe its se-

mantics. The Pretty-Big-Step semantics [16] is not only concise, it has been

shown to scale to complex programming languages while still being ame-

nable to formalization with a proof assistant [13]. We slightly modify the defi-

nition of Pretty-Big-Step to make it more uniform and to simplify the definition

of non-interference.
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1.3.1 What is PBS ?

The Pretty-Big-Step semantics is a constrained Big-Step semantics where

each rule may only have 0, 1, or 2 inductive premises. In addition, one only

needs to know the term under evaluation and the current state to decide

which rule applies. To illustrate the Pretty-Big-Step approach, let us consider

the evaluation of a conditional. It may look like these two rules in Big-Step

format.

IFTRUE
M, e → (M �, true) M �, s1 → M ��

M, if e then s1 else s2 → M ��

IFFALSE
M, e → (M �, false) M �, s2 → M ��

M, if e then s1 else s2 → M ��

where e, s1 and s2 are terms, and M, M � and M �� are memory state.

Although these rules only have two inductive premises each, one has to

partially execute them to know which one is applicable. In Pretty-Big-Step,

one first evaluates the expression e, then passes control to another rule to

decide which branch to evaluate. Additional constructs are needed to des-

cribe these intermediate steps, they are called extended terms, often written

with a 1 or 2 subscript, and the state in which they are evaluated often include

previously computed values. Here are the rules for evaluating a conditional in

Pretty-Big-Step.

IF
M, e → (M �, v) (M �, v), If1 s1 s2 → M ��

M, if e then s1 else s2 → M ��

IFTRUE
M, s1 → M �

(M, true), If1 s1 s2 → M �
IFFALSE

M, s2 → M �

(M, false), If1 s1 s2 → M �

The evaluation of the expression has been factorized into one single rule IF.

Formally, rules are in three groups :

i) axioms, the rules with no inductive premise ;

ii) rules 1, the rules with one inductive premise ;
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iii) rules 2, the rules with two inductive premises.

Ax
σ, t → σ

�
R1

σ1, t1 → σ
�
1

σ, t → σ
�

R2

σ1, t1 → σ
�
1 σ2, t2 → σ

�
2

σ, t → σ
�

FIGURE 1.7 – Types of rules for a Pretty-Big-Step semantics

In Pretty-Big-Step, rules may take as input a memory and zero, one, or

several values and they may either return a memory or a memory and also

several value. To account for this in a uniform way, we define a state σ ∈ State

as a pair of a memory and a list of values, called an extra. We write extra(σ)

to refer to the list of values in a state σ. As often as possible, we will denote

state with the letter σ (σ1, σ
�, . . . ) and memories with the letter M (M1, M �, . . . ).

To simplify notations, if the extra is an empty list, we omit the extra and we

only write the memory ; and if the extra is a singleton then we denote the

state as a pair of a memory and the value in the extra.

A rule is entirely defined by the following components.

— Axioms

— t : term, the term on which the axiom can be applied ;

— ax : State → State, a function that give the resulting state given the

initial state.

— Rule 1

— t : term, the term on which the rule 1 can be applied ;

— t1 : term, a term to evaluate in order to continue the derivation ;

— up : State → State, a function that returns the new state in which t1

will be evaluated.

— Rule 2

— t : term, the term on which the rule 2 can be applied ;

— t1, t2 : term, the terms to derive in order to get the result for t ;

— up : State → State, a function returning the state in which the term

t1 has to be derived ;

— next : State ∗ State → State, a function giving the state in which t2

had to be derived depending on the initial state and the result of

the derivation of t1.
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σ1 , t1 → σ2

σ4 , t4 → σ5

σ3 , t3 → σ5

σ0 , t0 → σ5

ax

ax

up

up

next

The functions ax, up, and next are partial functions because the rules may

not be defined for every state. For example, the rule IFTRUE above is defined

only when the state has a single extra that is the boolean value true.

Figure 1.8 shows again the three types of rules but with their explicit com-

ponents.

Ax
σ, t → ax(σ)

R1

up(σ), t1 → σ
�

σ, t → σ
�

R2

up(σ), t1 → σ
�
1 next(σ, σ

�
1), t2 → σ

�

σ, t → σ
�

FIGURE 1.8 – Types of rules for a Pretty-Big-Step semantics (bis)

When describing a derivation σ, t → σ
� (or a rule with this derivation as

conclusion), we will refer to σ as the semantic context of the derivation (or

the rule) and to σ
� as the result of the derivation (or the rule).

The intuition behind the Pretty-Big-Step rules is the following.

— If the evaluation is immediate, we can directly give the results (e.g.,

the evaluation of a skip statement or a constant). This behavior cor-

responds to an axiom.

— If the evaluation needs to branch depending on a previously compu-

ted value, stored as an extra, then a rule 1 is used for each possible

branching. This is used for instance after evaluating the condition in a

conditional statement.

— If the evaluation first needs to compute an intermediate result, then

a rule 2 is used. The intermediate result is used to compute the next

state with which the evaluation continues. This is how the conditional
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statement works : first evaluate the guard and then compute another

term in a state containing the result of the evaluation.

As an example, Figure 1.9 shows the derivation of the program

if x then 0 else 1

in a state for which the stored value of x is true.

M, x → (M, true)

M, 0 → (M, 0)

(M, true), If1 (0) (1) → (M, 0)

M, if x then 0 else 1 → (M, 0)

FIGURE 1.9 – Derivation of a simple program

1.3.2 Advantages

Modularity

The first advantage of Pretty-Big-Step is that it is very modular : extending the

language can be done by adding new rules and without modifying previous

ones. For instance, let us suppose we have a C-like for loop :

for(initialization, condition, step){body}

and see the differences in Big-Step and Pretty-Big-Step when adding the

notion of errors. As shown in Figure 1.10, in Big-Step style, there are two

rules to write to handle the for loop : one for each evaluation of the condition.

In the first case, we start the loop by initializing, then we test for the condition,

if the result is true we continue by evaluating the body, we proceed by doing

the step for the next loop and finally we go back to the beginning of the

loop ignoring the initialization phase. The second case also starts with the

initialization and the evaluation of the condition, but if the evaluation returns

false, the execution stops here.
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FORTRUE

M0, init → M1 M1, cond → (M2, true) M2, body → M3

M3, step → M4 M4, for(skip, cond, step){body} → M5

M0, for(init, cond, step){body} → M5

FORFALSE
M0, init → M1 M1, cond → (M2, false)

M0, for(init, cond, step){body} → M2

FIGURE 1.10 – Rules of the for loop in Big-Step

Conversely, Figure 1.11 shows the 6 rules needed to handle the for loop in

Pretty-Big-Step style. They introduce intermediate terms for1, for2 and for3.

They do not have the parameter init since these new terms corresponds to

the loop phases.

FOR
M, init → σ σ, for1(cond, step){body} → σ

�

M, for(init, cond, step){body} → σ
�

FOR1
M, cond → σ σ, for2(cond, step){body} → σ

�

M, for1(cond, step){body} → σ
�

FOR2TRUE
M, body → σ σ, for3(cond, step){body} → σ

�

(M, true), for2(cond, step){body} → σ
�

FOR2FALSE
(M, false), for2(cond, step){body} → M

FOR3
M, step → σ σ, for1(cond, step){body} → σ

�

M, for3(cond, step){body} → σ
�

FIGURE 1.11 – Rules of the for loop in Pretty-Big-Step

To derive the rule FOR, one needs to first evaluate the initialization init

and then for1 as the continuation. This first extended term is evaluated with

the rule FOR1 which evaluates the condition and then lets the term for2

decide to take the loop or not depending on the value calculated. The term

for2 has then 2 ways to be evaluated : either the extra is true and in that

case the rule FOR2TRUE applies or it is false and then the rule FOR2FALSE
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applies. In the first case, the program enters in the loop evaluating body and

letting for3 taking care of ending the loop. In the second case there is no

computation left and the loop ends here. Once the body is executed, the rule

FOR3 proceeds to evaluate the step statement and continues with the same

continuation as after the initialization : for1.

It is important to note that, despite the increasing number of rules, the

number of inductive premises stays approximately the same : 7 premises in

Big-Step and 8 in Pretty-Big-Step.

Let us extend the language with an error exception and commands to

throw and catch this error and compare the changes to operate in Big-Step

and in Pretty-Big-Step.

Error handling in Big-Step

In the Big-Step version, we suppose we have the rules of Figure 1.12 to throw

and catch errors.

THROW
M, throw → (M, err)

TRYCATCH
M, body → (M �, err) M �, serror → σ

�

M, try body catch serror → σ
�

TRYNOCATCH
M, body → σ

�
σ

� �= (M �, err)

M, try body catch serror → σ
�

FIGURE 1.12 – Rules of throw and catch Big-Step style

To handle the interaction of errors with loops, one needs to add the 5

rules of Figure 1.13. Each rule corresponds to a step that could throw an

error during the evaluation : the initialization, the condition, the body, the step

and the next loops. We added 5 rules with a total of 15 premises.

Error handling in Pretty-Big-Step

In Pretty-Big-Step, it is way simpler because the structure allows to propagate

the errors between each intermediate step thanks to the extra. First let us give

the rules to throw and catch errors in Figure 1.14
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FORERR1
M0, init → (M1, err)

M0, for(init, cond, step){body} → (M1, err)

FORERR2
M0, init → M1 M1, cond → (M2, err)

M0, for(init, cond, step){body} → (M2, err)

FORERR3

M0, init → M1

M1, cond → (M2, true) M2, body → (M3, err)

M0, for(init, cond, step){body} → (M3, err)

FORERR4

M0, init → M1 M1, cond → (M2, true)
M2, body → M3 M3, step → (M4, err)

M0, for(init, cond, step){body} → (M4, err)

FORERR5

M0, init → M1

M1, cond → (M2, true) M2, body → M3 M3, step → M4

M4, for(skip, cond, step){body} → (M5, err)

M0, for(init, cond, step){body} → (M5, err)

FIGURE 1.13 – Extra rules about for/catch interaction (BS)

THROW
M, throw → (M, err)

TRY
M, body → σ σ, catch serror → σ

�

M, try body catch serror → σ
�

CATCH
M, serror → σ

�

(M, err), catch serror → σ
�

NOCATCH
lextra �= [err]

(M, lextra), catch serror → M

FIGURE 1.14 – Rules of throw and catch Pretty-Big-Step style

Now to handle the interactions of errors with other terms, we need to add

the rule of Figure 1.15 for every rule 2 over a term t and with t1 as term for

the first subderivation, excepted for the rule TRY.

In any rule 2, when an error occurs in the left branch, the rule ERR auto-

matically propagates the error without having to evaluate the continuation. If
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ERR
up(σ), t1 → (M, err)

σ, t → (M, err)

FIGURE 1.15 – Extra rules about for/catch interaction (PBS)

an error appears in the subderivation of a rule 1, the error is naturally trans-

mitted to the result. In the case of the loop it corresponds to a total of 4

additional rules and only 4 premises.

On one hand, the adding of the new rules in Pretty-Big-Step is way simpler

since it matches the total number of rules 2 whereas in Big-Step many rules

need to be added to manage errors in a rule with more than two premises.

On the other hand, the additional rules in PBS are fewer and smaller in terms

of premises because there is no redundant subderivation in different rules.

Abstraction

The second advantage is that Pretty-Big-Step is really easy to abstract. Our

formalization is stricter than Charguéraud initial version of Pretty-Big-Step.

The extra part, which Charguéraud included in the subterm to evaluate, is

now in the state. It allows to fully define each rule by a strict scheme depen-

ding on which kind of rule it is (axiom, Rule1 or Rule2). We will see in Chapter

2 that we can work with a Pretty-Big-Step language without concretizing the

terms of the language, only considering the structure of the rules. This is an

important property since it allow any language to fit in our work at the only

condition that it is written in Pretty-Big-Step form.

1.3.3 A While language in PBS

To illustrate our approach, we introduce a small WHILE language suitable

for non-interference. It is a classical WHILE language with input/output com-

mands to receive and send data. We first give the syntax of the language and

then its semantics in Pretty-Big-Step form.

Memory model We propose to model non-interference by making explicit

the inputs of a program and its outputs. We do not consider interactive pro-
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grams, so each input is a constant single value, for instance an argument

of the program. Outputs, however, consist of lists of values, as we allow a

program to send several values to a given output.

Formally, we consider given a set of values Val, a set of variables Var ,

a set of inputs Inputs and a set of outputs Outputs. We define the memory

as a triplet (Ei, Ex, Eo), where Ei ∈ Envi represents the inputs of a program

as a read-only mapping from each input to a value, Ex ∈ Envx represents

run-time environment as a read-write mapping from each variable to a value,

and Eo ∈ Envo represents the outputs of a program, as a write-only mapping

of each output to a list of values, accumulated in the output. To simplify, we

consider inputs and outputs to be indexed by an integer.

