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Introduction

Freight transportation in supply chains

Freight transportation is a pillar of our economy [Crainic 2000a]. Indeed, with
globalization and growth in international trade, production processes are often frag-
mented in different regions in order to take advantage of differences in the cost and
quality of services. As a result, the average distance travelled by goods is globally
increasing [Esnouf 2013]. In 2018 in OECD countries, the road usage for freight
transportation 1 is estimated to be more than 1,374 billion tonne-kilometers, which
represents an increase of 4.1% compared to 2017. Thus, the success of various
business fields highly relies on an effective logistics management.

Moreover, air pollution and climate changes are major concerns of our era as they
put humanity in danger. It turns out that the sector of freight transportation has a
major environmental impact, as it is responsible for more than 7% of global carbon
emissions 2. For this reason, innovation and solutions in logistics management are
more urgent than ever.

A major share of logistics movements takes place within supply chains. A supply
chain is a network of partner companies that include suppliers, manufacturers,
warehouses, distribution centers, or retailers. These companies work together to
create products and satisfy the consumer market. To get products to the customers,
the supply chain process involves a series of stages, such as the acquisition of raw
materials or the transformation of raw materials into finished products.

From the delivery of raw materials to manufacturers to the distribution of fin-
ished products to the end-user, freight transportation supports the whole supply
chain process. As efficient freight transportation is necessary for a supply chain to
be profitable, related problems must be solved efficiently. However, optimization
problems for planning the transportation operations in a supply chain are very chal-
lenging to solve in practice. Due to their scale, real-life supply chains often yield
models that cannot be solved in reasonable amount of time by commercial mixed
integer programming (MIP) solvers.

This thesis was carried out with the help of a Third-Party Logistics (3PL), DHL
Supply Chain, and focuses on a distribution problem that arises in supply chain
management. More specifically, the problem addressed in this thesis is inspired by
the collaboration between DHL and a large French chain of restaurants that out-
sources part of its logistics. In that partnership, DHL must plan the transportation
operations that take place within the supply chain to fulfill the restaurant orders for
products over a planning horizon. To do so, DHL designs a transportation plan that
determines the routes followed by the products, from the suppliers to the restau-
rants. In practice, the transportation plans are defined "manually" by a team of

1Source: OECD International Transport Forum
2Source: OECD International Transport Forum
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experienced logistics managers, according to a set of decision policies. To improve
the quality of its services and stay ahead of the competition with other 3PLs, DHL
seeks to develop optimization tools for the design of its transportation plans.

Research questions

Supply chain optimization problems encompass three levels of decisions that have
different consequences on the planning horizon. The strategic level involves long-
term decisions that are related to the acquisition, the location and the sizing of
major infrastructures such as production units, distribution centers, plants, vehi-
cles, etc. The tactical level seeks to determine the utilization of available resources
on a mid-term horizon. Tactical decisions include fleet vehicle management, crew
management, production planning and inventory level management. Finally, the op-
erational level involves short-term decisions that cannot be planned well in advance
as they rely on short notice conditions. Operational decisions are decentralized and
define daily schedules by adapting tactical planning services to current conditions.

Most optimization problems for supply chain management studied in the lit-
erature are defined at the strategic level, and cover long-term planning horizons
that are discretized in monthly or yearly periods. Less studies focus on the tactical
planning of the supply chain. To the best of our knowledge, existing tactical models
for supply chain optimization disregard merge-in-transit and shipment consolida-
tions. However, shipment consolidations allow the reduction of vehicle utilization
and is thus an effective strategy to improve the profitability of the transportation
operations. Thus, we believe that existing models for supply chain management
are not necessarily suitable for planning transportation operations over a mid-term
horizon.

A fundamental tactical problem for planning transportation operations is the
Service Network Design Problem (SNDP) [Crainic 2000a, Wieberneit 2008], which
determines paths for shipments in a network and allocate the necessary services.
Although the SNDP enables shipment consolidations, it makes no presumptions re-
garding the considered distribution network. On the other hand, supply chains have
specific structures that can and should be exploited algorithmically. In addition,
in the SNDP the origin and destination location of each freight to be transported
is known in advance. In supply chains, customers order products that may be
manufactured and shipped from multiple locations.

The literature lacks tactical studies on supply chains distribution planning. To
fill this gap, we introduce the Logistics Service Network Design Problem (LSNDP)
which aims to design transportation operations within a supply chain over a finite
time horizon. As customers request products that may be offered at multiple lo-
cations, the LSNDP determines the origin location for each transported product
request as well as the routes followed by the products. The purpose of this thesis
is to solve instances of the LSNDP that reflects the operations of DHL. To do this,
we propose multiple solution algorithms.
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Outline of the manuscript

In Chapter 1 we define the industrial context of this thesis. We provide details about
the chain of restaurants, its logistics and its partnership with DHL. In Chapter 2,
we introduce a problem description and a mathematical formulation of the LSNDP.
We also review the relevant literature on supply chain optimization problems and
service network design problems.

The scientific contributions of this thesis are three solution algorithms for the
LSNDP. These algorithms are designed to solve large-scale instances in a rea-
sonnable amount of time. In Chapters 3, 4 and 5, we present these methods and
test them on random instances related to the logistics operations of the restaurant
chain to assess their performances.

Chapter 3 introduces an enhanced Benders strategy. In the proposed Benders
decomposition, the subproblem intends to route customers demands based on a ve-
hicle allocation determined in the master. To improve the quality of these vehicle
allocations, we reinforce the master with artificial information based on products
aggregation. The resulting master allocates vehicle capacities on the network in or-
der to satisfy customer demands of super-product. To improve the convergence of
our Benders strategy, we also strengthen the master with a priori valid inequalities
and generate heuristic primal solutions from unfeasible subproblems. The compu-
tational study shows that the increase in the number of products has little effect
on our method.

In Chapter 4 we extend this idea and propose a dynamic Benders strategy,
wherein the information strengthening the master is refined during the run of the
algorithm. In a spirit of exploration and exploitation, the number of super-products
considered in the master problem is increased at each iteration. Thus, we demon-
strate that the master presented in Chapter 3 can be extended to multiple super-
products obtained by partitioning the set of products. As the partitioning of the
product set impacts the quality of the bounds produced by the master problem, we
propose a metric that evaluates whether a pair of products is worth aggregating or
not. Based on that metric, we implement clustering strategies for partitioning the
product set at each main iteration of the algorithm.

Chapter 5 presents a method inspired from the Dynamic Discretization Dis-
covery, a recent algorithm proposed for solving the Continuous Time SNDP. The
LSNDP is defined on an underlying graph. Thus, the size of the model is partially
determined by the number of nodes and arcs in that graph. To be able to solve
large-scale industrial instances, we propose a heuristic that constructs a subgraph
based on a subset of the nodes and arcs in the original graph. The computational
study shows that our heuristic builds subgraph orders of magnitude smaller than
the original graph. Solving the LSNDP associated with the subgraph allows to
identify high-quality solutions in a small amount of time, even for instances defined
on large-scale networks.

In Chapter 6 we describe real-life LSNDP instances that reflect the actual logis-
tics network of the restaurant chain. To solve these extremely challenging instances
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we propose a matheuristic that combines the solution methods presented in Chap-
ters 3, 4 and 5. We first assess the performance of our hybrid method. Then, we
analyze in detail the solutions obtained and discuss our management insights.
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This chapter presents the context of the thesis and describes the industrial
collaboration between DHL Supply Chain and a large French chain of restaurants
that we cannot name for confidentiality reasons. General information about the
chain of restaurants and its logistics operations are given in sections 1.1 and 1.2.
Then, the details of the industrial collaboration are described in section 1.3. Finally
the objective of this thesis is developped in section 1.4.

1.1 Description of the Chain of Restaurants

The first restaurants are created in the seventies. In the years following, the chain
has considerably expanded. Today it counts 239 standardized restaurants, located
in multiple European countries. The chain belongs to a major restaurant group that
holds an important market share of the French foodservice industry, with more than
50 millions of meals served per year.

The restaurants are often located in urban or peri-urban commercial areas.
Their customers are mostly people shopping in nearby malls. As a result, the
number of people visiting restaurants reaches its peak at noon, when customers
have lunch. On average, the number of lunches served per day is between 400 and
600. Furthermore, the number of people visiting restaurants varies according to
the time of year. In particular, it increases considerably during winter sales and
summer sales, a busy period for shopping centers.
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The chain employs more than 10,000 people, with an average of 25 workers per
restaurant. Ninety per cent of them are versatile employees and alternate between
different tasks as: receiving goods, preparing dishes, replenishing self-service meals,
cashiering services, etc. In most situations, versatile employees work part-time and
have a high turnover rate. Rest of the staff is composed of managers in charge of
the restaurants management. Contrarily to versatile employees, most managers are
full-time workers.

1.2 Logistics Operations

The supply of the restaurants is performed through a domestic supply chain man-
aged by a centralized system, which facilitates strong economies of scale. In this
section, we present the logistics operations of the restaurant supply chain. We first
describe the logistics network that models the supply chain. Then, we describe the
main features of the supply chain.

1.2.1 A Tri-Echelon Network

The supply chain involves three types of actors and can be represented by a tri-
echelon network. The first set includes the suppliers. Suppliers are business partners
that provide the wide range of products required by the restaurants. Most suppliers
are large manufacturers or wholesalers who produce their goods continuously, and
in large quantities. Figure 1.1 shows the distribution of the suppliers.

The second set includes the warehouses. Warehouses receive products from
the suppliers, and redistribute them to restaurants. They enable cross-docking
and merge-in-transit. In addition, warehouses can store products, which incurs
a cost per day and per unit. The warehouses belong to DHL and another logis-
tics company, STG Group. They can be distinguished into two categories: central
warehouses and regional warehouses, which differ in terms of capacity. A product
delivered via the distribution network must necessarily pass through a central ware-
house before going to a regional warehouse. Figure 1.2 and 1.3 show respectively
the central and regional warehouses.

The third set includes the restaurants. To be able to constantly satisfy customer
needs, the restaurants order products on a regular basis. These orders are answered
several times a week, depending on the delivery schedule specific to each restau-
rant. A single delivery per week is sufficient for restaurants with lowest volume of
customers, while five deliveries per week are required for the busiest restaurants.
Restaurants are spread all over the country and are often concentrated in commer-
cial areas around the big cities. Figure 1.4 shows the distribution of the restaurants.

Freight transportation in the supply chain is ensured by a fleet of vehicles.
Transporting products from a facility to another incurrs a less-than-truckload (LTL)
cost proportional to the amount of freight moved and the distance traveled.
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Figure 1.1: Distribution of the suppliers
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Figure 1.2: Distribution of the central warehouses



1.2. Logistics Operations 9

Figure 1.3: Distribution of the regional warehouses
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Figure 1.4: Distribution of the restaurants
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1.2.2 Products, Demand Management, and Logistics Features

Restaurants use about a thousand type of products. These products are standard-
ized according to several criteria that suppliers must respect. In that way, product
quality does not vary from one supplier to another. This favours a similar quality of
service from one restaurant to another, and helps the chain to maintain a consistent
brand image across the country. Products are classified into five product families:
frozen products, fresh products, dry products, beverages and non-food products.
For example, products as sparkling water and napkins belong respectively to the
beverages family and the non-food products family. Product families are classified
into two product categories: cold products and ambient products. Frozen and fresh
products belong to the category of cold products, while other families belong to the
category of ambient products. Note that cold products and ambient products are
managed independently, as they cannot be transported by the same trucks.

Suppliers are characterized by the products they offer and are specialized in one
or multiple product families. A supplier who does not specialize in a given product
family does not offer any product in that family. As an example, a supplier that
does not specialize in non-food products cannot supply napkins. On the other hand,
note that a supplier who specializes in a certain product family may not supply all
products in this family. For example, it is possible for a beverage supplier to provide
alcoholic beverages and not sodas. Finally, it should also be noted that a product
is often offered by multiple suppliers.

Restaurants place orders that are delivered according to their weekly schedules.
Table 1.1 shows examples of delivery schedules. An order is defined as a set of
products that suppliers must ship to a restaurant. The size of an order is expressed
in terms of number of pallets. We consider homogeneous pallets, that contain a
single type of product, and always in the same quantity. An order has a unique
destination, but can have multiple origins, as its products can come from multiple
supplier locations.

Table 1.1: Example of restaurants delivery schedules

Restaurant Mond. Tues. Wed. Thurs. Fri. Sat. Sun.
Amiens 6:30-7:30 - - 11:00-12:00 - - -
Boulogne - 8:00-9:00 - 10:15-11:15 - 8:30-9:30 -
Montpellier 5:30-6:30 - - 6:30-7:30 - - -

Paris 6:15-7:15 5:30-6:30 - - 5:30-6:30 7:30-8:30 -
Toulouse - 7:00-8:00 - 8:15-9:15 - 10:30-11:30 -

1.3 DHL Supply Chain

The chain of restaurants outsources its logistics operations to DHL Supply Chain.
They consist in transporting products from the suppliers to the restaurants. In
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the following subsections, we describe the role of DHL Supply Chain, and how the
company manages the logistics flows.

1.3.1 A Third-Party Logistics

The Deutsche Post DHL Group is the world’s largest international courier service
company. The main division of the company, DHL Supply Chain, is a Third-Party
Logistics (3PL). Its role is to provide logistics solutions to clients from a variety of
sectors, and to coordinate the actors in their supply chains. As part of the collabora-
tion with the chain of restaurants, DHL receives a set of orders from the restaurants,
and plans transportation operations to meet these demands over the time horizon.
These operations are characterized by a transporation plan that extensively de-
scribes the itinerary followed by each product. In order to propose attractive offers
to its customers, DHL seeks for the most cost-effective transporation plans.

Restaurants place orders to DHL without specifying the origins of the products
ordered. Thus, for each order, DHL must determine the supplier locations from
which to ship the products requested. Once shipment origins are selected, DHL
determines products itineraries from the suppliers to the restaurants. As product
pallets are small relative to vehicle capacity, an efficient way to save transportation
costs is to reduce the number of vehicles used by consolidating the flows. To do so,
it is necessary to coordinate the paths of the different products, in both space and
time. For this purpose, DHL can use warehouses to consolidate shipments, which is
advantageous if savings achieved by consolidating the flows offset the warehousing
costs.

Therefore, the design of the transportation plan involves two levels of decision:
selecting the supplier locations from which to ship the products, and routing the
products, both in space and in time. These decision-levels make the design of the
transportation plan a highly combinatorial problem. In order to facilitate the plan-
ning of transportation operations, DHL relies on a set of decision support policies.
We describe these policies in the next subsection.

1.3.2 Current Logistics Management

DHL does not have a global optimization tool to elaborate the transportation plan.
The planning is carried out "manually" by a team of experienced logistics engineers.
These engineers schedule the transporation operations based on their experience of
the problem, but also according to a set of decision policies.

This framework limits the number of possible routes from suppliers to restau-
rants and forces products to follow centralized paths. By definition, a centralized
path:

• originates from a supplier

• transits through a central warehouse

• transits through a regional warehouse
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• ends at a restaurant

Figure 1.5 illustrates centralized paths. In this framework, other delivery paths are
not taken into account. For example, it is not possible to ship a product directly
from a supplier to a restaurant. Similarly, a product cannot be shipped directly
from a supplier to a regional warehouse.

Figure 1.5: Centralized path

In addition, DHL decision policies assigns each restaurant to the nearest regional
warehouse. Thus, a restaurant cannot receive products from a regional warehouse
it is not assigned to. On the other hand, products can transit from any supplier to
any central warehouse, or from any central warehouse to any regional warehouse,
without restriction.

According to these decision policies, the logistics engineers at DHL seek to
determine the most profitable transportation plan, i.e. a transportation plan that
tends to limit the distances covered by the products, minimize storage costs and
maximize flow consolidations.

1.4 A Global Optimizer for Planning Transportation
Operations

The chain of restaurants has outsourced its logistics operations to DHL for more
than ten years. During this collaboration, DHL built a sustainable and efficient
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network. Improvements include a better coordination of suppliers-restaurants rela-
tionships and a stronger control on the inventory management. In addition, DHL
gave visibility on logistics costs by providing a euro cost per tonne associated with
each product. This enables the monitoring of the expenses related to the products
management.

With the aim of staging ahead of the competition with other 3PLs, DHL con-
stantly seeks to increase the quality of its services. In the management of the chain
of restaurants, DHL has identified several areas of improvements that we present
in the next subsection. We then describe the global optimization tool DHL wants
for planning transportation operations in the supply chain. We also describe the
perspectives this tool would open.

1.4.1 Improvement Strategy

For each product, the euro cost per tonne averages the sum of storage and trans-
portation costs over the past periods. The analysis of these costs reveals that DHL
logistics management can be improved. Indeed, if the average cost is around 300
euros per ton, for certain products it can reach 800 euros per ton. Such a disparity
in logistics costs indicates that transportation operations are not planned optimally
for all products.

One improvement is to modify decision policies that limit the possible itineraries.
Although these policies have the advantage of simplifying the planning, they also
strongly restrict the search space. The emergence of other delivery alternatives may
lead to more profitable logistics costs. An appealing idea is to integrate routes that
do not necessarily visit a central warehouse and a regional warehouse. Shipping
products from suppliers to restaurants by visiting only one warehouse can reduce
handling costs. Similarly, it seems interesting to allow direct shipments from sup-
pliers to restaurants.

Another improvement envisaged by DHL is to create new partnerships with
small local suppliers, by integrating them into the supply chain. Indeed, a medium-
term goal of the chain is to offer local dishes in its restaurants. However, the cur-
rent decision policies regarding product itineraries do not favor these partnerships.
Small local suppliers will be used to ship regional products to restaurants that are
geographically close. Thus, for regional products it is clear that direct shipments
from suppliers to restaurants are more profitable options than centralized paths, as
they avoid unnecessary long travel distances. To limit the logistics costs incurred
by shipping from local suppliers, it is therefore essential to allow other delivery
alternatives than centralized paths, and develop short distribution channels.

1.4.2 Optimization Tool

DHL wants to develop a decision support tool for the design of its transportation
plans. This tool includes an optimization algorithm for a global planning of the
transportation operations in the supply chain. The algorithm does not have to be
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an exact method, but must provide good solutions in a reasonnable amount of time.
As input it takes the following data:

• the list of suppliers and the products they offer;

• the list of warehouses and their storage costs;

• the list of restaurants and their orders over a time horizon;

• travel times, distances and travel costs between actors of the logistics network;

• a design policy.

The aim of the algorithm is to provide a cost-effective transportation plan that
respects the constraints and satisfies the restaurants orders.

As explained in subsection 1.3.1, DHL seeks to extend its current design policy.
The design policy defines between which actors of the logistics network it is possible
to ship products. Thus, it is a crucial input that has a major impact on the
transportation plan cost, as it determines the number of feasible delivery paths
in the network. To determine the most profitable transportation plan, one has to
choose a complete design policy, such that products can transit between any pair
of actors. Nevertheless, a complete design policy yields instances that are too large
to be solved in a reasonable time. Therefore, the choice of the design policy is
an important question that must be answered in advance of the elaboration of the
transportation plan.

To assist DHL in the definition of new policies regarding product itineraries,
we also develop an exact method for designing the transportation plans. The idea
is to execute the exact method on instances that varies only according to the de-
sign policy. A comparison of the optimal solutions would enable to quantify the
savings achieved through new delivery alternatives. Thus one could select a de-
sign policy that incorporates short distribution channels while yielding instances
computationally tractable.

The problem of planning transportation operations within the supply chain can
be modeled as a mixed integer linear formulation, described in subsection 2.2.2.
Instances of sizes relevant to DHL are too large for on-the-shelf optimization solvers.
For example, parameters such as the number of products or the size of the logistics
network affect greatly the model size. In our case study, there are 177 suppliers, 4
central warehouses, 40 secondary warehouses and 239 restaurants, which constitutes
a considerable network. In addition, the logistics network includes 605 cold products
and 395 products at room temperature. Finally, for a transportation plan to be
relevant, it must be built over a sufficiently long time horizon, at least 15 days.
These parameters values lead to models that are computationnally intractable.

More specifically, the problem temporal dimension makes the industrial in-
stances very difficult to solve. A common technique to model the temporal com-
ponent is discretization; rather than deciding the exact time a product should be
shipped (e.g., 5.46 pm), the model decides on a time interval when the shipment
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should occur (e.g., between 4pm and 6 pm). By discretizing time, it is no longer pos-
sible to capture all the shipment opportunities of the problem in continuous time.
Thus, to provide a cost-effective solution, we require a model with a fine granularity
for the time discretization [Boland 2018]. On the other hand, the time step has a
significant impact on the model size. As a result, providing a cost-effective solution
often requires to solve a model that is computationnally intractable.

Therefore, in order to solve the instances proposed by DHL, it is necessary to
propose solutions methods that are effective despite the scaling of the previously
mentioned parameters. In Chapters 3 and 4, we propose Benders strategies that
remain effective even when the number of products increases. In Chapter 5, we
propose a heuristic that limits the size of the time-expanded network that models
the problem. In Chapter 6, we combine these methods in a hybrid algorithm and
solve industrial instances.
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2.1 Introduction

In this thesis we propose the Logistics Service Network Design Problem (LSNDP), a
combinatorial optimization problem for planning transportation operations within
a multi-product supply chain. This chapter aims to define the LSNDP, and position
it in the freight transportation literature. The remainder of the chapter is organised
as follows. In section 2.2, we introduce a problem description and a mathematical
formulation of the LSNDP. In section 2.3, we review relevant literature.

2.2 Logistics Service Network Design Problem

2.2.1 Problem statement

We focus on the planning of transportation operations for a 3PL logistics com-
pany which delivers products to customers over a fixed planning horizon. Specif-
ically, a customer requests the delivery of a known quantity of product at a pre-
determined time from the 3PL logistics company. Each product is produced at a
supplier facility, and there may be multiple supplier facilities that may supply a
given product. However, the customer does not indicate the facility from which the
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product should come. In addition, the customer may request that the product be
delivered multiple times over the planning horizon. However, the quantity need not
be the same in each request, and each delivery need not to come from the same
supplier. In the context of supplying restaurants that are part of the same chain,
a customer corresponds to an individual restaurant. That restaurant could then
request for the next month the delivery of a carton of napkins (the product) on
each Friday at 9 in the morning.

We assume that each supplier has a limited product line, but unlimited capacity
for the products they do supply. Relatedly, we presume that each customer requests
products from more than one supplier. For example, there may be a supplier that
specializes in paper products, one that focuses on meat, and one on fruits and veg-
etables, while a restaurant requests products from each supplier. The 3PL logistics
company may plan transportation directly from a supplier facility to a customer lo-
cation. However, customer order quantities are typically small relative to the vehicle
capacity. As a result, the 3PL logistics company may instead transport products
through a distribution network that connects supplier facilities with customer loca-
tions in order to consolidate orders and increase vehicle fill rates. Terminals within
this distribution network are referred to as Warehouses and offer both cross-docking
and warehousing of products. However, storing product at a warehouse incurs a
per-unit, per-unit-of-time cost. We illustrate such a network in Figure 2.1, wherein
Sx indicates a supplier facility, Cx indicates a customer location, and Wx indicates
a warehouse within the distribution network.

Figure 2.1: Distribution network

We refer to transportation within this network, as well as from a supplier facility
or to a customer location, as a service. Associated with a service is a departure time
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from its origin and an arrival time at its destination. In addition to determining
whether a service is executed, the 3PL logistics company can allocate a capacity
to that service, each unit of capacity coming at a cost. For example, the 3PL
logistics company can determine how many trucks dispatch on a service, each truck
providing some extra capacity at a cost. Ultimately, the 3PL logistics company seeks
to determine which supplier(s) satisfy customer requests as well as the services and
capacities needed to support those deliveries in order to minimize the overall cost.

2.2.2 Mathematical formulation

We model the supply chain by the network G = (N ,A), wherein the node set
N contains nodes that represent supply locations S, customer locations C, and
warehouses W, and the set A contains arcs that represent transportation between
the locations. The set P represents all the products, the set P i denotes the products
provided by supplier i. As we only consider suppliers providing products, A does
not contain arcs that model transportation to a supplier. Similarly, as we only
consider the delivery of products to customers, A does not contain arcs that model
transportation from a customer. More specifically, A ⊆ (S × C) ∪ (S ×W) ∪ (W ×
W) ∪ (W × C). Associated with each arc a = (i, j) ∈ A, is a travel time tij ∈ N∗,
a per unit of flow cost cij ∈ R+∗, a vehicle capacity ĉ, and a fixed cost per unit of
capacity fij ∈ R+∗.

We assume that the 3PL logistics company seeks to develop a transporta-
tion plan for a fixed planning horizon of length T . Thus, to model the time as-
pect of the problem, we extend the static network G to a time-expanded network
GT = (NT ,HT ∪ AT ). To construct the graph GT , each physical node i ∈ N is
duplicated |T | times. As a result, the set NT contains pairs (i, t) for each i ∈ N
and t ∈ T . Time-expanded nodes of NT represent time-expanded suppliers ST ,
time-expanded customers CT , and time-expanded warehousesWT . Arcs in HT rep-
resent the storage of products at a warehouse. Thus, for each warehouse i ∈ W
and each t ∈ [1, |T | − 1], there is a time-expanded arc ((i, t), (i, t+ 1)) in HT . This
time-expanded arc has a flow cost cii that is equal to the storage cost at the ware-
house i. Arcs in AT represent transportation between locations as well as departure
and arrival times. To model transportation in the time-expanded network, for each
(i, j) ∈ A and each time t ∈ T such that t + tij < |T |, we build a time-expanded
arc ((i, t), (j, t + tij)). Thus, a transportation arc ((i, t), (j, t + tij)) in AT models
goods transportation from i to j, leaving at time t and arriving at time t+ tij . We
note that before creating the network, GT , it may be necessary to modify tij values
to ensure that arcs (i, j) ∈ A can be mapped to arcs of the form ((i, t), (j, t+ tij)).
For example, if the planning horizon is discretized in time intervals of 2 hours, we
modify the travel time of each transportation arc with a travel time lower than 2
hours, and we set it to 2 hours. Given a product p ∈ P and a customer c ∈ C, its
demand at time t ∈ [1, |T | − 1] is denoted by: dpct.

We next formulate the Logistics Service Network Design problem defined over
a time-expanded network GT (LSNDP). Let ytt′ij be an integer variable associated
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with the number of trucks dispatched on transportation arc ((i, t), (j, t′)) ∈ AT .
Continuous variable xptt

′

ij represents the quantity of product p that flows along the
arc ((i, t), (j, t′)) ∈ HT ∪ AT (note that j may be equal to i as holding arcs are
included). Also note that if p /∈ P i (i.e. supplier i does not supply product p)
then continuous variables xptt

′

ij are not defined for all arcs ((i, t), (j, t′)). Then, the
LSNDP is as follows:

minimize z(GT ) =
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij +

∑
((i,t),(j,t′))∈AT

∑
p∈P

cijx
ptt′

ij +
∑

((i,t),(i,t′))∈HT

∑
p∈P

ciix
ptt′

ii

(2.1)

subject to :

∑
((i,t),(j,t′))∈AT ∪HT

xptt
′

ij −
∑

((j,t′),(l,t′′))∈AT ∪HT

xpt
′t′′

jl = 0, ∀(j, t′) ∈ WT , ∀p ∈ P

(2.2)

∑
((i,t),(j,t′))∈AT

xptt
′

ij ≥ d
p
jt′ , ∀(j, t′) ∈ CT , ∀p ∈ P (2.3)

∑
p∈P

xptt
′

ij ≤ ĉy
tt′
ij , ∀((i, t), (j, t′)) ∈ AT (2.4)

xptt
′

ij ∈ R+, ∀((i, t), (j, t′)) ∈ AT ∪HT , ∀p ∈ P i (2.5)

ytt
′

ij ∈ N+, ∀((i, t), (j, t′)) ∈ AT (2.6)

The objective function (2.1) minimizes the sum of fixed costs on transportation
arcs (first term), variable costs on transportation arcs (second term), and variable
costs on holding arcs (third term), i.e. holding costs. The first two constraints
ensure the flow feasibility. Constraints (2.2) enforce the flow conservation at each
warehouse. Constraints (2.3) impose the respect of each customer demands. Con-
straints (2.4) ensure that enough trucks are dispatched to transport products.
Constraints (2.5) and (2.6) define the variable domains.

2.3 State of the Art

A supply chain is a complex network of facilities working together to effectively
produce and deliver products to a market. The stages of the supply chain include
the acquisiton of raw materials, the transformation of raw materials into finished
products and the distribution of the final products to the end users. In this thesis,
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we focus on the supply chain segment in charge of the delivery of final products
to customers. The purpose of this section is to present the main publications,
models and solution methods for problems related to the planning of transportation
operations in supply chains.

