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Abstract

This thesis focuses on the rapid mixing of graph-related Markov chains.

The main contribution concerns graphs with local edge dynamics, in which
the topology of a graph evolves as edges slide along one another. We propose a
classification of existing models of dynamic graphs, and illustrate how evolving
along a changing structure improves the convergence rate. This is complemented
by a proof of the rapid mixing time for one such dynamic. As part of this proof,
we introduce the partial expansion of a graph. This notion allows us to track the
progression of the dynamic, from a state with poor expansion to good expansion
at equilibrium.

The end of the thesis proposes an improvement of the Propp and Wilson
perfect sampling technique. We introduce oracle sampling, a method inspired
by importance sampling that reduces the overall complexity of the Propp and
Wilson algorithm. We provide a proof of correctness, and study the performance
of this method when sampling independent sets from certain graphs.

Cette these porte sur la rapidité du temps de mélange de chaines de Markov
sur des graphes.

La contribution principale concerne les graphes avec des dynamiques lo-
cales sur les arétes, la topologie du graphe évoluant au fur et a mesure que les
arétes glissent les unes le long des autres. Nous proposons une classification
des différents modeles existants de graphes dynamiques, tout en illustrant I'im-
portance des transitions le long d’'une structure mouvante pour améliorer la
vitesse de convergence. Cette étude est complétée par la preuve, pour I'une de
ces dynamiques, d'un temps de mélange rapide. Nous définissons notamment
I'expansion partielle d'un graphe. Celle-ci permet de suivre I’avancement de
la dynamique, partant d’un état de faible expansion, jusqu’a obtention d’'une
bonne expansion a I’équilibre.

La fin de cette these porte sur une amélioration de I'algorithme de simulation
parfaite de Propp et Wilson. Nous introduisant un oracle pour les transitions,
inspiré de I’échantillonnage préférentiel, qui permet de réduire la complexité de
I'algorithme. Nous fournissons une preuve de correction, ainsi qu'une étude de
I'impact de cette méthode sur la vitesse d’échantillonnage d’ensembles indé-
pendants pour certains graphes.
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Markov chains were introduced at the start of the 20th century by A. Markov [40],
who used them to prove that the weak law of large numbers did not necessarily
require independence—the established result is comparable to modern versions
of the ergodic theorem—and to study the correlation between successive vowel
and consonant occurrences in Russian literature. The scope of Markov chains
has since then expanded to domains such as sampling and simulation, the study
of dynamic systems, or combinatorial optimization. It is namely the theoretical
basis for the acclaimed Markov chain Monte Carlo (MCMC) algorithm.

The results presented in Sections 1 to 5 of this chapter are for the most part
standard results, that can be found in works such as Markov Chains and Mixing
Times|[36], Reversible Markov Chains and Random Walks on Graphs 2] and Finite
Markov Chains and Algorithmic Applications [24]. They are adapted here to best
reflect their use in the following chapters.

The main contributions of this thesis are presented in Section 6.



CHAPTER 1. INTRODUCTION

Throughout this chapter, we consider a finite set ., which we refer to as the
state space.

1 Markov Chains

A Markov chain is a memoryless stochastic process over a countable state space.
The memoryless property, also known as Markov property, establishes that the
distribution of the process at any given time only depends on its last known
position, and is independent of its trajectory prior to that.

Formally, one defines discrete and continuous time Markov chains as follows.

Definition 1 (Discrete Time Markov Chain). A (discrete time) Markov chain over
S is a random sequence (X,),cy € S ®N that satisfies the Markov property

PXi =X | Xi =%, Xo= %) =P(X; 1 = X0 | X, = ).
IfP(X;;, =x"| X, = x) does not depend on t, i.e.
P(X, =x"| X, =x)=P(X, = x"| X, =x),

the Markov chain is said to be time homogeneous. The transition matrix of a
time homogeneous Markov chain is the matrix P such that

P(x,x")=P(X, =x"| Xy=x).

For S,S’ C ., it is often convenient to also denote

P(S,S") =Z Z P(x, x).

xeS§ x’eS’

We have the following analogous definition for the continuous setting.

Definition 2 (Continuous Time Markov Chain). A continuous time Markov chain
over < is a process (X,),cg Such that, for any increasing non-negative sequence
(t;)iey and n €N,

P(th-H = xtn+1

Xy, = X0 Xpy = %) = P(X,, =1, | Xo, = 1,

and, forall t >0 and x # x’,

P(X;=x"| X, = x)
h

converges to a finite value as h goes to 0.

IfP(X, =x"| X, =x)=P(X,_;=x"| Xy = x) forall0 < s < t, the Markov chain
is time homogeneous. We then define the infinitesimal generator of the Markov
chain as the matrix Q such that

P(X,=x"| Xy =x)
t

Q(x,x")=1lim
t—0

forall x # x’, and
Q(x, x)=—>_ Qlx,x").

X/#X

2



1. MARKOV CHAINS

The distributions of time homogeneous Markov chains at time ¢, starting
from state x € ./, are respectively

P'(x,) and  H,(x,)=e'%x,)

in the discrete and continuous settings. H, is called the heat kernel of Q.

All Markov chains studied in this thesis are time-homogeneous.

A classical example of a Markov chain is the birth and death process detailed
below. It is also known as the M/M/1 queue in queueing theory [34].

Example 1 (The Birth and Death Process). Let N €N, and consider a group of
individuals whose total population evolves between 0 and N over time.

For the discrete setting, we have that, at each time step, either a new individual
is born (unless the population count is already N ), or an individual dies. Births
occur with probability p € (0, 1), and deaths with probability g =1—p.

Denote(X,),cy the number of individuals at instant t. (X,),cy IS a time homo-
geneous Markov chain over & = [0, N|, and its transition matrix is

(4 p 0 -~ o)

g 0 p :
P=10 ¢ 0
. 0 p

In the continuous setting, consider instead that births occur at rate A > 0,
and deaths at rate u > 0. Consider an i.i.d. sequence of random variables (t;);cx,
exponentially distributed with parameter A+ u., and denote s; = 23:1 t;. Define
(X;),cr as being constant except at instances (s;);cn, and that at each such instance,
either a birth occurs (with probability ﬁ ), or a death occurs (with probability

7). The population is once more clamped to [0, N|.
The infinitesimal generator of this Markov chain is
(<2 2 o o)
uo A+ A :
Q=] 0 U 0
: —(A+u) A
\0 - 0 u  —u

Notice that a discrete time Markov chain is the stochastic equivalent of a
sequence defined by a recurrence relation. As such, it is often convenient to
define them through a recurrence relation map:

Definition 3 (Random Mapping Representation). Let P be a transition matrix
over ¥, and 0 be a random variable in a set®. A random mapping representation
of P isa function f : &/ x© — & such that, forall x,x" € &,

P(f(x,0)=x")=P(x,x").
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Given a random mapping representation f of P, it is possible to define a
Markov chain (X,),y with transition matrix P recursively as

X = f(Xt, 0t+1);

where (6,),.y is a sequence of i.i.d. random variables with the same distribution
as 0.

In the case of Example 1, a possible random mapping representation would
be to have 8 be equal to 1 with probability p, —1 otherwise, and f be defined as

f(x,0)=max(min(x + 6,0), N).

While random mapping representations are powerful in expressing the evo-
lution of a Markov chain, they can quickly lead to cumbersome notations:

X5 = f(f(f(Xo, 6,),6,),05). (1.1)

To avoid this pitfall, we make use of an alternate representation: Markov
automata [44].

Definition 4 (Markov automaton). Let P be a transition matrix over & . Let .</
be a finite set, and D be a distribution over .<f . Finally, let-: & x .o/ — & be a
transition function such that, for all x, x’ € &,

P(x-A=x')=P(x,x),

where A is distributed according to D.
The quadruple A= (<, .</, D, ") is called a Markov automaton. .</ is the alpha-

bet of A, and its elements are referred to as letters or events. A sequence of letters is
called a word.

A Markov chain (X,),oy with transition matrix P can now be defined recur-
sively as
X=X Ay

where (A,),oy is a sequence of i.i.d. random events distributed according to D.
With this formalism, Equation (1.1) becomes

X3:X0'A1'A2'A3.

A natural Markov automaton for Example 1 would be

< =[0,N] x+1 ifa=band x<N
A=| g=1{b,d} -i(x,a)—»<{x—1 ifa=dandx>0 |. (1.2)
D:b—p,d—q X otherwise

Finally, a common method of representing both discrete and continuous
time Markov chains is by means of a graph.

Definition 5 (Transition graph). For a transition matrix P over state space <,
consider the directed weighted graph G =(V, E, w) where

o V=9,



2. STATIONARY DISTRIBUTION
p p p p p
HOBOROBENERO)
q q q q q
2 A 2 2 2
u u u T u

Figure 1.1 - Discrete and Continuous Time Birth-and-Death Processes

o E= {(x, x') e .F? | P(x,x)> 0}, and
e w:E —R, such that w(x,x')=P(x,x’).
G is the graph representation of P.

For a continuous time Markov chain with infinitesimal generator Q, the graph
representation is defined similarly, but contains no self-loops.

Conversely, given a graph, one can define the Markov chain represented by
this graph, called the random walk on the graph.

Definition 6 (Random walk). Given a directed weighted graph G = (V,E, w),
define the out-degree of a vertex as the sum of the weights of outgoing edges:

deg, x = Z w(x, x').
x":(x,x")EE
The discrete time random walk on G is the Markov chain (X,),oy Such that,
forevery t €N, X,,, is distributed according to
w(Xt’ )
deg, X,

P(Xt)') =

Similarly, the continuous time random walk on G is the Markov chain (X,),.x
that spends an average time of deg, x = —Q(x, x) in a state x, then jumps to a
new state distributed according to Q(x,-).

In this case of an unweighted graph, the Markov chain is referred to as the
simple random walk.

The graph representations of the Markov chains from Example 1 are given in
Figure 1.1.

2 Stationary Distribution

One of the key properties of Markov chains is the existence, in most cases, of
a unique stationary distribution, and the convergence of the chain to that dis-
tribution. This is the basis for the Monte Carlo sampling method presented in
Section 3.
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Recall that, throughout this chapter, we restrain ourselves to a finite state
space ..

Definition 7 (Stationary distribution). Let P be a transition matrix over /. A
distribution 1, represented as a line vector (1(x)).c, is said to be a stationary
distribution of P if t =7P.

Similarly, a stationary distribution 1t of an infinitesimal generator Q is one
that satisfies 0 = Q.

4

Going back once more to Example 1, denoting r = ¢ and p = %, one can

q
easily check that the distributions
s (k)—rkl_—r (with 71 (k)= %)
PR 1 — PN+l 3 TN+
and
K=pt- 1P k)= i if A=
Tulk)=p Tt (or 75,,(k) = w7 if A=)

are stationary distributions of P and Q, respectively.

To establish the existence and uniqueness of a stationary distribution, and
the convergence of the Markov chain to that stationary distribution, the most
common approach is to check for irreducibility and aperiodicity.

Definition 8 (Irreducible Markov Chains). Let P be transition matrix over & .
If, for all x,x" € &, there exists t € N such that P'(x,x’) > 0, P is said to be
irreducible.

An infinitesimal generator Q is irreducible if, for all x,x’ € &, there exists
t €R such that H,(x, x’)> 0.

Alternatively, a Markov chain is irreducible if its graph representation is
strongly connected. Explicitly giving a path between two states is probably the
most common method of proving irreducibility.

Property 1. An irreducible transition matrix or infinitesimal generator has a
unique stationary distribution.

Note thatirreducibility is not necessarily required in order to have uniqueness.
The stationary distribution can be unique despite the presence of transient states
(i.e. states to which the Markov chain will eventually never return), in which case
the transition matrix is not irreducible.

Definition 9 (Aperiodic Markov chain). Let P be transition matrix over /. For
each x € <, define the period of x as

T,=ged{teN | P'(x,x)>0}.
P is aperiodicif, forallx € &, T, = 1.

For irreducible Markov chains over finite state spaces, this is equivalent to
asking that there exists ¢ € N such that, for all x, x’ €.%, P'(x, x’)>0.

There is no analog of periodicity for infinitesimal generators. More precisely,
for any x, x’ € 7, if there exists ¢t € R such that H,(x, x’) > 0, then for all s >0,
H(x,x")>0.



2. STATIONARY DISTRIBUTION

Property 2. If the transition matrix P of a Markov chain (X,),y is irreducible
and aperiodic, then forall x € &,

lim P(X, =x)=mn(x),

t—+00

where 1 is the unique stationary distribution of P.

If the infinitesimal generator Q of a Markov chain (X, ),y is irreducible, then
the same convergence holds, with r the unique stationary distribution of Q.

Note that neither of these conditions is very strong. To prove irreducibility,
one generally picks a base state and shows that, for any other state, it is possible
to reach and be reached by this base state. Constructing such paths is often
quite straightforward. Similarly, aperiodicity can be established by finding a
single x € . such that P(x, x) > 0. If this is not feasible, it is also possible to
consider the “lazy” version of the Markov chain, i.e. given by the transition
matrix 3(P + I,), where I, is the identity matrix over .. Another possibility is
to consider a continuous time equivalent of that Markov chain.

In the case of Example 1, any state x can be reached from state 0 with x
successive births, and can reach state 0 with x deaths, proving the chain to be
irreducible. Furthermore, since P(0,0) = g > 0, the chain is aperiodic.

For discrete time random walks on bipartite graphs, the period of every state
is even,; this is a typical example of a situation in which a lazy or continuous time
random walk is required in order to have convergence in distribution.

We finish by presenting a specific category of Markov chains, called reversible
Markov chains.

Property 3. Let P be a transition matrix over </, and 1 be a distribution over .
If, forall x, x" € &, 7 satisfies

(x)P(x,x")=n(x")P(x’, x),
then 7 is a stationary distribution of P, and P is said to be reversible.

For an infinitesimal generator Q, we ask that 7 satisfy

n(x)Q(x, x") = m(x")Q(x’, x)
instead.

Working with reversible Markov chains is often convenient, because the
stationary distribution is easily determined (up to a normalization constant).

Note that the Markov chains presented in Example 1 are reversible: for all
x € [0, N —1], we have that

Q(x,x+1)

m(x+1) p_ Plx,x+1) and Tou(x+1) |
Qlx+1,x)

A
m,(x) g Plx+1x) X)W

"2 .

o
L
4
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3 Markov Chain Mixing Time

One of the most common uses of Markov chains is the Monte Carlo sampling
method, presented in Algorithm 1. It generates random samples from a target
distribution 7w by computing the successive terms of an irreducible aperiodic
Markov chain with stationary distribution 7, up to a predefined rank T', and
returning X;. The distribution of X; can be arbitrarily close to 7, provided that
T is large enough.

Algorithm 1 Monte Carlo Sampling Algorithm

function MONTECARLOA=(Y,.</, D,"), Xy, T')
X — X,
<0
while t < T do
A — DRAW(D)
X—X-A
r—t+1
end while
return X
end function

How big does T need to be to achieve a desired precision? This is generally
determined by computing the mixing time of the Markov chain.

In order to properly define the mixing time, we must first decide upon a
metric between distributions. Multiple possibilities have been introduced in the
literature, but we will focus on the most common approach: the total variation
distance.

Definition 10 (Total Variation Distance). Letu and v be two probability distribu-
tions over a finite set /. The total variation distance between u and v is defined
as

il = 5)— 65))

Scy

The right-hand side of this equation is not always easy to use, however, and
we therefore often rely on the two following equivalent formulae instead:

1
lee= |y = 5 D Iut)— )|

xes
and

= |y = D ()= x).

xes
u(x)=v(x)

Definition 11 (Distance to stationarity). For a transition matrix P, the distance
to stationarity at time t is defined as

d(t)= %@X”Pt(x")_ﬂnw‘

For an infinitesimal generator with heat kernel H,, this becomes

d(t)=max| H,(x,)— || py.
xes

8



4. SPECTRAL METHODS

An important property of the distance to stationarity (see [36], Lemma 4.12)
is that, for any ¢ > 0,
d(ct)<(2d(t)).

This implies that, if we know of a ¢, > 0 such that 2d(¢,) < 1, then for all € > 0, by
setting
loge
le=——r"—— 1,
© log(2d(t.)

we have that
d(t.)<e.

Coming back to the Monte Carlo algorithm, we are then able to provide a
termination time f. such that the distribution P’ (x,,-) of the output satisfies
|1P*(xo,")— Ttllpy < €.

Rather than having the definition of 7, depend on the choice of ¢,, we use a
standardized value:

Definition 12 (Mixing Time). Let t,,;, be the first instant at which the distance to
stationarity is ar most j, i.e.

d(r)<

N

Lmix = min{ t>0

Imix 1S called the mixing time of the Markov chain.
We can now redefine ¢, as

loge 1
le= 10—1 Inix = IOgZ(E) X Linix-

2

Directly computing the mixing time is often not feasible. We present some
common techniques used to establish an upper bound instead.

4 Spectral Methods

One of the fundamental results concerning Markov chains is the following:

Theorem 1 (Perron-Frobenius). Let P be a transition matrix, and denote its
eigenvalues Ay > Ay >+ > Ay ).

e A =1,
e P has non-negative left and right eigenvectors associated to A,, and
e cvery (complex) eigenvalue A of P satisfies |A| < 1.
Furthermore:
e if P isirreducible, then A, has multiplicity 1, and

e if P is also aperiodic, then every other eigenvalue A satisfies |A| < 1.
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For an infinitesimal generator Q, let L =—Q be the Laplacian matrix of the
Markov chain, and denote its eigenvalues A < A, <--- < A/ (notice that the order
is the opposite of that for transition matrices).

e 11=0,
e L has non-negative left and right eigenvectors associated to A, and

o cvery (complex) eigenvalue A’ of L satisfies R(A') > 0, where R(A’) denotes
the real part of \'.

Furthermore, if Q is irreducible, then A} has multiplicity 1, and every other eigen-
value 2’ satisfies R(A') > 0.

Notice that a non-negative left eigenvectors of A, and A] are the (scaled)
stationary distribution; this theorem proves the existence of such a distribution
for any Markov chain over a finite state space. In both cases, the right eigenvector
is necessarily the vector 1 =(1,...,1)7.

The second half of the theorem furthermore proves Properties 1 and 2.

Definition 13 (Spectral Gap and Relaxation Time). The spectral gap is equal to

)>0

r=»= —max(kz, Al

for an irreducible aperiodic transition matrix P, and
A/
Y=24,>0

for an irreducible infinitesimal generator Q.
The relaxation time is then

trel ==

The relaxation time is closely linked to the mixing time. As such establishing
bounds on the spectral gap is a common means of bounding the mixing time.
The relation between ¢, and ¢, is as follows:

Property 4. (see[36], Theorems 12.3 and 12.4) For an irreducible aperiodic Markov
chain with stationary distribution T, mixing time t,;, and relaxation time ..
We have that

4
(trel - 1)10g2 < tmix < trel x log( )’
min
where T, = min, ., 7(x) andlog denotes the natural logarithm.

Consider the case where 7 is the uniform distribution over .. The above
result tells us that the mixing time and the relaxation time differ by at most a
factor log|.|:

Q( trel) < Tix < O(trel x 10g|5ﬂ|)

Aside from bounding the mixing time, the spectral gap can also serve to
directly bound the distance to stationarity.