Envi := Inputs �→ Val

Envx := Var �→ Val

Envo := Outputs �→ List(Val)

Mem := Envi × Envx × Envo

Extra := List(Val)

State := Mem × Extra

For the purpose of notation, when there is no ambiguity, memories and

states may be seen has functions from Inputs, Var , or Outputs to Val or

List(Val) to represent the part of the memory that should be used. For

example, the value stored in the variable x in a memory M or a state σ may

be written M(x) or σ(x).

Syntax In this language, we distinguish expressions and statements but

they formally both are defined as terms. An expression is either a constant

value, a variable, an input, or the addition of two expressions. A statement is

either a no-op operation skip, a sequence of two statements, a conditional, a

while loop, an assignment of an expression into a variable, or an assignment

of an expression into an output.

�term� t : := Const n | Var x | Input i | Plus t t | Skip | Seq t t | If t t t |

While t t | Assign x t | Output o t

We add to the language the extended terms required by the Pretty-Big-

Step format.
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�term� t : := . . . | Plus1 t | Plus2 | Seq1 t | If1 t t | While1 t t | While2 t t

| Assign1 x | Output1 o

Semantics The difference between expressions and statements is at the

semantic level where expressions always return a value, while statements

may do so (the if statement for example) but it is not always the case.

To simplify the reading of the rules and the examples, we use some usual

notations :

c for Const c

x for Var x

e1 + e2 for Plus1 e2

+1 e2 for Plus2

+2 for Plus e1 e2

s1; s2 for Seq s1 s2

;1 s2 for Seq1 s2

x := e for Assign x e

x :=1 for Assign1 x

if e then s1 else s2 for If e s1 s2

If1 s1 s2 for If1 s1 s2

while e do s for While e s

while1 e do s for While1 e s

while2 e do s for While2 e s

To evaluate a constant c the axiom CST requires the semantic context to

be a memory and an empty extra, and returns a result formed by the same

memory and an extra containing the value c. The rule VAR looks up for the

value stored in x and returns a state made of the memory unmodified and

the value found. The rule INPUT works exactly the same way but in the input

environment.

The addition e1 + e2 of two expressions is managed by three rules PLUS,

PLUS1 and PLUS2. The first one is a rule 2 in which the first premise derives

the first expression e1 and the result of this derivation becomes the semantic

context of the second premise. This second premise is the derivation of +1 e2

and requires the rule PLUS1. This rule is also a rule 2 : its first premise is

the derivation of e2 and its second premise is the derivation of +2. The extra
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of the current rule (corresponding to the value of the first expression e1) is

added to the extra in the result of the derivation of e2 to form the semantic

context of the continuation. Finally, the axiom PLUS2 can add the two values

currently in the extra to produce the final sum.

To derive the skip, the rule SKIP needs a state with an empty extra and

returns the same state.

The sequence is derived with the rules SEQ and SEQ1. The first rule is a

rule 2 that derives the first statement and passes the result to the continuation

;1. Then the second rule is a rule 1 simply deriving the second statement.

In the rule IF, the derivation of if e then s1 else s2 starts with the deri-

vation of the guarding condition e. The result is passed to the extended sta-

tement If1 s1 s2. We then have two rules to evaluate If1 s1 s2, one for each

possible extra. The first one, IFTRUE, is a rule 1 in which the premise is the

derivation of the first branch granted that the value in the extra is true. The

second one, IFFALSE, derives the second branch when the extra is false.

The rules to derive while e do s are similiar to those to derive an if sta-

tement. First the rule WHILE derives the guarding condition. Then two cases

can appear. Either we have to derive while1 e do s in a state with an extra

containing false and in that case the axiom WHILEFALSE simply returns the

state without the extra. Or we have to derive the extended term in a state with

true in the extra and then firstly the rule WHILETRUE1 derives the body of the

loop and lets the continuation while2 e do s decide the remaining derivations

to do, secondly the rule WHILETRUE2 branches back to the beginning of the

loop deriving again while e do s.

An assignment x := e is derived by the rule 2 ASG that derives the ex-

pression e and gives the result to the continuation x :=1. This extended term

can be derived by the rule ASG1 in an state containing a value v in the extra.

The resulting state is the same than the semantic context with v stored in x

instead of the previous value.

The output Ouput o e of an expression e to an output o is similar : first

the rule OUTPUT derives the expression to get its value and gives it to the

continuation, then the continuation is derived with the rule OUTPUT1 which

adds the value of the extra to the list of values already output by o.
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CST
M, c → (M, c)

VAR
M(x) = v

M, x → (M, v)
INPUT

M(i) = v

M, Input i → (M, v)

PLUS
M, e1 → (M �, v1) (M �, v1), +1 e2 → (M ��, v)

M, e1 + e2 → (M ��, v)

PLUS1
M, e2 → (M �, v2) (M �, [v1, v2]), +2 → M ��, v

(M, v1), +1 e2 → M ��, v

PLUS2
v = v1 + v2

(M, [v1, v2])), +2 → (M, v)
SKIP

M, skip → M

SEQ
M, s1 → M � M �, ;1 s2 → M ��

M, s1; s2 → M ��
SEQ1

M, s → M �

M, ;1 s → M �

IF
M, e → (M �, v) (M �, v), If1 s1 s2 → M ��

M, if e then s1 else s2 → M ��

IFTRUE
M, s1 → M �

(M, true), If1 s1 s2 → M �
IFFALSE

M, s2 → M �

(M, false), If1 s1 s2 → M �

FIGURE 1.16 – Rules of WHILE (1)
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WHILE
M, e → (M �, v) (M �, v), while1 e do s → M ��

M, while e do s → M ��

WHILEFALSE
(M, false), while1 e do s → M

WHILETRUE1
M, s → M � M �, while2 e do s → M ��

(M, true), while1 e do s → M ��

WHILETRUE2
M, while e do s → M �

M, while2 e do s → M �

ASG
M, e → (M �, v) (M �, v), x :=1→ M ��

M, x := e → M ��
ASG1

M � = M [x �→ v]

(M, v), x :=1→ M �

OUTPUT
M, e → (M �, v) (M �, v), Ouput1 o → M ��

M, Ouput o e → M ��

OUTPUT1
M � = M [o �→ v :: M(o)]

(M, v), Ouput1 o → M �

FIGURE 1.17 – Rules of WHILE (2)

40



CHAPITRE 2

GENERIC FORMAT OF SEMANTICS

2.1 Motivation

As we stated before, we want our framework to work on a large variety of

languages. The only constraints we enforce is that the languages semantics

must be written in PBS form. It allows our framework to be independent of

any language.

In order to be able to fit any PBS semantic in this work, we developed a

formal PBS structure in which the three types of rules are formally defined. It

gives the possibility to think of any language only in terms of axioms, rules 1

and rules 2 ; and to totally abstract the proofs from any particular language.

One other main reason to this choice is that JavaScript is widely used

in browser and web application (which are uses for which non-interference

makes sense to study) and already has a PBS semantics called JScert [13].

This semantics is a huge inductive definition with more than 800 rules and

hinders formal proofs as Coq runs out of memory when performing an inver-

sion or an induction.

Moreover, given a PBS semantic of any language in this formalism, we

want to automatically derive the associated multisemantics that we will build

in section 3.

2.2 Formal Pretty-Big-Step

2.2.1 Abstract PBS

We first define what a syntax is. It simply consists of terms and values.

Such a syntax can be assumed by the use of type classes.
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Class AbstractSyntax := {

Term : Type;

Value : Type

}.

Context {Syntax : AbstractSyntax}.

Now that we have some terms and values, we can define variables as

strings and then describe our memory model as in subsection 1.3.3. A State

is made of 4 parts : a memory for the inputs, one for the variables, a last one

for the outputs, and the extra.

Definition variable : Type := string.

Definition input : Type := string.

Definition output : Type := string.

Record State :=

mkState

{

Envi : input -> Value; (* input environment *)

Envx : variable -> option value; (* variable environment *)

Envo : output -> list value; (* output environment *)

extra : list value (* extra *)

}

.

Once the memory model is defined, we have the ability to formally define

the PBS rules. There are three kinds of rules :

1. To entirely define an axiom, we exactly need the term t on which it

applies and the function ax returning the resulting state ; for the purpose

of capturing non-interference by the multisemantics we also add four

sets and a boolean value : 2 sets for the inputs and variables read by

the axiom, 2 sets for the variables and outputs written by the axiom and

a boolean value to specify if the axiom produces an extra or if it returns

an empty one. These parameters are not mandatory for a PBS but they

will be used and explained in a more detailed way in chapter 4.
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2. A Rule 1 is defined by the term t on which it applies, the term t1 needed

to derive, and the function up returning the semantic context in which t1

must be derived.

3. And a Rule 2 is defined by the term t on which it applies, the terms t1

and t2 that need to be derived, the function up returning the semantic

context in which t1 must be derived and the function next returning the

semantic context in which t2 must be derived.

Inductive rule :=

| Ax : Term (*t*)

-> (State -> option State) (*ax*)

-> fset input (*Inputs read*)

-> fset variable (*Variables read*)

-> fset variable (*Variables written*)

-> fset output (*Outputs written*)

-> bool (*extra produced*)

-> rule

| R1 : Term (*t*)

-> Term (*t1*)

-> (State -> option State) (*up*)

-> rule

| R2 : Term (*t*)

-> Term (*t1*)

-> Term (*t2*)

-> (State -> option State) (*up*)

-> (State -> State -> option State) (*next*)

-> rule

.

Now that we gave a structure to our rule format we can formally define

a semantics, i.e. a function giving, for each term, a list of rules that can be

applied to the term. As for syntax, let us assume we have a semantics.

Class AbstractSemantics := {

Rules : Term -> list rule
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}.

Context {Semantics : AbstractSemantics}.

The definition of a derivation is now possible. A derivation of term t from

the semantic context σ to the result out is defined inductively with these 3

cases :

Inductive deriv (t:Term) (sigma:State) (out:State) : Prop :=

1. if there is axiom R in the semantics such that ax(σ) = Some out

| deriv_Ax R ax ri rx wx wo pe

(eqR : R = Ax t ax ri rx wx wo pe)

(isRule : List.In R (Rules t))

(eqAx : ax sigma = Some out)

: (* ======== *)

deriv t sigma out

2. if there is a rule 1 R in the semantics and a state σ1, such that up(σ) =

Some σ1 and there is a derivation of t1 from σ1 to out.

| deriv_R1 R t1 up sigma1

(eqR : R = R1 t t1 up)

(isRule : List.In R (Rules t))

(eqUp : up sigma = Some sigma1)

(STEP : deriv t1 sigma1 out)

: (* ======== *)

deriv t sigma out

3. if there is a rule 2 R in the semantics and three states σ
�, out� and σ

��

such that up(σ) = Some σ
�, there is a derivation of t1 from σ

� to out�,

next(σ, out�) = Some σ
�� and there is a derivation of t2 from σ

�� to out.

| deriv_R2 R t1 t2 up next sigma’ out’ sigma’’

(eqR : R = R2 t t1 t2 up next)

(isRule : List.In R (Rules t))

(eqUp : up sigma = Some sigma’)

(STEP1 : deriv t1 sigma’ out’)

(eqNext : next sigma out’ = Some sigma’’)
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(STEP2 : deriv t2 sigma’’ out)

: (* ======== *)

deriv t sigma out

.

2.2.2 Concretization of the WHILE language

To illustrate a concretization of a pbs language, we formalize the while

language described in subsection 1.3.3. Values and Terms are defined in-

ductively. Values are either integer or boolean.

Inductive Concr_value : Type :=

| Num (z:Z)

| Bool (b:bool)

.

Inductive Concr_Term: Type :=

(*Statements*)

| Skip : Concr_Term

| Seq : Concr_Term -> Concr_Term -> Concr_Term

| Seq1 : Concr_Term -> Concr_Term

| If : Concr_Term -> Concr_Term -> Concr_Term -> Concr_Term

| If1 : Concr_Term -> Concr_Term -> Concr_Term

| While : Concr_Term -> Concr_Term -> Concr_Term

| While1 : Concr_Term -> Concr_Term -> Concr_Term

| While2 : Concr_Term -> Concr_Term -> Concr_Term

| Assign : variable -> Concr_Term -> Concr_Term

| Assign1 : variable -> Concr_Term

| Out : output -> Concr_Term -> Concr_Term

| Out1 : output -> Concr_Term

(*Expressions*)

| Var : variable -> Concr_Term

| Cons : Concr_value -> Concr_Term

| Plus : Concr_Term -> Concr_Term -> Concr_Term
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| Plus1 : Concr_Term -> Concr_Term

| Plus2 : Concr_Term

| In : input -> Concr_Term

.

