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Abstract
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Formal Fault Injection Vulnerability Detection in Binaries - A Software Process

and Hardware Validation

by Nisrine JAFRI

Fault injection is a well known method to test the robustness and security vulner-
abilities of systems. Detecting fault injection vulnerabilities has been approached
with a variety of different but limited methods. Software-based and hardware-based
approaches have both been used to detect fault injection vulnerabilities. Software-
based approaches can provide broad and rapid coverage, but may not correlate with
genuine hardware vulnerabilities. Hardware-based approaches are indisputable in
their results, but rely upon expensive expert knowledge, manual testing, and can
not confirm what fault model represent the created effect.

First, this thesis focuses on the software-based approach and proposes a general pro-
cess that uses model checking to detect fault injection vulnerabilities in binaries. The
efficacy and scalability of this process is demonstrated by detecting vulnerabilities
in different cryptographic real-world implementations.

Then, this thesis bridges software-based and hardware-based fault injection vulnera-
bility detection by contrasting results of the two approaches. This demonstrates that:
not all software-based vulnerabilities can be reproduced in hardware; prior conjec-
tures on the fault model for electromagnetic pulse attacks may not be accurate; and
that there is a relationship between software-based and hardware-based approaches.
Further, combining both software-based and hardware-based approaches can yield
a vastly more accurate and efficient approach to detect genuine fault injection vul-
nerabilities.

Keywords: Fault Injection, Vulnerability Detection, Model Checking, Formal Meth-
ods
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1

Résumé en français

L’injection de faute est une technique utilisée pour attaquer les systèmes mais aussi
pour évaluer leur robustesse. Le but d’une injection de faute est d’induire un effet
spécifique au niveau du matériel créant une erreur exploitable au niveau du logiciel.

Actuellement de plus en plus de systèmes opèrent dans des milieux hostiles ce qui
les rend vulnérables à toutes sortes d’attaques, d’où la nécessité d’évaluer leur ro-
bustesse face aux attaques par injection de fautes.

L’objectif de cette thèse est d’étudier l’effet d’une telle faute matérielle sur le logi-
ciel, et voir si un tel effet peut créer une vulnérabilité au niveau logiciel. En premier
lieu nos recherches visaient à explorer les différentes approches logicielles existantes
qui étaient limitées à certains types de vulnérabilités et de modèles de faute. La pre-
mière contribution de cette thèse est donc une approche automatisée qui utilise des
techniques de vérification formelle pour la détection de vulnérabilité intitulé FIVD
(Fault Injection Vulnerability Detection process). En outre la vérification est faite au
niveau binaire ce qui représente le mieux la majorité des attaques et qui ne limite
pas le type de modèle de faute utilisé pour la simulation.

Binaire

mutants
Résultats
da la Vé-
rification

Résultats
da la

Validation

PropriétéInjection de Faute

Validé

Différences ? = Vulnérabilité

Vérifié

FIGURE 1 – Première Contribution : Le processus FIVD

L’efficacité de cette approche a été montrée en l’appliquant à des algorithmes de
cryptographie (PRESENT, SPECK) implémentés dans les systèmes embarqués. Les
résultats des expériences ont montré qu’en utilisant l’approche logicielle, il était pos-
sible de détecter différents types de vulnérabilités, des vulnérabilités déjà connues
dans la littérature mais aussi des vulnérabilités nouvelles.

En deuxième lieu, et vu que l’approche logicielle n’est pas suffisante pour confirmer
que la vulnérabilité détectée correspond à une vulnérabilité réelle qui peut être créée
physiquement, il a été nécessaire d’explorer aussi l’approche physique. La deuxième
contribution de cette thèse est donc la combinaison des deux approches (logicielles
et physiques) afin d’explorer de nouvelles méthodes de détection de vulnérabilité
par injection de fautes.

Les expériences réalisées ont montré que les résultats des deux approches coïncident
mais ne sont pas totalement identiques. L’approche physique permet la détection de
vulnérabilités réelles mais c’est une approche très couteuse qui nécessite beaucoup
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Fichier
Binaire

EMPProcessus FIVD

Résultats
Matériels
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Approche logicielle Approche matérielle

Comparer

FIGURE 2 – Seconde Contribution : la combinaison de l’approche lo-
gicielle et physique

d’expertise et de temps. L’approche logicielle est moins couteuse et nécessite moins
d’efforts et de temps mais les résultats de l’approche logicielle n’étaient pas tous va-
lidés par les expériences physiques. Afin de limiter le coût, le temps, et l’effort nous
proposons la combinaison des deux approches de la manière suivante. Utiliser l’ap-
proche logicielle pour détecter les endroits les plus susceptibles d’être vulnérables
dans le système à vérifier, et après utiliser l’approche physique pour tester directe-
ment ces endroits vulnérables sans avoir à analyser tout le système.
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Introduction and Background
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Chapter 1

Introduction

This chapter gives an introduction to this thesis. It first presents the context and
motivation behind the subject of this thesis. Next, it shows the contributions of this
thesis. Then, it lists the papers published during this thesis. Finally, it describes how
the rest of this thesis is organised.

Sommaire

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Motivating Example: Verify PIN Example . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Context and Motivation

Embedded systems are becoming "unavoidable" in many domains, e.g., health care,
aerospace, transportation, and energy, where they manipulate private and sensitive
data, and perform mission critical tasks. In the health care domain, the manipu-
lated data is vital to a patient’s life, any flaw in the system may cause death. In
the aerospace domain, the systems must be designed to operate in space, where the
temperature and environment can be fatal to system hardware. In the transportation
domain, a flaw in a flight system can cause the death of hundreds of people.

The majority of embedded systems operate in hostile environments, where an em-
bedded system’s hardware may be disrupted. Embedded system disturbance can be
unintentional (e.g. background radiation, power interruption [12, 90]) or intentional
(e.g. induced electromagnetic pulse (EMP) [41, 96], rowhammer [113, 127, 150]).

Unintentional disturbance is generally attributed to the environment [49, 90]. An ex-
ample of this is one of the first observed fault injections where radioactive elements
present in packing materials caused bits to flip in chips [12].

Intentional disturbance occurs when the injection is done by an attacker with the in-
tention of changing program execution [96, 113, 127, 150]. For example fault injection
attacks performed on cryptographic algorithms (e.g. RSA [35], AES [123], PRESENT
[144]) where the fault is introduced to reveal information that helps in computing
the secret key.
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Disturbing the hardware component of an embedded system can have an effect on
the embedded software functionalities. This may impact the integrity and confi-
dentiality of the system which will have consequences on the security, safety and
privacy of the users behind.

Hardware disturbance is seen as a fault that is injected into the hardware which may
lead to a modification of the program execution. Since the software is implemented
in the hardware, any modification (fault) at the hardware level can lead to an ex-
ploitable error at the software level. In this thesis, fault injection is considered to be
any perturbation at the hardware level which may modify normal execution of the
embedded software.

Since embedded systems are essential and irreplaceable in many domains, it is im-
portant to ensure their dependability under fault injection. The concept of depend-

able computing [7] was used during the 1950’s in the first generation of electronic
computers. After discovering the first fault injections on hardware in 1954 [62], re-
search was directed to have dependable computing and fault tolerance systems.

Later, laser was used as one of the first techniques to simulate the injection of faults
and study the effect that fault injection may have at the software behaviour [61].
After fault injection was considered to be used as a technique to assess the robustness
of systems. Since then new software and hardware fault injection approaches were
proposed [47, 80, 81, 107, 108, 152]. The usage of fault injection techniques became
an important step in the validation process of developed systems [5].

Fault injection is used as a technique to simulate the effect of hardware fault that can
be induced due to the environment or by a malicious attacker. But at the same time
fault injection is an approach to detect vulnerabilities created by injected faults in the
hardware. Fault injection vulnerabilities are any vulnerability at the software level
which is triggered by the hardware level fault injection. Detecting fault injection vul-
nerabilities is done using fault injection approach combined with other techniques,
such as test or verification.

There are two main approaches to the detection of fault injection vulnerabilities:
software-based and hardware-based approaches. Software-based approaches sim-
ulate fault injection on some aspect of the program and test/verify whether or not
the injected fault yields a vulnerability in the program [31, 55, 107, 110]. Hardware-
based approaches use direct experimentation on the hardware and program being
executed inside, using hardware-based approaches vulnerabilities are observed by
direct experimentation [10, 14, 114, 130].

Both approaches have advantages and disadvantages.

The advantages of software-based approaches are in cost, automation, and breadth.
Software-based simulations do not require expensive or dedicated hardware and
can be run on most computing devices easily [108]. Also with various software tools
being developed and matured, compared to hardware experiments, it is easier to
plug together a toolchain to do fault injection vulnerability detection [54, 55]. Such
a toolchain can then be automated to detect fault injection vulnerabilities without
direct oversight or intervention. Furthermore, simulations can cover a wide variety
of fault models that represent different kinds of attacks and can therefore test a broad
range of attacks with a single system. Combining all of the above allows for an easy
automated process that can test a program for fault injection vulnerabilities against
a wide variety of attack models, and with excellent coverage of potential attacks.
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The disadvantages of software-based approaches are largely in their implementa-
tions or in the confidence in the feasibility of their results. Many software-based
approaches have shown positive results, but are often limited by the tools and imple-
mentation details, with limitations in architecture, scope, etc. However, the biggest
weakness is the lack of confidence in the feasibility of their results: software-based
approaches have not been proven to map to genuine vulnerabilities in practice.

The advantages of hardware-based approaches are in the quality of the results. A
fault injection that has been demonstrated in practice with hardware cannot be de-
nied to be genuine.

The disadvantages of hardware-based approaches are the cost, automation, and
breadth. To do hardware-based fault injection vulnerability detection requires spe-
cialised hardware and expertise to conduct the experiments. This is compounded
when multiple kinds of attacks are to be considered; since different equipment is
needed to perform different kinds of fault injection (e.g. EMP, laser, power inter-
rupt). Further, hardware-based approaches tend to be difficult to automate, since
the experiments must be done with care and supervision, and also the result can
damage or interrupt the hardware in a manner that breaks the automation. Lastly,
hardware-based approaches tend to have limited breadth of application; this is due
to requiring many different pieces of hardware to test different architectures, attacks,
etc. and also due to the time and cost to test large numbers of locations for fault in-
jection vulnerability.

1.2 Motivating Example: Verify PIN Example

This section presents a motivating example that is used to illustrate how a single
bit flip can change a normal behaviour of a program and create a vulnerability. The
example is of a program that checks a PIN supplied by a user when authenticating
to use a credit card. This example has been widely used in the literature [45, 117].

Consider the code in Figure 1.1 that checks the value of a candidate PIN entered
by a user when authenticating to use a credit card. Prior to this code fragment the
true PIN is assumed to be defined and initialised with the true PIN value. Similarly
the candidate PIN PINCandidate is defined and initialised with a value input by the
user. Further, both PINs are checked to be the same length and this length is defined
to be their size PINSize (in the program the size of the PIN is set to 4, PINSize = 4).

The code fragment in Figure 1.1 starts by setting the variables grantAccess and
badValue to false, and initialising the variable i to 0. Which means that initially
the access to the credit card functionalities is not given (grantAccess = false), and
it is assumed that the two PINS values are equal (badValue = false).

Then, to check if the values of the two PINS are equal a while loop is used (line 4
in Figure 1.1). The loop iterate through the values of PINCandidate and PINSize,
checks for each i iteration if the two values are equal (line 5 in Figure 1.1). If the
iteration values of the two PINS are equal the code loops to the following one, if not
badValue is set to true (line 6 in Figure 1.1). When all the values of the two PINS
are compared, the code checks the value of the variable badValue. If badValue ==

false this means that the PINCandidate and PINTrue are the same, so the access can
be granted (grantAccess = true), if not the access will remain denied (grantAccess
= false).
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1bool grantAccess = false;

2bool badValue = false;

3int i = 0;

4while (i < PINSize) {

5if (PINCandidate[i] != PINTrue[i]) {

6badValue = true;

7}

8i++;

9}

10if (badValue == false) {

11grantAccess = true;

12}

FIGURE 1.1 – Motivating Example: VerifyPIN Source Code

Notice, that in line three in Figure 1.1, by changing a single bit, an attacker could
change the value of i from 0 to 4. (This succeeds since 0 = 0...0000 in binary, and
changing the sixth bit from 0 to 1 yields 4 = 0...0100.) Observe that this would
bypass the loop since i < PINSize (i.e. 4 < 4) would not hold, and therefore the
checking of any digits of the candidate PIN. Thus, the example is vulnerable to this
kind of 1-bit fault injection attack (as well as several other attacks that will be intro-
duced later, see section 5.1).

The above paragraph describes a fault that can be injected into the executable binary
that would allow the attacker to gain access even without the correct PIN. This re-
search proposes and explains a process that can be used to detect such fault injection
vulnerability.

1.3 Contributions

To detect fault injection vulnerabilities, this thesis combined three different domains:
fault injection, formal methods, and binary lifting. This section presents the key con-
tributions of this thesis. The first contribution is a general automated formal process
that allows the detection of fault injection vulnerabilities in binaries. The second
contribution is the exploration of correspondence between software and hardware
approach in detecting fault injection vulnerabilities.

The rest of this section details the two contributions.

Automated Formal Process For Fault Injection Vulnerability detection in
binaries

Software-based approach is cheaper, faster, and offers higher controllability over the
injected fault. Despite software-based approach disadvantages, a lot of researchers
are interested in exploring the simulation result using software-based approach [139,
141]. This explains the existence of a large number of software-based simulation
tools [31, 46, 47, 65, 107, 118, 119, 128].

Similarly, formal methods and in particular model checking, are becoming increas-
ingly popular for verifying the correct behaviour of systems. The majority of exist-
ing simulation tools use test oracles to check wether or not the fault injection created
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vulnerability. Few combine formal methods with fault injection to detect fault injec-
tion vulnerabilities. Associating formal methods to fault injection technique will

allow formal proofs of the detected vulnerabilities.

Despite all the existing software-based approaches to detect fault injection vulner-
abilities in the literature [31, 46, 47, 65, 107, 118, 119, 128], there still no general
approach developed for a broad use. The majority of existing works were realised in
the scope of specific projects. No existing approach was proposed to be architecture
independent. No existing approach uses model checking to detect vulnerabilities,
related to the behaviour of the system, after simulating the fault injection.

The first contribution of this thesis is to improve the existing state of the art by
proposing a general process that allows automated formal detection of fault injection
vulnerabilities in binaries.

The motivation for an automated process is to facilitate the detection of fault in-
jection vulnerabilities. An automated process will allow the evaluating of the ro-
bustness of codes during the whole development process. This will produce robust
program (systems) against fault injection, with low cost. The correctness or robust-
ness of systems at the last stages of development has a higher cost, being able to
detect vulnerabilities at earlier stages saves a lot of money and time [7, 44].

Combining formal methods with fault injection detection ensures the rigour of the
analysis and gives a guarantee to the detected vulnerabilities. Formally proving the
presence of vulnerability is sufficient to claim the existence of software vulnerability.

Simulating fault injection at the binary level allows the simulation of faults which
are representative of fault that can occur in physical fault injection. Contrary to
simulating fault injection at the source code for example, simulation at the binary
level allows the simulation of bit flips, this allows a fine granularity to the possible
faults that can be injected. Working at the binary level gives a more realistic aspect
to the detected vulnerabilities.

In addition to the proposed process, an implementation of this one that allows easy
automation is given using existing open source tools and tools developed during
this thesis.

Two tools were developed during this thesis. The SIMFI tool, a fault injection simu-
lator tool, that allows the simulation of faults at the binary level based on a chosen
fault model and generates the corresponding mutants. The ARML tool, an ARM
to RML translator, that allows the translation of ARM assembly to Reactive Mod-
elling Language (RML) which allows the formal verification of binary files. The two
developed tools contributed in advancing the state of the art of available tools and
pushing the bounds of some existing limitations.

A case study demonstrates the efficacy of using the process on cryptographic algo-
rithms (PRESENT and SPECK), used widely in embedded systems. The conducted
experiments detected known vulnerabilities on the two cryptographic algorithms,
but also pointed out new ones that can be severe to the security of the system.

Combining Software-based and Hardware-based fault injection approaches

Combining fault injection and formal methods using software-based approach is not
sufficient to claim that the vulnerability is real. Hardware experiments are needed to
validate the existence of vulnerability in reality. Hardware experiments compared
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FIGURE 1.2 – FIVD process Figure

to simulation experiments are expensive, time consuming and requires a lot of ex-
pertise.

The second contribution of this thesis is proposing an approach that combines the
software and hardware based approach to detect fault injection vulnerabilities in an
efficient way. To our knowledge, no research has been done trying to bridge the
software and hardware based approach to detect fault injection vulnerabilities the
way it is done in this thesis.

Using both the software and hardware based approaches showed that:

— Software-based approaches detect genuine fault injection vulnerabilities.

— Software-based approaches yield false-positive results.

— Software-based approaches did not yield false-negative results.

— Hardware-based EMP approaches do not have a simple fault model.

— Combining software and hardware based approaches yields a vastly more ef-
ficient method to detect genuine fault injection vulnerabilities.

Binary file

EMPFIVD Process

Hardware
Results

Software
Results

Software-Based approach Hardware-Based approach

Compare

FIGURE 1.3 – Bridging Software and Hardware based approches

1.4 Publications

This section presents the list of papers published during this thesis. For each paper
an abstract is given. The list of papers is classified in two categories: papers that
presents the same results as in this thesis and thus related to the work presented
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here, and a paper that represents collaboration that makes use of some contribution
of this thesis but which are not related to the work present in this thesis. Note that
the papers are not presented in the order of publication.

Papers related to this thesis

In [69] a formal approach that detects fault injection vulnerability was presented.
The result presented in this paper was a proof of concept. It explores a first try to
combine existing tools to implement the automated formal Fault Injection Vulnera-
bility Detection (FIVD) process. The proposed implementation of the FIVD process
was tested on a small example (the verify PIN example).

[55] presents the automated formal process for fault injection vulnerability detection.
An implementation of the process is presented using existing tools. The feasibility of
the process and its implementation is demonstrated by detecting vulnerabilities in
the PRESENT cryptographic algorithm binary. The content of this paper is presented
in Chapter 4 in this thesis.

[54] presents an extension of the automated formal process for fault injection vulner-
ability detection presented in [55]. In [54] the FIVD process was improved to make it
scalable to real-world implementation. The scalability is demonstrated by detecting
vulnerabilities in different cryptographic implementations (PRESENT and SPECK).
Chapter 5 presents in more details the content of this paper.

[53] presents a new methodology of bridging the software-based and hardware-
based approach for fault injection simulation. This paper presents an extension to
the software-based process presented in [54, 55]. The implementation of the pro-
cess in this paper proves that the process is architecture independent. The bridging
methodology is applied of two different case studies. The experiment results shows
that bridging the software-based and hardware-based approaches can save time, ef-
fort, and money, and get more accurate results. In this thesis Part II presents in
details the combination of software-based and hardware-based approaches.

[69] gives an overview of the fault injection vulnerability detection techniques and
tools. This paper can be considered as a survey that present the existing work and
highlight the contributions of this thesis.

Paper not related to this thesis

An additional publication not completely related to the subject of this thesis were
also published. This paper was a collaboration with another PhD student.

In [6] The objective was to verify the Dynamic Software Updating (DSU) system.
DSU system consists in updating running programs without any downtime. This
is needed specifically for critical applications that must run continuously. In this
work model checking was used as a technique to verify if the system satisfies a list
of properties (Deadlock, Safety, Liveness properties).
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1.5 Organisation of the Thesis

This thesis is organised in two parts. Part I focuses on the software-based fault in-
jection approach. Part II explores the potential of bridging the software-based and
hardware-based fault injection approaches.

Prior to these areas (parts) is the background in Chapter 2. Chapter 2 introduces
mains concepts needed to the understanding of this thesis, concept like fault injec-
tion, model checking, and binary translation.

Part I consists of 4 chapters. Chapter 3 introduces Part I of this thesis. Related
works are presented to give an overview of existing works and how it is compared
to the work presented in Part I. Cryptographic algorithms (PRESENT and SPECK)
are presented in details in this chapter.

Chapter 4 presents the automated formal process for fault injection vulnerability de-
tection FIVD and its extension adapted for larger programs. This chapter presents an
implementation of the FIVD process and its extension using existing and developed
tools.

Chapter 5 presents the experimental results of the FIVD process. First this chapter
shows the feasibility of the FIVD process and its implementation on the Verify Pin
motivating example. Then the scalability of the process and its implementation is
demonstrated on the two cryptographic algorithms presented in chapter 3.

Chapter 6 gives details on the experimental results and implementation for the PRESENT
Algorithm, it is complementary to Chapter 5.

Chapter 7 concludes Part I of this thesis and discusses some of the limitations of the
FIVD process and the tools used in the implementation.

Part II consists of 4 chapters. Chapter 8 introduces Part I of this thesis. Related works
that explore the combination of the software-based and hardware-based approaches
are presented, to give an overview of existing works and how they compare to the
work presented in Part II. Two case studies (Control Flow Hijacking and Backdoor)
used in the experiments are shown as well.

Chapter 9 details the software-based and hardware-based processes used to con-
duct the experiments, and their implementation respectively. The software-based
process used here is the FIVD process presented in the previous part with some im-
provement. The software-based process implementation uses ARML tool that was
developed during this thesis. The hardware-based process is based on general pro-
cess. The hardware-based process implementation uses the electromagnetic pulse to
inject physical faults.

Chapter 10 presents the experimental results of applying the software-based and
hardware-based approaches on the case studies. For each case study the results of
the two approaches are shown separately and a comparaison of the two is made
after.

Chapter 11 gives details on the experimental results and implementation for the
control flow hijacking case study, it is complementary to Chapter 10.

Chapter 12 concludes Part II of this thesis and discusses some of the limitations of
combining the two approaches (the software-based and hardware-based).



1.5. Organisation of the Thesis 13

Chapter 13 provides a conclusion for both parts and a conclusion for a thesis as
whole. It also presents a list of potential future work.
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Chapter 2

Background

This chapter recalls three main key concepts needed in the understanding of this
thesis. First, fault injection is presented in detail from the different type of faults to
the existing fault injection approaches used to inject faults. Next, formal verifica-
tion is introduced through different existing techniques, the focus is then on model
checking techniques, since it is used in this thesis. Finally, working on binaries is
presented through two perspectives, model checking binary and translating binary
to an intermediate representation.
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2.1 Fault Injection

Fault Types

Fault is defined in the ISO 10303-226 document [111] as: "an abnormal condition
or defect at the component, equipment, or sub-system level which may lead to a
failure".

A fault can be e.g., an accidental condition, a defect, or an unintentional short-circuit.

Accidental condition that occurs in the hardware can lead to a failure in performing
a required function. An example is a fault that occurs due to deterioration or wear
of hardware materials. This may concerns all products, it was shown that at a stage
in its lifetime the failure rate of a product increases (bathtub curve) [147].

A defect in the construction process can cause a reproducible malfunction, which
will occur consistently under the same conditions. This is usually a result of an error
in the specification of the equipment and therefore affects all examples of that type.
An example is the recent fundamental design flaw in Intel’s processor chips [34],
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that forced the redesign of the Linux and Windows kernels to bypass the chip-level
security bug.

In power systems, fault can be an unintentional short-circuit between two adjacent
interconnects or between energised conductor and ground. This kind of fault con-
cerns all powered devices with an electronic circuit.

The focus in this thesis is not to a specific fault. The objective is to detect all kinds of
faults.

Fault Type

Accidental Defect Unintentional

FIGURE 2.1 – Fault Types

Fault Causes

Fault can be caused due to problems occurring during the construction process of
the hardware, or due to external factors [44, 72].

First, fault that occurs during the construction process. During the construction pro-
cess numerous problems can occur either at the specification, implementation, or
fabrication stages, which may lead to a fault.

Faults due to incorrect specification are called specification faults, this happen when
the specification requirements ignore aspects of the environment where the system
operates. It is possible that the systems with specification faults operates correctly
most of the time, but they could be instances of incorrect performance. System-
on-Chip (SoC) [115] are the common example for the specification faults, since the
specification considered by the SoC vendors do not always contain all the details
that SoC users need [124].

Faults due to incorrect implementation are called design fault, this happen when the
system implementation does not appropriately implement the specification. These
include poor component selection, logical mistakes, poor synchronisation, or bugs in
the software. An example of design fault is the Ariane 5 rocket accident [87]. Ariane
5 is a European heavy-lift launch vehicle that exploded 37 seconds after lift-off on
June 4,1996. The explosion was due to a software fault that resulted from converting
a 64-bit floating point number to a 16-bit integer.

Faults due to fabrication defects or component defects were the primary reason for
applying fault tolerance technique to early computing systems [44]. Fabrication de-
fects are generally due to the chemical and physical reactions that the used material
can have during the processing operation of fabrication [146]. But nowadays the de-
velopment of hardware components has become more reliable and the percentage
of fabrication defects faults was reduced [44].

Then faults that can be caused by external factors, such as environmental distur-
bances or human action, either accidental or deliberate.



2.1. Fault Injection 17

Environmental disturbances arise from outside the physical system boundary. Such
environments include aviation, military, space, etc. where atmospheric radiation,
EMP, cosmic rays etc. may induce faults. An example is the Mars Pathfinder space-
craft where the mission was jeopardised by a concurrent software bug in the lander,
the software bug being caused by a hardware glitch [48].

When the fault is due to an action that a person did, it can be accidental or deliberate.
Accidental, when exposing your credit card to high temperature by accident, which
may cause a disfunction in the card functionalities. Deliberate, when a person will
expose the target system to electromagnetic radiation with the objective to bypass a
security check for example.

In this thesis the focus is to detect the change of behaviour at the software level after
a fault occurs. Note that this thesis does not focus on a specific fault cause.

Fault Causes
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Factors

Specification Implementation Fabrication
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Accidental Deliberate

FIGURE 2.2 – Fault Causes

Academic Use

This section investigates fault and their use in academic research. The effect of
faults on electronic systems was discovered accidentally in 1954, when radioactive
elements present in packing materials caused bits to flip in chips [12]. In 1979 re-
searchers were interested in studying the effect of cosmic rays on computer memory
and see what impact they can have on the correct functionalities of chips [154]. Re-
search showed that fault can have an impact on the correct behaviour of systems
[5, 43, 72, 75, 154]. Fault injection was developed as a technique to test the fault
tolerance of systems using faults. 1

Injecting faults in systems has two main objectives: system validation and system
evaluation [32]. In the first case, the objective is to test the fault tolerance mecha-
nism designed to protect a system in presence of faults, and see if the implemented
solutions are handling the faults they were designed to handle. In the second case,
the goal is to evaluate system performance under fault, and see how it will behave
after a fault injection.

1. In the literature four different terminologies exist for fault injection: fault insertion, fault injec-
tion, fault attack, fault injection attack. For the rest of this thesis the wording choice is fault injection.
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Fault injection is a technique used to test and evaluate systems under fault [139].
In order to have reliable systems it is important to test them under fault and see
their reaction. Fault injection was used first in the validation procedure of systems.
Injecting faults physically in the hardware or simulating faults on the systems under
tests yields three main benefits [32].

First, understanding the effects of real faults. Fault injection allows the reproduction
of what may happen to the system in its real environment [61, 81]. Experiments are
usually done in a controllable experimental environment, which allows an easiness
of understanding the effect a real fault can produce.

Second, feedback for system correction or enhancement. Fault injection was first
used to test the system dependability, and it showed its efficiency in evaluating sys-
tems and prove their correctness and dependability [5, 19, 32].

Third, forecast of expected system behaviour. Fault injection can also be used to
predict the effect that faults will have on the system’s behaviour. This can reveal the
weaknesses in systems and help improving the system security [19, 59, 71, 117].

Faults lead a system to error and error can lead to system failure. "Failure is devi-
ation of the component or system from its expected delivery, service or result that
is due or expected" [139]. System failure can be classified to failure that will lead
system to crash or disfunction, or failure that will lead system to perform unsecured
operation and disclose secured informations. Failure can lead to system vulnerabil-
ity.