10



4. SPECTRAL METHODS

Property 5 (From [42]). For a reversible Markov chain with spectral gap y and
stationary distribution 7, we have that

d(r) < e,

Tl min

Proof. We prove this result in the continuous setting.

Let Q be the infinitesimal generator of the Markov chain, and L =—Q. Denote
D =Diag(n),and A=D 2 QD_%. Since Q is reversible, A is necessarily symmetric,
and can therefore be decomposed as

A= (Aduu],

where the u; form an orthonormal basis. Notice that the A; are precisely the
eigenvalues of L, and namely that A, =0 and u, = D:1.

Let h, be the distribution of the Markov chain at time t, i.e. h, = hye'?.We
have that

h,=hyD ?e' D? = hyD* (Z e iy, ul.T)D;.
i

Our goal is to bound d(t) = %ery |h,(x)—m(x)|. Notice that, fori =1,
hyD e "My, ulTD% = (hOD_% ul)(ulTD%) =1x7.

Denoting vtT = h, —n, we therefore have that

v, = Dé(z e My, ul.T)D_é hy .

i>2

Let (v;, v;) - = v/ D'v,. We can bound (v;, 1), as follows:

(Vi V) o = hyD ™2 (Z e My, uiT)DiD_lDé (Z e My, uiT)D_é hy

i>2 i>2

1 1

=hyD2 (Z e 2y, uiT)D2 h)

i>2
1 1

<e ! Z hyD™2u;u; D72 h,

i>2

_ _1 2
=e ! E <D 2hOT,u,->
i>2
2

1
<e?||D72h/

2
_ ho(x)?
— 2t 0
; m(x)
1

< —are,

e
Tmin
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CHAPTER 1. INTRODUCTION

We now use the Cauchy-Schwartz inequality to conclude.

aw=5 > lux)

xes

:_men\/—

xey

Note that this proof works in the discrete setting as well, using P rather than Q.
The bound is then
(1=7)"

from which we derive the same conclusion by observing that, for all x € R,
I—x<e™. O

d(t) <

2 min

Direct computation of the spectral gap is not always computationally feasible.
There are however a number of practical methods for establishing bounds on
the spectral gap. We present one of these: Cheeger’s inequality.

Definition 14 (Edge measure). The edge measure u of a Markov chain is defined
as the rate at which each edge is traversed under the stationary distribution, i.e.

u(x, x")=m(x)P(x, x)
for a transition matrix P, and

ulx, x')=m(x)Q(x, x')
for an infinitesimal generator Q.

u(s,sh= > ulxx)

xeS x’eS’

We also denote

forall S,S’ c &.

Definition 15 (Isoperimetric Constant). Let u be the edge measure of a Markov
chain over state space ., and 1 be its stationary distribution. For every setS C .
such that S # 0, define the expansion of S as

u(S,y\S)_

0(8)="0

The isoperimetric constant of the Markov chain as a whole is

¢= min ¢(S

1<‘S|<\/|

12
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5. THE COUPLING AND PATH METHODS

The isoperimetric constant is sometimes referred to as the bottleneck ratio,
the Cheeger constant, the conductance, or the expansion ratio.

For the simple, discrete time random walk on a graph G =(V, E), the isoperi-
metric constant of a set of vertices S C V can be rewritten

o5~ EGVAS)
ers dng ,
where E(S,S’) is the set of edges between S and S’, or even
|E(S,V\S)
§)=——2" 27
N

for A-regular graphs.
For the continuous time simple random walk, we instead have that
|E(S, V\S)|

P8)=—1z

Property 6 (Cheeger’s Inequality [30]). Let ® be the isoperimetric constant of a
Markov chain with spectral gap y. Then

(I)Z

— <y<20.

5 =T

Combining Properties 4 and 6, we get that

1 1 < <1 4 2
(55 Jom = tmziof )

Applying this to situations where 7, is of order ﬁ (e.g. when 7 is uniformly
distributed), this yields that

of ) s 0 2821),

P2

Note that, if ® is bounded away from 0, the mixing time is at most logarithmic
in the state space. Graphs which possess this property are often referred to as
expanders [27].

5 The Coupling and Path Methods

Another classical method for bounding the mixing time of discrete time Markov
chains is the coupling method. First, we give a method for generating coupled
Markov chains over a same probability space.

Definition 16 (Grand Coupling). LetA = (<, ./, D,-) be a Markov automaton
with transition matrix P, and (A,),cy be an infinite random word, i.e. a sequence
of i.i.d. random variables distributed according to D. For every x € &, denote

X;C:.X:'Al'Az'...'At.

The Markov chains in ((X tx)teN)xe <« each have transition matrix P, but are corre-
lated. They are referred to as a grand coupling.

13



CHAPTER 1. INTRODUCTION

Note that the correlation is such that, forall x,x’ € & and s,t €N, s < t,
x _ vx x _ vx
X =X"=X =X,

The usefulness of grand couplings in bounding the mixing time is a direct
consequence of the following result:

Property 7. Let P be a transition matrix, and ((X by )teN)xe + be a grand coupling
of P. Then
d(r)< max P(X*#XY). (1.3)

x,x'es

Equation (1.3) suggests that time it takes for a grand coupling to have all of
its trajectories merge must somehow bound the mixing time. We therefore focus
on the first instance at which this is the case.

Definition 17 (Coupling time). Let P be a transition matrix, and ((X tx) teN)xe &
be a grand coupling of P. The coupling time T of the grand coupling is defined as
the first instance at which all chains have merged.:

T=min{reN|Vx,x' €7, X =Xx*1.
Note that, unlike the mixing time, the coupling time is a random variable.

Corollary 1. Let P be a transition matrix, ((th ) tEN)xE « be a grand coupling of P,

and T be the coupling time of((th) ces- Then

tEN)
d(t)<P(t > 1),
and, by means of Markov's inequality,
Lmix < 4E[T].

Consider Example 1, with a grand coupling ((X X ) teN) refo,n] defined by the
Markov automaton from (1.2). Notice that, forall x € [0, N] and ¢ €N, X* > X?.
This implies that if, for some ¢, X’ =N, then 7 < t.

For all x € [0, N, let 7, be the first instant at which X =0, such that 7 < .
Let s, =t,—t,_;. We have that

1 1
E[tx] =1+ EE[tx—l]'i_ EE[tx-H] = E[Sx] :2+E[Sx+l] (1.4)
for0< x < N, and
1 1

Summing (1.4) up to x yields that E[s, ] = E[s,] —2(x —1). Substituting for x = N,
we get that E[s;] =2N, and therefore E[s, ] =2N +2—2x. By summing over x:

N
E[7] <E[ty] :ZE[sx] =N2+3N.

x=1

We conclude using Corollary 1:

toix S4E[T] <4N?+12N = O(N?).

14



6. CONTRIBUTIONS K

On a side note, notice that, unlike what one might expect, X* is not dis-
tributed according to the stationary distribution of the Markov chain, since its
value is either 0 or N.

A similar technique can be used for continuous-time Markov chains. This
is best achieved by means of a uniformization [23] of the Markov chain, and by
coupling the resulting discrete time Markov chain and Poisson process.

We give one final technique, similar to coupling, for bounding the mixing
time of discrete time Markov chains. It is used to compare the spectral gaps of
two Markov chain, effectively bounding one with the other.

Consider two irreducible and aperiodic Markov chains over a same state
space .. We denote their transition matrices P and P, and their stationary
distributions 7 and 7. The aim is to establish a lower bound on the spectral gap
y of P, knowing the spectral gap ¥ of P.

In order to de this, we decompose every transition of P as a sequence of
transitions of P, called paths. Formally, let E (resp. E) be the set of edges
e =(x,x’) € &? such that P(x, x’) > 0 (resp. P(x, x’) > 0). For every (%,%') € E,
we choose a path I; z) = (X, x1,..., X;) € ¥ such that:

e x,=Xand x; =X/, and
e forallie(l1,k],(x;_y,x;)€E.
For I’ = (xy, x,..., X;), we denote |[I'| = k, and write that e €T if there exists

i €[1, k] such that e = (x,_,, x;).
Given this set of paths, let the congestion ratio be

1
B =max| — t(e)|l;]
ecE u(e);“

IPET

Property 8 (See [36], Theorem 13.23). Given the above setup, we have that

remin( )

The efficiency of this method relies heavily on the ability to construct an
efficient set of paths: these must be kept short, and be distributed evenly over E.

6 Contributions

In this thesis, we present three main contributions: a generalization of Cheeger’s
inequality to partial isoperimetric constants; a proof of rapid mixing for a given
local edge dynamic, and an enhancement of the Propp and Wilson perfect sam-
pling technique.

15
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6.1 Partial Isoperimetric Constants

Consider a simple, continuous time random walk over a multi-graph G =(V, E),
and let N =|V| and A be the maximum degree of G.

Definition 18 (Partial Isoperimetric Constants). Let k € [[1, %N ﬂ . The k-th par-
tial isoperimetric constant of G is

;= 12ﬁlsl|2k¢(s)'

In particular, QJ% =,

We have seen that, by using Cheeger’s inequality, we can bound the spectral
gap using the isoperimetric constant. Using Property 5, we can then use this to
bound the distance to stationarity. The following result shows how it is possi-
ble to directly use the partial isoperimetric constants to bound the distance to
stationarity over small sets.

Theorem 2 (Reformulated from Theorem 9). Forall k < % and S C V such that

IS| <k,
S
Ht(-,S)SL—i-vk—kle_T*t,
k+1
where
_ 1 q)Z
7’*—2A k*

For comparison, combining Properties 5 and 6 gives the following result for
the continuous time simple random walks:
(1)2

S
Ht(-,S)S|N—|+me_7’t with y> -

6.2 Rapid Mixing of a Local Edge Dynamic

We consider graphs in which the edge sets evolve over time, forming a Markov
chain (X,). Such dynamics are presented extensively in Chapter 2.

We focus primarily on local dynamics, i.e. in which every modification affects
only a small, connected portion of the graph. Most dynamics we shall consider
converge to the uniform distribution, under which ® is bounded away from 0
with probability 1 —o(1). This may not be the case for the initial state, however,
for which @ could be of order +-.

The question this raises is the following: can the mixing time of the graph-
valued Markov chain be small, despite the poor initial conditions? Namely, can
mixing occur with only a O(polylog N) updates per edge, where O(polylog N) =
O(log" N) for some fixed k?

We give a specific dynamic, represented in Figure 1.2, for which we prove this
to be the case. The vertex set is denoted [N ] = [1, N], and the edge set is split into
three: aset E, ={(x,x +1)| x €[ N]}, with N+1 =1, that forms a static cycle; a set
of blue edges Ey, = {(x, b,)| x €[N]}; and a set of red edges E, ={(x,r,)| x €[N]},
with b and r two permutations that evolve over time. The blue and red edges
are called pointers, in the sense that one of their endpoints, referred to as their

16
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Figure 1.2 — Bi-color local dynamic model
destination, changes as the permutations are modified. They are nonetheless
considered to be unoriented from a connectivity viewpoint.

The dynamic proceeds through alternating blue and red phases. In essence,
edges of the active phase with adjacent destinations will repeatedly swap their
destinations over time.

During a blue phase, only blue edges move, and red edges are static. Every
static edge (y, y’) € E, U E, maintains an exponential clock with rate 1; at every
tick, the two blue edges (x, b, = y) and (x’, b,, = y’) are replaced with (x, y’) and
(x’, ¥). This boils down to applying the transposition (x, x") to b.

When the blue phase ends and the red phase begins, the roles of the red and
blue edges are reversed. The dynamic is illustrated in Figure 1.3.

e
—

Figure 1.3 — Swapping two red pointers along a blue edge (red phase)

We prove the following result for this dynamic:

Theorem 3 (Adapted from Theorem 8). Let T = log” N where a > 8 is a con-
stant. Afterlog, N phases of length T, with high probability, the sets of blue and
red pointers are uniformly and independently distributed permutations over the
symmetric group Sy .

This in turn gives that the number of modifications per edge required to mix
is polylogarithmic in N, as stated in Corollary 2.

6.3 Oracle Sampling

Coupling from the past (CFTP) is a perfect sampling algorithm introduced by
Propp and Wilson in 1996 [45]. To perform well, it requires the use of monotonous

17
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Markov chains or bounding chains [28]. The details of these different approaches
are given in Chapter 4.

In this thesis, we present an improvement of this algorithm, based on bound-
ing chains.

Definition 19 (Bounding Chain). LetA=(<,.<,D,-) be a Markov automaton. A
bounding chain for A is a pair (9, 0) such that 3 is a subset of the power set of &/,
ando: B x ./ — R issuch that, foralla € .o/, x € S and B € A,

X€EB=>x-a€Boa.

The usual bounding chains method is presented in Algorithm 2.

Algorithm 2 Coupling From the Past with Bounding Chains
function BOUNDEDCFTP(A=(<%,.«, D,-), (%,0°))

k—1

U«—e¢ Initialize with the empty word

B~

repeat
V «— DRAW(D®) Draw a k letter prefix V
U—VoU PrependV toU
B—S0oU Compute the bounding chain
k—2k Double the period

until |B|=1

return UNIQUEELEMENTOF(B)

end function

The key feature in our approach is the ORACLESAMPLE function. First, intro-
duce a new letter, f}, such that

Vxed x-f=x and VBe %B,Boff=B.

For every p € (0,1), let D, be the distribution such that D,(f) = p and, for all
a€.d,D,(a)=(1—p)D(a).

Let p €(0,1) and .¢/, € .«/. ORACLESAMPLE(p, .¢/,) returns a random letter,
distributed according to D, conditioned on being in .</,.

For every bounding state B € 943, define the set of active letters in state B as

dP={aeA|Boa#B}u{t}

We propose Algorithm 3. The structure is similar to that of the previous
algorithm. It differs in regards to how the prefix is generated (DRAWPREFIX) and
prepended to the previous word (UPDATE).

DRAWPREFIX constructs a prefix in which only active letters appear. This
requires computing transitions at the same time as the letters are drawn. Notice
that, if every letter are always active, the expected length of DRAWPREFIX(k) is 2%,
mimicking the period doubling of the base algorithm.

UPDATE is somewhat trickier. It modifies the word from the previous iteration,
to which the prefix is to be prepended, so that the final word is also composed of

18
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Algorithm 3 Coupling From the Past with Oracle Sampling

function ORACLECFTP(A=(¢,.«/, D,"), (4,0))
k—1
U—e
B—Y¥
repeat
(V, B’) — DRAWPREFIX(k)
(U’, B) — UPDATE(U,k—1,B, B’)
U—~VoU
k—k+1
until |B|=1
return UNIQUEELEMENTOF(B)
end function

function DRAWPREFIX(k)
Ve—e
B—.Y%
repeat
A — ORACLESAMPLE(27%, .¢/ F)
V—VoA
B— BoA
until A=
return (V, B)
end function

function UPDATE(U, k, B, B’)
if k =0 then
return (¢, B')
end if

A— ORACLESAMPLE(2 ¥, o/ B U ./ P

if A¢.o/F then
return A® UPDATE(U, k, B, B’ 0 A)
end if
H —HEAD(U), T « TAIL(U) H is the first letter of U, T is the rest of U
if H ={ then

return § © UPDATE(T, k—1, B, B’)
elseif H €./ then
return H ® UPDATE(T,k, BoH,B' o H)
else
return UPDATE(T, k, Bo H, B’)
end if
end function

19
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only active letters. At the same time, it introduces new letters in such a way as to
produce an unbiased output.

These operations are detailed in depth in Chapter 4. We also prove the
correctness of the algorithm. More specifically, we show the following result.

Theorem 4 (Transcribed from Theorem 12). Ifthere exists u € .o/* such that ¥ ou
is a singleton, then

1. ORACLECFTP terminates in finite expected time.

2. The output of ORACLECFTP distributed according to T, the stationary dis-
tribution of A.

Along with the proof of this result, we give some indications as to how to
bound the running time of the algorithm. We also provide some experimental
results for generating random independent sets from a graph.

20
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CHAPTER 2. TAXONOMY OF DYNAMIC GRAPHS

1 Introduction

Dynamic graphs have received a large amount of interest over the past years,
in great part due to the central role they play in the design and analysis of dis-
tributed networks. This is especially true in fields such as social networks and
communication infrastructures akin to peer-to-peer networks, but also in other
domains, including biochemistry and statistical physics.

The resulting models have led to a better understanding of some key observa-
tions of real-world networks. Notorious examples include the power-law degree
distribution [1], the small-world property [49], and high clustering [26]. This has
served as a basis for the analysis and optimization of common algorithms such
as gossiping [21, 22] and load balancing [46].

For the most part, research has been aimed at designing efficient algorithms
for constructing a target topology. This approach is most common for distributed
communication networks, such as peer-to-peer networks, in which the geometry
of the overlay network plays a crucial role. In [5], for example, the authors
consider the Skip Graph data structure for improving the resiliency of peer-
to-peer queries in a faulty environment, and [29] gives an efficient distributed
algorithm for constructing such structures. Such studies often make the implicit
assumption that the network nodes are cooperative and follow a consensual
strategy.

Conversely, non-committed dynamics, in which the evolution of the system
is not specifically engineered to favor any given feature, have also had their share
of attention. These serve to justify the observed properties of networks with
unspecified evolutions, such as social networks. In this situation, dynamics are
often presented as naturally-arising Markov chains over a broad set of admissible
graphs (e.g. the set of connected graphs over N vertices). This is namely the case
in [7], which considers a Glauber dynamic over the set of connected graphs with
anatural bias in favor of triangles and other small connected subgraphs. Another
notable example is [3], which focuses on local edge flips over A-regular graphs,
and proves that such a dynamic converges in O(n?A?,/logn) iterations. It is
worth mentioning that with this dynamic, the limit distribution is the uniform
distribution over A-regular graphs, which is known give expanders with high
probability.

Regardless of the nature of the dynamic, most studies aim to better under-
stand the causality between the local characterization of the model, i.e. the
dynamic, and its consequences on a global scale.

The survey This chapter aims to give the reader an overview of different pos-
sible models for dynamic graphs. It focuses on simple, randomized dynamics
which yield the usual global properties one has come to expect: power-law
degree distribution, small-world phenomenon, good expansion, etc.

Section 2, the Zoo, introduces a wide range of dynamics. The aim is twofold:
to present the different parameters that can be adjusted when choosing the
dynamic that best suits ones needs, and to familiarize the reader with the conse-
quences such dynamics have on the global topology of the graph. Sections 3.1
and 3.2 then take this a step further. In Section 3.1, dynamics are studied at a
microscopic level, grouping design decisions together to form genotypes. This
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is complemented by Section 3.2, in which recurring macroscopic features are
categorized as phenotypes. Finally, Section 4 states a number results concerning
the mixing time of a selection of models from Section 2. The aim is to give some
insight as to the impact of the choice of the dynamic on the convergence rate of
the resulting dynamic graph, further bridging the gap between genotypes and
phenotypes.

