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Abstract

In combination with Deep Neural Networks (DNNs), several Reinforcement Learning (RL) algorithms such as "Q-learning" or "Policy Gradient" are now able to achieve super-human performances on most Atari Games as well as the game of Go. Despite these outstanding and promising achievements, such Deep Reinforcement Learning (DRL) algorithms require millions of samples to perform well, thus limiting their deployment to all applications where data acquisition is costly. The lack of sample efficiency of DRL can partly be attributed to the use of DNNs, which are known to be data-intensive in the training phase. But more importantly, it can be attributed to the type of Reinforcement Learning algorithm used, which usually perform a very inefficient undirected exploration of the environment. For instance, Q-learning and Policy Gradient rely on randomization for exploration. In most cases, this strategy turns out to be very ineffective to properly balance the exploration needed to discover unknown and potentially highly rewarding regions of the environment, with the exploitation of rewarding regions already identified as such. Other RL approaches with theoretical guarantees on the exploration-exploitation trade-off have been investigated. It is sometimes possible to formally prove that the performances almost match the theoretical optimum. This line of research is inspired by the Multi-Armed Bandit literature, with many algorithms relying on the same underlying principle often referred to as "optimism in the face of uncertainty". Even if a significant effort has been made towards understanding the exploration-exploitation dilemma generally, many questions still remain open. In this thesis, we generalize existing work on exploration-exploitation to different contexts with different amounts of prior knowledge on the learning problem. We introduce several algorithmic improvements to current state-of-the-art approaches and derive a new theoretical analysis which allows us to answer several open questions of the literature. We then relax the (very common although not very realistic) assumption that a path between any two distinct regions of the environment should always exist. Relaxing this assumption highlights the impact of prior knowledge on the intrinsic limitations of the exploration-exploitation dilemma. Finally, we show how some prior knowledge such as the range of the value function or a set of macro-actions can be efficiently exploited to speed-up learning. In this thesis, we always strive to take the algorithmic complexity of the proposed algorithms into account. Although all these algorithms are somehow computationally "efficient", they all require a planning phase and therefore suffer from the well-known "curse of dimensionality" which limits their applicability to real-world problems.
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Nevertheless, the main focus of this work is to derive general principles that may be combined with more heuristic approaches to help overcome current DRL flaws.

Résumé

Combinés à des réseaux de neurones profonds ("Deep Neural Networks"), certains algorithmes d'apprentissage par renforcement tels que "Q-learning" ou "Policy Gradient" sont désormais capables de battre les meilleurs joueurs humains à la plupart des jeux de console Atari ainsi qu'au jeu de Go. Malgré des résultats spectaculaires et très prometteurs, ces méthodes d'apprentissage par renforcement dit "profond" ("Deep Reinforcement Learning") requièrent un nombre considérable d'observations pour apprendre, limitant ainsi leur déploiement partout où l'obtention de nouveaux échantillons s'avère coûteuse. Le manque d'efficacité de tels algorithmes dans l'exploitation des échantillons peut en partie s'expliquer par l'utilisation de réseaux de neurones profonds, connus pour être très gourmands en données. Mais il s'explique surtout par le recours à des algorithmes de renforcement explorant leur environnement de manière inefficace et non ciblée. Ainsi, des algorithmes tels que Q-learning ou encore Policy-Gradient exécutent des actions partiellement randomisées afin d'assurer une exploration suffisante. Cette stratégie est dans la plupart des cas inappropriée pour atteindre un bon compromis entre l'exploration indispensable à la découverte de nouvelles régions avantageuses (aux récompenses élevées), et l'exploitation de régions déjà identifiées comme telles. D'autres approches d'apprentissage par renforcement ont été développées, pour lesquelles il est possible de garantir un meilleur compromis explorationexploitation, parfois proche de l'optimum théorique. Cet axe de recherche s'inspire notamment de la littérature sur le cas particulier du problème du bandit manchot, avec des algorithmes s'appuyant souvent sur le principe "d'optimisme dans l'incertain". Malgré les nombreux travaux sur le compromis exploration-exploitation, beaucoup de questions restent encore ouvertes. Dans cette thèse, nous nous proposons de généraliser les travaux existants sur le compromis exploration-exploitation à des contextes différents, avec plus ou moins de connaissances a priori. Nous proposons plusieurs améliorations des algorithmes de l'état de l'art ainsi qu'une analyse théorique plus fine permettant de répondre à plusieurs questions ouvertes sur le compromis exploration-exploitation. Nous relâchons ensuite l'hypothèse peu réaliste (bien que fréquente) selon laquelle il existe toujours un chemin permettant de relier deux régions distinctes de l'environnement. Le simple fait de relâcher cette hypothèse permet de mettre en lumière l'impact des connaissances a priori sur les limites intrinsèques du compromis exploration-exploitation. Enfin, nous montrons comment certaines connaissances a priori comme l'amplitude de la fonction valeur ou encore des ensembles de macro-actions Contents peuvent être exploitées pour accélérer l'apprentissage. Tout au long de cette thèse, nous nous sommes attachés à toujours tenir compte de la complexité algorithmique des différentes méthodes proposées. Bien que relativement efficaces, tous les algorithmes présentés nécessitent une phase de planification et souffrent donc du problème bien connu du "fléau de la dimension", ce qui limite fortement leur potentiel applicatif (avec les méthodes actuelles). L'objectif phare des présents travaux est d'établir des principes généraux pouvant être combinés avec des approches plus heuristiques pour dépasser les limites des algorithmes actuels.
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Introduction

Topic of the thesis

In this thesis we study the problem of a "rational agent" evolving in an unknown "environment". The goal of the agent is to learn a "good" behavior (according to some notion of preferences) from the experience directly collected while exploring the environment.

Reinforcement Learning (RL) formalizes this problem through an "economic" perspective: the agent aims at maximizing some notion of cumulative reward (or equivalently, at minimizing a cumulative loss). In order to account for the presence of random events in the environment, it is usually assumed that the agent satisfies Von Neumann-Morgenstern's axioms of rationality [START_REF] Von Neumann | Theory of games and economic behavior[END_REF]. Under these axioms, Von Neumann-Morgenstern's "utility theorem" implies that the "preferences" of the agent can be expressed as maximizing the expectation of a certain utility function (which corresponds to the cumulative reward in an RL context).

The environment of an RL problem, or RL "task", is traditionally modeled by a Markov Decision Process (MDP). An MDP consists of a set of states (usually functions of some observables) and actions. When the agent decides to "play" a certain action in a given state, it receives some (possibly random) reward and moves to the next state according to a certain probability distribution over the state space. By definition, this type of process satisfies the Markov property i.e., future events depend only upon the present state and chosen action, and not the whole past history. This restrictive assumption enables to considerably simplify the problem. It is always possible to expand the state space so as to enforce the Markov property, at the expense of increasing the complexity of the problem. In practice, the size of the state space must be traded-off with the accuracy of the Markov property.

While evolving in an MDP, an agent aims at identifying which control policy to execute i.e., which action to perform depending on past observations. When the MDP is completely known, finding an "optimal" policy is a dynamic programming problem [START_REF] Bellman | The theory of dynamic programming[END_REF]). An even more challenging setting is when the MDP is unknown and has to be learned (RL problem). In this thesis, we restrict attention to online RL. In this setting, data about the environment becomes available in a sequential order as the agent explores the MDP. As the Chapter 1. Introduction MDP is being explored, the agent needs to update its behavior so as to be able to make better decisions. But unlike in other branches of Machine Learning like supervised learning, any present decision impacts future observations. As a consequence, the agent has to deal with two conflicting objectives, namely:

1. collecting information about the dynamics and reward of the environment which may allow to make better decisions in the future (exploration), 2. using the experience gathered so far to maximize the chances to gain as much reward as possible quickly (exploitation).

This problem is known as the exploration-exploitation dilemma. The work presented in this thesis focuses on the exploration-exploitation dilemma in an on-line RL setting, under various assumptions, and in different contexts. This problem was first studied in the simplified case of Multi-armed bandit (MAB) in the seminal works of Thompson (1933a); [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF]. Since then, considerable progress has been made although many open questions still remain unanswered.

Motivations

One of the long-standing goal of Artificial Intelligence (AI) is to design robust, autonomous agents able to perform well in complex, real-world environments. Reinforcement Learning provides a promising framework to achieve some of these goals as evidenced by recent empirical achievements. In combination with Deep Learning techniques, RL algorithms are now able to achieve super-human performances on Atari games [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] or the challenging game of Go [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF](Silver et al., , 2017;;Silver et al., 2017). Nevertheless, Deep Reinforcement Learning (DRL) algorithms require millions of samples to be trained, and can perform very poorly in environments with sparse reward like Atari 2600 game Montezuma's Revenge. In such environments, the agent only observes a reward signal after completing specific series of actions over extended periods of time, making the exploration of the environment very challenging. In other domains, samples can be expensive to collect (computationally or in terms of actual cost). Unfortunately, most of potential real-world applications of RL have these characteristics.

The lack of sample efficiency of DRL is a major obstacle to its deployment in real-world applications. This lack of sample efficiency mainly comes from the exploration strategy used, which often relies on randomization to discover unknown regions of the environment (e.g., ε-greedy strategies may require an exponential amount of time in the parameters of the MDP to converge). We say that the exploration is undirected . A major open question in RL is how to design efficient directed exploration strategies that make best use of all the prior information available about the problem being solved. The work of this thesis is motivated by a better understanding of the exploration-exploitation dilemma in RL, and the impact of prior knowledge on the intrinsic difficulty of this dilemma. We hope this work helps suggest promising research directions to improve the sample-efficiency of existing RL algorithms.

Scientific approach

Scientific approach

Instead of restricting attention to very specific RL tasks/applications, we analyse the theoretical properties of some general RL problems. We study various settings, which mostly differ by the amount of prior knowledge available to the learning agent. For all these different settings, we analyse the learning limitations (e.g., impossibility results) and derive learning algorithms that attempt to achieve the best possible exploration-exploitation performance given these limitations.

While efficient exploration-exploitation strategies in RL are directly inspired by the MAB literature, RL poses specific challenges (e.g., how "local" uncertainty propagates through the Markov dynamics), which requires a more sophisticated theoretical analysis. Most of the algorithms that have been analysed theoretically belong to one of the following two categories:

1. optimistic algorithms, 2. posterior sampling (also known as Thomson sampling) algorithms.

Optimistic algorithms implement the "Optimism in the face of uncertainty" principle which essentially prescribes to play the optimal policy of the most rewarding environment compatible with the current level of uncertainty (often quantified by confidence sets). Posterior sampling is a Bayesian approach that involves sampling a statistically plausible set of environments (a posterior distribution) and selecting the best policy. The sampling distribution is then updated based on new observations. While both methods can be proved to achieve good exploration-exploitation performance in MAB [START_REF] Kaufmann | On bayesian upper confidence bounds for bandit problems[END_REF], so far optimistic approaches appear more promising in the general RL setting. For this reason, all the algorithms presented in this thesis are of optimistic nature.

For all the proposed algorithms, we apply a unified statistical analysis and systematically rely on the same mathematical tools/arguments. This allows to easily compare settings and to better understand the impact of assumptions on the learning capabilities.

The statistical analysis of RL algorithms help make a clear distinction between the intrinsic difficulty of an RL task (e.g., Montezuma) and the lack of efficiency of the algorithm used (e.g., DQN). Unfortunately, none of the algorithms proposed in this thesis scale to large dimensional problems due to the notorious "curse of dimensionality" that also appear in dynamic programming [START_REF] Bellman | The theory of dynamic programming[END_REF]. Despite this lack of scalability, we hope to provide insightful principles that can inspire future research and algorithm design.

Open research questions of the literature

We list two very general research questions that were open at the beginning of this work in 2015 and will be only partly answered in the rest of the thesis.

• What is the best exploration-exploitation trade-off an RL algorithm can achieve and how? This question is the main leitmotiv of the thesis. In the next chapter we Chapter 1. Introduction will see that the learning capabilities of any learning algorithm are intrinsically limited, and these limitations can be statistically quantified. One natural objective is to design algorithms that can achieve the best trade-off given these inherent restrictions. Back in 2015, no existing algorithm had been proved "optimal" in this sense. This question is very general and the answer is of course problem-dependent and depends on many different aspects of the setting studied. For a more technical and detailed overview of some specific sub-questions, one may refer to the presentation given by [START_REF] Ortner | Some open problems for average reward mdps[END_REF].

• Under which conditions hierarchical approaches (such as options) help speed-up the learning process? The option framework was developed to incorporate temporally extended actions and hierarchical reasoning to RL. The motivation is to mimic the ability of humans to identify and exploit the hierarchical structure of many RL tasks which naturally decompose into easier subtasks. It is believed that this partly explains how we (humans) manage to learn so well. Unfortunately, a formal understanding of how and when options are efficient was still missing.

Outline of the thesis

The thesis is organized as follows:

• Chapter 2. This chapter provides a brief introduction to the exploration-exploitation dilemma in RL and reviews the state-of-the-art literature relevant for the rest of the thesis. At first, we review the concept of Markov Decision Process and several optimality criteria. After the introduction of a dynamic programming algorithm known as value iteration, we briefly review the stochastic shortest path problem. In the second part, we focus on the exploration-exploitation literature in the specific case of infinite horizon undiscounted setting. We formally define a useful exploration-exploitation performance measure named "regret" and present several regret upper and lower-bounds. The reader who is already familiar with these topics may skip this chapter.

• Chapter 3. In this chapter, we present and analyse UCRLB, a variant of the learning algorithm UCRL2 [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF]. We prove that our version of the algorithm achieves better regret guarantees (i.e., exploration-exploitation trade-off), thus answering some of the open-questions on the gap between upper and lower regret bounds.

All the other learning algorithms presented in this thesis will share many algorithmic bricks with UCRLB, and the structure of the regret proofs will be re-used across all chapters. In order to prepare for subsequent chapters, we prove intermediate results in their full generality. Several key passages of the regret proofs are presented from a slightly different perspective than is usually done in the existing literature (e.g., proof of optimism, bound on the optimistic bias). We recommend to carefully go through the entire chapter before reading the rest of the thesis.

• Chapter 4. In this chapter, we provide the first learning algorithm achieving nearoptimal regret guarantees when the diameter of the MDP is infinite i.e., some states cannot be reached. This answers one of the open questions of the literature. We show 1.5. Outline of the thesis that such setting poses specific challenges and we derive an impossibility result that we believe is new to the exploration-exploitation literature. This is all the more surprising as it appears to apply to most RL tasks encountered in practice.

• Chapter 5. This chapter extends the work of [START_REF] Bartlett | REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs[END_REF] by showing how to exploit prior knowledge on the range of the optimal bias span of the MDP to improve the learning performance (the regret). The methodology and mathematical tools used in this chapter provide a lot of insights on the minimal key properties needed to derive regret guarantees using an optimistic UCRL2-like approach. It also highlights the importance of focusing on operators (rather than MDPs) to derive and analyse RL algorithms. This follows the initial ideas of [START_REF] Bellman | The theory of dynamic programming[END_REF] developed in the context of planning, and later extended to different RL settings.

• Chapter 6. In this last chapter, we analyze the exploration-exploitation trade-off in the presence of options. Our results show when options provide a useful prior knowledge to address the exploration-exploitation dilemma.

Statistical analysis of the explorationexploitation dilemma in RL

In this chapter we give a brief overview of the state-of-the-art literature on explorationexploitation in RL. In Sec. 2.1, we formally define the notion of Markov Decision Process (MDP) used to mathematically describe the environment in which the learning agent evolves.

An MDP describes a discrete-time decision problem where at each time step, the agent can choose between different available "actions" and is given some form of immediate motivation encoded into a "reward function". Because some decisions may have long-term consequences, it is not always easy to identify the best "policy" (mapping observations to actions) even when the MDP is completely known (planning setting). We describe how to perform efficient planning in this case. Identifying the optimal policy becomes even more challenging when the MDP is unknown (learning setting). This problem is the focus of Sec. 2.2, where we survey the literature on exploration-exploitation in the infinite horizon undiscounted setting. We present several algorithms that can be proved to efficiently balance exploration and exploitation, and discuss their limitations.

Markov Decision Processes

In this section we briefly introduce the formalism of Markov Decision Processes and present several notions of optimality. We also recall all well-known results that will be useful for the next chapters (see e.g., [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF][START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF]. We mainly follow the notations of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF].

Definitions States, actions, rewards and transitions

A Markov Decision Process M is formally defined as a 4-tuple S, A, r, p . S and A = s∈S A s respectively denote the state and action space. When in state s, an agent can choose to play any of the actions contained in A s . After playing action a in state s, the agent receives a

Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL random reward with expected value r(s, a), and then moves to a new state in S sampled according to a stationary distribution p (•|s, a). More precisely, the probability that the new state is s is denoted p(s |s, a). By definition, p(•|s, a) ∈ ∆ S where ∆ S := q ∈ [0, 1] S : s∈S q(s) = 1 is the S-dimensional probability simplex.

s 0 s 1 s 2 a 0 a 1 q 1 -q a 0 a 1 a 0 p 1 -p a 1

Definition 2.1

The sampled reward and next state only depend on s and a and are independent of everything else. In this thesis, we restrict attention to MDPs with finite state space and denote by S = |S| the total number of states. We will consider MDPs with finite as well as compact action spaces1 . When the action space is finite, we will denote by A = max s∈S |A s | the maximal number of actions available in every state. All sampled rewards are assumed to be bounded and without loss of generality, we assume that they lie in [0, r max ] where r max > 0.

When the action space is compact, we further assume that for any two states s, s ∈ S, a → r(s, a) and a → p(s |s, a) are continuous functions of a. Under these assumptions and -unless stated otherwise-all the results of this Chapter hold for both finite and compact action spaces. Although the action space is state-dependent, in the rest of the thesis, we will slightly abuse notation and denote by S × A the set of "admissible" state-action pairs i.e., the set {(s, a) : s ∈ S, a ∈ A s }. An example of graphical representation of an MDP is given in Fig. 2.1.

Sequential decision making

In this thesis, we assume that an agent can only make "decisions" at discrete time steps (often called "epochs") and so we exclusively focus on discrete sequences indexed by t ∈ N + , where

N + := N \ {0}
is the set of (strictly) positive integers. At any time t ≥ 1, the agent is in state s t and plays action a t . The (random) reward earned by the agent and the next state are respectively denoted by r t and s t+1 . This procedure is repeated thus generating a sequence of the form (s 1 , a 1 , r 1 , . . . , s t , a t , r t , . . . ) that we call a "history" (sometimes called a "sampled path"). The set of all possible histories up to time t ≥ 1 is formally defined as H t := (s 1 , a 1 , r 1 , . . . s t-1 , a t-1 , r t-1 , s t ) : ∀l ≤ t, s l ∈ S, a l ∈ A s l , r l ∈ [0, r max ] . (2.1)

Markov Decision Processes

Policies and induced stochastic processes

The set of all probability distributions over the state space S (resp. action space A) is denoted by P(S) (resp. P(A)). For any t ≥ 1, a decision rule d t : H t → P(A) maps histories of past observations (i.e., past states, actions and rewards) to distributions over actions. The set of decision rules is denoted D HR where HR stands for "history-dependent". This is the most general definition of decision rule we can think of. Decisions based on future events are forbidden to avoid causal inconsistency. We also introduce two specific types of decision rules. A Markov randomized decision rule d : S → P(A) maps states to distributions over actions while a Markov deterministic decision rule d : S → A maps states to actions. Markov decision rules only take into account the current state and completely ignore previous observations. The subset of Markov randomized decision rules is denoted D MR , while the subset of Markov deterministic decision rules is denoted D MD . For any Markov decision rule where d(a|s) is the probability to sample a in state s when using d.

A policy π = (d 1 , d 2 , d 3 . . . ) ∈ D HR N + is a sequence of decision rules. At every time step t ≥ 1, an agent executing policy π samples an action a t from the distribution d t (h t ) that only depends on the past "observed" trajectory h t ∈ H t . The set of all policies is denoted by Π. A stationary policy π = (d, d, . . .) =: d ∞ repeatedly applies the same Markov decision rule d ∈ D MR over time. The set of stationary policies defined by Markov randomized (resp. deterministic) decision rules is denoted by Π SR (resp. Π SD ). In the rest of the thesis, we will slightly abuse notations and use d and π interchangeably when π = d ∞ ∈ Π SR is stationary.

For a given MDP M , a policy π ∈ Π and an initial distribution over states µ 1 ∈ P(S), the induced sequence (s 1 , a 1 , r 1 , . . . , s t , a t , r t , . . . ) is a stochastic process with a well-defined probability distribution (Puterman, 1994, Section 2.1.6) (in particular, the items s t , a t and r t are random variables). In the rest of the thesis, we will denote by P π (•|s 1 ∼ µ 1 ) the probability measure associated with this stochastic process and denote by E π [•|s 1 ∼ µ 1 ] the corresponding expectation. When there is ambiguity on which MDP we are considering, we use M as a subscript P π M (•|s 1 ∼ µ 1 ) to denote the probability in MDP M .

In the special case where the policy π ∈ Π SR is stationary, the induced sequence of visited states (s 1 , s 2 , . . . ) is a specific stochastic process called a (discrete-time stationary) Markov Chain (MC). On the other hand, the stochastic process corresponding to the sequence of states and rewards (s 1 , r 1 , s 2 , r 2 , . . . ) is a (discrete-time stationary) Markov Reward Process (MRP). The interested reader may refer to Puterman (1994, Appendix A) for a brief overview of the theory on Markov Chains and Markov Reward Processes, and to [START_REF] Bremaud | Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues[END_REF]; [START_REF] Grinstead | Introduction to Probability[END_REF] for more details.

We classify MDPs depending on the chain structure of stationary policies (i.e., depending on how states are connected to each other through the dynamics). For the following definition, Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL we assume the reader to be familiar with the notions of transient and (positive) recurrent states and/or class of a Markov Chain (for more details, refer to Puterman (1994, Appendix A)).

We say that an MDP is:

1. ergodic if the Markov Chain induced by any deterministic stationary policy consists of a single recurrent class (i.e., all states are visited infinitely often with probability 1 independently of the starting state) 2. unichain if the Markov Chain induced by any deterministic stationary policy consists of a single recurrent class plus a -possibly empty-set of transient states (i.e., there exists a subset of states that are visited infinitely often with probability 1 independently of the starting state) 3. communicating if for every pair of states (s, s ) ∈ S, there exists a deterministic stationary policy under which s is accessible from s in finite time with non-zero probability, 4. weakly communicating if the state space can be partitioned into two subsets S C and S T (with S T possibly empty), such that for every pair of states (s, s ) ∈ S C , there exists a deterministic stationary policy under which s is accessible from s in finite time with non-zero probability, and all states in S T are transient under all deterministic stationary policies. When we want to emphasize that we do not make any of the above assumptions but rather consider a general MDP, we will use the terminology "multi-chain" MDP.

Definition 2.2 (Classification of MDPs)

In this thesis, we will see that the chain structure of the MDP can limit the performance of an (optimal) RL algorithm.

Finite horizon problems

Now that we have formally defined how an agent sequentially interacts with its environment in the MDP framework, we need to formulate the problem we want to solve i.e., the goal of the agent. Intuitively, the agent aims at executing a policy maximizing the sum of collected rewards t r t . Unfortunately, this series will often diverge as t → +∞ and it is a priori not obvious how to compare infinite quantities. A first simple setting where this problem does not occur is when the agent maximizes the cumulative reward up to a fixed horizon H i.e., maximizes H t=1 r t . Since (r t ) t≥1 is a stochastic process, this sum cannot always be maximized and the agent will try to maximize the expected value instead (in line with Von Neumann-Morgenstern's axioms of rationality [START_REF] Von Neumann | Theory of games and economic behavior[END_REF]). Formally, in the finite horizon setting -with horizon H-the goal is to solve the following optimization problem: where the initial state s 1 is sampled from distribution µ 1 ∈ P(S). It is well known (see e.g., Puterman, 1994, Chapter 4) that there always exists an optimal policy π * = (d (2.4)

sup π∈Π E π H t=1 r t s 1 ∼ µ 1 (2.3)
We also define L the optimal Bellman operator ∀v ∈ R S , Lv := max

d∈D MD L d v , ( 2.5) 
as well as the greedy operator2 ∀v ∈ R S , Gv ∈ arg max

d∈D MR L d v .
(2.6)

It is always possible to compute an optimal policy π * of (2.3) by backward induction as described in Alg. 1. The following proposition is a well-known result of the literature on dynamic programming (Puterman, 1994, Section 4.3).

Proposition 2.1

For all n = 1 . . . H and all s ∈ S, the value functions v ) is a maximizer of (2.3) for any µ 1 ∼ P(S) and µ 1 v * 1 is the corresponding maximum.
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Infinite horizon problems

Maximizing the cumulative sum of rewards only up to a pre-defined horizon H is not adapted to all problems. In many scenarios, there is no "obvious" way to define what a "good" horizon is. Most of the time, we ideally want an horizon that is as big as possible i.e., such as H → +∞. In this section, we review several well-established optimality criteria in the infinite horizon setting.

Discounted optimality

One of the most commonly used optimality criterion in infinite horizon problems is discounted optimality. Instead of maximizing a finite sum of rewards, the idea is to maximize an infinite sum of rewards discounted by a fixed pre-defined discount factor 0 < γ < 1 i.e.,

sup π∈Π E π +∞ t=1 γ t-1 r t s 1 ∼ µ 1 (2.7)
Since 0 < γ < 1 and r t ∈ [0, r max ], the infinite sum of rewards is a geometric series and remains bounded between 0 and r max /(1 -γ). The series always converges and is called the value function of policy π. It will be denoted v π γ . The maximization of (2.7) is therefore well-defined. It has long been known (Puterman, 1994, Chapter 6) that there always exists an optimal policy π * solution to (2.7) for all initial distributions µ 1 ∈ P(S) such that π * ∈ Π SD i.e., there exists a stationary deterministic optimal policy that does not depend on the initial distribution µ 1 ∈ P(S). This makes the solution of (2.7) even "simpler" than the solution of (2.3) (the optimal policy associated to (2.3) is not stationary in general). Moreover, the following proposition holds.

Proposition 2.2

There exists a unique solution v * γ to the fixed-point equation v * γ = L γ v * γ where L γ is the discounted optimal Bellman operator i.e., L γ v := max d∈D MD r d + γP d v for all v ∈ R S (see Eq. 2.5). In addition, for all s ∈ S,

v * γ (s) = max π∈Π E π +∞ t=1 γ t-1 r t s 1 = s
Finally, a stationary policy π * = (d * ) ∞ ∈ Π SR is optimal (i.e., solution to (2.7)) if and only if

d * = G γ v * γ ∈ arg max d∈D MR r d + γP d v * γ
i.e., π * is a greedy policy with respect to v * γ .

Prop. 2.2 holds both for finite and compact action spaces and is merely a direct consequence of Banach fixed-point theorem applied to the γ-contractive operator L γ in ∞ -norm (0 < γ < 1). Due to Prop. 2.2, it is always possible to compute an optimal policy π * of (2.7) by first finding a solution v * γ to the discounted Bellman optimality equation v * γ = L γ v * γ and then
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Algorithm 2 (Discounted) Value Iteration

Input: Operators L γ : R S → R S and G γ : R S → D MD , discount factor γ ∈]0, 1[, accuracy ε ∈]0, r max [ Output: Value function v ∈ R S and stationary deterministic policy π ∈ Π SD 1: Initialize n = 0 and v 0 := 0

2: v 1 := L γ v 0 3: while sp (v n+1 -v n ) := max{v n+1 -v n } -min{v n+1 -v n } > (1-γ)ε γ do

Loop until termination

4:

Increment n ← n + 1 5:

(v n+1 , d n ) := (L γ v n , G γ v n )
L γ v n and G γ v n can be computed simultaneously 6: end while 7: Set v := v n and π := (d n ) ∞ considering a greedy policy w.r.t. v * γ . In order to find an ε-approximate solution (in ∞ -norm) to (2.7), it is possible to apply the same iterative scheme as in the finite horizon case (Alg. 1) but with few modifications, as reported on Alg. 2. This algorithm is known as value iteration. Since L γ is a γ-contraction, value iteration always converges: lim n→+∞ v n = v * γ (this is also a consequence of the Banach fixed point theorem). Therefore, Alg. 2 always stops after a finite number of iterations and the policy π returned by Alg. 2 is such that v π γ -v * γ ≤ ε. Finally, the maximum of (2.7) is equal to µ 1 v * γ .

The discounted setting is particularly well-suited for problems with a pre-defined random horizon H that follows a geometric distribution with parameter 1 -γ (note that in Sec. 2.1.2, H is deterministic). In this view, the agent is seen as "tossing a coin" at every time steps t ≥ 1 and stopping collecting rewards in the MDP with probability 1 -γ (and keeping collecting rewards with probability γ). Then, the expected discounted sum of rewards corresponds exactly to the expected total sum of rewards (accounting for the random horizon H) i.e.,

E π +∞ t=1 γ t-1 r t s 1 ∼ µ 1 = E π H t=1 r t s 1 ∼ µ 1 , H ∼ Geom(1 -γ) .
The expected value of H is 1/(1 -γ) and so the discounted setting somehow resembles the finite horizon setting with H = Θ(1/(1 -γ)). As a result, it suffers the same problem as before: in many scenarios there is no obvious way to define γ and we want to set it as close to 1 as possible i.e., γ → 1.

Gain optimality

We now present the infinite horizon undiscounted setting which uses the gain -or long-term average reward -as optimality criterion. Formally, in this setting the agent aims at solving the following optimization problem:

sup π∈Π lim inf T →+∞ E π 1 T T t=1 r t s 1 ∼ µ 1 . (2.8)
Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL Since for all t ≥ 1, r t lies in [0, r max ] (by assumption), so does 1/T • T t=1 r t . When the policy is stationary i.e., π ∈ Π SR , the lim inf in Eq. 2.8 actually matches the lim sup. The limit is therefore well-defined and is called the gain (Puterman, 1994, Section 8.2.1). More precisely, the gain of policy π ∈ Π SR starting from initial state s ∈ S is defined as

g π (s) := lim T →+∞ E π 1 T T t=1 r t s 1 = s .
(2.9)

The gain g π (s) corresponds to the asymptotic per-step reward earned when executing policy π starting from s ∈ S. This notion generalizes both the finite and the discounted setting when H → +∞ and γ → 1 respectively since it can be shown (Puterman, 1994, Sections 8.2.1 and 8.2.2) that for all s ∈ S

E π H t=1 r t s 1 = s ∼ H→+∞ g π (s) • H and E π +∞ t=1 γ t-1 r t s 1 = s ∼ γ→1 g π (s)/(1 -γ).
As a result, if π, π ∈ Π SR are two stationary policies such that µ 1 g π ≥ µ 1 g π , then for H big enough and γ close enough to 1 we have that

E π H t=1 r t s 1 ∼ µ 1 ≥ E π H t=1 r t s 1 ∼ µ 1 and E π +∞ t=1 γ t-1 r t s 1 ∼ µ 1 ≥ E π +∞ t=1 γ t-1 r t s 1 ∼ µ 1 .
Any stationary policy π ∈ Π SR also has an associated bias function defined for all s ∈ S as

h π (s) := C-lim T →+∞ E π T t=1 r t -g π (s t ) s 1 = s ,
(2.10) that measures the expected cumulative difference between the immediate reward r t and the long term asymptotic reward g π (s) in Cesaro-limit (denoted C-lim). The Cesaro-limit is always well-defined unlike the "classical" limit as the series may cycle i.e., have several accumulation points3 . Accordingly, the difference of bias values h π (s) -h π (s ) quantifies the (dis-)advantage of starting in state s rather than s . We denote by sp (h π ) := max s h π (s) -min s h π (s) the span (i.e., range) of the bias function. It is well-known (Puterman, 1994, Section 6.6) that the span defines a semi-norm on R S .

For any d ∈ D MR , we also define the limiting matrix (Puterman, 1994, Appendix A.4). The Cesaro limit always exists and so P * d is always well-defined. It is possible to express g π (where π = d ∞ ) in terms of P * d and r d i.e., g π = P * d r d . The matrix (I - (Puterman, 1994, Appendix A). The matrix

P * d := C-lim n→+∞ P n d
P d + P * d ) is always invertible and h π = (I -P d + P * d ) -1 (I -P * d )r d
H P d := (I -P d + P * d ) -1 (I -P * d
) is called the deviation matrix and is the Drazin inverse of the matrix I -P d .

In the rest of the thesis, we will define vector e := (1, . . . , 1) ∈ R d as the d-dimensional vector of all ones (d can vary depending on the context) and e i := (0, . . . , 1, . . . , 0) as the i-th Cartesian coordinate in R d .

Definition 2.3
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Proposition 2.3 (Theorem 8.2.6 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF])

For any policy π = d ∞ ∈ Π SR , the gain g π and bias h π satisfy the following system of Bellman evaluation equations:

g = P d g and h + g = L d h.
(2.11)

Conversely, if (g, h) ∈ R × R S is a solution to (2.11), then g = g π and h = h π + u where u = P d u. Finally, if P * d h = 0 then h = h π .
Similarly to the discounted case, there always exists an optimal policy π * ∈ Π SD (stationary deterministic) solution to (2.8) for any µ 1 ∈ P(S). Prop. 2.4 extends Prop. 2.2 to the undiscounted setting.

Proposition 2.4

Let M be a weakly communicating MDP and denote by Π * ⊆ Π SD the set of maximizers of (2.8) in Π SD . If any of the following assumptions hold:

1. the action space A is finite, 2. Π * = ∅ and sup π∈Π * sp (h π ) < +∞, then there exists a solution (g * , h * ) ∈ R × R S to the fixed point equation h * + g * e = Lh * . Moreover, for any such solution (g * , h * ) and for all s ∈ S,

g * = max π∈Π lim inf T →+∞ E π 1 T T t=1 r t s 1 ∼ s .
Finally, any stationary policy π * = (d * ) ∞ satisfying d * ∈ arg max d∈D MR {r d + P d h * } (i.e., greedy policy) is optimal i.e., π * ∈ Π * .

The proof of Prop. 2.4 is not as straightforward as the proof of Prop. 2.2 (discounted case). A complete proof of Prop. 2.4 can be found in (Puterman, 1994, Chapter 9) for finite action spaces, and [START_REF] Schweitzer | On undiscounted markovian decision processes with compact action spaces[END_REF], Theorem 1) for compact action spaces4 . Schweitzer (1985, Example 2) also presents a counter-example of weakly-communicating MDP for which the optimality equation does not admit any solution and sup π∈Π * sp (h π ) = +∞. In order to relax assumption 2 in Prop. 2.4, one needs to further assume that the MDP is unichain5 (communicating is still not enough) as shown by Schweitzer (1985, Theorem 2). Note that the assumption that the MDP is weakly communicating is essential to show that the optimal gain is state-independent i.e., sp (g * ) = 0. In the general case where the MDP is multi-chain, the fixed point equation h * + g * = Lh * no longer characterizes optimality i.e., other equations are needed (see (Puterman, 1994, Chapter 9) and (Schweitzer, 1985, Equation 1.1)). Note also Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL Algorithm 3 (Relative) Value Iteration Input: Operators L : R S → R S and G : R S → D MR , accuracy ε ∈]0, r max [, initial vector v 0 ∈ R S , arbitrary reference state s ∈ S Output: Gain g ∈ [0, r max ], bias vector h ∈ R S and stationary deterministic policy π ∈ Π SD 1:

Initialize n = 0 2: v 1 := Lv 0 3: while sp (v n+1 -v n ) > ε do Loop until termination 4: Increment n ← n + 1 5: Shift v n ← v n -v n (s)e Avoids numerical instability (v n → +∞) 6: (v n+1 , d n ) := (Lv n , Gv n )
Lv n and Gv n can be computed simultaneously 7: end while 8: (some optimal policies may rather satisfy an optimality equation with a different h * , or may not even satisfy any optimal policy).

Set g := 1 2 max{v n+1 -v n } + min{v n+1 -v n } , h := v n and π := (d n ) ∞ that unlike Prop. 2.
Topology of the optimal Bellman operator. In Prop. 2.5, we present few important properties of the optimal Bellman operator L that are central for the rest of the thesis. The proofs can be found in [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF].

Proposition 2.5

Let v and u be any two vectors in R S , then:

(a) L is monotone: v ≥ u =⇒ Lv ≥ Lu. (b) L is non-expansive both in span semi-norm and ∞ -norm: sp (Lv -Lu) ≤ sp (v -u) and Lv -Lu ∞ ≤ v -u ∞ . (c) L is linear 6 : ∀λ ∈ R, L(v + λe) = Lv + λe.
Computing a near optimal policy. To compute an ε-approximate solution to (2.8), we can use Alg. 3 -also known as relative value iteration, see Section 8.5.5 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]which is very similar to Alg. 2. Note that by definition, sp

(v n+1 -v n ) = max{v n+1 -v n } - min{v n+1 -v n }
and so the stopping condition of Alg. 3 is comparable to the stopping condition of Alg. 2 (without involving γ). At line 5 of Alg. 3, just before computing v n+1 , the vector v n is "shifted" by subtracting the value v n (s) to v n (s) for every s ∈ S (s is an arbitrary
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"reference" state). This is because the optimal Bellman operator L is not a contraction w.r.t. any-norm -unlike L γ -and in general v n asymptotically grows as ng * e when n → ∞ (see Section 8.2.1 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]). Since in most MDPs g * > 0, this means that v n → +∞ as n → +∞, potentially causing numerical instabilities. However, under the conditions of Prop. 2.6 below, v n will converge in span semi-norm i.e., will converge in the quotient space induced by the semi-norm sp (•) on R S . This is related to the remark we made earlier about h * being defined up to a constant shift in the optimality equation (h * is uniquely defined in the quotient space when there is a single optimal policy for example 1. every average optimal stationary deterministic policy has an aperiodic transition matrix, 2. or the transition matrices P dn are aperiodic for all n ≥ 1, then there exists h * ∈ R S such that lim n→+∞ v n = h * and Lh * = h * + g * e.

Proof. In his Section 9.4.1, [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] provides a complete proof in the general multichain case with finite action space and when every average optimal stationary deterministic policy has an aperiodic transition matrix (assumption 1). However, the proof only uses the existence of a solution of the Bellman optimality equation, which is always guaranteed under the assumptions of Prop. 2.4. Only his Lemma 9.4.3 uses the finiteness of D MD and Π SD but this lemma trivially holds when M is weakly communicating (instead of just multi-chain). Therefore, the result also holds for compact action spaces as long as all the assumptions of Prop. 2.4 are satisfied. While [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] only provides a proof in the case where every average optimal stationary deterministic policy has an aperiodic transition matrix (assumption 1), Jaksch et al. (2010, Appendix B) showed how to extend it to the case where the transition matrices P dn are aperiodic for all n ≥ 1 (assumption 2).

Since sp (g * e) = 0 and sp () is a continuous function (as a semi-norm), when the assumptions of Prop. 2.6 hold the stopping condition of Alg. 3 is necessarily met after a finite number of iterations. Moreover, it is possible to characterize by how much the gain g returned by Alg. 3
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Proposition 2.7

Consider the gain g and bias h returned by Alg. 3. Under the same assumptions as Prop. 2.6, |g -g * | ≤ ε/2 and for all s ∈ S, |Lh(s) -h(s) -g| ≤ ε, where ε ∈]0, r max [ is the accuracy given as input of Alg. 3.

Proof. The fact that |g -g * | ≤ ε/2 is just the application of Theorem 8.5.6 and Corollary 9.4.6 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] (see also Section 9.5). For the other inequalities, we introduce the quantities M := max{Lh -h} and m := min{Lh -h}. The condition sp

(Lh -h) ≤ ε (line 3 of Alg. 3) is equivalent to M -m ≤ ε. Using inequality |g -g * | ≤ ε/2 and the definition of g (line 8 of Alg. 3) we deduce 1 2 (M + m) ≥ g * - ε 2 =⇒ m ≥ g * - ε 2 - 1 2 (M -m) ≥ g * -ε 1 2 (M + m) -g * ≤ ε 2 =⇒ M ≤ g * + ε 2 + 1 2 (M -m) ≤ g * + ε.
In conclusion, for all s ∈ S,

g * -ε ≤ m ≤ Lh(s) -h(s) ≤ M ≤ g * + ε which concludes the proof.
Prop. 2.7 states that not only g is an ε-approximation of g * but (g, h) ∈ R × R S approximately satisfies the Bellman optimality equation as Lh -h -ge ∞ ≤ ε. The condition that P dn is aperiodic for all n ≥ 1 is not always satisfied. Fortunately, there is a way to modify the transition probabilities of the MDP to enforce this property while impacting neither the optimal gain g * nor the stationary optimal policy(ies) π * . This modification is called the aperiodicity transformation (Puterman, 1994, Section 8.5.4).

Aperiodicity transformation.

Instead of applying Alg. 3 to the original MDP M , we first construct a transformed MDP M α where α ∈]0, 1]. M α is similar to M with the only difference that for all Markov decision rules d ∈ D MR , the transition matrix P d is transformed into

P α d := αP d + (1 -α)I
where I is the S × S identity matrix. We first note that if M is weakly-communicating, so is M α as long as 1 ≥ α > 0 (more generally, the aperiodicity transformation does not change the chain structure of the MDP). As shown by Puterman (1994, Proposition 8.5.8), this transformation does not affect the gain of any stationary policy meaning that for any π ∈ Π SR , g π α = g π . 7 We denote by L α the optimal Bellman operator of M α . We note that:

∀v ∈ R S , L α v := max d∈D MD {r d + αP α d v} + (1 -α)v.
(2.12)

For α ∈]0, 1[, all the transition matrices of M α are aperiodic and so Prop. 

(v α n+1 -v α n ) = g * (since g * α = g * ), |g α -g * | ≤ ε/2 and Lh α -h α -g α e ∞ ≤ ε.
Note that this holds for any α ∈]0, 1[ but in practice, the closer α is to 0, the slower the convergence of value iteration (more iterations are needed to meet the stopping condition of line 3).

Episodic problems. To conclude this section, we highlight the connection between the undiscounted infinite horizon setting and the episodic setting. It is very common in practice that an RL task ends as soon as a certain termination condition is met, after which the problem is reset to an initial state (or initial distribution over states). Each reset defines a new "episode". The restart condition is often assumed to be Markovian i.e., to depend only on the current state and action. The goal is then to maximize the cumulative reward over episodes. If the restart condition satisfies the Markov property, it can simply be interpreted as a transition probability of the MDP, in which case the gain is a good optimality criterion. Actually, in the episodic setting, it is a well-known result of renewal theory that the gain

g π (s) of a policy π starting in state s ∈ S is equal to the ratio E π [R|s 1 = s]/E π [τ |s 1 = s],
where R and τ denote respectively the total reward accumulated during an episode and the total duration of the episode. It seems reasonable that we should not just aim at maximizing

E π [R|s 1 = s], but we should also take into account E π [τ |s 1 = s].
Indeed, it might sometimes be more rewarding on the long-term to run short episodes with relatively small cumulative reward rather than episodes with high reward but extremely long duration.

Refined optimality (Bias and Blackwell optimality)

In many MDPs, there is not a single gain-optimal policy although it is clear that among the gain-optimal policies, some are preferable in terms of reward. For example, while two different policies may have the same asymptotic per-step reward, one of them may accumulate more reward while converging to the asymptotic gain. It turns out that this is formally described by the notion of bias optimality [START_REF] Lewis | Bias Optimality, chapter 2[END_REF] which refines gain optimality (bias optimal implies gain optimal but not conversely). Bias optimality can be further refined by the notions of sensitive discount optimality and Blackwell optimality which provides a comprehensive understanding of infinite horizon problems in the absence of a discount factor. All these refinements go beyond the scope of this thesis and from now on we will restrict attention to gain optimality.

Stochastic shortest path

In this section we review some important results on the stochastic shortest path problem (Bertsekas, 1995, Chapter 2). These results will be extremely useful to understand how difficult it is for an agent to navigate between the states of an MDP. Unlike in previous sections, we assume that the rewards of the MDP are all non-positive and lie in [-r max , 0]. When action a is played in state s, the absolute value of the reward |r(s, a)| should be interpreted as the expected time before reaching the next state in the MDP. |r(s, a)| can be seen as the "length" or expected "duration" of a transition (which only depends on the current Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL state s and action a, and not on the next state). In the stochastic shortest path problem, we consider an agent travelling from a state x to a state s. The total length of a sampled path

(s 1 = x, a 1 , r 1 , . . . , s τ = s) is defined as | τ t=1 r t | = τ t=1 |r t | = -τ t=1 r t .
We introduce the following definition: For any state s ∈ S, we define τ (s) := inf{t ≥ 1 : s t = s} the first hitting time of s. Note that τ (s) ∈ N ∪ {+∞}.

Definition 2.4

The goal of the stochastic shortest path problem is to find the shortest expected distance between states x and s in the MDP i.e., to solve

inf π∈Π    E π   τ (s)-1 t=1 |r t | s 1 = x      ⇔ sup π∈Π    E π   τ (s)-1 t=1 r t s 1 = x      .
(2.13)

Although the optimization problem in Eq. 2.13 seems very different from the optimization problem in Eq. 2.8, the two problems are related through the Bellman optimality equation.

The stochastic shortest path problem can somehow be interpreted as a specific case of finding a bias-optimal policy when the optimal gain g * is 0. The optimality equation can then be written as Lh * = h * . This statement is made more formal in Prop. 2.8 below. For all pairs of states (x, s) ∈ S × S, the value of the supremum in (2.13) (right-hand side) is denoted h * →s (x). By definition, h * →s (x) ≤ 0 for all x ∈ S and h * →s (s) = 0.

Proposition 2.8

Let M = {S, A, r, p} be a communicating MDP (finite or compact A) with negative rewards r(s, a) ∈ [-r max , 0] for all (s, a) ∈ S × A. For any state s ∈ S, consider the Bellman shortest path operator L →s : R S -→ R S defined for all v ∈ R S as: ∞ is an optimal solution to Eq. 2.13.

∀x ∈ S, L →s v(x) :=    max a∈Ax r(x, a) + y∈S p(y|x, a)v(y) if x = s v(s) otherwise . ( 2 
Proof. L →s corresponds to the optimal Bellman operator of a modified MDP M →s where all actions are unchanged except the actions in state s. These actions are assigned a reward 0 i.e., r(s, a) = 0 for all a ∈ A s , and loop on s with probability 1 i.e., p(s|s, a) = 1 for all a ∈ A s . In M →s , problem (2.13) can be equivalently formulated with τ (s) replaced by +∞ (the reward is always zero once state s is reached). Therefore, (2.13) is an instance of an expected total-reward problem with negative model (Puterman, 1994, Section 7.3). Since M is communicating, there exists a policy π such that E π +∞ t=1 r t s 1 = x > -∞ in M →s (e.g., any policy reaching s in finite time almost surely) and so Assumption 7.3.1. of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] (proved for both finite and compact action spaces). The fact that π * →s is optimal is a consequence of Theorem 7.3.5 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF].

Value iteration (Alg. 3) converges to h * →s (for both finite and compact A) but no aperiodicity condition is needed in this case.

Proposition 2.9

Let MDP M satisfy the assumptions of Prop. 2.8. If Alg. 3 is run with operator L →s , v 0 := 0 and reference state s := s, then v n converges monotonically to h * →s and so Alg. 3 stops after a finite number of iterations. Moreover, the vector h output by Alg. 3 satisfies

-εe ≤ L →s h -h ≤ 0.
Proof. Since the reference state is s and v 0 = 0, by induction v n (s) = 0 for all n ≥ 0 so that line 5 of Alg. 3 (constant shift) can be ignored i.e., v n = L n 0. Then, the monotone convergence of (v n ) n∈N is a direct consequence of Theorem 7.3.10. (a) of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]. Therefore,

v 0 = 0 ≥ v 1 ≥ ... ≥ h ≥ L →s h ≥ h * →s (first inequality). When Alg. 3 terminates, we have sp (L →s h -h) ≤ ε. We introduce the quantities M := max{L →s h -h} and m := min{L →s h -h} so that sp (L →s h -h) = M -m ≤ ε. Since v 0 = 0 and L →s v(s) = v(s) for all v ∈ R S by definition, v n (s) = 0 for all n ≥ 0 and so L →s h(s) = h(s) = 0 and M = 0. The condition sp (L →s h -h) ≤ ε implies L →s h -h ≥ me ≥ -εe.
Bias and aperiodicity transformation. We already showed that the aperiodicity transformation (Sec. 2.1.3) does not affect the gain, we will now investigate the impact on the shortest path. Although such a transformation is not needed to enforce convergence of value iteration in a stochastic shortest path setting, Thm. 2.1 (below) will later be useful in this thesis.

Theorem 2.1

Let MDP M satisfy the assumptions of Prop. 2.8. Let α ∈]0, 1] and M α be the MDP obtained after applying the aperiodicity transformation of parameter α to M . M α also satisfies the assumptions of Prop. 2.8 and so h α * →s is well-defined for all s ∈ S. Moreover, α • h α * →s = h * →s .

Proof. One way to interpret the aperiodicity transformation is that at every time step, an agent evolving in M α "loops" on the current state with probability 1 -α, and follows the dynamics of M with probability α. Therefore, all the paths that exist in M also exist in M α but they are "longer". So if M is communicating, M α is communicating as well. 

Infinite hitting time.

In this section we considered a slightly more general formulation of the shortest path problem than Bertsekas (1995, Chapter 2). In our formulation, it is possible that the policy π * achieving the maximum in (2.13) satisfies E π * [τ (s)|s 1 = x] = +∞, while the maximum in (2.13) is always bounded (under the assumption that M is communicating). In this case, the solution of (2.13) does not exactly match the intuitive notion that we have of a "shortest path" to a target state s. We give an example of such a scenario in Fig. 2.2. Nevertheless, all the results presented in this section hold whether τ (s) is almost surely finite or not. This is because the problem can be expressed as as a specific instance of expected totalreward problem with negative model (Puterman, 1994, Section 7.3) (see proof of Prop. 2.8).

Note that if all the rewards are strictly negative (as opposed to just non-positive), then necessarily E π * [τ (s)|s 1 = x] < +∞ and the solution of the problem is a "proper" shortest path (this is the specific case analysed in Bertsekas (1995, Chapter 2)).

Uncertain MDPs: between discrete and continuous MDPs

In this thesis, we will have to deal with MDPs with unknown r and p but for which we know some confidence sets. A convenient way to describe an uncertain MDP is through the notions of "bounded-parameter MDPs" and "extended MDPs".

Bounded-parameter MDP.

A bounded-parameter MDP is a collection of MDPs -with identical state-action spaces-specified by confidence bounds on the parameters (rewards and transition probabilities) representing the uncertainty about the true values. Formally, a bounded parameter MDP M is usually characterized by some compact sets B r (s, a) ⊆ [0, r max ] and B p (s, a) ⊆ ∆ S (see Def. 2.1):

M = M = S, A, r, p : r(s, a) ∈ B r (s, a), p(•|s, a) ∈ B p (s, a), ∀(s, a) ∈ S × A . (2.15)
Bounded-parameter MDPs were first introduced by [START_REF] Givan | Bounded-parameter markov decision processes[END_REF] in the infinite horizon discounted setting, and later used by Tewari and Bartlett (2007a) in the undiscounted setting.

The bounded parameter MDP will typically be constructed so as to include the true MDP with high probability (w.h.p.).

Extended MDP.

As pointed out by Jaksch et al. (2010, Section 3.1.1), any bounded parameter MDP can be equivalently represented by an "extended MDP". The idea is to combine all MDPs into a single MDP with identical state space S but with an extended compact action space A + . The extended MDP corresponding to the bounded parameter MDP M defined in Eq. 2.15 is formally defined as M + = S, A + , r + , p + where for all s ∈ S:

A + s := a∈As {a} × B r (s, a) × B p (s, a) ∀a + = (a, r, p) ∈ A + s ,    r + (s, a + ) := r p + (•|s, a + ) := p .
(2.16)

Every possible value in the compact sets B r (s, a) and B p (s, a) is considered as an "extended" action in M + . For any MDP M = S, A, r, p ∈ M and any stationary deterministic policy π ∈ Π SD M defined on M , let's define the stationary deterministic policy π + ∈ Π SD M + on M + by π + (s) := π(s), r(s, π(s)), p (•|s, π(s) . It is immediate to see that the Markov Reward Processes (MRP) induced by π on M is exactly the same as the MRP induced by π + on M + . Conversely, for any policy π + ∈ Π SD M + , the MDP M = S, A, r, p ∈ M and policy π ∈ Π SD M defined as follows induce the same MRP as π + : There is a one-to-one correspondence between the pairs (M, π) ∈ M × Π SD M and the policies π + ∈ Π SD M + . In the rest of the thesis, we will use the same notation M for an extended MDP (2.16) and the corresponding bounded-parameter MDP (2.15) (they are essentially the "same" mathematical object). We will also slightly abuse terminology and say that an MDP "belongs to" an extended MDP when it is actually contained in the corresponding bounded-parameter MDP.

∀s ∈ S,          π(s) := a r(
Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL Extended optimal Bellman operator. The optimal Bellman operator L of an extended MDP is called an "extended optimal Bellman operator" and is defined as:

∀v ∈ R S , ∀s ∈ S, Lv(s) := max a∈As max r∈Br(s,a) r + max p∈Bp(s,a) p v
(2.17)

In the specific case where the confidence sets B p (s, a) are polytopes, the inner maximum max p∈Bp(s,a) {p v} is reached on at least one vertex8 , meaning that we can restrict B p (s, a) to its vertices without impacting the result (there are only finitely many vertices on a polytope). Moreover, max r∈Br(s,a) {r} is always reached on the maximal value of B r (s, a) and so it can be replaced by a singleton without changing anything. In conclusion, L can be expressed as an optimal Bellman operator with finite action space. In this thesis, all the extended optimal Bellman operators that we will deal with will satisfy satisfy this property. This simplifies a lot the theoretical analysis (see Prop. 2.4 and 2.6).

On-line Reinforcement Learning in the infinite horizon undiscounted setting

In the previous section, we used the formalism of MDPs to describe an agent interacting with its environment. Depending on the chosen optimality criterion, we showed how to compute a (near-)optimal policy when the parameters of the MDP are fully known. In this section, we will address the case when all or part of the MDP is unknown and needs to be learned by the agent. We restrict attention to the infinite horizon undiscounted setting which will be the main focus of this thesis. Although it is not always the most appropriate setting (e.g., when there is a pre-defined horizon or discount factor), it is perhaps the most general (in the limit, see Sec. 2.2) among all the settings presented in Sec. 2.1. It is also the most challenging to analyse.

The learning problem

We consider the learning problem where S, A and r max are known, while rewards r and transition probabilities p are unknown and need to be estimated on-line i.e., in a sequential fashion. The planning algorithms presented in Sec. 2.1 cannot be used directly to compute an optimal policy and samples of r and p need to be collected first.

Rather than focusing on learning a (near-)optimal policy (e.g., with the best possible accuracy given an horizon T ), we will be interested in maximizing the cumulative reward T t=1 r t collected up to time T . As T grows to infinity, maximizing T t=1 r t amounts to learning a gain-optimal policy since in the limit the series eventually grows as T g * (Puterman, 1994, Chapter 8), which is the best asymptotic growth rate achievable. But in the meanwhile, the learning agent needs to efficiently trade-off the exploration needed to collect information about the dynamics and reward, and the exploitation of the experience gathered so far to gain as much reward as possible. In order to quantitatively assess the exploration-exploitation performance we use the concept of regret which compares the rewards accumulated by the agent and an optimal policy i.e., µ 1 v * T -T t=1 r t . To simplify this definition, we observe that

v * T = L T 0 = L T h * + L T 0 -L T h * = T g * e + h * + L T 0 -L T h * . Using the fact that L is non-expansive in ∞ -norm (property (b) of Prop. 2.5) we obtain v * T -T g * e ∞ ≤ h * ∞ + L T 0 -L T h * ∞ ≤ 2 h * ∞ .
h * is independent of T and measures the expected cumulative difference between the optimal asymptotic stationary regime g * and the actual reward at time step t. It somehow quantifies the unavoidable expected regret incurred when the optimal policy is executed starting from a distribution different than the optimal asymptotic regime. We therefore introduce the following definition.

Let (r t ) t≥1 denote the sequence of rewards collected while executing learning algorithm A in MDP M , with initial state distribution µ 1 . The regret after T time steps is defined as

∆(M, A, µ 1 , T ) := T t=1 (g * -r t ) = T g * - T t=1 r t .

Definition 2.5

Graphically, the regret corresponds to the hatched area between the black and red curves on Fig. 2.3. Given that the term T g * is algorithm-independent, maximizing T t=1 r t is equivalent to minimizing the regret.

Since the regret is a random variable, we cannot minimize it directly. One possibility is to analyse the expected regret E A ∆(M, A, µ 1 , T ) s 1 ∼ µ 1 , where A ∈ Π is interpreted as an (priori non-stationary) policy. Another possibility is to bound the regret in high probability i.e., with probability 1 -δ where δ is a level of confidence given as input to A. A high probability bound is usually considered a stronger result: it is always possible to convert a high probability bound into a bound on expectation by carefully tuning the confidence δ.

Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL The analysis of the regret in expectation and in high probability both belong to the frequentist approach: the result gives an indication of what happens if the learning process is repeated several times in the same conditions with different random samplings (different "seeds"). Another line of research consists in analysing the expected Bayesian regret. With this approach, the true unknown MDP is assumed to be sampled from a known prior distribution and the goal is to minimize E M E A ∆(M, A, µ 1 , T ) s 1 ∼ µ 1 where E M is the expectation over the prior. Bayesian regret bounds provide weaker guarantees since they only hold on expectation over a set of plausible MDPs, and not always for a specific instance. In this thesis, we will exclusively focus on frequentist approaches, mainly high probability regret bounds.

Theoretical benchmarks

We say that an algorithm learns if and only if ∆(M, A, µ 1 , T ) = o(T ) when T → +∞ (either in expectation or with high probability). But we also care about how fast the algorithm can learn. Before describing learning algorithms and analysing their regret, we first discuss fundamental limitations of the learning abilities of any algorithm. We summarize several existing regret lower-bounds which provide insightful benchmarks when designing algorithms.

Asymptotic lower-bounds

The first regret lower-bound in an RL setting was proved by [START_REF] Burnetas | Optimal adaptive policies for markov decision processes[END_REF]. The lower-bound is proved for the restricted family of ergodic MDPs. In such MDPs, the optimal bias h * is unique up to a constant shift (Lewis and Puterman, 2002, Proposition 2.3) and all gain-optimal stationary deterministic policies are greedy w.r.t. Lh * i.e., the Bellman optimality equation fully characterizes gain-optimal policies [START_REF] Lewis | Bias optimality in a queue with admission control[END_REF]. We define Π * ⊆ Π SD the set of such greedy policies i.e., the set of all stationary deterministic gainoptimal policies in M . Because h * is unique up to constant shift, for any ergodic MDP M = S, A, r, p we can define the state-action gaps for all state-action pairs (s, a) ∈ S × A without any ambiguity

δ(s, a) := max b∈As {r(s, b) + p(•|s, b) h * } =Lh * (s)=h * (s)+g * -r(s, a) -p(•|s, a) h * , (2.18)
where h * is any optimal bias of M . [START_REF] Burnetas | Optimal adaptive policies for markov decision processes[END_REF] assume that the reward function is known and only the transition probabilities need to be learned. They also define the state-action KL divergences between two MDPs M and M that differ only by their dynamics p and p (2.20)

KL M M (s, a) := KL p(•|s, a) p (•|s, a) . (2.19)
We report the lower-bound of [START_REF] Burnetas | Optimal adaptive policies for markov decision processes[END_REF] in Prop. 2.10 below.

Proposition 2.10 (Theorem 1 of [START_REF] Burnetas | Optimal adaptive policies for markov decision processes[END_REF])

Let M be an ergodic MDP with finite state and action spaces S and A, and r max = 1.

Let A be a learning algorithm s.t.