Crainic and Laporte [Crainic 1997] classify freight transportation problems into
three categories, depending on the level of decision to be dealt with. The strategic
level addresses the highest level of planning. It involves long-term decisions that
concerns the acquisition and location of major infrastructures. The tactical level
adresses mid-term decisions related to the design of the transportation network,
i.e. the allocation of existing resources for effectively transporting freight. The
operational level adresses short-term decisions such as the planning of day-to-day
operations in a highly dynamic environment. The LSNDP falls into the tactical
level.

The LSNDP recently appeared in the literature and has not yet received much
attention. The most notable LSNDP-related study is proposed by Dufour et al
[Dufour 2018]. The problem adressed in their article is inspired by the management
of logistics functions in the humanitarian sector. Due to the lack of research on the
LSNDP, we position it regarding the existing network design problems. The LSNDP
is a network design problem for suply chain optimization [Beamon 1998], such as
the Supply Chain Network Design Problem (SCNDP) [Melo 2009] or the Logistics
Network Design Problem (LNDP) [Srivastava 2008]. In addition, the LSNDP can
be seen as a variant of the Service Network Design Problem (SNDP) [Crainic 1986].
Nevertheless, the LSNDP also differ to these problems in some fundamental ways.

The remainder of the section is divided in two parts. In 2.3.1, we review model
for supply chain optimization that are relevant to our study, while 2.3.2 deals with
the SNDP.

2.3.1 Models for supply chain optimization

A supply chain is a system of organizations, people and resources that manu-
factures and distributes products from suppliers to customers. For that purpose,
the supply chain involves multiple companies with different tasks working together.
Among recurring types of stakeholders in supply chains, there are:

• suppliers, providing raw material;

• plants, manufacturing raw materials into products;

• warehouses, for storing products, grouping orders and cross-docking;

• retailers, selling products to customers in quantities appropriate to their use;

• customers.

The process of manufacturing and distributing products decomposes in multiple
stages. A type of stakeholder corresponds to each stage. As a result, a supply
chain can be conceived as a multi-echelon network. An echelon groups together
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all stakeholders of the same type. The links between the echelons characterize the
way the freight is transported within the supply chain, and represents the order in
which production and distribution stages take place.

Supply chain management consists in supervising the operations of the supply
chain and coordinating the interactions between stakeholders involved, to ensure
that the overall process is efficient and cost-effective. It is one of the most stud-
ied fields [Erengüç 1999, Mula 2010, Fahimnia 2013] in the scientific literature on
operational research. There is a wide range of models for supply chain optimiza-
tion, and these models cover all levels of decision making. At the strategic level
[Vidal 1997], decisions include the selection of production, storage and distribution
locations. At the tactical level [Esmaeilikia 2016], decisions include the planning
of the production and the distribution, but also the inventory management. Fi-
nally, the operational level [Schmid 2013] includes aspects such as replenishment
and delivery operations.

Rather than a single generic model for the optimization of the supply chain,
there is a large number of models specific to each problem. This is primarily because
supply chains structures differ from one industrial context to another. For example,
our supply chain does not have plants, as it is not required to manufacture the
products provided by suppliers. Similarly, our supply chain does not have retailers.
Thus, models for supply chain optimization depends on the structure of the supply
chain, but also on the level or levels of decision considered: whether a time horizon
is considered or not, whether parameter uncertainty is considered or not, etc. In
this section, we identify key scientific publications on supply chain modeling and
optimization that are relevant to our problem. As a result, the selected works
adress issues that are strongly connected to transportation and to the design of a
distribution network.

Most bibliographic references in this section are classified in Tables 2.1 and 2.2.
The chosen criteria are inspired by the review of Bravo et al. [Bravo 2013]. In Table
2.1 we show the model characteristics. We examine the structure of the supply chain
and the modeling approach. We also indicate if the model is multi-product and/or
multi-period. Finally, we report if the model is stochastic. In Table 2.2 we show
the decisions adressed by the model. Five types of decisions are considered:

• location of the platforms and capacity allocation;

• production management, i.e. production quantities, quantities of raw materi-
als to purchase and manufacture into products;

• warehouse inventory management;

• product distribution, i.e. flows of raw materials and products along the supply
chain;

• management of a vehicle fleet.

We also report whether an exact method or a heuristic is used.
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In the following, we review the literature on models for supply chain optimiza-
tion, respectively for the strategic, tactical and operational level.

Strategic models for supply chain optimization

In the literature, most models for supply chain optimization problems are defined
at the strategic level. These models involve long-term decisions and, in most cases,
facility location. Facility location is important in multiple situations, for example
when operations are extended to new geographical areas. The facilities are usually
plants or warehouses, and the location of such facilities generally involve choosing
production or storage capacities.

Melo et al. [Melo 2006] consider a four echelon network with a planning horizon
over multiple periods. The proposed MILP integrates decisions on the locations of
plants and warehouses, as well as on the quantities of products to purchase and on
the inventory management. At each period, part or all of the capacity of a facility
can be relocated to any other facility. Small and medium-scale random instances
are solved with a commercial solver. In a further work [Melo 2012], authors pro-
pose a tabu search algorithm for solving large-scale instances that involve up to 50
plants/suppliers, 60 warehouses, 200 customers, 8 periods and 50 products.

Hugo and Pistikopoulos [Hugo 2005] adress a problem involving similar deci-
sions. it differs on the inventory management. They propose a bi-objective model
that evaluates both the economic cost as well as the environmental impact of the
solutions. Bashiri et al. [Bashiri 2012] consider a four echelon network and develop
a MILP including facility location, production planning, inventory management
and product distribution. The model is multi-period, and facility capacities can be
modified during the planning horizon. As the expansion of the facility capacities is
supported by the revenues over time, the induced costs cannot exceed these incomes.
In the experimental study, the commercial solver provides high quality solutions for
small and medium size instances, but fails to solve large scale instances.

Thanh et al. [Thanh 2008] deal with a four echelon multi-product supply chain.
They propose a MILP that includes: opening, closing or enlargement of facilities,
inventory management and product distribution. For this problem, Thanh et al.
[Thanh 2010] design an iterative LP-rounding heuristic combined with correction
procedures. The largest instances involve up to 35 facilities, 300 customers, 5
periods, and 18 products.

In [Altiparmak 2009], Altiparmak et al. study a static MILP involving ware-
house location, production planning, and product distribution from a single source.
They propose an encoding structure that represents a solution as a transportation
tree, and develop a steady-state genetic algorithm. In the computational study, the
method is compared with a simulated annealing method, a Lagrangean heuristic
and another genetic algorithm. The steady-state genetic algorithm outperforms the
heuristics over small, meduim and large instances. Also, the solutions obtained by
the steady-state genetic algorithm are compared with those obtained by a commer-
cial solver. For small and medium instances, the steady-state genetic algorithm
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provides near-optimal solutions for very small computation times. For large in-
stances (up to 25 plants, 50 warehouses, 300 customers, 3 periods and 3 products)
the commercial solver could not reach optimal solutions within a time limit of 10
hours.

In a seminal work, Geoffrion and Graves [Geoffrion 1974] propose a Benders
decomposition for a static problem that combines product distribution and location
of warehouses between plants and customers. In [Yeh 2005], Yeh formulate a static
problem for a network with four echelons. In the model the following decisions
are considered: the locations of plants and warehouses, and the distribution of a
single product. The author proposes a 2-step algorithm. In the first step, a feasible
solution is obtained by a greedy algorithm that iteratively identifies the unsaturated
path with minimal cost. In the second step, the solution is improved with Local
Search. Amiri [Amiri 2006] describes a related problem that include the location of
plants and warehouses. More specifically, multiple levels of capacities are available
for the facilities to be built, which differentiates this study from the previous ones.
An efficient Lagrangean relaxation based method is proposed. It can solve large
instances with up to 20 plants, 30 warehouses and 500 customers.

Eskandarpour et al. [Eskandarpour 2017] consider a static problem with a four
echelon supply chain and multiple products. They develop a model that deals with
facility location, product distribution and selection of transportation modes. They
propose a Large Neighborhood Search Heuristic with removal and repair operators
for facility locations, and a greedy heuristic for product distribution. The algo-
rithm provides high-quality solutions for instances involving up to 30 suppliers, 30
plants, 60 warehouses, 300 customers and 5 products. Similarly to Altiparmak et
al. [Altiparmak 2009], the computational study shows that commercial solvers are
not efficient to solve industry size instances in reasonable computing times.

Many recent models for supply chain optimization either incorporate multi-
objective functions, parameters uncertainty, or both aspects. Wang et al.
[Wang 2011] present a static problem for a supply chain with suppliers, warehouses
and customers. They propose a model that determine warehouse locations, prod-
uct distribution and an environment protection level in the warehouses. The bi-
objective function measures the operations total cost as well as the total carbon
emission. Azaron et al. [Azaron 2008] study a tri-echelon supply chain. The prob-
lem includes plant location, product distribution and uncertainty associated with
the demands, supplies, processing costs, transportation costs, shortage costs and
capacity expansion costs. The authors propose a two-stage stochastic model. De-
cisions related to the plant locations are taken before the realization of the uncer-
tainty, while decisions related to product distribution are considered in the second
stage. The model has three objectives, and seeks to minimize the total cost, the
variance of second stage costs and the financial risk. An instance with 4 suppliers,
4 plants and 3 customers is solved by a commercial software.

Santoso et al. [Santoso 2005] present a static problem that combines facility
location and product distribution, with uncertainty on the demands and the facil-
ity capacities. They propose a Sample Average Approximation approach to reduce
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the set of scenarios as well as a two-stage stochastic programming model. Based
on a subset of the scenarios, the model is solved by a Benders strategy enhanced
with acceleration techniques. In the computational study, two industrial instances
are solved. The domestic instance involves 380 actors and 13 products, against 104
actors and 29 products for the global instance. The stochastic solutions are com-
pared with the solution of the mean-value problem, i.e. the deterministic problem
obtained by averaging the values of the uncertain parameters. The results show
that the stochastic solutions are better, on average, for different sets of scenarios.
Tsiakis et al. [Tsiakis 2001] present a two-stage stochastic programming model for
a similar problem, with demand uncertainty. The authors present a case study of
a European supply chain composed of 3 plants, 6 warehouses, 18 customers and 14
products.

In general, strategic models for supply chain optimization seek to locate facili-
ties and estimate the resulting logistics planning on a long-term horizon. Regarding
distribution planning, the variables considered are flows aggregated over multiple
months or multiple years. Thus, these models are not suitable for designing trans-
portation plans. Some of the instances model large-scale supply chains, but they
also involve a small number of periods. Finally, all the methods proposed to solve
difficult instances are heuristic.

Tactical models for supply chain optimization

Tactical models for supply chain optimization focus on mid-term decisions, such
as production planning, product distribution or inventory management.

Lee et al. [Lee 2008] propose a MILP for a supply chain with plants, two levels
of warehouses, and customers. Its aim is to design a replenishment plan for the
warehouses and select routes for the products. Fixed capacities limit the flows
on transportation arcs. However, the model does not consider vehicle allocation
to move products. A decomposition heuristic and a rolling horizon heuristic are
implemented to solve instances with up to 12 plants, 29 warehouses, 100 customers
and 30 periods.

Yimer and Demirli [Yimer 2010] study a build-to-order problem that does not
handle vehicle utilization. Raw materials are shipped from suppliers to plants,
where products are manufactured. The products are then distributed to warehouses
and retailers. The authors decompose the problem into two sub-problems. The
first sub-problem determines how to manufacture the products and distribute them
to the retailers. According to the solution of the first subproblem, the second
subproblem aims to plan the acquisition of raw materials for the plants. The authors
propose a genetic algorithm for the first subproblem and use a commercial solver
for the second subproblem. Random instances are generated to represent a supply
chain with 4 suppliers, 2 plants, 4 warehouses and 6 retailers. The heuristic provides
near-optimal solutions for instances with up to 6 raw materials and 50 products.

Kopanos et al. [Kopanos 2012] describe a problem that applies to the food
industry. They consider a two-echelon network composed of plants and warehouses.
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They propose a MILP that models the assignement of products to processing units
and determines a production schedule, truck loads and products inventories at each
time period. In the computational study, two industrial instances are solved with
a commercial solver. In the first instance, the supply chain network is composed of
a single plant, 3 warehouses and 12 trucks. In the second case it has two plants,
5 warehouses and 20 trucks. Both cases consider 93 products, 23 product families
and 9 time periods.

Cintron et al. [Cintron 2010] formulate a distribution network design problem
to customer demands in a tri-echelon supply chain. They propose a model to
determine the flows of products along the supply chain and allocate the vehicles
required to transport products. The model has a multi-objective function that
seeks to maximize profit, credit performance, distributors’ reputation and minimize
lead time. Experiments are conducted on an industrial case study that involves 4
plants, 2 warehouses and 71 customers. One objective of the authors was to assess
if direct deliveries are cost-effective options. Results obtained with a commercial
solver show that the company can significantly reduce its distribution costs by
diminishing indirect deliveries and increasing direct deliveries.

Bilgen [Bilgen 2010] addresses a production and distribution planning problem
that arises in a two-echelon network composed of plants and warehouses. The
model determines the levels of inventory, the product distribution, and the vehicle
utilization. In addition, the production volume of each production lines is deter-
mined. To deal with the uncertainty of the production and vehicle capacities, a
fuzzy mathematical programming approach is proposed. Similarly, Fazlollahtabar
et al. [Fazlollahtabar 2013] study a network composed of suppliers, warehouses
and customers. They present a multi-product multi-period problem. The proposed
model seeks to determine the distibution planning, the levels of inventory and the
number of vehicles traveling from warehouses to customers. As the authors consider
uncertain demands, supplying costs, holding costs and truck costs, they propose a
fuzzy mathematical programming approach.

Less focus has been placed on tactical models for the optimization of the supply
chain. These models generally seek to determine jointly the production planning
and the distribution planning. However, decisions related to vehicle utilization
are rarely taken into account. Again, commercial solvers are only able to solve
small or medium size instances within a reasonnable amount of time. Most existing
algorithms for solving large instances are heuristics.

Operational models for supply chain optimization

In the literature, operational issues for supply chain management are primarily
extensions of the Vehicle Routing Problem (VRP). These extensions are intended
to determine a set of routes to satisfy customer requests, while incorporating pro-
duction and inventory decisions.

Chandra and Fisher [Chandra 1994] study a two-echelon supply chain with a
single plant, multiple customer and multiple products. They propose a multi-period
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model, coordinating production, inventories and distribution. Basically, the model
combines a VRP with a Lot-Sizing problem. The authors either solve the prob-
lem directly, or use a 2-step approach. In the computational study, they generate
random instances involving up to 50 customers, 10 time periods and 10 products,
and show that gains can be achieved by integrating production and distribution
decisions. Adulyasak et al. [Adulyasak 2015] name this problem the Production
Routing Problem. They review two formulations of the problem as well as heuris-
tics [Adulyasak 2012] and exact methods [Ruokokoski 2010, Archetti 2011].

Medina [Medina 2016] presents a problem based on an industrial case for shar-
ing transportation resources in a tri-echelon supply chain. The author divides the
supply chain in two parts. In the downstream network, long-haul distribution from
suppliers to warehouses is modelled by a Service Network Design problem. In the
upstream network, regional distribution from warehouses to customers is modelled
by a rich VRP. The author presents an integrated model as well as techniques for
modelling transfers in the warehouses. A matheuristic that generates columns for
both the upstream and downstream network is proposed. The author solves indus-
trial instances that involve up to 10 suppliers, 4 warehouses and 130 customers.
Results demonstrate that the joint consideration of the two networks provides sig-
nificant savings compared with a disjointed approach.

Table 2.1: Model characteristics

References SC Structure Modeling approach Multi-period Multi-product Uncertainty
[Adulyasak 2015] P-C MILP X - -
[Chandra 1994] P-R MILP X X -
[Kopanos 2012] P-W MILP X X -
[Geoffrion 1974] W-C MILP - X -
[Hugo 2005] S-P-C MOMILP X X -

[Santoso 2005] S-W-C MILP - X X
[Amiri 2006] P-W-C MILP - - -
[Lee 2008] P-W-C MILP X - -
[Yeh 2005] S-P-W-C MILP - - -

[Altiparmak 2009] S-P-W-C MILP - X -
[Cintron 2010] S-P-W-C MOMILP - - -
[Thanh 2010] S-P-W-C MILP X X -
[Bashiri 2012] S-P-W-C MILP X X -
[Melo 2012] S-P-W-C MILP X X -

[Eskandarpour 2017] S-P-W-C MILP - X -
[Yimer 2010] S-P-W-R MILP X X -
[Tsiakis 2001] P-W-R-C MILP - X X
Our problem S-W-C MILP X X -

S=Supplier; P=Plant; W=Warehouse; R=Retailer; C=Customer;
MILP=Mixed integer linear program; MOMILP=Multi-objective mixed integer linear pro-
gram;
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Table 2.2: Model decisions and solution methods

References Location Production Inventory Distribution Vehicles Exact Heuristic
[Geoffrion 1974] X - - X - X -
[Hugo 2005] X X - X - X -

[Adulyasak 2015] - X X X X X X
[Chandra 1994] X X X X X - X
[Tsiakis 2001] X X - X - - -
[Santoso 2005] X - - X - - X
[Yeh 2005] X - - X - - X
[Amiri 2006] X - - X - - X
[Lee 2008] - - X X - - X

[Altiparmak 2009] X X - X - - X
[Cintron 2010] - - - X X - -
[Thanh 2010] X X X X - - X
[Yimer 2010] - X X X - - X
[Bashiri 2012] X X X X - - -
[Kopanos 2012] - X X X X - -
[Melo 2012] X X X X - - X

[Eskandarpour 2017] X - - X - - X
Our problem - - X X X X X

Positioning the LSNDP with regard to supply chain optimization liter-
ature

In this thesis, we adress a problem with tactical aspects. We do not aim to ex-
tend or redesign the supply chain, thus facility location decisions are not considered.
In addition, our model does not include production decisions. Indeed, suppliers of
the logistics chain are large manufacturers or wholesalers with significant production
capacities. Thus, as suppliers are notified in advance of the quantity of products
required by DHL, they have time to adjust their production and avoid stockouts.
Moreover, production prices are not included in our study. As a result, the choice
of the shipping locations does not impact the transportation plan cost.

The problem we study in this thesis aims to compute a transportation plan in
order to satisfy customer demands over a mid-term horizon. It faces decisions re-
lated to distribution, inventory, and vehicle management. More specifically, product
itineraries in both space and time must be determined. The vehicles to transport
products between sites must also be allocated.

In the literature, few models for supply chain optimization address vehicle uti-
lization. However, the transportation plan profitability mainly relies on the number
of vehicles used. To the best of our knowledge, supply chain models that involve
vehicle-related decisions are not suitable to elaborate the transportation plan of
our study. Most, if not all strategic and tactical models are based on full-truckload
operations and disregard merge-in-transit. The only models that adress flow con-
solidations are operational models that focus on short term horizons.
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2.3.2 Service Network Design Problem

The LSNDP aims to determine a cost-effective plan for transporting multi-
ple products from suppliers to customers through a distribution network. As the
amount of products is relatively small compared with the vehicle capacities, an ef-
fective strategy for achieving low transportation costs is consolidation. Specifically,
routing products from suppliers to customers in a way that maximizes vehicle fill
rates. As such, the LSNDP can be viewed as a variant of the Service Network Design
Problem (SNDP) [Crainic 2000a, Wieberneit 2008], also named as the Capacitated
Multicommodity Network Design Problem (CMNDP) [Gendron 1999], which seeks
to determine a plan for transporting shipments through a known network of termi-
nals. Like the LSNDP, the SNDP assumes that shipments do not require full vehicle
capacity, and thus consolidation is an option to improve cost efficiency. The SNDP
has applications in various fields including road [Kim 1999a], air [Barnhart 2002],
maritime [Lo 2013] or multi-modal transportation [Fontaine 2017].

The SNDP is an extension of the Minimum Cost Multi-Commodity Flow Prob-
lem [Tomlin 1966] which seeks to route a set of commodities from their origin to
their destination. Commodities are transported by means of services (vehicles,
ships, drivers, etc.) allocated on the links. Each link is associated with a fixed
cost for allocating services, and a variable cost for moving commodities using the
allocated services.

The mathematical formulation of the SNDP is based on an underlying network
structure. When the underlying network is static, it yields to a model that does not
capture shipment timing. This is not suitable when decisions variables are defined
on a planning horizon. An usual manner to incorporate temporal aspects is to
expand the static network [Ford Jr 1958, Ford 1962] based on a time discretization
of the planning horizon, as explained in subsection 2.2.2. Thus, a static solution in
the time-expanded network [Skutella 2009] indicates both the locations and time
intervals for service allocation and commodity shipments. However, modelling the
temporal dimension yields to networks that are significantly larger. As a result, a
SNDP defined on a time-expanded network is significantly harder to solve than the
SNDP defined on the static version of the network.

We first review the literature on static versions of the SNDP. Then, we focus on
the versions of the SNDP that include a planning horizon.

Static Service Network Design

A lot of attention has been paid to static service network designs. Among theses
applications, most consider binary design variables, in which case the problem is
also known as the fixed charge CMNDP. As the fixed charge CMNDP has a weak
linear relaxation, Crainic et al. [Crainic 2001] propose techniques for computing
effective lower bounds for large-scale instances. They develope bundle and subgra-
dient methods based on two Lagrangean relaxations. The first relaxation is obtained
by dualizing the capacity constraints. It is named as the shortest-path relaxation
since the resulting problem decomposes into one shortest path problem for each
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commodity. The second relaxation is obtained by dualizing the flow conservation
constraints. It is named as the knapsack relaxation since the resulting problem
decomposes into one knapsack problem for each arc. The computational study
shows that the Lagrangean based methods compute high-quality dual solutions, in
a very reasonnable time. Holmberg and Yuan [Holmberg 2000] propose a branch-
and-bound approach that integrates a Lagrangian Heuristic based on the knapsack
relaxation. The Lagrangian Heuristic use a subgradient search to provide dual solu-
tions. To compute primal solutions, it sets values for the design variables and solve
the resulting subproblem. The algorithm is tested on the instances of Holmberg and
Hellstrand [Holmberg 1998] that involve up to 150 terminals, 1000 services and 282
commodities. Results show that the branch-and-bound outperforms a commercial
solver given a time limit of 1 hour.

Chouman et al. [Chouman 2003] propose a cutting-plane algorithm that in-
corporates three valid inequalities derived from the well-known cutset inequalities.
Given a cutset of the network, the authors propose the cover inequalities, the mini-
mum cardinality inequalities and the network custet inequalities, as well as effective
separation heuristics and lifting procedures. Promising cutsets of the network are
identified by a heuristic. As a benchmark, the authors use a commercial software to
solve the strong formulation of the CMNDP. In that formulation, the fixed charge
CMNDP is enriched with the strong inequalities [Gendron 1994] that improve sig-
nificantly the linear relaxation. The computational study shows that the lower
bounds obtained by the cutting-plane algorithm dominate those produced by the
strong formulation of the CMNDP.

In [Chouman 2016], the authors enhance their cutting-plane algorithm with two
extra inequalities: the flow cover inequalities and the flow pack inequalities. They
propose two branch-and-cut methods based on that algorithm, and implement a
benchmark branch-and-cut based on the strong inequalities. The approaches are
tested on the instances described in Crainic et al. [Crainic 2001], that involve up
to 30 terminals, 700 services and 400 commodities. The proposed branch-and-
cut methods clearly outperform the benchmark in terms of speed, but are not
able to solve a lot more instances within the same time limit. Out of the 196
instances, 58 instances were not solved by the proposed branch-and-cut methods
after 2 hours of computation, against 61 instances for the benchmark. After 10 hours
of computation, the proposed branch-and-cut methods failed to solve 49 instances,
against 42 instances for the benchmark. Chouman et al. [Chouman 2018] enhance
their branch-and-cut algorithm with filtering methods. At each node of the branch-
and-cut tree, the authors derive cuts and reduce the domains of some variables in
order to forbid combinations of variable values that yield non optimal solutions. The
authors demonstrate that the use of filtering methods improves the performance of
the branch-and-cut algorithm as it enables to solve a larger amount of the instances
described in Crainic et al. [Crainic 2001].

When considering large scale instances of the fixed charge CMND, it turns
out that only heuristics are effective for computing high-quality solutions in a rea-
sonnable amount of time. Crainic et al. [Crainic 2000b] propose a tabu search
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for a model including path flow variables and arc design variables. They define
two neighborhoods: a continuous neighborhood relative to the flow variables is
used in the local search phase, and a discrete neighborhood relative to the design
variables is used in the diversification phase. The local move is based on simplex
pivots and column generation, while the diversification move sets design variables
to a null value. The algorithm is tested on the instances of Gendron and Crainic
[Gendron 1994, Gendron 1996], that involve up to 100 terminals, 700 services and
400 commodities. For small instances, the commercial solver outperforms the tabu
search. However the metaheuristic provides good primal solutions for instances
with more than 200 commodities, while the commercial solver does not even find a
feasible solution within 6 hours of computation.

Ghamlouche et al. [Ghamlouche 2003] propose a new neighborhood for local
search techniques. The idea behind the cycle-based neighborhood is to identify
cycles, i.e. two points in the network that are connected by two different paths.
A local move consists in deviating the flow from one path to another. To iden-
tify promising cycles, a shortest-path procedure is proposed. The authors demon-
strate the effectiveness of cycle-based neighborhoods by comparing tabu search
algorithms embedding different local moves. Ghamlouche et al. extend their work
[Ghamlouche 2004] and propose an effective path relinking procedure for the fixed
charge CMNDP. A tabu search is used to generate an initial set of elite solutions.
Then, the path relinking procedure performs local moves based on the cycle neigh-
borhoods to explore paths that connect the initial solutions. The method is tested
on the instances of Gendron and Crainic [Gendron 1994, Gendron 1996]. Results
show that the path relinking procedure improves the solutions obtained with the
cycle-based tabu search.

Crainic et al. [Crainic 2004] present a slope scaling heuristic for the fixed charge
CMNDP. Slope scaling consists in constructing a linear approximation of the orig-
inal formulation that reflects both design and flow costs. The algorithm iteratively
solves the approximated linear program and computes a new linearization vector.
When the same solution is found in two consecutive iterations, the linearization
factors are modified using dual information from a Lagrangean relaxation. The
method also integrates long-term memory for diversification and intensification.
The computational study shows that the slope scaling heuristic is competitive with
the path relinking procedure in [Ghamlouche 2004].

Rodríguez-Martín and Salazar-González [Rodríguez-Martín 2010] propose a
heuristic that adapts the local branching method [Fischetti 2003] to the fixed charge
CMNDP. Local branching is a branch-and-bound procedure wherein each left node
is characterized as a neighborhood of the current best solution. The heuristic is
tested on the instances of Gendron and Crainic [Gendron 1994, Gendron 1996],
with an imposed time limit of 600 seconds. Overall, it outperforms the cycle-based
tabu search [Ghamlouche 2003], the path relinking procedure [Ghamlouche 2004]
and the slope scaling heuristic [Crainic 2004]. For 34 out of the 43 instances, the
local branching heuristic finds a solution with an objective value equal or lower
than that of the best matheuristic solution. Overall, heuristic solutions are of same
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quality to those obtained by CPLEX after an hour of computation.
Hewitt et al. [Hewitt 2010] propose an heuristic approach for solving the fixed

charge CMNDP. The IP search algorithm provides both a primal solution and a dual
bound at each iteration, which enables to assess the quality of the upper bound.
Primal solutions are obtained by a local search technique. The method improves the
current solution by solving an integer program defined on a subset of the variables.
Dual bounds are obtained by solving the linear relaxation of the path-based formu-
lation, enriched with valid inequalities. The IP search algorithm is tested on the
instances of Gendron and Crainic [Gendron 1994, Gendron 1996]. For 35 instances
out of 37, it outperforms the the cycle-based tabu search [Ghamlouche 2003] and
the path relinking procedure [Ghamlouche 2004]. On average, it yields a solution
with an objective value 2.76% lower than that of the best matheuristic solution. In
addition, the a average optimality gap computed by the IP search algorithm is of
3.96%. The authors also generate larger instances that involve up to 500 terminals,
3000 services and 200 commodities. After 15 minutes of computation, the IP search
computes solutions with an average objective value 22.95% lower than that of the
solutions found by CPLEX after 12 hours. However, due to high optimality gaps
little can be said about the absolute quality of these solutions.