2 TheZoo

In this section, we present a wide variety of dynamic graphs. Note that, through-
out this work, we only consider graphs over a fixed vertex set of size N; the study
of dynamic vertex sets falls outside of the scope of this paper. In a similar manner,
we do not always require graphs to be simple: the appearance of multi-edges
and self loops is demeed acceptable in most situations. Should the reader wish
to enforce such a property, most of the dynamics presented here can be easily
adapted (for example via rejection sampling) so as to satisfy that constraint.

2.1 The Erd6s-Rényi Dynamic

The Erd6s-Rényi random graph [16] is widely accepted as the simplest model of
random graphs. We present here what we believe to be its dynamic counterpart.

Given an undirected simple graph G = (V, E) and a fixed parameter p in
10; 1[, the dynamic is the following: Choose two vertices x and y uniformly and
independently at random in V. With probability p, add (x, y) to E (if the edge
was already there, do nothing), otherwise remove (x, y) from E (likewise, if the
edge was already absent, do nothing). Applying this dynamic over and over again
yields a Markov chain whose stationary distribution is the alternate Erd6s-Rényi
distribution ¢¥(N, p).

X X
y y
[
G, Gz
P66, = mp
Ps, 6 = m(l—l?)

Transition probabilities

Figure 2.1 — The Erd6s-Rényi Dynamic
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CHAPTER 2. TAXONOMY OF DYNAMIC GRAPHS

This dynamic can easily be modified to converge to the original Erdds-Rényi
distribution, ¥(N, M), i.e., the uniform distribution over graphs with N vertices
and M edges. Thisis achieved by selecting not only x and y uniformly atrandom,
but also an independent uniform edge e in E. If (x, y) is an edge, do nothing,
otherwise remove e from E and add (x, y) in its place.

On a final note, recall that, in order to obtain a connected graph with high
probability, p should be at least %" for some positive e [16].

2.2 Exponential Random Graphs

This model, studied thoroughly in [7], is similar to the ¢(N, p) model in that,
at each iteration, an edge is chosen uniformly at random, and either added to
or removed from the graph. Rather than fixing a probability p of including the
edge, however, the chances of accepting the new edge depend on its impact on
the local graph structure.

Formally, consider a finite set of small graphs (g;);c;, called configurations.
The most common configurations include the edge (2-clique) and the triangle
(3-clique). Each configuration is furthermore assigned a weight a;. Foralli € I,
denote c¢;(G) the number of occurrences of g; in G, and define the energy of the
graph as

H(G) =Za,-c,.((;).

When updating edge e, denote G,, and G,_ the graphs consisting of G with and
without edges e, respectively, and 0, H(G)= H(G,,)— H(G,_). The probabilities
of including e or not are

2. H(G)

¢ P(exclude e) =

P(include e) = 11 e G 1+ el HG)

Note that computing J, H(G) can be achieved by only enumerating the number
of occurrences of configurations that contain edge e. As such, if all configura-
tions have diameter at most 6, than these probabilities can be computed by
considering only the ball of radius 6 around edge e.

The stationary distribution is then

1
n(G)=—=e"),
Z
where Z is a normalization constant, called the partition function. These type
of distributions and update rules are respectively referred to as Gibbs measures
and Glauber dynamics.

2.3 Pointer Models for Peer-to-Peer and Social Networks

Consider a model in which every node maintains a fixed number of outgoing
edges, called pointers, which it updates over time. In this model, each edge
has one fixed extremity, its source, and one dynamic end, its destination. Also,
whereas every node is the source of a fixed number of edges, it can serve as a
destination for a varying number of these. Note that, despite pointers having an
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X X
G G,
Consider g; to be the edge graph and g, the triangle graph.

aeH(G): al +2(12

1 ea1+2a2
PG]’GZ = M 1 + ea1+2a2
1 1

Fouo = 31 15 garreas

Transition probabilities

Figure 2.2 — Exponential Graphs

asymmetric dynamic, they are still considered to be non-oriented edges with
respect to graph connectivity.

This structure naturally arises in peer-to-peer networks, where every client
maintains a limited number of connections that it then manages on its own.
The overall layout of the network is thus constructed in a distributed manner.
The same is true in social networks, where individuals have a certain budget of
attention [31], which they must distribute amongst their contacts.

Regarding the dynamic, a uniformly distributed pointer (x, p,) is updated at
each time step. Its new destination p; is chosen according to a distribution P,
which depends on the current configuration of graph. Generally, the probability
P(x, py, p.) of the destination going from p, to p; is a function of the degree of
p. in the graph; if it decreases with the degree, then the stationary distribution
will tend to have a balanced degree distribution, whereas if it increases with the
degree, the asymptotic degree distribution is likely to be exponential.

If P is the uniform distribution over the vertices, then the destination of each
edge is uniformly distributed under the stationary distribution, and the overall
inbound degree distribution is a multinomial with parameters M and N, where
M is the total number of edges. The inbound degree of a given vertex is therefore
asymptotically a Poisson random variable of parameter %

This model can be extended by having each node maintain a dynamic num-
ber of pointers, rather than keeping a fixed number of these.

2.4 Sliding Edges

In the previous models, our edge update rules rely on the fact that the global
structure of the graph is known, and namely that the vertex set is accessible. This
is often too strong of an assumption, however, which this fourth model aims to
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\
X X
Px Px
24 Py
Gl GZ
11
Yoo =yN
11
Yoo =y N

Transition probabilities

Figure 2.3 — The Peer-to-Peer Model

bypass.

For any graph G and vertex x, denote N;(x) the set of neighbors of x in G,
and deg.(x)=|Ng(x)| its degree. The dynamic is as follows: choose an oriented
edge (x, y) uniformly at random, and replace it with an edge (x, y’), where y’
is chosen uniformly at random over Ng;(y)U{y}\ {x}, i.e., the set comprising
y and its neighbors, x excluded. With this policy, the updated edge need only
know its local surroundings to change its target.

\
V' y’
y y
X X
Gl GZ
p _ 1 1
% 2M degg, (¥)
1 1

Ppg=———
GG 2Mdeg62(y’)

Transition probabilities

Figure 2.4 - Sliding Edges
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The stationary distribution for this dynamic is of the form
1
n(G)=— | [degq(x)

This gives an exponential degree distribution. Other distributions can be
obtained by drawing y’ according to a non-uniform distribution P over Ng(y)U
{y}\{x}, asin the previous model. For example, take

1 1

PY)= Geg(y)—1 degly)

for every y’ € N;(y)\ {x}, and

P(y)=1->_P(y").

y'€NG(y)\{x}

The first factor in the expression of P(y’) consists in choosing y’ uniformly as
before, but the second factor indicates that the transition is only accepted with
a probability inversely proportional to the destination’s current degree. Using
the distribution P rather than the uniform one at each iteration gives a dynamic
whose stationary distribution is uniform over all regular connected graphs with
the same number of edges.

2.5 The Interchange Process

The previous model can furthermore be adapted to preserve the degrees of
individual vertices. This can for in particular be used to construct a dynamic
over the set of A-regular graphs, in which case we refer to this dynamic as the
A-regular interchange process.

The transition differs in that rather than having one edge slide along another,
two edges are moved along a third one, in opposite directions. Formally, chose
an edge (y, y’) uniformly at random, and some neighbors x and x’ of y and
y’ respectively, chosen uniformly at random (y’ and y excluded). Replace the
edges (x, y) and (x’, y’) by (x, y’) and (x’, y). If either of these edges was already
present in the graph, you can choose to systematically accept or refuse the
change, respectively allowing for or preventing multi-edges and self-loops.

A simplified version of this dynamic, the non-local interchange process, is
obtained by sampling (x, y) and (x’, y’) uniformly at random, without requiring
that y and y’ be neighbors. Both of these dynamics have been widely studied [10,

17, 3, 38, 39], often referred to as the flip (local) and switch (non-local) dynamics.

This simple dynamic converges to the uniform distribution over the set of
connected graphs with the degree distribution of the original graph.

2.6 Static Structures

One of the inherent risks of local dynamics is the loss of connectivity. The locality
constraint implies that, in such cases, this connectivity cannot be restored.

A possible enhancement to the previous models is the use of static edges,
i.e., edges which are never moved. By choosing these edges so that they alone
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Figure 2.5 — The A-Regular Interchange Process

form a connected graph over the vertex set, we can ensure that the dynamic
itself is irreducible. Note that the non-static edges (aka dynamic edges) do
not necessarily form a connected graph. It is however often possible to target
stationary distributions for which this property holds with high probability.

Static structures can also greatly simplify the study of local graph dynamics,
as they help “anchor” vertices in a persistent geometry. Common structures
include spanning trees, paths and cycles.

RN

Static Tree Static Path Static Cycle

Figure 2.6 — Static Structures

We now give a sample dynamic based on a static structure. Consider that
V ={1,2,...,N} to ease notation, and that the edges are partitioned into a static
ringR={(i,i+1)|ie V},with N+1=1,andadynamicset C, ={(i,o0(i))| i€V},
where o is a permutation over V. The dynamic, thoroughly studied in [12], is
the following: choose a static edge (i, i + 1) uniformly at random, and denote
Toio(i+1) the transposition of o (i) and o(i + 1). Replace C, with C,,, where
0’ =0 0Ty ()0(i+1)-

As always for such symmetric dynamics, the stationary distribution is the
uniform distribution.
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1
PleGZ = N
1
PGZ,Gl = ﬁ

Transition probabilities

Figure 2.7 - Static Ring (dashed) with Permutation

2.7 Dynamic Triangulations

This last dynamic somewhat differs from the previous ones in that it deals with

planar graphs, namely triangulations. The proposed update scheme converges

to the uniform distribution over all triangulations over N vertices.
Ateachiteration, an edge (x, y)is chosen uniformly at random. Denote u and

v the two vertices such that (x, y, #) and (x, y, v) are faces of the triangulation.

Remove (x, y) from the set of edges, and replace it with (u, v). The resulting
graph is still a triangulation.

X
y
Gl G2
1
PGI:GZ = M
1
PGZ,GI = M

Transition probabilities

Figure 2.8 — Planar Triangulations

This dynamic converges to the stationary distribution over the set of planar
triangulations over N vertices.
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3 Genotypes and Phenotypes

The examples from the previous section outline the need for a formal descrip-
tion of dynamic graphs. This could then allow us to classify these models, and
possibly identify classes over which certain properties can be generalized. Such
descriptions often fall in one of the following two categories.

¢ On the one hand, those that describe the nature of the dynamics them-
selves, i.e., the set of rules which dictate the evolution of the graph. These
often operate at a microscopic level, around a single vertex or edge, and
form what we hereon refer to as the graph’s genotype.

e On the other hand, there is the set of macroscopic properties of the graph,
which do not define the dynamic as such, but a rather a consequence of
the microscopic evolution. These form the graph’s phenotype.

Genotypes can include things like fixed vertex degrees, static edges and
interchange dynamics, whereas phenotypes refer to properties such as a uniform
stationary distribution, degree power laws and mixing times.

We still consider that all our dynamics operate over graphs with N vertices
and, for fixed edge counts, M edges.

3.1 Genotypes

A dynamic graphs genotype is primarily defined by the nature of its vertices, its
edges and its transitions.

Vertices

As we limit our study to the case of graphs over fixed vertex sets, describing the
evolution of vertices is quite straightforward.

Fixed degrees This category encompasses all dynamics where individual ver-
tices’ degrees are fixed. A typical example would be the A-regular inter-
change process, and most dynamics that fall under this heading make use
of some variation of the interchange process to preserve degree distribu-
tions.

Non-homogeneous degrees Whereas most dynamics make no distinction be-
tween different vertices, taking only into account their degrees, some mod-
els partition the vertex sets into subsets with differing behaviors. In social
networks, for example, studies often distinguish between content cre-
ators, relayers and consumers, each with their distinct behavioral patterns.
This is the basis for models with underlying communities. Note that this
partition can be replaced with continuous properties, such as different
probabilities of accepting new neighbors, differing affinities for a set of
features, etc.

Underlying geometry Some dynamics have their vertices embedded inside a
metric space, which allows for defining dynamics with attraction or repul-
sion phenomena: edges can be more or less likely to link two given vertices
depending on their embedded positions.
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Edges

The nature of edges is somewhat richer than that of vertices, namely because
they form the dynamic component of the graph.

Fixed edge count vs. birth-and-death One of the major distinctions between
dynamics is the edge count. With fixed edge counts, the dynamic moves
edges around, and it is often possible to map edges before the transition
to edges after it. With unconstrained edge counts, edges can also be added
and removed, and one quickly loses the ability to track individual edges.

Static edges, dynamic edges and pointers In the case of a fixed edge count (typ-
ically when moving edges around), one can distinguish between three types
of edges:

Static edges, with two fixed ends,
Pointers, with one fixed end and one dynamic extremity, and

Dynamic edges, with two dynamic extremities.

These edges generally serve very distinct roles and carry different impli-
cations: static edges serve as a base structure over which the dynamic
unfolds; pointers are maintained by a source vertex, allowing for vertex-
driven dynamics; finally, dynamic edges cover a larger scope than pointers,
but are also harder to keep track of, and therefore to analyze and interpret.

Multi-graphs Simple graphs are often more convincing by nature, as it is not al-
ways clear how multi-edges and self-loops should be interpreted. Nonethe-
less, multi-graphs can be easier to manipulate from a mathematical stand-
point. The passage from multi-graphs to simple graphs can often be
achieved by simply rejecting transitions which would violate the struc-
tural constraints.

Oriented edges The use of oriented edges can have an important impact not
only on dynamics, e.g. by allowing sliding edges to follow other edges
in only one direction, but also on macroscopic considerations, such as
connectivity and expansion.

Labeled edges Just as vertices can differ in nature, edges need not all be identical.
A graph can contain multiple edge sets, each with their own dynamic.
These dynamics can naturally be linked, for example by imposing that
two edge sets never cover a same vertex, that edges never slide along
other edges of the same set, or by changing the nature of an edge during a
transition.

Transitions

While the possibilities for designing transitions are near endless, certain recur-
rent patterns can be identified.
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Local vs. non-local Looking at the examples from the previous section, there is
a clear distinction between dynamics which operate in a localized portion
of the graph, and others which can span the entire graph. Formally, we
say a dynamic is local if their exists a fixed integer r such that, for every
transition from a state G, to a new state G,, there exists a vertex x that
satisfies G, \B(’";1 (x)=G,\ B (x), where B/(x)is the ball of radius r centered
on xinG.

G\ BZ (x)=G, \ BZ (x)

The dynamic is local

Figure 2.9 — Local Dynamic

Half-edge transitions When moving an edge, some common dynamics keep
one extremity of the edge unmodified. It is often more practical to model
these dynamics as operating on half-edges, i.e., a single edge extremity,
rather than on full edges. Dynamics dealing with pointers naturally fall
under the scope of this definition, whereas edge additions or removals
never do.

With each half-edge attached to a single vertex, the set of half-edges at a
given vertex can be represented as a set of labels; transitions can then be
interpreted as moving these labels.

Sliding edges Amongstlocal dynamics, sliding edges are possible the most
natural approach. These are half-edge transitions in which the origi-
nal and updated vertices to which the half-edge is attached are linked
by another edge. The modified half-edge effectively slides along this
other edge.

Interchanging edges The interchange process is the adaptation of half-
edge transitions to graphs with fixed degree distributions: rather than
move a single half-edge, select two of these and swap their positions.
If these two vertices are guaranteed to always be connected by yet
another edge, as is the case for sliding edges, than this dynamic is
local. The most common occurrence is the A-regular interchange
process detailed in the previous section.
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Degree-dependant transitions As shown in some of the examples from the pre-
vious section, it is often possible to tinker with a given dynamic through
accepting or rejecting simple transitions. The most common decision fac-
tor is the respective degrees of the intervening vertices. This is a recurrent
means of adapting dynamics to a given target distribution.

Update distribution All of the update mechanisms presented in the previous
section share a common aspect: at each iteration, one starts by selecting
one or more edges or vertices at random, often following a uniform dis-
tribution. This initial decision of what to update plays a crucial role in
reversibility.

Another essential role of the update distribution is when considering con-
tinuous time equivalents of the dynamics presented here. For a dynamic
where edges were chosen uniformly at random, an exponential timer is
now associated to each edge, and a transition occurs when that timer ex-
pires. For dynamics based on uniformly distributed vertices, the timers
are placed on the vertices. Choosing the right expiration rate for vertex
timers is primordial in order to ensure the reversibility of these continuous
time dynamic graphs.

Combinatorial updates To finish, some dynamics rely on some form of com-
binatorial structure underlying the edge set. This was the case for the
example comprising a static ring and a permutation. Such structures im-
ply additional constrains on dynamics, and should be considered with
care.

They furthermore highlight an important caveat in our definition of local
dynamics. Consider the following model: a graph consisting of a static ring
and acycle {(o(i),o(i+1)|ie{1,2,---,N}}, with N +1=1. The dynamic
consists in selecting an vertex i uniformly at random, then setting

_( 1 2 o7l o'l - o7'E+1)-1 o7'(+1) - N )
0= o1(1) o4(2) - i 01(0;1(i+1)—1) al(afl(i)+1) i+1 - o (N))°

As one can see on Figure 2.10, this dynamic is local according to our defi-
nition (everything outside of Bél (7) is unaltered), yet a global update of the
permutation is required.

3.2 Phenotypes

The phenotype of a dynamic graph is the set of global properties of the dynamic
that one can quantify. It results from the choice of the genotype, and the later
can often be retro-engineered to achieve certain global properties.

Stationary Distribution

The most common question when studying a Markov chain certainly consists in
determiningifit converges to a stationary distribution, and what that distribution
might be. In every example from Section 2, the dynamic is reversible, which
immediately answers the question.
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Permutations with i =4

Figure 2.10 — Static Ring (dashed) with Cycle
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Fixed degrees v v
Fixed edge count W) v Ng v v Ng
Static edges v
Pointers v
Multi-graph V) ) )
Local transitions v v v v
Sliding edges v
Interchanging edges v
Degree-dependent v
Combinatorial v v

Table 2.1 — Genotypes and Phenotypes from the Zoo

The most common application is with ergodic Markov chains for which we
have P, ; = P; ; for all pair of states i and j; their stationary distribution is then
necessarily the uniform distribution over the state space. This applies to most of
our examples. For the others, checking that the stated distribution satisfies the

detailed balance equation suffices.

The stationary distribution in itself is also often studied, though this falls
somewhat outside of the scope of this survey. The following properties are often

considered:
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Degree Distribution Depending on the interpretation given to a dynamic, the
desired degree distribution may vary. This includes things such as expo-
nential distributions for online social networks and global communication
networks, balanced distributions for local communication networks such
as sensor networks, or even constant degrees, as with peer-to-peer net-
works.

Edge Count Distribution Most dynamics deal with sparse graphs, in which
the number of edges, M, is quasi-linear in the number of vertices N:
M = O(N log® N) for some fixed integer k. Controlling this distribution is
therefore essential when constructing a model.

Note that, in the case of dynamics with a fixed edge count, the question
is dealt with from the start. This property is therefore mostly relevant for
dynamics with a variable edge count.

Stationary Expansion Expansion is an important aspect of network models.
It is a useful indicator of how well information travels in graphs, and is
essential in studying epidemic propagation, rumor spreading, network
capacity and resiliency, and more.