E A ∆(M , A, µ 1 , T ) s 1 ∼ µ 1 = o(T α ) for all α > 0,
all ergodic MDPs M and initial state distribution µ 1 . The expected regret of A is lower bounded as (s, a) .

lim inf T →∞ E A ∆(M, A, µ 1 , T ) s 1 ∼ µ 1 log T ≥ s,a Φ(s,a) =∅ δ(s, a) inf M ∈Φ(s,a) KL M M
In Prop. 2.10, the learning algorithm A is assumed to be uniformly good i.e., to achieve sub-polynomial regret on all ergodic MDPs. Since A is constrained to perform well on all instances, it cannot perform arbitrarily well on any specific instance, hence the lower-bound. This is reminiscent of the "No Free Lunch" theorem in supervised learning. Prop. 2.10 shows that the expected regret will eventually grow at least logarithmically with time.

The more sub-optimal sate-action (s, a) (i.e., the higher δ(s, a)), the bigger the lowerbound: the regret incurred when playing this action is higher by definition. When the transition probability vector p(•|s, a) associated with a sub-optimal action a can easily be confused with another probability vector q that makes a optimal, the lower bound is also bigger (term KL M M (s, a)). This is because a small error in the estimation of p(•|s, a) can lead to a potentially very sub-optimal behaviour. As shown by Ok et al. (2018, Section 4.1), the lower-bound of Prop. 2.10 can be upper-bounded by 2SA(sp(h * )+1) 2 δ min with the minimum gap

δ min := min s,a: δ(s,a)>0
δ(s, a).

(2.21) [START_REF] Ok | Exploration in structured reinforcement learning[END_REF] also extended Prop. 2.10 to any class of ergodic MDPs with arbitrary structure where the reward function is also unknown (see Prop. 2.11). We denote by M such a class of ergodic MDPs with r max = 1 (and potentially continuous state and action spaces).

δ min > 0 except if Π SD = Π * .
We generalize the definition of the set of confusing MDPs: Let M ∈ M and A be a learning algorithm s.t.

Φ := M = S,
E A ∆(M , A, µ 1 , T ) s 1 ∼ µ 1 = o(T α
) for all α > 0, all M ∈ M and initial state distribution µ 1 . The expected regret of A is lower bounded as

lim inf T →∞ E A ∆(M, A, µ 1 , T ) s 1 ∼ µ 1 log T ≥ K where K = inf η≥0 s,a η(s, a)δ(s, a) s.t. s,a η(s, a)KL M M (s, a) ≥ 1 ∀M ∈ Φ.
When M is unstructured (class of all ergodic MDPs), one can show [START_REF] Ok | Exploration in structured reinforcement learning[END_REF], Section 4.1) that Prop. 2.11 allows to recover Prop. 2.10. Ok et al. (2018, Section 4.2) also analysed the case where S and A are subset of metric spaces and r and p are Lipschitz-continuous.

There are several major limitations to Prop. 2.10 and Prop. 2.11. The lower-bounds are derived only for ergodic MDPs and it is an open question whether the lower-bound increases when extended to more general chain structures (like communicating or weaklycommunicating). But perhaps the main limitation is the asymptotic nature of the lowerbounds. These bounds provide no indication on the regret performance in finite time.

Minimax lower-bounds

We will now present a different type of lower-bound proved by [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF]. Before that, we need to introduce the notion of diameter of an MDP.

The diameter of an MDP is defined as

D := max s,s min π∈Π SD E π τ (s ) s 1 = s -1 (2.22)
where τ (s ) := inf{t ≥ 1 : s t = s } is the first hitting time in s .

Definition 2.6

From Def. 2.2 and Proposition 8.3.1 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] For any algorithm A, any integers S, A ≥ 10, D ≥ 20log A (S), and T ≥ DSA, there is an MDP M with at most S states, A actions, and diameter D, such that for any initial distribution µ 1 ∈ ∆ S , the expected regret of A after T time steps is lower-bounded as

E A ∆(M, A, µ 1 , T ) s 1 ∼ µ 1 ≥ 0.015 • r max √ DSAT .
Prop. 2.12 significantly differ from Prop. 2.10 and 2.11. It shows that for any number of states S, number of actions A and diameter D, it is always possible to construct a worstcase MDP with these features that achieves a regret of order at least Ω r max √ DSAT . Unlike the bounds of [START_REF] Burnetas | Optimal adaptive policies for markov decision processes[END_REF] and [START_REF] Ok | Exploration in structured reinforcement learning[END_REF], Prop. 2.12 is not problem-dependent but it is also not asymptotic. Problem-dependent non-asymptotic bounds would combine the best of both worlds but to the best of our knowledge, no such bounds are currently available in the RL literature. Bounds on the worst-case regret are often referred as "minimax" bounds. Minimax bounds usually scale as √ T while problem dependent bounds scale logarithmically with T .9 

The term D (diameter) appearing in the bound of Prop. 2.12 can be deceiving. The specific worst-case MDP constructed by [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] to prove the lower-bound satisfies D = 2sp (h * ) and so it is not clear whether to interpret the lower-bound in terms of diameter, range of the bias or yet another term. This ambiguity is one of the major issues with minimax lower-bounds. Bartlett and Tewari (2009, Theorem 6) tried to improve the bound of [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] but [START_REF] Osband | On Lower Bounds for Regret in Reinforcement Learning[END_REF] later showed that their proof contains a mistake. The work presented in this thesis together with other recent work [START_REF] Ortner | Regret Bounds for Reinforcement Learning via Markov Chain Concentration[END_REF][START_REF] Tossou | Near-optimal Optimistic Reinforcement Learning using Empirical Bernstein Inequalities[END_REF] Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL suggest that the lower-bound of Prop. 2.12 cannot be improved (without restricting the family of possible MDPs).

(Near) Optimal algorithms

A common strategy to efficiently balance exploration and exploitation in RL is to apply the optimism in face of uncertainty (OFU) principle: the agent maintains optimistic estimates of the MDP parameters and, at each step, executes the policy with highest optimistic "value" (e.g., gain, discounted value function, etc.). In this section, we will review some of the existing RL algorithms relying on OFU.

An alternative approach is posterior sampling [START_REF] Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF], which maintains a Bayesian distribution over MDPs (i.e., dynamics and expected reward) and, at each step, samples an MDP and executes the corresponding optimal policy (e.g., [START_REF] Osband | more) efficient reinforcement learning via posterior sampling[END_REF]Abbasi-Yadkori and Szepesvári, 2015;[START_REF] Osband | Why is posterior sampling better than optimism for reinforcement learning?[END_REF]Ouyang et al., 2017a). Unfortunately, so far all existing posterior sampling algorithms only provide guarantees on the Bayesian regret. A notable exception is the work of [START_REF] Agrawal | Optimistic posterior sampling for reinforcement learning: worst-case regret bounds[END_REF] which successfully combines posterior sampling with OFU to obtain guarantees on the frequentist regret. However, their algorithm requires to sample multiple times the posterior distribution over MDPs so as to obtain empirical high-probability confidence bounds, which somehow resembles what OFU methods do in a computationally more efficient way.

Asymptotically optimal algorithms

Burnetas and Katehakis (1997) proposed Optimal Adaptive Policies (OAP) that achieve the lower-bound of Prop. 2.10 i.e., lim sup To avoid under-exploration of some state-action pairs, OAP sometimes needs to play an action 2.2. On-line Reinforcement Learning in the infinite horizon undiscounted setting that have not been visited "sufficiently often" instead i.e., among

T →∞ E A ∆(M, OAP, µ 1 , T ) s 1 ∼ µ 1 log T ≤ s,a Φ(s,a) =∅ δ(s, a) inf M ∈Φ(s,a) KL M M (s, a) . ( 2 
   a ∈ A : N t (s, a) < ln 2   b∈As N t (s, b) + 1      ⊆ A s .
Tewari and [START_REF] Tewari | Optimistic linear programming gives logarithmic regret for irreducible mdps[END_REF] derived a similar algorithm called OLP (Optimistic Linear Programming) that defines confidence sets B t p (s, a) using the 1 -norm instead of the Kullback-Leibler divergence: B t p (s, a) := q ∈ ∆ S : p t (•|s, a) -q 1 ≤ 2 ln (t) /N t (s, a) . The regret guarantees are slightly worse: the term KL M M (s, a) in (2.23) is replaced by a similar term depending on the distance in 1 -norm rather than Kullback-Leibler divergence. However, computing the maximum over q in (2.24) becomes computationally easier: it can be expressed as a linear programming problem (hence the name OLP).

Both OAP and OLP implement the OFU maxim through the extended Bellman operator L t which is an "optimistic" version of L (at least in high probability). [START_REF] Ok | Exploration in structured reinforcement learning[END_REF] derived Directed Exploration Learning (DEL) which is able to achieve the lower-bound of Prop. 2.11 with an explicit explore versus exploit strategy instead. Depending on past observation, DEL decides to exploit i.e., to take the greedy policy w.r.t. L t h t (s t ) (rather than L t h t (s t )), or to explore by explicitly using the expression of the estimated lower-bound K t (solution to optimization problem in Prop. 2.11 with M replaced by M t ). Unlike OAP and OLP, DEL does not rely on OFU.

Optimal algorithms with finite time guarantees

UCRL. The first algorithm with provable finite time regret guarantees is UCRL (Upper Confidence Bounds Reinforcement Learning) introduced by [START_REF] Auer | Logarithmic online regret bounds for undiscounted reinforcement learning[END_REF]. For any ergodic MDP M , let Π * ⊆ Π SD be the set of stationary deterministic gain-optimal policies in M and

τ max := max s,s max π∈Π SD E π τ (s ) s 1 = s -1
the worst case mixing time. Unlike the diameter (Def. 2.6), τ max is a double maximum and so τ M < +∞ only when M is ergodic. We also define

κ max := 1 2 max π∈Π SD max s max s E π [τ (s )|s 1 = s] -1 E π [τ 2 (s )|s 1 = s ] -1
the worst-case condition number of M [START_REF] Kirkland | On optimal condition numbers for markov chains[END_REF], condition number κ 8 ), where τ 2 (s ) := inf{t ≥ 2 : s t = s } is the first return time in s . Finally, the gap in gains is

δ g := g * -max π∈Π SD \Π * max s: g π (s)<g * g π (s) .
Auer and Ortner (2007, Theorem 2) proved that there exists a numerical constant β > 0 such that for any ergodic MDP M , for all initial state distribution µ 1 ∈ P(S) and for all T > 1: Set the starting time of the episode t k := t and initialize for all (s, a, s ) ∈ S × A × S: episode counters ν k (s, a, s ) := 0 and ν k (s, a) := 0, and cumulative rewards R k (s, a) := 0.

E [∆(M, UCRL, µ 1 , T )] ≤ β • S 5 Aτ max κ 2 max δ g ln (T ) + 3S 2 A 2 τ max log 2 T SA . ( 2 

4:

For all (s, a, s ) ∈ S × A × S, compute upper confidence bounds:

β sas p,k := 14S ln 2At k δ N + k (s, a)
(2.25)

β sa r,k := 7 ln 2SAt k δ 2N + k (s, a)
(2.26)

5:

Set M k := {S, A, r k , p k } to be the extended MDP defined by the confidence intervals

p k (s |s, a) ∈ B k p (s, a) := q ∈ ∆ S : q -p k (s |s, a) 1 ≤ β sa p,k
(2.27)

r k (s, a) ∈ B k r (s, a) := r k (s, a) -β sa r,k , r k (s, a) + β sa r,k ∩ 0, r max (2.28) 6:
Compute policy π k using ("extended") value iteration (Alg. 3):

(g k , h k , π k ) := EVI L k , G k , r max √ t k , 0, s 1 (2.29) 7: while ν k (s t , π k (s t )) ≤ N + k (s t , π k (s t )) do 8:
Execute action a t := π k (s t ), obtain reward r t , and observe next state s t+1 .

9:

Increment episode counters: Update counters, empirical averages and sample variances for all (s, a, s ) ∈ S ×A×S:

ν k (s t , a t , s t+1 ) ← ν k (s t ,
N k+1 (s, a) := N k (s, a) + ν k (s, a) (2.30) p k+1 (s |s, a) := N k (s, a) N + k+1 (s, a) • p k (s |s, a) + ν k (s, a, s ) N + k+1 (s, a)
(2.31)

r k+1 (s, a) := N k (s, a) N + k+1 (s, a) • r k (s, a) + R k (s, a) N + k+1 (s, a)
(2.32) Similarly to OAP and OLP, UCRL maintains maximum-likelihood estimates of r and p as well as confidence sets B r (s, a) and B p (s, a) based on high probability confidence bounds. But unlike OAP and OLP, UCRL updates the policy only once the confidence bounds of at least one state-action pair have been halved since the last policy update. The time interval between two policy updates is called an "episode". At each episode k, UCRL2 computes a policy

π k ∈ arg max π∈Π SD sup M ∈M k g π M where M k := M = S, A, r, p : M is ergodic, r(s, a) ∈ B k r (s, a), B k p (s, a)
is the set of plausible ergodic MDPs compatible with the confidence sets. It is a boundedparameter MDP (see Sec. 2.1.5) with the additional constraint that the MDPs it contains should all be ergodic. The confidence sets are constructed so that M ∈ M k with high probability implying sup M ∈M k g * M ≥ g * i.e., π k is gain-optimistic. UCRL is therefore another instance of RL algorithm relying on OFU.

UCRL2. [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] later improved UCRL with UCRL2. Since all the RL algorithms presented in this thesis are variants of UCRL2, we report the detailed pseudo-code in Alg. 4. To improve the readability of the algorithm, we use the notation n + := max{1, n} for any positive integer n ∈ N.

UCRL2 and UCRL share a similar structure. Both algorithms proceed through episodes. At the beginning of each episode, a stationary policy is computed by taking into consideration the past observations. The policy computed also takes into account the uncertainty of observed data by constructing a bounded-parameter MDP M k (similar to the boundedparameter of UCRL without the constraint on ergodicity). This policy is executed until the end of the episode. A new episode then starts and the policy is updated based on the new observations gathered during the last episode. This procedure is repeated until the desired time horizon is reached.

When the MDP is communicating but not ergodic, switching stationary policies too often can cause a large -even linear-regret as shown by Ortner (2010, Example 1). To avoid too many non-stationarities in the policy executed by the algorithm, the episodes are designed to have a length that grows exponentially with time. This way, the number of episodes (i.e., the number of policy switches) is at most logarithmic in time causing only a minor increase in the regret. More precisely, an episode ends when the number of visit in a state-action pair has doubled since the end of the previous episode.

Given the bounded parameter MDP M k , UCRL2 executes a policy π k which is an approximate solution to the following optimization problem:

max π∈Π SD sup M ∈M k g π M = sup M ∈M k max π∈Π SD g π M = sup M ∈M k g * M .
(2.34)
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If M ∈ M k (with high probability), the solution of (2.34) is an upper-bound to g * and so π k is (nearly) gain-optimistic (like in UCRL). Since we do not restrict M k to ergodic MDPs (like in UCRL), the associated optimal gain might not be state-independent and so the gains of two different MDPs might not always be comparable10 . One might wonder whether (2.34) is well-posed and admits maximizer (M k , π * k ) ∈ M k × Π SD . Using the mapping between bounded-parameters MDPs and extended MDPs (Sec. 2.1.5), it is possible to interpret M k as an MDP. Eq. 2.16 can then be rewritten11 as finding the optimal policy of M k :

max π∈Π SD M k g π M k = g * M k (2.35)
Since M ∈ M k (with high probability) and M is communicating, so is M k . Moreover, the confidence sets B k p (s, a) (2.27) are polytopes and we already explained in Sec. 2.1.5 that in this case, the action space can be restricted to a finite set. We can thus apply the tools of Sec. 2.1.3: we know that a maximizer of (2.35) always exists (Prop. 2.4) and we can compute an approximate solution using value iteration12 (Alg. 3). Since value iteration is run with the extended optimal Bellman operator L k of M k , we call the algorithm "extended" value iteration (EVI). The accuracy ε k and extended greedy operator G k given as input to EVI are respectively r max / √ t k and

∀s ∈ S, ∀v ∈ R S , G k v(s) ∈ arg max a∈As max r∈B k r (s,a) r + max p∈B k p (s,a) p v .
(2.36) Jaksch et al. (2010, Section 3.1.3) showed that assumption 2 of Prop. 2.6 hold so that EVI converges and g k approximates g * M k with an r max / √ t k -accuracy. Enumerating the vertices of the sets B k p (s, a) is not the most computationally efficient method to implement EVI. The maximization of p v under the constraint p ∈ B k p (s, a) can be expressed as a linear programming (LP) problem (which can be solved efficiently using a generic solver). Strehl and Littman (2008a) provide a better algorithm that exploits the specific structure of this LP (see also Jaksch et al., 2010, Figure 2). It runs in O(S) once the vector v has been sorted in descending order. The sorting operation requires O(S ln (S)) operations but needs only be done once for all (s, a).

UCRL2 enjoys the following regret guarantees. For any communicating MDP, there exists a constant C(M ) such that with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S and for all time horizons T > 1:

E [∆(M, UCRL2, µ 1 , T )] ≤ 34 2 • r max D 2 S 2 A δ g ln (T ) + C(M ).
(2.37)

The exact expression of the constant C(M ) can be found in [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF]. It depends on some form of worst-case mixing time of M (different than τ M ). The logarithmic term in 2.37 is tighter than (2.33) and holds for the broader class of communicating MDPs (rather than just ergodic MDPs). The bound is still difficult to compare with Prop. 2.10 but we can easily compare it with the worst-case upper-bound 2rmax(sp(h * )+1) 2 SA δ min of Ok et al. (2018, Section 4.1) mentioned earlier. As shown by Bartlett and Tewari (2009, Theorem 4) (more details will be given in Sec. 3.3 of Chap. 3), the range of the bias function is at most r max D i.e., sp (h * ) ≤ r max D, and the equality holds in some MDPs. Moreover, the gap in gain δ g is always smaller than δ min as shown in the following lemma.

For any ergodic MDP, δ g ≤ δ min .

Lemma 2.1

Proof. If Π * = Π SD then δ g = δ min = 0. Otherwise, we denote by (s -, a -) ∈ S × A the state-action pair achieving the minimum in (2.21) i.e., such that δ min = δ(s -, a -). We define the action space A -such that A - s = A s for all s = s -and A - s -:= {a ∈ A s -: δ(s -, a) > 0}. A -contains all actions except optimal actions in state s -. Let M -:= S, A -, r, p be the MDP defined on the action space A -, with L -and g -the corresponding optimal Bellman operator and optimal gain (the gain is state-independent since both M and M -are ergodic). By construction, g * > g -and based on (2.18) we can write

δ min = g * -L -h * (s -) + h * (s -) = g * -min s L -h * (s) -h * (s)
Theorem 8.5.5. of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] implies that

g -≥ min s L -h * (s) -h * (s)
and so necessarily δ min ≥ g * -g -= g * -g π -where π -∈ Π SD is any gain-optimal stationary deterministic policy of M -. π -is also a valid policy in the original MDP M with g π -< g * . As a result, max π∈Π SD \Π * {g π } ≥ g π -which implies that δ min ≥ δ g . Finally, Multi-Armed Bandit problems are specific instances of ergodic MDPs (with a single state) satisfying δ g = δ min . In conclusion, the bound of Prop. 2.13 is always worse than 2rmax(sp(h * )+1) 2 SA δ min but in the worst case the two expressions are comparable up to a factor S. This suggests that asymptotically, UCRL2 is at least S-loose in terms of regret, which is not so bad. The regret analysis of OAP is very different from the proof of Prop. 2.13. We conjecture that the proofs techniques of [START_REF] Burnetas | Optimal adaptive policies for markov decision processes[END_REF] can probably be applied to the analysis of UCRL2 and lead to an asymptotic regret bound almost matching the lower bound of Prop. 2.10 (probably up to a factor S).

In addition to the logarithmic regret bound of Prop. 2.13, [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] also proved a minimax bound for UCRL2.

Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL Proposition 2.14 (Theorem 2 of [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF])

For any communicating MDP, with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S and for all time horizons T > 1:

∆(M, UCRL2, µ 1 , T ) ≤ 34 • DS AT ln T δ .
(2.38)

Compared to the minimax lower-bound of Prop. 2.12, the bound of Prop. 2.14 is looser by a factor √ DS (ignoring logarithmic terms).

Extensions. [START_REF] Bartlett | REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs[END_REF] tried to extend UCRL2 to the case where an upperbound c ≥ sp (h * ) on the optimal bias span is known. The regret bound then scales with c instead of D. This will be the focus of Chap. 5. [START_REF] Filippi | Optimism in Reinforcement Learning and Kullback-Leibler Divergence[END_REF] derived a variant of UCRL2 (called KL-UCRL) that uses concentration inequalities on the Kullback-Leibler divergence (instead of Hoeffding/Weissman inequality) to construct confidence bounds. The regret upper-bound they prove is the same as in Prop. 2.14. Despite proving the same bound, the authors empirically observe the superiority of KL-UCRL over UCRL2. They provide some intuition to explain their results and Talebi and Maillard (2018b) later showed that the regret analysis can be refined. Talebi and Maillard (2018b) 

Improved exploration-exploitation with Bernstein bounds

In the previous chapter, we gave a high-level overview of UCRL2 [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] and compared its regret performance (Prop. 2.13 and 2.14) to existing lower-bounds (Prop. 2.10 and 2.12). In this chapter, we introduce several modifications to the algorithm and improve the minimax regret guarantees of Prop. 2.14. Our proposed algorithm, UCRL2-Bernstein (UCRLB for short), leverages empirical Bernstein inequality as well as recent contributions of the literature (including from other settings e.g., infinite horizon discounted and finite horizon) to make a significant step towards closing the gap between minimax regret upper and lower-bounds. For any communicating MDP with S states, A actions, Γ ≤ S possible next states and diameter D, we show that UCRLB suffers at most O √ DΓSAT regret (ignoring logarithmic terms). This saves a factor DS/Γ compared to the regret bound of UCRL2.

Since in many MDPs

Γ = O(1)
S, this bound is also almost matching the minimax lowerbound of Prop. 2.12. Although many ideas presented in this chapter are not new, we make several important contributions to the regret analysis of this type of algorithms, and provide new insights on existing proofs techniques. For example, we provide a more generic and insightful proof of gain-optimism relying on the properties of the extended Bellman operator rather than the extended MDP. We also refine the regret analysis by introducing a new quantity called "travel-budget" of an MDP, that replaces the diameter in the bound.

Another objective of this chapter is to present a unified framework for the analysis of UCRL2-like algorithms. All the algorithms presented in the next chapters of this thesis will be variants of UCRLB and most of the analysis will be unchanged. To minimize redundancies and improve clarity, this is the only chapter where we will provide a fully detailed analysis. In subsequent chapters, we will refer to this chapter for the parts of the analysis that are similar, and only focus on what significantly differs. In order to keep the structure of the regret proofs identical across chapters, we consider a very general version of the algorithm, more than is actually needed for the setting of this chapter. For example, we allow the optimal optimistic policy to be stochastic although a deterministic policy always exists. This will be useful in Chap. 5. We will also apply the aperiodicity transformation in EVI even if this is not strictly necessary with the extended MDP considered here.

Chapter 3. Improved exploration-exploitation with Bernstein bounds Most of the work presented in this chapter has not been published in any venue so far.

Upper Confidence Reinforcement Learning with Bernstein bounds

UCRL2 and UCRLB are very similar from an algorithmic point of view. The main difference lies in the definition of the extended MDP. In the regret analysis (Sec. 3.4 and 3.5), we will show that the modifications that we propose result in a much more sample efficient algorithm. In this section, we start by giving an overview of the main features of UCRLB. We also highlight and explain the main differences with UCRL2.

Detailed algorithm and notations

The detailed pseudo-code of UCRLB is reported in Alg. 5. In what follows, we give additional explanations and we introduce several notations. Time steps and visit counts. The time steps (occurrences of a new state) are indexed by T ≥ t ≥ 1. The state visited at time t is denoted s t while the action played at time t is denoted a t . The episodes (corresponding to policy switches like in UCRL2, see Sec. 2.2.3) are indexed by k, and π k is the policy executed during episode k. In some specific applications (see for example Chap. 5), it is too restrictive to constrain π k to belong to the set of deterministic policies Π SD . For this reason, we allow π k to be a stationary randomized policy (even though in most cases this level of generality is not needed). At every time step t of episode k, a t is sampled from the distribution π k (•|s t ). After action a t has been played, a reward r t is earned and the next state s t+1 is observed. For all k ≥ 1, we denote by t k the starting time of episode k. The first episode starts at t 1 := 1. A new episode starts whenever the stopping condition of the current episode is met i.e., whenever the number of visits in the state-action pair (s t , a t ) has doubled during the episode. Formally, for all k ≥ 1,

t k+1 := inf    T ≥ t > t k : t-1 τ =1 1 {s τ , a τ = s t , a t } ≥ max    1, 2 t k -1 τ =1 1 {s τ , a τ = s t , a t }       = inf    T ≥ t > t k : t-1 τ =t k 1 {s τ , a τ = s t , a t } ≥ max    1, t k -1 τ =1 1 {s τ , a τ = s t , a t }       (3.11)
where inf{∅} ← T + 1 by convention. Note that by construction, the stopping condition of episode k is always met after at most t k steps. For all T > t ≥ 1, we define the episode at time t by

k t := sup{k ≥ 1 : t ≥ t k }.
(3.12) Input: Confidence δ ∈]0, 1[, maximal reward r max , set of states S, set of actions A 1: Set initial time t := 1, observe initial state s 1 and initialize for all (s, a, s ) ∈ S × A × S:

• counters N 1 (s, a, s ) := 0 and N 1 (s, a) := 0,

• empirical averages p 1 (s |s, a) := 0 and r 1 (s, a) := 0,

• sample variances σ 2 p,1 (s |s, a) := 0 and σ 2 r,1 (s, a) := 0. 2: for episodes k = 1, 2, ... do

3:

Set the starting time of the episode t k := t and initialize for all (s, a, s ) ∈ S × A × S: episode counters ν k (s, a, s ) := 0 and ν k (s, a) := 0, and cumulative (squared) rewards R k (s, a) := 0 and S k (s, a) := 0.

Initialization of episode k

4:

For all (s, a, s ) ∈ S × A × S, compute upper confidence bounds:

β sas p,k := 2 σ 2 p,k (s |s, a) N + k (s, a) ln 6SAN + k (s, a) δ + 6 ln 6SAN + k (s,a) δ N + k (s, a)
(3.1)

β sa r,k := 2 σ 2 r,k (s, a) N + k (s, a) ln 6SAN + k (s, a) δ + 6r max ln 6SAN + k (s,a) δ N + k (s, a) (3.2) 5:
Set M k := {S, A, r k , p k } to be the extended MDP defined by the confidence intervals

p k (s |s, a) ∈ B k p (s, a, s ) := p k (s |s, a) -β sas p,k , p k (s |s, a) + β sas p,k ∩ 0, 1 (3.3) r k (s, a) ∈ B k r (s, a) := r k (s, a) -β sa r,k , r k (s, a) + β sa r,k ∩ 0, r max (3.4) 6:
Compute policy π k using extended value iteration (see Eq. 3.20 and Alg. 6): Update counters, empirical averages and sample variances for all (s, a, s ) ∈ S ×A×S: 

(g k , h k , π k ) := EVI L k α , G k α ,
N k+1 (s, a, s ) := N k (s, a, s ) + ν k (s, a, s ) and N k+1 (s, a) := N k (s, a) + ν k (s, a) (3.6) p k+1 (s |s, a) := N k (s, a) N + k+1 (s, a) • p k (s |s, a) + ν k (s, a, s ) N + k+1 (s, a) (3.7) r k+1 (s, a) := N k (s, a) N + k+1 (s, a) • r k (s, a) + R k (s, a) N + k+1 (s, a) (3.8) σ 2 p,k+1 (s |s, a) := p k+1 (s |s, a) 1 -p k+1 (s |s, a) (3.9) σ 2 r,k+1 (s, a) := S k (s, a) N + k+1 (s, a) + N k (s, a) N + k+1 (s, a) • σ 2 r,k (s, a) + r k (s, a) -( r k+1 (s, a)) 2 (3.
R k (s, a) := t k+1 -1 t=t k 1 {s t , a t = s, a} • r t and S k (s, a) := t k -1 t=1 1 {s t , a t = s, a} • r 2 t .
(3.15)

Episodes. The stopping condition of episodes implemented in UCRLB slightly differ from the stopping condition used in UCRL2. In UCRL2, an episode k stops whenever the algorithm is about to play an action a in a state s that already satisfies ν k (s, a) = N + k (s, a). Action a is therefore never played and a new policy is computed instead. In UCRL2, for all state-action pairs (s, a) ∈ S × A, ν k (s, a) ≤ N + k (s, a) and ν k (s, a) = N + k (s, a) holds true for at least one (s, a). However, it is possible that the equality holds for several state-action pairs. In UCRLB, an episode k stops as soon as the action a that has just been played (i.e., most recently) e.g., in state s, satisfies ν k (s, a) = N + k (s, a). Action a is therefore played and a new policy is computed just after that. The reason we modified the doubling scheme of UCRL2 is only to simplify the theoretical analysis of the algorithm in the general case where the policy π k played at episode k may be stochastic. Our stopping condition avoids introducing two actions at time t: the action that "could have been played" (if the episode had not been ended) and the one which is actually played.

Confidence bounds and extended MDP. At the beginning of every episode k, UCRLB uses the sample means p k and r k as (unbiased) estimators of p and r respectively. These estimators can be efficiently updated at the end of every episode using the usual update rule of the sample mean (see Eq. 3.7 and 3.8). While UCRL2 relies on Hoeffding's concentration inequality (HI) (Boucheron et al., 2013, Chapter 2.6) and Weissman's concentration inequality (Weissman et al., 2003, Theorem 2.1) to derive the confidence intervals needed to define the extended MDP M k (see Eq. 2.25 and 2.26), UCRLB leverages on empirical Bernstein's concentration inequality (EBI) [START_REF] Audibert | Tuning bandit algorithms in stochastic environments[END_REF][START_REF] Maurer | Empirical bernstein bounds and sample-variance penalization[END_REF] to derive the confidence bounds of Eq. 3.1 and 3.2 used in the definition of M k . EBI is tighter than HI (at least for 3.1. Upper Confidence Reinforcement Learning with Bernstein bounds a sufficiently high number of observations). We recall both inequalities below. Proposition 3.1 (Hoeffding inequality, Theorem 2.8 of [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF])

Let (X i ) 1≤i≤n be a collection of independent random variables s.t.

∀i ∈ {1, ..., n}, P 

(X i ∈ [a i , b i ]) = 1 and E[X i ] = µ i . Then with probability at least 1 -δ it holds that n i=1 (X i -µ i ) ≤ 1 2 n i=1 (b i -a i ) 2 ln 2 δ . ( 3 
(X i -µ) ≤ 2V n (X) ln (3/δ) n + 3(b -a) ln (3/δ) n , whee V n (X) is the population variance 1 : V n (X) := 1 n n i=1 X i -1 n n i=1 X i 2 .
For any state-action pair (s, a) ∈ S × A, UCRLB uses EBI to bound p k (s |s, a) -p(s |s, a) for all s w.h.p.. The 1 -deviation p k (•|s, a) -p(•|s, a) 1 = s ∈S p k (s |s, a) -p(s |s, a) between the empirical and true transition probability is bounded (w.h.p.) by taking a union bound over all s ∈ S and summing. Instead, UCRL2 uses a variant of Hoeffding's bound derived by [START_REF] Weissman | Inequalities for the l 1 deviation of the empirical distribution[END_REF] that directly bounds the 1 -deviation. The use of EBI significantly improves the learning performances (see Sec. 3.4). Notice that [START_REF] Lattimore | Pac bounds for discounted mdps[END_REF]; [START_REF] Dann | Sample complexity of episodic fixed-horizon reinforcement learning[END_REF]; [START_REF] Lattimore | Near-optimal pac bounds for discounted mdps[END_REF] already proposed variants of UCRL2 that leverages on EBI. However, Lattimore andHutter (2012, 2014) introduced and analysed their algorithm in the discounted setting (when a discount factor γ is given as input to the algorithm, see Sec. 2.1.3) while [START_REF] Dann | Sample complexity of episodic fixed-horizon reinforcement learning[END_REF] focused on the finite horizon setting (when an horizon H is given as input to the algorithm, see Sec. 2.1.3). They both proved a bound on the sample complexity while we will analyse the regret of UCRLB.

Extra multiplicative factors appear in the logarithmic terms of (3.1) and (3.2) compared to the bound of Prop. 3.2. This is due to the use of union bounds (see Sec. 3.5 for more details). In Alg. 5, the population variances of p k (s |s, a) and r k (s, a) are denoted by σ 2 p,k (s |s, a) and σ 2 r,k (s, a) respectively. The estimated transition probability p k (s |s, a) correspond to the sample mean of N k (s, a) i.i.d. Bernoulli r.v. with mean p(s |s, a) 2 and therefore the

1 Unlike the sample variance V n (X) := 1 n-1 n i=1 Xi -1 n n i=1 Xi
2 , the population variance Vn(X) is a biased estimator of the true variance. The two estimators are equal up to a multiplicative factor n/(n -1) called "Bessel's correction": V n (X) := n n-1 Vn(X). 2 The discussion at the beginning of the proof of Thm. 3.1 explains why the r.v. can be interpreted as Chapter 3. Improved exploration-exploitation with Bernstein bounds population variance can be easily computed as σ 2 p,k (s |s, a) := p k (s |s, a) (1 -p k (s |s, a)) (3.9). The population variance of the reward can be computed recursively at the end of every episode (3.10):

σ 2 r,k+1 (s, a) := 1 N + k+1 (s, a) k l=1 S l (s, a) -( r k+1 (s, a)) 2 = S k (s, a) N + k+1 (s, a) + N k (s, a) N + k+1 (s, a) σ 2 r,k (s, a) + ( r k (s, a)) 2 -( r k+1 (s, a)) 2 .
The extended MDP M k is defined by the compact sets B k r (s, a) (3.4) and

B k p (s, a) := p ∈ ∆ S : p(s ) ∈ B k p (s, a, s ), ∀s ∈ S (3.17)
where B k p (s, a, s ) is defined in Eq. 3.3. UCRLB uses the known bound r max on the reward in order to construct the confidence intervals B k r (s, a)3 (Eq. 3.2 and 3.4).

Like UCRL2, UCRLB relies on extended value iteration (EVI) to find such an approximate solution (3.5). More details are given in the next section.

Extended value iteration

Like in UCRL2 (Sec. 2.2.3), the purpose of EVI is to find an approximate optimal policy of the extended MDP M k .4 EVI is not the only algorithm able to solve this problem. For example, Lattimore and Szepesvári (2018, Section 37.3.1) describe how to solve this problem using the ellipsoid method . In this section (as well as in the whole thesis), we will focus exclusively on EVI. We recall that EVI is an instance of value iteration (Alg. 3) with an extended optimal Bellman operator L k given as input, namely

∀v ∈ R S , ∀s ∈ S, L k v(s) := max a∈As max r∈B k r (s,a) {r} + max p∈B k p (s,a)
{p v} .

(3.18)

The inner optimization problem max p∈B k p (s,a) {p v} is a linear programming (LP) problem since p -→ p v is linear and B k p (s, a) is only defined by linear constraints on p. It is possible to use a generic solver to find the solution of this problem. However, given that we need to solve SA different LP (one for every state-action pair) with the same objective function and with very simple constraints (the sets B k p (s, a, s ) are real intervals), it is computationally more efficient to first sort the vector v and then use the LProba algorithm described in Sec. 3.1.3 below. If u := Sort(v) is the vector v sorted in descending order, then (3.18) can be re-written:

L k v(s) := max a∈As max r∈Br(s,a) {r} + LProba u, B k p (s, a, s ) s ∈S . (3.19) independent.
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Extended optimality equation. Since B k p (s, a) is a polytope, L k can be interpreted as an optimal Bellman operator with finitely many actions (see Sec. 2.1.5). Then, a sufficient condition to apply Prop. 2.4 (guaranteeing existence of a solution to the Bellman optimality equation) is to show that M k is weakly-communicating. Since the true MDP M is communicating by assumption, if M ∈ M k (which holds with high probability as will be shown later, see Prop. 3.1), then M k is communicating as well (and therefore weakly-communicating).

Even when M ∈ M k , M k is still communicating because for all 3-tuple (s, a, s ), there exists q(•|s, a) ∈ B k p (s, a) such that q(s |s, a) > 0. Indeed, as will be clear in the next section, such q(•|s, a) can always be obtained by running LProba on e s (the s -th Cartesian basis vector). This only works because B k p (s, a, s ) are real intervals. However, in some problems it is possible that some transitions p(s |s, a) of the true MDP are perfectly known beforehand. To remove the burden of learning these specific transitions (s, a, s ), we would like to restrict the corresponding intervals B p (s, a, s ) to a singleton, potentially making M k not communicating. In this case, it is preferable to expand the singletons by ±1/t k , thus ensuring that M k is communicating (no matter whether M ∈ M k or not), while forbidding values too distant from p(s |s, a). Jaksch et al. (2010, Section 3.1.3) showed that assumption 2 of Prop. 2.6 (guaranteeing convergence of value iteration) always holds for UCRL2 (aperiodicity of the transition matrices encountered in EVI). This assumption also holds with the confidence sets B k p (s, a) defined in Eq. 3.17. As we just mentioned, we might be tempted to reduce B k p (s, a) to singletons, potentially violating assumption 2 of Prop. 2.6. To overcome this issue, we apply the aperiodicity transformation presented in Sec. 2.2, with aperiodicity coefficient α arbitrarily set to 0.9 The corresponding aperiodic optimal Bellman operator L k α can be computed using the expression below.

Convergence of EVI.

L k α v(s) := max a∈As max r∈Br(s,a) {r} + α • LProba u, B k p (s, a, s ) s ∈S + (1 -α) • v(s). (3.20)
Similarly, we denote the aperiodic extended MDP M k α . Assumption 1 of Prop. 2.6 holds and so EVI converges. Prop. 2.7 also holds i.e.,5 

|g k -g * k | ≤ ε k /2 := r max 2t k (where g * k is the optimal gain of M k ) (3.21) and L k α h k -h k -g k e ∞ ≤ ε k := r max t k . (3.22)
Greedy policy. It is very likely that several greedy policy exist, especially at the beginning of the learning process when the uncertainty on p and r is high (so that many actions are equally optimistically optimal). When there is ambiguity on which action to play (there can be several optimal policies), UCRL2 break ties arbitrarily by playing only one of the actions (see Eq. 2.36). Thus the policy is always deterministic. The choice of the greedy policy that will be executed during the episode does not seem to impact the regret bound.

Nevertheless, since all policies are in some sense equivalent, it is reasonable to play them Chapter 3. Improved exploration-exploitation with Bernstein bounds

Algorithm 6 Greedy operator used in UCRLB (G k α ) Input: Vector v ∈ R S , confidence sets B r (s, a) and B p (s, a, s ) for all (s, a, s ), aperiodicity coefficient α ∈]0, 1] Output: Policy π ∈ Π SR 1: for s ∈ S do
This loop can be parallelized to speed up running time

2: A + (s) := Arg max a∈As max r∈Br(s,a) {r} + α • LProba u n , (B p (s, a, s )) s ∈S 3: for a ∈ A do 4: if a ∈ A + (s) then 5:
Set π(a|s) :=

1 A + (s)
All greedy actions are played with equal probability 6: end for 10: end for with equal probability in order to have a more balanced exploration. The implementation of the greedy operator G α k given as input to EVI (Eq. 3.5) is reported in Alg. 6. Our goal in considering randomized policies is not just to artificially complexity the analysis but also to generalize UCRL2's analysis. This will be needed in Chap. 5 for example. It could also be useful for future work where no deterministic policy is optimal.

Linear Programming for extended value iteration

The detailed pseudo-code of LProba is reported in Alg. 7. Given an input vector

v ∈ R S and S intervals [a i , b i ] 1≤i≤S satisfying 1 ≥ b i ≥ a i ≥ 0 and S i=1 a i ≤ 1 ≤ S i=1 b i , LProba solves the following LP: max {p v} s.t.    S i=1 p i = 1 a i ≥ p i ≥ b i , ∀i ∈ S (3.23)
The vector v is assumed to be sorted in decreasing order i.e., (2015) (the validity of the algorithm is proved in their Appendix A). The idea is to initialize p i to its minimum value a i for all i ∈ {1, . . . , S} and then allocate the remaining probability mass 1 -S i=1 a i to p 1 which corresponds to the maximal value v 1 . If there is still some probability mass left, it is assigned to p 2 (which corresponds to the second maximal value v 2 ) and so on in decreasing order until S i=1 p i = 1 (LProba is therefore an instance of "greedy" procedure).

v 1 ≥ v 2 ≥ • • • ≥ v S , which simplifies the resolution. The assumptions that S i=1 a i ≤ 1 ≤ S i=1 b i and 1 ≥ b i ≥ a i ≥ 0 ensure that

Gain-optimism in ucrlb

Algorithm 7 Linear Programming for probability maximization (LProba)

Input: A vector v ∈ R S sorted in decreasing order v(1) ≥ v(2) ≥ • • • ≥ v(S), S closed intervals [a i , b i ] 1≤i≤S s.t. 1 ≥ b i ≥ a i ≥ 0 and S i=1 a i ≤ 1 ≤ S i=1 b i Output: A scalar w 1: Set w 0 := S i=1 a i × v(i), ∆ 0 := 1 -S i=1 a i and i := 1 Initialization 2: while ∆ i-1 > 0 do Main loop 3: Set δ i := min {∆ i-1 , b i -a i } 4: Update w i ← w i-1 + δ i × v(i)
Assign allowed weights to highest values of v first 5:

Update ∆ i ← ∆ i-1 -δ i 6: Increment i ← i + 1 7: end while 8: Set w := w i-1
Computational complexity. LProba terminates after at most S iterations. Therefore, the worst-case complexity of a single iteration of EVI is O(S 2 A + S ln(S)) where the S ln(S) term appears because of the sorting of v n (the input vector of Alg. 7 should be sorted). Fortunately, the loop over states (line 9 of Alg. 3) can be parallelized, reducing the time complexity to O(SA + S ln(S)). This is of the same order of magnitude as for value iteration (with discrete instead of compact action spaces) which has a computational complexity of order O(S 2 A) per iteration and time complexity O(SA) when parallelized. Value iteration usually converges exponentially fast [START_REF] Schweitzer | Geometric convergence of value-iteration in multichain markov decision problems[END_REF]) and so EVI is computationally efficient.

Gain-optimism in UCRLB

UCRLB implements the OFU principle. More precisely, it is gain-optimistic meaning that the optimal gain g * k of the extended MDP M k is (w.h.p.) bigger than or equal to the optimal gain g * of the true MDP (at every episode k). As briefly hinted in Sec. 2.2.3, this property is essential to guarantee a good exploration-exploitation trade-off , and more precisely to derive near-optimal minimax regret bounds (see Sec. 3.5). In this section we formally prove that UCRLB is gain-optimistic.

A new argument: optimistic Bellman operator

The way that optimism is proved in UCRL2 [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] is by showing that the true MDP M belongs to M k w.h.p., which automatically implies that g * k ≥ g * w.h.p. (see Sec. 2.1.5 and the equivalence between bounded parameter MDP and extended MDP). This all-or-none argument seems very restrictive. Indeed, to bound the regret it is sufficient to show that g * k ≥ g -η provided η is sufficiently small (the impact on the regret is not bigger than η • T ). Yet, a small perturbation in the definition of the extended MDP may cause the true MDP to be excluded and the argument of [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] no longer applies. This would suggest that the regret can no longer be bounded which is rather unexpected. The difference g * k -g * should intuitively vary continuously as the extended MDP changes. In this section, we present a new proof of optimism that only relies on the properties of the optimal Chapter 3. Improved exploration-exploitation with Bernstein bounds Bellman operator of the extended MDP6 . We no longer require that the true MDP belongs to the extended MDP although it is a sufficient condition to apply our proof (our proof is therefore more general). We operate a paradigm shift in the way to prove (near) gain-optimism and to interpret the extended MDP: we show that what matters is not the inclusion of the true MDP in the corresponding bounded parameter MDP, but only the relationship between the Bellman operator of the extended MDP and the one of the true MDP. One might argue that this change of perspective does not result in a much different implementation since in the end, the policy executed is always the optimal policy of an extended MDP that will most likely contain the true MDP. But in some situations (see for example Chap. 5), our new argument allows to restrict the extended MDP (smaller confidence intervals that do not necessarily include the true parameters of the MDP). The optimism is therefore tighter which results in an improvement of the performance of the algorithm.

Our proof relies on the following very simple theorem proved by [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]:

Proposition 3.3 (Theorem 8.4.1 of Puterman (1994) 7 )
Let L be the optimal Bellman operator of an MDP with S states and assume that the optimal gain g * of this MDP is state-independent. If there exists a scalar g and a vector h ∈ R S such that Lh ≥ h + ge (where e = (1, . . . , 1) is the S-dimensional vector of all ones), then g * ≥ g. Let (g * , h * ) be a solution of the Bellman optimality equation of the true MDP i.e., Lh * = h * + g * e where L is the optimal Bellman operator of the true MDP. Using Prop.

3.3, if we can show that L k h * ≥ h * + g * e then g * k ≥ g * . Since h * + g * e = Lh * , this is equivalent to showing that L k h * ≥ Lh * .
In other words, in order to prove gain-optimism we only need to show that the optimal Bellman operator of the extended MDP M k is optimistic w.r.t. to the optimal Bellman operator of the true MDP, when applied to one optimal bias vector . Trivially, if the true MDP belongs to the extended MDP then this condition is satisfied. More generally, if there exists

η ≥ 0 such that L k h * ≥ Lh * -ηe = h * + (g * -η)e, then by applying Prop. 3.3 we have that g * k ≥ g * -η.
We call the statement of Lem. 3.3 the "dominance property" of operator L. As we just showed, it plays a key role in ensuring gain-optimism. It is also a much more "refined" argument than the one usually used ("inclusion" argument: M ∈ M k ). In this thesis we will make an extensive use of this property and prove similar results for other operators than L.

Proof of optimism with concentration inequalities

We now prove that M ∈ M k w.h.p. (Thm. 3.1) which implies that L k h * ≥ Lh * w.h.p. Thm. 3.1 is similar to Lemma 17 proved by [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] except that we bound the probability of event k≥1 {M ∈ M k } while they only bound the probability of {M ∈ M k } by a term that decreases with t k . They then take a union bound in the regret proof. Thm. 3.1 will simplify the regret analysis and our proof allows to use confidence bounds that only grows logarithmically with N k instead of t k (Eq. 3.1 and 3.2). As a consequence, the confidence bounds associated to (s, a) do not increase over time when (s, a) is not visited (they remain constant) and UCRLB will not visit all (s, a) infinitely often. This is not surprising since we want to show a uniform high probability regret bound as opposed to a uniform expected regret bound . A uniform expected regret bound requires to visit all state-action pairs infinitely often and so to have a term t k in the logarithm of the confidence bounds (3.1) and (3.2). For a more thorough discussion on this, see for example Dann et al. (2017, Section 4.1).

Theorem 3.1

The probability that there exists k ≥ 1 s.t. the true MDP M does not belong to the extended MDP M k defined by Eq. 3.3 and 3.4 is at most δ 3 , that is

P (∃k ≥ 1, s.t. M ∈ M k ) ≤ δ 3 .
Proof. We want to bound the probability of event E := +∞ k=1 {M ∈ M k }. As explained by Lattimore and Szepesvári (2018, Section 4.6, "The canonical Bandit Model"), when (s, a) is visited for the n-th times, the reward that we observe is the n-th element of an infinite sequence of i.i.d. r.v. lying in [0, r max ] with expected value r(s, a). Similarly, the next state that we observe is the n-th element of an infinite sequence of i.i.d. r.v. lying in S with probability density function (pdf) p(•|s, a). In Alg. 5, we defined the sample means p k and r k (Eq. 3.7 and 3.8), and the confidence intervals B k p and B k r (Eq. 3.3 and 3.4) as depending on k. Actually, this quantities depends only on the first N k (s, a) elements of the infinite i.i.d. sequences that we just mentioned. For the rest of the proof, we will therefore slightly change our notations and denote by p n (s |s, a), r n (s, a), B n p (s |s, a) and B n r (s, a) the sample means and confidence intervals after the first n visits in (s, a). Thus, the r.v. that we denoted by p k in Alg. 5 actually corresponds to p N k (s,a) with our new notation (and similarly for r k , B k p and B k r ). This change of notation will make the proof easier.

M ∈ M k means that there exists k ≥ 1 s.t. either p(s |s, a) ∈ B N k (s,a) p (s, a, s ) or r(s, a) ∈ B N k (s,a) r
(s, a) for at least one (s, a, s ) ∈ S × A × S. This means that there exists at least one value n ≥ 0 s.t. either p(s |s, a) ∈ B n p (s, a, s ) or r(s, a) ∈ B n r (s, a). As a consequence we have the following inclusion

E ⊆ s,a +∞ n=0 {r(s, a) ∈ B n r (s, a)} ∪ s p(s |s, a) ∈ B n p (s, a, s ) (3.24)
Chapter 3. Improved exploration-exploitation with Bernstein bounds Using Boole's inequality we thus have:

P (E) ≤ s,a +∞ n=0 P (r(s, a) ∈ B n r (s, a)) + s P p(s |s, a) ∈ B n p (s, a, s ) (3.25)
Let's fix a 3-tuple (s, a, s ) ∈ S × A × S and define for all n ≥ 0 sas p,n := σ p,n (s |s, a)

2 ln (30S 2 A(n + ) 2 /δ) n + + 3 ln 30S 2 A(n + ) 2 /δ n + (3.26) sa r,n := σ r,n (s, a) 2 ln (30SA(n + ) 2 /δ) n + + 3r max ln 30SA(n + ) 2 /δ n + (3.27)
where σ p,n (s |s, a) and σ r,n (s, a) denote the population variances obtained with the first n samples. It is immediate to verify that sas p,n ≤ β sas p,n and sa r,n ≤ β sa r,n a.s. (see Eq. 3.1 and 3.2 with N k (s, a) replaced by n). Using Prop. 3.2 we have that for all n ≥ 1:

P |p(s |s, a) -p n (s |s, a)| ≥ β sas p,n ≤ P |p(s |s, a) -p n (s |s, a)| ≥ sas p,n ≤ δ 10n 2 S 2 A (3.28) P |r(s, a) -r n (s, a)| ≥ β sa r,n ≤ P |r(s, a) -r n (s, a)| ≥ sa r,n ≤ δ 10n 2 SA (3.29)
Note that when n = 0 (i.e., when there hasn't been any observation of (s, a)), sas p,0 ≥ 1 and we conclude that for all n ≥ 1

P p(s |s, a) / ∈ B n p (s, a, s ) ≤ δ 10n 2 S 2 A and P (r(s, a) / ∈ B n r (s, a)) ≤ δ 10n 2 SA
and these probabilities are equal to 0 if n = 0. Plugging these inequalities into Eq. (3.25) we obtain:

P (∃T ≥ 1, ∃k ≥ 1 s.t.M ∈ M k ) ≤ s,a 0 + +∞ n=1 δ 10n 2 SA + s δ 10n 2 S 2 A = 2π 2 δ 60 ≤ δ 3
which concludes the proof.

Bounding the optimistic bias of UCRLB: diameter and refinements

At every episode k ≥ 1, EVI returns both a policy π k , a gain g k and a bias vector h k . We refer to g k as the (near) optimistic gain and h k as the (near) optimistic bias vector . Note that the optimistic gain g k is indeed (near) optimistic i.e., satisfies

g k ≥ g * k -ε k /2 ≥ g * -ε k /2
(by combining Eq. 3.21 with the results of Sec. 3.2), while the optimistic bias vector h k does not necessarily satisfy h k h * .8 Actually, h k is defined up to a constant shift. Nevertheless, we will use the terminology "optimistic bias" to refer to h k .

We will see in Sec. 3.5 that the shape of the optimistic bias h k has a substantial impact on the regret analysis. In this section we focus on bounding the range of h k i.e., bounding sp (h k ).

Diameter

In this section we bound sp (h k ) using the concept of diameter of an MDP (Def. 2.6). We start by recalling an important result proved by [START_REF] Bartlett | REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs[END_REF]: [START_REF] Bartlett | REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs[END_REF])

Proposition 3.4 (Theorem 4 of
Let M be a communicating MDP with non-negative rewards and (g * , h * ) a solution of the Bellman optimality equation i.e., Lh * = h * + g * e. For any states s and s and any stationary policy π ∈ Π SR , we have:

h * (s ) -h * (s) ≤ g * • E π [τ (s ) -1|s 1 = s] where τ (s ) := inf {t ≥ 1 : s t = s } is the first hitting time of s .
As a direct consequence of Prop. 3.4, we have the following corollary:

Under the same assumptions as Prop. 3.4, the range of h * can be bounded as sp (h * ) ≤ g * D where D is the diameter of M .

Corollary 3.1

Proof. By definition

sp (h * ) := max s∈S {h * (s)} -min s∈S {h * (s)} = max s,s {h * (s ) -h * (s)} ≤ g * • max s,s E π [τ (s ) -1|s]
where the last inequality is a direct consequence of Prop. 3.4 and the fact that g * ≥ 0.

Let's first assume that EVI computes an exact solution

(g * k , h * k ) of the Bellman optimality equation L k α h * k = h * k + g * k . According to Cor. 3.1 we have sp (h * k ) ≤ g * k • D k α (where D k α is the diameter of M k α )
. We now need to relate the parameters of the extended MDP g * k and D k α with the parameters of the true MDP.

Bounding g * k . The optimal gain g * k is always smaller than r max by definition but can be as big as r max . For example at the beginning of the learning process, the uncertainty is maximal Chapter 3. Improved exploration-exploitation with Bernstein bounds in all state-action pairs and so all optimistic rewards are set to r max implying g * k = r max . But even after a rather long exploration phase, it is sufficient that one state-action pair is poorly visited to have g * k = r max . This is because the gain is a global quantity of the MDP (as opposed to the local rewards). As long as at least one state-action pair (s, a) is poorly visited, UCRLB will optimistically set the reward r k (s, a) ← r max and transition p k (s|s, a) ← 1 causing g * k to be maximal (if one policy of a communicating MDP loops on a single state with reward r max , then the optimal gain is r max independently of the rest of the MDP as shown in Theorem 8.3.2 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]). Since in general we cannot control how UCRLB explores the MDP, the tightest upper-bound that we can derive for g * k is r max . k,η →s are the same for all policies and they only differ from the rewards of L k →s by a multiplicative factor

Bounding

(1 -η), it is immediate to see that h k,η →s = (1 -η)h k →s . In conclusion, (1 -η)h k →s ≥ h * →s and so D k ≤ D/(1 -η).
The impact of a small perturbation 1 > η > 0 on the diameter is non-linear in η while the impact on the gain is linear (see Sec. 3.2).

Diameter and aperiodicity transformation:

D k vs D k α .
So far, we have bounded the diameter of the extended MDP M k , ignoring the aperiodicity transformation. Thm. 2.1 shows how to relate

D k with D k α : D k α = D k /α. After combining all the inequalities derived in Sec. 3.3.1, we obtain sp (h * k ) ≤ r max D/α.
Approximate solution of the optimal Bellman equation. As we showed at the beginning of Sec. 3.3, EVI only computes an approximate solution (g k , h k ) of the optimality equation i.e., Jaksch et al. (2010, Section 4.3.1) proved by induction the following proposition (which is a specific case of Thm. 3.3 proved in the next section).

L k α h k -h k -g k e ∞ ≤ ε k as opposed to an exact solution (g * k , h * k ) satisfying L k α h * k = h * k + g * k e.

Proposition 3.6

Let L be the optimal Bellman operator of a communicating MDP with diameter D. Consider the sequences of vectors (v n ) n∈N obtained while executing value iteration (Alg. 3) with operator L and initial vector v 0 := 0 as inputs. It holds that for all π ∈ Π SR , all s, s ∈ S and all n ≥ 0:

v n (s ) -v n (s) ≤ r max • E π τ (s ) -1 s 1 = s ≤ r max D.
(3.30)

EVI is run starting from the null vector and so sp

(h k ) ≤ r max D k α ≤ r max D/α.
Note that in order to apply Prop. 3.6 to the extended MDP, it is essential for the rewards to be contained in [0, r max ].9 

Refinement of the diameter: travel-budget

The bound sp (h k ) ≤ r max D/α derived in Sec. 3.3.1 assumes that while trying to reach a target state, an agent receives zero rewards in all but the target state (where it receives r max ). This can be very loose as the agent usually has the opportunity to collect rewards on the way to Chapter 3. Improved exploration-exploitation with Bernstein bounds

s s a 0 , r = 3 4 r max a 1 , r = 1 2 r max a 0 , r = 0 Figure 3.1: Counter-example illustrating the need of Π SD →s in Thm. 3.2.
Only one action a 0 can be played in s while two actions a 0 , a 1 can be played in s. All transitions are deterministic and M is communicating. It is immediate to verify that the optimal policy corresponds to π * (s) = a 1 and moreover g * = 1 2 r max , h * (s) = 0 and h * (s ) = 1 4 r max . We also notice that

π * ∈ Π SD →s and E π * τ (s )-1 t=1 g * -r t s 1 = s = 0 < 1 4 r max = h * (s ) -h * (s)
and so (3.33) does not hold. the target state. In this section we introduce a new quantity that better accounts for the reward discrepancy in the MDP. We call this new quantity the travel-budget10 and denote it by Λ. We derive theorems analogue to those of Sec. 3.3.1 and show that sp

(h k ) ≤ Λ/α.
We first define the set of stationary deterministic policies reaching a state in finite time (a.s.) and prove a theorem analogue to the one proved by [START_REF] Bartlett | REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs[END_REF] 

(see Prop. 3.4).
For any MDP M , we define for all s, s ∈ S

Π SD s →s := π ∈ Π SD : P π (τ (s ) < +∞|s 1 = s) = 1 (3.31) Π SD →s := s∈S Π SD s →s = π ∈ Π SD : P π (τ (s ) < +∞|s 1 = s) = 1, ∀s ∈ S (3.32) where τ (s ) := inf {t ≥ 1 : s t = s } is the first hitting time of s . If M is communicating, then Π SD →s = ∅ for all s ∈ S.

Definition 3.1

Proof. We prove the statement by contraposition. If P π (τ (s ) = +∞|s) > 0 then by the law of total expectations:

E π τ (s )|s 1 = s =E π τ (s ) s 1 = s, τ (s ) < +∞ • P π (τ (s ) < +∞|s 1 = s) + E π τ (s ) s 1 = s, τ (s ) = +∞ =+∞ •P π (τ (s ) = +∞|s 1 = s) = +∞
Therefore, if Π SD →s = ∅ for at least one s ∈ S, then D = +∞. This concludes the proof.

3.3. Bounding the optimistic bias of ucrlb: diameter and refinements Theorem 3.2 (Analogue of Prop. 3.4)

Let M be a communicating MDP with optimal Bellman operator L and (g * , h * ) ∈ R × R S a solution to the optimality equation h * + g * e = Lh * . For any two states s and s and any stationary policy π ∈ Π SD →s , we have:

h * (s ) -h * (s) ≤ E π   τ (s )-1 t=1 g * -r t s 1 = s   (3.33)
where τ (s ) := inf {t ≥ 1 : s t = s } is the first hitting time of s .

Proof. The arguments are similar to the one used by Bartlett and Tewari (2009, Theorem 4). The rigorous proof can be found in App. A.1.1.