These values and terms form our syntax :

Instance Concr_Syntax : AbstractSyntax:=

{

Value := Concr_value;

Term := Concr_Term

}.

We only describe here the rules for the Skip, If, Out, Var, Plus and In

terms. The complete Coq code can be found in Appendix A. The appendix

also shows 3 functions to change the extra of a state (update_extra), to

modify the value of a variable (update_var) or an output (update_output).

The rules are given by a function returning, for each term, a list of rules that

can be applied to it.

Definition Concr_Rules (t:Concr_Term): list rule :=

match t with

The only rule for the term Skip is an axiom : the term it applies on is of

course Skip. The ax function is a partial function defined only if the extra is

empty : if it is empty, ax returns the semantic context as the result and if it

is not ax returns None to illustrate that there is no possible derivation. All of

the sets are empty since the rule does not read or write any input, variable or

output. Additionally, this rule does not produce an extra therefore the boolean

value is false.

| Skip => (Ax Skip

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

empty empty empty empty

false)

:: nil
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The term If e s_1 s_2 cannot be directly derived with an axiom and

needs other derivations. The rule for the if statement is a rule 2 in which

the first term to derive is the guard e and the second one is the extended

term if1 s1 s2. The partial function up is defined only if the extra of the seman-

tic context is empty and in that case, it returns the same semantic context for

the guard. On the other hand, next is defined only if up is defined and if the

extra of the first derivation’s result is a singleton containing a boolean value.

In that case next returns the result of the first derivation as semantic context

for the If1 statement. Note that this mechanism allows the presence of side

effects to the memory during the derivation of the guard.

| If e s1 s2 => (R2 (If e s1 s2)

(e)

(If1 s1 s2)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

(fun sc res => match extra sc, extra res with

| nil, (Bool _) :: nil => Some res

| _,_ => None end))

:: nil

Once the guard has been evaluated and stored in the extra, the term

if1 s1 s2 can be derived in two possible ways depending on the value stored.

Therefore, there are two rules for this term. Both rules are rule 1 and they

can only be applied when the extra of the semantic context contains nothing

more than a boolean value. If the boolean is true, the first rule applies and

it considers s1 for the inductive derivation. In the other case, the second rule

applies and it considers s2. Both up functions keep the memories unchanged

and replace the extra by an empty list.

| If1 s1 s2 => (R1 (If1 s1 s2)

(s1)

(fun sc => (match extra sc with

| (Bool true) :: nil =>

Some (update_extra sc nil)
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| _ => None end)))

::

(R1 (If1 s1 s2)

(s2)

(fun sc => (match extra sc with

| (Bool false) :: nil =>

Some (update_extra sc nil)

| _ => None end)))

:: nil

To output an expression e on o, a rule 2 applies : first derive e and then

Out1 o. The up partial function requires an empty extra in the semantic context

and returns the same state. The next function additionally requires that the

extra of the first derivation’s result is a singleton and returns the result of the

first derivation.

| Out o e=> (R2 (Out o e)

(e)

(Out1 o)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

(fun sc res => match extra sc, extra res with

| nil, v :: nil => Some res

| _,_ => None end))

:: nil

Then to derive the extended term Out1 o the rule to apply is the following

axiom. The ax partial function is defined provided that the extra in the seman-

tic context contains only one value v and it returns the same state but with v

added to the output o and an empty extra. In that case, the axiom does not

read any input or variable and neither it writes into a variable ; but it writes

into the output o thus the fourth set is the singleton {o}. Since this axiom

only sends the value in the output o, it does not produce a value in the extra.

therefore the boolean value is set to false.
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| Out1 o => (Ax (Out1 o)

(fun sc => match extra sc with

| v::nil =>

Some (update_extra

(update_output sc o v)

nil)

| _ => None end)

empty empty empty (singleton o)

false)

:: nil

The term Var x also has only one rule that can be applied. It is an axiom

for which the ax function requires two things on the semantic context : first,

the extra should be empty and second, x should contain some value v in

the variable environment (i.e. x must store something of the form Some v). If

this is the case, ax returns the same states but with a list containing only the

value v as extra. The rule only reads the variable x and does not write into the

memory, all the sets are empty except for the set of the read variables which

is {x}. This is a rule that stores a value in the extra, therefore the boolean

value is set to true.

| Var x => (Ax (Var x)

(fun sc => match extra sc, Envx sc x with

| nil, Some v =>

Some (update_extra sc (v :: nil))

| _,_ => None end)

empty (singleton x) empty empty

true)

:: nil

The rule to derive an In statement is an axiom that simply requires the

semantic context to have an empty extra and the result is the same state as

the semantic context with the value value stored in the i input copied in the

extra. This rule obviously reads the input i and reads or writes nothing else

thus the corresponding set is {i}. This axiom also stores a value in the extra,

the boolean value is set to true.
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| In i => (Ax (In i)

(fun sc => match extra sc with

| nil =>

Some (update_extra sc ((Envi sc i) :: nil))

| _ => None

end)

(singleton i) empty empty empty

true)

:: nil

This last example illustrate a case in which the extra has more than one

elements in the list. The term Plus e1 e2 can be derived by a unique rule 2 :

the two expression to derive are e1 and the extended term Plus1 e2. e1 has

to be derived in the same state than the initial state provided that the extra is

empty. Plus1 e2 has to be derived in the state resulting of the first derivation,

provided that the extra contains only a value corresponding to a number.

| Plus e1 e2 => (R2 (Plus e1 e2)

(e1)

(Plus1 e2)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

(fun sc res => match extra sc, extra res with

| nil, (Num _)::nil => Some res

| _,_ => None end))

:: nil

Plus1 e2 is also a rule 2 : the rule is similar to the previous one with

some differences on the extra. The condition to derive the rule is that the

extra contains a unique number n1, which is removed when deriving e2. But it

is reintroduced in the extra of the semantic context when deriving Plus2, with

the result n2 of the first derivation.

| Plus1 e2 => (R2 (Plus1 e2)

(e2)
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(Plus2)

(fun sc => match extra sc with

| (Num _)::nil =>

Some (update_extra sc nil)

| _ => None end)

(fun sc res => match extra sc, extra res with

| (Num n1)::nil, (Num n2)::nil =>

Some (update_extra res

((Num n1)::(Num n2)::nil))

| _,_ => None end))

:: nil

Finally, Plus2 is derived with an axiom : the ax function produces an un-

changed state except for the extra containing the sum of the two number

given in the initial extra. this axiom does not read or write in the memory at

all therefore the 4 sets are empty but the boolean value is true because the

rule produces a value in the extra.

| Plus2 => (Ax (Plus2)

(fun sc => match extra sc with

| (Num n1) :: (Num n2) :: nil =>

Some (update_extra sc

(Num (n1+n2) :: nil))

| _ => None end)

empty empty empty empty

true)

:: nil

end.

Once that all the rules are defined the semantics can be concretized.

Instance Concr_Semantics : AbstractSemantics:= {

Rules := Concr_Rules

}.

Every theorem and property proved on the abstract PBS semantics is now

instantiable by this concrete semantics.
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2.3 Conclusion

We wanted to define a general way to describe a PBS semantic of a

language in order to have the capacity of reasoning only in terms of rule

types instead of having to reason directly on the rules. Additionally, it would

be a way to automatically produce different semantics than the original one

when given a particular language.

In this chapter we successfully formally defined in Coq an abstract struc-

ture for a PBS language. We also gave an example of concretization of the

WHILE language we introduced in section 1.3.3. This abstract semantics will

be used in chapters 3 and 4 to automatically derive respectively the multise-

mantics and the annotated multisemantics.
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MULTISEMANTICS

The first step of our approach is to derive a new semantics where several

derivations are considered at once. We do not simply want a set of deriva-

tions, but a multiderivation where applications of the same rule at the same

point in the derivation are shared.

3.1 Preliminary definitions

We need a few helper functions to define the multisemantics. First, we de-

fine operators to extract the set of first and second components of a relation.

Definition 2. fst and snd are defined for all relation r :

fst(r) = {x | (x, y) ∈ r} snd(r) = {y | (x, y) ∈ r}

As an example, let’s consider the following relations r1 and r2 :

r1

x1

x2

x3

x4

y1

y2

y3

r2

y1

y2

y3

z1

z2

z3
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In this case,

fst(r1) = {x1, x2, x3}

snd(r1) = fst(r2) = {y1, y3}

snd(r2) = {z1, z2, z3}

Second, we define a strict relation composition operator ◦. This operator is

associative and propagates undefinedness, so we avoid using parentheses.

The reason why we only allow strict compositions is that we want to forbid the

composition of two non-empty relations that would result in an empty relation.

An example of what could happen is given in chapter 4.

Definition 3. For all relations r1 and r2 :

r1 ◦ r2 =





{(x, z)|∃y, (x, y) ∈ r1 ∧ (y, z) ∈ r2} if snd(r1) = fst(r2)

undefined otherwise

In the previous example, since snd(r1) = fst(r2), r1 ◦ r2 is defined and it

is the relation

r1 ◦ r2

x1

x2

x3

x4

z1

z2

z3

Third, we define an operator on relations −→· that takes a relation and re-

turns a new relation where the left-hand side is remembered in the right-hand

side.

Definition 4. For all relation r :

−→r = {(σ, (σ, σ
�
1)) | (σ, σ

�
1) ∈ r}
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The following example illustrates this operator with the previous r1 rela-

tion.

−→r1

x1

x2

x3

x4

x1, y1

x1, y2

x1, y3

x2, y1

x2, y2

x2, y3

x3, y1

x3, y2

x3, y3

x4, y1

x4, y2

x4, y3

Finally, for every partial function f : E → F , we define the relation �f|S ∈

E × F between any element of S ⊆ E and its image by f if it exists.

Definition 5. For all function f : E → F and set S ⊆ E,

�f|S =





{(x, f(x)) | x ∈ S} if S ⊂ Dom(f)

undefined otherwise

To illustrate this definition, we consider S = {x1, x2} and f the function

representing the relation r1, i.e. :

f(x1) = y1

f(x2) = y1

f(x3) = y3

x4 has no image
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Since S = {x1, x2} ⊂ Dom(f) = {x1, x2, x3}, �f|S is defined and it is the

relation :

�f|S

x1

x2

x3

x4

y1

y2

y3

3.2 Canonical structure

We use the notation t ⇓ µ to represent a multiderivation where µ ⊆ State×

State is a relation between states. From now on, we refer to such a µ as a

multistate. Intuitively, a multistate relates semantic contexts and results of a

derivation of the considered term t. Formally, for every pair (σ, σ
�) ∈ µ, we

should have σ, t → σ
�, which is a property of the multisemantics that we state

and prove in Section 3.3.

Figure 3.1 shows how to derive a rule in the multisemantics from a rule in

PBS style. There are three cases as there are three kinds of PBS rules. For

each case, t1, t2, up, and next come from the corresponding PBS rule.

MLTAX
µ = �ax|fst(µ) µ �= ∅

t ⇓ µ
MLTR1

t1 ⇓ µ1 µ = �up|fst(µ) ◦ µ1

t ⇓ µ

MLTR2
t1 ⇓ µ1 t2 ⇓ µ2 µ� = �up|fst(µ) ◦ µ1 µ =

−→
µ� ◦ �next

|snd(
−→
µ�)

◦ µ2

t ⇓ µ

FIGURE 3.1 – Translation of Pretty-Big-Step to multisemantics

In order to derive an axiom, the multistate should be consistent with the ax

function : for every pair (σ, σ
�) of the multistate, ax(σ) = σ

�. We forbid µ to be
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empty because it would correspond to multiderivations that have no meaning.

In fact, we will see in chapter 4 that it could even induce wrong annotations.

Deriving a rule 1 with some µ can be done if µ1 is such that for every pair

(σ, σ
�) in the multistate µ, there exists a state σ1 such that up(σ) = σ1 and

(σ1, σ
�) is a pair of the multistate µ1. The composition is strict so every state

of fst(µ1) must be of the form up(σ) with σ ∈ fst(µ).

To derive a rule 2, we illustrate with a µ such that fst(µ) = {σ̃, ˜̃σ, ˜̃̃
σ}. We

introduce a multistate µ� relating the semantic context of the derivation with

the results of the first premise. The strict composition enforces that every

state of fst(µ1) must be of the form up(σ) with σ ∈ fst(µ) and also that for

every σ ∈ fst(µ), up(σ) ∈ fst(µ1). We choose to illustrate µ1 as if t1 had the

same behaviour in the states up(˜̃σ) and up(˜̃̃
σ)

�up|fst(µ)

σ̃

˜̃σ

˜̃̃
σ

up(σ̃)

up(˜̃σ)

up(˜̃̃
σ)

µ1

up(σ̃)

up(˜̃σ)

up(˜̃̃
σ)

σ̃
�
1

˜̃σ�
1

Thus µ� and
−→
µ� are

µ�

σ̃

˜̃σ

˜̃̃
σ

σ̃
�
1

˜̃σ�
1

−→
µ�

σ̃

˜̃σ

˜̃̃
σ

(σ̃, σ̃
�
1)

(˜̃σ, ˜̃σ�
1)

(˜̃̃
σ, ˜̃σ�

1)

Then, every state of fst(µ2) must be of the form next(σ, σ
�
1) with

(σ, σ
�
1) ∈ snd(

−→
µ� ) and also for every (σ, σ

�
1) ∈ snd(

−→
µ� ), next(σ, σ

�
1) ∈ fst(µ2).