A vulnerability is defined in the National Institute of Standards and Technology
(NIST) Special Publication 800-30 [133] as a flaw or weakness in system security
procedures, design, implementation, or internal controls that could be exercised (ac-
cidentally triggered or intentionally exploited) and result in a security breach or a
violation of the system’s security policy.

In this thesis, fault injection vulnerability is a fault injection that yields a change to
the program execution that is useful from the perspective of an attacker. This is in
contrast to other effects of fault injection that are not useful, such as simply crashing
a program, causing an infinite loop, or changing a value that is subsequently over-
written. Observe that the definition of a vulnerability is not necessarily trivial or
stable, the above example of a program crash may be a vulnerability if the attacker
desires to achieve a denial of service attack.

To test/verify systems using fault injection, faults are injected either at the hardware
level (logical or electrical faults) or at the software level (code or data corruption)
[67]. Fault injection techniques can be divided into two approaches: software-based
fault injection approach, and hardware-based fault injection approach.

2.1.1 Software-Based Fault Injection Approaches

This section presents the different classification of the software-based approaches,
and investigates their advantages and disadvantages.

Software-based approaches consist of reproducing at software level the effect that
would have been produced by injecting a fault at the hardware level.

From a first perspective, the software-based approach can be classified in two sub
approaches: the software-implemented approach and the simulation-based approach.
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In this thesis, the simulation-based approach is used for the software-based ap-

proach.

The software-implemented approach consists in simulating the fault injection at
software level while it is running on the target hardware. It consists of influencing
the software application by altering its data or timing using an embedded fault in-
jection simulator software while the target application is running on the target hard-
ware. The software-implemented fault injection approach provides a cheap means
to modify the software/hardware state of the target application while it is running
on the target hardware without using any physical material. One major drawback
of the software-implemented approach is the inability to inject faults to locations not
accessible to software. Since only software is used to simulate the fault at the target
application, the simulated faults are limited to locations where software can access.

In the simulation-based approach, the whole system behaviour is modelled and
imitated using simulation. The simulation-based approach consists in taking the
program and using software to build a model of its behaviour [80]. The faults may
be injected into the program before or after the model is constructed, but the model
is then tested for specific behaviours or properties and the results used to reason
about the behaviour of the program. Simulation-based approach offers perfect con-
trollability over the target system, and is becoming more popular as formal methods
can be used on the model that allow for reasoning about all possible outcomes, and
verifying when properties of the model may hold. Note that during the conceptual
and design phase the simulation-based approach is useful for evaluating system’s
dependability [67].

From another perspective software fault injection attacks can also be classified into
two kinds of fault injection attacks [67], run time and compile time.

Run time fault injection attacks are those that occur only while the code being at-
tacked is being executed. Run time fault injection attack consists in injecting the
fault while the program is executed. Compared to the classification presented be-
fore, run time fault injection will be possible only at the software-implemented ap-
proach. Compile time fault injection attacks are those that occur at any time starting
form compilation of the code, and up until just prior to execution.
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Compile time fault injection attack consists in injecting the fault before the program
image is loaded and executed. Compared to the classification presented before, com-
pile time fault injection corresponds to the simulation-based approach.

The advantages of software-based approaches are in cost, automation, and breadth.
Software-based simulations do not require expensive or dedicated hardware and can
be run on most computing devices easily [108]. Also with various software tools be-
ing developed and matured, limited expertise is needed to plug together a toolchain
to do fault injection vulnerability detection. Such a toolchain can then be automated
to detect fault injection vulnerabilities without direct oversight or intervention. Fur-
ther, simulations can cover a wide variety of fault models that represent different
kinds of attacks and can therefore test a broad range of attacks with a single system.
Combining all of the above allows for an easy automated process that can test a pro-
gram for fault injection vulnerabilities against a wide variety of attack models, and
with excellent coverage of potential attacks.

The disadvantages of software-based approaches are largely in their implementa-
tions or in the veracity of their results. Many software-based approaches have shown
positive results, but are often limited by the tools and implementation details, with
limitations in architecture, scope, etc. However, the biggest weakness is the lack of
veracity of the results: software-based approaches have not been proven to map to

actual vulnerabilities in practice.

2.1.2 Hardware-Based Fault Injection Approaches

This section presents the different types in the literature of hardware-based fault
injection, and investigates the advantages and disadvantages of the hardware-based
approach.

Hardware-based approaches consists of disturbing the hardware at physical level,
using hardware materiel (e.g EMP, Laser, Temperature, etc.). Hardware-based ap-
proaches are usually achieved by configuring the specific hardware to be experi-
mented on and loading the program to be tested for vulnerabilities. A special device
is then used to perform fault injection on the hardware during execution, e.g. EMP
a chip, laser a transistor, overheat a chip. The result of the execution of the program
is observed under this fault injection, with some particular outcomes considered to
be “vulnerable” and thus a vulnerability is considered to have been achieved. One
typical requirement for this approach is to have an idea of how a vulnerability is ob-
servable from program execution, since otherwise it is unclear whether the outcome
of execution is a vulnerability or merely some normal or faulty behaviour.

Depending on the fault, hardware-based approaches fall into two categories[67]:
hardware fault injection with contact and without contact.

In hardware fault injection with contact, the injector has direct physical contact with
the target system. Examples are methods that use pin-level probes and sockets.

In hardware fault injection without contact, the injector has no direct physical con-
tact with the target system. Examples are methods such as heavy-ion radiation and
electromagnetic interference.

Various techniques exist to perform hardware fault injection either with contact or
without contact [51, 67, 108, 152]. In this thesis, the hardware-based approach used
is the electromagnetic pulse for the hardware experiments conducted in the later
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chapters. Other technique are also presented in this section to give the reader other
examples, and compare the chosen technique with the other existing ones.

Pin-level fault injection is believed to be the first technique used to inject fault [32].
Pin-level fault injection consists in changing the electrical signals at selected target
device pins.

An other hardware fault injection attack, is when a fault in injected by tampering
with the external clock signal of the target device. Two known ways of exploiting
the clock signal for fault injection are: overclocking [60] and clock glitching [81].
Overclocking attacks consist in applying persistently a higher frequency clock sig-
nal then the normal clock frequency of the device. Clock glitching and contrary to
overclocking consists in shortening the length of a single clock cycle. Both attacks
causes the violation of the setup time constraints of the device and creates erroneous
behaviour.

Fault injection through power supply is considered to be an inexpensive and some-
time a natural way to introduce faults. This attack consists in altering the external
power supply on the device, which can be done in two ways [108]: underfeeding or
voltage glitch. This kind of attack can be used to skip the execution of an instruction.

One of the recent hardware fault injection method is the use of laser beams. Laser us-
age in fault injection attacks was first used to simulate radiation induced faults [61].
It was shown [94] that there is correlation between the results obtained from cosmic
radiations and laser. Laser is able to inject faults in a very accurate and precise way.

An other hardware fault injection attack is fault injection trough electromagnetic
fields. In electromagnetic fault injection, the faults are induced on the target through
a fault injection probe which is placed above the target. The fault injection probe
is designed as an electromagnetic coil, which induces eddy currents inside the tar-
get after receiving a voltage pulse. The electromagnetic pulse fault injection attacks
is known to be less precise compared to the laser, although precise attacks can be
conducted (up to a level of a single bit) but detailed knowledge of the target chip
(device) in order to identify the precise point of attack with the precise parameters
to set on the electromagnetic pulse hardware.

Other hardware approaches exist in the literature but will not be presented in this
section such as: fault injection through temperature, fault injection through focused
Ion Beams, fault injection through light.

The advantages of hardware-based approaches are in the quality of the results. A
fault injection that has been demonstrated in practice with hardware cannot be de-
nied to be genuine.

The disadvantages of hardware-based approaches are the cost, automation, and
breadth. To do hardware-based fault injection vulnerability detection requires spe-
cialised hardware and expertise to conduct the experiments. This is compounded
when multiple kinds of attacks are to be considered; since different equipment is
needed to perform different kinds of fault injection (e.g. EMP, laser, power inter-
rupt). Further, hardware-based approaches tend to be difficult to automate, since the
experiments must be done with care and oversight, and also the result can damage
or interrupt the hardware in a manner that breaks the automation. Lastly, hardware-
based approaches tend to have limited breadth of application; this is due to requir-
ing many different pieces of hardware to test different architectures, attacks, etc. and
also due to the time and cost to test large numbers of locations for fault injection
vulnerability.
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2.1.3 Fault Model

This section gives an overview of different types of fault models. Each fault model
describes an attack that can be conducted through a hardware or software fault in-
jection.

In fault detection process, faults are simulated based on a fault model. Fault models
are used to specify the nature and scope of the induced modification. A fault model
has two important parameters, location and impact. The location includes the spa-
tial and temporal location of fault injection relating to the execution of the target
program. The impact depends on the type and granularity of the technique used to
inject the fault, the granularity can be at the level of bit, byte, or multiple bytes.

According to their granularity fault models can be classified into the following kinds
[118].

Bit-wise models: in these fault models the fault injection will manipulate a single
bit. One can distinguish five types of bit-wise fault model [118]: bit-set, bit-flip, bit-
reset, stuck-at and random-value. In the scope of this thesis the fault model that
represents the bit-wise models is the bit flip (FLP) fault model that flips the value
of a single bit, either from 0 to 1 or from 1 to 0, this fault model is an example of a
Bit-wise model.

Byte-wise models: in these fault models the fault injection will modify eight con-
tiguous bits at a time (usually in the same byte from the program or hardware per-
spective, not spread across multiple bytes). One can distinguish three types of byte-
wise fault model: byte-set, byte-reset or random-byte. In the scope of this thesis three
fault models represents the byte-wise models: the zero one byte, the non-operation,
and the unconditional/conditional jump. The zero one byte (Z1B) fault model that sets
a single byte to zero (regardless of initial value), this fault model is an example of
a Byte-wise model. The non-operation (NOP) fault model that sets a byte to a non-
operation code for the chosen architecture, this is an example of a Byte-wise fault
model (but can also be implemented as a Wider model by changing the value of the
whole instruction word). The unconditional jump (JMP) and conditional jump (JBE)
fault models that change the value of a single byte in the target of an unconditional
or conditional jump instruction (respectively), these are examples of Byte-wise fault
models.

Wider models: in these fault models the fault injection will manipulate an entire
word (defined for the given architecture). For this fault model a sequence of 8 to 64
bits will be modified depending on the architecture, e.g. changing the value of an
entire word at once. This will typically target the modification of an entire instruc-
tion or single word value. In the scope of this thesis the fault model that represents
the wider models is the zero one word (Z1W) fault model that sets a whole word to
have the value zero (regardless of prior value).

2.2 Formal Verification

Formal verification in the context of both software and hardware systems is the act
of proving or disproving the correctness of a system with respect to certain formal
specification or property.

Formal verification techniques can be classified in three different techniques: man-
ual, semi-manual, and automatic techniques.
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FIGURE 2.4 – Fault Model Types

Manual techniques are human directed proof. They are in general handwritten
proofs in the style of mathematical proofs using natural languages.

Semi-manual techniques are when theorem proving is used to prove or disprove the
correctness of a system. This technique is mainly based on deductive inference.

Automatic techniques are based on algorithm which are implemented in tools that
take as input the model of the system and the property to verify, and decide if the
model satisfies the property or not in return. In this thesis the focus is on automatic
techniques, specially model checking

Formal verification techniques were applied in the last 20 years in variety of indus-
triel domains [33, 148], particularly to verify the correctness of safety-critical systems
[58], systems that can cause death, injury, or big financial loses (e.g., medical, auto-
motive, and aerospace).

2.2.1 Model Checking

Model checking (MC) [9] is a formal verification technique used to verify if a given
model satisfies specified properties. MC has the advantage that all possible states of
the model are considered, and so is guaranteed to be able to answer whether or not
a given property holds for a given model. Hence MC is an interesting technique for
detecting the change of behaviour.

MC has become a standard method of analysing complex systems in many appli-
cation domains. MC has demonstrated its efficiency in verifying systems [50, 149],
although MC still has some limitations. Large or complex programs can have ex-
tremely large models that MC may fail to check in reasonable time [9], since MC is
exploring every possible state of the model.

MC can fall into four classes: explicit state MC; Symbolic MC; Bounded MC; Con-
straint satisfaction MC.

Software model checking is the algorithmic analysis of programs to prove properties
of their executions. Two approaches exist for software model checking [92]. The first
approach model checks the actual software implementation by instrumenting either
a simulator or the virtual machine for target architecture. The second approach di-
rectly instruments the machine code of the program and runs an analysis on the
native hardware.
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Bounded Model Checking

Bounded model checking (BMC) is a refinement of model checking that alleviates some
of the issues with possibly infinite complexity by bounding the checking [22]. The
key idea in bounded model checking is to put a bound on parts of the model that
could be infinite (or at least extremely large). For example, checking a program with
a loop, going through hundreds or millions of iterations could be very costly for
model checking. However, bounded model checking of such an example could limit
the number of times to iterate through a loop. Thus, bounded model checking allows
limits to be placed upon such potentially unbounded aspects of model checking.

Statistical Model Checking

Due to the limitations of using MC and BMC on large and complex programs, Statis-
tical Model Checking (SMC) is an alternative approach that can rapidly find approxi-
mate results [85].

SMC is seen as a trade-off between testing and formal verification. The core idea of
SMC is to conduct some simulations of the system and verify whether they satisfy
a given property. The results are then used together with algorithms from the sta-
tistical area in order to decide whether the system satisfies the property with some
probability. Of course, in contrast with an exhaustive approach, a simulation-based
solution does not guarantee a result with 100 confidence. However, it is possible to
bound the probability of making an error. Simulation-based methods are known to
be far less memory and time intensive than exhaustive ones, and are sometimes the
only option. Over past years SMC has been used to 1. Assess the absence of errors in
various areas from aeronautic to systems biology, 2. To measure cost average and en-
ergy consumption for complex applications such as nanosatellite and 3. Detect rare
bugs in concurrent systems. The approach is now widely studied in academia, It is
also used in research projects and endorsed by industry (IBM, THALES, EADS ...).
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2.2.2 Properties

In MC, BMC, and SMC properties are used to define the correct or incorrect be-
haviour of the model. Here properties are used to define specific vulnerabilities that
may be introduced by fault injection.

To perform model checking, the properties to be checked upon the model need to
be specified. There are two main kinds of properties that can be checked: safety,
and liveness [9]. Safety properties are used to express that certain propositions hold
when they are encountered. Liveness properties express that propositions hold over
some temporal dimension. This thesis only considers safety properties since these
are clearer, more intuitive to represent, and sufficient to illustrate the feasibility of
the process. Liveness properties can also be checked in a similar manner, although
this is not presented in this thesis.

Safety properties can be expressed by simple propositions that can be annotated
into the code of the program being considered. Recalling the motivating example
(in Figure 1.1 on page 8), a naive safety property could be expressed by an assert
statement such as

__llbmc_assert(i == 4);

that is inserted between lines 9 and 10 in Figure 1.1 on page 8. This property would
be checked by the model checker to ensure that the variable i has the value 4 at this
point in the model.

More generally such asserts support properties defined with boolean propositions.
Here we exploit properties supporting: negation denoted !, equality denoted ==,
inequality denoted !=, conjunction denoted &&, and disjunction denoted ||. For
example, the following property

__llbmc_assert( !(PINCandidate != PINTrue) || grantAccess == false);

combines negation with inequality, disjunction, and equality. The semantics are that
when the two PINs are not equal, then access is not granted.

In the second part of this thesis, the properties are specified using Bounded Linear
Temporal Logic (B-LTL). B-LTL is chosen here for being able to represent the key con-
cepts required and as it is used in the first part that uses the same foundations as
exploited in the paragraph above. The properties in the second part of this thesis
are mostly specified using simple (in)equality relations, however the temporal and
bounding operations can be exploited to account for infinite loops induced by fault
injection.

2.3 Working on Binaries

Working at the binary level is considered to be an efficient way to test, analyse, and
verify the correctness and/or robustness of the developed systems in a variety of
domains.

Binary code represent the last form of the program at the development cycle. Hence,
all the errors (that affect the correctness of the system) and flaws (that represent a
threat to the robustness of the system) which were introduced during the develop-
ment process can be found.
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Tool Name Ref Input Architecture Properties

JPF [143] Java bytcode JVM safety
StEAM [91] C++ - safety
Arcade [21] compiled binary ATmega16, ATmega128, R8C/23 safety

mc-square [126] C ATmega16 safety

TABLE 2.1 – List of Some Existing Binary Model Checkers

The ideal solution is to detect vulnerability at the binary, since it is the most repre-
sentative at the hardware level. Applying the fault injection vulnerability detection
process at the binary will allow the detection of vulnerabilities which could not be
found at the source code level for example.

In the scope of this thesis, one of the main objective is to be able to use formal meth-
ods (model checking) directly at the binary level to detect fault injection vulnerabil-
ities. This introduced many constrains. The rest of this section presents a literature
review of model checking binary. A list of advantages, disadvantages, and limita-
tions is given. An explanation of why it is needed to go through an intermediate
representation of the binary is given.

2.3.1 Binary Model Checking

Model checking is recognised as promising technique for the verification of systems
in a variety of domains [9, 50, 78, 116]. The majority of existing model checker tools
operates at a specific modelling language [66, 86], or on source code [13, 93]. But
recently researchers were also interested in applying model checking to the binary
level for various reason: first, when the source code is not available. Second, to be
able to detect errors that might be introduced in the compiling process. Third, to
detect malicious code inside executables. Finally, related to this thesis, to be close to
the hardware representation.

Model checking binaries comes with many constrains. Model checking low level
language adds hardware specification, which means that it needs to be adapted for
every new hardware architecture. Beside the state space tends to be bigger than
when model checking higher level language as more details are involved.

An example of model checking assembly is in [149], here the authors proposed the
following method: Generating models including block cycles; Abstract and refine-
ment method of bit level; Generating exact models by dynamic program analysis;
Verifying model by model checking while generating the model by dynamic pro-
gram analysis.

In the following paragraph a list of model checkers that handle binaries will be given
(see Figure 2.1), highlighting their main limitations. In the scope of this thesis, an
ideal model checking tool is a tool that takes binary file as input, that supports mul-
tiple architecture instruction sets (specially ARM or X86), that allows the verification
of liveness and safety properties.

Java PathFinder (JPF)[143] is a verification framework dedicated for Java programs,
it takes as input executable Java bytecode programs. It allows the verification of
general software safety properties such as exceptions, deadlock, and user defined
assertions which are specified in the source code directly. The main limitation of
JPF is that it’s limited to the executable Java bytecode programs it does not check
executable ARM or x86 binaries, and it does not support liveness properties.
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State Exploring Assembly Model checker (StEAM)[91], takes the C++ source code
as an input. StEAM performs model checking on the assembly level compiled from
C++ source code. In case the user had only the assembly code it will not be possible
to verify it, since it needs the source code as input.

Aachen Rigorous Code Analysis and Debugging Environment (Arcade)[21], is a
framework for the verification and analysis of embedded software. It verifies bi-
nary code for microcontroller. As input, it takes compiled binary code. Arcade is
limited to a restricted list of supported architecture (X86 and ARM architecture are
not supported), it only verifies safety properties.

mc-square [116, 126] is a model checker for microcontroller-based embedded sys-
tems. mc-square model checks assembly code that is compiled from C source code
files. It is considered to be an old version of Arcade. mc-square is limited to the
ATmega16 architecture and supports only safety properties.

From all the presented above one can conclude that model checking binaries is pos-
sible but not feasible for real world programs. The majority of the tools presented
above can not work directly on binary files, source code file is always needed, which
can not be practical to verify binaries without access to their source code.

To overcome the restriction of model checking binaries, proposed solution in the lit-
erature is to go through an intermediate representation of the binary [77]. The idea
is that instead of model checking the binary code directly, one would translate the
binary to an intermediate representation then model check the intermediate repre-
sentation code.

A large list of possible intermediate representation languages exists (ASM, QUEMU-
IR, etc). One of the famous intermediate representation which offers a large number
of tools in terms of choices is LLVM-IR. LLVM-IR is an abstract assembler language
that is architecture independent. Here LLVM-IR is chosen as an example that con-
siders the first part of this thesis. The rest of this section will be presenting a list of
model checkers that handle the intermediate representation language LLVM-IR.

The first presented tool is Divine [13], which explicit-state model checker based on
the LLVM toolchain. Divine is a tool for Linear Temporal Logic (LTL) model check-
ing and reachability analysis of discrete distributed system. Divine does the veri-
fication of safety properties and also some liveness properties. But the verification
of liveness properties are limited to a restricted list of input languages, using the
LLVM-IR as an input language it will not be possible to specify liveness properties.
An other drawback with the Divine tool are potential problems one might have with
the different version of the LLVM-IR intermediate representation language. The
LLVM-IR version used by Divine is a modified version of LLVM-IR, this can cause
problems of incompatibilities with other tools used in the toolchain.

The second presented tool is the Low-Level Bounded Model checker (LLBMC) which
is a bounded model checker for the intermediate representation language LLVM-IR.
LLBMC is used in the process implementation presented in the first part of this the-
sis. LLBMC checks only safety properties. The properties are specified as assertion
statement in the source code. LLBMC only does bounded model checking, and so
will not explore every possible execution of a program if this is beyond the bounds
imposed by the execution.

Other tools exists in the literature but will not be detailed in this section such as
SymDivine[99], which is a model checker, built as well upon LLVM compiler in-
frastructure. It is a standalone frame for LTL verification of LLVM-IR programs.



28 Chapter 2. Background

Its name is maybe similar to Divine tool, but SymDivine is not built on the Divine
model checker

2.3.2 Binary Translation

As discussed in section 2.3.1, it is difficult to model check binaries directly. Prior
works have proposed a solution which is to go through an intermediate representa-
tion.

Binary translation tool translate a binary code into another target language. Two
method of binary translation exists [36]: static and dynamic.

Static method, aims at doing the translation without having to run the code first.
This method does not guarantee a correct translation since not all code fragments
can be discovered by the translation, some parts of the executable may be reachable
only through indirect branches, whose value is known only at runtime. A limitation
of a static translator is its inability to accurately account for all the code because some
code paths cannot be predicted statically [70].

The dynamic method, translated code that is discovered through the execution.The
dynamic binary translation looks at short sequence of code. The dynamic method
is known to be better when having to translate machine code from one architec-
ture to another. This will avoid doing work on code that never executes. Dynamic
translation is slower than static, not always 100% accurate, some code path may be
dependent on a specific set of input parameters. It suffers in term of performance.

In this thesis, the choice was made to adopt the static method for translating binary.

Developing a binary translator can be done in two ways [63]: manually or automat-
ically. The manual method, consists in manually developing the code to translate
each assembly instruction to its corresponding IR. The manual method is widely
used [18, 88, 102], such a manual approach can be very laborious and requires a lot of
time and effort, but it provides correct and reliable results. Manual method as shown
in Figure 2.6 consists in: first, disassembling the binary code to the corresponding
assembly code. Second, generating the corresponding Control Flow Graph (CFG) of
the assembly code. Finally, developing manually the corresponding IR translation
for each assembly instruction.

Binary
ARM

Assembly CFG IR
Disassemble Generate Translate

FIGURE 2.6 – Manual Binary Translation

The automatic method is a new approach that was introduced by Hasabnis et al. [63,
64]. The automatic approach consistes in using the knowledge already contained in
compilers such as GCC [57] and LLVM [84]. Compared to the manual method, the
automatic method is faster, does not requires coding efforts, but the correctness of
the translation is not provided.

Automatic methods as shown in Figure 2.7 first train their learning algorithms by
generation assembly code from an IR. In this step the learning approach memorise
the exact translations observed in the training data. Then it uses the learning algo-
rithms to translate from the assembly code to the IR.
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FIGURE 2.7 – Automatic Binary Translation
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Chapter 3

Overview of Part I

This chapter introduces the first part of this thesis. First, it gives a general intro-
duction to the first part of the thesis which focuses on the fault injection software-
based approach. Next, it reviews the literature of existing works that propose fault
injection software-based approaches. Finally, it presents the two cryptographic al-
gorithms used later in the experiments.

Sommaire

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Case Studies: Cryptographic Algorithms . . . . . . . . . . . . . . . 36

3.1 Introduction

Fault injection has been increasingly used to test the robustness of software systems.
Many systems are particularly vulnerable to fault injection attacks due to operating
in hostile environments, i.e. environments where an attacker may be able to perform
physical attacks on the system hardware. Many such attacks have been demon-
strated on various systems, showing that different kinds of faults can be injected
into various devices [12, 59, 141]. Attacks can also be achieved through software
alone and do not require attacking the hardware directly. A recent example of this is
rowhammer [76] that has been exploited in various attacks [127, 150].

The wide variety of fault injection attacks and possible impacts upon a system make
it impossible to prevent software from failing under any possible attack [141]. Thus,
recent work has approached the problem of fault injection by limiting the scope of
attacks, or limiting the kinds of vulnerabilities analysed [15, 35, 96, 97], often requir-
ing specialised equipment.

The first part of this thesis explores a new software approach to broadly detect fault
injection vulnerabilities using formal methods at the binary level. As a contribution
an automated process for detecting vulnerabilities in binaries using model checking
named FIVD.

The FIVD process is achieved by simulating fault injection attacks upon the exe-
cutable binary for the given software, and then using model checking on the result-
ing executable binaries to determine whether or not the simulated fault injection
attack violates properties which the software should maintain.
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The FIVD process begins with the executable binary that represents the program to be
considered. The validation of the executable binary involves checking various prop-
erties using model checking to ensure the executable binary meets its specification.
Fault injection attacks are then simulated on the executable binary, producing mutant
binaries. The properties are then model checked on the mutant binaries that pass pre-
analysis. A difference in the result between validating and checking the properties
indicates a vulnerability to the fault injection attack that was simulated.

This process provides a general approach that can support detecting a wide vari-
ety of fault injection vulnerabilities in binaries by varying the fault model of the
fault injection while being scalable to real-world implementations. The strengths of
this approach includes the following. By operating directly upon the binary, fault
injection vulnerabilities that cannot be detected in source languages or intermedi-
ate representations can be detected [55, 119]. Formal methods, in this thesis model
checking, ensure the rigour of the analysis and so ensure that fault injection vul-
nerabilities that are detected are real and not false positives. An automated process
can be easily iterated over various fault injection models and approaches, and thus
allows broad, or even complete, coverage of possible fault injection attacks. Com-
bining automation, broad coverage, and formal methods, allows the process to make
strong guarantees about the vulnerability of a system that has been analysed. The
process design, and extension with pre-analysis, allow for easy parallelism and thus
scalability of the process in practice.

To demonstrate the efficacy of this process, this part includes a case study of apply-
ing the process with various fault models to two different cryptographic implemen-
tations: the PRESENT lightweight encryption algorithm [25, 79], and the recently
introduced lightweight encryption algorithm SPECK [17].

The results found 82 vulnerabilities, with 9 in each of PRESENT and SPECK allowing
an attacker to bypass the encryption entirely. A further 64 cryptanalytical attack
vulnerabilities were found in PRESENT.

This part presents the first version of the FIVD process (section 4.1), and improves
it. Note that the two processes differ only in the way properties are specified. This
difference is related to the implementation of the process and not the process itself.
The choice in this thesis to present the two processes (two implementations) is to
take the reader into the evolution of this work. First, it presents the first process,
point the problems and limitations. Then, it shows how the problems were solved,
how the imitations were overcome.

3.2 State of the Art

This section recalls existing work that uses software-based approach in order to eval-
uate the robustness of systems against fault injection.

In the literature, works that use the software-based fault injection approach to detect
fault injection vulnerabilities exist. In order to be able to compare the proposed FIVD
process with some of these works, a list of goals to meet is specified:

1. First, the proposed approach needs to be automated.

2. Second, the proposed approach needs to operates directly at the binary level.

3. Third, the proposed approach needs to support a large variety of fault models.

4. Fourth, the proposed approach needs to be architecture independent.
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5. Fifth, the proposed approach needs to provide reliable results.