We first notice that Prop. 3.4 can be deduced from Thm. 3.2 since when all rewards are non-negative

∀π ∈ Π SD →s , E π   τ (s )-1 t=1 g * -r t s 1 = s   ≤ g * • E π τ (s ) -1 s 1 = s and if π / ∈ Π SD →s then E π τ (s ) -1 s 1 = s = +∞ and so the inequality still holds. The difference between E π τ (s )-1 t=1 g * -r t s 1 = s and E π τ (s ) -1 s 1 =
s can be arbitrarily loose. For example, when all the rewards are identical, the optimal gain takes the same value and the term on the left handside is 0 while the term on the right handside can be arbitrarily large. When π ∈ Π SD →s , the term E π τ (s )-1 t=1

g * -r t s 1 = s might be equal to +∞ but when this is the case, Thm. 3.2 still holds and so one might wonder why we need to restrict attention to policies belonging to Π SD →s . In Fig. 3.1 we provide a counter-example showing that Thm. 3.2 does not always hold for policies outside Π SD →s .

Since Thm. 3.2 refines Prop. 3.4, we would like to use this theorem to refine the bound on sp (h k ) derived in Sec. 3.3.1. As we already discussed in Sec. 3.3.1, in general the best upper bound that we have for g * k is r max and so we define the travel-budget as follows:

The travel-budget of a communicating MDP M (denoted Λ) is defined as

Λ := max s,s min π∈Π SD E π   τ (s )-1 t=1 r max -r(s t , a t ) s 1 = s   . (3.34)
Λ ≥ 0 and if all the rewards are non-negative, Λ ≤ r max D.

Definition 3.2

Proof. The proof is trivial since for all t ≥ 1, r max -r(s t , π(s t )) and under the assumption that the rewards are all positive, -r(s t , π(s t )) ≤ 0.

Notice that in Eq. 3.34 of Def. 3.2, we do not restrict the policy space. Instead, we take the minimum over the entire space Π SD and not over Π SD →s . Therefore, τ (s ) might be equal to 

min π E π τ (s )-1 t=1 r max -r t s 1 = s = 1 2 r max < r max = r max • min π E π τ (s ) -1 s 1 = s .
+∞ with non-zero probability but everything is still well-defined as explained in Sec. 2.1.4. It turns out that despite the counter-example of Fig. 3.1, when replacing g * by r max and considering the iterates of value iteration starting from the null vector, this definition is sufficient for our purpose (see Thm. 3.3 below). On Fig. 3.2 we illustrate the difference between r max D and Λ on a simple MDP.

Similarly to Sec. 3.3.1, we can combine (3.34) with Thm. 3.5 to prove that Λ k := Λ M k ≤ Λ for all k ≥ 1 (where Λ is the travel-budget of the true unknown MDP). Since we no longer restrict the policy space, we can express Λ as a function of the fixed points of some Bellman shortest path operators (as we did for D in Sec. 3.3.1).

Let's consider M = {S, A, r , p} the MDP with identical transition probabilities p than the true MDP M and rewards r equal to r -r max ≤ 0 (for all state and actions). For all s ∈ S, denote by L →s the Bellman shortest path operator of M and h * →s its (unique) fixed point (Thm. 3.5). By Prop. 2.8,

∀s ∈ S, -h * →s (s ) = min π∈Π SD (M ) E π M   τ (s )-1 t=1 r max -r t s  
for all s, s ∈ S, and so Λ := max s h * →s ∞ . Similarly to r max D, the travel-budget Λ is obtained as the solution of a stochastic shortest path problem where the "lengths" are not always equal to r max but the actual reward r is subtracted i.e., r max -r. Let's denote by L k →s the analogue of L →s for the extended MDP M k (identical to M k with rewards replaced by r -r max ≤ 0), and by h k →s its fixed point. Under the high probability event of Thm. 3.1,

L k →s h * →s ≥ L →s h * →s = h * →s and so by Thm. 3.5, h k →s ≥ h * →s . Therefore, Λ k ≤ Λ and a direct application of Thm. 2.1 shows that Λ k α = Λ k /α (where Λ k α denotes the travel-budget of M k α ).
Unlike for the diameter, it is difficult to quantify the impact of an η-perturbation of L k on the travel-budget Λ k . This is not surprising since the travel-budget carries much more information about the MDP than the diameter. It also suggests that it is a more relevant quantity to consider for the regret analysis.

We conclude this section with Thm. 3.3 (from which Prop. 3.6 can be deduced).

Regret guarantees for ucrlb

Theorem 3.3 (Analogue of Prop. 3.6) Let L be the optimal Bellman operator of a communicating MDP with travel-budget Λ. Consider the sequences of vectors (v n ) n∈N obtained while executing value iteration (Alg. 3) with operator L and initial vector v 0 := 0 as inputs. It holds that for all π ∈ Π SR , all s, s ∈ S and all n ≥ 0:

v n (s ) -v n (s) ≤ E π   τ (s )-1 t=1 r max -r t s 1 = s   ≤ Λ. (3.35)
Proof. The detailed proof can be found in App. A.1.2.

Regret guarantees for UCRLB

We opened Chap. 3 with a detailed presentation of the algorithmic structure of UCRLB (Sec. 3.1). In a nutshell, at every episode k, UCRLB computes an approximate solution

(g k , h k ) ∈ R × R S of
the Bellman optimality equation of an extended MDP M k that is constructed based on past observations. In Sec. 3.2 and 3.3 we analysed the properties of respectively g k and h k . We showed that under a single high probability event (Thm. 3.1),

g k ≥ g * and sp (h k ) ≤ Λ/α ≤ r max D/α
where g * , Λ and D are respectively the optimal gain, travel-budget and diameter of the true unknown MDP . We are now ready to state (and prove) the main results of this chapter, namely two high probability minimax uniform regret bounds satisfied by UCRLB (Thm. 3.4 and Thm. 3.5). "Uniform" refers to the fact that the high probability bound holds for all time horizons T ≥ 1. Thm. 3.4 and Thm. 3.5 only assume knowledge of the state space S, action space A and maximal reward r max , even if we already explained in Sec. 3.1 how UCRLB can take advantage of some additional prior knowledge about the rewards and transition probabilities. We assume that the initial state s 1 is sampled according to a probability distribution µ 1 ∈ ∆ S . For any state-action pair (s, a) ∈ S × A, we introduce the notation Γ(s, a) for the support of p(•|s, a) i.e.,

Γ(s, a) := p(•|s, a) 0 = s ∈S 1 p(s |s, a) > 0 .
We also denote by Γ := max s,a∈S×A Γ(s, a) the maximal support over all (s, a). Our first regret bound is reported in Thm. 3.4.

Theorem 3.4

There exists a numerical constant β > 0 such that for any communicating MDP, with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S and for all time horizons T > 1:

∆(UCRLB, T ) ≤ β • max {r max , Λ} s,a Γ(s, a) T ln T δ + β • max {r max , Λ}S 2 A ln T δ ln (T ) .
(3.36)

Chapter 3. Improved exploration-exploitation with Bernstein bounds Jaksch et al. (2010, see Prop. 2.14) showed that up to a multiplicative numerical constant, the regret of UCRL2 is bounded by r max DS AT ln (T /δ). After noticing that Λ ≤ r max D and s,a Γ(s, a) ≤ ΓSA we can simplify the bound in (3.36) as

β • r max D ΓSAT ln (T /δ) + β • r max DS 2 A ln (T /δ) ln (T )
Let's compare the bounds of UCRL2 (Prop. 2.14) and UCRLB (Thm. 3.4) in terms of O (i.e., ignoring logarithmic terms, meaning that ln(T /δ) is equivalent to a constant). For T ≤ DS 2 A, a trivial bound on the regret is

∆(UCRLB, T ) ≤ r max T = r max √ T 2 ≤ r max S √ DAT ≤ r max DS √ AT while for T ≥ DS 2 A we have r max DS √ AT ≥ r max S √ DAT ≥ r max DS 2 A.
Since by definition Γ ≤ S, in either case the regret of UCRLB can be bounded by r max DS √ AT just like the regret of UCRL2. But in general, UCRLB clearly enjoys better regret guarantees than UCRL2 as for the dependency in S. This is a consequence of the use of Bernstein bounds for the transition probabilities (Eq. 3.1) instead of Hoeffding/Weissman bounds in UCRL2. This improvement can be quite significant in practice since in most MDPs, ΓSA = Θ(SA) or at least s,a Γ(s, a) = Θ(SA) i.e., Γ(s, a) = O(1) for all but only O(1) state-action pairs. An environment that would satisfy Γ(s, a) = Ω(S) for Ω(S) state-action pairs would have a very chaotic dynamics which is not what we usually observe in "real-world" environments. The other improvement brought by Thm. 3.4 compared to the existing literature is the substitution of r max D by max{r max , Λ} ≤ r max D in the regret bound. Notice however that unlike the improvement in S, the improvement in D is only due to the analysis and not to the algorithm (improved bound on sp (h k ) shown in Sec. 3.3). The same improvement can be shown for UCRL2.

Our second regret bound is reported in Thm. 3.5. This regret bound holds for UCRLB without any modification of the algorithm. The difference with Thm. 3.4 is due to a more careful analysis.

Theorem 3.5

There exists a numerical constant β > 0 such that for any communicating MDP, with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S and for all time horizons T > 1

∆(UCRLB, T ) ≤ β • max r max , r max Λ s,a Γ(s, a) T ln T δ ln (T ) + β • max r max , Λ 2 r max S 2 A ln T δ ln (T ) (3.37)
Since the dependency in r max and Λ of (3.37) may appear non-trivial, we start with a 3.4. Regret guarantees for ucrlb simple dimensional analysis to check the consistency of the bound. The regret is always homogeneous to a reward and as a consequence, so should be the regret bound. Since both Λ and r max are homogeneous to a reward, it is immediate to see that the bounds of Thm. 3.5 and Thm. 3.4 have the correct dimension. Compared to the bound of Thm. 3.4, the dominant term of Thm. 3.5 has a better dependency in Λ. Indeed, when r max ≥ Λ, then max r max , r max Λ = r max = max {r max , Λ} and so the dominant terms of (3.36) and (3.37) are the same. However, when r max < Λ then max r max , r max Λ = r max Λ < Λ = max {r max , Λ} and so (3.37) is tighter. In conclusion: max r max , √ r max Λ ≤ max {r max , Λ}. As the improvement in the S-dependency, the improvement in the Λ-dependency of the regret bound is a consequence of the use of Bernstein bounds instead of Hoeffding/Weissman bounds for the transition probabilities. Notice also that in the case where Λ = r max D (worst-case), then

max r max , r max Λ = r max √ D ≤ r max D = max {r max , Λ} .
Symmetrically, max r max , Λ 2 /r max ≥ max {r max , Λ}, meaning that the improvement in the dominant term comes at the expense of an increase in the lower order (logarithmic) term. This term becomes negligible after only D 2 S 2 A steps (ignoring the multiplicative log term).

Using the same argument as in the discussion of Thm. 3.4 (see above), we can show that the bound (3.37) can be upper-bounded by r max DS √ AT for all T . In conclusion, the regret of UCRLB grows at most as r max √ DΓSAT for T big enough which is clearly better than the regret of UCRL2 i.e., r max DS √ AT . The additional "burn-in" of order (Λ 2 /r max )S 2 A which dominates when T is small is not bigger than the burn-in of UCRL2, but in UCRL2, it is "hidden" by the dominant term r max DS √ AT . An additional ln (T ) multiplicative factor also appears in the dominant term of (3.37) that was not present in (3.36). Whether this extra cost is an artefact of the analysis or cannot be removed is left as an open question.

Impact of the aperiodicity transformation.

Neither of the regret bounds (3.36) and (3.37) depend on the aperiodicity parameter α. The 1/α factor that appears in the bound of sp (h k ) disappears in the regret proof when introducing the optimality equation (see Sec. 3.5.2). As expected, the aperiodicity transformation has absolutely no impact on the regret, its only impact is on the convergence (and speed of convergence) of EVI as already argued in Sec. 3.1.2.

Comparison with other settings. In the finite horizon setting, [START_REF] Azar | Minimax regret bounds for reinforcement learning[END_REF] derived an algorithm -UCBVI 2-for which they proved a high-probability regret bound scaling as (up to multiplicative numerical constants):

r max √ HSAT ln T δ + r max H 2 S 2 A ln 2 T δ + r max H T ln T δ
where H is the horizon (known to the algorithm). It is common to compare r max H with r max D as both terms respectively upper-bound the range of the optimal "value function" (the bias in the infinite horizon undiscounted case). It is thus natural to compare r max H with Λ in our case. After substituting the former by the latter, the bound they derived looks very similar to the bound of Thm. 3.5. The first difference is the absence of the support Γ in the dominant term of the regret. The second difference is the presence of an additional

O(r max H √ T ) term.
When T is big enough, their bound saves a √ Γ factor compared to ours when H ≤ SA. It is not clear whether this improvement is specific to the finite horizon setting or not. In particular, extending their proof to the infinite horizon setting does not seem straightforward as the definition of regret differ and several parts of the proof heavily rely on the existence of a known time horizon H. In the same setting, Kakade et al. (2018) introduced vUCQ that achieves a regret of the form r max √ HSAT + r max H 5 SA (ignoring multiplicative logarithmic terms). This bound is similar to the one of [START_REF] Azar | Minimax regret bounds for reinforcement learning[END_REF] but the time needed to reach the √ T -regime (burn-in) is of order O(H 5 SA).

In the discounted infinite horizon setting, the common measure of performance of on-line learning algorithms is the sample complexity. A regret bound of the form C √ T is usually interpreted as comparable to a sample complexity of order

C 2 ε 2 (1-γ) 2 .
For the same reason as in the finite horizon setting, it is natural to compare r max Λ with r max /(1 -γ) (bound on the discounted value function). Using a UCRL2-like algorithm, Lattimore and Hutter (2012) achieved a sample complexity bound rmaxSA ε 2 (1-γ) 3 ln (1/δ) assuming that Γ ≤ 2 (Lattimore and Hutter, 2012, Assumption 1) and later generalized their result to [START_REF] Lattimore | Near-optimal pac bounds for discounted mdps[END_REF]. This is comparable to the bound of Thm. 3.5.

rmax s,a Γ(s,a) ε 2 (1-γ) 3 ln (1/δ)
Finally, [START_REF] Dann | Sample complexity of episodic fixed-horizon reinforcement learning[END_REF] showed that their algorithm UCFH -similar to UCRLBsuffer a sample complexity of order at most r max

H 2 ΓSA ε 2
ln 1 δ where H is the (known) finite horizon. Unlike in the discounted setting, in the finite horizon case a regret bound of the form

C √
T is usually interpreted as comparable to a sample complexity of order C 2 ε 2 . Therefore, the bound of Thm. 3.5 saves a factor H compared to their bound. However, given the similarities between UCFH and UCRLB -both algorithms use Bernstein bounds for the transition probabilities-it is possible this additional H-factor could be removed by a better analysis i.e., without requiring any change in the algorithm.

In conclusion, the regret bound of Thm. 3.5 is consistent with state-of-the-art results in the discounted setting, but is worse than the state-of-the-art in the finite horizon setting by a factor √ Γ.

First regret proof of UCRLB

We start with the proof of Thm. 3.4 which is both simpler and closer to the proof of Theorem 2 of [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF]. We follow their proof structure, use similar notations and highlight the main differences. Many arguments will be reused for the proof of Thm. 3.5. In order to increase readability, we postpone the detailed proof of some intermediate results to the appendix (see App. A). To be able to reuse this material in Chap. 5, we assume π k my not 3.5. First regret proof of ucrlb always be deterministic (i.e., we assume π k may be stochastic) although this is not strictly needed so far.

We recall two well-known results useful for the proof. We will extensively use Azuma's inequality (see for example Jaksch et al. (2010, Lemma 10)) which we recall below (see Prop. 3.7).

Proposition 3.7 (Azuma's inequality)

Let (X n , F n ) n∈N be an Martingale Difference Sequence (MDS) such that |X n | ≤ a a.s. for all n ∈ N. Then for all δ ∈]0, 1[, P n i=1 X i ≥ a 2n ln 1 δ ≤ δ
An MDS is a sequence of r.v. X n that are F n -integrable for every n ∈ N, and such that

E [X n+1 |F n ] = X n .
We will also use Cauchy-Schwartz inequality several times i.e.,

i |a i b i | ≤ i a 2 i i b 2 i or equivalently i √ a i √ b i ≤ i a i i b i if a i , b i ≥ 0 for all i.

Splitting into episodes

The regret after T time steps is defined as ∆(UCRLB, T ) = T t=1 g * -r t . To begin with, we replace r t by its expected value conditioned on the current state s t using the following lemma:

With probability at least 1 -δ 6 :

∀T ≥ 1, - T t=1 r t ≤ - T t=1 a∈As t π kt (s t , a)r(s t , a) + 2r max T ln 4T δ (3.38) Lemma 3.1
Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details).

Lem. 3.1 enables to "remove" from the analysis all the randomness due to the stochasticity of the observed rewards and the executed policy, at the expense of a small O( √ T ) term. Jaksch et al. (2010, Section 4.1) use a different argument to obtain a similar bound. They claim that once conditioned on the r.v. (N k T +1 (s, a)) (s,a)∈S×A corresponding to the visit counts in all state-action pairs after T time steps, the r.v. (r t (s t , a t )) T ≥t≥1 are independent. Although we do not claim that the sampled rewards are not independent conditioned on the visit counts as argued by the authors, they never formally prove this result and it is not fully clear why this property holds. For this reason, we prefer to use a martingale argument which is both simple and rigorous.

Chapter 3. Improved exploration-exploitation with Bernstein bounds Let's denote by ν k (s) := a∈As ν k (s, a) the total number of visits in state s during episode k. Defining ∆ k := s∈S ν k (s) g * -a∈As t π k (a|s)r(s, a) the pseudo-regret of episode k, it holds with probability at least 1 -δ 6 that for all T ≥ 1 (using eq. 3.38):

∆(UCRLB, T ) ≤ T t=1 g * - a∈As t π kt (s t , a)r(s t , a) + 2r max T ln 4T δ = k T k=1 s∈S ν k (s) g * - a∈As π k (a|s)r(s, a) + 2r max T ln 4T δ = k T k=1 ∆ k + 2r max T ln 4T δ (3.39)

Plugging the optimistic Bellman optimality equation

In this section we derive a high probability bound for k T k=1 ∆ k . The first step consists in replacing the true optimal gain g * by the optimistic gain g k . To do this, we rely on the optimism property proved in Sec. 3.2. We assume that the complementary event of Thm. 3.1 holds i.e., M ∈ M k for all T ≥ 1 and for all k ≥ 1. We will denote this event E in the rest of the regret proof. As shown in Sec. 3.2, under event E, we have that g * k ≥ g * . Moreover, as shown in Eq. 3.21,

|g k -g * k | ≤ ε k /2 implying that g k ≥ g * -ε k /2.
As a result we can write:

∆ k ≤ s∈S ν k (s)   g k - a∈As π k (a|s)r(s, a) + ε k 2   (3.40)
We will now replace g k (optimistic gain) by h k (optimistic bias) using the optimistic optimality equation.

We denote by p k and r k the transition probabilities and rewards satisfying

∀s ∈ S, L k α h k (s) = a∈As π k (a|s)r k (s, a) + α a∈As s ∈S π k (a|s)p k (s |s, a)h k (s ) + (1 -α)h k (s)
As shown in Eq. 3.22, the pair (g k , h k ) ∈ R×R S returned by EVI is an approximate solution to the Bellman optimality equation of

L k α i.e., L k α h k -h k -g k e ∞ ≤ ε k implying that for all s ∈ S: - a∈As π k (a|s)r k (s, a) -α s ∈S a∈As π k (a|s)p k (s |s, a)h k (s ) -( ¡ 1 -α)h k (s) + ¨¨ḧ k (s) + g k ≤ ε k ⇒   g k - a∈As π k (a|s)r k (s, a)   + α   h k (s) - a∈As s ∈S π k (a|s)p k (s |s, a)h k (s )   ≤ ε k (3.41)
Plugging Eq. 3.41 into Eq. 3.40 yields:

3.5. First regret proof of ucrlb ∆ k ≤ s∈S ν k (s)   g k - a∈As π k (a|s)r k (s, a) + ε k 2   + s∈S a∈As ν k (s)π k (a|s) r k (s, a) -r(s, a) ≤ α s∈S ν k (s)   a∈As s ∈S π k (a|s)p k (s |s, a)h k (s ) -h k (s)   :=∆ p k + s∈S a∈As ν k (s)π k (a|s) r k (s, a) -r(s, a) :=∆ r k + 3ε k 2 s∈S ν k (s) (3.42)
In the next two sections (Sec. 3.5.3 and 3.5.4), we will bound the sums k T k=1 ∆ p k and k T k=1 ∆ r k .

Bounding the transition probabilities

We start by further decomposing ∆ p k into two different terms:

∆ p k = α s,a,s ν k (s)π k (a|s) p k (s |s, a) -p(s |s, a) h k (s ) :=∆ p1 k + α s ν k (s)   a,s π k (a|s)p(s |s, a)h k (s ) -h k (s)   :=∆ p2 k (3.43)
Since by construction a,s ∈S p k (s |s, a)π k (a|s) = a,s ∈S p(s |s, a)π k (a|s) = 1, the terms ∆ p1 k and ∆ p2 k remain unchanged if h k is arbitrarily shifted by a constant vector, respectively λ 1 k e and λ 2 k e (λ 1 k , λ 2 k ∈ R are arbitrary scalars and e = (1, . . . , 1) is the vector of all ones). To obtain the tightest possible upper bounds, we choose

λ 1 k = λ 2 k = - 1 2 max s∈S h k (s) + min s∈S h k (s) which minimizes the ∞ -norm of w k := h k + λ 1 k e = h k + λ 2 k e. Indeed, it is immediate to see that sp (w k ) = sp (h k ) and w k ∞ = sp (h k ) /2. Under event E, we showed in Sec. 3.3.2 that sp (w k ) = sp (h k ) ≤ Λ/α and so w k ∞ ≤ Λ/(2α). To keep k T k=1 ∆ p1
k under control, we need to replace ν k (s)π k (a|s) by ν k (s, a) i.e., reintroduce the randomness of the executed policy. To that end, we define

∆ p3 k := α s,a,s ν k (s, a) (p k (s |s, a) -p(s |s, a)) h k (s ), analogue of ∆ p1 k with ν k (s)π k (a|s) replaced by ν k (s, a)
, and we use the following lemma:

Under event E, with probability at least 1 -δ 6 :

∀T ≥ 1, k T k=1 ∆ p1 k ≤ k T k=1 ∆ p3 k + 4Λ T ln 6T δ (3.44) Lemma 3.2
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Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details).

Using Hölder's inequality, the term ∆ p3 k can be bounded as follows:

∆ p3 k ≤ & α s,a ν k (s, a) • p k (•|s, a) -p(•|s, a) 1 • w k ∞ ≤Λ/(2 ¡ α) ≤ Λ 2 s,a ν k (s, a) • p k (•|s, a) -p(•|s, a) 1
Using the triangle inequality, we can decompose the 1 -norm into two terms: 

p k (•|s, a) -p(•|s, a) 1 ≤ p k (•|s, a) -p k (•|s, a) 1 + p k (•|s, a) -p(•|s, a) 1 (3.
(•|s, a) -p k (•|s, a) 1 ≤ β sa p,k . In conclusion, ∆ p3 k ≤ Λ s,a ν k (s, a) • β sa p,k (3.46) 
We now focus on the last term ∆ p2 k and do the following decomposition:

∆ p2 k = α t k+1 -1 t=t k   a,s π k (a|s t )p(s |s t , a)w k (s ) -w k (s t )   = α t k+1 -1 t=t k   a,s π k (a|s t )p(s |s t , a)w k (s ) -w k (s t+1 )   :=∆ p4 k +α t k+1 -1 t=t k w k (s t+1 ) -w k (s t ) telescopic sum = ∆ p4 k + α w k (s t k+1 ) -w k (s t k ) ≤sp(w k )≤Λ/α ≤ ∆ p4 k + Λ
We then notice that k T k=1 ∆ p4 k is an MDS and so

Under event E, with probability at least 1 -δ 6 :

∀T ≥ 1, k T k=1 ∆ p4 k ≤ 2Λ T ln 4T δ (3.47) Lemma 3.3
Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details).

First regret proof of ucrlb

After combining Lem. 3.2, Eq. 3.46 and Lem. 3.3 and taking a union bound, we conclude that with probability at least 1 -δ 3 (and assuming event E holds):

∀T ≥ 1, k T k=1 ∆ p k ≤ Λ k T k=1 s,a ν k (s, a)β sa p,k + 6Λ T ln 5T δ + Λk T .
(3.48)

Bounding the rewards

Similarly to what we did to bound ∆ p1 k , we define an analogue of ∆ p3 k for the rewards i.e.,

∆ r1 k := s,a ν k (s, a) (r k (s, a) -r(s, a)) (similar to ∆ r k with ν k (s)π k (a|s) replaced by ν k (s, a
)) and we show the following lemma:

With probability at least 1 -δ 6 : ∀T ≥ 1, k T k=1 ∆ r k ≤ k T k=1 ∆ r1 k + 4r max T ln 8T δ Lemma 3.4
Proof. We use a martingale argument and Prop. 

∆ r1 k = s,a ν k (s, a) r k (s, a) -r(s, a) ≤ 2 s,a ν k (s, a)β sa r,k
In conclusion, with probability at least 1 -δ 6 (and assuming event E holds):

∀T ≥ 1, k T k=1 ∆ r k ≤ 2 k T k=1 s,a ν k (s, a)β sa r,k + 4r max T ln 4T δ (3.49)

Bounding the number of episodes

As in UCRL2, in UCRLB the inequality ν k (s, a) ≤ N + k (s, a) holds for all state-action pairs (s, a) ∈ S × A. However, the equality ν k (s, a) = N + k (s, a) holds true for exactly one stateaction pair (never more).

In Appendix C.2, Jaksch et al. (2010, Proposition 18) proved that the stopping condition of UCRL2 ensures that when T ≥ SA, k T ≤ SA log 2 8T SA a.s. The proof of this result only relies on the fact that there exists at least one (s, a) satisfying ν k (s, a) ≥ N + k (s, a). Since

Chapter 3. Improved exploration-exploitation with Bernstein bounds UCRLB also enjoys this property, the same proof applies and the bound still holds:

Proposition 3.8 For all T ≥ SA, k T ≤ SA log 2 8T SA .

Summing over episodes

As proved in Thm. 3.1, event E occurs with probability at least 1 -δ 3 . After taking a union bound and gathering inequalities (3.48) and (3.49) into inequality (3.42) we conclude that with probability at least 1 -5δ 6 , for all T ≥ SA:

k T k=1 ∆ k ≤ Λ k T k=1 s,a ν k (s, a)β sa p,k (3) 
+ 2

k T k=1 s,a ν k (s, a)β sa r,k (2) 
+ 3 2 r max k T k=1 s∈S ν k (s) t k (1) + 6Λ T ln 5T δ + 4r max T ln 5T δ + ΛSA log 2 8T SA (3.50)
We will now expand the first three terms appearing in the bound of Eq. 3.50.

(1) Since t k ≥ N + k (s, a) for all (s, a), we deduce that:

k T k=1 s∈S ν k (s) t k = s,a k T k=1 ν k (s, a) t k ≤ s,a k T k=1 ν k (s, a) N + k (s, a)
(2) Using the definition of β sa r,k :

k T k=1 s,a ν k (s, a)β sa r,k = k T k=1 s,a 2 σ 2 r,k (s, a) ln 6SAN + k (s, a) δ ≤2rmax ln( 6SAT δ ) ν k (s, a) N + k (s, a) + 6r max ln 6SAN + k (s, a) δ ≤ln( 6SAT δ ) ν k (s, a) N + k (s, a) ≤ 2r max   ln 6SAT δ s,a k T k=1 ν k (s, a) N + k (s, a) + 3 ln 6SAT δ s,a k T k=1 ν k (s, a) N + k (s, a)  
(3) Similarly using the fact that β sa p,k = s ∈S β sas p,k :

3.5. First regret proof of ucrlb k T k=1 s,a ν k (s, a)β sa p,k ≤ 2 ln 6SAT δ s,a k T k=1 ν k (s, a) N + k (s, a) s ∈S p k (s |s, a)(1 -p k (s |s, a)) +6S ln 6SAT δ s,a k T k=1 ν k (s, a) N + k (s, a)
It holds almost surely that for all k ≥ 1 and for all (s, a, s ) ∈ S × A × S:

s ∈S p k (s |s, a)(1 -p k (s |s, a)) ≤ Γ(s, a) -1 (3.51) Lemma 3.5
Proof. The result is a direct consequence of Cauchy-Schwartz inequality (for further details, see App. A.3).

As a consequence of Lem. 3.5,

k T k=1 s,a ν k (s, a)β sa p,k ≤ 2 ln 6SAT δ s,a Γ(s, a) k T k=1 ν k (s, a) N + k (s, a) +6S ln 6SAT δ s,a k T k=1 ν k (s, a) N + k (s, a)
Two sums appear in the bounds of the terms (1), ( 2) and (3):

k T k=1 ν k (s, a) N + k (s, a)
and

k T k=1 ν k (s, a) N + k (s, a)
.

Lem. 3.6 provides upper-bounds for those sums.

It holds almost surely that for all k ≥ 1 and for all (s, a) ∈ S × A×:

k T k=1 ν k (s, a) N + k (s, a) ≤ 3 N k T +1 (s, a) and k T k=1 ν k (s, a) N + k (s, a) ≤ 2 + 2 ln N + k T +1 (s, a) (3.52) Lemma 3.6
Proof. The proof follows from the rate of divergence of the series n i=1

1 √ i ∼ √ n and n i=1 1 i ∼ ln (n) respectively when n → +∞.
Using Lem. 3.6 together with Cauchy-Schwartz inequality we have:

s,a Γ(s, a) N k T +1 (s, a) ≤ s,a Γ(s, a) • s,a N k T +1 (s, a) = s,a Γ(s, a) T .
Chapter 3. Improved exploration-exploitation with Bernstein bounds Using Lem. 3.6 together with Jensen's inequality on the concave function ln(•) (with a normalization factor SA) and the fact that N + k T +1 (s, a) ≤ T , we have(for T, SA ≥ 2):

s,a ln N + k T +1 (s, a) ≤ SA ln s,a N + k T +1 (s, a) SA ≤ SA ln (T ) .
In conclusion, with probability at least 1 -5δ 6 , for all T ≥ SA:

k T k=1 ∆ k ≤ 6Λ s,a Γ(s, a) T ln 6SAT δ + 12ΛS 2 A ln 6SAT δ (1 + ln(T )) + 6r max SAT ln 6SAT δ + 12r max SA ln 6SAT δ (1 + ln(T )) + 4(Λ + r max ) T ln 5T δ + ΛSA log 2 T SA + 3r max SA • (1 + ln(T )).
(3.53)

3.5.7 Completing the regret bound of Thm. 3.4

For T ≥ 6SA we have 6SAT ≤ T 2 so that ln 6SAT δ ≤ ln T 2 δ ≤ 2 ln T δ
i.e., the logarithmic terms appearing in (3.53) no longer depend on SA but a factor 2 appears. For T ≤ 6SA we can use the trivial upper-bound r max T on the regret (which holds with probability 1) and so

∆(UCRLB, T ) ≤ r max T = r max √ T • √ T ≤ r max √ 6SAT ≤ 6 s,a
Γ(s, a) T .

After combining (3.39) with (3.53) and using a union bound, we obtain that there exists an absolute numerical constant β > 0 (i.e., independent of the MDP instance) such that for any MDP M , with probability at least 1 -δ, for all T > 1 the regret of UCRLB after T steps is bounded as

∆(UCRLB, T ) ≤ β • max {r max , Λ} •   s,a Γ(s, a) T ln T δ + S 2 A ln T δ ln (T )   .

Improved regret analysis for UCRLB using variance reduction methods

We now prove Thm. 3.5. In order to improve the dependency of the regret bound in Λ (i.e., replace Λ by √ Λ), we refine our analysis with three key improvements:

1. We leverage on Freedman's inequality [START_REF] Freedman | On tail probabilities for martingales[END_REF] instead of Azuma's inequality to bound all MDS. We recall this inequality in Prop. 3.9 below.

3.6. Improved regret analysis for ucrlb using variance reduction methods 3. We shift the optimistic bias h kt by a different constant at every time step t ≥ 1 rather than only at every episode k ≥ 1. More precisely, the optimistic bias is shifted by a different constant for every episode k ≥ 1 and for every visited state s ∈ S.

To the best of our knowledge, Thm. 3.5 and its proof are new although it is largely inspired by what is often referred to as "variance reduction methods" in the literature [START_REF] Munos | Influence and variance of a markov chain: Application to adaptive discretization in optimal control[END_REF]Lattimore andHutter, 2012, 2014;[START_REF] Azar | Minimax regret bounds for reinforcement learning[END_REF]Kakade et al., 2018). Similar techniques are used by [START_REF] Azar | Minimax regret bounds for reinforcement learning[END_REF] to achieve a similar bound but in the finite horizon setting. Our approach also borrows intuitions from the work of Talebi and Maillard (2018a) and [START_REF] Maillard | How hard is my mdp?" the distributionnorm to the rescue[END_REF].

Proposition 3.9 (Freedman's inequality)

Let (X n , F n ) n∈N be an MDS such that |X n | ≤ a a.s. for all n ∈ N. Then for all δ ∈]0, 1[, P   ∀n ≥ 1, n i=1 X i ≥ 2 n i=1 V X i F i-1 • ln 4n δ + 4a ln 4n δ   ≤ δ
To bound the rewards k T k=1 ∆ r k , we keep the same derivation as in Sec. 3.5.4 (see Eq. 3.49). On the other hand, we derive a completely different bound for the transition probabilities

k T k=1 ∆ p k .
Our new derivation will make appear some sums of variances.

For any vector u ∈ R S , we slightly abuse notation and write u 2 := u • u the Hadamard product of u with itself. For any probability distribution p over states S and any vector We start with a new bound relating ∆ p1 k and ∆ p3 k (as in Lem. 3.2):

u ∈ R S we define V p (u) := p u 2 -(p u) 2 = E X∼p [u(X) 2 ] -E X∼p [u(X)]
Under event E, with probability at least 1 -δ 6 :

∀T ≥ 1, k T k=1 ∆ p1 k ≤ k T k=1 ∆ p3 k + 4Λ ln 24T δ + 2 S ln 24T δ   T t=1 V p k t (•|st) (αh kt ) + T t=1 V p k t (•|st) (αh kt )   (3.54) Lemma 3.7 (Analogue of Lem. 3.2)
Proof. We use a martingale argument and Prop. 3.9 (see App. A.2 for further details).
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We also refine the upper-bound of ∆ p3 k derived in Eq. 3. As a result we can write:

:= -a,s p k (s |s, a)π k (a|s)h k (s ) = -p k (•|s) h k . It is easy to see that sp (w s k ) = sp (h k ) and w s k ∞ ≤ sp (h k ) implying that under event E, w s k ∞ ≤ Λ/α.
∆ p3 k ≤ α k T k=1 s,a,s ν k (s, a) p k (s |s, a) -p(s |s, a) • w s k (s ) ≤ 2α k T k=1 s,a ν k (s, a) s β sas p,k • w s k (s ) = 4α k T k=1 s,a ν k (s, a) ln (6SAT /δ) N + k (s, a) s ∈S p k (s |s, a)(1 -p k (s |s, a))w s k (s ) 2 + 3 ln (6SAT /δ) N + k (s, a) s w sa k (s ) ≤Λ/α
We denote by V k (s, a) := α 2 s p k (s |s, a)w s k (s ) 2 . Similarly to Lem. 3.5, we can prove the following inequality:

It holds almost surely that for all k ≥ 1 and for all (s, a, s ) ∈ S × A × S:

α s ∈S p k (s |s, a)(1 -p k (s |s, a))w s k (s ) 2 ≤ V k (s, a) • (Γ(s, a) -1) (3.55) Lemma 3.8 (Analogue of Lem. 3.5)
Proof. The result is a direct consequence of Cauchy-Schwartz inequality (for further details, see App. A.3).

As a consequence of Lem. 3.8,

k T k=1 ∆ p3 k ≤ 4 k T k=1 s,a ν k (s, a) V k (s, a) Γ(s, a) N + k (s, a) ln 6SAT δ + 3ΛS N + k (s, a) ln 6SAT δ = 4 k T k=1 t k+1 -1 t=t k V k (s t , a t ) Γ(s t , a t ) N + k (s t , a t ) ln 6SAT δ + 3ΛS N + k (s t , a t ) ln 6SAT δ .
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k T k=1 t k+1 -1 t=t k V k (s t , a t ) Γ(s t , a t ) N + k (s t , a t ) ≤ k T k=1 t k+1 -1 t=t k Γ(s t , a t ) N + k (s t , a t ) k T k=1 t k+1 -1 t=t k V k (s t , a t ) = k T k=1 s,a Γ(s, a)ν k (s, a) N + k (s, a) T t=1 V kt (s t , a t ).
Using Lem. 3.6, Jensen's inequality and the fact that N + k T +1 (s, a) ≤ T (as in Sec. 3.5.6), we can bound the first sum

s,a k T k=1 Γ(s, a)ν k (s, a) N + k (s, a) ≤ 2 s,a Γ(s, a) 1 + ln N + k T +1 (s, a) ≤ 2 1 + ln s,a Γ(s, a)N + k T +1 (s, a) s,a Γ(s, a) s,a Γ(s, a) ≤ 2(1 + ln (T )) s,a Γ(s, a).
To bound the second sum T t=1 V kt (s t , a t ), we rely on the following Lemma:

Under event E, with probability at least 1 -δ 6 :

∀T ≥ 1, T t=1 V kt (s t , a t ) ≤ T t=1 V p k t (•|st) (αh kt ) + 2Λ 2 T ln 4T δ (3.56)
Lemma 3.9

Proof. We notice that for all k ≥ 1 and s ∈ S, a π k (a|s

)V k (s, a) = V p k (•|s) (αh k ).
The concentration inequality then follows from a martingale argument and Prop. 3.7 (see App. A.2 for further details).

From Lem. 3.9 it follows that

k T k=1 ∆ p3 k ≤4 2 1 + ln(T ) ln 6SAT δ s,a Γ(s, a) Λ 2 2T ln T δ + T t=1 V p k t (•|st) (αh kt ) + 24ΛS 2 A ln 6SAT δ (1 + ln(T )) (3.57) It now remains to bound k T k=1 ∆ p2 k . As shown in Sec. 3.5.3: k T k=1 ∆ p2 k ≤ k T k=1 ∆ p4 k + Λk T .
We refine the bound on k T k=1 ∆ p4 k derived in Eq. 3.48 using Freedman's inequality instead of Azuma's.

Under event E, with probability at least 1 -δ 6 : Proof. We use a martingale argument and Prop. 3.9 (see App. A.2 for further details).

∀T ≥ 1, k T k=1 ∆ p4 k ≤ 2 T t=1 V p k t (•|st) (αh kt ) • ln 24T δ + 4Λ ln 24T δ (3.58)

Bounding the sum of variances

The main terms appearing respectively in (3.54), (3.57) and (3.58) all have the form of a sum of variances over time T t=1 V pt (αh kt ) with p t a distribution over states (respectively p kt (•|s t ), p kt (•|s t ) and p kt (•|s t )), and h kt the optimistic bias of episode k t . A first naïve upper bound of this sum can be derived using Popoviciu's inequality that we recall in Prop. 3.10.

Proposition 3.10 (Popoviciu's inequality on variances)

Let M and m be upper and lower bounds on the values of a random variable X i.e.,

P (m ≤ X ≤ M ) = 1. Then V(X) ≤ 1 4 (M -m) 2 .
Using Popoviciu's inequality and under event E,

V pt (αh kt ) ≤ sp (αh k ) 2 /4 = α 2 sp (h k ) 2 /4 ≤ Λ 2 /4
and so T t=1 V pt (αh kt ) ≤ Λ 2 T /4. Unfortunately, this would result in a regret bound scaling as O(Λ √ T ) (ignoring all other terms like S, A, logarithmic terms, etc.) which is not better than the bound of Thm. 3.4. In this section, we show that the cumulative sum of variances only scales as O(ΛT +Λ 2 √ T ) resulting in a regret bound of order O √ ΛT + ΛT 1/4 (ignoring all other terms).

We start by analyzing the variance term

V p k (•|st) (αh k ). The other variance terms V p k (•|st) (αh k ) and V p k (•|st) (αh k
) can be addressed in the same way. We do the following decomposition:

V p k (•|st) (αh k ) = α 2 p k (•|s t ) h 2 k -( p k (•|s t ) h k ) 2 = α 2 ( p k (•|s t ) -p k (•|s t )) h 2 k (1) + p k (•|s t ) h 2 k -h 2 k (s t+1 ) (2) + h 2 k (s t+1 ) -( p k (•|s t ) h k ) 2 (3)
Notice that for any r.v. X and any scalar a ∈ R, V(X + a) = V(X). Thus, the term

V p k (•|st) (αh k )
remains unchanged when h k is shifted by an arbitrary constant vector i.e., when h k is replaced by w k := h k + λ k e. As in Sec. 3.5.3, we minimize the ∞ -norm of

w k by choosing λ k = -1 2 (max s∈S h k (s) + min s∈S h k (s)). We recall that under event E, w k ∞ ≤ Λ/(2α) and so w 2 k ∞ ≤ Λ 2 /(4α 2 ).
(1) The first term

α 2 k T k=1 t k+1 -1 t=t k ( p k (•|s t ) -p k (•|s t )) w 2 k is similar to k T k=1 ∆ p1 k (see Sec. 3.5.3) except that αw k is replaced by α 2 w 2 k and p k (•|s t ) is replaced by p k (•|s t ). In Sec. 3.5.3 we had to decompose p k (•|s t ) -p k (•|s t ) into the sum of p k (•|s t ) -p k (•|s t ) and p k (•|s t ) -p k (•|s t ).
Here we no longer need this decomposition and we can use the same derivation with sp α 2 w 2 k ≤ Λ 2 /4 instead. Therefore, with probability at least 1 -δ 6 (and under event E):

α 2 k T k=1 t k+1 -1 t=t k ( p k (•|s t ) -p k (•|s t )) w 2 k ≤ 3 2 Λ 2 s,a Γ(s, a) T ln 6SAT δ + Λ 2 T ln 5T δ +3Λ 2 S 2 A ln 6SAT δ (1 + ln (T )) (2) The second term α 2 k T k=1 t k+1 -1 t=t k p k (•|s t ) w 2 k -w 2 k (s t+1 ) is identical to k T k=1 ∆ p4 k (see also Sec. 3.5.3) except that αw k is replaced by α 2 w 2 k .
With probability at least 1 -δ 6 (and under event E):

α 2 k T k=1 t k+1 -1 t=t k p k (•|s t ) w 2 k -w 2 k (s t+1 ) ≤ Λ 2 2 T ln 5T δ (3) The last term α 2 k T k=1 t k+1 -1 t=t k w 2 k (s t+1 ) -( p k (•|s t ) w k ) 2
is the dominant one and requires more work. Unlike the first two terms, it scales linearly with

T (instead of O( √ T )). We first notice that p k (•|s t ) w k = w k (s t ) + p k (•|s t ) w k -w k (s t ). Using the fact that (a + b) 2 = a 2 + b(2a + b) with a = w k (s t ) and b = p k (•|s t ) w k -w k (s t ) (and therefore 2a + b = w k (s t ) + p k (•|s t ) w k ) we obtain: ( p k (•|s t ) w k ) 2 = w 2 k (s t ) + ( p k (•|s t ) w k -w k (s t )) • (w k (s t ) + p k (•|s t ) w k )
and so applying the reverse triangle inequality:

( p k (•|s t ) w k ) 2 ≥ w 2 k (s t ) -| p k (•|s t ) w k -w k (s t )| • |w k (s t ) + p k (•|s t ) w k | (3.59)
For all k ≥ 1 and s ∈ S, we define r k (s) := a π k (a|s)r k (s, a). Using the (near-)optimality equation (see Sec. 3.5.2) we can write:

g k -r k (s t ) + α w k (s t ) -p k (•|s t ) w k = g k -r k (s t ) + α h k (s t ) -p k (•|s t ) h k ≤ ε k Moreover, ε k = rmax t k ≤ r max . As a result, since α > 0: α p k (•|s t ) w k -w k (s t ) = g k -r k (s t ) + α w k (s t ) -p k (•|s t ) w k -g k + r k (s t ) + α (p k (•|s t ) -p k (•|s t )) w k ≤ g k -r k (s t ) + α w k (s t ) -p k (•|s t ) w k ≤rmax + |r k (s t ) -g k | ≤rmax +α |(p k (•|s t ) -p k (•|s t )) w k | ≤ 2r max + α |(p k (•|s t ) -p k (•|s t )) w k | It is also immediate to see that |w k (s t ) + p k (•|s t ) w k | ≤ 2 w k ∞ ≤ Λ/α.
Plugging these inequalities into (3.59) and adding w 2 k (s t+1 ) we obtain:

α 2 w 2 k (s t+1 ) -( p k (•|s t ) w k ) 2 ≤ (2r max + α |(p k (•|s t ) -p k (•|s t )) w k |) Λ + α 2 w 2 k (s t+1 ) -w 2 k (s t ) (3.60)
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It is easy to bound the telescopic sum Sec. 3.5.3). With probability at least 1 -δ 6 :

α 2 t k+1 -1 t=t k w 2 k (s t+1 ) -w 2 k (s t ) = α 2 w 2 k (s t k+1 ) -w 2 k (s t k ) ≤ α 2 w 2 k (s t k+1 ) ≤ Λ 2 /4 (3.61) Finally, the sum α k T k=1 t k+1 -1 t=t k |(p k (•|s t ) -p k (•|s t )) w k | can be bounded in the exact same way as k T k=1 ∆ p1 k (see
α k T k=1 t k+1 -1 t=t k |(p k (•|s t ) -p k (•|s t )) w k | ≤3Λ s,a Γ(s, a) T ln 6SAT δ + 4Λ T ln 5T δ + 6ΛS 2 A ln 6SAT δ (1 + ln (T )) (3.62)
After gathering (3.61) and (3.62) into (3.60)) we conclude that with probability at least 1 -δ 6 (and under event E):

α 2 k T k=1 t k+1 -1 t=t k w 2 k (s t+1 ) -( p k (•|s t ) w k ) 2 ≤ 2r max ΛT main term + k T Λ 2 4 + O   Λ 2 s,a Γ(s, a) T  
In conclusion, there exists an absolute numerical constant β > 0 (i.e., independent of the MDP instance) such that with probability at least 1 -5δ 6 :

T t=1 V p k t (•|st) (αh kt ) ≤ β •   r max ΛT + Λ 2 s,a Γ(s, a) T ln T δ + Λ 2 S 2 A ln T δ ln (T )   .
We can prove the same bound (possibly with a different multiplicative constant β) for

T t=1 V p k t (•|st) (αh kt ) and T t=1 V p k t (•|st) (αh kt )
using the same derivation.

3.6.2 Completing the regret bound of Thm. 3.5

After plugging the bound derived for the sum of variances in the previous section (Sec. 3.6.1) into (3.54), (3.57) and (3.58), we notice that (3.54) and (3.58) can be upper-bounded by (3.57) up to a multiplicative numerical constant ans so it is enough to restrict attention to (3.57). The dominant term that we obtain is (ignoring numerical constants):

s,a Γ(s, a) ln T δ ln (T )   r max ΛT + Λ 2 s,a Γ(s, a) T ln T δ + Λ 2 S 2 A ln T δ ln (T )  
Using the fact that i a i ≤ i √ a i for any a i ≥ 0, we can bound the above square-root

Comparison between upper and lower-bounds

term by the sum of three simpler terms:

(1) A √ T -term (dominant):

r max Λ s,a Γ(s, a) T ln T δ ln (T ) (2) A T 1/4 -term: Λ s,a Γ(s, a) 3/4 T 1/4 ln T δ 3/4 ln (T ) (3) A logarithmic term: Λ S 2 A s,a Γ(s, a) ln T δ ln (T ) ≤ ΛS 2 A ln T δ ln (T ) When T ≥ Λ rmax 2 s,a Γ(s, a) ln T δ , we notice that the T 1/4 -term (2) is actually upper- bounded by the √ T -term (1), while for T ≤ Λ rmax 2 s,a Γ(s, a) ln T δ
we can use the following trivial upper-bound r max T on the regret:

∆(UCRLB, T ) ≤ r max T ≤ Λ 2 r max s,a Γ(s, a) ln T δ ≤ Λ 2 r max S 2 A ln T δ .
To complete the regret bound of Thm. 3.5 we also need to take into consideration (3.39) and (3.49) as well as the lower order terms of (3.54), (3.57) and (3.58). It turns out that the only terms that are not already upper-bounded by ( 1), ( 2) and (3) (up to multiplicative numerical constants) sum as:

r max SAT ln T δ + r max SA ln T δ ln (T ) + ΛS 2 A ln T δ ln (T ) If Λ ≤ r max then Λ 2 /r max ≤ Λ ≤ r max , while if Λ ≥ r max then Λ 2 /r max ≥ Λ ≥ r max .
Therefore, all the above logarithmic terms can be bounded by: max r max , Λ 2 rmax S 2 A ln T δ ln (T ). Moreover, all the √ T -terms can be bounded by

max r max , r max Λ s,a Γ(s, a) T ln T δ ln (T )
To conclude, we only need to adjust δ to obtain an event of probability at least 1 -δ. This will only impact the multiplicative numerical constants of the above terms.

Comparison between upper and lower-bounds

We recall the minimax lower-bound of Prop. 2.12: for any learning algorithm, it is possible to find a specific worst-case MDP for which the regret suffered is at least Ω(r max √ DSAT ) on expectation. The intermediate MDP constructed by Jaksch et al. (2010, Figure 3) to prove Prop. 2.12 satisfies Λ = r max D and so Prop. 2.12 can also be written as

E [∆(M, A, µ 1 , T )] ≥ 0.015 • r max Λ √ SAT (3.63)
i.e., D can be replaced by Λ.

The upper bound of Theorem. 3.5 (see Sec. 3.4) holds with probability 1 -δ but it is possible to obtain the same bound in expectation using the law of total expectations and setting δ = 1/ √ T :

E M [∆ M (A, T )] = O (1 -δ) ≤1 • max{r max , r max Λ} s,a Γ(s, a)T + δ • r max T ≤rmax √ T (3.64)
If we ignore multiplicative numerical constants and logarithmic terms, (3.63) matches the dominant term of (3.64) up to a factor √ Γ. Unlike UCRL2, UCRLB is minimax optimal in Λ (or D). To the best of our knowledge, it is the first bound with this property for the undiscounted infinite horizon setting. Although the dependency in S dropped from S (UCRL2) to √ ΓS ≤ S (UCRLB), it is still not matching the lower bound (3.63).

Until very recently, it was still an open question of the literature whether √ S is achievable when Γ = Ω(S). Quite remarkably, the same question remained open in the discounted setting. [START_REF] Lattimore | Near-optimal pac bounds for discounted mdps[END_REF] indeed proved a Ω SA ε 2 (1-γ) 3 lower-bound on the sample complexity and derived an upper-bound matching the lower-bound up to a factor Γ. 12 In the finite horizon setting, this question was answered by [START_REF] Azar | Minimax regret bounds for reinforcement learning[END_REF]; Kakade et al. (2018) who proved a regret bound of order O √ HSAT for their algorithm. Unfortunately, it is not easy to extend their approach to the infinite horizon case as it seems to heavily rely on the existence of a known horizon H.

In the infinite horizon undiscounted setting, there had been several notable attempts to try to fill the gap between lower and upper-bounds. For example, [START_REF] Agrawal | Optimistic posterior sampling for reinforcement learning: worst-case regret bounds[END_REF] initially claimed that the optimistic version of PSRL they designed incurs a regret bounded by O r max D √ SAT . This improvement was obtained thanks to the use of tighter concentration inequalities proved by the same authors (Agrawal and Jia, 2017, Lemma C.1 & C.2). To better understand the main challenge of the proof, it is important to recall that the term √ Γ appears when bounding ∆ p3 k in the regret decomposition (see Sec. 3.5 and 3.6). Bounding this term requires to bound ( p k (•|s) -p k (•|s)) h k where p k is the estimated transition probability under policy π k , p k is the true transition probability under π k and h k is the optimistic bias at episode k. While for a fixed vector v,

( p k (•|s) -p k (•|s)) v sp (v) 1 N + k (Hoeffding bound),
this concentration inequality may no longer hold when v and p k are correlated (which is the case for v = h k ). To overcome this issue, in the regret proof we used a worst-case bound: Agrawal and Jia (2017, Lemma C.2) claimed that the √ Γ could be removed in the above bound. Unfortunately, there seem to be a major mistake in the proof of both Lemma C.1 and Lemma C.2. We showed both theoretically 12 We recall that a regret bound of order C √ T should be compared with a sample complexity bound of order

max sp(v)≤D ( p k (•|s) -p k (•|s)) v sp (v) Γ N + k which introduces √ Γ in the final regret bound.
C 2 (1-γ) 3 ε 2 and D is comparable to 1 1-γ .

Conclusion

and empirically an anti-concentration scaling linearly with √ S when Γ = Ω(S) [START_REF] Qian | Concentration inequalities for multinoulli random variables[END_REF]. This anti-concentration suggested that in order to remove the √ Γ factor, new arguments were needed that do not involve bounding max sp

(v)≤D ( p k (•|s) -p k (•|s)) v.
Despite the failed attempts, [START_REF] Tossou | Near-optimal Optimistic Reinforcement Learning using Empirical Bernstein Inequalities[END_REF] seem to have finally solved this problem (the paper is still unpublished). Not long before, Ortner (2018) derived a Γ-free bound for ergodic MDPs.

Posterior sampling vs optimism. [START_REF] Agrawal | Optimistic posterior sampling for reinforcement learning: worst-case regret bounds[END_REF] points out that their Lemma C.1 is essentially Lemma 3 of Osband and Roy (2017) re-written. [START_REF] Osband | Why is posterior sampling better than optimism for reinforcement learning?[END_REF] used Lemma 3 to show a bound O H √ SAT on the Bayesian regret of PSRL for finite horizon problems. Unfortunately, the proof of Lemma 3 is also mistaken and our anticoncentration result also applies here. [START_REF] Osband | Why is posterior sampling better than optimism for reinforcement learning?[END_REF] further claimed that the improved S-dependency of their bound illustrates the superiority of posterior sampling methods over OFU methods: the latter will always suffer a regret scaling linearly with S while the former suffers a regret scaling linearly with √ S. Our result questions the validity of this claim. [START_REF] Osband | Why is posterior sampling better than optimism for reinforcement learning?[END_REF] showed that their claim is empirically verified. However, they run UCRL2 which indeed suffers S due to the use of Hoeffding/Weissman bounds. Moreover, they run experiments on a family of MDPs (known as "River Swim") with increasing S but Γ = 2 in all MDPs. Therefore, on this specific family of MDPs, the regret of UCRLB will empirically grow as Θ( √ S) just like the regret of PSRL. The problem of the S dependency in the regret bound does not seem to be linked to the family of algorithm used (posterior sampling vs OFU).

Conclusion

In this chapter we introduced UCRLB, a variant of UCRL2 that leverages Bernstein concentration inequality to construct the confidence bounds used in the definition of the extended MDP. We showed that this simple modification allows to save a DS/Γ factor in the regret bound, implying that the best known minimax lower bound (Prop. 2.12) is somehow tight. We also generalized the notion of diameter by introducing the concept of travel-budget and made several contributions to the proof techniques used in the regret analysis of UCRL2like algorithms. In the rest of the thesis, we will make an extensive use of all the material presented in this chapter in different contexts.

For future work, it would be very helpful to simplify and understand better the proof of Thm. 3.5 (second regret bound). For example, it could be insightful to provide a unified view of variance reduction methods in RL by relating our analysis to the other works mentioned in Sec. 3.6.

Exploration-exploitation in MDPs with infinite diameter

Introduction

Motivations

In the undiscounted infinite horizon setting, a major limitation of UCRL2-like algorithms is that the true unknown MDP M needs to be communicating i.e., its diameter D (see Def. 3.1) should be finite. For example, when D = +∞, the regret bounds of Thm. 3.4 and 3.5 are worthless1 . This is not just an artefact of the regret analysis as whenever D = +∞, UCRLB (as well as UCRL2 and its variants) will indeed suffer a linear regret i.e., will never learn. One can easily verify this claim by running the algorithms on any non-communicating MDP, but this behaviour is more easily understood by looking at Example 1 of [START_REF] Ortner | Optimism in the face of uncertainty should be refutable[END_REF]. Their example (see Fig. 4.1a) is a slight modification of the stochastic Multi-Armed Bandit problem with only two arms/actions in state s -a 0 and a 1 -that both have a reward strictly bounded by r max , and a third action that can only be played in a different state s . If s is not reachable from s, s will never be visited and any UCRL2-like algorithm will expect to receive maximal reward r max in that state (by optimism). As a consequence, it will always choose a model assigning as much probability mass as allowed by the confidence intervals to go from s to s (by optimism). The "best" action to play in this optimistic model is the one that is expected to cause a transition to s with highest probability. In the optimistic model, the probability to go to s when playing action a i (i ∈ {0, 1}) decreases as the number of times the action is played (N (s, a i )) increases. Therefore, the "best" action keeps changing: it is a 0 half of the time (when N (s, a 0 ) < N (s, a 1 )), a 1 the other half (when N (s, a 0 ) > N (s, a 1 )). The regret incurred is therefore linear whenever the problem is non-trivial i.e., whenever r(s, a 0 ) = r(s, a 1 ).

One might be tempted to think that the poor performance of UCRLB in the example of Fig. 4.1a is only a drawback of the algorithm and that the problem is not intrinsically more UCRLB fail to learn when some states are not reachable. Fig. 4.1b illustrates the additional difficulty of the exploration-exploitation dilemma when the diameter is potentially infinite.

In both examples, two actions can be played in state s (a 0 and a 1 ) and only one in state s (a 0 ).

difficult than any RL task where D < +∞. Let's slightly modify the previous example (see Fig. 4.1b): in state s, action a 0 yields reward 1 2 r max and action a 1 yields reward 0 ; in state s , action a 0 yields reward r max . We further assume that the learning agent knows all the parameters of the MDP except the transition probability to move from s to s after playing a 1 (dashed arrows on Fig. 4.1). State s can only be reached when playing a 1 in s but might also not be reachable at all. If the probability to go to s is non-zero, the agent should play a 1 in order to move to s as quickly as possible. On the other hand, if the probability to go to s is zero, then playing a 1 only increases the regret and a 0 should be played instead. Unfortunately, as long as no transition to s has ever been observed, and no matter how many times action a 1 has already been played, the statement "the probability to go to s is non-zero" can never be refuted as this probability can be arbitrarily small . In other words, while in state s and independently of past observations, it is impossible for the agent to distinguish between the two scenarios: arbitrarily low probability versus absence of a transition to s . This is not specific to an algorithm but it is a fundamental difficulty of the learning problem. In the example of Fig. 4.1, an "efficient" algorithm should carefully balance the exploration of a 1 with the exploitation of a 0 while in s. When in addition the other parameters of the MDP are unknown, this comes as an extra "cost" compared to the usual exploration-exploitation trade-off that occurs when D < +∞. In conclusion, the exploration-exploitation dilemma becomes intrinsically more challenging in non-communicating MDPs.

