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Abstract

In combination with Deep Neural Networks (DNNs), several Reinforcement Learning (RL)
algorithms such as ”"Q-learning” of "Policy Gradient” are now able to achieve super-human
performaces on most Atari Games as well as the game of Go. Despite these outstanding and
promising achievements, such Deep Reinforcement Learning (DRL) algorithms require mil-
lions of samples to perform well, thus limiting their deployment to all applications where data
acquisition is costly. The lack of sample efficiency of DRL can partly be attributed to the use
of DNNs, which are known to be data-intensive in the training phase. But more importantly,
it can be attributed to the type of Reinforcement Learning algorithm used, which only per-
form a very inefficient undirected exploration of the environment. For instance, Q-learning
and Policy Gradient rely on randomization for exploration. In most cases, this strategy turns
out to be very ineffective to properly balance the exploration needed to discover unknown and
potentially highly rewarding regions of the environment, with the exploitation of rewarding
regions already identified as such. Other RL approaches with theoretical guarantees on the
exploration-exploitation trade-off have been investigated. It is sometimes possible to formally
prove that the performances almost match the theoretical optimum. This line of research is
inspired by the Multi-Armed Bandit literature, with many algorithms relying on the same
underlying principle often referred as “optimism in the face of uncertainty”. Even if a sig-
nificant effort has been made towards understanding the exploration-exploitation dilemma
generally, many questions still remain open. In this thesis, we generalize existing work on
exploration-exploitation to different contexts with different amounts of prior knowledge on
the learning problem. We introduce several algorithmic improvements to current state-of-
the-art approaches and derive a new theoretical analysis which allows us to answer several
open questions of the literature. We then relax the (very common although not very realistic)
assumption that a path between any two distinct regions of the environment should always
exist. Relaxing this assumption highlights the impact of prior knowledge on the intrinsic lim-
itations of the exploration-exploitation dilemma. Finally, we show how some prior knowledge
such as the range of the value function or a set of macro-actions can be efficiently exploited
to speed-up learning. In this thesis, we always strive to take the algorithmic complexity of
the proposed algorithms into account. Although all these algorithms are somehow computa-
tionally “efficient”, they all require a planning phase and therefore suffer from the well-known

“curse of dimensionality” which limits their applicability to real-world problems. Neverthe-
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less, the main focus of this work is to derive general principles that may be combined with

more heuristic approaches to help overcome current DRL flaws.



Résumé

Combinés a des réseaux de neurones profonds ("Deep Neural Networks”), certains algo-
rithmes d’apprentissage par renforcement tels que "Q-learning” ou ”"Policy Gradient” sont
désormais capables de battre les meilleurs joueurs humains a la plupart des jeux de con-
sole Atari ainsi qu’au jeu de Go. Malgré des résultats spectaculaires et trés prometteurs,
ces méthodes d’apprentissage par renforcement dit “profond” ("Deep Reinforcement Learn-
ing”) requiérent un nombre considérable d’observations pour apprendre, limitant ainsi leur
déploiement partout ou l'obtention de nouveaux échantillons s’avere cotteuse. Le manque
d’efficacité de tels algorithmes dans 'exploitation des échantillons peut en partie s’expliquer
par 'utilisation de réseaux de neurones profonds, connus pour étre tres gourmands en don-
nées. Mais il s’explique surtout par le recours a des algorithmes de renforcement explo-
rant leur environnement de maniére inefficace et non ciblée. Ainsi, des algorithmes tels que
Q-learning ou encore Policy-Gradient exécutent des actions partiellement randomisées afin
d’assurer une exploration suffisante. Cette stratégie est dans la plupart des cas inappro-
priée pour atteindre un bon compromis entre 1’exploration indispensable a la découverte
de nouvelles régions avantageuses (aux récompenses élevées), et 1'exploitation de régions
déja identifiées comme telles. D’autres approches d’apprentissage par renforcement ont été
développées, pour lesquelles il est possible de garantir un meilleur compromis exploration-
exploitation, parfois proche de l'optimum théorique. Cet axe de recherche s’inspire no-
tamment de la littérature sur le cas particulier du probleme du bandit manchot, avec des
algorithmes s’appuyant souvent sur le principe “d’optimisme dans ['incertain”. Malgré les
nombreux travaux sur le compromis exploration-exploitation, beaucoup de questions restent
encore ouvertes. Dans cette theése, nous nous proposons de généraliser les travaux existants
sur le compromis exploration-exploitation & des contextes différents, avec plus ou moins de
connaissances a priori. Nous proposons plusieurs améliorations des algorithmes de 1’état de
I’art ainsi qu'une analyse théorique plus fine permettant de répondre a plusieurs questions
ouvertes sur le compromis exploration-exploitation. Nous relachons ensuite I’hypothese peu
réaliste (bien que fréquente) selon laquelle il existe toujours un chemin permettant de relier
deux régions distinctes de ’environnement. Le simple fait de relacher cette hypothese per-
met de mettre en lumiere I'impact des connaissances a priori sur les limites intrinseques du
compromis exploration-exploitation. Enfin, nous montrons comment certaines connaissances

a priori comme ’amplitude de la fonction valeur ou encore des ensembles de macro-actions
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peuvent étre exploitées pour accélérer 'apprentissage. Tout au long de cette theése, nous nous
sommes attachés a toujours tenir compte de la complexité algorithmique des différentes méth-
odes proposées. Bien que relativement efficaces, tous les algorithmes présentés nécessitent une
phase de planification et souffrent donc du probléme bien connu du "fléau de la dimension”, ce
qui limite fortement leur potentiel applicatif (avec les méthodes actuelles). L’objectif phare
des présents travaux est d’établir des principes générauzr pouvant étre combinés avec des

approches plus heuristiques pour dépasser les limites des algorithmes actuels.
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1 Introduction

1.1 Topic of the thesis

In this thesis we study the problem of a “rational agent” evolving in an unknown “environ-
ment”. The goal of the agent is to learn a “good” behavior (according to some notion of

preferences) from the experience directly collected while exploring the environment.

Reinforcement Learning (RL) formalizes this problem through an “cconomic” perspective:
the agent aims at maximizing some notion of cumulative reward (or equivalently, at min-
imizing a cumulative loss). In order to account for the presence of random events in the
environment, it is usually assumed that the agent satisfies Von Neumann—Morgenstern’s
axioms of rationality (Von Neumann and Morgenstern, 1947). Under these axioms, Von
Neumann—Morgenstern’s “utility theorem” implies that the “preferences” of the agent can be
expressed as maximizing the expectation of a certain wutility function (which corresponds to

the cumulative reward in an RL context).

The environment of an RL problem, or RL “fask”, is traditionally modeled by a Markov
Decision Process (MDP). An MDP consists of a set of states (usually functions of some
observables) and actions. When the agent decides to “play”a certain action in a given state,
it receives some (possibly random) reward and moves to the next state according to a certain
probability distribution over the state space. By definition, this type of process satisfies the
Markov property i.e., future events depend only upon the present state and chosen action,
and not the whole past history. This restrictive assumption enables to considerably simplify
the problem. It is always possible to expand the state space so as to enforce the Markov
property, at the expense of increasing the complexity of the problem. In practice, the size of

the state space must be traded-off with the accuracy of the Markov property.

While evolving in an MDP, an agent aims at identifying which control policy to execute
i.e., which action to perform depending on past observations. When the MDP is completely
known, finding an “optimal” policy is a dynamic programming problem (Bellman, 1954). An
even more challenging setting is when the MDP is unknown and has to be learned (RL
problem). In this thesis, we restrict attention to online RL. In this setting, data about the

environment becomes available in a sequential order as the agent explores the MDP. As the

13



Chapter 1. Introduction

MDP is being explored, the agent needs to update its behavior so as to be able to make better
decisions. But unlike in other branches of Machine Learning like supervised learning, any
present decision impacts future observations. As a consequence, the agent has to deal with

two conflicting objectives, namely:

1. collecting information about the dynamics and reward of the environment which may

allow to make better decisions in the future (ezploration),

2. using the experience gathered so far to maximize the chances to gain as much reward

as possible quickly (ezploitation).

This problem is known as the ezploration-exploitation dilemma. The work presented in this
thesis focuses on the exploration-exploitation dilemma in an on-line RL setting, under various
assumtions, and in different contexts. This problem was first studied in the simplified case
of Multi-armed bandit (MAB) in the seminal works of Thompson (1933a); Lai and Robbins
(1985). Since then, considerable progress has been made although many open questions still

remain unanswered.

1.2 Motivations

One of the long-standing goal of Artificial Intelligence (Al) is to design robust, autonomous
agents able to perform well in complex, real-world environments. Reinforcement Learning
provides a promising framework to achieve some of these goals as evidenced by recent empiri-
cal achievements. In combination with Deep Learning techniques, RL algorithms are now able
to achieve super-human performances on Atari games (Mnih et al., 2015b) or the challenging
game of Go (Silver et al., 2016, 2017; Silver et al., 2017). Nevertheless, Deep Reinforcement
Learning (DRL) algorithms require millions of samples to be trained, and can perform very
poorly in environments with sparse reward like Atari 2600 game Montezuma’s Revenge. In
such environments, the agent only observes a reward signal after completing specific series
of actions over extended periods of time, making the exploration of the environment very
challenging. In other domains, samples can be expensive to collect (computationally or in
terms of actual cost). Unfortunately, most of potential real-world applications of RL have

these characteristics.

The lack of sample efficiency of DRL is a major obstacle to its deployment in real-world
applications. This lack of sample efficiency mainly comes from the exploration strategy used,
which often relies on randomization to discover unknown regions of the environment (e.g.,
e-greedy strategies may require an exponential amount of time in the parameters of the MDP
to converge). We say that the exploration is undirected. A major open question in RL is
how to design efficient directed exploration strategies that make best use of all the prior
iformation available about the problem being solved. The work of this thesis is motivated
by a better understanding of the exploration-exploitation dilemma in RL, and the impact of
prior knowledge on the intrinsic difficulty of this dilemma. We hope this work helps suggest

promising research directions to improve the sample-efficiency of existing RL algorithms.

14



1.3. Scientific approach

1.3 Scientific approach

Instead of restricting attention to very specific RL tasks/applications, we analyse the the-
oretical properties of some general RL problems. We study various settings, which mostly
differ by the amount of prior knowledge available to the learning agent. For all these different
settings, we analyse the learning limitations (e.g., impossibility results) and derive learning
algorithms that attempt to achieve the best possible exploration-exploitation performance

given these limitations.

While efficient exploration-exploitation strategies in RL are directly inspired by the MAB
literature, RL poses specific challenges (e.g., how “local” uncertainty propagates through
the Markov dynamics), which requires a more sophisticated theoretical analysis. Most of the

algorithms that have been analysed theoretically belong to one of the following two categories:
1. optimistic algorithms,
2. posterior sampling (also known as Thomson sampling) algorithms.

Optimisitc algorithms implement the “Optimism in the face of uncertainty” principle which
essentially prescribes to play the optimal policy of the most rewarding environment com-
patible with the current level of uncertainty (often quantified by confidence sets). Posterior
sampling involves sampling a statistically plausible set of environments and selecting the best
policy. The sampling distribution is then updated based on new observations. While both
methods can be proved to achieve good exploration-exploitation performance in MAB (Kauf-
mann et al., 2012), so far optimistic approaches appear more promising in the general RL

setting. For this reason, all the algorithms presented in this thesis are of optimistic nature.

For all the proposed algorithms, we apply a unified statistical analysis and systematically
rely on the same mathematical tools/arguments. This allows to easily compare settings and

to better understand the impact of assumptions on the learning capabilities.

The statistical analysis of RL algorithms help make a clear distinction between the intrinsic
difficulty of an RL task (e.g., Montezuma) and the lack of efficiency of the algorithm used
(e.g., DQN). Unfortunatley, none of the algorithms proposed in this thesis scale to large
dimensional problems due to the notorious “curse of dimensionality” that also appear in
dynamic programming (Bellman, 1954). Despite this lack of scalability, we hope to provide

insightful principles that can inspire future research and algorithm design.

1.4 Openresearch questions of the literature

We list two very general research questions that were open at the beginning of this work in

2015 and will be only partly answered in the rest of the thesis.

e What is the best exploration-exploitation trade-off an RL algorithm can achieve
and how? This question is the main leitmotiv of the thesis. In the next chapter we

will see that the learning capabilities of any learning algorithm are intrinsically limited,
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Chapter 1. Introduction

and these limitations can be statistically quantified. One natural objective is to design
algorithms that can achieve the best trade-off given these inherent restrictions. Back
in 2015, no exisitng algorithm had been proved “optimal” in this sense. This question
is very general and the answer is of course problem-dependent and depends on many
different aspects of the setting studied. For a more technical and detailed overview of

some specific sub-questions, one may refer to the presentation given by Ortner (2016).

Under which conditions hierarchical approaches (such as options) help speed-up
the learning process? The option framework was developped to incorporate tempo-
rally extended actions and hierarchical reasoning to RL. The motivation is to mimic the
ability of humans to identify and exploit the hierarchical structure of many RL tasks
which naturally decompose into easier subtasks. It is believed that this partly explains
how we (humans) manage to learn so well. Unfortunately, a formal understanding of

how and when options are efficient was still missing.

1.5 Outline of the thesis

The thesis is organized as folows:

16

e Chapter 2. This chapter provides a brief introduction to the exploration-exploitation

dilemma in RL and reviews the state-of-the-art literature relevant for the rest of the
thesis. At first, we review the concept of Markov Decision Process and several optimality
criteria. After the introduction of a dynamic programming algorithm known as value
iteration, we briefly review the stochastic shortest path problem. In the second part,
we focus on the exploration-exploitation literature in the specific case of infinite horizon
undiscounted setting. We formally define a useful exploration-exploitation performance
measure named “regret” and present several regret upper and lower-bounds. The reader

who is already familiar with these topics may skip this chapter.

Chapter 3. In this chapter, we present and analyse UCRLB, a variant of the learning
algorithm UCRL2 (Jaksch et al., 2010). We prove that our version of the algorithm
achieves better regret guarantees (i.e., exploration-exploitation trade-off), thus answer-
ing some of the open-questions on the gap between upper and lower regret bounds.
All the other learning algorithms presented in this thesis will share many algorithmic
bricks with UCRLB, and the structure of the regret proofs will be re-used across all
chapters. In order to prepare for subsequent chapters, we prove intermediate results
in their full generality. Several key passages of the regret proofs are presented from a
slightly different perspective than is usually done in the existing literature (e.g., proof
of optimism, bound on the optimistic bias). We recommand to carefully go through the

entire chapter before reading the rest of the thesis.

Chapter 4. In this chapter, we provide the first learning algorithm achieving near-
optimal regret guarantees when the diameter of the MDP is infinite i.e., some states
cannot be reached. This answers one of the open questions of the literature. We show

that such setting poses specific challenges and we derive an impossibility result that we



1.5. Outline of the thesis

believe is new to the exploration-exploitation literature. This is all the more surprising

as it appears to apply to most RL tasks encountered in practice.

Chapter 5. This chapter extends the work of Bartlett and Tewari (2009) by showing
how to exploit prior knowledge on the range of the optimal bias span of the MDP to
improve the learning performance (the regret). The methodology and mathematical
tools used in this chapter provide a lot of insights on the minimal key properties needed
to derive regret guarantees using an optimistic UCRL2-like approach. It also highlights
the importance of focusing on operators (rather than MDPs) to derive and analyse RL
algorithms. This follows the initial ideas of Bellman (1954) developped in the context
of planning, and later extended to different RL settings.

Chapter 6. In this last chapter, we analyze the exploration-exploitation trade-off in the
presence of options. Our results shows when options provide a useful prior knowledge

to address the exploration-exploitation dilemma.
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2 Statistical analysis of the exploration-
exploitation dilemma in RL

In this chapter we give a brief overview of the state-of-the-art literature on exploration—
exploitation in RL. In Sec. 2.1, we formally define the notion of Markov Decision Process
(MDP) used to mathematically describe the environment in which the learning agent evolves.
An MDP describes a discrete-time decision problem where at each time step, the agent can
choose between different available “actions” and is given some form of immediate motivation
encoded into a “reward function”. Because some decisions may have long-term consequences,
it is not always easy to identify the best “policy” (mapping observations to actions) even when
the MDP is completely known. We describe how to perform efficient planning in this case.
Identifying the optimal policy becomes even more challenging when the MDP is unknown
(learning setting). This problem is the focus of Sec. 2.2, where we survey the literature
on exploration—exploitation in the infinite horizon undiscounted setting. We present several
algorithms that can be proved to efficiently balance exploration and exploitation, and discuss

their limitations.

2.1 Markov Decision Processes

In this section we briefly introduce the formalism of Markov Decision Processes and present
several notions of optimality. We also recall all well-known results that will be useful for the
next chapters (see e.g., Puterman, 1994; Bertsekas, 2007). We mainly follow the notations of
Puterman (1994).

2.1.1 Definitions

States, actions, rewards and transitions

A Markov Decision Process M is formally defined as a 4-tuple (S, A,7,p). S and A = J,cs As
respectively denote the state and action space. When in state s, an agent can choose to play

any of the actions contained in Ag. After playing action a in state s, the agent receives a
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Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

1—p

Figure 2.1: Graphical illustration of an MDP with 3 states (sp, s1 and s2) and 2 actions per
state (ag and ay).

random reward with ezpected value r(s,a), and then moves to a new state in S sampled
according to a stationary distribution p(-|s,a). More precisely, the probability that the new
state is s’ is denoted p(s’|s,a). By definition, p(-|s,a) € Ag where

Definition 2.1

Ag = {q €[0,1]%: Yosesd(s) = 1} is the S-dimensional probability simplex.

The sampled reward and next state only depend on s and a and are independent of every-
thing else. In this thesis, we restrict attention to MDPs with finite state space and denote
by S = |S| the total number of states. We will consider MDPs with finite as well as compact

!, When the action space is finite, we will denote by A = max,es |As| the

action spaces
maximal number of actions available in every state. All sampled rewards are assumed to be
bounded and without loss of generality, we assume that they lie in [0, rpax] where rpax > 0.
When the action space is compact, we further assume that for any two states s,s’ € S,
a+— r(s,a) and a — p(s'|s,a) are continuous functions of a. Under these assumptions and
—unless stated otherwise— all the results of this Chapter hold for both finite and compact
action spaces. Although the action space is state-dependent, in the rest of the thesis, we will
slightly abuse notation and denote by S x A the set of “admissible” state-action pairs i.e., the
set {(s,a): s €S, a€ As}. An example of graphical representation of an MDP is given in

Fig. 2.1.

Sequential decision making

In this thesis, we assume that an agent can only make “decisions” at discrete time steps (often
called “epochs”) and so we exclusively focus on discrete sequences indexed by ¢ € NT, where
NT := N\ {0} is the set of (strictly) positive integers. At any time ¢ > 1, the agent is in state
s¢ and plays action a;. The (random) reward earned by the agent and the next state are
respectiely denoted by r; and sy41. This procedure is repeated thus generating a sequence
of the form (s1,a1,71,..., 5t at,7,...) that we call a “history” (sometimes called a “sampled

path”). The set of all possible histories up to time ¢ > 1 is formally defined as

Hi = {(sl,al,rl,...st,l,at,l,rt,l,st) VU<t 55€8, a1 €Ay, 1 E [O,rmax]}. (2.1)

'In this thesis, a compact set always refer to the compact subset of a metric space.
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2.1. Markov Decision Processes

Policies and induced stochastic processes

The set of all probability distributions over the state space S (resp. action space A) is
denoted by P(S) (resp. P(A)). For any t > 1, a decision rule d; : Hy — P(A) maps
histories of past observations (i.e., past states, actions and rewards) to distributions over
actions. The set of decision rules is denoted DR where HR stands for “history-dependent”.
This is the most general definition of decision rule we can think of. Decisions based on future
events are forbidden to avoid causal inconsistency. We also introduce two specific types of
decision rules. A Markov randomized decision rule d : S — P(A) maps states to distributions
over actions while a Markov deterministic decision rule d : S — A maps states to actions.
Markov decision rules only take into account the current state and completely ignore previous
observations. The subset of Markov randomized decision rules is denoted DME while the
subset of Markov deterministic decision rules is denoted DMP. For any Markov decision rule
d e DMR P, e RS and ry € RS denote the transition matriz and reward vector associated
with d i.e.,

Py(s)s) := Z d(als)p(s'|s,a) and ry(s) := Z d(als)r(s,a), foralls,s' €S, (2.2)
a€As a€As

where d(a|s) is the probability to sample a in state s when using d.

A policy m = (dy,do,d3...) € (DHR)N+ is a sequence of decision rules. At every time step
t > 1, an agent executing policy 7w samples an action a; from the distribution d;(h;) that
only depends on the past “observed” trajectory h; € H;. The set of all policies is denoted
by II. A stationary policy m = (d,d, ...) =: d* repeatedly applies the same Markov decision
rule d € DM® over time. The set of stationary policies defined by Markov randomized (resp.
deterministic) decision rules is denoted by IIS? (resp. IISP). In the rest of the thesis, we will

slightly abuse notations and use d and 7 interchangeably when m = d* € IISR is stationary.

For a given MDP M, a policy = € II and an initial distribution over states pu; € P(S),
the induced sequence (s1,a1,71,...,8¢, a4, T, ... ) iS a stochastic process with a well-defined
probability distribution (Puterman, 1994, Section 2.1.6) (in particular, the items s;, a; and
r¢ are random variables). In the rest of the thesis, we will denote by P™(-|s; ~ pi1) the
probability measure associated with this stochastic process and denote by E™[-|s; ~ 1] the
corresponding expectation. When there is ambiguity on which MDP we are considering, we
use M as a subscritpt P,(-|s1 ~ p1) to denote the probability in MDP M.

In the special case where the policy m € IISR is stationary, the induced sequence of visited
states (s1, s2,...) is a specific stochastic process called a (discrete-time stationary) Markov
Chain (MC). On the other hand, the stochastic process corresponding to the sequence of states
and rewards (s1,71, S2,72,...) is a (discrete-time stationary) Markov Reward Process (MRP).
The interested reader may refer to Puterman (1994, Appendix A) for a brief overview of the
theory on Markov Chains and Markov Reward Processes, and to Bremaud (1999); Grinstead
and Snell (2003) for more details.

We classify MDPs depending on the chain structure of stationary policies (i.e., depending

on how states are connected to each other through the dynamics). For the following definition,
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Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

we assume the reader to be familiar with the notions of transient and (positive) recurrent

states and/or class of a Markov Chain (for more details, refer to Puterman (1994, Appendix
A)).

Definition 2.2 (Classification of MDPs)
We say that an MDP 1is:

1. ergodic if the Markov Chain induced by any deterministic stationary policy consists

of a single recurrent class (i.e., all states are visisted infinitely often with probability
1 independently of the starting state)

2. unichain if the Markov Chain induced by any deterministic stationary policy con-
sists of a single recurrent class plus a —possibly empty— set of transient states (i.e.,
there exists a subset of states that are visisted infinitely often with probability 1 in-
dependently of the starting state)

3. communicating if for every pair of states (s,s') € S, there exists a deterministic
stationary policy under which s' is accessible from s in finite time with non-zero
probability,

4. weakly communicating if the state space can be partitioned into two subsets S¢
and ST (with ST possibly empty), such that for every pair of states (s,s’) € S,
there exists a deterministic stationary policy under which s' is accessible from s in
finite time with non-zero probability, and all states in ST are transient under all
deterministic stationary policies.

When we want to emphasize that we do not make any of the above assumptions but rather

consider a general MDP, we will use the terminology “multi-chain” MDP.

In this thesis, we will see that the chain structure of the MDP can limit the performance

of an (optimal) RL algorithm.

2.1.2 Finite horizon problems

Now that we have formally defined how an agent sequentially interacts with its environment
in the MDP framework, we need to formulate the problem we want to solve i.e., the goal of
the agent. Intuitively, the agent aims at executing a policy maximizing the sum of collected
rewards >, ;. Unfortunately, this series will often diverge as ¢ — +o0o0 and it is a priori
not obvious how to compare infinite quantities. A first simple setting where this problem
does not occur is when the agent maximizes the cumulative reward up to a fized horizon
H i.e., maximizes Zfil re. Since (r¢)g>1 is a stochastic process, this sum cannot always
be maximized and the agent will try to maximize the ezpected value instead (in line with
Von Neumann—Morgenstern’s axioms of rationality (Von Neumann and Morgenstern, 1947)).

Formally, in the finite horizon setting —with horizon H— the goal is to solve the following

S1 ,U,l‘| } (23)

optimization problem:

mell

H
sup {E” lz T
t=1
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Algorithm 1 Backward Induction

Input: Operators L : R® — R and G : RS — DMR | horizon H

Output: Optimal n-step expected cumulative sum of rewards v, and n-step optimal policy

my forne{l...H}

Initialize vH+1 =0

for n = ..1do
(vy, d;‘;) = (L) 1,Gu} L) > Lvy 1 and Gvy, 1 can be computed simultaneously
o (dr, .., dYy)

end for

where the initial state s; is sampled from distribution p; € P(S). It is well known (see e.g.,
Puterman, 1994, Chapter 4) that there always exists an optimal policy #* = (di, d5, ..., d};)
solution to (2.3) for any p; € P(S) and such that for all H >t > 1, df € DMP j.e. dt is

Markov deterministic and independent of the initial state disribution.

DMR

For any Markov decision rule d € , we define Ly the Bellman evaluation operator of d

as
Yv € RS, Lgv:=1rq+ Pyv. (24)
We also define L the optimal Bellman operator

Yo e RS, Lv:= max_ {Lqv}, (2.5)
deDM

as well as the greedy operator?

Yo € R®, Gu € arg max { Lgv}. (2.6)
dEDMR

It is always possible to compute an optimal policy 7* of (2.3) by backward induction as
described in Alg. 1. The following proposition is a well-known result of the literature on

dynamic programming (Puterman, 1994, Section 4.3).

Proposition 2.1

Foralln=1...H and all s € S, the value functions v}, and policies m}, returned by Alg. 1

_]

A direct consequence of Prop. 2.1 is that 7* = (dj, ..., d};) is a maximizer of (2.3) for any

satisfy

H
max Sp = 5] and m, = (dy,...,d}) € arg maxE [Z T

mell

vy (s) = max E™ lz T

t=n

p1 ~ P(S) and plvf is the corresponding maximum.

2We break ties arbitrarily when several greedy decision rules exist. It is always possible to choose d € DMP
but for the sake of generality, we allow any greedy randomized decision rule DME.
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2.1.3 Infinite horizon problems

Maximizing the cumulative sum of rewards only up to a pre-defined horizon H is not adapted
to all problems. In many scenarios, there is no “obvious” way to define what a “good” horizon
is. Most of the time, we ideally want an horizon that is as big as possible i.e., such as
H — +oo. In this section, we review several well-established optimality criteria in the

ifinite horizon setting.

Discounted optimality

One of the most commonly used optimality criterion in infinite horizon problems is discounted
optimality. Instead of maximizing a finite sum of rewards, the idea is to maximize an infinite

sum of rewards discounted by a fixed pre-defined discount factor 0 <~y <1 i.e.,

S1 ~ /1,1] } (2.7)

Since 0 < 7 < 1 and 7 € [0, 7max], the infinite sum of rewards is a geometric series and

+oo
sup < ET Z vty
TI'GH t=1

remains bounded between 0 and rmax/(1 — 7). The series always converges and is called
the value function of policy 7. It will be denoted vJ. The maximization of (2.7) is therefore
well-defined. It has long been known (Puterman, 1994, Chapter 6) that there always exists an
optimal policy © solution to (2.7) for all initial distributions 1 € P(S) such that 7* € IT5P
i.e., there exists a stationary deterministic optimal policy that does not depend on the initial
distribution p; € P(S). This makes the solution of (2.7) even “simpler” than the solution
of (2.3) (the optimal policy associated to (2.3) is not stationary in general). Moreover, the

following proposition holds.

Proposition 2.2

*

v
discounted optimal Bellman operator i.e., Lv := maxgepup {rq + yPqv} for all v € RY

(see Eq. 2.5). In addition, for all s € S,

Finally, a stationary policy ©* = (d*)*® € II°F is optimal (i.e., solution to (2.7)) if and

There exists a unique solution v} to the fized-point equation v LvY where L is the

+o0
k0N t—1
vy (s) = max {E” LEZl vy

*

only if d* = G,v; € arg max e pmr {’I“d +7Pdv§} i.e., ™ is a greedy policy with respect

*
to vy

Prop. 2.2 holds both for finite and compact action spaces and is merely a direct consequence
of Banach fixed-point theorem applied to the v-contractive operator L in fo-norm (0 < v <
1). Due to Prop. 2.2, it is always possible to compute an optimal policy 7* of (2.7) by first

finding a solution vJ to the discounted Bellman optimality equation vi, = L.v} and then
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Algorithm 2 (Discounted) Value Iteration

Input: Operators L, : R% — RS and G, : RS s DMD " discount factor v €]0, 1[, accuracy
e €]0, rmax|
Output: Value function v € RS and stationary deterministic policy = € ISP
1: Initialize n = 0 and vy :=0
2: v = L7v0
3: while max{v,+1 —v,} —min{v,41 — v, } > % do > Loop until termination
4 Increment n < n+1
5: (Vn1,dn) = (Lyvn, Gyup) > L~vy, and G,v, can be computed simultaneously
6 dn € arg maxge pwo {LJvp }
7: end while
8

. Set v := v, and 7 := (d,)>™

considering a greedy policy w.r.t. v; In order to find an e-approximate solution (in £s.-norm)
to (2.7), it is possible to apply the same iterative scheme as in the finite horizon case (Alg. 1)
but with few modifications, as reported on Alg. 2. This algorithm is known as value iteration.
Since L, is a 7y-contraction, value iteration always converges: lim,, 4o vy = vi; (this is also a
consequence of the Banach fixed point theorem). Therefore, Alg. 2 always stops after a finite
number of iterations and the policy 7 returned by Alg. 2 is such that [|v] —v3|| < e. Finally,

the maximum of (2.7) is equal to pjv3.

The discounted setting is particularly well-suited for problems with a pre-defined random
horizon H that follows a geometric distribution with parameter 1 —~ (note that in Sec. 2.1.2,
H is deterministic). In this view, the agent is seen as “tossing a coin” at every time steps
t > 1 and stopping collecting rewards in the MDP with probability 1 —+ (and keeping going
on with probability ). Then, the expected discounted sum of rewards corresponds exactly

to the expected total sum of rewards (accounting for the random horizon H) i.e.,

400 H
E" [Z Y sy ~ m] —=E" [Z re|s1 ~ p1, H ~ Geom(1 — )| .
t=1 t=1

The expected value of H is 1/(1 — ) and so the discounted setting somehow resembles the
finite horizon setting with H = ©(1/(1 — v)). As a result, it suffers the same problem as
before: in many scenarios there is no obvious way to define v and we want to set it as close

to 1 as possible i.e., v — 1.

Gain optimality

We now present the infinite horizon undiscounted setting which uses the gain —or long-term

average reward— as optimality criterion. Formally, in this setting the agent aims at solving

S1 M1] } . (28)
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Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

Since for all t > 1, 7, lies in [0, rmax] (by assumption), so does 1/7 - Zthl r¢. When the policy
is stationary ie., 7 € IR the liminf in Eq. 2.8 actually matches the limsup. The limit is
therefore well-defined and is called the gain (Puterman, 1994, Section 8.2.1). More precisely,
the gain of policy 7 € IIS® starting from initial state s € S is defined as

T—+o0

T
1

T(s):= lim E™|=) rys; =s]|. 2.9
(o) X 29)
The gain ¢™(s) corresponds to the asymptotic per-step reward earned when executing policy
7 starting from s € S§. This notion generalizes both the finite and the discounted setting
when H — 400 and v — 1 respectively since it can be shown (Puterman, 1994, Sections
8.2.1 and 8.2.2) that for all s € S

H +o0
E™ — ~ T - H d ET t—1 _ ~ T 1— )
l; re|s1 81 4T 9T (s) H an L; 7 s 81 96/ =)

As a result, if 7,7’ € TISR are two stationary policies such that p]g™ > ] g™, then for H big
enough and ~ close enough to 1 we have that E™ [Zfil rt‘sl ~ ,ul} > E™ {Ez{il 7“,5‘81 ~ Ml}

and E7 [Zfﬁf ”Yt*l?“t‘sl ~ ﬂl} >E" {Z?:Of thlf’t)sl ~ Ml}-

HSR

Any stationary policy m € also has an associated bias function defined for all s € § as

T
h™(s) := %’;lig E” [Z (re — g™ (st))
=1

s1 = s] , (2.10)

that measures the expected cumulative difference between the immediate reward r; and
the long term asymptotic reward g7 (s) in Cesaro-limit (denoted C-lim). The Cesaro-limit
is always well-defined unlike the “classical” limit as the series may cycle i.e., have sev-
eral accumulation points®. Accordingly, the difference of bias values h™(s) — h™(s') quan-
tifies the (dis-)advantage of starting in state s rather than s'. We denote by sp(h™) =
maxg h™(s) — ming A" (s) the span (i.e., range) of the bias function. It is well-known (Puter-
man, 1994, Section 6.6) that the span defines a semi-norm on R,

For any d € DMR_ we also define the limiting matriz P; = nC_—)Egé P} (Puterman, 1994,
Appendix A.4). The Cesaro limit always exists and so P} is always well-defined. It is possible
to express g™ (where m = d°°) in terms of P and rq i.e., g* = Pjr4. The matrix (I — P;+ PJ)
is always invertible and h™ = (I — Py + P;)~Y(I — P})rq (Puterman, 1994, Appendix A).
The matrix Hp, := (I — P4+ P})~ (I — Pj) is called the deviation matriz and is the Drazin

inverse of the matrix I — Py.

Definition 2.3
In the rest of the thesis, we will define vector e := (1,...,1)T € R% as the d-dimesional
vector of all ones (d can vary depending on the context) and e; == (0,...,1,...,0)7 as the

i-th cartesian coordinate in R<.

3 Accumulation points are sometimed called “cluster points”. Note that for policies with an aperiodic chain,
the standard limit exists.
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Proposition 2.3 (Theorem 8.2.6 of Puterman (1994))
For any policy 7 = d>® € TISE, the gain g™ and bias h™ satisfy the following system of

Bellman evaluation equations:
g=Pig and h+ g = Lgh. (2.11)

Conversely, if (g,h) € R x R® is a solution to (2.11), then g = g™ and h = h™ + u where
u = Pyu. Finally, if Pjh =0 then h = h".

Similarly to the discounted case, there always exists an optimal policy 7* € ISP (stationary
deterministic) solution to (2.8) for any pu; € P(S). Prop. 2.4 extends Prop. 2.2 to the

undiscounted setting.

Proposition 2.4

Let M be a weakly communicating MDP and denote by II* C ISP the set of mazimizers
of (2.8) in IISP. If any of the following assumptions hold:

1. the action space A is finite,

2. II* # 0 and sup,cqp- sp (R™) < 400,
then there exists a solution (g*,h*) € R x RY to the fired point equation h* + g*e = Lh*.

Moreover, for any such solution (g*, h*) and for all s € S,

satisfying d* € arg maxgcpur {rq + Pgh*} (i.e.,

1 X
. lim inf E™ |~
o = a7 3o
Finally, any stationary policy m* = (d*)>°
greedy policy) is optimal i.e., ™ € II*.

The proof of Prop. 2.4 is not as straightforward as the proof of Prop. 2.2 (discounted case).
A complete proof of Prop. 2.4 can be found in (Puterman, 1994, Chapter 9) for finite action
spaces, and (Schweitzer, 1985, Theorem 1) for compact action spaces*. Schweitzer (1985,
Example 2) also presents a counter-example of weakly-communicating MDP for which the
optimality equation does not admit any solution and sup,cq« sp (h™) = +oo. In order to
relax assumption 2 in Prop. 2.4, one needs to further assume that the MDP is unichain®
(communicating is still not enough) as shown by Schweitzer (1985, Theorem 2). Note that
the assumption that the MDP is weakly communicating is essential to show that the optimal
gain is state-independent i.e., sp (g*) = 0. In the general case where the MDP is multi-chain,
the fixed point equation h*+ ¢g* = Lh* no longer characterizes optimality i.e., other equations
are needed (see (Puterman, 1994, Chapter 9) and (Schweitzer, 1985, Equation 1.1)). Note also

4Schweitzer (1985) actually proves a more general theorem from which Prop. 2.4 can be deduced.
SIf the MDP is unichain, then assumption 2 is always satisfied and so Prop. 2.4 holds (Schweitzer, 1985,
Theorem 2).
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Algorithm 3 (Relative) Value Iteration

Input: Operators L : R® — RS and G : RY — DMR accuracy ¢ €]0, rmax[, initial vector
vo € R®, arbitrary reference state 5 € S
Output: Gain g € [0, ryax|, bias vector h € RS and stationary deterministic policy = € ISP

1: Initialize n =0

2: v1 := Ly

3: while sp (vy41 —v,) > € do > Loop until termination
4: Increment n < n+1

5: Shift v, < v, —vp(3)e > Avoids numerical instability (v, /4 +00)
6: (Vnt1,dn) = (Log, Goy) > Lv, and Guv, can be computed simultaneously
7. end while

8: Set g := %(max{vnﬂ — Up} + min{v,41 — vn}), h:= v, and 7 := (d,,)*

that unlike Prop. 2.2, Prop. 2.4 only claims uniqueness of ¢g* but not of h* in the optimality
equation h* + g*e = Lh*. For example, h* can be shifted by any arbitrary constant without
affecting the validity of the equation. But there may also exist other solutions that do not
just differ by a constant shift (see Prop. 2.3). There is also no strict equivalence between
optimal stationary policies and greedy policies (d*)*° with d* € arg max,cpur {rq + Pih*}
(some optimal policies may rather satisfy an optimality equation with a different h*, or may

not even satisfy any optimal policy).

Topology of the optimal Bellman operator. In Prop. 2.5, we present few important prop-
erties of the optimal Bellman operator L that are central for the rest of the thesis. The proofs

can be found in (Puterman, 1994).

Proposition 2.5

Let v and u be any two vectors in RS, then:
(a) L is monotone: v > u = Lv > Lu.

(b) L is non-expansive both in span semi-norm and loo-norm:
sp(Lv — Lu) < sp(v—wu) and |Lv— Lulls < ||v — ul|co-

(c) L is linear®: VA € R, L(v+ Xe) = Lv + Me.

Computing a near optimal policy. To compute an e-approximate solution to (2.8), we can
use Alg. 3 —also known as relative value iteration, see Section 8.5.5 of Puterman (1994)-
which is very similar to Alg. 2. Note that by definition, sp (vy+1 — vp) = max{v,4+1 — vy} —
min{v,+1—v,} and so the stopping condition of Alg. 3 is comparable to the stopping condition
of Alg. 2 (without involving ). At line 5 of Alg. 3, just before computing v,11, the vector

vn 18 “shifted” by substracting the value v,(3) to v,(s) for every s € S (5 is an arbitrary

SOperator L is not a linear operator (like in linear algebra) but the property that L(v + Ae) = Lv 4+ ce for
any (\,v) € R x R® is often called the “linearity” property of L.
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“reference” state). This is because the optimal Bellman operator L is not a contraction w.r.t.
any-norm —unlike L,— and in general v, asymptotically grows as ng*e when n — oo (see
Section 8.2.1 of Puterman (1994)). Since in most MDPs g* > 0, this means that v, — +oc0
as n — 400, potentially causing numerical instabilities. However, under the conditions of
Prop. 2.6 below, v, will converge in span semi-norm i.e., will converge in the quotient space
induced by the semi-norm sp (-) on R®. This is related to the remark we made earlier about
h* being defined up to a constant shift in the optimality equation (h* is uniquely defined in
the quotient space when there is exists a single optimal policy for example). Shifting v,, before
any new update ensures convergence in the original space R® (convergence in fs-norm as
opposed to span semi-norm). Note that neither the stopping condition (line 3 of Alg. 3) nor
the other outputs g and 7 of Alg. 3 are affected by the shift of line 5. If line 5 was removed,
Alg. 3 would stop after the same number of iterations and would return the same gain g and
policy w. Only the final bias h as well as all the intermediate vectors v, are shifted by a big
constant (which grows linearly with n). Indeed, the difference Lv,, — v, remains unchanged
after a constant shift in vy,: for all ¢ € R, L(v, +ce) — (v, +ce) = Lv, — v, due to the linearity
property of the optimal Bellman operator (Prop. 2.5 (¢)). Prop. 2.6 and Lem. 2.7 below also
hold if line 5 of Alg. 3 (constant shift) is removed (except that in this case v, diverges in R®
and converges only in the quotient space, as explained above). These results hold both for

MDPs with finite and compact action spaces.

Proposition 2.6 (Theorems 9.4.5 of Puterman (1994) adapted by Jaksch et al. (2010))
Consider the sequences of vectors (vp)nen and Markov decision rules (dp)nen obtained
while executing Alg. 3. If Prop. 2.4 holds and either:
1. every average optimal stationary deterministic policy has an aperiodic transition
matriz,
2. or the transition matrices Py, are aperiodic for alln > 1,
then there exists h* € RS such that lim,_, oo vy = h* and Lh* = h* + g*e.

Proof. In his Section 9.4.1, Puterman (1994) provides a complete proof in the general multi-
chain case with finite action space and when every average optimal stationary deterministic
policy has an aperiodic transition matrix (assumption 1). However, the proof only uses the
existence of a solution of the Bellman optimality equation, which is always guaranteed under
the assumptions of Prop. 2.4. Only his Lemma 9.4.3 uses the finiteness of DMP and ISP but
this lemma trivially holds when M is weakly communicating (instead of just multi-chain).
Therefore, the result also holds for compact action spaces as long as all the assumptions of
Prop. 2.4 are satisfied. While Puterman (1994) only provides a proof in the case where every
average optimal stationary deterministic policy has an aperiodic transition matrix (assump-
tion 1), Jaksch et al. (2010, Appendix B) showed how to extend it to the case where the

transition matrices Py, are aperiodic for all n > 1 (assumption 2). [

Since sp (g*e) = 0 and sp () is a continuous function (as a semi-norm), when the assumptions
of Prop. 2.6 hold the stopping condition of Alg. 3 is necessarily met after a finite number of

iterations. Moreover, it is possible to characterize by how much the gain g returned by Alg. 3
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differs from g*.

Proposition 2.7
Consider the gain g and bias h returned by Alg. 3. Under the same assumptions as
Prop. 2.6, |g — g*| < €/2 and for all s € S, |Lh(s) — h(s) — g| < €, where € €]0, rmax| is

the accuracy given as input of Alg. 5.

Proof. The fact that |g — ¢*| < /2 is just the application of Theorem 8.5.6 and Corollary
9.4.6 of Puterman (1994) (see also Section 9.5). For the other inequalities, we introduce the
quantities 9 := max{Lh — h} and m := min{Lh — h}. The condition sp (Lh — h) < € (line
3 of Alg. 3) is equivalent to 9t —m < e. Using inequality |g — ¢*| < £/2 and the definition of
g (line 8 of Alg. 3) we deduce

—_

1
SONm) 2 g~ = m2g - - S (Mom) g e

\V)
\)

1
— Mg S+ (M-m) < g +e.

1
- — g <
2(5)91+m) g < 5

DO ™

In conclusion, for all s € S, ¢* —¢ < m < Lh(s) — h(s) < M < ¢g* 4+ ¢ which concludes the
proof. [ |

Prop. 2.7 states that not only g is an e-approximation of g* but (g,h) € R x R approxi-
mately satisfies the Bellman optimality equation as |Lh — h — ge||oo < &. The condition that
Py, is aperiodic for all n > 1 is not always satisfied. Fortunately, there is a way to modify
the transition probabilities of the MDP to enforce this property while impacting neither the
optimal gain g* nor the stationary optimal policy(ies) 7*. This modification is called the

aperiodicity transformation (Puterman, 1994, Section 8.5.4).

Aperiodicity transformation. Instead of applying Alg. 3 to the original MDP M, we first
construct a transformed MDP M, where o €]0,1]. M, is similar to M with the only difference
that for all Markov decision rules d € DMR  the transition matrix P; is transformed into
P{ := aP;+ (1 — «)I where I is the S x S identity matrix. We first note that if M is
weakly-communicating, so is M, as long as 1 > a > 0 (more generally, the aperiodicity
transformation does not change the chain structure of the MDP). As shown by Puterman
(1994, Proposition 8.5.8), this transformation does not affect the gain of any stationary policy
meaning that for any 7 € ISR, g7 = ¢™.”7 We denote by L, the optimal Bellman operator of
M,. We note that:

S e o _
Vv € R”, Lyv := Dax {rq +aPjv} + (1 — a)v. (2.12)

For a0 €]0, 1], all the transition matrices of M, are aperiodic and so Prop. 2.6 and Lem. 2.7

apply. If g, and h, denote the gain and bias returned by Alg. 3 applied to M,, and if (v5)nen

"The transformation introduced by (Puterman, 1994, Section 8.5.4) is slightly different as the rewards are
all multiplied by «. Therefore, Proposition 8.5.8 of Puterman (1994) states that the gain is also multiplied by
aie., gh = a-g". However, it is straightforward to adapt the proof of Proposition 8.5.8 of Puterman (1994)
to our case.
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is the sequence of vectors obtained while executing the algorithm, then lim,, ;o (v —v5) =
g* (since g% = ¢%), |9a — 9*| < e/2 and ||Lhq — ha — ga€llcoc < €. Note that this holds for any
a €]0,1[ but in practice, the closer « is to 0, the slower the convergence of value iteration

(more iterations are needed to meet the stopping condition of line 3).

Episodic problems. To conclude this section, we highlight the connection between the
undiscounted inifinite horizon setting and the episodic setting. It is very common in practice
that an RL task ends as soon as a certain termination condition is met, after which the
problem is reset to an initial state (or initial distribution over states). Each reset defines a
new “episode”. The restart condition is often assumed to be Markovian i.e., to depend only
on the current state and action. The goal is then to maximize the cumulative reward over
episodes. If the restart condition satisfies the Markov property, it can simply be interpreted
as a transition probability of the MDP, in which case the gain is a good optimality criterion.
Actually, in the episodic setting, it is a well-known result of rencwal theory that the gain
g™ (s) of a policy 7 starting in state s € S is equal to the ratio E™[R|s; = s|/E™[r|s; = 9],
where R and 7 denote respectively the total reward accumulated during an episode and the
total duration of the episode. It seems reasonable that we should not just aim at maximizing
E™[R|s1 = s], but we should also take into account E™[7|s; = s|. Indeed, it might sometimes
be more rewarding on the long-term to run short episodes with relatively small cumulative

reward rather than episodes with high reward but extremely long duration.

Refined optimality (Bias and Blackwell optimality)

In many MDPs, there is not a single gain-optimal policy although it is clear that among the
gain-optimal policies, some are preferable in terms of reward. For example, while two different
policies may have the same asymptotic per-step reward, one of them may accumulate more
reward while converging to the asymptotic gain. It turns out that this is formally described by
the notion of bias optimality (Lewis and Puterman, 2002) which refines gain optimality (bias
optimal implies gain optimal but not conversely). Bias optimality can be further refined
by the notions of sensitive discount optimality and Blackwell optimality which provides a
comprehensive understanding of infinite horizon problems in the absence of a discount factor.
All these refinements go beyond the scope of this thesis and from now on we will restrict

attention to gain optimality.

2.1.4 Stochastic shortest path

In this section we review some important results on the stochastic shortest path problem
(Bertsekas, 1995, Chapter 2). These results will be extremely useful to understand how
difficult it is for an agent to navigale between the states of an MDP. Unlike in previous
sections, we assume that the rewards of the MDP are all non-positive and lie in [—rmax, 0].
When action a is played in state s, the absolute value of the reward |r(s,a)| should be
interpreted as the expected time before reaching the next state in the MDP. |r(s,a)| can be

seen as the “length”or expected “duration”of a transition (which only depends on the current
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state s and action a, and not on the next state). In the stochastic shortest path problem, we
consider an agent travelling from a state x to a state s. The total length of a sampled path
(s1 ==x,a1,71,...,8; =) is defined as |>°7_; 7| = Y71 |re| = — D f—1 7. We introduce the

following definition:

Definition 2.4

For any state s € S, we define 7(s) := inf{t > 1: s; = s} the first hitting time of s. Note
that 7(s) € NU {+o0}.

The goal of the stochastic shortest path problem is to find the shortest expected distance be-
tween states x and s in the MDP i.e., to solve

T(s)—1
inf ¢ E™ s1==x & supq ET relsi=x| p. (2.13)
mwell mell =1

Although the optimization problem in Eq. 2.13 seems very different from the optimization

7(s)—1

>l

t=1

problem in Eq. 2.8, the two problems are related through the Bellman optimality equation.
The stochastic shortest path problem can somehow be interpreted as a specific case of finding
a bias-optimal policy when the optimal gain ¢* is 0. The optimality equation can then be
written as Lh* = h*. This statement is made more formal in Prop. 2.8 below. For all pairs
of states (z,s) € S x S, the value of the supremum in (2.13) (right-hand side) is denoted
R, (x). By definition, hf, (z) <0 for all z € S and A}, (s) = 0.

Proposition 2.8

Let M = {S, A,r,p} be a communicating MDP (finite or compact A) with negative re-
wards r(s,a) € [~Tmax, 0] for all (s,a) € S x A. For any state s € S, consider the Bellman
shortest path operator L., : RS — RS defined for all v € RY as:

maxaea, {7(2,0) + Lyes ple, a)v(y)} if @ # s

(2.14)
v(s) otherwise

Ve € S, L,sv(x) := {

hY, is the (componentwise) maximal non-positive solution of the Bellman shortest path
optimality equation L,,sh’,, = h’,,. Moreover, if d,, is a greedy decision rule w.r.t.
hi,s d.e., df,o(x) € arg max,c g, {r(a:,a)—}-Zyesp(y\a:,a)hgs(y)} for all x # s, then
e = (d5 )™ is an optimal solution to Eq. 2.13.

Proof. L. corresponds to the optimal Bellman operator of a modified MDP M, where
all actions are unchanged except the actions in state s. These actions are assigned a reward
0 i.e., r(s,a) = 0 for all a € A, and loop on s with probability 1 i.e., p(s|s,a) = 1 for all
a € As. In M4, problem (2.13) can be equivalently formulated with 7(s) replaced by 400
(the reward is always zero once state s is reached). Therefore, (2.13) is an instance of an
expected total-reward problem with negative model (Puterman, 1994, Section 7.3). Since M is
communicating, there exists a policy 7 such that E™ [E;;Of rt‘sl = x] > —o0 in M, (e.g.,
any policy reaching s in finite time almost surely) and so Assumption 7.3.1. of Puterman

(1994) holds. The fact that h',, is the maximal non-positive solution of L.,sh’,, = h},, is a
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consequence of Theorem 7.3.3. (a) of Puterman (1994) (proved for both finite and compact
action spaces). The fact that 7", is optimal is a consequence of Theorem 7.3.5 of Puterman
(1994). m

Value iteration (Alg. 3) converges to h,, (for both finite and compact .A) but no aperiod-

icity condition is needed in this case.

Proposition 2.9

Let MDP M satisfy the assumptions of Prop. 2.8. If Alg. 8 is run with operator L.,
vo := 0 and reference state s := s, then v, converges monotonically to h',, and so Alg. 3
stops after a finite number of iterations. Moreover, the vector h output by Alg. 3 satisfies

—ee< L_sh—h<O0.

Proof. Since the reference state is s and vy = 0, by induction v,(s) = 0 for all n > 0 so
that line 5 of Alg. 3 (constant shift) can be ignored i.e., v, = L™0. Then, the monotone
convergence of (v, )nen is a direct consequence of Theorem 7.3.10. (a) of Puterman (1994).
Therefore, v9 = 0> vy > ... > h > L,sh > b, (first inequality). When Alg. 3 terminates,
we have sp (L,sh —h) < e. We introduce the quantities 9 := max{L.,sh — h} and m :=
min{L.,sh — h} so that sp(Lsh —h) =2t —m < e. Since vop = 0 and L, sv(s) = v(s) for
all v € R® by definition, v,(s) = 0 for all n > 0 and so L.,sh(s) = h(s) =0 and M = 0. The
condition sp (Lish — h) < e implies L,,sh — h > me > —ce. [ |

Bias and aperiodicity transformation. We already showed that the aperiodicity transfor-
mation (Sec. 2.1.3) does not affect the gain, we will now investigate the impact on the shortest
path. Although such a transformation is not needed to enforce convergence of value iteration

in a stochastic shortest path setting, Thm. 2.1 (below) will later be useful in this thesis.

[

Theorem 2.1 R
Let MDP M satisfy the assumptions of Prop. 2.8. Let a €]0,1] and M, be the MDP

obtained after applying the aperiodicity transformation of parameter o to M. M, also

satisfies the assumptions of Prop. 2.8 and so hl}, is well-defined for all s € S. Moreover,

\Ot : hgs = h:k—>s /

Proof. One way to interpret the aperiodicity transformation is that at every time step, an
agent evolving in M, “loops” on the current state with probability 1 — «, and follows the
dynamics of M with probability «.. Therefore, all the paths that exist in M also exist in M,
but they are “longer”. So if M is communicating, M, is communicating as well. The rewards
are not affected by the transformation so if the rewards of M are non-positive, so are the

ok

rewards of M,. Furthermore, by definition, A2}, is a fixed point of L% . and h}

N r.s 1s a fixed
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ag, T = —T'max

al,TZO CLl,’I“ZO
ag, " = —T'max

Figure 2.2: Example of communicating MDP where the “shortest path” from = to s (2.13)
is such that 7*(x) = a; and h', () = 0. Under 7*, 7(s) = 400 almost surely.

point of L,,s. Let’s denote by p,s the transition probability of M., (see proof of Prop. 2.8).

LEhE, = WY < max {T(x,a) +a) posyle, a)h‘ifs(y)} + (1 = a)h () = hE(x)

acAg Yy

& max {T(ﬂ% a) + > pes(yle, a) (ahﬁi‘s(y))} = ahZ(x)
Y

aE.Az

& Lo,s (ahlly) = ah®,.

So ah®y, is a fixed point of L,,s and conversely h', /a is a fixed point of L&, .. Moreover,
a > 0, h®, < 0 and h',, < 0 implying that ah®, < 0 and h,,/a < 0. Since h',, is
the maximum non-positive fixed point of L.,s and ah®, < 0, necessarily h*,, > ah®,.
Symmetrically, A%, is the maximum non-positive fixed point of L% . and h', /a0 < 0 so

: ax * : ax __ p*
necessarily h®f, > h',_ /a. In conclusion, ah®y, = h},,. [ |

Infinite hitting time. In this section we considered a slightly more general formulation of
the shortest path problem than Bertsekas (1995, Chapter 2). In our formulation, it is possible
that the policy 7* achieving the maximum in (2.13) satisfies E™ [7(s)|s1 = ] = 400, while
the maximum in (2.13) is always bounded (under the assumption that M is communicating).
In this case, the solution of (2.13) does not exactly match the intuitive notion that we have
of a “shortest path” to a target state s. We give an example of such a scenario in Fig. 2.2.
Nevertheless, all the results presented in this section hold whether 7(s) is almost surely finite
or not. This is because the problem can be expressed as as a specific instance of expected total-
reward problem with negative model (Puterman, 1994, Section 7.3) (see proof of Prop. 2.8).
Note that if all the rewards are strictly negative (as opposed to just non-positive), then
necessarily E™ [7(s)|s; = 2] < +oo and the solution of the problem is a “proper” shortest
path (this is the specific case analysed in Bertsekas (1995, Chapter 2)).

2.1.5 Uncertain MDPs: between discrete and continuous MDPs

In this thesis, we will have to deal with MDPs with unknown r and p but for which we know
some confidence sets. A convenient way to describe an uncertain MDP is through the notions
of “bounded-parameter MDPs” and “extended MDPs”.
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Bounded-parameter MDP. A bounded-parameter MDP is a collection of MDPs —~with iden-
tical state-action spaces— specified by confidence bounds on the parameters (rewards and tran-
sition probabilities) representing the uncertainty about the true values. Formally, a bounded
parameter MDP M is usually characterized by some compact sets B, (s,a) C [0, rmax] and
By(s,a) C Ag (see Def. 2.1):

M = {M = (S, A,r,p): r(s,a) € By(s,a), p(:|s,a) € Bp(s,a), ¥(s,a) €S x A}. (2.15)

Bounded-parameter MDPs were first introduced by Givan et al. (2000) in the infinite horizon
discounted setting, and later used by Tewari and Bartlett (2007a) in the undiscounted setting.
The bounded parameter MDP will typically be constructed so as to include the true MDP
with high probability (w.h.p.).

Extended MDP. As pointed out by Jaksch et al. (2010, Section 3.1.1), any bounded param-
eter MDP can be equivalently represented by an “extended MDP”. The idea is to combine all
MDPs into a single MDP with identical state space S but with an extended compact action
space AT. The extended MDP corresponding to the bounded parameter MDP M defined in
Eq. 2.15 is formally defined as M+ = (S, AT, 7%, p™) where for all s € S:

Al = U {a} x B,(s,a) x Bp(s,a)
a€As

rt(s,a®):=r (2.16)

Va* = (a,r,p) € AT, {
pt(ls,at) =p

Every possible value in the compact sets B, (s,a) and By(s, a) is considered as an “extended”
action in M™. For any MDP M = (S, A,r,p) € M and any stationary deterministic policy
T e H]S\? defined on M, let’s define the stationary deterministic policy 7% € Hi/% on M*
by 7t (s) := (7(s),r(s,m(s)),p(-|s,m(s)). It is immediate to see that the Markov Reward
Processes (MRP) induced by m on M is exactly the same as the MRP induced by 7% on M.
Conversely, for any policy 7+ € Hf\/%, the MDP M = (S, A,r,p) € M and policy 7 € II5?

defined as follows induce the same MRP as 7+:

7(s) :=a

7b EB?” )b a. al e
Vs € S,{r(s,a) :==r  where (a,7,p) :=7"(s), and Vb # a{T(S ) (s,b) (any value)

p(|s,a) == p p(-|s,b) € Bp(s,b) (any value)

There is a one-to-one correspondence between the pairs (M, 7) € M x H%? and the policies
nt e H?\%‘ In the rest of the thesis, we will use the same notation M for an extended MDP
(2.16) and the corresponding bounded-parameter MDP (2.15) (they are essentially the “same”
mathematical object). We will also slightly abuse terminology and say that an MDP “belongs
to” an extended MDP when it is actually contained in the corresponding bounded-parameter
MDP.
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Extended optimal Bellman operator. The optimal Bellman operator £ of an extended

MDP is called an “extended optimal Bellman operator” and is defined as:

Yo e RY, Vs e S, Lu(s):= max{ max 7+ max pTv} (2.17)
a€As | 7€Br(s,a) pEBp(s,a)

In the specific case where the confidence sets By(s,a) are polytopes, the inner maximum
maXpep, (s,a) 1PT0} is reached on at least one vertez®, meaning that we can restrict By(s,a) to
its vertices without impacting the result (there are only finitely many vertices on a polytope).
Moreover, max,¢p, (s,){7} is always reached on the maximal value of B,.(s,a) and so it can
be replaced by a singleton without changing anything. In conclusion, £ can be expressed as
an optimal Bellman operator with finite action space. In this thesis, all the extended optimal
Bellman operators that we will deal with will satisfy satisfy this property. This simplifies a
lot the thoretical analysis (see Prop. 2.4 and 2.6).

2.2 On-line Reinforcement Learning in the infinite hori-
zon undiscounted setting

In the previous section, we used the formalism of MDPs to describe an agent interacting with
its environment. Depending on the chosen optimality criterion, we showed how to compute a
(near-)optimal policy when the parameters of the MDP are fully known. In this section, we
will address the case when all or part of the MDP is unknown and needs to be learned by the
agent. We restrict attention to the infinite horizon undiscounted setting which will be the
main focus of this thesis. Although it is not always the most appropriate setting (e.g., when
there is a pre-defined horizon or discount factor), it is perhaps the most general (in the limit,
see Sec. 2.2) among all the settings presented in Sec. 2.1. It is also the most challenging to

analyse.

2.2.1 Thelearning problem

We consider the learning problem where S, A and 7. are known, while rewards r and
transition probabilities p are unknown and need to be estimated on-line i.e., in a sequential
fashion. The planning algorithms presented in Sec. 2.1 cannot be used directly to compute

an optimal policy and samples of r and p need to be collected first.