Gendron et al. [Gendron 2018] propose a matheuristics that combines iterative
linear programming methods with slope scaling heuristics. The approach is tested
on the instances of Gendron and Crainic [Gendron 1994, Gendron 1996] and com-
pared against state-of-the-art heuristics for solving the fixed charge CMNDP. The
results show that the matheuristics is very competitive, as for a time limit of 1 hour
it is able to find more best solutions than all heuristics in the state of the art.

A lot of research work has been devoted to the static SNDP, and in particular
to its simplest version with binary design variables. Even if there exist many tech-
niques for improving the quality of the lower bound, solving large scale instances of
the fixed charge CMND remains a difficult task. To that purpose, effective heuris-
tic methods are proposed and compared on the instances of Gendron and Crainic
[Gendron 1994, Gendron 1996]. However, there appears to be a lack of efficient
exact methods for solving large scale instances.

Service Network Design with planning horizon

Although applications of the SNDP that rely on time-expanded networks are of
growing interest, the literature is less abundant on that subject. Here, we review
the recent solution algorithms for SNDP variants with planning horizon.

Jarrah et al. [Jarrah 2009] present a SNDP with empty trailer repositioning that
applies in the context of large-scale less-than-truckload freight operations. The au-
thors propose a column generation approach, where columns represent freight flow
trees, combined with slope scaling. They elaborate load plans for one-week plan-
ning horizons. However, the underlying time-expanded network assumes that all
shipments from a physical location on a specific day occur at the same time, which
significantly overestimate the consolidation opportunities. In the computational
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study, five test problems are introduced with 680 commodities, 725 terminals and
31000 services. The authors compare the company base load plans to that computed
by their algorithm. The computational study show that the obtained solution are
significantly more economic. However, the final optimality gaps are not provided,
which makes difficult to assess effectiveness of the algorithm. For a close problem,
Erera et al. [Erera 2013] develop a model based on a time-expanded network with
an appropriate discretization of time (8 time intervals per day). They propose a
matheuristic that combines local search with integer programming.

Andersen et al. [Andersen 2009] introduce the Service Network Design with As-
set Management (SNDAM), wherein design-balance constraints enforce the number
of services entering a terminal to be equal to the number of services leaving this
terminal. To elaborate repeatable schedules for the assets, they consider a cyclic
time expanded-network. In cyclic time-expanded networks, arcs are added to con-
nect the last nodes of the time horizon with the appropriate first nodes of the time
horizon. Andersen et al. present four formulations of the SNDAM that alternate
arc-based or path-based formulations relative to the flow variables, and arc-based
or cycles-based formulations relative to the design variables. The authors propose
a branch-and-price [Andersen 2011] for the path-cycle formulation. They gener-
ate instances based on a real-life rail transportation case study that involve up to
10 terminals, 50 services and 60 time periods. For the three largest instances the
branch-and-price algorithm provides optimality gaps between 4.9% and 13.5%, after
10 hours of computation.

In the Service Network Design with Resource Constraints (SNDRC), Crainic et
al. [Crainic 2014b] combine the management of generic assets with the limitations
of available resources at terminals. The model is based on the arc-cycle formulation,
and the authors propose an iterative matheuristic that combines slope-scaling, col-
umn generation, and mathematical programming techniques. Two set of instances
are generated, based on the instances in [Andersen 2011]. After 10 hours of compu-
tation, the algorithms provides average optimality gaps of respectively 7.79% and
9.62%.

Boland et al. [Boland 2017] adress the Continuous Time Service Network De-
sign Problem (CTSNDP) and propose an effective method to overcome large time-
expanded networks. In the CTSNDP, the time discretization is sufficiently refined
to capture all consolidation opportunities of the problem in continuous time. As
such time discretizations yield to extremely large time-expanded networks, Boland
et al. propose the Dynamic Discretization Discovery (DDD), an exact method
that manipulates a sparse time-expanded network. Under certain conditions, the
algorithm converges to a sparse time-expanded network such that solving the as-
sociated SNDP provides an optimal solution for the original problem. The authors
computationally demonstrate that building that sparse time-expanded network and
solving the associated SNDP require much less computational effort than solving
the original problem. Instances in the computational study are based on the static
instances in [Crainic 2001]. Authors describe a scheme to "time" the static instances,
and consider a 1-minute time discretizations. The DDD algorithm overcomes the
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time-expanded network sizes, and closes the optimality gap for most instances, in
less than 2 hours.

SND problems based on time-expanded networks are of major interest, as a lot
of real-life transportation problems consider a planning horizon. However, incor-
porating the temporal dimension can tremendously impact the underlying network
size, as well as the computational effort required to solve an instance. Therefore,
the recently proposed DDD opens promising perspectives for solving SNDP variants
with planning horizons.

Positioning the LSNDP with regard to Service Network Design literature

Most bibliographic references in this section are classified in Table 2.3. In this
table, we indicate if the design variables are binary or integer. We examine whether
inventory cost or planning horizon are considered. We report whether shipments
to be transported have a fixed origin or not. Finally, we report whether an exact
method or a heuristic method is proposed.

Table 2.3: Characteristics of SNDP models

References Design variables Planning horizon Inventory cost Shipment origin not fixed Exact Heuristic
[Crainic 2000a] Binary - - - - X
[Holmberg 2000] Binary - - - - X
[Chouman 2003] Binary - - - X -

[Ghamlouche 2003] Binary - - - - X
[Crainic 2004] Binary - - - - X

[Ghamlouche 2004] Binary - - - - X
[Frangioni 2009] Integer - - - X -
[Jarrah 2009] Integer X X - - X
[Hewitt 2010] Binary - - - - X

[Rodríguez-Martín 2010] Binary - - - - X
[Andersen 2011] Binary X - - X -
[Erera 2013] Integer X X - - X
[Crainic 2016] Binary X - - - X
[Fontaine 2017] Binary X - X X -
[Boland 2017] Integer X - - X -
Our problem Integer X X X X X

While the LSNDP considered in this thesis and the SNDP are similar, they
also differ in some fundamental ways. In the LSNDP, products flow from suppli-
ers to customers. Thus, the LSNDP seeks to design a “forward flow” network.
The SNDP, on the other hand, makes no presumptions regarding the direction of
product/shipment flows, as any terminal can be the origin or destination of a com-
modity. In a sense, these unidirectional flows make the LSNDP easier to solve than
the SNDP, as network structure can be exploited in the algorithms. The SNDP
generally presumes that the origin and destination location for each shipment to be
transported is specified a priori. In the LSNDP, however, customers request deliv-
ery of products that may be offered in multiple locations. As a result, the LSNDP
also determines the origin location for each transported product request. In this
sense, the LSNDP could be more challenging to solve than the SNDP as it consid-
ers an additional decision. Finally, in both problems the freight can be stored in
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intermediate terminals. However, the LSNDP takes into account the storage costs
in the objective function while the SNDP usually does not.

2.4 Conclusions

In this chapter we have defined the LSNDP, and have proposed a mixed-integer
linear program. We also have positioned the LSNDP in the existing literature.
Because of the network multi-echelon structure and the presence of multiple ship-
ping origins to satisfy customer demands, the LSNDP can be seen as a problem
for supply chain optimization. On the other hand, the LSNDP seeks to design a
plan for transporting shipments through a distribution network, similarly to the
SNDP. We have seen that for both the supply chain optimization problems and the
SNDP, commercial solvers are only able to provide high-quality solutions for small
and medium size instances. To face the challenge posed by large scale instances, it
is necessary to implement effective solution algorithms.
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3.1 Introduction

As the variables and constraints of the LSNDP are proportional to the number of
products, this parameter has a significant impact on the model size. In addition, the
larger is the number of products considered, the larger is the number of consolidation
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possibilities, which increases the problem combinatorics. For these reasons, on-the-
shelf optimization solvers have difficulty solving LSNDP instances with a significant
number of products. In this chapter, we propose an exact solution algorithm that
remains effective when the number of products increases.

We propose a Benders decomposition-based solution approach [Benders 1962]
sharing similarities with the partial Benders decomposition approach proposed in
[Crainic 2016] for speeding up the solution of scenario-based stochastic programs.
In [Crainic 2016], information is derived from the scenarios that define the stochas-
tic program, and used to strengthen the relaxation, namely the master problem.
Computational results in [Crainic 2016] indicate that the information added to the
relaxation greatly strengthens the bound it yields and increases the algorithm’s
speed of convergence.

Traditional Benders-type methods for deterministic network design problems
(see Magnanti et al. [Magnanti 1986], Sridhar and Park, [Sridhar 2000] or Costa
[Costa 2005] for applications to the SNDP) solve a master problem where the need
to route shipments/products is relaxed, leaving a relaxation whose solution pro-
vides a weak bound on the objective function value of the original problem. We
propose to strengthen the master problem with variables and constraints that model
the need to route a single product that is an aggregation of the different product
customer requests. We prove the validity of this new master problem and show
with an extensive computational study that it yields significantly stronger bounds
than the master problem traditionally solved. By examining the structure of the
LSNDP, we derive valid inequalities to reinforce the master problem. Finally, we
complement these techniques for strengthening the dual bound with a heuristic for
quickly producing high-quality solutions.

The remainder of the chapter is organised as follows. In section 3.2 we present
the partial Benders decomposition for the LSNDP. Valid inequalities and heuristic
solutions are described resepectively in section 3.3 and section 3.4. In section 3.5, we
present and discuss the results of an extensive computational study on the algorithm
performance. Finally, we conclude in section 3.6.

3.2 A Partial Benders Decomposition for the Logistics
Service Network Design Problem

In this section, we first present the general framework of the Benders algorithm.
Then, we describe the straightforward Benders decomposition of the LSNDP. Fi-
nally, we propose a partial Benders decomposition of the LSNDP, and a master
problem strengthened with information based on product aggregation.

3.2.1 General framework of the Benders decomposition algorithm

Benders decomposition is a solution strategy for large mixed-integer linear problems
that decomposes a problem into a master problem and a set of subproblems. As
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we consider a single subproblem in our method, we describe the method in that
context. The master problem is a relaxation of the original problem that considers
a subset of the variables in the original problem and an estimate of the optimal
objective function value of the subproblem. Solving the master problem yields a
dual bound on the optimal objective function value of the original problem and
variable values that are used to formulate the subproblem that determine values for
the remaining variables. When the subproblem is feasible, a feasible solution to the
original problem can be constructed. This feasible solution yields a primal bound
on the optimal objective function value of the original problem. When the objective
function value of the subproblem does not agree with the estimate in the master
problem, a Benders cut known as an Optimality cut is generated. This type of cut
is typically generated from an extreme point of the dual polyhedron associated with
the subproblem. When the subproblem is not feasible, a Benders cut known as a
Feasibility cut is generated. This type of cut is typically generated from an extreme
ray of the dual polyhedron associated with the subproblem. Generated cuts are
added to the master problem, which is then solved again. The process repeats until
the primal and dual bounds are within some pre-defined optimality tolerance, ε, or,
no Benders cuts are generated.

3.2.2 Straightforward decomposition

For the LSNDP, the standard Benders decomposition yields a master problem that
allocates trucks on transportation arcs and a subproblem that routes product flows
using the capacity allocated by the master. With Ω and Γ representing the extreme
rays and extreme points of the subproblem dual polyhedron, this classical master
problem, CMP, is formulated as follows:

min
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij + z (3.1)

0 ≥
∑
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p
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p
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ytt
′

ij ∈ N+, ∀((i, t), (j, t′)) ∈ AT (3.4)

z ∈ R+ (3.5)

The objective function, (3.1), computes the total vehicle costs and an approxi-
mation of the costs associated with routing products. Both constraints (3.2) and
(3.3) are traditional Benders cuts added dynamically after solving the subproblem.
Constraints (3.2) are feasability cuts, and constraints (3.3) are optimality cuts.
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Given an allocation of vehicles ȳ, the subproblem SP(ȳ) is formulated as:

min
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Given a vehicle allocation ȳ, the subproblem seeks to satisfy customer requests
for products, while minimizing the routing and storage costs incurred while doing so.
Therefore, the subproblem has the same flow conservation constraints (2.2)- (2.3)
as the complete model proposed in Chapter 2. Constraints (3.7) ensure that on
each transportation arc the total flow cannot exceed the available capacity. It has
been recognized that this decomposition leads to poor computational performance
[Rahmaniani 2017] since the master problem and subproblem are unbundled. In
particular, as the master problem is primarily constrained by the Benders cuts, in
the early iterations of the algorithm the solution to the master problem is unlikely
to yield a high-quality solution to the original problem.

3.2.3 Strengthening the master with product aggregation

As a result, Crainic et al. [Crainic 2014a, Crainic 2016] propose a partial Benders
decomposition technique in the context of solving two-stage stochastic programs that
strengthens the master problem by adding information to the master that is derived
from the subproblem(s). For our problem, we add to the master problem variables
and constraints related to the routing of a “super-product”, χ that is derived from
aggregating all the products p ∈ P. Therefore for every customer (c, t) ∈ CT ,
the demand for this "super-product" is obtained by aggregating the demand of all
products: Dχ

ct =
∑
p∈P

dpct. Relatedly, for each arc ((i, t), (j, t′)) and product p such

that a flow variable xptt
′

ij is defined in the LSNDP, a super-product flow variable
xχtt

′

ij is defined in our master problem. Figures 3.1 and 3.2 illustrate an example,
respectively before and after aggregating the products. Such an aggregation induces
a loss information, as we cannot restrict suppliers to only ship products they offer.
In the aggregated version each supplier offers the "super-product".

Our enhanced master problem (EMP) allocates vehicle capacity on transporta-
tion arcs in order to satisfy the routing of the super-product. EMP is formulated
as follows:

min
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij + z (3.9)
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Figure 3.1: Customer requests one unit
of each of two products, each of which
supplied by a different supplier

Figure 3.2: Customer requests two units
of the “super-product” that is supplied
by both suppliers
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The objective function remains unchanged. Constraints (3.10) enforce the
super-product flow conservation on each warehouse. Constraints (3.11) ensure
that each customer demand of super-product is fulfilled. Constraints (3.12) ensure
that vehicle capacity is allocated to support the flows of super-product. Constraints
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(3.13) bounds the flows cost approximation z. Constraints (3.2) and (3.3) are the
Benders cuts generated dynamically.

To ensure that a Benders decomposition-based scheme based on this master
problem will converge to an optimal solution of the LSNDP, we must prove that
EMP is a relaxation of the original problem.

Theorem 1 The enhanced master problem, EMP, is a relaxation of the Logistics
Service Network Design problem, LSNDP.

Proof 1 We prove this claim by showing that any feasible solution to the LSNDP
is also feasible for the EMP and has the same objective function value. Let (x, y)
be a feasible solution of the LSNDP, and consider a solution (xχ, y, z) such that:
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It is easy to prove this solution is feasible for the enhanced master problem. By
construction, for any variable xptt

′

ij in the LSNDP, there is a corresponding variable
xχtt

′

ij in EMP. We know that for each warehouse (j, t′) ∈ WT and each product p ∈
P:
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Therefore (xχ, y, z) respects constraints (3.10). As (x, y) respects constraints
(2.3)- (2.4), it is trivial to demonstrate (xχ, y, z) also respects constraints (3.11)-
(3.12). By construction of z, (xχ, y, z) respects constraints (3.13) which makes it
an admissible solution to the enhanced master problem. Let Q(x, y) be the objective
value of (x, y) :
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Solution (xχ, y, z) that replicates solution (x, y) by an aggregation of flows, is
feasible to the enhanced problem. The two solutions have identical objective function
value. Thus EMP is a relaxation of the LSNDP.
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There exist multiple state-of-the-art techniques for accelerating the convergence
of a Benders algorithm. Among the most common examples, one can tighten the
master problem with valid inequalities [Saharidis 2011], develop procedures for ef-
fectively computing master problem solutions [Rei 2009, Costa 2012], or put effort
to generate strong Benders cuts [Magnanti 1981, Codato 2006, Fischetti 2010]. To
accelerate the convergence of our Benders decomposition-based strategy, we develop
valid inequalities as well as heuristic solutions. These acceleration techniques are
described in the following sections.

3.3 Polyhedral Approach

By formulating the EMP with an aggregated product there is still some loss of
information, such as which products each supplier can supply. This loss of infor-
mation can lead the master problem to have an optimal solution which induces
an infeasible subproblem. Thus, to prevent that from happening, we reinforce the
master problem with three valid inequalities that render infeasible such solutions to
the master problem. In this section, we describe these valid inequalities in detail.
The validity of each inequality is demonstrated in the Appendix.

3.3.1 Super-Source Inequalities

We illustrate this valid inequality with a static network, but it has a natural analog
in a time-expanded network. Specifically, Figure 3.3 illustrates two suppliers, with
s1 providing product p1 and s2 providing product p2. On the demand side, customer
c requires one unit of each product. Vehicle capacity is 10. There are transportation
arcs (s1, c) and (s2, c), but the variable and fixed costs associated with (s1, c) are
less than with (s2, c).

To formulate the EMP, we aggregate products p1 and p2 into one super-product
χ, which is provided by both s1 and s2. Customer c’s demand of the super-product
is obtained by summing the demands of p1 and p2, Dχ

c =
∑
p∈P

dpc = dp1
c + dp2

c = 2

Given the cost structure in this instance, the optimal solution to the EMP is to
route 2 units of the super-product from s1 to c. This solution is illustrated in Figure
3.4.

However, such a solution to the EMP will induce an infeasible subproblem as
the vehicle allocation does not provide a path from s2 to c, which is necessary for
c to receive product p2. To avoid such a solution, for each product p ∈ P we add
to the network what we refer to as a “super-source” ssp (see figure 3.5). Then, for
each supplier node s ∈ N such that p ∈ Ps, we add to A the arc (ssp, s) with zero
transit time, linear cost and fixed cost. In addition, we compute the total demand
over all customers for each product, Dp =

∑
(c,t)∈CT

dpct. We then add constraints to

EMP to ensure that at least Dp units of the super-product is shipped from ssp and
that supplier nodes observe flow conversation with respect to the super-product.
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Figure 3.3: LSNDP instance Figure 3.4: EMP optimal solution

Returning to our example, as the total demand for each of p1 and p2 is one unit,
the proposed valid inequalities ensure that both ss1 and ss2 ship at least one unit
of super-product. As the super-sources have outcoming arcs only to the suppliers
that offer their products, in a solution to the EMP s1 and s2 must receive one unit
of super-product respectively from ss1 and ss2 (see Figure 3.5). Also, as we enforce
flow conservation for s1 and s2, any solution to the EMP must flow one unit of
super-product from s1 to c and from s2 to c, meaning the vehicle allocation in the
optimal solution to the EMP will induce a feasible subproblem (Figure 3.6)

Figure 3.5: Valid inequalities Figure 3.6: EMP new optimal solution

Formally, we add the following constraints to the EMP:

∑
((ssp),(j,t))∈AT

xχtsspj
≥ Dp, ∀p ∈ P (3.17)
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3.3.2 Direct Supply Inequalities

Like the previous valid inequality, we illustrate this inequality with a static network,
as in Figure 3.7. We again have that suppliers s1 and s2 provide products p1 and
p2, respectively. Now, however, there are two customers, each of which request
one unit of both p1 and p2. Because each supplier only makes one of the two
products requested, the “direct” arcs (s1, c1) and (s2, c2) cannot fully satisfy those
customer demands. Instead, given this network, any feasible solution to the original
problem requires that shipments from s1 and s2 be transported through warehouse
w. To formulate the EMP, the products are aggregated, leaving c1 and c2 with
the following super-product demands: Dχ

c1 =
∑
p∈P

dpc1 = 2 and Dχ
c2 =

∑
p∈P

dpc2 = 2.

For some cost structures, the optimal solution to the EMP will be the solution
illustrated in figure 3.8.

Figure 3.7: LSNDP instance Figure 3.8: EMP optimal solution

However, such a solution induces an infeasible subproblem as the vehicle al-
location it prescribes does not provide a path from s1 to c2 (or from s2 to c1).
To avoid such an allocation, we use a valid inequality that restricts the flows of
super-product on direct arcs. Specifically, given a supplier s ∈ S with product set
Ps, and a customer c ∈ C, we compute how much demand c can receive from s:
dsc =

∑
p∈Ps

dpc . We then restrict the quantity of super-product flow on the direct arc

(s, c) to be no greater than dsc.
We illustrate these inequalities in Figure 3.9. As s1 only offers p1, the flow of

super-product on the direct arc (s1, c1) cannot exceed dp1
c1 = 1. Similarly, the flow

of super-product on direct arc (s2, c2) cannot exceed dp2
c2 = 1. With the inequalities
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illustrated in Figure 3.9, an optimal solution to the EMP may be the solution
illustrated in Figure 3.10, which induces a feasible subproblem.

Figure 3.9: Valid inequalities Figure 3.10: EMP new optimal solution

In the context of a time-expanded network, given a time-expanded supplier
(s, t) ∈ ST with product set Ps, and a time-expanded customer (c, t′) ∈ CT , we
denote dstct′ =

∑
p∈Ps

dpct′ as the demand that (c, t′) can receive directly from (s, t).

Formally, we add the following valid inequality to the EMP:

xχtt
′

sc ≤ dstct′ , ∀((s, t), (c, t′)) ∈ AT , (s, t) ∈ ST , (c, t′) ∈ CT (3.19)

3.3.3 Time-Based Super-Source Shipment Inequalities

Unlike the previous two inequalities, this valid inequality considers the timing of
shipment activities. Like the previous two inequalities, we explain this inequality
with an example. Specifically, Figure 3.11 illustrates a time-expanded network
associated with the network depicted in Figure 3.3, wherein the time horizon is
3 days. Customer c’s demand is zero for both products at time t1. However, c
requests one unit of each product at times t2 and t3. As a result, to formulate the
EMP, the products are aggregated to yield the following super-product demands:

Dχ
ct1 = 0, Dχ

ct2 = Dχ
ct3 = 2

A potential optimal solution to the resulting EMP is the solution depicted in
Figure 3.12, which does not induce a feasible subproblem as the vehicle allocation
does not provide a path from s2 that arrives at c by day 2, when the delivery of
one unit of p2 is requested. We avoid such allocations in a manner similar to the
Super-source inequalities described in subsection 3.3.1, but we now consider the
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Figure 3.11: LSNDP instance

timing of shipment activities. Specifically, for each product p ∈ P and each time
t ∈ T , we sum the demands over all customers and obtain a global demand:

Dp
t =

∑
c∈C

dpct, ∀p ∈ P, ∀t ∈ T

Then, for each product p ∈ P and each time t ∈ T , we sum the global demands
requested before time t or at time t and obtain a cumulative global demand:

D̄p
t =

∑
t′≤t

Dp
t′ , ∀p ∈ P, ∀t ∈ T

For our example, the global demands and cumulative global demand are as given
in the following tables. The left table corresponds to product p1, the right table
corresponds to product p2. First line shows the global demands, the second line
shows the cumulative global demands.

t 1 2 3
Dp1
t 0 1 1

D̄p1
t 0 1 2

t 1 2 3
Dp2
t 0 1 1

D̄p2
t 0 1 2

Given a period t wherein there is an increase in the cumulative global demand
for a product (e.g. day 3 for p1 in our example), we derive a latest time at which
that product can be shipped from the corresponding super-source and be delivered
on time. To do so, we determine in G the shortest-path (in terms of time) between
each super-source (ssp ∈ SS) and each customer (c ∈ C). We denote the length
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Figure 3.12: EMP optimal solution

of this shortest path, in terms of time, by tminsspc. Then, for each super-source, ssp,
we determine the shortest possible delivery time, tminssp

= min
∀c∈C

tminsspc. This duration
indicates the smallest transit time between super-source ssp and a customer for its
product. Thus, given a cumulative global demand D̄p

t such that D̄p
t >

¯Dp
t−1, if the

total amount of product p shipped from super-source ssp before t− tminssp
is strictly

less than D̄p
t , the demands of product p at time t cannot be satisfied.

Returning to our example, in Figure 3.11, one can see that the shortest-path
duration from ssp2 to c is tminssp2c

= 1. As c is the only customer, we have that
tminss2 = 1. Thus, for each t∗ ∈ T such that D̄p2

t∗ > ¯Dp2
t∗−1, we must enforce that

the flow of super-product from ssp2 to supply nodes (s, t) with t ≤ t∗ − tminss2 is at
least D̄p2

t∗ . For example, as D̄p2
t2 > D̄p2

t1 the super-product flow from ss2 to (S2, T1)
must be greater or equal to D̄p2

t2 = 1, which is not the case in the solution depicted
in Figure 3.12. Similar reasoning can be applied to p1. We illustrate these valid
inequalities in Figure 3.13 and the resulting optimal solution to the EMP in Figure
3.14, which will induce a feasible subproblem.

Formally, for each product p ∈ P and every time t∗ ∈ T such that D̄p
t∗ >

¯Dp
t∗−1

- we add the following constraint to EMP:

∑
((ssp),(j,t))∈AT
t≤t∗−tmin

ssp

xχtsspj
≥ D̄p

t∗ , ∀p ∈ P, ∀t∗ ∈ T , D̄p
t∗ >

¯Dp
t∗−1 (3.20)
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Figure 3.13: Valid inequalities

Figure 3.14: EMP new optimal solution
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3.4 Heuristic Solutions

In a standard Benders decomposition-based solution method, primal solutions are
only produced when the subproblem is feasible. Thus, to speed up the search for
high-quality primal solutions, we propose a slope-scaling heuristic that derives a
feasible primal solution from an unfeasible subproblem. In short, we first determine
whether we should attempt to repair the vehicle allocation, ȳ, and then we repair
that allocation. We next describe each step in detail. Algorithm 1 provides a
high-level description of the procedure.

Algorithm 1 Build heuristic solution
Require: EMP solution (x̄χ, ȳ), threshold r̄
if SP(ȳ) is infeasible then

Add corresponding Benders feasibility cut to the master
Build SPs(ȳ) with slack variables spjt for each customer’s demand
Solve SPs(ȳ) to obtain (ẋ, ṡ)
Evaluate the percentage, r, of demand quantities, dpjt, served with slack vari-

ables
if r < r̄ then

Determine initial vehicle allocation ẏ from ẋ
for Each demand dpjt served by slack variables in decreasing order do

Route demand dpjt with a slope-scaling linear program
Update (ẋ, ẏ)

end for
if (ẋ, ẏ) has a better objective value than the incumbent then

Update the incumbent
end if
Solve SP(ẋ, ẏ) and add the resulting Benders optimality cut to the master

end if
end if

3.4.1 Identifying Promising Unfeasible Solutions

To determine whether to repair a vehicle allocation, ȳ, we formulate a subproblem
SPs(ȳ) with slack variables to identify how “close” the subproblem is to being
feasible given that allocation. The premise is that the closer the subproblem is to
being feasible, the more likely a high-quality solution can be derived by making just
a few modifications to ȳ. The subproblem, SPs(ȳ), is formulated as follows:

min
∑

((i,t),(j,t′))∈AT

∑
p∈P

cijx
ptt′

ij +
∑

((i,t),(i,t′))∈HT

∑
p∈P

ciix
ptt′

ii +
∑

(i,t)∈CT

∑
p∈P

cprohibspit

(3.21)

(2.2)- (3.7)
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∑
((i,t),(j,t′))∈AT

xptt
′

ij + spjt′ ≥ d
p
jt′ ∀(j, t′) ∈ CT ,∀p ∈ P (3.22)

xptt
′

ij ∈ R+, ∀((i, t), (j, t′)) ∈ AT ∪HT ,∀p ∈ P i (3.23)

spit ∈ R+, ∀(i, t) ∈ CT (3.24)

This linear program differs from the original subproblem by the extra slack
variables, spjt, which appear in the objective, and the replacement of constraints
(2.3) with constraints (3.22). We note that the slack variables guarantee that this
suproblem is feasible. In the method we propose, we choose an objective function
coefficient, cprohib, for these slack variables that is high enough that an optimal
solution to SPs(ȳ) will only assign positive values to the slack variables when the
original subproblem is infeasible. Given an optimal solution (ẋ, ṡ) to SPs(ȳ), we
compute the percentage of customer demands that cannot be met with the alloca-
tion ȳ:

r =

∑
(i,t)∈CT

∑
p∈P

ṡpit∑
(i,t)∈CT

∑
p∈P

dpit

This measure is our indicator of how “close” the allocation of vehicle capacities,
ȳ, is to inducing a feasible subproblem. We compare this percentage with a thresh-
old, r̄, to determine whether we should attempt to repair the solution ȳ so that it
induces a feasible subproblem, SP(ȳ).