Notice that the problems described in Fig. 4.1 does not occur in the discounted or finite horizon settings since the exploration is directly tailored to the states that are reachable within the known horizon2 . Then, it does not matter whether the transition to s exists or not. It is sufficient to test whether the probability to go to s is smaller than 1 -γ (discounted) or 1/H (finite horizon). This only requires to play a 1 for a finite number of times. The problem of Fig. 4.1 can also be overcome by leveraging on additional prior knowledge about the MDP (s.t. knowledge of the value of the smallest probability of transition, etc.) given to the learning agent. In this Chapter, we will assume that no such knowledge is available to the learning agent and we will analyse the general problem. One might wonder whether the example of Fig. 4.1 is not artificial and whether MDPs with non-reachable states (like s on Fig. 4.1) are frequently encountered in RL. While assuming that all states are reachable may seem a reasonable assumption at first sight, it is rarely verified in practice. In fact, it requires a designer to carefully define a state space S that contains all reachable states (otherwise it may not be possible to learn the optimal policy), but that excludes unreachable states (otherwise the resulting MDP would be non-communicating). This requires a considerable amount of knowledge about the environment and its dynamics, and may be against the main purpose of RL which is to learn in an unknown environment with limited human supervision. Consider for example a problem where we learn from images e.g., the Atari Breakout game (Mnih et al., 2015a). A somehow simple "intuitive" state space could be the set of all "plausible" configurations of the brick wall, ball and paddle. The situation in which the wall has an hole in the middle is a valid state (e.g., as an initial state) but it cannot be observed/reached starting from a dense wall (see Fig. 4.2). As such, it should be removed to obtain a "well-designed" state space. While it may be possible to design a suitable set of reachable states that define a communicating MDP, this is often a difficult and tedious task, sometimes even impossible. Now consider a continuous domain e.g., the Mountain Car problem [START_REF] Moore | Efficient memory-based learning for robot control[END_REF]). The state is described by the position x and velocity ẋ of the car along the x-axis. The state space of this domain is usually defined as the Cartesian product (x, ẋ) ∈ [-1.2, 0.6] × [-0.07, 0.07]. Unfortunately, this set contains configurations that are not physically reachable as shown on Fig. 4.3. The dynamics of the system is constrained by the evolution equations (law of motion). Therefore, the car can not go arbitrarily fast. On the leftmost position (x = -1.2) the speed ẋ cannot exceed 0 because this position can be reached only with velocity ẋ ≤ 0. To reach a higher velocity, the car would need to acquire momentum from further left (i.e., x < -1.2) which is impossible by design (-1.2 is the left-boundary of the position domain). The maximal speed reachable for

x > -1.2 can be attained by applying the maximum acceleration at any time step starting from the state (x, ẋ) = (-1.2, 0). This identifies the boundary of an unreachable region (red area on Fig. 4.3). Note that other states may not be reachable either.

As shown on the example of Fig. 4.1a, whenever the state space is "misspecified" or the MDP is non-communicating (i.e., D = +∞), OFU-based algorithms (e.g., UCRLB) opti- mistically attribute large rewards and non-zero probability to reach states that have never been observed, and thus they tend to repeatedly attempt to explore unreachable states. This results in poor performance and linear regret. In this chapter, we will describe and analyse an "efficient" algorithm that achieves a sublinear regret in both communicating and noncommunicating MDPs without any prior knowledge on the diameter.

Previous work

Surprisingly, the problem of infinite diameter has received very little attention in the RL literature. The few papers dealing with this issue do not focus explicitly on this problem. They incidentally -and only partially-address it by attempting to solve a different -often more general-problem. Unfortunately, most of this literature is either incomplete (i.e., leaves a lot of open questions) or not fully accurate (e.g., makes questionable assumptions).

A first attempt to overcome the case D = +∞ is Regal.C [START_REF] Bartlett | REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs[END_REF] which requires prior knowledge of an upper-bound c ≥ 0 to the span (i.e., range) of the optimal bias function h * (this setting will be the focus of Chap. 5). The optimism of UCRL2 is then "constrained" to policies whose bias has span smaller than c. This implicitly "removes" non-reachable states, whose large optimistic reward would cause the span to become too large. Unfortunately, an accurate knowledge of the bias span may not be easier to obtain than designing a well-specified state space. [START_REF] Bartlett | REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs[END_REF] proposed an alternative algorithm -Regal.D-that leverages on the doubling trick [START_REF] Auer | Gambling in a rigged casino: The adversarial multi-armed bandit problem[END_REF][START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF] to avoid any prior knowledge on the span. Nonetheless, we noticed a major flaw in the proof of Bartlett and Tewari (2009, Theorem 3) that questions the validity of the algorithm (Fruit et al., 2018a, Appendix A). PS-based algorithms also suffer from similar issues. To the best of our knowledge, the only regret guarantees available in the literature for this setting are3 (Abbasi-Yadkori and Szepesvári, 2015; [START_REF] Ouyang | Learning unknown markov decision processes: A thompson sampling approach[END_REF][START_REF] Theocharous | Posterior sampling for large scale reinforcement learning[END_REF]. However, the counter-example of Osband and Roy (2016) invalidates the result of Abbasi-Yadkori and Szepesvári (2015). On the other hand, [START_REF] Ouyang | Learning unknown markov decision processes: A thompson sampling approach[END_REF] and [START_REF] Theocharous | Posterior sampling for large scale reinforcement learning[END_REF] present PS algorithms with expected Bayesian regret scaling linearly with c, where c is an upper-bound on the optimal bias spans of all the MDPs that can be drawn from the prior distribution ( (Ouyang et al., 2017b, Asm. 1) and (Theocharous et al., 2017, Sec. 5)). Ouyang et al. (2017b, Remark 1) claim that their algorithm does not require the knowledge of c to derive the regret bound. However, in (Fruit et al., 2018a, Appendix B) we show on a very simple example that for most continuous prior distributions (e.g., commonly used uninformative priors like Dirichlet), it is very likely that c = +∞ implying that the regret bound may not hold (and similarly for the work of [START_REF] Theocharous | Posterior sampling for large scale reinforcement learning[END_REF]). As a result, similarly to Regal.C, the prior distribution should contain prior knowledge on the bias span to avoid poor performance.

In this chapter, we present TUCRL, an algorithm designed to trade-off exploration and exploitation in weakly-communicating and multi-chain MDPs (e.g., MDPs with misspecified state space) without any prior knowledge and under the only assumption that the agent starts from a state in a communicating subset of the MDP (Sec. 4.2). In communicating MDPs, TU-CRL eventually (after a finite number of steps) performs as UCRL2, thus achieving problemdependent logarithmic regret (Prop. 2.13). When the true MDP is weakly-communicating, we prove that TUCRL achieves a O( √ T ) regret with polynomial dependency on the MDP parameters. We also show that it is not possible to design an algorithm achieving logarithmic regret in weakly-communicating MDPs without having an exponential dependence on the MDP parameters (see Sec. 4.5). TUCRL is the first computationally tractable algorithm in the OFU literature that is able to adapt to the MDP nature without any prior knowledge. The theoretical findings are supported by experiments on several domains (see Sec. 4.4).

The work presented in this chapter extends the conference paper [START_REF] Qian | Concentration inequalities for multinoulli random variables[END_REF].

Truncated Upper-Confidence RL (TUCRL)

Formalisation of the problem

In all this chapter, we relax the assumption that the true MDP M should be communicating (see Chap. 3). Instead, we only assume that M is weakly communicating. This is more general as communicating implies weakly communicating but not conversely. We recall the definition of a weakly communicating MDP in Def. 4.1 below (Puterman, 1994, Section 8.3.1 Chapter 4. Exploration-exploitation in MDPs with infinite diameter and Proposition 8.3.1).

An MDP M = {S, A, r, p} is said to be weakly communicating if the state space S can be partioned into two subsets, S C and S T (i.e., S C ∩ S T = ∅ and S C ∪ S T = S), such that:

1. Every state in S C is accessible from every other state in S C under at least one deterministic stationary policy, 2. Either S T is empty or every state in S T is transient under every policy. Equivalently, M is weakly communicating if and only if the Markov Chain induced by any stationary policy that plays every action with non-zero probability is unichain. Under such policy, all states in S C are recurrent while, all states in S T are transient.

Definition 4.1 (Weakly communicating MDP)

By definition, the states in S T are not accessible from the states in S C and so it is possible to restrict the state space S to S C while still preserving the "properties" of an MDP. The MDP defined on the restricted state space S C is always communicating by definition and we denote by D C its diameter i.e.,

D C := max (s,s )∈S C ×S C min π∈Π SD E π [τ (s ) s 1 = s] -1 (4.1)
where τ (s ) := inf {t ≥ 1 : s t = s } is the first hitting time of s (see Sec. 3.3). Similarly, we denote by Λ its travel-budget i.e.,

Λ C := max s,s ∈S C ×S C min π∈Π SD E π   τ (s )-1 t=1 r max -r(s t , π(s t )) s 1 = s   (4.2)
where the sum should be interpreted as a Cesaro limit when P (τ (s ) = +∞|s) < 1. We denote by In any weakly-communicating MDP, the optimal gain g * is state independent.

Since g * is state-independent, we can still evaluate the performance of a learning algorithm

A by its cumulative regret ∆(A, T ) = T t=1 g * -r t . Furthermore, we state the following assumption:

The initial state s 1 belongs to the communicating subset of states, i.e., s 1 ∈ S C . Assumption 4.1

Truncated Upper-Confidence RL (tucrl)

While this assumption somehow restricts the scenario we consider, it is fairly common in practice. For example, all the domains that are characterized by the presence of a resetting distribution (e.g., episodic problems) satisfy this assumption (e.g., Mountain Car, Cart Pole, Atari games, taxi, etc.). Under Asm. 4.1, D C < +∞.

Multi-chain MDPs. While we consider weakly-communicating MDPs for ease of notation, all the results presented in this Chapter extend to the more general case of multi-chain MDPs. 4 In this case, there may be multiple communicating and transient sets of states and the optimal gain g * is different in each communicating subset. We then define S C as the set of states that are accessible -with non-zero probability-from the initial state s 1 (s 1 included) under some stationary deterministic policy. S T is defined as the complement of S C in S i.e., S T := S \ S C . With these new definitions of S C and S T , Asm. 4.1 needs to be reformulated as follows:

The initial state s 1 is accessible from any other state in S C under some stationary deterministic policy. Equivalently, S C is a communicating set of states (i.e., D C < +∞). Note that the states belonging to S T can either be transient or belong to other communicating subsets of the MDP disjoint from S C . It does not really matter because the states in S T will never be visited by definition. As a result, the regret is still defined as before, where the learning performance is compared to the optimal gain g * (s 1 ) related to the communicating set of states S C s 1 . We highlight that g * (s 1 ) = g * (s) for all s ∈ S C .

Algorithm

In this section we present our solution to the problem of learning in an MDP with infinite diameter. We introduce Truncated Upper-Confidence for Reinforcement Learning (TUCRL), an optimistic online RL algorithm that efficiently balances exploration and exploitation in non-communicating MDPs without prior knowledge. Because TUCRL is very similarly to UCRLB (same structure, confidence bounds, etc.), we do not repeat the full pseudo-code of Alg. 5 and only stress the differences between the two algorithms which i.e., the extended MDP constructed at each episode and the stopping condition of an episode. We recall that the extended MDP constructed by UCRLB is denoted M k (Eq. 3.3 and 3.4).

Estimation of reachable states. UCRLB is optimistic w.r.t. the confidence intervals so that for all states s that have never been visited (i.e., s.t. a N k (s, a) = 0), the optimistic reward r k (s, a) will automatically be set to r max by optimism (see example on Fig. 4.1a), while all transitions to s are set to the largest value compatible with B k p . Unfortunately, some of the states with a N k (s, a) = 0 may actually be unreachable (i.e., s ∈ S T ) and UCRLB would uniformly explore the policy space with the hope that at least one policy reaches those (optimistically desirable) states with non-zero probability (see example on Fig. 4.1a).

TUCRL addresses this issue by first constructing empirical estimates of S C and S T (i.e., the set of communicating and transient states, see Sec. 4.2.1) using the states that have been visited so far, that is

S C k :=    s ∈ S : a∈As N k (s, a) > 0    ∪ {s t k } and S T k := S \ S C k (4.3)
where we recall that t k is the starting time of episode k (see Eq. 3.11). All states in S C k are for sure reachable from s 1 and so under Asm. 4.1 (or Asm. 4.2), S C k ⊆ S C . In the rest of this chapter, we will denote by

S C k (resp. S T k ) the cardinal of S C k (resp. S T k ).
Truncated transition probabilities. In order to avoid that optimism drives the algorithm into attempting to reach unreachable states, we could simply execute UCRLB on S C k , which is guaranteed (by design and under Asm. 4.1 or 4.2) to contain only states in the communicating set S C . Nonetheless, with such a strategy, the algorithm could under-explore some state-action pairs that would allow discovering other states in S C , thus getting stuck in a strict subset of S C and suffering linear regret. While the states in S C k are guaranteed to be in S C , it is not possible to know whether the states in S T k are actually reachable from S C k or not (see the example of Fig. 4.1b and the impossibility to distinguish between a zero and arbitrarily small transition probability). To account for the eventuality that some states in S T k actually belong to S C , TUCRL first "guesses" a lower bound on the probability of transition from states s ∈ S C k to s ∈ S T k and whenever the maximum transition probability from s to s compatible with the confidence intervals (i.e., min{1, p k (s |s, a) + β sas p,k }, see Alg. 5) is below the lower bound, it assumes that such transition is not possible. This strategy is based on the intuition that a transition either does not exist or it should have a sufficiently "big" mass. However, these transitions should be periodically reconsidered in order to avoid underexploration issues. More formally, let (ρ t (s, a)) t≥1 be positive non-increasing sequences to be defined later. For all (s, a, s ) ∈ S × A × S, we define p + k (s |s, a) to be the largest (i.e., most optimistic) probability of transition from s to s through action a that belongs to B k p (s, a, s ) (see Eq. 3.3 . For all (s, a) ∈ S C k × A s , TUCRL compares p + k (s, a) to ρ t k (s, a) and, whenever the latter is strictly bigger than the former, forces all transition probabilities to S T k to be zero (i.e., whenever

p + k (s, a) < ρ t k (s, a), p k (s |s, a) ← 0 for all s ∈ 4.2. Truncated Upper-Confidence RL (tucrl) S T k ).
The confidence intervals of all other transitions are kept unchanged. This corresponds to constructing the alternative restricted confidence intervals 3 no longer holds as some of the probabilities set to 0 might actually be non-zero in the true MDP. In this case, it may be difficult to relate the optimistic bias h k with the travel-budget of the true MDP (see Sec. 3.3). To overcome this issue, we slightly increase the confidence intervals B k p (s, a, s ). For all s ∈ S and a ∈ A s we define

B k p (s, a, s ) :=    {0} if s ∈ S C k , p + k (s, a) < ρ t k (s,
ζ sa p,k := s ∈S T k p + k (s |s, a) = S T k • p + k (s, a) (4.6)
ζ sa p,k simply corresponds to the maximal cumulative probability mass that could be assigned to the transition (s, a) → S T k if we were using the same confidence intervals B k p (s, a, s ) as in UCRLB. In TUCRL, for all (s, a) ∈ S C k × A such that p + k (s, a) < ρ t k (s, a), the probability p k (s |s, a) is set to 0 for all s ∈ S T k . We thus redistribute this "optimistic probability mass" on all other states. This amounts to defining the following confidence intervals (for all (s, a, s With the new confidence intervals Z k p (s, a, s ), we will show that the travel-budget of the associated extended MDP is bounded by the travel-budget of M k (the extended MDP constructed by UCRLB) which is itself bounded (with high probability) by the travel-budget of the true MDP as shown in Chap. 3. Moreover, the increase of ζ sa p,k in the confidence bounds only impacts the logarithmic terms of the regret bound since

) ∈ S × A × S) Z k p (s, a, s ) :=:=                  B k p (s, a, s ) if s ∈ S T k , B k p (s, a, s ) if s ∈ S C k and p + k (s, a) ≥ ρ t k (s, a), {0} if s ∈ S C k , p + k (s, a) < ρ t k (s,
ζ sa p,k ≤ 6S ln(6SAN + k (s,a)/δ) N + k (s,a)
. Finally, the confidence intervals of the rewards B k r (s, a) will remain unchanged.

Extended value iteration.

With some transitions set to 0, it is possible that the associated extended MDP is not communicating and not even weakly-communicating. 

:=    S C k if for all (s, a) ∈ S C k × A s , p + k (s, a) < ρ t k (s, a) S otherwise (4.8)
We can now define the extended MDP M k as

M k := S EVI k , A, r k (s, a) ∈ B k r (s, a), p k (s |s, a) ∈ Z k p (s, a, s ) (4.9)
Compared to the extended MDP M k constructed by UCRLB, only the state space (4.8) and the confidence intervals of transition probabilities (4.7) change. By construction, M k is always communicating and so its optimal gain is constant, EVI is guaranteed to converge and Lem. 2.7 applies. TUCRL executes EVI on the extended MDP M k . In TUCRL, line 9 of Alg. 5 (Eq. 3.5) is replaced by

(g k , h k , π k ) := EVI L k α , G k α , r max t k , 0, s 1 (4.10)
where L k α denotes the optimal Bellman operator of M k with aperiodicity transformation of parameter α ∈]0, 1] (and G k α is the associated greedy operator). We will also denote by p k and r k the transition probabilities and rewards satisfying 

∀s ∈ S, L k α h k (s) = a∈As π k (s, a)r k (s, a) + α a∈As s ∈S π k (s, a)p k (s |s, a)h k (s ) + (1 -α)h k (s).
L k α h * k = h * k + h * k e. Since Lem. 2.7 holds, g k ≥ g * k -rmax t k .
Stopping condition of episodes. Besides the change in the definition of B k p , the stopping condition of episodes is also slightly modified compared to UCRLB (line 12 in Alg. 5). In addition to ending the current episode as soon as ν k (s t , a t ) ≥ N + k (s t , a t ), TUCRL also stops whenever a N k (s t+1 , a) = 0. Equivalently, TUCRL forces an episode to terminate as soon as a state previously in S T k is visited (the state is then added to S C k ). In TUCRL, line 12 of Alg. 5 is then rewritten as:

if ν k (s t , a t ) ≥ N + k (s t , a t ) or a N k (s t+1 , a) = 0 ⇐⇒ s t+1 ∈ S T k (4.11)
This minor change guarantees that for every episode k ≥ 1 and for all the states s ∈ S T k and all actions a ∈ A s , we have N k (s, a) = 0 (when the condition is about to be violated, episode k stops). Furthermore, the number of episodes is hardly impacted as we will see.

Communicating MDPs. In the next section, we will show that under Asm. 4.1 (or Asm. 4.2), and with a carefully tuned sequences (ρ t (s, a)) t≥1 , TUCRL is always able to learn i.e., to achieve sublinear regret: ∆(TUCRL, T ) = o(T ). When the true MDP is communicating, this means that all states are eventually visited at least once and so there exists an episode . So for all k ≥ k, M k = M k (see Eq. 4.9) and the condition a N k (s t+1 , a) = 0 is always false meaning that the stopping condition of episodes implemented by TUCRL (4.11) is the same as the one implemented by UCRLB. For all k ≥ k, TUCRL naturally reduces to UCRLB. This seems reasonable since UCRLB is known to efficiently learn under the prior knowledge that the MDP is communicating. When S T k = ∅, this prior knowledge is not needed and is automatically deduced from the observations. Sequences of thresholds. In practice, we set

ρ t (s, a) := min        1, 6 ln 6SAN + k t (s,a) δ N + kt (s, a)        • N + kt (s, a) • SA t (4.12)
for all t ≥ 1, so that the condition to remove transition reduces to N + k (s, a) > t k /SA. This shows that only transitions from state-action pairs that have been poorly visited so far are enabled, while if the state-action pair has already been tried often and yet no transition to s ∈ S T k is observed, then it is assumed that s is not reachable from (s, a). When the number of visits in (s, a) is big, the transitions to "unvisited" states (S T k ) should be discarded because if the transition actually exists, it is most likely extremely small and so it is worth exploring other parts of the MDP first. Symmetrically, when the number of visits in (s, a) is small, the transitions to "unvisited" states should be enabled because the transitions are quite plausible and the algorithm should try to explore the outcome of taking action a in s and possibly reach states in S T k . We denote the set of state-action pairs that are not sufficiently explored by

E k := (s, a) ∈ S C k × A : N + k (s, a) ≤ t k SA . (4.13)
Executed policy π k . The policy π k may be stochastic but all actions that are played with non-zero probability satisfy the (near-)optimality equation. This will simplify the regret proof compared to Chap. 3.

Analysis of TUCRL

Optimistic gain and bias

Gain-optimism

The first technical difficulty in the analysis of TUCRL is that whenever some transitions are disabled (i.e., forced to be 0), the plausible set of MDPs M k may actually be biased and not

Chapter 4. Exploration-exploitation in MDPs with infinite diameter contain the true MDP M . In other words, Thm. 3.1 does not hold for M k (i.e., it is possible that M ∈ M k for at least one k ≥ 1 with probability strictly bigger than δ 3 ). However, since M k is still defined as in Chap. 3, Thm. 3.1 still holds for M k i.e., M ∈ M k for all k ≥ 1 with probability at least 1 -δ 3 . We denote by E this high probability event as in Chap. 3. In this section we prove that TUCRL is always gain-optimistic (i.e., g * k ≥ g * ) despite "wrong" confidence intervals Z k p (4.7). A first approach would be to use Prop. 3.3 as suggested in Sec. 3.2.1. Intuitively, the "truncation" of the confidence intervals operated by TUCRL only

perturbs the vector L k α h * by a term of order η k ∼ sp (h * ) SA t k ln SAt k δ compared to L k α h * i.e., L k α h * ≥ Lh * -η k e and so g * k ≥ g * -η k (see Sec. 3.2.1
). The problem is that the additional regret created by the term

k T k=1 (t k+1 -t k )η k is of order Θ sp (h * ) S 2 A T ln T δ
in the worst case. In order to avoid such a bad dependency in S and A in the regret bound, we rely on completely different arguments to prove optimism. The following lemma helps to identify the possible scenarios that TUCRL can produce. 

Let episode k be such that M ∈ M k , S T k = ∅ and t k ≥ C k := 36 • D C 2 • SA • S T k 2 • ln 6SAt k δ 2 . ( 4 
× A s N + k (s, a) > t k SA ≥ C k SA = 6D C S T k ln 6SAt k δ . Since S T k = ∅ and M ∈ M k , for any (s, a, s ) ∈ S C k × A s × S T k , p(s |s, a) ∈ B k p (s, a, s ) implying p(s |s, a) transition probability in M ≤ p k (s |s, a) =0 +β sas p,k = 2 σ 2 p,k (s |s, a) ln(6SAt k /δ) N + k (s, a) =0 + 6 ln 6SAN + k (s,a) δ N + k (s, a) ≤ 6 ln 6SAt k δ N + k (s, a) < 1 D C S T
t k ≥ N + k (s, a) > 6D C S T k ln 6SAt k δ .
As in Sec. 2.1.4, for all s ∈ S, we denote by h * →s the maximal non-positive fixed point of the Bellman shortest path operator L →s of the true MDP M where all rewards are set to -1 (see Thm. 2.8). As shown in Sec. 2.1.4, for all (s, a, s = S and every state in S is accessible from any other state in S (in the extended MDP M k ). Thus, g * k is the optimal gain of all the states in S and in particular the states in S T k (Puterman, 1994, Theorem 8.3.2). For all (s, a)

) ∈ S × A s × S, -h * →s (s) = min π∈Π SR (M ) E π M [τ (s )|s 1 = s]-1 i.e.,
     -1 + s ∈S p(s |s, a)h * →s (s ) ≤0      ≤ -1 + max a∈As      s ∈S C k p(s |s, a) h * →s (s ) ≤hmax(s)      ≤ -1 + h max (s) • min a∈A      s ∈S C k p(s |s, a)      = -1 + h max (s) • min a∈A            1 - s ∈S T k p(s |s, a) < 1 D C S T k            < -1 + h max (s) •   1 - s ∈S T k 1 D C S T k    = -1 + h max (s) • 1 - 1 D C
∈ S T k × A s , Z k p (s, a, s) = [0, 1] and B k r (s, a) = [0,
r max ] meaning that we can set p k (s|s, a) ← 1 and r k (s, a) = r max . Therefore the optimal gain in such states is clearly r max and so g * k = r max .

In conclusion, under event E and for t k ≥ C k , TUCRL is always optimistic i.e., g * k ≥ g * . Note that Lem. 4.1 is not true with D C replaced by Λ C /r max (take for example Λ C = 0 i.e., all rewards equal to r max ).
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Range of the optimistic bias

The second technical difficulty in the analysis of TUCRL is to bound the range of h k i.e., sp (h k ). While in communicating MDPs, it is possible to bound this quantity by the travelbudget of the MDP as sp (h k ) ≤ Λ (see Sec. 3.3.2), in weakly-communicating MDPs Λ = +∞, thus making this bound uninformative. As a result, we need to restrict our attention to the subset of communicating states S C , where the travel-budget Λ C is finite. We will actually see in the regret proof that we only need to bound the range of h k on the subset of states S C 

Lemma 4.2

Proof. h k →s is a fixed point of L k →s and so for all x ∈ S \ {s},

h k →s (x) = L k →s h k →s (x) = max a∈As    max r∈B k r (x,a) {r} -r max + max p∈B k p (x,a)    s =s p(s )h k →s (s )       where B k p (x, a) = p ∈ ∆ S : p(s ) ∈ B k p (
x, a, s ), ∀s ∈ S (see Eq. 3.17). Similarly, we define Z 

p k (s |x, a) :=          p k (s |x, a) if s ∈ S C k \ {s} 0 if s ∈ S T k p k (s |x, a) + y∈S T k p k (y|x, a) if s = s p k (y|x, a) ∈ B k p (x, a, y) and it is clear from the definition of B k p (x, a, y) for y ∈ S T k that y∈S T k p k (y|x, a) ≤ y∈S T k p + k (y|x, a) = S T k • p + k (s, a) = ζ sa p,

Regret guarantees

We prove that the regret of TUCRL is bounded as follows.

Theorem 4.1 (Analogue to Thm. 3.4)

There exists a numerical constant β > 0 such that for any weakly-communicating MDP (resp. multi-chain MDP), with probability at least 1 -δ, it holds that for all initial state distribution µ 1 ∈ ∆ S satisfying Asm. 4.1 (resp. Asm. 4.2) and for all time horizons T > 1

∆(TUCRL, T ) = β • max{r max , Λ C } s∈S C ,a∈As Γ(s, a)T ln T δ + β • r max D C 2 S 3 A ln 2 T δ (4.17)
The first term in the regret shows the ability of TUCRL to adapt to the communicating part of the true MDP M by scaling with the communicating travel-budget Λ C and MDP parameters S C and Γ C (more precisely the sum of all Γ(s, a) with s ∈ S C ). The second term mainly corresponds to the regret incurred in the early stage where the regret grows linearly. When M is communicating, we match the square-root term of UCRLB (first term) since Λ C = Λ and S C = S while in the worst-case where Λ = r max D, the second term is bigger than the one appearing in UCRLB by a multiplicative factor DS (ignoring logarithmic terms). It is not clear whether D C can be replaced by Λ C in general.

Unfortunately, we were not able to adapt the proof techniques of Thm. 3.5 to show a O √ r max ΛS C Γ C AT regret bound in general. Perhaps surprisingly, the problem is not coming from variance reduction methods or any new tool that we introduced in Sec. 3.6. All the steps of Sec. 3.6 are still valid but the dependency in Λ C cannot be trivially improved. The linear (instead of square-root) dependency in Λ C arises because the telescopic sum appearing in the decomposition of the term ∆ p2 k no longer telescopes in our analysis, and can only be bounded by a O Λ C √ S C AT term. At first sight, this may seem to be an artefact of the proof, but it could also be an intrinsic limitation of the algorithm, or even an intrinsic limitation of the setting (i.e., infinite diameter). In order to avoid spending too much time attempting to visit unreachable states, TUCRL periodically ignores some transitions that have never been observed but may lead to highly rewarding state. Yet, TUCRL eventually takes these transitions into account again if they have not been visited enough (less than T /SA times) so as to prevent under-exploration. By doing so, the algorithm may move back and forth multiple times in the environment (even when only nonexistent transitions have not been observed), each time suffering a regret of order sp (h * ) (in the worst case). The frequency at which useless transitions are considered is of order T /SA. This may be the cause for the unavoidable linear dependency in Λ C . We leave this problem as an open question. Note that if all states have been visited, then TUCRL eventually becomes completely equivalent to UCRLB and so the regret scales with √ Λ C instead.

Regret proofs

We now provide a sketch of the proof of Thm. 4.1. In order to preserve readability, all following inequalities should be interpreted up to minor approximations and in high probability.

We follow the same steps as the first regret proof of UCRLB (Sec. 3.5).

Isolating poorly visited state-action pairs. For any state-action pair (s, a), we denote by 1 E k {s, a} := 1 {(s, a) ∈ E k } the indicator function equal to 1 if and only if (s, a) ∈ E k and 0 otherwise (see Eq. 4.13 for the definition of E k ). We also denote by 1 E k {s, a} := 1 {(s, a) ∈ E k } the complement of 1 E k {s, a} i.e., 1 E k {s, a}+1 E k {s, a} = 1. We use this equality to decompose the regret as:

∆(TUCRL, T ) = T t=1 (g * -r t (s t , a t ))1 E k t {s t , a t } + T t=1 (g * -r t (s t , a t ))1 E k t {s t , a t } (4.18)
The first term isolates state-action pairs that have been visited a small number of times i.e., such that

N + k (s, a) ≤ t k
SA . Whenever such a sate-action pair is visited, the corresponding visit count N + k (s, a) will be incremented by 1 at the end of episode k. But if N + k (s, a) is incremented too much, we will eventually have

N + k (s, a) > t k
SA and so intuitively 1 E k t {s t , a t } cannot be equal to 1 too often. Lem. 4.3 indeed shows that the number of times 1 E k t {s t , a t } = 1 occurs is cumulatively "small".

For any T ≥ 1 and any sequence of states and actions {s 1 , a 1 , . . . . . . s T , a T } we have:

T t=1 1 E k t {s t , a t } ≤ 2 √ S C AT . (4.19) Lemma 4.3
Proof. We first notice that by definition t kt ≤ t where k t := sup{k ≥ 1 : t k ≤ t} is the current episode at time t. As a result,

1 E k t {s t , a t } := 1 N + kt (s t , a t ) ≤ t kt /SA ≤ 1 N + kt (s t , a t ) ≤ t/SA .

Instead of directly bounding T

t=1 1 E k t {s t , a t } we will bound the number of visits Z T in state-action pairs that have been visited less than t/SA times

Z T := T t=1 1 N + kt (s t , a t ) ≤ t/SA .
We recall that the quantity N k (s, a) is updated only after the end of episode k and the stopping condition of episodes used by TUCRL implies that

∀k ≥ 1, ∀(s, a) ∈ S × A, ν k (s, a) ≤ N + k (s, a). (4.20)
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Moreover, for all (s, a) / ∈ S C × A, ν k (s, a) = 0 implying that only the states s ∈ S C should be taken care of. We first decompose Z T as:

Z T := s,a T t=1 1 N + kt (s, a) ≤ t /SA • 1 (s t , a t ) = (s, a) = s∈S C a Z T (s, a)
where Z T (s, a) :=

T t=1 1 N + kt (s, a) ≤ t /SA • 1 (s t , a t ) = (s, a) .
Using the fact that for all τ ≥ 1, t kτ ≤ τ ≤ t kτ +1 -1 and eq. 3.13 and 3.14 we have:

∀T ≥ τ ≥ 1, Z τ (s, a) = τ t=1 1 N + kt (s, a) ≤ t /SA ≤1 • 1{(s t , a t ) = (s, a)} ≥0 ≤ τ t=1 1{(s t , a t ) = (s, a)} ≤ t kτ +1 -1 t=1 1{(s t , a t ) = (s, a)} = N kτ +1 (s, a) (4.21)
Let's define t s,a as the last time that Z t (s, a) was incremented by 1:

t s,a := max T ≥ t ≥ 1 : N + kt (s, a) ≤ t /SA and (s t , a t ) = (s, a) = min T ≥ t ≥ 1 : Z t (s, a) = Z T (s, a) .
We denote by m s,a := k ts,a the corresponding episode. By definition and using (4.21), 

Z T (s, a) = Z ts,
Z T (s, a) = Z ts,a (s, a) ≤ N ms,a+1 (s, a) ≤ 2N + ms,a (s, a) ≤ 2 t s,a SA ≤ 2 T SA =⇒ Z T = s∈S C a Z T (s, a) ≤ 2 √ S C AT
where for the last inequality we used the fact that S C ≤ S (by definition) implying

S C / √ S = S C /S • √ S C ≤ √ S C .
When 1 E k t {s t , a t } = 1, TUCRL suffers at most the maximum per-step regret r max ≥ 4.3. Analysis of tucrl g * -r(s, a) and so combined with Lem. 4.3:

T t=1 (g * -r t (s t , a t )) ≤rmax 1 E k t {s t , a t } ≥0 ≤ r max T t=1 1 E k t {s t , a t } ≤ 2r max √ S C AT (4.24)
We now have to deal with the second term appearing in the inequality (4.18) i.e., state-action pairs that have been frequently visited. The whole purpose of restricting attention to those pairs will be clear later after we expand this term. We slightly change the definition of the per-episode regret ∆ k compared to Sec. 3.5 to account for 1 E k {s, a}:

∆ k := s∈S,a∈A ν k (s, a) (g * -r(s, a)) • 1 E k {s, a} = s∈S C k ,a∈A ν k (s, a) (g * -r(s, a)) • 1 E k {s, a} .
The reason why the sum over all states can be restricted to a sum over states in S C k is because ν k (s) = 0 for all s ∈ S T k by definition of the stopping condition of episode k (4.11). Furthermore, inequality (3.1) in Lem. 3.38 (Sec. 3.5) is based on an MDS argument and remains valid even with the additional multiplicative factor 1 E k t {s t , a t } and if we keep ν k (s, a) instead of taking the conditional expectation ν k (s)π k (a|s). In the end,

T t=1 (g * -r t (s t , a t ))1 E k t {s t , a t } ≤ k T k=1 ∆ k + 2r max T ln 4T δ .
Isolating non-optimistic episodes. In order to be able to use the optimism property proved in Sec. 4.3.1, we need to separate the episodes where t k < C k (C k is defined in Eq. 4.14 of Lem. 4.1) from the other episodes i.e., we decompose the sum of ∆ k as

k T k=1 ∆ k ≤ k T k=1 ∆ k • 1{t k < C k } + k T k=1 ∆ k • 1{t k ≥ C k }.
The episodes where t k < C k define a full exploratory phase, where the agent may suffer linear regret. However, this phase is somehow "short". Define

k T := max{k T ≥ k ≥ 1 : t k < C k } to be the last episode k T ≥ k ≥ 1 satisfying t k < C k .
Because of the stopping condition of episodes (4.11), ν k (s, a) ≤ 2N + k (s, a) for all (s, a) and so t k+1 ≤ 2t k implying that

k T k=1 ∆ k • 1 {t k < C k } = k T k=1 ∆ k ≤ r max k T k=1 (t k+1 -t k ) = r max t k T +1 ≤ 2r max t k T < 2r max C k T ≤ 72r max D C 2 S 3 A ln 6SAT δ 2 (4.25)
where the last inequality follows from the definition of C k .

Per-episode regret. It now remains to bound the dominant term k

T k=1 ∆ k • 1{t k ≥ C k } = k T k=k T +1 ∆ k .
We do this by first analyzing individually the regret ∆ k of each episode k (as Chapter 4. Exploration-exploitation in MDPs with infinite diameter we did for UCRLB). We proceed as in Sec. 3.5.2: we bound g * by g k + ε k /2 and plug-in the (approximate) optimality equation of the extended MDP M k involving g k , h k , r k and p k (we recall that all the actions played with non-zero probability satisfy an optimality equation).

The same terms ∆ p k and ∆ r k appear except that the sum is over s ∈ S C k and a multiplicative factor 1 E k {s, a} appears e.g.,

∆ p k := α s∈S C k a∈As ν k (s, a)   s ∈S p k (s |s, a)h k (s ) -h k (s)   1 E k {s, a}
and similarly for ∆ r k . We further notice that for all (s, a) ∈ E k (i.e., satisfying 1 E k {s, a} = 0) and s ∈ S T k , we have p k (s |s, a) = 0 by construction of M k (see Eq. 4.7). The whole point of having 1 E k {s, a} in factor is that the sum over s ∈ S can be restricted to a sum over s ∈ S C k i.e.,

∆ p k = α s∈S C k a∈As ν k (s, a)    s ∈S C k p k (s |s, a)h k (s ) -h k (s)    1 E k {s, a} .
In the case of UCRLB, the travel-budget of the whole MDP Λ appears because the range of h k can only be bounded by Λ. But since in the case of TUCRL s lies in S C k , only the range of h k on this subset matters. We already proved in Sec. 4.1 that (under event E) sp

S C k (h k ) ≤ Λ C .
This explains why Λ C appears instead of Λ when bounding the regret of TUCRL.

We now proceed as in eq. 3.43 i.e., we add and subtract the term

α s∈S C k a∈As ν k (s, a) s ∈S C k p(s |s, a)h k (s )1 E k {s, a}
in order to obtain two terms ∆ p1 k and ∆ p2 k . Note that s and s are summed over S C k (as we just explained) and there is an additional indicator function 1 E k {s, a} compared to Sec. 3.5.3. The indicator function does not impact the bound of ∆ p1 k (the same analysis as for UCRLB can be carried out, where we eventually bound 1 E k {s, a} ≤ 1 once the difference p k -p has been bounded by a positive term). However, the term ∆ p2 k is more problematic. We decompose this term as follows:

∆ p2 k = α t k+1 -1 t=t k    s ∈S C k p(s |s t , a t )w k (s ) -w k (s t+1 ) • 1 s t+1 ∈ S C k    • 1 E k {s t , a t } :=∆ p4 k + α t k+1 -1 t=t k w k (s t+1 ) • 1 s t+1 ∈ S C k -w k (s t ) • 1 E k {s t , a t } .
not telescopic!

Experiments

Despite the indicator functions 1 E k {s t , a t } and 1 s t+1 ∈ S C k , the term ∆ p4 k is still an MDS because k t (the episode at time t) is F t-1 -measurable where F t-1 := σ(s 1 , a 1 , r 1 , . . . , s t ) (see App. A.2) and moreover

E w kt (s t+1 )1 E k {s t , a t } 1 s t+1 ∈ S C kt F t-1 = s ∈S C k t p(s |s t , a t )w kt (s )1 E k {s t , a t } . F t-1 -measurable
As a result, Lem. 3.3 still applies. However, the second term is no longer a telescopic sum although the problem is not coming from the indicator function 1 s t+1 ∈ S C k . Indeed, due to the new stopping condition implemented by TUCRL, for all episodes k ≥ 1 and time steps

t k ≤ t < t k+1 -1, s t ∈ S C k and so w k (s t ) = w k (s t ) • 1 s t ∈ S C
k . On the other hand, the presence of the second indicator function 1 E k {s t , a t } is an issue. Using the fact that 1 E k {s t , a t } = 1 -1 E k {s t , a t } we can make a telescopic sum appear:

t k+1 -1 t=t k w k (s t+1 ) • 1 s t+1 ∈ S C k -w k (s t ) • 1 s t ∈ S C k ≤Λ C (telescopic sum) + t k+1 -1 t=t k w k (s t+1 ) • 1 s t+1 ∈ S C k -w k (s t )1 s t ∈ S C k ≤Λ C •1 E k {s t , a t }
Using Lem. 4.3, this term can be bounded by Λ C + 2Λ C √ S C AT . The presence of this term is the reason why we were not able to obtain a regret bound scaling linearly with √ Λ C instead of Λ C . All our attempts to either refine the current analysis, or modify the algorithm to improve the dependency in Λ C have failed so far.

The fact that the sum k T k=k T +1 ∆ k starts from k = k T + 1 (instead of k = 1) has no impact on the final bound and the increase in the number of episodes due to the modification of the stopping condition of UCRLB is negligible.

The final regret bounds in Thm. 4.1 is then obtained by combining all different terms (4.24), (4.25) and the bound on the sum k T k=k T +1 ∆ k .

Experiments

In this section, we present experiments to validate the theoretical findings of Sec. 4.3 (Thm. 4.1). We compare TUCRL against UCRLB. To the best of out knowledge, there exists no implementable algorithm to solve the optimization step of Regal and Regal.D and so we do not report any experiments with these algorithms. We are not aware of any other algorithm that addresses the problem of infinite diameter to compare with. 

s 0 s 1 s 2 a 0 δ 1 -δ a 0 a 0 δ 1 -δ a 1 r = 0 r = 1 3 r = 2 3 r = 2 3 Figure 4
.5: Family of three-state MDPs characterized by a single parameter δ. When δ > 0, the MDP is communicating, when δ = 0 it is weakly-communicating. Only two stationary deterministic policies can be played (corresponding to the two actions available in s 2 ).

Taxi Problem. We first consider the taxi problem [START_REF] Dietterich | Hierarchical reinforcement learning with the maxq value function decomposition[END_REF] implemented in OpenAI Gym (Brockman et al., 2016). Even such a simple domain contains misspecified states. The state space is constructed as the outer product of the taxi position, the passenger position and the destination and this leads to states that cannot be reached from any possible starting configuration (all the starting states belong to S C ). More precisely, out of 500 states in S, 100 are non-reachable. On Fig. 4.4 we compare the regret of UCRLB and TUCRL when the misspecified states are present (Fig. 4.4a) and when they are removed from the definition of the state space (Fig. 4.4b). In the presence of misspecified states (Fig. 4.4a), the regret of UCRLB clearly grows linearly with T (as expected, see Sec. 4.1) while TUCRL is able to learn as expected. On the other hand, when the MDP is communicating (Fig. 4.4b) TUCRL performs similarly to UCRLB. The small loss in performance is most likely due to the initial exploration phase during which the confidence intervals on the transition probabilities used by UCRLB (extended MDP M k ) are tighter than those used by TUCRL (extended MDP M k ). Indeed, TUCRL slightly increases some confidence bounds by ζ sa p,k (4.6) compared to UCRLB (see Eq. 4.7).

Simple three-state domain. In order to better understand the empirical behaviour of the algorithm, We further study the regret of TUCRL in the simpler three-state domain of Fig. 4.5. The environment is composed of only three states (s 0 , s 1 and s 2 ) and one action per state, except in s 2 where two actions are available. As a result, the agent only has the choice between two possible policies. We first consider the case the MDP is communicating by defining δ = 0.005 > 0. Fig. 4.6a shows that, as expected, TUCRL behaves similarly to UCRLB. In this example it is able to outperform UCRLB since the preliminary phase in which transitions to non-observed states are forbidden leads to a less explorative behaviour that, due to the structure of the problem (s 1 is difficult to reach but it is also non-optimal), results in a smaller regret. Fig. 4.6b shows the cumulative regret achieved by TUCRL when the diameter is infinite i.e., S C = {s 0 , s 2 } and S T = {s 1 }. Similarly to the taxi problem, UCRLB fails to learn in this setting (i.e., suffers linear regret) and for the sake of clarity, we do not report its regret on the figure . TUCRL quickly achieves sub-linear regret as predicted by theory. However, TUCRL seem to achieve different regret growth rates depending on whether s 1 is removed or not. While the regret curve of Fig. 4.6b quickly achieves an asymptotic regime (slow logarithmic increase), the regret curve of Fig. 4.6b)seems to keep growing as √ T (no matter for how long we run the experiment), with periodic "jumps" that are increasingly distant (in time) from each other. The time between two consecutive "jumps" grows exponentially fast and the increase in regret at every "jump" also grows exponentially fast. This can be explained by the way the algorithm works: while most of the time TUCRL is optimistic on the restricted state space S C = {s 0 , s 2 } (i.e., S C k = S C ), it periodically allows transitions to the set S T = {s 1 } (i.e., S C k = S), which is indeed not reachable. Enabling these transitions triggers "aggressive" exploration during an entire episode. The policy played is then sub-optimal creating a "jump" in the regret. At the end of this exploratory episode, S C k will be set again to S C and the regret will stop increasing until the condition N + k ≤ t k /SA occurs again. The cumulative regret incurred during exploratory episodes (when transitions to S T are allowed) can be bounded by the term plotted in green on Fig. 4.6b ( T t=1 1 E k t {s t , a t }). In Lem. 4.3 we proved that this term is always bounded by O( √ S C AT ). Therefore, it is not surprising to observe a √ T increase of both the green and red curves.

Unfortunately, the growth rate of the regret will keep increasing as √ T and will never become logarithmic unlike when the MDP is communicating (in which case both UCRLB and TUCRL seem to perform equally well). This is because the condition N + k ≤ t k /SA will always be triggered Θ( √ T ) times for any T . When S T = ∅, TUCRL will restrict the extended MDP every time the condition is triggered while when S T = ∅, all state-action pairs will eventually be visited and so this condition will no longer be used to restrict the extended MDP. In Sec. 4.5 we show that this is not just a drawback specific to TUCRL, but it is rather an intrinsic limitation of learning in weakly-communicating MDPs.

Note that the big periodic jumps observed in Fig. 4.6b appear because the domain contains only one state in S T and deterministic transitions (only the rewards are random). For more complex environments (with random transitions) it is very difficult to predict in advance what the behaviour of TUCRL will be. However, for MDPs with high randomness in the transitions, it is likely that we do not observe "jumps" and just a smooth √ T increase (the green/red curves should always be of the same order of the orange curve as proved by Lem. 4.3, but they can be arbitrarily smooth or sharp). 

Learning limitations with infinite diameter

In this section we further investigate the empirical difference in the regret growth of TUCRL when the diameter is finite and infinite. We prove an impossibility result characterizing the exploration-exploitation dilemma when the diameter is infinite.

We first recall that the expected regret E[∆(M, UCRL2, µ 1 , T )] of UCRL2 (with input parameter δ = 1/3T ) after T ≥ 1 time steps and for any finite MDP M can be bounded in several ways: 1. for

E[∆(M, UCRL2, µ 1 , T )] ≤          r max T (by definition) 34 • r max DS AT ln(3T 2 ) + 1 3 (Prop. 2.14) 34 2 • r max D 2 S 2 A δg ln(T ) + C(M ) (Prop. 2.13).
T † M ≥ T ≥ 0, the expected regret is linear in T , 2. for T * M ≥ T ≥ T † M the expected regret grows as √ T ,
3. finally for T ≥ T * M , the increase in regret is only logarithmic in T .

These different "regimes" can also be observed empirically (both for UCRL2 and UCRLB).

Using (4.26), it is easy to show that the time it takes for UCRL2 to achieve sub-linear regret is at most

T † M = O(D 2 S 2 A).
We say that a learning algorithm is efficient when it achieves sublinear regret after a number of steps that is polynomial in the parameters of the MDP i.e., both UCRL2 and UCRLB are efficient. We now show with an example -similar to the example of Fig. 4.1b presented in introduction of this chapter-that without prior knowledge, any efficient learning algorithm must satisfy T * M = +∞ when M has infinite diameter (i.e., it cannot achieve logarithmic regret if D = +∞).

Example We consider a family of weakly-communicating MDPs M = (M ε ) ε∈[0,1] represented on Fig. 4.8. Every MDP instance in M is characterised by a specific value of ε ∈ [0, 1] which corresponds to the probability to go from x to y. For ε > 0 (Fig. 4.8a), the optimal policy of M ε is such that π * (x) = b and the optimal gain is g * ε = 1 while for ε = 0 (Fig. 4.8b) the optimal policy is such that π * (x) = d and the optimal gain is g * 0 = 1/2. We assume that the learning agent knows that the true MDP M belongs to M but does not know the specific value ε associated to M = M ε * . We assume that all rewards are deterministic and that the agent starts in state x (coloured).

Theorem 4.2

Let C 1 , C 2 , α, β > 0 be positive real numbers and f a function defined for all ε ∈]0, 1] by f (ε) = C 1 (1/ε) α . There exists no learning algorithm A T (with known horizon T ) satisfying both 1. for all ε ∈]0, 1], there exists

T † ε ≤ f (ε) such that E[∆(M ε , A T , x, T )] < 1/6 • T for all T ≥ T † ε , 2. and there exists T * 0 < +∞ such that E[∆(M 0 , A T , x, T )] ≤ C 2 (ln(T )) β for all T ≥ T * 0 .
Proof. We prove the statement by contradiction: we assume that there exists a learning algorithm denoted A T satisfying 1. for all ε ∈]0, 1], there exists

T † ε ≤ f (ε) such that E[∆(M ε , A T , x, T )] < 1/6 • T for all T ≥ T † ε , 2. there exists T * 0 < +∞ such that E[∆(M 0 , A T , x, T )] ≤ C 2 (ln(T )) β for all T ≥ T * 0 .
Any randomised strategy for choosing an action at time t is equivalent to an (a priori) random choice from the set of all deterministic strategies. Thus, it is sufficient to show a contradiction when the action played by A T at any time t is a deterministic function of the past trajectory h t := {s 1 , a 1 , r 1 , . . . , s t }. In the rest of the proof we assume that A T maps any sequence of observations h t = {s 1 , a 1 , r 1 , . . . , s t } to a (single) action a t .

By trivial induction it is easy to see that as long as state y has not been visited, the history h t is independent of ε (A T cannot distinguish between different values of ε and plays exactly the same action when the past history is the same).

Let's define

N 0 T (x, b) := T t=1 1{(s t , a t ) = (x, b)} the number of visits in (x, b) with a t =
A T (h t ) and ε = 0. Note that N 0 T (x, b) is not random since when ε = 0 both action b and action d loop on x with probability 1. For any ε ∈ [0, 1] and any horizon T define the event:

F (T, ε) := 1≤t≤T {s t = y}
where the sequence of states s t is obtained by executing A T on MDP M ε . We will denote by

F (T, ε) the complement of F (T, ε).
For any horizon T , and independently of ε, there is only one possible trajectory h T = {s 1 , a 1 , r 1 , . . . , s T } that never goes to y and which corresponds to the trajectory observed when ε = 0. When ε = 0, the probability of this trajectory is 1 and so P (F (T, 0)) = 1 (recall that everything is deterministic in this case) while in general we have (using the Markov property):

∀T ≥ 1, ∀ε ∈ [0, 1], P (F (T, ε)) = (1 -ε) N 0 T (x,b) .
(4.27)

Learning limitations with infinite diameter

We now prove by contradiction that lim

T →+∞ N 0 T (x, b) = +∞. (4.28)
Let's assume that C := max 10, max T ≥1 {N 0 T (x, b)} < +∞. Taking ε = 1/C and applying the law of total expectation we obtain:

∀T ≥ 1, E[∆(M 1/C , A T , x, T )] = E ∆(M 1/C , A T , x, T ) F (T, 1/C) =T /2+1/2•N 0 T (x,b)≥T /2 • P (F (T, 1/C)) =(1-1/C) N 0 T (x,b) + E ∆(M 1/C , A T , x, T ) F (T, 1/C) • P F (T, 1/C) ≥0 ≥ T 2 • 1 - 1 C N 0 T (x,b) ≥ T 2 • 1 - 1 C C ≥1/3 by Lem. B.1 ≥ T 6
where we used the fact that

• N 0 T (x, b) ≤ C and (1-1/C) ∈ [0, 1] by definition, implying 1 -1 C N 0 T (x,b) ≤ 1 -1 C C , • since C ≥ 10 we have 1 -1 C C ≥ 1/3 by Lem. B.1 (App. B.2) applied to x = 1/C,
• and finally under event F (T, 1/C), the regret incurred is exactly

T /2 + 1/2 • N 0 T (x, b) ≥ T /2.
This contradicts our assumption that there exists T † 1/C < +∞ such that for all T ≥ T † 1/C , E[∆(A T , M 1/C , x, T )] < T /6 and so (4.28) holds.

Since lim T →+∞ N 0 T (x, b) = +∞, it is possible to construct a strictly increasing sequence (T n ) n∈N such that:

∀n ∈ N, N 0 T n+1 (x, b) > N 0 Tn (x, b), T 0 = T * 0 , T 1 ≥ C 2 , T 1 ≥ C 2 (ln(T 1 )) β and N 0 T 1 (x, b) ≥ 10
We also define the (strictly decreasing) sequence:

ε n := 1/N 0 Tn (x, b), ∀n ≥ 1.
By the law of total expectation: Moreover, since by construction for all n ≥ 1, T n > T 0 = T * 0 we have by assumption that

E[∆(A Tn , M εn , x, T n )] = E [∆(A Tn , M εn , x, T n )|F (T n , ε n )] ≥Tn/2 • P (F (T n , ε n )) =(1-εn) N 0 Tn (x,b) + E ∆(A Tn , M εn , x, T n )|F (T n , ε n ) • P F (T n , ε n ) ≥0 ≥ T n 2 • (1 -ε n ) N 0 Tn (x,b) = T n 2 • (1 -ε n ) 1/εn
∀n ≥ 1, E[∆(A Tn , M 0 , x, T n )] = 1 2 N 0 Tn (x, b) = 1 2ε n ≤ C 2 (ln(T n )) β =⇒ T n ≥ exp 1 (2C 2 • ε n ) 1/β
Since lim n→+∞ 1/ε n = +∞ and lim x→+∞ exp x 1/β /x α = +∞ there exists N ∈ N such that for all n ≥ N , T n ≥ f (ε n ). By assumption, for all n ≥ N ,

E[∆(A Tn , M εn , x, T n )] < T n 6
which contradicts (4.29) therefore concluding the proof.

Note that point 1. in Lem. 4.2 formalizes the concept of "efficient learnability" introduced by Sutton and Barto (2018, Section 11.6) i.e.,"learnable within a polynomial rather than exponential number of time steps". All the MDPs in M share the same number of states S = 2, number of actions A = 2, and gap in average reward γ = 1/2. As a result, any function of S, A and δ g will be considered as constant. For ε > 0, the diameter and travelbudget coincide with the optimal bias span of the MDP and Λ = D = sp (h * ) = 1/ε < +∞, while for ε = 0, Λ = D = +∞ but sp (h * ) = 1/2. As shown in Eq. 4.26 and Thm. 4.1, UCRL2, UCRLB and TUCRL satisfy property 1. of Lem. 4.2 with α = 2 and C 1 = O(S 2 A) but do not satisfy 2. Lem. 4.2 proves that no algorithm can actually achieve both 1. and 2. As a result, since TUCRL satisfies 1., it cannot satisfy 2. This matches the empirical results presented in Sec. 4.4 where we observed that when the diameter is infinite, the growth rates of the regret of TUCRL is of order Θ( √ T ). An algorithm that does not satisfy 1. could potentially satisfy 2. but, by definition of 1., it would suffer linear regret for a number of steps that is more than polynomial in the parameters of the MDP (more precisely, e D 1/β ). This is not a very desirable property and we claim that an efficient learning algorithm should always prefer finite time guarantees (1.) over asymptotic guarantees (2.) when both cannot be accommodated .

Conclusion

In this chapter we introduced TUCRL, an algorithm that efficiently balances exploration and exploitation in weakly-communicating and multi-chain MDPs, when the starting state s 1 belongs to a communicating set (Asm. 4.1). We showed that TUCRL achieves a square-root regret bound scaling with parameters (D C , S C , Γ C ) of the communicating part of the MDP and that, in the general case, it is not possible to design algorithm with logarithmic regret and polynomial dependence on the MDP parameters. In the next chapter, we will show that achieving a regret scaling with sp (h * ) instead of Λ is at least possible when the value sp (h * ) is known and given as input to the learning algorithm.

5 Exploration-exploitation with prior knowledge on the optimal bias span 5.1 Introduction

Bias span versus travel-budget

While the travel-budget Λ quantifies the total "cost" incurred to "recover" from a bad state in the worst case (i.e., when g * = r max ), the actual regret incurred while "recovering" is related to the difference in potential reward between "bad" and "good" states, which is accurately measured by the span (i.e., the range) sp (h * ) of the optimal bias function h * . While the travel-budget is an upper bound on the bias span (Sec. 3.3.2), it could be arbitrarily larger (e.g., weakly-communicating MDPs may have finite span and infinite travel-budget) thus suggesting that algorithms whose regret scales with the span may perform significantly better.1 Building on the idea that the OFU principle should be mitigated by the bias span of the optimistic solution, [START_REF] Bartlett | REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs[END_REF] proposed three different algorithms (referred to as

Regal) achieving regret scaling with sp (h * ) instead of Λ. The first algorithm defines a span regularized problem, where the regularization constant needs to be carefully tuned depending on the state-action pairs visited in the future, which makes it unfeasible in practice. Alternatively, they propose a constrained variant, called Regal.C, where the regularized problem is replaced by a constraint on the span. Assuming that an upper-bound c on the bias span of the optimal policy is known (i.e., sp (h * ) ≤ c), Regal.C achieves a regret upper-bounded by O(cS √ AT ). Unfortunately, they do not propose any computationally tractable algorithm solving the constrained optimization problem, which may even be ill-posed in some cases. Finally, Regal.D avoids the need of knowing the future visits by using a doubling trick, but we argued in Chap. 4 that the analysis is flawed and probably difficult to fix.

In this chapter, we take inspiration from Regal.C and propose a constrained optimization problem for which we derive a computationally efficient algorithm, called ScOpt (analogue Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span to EVI). We identify conditions under which ScOpt converges to the optimal solution and propose a suitable stopping criterion to achieve an ε-optimal policy. Finally, we show that the convergence conditions are always satisfied and the learning algorithm obtained by integrating ScOpt into a UCRL2-like scheme (resulting into SCAL) achieves regret scaling as O( min{Λ, c}ΓSAT ) when an upper-bound c on the optimal bias span is available.

Exploration bonus

In Sec. 5.7, we build on ScOpt to derive SCAL + , a variant of Regal.C which enforces optimism through the use of an exploration bonus rather than an extended MDP. Regal.C estimates the true MDP (rewards and transition probabilities) and adds a state-action dependent high probability confidence bound to the reward function (not the transition probability). [START_REF] Strehl | An analysis of model-based interval estimation for markov decision processes[END_REF] were the first to exploit the idea of enforcing exploration in RL by using a "bonus" on the reward. They analysed the infinite-horizon γ-discounted setting and introduced the Model Based Interval Estimation with Exploration Bonus (MBIE-EB) algorithm. MBIE-EB plays the optimal policy of the empirically estimated MDP where for each state-action pair (s, a), a bonus b(s, a) is added to the empirical average reward r(s, a) i.e., the immediate reward associated to (s, a) is r(s, a) + b(s, a). The goal of RL is to find a policy maximizing the cumulative reward i.e., the Q-function. Therefore, the bonus needs to account for the uncertainty in both the rewards and transition probabilities and so b(s, a) = Θ rmax 1-γ 1 N (s,a) where rmax 1-γ is the range of the Q-function. [START_REF] Strehl | An analysis of model-based interval estimation for markov decision processes[END_REF] also derived PAC guarantees on the sample complexity of MBIE-EB. More recently, count-based methods (e.g., [START_REF] Bellemare | Unifying count-based exploration and intrinsic motivation[END_REF][START_REF] Tang | #exploration: A study of count-based exploration for deep reinforcement learning[END_REF][START_REF] Ostrovski | Count-based exploration with neural density models[END_REF][START_REF] Martin | Count-based exploration in feature space for reinforcement learning[END_REF] tried to combine the idea of MBIE-EB with Deep RL (DRL) techniques to achieve a good exploration-exploitation trade off in high dimensional problems. The exploration bonus usually used has a similar form Θ β √ N where β is now an hyper-parameter tuned for the specific task at hand, and the visit count N is approximated using discretization (e.g., hashing) or density estimation methods.

Exploration bonuses have also been successfully applied to finite-horizon problems [START_REF] Azar | Minimax regret bounds for reinforcement learning[END_REF]Kakade et al., 2018;[START_REF] Jin | Is q-learning provably efficient?[END_REF]. In this setting, the planning horizon H is known to the learning agent and the range of the Q-function is r max H. A natural choice for the bonus is then b(s, a) = Θ r max H/ N (s, a) . UCBVI 1 introduced by Azar et al. ( 2017) uses such a bonus and achieves near-optimal regret guarantees O H √ SAT . Extensions of UCBVI 1 exploiting the variance instead of the range of the Q-function achieve a better regret bound O √ HSAT [START_REF] Azar | Minimax regret bounds for reinforcement learning[END_REF]Kakade et al., 2018;[START_REF] Jin | Is q-learning provably efficient?[END_REF].