Rather than focusing on learning a (near-)optimal policy (e.g., with the best possible accu-
racy given an horizon 7T'), we will be interested in maximizing the cumulative reward Zthl T
collected up to time T. As T grows to infinity, maximizing Z?zl r¢ amounts to learning a
gain-optimal policy since in the limit the series eventually grows as T'g* (Puterman, 1994,
Chapter 8), which is the best asymptotic growth rate achievable. But in the meanwhile,
the learning agent needs to efficiently trade-off the exploration needed to collect information

about the dynamics and reward, and the exploitation of the experience gathered so far to

8This is a well-known property of linear programs.
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Per-step reward

Regret A(T)

rewards r;

Figure 2.3: Graphical illustration of Def. 2.5.

gain as much reward as possible. In order to quantitatively assess the exploration-exploitation
performance we use the concept of regret which compares the rewards accumulated by the

agent and an optimal policy i.e., pJvi — Zle r¢. To simplify this definition, we observe that
vh=LT0=LTh" + L0 - LTh* = Tg*e + h* + LT0 — LTh*.
Using the fact that L is non-expansive in {s-norm (property (b) of Prop. 2.5) we obtain
I = Tg*ellso < A" [loo + 1270 = LTA"[loo < 2[|1*|c0-

h* is independent of T" and measures the expected cumulative difference between the optimal
asymptotic stationary regime g* and the actual reward at time step t. It somehow quantifies
the unavoidable expected regret incurred when the optimal policy is executed starting from
a distribution different than the optimal asymptotic regime. We therefore introduce the

following definition.

Definition 2.5

Let (r¢)i>1 denote the sequence of rewards collected while executing learning algorithm 2A
in MDP M, with initial state distribution pi. The regret after T time steps is defined as
T T
A(M') 9’[7/*L17T) = Z(g* - Tt) = Tg* - Zrt'
t=1 t=1
Graphically, the regret corresponds to the hatched area between the black and red curves on
Fig. 2.3. Given that the term Tg* is algorithm-independent, maximizing Zthl r¢ is equivalent

to minimizing the regret.

Since the regret is a random wvariable, we cannot minimize it directly. One possibility is
to analyse the ezpected regret E® [A(M, A, 1, T)|s1 ~ p1], whre 2 € II is interpreted as an
(priori non-stationary) policy. Another possibility is to bound the regret in high probability
i.e., with probability 1 — § where ¢ is a level of confidence given as input to 2. A high
probability bound is usually considered a stronger result: it is always possible to convert a

high probability bound into a bound on expectation by carefully tuning the confidence 4.
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The analysis of the regret in expectation and in high probability both belong to the frequen-
tist approach: the result gives an indication of what happens if the learning process is repeated
several times in the same conditions with different random samplings (different “seeds”). An-
other line of research consists in analysing the expected Bayesian regret. With this approach,
the true unkown MDP is assumed to be sampled from a known prior distribution and the
goal is to minimize E ), [Em [A(M, A, 11, T)|s1 ~ Ml]] where E,/ is the expectation over the
prior. Bayesian regret bounds provide weaker guarantees since they only hold on expectation
over a set of plausible MDPs, and not always for a specific instance. In this thesis, we will

exclusively focus on frequentist approaches, mainly high probability regret bounds.

2.2.2 Theoretical benchmarks

We say that an algorithm learns if and only if A(M, 2, p1,T) = o(T) when T" — +oo (either
in expectation or with high probability). But we also care about how fast the algorithm
can learn. Before describing learning algorithms and analysing their regret, we first discuss
fundamental limitations of the learning abilities of any algorithm. We summarize several

existing regret lower-bounds which provide insightful benchmarks when designing algorithms.

Asymptotic lower-bounds

The first regret lower-bound in an RL setting was proved by Burnetas and Katehakis (1997).
The lower-bound is proved for the restricted family of ergodic MDPs. In such MDPs, the
optimal bias h* is unique up to a constant shift (Lewis and Puterman, 2002, Proposition 2.3)
and all gain-optimal stationary deterministic policies are greedy w.r.t. Lh* i.e., the Bellman
optimality equation fully characterizes gain-optimal policies (Lewis et al., 1999). We define
IT* C TI5P the set of such greedy policies i.e., the set of all stationary deterministic gain-
optimal policies in M. Because h* is unique up to constant shift, for any ergodic MDP
M = (S, A,r,p) we can define the state-action gaps for all state-action pairs (s,a) € S X A
without any ambiguity

0(s.a) := max {r(s,8) + p(-15,b)Th"} =r(s. ) = p(|s,a)Th", (2.18)

—Lh*(s)=h*(s) +9*

where h* is any optimal bias of M. Burnetas and Katehakis (1997) assume that the reward
function is known and only the transition probabilities need to be learned. They also define
the state-action KL divergences between two MDPs M and M’ that differ only by their

dynamics p and p/
KLpgar (s, a) := KL (p(-]s, a)|[p'(:]s,a)) . (2.19)
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Finally, the sets of confusing models w.r.t. M are defined as

B(s,a) == {M' = (S, A,r,p'): P(|z,b) = p(-|z,b) for all (z,b) # (s,a),
(2.20)
§(s,a) >0 and §'(s,a) = 0}.

We report the lower-bound of Burnetas and Katehakis (1997) in Prop. 2.10 below.

Proposition 2.10 (Theorem 1 of Burnetas and Katehakis (1997))

Let M be an ergodic MDP with finite state and action spaces S and A, and rm.x = 1.
Let A be a learning algorithm s.t. E* [A(M', 2, pu1,T)|s1 ~ p1] = o(T®) for all o > 0,
all ergodic MDPs M' and initial state distribution py. The expected regret of U is lower

bounded as

E¥ [A(M, 2, pu1,T)|s1 ~
o e [ ( y <4y U1, )|81 Ml] > Z : 5(570*) )
T—o0 log T 5,a me/Gq,(s,a) KLMHM’ (S, a)
D(s,a)#£0

In Prop. 2.10, the learning algorithm 2f is assumed to be uniformly good i.e., to achieve
sub-polynomial regret on all ergodic MDPs. Since 2l is constrained to perform well on all
instances, it cannot perform arbitrarily well on any specific instance, hence the lower-bound.
This is reminiscent of the “No Free Lunch”theorem in supervised learning. Prop. 2.10 shows

that the expected regret will eventually grow at least logarithmically with time.

The more sub-optimal sate-action (s,a) (i.e., the higher (s,a)), the bigger the lower-
bound: the regret incurred when playing this action is higher by definition. When the
transition probability vector p(-|s,a) associated with a sub-optimal action a can easily be
confused with another probability vector ¢ that makes a optimal, the lower bound is also
bigger (term KLy az(s,a)). This is because a small error in the estimation of p(-|s,a) can

lead to a potientially very sub-optimal behaviour. As shown by Ok et al. (2018, Section 4.1),

* 2
the lower-bound of Prop. 2.10 can be upper-bounded by W with the minimum
gap
Omin = i d(s,a). 2.21
o s,a: %%g(lzbo (8 (1) ( )

Omin > 0 except if 5P = 11*.

Ok et al. (2018) also extended Prop. 2.10 to any class of ergodic MDPs with arbitrary
structure where the reward function is also unknown (see Prop. 2.11). We denote by M such
a class of ergodic MDPs with rp.x = 1 (and potentially continuous state and action spaces).

We generalize the definition of the set of confusing MDPs:

O = {M = (S, Arp): P(s]s,0) =0 = p(s']s,a) =0, ¥s5,5' € S,Ya € A
P ([s,7(5)) = p(:[s,7"(5)), ¥s € S,¥n" €T,
and II* N II"™* = @}.

39



Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

Proposition 2.11 (Theorem 1 of Ok et al. (2018))

Let M € M and 2 be a learning algorithm s.t. E¥* [A(M', A, u1,T)|s1 ~ p1] = o(T%) for
all a > 0, all M' € M and initial state distribution py. The expected regret of 2 is lower
bounded as

E* [A(M, 2, p1,T)|s1 ~ p1] .

lim inf
Tooo log T

where

K =inf Zn(s,a)é(s,a)

n=>0

sit. > n(s,a) KLy (s,a) > 1 VM € ®.

s,a

When M is unstructured (class of all ergodic MDPs), one can show (Ok et al., 2018, Section
4.1) that Prop. 2.11 allows to recover Prop. 2.10. Ok et al. (2018, Section 4.2) also analysed

the case where S and A are subset of metric spaces and r and p are Lipschitz-continuous.

There are several major limitations to Prop. 2.10 and Prop. 2.11. The lower-bounds
are derived only for ergodic MDPs and it is an open question whether the lower-bound
increases when extended to more general chain structures (like communicating or weakly-
communicating). But perhaps the main limitation is the asymptotic nature of the lower-

bounds. These bounds provide no indication on the regret performance in finite time.

Minimax lower-bounds

We will now present a different type of lower-bound proved by Jaksch et al. (2010). Before

that, we need to introduce the notion of diameter of an MDP.

Definition 2.6
The diameter of an MDP is defined as

D :=max min E™ [7(s')|s1 =s] —1 (2.22)

57Sl ﬂ'eHSD

where 7(s') :=inf{t > 1: s, = s’} is the first hitting time in s’

From Def. 2.2 and Proposition 8.3.1 of Puterman (1994), it is clear that D < +o0 if and
only if M is communicating. The diameter of an MDP is the length of the longest shortest
path in the MDP. In other words, it is the length of the shortest path between the two states
that are the most distant from each other. It quantifies the difficulty to navigate in the MDP.
We provide a graphical illustration on Fig 2.4.
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§—
~N-
~N-
~N-
he \ \ 'l) \: 10 \
[4 [4 [4 [4 |
1
S,

Figure 2.4: Graphical illustration of Def. 2.6. The MDP is a grid-world where every square
represents a state. The four cardinal actions can be played in any state with success proba-
bility 1, except when there is a wall (red).

Proposition 2.12 (Theorem 5 of Jaksch et al. (2010))

For any algorithm A, any integers S, A > 10, D > 20log4(S), and T > DSA, there is
an MDP M with at most S states, A actions, and diameter D, such that for any initial
distribution 1 € Ag, the expected regret of A after T time steps is lower-bounded as

E? [A(M, 2, p1,T)|s1 ~ p1] > 0.015 - rypax VDSAT.

Prop. 2.12 significantly differ from Prop. 2.10 and 2.11. It shows that for any number of
states S, number of actions A and diameter D, it is always possible to construct a worst-
case MDP with these features that achieves a regret of order at least (2 (rmaxm).
Unlike the bounds of Burnetas and Katehakis (1997) and Ok et al. (2018), Prop. 2.12 is not
problem-dependent but it is also not asymptotic. Problem-dependent non-asymptotic bounds
would combine the best of both worlds but to the best of our knowledge, no such bounds are
currently available in the RL literature. Bounds on the worst-case regret are often referred as
“minimaz” bounds. Minimax bounds usually scale as v/T while problem dependent bounds

scale logarithmically with 7.9

The term D (diameter) appearing in the bound of Prop. 2.12 can be deceiving. The
specific worst-case MDP constructed by Jaksch et al. (2010) to prove the lower-bound satisfies
D = 2sp (h*) and so it is not clear whether to interpret the lower-bound in terms of diameter,
range of the bias or yet another term. This ambiguity is one of the major issues with minimax

lower-bounds.

Bartlett and Tewari (2009, Theorem 6) tried to improve the bound of Jaksch et al. (2010)
but Osband and Van Roy (2016) later showed that their proof contains a mistake. The work
presented in this thesis together with other recent work (Ortner, 2018; Tossou et al., 2019)

In the bandit litterature,“problem-dependent” bounds are said to be distribtion-dependent, as opposed to
minimax bounds which are said to be distribution-free (Garivier et al., 2018).
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Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

suggest that the lower-bound of Prop. 2.12 cannot be improved (without restricting the family
of possible MDPs).

2.2.3 (Near) Optimal algorithms

A common strategy to efficiently balance exploration and exploitation in RL is to apply the
optimism. in face of uncertainty (OFU) principle: the agent maintains optimistic estimates
of the MDP parameters and, at each step, executes the policy with highest optimistic “value”
(e.g., gain, discounted value function, etc.). In this section, we will review some of the existing

RL algorithms relying on OFU.

An alternative approach is posterior sampling (Thompson, 1933b), which maintains a
Bayesian distribution over MDPs (i.e., dynamics and expected reward) and, at each step,
samples an MDP and executes the corresponding optimal policy (e.g., Osband et al., 2013;
Abbasi-Yadkori and Szepesvéri, 2015; Osband and Roy, 2017; Ouyang et al., 2017a). Un-
fortunately, so far all existing posterior sampling algorithms only provide garantees on the
Bayesian regret. A notable exception is the work of (Agrawal and Jia, 2017) which successfully
combines posterior sampling with OFU to obtain guarantees on the frequentist regret. How-
ever, their algorithm requires to sample multiple times the posterior distribution over MDPs
so as to obtain empirical high-probability confidence bounds, which somehow resembles what

OFU methods do in a computationally more efficient way.

Asymptotically optimal algorithms

Burnetas and Katehakis (1997) proposed Optimal Adaptive Policies (OAP) that achieve the
lower-bound of Prop. 2.10 i.e.,

E% [A(M,OAP, 1, T)|s1 ~
Jimn sup [A(M, 1, T)|s1 ~ ] > i(s,a)

T—o0 log T = infareapsq) Kl (s,a)
D(s,a)#£0

(2.23)

At each time step t, OAP computes an estimate M\t = (S, A,r,p) of the unknown MDP
M based on past-observations (p; is the maximum-likelihood estimator of p). An optimal
solution (,/g\ta/]:lzt) € R x RS of the optimality equation of M\t is then computed i.e., a solution
to fjtﬁt = TLt + gre where Ly is the optimal Bellman operator of M\t. Let N¢(s,a) denote the
number of past visits in state-action pair (s,a) and £; : RS s R be the operator defined for
all v € RS and all s € S by

Liv(s) == max {r(s, a) + qerél;gs{,a) qu} , (2.24)
where Bl(s,a) := {q € As: KL(p:(|s,a)llg) <In(t) /Ni(s,a)} is a high probability confi-
dence set for p(-|s,a). L; is an extended optimal Bellman operator (Sec. 2.1.5). At every
time step t, the current state is denoted s; and OAP plays any greedy action w.r.t. Etﬁt(st).

To avoid under-exploration of some state-action pairs, OAP sometimes needs to play an action
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2.2. On-line Reinforcement Learning in the infinite horizon undiscounted setting

that have not been visited “sufficiently often” instead i.e., among

{a € A: Ny(s,a) < In? (Z Nt(s,b)—f—l)} C A,.

beAs

Tewari and Bartlett (2007b) derived a similar algorithm called OLP (Optimistic Linear
Programming) that defines confidence sets Bf,(s, a) using the /1-norm instead of the Kullback-
Leibler divergence: B} (s,a) := {q € Ag: ||pe(v|s,a) — ql1 < /2In(t) /Nt(s,a)}. The regret

guarantees are slightly worse: the term KLy (s,a) in (2.23) is replaced by a similar term

depending on the distance in f;-norm rather than Kullback-Leibler divergence. However,
computing the maximum over ¢ in (2.24) becomes computationally easier: it can be expressed

as a linear programming problem (hence the name OLP).

Both OAP and OLP implement the OFU maxim through the extended Bellman operator
L which is an “optimistic”version of L (at least in high probability). Ok et al. (2018) derived
Directed Exploration Learning (DEL) which is able to achieve the lower-bound of Prop. 2.11
with an explicit explore versus exploit strategy instead. Depending on past observation, DEL
decides to exploit i.e., to take the greedy policy w.r.t. Lyhy(s;) (rather than Lih(s;)), or
to explore by explicitly using the expression of the estimated lower-bound f(\t (solution to
optimization problem in Prop. 2.11 with M replaced by ]\/Zt) Unlike OAP and OLP, DEL
does not rely on OFU.

Optimal algorithms with finite time guarantees

UCRL. The first algorithm with provable finite time regret guarantees is UCRL (Upper
Confidence Bounds Reinforcement Learning) introduced by Auer and Ortner (2007). For any
ergodic MDP M, let IT* C TISP be the set of stationary deterministic gain-optimal policies in
M and

T = max max E” [r(")]s1 = 5] ~ 1

the worst case mizing time. Unlike the diameter (Def. 2.6), Tynax is @ double maximum and

so Ty < oo only when M is ergodic. We also define

maxg E™ [7(s')]s1 = s] — 1
Kmax ‘= — mMax max
ma 2 nemsb s/ E™ [7—2(3/)’81 = 8/] -1

the worst-case condition number of M (Kirkland et al., 2008, condition number xg), where

To(s') ;= inf{t > 2: s; = &'} is the first return time in §'. Finally, the gap in gains is

dg:=¢" — max { max g”(s)}.

melISP\IT* | s: g™ (s)<g*

Auer and Ortner (2007, Theorem 2) proved that there exists a numerical constant 5 > 0 such
that for any ergodic MDP M, for all initial state distribution p; € P(S) and for all 7' > 1:

SP ATpax k2

E [A(M, UCRL, u1, T)] < 8 I (T) 4 35 A% log (;) L e)
g9
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Algorithm 4 UCRL2

Input: Confidence § €]0, 1], maximal reward ry,x, set of states S, set of actions A
1: Set initial time ¢ := 1, observe initial state s; and initialize for all (s,a,s’) € S x A x S:

e counters Ni(s,a) :=0,
e empirical averages p1(s'[s,a) := 0 and 71(s,a) := 0.

2: for episodes £k =1,2,... do

3:

10:
11:
12:
13:

14:

Set the starting time of the episode ¢; := t and initialize for all (s,a,s’) € S x A x S:

episode counters v (s, a,s’) ;== 0 and vg(s,a) := 0, and cumulative rewards Ri(s,a) := 0.

For all (s,a,s’) € S x A x S, compute upper confidence bounds:
, 145 1n (24t
pas’ = | ——— L (3) (2.25)
’ N, (s,a)
2S5 Aty
W Tin (25) (2.26)
" 2N, (s, a)
Set My, :={S, A, i, pr} to be the extended MDP defined by the confidence intervals
/ Bk — A . ) / < (R34 2.27
pi(s'|s,a) € Bi(s,a) :={q € As: |jqa—Dr(s|s,a)||, < B4 (2.27)
ri(s,a) € BE(s,a) := [Fi(s,a) = B35, Fils, @) + B24] 1[0, ranas] (2.28)
Compute policy 7 using (“extended”) value iteration (Alg. 3):
T'max
Gk, hi, ) ;= EVI <£k,gk,,0,51> 2.29
( ) N (2:29)
while vy (sg, T (st)) < N (s¢, mi(st)) do
Execute action a; := 7 (s¢), obtain reward r;, and observe next state s¢1.
Increment episode counters:
Vi (St, aty Se41) < Vk(Seyap, Se41) + 1 and vg(se, ar) < vi(se, ar) + 1
Increment cumulative reward: Rg(s¢, ar) < Ri(st, ar) + 1y
Increment time ¢t <t + 1
end while
Update counters, empirical averages and sample variances for all (s, a,s’) € Sx AXS:
Nii1(s,a) := Ni(s,a) + vg(s,a) (2.30)
~ Nk;('saa) ~ ! I/k(S,a,Sl)
Prst(s')s,a) 1= —H2UD 5 (g1 gy 4 Ll D) (2.31)
N;H(S’a) Nle(Sa a)
~ Nk(S,CL) ~ Rk(S,a)
Tkt1(s,a) i= ————— -T(s,a) + —/——— (2.32)
Nl;::-l(S?a) Nlj+1<3 a)
end for
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Although it is difficult to compare (2.33) with the lower-bound of Prop. 2.10, the regret bound
of UCRL is likely to be much worse given the dependency in S (among other things).

Similarly to OAP and OLP, UCRL maintains maximum-likelihood estimates of r and p
as well as confidence sets By(s,a) and By(s,a) based on high probability confidence bounds.
But unlike OAP and OLP, UCRL updates the policy only once the confidence bounds of at
least one state-action pair have been halved since the last policy update. The time interval
between two policy updates is called an “episode”. At each episode k, UCRL2 computes a
policy

T € arg max sup gyp
TellSD M’'e My,

where

My, = {M’ = (S, A,r,p): M is ergodic, r(s,a) € B*(s,a), B;f(s,a)}

is the set of plausible ergodic MDPs compatible with the confidence sets. It is a bounded-
parameter MDP (see Sec. 2.1.5) with the additional constraint that the MDPs it contains
should all be ergodic. The confidence sets are constructed so that M € M; with high
probability implying supyy e pq, 93 = 9 1€, Tk is gain-optimistic. UCRL is therefore another
instance of RL algorithm relying on OFU.

UCRL2. Jaksch et al. (2010) later improved UCRL with UCRL2. Since all the RL algorithms
presented in this thesis are variants of UCRL2, we report the detailed pseudo-code in Alg. 4.
To improve the readibility of the algorithm, we use the notation n* := max{1,n} for any

positive integer n € N.

UCRL2 and UCRL share a similar structure. Both algorithms proceed through episodes.
At the beginning of each episode, a stationary policy is computed by taking into consider-
ation the past observations. The policy computed also takes into account the uncertainty
of observed data by constructing a bounded-parameter MDP M}, (similar to the bounded-
parameter of UCRL without the constraint on ergodicity). This policy is executed until the
end of the episode. A new episode then starts and the policy is updated based on the new
observations gathered during the last episode. This procedure is repeated until the desired

time horizon is reached.

When the MDP is communicating but not ergodic, switching stationary policies too often
can cause a large —even linear— regret as shown by Ortner (2010, Example 1). To avoid too
many non-stationarities in the policy executed by the algorithm, the episodes are designed
to have a length that grows ezponentially with time. This way, the number of episodes (i.e.,
the number of policy switches) is at most logarithmic in time causing only a minor increase
in the regret. More precisely, an episode ends when the number of visit in a state-action pair

has doubled since the end of the previous episode.

Given the bounded parameter MDP M, UCRL2 executes a policy 7 which is an approx-

imate solution to the following optimization problem:

max sup gy ¢ = Sup {max g}\r/[,} = sup gy (2.34)
TSP | MreM;, M’eM,, (m€lSP M'eM;,
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If M € My, (with high probability), the solution of (2.34) is an upper-bound to ¢g* and so
Tk is (nearly) gain-optimistic (like in UCRL). Since we do not restrict My, to ergodic MDPs
(like in UCRL), the associated optimal gain might not be state-independent and so the gains
of two different MDPs might not always be comparable!’. One might wonder whether (2.34)
is well-posed and admits maximizer (M, 7)) € My X ISP, Using the mapping between
bounded-parameters MDPs and extended MDPs (Sec. 2.1.5), it is possible to interpret My
as an MDP. Eq. 2.16 can then be rewrtitten'! as finding the optimal policy of My:

max gy = g, (2.35)

Since M € M, (with high probability) and M is communicating, so is M. Moreover, the
confidence sets B}’;‘ (s,a) (2.27) are polytopes and we already explained in Sec. 2.1.5 that in
this case, the action space can be restricted to a finite set. We can thus apply the tools of
Sec. 2.1.3: we know that a maximizer of (2.35) always exists (Prop. 2.4) and we can compute
an approximate solution using value iteration'? (Alg. 3). Since value iteration is run with
the extended optimal Bellman operator £, of My, we call the algorithm “extended” value
iteration (EVI). The accuracy ¢ and extended greedy operator Gy given as input to EVI are
respectively rmax/v/tx and

Vs € S,Yv e R®, Guu(s) € arg max{ max 7+ max pTU} ) (2.36)
a€As reBk(s,a) pEBE(s,a)

Jaksch et al. (2010, Section 3.1.3) showed that assumption 2 of Prop. 2.6 hold so that EVI
converges and g approximates gj, with an rmax //tr-accuracy. Enumerating the vertices
of the sets Bg(s,a) is not the most computationally efficient method to implement EVI.
The maximization of pTv under the constraint p € B;f(s,a) can be expressed as a linear
programming (LP) problem (which can be solved efficiently using a generic solver). Strehl
and Littman (2008a) provide a better algorithm that exploits the specific structure of this
LP (see also Jaksch et al., 2010, Figure 2). It runs in O(S) once the vector v has been sorted
in descending order. The sorting operation requires O(S In (S)) operations but needs only be

done once for all (s,a).

UCRL2 enjoys the following regret guarantees.

Proposition 2.13 (Theorem 4 of Jaksch et al. (2010))

For any communicating MDP, there exists a constant C (M) such that with probability at
least 1 — 46, it holds that for all initial state distributions puy € Ag and for all time horizons
T>1:

9 Fmax D292 A

E[A(M, UCRL2, u, T)] < 34° - =————1n(T) + C(M). (2.37)
g

101f the MDPs M; and M, both belong to M} but have non constant optimal gains gar, and gjy,, it is
possible that gis, (s) > gis, (s) while ghy, (8") < gar, (s") for some s" # s.

1Eq. 2.34 and Eq. 2.35 are equivalent.

12In Alg. 4, we refer to value iteration applied to an extended Bellman operaor as “extended” value iteration
(EVI) even though this is just a specific instance of value iteration.
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The exact expression of the constant C(M) can be found in (Jaksch et al., 2010). It
depends on some form of worst-case mizing time of M (different than 757). The logarithmic
term in 2.37 is tighter than (2.33) and holds for the broader class of communicating MDPs
(rather than just ergodic MDPs). The bound is still difficult to compare with Prop. 2.10
but we can easily compare it with the worst-case upper-bound ZTmaX(SP§Z:D)+1)QSA of Ok et al.

(2018, Section 4.1) mentioned earlier. As shown by Bartlett and Tewari (2009, Theorem 4)

(more details will be given in Sec. 3.3 of Chap. 3), the range of the bias function is at most

TmaxD 1.€., sp (h*) < rmaxD, and the equality holds in some MDPs. Moreover, the gap in

gain J, is always smaller than i, as shown in the following lemma.

Lemma 2.1

For any ergodic MDP, 64 < Omin.

Proof. If II* = IISP then dg = Omin = 0. Otherwise, we denote by (s7,a”) € S x A the
state-action pair achieving the minimum in (2.21) i.e., such that dpmin = 0(s™,a™). We define
the action space A~ such that Ay = A for all s # s~ and A_ = {a € A,- : 0(s7,a) > 0}.
A~ contains all actions except optimal actions in state s=. Let M~ := (S, A7, r,p) be the
MDP defined on the action space A~, with L™ and g~ the corresponding optimal Bellman
operator and optimal gain (the gain is state-independent since both M and M~ are ergodic).

By construction, g* > ¢~ and based on (2.18) we can write
Omin = g" — L™h"(s7) + h*(s”) = g" —min {L™h*(s) — h*(s)}
Theorem 8.5.5. of Puterman (1994) implies that
g = min {Lh*(s) — 1(5)}

and so necessarily dmin > ¢* — g~ = ¢* —g* where 7~ € IISP is any gain-optimal stationary
deterministic policy of M ™. «~ is also a valid policy in the original MDP M with g™ < g*.
As a result, max, cpso\r- {9" } > g™ which implies that dmin > dg. [ |

Finally, Multi-Armed Bandit problems are specific instances of ergodic MDPs (with a single

state) satisfying 0, = Omin. In conclusion, the bound of Prop. 2.13 is always worse than
2rmax (sp(h*)+1)2

6min

S. This suggests that asymptotically, UCRL2 is at least S-loose in terms of regret, which

SA . . .
but in the worst case the two expressions are comparable up to a factor

is not so bad. The regret analysis of OAP is very different from the proof of Prop. 2.13.
We conjecture that the proofs techniques of Burnetas and Katehakis (1997) can probably be
applied to the analysis of UCRL2 and lead to an asymptotic regret bound almost matching
the lower bound of Prop. 2.10 (probably up to a factor S).

In addition to the logarithmic regret bound of Prop. 2.13, Jaksch et al. (2010) also proved

a minimazx bound for UCRL2.
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Proposition 2.14 (Theorem 2 of Jaksch et al. (2010))

For any communicating MDP, with probability at least 1 — &, it holds that for all initial
state distributions pu1 € Ag and for all time horizons T > 1:

A(M, UCRL2, iy, T) < 34- DS/ AT In (?) (2.38)

Compared to the minimax lower-bound of Prop. 2.12, the bound of Prop. 2.14 is looser by
a factor v DS (ignoring logarithmic terms).

Extensions. Bartlett and Tewari (2009) tried to extend UCRL?2 to the case where an upper-
bound ¢ > sp(h*) on the optimal bias span is known. The regret bound then scales with
¢ instead of D. This will be the focus of Chap. 5. Filippi et al. (2010) derived a variant
of UCRL2 (called KL-UCRL) that uses concentration inequalities on the Kullback-Leibler
divergence (instead of Hoeffding/Weissman inequality) to construct confidence bounds. The
regret upper-bound they prove is the same as in Prop. 2.14. Despite proving the same
bound, the authors empirically observe the superiority of KL-UCRL over UCRL2. They
provide some intuition to explain their results and Talebi and Maillard (2018b) later showed
that the regret analysis can be refined. Talebi and Maillard (2018b) indeed showed that the
regret of KL-UCRL scales as O (, /S0 Vs + D\/T) (ignoring logarithmic terms) where
Vil
Ve < sp(h*) < rmax D, the bound is smaller than in Prop. 2.14. Nevertheless, the bound
only holds for ergodic MDPs and the logarithmic terms hidden in the O-notation can be very
big. More recently, Ortner (2018) derived an algorithm called OSP (Optimistic Sample Path)

which leverages Markov Chain concentration inequalities. When run on an unknown ergodic

= Vxp(|s,) (R*(X)) is the variance of the optimal bias w.r.t. the next state. Since

MDP with mixing time tpyix (the definition differ from 7yax), the regret can be bounded
(w.h.p.) as O(VtmixSAT In (T/5)). In some specific MDPs, ¢,y is comparable to D so that
OSP achieves the minimax lower-bound (up to logarithmic factors).'® However, OSP requires
explicitly enumerating all A° policies which makes it intractable. Finally, the work of Tossou
et al. (2019) (still unpublished) suggests that it is possible to design a tractable algorithm
(variant of UCRL2) called UCRL-V with optimal minimax regret guarantees.

B 0ne example where tmix is of the same order as D is actually the family of MDPs used by Jaksch et al.
(2010) to prove Prop. 2.12.
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3 Improved exploration-exploitation
with Bernstein bounds

In the previous chapter, we gave a high-level overview of UCRL2 (Jaksch et al., 2010) and
compared its regret performance (Prop. 2.13 and 2.14) to existing lower-bounds (Prop. 2.10
and 2.12). In this chapter, we introduce several modifications to the algorithm and improve
the minimax regret guarantees of Prop. 2.14. Our proposed algorithm, UCRL2-BERNSTEIN
(UCRLB for short), leverages empirical Bernstein inequality as well as recent contributions
of the literature (including from other settings e.g., infinite horizon discounted and finite
horizon) to make a significant step towards closing the gap between minimax regret upper
and lower-bounds. For any communicating MDP with S states, A actions, I' < S possible next
states and diameter D, we show that UCRLB suffers at most O (\/W) regret (ignoring
logarithmic terms). This saves a factor \/DS/T compared to the regret bound of UCRL2.
Since in many MDPs I" = O(1) < S, this bound is also almost matching the minimax lower-
bound of Prop. 2.12. Although many ideas presented in this chapter are not new, we make
several important contributions to the regret analysis of this type of algorithms, and provide
new insights on existing proofs techniques. For example, we provide a more generic and
insightful proof of gain-optimism relying on the properties of the extended Bellman operator
rather than the extended MDP. We also refine the regret analysis by introducing a new
quantity called “travel-budget” of an MDP, that replaces the diameter in the bound.

Another objective of this chapter is to present a unified framework for the analysis of
UCRL2-like algoritms. All the algorithms presented in the next chapters of this thesis will be
variants of UCRLB and most of the analysis will be unchanged. To minimize redundancies
and improve clarity, this is the only chapter where we will provide a fully detailed analysis. In
subsequent chapters, we will refer to this chapter for the parts of the analysis that are similar,
and only focus on what significantly differs. In order to keep the structure of the regret proofs
identical across chapters, we consider a very general version of the algorithm, more than is
actually needed for the setting of this chapter. For example, we allow the optimal optimisitc
policy to be stochastic although a deterministic policy always exists. This will be useful in
Chap. 5. We will also apply the aperiodicity transformation in EVI even if this is not strictly

necessary with the extended MDP considered here.
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Chapter 3. Improved exploration-exploitation with Bernstein bounds

Most of the work presented in this chapter has not been published in any venue so far.

3.1 Upper Confidence Reinforcement Learning with Bern-
stein bounds

UCRL2 and UCRLB are very similar from an algorithmic point of view. The main difference
lies in the definition of the extended MDP. In the regret analysis (Sec. 3.4 and 3.5), we
will show that the modifications that we propose result in a much more sample efficient
algorithm. In this section, we start by giving an overview of the main features of UCRLB.
We also highlight and explain the main differences with UCRL2.

3.1.1 Detailed algorithm and notations

The detailed pseudo-code of UCRLB is reported in Alg. 5. In what follows, we give additional

explanations and we introduce several notations.

Time steps and visit counts. The time steps (occurences of a new state) are indexed by
T >t > 1. The state visited at time t is denoted s; while the action played at time t is denoted
a;. The episodes (corresponding to policy switches like in UCRL2, see Sec. 2.2.3) are indexed
by k, and 7 is the policy executed during episode k. In some specific applications (see for
example Chap. 5), it is too restrictive to constrain 7 to belong to the set of deterministic
policies IISP. For this reason, we allow 7, to be a stationary randomized policy (even though
in most cases this level of generality is not needed). At every time step t of episode k, a;
is sampled from the distribution 7y (+|s;). After action a; has been played, a reward ry is
earned and the next state sy;y1 is observed. For all £ > 1, we denote by t; the starting time
of episode k. The fisrt episode starts at t1 := 1. A new episode starts whenever the stopping
condition of the current episode is met i.e., whenever the number of visits in the state-action

pair (s, a;) has doubled during the episode. Formally, for all & > 1,

T=1 =1

t—1 tp—1
tgy1 := inf {T >t>t: Z 1{sr,ar = sy, a1} > max{l,Q Z 1{sr,a; = st,at}}}
(3.11)

t—1 te—1
= inf{T >t >t Z 1{sr,ar = s,a;} > max {1, Z 1{sr,ar = st,at}}}

T=ty, T=1

where inf{()} < T 4 1 by convention. Note that by construction, the stopping condition of
episode k is always met after at most ¢ steps. For all T > t > 1, we define the episode at
time t by

ki :=sup{k > 1: t >t} (3.12)
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3.1. Upper Confidence Reinforcement Learning with Bernstein bounds

Algorithm 5 UCRL-BERNSTEIN (UCRLB)

Input: Confidence 6 €]0, 1[, maximal reward rmax, set of states S, set of actions A
1: Set initial time ¢ := 1, observe initial state s; and initialize for all (s,a,s’) € S x A x S:
e counters Ni(s,a,s’) :=0 and Ny(s,a):=0,
e empirical averages p1(s'|s,a) := 0 and 71(s,a) := 0,
e sample variances 312)71(3’|s, a) ;=0 and 3371(5, a) = 0.
2: for episodes k = 1,2, ... do
3: Set the starting time of the episode tj := t and initialize for all (s,a,s’) € S x A x S:

episode counters vk (s,a,s’) := 0 and vg(s,a) := 0, and cumulative (squared) rewards
Ri(s,a) := 0 and Sk(s,a) := 0. > Initialization of episode k
4: For all (s,a,s’) € S x A x S, compute upper confidence bounds:
6SAN; (s,a)
sas’ 2 81237k(8/|87a) GSANI:F(S’ (I) + 61n ( 0 ) (3 1)
= n )
pk Nt (s,a) ) N (s,a)
6SAN2'(S,(1)
w .y Gop(s,a) | 6SAN, (s,a) N 67 max In ( 3 ) 52)
= n )
ok Nt (s,a) J N, (s,a)

5: Set My, :={S, A, r,pr} to be the extended MDP defined by the confidence intervals

pi(ss.a) € Bi(s.0.8) = [pu(/]s, ) — B35 pu(sls.a) + 555 | n[0.1] (33)

ri(s,a) € B (s,a) := {?k(s,a) — By% Tr(s,a) + f‘ﬂ N [0, "max) (3.4)

6: Compute policy 7 using extended value iteration (see Eq. 3.20 and Alg. 6):

(9K, hi, ) := EVI (EI;, Gk 7AT:X,O, 31) (3.5)
Sample action a; ~ mp(+|s¢). > Stochastic policies are allowed
8: while True do > Execute policy 7, until the end of episode k
9: Execute action a;, obtain reward r;, and observe next state sy11.
10: Increment episode counters:
Vi (St, at, St41) < Vk(Se,ap, Se41) + 1 and vg(se, ar) < vi(se, ar) + 1
11: Increment cumulative (squared) reward
Ry (st,ai) < Rp(sg,as) + ¢ and Si(ss,ar) < Sk(ss,az) + r?
12: if vi(se,ar) > N (e, ar) then > Stopping condition of episode k
13: Increment time ¢ <t + 1 and Break
14: else
15: Increment time ¢ <— ¢ 4+ 1 and sample action a; ~ mg(+|s¢).
16: end if
17: end while
18: Update counters, empirical averages and sample variances for all (s,a,s’) € Sx Ax S:

Niy1(s,a,8') := Ni(s,a,s) + vi(s,a,s") and Nii1(s,a) := Ni(s,a) + vi(s, a) (3.6)

. Ni(s,a) vi(s,a,s")
pk+1(8/|57 CL) = : pk’(s |87 (L) + (37)
N,;Erl(s,a) N]j_;_l(s?a)
. Ni(s,a) Ry(s,a)
Fren(s,a) = 05 gy g Felsa) (38)
Ni(s,a) Ny (s,0)
E;k“(s’]s,a) = Pr+1(8's,a) (1 — pr+1(s]s, a)) (3.9)

Sk(s,a) Ni(s,a)
N,;trl(s, a) N,;:_l(s, a

Gr(s,a) = )-@M@@+mw@»4mﬂuwf<mm

19: end for 51




Chapter 3. Improved exploration-exploitation with Bernstein bounds

UCRLB keeps track of the number of observations of the sequence (s,a,s’) € S x A x S
strictly before and during episode k (repectively Ni(s,a,s’) and vi(s,a,s’)):

tpe1—1 k—1
vi(s,a,s) Z 1{s; =s,at =a,s141 =} and Ni(s,a,s):= vi(s,a,s"). (3.13)
t=t, =1

UCRLB also keeps track of the number of visits in every state-action pair (s,a) € S x A
before and during episode k (repectively Nk (s,a) and vg(s,a)):

vi(s,a) == Z vi(s,a,8") and Ni(s,a) := Z Nyi(s,a,s") (3.14)
s'eS s'eS

In Alg. 5, vg(s,a,s") (resp. vi(s,a)) is incremented after every new visit in (s,a,s’) (resp.
(s,a)) while Ni(s,a,s’) (resp. Ng(s,a)) is updated at the end of every episode using the
recurrence relation Ngi1(s,a,s’) := Ni(s,a,s") + vi(s,a,s’) (resp. Nigy1(s,a) := Ni(s,a) +
vk(s,a)), with Ny(s,a,s’) := 0 by definition (resp. Ni(s,a) := 0). Finally, Ri(s,a) (resp.

Si(s,a)) denote the cumulative sum of rewards (resp. squared rewards):

tp41—1 tp—1
Ry (s,a) Z 1{st,ar = s,a}-r and Sk(s,a) Z 1{ss,a; = s,a}-r2.  (3.15)
t=tg

Episodes. The stopping condition of episodes implemented in UCRLB slightly differ from
the stopping condition used in UCRL2. In UCRL2, an episode k stops whenever the algorithm
is about to play an action a in a state s that already satisfies vx(s,a) = N,/ (s,a). Action a is
therefore never played and a new policy is computed instead. In UCRL2, for all state-action
pairs (s,a) € S x A, vg(s,a) < N (s,a) and vi(s,a) = N (s,a) holds true for at least
one (s,a). However, it is possible that the equality holds for several state-action pairs. In
UCRLB, an episode k stops as soon as the action a that has just been played (i.e., most
recently) e.g., in state s, satisfies vi(s,a) = N,j(s, a). Action a is therefore played and a new
policy is computed just after that. The reason we modified the doubling scheme of UCRL2
is only to simplify the theoretical analysis of the algorithm in the general case where the
policy 7 played at episode k may be stochastic. Our stopping condition avoids introducing
two actions at time t: the action that “could have been played” (if the episode had not been

ended) and the one which is actually played.

Confidence bounds and extended MDP. At the beginning of every episode k, UCRLB uses
the sample means py and Ty, as (unbiased) estimators of p and r respectively. These estimators
can be efficiently updated at the end of every episode using the usual update rule of the sample
mean (see Eq. 3.7 and 3.8). While UCRL2 relies on Hoeffding’s concentration inequality (HI)
(Boucheron et al., 2013, Chapter 2.6) and Weissman’s concentration inequality (Weissman
et al., 2003, Theorem 2.1) to derive the confidence intervals needed to define the extended
MDP My, (see Eq. 2.25 and 2.26), UCRLB leverages on empirical Bernstein’s concentration
inequality (EBI) (Audibert et al., 2007; Maurer and Pontil, 2009) to derive the confidence
bounds of Eq. 3.1 and 3.2 used in the definition of My. EBI is tighter than HI (at least for
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a sufficiently high number of observations). We recall both inequalities below.

Proposition 3.1 (Hoeffding inequality, Theorem 2.8 of Boucheron et al. (2013))

Let (Xi)i<i<n be a collection of independent random variables s.t. Vi €
{1,...,n}, P(X; € lai,bi]) = 1 and E[X;] = p;. Then with probability at least 1 — ¢ it

holds that
n 2
< J (b — ai)?In <-) (3.16)
=1 5

n

D (X — pa)

i=1

Do =

Proposition 3.2 (Empirical Bernstein inequality, Theorem 1 of Audibert et al. (2009))

Let (Xi)i<i<n be a collection of i.i.d. r.v. st. Vi € {1,..,n}, P(X; €[a,b]) = 1 and
E[X;] = u. Then with probability at least 1 — ¢ it holds that

zn:(Xi _ )l < \/QVn(X)nln (3/9) N 3(b — a)nln (3/5)

=1

9

2
wher V,(X) is the population variance': V/(X) := 1 5" (Xi —Llsw Xi) .

n £«i=1 n

For any state-action pair (s,a) € S x A, UCRLB uses EBI to bound |py(s'|s,a) — p(s']s, a)|
for all s w.h.p.. The fi-deviation ||px(:|s,a) — p(-|s,a)||, = Xyes [Pr(s'ls,a) — p(s']s,a)|
between the empirical and true transition probability is bounded (w.h.p.) by taking a union
bound over all s € & and summing. Instead, UCRL2 uses a variant of Hoeffding’s bound
derived by Weissman et al. (2003) that directly bounds the ¢;-deviation. The use of EBI
significantly improves the learning performances (see Sec. 3.4). Notice that Lattimore and
Hutter (2012); Dann and Brunskill (2015); Lattimore and Hutter (2014) already proposed
variants of UCRL2 that leverages on EBI. However, Lattimore and Hutter (2012, 2014)
introduced and analysed their algorithm in the discounted setting (when a discount factor
is given as input to the algorithm, see Sec. 2.1.3) while Dann and Brunskill (2015) focused
on the finite horizon setting (when an horizon H is given as input to the algorithm, see
Sec. 2.1.3). They both proved a bound on the sample complezity while we will analyse the
regret of UCRLB.

Extra multiplicative factors appear in the logarithmic terms of (3.1) and (3.2) compared to
the bound of Prop. 3.2. This is due to the use of union bounds (see Sec. 3.5 for more details).
In Alg. 5, the population variances of px(s'|s,a) and 7i(s,a) are denoted by 827,6(3’]3, a)
and 837 (8, a) respectively. The estimated transition probability pi(s’|s,a) correspond to the

sample mean of i.i.d. Bernoulli r.v. with mean p(s’|s, a) and therefore the population variance

2
'Unlike the sample variance Vi (X) = — Z?:l (Xi - % Z?:l Xi) , the population variance V,(X) is a

n—1
biased estimator of the true variance. The two estimators are equal up to a multiplicative factor n/(n — 1)
called “Bessel’s correction™ V(X)) := 2=V, (X).

n—1
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~

can be easily computed as & k;( §|s,a) = pr(s']s,a) (1 — pr(s'ls,a)) (3.9). The population

variance of the reward can be computed recursively at the end of every episode (3.10):

33,]4}—}—1 (57 CL) =

(s o (Z Si((s CL) (Frt1(s,a))?

_ Sk(s,a) Ni(s,a) /. R )
N];:_l( a) + Nlj+1<3a ) ( zk(S a) + (T'k(S,a))2> — (Frg(s,0))?.

The extended MDP My, is defined by the compact sets B¥(s,a) (3.4) and

PN
Nk—l—l

B;,f(s,a) = {p €As: p(s) e B]],f(s,a,s’), vs' e S} (3.17)

where Bg(s, a,s') is defined in Eq. 3.3. UCRLB uses the known bound ry,x on the reward
in order to construct the confidence intervals B¥(s,a)? (Eq. 3.2 and 3.4).

Like UCRL2, UCRLB relies on extended value iteration (EVI) to find such an approximate

solution (3.5). More details are given in the next section.

3.1.2 Extended value iteration

Like in UCRL2 (Sec. 2.2.3), the purpose of EVI is to find an approximate optimal policy
of the extended MDP M,,.? EVI is not the only algorithm able to solve this problem. For
example, Lattimore and Szepesvari (2018, Section 37.3.1) describe how to solve this problem
using the ellipsoid method. In this section (as well as in the whole thesis), we will focus
exclusively on EVI. We recall that EVI is an intance of value iteration (Alg. 3) with an

extended optimal Bellman operator £ given as input, namely

Yo e RS, Vs €S, Lyv(s):= Iax {Terg&ia){r} + Erg]?(x {pT ’U}} (3.18)
The inner optimization problem max,, B (s,a) {p™v} is a linear programming (LP) problem
since p — pTv is linear and B;,f(s, a) is only defined by linear constraints on p. It is possible
to use a generic solver to find the solution of this problem. However, given that we need to
solve SA different LP (one for every state-action pair) with the same objective function and
with very simple constraints (the sets B{j (s,a,s’) are real intervals), it is computationally
more efficient to first sort the vector v and then use the LProBa algorithm described in
Sec. 3.1.3 below. If u := SorT(v) is the vector v sorted in descending order, then (3.18) can

be re-written:

Lrv(s) := max { max {r}+ LPROBA( (B;;(s, a, S,))S’GS )} . (3.19)

a€As | r€By(s,a)

2If UCRLB is given as input an (s, a)-dependent range [min (s, @), "max (8, a)], it is straighforward to adapt
Eqg. 3.2 and 3.4 in order to take advantage of this additional knowledge.

31t is sufficient to find a Tmax/tx-approximation of optimization problem (2.35) in order to derive regret
guarantees, see Sec.chap:ucrlb:sec:regret.proof.
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Extended optimality equation. Since B;f(s, a) is a polytope, L can be interpreted as an
optimal Bellman operator with finitely many actions (see Sec. 2.1.5). Then, a sufficient con-
dition to apply Prop. 2.4 (guaranteeing existence of a solution to the Bellman optimality
equation) is to show that My, is weakly-communicating. Since the true MDP M is communi-
cating by assumption, if M € My, (which holds with high probability as will be shown later,

see Prop. 3.1), then My, is communicating as well (and therfeore weakly-communicating).

Even when M & My, Mj is still communicating because for all 3-tuple (s,a,s’), there
exists q(-|s,a) € B;,f(s,a) such that ¢(s'|s,a) > 0. Indeed, as will be clear in the next
section, such ¢(-|s,a) can always be obtained by running LPrROBA on ey (the s’-th cartesian
basis vector). This only works because B]];(s,a,s’ ) are real intervals. However, in some
problems it is possible that some transitions p(s'[s,a) of the true MDP are perfectly known
beforehand. To remove the burden of learning these specific transitions (s, a, s’), we would
like to restrict the corresponding intervals By(s, a,s’) to a singleton, potentially making My,
not communicating. In this case, it is preferable to expand the singletons by +1/t, thus
ensuring that My, is communicating (no matter whether M € My, or not), while forbidding

values too distant from p(s'|s, a).

Convergence of EVI. Jaksch et al. (2010, Section 3.1.3) showed that assumption 2 of
Prop. 2.6 (guaranteeing convergence of value iteration) always holds for UCRL2 (aperiod-
icity of the transition matrices encountered in EVI). This assumption also holds with the
confidence sets Bg(s, a) defined in Eq. 3.17. As we just mentioned, we might be tempted to
reduce B;;(s, a) to singletons, potentially violating assumption 2 of Prop. 2.6. To overcome
this issue, we apply the aperiodicity transformation presented in Sec. 2.2, with aperiodicity
coeflicient « arbitrarily set to 0.9 The corresponding aperiodic optimal Bellman operator /Jf;
can be computed using the expression below.

k . . k !
Lavls) = ggﬁl}i {re%liia) {r} +a-LProsa (u, (Bp (5,0,5 ))s’eS

)} +(1-a) v(s). (3.20)
Similarly, we denote the aperiodic extended MDP M¥. Assumption 1 of Prop. 2.6 holds and
so EVI converges. Prop. 2.7 also holds i.e.,*

lgk — g% < er/2 = rzn;‘:( (where g, is the optimal gain of My) (3.21)

and [ CEhy — hy — grelloo < ek = T‘;:X. (3.22)

Greedy policy. It is very likely that several greedy policy exist, especially at the beginning
of the learning process when the uncertainty on p and r is high (so that many actions are
equally optimistically optimal). When there is ambiguity on which action to play (there
can be several optimal policies), UCRL2 break ties arbitrarily by playing only one of the
actions (see Eq. 2.36). Thus the policy is always deterministic. The choice of the greedy
policy that will be executed during the episode does not seem to impact the regret bound.

Nevertheless, since all policies are in some sense equivalent, it is reasonable to play them

4We recall that the optimal gains of M% and M are equal (denoted by g ), see Sec. 2.2.
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Algorithm 6 Greedy operator used in UCRLB (GF)

Input: Vector v € R, confidence sets B,(s,a) and By(s,a,s") for all (s,a,s’), aperiodicity
coefficient « €]0, 1]
Output: Policy 7 € ISR

1: for s € S do > This loop can be parallelized to speed up running time
2: At (s) :== Arg max { max {r}+a- LPROBA(um (Bp(s,a,5")) e )}
aCAs r€By(s,a)

3: for a € A do

4: if a € A™(s) then

5: Set w(a|s) := ‘A:(s)‘ > All greedy actions are played with equal probability
6: else

7: Set m(als) :=0

8: end if

9: end for
10: end for

with equal probability in order to have a more balanced exploration. The implementation of
the greedy operator G given as input to EVI (Eq. 3.5) is reported in Alg. 6. Our goal in
considering randomized policies is not just to artificially complexify the analysis but also to
generalize UCRL2’s analysis. This will be needed in Chap. 5 for example. It could also be

useful for future work where no deterministic policy is optimal.

3.1.3 Linear Programming for extended value iteration

The detailed pseudo-code of LPROBA is reported in Alg. 7. Given an input vector v € R®
and S intervals ([a;, b;)) satisfying 1 > b; > a; > 0 and Y25, a; <1 < 2%, b;, LPROBA
solves the following LP:

1<i<S

max {pTv}
. Siiipi=1 (3.23)
S.T.
a; >p; > b,Vi€S

The vector v is assumed to be sorted in decreasing order i.e., v; > v > --- > vg, which
simplifies the resolution. The assumptions that Ziszl a; <1< qu:l b and 1 > b; > a; >0
ensure that the feasible region defined by the constraints is non-empty. These assumptions
are always met in UCRLB because p(:|s,a) € Bfi(s,a) by construction, 0 < p(s'|s,a) < 1
for all &' € S, and Y cs5p(s'|s,a) = 1. Alg. 7 was first introduced by Dann and Brunskill
(2015) (the validity of the algorithm is proved in their Appendix A). The idea is to initialize
p; to its minimum value a; for all ¢ € {1,...,S} and then allocate the remaining probability
mass 1 — Ele a; to p1 which corresponds to the maximal value v;. If there is still some
probability mass left, it is assigned to ps (which corresponds to the second maximal value vs)
and so on in decreasing order until ZZ‘S:1 p; = 1 (LPROBA is therefore an instance of “greedy”

procedure).

56



3.2. Gain-optimism in UCRLB

Algorithm 7 Linear Programming for probability maximization (LPROBA)

Input: A vector v € R sorted in decreasing order v(1) > v(2) > --- > v(S), S closed
intervals ([a;, b;]) st.1>0b; >a; >0 and 215:1 a; <1< ZZS:l b;

Output: A scalar w

. Set wg = Zle a; X v(i), Ag:=1— ZZ»SZI a; and i :=1 > Initialization

while A;_1 > 0 do > Main loop
Set (51 ‘= min {Ai—la bz — ai}
Update w; + wij—1 + 6; x v(i) > Assign allowed weights to highest values of v first
Update A; «+ A;—1 — 0;
Increment 7 <7+ 1

end while

. Set w = w;_1

1<4i<S

IS RN A

Computational complexity. LPRroBA terminates after at most S iterations. Therefore, the
worst-case complexity of a single iteration of EVI is O(S?A+ S In(S)) where the S In(S) term
appears because of the sorting of v, (the input vector of Alg. 7 should be sorted). Fotunately,
the loop over states (line 9 of Alg. 3) can be parallelized, reducing the time complexity to
O(SA+ S1In(S)). This is of the same order of magnitude as for value iteration (with discrete
instead of compact action spaces) which has a computational complexity of order O(S2A) per
iteration and time complexity O(SA) when parallelized. Value iteration usually converges

exponentially fast (Schweitzer and Federgruen, 1979) and so EVI is computationally efficient.

3.2 Gain-optimism in UCRLB

UCRLB implements the OFU principle. More precisely, it is gain-optimistic meaning that
the optimal gain gj, of the extended MDP My, is (w.h.p.) bigger than or equal to the optimal
gain g* of the true MDP (at every episode k). As briefly hinted in Sec. 2.2.3, this property is
essential to guarantee a good exploration-exploitation trade-off , and more precisely to derive
near-optimal minimazx regret bounds (see Sec. 3.5). In this section we formally prove that

UCRLB is gain-optimistic.

3.2.1 Anew argument: optimistic Bellman operator

The way that optimism is proved in UCRL2 (Jaksch et al., 2010) is by showing that the
true MDP M belongs to My, w.h.p., which automatically implies that g; > ¢* w.h.p. (see
Sec. 2.1.5 and the equivalence between bounded parameter MDP and extended MDP). This
all-or-none argument seems very restrictive. Indeed, to bound the regret it is sufficient to
show that g > g — n provided 7 is sufficiently small (the impact on the regret is not bigger
than 7 - T'). Yet, a small perturbation in the definition of the extended MDP may cause the
true MDP to be excluded and the argument of Jaksch et al. (2010) no longer applies. This
would suggest that the regret can no longer be bounded which is rather unexpected. The
difference g; — g* should intuitively vary continuously as the extended MDP changes. In this

section, we present a new proof of optimism that only relies on the properties of the optimal
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Bellman operator of the extended MDP. We no longer require that the true MDP belongs to
the extended MDP although it is a sufficient condition to apply our proof (our proof is there-
fore more general). We operate a paradigm shift in the way to prove (near) gain-optimism and
to interpret the extended MDP: we show that what matters is not the inclusion of the true
MDP in the corresponding bounded parameter MDP, but only the relationship between the
Bellman operator of the extended MDP and the one of the true MDP. One might argue that
this change of perspective does not result in a much different implementation since in the end,
the policy executed is always the optimal policy of an extended MDP that will most likely
contain the true MDP. But in some situations (see for example Chap. 5), our new argument
allows to restrict the extended MDP (smaller confidence intervals that do not necessarily
include the true parameters of the MDP). The optimism is therefore tighter which results in

an improvement of the performance of the algorithm.

Our proof relies on the following very simple theorem proved by Puterman (1994):

Proposition 3.3 (Theorem 8.4.1 of Puterman (1994)°)
Let L be the optimal Bellman operator of an MDP with S states and assume that the

optimal gain g* of this MDP is state-independent. If there exists a scalar g and a vector
h € RS such that Lh > h + ge (where e = (1,...,1)T is the S-dimensional vector of all
ones), then g* > g.

Let (g*, h*) be a solution of the Bellman optimality equation of the true MDP i.e., Lh* =
h* 4+ g*e where L is the optimal Bellman operator of the true MDP. Using Prop. 3.3, if we can
show that L h* > h* + g*e then g; > g*. Since h* + g*e = Lh*, this is equivalent to showing
that Lih* > Lh*. In other words, in order to prove gain-optimism we only need to show that
the optimal Bellman operator of the extended MDP My, is optimistic w.r.t. to the optimal
Bellman operator of the true MDP, when applied to one optimal bias vector. Trivially, if the
true MDP belongs to the extended MDP then this condition is satisfied. More generally, if
there exists n > 0 such that Lyh* > Lh* — ne = h* + (¢* — n)e, then by applying Prop. 3.3
we have that g; > g* — .

We call the statement of Lem. 3.3 the “dominance property” of operator L. As we just
showed, it plays a key role in ensuring gain-optimism. It is also a much more “refined”
argument than the one usually used (“inclusion” argument: M € My). In this thesis we will

make an extensive use of this property and prove similar results for other operators than L.

3.2.2 Proof of optimism with concentration inequalities

We now prove that M € My w.h.p. (Thm. 3.1) which implies that £ixh* > Lh* w.h.p.
Thm. 3.1 is similar to Lemma 17 proved by Jaksch et al. (2010) except that we bound the

®The theorem proved by Puterman (1994) is more general but we only need this simplified version for our

purpose.
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probability of event (Jy~,{M ¢ M} while they only bound the probability of {M ¢ My} by
a term that decreases with f;. They then take a union bound in the regret proof. Thm. 3.1
will simplify the regret analysis and our proof allows to use confidence bounds that only grows
logarithmically with Ny instead of t; (Eq. 3.1 and 3.2). As a consequence, the confidence
bounds associated to (s,a) do not increase over time when (s,a) is not visited (they remain
constant) and UCRLB will not visit all (s, a) infinitely often. This is not surprising since we
want to show a uniform high probability regret bound as opposed to a uniform expected regret
bound. A uniform expected regret bound requires to visit all state-action pairs infinitely often
and so to have a term ¢ in the logarithm of the confidence bounds (3.1) and (3.2). For a

more thorough discussion on this, see for example Dann et al. (2017, Section 4.1).

[Theorem 3.1 \

The probability that there exists k > 1 s.t. the true MDP M does not belong to the extended
MDP My, defined by Eq. 3.3 and 3.4 is at most g, that is

P(3k>1, st. M & My) <

03\07

. J

Proof. We want to bound the probability of event E := |2} {M & My}. As explained by
Lattimore and Szepesvari (2018, Section 4.4), when (s, a) is visited for the n-th times, the
reward that we observe is the n-th element of an infinite sequence of i.i.d. r.v. lying in [0, rpax]
with expected value r(s,a). Similarly, the next state that we observe is the n-th element of
an infinite sequence of i.i.d. r.v. lying in § with probability density function (pdf) p(:|s,a). In
Alg. 5, we defined the sample means py and 7, (Eq. 3.7 and 3.8), and the confidence intervals
B{; and BY (Eq. 3.3 and 3.4) as depending on k. Actually, this quantities depends only on the
first Ni(s,a) elements of the infinite i.i.d. sequences that we just mentioned. For the rest of
the proof, we will therefore slightly change our notations and denote by p,(s'|s,a), 7.(s, a),
Bp(s'ls,a) and B}(s,a) the sample means and confidence intervals after the first n visits in
(s,a). Thus, the r.v. that we denoted by py in Alg. 5 actually corresponds to py;, (sq) With
our new notation (and similarly for 7, B;f and BF). This change of notation will make the

proof easier.