Define the expansion ratio of a strict subset S of V as
__|EG.9)|
2ces degx’

where E(S,S) is the set of edges between S and its complementary. The
expansion ratio of the graph as a whole is then defined as

(2.1

= Iglcl‘? o(S). (2.2)

N
1<ISI€ 5

The higher the expansion ratio of the graph, the faster the simple random
walk on that graph converges to its stationary distribution. For a rapid con-
vergence rate, it is generally required that ® be at least of order Q(log™* N)
for some fixed integer k, as opposed to a rate of order O(IN~¢), which yields
a slow convergence rate.

For stationary distributions such as the Erdés-Rényi model or uniform
A-regular graphs, the random graph is an expander with high probability.

Mixing Time

Whereas the stationary distribution studies the asymptotic behavior of the dy-
namic, another point of interest is the convergence itself. Understanding the
transitive phase can yield important insight into how dynamics operate, and can
help engineer them to better suit ones needs.

One of the most common features of this transitive phase is the mixing time.
Recall that the total variation distance between two distributions p and v over
the state space S is defined as

1
o=l =5 D (p(x)= 1)

xeS§
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and let 7! be the distribution of the dynamic at time ¢, starting in x at time 0.
Denoting

d(t) :I?G%X”ﬂfc _TCHTV

the distance to stationarity, the mixing time of the Markov chain is defined as
) 1
nix=Mmind t >0 |d(t)< il

Imix 18 the first instant at which, regardless of the initial distribution, the current
state is within a predefined distance of the stationary distribution (here }1, but
any € < 1 would serve).

4 Case Analysis

In this section, we analyze the mixing time of some of the examples from Sec-
tion 2. We say a dynamic converges rapidly if its mixing time is of order at most
O(N log® N) for some integer k, and that it mixes slowly if its mixing time is of
order at least Q(N?).

Note that rapid convergence implies at most O(log® N) updates per vertex;
in vertex-driven dynamics, this can be interpreted having a local complexity that
scales well with the network.

4.1 Erdos-Rényi dynamic

In the sparse setting, the two models of Erd6s-Rényi dynamics behave very
differently.

Theorem 5. Let M = NlogN and p = 2}3—%1\], such that the expected number of
edges in the 9(N, p) model is M .

1. The Erdds-Rényi dynamic for (N, p) converges slowly, i.e. in at least Q(N?)
steps.

2. The Erdos-Rényi dynamic for (N, M) converges rapidly, reaching equilib-
rium in at most O(N log® N) steps.

Note that with these values, the resulting graph is connected with high prob-
ability. We now prove both results separately.
Slow Mixing of ¥(IV, p)

We show that the ¢(NN, p) dynamic converges slowly.

Proof. Observe that, given an initial configuration G with M edges, the probabil-
ity that a graph G’ distributed according to ¢(N, p) shares % edges with G goes
to 0 as IV goes to infinity. As such, as long as % edge of G remains untouched,
the total variation distance is close to 1.
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More specifically, denoting X the number of edges that G and G’ have in
common, we have that E[X|=Mp = 2% log® N. Using Markov’s inequality, this

gives that

M

logN
P(X > ?) <4

— 0.
N —1 N—+oo

This implies that the mixing time is at least the time required to modify half of
the initial edges. Since a modification to any of these edges happens on average
once every

(5)_ ~n-1

M~ 2logN

transitions, it takes at least

M N-1 N([N-1)
2 2logN 4

steps before this requirement is met. The mixing time is therefore at least of
order Q(N?). O

Rapid Mixing of ¥ (N, M)

We now show that, unlike ¥(N, p), 9(IN, M) converges rapidly to its stationary
distribution.

Proof. The proof is very close to the previous one: we show that, once every
edge has been touched at least once, we have reached the stationary distribution.
Note that it is far quicker to modify all edges in this context than in the previous
one.

Recall that, at each iteration, a pair of vertices (x, y) is chosen uniformly at
random, alongside an independent edge uniformly distributed over the edges of
the current configuration. If (x, y) was not already an edge, we then remove e,
and replace it with (x, y).

Suppose that, as you do this, you also tag edges as follows: if (x, y) was not
previously an edge, it is now tagged, regardless of whether e was tagged or not;
if (x, y) was already an edge, then

e if neither e nor (x, y) was tagged, tag (x, y) but not e (if e =(x, y), tag it);
e if e was tagged, but not (x, y), untag e and tag (x, y);
e otherwise do nothing.

All of the edges of the starting configuration are initially untagged.

We show by induction that, at all times, the set 7 of tagged edges is distributed
according to 9(N, |7 |). This is clearly true at initialization. Two cases can arise
at each iteration:

e ¢ was already tagged. If it was left unchanged ((x, y) was a tagged edge),
the distribution is unchanged, i.e. uniform. If it was replaced (untagged or
removed), the new tagged edge is uniformly distributed over the edges not
in 7, and the new distribution is once more uniform. Notice that the fact
that (x, y) was or wasn't already an edge makes no difference.
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e ¢ was untagged. If (x, y) was a tagged edge, than 7 and its distribution
remain unchanged. Otherwise, (x, y) is tagged. Since it is uniformly dis-
tributed over the edges not in 7, the new set of edges is necessarily dis-
tributed according to ¢(N, |7 |+ 1).

All that is left to show is that the edges are rapidly all tagged. For all i, denote
T; =min{t >0||7,;| > i} the time required before 7 is of size i, and 6 T; = T;,, — T;
the duration for which 7 is of size exactly i. We are interested in bounding
Ty=>,0T.
If 7, is of size i, then the probability of its size increasing at time ¢ + 1 is that
of selecting an untagged e and choosing (x, y) notin 7:
M—i (5)-i
PZn=T+1)=—+ —FF—
o= D= ==

0T; is therefore geometrically distributed with the above parameter, and its

average is
N
msr- . L)
M—i (3)-i
Summing yields that
M-1
E[Ty]= > E[6T]
i=0
:le M (5
S M—i ()i
(N M-1 1
<2 .M
NN
G) <ol
= M -
QTR
~ (];]) MlogM
(5)—M
1
~ 1_2—10gN-NlogN-log(NlogN) (M = NlogN)
N-1
~Nlog* N

This result could easily be foreseen, in that it is a modified instance of the coupon
collector problem over the M edges, which would require O(M log M) iterations
to complete.

Ty is what is known as a strong stationary time, a stopping time such that
Gr,, is uniformly distributed, independently of 7),. We make use of the following

property:

Property 9 (see [36], Proposition 6.10). If T is a strong stationary time, then
d(t) <maxP(T > t), where the max is taken over all initial states.
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Applying this property here yields that

d(t) <maxP(Ty, > t)
Nlog’N
<5

" +o(1). (Markov’s inequality)

From this, we can deduce that
1
d(4Nlog® N) < it o(1),

and therefore that #,,;, = O(N log” N). O

The difference in convergence rate of these very similar models serves to
outline the fact that there is no simple recipe to inferring the mixing time of
given dynamics.

4.2 The Interchange Process

We now consider the interchange process. As mentioned in the previous section,
it is best to consider half-edges when analyzing such a dynamic. For M initial
edges, there are always 2M half-edges present in the graph, or AN for A-regular
graphs.

Mixing Time of a Non-Local Dynamic

We first consider the non-local variant of the dynamic presented in Section 2.
Recall that at each iteration, two half-edges are chosen uniformly and inde-
pendently at random, and swapped. Formally, suppose the selected half edges
correspond to the edges (x, y) and (x’, y’), attached to vertices y and y’ respec-
tively. Replace these edges with (x, y’) and (x’, y). Multi-edges and self-loops
are considered acceptable and greatly simplify considerations.

To establish an upper bound on the mixing time of this dynamic, number
the edges e,..., ey, and denote e’ and e; the two half-edges of edge e;. Now
consider the 2M -dimensional vector

X=(e e/, e,,e,,....,ey,ey).
The graph can be reconstructed from X alone by grouping the half-edges two
by two to form edges. Furthermore, swapping two half-edges in the graph is
reflected in X as a simple transposition. As such, the mixing time of the dynamic
is upper-bounded by the mixing time of the random transposition process on X.

Property 10 (see [36], Corollary 8.10). The mixing time of the random transposi-
tion process for permutations of size N is of order O(N log N).

The proof of this property is very similar to that used for the ¥(N, M) model:
tagging some of the coordinates of X as they are transposed allows us to keep
track of a growing subset of coordinates whose values are uniformly distributed
among themselves. A coupon collector argument then concludes the proof.

For the non-local interchange process, this implies that ¢,,;, = O(M log(M)),
and namely O(AN log(N)) in the case of A-regular graphs.

39



CHAPTER 2. TAXONOMY OF DYNAMIC GRAPHS
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Figure 2.11 — The 4-Regular Non-Local Interchange Process

Mixing Time of the Local Dynamic

Recall that the local dynamic differs from the previous one in that the half-edge
swap occurs between two vertices y and y’ selected conditioned on (y, y’) being
an edge. Bounding the mixing time in this scenario turns out to be far more
difficult. To the extent of our knowledge, the best know result in this sense is the
following

Theorem 6 (Allen-Zhu et al. [3]). IfA > 100logN, then after ©(A>N?,/logN)
iterations of the local interchange dynamic, the resulting graph is an expander
with high probability, namely

dr>0, P(@>y)>1-N2

This result does not directly yield the mixing time; once the graph is an
expander, however, the Markov chain is conceivably close to having mixed. As
such, this suggests an upper bound on the convergence rate of no more than
0(A2N2,/TogN), i.e. O(N2log? N)if A =0O(logN).

Note that this last bound is of order o(N3). In Section 4.3, we show that the
mixing time of the interchange process on static graphs is at least Q(N3) in the
worst cases. As such, though the above result still gives a somewhat slow upper
bound, it does prove that the local dynamic does fundamentally better than the
very similar interchange process.

4.3 Pointers on Rings

We finish with a last model, which mixes pointers and a static ring. While its
construction may seem somewhat artificial, it gives some useful insight as to
some necessary conditions in order to obtain rapidly mixing local dynamics.
The basic model is the following: let V = {1,...,N} and K > 1 be a fixed
integer. The edge set E consists of astaticring R={(i,i+1)| i€ V},withN+1=
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1, and K N pointers, such that each vertex is the source and destination of exactly
K pointers. Considering these pointers to be undirected edges, the resulting
multigraph is 2(K + 1)-regular.

All the dynamics are interchange processes: choose two pointers, and swap
their destinations. This preserves the number of source and destination half-
edges at each iteration. The difference results from the joint distribution of the
two selected pointers:

Non-local dynamic The pointers are independent and uniformly distributed.

Ring dynamic The pointers are uniformly distributed, conditioned on having
adjacent destinations in R.

Bootstrap dynamic The pointers are uniformly distributed, conditioned on
having adjacent destinations in E.

Once more, multi-edges and self-loops may occur, but this is not a major
concern, and simplifies proofs.

Theorem 7. Within this framework, one has the following results:
1. The non-local dynamic converges in O(K N log(IN)).
2. The ring dynamic converges in Q(K N3), and, for K =1, in O(N3logN).

A conjecture concerning the mixing time of the bootstrap dynamic is given
at the end of this section.

Non-Local Dynamic

Bounding the mixing time of the non-local dynamic is straightforward with
an approach identical to that used for the interchange process over A-regular
graphs

Proof. Consider the vector
X:(pll,...le,pzl,...,pf)

containing the destinations pl.j of each pointer (for pl.j , the j-th pointer with
source 7). An iteration is a transposition of two coordinates in that vector, and
the previous results therefore tell us that ,;, = O(K N log(N)). O

Ring Dynamic

We now constrain our dynamic, requiring that swapped pointers have their
destinations be adjacent along the ring. Intuitively, this should notably increase
its mixing time. We show that this is indeed the case, and that f,,;, = QK N3).

Proof. Denote (x,) the destination of the first pointer of vertex 1. (x,) is a lazy
random walk over the ring, the probability of it staying in place is p = 1— 25,
and the probabilities of moving to the previous (—1) or next (+1) vertices are

both <. Call ||x —y ||  the distance between x and y along the ring:

||x—y||R=min(|x—y ,N—|x—y|).
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Consider the random walk y, over Z such that y, = x, and the transitions (+1,
0, or —1) are the same for both chains. Notice that y, = x, mod N; this implies
that ||x; — x| < | ¥: — Y|, and therefore that

N N
p{lx—oll> 3 ) <P(ln—n|> 7 |

4
Since y, — ), is the sum of 7 i.i.d random variables with mean 0 and variance
-, its mean is 0 and its variance 2% . Chebyshev’s inequality gives that

2 16

N
P(|yt—y0| > Z) < tK—Nm;

hence

NY 32 _,
P ||xt—x0||R_Z SI?N .

Under the stationary distribution, x is uniformly distributed, and therefore
P(||x — Xollg = %) = % The mixing time must therefore satisfy

P(”xt 4 —xOHR > ﬁ) 2> l,
i 4 4

as below this threshold,

1
a(1)=max [Py, (x, =) =7l 2 .

Combining the above inequalities, we obtain that ,; > %N 3, O

We furthermore show that this bound is close to tight, as the mixing time of
the ring-based shortcut dynamic with K =1 is of order at most N*log® N. For
this, we use the following result from [6]:

Property 11. (see[6], Theorem 4.6, p. 47) For every pair of vertices x and y, denote
Iy, apath from x to y. Let

A:n)},a}x|l"xy|,
where |y| designates the length of path T, and
B :I?EQEXH(x,y)e Ve el"xy}|.

Then the mixing time for the interchange of labels between adjacent vertices is of
order at most O(ABlogN).

Taking the I, to be the shortest paths between x and y along the cycle, we
immediately have that A =|%]. Furthermore, the number of paths of length [
crossing a single edge e is at most 2/, hence

This concludes the proof.
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4. CASE ANALYSIS

Bootstrap Dynamic

We finally introduce alocal dynamic with a rapid empirical mixing time. Consider
the non-local dynamic, and constrain it so that the destinations of the swapped
pointers are adjacent in the graph, connected by any pointer or ring edge, other
than the two pointers themselves (so as to preserve reversibility).

Conjecture 1. The mixing time of the bootstrap dynamic is of order O(K N log* N)
for some fixed k.

Chapter 3 is devoted to proving an analogous result for a similar continuous-
time model.
Discussion

We give a brief overview as to why this result is somewhat surprising, and what
makes it feasible.
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Figure 2.12 — Expansion of Pointers on Rings

Notice that the worst initial conditions are those such as that presented in
Figure 2.12a. For these, the initial rate of convergence is at least cubic, since it
closely mirrors that of the ring dynamic. However, the limit distribution gives
good expanders w.h.p. (namely ® = Q(log ¥ N) for some k), and the rate of
convergence should therefore improve as the dynamic proceeds. Since the rate
of convergence of the interchange process over expanders has convergence rate
O(NlogN), one can easily conjecture that the rate of convergence starting from
an expander is of order O(K N log N), i.e. the same as for the non-local dynamic.

The convergence rate of the bootstrap dynamic starting from an arbitrary
position is therefore somewhere between ©(K N3log N) and ©(K N log N). Our
conjecture, backed by Theorem 9, is that local bootstrap dynamics are nearly as
efficient as non-local dynamics.
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CHAPTER 3. RAPID MIXING OF LOCAL DYNAMIC GRAPHS

1 Introduction

Distributed systems typically cannot operate efficiently unless their constituting
parts are interconnected via a network with suitable properties. In the context of
peer-to-peer systems, desirable properties of the interconnection graph between
peers include having a small diameter, small node degrees, and requiring many
failures to disconnect a sizeable part of the network. Yet another useful property
is the ability to obtain at low cost and via a distributed algorithm uniform samples
of nodes in the system.

As mentioned in the first chapter, all these properties hold if the intercon-
nection graph is an expander. By definition, the unoriented graph G =(V, E) is
a y-expander for some constant y > 0 if each set S C V of vertices with size [S|
no larger than | V| is such that at least y|S| distinct edges in E connect S to its
complement S in V. It is an expander if it is a y-expander for some y > Q(1).

For instance, when the graph is an expander, close-to-uniform samples are
obtained in a distributed manner and at low cost by running a random walk on
the peer-to-peer graph: It being an expander then ensures that only few steps
(on the order of the logarithm of the system size, measured in number of nodes)
of the walk suffice.

Because peer-to-peer systems are volatile, i.e. subject to node arrivals and
departures, it is not possible to determine once and for all an expander graph
to interconnect participating peers. Instead the graph must constantly evolve,
with the aim to preserve or restore the desired expander property. Moreover,
the graph evolution must rely on local adjustments, since by design no central
controller has knowledge of the whole graph.

This has prompted research on dynamics for continuous modification of
graphs that would (i) rely only on local modifications of the current graph, (ii)
produce expander graphs at equilibrium, and (iii) reach equilibrium quickly.
More precisely, considering graphs on a set of NV nodes, by quickly we mean
requiring a number of modifications per node that scales poly-logarithmically
in N before equilibrium is attained.

The main contribution of this chapter is to propose a new graph dynamics
together with the proof that it meets these three requirements. Its organization is
as follows. Section 2 describes our proposed dynamics together with the main re-
sult, Theorem 8. It also highlights Theorem 9, our technical result controlling the
spread of laws of random walks on graphs at short times. Section 3 explains the
proof strategy. Section 4 explains how to deduce bounds with high probability on
isoperimetric ratios from bounds on corresponding expectations, using negative
dependence properties. Section 5 derives the necessary bounds on expectations,
leveraging in particular Theorem 9. The proof of the later constitutes Section 6.

We now review relevant prior work.

Related Work

Markovian local graph dynamics for peer-to-peer systems have been considered
in [41, 11, 10, 17]. In all these papers the stationary regime for the proposed
dynamics has been identified; in the last three references, loose bounds on the
mixing time (defined below), or time to achieve equilibrium, have been obtained.

46



2. MAIN RESULTS

The tightest bounds available prior to the present article on the time before
such local graph dynamics produce an expander graph were obtained in [3].
Specifically, it is shown in [3] that a discrete time Markov chain on the set of con-
nected A-regular graphs on N vertices creates with high probability an expander
graph after a time of O(N 2A%4/logN ) with A of order O(log N). This implies the
realization of this property after each node has performed a number of updates
of order O(N log% N),i.e. anumber that is quasi-linear in the system size N.

Graph dynamics have also been considered in different contexts. [47] con-
siders local dynamics for producing so-called cladograms uniformly at random,
and bounds their mixing time. [30] considers dynamics of matchings in bipartite
graphs and controls their mixing time. The motivation of [30] is the estimation
of graph descriptors using a Markov chain Monte-Carlo approach. Finally, non-
local graph dynamics together with their mixing time have been considered in
[7] in order to sample from so-called exponential random graph distributions.

2 Main results

In the sequel, we consider graphs over vertex set [N ], asymptotic results being
with respect to N.