We choose to illustrate µ2 in a case where next(σ, σ
�
1) = σ

�
1.
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µ2

next(σ̃, σ̃
�
1) = σ̃

�
1

next(˜̃σ, ˜̃σ�
1) = ˜̃σ�

1

next(˜̃̃
σ, ˜̃σ�

1) = ˜̃σ�
1

σ̃
�

˜̃σ�

Finally, µ is the multistate

µ�

σ̃

˜̃σ

˜̃̃
σ

σ̃
�

˜̃σ�

These rules are not sufficient in the general case as they force every

derivation to have the same structure. For example, when trying to derive

an if statement in the multisemantics, all of the derivations have to go in the

same branch. The multiderivation for a conditional has the following root.

MLTIF

b ⇓ µ1

If1 s1 s2 ⇓ µ2 µ� = �up|fst(µ) ◦ µ1 µ =
−→
µ� ◦ �next

|snd(
−→
µ�)

◦ µ2

if b then s1 else s2 ⇓ µ

To derive If1 s1 s2 there are two options. Either

MLTIFTRUE
s1 ⇓ µ1 µ = �up|fst(µ) ◦ µ1

If1 s1 s2 ⇓ µ

where �up|fst(µ) = {((M, true), M) | (M, true) ∈ fst(µ)} and then fst(µ) only

contains states of the form (M, true), or

MLTIFFALSE
s2 ⇓ µ2 µ = �up|fst(µ) ◦ µ2

If1 s1 s2 ⇓ µ

where �up|fst(µ) = {((M, false), M) | (M, false) ∈ fst(µ)} and then fst(µ)
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only contains states of the form (M, false).

As those options are incompatible, it is impossible to have a multideriva-

tion for a conditional where the guard is evaluated differently for some states.

To fix this, we add a MERGE rule. This rule simply states that if it is pos-

sible to derive a term with two multistates, then it is also possible to derive it

from the union of them. In the case of an if statement, one may thus use two

subderivations, one for each status of the guard, and merge them together.

MERGE
t ⇓ µ1 t ⇓ µ2

t ⇓ µ1 ∪ µ2

FIGURE 3.2 – The Merge rule

We do not restrict the use of the MERGE rule but in practice, we only

use it when we need to apply different rules to a multistate. For example the

evaluation of a conditional could look like the following derivation.

MLTIF
b ⇓ µ1

MERGE

s1 ⇓ µ�
true

If1 s1 s2 ⇓ µtrue

s2 ⇓ µ�
false

If1 s1 s2 ⇓ µfalse

If1 s1 s2 ⇓ µ2

if b then s1 else s2 ⇓ µ

with the conditions :

µ =
−→
µ� ◦ �next

|snd(
−→
µ�)

◦ µ2

µ� = �up|fst(µ) ◦ µ1

µ2 = µtrue ∪ µfalse

µtrue = �up|fst(µtrue) ◦ µ�
true

µfalse = �up|fst(µfalse) ◦ µ�
false

where each up and next function is the one corresponding to the rule

where the condition appears.
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3.3 Properties

We now prove properties that show that multiderivations correspond to

multiple derivations. First, if t ⇓ µ is derivable, then for every pair (σ, σ
�) ∈ µ,

σ, t → σ
� is derivable. A proof by induction on the multiderivation is straight-

forward.

Lemma 1. ∀tµ. t ⇓ µ =⇒ ∀(σ, σ
�) ∈ µ. σ, t → σ

�

The converse implication is not true, however. Consider the following pro-

gram

n := In "argument";

i := 0;

While (i<n) do

i := i + 1

This an example of a program allowing PBS derivations of arbitrary size. For

every k ∈ N, a derivation starting with the value k in the input "argument"

needs to run k times the while loop. Each of these derivations is finite, but

considering all of them for k ∈ N together would require an infinite multideri-

vation.

Nonetheless, when taking a finite number of PBS derivations, we are able

to derive them all together in the multisemantics. Using the fact that a finite

set can be described as the union of singletons (one for each element of the

set), we can prove it using Lemmas 2 and 3. The first one states that if a

term is derivable in PBS then it is derivable in the multisemantics with the

corresponding singleton relation. The second lemma states that if a term is

derivable with two multistates then it is derivable with the union of them.

Lemma 2. ∀t, σ, σ
�. σ, t → σ

� =⇒ t ⇓ {(σ, σ
�)}

Lemma 3. ∀t, µ1, µ2. t ⇓ µ1 =⇒ t ⇓ µ2 =⇒ t ⇓ µ1 ∪ µ2

Finite multistates are sufficient for our purpose since finding interference

only requires two derivations (or equivalently : proving non-interference only

requires to inspect every pair of derivations).
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3.4 Multisemantics of WHILE

To illustrate a multisemantics, figures 3.3, 3.4 and 3.5 show the multise-

mantic rules for the WHILE language defined in section 1.3.3. These rules

are automatically derived from the PBS and do not require to be defined by

hand.

To simplify the reading, the conditions on the multistates are simplified

as follow. In most cases, up is the identity function on its domain. Therefore

�up|fst(µ) is the identity relation on fst(µ) and thus when �up|fst(µ) ◦µ1 is defined

�up|fst(µ) ◦ µ1 = µ1

If this is the case for a rule 1, then µ = µ1. And if this is the case for a rule 2,

then µ� = µ1.

Also, in some cases next is a function always returning the second argu-

ment (the result of the first premise) and ignoring the first one (the semantic

context of the conclusion) therefore we can simplify

−→
µ� ◦ �next|snd(µ�) = µ�

If this is the case for a rule 2, then µ = µ� ◦ µ2.

Figure 3.3 gathers the multisemantics rules for the expressions.

The MLTCST rule to derive a constant c requires µ to be a multistate re-

lating memories with states containing the same memory and only c in the

extra. Deriving a variable x, the rule MLTVAR is similar to the previous rule :

it requires µ to relate memories with the same memory paired with the value

of x in this memory.

In the rule MLTPLUS, up is the identity function and next returns the se-

cond argument, we can then simplify the equalities with the above remarks

and the condition on µ becomes µ = µ1 ◦µ2. It makes sense since the seman-

tic context of the first premise is exactly the same as the conclusion and the

semantic context of the second premise is the result of the first premise. The

case of the MLTPLUS1 is more complex because the rule ignores the extra
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MLTCST
µ = {(M, (M, c)) | M ∈ fst(µ)} µ �= ∅

c ⇓ µ

MLTVAR
µ = {(M, (M, M(x))) | M ∈ fst(µ)} µ �= ∅

x ⇓ µ

MLTPLUS
e1 ⇓ µ1 +1 e2 ⇓ µ2 µ = µ1 ◦ µ2

e1 + e2 ⇓ µ

MLTPLUS1

e2 ⇓ µ1 +2 ⇓ µ2 µ� = {((M, v1), M) | (M, v1) ∈ µ} ◦ µ1

µ =
−→
µ� ◦ {(((M, v1), (M �, v2)), (M �, [v1, v2])) | ((M, v1), (M �, v2)) ∈ snd(

−→
µ� )} ◦ µ2

+1 e2 ⇓ µ

MLTPLUS2
µ = {((M, [v1, v2]), (M, v1 + v2)) | (M, [v1, v2]) ∈ fst(µ)} µ �= ∅

+2 ⇓ µ

MLTINPUT
µ = {(M, (M, M(i))) | M ∈ fst(µ)} µ �= ∅

Input i ⇓ µ

FIGURE 3.3 – Rules of the WHILE multisemantics (expressions)
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in the first premise and reconsiders it in the second premise. The semantic

context of the first premise is not the one of the conclusion anymore ; moreo-

ver the semantic context of the second premise is not the result of the first

premise either. In that case µ� is the composition of a relation forgetting the

extra (defined on the same first part as µ) and µ1. Then µ is the composition

of three relations :

•
−→
µ� , the same relation as µ� but with the first part remembered in the

second part ;

• {(((M, v1), (M �, v2)), (M �, [v1, v2])) | ((M, v1), (M �, v2)) ∈ snd(
−→
µ� )}, a re-

lation relating a pair of states with the same state as the second one

but with the extra of the first state added to the extra of the second

one ;

• and µ2.

To finalize the derivation of an addition, the rule MLTPLUS2 simply requires

µ to relate states containing two elements in the extra with states containing

the sum of those elements in the extra.

The last rule to derive an expression is the MLTINPUT rule. As for variable,

µ requires to relate memories with the same memory paired to the value of i

in this memory.

Figure 3.4 gathers the multisemantics rules for a first subset of the state-

ments.

The term skip is derived thanks to the rule MLTSKIP requiring µ to be a

non-empty identity relation defined at most over states with empty extra.

For the sequence, MLTSEQ and MLTSEQ1 verify the remarks we made

about up being identity functions and next returning the second argument,

therefore the equalities are straightforward.

The MLTIF is also straighforward because of the same remark. The two

rules to handle both possible continuations are similar : MLTIFTRUE requires

µ to be the strict composition of

• a relation relating states containing true in the extra with the same

state without extra,

• and the multistate µ1.
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MLTSKIP
µ = {(M, M) | M ∈ fst(µ)} µ �= ∅

skip ⇓ µ

MLTSEQ
s1 ⇓ µ1 ;1 s2 ⇓ µ2 µ = µ1 ◦ µ2

s1; s2 ⇓ µ
MLTSEQ1

s ⇓ µ

;1 s ⇓ µ

MLTIF
e ⇓ µ1 If1 s1 s2 ⇓ µ2 µ = µ1 ◦ µ2

if e then s1 else s2 ⇓ µ

MLTIFTRUE
s1 ⇓ µ1 µ = {((M, true), M) | (M, true) ∈ fst(µ)} ◦ µ1

If1 s1 s2 ⇓ µ

MLTIFFALSE
s2 ⇓ µ1 µ = {((M, false), M) | (M, false) ∈ fst(µ)} ◦ µ1

If1 s1 s2 ⇓ µ

MLTWHILE
e ⇓ µ1 while1 e do s ⇓ µ2 µ = µ1 ◦ µ2

while e do s ⇓ µ

MLTWHILEFALSE
µ = {((M, false), M) | (M, false) ∈ fst(µ)} µ �= ∅

while1 e do s ⇓ µ

MLTWHILETRUE1

s ⇓ µ1 while2 e do s ⇓ µ2

µ = {((M, true), M) | (M, true) ∈ fst(µ)} ◦ µ1 ◦ µ2

while1 e do s ⇓ µ

MLTWHILETRUE2
while e do s ⇓ µ

while2 e do s ⇓ µ

FIGURE 3.4 – Rules of the WHILE multisemantics (statements)
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while MLTIFFALSE has the same requirement when true is replaced by false.

The rule MLTWHILE is straighforward since up and next are how we des-

cribed them at the beginning of this section. To stop the while loop, the axiom

MLTWHILEFALSE forces µ to be a multistate relating state containing false

in the extra with the same state but containing an empty extra. In the rule

MLTWHILETRUE1, the next function can be simplified as in the remark above.

µ must then be the composition of

• a relation relating states containing false in the extra with the same

state without extra,

• µ1,

• and µ2.

The MLTWHILETRUE2 rule also has an identity up function, therefore the rule

is totally simplified.

Figure 3.5 gathers the remaining multisemantics rules for the statments.

The MLTASG rule also has an identity up function since the expression

is derived in the same semantic context as the assignment. Moreover the

semantic context of the continuation is the result of the derivation of the ex-

pression, thus we have µ = µ1 ◦ µ2 again. The continuation of this rule is

the axiom MLTASG1 which requires the multistate to be a relation between a

state containing a single value v and the same state with the variable x set to

v and an empty extra.

The MLTOUTPUT and MLTOUTPUT1 rules are analogous to the previous

MLTASG and MLTASG1 rules, except that the store does not erase previous

values.

Finally, the rule MERGE allows to gather two multiderivation of the same

term that may have different structures.