M ¢ My, means that there exists k > 1 s.t. either p(s'|s,a) & B;])Vk(s’a)(s,a,s’) or r(s,a) &
Bﬁv’“(s’a)(s, a) for at least one (s,a,s’) € S x Ax S. This means that there exists at least one
value n > 0 s.t. either p(s'|s,a) € B} (s, a,s") or r(s,a) € B)'(s,a). As a consequence we have

the following inclusion

ECUU{rsa ¢B"sa}UU{ s'|s,a) §ZB(sas)} (3.24)

s,a n=0

Using Boole’s inequality we thus have:

) < Z Z ( (s,a) & BJ'(s,a) +ZIF’( s'|s,a) & B (s,a, s’))) (3.25)

s,a n=0 s’
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Let’s fix a 3-tuple (s,a,s’) € S x A x S and define for all n > 0

i o [2I0(3082A()2/8) | 3In (3082A(n+)2/0)

€pn = Opn(s ‘Saa)\/ p— + gt (3.26)
21 A(nt)? max | A(nt)?

i 8”’”(S’a)\/ n(303n+(n L) 4 S n(?’ffﬁ ) /9) (3.27)

where 7, ,(s'|s,a) and &,,(s,a) denote the population variances obtained with the first n

samples. It is immediate to verify that eff,f/ < ﬁ;ﬁf, and €9, < (9, a.s. (see Eq. 3.1 and 3.2

with N (s, a) replaced by n). Using Prop. 3.2 we have that for all n > 1:

/ ~ (] sas’ / ~ (] sas’
P (!p(s |s,a) — pn(s']s,a)] > B)% ) <P (!p(s |s,a) —Pn(s']s,a)| = 5y ) < Tomzgza (328
)
P (\r(s,a) — Tn(s,a)| > ﬁ%) <P (]r(s,a) — Tn(s,a)| > effﬁl) < 1025 A (3.29)

Note that when n = 0 (i.e., when there hasn’t been any observation of (s,a)), €, > 1
=0

and €% > rpax so P (\p(s’\s,a) —po(s'|s,a)| > ef)f”(f') =P (\r(s,a) —To(s,a)| > €5

definition. Since in addition (also by definition)
By(s,a,5') C [u(s']s,a) = B35, Bu(s'|s,a) + B3| (see Bq. 3.3)
and
B (s,a) C [Fu(s,a) — Bi%, Tk(s,a) + 3% (see Eq. 3.4)
we conclude that for all n > 1

0

. ) n
P (pls'ls.) ¢ B(5,0,)) < [y and Plr(s.0) ¢ Bl(s.0) < 500

and these probabilities are equal to 0 if n = 0. Plugging these inequalities into Eq. (3.25) we

obtain:
400 2
0 0 2§ 6
PEAT>1,3k>1st.M < _ < ¢
Grz13k21st ng)_;<O+T;<1On2SA+;1On2SQA>> 60 3
which concludes the proof. |

3.3 Bounding the optimistic bias of UCRLB: diameter
and refinements

At every episode k > 1, EVI returns both a policy 7, a gain g and a bias vector hg. We
refer to g as the (near) optimistic gain and hy as the (near) optimistic bias vector. Note
that the optimistic gain gy, is indeed (near) optimistic i.e., satisfies g > g; —ex/2 > g* — e /2
(by combining Eq. 3.21 with the results of Sec. 3.2), while the optimistic bias vector hy does
not necessarily satisfy hy > h*.% Actually, hy, is defined up to a constant shift. Nevertheless,

6(g*,h*) is a solution to the Bellman optimality equation of the true MDP M.
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we will use the terminology “optimistic bias” to refer to hg.

We will see in Sec. 3.5 that the shape of the optimistic bias hy has a substantial impact

on the regret analysis. In this section we focus on bounding the range of hj i.e., bounding
sp (h).

3.3.1 Diameter

In this section we bound sp (hy) using the concept of diameter of an MDP (Def. 2.6). We
start by recalling an important result proved by Bartlett and Tewari (2009):

Proposition 3.4 (Theorem 4 of Bartlett and Tewari (2009))

Let M be a communicating MDP with non-negative rewards and (g*,h*) a solution of
the Bellman optimality equation i.e., Lh* = h* + g*e. For any states s and s' and any

stationary policy ™ € IIS®, we have:
h*(s') — h*(s) < g* - E™[r(s") — 1]s1 = 5]

where 7(s') :=1inf {t > 1: s, = &'} is the first hitting time of s'.

As a direct consequence of Prop. 3.4, we have the following corollary:

Corollary 3.1

Under the same assumptions as Prop. 3.4, the range of h* can be bounded as sp (h*) < g*D
where D is the diameter of M.

Proof. By definition
sp (k") := max{h*(s)} — min{h*(s)} = max{h*(s') — h*(s)} < g" - maxE"[7(s') — 1|s]
seS seS s,s’ 8,8’
where the last inequality is a direct consequence of Prop. 3.4 and the fact that ¢g* > 0. [

Let’s first assume that EVI computes an exact solution (g, hj) of the Bellman optimality
equation £Eh = h} + g;. According to Cor. 3.1 we have sp (h}) < gi - D¥ (where DF is the
diameter of MZ%). We now need to relate the parameters of the extended MDP g} and D¥
with the parameters of the true MDP.

Bounding g;. The optimal gain gj is always smaller than ryax by definition but can be as
big as rmax. For example at the beginning of the learning process, the uncertainty is mazximal
in all state-action pairs and so all optimistic rewards are set to rmax implying g; = rmax. But
even after a rather long exploration phase, it is sufficient that one state-action pair is poorly
visited to have gj = rmax. This is because the gain is a global quantity of the MDP (as opposed

to the local rewards). As long as at least one state-action pair (s, a) is poorly visited, UCRLB
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will optimistically set the reward ry(s,a) <= rmax and transition py(s|s,a) < 1 causing gj, to
be maximal (if one policy of a communicating MDP loops on a single state with reward 7pax,
then the optimal gain is ryax independently of the rest of the MDP as shown in Theorem 8.3.2
of Puterman (1994)). Since in general we cannot control how UCRLB ezplores the MDP, the

tightest upper-bound that we can derive for gj, is rmax.

Bounding Dj. Jaksch et al. (2010, Section 4.3.1) showed that the diameter Dy of the
extended MDP constructed by UCRL2 at every episode k > 1 is smaller than or equal to
the diameter of the true MDP D. Their proof relies on the same argument used to prove
optimism (inclusion argument): since M € M;j w.h.p., the shortest path to go from any
state to any other state is always shorter in the extended MDP and so Dy, < D. We can use
the same argument in our case to show that under the same event as in Thm. 3.1, Dy < D
(where Dy is the diameter of My). However, as already argued in Sec. 3.2.1, this “inclusion”
argument is rather restrictive and “non-smooth”. Proving a more general result helps provide
better intuitions and opens the way for extensions. Similarly to what we did in Sec. 3.2,
we generalize the argument of Jaksch et al. (2010) by showing that it is sufficient to analyze
the relationship between the Bellman operator of the extended MDP M, and the true MDP
M to connect Dy with D. We no longer require that M € M. The following proposition
is another declination of the dominance property (analogue to Prop. 3.3) in the context of

(generalized) stochastic shortest path problems (see Sec. 2.1.4).

Proposition 3.5 (Theorem 7.3.2. of Puterman (1994))
Let M = (S, A,r,p) be a communicating MDP (finite or compact A) with negative re-

wards. For any state s € S, consider the Bellman shortest path operator L,.,s with
mazximal non-positive fived point h,, (see Prop. 2.8). If there exists h € RS such that
h <0 and Lysh > h then hY, > h.

Let’s consider M’ = {S,A,r’,p} the MDP with identical transition probabilities p than
the true MDP M and rewards 7’ equal to —1 everywhere (for all state and actions). For
all s € S, denote by L., the Bellman shortest path operator of M’ and h*, its fixed point
(Prop. 3.5). By Prop. 2.8, —h*,(s) := min, sz E™[7(s")[s1 = s] — 1 for all 5,5 € S (see
Eq. 2.13), and so by definition D := max,cs{||h’,4]|cc}. Let’s denote by LF,  the analogue
of L,,s for the extended MDP M. (identical to M}, with all rewards replaced by —1), and
by h'ﬁm its maximal non-positive fixed-point. Under the high probability event of Thm. 3.1,
Lk hr > Loht,, = ht,, and so by Prop. 3.5, hE, . > h*. . (h',, < 0 by definiton). Tt
follows that Dy < D.

As in the case of gain-optimism (Sec. 3.2), we see that in order to show that Dy < D, it is
sufficient to prove that £F, h*, . > L. sh?,, for all s € S (optimism of the Bellman operator
on a specific vector). More generally, let’s assume that there exists 1 > 1 > 0 such that
Lk hr > Loghl,, — nejs (where e, is the S-dimensional vector of all ones, except the s-th
coordinate which is zero). Let’s define £ the analogue of £F,, with all rewards equal to

—1 + 7 instead of —1, and h* the corresponding maximal non-positive fixed point. It is
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immediate from the definition of the operators that £F, h* & > L. ,sh*,, — ne|s is equivalent
to LERY, . > Lo,sh?,,. According to Prop. 3.5, we therefore have h*1 > h* .. Since the
rewards associated to L1 are the same for all policies and they only differ from the rewards
of LF,, by a multiplicative factor (1 — ), it is immediate to see that h¥1 = (1 — n)h*,,. In
conclusion, (1 —n)h¥,, > h*,. and so Dy, < D/(1 —n). The impact of a small perturbation
1 > n > 0 on the diameter is non-linear in 1 while the impact on the gain is linear (see

Sec. 3.2).

Diameter and aperiodicity transformation: D;, vs DX. So far, we have bounded the di-
ameter of the extended MDP My, ignoring the aperiodicity transformation. Thm. 2.1 shows
how to relate Dy with D¥: D*¥ = Dy /a. After combining all the inequalities derived in
Sec. 3.3.1, we obtain sp (h}) < rmaxD/c.

Approximate solution of the optimal Bellman equation. As we showed at the beginning
of Sec. 3.3, EVI only computes an approximate solution (g, hx) of the optimality equation i.e.,
1£E Ry, — hi — grellso < ek as opposed to an exact solution (g, h%) satisfying £XhY = h% + gfe.
Jaksch et al. (2010, Section 4.3.1) proved by induction the following proposition (which is a

specific case of Thm. 3.3 proved in the next section).

Proposition 3.6

Let L be the optimal Bellman operator of a communicating MDP with diameter D. Con-
sider the sequences of vectors (v )nen obtained while executing value iteration (Alg. 3) with
operator L and initial vector vy := 0 as inputs. It holds that for all m € IIS®, all 5,8’ € S
and all n > 0:

U (8') = vn(8) < rmax - E™ [7(s') — 1]s1 = 8] < rmaxD. (3.30)

EVI is run starting from the null vector and so sp (h) < rmaXD’; < rmaxD/a. Note that in
order to apply Prop. 3.6 to the extended MDP, it is essential for the rewards to be contained

in [0, rmax) J

3.3.2 Refinement of the diameter: travel-budget

The bound sp (hx) < TmaxD/a derived in Sec. 3.3.1 assumes that while trying to reach a target
state, an agent receives zero rewards in all but the target state (where it receives ryax). This
can be very loose as the agent usually has the opportunity to collect rewards on the way to
the target state. In this section we introduce a new quantity that better accounts for the
reward discrepancy in the MDP. We call this new quantity the travel-budget® and denote it
by A. We derive theorems analogue to those of Sec. 3.3.1 and show that sp (hy) < A/a.

"In the original version of UCRL2, (Jaksch et al., 2010) forgot to enforce this constrain.
8We acknowledge that Dai and Walter (2019) independently and simultaneously introduced the same
quantity with a different name “mazimum expected hitting cost”.
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3
a0, T = Z7Tmax

1

ag,r =0
Figure 3.1: Counter-example illustrating the need of HSHDS/ in Thm. 3.2. Only one action ag
can be played in s’ while two actions ag, a1 can be played in s. All transitions are deterministic
and M is communicating. It is immediate to verify that the optimal policy corresponds to
7(s) = a; and moreover g* = %rmax, h*(s) = 0 and h*(s') = %rmax. We also notice that

7 ¢ ISP, and E™ Z:isll)fl g — rt’sl = 5} =0 < Trmax = h*(s') — h*(s) and so (3.33) does

—s’

not hold.

We first define the set of stationary deterministic policies reaching a state in finite time
(a.s.) and prove a theorem analogue to the one proved by Bartlett and Tewari (2009) (see
Prop. 3.4).

Definition 3.1
For any MDP M, we define for all s,s' € S

o, .= {7r e I1°P: P™(7(s) < +ools) = 5) = 1} (3.31)
o, .= N sl = {7r e 9P P™(r(s') < +ools; =) =1,Vs € S} (3.32)
s€S

where 7(s') == inf {t > 1: s, = s’} is the first hitting time of s'. If M is communicating,
then 152, £ O for all s’ € S.

Proof. We prove the statement by contraposition. If P™(7(s") = +o00|s) > 0 then by the law

of total expectations:

E™ [7(s)|s1 = s] =E" [T(S/)

s1=s,7(s) < —l—oo} PT(1(s') < +oo|s1 = s)

+E7 [T(S/)

51 =8,7(s) = +oo} P (7(s") = +oo|s1 = 8) = +0

=400

Therefore, if II5P () for at least one s’ € S, then D = +o00. This concludes the proof. W

s’ T

\

Let M be a communicating MDP with optimal Bellman operator L and (g*,h*) € R x RS

(

Theorem 3.2 (Analogue of Prop. 3.4)

a solution to the optimality equation h* + g*e = Lh*. For any two states s and s’ and any

stationary policy ™ € H,‘iDs,, we have:
T(s")—1
RE(s) = h*(s) SE™ | D> g" —rifsi=s (3.33)
t=1

where 7(s') :=1inf {t > 1: s; = &'} is the first hitting time of s’.

J
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Proof. The arguments are similar to the one used by Bartlett and Tewari (2009, Theorem

4). The rigorous proof can be found in App. A.1.1. |

We first notice that Prop. 3.4 can be deduced from Thm. 3.2 since when all rewards are

non-negative

T(s')—1
vr e 152, IE”[ g —r
t=1

s1 = s] <g - ET[r(s') — 1|51 = ]

and if 7 ¢ TI5D, then E™ [7(s') — 1|s; = s] = +00 and so the inequality still holds. The
difference between ET [ Zisll)fl g* —rels1 = 5] and E™ [7(s) — 1|s; = s] can be arbitrarily
loose. For example, when all the rewards are identical, the optimal gain takes the same value
and the term on the left handside is 0 while the term on the right handside can be arbitrarily
large. When 7 ¢ HSHDS,, the term E™ [ Zfl/)flg* — rt‘sl = s} might be equal to 400 but
when this is the case, Thm. 3.2 still holds and so one might wonder why we need to restrict
attention to policies belonging to Hﬂ)s,. In Fig. 3.1 we provide a counter-example showing

that Thm. 3.2 does not always hold for policies outside H,S_PS/.

Since Thm. 3.2 refines Prop. 3.4, we would like to use this theorem to refine the bound on
sp (hy) derived in Sec. 3.3.1. As we already discussed in Sec. 3.3.1, in general the best upper

bound that we have for g; is rmax and so we define the travel-budget as follows:

Definition 3.2
The travel-budget of a communicating MDP M (denoted A) is defined as

T(s')—1
A= in E" — =s|. 3.34

A > 0 and if all the rewards are non-negative, A < rmaxD.

Proof. The proof is trivial since for all ¢ > 1, rpax — r(s¢, 7(s¢)) and under the assumption

that the rewards are all positive, —r(s;, m(s¢)) < 0. [ |

Notice that in Eq. 4.2 of Def. 3.2, we do not restrict the policy space. Instead, we take the
minimum over the entire space ISP and not over HSHDS,. Therefore, 7(s’) might be equal to
400 with non-zero probability but everything is still well-defined as explained in Sec. 2.1.4.
It turns out that despite the counter-example of Fig. 3.1, when replacing ¢* by rnax and
considering the iterates of value iteration starting from the null vector, this definition is
sufficient for our purpose (see Thm. 3.3 below). On Fig. 3.2 we illustrate the difference

between rpax D and A on a simple MDP.

Similarly to Sec. 3.3.1, we can combine (4.2) with Thm. 3.5 to prove that Ay := Axy, < A
for all £ > 1 (where A is the travel-budget of the true unknown MDP). Since we no longer
restrict the policy space, we can express A as a function of the fixed points of some Bellman

shortest path operators (as we did for D in Sec. 3.3.1).
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Figure 3.2: Example illustrating the difference between rp,xD and A. In this example,

. -1 .
min, E™ [ZZSI) Tmax — Tt|S1 = 5} = %rmax < Tmax = Tmax - ming E™ [7(s) — 1|s; = s].

Let’s consider M’ = {S, A, r’, p} the MDP with identical transition probabilities p than the
true MDP M and rewards 7’ equal to r — ryax < 0 (for all state and actions). For all s € S,
, its (unique) fixed point

|

for all s, € S, and so A := max; ||k’ |lcc. Similarly to rmaxD, the travel-budget A is

denote by L,,s the Bellman shortest path operator of M’ and h’,
(Thm. 3.5). By Prop. 2.8,

S

T(s')—1
vs'eS, —h' ()= i E7 max —
° =(8) ﬂeFIIISIg%M) M [ ; Pmax T

obtained as the solution of a stochastic shortest path problem where the “lengths” are not
always equal to rpax but the actual reward r is subtracted i.e., rmax — r. Let’s denote by L"f_m
the analogue of L, for the extended MDP M) (identical to M}, with rewards replaced by
7 — rmax < 0), and by h’,;s its fixed point. Under the high probability event of Thm. 3.1,

ck hr., > Losh!,, = ht,, and so by Thm. 3.5, h*,, > h*, . Therefore, A;, < A and a direct
application of Thm. 2.1 shows that AX = A;/a (where A¥ denotes the travel-budget of MZE).

Unlike for the diameter, it is difficult to quantify the impact of an n-perturbation of Ly
on the travel-budget Aj. This is not surprising since the travel-budget carries much more
information about the MDP than the diameter. It also suggests that it is a more relevant

quantity to consider for the regret analysis.

We conclude this section with Thm. 3.3 (from which Prop. 3.6 can be deduced).

\

Let L be the optimal Bellman operator of a communicating MDP with travel-budget A.

[Theorem 3.3 (Analogue of Prop. 3.6)

Consider the sequences of vectors (vp)nen obtained while executing value iteration (Alg. 3)
with operator L and initial vector vy := 0 as inputs. It holds that for all 7 € TISE, all
s, €S and alln > 0:

T(s')—1
vn(8') — vp(s) <ET Z Tmax — Tt|S1 = s] <A. (3.35)
t=1

. J

Proof. The argument is similar to the one used by Jaksch et al. (2010, Section 4.3.1). The
detailed proof can be found in App. A.1.2. [ |
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3.4 Regret guarantees for UCRLB

We opened Chap. 3 with a detailed presentation of the algorithmic structure of UCRLB
(Sec. 3.1). In a nutshell, at every episode k, UCRLB computes an approximate solution
(gkshie) € R x R of the Bellman optimality equation of an extended MDP M, that is
constructed based on past observations. In Sec. 3.2 and 3.3 we analysed the properties of
respectively g and hi. We showed that under a single high probability event (Thm. 3.1),
gk > g° and sp (hg) < A/ < rmaxD/a where g*, A and D are repsectively the optimal gain,
travel-budget and diameter of the true unknown MDP. We are now ready to state (and prove)
the main results of this chapter, namely two high probability minimazx uniform regret bounds
satisfied by UCRLB (Thm. 3.4 and Thm. 3.5). “Uniform” refers to the fact that the high
probability bound holds for all time horizons T > 1. Thm. 3.4 and Thm. 3.5 only assume
knowledge of the state space S, action space A and maximal reward rpyayx, even if we already
explained in Sec. 3.1 how UCRLB can take advantage of some additional prior knowledge
about the rewards and transition probabilities. We assume that the initial state s; is sampled
according to a probability distribution p; € Ag. For any state-action pair (s,a) € S x A, we

introduce the notation I'(s,a) for the support of p(:|s,a) i.e.,

D(s,a) := [p(ls,a)lo = D 1{p(s'|s,a) > 0} .

s'eS

We also denote by I' the maximal support over all (s,a) i.e., I' := max; sesxa'(s,a). Our

first regret bound is reported in Thm. 3.4.

(

Theorem 3.4

\

There exists a numerical constant 5 > 0 such that for any communicating MDP, with
probability at least 1 — 4§, it holds that for all initial state distributions p1 € Ag and for all

time horizons T > 1:

A(UCRLB,T) < [ -max {rmax,A}J <Z ['(s, a)) T1n (%) 536)
$,a 3.36

+ [ - max {rmaX,A}SQA In (%) In(T).

. J

Jaksch et al. (2010, see Prop. 2.14) showed that up to a multiplicative numerical constant,
the regret of UCRL2 is bounded by ryax DS/ AT In (T /). After noticing that A < rpaxD
and >, , I'(s,a) <T'SA we can simplify the bound in (3.36) as

B T DyTSAT In (T/8) + B - Fanax DS* Al (T/8) In (T)

Let’s compare the bounds of UCRL2 (Prop. 2.14) and UCRLB (Thm. 3.4) in terms of O

(i.e., ignoring logarithmic terms, meaning that In(7"/§) is equivalent to a constant). For
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T < DS?A, a trivial bound on the regret is
A(UCRLB, T) < TmaxT' = TmaxV T2 < PmaxSVDAT < rpax DSV AT

while for T' > DS?A we have rmax DSVAT > maxSVDAT > roax DS? A. Since by definition
I' < S, in either case the regret of UCRLB can be bounded by 7ma.cDSVAT just like the
regret of UCRL2. But in general, UCRLB clearly enjoys better regret guarantees than UCRL2
as for the dependency in S. This is a consequence of the use of Bernstein bounds for the
transition probabilities (Eq. 3.1) instead of Hoeffding/Weissman bounds in UCRL2. This
improvement can be quite significant in practice since in most MDPs, I'SA = ©(SA) or at
least > ,I'(s,a) = ©(SA) ie., I'(s,a) = O(1) for all but only O(1) state-action pairs. An
environment that would satisfy I'(s,a) = Q(S) for Q(S) state-action pairs would have a very
chaotic dynamics which is not what we usually observe in “real-world” environments. The
other improvement brought by Thm. 3.4 compared to the existing literature is the substitution
of rmaxD by max{rmax, A} < rmaxD in the regret bound. Notice however that unlike the
improvement in S, the improvement in D is only due to the analysis and not to the algorithm
(improved bound on sp (hy) shown in Sec. 3.3). The same improvement can be shown for
UCRL2.

Our second regret bound is reported in Thm. 3.5. This regret bound holds for UCRLB with-
out any modification of the algorithm. The difference with Thm. 3.4 is due to a more careful

analysis.

[

Theorem 3.5

\

There exists a numerical constant B > 0 such that for any communicating MDP, with
probability at least 1 — 9§, it holds that for all initial state distributions 1 € Ag and for all

time horizons T > 1

A(UCRLB,T) < [ -max {rmax, V TmaXA} J <Z I'(s, a,)) T ln (?) In (T)

(3.37)

2
+ (B - max {Tmax, A} S?Aln (?) In (T)

max

J

Since the dependency in ryax and A of (3.37) may appear non-trivial, we start with a simple
dimensional analysis to check the consitency of the bound. The regret is always homogeneous
to a reward and as a consequence, so should be the regret bound. Since both A and 7. are
homogeneous to a reward, it is immediate to see that the bounds of Thm. 3.5 and Thm. 3.4
have the correct dimension. Compared to the bound of Thm. 3.4, the dominant term of
Thm. 3.5 has a better dependency in A. Indeed, when ryax > A, then

max {Tmax, \/TmaxA} = Tmax = Max {Tmax, A}
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and so the dominant terms of (3.36) and (3.37) are the same. However, when mmax < A then

max {rmax, Vi rmaxA} = VTmaxA < A = max {ryax, A}

and so (3.37) is tighter. In conclusion: max {rmax, \/rmaXA} < max {rmax, A}. As the im-
provement in the S-dependency, the improvement in the A-dependency of the regret bound
is a consequence of the use of Bernstein bounds instead of Hoeffding/Weissman bounds for

the transition probabilities. Notice also that in the case where A = D (worst-case), then

max {TmaXa \Y 7ﬁrnaxA} = Tmax\/ﬁ < PmaxD = max {TmaXa A} .

Symmetrically, max {7max, A2/ Tmax } > Max {Tmax, A}, meaning that the improvement in the
dominant term comes at the expense of an increase in the lower order (logarithmic) term.
This term becomes negligible after only D?S?A steps (ignoring the multiplicative log term).
Using the same argument as in the discussion of Thm. 3.4 (see above), we can show that the
bound (3.37) can be upper-bounded by rma DSVAT for all T. In conclusion, the regret of
UCRLB grows at most as rmaxV DT'SAT for T big enough which is clearly better than the
regret of UCRL2 i.e., Tmax DSV AT. The additional “burn-in” of order (A?/rmax)S?A which
dominates when 7' is small is not bigger than the burn-in of UCRL2, but in UCRLZ2, it is
“hidden” by the dominant term 7y, DSvVAT. An additional /In (T') multiplicative factor
also appears in the dominant term of (3.37) that was not present in (3.36). Whether this

extra cost is an artefact of the analysis or cannot be removed is left as an open question.

Impact of the aperiodicity transformation. Neither of the regret bounds (3.36) and (3.37)
depend on the aperiodicity parameter . The 1/« factor that appears in the bound of sp (hg)
disappears in the regret proof when introducing the optimality equation (see Sec. 3.5.2).
As expected, the aperiodicity transformation has absolutely no impact on the regret, its
only impact is on the convergence (and speed of convergence) of EVI as already argued in
Sec. 3.1.2.

Comparison with other settings. In the finite horizon setting, Azar et al. (2017) derived
an algorithm —UCBVI_2- for which they proved a high-probability regret bound scaling as

(up to multiplicative numerical constants):

PmaxV HSAT In (?) + rmaXHQS2Aln2 (?) 4+ rmaxH /T In (?)

where H is the horizon (known to the algorithm). It is common to compare ry.xH with
Tmax D as both terms respectively upper-bound the range of the optimal “value function” (the
bias in the infinite horizon undiscounted case). It is thus natural to compare ryaxH with
A in our case. After substituting the former by the latter, the bound they derived looks
very similar to the bound of Thm. 3.5. The first difference is the absence of the support I
in the dominant term of the regret. The second difference is the presence of an additional
@(rmaxH\/T) term. When T is big enough, their bound saves a v/T' factor compared to ours

when H < SA. It is not clear whether this improvement is specific to the finite horizon
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setting or not. In particular, extending their proof to the infinite horizon setting does not
seem straightforward as the definition of regret differ and several parts of the proof heavily
rely on the existence of a known time horizon H. In the same setting, Kakade et al. (2018)
introduced vUCQ that achieves a regret of the form Pmax VHSAT + roax H?SA (ignoring
multiplicative logarithmic terms). This bound is similar to the one of Azar et al. (2017) but
the time needed to reach the v/T-regime (burn-in) is of order O(H®SA).

In the discounted infinite horizon setting, the common measure of performance of on-line
learnig algorithms is the sample complezity. A regret bound of the form Cv/T is usually
interpreted as comparable to a sample complexity of order ﬁ For the same reason
as in the finite horizon setting, it is natural to compare rypaxA with rpax/(1 — 7) (bound

on the discounted value function). Using a UCRL2-like algorithm, Lattimore and Hutter

(2012) achieved a sample complexity bound E’;“(“i*ji ‘)43 In (1/0) assuming that I' < 2 (Lattimore

. . . rmaxz I'(s,a)
and Hutter, 2012, Assumption 1) and later generalized their result to —aogE o (1/6)

(Lattimore and Hutter, 2014). This is comparable to the bound of Thm. 3.5.

Finally, Dann and Brunskill (2015) showed that their algorithm UCFH —similar to UCRLB—

suffer a sample complexity of order at most ryax 2 QEI;S An (%) where H is the (known) finite

horizon. Unlike in the discounted setting, in the finite horizon case a regret bound of the form
C+/T is usually interpreted as comparable to a sample complexity of order g—; Therefore, the
bound of Thm. 3.5 saves a factor H compared to their bound. However, given the similar-
ities between UCFH and UCRLB —both algorithms use Bernstein bounds for the transition
probabilities— it is possible this additional H-factor could be removed by a better analysis

i.e., without requiring any change in the algorithm.

In conclusion, the regret bound of Thm. 3.5 is consistent with state-of-the-art results in
the discounted setting, but is worse than the state-of-the-art in the finite horizon setting by
a factor VT.

3.5 Firstregret proof of UCRLB

We start with the proof of Thm. 3.4 which is both simpler and closer to the proof of Theorem
2 of Jaksch et al. (2010). We follow their proof structure, use similar notations and highlight
the main differences. Many arguments will be reused for the proof of Thm. 3.5. In order
to increase readibility, we postpone the detailed proof of some intermediate results to the
appendix (see App. A). To be able to reuse this material in Chap. 5, we assume 7, my not
always be deterministic (i.e., we assume 7, may be stochastic) although this is not strictly

needed so far.

We recall two well-known results useful for the proof. We will extensively use Azuma’s

inequality (see for example Jaksch et al. (2010, Lemma 10)) which we recall below (see
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3.5. First regret proof of UCRLB

Prop. 3.7).

Proposition 3.7 (Azuma’s inequality)

Let (X, Fn)nen be an Martingale Difference Sequence (MDS) such that | X,| < a a.s. for
all n € N. Then for all § €]0,1],

(S x 2 mfom(5)) <0

An MDS is a sequence of r.v. X,, that are F,-integrable for every n € N, and such that
E [Xpi1|Fn] = Xa.

We will also use Cauchy-Schwarz inequality several times i.e., Y., la;bi] < />; a2 >, b? or
equivalently >, \/E\/E < V/>oiaiy;biif a;, by > 0 for all <.

3.5.1 Splitting into episodes

The regret after T time steps is defined as A(UCRLB,T) = Y7, (g* - rt). To begin with,
we replace r; by its expected value conditioned on the current state s; using the following

lemma:

7~ Lemma 3.1
. . 5.
With probability at least 1 — §:

T T
4T
VT > 1, —ET‘S—E E T, (8¢, a)r(se, a) + 2r XT]n() 3.38

\

Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details). W

Lem. 3.1 enables to “remove” from the analysis all the randomness due to the stochasticity of
the observed rewards and the executed policy, at the expense of a small (5(\/T ) term. Jaksch
et al. (2010, Section 4.1) use a different argument to obtain a similar bound. They claim that
once conditioned on the r.v. (Ng11(8,a))(s,0)esx.4 corresponding to the visit counts in all
state-action pairs after T' time steps, the r.v. (r¢(s¢, ar))r>t>1 are independent. Although we
do not claim that the sampled rewards are not independent conditioned on the visit counts
as argued by the atuhors, they never formally prove this result and it is not fully clear why
this property holds. For this reason, we prefer to use a martingale argument which is both

simple and rigorous.

Let’s denote by vi(s) := > c 4, Vk(5,a) the total number of visits in state s during episode

k. Defining Ay := 3" s Vi(S) (g* — DacA,, mr(als)r(s, a)) the pseudo-regret of episode k, it
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holds with probability at least 1 — % that for all T > 1 (using eq. 3.38):

A(UCRLB,T) < XT: (9* - Wkt(st,a)r(st,a)) + 2rmaxy /T In (4T>

t=1 aEAst (5
b AT
= vi(s) (g* _ Z wk(a\s)r(s,a)> + 2rmaxy/ T In (6)
k=1seS a€As
kr
4T
=3 A4+ ey [T <) (3.39)
k=1 0

3.5.2 Plugging the optimistic Bellman optimality equation

In this section we derive a high probability bound for 2221 Aj. The first step consists in
replacing the true optimal gain ¢g* by the optimistic gain gi. To do this, we rely on the
optimism property proved in Sec. 3.2. We assume that the complementary event of Thm. 3.1
holds i.e., M € M, for all T' > 1 and for all £k > 1. We will denote this event F in the rest
of the regret proof. As shown in Sec. 3.2, under event F, we have that g; > g*. Moreover, as

shown in Eq. 3.21, |gr — ¢§| < €k/2 implying that g > ¢* — /2. As a result we can write:

A< Y mls) <gk = 3 mulals)r(s,a) + 2’“) (3.40)

seS a€A;

We will now replace gy (optimistic gain) by hy (optimistic bias) using the optimistic optimality

equation.

We denote by pi and ry the transition probabilities and rewards satisfying

Vs €S, Lhhi(s)= Y milals)ri(s,a) +a > > mi(als)p(s'ls,a)hi(s) + (1 — a)hy(s)

a€As a€As s'€S

As shown in Eq. 3.22, the pair (g, hx) € Rx RS returned by EVI is an approximate solution
to the Bellman optimality equation of £ i.e., || LKAy — hi, — grelloo < er implying that for all
ses§:

- Z mr(als)ry(s,a) — a Z Z mk(als)pr(s']s, a)hi(s") — (1 — a)hi(s) +M+ gk < €k

a€As s’eS acAs

= (gk — Z Wk(a|s)7“k(s,a)) +a (hk(s) — Z Z Wk(as)pk(s'|s,a)hk(s')) <ep (3.41)

a€A; a€A; s'€S

Plugging Eq. 3.41 into Eq. 3.40 yields:
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Ag < ZVk-(S) (gk — Z mr(als)ri(s, a) ) + Z Z vi(s)mr(als <7"k(37a) —r(s,a))

a€EAs s€ES a€As

<« Z V() ( Z Z mr(als)pr(s']s, a)hi(s') — hk(s)>

ac€As s'€S

+ Z Z vi(s)mr(als (Tk(s,a) - r(s,a)) —}—3% Z V() (3.42)

s€ES acAs SES

=1

In the next two sections (Sec. 3.5.3 and 3.5.4), we will bound the sums ZZL and Ziil AL

3.5.3 Bounding the transition probabilities

We start by further decomposing into two different terms:

= 3" vil(s)me(als) (pr(s']s a) = p(s's, @) ) hu(s')

s,a,s’

.__ADPL
:=AP

+a Z v(s) (Z 7 (als)p(s'|s, a)hi(s') — hk(s))

__ADP2
=AY

(3.43)

Since by construction 3, vcspr(S'[s, a)mr(als) = 32, yesP(s'|s, a)mi(als) = 1, the terms
Ail and Ai? remain unchanged if hy is arbitrarily shifted by a constant vector, respectively
Are and Afe (A}, A7 € R are arbitrary scalars and e = (1,...,1)T is the vector of all ones).
To obtain the tightest possible upper bounds, we choose

1 .
) <max hi(s) + min hk(s)>

seS

>
T
I
>~
ESIN
I

which minimizes the /,-norm of wy := hy + )\}Ce = h; + /\%e. Indeed, it is immediate to see
that sp (wg) = sp (ki) and ||wg|lco = sp () /2. Under event E, we showed in Sec. 3.3.2 that
sp(wg) = sp (hg) < A/a and so | wg|leo < A/(2a0). To keep ZZT1 Ak under control, we need
to replace vg(s)m(als) by vk(s,a) i.e., reintroduce the randomness of the executed policy. To
that end, we define Afg = Q) a5 Vk(s,a) (pr(s']s, a) — p(s]s,a)) hy(s'), analogue of Af}
with v (s)mx(als) replaced by vg(s,a), and we use the following lemma:

~ Lemma 3.2

Under event E, with probability at least 1 — %.‘
kT
VI >1, Y AP < Z AP +4A([Tn <6T) (3.44)
k=1 k=1 0
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Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details). W

Using Hdlder’s inequality, the term A’,;B can be bounded as follows:

AP <oy ui(s,a) - pi(-ls.a) — p(-ls,a)]l1 - [lwkll
s,a
<A/(241)
A
< 52%(8,&) Nk (:ls,a) — p(-|s, a)lx

s,a

Using the triangle inequality, we can decompose the £;-norm into two terms:

Hpk("57a) —p(-|8,a)“1 < ||pk‘('|57a) _ﬁk('|s7a)”1 + Hﬁk("57a) —p(-|s,a)H1 (345)

By construction, pk(:|s,a) € B{;(s,a) (see Eq. 3.17) implying that for all states s’ € S,
Ipr(5']5, )~ Pi(']5, )| < B2 and 50 [[pe(C 15, @) —Dik(:15, )11 < B = Sy B2 Similarly,
under event E, p(-|s,a) € B{j(s,a) (by definition) and so |pg(s'|s,a) — p(s'|s,a)| < B;f’,j/ for

all s’ € S implying that ||px(-|s,a) — Pk(|s,a)[l1 < B, In conclusion,

AP < A (s a) - B35 (3.46)

s,a

We now focus on the last term AP,;Q and do the following decomposition:

thp1—1
A‘Z2 =« Z (Z mr(alsy)p(s'|se, a)wg(s") — wk(st)>

t=ty a,s’

tet1—1 tpp1—1
o Z (Z mh(alse)p(s'lsi; ahwi(s') = wk(5t+1)) o Z wg(St41) — wi(st)

t=ty a,s’ t=tg

. AP4 telescopic sum
T =k

- Aé)_l +a (wk(stk+1) - wk(stk)) < Aéﬂt +A

<sp(wg)<A/a

We then notice that Zzil A;’,’l is an MDS and so

7~ Lemma 3.3

Under event E, with probability at least 1 — %:
oo AT
VI >1, Y A} <2A/Th (> (3.47)
=1 0

Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details). W

\
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After combining Lem. 3.2, Eq. 3.46 and Lem. 3.3 and taking a union bound, we conclude
that with probability at least 1 — g (and assuming event E holds):

kr

kT
5T
VT >1, <A ve(s,a)B:5% + 6A Tln()—l—Ak; . 3.48
321 1;:1 ;a k (s, @) By, \/ 5 T (3.48)

3.5.4 Bounding the rewards

Similarly to what we did to bound Af,l, we define an analogue of Aﬁg for the rewards i.e.,
Arl = > osaVk(s,a) (ri(s,a) — (s, a)) (similar to A} with v (s)mx(als) replaced by vk(s,a))

and we show the following lemma:

7~ Lemma 3.4
With probability at least 1 — %:

k1 kT ST
VT > 1, A< ATl 44 T1 <)
- kgl PR ];1 k + 4rmax n 5

\

Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details). W

Similarly to the bound in (3.45), we notice that rx(s,a) — r(s,a) can be expressed as the
sum of 7 (s, a) — 7% (s, a) with 7% (s,a) —r(s,a). Since r(s,a) € B¥(s,a) (3.4) by construction,
re(s,a) — r(s,a) < B¥(s,a). Moreover, under event E we have 7 (s,a) — r(s,a) < BE(s,a)

by definition. After summing up the two inequalities we obtain:

AR =Y wils,0) (ru(s,a) = r(s,a)) <23 wils, ) B35

s,a

In conclusion, with probability at least 1 — % (and assuming event E holds):
kT kr AT
VT > 1, Al <2 vi(s,a)B35 + 4r TIn <) 3.49
kz::l k kzz:l Sz,a: k( ) r.k max 5 ( )

3.5.5 Bounding the number of episodes

As in UCRL2, in UCRLB the inequality vg(s
(s,a) € S x A. However, the equality v(s,a

ya) < N,j(s, a) holds for all state-action pairs
) = N,f(s,a) holds true for exactly one state-

action pair (never more).

In Appendix C.2, Jaksch et al. (2010, Proposition 18) proved that the stopping condition
of UCRL2 ensures that when 7' > SA, kr < SAlog, (%) a.s. The proof of this result only

relies on the fact that there exists at least one (s,a) satisfying vg(s,a) > N\ (s,a). Since
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UCRLB also enjoys this property, the same proof applies and the bound still holds:

Proposition 3.8
For all T > SA, kr < SAlog, (%)

3.5.6 Summing over episodes

As proved in Thm. 3.1, event E occurs with probability at least 1 — %. After taking a union
bound and gathering inequalities (3.48) and (3.49) into inequality (3.42) we conclude that
with probability at least 1 — 2¢, for all T' > S A:

kT kT
ZA;‘»E Azzyksa —i—QZZVkSCL 'rk+ Tmaxzzyk
k=1

k=1 s,a k=1 s,a k=1 seS
&) ) 0 (3.50)

/ 5T 5T 8T

We will now expand the first three terms appearing in the bound of Eq. 3.50.

(1) Since tx > N, (s,a) for all (s,a), we deduce that:

Zzyk Zzyksa ZAZT:] I/;S(I

k=1s€eS $,a k=1 $a k

(2) Using the definition of 37,

£y - £ 5[

(3) Similarly using the fact that 8,5 = > ycs ﬂ;?’ks/:
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ZZVk s,a)35% < 2 ( SAT) ZZ Vi (s, ) \/ﬁk(s’]s,a)(l — pr(s'|s,a))

=1 s,a s,a k=1 Nk(sa)ses

6SAT
+6SIn ( )szw

$,a k=1

f-Lmnnm35
It holds almost surely that for all k > 1 and for all (s,a,s’) € S x Ax S:

Z\/pk (s'|s,a)(1 — pr(s'|s,a)) \/Fsa—l (3.51)

s'eS

\.

Proof. The result is a direct consequence of Cauchy-Schwarz inequality (for further details,
see App. A.3). [ |

As a consequence of Lem. 3.5,

k
iZl/k(s,a < 24/In GSAT Z\/ sazi
k=1 s,a q/N+ 5 (L)
6SAT b
+651n< )ZZWM

$,a k=1

Two sums appear in the bounds of the terms (1), (2) and (3):

vi(s,a) and i I/]ng a)
k=1 /N, (s, ) Ny (s, a)

Lem. 3.6 provides upper-bounds for those sums.

7~ Lemma 3.6
It holds almost surely that for all k > 1 and for all (s,a) € S X AX:

]i’,T
oD vi(s,0) < 3\/Nyip41(s,a) and Z ”" 5,4) [ <242 (N1 (s,0)  (3:52)
k=1 (s,a) (s, a)

\.

Proof The proof follows from the rate of divergence of the series > ;' ; % ~ +/n and

"1 ~In(n) respectively when n — +oo. [

Using Lem. 3.6 together with Cauchy-Schwartz inequality we have:

Z\/Fsa\/NkT+1sa $<Zfsa> S Niysi(s,a) = J(era>

S,a
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Chapter 3. Improved exploration-exploitation with Bernstein bounds

Using Lem. 3.6 together with Jensen’s inequality on the concave function In(:) (with a nor-
malization factor SA) and the fact that N,;;+1(s, a) < T, we have(for T, SA > 2):

N ,
Y (N,;;+1(s,a)) < SAln (Z gjl(s a)> < SAIn(T).

s,a

In conclusion, with probability at least 1 — 22, for all T > SA:

kT
d A< 6A$ (2; I'(s, a)> Tln (6%”) +12A5%A1n <6[’;4T) (14 1n(T))

k=1
+ 6rmax\/ SATIn (65(;4T> + 12rmaxSAIn (63(‘54T> (1+In(7)) (3.53)

5T

+ 4(A + rmax) T1n< 5

T
) + ASAlog, (S’A) + 3rmaxSA - (14 In(T)).

3.5.7 Completing the regret bound of Thm. 3.4

For T > 6SA we have 6SAT < T? so that In (GSAT) <In ( ) <2In ( ) i.e., the logarith-
mic terms appearing in (3.53) no longer depend on SA but a factor 2 appears. For T < 6SA
we can use the trivial upper-bound ry,x 7 on the regret (which holds with probability 1) and

SO

A(UCRLB,T) < rmax = Piax VT - VT < Tax V6SAT < JG (Z F(s,a)) T

After combining (3.39) with (3.53) and using a union bound, we obtain that there exists an
absolute numerical constant 8 > 0 (i.e., independent of the MDP instance) such that for any
MDP M, with probability at least 1 — ¢, for all T > 1 the regret of UCRLB after T steps is

bounded as

A(UCRLB,T) < - max {rmax, A} - (\J <Z I'(s, a)> Tln <§) + S?Aln (?) In (T)) .

3.6 Improved regret analysis for UCRLB using variance
reduction methods

We now prove Thm. 3.5. In order to improve the dependency of the regret bound in A (i.e.,

replace A by \/7\), we refine our analysis with three key improvements:

1. We leverage on Freedman’s inequality (Freedman, 1975) instead of Azuma’s inequality
to bound all MDS. We recall this inequality in Prop. 3.9 below.

2. We use a tighter bound than Holder’s inequality to upper-bound the sum Zle Apg (see
Sec. 3.5.3).
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3.6. Improved regret analysis for UCRLB using variance reduction methods

3. We shift the optimistic bias hy, by a different constant at every time step t > 1 rather
than only at every episode & > 1. More precisely, the optimistic bias is shifted by a

different constant for every episode k£ > 1 and for every visited state s € S.

To the best of our knowledge, Thm. 3.5 and its proof are new although it is largely inspired by
what is often referred to as “variance reduction methods”in the literature (Munos and Moore,
1999; Lattimore and Hutter, 2012, 2014; Azar et al., 2017; Kakade et al., 2018). Similar
techniques are used by (Azar et al., 2017) to achieve a similar bound but in the finite horizon
setting. Our approach also borrows intuitions from the work of Talebi and Maillard (2018a)
and Maillard et al. (2014).

Proposition 3.9 (Freedman’s inequality)
Let (Xpn, Fn)nen be an MDS such that | X,,| < a a.s. for alln € N. Then for all § €]0,1],

> 2J (;V(Xi|.7:i_1)> -In <4Tn> +4aln (%)) <4

n

> X,

i=1

P (Vnz 1,

To bound the rewards Ziil A, we keep the same derivation as in Sec. 3.5.4 (see Eq. 3.49).

On the other hand, we derive a completely differnt bound for the transition probabilities

221 . Our new derivation will make appear some sums of variances.
For any vector u € R®, we slightly abuse notation and write u? := w o u the Hadamard

product of w with itself. For any probability distribution p over states S and any vector
u € RS we define V,, (u) := pTu? — (pTu)? = Exp[u(X)?] — (IEXNp[u(X)])2 the “variance” of
u with respect to p.? For the sake of clarity we introduce new notations for the transition

probabilities: p(s’[s) = Y ,ca, Tk(als)pe(s']s,a), DL(s'|s) = Yaca, Tr(als)p(s'|s,a) and
Pre(s's) = Yaea, mk(als)Dr(s'|s,a), for every s,s" € S and every k > 1 (i.e., we drop the

summation over a).
We start with a new bound relating A?" and AY” (as in Lem. 3.2):

r Lemma 3.7 (Analogue of Lem. 3.2)
Under event E, with probability at least 1 — %:

bz bz 24T
VT > 1, APY<NT AP 4 4A I <>

24T d d
+ 2¢/Sn <5> Vpkt('\st) (ahy,) + ZV@%H&S) (ahy,) (3.54)
t=1

t=1

\

Proof. We use a martingale argument and Prop. 3.9 (see App. A.2 for further details). W

°In (Maillard et al., 2014), the authors define the “distribution-norm” of an MDP which is related to the
variances Vp(.|s,q) (h").
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Chapter 3. Improved exploration-exploitation with Bernstein bounds

We also refine the upper-bound of AZS derived in Eq. 3.46. Instead of bounding the scalar
product (pg(-|s,a) —p(-|s,a))Twg by ||lpk(-|s,a) —p(-|s, a)|]] ||wk || using Holder’s inequality as
in Sec. 3.5.3, we bound it by > |pr(s'|s,a) —p(s'|s, a)| - |wg(s’)| using the triangle inequality.
Since Y-, o pr(8']s,a) = 3, ¢ p(s'|s,a) = 1 we can shift hy, by an arbitrary scalar A} € R
for all £ > 1 and all s € S, i.e., wj := hy + Aje. Unlike in Sec. 3.5.3, we choose a state-
dependent shift, namely A} := — 3=, o Dr(s[s, a)mg(als)hi(s') = —pr(:[s)The. It is easy to see
that sp (w}) = sp (hy) and ||wi||c < sp (hg) implying that under event E, ||w}|l- < A/c.

Using the triangle inequality and the fact that pg(-|s,a) € B;;(s,a) by construction and
p(:|s,a) € BE(s,a) under event E:

|pk(5,|57a) —p(s']s,a)| < }pk(S,’S,a) _ﬁk(sl|37a)| + |ﬁk(5,|57a) ( ’5 a | <28 sas :

As a result we can write:

P kT
AZJ < C“Z Z Vk(S,a)‘Pk(Slf&a) —p(s/]s,a)‘ |wi(sh)]

k=1 s,a,s’
<2aZZVksaZ Sas‘ )|

k=1 s,a

In (6SAT/6)

:40422%(3,@) [\/ﬁz \/pk (s'|s,a)(1 — pr(s ,‘5 a))wk( )

k=1 s,a Nk § a s'eS

31n ( 6SAT/(5 s
N+ Z| ]

<A/a
We denote by Vi(s,a) := a? 3, Pr(s'|s, a)wi(s)?. Similarly to Lem. 3.5, we can prove the
following inequality:
- Lemma 3.8 (Analogue of Lem. 3.5)
It holds almost surely that for all k > 1 and for all (s,a,s’) € S x A x S:

« Z \/ﬁk(s’|8,a)(1 — pr(s]s, a))wi(s")? < \/Vk(s,a) -(T(s,a) — 1) (3.55)

s'eS

\

Proof. The result is a direct consequence of Cauchy-Schwarz inequality (for further details,
see App. A.3). [ |

As a consequence of Lem. 3.8,

» I'(s,a) 6SAT 3AS 6SAT
ZA5<4ZZVksa[\/Vksa)N;(s,a)ln( 5 )+N,j(s,a)ln( 5 )1

k=1 k=1 s,a
kp tgp41—1
F(Sta a) 6SAT 3AS 6SAT
=4 Vie(se, ar) ln( )—i— ln( > )
kzl tztk l\/ N]:_(Stvat) d N]:(St,at) 1)

Applying Cauchy-Schwartz gives
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3.6. Improved regret analysis for UCRLB using variance reduction methods

kp tpy1—1 kp tpy1—1 kp tpy1—1

[ (s, a Sty at)
Z Z \/ Vie(st, at) N+ ;t,;t Z Z N"'t L Z Z Vie(st, at)

k=1 t=ty k=1 t=ty (St’atklttk

- BT

k=1 s,a =

Using Lem. 3.6, Jensen’s inequality and the fact that N,;;H(s,a) < T (as in Sec. 3.5.6),

we can bound the first sum

B

s,a k=1 s,a

Zs,a F(Sv a)Nl:;Jrl
2<1+1n< S T(s,a) Zfsa

)

214+ In(T Zf(s,a

To bound the second sum Zle Vi, (s¢,a¢), we rely on the following Lemma:
7~ Lemma 3.9
Under event E, with probability at least 1 — %:

T
4T
VI 21, Y Vi(stae) < ZVAkt( o) (@) +2A% [TIn ( 5 ) (3.56)

\

Proof. We notice that for all k > 1 and s € S, 2, m(als)Vi(s,a) = V5 | (@hg). The

concentration inequality then follows from a martingale argument and Prop. 3.7 (see App. A.2
for further details). [ |

From Lem. 3.9 it follows that

f: AP S4J 2(1+ (7)) In <65AT> <ZF 5,0 ) < 2T'In <§) + XT:V;?M.&) (ahkt)>
k=1

t=1
AT
+ 24AS%A1n (655> (1+In(T)) (3.57)

It now remains to bound ZkT APQ As shown in Sec. 3.5.3: ZkT Apz ZkT A’A + Akr.
We refine the bound on ZkT Apl derived in Eq. 3.48 using Freedman’s inequality instead of

Azuma’s.

r Lemma 3.10 (Analogue of Lem. 3.3)

Under event E, with probability at least 1 — g:

kT
VI >1, Y A< 2J <Z (lst) ahkt)> -In (2?) +4AIn (2?) (3.58)

k=1
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Chapter 3. Improved exploration-exploitation with Bernstein bounds

Proof. We use a martingale argument and Prop. 3.9 (see App. A.2 for further details). W

3.6.1 Bounding the sum of variances

The main terms appearing respectively in (3.54), (3.57) and (3.58) all have the form of a
sum of variances over time Yi_, Vp, (ahy,) with p; a distribution over states (respectively
Pk, (+5¢), Pr, (-|5¢) and Py, (-|s¢)), and hy, the optimistic bias of episode k;. A first naive upper

bound of this sum can be derived using Popoviciu’s inequality that we recall in Prop. 3.10.

Proposition 3.10 (Popoviciu’s inequality on variances)

Let M and m be upper and lower bounds on the wvalues of a random variable X i.e.,
P(m <X <M)=1. Then V(X) < (M —m)>.

Using Popoviciu’s inequality and under event F,
Vy, (ahr,) < sp(ahp)?® /4 = ?sp (hx)” /4 < A /4

and so Y71 V,, (ahy,) < A2T/4. Unfortunately, this would result in a regret bound scaling
as O(AVT) (ignoring all other terms like S, A, logarithmic terms, etc.) which is not better
than the bound of Thm. 3.4. In this section, we show that the cumulative sum of variances
only scales as @(AT +A2y/T) resulting in a regret bound of order O (\/ﬁ + ATY 4) (ignoring

all other terms).

We start by analyzing the variance term Vﬁk(-\St) (ahy). The other variance terms V), (|,) (@hg)

and Vg, (s,) (ahg) can be addressed in the same way. We do the following decomposition:

Vs (oo (@) = o2 (Bi([s0)ThE = (Br(-[s0)Thi)?)

= 02( (Pu(-ls) = PECls0))T B+ PrCls)ThE — W (se) + B (sean) — (Pulls0)The)? )
(1) (2) (3)

Notice that for any r.v. X and any scalar a € R, V(X 4 a) = V(X). Thus, the term
Vo Clso) (ahy) remains unchanged when hy is shifted by an arbitrary constant vector i.e.,
when hy is replaced by wg := hg + Age. As in Sec. 3.5.3, we minimize the f,.-norm of
wy by choosing A\ = —% (maxses hi(s) + minges hi(s)). We recall that under event FE,
[wiloo < A/(200) and so [|wi]loe < A?/(40?).

(1) The first term o® Y%, i’;*tifl (B (-|5t) — Pr(-|se))Tw? is similar to S8 AP' (see
Sec. 3.5.3) except that awy is replaced by o?w? and pg(-|s) is replaced by pr(:|s:). In
Sec. 3.5.3 we had to decompose pg(-|st) — Px(:|s¢:) into the sum of pg(-|st) — px(+|s:) and
Dr(-|st) — Px(-|s:). Here we no longer need this decomposition and we can use the same
derivation with sp (a?w}) < A?/4 instead. Therefore, with probability at least 1 — % (and
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3.6. Improved regret analysis for UCRLB using variance reduction methods

under event E):

kr try1—1
DYDY <ﬁk<-|5t>m<-|st>>Tw,%s;’A2¢ (zns,a))mn (65(;‘””)+A2 Tl (5?)

k=1 t=tg

+3A252A41n (“;“1) (1+1n(T))

(2) The second term o? 2112:;1 i@i;flﬁﬂstﬁw% — w3 (s¢41) is identical to 2221 Aj,;fl (see
also Sec. 3.5.3) except that awy, is replaced by a?w?. With probability at least 1 — % (and

under event E):

kT tk+1—1 A2 5T
o’ Z Z m("st)Twz - wl%(st—i-l) < -5 TIn <6)
k=1 t=ty

(3) The last term o? Ziil i’;*tifl w3 (se+1) — (Pr(-|s¢)Twy)? is the dominant one and re-
quires more work. Unlike the first two terms, it scales linearly with T (instead of (5(\/?))
We first notice that py(-|ss)Twy, = wy(s¢) + Dk (+|5¢) Twy —wi(s¢). Using the fact that (a+b)% =
a® + b(2a + b) with a = wi(s;) and b = Pr(-[s¢)Twy, — wi(s;) (and therefore 2a + b =
wg(st) + Pr(+|s¢)Twy) we obtain:

(Br(-[50)Twr)? = wi(se) + (Br(-1se)Twr, — wi(st)) - (wr(se) + Br(-]se)Twr)
and so applying the reverse triangle inequality:
(B (-[se)Twr)? > wi(s) — 1B(-lse) Twr — wi(se)] - [wi(se) + Pr(-]se) Tw (3.59)

For all K > 1 and s € S, we define r(s) := >, mx(a|s)rx(s,a). Using the (near-)optimality

equation (see Sec. 3.5.2) we can write:

lgk — 7k (st) + a(wi(se) — pe(lse)Twi) | = gk — r(se) + a(hi(se) — pr(-lse)Thi)| < ek

Moreover, g = Tmax <y . As a result, since o« > 0:
y €k e a ’

o|Pr(-[st) Twr — w(st))|

= |k — ri(se) + a(wr(se) — pr(-[se)Twk) — g + 7(se) + a (Pr(-|se) — Pr(-[s0))T wg]
< gk — r(se) + a(wr(se) — pr(|se)Twr) | + |re(se) — gel +a |(pe(-Ise) — Pr(-]se))T wg

<rmax <rmax

< 2rmax + | (pr (-] st) — Pr(-|s¢))T wg

It is also immediate to see that |wg(s:) + Pr(-|st)Twk| < 2||wgllo < A/a. Plugging these

inequalities into (3.59) and adding w3 (s¢4+1) we obtain:

o? (wi(se41) = (Br(-ls)Tw0k)?) < 2rmas + | (P Clse) = BClse)T wil) A

3.60
+a® (wf(sea1) — wi(s1)) .
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Chapter 3. Improved exploration-exploitation with Bernstein bounds

It is easy to bound the telescopic sum

tk+1—1
o 3 wilspar) —wils:) = o (wh(s,,) —wi(s,)) < @®wi(sy,,) < A%/4 (3.61)
t=ty
Finally, the sum « Zk ikﬁifl |(pr(-|se) — Pr(-|s¢))T wi| can be bounded in the exact same

way as Zle AP ! (see Sec. 3.5.3). With probability at least 1 — %:

kr tga1—1
N 6SAT / 5T
akzl tztk (P (-|s¢) — Pr(+]5¢)) T w| §3A\l (;F(s,a)> TIn (5) +4A Tln( 5 )

+6AS?Aln (GSAT) (1+1n(T)) (3.62)

J

After gathering (3.61) and (3.62) into (3.60)) we conclude that with probability at least
1-— % (and under event E):

kr tg41—1 kTA2 B
a® > 3" wi(se1) — (Br(-lse)Twp)? < 2rmax AT + . T9 A? (ZW&@)T

k=1 t=ti main term

In conclusion, there exists an absolute numerical constant 8 > 0 (i.e., independent of the
MDP instance) such that with probability at least 1 — %3

T

T T
;Vpkt (o) (@hr,) < 5 (rmaXAT+ AQJ (Za r(s,a)> T1n <5> +A%5%Aln <5) In (T)) .

We can prove the same bound (possibly with a different multiplicative constant () for

s V5., Clse) (ahy,) and S2L, Vi, (1s:) (@hi,) using the same derivation.

3.6.2 Completing the regret bound of Thm. 3.5

After plugging the bound derived for the sum of variances in the previous section (Sec. 3.6.1)
into (3.54), (3.57) and (3.58), we notice that (3.54) and (3.58) can be upper-bounded by
(3.57) up to a multiplicative numerical constant ans so it is enough to restrict attention to

(3.57). The dominant term that we obtain is (ignoring numerical constants):

(Z (s, a)> In (?) In (T) (rmaxAT + AQJ (Z (s, @) Tn <§> +A252A41n (?) In (T))

Using the fact that />, a; <>, \/a; for any a; > 0, we can bound the above square-root
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term by the sum of three simpler terms:

(1) A VT-term (dominant): erax <ZF s,a ) TIn (?) In (T)

(2) A TV term: A(ZF(S,G)>3/4T1/4( < )>3/4\/7

s,a

(3) A logarithmic term: AJ S2A (Z I'(s, a)) In (?) In(T) < AS*Aln (i,;) In (T)

s,a

2
When T > (rﬁax) (Zs,a ['(s, a)) In (%), we notice that the T'/4-term (2) is actually upper-

)
: A )2 T
bounded by the v/T-term (1), while for T' < ( ) (ZS@ F(s,a)) In (3) we can use the

Tmax

following trivial upper-bound 7,1 on the regret:

2 2
A(UCRLB,T) < rmaxT < A (Z I‘(s,a)) In (T> < A g4 <T> .

Tmax J T'max 0

To complete the regret bound of Thm. 3.5 we also need to take into consideration (3.39)
and (3.49) as well as the lower order terms of (3.54), (3.57) and (3.58). It turns out that
the only terms that are not already upper-bounded by (1), (2) and (3) (up to multiplicative

numerical constants) sum as:

T T T
Tmaxt | SAT In (6) + TmaxSAln (6) In(T) + AS?Aln <5> In (7)
If A < rmax then A% /rpa < A < Trax, while if A > rpay then A% /rpax > A > 7ax. There-

fore, alll the above logarithmic terms can be bounded by: max {rmax, T—} S2AIn ( ) In (7).
Moreover, all the /T-terms can be bounded by

max { Pas Vo }J (ZF s,a ) Tln (?) In (T)

To conclude, we only need to adjust & to obtain an event of probability at least 1 — §. This

will only impact the multiplicative numerical constants of the above terms.

3.7 Comparison between upper and lower-bounds

We recall the minimax lower-bound of Prop. 2.12: for any learning algorithm, it is possible
to find a specific worst-case MDP for which the regret suffered is at least Q(rymaxvV DSAT) on
expectation. The intermediate MDP constructed by Jaksch et al. (2010, Figure 3) to prove

Prop. 2.12 satisfies A = ry.xD and so Prop. 2.12 can also be written as

E[A(M, 2, 111, T)] > 0.015 - \/Fmax AV SAT (3.63)
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Chapter 3. Improved exploration-exploitation with Bernstein bounds

i.e., D can be replaced by A.