Both the finite horizon setting and infinite horizon discounted setting assume that there exists an intrinsic horizon (respectively H and 1 1-γ ) known to the learning agent. Unfortunately, in many common RL problems it is not clear how to define H or 1 1-γ and it is often desirable to set them as big as possible (e.g., in episodic problem, the time to the goal is not known in advance and random in general). As H tends to infinity the regret (of UCBVI 1, etc.) will become linear while as γ tends to to 1 the sample complexity (of MBIE-EB, etc.) tends to infinity (not to mention the numerical instabilities that may arise). In this chapter
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we analyze the exploration bonus approach in the infinite horizon undiscounted setting which generalizes the two previous settings to the case where H → +∞ and γ → 1 respectively (see Sec. 2.2). Although Regal.C can be efficiently implemented in the tabular case, it is difficult to extend it to more scalable approaches like DRL. In contrast, as already mentioned, the exploration bonus approach is simpler to adapt to large scale problems and inspired count based methods in DRL.

SCAL + is the first algorithm that relies on an exploration bonus to efficiently balance exploration and exploitation in the infinite-horizon undiscounted setting. All the exploration bonuses that were previously introduced in the RL literature explicitly depend on γ or H which are known to the learning agent. In the infinite-horizon undiscounted case, there is no predefined parameter informing the agent about the range of the Q-function. This makes the design of an exploration bonus very challenging. To overcome this limitation, we make the same assumption as in Regal.C and SCAL i.e., we assume that the agent knows an upper-bound c on the span (i.e., range) of the optimal bias (i.e., value function). The exploration bonus used by SCAL + is thus b(s, a) = Θ max{c, r max }/ N (s, a) . In comparison, other algorithms in the infinite horizon undiscounted setting like UCRLB or SCAL can, to a certain extent, be interpreted as virtually using an exploration bonus of order Θ max{Λ, r max } Γ/N (s, a) and Θ max{c, r max } Γ/N (s, a) respectively. This is bigger by a multiplicative factor √ Γ. As a result, to the best of our knowledge, SCAL + achieves a "tighter" optimism than any other existing algorithm in the infinite horizon undiscounted setting and is therefore less prone to over-exploration. Surprisingly, the tighter optimism introduced by SCAL + compared to SCAL and UCRLB is not reflected in the final regret bound with the current statistical analysis ( √ Γ appears in the bound although not being included in the bonus). We isolate and discuss where the term √ Γ appears in the proof sketch of Sect. 5.7.3. While [START_REF] Azar | Minimax regret bounds for reinforcement learning[END_REF]; Kakade et al. (2018); [START_REF] Jin | Is q-learning provably efficient?[END_REF] managed to remove the √ Γ term in the finite horizon setting, it remains an open question whether their result can be extended to the infinite horizon case (for example, the two definitions of regret do not match and differ by a linear term). Finally, the analysis of Sec. 3.6 does not apply to SCAL + because c explicitly appears outside the square-root in the expression of the bonus. Overall, SCAL only achieves a regret of order O(max{r max , c} √ ΓSAT ) which is worse than

SCAL.
Despite achieving a looser regret bound, SCAL + achieves a tighter optimism. In Sec. 5.8 we show how to combine the advantages of SCAL and SCAL + into a single algorithm named SCAL .

The work presented in this chapter extends the conference paper [START_REF] Fruit | Efficient bias-span-constrained exploration-exploitation in reinforcement learning[END_REF] and the paper under submission [START_REF] Qian | Exploration bonus for regret minimization in undiscounted discrete and continuous markov decision processes[END_REF].

Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span

Span-constrained exploration-exploitation in RL:

REGAL.C and relaxations

The approach of REGAL.C

Our first algorithm SCAL (Sec. 5.5) is a tractable variant of Regal.C. We therefore start by recalling the algorithmic structure of Regal.C. Regal.C follows the same steps as UCRL2 (and UCRLB) but instead of solving problem (2.34) at each episode (see Chap. 2 and 3), it tries to find the best optimistic model M ∈ M c having constrained optimal bias span i.e., sup

M ∈Mc max π∈Π SD g π M = sup M ∈Mc g * M (5.1)
where the bounded parameter MDP M c is the set of plausible MDPs with span of the optimal bias bounded by c i.e.,

M c := {M ∈ M : sp (h * M ) ≤ c}.
(5.2)

Regal.C discards any MDP M ∈ M whose optimal policy has a span larger than c (i.e., such that sp (h * M ) > c) and looks for the MDP with highest optimal gain g * M among all remaining MDPs.

Well-posedness.

There is no guarantee that all the MDPs in M c are weakly communicating and thus have state-independent gain.2 This could make the comparison of policies difficult. Two policies π 1 , π 2 ∈ Π SR with state-dependent gain cannot necessarily be compared since we might have g π 1 M (s) > g π 2 M (s) for some state s ∈ S while g π 1 M (s ) < g π 2 M (s ) for some other state s = s. When there is no constraint on the bias, this is not a problem as we can prove that there always exists a policy that dominates all others component-wise (Puterman, 1994, Chapter 9).3 When there exists a constraint on the bias, this may no longer be the case. As a result, unlike in the case of UCRL2 and UCRLB, the supremum (5.1) might not always be well-defined4 and we suspect the problem to be ill-posed in general. This intuition comes from Ex. 5.1a (that will be presented in Sec. 5.3) where we show the necessity of enforcing a state-independent gain (i.e., as a constraint of the optimization problem). Moreover, even if we ignored all the problems in the formulation of Regal.C and assumed that (5.1) was well-posed , searching the space M c seems to be computationally intractable. Finally, for any M ∈ M, there may exist several optimal policies with different bias and some of them may not satisfy the Bellman optimality equation (see Prop. 2.4) and are thus difficult to compute. In the next section, we introduce a relaxation of problem 5.1 that is both well-posed and easier to analyse.

5.2. Span-constrained exploration-exploitation in RL: regal.c and relaxations

A first relaxation of REGAL.C

The high-level idea of our relaxation is to replace the constraint on the set of plausible MDPs (bounded parameter MDP) by a constraint on the policy space. Formally, we modify problem (5.1) as follows:

sup M ∈M sup π∈Πc(M ) g π M (5.3)
where the policy space Π c (M ) is defined as

Π c (M ) := π ∈ Π SR : sp (h π M ) ≤ c and sp (g π M ) = 0 . (5.4) By convention, we set max π∈Πc(M ) {g π M } to -∞ when Π c (M ) = ∅.
The condition sp (g π M ) = 0 makes sure that the policy space only contains policies with state-independent gain. As a result, two policies can always be compared by comparing their gains (and so problem (5.3) is well-posed). Note that we do not restrict attention to deterministic stationary policies, but consider also randomized policies. It will quickly become clear that considering randomized policies makes the problem easier to solve and analyze.

Equivalent extended formulation. One of the advantages of (5.3) over (5.1) is that it can be reformulated as finding a gain-maximizing policy of an extended MDP . Just as solving (2.34) is equivalent to solving (2.35) (see Chap. 2), problem (5.3) is equivalent to solving the following optimization problem:

sup π + ∈Πc(M + ) g π M +
(5.5) where M + is the extended MDP associated with the bounded parameter MDP M. Unlike (5.1), for every MDP in M (not just those in M c ), (5.3) considers all (stationary) policies with constant gain satisfying the span constraint (not just the deterministic optimal policies).

Existence of the maximum and relaxation. Since (M, π) → g π M and (M, π) → sp (h π M ) are in general non-continuous functions, the argmax in (5.1) and (5.3) may not exist (i.e., the maximum may not be reached). Despite this technical difficulty, we can show that (5.3) is always a relaxation of (5.1) in terms of supremum value (provided we enforce the additional Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span constraint of state-independent gain in (5.1)).

Proposition 5.1

Define M c := M c ∩ {M ∈ M : sp (g * M ) = 0} the restriction of M c to MDPs that have state-independent optimal gain. Then

sup M ∈Mc max π∈Π SD g π M = sup M ∈Mc {g * M } ≤ sup M ∈M sup π∈Πc(M ) g π M .
Proof. Let M ∈ M c and denote by π * an optimal policy of M , with g * M and h * M the associated gain an bias. By definition sp (g * M ) = 0 and sp (h * M ) ≤ c and so

π * ∈ Π c (M ). Therefore, g * M ≤ sup π∈Πc(M ) g π M .
Since g * M is the optimal gain of M (maximum over all policies), we actually have an equality:

g * M = sup π∈Πc(M ) g π M .
Since this is true for all M ∈ M c , we have

sup M ∈Mc {g * M } = sup M ∈Mc sup π∈Πc(M ) g π M ≤ sup M ∈M sup π∈Πc(M ) g π M
where the inequality follows from the fact that M c ⊆ M.

Due to Prop. 5.1, if the solution of (5.1) is optimistic i.e., bigger than the optimal gain g * of the true unknown MDP, so is the solution of (5.3). As a result, any algorithm solving (5.3) should intuitively enjoy the same regret guarantees as Regal.C (which solves (5.1)). In the following we further characterize problem (5.3), introduce a truncated value iteration algorithm to solve it (called ScOpt), and finally integrate it into a UCRL2-like scheme to recover Regal.C regret guarantees.

The Optimization Problem

In the previous section, we showed that our new optimization problem (Eq. 5.3) can be equivalently formulated as a span-constrained gain-maximization problem on the extended MDP (Eq. 5.5). In this section we analyze some properties of the following optimization problem (of which (5.5) is an instance),

sup π∈Πc(M ) g π M := g * c (M ) (5.6)
where M is any MDP (with discrete or compact action space) such that Π c (M ) = ∅. Problem (5.6) aims at finding a policy that maximizes the gain g π M within the set of randomized policies with constant gain (i.e., sp (g π M ) = 0) and bias span smaller than c (i.e., sp (h π M ) ≤ c). Since g π M ∈ [0, r max ] (i.e., g π M is bounded), the supremum always exists and we denote it by g * c (M ). The set of maximizers is denoted by

Π * c (M ) ⊆ Π c (M ), with elements π * c (M ) (if Π * c (M ) is non-empty).
In order to give some intuition about the solution(s) of problem (5.6), we introduce the following illustrative MDP. The MDP is communicating and only has deterministic transitions and rewards for all actions (2 actions per state). Fig. 5.1b: Maximum gain achievable g * c (y-axis) as a function of the span constraint c (x-axis) with all (randomized) stationary policies (blue line) and only deterministic policies (dashed red line). Only policies with state-independent gain are considered (i.e., the policy playing a 1 in both states is ignored).

The Optimization Problem
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Example Consider the two-state MDP depicted in Fig. 5.1a. Since there are only two actions a 0 and a 1 in both states, for any stationary policy π = (d) ∞ ∈ Π SR , the associated decision rule d ∈ D MR can be parameterized by two quantities: x (the probability to play a 0 in s 0 ) and y (the probability to play a 0 in s 1 ). With this parametrization:

P d = 1 -x x y 1 -y , r d = 1-x 2 1 -y .
We can compute the gain g = [g 1 , g 2 ] and the bias h = [h 1 , h 2 ] by solving the linear system (2.11). For any x > 0 or y > 0, we obtain

g 1 = g 2 = 1 2 + x(1 -3y) 2(x + y) ; h 2 -h 1 = 1 2 + 1 -3y 2(x + y) ,
while for x = 0, y = 0, we have g 1 = 1/2 and g 2 = 1, with h 2 = h 1 = 0. Note that 0 ≤ sp (h π ) ≤ 1 for any π ∈ Π SR . By considering different values for x and y, this example allows us to analyze the properties of optimization problem (5.6). For example, on Fig. 5.1b we show how the solution of (5.6) varies with the span constraint c. We also show the evolution when the policy space is restricted to deterministic policies. This curves can be easily deduced from the above formulas for g 1 /g 2 and h 2 -h 1 . Note that Fig. 5.1b ignores the case x = y = 0 since it corresponds to the only policy with state-dependent gain.

Randomized policies.

When the bias span is unconstrained, there always exist an optimal stationary deterministic policy (see Sec. 2.2). In contrast, the following lemma shows that there may not exist any deterministic policy solution to (5.6) even if a randomized solution Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span exists.

There exists an MDP M and a scalar c ≥ 0, such that Π * c (M ) = ∅ and Π * c (M )∩Π SD (M ) = ∅ (i.e., the solution of (5.6) is not a deterministic policy).

Lemma 5.1

Proof. Consider Ex. 5.1a with constraint 1/2 < c < 1 (see Fig. 5.1b for a graphical representation). The only deterministic policy π D with constant gain and bias span smaller than c corresponds to x = 0 and y = 1, which leads to g π D = 1/2 and sp (h π D ) = 1/2. On the other hand, the randomized policy π R corresponding to x = 1 and y = (1 -c)/(1 + c), satisfies sp (h π R ) = c and g π R = c > g π D , thus proving the statement.

Constant gain.

The following lemma shows that if we consider non-constant-gain policies, the supremum in (5.6) may not be well defined, as no dominating policy exists. A policy π ∈ Π SR is dominating if for any policy π ∈ Π SR , g π (s) ≥ g π (s) in all states s ∈ S.

There exists an MDP M and a scalar c ≥ 0, such that there exists no dominating policy π in Π SR with constrained bias span (i.e., sp (h π ) ≤ c).

Lemma 5.2

Proof. Consider Ex. 5.1a with constraint 1/2 < c < 1 (see Fig. 5.1b for a graphical representation). As shown in the proof of Lem. 5.1, the optimal stationary policy π R with constant gain satisfies g * c = [c, c]. On the other hand, the only policy π with non-constant gain is x = 0, y = 0, which has sp (h π ) = 0 < c and g π (s 0 ) = 1/2 < c = g * c and g π (s 1 ) = 1 > c = g * c , thus proving the statement.

Lem. 5.2 shows that when the search space is not restricted to policies with state-independent gain, problem (5.6) is not well-posed . We suspect that the same problem arises with Regal.C (see (5.1)) although it is much more difficult to derive a counter-example in that case (M c is a more complex mathematical object).

Existence of a maximizer. Whether problem (5.6) always admits a maximizer (i.e., whether Π * c (M ) = ∅) when the search space is not empty (i.e., when Π c (M ) = ∅) is left as an open question. This question may not be easy to answer since in general, π → g π is not a continuous map and Π c is not a closed set (and therefore classical results of topology do not apply). For instance in Ex. 5.1a, although the maximum is attained, the point x = 0, y = 0 does not belong to Π c (i.e., Π c is not closed) and g π is not continuous at this point. Notice that in the particular case where the MDP is unichain (see Def. 2.2), Π c is compact, π → g π is continuous, and we can prove the following lemma:

If M is unichain then Π * c (M ) = ∅.
Lemma 5.3

Planning with scopt

Proof. The proof can be found in (Fruit et al., 2018b, Appendix A.1).

The goal of this section was to better understand problem (5.5) (equivalent to (5.3)) by analyzing the more general problem (5.6). We saw that this problem is not as easy as its unconstrained counterpart (2.35). In the next sections, we will show how to construct an extended MDP so that (5.5) admits a maximizer (e.g., the extended MDP will be unichain so that Lem. 5.3 holds) and the problem can be efficiently solved.

Planning with SCOPT

In this section, we introduce ScOpt and derive sufficient conditions for its convergence to the solution of (5.6). In Fruit et al. (2018b, Appendix B) we show examples where convergence to the solution of (5.6) does not hold when these conditions are not satisfied, implying that these conditions are also necessary in some sense. In the next section, we will show that these conditions always hold when ScOpt is carefully integrated into UCRLB.

Span-constrained value and policy operators

ScOpt is a version of (relative) value iteration [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF][START_REF] Bertsekas | Dynamic programming and optimal control[END_REF], where the optimal Bellman operator is modified ("truncated") to return value functions with span bounded by c, and the stopping condition is tailored to return a constrained greedy policy with near-optimal gain. Topology of the span "truncation" operator. Let B c := {v : sp (v) ≤ c} be the "semi-ball" of span constrained value functions (we recall that sp (•) is a semi-norm).

For any vector v ∈ R S and any c ≥ 0, the span-truncation operator Γ c : R S → B c is defined as: Γ c v(s) := min {v(s), min x v(x) + c} for all v ∈ R S and s ∈ S.

Definition 5.1

The following lemma shows that Γ c can be seen as a projection operator (in span semi-norm) on the semi-ball B c .

For any vector

v ∈ R S and c ≥ 0, Γ c v is a projection of v on the semi-ball V c in span semi-norm i.e., Γ c v ∈ arg min z∈Bc sp (z -v) .
Lemma 5.4

Proof. See App. C.

Note that the projection is not uniquely defined: for any λ ∈ R, Γ c v + λe is also the projection of v on the semi-ball B c (because sp (e) = 0). We provide a geometric illustration of Γ c in the three-dimensional case (S = 3) on Fig. 5.2. For simplicity we represent Γ c in the normed quotient space induced by the semi-norm sp (•) on R 3 . In the quotient space, sp (•) is an actual norm and B c is an actual ball of radius c for that norm. Since the null space of sp (•) is the set of vectors of the form λe with λ ∈ R, it is immediate to see that the quotient space is in bijection with R 2 × {0} (one coordinate is set to 0 and the others are free variables). In Fig. 5.2 the third dimension v(s 3 ) is set to 0 while v(s 1 ) and v(s 2 ) are represented on the x and y axis respectively. The ball B c is represented by a blue line and the red arrows correspond to the projection Γ c on B c . We can divide R 2 in different areas (separated by dashed red lines on the figure) where projecting a point located outside the ball onto the ball has a different effect. By definition of Γ c , every point inside the ball is an invariant of Γ c .

Like L, Γ c satisfies 3 important properties that are key to apply the tools of Chap. 3 while enforcing the constraint on the bias: monotonicity, non-expansiveness and "linearity".

Let v and u be any two vectors in R S , then:

(a

) Γ c is monotone: v ≥ u =⇒ Γ c v ≥ Γ c u. (b) Γ c is non-expansive both in span semi-norm and ∞ -norm: sp (Γ c v -Γ c u) ≤ sp (v -u) and Γ c v -Γ c u ∞ ≤ v -u ∞ . (c) Γ c is linear 5 : ∀λ ∈ R, Γ c (v + λe) = Γ c v + λe.
Lemma 5.5 (Analogue of Prop. 2.5)

Proof. The proof can be found in (Fruit et al., 2018b, Lemma 15, Appendix D.2).

Planning with scopt

Span truncated greedy operator. We now introduce a constrained (truncated) version of the optimal Bellman operator by composing L with the span truncation (projection) Γ c .

Given c ≥ 0, we define operator T c : R S → R S as: T c v := Γ c (Lv), for all v ∈ R S .

Definition 5.2

In other words, operator T c applies a span truncation to the one-step application of L, that is, for any state s ∈ S, T c v(s) = min{Lv(s), min x Lv(x) + c}, which guarantees that sp (T c v) ≤ c (by definition). A first major observation is that unlike L, operator T c is not always associated with a decision rule d s.t.

T c v = L d v.
We say that T c is feasible at v ∈ R S and s ∈ S if there exists a Markov decision rule

d ∈ D MR such that T c v(s) = L d v(s).
When T c is feasible at v and all states s ∈ S (i.e., when there exists a Markov decision rule

d ∈ D MR such that T c v = L d v component wise)
we say that T c is globally feasible at v.

Definition 5.3

In the following lemma, we identify sufficient and necessary conditions for (global) feasibility of T c . 

Operator T c is feasible at v ∈ R S
T c v = max d∈D(c,v) L d v.
(5.9) Lemma 5.6

Proof. The proof can be found in (Fruit et al., 2018b, Appendix D.1).

Lem. 5.6 shows that it is sufficient to have sp (L d v) ≤ c for at least one decision rule

d ∈ D MR in order to guarantee that T c v = L δ v for some δ ∈ D MR (potentially different than d).
This result is a priori not so obvious although it is not difficult to prove. The last part of this lemma shows that when T c is globally feasible at v (i.e., when 

D(c, v) = ∅), T c v
d v c (a -|s) ← min (u(s) -u min -c)/(u(s) -m), 1 9: d v c (d + (s)|s) ← max (u min + c -m)/(u(s) -m), 0 10: d v c (a|s) ← 0 for all a = a -,
d v c (a|s) ← 0 for all a = d + (s) 15:
end if 16: end for all states are independent in the case of operator L). As a consequence, whenever D(c, v) = ∅, optimization problem (5.9) can be seen as the solution of the following LP-problem:

max d∈D(c,v) {(L d v) e}
(5.10)

where d → L d v is a linear map and the set D(c, v) can be expressed as a set of S × (S -1) linear constraints on L d v:

L d v(s) -L d v(s ) ≤ c, ∀s = s .
It goes without saying that it is computationally more efficient to calculate T c v using Def. 5.2 than solving the LP (5.10). Moreover, to compute the decision rule d v c ∈ D(c, v) achieving the maximum value T c v in (5.9), there is also a much more efficient algorithm than using a generic LP solver on (5.10). Alg. 8 describes how to simultaneously (and efficiently) compute T c v and the associated policy d v c when D(c, v) = ∅. In the states s ∈ S where the span constraint c is not violated, d v c (•|s) just plays the greedy action with probability 1 (associated to the optimal Bellman operator L). In the states s ∈ S where the constraint is violated, d v c (•|s) assigns non-zero probability mass to the greedy action as well as the "antigreedy" action (i.e., the action achieving the minimum value instead of the maximum, see line 7 of Alg. 8). The probability mass is tuned so as to ensure that the expected value is exactly equal to min{Lv(s)} + c, therefore matching the value of T c v(s). More precisely, using the notation in Alg. 8, whenever D(c, v) = ∅ and u(s) > u min + c = min{Lv(s)} + c, we always have (as a consequence of Eq. (5.7) in Lem. 5.6):

5.4. Planning with scopt d v c (a -|s) = min u(s) -u min -c u(s) -m , 1 = u(s) -u min -c u(s) -m and d v c (d + (s)|s) = max u min + c -m u(s) -m , 0 = u min + c -m u(s) -m
and therefore:

¨ü (s) -u min -c u(s) -m • m + u min + c - & & m u(s) -m • u(s) = u min + c = w(s) = T c v(s).
On the other hand, whenever D(c, v) = ∅, there exists at least one state s ∈ S such that u(s) ≥ m > u min + c (as a consequence of Eq. (5.7) in Lem. 5.6). In this case, d v c (•|s) just plays the "anti-greedy" action with probability 1 and T c v = L d v c v but there exists no decision rule satisfying the equality in any case (Lem. 5.6). However, it is immediate to verify that

d v c ∈ arg min d∈D MR {|T c v(s) -L d v(s)
|} for all states s ∈ S and so in some sense, d v c is the decision rule that is the "closest" to T c v.

We define the operator G

c : R S → D MR by G c v := d v c for all v ∈ R S , where d v c
is the decision rule output by Alg. 8 (with c and v as inputs).6 

Definition 5.4

We conclude this paragraph with three useful properties satisfied by operator T c (analogue of Lem. 5.5).

Let v and u be any two vectors in R S , then:

(a) T c is monotone:

v ≥ u =⇒ T c v ≥ T c u.
(b) T c is non-expansive both in span semi-norm and ∞ -norm:

sp (T c v -T c u) ≤ sp (v -u) and T c v -T c u ∞ ≤ v -u ∞ . (c) T c is linear: ∀λ ∈ R, T c (v + λe) = T c v + λe.
Lemma 5.7

Proof. Both L and Γ c satisfy (a), (b) and (c) and since T c = Γ c L (Def. 5.2), the result follows by composition of operators.

Span truncated value iteration. We are now ready to introduce ScOpt (Alg. 9). Given a vector v 0 ∈ R S and a reference state s, ScOpt implements relative value iteration where L is replaced by T c , i.e., v n+1 = T c v n -T c v n (s)e for some arbitrary reference state s ∈ S. Notice that the term (T c v n )(s)e subtracted at any iteration n prevents v n from increasing linearly with n and thus avoids numerical instability. However, the subtraction can be dropped without affecting the convergence properties of ScOpt (see Alg. Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span Algorithm 9 Span-Constrained Optimization (ScOpt)

Input: Operators T c : R S → R S and G c : R S → Π SR , accuracy ε ∈]0, +∞[, arbitrary reference state s ∈ S, initial vector

v 0 ∈ R S , contractive factor γ ∈ [0, 1[ Output: Gain g ∈ [0, r max ], bias h ∈ R S , stationary policy π ∈ Π SR 1: Initialize n = 0 2: v 1 := T c v 0 3: while sp (v n+1 -v n ) + 2γ n 1-γ sp (v 1 -v 0 ) > ε do Loop until termination 4: Increment n ← n + 1 5: Shift v n ← v n -v n (s)e Avoids numerical instability (v n → +∞) 6: Compute (v n+1 , d n ) := (T c v n , G c v n ) Alg. 8 7: end while 8: Set g := 1 2 max{v n+1 -v n } + min{v n+1 -v n } , h := v n and π := (d n ) ∞

Convergence and Optimality Guarantees

In order to derive convergence and optimality guarantees for ScOpt we need to analyze the properties of operator T c . We start by proving that T c preserves the one-step span contraction property of L. Note that in general L is not a contractive operator (in span semi-norm). In the special case where the MDP is unichain and aperiodic, L is a J-stage contraction with S ≥ J ≥ 1 (Puterman, 1994, Theorem 8.5.2). In Asm. 5.1 we assume that J = 1.

The optimal Bellman operator L is a 1-step γ-span-contraction, i.e., there exists a γ < 1 such that for any vectors u, v ∈ R S , sp (Lu -Lv) ≤ γsp (u -v).

Assumption 5.1

Under Asm. 5.1, T c is a γ-span contraction.

Lemma 5.8

Proof. Since Γ c is non-expansive (property (b) in Lem. 5.5) and L is γ-contractive, the result follows by composition.

As a consequence of Lem. 5.8 and the Banach fixed point theorem, T c admits a unique fixed point in the quotient space induced by the span semi-norm on R S . In R S , the fixed point equation has the same form as the Bellman optimality equation satisfied by L (see Prop. 2.4), with an associated gain (unique) and bias (unique up to a constant shift). Moreover, ScOpt converges to the fixed point of this equation and we also show that the associated "gain" is an upper-bound on the solution of (5.6) (due to the monotonicity property of T c , see property 5.4. Planning with scopt (a) of Lem. 5.7). We formally state these results in Lem. 5.9.

Under Asm. 5.1, the following properties hold:

1. Optimality equation and uniqueness: There exists a solution (g + , h + ) ∈ R × R S to the optimality equation

T c h + = h + + g + e.
(5.11)

If (g, h) ∈ R × R S is
another solution of (5.11), then g = g + and there exists λ ∈ R s.t. h = h + + λe. 2. Convergence: For any initial vector v 0 ∈ R S , the sequence (v n ) generated by ScOpt converges to a solution vector h + of the optimality equation (5.11), and

lim n→+∞ T n+1 c v 0 -T n c v 0 = g + e.
3. Dominance: If there exists a scalar g and a vector h ∈ R S such that T c h ≥ h + ge then g + ≥ g. As a consequence, the gain g + is an upper-bound on the supremum of (5.6), i.e., g + ≥ g * c .

Lemma 5.9

Proof. The formal proof can be found in (Fruit et al., 2018b, Appendix D.3).

Point 3 of Lem. 5.9 is the analogue of Prop.3.3 stated in Sec. 3.2. Prop.3.3 was a key step in the proof of optimism for UCRLB. Lem. 5.9 will play a similar role for SCAL. A direct consequence of point 2 of Lem. 5.9 (convergence) is that ScOpt always stops after a finite number of iterations. Nonetheless, T c may not always be globally feasible at h + (Fruit et al., 2018b, Appendix B) and thus there may not exist a policy associated to optimality equation (5.11). Furthermore, even when there is one, Lem. 5.9 provides no guarantee on the performance of the policy returned by ScOpt after a finite number of iterations. To overcome these limitations, we introduce an additional assumption, which leads to stronger performance guarantees for ScOpt.

Operator T c is globally feasible at any vector v ∈ R S such that sp (v) ≤ c. Assumption 5.2 Theorem 5.1 Assume Asm. 5.1 and 5.2 hold and let γ denote the contractive factor of T c (Asm. 5.1). For any v 0 ∈ R S such that sp (v 0 ) ≤ c, any s ∈ S and any ε > 0, the policy π n output by ScOpt(v 0 , s, γ, ε) is such that g + e -g πn ∞ ≤ ε. Furthermore, if in addition the policy π + = (G c h + ) ∞ is unichain, g + is the solution to optimization problem (5.6) i.e., g + = g * c and π + ∈ Π * c .

Proof. The proof can be found in (Fruit et al., 2018b, Appendix D.4).

Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span

The first part of the theorem shows that with the stopping condition used in Alg. 9 (line 3), ScOpt returns an ε-optimal policy π n .

The second part is more subtle. Although it may seem counter-intuitive at first, even though sp h + = sp T c h + ≤ c (by definition of T c ), in general when the policy π + = (G c h + ) ∞ associated to h + is not unichain, we might have sp h + < sp h π + . This is because h π + is not necessarily the unique solution (up to constant shift) to the Bellman evaluation equation associated to π + and so it is possible that sp h + = sp h π + . Consequently, we cannot guarantee that g + is the solution of (5.6) (the constraint sp h π + ≤ c should be satisfied). On the other hand, Corollary 8.2.7. of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] ensures that if π + is unichain then

sp h + = sp h π + , hence g + = g π + .
Notice that no matter whether π + is unichain or not, we cannot guarantee that π n satisfies the span constraint, i.e., sp (h πn ) may be arbitrary larger than c. Nonetheless, the proof of UCRLB only requires to bound the span of a vector h solution to an (approximate) Bellman equation L d h h + g with g ≥ g * (optimism), no matter whether h matches the definition of bias (Eq. 2.10) for policy π = d ∞ . Similarly, in the next section we show that the condition sp (h πn ) ≤ c is not needed and Thm. 5.1 is sufficient to derive regret bounds when ScOpt is integrated into UCRL2.

Learning with SCAL

In this section we introduce SCAL, an optimistic online RL algorithm that employs ScOpt to compute policies that efficiently balance exploration and exploitation. We prove that the assumptions stated in Sec. 5.4.2 hold when ScOpt is integrated into the optimistic framework. Finally, we show that SCAL enjoys the same regret guarantees as Regal.C, while being the first implementable and efficient algorithm to solve bias-span constrained explorationexploitation.

Learning algorithm

For any extended MDP M (see Sec. 2.1.5), based on Def. 5.2 we define T c as the span truncation of the optimal Bellman operator L of M. In the rest of this chapter, we will refer to this operator as the "span-truncated Bellman operator". In particular, we denote by L k and T k c the operators associated to M k . Given the structure of problem (5.3), one might consider applying ScOpt to the extended MDP M k (using T k c ). Unfortunately, in general L k does not satisfy Asm. 5.1 and 5.2 and thus T k c may not enjoy the properties of Lem. 5.9 and Thm. 5.1. To overcome this problem, we slightly modify M k as described in Def. 5.5.

Learning with scal

Let M be an extended MDP defined by the confidence intervals B r (s, a) = r(s, a) -, r(s, a) + and B p (s, a, s ) = p(s |s, a) -, p(s |s, a) + for all state-action pairs (s, a). Let 1 ≥ η > 0 and s ∈ S an arbitrary "reference" state. We define the "modified" MDP M associated to M by ∀(s, a, s ) ∈ S × A × S, B r (s, a) := 0, r(s, a) + , (5.12)

B p (s, a, s ) :=    B p (s, a, s ) if s = s, B p (s, a, s) ∩ [η, 1] otherwise,
(5.13)

where we assume that η is small enough so that:

B p (s, a, s) ∩ [η, 1] = ∅, and 
s ∈S p(s |s, a) -≤ 1 ≤ s ∈S p(s |s, a) +
We denote by L the optimal Bellman operator of M and by T c the span truncation of L (see Def. 5.2).

Definition 5.5

We will now justify the two transformations introduced in Def. 5.5: the "perturbation" of the transition probabilities (5.13) as well as the "augmentation" of the rewards (5.12)7 .

By slightly perturbing the confidence intervals B p of the transition probabilities, we enforce that the "attractive" state s is reached with non-zero probability from any state-action pair (s, a). A direct implication is that the ergodic coefficient of M defined as (Puterman, 1994, Thm. 6.6.6). Therefore, Asm. 5.1 holds. Moreover, for any policy π ∈ Π SR ( M), the state s necessarily belongs to all recurrent classes of π implying that π is unichain. Thus, M is a unichain MDP. As we will later show, the η-perturbation of B p only introduces a small bias ηc in the optimism. Given that c is known and η > 0 can be tuned, the magnitude of this bias can be controlled .

γ := 1 -min s,x ∈S, a,b ∈A p,q ∈ Bp      y∈S min {p(y|s, a), q(y|x, b)} ≥η if y=s      is smaller than 1-η < 1, so that L is γ-contractive
Let's now ignore the η-perturbation of B p and focus on the augmentation of B r . By augmenting (without perturbing) the confidence intervals B r of the rewards, we ensure two useful properties. First of all, the maximal reward r(s, a) + of B r (s, a) is unchanged and so for any vector v ∈ R S , Lv = Lv and thus T c v = T c v (by definition of T c ). Secondly, let d ∈ D MD ( M) be any (Markov deterministic) decision rule such that ∀s ∈ S, r(s, d(s)) = 0 (such a decision rule always exists given the definition of B r (s, a) in Eq. 5.12). We denote by L d the Bellman evaluation operator of decision rule d in the extended MDP M (see Eq. 2.4:

Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span L d v := r d + P d v for all v ∈ R S ). Since the reward associated to d is 0 in all states, we have sp L d v = sp P d v ≤ sp (v) (the last inequality is a direct consequence of Proposition 6.6.1 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]

. Therefore, if sp (v) ≤ c then sp L d v ≤ c meaning that d ∈ D(c, v) = ∅
(where D(c, v) = ∅ is defined in Lem. 5.6). By Lem. 5.6,D(c,v) = ∅ implies that T c is globally feasible at v. To summarize, for all v ∈ R S satisfying sp (v) ≤ c, T c is globally feasible at v. This matches the statement of Asm. 5.2.

When combining both the perturbation of B p and the augmentation of B r , both Asm. 5.1 and 5.2 hold and we obtain Thm. 5.2 (see Fruit et al., 2018b, Theorem 11).

Theorem 5.2

Let M be an extended MDP and M its "modified" counterpart with perturbation η ≥ 0 (see Def. 5.5). Then 1. L is a γ-span contraction with γ ≤ 1-η < 1 (i.e., Asm. 5.1 holds) and thus Lem. 5.9 applies to T c . We denote by (g + , h + ) a solution to equation (5.11) for T c . 2. T c is globally feasible at any v ∈ R S satisfying sp (v) ≤ c (i.e., Asm. 5.2 holds) and M is unichain implying that π + = (G c h + ) ∞ is unichain. Thus Thm. 5.1 applies to T c .

Proof. The proof can be found in (Fruit et al., 2018b, Appendix E).

SCAL is a variant of UCRLB that applies ScOpt (see Alg. 9) instead of EVI on the extended MDP M k obtained by modifying M k (see Def. 5.5) in each episode k in order to solve the optimization problem

8 max M ∈ M k , π∈Πc(M ) g π M := g + k (5.14)
where the maximum always exists (Thm. 5.2 applies to M k ). The maximizing policy is denoted π + k . The intervals B k p of M k are constructed using parameter9 η k = r max /(c • t k ) and an arbitrary attractive state s ∈ S. ScOpt is then run with an initial value function v 0 = 0, the same reference state s used for the construction of B k p , contraction factor γ k = 1 -η k , and accuracy ε k = r max /t k . ScOpt finally returns a policy which is executed until the end of episode k.

More precisely, SCAL implements Alg. 5 (UCRLB) with the difference that M k should be replaced by M k in line 5 (see Def. 5.5 for how to compute M k based on M k ). Also, line 9 (Eq. 3.5) should be replaced by:

(g k , h k , π k ) := ScOpt T k c , G k c , r max t k , s 1 , 0, γ k .
(5.15)

The rest of Alg. 5 is unchanged. Note that in theory, the aperiodicity transformation 5.5. Learning with scal is useless in ScOpt because the η-perturbation of B k p already ensures aperiodicity of M k . In our experiments, η is set to 0 since ScOpt still converges (see Sec. 5.6). In that case, it may be useful to integrate the aperiodicity transformation into ScOpt. The aperiodicity transformation affects both L k and the truncation Γ c since the constraint c should be replaced by c/(1 -α) as a consequence of the following theorem.

Theorem 5.3

Let M be an MDP and M α the MDP obtained after aperiodicity transformation of parameter α. For any (stationary) policy π ∈ Π SR :

h π Mα = 1/(1 -α)h π M
where h π Mα and h π M are the bias associated to policy π in M and M α respectively. In particular,

h * Mα = 1/(1-α)h * M and so sp h * Mα = 1/(1 -α)sp (h * M ).
Proof. See App. C.2.

Analysis of SCAL

Gain optimism

Thm. 5.2 only guarantees gain-optimism (i.e., g + k ≥ g * ) when M ∈ M k . Unfortunately, although M ∈ M k with high probability by construction (see Thm. 3.1), this may no longer be true for M k due to the η k -perturbation of B k p . Since the "inclusion argument" seem to fail here, we will use the new proof technique introduced in Sec. 3.2.1 that relies on the "dominance property" of L k (we will need to use the dominance property of T k c instead). As discussed in Sec. 3.2, a direct consequence of Thm. 3.1 is that with probability at least 1 -δ 3 :

∀k ≥ 1, L k h * ≥ Lh * = h * + g * e.
where we recall that g * and h * respectively denote the optimal gain and bias of the true (unknown) MDP M . In Chap. 3 we argued that this simple inequality and the "dominance property" of Prop. 3.3 are sufficient to show that UCRLB is gain-optimistic. We proceed similarly for SCAL.

By assumption sp (Lh * ) = sp (h * ) ≤ c implying that Γ c (Lh * ) = Lh * by definition of Γ c (see Sec. 5.4.1). Using the monotonicity property of Γ c (property (a) in Lem. 5.5) we deduce that with probability at least 1 -δ 3 :

∀k ≥ 1, T k c h * = Γ c (L k h * ) ≥ Γ c (Lh * ) = Lh * = h * + g * e (5. 16 
)
The idea is to now use point 3 of Lem. 5.9 ("dominance property") in order to prove optimism.

The problem is that ScOpt uses T k c instead of T k c to compute policy π k . The following lemma

Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span shows that the two operators give similar results up to a small bias of order η k • c.

Let M be an extended MDP and M its "modified" counterpart with perturbation η ≥ 0 (see Def. 5.5). Denote by T c and T c the span-truncated Bellman operators of M and M respectively (see Def. 5.2). For any vector h ∈ R S :

T c h -T c h ∞ ≤ η • sp (h)
(5.17) Lemma 5.10

Proof. See (Fruit et al., 2018b, Lemma 19, Appendix E).

When the transition probabilities are perturbed by η, the application of T c on h results in a perturbation of η amplified by sp (h) i.e., η • sp (h).

As a direct consequence of Lem. 5.10 and Eq. 5.16 and the assumption that sp (h * ) ≤ c, with probability at least 1 -δ 3 :

∀k ≥ 1, T k c h * ≥ h * + (g * -η k • c) e and so g + k ≥ g * -η k • c = g * - r max t k (5.18)
where the second inequality is a direct application of the dominance property proved in Lem. 5.9. SCAL is therefore approximately gain-optimistic. As shown in Chap. 3, the term r max /t k only has a negligible impact on the regret (negligible logarithmic term).

Bound on the range of the optimistic bias

Due to Thm. 5.2, (g k , h k ) (see Eq. 5.15) satisfies an approximate Bellman equation (similar to (3.22) for UCRLB) i.e.,

T k c h k -h k -g k e ∞ ≤ r max t k . (5.19) Thm. 5.2 also shows that T k c is globally feasible at h k implying that T k c h k = L d k k h k with π k = (d k ) ∞ . Finally, sp (h k ) ≤ c since either h k = v 0 = 0 or there exists v ∈ R S such that h k = T k c v (by design of ScOpt).

Learning with scal

Regret guarantees

We are now ready to prove two regret bounds for SCAL (as we did for UCRLB).

Theorem 5.4

There exists a numerical constant β > 0 such that for any weakly communicating MDP satisfying sp (h * ) ≤ c, with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S , and for any time horizon T > 1, the regret of SCAL is bounded as

∆(SCAL, T ) ≤ β • max {r max , c} s,a Γ(s, a) T ln T δ + β • max {r max , c}S 2 A ln T δ ln (T ) .
(5.20)

Proof. The proof is identical to the proof of Thm. 3.4 for UCRLB. The only difference is that we bound sp (h k ) by c instead of Λ and a factor 2 appear when using the optimism property since g k ≥ g * -2r max /t k (η k -perturbation combined with ε k -approximation).

Theorem 5.5

There exists a numerical constant β > 0 such that for any weakly communicating communicating MDP satisfying sp (h * ) ≤ c, with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S and for all time horizons T > 1, the regret of SCAL is bounded as

∆(UCRLB, T ) ≤ β • max {r max , √ r max c} s,a Γ(s, a) T ln T δ ln (T ) + β • max r max , c 2 r max S 2 A ln T δ ln (T ) .
(5.21)

Proof. The proof is identical to the proof of Thm. 3.5 for UCRLB with the same two (minor) differences mentioned in the proof of Thm. 5.4.

The previous bound shows that when c ≤ Λ, SCAL scales linearly with c, while UCRLB scales linearly with Λ (all other terms being equal). Notice that the gap between sp (h * ) and Λ can be arbitrarily large, and thus the improvement can be significant in many MDPs. As an extreme case, in weakly communicating MDPs the travel-budget can be infinite, leading UCRLB to suffer linear regret (see Chap. 4), while SCAL is still able to achieve sub-linear regret without requiring the algorithmic modifications presented in Chap. 4 (TUCRL). SCAL is able to learn in any weakly-communicating MDP like TUCRL and unlike UCRLB (which is only able to learn in a communicating MDP). However, we conjecture that SCAL (unlike TUCRL) does not suffer from the limitations mentioned in Sec. 4.5 of Chap. 4 i.e., while the regret of TUCRL will always grow as √ T when the true MDP is not communicating, the regret of SCAL eventually grows logarithmically with T . SCAL is able to exploit additional Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span prior knowledge about sp (h * ) that TUCRL does not have. Since TUCRL is solving a more difficult problem, it is reasonable to expect the algorithm to perform worse than SCAL (at least asymptotically). More precisely, we make this conjecture for two reasons. The first reason is that it seems straightforward to extend the proof of Jaksch et al. (Theorem 4 2010) to SCAL (and UCRLB). We recall that this theorem shows that the regret of UCRL2 eventually grows logarithmically with T (for T big enough) and not as √ T . We keep the formal proof of this conjecture for future work. The second reason is that the experiments presented in the next section tend to validate the conjecture.

When c > Λ, due to the η k -perturbation pf B k p , it seems not trivial to relate the span of h k with Λ (unlike in the case of UCRLB, see Sec. 3.3). Nevertheless, we can slightly modify SCAL to address this issue: at the beginning of any episode k, we run both ScOpt (with the same inputs) and EVI (as in UCRLB) in parallel and pick the policy associated to the optimistic bias with smallest span. With this modification, SCAL enjoys the best of both worlds, i.e., the regret scales with min{c, Λ} instead of c.

When c is wrongly chosen (c < sp (h * )), SCAL learns a span-constrained optimal policy with an associated gain g * c (solution to (5.6)) that can potentially be arbitrary smaller than g * . In this scenario, the regret is bounded as

O   r max min{c, Λ} s,a Γ(s, a) T ln T δ ln (T )   + (g * -g * c ) • T
For a given horizon T , there is clearly a trade-off in the choice of c: a big value minimizes the linear term (g * -g * c ) • T but increases the √ T -term, and conversely. The best way to choose c depends on the amount of prior knowledge about the true MDP.

To conclude this section, we emphasize that the benefit of SCAL over UCRL2 comes at a negligible additional computational cost (EVI and ScOpt have comparable time and space complexities).

Numerical Experiments

In this section, we numerically validate our theoretical findings. In particular, we show that the regret of UCRLB indeed scales with the travel-budget, while SCAL achieves much smaller regret that only depends on the span. This result is even more extreme in the case of non-communicating MDPs, where Λ = +∞.

Toy MDP

Consider the simple but descriptive three-state domain shown in Fig. 4.5 (Chap. 4) where instead of being deterministic, all rewards are Bernoulli random variables (with the same means). This small change slightly increases the complexity of the problem. The optimal policy π * is such that π * (s 2 ) = a 1 with gain g * = 2

3 and bias small, sp (h * ) = 1 1-δ ≈ 1, while Λ ∝ 1 δ . Fig. 5.3 shows that, as predicted by theory, the regret of UCRLB (for a fixed horizon T ) grows with 1 δ ≈ Λ. The optimal bias span however is roughly equal to 1. Therefore, we expect SCAL to clearly outperform UCRLB on this example. In all the experiments, we noticed that perturbing the extended MDP was not necessary to ensure convergence of ScOpt and so we set η k = 0. We also set γ k = 0 to speed-up the execution of ScOpt (see stopping condition in Alg. 9).

h * = -2-δ 3(1-δ) , -1 1-δ , 0 . If δ is
Communicating MDPs. We first set δ = 0.005 > 0, giving a communicating MDP (Fig. 5.4). With such a small δ, visiting state s 1 is rather unlikely. Nonetheless, UCRLB keeps trying to visit s 1 (i.e., play a 0 in s 2 ) until it collects enough samples to understand that s 1 is actually a bad state (before that, UCRLB"optimistically" assumes that s 1 is a highly rewarding state). Therefore, UCRLB plays a 0 in s 2 for a long time and suffers large regret. This problem is particularly challenging for any learning algorithm solely employing optimism like UCRLB (cf. [START_REF] Ortner | Optimism in the face of uncertainty should be refutable[END_REF] for a more detailed discussion on the intrinsic limitations of optimism in RL). In contrast, SCAL is able to mitigate this issue when an appropriate constraint c is used. More precisely, whenever s 1 is believed to be the most rewarding state, the value function (bias) is maximal in s 1 and ScOpt applies a "truncation" in that state and "mixes" deterministic actions. In other words, SCAL leverages on the prior knowledge of the optimal bias span to understand that s 1 cannot be as good as predicted (from optimism). The exploration of the MDP is greatly affected as SCAL quickly discovers that action a 0 in s 2 is suboptimal. Therefore, SCAL is always performing better than UCRL (Fig. 5.4b) and the smaller c, the better the regret. Surprisingly the actual policy played by SCAL in this particular MDP is always deterministic. ScOpt mixes actions in s 1 where only one true action is available but the mixing happens in the extended MDP M k where the action set is compact. The policy that ScOpt outputs is thus stochastic in the extended MDP but deterministic in the true MDP.

Infinite travel-budget. By selecting δ = 0 (Fig. 5.5) the diameter becomes infinite (D = +∞) but the MDP is still weakly communicating (with transient state s 1 ). UCRLB is not Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span able to handle this setting and suffers linear regret. On the contrary, SCAL is able to quickly recover the optimal policy (see Fig. 5.5). Note that unlike with TUCRL, the regret of SCAL seems to achieve a logarithmic "plateau" even in the non-communicating case. This may seem paradoxical but actually Thm. 4.2 does not apply in the case where a bound on the optimal bias span is known since the MDPs with sufficiently small ε in Fig. 4.8 (used to prove Thm. 4.2) do not satisfy sp (h * ) ≤ c. We conjecture that a logarithmic regret bound similar to Thm. 2.37 can be derived for SCAL, SCAL + and SCAL , with D replaced by c/r max . This simple example shows the dramatic impact of prior knowledge on the exploration-exploitation performance.

Knight Quest

We now consider a second environment that takes inspiration from classical arcade games. The goal is to rescue a prisoner in the shortest time without being killed by the dragon. To achieve this task, the knight needs to collect gold, buy a key and deliver the prisoner. A representation of the environment is provided in Fig. 5.6. The elements of the game are: a knight, a prisoner, a dragon patrolling around the prisoner, a gold mine and, a shop, a key and a shield.

Shop, Prisoner and Gold Mine. These elements are special states of the environment. The shop is the place where the knight can buy objects. Every time the knight is killed by the dragon or delivers the prisoner, it restarts from the shop. The prisoner is located behind the locked door in the terminal state. The knight can collect gold at the gold mine.

Dragon. The dragon is the enemy and it is randomly moving around the prisoner's location. Let's denote with d ∈ {0, 1, 2} the position of the dragon such that: d = 0 is the bottom left grey cell, d = 1 is the bottom right grey cell and d = 2 the top grey cell. The transition probabilities of the dragon are:

p(•|0) = [0.4, 0, 0.6] ; p(•|1) = [0, 0.4, 0.6] ; p(•|2) = [0.4, 0.2, 0.4] .
The dragon kills the knight when they are both at the same position and the knight does not have the shield.

Knight. The knight is the only player of the game. He or she moves in the environment using the four cardinal actions (i.e.,, right, down, left and up) plus an action to keep the current position (stay). We refer to these 5 actions as movement actions. Additionally, the knight can collect the gold (action CG), buy a key (action BK ) or buy a shield (action BS ).

State representation, actions and reward.

A state of the game is represented by the following elements:

• Knight position: coordinates of the grid (row, col), row, col ∈ 0, 1, 2, 3;

• Gold level: the amount of gold owned by the knight, g ∈ {0, 1};

Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span • Dragon position: d ∈ {0, 1, 2};

• Object identifier: object(s) carried by the knight, o = {0, 1, 2, 3} where 0 ⇔ nothing, 1 ⇔ key, 2 ⇔ armour and 3 ⇔ key and armour.

We can now can explain the effects of actions, i.e., how the next state is generated. The movement actions have the trivial effect of changing the knight position. The action CG changes the state only when the knight is at the mine. In this case the level of gold is incremented by one, formally, g ← min{1, g + 1}. Actions BK and BA alter the state only when executed in the shop with gold-level equal to 1. All the actions are deterministic when the knight does not carry the shield. When the knight carries the shield, he or she cannot be killed by the dragon (i.e., knight and dragon can occupy the same cell). However, due to the weight of the armour, the knight's gait is unsteady and other tasks are more challenging i.e.,

• the cardinal actions result in a normal (correct) transition with probability 0.5, otherwise the current position is kept,

• CG fails with probability 0.99, i.e., with probability 0.01 the gold level is incremented,

• actions BK and BS are not modified.

The basic reward signal is -1 at each time step. The knight also receives a reward of -10 when he or she executes CG, BK or BA outside the designed location (i.e., mine and shop). Finally, he or she obtains a reward of 20 when reaching the prisoner with the key and -20 when killed by the dragon. For the experiments, we rescaled the reward to lie in [0, 1].

Features of the game. The state and action space size are S = 360 and A = 8, while the travel-budget of the MDP is Λ ≈ 130. The associated shortest path starts from the shop with the shield and no gold, and eventually delivers the prisoner with one unit of gold and the key. In contrast, the optimal strategy simply consists in collecting gold, buying the key and rescuing the prisoner (there is no need to buy the shield as the dragon can be bypassed). We have: g * ≈ 0.5, sp (h * ) ≈ 3.28.

This game is challenging since the worst shortest path (achieving the travel-budget) is "orthogonal" to the optimal policy (achieving optimal gain). Many common real-world RL tasks appear to share this property: the agent can face several choices (actions) and most of them are useless. The span constraint c can somehow be interpreted as a prior on the level of difficulty of the game.

Results. We run UCRLB and SCAL over an horizon T = 4 • 10 8 , with different priors c. As in the toy example, SCAL is run with the augmented reward but no perturbation of the transition matrix (η k = 0), and γ k is set to 0. Results are reported in Fig. 5.7. We can notice that SCAL is able to outperform UCRL2 by a big margin. This is because unlike UCRLB, SCAL can leverage the knowledge of c to better direct the exploration. 

SCAL + : SCAL with exploration bonus

In this section, we introduce SCAL + , an online RL algorithm that leverages an exploration bonus to achieve near-optimal regret guarantees. Similar to SCAL, SCAL + takes as input an upper-bound c on the optimal bias span (i.e., sp (h * ) ≤ c) to constrain the planning problem solved over time. The crucial difference with SCAL is that SCAL + does not require planning with an extended Bellman operator, but it directly computes the optimal policy of the estimated Bellman operator, where the reward is increased by an exploration bonus. As proved in Sec. 5.7.2 the bonus is carefully tuned so as to guarantee optimism and small regret at the same time (Thm. 5.6).

The algorithm

The pseudo-code of SCAL + is reported in Alg. 10. Similarly to SCAL and UCRLB, SCAL + proceeds in episodes (indexed by k). At the beginning of each episode k, SCAL + constructs an estimated MDP M k = (S, A × {0, 1}, p k , r k ) (line 5 of Alg. 10). Unlike the extended MDP used in SCAL, M k has a finite action space. The maximum likelihood estimator would be the natural choice to define the transition probabilities and rewards of M k i.e., p k ← p k and r k ← r k . Unfortunately, this choice does not guarantee that the optimal gain g * k of M k is bigger or equal than the optimal gain of the true unknown MDP g * . To ensure gain-optimism (see Lem. 5.12), we increase the reward by an exploration bonus b k (Eq. 5.22) i.e., we define r k ← r k + b k (Eq. 5.25). Intuitively, the exploration bonus is large for poorly visited stateaction pairs, while it decreases as the number of visits increases. A crucial aspect in the formulation of b k is that it scales with the bound on the bias span c ≥ sp (h * ). In fact, the exploration bonus is tailored to guarantee the dominance property L k h * ≥ Lh * holds with high probability, where L k is the optimal Bellman operator of M k . Therefore b k is not Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span Algorithm 10 SCAL + (SCAL with exploration bonus) Input: Confidence δ ∈]0, 1[, maximal reward r max , set of states S, set of actions A, positive scalar c ≥ 0 1: Set initial time t := 1, observe initial state s 1 and initialize for all (s, a, s ) ∈ S × A × S:

• counters N 1 (s, a, s ) := 0 and N 1 (s, a) := 0,

• empirical averages p 1 (s |s, a) := 0 and r 1 (s, a) := 0, 2: for episodes k = 1, 2, ... do

3:

Set the starting time of the episode t k := t and initialize for all (s, a, s ) ∈ S × A × S: episode counters ν k (s, a, s ) := 0 and ν k (s, a) := 0, and cumulative rewards R k (s, a) := 0.

4:

For all (s, a, s ) ∈ S × A × S, compute exploration bonus:

b k (s, a) := c • min β sa k + 1 N k (s, a) + 1 , 2 + r max • min {β sa k , 1} (5.22) 
with

β sa k := 1 N + k (s, a) ln 20SAN + k (s, a) δ (5.23) 5:
Set M k := {S, A × {0, 1}, r k , p k } to be the "augmented" and "perturbed" estimated MDP defined by

p k (s |s, a i ) := N k (s, a) p k (s |s, a) N k (s, a) + 1 + 1(s = s 1 ) N k (s, a) + 1 , (5.24) r k (s, a i ) := ( r k (s, a) + b k (s, a)) • 1(i = 1) (5.25) 
for all s ∈ S, a i = (a, i) ∈ A × {0, 1}.

6:

Compute policy π k using ScOpt (see Alg. 9):

(g k , h k , π k ) := ScOpt L k , G k , r max t k , s 1 , 0, 1 t k + 1
(5.26)

7:

Sample action a t ∼ π k (•|s t ).

8:

while True do Execute policy π k until the end of episode k 9:

Execute action a t , obtain reward r t , and observe next state s t+1 .

10:

Increment episode counters: Update counters, empirical averages and sample variances for all (s, a, s ) ∈ S ×A×S:

ν k (s t , a t , s t+1 ) ← ν k (s t , a t , s t+1 ) + 1 and ν k (s t , a t ) ← ν k (s t , a t ) + 1 11: Increment cumulative reward R k (s t , a t ) ← R k (s t , a t ) + r t 12: if ν k (s t , a t ) ≥ N + k (s t ,
N k+1 (s, a, s ) := N k (s, a, s ) + ν k (s, a, s ) and N k+1 (s, a) := N k (s, a) + ν k (s, a) (5.27) p k+1 (s |s, a) := N k (s, a) N + k+1 (s, a) • p k (s |s, a) + ν k (s, a, s ) N + k+1 (s, a)
(5.28)

r k+1 (s, a) := N k (s, a) N + k+1 (s, a) • r k (s, a) + R k (s, a) N + k+1 (s, a)
(5.29)

19: end for 5.7. scal + : scal with exploration bonus just designed as an upper-confidence bound on the reward10 , but it is designed to take into consideration how estimation errors on both p and r may propagate to the bias function through application of the Bellman operator. As the constant c provides prior knowledge about the span of the optimal bias vector, the exploration bonus is obtained by considering that "local" estimation errors may be amplified up to a factor c.

The planning problem. To further exploit the prior knowledge sp (h * ) ≤ c we would like to solve the optimization problem

g * c (M k ) := sup π∈Πc(M k ) {g π M k }, (5.30) 
which is an instance of problem (5.6). We recall that SCAL also requires solving an instance of (5.6) but on an extended MDP (see problem (5.5)). We extensively studied (5.6) in Sec. 5.4 and derived ScOpt to solve the problem. While in general ScOpt may fail to converge or may return a value function whose associated greedy policy is not a solution to the original optimization problem (Fruit et al., 2018b, Appendix B), we provided a series of sufficient conditions on the MDP for which convergence and optimality properties are recovered (see Sec. 5.4.2). We follow the same approach as in Sec. 5.5.1 and design M k so as to enforce these sufficient conditions (as we did with the extended MDP of SCAL).

Instead of defining p k ← p k , we slightly perturb the transition probability to ensure that the ergodic coefficient γ k of M k is strictly less than 1 (see Asm. 5.1). More precisely, we set

p k ← 1 -1 N k +1 p k + 1 N k +1
e s 1 (see Eq. 5.24), where e s 1 is the vector with zero values everywhere except at the s 1 -th coordinate (s 1 is the initial state at the beginning of the learning process). Note that p k is a biased but asymptotically consistent estimator of p. While in the extended MDP of SCAL, the perturbations of transition probabilities were the same in all state-action pairs (s, a), here the perturbation depends on N k (s, a). In this case we cannot directly apply Lem. 5.10 to show that optimism is preserved up to an η-accuracy. However, we can adjust the exploration bonus in order to compensate for this small bias by adding a term of order c/N k (see Eq. 5.22). This will only have a minor impact on the final regret (logarithmic term). Finally, since

t k ≥ N k , we have γ k ≤ 1 -1 t k +1
< 1 and so we can give this value as input to ScOpt (see (5.26)).

We also augment the rewards by duplicating every action (the action space of M k is A × {0, 1}). For every a i = (a, i) ∈ A × {0, 1}, the reward r k (s, a i ) is r k (s, a) + b k (s, a) for i = 1, and 0 for i = 0, while the transition probability is unchanged (same for both a 0 and a 1 ). By construction, there always exists a policy achieving 0 reward in every state in M k (any policy taking action a 0 ). Such a policy has zero gain and bias and so according to Lem. 5.6,

Π c (M k ) = ∅.
Following similar steps as in Sec. 5.5, we can prove that M k satisfies all sufficient conditions Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span for ScOpt to converge and return an approximate solution to (5.30).

The MDP M k satisfies the following properties:

1. the optimal Bellman operator L k is a γ k -span-contraction with γ k ≤ 1 -1 t k +1 < 1, 2. all policies are unichain, 3. the operator T k c := Γ c L k is globally feasible at any vector v ∈ R S such that sp (v) ≤ c. Therefore, Thm. 5.1 holds. In particular, ScOpt converges and returns a policy π k (approximately) solving (5.30).

Lemma 5.11

Proof. See [START_REF] Qian | Exploration bonus for regret minimization in undiscounted discrete and continuous markov decision processes[END_REF], Proposition 2).