3.4.2 Slope-Scaling Repair Mechanism

Given a vehicle allocation that is to be repaired, the heuristic determines the mini-
mum vehicle allocation needed to route the product flows, ẋptt

′

ij , specified by the sub-

problem. Specifically, the heuristic computes ẏtt′ij =


∑

p∈P
ẋptt′

ij

ĉ

, ∀((i, t), (j, t′)) ∈

AT . The heuristic then iterates through customer demands served by slack variables
in decreasing order of size, dpjt′ , and finds a route for each demand via a slope-scaling-
type ([Kim 1999b, Kim 2000, Crainic 2004, Kim 2006, Zhu 2014]) procedure that
we next describe.

The slope-scaling procedure for demand request dpjt′ begins by computing the
remaining capacity on each arc given the vehicle allocations, ẏtt′ij . It does so
by computing restt

′
ij = ĉẏtt

′
ij −

∑
p∈P

ẋptt
′

ij , ∀((i, t), (j, t′)) ∈ AT . Then, the pro-

cedure determines how many “extra” vehicles are needed on an arc if it is to
transport the demand request. Specifically, it calculates for dpjt′ the quantity
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extratt
′

ij = max
(

0,
⌈
dp

jt′−res
tt′
ij

ĉ

⌉)
. These quantities are then used to compute the

terms, c̃tt′ij , that linearize the fixed costs associated with allocating additional ve-

hicles to arcs. Specifically, the quantities c̃tt′ij =
cijd

p

jt′+fijextra
tt′
ij

dp

jt′
= cij + fijextra

tt′
ij

dp

jt′

are computed. These terms are used to formulate and solve the following linear
program for routing dpjt′ .

min
∑

((i,t),(j,t′))∈AT

c̃tt
′

ij x
tt′
ij +

∑
((i,t),(i,t′))∈HT

ctt
′

ii x
tt′
ii (3.25)

subject to ∑
((i,t),(j,t′))∈AT ∪HT

xtt
′

ij −
∑

((j,t′),(l,t′′))∈AT ∪HT

xt
′t′′
jl = 0, ∀(j, t′) ∈ WT (3.26)

∑
((i,t),(j,t′))∈AT

xtt
′

ij ≥ d
p
jt′ , ∀(j, t′) ∈ CT (3.27)

xtt
′

ij ∈ R+, ∀((i, t), (j, t′)) ∈ AT ∪HT ., p ∈ P i (3.28)

The objective function of this linear program computes the total, approximated,
routing costs on transportation arcs and storage costs associated with holding arcs.
Flow conservation is enforced by (3.26), while the satisfaction of demand dpct is
enforced by (3.27). Given a solution, ẍ to this linear program, the heuristic updates
the overall solution, (ẋ, ẏ) as follows:

ẏtt
′

ij =

 ẋ
ptt′

ij + ẍtt
′

ij

ĉ

, ∀((i, t), (j, t′)) ∈ AT ,

ẋptt
′

ij = ẋptt
′

ij + ẍtt
′

ij , ∀((i, t), (j, t′)) ∈ AT ∪HT .

After executing these steps for each demand served by slack variables, the re-
sulting solution (ẋ, ẏ) is a feasible solution for the original problem. If its objective
function value is lower than the current best, the newly-found solution is recorded
as being the best known solution. In addition, note that for each heuristic solu-
tion (ẋ, ẏ) found, we solve the subproblem associated to the vehicle allocation ẏ.
This enables us to generate a new optimality cut, and thus strengthen the master
problem.
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3.5 Computational study

In this section, we assess the efficiency of our proposed algorithm through a com-
putational study. We first describe the instances used and then how the study was
performed. We then analyze results from that study, first to assess the effectiveness
of the approach and then the impact of each of its components.

3.5.1 Instances

The algorithm is tested on a set of instances produced by a random generator
inspired by the operations of our industrial partner. One parameter is the size of
the node set. Given that size, the generator randomly generates a graph G on a
square area of size 100× 100. Based on the supply chain of our industrial partner,
we label 30% of the nodes as supplier locations and 50% as customer locations.
Amongst the remaining nodes, two are labeled as central warehouses whereas the
remaining are labeled as regional warehouses.

Regarding transportation arcs, A contains an arc from each supplier to the near-
est central warehouse and from each central warehouse to each regional warehouse.
In addition, there is a transportation arc in A to each customer from its nearest
regional warehouse. A second parameter of the generator is α, a connectivity radius
value that is used to determine additional arcs in A. Specifically, a transportation
arc is added from each supplier to any regional warehouse/customer in a radius of
α units. Similarly, a transportation arc is added from each regional warehouse to
any customer in a radius of α units.

The travel times and fixed costs for an arc are set to be proportional to its
length. For the travel time, we set a maximum of tmaxij = 24h. We calculate dmin
and dmax, the smallest and largest distances between nodes of V . Then, given two
nodes i and j with distance dij , we set the travel time as: tij = t

max
ij ∗

(
dij−dmin

dmax−dmin

)
.

The truck fixed cost is set to 0.55 per unit of distance: fij = 0.55dij . Finally, on
each arc we set a flow cost of 0.4 for loading and unloading each pallet of product,
yielding cij = 0.8.

The temporal aspect of an instance is determined by two more parameters: (1)
D, the number of days in the planning horizon, and, (2) ∆, the time granularity.
The time granularity ∆ expresses the number of time points per day in the time-
expanded graph. For example, if ∆ = 2 there are 2 time points per day and each
pair of contiguous time points is separated by a time interval of 12 hours. Then,
the time horizon for the model is T = [1, D ×∆]. To express the travel time of an
arc in terms of time points, we set tij = d tij ∗∆/24e, where the original travel time
of arc (ni, nj) ∈ G is tij .

The last parameter is the size of the product set, P. Regarding suppliers, each
supplier has a 15% chance of offering a product. Regarding customers, each cus-
tomer has a demand for each product one, two or three times each week with the
determination made randomly. These days are chosen randomly. The volume of
each demand is randomly chosen in the interval [0; 5]. Vehicle capacities are set to
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60.
For our experiments, we generate instances based on the following param-

eter values: |G| = {50}, α = {10, 30}, D = 30 days, ∆ = {2, 3, 4}, and
|P | = {100, 200, 300, 400, 500}. Thus, there are 30 possible combinations of pa-
rameter values and for each combination we generated 5 instances, leaving 150
instances in total.

In Figure 3.15 we report the LSNDP growth in terms of variables and con-
straints, as the number of products increases. Growth is normalised on instances
with 100 products, which include an average of 718 156 variables and 111 720 con-
straints. We see that growth is substantial and quasi-linear, with a factor 5 increase
for instances with |P| = 500.
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Figure 3.15: Growth in MILP normalized for instances with |P| = 100

3.5.2 Setup of the study

To assess the efficiency of each component of the proposed algorithm, we tested
several methods on the instances detailed above. The first method, SPBD, is the
partial Benders decomposition-based scheme, wherein the Super-Product master
problem, EMP, is used, but the valid inequalities and heuristic are not used. Then,
to test the effectiveness of the valid inequalities, the methods SPBD1, SPBD2
and SPBD3 are Super-Product Benders Decomposition methods supplemented
with the a priori cuts described in subsections 3.3.1 (SPBD1), 3.3.2 (SPBD2),
and 3.3.3 (SPBD3). The method SPBD123 employs all three a priori cuts. The
method SPBD123H is similar, only it also employs the proposed heuristic.
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As benchmarks, we used three other methods. The first method, CBD is the
Classic Benders Decomposition, wherein none of the enhancements proposed in
this paper are used. In the second, CPLEX, the complete program is solved with
CPLEX’s default branch-and-cut. In the last, CPLEX-Benders, the complete
program is solved with CPLEX’s automatic Benders decomposition.

All Benders decomposition-based methods are implemented with the callback
framework wherein subproblems are solved within the context of the branch-and-
bound tree used to solve the master problem. Specifically, whenever an integral
solution is found in the tree, the subproblem is solved. The resulting cut is then
embedded in every node of the tree, and may cut-off the incumbent. The process
terminates once the optimality gap is closed. We initiate every method with a
heuristic solution (xh, yh) obtained by setting each vehicle variable, ytt′ij to the ceiling
of its value in the optimal solution of the linear relaxation of the LSNDP.

Note that we implemented versions of the Benders decomposition-based methods
that generated pareto-optimal cuts ([Magnanti 1981]). Doing so did not improve
method performance.

All algorithms are coded in C++ and executed on an Intel Xeon E5-2695 pro-
cessor with 16 GB of memory under Linux 16.04. Linear and integer programs were
solved using Cplex 12.7. All algorithms are executed with a stopping criteria of a
proven optimality gap of 1% or less and a maximum run-time of 1.5 hours. For
SPBD123H, the threshold parameter, r̄, is set to 20% after tuning.

3.5.3 Effectiveness of SPBD123H

We first benchmark SPBD123H against CBD, CPLEX, and CPLEX-Benders
by comparing optimality gaps at termination for each method. We note over the
150 instances, very few were solved within the time limit. More specifically, CPLEX
solved to optimality three of the smallest instances. We present in Table 3.1 averages
of these gaps over instances with the same number of products |P|. The best values
are in bold. We also display distributions (in deciles) of the gaps according to the
number of products for |P| = 100 (Figure 3.16), |P| = 200 (Figure 3.17), |P| = 300
(Figure 3.18), |P| = 400 (Figure 3.19) and |P| = 500 (Figure 3.20).

Table 3.1: Optimality gaps comparison of CBD, CPLEX-Benders, CPLEX and
SPBD123H

|P| CBD CPLEX-Benders CPLEX SPBD123H
Opt. gap Opt. gap Opt. gap Opt. gap

100 95.75% 54.80% 7.22% 5.02%
200 99.89% 57.80% 25.34% 3.59%
300 99.90% 54.73% 64.58% 3.94%
400 99.99% 56.07% 69.71% 3.38%
500 99.99% 51.96% 75.74% 2.80%
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Figure 3.16: Gap at termination distribution for |P| = 100
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Figure 3.17: Gap at termination distribution for |P| = 200
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Figure 3.18: Gap at termination distribution for |P| = 300
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Figure 3.19: Gap at termination distribution for |P| = 400
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Figure 3.20: Gap at termination distribution for |P| = 500

We observe that SPBD123H yields better gaps at termination, on average,
than our three benchmark algorithms for every set of instances. The performance
of CPLEX degrades as the number of products increases. On the other hand,
SPBD123H remains effective for the larger instances. The average gap at termi-
nation reported by SPBD123h decreases as the number of products increases.
We will analyze why this occurs later. Having established the effectiveness of
SPBD123h, we next turn our attention to how its features impact its ability to
produce a strong lower bound.

3.5.4 Improving the Lower Bound

We first study the impact of using the super-product-based master problem, EMP,
on the lower bound produced at termination. To do so, we report in Table 3.2
the average lower bound reported by SPBD and each of our three benchmarks at
termination. We see that CBD yields a very weak lower bound, while CPLEX and
CPLEX-Benders produce stronger lower bounds. SPBD produces the strongest
lower bound, one that is 26.39% greater, on average, in value than the bound
produced by the best benchmark (CPLEX-Benders). Thus, we conclude that
the Benders decomposition scheme based on the super-product master problem is
superior to the benchmark methods with respect to the lower bound produced at
termination.

Having established the effectiveness of using EMP in the context of Benders
decomposition, we next assess the impact of the proposed valid inequalities. To
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Table 3.2: Average lower bound reported at termination

CBD CPLEX CPLEX-Benders SPBD
1,031 120,316 137,692 187,064

do so, we compare the performance of SPBD, SPBD1, SPBD2, SPBD3 and
SPBD123 with respect to the average optimality gaps and lower bounds reported
at termination as well as the average number of feasibility and optimality cuts
generated during execution. We present these results, averaged over all instances,
in Table 3.3.

Table 3.3: Gaps, lower bounds and number of Benders cuts found by SPBD,
SPBD1, SPBD2, SPBD3 and SPBD123

Method Opt. gap Lower bound Feasibility cuts Optimality cuts
SPBD 39.26% 187,064 67.19 0.0
SPBD1 37.64% 191,808 39.51 0.0
SPBD2 8.75% 281,211 24.45 0.01
SPBD3 37.39% 192,629 33.91 0.00
SPBD123 5.17% 291,930 14.59 0.16

The use of each valid inequality leads to a decrease in the optimality gap at
termination as well as an increase in the lower bound compared to SPBD. When
considered individually, the first and third valid inequalities have a smaller impact
than the second valid inequality. However, amongst these methods, the best results
are obtained with SPBD123, indicating that all three valid inequalities, together,
are the most effective. We also see that the valid inequalities have a significant
impact on the number of feasibility cuts generated. Recalling that the valid in-
equalities are designed to render infeasible vehicle allocations that will not yield a
feasible subproblem, this suggests the inequalities are having the intended effect.

We also observe that regardless of the method, the number of optimality cuts
generated is very low, which means only a few vehicle allocations result in feasi-
ble subproblems. This suggests that the LSNDP is more of a feasibility problem
than an optimality problem. Thus, to improve the quality of the upper bound, we
implemented a heuristic procedure that derives feasible solutions from infeasible
subproblems. We next study the impact of the proposed heuristic.

3.5.5 Improving the Upper Bound

We next analyze the impact the proposed heuristic has on the ability of
SPBD123H to produce high-quality primal solutions. To do so, we measure for
an instance and a method the improvement in the primal solution over that of the
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initial heuristic solution, (xh, yh), by computing the primal gap:

primal-gapMethod
UB = z(xh, yh)−UBMethod

z(xh, yh) × 100

Here, UBMethod represents the objective function value of the best primal
solution found by the method Method during its execution. We benchmark
SPBD123H against CPLEX and SPBD123, and present averages of these
primal gaps over instances with the same number of products. In Table 3.4,
"% Method impr." indicates the percentage of instances for which the considered
method managed to improve the initial primal solution. "primal-gapMethod

UB " indi-
cates the average primal gap obtained over instances for which the initial primal
solution is improved. The best values are in bold.

Table 3.4: Comparison of upper bounds produced by CPLEX, SPBD123 and
SPBD123H

|P| % CPLEX impr. primal-gapCP LEX
UB % SPBD123 impr. primal-gapSP BD123

UB % SPBD123H impr. primal-gapSP BD123H
UB

100 66.67% 4.08% 16.67% 3.36% 86.67% 6.86%
200 33.33% 1.68% 0.00% - 76.67% 2.27%
300 0.00% - 0.00% - 10.00% 0.90%
400 0.00% - 0.00% - 0.00% -
500 0.00% - 0.00% - 3.33% 0.90%

As the number of products increases, all methods struggle to improve the initial
primal solution. In addition, we observe that CPLEX has a better performance
than SPBD123 for every set of instances. Thus, implementing the EMP and the
valid inequalities in the Benders strategy does not allow to obtain better primal
solutions than those computed by CPLEX. Nevertheless, the situation reverses
when we embed the slope-scaling heuristic into the Benders strategy. Indeed, for
each set of instances, SPBD123H improves the initial primal solution more often
than CPLEX, and with greater magnitude.

We now compare the primal solutions obtained by SPBD123H to those com-
puted by CPLEX. For each instance, we compute an improvement rate:

impr = UBCPLEX −UBSPBD123H
UBCPLEX

× 100

In Table 3.5, we report the average improvement rates over instances with the
same number of products.

Table 3.5: Improvement rates

|P| % impr
100 3.26%
200 0.99%
300 0.09%
400 0.00%
500 0.03%

SPBD123H outperforms CPLEX for each set of instances. As both methods
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have difficulties to improve the upper bound for large instances, the improvement
rate tends to 0 as the number of products grows.

We return our attention to Table 3.1, and the observation that the optimality
gap reported by SPBD123H at termination decreases as the number of products
increases. At the same time, we see that SPBD123H has difficulties to improve
the initial primal solution as the number of products increases. From these obser-
vations, we conclude that the optimality gap decreases as the number of products
increases due to stronger lower bounds. We (partially) attribute this to the fact
that the size of the super-product master problem, EMP, (in terms of number of
variables and constraints) is independent of |P|. Thus, solving the master problem
does not become more computationally challenging. At the same time, the number
of valid inequalities does increase as the number of products increases. As the valid
inequalities strengthen the master problem, more of them likely leads to a stronger
lower bound. In addition, the demand volumes that must be routed in the master
problem increase as the number of products increases. As these increased volumes
likely require an increase in vehicle allocations, ytt′ij , we hypothesize that they also
strengthen the master problem.

3.6 Conclusions

In this chapter, we proposed a Benders decomposition-based solution approach
for solving the LSNDP. More specifically, we proposed an algorithm based on the
recently-proposed partial Benders decomposition, wherein information is retained
in the master problem, in order to strengthen the bound it provides and speed up
the convergence of the algorithm as a whole. Here, the information retained in the
master problem is characterized by a “super-product” that is an aggregation of all
the products to be routed. We proved the validity of this new master problem, and
computationally demonstrate the effectiveness of solving it in the context of a Ben-
ders decomposition-type algorithm compared with a straightforward implementa-
tion. We proposed additional speed-up techniques, including valid inequalities and
a heuristic for finding high-quality solutions. The resulting is a scalable algorithm
that produces solutions that are of provably high-quality, despite the increasing
number of products.





Chapter 4

A Dynamic Partial Benders
Strategy

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Multiple Super-Products . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Extending the Enhanced Master Problem . . . . . . . . . . . 65
4.2.2 Extending the Acceleration Techniques . . . . . . . . . . . . . 68

4.3 Products Matching . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Equivalence between EMP and LSNDP . . . . . . . . . . . . 69
4.3.2 Equivalence between K-EMP and LSNDP . . . . . . . . . . . 72
4.3.3 Matching Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Partitioning Strategies . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 K-Partitioning Problem . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 K-Medoids Partitioning . . . . . . . . . . . . . . . . . . . . . 76

4.5 Dynamic Partial Benders Strategy . . . . . . . . . . . . . . . 77
4.6 Computational Study . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6.2 Setup of the Study . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6.3 Analyzing the Impact of K on the Master Problem . . . . . . 80
4.6.4 Analyzing the Impact of φ on the Instances . . . . . . . . . . 81
4.6.5 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . 83
4.6.6 Comparing the Benders Strategies . . . . . . . . . . . . . . . 84

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Introduction

In the previous chapter, each supplier product line is generated randomly. That way,
any supplier may provide any product. In the case-study we adress, products are
partitioned into families, such as beverages or frozen products, and each supplier is
specialized in a subset of product families. Due to the distinction between product
families, a possible improvement of the Benders strategy presented in Chapter 3 is
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to consider multiple super-products in the master problem. In a partition of the
product families, there would be a one to one correspondance between the super-
products and the families.

By considering several super-products instead of just one, we assume that the
information derived from the subproblem is more accurate. As a result, the master
problem with multiple super-products should yield to stronger bounds than the
master problem defined with a single super-product. However, strengthening the
master is at the cost of an increased complexity. Indeed, having multiple super-
products induces additional variables, which may slow down the master solution.
It is difficult to assess a priori whether strengthening the master problem makes
possible to overcome this increased complexity, and to accelerate the convergence
of the Benders strategy.

In this Chapter, we propose a dynamic Benders algorithm based on a partial
Benders decomposition that evolves in the course of the optimization process, in a
logic of exploration and exploitation. The algorithm starts with the least complex
partial Benders decomposition, i.e. with only one super-product in the master. At
each iteration, our Benders strategy solves the current decomposition for a cer-
tain amount of time. Then the number of super-products is incremented, which
strengthens the master.

In section 4.2, we formalize the partial Benders strategy with multiple super-
products. We introduce a new master problem, K-EMP, wherein K super-products
are obtained by partitioning the products into K subsets. We demonstrate that the
acceleration techniques described in sections 3.3 and 3.4 can be extended to the
new master problem.

For a fixed value of K, there are many ways to partition the products. However,
different partitions lead to different approximations of the original problem. As a re-
sult, the product partition affects the quality of each partial Benders decomposition,
and so the convergence of the dynamic Benders algorithm. From the characteristics
of the LSNDP, we derive rules for partitioning the products effectively. In section
4.3, we describe special cases in which products can be partitioned and aggregated
into super-products without loss of information, so the resulting master problem
is equivalent to the original problem. From these specific cases, we introduce an
indicator that measures whether or not a pair of products should be part of the
same subset. In section 4.4, based on this indicator, we present two strategies for
partitioning products into K subsets. In section 4.5, we present the dynamic partial
Benders strategy. In section 4.6, we assess the performance of our algorithm with
an extensive computational study. Finally, we conclude in section 4.7.

4.2 Multiple Super-Products

In this section, we extend the Benders strategy described in Chapter 3. We first
introduce a new partial Benders decomposition for the LSNDP, based on a master
problem with multiple super-products. Then, we describe how the acceleration
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techniques described in sections 3.3 and 3.4 can be extended to the new master
problem.

4.2.1 Extending the Enhanced Master Problem

In Chapter 3, we presented a partial Benders decomposition wherein the enhanced
master problem EMP is strengthened with a single “super-product” χ, derived from
the aggregation of all products p ∈ P. Another possible strategy is to strengthen
the master problem with several super-products. Let P = {P1, ...,PK} be a K-
partition of the products, such that ∀(i, j) ∈ {1, ...,K}2, i 6= j,Pi ∩ Pj = ∅, and⋃
k∈{1,...,K}

Pk = P. Let Ξ be the set of super-products. The super-product χk ∈ Ξ is

obtained by aggregating all products in Pk. Therefore for all customers (c, t) ∈ CT ,
the demand of super-product χk is the sum of the demands for products in Pk,
i.e. Dχk

ct =
∑
p∈Pk

dpct. A super-product flow variable xχktt
′

ij is defined for each arc

((i, t), (j, t′)) and for each product p ∈ Pk such that a flow variable xptt
′

ij is defined
in the LSNDP. Thus, for a supplier i that does not supply any product of Pk (i.e.
P i ∩ Pk = ∅), and for all arcs originating from i, the continuous variable xχktt

′

ij is
not defined. We denote the new master problem by K-EMP.

Figures 4.1 and 4.2 illustrate an example. The original problem is depicted in
Figure 4.1. A single customer requests one unit of p1, p2, p3 and p4. Supplier s1
offers products p1 and p2, s2 offers p2 and p3, and s3 offers p3 and p4. Given a 2-
partition of the products: P1 = {p1, p2},P2 = {p3, p4}, we aggregate the products
into two super-products χ1 and χ2. The aggregated problem is depicted in Figure
4.2. As c requests one unit of each p1 and p2 in the original problem, c request
two units of super-product χ1 in the aggregated problem. As s1 and s2 offer at
least one product of P1 in the original problem, they offer χ1 in the aggregated
problem as well. On the contrary, as s3 does not offer any product of P1 in the
original problem, it does not offer χ1 in the aggregated problem. A similar reasoning
applies to super-product χ2 and products p3 and p4.

Note that the aggregation of products is still an approximation that may induce
a loss of information. Indeed, in the K-EMP suppliers may ship products they
do not provide. Coming back to our example, as in the aggregated problem s2
provides all super-products, it can satisfy all super-products demands. However, in
the original problem s2 does not provide p1 nor p4, and cannot satisfy the demands
of p1 and p4 of customer c.

TheK-EMP allocates vehicle capacity on transportation arcs in order to satisfy
the routing of the K super-products. It is formulated as follows:

min
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij + z (4.1)
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Figure 4.1: Before the aggregation of
products

Figure 4.2: After aggregating p1 with
p2, and p3 with p4

∑
((i,t),(j,t′))∈AT ∪HT

xχktt
′

ij −
∑

((j,t′),(l,t′′))AT ∪HT

xχkt
′t′′

jl = 0, ∀(j, t′) ∈ WT , ∀χk ∈ Ξ

(4.2)

∑
((i,t),(j,t′))∈AT

xχktt
′

ij ≥ Dχk
jt′ , ∀(j, t′) ∈ CT ,∀χk ∈ Ξ (4.3)

∑
χk∈Ξ

xχktt
′

ij ≤ ĉytt′ij , ∀((i, t), (j, t′)) ∈ AT (4.4)

z ≥
∑

((i,t),(j,t′))∈AT

∑
χk∈Ξ

cijx
χktt

′

ij +
∑

((i,t),(i,t′))∈HT

∑
χk∈Ξ

ciix
χktt

′

ii (4.5)

0 ≥
∑

(c,t)∈CT

∑
p∈P

dpctρ
p
ct, ∀ρ ∈ Ω (4.6)

z ≥
∑

(c,t)∈CT

∑
p∈P

dpctπ
p
ct, ∀π ∈ Γ (4.7)

xχktt
′

ij ∈ R+, ∀((i, t), (j, t′)) ∈ AT ∪HT , ∀χk ∈ Ξ,P i ∩ Pk 6= ∅ (4.8)

ytt
′

ij ∈ N+, ∀((i, t), (j, t′)) ∈ AT (4.9)

z ∈ R+ (4.10)

The objective function is the same as for the EMP. Constraints (4.2) enforce
the flow conservation of each super-product on each warehouse. Constraints (4.3)
ensure that for each super-product, each customer demand is fulfilled. Constraints
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(4.4) ensure that enough vehicle capacity is allocated to support the flows of super-
products. Constraint (4.5) bounds the flows cost approximation z. Constraints
(4.6) and (4.7) are the Benders cuts.

To ensure that a Benders scheme based on this master problem converges to
an optimal solution of the LSNDP, we prove that K-EMP is a relaxation of the
original problem.

Theorem 2 The K-enhanced master problem, K-EMP, is a relaxation of the Lo-
gistics Service Network Design problem, LSNDP.

Proof 2 We prove this claim by showing that any feasible solution for the LSNDP
is also feasible for the K-EMP and has the same objective function value. To do so,
we let (x, y) be a feasible solution of the LSNDP. Let consider a solution (xΞ, y, z)
such that:

xχktt
′

ij =
∑
p∈Pk

xptt
′

ij , ∀((i, t), (j, t′)) ∈ AT ∪HT , ∀k ∈ {1, ...,K},

z =
∑

((i,t),(j,t′))∈AT

∑
χk∈Ξ

cijx
χktt

′

ij +
∑

((i,t),(i,t′))∈HT

∑
χk∈Ξ

ciix
χktt

′

ii

It is easy to prove that this solution is feasible for the K-enhanced master problem.
By construction, for each variable xptt

′

ij in the LSNDP, p ∈ Pk, there is a corre-
sponding variable xχktt

′

ij in the K-EMP. We know that for each warehouse (j, t′)
and each product p ∈ P:

∑
((i,t),(j,t′))∈AT ∪HT

xptt
′

ij −
∑

((j,t′),(l,t′′))∈AT ∪HT
xpt
′t′′

jl = 0. If we

sum this expression on the products of Pk, we obtain:∑
((i,t),(j,t′))∈AT ∪HT

∑
p∈Pk

xptt
′

ij −
∑

((j,t′),(l,t′′))∈AT ∪HT

∑
p∈Pk

xpt
′t′′

jl = 0

=⇒
∑

((i,t),(j,t′))∈AT ∪HT

xχktt
′

ij −
∑

((j,t′),(l,t′′))∈AT ∪HT

xχkt
′t′′

jl = 0

Therefore (xΞ, y, z) respects Constraints (4.2). As (x, y) respects Constraints (2.3)-
(2.4), it is straightforward to demonstrate (xΞ, y, z) also respects Constraints (4.3)-
(4.4). By construction of z, (xΞ, y, z) respects constraint (4.5) which makes it an
admissible solution for the enhanced master problem. Let Q(x, y) be (x, y) objective
value:

Q(x, y) =
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij +

∑
((i,t),(j,t′))∈AT

∑
p∈P

cijx
ptt′

ij +
∑

((i,t),(i,t′))∈HT

∑
p∈P

ciix
ptt′

ii

=
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij +

∑
((i,t),(j,t′))∈AT

∑
k∈{1,...,K}

∑
p∈Pk

cijx
ptt′

ij +
∑

((i,t),(i,t′))∈HT

∑
k∈{1,...,K}

∑
p∈Pk

ciix
ptt′

ii

=
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij +

∑
((i,t),(j,t′))∈AT

∑
χk∈Ξ

cijx
χktt

′

ij +
∑

((i,t),(i,t′))∈HT

∑
χk∈Ξ

ciix
χktt

′

ii
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=
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij + z = Q(xχ, y, z)

Solution (xΞk , y, z) that replicates solution (x, y) by an aggregation of flows, is feasi-
ble to the K-enhanced master problem. The two solutions have an identical objective
function value. Thus, K-EMP is a relaxation of LSNDP.

Remark 1 The enhanced master problem, EMP, is a relaxation of the K-enhanced
master problem, K-EMP.

A similar reasoning can be applied to demonstrate that the master problem
with a single super-product, EMP, is a relaxation of the master problem with K
super-products, K-EMP.