Perhaps the closest to the FIVD process presented here is the Symbolic Program
Level Fault Injection and Error Detection Framework (SymPLFIED) [107] a program-
level framework to identify potential vulnerabilities in a software. The vulnerabili-
ties are detected by combining symbolic execution and model checking techniques.
However, the SymPLFIED framework is limited as SymPLFIED only supports the
MIPS architecture [112]. One of the proposed future work in [151] was building
front-end to support X86 architecture, but to the best of the author’s knowledge, no
further work has been published on supporting new architectures in SymPLFIED.

A fault model inference focused approach is taken by Dureuil et al. [47]. They fix a
hardware model and then test various fault injection attacks based upon this hard-
ware model. Fault detection is limited to EEPROM faults on the ARMv7-M architec-
ture. The fault model is then inferred from the parameters of the attack and the em-
bedded program. The faults are simulated upon the assembly code and the results
checked with predefined oracles on the embedded program. Although the approach
uses neither formal methods nor general fault models, the choice of fault model and
derivation of this provides some interesting guidance for selecting fault models and
future work.

An entirely low level approach is taken in [97] which uses model checking to for-
mally prove the correctness of their proposed software countermeasures schemes
against fault injection attacks. The approach has some similarities to the approach
presented in this thesis: using model checking while focusing on low level represen-
tations. However, the focus is on a very specific and limited fault injection model
that causes instruction skips and ignores other kinds of attacks. Further, the model
checking verifies only limited fragments of the assembly code, and not the program
as a whole.

In [145] the authors present a fault injection simulation tool and they compare it
with existing tools (Xception [31] or FERRARI [74]) which inject the fault at the bi-
nary level. The big advantage is that it supports multiple architecture. This paper
presents FITgrind a fault injection tool that uses dynamic binary instrumentation
provided by Valgrind [101]. The authors claims that the tool is architecture indepen-
dent but since it is based on Valgrind, it is limited to the architectures supported by
Valgrind. The tool does not simulate the fault directly on the binary but on the Val-
grind intermediate representation which limits the fault model used. For example,
it is not possible to simulate a bit-flip using this tool since Valgrind automatically
rejects invalid code. To see if the fault injection had an effect on the program or no,
the output of a fault injection run and the golden run are compared byte wise, any
difference in considered as an error. This can not detect if the modification will create
a vulnerable behaviour or will have no effect on the program behaviour.

An other work which has similarities with the proposed approach in this thesis is
[110], where Lazart is presented, a tool that can simulate a variety of fault injection
attacks and detect vulnerabilities using formal methods. The Lazart process begins
with the source code which is compiled to LLVM-IR. The simulated fault is created
by modifying the control flow of the LLVM-IR. Symbolic execution is then used to
detect differences in the control flow, and thus detect vulnerabilities. Although this
high level approach is similar to that of this thesis, Lazart is unable to reason about
or detect fault injection attacks that operate on binaries rather than the LLVM-IR.
Further, the choice of symbolic execution does not account for concrete values, and
so is less complete than model checking [106, 134].
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[140] has also the objective of assessing the robustness of systems using fault in-
jection technique. Here the authors used Property-based testing and fault injection
to test the robustness of the systems. They simulate the injection of the fault on the
source code, then specify properties that the source code need to respect, after check-
ing it using property based testing. The fact that the fault are simulated at the source
code will not be representative of real faults that can be created in real environment.
Beside property based testing does not formally prove that the software fulfils its
specification, contrary to formal techniques like model checking.

In [118] the authors propose a generic fault injection simulation tool. The proposed
tool embeds the injection mechanism into the smart card source code. It only sup-
ports data and control flow fault model. The EFS tool used in this paper performs
the implemented-based approach for fault injection which differs of the simulation
approach used in the FIVD process. It inject faults directly on binary but can not be
architecture independent and is limited to specific fault models.

One of the first uses of formal methods to analyse fault injection vulnerabilities was
to verify a counter measure in the implementation of CRT-RSA by analysing the
C source code [35]. The authors show that by adding ANSI/ISO C Specification
Language (ACSL) [16] properties to the CRT-RSA pseudocode, they could verify that
the Vigilant’s CRT-RSA countermeasure sufficiently protects against fault injection
attacks. The lack of fault injection and analysis on the binary limits the attacks that
can be detected to those that have a representation in the source code. Further, the
analysis was only for a single countermeasure to prove it worked, rather than to
consider a variety of fault injection attacks and models as is the goal of the process
presented in this thesis.

In [68] the authors propose a technique along with a prototype fault injection tool to
facilitate robustness evaluation of software. The proposed technique in this paper is
limited to the AUTomotive Open System ARchitecture (AUTOSAR) based systems
and it was not shown that it can be applied to other systems. As described [68] the
simulation of the fault is not done by injection faults into the program but by giving
erroneous input. This technique is considered to be fuzzing and not fault injection.

3.3 Case Studies: Cryptographic Algorithms

For embedded systems, it is important to ensure the security of stored and manip-
ulated data. Cryptographic algorithms are considered to be resistant to direct at-
tacks on target implementation [11], such as exhaustive key search and cryptanaly-
sis. Because of the constrained nature of embedded systems, it is necessary to use
algorithms that do not require high computational power. Lightweight ciphers are
therefore ideal candidates for this purpose.

For this thesis, the choice was done on two lightweight block ciphers: PRESENT
[25, 79], and SPECK [17]. Both cryptographic algorithms are designed for use on
low power and CPU constrained devices, and so suitable for embedded systems.
The objective is to evaluate the robustness of the chosen block ciphers against fault
injection.

Fault injection is an efficient way to attack cryptographic algorithms in order to re-
trieve information about secret key. Fault injection exploits a possibility to change
the intermediate values in the algorithm execution so that it can reduce the key
search space or even reveal the key.
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This section gives a brief overview of the encryption algorithms considered in the
experiments (PRESENT and SPECK). Both implementations are open-source and
consider a standard setting (e.g. without additional countermeasures). Some known
cryptanalytic attacks on both algorithms will be also presented.

PRESENT

PRESENT is a lightweight block cipher based on Substitution-Permutation Network
(SPN) [25, 79]. PRESENT was proposed by Bogdanov et al. at CHES 2007, and was
standardised by IEEE.

The PRESENT algorithm consists of 31 rounds of a SPN with block size of 64 bits.
The canonical implementation 1 supports key lengths of 80 or 128 bits. The core
encryption algorithm is the same for both 80 and 128 bit keys.

The PRESENT algorithm round function consists of three stages (see Figure 3.1). ad-

dRoundKey which consists of XORing the 64 bits output of the last round function
with the subkey; sBoxlayer which consists of a nonlinear substitution layer with six-
teen 4-bit Sbox; pLayer which consists in permuting bits based on the permutation
function.

The version of PRESENT analysed here is the canonical version in C for 32 bit ar-
chitectures (size optimised, 80 bit key). The C implementation consists of one main
loop, that will iterate the first 30 rounds. The 31st round will be performed after
the end of the loop. Each iteration of the loop consists in performing first the three
stages (addRoundKey, sBoxlayer, and pLayer), then the key scheduling that will
compute the subkey used in the following iteration of the loop. The last 31st round
consists only of the addRoundKey stage, that will XOR the output of the last round
function with the subkey

Plaintext

sBoxLayer

pLayer

sBoxLayer

pLayer

Ciphertext

Key Register

Update

Update

FIGURE 3.1 – PRESENT Algorithm Figure

SPECK

SPECK is a lightweight block cipher based on Feistel network [17]. SPECK was
proposed by the National Security Agency (NSA) in 2013.

The SPECK algorithm is highly software-oriented as it relies only on additions, word
rotations, and XOR operations. As illustrated in Figure 3.2 each round consists of:

1. Available at http://www.lightweightcrypto.org/implementations.php
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— 2 rotations; — addition of the right word to the left word; — XORing the key into
the left word; — XORing the left word to the right word. SPECK supports a variety
of block and key sizes with respective number of rounds.

The canonical version 2 analysed here is implemented in C, has a key length 128 bits,
block size 64, and 21 rounds. The C implementation consists of two main loops.
The first loop consists of 20 iterations, that computes the subkey for each round.
The second loop performs the encryption by following the steps shown in Figure 3.2
using the subkeys generated by the first loop.

Round i

Plaintext1 Plaintext2

Rotate Right

Rotate LeftKey i

FIGURE 3.2 – SPECK Algorithm Figure

Cryptanalytic Attacks

Injecting fault into cryptographic algorithm was first proposed in [26, 27]. Where
Boneh proposed a new cryptanalytic attack which exploits computational errors to
find cryptographic keys only for public key crypto systems such as RSA. One year
after [23] proposed a practical attack called Differential Fault Analysis (DFA) and
showed that is applicable to any cryptographic algorithm.

Until today DFA is still the most popular technique for attacking symmetric block
ciphers. Combined with fault injection DFA offers an efficient way to attack crypto-
graphic implementation and try to break them.

The principle of DFA is to induce faults into cryptographic implementation to reveal
their internal status. The attacker gets information about the secret key by examining
the differences between cipher text resulting from a correct encryption and cipher
text of the same plaintext and key resulting from a faulty encryption.

Many DFA were shown in the literature on PRESENT [8, 52, 144] and SPECK [1,
24, 42, 138]. For PRESENT it was shown in [8] that injecting a fault in a single bit
at the beginning of the last round of the S-box layer allowed a Differential Fault
attack (DFA). In [28] the authors were able to recover the secret key with two faulty
encryptions and an exhaustive search of 216 remaining key bits. For SPECK, in [138]
it was shown that by using a bit-flip fault model it is possible to recover the last
round key. In [11] the authors describes a simple platform for the study of fault
injection and analysis in the context of fault attacks block ciphers based on a Feistel
structure.

2. Available at https://github.com/inmcm/Simon_Speck_Ciphers
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More general approaches to detect fault resilience in block ciphers were also pro-
posed in [29, 40, 73, 98, 121]. In [98] the authors showed fault attack against PRESENT,
Simon, and others. In [29] the authors propose an automated approach for analysing
cipher implementations in assembly. The authors implemented their approach on
a tool called DATAC, they used it to attack the PRESENT algorithm and to find
implementation-specific vulnerabilities. In [40] the authors present a fault injection
attach against PRESENT. In [121] the authors propose a novel fault injection attack
against AES using a new fault model. The fault injection attack is then combined
with a side channel attack to gain the secret key. [73] here the authors present a fault
injection attack on LED clock cipher which will reduce the number of key and then
will make it possible to deduce the key by a brute force.
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Chapter 4

Process, Implementation and
Methodology

This chapter presents the automated formal process for detecting fault injection vul-
nerabilities in binaries (FIVD). The FIVD process is one of the main contributions
of this thesis. This chapter first presents in details each step of the process and ar-
gues the choices that were made. Then, it details the first implementation attempt of
the FIVD process using existing tools. Next, it presents the methodology followed
to run the experiments. Additionally, this chapter also highlights some minor im-
provement done to the FIVD process and its implementation to make it scalable for
larger programs.
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4.1 Fault Injection Vulnerability Detection FIVD Process

This section presents in details the FIVD process, an automated formal process for
detecting fault injection vulnerabilities in binaries. The FIVD process presented in
this section was conceptualised as a proof of concept to show the feasibility of the
process.

An overview of the FIVD process is shown in Figure 4.1. The FIVD process is as
follows.

Prior step to starting the FIVD, the properties to check on the binary must be defined,
and then annotated in the source code. Property specification is an important step,
since it is what defines the behaviour the process checks. Property specification is
related to the target program. Property can not be general to all programs (systems).
To specify the property to check, a user needs to have an idea of the target program,
the user needs also to have a list of behaviours that the program (system) should or
should not respect.

A property might specify a good or bad behaviour. When property specifies a good
behaviour, it is in general a behaviour that the program needs to respect under fault
injection. An example related to the motivating example (Figure 4.3) can be : verify
that if PINCandidate is equal to PINTrue, then grantAccess is equal to true. In
this case, if the program satisfies the property then fault injection does not create a
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FIGURE 4.1 – FIVD Process Diagram

vulnerability in the target program. If the program violates the property then we
conclude that fault injection created a vulnerability in the target program. When
a property specifies a bad behaviour, it is in general a behaviour that the program
should never have even under fault injection. An example related to the motivating
example (Figure 4.3) can be : verify that if PINCandidate is not equal to PINTrue, then
grantAccess is equal to false. In this case, if the program satisfies the property then
fault injection created a vulnerability in the target program. If the program violates
the property then we conclude that fault injection didn’t create a vulnerability in the
target program.

A preparation step for the process is then to compile the source code and proper-
ties to produce an executable binary in a manner that preserves the properties as
annotations. The produced binary file is the process input file within properties to
verify.

The first step of the process is the validation of specified properties to hold upon the
executable binary before the simulation of fault injection. This ensures that the exe-
cutable binary meets the specification of the properties. If there is some other error
in the source code or compilation, this can be detected here and not be (incorrectly)
attributed to fault injection vulnerability. During this step the executable binary
within the properties is given to model checker tool to validate that the executable
binary satisfies the checked properties.

The second step of the process consists of simulating the injection of faults on the
executable binary to produce mutant binaries. During this step the objective is re-
producing the effect of the fault injection upon the executable binary. This simulates
the actual fault injection attacks and produces mutant executable binaries that rep-
resent the executable binary after the fault injection simulation.

The third step of the process is checking the properties upon the mutants binaries.
All generated mutant binaries are checked using model checker to satisfy the spec-
ifies properties or not. This step is similar to the first step with the difference that
instead of the executable binary, the mutant binaries are checked.

The fourth step of the process consists of comparing the validation and checking re-
sults. A difference between the validation of the executable binary and checking the
mutant binary indicates a vulnerability to the simulated fault injection. To conclude
that the fault injection had no effect on the behaviour of the executable binary, the
result of validating the executable binary and checking the mutant binary needs to
be similar. If the results is different then the simulated fault injection succeeded in
creating a vulnerability in the program.
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Note

The choice to start the preparation with the source code and not the binary is made
for illustrative clarity and ease of use for the software developer, since defining prop-
erties over binaries is more arduous. However, most aspects of the process do not
rely upon this choice, and the improved version of the FIVD process starts directly
from the binary (see in Section 9.1)

This thesis considers fault injection attacks upon the binary. It is thus necessary to
compile the source code (and here properties) into an executable binary. This ex-
ecutable binary represents the software application that would be executed by the
system in practice. Thus to simulate fault injection attacks on the actual system, the
executable binary must be used in the simulation. For the process here the compila-
tion must maintain the properties as annotations in the executable binary.

FIVD Process for Large Programs

This section discusses the extended version of the FIVD process used to detect vul-
nerabilities. In section 4.1, the FIVD process was presented in detail, here a pre-
analysis step is added to improve the efficiency of the process, specially for larger
program that will require a lot of time for model checking.

The process presented in this section differs with the process presented in section
4.1 only by the pre-analysed step. An overview of the (extended) process is as fol-
lows. Prior to starting the process, the source code, and the properties represented
by annotations within the source code, must be defined. The preparation step for the
process is then to compile the source code and properties to produce an executable
binary in a manner that preserves the properties as annotations. The properties are
validated to hold on the executable binary using model checking. The executable bi-
nary is then injected with simulated faults to produce mutant binaries. Pre-analysis
is used to filter out mutants that fail to execute, or fail to yield an output. Mutants
that execute and produce an output are then passed to model checking. A difference
in the results of validation and checking the properties indicates a vulnerability to
the simulated fault injection. An illustration of the process is given in Figure 9.1
with the new extensions here shown in red. The rest of this section focuses on dis-
cussing the point of difference between this process and the previous process shown
is section 4.1.
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1bool grantAccess = false;

2bool badValue = false;

3int i = 0;

4while (i < PINSize) {

5if (PINCandidate[i] != PINTrue[i]) {

6badValue = true;

7}

8i++;

9}

10if (badValue == false) {

11grantAccess = true;

12}

FIGURE 4.3 – Motivating Example Code

Pre-analysis is performed on the mutant to quickly eliminate mutants that fail to
execute or fail to produce an output. Pre-analysis includes detection of: crashes, in-
finite loops, and error codes. This saves model checking effort when there is already
evidence that the properties will fail to hold.

The pre-analysed step is added just after the fault injection simulation step which
can have the following effects on the executable binary:

— The simulation of fault injection upon the executable binary can produce mu-
tant binaries which does not respect the binary structure, so the mutant binary
is no more valid for execution and will crash.

— The simulation of fault injection upon the executable binary can change the
loop condition in the produced mutant binary, and might create infinite loops,
in this case the binary will infinitely loop through itself and never terminate.

— The simulation of fault injection upon the executable binary can also change an
instruction in binary in a way that it will replace it with unknown instruction
which might lead the program to crash.

In all the cases discussed bellow the produced mutant binary will not be valid to
continue in the FIVD process. Since in the checking step, the process will be verifying
invalid binary, which cause the model checking to crash. Model checking time is
the important time compared to the other steps of the process. In the case of large
programs like the cryptographic algorithm implementation, the objective will be to
gain the maximum time we can in order to do the verification at the minimum of
time.

Mutants that pass pre-analysis are then checked using model checking. Differences
in the properties between the validation and the checking indicates that the fault
that was injected yields a change in behaviour that violates the properties, and so
could be exploited by an attacker.

4.2 FIVD Process Implementation

This section gives an overview of the FIVD process implementation. For more details
about the FIVD process implementation please refer to the Appendix A where detail
information is given about each step.
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The implementation here exploits existing open source tools, despite some having
limitations. This choice was made in order to focus upon a simple and feasible im-
plementation of the process as a proof of concept. Discussion about the limitations
of tools used in the implementation is in Section 7.1.

An overview of the implementation is as follows, and shown in Figure 4.4. The im-
plementation begins with the source code written in the C language and the proper-
ties represented in the source code by assert statements. The source code and prop-
erties are compiled to an executable binary by the GNU C Compiler (GCC) [57]. The
executable binary (including the properties contained within) is transformed into
an intermediate representation in Low Level Virtual Machine Intermediate Language
(LLVM-IR) by the Machine Code Semantics (MC-Sema) tool [136]. The properties
are then checked on the intermediate representation using the Low Level Bounded
Model Checker (LLBMC) [93, 129].

The fault injection is simulated on the executable binary using the SimFI tool in
order to produce mutant binary files according to the chosen fault model. The steps
to model check the properties on the executable binary are then repeated for the
mutant binaries. Finally, the results of model checking the executable binary and the
mutant binary are compared for differences.

More detailed
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FIGURE 4.4 – Implementation Diagram

FIVD Process Implementation for Large Programs

This section presents the implementation of the extended version of the FIVD pro-
cess. The implementation presented here differs from the one presented in the sec-
tion above by the additional pre-analyse step. This section will focus on the pre-
analysed step added to the FIVD process.

An overview of the implementation is as follows, and shown in Figure 4.5, the added
extensions is shown in red. The implementation begins with the source code written
in the C language and the properties represented in the source code by tool specific
annotations. The source code and properties are compiled to an executable binary
by the GNU C Compiler (GCC) [57]. The executable binary (including the proper-
ties contained within) is transformed into an intermediate representation in Low Level
Virtual Machine Intermediate Language (LLVM-IR) by the Machine Code Semantics
(MC-Sema) tool [136]. The properties are then checked on the intermediate repre-
sentation using the Low Level Bounded Model Checker (LLBMC) [93, 129]. The
SimFI tool is used to automatically generate the mutant binaries by injecting faults
into the executable binary according to the chosen fault model. Pre-analysis is then
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FIGURE 4.5 – Implementation Diagram with Pre-Analyse Step

performed that executes the mutant binaries and checks for various failures or non-
output states. If pre-analysis is passed, then the mutant binary is transformed via
MC-Sema and LLVM-IR to be checked by LLBMC as above. Finally, the results of
model checking the executable binary and each mutant binary are compared for dif-
ferences by matching the outputs of LLBMC.

The pre-analysis step is done using a script shell. The list of generated mutant bi-
naries are given as an input. The script loops through the list of mutant binaries,
executes each mutant binary, then based on the output result classify the mutant bi-
naries. If the mutant binary is executed with no error, the mutant binary is saved
as a valid mutant binary for the next step which is the checking step. If the mutant
binary execution outputs an error it is classified as well in order to understand why
the mutant binary is not executed. The mutant binary execution failure can be:

1. Related to an infinite loop which is created by the fault injection. The mutant
binary is considered to have an infinite loop if the execution does not end after
five seconds of execution.

2. Caused by illegal instruction set. The injection of fault model can modify the
binary in way that the modified binary will correspond to an unknown instruc-
tion set.

3. Due to an aborted instruction or segmentation fault or other errors. Based
on the information given above one can conclude that the simulation of fault
injection can cause a variety of failure in the mutant binary.

4.3 FIVD Process Methodology

Experiment Design

Each experiment fixes one of the six fault models, and one of the three properties
for the chosen encryption algorithm. Then the process is applied, testing all possible
mutations that can be produced by the fault model, applied to the binary for the
encryption algorithm, and testing for the property chosen. This yields thirty-six
different experiments (although results are merged in following sections).

Each experiment was run on a twin Intel Xeon E5-2660 with 2 × 14 cores (maximum
of 56 parallel threads) with 128GB of memory. The operating system is Ubuntu 16.04
(kernel version 4.4.0-21). The experiments are limited to a maximum of 17 parallel
instances since LLBMC uses approximately 7GB of memory, and thus this prevents
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any possibility of memory exhaustion. Multiple experiments were run in parallel on
identical hardware instances.

Runtime Information

In the experiments, model checking was the part that had major impact on the ex-
ecution time of our process. Note that we managed to parallelise the experiments.
This makes it hard to compute the exacte execution time 1, but speed up the process.

However, the experiments for the PRESENT algorithm for Property 1, using the FLIP

fault model, required the following time resources. The total number of mutants that
was generated after the fault injection situation step is 9192 mutants, and the number
of selected mutant to model check is 4797. To model check the selected mutant 3days
18hours 22minutes were required. Which gives an approximation of 1min 13s for
a mutant to be model checked by LLBMC.

Fault Models

This section details the fault models that are used in the experiments later on.

The FLIP fault model simulates the flipping of a single bit, either from 0 to 1 or from
1 to 0. This fault model is highly representative of many kinds of faults that can be
induced, ranging from those due to atmospheric radiation, to software effects such
as the rowhammer attack [76].

The Z1B fault model simulates setting a single byte to zero (regardless of prior value).
This fault model reflects a more malicious attack in general, and corresponds to a
commonly achievable attack in practice [123, 137].

The Z1W fault model represents setting an entire word to zero (again regardless of
prior value). This is similar in concept to the Z1B fault model and attack, but cap-
tures behaviour more related to the hardware model, since it reflects faulting some
piece of the hardware that operates on words rather than bits or bytes (such as the
bus).

The NOP fault model sets the targeted operation to a non-operation instruction for
the chosen architecture (in this case 0x90 for X86 architecture). The concept behind
this model is that it simulates skipping an instruction, a common effect of many
runtime faults [97]. However, due to the inconsistent alignment of instructions in
X86 this fault model may also change parts of other instructions or values when the
alignment does not match.

Both the JMP fault model and the JBE fault model simulate faulting the target ad-
dress of a jump instruction. In practice there are multiple jump instructions, either
unconditional jumps JMP or conditional jumps JBE. In both cases, the fault model
simulates any possible change to the jump target address. This fault model corre-
sponds to targeted attacks that attempt to bypass code, or significantly disrupt the
control flow [46, 110]. Note that this is a superset of other faults that may target the
same bits of the target address.

1. The fact that the experiments were conducted in parallel in different instances, and because the
experiments needed to be restarted due to problems on the configuration of the server. It was hard to
provide consistent runtime information for all the experiments.
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Chapter 5

Experimental Results

This chapter investigates the efficiency and the scalability of the FIVD process by
applying it to larger and real implementations. This chapter first demonstrates
how vulnerabilities are detected on the motivating example using the FIVD process.
Then, the FIVD process is applied to the implementations of two cryptographic al-
gorithms, PRESENT and SPECK, to show the efficacy and scalability of the process.
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5.1 Motivating example

This section presents experimental results obtained by applying the FIVD process
on the motivating example. For clarity, all the attacks and properties presented here
use the motivating example.

The experimental results show that by using the FIVD process a variety of fault
injection vulnerabilities can be detected. The rest of this section presents illustrative
1-bit fault injection attack examples that illustrate how changing a single bit in a
binary file can lead to a vulnerability in the program behaviour. A general solution
that can detect many kinds of fault injection attacks will be presented, showing how
easy is it to automate the FIVD process. The section will conclude with a variety of
different kinds of fault injection attacks to illustrate the generality of the process and
implementation.

Attack 1

Considering the motivating example in Figure 4.3, the first attack to consider is the
attack where changing a single bit changes the PINSize variable from 4 to 0.

Notice that in the motivating example source code, the loop that checks the digits of
the PINs iterates from i = 0 to i < PINSize, that the loop will be skipped (since 0

< 0 does not hold). If an attacker succeed in flipping a single bit that will change the
value of PINSize variable from 4 to 0, a vulnerability will be created since the PINs
are never checked against each other.

Therefore, any candidate PIN will lead to access being granted, and so the attacker
can use this fault injection attack to gain access (even when the candidate PIN they
supply does not match the true PIN).
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Property A

A simple property to detect such an attack would be to ensure that i reaches 4. This
can be achieved by taking the following property:

__llbmc_assert(i == 4);

inserted between lines 9 and 10. This property checks if after the loop the value of
the variable i is 4

With this property added to the source code the process was repeated with attack
1. The results of model checking the mutant binary reveal that the assertion was
violated and thus the model checking result differs form the validation result. Thus,
vulnerability to the first fault injection attack is detected.

Attack 2

An alternative 1-bit fault injection attack that has the same effect as Attack 1 is to
initialise the value of the variable i to 4. This will again grant access even when the
two PINs differ since the loop will be bypassed as before (this time since 4 < 4 does
not hold). Observe that since i is initialised to 4 this fault injection attack should
not violate the assert statement of Property A. This can be exploited by the attacker
in the same manner as Attack 1 to gain access with a candidate PIN that does not
match the true PIN.

The process was repeated with Attack 2 and Property A. As expected, the fault in-
jection vulnerability was not detected. Property A was not able to detect this fault
injection attack (simulation).

Property B

The above result illustrates that the choice of properties needs to consider the be-
haviour of the program rather than focus on particular variables that are incidental
to the program’s execution. Thus, a property that captures the idea that unequal
PINs should never lead to access being granted could be defined as follows.

__llbmc_assert( !(PINCandidate != PINTrue)

|| grantAccess == false);

where this property is inserted into the motivating example code after line 12. This
property expresses that if the two PINs are different then the access is not granted.

The process was then repeated for both Attack 1 & 2, and with Property B. As ex-
pected Property B was able to detect both fault injection vulnerabilities represented
by Attacks 1 & 2. This shows that considering the behaviour is more important

than considering the variables used to achieve the behaviour. That is, properties
should consider PINCandidate, PINTrue, and grantAcces rather than i or badValue.

Attack 3

Observe that Property B detects attacks that allow access when the PINs are not
equal, but does not consider when the PINs are equal. An alternative attack could
be to deny access even to a user who knows the correct PIN. Consider the 1-bit fault
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injection attack that changes the value of true (represented in binary by 0...01) to
false (represented in binary by 0...00).

The objective of this attack is blocking authorised access rather then allowing unau-
thorised access as in Attack 2.

Now consider this attack upon the motivating example line 11, changing grantAcces

= true to be

grantAccess = false;

and thus preventing any access even when the PINs are equal.

The process was then repeated using this new Attack 3 with Properties A & B. As
expected neither property was able to detected this attack. Property A failed since
the attack does not effect the iterator i. Property B failed since when the PINs are
equal no further behaviour is considered.

The pecification of a property that will capture the general wanted behaviour from
the program is needed.

Property C

To also account for Attack 3, the original Property B needs to be extended to also
consider the behaviour when the PINs are equal. Indeed, the ideal behaviour of the
code can be represented by the following property.

__llbmc_assert(

( !(PINCandidate != PINTrue)

|| grantAccess == false)

&& ( !(PINCandidate == PINTrue)

|| grantAccess == true));

This ensures that when the PINs are unequal access is not granted, and when the
PINs are equal then access is granted. Property C is added to the motivating example
in the same place as Property B would be; after line 12.