Consider the following setting. The vertices in [N ] are connected by edges
of three distinct types: a fixed cycle, blue edges and red edges. The cycle is
constituted of a fixed set of edges E, ={(n,n+1)|i €[N]}, with N +1=1. Each
node n € [N ] furthermore maintains two pointers, one blue and one red, with
respective destinations b,,, r,, in [N]. The destinations of the pointers are such
that (b, ),¢n; and (1,,),¢n) are permutations: each node n is the destination of
exactly one blue pointer and one red pointer. The blue edges and red edge sets
are respectively E, ={(n,b,) | n€[N]}and E, ={(n,r,)| n €[N]}. All edges are
considered to be unoriented.

Figure 3.1 — Bi-color pointer interchange model
We now consider the following continuous-time dynamics. The graph evolves
through alternating blue and red phases. During each phase, only the edges of a
given color evolve, while those of the other color are kept fixed. During a blue
phase, for example, blue pointers are swapped along graph G, constituted of the
edges in both E, and E,. Note that G, is a 4-regular multigraph.

The dynamics for a blue phase are defined as follows. Each edge e = (i, j) of
G, maintains an internal clock, in which the time between ticks are exponentially
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——
—

Figure 3.2 — Swapping two red pointers along a blue edge (red phase)

distributed with mean 1 and all independent. At every tick, the two nodes n, m €
[N]such that b, =i and b,, = j swap their pointers. This effectively boils down
to transposing i and j in the permutation (b, ),¢~;. Such a process has been
studied in the literature, where it is known as the interchange process. See for
instance Jonasson [33] or N. Berestycki [6], where the discrete time version of
this process is analyzed.

For the red phases, the roles of blue and red pointers are swapped; the graph
containing the edges in E, and E, is denoted G,. To clarify notations, we denote
E; the fixed edge set during phase f, i.e. E, if f is a red phase, E, otherwise,
and G/ the fixed graph, i.e. containing the edges in E, and E;. We finally write
E;=E;UE.,.

Our main result is then as follows

Theorem 8. Let T =log” N where a > 8 is a constant. After F =log, N phases of
length T, with high probability, the sets of blue and red pointers are uniformly
and independently distributed permutations over the symmetric group S ;.

Corollary 2. After each node has undergone a number of local connectivity modi-
fications that is polylogarithmic in N, the process has produced an expander with
high probability.

Proof. Bytime 7= F T, a given node n €[N] has seen under these dynamics a
number of connectivity modifications that is at most a Poisson random variable
with mean 87. Indeed, at any given time, the rate at which a transition might
occur is at most 8, corresponding to the rate at which the pointer b,, (for the blue
phase) issued from n moves (equal to the number of edges of G, adjacent to b,,,
i.e. 4) plus the rate at which the blue pointer ending at n moves (also 4).

The probability that this number M,, of connectivity modifications exceeds
167 is then, by Chernoff’s bound for deviations of Poisson random variables
from their mean, bounded by

P(M, >167)< e_gfh(lsif) — e—8rh(2),

where h(x) = xlogx — x + 1 is the Cramér transform of a unit mean Poisson
random variable. Since 7 is at least of order log”*' N with a > 0, the last term
is o(N~1). Thus the probability that at least one node n € [N] undergoes more
than 167 = polylog(NN) local modifications by time 7 is, by the union bound, no
more than N -o(N~1)=o(1).
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The fact that the resulting graph G is an expander will be shown in Section
4, in which we introduce the necessary technical lemmas. Note that results in
[8, 18] establish for very similar (although not identical) random graph models
that these are expanders with high probability. O

We now state another result, which will be instrumental in Section 5, and
proven in Section 6, but which we believe could be of independent interest:

Theorem9. Let G =([N], E) be an undirected multi-graph with maximum degree
A, and (X,),cg the continuous time random walk on G, i.e. the Markov jump
process on [N] with jump rates q;; equal to the multiplicity of (i, j) in E. The
infinitesimal generator of (X,),cg is—L, where L is the Laplacian matrix of G. Let
(70:(1))ieny denote its law at time t. For an arbitrary initial distribution of the
random walk, for any k < % and S C [N] such that|S| < k and any t > 0, one has:

S| _ax
() ——+Vk+1le™, (3.1)
20
where G
(i)
A= kZA (3.2)

Remark 1. The quantity A} is of the same form as the lower bound on the spectral
gap A, of the Laplacian that the celebrated Cheeger inequality gives when k=%,
In fact for k = %, the expression of ®,.(G) coincides with this lower bound. In this
classical situation, instead of (3.1), one has the conclusion that

1 R
<-vNe™!,

”ﬂ(t)_%[f"]”Tv =5

as shown in Property 5.

3 Proof strategy

To proceed, we first introduce some definitions.

Definition 20. The collection (®(G)), <<y of isoperimetric constants of graph G
constitutes its isoperimetric profile.
The graph is said to be a(y, c)-expander if, forall k < &, ®,(G) > min(y, %)

Note that a graph is a y-expander according to the classical notion if itis a
(7/, %)—expander according to the above definition.

Our proof consists in controlling the evolution of the isoperimetric profile of
the graph along which pointers move from one phase to the next, establishing
lower bounds on this profile in an iterative manner.

Let 8 be a constant such that 1 < f < 2. Such f exists by our assumption
that a > 8. Let y =log? N. We show the following

Lemma 1. Suppose that, during phase f, the graph G is a(y, c)-expander for
some integer c. Then, with probability at least 1 —o(N~"), the graph Gy, is a
(r,2c)-expander.
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Notice that if G, contained blue edges, G, contains red edges, and vice
versa.

To prove this, we first show a stronger lower bound on the average number
of shortcuts leaving any given set S:

Lemma 2. If, for a given phase f and integer c, G is a(y, c)-expander, then for
allS c[N] with|S|< %,

BN |
E[|E;4(S,S)|]> Zmin(ylSl,Zc). (3.3)

Lemma 1 is then deduced from Lemma 2 by invoking some concentration
inequalities together with union bounds. Details are given in Section 4.2.
An easy consequence of Lemma 1 is the following:

Corollary 3. After F = log,(N) phases, with high probability both G, and G, are
(7, %)-expanders.

Proof. Clearly, G, is a (y,2)-expander. Indeed, any subset S C [N ] of size |S| < %
is connected by at least two edges (that come from the cycle) to its complement
S, so that

|EZ(S,S)| = 2> min(r]S],2).

Denote by &, the event that G, is a (7’, 2f )—expander. Thus we have just estab-
lished that event &, holds with certainty, and Lemma 1 entails that, for all f > 1,

P(&pyi | &) <o(N7T).

Thus _ . . o
P(Ern) =P(Er |8 )P(8:)+P(E 1 | &7)P(EF)
<o(NHY+P(&;).

By induction on f, this yields

P(6;4)< 0(%)

For F =log,(N), the right-hand side of this expression is o(1), so that with high
probability, the graphs Gx_, and G are (y, %)—expanders. As the color of these
two graphs differ, this concludes the proof. O

The proof of Theorem 8 is then concluded as follows:

Proof. By Corollary 3, after F =1log,(N) phases, the Cheeger constants @y (G)
and <I>%(Gr) are at least 7.

We show that, for any graph G, ®y(G) > y implies that the interchange pro-
cesses on G mixes in less than T steps, so that with high probability, in two more
phases our process will have reached stationarity.

Our main tool to this end is Theorem 4.3, p. 39 in Berestycki [6], which gives
a sufficient condition for the discrete time interchange process on a graph G to
mix in time T'. The continuous time analogous result reads

50
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- Lemma 2 Theorem 9
Lemmal ¥ 5.1
! - Small sets ¥
Theorem 8 » Corrolary 2 -

Large sets

Corrolary 3

AN

Results are mentioned in the sections
in which they are proved.

Figure 3.3 — Outline of proof

Theorem 10 (Theorem 4.3, p. 39, [6]). For each pair of nodes i, j € [N], define
a pathy;; on G connecting i and j, and letT = {yij | i,je [N]}. Denote X the
length of the longest path inT, and K the supremum over the edges e of G of the
number of paths inT passing through e.

The continuous time interchange process on G will have mixed in time T

provided

logN
T>8YK——. (3.4)
N

According to Lemma 3 below, for a A-regular (y, %)-expander with A constant,
we can choose these paths such that

log N Nlog®> N
T:O( o8 ) and K:O(L).
72 2

Plugged into (3.4), these evaluations imply that mixing has occurred by time T
provided T is large compared to (M%N)“, i.e provided log® N = w(log*™*? N). This

condition holds since 8 < 4. O

Lemma 3. Let G be a A-regular graph with vertex set[N], such that®y(G)>7.
i,je [N]} such that they ;; each have
length at mostY = 2‘;—22 log N, and such that each edge e of G is crossed by at most
18‘;—22N10g2N paths.

One can construct a set of pathsT = {)fl- j

Proof. The celebrated Cheeger’s inequality (see e.g. Berestycki [6] Theorem 3.5,
p- 30) ensures that the spectral gap for the discrete time random walk on a A-

regular graph G with ®y(G)> 7 is at least %. Thus the total variation distance

between the distribution of the random walk at time Y = 2§logN and the
uniform distribution on G is o(N ) (this follows e.g. by Theorem 2.2, p. 18 in [6]).
As a result, for any i €[N], the probability that the walk started at i hits j at time
Y is at least 5. Consider then the following randomized construction. For each
i, create 5N log N independent walks of length T started at i. The probability
that for some particular j € [N], no such walk issued from i hits j is then at most

(1_%)5NlogN < e—%logN — O(N_Z).
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Using the union bound, we can therefore conclude that, with high probability,
the collection of paths thus created joins every node i to every node j.

Let us now evaluate the number of times a given edge e = (u, v) of G is
traversed by this collection of paths. This is no larger than the number of times
these paths visit node u. For £ <5NlogN, denote by X;(¢) the number of visits
to u by the ¢-th path sampled with starting point i. Clearly, X;(¢) <7Y. Also,

E| D> D Xt :5N10gNZiPi(li),

i€[N] t<5NlogN i€[N] 1=0

where Pl.(ft) denotes the transition probability from i to u in [ steps of the walk.

However the walk is symmetric, so that Pl.(llt) = PIE?. The above expection thus
reads

E Z Z X,(1)| =5(Y+1)NlogN.

i€[N]t<5NlogN

Let Z =3 ,cn) 2i<sniogn Xi(t) denote the total number of visits to u by all paths.
For any C > 0, Hoeffding’s inequality then gives

C2N?Y?log’ N 2
P(Z>E[Z]+ CNTlogN)< exp(— og’ ) _ p—SlogN_

5T2N2logN

Taking C = 3, the right-hand side is o(N!). Thus, by the union bound, with high

probability, no node u is visited more than 9T N log N = 18‘;—:N log® N times by
the collection of constructed paths. O

4 From bounds in expectation to bounds with high
probability

4.1 ProofofLemmal

Assume that G is a (7, ¢)-expander. By Lemma 2, for each fixed set S € [V ] with
S| < %, we have that

o 1
E[|E;4(S,S)|]> Zmin(ylSl,ZC).

Fix k < &. We further restrict ourselves to k > %, since

EO(S ,§)| > 2 and therefore
one always has that ®; >y for k < %

For some set S of size k, let [ € [1, k]| be the number of contiguous portions
of the cycle it is made of. Clearly EO(S ,5)’ =21, and therefore

|E,\(S,S)| = | Ern(S,S)| +2L.

f+1

Recall (see e.g. Dubashiand Ranjan[13], and Borcea et al. [9]) that a set of random
variables (X;);c; is said to be negatively associated if for any two functions f, g :
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R! — R that are non-decreasing in each of their coordinates, and depend on
disjoint sets of variables X;, the two random variables f((X;);c;) and g((X;);cr)
are negatively correlated, i.e.

E[f((Xi)ieI)g((Xi)ieI)] < E[f((Xi)ieI)]E[g((Xi)ieI)]-
We will need the following two results.

Lemma 4. Conditionally on the shortcut configuration at the beginning of the
considered phase, the random variable | Efy (S S )| consists of the sum of negatively
associated Bernoulli random variables. Consequently, for any r €(0, 1), it holds
that

— 1 1
P(IEfﬂ(s,S)l < rgmin(YISI,ZC)) < e FminciSize) (3.5)
where h(r)=rlogr—r+1.

Proof. Represent the collection of termination points of pointers through the
binary variables £; € {0,1}, i €[N ] where &; =1 if and only if one pointer issued
from S points towards i. The variables (), y] evolve, under the interchange
process dynamics, as a symmetric exclusion process. Given that we condition on
the initial configuration, applying Proposition 5.1 in [9] gives that the collection
of indicator variables (&;(7));¢n; satisfies the strong Rayleigh property [37] for all
t > 0. This is namely true for (£,(T));n), i-€. at the end of the phase. Since the
strong Rayleigh property implies negative association (see again [9], Section 2,
Figure 1), it then follows from Dubhashi and Ranjan [13] that

|Era(S,8)]= D &i(T)

ieS

verifies the same Chernoff bounds that it would if the £;(T) were mutually inde-
pendent. The announced result (3.5) then follows from classical evaluations of
Chernoff bounds. O

Lemmab5. The number of setsS C [N ] of size k that consist of | contiguous portions
of the cycle is at most N?'.
It is also upper-bounded by N (];:11)(1\] e Y.

Proof. We may enumerate such sets S by scanning the cycle [N] starting from
1, and identifying the first time we find a starting point of an interval in S, then
the end point of that interval, and so on. Clearly this will produce 2/ numbers in
[1, N], which characterize S, hence the upper bound N?'.

To obtain the other upper bound, note that the number of strictly positive
sequences of [ integers x;,..., x; such that x; +---+ x; = k equals the number of
non-negative sequences of such integers such that x; +---+ x; = k — [, and this
number is well known to equal

k—Il+1-1
I—1 '
Similarly, the number of strictly positive sequences of integers y;, ..., y; such that
Yi+-+y =N—kequals (Nl__kl_l). Given a set S C [N] of size k and made of /
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distinct intervals, let z € [0, N — 1] be the smallest number of clockwise rotations
of the set such that i = 1 corresponds exactly to the beginning (in clockwise
order) of a contiguous segment of the set. The set is then fully specified by the
lengths of its constituting segments, x,, ..., X;, in clocgkwise order, together with
the lengths of the segments separating its own segments, y,,..., y;. Since this
construction forms an injection from the collection of considered sets S to a set
of size N (';:11)(1\7 l__kl_ "), the announced upper bound follows. O

The union bound gives us, using the first upper bound in this last lemma,
the following bound on the probability p, that for some set S of size k, one does
not have the desired property |E]‘2 (S, S)| >min(yk,2c):

+1

k
pe< D> NP(|Ep,(S,S)| < min(yk, 2c)—21).
1=1
We now distinguish according to whether yk < 2c¢ or not.

Casel: vk <2c We then have, by (3.5):

1 k—21
pe < » N? exp(——rkh(yl ))
=1 2y ﬂrk

1
< Nexp(yklogN— Eykh(o(l)))

= exp((l +rk— %logﬂ_l N- h(o(l)))logN).

The term in the inner parenthesis is asymptotically equivalent to —% log’ ' N,
because h(o(1)) tends to 1 and > 1. Moreover, since y k > 2, the whole exponent
is large compared to log N. Thus p;, = o(N ") for any fixed r > 0.

Case 2: Yk >2c We then have

c 1 2¢—21
21
Pr < i N exp(—272ch( z—lyZC ))

=

1
< Nexp(Zc logN — ZZC h(o(l)))
=exp((1+2c—clog’ ™ N-h(o(1))logN).

We can then conclude as in the previous case.

4.2 Proof of expansion at equilibrium

To complete the proof of Corollary 2, we now show that the graph G obtained
after F =log, N phasesis an expander, i.e. an e-expander for some fixed € > Q(1),
thereby strengthening the statement that it is a y-expander. The graph Gy is,
with high probability made of a cycle plus a uniform random permutation. We
place ourselves in the remainder of this section on the event where it consists
precisely of a cycle plus a uniform random permutation.
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Foraset S c [N] of size k, the number of edges from the permutation starting
at nodes in S and ending at nodes in S reads Zle &;, for Bernoulli random
variables &; with mean 1— % Moreover, these random variables are negatively
associated, as follows from [13]. Chernoff bound on their deviation from the
mean is then stronger than the corresponding bound obtained assuming they
are independent. This entails that, for r <1— %,

k
P(Z £, < rk) < e k0(rll=%),

where
1—r

D(r|ls)= rlog£+(1—r)log -

is the Kullback-Leibler divergence between Bernoulli distributions with parame-
ters r and s.

Fix € > 0 a small positive constant, and let k < N 5. In particular, one has
that % < 1—e€. We thus have, in view of the first bound in Lemma 5, the upper-
bound on the probability p; that there exists some set S C [IV] of size k such that
|E2(S,S)| < ek:

k
pe< D N¥P(|E((S,5)| < ek—21)
=1
[e —1

< Nzle—kD(e—%”l—ﬁ)_

=1

[N
—_—

~

Since D(e—2 || 1— &) increases with I, we may upper-bound each term in this
last summation by N*¢ exp(—kD(e” 1— %)) Its logarithm C reads

v)
1——
N
€ 1—e€

—k(l1—¢€)log —

k
I_N N

C= eklogN—kD(e

=eklogN —kelog

The second term is O(k), while the third term is for large enough N no larger
than —k(1—€)logv/ N =—k 5 log N. It follows that

C< k((e— 1;—e)logN+ O(l))

and, assuming € < 1/3, this is no larger than —r.log N, where r. = 1_436 > 0. This
yields for all k < N'3:
—r.klogN

kake

As ],fl ke"eklosN = (1), with high probability no subset S ¢ [N] of size |S| < N 3
is such that \E;(S,§)| <e€|S].

For |S|=k € [[N%, %]] , we use the second upper bound of Lemma 5 on the
number of size k sets made of / segments. Since this bound increases with [ for
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1 <<, we obtain

k—1\([N—k-—1
;%skN(gk)( k )g*mmkxx

2 2

Stirling’s formula implies that the logarithm of this upper bound is no larger than

log(kN)
k. k-1 k k—1
+€—log — (k—l—e—)log—ek
2 ck 2 k—1—<
ek, N—k—1 ek N—k—1
+—log—+(N—k—1——)log—
2 & 2 )P N k11—
1—
—kelog ek—k(l—e)logTe.
l1—% N

The first term is at most 2log N since k < §. Using the inequality logu < u—1,
the last term in the second line is no larger than % It follows that the sum of
the last two terms in the first line, the last term in the second line and the first
term in the last line is upper-bounded by k f(€) for a function f of € such that
f(e)=0(eloge™). Thus,

k. N—k—1 —
log p SZlogN+kf(e)+%logT—k(l—e)log .
2 N
ko 1-%l ek N
=210gN+kf(e)+%log L +%10g¥

2

N
—k(1—e€)log(1—e€)— k(l—e)log?
3 N
=2logN +kg(e)—k(1— Ee)log?

for some function g(€) such that g(e) = O(eloge™). This readily implies that
for small enough € > 0, there exists a constant s, > 0 such that, for k € HN 3, %ﬂ ,

Pe < e%*. The corresponding sum is o(1). Therefore, graph G is with high
probability an e-expander for some fixed constant € > 0.