4.2.2 Extending the Acceleration Techniques

To apply our Benders strategy to the K-EMP, we must ensure that the accelera-
tion techniques described in Chapter 3 work if we consider multiple super-products
in the master. It is trivial to prove that the generation of heuristic solutions per-
forms whether a single or multiple super-products are considered. However, some
adjustments are necessary in order to adapt the valid inequalities to the K-EMP.

To extend the Super-Sources Inequalities, we modify the time-expanded graph
as we did in subsection 3.3.1. For each product p ∈ P we add a super-source ssp,
and for each supplier s ∈ S that provides product p, we add an arc from ssp to
s with null transit time, linear cost and fixed cost. Similarly to subsection 3.3.1,
for each product p ∈ P we compute the total demand Dp =

∑
(c,t)∈CT

dpct. As in the

K-EMP each product p is represented by a single super-product χk, we enforce the
super-source ssp to ship at least Dp units of χk. We also force the supplier nodes to
satisfy the flow conversation with respect to each associated super-product in the
K-EMP.

Then, we add the following constraints to the K-EMP:

∑
((ssp),(j,t))∈AT

xχkt
sspj
≥ Dp, ∀k ∈ {1, ...,K}, ∀p ∈ Pk (4.11)

∑
((i,t),(j,t′))∈AT

xχktt
′

ij −
∑

((j,t′),(l,t′′))∈AT

xχkt
′t′′

jl = 0, ∀(j, t′) ∈ ST , ∀k ∈ {1, ...,K},Pj ∩ Pk 6= ∅

(4.12)

The Direct Supply Inequalities developped in subsection 3.3.2 can also be
adapted for the K-EMP. For each direct arc from a supplier (s, t) to a customer
(c, t′), and each subset Pk of the K-partition, we compute the demand of customer
(c, t′) for products p ∈ Pk that can be served by (s, t): dkstct′ =

∑
p∈Ps∩Pk

dpct′ . We then

restrict the flow of super-product χk on the direct arc ((s, t), (c, t′)) to be no greater
than dkstct′ .
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We add the following valid inequalities to the K-EMP:

xχktt
′

sc ≤ dkstct′ , ∀((s, t), (c, t′)) ∈ AT , (s, t) ∈ ST , (c, t′) ∈ CT , ∀χk ∈ Ξ (4.13)

To adapt the Time-Based Super-Source Shipment Inequalities, we compute the
cumulative global demand D̄p

t and the shortest possible delivery times tminssp
as we

did in subsection 3.3.3. For each subset Pk of the K-partition, each product p ∈ Pk,
and each time t ∈ T such that D̄p

t >
¯Dp
t−1, we enforce the super-source SSp to ship

more than D̄p
t units of super-product χk, before time t − tminssp

. To do so, we add
the following valid inequalities to the K-EMP:

∑
((ssp),(j,t))∈AT
t≤t∗−tmin

ssp

xχkt
sspj
≥ D̄p

t∗ , ∀k ∈ {1, ...,K}, ∀p ∈ Pk, ∀t∗ ∈ T , D̄p
t∗ >

¯Dp
t∗−1

(4.14)

The partial Benders decomposition presented in Chapter 3 can be extended to
multiple super-products. Similarly, the corresponding acceleration techniques can
be extended to multiple super-products. Thus, the Benders strategy presented in
Chapter 3 can be extended to multiple super-products.

4.3 Products Matching

The super-products model an approximation of the original problem that strength-
ens the master problem. They are obtained by partitioning the products into K
subsets. Yet, for a fixed value of K there are several ways to partition the products,
and the definition of the partition impacts the quality of the Benders decomposition.
In this section, we analyze the factors to consider to aggregate products effectively.
We first describe two specific cases for which product aggregation induces no loss of
information. From these particular cases, we establish an indicator that evaluates
if it is worth aggregating a pair of products.

4.3.1 Equivalence between EMP and LSNDP

The aggregation of products induces a loss of information about which products
each supplier can supply. In the original problem, each supplier can only provide a
subset of the products. Thus, a single supplier cannot answer all customers requests.
However, in the EMP, as we cannot restrict suppliers to only ship products they
provide, each supplier provides the super-product. Therefore a single supplier can,
by itself, answer all customer requests for the super-product. As requests of super-
product χ include demands for all products p ∈ P, the EMP assumes that any
supplier can satisfy requests for all products p ∈ P. Therefore, a feasible solution
for the EMP may not be convertible to a feasible solution for the LSNDP.
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There is a single case for which each EMP feasible solution can be converted
to a LSNDP feasible solution. Indeed, if all suppliers provide all products, prod-
uct aggregation induces no loss of information and the EMP is equivalent to the
LSNDP. Figures 4.3 and 4.4 illustrate an example of equivalence between the EMP
and the LSNDP. The original problem is depicted in Figure 4.3. All products (p1
and p2) are offered by all suppliers (s1, s2 and s3). Aggregating p1 and p2 into
a single super-product χ induces no loss of information. Indeed, if we aggregate
p1 and p2 (see Figure 4.3), the demand of super-product χ can be satisfied by s1,
s2, or s3. As the demand of super-product χ sums the demands for p1 and p2, the
aggregated problem assumes that s1, s2 or s3 can satisfy the demands for p1 and p2.
In the original problem, s1, s2 and s3 offer both p1 and p2. Thus, we can aggregate
p1 and p2 without loss of information. Therefore, the aggregated problem EMP
illustrated in in Figure 4.4, is equivalent to the LSNDP.

Figure 4.3: Before the aggregation of
products

Figure 4.4: After the aggregation of
products

Theorem 3 If all suppliers offer all products (i.e. ∀s ∈ S,Ps = P), then the
enhanced master problem EMP, is equivalent to the LSNDP.

Proof 3 We proved in section 3.2 that the enhanced master problem EMP is a
relaxation of the LSNDP. We demonstrate now that the LSNDP is a relaxation
of the EMP, if all suppliers offer all products. In that specific case, a feasible
solution for the EMP is necessarily feasible for the original problem. The premise
of the proof is as follows. Any solution of the EMP can be seen as a set of paths
transporting Dχ

ct units of super-product from suppliers to each customer. Thus, for
each customer, the incoming flow of super-product can be divided into |P| parts of
quantity dpct transported along paths that originates from suppliers (note that dpct
can be null). By converting each part into a flow of product p, one can construct a
solution for the LSNDP. Since all suppliers offer all products, the obtained solution
is feasible for the LSNDP.

Let (xχ, y, z) be a feasible solution of the EMP. Let Λ be the set of paths from
suppliers to customers in GT . By definition the flow of super-product xχ originates
from suppliers, ends at customers, and respects flow conservation at each warehouse.
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Therefore we can decompose the flow of super-product xχ into paths of Λ, and
obtain an equivalent path-solution γχ. We denote γχλ the quantity of super-product
transported along a path λ ∈ Λ.

Let Λct be the set of paths from suppliers to customer (c, t). As (γχ, y, z) respects
the EMP demand constraints, the sum of flows along paths in Λct sustains (c, t)
demand of super-product, i.e.

∑
λ∈Λct

γχλ = Dχ
ct =

∑
p∈P

dpct. Thus, for each customer

(c, t), we can partition its incoming path-flow γχ into |P| parts {γ̇1, ..., γ̇|P|} transit-
ing dpct units of super-product each (∀p ∈ P). As a result, for each product p ∈ P the
total flow along paths in the pth subset of the partition equals dpct, i.e.

∑
λ∈Λct

γ̇pλ = dpct.

In addition, for each path λ ∈ Λct, the sum of flows over the partition equals the
total flow of super-product, i.e.

∑
p∈P

γ̇pλ = γχλ .

Based on the partition of γχ, we construct a path-solution γ for the LSNDP. We
denote γpλ the quantity of product p transiting along path λ. As all suppliers offer
all products, product p can transit on any path of Λct. Thus, we can set any value
for γpλ. For each customer (c, t), each path λ ∈ Λct, and each product p ∈ P, we set
γpλ value to γ̇pλ.

Let x be the flow-solution equivalent to path-solution γ. We now demonstrate
that (x, y) is feasible for the LSNDP. By definition, on a path, flow conservation
is ensured. Thus, flow-solution x respects constraints (2.2). For each customer
(c, t) ∈ CT , and each product p ∈ P we have

∑
λ∈Λct

γpλ = dpct. By extension, the

associated flow-solution x respects demand constraints (2.3). As (xχ, y, z) is a
solution of the EMP, vehicle allocation y is sufficient to route γχ. For all customers
(c, t), and all paths λ ∈ Λct,

∑
p∈P

γpλ = γχλ therefore vehicle allocation y is sufficient

to route γ, and so x. Thus, (x, y) respects constraints (2.4), and is a feasible
solution to the LSNDP.

Let (xχ, y, z) objective value be:

Q(xχ, y, z) =
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij + z

Due to constraint (3.13) we have:

Q(xχ, y, z) =
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij +

∑
((i,t),(j,t′))∈AT

cijx
χtt′

ij +
∑

((i,t),(i,t′))∈HT

ciix
χtt′

ii

Yet, as γ is obtained by partitioning γχ, for each path λ ∈ Λ the sum of flows over
the p components of γ equals the flow of super-product γχ. Regarding flow-solutions
x and xχ, that means on each arc, the sum of flows over the products equals the
flow of super-product, i.e.

∑
p∈P

xptt
′

ij = xχtt
′

ij . Therefore:

Q(xχ, y, z) =
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij +

∑
((i,t),(j,t′))∈AT

∑
p∈P

cijx
ptt′

ij +
∑

((i,t),(i,t′))∈HT

∑
p∈P

ciix
ptt′

ii
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= Q(x, y)

Solution (x, y), that replicates solution (xχ, y, z) by partitioning of flows, is fea-
sible to the LSNDP. The two solutions have an identical objective function value.
Thus, the LSNDP is a relaxation of the EMP. As the EMP is also a relaxation of
the LSNDP, we demonstrated that the EMP and the LSNDP are equivalent if all
suppliers offer all products.

4.3.2 Equivalence between K-EMP and LSNDP

The same approach can be applied to the K-EMP. Given a K-partitions of the
products {P1, ...,PK}, a super-product χk is obtained by aggregating the products
of subset Pk. In the K-EMP, a supplier that provides the super-product χk can
answer all customer requests of super-product χk. As requests of super-product χk
include demands for all products p ∈ Pk, the K-EMP assumes that suppliers of
super-product χk can answer requests for all products p ∈ Pk. However, a supplier
that offers super-product χk in the aggregated problem, may not offer all products
p ∈ Pk in the original problem. Therefore, a feasible solution for the K-EMP may
not be convertible to a feasible solution for the LSNDP.

There is a single case for which each K-EMP feasible solution can be converted
to a LSNDP feasible solution. If any supplier of a product p ∈ Pk also provides all
products of Pk, product aggregation induces no loss of information and theK-EMP
is equivalent to the LSNDP. Figures 4.5 and 4.6 illustrate an example of equivalence
between the K-EMP and the LSNDP. The original problem is depicted in the left
figure. Both products p1 and p2 are offered by s1 and s2. Aggregating p1 and
p2 into super-product χ1 induces no loss of information. Indeed, if we aggregate
p1 with p2 (see Figure 4.6), the demand of super-product χ1 can be satisfied by
s1 or s2. As the demand of super-product χ1 sums the demands for p1 and p2,
the aggregated problem assumes that s1 or s2 can satisfy the demands for p1 and
p2. Yet, in the original problem, s1 and s2 provide both p1 and p2. Thus, we can
aggregate p1 and p2 without loss of information. Similarly, the aggregation of p3 and
p4 into super-product χ2 induces no loss of information. Therefore, the 2-partition
P = {{p1, p2}, {p3, p4}} yields a K-EMP that is equivalent to the LSNDP.

Let us consider again Figures 4.1 and 4.2 where the K-EMP is not equivalent
to the LSNDP. In this case, we aggregate products p1 and p2 into super-product
χ1. In the K-EMP, c’s demand of super-product χ1 can be fulfilled by supplier s2.
As the demand of super-product χ1 sums the demands of p1 and p2, the aggregated
problem assumes that s2 can satisfy the demands of p1 and p2. Thus, we lose
information by aggregating p1 and p2 as supplier s2 offers one but not all products
that form χ1.

Theorem 4 Let P = {P1, ...,PK} be a K-partition of the products, and χk ∈ Ξ, k ∈
{1, ...,K}, the associated super-products. If for each k ∈ {1, ...,K}, and each product
p ∈ Pk, a supplier s ∈ S that offers p offers all products of Pk, then the K-EMP is
equivalent to the LSNDP.
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Figure 4.5: Before the aggregation of
products

Figure 4.6: After aggregating p1 with
p2, and p3 with p4

Proof 4 We proved in section 4.2 that the K-EMP is a relaxation of the LSNDP.
We demonstrate now that the LSNDP is a relaxation of the K-EMP, if for each
k ∈ {1, ...,K}, and each product p ∈ Pk, a supplier s ∈ S that offers p offers all
products of Pk. The demonstration presented here is similar to the demonstration
used for Theorem 3. Indeed, super-products can be considered independently, which
leads to the same result.

Let (xΞ, y, z) be a feasible solution of the K-EMP. Let Λ be the set of paths
from suppliers to customers in GT . By definition the flow of super-products xΞ

originates from suppliers, ends at customers, and respects flow conservation at each
warehouse. Therefore we can decompose the flow of super-product xΞ into paths of
Λ, and obtain an equivalent path-solution γΞ. We denote γχk

λ the quantity of kth
super-product transported along a path λ ∈ Λ.

Let Λct be the set of paths from suppliers to customer (c, t). As (γΞ, y, z) respects
the K-EMP demand constraint, for each super-product χk the sum of flows along
paths of Λct sustains (c, t) demand of χk, i.e.

∑
λ∈Λct

γχk
λ = Dχk

ct =
∑
p∈Pk

dpct. Thus, for

each a customer (c, t), we can partition its incoming path-flow of super-product χk
into |Pk| parts {γ̇1, ..., γ̇|P|} transiting dpct units of χk each (∀p ∈ Pk). As a result,
for each product p ∈ Pk the total flow along paths in the pth subset of the partition
equals dpct, i.e.

∑
λ∈Λct

γ̇pλ = dpct. In addition, for each path λ ∈ Λct, the sum of flows

over the partition equals the total flow of super-product χk, i.e.
∑
p∈Pk

γ̇pλ = γχk
λ .

Based on the partition of γΞ, we construct a path-solution γ for the LSNDP.
We denote γpλ the quantity of product p transiting along path λ. For each customer
(c, t), each k ∈ {1, ...,K}, and each product p ∈ Pk, if γ̇pλ > 0 then the supplier
of origin manufactures χk in the K-EMP. By hypothesis, the supplier of origin
manufactures all products of Pk in the original problem. As a result, ∀p ∈ Pk we
can set any value for γpλ. Thus, for each customer (c, t), each k ∈ {1, ...,K}, each
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path λ ∈ Λct, and each product p ∈ Pk, we set γpλ value to γ̇pλ.
Let x be the flow-solution equivalent to path-solution γ. We now demonstrate

that (x, y) is feasible for the LSNDP. By definition, on a path, flow conservation
is ensured. Thus, flow-solution x respects constraints (2.2). For each customer
(c, t) ∈ CT , each k ∈ {1, ...,K}, and each product p ∈ Pk we have

∑
λ∈Λct

γpλ = dpct.

By extension, the associated flow-solution x respects demand constraints (2.3). As
(xΞ, y, z) is a solution of the K-EMP, vehicle allocation y is sufficient to route γΞ.
For each customer (c, t), each k ∈ {1, ...,K}, and each path λ ∈ Λct,

∑
p∈Pk

γpλ = γχk
λ

therefore vehicle allocation y is sufficient to route γ, and so x. Thus, (x, y) respects
constraints (2.4), and is a feasible solution to the LSNDP.

Let (xΞ, y, z) objective value be:

Q(xΞ, y, z) =
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij + z

Due to constraint (4.5) we have:

Q(xΞ, y, z) =
∑
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fijy
tt′
ij +

∑
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cijx
χktt

′

ij +
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((i,t),(i,t′))∈HT
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ciix
χktt

′

ii

By partitioning, for each k ∈ {1, ...,K}, for each product p ∈ Pk and for each path
λ ∈ Λct:

∑
p∈Pk

γpλ = γχk
λ . Regarding flow-solutions x and xΞ associated to γ and γΞ,

that means on each arc, the sum of flows over the products of Pk equals the flow of
super-product χk, i.e.

∑
p∈Pk

xptt
′

ij = xχktt
′

ij . Therefore:

Q(xΞ, y, z) =
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij +

∑
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∑
k∈K

∑
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∑
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ii

=
∑
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fijy
tt′
ij +

∑
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∑
p∈P

cijx
ptt′

ij +
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ii = Q(x, y)

Solution (x, y) that replicates solution (xΞ, y, z) by partitioning of flows, is fea-
sible to the LSNDP. The two solutions have an identical objective function value.
Thus, the LSNDP is a relaxation of the K-EMP. As the K-EMP is also a re-
laxation of the LSNDP, we demonstrated that the K-EMP and the LSNDP are
equivalent if for each k ∈ {1, ...,K}, and each product p ∈ Pk, a supplier s ∈ S that
offers p offers all products of Pk.

4.3.3 Matching Rate

For a fixed value of K, the most suitable K-partition of products is the one that
minimizes the loss of information in the K-EMP. In the ideal cases presented in
4.3.1 and 4.3.2, we have seen that any subset of products can be aggregated without
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loss of information, if each supplier that offers a product in that subset offers all
other products. Based on this feature, we introduce a measurement that evaluates
if a pair of products is worth aggregating. For a product p, we denote Sp as the set
of suppliers having p in their product line. We denote the matching rate of a pair
of products pi and pj as:

m(pi, pj) = |S
pi ∩ Spj |
|Spi ∪ Spj |

This matching rate measures the percentage of suppliers of pi or pj that offers
both products at once, and indicates as to whether pi or pj should be aggregated.
Two products with a null matching rate have no suppliers in common. On the other
hand, a matching rate equal to 1 indicates that both products are provided by the
same suppliers.

4.4 Partitioning Strategies

Based on the matching rate, we describe in this section two strategies for parti-
tioning the product set, given a fixed value of K. The first strategy relies on the
K-partitioning problem. The second strategy is based on the K-Medoids algorithm.

4.4.1 K-Partitioning Problem

There are multiple MILP formulations for the graph partitioning problem. Recently,
Alès et al. [Ales 2016] proposed a MILP formulation called the K-partitioning
problem, that is stronger than the other formulations. Given a complete graph
G = (V,E) and a distance matrix d, the K-partitioning problem aims to determine
the K-partition that minimizes the total distance. For each edge (i, j) ∈ E, an
integer variable xij indicates if vertices i and j are in the same cluster. For each
vertex i, the binary xi equals 1 if and only if i ∈ V is the vertex with the smallest
index of its cluster. The K-partitioning problem is formulated as:

min
∑
ij∈E

dijxij (4.15)

subject to
xik + xjk − xij ≤ 1, ∀i, j, k ∈ V, i 6= k, j 6= k, i < j (4.16)

xj + xij ≤ 1, ∀i, j ∈ V, i < j (4.17)

xj +
j−1∑
i=1

xij ≥ 1, ∀j ∈ V (4.18)

n∑
i=1

xi = K (4.19)



76 Chapter 4. A Dynamic Partial Benders Strategy

xij ∈ {0, 1}, ij ∈ E (4.20)

xi ∈ [0, 1], i ∈ V (4.21)

Objective function (4.15) minimizes the K-partition total weight. Constraints
(4.16) ensure that if two incident edges ij and jk are activated then ik is also
activated. Constraints (4.17) enforce there is at maximum one representative per
cluster. Constraints (4.18) enforce there is at minimum one representative per
cluster. Constraints (4.19) set the number of clusters to K. Constraints (4.20)
and (4.21) define the variable domains. Note that the binary requirement on the
representative variables can be relaxed, as having binary edge variables together
with Constraints (4.17) and (4.18) forces the variables xi to be 0 or 1.

In our context, each vertex i ∈ V correspond to a product p ∈ P. As the K-
partitioning problem seeks for the K-partition with minimum distance, we set the
distance between a pair of products p, p′ ∈ P as: d(p, p′) = 1−m(p, p′).

4.4.2 K-Medoids Partitioning

The K-medoids [Jain 1988, Berkhin 2006] is a greedy algorithm that partitions N
objects into K clusters. To do so, it requires a distance between each pair of objects.
The algorithm starts with a random cluster configuration and iteratively search for
a better neighbor solution. For a given cluster configuration C, K separate objects
are designated as medoids (or centers) of the clusters, and each non-center object
is assigned to the cluster with closest medoid. The cost of a cluster configuration
is the sum of the intra-cluster costs. An intra-cluster cost is the sum of distances
between the center of the cluster, and all objects assigned to the cluster.

Here, the objects to partition are the products. Let C = {C1, ..., CK} be
a cluster configuration, and Ci the ith cluster. Each cluster is of the form
Ci = {pim, pi1, ..., pi|Ci|−1}, with p

i
m the medoid product and {pi1, ..., pi|Ci|−1} the non-

medoid products. Given a cluster configuration, we have: ∀(i, j) ∈ {1, ...,K}, i 6=
j, Ci∩Cj = ∅, and

⋃
k∈{1,...,K}

Ck = P. As the K-medoids algorithm seeks for the con-

figuration with minimum distance, we set the distance between a pair of products
p, p′ ∈ P as: d(p, p′) = 1−m(p, p′). Thus, the intra-cluster cost is:

cost(Ci) =
|Ci|−1∑
j=1

d(pim, pij)

The cost of a cluster configuration is:

cost(C) =
K∑
i=1

cost(Ci)
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We use the most common realisation of K-medoids clustering: the Partitioning
Around Medoids (PAM) algorithm. Algorithm 2 gives an overview of our method.

Algorithm 2 K-medoids algorithm
Require: Partition size K

Select K random products as medoids
Assign each non-medoid product p to medoid pim that minimizes d(pim, p)
Compute cluster configuration cost: cost(C)
decrease = true
while decrease do

decrease = false
for Each medoid product pim do

for Each non-medoid product p do
Swap pim and p
Assign each non-medoid product p to medoid pim that minimizes
d(pim, p)
Compute new cluster configuration cost: cost(Cnew)
if cost(Cnew) < cost(C) then

decrease = true
C = Cnew

end if
end for

end for
end while

First, K random products are designated as medoids. The other products are
assigned to the medoid product that minimizes the distance. The initial cluster
configuration and its cost are saved. Then, for each pair of medoid and non-medoid
products, we swap roles, determine the new cluster configuration and compute the
associated cost. If the value found is lower than the cost of the saved cluster
configuration, the new cluster configuration and its cost are saved. While a new
cluster configuration with lower cost is found, the process is iterated.

The final cluster configuration is converted into a K-partition of the products,
wherein elements of the ith subset are: the medoid-product of the ith cluster , i.e.
pim, and the non-medoid products assigned to the ith cluster, i.e. {pi1, ..., pi|Ci|−1}.

4.5 Dynamic Partial Benders Strategy

It is fairly intuitive that, as the number of super-products increases, the information
added to the master tends to be more accurate. This yields stronger bounds for
the K-EMP, at the cost of a more complex branch-and-bound tree. On the other
hand, considering less super-products reduces the number of variables in the master
problem and augments its computational tractability, but induces looser bounds.
To better exploit these characteristics, we developped a dynamic partial Benders
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strategy, where the number of super-products evolves as the algorithm progresses.
Algorithm 3 gives an overview of the Benders strategy.

Algorithm 3 Dynamic partial Benders strategy
Require: Maximum number of super-products Kmax, Global time limit tmax,
Bounds time limit tboundsmax

K = 1
while Computation time < tmax AND optimal solution is not found do

Apply partitioning strategy
Build the associated K-EMP
if K > 1 then

Initiate decomposition K-EMP-SP with current bounds
Initiate decomposition K-EMP-SP with generated Benders inequalities

end if
if K 6= Kmax then

while Computation time < tmax AND optimal solution is not found
AND upper/lower bound objective have improved by more than 1% in the last
tboundsmax seconds do

Apply Benders enhanced strategy
end while

else
while Computation time < tmax AND optimal solution is not found do

Apply Benders enhanced strategy
end while

end if
Update best lower bound and best upper bound
Keep in memory the Benders inequalities
K = K + 1

end while

The rationale is to solve progressively a partial Benders decomposition that gets
finer over time, until an optimal solution is found, or the time limit is exceeded.
The algorithm starts with a single super-product (K = 1), which yields the master
problem with minimal amount of variables, and enables to explore the search space
quickly. The corresponding decomposition is solved while there is computation time
left, the optimal solution is not found, and the upper and lower bound objective
values have been improved by more than 1% in the last tboundsmax seconds.

If the upper and lower bound objective values have not been improved by more
than 1% in the last tboundsmax seconds, we stop solving the decomposition. The current
upper/lower bounds as well as the Benders inequalities generated are saved, and
K is increased by one unit. A more accurate master problem K-EMP is then
determined thanks to one of the partitioning strategies described earlier.

The new Benders decomposition is initiated with the upper and lower bounds, as
well as all the Benders inequalities found previously. Since the Benders inequalities
only involve the y variables, a Benders inequality obtained for a given K-EMP-
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SP decomposition, is valid for any K-EMP-SP decomposition. By keeping the
Benders inequalities from one decomposition to another, we make sure not to revisit
a non-optimal solutions generated previously.

The new Benders decomposition is solved until a stopping criterion is met, then
the number of super-products K increases of one unit. This process is repeated
until an optimal solution is found, or the time limit is exceeded. To restrict the size
of the master problem, a threshold value Kmax is set on K.

4.6 Computational Study

The objective is to evaluate the efficiency of the proposed dynamic Benders strategy.
We first describe the instances and the setup of the study. We then assess the impact
of K, the number of super-products in the master problem, and φ, the probability
for a supplier to offer a product. Finally, we demonstrate the efficiency of our
dynamic Benders strategy.

4.6.1 Instances

In this chapter we modify the random generator presented in Chapter 3, so that
a classification of the products is considered. Products are generated from three
parameters: the number of product families |F|, the number of products |P|, and a
probability φ of offering a product. Each product is randomly assigned to a single
product family. Are randomly assigned to each supplier one, two or three product
families. Each supplier provides each product in these product families with a
probability φ. For the remaining parameters, instances are produced as in Chapter
3. The instances are based on the following parameter values: the number of nodes
|G| = {50}, the connectivity radius α = {10, 30}, the number of days D = 30, the
time granularity ∆ = {2, 3}, the number of product families F = {7}, the number of
products |P| = {100, 200, 300, 400, 500}, and the probability φ = {0.25, 0.50, 0.75}.
We generated 5 instances for the 60 possible combinations of parameter values, for
a total of 300 instances.

4.6.2 Setup of the Study

We propose four methods based on the enhanced Benders strategy. The methods
Single, Medoids, and Random are direct applications of the enhanced Benders
strategy. Single considers a master problem that has a single super-product. In
Medoids and Random, the master problem has as many super-products as prod-
uct families in the instance (i.e. |F| super-products). In Medoids, a partition
of the product set is identified with the K-medoids algorithm presented in subsec-
tion 4.4.2. In Random, a partition of the product set is determined randomly.
The method Dynamic is our dynamic Benders strategy, where the decompositions
are solved with the enhanced Benders strategy. The partitioning strategy used in
Dynamic is the K-medoids algorithm.
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We also implemented the method K-part, where the master problem has |F|
super-products obtained from the solution of the K-Partitioning problem presented
in subsection 4.4.1. The K-Partitioning problem is solved with a stopping criteria
of a proven optimality gap of 1% and a maximum run-time of 5 minutes. For more
than half of the instances, the K-Partitioning problem ran out of memory and K-
part did not provide a feasible solution to the original problem. On the other hand,
the K-medoids algorithm performed successfully for all instances. When K-part
provided a feasible solution to the original problem, Medoids reported a lower
optimality gap at termination for 90.54% of the instances. These results indicate
that the K-medoids algorithm is a better partitioning strategy than solving the K-
partitioning problem. Thus, we do not show the results obtained with K-part in
the computational study.

We compared our four methods with three benchmark methods. In CPLEX,
the complete program is solved with CPLEX’s default branch-and-cut. InCPLEX-
Benders, the complete program is solved with CPLEX’s automatic Benders decom-
position. The method Knowledge is a direct application of the enhanced Benders
strategy, that considers a master problem with |F| super-products. The super-
products are built from the instance structure, i.e. each super-product corresponds
to a family of products and aggregates all the products it contains.