The process was then repeated with all three Attacks (1, 2 & 3) using Property C. As
expected Property C was able to detect all three fault injection attacks.

Property C succeed in capturing all the three attack because it was specified to cap-
ture the behaviour of the program. Contrary to the previous properties (A and B),
property C does not consider only single variable value, or a single behaviour of the
program, but expresses the general behaviour of the program.

Other Attacks

This section considers several more fault injection attacks in less detail than those
above. These include several more 1-bit fault injection attacks, and then other kinds
of attacks, culminating in an attack that can only be effected in the binary and not in
the source or by “compiling” directly to an intermediate representation.

There are several other 1-bit fault injection attacks that can be performed against
the motivating example. Such attacks include changing the initialisation value of
variables such as grantAccess and badValue, e.g. at line 6 changing the initialisation
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badValue = true to instead be badValue = false. These are all detected by at least
Property C, if not also Property B.

A different kind of attack that targets the control flow of the program is to change
the target of a jump instruction. For example, the jump from the conditional on line
5 of the motivating example could change from skipping the following instruction
on line 6, to always executing line 6. Thus badValue = true (line 6) would always
be executed, regardless of the outcome of the conditional. This can be done by mod-
ifying three bits (or one byte) of the target (relative) address of the jump, from 0000

0111 to 0000 0000. This attack was successfully detected by Property C (but not
Properties A or B).

A more significant attack on the behaviour of an instruction is to simply change the
instruction to a NOP (non-operation). Consider in the motivating example when a
fault injection changes the instruction that represents line 6 (Figure 4.3) badValue =

true; to a NOP. This requires modifying 4 bytes (on the X86 32-bit architecture used
here). The change would allow access for any candidate PIN (by never recording
differences to badValue). This attack was successfully detected by Properties B and
C (but not Property A).

Instead of changing a subtle behaviour like a jump, or simply wiping an instruction
to a NOP, another fault injection attack is to change the instruction type, e.g. chang-
ing a CMP instruction to a MOV instruction. This can be done on the CMP instruction that
compares the values PINCandidate[i] != PINTrue[i] on line 5 of the motivating
example. This requires modifying 3-bits of the executable binary, from 0011 1011

to 1000 1011. The result of this change is that the following line that sets badValue
to true will always be executed. This change prevents access even when the correct
candidate PIN is provided, similar to Attack 3. As expected, this attack is success-
fully detected by Property C (but not Properties A or B).

One attack that is of particular interest here, is an attack that can be represented in
the executable binary but not in source code or from “compiling” the source code
to an intermediate language, such as C and LLVM-IR, respectively. An example of
this kind of attack is the modification of the return value stored in the return register
(eax on X86 architectures). This kind of attack can be simulated and detected using
the process and implementation here.

To properly handle this attack requires a function call, and so the motivating ex-
ample is modified by placing the code in Figure 4.3 inside a function that returns
grantAccess. The attack works by altering the returned value from this new func-
tion. The return value is stored in the eax register, for the motivating example this is
handled by the binary operation corresponding to the assembly instruction below.

mov eax, DWORD PTR [ebp-0x8]

The attack is then to change the value loaded into eax so that the function behaviour
is changed. For example, by changing the value loaded into eax from 0000 1000

to 0000 1100 the returned value of grantAccess can change from False to True,
so the access will be granted even if the two PINs are not equal. (Note that if the
returned value is already 0000 1100 then this can be ignored, or the value changed
to 0000 1000 inverting the function behaviour). This attack is detected by Property
C, although Property C needs to be located outside the function call so as to check
the value of grantAccess after the function return (or more precisely the returned
value that corresponds to grantAccess).
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These attacks illustrate that the process and implementation here are not limited to
a single fault model or kind of fault injection attack. Thus, the same process and im-
plementation can be used for a variety of fault models and fault injection attacks, as
long as some consideration is taken to choose the right properties. Further, the pro-
cess and implementation here can detect fault injection attacks that cannot be found
by checking the source code or intermediate representation alone; the executable
binary must be part of the process and implementation.

Computational Data

This section discusses the experimental results of automating the process and im-
plementation of this part. This automation is straightforward once all the tools are
available.

To support the automation experiments, a SimFI fault injection tool was created.
This tool takes an executable binary, and produces mutant binary based on the cho-
sen fault model. For illustrative reason, we fixed the fault model for this experiment
to be zeroing one byte, this fault model consists at replacing one byte with 0. This
fault injection model is naive, but simple to implement and conduct experiments to
test the automation of the process and implementation.

To estimate the feasibility of finding arbitrary fault injection vulnerabilities in the
executable, the following experiment was conducted. A script was written that takes
a source code and properties, and compiles these to an executable binary with GCC.
This executable binary is then validated to ensure that the properties hold. The SimFI
fault injection tool was used to generate mutant binaries for each possible byte in
the executable binary being set to 0. The script then enters into a loop over the
mutant binaries that generates the LLVM-IR for the mutant binary and model checks
the properties on this LLVM-IR. The result of this model checking is then used to
determine if the injected fault creates a vulnerability. The runtime and number of
fault injection vulnerabilities was counted and reported at the end of the experiment.

This script was run over a version of the motivating example (Figure 4.3). The fault
injection tool was limited to injecting faults into the .text area of the executable
binary that corresponds to the compiled source code (to reduce time wasted model
checking fault injection vulnerabilities in the header or other unrelated parts of the
executable binary).

The executable binary produced by GCC in this case was 3024 bytes. The .text area
was 159 bytes and thus 159 1-byte fault injection attacks were simulated, yielding
159 mutant binaries. The following experiments were conducted on a virtual ma-
chine configured with one CPU, and 7662 MB of RAM running Linux Ubuntu 14.04
LTS. The virtual machine was hosted on a Macbook Pro with 3,1 GHz Intel Core i7
processor, 16 GB of RAM, running OS X EL Capitan 10.11.

Three different experiments were conducted, testing the three different properties
presented earlier. An overview of the result is given in Table 5.1. The first experi-
ment with Property A detected 36 fault injection vulnerabilities, and had a runtime
of 7 minutes. The second experiment with Property B detected 37 fault injection vul-
nerabilities, and had runtime of approximately 1 hour. The third experiment with
Property C detected 37 fault injection vulnerabilities, and had a runtime of approx-
imately 2 hours. The main cost in time was the model checking by LLBMC, as is
clearly shown by the significant difference made by the choice of property. The re-
sults showed that the specified property had a direct impact on the required time.
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PRESENT SPECK
FLIP Z1B Z1W NOP JMP JBE FLIP Z1B Z1W NOP JMP JBE

Model Check 4797 411 3 400 782 613 4199 492 38 316 230 83
Infinite Loop 464 44 0 63 545 69 80 11 1 7 72 0

Illegal Instruction 473 5 0 55 26 63 315 2 1 38 16 8
Aborted 355 23 2 49 187 141 110 6 4 8 14 8

Segmentation Fault 3099 666 1144 589 1263 1639 3525 519 986 659 429 155
Other Errors 4 0 0 0 2552 2830 11 0 0 2 259 766

TABLE 5.1 – Overview of Fault Injection Pre-Analyse Results

Observe that the number of fault injection attacks to test in this manner is linear in
the size of the binary executable. Thus, automatically testing all such fault injection
attacks is feasible, particularly since the implementation can be easily run in parallel.

Property Vulnerabilities Detected Runtime
Property A 36 7 minutes
Property B 37 1 hour
Property C 37 2 hours

FIGURE 5.1 – Experimental Results for the Motivating Example

5.2 Cryptographic Algorithm

This section presents the results of experiments on PRESENT and SPECK algorithms.
This includes the results of both the pre-analysis and the model checking. The exper-
iment design is presented first, then overviews of pre-analysis and model checking,
and finally vulnerabilities are discussed in PRESENT and SPECK.

For the conducted experiments three properties were considered that can be applied
to the encryption algorithms.

Property 1 is to check whether the encryption was conducted successfully, i.e. the ci-
phertext at the end of the encryption function corresponded was correct. This allows
the detection of any kind of damage to the encryption algorithm by fault injection.
However, further properties are considered to examine more specific vulnerabilities.

Property 2 checks whether the ciphertext is equal to the plaintext, i.e. the encryption
can be bypassed by fault injection. This is an extreme vulnerability where a fault is
able to entirely skip the encryption and render the binary useless (albeit still appear-
ing to execute without error state and produce a “ciphertext”).

Property 3 is specific to each encryption algorithm, and results in a key recovery at-
tack when combined with a cryptanalytical attack (CA). The CAs are: for PRESENT
skipping the last (31st) round [52, 144], and for SPECK to output the result of imple-
menting only 9 or 10 rounds [42].

Pre-Analysis Results

The result of the pre-analysis can be seen in Table 5.1. The effect of the different fault
models is fairly consistent on both algorithms.

The FLIP fault model yields many different behaviours, but the vast majority still
produce output that needs to be model checked to determine the effect. Infinite
loops, illegal instructions, and aborted results from execution are common, but all
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PRESENT SPECK
FLIP Z1B Z1W NOP JMP JBE FLIP Z1B Z1W NOP JMP JBE

P
ro

p
.1 Good Ciphertext 1080 52 0 40 96 82 1536 205 1 86 10 0

Bad Ciphertext 2249 116 1 173 532 362 2514 264 31 188 216 83
Crashed 1471 239 2 186 154 169 149 24 6 42 4 0

P
ro

p
.2 Leak Plaintext 0 0 0 0 1 8 3 0 0 2 2 2

Not Leak Plaintext 3285 162 1 201 439 445 671 294 17 224 88 2
Crashed 1472 246 2 190 153 91 3433 175 8 64 4 0

P
ro

p
.3 CA Vulnerable 48 0 0 5 10 1 0 0 0 0 0 0

Not CA Vulnerable 3247 163 1 199 430 447 2244 401 17 255 90 4
Crashed 1466 245 2 186 152 90 1860 49 8 65 4 0

TABLE 5.2 – Overview of Fault Injection Model Checking Results

minority results. Segmentation faults are highly likely, but not as likely as an output.
Other errors are very rare.

Both the Z1B and NOP fault models were highly likely to cause a segmentation fault.
The next most likely outcome was an output that required model checking. Infinite
loop, illegal instruction, and aborted were very rare, and other errors extremely rare
(only evident in SPECK). The similarity of results for these fault models is not sur-
prising, since they both change the value of a byte in the same manner.

The Z1W fault model almost always caused a segmentation fault. All other outcomes
were extremely rare or non-evident. In particular, this meant that very few required
model checking and so the pre-analysis was highly effective at reducing the cost
here.

The JMP and JBE fault models predominantly produced other errors or segmenta-
tion faults, although a large number of mutants still required model checking. Many
segmentation faults are expected since X86 has variable size instructions and often
jumps target the middle of instructions, yielding invalid instructions or arguments.

Observe that the pre-analysis reduced the total number of mutants requiring model
checking from 110157 to 37089, thus reducing the model checking effort by 66.33%.

Model Checking Overview

An overview of the results of model checking can be seen in Table 5.2. Observe that
the most interesting result of each property has been highlighted in the table. The
rest of this section overviews these results in a broad sense, while each encryption
algorithm is discussed in detail in the following sections.

The validity of the model checking results was manually verified by randomly se-
lected samples from the outcomes in Table 5.2. Several 1 mutants were checked from
each combination of: encryption algorithm, property, and fault model. This resulted
in manual verification of the results for 265 mutants to ensure the results were cor-
rect.

The evidence from Property 1 suggests that the investigated implementations of
both PRESENT and SPECK are somewhat resistant to fault injection attacks, with
approximately 25.78% of mutants still yielding correct output. Conversely 74.22%

1. Between 10 and 15 mutants, or all mutants if the total was less than 10.
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FIGURE 5.2 – Model Checking Results for PRESENT

produced some kind of output, usually a faulty output that does not match the vul-
nerabilities considered here 2. Although Property 1 is specified to identify any in-
correct output, the correct outputs are those of most significance here due to overlap
between “Bad Ciphertext” and the other two properties.

Property 2 identifies the most severe outcome considered here; when the encryption
algorithm appears to operate correctly but outputs the plaintext. Observe that there
are very few fault injection attacks that can completely bypass the encryption algo-
rithm, only 9 for PRESENT and 9 for SPECK. Detailed discussion of these follows in
later sections.

Property 3 identifies specific Cryptanalytic Attacks (CA) vulnerabilities that an at-
tacker can use to learn information about the key [24, 144]. These tend to be specific
to the behaviour of the algorithm considered, e.g. skipping a specific iteration of a
loop, yet still significant to security. These turned out to be achievable frequently (64
occurrences) and with most fault models upon PRESENT, but not achievable with
any of the fault models considered here on SPECK.

Observe that several crash results occurred during model checking. These are due
to various different outcomes, all listed as “Crashed” in Table 5.2. In 8.08% of cases
these crashes were due to MC-Sema failing to parse the mutant into LLVM-IR. The
vast majority, 91.9%, were due to failures of LLBMC, in particular segmentation
faults in the SMT solver (STP with MiniSAT). Lastly, in the remaining 0.02% of cases
LLBMC was unable to produce reliable output, stating that multiple mutually ex-
clusive properties held 3.

PRESENT Vulnerabilities

This section explores the 73 vulnerabilities found in PRESENT. Only a small number
of these (9 occurrences) were found to violate Property 2 and so yield the plaintext.
The majority (64 occurrences) were CA vulnerabilities that allow the key to be cal-
culated from a number of ciphertexts.

All Property 2 vulnerabilities occurred from modifications to jump instructions in
the code, 1 for JMP and 8 for JBE. In practice these all succeeded by changing the

2. This does not preclude these outputs corresponding to a different vulnerabilities such as [42,
105].

3. This is clearly a limitation of LLBMC and was not attempted to be rectified here. Despite LLBMC
being bounded, these results did not indicate the bound was reached. Many of these results were
manually verified and found to only hold true for Property 1, i.e. produce a bad ciphertex.
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FIGURE 5.3 – Model Checking Results for SPECK

control flow to skip the entire algorithm and appear in only 2 places in the binary
labeled with “2” in Figure 5.2.

The JMP occurs early in the code as a wrapper around the main encryption algo-
rithm, and can be exploited to jump past the encryption. There is only 1 vulnerabil-
ity here because any earlier target would still execute some part of the encryption
(or crash), and any later target would jump beyond the limits of the code.

The JBE vulnerabilities are all from the same address, albeit there are multiple tar-
gets that the jump can be modified to and still yield successful execution. This jump
is from the comparison for the first loop, and can instead be modified to jump past
the first and second encryption loops (almost to the end of the execution). There are
multiple targets here since there are several places in the last loop of the algorithm
that do not change the output (and the conditional for exiting the loop holds due to
incorrect stack pointer offsets). There are also targets beyond the end of the loop,
although these can lead to program crashes depending on the target address.

Property 3 vulnerabilities, labeled “3” in Figure 5.2, are more common and can be
achieved with a larger variety of fault models. Like the JMP of Property 2, the JBE
here has a single address that can be jumped to yield a CA vulnerability. There are
however multiple JMP vulnerabilities, all derived from changes to the exit jump of
the main encryption loop being re-targeted to skip over the last round of encryption.

The FLIP and NOP vulnerabilities to Property 3 are all located towards the end of
the binary, since this is where the last round of encryption is executed. The majority
of these are minor changes to various instructions that prevent the last round be-
ing properly executed. These include: modifying the loop index in the last round
(e.g. from 0 to 32), changing registers (e.g. loading to/from %eax instead of %ecx),
changing values (e.g. changing while loop bound from > 7 to > −7), changing the
comparison instruction to something else (e.g. cmp to sub), etc.

SPECK Vulnerabilities

This section explores the 9 vulnerabilities found in SPECK. All of these were found
to violate Property 2 and so yield the plaintext. The lack of Property 3 vulnerabilities
is discussed below.

The Property 2 violations were obtained with 4 fault models, FLIP, NOP, JBE, and
JMP. The FLIP vulnerabilities occurred due to: 1 damaging the stack pointer and so
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avoiding loops and skipping the whole algorithm, the other 2 changed the round
key to prevent the encryption acting effectively.

The NOP vulnerabilities occurred indirectly by inserting the value for a NOP in-
struction (0x90) into another instruction. The first, in the jump instruction for the
key generation loop and so skipping past the key generation. The second, in the en-
cryption loop and so initialised the loop iterator to 0x90, immediately skipping the
encryption.

The JBE and JMP both skip the encryption loop by jumping forward to the same 2
locations after the encryption has completed. The JBE is at the end of key generation,
and the JMP at the beginning of the encryption.

Property 3 vulnerabilities were not found with any of the fault models tested here.
This is unfortunate but not surprising since the implementation does not have sim-
ple code path that can be exploited to yield this particular vulnerability. (Unlike
PRESENT where the last round is executed in a separate loop.)

The most likely candidate fault model would have been FLIP where some simple flip
of a variable or value could have altered the number of encryption rounds executed.
Unfortunately, since 21 rounds are executed and CA vulnerabilities have been pub-
lished for 9 or 10 rounds, the numbers 21 and 9 or 10 are not a single bit flip apart.
However, to validate the experiments, a manual fault injection of setting the loop
bound value to 10 was tested and found to be CA vulnerable with the process.
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Chapter 6

Details on the Experimental
Results and Implementation for the
PRESENT Algorithm

This chapter demonstrate in details how the results presented in Chapter 4 were ob-
tained. By following the steps of the extended version of the FIVD process presented
in Chapter 5. This chapter takes the PRESENT algorithm as an example, shows how
the properties are first specified on the C source code implementation. How the re-
sults were returned. Then, how the obtained results were verified, to check if the
obtained results were correct, and can be explained.

Property Specification

Listing 6.1 presents the PRESENT algorithm C implementation used in Chapter 4.
Observe that the properties were asserted from line 150 to 160 in the Listing 6.1. The
properties correspond to the three verified ones in Chapter 4.

— Property 1 checks if the encryption was conducted successfully, i.e. the cipher-
text at the end of the encryption function corresponds to the correct one.

_ _ l l b m c _ a s s e r t ( ( s t a t e [0]==0 xcc ) && ( s t a t e [1]==0 x71 ) && ( s t a t e
[2]==0 x59 ) && ( s t a t e [3]==0 x6c ) && ( s t a t e [4]==0 x15 ) && (
s t a t e [5]==0 x58 ) && ( s t a t e [6]==0 xcd ) && ( s t a t e [7]==0 x47 ) ) ;

— Property 2 checks if at the end of the encryption function the ciphertext is equal
to the plaintext, i.e. the encryption can be bypassed by fault injection.

_ _ l l b m c _ a s s e r t ( ( s t a t e [ 0 ] ! = p l a i n t e x t [ 0 ] ) || ( s t a t e [ 1 ] ! =
p l a i n t e x t [ 1 ] ) || ( s t a t e [ 2 ] ! = p l a i n t e x t [ 2 ] ) || ( s t a t e [ 3 ] ! =
p l a i n t e x t [ 3 ] ) || ( s t a t e [ 4 ] ! = p l a i n t e x t [ 4 ] ) || ( s t a t e [ 5 ] ! =
p l a i n t e x t [ 5 ] ) || ( s t a t e [ 6 ] ! = p l a i n t e x t [ 6 ] ) || ( s t a t e [ 7 ] ! =
p l a i n t e x t [ 7 ] ) ) ;

— Property 3 correspond to a cryptanalytical attack (CA) [52, 144] that can recover
the key, i.e. It is possible to skip the last (31st) round by fault injection.

_ _ l l b m c _ a s s e r t ( ( s t a t e [ 0 ] ! = 0 x17 ) || ( s t a t e [ 1 ] ! = 0 x89 ) || ( s t a t e
[ 2 ] ! = 0 xe6 ) || ( s t a t e [ 3 ] ! = 0 xf4 ) || ( s t a t e [ 4 ] ! = 0 xb9 ) || (
s t a t e [ 5 ] ! = 0 xc8 ) || ( s t a t e [ 6 ] ! = 0 x95 ) || ( s t a t e [ 7 ] ! = 0 x43 ) ) ;
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The variable state[] in this implementation correspond to the ciphertext, this vari-
able contains the value of the ciphertext through the encryption process. The vari-
able plaintext[] contains the plaintext value, specified in the start of the imple-
mentation line 22 in Listing 6.1.

For the rest of this chapter, the focus will be on Property 2. It is an interesting vul-
nerability, that will allow the attacker to get the plaintext, without needing the key.
The following sections will presents how the results were obtained, and then how it
is possible to understand the obtained results.

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Written and Copyright (C) by Dirk Klose
3 and the EmSec Embedded S e c u r i t y group of Ruhr−U n i v e r s i t a e t Bochum .
4 All r i g h t s reserved .
5
6 Contact l ightweight@crypto . rub . de f o r comments & quest ions .
7 This program i s f r e e software ; You may use i t or p a r t s of i t or
8 modifiy i t under the fol lowing terms :
9

10 I f you are i n t e r e s t e d in a commercial use
11 please c o n t a c t ’ ’ ’ l ightweigth@crypto . rub . de ’ ’ ’
12 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
13
14 // Include−f i l e
15 # include < s t d i n t . h>
16
17 i n t main ( void )
18 {
19 const u i n t 8 _ t sBox4 [ ] = {0 xc , 0 x5 , 0 x6 , 0 xb , 0 x9 , 0 x0 , 0 xa , 0 xd , 0 x3 , 0 xe , 0 xf , 0 x8 , 0 x4 , 0 x7 , 0 x1 , 0 x2 } ;
20 // Input values
21 u i n t 8 _ t key [ ] = {0 x23 , 0 x40 , 0 xa2 , 0 x63 , 0 xb4 , 0 x56 , 0 x89 , 0 x6b , 0 x31 , 0 x6c } ;
22 u i n t 8 _ t p l a i n t e x t [ ] = {0 x69 , 0 x6b , 0 x86 , 0 xa4 , 0 x85 , 0 x22 , 0 x1b , 0 xc8 } ;
23 v o l a t i l e u i n t 8 _ t s t a t e [ 8 ] ;
24 // Counter
25 u i n t 8 _ t outAssert [ 8 ] ;
26 u i n t 8 _ t i = 0 ;
27 // pLayer v a r i a b l e s
28 u i n t 8 _ t p o s i t i o n = 0 ;
29 u i n t 8 _ t element_source = 0 ;
30 u i n t 8 _ t b i t _ s o u r c e = 0 ;
31 u i n t 8 _ t e lement_des t inat ion = 0 ;
32 u i n t 8 _ t b i t _ d e s t i n a t i o n = 0 ;
33 u i n t 8 _ t temp_pLayer [ 8 ] ;
34 // Key scheduling v a r i a b l e s
35 u i n t 8 _ t round ;
36 u i n t 8 _ t save1 ;
37 u i n t 8 _ t save2 ;
38 u i n t 8 _ t j =0 ;
39 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Set up s t a t e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

40 f o r ( j =0 ; j <8 ; j ++)
41 {
42 s t a t e [ j ] = p l a i n t e x t [ j ] ;
43 }
44
45 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Encryption ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

46 round =0; // change the value of the v a r i a b l e ’ round ’ from O to 64 to skip the while loop
47 while ( round <31)
48 //do
49 {
50 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ addRoundkey ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

51 i =0;
52 while ( i <=7)
53 //do
54 {
55 s t a t e [ i ] = s t a t e [ i ] ^ key [ i + 2 ] ;
56 i ++;
57 }
58 //while ( i <=7) ;
59 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ sBox ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

60 while ( i >0)
61 //do
62 {
63 i −−;
64 s t a t e [ i ] = sBox4 [ s t a t e [ i ]>>4]<<4 | sBox4 [ s t a t e [ i ] & 0xF ] ;
65 }
66 //while ( i >0) ;
67 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ pLayer ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

68 f o r ( i =0 ; i <8 ; i ++)
69 {
70 temp_pLayer [ i ] = 0 ;
71 }
72 f o r ( i =0 ; i <64; i ++)
73 {
74 p o s i t i o n = (16∗ i ) % 6 3 ; //Art i thmet i c c a l c u l a t i o n of the pLayer
75 i f ( i == 63) //except ion f o r b i t 63
76 p o s i t i o n = 6 3 ;
77 element_source = i / 8 ;
78 b i t _ s o u r c e = i % 8 ;
79 e lement_des t inat ion = p o s i t i o n / 8 ;
80 b i t _ d e s t i n a t i o n = p o s i t i o n % 8 ;
81 temp_pLayer [ e lement_des t inat ion ] |= ( ( s t a t e [ element_source ]>> b i t _ s o u r c e ) & 0x1 ) << b i t _ d e s t i n a t i o n ;
82 }
83 f o r ( i =0 ; i <=7; i ++)
84 {
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85 s t a t e [ i ] = temp_pLayer [ i ] ;
86 }
87 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ End pLayer ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

88 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Key Scheduling ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

89 save1 = key [ 0 ] ;
90 save2 = key [ 1 ] ;
91 i = 0 ;
92 while ( i <8)
93 //do
94 {
95 key [ i ] = key [ i + 2 ] ;
96 i ++;
97 }
98 //while ( i <8) ;
99 key [ 8 ] = save1 ;

100 key [ 9 ] = save2 ;
101 i = 0 ;
102 save1 = key [ 0 ] & 7 ; //61−b i t l e f t s h i f t
103 while ( i <9)
104 //do
105 {
106 key [ i ] = key [ i ] >> 3 | key [ i +1] << 5 ;
107 i ++;
108 }
109 //while ( i <9) ;
110 key [ 9 ] = key [ 9 ] >> 3 | save1 << 5 ;
111
112 key [ 9 ] = sBox4 [ key[9] > >4] < <4 | ( key [ 9 ] & 0xF ) ; //S−Box a p p l i c a t i o n
113
114 i f ( ( round +1) % 2 == 1) //round counter addi t ion
115 key [ 1 ] ^= 1 2 8 ;
116 key [ 2 ] = ( ( ( ( round +1) >>1) ^ ( key [ 2 ] & 15) ) | ( key [ 2 ] & 240) ) ;
117
118 i f ( round == 17) {
119 f o r ( i =0 ; i <8 ; i ++) {
120 outAssert [ i ]= s t a t e [ i ] ;
121 }
122 }
123 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ End Key Scheduling ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

124 round ++;
125 }
126 //while ( round <31) ;
127 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ addRoundkey ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

128 i = 0 ; // change the value of the v a r i a b l e ’ i ’ from O to 64 to skip the while loop
129 while ( i <=7)
130 //do // f i n a l key XOR
131 {
132 s t a t e [ i ] = s t a t e [ i ] ^ key [ i + 2 ] ;
133 i ++;
134 }
135 //while ( i <=7) ;
136
137 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ End addRoundkey ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

138
139 // i n t x =0;
140 // while ( x < 8)
141 // {
142 // p r i n t f ( " 0 x%02x " , s t a t e [ x ] ) ;
143 // x ++;
144 // }
145
146 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ End Encryption ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

147
148 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ START P r o p e r t i e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

149
150 //Property 1 : Equal c o r r e c t c i p h e r t e x t
151 // _ _ l l b m c _ a s s e r t ( ( s t a t e [0]==0 xcc ) && ( s t a t e [1]==0 x71 ) && ( s t a t e [2]==0 x59 ) && ( s t a t e [3]==0 x6c ) && ( s t a t e [4]==0

x15 ) && ( s t a t e [5]==0 x58 ) && ( s t a t e [6]==0 xcd ) && ( s t a t e [7]==0 x47 ) ) ;
152
153 //Property 2 : P l a i n t e x t equal c i p h e r t e x t
154 _ _ l l b m c _ a s s e r t ( ( s t a t e [ 0 ] ! = p l a i n t e x t [ 0 ] ) || ( s t a t e [ 1 ] ! = p l a i n t e x t [ 1 ] ) || ( s t a t e [ 2 ] ! = p l a i n t e x t [ 2 ] ) || ( s t a t e

[ 3 ] ! = p l a i n t e x t [ 3 ] ) || ( s t a t e [ 4 ] ! = p l a i n t e x t [ 4 ] ) || ( s t a t e [ 5 ] ! = p l a i n t e x t [ 5 ] ) || ( s t a t e [ 6 ] ! = p l a i n t e x t [ 6 ] ) ||
( s t a t e [ 7 ] ! = p l a i n t e x t [ 7 ] ) ) ;

155
156
157 //Property 3 : Equal to the Last round
158 //0x17 0x89 0 xe6 0 xf4 0xb9 0 xc8 0x95 0x43
159 // _ _ l l b m c _ a s s e r t ( ( s t a t e [ 0 ] ! = 0 x17 ) || ( s t a t e [ 1 ] ! = 0 x89 ) || ( s t a t e [ 2 ] ! = 0 xe6 ) || ( s t a t e [ 3 ] ! = 0 xf4 ) || ( s t a t e [ 4 ] ! = 0

xb9 ) || ( s t a t e [ 5 ] ! = 0 xc8 ) || ( s t a t e [ 6 ] ! = 0 x95 ) || ( s t a t e [ 7 ] ! = 0 x43 ) ) ;
160
161 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ END P r o p e r t i e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

162
163 return 0 ;
164
165 }

LISTING 6.1 – PRESENT C Implementation with properties

Obtaining the Results

As it was explained in Chapter 4, in order to obtain the results the FIVD process
implementation was adopted (see Figure 4.5, page 46).
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The bash script in Listing 6.2 shows in a summarised way the FIVD process im-
plementation. The script takes the C code within the properties as input, then it
generates the executable binary within the properties. The first step consists of val-
idating the property upon the executable binary. If the property is validated, then
the second step consists in generating the mutant binaries, by simulating the chosen
fault model on the executable binary. The third step is the pre-analyse step, this step
eliminates the mutant binaries that fail to execute, or fail to yield an output. The
fourth step consists in model checking the mutant binaries that execute and produce
an output which were passed from the third step.