5 Controlling the mean

The goal of this section is to prove Lemma 2. Let G be the static graph during
phase f. Gy is a 4-regular undirected graph on [N ], and we assume itis a (y, ¢)-
expander:

Vk<N ®.(G)>mi ( C)
=50 k = min| v, )
Our goal is to prove that for any fixed set S of size k < ¥, by the end of phase

f (i.e. after T time steps), the expected number of pointers connecting S to S
satisfies

— 1
E[|E;.(S,S)|]= o7 min(yk,2c).
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The proof is divided into two parts, arguing differently depending on the size
k of S. Let k., = 476 ; sets of size k with k < k. (respectively k > k.) will be referred
to as small sets (respectively large sets).

5.1 Small sets: from partial expansion to partial spread

Let us now use Theorem 9 to prove the conclusion of Lemma 2 for small values
of k.

For a fixed set S of size k < k., and a fixed node i € S, let X;(t) denote the
location of the pointer issued from i at time ¢. Under the dynamics we consider,
X;(t) corresponds to an ordinary random walk on the graph G. Moreover, the
assumptions of Lemma 2 guarantee that the graph G/ satisfies

c
<I>3k(Gf)>m1n(y, k) mm(y,gk) %

By Theorem 9, one therefore has

S x
P(X;(T)eS)< L—k+ 3k+1e T,
where A} = 21A<I>3k(Gf)2 > 11;2 Recall that T =log” N and that y =log” N. Fur-

thermore 1< B < %2, implying that a —2f > 1. We then have

log ?* N ) < 1

1
P(X;,(T)eS)< = — Z
(X(T)e )_3+exp( 5

>

Summing over i € S, we obtain that the expected number of pointers issued
from S that point into S at the end of the phase is no larger than %, and therefore
that

min(yk,2c).

5.2 Largesets

Consider a fixed set S of size k such that k, < k < §, and define 7;(#) to be 1 times
the probability that a pointer issued from S targets i, conditionally on the initial
configuration of these pointers at the beginning of the phase (corresponding
to r = 0). Let 7r;(#) denote the i-th largest value in (ﬂj(t))je[N], and 7p,,(1) =
27;1 7(;)(f) denote the cumulative mass that the probability distribution 7(¢)
puts on the m nodes where its mass is the largest.

One clearly has that
1

%lisk-

We now establish a property of the time derivative %n[ 1(2):

() (0) =

Lemma 6. Under the assumptions of Lemma 1 that ®,,(G;) > min(y, ) for all
m € [1,N], one has the inequalities

_ﬂ-[m] _42 T m—j+1) — T (m— j+1+cm))’ (3.6)
where c,, = |1 min(ym, c)|.
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Proof. Assume to simplify notation that the permutation which sorts nodes i
in [N]in decreasing order of 7; is the identity, so that 7;(¢) = 7r;(¢). The time
derivative of 7t,,) then reads

d
En[m](t) = Z Z l(i,j)eE;(Tfj —1;).

i<mj>m

Indeed, changes in the mass 7;,,,) result from interchange of pointer extremities
i,j with i < m and j > m, which occur at unit rate for (i, j) € E}’; when one
such interchange occurs, the expected change to 7, is precisely 7 ; — ;. Now
the number of such edges is by assumption at least min(ym, c). Moreover, the
number of such edges adjacent to any node is at most 4, because the graph has
degree bounded by 4.

The value of the right-hand side in the above equation, because the 7; are
sorted in decreasing order, is minimized when the edges crossing the cut between
[m] are adjacent to nodes with index closest to m. The degree constraint then
implies the upper bound (3.6). l

Let¢’=|%]|and I = [k—%k,, k+%k.]. We now introduce an auxiliary pro-
cess (v;(1))igny rer defined for all i € [N] via:

1
v;(0)= Elie[k]
d
— V() =4 (Vi (E) = Vi(E) j_pres +A(Viger — Vi) Liserer]-

dt

The probability distribution () is readily interpreted as the law at time ¢ of a

random walk started with uniform distribution on [k], that jumps from i to i + ¢’

(resp., i — ¢’) at rate 4, provided both i and the destination i & ¢’ lie in I.
Denoting v, (t)= z;n:l v;(t) for all m € [1, N], we then have the following

Lemma 7. Forall t >0, m €[N], it holds that

ﬂ[m](t) < V[m](t).

Proof. Introduce the differences 6,,(t) := 7(,,)(#) — vn)(%). It is readily seen that
0,,(0)=0 for all m €[N]. Inequality (3.6) of Lemma 6 implies that

/7

d C
Eﬂ[m](t) <—4 E 1m—j+1€11m—j+1+c’€l(7r(m—j+1) - n(m—j+1+c’))- 3.7)
j=1

Indeed, each term in the summation of the right-hand side of (3.6) is non-
negative. The j-th term in the summation in the right-hand side of (3.7) is
included onlyif m—j+1<€and m—j+1+c’ € I. The first condition implies that

_ 2 1

m—j+1>k—=k.>-k.=-—.
37°737 3y

In turn this implies that ym > ¢, so that c,, = ¢’. Thus the summation in the

right-hand side of (3.7) runs over a subset of indices in the summation in the
right-hand side of (3.6), and (3.7) follows from (3.6).
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By definition of v;(¢), one has

’

d C
d_ V[m](t) = _42 1m—j+1€llm—j+1+c’61(V(m—j+l) - V(m—j+1+c’))- 3.8)
r =

For all m € [1, N], there thus exists an integer i,, > 0 such that m —i,, > 1,
m+i, <N and

d
dz
d

ar W (£) = =42V )= V-t )= Vimip))»

Tm(£) S =427 ) = i) = i)

so that d
56’" <428, =8 i —Omsi )-

In the above, as is easily seen, necessarily i, =0, so that we have the boundary
condition 6, < 0. Also, since 7y} = V5 = 1, we have 0 = 0. The previous
equation then implies that necessarily, the supremum over m € [1,N] of §,,
cannot become positive, because its derivative is always non-positive. O

By the previous lemma, an upper bound on 7;(T) is provided by v(T).

However the latter quantity is simpler to analyze. It can be interpreted as 1 times
the average number of points of 2k, random walks initialized at each point in
[[k —2k,, k]] which fall within [k] at time T'. These walks proceed with jumps of
size ¢’ at rate 4, constrained to not leave interval I = [k—3k., k+ 3k, ].

For a given initial condition i € [k — %kc ], the number of sites it can visit is of

the order of 2% = O(log? N). Classical results on the nearest neighbor random

3¢’

walk on an interval [1, M] state that it mixes in time of the order of M? [36].

Thus each of the random walks just introduced mix in time O(logzﬁ N)=o0(T),
because 2 < a. We therefore have the following evaluation:

2k, (1
ﬂ[k](T) < V[k](T) <1-— 3](,‘ (5 —0(1))

The expected number E[|E fH(S ,§)|] is then lower-bounded by

1

— 2 1 c 1
E[|E;n(S,9)|]2 §kc(§ —0(1)) = 4;(5 —0(1)) > ZZC.

The announced result follows.

6 Proofof Theorem9

Proof. In vector form the law 7(#) of the random walk on G at time ¢ reads
7n(t)= e 'L 7(0), where L is the graph’s Laplacian. Its entries 7;(¢) are thus linear
combinations of 7 functions of the form e %/, where A ; are the eigenvalues
of L, and so is the difference 7;(¢)— 7 ;(¢). It can be shown by induction on N
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that such linear combinations of N distinct exponential functions are either
identically zero in ¢, or admit at most N —1 distinct roots in ¢. Thus for any i # j,
either r;(¢) # 7 ;(¢) except perhaps for finitely many ¢, or else 7;(#) = 7 ;(¢) for
all £>0.

We can thus split R, into finitely many intervals IV =[0, 1;), I® =[t;, 1,),...,
and on each interval I/) determine a particular permutation o/) € & such that
forall j, and all r € IU), one has

o) () Z o) () Z -+ Z Totia)(£)-

For ¢ in any given interval 1), we will maintain an auxiliary probability dis-
tribution on [1, k 4+ 1], denoted (v;(¢));cx+1)- This distribution can be interpreted
as that of a random walk on a graph GU) with node set [k + 1], obtained from
G as follows. We identify node o/)(i) in G with node i in GV for all i € [k], and
collapse all nodes o/)(u), u > k to form node k +1. All edges are then preserved,
so that the adjacency matrix AY) of G\ is given by

A(uf,)y = Agl)(w),oW(w)> u,velkl,
N
()
ALf.k+1 = Z AU(j)(u),U(j)(y)) u €k,
v=k+1

where A is the adjacency matrix of G. For convenience, we denote by 7;(#) the
i-th largest entry of distribution 7t(¢). Thus for ¢ € IV, 71;(£) = ().

The result of the theorem will then follow from the combination of two in-
gredients. We first show in Lemma 8 below that, for all ¢, one has the following
bound:

ﬂ(i)(t) < Vmin(i,k+l)(t)r i€ [N], t>0. (3.9

We then establish in Lemma 9 below that for all j, the second smallest eigen-

value A(zj ) of the Laplacian of G'/) is lower-bounded by A} given in (3.2), where
crucially A is the largest node degree in G, notin G,
This readily implies the L? control

>

i€[k+1]

2
< e—2}f§t.

1

() — ——
vilt) k+1

Cauchy-Schwarz inequality then gives the following control on variation dis-
tance:

<Vvk+1e ™",

vi(t)—

1
k+1

ielk+1]

Together, these two results entail that for all s <k,

Zn(,-)(t)sk%rlﬂ/kﬂe—@t, (3.10)

i€ls]
which is the announced result. O

Lemma 8. The distributions rt(t) and v(t) verify bound (3.9).
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Proof. The bound trivially holds at # = 0. We can establish it by induction on each
interval I1). Let us consider one such interval, and assume that the property
holds at its left end. For notational simplicity we will assume that o) is the
identity, so that on this interval 7;(#) = 7;y(¢). Introduce the notation

0,(1)=7;(£)— Vminti k+1)(£), P E€[N].

For any pair of vertices (i, j) in [IV], write i ~ j if i and j are neighbors in G. One
has the following time derivatives

%7‘[,-—2(71' +Z7r — ;) i €[N]

jelk) k)
J~i j~i
d .
Evi Z(V] +Z Vi1 — i €[k]
Jelk] J#lk]
J~i J~i
Vk+1 Z Z — Vis1)-
i¢[k] jelk]
]NI

By the previous display one has for i € [k]:

—5 —Z(a —35,). (3.11)

Jjeln]
j~i

Note that, because the values 7; are sorted, for all j ¢ [k], 7; — 7\, < 0. This
together with the expression for the time derivative of 7t yield

d
g e < Z (70 )= Trs)-

Jjelk]
Jj~k+1

Thus

5k+1 < Z (7'5 — Th41)— Z Z — Vit1)

Jjelk] i¢lk] jelk]
Jj~k+1 Jj~i
= Z (5j_5k+1)_ Z Z(Vj_vkﬂ)- (3.12)
Jjelk] i¢[k+1] jelk]
jek+1 j~i

(3.13)

Let us argue by contradiction, and assume that there exists t € R, and i € [N] for
which 6;(¢)>0. Leto(t)= sup{5 | je [N]}. Asthe 7; are sorted in decreasing
order, one also has 5(t) = sup{5] | jelk+ 1]}.

Since the 6 () are linear combinations of finitely many exponentials, we can
then identify an interval J/ =[a, b]such thaton J, forsome i e[k+1], 6(¢)=6,(1),
and moreover 0(a)=0and 6(¢)> 0 for t €(a, b].

Assume that i €[k]. From expression (3.11), we see that on J, %5 = %6,- <0.
This contradicts the fact that 6 >0 on (a, b].
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Assume then that i = k+ 1. Then on J one has that, for all j € [k], since the
7t ; are sorted,

Vi1 =1 — Ok 1 STy ST =40, < v+ 01

Thus for all j €[k], Vi1 — v; < 644y. It then follows from (3.12) that

d
55"“ <0+ adi,

where

a= > |{iclkl]j~i}]
i¢[k+1]

Gronwall’s lemma (see e.g. [35]) then implies that 6;,, <0 on J, a contradiction.
O

Remark 2. When we move from interval I/ to IU+V one can check that the mean-
ing of distribution v is preserved: we may change the permutation sorting the
entries 1;, which results in a change in the graph used to define the evolution of v,
but while the vertex to which v; refers may change, in that case the corresponding
mass does not change.

Lemma 9. Given a graph G on vertex set[N ] with maximal degree A and for fixed
k <&, associated isoperimetric constant ®(G), consider the graph G’ obtained

by collapsing N — k nodes into a single node as previously described. Then the
P4 (G)

resulting Laplacian matrix L has spectral gap at least A, > A}, where A} .= =55~

Proof. Without loss of generality we assume nodes k+1,..., N of G have been
collapsed into node k + 1 of G’. Let f be an eigenvector of L associated with its
second smallest eigenvalue A,. We can always choose f such that f;; <0.

For v €[k +1], define g, = max(f,,0), and thus g;,, =0. Let

w={velk+1]|f,>0}.

Letting (a,,),,,<n) denote the adjacency matrix of graph G, one has

Ao > fE= (L)t

= Z(dufu_ Z auvfu)fu
uew velk+1]
= Z Z auv(fu_fv)fu
ueW velk+1]
= Z Z auv(fu_fv)fu + Z Z auv(fu_fv)fu
ueW veW ueW vgw
uew veW ueWw v¢w
=(Lg,g)
Thus
Ay > (Lg.8) =K.
(8:8)
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On the other hand,
Z auv(gu+gv2—2 Z ayy gi+g3)_ Z auv(gu_gv)2
(uv)eE (uv)eE (uv)eE
< 22 d,,g
veV
<2A(g,g),
where we have used the fact that g;.,, =0 to upper bound each product d, g2 by
Ag?.

By Cauchy-Schwarz inequality,

(Z aWIgi—gﬁl)zS((Z auy(gu—gu)z)((w%auv(gu+gu)2)-

(uv)eE uv)eE

Combined, these bounds give

(Z(uv cE uv(gu gv)z)(z (uv)eE uV(gu+gv) )
<g g)Z (uv)eE uv(gu +gv)
> (Z(uv cE uv|g g |

2A<g g)
Let0=1,< t;--- < t,, be the distinct values taken by the g,. Fori =0,...,m, let
V= {v€V|gv t}Thusforz>O k+1¢V,. Let

M:= > a,lgi-g

(uv)eE

K=

m
— 2 2 2
S I IH R R

i<
:Z auv(tlz_tlz—l)
i=1 ueV; v¢V;
i=1
2¢k(G)Z|Vi|(tiz_ti2—1)
i=1
=0,(G)>_ AV,
i=1
:¢k(G)<g’g>'

Combined, these results yield
(2:(G)g.8))

> =A%
2A<g,g>

2> K> :
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CHAPTER 4. ORACLE SAMPLING

1 Introduction

The Monte Carlo Markov chain (MCMC) scheme is used in many domains, from
statistical physics [19] to combinatorial optimization [28], to telecommunication
networks [48, 32] and information theory [15]. The method often requires solving
two problems. The first consists in constructing a Markov chain whose stationary
distribution is the target sampling distribution. There exist many techniques to
achieve this goal, such as Metropolis-Hastings [43, 25] and Gibbs sampling [20].

The second is termination. With the classical MCMC algorithm [4], the
Markov chain is simulated for a predefined number of iterations, after which the
current state is returned. Determining the required number iterations consists
in computing the mixing time of the Markov chain, something which has proven
to be very difficult to do. Other methods, such as the Coupling From The Past
(CFTP) algorithm by Propp and Wilson [45], are perfect sampling algorithms:
they terminate without the need for any additional parameter, and the output
follows the exact target distribution.

One of the key features that makes CFTP a viable algorithm is monotonic-
ity [45]. By using a monotone Markov chain and period doubling, we remove the
linear dependency of the running time of the algorithm on the size of the state
space. The resulting complexity is then comparable to the mixing time of the
Markov chain.

For non-monotonous Markov chains, a similar technique can be used, based
on bounding chains [28]. By creating a simplified envelope that encompasses all
possible trajectories, the above technique can still be used. The efficiency of the
resulting algorithm depends on the complexity and tightness of the bounding
chain.

We present a new method for reducing the running time of the CFTP algo-
rithm: oracle sampling. With bounding chains, many events do not actually
change the state of the chain. In an approach similar to importance sampling, we
remove these transitions, focusing only on those that participate in the evolution
of this bounding state. In order to preserve the correct stationary distribution, the
algorithm must dynamically add random events so as to prevent the appearance
of any bias.

Oracle sampling is most efficient when addressing local dynamics, for ex-
ample when using Gibbs samplers. These are situations in which is sampling
transitions is computationally efficient. We test the algorithm on one such model,
independent sets, and compare its performance with that of the original CFTP
algorithm.

This chapter is organized as follows. Section 2 gives an overview of the basic
CFTP algorithm and of the use of bounding chains. Our main contribution is
presented in Section 3. We start in Section 3.1 by introducing the notion of
active and passive events. Section 3.2 contains a detailed explanation on how to
correctly skip events in the context of CFTP, resulting in Algorithm 8. The validity
of the algorithm is provided by Theorem 12, which constitutes the main result of
this paper. We apply this algorithm in the context of random independent sets
in Section 4.
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2 Coupling From the Past

In this section, we give the original coupling from the past algorithm, as intro-
duced by Propp and Wilson [45], as well as some usual variations.

Since CFTP relies on the ability to couple Markov chains, we use a Markov
automata representation.

The usual notations are used: .o/* for the set of finite words, .o/ ¢ for the set
of infinite words, and .</ *° for all finite and infinite words. Words are denoted
Ui, = (ui,..., uj), or the empty word € if i > j, and the length of a word u is |u].
To simplify notation, we write x - u;_,; for x - u; -...- u;. The concatenation of
two words u and v is u © v, and, for i < j, we denote

j
@u Dou™e...0u and @u DouliVo...ouW.
k=i

Coupling from the past Recall that, for a grand coupling (( )teN)xe < with
coupling time 7, X * is not distributed according to the stationary dlstrlbutlon of
the Markov automaton. Coupling from the past consists is constructing a similar
sequence which does yield the correct distribution.

Consider a negatively indexed infinite word U_,_,_, distributed according
to D®N. Forall x €. and i €N, let

YW=x-U,; ... U;=x-U,;,,

and
Si={y"|xes},

which we also denote S_;, = -U_;_,_,.

Call 7y, the smallest index such that S_, is a singleton. 7y, is called the back-
ward coupling time.

Forall x€e.¥# andi €N, Yl.(x) can be interpreted as the state at time 0 of the
Markov chain starting in x at time —i. Ty, is the first instant i such that the grand
coupling started at time —i has coupled at time 0.

The CFTP algorithm is based on the following result.

Theorem 11 ([45]). The unique element of S_., is almost surely distributed ac-
cording to, and E[t,] =E[T].

Notice also that forall j > i, S_; €S_;, and namely that the S_; are therefore
allequalto S_; fori> 7y,

This result can be used to generate samples distributed according 7, as illus-
trated in Algorithm 4. Note that it is important to reuse the previous sequence
of letters at each iteration, prepending the newly generated letter; if the whole
word is re-sampled, the output of the algorithm is incorrect, as detailed in [24].