The policy π k returned by ScOpt is obtained by projecting the policy π k obtained in the augmented set A × {0, 1} and it can be "projected" on A as π k (s, a) ← π k (s, a 1 ) + π k (s, a 2 ). The associated greedy operator is denoted G k .

Comparison to SCAL. While SCAL + runs (relative) value iteration directly on the MDP M k , which has a similar structure as the original MDP (finite action space), SCAL runs extended value iteration on an extended MDP, whose (uncountable) action space is augmented to take into consideration the confidence intervals on rewards and transition probabilities. As a result, at each iteration of ScOpt, SCAL applies the optimal Bellman operator of the extended MDP to the current value vector. This requires to solve SA different linear programs to find the optimistic transition probabilities. Using LProba (see Alg. 7), this can be done in at most O(S ln(S)+S 2 A) = O(S 2 A) computations by first sorting the value vector and then applying LProba (which requires O(S) computations) to all (s, a) pairs. Overall, every iteration of ScOpt requires O(S 2 A) computations in SCAL. In comparison, in SCAL + , every iteration of ScOpt can also be done in O(S 2 A) computations. Therefore, even though SCAL + requires fewer computations at every iteration of ScOpt, the order of magnitude is the same O(S 2 A). Nevertheless, SCAL + is conceptually simpler and has a simpler algorithmic structure, which makes it potentially more flexible and easier to generalize to more complex tasks.

Optimistic Exploration Bonus

We now formally show that g * c (M k ) (see Eq. 5.30) is upper-bounding g * . As explained in the previous section, the exploration bonus was tailored to enforce this property. We denote by

L k (resp. T k c ) the (resp. truncated) Bellman operator of M k .
With probability at least 1 -δ 5 , for all k ≥ 1, L k h * ≥ Lh * and therefore by monotonicity of Γ c , T k c h * ≥ Lh * . If in addition, sp (h * ) ≤ c, then g * c (M k ) ≥ g * as a consequence of property 3. of Lem. 5.9 (dominance of operator T c ). Lemma 5.12 5.7. scal + : scal with exploration bonus Tightness of optimism. Although this might not be straightforward from the statement of Lem. 5.12, SCAL + achieves a "tighter" optimism (i.e., is less prone to over-exploration) than SCAL. More precisely, T k c h * upper-bounds T c h * = Lh * by a term approximately scaling as Θ max{r max , c}/ N k (s, a) (corresponding to the exploration bonus). In contrast, the truncated Bellman operator used by SCAL applied to h * i.e., T c k h * , is bigger than T c h * = Lh * by approximately Θ max{r max , c} Γ(s, a)/N k (s, a) . The optimism in SCAL + is therefore tighter by a multiplicative factor √ Γ. Unfortunately, the tighter degree of optimism is not sufficient to remove the √ Γ in the final regret bound . In the next section (see proof sketch of Thm. 5.6), we will explain why the √ Γ cannot be removed with the current analysis.

Regret Analysis of SCAL +

We now prove a regret bound similar to SCAL (Thm. 5.4).

Theorem 5.6

There exists a numerical constant β > 0 such that for any weakly communicating MDP satisfying sp (h * ) ≤ c, with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S , and for any time horizon T > 1, the regret of SCAL + is bounded as

∆(SCAL + , T ) ≤ β • max {r max , c} s,a Γ(s, a) T ln T δ + β • max {r max , c}S 2 A ln T δ ln (T )
(5.31)

Proof. The detailed proof can be found in [START_REF] Qian | Exploration bonus for regret minimization in undiscounted discrete and continuous markov decision processes[END_REF], Theorem 6, Appendix B). In the following, all inequalities should be interpreted up to minor approximations and in high probability. Let ν k (s, a) be the number of visits in (s, a) during episode k and k T be the total number of episodes before time T . Using Lem. 5.12, we have:

∆(SCAL + , T ) k T k=1 s,a ν k (s, a) g k - a r(s, a)π k (s, a) (5.32)
where g k , h k and π k are respectively the gain, bias and policy returned by ScOpt (see Eq. 5.26). ScOpt ensures that:

g k +h k (s) a π k (s, a) (r k (s, a) + p k (•|s, a) h k )
. By plugging this inequality into (5.32) we obtain two terms: r k (s, a) -r(s, a) + b k (s, a) and ( p k (•|s, a)e s ) h k (where e s is the unit vector with all zeros except at the s-th coordinate). We can then add and subtract the true probability

(p k (•|s, a) -p(•|s, a)) h k + (p(•|s, a) -e s ) h k . Since sp (h k ) ≤ c, the second term is of order O(c √ T + cSA)
when summed over S, A and episodes k (martingale difference sequence bounded with Azuma's inequality). On the other hand, the term (p k (•|s, a) -p(•|s, a)) h k represents the error of using p k in place of p in ScOpt. It is Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span the dominant term in the regret bound. Since h k depends on p k , we cannot apply Hoeffding-Azuma inequality as done in the proof of Lem. 5.12 to prove gain-optimism. Instead, we use Hölder's inequality and bound separately p k (•|s, a)-p(•|s, a)) 1 Γ(s, a)β sa k (see Eq. 5.23) and sp (h k ) ≤ c. This eventually introduce a √ Γ factor in the final regret bound. It is worth pointing out that Γ only appears due to statistical fluctuations that we cannot control , and not from the optimism (i.e., exploration bonus) that is explicitly encoded in the algorithm. For the reward we have |r k (s, a)-r(s, a)| ≤ r max β sa k . As a consequence, we can approximately write that:

∆(SCAL + , T ) m k=1 s,a ν k (s, a)π k (s, a) b k (s, a) ≤d k (s,a) + c Γ(s, a) + r max β sa k + c (N k (s, a) + 1) :=d k (s,a)
The remaining terms can be bounded as in SCAL (and UCRLB).

Γ-dependency. Since the optimism in SCAL + is tighter than in SCAL by a √ Γ-factor, one might have expected to get a regret bound scaling as c √ SAT instead of c √ SΓAT (as pointed out in Sec.5.7.2), thus matching the lower bound of [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] as for the dependency in S. Unfortunately, such a bound seems difficult to achieve with SCAL + (and even SCAL) for the reason explained in the proof sketch (correlation between h k and p k ). We refer to the discussion in Sec. 3.7 for more details on closing the gap between lower and upper bounds. The analysis of SCAL + suggests that the √ Γ-factor arises due to unavoidable statistical fluctuations (and not to gain-optimism). We leave as an open question whether the current analysis of SCAL + could be refined or whether a bigger lower bound should be derived. It is also possible that a c √ SAT regret bound can only be achieved with a different algorithm.

c-dependency. The regret bound of SCAL + does not scale with min{Λ, c} like SCAL (when SCAL is modified as explained in Sec. 5.5.2). The difference resides in the fact SCAL builds an extended MDP with Bellman shortest path operator (see Sec. 3.3) upper-bounding the Bellman shortest path operator of the true unknown MDP. In this case, the fact that Λ k ≤ Λ (i.e., the "optimistic" travel-budget is bigger than the true travel-budget) is a consequence of Thm. 3.5. Unfortunately, it is not clear how to apply Thm. 3.5 to M k . In this MDP, the reward is no longer bounded by r max and the MDP is not communicating (unlike the extended MDP M k ) implying that the assumptions of Thm. 3.5 no longer hold. We leave as an open question whether this analysis can be refined. Finally, it also seems difficult to prove a regret bound analogue to (5.20) for SCAL + i.e., scaling with √ c instead of c (see Thm. 5.5 for SCAL). This is because the exploration bonus itself scales linearly with c and explicitly appears in the regret bound when introducing the (approximate) Bellman optimality equation of M k in the equations. We can no longer make appear a sum of variances like in Sec. 3.6.

SCAL * : SCAL with tighter optimism

In the previous section, we showed that SCAL + is less prone to over-exploration than SCAL due to a tighter degree of optimism. Although this improvement was not reflected in the final regret bound due to the presence of higher order terms, one should expect to observe it empirically. Unfortunately, it seems that SCAL + does not achieve the optimal dependency in c and Λ. It is therefore challenging to compare SCAL and SCAL + in general (even empirically) as the √ Γ-advantage in optimism could be alleviated by the worsening in the c-dependency.

In this section, we present SCAL , a variant of SCAL that achieves the best of both algorithms by leveraging insights from SCAL + to further constrain the confidence intervals used to construct the extended truncated Bellman operator. Moreover, the computational complexity of SCAL is comparable to the one of SCAL (if not better).

Combining the confidence sets of SCAL with the exploration bonus of SCAL + Intuition

As we recalled in Sec. 5.5.2, the confidence sets used to build the extended MDP M k of UCRLB (see Eq. 3.3 and 3.4 in Alg. 5) ensure that with high probability, the dominance property L k h * ≥ h * + g * e holds for all k. The dominance property is a sufficient condition to guarantee gain-optimism and derive regret guarantees (see Sec. 3.2). By Hoeffding's inequality, we also know that for all all pairs (s, a) ∈ S × A and with high probability, the inequality

p k (•|s, a) h * ≤ p k (•|s, a) h * +sp (h * ) β sa
k holds for all k, where β sa k is defined in Eq. 5.23. When sp (h * ) ≤ c with c known, these inequalities are used to define the exploration bonus b k (s, a) of SCAL + , and it is also tempting to try to refine the definition of L k by adding the constraints

p k (•|s, a) h k ≤ p k (•|s, a) h k + cβ sa k .
The main difficulty is that these constraints involve both p k and h k . One idea could be to enforce the constraint

p k (•|s, a) v n ≤ p k (•|s, a) v n + β sa k at every iteration n ≥ 0 of EVI.
For a fixed v n , the constraint is linear in p k and so with this additional constraint, the optimization problem max p∈B k p (s,a) {p v} is still a linear program. Unfortunately, the operator associated to this refined confidence set is no longer an (extended) Bellman operator. This is because the confidence set now depends on the specific vector v and can no longer be mapped to an extended action space (see Sec. 2.1.5). Nevertheless, in the rest of this section we show that after applying the transformations already introduced for SCAL + (e.g., η-perturbation of the transition probabilities), all the useful properties of Bellman operators that we have been exploiting in this thesis still hold (e.g., convergence of value iteration, dominance, etc.).

Refined operator

We now formally define the new operator discussed in the previous paragraph:
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∀v ∈ R S , ∀s ∈ S, L k v(s) := max a∈As max r∈B k r (s,a) {r} + max p∈B k p (s,a)∩Θ k p (s,a,v) {p v} (5.33) where Θ k p (s, a, v) := {p ∈ ∆ S : p(•|s, a) v ≤ p k (•|s, a) v + cβ sa k }.
The only difference with the extended Bellman operator L k (2.17) is that the initial confidence set B k p (s, a) is intersected with Θ k p (s, a, v). Since the set Θ k p (s, a, v) depends on v, it is clear that L k is not a Bellman operator (the "extended action space" now depends on v). Fortunately, L k share a lot of properties with L k as shown in the following lemmas.

Let v and u be any two vectors in R S , then:

(a

) L k is monotone: v ≥ u =⇒ L k v ≥ L k u. (b) L k is non-expansive both in span semi-norm and ∞ -norm: sp (L k v -L k u) ≤ sp (v -u) and L k v -L k u ∞ ≤ v -u ∞ . (c) L k is linear: ∀λ ∈ R, L k (v + λe) = L k v + λe.
Lemma 5.13 (Analogue to Lem. 2.5 and 5.7)

Proof. See App. C.3.

Similarly to Sec. 5.5.1, we define L k by replacing B k r (s, a) and B k p (s, a) by respectively B k r (s, a) and B k p (s, a) in Eq. 5.33 (see Def. 5.5), with the choice η k = r max /(c • t k ) (as in Sec. 5.5) so that B k p (s, a) = ∅. To define L k , we also substitute Θ k p (s, a, v) by Θ k p (s, a, v) defined by:

Θ k p (s, a, v) := {p ∈ ∆ S : p(•|s, a) v ≤ p k (•|s, a) v + cβ sa k } where p k (•|s, a) is any 1 -projection of p k (•|s, a) onto B k p (s, a) (convex set). Since by defi- nition p k (•|s, a) ∈ B k p (s, a), the intersection B k p (s, a) ∩ Θ k p (s, a, v) is never empty and L k is well-defined. The projection satisfies p k (•|s, a)-p k (•|s, a) 1 = 2•max{0, η k -p k (s|s, a)} ≤ 2η k
where s is the reference state used to construct B k p (s, a) (see Def. 5.5 and the η k -perturbation). In particular, it always holds that p k (s|s, a) -p k (s|s, a) = max{0, η k -p k (s|s, a)}. To summarize, L k is formally defined by:

∀v ∈ R S , ∀s ∈ S, L k v(s) := max a∈As    max r∈ B k r (s,a) {r} + max p∈ B k p (s,a)∩ Θ k p (s,a,v) {p v}    .
(5.34)

L k also satisfies Lem. 5.13 (the proof is similar, see App. C). Moreover, unlike L k , L k is always contractive (by construction) while being not too different from L k as shown in the following lemma.

The operator L k is a 1-step γ k -span-contraction with γ k ≤ 1 -η k < 1, and for any vector Finally, we define the associated "truncated operators" by composing L k (resp. L k ) with the span truncation Γ c defined in Def. 5.1:

h ∈ R S , L k h -L k h ∞ ≤ η k • sp (h).
T k c := Γ c L k (resp. T k c := Γ c L k )
. Due to Lem. 5.5, T k c also satisfies Lem. 5.13 and 5.14 (by composition). We can then deduce the following corollary.

The following properties hold for T k c : 1. Optimality equation and uniqueness: There exists a solution (g

+ k , h + k ) ∈ R × R S to the optimality equation T k c h + k = h + k + g + k e.
(5. 35) 

If (g, h) ∈ R × R S is
lim n→+∞ T k c n+1 v 0 -T k c n v 0 = g + k e. 3. (Approximate) Dominance: If sp (h * ) ≤ c and L k h * ≥ Lh * then g + k ≥ g * -η k • c.
Corollary 5.1 (See Lem. 5.9)

Implementation and performance Algorithm

The pseudo-code of SCAL is similar to SCAL except that ScOpt is called with the refined operator L k instead of L k . In SCAL, line 9 of Alg. 5 (Eq. 3.5) was replaced by Eq. 5.15. In SCAL this equation becomes: Alg. 11). Since the value of w is increased at every iteration i (denoted w i in Alg. 11, see e.g., line 4), it is possible to reduce the number of iterations of RLProba by checking whether the value is bigger than ζ and terminating the algorithm accordingly (line 2). Therefore, the computational Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span Algorithm 11 Refined Linear Programming for probability maximization (RLProba)

(g k , h k , π k ) := ScOpt L k , G k , r max t k , s 1 , 0, γ k . ( 5 
Input: A vector v ∈ R S sorted in decreasing order v(1) ≥ v(2) ≥ • • • ≥ v(S), S closed intervals [a i , b i ] 1≤i≤S s.t. 1 ≥ b i ≥ a i ≥ 0 and S i=1 a i ≤ 1 ≤ S i=1 b i , a scalar ζ ∈ R Output: A scalar w 1: Set w 0 := S i=1 a i × v(i), ∆ 0 := 1 -S i=1 a i and i := 1 Initialization 2: while ∆ i-1 > 0 and w i-1 < ζ do Main loop 3: Set δ i := min {∆ i-1 , b i -a i } 4: Update w i ← w i-1 + δ i × v(i)
Assign allowed weights to highest values of v first 5:

Update ∆ i ← ∆ i-1 -δ i 6:
Increment i ← i + 1 7: end while 8: if w i-1 > ζ then 

Regret guarantees

By construction, SCAL satisfies exactly the same regret guarantees as SCAL (Thm. 5.4 and 5.5) but the degree of optimism is now potentially tighter due to the restriction p k (•|s, a) ∈ Θ k p (s, a, h k ) for all state-action pairs (s, a) ∈ S ×A and all episodes k. As discussed in Sec. 5.7, this restriction does not allow to refine the final regret bound with current proof techniques.

Conclusion

In this chapter we introduced SCAL, a UCRL2-like algorithm that is able to efficiently balance exploration and exploitation in any weakly communicating MDP for which a finite bound c on the optimal bias span sp (h * ) is known. While UCRLB exclusively relies on optimism and uses EVI to compute the exploratory policy, SCAL leverages the knowledge of c through the use of ScOpt, a new planning algorithm specifically designed to handle constraints on the bias span. We showed both theoretically and empirically that SCAL achieves smaller regret than UCRL2, with a negligible additional computational cost. Although SCAL was inspired by Regal.C, it is the only implementable approach so far. Therefore, this paper answers the long-standing open question of whether it is actually possible to design an algorithm that does not scale with the diameter (or the travel-budget) in the worst case. SCAL also paves the way for implementable algorithms able to learn in an MDP with continuous state 5.9. Conclusion space [START_REF] Qian | Exploration bonus for regret minimization in undiscounted discrete and continuous markov decision processes[END_REF]. Indeed, existing algorithms achieving regret guarantees in this framework [START_REF] Ortner | Online regret bounds for undiscounted continuous reinforcement learning[END_REF][START_REF] Lakshmanan | Improved regret bounds for undiscounted continuous reinforcement learning[END_REF] all rely on Regal.C.

Inspired by SCAL we derived SCAL + , the first analysis of exploration bonus in infinitehorizon undiscounted problems. We showed that SCAL + achieves the tightest level of optimism for OFU algorithms by achieving the optimal dependence in the bonus w.r.t. the state dimensionality (it cannot further reduced while preserving theoretical guarantees given the lower-bound of Prop. 2.12). Unfortunately, this tighter optimism does not imply a tighter bound.

We combined the advantages of both SCAL and SCAL + into a single algorithm: SCAL .

For all the algorithms presented in this chapter (SCAL, SCAL + and SCAL ), it is an open question whether the assumption that c is known can be relaxed. We conjecture that the knowledge of sp (h * ) is necessary to improve the regret upper-bound of UCRLB (i.e., replace the travel-budget by the optimal bias span), even though we leave this question for future work.

In Chap. 4, we showed that when the MDP is not communicating, the regret of any "efficient" learning algorithm cannot grow logarithmically with time. However, Thm. 4.2 does not apply in the case where a bound on the optimal bias span is known since the MDPs with small ε in Ex. 4.5 (used to prove Thm. 4.2) do not satisfy sp (h * ) ≤ c. We conjecture that a logarithmic regret bound similar to Thm. 2.37 can be derived for SCAL, SCAL + and SCAL , with D replaced by c/r max .

6 Hierarchical exploration-exploitations with options

Introduction

Tractable learning of how to make good decisions in complex domains over many time steps almost definitely requires some form of hierarchical reasoning. One powerful and popular framework for incorporating temporally-extended actions and hierarchical structures in the context of reinforcement learning is the options framework [START_REF] Sutton | Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning[END_REF]. An important feature of this framework is that MDP planning and learning algorithms can be easily extended to accommodate options, thus obtaining algorithms such as option value iteration and Q-learning [START_REF] Sutton | Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning[END_REF], LSTD [START_REF] Sorg | Linear Options[END_REF], and actor-critic [START_REF] Bacon | The option-critic architecture[END_REF]. Temporally extended actions are particularly appealing for high dimensional problems that naturally decompose into a hierarchy of subtasks. Creating and leveraging options has been the subject of many papers over the last two decades (see e.g., [START_REF] Mcgovern | Automatic discovery of subgoals in reinforcement learning using diverse density[END_REF]; [START_REF] Menache | Q-cut-dynamic discovery of sub-goals in reinforcement learning[END_REF]; [START_REF] Şimşek | Using relative novelty to identify useful temporal abstractions in reinforcement learning[END_REF]; [START_REF] Castro | Automatic construction of temporally extended actions for mdps using bisimulation metrics[END_REF]; [START_REF] Levy | Unified inter and intra options learning using policy gradient methods[END_REF]; [START_REF] Sairamesh | Options with exceptions[END_REF]; [START_REF] Mann | Scaling up approximate value iteration with options: Better policies with fewer iterations[END_REF]) and it has been of particular interest recently in combination with deep reinforcement learning, with a number of impressive empirical successes. For instance, [START_REF] Tessler | A deep hierarchical approach to lifelong learning in minecraft[END_REF] recently obtained promising results by combining options and deep learning for lifelong learning in the challenging domain of Minecraft.

Intuitively (and empirically) temporal abstraction can help speed up learning (reduce the amount of experience needed to learn a good policy) by shaping the actions selected towards more promising sequences of actions [START_REF] Stolle | Learning options in reinforcement learning[END_REF], and it can reduce planning computation through reducing the need to evaluate over all possible actions (see e.g., [START_REF] Mann | Scaling up approximate value iteration with options: Better policies with fewer iterations[END_REF]). A large body of the literature has focused on how to automatically construct options that are beneficial to the learning process within a single task or across similar tasks. An alternative approach is to design an initial set of options and optimize it during the learning process itself (see e.g., interrupting options [START_REF] Mann | Scaling up approximate value iteration with options: Better policies with fewer iterations[END_REF] and options with exceptions [START_REF] Sairamesh | Options with exceptions[END_REF]).

Despite the empirical evidence of the effectiveness of most of these methods, it is well Chapter 6. Hierarchical exploration-exploitations with options known that options may as well worsen the performance w.r.t. learning with "primitive" actions [START_REF] Jong | The utility of temporal abstraction in reinforcement learning[END_REF]. Intuitively, limiting action selection only to temporally-extended options might hamper the exploration of the environment by restricting the policy space. Moreover, most of the proposed methods are heuristic in nature and the theoretical understanding of the actual impact of options on the learning performance is still fairly limited. Notable exceptions are the recent results of [START_REF] Mann | Scaling up approximate value iteration with options: Better policies with fewer iterations[END_REF] and [START_REF] Brunskill | PAC-inspired Option Discovery in Lifelong Reinforcement Learning[END_REF]. Nonetheless, [START_REF] Mann | Scaling up approximate value iteration with options: Better policies with fewer iterations[END_REF] rather focus on a batch setting and they derive a sample complexity analysis of approximate value iteration with options. [START_REF] Brunskill | PAC-inspired Option Discovery in Lifelong Reinforcement Learning[END_REF] derived sample complexity bounds for an RMax-like exploration-exploitation algorithm for semi-Markov decision processes (SMDPs). While MDPs with options can be mapped to SMDPs, we will later show that their analysis cannot be immediately translated into the PAC-MDP sample complexity of learning in an MDP with options, which makes it harder to evaluate their potential benefit. Therefore, we argue that in addition to the exciting work being done in heuristic and algorithmic approaches that leverage and/or dynamically discover options, it is important to build a formal understanding of how and when options may help or hurt reinforcement learning performance, and that such insights may also help inform empirically motivated options-RL research. In this chapter, we consider the case where a fixed set of options is provided and we study their impact on the learning performance w.r.t. learning without options. In particular, we derive the first regret analyses of learning with options.

Relying on the fact that using options in an MDP induces a semi-Markov decision process (SMDP), we first introduce a variant of UCRLB for SMDPs and we upper and lower-bound its regret. While this result is of independent interest for learning in SMDPs, its most interesting aspect is that it can be translated into a regret bound for learning with options in MDPs and it provides a first understanding on the sufficient conditions for a set of options to reduce the regret w.r.t. learning with primitive actions. The resulting analysis explicitly shows how options can be beneficial whenever the navigability among the states in the original MDP is not compromised (i.e., the MDP travel-budget is not significantly increased), the level of temporal abstraction is high (i.e., options have long durations, thus reducing the number of decision steps), and the optimal policy with options performs as well as the optimal policy using primitive actions. While this result makes explicit the impact of options on the learning performance, the proposed algorithm (SUCRL in short) needs prior knowledge on the parameters of the distributions of cumulative rewards and durations of each option to construct confidence intervals and compute optimistic solutions. In the second part of this chapter, we remove the limitations of having prior knowledge on options by introducing a "prior knowledge-free" version of SUCRL named FSUCRL. We derive regret bounds for FSU-CRL that clarify the regret bound of SUCRL. Finally, we provide illustrative experiments where the empirical results support the theoretical findings. We also empirically compare FSUCRL to SUCRL and UCRLB (i.e., learning without options).

The work presented in this chapter extends the conference papers (Fruit and Lazaric, 2017) and (Fruit et al., 2017).

The option framework

The option framework

Formal definition of options

We start this section with the formal definition of an option.

A (Markov) option is a 3-tuple o = {I o , β o , π o } where • I o ⊆ S
is the set of states where the option can be initiated,

• β o : S → [0, 1] is the probability distribution that the option ends in a given state,

• π o ∈ Π SR is the policy followed until the option ends.

Definition 6.1 [START_REF] Sutton | Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning[END_REF]) In this chapter, we assume that the original action space A of the MDP is replaced by a set of options O given (i.e., known) to the learning agent, and possibly containing primitive actions. This new framework is therefore a generalization of the MDP framework considered so far (and introduced at the beginning of the thesis, see Sec. 2.1). Given a set of (Markov) options O satisfying Def. 6.1, we denote by O s the set of options available in state s ∈ S i.e., O s := {o ∈ O : s ∈ I o }. In the previous chapters, we have always considered state-action pairs (s, a) ∈ S × A rather than isolated actions. Similarly, in this chapter the state-option pairs (s, o) ∈ S × O will be the fundamental bricks of the decision problem at hand. In the rest of this chapter, we will slightly abuse notation and denote by S ×O the set of "admissible" state-option pairs i.e., the set {(s, o)

An
: o ∈ O, s ∈ I o }.
As shown in the seminal work of [START_REF] Sutton | Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning[END_REF], one possible way to describe the decision process induced by a set of options O onto an MDP M is through the notion of Semi-Markov Decision Process (SMDP). We will make this statement formal later and start by briefly presenting the concept of SMDP in the next section.

Semi-Markov Decision Processes Definition

A Semi-Markov Decision Process (SMDP) M is a 5 -tuple2 S, A, r, p, τ . As in the definition of an MDP (see Sec. 2.1.1), S and A denote respectively the state and action space of the SMDP, and r and p the expected rewards and transition probabilities. The last term τ in the definition of an SMDP refers to holding times. After playing action a in state s, the agent waits for an expected duration τ (s, a) > 0 before observing the next state s with probability p(s |s, a) and receiving the expected reward r(s, a). We make the same assumptions on S and A as in Sec. 2.1 i.e., S is assumed to be finite while A is either finite or compact depending on the context. When A is a compact set, we also assume that for all s, s ∈ S, the maps a → r(s, a), a → τ (s, a) and a → p(s |s, a) are continuous functions of a. A major difference with Sec. 2.1 is that we assume that all sampled (as opposed to expected) rewards and holding times are positive but not necessarily bounded , although we will also study this specific case in detail. The reason is that this assumption is too restrictive to model options, as will be clear in the next section. Nevertheless, we always assume that the expected value τ (s, a) are uniformly bounded on S × A3 i.e., τ max := sup s,a τ (s, a) < +∞, and we also assume that there exists r max > 0 such that r(s, a) ≤ r max τ (s, a) for all (s, a) ∈ S × A. As a consequence, r(s, a) is also uniformly bounded on S × A. Finally, we assume that there exists τ min > 0 such that for all state-action pairs (s, a) ∈ S × A, τ (s, a) ≥ τ min .

Since the classification of MDPs presented in Def. 2.2 (see Sec. 2.1.1) only depends on p (i.e., on transition probabilities), we can also apply it to SMDPs. SMDPs can thus be classified according to their chain structure just like MDPs: ergodic, unichain, communicating, weakly communicating or multi-chain.

Note that an MDP can be interpreted as a particular case of an SMDP where τ (s, a) = 1 for all state-action pairs. SMDPs are therefore a generalization of MDPs with a temporal component.

Gain optimality

Like in the MDP case (see Sec. 2.2), in the undiscounted setting the goal is to maximize the long-term average reward which is now expressed as an average over elapsed time (and not just over time steps as in Eq. 2.8):

sup π∈Π      lim inf n→+∞ E π n i=1 r i s 1 ∼ µ 1 E π n i=1 τ i s 1 ∼ µ 1      .
(6.1) If τ (s, a) = 1 for all state-action pairs, then (6.1) is equivalent to (2.8). Similarly, for any stationary randomized policy π ∈ Π SR , the gain of π is defined as 6.2. The option framework

g π (s) := lim n→+∞ E π n i=1 r i s 1 = s E π n i=1 τ i s 1 = s (6.2)
where the limit always exists. On the other hand, the bias is defined as (6.3) where the Cesaro-limit always exists. For any randomized Markov decision rule d ∈ D MD , we denote by τ d ∈ R S the vector of holding times i.e., τ d (s) = τ (s, d(s)) for all s ∈ S. The following proposition is the generalization of Prop. 2.4 to SMDPs (see [START_REF] Schweitzer | On undiscounted markovian decision processes with compact action spaces[END_REF], Theorem 1) for the proof).

h π (s) := C-lim n→+∞ E π n i=1 r i -τ i • g π (s i ) s 1 = s ,

Proposition 6.1

Let M be a weakly communicating MDP and denote by Π * ⊆ Π SD the set of maximizers of (6.1) in Π SD . If any of the following two assumptions hold:

1. the action space A is finite, 2. Π * = ∅ and sup π∈Π * sp (h π ) < +∞, then there exists a solution (g * , h * ) ∈ R × R S to the fixed point equation:

h * = max d∈D MD {r d -τ d • g * + P d h * }.
Moreover, for any such solution (g * , h * ) and for all s ∈ S,

g * = max π∈Π      lim inf n→+∞ E π n i=1 r i s 1 = s E π n i=1 τ i s 1 = s      .
Finally, any stationary greedy policy π

* = (d * ) ∞ satisfying d * ∈ arg max d∈D MR {r d + P d h * } is optimal i.e., π * ∈ Π * .
We recall that unlike g * , h * is not unique (see Sec. 2.2).

A natural next step is to derive an algorithm to compute an optimal policy. To that end, we first introduce a transformation called uniformization.

Uniformization of an SMDP

We call "uniformization" the transformation of an SMDP M = S, A, r, p, τ into an MDP M eq = S, A, r eq , p eq with identical state and action spaces, and such that ∀(s, a) ∈ S × A: where α < τ min . The assumption τ (s, a) ≥ τ min ensures that p eq (•|s, a) is a well-defined transition probability. Furthermore, since p eq (s|s, a) > 0 for all (s, a) ∈ S × A, the Markov Chain induced by any Markov randomized decision rule d ∈ D MR is aperiodic. In the following, we denote by L eq the optimal Bellman operator of M eq . We first notice that the transformation preserves the chain structure e.g., if M is weakly communicating/unichain/etc., so is M eq . This is immediate to see since the chain structure of M only depends on which transition probabilities p(s |s, a) with s = s are equal to 0, and p(s |s, a) = 0 ⇐⇒ p eq (s |s, a) = 0 whenever s = s.

In the case of a compact action space A, a → r eq (s, a) and a → p eq (•|s, a) are continuous mappings since a → r(s, a), a → τ (s, a) and a → p(s |s, a) are assumed to be continuous (see above). Moreover, the condition r(s, a) ≤ r max τ (s, a) implies that r eq (s, a) ∈ [0, r max ]. As a result, if SMDP M satisfies the assumptions stated earlier, M eq satisfies the assumptions of all the MDPs studied so far in this thesis (see Sec. 2.1.1).

Uniformization allows to analyze an SMDP as if it was an MDP (Puterman, 1994, Section 11.4.3). We illustrate this claim with the following lemma. Proposition 6.2 (Proposition 11.4.5 of Puterman (1994))

If there exists (g * eq , h * eq ) ∈ R × R S solution to optimal Bellman equation of M eq i.e., h * eq + g * eq e = L eq h * eq , then (g * eq , αh * eq ) is solution to the optimal Bellman equation of M i.e., αh * eq = max

d∈D MD r d -τ d • g * eq + P d αh * eq .
Instead of looking for a solution to the optimality equation of SMDP M , we can search for a solution to the optimality equation of MDP M eq using the tools of Sec. 2.2. Rather than checking whether M satisfies the assumptions of Prop. 6.1, we can verify whether M eq satisfies the assumptions of Prop. 2.4 (existence of a solution to the MDP Bellman optimality equation). Whenever Prop. 2.4 holds for M eq , it is clear that Prop. 2.6 holds as well (i.e., value iteration converges) since all stationary deterministic decision rule in M eq are aperiodic (see above). Figure 6.1: MDP with a state-option (s 0 , o) executing a 0 in all states with termination probabilities β o (s 0 ) = β 0 , β o (s 1 ) = β 1 and β o (s 2 ) = 1 (Fig. 6.1a), and dynamics of the SMDP associated to this state-option (Fig. 6.1b).
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s 0 β 0 s 1 β 1 s 2 β 2 . . . . . . . . . . . . a 0 a 1 a 0 a 1 a 0 a 1 p p 1 -p 1 -p (a)

Markov options as absorbing Markov Chains

Markov Chain of an option. Any option defined on an MDP can be described by a Markov Reward Process (MRP) i.e., a Markov Chain (MC) together with a reward function. The state space of the MC contains all states that are reachable by the option and all terminal states are absorbing states of the MC (see Fig. 6.1 and 6.2). More formally, for any stateoption pair (s, o) ∈ S × O the set of inner states S s,o includes the initial state s and all states x with β o (x) < 1 that are reachable by executing π o starting from s (e.g., S s,o = {s 0 , s 1 } in Fig. 6 0 for all states x ∈ S, Asm. 6.1 always holds by definition of Q s,o . It is thus not necessary to know the dynamics of the MDP to enforce this property, even though having some prior knowledge is usually useful to define a well-behaved option.

s 0 s 1 s 2 (1-β 1 )p (1-p)β 0 (1-p)(1-β 0 ) β 1 p (1-p)β 1 (1-p)(1-β 1 ) p 1 1

Characterization of an absorbing MC

. When Q s,o is strictly substochastic, I -Q s,o is always invertible since the spectral radius of Q s,o -ρ(Q s,o
)-is strictly smaller than 1. In the theory of absorbing MCs (Grinstead and Snell, 2003, Section 11.2), the fundamental matrix associated to P s,o is defined as 

N s,o := (I -Q s,o ) -1 (6.

MDP with options as an SMDP

Availability of options. When we consider an arbitrary set of options O, it is possible that some options terminate in states where no other option is available. In this case, the decision process is somehow ill-posed . To avoid this situation, we make an additional assumption.

For any state-option pair

(s, o) ∈ S × O, x ∈ S term s,o =⇒ O x = ∅.
Assumption 6.2

Asm. 6.2 is not really restrictive since we can always use primitive actions as default options. Even under Asm. 6.2, it is not a problem that O s = ∅ for some s ∈ S as long as state s is not a terminal state for any other state-option pair. Given an initial distribution over states Main results. We are now ready to state the main result of this section which relates an MDP with (Markov) options to an SMDP.

Proposition 6.3 [START_REF] Sutton | Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning[END_REF] Let M = S, A, r, p be an MDP with bounded rewards 0 ≤ r ≤ r max , O a set of (Markov) options satisfying both Asm. 6.1 and 6. In SMDP M µ 1 O , τ min = 1. In the rest of this chapter, we set α = 0.9 < τ min for the uniformization coefficient (this choice is arbitrary). We will often remove the dependency in µ 1 and use the notations M O and S O to denote the SMDP and the state space respectively.

Any stationary policy π O ∈ Π SR M O can be interpreted as a policy π ∈ Π M so that at each step, π selects an action available in M based on the policy of the current option being executed. Although, π O is stationary, the primitive actions played by π not only depend on the current state in S, but also on the option being executed, potentially inducing a nonstationary policy. The two reward processes induced by π and π O in respectively M and M O are strongly related as shown in Cor. 6.1.

Let M be an MDP, O a set of options satisfying both Asm. 6.1 and 6.2 and M O the corresponding SMDP (Prop. 6.3). Let π O ∈ Π SR M O be any stationary policy on M O and π ∈ Π M the equivalent policy on M (not necessarily stationary). For any state s ∈ S O , we have:

g π O M O (s) = g π M (s).

Corollary 6.1

Proof. The proof is straightforward (Fruit et al., 2017, Lemma 2).

As a result of Cor. 6.1, it makes sense to compare the performances of policies in Π SR M O and policies in Π M .

Distribution of holding times and rewards. We will now extend the result of Prop. 6.3 by analyzing the distribution of τ and R in M O . By construction, for any state-option pair (s, o) ∈ S O × O, the holding time corresponds to the time before absorption starting in the equivalent absorbing MC (described in Sec. 6.2.3). Such discrete random variables (r.v.) are said to follow a discrete phase-type distribution [START_REF] Nielsen | Lecture notes on phase-type distributions for stochastic processes[END_REF]. The probability mass function can be expressed using powers of Q s,o (Nielsen, 2012, Section 1.3.1) 

4 : ∀k ∈ N * , P(τ (s, o) = k) = e s (Q s,o ) k-1 V s,o e.
(6.11)

The option framework

Discrete phase-type r.v. are almost surely finite but not almost surely bounded (for any arbitrarily large k, the probability mass in Eq. 6.11 may be non-zero). This is the reason why we did not assume that the sampled holding times of an SMDP are bounded , but only that they have a finite expectation (see above). In all the learning algorithms we have presented so far in this thesis, we used concentration inequalities on bounded r.v. To apply the same approach in the context of options, we need to rely on more general inequalities that hold for unbounded r.v. We introduce the notions of sub-exponential and sub-Gaussian random variables.

A random variable X with mean µ < +∞ is said to be sub-exponential, if one of the following equivalent conditions is satisfied: 1. (Laplace transform condition) There exists5 (σ, d) ∈ R + × R + * such that:

E e λ(X-µ) ≤ e σ 2 λ 2 2 for all λ ∈ R s.t. |λ| < 1 d .
(6.12)

We use the notation X ∈ subExp(σ, d). 2. There exists c 0 > 0 such that E[e λ(X-µ) ] < +∞ for all λ ∈ R s.t. |λ| ≤ c 0 . Definition 6.2 [START_REF] Wainwright | Course on Mathematical Statistics, chapter 2: Basic tail and concentration bounds[END_REF])

A random variable X with mean µ < +∞ is said to be sub-Gaussian if and only if there exists σ ∈ R + such that: X-µ) ] ≤ e σ 2 λ 2 2 for all λ ∈ R. (6.13)

E[e λ(
We use the notation X ∈ subGauss(σ) to denote a sub-Gaussian r.v. with parameter σ. Definition 6.3 [START_REF] Wainwright | Course on Mathematical Statistics, chapter 2: Basic tail and concentration bounds[END_REF])

By definition, if X ∈ subGauss(σ) then X ∈ subExp(σ, d) for any d > 0 but the reverse is not true i.e., Def. 6.2 is more general than Def. 6.3. Also, if X ∈ subGauss(σ) (resp.

X ∈ subExp(σ, d)) then -X ∈ subGauss(σ) (resp. -X ∈ subExp(σ, d)). Finally, if X ∈ subExp(σ 1 , d 1 ) (resp. X ∈ subGauss(σ 1 )), σ 2 ≥ σ 1 and d 2 ≥ d 1 then X ∈ subExp(σ 2 , d 2 ) (resp. X ∈ subGauss(σ 2 )).
It is possible to generalize Hoeffding and Bernstein inequalities to respectively sub-exponential and sub-Gaussian random variables. Proposition 6.4 ("Bernstein inequality", [START_REF] Wainwright | Course on Mathematical Statistics, chapter 2: Basic tail and concentration bounds[END_REF])

Let (X i ) 1≤i≤n be a collection of independent sub-Exponential random variables s.t. ∀i ∈ {1, ..., n}, X i ∈ subExp(σ i , d i ) and E[X i ] = µ i . The following concentration inequality holds: Let (X i ) 1≤i≤n be a collection of independent sub-Gaussian random variables s.t. ∀i ∈ {1, ..., n}, X i ∈ subGauss(σ i ) and E[X i ] = µ i . The following concentration inequality holds:

∀t ≥ 0, P n i=1 (X i -µ i ) ≥ t ≤      e -t 2 2nσ 2 , if 0 ≤ t ≤ σ 2 d e -t 2d , if t > σ 2 d (6.
∀t ≥ 0, P n i=1 (X i -µ i ) ≥ t ≤ e -t 2 2nσ 2
(6.15)

where σ = n i=1 σ 2 i n .
The question that arises is whether the holding times τ and rewards R of M O satisfy either Def. 6.2 or Def. 6.3 so that we can apply Prop. 6.4 or 6.5. Lem. 6.1 gives a complete answer to this question.

The holding times τ and rewards R of M O are sub-exponential random variables. Moreover, the holding time of an option is sub-Gaussian if and only if it is almost surely bounded.

Lemma 6.1

Proof. The full proof can be found in App. D.1. We distinguish between two possible cases:

either ρ(Q s,o ) = 0 (the spectral radius of Q s,o is 0), or 1 > ρ(Q s,o ) > 0.
The first case characterizes the absence of cycles in the absorbing MC i.e., all states are visited at most once with probability 1. This means that the holding time is bounded by S almost surely and is therefore sub-Gaussian. In the second case, the absorbing MC contains cycles i.e., some states are visited at least twice with non-zero probability. The holding time is then sub-exponential but not sub-Gaussian.

Thanks to Lem. 6.1, we know that we can always bound τ and R using Prop. 6.4. We also know that Prop. 6.5 is useless since when τ is sub-Gaussian, it is also bounded and so we can directly apply the inequalities used in previous chapters. [START_REF] Brunskill | PAC-inspired Option Discovery in Lifelong Reinforcement Learning[END_REF] 6.3. Learning in Semi-Markov Decision Processes addressed the problem of on-line learning with options under the assumption that τ and R are sub-Gaussian. Lem. 6.1 indicates that this assumption is restrictive in general, and very loose when it holds (bounded is preferable). Despite its simplicity and importance, it seems that Lem. 6.1 has never been pointed out before in the literature.

Learning in Semi-Markov Decision Processes

Inspired by the mapping of Prop. 6.3, we now aim at analyzing the exploration-exploitation trade-off in an MDP with options by first analyzing that same trade-off in a generic SMDP (satisfying the assumptions of the previous section). We start by presenting the learning problem and later derive and analyze a UCRL-like learning algorithm.

The learning problem

To avoid any confusion, we use different notations for time and decision steps: the (possibly continuous) time elapsed is denoted by t while (discrete) decision steps will be indexed by i. At every decision step i, the learning agent is in state s i and plays an action a i ∈ A s i . The agent then receives reward r i and ends up in a new state s i+1 after a time period τ i . For any n ≥ 1, we denote by T n := n i=1 τ i the total time elapsed before the n + 1-th decision step. Symmetrically, for any t ≥ 0, we denote by N t := sup n ∈ N, n i=1 τ i ≤ t the number of decision steps that occurred before time t. T n and N t are random variables that depend on the policy being executed. The time variable t can either be an integer or a real scalar depending on the SMDP (e.g., in the SMDP M O of the previous section, t is discrete by construction).

We evaluate a learning algorithm acting in an SMDP in terms of cumulative regret.

For any SMDP M , any initial state distribution µ 1 ∈ P(S), and any number of decision steps n ≥ 1, let {τ i } n i=1 (resp. {r i } n i=1 ) be the random holding times (reps. rewards) observed along the trajectory generated by a learning algorithm A. Let g * be the optimal gain of M (Prop. 6.1). The cumulative regret of A after n decision steps is defined as

∆(M, A, µ 1 , n) := n i=1 τ i • g * -r i = T n • g * - n i=1 r i .
(6.16)

The regret of A after T time steps is defined as ∆(M, A, µ 1 , T ) := ∆(M, A, µ 1 , N T ).

Definition 6.4

Intuitively, the regret should measure the difference in cumulative reward obtained by an optimal (possibly non-stationary) policy and the learning algorithm after n decision steps (or T time steps). Def. 6.4 is consistent with this requirement although other definitions seem equally (if not more) relevant at first sight e.g., replacing T n by its expectation. 6 In 6.3. Learning in Semi-Markov Decision Processes nal MDP. No analogue of Lem. 6.2 seem to exist with their definition of sample complexity. Whether the definition can be adjusted to recover the compatibility condition of Lem. 6.2 is beyond the scope of this thesis. However, this incompatibility shows the importance of carefully mapping SMDPs to MDPs with options as we did with Lem. 6.2.

SUCRL: Semi-Markov Upper Confidence RL

We introduce SUCRL (Alg. 12), a UCRL2-like algorithm which is able to learn in any communicating SMDP. The algorithm is very similar to UCRLB (Alg. 5) with few notable differences (highlighted in Alg. 12).

SUCRL requires additional inputs like τ max , τ min and the sub-exponential parameters of the rewards and holding times. SUCRL can accommodate very tight state-action dependent sub-exponential parameters as well as very loose uniform upper bounds. The tighter the parameters, the tighter the confidence bounds (6.18) and (6.19). As shown in Sec. 6.2.4,the rewards and holding times can sometime be bounded almost surely in which case we can rather use empirical Bernstein confidence bounds like in UCRLB (the bounds should be known and given as input to SUCRL instead of the sub-exponential parameters).

A key idea of the algorithm is to rely on the transformation introduced in Sec. 6.2.2 to deal with an extended MDP M eq k rather than an extended SMDP M k . This allows to use EVI in order to compute π k (as in UCRLB). To construct the extended SMDP M k (line 5 of Alg. 12), we enforce the additional constraint r max τ k (s, a) ≥ r k (s, a). This guarantees that M eq k has a reward function bounded in [0, r max ] but creates a correlation between τ k and r k (while p k can be computed independently from τ k and r k like in UCRLB). We now discuss how to implement the constraint r max τ k (s, a) ≥ r k (s, a). For all v ∈ R S and s ∈ S, the optimal Bellman operator of M eq k can be written as (see Eq. 6.4)

L eq k v(s) := max a∈As            max r∈B k r (s,a) τ ∈B k τ (s,a) r≤rmaxτ r τ + α τ max p∈Bp(s,a) {p v} -v(s)            + v(s). (6.24)
The maximization over r and τ in (6.24) takes the following form:

max r∈[r -,r + ] τ ∈[τ -,τ + ] r≤rmaxτ r + c τ (6.25)
where c is a scalar which can be positive, negative or null.7 For (6.25) to admit a solution For all (s, a, s ) ∈ S × A × S, compute upper confidence bounds:

β sa r,k := 2σ r (s, a) ln 7SAN + k (s, a)/δ N + k (s, a) + 4d r (s, a) ln 7SAN + k (s, a)/δ N + k (s, a) (6.18) β sa τ,k := 2σ τ (s, a) ln 7SAN + k (s, a)/δ N + k (s, a) + 4d τ (s, a) ln 7SAN + k (s, a)/δ N + k (s, a) (6.19) 5:
Set M k := {S, A, r k , p k } to be the extended SMDP defined by the confidence intervals

p k (s |s, a) ∈ B k p (s, a, s ) (see Eq. 3.3), r k (s, a) ∈ B k r (s, a) := r k (s, a) -β sa r,k , r k (s, a) + β sa r,k ∩ 0, r max τ max (6.20) τ k (s, a) ∈ B k τ (s, a) := τ k (s, a) -β sa τ,k , τ k (s, a) + β sa τ,k ∩ τ min , τ max (6.21)
and the additional constraint τ k (s, a) ≥ r k (s, a)/r max .

6:

Compute policy π k using (extended) value iteration on the extended MDP M eq k obtained by uniformization of M k (see Sec. 6.2.2)

(g k , h k , π k ) := EVI L eq k , G eq k , r max τ max i k , s 1 , 1 (6.22) 7:
Sample action a i ∼ π k (•|s i ).

8:

while True do Execute policy π k until the end of episode k 9:

Execute action a i , obtain reward r i , and observe duration τ i and next state s i+1 .

10:

Increment episode counters:

ν k (s i , a i , s i+1 ) ← ν k (s i , a i , s i+1 ) + 1 and ν k (s i , a i ) ← ν k (s i , a i ) + 1 11: Increment cumulative reward and holding time R k (s t , a t ) ← R k (s i , a i ) + r i and T k (s i , a i ) ← T k (s i , a i ) + τ i 12: if ν k (s i , a i ) ≥ N + k (s i , a i ) then Stopping condition of episode k 13:
Increment time i ← i + 1 and Break Update counters (see Eq. 3.6), empirical averages and sample variances for all (s, a, s ) ∈ S × A × S (see Eq. 3.8 for the rewards and Eq. 3.9 for the transition probabilities) 

τ k+1 (s, a) := N k (s, a) N + k+1 (s, a) • τ k (s, a) + T k (s, a) N + k+1 (s,
(a|s) r k (s, a) + α p k (•|s, a) h k -h k (s) b∈As π k (b|s)τ k (s, b) -g k ≤ r max τ max i k .
After multiplying both side of the above inequality by the expected holding time and using the fact that τ k (s, a) ≤ τ max for all state-action pairs we obtain an inequality similar to (3.41):

∀s ∈ S, a∈As π k (a|s) τ (s, a)g k -r k (s, a) -α p k (•|s, a) h k -h k (s) ≤ r max i k . (6.28)
The rest of Alg. 12 is pretty standard in comparison with previous chapters.

Regret guarantees of SUCRL

To simplify the regret analysis we define σ τ := max s,a {σ τ (s, a)} and d τ := max s,a {d τ (s, a)} the maximal sub-exponential parameters given as inputs of SUCRL (and we define similarly σ r and b r ). For any state-action pair (s, a) ∈ S × A, the support of p(•|s, a) is still denoted Γ(s, a). We also need to extend the concepts of diameter and travel-budget to SMDPs. Unsurprisingly, Def. 6.5 and 6.6 almost match the definitions of Sec. 3.3 with the presence of holding times.

If E π [•|s 1 = s] denotes the expectation under policy π starting from s in SMDP M , the diameter of M is defined as

D := max s,s min π∈Π SD E π   ν(s )-1 i=1 τ (s i , a i ) s 1 = s   (6.29)
where ν(s ) := inf {n ≥ 1 : s n = s }.

Definition 6.5

The diameter is defined in terms of actual expected time (to reach a state starting from another state) rather than expected number of decision steps. Like in the MDP case, D < +∞ if and only if M is communicating. Moreover, D := max s h * →s ∞ where h * →s is the maximal non-positive fixed point of the Bellman shortest path operator L →s in MDP M = S, A, r , p where r = -r max τ ≤ 0 (note that M is an MDP and not an SMDP).

The travel-budget of SMDP M is defined as We now present two regret bounds similar to Thm. 3.4 and 3.5 (the main differences are highlighted). Theorem 6.1 (Analogue of Thm. 3.4) There exists a numerical constant β > 0 such that for any communicating SMDP M , with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S and for all n > 1:

Λ := max s,s min π∈Π SD E π   ν(s )-1 i=1 r max τ (s i , a i ) -r(s i , a i ) s 1 = s   . ( 6 
∆(M, SUCRL, µ 1 , n) ≤ β •   max {r max , Λ} s,a Γ(s, a) + (r max σ τ + σ r ) √ SA + r max τ max   n ln n δ + β • max {r max , Λ}S + r max d τ + d r SA ln n δ ln (n) .
(6.31) Theorem 6.2 (Analogue of Thm. 3.5)

There exists a numerical constant β > 0 such that for any communicating SMDP M , with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S and for all n > 1:

∆(M, SUCRL, µ 1 , n) ≤ β •   r max , r max Λ s,a Γ(s, a) ln (n) + (r max σ τ + σ r ) √ SA + r max τ max   n ln n δ + β• max r max , Λ 2 r max S + r max d τ + d r SA ln n δ ln (n) .
(6.32)

In the special case where options are almost surely bounded (see Lem. 6.1) by a known upper-bound t max , the main terms in the bounds of Thm. 6.1 and 6.2 remain unchanged but d r = d τ = 0 and σ r = r max σ τ = r max t max .

Regret analysis of SUCRL

Gain optimism

According to Prop. 6.2, the optimal gains of the true SMDP M and the MDP M eq obtained by uniformization (Eq. 6.4) are equal i.e., g * = g * eq . We now show that with high probability, g * k,eq ≥ g * eq where g * k,eq is the optimal gain of M eq k . We first derive a slightly looser version of Chapter 6. Hierarchical exploration-exploitations with options concentration inequality (6.14).

Let (X i ) 1≤i≤n be a collection of sub-Exponential random variables satisfying the same assumptions as in Prop. 6.4. For all n ≥ 1 and δ ∈]0, 1[,

P   n i=1 X i -µ i ≥ 2 n i=1 σ 2 i ln 2 δ + 2d ln 2 δ   ≤ δ (6.33)
.

Corollary 6.2

Proof. We recall that d := max 1≤i≤n {d i }.

If n i=1 σ 2 i ≥ 2d 2 ln 2 δ we set t := 2 n i=1 σ 2 i ln 2 δ ≤ n i=1 σ 2 i /d
and so the first inequality in Eq. 6.14 of Prop. 6.4 holds implying that P

| n i=1 X i -µ i | ≥ 2 n i=1 σ 2 i ln 2 δ ≤ δ.
If on the other hand n i=1 σ 2 i < 2d 2 ln 2 δ we set t := 2d ln 2 δ > n i=1 σ 2 i /d and so the second inequality in Eq. 6.14 of Prop. 6.4 holds implying that P

| n i=1 X i -µ i | ≥ 2d ln 2 δ ≤ δ.
In conclusion, Eq. 6.14 holds for all n ≥ 1. Theorem 6.3 (Analogue of Thm. 3.1) he probability that there exists n ≥ 1 and k ≥ 1 s.t. M eq does not belong to the extended MDP M eq k is at most δ 3 , that is

P ∃n ≥ 1, ∃k ≥ 1, s.t. M eq ∈ M eq k ≤ δ 3 .
Proof. The proof is almost identical to the proof of Thm. 6.3 but we have to account for the possibility that τ (s, a) ∈ B k τ (s, a). We use Cor. 6.2 with δ ← δ 20SA(N + k (s,a)) 2 for both r and τ . We notice that ln

40SA(N + k (s,a)) 2 δ ≤ 2 ln 7SAN + k (s,a) δ
and after taking a union bound we obtain:

P ∃n ≥ 1, ∃k ≥ 1, s.t. M eq ∈ M eq k ≤ s,a +∞ n=1 δ 20n 2 SA + δ 20n 2 SA + s δ 10n 2 S 2 A = 2π 2 δ 60 ≤ δ 3 .
As a direct consequence of Thm. 6.3, with probability at least 1 -δ 3 , for all k ≥ 1, L eq k h * eq ≥ L eq h * eq and so g * k,eq ≥ g * eq (Prop. 3.3) and moreover g k ≥ g * k,eq -rmax 2i k (Prop. 2.7) implying g k ≥ g * -rmax 2i k .

Learning in Semi-Markov Decision Processes

Range of the optimistic bias

Under the same high probability event as Thm. 6.3, L eq k, →s h eq →s ≥ L eq →s h eq →s = h eq →s for all k ≥ 1 and all s ∈ S where L eq →s and L eq k, →s are the Bellman shortest path operators of M eq and M eq k with rewards r/τ (see (6.4)) replaced by r/τ -r max ≤ 0, and where h eq →s ≤ 0 is the maximal non-positive fixed point of L eq →s . Due to Prop. 3.5, Λ eq k ≤ Λ eq and due to Thm. 3.35, sp (h k ) ≤ Λ eq k implying sp (h k ) ≤ Λ eq . It remains to relate Λ eq and Λ.

Theorem 6.4

For all 0 < α < τ min , it holds that Λ eq ≤ Λ/α.

Proof. By definition, Λ eq = max s h eq →s ∞ and Λ = max s h * →s ∞ where h eq →s is the maximal non-positive fixed point of L eq →s and h * →s the maximal non-positive fixed point of L →s . As shown in the proof of Prop. 2.8 (Sec. 2.1.4), L →s and L eq →s are the Bellman operators of the modified MDPs M →s and M eq →s respectively, where s is an absorbing state with reward zero (the optimal gains of M →s and M eq →s are zero). Prop. 6.2 implies that αh eq →s is a fixed point of L →s and moreover αh eq →s ≤ 0 since h eq →s ≤ 0 and α > 0. Since h * →s is the maximal non-positive fixed point of L →s , necessarily h * →s ≥ αh eq →s which concludes the proof.

In conclusion, we obtain the same bound as in the proof of UCRLB (see Sec. 3.3) i.e., sp (h k ) ≤ Λ/α. Thm. 6.4 actually provides a tight bound since the equality holds Λ eq = Λ/α (we omit the proof since this result is never needed to bound the regret, the interested reader may refer to Thm. 2.1 for an analogy). Note that in Sec. 3.3, α denotes the aperiodicity coefficient while here it corresponds to the uniformization coefficient. Both coefficients play a similar role and have no impact on the regret analysis (they eventually cancel).

Splitting into episodes

Using MDS concentration inequalities for sub-exponential r.v. (Prop. 6.6 below), we substitute the sampled holding times τ i and rewards r i (appearing in the definition of the regret) by their expectations. Proof. We use a martingale argument and Cor. 6.2.

Since the rewards r and holding times τ of M satisfy 0 ≤ r ≤ r max τ (by assumption), the rewards r eq of M eq satisfy 0 ≤ r eq ≤ r max and consequently 0 ≤ g * = g * eq ≤ r max . We can now decompose the regret of SUCRL as we did with the regret of UCRLB in (3.39):

∆(SUCRL, n) ≤ kn k=1 ∆ k + 2 (r max σ τ + σ r ) n ln 6n δ + 4 (d r + r max d τ ) ln 6n δ , (6.36)
where the per-episode regret is now defined as With probability at least 1 -δ 6 :

∆ k := s,a ν k (s)π k (s, a) τ (s,
∀n ≥ 1, kn k=1 ∆ r k ≤ kn k=1 ∆ r1 k + 4r max τ max n ln 5n δ kn k=1 ∆ τ k ≤ kn k=1 ∆ τ 1 k + 4τ max n ln 5n δ
Lemma 6.5 (Analogue to Lem. 3.4)

Proof. We use a martingale argument and Prop. 3.7.

We then bound ∆ r1 k and ∆ τ 1 k :

g * ∆ τ 1 k + ∆ r1 k ≤ s,a ν k (s, a) 2(σ r + r max σ τ ) ln (7SAn/δ) N + k (s, a) + 4(d r + r max d τ ) ln (7SAn/δ) N + k (s, a)
6.3. Learning in Semi-Markov Decision Processes Using Lem. 3.6, we obtain (the inequality should be interpreted up to multiplicative numerical constants):

kn k=1 g * ∆ τ 1 k + ∆ r1 k (σ r + r max σ τ ) SAn ln n δ + (d r + r max d τ )SA ln n δ ln (n) .
To bound τ k (s, a)g * -r k (s, a) we use gain optimism g k ≥ g * -rmax 2i k and Eq. 6.28 so that:

a∈As π k (a|s) (τ k (s, a)g * -r k (s, a)) ≤ α a∈As π k (a|s) p k (•|s, a) h k -h k (s) + 3r max 2i k . (6.37)
We recover the exact same term ∆ p k as in Eq. 3.42. The same analysis as in Sec. 3.5.3 (Thm. 6.1) and Sec. 3.6 can be carried out (with i and n replacing t and T ) leading to the same regret bounds.

Minimax lower bound for SMDPs

We have already seen that UCRLB achieves rather tight regret guarantees (in a minimax sense). Due to the similarities in the regret analysis of SUCRL and UCRLB, we can expect the bounds of Thm. 6.1 and 6.2 to be as tight. This is confirmed in the following lower bound .

Theorem 6.5

There exists a constant β > 0 such that for any algorithm A, any integers S, A ≥ 10, any reals t max ≥ 3t min ≥ 3, r max > 0, Λ > r max • max{20t min log A (S), 12t min }, and for n ≥ max{Λ/r max , t max }SA, there is an SMDP M with at most S states, A actions, and travel-budget Λ, with holding times in [t min , t max ] and rewards in 0, 1 2 r max t max satisfying ∀s ∈ S, ∀a ∈ A s , r(s, a) ≤ r max τ (s, a), such that for any initial distribution µ 1 ∈ ∆ S , the expected regret of A after n decision steps is lower-bounded by:

E [∆(M, A, µ 1 , n)] ≥ β • r max Λ + r max √ t max √ SAn .
Proof. The proof (Fruit and Lazaric, 2017, Appendix C) is based on (Jaksch et al., 2010, Section 6) but it requires to perturb transition probabilities and rewards at the same time to create a family of SMDPs with different optimal policies that are difficult to discriminate. The contributions of the two perturbations can be made independent. More precisely, the lower bound is obtained by designing SMDPs where learning to distinguish between "good" and "bad" transition probabilities and learning to distinguish between "good" and "bad" rewards are two independent problems, leading to two additive terms √ r max Λ and r max √ t max in the lower bound.