The upper bound of Theorem. 3.5 (see Sec. 3.4) holds with probability 1 — ¢ but it is
possible to obtain the same bound in ezpectation using the law of total expectations and
setting 0 = 1/\/T:

Eas [Ay (A, T)] = O ( (1 —6) - max{rmax, VrmaxA} [ T(s, a)T> +6 rmaxD (3.64)
N—— s,a N——

<1 <rmax \/T

If we ignore multiplicative numerical constants and logarithmic terms, (3.63) matches the
dominant term of (3.64) up to a factor v/T. Unlike UCRL2, UCRLB is minimaz optimal
in A (or D). To the best of our knwoledge, it is the first bound with this property for
the undiscounted infinite horizon setting. Although the dependency in S dropped from S
(UCRL2) to vVT'S < S (UCRLB), it is still not matching the lower bound (3.63).

Until very recently, it was still an open question of the literature whether v/S is achievable
when I' = Q(S). Quite remarkably, the same question remained open in the discounted
setting. Lattimore and Hutter (2014) indeed proved a 0 (ﬁ) lower-bound on the sample

complexity and derived an upper-bound matching the lower-bound up to a factor I'.1°

In the finite horizon setting, this question was answered by Azar et al. (2017); Kakade et al.
(2018) who proved a regret bound of order O (\/ HSAT ) for their algorithm. Unfortunately,
it is not easy to extend their approach to the infinite horizon case as it seems to heavily rely

on the existence of a known horizon H.

In the infinite horizon undiscounted setting, there had been several notable attempts to
try to fill the gap between lower and upper-bounds. For example, Agrawal and Jia (2017)
initially claimed that the optimistic version of PSRL they designed incurs a regret bounded by
O (rmaXD\/m ) . This improvement was obtained thanks to the use of tighter concentration
inequalities proved by the same authors (Agrawal and Jia, 2017, Lemma C.1 & C.2). To
better understand the main challenge of the proof, it is important to recall that the term v/T'
appears when bounding Af,g in the regret decomposition (see Sec. 3.5 and 3.6). Bounding this
term requires to bound (pg(-|s) — Px(+|s))" hx where py, is the estimated transition probability
under policy 7, Py, is the true transition probability under 7 and hy is the optimistic bias at
episode k. While for a fixed vector v, (pr(:|s) — Px(-]s))T v < sp (v) \/NT;r (Hoeffding bound),

this concentration inequality may no longer hold when v and pj, are correlated (which is the

case for v = hy). To overcome this issue, in the regret proof we used a worst-case bound:

r
D1 (- —o5(- Ty < R
Jhax (Br(-[s) =Dr(|s))T v < sp (v) NF
which introduces v/T in the final regret bound. Agrawal and Jia (2017, Lemma C.2) claimed
that the T could be removed in the above bound. Unfortunately, there seem to be a major
mistake in the proof of both Lemma C.1 and Lemma C.2. We showed both theoretically

10We recall that a regret bound of order C+/T should be compared with a sample complexity bound of order

ﬁ and D is comparable to ﬁ
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and empirically an anti-concentration scaling linearly with v/S when I' = Q(S) (Qian et al.,
2018a). This anti-concentration suggested that in order to remove the VT factor, new argu-

ments were needed that do not involve bounding max,y<p (Px(-|s) — Pr(-]s))T v.

Despite the failed attempts, Tossou et al. (2019) seem to have finally solved this problem
(the paper is still unpublished). Not long before, Ortner (2018) derived a I'-free bound for
ergodic MDPs.

Posterior sampling vs optimism. Agrawal and Jia (2017) points out that their Lemma
C.1 is essentially Lemma 3 of Osband and Roy (2017) re-written. Osband and Roy (2017)
used Lemma 3 to show a bound O (H\/m) on the Bayesian regret of PSRL for finite
horizon problems. Unfortunately, the proof of Lemma 3 is also mistaken and our anti-
concentration result also applies here. Osband and Roy (2017) further claimed that the
improved S-dependency of their bound illustrates the superiority of posterior sampling meth-
ods over OFU methods: the latter will always suffer a regret scaling linearly with S while
the former suffers a regret scaling linearly with v/S. Our result questions the validity of this
claim. Osband and Roy (2017) showed that their claim is empirically verified. However, they
run UCRL2 which indeed suffers S due to the use of Hoeffding/Weissman bounds. Moreover,
they run experiments on a family of MDPs (known as “River Swim”) with increasing S but
I' = 2 in all MDPs. Therefore, on this specific family of MDPs, the regret of UCRLB will
empirically grow as ©(v/S) just like the regret of PSRL. The problem of the S dependency
in the regret bound does not seem to be linked to the family of algorithm used (posterior

sampling vs OFU).

3.8 Conclusion

In this chapter we introduced UCRLB, a variant of UCRL2 that leverages Bernstein concen-
tration inequality to construct the confidence bounds used in the definition of the extended
MDP. We showed that this simple modification allows to save a \/DS/T factor in the regret
bound, implying that the best known minimax lower bound (Prop. 2.12) is somehow tight.
We also generalized the notion of diameter by introducing the concept of travel-budget and
made several contributions to the proof techniques used in the regret analysis of UCRL2-
like algorithms. In the rest of the thesis, we will make an extensive use of all the material

presented in this chapter in different contexts.

For future work, it would be very helpful to simplify and understand better the proof of
Thm. 3.5 (second regret bound). For example, it could be insightful to provide a unified view
of varince reduction methods in RL by relating our analysis to the other works mentioned in
Sec. 3.6.
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4 Exploration—-exploitation in MDPs with
infinite diameter

4.1 Introduction

4.1.1 Motivations

In the undiscounted infinite horizon setting, a major limitation of UCRL2-like algorithms is
that the true unknown MDP M needs to be communicating i.e., its diameter D (see Def. 3.1)
should be finite. For example, when D = 400, the regret bounds of Thm. 3.4 and 3.5 are
worthless'. This is not just an artefact of the regret analysis as whenever D = 400, UCRLB
(as well as UCRL2 and its variants) will indeed suffer a linear regret i.e., will never learn.
One can easily verify this claim by running the algorithms on any non-communicating MDP,
but this behaviour is more easily understood by looking at Example 1 of Ortner (2008). Their
example (see Fig. 4.1a) is a slight modification of the stochastic Multi-Armed Bandit problem
with only two arms/actions in state s —ag and a;— that both have a reward strictly bounded
by max, and a third action that can only be played in a different state s’. If s’ is not reachable
from s, s’ will never be visited and any UCRL2-like algorithm will expect to receive maximal
reward Tmax in that state (by optimism). As a consequence, it will always choose a model
assigning as much probability mass as allowed by the confidence intervals to go from s to s’
(by optimism). The “best” action to play in this optimistic model is the one that is expeced to
cause a transition to s’ with highest probability. In the optimistic model, the probability to go
to " when playing action a; (i € {0,1}) decreases as the number of times the action is played
(N(s,a;)) increases. Therefore, the “best” action keeps changing: it is ag half of the time
(when N(s,a0) < N(s,a1)), a1 the other half (when N(s,ag) > N(s,a1)). The regret incured

is therefore linear whenever the problem is non-trivial i.e., whenever r(s, ag) # r(s,a).

One might be tempted to think that the poor performance of UCRLB in the example of
Fig. 4.1a is only a drawback of the algorithm and that the problem is not intrinsically more

difficult than any RL task where D < +o0. Let’s slighltly modify the previous example (see

"When D = 400, there exists at least one state s € S such that II°2, = () (see Def. 3.2) and so A = 4-oc0.
Since the bounds of Thm. 3.4 and 3.5 scale linearly with respectively A and v/A, they are worthless.
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ap, T < Tm;
0, max Ground truth ‘

********* ag, " = T'max N / o ag, T = Tmax

ai, 7 < Tmax

(a) Failure of UCRL2-like algorithms. (b) Challenging exploration—exploitation.

Figure 4.1: Examples inspired by (Ortner, 2008, Example 1). Fig. 4.1a illustrates why
UCRLB fail to learn when some states are not reachable. Fig. 4.1b ilustrates the additional
difficulty of the exploration—exploitation dilemma when the diameter is potentially infinite.
In both examples, two actions can be played in state s (agp and a;) and only one in state s’

(ao)-

Fig. 4.1b): in state s, action ag yields reward %rmax and action a; yields reward O ; in state
s', action ag yields reward rya.. We further assume that the learning agent knows all the
parameters of the MDP except the transition probability to move from s to s’ after playing
a; (dashed arrows on Fig. 4.1). State s’ can only be reached when playing aq in s but might
also not be reachable at all. If the probability to go to s’ is non-zero, the agent should play
ay in order to move to s’ as quickly as possible. On the other hand, if the probability to
go to s’ is zero, then playing a; only increases the regret and ag should be played instead.
Unfortunately, as long as no transition to s’ has ever been observed, and no matter how many
times action a; has already been played, the statement “the probability to go to s’ is non-zero”
can never be refuted as this probability can be arbitrarily small. In other words, while in
state s and ndependently of past observations, it is impossible for the agent to distinguish
between the two scenarios: arbitrarily low probability versus absence of a transition to s'.
This is not specific to an algorithm but it is a fundamental difficulty of the learning problem.
In the example of Fig. 4.1, an “efficient” algorithm should carefully balance the exploration of
a1 with the exploitation of ag while in s. When in addition the other parameters of the MDP
are unknown, this comes as an extra “cost” compared to the usual exploration—exploitation
trade-off that occurs when D < 4o00. In conclusion, the exploration-exploitation dilemma

becomes intrinsically more challenging in non-communicating MDPs.

Notice that the problems descibed in Fig. 4.1 does not occur in the discounted or finite
horizon settings since the exploration is directly tailored to the states that are reachable within
the known horizon?. Then, it does not matter whether the transition to s’ exists or not. It
is sufficient to test whether the probability to go to s’ is smaller than 1 — « (discounted)
or 1/H (finite horizon). This only requires to play a; for a finite number of times. The
problem of Fig. 4.1 can also be overcome by leveraging on additional prior knowledge about
the MDP (s.t. knowledge of the value of the smallest probability of transition, etc.) given to
the learning agent. In this Chapter, we will assume that no such knowledge is available to

the learning agent and we will analyse the general problem.

One might wonder whether the example of Fig. 4.1 is not artificial and whether MDPs with

1

2The discount factor ~ implicitly defines an “horizon” of order -
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ool 5 !

(a) Initial state s; (b) State reachable from s;  (c) State not reachable from s;

Figure 4.2: Example of non-communicating RL environment: game of Breakout (Mnih et al.,
2015a). The state space is the set of all possible configurations of the brick wall, the paddle
and the ball. Fig. a: The initial state of the game. Fig. b: An example of state reachable
after playing the game for some time. Fig. c¢: An example of state not reachable from the
initial state due to the presence of a “hole”in the brick wall.

non-reachable states (like s’ on Fig. 4.1) are frequently encountered in RL. While assuming
that all states are reachable may seem a reasonable assumption at first sight, it is rarely
verified in practice. In fact, it requires a designer to carefully define a state space S that
contains all reachable states (otherwise it may not be possible to learn the optimal policy), but
that ezcludes unreachable states (otherwise the resulting MDP would be non-communicating).
This requires a considerable amount of knowledge about the environment and its dynamics,
and may be against the main purpose of RL which is to learn in an unknown environment
with limited human supervision. Consider for example a problem where we learn from images
e.g., the Atari Breakout game (Mnih et al., 2015a). A somehow simple “intuitive” state space
could be the set of all “plausible” configurations of the brick wall, ball and paddle. The
situation in which the wall has an hole in the middle is a valid state (e.g., as an initial
state) but it cannot be observed/reached starting from a dense wall (see Fig. 4.2). As such,
it should be removed to obtain a “well-designed” state space. While it may be possible to
design a suitable set of reachable states that define a communicating MDP, this is often a
difficult and tedious task, sometimes even impossible. Now consider a continuous domain
e.g., the Mountain Car problem (Moore, 1990). The state is decribed by the position = and
velocity @ of the car along the z-axis. The state space of this domain is usually defined as
the cartesian product (z,%) € [—1.2,0.6] x [—0.07,0.07]. Unfortunately, this set contains
configurations that are not physically reachable as shown on Fig. 4.3. The dynamics of the
system is constrained by the evolution equations (law of motion). Therefore, the car can not
go arbitrarily fast. On the leftmost position (x = —1.2) the speed & cannot exceed 0 because
this position can be reached only with velocity @ < 0. To reach a higher velocity, the car
would need to acquire momentum from further left (i.e., z < —1.2) which is impossible by
design (—1.2 is the left-boundary of the position domain). The maximal speed reachable for
x > —1.2 can be attained by applying the maximum acceleration at any time step starting
from the state (x,4) = (—1.2,0). This identifies the boundary of an unreachable region (red
area on Fig. 4.3). Note that other states may not be reachable either.

As shown on the example of Fig. 4.1a, whenever the state space is “misspecified” or the
MDP is non-communicating (i.e., D = 400), OFU-based algorithms (e.g., UCRLB) opti-

mistically attribute large rewards and non-zero probability to reach states that have never
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(a) Mountain Car domain .
(b) Mountain Car state space

Figure 4.3: Example of non-communicating RL environment: Mountain Car (Moore, 1990;
Brockman et al., 2016). Fig. a: The (red) car needs to reach the (green) flag on the top
of the hill. The car does not have enough power and first needs to acquire momentum by
reversing. Fig. 4.3b: x and & denote respectively the position and velocity of the car along
the z-axis. The state space is defined by (z, %) € [—1.2,0.6] x [—0.07,0.07]. The state labeled
s1 (in blue) corresponds to the initial state (car at the bottom of the hill at rest). From the
law of motion of the car, it is possible to show that the sates in the red area can never be
reached from s;.

been observed, and thus they tend to repeatedly attempt to ezplore unreachable states. This
results in poor performance and linear regret. In this chapter, we will describe and analyse
an “efficient” algorithm that achieves a sublinear regret in both communicating and non-

communicating MDPs without any prior knowledge on the diameter.

4.1.2 Previous work

Surprisingly, the problem of infinite diameter has received very little attention in the RL
literature. The few papers dealing with this issue do not focus explicitly on this problem.
They incidentally —and only partially— address it by attempting to solve a different —often
more general— problem. Unfortunately, most of this literature is either incomplete (i.e., leaves

a lot of open questions) or not fully accurate (e.g., makes questionable assumptions).

A first attempt to overcome the case D = +oo is REGAL.C (Bartlett and Tewari, 2009)
which requires prior knowledge of an upper-bound ¢ > 0 to the span (i.e., range) of the
optimal bias function h* (this stting will be the focus of Chap. 5). The optimism of UCRL2
is then “constrained” to policies whose bias has span smaller than ¢. This implicitly “re-
moves” non-reachable states, whose large optimistic reward would cause the span to become
too large. Unfortunately, an accurate knowledge of the bias span may not be easier to ob-
tain than designing a well-specified state space. Bartlett and Tewari (2009) proposed an
alternative algorithm — REGAL.D— that leverages on the doubling trick (Auer et al., 1995;
Cesa-Bianchi and Lugosi, 2006) to avoid any prior knowledge on the span. Nonetheless, we
noticed a major flaw in the proof of Bartlett and Tewari (2009, Theorem 3) that questions
the validity of the algorithm (Fruit et al., 2018a, Appendix A). PS-based algorithms also

suffer from similar issues. To the best of our knowledge, the only regret guarantees available
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in the literature for this setting are® (Abbasi-Yadkori and Szepesvari, 2015; Ouyang et al.,
2017b; Theocharous et al., 2017). However, the counter-example of Osband and Roy (2016)
invalidates the result of Abbasi-Yadkori and Szepesvari (2015). On the other hand, Ouyang
et al. (2017b) and Theocharous et al. (2017) present PS algorithms with expected Bayesian
regret scaling linearly with ¢, where ¢ is an upper-bound on the optimal bias spans of all
the MDPs that can be drawn from the prior distribution ((Ouyang et al., 2017b, Asm. 1)
and (Theocharous et al., 2017, Sec. 5)). Ouyang et al. (2017b, Remark 1) claim that their
algorithm does not require the knowledge of ¢ to derive the regret bound. However, in (Fruit
et al., 2018a, Appendix B) we show on a very simple example that for most continuous
prior distributions (e.g., commonly used uninformative priors like Dirichlet), it is very likely
that ¢ = 400 implying that the regret bound may not hold (and similarly for the work of
Theocharous et al. (2017)). As a result, similarly to REcAL.C, the prior distribution should

contain prior knowledge on the bias span to avoid poor performance.

In this chapter, we present TUCRL, an algorithm designed to trade-off exploration and
exploitation in weakly-communicating and multi-chain MDPs (e.g., MDPs with misspecified
state space) without any prior knowledge and under the only assumption that the agent starts
from a state in a communicating subset of the MDP (Sec. 4.2). In communicating MDPs, TU-
CRL eventually (after a finite number of steps) performs as UCRL2, thus achieving problem-
dependent logarithmic regret (Prop. 2.13). When the true MDP is weakly-communicating,
we prove that TUCRL achieves a O(v/T) regret with polynomial dependency on the MDP
parameters. We also show that it is not possible to design an algorithm achieving logarithmic
regret in weakly-communicating MDPs without having an exponential dependence on the
MDP parameters (see Sec. 4.5). TUCRL is the first computationally tractable algorithm in
the OFU literature that is able to adapt to the MDP nature without any prior knowledge.

The theoretical findings are supported by experiments on several domains (see Sec. 4.4).

The work presented in this chapter extends the conference paper (Fruit et al., 2018a).

4.2 Truncated Upper-Confidence RL (TUCRL)

4.2.1 Formalisation of the problem

In all this chapter, we relax the assumption that the true MDP M should be communicating
(see Chap. 3). Instead, we only assume that M is weakly communicating. This is more
general as communicating implies weakly communicating but not conversely. We recall the

definition of a weakly communicating MDP in Def. 4.1 below (Puterman, 1994, Section 8.3.1

3We recall that the problem of weakly-communicating MDPs and misspecified states does not hold in the
more restrictive setting of finite horizon (e.g., Osband et al., 2013) since exploration is directly tailored to the
states that are reachable within the known horizon, or under the assumption of the existence of a recurrent
state (e.g., Gopalan and Mannor, 2015). Therefore, we ignored this part of the literature.
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and Proposition 8.3.1).

Definition 4.1 (Weakly communicating MDP)

An MDP M = {8, A,r,p} is said to be weakly communicating if the state space S can be
partioned into two subsets, S¢ and ST (i.e., S°NST =0 and SCUST =S, such that:
1. Every state in S¢ is accessible from every other state in S¢ under at least one deter-
ministic stationary policy,
2. Either ST is empty or every state in ST is transient under every policy.
Equivalently, M is weakly communicating if and only if the Markov Chain induced by any
stationary policy that plays every action with non-zero probability is unichain. Under such

policy, all states in S¢ are recurrent while, all states in ST are transient.

By definition, the states in ST are not accessible from the states in S and so it is possible to
restrict the state space S to S¢ while still preserving the “properties” of an MDP. The MDP
defined on the restricted state space S¢ is always communicating by definition and we denote

by D€ its diameter i.e.,

c._ o, o
D o ($7$/I)réas)c(><sc ﬂvrerlrl[rSlD E [T(S )’81 - S] 1 (4'1)

where 7(s') := inf {¢ > 1: s, = '} is the first hitting time of s’ (see Sec. 3.3). Similarly, we
denote by A its travel-budget i.e.,

T(s')—1
A®:= ma min ET r.. — (s s)ls; = s 49
s,s/esc};sc mellSD t; max (st,m(st))|s1 (4.2)

where the sum should be interpreted as a Cesaro limit when P (7(s') = +ools) < 1. We
denote by S¢ = |S°| (resp. ST = |ST|) the number of states in S¢ (resp. ST). T¢ =
maXgese qe ||P(]5, a)llo is the maximum support of all transition probabilities p(-|s,a) with
s € 8. As in Chap. 3, the state and action spaces —S and A are still assumed to be finite,

and the rewards are assumed to lie in [0, rmax].

Learning problem. Similarly to Chap. 3, we consider the learning problem where S, A and
rmax are known, while sets S¢ and ST, rewards r and transition probabilities p are unknown
and need to be estimated on-line. As shown by Puterman (1994, Theorem 8.3.2), the following

proposition holds

Proposition 4.1

In any weakly-communicating MDP, the optimal gain g* is state independent.

Since g* is state-independent, we can still evaluate the performance of a learning algorithm
2 by its cumulative regret A(A,T) = YL, g* — r;. Furthermore, we state the following

assumption:

Assumption 4.1

The initial state s1 belongs to the communicating subset of states, i.e., s; € SC.
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While this assumption somehow restricts the scenario we consider, it is fairly common in
practice. For example, all the domains that are characterized by the presence of a resetting
distribution (e.g., episodic problems) satisfy this assumption (e.g., Mountain Car, Cart Pole,
Atari games, taxi, etc.). Under Asm. 4.1, D¢ < +o0.

Multi-chain MDPs. While we consider weakly-communicating MDPs for ease of notation,
all the results presented in this Chapter extend to the more general case of multi-chain
MDPs.? In this case, there may be multiple communicating and transient sets of states and
the optimal gain g* is different in each communicating subset. We then define S¢ as the set
of states that are accessible —with non-zero probability— from the initial state s; (s included)
under some stationary deterministic policy. ST is defined as the complement of S¢ in S i.e.,
ST := 8\ 8C. With these new definitions of S¢ and ST, Asm. 4.1 needs to be reformulated as

follows:

LCE O 0 WA (Equivalent of Asm. 4.1 for Multi-chain MDPs.)

The initial state s1 is accessible from any other state in S¢ under some stationary deter-

ministic policy. Equivalently, S€ is a communicating set of states (i.e., D¢ < 400).

Note that the states belonging to ST can either be transient or belong to other communicating
subsets of the MDP disjoint from S°. It does not really matter because the states in ST will
never be visited by definition. As a result, the regret is still defined as before, where the
learning performance is compared to the optimal gain g*(s1) related to the communicating
set of states S 3 s1. We highlight that ¢g*(s1) = g*(s) for all s € S€.

4.2.2 Algorithm

In this section we present our solution to the problem of learning in an MDP with infinite
diameter. We introduce Truncated Upper-Confidence for Reinforcement Learning (TUCRL),
an optimistic online RL algorithm that efficiently balances exploration and exploitation in
non-communicating MDPs without prior knowledge. Because TUCRL is very similarly to
UCRLB (same structure, confidence bounds, etc.), we do not repeat the full pseudo-code of
Alg. 5 and only stress the differences between the two algorithms which i.e., the extended
MDP constructed at each episode and the stopping condition of an episode. We recall that
the extended MDP constructed by UCRLB is denoted M, (Eq. 3.3 and 3.4).

Estimation of reachable states. UCRLB is optimistic w.r.t. the confidence intervals so that
for all states s that have never been visited (i.e., s.t. -, Ni(s,a) = 0), the optimistic reward
ri(s,a) will automatically be set to rmax by optimism (see example on Fig. 4.1a), while all

transitions to s are set to the largest value compatible with B;;. Unfortunately, some of

“This is the most general category of MDPs that we can define (Puterman, 1994, Section 8.3.1)). Tt includes
all possible MDPs.
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the states with Y, Ni(s,a) = 0 may actually be unreachable (i.e., s € ST) and UCRLB
would uniformly explore the policy space with the hope that at least one policy reaches
those (optimistically desirable) states with non-zero probability (see example on Fig. 4.1a).
TUCRL addresses this issue by first constructing empirical estimates of S¢ and ST (i.e., the
set of communicating and transient states, see Sec. 4.2.1) using the states that have been

visited so far, that is

Sf={s€S: Z Ni(s,a) > 03 U{s;} and Sf:=S8\Sf (4.3)
aEAs

where we recall that ¢4 is the starting time of episode k (see Eq. 3.11). All states in Sf are
for sure reachable from s; and so under Asm. 4.1 (or Asm. 4.2), S¢ C S°. In the rest of this

chapter, we will denote by Sf (resp. S}) the cardinal of Sf (resp. S}).

Truncated transition probabilities. In order to avoid that optimism drives the algorithm
into attempting to reach unreachable states, we could simply execute UCRLB on S,S, which is
guaranteed (by design and under Asm. 4.1 or 4.2) to contain only states in the communicating
set S€. Nonetheless, with such a strategy, the algorithm could under-ezplore some state-action
pairs that would allow discovering other states in S€, thus getting stuck in a strict subset
of 8¢ and suffering linear regret. While the states in Sf are guaranteed to be in 8¢ it is
not possible to know whether the states in S} are actually reachable from Sf or not (see
the example of Fig. 4.1b and the impossibility to distinguish between a zero and arbitrarily
small transition probability). To account for the eventuality that some states in Sf actually
belong to S¢, TUCRL first “guesses” a lower bound on the probability of transition from
states s € Sf to & € S{ and whenever the maximum transition probability from s to s’
compatible with the confidence intervals (i.e., min{1, px(s'|s, a) + ;f‘,f/}, see Alg. 5) is below
the lower bound, it assumes that such transition is not possible. This strategy is based
on the intuition that a transition either does not exist or it should have a sufficiently “big”
mass. However, these transitions should be periodically reconsidered in order to avoid under-
exploration issues. More formally, let (p;(s,a)),~, be positive non-increasing sequences to be
defined later. For all (s,a,s’) € S x Ax S, we define pﬁ(s’\s, a) to be the largest (i.e., most
optimistic) probability of transition from s to s’ through action a that belongs to B;,f(s, a,s’)
(see Eq. 3.3 in Alg. 5) i.e.,

(s'|s,a) == ma . 4.4
g (5']s,a) petE2X ) {r} (4.4)

Forall s’ € Sf, s € Sf and a € As, the empirical mean py(s'|s, a) and variance 57, (s'|s, a) are
by definition zero (since this transition has never been observed so far, see Eq. 3.7 and 3.9),

61n(6SANF ) . .
so that p; (s'|s,a) = min{l, n( N+(: Sva)/ )} (see Eq. 3.1 and. 3.3). Since in that case
k b
pi (s']s,a) does not depend on ', we will drop the dependency on the next state and write
61n(6SAN, (s,a)/5)
N, (s,a)
to pt,(s,a) and, whenever the latter is strictly bigger than the former, forces all transition

pZ(s,a) ;= min< 1, } For all (s,a) € 8¢ x As, TUCRL compares p,i'(s,a)

probabilities to S to be zero (i.e., whenever pi (s,a) < pi, (s,a), pr(s'|s,a) < 0 for all s’ €
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ST). The confidence intervals of all other transitions are kept unchanged. This corresponds

to constructing the alternative restricted confidence intervals

Fk(s, a,s) =

p

{{O} if s €SP, py(s,a) < py.(s,a), and s’ € SF, otherwise: (4.5)

Bh(s,a,5) = [pr(s']s, a) — B35 Bi(s']s,0) + 85| [0, 1]
With the new confidence sets EI;(S, a,s’), Thm. 3.1 of Chap. 3 no longer holds as some of
the probabilities set to 0 might actually be non-zero in the true MDP. In this case, it may be
difficult to relate the optimistic bias hj with the travel-budget of the true MDP (see Sec. 3.3).
To overcome this issue, we slightly increase the confidence intervals B}’;(s, a,s’). Foralls e S
and a € A; we define

;,C;g = Z P;(SWS»@) = Sg 'pz(saa) (46)
s'eS;

sa
D,k

to the transition (s,a) — S} if we were using the same confidence intervals B}],f(s, a,s’) as in
UCRLB. In TUCRL, for all (s,a) € Sf x A such that p; (s,a) < py,(s,a), the probability
pr(s'|s, a) is set to O for all s’ € S§. We thus redistribute this “optimistic probability mass” on

simply corresponds to the mazimal cumulative probability mass that could be assigned

all other states. This amounts to defining the following confidence intervals (for all (s, a,s’) €

SxAxS)

Bg(s,a, §')if s € SF,
Zk(s,a, §) i Bg(s,a, s') if s € 8¢ and p;f (s,a) > py, (s, a), (4.7
b {0} if s € S, pf(s,a) < py(s,a), and s’ € S},

[ﬁk(s’|s,a) - ;f‘,j/,ﬁk(s'\s,a) + ;“;fl—&-lj‘}f] N [0, 1] otherwise.

With the new confidence intervals 7’;(3, a, s'), we will show that the travel-budget of the asso-

ciated extended MDP is bounded by the travel-budget of My, (the extended MDP constructed

by UCRLB) which is itself bounded (with high probability) by the travel-budget of the true

MDP as shown in Chap. 3. Moreover, the increase of Cpk in the confidence bounds only

65 In(6SAN," (s,a)/5)
N;r (s,a)

the confidence intervals of the rewards B¥(s,a) will remain unchanged.

impacts the logarithmic terms of the regret bound since Gk <

. Finally,

Extended value iteration. With some transitions set to 0, it is possible that the associated
extended MDP is not communicating and not even weakly-communicating. The gain of such
an MDP is not necessarily state-independent. Therefore, Lem. 2.7 (see Sec. 3.1.2) no longer
holds and the stopping condition of EVI (Alg. 3) can no longer be used. This problem can
be fixed by restricting the state space of the extended MDP to the set SkEVI defined as the
set of states that are reachable from the communicating set Sf. Since by design (see Eq. 4.7)
all states in S are reachable from S}, in practice there are only two possible cases: either all
the transitions from Sf to S} are forbidden in which case S,];WI = 8¢, otherwise SEVI =S.

Formally, we have:
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SC if for all (s,a) € S¢ x As, p)(s,a) < s, a
SEVI .= k (s,a) k Py (s,a) < py (s, a) (4.8)
S otherwise
We can now define the extended MDP M, as
M, = {S}EW, A, 71(s,a) € BE(s,a), pp(s']s,a) € Zﬁ(s,m s’)} (4.9)

Compared to the extended MDP M, constructed by UCRLB, only the state space (4.8)
and the confidence intervals of transition probabilities (4.7) change. By construction, M,
is always communicating and so its optimal gain is constant, EVI is guaranteed to converge
and Lem. 2.7 applies. TUCRL executes EVI on the extended MDP M. In TUCRL, line 9
of Alg. 5 (Eq. 3.5) is replaced by

(9K, hi, ) := EVI (ﬁf;,gf;, %,0, 51> (4.10)

where Zl; denotes the optimal Bellman operator of M;, with aperiodicity transformation of
parameter « €]0, 1] (and ?Z is the associated greedy operator). We will also denote by py

and 7 the transition probabilities and rewards satisfying

Vs e S, Zth(s) = Z (s, a)ri(s,a) + a Z Z (s, a)pr(s'|s, a)hp(s') + (1 — a)hg(s).

a€A; a€A; s'€S

Finally, we denote by (gj,hj) a solution of the Bellman optimality equation Z];h* = h} +

hie. Since Lem. 2.7 holds, g > gf — “;%

Stopping condition of episodes. Besides the change in the definition of BII‘;’ , the stopping
condition of episodes is also slightly modified compared to UCRLB (line 12 in Alg. 5). In
addition to ending the current episode as soon as vi(s¢,ar) > N ,: (st,ar), TUCRL also stops
whenever Y, Ni(si+1,a) = 0. Equivalently, TUCRL forces an episode to terminate as soon
as a state previously in Sg is visited (the state is then added to S,S) In TUCRL, line 12 of

Alg. 5 is then rewritten as:

if v (sg,ar) > N,j(st,at) or ZNA,(,S’[+1,(1) =0 <<:> St41 € SE) (4.11)

a

This minor change guarantees that for every episode k > 1 and for all the states s € S} and
all actions a € Ay, we have Ng(s,a) = 0 (when the condition is about to be violated, episode

k stops). Furthermore, the number of epsiodes is hardly impacted as we will see.

Communicating MDPs. In the next section, we will show that under Asm. 4.1 (or Asm. 4.2),
and with a carefully tuned sequences (pt(s,a))t>1, TUCRL is always able to learn i.e., to
achieve sublinear regret: A(TUCRL,T) = o(T). When the true MDP is communicating,

this means that all states are eventually visited at least once and so there exists an episode
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k s.t. for all Kk > k, Sf = (). When this condition is met, we notice that S,];:VI = S and
7Z(s,a, ') = Bl(s,a,s) for all 3-tuple (s,a,5') € S x A x S (since >4 = 0). So for all
k >k, My = M, (see Eq. 4.9) and the condition Y, Ni(si+1,a) = 0 is always false mean-
ing that the stopping condition of episodes implemented by TUCRL (4.11) is the same as
the one implemented by UCRLB. For all & > k, TUCRL naturally reduces to UCRLB.
This seems reasonable since UCRLB is known to efficiently learn under the prior knowledge
that the MDP is communicating. When S{ = ), this prior knowledge is not needed and is

automatically deduced from the observations.

Sequences of thresholds. In practice, we set

610 (GSAN,:; (s,a)

3 ) SA
. Nt cy — 4.12
N (s,a) w(s:0) t (412)

p(s,a) :=min ¢ 1,

for all ¢ > 1, so that the condition to remove transition reduces to N; (s, a) > y/t/sa. This
shows that only transitions from state-action pairs that have been poorly visited so far are
enabled, while if the state-action pair has already been tried often and yet no transition to
s’ € S} is observed, then it is assumed that s is not reachable from (s,a). When the number
of visits in (s, a) is big, the transitions to “unvisited” states (S{) should be discarded because
if the transition actually exists, it is most likely extremely small and so it is worth exploring
other parts of the MDP first. Symmetrically, when the number of visits in (s, a) is small, the
transitions to “unvisited” states should be enabled because the transitions are quite plausible
and the algorithm should try to explore the outcome of taking action a in s and possibly
reach states in Sf. We denote the set of state-action pairs that are not sufficiently explored
by

&= {(S,G)ES]SXA : N (s,a) < tk} (4.13)

Executed policy ;. The policy 7 may be stochastic but all actions that are played with
non-zero probability satisfy the (near-)optimality equation. This will simplify the regret proof
compared to Chap. 3.

4.3 Analysis of TUCRL

4.3.1 Optimistic gain and bias
Gain-optimism

The first technical difficulty in the analysis of TUCRL is that whenever some transitions are
disabled (i.e., forced to be 0), the plausible set of MDPs M, may actually be biased and not
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contain the true MDP M. In other words, Thm. 3.1 does not hold for My, (i.e., it is possible
that M ¢ M, for at least one k > 1 with probability strictly bigger than g) However, since
My, is still defined as in Chap. 3, Thm. 3.1 still holds for My, i.e., M € My for all k > 1
with probability at least 1 — g. We denote by E this high probability event as in Chap. 3. In
this section we prove that TUCRL is always gain-optimistic (i.e., g; > ¢*) despite “wrong”
confidence intervals ZI; (4.7). A first approach would be to use Prop. 3.3 as suggested in
Sec. 3.2.1. Intuitively, the “truncation” of the confidence intervals operated by TUCRL only
perturbs the vector Zih* by a term of order n ~ sp (h*) % In (%) compared to £Kh*
ie., ZZh* > Lh* —nge and so g > g* —ny (see Sec. 3.2.1). The problem is that the additional
regret created by the term Z”f:il(tk+1 — tg)nk is of order © (sp (h*) S?A\/TIn (?)) in the
worst case. In order to avoid such a bad dependency in S and A in the regret bound, we rely

on completely different arguments to prove optimism. The following lemma helps to identify

the possible scenarios that TUCRL can produce.

~ Lemma 4.1
Let episode k be such that M € My, SF#0 and

(4.14)

te> Gy =36 (D) 54 (57) In (M“)Q.

]

Then, either Sf = ST (case I) or & # 0, i.e., I(s,a) € SF x A for which transitions to S{

are allowed (case II).

\.

Proof. We prove the result by showing that under the assumptions of Lem. 4.1, we have the
implication & = ) = SF = ST. Assume that episode k is such that inequality (4.14) holds
and that M € My, S # 0 and &, = 0 i.e., for any state-action pair (s,a) € S§ x As

t / At
Nt (s,a) > 1/5—2 > 5—2 =6D°S{In (635 ’“)

Since 8§ # ) and M € My, for any (s,a,s’) € S¢ x A5 x S, p(s']s,a) € B;,f(s, a, s') implying

+
~9 ’ 61n 6SAN, (s,a)
sas' _ o 1 i (8']s,a) In(65 Aty /0) N 5

s'|s,a < pu(s'|s,a) + =
p( ‘ ) — pk( | ) p,k; N;(S, a) N}:—(s, a)

———
transition probability in M =0

61n (7653%“) _ 1
N;(s,a) DSt

=0

IN

where we have exploited the fact that p(s'|s,a) = 0 and 812)7k(s’|5, a) = 0 for any state s’ € S}
(Ni(s,a,s') =0, see (3.13)), and the fact that ¢t > N, (s,a) > 6D°SIn (%).

As in Sec. 2.1.4, for all s € S, we denote by h,, the maximal non-positive fixed point
of the Bellman shortest path operator L., of the true MDP M where all rewards are set
to —1 (see Thm. 2.8). As shown in Sec. 2.1.4, for all (s,a,s’) € S x Ay x S, —=h*, ,(s) =
min,cpsr(ary By [7(s))[s1 = s] — Li.e., b7, ,(s) is the expected length of the stochatic shortest
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path going from s to s’ in the true MDP M. Fix an arbitrary target state s € Sf and define

hmax (3) := max ¢ 56 h*,<(s). By construction, h*,-(5) = 0 and for all s € SF

/ / / * /
his(s) = max g =14 > p(s'ls, a)hls(s) < =1 max ¢ > p(s'ls,a) his(s)

s'eS S0 5’682 Shmax(g)
< -1+ hmax(g) : ggn Z p(s'\s,a) =-1+ hmax(g) ’ ggﬂ 1- Z p(s'\s,a)
s'eS s'eSt fl
<DesT
k
_ 1 _ 1
<=1+ hmax(3)- [ 1= > =gzt | = =1+ hmax(3) - (1 — =5
LS D
s'e€S,

Applying the above inequality to the state s € S achieving h¥*,<(s) = hmax(5) we obtain
—hmax(3) > DC. By definition, —hmax(3) is the minimum expected time it takes to go from
Sf to 5 in M. Therefore, the shortest path between any state s € S¢ C 8¢ and any state in
5 € 8} is strictly longer than D€ in expectation. But by definition D is the longest shortest
path between any pair of states in S¢. Therefore, 5 € ST. Since 5 € S{ was chosen arbitrarily,
then S = S™. [ |

Lem. 4.1 basically excludes the case where ST ¢ S{ (i.e., some states in S have not been
visited yet). Let’s assume that event E holds i.e., M € My, for all k > 1. As pointed out
in Sec. 4.2.2 (paragraph on “Communicating MDPs”), when S} = 0, M = M and so
M € M. Using the same argument as in Sec. 3.2, we have that gi > ¢g*. We now analyze

separately the two cases of Lem. 4.1.

Casel. If S = ST then M € M, (under event E) because TUCRL only forbids transitions
that indeed do not exist in M itself. Formally, for any (s,a,s’) € Sf x As; x S we have
p(s'ls,a) = pr(s'|s,a) = 0and M € My so p(s'|s,a) € 7];(3, a,s’) for all (s,a,s’) € SxA;xS.

In conclusion, g; > g*.

Case2. If & =0, SEV! = S and every state in S is accessible from any other state in S (in
the extended MDP Mj,). Thus, gj is the optimal gain of all the states in S and in particular
the states in S§ (Puterman, 1994, Theorem 8.3.2). For all (s, a) € Sf x As, Z];(S, a,s) =1[0,1]
and B¥(s,a) = [0, rmax] meaning that we can set pi(s|s,a) < 1 and 7(s,a) = rmax. There-

fore the optimal gain in such states is clearly mmax and so g; = rmax-

In conclusion, under event F and for ¢, > C}, TUCRL is always optimistic i.e., gy > g*.
Note that Lem. 4.1 is not true with D€ replaced by A®/rpmax (take for example A® = 0 i.e.,

all rewards equal to rmax)-
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Range of the optimistic bias

The second technical difficulty in the analysis of TUCRL is to bound the range of hy i.e.,
sp (hg). While in communicating MDPs, it is possible to bound this quantity by the travel-
budget of the MDP as sp (hi) < A (see Sec. 3.3.2), in weakly-communicating MDPs A = 400,
thus making this bound uninformative. As a result, we need to restrict our attention to the
subset of communicating states S¢, where the travel-budget A€ is finite. We will actually see
in the regret proof that we only need to bound the range of hy on the subset of states Sf
Le., spse (hi) := maxese {hr(s)} — mingese {hx(s)}. Since the true MDP M belongs to the
extended MDP M, w.h.p. but may not belong to M, we bound PS¢ (hg) by first comparing
the Bellman shortest path operators of My and My (rather than directly comparing the
operators of M and My, like in Sec. 3.3).

Define the extended MDP M/, := {S, A, r(s,a) € Bff/(s,a), p(s'|s,a) € Bg(s,a,s’)} where
Bf/(s, a) := {r — Tmax S-t. 7 € BE(s, a)} and B¥(s,a) (3.4) and B{;(s, a,s’) (3.3) are the con-
fidence intervals used to construct Mj, in UCRLB. We define ﬂ; similarly where B;;(s, a,s)
is replaced by 7’;(5, a,s') (4.7). For any state in S, we denote by LF,, (resp. ng) the Bell-
man shortest path operator to s in M}, (resp. ﬂ;) as defined in Thm. 3.5. We also denote
by h¥,, (resp. E’;s) the fixed point of £¥,  (resp. Z{:S). The fixed points exist and are unique
because every state in Sf is accessible from any state in S (see Thm. 3.5). Furthermore, we

prove the following lemma;:

Lemma 4.2

For all s € 8¢ we have Eis > hE, . (component-wise).

Proof. hE., is a fixed point of £F,, and so for all z € S\ {s},

hlf_)S(:L') = ‘C]bi)shlf—m(x) = max { max {T} Tmax + Max { Z p(sl)hlf—w(sl)}}

a€As | reBE(x,a) pEBf(z,a) s'£s

where B;,f(az, a) = {p €Ag: p(s) e BS(ZL', a,s'), Vs’ € S} (see Eq. 3.17). Similarly, we define
7];(96, a) = {p €Ag: p(s) e Zﬁ(aj,a,s’), Vs e 8}. Our goal is to show that for all z € S,
nghﬂs(a:) > hE, (z) where by definition

Zlf_}shf“_)s(x) = max { max {r} — rmax + max , {Z p(sl)hgs(gf)}}

a€A;s | reBk(z,a) p€7 (z, o' 2s

Denote by p),(-|z,a) € Bf(z,a) the probability distribution achieving the maximum in the
fixed point equation of A, i.e

> pk(s'|z, a)hf, (s) == max {Zp )hL, o ’} (4.15)

s'Es pEBE(x,a) s
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and denote by 7). (:|z,a) € 7’;(3;, a) the analogue of p}.(-|z,a) for 7];(:1;, a) ie.,

> Dk(s'z, a)hf, (s) == max {Z p(S’)hﬁs(S')} (4.16)
Zs

k
e PEZp(z,0)

If z € S} or pf(s,a) > py, (s,a) then 7];(56, a) = B{;(a:, a) by definition (4.7), and so (4.15)
and (4.16) are equal. On the other hand, if z € S¢ and p,j(x,a) < pt,(x,a) (see Eq. 4.7),
then we might not have equality. Define pj.(-|z, a) as

Pi(s'lz,a) if 8" € S\ {s}
Pr(s'|z,a) == q0if ' € S
p;(8/|l‘, (L) + Zyeslz p;g(y|xa CL) if ' =s

Pi(ylx, a) € B]],f(x, a,y) and it is clear from the definition of B]],f(:z:, a,y) for y € S that

> phyle,a) < Yl (yle,a) = Si - pf(s,a) = 5
yeS] yeS]

and so p.(s'|z,a) € 7];(30, a) when z € Sf and pZ(x, a) < pt, (z,a). Moreover, by construction

(see Sec. 3.3) hF, (s') <0 for all s’ € S. In conclusion we can write:

Zpk ]wa Zpk \xa Zpk \xa (/)

§'#s §'#s s'#s

and as a consequence, Z»ishk»—)s<m) > Ek»—)shlf—)s(x) This proves that Z»ishk»—)s 2 £’>€—>shlk—>s =
h,, and Thm. 3.5 implies that 7", > ¥, . m

From Sec. 3.3.2 we know that spsc (hg) < Maxg ;e 50

Egs(w)‘ (see Eq. 3.35 of Thm. 3.3).

Applying Lem. 4.2 and since h”,, < 0 we have that ‘E{:S ‘ ‘hk ‘ and so spge (hg) <
Maxg ;e 50 hE, (x )‘ Finally, we already showed in Sec. 3.3.2 that ‘h ‘ < |t s(z)| (where
hY,, is the fixed point of the Bellman shortest path operator in the true MDP M). In
conclusion, since 8¢ C 8¢, spse (hi) < maxg ;e g0 |hE, o (2)] < max, ese |hE,(z)] = AS.
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4.3.2 Regret guarantees

We prove that the regret of TUCRL is bounded as follows.

\

There exists a numerical constant 5 > 0 such that for any weakly-communicating MDP
(resp. multi-chain MDP), with probability at least 1 — §, it holds that for all initial state
distribution py € Ag satisfying Asm. 4.1 (resp. Asm. 4.2) and for all time horizons T > 1

(Theorem 4.1 (Analogue to Thm. 3.4)

T
A(TUCRL,T) = - max{rmax, A} > I(s,a)Tln (6>
s€SCacAs (4.17)

. + B Tmax (DC)253Aln2 (?) )

The first term in the regret shows the ability of TUCRL to adapt to the communicating
part of the true MDP M by scaling with the communicating travel-budget A® and MDP
parameters S¢ and I'® (more precisely the sum of all I'(s,a) with s € 8¢). The second term
mainly corresponds to the regret incurred in the early stage where the regret grows linearly.
When M is communicating, we match the square-root term of UCRLB (first term) since
A€ = A and 8¢ = S while in the worst-case where A = 7, D, the second term is bigger than
the one appearing in UCRLB by a multiplicative factor DS (ignoring logarithmic terms). It

is not clear whether D¢ can be replaced by A® in general.

Unfortunately, we were not able to adapt the proof techniques of Thm. 3.5 to show a
O (\/m) regret bound in general. Perhaps surprisingly, the problem is not com-
ing from variance reduction methods or any new tool that we introduced in Sec. 3.6. All the
steps of Sec. 3.6 are still valid but the dependency in A® cannot be trivially improved. The
linear (instead of square-root) dependency in A® arises because the telescopic sum appear-
ing in the decomposition of the term AZQ no longer telescops in our analysis, and can only
be bounded by a O (AC\/SW ) term. At first sight, this may seem to be an artefact of
the proof, but it could also be an intrinsic limitation of the algorithm, or even an intrinsic
limitation of the setting (i.e., infinite diameter). In order to avoid spending too much time
attempting to visit unreachable states, TUCRL periodically ignores some transitions that
have never been observed but may lead to highly rewarding state. Yet, TUCRL eventually
takes these transitions into account again if they have not been visited enough (less than
VT/SA times) so as to prevent under-exploration. By doing so, the algorithm may move
back and forth multiple times in the environment (even when only nonexistent transitions
have not been observed), each time suffering a regret of order sp (h*) (in the worst case). The
frequency at which useless transitions are considered is of order \/T/SA. This may be the
cause for the unavoidable linear dependency in A®. We leave this problem as an open ques-
tion. Note that if all states have been visited, then TUCRL eventually becomes completely
equivalent to UCRLB and so the regret scales with v/AC instead.
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4.3.3 Regret proofs

We now provide a sketch of the proof of Thm. 4.1. In order to preserve readability, all following

inequalities should be interpreted up to minor approximations and in high probability.

We follow the same steps as the first regret proof of UCRLB (Sec. 3.5).

Isolating poorly visited state-action pairs. For any state-action pair (s,a), we denote by
Le, {s,a} == 1{(s,a) € &} the indicator function equal to 1 if and only if (s,a) € & and 0
otherwise (see Eq. 4.13 for the definition of ;). We also denote by 1z—{s,a} := 1{(s,a) & &}
the complement of 1¢, {s,a}i.e., 1g, {s,a}t+1g {s,a} = 1. We use this equality to decompose

the regret as:

T
A(TUCRL,T) = Z g = st,at))]lgk {st,a:} +Z g — rt(st,at))ﬂg{st,at} (4.18)
t=1

The first term isolates state-action pairs that have been visited a small number of times i.e.,
such that NV, ,j (s,a) < é—kA. Whenever such a sate-action pair is visited, the corresponding
visit count N (s,a) will be incremented by 1 at the end of episode k. But if N; (s, a) is
incremented too much, we will eventually have IV ,: (s,a) > \/.St‘iil and so intuitively 1g, {s¢,a.}
cannot be equal to 1 too often. Lem. 4.3 indeed shows that the number of times 1¢, {st,a1} =

1 occurs is cumulatively “small”.

7~ Lemma 4.3
For any T > 1 and any sequence of states and actions {si,ai,...... st,ar} we have:
T
> g, {st,a} < 2VSCAT. (4.19)
t=1
\,

Proof. We first notice that by definition t;, < ¢ where k; := sup{k > 1 : t;, < t} is the

current episode at time ¢. As a result,

Lg,, {st,ar} :== Il{N (s¢,at) < \/tkt/SA} < 1{N+(st,at) \/t/T}

Instead of directly bounding Zthl Lg,, {st,a:} we will bound the number of visits Zp in

state-action pairs that have been visited less than \/t/SA times

ZT—ZIL{ (s¢,ar) \/t/T}

We recall that the quantity Ni(s,a) is updated only after the end of episode k£ and the
stopping condition of episodes used by TUCRL implies that

Vk > 1, VY(s,a) € S x A, v(s,a) < N (s,a). (4.20)
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Moreover, for all (s,a) ¢ S® x A, vi(s,a) = 0 implying that only the states s € S¢ should be

taken care of. We first decompose Zr as:

Zr = ZXT: ]l{N,;(s,a) < \/t/z} . Il{(st,at) = (s,a)} = Z ZZT(s,a)

s,a t=1 seS¢ a
T

where Zr(s,a) = Zﬂ{Ni(s,a) < \/'5/;} . ﬂ{(st,at) = (s,a)}.

t=1

Using the fact that for all 7 > 1, ¢ <7 <{,_+1 —1 and eq. 3.13 and 3.14 we have:

VI >7>1, Z:(s,a)=> I{N,;(S,a) < \/t/z} “I{(st,ar) = (s,a)}
t=1

<1 =0
T 41—l
<Y Y(sta) = (s,a)} < > L(s,a0) = (s,a)}
t=1 t=1
— Npi1(s,a) (4.21)

Let’s define ¢, as the last time that Z;(s,a) was incremented by 1:

tsq = Mmax {T >t>1: N,::(s,a) </t/sa and (s, a¢) = (s,a)}
= min{T >t>1: Z(s,a) =Zr s,a)}.

We denote by mg, := ki, , the corresponding episode. By definition and using (4.21),
Zr(s,a) = Zy, ,(s,a) < N, o11(s,a) and N (s,a) < y/tsa/sa. (4.22)

Moreover, by definition of Ng(s,a) (see eq. 3.13 and 3.14) and (4.20):

N, o41(8,a) = N, (5,0) + v, . (5,0) < ZN;QM(S, a). (4.23)

<Nigo(sia) <N, ,(s,a)

=4Vmg g

Gathering (4.22), and (4.23) we obtain:

t | T
Zr(s,a) = Zi, ,(8,a) < N, ,11(5,a) < 2N (s,a) < 24/ ;“ <2 A

= I = Z ZZT(s,a) < 2V/SCAT

sest a

where for the last inequality we used the fact that S¢ < S (by definition) implying S¢/v/S =

VSC/S -V S < VSC. [ |
When Lg,, {st,a¢:} = 1, TUCRL suffers at most the maximum per-step regret rpax >
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g* —r(s,a) and so combined with Lem. 4.3:

T T
Z (9* - Tt(St, at)) ﬂgkt {Sta at} < Tmax Z ]lgkt {St? at} < 2rmax V SCAT (424)
O =

We now have to deal with the second term appearing in the inequality (4.18) i.e., state-action
pairs that have been frequently visited. The whole purpose of restricting attention to those
pairs will be clear later after we expand this term. We slightly change the definition of the

per-episode regret Ay compared to Sec. 3.5 to account for 15{57 a}:

Ay = Z vi(s,a) (9" = r(s,a)) - 1g-{s,a}

s€S,acA

= Z vk(s,a) (g*_r(sga))']la{s,a}.

s€ST,acA

The reason why the sum over all states can be restricted to a sum over states in Sf is
because vi(s) = 0 for all s € S{ by definition of the stopping condition of episode k (4.11).
Furthermore, inequality (3.1) in Lem. 3.38 (Sec. 3.5) is based on an MDS argument and
remains valid even with the additional multiplicative factor Ila {st, a¢} and if we keep v (s, a)

instead of taking the conditional expectation vk (s)mi(als). In the end,

a l AT
S0 = o) g o) < 32 8+ 2y T (55 ).

Isolating non-optimistic episodes. In order to be able to use the optimism property
proved in Sec. 4.3.1, we need to separate the episodes where t;, < Cy (Cj is defined in
Eq. 4.14 of Lem. 4.1) from the other episodes i.e., we decompose the sum of Ay as

kr . ko
STARSY Ap L{ty < Ci}+ > Ap- 1ty > C}
=1 k=1 =1

The episodes where t;, < C} define a full exploratory phase, where the agent may suffer linear
regret. However, this phase is somehow “short”. Define k7 := max{kr > k > 1: t;, < Cy}
to be the last episode kr > k > 1 satisfying ¢, < Cj. Because of the stopping condition of
episodes (4.11), vx(s,a) < 2N; (s, a) for all (s,a) and so t;41 < 2t implying that

k kr kr
Z Ap-1 {tk < Ck} = Z Ag < Tmax Z(tk—i—l - tk) = rmaXtEJ’_l < 2Tmaxtﬁ < 2TmaxCE
k=1 k=1 k=1

2
< T2 (D°) $%Aln (“?T) (4.25)

where the last inequality follows from the definition of Cj.

Per-episode regret. It now remains to bound the dominant term 211221 Ay - Uty > Cr} =

ZZZITJr L Ag. We do this by first analyzing individually the regret Ay of each episode k (as
—RT
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we did for UCRLB). We proceed as in Sec. 3.5.2: we bound g* by gx + €x/2 and plug-in the
(approximate) optimality equation of the extended MDP M}, involving gy, hg, 7 and py (we
recall that all the actions played with non-zero probability satisfy an optimality equation).
The same terms and A} appear except that the sum is over s € S,S and a multiplicative

factor ]lg{s, a} appears e.g.,

=« Z vi(s,a) (Z pr(8'|s,a)hi(s’) — k(s)) 1z-{s,a}

sESY s'eS

a€As
and similarly for Aj. We further notice that for all (s,a) & & (i.e., satisfying 1z-{s,a} # 0)
and s’ € Sf, we have pi(s'|s,a) = 0 by construction of My, (see Eq. 4.7). The whole point of
having 1z-{s,a} in factor is that the sum over s’ € 8 can be restricted to a sum over s’ € Sy

ie.,

=« Z vi(s,a) Z (8|5, a)hi(s’) — hi(s) 1z-{s,a}.
s€SY s'eSy
a€As

In the case of UCRLB, the travel-budget of the whole MDP A appears because the range of
hy can only be bounded by A. But since in the case of TUCRL s’ lies in Sy, only the range of
hi on this subset matters. We already proved in Sec. 4.1 that (under event E) PS¢ (hi) < AC.
This explains why A€ appears instead of A when bounding the regret of TUCRL.

We now proceed as in eq. 3.43 i.e., we add and subtract the term

« Z vi(s,a) Z p(s’\s,a)hk(s')]lg—k{s,a}

s€Sy s'eSy

CLE.AS
in order to obtain two terms A?" and A??. Note that s and s’ are summed over S¢ (as we
just explained) and there is an additional indicator function 15 {s,a} compared to Sec. 3.5.3.
The indicator function does not impact the bound of Azl (the same analysis as for UCRLB
can be carried out, where we enventually bound ]lg {s,a} < 1 once the difference py — p
has been bounded by a positive term). However, the term A’Zz is more problematic. We

decompose this term as follows:

tp41—1

Ai’? = Z Z p(s|st, ap)wi(s') — wy(se41) - 1 {st+1 € S,S} . ]lg{st, at}

t=tp \s'es?

o ADA
=AY

tp41—1

+ « Z (Wk(5t+1) -1 {5t+1 € S,S} — wk(st)) . ]la{st,at}.

t=tg

not telescopic!
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Despite the indicator functions ]lg{st, ar} and 1 {s;41 € S¢}, the term Af,l is still an MDS
because k; (the episode at time ¢) is F;_j-measurable where F;_1 := o(s1,a1,71,...,5) (see

App. A.2) and moreover

E {’wkt (8,54.1)15{8@ at} 1 {St+1 S S]S,}‘ft—l] = Z p(S/‘St, at)wkt (5’):[]_5{(9“6%}-

s’ESf,
o

JFi_1—measurable

As a result, Lem. 3.3 still applies. However, the second term is no longer a telescopic sum
although the problem is not coming from the indicator function 1 {s;41 € Sf}. Indeed, due
to the new stopping condition implemented by TUCRL, for all episodes £ > 1 and time
steps tp <t < tgi1 — 1, st € S§ and so wy(s¢) = wi(se) - 1 {s; € S}. On the other hand,
the presence of the second indicator function Ig- {s¢,a;} is an issue. Using the fact that

]la{st, ar} =1 — 1g, {s¢,a:} we can make a telescopic sum appear:

top1—1
Z wi(s¢41) - 1 {St+1 € S,S} —wg(sy) - 1 {St € S;S}
t=ty,
<AC (telescopic sum)
tp41—1
+ Z (U}k(8t+1> -1 {st+1 € S,S} — wi(s)1 {st € SIS}) -]la{st,at}
t=tg

<AC

Using Lem. 4.3, this term can be bounded by A® 4+ 2A%/SCAT. The presence of this term is
the reason why we were not able to obtain a regret bound scaling linearly with v/ AC instead of
A€. All our attempts to either refine the current analysis, or modify the algorithm to improve

the dependency in A® have failed so far.

The fact that the sum Z:T;?H Ay, starts from k = kp + 1 (instead of k = 1) has no impact
=RT
on the final bound and the increase in the number of episodes due to the modification of the

stopping condition of UCRLB is negligible.

The final regret bounds in Thm. 4.1 is then obtained by combining all different terms (4.24),

kT
(4.25) and the bound on the sum Zk:ﬁ-&-l Ag.

4.4 Experiments

In this section, we present experiments to validate the theoretical findings of Sec. 4.3 (Thm. 4.1).
We compare TUCRL against UCRLB. To the best of out knowledge, there exists no imple-
mentable algorithm to solve the optimization step of REGaL and REGAL.D and so we do not
report any experiments with these algorithms. We are not aware of any other algorithm that

addresses the problem of infinite diameter to compare with.
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Figure 4.4: Cumulative regret in the taxi with misspecified states (Fig. 4.4a) and in the
communicating taxi (Fig. 4.4b). Confidence intervals 3, and f3, j are respectively shrunk by
a factor 0.05 and 0.01. Results are averaged over 20 runs and 95% confidence intervals are
reported.

Figure 4.5: Family of three-state MDPs characterized by a single parameter 6. When ¢ > 0,
the MDP is communicating, when 6 = 0 it is weakly-communicating. Only two stationary
deterministic policies can be played (corresponding to the two actions available in s3).

Taxi Problem. We first consider the taxi problem (?) implemented in OpenAl Gym (Brock-
man et al., 2016). Even such a simple domain contains misspecified states. The state space is
constructed as the outer product of the taxi position, the passenger position and the destina-
tion and this leads to states that cannot be reached from any possible starting configuration
(all the starting states belong to S¢). More precisely, out of 500 states in S, 100 are non-
reachable. On Fig. 4.4 we compare the regret of UCRLB and TUCRL when the misspecified
states are present (Fig. 4.4a) and when they are removed from the definition of the state
space (Fig. 4.4b). In the presence of misspecified states (Fig. 4.4a), the regret of UCRLB
clearly grows linearly with 7' (as expected, see Sec. 4.1) while TUCRL is able to learn as
expected. On the other hand, when the MDP is communicating (Fig. 4.4b) TUCRL per-
forms similarly to UCRLB. The small loss in performance is most likely due to the initial
exploration phase during which the confidence intervals on the transition probabilities used
by UCRLB (extended MDP My}) are tighter than those used by TUCRL (extended MDP
My). Indeed, TUCRL slightly increases some confidence bounds by (% (4.6) compared to
UCRLB (see Eq. 4.7).