The enhanced Benders strategy is implemented with the callback framework
where subproblems are solved within the context of the branch-and-bound tree
used to solve the master problem. Specifically, whenever an integral solution is
found in the tree, the subproblem is solved. The resulting cut is then embedded
in every node of the tree, and may cut-off the incumbent. The process terminates
once the optimality gap is closed. We initiate every method with a heuristic solution
(xh, yh) obtained by setting each vehicle variable, ytt′ij to the ceiling of its value in
the optimal solution of the linear relaxation of the LSNDP.

All algorithms are coded in C++ and executed on an Intel Xeon E5-2695 pro-
cessor with 16 GB of memory under Linux 16.04. Linear and integer programs
were solved using Cplex 12.7. All algorithms are executed with a stopping criteria
of a proven optimality gap of 1% or less and a maximum run-time of 1.5 hours.
For Dynamic the maximum number of super-products Kmax is set to 7. The time
limit on the improvement of the bounds tboundsmax is set to 770 seconds.

4.6.3 Analyzing the Impact of K on the Master Problem

We investigate the impact of the number of super-products on the K-EMP. For all
instances we solve the root relaxation of the LSNDP and that of the K-EMP, with
K varying from 1 to 7. We observe two performance indicators: i) the objective
value rsol of the root node solution; ii) the computational time rtime required to
solve the root relaxation.

To compare the K-EMP and the LSNDP, we compute a root-gap for each
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instance:
root-gap =

rsolLSNDP − rsolK−EMP

rsolLSNDP

As the K-EMP is a relaxation of the LSNDP, the K-EMP root solution objective
value is lower to that of the LSNDP. Therefore, the root-gap is positive.

For each instance, we also compute a computation time rate:

root-time =
rtimeK−EMP

rtimeLSNDP

In Figure 4.7, we display the root-gap and computation time rate on average
over all the instances.
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Figure 4.7: K-EMP root-gap and computation time rate

The master problem with a single super-product yields an important root-gap
of 35.8%. However, we can see that the root-gap decreases gradually as the number
of super-products in the master increases. This confirms that considering more
super-products in the master allow to better approximate the original problem.
This improvement is significant, as the root-gap decreases by more than 20% when
we consider 7 super-products in the master. As expected, the computation time
for solving the master root relaxation increases with the number of super-products.
However, the computation time rates are small. In the worst case, the master
root relaxation is solved in 0.063% of the time needed to solve the LSNDP root
relaxation.

4.6.4 Analyzing the Impact of φ on the Instances

We analyze the impact of parameter φ on the instances. As a reminder, a supplier
specialized in a family of products has a probability φ to offer a product in that
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family. In Figure 4.8 we display the root-gap over instances with the same value
for parameter φ.
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Figure 4.8: K-EMP root-gap for different values of φ

For each value of parameter φ, we observe the same behavior. Indeed, regardless
of the set of instances considered, the root-gap decreases with the number of super-
products. We note that this reduction is of greater magnitude as the value of φ
increases. This indicates that increasing the number of super-products in the master
is more valuable for instances with high values of φ.

This behavior is a direct consequence of the impact of φ on the products match-
ing rates. For each instance, we compute the matching rate of each product family.
We define the matching rate of a product family as the average matching rate of all
pairs of products in that family. As a result, the matching rate of a product family
evaluates if it is worth aggregating all the products of the family. In Table 4.1, we
report the average matching rates of the product families, over instances with the
same values of φ.

Table 4.1: Average matching rate of the product families

φ 25% 50% 75%
Matching rate 31.52% 41.58% 63.33%

We observe that the average matching rate of the products families raises with
φ. Thus, when φ increases, it is more favourable to aggregate products by families.
As a consequence, it is more valuable to increase the number of super-products for
instances with high values of parameter φ.
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4.6.5 Overall Performance

We benchmark our four Benders methods againstCPLEX,CPLEX-Benders and
Knowledge. To do so, we assess the quality of the primal solution and the dual
solution computed by each method. For each instance and each method Method,
let UBMethod be the objective function value of the best primal solution obtained,
and let LBMethod be the objective function value of the best dual solution obtained.
UBBest and LBBest denote the objective function value of the best primal solution
and the best dual solution found over all methods. For each instance and each
method, we compute two performance indicators:

gapMethod
UB = UBMethod −UBBest

UBMethod
gapMethod

LB = LBBest − LBMethod

LBBest

Both indicators are positive. An indicator equals 0 if, over all methods, Method

obtained the primal/dual solution with best objective function value. In Table 4.2
we present the average optimality gap at termination and the average performance
indicators reported by each method.

Note that over the 300 instances, very few were solved within the time limit.
More specifically, CPLEX solved to optimality three of the smallest instances.

Table 4.2: Average gap at termination and average performance indicators

Method Optimality Gap gapMethod
LB gapMethod

UB

CPLEX 23.78% 19.86% 2.43%
CPLEX-Benders 63.79% 61.36% 4.30%

Knowledge 3.92% 0.45% 1.14%
Single 4.28% 0.66% 1.31%

Medoids 4.02% 0.37% 1.33%
Random 8.64% 3.82% 2.69%
Dynamic 3.30% 0.55% 0.40%

Overall, both CPLEX and CPLEX-Benders have lower performances than
all other methods. The benchmark method with the best performance is Knowl-
edge. The results obtained by Knowledge are slightly better than those obtained
by static Benders strategies: Single and Medoids. However, Knowledge is out-
performed by the Dynamic method, that is the most effective overall.

We can see that the performance of Random is quite poor compared to the
others Benders decompositions based on |F| super-products: Knowledge and
Medoids. This demonstrates that the partition of the product set has a signif-
icant influence on the behaviour of the algorithm. In addition, the fact that the
results obtained with Medoids are similar to those of Knowledge validates our
K-medoids procedure for partitioning the product set.
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4.6.6 Comparing the Benders Strategies

Now, we analyze the performance of the Single, Medoids andDynamic methods.
In Table 4.3 we report the average optimality gaps at termination and the average
performance rates over instances with the same values of φ. The best values are in
bold.

Table 4.3: Comparison of Single, Medoids and Dynamic

Opt. gap gapMethod
LB gapMethod

UB

φ Single Medoids Dynamic Single Medoids Dynamic Single Medoids Dynamic
25% 3.96% 4.37% 2.90% 0.54% 0.30% 0.46% 1.15% 1.81% 0.15%
50% 4.38% 4.71% 3.46% 0.62% 0.42% 0.55% 1.23% 1.77% 0.35%
75% 4.49% 3.00% 3.54% 0.80% 0.39% 0.66% 1.55% 0.43% 0.71%

For each set of instances, the best lower bounds are produced by Medoids.
This result is not surprising, as we have seen that increasing the number of super-
products in the master improves the objective value of the root node solution.
We also observe that Single and Dynamic produce lower bounds comparable in
quality with those computed by Medoids. On the other hand, we observe that
increasing the number of super-products in the master does not necessarily enable
to produce better primal solutions. Indeed, for instances φ = 25% and φ = 50%,
Single yields better upper bounds than Medoids. Medoids yields better primal
solutions solely for instances with φ = 75%. This can be explained by the fact that
these instances are particularily suitable to aggregate products by families, as seen
in Subsection 4.6.4.

Dynamic has the best performance overall. In terms of upper bounds, it signif-
icantly outperforms both static Benders strategies for instances with φ = 25% and
φ = 50%. When φ = 75% the primal solutions produced by Medoids are slightly
better than those computed by Dynamic.

Now, we analyze in further detail the Dynamic method, and the impact of
refining the master problem in the course of the optimization process. Figure 4.4
displays the distribution of the iterations performed by the Dynamic method, over
all instances. For example, "3 iterations" correspond to instances for which the Dy-
namic method solved three decompositions. We also investigate the improvement
in the upper bound performed per iteration. For each decomposition solved, we
retain the initial primal solution, and compare it with the best primal solution ob-
tained before refining the master. In Table 4.5, we report the average improvement
of the primal solution for each iteration. We also report the average time spent
during each iteration. Finally, in Figure 4.9 we display the distribution of the oc-
currences of improvement for the primal solution in the course of the optimization
process. The computation time of 5,400 seconds is divided in 10 intervals of 540
seconds. Thus, a value of 10 for the first interval indicates that the incumbent was
improved 10 times within the 540 first seconds of computation. We present results
for Single, Medoids and Dynamic over all instances.

Dynamic reaches the maximum number of iterations for a very few number
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1 iteration
2 iterations

3 iterations

4 iterations

5 iterations

6 iterations
7 iterations

Table 4.4: Distribution of instances
by # of iterations performed

Table 4.5: Performance on improving UB

It. UB Impr. Time spent
1 2.39% 32.87%
2 0.93% 30.19%
3 0.34% 20.88%
4 0.07% 10.75%
5 0.02% 3.91%
6 0.01% 1.33%
7 0.00% 0.06%
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Figure 4.9: Distribution of the occurrences of improvement for the primal solution
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of instances. For a majority of instances, the dynamic strategy performs 3, 4 or
5 iterations. Unsurprisingly, the percentage of computation time spent at each
iteration is decreasing, as the number of instances for which the ith iteration is
performed is necessarily greater or equal than the number of instances for which
the i+1th iteration is performed. In addition, we can observe that the percentage of
improvement of the primal solution is correlated to the time spent at each iteration.

These results explains why Dynamic has a lower performance than Medoids
for instances with φ = 75%. Indeed, these instances are suited for aggregating
products by families and thus considering 7 super-products in the master. However,
the Dynamic method spends most of the computation time solving the three firsts
decompositions, while it spends a very short time solving the final decomposition
with 7 super-products. In that case, the dynamic strategy could be more effective
if it spends less time in the early iterations. Nevertheless, these instances are quite
singular and the fact that Dynamic outperforms Single and Medoids overall
shows the interest of our dynamic approach.

Figure 4.9 shows that, during the course of the optimization, the occurrences of
improvement of the primal solution are significantly more numerous for Dynamic
than for Single and Medoids. Static methods tend to improve the primal solution
during the two first deciles of the computation horizon. After that, the occurrences
of improvement of the primal solution are scarce. With the dynamic approach these
occurrences are abundant in the six first deciles of the computation horizon, which
can explain why Dynamic is more effective than Single and Medoids.

4.7 Conclusions

In this Chapter, we proposed a dynamic partial Benders strategy for solving the
LSNDP. Our method solves a partial Benders decomposition where the number of
super-products in the master problem increases in the course of the optimization
process. To develop this algorithm, we adapted the enhanced Benders strategy
proposed in Chapter 3. More specifically, we introduced a Benders master problem
with multiple super-products based on a partition of the products, and proved its
validity. We also adapted the valid inequalities presented in section 3.3 to this new
master problem. To optimize the quality of the master problem at each iteration of
the dynamic partial Benders strategy, we proposed strategies to effectively partition
the products. The computational study shows that the dynamic Benders strategy
is overall more effective than static Benders strategies.
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5.1 Introduction

In Chapter 3, we presented a Benders strategy that remains effective despite scaling
up the number of products. In this chapter, we focus on another parameter that
directly affects the model computational tractability. The LSNDP is defined over a
time-expanded graph GT . Since variables and constraints in the LSNDP are based
on the nodes and arcs of GT , the model size increases directly with the size of the
time-expanded graph.

The size of a time-expanded graph is determined by: the static graph G it re-
flects, the time horizon and the time discretization. In the time-expanded network,
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the physical locations of the static network are replicated at each time interval of
the time horizon. The length of these time intervals is a crucial choice, as discretiz-
ing time involves a loss of information compared to the continuous time problem.
This loss of information may be of great or less impact, depending on the length of
the time intervals. Indeed, all travel times in G that are not multiple of the time
intervals, are rounded to the higher multiple in GT . For example, given a 1-hour dis-
cretization, an arc with a transit time of 1h20 in G is represented by time-expanded
arcs with transit times of 2h in GT . These approximations can prevent the model to
capture accurately the consolidation opportunities from the continuous time prob-
lem [Boland 2017]. To reduce these approximations, and have an accurate model
that provides high-quality solutions, one must therefore choose a small duration for
the time intervals.

On the other hand, the time discretization significantly impacts the computa-
tional tractability. With a 1-hour discretization and a planning horizon of 3 months,
each node in the static graph is duplicated 2,160 times in the time-expanded graph.
Such time-expanded graph likely yields a LSNDP instance that is too large to get
solved in a reasonable amount of time.

To face this challenge in the context of the Continuous Time Service Network
Design Problem (CTSNDP), Boland et al. [Boland 2017] proposed the Dynamic
Discretization Discovery (DDD) algorithm. The algorithm proves to be very ef-
fective on large time-expanded graphs, in particular when considering fine time
discretizations. The main advantage of DDD is that it solves the CTSNDP without
building all nodes and arcs in the time-expanded graph.

We seek to solve instances of LSNDP that are inspired by the operations of
our industrial partner. As these instances represent distribution networks with
many suppliers, warehouses and customers (see Chapter 1), they involve large static
networks. The time horizon for planning transportation operations must be suffi-
ciently long, at least 15 days. In addition, to provide high-quality transportation
plans it is necessary to consider a sufficiently fine granularity of the temporal dis-
cretization. For these reasons, industry-sized instances generate extremely large
time-expanded networks, which leads to mathematical programs that are compu-
tationally intractable for on-the-shelf optimization solvers.

Because of the differences between the LSNDP and the CTSNDP (see Chapter
2), it is impossible to apply the DDD algorithm to our problem directly. However,
in this chapter we propose a very efficient heuristic approach based on the same
sparse graph construction principles. This chapter is organized as follows. In sec-
tion 5.2, we sketch the outlines of DDD algorithm and explain why that method
cannot be applied unaltered to the LSNDP. In section 5.3 we describe our heuristic.
Its efficiency is evaluated through computational experiments in section 5.4 and
conclusions are drawn in section 5.5.
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5.2 Dynamic Discretization Discovery and the LSNDP

The DDD adresses the Continuous Time Service Network Design Problem (CT-
SNDP), a version of the SNDP wherein time discretization is thin enough to cap-
ture every real-life consolidation opportunity. This generally induces extremely
large time-expanded graphs and intractable models. The DDD method overcomes
this difficulty by manipulating sparse time-expanded graphs. The algorithm ra-
tionale is that the time-expanded graph can be very large, but only very limited
subsets of nodes and arcs appear in the optimal solution. By an iterative process,
the DDD method builds iteratively a sparse time-expanded graph, such that the
optimal solution of the integer program defined on the final graph is an optimal
solution of the integer program defined on the complete graph.

In order to ease the reading, and since the CTSNDP corresponds to a particular
case of the SNDP, we use the term SNDP here. In this section, we sketch the
outlines of DDD algorithm and explain what prevents us to use it unaltered to the
LSNDP.

5.2.1 Description of the Dynamic Discretization Discovery

DDD is an exact method that solves the SNDP without considering the complete
time-expanded graph GT . The algorithm first step is to generate a partially time-
expanded graph XT that contains a subset of the nodes in GT , and arcs with underes-
timated transit times. XT must satisfy a set of properties ensuring that SNDP(XT )
is a relaxation of SNDP(GT ). An optimal solution of SNDP(XT ) provides a lower
bound of SNDP(GT ), but may not be valid for the complete time-expanded graph.
If so, a repair mechanism modifies XT while maintaining the conditions ensuring
that SNDP(XT ) is a relaxation of SNDP(GT ). The DDD method converges when a
SNDP(XT ) optimal solution is feasible for the complete time-expanded graph. As
refining operations of XT are limited, the process converges in a finite number of
iterations. Figure 5.1 presents a high-level overview of the algorithm.

The algorithm convergence relies on the premise that, throughout the process,
the SNDP associated with XT remains a relaxation of the SNDP associated with
the complete time-expanded graph. Boland et al. build an initial XT by selecting
nodes, arcs, and arcs travel times as follows. They define an early-arrival arc
((i, t)(j, t′)) ∈ AT as a time-expanded copy of arc (i, j) ∈ A, that underestimates
real transit time, i.e. t′ − t ≤ tij . The initial XT satisfies the following properties:

Property 1. For every commodity k ∈ K originating from ok at time tk and desti-
nated to dk at time t′k, the time-expanded nodes (ok, tk) and (dk, t′k) are in
XT ;

Property 2. Every arc ((i, t), (j, t′)) in XT is an early-arrival arc;

Property 3. For every arc a = (i, j) in the static network G, and for every node
(i, t) ∈ XT , there is a corresponding arc ((i, t), (j, t′)) ∈ XT .
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Figure 5.1: DDD global scheme
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Given a commodity k ∈ K, let p be a path in GT from (ok, tk) to (dk, t′k), that
visits distinct physical locations {i1, ..., in} at times {t1, ..., tn}. A partially time-
expanded graph XT that satisfies Property 1, 2, and 3, necessarily contains an
equivalent path p′ from (ok, tk) to (dk, t′k), that visits same succession of physical
locations {i1, ..., in}, at earlier times {t′1, ..., t′n}, i.e. t′i ≤ ti ∀i ∈ [1, n].

So-called early-arrival paths are direct consequences of the early-arrival arcs, and
reproduce each shipment itinerary that is feasible in the original problem. In ad-
dition, early-arrival paths enable shipments to reach each intermediary node before
what is feasible in the original problem, in such a way that XT offers more consol-
idations opportunities than GT . Therefore, SNDP(XT ) provides a lower bound of
SNDP(GT ).

A SNDP(XT ) optimal solution may not be valid for the complete time-expanded
graph, which happens when flows transit through "too-short" arcs. In that case the
durations of such "too-short" arcs are corrected, in a way that the resulting XT again
satisfies Properties 1, 2, and 3. This refining mechanism is detailed in subsection
5.3.3.

Figure 5.2 illustrates a static graph with travel times depicted on the arcs. In
this example we consider a single commodity k, available at (A, 1) and required
at (C, 4). Figure 5.3 is a partially time-expanded network XT that satisfies the
properties listed above. The only path from (A, 1) to (C, 4) is an early-arrival path
as it requires ((A, 1)(B, 2)) that underestimates the real transit time from A to
B. Hence, the SNDP(XT ) optimal solution is not valid for the original problem,
and XT is repaired. Arc ((A, 1)(B, 2)) is too-short since there is no node in XT
that enables to model (A,B) real transit time. Therefore node (B, 3) is added, and
((A, 1)(B, 3)) replaces ((A, 1)(B, 2)). Finally, arcs of XT are updated in order to
take into account new node (B, 3). Figure 5.4 depicts the updater graph XT after
refining operations.

Figure 5.2: Static graph
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Figure 5.3: XT before repair Figure 5.4: XT after repair

5.2.2 Critical Differences between SNDP and LSNDP

Considering storage costs at warehouses in the LSNDP forbid the use of the DDD
algorithm as an exact method. Indeed, when we consider storage costs, even if the
partially time-expanded graph XT satisfies the properties introduced by Boland et
al., the optimal solution of SNDP(XT ) may not be a lower bound of the original
problem. Therefore, with storage costs, the DDD algorithm may converge to a
sub-optimal solution. We illustrate this issue with the example depicted in Figures
5.5, 5.6 and 5.7.

Let us assume that a single commodity, available at (A, 1), must be routed to
(B, 3). The costs of arcs ((A, t), (A, t+ 1)), ((A, t), (B, t+ 1)) and ((B, t), (B, t+ 1))
are 1, 1 and 2 respectively. Figure 5.5 represents the complete time-expanded graph
GT , and the optimal solution obtained when solving the SNDP(GT ). The objective
function of this optimal flow has a value of 2. Figure 5.6 represents the initial
partially time-expanded graph XT obtained with Boland et al. procedure, as well
as the optimal solution obtained when solving the SNDP(XT ). This solution is
not feasible for the original problem, as the flow transits along the too-short arc
((A, 1), (B, 1)). After refining XT , we obtain the partially time-expanded graph de-
picted in Figure 5.7. The optimal solution obtained when solving the SNDP(XT ) is
feasible for the original problem. However, it has an objective value of 3. Therefore,
on this example the DDD method converges to a sub-optimal solution.
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Figure 5.5: SNDP (GT ) optimal solution

Figure 5.6: Optimal solution of the
SNPD associated with initial XT

Figure 5.7: Optimal solution of the
SNPD associated with refined XT

Another reason that motivates us to adapt the DDD algorithm for the LSNDP
is the absence of a predefined origin for a customer demand. In the case of the
SNDP, it is easy to define a small partially time-expanded graph XT that satisfies
the properties of Boland et al.. In the case of the LSNDP, a partially time-expanded
graph XT that satisfies the properties of Boland et al. must contains all suppliers
in the network, due to the absence of origins for the demands. As a result, the size
of XT becomes rapidly too large for the DDD algorithm to be effective. This issue
will be described in details in section 5.3, and we will explain how we handle it.

5.3 Iterated Two Phases Subgraph Generation Heuris-
tic

Although the DDD algorithm cannot be applied directly to the LSNDP, we retain
its main concepts to keep its main advantage, i.e. build a subgraph XT of GT .
However, in our case, we cannot guarantee that we obtain the optimal solution of
the LSNDP when we solve it on XT .

The method is called the Iterated Two Phases Subgraph Generation Heuristic
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(ITPSGH). The general algorithm is presented in 5.3.1 and its steps in the following
subsections. A first question addressed in 5.3.2 is how to build the initial partially
time-expanded graph XT . Then, the method iterates between two phases. The first
phase, presented in 5.3.3, is directly inspired from the DDD algorithm. The second
phase detailed in 5.3.4 aims to take into account the storage costs. In the remaining
of the section, IP (XT ) and LP (XT ) denote respectively the optimal value of the
LSNDP and its linear relaxation, defined on the partially time-expanded graph XT .

5.3.1 General Algorithm

Algorithm 4 Iterated Two Phases Subgraph Generation Heuristic
Build an initial graph XT (see 5.3.2)
repeat

Refine XT by eliminating too-short arcs (see 5.3.3)
Refine XT by adding storage costs (see 5.3.4)

until The rounded-up optimal solution of LP (XT ) is feasible for IP (GT )
Remove too-short arcs from XT
Update storage costs in XT
Solve IP (XT )

The algorithm starts by building an initial graph XT including a subset of nodes
of GT . The initial arc set of XT is composed of too-short arcs with storage costs
set to zero. The procedure to build XT is explained in section 5.3.2. Then, the
algorithm iterates between two steps in which we solve linear programs instead of
integer programs as in [Boland 2017] to speed-up the algorithm. Similarly to the
DDD refining mechanism, the first step consists in eliminating too-short arcs used
in the optimal solution of LP (XT ). The algorithm is described in 5.3.3. Then, in a
second phase, the storage costs are updated in XT as explained in 5.3.4. These two
steps are iterated until the rounded-up solution of LP (XT ) is feasible for IP (GT ).
Then, the remaining too-short arcs are removed and all storage costs are set to
their original values. Thus, XT becomes a subgraph of GT . Finally, IP (XT ) is
solved and the solution is returned. In this chapter, we use a commercial software
to solve IP (XT ). In Chapter 6, we introduce a solution algorithm that integrates
the heuristic with the Benders strategy described in Chapter 4.

5.3.2 Building the Initial Graph

When storage costs are not taken into account, it is possible to construct a graph
XT such that the optimum of IP (XT ) is a lower bound for the optimum of IP (GT )
as in [Boland 2017]. Boland et al. [Boland 2017] state that the graph must contain
the origin and destination of every commodity. Therefore, given a product, for any
origin-destination path in GT there is an equivalent path in XT with a similar cost
and passing through the same physical nodes. Without this property, there is no
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Algorithm 5 Algorithm to build the initial graph XT
NT ← ∅,AT ← ∅,HT ← ∅
NT ← {(i, 0) : ∀i ∈ S ∪W}
NT ← NT ∪ {(i, t) : ∀i ∈ C, ∀t ∈ T , ∃p ∈ P, dtip > 0}
Solve LP (GT ) to obtain an optimal solution (x, y)
for (i, t) ∈ NT : ∀i ∈ S ∪W,∃p ∈ P, xptij > 0 do
NT ← NT ∪ {(i, t)}

end for
for (i, t) ∈ NT do

for (i, j) ∈ A : i 6= j do
AT ← AT ∪ {((i, t), (j, t+ tij)) : t′ = max {t′′|t′′ ≤ t+ tij , (j, t′′) ∈ NT }}

end for
end for
for (i, t) ∈ NT : i ∈ W do
HT ← HT ∪ {((i, t), (i, t′)) : t′ = min {t′′|t′′ > t, (i, t′′) ∈ NT }}

end for

guarantee that the IP (XT ) optimal value is a lower bound on the IP (GT ) optimal
value.

In the LSNDP, we are dealing with demands. The destination and delivery
time are known, but products can be delivered by several suppliers. If XT does not
contain each supplier at every possible period, some origin-destination paths of GT
are missing. When storage costs are ignored, the DDD algorithm is optimal for the
LSNDP if the initial graph contains every node (s, t) ∈ ST . However, the integer
program IP (XT ) becomes too large and the computation effort of the algorithm
becomes prohibitive.

Therefore, we decide to select only a subset of potential suppliers and periods
(s, t) ∈ ST . The composition of this subset is essential as it remains the same
during the course of the algorithm. If too many potential suppliers are present, the
algorithm becomes too time-consuming. Conversely, if too few potential suppliers
are selected, the final solution can be very poor. It may even happen that the
problem becomes unfeasible. The procedure presented in Algorithm 5 was designed
to select the potential suppliers in the initial graph. There is no guarantee that an
optimal solution may be found, but it does guarantee that the XT graph we build
leads to a feasible solution.

The construction algorithm works as follows. Initially, the sets of nodes and
of arcs are empty. First, we follow the same rules as in [Boland 2017]. A node is
added for each supplier and warehouse at time 0. Also, a node (i, t) is added for
each customer at each time t such that there is a demand for at least one product.

To enlarge the set of potential suppliers, we solve the linear relaxation of IP (GT )
and obtain a fractional solution (x, y). In this solution, we identify each supplier
shipping a positive quantity of product. We suppose that these nodes are more
likely to appear in the optimal solution of IP (GT ), and add them to XT . We do
the same for warehouses, identifying each warehouse that ships a positive quantity
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of product, and adding it to XT .
The set of arcs is built as in [Boland 2017]. For each node (i, t) in XT and for

each arc (i, j) in the static graph G, we find the node (j, t′) with the highest value
t′ such that t′ ≤ t + tij and add the too-short arc ((i, t), (j, t′)) to AT . For each
warehouse (i, t) in HT we find the node (i, t′) with the smallest t′ such that t′ > t

and add the arc ((i, t), (i, t′)) to HT . In the initial graph, all storage costs are set
to 0. In the remaining of the chapter, a storage arc with a cost fixed at 0 will be
called a free-storage arc.

Adding these nodes and arcs to XT ensures that any demand can be satis-
fied, making IP (XT ) feasible. After the construction of XT , the linear relaxation
LP (XT ) is solved. Since XT contains too-short arcs, the obtained solution may be
unfeasible for LP (GT ). Moreover, the LP (XT ) solution may include free-storage
arcs. The next two phases of the algorithm address these issues by expanding and
repairing XT .

5.3.3 Eliminating Too-Short Arcs

Once LP (XT ) is solved, the solution may not be feasible for LP (GT ). This occurs
when a non-zero flow is present on at least one too-short arc. Also, the cost of
the solution is underestimated if non-zeo flow is present on at least one free-storage
arc of XT . In that case, a two-phase repair procedure is called. The first phase
described in this subsection deals with the too-short arcs while the second phase
detailed in the next subsection considers the free-storage arcs.

In the first phase, all too-short arcs of XT with non-zero flows are refined and
LP (XT ) is solved again. In [Boland 2017], the authors developed a refining method
such that the resulting XT satisfies the hypothesis that the value of the IP (XT )
solution is a lower bound of IP (GT ). Repairing XT consists in replacing a too-short
arc ((i, t), (j, t′)) by the arc ((i, t)(j, t+ tij)). Therefore to repair the graph, Boland
et al. add (j, t + tij) to NT and create/delete arcs to take into account this new
node. We adapt this method to the LSNDP.

Algorithm 6 is applied to remove the too-short arcs appearing in the optimal
solution of LP (XT ). We refine each too-short arc ((i, t), (j, t′)) with a non-zero flow.
First, we delete ((i, t), (j, t′)). To insert the arc with the original cost, we need to
add a new time-point (j, t + tij) to NT . Since suppliers have no in-coming arcs,
node j is either a warehouse or a customer. However, customers cannot store or
ship products to another location, and XT already contains every time points (i, t)
with i ∈ C with a positive demand. Thus if j is a customer, adding (j, t + tij) to
NT makes no sense. In that case, the refining mechanism stops here.