The pre-analysed step here, executes the mutant binaries in order to classify them.
The mutant binaries are run on the hardware. Note that, for this case study (of
cryptographic block ciphers) only a single trace (single input) of the mutant binary is
necessary. However, for other case studies with different information flows multiple
traces (inputs) may be required in order to capture all possible branches.

# !/ bin/bash

filenameC=$1 # The source code f i l e of program to v e r i f y
s i z e =$2 # The s i z e of the program

# Step 1 : Val idat ion of the property + Step 2 : Generate Mutant i f
v a l i d a t e

./ Val idat ion−GenMutant . sh $filenameC $ s i z e

# Step 3 : Preparat ion before the v e r i f i c a t i o n
./ PrepareMutant . sh $filenameC $ s i z e

# Step 4 : V e r i f i c a t i o n of the s e l e c t e d mutants using model checking
./ VerifOnlyNoCrashMutant . sh

LISTING 6.2 – Bash Script

Results

Listing 6.3 shows a possible output when running the script in Listing 6.2. The given
information will allows tracking the state of the experiments.

The v e r i f i c a t i o n may take few minutes
The property holds on the binary the generat ion and v e r i f i c a t i o n of

mutants w i l l s t a r t
The mutants are generated
Pre−Analyse Step i s done
S t a r t the v e r i f i c a t i o n
The v e r i f i c a t i o n may take few minutes
The v e r i f i c a t i o n may take few minutes
t e s t mutant number 4
The v e r i f i c a t i o n may take few minutes
t e s t mutant number 2
t e s t mutant number 1
The v e r i f i c a t i o n may take few minutes
t e s t mutant number 3
. . .

LISTING 6.3 – Terminal Output
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The results of the experiments are stored in files, which are labeled based on the
verified property and the chosen fault model. Listing 6.4 presents a part of a file
where, the results of the pre-analyse step for the PRESENT algorithm using the FLIP

fault model, are stored. Each line in the Listing 6.4 gives two information:

— the mutant binary number, which is used to indicates the address of the byte
that was modified, and

— the result of the pre-analyse step.

If we take as an example the first line in Listing 6.4: 52-0,segFault. 52-0 corre-
sponds to the number of the mutant, but it also indicates the the address of the bit
that was modified by the fault injection simulation, so here the fault injection simu-
lation modified the bit 0 in the byte 52. segFault correspond the pre-analysed step
result for the mutant 52-0, here it indicates that the mutant fails to execute due to a
segmentation fault.

52−0, segFaul t
52−1, segFaul t
52−2, segFaul t
52−3, segFaul t
52−4, segFaul t
52−5, succeed − Good cipher t e x t
52−6, succeed − Good cipher t e x t
52−7, succeed − Good cipher t e x t
53−0, succeed − Good cipher t e x t
53−1, segFaul t
53−2, segFaul t
53−3, segFaul t

LISTING 6.4 – The Pre-Analyse Step Results For Property 2 Using
FLIP Fault Model

The selected mutants after the pre-analyse step are then verified. Listing 6.5 presents
a part of a file in which the results of the verification of Property 2 on the PRESENT
algorithm using the FLIP fault model are stored. Similarly to Listing 6.4, each line in
Listing 6.5 gives the mutant number and the result of its verification. Here Verified

indicates that the property holds, which means that the ciphertext was not equal
to the plaintext, so in this case the fault injection did not create a vulnerability.
Violated indicates that the property was violated, this means that the fault injec-
tion created a vulnerability. In the other cases with output Crashed or CFG not

generated the verification was not performed due to problems in the model checker.

52−5, V e r i f i e d
52−6, V e r i f i e d
52−7, V e r i f i e d
53−0, V e r i f i e d
55−0,Crashed
55−2,Crashed
55−3, V e r i f i e d
55−4, V e r i f i e d
55−5, V e r i f i e d
55−6, V e r i f i e d
55−7, V e r i f i e d
56−0,CFG not generated

LISTING 6.5 – The Verification Results For Property 2 Using FLIP

Fault Model
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Understanding the results

After obtaining the results, it is important to understand why the simulation of a
specific fault model created a vulnerability.

In the PRESENT algorithm, the Property 2 was violated only two times by fault mod-
els JMP and JBE. Listing 6.6, shows the results of the three defined properties on
PRESENT obtained by applying the JBE fault model. Each line gives three informa-
tion:

— the mutant binary number where the vulnerability was detected.

— the fault model that was applied.

— the property that was checked.
1 324 , F5 , P1
2 512 , F5 , P1
3 713 , F5 , P1
4 762 , F5 , P1
5 828 , F5 , P1
6 929 , F5 , P1
7 1117 , F5 , P1
8 1136 , F5 , P1
9 1136 , F5 , P2

10 713 , F5 , P3

LISTING 6.6 – The Results For Property 2 Using JBE Fault Model

Observe that for Property 2, only one vulnerability was detected (see line 9 in Listing
6.6). From the experimental result information, it is known that the fault injection
targeted the conditional instruction at byte address 0x043c. This corresponds to the
opcode 0F86DAFCFFFF, which corresponds to the instruction JBE 0xFFFFFCE.

In order to understand the correspondence between this instruction and the source
code, we generate a listing file which is a mixed source and assembly list using
GCC. The generated file combines the source code and the assembly code, this file is
generally used in debugging programs.

Listing 6.7 presents the part of the listing file that shows the JBE instruction. Notice
that in line 14, JBE .L24 corresponds to the instruction JBE 0xFFFFFCE. This is the
conditional jump related to the while loop in line 47 Listing 6.1.

In assembly the while loops are as follows:

— enter the loop,

— jump to the end of the loop,

— check the condition,

— if the condition is true, jump back to the start of the loop,

— if the conduit is false, exit the loop.

In this case the conditional sum corresponds to the jump at the end of the while
loop which normally will jump back to the start of the loop since the condition is
satisfied. But after the simulation of the fault injection the conditional instruction
will change from JBE 0xFFFFFCE to JBE 0x39. This modification in the jump address
will branch to the end of the program instead of branching back to the start of the
while loop. In this case the value stored in the variable state[] remains unchanged,
and corresponds to the initial value which is the plaintext. So instead of outputting
the ciphertext the program outputs the plaintext.
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1
2 1 5 6 : PresentAsser t . c ∗∗∗∗ // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ End Key Scheduling ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3 1 5 7 : PresentAsser t . c ∗∗∗∗ round ++;
4 389 . l o c 1 157 0 i s _ s t m t 1
5 390 042b 0FB64424 movzbl 20(%esp ) , %eax
6 390 14
7 391 0430 83C001 addl $1 , %eax
8 392 0433 88442414 movb %al , 20(%esp )
9 393 . L4 :

10 8 0 : PresentAsser t . c ∗∗∗∗ //do
11 394 . l o c 1 80 0 d i s c r i m i n a t o r 1
12 395 0437 807C2414 cmpb $30 , 20(%esp )
13 395 1E
14 396 043 c 0F86DAFC j b e . L24
15 396 FFFF
16 1 5 8 : PresentAsser t . c ∗∗∗∗ }
17 1 5 9 : PresentAsser t . c ∗∗∗∗ //while ( round <31) ;
18 1 6 0 : PresentAsser t . c ∗∗∗∗ // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ addRoundkey ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

LISTING 6.7 – Listing File
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Chapter 7

Discusion and Limitations

This chapter concludes the first part of this thesis. This chapter first discusses the
FIVD process and its extension presented in section 4.1. It discusses the results of
the experiments presented in sections 5.1 and 5.2. Then, it discusses the limitation of
the proposed process and its implementation, and it presents possible solution that
will be implemented in the second part of this thesis.

7.1 Discusion

Fault injection has recently been increasingly used to test system robustness. One
of the main objective of this thesis is to propose a new approach of evaluating the
robustness of systems against fault injection attacks.

In part I, the focus was on the software-based fault injection approach. A formal pro-
cess that uses model checking to detect fault injection vulnerabilities in binaries was
presented. This process supports the detection of many varieties of fault injection
vulnerabilities, and does not rely on any particular system architecture, fault model,
or other restricted choices (as are common in the literature).

The FIVD process was designed as a solution to asses the robustness of systems
against fault injection attacks, with respect to the following characteristics (as pre-
sented in section 3.2):

— Automation

— Binary level

— Fault model

— Architecture independent

— Formal method

First, to have an automated process that will facilitate the task for future users. The
FIVD process satisfies this point since it is fully automated. The user only needs to
provide as an input the program within the properties to verify. The process script
then runs the following steps automatically: circle validates the properties on the
given program; circle simulates the fault injection using variety of fault models; cir-
cle if applied, run the pre-analysed step to eliminates invalide mutants; circle checks
if the generated/selected mutants satisfies the properties; circle processes the results
and provides the list of mutants that represent vulnerabilities.

Second, to have a process that operates at the binary level. In comparaison to [68, 35,
110, 140], the FIVD process simulates the fault injection directly at the binary level.
Fault injection simulation at the binary level is considered to be more representative
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of faults that can occur in physical fault injection, it also allows a fine granularity
since it is possible to consider bit fault model. But in Part I of this thesis, the fact that
the properties are specified at the source code level, then compiled to produce the
program binary within the properties, is a problem. Since it is possible that the fault
injection simulation modifies the verified properties, or modifies the program in a
way that the verification results is no more valid. This problem will be addressed in
part II.

Third, to have a process that will not be limited to a certain kind of fault model. The
FIVD process is not limited to specific fault model. Contrary to [145] a bit flip fault
model is possible using the FIVD process. The FIVD process is not limited to control
flow fault models unlike [110]. To simulate the injection of faults, FIVD process uses
the SIMFI tool, that supports a variety of fault models (see Section 4.3). The SIMFI
tool can also be extended to other fault models with minimum developing efforts.

Fourth, to have an architecture independent process. Contrary to [47], the FIVD
process is not based on a fixed hardware model. The FIVD process is a simulation-
based approached, it is not implemented on specific materiel as in [118]. The FIVD
process was not developed to asses the robustness of a particular system within
a specific architecture, thus the process does not rely at any materiel parameters.
But in the implementation of the process the instruction set of the program is taken
into consideration. The toolchain used in the implementation of the FIVD needs to
support the corresponding architecture.

Fifth, to provide reliable results. The use of model checking gives a formal proof for
the detected vulnerability, which gives a guarantee to the obtained results. The fact
that the program is modelled allows the exploring of all the paths while checking
the properties, instead of considering a single path of execution. The use of model
checking comes with drawbacks as well. Due to the state space explosion problem,
the verified program needs to respect a limited size. In the first part, bounded model
checking is used to address partially this problem, but those not resolve infinite loop
cases for example.

The originality of the FIVD process lies in succeeding to combine the five character-
istics presented above. Compared to previous works [35, 47, 68, 97, 107, 110, 118,
140, 145] the FIVD process tick all the boxes (see Table ??).

Part I presented in detail the proposed FIVD process, but also an extension for larger
programs that correspond to real applications implementations. The process was
then applied to a small example as proof of concept. The extended version was
proposed to gain time when applying the process to real cryptographic algorithm
applications.

Experimental results demonstrate the efficacy of the process by testing a variety of
fault models on the motivating example and the cryptographic algorithms (PRESENT
and SPECK).

The results of applying this process yielded 82 vulnerabilities, 73 in PRESENT and
9 in SPECK. Both PRESENT (9 vulnerabilities) and SPECK (4 vulnerabilities) were
vulnerable to faulting jump instructions that allowed encryption to be entirely by-
passed. For SPECK a further 5 vulnerabilities exist, 2 by inserting non-operation
byte values, and 3 by flipping individual bits. PRESENT was also found to be vul-
nerable to 64 different CA vulnerabilities, mostly through bit flips, but also through
nopping instructions and jump target modifications. These were all found towards
the end of the binary, where the last round of encryption occurs. SPECK was not
found to be vulnerable to the CA vulnerabilities tested here. This is mostly due to
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the number of rounds (21) to achieve encryption and that 21 is not one bit flip away
from either 9 or 10. These results indicate that some kinds of attacks may be more
or less achievable depending on the structure of the code used, and so some care
should be taken when choosing how to implement a fault resistant binary.

7.2 Limitations

This section discusses the limitation of the FIVD process implementation. There are
several limitations with the implementation chosen here. Indeed the implementa-
tion used was merely the easiest to combine effectively to implement the process.

The choice to use MC-Sema was to be able to work with LLVM-IR. The choice of
LLVM-IR is due to the fact that it is being a widely used intermediate representation
language that is supported by many tools. However, there are limitations with MC-
Sema that may limit future work. MC-Sema supports only (some of) the instructions
of X86 architecture [136] and so in the second part of this thesis MC-Sema will not
be used and other architecture (ARM) will be supported.

The LLBMC model checker is sufficient for the safety properties but does not support
liveness properties. Thus although LLBMC was sufficient for the proof of concept
in this part, Part II will exploit a non-bounded model checker that can also accept
liveness properties. In particular, a model checker that can produce traces (LLBMC
can, but not combined with MC-Sema) would aid in understanding vulnerabilities
and analysing results.

Fault injection was implemented with SimFI tool for this thesis, although several
tools already exist to simulate fault injection attacks on software [67, 71]. However,
these tools are limited by various choices that make them unsuitable for the process
here (hence their lack of use in the implementation). Several are only able to inject
faults into intermediate representations, and not into executable binaries [110, 135,
142], thus being unable to simulate faults that appear only at the executable binary
level. Others have different limitations, such as: specific hardware platforms [107,
120], specific source code languages [35, 89, 142], or requiring simulating drivers
[37]. Despite these limitations, many include useful techniques or developments
that could be incorporated into future development of a general fault injection tool
for executable binaries.

The pre-analyse step in the extended version of the FIVD process, was used to elim-
inate mutants that fail to execute or to output a result, in order to gain time using
model checking. In a general setting, this approach could be considered as ?naive?,
since it considers a single trace of the executable binary. This restriction may lead to
fault negatives, i.e. vulnerabilities detected as crashes, etc., instead of vulnerabilities
in respect to the defined properties. Note that, in the context of use cases considered
in this thesis, this limitation has not been observed, as in the original implemen-
tation branches do not depend on input data. A comparaison of the results of the
PRESENT algorithm was done with the FIVD process without the pre-analyse step,
which detected the same number of vulnerabilities.

In a more general setting, techniques relying, for example, on pruning [100, 125]
may be considered instead for future work. Note that, the pre-analyse step was not
considered in Part II as we relied on statistical model checking techniques.
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Complementary research is to explore ways to inject faults intelligently. This could
exploit knowledge of the property to inject faults that would lead to property viola-
tions, yielding improved efficiency of experiments.

Regarding properties, another area of future work is to consider how to extract prop-
erties automatically from the binary (or source code). There is some existing work in
this area [122, 153] although they focus upon high level behaviour rather than binary
code.

Currently the process identifies vulnerabilities, but does not suggest fixes or coun-
termeasures. Automatically generating countermeasures is non-trivial, although if
countermeasures to particular faults are known future work could suggest or imple-
ment them automatically. Perhaps more significantly, these countermeasures could
be checked immediately using the process here and so their effectiveness verified
immediately.
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Chapter 8

Overview of Part II

This chapter introduces the second part of this thesis. This part explores the combi-
nation of software-based and hardware-based fault injection approches. This chap-
ter first gives a general introduction to the second part of this thesis, by exploring
avantages and disadvantages of both approaches, and by explaining why a poten-
tial combination of the two approaches will be beneficial. Next it recalls existing
work that intended to combine the two approach, and explains the novelty of our
contribution compared to others. Finally, it presents the two case studies used to
demonstrate our claims. The two presented case studies will be used in the experi-
ments presented after in chapter 10.

Sommaire
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8.1 Introduction

There are two main approaches to detect fault injection vulnerabilities: software-
based and hardware-based approaches. Software-based approaches simulate fault
injection on some aspect of the program and detect whether some properties of the
program have been altered to yield a vulnerability [31, 55, 107, 110]. Hardware-
based approaches use direct experimentation on the physical hardware while the
program is being executed. In this approach vulnerabilities are detected by observ-
ing the hardware during the experiment and analysing the output after execution
[10, 14, 114, 130].

In part I the research of this thesis was directed to focus on the software-based tech-
nique only. An automated formal process to detect fault injection vulnerabilities on
binary was proposed. The experiment results showed the efficiency on the proposed
approach by detecting vulnerabilities on a toy example but also real cryptographic
implementations.

The software-based process results in an exhaustive list of all possible theoretical
vulnerabilities given specific fault models. In order to validate these found vulnera-
bilities in practice, the application of a hardware-based fault injection is needed. No-
tably, the combination of software-based and hardware-based approach, will strengthen
both side. On the one hand, the software-based approach can be fined-tuned in or-
der to take properties of the hardware fault vulnerability into account. On the other
hand, using the knowledge given from the software-based approach may help to



74 Chapter 8. Overview of Part II

understand and indicate the underlying fault models given the output of the exper-
imental hardware-based approach.

Software-based approaches can either be based on simulations or implementations,
both directions have been studied in the published research so far. In this thesis, the
focus was on the simulation-based approach using formal verification techniques to
detect fault injection vulnerabilities. A new automated formal approach was pro-
posed and validated in Part I.

For the hardware-based approaches there exists a variety of techniques as well that
will be presented later in section 8.2. In this thesis EMP techniques were used to
perform hardware experiments.

Both of the software-based and hardware-based approaches have advantages and
disadvantages as detailed in Sections 2.1.1 and 2.1.2.

The correspondence between software-based and hardware-based fault injection vul-
nerability detection has not been widely explored yet. To the best of our knowledge
only one work attempted to combine the software and hardware approaches (see
section 8.2). In the eighties [39] used a very limited technique focusing on the fault
detection time. The experiments concluded that the results of the two approaches
do not map. The research focused only on the fault detection time.

This thesis sets out to remedy this and to bridge the gap between software-based
and hardware-based fault injection vulnerability detection. This is achieved here
by performing both software-based (i.e. simulation) and hardware-based (i.e. EMP
on hardware) fault injection vulnerability detection on two case studies. The re-
sults of the two approaches are compared to explore how closely the two kinds of
approaches coincide. The results of these experiments yielded several interesting
outcomes:

— The software-based approach is able to find genuine fault injection vulnerabil-
ities. However, there are also false-positive results where the software-based
approach claims a vulnerability exists that was not feasible to reproduce using
the (EMP) hardware-based approach. This indicated that although software-
based approaches may be useful in identifying potential fault injection vulner-
abilities, not all such vulnerabilities are validated in practice.

— The hardware-based approach did not match to any single fault model of the
software-based approach. By having comprehensive results from the software-
based simulation it was possible to determine that the (EMP) hardware-based
approach did not have a consistent or exact effect on the hardware. Although
this is not surprising (specially since EMP is inexact at best), this indicates that
simulations that consider only a single fault model may not correspond well
to EMP (or other kinds of hardware-based attacks).

— The two approaches coincide. That is, both approaches agree on the effect
and the location of fault injection vulnerabilities (and other behaviours). The
results here indicated that although the software-based approach had false-
positives, there were no false-negative results when considering the fault mod-
els used here. This indicates that software-based detection can indicate likely

locations for vulnerabilities, and hardware-based approaches can be used to

confirm (or refute) their feasibility.

Combining both approaches can be used to rapidly locate genuine fault injection
vulnerabilities, even in code without known weaknesses. This thesis presents a
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method to use the software-based approach to identify the most potentially vulnera-
ble locations and then (with some calculation) these can be tested and confirmed (or
disputed) using hardware-based approaches. In practice this combined approach
can vastly reduce the number of hardware experiments required to demonstrate a
vulnerability; here reducing the number of experiments from tens or hundreds of
thousands to just 210. Further, when applied to code without known weaknesses
this can be used to rapidly determine if vulnerabilities exist.

8.2 State of the Art

This section recalls related works that use combined software-based and hardware-
based approaches for detection of fault injection vulnerabilities.

The only attempt to combine software-based and hardware-based approaches was
in 1987, where Czeck. et al. [39] compared the results of software simulation fault
injection and hardware experiment fault injection with the objective to test the cor-
rectness and dependability of system. At this time the hardware fault injection was
limited to the pin level modification. The software simulation fault injection was
done by modifying program data or control. The authors concluded that although
the software-inserted faults do not map directly to hardware-inserted faults, experi-
ments show software-implemented fault insertion is capable of emulating hardware
fault insertion, with greater ease and automation. Compared to this work, the ex-
periments conducted in [39] were limited, the objective was to test the system using
different approaches and no combination proposition was given at the end of the
experiments.

Other works [3, 119] propose exploiting the hardware materiel by simulation fault
injection on the target hardware. This technique is the software-implemented ap-
proach which is considered as a software-based approach and not hardware-based
one.

In [119] the authors propose combining the Lazart process with the Embedded Fault
Simulator (EFS) [20]. This extends from the capabilities of Lazart alone by adding
lower level fault injection analysis that is also embedded in the chip with the pro-
gram. The simulation of the fault is performed in the hardware, using EFS. How-
ever, EFS is a software-implemented based approach, it can not be considered as a
hardware-based approach. The combination in this work could not be compared to
the work presented in this thesis.

Similarly in [3] where experiments are used for testing the TTP/C protocol in the
presence of faults. Rather than attempting to find fault injection attacks, they injected
faults to test robustness of the protocol and simulation of hardware faults. They
combined both software-implemented approach on the hardware and simulation-
based approach on the software, comparing the results as validation of the proposed
TTP/C protocol model.

The research conducted during this thesis did not find other works than [39] pre-
sented above which tried to combine the software and hardware fault injection ap-
proach. The majority of existing works focus either on software-based approaches or
hardware-based approaches. The combination of the two approaches is not enough
exploited yet.
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8.3 Case Studies: Control flow Hijacking and Backdoor At-

tack

This section presents the two case studies used to exploit the connection between
the software-based and hardware-based fault injection approaches.

The first case study is the control flow hijacking attack. In a control flow hijacking
attack, the attacker objective is to take over the target system by hijacking its normal
control flow. The control flow hijacking attack is known to be the general class of at-
tacks such as buffer overflow, integer overflow attacks, format string vulnerabilities,
and backdoor attack. Control-flow hijacking attacks have become a serious problem
[56, 103] due to the ease of exploring the created vulnerabilities and get interesting
outcomes.

The second case study is a backdoor attack. A backdoor attack is a sub classe of
the control flow hijacking attack, where the attackers objective is to succeed redirect-
ing the control flow to his own injected code, or his choice of existing code which
constitutes the backdoor. The backdoor is considered to be an undocumented func-
tionality in the system (program) that could be implemented by malicious insiders
at the factory house, or added during the manufacturing for testing and debug pur-
pose. Previous research [131] showed the presence of deliberately inserted backdoor
in chip used in both military and sensitive industrial applications. Other research
[82, 104] showed that, using fault injection, it is possible to activate backdoor code.

The rest of this section presents in details the chosen case studies by showing their
source code and assembly code, and explaining the objective of the attacks, and how
the vulnerabilities are detected.

Note that the case studies contain trigger instructions that change the voltage of some
pins observable to the hardware fault injection tools. These were used to improve
precision in the hardware calibration as described in Section 9.3. However, no result
in this work relies upon the existence of these triggers.

Control Flow Hijacking

Control flow hijacking case study [30] is chosen to have a known class of vulnera-
bility that is straightforward to understand. The example here is presented in the
original C source code, and in the assembly instructions for ARMv7-M. The source
code of the case study programs is available in the git repository 1. Finally, for the
case study the correct, vulnerable, and incorrect program executions are defined.

This case study is chosen to demonstrate a control flow hijacking vulnerability. The
goal for the attacker is to output a specific value (0x55555555) that can only be
reached by hijacking the control flow of the program execution.

The test_persistence function that is of interest is shown below.

uint32_t test_persistence (void){

HAL_GPIO_WritePin(GPIOC , GPIO_PIN_7 , GPIO_PIN_SET);

uint32_t status = 0;

if (pin_correct ==1) {

status =0 xFFFFFFFF;

} else {

1. https://gitlab.inria.fr/rlasherm/ARMv7M-under-attacks.
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status =0 x55555555;

}

HAL_GPIO_WritePin(GPIOC , GPIO_PIN_7 , GPIO_PIN_RESET);

return status;

}

LISTING 8.1 – Control Flow Hijacking Case Study C Code

Here the attacker wishes to hijack the function control flow to return 0x55555555

even when pin_correct has the value 1. Since in the code being experimented
pin_correct always has value 1, the program behaviour can be defined to be one
of the following outcomes. The correct behaviour for this case study is to return
0xFFFFFFFF. The program is vulnerable when the return value is 0x55555555 (achieved
via some form of fault injection). Any other return value is considered to be incorrect
program execution. Note that if the program does not terminate or provide a return
value due to the fault injection, it is considered to be crashed.

The corresponding ARM-v7 assembly instructions for the test_persistence func-
tion are shown below.

08000 aa0 <test_persistence >:

8000 aa0: b510 push {r4, lr}

8000 aa2: 480a ldr r0, [pc, #40]

8000 aa4: 2180 movs r1 , #128

8000 aa6: 2201 movs r2 , #1

8000 aa8: f001 f91c bl 8001 ce4 <HAL_GPIO_WritePin >

8000 aac: 4b08 ldr r3, [pc, #32]

8000 aae: 4807 ldr r0, [pc, #28]

8000 ab0: 681b ldr r3, [r3, #0]

8000 ab2: 2180 movs r1 , #128

8000 ab4: 2b01 cmp r3, #1

8000 ab6: bf0c ite eq

8000 ab8: f04f 34ff moveq.w r4, #4294967295; 0xffffffff

8000 abc: f04f 3455 movne.w r4, #1431655765; 0x55555555

8000 ac0: 2200 movs r2 , #0

8000 ac2: f001 f90f bl 8001 ce4 <HAL_GPIO_WritePin >

8000 ac6: 4620 mov r0, r4

8000 ac8: bd10 pop {r4 , pc}

8000 aca: bf00 nop

8000 acc: 40011000 .word 0x40011000

8000 ad0: 2000001c .word 0x2000001c

LISTING 8.2 – Control Flow Hijacking Case Study Assembly Code

There are several instructions that are of significance to correct program execution.

— The instruction at 8000ab0 that loads to r3 the value at memory address [r3, #0].

— The instruction at 8000ab4 that compares the register r3 with the value #1.

— Then, the instruction at 8000ab8 loads the value #4294967295(=0xFFFFFFFF)
into the register r4 if the prior condition is satisfied.

— Similarly, the instruction at 8000abc loads the value #1431655765(=0x55555555)
into r4 when the prior condition is not satisfied.