Simple three-state domain. In order to better understand the empirical behaviour of the
algorithm, We further study the regret of TUCRL in the simpler three-state domain of

Fig. 4.5. The environment is composed of only three states (sg, s; and s2) and one action
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per state, except in sy where two actions are available. As a result, the agent only has the
choice between two possible policies. We first consider the case the MDP is communicating
by defining 6 = 0.005 > 0. Fig. 4.6a shows that, as expected, TUCRL behaves similarly to
UCRLB. In this example it is able to outperform UCRLB since the preliminary phase in
which transitions to non-observed states are forbidden leads to a less explorative behaviour
that, due to the structure of the problem (s is difficult to reach but it is also non-optimal),

results in a smaller regret.

Fig. 4.6b shows the cumulative regret achieved by TUCRL when the diameter is infinite
i.e., S® = {s0,52} and ST = {s1}. Similarly to the taxi problem, UCRLB fails to learn in this
setting (i.e., suffers linear regret) and for the sake of clarity, we do not report its regret on the
figure. TUCRL quickly achieves sub-linear regret as predicted by theory. However, TUCRL
seem to achieve different regret growth rates depending on whether s; is removed or not.
While the regret curve of Fig. 4.6b quickly achieves an asymptotic regime (slow logartihmic
increase), the regret curve of Fig. 4.6b)seems to keep growing as v/T (no matter for how
long we run the experiment), with periodic “jumps” that are increasingly distant (in time)
from each other. The time between two consecutive “jumps” grows exponentially fast and the
increase in regret at every “jump” also grows exponentially fast. This can be explained by the
way the algorithm works: while most of the time TUCRL is optimistic on the restricted state
space 8¢ = {sg, 52} (i.e., S¢ = 8, it periodically allows transitions to the set ST = {s1}
(ie., Sf = &), which is indeed not reachable. Enabling these transitions triggers “aggressive”
exploration during an entire episode. The policy played is then sub-optimal creating a “jump”
in the regret. At the end of this exploratory episode, S§ will be set again to S€ and the regret
will stop increasing until the condition N,j < /t/sa occurs again. The cumulative regret
incurred during exploratory episodes (when transitions to ST are allowed) can be bounded
by the term plotted in green on Fig. 4.6b (Zthl lg,, {st,a:}). In Lem. 4.3 we proved that
this term is always bounded by O(\/SCW ). Therefore, it is not surprising to observe a VT

increase of both the green and red curves.

Unfortunately, the growth rate of the regret will keep increasing as v/ and will never
become logarithmic unlike when the MDP is communicating (in which case both UCRLB
and TUCRL seem to perform equally well). This is because the condition N," < \/tx/sa
will always be triggered ©(v/T) times for any 7. When ST # (), TUCRL will restrict the
extended MDP every time the condition is triggered while when ST = (), all state-action pairs
will eventually be visited and so this condition will no longer be used to restrict the extended
MDP. In Sec. 4.5 we show that this is not just a drawback specific to TUCRL, but it is rather

an intrinsic limitation of learning in weakly-communicating MDPs.

Note that the big periodic jumps observed in Fig. 4.6b appear because the domain contains
only one state in ST and deterministic transitions (only the rewards are random). For more
complex environments (with random transitions) it is very difficult to predict in advance
what the behaviour of TUCRL will be. However, for MDPs with high randomness in the
transitions, it is likely that we do not observe “jumps” and just a smooth v/T increase (the
green/red curves should always be of the same order of the orange curve as proved by Lem. 4.3,

but they can be arbitrarily smooth or sharp).
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Figure 4.6: Cumulative regret of TUCRL and UCRLB on the MDPs of Fig. 4.5. Fig. 4.6a
corresponds to the case where § = 0.005 > 0. Fig. 4.6a corresponds to the case where § = 0.

E[A(M,UCRL2, u1,T)] o(T) O(DS\/AT In(T))
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Regret upper-bound
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Figure 4.7: Expected regret of UCRL2 (with known horizon T given as input) as a function
of T.

4.5 Learning limitations with infinite diameter

In this section we further investigate the empirical difference in the regret growth of TUCRL
when the diameter is finite and infinite. We prove an impossibility result characterizing the

exploration-exploitation dilemma when the diameter is infinite.

We first recall that the expected regret E[A(M,UCRL2,u;,T)] of UCRL2 (with input
parameter § = 1/37T) after T > 1 time steps and for any finite MDP M can be bounded in
several ways:

Tmax ] (by deﬁnition)
E[A(M, UCRL2, 1, T)] < {34 - 11nax DSV/AT In(3T2%) + & (Prop. 2.14) (4.26)
342 - riax 224 In(T) + C(M) - (Prop. 2.13).

Note that D can be replaced by A without changing the algorithm. The three different
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4.5. Learning limitations with infinite diameter

Figure 4.8: Toy example illustrating the difficulty of learning non-communicating MDPs. We
represent a family of possible MDPs M = (M;).¢[o,1) where the probability € to go from =
to y lies in [0, 1].

bounds lead to three different growth rates for the function T —— E[A(M,UCRL2, u1,T)]
(see Fig. 4.7):

1. for TJL > T > 0, the expected regret is linear in T,
2. for Ty, > T > T;{/[ the expected regret grows as v/T,
3. finally for T" > TY;, the increase in regret is only logarithmic in 7.

These different “regimes” can also be observed empirically (both for UCRL2 and UCRLB).
Using (4.26), it is easy to show that the time it takes for UCRL2 to achieve sub-linear regret
is at most TL = 5(D252A). We say that a learning algorithm is efficient when it achieves
sublinear regret after a number of steps that is polynomial in the parameters of the MDP
i.e., both UCRL2 and UCRLB are efficient. We now show with an example —similar to the
example of Fig. 4.1b presented in introduction of this chapter— that without prior knowledge,
any efficient learning algorithm must satisfy T, = +o0o when M has infinite diameter (i.e.,

it cannot achieve logarithmic regret if D = +00).

Example We consider a family of weakly-communicating MDPs M = (M;).c[o,1] repre-
sented on Fig. 4.8. Every MDP instance in M is characterised by a specific value of € € [0, 1]
which corresponds to the probability to go from x to y. For ¢ > 0 (Fig. 4.8a), the optimal
policy of M, is such that 7*(x) = b and the optimal gain is g7 = 1 while for ¢ = 0 (Fig. 4.8b)
the optimal policy is such that 7*(z) = d and the optimal gain is g5 = 1/2. We assume that
the learning agent knows that the true MDP M belongs to M but does not know the specific
value ¢ associated to M = M.«. We assume that all rewards are deterministic and that the

agent starts in state = (coloured).
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\

Let Cy,Co,a, 8 > 0 be positive real numbers and f a function defined for all £ €]0,1] by

(Theorem 4.2

fle) = Ci(1/e)*. There exists no learning algorithm Az (with known horizon T') satisfying

both
1. for all € €]0,1], there exists TZ < f(e) such that E[A(M., A, 2,T)] < 1/6 - T for all

T > 1T,
2. and there exists T§ < +oo such that B[A(Mo, Az, z,T)] < Co(In(T))? for all T > T§.

Proof. We prove the statement by contradiction: we assume that there exists a learning

algorithm denoted 20 satisfying

1. for all € €]0,1], there exists 7] < f(g) such that E[A(M.,Ar,z,T)] < 1/6 - T for all
T >TJ,

2. there exists Tg < +oo such that E[A(Mo, Az, x, T)] < Ca(In(T))? for all T > Tg.

Any randomised strategy for choosing an action at time ¢ is equivalent to an (a priori) random
choice from the set of all deterministic strategies. Thus, it is sufficient to show a contradiction
when the action played by 2l at any time ¢ is a deterministic function of the past trajectory
hy := {s1,a1,71,...,8:}. In the rest of the proof we assume that 207 maps any sequence of

observations h; = {s1,a1,71,...,:} to a (single) action a;.

By trivial induction it is easy to see that as long as state y has not been visited, the history
h; is independent of £ (2 cannot distinguish between different values of ¢ and plays exactly

the same action when the past history is the same).

Let’s define N9.(z,b) := Y0, 1{(s¢,a;) = (x,b)} the number of visits in (x,b) with a; =
r(h) and € = 0. Note that N2 (z,b) is not random since when ¢ = 0 both action b and

action d loop on x with probability 1. For any ¢ € [0, 1] and any horizon T define the event:

F(T,e):= () {si#u}

1<t<T

where the sequence of states s; is obtained by executing 27 on MDP M,. We will denote by

F(T,¢) the complement of F(T,¢).

For any horizon T, and independently of e, there is only one possible trajectory hy =
{s1,a1,7r1,...,s7} that never goes to y and which corresponds to the trajectory observed
when € = 0. When ¢ = 0, the probability of this trajectory is 1 and so P (F'(7,0)) = 1 (recall

that everything is deterministic in this case) while in general we have (using the Markov

property):

VT > 1, Ve e [0,1], P(F(T,e) =(1—e)Nr@® (4.27)
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We now prove by contradiction that

. 0 .
TEIBOO Np(z,b) = +oo. (4.28)

Let’s assume that C' := max {10, maxy>1{N(x,b)}} < +oo. Taking e = 1/C and applying

the law of total expectation we obtain:

VT > 1, BIA(Myc,Ur,2,T)] = E [A(Mye,%r,2,T)|F(T,1/C)| - P (F(T,1/C))

—T/241/2-NO.(2,)>T/2 —(1-1/C)Nr @D

+ B [A(M, )¢, %r, 2, T)|F(T,1/C)] - P (F(T,1/C))

>0
T 1\ Ne@b) 1\¢ T
> .(1-= > . 1— = > =
2 ( C) 2 < C) 6
N————’

>1/3 by Lem. B.1

where we used the fact that

NO(z,b c
e NY(x,b) < C and (1-1/C) € [0,1] by definition, implying (1 - é) () < (1 - %) ,

C
e since C' > 10 we have (1 — %) > 1/3 by Lem. B.1 (App. B.2) applied to z = 1/C,

e and finally under event F(T,1/C), the regret incurred is exactly T/2+1/2- N%(z,b) >
T/2.

This contradicts our assumption that there exists TIT jo < Foo such that for all T > TlT et
E[A®7, M,y ,c,z,T)] <T/6 and so (4.28) holds.

Since lim7_, 1 NTQ(x, b) = +o0, it is possible to construct a strictly increasing sequence
(T,)nen such that:

VneN, N (z,b) > Np (2,b), To=T5, Ti >Cy Ti>Co(In(Ty))” and N (x,b) > 10

We also define the (strictly decreasing) sequence: &, := 1 /N%L (x,b), Vn > 1. By the law of

total expectation:

E[A®Ry,, M., ,x,T,)] = E[A®Rp,, M., , 2, Ty)|F(Th,en)] - P (F(Th,en))

>Tn/2

O xT
=(17€n)NTn( ,b)

+E [, M.y, . T) (T )| - P (F(Thne0)

> (11— En)N%n(z’b) —

Ty
— 4.2
: (4.29)

|5 Y

>1/3 by Lem. B.1

where we applied Lem. B.1 (App. B.2) to = &, < 1/10 since N, (z,b) > 10 for all n > 1.
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Moreover, since by construction for all n > 1, T;, > Ty = 15 we have by assumption that

Wn > 1, B[A®R,, Mo,z,T,)] = %N%n (2,b) = zi < Co(In(Th))?

En
— > ( ! )
nZCXP|\ ————7/3
(202'671)1/5

Since lim;,—, o0 1/e, = 400 and lim,_, o exp <x1/5) /x® = +oo there exists N € N such
that for all n > N, T,, > f(e,). By assumption, for all n > N,
Ty

E[A(QlTn7M€nax7Tn)] ?

which contradicts (4.29) therefore concluding the proof. [

Note that point 1. in Lem. 4.2 formalizes the concept of “efficient learnability” introduced
by Sutton and Barto (2018, Section 11.6) i.e.,“learnable within a polynomial rather than
exponential number of time steps”. All the MDPs in M share the same number of states
S = 2, number of actions A = 2, and gap in average reward v = 1/2. As a result, any
function of S, A and d, will be considered as constant. For ¢ > 0, the diameter and travel-
budget coincide with the optimal bias span of the MDP and A = D = sp (h*) = 1/e < 400,
while for e = 0, A = D = 400 but sp(h*) = 1/2. As shown in Eq. 4.26 and Thm. 4.1,
UCRL2, UCRLB and TUCRL satisfy property 1. of Lem. 4.2 with a = 2 and C; = O(S?A4)
but do not satisfy 2. Lem. 4.2 proves that no algorithm can actually achieve both 1. and 2.
As a result, since TUCRL satisfies 1., it cannot satisfy 2. This matches the empirical results
presented in Sec. 4.4 where we observed that when the diameter is infinite, the growth rates
of the regret of TUCRL is of order ©(v/T). An algorithm that does not satisfy 1. could
potentially satisfy 2. but, by definition of 1., it would suffer linear regret for a number of
steps that is more than polynomial in the parameters of the MDP (more precisely, e” 1/6).
This is not a very desirable property and we claim that an efficient learning algorithm should
always prefer finite time guarantees (1.) over asymptotic guarantees (2.) when both cannot

be accommodated.

4.6 Conclusion

In this chapter we introduced TUCRL, an algorithm that efficiently balances exploration and
exploitation in weakly-communicating and multi-chain MDPs, when the starting state s;
belongs to a communicating set (Asm. 4.1). We showed that TUCRL achieves a square-root
regret bound scaling with parameters (D¢, S€, T'°) of the communicating part of the MDP
and that, in the general case, it is not possible to design algorithm with logarithmic regret

and polynomial dependence on the MDP parameters. Several questions remain open:
1. relaxing Asm. 4.1 by considering a transient initial state (i.e., s; € ST),

2. investigating whether a regret scaling as O (\/ ACSCFCAT) is achievable,
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3. refining the lower bound of Jaksch et al. (2010) to finally understand whether it is
possible to scale with sp (h*) (at least in communicating MDPs) instead of A > sp (h*)
(the flaw in REGAL.D may suggest it is indeed impossible).

In the next chapter, we will show that achieving a regret scaling with sp (h*) instead of A is

at least possible when the value sp (h*) is known and given as input to the learning algorithm.
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5 Exploration—-exploitation with prior
knowledge on the optimal bias span

5.1 Introduction

5.1.1 Bias span versus travel-budget

While the travel-budget A quantifies the total “cost” incurred to “recover” from a bad state in
the worst case (i.e., when g* = rpax), the actual regret incurred while “recovering” is related
to the difference in potential reward between “bad” and “good” states, which is accurately
measured by the span (i.e., the range) sp (h*) of the optimal bias function h*. While the
travel-budget is an upper bound on the bias span (Sec. 3.3.2), it could be arbitrarily larger
(e.g., weakly-communicating MDPs may have finite span and infinite travel-budget) thus sug-
gesting that algorithms whose regret scales with the span may perform significantly better.!
Building on the idea that the OFU principle should be mitigated by the bias span of the opti-
mistic solution, Bartlett and Tewari (2009) proposed three different algorithms (referred to as
REcAL) achieving regret scaling with sp (h*) instead of A. The first algorithm defines a span
regularized problem, where the regularization constant needs to be carefully tuned depending
on the state-action pairs visited in the future, which makes it unfeasible in practice. Alter-
natively, they propose a constrained variant, called REGAL.C, where the regularized problem
is replaced by a constraint on the span. Assuming that an upper-bound ¢ on the bias span
of the optimal policy is known (i.e., sp (h*) < ¢), REGAL.C achieves a regret upper-bounded
by (5(08 VAT). Unfortunately, they do not propose any computationally tractable algorithm
solving the constrained optimization problem, which may even be ill-posed in some cases.
Finally, REGAL.D avoids the need of knowing the future visits by using a doubling trick, but
we argued in Chap. 4 that the analysis is flawed and probably difficult to fix.

In this chapter, we take inspiration from REGAL.C and propose a constrained optimization

problem for which we derive a computationally efficient algorithm, called ScOPT (analogue

!The proof of the minimax lower-bound (Prop. 2.12) relies on the construction of an MDP whose travel-
budget actually coincides with the bias span (up to a factor 2), thus leaving the open question whether the
“actual” lower-bound depends on A or the bias span (or an even tighter quantity).
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to EVI). We identify conditions under which ScOpT converges to the optimal solution and
propose a suitable stopping criterion to achieve an e-optimal policy. Finally, we show that
the convergence conditions are always satisfied and the learning algorithm obtained by in-

tegrating SCOPT into a UCRL2-like scheme (resulting into SCAL) achieves regret scaling as

6(\/ min{A, ¢}I'SAT) when an upper-bound ¢ on the optimal bias span is available.

5.1.2 Exploration bonus

In Sec. 5.7, we build on ScOprT to derive SCAL™, a variant of REGAL.C which enforces
optimism through the use of an exploration bonus rather than an extended MDP. REGAL.C
estimates the true MDP (rewards and transition probabilities) and adds a state-action depen-
dent high probability confidence bound to the reward function (not the transition probability).
Strehl and Littman (2008b) were the first to exploit the idea of enforcing exploration in RL
by using a “bonus” on the reward. They analysed the infinite-horizon y-discounted setting
and introduced the Model Based Interval Estimation with Exploration Bonus (MBIE-EB)
algorithm. MBIE-EB plays the optimal policy of the empirically estimated MDP where
for each state-action pair (s,a), a bonus b(s,a) is added to the empirical average reward
7(s,a) i.e., the immediate reward associated to (s,a) is 7(s,a) + b(s,a). The goal of RL is
to find a policy maximizing the cumulative reward i.e., the Q-function. Therefore, the bonus
needs to account for the uncertainty in both the rewards and transition probabilities and so
b(s,a) = © (’i“f*;‘ m) where §22 is the range of the @Q-function. Strehl and Littman
(2008b) also derived PAC guarantees on the sample complexity of MBIE-EB. More recently,
count-based methods (e.g., Bellemare et al., 2016; Tang et al., 2017; Ostrovski et al., 2017;
Martin et al., 2017) tried to combine the idea of MBIE-EB with Deep RL (DRL) techniques

to achieve a good exploration-exploitation trade off in high dimensional problems. The ex-

ploration bonus usually used has a similar form 5) (\/%) where [ is now an hyper-parameter
tuned for the specific task at hand, and the visit count NV is approximated using discretization

(e.g., hashing) or density estimation methods.

Exploration bonuses have also been successfully applied to finite-horizon problems (Azar
et al., 2017; Kakade et al., 2018; Jin et al., 2018). In this setting, the planning horizon H is
known to the learning agent and the range of the Q-function is ryaxH. A natural choice for
the bonus is then b(s,a) = O (rmaxH/\/N(s,a)). UCBVLI introduced by Azar et al. (2017)
uses such a bonus and achieves near-optimal regret guarantees é(H VSAT ). Extensions of
UCBVL1 exploiting the variance instead of the range of the @-function achieve a better
regret bound O(VHSAT) (Azar et al., 2017; Kakade et al., 2018; Jin et al., 2018).

Both the finite horizon setting and infinite horizon discounted setting assume that there
exists an intrinsic horizon (respectively H and ﬁ) known to the learning agent. Unfortu-
nately, in many common RL problems it is not clear how to define H or ﬁ and it is often
desirable to set them as big as possible (e.g., in episodic problem, the time to the goal is not
known in advance and random in general). As H tends to infinity the regret (of UCBVI_1,
etc.) will become linear while as v tends to to 1 the sample complexity (of MBIE-EB, etc.)

tends to infinity (not to mention the numerical instabilities that may arise). In this chapter
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we analyze the exploration bonus approach in the infinite horizon undiscounted setting which
generalizes the two previous settings to the case where H — +oo and v — 1 respectively (see
Sec. 2.2). Although REGAL.C can be efficiently implemented in the tabular case, it is difficult
to extend it to more scalable approaches like DRL. In contrast, as already mentioned, the
exploration bonus approach is simpler to adapt to large scale problems and inspired count
based methods in DRL.

SCALT is the first algorithm that relies on an exploration bonus to efficiently balance
exploration and exploitation in the infinite-horizon undiscounted setting. All the exploration
bonuses that were previously introduced in the RL literature explicitly depend on v or H
which are known to the learning agent. In the infinite-horizon undiscounted case, there
is no predefined parameter informing the agent about the range of the @-function. This
makes the design of an exploration bonus very challenging. To overcome this limitation,
we make the same assumption as in REGAL.C and SCAL i.e., we assume that the agent
knows an upper-bound ¢ on the span (i.e., range) of the optimal bias (i.e., value function).
The exploration bonus used by SCAL* is thus b(s,a) = ©(max{c, rmax}/v/N(s,a)). In
comparison, other algorithms in the infinite horizon undiscounted setting like UCRLB or
SCAL can, to a certain extent, be interpreted as virtually using an exploration bonus of order
O (max{A, rmax }VT/N(s,a)) and ©(max{c, rmax}/T/N(s,a)) respectively. This is bigger
by a multiplicative factor v/T. As a result, to the best of our knowledge, SCAL* achieves
a “tighter” optimism than any other existing algorithm in the infinite horizon undiscounted
setting and is therefore less prone to over-exploration. Surprisingly, the tighter optimism
introduced by SCAL™T compared to SCAL and UCRLB is not reflected in the final regret
bound with the current statistical analysis (\/f appears in the bound although not being
included in the bonus). We isolate and discuss where the term VT appears in the proof sketch
of Sect. 5.7.3. While Azar et al. (2017); Kakade et al. (2018); Jin et al. (2018) managed to
remove the /T term in the finite horizon setting, it remains an open question whether their
result can be extended to the infinite horizon case (for example, the two definitions of regret
do not match and differ by a linear term). Finally, the analysis of Sec. 3.6 does not apply to
SCALT because ¢ explicitly appears outside the square-root in the expression of the bonus.
Overall, SCAL only achieves a regret of order O(max{rmax, c}vVI'SAT) which is worse than
SCAL.

Despite achieving a looser regret bound, SCAL™ achieves a tighter optimism. In Sec. 5.8
we show how to combine the advantages of SCAL and SCAL™ into a single algorithm named
SCAL*.

The work presented in this chapter extends the conference paper (Fruit et al., 2018b) and
the paper under submission (Qian et al., 2018b).
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5.2 Span-constrained exploration-exploitation in RL:
REGAL.C and relaxations

5.2.1 The approach of REGAL.C

Our first algorithm SCAL (Sec. 5.5) is a tractable variant of REGAL.C. We therefore start by
recalling the algorithmic structure of REGAL.C. REGAL.C follows the same steps as UCRL2
(and UCRLB) but instead of solving problem (2.34) at each episode (see Chap. 2 and 3), it

tries to find the best optimistic model M € M, having constrained optimal bias span i.e.,

sup { max g}\}} = sup gy (5.1)
MeM, \mellsP MeM.

where the bounded parameter MDP M. is the set of plausible MDPs with span of the optimal
bias bounded by c i.e.,

Mo :={M e M :sp(hy) <c}. (5.2)

REGAL.C discards any MDP M € M whose optimal policy has a span larger than ¢ (i.e., such
that sp (h};) > ¢) and looks for the MDP with highest optimal gain g}, among all remaining
MDPs.

Well-posedness. There is no guarantee that all the MDPs in M are weakly communicating
and thus have state-independent gain.? This could make the comparison of policies difficult.
Two policies 7,7 € ISR with state-dependent gain cannot necessarily be compared since
we might have g};(s) > g37(s) for some state s € S while g3;(s") < g37(s’) for some other
state s’ # s. When there is no constraint on the bias, this is not a problem as we can prove
that there always exists a policy that dominates all others component-wise (Puterman, 1994,
Chapter 9).° When there exists a constraint on the bias, this may no longer be the case. As
a result, unlike in the case of UCRL2 and UCRLB, the supremum (5.1) might not always
be well-defined* and we suspect the problem to be ill-posed in general. This intuition comes
from Ex. 5.1a (that will be presented in Sec. 5.3) where we show the necessity of enforcing
a state-independent gain (i.e., as a constraint of the optimization problem). Moreover, even
if we ignored all the problems in the formulation of REGAL.C and assumed that (5.1) was
well-posed, searching the space M, seems to be computationally intractable. Finally, for any
M € M, there may exist several optimal policies with different bias and some of them may
not satisfy the Bellman optimality equation (see Prop. 2.4) and are thus difficult to compute.
In the next section, we introduce a relaxation of problem 5.1 that is both well-posed and

easier to analyse.

2For example, the extended MDPs that we have considered so far contain multi-chain MDPs.

3If the MDP is weakly-communicating, the optimal gain is even state-independent as shown in Prop. 2.4
which is why (2.34) is well-posed.

4Making the problem well-posed would require to fix a “reference” state or a distribution over states.
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5.2.2 A first relaxation of REGAL.C

The high-level idea of our relaxation is to replace the constraint on the set of plausible
MDPs (bounded parameter MDP) by a constraint on the policy space. Formally, we modify
problem (5.1) as follows:

Sup{ sup 917{4} (5.3)
MeM (el (M)

where the policy space II.(M) is defined as

IM.(M) := {7r eII°% . sp(h7,) < ¢ and sp(g};) = 0}. (5.4)

By convention, we set max e, (a){95} to —oo when II.(M) = (). The condition sp (g7,) =
0 makes sure that the policy space only contains policies with state-independent gain. As a
result, two policies can always be compared by comparing their gains (and so problem (5.3)
is well-posed). Note that we do not restric attention to deterministic stationary policies, but
consider also randomized policies. It will quickly become clear that considering randomized

policies makes the problem easier to solve and analyze.

Equivalent extended formulation. One of the advantages of (5.3) over (5.1) is that it
can be reformulated as finding a gain-mazimizing policy of an extended MDP. Just as solv-
ing (2.34) is equivalent to solving (2.35) (see Chap. 2), problem (5.3) is equivalent to solving

the following optimization problem:

sup g+ (5.5)
mtello(MT)

where M™ is the extended MDP associated with the bounded parameter MDP M. Un-
like (5.1), for every MDP in M (not just those in M,), (5.3) considers all (stationary)
policies with constant gain satisfying the span constraint (not just the deterministic optimal

policies).

Existence of the maximum and relaxation. Since (M, n) — ¢, and (M,7) — sp(hf;)
are in general non-continuous functions, the argmax in (5.1) and (5.3) may not exist (i.e., the
maximum may not be reached). Despite this technical difficulty, we can show that (5.3) is

always a relazation of (5.1) in terms of supremum value (provided we enforce the additional
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constraint of state-independent gain in (5.1)).

Proposition 5.1

Define M. := M.N{M € M : sp(g};) = 0} the restriction of M. to MDPs that have

state-independent optimal gain. Then

sup {max 93{4}2 sup {ga} < sup { sup gp -
MeM, (melsP MeM, MeM | rell.(M)

Proof. Let M € M, and denote by 7* an optimal policy of M, with g}, and h}, the
associated gain an bias. By definition sp(g3,) = 0 and sp(h};) < ¢ and so 7* € II.(M).
Therefore, g3, < SupPrem,.(ar) 9s- Since gj is the optimal gain of M (maximum over all
policies), we actualy have an equality: g}, = suprcm,(ar) gjy- Since this is true for all M €

M., we have

sup {gy/} = sup { sup g}\r/[}g sup{ sup g”M}
MeM. MeM, \melle(M) MeM | mell(M)

where the inequality follows from the fact that M, C M. |

Due to Prop. 5.1, if the solution of (5.1) is optimistic i.e., bigger than the optimal gain g*
of the true unknown MDP, so is the solution of (5.3). As a result, any algorithm solving (5.3)
should intuitively enjoy the same regret guarantees as REGAL.C (which solves (5.1)). In
the following we further characterize problem (5.3), introduce a truncated value iteration
algorithm to solve it (called ScOpT), and finally integrate it into a UCRL2-like scheme to

recover REGAL.C regret guarantees.

5.3 The Optimization Problem

In the previous section, we showed that our new optimization problem (Eq. 5.3) can be
equivalently formulated as a span-constrained gain-maximization problem on the extended
MDP (Eq. 5.5). In this section we analyze some properties of the following optimization

problem (of which (5.5) is an instance),

sup  ghy = . (M)
well. (M) M ( (56)

where M is any MDP (with discrete or compact action space) such that II.(M) # (. Prob-
lem (5.6) aims at finding a policy that maximizes the gain g7, within the set of randomized
policies with constant gain (i.e., sp (¢7;) = 0) and bias span smaller than c (i.e., sp (h];) < ¢).
Since g7, € [0, rmax] (i-e., g, is bounded), the supremum always exists and we denote it by
g5(M). The set of maximizers is denoted by II*(M) C II.(M), with elements (M) (if
IT%(M) is non-empty). In order to give some intuition about the solution(s) of problem (5.6),

we introduce the following illustrative MDP.
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Figure 5.1: Toy example illustrating the properties of optimization problem (5.6). Fig. 5.1a:
The MDP is communicating and only has deterministic transitions and rewards for all ac-
tions (2 actions per state). Fig. 5.1b: Maximum gain achievable g} (y-axis) as a function
of the span constraint ¢ (x-axis) with all (randomized) stationary policies (blue line) and
only deterministic policies (dashed red line). Ounly policies with state-independent gain are
considered (i.e., the policy playing aj in both states is ignored).

Example Consider the two-state MDP depicted in Fig. 5.1a. Since there are only two
actions ag and a1 in both states, for any stationary policy 7 = (d)* € II°R, the associated

DMR

decision rule d € can be parametrized by two quantities: x (the probability to play ag

in s¢) and y (the probability to play ag in s1). With this parametrization:

1— 1z
y 11—y -y

We can compute the gain g = [g1,¢92] and the bias h = [hy, hs] by solving the linear
system (2.11). For any = > 0 or y > 0, we obtain

1 z(1-3y) 1 1—-3y
9g1=92 B 20z +y) 2 1=3 20z + )

while for z = 0, y = 0, we have g1 = 1/2 and g = 1, with hg = h; = 0. Note that
0 < sp(h™) < 1 for any 7 € II5R. By considering different values for  and v, this example
allows us to analyze the properties of optimization problem (5.6). For example, on Fig. 5.1b
we show how the solution of (5.6) varies with the span constraint c¢. We also show the
evolution when the policy space is restricted to deterministic policies. This curves can be
easily deduced from the above formulas for g; /g2 and hy — hy. Note that Fig. 5.1b ignores

the case x = y = 0 since it corresponds to the only policy with state-dependent gain.

Randomized policies. When the bias span is unconstrained, there always exist an optimal
stationary deterministic policy (see Sec. 2.2). In contrast, the following lemma shows that

there may not exist any deterministic policy solution to (5.6) even if a randomized solution
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exists.
Lemma 5.1

There exists an MDP M and a scalar ¢ > 0, such that II5(M) # 0 and IT: (M) NP (M) =
0 (i.e., the solution of (5.6) is not a deterministic policy).

Proof. Consider Ex. 5.1a with constraint 1/2 < ¢ < 1 (see Fig. 5.1b for a graphical repre-
sentation). The only deterministic policy mp with constant gain and bias span smaller than ¢
corresponds to x = 0 and y = 1, which leads to ¢"? = 1/2 and sp (h™?) = 1/2. On the other
hand, the randomized policy mr corresponding to x = 1 and y = (1 — ¢)/(1 + ¢), satisfies
sp(h™®) = ¢ and ¢"F = ¢ > ¢™P, thus proving the statement. [

Constant gain. The following lemma shows that if we consider non-constant-gain policies,

the supremum in (5.6) may not be well defined, as no dominating policy exists. A policy

7 € ISR is dominating if for any policy ©’ € ISR, g™(s) > ¢™ (s) in all states s € S.
Lemma 5.2

There exists an MDP M and a scalar ¢ > 0, such that there exists no dominating policy 7

in T with constrained bias span (i.e., sp (h™) < c).

Proof. Consider Ex. 5.1a with constraint 1/2 < ¢ < 1 (see Fig. 5.1b for a graphical represen-

tation). As shown in the proof of Lem. 5.1, the optimal stationary policy mr with constant

gain satisfies g} = [¢,¢]. On the other hand, the only policy = with non-constant gain is
x =0, y =0, which has sp(h™) =0< cand ¢"(sp) =1/2 < c=g} and ¢"(s1) =1 > c = ¢,
thus proving the statement. [ |

Lem. 5.2 shows that when the search space is not restricted to policies with state-independent
gain, problem (5.6) is not well-posed. We suspect that the same problem arises with REGAL.C
(see (5.1)) although it is much more difficult to derive a counter-example in that case (M. is

a more complex mathematical object).

Existence of amaximizer. Whether problem (5.6) always admits a maximizer (i.e., whether
IT*(M) # 0) when the search space is not empty (i.e., when II.(M) # 0) is left as an open
question. This question may not be easy to answer since in general, ™ — ¢™ is not a continuous
map and II. is not a closed set (and therefore classical results of topology do not apply). For
instance in Ex. 5.1a, although the maximum is attained, the point x = 0, y = 0 does not
belong to II. (i.e., I, is not closed) and g™ is not continuous at this point. Notice that in
the particular case where the MDP is unichain (see Def. 2.2), I, is compact, m — g™ is

continuous, and we can prove the following lemma:

Lemma 5.3

If M is unichain then IT5(M) # (.
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Proof. The proof can be found in (Fruit et al., 2018b, Appendix A.1). |

The goal of this section was to better understand problem (5.5) (equivalent to (5.3)) by
analyzing the more general problem (5.6). We saw that this problem is not as easy as its
unconstrained counterpart (2.35). In the next sections, we will show how to construct an
extended MDP so that (5.5) admits a maximizer (e.g., the extended MDP will be unichain
so that Lem. 5.3 holds) and the problem can be efficiently solved.

5.4 Planning with SCOPT

In this section, we introduce ScOPT and derive sufficient conditions for its convergence to the
solution of (5.6). In Fruit et al. (2018b, Appendix B) we show examples where convergence
to the solution of (5.6) does not hold when these conditions are not satisfied, implying that
these conditions are also necessary in some sense. In the next section, we will show that these

conditions always hold when ScOPT is carefully integrated into UCRLB.

5.4.1 Span-constrained value and policy operators

ScOpT is a version of (relative) value iteration (Puterman, 1994; Bertsekas, 1995), where
the optimal Bellman operator is modified (“truncated”) to return value functions with span
bounded by ¢, and the stopping condition is tailored to return a constrained greedy policy

with near-optimal gain.

Topology of the span “truncation” operator. Let B, := {v : sp (v) < ¢} be the “semi-ball”

of span constrained value functions (we recall that sp(-) is a semi-norm).

Definition 5.1

For any vector v € R and any ¢ > 0, the span-truncation operator I'. : R — B, is
defined as: T'wv(s) := min {v(s), ming v(z) 4 ¢} for allv € RS and s € S.

The following lemma shows that ', can be seen as a projection operator (in span semi-norm)

on the semi-ball B..
7~ Lemma 5.4

For any vector v € RS and ¢ > 0, Tww is a projection of v on the semi-ball V, in span
semi-norm i.e.,

v € arg minsp (z —v).
ZGBC

\

Proof. See App. C. |

Note that the projection is not uniquely defined: for any A € R, I'cv + Ae is also the

projection of v on the semi-ball B, (because sp (e¢) = 0). We provide a geometric illustration
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v(s2)

Figure 5.2: Geometric representation of projection I'. in the 3-dimensional case (S = 3).

of I'; in the three-dimensional case (S = 3) on Fig. 5.2. For simplicity we represent I'. in the
normed quotient space induced by the semi-norm sp (-) on R3. In the quotient space, sp (-) is
an actual norm and B, is an actual ball of radius ¢ for that norm. Since the null space of sp (+)
is the set of vectors of the form Ae with A € R, it is immediate to see that the quotient space
is in bijection with R? x {0} (one coordinate is set to 0 and the others are free variables). In
Fig. 5.2 the tird dimension v(s3) is set to 0 while v(s1) and v(sg) are represented on the x and
y axis respectively. The ball B, is represented by a bue line and the red arrows correspond to
the projection I'. on B.. We can divide R? in different areas (separated by dashed red lines
on the figure) where projecting a point located outside the ball onto the ball has a different

effect. By definition of I'., every point inside the ball is an invariant of T'..

Like L, I'. satisfies 3 important properties that are key to apply the tools of Chap. 3 while

enforcing the constraint on the bias: monotonicity, non-expansiveness and “linearity”.

r Lemma5.5 (Analogue of Prop. 2.5)

Let v and u be any two vectors in RS, then:
(a) T, is monotone: v > u = T'.v > T.u.

(b) T'c is non-expansive both in span semi-norm and {-norm:
sp(Tev —Teu) < sp(v—u) and ||Tev —Toullco < ||V — oo

(c) T. is linear®: VA € R, T.(v+ Ae) = Tev + de.

\

Proof. The proof can be found in (Fruit et al., 2018b, Lemma 15, Appendix D.2). |

®We recall that the word “linear” is an abuse of terminology and does not refer to the same property as in

linear algebra (see Prop. 2.5).
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Span truncated greedy operator. We now introduce a constrained (truncated) version of

the optimal Bellman operator by composing L with the span truncation (projection) I'..

Definition 5.2
Given ¢ > 0, we define operator T, : RS — RS as: Tov :=T'o(Lv), for all v € RS,

In other words, operator T, applies a span truncation to the one-step application of L, that is,
for any state s € S, T,v(s) = min{Lv(s), min, Lv(z)+ ¢}, which guarantees that sp (Trv) < ¢
(by definition). A first major observation is that unlike L, operator T is not always associated

with a decision rule d s.t. T,v = Lgv.

Definition 5.3

We say that T, is feasible at v € R® and s € S if there exists a Markov decision rule
d € DM such that Tou(s) = Lgu(s). When T, is feasible at v and all states s € S (i.e.,
when there exists a Markov decision rule d € DME such that T.v = Lgv componentwise)

we say that T, is globally feasible at v.

In the following lemma, we identify sufficient and necessary conditions for (global) feasibility
of T..

7~ Lemma 5.6

Operator T, is feasible at v € RS and s € S if and only if
min {r(s,a) + p(-|s,a) v} < min{Lo(s")} + c. (5.7)

Furthermore, let
D(c,v) := {d e DME | sp (Lgv) < c} (5.8)

be the set of randomized decision rules d whose associated operator Lgq returns a span-
constrained value function when applied to v. T is globally feasible if and only if D(c,v) #

0, in which case we have

Tow= Lgv. 5.9
7 denlew " (55)

\\
Proof. The proof can be found in (Fruit et al., 2018b, Appendix D.1). |

Lem. 5.6 shows that it is suffient to have sp (Lgv) < c for at least one decision rule d € DMR
in order to guarantee that T,v = Lsv for some 6 € DMR (potentially different than d).
This result is a priori not so obvious although it is not difficult to prove. The last part of
this lemma shows that when T is globally feasible at v (i.e., when D(c,v) # 0), T.v is the
componentwise mazimal value function of the form Lgv with decision rule d € DMR satisfying
sp (Lqv) < c. Surprisingly, even in the presence of a constraint on the one-step value span,
such a componentwise maximum still exists. This is not as obvious as in the case of the greedy

operator L since the constraint on the span creates a correlation between states (while all
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Algorithm 8 Span truncated greedy operator (1¢, G.)

Input: MDP M (with optimal Bellman operator L), span constraint ¢, vector v € RS
Output: Span constrained vector w € R, Decision rule dv € DMR

1: Compute u < Lv and dt € arg max e pup{Lgv} > Break ties arbitrarily
2: Set Umin ¢ minges {u(s)}

3: for s € S do > This loop can be parallelized
4: if u(s) > upmin + ¢ then

5 w(8) ¢ Umin + € > See Def. 5.2
6: m < minge 4. {r(s,a) + p(:|s,a)Tv}

7: a” € arg min,e 4 _{r(s,a) + p(:[s,a)Tv} > Break ties arbitrarily
8 d2(a”|s) = min { (u(s) — tin — )/ (u(s) = m), 1}

9: d2(d* (s)|s) = max { (umin + ¢ = m)/(u(s) —m), 0}

10: d¥(al|s) + 0 for all @ # a™,d " (s)

11: else

12: w(s) < u(s) > See Def. 5.2
13: du(dt(s)]s) « 1 > Greedy action
14: d¥(als) < 0 for all a # d*(s)

15: end if

16: end for

states are independent in the case of operator L). As a consequence, whenever D(c,v) # 0,

optimization problem (5.9) can be seen as the solution of the following LP-problem:

Lg)T 5.10
o {(Lqv)Te} (5.10)
where d — Lgv is a linear map and the set D(c,v) can be expressed as a set of S x (S —1)

linear constraints on L,4v:

Lgv(s) — Lgu(s') < ¢, Vs# 5.

It goes without saying that it is computationally more efficient to calculate T.v using
Def. 5.2 than solving the LP (5.10). Moreover, to compute the decision rule d? € D(c,v)
achieving the maximum value T,v in (5.9), there is also a much more efficient algorithm than
using a generic LP solver on (5.10). Alg. 8 describes how to simulatancously (and efficiently)
compute T.v and the associated policy d? when D(c,v) # (. In the states s € S where
the span constraint ¢ is not violated, d¥(-|s) just plays the greedy action with probability 1
(associated to the optimal Bellman operator L). In the states s € S where the constraint is
violated, d¥(-|s) assigns non-zero probability mass to the greedy action as well as the “anti-
greedy” action (i.e., the action achieving the minimum value instead of the maximum, see
line 7 of Alg. 8). The probability mass is tuned so as to ensure that the expectated value
is exactly equal to min{Lv(s)} + ¢, therefore matching the value of T,.v(s). More precisely,
using the notation in Alg. 8, whenever D(c,v) # 0 and u(s) > umin + ¢ = min{Lv(s)} + ¢,

we always have (as a consequence of Eq. (5.7) in Lem. 5.6):
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d¥(a"|s) = min {“<8> — Umin — ¢ } _ u(s) — tin — €

u(s) —-m u(3> -m
v = max Umin + €= m - Sk
and dg(d*(s)s) = { u(s) —m 70} u(s) = m

and therefore:

(M— Urnin — C> 4 (W> u(s) = tumin + ¢ = w(s) = Tou(s).

u(s) —m u(s) —m

On the other hand, whenever D(c,v) # (), there exists at least one state s € S such that
u(s) > m > umin + ¢ (as a consequence of Eq. (5.7) in Lem. 5.6). In this case, dl(:|s) just
plays the “anti-greedy” action with probability 1 and T.v # Lg2v but there exists no decision
rule satisfying the equality in any case (Lem. 5.6). However, it is immediate to verify that
d? € arg mingc pur{|Tev(s) — Lqu(s)|} for all states s € S and so in some sense, d is the

decision rule that is the “closest” to T v.

Definition 5.4

We define the operator G. : RS — DME by G.v := d¥ for all v € R, where d? is the
decision rule output by Alg. 8 (with ¢ and v as inputs).

We conclude this paragraph with three useful properties satisfied by operator T, (analogue
of Lem. 5.5).

f Lemma 5.7

Let v and u be any two vectors in RS, then:
(a) T is monotone: v > u = Tov > Tou.

(b) T, is non-expansive both in span semi-norm and ls-norm:
sp(Tev —Teu) < sp(v—u) and ||Tev — Tet|loo < ||V — ul|oo-

(c) T¢ is linear: VA € R, T¢ (v + Ae) = Tev + Ae.

\.

Proof. Both L and T'. satisfy (a), (b) and (¢) and since T, = I'.L (Def. 5.2), the result

follows by composition of operators. |

Span truncated value iteration. We are now ready to introduce ScOpT (Alg. 9). Given a
vector vy € R and a reference state 5, SCOPT implements relative value iteration where L is
replaced by T, i.e., vp41 = Tev, — Tev,(S)e for some arbitrary reference state s € S. Notice
that the term (7.v,)(S)e subtracted at any iteration n prevents v, from increasing linearly
with n and thus avoids numerical instability. However, the subtraction can be dropped
without affecting the convergence properties of ScOpPT (see Alg. 3 and the discussion in
Sec. 2.1.3). If the stopping condition is met at iteration n, SCOPT returns a policy m,, = (d,,)*

where d,, = G.v,, (among other things).

SWhen there are multiple greedy and anti-greedy actions, Alg. 8 break ties arbitrarily.
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Algorithm 9 Span-Constrained Optimization (ScOPT)

Input: Operators T, : R® — R and G. : R® — IR accuracy e €]0,4oc[, arbitrary
reference state 5 € S, initial vector vy € R, contractive factor v € [0, 1]

Output: Gain g € [0, 7may], bias h € R, stationary policy 7 € ISR

1: Initialize n =0

2: v :=T.vg
3: while sp (v,41 — vp) + %Sp (v —vg) > € do > Loop until termination
4: Increment n < n+1
5: Shift vy, < v, — v, (35)e > Avoids numerical instability (v, /4 +00)
6 Compute (vp41, dp) := (Tevn, Gevy) > Alg. 8
7: end while
8

: Set g := %(max{vnﬂ — Up} + min{v,41 — vn}), h:= v, and 7 := (d,,)*

5.4.2 Convergence and Optimality Guarantees

In order to derive convergence and optimality guarantees for SCOPT we need to analyze the
properties of operator T.. We start by proving that T, preserves the one-step span contraction
property of L. Note that in general L is not a contractive operator (in span semi-norm). In
the special case where the MDP is unichain and aperiodic, L is a J-stage contraction with
S > J >1 (Puterman, 1994, Theorem 8.5.2). In Asm. 5.1 we assume that J = 1.

Assumption 5.1

The optimal Bellman operator L is a 1-step ~y-span-contraction, i.e., there exists a v < 1

such that for any vectors u,v € RS, sp (Lu — Lv) < vsp (u — v).

Lemma 5.8

Under Asm. 5.1, T, is a y-span contraction.

Proof. Since I, is non-expansive (property (b) in Lem. 5.5) and L is y-contractive, the result

follows by composition. |

As a consequence of Lem. 5.8 and the Banach fized point theorem, T, admits a unique fixed
point in the quotient space induced by the span semi-norm on RS. In R®, the fixed point
equation has the same form as the Bellman optimality equation satisfied by L (see Prop. 2.4),
with an associated gain (unique) and bias (unique up to a constant shift). Moreover, SCOPT
converges to the fixed point of this equation and we also show that the associated “gain” is an

upper-bound on the solution of (5.6) (due to the monotonicity property of T, see property
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(a) of Lem. 5.7). We formally state these results in Lem. 5.9.

7~ Lemma 5.9

Under Asm. 5.1, the following properties hold:
1. Optimality equation and uniqueness: There exists a solution (g7, ht) € R x RY to

the optimality equation
T.ht =hT 4+ gTe. (5.11)

If (g,h) € R x RY is another solution of (5.11), then g = g* and there exists A € R
s.t. h="h" + Xe.
2. Convergence: For any initial vector vy € RS, the sequence (vn) generated by ScOPT
converges to a solution vector h™ of the optimality equation (5.11), and
: 1
ngr}rloo T g — Tg = gte.
3. Dominance: If there exists a scalar g and a vector h € R such that T.h > h + ge

then g* > g. As a consequence, the gain g is an upper-bound on the supremum
of (5.6), i.e., g7 > g*.

\

Proof. The formal proof can be found in (Fruit et al., 2018b, Appendix D.3). |

Point 3 of Lem. 5.9 is the analogue of Prop.3.3 stated in Sec. 3.2. Prop.3.3 was a key
step in the proof of optimism for UCRLB. Lem. 5.9 will play a similar role for SCAL. A
direct consequence of point 2 of Lem. 5.9 (convergence) is that ScOpPT always stops after a
finite number of iterations. Nonetheless, T, may not always be globally feasible at h™ (Fruit
et al., 2018b, Appendix B) and thus there may not exist a policy associated to optimality
equation (5.11). Furthermore, even when there is one, Lem. 5.9 provides no guarantee on
the performance of the policy returned by ScOpt after a finite number of iterations. To
overcome these limitations, we introduce an additional assumption, which leads to stronger

performance guarantees for ScOPT.

Assumption 5.2

Operator T is globally feasible at any vector v € RS such that sp (v) < c.

(

Theorem 5.1

\

Assume Asm. 5.1 and 5.2 hold and let v denote the contractive factor of T, (Asm. 5.1).
For any vy € R® such that sp (vo) < ¢, anys € S and any € > 0, the policy m, output by
ScOPT(vg, 5,7, €) is such that ||gTe — g™ || < €. Furthermore, if in addition the policy

7t = (G.hT)™® is unichain, gt is the solution to optimization problem (5.6) i.e., g* = g*

and 7+ € IL}.
\_ J
Proof. The proof can be found in (Fruit et al., 2018b, Appendix D.4). |
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The first part of the theorem shows that with the stopping condition used in Alg. 9 (line

3), ScOPT returns an e-optimal policy 7.

The second part is more subtle. Although it may seem counter-intuitive at first, even though
sp (ht) = sp (Tch™) < ¢ (by definition of T;), in general when the policy 7+ = (G.h™)>
associated to ht is not unichain, we might have sp (h*) < sp (h’r+). This is because A" is
not necessarily the unique solution (up to constant shift) to the Bellman evaluation equation

associated to 7" and so it is possible that sp (h™) # sp (h”+). Consequently, we cannot

guarantee that g™ is the solution of (5.6) (the constraint sp <h”+) < ¢ should be satisfied).
On the other hand, Corollary 8.2.7. of Puterman (1994) ensures that if 7 is unichain then
sp(ht) =sp (h”Jr), hence g™ = g™ .

Notice that no matter whether 7+ is unichain or not, we cannot guarantee that 7, satisfies
the span constraint, i.e., sp (h™) may be arbitrary larger than c¢. Nonetheless, the proof of
UCRLB only requires to bound the span of a vector h solution to an (approximate) Bellman
equation Lgh = h + g with ¢ > ¢* (optimism), no matter whether & matches the definition
of bias (Eq. 6.3) for policy m = d*°. Similarly, in the next section we show that the condition
sp (h™) < ¢ is not needed and Thm. 5.1 is sufficient to derive regret bounds when ScOPT is
integrated into UCRL2.

5.5 Learningwith SCAL

In this section we introduce SCAL, an optimistic online RL algorithm that employs ScOpT
to compute policies that efficiently balance exploration and exploitation. We prove that the
assumptions stated in Sec. 5.4.2 hold when ScOPT is integrated into the optimistic framework.
Finally, we show that SCAL enjoys the same regret guarantees as REGAL.C, while being
the first implementable and efficient algorithm to solve bias-span constrained exploration-

exploitation.

5.5.1 Learning algorithm

For any extended MDP M (see Sec. 2.1.5), based on Def. 5.2 we define 7. as the span trun-
cation of the optimal Bellman operator £ of M. In the rest of this chapter, we will refer
to this operator as the “span-truncated Bellman operator”. In particular, we denote by L
and TF the operators associated to M. Given the structure of problem (5.3), one might
consider applying ScOPT to the extended MDP My (using 7). Unfortunately, in general
L. does not satisfy Asm. 5.1 and 5.2 and thus 7;]‘3 may not enjoy the properties of Lem. 5.9
and Thm. 5.1. To overcome this problem, we slightly modify M} as described in Def. 5.5.
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Definition 5.5
Let M be an extended MDP defined by the confidence intervals B,(s,a) =
[r(s,a)",r(s,a)T] and By(s,a,s’) = [p(s's,a)”,p(s'|s,a)T] for all state-action pairs

(s,a). Let 1 > n >0 and s € S an arbitrary “reference” state. We define the “modi-
fied” MDP M associated to M by

V(s,a,8) € Sx AxS, B(s,a):= [O,T(s,a)ﬂ , (5.12)
~ B ) Y ! ) ! 77

By(s,a,s) = (s, ) 4573 (5.13)
By(s,a,5) N [n,1] otherwise,

where we assume that 1 is small enough so that:

By(s,a,5) N[, 1] #0, and Y p(s'[s,a)” <1< > p(s']s,a)*
s'eS s'eS

We denote by L the optimal Bellman operator ova and by /7\2 the span truncation OfE~
(see Def. 5.2).

We will now justify the two transformations introduced in Def. 5.5: the “perturbation” of

the transition probabilities (5.13) as well as the “augmentation” of the rewards (5.12).

By slightly perturbing the confidence intervals B), of the transition probabilities, we enforce
that the “attractive” state s is reached with non-zero probability from any state-action pair

(s,a). A direct implication is that the ergodic coefficient of M defined as

v:=1-— sgnerfs Z min {p(y’saa)aQ(y|x7b)}
ab ed (veS >n if y=3

P9 €Bp

is smaller than 1—n < 1, so that Lis ~-contractive (Puterman, 1994, Thm. 6.6.6). Therefore,
Asm. 5.1 holds. Moreover, for any policy = € HSR(MV), the state 5 necessarily belongs to all
recurrent classes of m implying that 7 is unichain. Thus, M is a unichain MDP. As we will
later show, the n-perturbation of B, only introduces a small bias nc in the optimism. Given

that ¢ is known and 7 > 0 can be tuned, the magnitude of this bias can be controlled.

Let’s now ignore the n-perturbation of B, and focus on the augmentation of B,. By
augmenting (without perturbing) the confidence intervals B, of the rewards, we ensure two
useful properties. First of all, the maximal reward r(s,a)" of BT(S, a) is unchanged and so
for any vector v € R®, Lv = Lv and thus Tov = Tev (by definition of 7). Secondly, let
d € DMP(M) be any (Markov deterministic) decision rule such that Vs € S, (s, d(s)) = 0
(such a decision rule always exists given the definition of B,(s,a) in Eq. 5.12). We denote by
L, the Bellman evaluation operator of decision rule d in the extended MDP M (see Eq. 2.4:

"It is immediate to see that Er(& a) C By (s,a), hence the name “augmentation”.
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Edv =Tg+ ]de for all v € ]RS). Since the reward associated to d is 0 in all states, we have
sp (Edv) = sp (f’dv> < sp (v) (the last inequality is a direct consequence of Proposition 6.6.1
of Puterman, 1994). Therefore, if sp (v) < ¢ then sp (Zdv) < ¢ meaning that d € D(c,v) # 0
(where D(c,v) # ) is defined in Lem. 5.6). By Lem. 5.6, D(c,v) # ) implies that T is globally
feasible at v. To summarize, for all v € RY satisfying sp (v) < ¢, T, is globally feasible at v.

This matches the statement of Asm. 5.2.

When combining both the perturbation of B, and the augmentation of B,, both Asm. 5.1
and 5.2 hold and we obtain Thm. 5.2 (see Fruit et al., 2018b, Theorem 11).

e )

Let M be an extended MDP and M its “modified” counterpart with perturbationn > 0 (see
Def. 5.5). Then
1. Lisa ~v-span contraction withy < 1—n <1 (i.e., Asm. 5.1 holds) and thus Lem. 5.9
applies to To. We denote by (97, h") a solution to equation (5.11) for 7.
2. T, is globally feasible at any v € RS satisfying sp (v) < ¢ (i.e., Asm. 5.2 holds) and
M is unichain implying that 7+ = (Gch™)%° is unichain.
Thus Thm. 5.1 applies to /7\2

. J

Proof. The proof can be found in (Fruit et al., 2018b, Appendix E). |

heorem 5.2

SCAL is a variant of UCRLB that applies ScOpT (see Alg. 9) instead of EVI on the
extended MDP M, obtained by modifying My, (see Def. 5.5) in each episode k in order to

solve the optimization problem®

__max grr =g (5.14)
MeMy, mell.(M)

where the maximum always exists (Thm. 5.2 applies to ka) The maximizing policy is
denoted 77,?. The intervals é;f of M 1 are constructed using parameter” n, = rmax /(c-tx) and
an arbitrary attractive state s € S. ScOPT is then run with an initial value function vy = 0,
the same reference state 5 used for the construction of E;f,
and accuracy € = rmax/tx. SCOPT finally returns a policy which is executed until the end of

contraction factor v, = 1 —

episode k.

More precisely, SCAL implements Alg. 5 (UCRLB) with the difference that My, should be
replaced by Mk in line 5 (see Def. 5.5 for how to compute Mk based on My). Also, line 9
(Eq. 3.5) should be replaced by:

. 7. Tmax
(gka hkaﬂ—k) := ScOpT (7;;}% gé, t: 781707’7’k) . (515)

The rest of Alg. 5 is unchanged. Note that in theory, the aperiodicity transformation

8This optimization problem is a specific instance of (5.3) in Sec. 5.2 with M <« ka

9Notice that given that ﬁ;f‘ks/ >y for all (s,a,s’) € S x A x S, the assumptions of Def. 5.5 hold.
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is useless in ScOPT because the n-perturbation of B;f already ensures aperiodicity of Mk
In our experiments, 7 is set to 0 since ScOPT still converges (see Sec. 5.6). In that case,
it may be useful to integrate the aperiodicity transformation into ScOpT. The aperiodicity
transformation affects both Zk and the truncation I'.. since the constraint ¢ should be replaced

by ¢/(1 — «) as a consequence of the following theorem.

[

Theorem 5.3

\

Let M be an MDP and M, the MDP obtained after aperiodicity transformation of param-

eter . For any (stationary) policy © € I hi;. = 1/(1 — a)h}, where b, and h}, are

the bias associated to policy w in M and M, respectively. In particular, hy, = 1/(1—a)h},
and so sp (h*Ma) =1/(1—a)sp(hy,).

. J

Proof. See App. C.2. [ |

5.5.2 Analysis of SCAL
Gain optimism

Thm. 5.2 only guarantees gain-optimism (i.e., g; > g*) when M € Mk Unfortunately,
although M € M}, with high probability by construction (see Thm. 3.1), this may no longer
be true for ka due to the mg-perturbation of Bg. Since the “inclusion argument” seem to
fail here, we will use the new proof technique introduced in Sec. 3.2.1 that relies on the
“dominance property” of L (we will need to use the dominance property of 727“ instead). As

discussed in Sec. 3.2, a direct consequence of Thm. 3.1 is that with probability at least 1 — g:
Vk>1, Lxh™ > Lh* =h"+g"e.

where we recall that g* and h* respectively denote the optimal gain and bias of the true
(unknown) MDP M. In Chap. 3 we argued that this simple inequality and the “dominance
property” of Prop. 3.3 are sufficient to show that UCRLB is gain-optimistic. We proceed
similarly for SCAL.

By assumption sp (Lh*) = sp(h*) < ¢ implying that I'.(Lh*) = Lh* by definition of T,
(see Sec. 5.4.1). Using the monotonicity property of I'. (property (a) in Lem. 5.5) we deduce
that with probability at least 1 — g:

Vk>1, TFh* =T (Lyh*) > T.(Lh*) = Lh* = h* + g*e (5.16)

The idea is to now use point 3 of Lem. 5.9 (“dominance property”) in order to prove optimism.

The problem is that ScOPT uses 7* instead of T to compute policy 7;. The following lemma
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shows that the two operators give similar results up to a small bias of order 7 - c.

7~ Lemma 5.10

Let M be an extended MDP and M its “modified” counterpart with perturbation n > 0
(see Def. 5.5). Denote by T. and T the span-truncated Bellman operators of M and M
respectively (see Def. 5.2). For any vector h € RS:

Teh — Teh

<n-sp(h) (5.17)

.

\

Proof. See (Fruit et al., 2018b, Lemma 19, Appendix E). [ |

When the transition probabilities are perturbed by 7, the application of 7. on h results in
a perturbation of n amplified by sp (h) i.e., n- sp(h).

As a direct consequence of Lem. 5.10 and Eq. 5.16 and the assumption that sp (h*) < c,
with probability at least 1 — g:

Vk > 1, ﬁh*Zh*—i—(g*—nk-c)e and so g > g" —mp-c :g*—r?ax (5.18)
k

where the second inequality is a direct application of the dominance property proved in
Lem. 5.9. SCAL is therefore approximately gain-optimistic. As shown in Chap. 3, the term
Tmax/tr only has a negligible impact on the regret (negligible logarithmic term).

Bound on the range of the optimistic bias

Due to Thm. 5.2, (gk, hy) (see Eq. 5.15) satisfies an approximate Bellman equation (similar
to (3.22) for UCRLB) i.e.,

TEhg — hy, — gkeHoo < rr;:X- (5.19)

Thm. 5.2 also shows that 727“ is globally feasible at hj implying that ﬁhk = Eg’“ hy with
mx = (d)>. Finally, sp (hg) < ¢ since either hy = vg = 0 or there exists v € R® such that
hi, = TFv (by design of ScOPT).
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Regret guarantees

We are now ready to prove two regret bounds for SCAL (as we did for UCRLB).

(

Theorem 5.4

\

There exists a numerical constant 8 > 0 such that for any weakly communicating MDP
satisfying sp (h*) < ¢, with probability at least 1 — 0, it holds that for all initial state
distributions p1 € Ag, and for any time horizon T > 1, the regret of SCAL is bounded as

A(SCAL,T) < B -max {rmax,c}\J (Z F(s,a)) T1n (%) ( |
5@ 5.20

+ - max {rmax, c}S*Aln (%) In(T).