This lower bound reveals a gap with the upper bound of order √ Γ on the first term (similar to UCRLB) and √ t max on the second term. While closing this gap remains a challenging open question, it is a problem beyond the scope of this thesis.

Thm. 6.5 may not be very relevant for MDPs with options since the resulting SMDPs only Chapter 6. Hierarchical exploration-exploitations with options account for a strict subset of all possible SMDPs. The rewards and holding times of such SMDPs are always correlated due to the inner Markov structure of options. This is not the case for all SMDPs. Actually, the specific family of SMDPs constructed to prove Thm. 6.5 cannot be mapped to any MDP with options for that reason. Nevertheless, we show that a similar lower bound also holds for SMDPs resulting from MDPs with options.

Theorem 6.6

There exists a constant β > 0 such that for any algorithm A, any integers S, A ≥ 10, any reals t max ≥ 3t min ≥ 3, r max > 0, Λ > r max • max{20t min log A (S), 12t min }, and for n ≥ max{Λ/r max , t max }SA, there is an SMDP M resulting from an MDP with options with at most S states, A actions, and travel-budget Λ, with holding times in [t min , t max ] and rewards in 0, 1 2 r max t max satisfying ∀s ∈ S, ∀a ∈ A s , r(s, a) ≤ r max τ (s, a), such that for any initial distribution µ 1 ∈ ∆ S :

E [∆(M, A, µ 1 , n)] ≥ β • r max Λ + r max √ t max -t min √ SAn .
Proof. See (Fruit and Lazaric, 2017, Appendix C).

Analyzing the impact of options on the learning process

We are now ready to proceed with the comparison of the bounds on the regret of learning with options versus primitive actions. To facilitate the comparison, we ignore all logarithmic terms and assume that all options are almost surely bounded by t max . We recall that the regret of UCRLB is of order ∆(UCRLB,

T n ) = O √ r max ΛΓSAT n . In contrast, SUCRL achieves ∆(SUCRL, T n ) = O √ r max Λ O Γ O + r max t max √ S O On + T n • (g * -g * O )
. We first notice that since S O ⊆ S we have that S O ≤ S. Furthermore, we introduce the simplifying conditions g * = g * O (i.e., the options do not prevent from learning the optimal policy).

While in general comparing upper bounds is potentially loose, we notice that both upperbounds are derived using similar techniques and thus they would be "similarly" loose and they both have almost matching worst-case lower bounds. Let R(n) denote the ratio between the regret upper bounds of SUCRL using options O and UCRLB. Up to numerical constants we have

R(n) √ r max Λ O Γ O + r max t max √ S O On √ r max ΛΓSAT n =   Λ O Γ O ΛΓ + r max t max √ r max ΛΓ   S O On SAT n . (6.38) R(n) ≤ 1
indicates that using options is potentially beneficial (compared to using primitive actions).

Eq. 6.38 reveals that options can improve the learning speed by reducing the size of the support Γ of the dynamics of the environment, for example when options are designed so as to reach a specific goal (very "sparse" transition dynamics). This potential advantage matches the intuition on "good" options often presented in the literature (see e.g., the concept of "funnel" actions introduced by Dietterich ( 2000)). However, Γ is absent from the lower 6.4. Learning in MDPs with Options without prior knowledge bounds which raises the question whether reducing the size of the support is an actual source of improvement. On the other hand, both upper-bounds and lower-bounds suggest that designing options which reduce the travel-budget Λ will have a positive effect on the learning performance. When S O = S and A ⊆ O, Λ O = Λ which implies that the two quantities are indeed comparable (they both measure an expected number of time steps). If S O = S, Λ O ≥ Λ and so the only case when Λ O < Λ is when S O S. In this case, S O ≤ S and so the regret is all the more reduced. The ratio (6.38) also shows that the number of options should not be excessively high compared to the number of actions to preserve some advantage in using options.

Besides the fact that options can potentially reduce the travel-budget Λ, the support Γ of transition probabilities, the number of states S or the number of actions A, the main contribution of this analysis is to exhibit the ratio n Tn of number of decision steps over number of time steps. This ratio formalizes the concept of temporal abstraction in RL. When using options, the transition dynamics of the environment need only be estimated at the level of macro-actions (i.e., options) causing the regret to grow with the number of decision steps rather than time steps like with primitive actions.9 The longer the options, the lower the regret although this is mitigated by the presence of the additional term r max t max (r max √ t max in the lower bound) which quantifies the difficulty of estimating the parameters of a macroaction. Since lim inf n→+∞ Tn n ≥ min s,a τ (s, a), then (6.38) gives an (asymptotic) sufficient condition for reducing the regret when using options, that is

  Λ O Γ O ΛΓ + r max t max √ r max ΛΓ   S O O SA min s,a τ (s, a) ≤ 1. (6.39)
Perhaps not surprisingly, options are not always beneficial and can even worsen the learning performance if not carefully chosen. This is a form of no-free lunch which reminds the supervised learning setting (we recall that defining a set of options amounts to constrain the policy space, which can be seen as the equivalent of the function class in supervised learning). Accordingly, only adding options to the set of primitive actions is often a bad strategy (the policy space is the same in that case). This is confirmed by our analysis since in that case

O ≥ A, Γ O ≥ Γ S O = S and Λ O = Λ.

Learning in MDPs with Options without prior knowledge

At each episode, SUCRL solves an "optimistic" version of the optimality equation of M eq (obtained by uniformization of SMDP M O , see Prop. 6.2) i.e., an optimistic version of equation h * eq +g * eq e = L eq h * eq . Gain optimism is achieved by constructing confidence intervals on R(s, o) and τ (s, o) using parameters (σ r (s, o), d r (s, o)) and (σ τ (s, o), d τ (s, o)) (Eq. 6.18 and 6.19). Without any prior knowledge on the distribution of options, such confidence intervals cannot be directly constructed and SUCRL cannot be run. Similarly, confidence intervals need to be computed for b (•|s, o), but this does not require any prior knowledge on the SMDP since the transition probabilities naturally belong to the simplex over states.

In practice, having access to tight sub-exponential parameters is often a strong requirement and any incorrect parametrization (e.g., loose upper-bounds on the true parameters) directly translates into a poorer regret performance. Furthermore, even if a hand-designed set of options may come with accurate estimates of their parameters, this would not be possible for automatically generated options, which are of increasing interest to the RL community. Finally, SUCRL views each option as a distinct and atomic macro-action (with sub-exponential distribution), thus losing the potential benefit of considering the inner structure and the interaction between options (correlated discrete phase-type distributions with shared states and primitive actions, see Sec. 6.2.3), which could be used to significantly improve sample efficiency.

In this section, we combine the semi-Markov decision process view on options and the intrinsic MDP structure underlying their execution (see Sec. 6.2.3) to achieve temporal abstraction without relying on sub-exponential parameters that are typically unknown. The optimality equation of M eq can be rewritten as:

∀s ∈ S O , g * eq = max o∈Os R(s, o) τ (s, o) + α τ (s, o) b(•|s, o) h * eq -h * eq (s) . (6.40)
The term on the right-hand side of Eq. 6.40 is therefore "homogeneous" to a gain. We will introduce a transformation mapping each state-option pair (absorbing Markov Chain) to an associated irreducible Markov chain, where the gain of this Markov chain is the right-hand side term of Eq. 6.40. We will show that optimistic policies can be computed using only the irreducible chains and the SMDP dynamics (i.e., state to state transition probabilities through options). This approach does not need to explicitly estimate cumulative rewards and duration of options and their confidence intervals.

From absorbing to irreducible Markov Chains

From Eq. 6.40, we notice that computing the optimal policy only requires computing the ratio R(s, o)/τ (s, o) ∈ [0, r max ] and the inverse 1/τ (s, o) ∈ [0, 1]. Starting from the absorbing Markov Chain P s,o (Sec. 6.2.3), we can construct an irreducible MC whose stationary distribution is directly related to these terms. We proceed as illustrated in Fig. 6.3: all terminal states are "merged" together and their transitions are "redirected" to the initial state s ∈ S (Bremaud, 1999, Chapter 3). In order to relate µ s,o to the optimality equation (6.40), we need an additional assumption on options.

For any state-option pair (s, o) ∈ S O × O, the starting state s is also a terminal state i.e., β o (s) = 1.

Assumption 6.3

We now analyze the implications of Asm. 6.3. Let O be a set of options, possibly not satisfying Asm. 6.3, and O a slightly different set of options obtained by forcing β o (s) = 1 for all state-options pairs (s, o) ∈ S O × O. It is straightforward to prove the following equivalence.

Proposition 6.7

Let π be a stationary deterministic policy over options O. There exists a stationary deterministic policy π over options O such that the induced process over states, actions and rewards (in the original MDP M ) is the same for both π and π , i.e., for any sequence H t = (s 1 , a 1 , r 1 . . . , s t ), P π (H t ) = P π (H t ).

Proof. For any option o ∈ O in the original set of options, let's denote by o ∈ O the same option after forcing β o (s) = 1. For any stationary policy π over O, let's define a corresponding stationary policy π over O by: π (s) = (π(s)) , ∀s ∈ S O . For any option o such that π(s) = o and β o (s) < 1, the state s ∈ S s,o might be visited while o is being executed and o is not stopped in s. But since π o (policy of option o) is stationary Markov , the distribution on the sequence of states and actions visited after s is exactly the same as if the option was first stopped and executed again (in both cases the policy π o and the starting state s are the same). So the process over states and actions is the same for π and π .

Since the optimal policy over options O is stationary deterministic (optimal policy of SMDP M O ), Prop. 6.7 implies that Asm. 6.3 is not very restrictive. We are now ready to prove an important lemma. Let T 0 = 0, T 1 , T 2 , ... be the successive times of visit to s (random stopping times) i.e., T 0 := 0 and T n+1 := inf{t > T n : s t = s}. From the Regenerative Cycle Theorem for Markov chains (see e.g., Thm. 7.4 of Bremaud (1999, Chapter 2)) we have that the pieces of trajectory s Tn , ..., s T n+1 -1 n≥0 are i.i.d. By the Law of Large Numbers we thus have:

Tn-1 t=0 r t n = n-1 k=0 T k+1 -1 t=T k r t n -→ n→+∞ R(s, o) a.s.
The same arguments can be used to show that

T n n = n-1 k=0 (T k+1 -T k ) n -→ n→+∞ τ (s, o) a.s.
By taking the ratio, the term n disappears and we obtain:

Tn-1 t=0 r t T n -→ n→+∞ R(s, o) τ (s, o) a.s. (6.43)
All sub-sequences of a convergent sequence converge to the limit of that sequence. Extracting We then use the uniqueness of the limit ((6.43) and (6.44)) to conclude the proof of (6.41).

Lem. 6.6 makes explicit the relationship between the stationary distribution of Q s,o and the key terms appearing in Eq. 6.40. More precisely, we have shown that:

R(s, o) τ (s, o) + α τ (s, o) b(•|s, o) h * eq -h * eq (s) = x∈Ss,o a∈Ax r(x, a)π o (a|x)µ s,o (x) + α b(•|s, o) h * eq -h * eq (s) µ s,o (s).
This confirms our first intuition that the term 

   a∈Ax r(x, a)π o (a|x) for x = s, a∈As r(s, a)π o (a|s) + α b(•|s, o) h *
eq -h * eq (s) for x = s.

Optimistic bilevel Bellman operator

Inspired by the mapping between options and irreducible MRPs highlighted in the previous section, we will now define an optimistic Bellman operator L eq k that uses confidence intervals on b(•|s, o), as well as confidence intervals on Q s,o and r(x, a) (rather than τ (s, o) and R(s, o)).

For the rewards we use the same confidence intervals as in UCRLB i.e., r k (s, a) ∈ B k r (s, a), while for the transition probabilities at the level of options we use the same confidence bounds as in SUCRL (and in UCRLB) i. Chapter 6. Hierarchical exploration-exploitations with options Although this may not be obvious at first sight, for any fixed c ∈ R, L s,o k (c, •) is an (extended) optimal Bellman operator. The scalar c can indeed be interpreted as an additional reward in state s, while the scalar product p (e -β o ) • u + u(s)β o can be expressed as q u where q := p•(e-β o )+p β o e s is a probability vector (i.e., q ≥ 0 and q e = 1). p is also a probability vector and can be easily computed using LProba with input vector (e-β o )•u+u(s)β o (sorted in decreasing order). Since B k p (x, a) is a polytope, p and q take values in a finite set that is independent of u, implying that L s,o k (c, •) can be expressed as an optimal Bellman operator with finitely many actions. Furthermore, the associated MDP M s,o k (c) is communicating. Due to Prop. 2.4, there exists a solution (g

s,o k (c), h s,o k (c)) ∈ R×R Ss,o to the fixed point equation h s,o k (c) + g s,o k (c)e = L s,o k c, h s,o k (c) , where g s,o k (c
) is unique and can be expressed as:

g s,o k (c) = µ s,o k (s)c + x∈Ss,o a∈Ax π o (a|x)µ s,o k (x) • max r∈B k r (x,a)
{r}, (6. [START_REF] Strehl | An analysis of model-based interval estimation for markov decision processes[END_REF] with µ s,o k the stationary distribution of any optimal policy (e.g., a greedy policy w.r.t. h s,o k (c)).

Even though the true Markov Chain Q s,o is irreducible by construction (and so µ s,o is unique with µ s,o (s) > 0), it is not necessarily the case for the optimistic chain. This chain can happen to contain transient states and/or several recurrent classes. µ s,o k is not uniquely defined 10 (but exists) and µ s,o k (s) can happen to be 0.

Outer Bellman operator. We define the "global" operator L eq k relating all options as follows:

∀v ∈ R S O , ∀s ∈ S O , L eq k v(s) := max o∈Os g s,o k α • max b∈B k p (s,o) {b v} -α • v(s) + v(s). (6.47)
L eq k accounts for the outer rewards and dynamics at the "SMDP level". Using (6.46), we can rewrite (6.47) as

max o∈Os max µ x∈Ss,o a∈Ax π o (a|x)µ(x) • max r∈B k r (x,a) {r} reward in [0,rmax] + αµ(s) • max b∈B k p (s,o) {b v} + (1 -αµ(s)) • v(s) =p v, with probability vector p=αµ(s)b+(1-αµ(s))es
, where µ is constrained to be a stationary distribution of a (not necessarily irreducible) MC contained in the confidence intervals of Q s,o (see above). As we explained earlier, q can be constrained to lie in a finite space without impacting the final result, and therefore so does µ.

In conclusion, L eq k is an (extended) optimal Bellman operator which can be expressed with only finitely many actions. The associated extended MDP M eq k is communicating and so due to Prop. 2.4, there exists a solution (g eq k , h eq k ) ∈ [0, r max ] × R S O to the optimality equation h eq k + g eq k e = L eq k h eq k . Unlike in the SMDP formulation of SUCRL where the holding times and cumulative rewards must lie in bounded confidence intervals, in this new formulation µ(s) can be equal to 0 (corresponding to an infinite holding time and cumulative reward) without 10 Although µ s,o k is not unique, the value in Eq. 6.46 is the same for all possible values of µ s,o k .

6.4. Learning in MDPs with Options without prior knowledge compromising the solution of the optimality equation. Furthermore, this new approach implicitly leverages over the correlations between cumulative reward and holding time, which is ignored when estimating R(s, o) and τ (s, o) separately.

Since M eq k is aperiodic by construction (see Eq. 6.4), Prop. 2.6 implies that EVI converges to a solution of the optimality equation. The limit of the sequence of vectors v n generated by EVI when started from vector v 0 = 0 will be denoted h eq k . Due to Thm. 3.3, sp h eq k ≤ Λ eq k . To simplify notations, whenever c = α• max b∈B k p (s,o) b h eq k -h eq k (s) we drop the dependency in c in Eq. 6.45 i.e., we simply denote the inner operator by L 

(M s,o k ) E π M s,o k   τ (y)-1 t=1 r max -r(s t , a t ) s 1 = x   . (6.48)
Gain optimism. We use the same argument as for SUCRL: with high probability, L eq k h * eq ≥ L eq h * eq implying g eq k ≥ g * eq = g * M O .

Range of optimistic biases. 

Q s,o τ (y) < +∞ s 1 = x = 1 so that Λ s,o < +∞.
Under the same high probability event for which g eq k ≥ g * eq , Λ eq k ≤ Λ/α (same arguments as in SUCRL). A similar reasoning can be used to show that Λ s,o k ≤ Λ s,o . We will assume that FSUCRL computes h eq k and h s,o k exactly instead of approximately using EVI (see Eq. 6.22 in Alg. 12). The policy π k played at episode k is therefore a greedy policy with respect to h eq k i.e., π k = G eq k h eq k .12 Computing h eq k and h s,o k exactly allows to bound the range (span) of h s,o k by Λ s,o (see Sec. 6.4.2). It is unclear whether we can approximate h eq k and h s,o k using an efficient iterative procedure (similar to EVI) while preserving the property sp h s,o k ≤ Λ s,o . The main challenge is that we have intricated equations e.g., the term c used in the definition of L s,o k (c, v) changes at every iteration. Nevertheless, we will later provide a convergent algorithm to approximate h eq k and h s,o k .

FSUCRL: SUCRL with Irreducible Markov Chains

Finally, the stopping condition used to end an episode combines the stopping conditions used by both UCRLB and SUCRL i.e., an episodes stops whenever either ν k (s t , a t ) ≥ 

N + k (

Regret guarantees

We present two regret bounds for FSUCRL (like for SUCRL). Like in Thm. 6.1 and 6.2, the bounds are composed of two distinct terms: one reflects the difficulty to learn the dynamics of the corresponding SMDP M O , while the other characterizes the uncertainty of the options themselves. To simplify the bound, we introduce Λ max := max s,o Λ s,o . Theorem 6.7 (Analogue of Thm. 3.4) There exists a numerical constant β > 0 such that for any communicating MDP M , with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S and for all time horizons T > 1: The conclusions that we can draw from (6.50) are similar to the one of Sec. 6.3.6 except that we removed the dependency in the potentially loose sub-exponential parameters of options. We replace these terms by intrinsic and a priori unknown properties of options (namely their travel-budget) which provide more insights. It is clear from the bounds that unlike SUCRL, FSUCRL leverages the inner correlation between the cumulative reward and duration of a single option, as well as the outer correlation between different options that share inner stateaction pairs. The worst-case travel-budget of options Λ max is a very loose upper-bound in practice but difficult to improve while preserving the readability and interpretability of the regret bound.

∆(M, FSUCRL, µ 1 , T n ) ≤ β • max

Regret analysis

Stopping condition of episodes. FSUCRL uses two condition to terminate an episodes and so the total number of episodes k n can be decomposed as Let's now analyze the first stopping condition. Once the number of visits has doubled in one state-action pair, FSUCRL needs to wait for the option being executed to end before starting the next episode. This can only decrease the number of episodes compared to UCRLB. Indeed, at the end of every episode k, the condition ν k (x, a) ≥ N + k (x, a) is always satisfied for at least one state-action pair (x, a) and so Prop. . Nevertheless, this condition can only be violated while executing an option o i that is the last of the episode. There is at most one such option in every episode and we will bound the regret in each time step of this option by r max . Using Cor. 6.2 with a union bound over all i = 1 . . . n we have that with probability at least 1 -δ ∀i = 1 . . . n, τ i ≤ τ max + 2σ τ ln 2n δ + 4d τ ln 2n δ .

k n = k 1 n + k 2 n ,
This means that with high probability, the total regret incurred while executing the last option in all episodes where the first condition is triggered is (cumulatively) at most (ignoring multiplicative numerical constants) k (x,a) . We will account for the term (6.51) in the final regret bound and in the rest of the proof, we will always assume that the condition ν k (x, a) ≤ N + k (x, a) is never violated .

Regret decomposition. The regret of FSUCRL can be decomposed as follows:

∆(FSUCRL, T n ) = Tn t=1 g * M -r t = T n • (g * M -g * M O ) + Tn t=1 g * M O -r t .
To bound the sum Tn t=1 g * M O -r t we first follow the same steps as for UCRLB (Sec. 3.5.1 and 3.5.2). More precisely, we use a martingale argument (see Lem. 3.1) to bound -Tn t=1 r t and we use the optimism property to bound g * M O . We also introduce the optimistic rewards r k (s, a) and we use another martingale argument (see Lem. 3.5.4) to bound the cumulative differences r k (s, a) -r(s, a). We set T 0 := 1 and we recall that for all n ≥ 1, T n := n i=1 τ i where τ i is the duration of the i-th option played by the learning algorithm (denoted o i ). The state s T i-1 visited at time step T i-1 is the state in which o i is started and is therefore abbreviated s i (by analogy with SUCRL). The current episode at decision step i is denoted k i (like in the analysis of SUCRL). The policy π k played by FSUCRL at episode k is 6.4. Learning in MDPs with Options without prior knowledge deterministic and so o i = π k i (s i ). There is no particular reason to believe the analysis cannot be extended to randomized policies although it would be slightly more involved since we have to deal with several optimality equations as well as several policies which can all be stochastic: π k and (π o ) o∈O . In the end we obtain (with high probability and up to multiplicative numerical constants): 

i ,o i k i (•|s t , a) h s i ,o i k i -h s i ,o i k i (s t ) + α • b k (•|s i , o i ) h eq k -h eq k (s i ) • 1{t = T i-1 }.
The additional term α • b k (•|s i , o i ) h eq k -h eq k (s i ) only appears in the initial state s i i.e., for t = T i-1 . For the sake of clarity, we use the simplifying notation q s i ,o i k i (•|s t ) to denote a π o i (a|s t )q s i ,o i k i (•|s t , a). The main regret term becomes:

n i=1 T i -1 t=T i-1 g eq k i - a∈As t π o i (a|s t )r k i (s t , a) = α n i=1 b k i (•|s i , o i ) h eq k i -h eq k i (s i ) + n i=1 T i -1 t=T i-1 q s i ,o i k i (•|s t ) h s i ,o i k i -h s i ,o i k i (s t ) .
The first sum (on the left-hand side) is analogue to the main term appearing in Eq. 6.37 in the analysis of SUCRL (with different notations: b replaces p). It can be bounded in the same way (we refer to the analysis of UCRLB). This term quantifies the uncertainty on the dynamics between options at SMDP level. The main novelty in the analysis of FSUCRL is the second sum (on the right-hand side) which arises due to the uncertainty within options. This new term resembles the first sum: it corresponds to the difference between an "optimistic" expectation of h s i ,o i k i (s t+1 ) given state s t and h s i ,o i k i (s t ). We will apply a very similar analysis.

Analysis of the new term. We start by adding and subtracting the true transition probability in the MC Q s,o i.e., q s i ,o i (•|s t ) = a π o i (a|s t )q s i ,o i (•|s t , a).

Chapter 6. Hierarchical exploration-exploitations with options n i=1 T i -1

t=T i-1 q s i ,o i k i (•|s t ) h s i ,o i k i -h s i ,o i k i (s t ) = n i=1 T i -1 t=T i-1 q s i ,o i k i (•|s t ) -q s i ,o i (•|s t ) h s i ,o i k i + n i=1 T i -1 t=T i-1 q s i ,o i (•|s t ) h s i ,o i k i (s t ) -h s i ,o i k i (s t ) (6.52)
The first term in Eq. 6.52 corresponds to the difference between the optimistic and estimated transition probability of irreducible MC Q s,o , amplified by the optimistic bias h (6.53) where ν k (s, o, x) denote the total number of visits in state x while executing state option (s, o) during episode k. We then use the definition of q s,o k and q s,o to reveal the optimistic and true transition probabilities p k and p in the MDP (not the MC Q s,o ): The term (6.53) is therefore similar to the term ∆ p1 k appearing in the regret proof of UCRLB. We can apply Lem. 3.2 to obtain the bound For a tighter bound, we can apply Lem. 3.7 and the decomposition of Sec. 3.6 instead. The final bound is obtained as in UCRLB.

q s,o k (•
The second term in Eq. 6.52 is the difference between q s i ,o i (•|s t ) h s i ,o i k i and h s i ,o i k i (s t ). We define the process (x t ) t∈[T i-1 ,T i -1] by x t = s t if T i-1 ≤ t < T i and x T i = s i = x T i-1 . The process (x t ) follows the dynamics of option o i until the stopping condition is triggered in which case x t goes back to the initial state of the option s i . In other words, (x t ) follows the distribution of Markov Chain Q s,o . We can then write

T i -1 t=T i-1 q s i ,o i (•|s t ) h s i ,o i k i -h s i ,o i k i (s t ) = T i -1 t=T i-1 q s i ,o i (•|s t ) h s i ,o i k i -h s i ,o i k i (x t+1 ) + $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ T i -1 t=T i-1 h s i ,o i k i (x t+1 ) -h s i ,o i k i (s t ) = T i -1 t=T i-1 q s i ,o i (•|x t ) h s i ,o i k i -h s i ,o i k i (x t+1 ) .
The telescopic sum appearing after adding h s i ,o i k i (x t+1 ) is zero because x T i = s i = x T i-1 . Since Increment n ← n + 1 4: 

Shift v n ← v n -v n (

Nested value iteration

If EVI is run with the exact Bellman operator L eq k , both Prop. 2.6 and 2.7 hold and so we obtain an efficient and convergent algorithm. The main challenge is that applying L eq k requires computing the optimal gains g s,o k (c) of extended MDPs M s,o k (c). EVI can be used to approximate these gains with an arbitrary accuracy ε > 0. We therefore propose the nested iterative scheme of Alg. 13 with operators L s,o k , confidence intervals B k p (s, o, s ), and initial vector 0 as inputs (we call this algorithm NEVI for Nested Extended Value Iteration). Operator G s,o can be any greedy operator associated to L s,o k . We pick a sequence of accuracies (ε n ) n≥0 such that n≥0 ε n < +∞. With such a sequence, we can prove the following theorem. Theorem 6.9

If Nested Value Iteration (Alg. 13) is run with operators L s,o k , confidence intervals B k p (s, o, s ) and if n≥0 ε n < +∞, there exists h eq k ∈ R S O such that lim n→+∞ v n = h eq k and L eq k h eq k = h eq k + g eq k e.

Chapter 6. Hierarchical exploration-exploitations with options Proof. To simplify notations, we denote L eq k by L and we define (u n ) the sequence obtained using the same algorithm without line 4 (shift) i.e., u 0 = v 0 and v n = u n -u n (s)e for all n ≥ 1. Prop. 2.7 shows that g s,o is an ε n+1 /2-approximation to g s,o k and so for all n ≥ 0, u n+1 -Lu n ∞ ≤ ε n+1 /2. Since L is non-expansive in ∞ -norm (see Prop. 2.5 (b)) we have

u n+2 -L 2 u n ∞ ≤ u n+2 -Lu n+1 ∞ + Lu n+1 -L 2 u n ∞ ≤ ε n+2 /2 + u n+1 -Lu n ∞ ≤ ε n+2 + ε n+1 2 .
By trivial induction, u n+k -L k u n ∞ ≤ 1 we conclude from Eq. 6.54 that (v n ) is a Cauchy sequence, and thus converges. Because lim n→+∞ ε n = 0 (otherwise the series n≥0 ε n diverges), the limit of (v n ) must satisfy the optimality equation of L.

One of the interesting features of NEVI is its hierarchical structure. NEVI is operating on two different time scales by iteratively considering every option as an independent optimistic planning sub-problem (line 8 of Alg. 13) and gathering all the results into a higher level planning problem (line 10 of Alg. 13). This idea is at the core of the hierarchical approach in RL, but it is not always present in the algorithmic structure, while NEVI naturally arises from decomposing EVI in two value iteration algorithms.

Numerical Experiments

In this section we compare the regrets of FSUCRL, SUCRL and UCRLB to empirically demonstrate the advantage of temporal abstraction.

Simple grid world.

In order to isolate temporal abstraction from other potential sources of improvements (e.g., number of states, diameter, etc.), we first design a domain that preserves most parameters. We consider the simple navigation problem of Fig. 6.4. In any of the d 2 states of the grid except the target, the four cardinal actions are available, each of them being successful with probability 1. If the agent hits a wall then it stays in its current position with probability 1. When the target state is reached, the state is reset to any other state with uniform probability. The reward of any transition is 0 except when the agent leaves the target in which case it equals r max . The optimal policy simply takes the shortest path from any state to the target state. The travel-budget Λ of the MDP is equal to r max D in this domain and D = 2(d -1).

Let m be any non-negative integer smaller than d and in every state but the target we define four macro-actions: LEFT, RIGHT, UP and DOWN (dashed arrows in the figure). When LEFT is taken, primitive action left is applied up to m times (similar for the other three options). For any state s which is k ≤ m steps on the left of the starting state s, we set β o (s ) = 1/(m -k + 1) so that the probability of the option to be interrupted after any k ≤ m steps is 1/m. If the starting state s is l steps close to the left border with l < m then we set β o (s ) = 1/(l -k + 1) for any state s which is k ≤ l steps on the left. As a result, for all options started m steps far from any wall, t max = m and τ max = (m + 1)/2, (while it is respectively l and (l + 1)/2 for an option started l < m step from the wall and moving towards it). More precisely, all options have an expected duration of τ max in all but in m × d states, which is small compared to the total number of d 2 states if m d. The SMDP formed with this set of options preserves the number of state-action pairs (S O = S = d 2 and O = A = 4) as well as the optimal average reward g * = g * O , while it slightly perturbs the diameter D O ≤ D + m(m + 1) (Fruit and Lazaric, 2017, Appendix F). Finally, to remove the impact of the support Γ, we consider Hoeffding rather than empirical Bernstein bounds for the transition probabilities (for all algorithms). In conclusion: ignoring the impact of temporal abstraction, the two problems seem to be almost equally hard to learn.

While a rigorous analysis of the ratio between the number of option decision steps n and number of primitive actions T n is difficult, we notice that as d increases w.r.t. m, the chance of executing options close to a wall decreases, since for any option only m × d out of d 2 states will lead to a duration smaller than τ max and thus we can conclude that n/T n tends to 1/τ max = 2/(m + 1) as n and d grow. This suggests that if d is big enough, there is always The two key elements in designing a successful set of options O is to preserve the average reward of the optimal policy and the travel-budget. The former is often a weaker condition than the latter. In this example, we achieved both conditions by designing a set O where the termination conditions allow any option to end after only one step. This preserves the travelbudget of the original MDP (up to a small additive term), since the agent can still navigate at the level of granularity of primitive actions. Consider a slightly different set of options O , where each option moves exactly by m steps (no intermediate interruption). The number of steps to the target remains unchanged from any state and thus we can achieve the optimal performance. Nonetheless, having π * in the set of policies that can be represented with O does not guarantee that the UCRL-SMDP would be as efficient in learning the optimal policy as UCRL2. In fact, the expected number of steps needed to go from a state s to an adjacent state s may significantly increase. Despite being only one primitive action apart, there may be no sequence of options that allows to reach s from s without relying on the random restart triggered by the target state. A careful analysis of this case shows that the travel-budget is as large as D O = D(1 + m 2 ) (Fruit and Lazaric, 2017, Appendix F).

Four -room maze.

We now consider the classical 4-room maze that was initially introduced by [START_REF] Sutton | Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning[END_REF] to illustrate the concept of options. The domain is a grid-world of dimension 14 × 14 with walls separating each 7 × 7 "room" (see Fig. 2.1). The four cardinal actions fail with probability 0.2 (uniformly in any other direction). In every state of every room, we define four options: two are leading to the two exit doors, one is leading to the center of the room, and the last one leads to the unique corner of the grid in the room. Thus, the number of state-options is slightly bigger than the number of state-actions. The optimal policy takes the shortest path to the target state which is located in one of the 4 corners of the grid and the rewards are the same as in the previous experiment. Once the target is reached, the next Chapter 6. Hierarchical exploration-exploitations with options state is chosen uniformly at random in the grid. On Fig. 6.6, we plot the regret ∆(A, n) as a function of T n for A ∈ {UCRL2, SUCRL, FSUCRL }. The two versions of SUCRL are exactly the same as in the previous experiments: SUCRLv2 uses max s,o σ τ (s, o) while SUCRLv3 uses σ τ (s, o). Note that the other versions of SUCRL are not valid in this domain since the options are not almost surely bounded. We use Bernstein bounds (as in the original versions of the algorithms presented in this thesis).

Version 2 of SUCRL fails to beat UCRL2, and it is likely that version 3 will also eventually suffer higher regret. For FSUCRL, we plot all 20 runs (as well as the average in bold). Except in one run, FSUCRL always outperforms UCRL2. The variance is clearly higher than for any other algorithm. The choice of options is probably not the best.

In both experiments, UCRL and FSUCRL had similar running times meaning that the improvement in cumulative regret is not at the expense of the computational complexity. More experiments can be found in (Fruit et al., 2017).

Conclusion

In this chapter, we started by deriving upper and lower-bounds on the regret of learning in SMDPs and we showed how these results apply to learning with options in MDPs. Comparing the regret bounds of SUCRL with UCRLB, we provided sufficient conditions on the set of options and the MDP (i.e., similar travel-budget and average reward) to reduce the regret w.r.t. learning with primitive actions. To the best of our knowledge, this is the first attempt of explaining when and how options affect the learning performance.

Then, we introduced FSUCRL, a parameter-free algorithm to learn in MDPs with options by combining the SMDP view to estimate the transition probabilities at the level of options -b(•|s, o)-and the MDP structure of options to estimate the stationary distribution of an associated irreducible MC which allows to compute the optimistic policy at each episode. We show both theoretically and empirically that FSUCRL is actually competitive with SUCRL and it retains the advantage of temporal abstraction w.r.t. learning without options. Since FSUCRL does not require strong prior knowledge about options and its regret bound is partially computable, we believe the results of this chapter could be used as a basis to construct more principled option discovery algorithms that explicitly optimize the exploration-exploitation performance of the learning algorithm (e.g., in a transfer setting). Although FSUCRL does not require prior knowledge on sub-exponential parameters, it needs to know the outer state space S O (reachable states from µ 1 using only options) as well as inner state spaces S s,o (states reachable while executing state-option (s, o)). If additional states are added to these sets, we face the same problem as with non-communicating MDPs (infinite diameter and travel-budget). Nevertheless, in this case we can apply the techniques developed in Chap. 4 for infinite diameter/travel-budget.

As future work, it would be interesting to extend the current analyses to more sophisticated hierarchical approaches to RL such as MAXQ [START_REF] Dietterich | Hierarchical reinforcement learning with the maxq value function decomposition[END_REF]. A.1.2 Proof of Thm. 3.3 We use the same arguments as in the previous section (App. A.1.1,proof of Thm. 3.2). We consider a policy π ∈ D HR which first executes π ∈ Π SD until s is visited for the first time, and then executes the non-stationary policy π + = (d 1 , . . . , d n , . . . ) ∈ (Π SR ) N such that L d n+1 v n = Lv n for all n ≥ 1, with v 0 := 0 and v n+1 := Lv n . We can write (see Eq. A. Note that all the inequalities and equalities remain true even when τ (s ) is not almost surely finite. In this case, the terms on the right-hand side may either be finite (convergent series) or be equal to -∞, but this is a trivial lower bound to (1).

Similarly to (A.3) the second term can be expressed as follows:

(

2) = E π   E π +   n-n∧(τ (s )-1) l=1 r l s 1 = s , τ (s )   s 1 = s   ≥ E π E π + n l=1 r l s 1 = s =vn(s ) -r max • n ∧ (τ (s ) -1) s 1 = s = v n (s ) -r max • E π n ∧ (τ (s ) -1) s 1 = s
Summing (1) and (2), the term n ∧ (τ (s ) -1) cancels and so we have where p k is replaced by p and take a union bound to conclude the proof of Lem. 3.2.

To prove Lem. 3.7, we consider the same stochastic processes but we apply Freedman's inequality (Prop. 3.9) instead of Azuma's.

Let's define λ t :=a,s π kt (a|s t )p kt (s |s t , a)h kt (s ) and w t = h kt + λ t e. Since by definition s p kt (s |s t , a t ) = 1, we have X t = -α s p kt (s |s t , a t )w t (s ).

Since E [X t |F t-1 ] = 0 we have: 

V X t F t-1 =
) ∈ R n , ( n i=1 a i ) 2 ≤ n n i=1 a 2 i .
Proof. The statement is trivially true for n = 1. For n = 2 we have (a 1 -a 2 ) 2 = a 2 1 + a 2 2 -2a 1 a 2 ≥ 0 implying that 2a 1 a 2 ≤ a 2 1 + a 2 2 . Therefore, (a 1 + a 2 ) 2 = a 2 1 + a 2 2 + 2a 1 a 2 ≤ 2(a 2 1 + a 2 2 ) and so the result holds. We prove the result for n ≥ 2 by induction. Assumed that it is true for any n ≥ 2. Then we have: where (A.11) follows from the rate of divergence of an harmonic series.

We proceed similarly for the second series: We use the second definition of sub-exponential r.v. in Def. 6.2. In the following we drop the notation s, o and denote by τ the random realization of the holding time and τ its expectation. Using eq. 6.11, the Laplace transform of the holding time can be computed as follows:

E e λ(τ -τ ) = ∞ k=1 e λ(k-τ ) e s Q k-1 V e = e λ(1-τ ) e s ∞ k=0 e λ Q k V e
The term ∞ k=0 e λ Q k is finite if and only if e λ ρ(Q) < 1, in which case we have:

E e λ(τ -τ ) = e λ(1-τ ) e s I -e λ Q -1

V e,

and otherwise E e λ(τ -τ ) = +∞. Note that e λ ρ(Q) < 1 if and only if either λ < -log (ρ(Q)) or ρ(Q) = 0. We will now analyse the two cases separately:

1. ρ(Q) = 0 if and only if all the eigenvalues of Q in C are 0, if and only if Q is nilpotent (∃n > 0 s.t. Q n = 0). This is because Q can always be triangularized in C:

Q = U T U -1
where T is upper-triangular with the eigenvalues of Q on the diagonal that is, only zeros if ρ(Q) = 0. This implies that ∃n > 0 s.t.

T n = U -1 Q n U = 0 =⇒ Q n = 0 hence Q is nilpotent.
The reverse is obviously true: if Q is nilpotent then ρ(Q) = 0, (otherwise there would exist λ = 0, v = 0 and n > 0 s.t. Q n = 0 and Qv = λv =⇒ Q n v = λ n v = 0, which is absurd). By definition, matrix Q is nilpotent of order n if and only if the Markov Chain reaches an absorbing state in at most n steps (a.s.). In conclusion, ρ(Q) = 0 if and only if the option is almost surely bounded. This happens if and only if there is no cycle in the option (with probability 1, every non-absorbing state is visited at most once).

2. In the case where ρ(Q) > 0: it is clear that E e λ(τ -τ ) can not be bounded by a function of the form λ → e σ 2 λ 2 2

for λ ≥ -log (ρ(Q)) so τ is not sub-Gaussian (Definition 6.3). However, since ρ(Q) < 1 we can choose 0 < c 0 < -log (ρ(Q)) and we have E e λ(τ -τ ) < +∞ for all |λ| < c 0 , which implies that τ is sub-exponential (Definition 6.2).

In conclusion, either the option contains inner-loops (some states are visited several times with non-zero probability) in which case the distribution of τ is sub-Exponential but not sub-Gaussian, or it has no inner-loop in which case τ is bounded (and thus sub-Gaussian). There is no other alternative.

The distribution of rewards R is not as simple: the reward of an option is the sum of all micro-rewards obtained at every time step before the option ends, and every micro-reward earned at each time step can have a different distribution. The only constraint is that all micro-rewards should be (a.s.) bounded between 0 and r max . As a result, if τ is a.s. bounded (by let's say t max ) then R is also a.s. bounded (by r max t max ). But if τ is unbounded then R may still be bounded if for example, all micro-rewards are 0. If however all micro-rewards are equal to r max then R has a discrete phase-type distribution just like τ . R can thus be unbounded (and even not sub-Gaussian). However, we will show that R is always sub-Exponential. Using the law of total expectations and the fact that p (R ≤ r max τ ) = 1 we have:

∀λ > 0, E e λ(R-R) = ∞ k=1 E e λ(R-R) τ = k p(τ = k) ≤ ∞ k=1 E e λ(rmaxτ -R) τ = k p(τ = k) = ∞ k=1 E e λ(rmaxk-R) τ = k p(τ = k) = ∞ k=1 e λ(rmaxk-R) p(τ = k) = e λ(rmax-R) e s ∞ k=0 e λrmax Q k V e
We can now conclude as we did for τ : let 0 < c 0 < -log(ρ(Q))

rmax , for all 0 < λ < c 0 the quantity E e λ(R-R) is finite. Note that for λ ≤ 0: e λR ≤ 1 so E e λ(R-R) < +∞. According to Def. 6.2, R is sub-Exponential.

D.2 Comparison of the MDP-sample complexity and the SMDP-sample complexity

Let M be a MDP and O a set of options on M . We denote by M O the SMDP formed by M and O. If an option is chosen at time step t, we denote by τ t the (random) duration of that option. The set of all time steps is N (t = 1, 2, ...) and the set of time steps corresponding to decision steps (i.e., when an option is started) is denoted by T . The set T is a random variable since it depends on the duration of the options. T is defined recursively: T = {1, τ 1 + 1, τ 1 + 1 + τ τ 1 +1 , , ...} ⊆ N. The first option is taken at time t 1 = 1, the second option is taken at the end of the first option (i.e. at time t 2 = τ 1 + 1, where τ 1 is a random variable), and so on. The i-th option is played at time step t i ∈ T recursively defined as: For any learning algorithm A on an MDP M , the MDP-sample complexity is defined as:

t i+1 = t i + τ t i and t 1 = 1.
+∞ t=0 1 v At γ (s t ) ≤ v * γ (s t ) -. (D.1)
Let's assume that algorithm A is SMDP-RMAX [START_REF] Brunskill | PAC-inspired Option Discovery in Lifelong Reinforcement Learning[END_REF] applied to SMDP M O formed by MDP M and option set O. A can indeed be seen as a learning algorithm on M (see Lem. 6.2) and so the sample complexity given in (D.1) is correctly defined. However, we can also choose to "ignore" what is happening within an option (we only look at the epochs, i.e. times t ∈ T ). Thus, we can also interpret A as a learning algorithm on the SMDP M O .

The corresponding SMDP-sample complexity is defined as [START_REF] Brunskill | PAC-inspired Option Discovery in Lifelong Reinforcement Learning[END_REF]:

t∈T τ t 1 v At γ (s t ) ≤ v * O (s t ) - = +∞ i=0 τ t i 1 v At i γ (s t i ) ≤ v * O (s t i ) -. (D.2)
Brunskill and Li (2014) use the quantity given in equation (D.2) instead of the quantity given in equation (D.1) to derive the final bound on their algorithm (Theorem 3). The implicit assumption is that the following inequality holds:

+∞ t=0 1 v At γ (s t ) ≤ v * γ (s t ) - ≤ t∈T τ t 1 v At γ (s t ) ≤ v * O (s t ) - (D.3) Inequality (D.
3) should hold with probability 1 (or at least with probability 1 -δ) for Theorem 3 to hold true. This requirement is never mentioned in the article. We give two counter-examples showing that this inequality will not hold in general (not even with high probability), even if we assume that the set of options is optimal, i.e. if v * O = v * γ . The problem arises when the algorithm is -optimal at an epoch but there exists at least a step before the next epoch where the algorithm is not -optimal.

D.2.1 Counter-example 1

In this example we have: S = {s 0 , s 1 , s 2 , s 3 , s 4 } and A = {a 0 , a 1 , a 2 , a 3 , a 3 * , a 4 }. We assume the MDP is fully deterministic: p(s 1 |s 0 , a 0 ) = p(s 2 |s 1 , a 1 ) = p(s 3 |s 2 , a 2 ) = p(s 4 |s 3 , a 3 ) = 
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 21 Figure2.1: Graphical illustration of an MDP with 3 states (s 0 , s 1 and s 2 ) and 2 actions per state (a 0 and a 1 ).

d

  ∈ D MR , P d ∈ R S×S and r d ∈ R S denote the transition matrix and reward vector associated with d i.e., P d (s |s) := a∈As d(a|s)p(s |s, a) and r d (s) := a∈As d(a|s)r(s, a), for all s, s ∈ S, (2.2)

  For any Markov decision rule d ∈ D MR , we define L d the Bellman evaluation operator of d as ∀v ∈ R S , L d v := r d + P d v.

  s, a) := r p(•|s, a) := p where (a, r, p) := π + (s), and ∀b = a    r(s, b) ∈ B r (s, b) (any value) p(•|s, b) ∈ B p (s, b) (any value)

Figure 2

 2 Figure 2.3: Graphical illustration of Def. 2.5.

2. 2 .

 2 On-line Reinforcement Learning in the infinite horizon undiscounted setting Finally, the sets of confusing models w.r.t. M are defined as Φ(s, a) := M = S, A, r, p : p (•|x, b) = p(•|x, b) for all (x, b) = (s, a), δ(s, a) > 0 and δ (s, a) = 0 .

  A, r, p : p (s |s, a) = 0 =⇒ p(s |s, a) = 0, ∀s, s ∈ S, ∀a ∈ A p (•|s, π * (s)) = p(•|s, π * (s)), ∀s ∈ S, ∀π * ∈ Π * , and Π * ∩ Π * = ∅ . Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL Proposition 2.11 (Theorem 1 of Ok et al. (2018))

Proposition 2 .

 2 13 (Theorem 4 of Jaksch et al. (2010))

  the feasible region defined by the constraints is non-empty. These assumptions are always met in UCRLB because p(•|s, a) ∈ B k p (s, a) by construction, 0 ≤ p(s |s, a) ≤ 1 for all s ∈ S, and s ∈S p(s |s, a) = 1. Alg. 7 was first introduced by Dann and Brunskill

  sa r,0 ≥ r max so P |p(s |s, a) -p 0 (s |s, a)| ≥ sas p,0 = P |r(s, a) -r 0 (s, a)| ≥ sa r,0 = 0 by definition. Since in addition (also by definition) B n p (s, a, s ) ⊆ p n (s |s, a) -β sas p,n , p n (s |s, a) a) ⊆ r n (s, a) -β sa r,n , r k (s, a) + β sa r,n (see Eq. 3.4)
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 32 Figure 3.2: Example illustrating the difference between r max D and Λ. In this example, min π E π

  3.7 (see App. A.2 for further details). Similarly to the bound in (3.45), we notice that r k (s, a) -r(s, a) can be expressed as the sum of r k (s, a)-r k (s, a) with r k (s, a)-r(s, a). Since r k (s, a) ∈ B k r (s, a) (3.4) by construction, r k (s, a) -r k (s, a) ≤ β k r (s, a). Moreover, under event E we have r k (s, a) -r(s, a) ≤ β k r (s, a) by definition. After summing up the two inequalities we obtain:

  2 the "variance" of u with respect to p. 11 For the sake of clarity we introduce new notations for the transition probabilities: p k (s |s) := a∈As π k (a|s)p k (s |s, a), p k (s |s) := a∈As π k (a|s)p(s |s, a) and p k (s |s) := a∈As π k (a|s) p k (s |s, a), for every s, s ∈ S and every k ≥ 1 (i.e., we drop the summation over a).

  Using the triangle inequality and the fact that p k (•|s, a) ∈ B k p (s, a) by construction and p(•|s, a) ∈ B k p (s, a) under event E: p k (s |s, a) -p(s |s, a) ≤ p k (s |s, a) -p k (s |s, a) + p k (s |s, a) -p(s |s, a) ≤ 2β sas p,k .

Lemma 3 .

 3 10 (Analogue of Lem. 3.3) Chapter 3. Improved exploration-exploitation with Bernstein bounds

  r < r max a 1 , r < r max a 0 , r = r max (a) Failure of UCRL2-like algorithms.
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 41 Figure 4.1: Examples inspired by (Ortner, 2008, Example 1). Fig. 4.1a illustrates why

  Figure 4.2: Example of non-communicating RL environment: game of Breakout(Mnih et al., 2015a). The state space is the set of all possible configurations of the brick wall, the paddle and the ball. Fig. a: The initial state of the game. Fig. b: An example of state reachable after playing the game for some time. Fig. c: An example of state not reachable from the initial state due to the presence of a "hole" in the brick wall.

  Figure 4.3: Example of non-communicating RL environment: Mountain Car[START_REF] Moore | Efficient memory-based learning for robot control[END_REF] Brockman et al., 2016). Fig. a: The (red) car needs to reach the (green) flag on the top of the hill. The car does not have enough power and first needs to acquire momentum by reversing. Fig. 4.3b: x and ẋ denote respectively the position and velocity of the car along the x-axis. The state space is defined by (x, ẋ) ∈ [-1.2, 0.6] × [-0.07, 0.07]. The state labeled s 1 (in blue) corresponds to the initial state (car at the bottom of the hill at rest). From the law of motion of the car, it is possible to show that the sates in the red area can never be reached from s 1 .

  S C = |S C | (resp. S T = |S T |) the number of states in S C (resp. S T ). Γ C = max s∈S C ,a∈A p(•|s, a) 0 is the maximum support of all transition probabilities p(•|s, a) with s ∈ S C . As in Chap. 3, the state and action spaces -S and A-are still assumed to be finite, and the rewards are assumed to lie in [0, r max ].Learning problem. Similarly to Chap. 3, we consider the learning problem where S, A and r max are known, while sets S C and S T , rewards r and transition probabilities p are unknown and need to be estimated on-line. As shown byPuterman (1994, Theorem 8.3

  Asm. 4.1 for Multi-chain MDPs.)

  a), and s ∈ S T k , otherwise: B k p (s, a, s ) = p k (s |s, a) -β sas p,k , p k (s |s, a) a, s ), Thm. 3.1 of Chap.

  a), and s ∈ S T k , p k (s |s, a) -β sas p,k , p k (s |s, a) + β sas p,k +ζ sa p,k ∩ 0, 1 otherwise.(4.7)

Finally

  , we denote by (g * k , h * k ) a solution of the Bellman optimality equation

4. 3 .

 3 Analysis of tucrl k s.t. for all k ≥ k, S T k = ∅. When this condition is met, we notice that S EVI k = S and Z k p (s, a, s ) = B k p (s, a, s ) for all 3-tuple (s, a, s ) ∈ S × A × S (since ζ sa p,k = 0)

. 14 )

 14 Then, either S T k = S T (case I) or E k = ∅, i.e., ∃(s, a) ∈ S C k × A for which transitions to S T k are allowed (case II). Lemma 4.1 Proof. We prove the result by showing that under the assumptions of Lem. 4.1, we have the implication E k = ∅ =⇒ S T k = S T . Assume that episode k is such that inequality (4.14) holds and that M ∈ M k , S T k = ∅ and E k = ∅ i.e., for any state-action pair (s, a) ∈ S C k

k

  where we have exploited the fact that p(s |s, a) = 0 and σ 2 p,k (s |s, a) = 0 for any state s ∈ S T k (N k (s, a, s ) = 0, see (3.13)), and the fact that

  Applying the above inequality to the state s ∈ S C k achieving h * →s (s) = h max (s) we obtain -h max (s) > D C . By definition, -h max (s) is the minimum expected time it takes to go from S C k to s in M . Therefore, the shortest path between any state s ∈ S C k ⊆ S C and any state in s ∈ S T k is strictly longer than D Cin expectation. But by definition D C is the longest shortest path between any pair of states in S C . Therefore, s ∈ S T . Since s ∈ S T k was chosen arbitrarily, then S T k = S T . Lem. 4.1 basically excludes the case where S T S T k (i.e., some states in S C have not been visited yet). Let's assume that event E holds i.e., M ∈ M k for all k ≥ 1. As pointed out in Sec. 4.2.2 (paragraph on "Communicating MDPs"), when S T k = ∅, M k = M k and so M ∈ M k . Using the same argument as in Sec. 3.2, we have that g * k ≥ g * . We now analyze separately the two cases of Lem. 4.1. Case 1. If S T k = S T then M ∈ M k (under event E) because TUCRL only forbids transitions that indeed do not exist in M itself. Formally, for any (s, a, s ) ∈ S C k × A s × S T k we have p(s |s, a) = p k (s |s, a) = 0 and M ∈ M k so p(s |s, a) ∈ Z k p (s, a, s ) for all (s, a, s ) ∈ S ×A s ×S. In conclusion, g * k ≥ g * . Case 2. If E k = ∅, S EVI k

  k i.e., sp S C k (h k ) := max s∈S C k {h k (s)} -min s∈S C k {h k (s)}. Since the true MDP M belongs to the extended MDP M k w.h.p. but may not belong to M k , we bound sp S C k (h k ) by first comparing the Bellman shortest path operators of M k and M k (rather than directly comparing the operators of M and M k like in Sec. 3.3). Define the extended MDP M k := S, A, r(s, a) ∈ B k r (s, a), p(s |s, a) ∈ B k p (s, a, s ) where B k r (s, a) := r -r max s.t. r ∈ B k r (s, a) and B k r (s, a) (3.4) and B k p (s, a, s ) (3.3) are the confidence intervals used to construct M k in UCRLB.

kp

  (x, a) := p ∈ ∆ S : p(s ) ∈ Z k p (x, a, s ), ∀s ∈ S . Our goal is to show that for all x ∈ S, L k →s h k →s (x) ≥ h k →s (x) where by definition Denote by p k (•|x, a) ∈ B k p (x, a) the probability distribution achieving the maximum in the fixed point equation of h k →s i.e., s =s p k (s |x, a)h k →s (s ) := max of tucrl and denote by p k (•|x, a) ∈ Z k p (x, a) the analogue of p k (•|x, a) for Z k p (x, a) i.e., If x ∈ S T k or p + k (s, a) ≥ ρ t k (s, a) then Z k p (x, a) = B k p (x, a) by definition (4.7), and so (4.15) and (4.16) are equal. On the other hand, if x ∈ S C k and p + k (x, a) < ρ t k (x, a) (see Eq. 4.7), then we might not have equality. Define p k (•|x, a) as

  Figure 4.4: Cumulative regret in the taxi with misspecified states (Fig. 4.4a) and in the communicating taxi (Fig. 4.4b). Confidence intervals β r,k and β p,k are respectively shrunk by a factor 0.05 and 0.01. Results are averaged over 20 runs and 95% confidence intervals are reported.

Figure 4 . 6 :

 46 Figure 4.6: Cumulative regret of TUCRL and UCRLB on the MDPs of Fig. 4.5. Fig. 4.6a corresponds to the case where δ = 0.005 > 0. Fig. 4.6a corresponds to the case where δ = 0.

Figure 4 . 8 :

 48 Figure 4.8: Toy example illustrating the difficulty of learning non-communicating MDPs. We represent a family of possible MDPs M = (M ε ) ε∈[0,1] where the probability ε to go from x to y lies in [0, 1].

Figure 5 . 1 :

 51 Figure 5.1: Toy example illustrating the properties of optimization problem (5.6). Fig. 5.1a:The MDP is communicating and only has deterministic transitions and rewards for all actions (2 actions per state). Fig.5.1b: Maximum gain achievable g * c (y-axis) as a function of the span constraint c (x-axis) with all (randomized) stationary policies (blue line) and only deterministic policies (dashed red line). Only policies with state-independent gain are considered (i.e., the policy playing a 1 in both states is ignored).

Figure 5

 5 Figure 5.2: Geometric representation of projection Γ c in the 3-dimensional case (S = 3).

  and s ∈ S if and only if min a∈As {r(s, a) + p(•|s, a) T v} ≤ min s {Lv(s )} + c.(5.7)Furthermore, let D(c, v) := d ∈ D MR | sp (L d v) ≤ c (5.8)be the set of randomized decision rules d whose associated operator L d returns a spanconstrained value function when applied to v. T c v is globally feasible if and only if D(c, v) = ∅, in which case we have

  is the component wise maximal value function of the form L d v with decision rule d ∈ D MR satisfying sp (L d v) ≤ c. Surprisingly, even in the presence of a constraint on the one-step value span, such a component wise maximum still exists. This is not as obvious as in the case of the greedy operator L since the constraint on the span creates a correlation between states (while Chapter 5. Exploration-exploitation with prior knowledge on the optimal bias span Algorithm 8 Span truncated greedy operator (T c , G c ) Input: MDP M (with optimal Bellman operator L), span constraint c, vector v ∈ R S Output: Span constrained vector w ∈ R S , Decision rule d v c ∈ D MR 1: Compute u ← Lv and d + ∈ arg max d∈D MD {L d v} Break ties arbitrarily 2: Set u min ← min s∈S {u(s)} 3: for s ∈ S do This loop can be parallelized 4: if u(s) > u min + c then 5: w(s) ← u min + c See Def. 5.2 6: m ← min a∈As {r(s, a) + p(•|s, a) v} 7: a -∈ arg min a∈As {r(s, a) + p(•|s, a) v} Break ties arbitrarily 8:

  3 and the discussion in Sec. 2.1.3). If the stopping condition is met at iteration n, ScOpt returns a policy π n = (d n ) ∞ where d n = G c v n (among other things).

Figure 5

 5 Figure 5.3: Cumulative regret incurred by UCRLB after T = 2.5 • 10 7 steps as a function of 1/δ ∝ Λ (averaged over 20 runs).

  Figure 5.4: Results in the three-states domain with δ = 0.005. We report the span of the optimistic bias (Fig. 5.4a) and the cumulative regret (Fig. 5.4b) as a function of T .

  Figure 5.6: Representation of the Knight Quest 4 × 4 map. The grey shadowed cells are the locations where the dragon can move.

  Figure 5.7: Behaviour of UCRLB and SCAL in the knight quest game. Figures show the span of the optimistic bias (Fig. 5.7a) and the cumulative regret (Fig. 5.7b) as a function of T . Results are averaged over 15 runs and 95% confidence intervals of the mean are shown for the regret.

Lemma 5. 14 (

 14 See Def. 5.5 and Lem. 5.10) 5.8. scal * : scal with tighter optimism Proof. See App. C.4.

  Set w := w i-1 12: end if complexity of RLProba is comparable to the one of LProba, and sometimes even smaller. The correctness of Alg. 11 is a direct consequence of the proof of Lem. 5.13 in App. C.In practice, at every iteration n ≥ 0 of ScOpt, and for all state-action pairs (s, a) ∈ S × A,RLProba is called with ζ = p k (•|s, a) v n + cβ sa k .The outputs of RLProba are then used to compute L k v n and then T k c v n (see Alg. 8).

Chapter 6 .

 6 Hierarchical exploration-exploitations with options r eq (s, a) := r(s, a) τ (s, a) p eq (•|s, a) := α τ (s, a) p(•|s, a) -e s + e s (6.4)

  µ 1 ∈ P(S), we recursively define the set of reachable states at the level of options S µ 1 O = {s ∈ S : µ 1 (s) > 0} S k+1 := s∈S k o∈Os S term s,o . (6.10) Chapter 6. Hierarchical exploration-exploitations with options

  2, and µ 1 ∈ P(S) an initial distribution over states. For all states s, s ∈ S O and options o ∈ O s , we define the transition probabilities b(s |s, o) := B s,o (s |s), reward R(s, o) := R s,o (s) and holding time τ (s, o) := τ s,o (s). The decision process M µ 1 O = S µ 1 O , O, b, R, τ is an SMDP satisfying τ ≥ 1 and 0 ≤ R ≤ r max τ .

  max 1≤i≤n {d i }. Proposition 6.5 ("Hoeffding inequality", Wainwright (2015))

Chapter 6 .