— Then, the instruction at 8000ac6 that moves to the return register r0 the return
value from register r4.
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Observe that faulting any of these would certainly have an effect on correct program
execution, since instead of returning status=0xFFFFFFFF the program will return
either status=0x55555555 or another value. Although, this does not mean that faults
in other instructions cannot also cause changes to program execution.

Backdoor Attack

This section recalls the Fault Activated Backdoor program from [30]. The core of the
weakness in the code is a backdoor function (shown in Listing 8.3) that is hidden in
the program but cannot be reached by any execution path. The normal behaviour of
the program includes encryption with AES [132] yielding a ciphertext. The backdoor
function (when executed) replaces the ciphertext with the AES key, thus allowing an
attacker to observe the “ciphertext” and in practice to learn the key. However, under
normal conditions the backdoor function can never be executed, and so should not
be detected by static or dynamic code analysis.

The weakness here is built into the code in the blink_wait function shown in List-
ing 8.3. The value of wait_for is defined to be 3758874636, which has two special
properties. Firstly, this value is too large to be loaded within a single ARM-v7 in-
struction and so the value is stored as a seperate word in the assembly code. Sec-
ondly, this value if interpreted as an instruction corresponds to a jump to a specific
location (in practice the location of the backdoor function).

void blink_wait ()

{

unsigned int wait_for =3758874636;

unsigned int counter;

for(counter =0; counter <wait_for;counter +=8000000);

}

void backdoor(void)

{

int i;

for(i = 0; i < DATA_SIZE; i++)

{

ciphertext[i] = key[i];

}

HAL_GPIO_WritePin(LED3_GPIO_PORT , LED3_PIN , GPIO_PIN_SET)

;

}

LISTING 8.3 – Backdoor Case Study C code

The corresponding assembly code for the blink_wait function is shown in List-
ing 8.4. Observe that the value of wait_for is stored at the end of the function at
address 80005cc immediately after the POP instruction at address 80005ca. Thus, an
attacker that can cause this POP instruction to be skipped or interpreted as something
else (e.g. a MOV, ADD or LDR as observed in Section 10.1) would then execute this value
as a jump to the backdoor function.

08000598 <blink_wait >:

8000598: b580 push {r7, lr}

800059a: b082 sub sp, #8

800059c: af00 add r7, sp, #0

800059e: 4b0b ldr r3, [pc, #44]
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80005a0: 603b st r3, [r7, #0]

80005a2: 2300 movs r3, #0

80005a4: 607b str r3, [r7, #4]

80005a6: e005 b.n 80005b4 <blink_wait +0x1c >

80005a8: 687b ldr r3, [r7, #4]

80005aa: f503 03f4 add.w r3, r3 , #7995392 ; 0x7a0000

80005ae: f503 5390 add.w r3, r3, #4608 ; 0x1200

80005b2: 607b str r3, [r7, #4]

80005b4: 687a ldr r2, [r7, #4]

80005b6: 683b ldr r3, [r7, #0]

80005b8: 429a cmp r2, r3

80005ba: d3f5 bcc.n 80005a8 <blink_wait +0x10 >

80005bc: f7ff ffe2 bl 8000584 <fast_trig_up >

80005c0: 2003 movs r0, #3

80005c2: f000 f8af bl 8000724 <wait >

80005c6: 3708 adds r7 , #8

80005c8: 46bd mov sp, r7

80005ca: bd80 pop {r7, pc}

80005cc: e00be00c .word 0xe00be00c

LISTING 8.4 – Backdoor Case Study Assembly

The correct behaviour of the program is to output a normal ciphertext. The vulnerable
behaviour is to output the encryption key, or to ever execute any code inside the
backdoor function. (This choice was to detect potential vulnerabilities that could be
exploited regardless of whether the key was completely leaked.) Incorrect was any
other output, and crashes were failure to terminate or provide output as before.
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Chapter 9

Process, Implementation and
Methodology

This chapter presents the processes adopted to conduct experiments using the two
approaches, the software-based and hardware-based fault injection approaches. This
chapter is divided into three sections: in section 9.1 the software-based and hardware-
based process are presented in details. The improvement done on the FIVD process
are highlighted. In section 9.2 the implementation of the processes presented in
the previous section are detailed. Similarly to the software-based process, in the
software-based implementation the improvement are highlighted. Lastly in section
9.3 the methodologies followed to conducted the experiments are presented.
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9.1 Software and Hardware based Process

This section presents the software-based and hardware-based process used to con-
duct the experiments. The software-based process presented in this section is an
improvement of the FIVD process presented in Chapter 4. The hardware-based pro-
cess presented in this section explain the steps to follow in order to conduct the
hardware experiments.

Software-Based Process

This section recalls the key aspects of the automated formal process for detecting
fault injection vulnerabilities in programs as it was presented in chapter 4. This
process has been demonstrated to efficiently find fault injection vulnerabilities on
cryptographic algorithms using a wide variety of fault models as shown in chapter 5.
The process has some limitations as discussed in chapter 7. These limitation were
mainly related to implementation constrains. This section presents an improved
version of the FIVD process by addressing the limitations presented previously.

An overview of the process as depicted in Figure 9.1 is as follows. The process starts
with the binary file and the file of the properties to check upon the binary. The
properties are validated to hold on the model using SMC. The fault injection is then
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FIGURE 9.1 – Software Process Diagram

simulated on the binary file in order to produce mutant binaries. The properties are
then checked upon the mutant binaries using SMC. A difference in the results of the
validation and checking the property indicates a fault injection vulnerability created
by the simulated fault injection and instance of the fault model.

The presented process in this section differs from the version of the process pre-
sented in section 4.1 in the following points.

First point, the properties are not added to the source code file. The properties are
specified in a separate file that will be used directly by the model checker. The fact
that the properties are specified in a separate file insures that there is no risk of mod-
ifying the properties when simulating the fault injection on the binary. This was not
the case in the previous version, where the properties were specified in the source
code and then the source code within the properties were compiled to generate the
executable binary on which the fault injection were simulated. So there were chances
that the properties can be modified by the simulation of the fault injection which is
no more the case with this improvement.

Other advantage related to the properties, is that now the properties are specified at
a lower level, where it is possible to express the properties using the register, program
counter, etc. This enhancement allows to insert fine-grained properties that are closer
to binary level instead of the source level.

Second point, the preparation step is no more needed, the process starts directly
from the binary file and not the source code. In the previous version of the process
the source code was needed in order to detect vulnerabilities, it was not possible to
work only with the binary file. Now that the process starts directly from the binary
it is possible to test the robustness of programs without having access to their source
code. But it is important to mention that it might not be feasible to specify proper-
ties only with the binary file. In this work the properties express the behaviour the
program should (or shouldn’t) respect. If the source code is not available it might be
hard to understand the program and so hard to specify the properties to verify.

The process in this section is similar to the main steps of the process in Section 4.1 in
the main steps. The first step of the process still is the validation step which consists
of validating that the original binary satisfies the property before going to the next
step of the process. The second step of the process still is the simulation of the fault
injection on the binary file to produce mutant files, which corresponds to the binary
file after injecting the specified fault using a fault model. The third step of the process
still is checking the property on the generated mutant files after the fault injection
simulation. The fourth step of the process is still comparing the validation and the
checking results to detect vulnerabilities.
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Hardware-Based Process

This section overviews the hardware process used for detecting fault injection vul-
nerabilities in programs. This process is common to many prior works in this do-
main [30, 51, 109, 120].

An overview of the process is as follows. Preparation step of the hardware process
is to choose the hardware materiel to induct the fault, based on the target hardware
and the desired effect.

1. The first step is to experiment on the chosen target hardware with the chosen
hardware fault induction technique. This step consists of exploring the spacial
surface of the target hardware while manipulating the parameters to induce
the fault using the induction technique. This step concludes when a config-
uration is found that allows the hardware fault injection to change program
execution. This step requires a lot of time and expertise, since exploring all the
possible combinations of spacial, temporal, and induction parameters is not
feasible in reasonable time.

2. The second step is to analyse the target program. This step consists of detecting
potential known vulnerabilities in the program.

3. The third step is then to load a program onto the target hardware that has
a believed vulnerable point. For the hardware-based approach, contrary to
the software-based approach, the objective of the experiment is to show that
a predicted vulnerability exists. This is the reason why the loaded program is
known to be vulnerable before conducting the experiments.

4. The fourth step is to try and align the injected fault with the believed vulner-
able point to demonstrate a fault injection vulnerability. The objective of this
step is to align the parameters set at the first step with the known vulnerability
loaded in the second step. Similarly to the first step, parameter manipulation
is needed to try and detect the known vulnerability in the loaded program by
injecting fault using the chosen hardware induction technique.

A vulnerability has been demonstrated if the fault injection can change the program
execution in the desired way with significant consistency.

9.2 Software and Hardware based Implementation

Software-Based Implementation

The software simulation experiments were performed by an implementation of the
process described in Section 9.1. The process was extended to operate on ARM-v7
and to use SMC (as opposed to on X86 and using BMC respectively, see section 4.2).

The implementation of the process can be seen in Figure 9.2. The implementation
begins with a binary file for ARM-v7 architecture and the properties specified in
B-LTL (in separate files).

The binary is translated to Reactive Module language (RML) using the ARM to RML
(ARML) tool. ARML is a translation tool that has been developed during this thesis to
translate from ARM-v7 binaries to RML models. RML [83] is a state-based language
based on the Reactive Modules formalism [4] and used as the input language for
Plasma Lab [86].



84 Chapter 9. Process, Implementation and Methodology

Binary File

A
R

M
L RML

Model P
la

sm
a

Validation
Result

PropertySIMFI

Mutant
Binaries A

R
M

L Mutant
RML

Models P
la

sm
a

Checking
Results

Compare

FIGURE 9.2 – Software Implementation Diagram

The specified property is then validated to hold on the generated RML model using
the SMC Plasma Lab [86]. Both the RML model file and the property file are given
as input to the SMC Plasma Lab tool, the algorithm to do the verification and the
number of simulations are then selected in the Plasma Lab tool. The process is fully
automated, such that a dedicated script launches the checking step and receives the
results.

The mutant binaries corresponding to simulated fault injections are generated us-
ing Simulation for Fault Injection (SIMFI) tool. The SIMFI tool is a tool that has been
developed during this thesis, it simulates a wide variety of fault injection attacks
on binaries. The tool takes a binary as an input (regardless of the binary’s architec-
ture). Based on the chosen fault model a mutant binary is generated, representing
the simulation of the chosen fault injection attack.

The RML models for the mutant binaries are generated using the ARML tool. The
properties are then checked on the mutant models using SMC with Plasma Lab. Fi-
nally the results of model checking the mutant models and the binary file model are
compared for statistically significant differences. Due to using SMC, minor differ-
ences can occur because of the statistical model checking.

Hardware-Based Implementation

The hardware process also follows the standard approach to hardware-based fault
injection technique as presented in Section 9.1.

The chosen target hardware is a STM32 Value-line discovery board with ARM Cortex-
M3 core micro controller running at 24MHz. The STM32 Value-line discovery board
is a low cost STM32 Value-line, that is widely used by experts but also by beginners.
This board has all the needed features to explore and evaluate STM32F100 micro-
controllers.

The chosen fault injection induction method is to induce a fault via EMP. The EMP
signal is initiated by a KEYSIGHT 33509B Waveform Generator that sends a sig-
nal through a KEYSIGHT 81160A Pulse Function Arbitrary Noise Generator (a high
precision pulse generator that helps in the manipulation of the signal). The signal is
then amplified using a MILMEGA 80RF1000-175 RF AMPLIFIER. Finally, the signal
is sent to a Probe RF B 0.3-3.
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FIGURE 9.3 – Hardware Implementation Probe Location

Initial experiments were then conducted to find a configuration that allowed con-
sistent program execution disruption. In practice, this was achieved by placing the
probe above the chip as depicted in Figure 9.3.

Further experiments were conducted to calculate the latency of the various compo-
nents. This allowed calculation of the timing between the injection of the fault and
observing the effect. Further, this allowed calibration of the minimum and maxi-
mum possible delay between fault injection and observations of effects. The delay
between the injection of the fault and the observed effect was 0.08µs to 0.12µs.

9.3 Software and Hardware based Methodology

This section discusses the experimental methodology used to conduct the experi-
ments in Part II of this thesis. The overall methodology is as follows.

1. The first step is to take the case study and perform extensive software sim-
ulations to identify as many potential vulnerabilities as possible. Incorrect
program execution is also identified to help in later stages of the methodol-
ogy. Finally, crashes and other failures of program execution are exploited for
calibration as described later.

2. The second step is to perform hardware fault injections on the entire function
and to identify which configurations yield statistically significant changes in
program execution.

3. The third step is to compare the software and hardware results to:

— identify achievable fault injection vulnerabilities using the hardware re-
sults;

— identify likely hardware fault models using the software results;

— and to demonstrate that software-based and hardware-based fault injec-
tion techniques coincide.

The rest of this section details the environment and implementation for the experi-
ments.
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Software-Based Methodology

For software simulation various fault models can be simulated by SIMFI. Since the
EMP used here (see Section 9.3 below) does not have a single consistent fault model
[96], multiple fault models were considered here. The fault models tested here are
as follows.

Z1B The zero one byte fault model (Z1B) simulates setting a single byte to zero (re-
gardless of prior value). This fault model corresponds to a malicious attack
that is commonly achievable attack in practice [123, 137].

Z1W The zero four bytes fault model (Z1W) represents setting four bytes to zero
(again regardless of prior value). This is similar in concept to the Z1B fault
model and attack, but captures behaviour more related to the hardware model,
since it reflects faulting some piece of the hardware that operates on words
rather than bits or bytes (such as the ARM Cortex-M3 bus used here) [38].

NOP The ARM NOP fault model (NOP) sets the targeted operation to a non-operation
(NOP) instruction for the chosen architecture (in this case 0x00BF for ARM-v7).
The concept behind this model is that it simulates skipping an instruction, a
common effect of many runtime faults [97].

TAM The tamper fault model (TAM) sets a byte to a specific value. Here the TAM

fault model sets the value of byte to 0xFF. This is opposite concept to Z1B fault
model and attack, this may be an effect of EMP. The choice of using this here
is to consider when an EMP may fault the chip with the opposite electromag-
netic effect (i.e. set all bits to 1’s instead of 0’s). The TAM fault model can be
explained by the stuck-at fault. This fault results in a line of a logic circuit
being permanently stuck at a logic one [2].

FLIP The flip fault model (FLIP) simulates the flipping of a single bit, either from 0
to 1 or from 1 to 0. This fault model is highly representative of many kinds of
faults that can be induced, ranging from those due to atmospheric radiation,
to software effects such as the rowhammer attack [76].

Note again, that the SIMFI tool is not restricted to single faults, but the fault models
considered here chosen to fit to the outcome of the hardware-based approach.

The software simulation experiments were performed to simulate all listed fault
models on all possible addresses within the target function of the case study. The
outcomes were then classified as: correct, vulnerable, incorrect, or crashed.

The simulations were conducted on a virtual machine configured with one CPU,
11.7GB of RAM, and 179.4GB of disk space running Linux Ubuntu 16.04 LTS. The
virtual machine was hosted on a Macbook Pro with 3.1 GHz Intel Core i7 processor,
16 GB of RAM, and running macOS High Sierra 10.13.3.

Hardware-Based Methodology

For the case study, the program was loaded onto the target hardware. The triggers
were then used to calibrate the fault injection hardware tools and to verify the la-
tency calculations were correct. Further, the minimum and maximum clock cycle 1

count was calculated for the case study functions (using the Cortex-M3 technical ref-
erence manual [38]). These were then used to find the earliest start point and latest

1. Each clock cycle is approximately 40ns.
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end point of execution of the functions being considered (including an error margin
to ensure complete coverage).

Once the bounds of the execution have been calculated, hardware faults were in-
jected at 4ns intervals starting from the earliest possible start point to the latest pos-
sible end point. The results for each execution and fault injection are then recorded.
This is then repeated a large number of times to gain statistical information on the
effects at each timing points. (This last step is done to account for minor inconsis-
tencies in effects, and due to the general imprecision of EMP faults, as well as due to
fault injection vulnerabilities not being achievable with high reliability in practice.)

Bridging Software-Based And Hardware-Based Approaches

This section shows how to bridge the software-based and hardware-based approaches
(Sections 9.3 & 9.3 above) and then compare the results.

This comparison was done for each fault model from the software experiments with
the results from the hardware experiments. The number of clock cycles were calcu-
lated (up to the fault injection point, since after this the results may be perpetuated),
and then used to cross-reference with the address of the fault from the software ex-
periments. Then, the alignment of the clock cycles were varied to see if there was
a strong transition point where the hardware clearly changed from one instruction
to another (since the clock cycles are not perfectly aligned, and the hardware ex-
periments tested, injected many faults at different times within each clock cycle’s
length).

The above comparison was also performed for combinations of fault models, and
for subsets of fault models. Each combination of fault models was compared to see
if multiple fault models combined matched well with the hardware experiments.
Similarly, subsets of the results within fault models were used for some fault mod-
els. The Z1B and NOP in particular were tested with subsets of their results that
considered only being applied to: every second byte (i.e. at the start or end of many
instructions), to every fourth byte (i.e. at the start or end of many words), and to the
first or second byte of every instruction (i.e. which can be two or four bytes since the
instruction lengths vary).
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Chapter 10

Experimental Results

This chapter presents the experimental results of the software-based and hardware-
based fault injection approaches on the two case studies presented in section 8.3.
This includes: the results of the software simulation experiments alone; the results of
the hardware experiments alone; and relations between the software and hardware
experiments.
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10.1 Control Flow Hijacking

This section presents the control flow hijacking case study experimental results. Sec-
tion 10.1 presents the software experimental results for the control flow hijacking
case study. Section 10.1 highlights the hardware experimental results. Section 10.1
overviews the comparison of the software and hardware results. Note that the ex-
perimental methodology here is the one in Chapter 9.

Software-Based Experimental Results

This section overviews the results of the software simulation experiments. Note that
the result of the experiment will be presented byte-wise. The bytes are indicated by
their addresses in the assembly code listed in Listing 8.2.

An overview of results of the software simulation for the control flow hijacking case
study can be seen in Figure 10.1. (The red coloured bytes indicate the presence
of vulnerabilities and the blue coloured bytes indicate the presence of incorrect
results, absence of any colour indicates correct behaviour.)

Observe that all fault models indicated some vulnerabilities between bytes 800aad

and 8000ab8. Additionally, the FLIP fault model indicated a vulnerability earlier at
byte 8000aa8. Incorrect results were detected from byte 800aab9 to byte 8000abd by
all fault models except TAM.

All fault models indicated vulnerabilities between bytes 8000ab0 & 8000ab1, and
8000ab4 & 8000ab5. However, there was no consensus on where the incorrect re-
sults of execution would appear amongst all the fault models (or even only the fault
models that had incorrect results).
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FIGURE 10.1 – Software-Based Control Flow Hijacking Results

To understand how the fault injection simulation created a vulnerability in the pro-
gram, one needs to look at the binary code and the corresponding assembly instruc-
tions. The different fault model had different impact on the assembly instruction, but
overall the fault injection impact on the assembly instruction can be classified into
two groups of impact. The first group of impact is when the fault injection simula-
tion changes the original instruction to an other instruction or multiple instructions.

InstA → InstB

InstA → InstB and InstC

The second group of impact is when the fault injection simulation does not change
the original assembly instruction but modifies either the instruction address, the
instruction manipulated value, or the instruction manipulated register.

InstA[address1] → InstA[address2]

InstA[value1] → InstA[value2]

InstA[register1] → InstA[register2]

The rest of this section focuses on the instructions between bytes 8000ab0 & 8000ab1,
and 8000ab4 & 8000ab5. In these bytes all the fault models indicated potential vul-
nerabilities. For each instruction, details will be given on how the simulation of the
fault injection modified the byte instruction, and why this modification created a
vulnerability in the program.

The instruction ldr r3, [r3, 0] at byte address 8000ab0 in Listing 8.2, loads the
value of the variable pin_correct into the register r3. The simulation of a fault
using the various fault models produces the following effects.

— Using all the fault models (except for NOP), one can change the LDR instruction
to MOV, CMP or STR instruction.

— Using all the fault models, it is possible to change where the value of pin_correct
from register r3 to a different register (e.g. r0, r7 or r2).

— Using the FLIP fault model, it is possible to modify the memory address from
where the value will be loaded, yielding an unknown (or effectively random)
value for pin_correct.
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— Using the NOP fault model, it is possible to replace the instruction with a NOP

instruction and so the value of pin_correct is implicitly set to whatever was
in r3 prior to this point in execution.

All the above effects will not set the register r3 to the correct value of the variable
pin_correct and so affect the comparison done later on line 11 in Listing 8.2.

The instruction cmp r3, 1 at byte address 8000ab4 in Listing 8.2 compares the value
of the register r3 with 1, and updates the corresponding flags of the Application Pro-
gram Status Register (APSR) based on the result of the comparison. The simulation
of a fault using the fault models produces the following effects.

— Using the Z1B, Z1W and FLIP fault model, it is possible to change the CMP

instruction to MOV, ADD or LDR instruction.

— Using all the fault models, it is possible to change the value of the number 1
the instruction compares with the register r3.

— Using the NOP fault model, it is possible to replace the instruction with a NOP

instruction.

The above fault models modification will effect the comparison of the register r3

value with 1, which will impact the choice of the correct branching in the following
three instructions.

The instruction ite eq on byte address 8000ab6 in Listing 8.2 defines the APSR flags
to set to be used by the following two instructions. The simulation of a fault using
the fault models produces the following effects.

— Using all the fault models (except TAM), it is possible to change the IT instruc-
tion to MOV, ADD or LDR instruction.

— Using the Z1B, Z1W and NOP fault models, it is possible to replace the instruc-
tion with a NOP instruction.

— Using the TAM and FLIP fault model, it is possible to change the branching
order the processor follows.

All of these can yield changes to the APSR flags that will in turn alter the effects
of the following two instructions. In general, the alterations allow the branching
behaviour to be inverted, and thus yield an effective hijack of the control flow.

The instruction moveq.w r4, 4294967295 on byte address 8000ab8 in Listing 8.2
sets the return register r4 to the value 4294967295 which corresponds to the value
0xffffffff. The simulation of a fault using all fault models (except TAM) produces
the following effects.

— Using the Z1B, Z1W and FLIP fault model, it is possible to change the MOV

instruction to ADD, STR or LDR instruction.

— Using all except the FLIP fault model, it is possible to replace the instruction
with a NOP instruction.

The above fault models modification will not set the return register to the correct
value. So the returned value will be whatever was already in the register r4 gener-
ally yielding an incorrect result.

Hardware-Based Experimental Results

This section overviews the results of the hardware experiments. The hardware ex-
periments were conducted following the methodology described in Chapter 9.
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FIGURE 10.2 – Hardware-Based Control Flow Hijacking Results

Using the calculations described in Section 9.3, the earliest possible start time for the
test_persistence was calculated to be 0.8µs, and the latest possible end time to be
2.084µs. The hardware fault injection experiments were thus conducted within this
range.

An overview of the results of the hardware experiments for the control flow hijack-
ing case study can be seen in Figure 10.2. Observe that vulnerabilities were grouped
together in two groups. The larger group between 1.192µs and 1.388µs, and the
smaller group from 1.448µs to 1.492µs. The incorrect results are in three groups: one
from 1.308µs to 1.348µs, another from 1.424µs to 1.472µs, and a third from 1.692µs
to 1.744µs. There is also a single spike of incorrect results at 1.948µs.

Combining the known timing information with the clock cycle count for each in-
struction (from the Cortex-M3 technical reference manual [38]), it is possible to ap-
proximate which instructions are being loaded and executed at each fault injection
timing. Table 10.1 gives the range of clock cycle number needed for each instruction.
In order to get the timing, a simple multiplication operation is required. Note that for
this particular ARM architecture the processor fetches 32 bits at a time, which means
that for a 16 bit instruction the processor will fetch 2 instruction at a time. From all
the above information the hardware fault injection vulnerabilities in Fig. 10.2 can be
mapped to the addresses in Listing 8.2.

— The vulnerability detected between 1.192µs and 1.232µs corresponds to the
instruction at byte address 8000aac in Listing 8.2.

— The vulnerability detected between 1.236µs and 1.312µs corresponds to the
instructions at byte address 8000aae and 8000ab0 in Listing 8.2.

— The incorrect result in 1.424µs to 1.472µs corresponds to the instructions at byte
address 8000ab2 and 8000ab4 in Listing 8.2.
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Assembly instruction Clock Cycle

8000aa0: b510 push {r4, lr} 3
8000aa2: 480a ldr r0, [pc, #40] 1-2
8000aa4: 2180 movs r1, #128 1
8000aa6: 2201 movs r2, #1 1
8000aa8: f001 f91c bl 8001ce4 2-4
8000aac: 4b08 ldr r3, [pc, #32] 1-2
8000aae: 4807 ldr r0, [pc, #28] 1-2
8000ab0: 681b ldr r3, [r3, #0] 1-2
8000ab2: 2180 movs r1, #128 1
8000ab4: 2b01 cmp r3, #1 1
8000ab6: bf0c ite eq 0-1
8000ab8: f04f 34ff moveq.w r4, #4294967295 1
8000abc: f04f 3455 movne.w r4, #1431655765 1
8000ac0: 2200 movs r2, #0 1
8000ac2: f001 f90f bl 8001ce4 2-4
8000ac6: 4620 mov r0, r4 1
8000ac8: bd10 pop {r4, pc} 4-6

TABLE 10.1 – Clock Cycle Duration Per Instruction

— The vulnerability detected between 1.448µs and 1.492µs corresponds to the
instructions at byte address 8000ab4 to 8000ab8 in Listing 8.2.

— The incorrect result in 1.672µs to 1.948µs corresponds to the instructions at byte
address 8000ac6 and 8000ac8 in Listing 8.2.

Comparison
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FIGURE 10.3 – Software-Based Control Flow Hijacking Results Only
First Byte Instruction Results

This section compares the results of the software-based and hardware-based fault
injection experiments presented in the previous two sections (10.1 & 10.1).

Overall, both approaches detected vulnerabilities in the instructions (starting) at
byte addresses 8000aac, 8000aae, 8000ab0, 8000ab4, 8000ab6, and 8000ab8 in List-
ing 8.2. However, no fault was detected by the hardware prior to 8000aad (implying
the FLIP fault injection vulnerabilities here could not be realised).

Overall both approaches detected incorrect results in the instructions (starting) at
byte addresses 8000ab2 and 8000ab4 in Listing 8.2. However, the TAM fault model
did not indicate any incorrect results anywhere (implying that the TAM fault model
may not be accurate representations of EMP effects).

Observe that since although all the fault models detected vulnerabilities in some of
the same areas as the hardware experimental results, the above implications sug-
gest that the TAM and FLIP models do not appear to describe the effects of EMP
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accurately. This leaves the setting of byte(s) to zero (Z1B and Z1W) and skipping in-
structions (NOP) as the best fit between the software-based results and the hardware-
based results.

The Z1B fault model matches quite well with having two groups of vulnerabilities,
as well as two groups of incorrect results. This corresponds closely to the hardware
results that also have two distinct groups of vulnerabilities, and of incorrect results
(a third less clear group of incorrect results also exists).

The Z1W fault model matches well with the vulnerable results, but also has vulnera-
ble results that are not confirmed by the hardware. That said, the faulting of a whole
word tends to produce vulnerabilities that occur due to the faulting of a particular
byte, that is the Z1W fault model in many cases induces the same fault as the Z1B

by setting a following byte at a later address to zero. Thus, the lack of gaps in the
vulnerabilities and the lack of a second group of incorrect results implies that while
there is some coincidence, the Z1W fault model does not match the EMP effects well.

The NOP fault model is similar to the Z1B fault model in having groups of vulnera-
bilities that match very well with the hardware experiments. The lack of two groups
of incorrect results however implies that the NOP fault model does not accurately
represent the EMP effect on the hardware.

Considering combinations and subsets of the fault models is straightforward from
the above results and for the Z1B and NOP fault models applied only to the first byte
of each instruction those displayed in Fig. 10.3. Observe the two fault models now
matche but that no single fault model alone exactly matches the hardware results.
Considering the Z1B and NOP instructions combined (or combined, but taking only
the NOP targeting the first byte of each instruction) provides the closest match to the
hardware results.