The complexity of this algorithm is O(E[7 ]|.¥|T(-)), where I'(-) is the complexity
of the transition function -.
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Algorithm 4 Coupling From the Past (CFTP)

function CFTP((.%/,.</, D, "))
for x € ¥ do
Y(x)—x Initialize Y,, which is the identity vector
end for
repeat
U_(i+1) < DRAW(D) Draw a new random letter U_; 1
for x € ¥ do
Z(x)— Y(x . U—(i+1)) Compute Y;,, from Y; and U_;1
end for
Y—Z
until |Y(<)| =1 Repeat until all Y¥) are equal
return UNIQUEELEMENTOF(Y ())
end function

Bounding chains The above complexity is often limiting: even though T'(-) is
generally a constant, and E[7] is of order ¢,,;,, the size of . can be exponentially
large. Variants of the CFTP algorithm have been introduced to overcome this
dependence on ||. The most common of these is the use of bounding chains
[28].

Formally, consider a pair (98, o) such that 93 is a subset of the power set of
< containing ., and o : B x .o/ — 43 is a transition function which bounds -, in
the sense that

Vxe, VBeB,Vace.o/, x€EB=>x-ac€Boa.

Such a pair is called a bounding chain for A.
As with (S_;);cn, define (B_;);cy as

B, =%0oU_o...oU_j=%oU_;__,;.

Notice that, forall i eN, S_; C B_;, which implies that if B_; is a singleton, so is
S_;. We can therefore adapt the CFTP algorithm to keep track of the bounding
chain (B_;);oy instead of (S_;);cy-

The complexity of this new algorithm is O(E[TZB]F(O)), where I'(0) is the com-
plexity of the transition function o, and is generally either constant or logarithmic
in the size of the state space .. The random variable 7y is the forward coupling
time of the bounding chain, i.e. the smallest i such that ¥ oU_;_,_, is a singleton.
The square factor is due to the fact that B_;,,) cannot be computed from B_; and
U_;+1), and the whole chain must therefore be recomputed at each iteration.

This square factor can be overcome by starting from more than one step
back in time at each iteration: if the number of prepended letters is doubled at
each iteration, rather than adding one unique letter, then the complexity drops
down to O(E[7]I'(0)). This technique is referred to as period doubling [45], and
its implementation is given in Algorithm 5.

Note that, in doing this, the final word U_,_,_; may be such that i > 7. The-
orem 11 states that this does not change the output, which is therefore still
distributed according to 7.
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Algorithm 5 CFTP with Bounding Chains

function BOUNDED-CFTP((.%/, ./, D, -), (9,0))
k—1
U—e€
B—Y%
repeat
U — Draw(D®"o U Prepend k letters
B—%0oU Recompute the whole chain
k—2k Double the period
until |B|=1
return UNIQUEELEMENTOF(B)
end function

Random increments The period doubling technique can be generalized. One
possible modification is to randomize the number of new letters at each iteration.
We present here the case of geometrically distributed increments, as it will serve
for the basis of our own algorithm.

Fix a probability p. We extend the alphabet .</ by adding a new letter, f, which
serves as a delimiter. The new alphabet is denoted .. Call D, the distribution
over .¢; such that Dp(n) =pand, foralla€.o/, D,(a)= (1 — p)D(a). Enhance the
transition operators - and o so that x -f = x and B off= B. Finally, let |u|; denote
the number of occurrences of the letter § in u.

Drawing letters i.i.d. according to D, until a § is drawn gives a word of geo-
metric length, whose letters are i.i.d. according to D (with the exception of the
final f}). The distribution of this word is denoted G,.

We can prepend such words during our algorithm, halving p at each iteration,
to obtain a CFTP algorithm with geometric increments. The word used at the
n-th iteration of the algorithm is therefore of the form U™ =(®;_ V1, with the
VW independently distributed according to G,-;, and its distribution is denoted
R,.

If the {f are omitted in the increments, then the sequence of letters at each
iteration is i.i.d. according to D, so the final output is distributed according
to . Since the ff do not change the state of the chain, including them in the
increments does not change the output of the algorithm, nor its distribution.
Though including these § may seem unnecessary, their presence is essential in
our own algorithm, so we include them here.

The CFTP algorithm with geometric increments is given in Algorithm 6. Its
complexity is the same as that for deterministic increments: O(E[7]I(0)).

3 Oracle Sampling

In this section, we present our contribution: a variation of the CFTP algorithm
based on a technique similar to that introduced in [44], called oracle sampling.
Just like regular CFTP, this method allows us to sample random variables ac-
cording to a stationary distribution . However, the overall complexity of the
algorithm can be arbitrarily smaller, depending on the Markov automaton. This
is illustrated in Section 4.
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Algorithm 6 Geometric CFTP
function GEOMETRIC-CFTP((.%/,.</, D, ), (%, 0))

pe3
U«—e€
B—Y
repeat
Ve—e
repeat
A« DRrAW(D,)
V—~VoA
until A= Adds up to V «— DRAW(G))
U—VoU
B—%0oU
p 3P
until |B|=1
return UNIQUEELEMENTOF(B)
end function

This gain is achieved by sampling only “active” letters throughout the algo-
rithm, i.e. letters which modify the state of the bounding chain.

3.1 Oracle Sampling with Bounding Chains

We first consider a simple “forward” bounding chain, outside of the context of
the CFTP algorithm: let U,_,, o, be distributed according to D®¥, and (B;);y be
the bounding chain such that

ViEN,Bi ZyOUl_,,-.

We say a letter a is passive with respect to B; if B; o a = B;, and that it is active
otherwise. Let .7 be the set of active letters with respect to B;, and . the set
of passive letters.

Consider a new sequence V,_,, o, such that the V; are distributed according
to

D(- | .7 *¥-im),

i.e. Dconditioned on being active letters. Forall i € N, let Bl.O =Y0V,_,;. Thenew
bounding chain (BZ.O)Z.GN behaves similarly to (B;);oy, but has a smaller coupling
time 7. This gain in speed comes at a price, however, as the limit distribution
of the asymptotically unique element of (Bl.o)l.eN is no longer 7.

This method of speeding up convergence is referred to as oracle sampling.
The term “oracle” is due to the fact that we consider sampling active letters to
have constant complexity, a strong assumption requiring namely that the set of

active letters be known at each step.

3.2 Oracle Sampling in CFTP

We now adapt the CFTP algorithm to make use of oracle sampling.
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0

Notice that the letter U_j = a, is initially active when the bounding chain starts from —i,
then passive when starting from —2i, and active again when starting from —4i.

Figure 4.1 — Letters can change between being active and passive

The process is not as straightforward as for the forward case, since the state
of the bounding chain at a given moment —i changes each time the algorithm
starts from further back in time. The letter U_; can therefore be active at first,
then become passive later on in the unwinding of the algorithm, then active
again, etc. This is illustrated in Figure 4.1.

Removing letters as they become passive is simple enough, but the reverse is
not true: letters that were removed or initially skipped must be accounted for
when starting the bounding chain from further back in time. Keeping these letters
in memory rather than discarding them is not viable, as it would require actually
drawing the skipped letters, thereby defeating the purpose of this entire method.
We must therefore reinsert such letters back in at random to compensate for
their removal.

Recall, however, that re-sampling previously generated letters in the classical
CFTP algorithm yields incorrect results in most cases. We must therefore be
careful when inserting new letters, taking care to compensate for the inherent
bias this introduces so as to ensure that the output is still distributed according
to 7.

Geometric increments To achieve this, we rely heavily of the use of geometric
increments for the word lengths. The memoryless property of the geometric
distribution is vital due to the following observation: suppose that the initial
word U_;_,_, was distributed according to G,; the probability of a letter having
been removed after a given position —j only depends on . o U_;_,_; and p, not
on the actual letters drawn before or after, nor on the length of the word.

One caveat is that, when running the geometric CFTP algorithm, the pa-
rameter p is not the same throughout the word used to generate the bounding
chain. In order to be able to keep track of which parameter was used to generate
each portion of this word, we rely on the presence of the letter f, which delimits
portions of the word that were generated using a same parameter. Note that
these § must never be removed or reinserted once added to the word. They are
therefore treated as active letters throughout the algorithm, despite the fact that
they do not modify the state of the bounding chain: YB € 3, f € .</.
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We now formally define the removal and insertion operations, referred to as
contracting and expanding.

Contracting Contracting a word consists in removing all the passive letters
from that word. Given a state of the bounding chain B € 9 and aword u € ﬁn‘x’,

the contraction of u from B is the word [1]® defined recursively by
o [e]"=¢;
[ ] [ui_,]-]B =U; O] [ui+1_,j:|Boui if u; € «/Qf_f,
[ ] [uig,j]B = [uiﬂﬂj]B if u; € e,Qf_B
Contraction from B is idempotent: [[u]® ]B =[u]®. Aword u such that [u]® = u

is called a contracted word.

Expanding Expansion is the key feature of this paper. It inserts letters at ran-
dom in a contracted word in a way that preserves the stationary distribution of
the output of the CFTP algorithm.

Consider a state B € 98 and aword u € o) ending with {. The expansion of

u from B is the random word (u)? defined recursively by
o () =6
o Ifu, ,j#¢€letk= | Ui,j | ! and A be distributed according to D, «. Then
- <u,_)]>B =A®<u,_,]>B ifAe QQ{_B,
— <uiﬂj>B = ul' @<Mi+14,j>Boui lfAe e,Qif

Contraction and expansion are illustrated in Figure 4.2. Notice that both of these
operations preserve transitions from B:

Bou=Bo[u]®=Bo(u)®. 4.1)

abcaaca abac
X X X
\ \ / 4 / /v v\\ v
abac acbaaach
(a) Contracting (b) Expanding

Active letters are underlined.

Figure 4.2 - Contracting and Expanding

The geometric CFTP algorithm enhanced with these features is given in Al-
gorithm 7. At each iteration of the outer loop, a contracted prefix V is drawn, to
which we attach an expansion of the previous word U. The result is then con-
tracted. The proof that this algorithm does indeed return a sample distributed
according to 7 is not straightforward, and constitutes the main result of this
paper, stated in Theorem 12.
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Algorithm 7 Geometric CFTP with Contraction and Expansion
function CONTRACTION-EXPANSION-CFTP((., .«/, D,"), (9, 0))

P
U—e
B~
repeat
Ve—e
repeat
A« DRraw(D,)
V—VoA
until A=4
U— (U )‘y Expand U, as passive letters may become active
U—~VoU
U—[U) Now contract again
B—%0oU
p—3zp
until |B|=1

return UNIQUEELEMENTOF(B)
end function

Rerooting One downside of Algorithm 7 is that the word U is expanded at each
iteration. However, in order to have oracle sampling actually reduce the overall
complexity of the algorithm, it is important to always work with contracted
words. We therefore introduce one last operation, rerooting, which combines
contraction and expansion so as to never fully expand the word being processed.

Formally, consider two states B, B’ € 9. Rerooting a word u € -/,7 ending
in f from B to B’ consists in computing

/

()~ =[(w)®]’

so as to never fully expand u. One way to do this is to define [1.)]" " /

as follows:

recursively

o [’ =6
o Ifu, ,;#¢letk= | Ui, |ﬁ and A be distributed according to
Dyl el u.ar).
Then

— If A€ /% (and therefore A€ .¢/F'), we expand:
BB’ B~»B’0A
[ui] ™ =A0fui) ;
— Otherwise, if u; €./ f’, u; is active for both chains, so we keep it:

K ui_,j >j|BW)B/ = ui O] K ui+1—>j >j|BOuiMB/Oui;
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. . / . .
— Finally, if u; € .o/, u; is no longer active, so we contract:

K Ui j >]BMB’ _ K uHHj)]BouMB/.

Notice that letters passive for both B and B’ are not drawn. This would
correspond to adding and removing the same letter, as is the case when we
expand and contract separately. The conditional distribution ensures this does
not happen, and that the complexity is linear in the size of the contracted word
(the first case can arise at most once per letter in [()]®~* " the other two at most
once per letter in u).

Once more, we make the strong assumption that we can draw random vari-
ables from distributions such as D, ( | AU f') in constant time. This is not
unreasonable, especially in cases such as Gibbs sampling [20], where at most a
constant number of letters can change between being active and passive at each
step.

The final algorithm is given in Algorithm 8.

Algorithm 8 Oracle CFTP
function ORACLE-CFTP((Z, .«/, D, -), (%, 0))
pe3
U«—e
B—Y%
repeat
Ve—e
repeat
A —DrAwW(D, ( | ueffﬂ‘”v)) V is drawn contracted
V—VOoA
until A=
U—Vvoelu)y 7" The rerooting occurs here
B—S0oU
p—3p
until |B|=1
return UNIQUEELEMENTOF(B)
end function

3.3 Proof of Correctness

We now prove the correctness of Algorithm 8.

Equivalence with Respectto B One of the key tools of this proofis the use of the
following equivalence: given a bounding state B € 93, two random words U and
V are considered equivalent with respect to B if they have the same distribution
and the same contractions from B (i.e. [U]® =[V]?). Such an equivalence is

denoted U g V.
The motivation behind the precise definition of expansion is the following:
given a word U, distributed according to R,, and a bounding state B € 93, con-
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tracting then expanding U gives an equivalent word with respect to B:
(P 2u.

We begin by showing a similar equivalence when U is distributed according
to D’;@N, for any fixed p. From there, we extend the result to G, and finally to R,.

The definition of expansion in the previous section was specifically tailored
to work with the distribution R,. To show the first two results, we therefore
generalize expansion to operate on words with a fixed rate of occurrences of the
letter f}, as is the case when sampling from D’;@N.

For any probability p and bounding state B, the p-expansion (u)f of ue.da,
from B is defined recursively by

o (e), =6
e If u;_,; # €, let A be distributed according to D,. Then

_ <ui_’f>ilj = ui®<u,-+1_,j>§°ui ifAc .o/ 5.

We now show the following result:
Property 12 (Equivalence in the case of DF‘?N). Let p be a fixed probability, B € 5

be a bounding state, and U be distributed according to DfN. Contracting then
p -expanding from B yields an equivalent word with respect to B:

(), 2.

Proof. LetV = ([U]ij, neNand u,_,, € Ag’. We have that

n
P(Viy =tho)=| [P(Vi= 1t | Vimior = t1i).

i=1

If we can show that, forall i € N,
P(Vi=u; | Vilio = i) = Dy(uy), (4.2)

then we have that, for all n € N, V,_,, is distributed according to D’;@”, and we
can therefore conclude that V is distributed according to DfN.

Bouy,i-1,

We now show (4.2) by conditioning on whether V; is or is not in .</,

P(Vi=u; | Vi = ti)
= P(Vi=u | Ve AV =ui i)
X P(Vi € ./ Pt | Viia = ul—»i—l)
+P(Vi=u; | Ve A\ Vi = ur)
x P(Vi € ﬂfoul_‘i_l | Vilia= ul—»i—l)-
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Notice that V; is in .¢#°°*~"" if and only if it was added during expansion. By
definition, this occurs with probability D, (.eZ”*"""!), so we have that

P(Vl S | Viia= ul—»i—l) = Dp(UQKBC’“HH)

and
P(V; €./ o= | Vil =uiq)=D,(efm-m)

Consider the case where V; is passive. It was inserted during expansion, and
its distribution is therefore the restriction of D, to .¢/_ Bothmi,

P(Vi=u |V, eﬂmuwl/\VHl Ui)
- Dyl rte),

Similarly, if V; is known to be active, then it was already in U and was not

removed during contraction. Its distribution was therefore D,,, conditioned on
Bouy_,;— L.

beingin .¢/,

P(Vz U; | Ve ﬂfoul_'i_l /\ Viia = ul—»i—l)
Dp( | f‘szouw_l)-

Combining all these results gives that

P(Vi=u; | ViLio1 = ty-i)

= Dylu; } "Zf—BouH_l) X Dp(ﬂ—BouHH)

(
| ) et
(

== Dp ui).

This concludes the proof that V is distributed according to DfN, i.e. has the
same distribution as U. 5

To finish, notice that [V]? = [([ U® )B] . Since the outer contraction removes
all the letters added during expansion (they are by definition passive), and none
of the letters present before that (U ]B contains only active letters), we have that

[V]® =[U]®. We can therefore conclude that V 2 U. O
We now extend this result to words of geometric lengths.

Property 13 (Equivalence in the case of G,). Let p be a fixed probability, B € 3
be a bounding state, and U be distributed according to G,. Contracting then
p -expanding from B yields an equivalent word with respect to B:

(k) =u

Proof. For any word u, denote |u}; the truncation of u after the first occurrence
of the letter f. Notice that U can be constructed by taking an infinite random
word V distributed according to D’fN, and setting U =V ;.

Since both contracting and p-expanding operate recursively from left to right,

what letters are removed or added before the first § when going from V to <[ V) )i
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is independent of what comes after this . We can therefore construct a coupling
B\B B\B B\B B\B
between ([U]) "and ([V]”), such that ([U]") = (V] ) jﬁ.
Using Property 12, we have that ([V]B ):j is distributed according to D’fN,

and ([U I )i is therefore distributed according to G,,. Finally, using the same
argument as in the previous proof,

wr=lvrL=[[vie)] | =[]

from which we can conclude that U L ([U 1® >’lj. O

Property 14 (Equivalence in the case of R,). Letn € N, B € 3 be a bounding
state, and U be distributed according to R,,. Contracting then expanding from B
yields an equivalent word with respect to B:

(P 2u.

Proof. We first point out some simple preliminary results. Let B € 93, n € N and
(uD),5151, (11D),5:5; be two sequences of words in .

1. For all m such that n > m > 1, contraction and concatenation can be
interchanged as follows:

m . B m . Bo@i‘” ulh)
(Sl =Cpunprri
i=n i=n

2. Ifeach u'Y ends with its only , then expansion and concatenation can also
be swapped by using 2~ -expansions:

1 . B 1 . i+1 )
<@um> — Oy .
i=n i=n

3. Finally, if, foralln >i>1,

Bo(it ()
. i .
u? = )

then the concatenations are equivalent:
1 g A _
@ ul = @ v, (4.5)
i=n i=n
Consider the unique decomposition

U= é) u?
i=n

such that, for all i, U ends with its only f. By construction of R,,, each U is
distributed according to G,-:. Using the above results and Property 13, we have
that
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which concludes the proof. O

Convergence and distribution We now go back to proving the correctness of
Oracle CFTP. Recall that the algorithm operates by iteratively computing

U(n+1) — [V(rH—l)]y ® KU(n)ﬂyMyOV(HU, (4.6)

where the V) are independent and distributed according to G,-;. The algorithm
terminates when U™ is such that . o U") is a singleton {X}, returning X.

Theorem 12. Ifthere exists u € .</* such that & o u is a singleton, then

1. Oracle CFTP terminates: N is a.s. finite and of finite expectation; and

2. Oracle CFTP is correct: X is distributed according to 7.

Proof. We begin by proving that Oracle CFTP terminates.