If j is a warehouse, we add (j, t + tij) to NT , and we modify arcs of XT as in
[Boland 2017]. To enable the storage of products through (j, t+ tij), we must add
storage arcs connecting (j, t+ tij) to adjacent occurrences of j. We add an arc from
the immediately preceding occurrence (j, t1) to (j, t + tij) with t1 < tij such that
@(j, t) ∈ NT , t1 < t < tij . We also add an arc from (j, t + tij) to the immediately
following occurrence (j, t2) with tij < t2 such that @(j, t) ∈ NT , tij < t < t2.
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Algorithm 6 Refining procedure
Require: Arc ((i, t)(j, t′)) ∈ AT
AT ← AT \ {((i, t)(j, t′))}
if j /∈ C then
NT ← {(j, tnew) : tnew = t+ tij}
HT ← HT \ {((j, t′)(j, t′′)) :: t′′ = min {t|t > t′, (j, t) ∈ NT }}
HT ← HT ∪ {((j, t′)(j, tnew))}
HT ← HT ∪ {((j, tnew)(j, t′′))}
for (l, t)(j, t′)) ∈ AT do

if tnew ≤ t+ tlj then
AT ← AT \ {(l, t)(j, t′))}
AT ← AT ∪ {((l, t)(j, tnew))}

end if
end for
for (j, l) ∈ A do
AT ← AT ∪ {(j, tnew)(l, t′)) : t′ = max {t|t ≤ tnew + tij , (j, t) ∈ NT }}

end for
end if

Algorithm 7 Storage costs updating procedure
Require: Solution (x, y) to LP (XT )
for ((i, t), (i, t′)) ∈ HT with null cost in XT do

if ∃p ∈ P : xptii > 0 then
Set the cost of ((i, t), (i, t′)) to the initial value in XT ;

end if
end for

Obsolete storage arc ((j, t1), (j, t2)) is then deleted and replaced by ((j, t1), (j, t+tij))
and ((j, t+ tij), (j, t2)).

Then, transportation arcs are updated. We replace the deleted too-short arc
((i, t), (j, t′)) by ((i, t)(j, t + tij)). Also, for every transportation arc ((l, t), (j, t′)),
we check if the arc ending at the new time-point ((l, t), (j, t+ tij)) is a too-short arc.
If it is the case, we delete ((l, t), (j, t′)) and add ((l, t), (j, t+tij)). Finally we include
out-going arcs from the new time-point. For each arc (j, l) in the static network,
we determine node (l, t′) in XT with the largest t′ such that t+ tij + t′ ≤ t+ tij + tjl
and add the resulting too-short arc ((j, t+ tij)(l, t′)) to XT .

5.3.4 Updating Storage Costs

The first phase prevents the presence of too-short arcs in a LP (XT ) optimal
solution. However, the solution may include free-storage arcs. In such a case, the
storage costs are set to their initial values for these arcs and LP (XT ) is solved again.
The process is repeated until the LP (XT ) solution does not includes free-storage
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arcs. If the solution contains too-short arcs, the first phase is applied again, and
the whole process is reiterated.

5.3.5 Stopping Criterion and Final Solution

The refining process of XT terminates when the solution obtained at the end of the
second phase is feasible for LP (GT ). This occurs after a finite number of iterations.
Indeed, the number of arcs to be lengthened in XT is finite and bounded by the
number of transportation arcs in GT . Similarly, the number of free-storage arcs is
finite and bounded by the number of storage arcs in GT .

As any LP (GT ) solution can be transformed into a feasible solution of IP (GT ) by
rounding-up the fractional values, there are IP (XT ) solutions feasible for IP (GT ).
However, at the end of the iterative process, XT may contain too-short arcs. These
arcs are removed to ensure all IP (XT ) solutions are feasible for IP (GT ). In addition,
XT may contain free-storage arcs. Thus, we set these arcs to their original cost.
Finally, we solve IP (XT ) and obtain a suboptimal solution of IP (GT ).

5.4 Computational Study

In this section, we assess the efficiency of our heuristic through a computational
study. We first describe the instances and how the study was performed. We next
analyze results on easy and difficult instances.

5.4.1 Instances

The algorithm is tested on instances produced by the random generator presented
in Chapter 3. As our objective is to demonstrate the scalability of our heuristic
with respect to the size of the time expanded-graph, we generated new instances
based on different parameters values.

Two sets of instances are considered: a set of easy instances and a set of
hard instances. An easy instance is defined by D = 15 days, |P | = 10, |G| =
{10, 15, 20, 25, 30},∆ = {2, 3, 4}, and α = {10, 20, 30}. There are 45 possible param-
eter combinations and 10 randomly instances are generated for each combination.
Therefore, we have 450 easy instances. A hard instance is defined by D = 30 days,
|P | = 20, |G| = {60, 70, 80}, ∆ = {4, 6, 12, 24}, and α = {10, 20, 30}. There are 36
possible parameter combinations and for each combination 10 randomly instances
are generated. Therefore, we have 360 hard instances.

5.4.2 Setup of the Study

The performance of our heuristic algorithm is compared with the solution of the
full model obtained with Gurobi 7. The MILP solver stops when a proven optimality
gap of 0.1% at most is reached, when a CPU-time limit of 7200 seconds is reached
or when the solver runs out of memory. When an optimal or near optimal solution
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is not obtained, the best solution found is returned. We compute a performance
rate between the full MILP solution and the heuristic solution using the formula :

Rate = Hsol −MILPsol
MILPsol

× 100.

where Hsol is the objective value obtained by the heuristic and MILPsol is the
objective value returned by Gurobi 7. For a given instance, a positive rate means
that the industrial solver found a better solution than the proposed heuristic. This
is the case when the solver succeeds in solving the full MILP model. A negative
rate means that our heuristic identified a better solution than the solution of the
full MILP, which can only occur when the solver does not find the optimal solution
of the full model within the time limit or runs out of memory.

The algorithm was coded in C++ and executed on a cluster of 4 Intel Xeon
E5-2695 processors with 16Gb under Linux 16.04. Linear and integer programs
were solved using Gurobi 7.

5.4.3 Comparison with Optimal Solutions

First, the results on the set of easy instances are discussed. Gurobi 7 was able to
solve 402 instances out of 450 within the time limit. We restrict our computational
result analysis to these instances to compare the heuristic solution values with
optimal ones. Figure 5.8 presents the distribution of the performance rate. For
65% of the instances, the rate is below 1% and it is below 3% for more than 90% of
the instances. The average performance rate (Rate (%)), the heuristic computation
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Figure 5.8: Rate distribution

times in seconds (H time (s)) and the full MILP computation times in seconds
(MILP time (s)) are reported in Tables 5.1, 5.2 and 5.3. These tables aggregate the
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rates and the computation times according to the graph cardinality |G|, the time
granularity ∆, and the connectivity radius α respectively.

|G| Rate (%) H time (s) MILP time (s)
10 0.46 0.20 7.34
15 0.37 0.41 17.14
20 0.81 0.92 598.86
25 2.10 2.11 882.17
30 1.06 7.58 1190.25

Table 5.1: Comparison between the proposed approach and the MILP solution for
|G| varying from 10 to 30

∆ Rate (%) H time (s) MILP time (s)
2 0.58 0.83 180.53
3 1.03 1.41 558.92
4 1.15 3.24 750.39

Table 5.2: Comparison between the proposed approach and the MILP solution for
∆ = {2, 3, 4}

α Rate (%) H time (s) MILP time (s)
Low 0.56 0.77 300.77

Medium 1.08 0.93 507.32
High 1.14 4.67 684.25

Table 5.3: Comparison between the proposed approach and the MILP solution for
α ranging from Low to High

Average rates do not exceed 2.10% regardless of the parameter chosen and its
value. However, the parameter values have an impact on the computation time. In
particular, full MILP computation times increase significantly when the number of
nodes, the temporal granularity or the connectivity radius increases. The heuristic
computation times also increase, but remain small. This computational time re-
duction is substantial for the largest values of each parameter. The results for easy
instances indicate that the heuristic identifies high quality solutions with significant
savings in computational times.

5.4.4 Performance on Difficult Instances

Now we turn to the set of hard instances. Gurobi 7 is not able to solve the full
MILP to optimality for any instance. It only returns suboptimal solutions. Also,
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|G| Rate (%) H OOM MILP OOM
60 -4.60 0.00% 0.83%
70 -5.79 0.00% 3.33%
80 -8.59 0.00% 7.5%

Table 5.4: Comparison between the proposed approach and the MILP solution for
|G| varying from 60 to 80

note that for these instances neither the full MILP solver nor the heuristic manage
to close the optimality gap within the time limit. We display the distributions (in
deciles) of the average performance rates according to the number of nodes (Figure
5.9), the network density (Figure 5.10) and the time granularity (Figure 5.11).
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Figure 5.9: Performance rate distribution for |G|.

We observe that whatever the parameter considered, distributions are negatively
skewed. For the first deciles, the performance rates are around 0%, which means
in the worst case the heuristic solution is very close to the full MILP solution.
However, the heuristic significantly outperforms the full MILP solver in the last
deciles. To better understand this behavior, we aggregate the instances according
to the three parameters in Tables 5.4, 5.5 and 5.6. These tables report the average
performance rates (Rate (%)), the percentage of runs for which the heuristic (H
OOM (%)) and Gurobi (MILP OOM (%)) exceed the memory limit.

Except for ∆ = 4, the average performance rates are always negative. For
every parameter, we observe that the average performance rate decreases when the
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Figure 5.10: Performance rate distribution for ∆.
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∆ Rate (%) H OOM MILP OOM
4 0.35 0.00% 0.00%
6 -1.52 0.00% 0.00%
12 -8.17 0.00% 3.33%
24 -15.97 0.00% 12.22%

Table 5.5: Comparison between the proposed approach and the MILP solution for
∆ = {4, 6, 12, 24}

α Rate (%) H OOM MILP OOM
Low -2.27 0.00% 0.00%

Medium -6.05 0.00% 1.67%
High -10.66 0.00% 10.00%

Table 5.6: Comparison between the proposed approach and the MILP solution for
α ranging from Low to High
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Figure 5.12: XT relative size for |G|

parameter value increases. One explanation is that Gurobi runs out of memory to
solve the full MILP more frequently when the parameter value increases and is not
able to identify feasible solutions. It should be noted that the heuristic is able to
cope with larger instances and provide feasible solutions without running out of
memory.

To better understand these results, we compare the numbers of nodes and arcs
in the graphs XT and GT . Figures 5.12, 5.14 and 5.13 give the percentage of nodes
and arcs of GT present in XT . We can see that XT contains at most 25% of the
nodes of GT . More importantly, the percentage of arcs is very low as it remains
lower than 10%. This is a desired behavior since the numbers of variables and
constraints in IP (XT ) increase according to the number of arcs in XT .

The consequences of the reduction of the graph size can be observed in the
percentages of variables and constraints of IP (GT ) present in IP (XT ). These values
are reported in Figures 5.15, 5.16 and 5.17. The values are aggregated according to
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Figure 5.15: IP(XT ) relative size for |G|

the graph cardinality |G|, the value of α and the time granularity ∆ respectively.
We observe that the integer programs solved by the heuristic are significantly

smaller than the full MILP. In addition, as it can be expected from the graph size
comparison, we can see that the higher the network density or temporal granularity,
the smaller the relative size of IP(XT ). This observation suggests that the heuristic
constructs sparser subgraphs as the network density/time granularity increase. As
the network density/time granularity are linked to the shipment opportunities in
the network, their increase makes it possible to find better solutions, at the expense
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Figure 5.17: IP(XT ) relative size for α

of large, if not intractable models. This justifies the interest of such a heuristic to
determine high quality transportation plans on an industrial scale.

5.5 Conclusions

In this chapter we proposed a DDD based algorithm for solving the LSNDP. Our
heuristic builds a sparse subgraph, such that solving the associated LSNDP provides
a high-quality solution, in a reasonable amount of time. To assess the effectiveness
of our method, we compared it with Gurobi solver, on two set of instances.

Results on easy instances demonstrate our problem reduction is consistent, as
the method computes solutions that are close to the optimum, in a very short
amount of time. Results from the hard instances show that, for significant time-
expanded graphs, the heuristic offers a strict improvement over the solutions ob-
tained using a commercial solver. The heuristic builds subgraphs yielding math-
ematical models which are significantly smaller than the complete programs. In
addition, this difference of magnitude increases when higher densities/time granu-
larities are considered.

A logical perspective is to hybrid the DDD based heuristic with the Benders
strategies described in Chapters 3 and 4. As both methods are effective to control
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growing difficulty of the instances, with respect to distinct parameters, it appears
interesting to combine them. In Chapter 6, we present such an hybrid method.
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Study of an Industrial Case
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6.1 Introduction

In the previous chapters, we proposed solution algorithms for the LSNDP. To assess
their effectiveness, these algorithms were tested on random instances related to the
logistics operations presented in Chapter 1. In this chapter, we introduce industrial
instances that reflect the actual logistics network of the chain of restaurants. Our
purpose is twofold.

First, we seek to gain insight into the impact of extending DHL design policy
with new shipment opportunities. To this end, we conduct computational experi-
ments on instances based on a subset of the logistics network. In the benchmark
instances, we elaborate transportation plans that respect DHL design policy. We
also consider instances with extra shipment opportunities. We examine the effects of
extending the design policy on the solution costs or the computational tractability.

Secondly, we examine whether or not the algorithms proposed in this thesis
manage to scale-up with instances that reflect the whole logistics network. In
Chapters 3 and 4, we proposed Benders strategies that overcome instances with
significant number of products. In Chapter 5, we developped a DDD-based heuristic
to manage the size of the time-expanded network. As the industry-sized instances
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involve significant numbers of products, as well as very challenging time-expanded
networks, we propose a hybrid matheuristic that combines the graph construction
heuristic with the dynamic Benders strategy. The resulting matheuristic should be
able to elaborate large-scale transportation plans.

The remainder of the chapter is organised as follows. In section 6.2, we describe
the industrial instances. In section 6.3, we present the matheuristic. In section 6.4,
we propose a computational study to evaluate the effectiveness of the matheuristic.
We also discuss our findings about the effects of extending DHL design policy.
Finally, we draw conclusions in section 6.5.

6.2 Industrial Instances

We first describe the data provided by DHL. Then, we explain how the industrial
instances are generated. Finally, we present two sets of instances.

6.2.1 Data

The studied logistics network includes 4 stakeholders: the suppliers, the central
warehouses, the regional warehouses and the restaurants. In total 460 sites are
involved and distributed in four areas of France: North-West (NW), North-East
(NE), South-West (SW) and South-East (SE). Table 6.1 shows the distribution of
the sites in the different zones.

Table 6.1: Distribution of the logistics facilities

Area Suppliers Cent. Warehouses Reg. Warehouses Restaurants
NW 36 1 16 51
NE 91 1 9 87
SW 18 1 7 44
SE 32 1 8 57

Total 177 4 40 239

The distance and travel times between each pair of logistics facilities are derived
from the shortest route found using Google Maps and considering a light traffic. The
transportation cost between each pair of logistics facilities is calculated based on
data from the National Road Committee (CNR) [Routier 2019]. These data state
that the average transportation cost for a carrier is of 0.519 euro per kilometer.
The cost for loading and unloading a pallet of product into a vehicle is 0.8 euros.
DHL provides us with the storage cost of each warehouse. The average storage cost
for a central warehouse is of 0.65 euro per pallet and per day. The average storage
cost for a regional warehouses is of 1.5 euro per pallet and per day.

The chain of restaurants uses a thousand of types of products classified into the
following families: frozen products, fresh products, dry products, beverages and
non-food products. Product families are classified into two categories of products.
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Table 6.2: Demand distribution per product family

Demand distribution
Summer Winter

Families Number of products % of products Low Medium High Low Medium High

Frozen 315
80 x x
20 x x

Fresh 290
50 x x
30 x x
20 x x

Dry 120
50 x x
50 x x

Beverages 165
50 x x
50 x x

Non-Food 110
80 x x
20 x x

Frozen and fresh products belong to the category of cold products, while dry prod-
ucts, beverages and non-food products belong to the category of ambient products.
The transportation plans designed for ambient and cold products are distinct, as
cold products require temperature control for food safety while ambient products
do not.

DHL does not provide us with a detailed list of products, but with a distribution
of the products in the different families. This distribution takes into account the
seasonality of the demands, which varies from product to product. For example,
the demand for ice cream tends to be high in summer and low during the rest of
the year, while the demand for potatoes is high in winter and medium during the
rest of the year. The data related to the products are summarized in Table 6.2.

Also, note that DHL provides us with the product families offered by each
supplier. However, we do not have the detailed list of products proposed by each
supplier. Finally, for each restaurant DHL provides us a with delivery schedule that
indicates the times of the week when products are requested.

6.2.2 Instance Generation

We generated industrial instances based on these data. We proceeded as follows.
First, we select a subset of suppliers, warehouses and customers in the logistics
network. Similarly to DHL transportation operations, we build a transportation
arc from each supplier to each central warehouse, from each central warehouse to
each regional warehouse, and to each restaurant from its nearest regional warehouse.
Extra transportation arcs are added based on a connectivity radius α. Specifically,
a transportation arc is considered from each supplier to any regional warehouse or
any restaurant located in a radius of α kilometers. Moreover, a transportation arc
is added from each regional warehouse to any restaurant located in a radius of α
kilometers. For each transportation arc, the travel time and costs are set based on
the data described in the previous section.
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At most three types of deliveries are present. In a centralized delivery, products
are shipped from a supplier to a central warehouse, then to a regional warehouse,
and finally to a restaurant. In an indirect delivery, products are shipped from a
supplier to a regional warehouse, and then to a restaurant. Finally, direct deliv-
eries model shipments from a supplier to a restaurant without transit through an
intermediate facility. As explained in Chapter 1, DHL design policy only allows cen-
tralized deliveries. Thus, we consider instances with α = 0 kilometers to elaborate
transportation plans that respect DHL design policy. We refer to these instances
as the benchmark instances. We also consider instances with non-null values for
α. These instances correspond to extended design policies as they allow centralized
deliveries as well as extra indirect and direct deliveries.

The temporal dimension is determined by the number of days in the planning
horizon D, and, the time granularity ∆. As explained in Chapter 3, the time
granularity expresses the number of time points per day in the time-expanded graph.

Each instance corresponds to a given category of products (i.e. ambient products
or cold products) and a season (i.e. summer or winter). We randomly generate the
list of products offered by each supplier, based on the product families it provides.
Specifically, a supplier that specializes in a product family has a 25% chance to
provide a product in that family. Finally, we generate the restaurant demands.
For each restaurant, the product deliveries are requested at times that match the
corresponding delivery schedule. The volume of each product demand is randomly
chosen, based on the product demand seasonality and the season considered.

6.2.3 South-West Instances

We generate a first set of instances that corresponds to the south-western part of
the logistics network. The transportation plan to elaborate is for the category of
ambient products. Thus, we only consider suppliers specialized in dry products,
beverages or non-food products. Figure 6.1 shows the resulting logistics network,
which is composed of 67 sites, including 15 suppliers, one central warehouse, 7
regional warehouses and 44 restaurants.

We consider six values for the connectivity radius α: 0, 10, 20, 30, 40 and
50. Figure 6.2 shows the logistics network, with disks of 50 kilometers around the
suppliers and regional warehouses. The number of days in the planning horizon
is set to 15. We generate instances with a time granularity ∆ of 1, 2, 3 and 4,
leading to time intervals of respectively 24h, 12h, 8h and 6h for summer and winter
seasons. Details on the 48 instances are given in Table 6.3. In Table 6.4 we report
the number of transportation arcs between the logistics facilities according to the
connectivity radius. S, W1, W2 and C respectively denote the suppliers, the central
warehouses, the regional warehouses and the restaurants.
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Figure 6.1: South-West region of the logistics network
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Figure 6.2: The South-West region with a connectivity radius α = 50km
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Table 6.3: Description of the South-West instances

Instance Area Category α ∆ Season
1 SW Ambient 0 1 Summer
2 SW Ambient 0 1 Winter
3 SW Ambient 0 2 Summer
4 SW Ambient 0 2 Winter
5 SW Ambient 0 3 Summer
6 SW Ambient 0 3 Winter
7 SW Ambient 0 4 Summer
8 SW Ambient 0 4 Winter
9 SW Ambient 10 1 Summer
10 SW Ambient 10 1 Winter
11 SW Ambient 10 2 Summer
12 SW Ambient 10 2 Winter
13 SW Ambient 10 3 Summer
14 SW Ambient 10 3 Winter
15 SW Ambient 10 4 Summer
16 SW Ambient 10 4 Winter
17 SW Ambient 20 1 Summer
18 SW Ambient 20 1 Winter
19 SW Ambient 20 2 Summer
20 SW Ambient 20 2 Winter
21 SW Ambient 20 3 Summer
22 SW Ambient 20 3 Winter
23 SW Ambient 20 4 Summer
24 SW Ambient 20 4 Winter

Instance Area Category α ∆ Season
25 SW Ambient 30 1 Summer
26 SW Ambient 30 1 Winter
27 SW Ambient 30 2 Summer
28 SW Ambient 30 2 Winter
29 SW Ambient 30 3 Summer
30 SW Ambient 30 3 Winter
31 SW Ambient 30 4 Summer
32 SW Ambient 30 4 Winter
33 SW Ambient 40 1 Summer
34 SW Ambient 40 1 Winter
35 SW Ambient 40 2 Summer
36 SW Ambient 40 2 Winter
37 SW Ambient 40 3 Summer
38 SW Ambient 40 3 Winter
39 SW Ambient 40 4 Summer
40 SW Ambient 40 4 Winter
41 SW Ambient 50 1 Summer
42 SW Ambient 50 1 Winter
43 SW Ambient 50 2 Summer
44 SW Ambient 50 2 Winter
45 SW Ambient 50 3 Summer
46 SW Ambient 50 3 Winter
47 SW Ambient 50 4 Summer
48 SW Ambient 50 4 Winter

Table 6.4: Distribution of the transportation arcs for South-West instances

α S->W1 S->W2 S->C W1->W2 W2->C Total
0 15 0 0 7 44 66
10 15 1 8 7 48 79
20 15 2 17 7 60 101
30 15 3 19 7 67 111
40 15 3 22 7 69 116
50 15 3 31 7 72 128
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6.2.4 North-East Instances

We generate a second set of instances that corresponds to the north-eastern part
of the logistics network. The transportation plan to elaborate is for the category
of cold products. Thus, we only consider suppliers specialized in fresh or frozen
products. Figure 6.3 shows the resulting logistics network, which is composed of
126 sites, including 29 suppliers, 1 central warehouses, 9 regional warehouses and
87 restaurants.

Figure 6.3: North-East region of the logistics network

We consider three values for the connectivity radius α: 0, 25 and 50. Figure 6.4
shows the logistics network, with disks of 50 kilometers around the suppliers and
regional warehouses. The number of days in the planning horizon is set to 15. We
generate instances with a time granularity ∆ of 1, 2 and 4, leading to time intervals
of respectively 24h, 12h and 6h for summer and winter seasons. Details on the 18
instances are given in Table 6.5. Table 6.6 gives the number of transportation arcs
between the logistics facilities according to the connectivity radius.
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Figure 6.4: The North-East region with a connectivity radius α = 50km
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Table 6.5: Description of the North-East instances

Instance Areas Category α ∆ Season
1 NE Cold 0 1 Summer
2 NE Cold 0 1 Winter
3 NE Cold 0 2 Summer
4 NE Cold 0 2 Winter
5 NE Cold 0 4 Summer
6 NE Cold 0 4 Winter
7 NE Cold 25 1 Summer
8 NE Cold 25 1 Winter
9 NE Cold 25 2 Summer
10 NE Cold 25 2 Winter
11 NE Cold 25 4 Summer
12 NE Cold 25 4 Winter
13 NE Cold 50 1 Summer
14 NE Cold 50 1 Winter
15 NE Cold 50 2 Summer
16 NE Cold 50 2 Winter
17 NE Cold 50 4 Summer
18 NE Cold 50 4 Winter

Table 6.6: Distribution of the transportation arcs for North-East instances

α S->W1 S->W2 S->C W1->W2 W2->C Total
0 29 0 0 9 87 125
25 29 9 93 9 116 256
50 29 24 210 9 135 407
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6.3 A Hybrid Matheuristic

The industrial instances involve a significant number of products, as well as con-
siderable time-expanded networks. In Chapter 4, we proposed a dynamic Benders
strategy that is effective for solving instances with a significant number of prod-
ucts. In Chapter 5, we presented a DDD-based heuristic that constructs a sparse
time-expanded graph, and we demonstrated that solving the LSNDP defined over
that time-expanded graph yields high-quality solutions with less computing effort.
To overcome the size of the industrial instances, we propose a matheuristic that
combines the graph construction heuristic with the dynamic Benders strategy. The
flowchart in Figure 6.5 sketches the matheuristic.

Start
Problem
reduction
heuristic

Solve LSNDP
(XT ) with
dynamic
Benders
strategy

End
XT

Figure 6.5: Principle of the matheuristic

We first build a sparse time-expanded graph XT that includes a subset of the
nodes of the complete graph GT , too-short transportation arcs, and free-storage
arcs. Similarly to Chapter 5, we iteratively solve LP(XT ) and refine the graph until
we obtain a linear solution of the LSNDP in which neither short arcs nor free storage
arcs appear. Then, the remaining too-short arcs are removed and all storage costs
are set to their original values, such that the resulting graph is a subgraph of GT .
Last, we apply the dynamic partial Benders strategy to the LSNDP defined over
the subgraph, and obtain a suboptimal solution of the original problem.

6.4 Computational Study

We solve the instances described in subsections 6.2.3 and 6.2.4 with two algorithms.
The first algorithm is the dynamic Benders strategy presented in Chapter 4. The
second algorithm is the matheuristic presented in section 6.3. All experiments
are conducted on an Intel Xeon E5-2695 processor with 50 GB of memory under
Linux 16.04. Linear and integer programs are solved using Cplex 12.7. Each run
terminates if (a) a solution within the 1% optimality gap is found, or (b) the imposed
CPU time limit of 24 hours is reached.

In this section, we assess the efficiency of our algorithms on industrial instances.
We then analyze the results, and evaluate the impact of the design policy and the
time discretization on the transportation plan costs.



118 Chapter 6. Study of an Industrial Case

Table 6.7: Computational results for South-West instances 1-24

Dynamic Benders Hybrid
Instance Objective Opt. gap Time Objective Opt. gap Time Improv.

α = 0

1 125,711 0.92% 125 126,127 0.76% 24 -0.33%
2 95,817 0.81% 492 96,127 0.92% 32 -0.32%
3 117,501 0.82% 2,226 119,038 0.51% 89 -1.29%
4 89,341 0.97% 4,396 90,084 0.72% 74 -0.82%
5 114,724 0.99% 14,557 117,657 0.95% 117 -2.49%
6 86,932 0.98% 22,365 88,746 0.95% 246 -2.04%
7 113,174 0.99% 64,852 116,857 0.99% 117 -3.15%
8 85,843 0.97% 72,933 88,472 0.90% 316 -2.97%

α = 10

9 118,898 1.64% 86,400 119,248 1.00% 86,400 -0.29%
10 90,982 1.58% 86,400 90,814 1.11% 86,400 0.19%
11 114,406 6.31% 86,400 113,547 2.36% 86,400 0.76%
12 87,743 7.52% 86,400 86,878 3.55% 86,400 1.00%
13 114,080 9.61% 86,400 111,969 3.76% 86,400 1.89%
14 85,887 9.38% 86,400 85,616 3.79% 86,400 0.32%
15 112,901 11.22% 86,400 112,556 3.81% 86,400 0.31%
16 85,387 10.66% 86,400 84,725 2.57% 86,400 0.78%

α = 20

17 118,250 2.94% 86,400 117,379 1.15% 86,400 0.74%
18 89,661 3.21% 86,400 88,790 1.14% 86,400 0.98%
19 112,896 5.90% 86,400 111,725 2.91% 86,400 1.05%
20 86,412 7.95% 86,400 85,016 4.21% 86,400 1.64%
21 112,612 10.09% 86,400 110,945 4.57% 86,400 1.50%
22 85,939 12.72% 86,400 83,926 4.61% 86,400 2.40%
23 111,935 11.34% 86,400 109,364 3.10% 86,400 2.35%
24 84,833 11.66% 86,400 84,020 4.68% 86,400 0.97%

6.4.1 Performance of the Algorithms

To assess the performance of the matheuristic proposed in this chapter, we compare
its results to those obtained with the dynamic Benders strategy. We first consider
the results on the South-West instances and then on the North-East instances.

South-West Instances

Tables 6.7 and 6.8 correspond respectively to the South-West instances 1 to 24
and 25 to 48. For each method, we report the objective value of the obtained solu-
tion, the gap at termination and the computation time. Column Improv. displays
the percentage of improvement of the matheuristic solution relative to that of the
dynamic Benders strategy. A positive improvement indicates that the matheuristic
found a solution with lower objective than the Benders strategy.