10.2 Backdoor

This section presents the Backdoor case study experimental results. Section 10.2
presents the software experimental results for the backdoor case study. Section 10.2
highlights the hardware experimental results. Section 10.2 overviews the compari-
son of the software and hardware results. Note that the experimental methodology
here is the one in Chapter 9.

Software-Based Experimental Results

This section overviews the results of the software simulation experiments.

An overview of the backdoor case study software experiment results can be seen
in Figure 10.4. Observe that all the fault models indicated possible vulnerabilities
around bytes 80005ca and 800061a. The FLIP fault model indicated additional vul-
nerabilities at byte 80005a7.

The vulnerabilities detected at bytes 80005ca-800061a by all but one fault model
correspond to the POP instruction at 80005ca in Listing 8.4.

Similarly to the control flow hijacking case study results, the effect observed on the
assembly instructions is classified into two different effects (see Section 10.1). The
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first effect is when the fault injection simulation changes the original assembly in-
struction to a different assembly instruction or multiple assembly instruction. The
second effect is when the fault injection simulation changes the original assembly in-
struction address, value, or register to a different values keeping the same assembly
instruction.

The rest of this section explains the effects of the fault injection simulation using the
different models on the two instructions on byte addresses 80005ca and 80005a7 in
Listing 8.4.

The instruction bd80 pop {r7, pc} at byte address 80005ca in Listing 8.4 stores the
top value of the stack into registers r7 and pc. This instruction indicates the end of
the blink_wait function. The simulation of the fault injection using the fault models
produces the following effects:

— Using all the Z1B, Z1W, and FLIP fault models, it is possible to change the POP

instruction to LSL, MOV, ADD, ... instructions.

— Using the NOP fault model, it is possible to replace the instruction with a NOP

instruction.

— Using the FLIP fault model, it is possible to modify the registers that will be
modified after the pop. Here instead of loading values of the stack into regis-
ters r7 and pc, it will only load the value into register r7.

All the above modifications will skip the execution of the POP instruction, and so
execute the wait_for value corresponding to a branching instruction to the backdoor
function.

An interesting vulnerability which was detected at byte 80005a7 by the FLIP fault
model, corresponds to the instruction b.n 80005b4 at 80005a6 in Listing 8.4. This
instruction is a branching instruction, which will jump to the instruction at 80005e8
in Listing 8.4. The effect of (simulated) fault injection using the FLIP fault model was
to change the target address of the branch directly to the backdoor function.
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FIGURE 10.4 – Software-Based Backdoor Results

Hardware-Based Experimental Results

This section overviews the results of the hardware experiments.

An overview of the backdoor case study hardware experiment results can be seen
in Figure 10.5. As before (see Section 10.1) various measurements and experiments
were performed to ensure the correct timing for the fault injection, and a large num-
ber of experiments were run to yield the results. Observe that the only vulnerabilities
were detected between 1.224µs and 1.260µs.
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By calculating the execution time for the instructions, clock cycles, hardware latency,
etc. the fault injection at time 1.224µs to 1.260µs corresponds to the POP instruction
at 80005ca in Listing 8.4.

FIGURE 10.5 – Hardware-based Backdoor Results

Comparison

This section compares the results of the software-based and hardware-based fault
injection experiments from the previous two sections (10.2 & 10.2). Both approaches
detected vulnerabilities in the instruction at byte addresses 80005ca in Listing 8.4.

Due to the very limited hardware results (only a single spike of vulnerabilities and
no incorrect result), the comparison is both trivial and less interesting. All the fault
models were able to detect a vulnerability in the instruction at byte address 80005ca
in Listing 8.4.

— The Z1B and TAM fault models detected a fault injection vulnerability at the
exact same address as the hardware approach and nowhere else.

— The NOP fault model also found a fault injection vulnerability at 80005c9 since
the NOP fault model changes the value of two bytes and so will impact the
instruction at byte address 80005ca.

— The Z1W fault model found faults at four byte addresses 80005c7 to 80005ca,
but in practice this was merely due to the size of the fault model, since all Z1W

faults starting from 80005c7 set the byte 80005ca to zero.

— The FLIP fault model was the only one to have a significant difference also
finding a fault injection vulnerability in the instruction at byte address 80005a7
in Listing 8.4.

The comparison here offers little useful information in improving the understanding
of the relation between software-based and hardware-based approaches. The ruling
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Backdoor CFH
Fault Model Vulnerabilities Detected Runtime Vulnerabilities Detected Total Runtime

Z1B 2 4m51s 7 2m14s
Z1W 4 4m55s 9 1m52s
NOP 3 5m18s 7 2m39s
TAM 10 4m31s 3 1m42s
FLIP 14 45m55 40 16m51s

TABLE 10.2 – Experiment Runtime

out of the FLIP fault model as being likely for EMP effects aligns with the results of
Section 10.1, but little else was learned here that can improve over the information
gained from Section 10.1. (That said, the agreement on the FLIP fault model and lack
of contradiction at least supports the prior conclusions.)

Runtime Information

Table 10.2 shows the experiment runtime for each fault model of the two case stud-
ies backdoor and CFH. Notice that the runtime is relatively the same for each fault
model except for the FLIP fault model. This difference is due to the number of ver-
ified mutants. For the backdoor case study, the number of mutants generated after
the fault injection simulation using the Z1B, Z1W, NOP, and TAM was 116 mutants,
compared to 928 mutants for the FLIP fault model. Similarly for the CFH case study,
44 mutants for each of the first four fault model, compared to 352 for the FLIP fault
model. Overall, the verification of a single mutant requires approximatively 3 sec-
ondes.
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Chapter 11

Details on the Experimental
Results and Implementation for the
CFH Case Study

This chapter demonstrate in details how the software-based approach results pre-
sented in Chapter 10 were obtained by following the steps of the FIVD process pre-
sented in Chapter 9.

Property Specification

This chapter takes the control flow hijacking attack as an example. Listing 11.1
presents the C source code of the target function to verify. In a normal execution
not given the false pin, the function should output the value 0x00000000. A vulner-
able behaviour will be detected if the function output the value 0x55555555 given
the correct pin.

1 uint32_t test_persistence (void){

2 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_7 , GPIO_PIN_SET);

3 uint32_t status = 0;

4 if (pin_correct ==1) {

5 status =0 x00000000;

6 } else {

7 status =0 x55555555;

8 }

9 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_7 , GPIO_PIN_RESET);

10 return status;

11 }

LISTING 11.1 – Control Flow Hijacking Case Study C Code

At the assembly level presented in Listing 11.1, notice that the if condition (at line
4 in Listing 11.1) is represented at the compare instruction at address 8000ab4 in
Listing 11.2. The condition (pin_correct == 1) is checked and then the status

value is loaded in register r4 (lines 13 and 14) based on the comparaison results.

1 08000 aa0 <test_persistence >:

2 8000 aa0: b510 push {r4, lr}

3 8000 aa2: 480a ldr r0, [pc, #40]

4 8000 aa4: 2180 movs r1, #128

5 8000 aa6: 2201 movs r2, #1
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6 8000 aa8: f001 f91c bl 8001 ce4 <HAL_GPIO_WritePin >

7 8000 aac: 4b08 ldr r3, [pc, #32]

8 8000 aae: 4807 ldr r0, [pc, #28]

9 8000 ab0: 681b ldr r3, [r3, #0]

10 8000 ab2: 2180 movs r1 , #128

11 8000 ab4: 2b01 cmp r3, #1

12 8000 ab6: bf0c ite eq

13 8000 ab8: f04f 34ff moveq.w r4, #0; 0x00000000

14 8000 abc: f04f 3455 movne.w r4, #1431655765; 0x55555555

15 8000 ac0: 2200 movs r2 , #0

16 8000 ac2: f001 f90f bl 8001 ce4 <HAL_GPIO_WritePin >

17 8000 ac6: 4620 mov r0, r4

18 8000 ac8: bd10 pop {r4 , pc}

19 8000 aca: bf00 nop

20 8000 acc: 40011000 .word 0x40011000

21 8000 ad0: 2000001c .word 0x2000001c

LISTING 11.2 – Control Flow Hijacking Case Study Assembly Code

The specified property here will check if the register r4 can eventually have the value
0x55555555 (which is equal to #1431655765). The property is expressed in the BLTL
form as follow:

F<=#1000 ( r4 =1431655765)

LISTING 11.3 – Control Flow Hijacking Property

— F is the temporal operator for eventually,

— <=#1000 expresses the bound, it gives the length of the run (number of steps)
on which the property must hold, since here the property is expressed in the
bounded linear temporal language (BLTL).

— ( r4=1431655765) checks if the output value could be 0x55555555. Note that
under normal execution and valid pin this case cannot happen without any
fault injection.

The property is written in a separate file with the extension .bltl. This file will
be used by the model checker tool (Plasma Lab) to verify the generated mutants.
If the property holds on the model, this means that the fault injection created a

vulnerability, and that the control flow of the program is hijacked.

Obtaining the Results

As it was explained in Chapter 9, in order to obtain the results the FIVD process
implementation was adopted (see Figure 9.2, page 84).

The bash script in Listing 11.4 shows in a summarised way the FIVD process im-
plementation (Note that priorly the validation step is done). The SIMFI is used first
to simulate the fault injection with the chosen fault model and generate the mutant.
Then, the mutant is translated to an RML model using the ARML tool (further in-
formation on the RML model will be given later). After, Plasma Lab model checker
is used to check if the specified property (see Listing 11.3), holds on the generated
model by the RML tool (see Listing 11.5)
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#1− Faul t i n j e c t i o n Simulat ion using SimFI
python . . / f a u l t i n j e c t . py −f $faultmodel −a $ i −o

$BinaryMutantName − i $bianryName
#2− RML generat ion using ArmL
./ t r a n s l a t i o n _ t o o l $BinaryMutantName $RmlMutantName

$star tAddress $ b i n a r y s i z e
#3− Check the property using Plasma
./ plasmacl i . sh launch −m $RmlMutantName : rml −r $ p r o p e r t y f i l e :

b l t l −a montecarlo −A" Tota l samples " =100 −−progress

LISTING 11.4 – Bash Script

RML Model

This section presents the RML model generated by the ARML tool. Listing 11.5
shows a part of the RML model corresponding to the assembly code in Listing 11.2
(headers information and variables declaration is not shown here).

Each instruction in Listing 11.2 is translated to the corresponding one in RML model.
Each line in Listing 11.5 represent a transition in the model. Let’s take as an example
the first line in Listing 11.5:

— pc=66562 is the guard in the RML language, it represents the predicate over all
the variables in the model. In other world this is the current state of the model,
which corresponds here to the program counter.

— -> 1 is the probability of the transition, it express the probability that the model
will take this transition.

— (pc’ = 66564) & (r0’ = M0) is the update done by the transition if the guard
is true. Here the value of pc will be updated to the address of the next instruc-
tion, and the register r0 will receive the value of the memory address M0.

1 [ ] pc=66562 −> 1 : ( pc ’ = 66564) & ( r0 ’ = M0) ;
2 [ ] pc=66564 −> 1 : ( pc ’ = 66566) & ( r1 ’ = 128) ;
3 [ ] pc=66566 −> 1 : ( pc ’ = 66568) & ( r2 ’ = 1) ;
4 [ ] pc=66568 −> 1 : ( pc ’ = 66572) & ( l r ’ = 66572) ;
5 [ ] pc=66572 −> 1 : ( pc ’ = 66574) & ( r3 ’ = M1) ;
6 [ ] pc=66574 −> 1 : ( pc ’ = 66576) & ( r0 ’ = M1) ;
7 [ ] pc=66576 −> 1 : ( pc ’ = 66578) & ( r3 ’ = M0) ;
8 [ ] pc=66578 −> 1 : ( pc ’ = 66580) & ( r1 ’ = 128) ;
9 [ ] pc=66580 −> 1 : ( pc ’ = 66582) & ( f lag ’ = ( r3 = 1 ) ) ;

10 [ ] pc=66582 −> 1 : ( pc ’ = 66584) ;
11 [ ] pc=66584 & f l a g =true −> 1 : ( pc ’ = 66588) & ( r4 ’ = 0) ;
12 [ ] pc=66584 & ! f l a g =true −> 1 : ( pc ’ = 66588) ;
13 [ ] pc=66588 & f l a g = f a l s e −> 1 : ( pc ’ = 66592) & ( r4 ’ = 1431655765) ;
14 [ ] pc=66588 & ! f l a g = f a l s e −> 1 : ( pc ’ = 66592) ;
15 [ ] pc=66592 −> 1 : ( pc ’ = 66594) & ( r2 ’ = 0) ;
16 [ ] pc=66594 −> 1 : ( pc ’ = 66598) & ( l r ’ = 66598) ;
17 [ ] pc=66598 −> 1 : ( pc ’ = 66600) & ( r0 ’ = r4 ) ;
18 [ ] pc=66600 −> 1 : ( pc ’ = 66604) & ( sp ’ = 8) ;
19 [ ] pc=66602 −> 1 : ( pc ’ = 66604) ;

LISTING 11.5 – Control Flow Hijacking RML Model
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Understanding the results

Listing 11.6 highlights in red colour all the instructions which, when modified dur-
ing the fault injection simulation, created vulnerabilities.

To understand why the fault injection simulation created a vulnerability, a closer
look to one of the instruction is given. For example, the instruction in line 11 Listing
11.6 compares the value of the register r3 to 1 and sets the flags based on the obtained
result.

Next, the effect of the different fault model on the instruction cmp r3, #1 in line 11
Listing 11.6 is given:

Z1B zeroing the byte address 8000ab5 will produce the following instruction cmp

r3, #0.

NOP nopping the instruction at address 8000ab4 will replace the compare instruc-
tion with a nop instruction nop.

TAM replacing the byte address 8000ab5 will produce the following instruction cmp

r3, #ff.

FLIP flipping the fifth bit in the byte at address 8000ab4 will produce the following
instruction cmp r7, #0.

All the changes presented above will modify the control flow of the program. The
modification in the compare instruction will have an impact on the chosen path af-
terwards Note that the list above did not show all detected vulnerabilities.

1 08000 aa0 <test_persistence >:

2 8000 aa0: b510 push {r4, lr}

3 8000 aa2: 480a ldr r0, [pc, #40]

4 8000 aa4: 2180 movs r1, #128

5 8000 aa6: 2201 movs r2, #1

6 8000 aa8: f001 f91c bl 8001 ce4 <HAL_GPIO_WritePin >

7 8000 aac: 4b08 ldr r3, [pc, #32]

8 8000 aae: 4807 ldr r0, [pc, #28]

9 8000 ab0: 681b ldr r3, [r3, #0]

10 8000 ab2: 2180 movs r1 , #128

11 8000 ab4: 2b01 cmp r3, #1

12 8000 ab6: bf0c ite eq

13 8000 ab8: f04f 34ff moveq.w r4, #0; 0x00000000

14 8000 abc: f04f 3455 movne.w r4, #1431655765; 0x55555555

15 8000 ac0: 2200 movs r2 , #0

16 8000 ac2: f001 f90f bl 8001 ce4 <HAL_GPIO_WritePin >

17 8000 ac6: 4620 mov r0, r4

18 8000 ac8: bd10 pop {r4 , pc}

19 8000 aca: bf00 nop

20 8000 acc: 40011000 .word 0x40011000

21 8000 ad0: 2000001c .word 0x2000001c

LISTING 11.6 – Control Flow Hijacking Case Study Assembly Code -
Highliting the Results
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Chapter 12

Discussion and Limitations

This chapter concludes the second part of this thesis. The first section of this chapter
discusses the experimental results obtained by software-based and hardware-base
approach, and how combining the two approaches will have benefits compared
to applying only the software or the hardware approaches. The second section of
this chapter investigates the limitation of combining the software-based and the
hardware-based approches.
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12.1 Discussion

Case Studies Results

This section discusses the experimental results presented in chapter 10 and what we
can learn from them.

By comparing the software and hardware experimental results it is possible to de-
termine which software fault models best correspond to the EMP effects observed.
Here the Z1B, Z1W and NOP fault models had the closest correlation with the obser-
vations of the EMP faults induced. To some extent this agrees with previous work
[96] that observed that the most accurate fault model is an instruction skip (or here
NOP). However, there is also strong evidence from this work that other fault mod-
els, in particular setting all of a byte or word to zero (i.e. Z1B or Z1W), also correlate
strongly with the effects of EMP.

Observe also that the software vulnerabilities generated using the FLIP and TAM

did not correspond well to the EMP fault injection results. Although the FLIP and
TAM detected some similar vulnerabilities to the other fault models, both fault mod-
els also detected a lot of vulnerabilities which do not correspond to the hardware
results. In particular the TAM fault model never produced an incorrect result de-
spite many being observed in other fault model, and the FLIP fault model had many
vulnerable or incorrect results that did not correlate with the EMP results.

Using the software results to learn about the hardware results is also possible. The
hardware experiment results do not indicate how the fault was achieved or what the
actual fault model/effect was, only the outcome. Knowing the specific effect of the
fault injection on the hardware is a nontrivial task, specially when using imprecise
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hardware techniques such as EMP. Hardware experiment results alone are only able
to show that the injection of the fault creates the desired vulnerability, but do not
give detailed information of what, where, or how the injected fault created the vul-
nerability. The results here indicate that the strongest correlation is with instructions
simply being faulted to have alternate or no effect (i.e. the Z1B, Z1W, and NOP fault
models). Further, since none of these fault models correlates exactly, this implies
(along with the inconsistent nature of achieving a vulnerable or incorrect outcome)
that EMP fault effects may vary and not have a single fault model.

From the experiment results one can observe that the hardware and software re-

sults do coincide but they do not exactly match. There are clearly locations in
the assembly code where many fault models indicate a vulnerability (or incorrect
result) and these correlate very strongly with the locations where the hardware ex-
periments were able to produce vulnerabilities (or incorrect results, respectively).
This clearly indicates that there is a coincidence between the software-based and
hardware-based approaches.

Considering the results further, one key insight is that the software-based experi-

ments did not have any false negatives. That is, every place where the hardware
was able to produce a genuine vulnerability (or incorrect result), the software-based
approaches indicated a vulnerability (or incorrect result, respectively) for at least
one fault model. (Indeed, this holds even when only considering the Z1B, Z1W, and
NOP fault models.) Thus, absence of any vulnerabilities or incorrect results accord-
ing to software-based experiments implies that no such vulnerabilities or incorrect
results should exist in practice.

The software-based approach does produce false positive results. This outcome is
not surprising since many fault models were tested here, including ones unlikely
to be possible with the hardware-based EMP fault injection. However, even when
considering only the Z1B, Z1W, and NOP it is not clear that every vulnerability or
incorrect result can be reproduced by the EMP experiments. The conclusion here

is that software-based simulations can find vulnerabilities (or other behaviours)

that may be infeasible to reproduce in the hardware, or at least extremely difficult

to achieve.

From all the above, one can conclude that: on one hand software alone is not suffi-
cient to claim that vulnerability exists and is real, on the other hand hardware alone
is not feasible to explore all the possible configurations and locations in the target
program. That is, the software can be quickly used to find many potential vulnera-
bilities (or other results) even on relatively large programs (up to 800 line of code),
but that these cannot be guaranteed to exist in practice. The hardware can guaran-
tee a vulnerability (or other outcome) when one is produced, but finding these is
extremely expensive in time and equipment.

Combined approach

The natural extension of these hardware and software results is to consider how
they could be combined. This section discusses how this can be achieved to rapidly
find genuine vulnerabilities that would be infeasible with either approach alone.
Observe that this approach does not rely upon any prior knowledge of weaknesses
in the code.

If only the software-based approach is used then although the results are quick to
compute and require only a moderate amount of computational resources (this is
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relative to the model checker performance regarding the program size), there is not
guarantee that any of the results hold. Indeed, attempting to address too many
false positives would be intensive on developer resources and a waste of effort if the
vulnerabilities are not genuine.

If only the hardware-based approach is used this is extremely expensive if not infea-
sible to test larger programs. This requires many experiments to test each possible
timing/location of fault injection on the program over the programs entire execution
life-cycle, which may be impossible for programs designed to run for years.

The proposed combined approach is to use the software-based simulations to

quickly find all the potential vulnerabilities in a given program. This can be easily
applied and automated [54, 55] to yield information on all the locations in the code
that may be vulnerable. The hardware-based approach can then be applied to test

the most vulnerable locations to rapidly confirm (or refute up to some margin of

confidence) the existence of the vulnerability. In practice this requires some small
amount of computational resources for the simulations, and then only limited time
and some calculation prior to testing with the hardware to accurately target the right
locations.

The rest of this section explores how the above combined approach could have been
applied to the case studies here, and demonstrates the efficacy of the combined ap-
proach.

For the control flow hijacking case study, ∼ 117035 hardware experiments were con-
ducted to generate the results shown in Fig. 10.2. (This number accounts only for
experiments after calibration, latency tests, etc.) Overall, these experiments indi-
cated a vulnerability 0.469% of the time, and only in certain locations. Thus, to find
one requires some significant investment in time to scan the entire function and test
each location frequently enough to be likely to find a genuine vulnerability. How-
ever, if the software experiments are used to guide the hardware experiments, it is
possible to target exactly the timing 1.344µs, which could then demonstrate a vul-
nerability with 0.999 probability requiring only 10 passes over 21 timings (total 210
experiments). Thus, this approach could bring the number of hardware experi-

ments required down orders of magnitude and still confidently confirm or refute

a fault injection vulnerability.

For the backdoor case study the possibility to find the vulnerability using hardware
alone is significantly lower since the location is unique and has a low probability
of success. Overall the combined probability of both targeting the right timing and
inducing a fault for any given experiment is 0.00957%. However, if guided by the
software results that all indicated a specific location to test (i.e. 1.248µs) then the
probability to detect a fault is 0.999.

Observe that in both case studies (Backdoor and CFH) vulnerabilities were already
expected and the locations could be guessed or calculated in advance. However,
using the combined approach described here does not require this prior knowledge
since the software simulations can be performed to find the likely locations to con-
firm or refute with hardware experiments.

This means that there is no need to know in advance whether a fault injection

vulnerability exists. The software can be used to locate any potential fault injec-

tion vulnerabilities, and the hardware used to confirm of refute their feasibility of

exploitation. This combined approach is more accurate than software simulations
alone (since the false positives are refuted), and much cheaper than the hardware
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alone since many less experiments are required to demonstrate or refute vulnerabil-
ities.

12.2 Limitations

This section discuss the limitation of combining the software-based and hardware-
based fault injection approaches. The limitations of this second part are resumed in
three limitations.

The first limitation is mapping between the software-based and hardware-based
fault injection approaches. In [39] the authors concluded that the software and the
hardware results do not map because of the fault detection time. This is because in
hardware-based approach there is a delay between the injection of the physical fault
and the observed effect, in the software-based approach the effect of the injected
fault is observed instantly. To overcome this problem in this thesis a computation of
this delay was done (as shown in Section9.3). The computed delay was taking into
consideration while mapping the software and hardware result, combined with the
number of clock cycle per instruction and the clock cycle timing.

But the two case studies (Backdoor and control Flow Hijacking) presented in this
thesis are considered to be a proof of concept and do not correspond to real program
implementation. The mapping task for the two case studies was feasible but will not
be scalable to a larger program.

The second limitation is related the implementation of the software and hardware
approach to a limited architecture. Both existing software-based and hardware-
based implementation are not generalised to all possible architectures.

The presented software-based approach implementation of the FIVD process in this
thesis is related to a chosen architecture. The FIVD process works on the binary
which is related to specific architecture instruction set. In this thesis is was shown
that the process can be implemented in two different architecture (x86 and ARM).
Having a general implementation of the process that supports all the architecture
set is not feasible. The FIVD is a general approach to different architectures but no
general implementation exist.

The hardware-based approach can be applied to devices with different architectures.
The parameter set for hardware experiment on a specific chip architecture can not be
generalised to other chip architecture, therefore the implementation of the hardware-
based approach can not be generalised to all architectures. The hardware-based
approach used in this thesis was limited to a single technique (EMP) and a single
architecture (ARM), to give a proof of concept. Parameter experiments were set to a
chosen target and can not be used for a different one. But the hardware process can
be considered as a general one to other kind of architecture.

The third limitation is about the specification of properties. In the software-based ap-
proach proposed in this thesis, the properties are not generated automatically and
need some expertise to be specified. If the properties are not well defined the vul-
nerability detection can not be done correctly. Property specification is related to the
program (system) design/functionalities/components/variable, therefore it is not

feasible to have general property valid for all programs (systems). The detection
of the vulnerability is related to the property, if the property is not specified properly
the vulnerability can not be detected. It is very important in the proposed approach
in this thesis to specify the properties correctly.
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Chapter 13

Conclusions

Fault injection represents a serious threat to the robustness and security of many
software systems used in daily life. There are two main approaches to detect fault
injection vulnerabilities and to test system robustness: software and hardware-based
approach. Both approaches yielded useful results and can make useful contribu-
tions. Software-based approaches are good for simulation and being able to cheaply
implement, albeit at the cost of the ability to demonstrate a fault injection vulner-
ability is genuine and can be exploited. Hardware-based approaches are good for
proving genuine exploitability, but are expensive in time, equipment, and expertise
to conduct.

In Part I of this thesis the focus was on the software-based approach. To advance
the current state of the art of the software-based approaches, this thesis proposed
the FIVD process. FIVD is an automated formal process that uses model checking
to detect fault injection vulnerabilities in binaries. The FIVD process is generic, in
the sense that it is automated, operates at the binary level, supports the detection of
many varieties of fault injection vulnerabilities, and does not rely on any particular
system architecture, fault model, or other restricted choices (as are common in the
literature).

Through this thesis, the FIVD process was extended to detect fault injection vulner-
abilities in larger programs by adding the pre-analysis step. The addition of pre-
analysis to the process allowed many fault injections to be easily ignored as yielding
failed program states, thus improving the efficacy of the process as a whole. Pre-
analysis step reduced the number of mutants requiring model checking by 66.33%.
Overall the process is scalable via parallelism, although model checking remains
expensive.

The FIVD was first applied to the motivating example as a proof of concept. The
experimental results showed several vulnerabilities in the verifyPIN program. From
the experimental results it was shown that:

— it is important to specify the property that will catch any change of the normal
behaviour of the program, since if not specifying a generic property not all the
vulnerabilities will be detected.

— the property had an impact on the time needed to perform model checking,
which impacts the time needed to get the results.

To show the scalability and efficiency of the extended version of the FIVD process,
it was applied to the cryptographic algorithms (PRESENT and SPECK). The appli-
cation of the FIVD process on the cryptographic algorithms case studies detected
82 vulnerabilities, 73 in PRESENT and 9 in SPECK. Both PRESENT (9 vulnerabil-
ities) and SPECK (4 vulnerabilities) were vulnerable to faulting jump instructions
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that allowed encryption to be entirely bypassed. For SPECK five vulnerabilities ex-
ist, two by inserting non-operation byte values, and three by flipping individual bits.
PRESENT was also found to be vulnerable to 64 different CA vulnerabilities, mostly
through bit flips, but also through nopping instructions and jump target modifica-
tions. These were all found towards the end of the binary, where the last round of
encryption occurs. SPECK was not found to be vulnerable to the CA vulnerabilities
tested here. This is mostly due to the number of rounds (21) to achieve encryption
and that 21 is not one bit flip away from either 9 or 10. These results indicate that:

— some kinds of attacks may be more or less achievable depending on the struc-
ture of the code used, and so some care should be taken when choosing how
to implement a fault resistant binary.

— programs tend to be more vulnerable to bit flip and modifying the jump ad-
dress faut model.

Despite the good results of the software approach, it is hard to guarantee that the
detected vulnerabilities correspond to real vulnerabilities in practice. The fact that
the fault injection are simulated gives no guarantee that a physical fault injection
attack on the system will have the same effect. Thus the challenge in Part II of this
thesis to combine both software and hardware based approaches on a single case
study to explore how the two approaches connect.