Let u € .¢/* be such that . o u is a singleton. Notice that, for any n €N, if 140
begins with u, then . o U™ is a singleton, and therefore N < n. The probability
that u is a prefix of V(" is equal to the probability that there are no f in the first
|u| letters, i.e. atleast 271“/, times the probability of these letters being those of u
knowing they are not f, D®“I(u):

P(u is a prefix of V") > 27 p®l¥l(y),

Such an event will necessarily happen, and N is therefore a.s. finite. Its
expectation is furthermore upper-bounded by

2lul
Delul(u)’
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We now move on to prove the correctness of the algorithm.
A rapid induction shows that the (U (”)> are distributed according to R,:

<U(”+”>y = <[ V(n+1)]5ﬂ ® KU(n)>]yw>5ﬁov<n+u >

S

S

— <[V(n+1)](9>2_m+1) o <[< U(”)>’

2y (ym)”

—— N——

Gg—(n+1) Rn

» :Iyov(nﬂ) >yo y(n+l)

The two elements in the last line being independent, (U(”“)) is distributed
according to R, ,. Notice however that it is not equivalent to @Lnjl V), since
U™ is expanded from ., not & o V"*, More importantly, (U™))” itself is not
distributed according to Ry, as N is defined in such a way that & o (U™)” is
necessarily a singleton.

Let ¢ > 0, and n, be an integer such that P(N > n,) < ¢. Since (U (”e)y is

distributed according to R, , removing the f from (U (”“)>y results in a random
word W whose letters are i.i.d. according to D, and whose length is independent
of these letters.

Consider a state Y distributed according to 7. Since every state is invariant

under x — x -f, we have that Y - ( U (”f)>y =Y - W, which is distributed according

% % .

to 7. We also have that Y - (U"))” € & o(U"))” = & o U™). As such, if ever

& o U is a singleton, then its unique element is distributed according to 7.
For any n €N, notice that

S o) = & o YD) O<U(n)>5’

p

=FoU",

A direct consequence of this is that, whenever N < n,, % o U") C .7 o UMW),
Since . o U™ is a singleton, and . o U") cannot be the empty set, we even
have equality. Since N < n, holds with probability at least 1 —¢, and since the
unique element of . o U is distributed according to 7, we then have that the
output of the Oracle CFTP algorithm is correctly distributed with probability at
least 1 —¢. This being true for all £ > 0, the proof is complete. O

3.4 Complexity

When considering a specific Markov automaton, it is a common practice to
bound the complexity of the CFTP algorithm for that specific usage. For the base
CFTP algorithm, Theorem 11 states that E[7,,] = E[7]. This makes it possible to
bound the complexity of the original algorithm by bounding the forward cou-
pling time of the Markov automaton. While this still holds when using bounding
chains with constant or geometric increments (so long as the forward coupling
time is computed for the transition function o rather than -), it is no longer valid
when considering oracle sampling.
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To better understand the extra difficulty, consider the following toy example:
a Markov automaton with . = {x,, x,;} and ./ = {s, z}, such that

® X;-S=Xx;_; (Swap states);
® X;-z =X, (go to zero);
e D(z)=¢ (zis arare letter).
The bounding chain is defined as
o {x5, %1} os={xy x,} (s is passive so long as we have not coupled);
e {Xy, x;} oz ={x,} (z means coupling);
e {x;}os={x,_;} (s isactive once we have coupled);

o {xi}oz={x}

With oracle sampling, the forward coupling time is 1: since s is passive, we draw z,
and we have automatically coupled. For Oracle CFTP i.e. the backward coupling
time, we have to go back until we can find a z. At this point, s becomes active, and
the expansion phase adds approximately ! occurrences of s. The complexity is
therefore of order £7!. This illustrates how there can be an arbitrarily large factor
between forward and backward coupling times for oracle sampling.

The key observation is the above example is that, whereas the forward cou-
pling time only depends on the quality of contraction for uncoupled states
(|B| > 1), the backward coupling time must also take into account the quality of
contraction after coupling (when B is a singleton).

Property 15. Lety(n)> max,.s E[ |[U1Hn]{x} |] be an upper bound on the expected
contracted size of a random word of length n. The running timel, of the algorithm
satisfies

Ello]= O((E[To] +E[y(75)] +1og(E[75])) x log(E[rBD),

where T and Ty are the forward coupling times of the bounding chains with and
without oracle sampling.

Sketch of proof. Notice that the complexity at each iteration n of the algorithm
is linear in the number of letters of V": each letter is read at most once, as well
as being possibly added or removed only once. We can therefore state that the
overall complexity [}, of the algorithm satisfies

The expected length of the V" is increasing, and it can be shown that

N

2 v

n=1

E[l,]= O(E

E[N]=E[|V*"],] < log(E[7s))
from which we deduce that

E[To] = O(E[|V™)|] x log(E[4)).
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To < Y(TB)

vl

The final coupling word V™) can be split into a coupling subword (left) and a coupled
subword (right).

Figure 4.3 - Bounding Complexity

Consider Figure 4.3. V(¥ can be split into a coupling subword, whose length
is upper-bounded by 7, and a coupled subword, whose length is at most y(73).
Adding the number | W )|Ii of occurrences of the letter ff, which we have omitted

so far, we get that
E[|V™|] < Elvo] +E[y(vs)] + log(Els]).
O

Note the implications of the term log(E[73]): though this is only an upper
bound, it suggests that the complexity of the oracle CFTP algorithm is at least
logarithmic in the complexity of the initial bounding chain algorithm.

3.5 Variants of Oracle Sampling

Incremental Sampling Though oracle sampling is a convenient model from a
theoretical standpoint, we have underlined the issue of sampling active letters
when implementing such a method. A more convenient approach, similar to
what was introduced in [44], is to discover passive events as they are drawn; this
is referred to as incremental sampling.

The basis for incremental sampling is to construct the distribution D; from
which V; is to be drawn using what we have learned from the previous letters:

e If V,_, was active, D; is reset to D, since the state of the bounding chain has
changed and we do not know which letters are active or passive anymore;

o If V;_, was passive, D, is taken to be D;_, conditioned on not being V,_,, i.e.
V,_, is removed from the set of known passive letters.

The new bounding chain (B), . defined by B! = & o V;_,; for all i € Nis no longer
a Markov chain, but it can nonetheless be used in CFTP to sample from 7. Its
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coupling time 7; is a trade-off between that of the usual bounding chains and
that of oracle sampling:
E[7o] <E[7;]<E[T].

Hybrid Sampling It is possible to combine oracle and incremental sampling
to improve performance or simplify implementations. For example, if it is easy
to acquire a subset of the passive letters for a given state, then these can be
immediately removed from the distribution when the bounding chain changes to
that state. On the contrary, if a letter is known to rarely be passive, we can choose
to never check whether it is active or not and always keep it in the distribution.

4 Independent Sets

Let G =(V, E) be a simple undirected graph. Recall that a subset I of V is called
an independent set if no two vertices in I are connected by an edge, i.e. if

Vx,yeI,(x,y)¢E.

Let .# be the set of independent sets of G and, for any vertex v € V, denote N(v)
the set of neighbors of v, that is to say the w € V such that (v, w) € E.
We study the performance of the CFTP algorithm with oracle sampling when
generating independent sets according to the distribution
1
P(I)= E,AGR,
Z

where Z, is a normalizing constant, often called the partition function. We focus
on the case where A is very large. In the spirit of Property 15, we restrict our
analysis to the complexity for the forward coupling.

4.1 Sampling algorithms

We compare the coupling time our sampling algorithm with oracle sampling with
two other approaches described in [28]: Gibbs sampling and the Dyer-Greenhill
chain [14].

Gibbs sampling

Let us first define a Gibbs sampler for P,. At each iteration, independently draw
a vertex v uniformly at random and u uniformly over [0, 1].

o Ifu> ALH, then remove v from [ if v € I, otherwise do nothing.

o IfO<uc< %ﬂ, then add v to I if N(v)n I =0, otherwise do nothing.

This dynamics allows us to use Monte Carlo and CFTP methods to generate
independent sets according to P,. The CFTP approach can be greatly improved
by using the following bounding chain for the Glauber dynamics defined in [28].
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Consider a family of independent sets A C.#. Set

B=(1, D:(UI)\B and C=(\(V\I)=V\(BUD).

IeA IeA IeA

Denoting
(B,D)={Ie€#|BCICBUD},

we have that A C (B, D). In other words, B is the set of vertices common to every
independent set in A, C is the set of vertices that are in none of the independent
sets of A, and D is the set of vertices that are in some but not all of the indepen-
dent sets of A. The couples ((B;, D;));en define a bounding chain for the Glauber
dynamics (4;);y. The initial state of this bounding chain is (B, D,) = (§, V).

The Gibbs sampler for the bounding chain is defined as follows: at each
iteration, independently draw a vertex v uniformly at random and u uniformly
over [0, 1]. Suppose the initial state is (B, D), and write B + v for BU {v} and
B —v for B\ {v}; the arrival state (B’, D’) is constructed as follows:

o Ifu> ALH, we remove v from all independent sets:

B'=B—v D'=D—v C'=C+v

o IfO<uc< %H, we attempt to add v to the independent sets:

- if N(v)n B #0, then we do nothing (we necessarily have that v € C);
- if N(v) € C, we can add v to all independent sets:

B'=B+v D'=D-v C'=C—v
- otherwise, we can only add v to some independent sets:

D'=D+v C'=C—-v

The Dyer-Greenhill scheme

The coupling time of the above bounding chain can be reduced through the
Dyer-Greenhill scheme. The main idea is to allow one element to slide to an
adjacent feasible vertex. Given p, € [0, 1], if, in the Gibbs sampler, an attempt to
add v to the independent set I fails due to the presence of a unique neighbor u
already in I, then with probability py, the independent set becomes [ + v —u. A
bounding chain can easily be defined for this new scheme.

Oracle sampling scheme

Now consider oracle sampling for the bounding chain of the Gibbs sampler. For
each vertex v, we have two events: adding v to I, denoted a,, and removing v
from I, denoted r,. The active events are:

e the r, for which v ¢ C,

e the a, for which ve€ C and N(v)Nn B =0,
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e the a, for which ve D and N(v)C C.

Let V, and V, be the set of vertices for which removal and addition are re-
spectively active in (B, D). For the Gibbs sampler, events are drawn according
to the conditional distribution by picking an event uniformly at random in V,
where z = a with probability

AlVal
AVARSVAK

and z = r otherwise.

For a vertex v € V, the fact that a, and r, are active is only modified when
v, or one of its neighbors, is modified. It is therefore possible to locally update
the conditional distribution at each iteration by simply updating the “activeness”
of events for the modified vertex and its neighbors. This justifies using oracle
sampling rather than incremental sampling in this context.

Note that those three samplers can be adapted to the case of weighted vertices
and product-form stationary processes of the form

nin=5- [0

vel

where A =(4,),cy is a weight-vector of the vertices. For the Gibbs sampler, A
is replaced by the A(v) of the selected vertex. The other samplers are modified
accordingly.

4.2 Star graph
In this paragraph, we study the graph

G, =([0,n],{(0, )| i [1,n]}),

called star graph. We focus mainly on the performance of the oracle sampling
scheme for large values of A, such as when A > n. The independents of this
graph are

g ={{o}}u2([1,n]).

First, we consider the coupling time 7y of the Glauber dynamics of the bound-
ing chains without oracle sampling, both in the case of the Gibbs sampler and of
the Dyer-Greenhill sampler.

Since at most one vertex is removed from D at each iteration, and the algo-
rithm finishes when D =), this coupling time is lower bounded by the hitting
time of

{(B,{oh}u{(B,D)[0¢ D}.

Furthermore, since no vertex can be added to B so long as D contains both 0
and an element in [1, n], B =0 until one of those states is reached.

In the case of the Gibbs sampler, if A > 1, the expected hitting time of (@, {0})
is O(A"). Furthermore, before reaching this state, the probability of removing 0
from D is exactly m at each time step. For n large enough, this gives that

E[ts]=(n+1)(A+1).
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For the Dyer-Greenhill sampler, the coupling time 7{¢ is greatly reduced:
the hitting time H of {(B, D) | 0 ¢ D} has expectation

A+ln+11

This is due to the fact that the first attempt to swap a vertex other than 0 will
immediately remove 0 from D, since it is the only neighbor of the selected vertex.
On the other hand, for the bounding chain to couple, every vertex must be
selected at least once for addition or removal. As at each step, the modified
vertex is chosen uniformly and independently at random, a coupon collector
argument gives that
E[T]?G] >nlnn+ O(1).

Now, let us consider the (forward) coupling time 7 of the coupling chain
with oracle sampling. The coupling time is at most the hitting time of (B, #). We
have two main steps to consider:

1. The hitting time of {(B,D)|0¢ D};
2. From there, the hitting time of {(B, 0)}.

Let us first focus on the hitting time of {(B, D) | 0 ¢ D}. Construct a birth-and-
death process on [0, n],, where state i represents the cardinal of C, supposing
0 has not yet been added to C. In state i, the active events are those that move
vertices between D and C. As a consequence, the probabilities p; ;,; and p; 1 ;
to go respectively from state i to state i + 1 and from i + 1 to i are given by

n—i B (i+1)A
n—i+il T n—i—14+0G+DA

Piinn = (4.7)
Computations show that the stationary distribution 7 of this birth-and-death
process satisfies, for all i € [0, n],

(i) = ((’: :ll)x—“—% (";1)/1—’%(0).

This yields that 7(0)> 1 (1+1)".

The bounding chain can be bounded by the following process: when in state
0, vertex 0 can be removed with probability - (all events are active for removal,
none for addition). Keeping in mind that A > n, the expected time 7, for reaching
a state (B, D) where 0 ¢ D is therefore

(n+1)
7(0)

For the second step, consider the birth-and-death process on [0, n] where
state i represents the sets (B, D) for which |[B|=n—iand0¢ D. Fori >0, i
vertices are active for addition and at least n — i are active for removal. The
transitions probabilities are exactly the probabilities p; ; defined in Eq. (4.7).

Simple computations show that the hitting time 7, of state 0 from state n
satisfies

E[1,]= <2e(n+1).

1+A\" n
E[TZ]Z(T) +n<n+e”=n+0(1).
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Finally, note that in state n, vertex 0 is active for addition, and in case this
event is generated (which happens with probability n%l), we have to take into
account the return time from the first step (0 € D) to the second step (0 ¢ D). By
the Markov inequality, the probability that state n is visited again before state 0
is at most %’)) =A""

As a consequence, the expected coupling time satisfies

E[7o] <E[7,]+E[7,]+ O(1)<(2e +1)n+ O(1).

Notice that the coupling time does not depend on A and is linear in 7. It therefore
does better than the other samplers presented above.

4.3 Numerical experiments

We now do an experimental comparison of the three samplers described in
Section 4.1 for two models: the star graph, that has been precisely analysed in
Paragraph 4.2, and the Barabdsi-Albert model [1].

Star graph We performed experiments for a star graph with 100 vertices and
for different values of A. For each value of A and each sampler, 1000 experi-
ments have been performed, and the average number of transitions computed
is depicted in Figures 4.4.

TTTT T T 1 T T 1T17T1] T T T rrr
—e— Gibbs Sampling
—=— Dyer-Greenhill
| | e Oracle Sampling

104

Number of iterations

10% | : :

| | Lol
10° 10! 10?
A

Figure 4.4 - Number of events generated by CFTP algortihms for the star graph
with 100 vertices for different values of A.

The first remark is that both Dyer-Greenhill and oracle sampling samplers
outperform the Gibbs sampler. Second, the Dyer-Greenhill sampler seams in-
sensitive to the value of A, which conforms to the bound nlnn + O(1) given in
Section 4.2. Finally, the oracle sampling scheme is always the most efficient
algorithm. It is noticeable that the number of event generated decreases with
A. This can be explained the following way: large independent sets are favored
when A grows. Then, after reaching the independent set [1, n], whose probability
grows with A, the probability that the next event is active is less than 1%;\ Asa
consequence, many events are skipped.
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The difference in behavior between the Dyer-Greenhill and oracle sampling
samplers is more obvious with the star graph with 1000 vertices, as depicted in
Figure 4.5 (100 experiments are run for each value of A).
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Figure 4.5 - Number of events generated by CFTP algortihms for the star graph
with 1000 vertices for different values of A.

Barabasi-Albert model We now generate a random graph with preferential
attachment. Start from a clique with 5 vertices and at each step add one new
vertex v and two edges (v, w;) and (v, w,), where w, and w, are chosen at random
with probability proportional to their degree. Figure 4.6 compares the average
number of events generated for 100 experiments with the three samplers, for
graphs with 100 vertices.

—e— Gibbs Sampling
—=— Dyer-Greenhill
—e— Oracle Sampling

10°

104

Number of iterations

Ll Lo Lo
10° 10! 10°
A

Figure 4.6 — Number of events generated by CFTP algortihms for the Barabasi-
Albert model with 100 vertices for different values of A.

Similarly to the star graph, Dyer-Greenhill and oracle sampling samplers
outperform the Gibbs sampler, and the oracle sampling sample is sensitively
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better than the Dyer-Greenhill one. For large values, those two samplers are not
sensitive to A (or slightly improve when A grows).
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Abstract

This thesis focuses on the rapid mixing
of graph-related Markov chains.

The main contribution concerns graphs
with local edge dynamics, in which
the topology of a graph evolves as
edges slide along one another. We pro-
pose a classification of existing models
of dynamic graphs, and illustrate how
evolving along a changing structure im-
proves the convergence rate. This is
complemented by a proof of the rapid
mixing time for one such dynamic. As
part of this proof, we introduce the par-
tial expansion of a graph. This notion
allows us to track the progression of the
dynamic, from a state with poor expan-
sion to good expansion at equilibrium.

The end of the thesis proposes an im-
provement of the Propp and Wilson per-
fect sampling technique. We introduce
oracle sampling, a method inspired by
importance sampling that reduces the
overall complexity of the Propp and Wil-
son algorithm. We provide a proof
of correctness, and study the perfor-
mance of this method when sampling
independent sets from certain graphs.

Keywords
Social networks
Dynamic graphs
Markov chains

Résumé

Cette these porte sur la rapidité du
temps de mélange de chaines de Mar-
kov sur des graphes.

La contribution principale concerne les
graphes avec des dynamiques locales
sur les arétes, la topologie du graphe
évoluant au fur et a mesure que les
arétes glissent les unes le long des
autres. Nous proposons une classifica-
tion des différents modeéles existants de
graphes dynamiques, tout en illustrant
'importance des transitions le long
d’une structure mouvante pour amélio-
rer la vitesse de convergence. Cette
étude est complétée par la preuve,
pour I'une de ces dynamiques, d’un
temps de mélange rapide. Nous dé-
finissons notamment 'expansion par-
tielle d’'un graphe. Celle-ci permet de
suivre 'avancement de la dynamique,
partant d’'un état de faible expansion,
jusqu’a obtention d’une bonne expan-
sion a I'équilibre.

La fin de cette these porte sur une
amélioration de I'algorithme de simula-
tion parfaite de Propp et Wilson. Nous
introduisant un oracle pour les transi-
tions, inspiré de I'’échantillonnage pré-
férentiel, qui permet de réduire la com-
plexité de l'algorithme. Nous fournis-
sons une preuve de correction, ainsi
qu’'une étude de l'impact de cette mé-
thode sur la vitesse d’échantillonnage
d’ensembles indépendants pour cer-
tains graphes.

Mots Clefs

Réseaux sociaux
Graphes dynamiques
Chaines de Markov
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