3.5 Conclusion

In this chapter we gave a framework to build a new semantics when gi-

ven an initial semantics in Pretty-Big-Step form. This new semantic derives

65



Partie , Chapitre 3 – Multisemantics

many executions of the same terms at once, and they share the same de-

rivation rule when they are at the same program point. This last property

gives us good hope in annotating the multisemantics in order to capture non-

interference.
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MLTASG
e ⇓ µ1 x :=1⇓ µ2 µ = µ1 ◦ µ2

x := e ⇓ µ

MLTASG1
µ = {((M, v), M [x �→ v]) | (M, v) ∈ fst(µ)} µ �= ∅

x :=1⇓ µ

MLTOUTPUT
e ⇓ µ1 Ouput1 o ⇓ µ2 µ = µ1 ◦ µ2

Ouput o e ⇓ µ

MLTOUTPUT1
µ = {((M, v), M [o �→ v :: M(o)]) | (M, v) ∈ fst(µ)} µ �= ∅

Ouput1 o ⇓ µ

MERGE
t ⇓ µ1 t ⇓ µ2 µ = µ1 ∪ µ2

t ⇓ µ

FIGURE 3.5 – Rules of the WHILE multisemantics (statements) (bis)





CHAPITRE 4

ANNOTATIONS

The multisemantics is a tool able to reason about many derivation with

one particularity : it can collect pieces of information from each derivation

and aggregate them at the same program point. This chapter focuses on an-

notating this semantics to capture the non-interference property and states

the correctness theorem of these annotations. This approach is not limited to

non-interference, it applies to any hyperproperty that requires a finite number

of derivations. We conjecture this methodology could be used to capture pro-

perties like nonmalleable non-interference [15] which needs four derivations.

4.1 Construction

The annotations track the inputs on which every variable and output de-

pends in a dependency environment of type MemDep, typically written D.

Additionally, we track the context dependency CD of the current computa-

tion. It has type CtxtDep, a set of inputs, and it represents the dependency

on the context in which the current expression or statement is evaluated. The

context dependency is used to track indirect flows like program counter levels

do.

MemDep := (Var ∪ Outputs) �→ Inputs set CtxtDep := Inputs set

An annotated derivation of a term t in a multistate µ is written

CD, D, t ⇓ µ, D�, V D�

where CD ∈ CtxtDep is the context dependency and D ∈ MemDep is the

environment dependency before the execution. D� ∈ MemDep is the envi-
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ronment dependency after the execution of the term. V D� ∈ CtxtDep is the

set of inputs the computed value, i.e., the extra, depends on. We will refer

to CD and D as the entering dependencies and to D� and V D� as resul-

ting dependencies. The way to interpret such a statement is "given entering

dependencies CD and D, the derivation of t in the multistate µ returns the

resulting dependencies D� and V D�".

As stated in section 2.2.1, we suppose we are given, for each axiom,

4 sets representing the inputs, variables and outputs it may read or write

and a parameter specifying if the axiom produces an extra. Formally, each

axiom comes with four sets and a boolean value : InputRead ⊂ Inputs,

the set of inputs the axiom may read ; V arRead ⊂ Var , the set of variables

the axiom may read ; V arWrite ⊂ Var , the set of variables the axiom may

write ; OutputWrite ⊂ Outputs, the set of outputs the axiom may write ;

ProduceExtra, a boolean value specifying if the axiom produces an extra. In-

formally, the extra can be see as a variable : adding the extra in the set of the

elements the axiom can write on corresponds to a binary choice represen-

ted by ProdExtra. This analogy also works for reading the extra, considering

that an axiom always reads the extra there is no need to introduce another

boolean.

In practice these sets are empty sets or singletons because

axioms are generally atomic operations modifying and

using a small part of the memory. When having an axiom

Ax t ax InputRead V arRead V arWrite OutputWrite ProdExtra, these

parameters respect the following hypotheses.

1. If two states agree on the extra, InputRead, and V arRead, then for

every x ∈ V arWrite, the value in x after the axiom is the same in both

states.

Hypothesis 1. Membership of VarWrite

∀σ1σ2,





extra(σ1) = extra(σ2)

σ1(InputRead) = σ2(InputRead)

σ1(V arRead) = σ2(V arRead)

=⇒ ∀x ∈ V arWrite, ax(σ1)(x) = ax(σ2)(x)
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2. Every variable x such that x �∈ V arWrite is not modified by the axiom.

Hypothesis 2. Non-membership of VarWrite

∀σ,

∀x �∈ V arWrite, σ(x) = ax(σ)(x)

3. If two states agree on the extra, InputRead, and V arRead, then for

every o ∈ OutWrite, the values added to o after the axiom are the

same in both states.

Hypothesis 3. Membership of OutWrite

∀σ1σ2,





extra(σ1) = extra(σ2)

σ1(InputRead) = σ2(InputRead)

σ1(V arRead) = σ2(V arRead)

=⇒ ∀o ∈ OutWrite, ∃lv,





ax(σ1)(o) = lv@σ1(o)

ax(σ2)(o) = lv@σ2(o)

4. Every output o such that o �∈ OutWrite is not modified by the axiom.

Hypothesis 4. Non-membership of OutWrite

∀σ,

∀x �∈ OutWrite, σ(o) = ax(σ)(o)

5. If two states agree on the extra, InputRead, and V arRead, then if an

extra is produced, the resulting extra is the same in both states.

Hypothesis 5. Producing an extra

∀σ1σ2,





extra(σ1) = extra(σ2)

σ1(InputRead) = σ2(InputRead)

σ1(V arRead) = σ2(V arRead)

prodExtra

=⇒ extra(ax(σ1)) = extra(ax(σ2))

6. If no extra is produced, then it should be an empty list.

Hypothesis 6. Not producing an extra

∀σ,

¬prodExtra =⇒ extra(ax(σ)) = nil
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These hypotheses are non-interference-like properties over the axioms

represented in terms of dependencies. Combining the annotations correctly

in the derivation will allow to lift that property over all the programs.

Hypotheses 2, 4 and 6 could be more precise and enforce the implications

to be double implications. We could rewrite them

∀x ∈ Var , x �∈ V arWrite ⇐⇒ ∀σ, σ(x) = ax(σ)(x)

∀o ∈ Outputs, o �∈ OutputWrite ⇐⇒ ∀σ, σ(o) = ax(σ)(o)

¬prodExtra ⇐⇒ ∀σ, extra(ax(σ)) = nil

Not verifying the right-to-left implications is not critical in terms of correct-

ness ; but it may induce a loss of precision in the annotations.

The annotated semantics rules in Figure 4.1 are the multisemantics rules

extended with annotation information.

Axioms The most complex case is the one for axioms. First consider the

set Deplocal of inputs involved in the axiom : it is the union of the current

context dependency, the inputs the axiom may read, and the dependencies

of the variables the axiom may read. For every variable written by the axiom,

we replace the dependency for that variable by Deplocal. Note that this is a

strong update : we throw away prior dependencies for that variable as it is

overwritten. In contrast, for every output written by the axiom, we keep the

old dependencies of the output and simply add Deplocal. The dependency

of the computed value is then Deplocal provided that there is one (which is

specified by produceExtra). If no extra is produced the value dependency set

is empty.

Rule 1 Rules 1 are simple to annotate : they propagate annotations. The

entering dependencies of the premise are exactly the entering dependen-

cies of the conclusion and the resulting dependencies of the conclusion are

exactly the resulting dependencies of the premise.
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AMLTAX
µ = �ax|fst(µ) µ �= ∅

CD, D, t ⇓ µ, D�, V D�

where Deplocal = CD ∪ InputRead
�

x∈V arRead

D(x)

V D� =





Deplocal if ProduceExtra

{} otherwise
,

∀x. D�(x) =





Deplocal if x ∈ V arWrite

D(x) otherwise
,

and ∀o. D�(o) =





Deplocal ∪ D(o) if o ∈ OutputWrite

D(o) otherwise
.

AMLTR1
CD, D, t1 ⇓ µ1, D1, V D1 µ = �up|fst(µ) ◦ µ1

CD, D, t ⇓ µ, D1, V D1

AMLTR2

CD, D, t1 ⇓ µ1, D1, V D1 CD ∪ V D1, D1, t2 ⇓ µ2, D2, V D2

µ� = �up|fst(µ) ◦ µ1 µ =
−→
µ� ◦ �next

|snd(
−→
µ�)

◦ µ2

CD, D, t ⇓ µ, D2, V D2

AMERGE
CD, D, t ⇓ µ1, D1, V D1 CD, D, t ⇓ µ2, D2, V D2

CD, D, t ⇓ µ1 ∪ µ2, D�, V D1 ∪ V D2

where D�(xo) = D1(xo) ∪ D2(xo) for all variable and output xo

FIGURE 4.1 – Types of rule for an annotated multisemantics

73



Partie , Chapitre 4 – Annotations

Rule 2 The annotations for a Rule 2 exhibits the need of the parameter

produceExtra of the axioms. First the entering dependencies are propagated

to the first derivation. Then, the context dependency of the continuation is

the union of the initial context dependency CD and the value dependency

of the first derivation V D1. Note that, independently from the fact that the

first derivation produces an extra or not, all side effects happening during the

derivation of t1 are stored in D1 and are taken into account in the continuation.

Let us take a closer look at the rule 2 to see where produceExtra impacts

the derivation.

AMLTR2

CD, D, t1 ⇓ µ1, D1, V D1 CD ∪ V D1, D1, t2 ⇓ µ2, D2, V D2

µ� = �up|fst(µ) ◦ µ1 µ =
−→
µ� ◦ �next

|snd(
−→
µ�)

◦ µ2

CD, D, t ⇓ µ, D2, V D2

If the derivation of t1 does not produce an extra and no over-approximation

has been done when parameterizing produceExtra in every axiom, then V D1

is empty. This can be proved by induction on the annotated derivation of t1 :

— In the case of an axiom, no approximation has been done, then

produceExtra is false. Therefore, V D1 = ∅.

— In the case of a rule 1, the result is immediate by induction since t1

produces an extra if and only if its premise produces an extra.

— In the case of a rule 2, the result is also immediate by induction on the

second derivation since t1 produces an extra if and only if its second

premise produces an extra.

— In the case of a merge rule, the induction hypothesis ensures that the

value dependencies are empty in both annotated derivation, therefore

their union is empty too.

We can then conclude that V D1 is empty which means that the context in

which t2 is derived only depends on CD as it is the case for the sequence

rule for example.

AMLTSEQ

CD, D, s1 ⇓ µ1, D1, {} CD, D1, ;1 s2 ⇓ µ2, D2, V D2

µ� = �up|fst(µ) ◦ µ1 µ =
−→
µ� ◦ �next

|snd(
−→
µ�)

◦ µ2

CD, D, s1; s2 ⇓ µ, D2, V D2
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On the other hand, if the derivation produces an extra, then the dependen-

cies of that extra V D1 are added to the context dependencies to evaluate the

continuation. An example of the second case, where an extra is produced, is

the rule for conditionals.

AMLTIF

CD, D, b ⇓ µ1, D1, V D1 CD ∪ VD1, D1, If1 s1 s2 ⇓ µ2, D2, V D2

µ� = �up|fst(µ) ◦ µ1 µ =
−→
µ� ◦ �next

|snd(
−→
µ�)

◦ µ2

CD, D, if b then s1 else s2 ⇓ µ, D2, V D2

Merge rule Finally the Merge rule simply merges the dependencies toge-

ther by doing the point-wise union of the environment dependencies, and the

union of the value dependencies. For instance, for a conditional where both

branches are executed, the dependencies are the union of the dependencies

of each branch.

4.2 Annotated multisemantics of WHILE

The annotated rules of the WHILE multisemantics are the same as for the

simple multisemantics with additional information on the conclusion of the

rules. The premises stay the same. All the rules 1 and rules 2 are annotated

exactly like in the formal definition of the annotated multisemantics to stay

as modular as possible. For example, the rule AMLTSEQ could be simplified

because our WHILE language cannot produce an extra in the first term s1.

This can be seen by looking at the next function for this rule and noticing that

next is only defined if the resulting state of the first derivation has an empty

extra. We could then take the remark we made previously and simplify the

rule. But adding the exception mechanism to the language would give the

possibility to produce a non empty extra in the derivation of s1 as we saw in

section 1.3.2 with the rule ERR.

Figure 4.2 gathers the annotated multisemantics rules for the expressions.