. J

Proof. The proof is identical to the proof of Thm. 3.4 for UCRLB. The only difference is
that we bound sp (hg) by ¢ instead of A and a factor 2 appear when using the optimism

property since gx > g* — 2rmax/tr (Mr-perturbation combined with eg-approximation). |

-

Theorem 5.5

~N

There exists a numerical constant 8 > 0 such that for any weakly communicating commau-
nicating MDP satisfying sp (h*) < ¢, with probability at least 1 — 0, it holds that for all
initial state distributions 1 € Ag and for all time horizons T > 1, the regret of SCAL is

bounded as

A(UCRLB,T) < 8- max {rmax, m}J (Z F(s,a)) Tn <§> In (T)
e (5.21)

2
+ 5 - max {rmax, C—} S?2Aln (%) In(T).

max

. J

Proof. The proof is identical to the proof of Thm. 3.5 for UCRLB with the same two (minor)
differences mentioned in the proof of Thm. 5.4. |

The previous bound shows that when ¢ < A, SCAL scales linearly with ¢, while UCRLB
scales linearly with A (all other terms being equal). Notice that the gap between sp (h*) and
A can be arbitrarily large, and thus the improvement can be significant in many MDPs. As
an extreme case, in weakly communicating MDPs the travel-budget can be infinite, leading
UCRLB to suffer linear regret (see Chap. 4), while SCAL is still able to achieve sub-linear
regret without requiring the algorithmic modifications presented in Chap. 4 (TUCRL). SCAL
is able to [earn in any weakly-communicating MDP like TUCRL and unlike UCRLB (which
is only able to learn in a communicating MDP). However, we conjecture that SCAL (unlike
TUCRL) does not suffer from the limitations mentioned in Sec. 4.5 of Chap. 4 i.e., while the
regret of TUCRL will always grow as /7' when the true MDP is not communicating, the
regret of SCAL eventually grows logarithmically with T'. SCAL is able to exploit additional
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prior knowledge about sp (h*) that TUCRL does not have. Since TUCRL is solving a more
difficult problem, it is reasonable to expect the algorithm to perform worse than SCAL (at
least asymptotically). More precisely, we make this conjecture for two reasons. The first
reason is that it seems straightforward to extend the proof of Jaksch et al. (Theorem 4
2010) to SCAL (and UCRLB). We recall that this theorem shows that the regret of UCRL2
eventually grows logarithmically with 7' (for T’ big enough) and not as /7. We keep the
formal proof of this conjecture for future work. The second reason is that the experiments

presented in the next section tend to validate the conjecture.

When ¢ > A, due to the ng-perturbation pf B]’;, it seems not trivial to relate the span of
hj with A (unlike in the case of UCRLB, see Sec. 3.3). Nevertheless, we can slightly modify
SCAL to address this issue: at the beginning of any episode k, we run both ScOpT (with
the same inputs) and EVI (as in UCRLB) in parallel and pick the policy associated to the
optimistic bias with smallest span. With this modification, SCAL enjoys the best of both

worlds, i.e., the regret scales with min{c, A} instead of c.

When ¢ is wrongly chosen (¢ < sp(h*)), SCAL learns a span-constrained optimal policy
with an associated gain g} (solution to (5.6)) that can potentially be arbitrary smaller than

g*. In this scenario, the regret is bounded as

10) (\l Tmax min{c, A} (Z I'(s, a)) Tln (?) In (T)) +@ —g)-T

s,a

For a given horizon T, there is clearly a trade-off in the choice of ¢: a big value minimizes

*

the linear term (g* — g*) - T but increases the v/7T-term, and conversely. The best way to

choose ¢ depends on the amount of prior knowledge about the true MDP.

To conclude this section, we emphasize that the benefit of SCAL over UCRL2 comes at
a negligible additional computational cost (EVI and ScOPT have comparable time and space

complexities).

5.6 Numerical Experiments

In this section, we numerically validate our theoretical findings. In particular, we show
that the regret of UCRLB indeed scales with the travel-budget, while SCAL achieves much
smaller regret that only depends on the span. This result is even more extreme in the case

of non-communicating MDPs, where A = 4o0.

5.6.1 Toy MDP

Consider the simple but descriptive three-state domain shown in Fig. 4.5 (Chap. 4) where
instead of being deterministic, all rewards are Bernouilli random variables (with the same
means). This small change slightly increases the complexity of the problem. The optimal

policy 7* is such that 7*(s2) = a1 with gain ¢* = % and bias h* = [3_(127:%, %, } If § is
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Figure 5.3: Cumulative regret incurred by UCRLB after T' = 2.5 - 107 steps as a function of
1/6 o< A (averaged over 20 runs).

small, sp (h*) = ﬁ ~ 1, while A x %. Fig. 5.3 shows that, as predicted by theory, the

regret of UCRLB (for a fixed horizon T') grows with + ~ A. The optimal bias span however
is roughly equal to 1. Therefore, we expect SCAL to clearly outperform UCRLB on this
example. In all the experiments, we noticed that perturbing the extended MDP was not
necessary to ensure convergence of SCOPT and so we set g, = 0. We also set 7, = 0 to

speed-up the execution of SCOPT (see stopping condition in Alg. 9).

Communicating MDPs. We first set 6 = 0.005 > 0, giving a communicating MDP (Fig. 5.4).
With such a small §, visiting state s1 is rather unlikely. Nonetheless, UCRLB keeps trying to
visit s1 (i.e., play ag in s2) until it collects enough samples to understand that s; is actually
a bad state (before that, UCRLB “optimistically” assumes that sq is a highly rewarding state).
Therefore, UCRLB plays ag in so for a long time and suffers large regret. This problem is
particularly challenging for any learning algorithm solely employing optimism like UCRLB
(cf. (Ortner, 2008) for a more detailed discussion on the intrinsic limitations of optimism in
RL). In contrast, SCAL is able to mitigate this issue when an appropriate constraint c¢ is used.
More precisely, whenever s; is believed to be the most rewarding state, the value function
(bias) is maximal in s; and ScOpT applies a “truncation” in that state and “mixes” deter-
ministic actions. In other words, SCAL leverages on the prior knowledge of the optimal bias
span to understand that s; cannot be as good as predicted (from optimism). The exploration
of the MDP is greatly affected as SCAL quickly discovers that action ag in so is suboptimal.
Therefore, SCAL is always performing better than UCRL (Fig. 5.4b) and the smaller ¢, the
better the regret. Surprisingly the actual policy played by SCAL in this particular MDP is
always deterministic. SCOPT mixes actions in s; where only one true action is available but
the mixing happens in the eztended MDP ka where the action set is compact. The policy
that ScOPT outputs is thus stochastic in the extended MDP but deterministic in the true
MDP.

Infinite travel-budget. By selecting 6 = 0 (Fig. 5.5) the diameter becomes infinite (D =
+00) but the MDP is still weakly communicating (with transient state s;). UCRLB is not
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Figure 5.4: Results in the three-states domain with é = 0.005. We report the span of the
optimistic bias (Fig. 5.4a) and the cumulative regret (Fig. 5.4b) as a function of T'.
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Figure 5.5: Results in the three-states domain with § = 0. We report the span of the
optimistic bias (Fig. 5.5a) and the cumulative regret (Fig. 5.5b) as a function of 7.

able to handle this setting and suffers linear regret. On the contrary, SCAL is able to quickly
recover the optimal policy (see Fig. 5.5). Note that unlike with TUCRL, the regret of SCAL
seems to achieve a logarithmic “plateau” even in the non-communicating case. This may
seem paradoxical but actually Thm. 4.2 does not apply in the case where a bound on the
optimal bias span is known since the MDPs with sufficiently small € in Fig. 4.8 (used to prove
Thm. 4.2) do not satisfy sp (h*) < ¢. We conjecture that a logarithmic regret bound similar
to Thm. 2.37 can be derived for SCAL, SCAL" and SCAL*, with D replaced by ¢/rmax. This

simple example shows the dramatic impact of prior knowledge on the exploration-exploitation

performance.

5.6.2 Knight Quest

We now consider a second environment that takes inspiration from classical arcade games.
The goal is to rescue a prisoner in the shortest time without being killed by the dragon. To

achieve this task, the knight needs to collect gold, buy a key and deliver the prisoner. A
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Figure 5.6: Representation of the Knight Quest 4 x 4 map. The grey shadowed cells are the
locations where the dragon can move.

Objects at the shop

representation of the environment is provided in Fig. 5.6. The elements of the game are: a
knight, a prisoner, a dragon patrolling around the prisoner, a gold mine and, a shop, a key
and a shield.

Shop, Prisoner and Gold Mine. These elements are special states of the environment. The
shop is the place where the knight can buy objects. Every time the knight is killed by the
dragon or delivers the prisoner, it restarts from the shop. The prisoner is located behind the

locked door in the terminal state. The knight can collect gold at the gold mine.

Dragon. The dragon is the enemy and it is randomly moving around the prisoner’s location.
Let’s denote with d € {0, 1,2} the position of the dragon such that: d = 0 is the bottom left
grey cell, d = 1 is the bottom right grey cell and d = 2 the top grey cell. The transition

probabilities of the dragon are:
p(-]0) =[0.4,0,0.6]7; p(-|1) =1[0,0.4,0.6]; p(:|2) =[0.4,0.2,0.4]T.

The dragon kills the knight when they are both at the same position and the knight does not
have the shield.

Knight. The knight is the only player of the game. He or she moves in the environment
using the four cardinal actions (i.e.,, 7ight, down, left and up) plus an action to keep the
current position (stay). We refer to these 5 actions as movement actions. Additionally, the
knight can collect the gold (action C'G), buy a key (action BK') or buy a shield (action BS).

State representation, actions and reward. A state of the game is represented by the fol-

lowing elements:
e Knight position: coordinates of the grid (row, col), row,col € 0,1,2,3,;

e Gold level: the amount of gold owned by the knight, g € {0,1};
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e Dragon position: d € {0,1,2};

e Object identifier: object(s) carried by the knight, o = {0, 1,2,3} where 0 < nothing,
1 & key, 2 < armour and 3 < key and armour.

We can now can explain the effects of actions, i.e., how the next state is generated. The
movement actions have the trivial effect of changing the knight position. The action CG
changes the state only when the knight is at the mine. In this case the level of gold is
incremented by one, formally, g < min{1,g + 1}. Actions BK and BA alter the state only
when executed in the shop with gold-level equal to 1. All the actions are deterministic when
the knight does not carry the shield. When the knight carries the shield, he or she cannot be
killed by the dragon (i.e., knight and dragon can occupy the same cell). However, due to the

weight of the armour, the knight’s gait is unsteady and other tasks are more challenging i.e.,

e the cardinal actions result in a normal (correct) transition with probability 0.5, other-

wise the current position is kept,
e CG fails with probability 0.99, i.e., with probability 0.01 the gold level is incremented,
e actions BK and BS are not modified.

The basic reward signal is —1 at each time step. The knight also receives a reward of —10
when he or she executes CG, BK or BA outside the designed location (i.e., mine and shop).
Finally, he or she obtains a reward of 20 when reaching the prisoner with the key and —20

when killed by the dragon. For the experiments, we rescaled the reward to lie in [0, 1].

Features of the game. The state and action space size are S = 360 and A = 8, while the
travel-budget of the MDP is A = 130. The associated shortest path starts from the shop with
the shield and no gold, and eventually delivers the prisoner with one unit of gold and the
key. In contrast, the optimal strategy simply consists in collecting gold, buying the key and
rescueing the prisoner (there is no need to buy the shield as the dragon can be bypassed).
We have: g* ~ 0.5, sp (h*) ~ 3.28.

This game is challenging since the worst shortest path (achieving the travel-budget) is
“orthogonal” to the optimal policy (achieving optimal gain). Many common real-world RL
tasks appear to share this property: the agent can face several choices (actions) and most of
them are useless. The span constraint ¢ cansomehow be interpreted as a prior on the level of

difficulty of the game.

Results. We run UCRLB and SCAL over an horizon T = 4 - 10%, with different priors c.
As in the toy example, SCAL is run with the augmented reward but no perturbation of the
transition matrix (np = 0), and ~y, is set to 0. Results are reported in Fig. 5.7. We can notice
that SCAL is able to outperform UCRL2 by a big margin. This is because unlike UCRLB,
SCAL can leverage the knowledge of ¢ to better direct the exploration.
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Figure 5.7: Behaviour of UCRLB and SCAL in the knight quest game. Figures show the
span of the optimistic bias (Fig. 5.7a) and the cumulative regret (Fig. 5.7b) as a function of
T. Results are averaged over 15 runs and 95% confidence intervals of the mean are shown for
the regret.

5.7 SCAL*: SCAL with exploration bonus

In this section, we introduce SCAL™, an online RL algorithm that leverages an exploration
bonus to achieve near-optimal regret guarantees. Similar to SCAL, SCAL™ takes as input
an upper-bound ¢ on the optimal bias span (i.e., sp(h*) < ¢) to constrain the planning
problem solved over time. The crucial difference with SCAL is that SCAL™T does not require
planning with an extended Bellman operator, but it directly computes the optimal policy of
the estimated Bellman operator, where the reward is increased by an exploration bonus. As
proved in Sec. 5.7.2 the bonus is carefully tuned so as to guarantee optimism and small regret

at the same time (Thm. 5.6).

5.7.1 The algorithm

The pseudo-code of SCAL™ is reported in Alg. 10. Similarly to SCAL and UCRLB, SCAL™
proceeds in episodes (indexed by k). At the beginning of each episode k, SCALT constructs
an estimated MDP My = (S, A x {0, 1}, px, ) (line 5 of Alg. 10). Unlike the extended MDP
used in SCAL, M} has a finite action space. The maximum likelihood estimator would be
the natural choice to define the transition probabilities and rewards of My, i.e., pp < pr and
1, 4 7. Unfortunately, this choice does not guarantee that the optimal gain g; of Mj, is
bigger or equal than the optimal gain of the true unknown MDP ¢*. To ensure gain-optimism
(see Lem. 5.12), we increase the reward by an exploration bonus by (Eq. 5.22) i.e., we define
ri < T + b (Eq. 5.25). Intuitively, the exploration bonus is large for poorly visited state-
action pairs, while it decreases as the number of wvisits increases. A crucial aspect in the
formulation of by is that it scales with the bound on the bias span ¢ > sp(h*). In fact,
the exploration bonus is tailored to guarantee the dominance property Lih* > LA™ holds

with high probability, where Lj is the optimal Bellman operator of Mj. Therefore b is not
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Algorithm 10 SCALT (SCAL with exploration bonus)

Input: Confidence § €]0, 1[, maximal reward ry.x, set of states S, set of actions A, positive

scalar ¢ >0

1: Set initial time ¢ := 1, observe initial state s; and initialize for all (s,a,s’) € S x A x S:

e counters Ni(s,a,s’) :=0 and Ni(s,a):=0,
e empirical averages p1(s'[s,a) := 0 and 71(s,a) := 0,
2: for episodes £k =1,2,... do

3: Set the starting time of the episode ¢; := t and initialize for all (s,a,s’) € S x A x S:
episode counters v (s, a,s’) ;= 0 and vg(s,a) := 0, and cumulative rewards Ri(s,a) := 0.

4: For all (s,a,s’) € S x A x S, compute exploration bonus:

b = c¢-mi 2
k(s,a) c mln{ A +Nk(s,a)+1’ }

+ Tmax - min {554, 1}

(5.22)

ith g% :=
with 5 $ Nt (s,a 0

20SAN;
1 )ln< 0SAN, (s,a)

) (5.23)

5: Set My := {S, A x {0,1},rg, px} to be the “augmented” and “perturbed” estimated

MDP defined by

_ Ni(s, a)pr(s]s, a)

1(s' = s1)

Pr(s'ls, ai) := Ni(s,a) +1
ri(s,a;) := (T(s,a) + bg(s,a)) - 1(i = 1)

forall s € S, a; = (a,i) € A x{0,1}.
6: Compute policy 7 using SCOPT (see Alg. 9):

1

Ni(s,a) +1’

(gk,hk,ﬂ'k) := ScOpT (Lk,Gk, rmax,sl,o

tr Tt + 1

Sample action a; ~ mx(+|s¢).
while True do

(5.24)

(5.25)

) (5.26)

> Execute policy 7 until the end of episode k

9: Execute action a, obtain reward r¢, and observe next state s¢yi.
10: Increment episode counters:
Vi (St, aty St41) < Vk(Seyap, Se41) + 1 and vg(se, ar) < vi(se, ar) + 1
11: Increment cumulative reward Rg(st, ar) < Ri(st, ar) + 1y
12: if (s, a) > N,j'(st, a;) then > Stopping condition of episode k
13: Increment time ¢ < t 4+ 1 and Break
14: else
15: Increment time ¢ <— ¢ + 1 and set action a; ~ m(-|s¢).
16: end if

17: end while

18: Update counters, empirical averages and sample variances for all (s,a,s’) € Sx Ax S:
Nii1(s,a,8') := Ni(s,a,s') +vi(s,a,s") and Npy1(s,a) := Ni(s,a) + vp(s,a) (5.27)
N Ni(s,a) vi(s,a,s)
Prr1(s]s,a) = ——"—— - pp(8']s,a) + = (5.28)
Nl:_—&—l(sv a) Nl:—-i—l(sv CL)
. Ni(s,a) Ry(s,a)
Trt1(s,a) i= ———— -T(s,a) + ————— (5.29)
N1j;—+1(57 a) Nl;::—l(sv a)
19: end for
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just designed as an upper-confidence bound on the reward!'?, but it is designed to take into
consideration how estimation errors on both p and r may propagate to the bias function
through application of the Bellman operator. As the constant ¢ provides prior knowledge
about the span of the optimal bias vector, the exploration bonus is obtained by considering

that “local” estimation errors may be amplified up to a factor c.

The planning problem. To further exploit the prior knowledge sp (h*) < ¢ we would like

to solve the optimization problem

gs(My) := sup {g}{/[k}, (5.30)
welle(My)

which is an instance of problem (5.6). We recall that SCAL also requires solving an instance
of (5.6) but on an extended MDP (see problem (5.5)). We extensively studied (5.6) in Sec. 5.4
and derived ScOPT to solve the problem. While in general ScOpT may fail to converge or
may return a value function whose associated greedy policy is not a solution to the original
optimization problem (Fruit et al., 2018b, Appendix B), we provided a series of sufficient
conditions on the MDP for which convergence and optimality properties are recovered (see
Sec. 5.4.2). We follow the same approach as in Sec. 5.5.1 and design M}, so as to enforce
these sufficient conditions (as we did with the extended MDP of SCAL).

Instead of defining pp <+ pg, we slightly perturb the transition probability to ensure that
the ergodic coefficient 7y of Mj, is strictly less than 1 (see Asm. 5.1). More precisely, we

set pr < (1 — Nk1+1)16k + Nk1+1 es, (see Eq. 5.24), where ey, is the vector with zero values
everywhere except at the sj-th coordinate (s; is the initial state at the beginning of the
learning process). Note that py is a biased but asymptotically consistent estimator of p.
While in the extended MDP of SCAL, the perturbations of transition probabilities were the
same in all state-action pairs (s, a), here the perturbation depends on N(s,a). In this case
we cannot directly apply Lem. 5.10 to show that optimism is preserved up to an n-accuracy.
However, we can adjust the exploration bonus in order to compensate for this small bias by
adding a term of order ¢/Ny (see Eq. 5.22). This will only have a minor impact on the final
regret (logarithmic term). Finally, since ¢, > Ny, we have v, < 1 — 1= < 1 and so we can

te+1
give this value as input to SCOPT (see (5.26)).

We also augment the rewards by duplicating every action (the action space of My is A x
{0,1}). For every a; = (a,i) € A x {0,1}, the reward ri(s, a;) is 7x(s,a) + bx(s,a) for i =1,
and 0 for ¢ = 0, while the transition probability is unchanged (same for both ag and a;).
By construction, there always exists a policy achieving 0 reward in every state in M (any
policy taking action ag). Such a policy has zero gain and bias and so according to Lem. 5.6,

Following similar steps as in Sec. 5.5, we can prove that M}, satisfies all sufficient conditions

°Tn that case, setting bx(s,a) = rmaxS3i® (see Eq. 5.23) would be enough.
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for ScOPT to converge and return an approximate solution to (5.30).

~ Lemma 5.11

The MDP My, satisfies the following properties:
1. the optimal Bellman operator Ly is a y-span-contraction with v, <1 — ﬁ <1,
2. all policies are unichain,
3. the operator TF :=T'.Ly, is globally feasible at any vector v € RS such that sp (v) <e.
Therefore, Thm. 5.1 holds. In particular, SCOPT converges and returns a policy my (ap-

prozimately) solving (5.30).

\

Proof. See (Qian et al., 2018b, Proposition 2). [ |

The policy m returned by ScOPT is obtained by projecting the policy 7, obtained in the
augmented set A x {0,1} and it can be “projected” on A as mi(s,a) < Ti(s,a1) + 7r(s, az).
The associated greedy operator is denoted Gj.

Comparison to SCAL. While SCAL™ runs (relative) value iteration directly on the MDP
My, which has a similar structure as the original MDP (finite action space), SCAL runs
extended value iteration on an extended MDP, whose (uncountable) action space is augmented
to take into consideration the confidence intervals on rewards and transition probabilities.
As a result, at each iteration of ScOpr, SCAL applies the optimal Bellman operator of
the extended MDP to the current value vector. This requires to solve SA different linear
programs to find the optimistic transition probabilities. Using LPrROBA (see Alg. 7), this can
be done in at most O(SIn(S)+5%24) = O(S%?A) computations by first sorting the value vector
and then applying LPrRoBA (which requires O(S) computations) to all (s,a) pairs. Overall,
every iteration of SCOPT requires O(S?A) computations in SCAL. In comparison, in SCAL™*,
every iteration of SCOPT can also be done in @(S2A4) computations. Therefore, even though
SCAL™T requires fewer computations at every iteration of SCOPT, the order of magnitude is
the same O(S2A). Nevertheless, SCAL is conceptually simpler and has a simpler algorithmic
structure, which makes it potentially more flexible and easier to generalize to more complex
tasks.

5.7.2 Optimistic Exploration Bonus

We now formally show that g’ (My) (see Eq. 5.30) is upper-bounding ¢g*. As explained in the
previous section, the exploration bonus was tailored to enforce this property. We denote by

Ly (resp. TF¥) the (resp. truncated) Bellman operator of Mj,.
Lemma 5.12

With probability at least 1 — g, for all k > 1, Lyh* > Lh* and therefore by monotonicity
of Te, TFR* > Lh*. If in addition, sp(h*) < c, then gi(My) > g* as a consequence of
property 3. of Lem. 5.9 (dominance of operator T).
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Tightness of optimism. Although this might not be straightforward from the statement
of Lem. 5.12, SCAL™T achieves a “lighter” optimism (i.e., is less prone to over-exploration)
than SCAL. More precisely, T*h* upper-bounds T.h* = Lh* by a term approximately scaling
as © (max{rmax, c}/ m) (corresponding to the exploration bonus). In contrast, the

—~k
truncated Bellman operator used by SCAL applied to h* i.e., 7. h*, is bigger than T.h* = Lh*
by approximately © (max{rmax, c}v/T(s,a)/Ni(s, a)). The optimism in SCALT is therefore

tighter by a multiplicative factor v/I'. Unfortunately, the tighter degree of optimism is not
sufficient to remove the /T in the final regret bound. In the next section (see proof sketch of

Thm. 5.6), we will explain why the VT cannot be removed with the current analysis.

5.7.3 Regret Analysis of SCAL*

We now prove a regret bound similar to SCAL (Thm. 5.4).

\

There exists a numerical constant > 0 such that for any weakly communicating MDP

[Theorem 5.6

satisfying sp (h*) < ¢, with probability at least 1 — &, it holds that for all initial state
distributions u1 € Ag, and for any time horizon T > 1, the regret of SCAL™ is bounded

as

A(SCAL™T,T) < - max {rmax, C}\J (Z ['(s, a)) Tln <§> ( |
5@ 5.31

g + B max {Tmax, c}S?Aln (?) In (7T) y

Proof. The detailed proof can be found in (Qian et al., 2018b, Theorem 6, Appendix B). In

the following, all inequalities should be interpreted up to minor approximations and in high

probability. Let v(s,a) be the number of visits in (s, a) during episode k and k7 be the total

number of episodes before time T'. Using Lem. 5.12, we have:

k
A(SCALT,T) < ZT Z vi(s,a) (gk — Zr(s, a)m(s, a)) (5.32)
k=1 s,a a
where g, hr and 7 are respectively the gain, bias and policy returned by ScOPT (see
Eq. 5.26). ScOPT ensures that: gx+hi(s) ~ >, (s, a) (rx(s, a) + p(-|s, a)Thy) . By plugging
this inequality into (5.32) we obtain two terms: 7x(s,a) — r(s,a) + bg(s,a) and (pg(-|s,a) —
es)Thi (where e is the unit vector with all zeros except at the s-th coordinate). We can then
add and subtract the true probability (px(:|s,a) — p(+|s,a))Thy + (p(:|s,a) — es)Thg. Since
sp (hy) < ¢, the second term is of order O(cy/T + ¢S A) when summed over S, A and episodes
k (martingale difference sequence bounded with Azuma’s inequality). On the other hand, the

term (pr(-|s,a) — p(-|s,a))Thy represents the error of using py in place of p in ScOpT. It is
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the dominant term in the regret bound. Since hi depends on pg, we cannot apply Hoeffding-
Azuma inequality as done in the proof of Lem. 5.12 to prove gain-optimism. Instead, we use
Hoélder’s inequality and bound separately ||pk(-|s,a) —p(:|s,a))|1 < /T'(s,a)B;¢ (see Eq. 5.23)
and sp (h;) < c. This eventually introduce a /T factor in the final regret bound. It is worth
pointing out that I' only appears due to statistical fluctuations that we cannot control, and
not from the optimism (i.e., exploration bonus) that is explicitly encoded in the algorithm.
For the reward we have |4 (s,a) —7(s,a)| < rmaxf;*. As a consequence, we can approximately

write that:

A(SCALT,T) < kz::l Z vi(s,a)mi(s,a) ( bi(s,a) + (c\/l“(s, a) + Tmax> B + MG a1 )

o <dy(s,a)

=dg(s,a)

The remaining terms can be bounded as in SCAL (and UCRLB). [

I'-dependency. Since the optimism in SCAL* is tighter than in SCAL by a /T-factor,
one might have expected to get a regret bound scaling as ¢v/SAT instead of ¢\/STAT (as
pointed out in Sec.5.7.2), thus matching the lower bound of Jaksch et al. (2010) as for the
dependency in S. Unfortunately, such a bound seems difficult to achieve with SCAL™ (and
even SCAL) for the reason explained in the proof sketch (correlation between hy and py).
We refer to the discussion in Sec. 3.7 for more details on closing the gap between lower and
upper bounds. The analysis of SCALT suggests that the v/T-factor arises due to unavoidable
statistical fluctuations (and not to gain-optimism). We leave as an open question whether
the current analysis of SCAL™T could be refined or whether a bigger lower bound should be
derived. Tt is also possible that a ¢v/SAT regret bound can only be achieved with a different
algorithm.

c-dependency. The regret bound of SCAL™ does not scale with min{A, ¢} like SCAL (when
SCAL is modified as explained in Sec. 5.5.2). The difference resides in the fact SCAL builds
an extended MDP with Bellman shortest path operator (see Sec. 3.3) upper-bounding the
Bellman shortest path operator of the true unknown MDP. In this case, the fact that Ay < A
(i.e., the “optimistic” travel-budget is bigger than the true travel-budget) is a consequence
of Thm. 3.5. Unfortunately, it is not clear how to apply Thm. 3.5 to M. In this MDP,
the reward is no longer bounded by rpax and the MDP is not communicating (unlike the
extended MDP M) implying that the assumptions of Thm. 3.5 no longer hold. We leave as

an open question whether this analysis can be refined.

Finally, it also seems difficult to prove a regret bound analogue to (5.31) for SCAL™ i.e.,
scaling with /c instead of ¢ (see Thm. 5.5 for SCAL). This is because the exploration bonus
itself scales linearly with ¢ and explicitly appears in the regret bound when introducing the
(approximate) Bellman optimality equation of M} in the equations. We can no longer make

appear a sum of variances like in Sec. 3.6.
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5.8 SCAL": SCAL with tighter optimism

In the previous section, we showed that SCAL™ is less prone to over-exploration than SCAL
due to a tighter degree of optimism. Although this improvement was not reflected in the
final regret bound due to the presence of higher order terms, one should expect to observe it
empirically. Unfortunately, it seems that SCAL™ does not achieve the optimal dependency in
cand A. It is therefore challenging to compare SCAL and SCAL™ in general (even empirically)

as the v/T-advantage in optimism could be alleviated by the worsening in the ¢-dependency.

In this section, we present SCAL*, a variant of SCAL that achieves the best of both al-
gorithms by leveraging insights from SCAL™ to further constrain the confidence intervals
used to construct the extended truncated Bellman operator. Moreover, the computational
complezity of SCAL* is comparable to the one of SCAL (if not better).

5.8.1 Combining the confidence sets of SCAL with the exploration
bonus of SCAL*

Intuition

As we recalled in Sec. 5.5.2, the confidence sets used to build the extended MDP My of
UCRLB (see Eq. 3.3 and 3.4 in Alg. 5) ensure that with high probability, the dominance
property Lph* > h* + g*e holds for all k. The dominance property is a sufficient condition to
guarantee gain-optimism and derive regret guarantees (see Sec. 3.2). By Hoeffding’s inequal-
ity, we also know that for all all pairs (s,a) € S x A and with high probability, the inequality
(s, a)Th* < pi(-|s, a)Th*+sp (h*) B3 holds for all k, where 53 is defined in Eq. 5.23. When
sp (h*) < ¢ with ¢ known, these inequalities are used to define the exploration bonus by (s, a) of
SCALT, and it is also tempting to try to refine the definition of £y by adding the constraints
Pr(-|s,a)Thy < Dr(-|s, a)Thy + ¢B;®. The main difficulty is that these constraints involve both
pr and hg. One idea could be to enforce the constraint py(-|s, a) v, < pi(-|s,a)Tv, + Bi* at
every iteration n > 0 of EVI. For a fixed v,, the constraint is linear in p; and so with this
additional constraint, the optimization problem max,c pk (s q) {pTv} is still a linear program.
Unfortunately, the operator associated to this refined confidence set is no longer an (extended)
Bellman operator. This is because the confidence set now depends on the specific vector v
and can no longer be mapped to an extended action space (see Sec. 2.1.5). Nevertheless, in
the rest of this section we show that after applying the transformations already introduced
for SCAL™ (e.g., n-perturbation of the transition probabilities), all the useful properties of
Bellman operators that we have been exploiting in this thesis still hold (e.g., convergence of

value iteration, dominance, etc.).

Refined operator

We now formally define the new operator discussed in the previous paragraph:
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Yo € R, Vs €S, £iv(s) := max { max {r}+ max ){pTv}} (5.33)

a€As | r€Bk(s,a) pEBE(5,0)NOL (5,a,0

where OF(s,a,v) := {p € Ag: p(-|s,a)Tv < Pi(-|s,a)Tv + ¢Bi*}. The only difference with
the extended Bellman operator £ (2.17) is that the initial confidence set B]’,f(s, a) is inter-
sected with @’;(s,a,v). Since the set @’p“(s,a,v) depends on v, it is clear that £ is not a
Bellman operator (the “extended action space” now depends on v). Fortunately, £ share a

lot of properties with £; as shown in the following lemmas.
r Lemma 5.13 (Analogue to Lem. 2.5 and 5.7)

Let v and u be any two vectors in RS, then:
(a) £k is monotone: v > u = Liv > Liu.
(b) £ is non-expansive both in span semi-norm and ls,-norm:
sp(Lkv — Lgu) < sp(v—u) and [|€xv — Lrulloo < ||V — Ul oo-

(c) L is linear: YA € R, £i(v+ Ae) = £xv + Ae.

\

Proof. See App. C.3. |

Similarly to Sec. 5.5.1, we define £ by replacing BE(s,a) and B]’,f(s,a) by respectively
B¥(s,a) and Bﬁ(sla) in Eq. 5.33 (see Def. ~5.5), with the choice 1 = rmax/(c Ek) (as in
Sec. 5.5) so that Bl(s,a) # 0. To define £, we also substitute ©k(s,a,v) by ©F(s,a,v)
defined by:

(:)];(s,a,v) ={pe€Ag: p(:ls,a)Tv < pi(:|s,a)Tv+ B}

where pi(+|s,a) is any /(q-projection of pi(-|s,a) onto Eg(s,a) (convex set). Since by defi-
nition pi(-|s,a) € Bﬁ(s,a), the intersection Eg(s,a) N @';(s,a,v) is never empty and £ is
well-defined. The projection satisfies ||pk(-|s, @) —pr(-|s, a)|[1 = 2-max{0, nx—pr(5|s,a)} < 2ng
where 3 is the reference state used to construct Eg(s, a) (see Def. 5.5 and the n-perturbation).
In particular, it always holds that py(5|s,a) — px (3]s, a) = max{0,nr — pr(s|s,a)}. To sum-
marize, £, is formally defined by:

Vo eRY, Vs eS8, Lpu(s):=max{ max {r}+ _  max {pTv} ;. (5.34)
acAs reBk(s,a) pEBE(s,a)NOk (s,a,v)

£, also satisfies Lem. 5.13 (the proof is similar, see App. C). Moreover, unlike £y, £ is
always contractive (by construction) while being not too different from £; as shown in the

following lemma.
Lemma5.14 (See Def. 5.5 and Lem. 5.10)

The operator )Ek is a 1-step ~yp-span-contraction with v, < 1 —m < 1, and for any vector
h e RS, ||€h — Lihllso < i - sp (h).
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Proof. See App. C.4. |

Finally, we define the associated “truncated operators” by composing Ek (resp. £j) with
the span truncation T, defined in Def. 5.1: ¥ := I'.£;, (resp. TF := ['.£;). Due to Lem. 5.5,
%’g also satisfies Lem. 5.13 and 5.14 (by composition). We can then deduce the following

corollary.
r Corollary 5.1 (See Lem. 5.9)

The following properties hold for %’C“
1. Optimality equation and uniqueness: There exists a solution (g:, F),j) e R xR to

the optimality equation
o =0 +gle (5.35)

If (g,h) € R x RY is another solution of (5.35), then g = QZ and there exists A € R
s.t. h = f);r + Ae.

2. Convergence: For any initial vector vy € R®, the sequence (vy) generated by ScOPT
(with operator £, instead of L) converges to a solution vector f),': of the optimality
equation (5.35), and

lim (‘ilj)nﬂ vy — <§§f)n vy = g,je.

n—-+o0o

8. (Approzimate) Dominance: If sp (h*) < ¢ and £xh* > Lh* then g > g* —ny. - c.

5.8.2 Implementation and performance
Algorithm

The pseudo-code of SCAL* is similar to SCAL except that ScOPT is called with the refined
operator £ instead of £;. In SCAL, line 9 of Alg. 5 (Eq. 3.5) was replaced by Eq. 5.15. In
SCAL* this equation becomes:

(gk, hk,ﬂ’k) := ScOpT <Ek7 65]{, %, 81,0,"}%) . (5.36)

We also introduce RLProBA (Alg. 11), a slight modification of LPRrRoBA that can solve the

refined optimization problem max, pTv}. Compared to LPROBA, RLPROBA

GE;; (s,a)ﬂé’;(s,a,v) {
takes an additional input (. The scalar w output by RLPROBA is identical to the scalar output
by LProBa if smaller than (, otherwise it is set equal to ¢ (line 9 of Alg. 11). Since the value
of w is increased at every iteration ¢ (denoted w; in Alg. 11, see e.g., line 4), it is possible
to reduce the number of iterations of RLPROBA by checking whether the value is bigger

than ¢ and terminating the algorithm accordingly (line 2). Therefore, the computational
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Algorithm 11 Refined Linear Programming for probability maximization (RLPROBA)

Input: A vector v € R® sorted in decreasing order v(1) > v(2) > --- > v(S), S closed
intervals ([a;, b;]) s.t. 1>b; > a; >0 and Zle a; <1< Z;S:1 b;, a scalar { € R
Output: A scalar w
. Set wg = Z;S:I a; X v(i), Ag:=1— ZZ»SZI a; and i :=1 > Initialization
while A; 1 > 0 and w;_1 < ( do > Main loop
Set (51 ‘= min {Ai—la bl — ai}
Update w; + w;j—1 4+ 6; x v(i) > Assign allowed weights to highest values of v first
Update A; «+ A;—1 — 0;
Increment ¢ <4+ 1
end while
if w;_1 > ¢ then
Set w :=(
. else
Set w := Wi;—1
. end if

1<4i<8

= = e
N = O

complexity of RLPROBA is comparable to the one of LProBA, and sometimes even smaller.

The correctness of Alg. 11 is a direct consequence of the proof of Lem. 5.13 in App. C.

In practice, at every iteration n > 0 of ScOpT, and for all state-action pairs (s,a) € S x A,
RLPROBA is called with ¢ = py(+[s, a)Tv, + ¢3;*. The outputs of RLPROBA are then used to
compute £5v, and then %’C‘fvn (see Alg. 8).

Regret guarantees

By construction, SCAL* satisfies exactly the same regret guarantees as SCAL (Thm. 5.4
and 5.5) but the degree of optimism is now potentially tighter due to the restriction pg(-|s,a) €
(:)’;(s, a, hy) for all state-action pairs (s,a) € S x.A and all episodes k. As discussed in Sec. 5.7,

this restriction does not allow to refine the final regret bound with current proof techniques.

5.9 Conclusion

In this chapter we introduced SCAL, a UCRL2-like algorithm that is able to efficiently balance
exploration and exploitation in any weakly communicating MDP for which a finite bound ¢
on the optimal bias span sp (h*) is known. While UCRLB exclusively relies on optimism and
uses EVI to compute the exploratory policy, SCAL leverages the knowledge of ¢ through the
use of SCOPT, a new planning algorithm specifically designed to handle constraints on the
bias span. We showed both theoretically and empirically that SCAL achieves smaller regret
than UCRL2, with a negligible additional computational cost. Although SCAL was inspired
by REGAL.C, it is the only implementable approach so far. Therefore, this paper answers
the long-standing open question of whether it is actually possible to design an algorithm
that does not scale with the diameter (or the travel-budget) in the worst case. SCAL also

paves the way for implementable algorithms able to learn in an MDP with continuous state
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space (Qian et al., 2018b). Indeed, existing algorithms achieving regret guarantees in this
framework (Ortner and Ryabko, 2013; Lakshmanan et al., 2015) all rely on REGAL.C.

Inspired by SCAL we derived SCAL™, the first analysis of exploration bonus in infinite-
horizon undiscounted problems. We showed that SCAL™T achieves the tightest level of opti-
mism for OFU algorithms by achieving the optimal dependence in the bonus w.r.t. the state
dimensionality (it cannot further reduced while preserving theoretical guarantees given the
lower-bound of Prop. 2.12). Unfortunately, this tighter optimism does not imply a tighter
bound.

We combined the advantages of both SCAL and SCAL™ into a single algorithm: SCAL*.

For all the algorithms presented in this chapter (SCAL, SCAL* and SCAL*), it is an open
question whether the assumption that c is known can be relaxed. We conjecture that the
knowledge of sp (h*) is necessary to improve the regret upper-bound of UCRLB (i.e., replace
the travel-budget by the optimal bias span), even though we leave this question for future

work.

In Chap. 4, we showed that when the MDP is not communicaing, the regret of any “efficient”
learning algorithm cannot grow logarithmically with time. However, Thm. 4.2 does not apply
in the case where a bound on the optimal bias span is known since the MDPs with small ¢ in
Ex. 4.5 (used to prove Thm. 4.2) do not satisfy sp (h*) < c¢. We conjecture that a logarithmic
regret bound similar to Thm. 2.37 can be derived for SCAL, SCAL* and SCAL*, with D
replaced by ¢/rmax-
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6 Hierarchical exploration—-exploitations
with options

6.1 Introduction

Tractable learning of how to make good decisions in complex domains over many time steps
almost definitely requires some form of hierarchical reasoning. One powerful and popular
framework for incorporating temporally-extended actions and hierarchical structures in the
context of reinforcement learning is the options framework (Sutton et al., 1999). An important
feature of this framework is that MDP planning and learning algorithms can be easily ex-
tended to accommodate options, thus obtaining algorithms such as option value iteration and
Q-learning (Sutton et al., 1999), LSTD (Sorg and Singh, 2010), and actor-critic (Bacon and
Precup, 2015). Temporally extended actions are particularly appealing for high dimensional
problems that naturally decompose into a hierarchy of subtasks. Creating and leveraging
options has been the subject of many papers over the last two decades (see e.g., McGov-
ern and Barto (2001); Menache et al. (2002); Simsek and Barto (2004); Castro and Precup
(2012); Levy and Shimkin (2011); Sairamesh and Ravindran (2012); Mann et al. (2014)) and
it has been of particular interest recently in combination with deep reinforcement learning,
with a number of impressive empirical successes. For instance, Tessler et al. (2016) recently
obtained promising results by combining options and deep learning for lifelong learning in

the challenging domain of Minecraft.

Intuitively (and empirically) temporal abstraction can help speed up learning (reduce the
amount of experience needed to learn a good policy) by shaping the actions selected towards
more promising sequences of actions (Stolle and Precup, 2002), and it can reduce planning
computation through reducing the need to evaluate over all possible actions (see e.g., Mann
and Mannor (2014)). A large body of the literature has focused on how to automatically
construct options that are beneficial to the learning process within a single task or across
similar tasks. An alternative approach is to design an initial set of options and optimize
it during the learning process itself (see e.g., interrupting options (Mann et al., 2014) and

options with exceptions (Sairamesh and Ravindran, 2012)).

Despite the empirical evidence of the effectiveness of most of these methods, it is well
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known that options may as well worsen the performance w.r.t. learning with “primitive” ac-
tions (Jong et al., 2008). Intuitively, limiting action selection only to temporally-extended
options might hamper the exploration of the environment by restricting the policy space.
Moreover, most of the proposed methods are heuristic in nature and the theoretical under-
standing of the actual impact of options on the learning performance is still fairly limited.
Notable exceptions are the recent results of Mann and Mannor (2014) and Brunskill and Li
(2014). Nonetheless, Mann and Mannor (2014) rather focus on a batch setting and they
derive a sample complexity analysis of approximate value iteration with options. Brunskill
and Li (2014) derived sample complexity bounds for an RMax-like exploration-exploitation
algorithm for semi-Markov decision processes (SMDPs). While MDPs with options can be
mapped to SMDPs, we will later show that their analysis cannot be immediately translated
into the PAC-MDP sample complexity of learning in an MDP with options, which makes it
harder to evaluate their potential benefit. Therefore, we argue that in addition to the exciting
work being done in heuristic and algorithmic approaches that leverage and/or dynamically
discover options, it is important to build a formal understanding of how and when options
may help or hurt reinforcement learning performance, and that such insights may also help in-
form empirically motivated options-RL research. In this chapter, we consider the case where
a fixed set of options is provided and we study their impact on the learning performance
w.r.t. learning without options. In particular, we derive the first regret analyses of learning

with options.

Relying on the fact that using options in an MDP induces a semi-Markov decision process
(SMDP), we first introduce a variant of UCRLB for SMDPs and we upper and lower-bound
its regret. While this result is of independent interest for learning in SMDPs, its most in-
teresting aspect is that it can be translated into a regret bound for learning with options in
MDPs and it provides a first understanding on the sufficient conditions for a set of options
to reduce the regret w.r.t. learning with primitive actions. The resulting analysis explicitly
shows how options can be beneficial whenever the navigability among the states in the orig-
inal MDP is not compromised (i.e., the MDP travel-budget is not significantly increased),
the level of temporal abstraction is high (i.e., options have long durations, thus reducing the
number of decision steps), and the optimal policy with options performs as well as the opti-
mal policy using primitive actions. While this result makes explicit the impact of options on
the learning performance, the proposed algorithm (SUCRL in short) needs prior knowledge
on the parameters of the distributions of cumulative rewards and durations of each option
to construct confidence intervals and compute optimistic solutions. In the second part of
this chaper, we remove the limitations of having prior knowledge on options by introducing a
“prior knowledge-free” version of SUCRL named FSUCRL. We derive regret bounds for FSU-
CRL that clarify the regret bound of SUCRL. Finally, we provide illustrative emperiments
where the empirical results support the theoretical findings. We also empirically compare
FSUCRL to SUCRL and UCRLB (i.e., learning without options).

The work presented in this chapter extends the conference papers (Fruit and Lazaric, 2017)
and (Fruit et al., 2017).
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6.2 The option framework

6.2.1 Formal definition of options

We start this section with the formal definition of an option.

Definition 6.1 (Sutton et al. (1999))
A (Markov) option is a 3-tuple o = {Z,, Bo, 7o} where

o 7, C S is the set of states where the option can be initiated,
e (3,:8 — [0,1] is the probability distribution that the option ends in a given state,
o 7, € II°F is the policy followed until the option ends.

An agent can decide to play option o in any state belonging to Z,. Once option o has been
initiated, policy m, is executed until the termination condition of the option is triggered.
During the execution of option o, a Bernouilli random variable with success probability [3,(s)
is sampled independently from the past history every time a new state s € S is wvisited. The
execution of the option ends if and only if the outcome of the Bernouilli is a success. It
is worth pointing out that any “primitive” action a € Ay available in state s € & can be
interpreted as an option with an arbitrary initial state space Z, 3 s, a stopping distribution
Ba(s) =1 for all s € S, and any arbitrary policy 7, € ISR satisfying 7,(s) = a. The converse
is of course not true: all options are not primitive actions since an option can last for more
than just 1 time step (unlike a primitive action). Since the only restriction is that all 3 com-
ponents of an option should satisfy the Markov property!, Def. 6.1 provides a very rich and
flexible definition of temporally extended actions. It is possible to extend Def. 6.1 by relaxing
the Markov constraint, although it is unclear whether such a level of generality can be of any

interest given the Markov structure of the underlying MDP.

In this chapter, we assume that the original action space A of the MDP is replaced by a
set of options O given (i.e., known) to the learning agent, and possibly containing primitive
actions. This new framework is therefore a generalization of the MDP framework considered
so far (and introduced at the beginning of the thesis, see Sec. 2.1). Given a set of (Markov)
options O satisfying Def. 6.1, we denote by O, the set of options available in state s € S i.e.,
Os :={0€ O: s€I,}. In the previous chapters, we have always considered state-action
pairs (s,a) € S x A rather than isolated actions. Similarly, in this chapter the state-option
pairs (s,0) € S x O will be the fundamental bricks of the decision problem at hand. In the
rest of this chapter, we will slightly abuse notation and denote by S x O the set of “admissible”
state-option pairs i.e., the set {(s,0): 0 € O, s € I,}.

As shown in the seminal work of Sutton et al. (1999), one possible way to describe the
decision process induced by a set of options O onto an MDP M is through the notion of
Semi-Markov Decision Process (SMDP). We will make this statement formal later and start

by briefly presenting the concept of SMDP in the next section.

IThe starting state, the terminal condition and the policy all depend exclusivey on the current state.
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6.2.2 Semi-Markov Decision Processes

Definition

A Semi-Markov Decision Process (SMDP) M is a 5-tuple? (S, A, r,p, 7). As in the definition
of an MDP (see Sec. 2.1.1), § and A denote respectively the state and action space of the
SMDP, and r and p the expected rewards and transition probabilities. The last term 7 in the
definition of an SMDP refers to holding times. After playing action a in state s, the agent
waits for an exzpected duration 7(s,a) > 0 before observing the next state s’ with probability
p(s'|s, a) and receiving the expected reward 7(s,a). We make the same assumptions on S and
A as in Sec. 2.1 i.e., S is assumed to be finite while A is either finite or compact depending
on the context. When A is a compact set, we also assume that for all s,s’ € S, the maps
a—r(s,a), a 7(s,a) and a > p(s'|s,a) are continuous functions of a. A major difference
with Sec. 2.1 is that we assume that all sampled (as opposed to expected) rewards and holding
times are positive but not necessarily bounded, although we will also study this specific case
in detail. The reason is that this assumption is too restrictive to model options, as will be
clear in the next section. Nevertheless, we always assume that the ezpected value 7(s,a) are
uniformly bounded on & X A i.e., Tmax := sup, , 7(s,a) < +00, and we also assume that there
exists rmax > 0 such that 7(s,a) < rmax7(s,a) for all (s,a) € S x A. As a consequence, 7(s,a)
is also uniformly bounded on S x A. Finally, we assume that there exists Tmin > 0 such that

for all state-action pairs (s,a) € S x A, 7(s,a) > Tmin.

Since the classification of MDPs presented in Def. 2.2 (see Sec. 2.1.1) only depends on p (i.e.,
on transition probabilities), we can also apply it to SMDPs. SMDPs can thus be classified
according to their chain structure just like MDPs: ergodic, unichain, communicating, weakly

communicating or multi-chain.

Note that an MDP can be interpreted as a particular case of an SMDP where 7(s,a) = 1
for all state-action pairs. SMDPs are therefore a generalization of MDPs with a temporal

component.

Gain optimality

Like in the MDP case (see Sec. 2.2), in the undiscounted setting the goal is to maximize the
long-term average reward which is now expressed as an average over elapsed time (and not

just over time steps as in Eq. 2.8):

E™ {2?21 Ti|S1 ~ ,U1}
sup ¢ lim inf

= e

(6.1)

S1 ~ Ml]

If 7(s,a) = 1 for all state-action pairs, then (6.1) is equivalent to (2.8). Similarly, for any

stationary randomized policy 7 € IISR| the gain of 7 is defined as

2In comparison, an MDP is usually described as a 4-tuple, see Sec. 2.1.1.
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"(s) i E™ [E?:l ri|8$1 = S} 6.2)
e ._”j)TOOE”[ aniSl:S} '
1=

where the limit always exists. On the other hand, the bias is defined as

(ri —7i-9"(s1))

h™(s) := C-lim E™" [
1

n
n—-+o0o

51 = s] , (6.3)

)

where the Cesaro-limit always exists. For any randomized Markov decision rule d € DMP,
we denote by 74 € R the vector of holding times i.e., 74(s) = 7(s,d(s)) for all s € S. The
following proposition is the generalization of Prop. 2.4 to SMDPs (see (Schweitzer, 1985,
Theorem 1) for the proof).

Proposition 6.1
Let M be a weakly communicating MDP and denote by II* C ISP the set of mazimizers
of (6.1) in IISP. If any of the following two assumptions hold:
1. the action space A is finite,
2. II* # 0 and sup,cqp- sp (R™) < 400,
then there exists a solution (g*,h*) € R x RS to the fized point equation:

h* = max {rg— 74 -9+ P;h*}.
deDMD{d 49 ah”}

Moreover, for any such solution (g*,h*) and for all s € S,

E™ [Z?:l Ti|$1 = s}
g* = max < lim inf

mell | noteo Er {Zn 1Ti
1=

8128]

Finally, any stationary greedy policy w* = (d*)>°  satisfying d* €
arg maxgcpur {rq + Pgh*} is optimal i.e., m* € II*.

We recall that unlike g*, h* is not unique (see Sec. 2.2).

A natural next step is to derive an algorithm to compute an optimal policy. To that end,

we first introduce a transformation called uniformization.

Uniformization of an SMDP

We call “uniformization” the transformation of an SMDP M = (S, A,r,p,7) into an MDP
Meq = (S, A, Teqs Deq) With identical state and action spaces, and such that V(s,a) € S x A:
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r(s,a)
Teq(s,a) =
T(‘Z @) (6.4)
peq('lsa CL) = T(S,a) (p("S?a) - es) + eg

where @ < Tin. The assumption 7(s,a) > Tmin ensures that peq(-|s,a) is a well-defined
transition probability. Furthermore, since peq(s|s,a) > 0 for all (s,a) € S x A, the Markov
Chain induced by any Markov randomized decision rule d € DMR is aperiodic. In the follow-

ing, we denote by Leq the optimal Bellman operator of Mcq.

We first notice that the transformation preserves the chain structure e.g., if M is weakly
communicating/unichain/etc., so is Meq. This is immediate to see since the chain structure
of M only depends on which transition probabilities p(s’|s, a) with s’ # s are equal to 0, and

p(s'|s,a) =0 <= peq(s|s,a) = 0 whenever s # s.

In the case of a compact action space A, a — 7eq(s,a) and a — peq(+|s, a) are continuous
mappings since a — r(s,a), a — 7(s,a) and a — p(s’|s,a) are assumed to be continuous (see
above). Moreover, the condition r(s,a) < rmax7(s,a) implies that req(s,a) € [0, rmax]. As a
result, if SMDP M satisfies the assumptions stated earlier, M., satisfies the assumptions of
all the MDPs studied so far in this thesis (see Sec. 2.1.1).

Uniformization allows to analyze an SMDP as if it was an MDP (Puterman, 1994, Section

11.4.3). We illustrate this claim with the following lemma.

Proposition 6.2 (Proposition 11.4.5 of Puterman (1994))

If there exists (g, h,) € R x RS solution to optimal Bellman equation of M i.e.,

heg + gege = Leghey,

then (g, ahy,) is solution to the optimal Bellman equation of M i.e.,

ahty = e, {ra = ra- goy + Pa(aliy)}

Instead of looking for a solution to the optimality equation of SMDP M, we can search
for a solution to the optimality equation of MDP M., using the tools of Sec. 2.2. Rather
than checking whether M satisfies the assumptions of Prop. 6.1, we can verify whether M
satisfies the assumptions of Prop. 2.4 (existence of a solution to the MDP Bellman optimality
equation). Whenever Prop. 2.4 holds for M., it is clear that Prop. 2.6 holds as well (i.e.,
value iteration converges) since all stationary determinisitic decision rule in M, are aperiodic

(see above).
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Figure 6.1: MDP with a state-option (sp,0) executing ap in all states with termination
probabilities B,(s0) = So, Bo(s1) = P1 and By(s2) = 1 (Fig. 6.1a), and dynamics of the SMDP
associated to this state-option (Fig. 6.1b).

6.2.3 Markov options as absorbing Markov Chains

Markov Chain of an option. Any option defined on an MDP can be described by a Markov
Reward Process (MRP) i.e., a Markov Chain (MC) together with a reward function. The
state space of the MC contains all states that are reachable by the option and all terminal
states are absorbing states of the MC (see Fig. 6.1 and 6.2). More formally, for any state-
option pair (s,0) € S x O the set of inner states S, includes the initial state s and all states
x with f,(z) < 1 that are reachable by executing 7, starting from s (e.g., Ss0 = {s0,51}
in Fig. 6.1), while the set of absorbing states S;‘BS includes all states with B,(z) > 0 (e.g.,
Ssa’%s = {s0, 51, 52} in Fig. 6.2). We denote by S, (resp. ngs) the cardinality of S, (resp.
S;ES). The MC associated to (s, 0) is characterized by a transition matrix Ps, of dimension
(Ss,0+ S’j};s) X (Ss,0 + SS};S) with canonical form

Qs Qs.0(2,y) = (1= Bo(y)) - Lo P(ylz, a)molalz), Y,y € S50

P, := [
0

I where
Vaol2,y) = Bo(y) - Xap(ylx, a)mo(alz), V(z,y) € S0 x S

Qs,0 is the transition matrix between inner states (dimension Sy, X Ss), Vs.,o is the transi-
tion matrix from inner states to absorbing states (dimension S , X S?BS), and [ is the identity
matrix (dimension Sg};s X Sg}(’)s). Note that some states  may belong both to S;, and S?BS
if 1> Bo(z) >0 (ie., SsoN Sj}gs # (), and therefore Ss, + Sg‘]gs is not always smaller than S
(even though it is always upper-bounded by 2S). We also denote by 7, := (r(z, 7o (2)))zes, ,

the vector of rewards associated to state-option pair (s,0) € S x O.
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Figure 6.2: Absorbing MC associated to state-option (sg,0) of Fig. 6.1.

Absorbing property. Nothing in Def. 6.1 guarantees that a state-option pair (s,0) € S x O
will ever end once initiated. This problem will occur if for example ,(z) = 0 for all states
x € S, or if By(x) > 0 only for some states x € S that are reached with probability 0
under policy m,. Mathematically, this means that Ps, is not an absorbing Markov Chain
i.e., absorbing states are reached in finite time with probability strictly less than 1. A never-
ending option will be problematic if m, is very suboptimal compared to other options: once
this “pathological” option has started, no other option can ever be played (it is a sort of

“deadlock”). For this reason, we make the following assumption.

Assumption 6.1

All options terminate in finite time with probability 1, or equivalently, P, is an absorbing

Markov Chain for all state-option pair (s,0) € S x O.

The MC P, , is absorbing if and only if Q) , is strictly substochastic i.e., Qs 0e < e with the
inequality strict in at least one coordinate. If B,(x) > 0 for all states z € S, Asm. 6.1 always
holds by definition of @Q,,. It is thus not necessary to know the dynamics of the MDP to
enforce this property, even though having some prior knowledge is usually useful to define a

well-behaved option.

Characterization of an absorbing MC. When @, is strictly substochastic, I — Qs is
always invertible since the spectral radius of Qs o —p(Qs0)— is stricly smaller than 1. In the
theory of absorbing MCs (Grinstead and Snell, 2003, Section 11.2), the fundamental matriz

associated to P;, is defined as

Nyo:= (I —Qs0)7" (6.5)

i.e., Nso(j]i) (i-th row and j-th column) is the expected number of times inner state j € S, ,,

is visited when starting from inner state ¢ € S5 ,. The absorbing transition matriz

Bs,o = Ns,ovs,o (6.6)
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contains the probability of terminating in an absorbing state j € S?BS when starting from an

inner state i € Ss,. The i-th entry of the vector

Ts,0 *— Ns,oe (67)

corresponds to the expected number of steps before absorption when starting from inner state
i € Ss,0. For example, 7 ,(s) is the expected duration of state-option (s,0) while B; ,(j|s) is

the probability that it ends in state j € S;l;s. The set of possible terminal states of (s, o) is:

Stem .= {j € 82 1 B, (j|s) > 0}. (6.8)

Finally, we denote by 7, := (Za r(x,a)ﬂo(m\a)) s the reward vector associated to
rESs, 0

(s,0). The i-th entry of the vector

Rs,o = INg0Ts,0 (69)

is the expected cumulative reward collected before absorption when starting from inner state

i € S 0. In particular, Ry ,(s) is the expected cumulative reward of state-option (s, 0).

6.2.4 MDP with options as an SMDP

Availability of options. When we consider an arbitrary set of options O, it is possible that
some options terminate in states where no other option is available. In this case, the decision

process is somehow ill-posed. To avoid this situation, we make an additional assumption.

Assumption 6.2

For any state-option pair (s,0) € S x O, x € Sgegm = O, #.

Asm. 6.2 is not really restrictive since we can always use primitive actions as default options.
Even under Asm. 6.2, it is not a problem that Qs = () for some s € S as long as state s is
not a terminal state for any other state-option pair. Given an initial distribution over states

p € P(S), we recursively define the set of reachable states at the level of options Sky' C S:

Foo S1:=1{s€S8: >0
St =) S where {° s pls) > 05 (6.10)
k=1 Sk+1 = UsESk UOEOS S;?orm

165



Chapter 6. Hierarchical exploration—exploitations with options

Main results. We are now ready to state the main result of this section which relates an
MDP with (Markov) options to an SMDP.

Proposition 6.3 (Sutton et al. 1999)

Let M = (S, A,r,p) be an MDP with bounded rewards 0 < r < rpax, O a set of (Markov)
options satisfying both Asm. 6.1 and 6.2, and py € P(S) an initial distribution over
states. For all states s,s' € So and options o € Oy, we define the transition probabilities
b(s'ls,0) := Bso(s'|s), reward R(s,0) := R o(s) and holding time 7(s,0) := Tso(s). The
decision process My = {Sl', 0,b, R, 7} is an SMDP satisfying 7 > 1 and 0 < R < rpaxT.

In SMDP MY, 7in = 1. In the rest of this chapter, we set @ = 0.9 < Tpin for the
uniformization coefficient (this choice is arbitrary). We will often remove the dependency in

w1 and use the notations Mp and Sp to denote the SMDP and the state space respectively.

Any stationary policy mp € Hﬁ/};@ can be interpreted as a policy m € IIjs so that at each
step, 7 selects an action available in M based on the policy of the current option being ex-
ecuted. Although, 7o is stationary, the primitive actions played by 7 not only depend on
the current state in S, but also on the option being executed, potentially inducing a non-
stationary policy. The two reward processes induced by 7 and 7o in respectively M and Mo

are strongly related as shown in Cor. 6.1.

- Corollary 6.1

Let M be an MDP, O a set of options satisfying both Asm. 6.1 and 6.2 and My the
corresponding SMDP (Prop. 6.3). Let mp € H}?}[z be any stationary policy on Mo and

m € llps the equivalent policy on M (not necessarily stationary). For any state s € Sp, we

have: gyp (s) = g7y (s)-

\

Proof. The proof is straightforward (Fruit et al., 2017, Lemma 2). |

As a result of Cor. 6.1, it makes sense to compare the performances of policies in H]SVI}O and

policies in II;.