The first observation that emerges from the analysis of the results is that ex-
tending DHL design policy has a strong impact on the instance difficulty. The
Benders strategy found an optimal solution within the time limit only for the in-
stances that model the DHL design policy (instances 1 to 8). For the instances
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Table 6.8: Computational results for South-West instances 25-48

Dynamic Benders Hybrid
Instance Objective Opt. gap Time Objective Opt. gap Time Improv.

α = 30

25 112,563 3.77% 86,400 112,766 4.73% 86,400 -0.18%
26 86,484 3.77% 86,400 86,915 4.50% 86,400 -0.50%
27 108,266 9.50% 86,400 106,344 2.70% 86,400 1.81%
28 84,775 12.23% 86,400 81,916 4.27% 86,400 3.49%
29 110,334 15.97% 86,400 107,166 6.23% 86,400 2.96%
30 83,209 17.27% 86,400 80,419 5.52% 86,400 3.47%
31 108,099 18.60% 86,400 106,854 5.10% 86,400 1.16%
32 84,263 20.85% 86,400 83,581 8.47% 86,400 0.82%

α = 40

33 112,666 3.61% 86,400 112,472 3.78% 86,400 0.17%
34 87,020 5.23% 86,400 86,545 2.26% 86,400 0.55%
35 110,475 13.02% 86,400 107,174 3.90% 86,400 3.08%
36 84,995 14.28% 86,400 81,476 3.87% 86,400 4.32%
37 108,811 14.57% 86,400 106,510 5.93% 86,400 2.16%
38 84,295 19.06% 86,400 80,048 5.43% 86,400 5.31%
39 107,965 18.91% 86,400 107,689 6.24% 86,400 0.26%
40 82,604 17.90% 86,400 81,690 7.04% 86,400 1.12%

α = 50

41 112,734 5,13% 86,400 112,090 2.06% 86,400 0.57%
42 87,568 6,87% 86,400 85,488 1.90% 86,400 2.43%
43 109,323 10,42% 86,400 107,047 4.79% 86,400 2.13%
44 85,303 14,53% 86,400 81,868 5.94% 86,400 4.20%
45 109,233 18,54% 86,400 104,658 5.30% 86,400 4.37%
46 85,100 22,50% 86,400 81,098 7.52% 86,400 4.94%
47 109,313 19,47% 86,400 105,207 5.49% 86,400 3.90%
48 83,710 22,43% 86,400 80,057 6.27% 86,400 4.56%

based on extended design policies, the Benders strategy found suboptimal solutions
only. In addition, the matheuristic converges within the time limit only for the first
eight instances. For instances based on an extended design policy, the matheuristic
does not solve to optimality the LSNDP defined over the subgraph.

The solution found by the Benders strategy is better than that of the meta-
heuristic for 11 instances out of 48. Among these instances are instances 1 to 8,
for which the Benders strategy found a solution within the 1% optimality gap. For
these instances, the percentages in the "Improv." column characterize the loss in the
quality of the transportation plan by considering the heuristic subgraph instead of
the complete graph.

The other instances for which the Benders strategy outperforms the matheuristic
are instances with the coarser time discretization (instances 9, 25 and 26). For the 37
remaining instances, the matheuristic outperformed the Benders strategy. Overall,
the percentage of improvement of the matheuristic solution relative to that of the
dynamic Benders strategy equals 1.26%.

We now compare the matheuristic performance relative to that of the Benders
strategy according to the size of the instances. In Table 6.9 we average the ob-
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Table 6.9: Computational results according to α

Dynamic Benders Hybrid
α Objective Opt. gap Time Objective Opt. gap Time Improv.
0 103,630 0.93% 22,743 105,389 0.84% 153 -1.68%
10 101,286 7.39% 86,400 100,669 2.74% 86,400 0.62%
20 100,317 8.23% 86,400 98,896 3.30% 86,400 1.45%
30 97,249 12.80% 86,400 95,745 5.19% 86,400 1.63%
40 97,354 13.32% 86,400 95,450 4.81% 86,400 2.12%
50 97,786 14.99% 86,400 94,689 4.91% 86,400 3.39%

Table 6.10: Computational results according to ∆

Dynamic Benders Hybrid
∆ Objective Opt. gap Time Objective Opt. gap Time Improv.
1 103,196 3.42% 72,076 102,897 2.11% 72,023 0.33%
2 99,286 8.62% 72,592 97,676 3.31% 72,033 1.78%
3 98,430 12.64% 75,164 96,563 4.55% 72,047 2.06%
4 97,502 13.75% 83,546 9,6756 4.56% 72,051 0.84%

jectives, gaps at termination, primal gaps, computation times and percentages of
improvement over instances with the same connectivity radius. In Table 6.10 we
report the same outputs over instances with the same time granularity.

The matheuristic is more efficient than the Benders strategy for instances with
extended design policies. In addition, the matheuristic has a better performance
overall than the Benders strategy regardless of the time discretization considered.
We also observe that the values in the "Improv." column increase monotonically with
the connectivity radius. Therefore, for large-scale instances, it is more effective to
solve the LSNDP defined over the sparse subgraph than to solve the complete pro-
gram. That result validates the interest of combining the sparse graph construction
heuristic with the dynamic Benders strategy for industrial matters.

It is worth noting that the industrial instances are more difficult to solve than the
random instances. In Chapter 4, the dynamic Benders strategy is tested on random
instances of similar scale, and yields an average gap at termination of 3.97%, after
1 hour and 30 minutes of computation. Here, the average final gap is of 9.60%
with a time limit of 24 hour. This is due to the quality of the initial heuristic
solution which provides a worse primal bound zh for the industrial instances. For
each instance we measure the improvement in the primal solution over that of the
initial heuristic solution, by computing the primal gap:

primal-gapUB = zh −UB
zh

× 100
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Table 6.11: Computational results for North-East instances

Dynamic Benders Hybrid
Instance Objective Opt. gap Time Objective Opt. gap Time Improv.

α = 0

1 632,388 1.09% 86,400 631,096 0.81% 447 0.20%
2 519,948 1.12% 86,400 518,809 0.84% 491 0.22%
3 537,070 0.93% 2,665 537,679 0.88% 769 -0.11%
4 443,255 1.36% 86,400 440,991 0.82% 935 0.51%
5 499,765 2.94% 86,400 489,544 0.23% 2,163 2.09%
6 402,922 1.11% 86,400 401,775 0.17% 1,618 0.29%

α = 25

7 521,467 5.78 86,400 521,467 5.57% 86,400 0%
8 429,715 6.61 86,400 427,382 5.18% 86,400 0.55%
9 456,354 8.39 86,400 456,354 7.43% 86,400 0%
10 377,673 8.79 86,400 377,673 8.16% 86,400 0%
11 433,380 12.14 86,400 428,980 9.11% 86,400 1.03%
12 362,504 13.51 86,400 359,831 10.92% 86,400 0.74%

α = 50

13 447,697 14.56 86,400 447,697 13.04% 86,400 0%
14 372,335 13.18 86,400 372,335 13.58% 86,400 0%
15 398,870 18.3 86,400 398,870 15.41% 86,400 0%
16 334,103 18.57 86,400 334,103 16.68% 86,400 0%
17 385,315 23.08 86,400 385,315 18.47% 86,400 0%
18 325,657 24.81 86,400 318,349 18.5% 86,400 2.30%

Where UB is the objective value of the final primal solution. For the random
instances in Chapter 4, the dynamic Benders strategy yields an average primal gap
of 3.82%. For the regional instances, the average primal gap equals 24.69%. As
the average final gap obtained for the random instances is lower than the average
final gap obtained for the industrial instances, we deduce that the initial heuristic
solution is worse in the case of the industrial instances.

North-East Instances

We report the results corresponding to the North-East instances in Table 6.11.
The Benders strategy converged within the time limit for the third instance only.

In addition, the Benders strategy only improved the initial heuristic solution for
instances that correspond to the DHL design policy. For other instances, no better
primal solution is found within the time limit. We observe that the matheuristic is
more effective. For 5 out of the 6 instances with α = 0, it computes a strictly better
solution than the Benders strategy. When α = 25, the matheuristic outperforms
the Benders strategy and improves the initial heuristic solution for 3 instances
out of 6. Finally, the matheuristic only improves the initial heuristic solution for
one of the 6 last instances. These results show the limitations of our Benders
strategy for solving large scale instances. Although the matheuristic yields a better
performance, it also has difficulties to compute good transportation plans for the
instances modelling extended design policies. Thus, we conclude that our solution
algorithms still require enhancements to cope with instances that reflect the whole
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logistics network.
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We further investigate the impact of the design policy and the time discretization
on the transportation plan costs. In the following subsections, we analyze the
results for the SW instances. For each instance, we compare the solution obtained
by the Benders strategy with that obtained by the matheuristic, and retain the
transportation plan with lowest cost.

6.4.2 Value of extending DHL design policy

We first assess the impact of extending DHL design policy. Note that we ob-
tained optimal solutions for all the benchmark instances, i.e. the instances based
on DHL design policy, and suboptimal solutions for the instances based on the ex-
tended design policies. Therefore, in the following analysis we underestimate the
potential of extending DHL design policy.

We report in Figure 6.6 the average cost savings on the transportation plan
achieved by the enhanced design policies compared to the DHL design policy, for a
planning horizon of 15 days.
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Figure 6.6: Overall cost savings

We observe that the average cost savings are positive for all enhanced design
policies. This is not surprising since we extend the shipments opportunities to re-
duce the transportation plan overall cost. Indeed, increasing the number of delivery
opportunities enables to enlarge the solution search space. When we consider a con-
nectivity radius of 50 kilometers, the transportation plan average cost has a value
of 94, 689 euros, against 103, 630 euros for the DHL current policy, thus generating
savings of more than 8%.

In Figure 6.7, we investigate the distribution of these average cost savings, ac-
cording to the different variables of our model. Variable Transp. Savings,
Inventory Savings and Fixed Transp. Savings shows the average cost sav-
ings associated respectively with the transportation flow variables, the storage flow
variables and the vehicle allocation variables.
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Figure 6.7: Cost savings per type variable

We observe that adding shipment opportunities to the DHL design policy en-
ables costs reductions on transportation. Specifically, most savings are due to a
better utilization of the vehicle fleet. This can be attributed to the fact that indi-
rect and direct deliveries require less vehicles than centralized deliveries. In Figure
6.8, for each design policy we report the percentages of products delivered via cen-
tralized, indirect and direct paths.

This figure confirms the interest of adding new shipment opportunities to DHL
design policy. Indeed, the initial rate of 100% of centralized deliveries decreases
gradually as the connectivity radius increases. Although the centralized delivery
remains the main option regardless of the design policy considered, this decrease of
centralized deliveries indicates that the extra shipment opportunities are success-
fully exploited.

Even though increasing the number of shipment opportunities theoretically leads
to better solutions, the decision-maker must limit the value of the connectivity ra-
dius. Indeed, the difficulty of an instance increases with the connectivity radius (see
Table 6.9). Thus, to elaborate cost-effective transportation plans in a reasonnable
time, it is necessary to limit the number of transportation arcs so as not to prevent
the algorithm convergence.

6.4.3 Impact of the time discretization

We now study the impact of time granularity on the overall costs. In Figure
6.9 we average the overall costs of transportation plans over the instances with the
same time granularity.

As expected, the choice of the time granularity impacts the overall costs of
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Figure 6.8: Percentages of centralized, indirect and direct deliveries
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transportation plans. More specifically, a refined time granularity allows to compute
more cost-effective solutions. With a time granularity value of 1 (i.e. time intervals
of 24 hours), the transportation plans have an average overall cost of 102, 754 euros.
On the other hand, considering a time granularity value of 4 (i.e. time intervals
of 6 hours) enables to elaborate transportation plans with an average overall cost
of 96, 230 euros, thus saving more than 6%. To get a better understanding of
these savings, we examine the distribution of the costs. In Figure 6.10, we report
the average variable transportation costs, inventory costs, and fixed transportation
costs.
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Figure 6.10: Cost per variable

We observe that time granularity does not significantly affect the transportation
costs, i.e. the costs related to flow and truck variables. On the other hand, refining
the time granularity generates substantial savings in terms of inventory costs. This
outcome highlights the effects of a main difference between the LSNDP and the
SNDP. In their study of the SNDP, Boland et al. [Boland 2018] exhibited the fact
that partitionning the time horizon into long intervals can cause a major loss of
quality on the transportation plan. Indeed, the SNDP consider commodities with
availability and due dates. As the time windows between available and due dates
can be tight, an inaccurate time discretization yields a SNDP model that prevents
many feasible consolidation opportunities in the continous time problem. Thus,
considering a coarse time discretization for the SNDP results in increased costs in
terms of fleet utilization. In the LSNDP, as products do not have available dates,
shipping dates are only constrained by the restaurants due dates. As a result, a
coarse time discretization poorly affects the number of consolidation opportunities
in the LSNDP, which explains why transportation costs are not impacted. However,
considering a refined time granularity is advanteageous for the LSNDP, as it permits
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to capture storage times more precisely, and reduce inventory costs.
Nevertheless the time granularity has, similarly to the connectivity radius, con-

sequences on the instance difficulty (see Table 6.10). Short time intervals usually
result in models that are computationally intractable. Thus, it is not surprising
that found gaps increase when the time discretization is refined. Although refining
the time discretization enables to reduce overall costs, this result points out that
the selection of the time granularity must be the result of a compromise between
solution quality and computational tractability.

6.5 Conclusions

In this chapter we introduced industrial instances based on the logistics network
of a restaurant chain. To solve these instances, we presented a matheuristic that
combines the sparse graph construction heuristic described in Chapter 5 with the
dynamic Benders strategy described in Chapter 4.

In the computational study, we showed that extending DHL design policy with
extra shipment opportunities enables to reduce the transportation plan overall cost.
We also demonstrated that increasing the time granularity allows to gain signifi-
cant savings, especially on inventory costs. On the other hand, we have seen that
extending the design policy or refining the time discretization has a strong impact
on the instance size.

We showed that as the instance difficulty increases, the matheuristic yields trans-
portation plans that are more cost-effective than those obtained with the dynamic
Benders strategy. We also have seen that the matheuristic has difficulties to solve
large instances with extended design policies. This is a direct consequence of the
increasing number of transportation arcs in the network. A perspective is to recon-
sider the way we extend the DHL design policy. Indeed, in this chapter we add a
transportation arc from each supplier/warehouse to each warehouse/customer in a
radius of alpha kilometers. As the connectivity radius grows, the number of trans-
portation arcs in the network can be quite significant. Nevertheless, it is unliklely
that all these transportation arcs contribute to the improvement of the transporta-
tion plan. To limit the instance sizes, an improvement would be to develop a
solution algorithm that identifies a limited number of transportation arcs to add to
the network.





Conclusion

The research presented in this thesis was conducted in partnership with DHL Supply
Chain, a logistics solution provider. More specifically, we addressed a tactical trans-
portation problem inspired by DHL’s management of a French restaurant chain. We
introduced a new problem for planning the transportation operations of a supply
chain: the Logistics Service Network Design Problem (LSNDP). The aim of our
research work was to develop optimization techniques able to provide high-quality
solutions to the real-life instances faced by DHL. To this end, we developped solu-
tion algorithms that remain effective despite the scaling of two instance parameters:
the number of products and the size of the underlying network. The main scientific
contributions of this thesis were detailed in chapters 3, 4 et 5.

Contributions

In Chapter 3, we proposed a partial Benders decomposition algorithm for solving the
LSNDP. In that decomposition, we strengthen the master problem by considering a
super-product derived from the aggregation of the products. We proved the validity
of this new master problem and computationally demonstrated the contribution of
this aggregated information. To accelerate the convergence of our approach, we
enriched the master with three cutset-based valid inequalities. We also integrated
a heuristic that derives feasible primal solutions from unfeasible subproblems. The
computational study shows the proposed Benders approach produces high-quality
primal and dual solutions for large-scale instances. It also shows that the increase
in the number of products has little effect on our method. This is mainly due to
the fact that the master problem size is independent of the number of products
considered.

In Chapter 4, we proposed a dynamic Benders strategy that extends our work
from Chapter 3. In that approach, the aggregated information used to strengthen
the master problem is refined at each iteration. This refinement is characterized
by an increase in the number of super-products in the master. We proved that
the Benders decomposition presented in Chapter 3 can be extended to multiple
super-products obtained by partitioning the product set. We also demonstrated
that the quality of the master problem depends on the partition of the product
set. Thus, we introduced a metric to estimate whether or not a pair of product
should be aggregated. Based on this metric, we implemented clustering strategies
to effectively partition the product set at each main iteration of the algorithm. The
results demonstrated the potential of our dynamic method compared with static
Benders strategies.

The approaches presented in Chapters 3 and 4 are effective to solve instances
with significant numbers of products. Nevertheless, real-life instances also involve
extremely large time-expanded graphs. To be able to solve these instances, we pro-
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posed in Chapter 5 a network reduction heuristic based on the Dynamic Discretiza-
tion Discovery. Our heuristic iteratively constructs a subset of the original time-
expanded graph, so that solving the LSNDP defined over the subgraph provides a
feasible solution to the original problem. We showed that our heuristic generates
subgraphs that are orders of magnitude smaller than the original time-expanded
graphs. This seems to be particularly true for instances with a fine time discretiza-
tion and/or many delivery opportunities. Computational experiments show that
solving the reduced problem enables to significantly alleviate the computational
burden, with a relatively small impact on the solution quality.

Finally, Chapter 6 introduced a matheuristic that combines the problem reduc-
tion heuristic with the dynamic Benders strategy. The matheuristic was tested on a
set of real-life instances based on regions of the restaurant chain’s logistics network.
To assess the efficiency of our solution algorithm, we conducted an extensive com-
putational study. Results reveal that our method effectively builds plans for the
transportation operations of a supply chain composed of 67 actors, 390 products,
over a planning horizon of 15 days discretized in time intervals of 6 hours. From a
practical point of view, our experiments suggest that extending the DHL’s design
policy could yield to significant gains in the transportation plan overall costs.

Perspectives

The matheuristic presented in Chapter 6 proved to be effective for planning the
transportation operations of a large-scale supply chain. But some works still need
to be done to cope with instances that reflect the logistics network of the restaurant
chain. A first perspective would be to readjust our solution algorithms to the indus-
trial instances. The methods proposed in this thesis were designed with respect to
random instances, and appear to be less effective in the case of industrial instances.
By analyzing in-depth the structure of the industrial instances, we believe that we
can identify specific features and exploit them to improve our solution algorithms.

We also see multiple avenues to improve the Benders approaches. We observed
that we essentially generate feasibility cuts throughout the iterations. These feasi-
bility cuts are standard, in the sense that they are obtained cutting off unbounded
rays in the dual subproblem. However, it is well-known that standard feasibility cuts
are not the most effective [Fischetti 2010]. By deriving combinatorial Benders cuts
[Codato 2006] from infeasible vehicle allocations, we could considerably reduce the
number of iterations of the algorithm. In the dynamic Benders strategy, there are
improvements to be done regarding the information refinement process. The algo-
rithm is initiated with a single super-product, but nothing prevents us to start with
multiple super-products. Also, the number of super-products is always increased
by one unit, whereas we could skip certain configurations. Ideally, the information
refinement process should, according to the instance structure, evaluate the optimal
number of super-products to consider at each iteration. In this sense, the values
of the average matching rates with respect to the number of super-products could
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provide clues as to how to proceed.
Finally, we could apply our research to other optimization problems. At first,

we could focus on other transportation problems. We introduced a new master
problem based on product aggregation that significantly improve the convergence
of the Benders scheme. Although we used this idea in the context of the LSNDP,
the technique could easily be applied to most network design problems that involve
multiple products/commodities. As the number of products/commodities is clearly
an obstacle to the solution of large-scale instances, we believe our approach has real
relevance. In a larger perspective, the concept of strengthening the master problem
with aggregated information that is refined in the course of the optimization process
is transferable to all optimization problems. Therefore, a challenging - but not less
exciting - avenue for future works would be to develop an abstract dynamic Benders
scheme for solving general mixed-integer linear programs.





Appendix A

Appendix A: Validity of the
inequalities

Theorem 5 The proposed inequalities (3.17)-(3.18) are valid.

Proof 5 We first define the LSNDP over a time-expanded graph with super-sources.
We demonstrate that the new problem is equivalent to the original one. Then, we
demonstrate that any feasible solution for the new problem is equivalent to a solution
for the EMP that respects (3.17)-(3.18).

Let (x, y) be a feasible solution for the LSND(GT ). Let us extend GT similarly
to what was done in section 3.3. For each p ∈ P, we add a super-source ssp to
GT . In addition, for each (s, t) ∈ ST such that p ∈ Ps, we add a time-expanded
arc ((ssp), (s, t)) with null linear cost and null fixed cost to GT . We name the new
time-expanded network as G+

T . On each time-expanded arc ((ssp), (s, t)) ∈ G+
T , let

us define a continuous variable xptssp
. Let us add the following constraints to the

LSND(G+
T ): ∑

((ssp),(j,t))∈AT

xptsspj
≥ Dp, ∀p ∈ P (A.1)

∑
((i,t),(j,t′))∈AT

xptt
′

ij −
∑

((j,t′),(l,t′′))∈AT

xpt
′t′′

jl = 0, ∀(j, t′) ∈ ST (A.2)

We now extend a solution for the LSND(GT ) to a solution for the LSND(G+
T ).

By construction, for each (s, t) ∈ ST and for each p ∈ Ps, the only arc of G+
T

incoming to (s, t) such that a flow variable is defined for product p is ((ssp), (s, t)).
Thus, for each (s, t) ∈ ST , the only way to satisfy constraint (A.2) is to set the flow
value of product p on arc ((ssp), (s, t)) to

∑
((s,t),(j,t′))∈AT

xptt
′

sj . As the original solution

satisfies all customer demands, for each p ∈ P we have
∑

(s,t)∈ST

∑
((s,t),(j,t′))∈AT

xptt
′

sj ≥

Dp. Thus, the extended solution satisfies constraint (A.1) and is feasible for the
LSND(G+

T ).
Each solution for the LSND(GT ) admits a single corresponding solution for the

LSND(G+
T ). In addition, both solutions have identical objective values. Thus, the

LSND(GT ) is equivalent to the LSND(G+
T ).

Let (x, y)+ be a feasible solution for the LSND(G+
T ). Let (xχ, y, z) be the so-

lution for the EMP that replicates (x, y)+ by an aggregation of flows. As (x, y)+

respects constraints (A.1) and (A.2), by construction (xχ, y, z) respects constraints
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(3.17) and (3.18). Thus, constraints (3.17) and (3.18) do not cut off (xχ, y, z) that
replicates a feasible solution for the LSND(G+

T ). Inequalities (3.17) and (3.18) is
valid.

Theorem 6 The proposed inequality (3.19) is valid.

Proof 6 Let (x, y) be an optimal solution for the LSND(GT ). Let ((i, t), (j, t′)) ∈
AT such that (i, t) ∈ ST and (j, t′) ∈ CT . For each product p ∈ P i, xptt

′

ij cannot be
greater than dpjt′, as otherwise (x, y) would not be optimal for the LSND(GT ). As a
result,

∑
p∈Pi

xptt
′

ij ≤
∑
p∈Pi

dpjt′. Let (xχ, y, z) be a solution for the EMP solution that

replicates (x, y) by an aggregation of flows. By construction, for each ((i, t), (j, t′)) ∈
AT such that (i, t) ∈ ST and (j, t′) ∈ CT , we have xχtt

′

ij =
∑
p∈Pi

xptt
′

ij ≤
∑
p∈Pi

dpjt′.

Thus, constraint (3.19) does not cut off (xχ, y, z) that replicates an optimal solution
for the LSNDP. Inequality (3.19) is valid.

Theorem 7 The proposed inequality (3.20) is valid.

Proof 7 Let (x, y) be a feasible solution for the LSND(GT ). Let consider p ∈ P
and t∗ ∈ T such that D̄p

t∗ >
¯Dp
t∗−1. Thus, there exists a customer (c, t∗) ∈ CT such

that dpct∗ > 0. tminssp
is the smallest transit time between all supplier of product p

and a customer for its product. Thus, the total amount of product p shipped from
suppliers before or at time t∗ − tminssp

must be greater or equal than D̄p
t∗, i.e.:∑

(s,t)∈ST
t≤t∗−tmin

ssp

∑
((s,t),(j,t′))∈AT

xptt
′

sj ≥ D̄
p
t∗

As in Theorem 5, we extend (x, y) and obtain a feasible solution (x, y)+ for the
LSND(G+

T ). By construction, we have:∑
((ssp),(s,t))∈AT
t≤t∗−tmin

ssp

xptssps
+ =

∑
(s,t)∈ST
t≤t∗−tmin

ssp

∑
((s,t),(j,t′))∈AT

xptt
′

sj ≥ D̄
p
t∗

Let (xχ, y, z) be the EMP solution that replicates (x, y)+ by an aggregation of
flows. By construction, we have:

∑
((ssp),(s,t))∈AT
t≤t∗−tmin

ssp

xχtssps =
∑

((ssp),(s,t))∈AT
t≤t∗−tmin

ssp

xptssps
+ ≥ D̄p

t∗

Thus, constraint (3.20) does not cut off (xχ, y, z) that replicates a feasible solu-
tion for the LSND(G+

T ). Inequality (3.19) is valid.
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Résumé : La problématique que nous étudions est inspirée d’une collabora-
tion industrielle entre un prestataire logistique, DHL Supply Chain, et une grande
chaîne de restauration française. Dans le cadre de ce partenariat, DHL Supply
Chain coordonne les acteurs d’un réseau logistique national composé de fournisseurs,
d’entrepôts et de restaurants. Les restaurants émettent, sur un horizon temporel,
des demandes de produits génériques (produits surgelés, boissons, etc.) fabriqués
par les divers fournisseurs. La mission de DHL Supply Chain consiste à assurer
l’approvisionnement des restaurants. Pour cela, l’entreprise détermine l’origine
d’expédition de chaque produit commandé, et conçoit un plan de chargement car-
actérisant les itinéraires suivis par les marchandises. DHL Supply Chain souhaite
développer des solutions innovantes afin d’améliorer sa compétitivité et d’optimiser
la rentabilité de ses opérations logistiques. Dans cette thèse, nous présentons le Lo-
gistics Service Network Design Problem (LSNDP) qui formalise la problématique
de planification des opérations de transport dans une chaîne d’approvisionnement.
Nos travaux ont pour but d’apporter des solutions méthodologiques permettant
la résolution d’instances industrielles du LSNDP. Or, ces instances industrielles
sont trop complexes pour être résolues par des méthodes génériques de recherche
opérationnelle. Nous proposons donc plusieurs algorithmes surmontant la mise à
l’échelle des différents paramètres. Nous développons notamment une heuristique
de réduction de graphe, ainsi qu’une stratégie de Benders dynamique adaptée à
l’augmentation du nombre de produits. À travers diverses études expérimentales,
nous évaluons la scalabilité de chaque algorithme par rapport au paramètre consid-
éré. Enfin, nous hybridons ces méthodes pour la résolution d’un cas réel.
Mots clés : logistique, transport, recherche opérationnelle, programmation
mathématique, optimisation combinatoire



Abstract: The problem we study is inspired by an industrial collaboration be-
tween a third-party logistics, DHL Supply Chain, and a large French restaurant
chain. As part of this partnership, DHL Supply Chain coordinates the actors of a
domestic logistics network composed of suppliers, warehouses and restaurants. Over
a certain time horizon, the restaurants issue requests of generic products (frozen
products, beverages, etc.) that are manufactured by the suppliers. The mission of
DHL Supply Chain is to ensure the supply of the restaurants. For that purpose,
the company determines the shipping origin of each product ordered and designs
a loading plan that characterizes the routes followed by the goods. DHL Supply
Chain wants to develop innovative solutions to improve its competitiveness and
optimize the profitability of its logistics operations. In this thesis, we present the
Logistics Service Network Design Problem (LSNDP) which formalizes the prob-
lematic of planning transportation operations in a supply chain. Our work aims
to provide methodological solutions for solving industrial instances of the LSNDP.
However, these industrial instances are too complex to be solved by generic oper-
ations research methods. We thus propose several algorithms that overcome the
scaling of the parameters. In particular, we develop a graph reduction heuristic, as
well as a dynamic Benders strategy that adapts to the increasing number of prod-
ucts. Through various computational studies, we evaluate the scalability of each
algorithm with respect to the considered parameter. Finally, we combine these
methods for the resolution of a real case.
Keywords: logistics, transportation, operations research, mathematical pro-
gramming, combinatorial optimization
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