When deriving a constant, the memory is left untouched and the extra

(the value of the constant in that case) depends directly on the context. This
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AMLTCST
µ = {(M, (M, c)) | M ∈ fst(µ)} µ �= ∅

CD, D, c ⇓ µ, D, CD

AMLTVAR
µ = {(M, (M, M(x))) | M ∈ fst(µ)} µ �= ∅

CD, D, x ⇓ µ, D, CD ∪ D(x)

AMLTPLUS

CD, D, e1 ⇓ µ1, D1, V D1

CD ∪ V D1, D1, +1 e2 ⇓ µ2, D2, V D2 µ = µ1 ◦ µ2

CD, D, e1 + e2 ⇓ µ, D2, V D2

AMLTPLUS1

CD, D, e2 ⇓ µ1, D1, V D1 CD ∪ V D1, D1, +2 ⇓ µ2, D2, V D2

µ� = {((M, v1), M) | (M, v1) ∈ µ} ◦ µ1

µ =
−→
µ� ◦ {(((M, v1), (M �, v2)), (M �, [v1, v2])) | ((M, v1), (M �, v2)) ∈ snd(

−→
µ� )} ◦ µ2

CD, D, +1 e2 ⇓ µ, D2, V D2

AMLTPLUS2

µ = {((M, [v1, v2]), (M, v1 + v2)) | (M, [v1, v2]) ∈ fst(µ)}
µ �= ∅

CD, D, +2 ⇓ µ, D, CD

AMLTINPUT
µ = {(M, (M, M(i))) | M ∈ fst(µ)} µ �= ∅

CD, D, Input i ⇓ µ, D, CD ∪ {i}

FIGURE 4.2 – Rules of the WHILE annotated multisemantics (expressions)
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is why the rule AMLTCST, when given a context dependency CD and an envi-

ronment dependency D, returns the same environment dependency and the

context dependency as value dependency. When deriving the rule AMLTVAR

with a variable x, the memory is also untouched and the extra depends on

the context and on every input x depends on.

To derive an addition, the rules AMLTPLUS and AMLTPLUS1 are not

axioms so their annotations are generic. The rule AMLTPLUS2, like

AMLTCST, does not depend on any variable or input and does not modify

the environment therefore the environment dependency is the same and the

value dependency is the context dependency.

The rule MLTINPUT only produces an extra and this extra only depends

on the input read. As for variable, environment dependencies do not change

and the value dependency is the context dependency plus the input read.

Figure 4.3 gathers the annotated multisemantics rules for a first subset of the

statements.

The term skip does exactly nothing : the memory is not modified and no

extra is produced. Thus, the resulting environment dependency is the same

as the entering environment dependency and the value dependency is empty.

The sequence, the if statement and the while statement are handled

by rules 2 and rules 1 with their generic annotations excepted for the rule

AMLTWHILEFALSE. This rule does nothing more than checking that the ex-

tra is false but this has no impact on the dependencies. The environment

dependencies stay the same and the value dependency is empty.

Figure 4.4 gathers the remaining annotated multisemantics rules for the sta-

tements.

The rule AMLTASG is a rule 2 and has generic annotations. Its continua-

tion AMLTASG1 is an axiom that modifies the content of the variable x and

does not return any extra. The value of x now depends only on the current

context. The resulting environment dependency is the previous one for which

the dependency associated to x has been changed to the current context
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AMLTSKIP
µ = {(M, M) | M ∈ fst(µ)} µ �= ∅

CD, D, skip ⇓ µ, D, ∅

AMLTSEQ

CD, D, s1 ⇓ µ1, D1, V D1

CD ∪ V D1, D1, ;1 s2 ⇓ µ2, D2, V D2 µ = µ1 ◦ µ2

CD, D, s1; s2 ⇓ µ, D2, V D2

AMLTSEQ1
CD, D, s ⇓ µ, D1, V D1

CD, D, ;1 s ⇓ µ, D1, V D1

AMLTIF

CD, D, e ⇓ µ1, D1, V D1

CD ∪ V D1, D1, If1 s1 s2 ⇓ µ2, D2, V D2 µ = µ1 ◦ µ2

CD, D, if e then s1 else s2 ⇓ µ, D2, V D2

AMLTIFTRUE

CD, D, s1 ⇓ µ1, D1, V D1

µ = {((M, true), M) | (M, true) ∈ fst(µ)} ◦ µ1

CD, D, If1 s1 s2 ⇓ µ, D1, V D1

AMLTIFFALSE

CD, D, s2 ⇓ µ1, D1, V D1

µ = {((M, false), M) | (M, false) ∈ fst(µ)} ◦ µ1

CD, D, If1 s1 s2 ⇓ µ, D1, V D1

AMLTWHILE

CD, D, e ⇓ µ1, D1, V D1

CD ∪ V D1, D1, while1 e do s ⇓ µ2, D2, V D2 µ = µ1 ◦ µ2

CD, D, while e do s ⇓ µ, D2, V D2

AMLTWHILEFALSE
µ = {((M, false), M) | (M, false) ∈ fst(µ)} µ �= ∅

CD, D, while1 e do s ⇓ µ, D, ∅

AMLTWHILETRUE1

CD, D, s ⇓ µ1, D1, V D1

CD ∪ V D1, D1, while2 e do s ⇓ µ2, D2, V D2

µ = {((M, true), M) | (M, true) ∈ fst(µ)} ◦ µ1 ◦ µ2

CD, D, while1 e do s ⇓ µ, D2, V D2

AMLTWHILETRUE2
CD, D, while e do s ⇓ µ, D1, V D1

CD, D, while2 e do s ⇓ µ, D1, V D1

FIGURE 4.3 – Rules of the WHILE annotated multisemantics (statements)

78



4.2. Annotated multisemantics of WHILE

AMLTASG

CD, D, e ⇓ µ1, D1, V D1

CD ∪ V D1, D1, x :=1⇓ µ2, D2, V D2 µ = µ1 ◦ µ2

CD, D, x := e ⇓ µ, D2, V D2

AMLTASG1
µ = {((M, v), M [x �→ v]) | (M, v) ∈ fst(µ)} µ �= ∅

CD, D, x :=1⇓ µ, D[x �→ CD], ∅

AMLTOUTPUT

CD, D, e ⇓ µ1, D1, V D1

CD ∪ V D1, D1, Ouput1 o ⇓ µ2, D2, V D2 µ = µ1 ◦ µ2

CD, D, Ouput o e ⇓ µ, D2, V D2

AMLTOUTPUT1
µ = {((M, v), M [o �→ v :: M(o)]) | (M, v) ∈ fst(µ)} µ �= ∅

CD, D, Ouput1 o ⇓ µ, D[o �→ D(o) ∪ CD], ∅

AMERGE
CD, D, t ⇓ µ1, D1, V D1 CD, D, t ⇓ µ2, D2, V D2

CD, D, t ⇓ µ1 ∪ µ2, D�, V D1 ∪ V D2

where D�(xo) = D1(xo) ∪ D2(xo) for all variable and output xo

FIGURE 4.4 – Rules of the WHILE annotated multisemantics (statements)
(bis)
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dependency and the value dependency is empty.

The rule AMLTOUTPUT1 is analogous to the previous rule AMLTASG1,

except that, as the store does not erase previous values, the old dependency

is not erased.

Finally, the rule AMERGE is exactly the same as the formal rule : the envi-

ronment dependency is merged by doing the union variable by variable and

output by output ; and the resulting value dependency is the union of both

resulting value dependencies.

4.3 Capturing masking

We have re-written the running example of Section 1.1.3 in the WHILE

language and we will call it P .

x := true;

y := true;

if Input "i"

then x := false

else skip;

if x

then y := false

else skip;

Output "o" y

We now show how our approach captures the dependency in that case. The

non-interference property only needs two executions to be negated, we thus

consider a multistate µ with two semantic contexts, one with false in the first

input and one with true. We derive the running example in the annotated mul-

tisemantics with empty entering dependencies and we show that the output

o depends on the input i. We write D∅ the empty environment dependency, a

function returning an empty set for every variable and output.

We detail here, step by step, the crucial points of the derivation.

The first if statement will be derived in states containing true in the x and

y variables. We first have to derive the condition Input 1 and then derive the
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continuation. For the purpose of explanation, we replace the resulting depen-

dencies with question marks and we will see how the rules will constrain the

annotations to capture the information flow.

∅, D∅, Input i ⇓ µi, D∅, {i}

{i}, D∅, If1 x := f skip ⇓ µ�
P1

, ?, ?

{i}, D∅, ;1 If1 x := f skip ⇓ µ�
P1

, ?, ?

∅, D∅, P1 ⇓ µP1
, ?, ?

with µP1
= µi ◦ µ�

P1

The first premise obviously produces an extra (the value in the input i)

and then its value dependency is {i}. The rule of the if statement makes the

dependency flow into the context dependency of the continuation.

Unfortunately, both semantic contexts of µ�
P1

do not have the same extra

because it corresponds to the value in the input i. The rule AMLTIFTRUE

cannot be applied here and we need to use the merge rule to separate µ�
P1

into two multistates µt and µf .

{i}, D∅, If1 x := f skip ⇓ µt, ?, ? {i}, D∅, If1 x := f skip ⇓ µf , ?, ?

{i}, D∅, If1 x := f skip ⇓ µ�
P1

, Dx, ∅

with µ�
P1

= µt ∪ µf .

The first premise goes into the first branch of the conditional and captures

the dependency in Dx = D∅[x �→ {i}] because the current context depends

on the input i and an assignment has been done on x. The second branch

does not have the dependency since a skip statement has been derived.

{i}, D∅, x := f ⇓ µt, Dx, ∅

{i}, D∅, If1 x := f skip ⇓ µt, Dx, ∅

{i}, D∅, skip ⇓ µf , D∅, ∅

{i}, D∅, If1 x := f skip ⇓ µf , D∅, ∅

{i}, D∅, If1 x := f skip ⇓ µ�
P1

, Dx, ∅

But the merge rule merges the dependencies and thus we know this piece

of code may induce information leaking from input i to variable x. We should

also notice that in the multistate µ�
P1

(and thus µP1
) the result having true
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stored in the input i has the value false stored in x and the other one has

true stored in x.

∅, D∅, Input i ⇓ µi, D∅, {i}

{i}, D∅, If1 x := f skip ⇓ µ�
p1

, Dx, ∅

{i}, D∅, ;1 If1 x := f skip ⇓ µ�
p1

, Dx, ∅

∅, D∅, P1 ⇓ µP1
, Dx, ∅

It leads us to derive P2 with the following entering annotations.

∅, Dx, x ⇓ µx, Dx, {i}

{i}, Dx, If1 y := f skip ⇓ µ�
P2

, ?, ?

{i}, Dx, ;1 If1 y := f skip ⇓ µ�
P2

, ?, ?

∅, Dx, P2 ⇓ µP2
, ?, ?

with µP2
= µx ◦ µ�

P2

After the derivation of the variable x, we know that the returned value

depends on i because we derived x with the entering environment depen-

dency Dx. Then the same phenomenon than previously appears, we need

the merge rule to derive the left-hand part because the derivation of x made

the extras of the semantic contexts of µ�
P2

to be different.

{i}, Dx, y := f ⇓ µ�
t, Dxy, ∅

{i}, Dx, If1 y := f skip ⇓ µ�
t, Dxy, ∅

{i}, Dx, skip ⇓ µ�
f , Dx, ∅

{i}, Dx, If1 y := f skip ⇓ µ�
f , Dx, ∅

{i}, Dx, If1 y := f skip ⇓ µ�
P2

, Dxy, ∅

with µ�
P2

= µ�
t ∪ µ�

f

The first derivation tree captures the flow of the context to y and up-

dates the resulting environment dependency Dxy = Dx[y �→ {i}] = D∅[x �→

{i}][y �→ {i}].

Finally, when deriving the output with these annotations, we have the de-

pendency between o and i because we know that y depended on i.

∅, Dxy, y ⇓ µy, Dxy, {i} {i}, Dxy, Ouput1 o ⇓ µ�
o, Dxy, ∅

∅, Dxy, Ouput o y ⇓ µo, Dxy, ∅
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with µo = µy ◦ µ�
o.

4.4 Limits

Over-approximations in the parameters

The first source of over-approximation comes from the parameters of the

axioms. The WHILE language is simple enough to precisely define these pa-

rameters, but in the general case an axiom may write and read many inputs,

variables or outputs.

For instance we could introduce a term Swap x y taking two variables x

and y as parameters and swapping their value in the memory. This term is

derived in PBS with the axiom

SWAP
M, Swap x y → M [x �→ M(y)][y �→ M(x)]

this axiom reads and writes the variables x and y thus :

V arRead = V arWrite = {x, y}

InputRead = OutputWrite = ∅

ProdExtra = false

Let us suppose we have the following program.

x := In i;

y := In j;

swap x y

When deriving the swap instruction in the annotated multisemantic, we

already know that x depends on input i and y depends on input j.

We could then obtain the following derivation

∅, D, Swap x y ⇓ µ, D�, ∅
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such that

D = D∅[x �→ i][y �→ j]

and D� = D∅[x �→ {i, j}][y �→ {i, j}].

The result is that, after the swap, both x and y depend on both i and j

which is an overapproximation since now x does not depend on i anymore.

To fix this overapproximation, it seems sufficient to give, instead of the two

sets V arRead and InputRead, a set of inputs and a set of variables for each

variable and each output in V arWrite and OutputWrite.