Distribution of holding times and rewards. We will now extend the result of Prop. 6.3
by analyzing the distribution of 7 and R in Mp. By construction, for any state-option pair
(s,0) € So x O, the holding time corresponds to the time before absorption starting in the
equivalent absorbing MC (described in Sec. 6.2.3). Such discrete random variables (r.v.)
are said to follow a discrete phase-type distribution (Nielsen, 2012). The probability mass

function can be expressed using powers of Qs , (Nielsen, 2012, Section 1.3.1)%:

Vk € N*, P(7(s,0) = k) = e](Qs.0)" Vi oe. (6.11)

3We denote by N* the set of strictly positive integers.
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Discrete phase-type r.v. are almost surely finite but not almost surely bounded (for any ar-
bitrarily large k, the probability mass in Eq. 6.11 may be non-zero). This is the reason why
we did not assume that the sampled holding times of an SMDP are bounded, but only that
they have a finite expectation (see above). In all the learning algorithms we have presented
so far in this thesis, we used concentration inequalities on bounded r.v. To apply the same
approach in the context of options, we need to rely on more general inequalities that hold
for unbounded r.v. We introduce the notions of sub-exponential and sub-Gaussian random

variables.

Definition 6.2 (Wainwright (2015))

A random wvariable X with mean p < +o0o is said to be sub-exponential, if one of the
following equivalent conditions is satisfied:
1. (Laplace transform condition) There exists’ (o,d) € RT x R™ such that:

0232 1
E {ex\(X—M)} <eT forall \ER st A <. (6.12)

We use the notation X € subExp(o,d).
2. There exists co > 0 such that E[e"X~#] < 400 for all X € R s.t. |\ < co.

Definition 6.3 (Wainwright (2015))

A random variable X with mean p < +o0o is said to be sub-Gaussian if and only if there

exists o € RT such that:

o222
E[e*X 1] <e®2 for all X €R. (6.13)

We use the notation X € subGauss(o) to denote a sub-Gaussian r.v. with parameter o.

By definition, if X € subGauss(o) then X € subExp(c,d) for any d > 0 but the reverse
is not true i.e., Def. 6.2 is more general than Def. 6.3. Also, if X € subGauss(o) (resp.
X € subExp(o,d)) then —X € subGauss(o) (resp. —X € subExp(o,d)). Finally, if X €
subExp(o1,d;) (resp. X € subGauss(o1)), oo > 01 and dy > dj then X € subExp(oe,ds)
(resp. X € subGauss(o2)).

It is possible to generalize Hoeffding and Bernstein inequalities to respectively sub-exponential

and sub-Gaussian random variables.

4We denote by RT and R™* the set of nonnegative and strictly positive reals respectively.
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Proposition 6.4 (“Bernstein inequality”, Wainwright (2015))

Let (X;)1<i<n be a collection of independent sub-Exponential random variables s.t. Vi €
{1,...,n}, X; € subExp(o;,d;) and E[X;] = p;. The following concentration inequality
holds:

_ 2
n no? if 0<t< <
vt >0, P(Z(Xi—m) 2t> <y vo= ;¢ (6.14)
i=1 e 2d, if t> %

w 2
. (o
where 0 = \| == and d = maxi<i<n{d;}.

Proposition 6.5 (“Hoeffding inequality”, Wainwright (2015))

Let (X;)1<i<n be a collection of independent sub-Gaussian random variables s.t. Vi €
{1,...,n}, X; € subGauss(o;) and E[X;] = u;. The following concentration inequality
holds:

n t2
vt>0, P (Z(Xi — ) > t) < e 2no? (6.15)

n 2
. (o
where o = ;%—1

The question that arises is whether the holding times 7 and rewards R of Mo satisfy either
Def. 6.2 or Def. 6.3 so that we can apply Prop. 6.4 or 6.5. Lem. 6.1 gives a complete answer

to this question.

Lemma 6.1

The holding times T and rewards R of Mo are sub-exponential random variables. More-

over, the holding time of an option is sub-Gaussian if and only if it is almost surely
bounded.

Proof. The full proof can be found in App. D.1. We distinguish between two possible cases:
either p(Qs,) = 0 (the spectral radius of Qs, is 0), or 1 > p(Qs,) > 0. The first case
characterizes the absence of cycles in the abosrbing MC i.e., all states are visited at most
once with probability 1. This means that the holding time is bounded by S almost surely
and is therefore sub-Gaussian. In the second case, the absorbing MC contains cycles i.e.,
some states are visited at least twice with non-zero probability. The holding time is then

sub-exponential but not sub-Gaussian. |

Thanks to Lem. 6.1, we know that we can always bound 7 and R using Prop. 6.4. We
also know that Prop. 6.5 is useless since when 7 is sub-Gaussian, it is also bounded and so

we can directly apply the inequalities used in previous chapters. Brunskill and Li (2014)
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addressed the problem of on-line learning with options under the assumption that 7 and R
are sub-Gaussian. Lem. 6.1 indicates that this assumption is restrictive in general, and very
loose when it holds (bounded is preferable). Despite its simplicitly and importance, it seems

that Lem. 6.1 has never been pointed out before in the literature.

6.3 Learningin Semi-Markov Decision Processes

Inspired by the mapping of Prop. 6.3, we now aim at analyzing the exploration-exploitation
trade-off in an MDP with options by first analyzing that same trade-off in a generic SMDP
(satisfying the assumptions of the previous section). We start by presenting the learning

problem and later derive and analyze a UCRL-like learning algorithm.

6.3.1 The learning problem

To avoid any confusion, we use different notations for time and decision steps: the (possibly
continuous) time elapsed is denoted by ¢ while (discrete) decision steps will be indexed by i.
At every decision step 7, the learning agent is in state s; and plays an action a; € A,,. The
agent then receives reward r; and ends up in a new state s;1 after a time period 7;. For
any n > 1, we denote by 1), := > 1 ; 7; the total time elapsed before the n + 1-th decision
step. Symmetrically, for any ¢ > 0, we denote by Ny :=sup{n € N, 3" ; 7, <t} the number
of decision steps that occurred before time t. T, and N; are random variables that depend
on the policy being executed. The time variable ¢ can either be an integer or a real scalar
depending on the SMDP (e.g., in the SMDP M of the previous section, t is discrete by

construction).

We evaluate a learning algorithm acting in an SMDP in terms of cumulative regret.

Definition 6.4

For any SMDP M, any initial state distribution p; € P(S), and any number of decision
steps n > 1, let {r}7_, (resp. {ri}i—;) be the random holding times (reps. rewards)
observed along the trajectory generated by a learning algorithm A. Let g* be the optimal
gain of M (Prop. 6.1). The cumaltive regret of 2 after n decision steps is defined as

n

A(M,2A, py,n) ::Z(Ti-g*—ri) :Tn-g*—Zri. (6.16)
i=1 i=1

The regret of 2 after T time steps is defined as A(M,2A, u1,T) := A(M, 21, p1, N7).

Intuitively, the regret should measure the difference in cumulative reward obtained by an
optimal (possibly non-stationary) policy and the learning algorithm after n decision steps
(or T time steps). Def. 6.4 is consistent with this requirement although other definitions

seem equally (if not more) relevant at first sight e.g., replacing 7T}, by its expectation.® In

5The total duration 7T}, after n decision steps is a random variable that depends on the algorithm 2 just
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the MDP case the optimal expected value function after T time steps v} (see Sec. 2.1.2) is
at most sp (h*)-far from T'g* and it makes sense to substitute v5 by T¢g* in the definition
of the regret. In the SMDP case, v} is at most sp (h*)-far from E™ [T},] - g* where 7 is
the optimal (non-stationary) policy after n decision steps (note that E™ [T,,] # E*[T;,] in

general). However, the distance between v} and T,, - ¢*

is not bounded since the (random)
holding times are potentially unbounded. To justify our definition, we first notice that in the
specific case where the SMDP is an MDP, 7; = 1 for all i > 1 (i.e., actions always terminate in
one step) implying that 7;, and n coincides, and Def. 6.4 reduces to the standard MDP regret.
This is also true if we replace T, by E™ [T},] in Eq. 6.16. But in addition to being consistent
with Def.2.5 when all options are primitive actions, Def. 6.4 also satisfies the compatibility

condition of Lem. 6.2.
7~ Lemma 6.2

Let M be an MDP, O a set of options satisfying both Asm. 6.1 and 6.2 and Mo the
corresponding SMDP (Prop. 6.3). For any state distribution p1 € P(Sp), any learning

algorithm A on Mo, and any number of decision steps n we have

AM, 2, 1, T,) = A(Mo, 2, p1,n) + T - (931 = Gz ) - (6.17)

\.

Proof. The proof is straightforward (Fruit and Lazaric, 2017, Lemma 2). |

Since a learning algorithm is nothing more than a policy, any SMDP-learning algorithm
Ao applied to Mo can be interpreted as a learning algorithm 2( on M so that at each time
step t, A selects an action available in M based on the policy associated to the option started
at decision step N; (see Sec. 6.2.4). In Lem. 6.2, we used the same notation for both Ao
and 2 for simplicity. In view of Eq. 6.17, whenever g3, = g}, the two notions of regret for
MDP with options and induced SMDP match. Moreover, as a direct consequence of Cor. 6.1,
9n = 9, and the equality holds if and only if there exists a policy over options that yields
an optimal long-term average reward in M. A trivial example where g3, = 9, 1s when
A C O though in general, the introduction of options usually constrains the space of policies
that can be expressed in M. The additional term T, - (gj/[ — 97\4@) in Eq. 6.17 corresponds
to an unavoidable approximation error. This is similar to supervised learning where the true
function being learned may not belong to the class considered. In the rest of this chapter,
we will be focusing on minimizing the regret A(Mp, 2, p1,n) which is the only part that can

actually be controlled.

Brunskill and Li (2014) followed a similar approach but in the discounted setting: instead
of directly analyzing the learning performance of an MDP with options, they analyzed the
learning performance of the corresponding SMDP. Because of the discount factor, the crite-
rion they used is not the regret but the sample complezity (). They also provide a definition
of sample complexity for an SMDP (analogue of Def. 6.4 for the sample complexity). Un-
fortunately, we show in App. D.2 that unlike what the authors claim, the SMDP sample

complexity bound cannot be immediately translated into a sample complexity in the origi-

like Z?:l r;. One idea is to replace T, by its expectation under algorithm 2 (interpreted as a non-stationary
policy) or under an optimal (possibly non-stationary) policy.

170



6.3. Learning in Semi-Markov Decision Processes

nal MDP. No analogue of Lem. 6.2 seem to exist with their definition of sample complexity.
Whether the definition can be adjusted to recover the compatibility condition of Lem. 6.2
is beyond the scope of this thesis. However, this incompatibility shows the importance of

carefully mapping SMDPs to MDPs with options as we did with Lem. 6.2.

6.3.2 SUCRL: Semi-Markov Upper Confidence RL

We introduce SUCRL (Alg. 12), a UCRL2-like algorithm which is able to learn in any commu-
nicating SMDP. The algorithm is very similar to UCRLB (Alg. 5) with few notable differences
(highlightd in Alg. 12).

SUCRL requires additional inputs like Tiax, Tmin and the sub-exponential parameters of
the rewards and holding times. SUCRL can accomodate very tight state-action dependent
sub-exponential parameters as well as very loose uniform upper bounds. The tighter the
parameteres, the tighter the confidence bounds (6.18) and (6.19). As shown in Sec. 6.2.4,the
rewards and holding times can sometime be bounded almost surely in which case we can rather
use empirical Bernstein confidence bounds like in UCRLB (the bounds should be known and

given as input to SUCRL instead of the sub-exponential parameters).

A key idea of the algorithm is to rely on the transformation introduced in Sec. 6.2.2 to
deal with an extended MDP ./\/lZq rather than an extended SMDP M. This allows to use
EVI in order to compute 7 (as in UCRLB). To construct the extended SMDP My (line
5 of Alg. 12), we enforce the additional constraint rmax7k(s,a) > ri(s,a). This guarantees
that M} has a reward function bounded in [0, rmax] but creates a correlation between 7y
and 7 (while py can be computed independently from 74 and r; like in UCRLB). We now
discuss how to implement the constraint ryax7s(s,a) > 7x(s,a). For all v € RS and s € S,

the optimal Bellman operator of M}* can be written as (see Eq. 6.4)

L3v(s) :=max{ max {T +2 ( max {pTv} — v(s)) } + v(s). (6.24)

a€As | reBk(s,a) | T T \p€By(s,a)
TEBF(s,a)

7<TmaxT

The maximization over r and 7 in (6.24) takes the following form:

T C
max { a } (6.25)
refr,rt] T
T€[r™,71]
r<rmaxT

where c is a scalar which can be positive, negative or null.® For (6.25) to admit a solution

In Eq. 6.24, ¢ = « (maxpegp(sya) {pTv} — v(s)).
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Algorithm 12 SUCRL

Input: Confidence § €]0,1[, maximal holding time 7,,,x and per-time step reward ryax,
minimal holding time 7., set of states S, set of actions A, sub-exponential parameters
or(s,a), d.(s,a), o-(s,a) and d,(s,a)

1: Set initial decision step i := 1, observe initial state s; and initialize for all (s,a,s’) €
Sx AxS: counters Ni(s,a,s’) := 0 and Ny(s,a) := 0, empirical averages p1(s'|s,a) := 0,
71(s,a) :== 0 and 7;(s,a) := 0, sample variances 31371(5’]3, a) :=0.

2: for episodes k = 1,2, ... do

Set the starting step of the episode ix := ¢ and initialize for all (s,a,s’) € S x A x S:
episode counters (s, a,s’) ;== 0 and vg(s,a) := 0, and cumulative rewards Rg(s,a) := 0

and holding times T} (s, a) := 0. > Initialization of episode k
4: For all (s,a,s’) € S x A x S, compute upper confidence bounds:
In (7SAN]:_(S, a)/é) In (7SAN,j(s, a)/é)
sa . 95 (s 1 4d, (s, 6.18
T‘,k g (S CL) N]:’_(87 a) (S a) N]:’_(S7 a) ( )
In <7SAN,j(s, a)/(5> In <7SANk,+(5, a)/(S)
B9 = 20.(s, : 4d; (s, / 6.19
B = 200, s (s, (6.19)

5: Set My, :={S, A, r, pr.} to be the extended SMDP defined by the confidence intervals
pr(s'|s,a) € Bi(s,a,s') (see Eq. 3.3),
ri(s,a) € B (s,a) := |Fi(s,a) = B3, Fi(s, @) + B3] 0 [0, PmaxTines] (6.20)
Tk(ss (L) € Bf—(s (1) = [?k(sv (L) - 8:—(2 ?k:(sv (1) + £ ;GL} N [Tmina Tmax] (621)
and the additional constraint 74 (s,a) > r4(s,a)/rmax.

Compute policy 7y, using (extended) value iteration on the extended MDP M;" ob-
tained by uniformization of My, (see Sec. 6.2.2)

@

(9, b, ) == EVI (ﬁ‘,j,q, gea, Tmax_ g, 1) (6.22)
Tmax?k
Sample action a; ~ 7 (+]s;).
8: while True do > Execute policy 7 until the end of episode k
Execute action a;, obtain reward r;, and observe duration 7; and next state s;11.
10: Increment episode counters:
Vk(8i, @y Sit1) < Vg(Siyai,8i41) + 1 and vg(si, a;) < vg(si,aq) + 1

11: Increment cumulative reward and holding time
Ry (st at) <= Ri(si,a) +r; and Ty(si, ;) < Th(si,a0:) + 7
12: if vg(si,ai) > N,j(si, a;) then > Stopping condition of episode k
13: Increment time i <— i + 1 and Break
14: else
15: Increment time i <— ¢ + 1 and sample action a; ~ m(-|s;).
16: end if
17: end while
18: Update counters (see Eq. 3.6), empirical averages and sample variances for all
(s,a,8') € S x Ax S (see Eq. 3.8 for the rewards and Eq. 3.9 for the transition probabil-
ities)
~ L Nk(S,CL) -~ Tk(saa)
Trr1(s,a) := thrl(s,a) Tr(s,a) + N;:Zrl(s, . (6.23)
19: end for
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we need to assume that 7~ < rpaxr .7

7~ Lemma 6.3

The pair (r*,7*) € [r~—,rT] x [t7, 7] defined as follows is a solution to (6.25):

min {rt, rmax7} ifc<0 )
and T =

max {min {r*, rpax7"}, 77} ife>0 T+ ifr*+c¢<0

Tmax

maX{T*, r } if r*+c¢>0

ﬁ
|

\

Proof. Since 1~ < rpax7 T by assumption, it is clear that (r*,7*) € [r—,r™] x [r7,77]. If
T > rmaxT ' it is obvious that there exists no 7 € [77, 77| such that r < rpa7 and so we can
restrict attention to [r~, min{r™, rn.x7"}]. Note that r* belongs to this interval by definition.

For any fized v € [r~,min{r", rpmax7"}], consider the problem

max {r +C}. (6.26)
Te[r—,71] T
TgrmaxT

Tmax

If r +¢ > 0, the maximizer 7*(r) of (6.26) is given by 7*(r) = max {T*, - } while if
r+c¢ <0, 7%(r) = 77. Since this is true for all r € [r~, min{r*, rp.7"}], if we show that r*

is an optimal value for r in (6.25) then 7% = 7*(r*) is an optimal value for 7.

Consider the function f, : r +— TZJ(rf). By construction, any maximizer of f. gives an optimal

value for r in (6.25). Plugging the expression of 7*(r) we obtain:

e if r < —¢
fe(r) = ECif — e < r < roaxT . (6.27)

Fmax (14 £) if 7 > rpaxt™ and r > —c

No matter whether ¢ > a7~ or ¢ < a7, the function f. is continuous with f.(—c) =0
and fo(TmaxT ) = Tmax + T% If ¢ <0, f.is increasing on every separate interval and so
fe is also “globally increasing” (by continuity), implying that the maximum of f. is reached
for 7 = min{r*, rpax7"}. If ¢ > 0, then necessarily ¢ < Tmax7™ since 7= > 0, and f. is
increasing for r < ryax7~ and decreasing for r > rpa.7 . As a consequence, if rT < rypaT
then the maximizer of f is 7 = min {r, rmax7" }, otherwise it is » = r~. This concludes the

proof. |

Using Lem. 6.3, it is very easy to compute L'qu (see Eq. 6.24). Moreover, 1, and 7y
can only take finitely many possible values (the set of possible values does not depend on
v). Therefore, M;? can be expressed as a discrete MDP just like the extended MDP used
in UCRL2. In addition, M} is communicating (same argument as in Sec. 3.1.2) and so is
M;? (the transformation preserves the chain structure) implying ezistence of a solution to the
Bellman optimality equation and convergence of (extended) value iteration in MZq (Prop. 2.4

and 2.6). Using Prop. 6.2, any optimality equation in M}, can be converted into an optimality

"This assumption is always satisfied as soon as there exists r € Bf(s,a) and 7 € Blﬁ(s,a) such that
7 < Tmax7. With high probability, B¥(s,a) and B¥ (s, a) contain the true expectated values r(s,a) and 7(s, a),
and 7(s,a) < rmax7(s,a) by assumption.
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equation in M, (and so existence in My, is guaranteed as well). Finally, the outputs of EVI
(Eq. 6.22) satisfy the following inequality (Lem. 2.7):

Saea, mlals) (rs(s, @) + a(p(-ls. ) Thi = hx(s)))

Vs €S, < —.
ZbeAs Wk(bIS)Tk(S, b) Tmax?k

After multiplying both side of the above inequality by the expected holding time and using

the fact that 74 (s, a) < Tmax for all state-action pairs we obtain an inequality similar to (3.41):

rmax
VseS, > ﬂk(a\s)‘T(s,a)gk — (s, a) — a(pk(|s,a)Thy — hk(s))‘ < S (6.28)
acAs

The rest of Alg. 12 is pretty standard in comparison with previous chapters.

6.3.3 Regret guarantees of SUCRL

To simplify the regret analysis we define o := max; , {0-(s,a)} and d; := max,, {d-(s,a)}
the maximal sub-exponential parameters given as inputs of SUCRL (and we define similarly
o, and b,). For any state-action pair (s,a) € § x A, the support of p(-|s,a) is still denoted
I'(s,a). We also need to extend the concepts of diameter and travel-budget to SMDPs.
Unsurprisingly, Def. 6.5 and 6.6 almost match the definitions of Sec. 3.3 with the presence of
holding times.

Definition 6.5

If E™[-|s1 = s| denotes the expectation under policy 7 starting from s in SMDP M, the
diameter of M is defined as

v(s')—1
D := max min E™ 7(si,a;)
S,S/ WEHSD

81 = s] (6.29)

=1
where v(s') :=inf{n >1: s, =5}

The diameter is defined in terms of actual expected time (to reach a state starting from an-
other state) rather than expected number of decision steps. Like in the MDP case, D < 400
if and only if M is communicating. Moreover, D := max; ||k}, ,||cc Where h',, is the maximal
non-positive fixed point of the Bellman shortest path operator L., in MDP M’ = (S, A,7’, p)
where 7’ = —rpax7 < 0 (note that M’ is an MDP and not an SMDP).

Definition 6.6
The travel-budget of SMDP M is defined as

v(s')—1

A := max min E7 Z TmaxT (S, a;) — r(Si, a;)
878/ 7T€HSD i=1

s1 = s] . (6.30)

Like in the MDP case, 0 < A < rpaxD. Similarly to D, A := max, ||h], |lcc where h',  is
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the maximal non-positive fixed point of the Bellman shortest path operator L,.,s in MDP

M' = (S, A,r" p) where ' = r — ryax7 (which is negative by assumption).

We now present two regret bounds similar to Thm. 3.4 and 3.5 (the main differences are
highlighted).

(

Theorem 6.1 (Analogue of Thm. 3.4)

\

There exists a numerical constant B > 0 such that for any communicating SMDP M , with
probability at least 1 — 9, it holds that for all initial state distributions 1 € Ag and for all
n>1:

A(M,SUCRL, p1,n) < - (max {"max, A} (ZF(S,G))

+ (Tmaxo"r + Ur) \/5714 + TmaXTmaX) nln (%) (631)

+ 5 (100 (s AFS + sy +d,)SAIn (3 ) 1n (n).

- J

\

There exists a numerical constant 5 > 0 such that for any communicating SMDP M , with
probability at least 1 — &, it holds that for all initial state distributions pu1 € Ag and for all
n > 1:

(Theorem 6.2 (Analogue of Thm. 3.5)

A(M, SUCRL,Nl,n) < 8- ({TmaXa V TmaXA} \l (ZP(57G)> In (n)

-+ (T'maxUT I+ Ur) \/Sj I /r’m;LXTmax) nln (%) (632)

A? n
+ B+ | max < rmax, —— ¢ S + rmaxd, +d, | SAln (5) In(n).

max

. J

In the special case where options are almost surely bounded (see Lem. 6.1) by a known

upper-bound #,,x, the main terms in the bounds of Thm. 6.1 and 6.2 remain unchanged but

d, = d; =0 and 0, = "max0r = "maxtmax-

6.3.4 Regret analysis of sucrL
Gain optimism

According to Prop. 6.2, the optimal gains of the true SMDP M and the MDP M., obtained
by uniformization (Eq. 6.4) are equal i.e., g* = g5,. We now show that with high probability,

Groq = Joq Where gj; . is the optimal gain of M. We first derive a slightly looser version of
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concentration inequality (6.14).

r Corollary 6.2
Let (X;)1<i<n be a collection of sub-Exponential random variables satisfying the same as-

sumptions as in Prop. 6.4. For allm > 1 and 6 €]0, 1],

S (Se)n (@)@ e

=1

n
> Xi— i
=1

o

Proof. We recall that d := maxj<;<n{d;}.
If Yy, 02 >2d%In (%) we set t 1= \/2 (k0 n (%) < 3P, 0?/d and so the first inequal-

\.

ity in Eq. 6.14 of Prop. 6.4 holds implying that P (‘Z?:l X — il > \/2 (X, 02)In (g)) <
J.

n 2 2 2 - 2 n 2
If on the other hand ;" ; 07 < 2d*In (5) we set t 1= 2dIn (5) > Y, 07 /d and so the second
inequality in Eq. 6.14 of Prop. 6.4 holds implying that P (|Z:L:1 X; — pi| > 2d1In (%)) <.

In conclusion, Eq. 6.14 holds for all n > 1. |

(Theorem 6.3 (Analogue of Thm. 3.1) )
he probability that there exists n > 1 and k > 1 s.t. M., does not belong to the extended
MDP M;! is at most g, that is

Wl >

P(En>1,3k>1, s.t. Moy & M) <

. J

Proof. The proof is almost identical to the proof of Thm. 6.3 but we have to account for the
a1 k . 5
possibility that 7(s,a) & BE(s,a). We use Cor. 6.2 with ¢ < WSANT ) for both r and 7.

+ 2 +
We notice that In (W) < 2In (W) and after taking a union bound we

obtain:
e I ) ) 4] 2726
PEnz 13k 21, st Mo ¢ M) <20 | 3,054 * 2054 T 2 10w 574 ) ~ 60
5
< -.
=3
=

As a direct consequence of Thm. 6.3, with probability at least 1 — g, forall £ > 1, £thzq >
Leghtq and so gg o = 924 (Prop. 3.3) and moreover g > Jheq — Té“izx (Prop. 2.7) implying

* Tm:
gk > g" — e
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Range of the optimistic bias

Under the same high probability event as Thm. 6.3, £33, h*d, > L9, = hed, forall k > 1
and all s € § where L, and ﬁzcj_) s are the Belmman shortest path operators of M., and
M with rewards 7/7 (see (6.4)) replaced by r/T — rmax < 0, and where hl, < 0 is the
maximal non-positive fixed point of L¢,. Due to Prop. 3.5, A} < A¢q and due to Thm. 3.35,

sp (hy) < AyY implying sp (hg) < Aeq. It remains to relate Aeq and A.

Theorem 6.4
For all 0 < o < Tiin, it holds that Aeg < A/

Proof. By definition, Aeq = max; ||hfd,||oc and A = max; ||h),||cc Where h%S, is the maximal
non-positive fixed point of LY, and A, the maximal non-positive fixed point of L,,s. As
shown in the proof of Prop. 2.8 (Sec. 2.1.4), L.,s and L9, are the Bellman operators of
the modified MDPs M., and M. respectively, where s is an absorbing state with reward
zero (the optimal gains of M., and ML are zero). Prop. 6.2 implies that ahfd, is a fixed
point of L,,s and moreover ah’l, < 0 since h'¢, < 0 and o > 0. Since h,, is the maximal

non-positive fixed point of L,,, necessarily h',, > ah’!, which concludes the proof. |

In conclusion, we obtain the same bound as in the proof of UCRLB (see Sec. 3.3) i.e.,
sp (hy) < AJa. Thm. 6.4 actually provides a tight bound since the equality holds Aeq = A/
(we omit the proof since this result is never needed to bound the regret, the interested reader
may refer to Thm. 2.1 for an analogy). Note that in Sec. 3.3, « denotes the aperiodicity
coefficient while here it corresponds to the uniformization coefficient. Both coefficients play

a similar role and have no impact on the regret analysis (they eventually cancel).

Splitting into episodes

Using MDS concentration inequalities for sub-exponential r.v. (Prop. 6.6 below), we substitute
the sampled holding times 7; and rewards r; (appearing in the definition of the regret) by

their expectations.

Proposition 6.6 (Theorem 2.3. Wainwright (2015))

a%)\

Let (X, Fn)nen be an MDS such that E [e’\X” fn_l] <e~ 2 a.s. forany |\ < 1/d, and

n€N. Foralln>1 andt >0,

p ( > 2 (S (2) +2 s (;)) <5 G

=1

n

D Xi

=1
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We leverage Prop. 6.6 to bound the sum of rewards and holding times as in Lem. 3.1.
s Lemma 6.4
With probability at least 1 — %:

Vn > 1, —;ri_ ;%: i (alsi)r(si,a) + 20, nln<6>—|—4d ln(6>

(6.35)
6n 61
ZTZ<Z Z Tk, (a]s;)T(8i,a) + 204 [nln (6) +4d;In <5>
i=1 a€As,
\
Proof. We use a martingale argument and Cor. 6.2. |

Since the rewards r and holding times 7 of M satisfy 0 < 7 < rpax7 (by assumption), the
rewards req of Meq satisfy 0 < 7eq < Tmax and consequently 0 < g* = gg‘q < Tmax. We can
now decompose the regret of SUCRL as we did with the regret of UCRLB in (3.39):

kn

A(SUCRL,n) < 3" Ag + 2 (rmax0s +0v) y [nln (65 ) +4(dy + rmaxdy) In (65“> . (6.36)
k=1

where the per-episode regret is now defined as Ay, := 37, , vk(s)7x(s, a) (T(S, a)g* —r(s, a)).

We then introduce r; and 7y:

7(s,a)g" —r(s,a) = 1x(s,a)g" — ri(s,a) + (1x(s,a) — 7(s,a)) \g: + (ri(s,a) — r(s,a))

STmax

By analogy with Sec. 3.5, we define A} =37, (rk )) and Al =
>0 Vk(s,a) (rk(s,a) —1(s,a)) (similar to A Wlth Vk( ) k(s,a) replaced by vi(s,a)). We
proceed similarly to define A] and AT!.

r Lemma 6.5 (Analogue to Lem. 3.4)

With probability at least 1 — %:

k k
Vn > 1 AL <Y AT+ AP Tmaxy [ ]
n > 1, Z E < Z T 4rmaxT n n( 5 >
k=1 k=1
ko, ko, on
AL <Y AL 4 A7paxy
Z k> Z k + 4T n n( B )
k=1 k=1

Proof. We use a martingale argument and Prop. 3.7. |

\.

We then bound A};l and Azlz

In (7SAn/é)

+4d7'+ maXdT
NF(sa) A Tmadr)

gFA AR < > k(s a) (2((77- + max0r)

s,a

In (7SAn/5))
N,;"(s, a)
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Using Lem. 3.6, we obtain (the inequality should be interpreted up to multiplicative numerical

constants):
kn n n
Z G AL + AT < (0 4 Tmaxor )1/ SAnIn (5> + (dr + Tmaxdr)SAlIn (5) In(n).
k=1

To bound 7 (s, a)g™ — 7 (s, a) we use gain optimism g > ¢* — 52 and Eq. 6.28 so that:

3 max

> milals) (ti(s,a)g" —ri(s,a)) < a > my(als)(pe(-|s, a)Thy — hi(s)) + 55, (6.37)
a€As a€As Uk
We recover the exact same term as in Eq. 3.42. The same analysis as in Sec. 3.5.3

(Thm. 6.1) and Sec. 3.6 can be carried out (with ¢ and n replacing ¢ and T') leading to the

same regret bounds.

6.3.5 Minimax lower bound for SMDPs

We have already seen that UCRLB achieves rather tight regret guarantees (in a minimax
sense). Due to the similarities in the regret analysis of SUCRL and UCRLB, we can expect
the bounds of Thm. 6.1 and 6.2 to be as tight. This is confirmed in the following lower bound.

\

There exists a constant § > 0 such that for any algorithm A, any integers S, A > 10,
any reals tmax > 3tmin > 3, Tmax > 0, A > Tmax - max{20tminlog4(S), 12tmin}, and for
n > max{A/rmax, tmax } S A, there is an SMDP M with at most S states, A actions, and
travel-budget A, with holding times in [tmin, tmax] and rewards in {0, %rmaxtmax} satisfying
Vs € S, Va € As, 7(8,a) < rmax7(8,a), such that for any initial distribution py € Ag, the

[Theorem 6.5

expected regret of A after n decision steps is lower-bounded by:

g E[AM, 2%, 11,1)] > B ((V7mach + Yoy Fnax ) VSAR) y

Proof. The proof (Fruit and Lazaric, 2017, Appendix C) is based on (Jaksch et al., 2010,

Section 6) but it requires to perturb transition probabilities and rewards at the same time to

create a family of SMDPs with different optimal policies that are difficult to discriminate. The
contributions of the two perturbations can be made independent. More precisely, the lower
bound is obtained by designing SMDPs where learning to distinguish between “good” and
“bad” transition probabilities and learning to distinguish between “good” and “bad” rewards
are two independent problems, leading to two additive terms v/7maxA and 7maxy/fmax in the

lower bound. [ |

This lower bound reveals a gap with the upper bound of order v/T on the first term (similar
to UCRLB) and \/tmax on the second term. While closing this gap remains a challenging

open question, it is a problem beyond the scope of this thesis.

Thm. 6.5 may not be very relevant for MDPs with options since the resulting SMDPs only
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account for a strict subset of all possible SMDPs. The rewards and holding times of such
SMDPs are always correlated due to the inner Markov structure of options. This is not the
case for all SMDPs. Actually, the specific family of SMDPs constructed to prove Thm. 6.5
cannot be mapped to any MDP with options for that reason. Nevertheless, we show that a

similar lower bound also holds for SMDPs resulting from MDPs with options.

\

There exists a constant § > 0 such that for any algorithm A, any integers S, A > 10,
any reals tmax > 3tmin > 3, Tmax > 0, A > Tmax - max{20tyminlog4(S), 12tmin}, and for
n > max{A/Tmax, tmax } S A, there is an SMDP M resulting from an MDP with options

with at most S states, A actions, and travel-budget A, with holding times in [tmin, tmax)

[Theorem 6.6

and rewards in {0, %Tmaxtmax} satisfying Vs € S, Va € As, r(s,a) < ryax7(8,a), such that
for any initial distribution py € Ag:

g E[A(M, A, p1,n)] > 5 - ((\/ Tmax/A + TmaxVtmax — tmin>vSAn) . y

Proof. See (Fruit and Lazaric, 2017, Appendix C). |

6.3.6 Analyzing the impact of options on the learning process

We are now ready to proceed with the comparison of the bounds on the regret of learning
with options versus primitive actions. To facilitate the comparison, we ignore all logarithmic
terms and assume that all options are almost surely bounded by t.x. We recall that the
regret of UCRLB is of order A(UCRLB,T,,) = 10) (\/m) In contrast, SUCRL
achieves A(SUCRL, T},) = 10) ((W + rmaxtmax> VSoOn + T, - (g* — gé‘g)) We first
notice that since Sp € S we have that Sp < §. Furthermore, we introduce the simplifying

conditions ¢g* = g¢, (i.e., the options do not prevent from learning the optimal policy).

While in general comparing upper bounds is potentially loose, we notice that both upper-
bounds are derived using similar techniques and thus they would be “similarly” loose and they
both have almost matching worst-case lower bounds. Let R(n) denote the ratio between the
regret upper bounds of SUCRL using options O and UCRLB. Up to numerical constants we

have

R(n) < (\/m+ Tmaxtmax)\/m _ \/m-i- Tmaxtmax SoOn (6 38)
~ TmaxAL'S AT, AT VAT SAT, .

R(n) < 1 indicates that using options is potentially beneficial (compared to using primitive

actions).

Eq. 6.38 reveals that options can improve the learning speed by reducing the size of the
support T' of the dynamics of the environment, for example when options are designed so
as to reach a specific goal (very “sparse” transition dynamics). This potential advantage
matches the intuition on “good” options often presented in the literature (see e.g., the concept

of “funnel” actions introduced by Dietterich (2000)). However, I' is absent from the lower
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bounds which raises the question whether reducing the size of the support is an actual source
of improvement. On the other hand, both upper-bounds and lower-bounds suggest that
designing options which reduce the travel-budget A will have a positive effect on the learning
performance. When Sp = S and A C O, Ap = A which implies that the two quantities
are indeed comparable (they both measure an expected number of time steps). If Sop = S,
Ao > A and so the only case when Ap < A is when Sp & S. In this case, Sp < S and so the
regret is all the more reduced. The ratio (6.38) also shows that the number of options should
not be excessively high compared to the number of actions to preserve some advantage in

using options.

Besides the fact that options can potentially reduce the travel-budget A, the support I
of tansition probabilities, the number of states S or the number of actions A, the main
contribution of this analysis is to exhibit the ratio 7 of number of decision steps over number
of time steps. This ratio formalizes the concept of temporal abstraction in RL. When using
options, the transition dynamics of the environment need only be estimated at the level of
macro-actions (i.e., options) causing the regret to grow with the number of decision steps

8 The longer the options, the lower the

rather than time steps like with primitive actions.
regret although this is mitigated by the presence of the additional term rmaxtmax (Tmaxv/tmax
in the lower bound) which quantifies the difficulty of estimating the parameters of a macro-
action. Since 17%13 +121(? % > ming 4 7(s, a), then (6.38) gives an (asymptotic) sufficient condition
for reducing the regret when using options, that is

AoTo  Tamaxtimax S0
©_0 , Tmaxima \/ © <1 (6.39)

AT Tmax /AL SAming, 7(s,a)

Perhaps not surprisingly, options are not always beneficial and can even worsen the learning
performance if not carefully chosen. This is a form of no-free lunch which reminds the
supervised learning setting (we recall that defining a set of options amounts to constrain the
policy space, which can be seen as the equivalent of the function class in supervised learning).
Accordingly, only adding options to the set of pimitive actions is often a bad strategy (the
policy space is the same in that case). This is confirmed by our analysis since in that case
O>ATo>T So=5and Ap = A.

6.4 Learningin MDPs with Options without prior knowl-
edge

At each episode, SUCRL solves an “optimistic” version of the optimality equation of Meq
(obtained by uniformization of SMDP My, see Prop. 6.2) i.e., an optimistic version of equation
heqt9aqe = Leqh,- Gain optimism is achieved by constructing confidence intervals on R(s, 0)
and 7(s,0) using parameters (o,(s,0),d,(s,0)) and (o,(s,0),d(s,0)) (Eq. 6.18 and 6.19).
Without any prior knowledge on the distribution of options, such confidence intervals cannot

be directly constructed and SUCRL cannot be run. Similarly, confidence intervals need to be

8The main term of the regret comes from the uncertainty in the environment dynamics

181



Chapter 6. Hierarchical exploration—exploitations with options

% (1-p)(1-5)
() 0= ()

/!

p

Figure 6.3: Irreducible MC obtained by transforming the absorbing MC of Fig. 6.2 with
p'=01-p50)(1=p)+Bo(l—p)+ppand p” = pi(1—-p)+p.

computed for b(-|s,0), but this does not require any prior knowledge on the SMDP since the

transition probabilities naturally belong to the simplex over states.

In practice, having access to tight sub-exponential parameters is often a strong requirement
and any incorrect parametrization (e.g., loose upper-bounds on the true parameters) directly
translates into a poorer regret performance. Furthermore, even if a hand-designed set of
options may come with accurate estimates of their parameters, this would not be possible for
automatically generated options, which are of increasing interest to the RL community. Fi-
nally, SUCRL views each option as a distinct and atomic macro-action (with sub-exponential
distribution), thus losing the potential benefit of considering the inner structure and the in-
teraction between options (correlated discrete phase-type distributions with shared states
and primitive actions, see Sec. 6.2.3), which could be used to significantly improve sample

efficiency.

In this section, we combine the semi-Markov decision process view on options and the
intrinsic MDP structure underlying their execution (see Sec. 6.2.3) to achieve temporal ab-
straction without relying on sub-exponential parameters that are typically unknown. The

optimality equation of M. can be rewritten as:

R(s,0) !
7(s,0) + 7(s,0)

* j—
Vs € So, Jeq = gé%}:{

(bCfs,0)he, — h;q(s))} . (6.40)

The term on the right-hand side of Eq. 6.40 is therefore “homogeneous”to a gain. We will
introduce a transformation mapping each state-option pair (absorbing Markov Chain) to an
associated rreducible Markov chain, where the gain of this Markov chain is the right-hand
side term of Eq. 6.40. We will show that optimistic policies can be computed using only
the irreducible chains and the SMDP dynamics (i.e., state to state transition probabilities
through options). This approach does not need to explicitly estimate cumulative rewards and

duration of options and their confidence intervals.

6.4.1 From absorbing to irreducible Markov Chains

From Eq. 6.40, we notice that computing the optimal policy only requires computing the
ratio R(s,0)/7(s,0) € [0, rmax] and the inverse 1/7(s,0) € [0,1]. Starting from the absorbing
Markov Chain P;, (Sec. 6.2.3), we can construct an irreducible MC whose stationary distri-
bution is directly related to these terms. We proceed as illustrated in Fig. 6.3: all terminal
states are “merged” together and their transitions are “redirected”to the initial state s € S .

More formally, v, , := Vs o€ € RS0 contains the cumulative probability to transition from an
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inner state to any terminal state. Then we define Q'&O € R%*S ag equal to Q5,0 wWith vy,
added to the s-th column of Qso. Q% pe = Qsoe+ Vs oe = e and Qf , > 0 implying that Qf , is
a stochastic matrix and the associated MC is necessarily irreducible since all states in S, are
reachable form s by construction (definition of Sg,), and s is reachable from any state in S; ,
due to the addition of vs,. Therefore, Q’&O admits a unique stationary distribution ji,, i.e.,
a unique solution to the system of equations ul Q% , = ul, and ul e = 1 (Bremaud, 1999,
Chapter 3). In order to relate ys, to the optimality equation (6.40), we need an additional

assumption on options.

Assumption 6.3

For any state-option pair (s,0) € So x O, the starting state s is also a terminal state i.e.,

Bo (s) = 1.

We now analyze the implications of Asm. 6.3. Let O be a set of options, possibly not
satisfying Asm. 6.3, and O’ a slightly different set of options obtained by forcing 5,(s) = 1
for all state-options pairs (s,0) € Sp x O. It is straightforward to prove the following

equivalence.

Proposition 6.7

Let m be o stationary deterministic policy over options O. There exists a stationary de-
terministic policy ©' over options O’ such that the induced process over states, actions and
rewards (in the original MDP M) is the same for both 7w and 7', i.e., for any sequence
Hy = (s1,a1,71...,8), PT(Hy) = P“’(Ht).

Proof. For any option o € O in the orginal set of options, let’s denote by o/ € O the
same option after forcing f,(s) = 1. For any stationary policy m over O, let’s define a
corresponding stationary policy «’ over O’ by: 7'(s) = (7(s))’, Vs € So. For any option
o such that 7(s) = o and f,(s) < 1, the state s € Sy, might be visited while o is being
executed and o is not stopped in s. But since 7, (policy of option o) is stationary Markov,
the distribution on the sequence of states and actions visited after s is exactly the same as if
the option was first stopped and executed again (in both cases the policy 7, and the starting

state s are the same). So the process over states and actions is the same for 7 and 7’. |

Since the opimal policy over options O is stationary deterministic (optimal policy of SMDP
Mp), Prop. 6.7 implies that Asm. 6.3 is not very restrictive. We are now ready to prove an

important lemma.
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~ Lemma 6.6

Under Asm. 6.3, let ps, € [0, 1]3" be the unique stationary distribution of the irreducible
MC Qy, associated to state-option (s, 0), then

7_(51 0) = pso(s)  and f((::’oo)) = Z r(x,a)mo(al) ps o). (6.41)
| R

Proof. Under Asm. 6.3, Qso(z,5) = (1 — Bo(5)) - X p(s|z,a)my(alx) = 0 for all z € S,
implying that Qf ,(x,s) = vs(z). So state s can only be reached when the option is “reset”.

’870 has a finite number of states and is thus recurrent positive (see e.g., Thm. 3.3 of Bremaud
(1999, Chapter 3)). Moreover, 1/i,,(s) corresponds to the mean return time in state s, i.e.,
the expected time to reach s starting from s (see e.g., Theorem 3.2 in Bremaud (1999, Chapter
3)). Finally, 7(s,0) is the expected time before reaching an absorbing states starting from
s in the original absorbing Markov chain P;,. Since all absorbing states of @), , are merged

with s in MC Q% ,, 1/15,0(s) is exactly equal to 7(s,0) in this case.

Let (s¢),cy be the sequence of states visited while executing Qf , starting from s and let
Tt = Yaed,, r(st, a)mo(als). By the Ergodic Theorem for Markov chains (see e.g., Thm. 4.1
of Bremaud (1999, Chapter 3)):

T—1
) r
Thm %t: Z r(z,a)mo(alz)ps,o(z) a.s. (6.42)
oo Z‘ESS,O
a€A;

Let Ty = 0,77, T, ... be the successive times of visit to s (random stopping times) i.e., Ty := 0
and Ty, 41 := inf{t > T, : s; = s}. From the Regenerative Cycle Theorem for Markov chains
(see e.g., Thm. 7.4 of Bremaud (1999, Chapter 2)) we have that the pieces of trajectory
(8T s STpa1—1) > are i.i.d. By the Law of Large Numbers we thus have:

Tit1—1
Zts Tt i (Zt T ) — R(s,0) a.s.

n n——+oo

The same arguments can be used to show that

T, el =T,
== 2= (Tt k) — 7(s,0) as.
n n n——+o0o

By taking the ratio, the term n disappears and we obtain:

Tn—1
2ito Tt . R(s,0)

T,  n—=+oo 7(8,0)

a.s. (6.43)

All sub-sequences of a convergent sequence converge to the limit of that sequence. Extracting
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the subsequence (7},)nen in (6.42) we obtain:

Th—1
2et=0 "t
T, noim Y (@ a)mo(alz)ps () as. (6.44)
IGSS,O
a€A,;

We then use the uniqueness of the limit ((6.43) and (6.44)) to conclude the proof of (6.41). M

Lem. 6.6 makes explicit the relationship between the stationary distribution of Qf , and

the key terms appearing in Eq. 6.40. More precisely, we have shown that:

B0, 0) O (b3, 0)Thig — hig(5)) = 3 @)mofale)soo)
7(s,0)  7(s,0) 2€Ss .0
a€Ay

+a (b(-Is,0)Thiy = hig(s)) 1sols).

7(s,0) 7(s,0)
sponds to a long term average gain, namely the gain of the Markov Reward Process (MRP)

characterized by the MC QY , and the reward function defined by

This confirms our first intuition that the term 252 a (b(-|s, 0)Thi, — h;‘q(s)> corre-

Yaea, T(x,a)mo(alz) for x # s,
Saea, 7(s:a)mo(als) + o (b |5, 0)Thiq = hig(s)) for z=s.

6.4.2 Optimistic bilevel Bellman operator

Inspired by the mapping between options and irreducible MRPs highlighted in the previous
section, we will now define an optimistic Bellman operator £ that uses confidence intervals
on b(:|s, 0), as well as confidence intervals on Q , and r(x, a) (rather than 7(s, 0) and R(s, 0)).
For the rewards we use the same confidence intervals as in UCRLB i.e., 7x(s,a) € B¥(s,a),
while for the transition probabilities at the level of options we use the same confidence bounds

as in SUCRL (and in UCRLB) i.e., by(-|s,0) € BE(s,0). We also use Bf(s,a) for Q!

s,0°

Inner Bellman operators. We start with the formal definition of a “/ocal”extended Bellman
operator L'Z’O characterizing the inner dynamics and reward of state-option pair (s,0) €

So x O. L;° takes two inputs: a scalar ¢ € R and a vector u € RS0, For all z € Ss.0

L7 (c,u)(z) == Z To(alz) ( max {r}+ max : {pT((e — Bo) ou+ 11(5)30)}>

2. reBfza)  peBi(ra (6.45)

+ cl{z = s}.

The vector B, appearing in Eq. 6.45 corresponds to the stopping condition of option o
restricted to the susbset of states Sg,. o denotes the Hadamard product i.e., (e — 5,) ou =

((1 = Bo(x))u(z)),cs. - The scalar c appears only in state s.
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Although this may not be obvious at first sight, for any fixed ¢ € R, £;°(c,-) is an (ex-
tended) optimal Bellman operator. The scalar ¢ can indeed be interpreted as an additional
reward in state s, while the scalar product pT((e — ;) o u+ u(s)f,) can be expressed as ¢Tu
where q := po(e—f,)+pTfyes is a probability vector (i.e., ¢ > 0 and ¢Te = 1). pis also a prob-
ability vector and can be easily computed using LPrRoBA with input vector (e—f,)ou-+u(s)5,
(sorted in decreasing order). Since B{;(az, a) is a polytope, p and ¢ take values in a finite set
that is independent of u, implying that £;°(c,-) can be expressed as an optimal Bellman
operator with finitely many actions. Furthermore, the associated MDP MZ’O(C) is communi-
cating. Due to Prop. 2.4, there ezists a solution (g;°(c), hy°(c)) € R x R%° to the fixed point

equation h)°(c) + gp%(c)e = L;° (¢, hy°(c)), where g;°(c) is unique and can be expressed as:

g (€)= up’(s)e+ D molalw)uy®(z) - max {r}, (6.46)
©E8u.0 reBF(z,a)
aGAz

with 4 the stationary distribution of any optimal policy (e.g., a greedy policy w.r.t. h;°(c)).

Even though the true Markov Chain @, is irreducible by construction (and so s, is
unique with 5 ,(s) > 0), it is not necessarily the case for the optimistic chain. This chain
can happen to contain transient states and/or several recurrent classes. NZ’O is not uniquely

defined” (but exists) and 1;°(s) can happen to be 0.

Outer Bellman operator. We define the “global” operator Ezq relating all options as follows:

Vo € RS, Vs € So, Lu(s) i= mo{g (“'be%ﬁf@{””}‘“'”“))}“’(S)‘ (047

L7 accounts for the outer rewards and dynamics at the “SMDP level”. Using (6.46), we

can rewrite (6.47) as

max { max{ > molalzr)u(z) - max {r}+ ap(s)- max {bTv}+ (1—apu(s)) - v(s) }},

0€0s Iz 2E€Ss.0 reBk(z,a) beBE(s,0)
aE.Az

=pTv, with probability vector p=au(s)b+(1—au(s))es

reward in [0,rmax]

where p is constrained to be a stationary distibution of a (not necessarily irreducible) MC
contained in the confidence intervals of QY , (see above). As we explained earlier, ¢ can be
constrained to lie in a finite space without impacting the final result, and therefore so does p.
In conclusion, £;? is an (extended) optimal Bellman operator which can be expressed with
only finitely many actions. The associated extended MDP M;? is communicating and so due
to Prop. 2.4, there exists a solution (g7, A7) € [0, 7max] X R to the optimality equation
kit + g,'e = L£*h 1. Unlike in the SMDP formulation of SUCRL where the holding times
and cumulative rewards must lie in bounded confidence intervals, in this new formulation p(s)

can be equal to 0 (corresponding to an infinite holding time and cumulative reward) without

9 Although p3° is not unique, the value in Eq. 6.46 is the same for all possible values of ;.
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6.4. Learning in MDPs with Options without prior knowledge

compromising the solution of the optimality equation. Furthermore, this new approach im-
plicitly leverages over the correlations between cumulative reward and holding time, which

is ignored when estimating R(s, 0) and 7(s,0) separately.

Since /\/lzq is aperiodic by construction (see Eq. 6.4), Prop. 2.6 implies that EVI converges to
a solution of the optimality equation. The limit of the sequence of vectors v,, generated by EVI
when started from vector vy = 0 will be denoted h}*. Due to Thm. 3.3, sp (k") < A}*. To sim-
plify notations, whenever ¢ = a- (maxbe BE(s o) 107 Rt} — hi( )) we drop the dependency in ¢
in Eq. 6.45 i.e., we simply denote the inner operator by E . Let (gk , hz “) be any solution to
Ry +g0%e = L£3°hy°. We cannot use Thm. 3.3 to bound sp (h;’°) because we have no guaran-
tee that the reward Y- ,c 4, To(als) (maxreBﬁ(s,a){r} +o- (maxbeBk y {07yt — g ( ))) is
bounded by ry.x. However, combining the inner and outer optlmahty equations, we obtain
that ¢, = max,co, {g;°} for all s € Sp so that g;° < ¢, < rmax. Thm. 3.2 then shows
that sp (h)°) < Ay° where A)° is the “travel-budget” of the extended MDP Mj* but with
policies restricted in HEBJ(MZ’O):

T(y)—1

§ Tmax — St , at)

AS,O . .
ko max min Ms ,0
307y€55,o TI'GHS,_BJ (M; 0

s1 = l‘] . (6.48)

Gain optimism. We use the same argument as for SUCRL: with high probability, Ezqh;fq >
Leghe, implying gyt > Geq = Iy

Range of optimistic biases. The travel-budget A, of any state-option pair (s,0) € Sp x O

is defined as

T(y)-1
Asoi— max ]EQ Z Tmax — Z T(Stva)ﬂO(a|St)

JYES
.Y 80 CLGAst

51 = x] . (6.49)

E¢:  denotes the expectation in the irreducible Markov Chain Q'&O. Since by construction

all states are positive recurrent, Por (T(y) < +oo‘31 = :U) = 1 so that A;, < +00. Under
the same high probability event for which g;* > gf , Aj" < A/a (same arguments as in
SUCRL). A similar reasoning can be used to show that A;® < Ag,.

6.4.3 FSUCRL: SUCRL with Irreducible Markov Chains

Algorithm

FSUCRL combines the confidence bounds BE(s,0) (of the state-option transition b(-|s,0))
used in SUCRL, with the confidence bounds B (s, a) and B;,f(s, a) (of the state-action reward
r(s,a) and transition p(-|s,a)) used in UCRLB. FSUCRL does not build confidence intervals

on 7(s,0) and R(s,0) and so no prior knowledge on the distribution of holding times and
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cumulative rewards of options is needed!® (e.g., sub-exponential parameters o, b,, o, and
br). The confidence sets define the extended MDP M;? described in Sec. 6.4.2.

We will assume that FSUCRL computes h;* and hy* ezactly instead of approzimately using
EVI (see Eq. 6.22 in Alg. 12). The policy 7 played at episode k is therefore a greedy policy
with respect to hy! ie., m, = quhzq.u Computing hy! and h}° exactly allows to bound the
range (span) of )’ by As, (see Sec. 6.4.2). It is unclear whether we can approximate hj’
and hi’o using an efficient iterative procedure (similar to EVI) while preserving the property
sp (hZ’D) < Ag . The main challenge is that we have intricated equations e.g., the term c used
in the definition of £;°(c,v) changes at every iteration. Nevertheless, we will later provide a

convergent algorithm to approximate h;* and hy°.

Finally, the stopping condition used to end an episode combines the stopping conditions
used by both UCRLB and SUCRL i.e., an episodes stops whenever either vg(s,a;) >
N (st,at) for the last state-action pair (s¢,a;) played or vi(si,0;) > Ni (si,0;) for the last
state-option pair (s;,0;) played. Since when the first condition v (s¢, ar) > Nlj(st, ay) is trig-
gered the current option being played oy, may not be over, FSUCRL waits for the option to

end.

Regret guarantees

We present two regret bounds for FSUCRL (like for SUCRL). Like in Thm. 6.1 and 6.2, the
bounds are composed of two distinct terms: one reflects the difficulty to learn the dynamics
of the corresponding SMDP M, while the other characterizes the uncertainty of the options

themselves. To simplify the bound, we introduce Apax := maxg, Ag

\

There exists a numerical constant 8 > 0 such that for any communicating MDP M , with
probability at least 1 — &, it holds that for all initial state distributions u1 € Ag and for all

(

Theorem 6.7 (Analogue of Thm. 3.4)

time horizons T > 1:

A(M,FSUCRL, u1,T;,) < (B -max {rmaX,A@}\l (Z I'(s, 0)) nln <%>

+ (- max {Tmax,AmaX}\l (;F(S’ a)) Tnln (%)

+ B - max {rmax, A0 }5501n (%) In (n)

+ 8- SAln <%> In (Tn) (max {TmaXa AmaX}S + 7‘max(7_max + or + d’?’)) .

. J

WESUCRL is somehow a “parameter-Free” version of SUCRL (hence the acronym).
Hynlike in SUCRL and UCRLB, 7, is chosen deterministic so that Prop. 6.7 applies.
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\

There exists a numerical constant 8 > 0 such that for any communicating MDP M, with

[Theorem 6.8 (Analogue of Thm. 3.5)

probability at least 1 — &, it holds that for all initial state distributions pu1 € Ag and for all

time horizons T > 1:

A(M,FSUCRL, p1,T,) <f - max {rmax, \/rmaxA(g} \l <Z (s, 0)) nln (Z)

+ B max {rmax, m} \l (Zr(s’“)> Tnln <1(;n)

s,a

A2
+ B - max {rmax, O} S(%Oln (n) In (n)
T'max 0
Tn/ A%nax
+ 5 - SAln (5) In (Tn/) max § "max, S + Tmax(Tmax +or + dr) .

Tmax

. J

The bounds presented above illustrate how options implicitly implement the divide-and-
conquer paradigm. The main regret term of UCRLB O (\/rmaXAFSATn> sees the travel-

budget reduced to Amax while another term 0] (\/rmaXAoFoSoOn) appears, which only

scales with the number of decision steps n instad of the number of time steps 7. The ratio

introduced in Sec. 6.3.6 is now roughly bounded as

AoT'0SoOn Amax
R(n)g\/ N +\/ max. (6.50)

The conclusions that we can draw from (6.50) are similar to the one of Sec. 6.3.6 except that

we removed the dependency in the potentially loose sub-exponential parameters of options.
We replace these terms by intrinsic and a priori unknown properties of options (namely their
travel-budget) which provide more insights. It is clear from the bounds that unlike SUCRL,
FSUCRL leverages the inner correlation between the cumulative reward and duration of a
single option, as well as the outer correlation between different options that share inner state-
action pairs. The worst-case travel-budget of options Apax is a very loose upper-bound in
practice but difficult to improve while preserving the readibility and interpretability of the

regret bound.

Regret analysis

Stopping condition of episodes. FSUCRL uses two condition to terminate an episodes
and so the total number of episodes k;, can be decomposed as k, = k. + k2, where k} is the
number of episodes for which the first condition vy (sg, ar) > N,f (s, ar) is triggered, while k2
is the number of episodes for which the second condition vg(s;,0;) > N,f (s;,0;) is triggered.
k2 can be bounded as in SUCRL i.e., k2 < SO log, (;;—”O) (see Prop. 3.8). Moreover, this
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stopping condition ensures that at every episode k, v (s, 0) < N, (s,0) for all pairs (s, o).

Let’s now analyze the first stopping condition. Once the number of visits has doubled in one
state-action pair, FSUCRL needs to wait for the option being executed to end before starting
the next episode. This can only decrease the number of episodes compared to UCRLB.
Indeed, at the end of every episode k, the condition vg(z,a) > N, ,j (z,a) is always satisfied for
at least one state-action pair (x,a) and so Prop. 3.8 (which only relies on this property) also
holds i.e., k. < SAlog, (8T"> Although the bound on the number of episodes is unchanged,

the condition vg(z,a) < Nk (xz,a) for all state-action pairs (z, a) no longer holds and we

cannot apply Lem. 3.6 to bound the series Z it \/”% and Z i (/; , (1)) Nevertheless,

this condition can only be violated while executing an option o; that is the last of the episode.
There is at most one such option in every episode and we will bound the regret in each time
step of this option by 7max. Using Cor. 6.2 with a union bound over all ¢ = 1...n we have
that with probability at least 1 — 0

on 2
Vi=1...n, 75 < Tmax + 20, ln(5)+4d1 (;)

This means that with high probability, the total regret incurred while executing the last
option in all episodes where the first condition is triggered is (cumulatively) at most (ignoring

multiplicative numerical constants)

Tmax * k711 . (Tmax +0.4/In (Z) +d;In (Z)) . (6.51)

During the execution of all other options, we can use Lem. 3.6 to bound Zizl %(”)) and
/A‘f 1 iﬁ({ - ot We will account for the term (6.51) in the final regret bound and in the rest

of the proof, we will always assume that the condition vy (x,a) < N;f (z,a) is never violated.