Both software-based and hardware-based approaches have been used to detect fault
injection vulnerabilities. However, the two approaches have not been directly com-
pared before. Part II of this thesis presents both broad spectrum software-based
formal methods analysis and large scale hardware based experiments performed on
the same case study. The results of these experiments are compared to explore what
can be learned by bridging the two approaches.

For the software-based approach an improved version of the FIVD process is used.
Contrary to the version presented in Part I the properties are no longer added to
the source code, now the properties are defined in a separate file called during the
validation and checking steps. The implementation of the FIVD process is no longer
limited to the X86 architecture and bounded model checking.

The results of Part II show that software-based approaches do find genuine fault in-
jection vulnerabilities. Although software-based approaches may suffer from some
false positives, they (when done with multiple fault models) do not have any false
negative results. This allows for software-based approaches to provide useful infor-
mation about potential fault injection vulnerabilities, and strong guarantees about
the absence of fault injection vulnerabilities.

The results of Part II also showed that (confirming prior work [95]) EMP effects do
not have a single fault model. The results here indicated that multiple fault models
together best represent the effects of EMP fault injection attack. In practice, these
fault models correspond to an EMP effect either wiping a byte or word (by setting
all the bits to zero) or skipping an instruction.

More generally the results show that there is a strong relation between the software
and hardware-based approaches. This gives support to research that uses software-
based approaches to simulate or approximate hardware experiments. Further as
mentioned above, the coincidence can be used to influence our knowledge about
both approaches and refine our understanding of them.

Combining both software-based and hardware-based approaches is also vastly more
effective in isolating and confirming the existence of a fault injection vulnerability.
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In practice, by combining both approaches, finding previously unknown vulnerabil-
ities on whole programs becomes feasible. In the future this should allow the much
more rapid discovery of genuine fault injection vulnerabilities that do not require
prior knowledge or intuition on the part of the researcher.
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Chapter 14

Future Work

Although this thesis advances the state of the art in software-based fault injection
approach and combined software and hardware-based approaches in various ways,
there are still many opportunities for progress and areas that need significant effort
to be able to make fault injection vulnerability detection a reliable and easily applica-
ble part of software and hardware development. This chapter discusses possibilities
to expand on the work presented in this thesis.

Formal Verification part

Another area to advance in would be, the application of formal methods. This thesis
exploited the use of bounded and statistical model checking to overcome one of the
major problem of model checking: the space state explosion. Still the use of model
checking here is not optimal and requires a lot of time. The fact that all the generated
mutants are model checked is not such a good idea. Thus, an incremental approach
may yield significant efficiency returns. Similarly, developing and exploiting for-
mal methods that focus on the exact problems considered in vulnerability detection
could yield much more precise results than those that are currently state of the art.

Regarding properties, another area of future work is to consider how to extract prop-
erties automatically from the binary (or source code). There is some existing work in
this area [122, 153] although they focus on high level behaviour rather than binary
code.

Currently the process identifies vulnerabilities, but does not suggest fixes or coun-
termeasures. Automatically generating countermeasures is non-trivial, although if
countermeasures to particular faults are known future work could suggest or imple-
ment them automatically. Perhaps more significantly, these countermeasures could
be checked immediately using the process here and so their effectiveness verified
immediately.

Bridging Software and Hardware based approaches

Work on strongly connecting the software and hardware-based approaches is clearly
a goal for future research and development. As it was mentioned before only few
research works until today were interested in combining the two approaches, thus
this research area is to be more exploited.

A first direction is to focus on improving the software-based process as explained in
the previous points. The software-based approach is the main interest in this thesis.
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In order to go further there is a need to have a more robust and reliable software
process that will be combined with the hardware one.

The case studies used in the experiment for this thesis showed that combining the
software and hardware approach is promising. An other direction would be to run
software and hardware experiments on other security critical software, e.g. encryp-
tion algorithms, mission critical software, embedded device kernels, and also soft-
ware that has implemented countermeasures.

Related also to the experiment, in this thesis the software results were compared
only to the EMP hardware technique. The chosen hardware technique was limited
to the existing equipments in the LHS lab. An interesting direction would be to
run further experiments using other techniques (laser, power supply, etc), in order
to compare the results of the different hardware techniques with the results of the
software one.

A strong foundation of understanding of the relations between different kinds of
software and hardware based approaches will enrich and improve the results of
both. Further, by connecting these results, software-based results can be validated
to be genuine by reproducing them with hardware experiments. In the other direc-
tion, hardware-based experiments will demonstrate the efficacy and accuracy of the
software-based approaches.

Finally, many existing works in the domain of fault injection vulnerabilities and their
detection work on examples or programs where a vulnerability is already known to
exist. The goal of the work is to (re)produce a known attack (or exploit one that
has been intentionally designed in) to demonstrate the efficacy of the approaches
used. However, finding vulnerabilities that were not even suspected in advance,
or devising approaches that allow the finding of such vulnerabilities in an efficient
manner is a clear requirement for practical application in the future.

Engineering of the developed tool

The FIVD process proposed in this thesis required a lot of engineering efforts. First,
the efforts of putting together in a tool chain existing tools that had limitations. Then,
the efforts in developing new tools to satisfy the requirement of this thesis.

SIMFI is a tool that simulates fault injection on binaries at the chosen location and
with the chosen fault model. At the state of submitting this thesis, the SIMFI tool is
considered to be sufficient to give reliable results, but there remains much room for
further improvement. Several tools to simulate fault injection attacks on software
exist [67, 71]. However, these tools are limited by various choices that make unsuit-
able for the process here (hence their lack of use in the implementation). Several are
only able to inject faults into intermediate representations, and not into executable
binaries [110, 135, 142], thus being unable to simulate faults that appear only at the
executable binary level. Others have different limitations, such as: specific hardware
platforms [107, 120], specific source code languages [35, 89, 142], or requiring sim-
ulating drivers [37]. Despite these limitations, many include useful techniques or
developments that could be incorporated into future development of the SIMFI tool.

ARML is a tool that generate the RML model from an ARM binary file. In Part I if
this thesis, FIVD process was implemented using MC-Sema [136] that has various
limitations with instruction sets, or failures to correctly translating the behaviour of
the program. Similarly, in many other works [65, 107] the tools limit the applicability
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of the technique to some limited scope, limited architecture, limited size, etc. Thus,
in many areas the tools used require refinement and maturity, and in other areas the
tools simply do not exist and would need to be created, thus the development of the
ARML tool. At the state of submitting this thesis the ARML tool is considered to be
a first version but is not matured yet. It does not support all instructions set of the
ARM architecture yet. But this is straight forward to add and will not require any
change to the architecture or conceptualisation of the tool.
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Appendix A

FIVD Process Implementation
Details

This section details the FIVD process implementation presented in Section 4.2.

Source Code & Properties

The implementation starts with the source code written in the C language, including
the properties to be validated and checked that are expressed as assert statements
in this source code. For example, the source code of the motivating example (Fig-
ure A.1) could have the following property.

__llbmc_assert(i == 4);

that the loop counter i reaches 4 inserted between lines 9 and 10 in Figure A.1. This
would check that i reaches the value 4 before doing the conditional to test whether
access should be granted on lines 10 − 12.

1bool grantAccess = false;

2bool badValue = false;

3int i = 0;

4while (i < PINSize) {

5if (PINCandidate[i] != PINTrue[i]) {

6badValue = true;

7}

8i++;

9}

10if (badValue == false) {

11grantAccess = true;

12}

FIGURE A.1 – Motivating Example Code

Compilation

The compilation from source code to executable binary for this paper is done with
GCC. Note that here a listings file is also generated with annotations that will be ex-
ploited to do the fault injection later. The following is the command used to compile
with GCC.
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$gcc -m32 -ggdb -c -Wa,-a,-ad -o test.o

test.c > test.lst

Here -m32 specifies compiling for 32-bit architecture. The -ggdb argument includes
debugging information that will be used to help translate the intermediate language
later in the implementation. The -c argument indicates to compile and assemble
the source code, but do not link (this simplifies the scope of checking since no li-
brary code is linked at this stage). The -Wa,-a,-ad argument specifies annotations
to output that will be used later to do the fault injection (-a to turn the listing on,
-ad to omit unnecessary debug information). The -o is used to specify the output
file (text.o) for the executable binary. Here test.c is the source file with properties.
Lastly, > test.lst outputs the annotations used later to do the fault injection into
the file test.lst.

Note that the above command preserves the assert statements along with the debug-
ging information, so these can be exploited in later stages.

Intermediate Representation

The translation from executable binary to LLVM-IR is done by MC-Sema in two
stages. The first stage uses the executable binary to generate a CFG. The second
stage uses the CFG to generate the LLVM-IR.

Executable Binary to CFG

The first stage is done by the bin_descend tool (included within MC-Sema) using
the below command.

$bin_descend -march=x86 -d

-func-map="test_map.txt"

-entry-symbol=checkPIN -i=test.o

Here the -march=x86 argument specifies X86 architecture. The -d flag enables out-
put of debugging information, used in later stages of the implementation. The
-func-map=

"test_map.txt" argument informs of the file (test_map.txt) that contains specifica-
tions of externally referenced functions (e.g. __llbmc_assert 1 C N to indicate that
the function __llbmc_assert has 1 argument, C to represent the calling convention
here is for CleanUp to clean up the stack after the function call, the N to mention that
the function has a return). The -entry-symbol=checkPIN argument indicates the
function name of the entry point into the code, here the checkPIN function. Lastly,
-i=test.o indicates to input from the file test.o.

CFG to LLVM-IR

The second stage is to translate the CFG to LLVM-IR. This is done by the cfg_to_llvm
tool also included in MC-Sema. The command to achieve this is shown below.

$cfg_to_bc -mtriple=i686-pc-linux-gnu

-driver=test_entry,checkPIN,0,return,C

-o test.bc -i test.cfg
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Again -mtriple=i686-pc-linux-gnu indicates the X86 architecture (on linux). The
argument -driver=test_entry, checkPIN,0,return,C defines the entry point in
the generated LLVM-IR to be test_entry and this should correspond to the entry
point symbol checkPIN in the CFG, the 0 represents the argument count, the return
to specify that the function has a return, and finally the C represents the calling
convention. As usual, -o indicates the output file name (here test.bc). Lastly, -i is
the input file name (here test.cfg).

Model Checking

The model checking of properties on the intermediate representation is done by
LLBMC. The command used here to model check with LLBMC is as below.

$llbmc -function-name=test_entry

--ignore-missing-function-bodies

--max-loop-iterations=20

-only-custom-assertions test.bc

The argument -function-name=test_entry makes certain that LLBMC checks the
specified function (and not others). The –ignore-missing-function-bodies argu-
ment is used to ignore missing functions, such as those that were not linked and so
do not appear in the LLVM-IR. The argument –max-loop-iterations=20 specifies
bounds for the model checking, here limited to 20 loop iterations.

The -only-custom-assertions argument forces LLBMC to only check the proper-
ties specified, and not other default properties. Lastly, test.bc is the input file.

Note that the above steps from executable binary to model checking can be repeated
(with changed file names) for the mutant binary, and so will not be repeated below.

Fault Injection

The fault injection simulation is performed by editing the executable binary file, it
takes an executable binary and yields a mutant binary. To achieve this the SimFI tool
is used.

The SimFI tool takes as an input the executable binary file, the user needs to specify
the fault model and the target bit or byte in the binary. The command used here to
simulate the fault injection of zeroing one byte with SimFI is as below.

SimFI --faultmodel zerobyte --address 96

--outfile test_mutant.o --infile test.o

The argument –faultmodel zerobyte specifies the fault model used to simulate the
fault injection. Here the used fault model is zerobyte that sets the specified address
byte to zero. The SimFI tool supports a variety of fault models, refer to section 4.3 to
discover the other fault models. The argument –address 96 specifies the address of
the byte in the binary file to modify. Note that for the experiment a script is written
to loop through all addresses in the binary file, for illustrative reason 96 (0x60) is
chosen as target address here. The –outfile test_mutant.o argument is used to
specify the output file, here the mutant binary. Lastly, the –infile test.o argument
is used to specify the input file.
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Result:

=======

No error detected.

FIGURE A.2 – Property 1 : executable binary verification result

Result:

=======

Error detected.

Error synopsis:

===============

Assertion failed: Custom assertion (assert or

__llbmc_assert) does not hold.

Error location:

===============

Error occurs in basic block "block_0x10b" of function "

sub_0".

No debug information available.

Stack trace:

============

#0 void @sub_0 (% struct.regs* %0)

#1 i32 @demo_entry ()

FIGURE A.3 – Property 1 : mutant binary verification result

Detecting Vulnerability

Once the results of model checking have been produced for both the executable
binary and the mutant binary, fault injection vulnerabilities can be detected when
these results differ. In Figure A.2 the output of LLBMC is shown for when all the
properties hold. By contrast, Figure A.3 shows the LLBMC output when a property
is violated. Note that due to compilation to binary and then translation to LLVM-IR,
LLBMC is unable to gather sufficient information to produce a useful trace of the
property violation.
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PRESENT Experimental Results

This section presents a case study of five different fault injection attacks against the
PRESENT algorithm by applying the FIVD process without the pre-analyse step.

Section 5.2 shows the result of the PRESENT algorithm using the improved version
of the FIVD. Here are the first results obtained without the pre-analyse step that
triggered thoughts of improving the process for larger programs.

Experimental Design

All the experiments tested a single property to capture the capability of a fault in-
jection attack to bypass the encryption algorithm. The property checked whether
the “ciphertext” at the end of the encryption was different to the “plaintext”. Thus,
violations of this property indicated the encryption algorithm had been effectively
bypassed. The result of each fault injected mutant binary were thus classified into
one of: passed where model checking of all properties succeeded; infinite loop when
the fault caused an infinite loop in model checking; crashed when the fault caused the
program to crash; and vulnerable when the fault caused the property to be violated.

The five fault models are: modifying an unconditional jump (JMP) to jump to a new
address; modifying a conditional jump (JBE) to jump to a new address; zero 1 byte (Z1B)
that sets a single byte to zero; zero 2 bytes (Z2B) that sets two consecutive bytes to
zero; and NOP’ing an instruction (NOP) that sets a byte to a non-operation code.
Each is detailed below when considering the results for that fault model.

Results Overview

An overview of the results for injecting these fault models in all possible locations
in the PRESENT binary can be seen in Table B.1. All the fault models tested caused
crashes, with these being most common with the Z2B and NOP fault models. Infinite
loops were also quite common, either through modification of jumps, damaging
iterator code, or damaging conditionals. Vulnerabilities were quite rare, which was
as expected, with all arising from the jump fault models. The rest of this section
considers each of the fault models and the associated experimental results in detail.

Unconditional Jump

The fault model for this experiment was to identify unconditional jump instructions
and change their target. For simplicity only increasing the value of the target address
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Fault Model Colour

Result JMP JBE Z1B Z2B NOP

Passed 1632 502 905 855 784
Infinite Loop 106 0 53 49 93

Crashed 62 60 172 225 248
Vulnerable 1 8 0 0 0

TABLE B.1 – Overview of Fault Injection Results.

was considered (i.e. jumping relatively forward, not relatively backwards). Column
JMP of Table B.1 presents aggregate results. There are 10 unconditional jumps in
the PRESENT binary at addresses 0x0120, 0x014B, 0x0155, 0x018C, 0x01D3, 0x0207,
0x02D4, 0x0313, 0x0361, and 0x0447. The only jump that yielded a vulnerability was
at 0x014B, and the details are shown in Figure B.1 showing the offsets that could be
jumped to and the result of checking each mutant (and the blue box indicating the
end of the experiment range).

Most of the significant changes here were infinite loops, with a significant number
of crashes, and a single vulnerability that skipped the entire encryption algorithm.
The infinite loops are largely as expected, since the modified jump can easily skip
loop iterator increment code. The crashes are also to be expected, mostly related to
jumping to incorrect byte offsets for the instructions, and so yielding invalid instruc-
tions (or instructions that crash in other ways such as trying to read invalid memory
segments). The single vulnerability was when the jump for the first loop of the en-
cryption algorithm skips over the entire encryption, going straight to the end of the
code. Only a single instance was found as most jumps were “short” (single byte
offset), meaning they could not bypass significant amounts of code.

"To Offset Starting 0x0150"

FIGURE B.1 – Unconditional Jumps from Jump at 0x014B

Conditional Jump

The conditional jump fault model changes targets similar to the unconditional jump
fault model. Column JBE of Table B.1 presents the summaries for the two conditional
jumps at addresses 0x02C9 and 0x043C. Again vulnerabilities were only found in
one at 0x043C and these are detailed in Figure B.2.

Here no infinite loops were detected likely due to the conditions always being trig-
gered at least once, instead only crashes where the unconditional jumps were instead
targeting bad locations in the code leading to incorrect “instructions”. More inter-
esting are the vulnerabilities that fall into two groups. The first group (the first three
in the map) jumped to later assignment instructions (including incorrectly offset lo-
cations) that ended up bypassing the correct loop controls (by changing values used

"To Offset Starting 0x043E"

FIGURE B.2 – Conditional Jumps from Jump at 0x043C
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FIGURE B.3
– Zero
1 Byte

FIGURE B.4
– Zero
2 Bytes

FIGURE B.5
– NOP
1 Byte

for later loop control flow), and eventually skipping the encryption algorithm. The
second group (the remaining five) simply jumped to the end of the encryption code,
merely bypassing the encryption algorithm.

Zero 1 Byte

Another fault model to test automating the process over a larger number of mutants
was to set a single byte to zero. There are 1130 bytes in the PRESENT executable
binary, and each was set to zero in a different mutant, yielding the results shown
in the Z1B column of Table B.1. Detailed results showing which faulted bytes yield
which effect can be seen in the map in Figure B.3.

No fault injection vulnerabilities to this fault model were detected, although many
crashes and infinite loops were introduced. This is not a surprising result, since the
PRESENT source code has two top-level loops that both perform some part of the
encryption. Thus, although setting one byte to zero could skip either one of these,
it would require two (non-consecutive) zero one byte fault injection attacks to be
“vulnerable” here.

Zero 2 Bytes

A similar test of automation over many mutants was the fault model that sets two
consecutive bytes to zero. There are 1129 possible mutant binaries under this fault
model. Their results shown in the Z2B column of Table B.1, and the map showing
the starting index of the two bytes is shown in Figure B.4.

Similar to the zero 1 byte fault injection model, no vulnerabilities were detected.
Even more crashes were introduced, although a few less infinite loops. Generally
this is due to instructions being damaged to yield failure, either by being simply
incomprehensible, or by pushing memory access outside acceptable bounds.

NOP Code 1 Byte

The last fault model for this experiment was to set each byte to the instruction code
for a non-operation (NOP). This fault injection attack was applied to each of the
1130 bytes to ensure complete coverage (and so in some cases had effects other than
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NOP’ing an instruction). Column NOP of Table B.1 summarises these results, with
the detailed map in Figure B.5.

This approach turned out to be even more destructive than either of the zero byte
fault models. Although more crashes were introduced, the almost doubling of infi-
nite loops was an unexpected result that could be investigated further in future. No
vulnerabilities were detected here which aligns with the prior results that binaries
are fairly resistant to these kinds of byte attacks.

A Note on Scalability

The experiments were conducted on a variety of devices with different hardware
and configurations (all were virtual machines running Ubuntu X64). The distribu-
tion was due to different experiments being run at different times, however this
makes it impossible to provide consistent runtime information for the experiments.

That said, in general the model checking (either validation or checking) was by far
the most expensive in terms of runtime. No attempt was made to optimise or modify
the settings of LLBMC to improve runtime, despite some results taking many min-
utes. This is due to the process being trivially parallisable, since each mutant can be
checked independently.
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data exchange”. In: Journal of Computing and Information Science in Engineering
1.1 (2001), pp. 102–103.

[112] Charles Price. MIPS iv instruction set. 1995.
[113] Rui Qiao and Mark Seaborn. “A new approach for rowhammer attacks”. In:

Hardware Oriented Security and Trust (HOST), 2016 IEEE International Sympo-
sium on. IEEE. 2016, pp. 161–166.

[114] J-J Quisquater. “Eddy current for magnetic analysis with active sensor”. In:
Proceedings of Esmart, 2002 (2002), pp. 185–194.

[115] Rochit Rajsuman. System-on-a-chip: Design and Test. Artech House, Inc., 2000.
[116] Thomas Reinbacher et al. “Challenges in embedded model checking-a simu-

lator for the [mc] square model checker”. In: 2008 International Symposium on
Industrial Embedded Systems. IEEE. 2008, pp. 245–248.

[117] Lionel Rivière. “Securing software implementations against fault injection at-
tacks on embedded systems”. PhD thesis. Paris: TELECOM ParisTech, 2015.

[118] Lionel Rivière et al. “A novel simulation approach for fault injection resis-
tance evaluation on smart cards”. In: Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2015 IEEE Eighth International Conference on. IEEE.
2015, pp. 1–8.

[119] Lionel Rivière et al. “Combining High-Level and Low-Level Approaches to
Evaluate Software Implementations Robustness Against Multiple Fault In-
jection Attacks”. In: International Symposium on Foundations and Practice of Se-
curity. Springer. 2014, pp. 92–111.

[120] Lionel Riviere et al. “High precision fault injections on the instruction cache
of ARMv7-M architectures”. In: Hardware Oriented Security and Trust (HOST),
2015 IEEE International Symposium on. IEEE. 2015, pp. 62–67.



132 BIBLIOGRAPHY

[121] Thomas Roche, Victor Lomné, and Karim Khalfallah. “Combined fault and
side-channel attack on protected implementations of aes”. In: International
Conference on Smart Card Research and Advanced Applications. Springer. 2011,
pp. 65–83.

[122] Frank Rogin et al. “Advanced verification by automatic property genera-
tion”. In: IET computers & digital techniques 3.4 (2009), pp. 338–353.

[123] Cyril Roscian, Jean-Max Dutertre, and Assia Tria. “Frontside laser fault in-
jection on cryptosystems-Application to the AES’last round”. In: Hardware-
Oriented Security and Trust (HOST), 2013 IEEE International Symposium on.
IEEE. 2013, pp. 119–124.

[124] Resve Saleh et al. “System-on-chip: Reuse and integration”. In: Proceedings of
the IEEE 94.6 (2006), pp. 1050–1069.

[125] Horst Benjamin Schirmeier. “Efficient fault-injection-based assessment of software-
implemented hardware fault tolerance.” PhD thesis. Technical University Dort-
mund, Germany, 2016.

[126] Bastian Schlich and Stefan Kowalewski. “[mc] square: A Model Checker for
Microcontroller Code”. In: Leveraging Applications of Formal Methods, Verifica-
tion and Validation, 2006. ISoLA 2006. Second International Symposium on. IEEE.
2006, pp. 466–473.

[127] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM rowhammer bug
to gain kernel privileges”. In: Black Hat (2015).

[128] Zary Segall et al. “Fiat-fault injection based automated testing environment”.
In: Fault-Tolerant Computing, 1995, Highlights from Twenty-Five Years., Twenty-
Fifth International Symposium on. IEEE. 1995, p. 394.

[129] Carsten Sinz, Florian Merz, and Stephan Falke. “LLBMC: A Bounded Model
Checker for LLVM’s Intermediate Representation - (Competition Contribu-
tion)”. In: Tools and Algorithms for the Construction and Analysis of Systems - 18th
International Conference, TACAS 2012, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24
- April 1, 2012. Proceedings. 2012, pp. 542–544. DOI: 10.1007/978- 3- 642-
28756-5\_44. URL: http://dx.doi.org/10.1007/978-3-642-28756-5\_44.

[130] Sergei Skorobogatov. “Optical fault masking attacks”. In: Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2010 Workshop on. IEEE. 2010, pp. 23–29.

[131] Sergei Skorobogatov and Christopher Woods. “Breakthrough silicon scan-
ning discovers backdoor in military chip”. In: International Workshop on Cryp-
tographic Hardware and Embedded Systems. Springer. 2012, pp. 23–40.

[132] NIST-FIPS Standard. “Announcing the advanced encryption standard (AES)”.
In: Federal Information Processing Standards Publication 197 (2001), pp. 1–51.

[133] Gary Stoneburner, Alice Y Goguen, and Alexis Feringa. “Sp 800-30. risk man-
agement guide for information technology systems”. In: (2002).

[134] Ting Su et al. “Combining symbolic execution and model checking for data
flow testing”. In: 2015 IEEE/ACM 37th IEEE International Conference on Soft-
ware Engineering. Vol. 1. IEEE. 2015, pp. 654–665.

[135] Anna Thomas and Karthik Pattabiraman. “LLFI: An intermediate code level
fault injector for soft computing applications”. In: Workshop on Silicon Errors
in Logic System Effects (SELSE). 2013.

[136] Trail of bits. Mc-Semantics. https://github.com/trailofbits/mcsema. 2016.
[137] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. “Differential Fault

Analysis of the Advanced Encryption Standard Using a Single Fault.” In:
WISTP 6633 (2011), pp. 224–233.

[138] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. “Differ-
ential fault analysis on the families of SIMON and SPECK ciphers”. In: 2014



BIBLIOGRAPHY 133

Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE. 2014,
pp. 40–48.

[139] K Umadevi and S Rajakumari. “A review on software fault injection meth-
ods and tools”. In: International Journal of Innovative Research in Computer and
Communication Engineering 3.3 (2015), pp. 1582–1587.

[140] Benjamin Vedder. “Testing Safety-Critical Systems using Fault Injection and
Property-Based Testing”. PhD thesis. Halmstad University Press, 2015.

[141] Ingrid Verbauwhede, Dusko Karaklajic, and Jorn-Marc Schmidt. “The fault
attack jungle-a classification model to guide you”. In: Fault Diagnosis and Tol-
erance in Cryptography (FDTC), 2011 Workshop on. IEEE. 2011, pp. 3–8.

[142] Sriram Krishnamoorthy Vishal Chandra Sharma Ganesh Gopalakrishnan. “To-
wards Reseiliency Evaluation of Vector Programs”. In: 21st IEEE Workshop on
Dependable Parallel, Distributed and Network-Centric Systems (DPDNS). 2016.

[143] Willem Visser et al. “Model checking programs”. In: Automated software engi-
neering 10.2 (2003), pp. 203–232.

[144] Gaoli Wang and Shaohui Wang. “Differential fault analysis on PRESENT key
schedule”. In: Computational Intelligence and Security (CIS), 2010 International
Conference on. IEEE. 2010, pp. 362–366.

[145] Ute Wappler and Christof Fetzer. “Hardware fault injection using dynamic
binary instrumentation: FITgrind”. In: Proceedings Supplemental Volume of EDCC-
6 (2006).

[146] AJ Wilby and DP Neale. “Defects introduced into Metals during Fabrication
and Service”. In: Materials Science and Engineering 3 (2009), pp. 48–75.

[147] Dennis J Wilkins. “The bathtub curve and product failure behavior”. In: Reli-
ability HotWire 21.NOV (2002).

[148] Jim Woodcock et al. “Formal methods: Practice and experience”. In: ACM
computing surveys (CSUR) 41.4 (2009), p. 19.

[149] Satoshi Yamane, Ryosuke Konoshita, and Tomonori Kato. “Model checking
of embedded assembly program based on simulation”. In: IEICE TRANSAC-
TIONS on Information and Systems 100.8 (2017), pp. 1819–1826.

[150] Keun Soo Yim. “The Rowhammer Attack Injection Methodology”. In: Reliable
Distributed Systems (SRDS), 2016 IEEE 35th Symposium on. IEEE. 2016, pp. 1–
10.

[151] Flore Qin-Yu Yuan. “Formal framework and tools to derive efficient application-
level detectors against memory corruption attacks”. PhD thesis. University of
Illinois at Urbana-Champaign, 2010.

[152] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. “Fault Attacks on
Secure Embedded Software: Threats, Design, and Evaluation”. In: Journal of
Hardware and Systems Security (2018), pp. 1–20.

[153] Yonghua Zhu and Honghao Gao. “A novel approach to generate the prop-
erty for web service verification from threat-driven model”. In: Appl. Math
8.2 (2014), pp. 657–664.

[154] James F Ziegler and William A Lanford. “Effect of cosmic rays on computer
memories”. In: Science 206.4420 (1979), pp. 776–788.