Value-related overapproximations

We also may capture dependencies that do not lead to interference even if

the axioms are perfectly parametrized. For example, any annotated multide-

rivation of the following program will conclude that the output o depends on

the input i.

if Input i

then Output o 1

else Output o 1

The derivation has the same structure than the derivation of P1 that we build

in section 4.3. But in fact, changing input i would not change the output o.

The loss of precision comes from the fact that we only track dependencies,

and not the actual values being computed.

Non-executable semantics

This semantic is clearly not executable because of the ability to derive an

infinite number of single derivations. But this is not an issue for two reasons.

The first one is that we are not trying to build an analyser but a mathematical

object close to non-interference that is easier to manipulate in formal proof.

The second reason is that anyway, we want to be as complete as possible

and in the ideal case where there are no approximations, we could not be

executable since TINI is undecidable.
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CORRECTNESS

Now that we are convinced that the annotations capture non-interference,

we intend to formally prove it. Establishing a link between the annotated mul-

tisemantics and the formal definition of non-interference will later allow to

prove the correctness of analyzers. The correctness of the annotations is

expressed as follows

Theorem 1 (Fundamental Theorem). ∀t,

If ∀µ, D�, V D�, o public,

D∅, ∅, t ⇓ µ, D�, V D� =⇒ ∀i ∈ (D�o), i is public

Then t is non-interferent.

It states that if for all annotated multiderivation, any public output does not

depend on a private input then the program is non-interferent. Of course, this

theorem is valid under some hypotheses over the PBS rules. We will briefly

explain the proof method and then we explain how the theorem is used in

practice to prove analyzers.

5.1 Hypotheses

Determinism (2 hypotheses)

There are two notions of determinism we assume. The first one is a deter-

minism over the choice of the rules when deriving a term and the second one

is the determinism of the language.

The first hypotheses we make is that, given a term t and a state σ, the

knowledge of the extra is enough to determine the unique rule that may be

applied to t in the state σ. In another word, if two rules apply on two states

agreeing on the extra, then the two rules are identical. The predicate applies
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r sigma states, if the rule is an axiom (respectively rule 1 or rule 2), that ax

sigma <> None (respectively up sigma <> None).

Hypothesis deterministic_rule :

forall t sigma1 sigma2 r1 r2,

List.In r1 (Rules t)

-> List.In r2 (Rules t)

-> applies r1 sigma1

-> applies r2 sigma2

-> extra sigma1 = extra sigma2

-> r2 = r1

.

Moreover, the rules themselves are deterministic : deriving a term t in

some state will always result in the same state.

Hypothesis deterministic_deriv :

forall t sigma sigma1’ sigma2’,

deriv t sigma sigma1’

-> deriv t sigma sigma2’

-> sigma1’ = sigma2’

.

Axioms (6 hypotheses)

Concerning axioms, we assume the writer of the semantics gave correct

parameters for inputRead, varRead, varWrite, outputWrite and prodExtra.

The following hypothesis are the formalization of hypotheses 1 to 6 of section

4.1

On one hand, if two states are equal on the extra and on the inputs and

variables read by the axiom (inputRead and variableRead), then applying an

axiom on those two states results in states that are equal on the variable

written by the axiom (varWrite). On the other hand, applying an axiom leaves

unmodified the variables not in varWrite.

Hypothesis HypVarWrite :

forall t ax iRead vRead vWrite oWrite prodExtra,
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List.In (Ax t ax iRead vRead vWrite oWrite prodExtra)

(Rules t)

-> forall sigma1 sigma2 sigma1’ sigma2’,

(ax sigma1 = Some sigma1’)

-> (ax sigma2 = Some sigma2’)

-> (extra sigma1 = extra sigma2)

-> (forall i, mem i iRead -> (Envi sigma1 i

= Envi sigma2 i))

-> (forall y, mem y vRead -> (Envx sigma1 y

= Envx sigma2 y))

-> (forall x, mem x vWrite -> (Envx sigma1’ x

= Envx sigma2’ x))

.

Hypothesis HypNotVarWrite :

forall t ax iRead vRead vWrite oWrite prodExtra,

List.In (Ax t ax iRead vRead vWrite oWrite prodExtra)

(Rules t)

-> forall sigma sigma’,

ax sigma = Some sigma’

-> forall x, x \notin vWrite

-> Envx sigma x = Envx sigma’ x

.

An analogous reasoning can be done for the outputs : if two states are

equal on the extra and on the inputs and variables read by the axiom

(inputRead and varRead), then applying an axiom on those two states

results in states that have the same value in the first place of every output

written by the axiom (outputWrite). Moreover, applying an axiom leaves

unmodified the outputs not in outputWrite.

Hypothesis HypOutputWrite :

forall t ax iRead vRead vWrite oWrite prodExtra,

List.In (Ax t ax iRead vRead vWrite oWrite prodExtra)

(Rules t)
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-> forall sigma1 sigma2 sigma1’ sigma2’,

(ax sigma1 = Some sigma1’)

-> (ax sigma2 = Some sigma2’)

-> (extra sigma1 = extra sigma2)

-> (forall i, mem i iRead -> (Envi sigma1 i

= Envi sigma2 i))

-> (forall y, mem y vRead -> (Envx sigma1 y

= Envx sigma2 y))

-> forall o,

mem o oWrite

-> exists lv,

(Envo sigma1’ o = lv ++ (Envo sigma1 o))

/\ (Envo sigma2’ o = lv ++ (Envo sigma2 o))

.

Hypothesis HypNotOutputWrite :

forall t ax iRead vRead vWrite oWrite prodExtra,

List.In (Ax t ax iRead vRead vWrite oWrite prodExtra)

(Rules t)

-> forall sigma sigma’,

(ax sigma = Some sigma’)

-> (forall o, notin o oWrite

-> (Envo sigma o = Envo sigma’ o))

.

Finally, the read sets also have an impact on the extra : applying an axiom

that produces an extra on two states that are equal on the initial extra and on

the inputs and variables read by the axiom (inputRead and varRead) results

in states that have the same extra. Conversely, if the axiom does not produce

an extra, then the resulting extra is empty.

Hypothesis HypExtraProduced :

forall t ax iRead vRead vWrite oWrite prodExtra,

List.In (Ax t ax iRead vRead vWrite oWrite prodExtra)

(Rules t)
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-> forall sigma1 sigma2 sigma1’ sigma2’,

(ax sigma1 = Some sigma1’)

-> (ax sigma2 = Some sigma2’)

-> (extra sigma1 = extra sigma2)

-> (forall i, mem i iRead -> (Envi sigma1 i

= Envi sigma2 i))

-> (forall y, mem y vRead -> (Envx sigma1 y

= Envx sigma2 y))

-> (prodExtra = true)

-> (extra sigma1’ = extra sigma2’)

.

Hypothesis HypNoExtraProduced :

forall t ax iRead vRead vWrite oWrite prodExtra,

List.In (Ax t ax iRead vRead vWrite oWrite prodExtra)

(Rules t)

-> forall sigma sigma’,

(ax sigma = Some sigma’)

-> ( (prodExtra = false)

->

(extra sigma’ = nil))

.

up and next (3 hypotheses)

We also give some constraints on the up and next functions. We suppose

that they do not impact the memory and that they may only change the extra.

For rules 1 and rules 2, if up is defined, then it must not change nor inspect the

memory, i.e., it can only change the extra part of the state, and this change

is a function of the previous extra : up(M, e) = (M �, e�) =⇒ M � = M ∧ e� =

f(e). For rules 2, if next is defined, then the new memory is the memory of

the second argument, and the new extra only depends on the extras of the

arguments : next((M1, e1), (M2, e2)) = (M, e) =⇒ M = M2 ∧ e = g(e1, e2).

Finally, given a term and an extra, at most one rule applies.
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Hypothesis HypUpR1 :

forall t t1 up,

List.In (R1 t t1 up) (Rules t)

-> exists f_extra,

forall sigma sigma’,

(up sigma = Some sigma’)

-> sameMemory sigma sigma’

/\ extra sigma’ = f_extra (extra sigma)

.

Hypothesis HypUpR2 :

forall t t1 t2 up next,

List.In (R2 t t1 t2 up next) (Rules t)

-> exists f_extra,

forall sigma sigma’,

(up sigma = Some sigma’)

-> sameMemory sigma sigma’

/\ extra sigma’ = f_extra (extra sigma)

.

Hypothesis HypNext :

forall t t1 t2 up next,

List.In (R2 t t1 t2 up next) (Rules t)

-> exists g_extra,

forall sigma sigma’ sigma’’,

(next sigma sigma’ = Some sigma’’)

-> sameMemory sigma’ sigma’’

/\ extra sigma’’ = g_extra (extra sigma)

(extra sigma’)

.

Inputs (1 hypothesis)

We also request that a derivation may not change the inputs of the state.
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5.2. Correctness theorem

Hypothesis HypNoWriteInput :

forall t s s’,

deriv t s s’

-> forall i, (inputs s i = inputs s’ i)

.

These hypotheses are not constraining except maybe for the determinism

of the semantics. It forbids random generators but we can still model pro-

grams with a bounded number k of calls to a random generator by allocating

k particular cells to this purpose before the execution of a program.

5.2 Correctness theorem

To compare the annotations and the non-interference property, we need

to formally define non-interference for a given language in Pretty-Big-Step

style as follow ( ).

We suppose we are given a language

Context {Syntax : AbstractSyntax}.

Context {Semantics : AbstractSemantics}.

and two functions to determine if inputs and outputs are public or not. An

input or output that is not public will be considered to be private.

Parameter isPublicInput : input -> bool.

Parameter isPublicOutput : output -> bool.

We can now define non-interference as in section 1.1.1

Definition NonInterferent (t : Term) : Prop :=

forall sigma1 sigma1’ sigma2 sigma2’,

deriv t sigma1 sigma1’

-> deriv t sigma2 sigma2’

-> initialState sigma1

-> initialState sigma2

-> (forall i, Bool.Is_true (isPublicInput i)

-> Envi sigma1 i = Envi sigma2 i)
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-> (forall o, Bool.Is_true (isPublicOutput o)

-> Envo sigma1’ o = Envo sigma2’ o)

.

We must specify that σ1 and σ2 are initial states, i.e. the variables are set

to the same initial value and that the outputs are empty.

The main theorem we prove is the following. It states that a term t is

non-interferent provided that for all annotated multiderivation of t starting with

empty dependencies and for all public output o the derivation ends with public

inputs in the dependency of o.

Theorem 2 (Fundamental Theorem ). ∀t,

If ∀µ, D�, V D�,

D∅, ∅, t ⇓ µ, D�, V D� =⇒ ∀o public, ∀i ∈ (D�o), i is public

Then t is non-interferent.

Depending on the situation, it may be more interesting to use the contra-

position :

Theorem 3 (Contraposition). ∀t,

If t is interferent

Then ∃µ, D�, V D� public such that

D∅, ∅, t ⇓ µ, D�, V D� ∧ ∃o public such that ∃i ∈ (D�o), i is private

The corresponding coq code is the following ( )

Theorem correctness :

forall t,

(* if *)

(forall mu D’ VD’ o,

(* for all multiderivation *)

annot_multi_deriv empty (fun xo => empty) t mu D’ VD’

(* and for all public output o *)

-> Bool.Is_true (isPublicOutput o)

(* all the dependencies of o are public *)

-> (forall i, mem i (D’ (O o))

-> Bool.Is_true(isPublicInput i))
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5.3. Proving an analyzer

(* then t is non-interferent *)

-> NonInterferent t

.

5.3 Proving an analyzer

Among the known methods to prove an analyzer, each one assumes the

program variables are given a security level (public or private in the traditional

case). One advantage of our technique is that we only need to give a secu-

rity level to the inputs and outputs a program may take, and not the internal

variables.

Given a program, proving the absence of information leakage with this

framework would require considering every annotated multiderivation with

exactly two pairs of states in the multistate and prove that there is no un-

wanted dependency. But proving interference requires only one annotated

multiderivation. This allows us to use the framework to prove analyses.

Let us consider an analysis ANI . It is a function returning false for at

least each interferent program and may have some false-negatives. But if the

function returns true, it means the analyzed program doubtlessly satisfies the

property of non-interference. In another words, if the program is interferent,

ANI must reject the program. The correctness property for the analyzer ANI

is the following :

Lemma 4. ∀P , if ANI(P ) then P is non-interferent.

Such proofs may be difficult to do by induction on the program since non-

interference is an hyperproperty that is not defined by induction. When as-

suming the hypothesis “P is interferent”, we only have information on what

happens before two executions (the states differ only on some private inputs)

and after (the resulting states differ on a public output). No information is gi-

ven on what happens in the program. Instead, if one uses our framework, it

is sufficient to prove :

Lemma 5. ∀P ,

If ANI(P )
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Then ∀µ, D�, V D�, i private

D∅, ∅, P ⇓ µ, D�, V D� =⇒ ∀o public, ∀i ∈ (D�o), i is public

As an example, figure 5.1 we consider the analyzer ( ) over our WHILE

language. This naive analyzer rejects every program that outputs a value on

a public output.