Regret decomposition. The regret of FSUCRL can be decomposed as follows:

Tn

A(FSUCRL, T},) ZgM—rt w (95— Ihto) + D 9hte —
t=1

To bound the sum ZtT§1 9n,, — Tt we first follow the same steps as for UCRLB (Sec. 3.5.1
and 3.5.2). More precisely, we use a martingale argument (see Lem. 3.1) to bound — EtTgl Ty
and we use the optimism property to bound g3, . We also introduce the optimistic rewards
rk(s,a) and we use another martingale argument (see Lem. 3.5.4) to bound the cumulative
differences ri(s,a) — r(s,a). We set Tp := 1 and we recall that for alln > 1, 75, := Y11 7
where 7; is the duration of the i-th option played by the learning algorithm (denoted o;).
The state s, , visited at time step T;—1 is the state in which o; is started and is therefore
abbreviated s; (by analogy with SUCRL). The current episode at decision step i is denoted
k; (like in the analysis of SUCRL). The policy 7, played by FSUCRL at episode k is
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6.4. Learning in MDPs with Options without prior knowledge

deterministic and so o; = m,(s;). There is no particular reason to believe the analysis
cannot be extended to randomized policies although it would be slightly more involved since
we have to deal with several optimality equations as well as several policies wich can all
be stochastic: 7, and (7,)oco. In the end we obtain (with high probability and up to

multiplicative numerical constants):

Tn n T,—1
Zg?wo — Ty S Z Z QZ? - Z To;, (a|5t)’rki(5t’ a)
t=1 i=1t=T;_1 a€As,

ST 0 (S0 s (S0,

Unlike in Sec. 6.3.4, a denotes a primitive action in the original MDP M as opposed to
a macro-action in SMDP Mo (denoted by o). Accordingly, ri(s,a) denotes the optimistic
reward associated to state-action pair (s,a) and lies in [0, 7max|. If option o; is played in

state s; at decision step i then g =

gy, due to the outer optimality equation g, =
maxeco, {9y} (see Sec. 6.4.2). We now use the inner optimality equations hy’ + g;°e =

L7°hy° which can be expanded as

G = Y moalsra(sea) = 3 o, (als) g™ Clse a)ThE = by (s:)

' acAs, acAs,
o (by(:[si 00)Thed = hg(sy) ) - 1{t = Ti1}.
The additional term « - (bg(:|si, 0:)Thy" — hy'(s;)) only appears in the initial state s; i.e.,

for t = T;_1. For the sake of clarity, we use the simplifying notation qs“ol( |s¢) to denote

>0 To;(alst) gy (+]st, @). The main regret term becomes:

n T;—1
55 ( 5 wo,.<a|8t>mi<3t,a>) _
=T, 4

i=1t=T;_ a€As,
n n T;—1
Y (bri (lsi00)Thed = B(si)) + - 30 (@ Cls) TAE = by (s1))
i—1 i=1t=T}_;

The first sum (on the left-hand side) is analogue to the main term appearing in Eq. 6.37 in
the analysis of SUCRL (with different notations: b replaces p). It can be bounded in the
same way (we refer to the analysis of UCRLB). This term quantifies the uncertainty on the
dynamics between options at SMDP level. The main novelty in the analysis of FSUCRL is the
second sum (on the right-hand side) which arises due to the uncertainty within options. This
»

new term resembles the first sum: it corresponds to the difference between an “optimistic

expectation of 7i"** (s141) given state s; and hy* (s;). We will apply a very similar analysis.

Analysis of the new term. We start by adding and subtracting the true transition proba-
bility in the MC Qf , i.e., gs;,0,(:|5t) = >4 o, (al5¢)Gs;.0, (-] 51, ).
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n T;—1 n T;—1 T
Z Z ( sz,oz hsz,ol hs“oZ ) _ Z ( s,,ol ’375 qsi,0i<"8t)) hzi,oi
=1t=T;_1 i=1t=T;_1
n Ti— (6.52)
30D (gsion Cls) TRy (s0) = B (s0)
i=1t=T;

The first term in Eq. 6.52 corresponds to the difference between the optimistic and estimated

transition probability of irreducible MC @, 0» amplified by the optimistic bias hy:

ZZ > vi(s,0,2) Zwo (alz) (¢7°(-|x, a) — gso(-|z,a)) T hLC, (6.53)

k=1 8,0 €8s,

where (s, 0,x) denote the total number of visits in state x while executing state option
(s,0) during episode k. We then use the definition of ¢;* and g5, to reveal the optimistic
and true transition probabilities py and p in the MDP (not the MC Q% ,):

(4 Clz, a) = oz, a) TRy =) [Bo(y) - (pr(ylz, a) — p(ylz, a)) - hy(y)

+ (1= Bo() - (pr(ylz, @) = p(ylw, @) - 53 (9)]
< Apax - min {2, ;fi,}

The term (6.53) is therefore similar to the term Af} appearing in the regret proof of UCRLB.
We can apply Lem. 3.2 to obtain the bound

maXZZuk 2, a)B%%, + 4Amax [ Tn 1n<55T>

k=1 x,a

For a tighter bound, we can apply Lem. 3.7 and the decomposition of Sec. 3.6 instead. The
final bound is obtained as in UCRLB.

The second term in Eq. 6.52 is the difference between gs, o, (-[s¢)Thy"* and hy % (s;). We

define the process (v¢)ieir,_, 7,—1) by 2t = s¢ if T-1 <t < T; and 27, = s; = z7,_,. The

1,
process (x;) follows the dynamics of option o; until the stopping condition is triggered in
which case z; goes back to the initial state of the option s;. In other words, (x;) follows the

distribution of Markov Chain @ ,. We can then write

T, — T;—1

z (qsm )T = B (s0)) = 30 (Gsnon Clst)Thy " = B (1) )

t=T;_

The telescopic sum appearing after adding h;" (z441) is zero because zr, = s; = 7, ,. Since
1
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Algorithm 13 Nested (Relative) Value Iteration

Input: Operators Ls,(-,-) : R x RSs0 — R0 and Gspo - R® — DMR_ confidence inter-
vals (Bp(s,0,5')) scs,+ accuracies (n)n>—1 €]0, max[", initial vector vy € R, arbitrary
reference state s € S

Output: Gain g € [0, 7max], bias vectors h € RS and hso € R0 and stationary deterministic
policy 7 € ISP

1: Initialize n = —1, v_1 := —00
2: while sp (vp41 —vp) > -1 — %En_i,_l do
3: Increment n < n +1
4: Shift vy, < v, — v, (3)e
5: for s € S do
6: for o € O do
7: c+a- (LPROBA(vn, (Bp(5,0,8) s, ) — vn(s))
8: (55,07/]';8707 7?570) +— EVI (L&O(C, ), Gs,0,6n+1,0, 3) > Inner value iteration
9: end for
10: Un+1(8) = vp(s) + Maxoco Js,0 > Outer value iteration
11: end for

12: d, = Guy,
13: end while
14: Set g := %(max{vnH — Up} + min{v,41 — vn}), h:=wv, and 7 := (d,)>

(z¢) follows the distribution of MC QY ,, the remaining term (summed over i = 1...n):

n T;—1 Th

o SN, ,0 SN, ,0
> D (o Cls)Th ™ = B (41)) = 3 (o, Clae) T ™ = B (1) )
i=1 t=T; . =1

is an MDS. It can bounded like the sum ZIET 1 Aﬁl appearing in the analysis of UCRLB (see
Lem. 3.3 and 3.10), knowing that sp (h Nt’oNt) < Ag, 00 < Amax-
Ny

Nested value iteration

If EVI is run with the ezact Bellman operator £;?, both Prop. 2.6 and 2.7 hold and so
we obtain an efficient and convergent algorithm. The main challenge is that applying Ezq
requires computing the optimal gains g;°(c) of extended MDPs M;°(c). EVI can be used
to approximate these gains with an arbitrary accuracy € > 0. We therefore propose the
nested iterative scheme of Alg. 13 with operators [,Z’O, confidence intervals B{j(s, 0,s), and
initial vector 0 as inputs (we call this algorithm NEVI for Nested Extended Value Iteration).
Operator G , can be any greedy operator associated to EZ’O. We pick a sequence of accuracies

(€n)n>0 such that 3, -, e, < +oo. With such a sequence, we can prove the following theorem.

Theorem 6.9

If Nested Value Iteration (Alg. 13) is run with operators L;°, confidence intervals
Bf(s,0,5") and if 3,506n < +00, there exists hj' € R0 such that limy,_, oo vy, = hy!
and L;'h;! = b1+ gi'e.
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Proof. To simplify notations, we denote £; by £ and we define (u,) the sequence obtained
using the same algorithm without line 4 (shift) i.e., up = vo and v, = u, — u,(3)e for all
S,0

n > 1. Prop. 2.7 shows that gs, is an €, /2-approximation to g, and so for all n > 0,

ltuns+1 — Luplloo < ent1/2. Since L is non-expansive in {o-norm (see Prop. 2.5 (b)) we have

[unsa = L2unlloo < ltunt2 = Luntilloo + [|Ltns1 — L2Un|oo

En+2 T En+t1

<ent2/2 + |[unt1 — Luplloo < 9

By trivial induction, |[ty4r — LFuUn /o0 < % E?:fﬂ g; for all n, k > 0 and so

lvnak — Vnlloo = I| (Unsk — Unyk(3)e) — (un — un(3)e) [loo
n—+k
< [|CFup — LR (3)e — (un — un(3)e) loo + > & (6.54)
i=n+1

We know from Prop. 2.6 that L£*u, — LFu,(3)e converges as k — +oco (as an instance of
relative value iteration with initial vector u,). A convergent sequence is a Cauchy sequence
which means that (by definition)

sup Hﬁkun — Ekun(E)e — (up, —un(3)e) |l —> 0.
k>0 n—-+4o00o

Conversely, in a Banach space such that R9°, any Cauchy sequence converges. Since by
- - +k _ ot

assumption >, -g€&, < +00, necessarily Squzo{Z?:nH 52-} = > i1 E n_>—+>oo 0 and

we conclude from Eq. 6.54 that (v,) is a Cauchy sequence, and thus converges. Because

limy, 0 € = 0 (otherwise the series >, e, diverges), the limit of (v,) must satisfy the

optimality equation of L. [ |

One of the interesting features of NEVI is its hierarchical structure. NEVI is operating on
two different time scales by iteratively considering every option as an independent optimistic
planning sub-problem (line 8 of Alg. 13) and gathering all the results into a higher level
planning problem (line 10 of Alg. 13). This idea is at the core of the hierarchical approach
in RL, but it is not always present in the algorithmic structure, while NEVI naturally arises

from decomposing EVI in two value iteration algorithms.

6.5 Numerical Experiments

In this section we compare the regrets of FSUCRL, SUCRL and UCRLB to empirically
demonstrate the advantage of temporal abstraction.
6.5.1 Simple grid world.

In order to isolate temporal abstraction from other potential sources of improvements (e.g.,

number of states, diameter, etc.), we first design a domain that preserves most parameters.
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S
— -y

4o — -y

4o

. Target state

Figure 6.4: Navigation problem with the four cardinal actions represented as continuous arrows and
options (temporally extended actions) of length 2 as dashed arrows.

We consider the simple navigation problem of Fig. 6.4. In any of the d? states of the grid
except the target, the four cardinal actions are available, each of them being successful with
probability 1. If the agent hits a wall then it stays in its current position with probability 1.
When the target state is reached, the state is reset to any other state with uniform probability.
The reward of any transition is 0 except when the agent leaves the target in which case it
equals nax. The optimal policy simply takes the shortest path from any state to the target
state. The travel-budget A of the MDP is equal to rpax D in this domain and D = 2(d — 1).

Let m be any non-negative integer smaller than d and in every state but the target we
define four macro-actions: LEFT, RIGHT, UP and DOWN (dashed arrows in the figure).
When LEFT is taken, primitive action left is applied up to m times (similar for the other
three options). For any state s’ which is k¥ < m steps on the left of the starting state s, we
set Bo(s') = 1/(m — k + 1) so that the probability of the option to be interrupted after any
k < m steps is 1/m. If the starting state s is [ steps close to the left border with [ < m then
we set B,(s) = 1/(l — k + 1) for any state s’ which is k& < [ steps on the left. As a result,
for all options started m steps far from any wall, t;ax = m and Tax = (m + 1)/2, (while it
is respectively [ and (I + 1)/2 for an option started [ < m step from the wall and moving
towards it). More precisely, all options have an expected duration of T,y in all but in m x d
states, which is small compared to the total number of d? states if m <« d. The SMDP
formed with this set of options preserves the number of state-action pairs (Sp = S = d? and
O = A = 4) as well as the optimal average reward ¢g* = g¢, while it slightly perturbs the
diameter Dp < D + m(m + 1) (Fruit and Lazaric, 2017, Appendix F). Finally, to remove
the impact of the support I', we consider Hoeffding rather than empirical Bernstein bounds
for the transition probabilities (for all algorithms). In conclusion: ignoring the impact of

temporal abstraction, the two problems seem to be almost equally hard to learn.

While a rigorous analysis of the ratio between the number of option decision steps n and
number of primitive actions T}, is difficult, we notice that as d increases w.r.t. m, the chance
of executing options close to a wall decreases, since for any option only m x d out of d?
states will lead to a duration smaller than 7,,x and thus we can conclude that n /7, tends to

1/Tmax = 2/(m + 1) as n and d grow. This suggests that if d is big enough, there is always
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Algorithms | Description (level of prior knowledge)

FSUCRL Uses nested EVI to achieve optimism (no prior knowledge)

SUCRLv1 Maximal reward rp.x and actual duration ¢,,,x

SUCRLvV2 Maximal expected duration 7iax, maximal variance of holding
time o, = max;, 0. (s,0) and reward 0 = Tmax\/Tmax + 02
SUCRLV3 | Tmax and Vs, 0, 0,(s,0) and 0r(s,0) = rmaxy/7(8,0) + 0,(s,0)?2
SUCRLv4 Same as SUCRLvV2 with ogp =0

SUCRLv5 | Same as SUCRLv3 with og(s,0) =0

Table 6.1: Detailed description of the different algorithms used for the experiments. The
SUCRL-like algorithms are sorted by ascending level of prior knowledge. o, (s,0) can easily
be computed exactly using an analytical formula. Note that the options are all almost surely
bounded so that max,, br(s,0) = max,, b, (s,0) = 0. All options have 0 reward so that the
tightest prior knowledge we can have corresponds to o = 0.

—— UCRLB
FSUCRL
== SUCRLv1
=3¢= SUCRLv2
=@~ SUCRLv3

.. =F}F SUCRLv4
[‘:! ‘ SUCRLv5

o
o)
|

<
=
|

Ratio of regrets R(n)

©
o
!

2 4 6 8§ 10 12 14 16 18
Maximal duration of options ¢,

Figure 6.5: Ratio of regrets after T, = 2 - 10° steps normalized for different option durations
tmax in a 20 x 20 grid-world.

an appropriate choice of m for which learning with options becomes significantly better than

learning with primitive actions.

In Fig. 6.5 we plot the ratio between the regrets of SUCRL/FSUCRL and the regret of
UCRLB, as tyax = m varies and d = 20. The value of T;, is fixed and chosen big enough for
all d. The versions of SUCRL appearing on the plot differ in the amount of prior knowledge
given to the algorithm to construct the parameters orp and o, that are used in building
the confidence intervals (see table 6.1). Unlike FSUCRL which is “parameter-free”, SUCRL is
highly sensitive to the prior knowledge about options and in theory, could perform even worse
than UCRL2. The ratio R(n) decreases as m increases showing that temporal abstraction

improves as tmax increases. This behaviour matches the theoretical predictions.

Discussion. Despite its simplicity, the most interesting aspect of this example is that the
improvement on the regret is not obtained by trivially reducing the number of state-action

pairs, but it is intrinsic in the way options change the dynamics of the exploration process.
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Figure 6.6: Evolution of the regret as T,, increases for a 14x14 four-rooms masze.

The two key elements in designing a successful set of options O is to preserve the average
reward of the optimal policy and the travel-budget. The former is often a weaker condition
than the latter. In this example, we achieved both conditions by designing a set O where the
termination conditions allow any option to end after only one step. This preserves the travel-
budget of the original MDP (up to a small additive term), since the agent can still navigate
at the level of granularity of primitive actions. Consider a slightly different set of options (',
where each option moves exactly by m steps (no intermediate interruption). The number of
steps to the target remains unchanged from any state and thus we can achieve the optimal
performance. Nonetheless, having 7* in the set of policies that can be represented with O’
does not guarantee that the UCRL-SMDP would be as efficient in learning the optimal policy
as UCRL2. In fact, the expected number of steps needed to go from a state s to an adjacent
state s’ may significantly increase. Despite being only one primitive action apart, there may
be no sequence of options that allows to reach s’ from s without relying on the random restart
triggered by the target state. A careful analysis of this case shows that the travel-budget is
as large as Doy = D(1 + m?) (Fruit and Lazaric, 2017, Appendix F).

6.5.2 Four -room maze.

We now consider the classical 4-room maze that was initially introduced by Sutton et al.
(1999) to illustrate the concept of options. The domain is a grid-world of dimension 14 x 14
with walls separating each 7 x 7 “room” (see Fig. 2.1). The four cardinal actions fail with
probability 0.2 (uniformly in any other direction). In every state of every room, we define
four options: two are leading to the two exit doors, one is leading to the center of the room,
and the last one leads to the unique corner of the grid in the room. Thus, the number of
state-options is slightly bigger than the number of state-actions. The optimal policy takes
the shortest path to the target state which is located in one of the 4 corners of the grid and

the rewards are the same as in the previous experiment. Once the target is reached, the next
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state is chosen uniformly at random in the grid.

On Fig. 6.6, we plot the regret A(,n) as a function of 7, for 2 € {UCRL2, SUCRL,
FSUCRL }. The two versions of SUCRL are exactly the same as in the previous experiments:
SUCRLV2 uses maxs , 0+ (s,0) while SUCRLvV3 uses 0-(s,0). Note that the other versions of
SUCRL are not valid in this domain since the options are not almsot surely bounded. We

use Bernstein bounds (as in the original versions of the algorithms presented in this thesis).

Version 2 of SUCRL fails to beat UCRL2, and it is likely that version 3 will also eventually
suffer higher regret. For FSUCRL, we plot all 20 runs (as well as the average in bold). Except
in one run, FSUCRL always outperforms UCRL2. The variance is clearly higher than for any
other algorithm. The choice of options is probably not the best.

In both experiments, UCRL and FSUCRL had similar running times meaning that the
improvement in cumulative regret is not at the expense of the computational complexity.

More experiments can be found in (Fruit et al., 2017).

6.6 Conclusion

In this chapter, we started by deriving upper and lower-bounds on the regret of learning in
SMDPs and we showed how these results apply to learning with options in MDPs. Comparing
the regret bounds of SUCRL with UCRLB, we provided sufficient conditions on the set of
options and the MDP (i.e., similar travel-budget and average reward) to reduce the regret
w.r.t. learning with primitive actions. To the best of our knowledge, this is the first attempt

of explaining when and how options affect the learning performance.

Then, we introduced FSUCRL, a parameter-free algorithm to learn in MDPs with op-
tions by combining the SMDP view to estimate the transition probabilities at the level of
options —b(+|s,0)— and the MDP structure of options to estimate the stationary distribu-
tion of an associated irreducible MC which allows to compute the optimistic policy at each
episode. We show both theoretically and empirically that FSUCRL is actually competitive
with SUCRL and it retains the advantage of temporal abstraction w.r.t. learning without
options. Since FSUCRL does not require strong prior knowledge about options and its re-
gret bound is partially computable, we believe the results of this chapter could be used as
a basis to construct more principled option discovery algorithms that explicitly optimize the
exploration-exploitation performance of the learning algorithm (e.g., in a transfer setting).
Although FSUCRL does not require prior knowledge on sub-exponential parameters, it needs
to know the outer state space Sp (reachable states from pup using only options) as well as
inner state spaces Ss, (states reachable while executing state-option (s,0)). If additional
states are added to these sets, we face the same problem as with non-communicating MDPs
(infinite diameter and travel-budget). Nevertheless, in this case we can apply the techniques

developped in Chap. 4 for infinite diameter /travel-budget.

As future work, it would be interesting to extend the current analyses to more sophisticated
hierarchical approaches to RL such as MAXQ (Dietterich, 2000).
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A Appendix of Chapter 3

A.1 Bias and travel-budget

A.1.1 Proofof Thm. 3.2

If h* + g*e = Lh* then L?h* = L(h* + g*e) = Lh* + g*e = h* + 2g*e using the “linearity” of
L (Prop. 2.5). So by induction we have L™h* = h* + ng*e for all n > 1.

As shown in Prop. 2.1, for any vector v € RS,

L™(s) = max E” [Z Tt + v(Sn+1)

HR
mell =1

51 = s] (A1)

Note that the maximum in (A.1) is over all history-dependent randomized policies.

Fix an arbitrary state s’ # s and define the policy 7/ € II® that executes an arbitrary
stationary randomized policy 7 € ISP as long as t < 7(s') and a greedy policy 7* = (d*)>® €
5P s.t. Lh* = Lg-h* for t > 7(s'). We denote by n A (7(s') — 1) := min{n, 7(s') — 1} the

minimum between n and 7(s’) — 1. Due to Eq. A.1 we have:

81:8]

L"h*(s) > E™ [Z T+ h*(Spt1)
=1

nA(T(s')—1) n
—E™ Z sy =s| +ET Z T+ h*(Spt1)|s1 = s]
t=1 t=nA(7(s")—1)+1
nA(7(s)—1) n
=E" Z Tt|S1 = S +E7r/ Z T + h*(Sn_H) S§1 =S8 (AQ)

~+

=1

t=nA(T(s")—1)+1

(1) (2)

The fact that we can change 7’ into 7 in the first expectation is because the MRP has the
same distribution under 7 and 7’ for ¢t < 7(s’) by definition. We now analyze the second term
in (A.2). Due to the Markov property, what happens for ¢ > 7(s’) depends only on s,y = s

and 7*, and not on the states, actions and rewards observed before 7(s’). Mathematically,
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this means that

(2) =E™ Z T+ b (Spt1)|s1 = s]
Lt=nA(7(s')—1)+1
n—7(s")+1

— Eﬂ-* Z ’I”l"i‘h( Sn—r(s /)+2)
=1

s1=58,7(s) ] 1{7(s') <n—+1}

+ h*(spt1) - L{7(s') > n+1}

81—81

Note that it is possible to condition on 7(s’) since 7(s’) is a stopping time and so the sigma-

=FE" [L”*T(S PR (s') - 1{7(s") <n+1} 4+ h*(spg1) - L{r(s >n+1}‘31 —s]

algebra at stopping time 7(s") is well-defined. Since L™h* = h* + ng*e for all n > 1, we have

(a.s.)
L () = () + (n— 7(s") + 1) - ¢

Combining these last two equalities and using the law of total expectation, we can write:
(2) = h*(s") - P" (7(s') <n+1|sy =s) + ET [h*(5n+1 “1{7(s") >n+1} ’81 = 5}
+ ¢*-E” [(n—T(s')—i—l) 1{7(s <n+1}‘31 —3} (A.3)

Replacing L"h*(s) by h*(s) +ng* in inequality A.2 and plugging (A.3) we have for all n > 1:

nA(7(s’)—1)
h*(s) > E™ [ Y mfsi=s| +E" [h*(an)JI {r(s') >n+1} ‘31 = s}
=1
+g° EW[H—T ) L7 (s <n+1}—n’sl—s} (A.4)

+ B (') - P™(7(s') <n+1]s1 =s).
We notice that (n —7(s')+1)-L{r(s) <n+1} =n—nA(7(s) — 1) and so (A.4) becomes:
nA(t(s')—1)

Z re—g"

t=1

+ h*(s") - PT(r(s') <n+1|sy =s).

h*(s) > ET

S1 =S8

+E™ [h ($p41)1{7(s') >n+1} ’81 = s} (A5)

If 7 € 1D, then 7(s') is a.s. finite by definition i.e., P7(7(s') < +00) = 1. As a consequence,

lim P™(r(s") <n+1|s; =s) =1.

n—-+o0o

Since h*(sp+1) is bounded (by ||h*||oc) it also holds that

’E’T[ (Sn+1)L{7(s >n+1}‘31—s” <A Joo - P (7(s') > n+1|s1 =s) —> 0.

n—-+o0o

Finally, the term E™ [Z?;\I(T(S,)_l) re — g*|s1 = s} tends to E™ [ZZS{)_l re —g*
tends to infinity. We conclude the proof by taking n — +o0o in (A.5).

slzs} as n
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A.1.2 Proofof Thm. 3.3

We use the same arguments as in the previous section (App. A.1.1, proof of Thm. 3.2). We
consider a policy n/ € DR which first executes 7 € IISP until & is visited for the first

time, and then executes the non-statinary policy 7+ = (di,...,dp,...) € (II’?")N such that
Lg, ., vn = Lvy, for all n > 1, with v := 0 and v, 41 := Lv,. We can write (see Eq. A.2):
nA(7(s')—1) n
vn(8) := L"vo(s) > E™ Z relsy = s| +E™ Z rels; = s
t=1 t=nA(T(s')—1)+1
(1) (2)

Since r; < rmax for all ¢ > 1 then we can bound the first term as follows:

T(s)—1 T(s’)—1
(1) > E™ Z T+ — Z Tmax|S1 = S
t=1 t=nA(T(s")—1)+1 ]
[r(s")—1 nA(T(s’)—1)
=E" (Tt - Tmax) - Z Tmax|S1 = 3]
| =1 =1
[7(s")—1
=FE" (rt — rmax) |S1 = S| + TmaxE" [n A(T(s") — 1)‘31 = s} .
t=1

Note that all the inequalities and equalities remain true even when 7(s’) is not almost surely
finite. In this case, the terms on the right-hand side may either be finite (convergent series)

or be equal to —oo, but this is a trivial lower bound to (1).

Similarly to (A.3) the second term can be exressed as follows:

. n—nA(7(s")—1)
E™ Z 7] s1=35

=1
= s'] —Tmax * (n A(T(s') — 1))

(2) =E"

s1 =5, T(S/):|

n

E™" [Z T

=1

> E”

81:8]

=vn(s’)

= 0a(s) = Tmax - E7 [0 A (7(5) = 1)]s1 = 5]

Summing (1) and (2), the term n A (7(s’) — 1) cancels and so we have

slzs]

T(s')—1
vn(s) > vn(s’) —ET

Tt — 'max

t=1

which concludes the proof.
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A.2 Concentration bounds using a martingale argument

For any t > 0, the o-algebra induced by the past history of state-action pairs and rewards
up to time ¢ (included) is denoted F; = o(s1,a1,71,...,St, at, ¢, St+1) where by convention
Fo =0 (0) and Foo := Ug>oFy. Trivially, for all t > 0, F; € Fy41 and the filtration (F3),~,
is denoted by . We recall that k; is the integer-valued r.v. indexing the current episode at
time ¢ (3.12). It is immediate from the termination condition of episodes that for all ¢ > 1, k;
is Fy—1-measurable i.e., the past sequence (s1,a1,71,...,8t—1,a1-1,7¢—1,S¢) fully determines
the ongoing episode at time ¢. As a consequence, the stationary (randomized) policy 7,

executed at time ¢ is also JF;_1-measurable.

A.2.1 Proofsof Lem. 3.1 and 3.4

Let’s consider the stochastic stochastic process Xy := r¢(st, ar) =Y 4 a,, T (a|se)r(st, a). The

term - oc 4,, T(st,a)7k, (als;) is Fi_1-measurable and moreover

E[ri(se, ar)| Fi—1] = Z T, (als)r(se, a)

aEAst

so that E [X;|F;—1] = 0. Since in addition | X;| < rmax, (Xt, Ft)e>1 is a Martingale Difference
Sequence (MDS) and we can apply Azuma’s inequality (Prop. 3.7):

4 4 AT §\?_ 9
P ;n(st,at g g T, (a]se)r (8¢, @) — rmax 4T1n< 5) < (4T> < 672" (A.6)

After taking a union bound over all possible values of T > 1, we obtain that with probability
atleaustl—ZT1 *1——>1—7

16T2
L AT
VT >1, Zrt Styap) > ; g T, (@] Se)r(St, a) — 2rmax Tln( 5 > (A.7)

To prove Lem. 3.4 we consider similar stochastic processes: 7(s¢, at) =Y qea,, Tk, (alst)r(st, a)
and 7y, (s¢, ar) — EaeAst T, (a|se)rk, (st,a). Both are also MDS bounded by rmax and so we

can apply Azuma’s inequality, use a union bound and take the difference.

A.2.2 Proofs of Lem. 3.2 and 3.7
Let’s consider the stochastic process

X = aZﬂkt(a\st)pkt( "Ist,a)hg, (s') — aZpkt "5ty ar)h, (')

a,s’

= aZwkt(a]st)pkt(s’|st, a)wy, (s —aZpkt '|'st, ae)wy, ().

a,s’
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Since 7y, is Fi—1-measurable, E[X;|F;—1] = 0 and moreover | X;| < 2a|wg, | < A a.s. for all

t. (X¢, Fi)e>1 is an MDS and using Azuma’s inequality (Prop. 3.7):

67 5
> < .
(ZXt 2A Tln( 5 >> < 3577

t=1

We then notice that

ZXt—aZZVk )7k (als)pk(s'|s, a)hy(s’ —0422%8&1% (8']s,a)hy(s).

k=1 s,a,s’ k=1 s,a,s’

We proceed similarly with the stochastic process

X, = Zﬂkt(st,a) s'lss,a )i, (s Zp |5t a Jhi, (s )

where py, is replaced by p and take a union bound to conclude the proof of Lem. 3.2.

To prove Lem. 3.7, we consider the same stochastic processes but we apply Freedman’s

inequality (Prop. 3.9) instead of Azuma’s.

Let’s define )\t = — Za,s’ Tl (a’&g)pm( ‘St, hkt( ) and wy = hkt + \e. Since by definition
s Pk (8|5, a¢) = 1, we have

= Zpkt \Smat wy(s /)

Since E [X;|F;—1] = 0 we have:

2
V (X¢|Fi-1) th (alst) <a2pkt "|st, a)wy(s )) :

Proposition A.1
For any n > 1 and any n-tuple (a1,...,a,) € R", (X7, a;)* <n (XL, d?).
2

= a% + a% —
2a1az > 0 implying that 2a;as < a2 +a3. Therefore, (a1 +az2)? = a3 +a3 +2a1a2 < 2(a? +a3)

Proof. The statement is trivially true for n = 1. For n = 2 we have (a; — a2)

and so the result holds. We prove the result for n > 2 by induction. Assumed that it is true

for any n > 2. Then we have:

n+1 2 n 2 n
(Z ai> = <Z CLZ') +G?L+1 + 2an+1 Z a;
=1

=1

SUOPH)

n n+1
<n a? | + a? + 2a;an+1 < (n+1) a
<a+an_‘_1
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where the first inequality follows from the induction hypothesis and the second inequality

follows from the inequality for n = 2 that we proved. This concludes the proof. |

For the sake of clarity we will now use the notation py(s’|s) := >,c 4, mr(als)pr(s'|s, a) for
every s,s' € S and every k > 1. Using Prop. A.1 we have that

V (X¢|Fio1) < a?S Z Tr, (a|5¢) Dr, (8|54, @)% wy, (5)?
—_———

a,s’
’ <p, (s'|st,a)

< (12527rkt (a|st)pkt (S/|St7a)wkt (8/)2 =5- Vpkt (:Ist) (Oéhkt)

a,s’

After applying Freedman’s inequality (Prop. 3.9) to the MDS (X, F;);>1 we obtain that

with probability at least 1 — forall T > 1:

12’

48T
aZZuk )i (s, a)pr(s’]s, a)hy (s <azzyksapk "Is,a)hy(s )—|—2Aln< 5 >

k=1 s,a,s’ k=1 s,a,s’

T
+ QJ Sln (48T) vakt (-|st) (ahkt) (AS)
t=1

As we did before, we can do exactly the same analysis with pg replaced by p so that with

probability at least 1 — forall T' > 1:

12’

_azzl/k s)mk(s, a)p(s'|s, a)hy (s’ —_azzyksa s'|s, a)hy(s )—|—2Aln<4§T>

k=1 s,a,s’ k=1 s,a,s’

2$ S'ln (48T> vak (-|s¢) (ahkt) (Ag)

with the notation Py (s'|s) := Y ,ca, Tk(als)p(s'|s,a) for every s,8' € S and k > 1. To

conclude the proof of Lem. 3.7 we take a union bound.

A.2.3 Proofs of Lem. 3.3 and 3.10

Let’s consider the stochastic process

X =« Z 7k, (alse)p(s'|st, a)wi, (8') — awg, (s141)-

Once action a; ~ 7, (als;) has been sampled, the next state is sampled according to the
distrbutiion siy; ~ p(+|s¢,a). Thus, E[X;|Fi—1] = 0 and | Xy < 20|wg,]lec < A. Using
Azuma’s inequality (Prop. 3.7):

AT )
> < .
(th 2A Tln( 5 )) < 1577

t=1
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and we conclude the proof of Lem. 3.3 as usual (see previous sections).

The conditional variance can be written as
V(Xe|Fi1) = V5, (1s,) (@)

Using Freedman’s inequality we have that with probability at least 1 — %:

T T

24T 24T
ZAi“Sﬂ (ZVpkt«m)(hk)).ln( o) +aan (25 (A10)
t=1 t=1

which concludes the proof of Lem. 3.10.

A.2.4 Proofs of Lem. 3.9

Let’s now consider the stochastic process

Xy = Vb\kt("stﬂt) (ahg,) — Zﬁkt(a|st)V§kt('|Stﬂ) C

(Xt, Ft)e>1 is an MDS. Since V5 e, Clseaar) (ahg,) > 0 and sp(hg,) < A/a, it follows from

Prop. 3.10 that |X;| < A2/4. Applylng Azuma’s inequality (Prop. 3.7), we have that with
probability at least 1 — %, forall T > 1:

T T ) AT
;Vﬁ\kt('lshat hkt SZ |St hk‘t +2A Tl (5 )

A.3 Proofs of Lem. 3.5 and 3.8 (Cauchy-Schwartz)

Denote by Sk(s,a) = {s' € S:

Dr(s'|s,a) > 0} the set of observed next states starting
from s when playing a, and Tk (s,a) := |Sk(s,a)| = ||px(s|s,a)||o the cardinal of Sk(s,a). By

Cauchy-Schwartz inequality’

Z\/ﬁk(S’\Sva)(l—ﬁk(é”!&a))= > \/ﬁk(S,’*S?a)(l_ﬁk(sl‘sva»

s'eS s'e€Sy(s,a)
< ( > @(S’\Sﬂ)) : ( > o1 —@(8’|S,a)>
s'eSk(s,a) s'e€Sk(s,a)
< /T(s.a) =1 < \/Ti(s,a) — 1.

Note that the observed next states s’ € Si(s,a) necessarily satisfy p(s’|s,a) > 0 and so
I'k(s,a) <T'(s,a). This concludes the prooff of Lem. 3.5.

!The inequality obtained is somehow tight since when py(-|s, a) is uniform on its support, it becomes an
equality.
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Using Cauchy-Schartz inequality we have:

SO VB(s]s. @) (1= Pr(s/|s, a)wi(s)2 = S0 \JBr(s'ls,a) (1 — Bi(s']s, a) wi(s')?

s'eS s'€Sk(s,a)
< < > 1 —ﬁk(51|57a)> : ( > ﬁk(sl|saa)wli(5/)2>
s'€S(s,a) s'eSk(s,a)

s'eS s'eS

= | Ck(s,a) — 1) - (Zpk |8, a)wy (s )2>§\/ ) > bils

s, aywi (s')2

By definition, o 3", cg Pr(8']s, a)wi(s')? = Vi (s, a) which concludes the proof of Lem. 3.8.

A.4 ProofofLem. 3.6

We slightly change our notations and denote by N;(s,a) the number of visits in state-action

pair (s,a) strictly before t (i.e., t not included). With this convention, what was denoted

Ni(s,a) (3.14) actually corresponds to N, (s,a). The stopping condition of

episodes ensures

that for all ¢ > 1, N¢(s,a) < 2Ny, (s,a). Therefore, similarly to what is done in (Ouyang

et al., 2017a, Proof of Lemma 5)

AZ vi (s, a) Szin{stis,atza}
= Ny (s,a) N/ (s,a)

t=1

Nrii(s,a)—1 1
=2 l]l {NT+1(37 a) 2 1} + Z -

= 7

—_————’
<1+In(Np41(s,a)) 1{Nr41(s,a)>1}

<2+2In (NT+1(3 a))

where (A.11) follows from the rate of divergence of an harmonic series.

We proceed similarly for the second series:

k
L Z/k(S,(],) <\/§il{st:svat:a’}
k=1 /N, (s, q) t=1 N; (s, a)

NTlsa -1
" 1

= \/§<1 {Nr4i(s,a) 2 1} + Z Wi

/N (o) 11
< 2\/5\/NT+1(s,a) -1< 3\/NT+1(s,a).
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B.1 Number of episodes

The stopping condition of episodes used by TUCRL (4.11) combines the original stopping
condition of UCRLB with the condition s¢11 € Sj. Using only the fact that vy(s,a) >
Ni(s,a) for at least one pair (s,a), Jaksch et al. (2010, Proposition 18) proved that for
T > SA, the number of episodes is bounded by log, (%) (Prop. 3.8). The total number
of episodes in TUCRL can be bounded by the same quantity (with S replaced by S° since
no sate in S* is ever visited) plus the number of times the event 5411 € Sj occurs. Since
whenever s;11 € S,gt state s¢11 is removed from Sgt 41 and s¢41 necessarily belongs to S€ (by

definition), this event can happen at most S¢ times. We thus have:

T
VT > SA, kr < S°Alog, <580A> + 5S¢, (B.1)

B.2 ProofofThm. 4.2

We prove the following lemma used in the proof of Thm. 4.2.
Lemma B.1

For all z €]0,1/10], we have (1 — z)Y/* > 1/3.

Proof. 1t is easy to verify that the derivative of x — (1 — z)Y/? is:

— 1/z—1
vz €]0,1/10), % ((1=a)) = - (1:0)2 (1= 2)In(1 — 2) + 2)
| —
>0

It is well known that for all z €]0,1[, # < —In(1 —2) < % implying that (1—-z)In(1—-2z)+z
is positive. Therefore, - ((1 — x)l/x) is negative on ]0,1/10] implying that 2 — (1 — 2)%/®

is decreasing. As a result: Vo €]0,1/10], (1 —z)Y/*>0.910 > 1/3. [
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C.1 Projection on a semi-ball (proof of Lem. 5.4)

Let v € RS and define u = T'wv. If sp (v) < ¢ then u = v and so the result holds.

If sp (v) > ¢ then for all s € S such that v(s) > min, v(z) + ¢ we have u(s) = min, v(z) + ¢
(there exists at least one such state since sp(v) > ¢) while for all other states we have
u(s) = v(s) (there also exists at least one such state). This implies that max{v — T.v} =

max, v(z) — ming v(x) — ¢ = sp (v) — ¢ and min{v — I';v} = 0. As a result, we also have
sp(u—wv)=sp(v—u)=max{v —Tw} —min{v —Tw}=sp(v) —c—0=sp(v) —c.
For any vector z € . i.e., such that sp (z) < ¢, by reverse triangle inequality! we have that:
sp(z —u) = sp(u) —sp(z) = sp(u) —c=sp(w—u)

which concludes the proof.

C.2 Aperiodicity transformation (proof of Lem. 5.3)

We prove a slightly more general result.

(

Theorem C.1

\

Let P be any stochastic matrix and Hp its associated deviation matriz i.e., the Drazin
inverse of [ — P: Hp := (I — P + P*)~}(I — P*) (see Sec. 2.2). For any 0 < a < 1
we denote by P, := (1 — a)P + ol the aperiodic transform of P with parameter «. The

J

deviation matriz of P, can be expressed as Hp, = 1/(1 — a)Hp.

Proof. Let A be a square matrix and assume there exists a matrix A# that satisfies the

following properties:

!The triangle inequality for the span is proved in (Puterman, 1994, Section 6.6.1).
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o AA*A=A
o AAT = AT A
o AT AAY = A

then A% is the Drazin inverse of A. We know from App. A of Puterman (1994) that these
properties hold for A = P and A% = Hp.
By definition: I — P, = (1 —a)P+al — I = (1 — «a)({ — P). Based on this result and using

the properties of P and Hp, we can derive the same relations for P, and Hp,:
(I -F)(1/1-a)Hp)(I = FPa) =1 =) = P)-(1/1—a)Hp) (1 - a)(I - P)

=(1-a)I-P)=(-Fa)

(I—=Pa) 1/ =a)Hp) = (1 -a)(I = P)-(1/(1 —a)Hp) = (I - P)Hp = Hp(I — P)
=1/(1=a)Hp) (1 —a)(I = P) = (1/(1 —a)Hp) (I = Fa)

(1/(1 =a)Hp) (I = Po) (1/(1 —a)Hp) = (1/(1 —a)Hp) - (1 —a)(I = P) - (1/(1 — a)Hp)
=1/(1—-a)Hp(I — P)Hp =1/(1 — a)Hp
In conclusion: Hp, =1/(1 —a)Hp. [ |
As a consequence of Thm. C.1 and by definition of the bias (Eq. 6.3), for any m = d> € ISR

we have: hiy, = Hp,rq and hy, = H Pgrg. The aperiodicity transformation applies only to
the transition kernel of the MDP not the reward, so % = r4 and A7 =1/(1 - a)h},.

«

C.3 Operator of SCAL™ (proof of Lem. 5.13)

We start the proof of Lem. 5.13 with a simple definition.

Definition C.1

Let B C Ag be a non-empty compact convex subset of the probability simplex, ¢ € B a
probability vector in B and B > 0 a positive scalar. For all vectors v € RS we define
Bj(v):={peB: plv<qv+fp} CB.

Since ¢ € B and 8 > 0 by assumption, ¢ € Bg(v) for all v € R and so Bg(v) is never empty.

For any vector v € RS, we define p, € arg MaXpe i (v) pTv (we drop the dependency in 3
and ¢ for simplicity) and p, € arg max,cppTv. Since B C Bg(v), pjv < pjv. The following

lemma provides a sufficient condition for the equality to hold.
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Lemma C.1

If pTv < qTv + B then plv = plv.

Proof. We define the function f : [0,1] = R mapping = to ((1 — z) - p, + 2 - p,) "v. Since
B is convex, for all x € [0,1], f(x) € B. By assumption, f(0) = pJv < ¢"v + . If in
addition we assume that plv > plv then f is strictly increasing. If f(1) = plv < ¢Tv + 8
then p, € Bg(v) by definition implying that plv = plv which contradicts the assumption
that plv > plv and so f(1) > ¢q"v + B. By the intermediate value theorem, 3T € [0, 1] s.t.
f(@) = q"v+ B and so obviously (1—7%)-p, +T-p, € Bg (v). Since p, achieves the maximum
value of pTv for all p € Bg(v), this contradicts the assumption that pJv < ¢Tv + 3, implying
that pJv = max,eppTv = pJv. In conclusion, under the assumption that pJv < ¢Tv + S,

necessarily plv = pJv. [ |

Thanks to Lem. C.1, we know that whenever the constraint pTv < ¢qTv + 3 is strict, the

maximum of pTv over Bg(v) matches the maximum over B. We deduce the following lemma.

Lemma C.2

If u,v € RS and v < u then

max p'v < max plu.
pGBg(v) pEBg(u)

Proof. We distinguish two possible cases:

1. If plu < qTu + B:
From Lem. C.1, we have that pJu = pJu > pJu > pJv. The first inequality follows from
the fact that p, is the argmax over all p € B and p, € B, while the second inequality
follows from the fact that u > v (by assumption).

2. If plu =qTu+ p:
plu=q'u+ B > q'v+ B > plv where the first inequality follows from the assumption
u > v and the second inequality is a consequence of the fact that p, € Bg(v) by

definition.

If we take B + B;f(s,a), q < Dr(]s,a) and B < ¢B;* all the requirements of Def. C.1
are satisifed and all the above lemmas hold with Bj(v) « B;;(s, a) N @’;(s, a,v). Given the
definition of £; (see Eq. 5.34), it is immediate to see that the monotonicity of £ is a direct
consequence of Lem. C.2. The linearity simply follows from the fact that pT(v+Xe) = pTo+Ae
for all p € Ag and A € R. To prove the non-expansiveness of £x, we denote v(s™) —u(s™) :=
maxges {v(s) —u(s)} and v(s™) — u(s™) := minges {v(s) — u(s)}. By definition,

u+ (v(sT) —u(s™)e<v<u+ (v(st) —u(s)e
= Lu+ (v(s7) —u(s7))e < v < Lpu+ (v(sT) —u(s))e
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where the implication is a direct application of the monotonicity and linearity of £. It follows
that:

max { £v(s) — Lru(s)} < (™) —u(s"),

min {2x0(s) — Leu(s)} 2 v(s7) — u(s”).

In conclusion, sp (£xv — £xu) < sp (v — u). Using the fact that
lv = ufloo = max{v(s™) — u(s"), u(s") —v(s7)},

we deduce that ||£xv — Lrulleo < ||V — l|co-

If we replace B;f(s, a) by E{j(s,a) and pk(|s,a) by pi(+|s,a), the requirements of Def. C.1

are still satisifed and so we can prove the same results for Z}k

C.4 Perturbation of SCAL” operator (proof of Lem. 5.14)

We use the same notations as in App. C.3 above.
To prove that £ is a (1 — 1, )-contraction we first prove the following lemma.

7~ Lemma C.3

For all u,v € RS there exists DPu,w € B such that

max p'v— max plu<pl (v—u).
pEBL(v) pEB(u) v

\.

Proof. We distinguish between two cases:

1. If plu < qTu + B:
From Lem. C.1, we have that pJu = pJu > pJu. We deduce that pJv —plu < pl(v —u).
Since p, € B, we can take py ., < Dy.

2. If plu=qTu+ f:
plv—plu =plv—(¢Tu+B) < q"v+ f—q"u— ff = q"(v — u) where the inequality holds
because p, € Bg(v). Since ¢ € B, we can take py ., .

[ |

Just like Lem. C.2, Lem. C.3 can be applied to operators £, and £4. In the case of Z‘,k,

B = E;f(s,a) C {p € Ag : p(5) > n} where 5 € S is an arbitrary reference state and

n > 0. We then use similar arguments as Puterman (1994, Theorem 6.6.6). Let’s denote

£, by L (for the sake of clarity) and Lu(st) — Lu(s™) := maxses {Lv(s) — Lu(s)} and
Lv(s™) — Lu(s™) := minges {Lv(s) — Lu(s)}. Applying Lem. C.2, we obtain that

Lu(sT) — Lu(s™) < pivT(v —u) and Lu(s™)— Lv(s™) < p;uT(u —0)

212



C.4. Perturbation of sCAL” operator (proof of Lem. 5.14)

where pj; v> Do € B and in particular pj; +(3); Pyu(3) = n. More generally, for any s € S,
we can bound Lv(s) — Lu(s) using corresponding vectors p;, , and p;, . If we concatenate all
the S probability vectors, we obtain two transition matrices P, , and P,,. Like in the proof
of Theorem 6.6.6 of Puterman (1994) we have

sp (Lo — Lu) < pb, (v —u) = p,," (v—u) < maxpy,y' (v —u) —minpy," (v - u)

<sp ([P] (v u)) < (1=n)sp(v—u).

X

The last inequality follows from Proposition 6.6.1 of Puterman (1994) and the fact that
B C {pe As:p(5) >n}.

To quantify the impact of the perturbation, we rely on the proof of Lem. 5.10 (Fruit

et al., 2018b, Lemma 19, Appendix E). We denote by p, € arg max_ pTv and p, €

€B%(v)
8
arg max pTo (a tilde indicates an n-perturbation). We bound the difference pJv —plov (the

opposite can be bounded in the same way).

1. If plv < qTv + B:

Lem. C.2 shows that pJv = p,v and so

~—

sp (v
2

phv — plv = plv — Py < Phv — Pov < [|py — Doll1 ¥ <n-sp(v)

where the last inequality is proved in (Fruit et al., 2018b, Lemma 19, Appendix E).
2. If plv=q"v+G:

sp (v)
2

piv—pilv=plv—qv—B<qv+p—qv—f<|qg—qlh x <n-sp(v)

where the last inequality follows from the fact that ¢ is an ¢;-projection of ¢ onto B

(see Sec. 5.8).
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D.1 Sub-exponential options (proof of Lem.6.1)

We use the second definition of sub-exponential r.v. in Def. 6.2. In the following we drop the
notation s, 0 and denote by 7 the random realization of the holding time and 7 its expectation.

Using eq. 6.11, the Laplace transform of the holding time can be computed as follows:

B[] = 32 M Peggiive = 07 [i( )]

k
The term Y 72 (e’\Q) is finite if and only if e*p(Q) < 1, in which case we have:
_ _ ~1
E {BA(T_T)} = Mel (I — e)‘Q) Ve,

and otherwise E [e)‘(Tf?)} = +o0. Note that e*p(Q) < 1 if and only if either A < —log (p(Q))

or p(Q) = 0. We will now analyse the two cases separately:

1. p(Q) = 0 if and only if all the eigenvalues of @ in C are 0, if and only if @ is nilpotent
(In > 0s.t. Q™ = 0). This is because Q can always be triangularized in C: Q = UTU !
where T' is upper-triangular with the eigenvalues of ) on the diagonal that is, only zeros
if p(Q) = 0. This implies that In > 0s.t. 7" = U '1Q"U =0 = Q" = 0 hence Q
is nilpotent. The reverse is obviously true: if @ is nilpotent then p(Q) = 0, (otherwise
there would exist A 0, v #O0and n > 0s.t. Q" =0and Qv = v = Q"v =
A"y = 0, which is absurd). By definition, matrix @ is nilpotent of order n if and only if
the Markov Chain reaches an absorbing state in at most n steps (a.s.). In conclusion,
p(Q) = 0 if and only if the option is almost surely bounded. This happens if and only if
there is no cycle in the option (with probability 1, every non-absorbing state is visited

at most once).

2. In the case where p(Q) > O' it is clear that E [e’\(T_?)} can not be bounded by a

o2\
function of the form A — e*% for A > —log (p(@)) so 7 is not sub-Gaussian (Definition
6.3). However, since p(Q) < 1 we can choose 0 < ¢y < —log(p(Q)) and we have
E [eMT—F)] < o0 for all |A| < ¢p, which implies that 7 is sub-exponential (Definition
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6.2).

In conclusion, either the option contains inner-loops (some states are visited several times
with non-zero probability) in which case the distribution of 7 is sub-Exponential but not
sub-Gaussian, or it has no inner-loop in which case 7 is bounded (and thus sub-Gaussian).

There is no other alternative.

The distribution of rewards R is not as simple: the reward of an option is the sum of all
micro-rewards obtained at every time step before the option ends, and every micro-reward
earned at each time step can have a different distribution. The only constraint is that all
micro-rewards should be (a.s.) bounded between 0 and 7yax. As a result, if 7 is a.s. bounded
(by let’s say tmax) then R is also a.s. bounded (by rmaxtmax). But if 7 is unbounded then
R may still be bounded if for example, all micro-rewards are 0. If however all micro-rewards
are equal to rpax then R has a discrete phase-type distribution just like 7. R can thus
be unbounded (and even not sub-Gaussian). However, we will show that R is always sub-
Exponential. Using the law of total expectations and the fact that p (R < rpax7) = 1 we

have:

IN

i E [eA(TmaxT_E) T = k:} p(T =k)
k=1
ZE e
k=1

VYA>0, E {eA(R_E)} = i E [e’\(R_E)h’ = k} p(T =k)
k=1

[ Tmaxk*ﬁ)!T = k} p(t =k)

= Z eA(Tmaxk*E)p(T = ]{;)

k=1
— oo k
— 6)\(7'max_R)e;— Z (eArmaxQ) V@
k=0

We can now conclude as we did for 7: let 0 < ¢p < —%, for all 0 < A < ¢g the quantity

E [e’\(R_ﬁ)} is finite. Note that for A < 0: e < 1so0 E {eA(R_E)} < +00. According to
Def. 6.2, R is sub-Exponential.

D.2 Comparision of the MDP-sample complexity and
the SMDP-sample complexity

Let M be a MDP and O a set of options on M. We denote by My the SMDP formed by
M and O. If an option is chosen at time step ¢, we denote by 7y the (random) duration
of that option. The set of all time steps is N (¢ = 1,2,...) and the set of time steps corre-
sponding to decision steps (i.e., when an option is started) is denoted by 7. The set T is
a random variable since it depends on the duration of the options. 7 is defined recursively:
T={lL,n+1,7+1+741,,...} CN. The first option is taken at time ¢t; = 1, the second
option is taken at the end of the first option (i.e. at time to = 71 + 1, where 7y is a random
variable), and so on. The i-th option is played at time step t; € T recursively defined as:

ti+1 = tz‘ + T, and tl =1.

216



D.2. Comparision of the MDP-sample complexity and the SMDP-sample complexity

Figure D.1: MDP of counter-example 1.

For any learning algorithm 24 on an MDP M, the MDP-sample complexity is defined as:

“+oo

Z ]l{v%t(st) < v3(st) — e}. (D.1)

t=0

Let’s assume that algorithm 2 is SMDP-RMAX (Brunskill and Li, 2014) applied to SMDP
Me formed by MDP M and option set O. 2 can indeed be seen as a learning algorithm on M
(see Lem. 6.2) and so the sample complexity given in (D.1) is correctly defined. However, we
can also choose to "ignore” what is happening within an option (we only look at the epochs,
i.e. times ¢t € T). Thus, we can also interpret 2 as a learning algorithm on the SMDP M.
The corresponding SMDP-sample complexity is defined as (Brunskill and Li, 2014):

Z Tt]l{v ) <w } Z T, { ) <vi(st,) — 6}. (D.2)

teT

Brunskill and Li (2014) use the quantity given in equation (D.2) instead of the quantity
given in equation (D.1) to derive the final bound on their algorithm (Theorem 3). The implicit

assumption is that the following inequality holds:

ion{vmt (5¢) < V(s —e} Znn{v )< (t)_e} (D.3)
t=0 teT

Inequality (D.3) should hold with probability 1 (or at least with probability 1 — ) for
Theorem 3 to hold true. This requirement is never mentioned in the article. We give two
counter-examples showing that this inequality will not hold in general (not even with high
probability), even if we assume that the set of options is optimal, i.e. if v}, = v}. The problem
arises when the algorithm is e-optimal at an epoch but there exists at least a step before the

next epoch where the algorithm is not e-optimal.

D.2.1 Counter-example 1

In this example we have: S = {sq, s1, s2, 3,84} and A = {ag, a1, a2, as,as*, as}. We assume
the MDP is fully deterministic: p(s1|so,a0) = p(s2|s1,a1) = p(s3|s2,a2) = p(s4|ss,a3) =
p(s4)|s3,a3%) = p(s4|s4,a4) = 1. The graph of the MDP is represented on Figure D.1. We

define R as follows:
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o 7(s1|s0,a0) = r(s2|s1,a1) = r(s3|sa, az) = r(s4|s3,a3) = r(s4|s4,a4) = 0,
(] 7”(34]33,(13*) =1.

We define policy m € II5P by: 7(s3) = a3 (we don’t need to specify the actions taken in
other states since there is only one possible action in those states). The optimal policy is

such that: 7*(s3) = az*. Trivially we have:
e vl(s0) = 73,1)1;(80) =0,
e vi(s3) =1,0](s3) = 0.

Now if we set 1 > ¢ > 43, we have: v (s0) > vi(s0) — € and v](s3) < v3(s3) — €. In other

words, 7 is e-optimal in sg but not in s3.

Let’s define two options, o and o*, by:
® Lo =T = {50},
e (o(s) =0if s # s4 and 1 otherwise, B, = S,
o T, =7 and w,« = w*.

If we denote by Mo the SMDP formed by M and the set of options O = {o,0* a4}, we
have that vj, = o] (O is an optimal set of options). Suppose we execute a SMDP-learning
algorithm 2A (e.g. SMDP-RMAX) which starts in sg. The SMDP-sample complexity is
always 0 because both o and o* are e-optimal in sg, and a4 is optimal in s4. However, the
MDP-sample complexity of 2( is at least equal to 1 if option o is taken (and equals 0 when o*
is chosen instead). There is no reason that the algorithm should select o* rather than o (the
SMDP is initially unknown). So we can not guarantee that the event {o is taken in s} will
happen with probability lower than §. In this example, the SMDP-sample complexity is not
upper bounding the MDP-sample complexity (not even with high probability).

It is true that « is usually close to one (e.g. v = 0.9) and thus, in the previous example,
€ cannot be too small (€ > 43 ~ 0.73). But it is possible to consider longer options in a
bigger MDP and apply the same kind of reasoning. We would then obtain € > ~* with 7*
sufficiently small when k is sufficiently big.

One might argue that our example is not relevant since the cumulated reward does not
increase after sy is reached (i.e. after step t = 4) because we have an absorbing state. But

it is possible to make some minor changes and assume for example that action a4 leads back

3
to state sg instead of looping on state s4. We would then need to choose 1 > € > 1775, or
-
k
more generally 1 > € > T Fi2 with a longer chain, because in that case:
-
K
o vj(s0) = T Aht2’ vy (s0) =0,
1

[ 'Uj;(Sk) = 1_77]6—{-27 'Uzyr(Sk) =0.
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Figure D.2: Graph of the MDP of Example 2

Assuming 2 starts with option o:

. 1)3[0(80) >0 > vi(s0) — e,
2 k+2
[ ] 'U,yk(Sk) S m S U,T/(Sk) — €.
The SMDP-sample complexity is again 0 because in sg the algorithm is necessarily e-optimal
since 0 > v(so) — €. But the MDP sample complexity is at least 1 if 2lg(sp) = o. The same

holds as long as o is chosen at least once in sp (not necessarily at to = 0). Indeed, at the

k+2
’)/+

iteration where o is chosen in sg, the value function in s is upper bounded by T Fi2 <
-

vl (sk) — €.

D.2.2 Counter-example 2

In Example 1, we had deterministic transitions. We now consider the case where the tran-
sitions are random. To simplify the calculations, we assume that v = 1. The graph of
the MDP is represented on Figure D.2. In this example we have: S = {so, s1, s2, s3} and
A = {ag,a0*,a1,a1*,a2,a3}. Let 1/2 > ¢ > 0. We define p as follows:

e action ag: p(s1|so,a0) = 1/3, p(s2|se,a0) = 2/3,

1+e (52| ) 24¢
u— S2(S0, A =
3 1 2¢ VIS0 90 = 3o

e action aj: p(s2|si, a1) = p(s3|s1,a1) =1/2,

e action ag: p(si|so,al) = ,
e action aj: p(sa|si, a}) =1/2 —€, p(s3|si,a]) =1/2+€.
We define r as follows:
o 7(s1]s0,a0) = r(si|so,ay) = r(s3|s1,a1) = r(ss|s1,a}) =1,

o 7(s2|s0,a0™) = r(s2]s0,a0*) = r(s2|s1,a1) = r(sals1,a1™) = r(sa2|s2,as) = r(s3|ss3,a3) =
0.

Note that in this example all rewards depend only on the initial and final state of the tran-

sitions (it does not depend on the action taken). There are four deterministic policies:
° pOliCy T 7T1(So) = ayp, 7T1(81) = aq,
e policy my: ma(s0) = ag, ma(s1) = af,
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e policy m3: m3(so) = ag, m3(s1) = ax,
e policy my: m4(so) = ao, ma(s1) = aj.

The value functions associated to these policies are:

1
° ,U’7le (30) = 9
1
° fsz"Q (50) = —21_6’
1+e
T3 _
* 3 (s0) = 3730
1 1
) ’U,ZT/4(8(]) = 5 + 56,
1 T3 — 1
o vii(s1) =vP(s1) = 35,
T2 — T4 — 1
o v]2(s1) = v]i(s1) = 3 +e.
* * 1 + € * 1 1
We deduce that: 7 = ma, v3(s0) = and vy(s1) = 5 + €. Furthermore: vJ!'(sg) >

v} (s0) — € and v]1(s1) < v5(s1) — €. In other words, m is e-optimal in sp but not in s;.

Let’s define the following options o and o*:
o I, =1y = {50},
o (o(s2) = Bo(s3) = 1 and 0 otherwise, Box = S,
o T, =m and myx = T = .

If we denote by My the SMDP formed by M and the set of options O = {o, 0*, as, as}, we
have that vg, = v} (O is an optimal set of options). Suppose we execute a SMDP-learning
algorithm 2 which starts in sg. The SMDP-sample complexity is always 0 because both o
and o* are e-optimal in sy, and ao and ag are optimal in so and s3 respectively. However, the
MDP-sample complexity of 2 is equal to 1 when option o is taken and s is reached (when
option o is chosen in sp, s1 is reached with probability 1/3). There is no reason that the
algorithm should select o* rather than o (the SMDP is initially unknown). So we can not
guarantee that o will be chosen with probability lower than §. So the expected MDP-sample
complexity will be (strictly) positive. In this example, the SMDP-sample complexity is not
upper bounding the MDP-sample complexity.

It should be possible to change Example 2 as we did with Example 1 to make sure that
the cumulated reward keeps increasing (i.e. delete all absorbing states), but this is likely to
require tedious calculations. The purpose of this example was only to show that the MDP-
sample complexity can be higher than its SMDP analogue for other reasons than the presence

of a discounting factor (namely, the presence of random transitions).
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D.2. Comparision of the MDP-sample complexity and the SMDP-sample complexity

D.2.3 Conclusion

In the previous examples we have shown that in an MDP with options, the SMDP-sample
complexity does not upperbound the MDP-sample complexity in general, even when the set
of option is optimal. It is not difficult to show that the opposite is also true: the MDP-
sample complexity does not upperbound the SMDP-sample complexity. Thus, without any
additional assumptions on the options and/or the algorithm, it is not possible to use the

SMDP-sample complexity to prove that options can be beneficial to learn a MDP.
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