To prove the correctness of this analyzer, instead of using the notion of

non-interference, we prove the intermediate lemma ( ) of Figure 5.2 by in-

duction on the multiderivation. This lemma states that if the analyzer autho-

rizes the program and if a multiderivation starts with empty dependencies for

the public outputs, then the multiderivation ends with empty dependencies for

the public outputs.

This lemma allows to easily prove lemma 5 and then ensure the correct-

ness of the annotations.
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5.3. Proving an analyzer

Fixpoint NoPublicOutputAnalyzer (t : Term) :=

match t with

| Skip => true

| Seq s1 s2 => andb (NoPublicOutputAnalyzer s1)

(NoPublicOutputAnalyzer s2)

| Seq1 s2 => NoPublicOutputAnalyzer s2

| If e st sf => andb (NoPublicOutputAnalyzer e)

(andb (NoPublicOutputAnalyzer st)

(NoPublicOutputAnalyzer sf))

| If1 st sf => (andb (NoPublicOutputAnalyzer st)

(NoPublicOutputAnalyzer sf))

| While e s => andb (NoPublicOutputAnalyzer e)

(NoPublicOutputAnalyzer s)

| While1 e s => andb (NoPublicOutputAnalyzer e)

(NoPublicOutputAnalyzer s)

| While2 e s => andb (NoPublicOutputAnalyzer e)

(NoPublicOutputAnalyzer s)

| Assign x e => (NoPublicOutputAnalyzer e)

| Assign1 x => true

| Out o e => andb (negb (isPublicOutput o))

(NoPublicOutputAnalyzer e)

| Out1 o => negb (isPublicOutput o)

| Var x => true

| Cons v => true

| Plus e1 e2 => andb (NoPublicOutputAnalyzer e1)

(NoPublicOutputAnalyzer e2)

| Plus1 e2 => (NoPublicOutputAnalyzer e2)

| Plus2 => true

| In i => true

end.

FIGURE 5.1 – A non-interference analyzer
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Lemma invariant :

forall t CD D mu D’ VD’,

annot_multi_deriv CD D t mu D’ VD’

-> Is_true (NoPublicOutputAnalyzer t)

-> (forall o , Is_true (isPublicOutput o)

-> (D (O o) = \{}))

-> (forall o , Is_true (isPublicOutput o)

-> (D’ (O o) = \{}))

.

FIGURE 5.2 – Intermediate lemma



CONCLUSION

Summary

With the increasing use of software in our daily life and in particular with

sensitive data, managing the information flow and formally ensuring security

properties becomes necessary. In this thesis, we proposed a way to automa-

tically build a new semantics (the annotated multisemantics) when an initial

one is given in Pretty-Big-Step form. The annotated multisemantics is a for-

mal object collecting local information of many classic executions and mer-

ging this information to detect interferent programs. This new semantics is a

formally proved tool to prove non-interference analyzers.

Pretty-Big-Step

The construction of this new semantics is automatic, granted that the ori-

ginal one is in PBS style. Additionally to the inherent advantages of PBS,

it ensures a structure easy to formalize. The axioms of the PBS semantics

must come with some extra parameters ensuring a sort of non-interference

over them only. Then this PBS must also verify 12 hypotheses :

1. Determinism over the rules : given a term and a state, only one rule

applies ;

2. Determinism over the results : given a term, a state and a rule, only one

state can be the result ;

3. 6 hypotheses concerning the correctness of additional parameters of

the axioms ;

4. 3 hypotheses over the up and next functions ;

5. and one final hypothesis ensuring that inputs never change.

Annotated Multisemantics

From this Pretty-Big-Step semantics, we are then able to automatically
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build a multisemantics able to reason about many derivation at once and to

share information between two or more classic derivation at some program

point. Annotating this multiderivation allows us to track the dependencies du-

ring the considered executions and we proved that these annotations are

correct in relation to the non-interference property : if, among all the multide-

rivations of a program, none of them can exhibit a public output depending

on a private input then the program is non-interferent.

Proving an analyzer

Finally we formally proved the correctness of the annotations in relation to

the notion of non-interference.

Theorem 4 (Fundamental Theorem ). ∀t,

If ∀µ, D�, V D�,

D∅, ∅, t ⇓ µ, D�, V D� =⇒ ∀o public, ∀i ∈ (D�o), i is public

Then t is non-interferent.

The theorem allows to prove the correctness of analyzers by reasoning

only with multiderivations which are defined by induction, unlike

non-interference which is harder to manipulate.

Perspectives

This work can be continued in various directions. We already stated that it

is possible to improve the precision of the annotations. It would be interesting

to look at different hyperproperties and see if other annotated multisemantics

could also capture them. Finally, there is room for improvement in the path of

proving a analyzer for JavaScript.

Precision of the annotations

When writing the axioms rules in PBS, instead of the two sets V arRead and

InputRead, it may be interesting to give a set of input and a set of variable

for each variable and each output in V arWrite and OutputWrite. It should

improve the precision for axioms like Swap (see section 4.4) but this will not

remove value-dependent approximations.
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Toward completeness

Even if the problem of non-interference is undecidable, our multiseman-

tics can try to reach completeness since it only is a mathematical object for

proofs and not an executable semantics. To achieve completeness it seems

mandatory to investigate into the actual values stored or generated.

Different hyperproperty

Another direction to look into is the formalization of another hyperproperty,

especially ones requiring more than two executions to define, as nonmal-

leable information flow [15] for example.

Toward JavaScript

Finally, proving a JavaScript analyzer would be a huge step and it requires

at least to rewrite the axioms of the Pretty-Big-Step semantics of JavaScript

already existing, to adapt the memory model and to prove the 12 hypotheses.
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ANNEXE A

PBS RULES OF WHILE IN COQ

Inductive Concr_value : Type :=

| Num (z:Z)

| Bool (b:bool)

.

Inductive Concr_Term: Type :=

(*Statements*)

| Skip : Concr_Term

| Seq : Concr_Term -> Concr_Term -> Concr_Term

| Seq1 : Concr_Term -> Concr_Term

| If : Concr_Term -> Concr_Term -> Concr_Term -> Concr_Term

| If1 : Concr_Term -> Concr_Term -> Concr_Term

| While : Concr_Term -> Concr_Term -> Concr_Term

| While1 : Concr_Term -> Concr_Term -> Concr_Term

| While2 : Concr_Term -> Concr_Term -> Concr_Term

| Assign : variable -> Concr_Term -> Concr_Term

| Assign1 : variable -> Concr_Term

| Out : output -> Concr_Term -> Concr_Term

| Out1 : output -> Concr_Term

(*Expressions*)

| Var : variable -> Concr_Term

| Cons : Concr_value -> Concr_Term

| Plus : Concr_Term -> Concr_Term -> Concr_Term

| Plus1 : Concr_Term -> Concr_Term

| Plus2 : Concr_Term

| In : input -> Concr_Term
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.

Definition Concr_Rules (t:Concr_Term): list rule :=

match t with

(*Statements*)

| Skip =>

(Ax Skip

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

empty empty empty empty

false)

:: nil

| Seq s1 s2 =>

(R2 (Seq s1 s2)

(s1)

(Seq1 s2)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

(fun sc res => match extra sc, extra res with

| nil, nil => Some res

| _, _ => None end))

:: nil

| Seq1 s2 =>

(R1 (Seq1 s2)

(s2)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end))

:: nil
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| While e s =>

(R2 (While e s)

(e)

(While1 e s)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

(fun sc res => match extra sc, extra res with

| nil, b :: nil => Some res

| _,_ => None end))

:: nil

| While1 e s =>

(R2 (While1 e s)

(s)

(While2 e s)

(fun sc => (match extra sc with

| (Bool true) :: nil =>

Some (update_extra sc nil)

| _ => None end))

(fun sc res => match extra sc, extra res with

| (Bool true) :: nil, nil =>

Some res

| _,_ => None end))

:: (Ax (While1 e s)

(fun sc => (match extra sc with

| (Bool false) :: nil =>

Some (update_extra sc nil)

| _ => None end))

empty empty empty empty

false)

:: nil

| While2 e s =>
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(R1 (While2 e s)

(While e s)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end))

:: nil

| Assign x e =>

(R2 (Assign x e)

(e)

(Assign1 x)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

(fun sc res => match extra sc, extra res with

| nil, v :: nil => Some res

| _,_ => None end))

:: nil

| Assign1 x =>

(Ax (Assign1 x)

(fun sc => match extra sc with

| v::nil =>

Some (update_extra

(update_var sc x v)

nil)

| _ => None end)

empty empty (singleton x) empty

false)

:: nil

| Out1 o =>

(Ax (Out1 o)

(fun sc => match extra sc with
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| v::nil =>

Some (update_extra

(update_output sc o v)

nil)

| _ => None end)

empty empty empty (singleton o)

false)

:: nil

| Out o e=>

(R2 (Out o e)

(e)

(Out1 o)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

(fun sc res => match extra sc, extra res with

| nil, v :: nil => Some res

| _,_ => None end))

:: nil

| If e s1 s2 =>

(R2 (If e s1 s2)

(e)

(If1 s1 s2)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

(fun sc res => match extra sc, extra res with

| nil, (Bool _) :: nil =>

Some res

| _,_ => None end))

:: nil
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| If1 s1 s2 =>

(R1 (If1 s1 s2)

(s1)

(fun sc => (match extra sc with

| (Bool true) :: nil =>

Some (update_extra sc nil)

| _ => None end)))

:: (R1 (If1 s1 s2)

(s2)

(fun sc => (match extra sc with

| (Bool false) :: nil =>

Some (update_extra sc nil)

| _ => None end)))

:: nil

(*Expressions*)

| Cons v =>

(Ax (Cons v)

(fun sc => match extra sc with

| nil =>

Some (update_extra sc (v::nil))

| _ => None end)

empty empty empty empty

true)

:: nil

| Var x =>

(Ax (Var x)

(fun sc => match extra sc, Envx sc x with

| nil, Some v =>

Some (update_extra sc (v :: nil))

| _,_ => None end)

empty (singleton x) empty empty

true)
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:: nil

| Plus e1 e2 =>

(R2 (Plus e1 e2)

(e1)

(Plus1 e2)

(fun sc => match extra sc with

| nil => Some sc

| _ => None end)

(fun sc res => match extra sc, extra res with

| nil, (Num _)::nil => Some res

| _,_ => None end))

:: nil

| Plus1 e2 =>

(R2 (Plus1 e2)

(e2)

(Plus2)

(fun sc => match extra sc with

| (Num _)::nil =>

Some (update_extra sc nil)

| _ => None end)

(fun sc res => match extra sc, extra res with

| (Num n1)::nil, (Num n2)::nil =>

Some (update_extra res

[(Num n1);(Num n2)])

| _,_ => None end))

:: nil

| Plus2 =>

(Ax (Plus2)

(fun sc => match extra sc with

| (Num n1) :: (Num n2) :: nil =>

Some (update_extra sc
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[Num (n1+n2)])

| _ => None end)

empty empty empty empty

true)

:: nil

| In i =>

(Ax (In i)

(fun sc => match extra sc with

| nil =>

Some (update_extra sc [Envi sc i])

| _ => None end)

(singleton i) empty empty empty

true)

:: nil

end.
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Titre : Certification d’Analyses Non Locales avec

une Sémantique Annotée

Mot clés : multisémantique annotée ; non-interférence ; certification

Resumé : La quantité croissante

de données traitées par les logiciels

rend légitime le besoin de garanties

de confidentialité. La propriété de non-

interférence assure qu’un programme ne

fuite pas de données privées vers une

sortie publique.

Nous proposons une méthode pour

construire, une multisémantique anno-

tée capable de capturer la propriété de

non-interférence pour aider à prouver for-

mellement des analyseurs. Nous fournis-

sons un théorème prouvé indiquant que

les annotations capturent correctement

la non-interférence.

Le théorème de correction permet de

prouver un analyseur sans s’appuyer sur

la définition de non-interférence mais sur

les annotations.

Title : Non Local Analyses Certification With an

Annotated Semantics

Keywords : annotated multisemantics ; non-interference ; certification

Abstract : Because of the increasing

quantity of data processed by software,

the need for privacy guarantees is legi-

timate. The property of non-interference

ensures that a program does not leak pri-

vate data to a public output.

We propose a framework to build an

annotated multisemantics able to capture

the non-interference property to help for-

mally prove analysers. The framework

comes with a proved theorem stating that

the annotations correctly capture non-

interference.

The correctness theorem allows to

prove an analyser without relying on the

definition of non-interference but on the

annotations.