 6 Hierarchical exploration-exploitations with options Algorithm 12 SUCRL Input: Confidence δ ∈]0, 1[, maximal holding time τ max and per-time step reward r max , minimal holding time τ min , set of states S, set of actions A, sub-exponential parameters σ r (s, a), d r (s, a), σ τ (s, a) and d τ (s, a) 1: Set initial decision step i := 1, observe initial state s 1 and initialize for all (s, a, s ) ∈ S × A × S: counters N 1 (s, a, s ) := 0 and N 1 (s, a) := 0, empirical averages p 1 (s |s, a) := 0, r 1 (s, a) := 0 and τ k (s, a) := 0, sample variances σ 2 p,1 (s |s, a) := 0. 2: for episodes k = 1, 2, ... do 3: Set the starting step of the episode i k := i and initialize for all (s, a, s ) ∈ S × A × S: episode counters ν k (s, a, s ) := 0 and ν k (s, a) := 0, and cumulative rewards R k (s, a) := 0 and holding times T k (s, a) := 0. Initialization of episode k 4:

  Like in the MDP case, 0 ≤ Λ ≤ r max D. Similarly to D, Λ := max s h * →s ∞ where h * →s is 6.3. Learning in Semi-Markov Decision Processes the maximal non-positive fixed point of the Bellman shortest path operator L →s in MDP M = S, A, r , p where r = r -r max τ (which is negative by assumption).

  a)g * -r(s, a) . We then introduce r k and τ k : τ (s, a)g * -r(s, a) = τ k (s, a)g * -r k (s, a) + (τ k (s, a) -τ (s, a)) g * ≤rmax + (r k (s, a) -r(s, a)) By analogy with Sec. 3.5, we define ∆ r k := s,a ν k (s)π k (a|s) r k (s, a) -r(s, a) and ∆ r1 k := s,a ν k (s, a) (r k (s, a) -r(s, a)) (similar to ∆ r k with ν k (s)π k (s, a) replaced by ν k (s, a)). We proceed similarly to define ∆ τ k and ∆ τ 1 k .

Figure 6

 6 Figure 6.3: Irreducible MC obtained by transforming the absorbing MC of Fig. 6.2 with p = (1 -β 0 )(1 -p) + β 0 (1 -p) + pβ 1 and p = β 1 (1 -p) + p.

  e., b k (•|s, o) ∈ B k p (s, o). We also use B k p (s, a) for Q s,o . Inner Bellman operators. We start with the formal definition of a "local" extended Bellman operator L s,o k characterizing the inner dynamics and reward of state-option pair (s, o) ∈ S O × O. L s,o k takes two inputs: a scalar c ∈ R and a vector u ∈ R Ss,o . For all x ∈ S s,o , -β o ) • u + u(s)β o + c1{x = s}. (6.45) The vector β o appearing in Eq. 6.45 corresponds to the stopping condition of option o restricted to the subset of states S s,o . • denotes the Hadamard product i.e., (e -β o ) • u = (1 -β o (x))u(x) x∈Ss,o . The scalar c appears only in state s.

AlgorithmFSUCRL

  combines the confidence bounds B k p (s, o) (of the state-option transition b(•|s, o)) used in SUCRL, with the confidence bounds B k r (s, a) and B k p (s, a) (of the state-action reward r(s, a) and transition p(•|s, a)) used in UCRLB. FSUCRL does not build confidence intervals on τ (s, o) and R(s, o) and so no prior knowledge on the distribution of holding times and Chapter 6. Hierarchical exploration-exploitations with options cumulative rewards of options is needed 11 (e.g., sub-exponential parameters σ τ , b τ , σ r and b r ). The confidence sets define the extended MDP M eq k described in Sec. 6.4.2.

  3.8 (which only relies on this property) also holds i.e., k 1 n ≤ SA log 2 8Tn SA . Although the bound on the number of episodes is unchanged, the condition ν k (x, a) ≤ N + k (x, a) for all state-action pairs (x, a) no longer holds and we cannot apply Lem. 3.6 to bound the series k T

r

  max • k 1 n • τ max + σ τ ln of all other options, we can use Lem. 3.6 to bound k T

  |x, a) -q s,o (•|x, a) h s,o k = y β o (y) • p k (y|x, a) -p(y|x, a) • h s,o k (y) + (1 -β o (y)) • p k (y|x, a) -p(y|x, a) • h s,o k (s) ≤ Λ max • min 2, β xa p,k

  ν k (x, a)β xa p,k + 4Λ max T n ln 5T n δ .

6. 4 .

 4 Learning in MDPs with Options without prior knowledge Algorithm 13 Nested (Relative) Value IterationInput: Operators L s,o (•, •) : R × R Ss,o → R Ss,o and G s,o : R S → D MR , confidence intervals (B p (s, o, s )) s ∈S O , accuracies (ε n ) n≥-1 ∈]0, r max [ N , initial vector v 0 ∈ R S , arbitrary reference state s ∈ S Output: Gain g ∈ [0, r max ], bias vectors h ∈ R S and h s,o ∈ R Ss,o and stationary deterministic policy π ∈ Π SD 1: Initialize n = -1, v -1 := -∞ 2: while sp (v n+1 -v n ) > ε -1 -3 2 ε n+1 do 3:

  for all n, k ≥ 0 and sov n+k -v n ∞ = (u n+k -u n+k (s)e) -(u n -u n (s)e) ∞ ≤ L k u n -L k u n (s)e -(u n -u n (s)e) Prop. 2.6 that L k u n -L k u n (s)e converges as k → +∞ (as an instance of relative value iteration with initial vector u n ). A convergent sequence is a Cauchy sequence which means that (by definition)sup k≥0 L k u n -L k u n (s)e -(u n -u n (s)e) ∞ -→ n→+∞ 0.Conversely, in a Banach space such that R S O , any Cauchy sequence converges. Since by assumption n≥0 ε n < +∞, necessarily sup k≥0

  Figure 6.4: Navigation problem with the four cardinal actions represented as continuous arrows and options (temporally extended actions) of length 2 as dashed arrows.

Figure 6

 6 Figure 6.6: Evolution of the regret as T n increases for a 14x14 four-rooms maze.

  2):v n (s) := L n v 0 (s) ≥ E πSince r t ≤ r max for all t ≥ 1 then we can bound the first term as follows: -r max ) -n∧(τ (s )-1) t=1 r max s 1 = s -r max ) s 1 = s   + r max E π n ∧ (τ (s ) -1) s 1 = s .

  v n (s) ≥ v n (s ) -E π   τ (s )-1 t=1 r t -r max s 1 = s  which concludes the proof.

  a π kt (a|s t ) α s p kt (s |s t , a)w t (s )For any n ≥ 1 and any n-tuple (a 1 , . . . , a n

i1

  Using Cauchy-Schwartz inequality we have:s ∈S p k (s |s, a)(1 -p k (s |s, a))w s k (s ) 2 = s ∈S k (s,a) p k (s |s, a)(1 -p k (s |s, a))w s k (s ) 2 ≤ s ∈S k (s,a) 1 -p k (s |s, a) • s ∈S k (s,a) p k (s |s, a)w s k (s ) 2 = Γ k (s, a) -1 • s ∈S p k (s |s, a)w s k (s ) 2 ≤ (Γ(s, a) -1) • s ∈S p k (s |s, a)w s k (s ) 2 By definition, α 2 s ∈S p k (s |s, a)w s k (s ) 2 = V k (s,a) which concludes the proof of Lem. 3.8. A.4 Proof of Lem. 3.6 We slightly change our notations and denote by N t (s, a) the number of visits in state-action pair (s, a) strictly before t (i.e., t not included). With this convention, what was denoted N k (s, a) (3.14) actually corresponds to N t k (s, a). The stopping condition of episodes ensures that for all t ≥ 1, N t (s, a) ≤ 2N kt (s, a). Therefore, similarly to what is done in (Ouyang et al., 2017a, Proof of Lemma 5) {s t = s, a t = a} N + t (s, a) = 2 1 {N T +1 (s, a) ≥ 1} + N T +1 (s,a)-1 j=1 1 j ≤1+ln(N T +1 (s,a))1{N T +1 (s,a)≥1} ≤ 2 + 2 ln N + T +1 (s, a) (A.11)

  +1 (s, a) -1 ≤ 3 N T +1 (s, a).

D. 2 .

 2 Figure D.1: MDP of counter-example 1.

  p(s 4 |s 3 , a 3 * ) = p(s 4 |s 4 , a 4 ) = 1. The graph of the MDP is represented on Figure D.1. We define R as follows:

  Operators L : R S → R S and G : R S → D MR , horizon H Output: Optimal n-step expected cumulative sum of rewards v * n and n-step optimal policy π * n for n ∈ {1 . . . H} 1: Initialize v H+1 := 0 2: for n = H . . . 1 do

			2.1. Markov Decision Processes
	Algorithm 1 Backward Induction	
	Input: 3: 4:	(v * n , d * n ) := (Lv * n+1 , Gv * n+1 ) π * n ← (d * n , . . . , d * H )	Lv * n+1 and Gv * n+1 can be computed simultaneously
	5: end for	

  * 1 , d * 2 , . . . , d * H ) solution to (2.3) for any µ 1 ∈ P(S) and such that for all H ≥ t ≥ 1, d * t ∈ D MD i.e., d * t is Markov deterministic and independent of the initial state distribution.

  2, Prop. 2.4 only claims uniqueness of g * but not of h * in the optimality equation h

* + g * e = Lh * . For example, h * can be shifted by any arbitrary constant without affecting the validity of the equation. But there may also exist other solutions that do not just differ by a constant shift (see Prop. 2.3). There is also no strict equivalence between optimal stationary policies and greedy policies (d * ) ∞ with d * ∈ arg max d∈D MR {r d + P d h * }

  ). Shifting v n before any new update ensures convergence in the original space R S (convergence in ∞ -norm as opposed to span semi-norm). Note that neither the stopping condition (line 3 of Alg. 3) nor the other outputs g and π of Alg. 3 are affected by the shift of line 5. If line 5 was removed, Alg. 3 would stop after the same number of iterations and would return the same gain g and policy π. Only the final bias h as well as all the intermediate vectors v

n are shifted by a big constant (which grows linearly with n). Indeed, the difference Lv n -v n remains unchanged after a constant shift in v n : for all c ∈ R, L(v n +ce)-(v n +ce) = Lv n -v n due to the linearity property of the optimal Bellman operator (Prop. 2.5 (c)). Prop. 2.6 and Lem. 2.7 below also hold if line 5 of Alg. 3 (constant shift) is removed (except that in this case v n diverges in R S and converges only in the quotient space, as explained above). These results hold both for MDPs with finite and compact action spaces. Proposition 2.6 (Theorems 9.4.5 of Puterman (1994) adapted by Jaksch et al. (2010)) Consider the sequences of vectors (v n ) n∈N and Markov decision rules (d n ) n∈N obtained while executing Alg. 3. If Prop. 2.4 holds and either:

  of L →s . Let's denote by p →s the transition probability of M →s (see proof of Prop. 2.8).

	L α →s h α * →s = h α * →s ⇔ max a∈Ax	r(x, a) + α	y	p →s (y|x, a)h α * →s (y) + ( ¡ 1 -α)h α * →s (x) =	¨ḧ α * →s (x)
	⇔ max a∈Ax	r(x, a) +			

The rewards are not affected by the transformation so if the rewards of M are non-positive, so are the rewards of M α . Furthermore, by definition, h α * →s is a fixed point of L α →s and h * →s is a fixed

Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

x s a 0 , r = -r max a 1 , r = 0 a 0 , r = -r max a 1 , r = 0 Figure 2

.2: Example of communicating MDP where the "shortest path" from x to s (2.13) is such that π * (x) = a 1 and h * →s (x) = 0. Under π * , τ (s) = +∞ almost surely. point y p →s (y|x, a) (αh α * →s (y)) = αh α * →s (x) ⇔L →s (αh α * →s ) = αh α * →s . So αh α * →s is a fixed point of L →s and conversely h * →s /α is a fixed point of L α →s . Moreover, α > 0, h α * →s ≤ 0 and h * →s ≤ 0 implying that αh α * →s ≤ 0 and h * →s /α ≤ 0. Since h * →s is the maximum non-positive fixed point of L →s and αh α * →s ≤ 0, necessarily h * →s ≥ αh α * →s . Symmetrically, h α * →s is the maximum non-positive fixed point of L α →s and h * →s /α ≤ 0 so necessarily h α * →s ≥ h * →s /α. In conclusion, αh α * →s = h * →s .

  , it is clear that D < +∞ if and only if M is communicating. The diameter of an MDP is the length of the longest shortest path in the MDP. In other words, it is the length of the shortest path between the two states that are the most distant from each other. It quantifies the difficulty to navigate in the MDP. We provide a graphical illustration on Fig 2.4.

	2.2. On-line Reinforcement Learning in the infinite horizon undiscounted setting
	s
	D = 10
	s
	Figure 2.4: Graphical illustration of Def. 2.6. The MDP is a grid-world where every square
	represents a state. The four cardinal actions can be played in any state with success proba-
	bility 1, except when there is a wall (red).
	Proposition 2.12 (Theorem 5 of Jaksch et al. (2010))

  .23)At each time step t, OAP computes an estimate M t = S, A, r, p t of the unknown MDP M based on past-observations ( p t is the maximum-likelihood estimator of p). An optimal solution ( g t , h t ) ∈ R × R S of the optimality equation of M t is then computed i.e., a solution to L t h t = h t + g t e where L t is the optimal Bellman operator of M t . Let N t (s, a) denote the number of past visits in state-action pair (s, a) and L t : R S → R S be the operator defined for all v ∈ R S and all s ∈ S by is a high probability confidence set for p(•|s, a). L t is an extended optimal Bellman operator (Sec. 2.1.5). At every time step t, the current state is denoted s t and OAP plays any greedy action w.r.t. L t h t (s t ).

	L t v(s) := max a∈As	r(s, a) + max q∈B t p (s,a)	q v ,	(2.24)
	where B t p (s, a) := {q ∈ ∆			

S : KL( p t (•|s, a) q) ≤ ln (t) /N t (s, a)}

  a t , s t+1 ) + 1 and ν k (s t , a t ) ← ν k (s t , a t ) + 1

	10:	Increment cumulative reward: R k (s t , a t ) ← R k (s t , a t ) + r t
	11:	Increment time t ← t + 1
	12:	end while
	13:	

  Although it is difficult to compare (2.33) with the lower-bound of Prop. 2.10, the regret bound of UCRL is likely to be much worse given the dependency in S (among other things).

	2.2. On-line Reinforcement Learning in the infinite horizon undiscounted setting
	14: end for

derived an algorithm called OSP (Optimistic Sample Path) which leverages Markov Chain concentration inequalities. When run on an unknown ergodic MDP with mixing time t mix (the definition differ from τ max ), the regret can be

  

	regret of KL-UCRL scales as O	S s,a V * s,a T + D	√	indeed showed that the T (ignoring logarithmic terms) where
	V * s,a := V X∼p(•|s,a) (h * (X)) is the variance of the optimal bias w.r.t. the next state. Since
	V * s,a ≤ sp (h * ) ≤ r max D, the bound is smaller than in Prop. 2.14. Nevertheless, the bound
	only holds for ergodic MDPs and the logarithmic terms hidden in the O-notation can be very
	big. More recently, Ortner (2018) bounded (w.h.p.) as O( √ t mix SAT ln (T /δ)). In some specific MDPs, t mix is comparable to D so that
	OSP achieves the minimax lower-bound (up to logarithmic factors). 13 However, OSP requires
	explicitly enumerating all A S policies which makes it intractable. Finally, the work of Tossou
	et al. (2019) (still unpublished) suggests that it is possible to design a tractable algorithm
	(variant of UCRL2) called UCRL-V with optimal minimax regret guarantees under additional
	assumptions on transition probabilities.		

  Execute action a t , obtain reward r t , and observe next state s t+1 . , a t ) ← R k (s t , a t ) + r t and S k (s t , a t ) ← S k (s t , a t ) + r 2 Increment time t ← t + 1 and sample action a t ∼ π k (•|s t ).

			r max t k	, 0, s 1	(3.5)
	7:	Sample action a t ∼ π k (•|s t ).		Stochastic policies are allowed
	8:	while True do	Execute policy π k until the end of episode k
	9:		
	10:	Increment episode counters:	
		ν k (s t , a t , s t+1 ) ← ν k (s t , a t , s t+1 ) + 1 and ν k (s t , a t ) ← ν k (s t , a t ) + 1
	11:	Increment cumulative (squared) reward
	12:	R k (s t t if ν k (s t , a t ) ≥ N + k (s t , a t ) then Stopping condition of episode k
	13:	Increment time t ← t + 1 and Break
	14:	else	
	15:		
	16:	end if	
	17:	end while	
	18:		

  Chapter 3. Improved exploration-exploitation with Bernstein bounds UCRLB keeps track of the number of observations of the sequence (s, a, s ) ∈ S × A × S strictly before and during episode k (respectively N k (s, a, s ) and ν k (s, a, s )):

	t k+1 -1			k-1
	ν k (s, a, s ) :=	1 s t = s, a t = a, s t+1 = s and N k (s, a, s ) :=	ν l (s, a, s ). (3.13)
	t=t k			l=1
	UCRLB also keeps track of the number of visits in every state-action pair (s, a) ∈ S × A
	before and during episode k (respectively N k (s, a) and ν k (s, a)):	
	ν k (s, a) :=	ν k (s, a, s ) and N k (s, a) :=	N k (s, a, s ).	(3.14)
		s ∈S	s ∈S	
	In Alg. 5, ν k (s, a, s ) (resp. ν k (s, a)) is incremented after every new visit in (s, a, s ) (resp.
	(s, a)) while N k (s, a, s ) (resp. N k (s, a)) is updated at the end of every episode using the
	recurrence relation N k+1 (s, a, s ) := N k (s, a, s ) + ν k (s, a, s ) (resp. N k+1 (s, a) := N k (s, a) +
	ν k (s, a)), with N 1 (s, a, s ) := 0 by definition (resp. N 1 (s, a) := 0). To simplify notations we
	define N + k (s, a) := max{1, N k (s, a)}. Finally, R k (s, a) (resp. S k (s, a)) denote the cumulative
	sum of rewards (resp. squared rewards):	

10)

  D k .Jaksch et al. (2010, Section 4.3.1) showed that the diameter D k of the extended MDP constructed by UCRL2 at every episode k ≥ 1 is smaller than or equal to the diameter of the true MDP D. Their proof relies on the same argument used to prove than the true MDP M and rewards r equal to -1 everywhere (for all state and actions). For all s ∈ S, denote by L →s the Bellman shortest path operator of M and h * →s its fixed point(Prop. 3.5). By Prop. 2.8, -h * →s (s) := min π∈Π SR E π [τ (s )|s 1 = s] -1 for all s, s ∈ S (see Eq. 2.13), and so by definition D := max s∈S { h * →s ∞ }. Let's denote by L k →s the analogue of L →s for the extended MDP M k (identical to M k with all rewards replaced by -1), and by h k * →s ≥ L →s h * →s -ηe |s (where e |s is the S-dimensional vector of all ones, except the s-th coordinate which is zero). Let's define L k,η →s the analogue of L k →s with all rewards equal to -1 + η instead of -1, and h k,η →s the corresponding maximal non-positive fixed point. It is immediate from the definition of the operators that L k →s h * →s ≥ L →s h * →s -ηe |s is equivalent to L k,η →s h * →s ≥ L →s h * →s . According to Prop. 3.5, we therefore have h k,η →s ≥ h * →s . Since the rewards associated to L

optimism (inclusion argument): since M ∈ M k w.h.p., the shortest path to go from any state to any other state is always shorter in the extended MDP and so D k ≤ D. We can use the same argument in our case to show that under the same event as in Thm. 3.1, D k ≤ D (where D k is the diameter of M k ). However, as already argued in Sec. 3.2.1, this "inclusion" argument is rather restrictive and "non-smooth". Proving a more general result helps provide better intuitions and opens the way for extensions. Similarly to what we did in Sec. 3.2, we generalize the argument of

[START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] 

by showing that it is sufficient to analyze the relationship between the Bellman operator of the extended MDP M k and the true MDP M to connect D k with D. We no longer require that M ∈ M k . The following proposition is another declination of the dominance property (analogue to Prop. 3.3) in the context of (generalized) stochastic shortest path problems (see Sec. 2.1.4). Proposition 3.5 (Theorem 7.3.2. of

[START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]

)

Let M = S, A,

r, p be a communicating MDP (finite or compact A) with negative rewards. For any state s ∈ S, consider the Bellman shortest path operator L →s with maximal non-positive fixed point h * →s (see Prop. 2.8). If there exists h ∈ R S such that h ≤ 0 and L →s h ≥ h then h * →s ≥ h. Let's consider M = {S, A, r , p} the MDP with identical transition probabilities p →s its maximal non-positive fixed-point. Under the high probability event of Thm. 3.1, L k →s h * →s ≥ L →s h * →s = h * →s and so by Prop. 3.5, h k →s ≥ h * →s (h * →s ≤ 0 by definition). It follows that D k ≤ D. As in the case of gain-optimism (Sec. 3.2), we see that in order to show that D k ≤ D, it is sufficient to prove that L k →s h * →s ≥ L →s h * →s for all s ∈ S (optimism of the Bellman operator on a specific vector). More generally, let's assume that there exists 1 > η ≥ 0 such that L k →s h

  46. Instead of bounding the scalar product (p k (•|s, a)-p(•|s, a)) w k by p k (•|s, a)-p(•|s, a) 1 w k ∞ using Hölder's inequality as in Sec. 3.5.3, we bound it by s |p k (s |s, a) -p(s |s, a)| • |w k (s )| using the triangle inequality. Since a,s p k (s |s, a) = a,s p(s |s, a) = 1 we can shift h k by an arbitrary scalar λ s k ∈ R for all k ≥ 1 and all s ∈ S, i.e., w s k := h k + λ s k e. Unlike in Sec. 3.5.3, we choose a statedependent shift, namely λ s k

  in Alg. 5) i.e.,

		p + k (s |s, a) :=	max p∈B k p (s,a,s )	{p} .	(4.4)
	For all s ∈ S T k , s ∈ S C k and a ∈ A s , the empirical mean p k (s |s, a) and variance σ 2 p,k (s |s, a) are
	by definition zero (since this transition has never been observed so far, see Eq. 3.7 and 3.9),
	so that p +	6 ln(6SAN + k (s,a)/δ) N + k (s,a)	

k (s |s, a) = min 1, (see

Eq. 3.1 and. 3.3)

. Since in that case p + k (s |s, a) does not depend on s , we will drop the dependency on the next state and write p + k (s, a) := min 1, 6 ln(6SAN + k (s,a)/δ) N + k (s,a)

  The gain of such an MDP is not necessarily state-independent. Therefore, Lem. 2.7 (see Sec. 3.1.2) no longer holds and the stopping condition of EVI (Alg. 3) can no longer be used. This problem can be fixed by restricting the state space of the extended MDP to the set S EVI Chapter 4. Exploration-exploitation in MDPs with infinite diameter

	S EVI k

k defined as the set of states that are reachable from the communicating set S C k . Since by design (see Eq. 4.7) all states in S are reachable from S T k , in practice there are only two possible cases: either all the transitions from S C k to S T k are forbidden in which case S EVI k = S C k , otherwise S EVI k = S. Formally, we have:

  Analysis of tucrl path going from s to s in the true MDP M . Fix an arbitrary target state s ∈ S T k and define h max (s) := max s∈S C

	k	h * →s (s). By construction, h * →s (s) = 0 and for all s ∈ S C k
	h * →s (s) = max a∈As	

h * →s (s) is the expected length of the stochastic shortest 4.3.

  We define M k similarly where B k p (s, a, s ) is replaced by Z k p (s, a, s ) (4.7). For any state in S C k , we denote by L k →s (resp. L k →s ) the Bellman shortest path operator to s in M k (resp. M k ) as defined in Thm. 3.5. We also denote by h k →s (resp. h

k →s ) the fixed point of L k →s (resp. L k →s ). The fixed points exist and are unique because every state in S C k is accessible from any state in S (see Thm. 3.5). Furthermore, we prove the following lemma: For all s ∈ S C k we have h k →s ≥ h k →s (component-wise).

  Conclusion3. refining the lower bound of[START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] to finally understand whether it is possible to scale with sp (h * ) (at least in communicating MDPs) instead of Λ ≥ sp (h * ) (the flaw in Regal.D may suggest it is indeed impossible).

Several questions remain open: 1. relaxing Asm. 4.1 by considering a transient initial state (i.e., s 1 ∈ S T ), 2. investigating whether a regret scaling as O √ Λ C S C Γ C AT is achievable, 4.6.

  d + (s)

	11:	else	
	12:	w(s) ← u(s)	See Def. 5.2
	13:	d v c (d + (s)|s) ← 1	Greedy action
	14:		

  a t ) then Stopping condition of episode k Increment time t ← t + 1 and set action a t ∼ π k (•|s t ).

	13:	Increment time t ← t + 1 and Break
	14:	else
	15:	
	16:	end if
	17:	end while
	18:	

  another solution of (5.35), then g = g + k and there exists λ ∈ R s.t. h = h + k + λe. 2. Convergence: For any initial vector v 0 ∈ R S , the sequence (v n ) generated by ScOpt (with operator L k instead of L) converges to a solution vector h + k of the optimality equation (5.35), and

  Compared to LProba, RLProba takes an additional input ζ. The scalar w output by RLProba is identical to the scalar output by LProba if smaller than ζ, otherwise it is set equal to ζ (line 9 of

	.36)
	We also introduce RLProba (Alg. 11), a slight modification of LProba that can solve the
	refined optimization problem max p∈ B k p (s,a)∩ Θ k

p (s,a,v) {p v}.

  agent can decide to play option o in any state belonging to I o . Once option o has been initiated, policy π o is executed until the termination condition of the option is triggered. During the execution of option o, a Bernoulli random variable with success probability β o (s) is sampled independently from the past history every time a new state s ∈ S is visited . The execution of the option ends if and only if the outcome of the Bernoulli is a success. It is worth pointing out that any "primitive" action a ∈ A s available in state s ∈ S can be interpreted as an option with an arbitrary initial state space I a s, a stopping distribution β a (s) = 1 for all s ∈ S, and any arbitrary policy π a ∈ Π SR satisfying π a (s) = a. The converse is of course not true: all options are not primitive actions since an option can last for more than just 1 time step (unlike a primitive action). Since the only restriction is that all 3 components of an option should satisfy the Markov property 1 , Def. 6.1 provides a very rich and flexible definition of temporally extended actions. It is possible to extend Def. 6.1 by relaxing the Markov constraint, although it is unclear whether such a level of generality can be of any interest given the Markov structure of the underlying MDP.

  .1), while the set of absorbing states S abs s,o includes all states with β o (x) > 0 (e.g., S abs s,o = {s 0 , s 1 , s 2 } in Fig. 6.2). We denote by S s,o (resp. S abs s,o ) the cardinality of S s,o (resp. is the transition matrix between inner states (dimension S s,o × S s,o ), V s,o is the transition matrix from inner states to absorbing states (dimension S s,o ×S abs s,o ), and I is the identity matrix (dimension S abs s,o × S abs s,o ). Note that some states x may belong both to S s,o and S abs s,o if 1 > β o (x) > 0 (i.e., S s,o ∩ S abs s,o = ∅), and therefore S s,o + S abs s,o is not always smaller than S (even though it is always upper-bounded by 2S). We also denote by r s,o := (r(x, π o (x))) x∈Ss,o the vector of rewards associated to state-option pair (s, o) ∈ S × O.

	S abs s,o ). The MC associated to (s, o) is characterized by a transition matrix P s,o of dimension (S s,o + S abs s,o ) × (S s,o + S abs s,o ) with canonical form P s,o := Q s,o V s,o 0 I where      Q s,o (x, y) := (1 -β o (y)) • a p(y|x, a)π o (a|x), ∀x, y ∈ S s,o V s,o (x, y) := β o (y) • a p(y|x, a)π o (a|x), ∀(x, y) ∈ S s,o × S abs s,o S s,o s o,0 s o,1 Q s,o Chapter 6. Hierarchical exploration-exploitations with options S abs s,o	.

1

  Figure6.2: Absorbing MC associated to state-option (s 0 , o) of Fig.6.1. Nothing in Def. 6.1 guarantees that a state-option pair (s, o) ∈ S × O will ever end once initiated. This problem will occur if for example β o (x) = 0 for all states x ∈ S, or if β o (x) > 0 only for some states x ∈ S that are reached with probability 0 under policy π o . Mathematically, this means that P s,o is not an absorbing Markov Chain i.e., absorbing states are reached in finite time with probability strictly less than 1. A neverending option will be problematic if π o is very suboptimal compared to other options: once this "pathological" option has started, no other option can ever be played (it is a sort of "deadlock"). For this reason, we make the following assumption. The MC P s,o is absorbing if and only if Q s,o is strictly substochastic i.e., Q s,o e ≤ e with the inequality strict in at least one coordinate. If β o (x) >

	Absorbing property. All options terminate in finite time with probability 1, or equivalently, P s,o is an absorbing Assumption 6.1
	Markov Chain for all state-option pair (s, o) ∈ S × O.

  5)i.e., N s,o (j|i) (i-th row and j-th column) is the expected number of times inner state j ∈ S s,o is visited when starting from inner state i ∈ S s,o . The absorbing transition matrix B s,o := N s,o V s,o (6.6) contains the probability of terminating in an absorbing state j ∈ S abs s,o when starting from an inner state i ∈ S s,o . The i-th entry of the vector τ s,o := N s,o e (6.7) corresponds to the expected number of steps before absorption when starting from inner state i ∈ S s,o . For example, τ s,o (s) is the expected duration of state-option (s, o) while B s,o (j|s) is the probability that it ends in state j ∈ S abs s,o . The set of possible terminal states of (s, o) is: is the expected cumulative reward collected before absorption when starting from inner state i ∈ S s,o . In particular, R s,o (s) is the expected cumulative reward of state-option (s, o).

	S term s,o := {j ∈ S abs s,o : B s,o (j|s) > 0}.	(6.8)
	Finally, we denote by r s,o :=	a r(x, a)π o (x|a)	x∈Ss,o	the reward vector associated to
	(s, o). The i-th entry of the vector			
		R s,o := N s,o r s,o		(6.9)

  Increment time i ← i + 1 and sample action a i ∼ π k (•|s i ).

	14:	else
	15:	
	16:	end if
	17:	end while
	18:	

  Chapter 6. Hierarchical exploration-exploitations with options equation in M k (and so existence in M k is guaranteed as well). Finally, the outputs of EVI (Eq. 6.22) satisfy the following inequality (Lem. 2.7):

	∀s ∈ S,	
	a)	(6.23)

19: end for a∈As π k

  Let (X n , F n ) n∈N be an MDS such that E e λXn F n-1 ≤ e We leverage Prop. 6.6 to bound the sum of rewards and holding times as in Lem. 3.1.

	Chapter 6. Hierarchical exploration-exploitations with options
	Lemma 6.4											
	With probability at least 1 -δ 6 :							
	∀n ≥ 1, -	n i=1 n i=1	r i ≤ -τ i ≤ i=1 a∈As i n i=1 a∈As i π k i (a|s i )τ (s i , a) + 2σ τ n ln π k i (a|s i )r(s i , a) + 2σ r n ln n	6n δ 6n δ	+ 4d r ln + 4d τ ln	6n δ 6n δ	(6.35)
	.											
	Proposition 6.6 (Theorem 2.3. Wainwright (2015))			
									σ 2 n λ 2 2	a.s. for any |λ| < 1/d n and
	n ∈ N. For all n ≥ 1 and t ≥ 0,							
		P	 	n i=1	X i ≥ 2	n i=1	σ 2 i ln	2 δ	+ 2 max 1≤i≤n	{d i } ln	2 δ	  ≤ δ.	(6.34)
	.											

  Ss,o contains the cumulative probability to transition from an 6.4. Learning in MDPs with Options without prior knowledge inner state to any terminal state. Then we define Q s,o ∈ R So×So as equal to Q s,o with v s,o added to the s-th column of Q s,o . Q s,o e = Q s,o e + V s,o e = e and Q s,o ≥ 0 implying that Q s,o is a stochastic matrix and the associated MC is necessarily irreducible since all states in S s,o are reachable form s by construction (definition of S s,o ), and s is reachable from any state in S s,o due to the addition of v s,o . Therefore, Q s,o admits a unique stationary distribution µ s,o i.e., a unique solution to the system of equations µ s,o Q s,o = µ s,o and µ s,o e = 1

s,o . More formally, v s,o := V s,o e ∈ R

  Chapter 6. Hierarchical exploration-exploitations with options Under Asm. 6.3, let µ s,o ∈ [0, 1] So be the unique stationary distribution of the irreducible MC Q s,o associated to state-option (s, o), thenProof. Under Asm. 6.3, Q s,o (x, s) = (1 -β o (s)) • a p(s|x, a)π o (a|x) = 0 for all x ∈ S s,o implying that Q s,o (x, s) = v s,o (x).So state s can only be reached when the option is "reset".Q s,o has a finite number of states and is thus recurrent positive (see e.g., Thm. 3.3 of Bremaud (1999, Chapter 3)). Moreover, 1/µ s,o (s) corresponds to the mean return time in state s, i.e., the expected time to reach s starting from s (see e.g., Theorem 3.2 inBremaud (1999, Chapter 3)). Finally, τ (s, o) is the expected time before reaching an absorbing states starting from s in the original absorbing Markov chain P s,o . Since all absorbing states of Q

	Lemma 6.6							
	1 τ (s, o)	= µ s,o (s)	and	R(s, o) τ (s, o)	=	x∈Ss,o	r(x, a)π o (a|x)µ s,o (x).	(6.41)
								a∈Ax
									4.1
	of Bremaud (1999, Chapter 3)):					
	lim T →+∞	T -1 t=0 r t T	=	x∈Ss,o	r(x, a)π o (a|x)µ s,o (x) a.s.	(6.42)
					a∈Ax			

s,o are merged with s in MC Q s,o , 1/µ s,o (s) is exactly equal to τ (s, o) in this case.

Let (s t ) t∈N be the sequence of states visited while executing Q s,o starting from s and let r t = a∈As t r(s t , a)π o (a|s t ). By the Ergodic Theorem for Markov chains (see e.g., Thm.

  6.4. Learning in MDPs with Options without prior knowledge the subsequence (T n ) n∈N in (6.42) we obtain:

	Tn-1 t=0 r t T n	-→ n→+∞	x∈Ss,o	r(x, a)π o (a|x)µ s,o (x) a.s.	(6.44)
			a∈Ax		

  long term average gain, namely the gain of the Markov Reward Process (MRP) characterized by the MC Q s,o and the reward function defined by

	R(s,o) τ (s,o) + α τ (s,o) b(•|s, o) h * eq -h * eq (s) corre-
	sponds to a

  E Q s,o denotes the expectation in the irreducible Markov Chain Q s,o . Since by construction all states are positive recurrent, P

			 τ (y)-1			
	x,y∈Ss,o	E Q s,o		t=1	r max -	 .	(6.49)

The travel-budget Λ s,o of any state-option pair (s, o) ∈ S O × O is defined as Λ s,o := max a∈As t r(s t , a)π o (a|s t ) s 1 = x

  s t , a t ) for the last state-action pair (s t , a t ) played or ν k (s i , o i ) ≥ N + k (s i , o i ) for the last state-option pair (s i , o i ) played. Since when the first condition ν k (s t , a t ) ≥ N + k (s t , a t ) is triggered the current option being played o Nt may not be over, FSUCRL waits for the option to end .

  {r max , Λ O } + β • max {r max , Λ max } .4. Learning in MDPs with Options without prior knowledge Theorem 6.8 (Analogue of Thm. 3.5)There exists a numerical constant β > 0 such that for any communicating MDP M , with probability at least 1 -δ, it holds that for all initial state distributions µ 1 ∈ ∆ S and for all time horizons T > 1:∆(M, FSUCRL, µ 1 , T n ) ≤β • max r max , r max Λ O + r max (τ max + σ τ + d τ ) .The bounds presented above illustrate how options implicitly implement the divide-andconquer paradigm. The main regret term of UCRLB O √ r max ΛΓSAT n sees the travelbudget reduced to Λ max while another term O √ r max Λ O Γ O S O On appears, which only scales with the number of decision steps n instead of the number of time steps T n . The ratio introduced in Sec. 6.3.6 is now roughly bounded as

	s,o s,a Γ(s, o) n ln Γ(s, a) T n ln n δ O O ln + β • max {r max , Λ O }S 2 n δ ln (n) + β • SA ln T n δ Γ(s, o) n ln T n δ + β • max r max , r max Λ max s,a Γ(s, a) T n ln n δ + β • max r max , Λ 2 O r max S 2 O O ln n δ ln (n) ln (T 6s,o + β • SA ln T n δ ln (T n ) max r max , Λ 2 max r max S R(n) Λ O Γ O S O On ΛΓSAT n + Λ max Λ .	T n δ	(6.50)

n ) max {r max , Λ max }S + r max (τ max + σ τ + d τ ) .

  where k 1 n is the number of episodes for which the first condition ν k (s t , a t ) ≥ N + k (s t , a t ) is triggered, while k 2 Chapter 6. Hierarchical exploration-exploitations with options stopping condition ensures that at every episode k, ν k (s, o) ≤ N + k (s, o) for all pairs (s, o).

n is the number of episodes for which the second condition

ν k (s i , o i ) ≥ N + k (s i , o i ) is triggered. k 2 n can

be bounded as in SUCRL i.e., k 2 n ≤ S O O log 2 8n S O O (see Prop. 3.8). Moreover, this

  o i (a|s t )r k i (s t , a) Unlike in Sec. 6.3.4, a denotes a primitive action in the original MDP M as opposed to a macro-action in SMDP M O (denoted by o). Accordingly, r k (s, a) denotes the optimistic reward associated to state-action pair (s, a) and lies in [0, r max ]. If option o i is played in state s i at decision step i then g s i ,o i k i = g eq k i due to the outer optimality equation g eq k = max o∈Os g s,o k (see Sec. 6.4.2). We now use the inner optimality equations h s,o k + g s,o k e = L s,o k h s,o k which can be expanded as g s i ,o i

		Tn	g * M O -r t	n	T i -1	  g eq k i -	 
		t=1		i=1	t=T i-1	a∈As t
					+ r max SAT n ln	SAT n δ	+ r max SA ln	SAT n δ	.
	k i	-				
			a∈As t			

π π o i (a|s t )r k i (s t , a) = a∈As t π o i (a|s t )q s

  (a|x) q s,o k (•|x, a) -q s,o (•|x, a) h s,o k ,

	s,o k :
	kn
	ν k (s, o, x)
	k=1 s,o x∈Ss,o

a π o

  s)e LProba v n , (B p (s, o, s )) s ∈S O -v n (s) 8: g s,o , h s,o , π s,o ← EVI L s,o (c, •), G s,o , ε n+1 , 0, sInner value iteration Gv n 13: end while 14:Set g := 1 2 max{v n+1 -v n } + min{v n+1 -v n } , h := v n and π := (d n ) ∞ (x t ) follows the distribution of MC Q s,o , the remaining term (summed over i = 1 . . . n): is an MDS. It can bounded like the sum k T k=1 ∆ p4 k appearing in the analysis of UCRLB (see Lem. 3.3 and 3.10), knowing that sp h s N t ,o N t k N t ≤ Λ st,ot ≤ Λ max .

	5:	for s ∈ S do		
	6:	for o ∈ O do		
	7: c ← α • 9: end for		
	10:	v n+1 (s) := v n (s) + max o∈O g s,o	Outer value iteration
	11:	end for		
	12: d n i=1 T i -1 t=T i-1	s N t ,o N t k N t	-h s N t ,o N t k N t	(x t+1 ) ,

n := q s i ,o i (•|s t ) h s i ,o i k i -h s i ,o i k i (x t+1 ) = Tn t=1 q s N t ,o N t (•|x t ) h

  A.2.1 Proofs ofLem. 3.1 and 3.4 Let's consider the stochastic stochastic process X t := r t (s t , a t )-a∈As t π kt (a|s t )r(s t , a). The term a∈As t r(s t , a)π kt (a|s t ) is F t-1 -measurable and moreoverE[r t (s t , a t )|F t-1 ] = a∈As t π kt (a|s t )r(s t , a) so that E [X t |F t-1 ] = 0. Since in addition |X t | ≤ r max , (X t , F t ) t≥1 is a Martingale Difference Sequence (MDS)and we can apply Azuma's inequality (Prop. 3.7):After taking a union bound over all possible values of T ≥ 1, we obtain that with probability at least 1 -+∞ To prove Lem. 3.4 we consider similar stochastic processes: r(s t , a t )-a∈As t π kt (a|s t )r(s t , a) and r kt (s t , a t ) -a∈As t π kt (a|s t )r kt (s t , a). Both are also MDS bounded by r max and so we can apply Azuma's inequality, use a union bound and take the difference. A.2.2 Proofs of Lem. 3.2 and 3.7 kt (a|s t )p kt (s |s t , a)h kt (s ) -α kt (a|s t )p kt (s |s t , a)w kt (s ) -α s p kt (s |s t , a t )w kt (s ). Since π kt is F t-1 -measurable, E[X t |F t-1 ] = 0 and moreover |X t | ≤ 2α w kt ∞ ≤ Λ a.s. for all t. (X t , F t ) t≥1 is an MDS and using Azuma's inequality (Prop. 3.7): k (s)π k (a|s)p k (s |s, a)h k (s ) -α k (s, a)p k (s |s, a)h k (s ). kt (s t , a)p(s |s t , a)h kt (s )s p(s |s t , a t )h kt (s )

	P Let's consider the stochastic process   T t=1 r t (s t , a t ) ≤ T t=1 a∈As t π kt (a|s t )r(s t , a) -r max 4T ln T =1 δ 16T 2 = 1 -π 2 δ 96 ≥ 1 -δ 6 ∀T ≥ 1, T t=1 a∈As t π kt (a|s t )r(s t , a) -2r max T ln 4T δ   ≤ δ 4T T t=1 X t ≥ 2Λ T ln 6T δ ≤ δ 36T 2 . We then notice that T t=1 X t = α k T k=1 s,a,s k T k=1 s,a,s We proceed similarly with the stochastic process X t := X P a,s	2	≤ 4T δ	δ 16T 2 . (A.6) . (A.7)

T t=1 r t (s t , a t ) ≥ t := α a,s π s p kt (s |s t , a t )h kt (s ) = α a,s π ν ν π

In this thesis, a compact set always refer to the compact subset of a metric space.

We break ties arbitrarily when several greedy decision rules exist. It is always possible to choose d ∈ D MD but for the sake of generality, we allow any greedy randomized decision rule D MR .

Accumulation points are sometimed called "cluster points". Note that for policies with an aperiodic chain, the standard limit exists.

[START_REF] Schweitzer | On undiscounted markovian decision processes with compact action spaces[END_REF] actually proves a more general theorem from which Prop. 2.4 can be deduced.

If the MDP is unichain, then assumption 2 is always satisfied and so Prop. 2.4 holds(Schweitzer, 1985, Theorem 2).

Operator L is not a linear operator (like in linear algebra) but the property that L(v + λe) = Lv + ce for any (λ, v) ∈ R × R S is often called the "linearity" property of L.

The transformation introduced by(Puterman, 1994, Section 

8.5.4) is slightly different as the rewards are all multiplied by α. Therefore, Proposition 8.5.8 of[START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] states that the gain is also multiplied by α i.e., g π α = α • g π . However, it is straightforward to adapt the proof of Proposition 8.5.8 of Puterman (1994) to our case.

This is a well-known property of linear programs.

In the bandit literature,"problem-dependent" bounds are said to be distribution-dependent, as opposed to minimax bounds which are said to be distribution-free[START_REF] Garivier | Explore first, exploit next: The true shape of regret in bandit problems[END_REF].

If the MDPs M1 and M2 both belong to M k but have non constant optimal gains g * M 1 and g* M 2 , it is possible that g * M 1 (s) > g * M 2 (s) while g * M 1 (s ) < g * M 2 (s )for some s = s.

Eq. 2.34 and Eq. 2.35 are equivalent. 

In Alg. 4, we refer to value iteration applied to an extended Bellman operator as "extended" value iteration (EVI) even though this is just a specific instance of value iteration.

One example where tmix is of the same order as D is actually the family of MDPs used by[START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] to prove Prop. 2.12.

19: end for

If UCRLB is given as input an (s, a)-dependent range [rmin(s, a), rmax(s, a)], it is straightforward to adapt Eq. 3.2 and 3.4 in order to take advantage of this additional knowledge.

It is sufficient to find a rmax/t k -approximation of optimization problem (2.35) in order to derive regret guarantees, see Sec.chap:ucrlb:sec:regret.proof.

We recall that the optimal gains of M k α and M k are equal (denoted by g * k ), see Sec. 2.2.

We note that a similar proof is used in Lemma 4.2 of[START_REF] Agrawal | Optimistic posterior sampling for reinforcement learning: worst-case regret bounds[END_REF].

The theorem proved by[START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] is more general but we only need this simplified version for our purpose.

(g * , h * ) is a solution to the Bellman optimality equation of the true MDP M .

In the original version of UCRL2,[START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] forgot to enforce this constrain.

We acknowledge that[START_REF] Dai | Maximum expected hitting cost of a markov decision process and informativeness of rewards[END_REF] independently and simultaneously introduced the same quantity with a different name "maximum expected hitting cost".

We use a tighter bound than Hölder's inequality to upper-bound the sum k T k=1 ∆ p3 k (see Sec.

3.5.3).

In[START_REF] Maillard | How hard is my mdp?" the distributionnorm to the rescue[END_REF], the authors define the "distribution-norm" of an MDP which is related to the variances V p(•|s,a) (h * ).

When D = +∞, there exists at least one state s ∈ S such that Π SD →s = ∅ (see Def. 3.2) and so Λ = +∞. Since the bounds of Thm. 3.4 and 3.5 scale linearly with respectively Λ and √ Λ, they are worthless.

The discount factor γ implicitly defines an "horizon" of order 1 1-γ .

We recall that the problem of weakly-communicating MDPs and misspecified states does not hold in the more restrictive setting of finite horizon (e.g.,[START_REF] Osband | more) efficient reinforcement learning via posterior sampling[END_REF] since exploration is directly tailored to the states that are reachable within the known horizon, or under the assumption of the existence of a recurrent state (e.g.,[START_REF] Gopalan | Thompson sampling for learning parameterized markov decision processes[END_REF]. Therefore, we ignored this part of the literature.

This is the most general category of MDPs that we can define(Puterman, 1994, Section 8.3.1)). It includes all possible MDPs.

The proof of the minimax lower-bound (Prop.

2.12) relies on the construction of an MDP whose travelbudget actually coincides with the bias span (up to a factor 2), thus leaving the open question whether the "actual" lower-bound depends on Λ or the bias span (or an even tighter quantity).

For example, the extended MDPs that we have considered so far contain multi-chain MDPs.

If the MDP is weakly-communicating, the optimal gain is even state-independent as shown in Prop. 2.4 which is why (2.34) is well-posed.

Making the problem well-posed would require to fix a "reference" state or a distribution over states.

We recall that the word "linear" is an abuse of terminology and does not refer to the same property as in linear algebra (see Prop. 2.5).

When there are multiple greedy and anti-greedy actions, Alg. 8 break ties arbitrarily.

It is immediate to see that Br(s, a) ⊆ Br(s, a), hence the name "augmentation".

This optimization problem is a specific instance of (5.3) in Sec. 5.2 with M ← M k .

Notice that given that β sas p,k ≥ η k for all (s, a, s ) ∈ S × A × S, the assumptions of Def. 5.5 hold.

In that case, setting b k (s, a) = rmaxβ sa k (see Eq. 5.23) would be enough.

The starting state, the terminal condition and the policy all depend exclusively on the current state.

In comparison, an MDP is usually described as a 4-tuple, see Sec. 2.1.1.

As in the MDP case (see Sec. 2.1.1), we will slightly abuse notation and denote by S × A the set of "admissible" state-action pairs i.e., the set {(s, a) : s ∈ S, a ∈ As}.

We denote by N * the set of strictly positive integers.

We denote by R + and R + * the set of nonnegative and strictly positive reals respectively.

The total duration Tn after n decision steps is a random variable that depends on the algorithm A just

In Eq. 6.24, c = α max p∈Bp(s,a) {p v} -v(s) .

This assumption is always satisfied as soon as there exists r ∈ B k r (s, a) and τ ∈ B k τ (s, a) such that r ≤ rmaxτ . With high probability, B k r (s, a) and B k τ (s, a) contain the true expectated values r(s, a) and τ (s, a), and r(s, a) ≤ rmaxτ (s, a) by assumption.

The main term of the regret comes from the uncertainty in the environment dynamics

FSUCRL is somehow a "parameter-Free" version of SUCRL (hence the acronym).

Unlike in SUCRL and UCRLB, π k is chosen deterministic so that Prop. 6.7 applies.

The inequality obtained is somehow tight since when p k (•|s, a) is uniform on its support, it becomes an equality.

The triangle inequality for the span is proved in[START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF], Section 6.6.1).
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Chapter 6. Hierarchical exploration-exploitations with options the MDP case the optimal expected value function after T time steps v * T (see Sec. 2.1.2) is at most sp (h * )-far from T g * and it makes sense to substitute v * T by T g * in the definition of the regret. In the SMDP case, v * n is at most sp (h * )-far from E π * n [T n ] • g * where π * n is the optimal (non-stationary) policy after n decision steps (note that E π * n [T n ] = E A [T n ] in general). However, the distance between v * n and T n • g * is not bounded since the (random) holding times are potentially unbounded . To justify our definition, we first notice that in the specific case where the SMDP is an MDP, τ i = 1 for all i ≥ 1 (i.e., actions always terminate in one step) implying that T n and n coincides, and Def. 6.4 reduces to the standard MDP regret. This is also true if we replace T n by E π * n [T n ] in Eq. 6. [START_REF] Ortner | Regret Bounds for Reinforcement Learning via Markov Chain Concentration[END_REF]. But in addition to being consistent with Def.2.5 when all options are primitive actions, Def. 6.4 also satisfies the compatibility condition of Lem. 6.2.

Let M be an MDP, O a set of options satisfying both Asm. 6.1 and 6.2 and M O the corresponding SMDP (Prop. 6.3). For any state distribution µ 1 ∈ P(S O ), any learning algorithm A on M O , and any number of decision steps n we have

(6.17) Lemma 6.2

Proof. The proof is straightforward (Fruit and Lazaric, 2017, Lemma 2).

Since a learning algorithm is nothing more than a policy, any SMDP-learning algorithm

A O applied to M O can be interpreted as a learning algorithm A on M so that at each time step t, A selects an action available in M based on the policy associated to the option started at decision step N t (see Sec. 6.2.4). In Lem. 6.2, we used the same notation for both A O and A for simplicity. In view of Eq. 6.17, whenever g * M = g * M O the two notions of regret for MDP with options and induced SMDP match. Moreover, as a direct consequence of Cor. 6.1, g * M ≥ g * M O and the equality holds if and only if there exists a policy over options that yields an optimal long-term average reward in M . A trivial example where g * M = g * M O is when A ⊆ O though in general, the introduction of options usually constrains the space of policies that can be expressed in M . The additional term T n • g * M -g * M O in Eq. 6.17 corresponds to an unavoidable approximation error . This is similar to supervised learning where the true function being learned may not belong to the class considered. In the rest of this chapter, we will be focusing on minimizing the regret ∆(M O , A, µ 1 , n) which is the only part that can actually be controlled. [START_REF] Brunskill | PAC-inspired Option Discovery in Lifelong Reinforcement Learning[END_REF] followed a similar approach but in the discounted setting: instead of directly analyzing the learning performance of an MDP with options, they analyzed the learning performance of the corresponding SMDP. Because of the discount factor, the criterion they used is not the regret but the sample complexity (). They also provide a definition of sample complexity for an SMDP (analogue of Def. 6.4 for the sample complexity). Unfortunately, we show in App. D.2 that unlike what the authors claim, the SMDP sample complexity bound cannot be immediately translated into a sample complexity in the origilike n i=1 ri. One idea is to replace Tn by its expectation under algorithm A (interpreted as a non-stationary policy) or under an optimal (possibly non-stationary) policy.

we need to assume that r -≤ r max τ + . 8

The pair (r , τ ) ∈ [r -, r + ] × [τ -, τ + ] defined as follows is a solution to (6.25):

] such that r ≤ r max τ and so we can restrict attention to [r -, min{r + , r max τ + }]. Note that r belongs to this interval by definition.

For any fixed r ∈ [r -, min{r + , r max τ + }], consider the problem

If r + c > 0, the maximizer τ (r) of (6.26) is given by τ

if we show that r is an optimal value for r in (6.25) then τ = τ (r ) is an optimal value for τ .

Consider the function f c : r → r+c τ (r) . By construction, any maximizer of f c gives an optimal value for r in (6.25). Plugging the expression of τ * (r) we obtain:

is increasing on every separate interval and so f c is also "globally increasing" (by continuity), implying that the maximum of f c is reached for r = min{r + , r max τ + }. If c > 0, then necessarily c < r max τ -since τ -> 0, and f c is increasing for r ≤ r max τ -and decreasing for r ≥ r max τ -. As a consequence, if r -≤ r max τ - then the maximizer of f c is r = min r + , r max τ -, otherwise it is r = r -. This concludes the proof.

Using Lem. 6.3, it is very easy to compute L eq k v (see Eq. 6.24). Moreover, r k and τ k can only take finitely many possible values (the set of possible values does not depend on v). Therefore, M eq k can be expressed as a discrete MDP just like the extended MDP used in UCRL2. In addition, M k is communicating (same argument as in Sec. 3.1.2) and so is M eq k (the transformation preserves the chain structure) implying existence of a solution to the Bellman optimality equation and convergence of (extended) value iteration in M eq k (Prop. an appropriate choice of m for which learning with options becomes significantly better than learning with primitive actions.

In Fig. 6.5 we plot the ratio between the regrets of SUCRL/FSUCRL and the regret of UCRLB, as t max = m varies and d = 20. The value of T n is fixed and chosen big enough for all d. The versions of SUCRL appearing on the plot differ in the amount of prior knowledge given to the algorithm to construct the parameters σ R and σ τ that are used in building the confidence intervals (see table 6.1). Unlike FSUCRL which is "parameter-free", SUCRL is highly sensitive to the prior knowledge about options and in theory, could perform even worse than UCRL2. The ratio R(n) decreases as m increases showing that temporal abstraction improves as t max increases. This behaviour matches the theoretical predictions.

Discussion. Despite its simplicity, the most interesting aspect of this example is that the improvement on the regret is not obtained by trivially reducing the number of state-action pairs, but it is intrinsic in the way options change the dynamics of the exploration process.

A Appendix of Chapter 3

A.1 Bias and travel-budget

5). So by induction we have

As shown in Prop. 2.1, for any vector v ∈ R S ,

Note that the maximum in (A.1) is over all history-dependent randomized policies.

Fix an arbitrary state s = s and define the policy π ∈ Π HR that executes an arbitrary stationary randomized policy π ∈ Π SD as long as t < τ (s ) and a greedy policy

We denote by n ∧ (τ (s ) -1) := min{n, τ (s ) -1} the minimum between n and τ (s ) -1. Due to Eq. A.1 we have:

The fact that we can change π into π in the first expectation is because the MRP has the same distribution under π and π for t < τ (s ) by definition. We now analyze the second term in (A.2). Due to the Markov property, what happens for t ≥ τ (s ) depends only on s τ (s ) = s and π * , and not on the states, actions and rewards observed before τ (s ). Mathematically,

Note that it is possible to condition on τ (s ) since τ (s ) is a stopping time and so the sigmaalgebra at stopping time τ (s ) is well-defined. Since L n h * = h * + ng * e for all n ≥ 1, we have (a.s.)

Combining these last two equalities and using the law of total expectation, we can write:

We notice that n -τ (s ) + 1 • 1 {τ (s ) ≤ n + 1} = n -n ∧ (τ (s ) -1) and so (A.4) becomes:

→s then τ (s ) is a.s. finite by definition i.e., P π (τ (s ) < +∞) = 1. As a consequence,

Finally, the term

r t -g * s 1 = s as n tends to infinity. We conclude the proof by taking n → +∞ in (A.5).

A.2 Concentration bounds using a martingale argument

For any t ≥ 0, the σ-algebra induced by the past history of state-action pairs and rewards up to time t (included) is denoted F t = σ(s 1 , a 1 , r 1 , . . . , s t , a t , r t , s t+1 ) where by convention

Trivially, for all t ≥ 0, F t ⊆ F t+1 and the filtration (F t ) t≥0 is denoted by F. We recall that k t is the integer-valued r.v. indexing the current episode at time t (3.12). It is immediate from the termination condition of episodes that for all t ≥ 1, k t is F t-1 -measurable i.e., the past sequence (s 1 , a 1 , r 1 , . . . , s t-1 , a t-1 , r t-1 , s t ) fully determines the ongoing episode at time t. As a consequence, the stationary (randomized) policy π kt executed at time t is also

where the first inequality follows from the induction hypothesis and the second inequality follows from the inequality for n = 2 that we proved. This concludes the proof.

For the sake of clarity we will now use the notation p k (s |s) := a∈As π k (a|s)p k (s |s, a) for every s, s ∈ S and every k ≥ 1. Using Prop. A.1 we have that

After applying Freedman's inequality (Prop. 3.9) to the MDS (X t , F t ) t≥1 we obtain that with probability at least 1 -δ 12 , for all T ≥ 1:

As we did before, we can do exactly the same analysis with p k replaced by p so that with probability at least 1 -δ 12 , for all T ≥ 1:

with the notation p k (s |s) := a∈As π k (a|s)p(s |s, a) for every s, s ∈ S and k ≥ 1. To conclude the proof of Lem. 3.7 we take a union bound.

A.2.3 Proofs of Lem. 3.3 and 3.10

Let's consider the stochastic process

Once action a t ∼ π kt (a|s t ) has been sampled, the next state is sampled according to the distribution s t+1 ∼ p(•|s t , a). Thus, E [X t |F t-1 ] = 0 and |X t | ≤ 2α w kt ∞ ≤ Λ. Using Azuma's inequality (Prop. 3.7):

A.3. Proofs of and we conclude the proof of Lem. 3.3 as usual (see previous sections).

The conditional variance can be written as

Using Freedman's inequality we have that with probability at least 1 -δ 6 :

which concludes the proof of Lem. 3.10.

A.2.4 Proofs of Lem. 3.9

Let's now consider the stochastic process

. Applying Azuma's inequality (Prop. 3.7), we have that with probability at least 1 -δ 6 , for all T ≥ 1:

A 

Note that the observed next states s ∈ S k (s, a) necessarily satisfy p(s |s, a) > 0 and so , a). This concludes the proof of Lem. 3.5.

B Appendix of Chap. 4 B.1 Number of episodes

The stopping condition of episodes used by TUCRL (4.11) combines the original stopping condition of UCRLB with the condition s t+1 ∈ S T kt . Using only the fact that ν k (s, a) ≥ N k (s, a) for at least one pair (s, a), Jaksch et al. (2010, Proposition 18) proved that for T ≥ SA, the number of episodes is bounded by log 2 8T SA (Prop. 3.8). The total number of episodes in TUCRL can be bounded by the same quantity (with S replaced by S C since no sate in S T is ever visited) plus the number of times the event s t+1 ∈ S T kt occurs. Since whenever s t+1 ∈ S T kt state s t+1 is removed from S T kt+1 and s t+1 necessarily belongs to S C (by definition), this event can happen at most S C times. We thus have:

B.2 Proof of Thm. 4.2

We prove the following lemma used in the proof of Thm. 4.2.

For all x ∈]0, 1/10], we have (1 -x) 1/x ≥ 1/3.

Lemma B.1

Proof. It is easy to verify that the derivative of x -→ (1 -x) 1/x is:

x is negative on ]0, 1/10] implying that x -→ (1 -x) 1/x is decreasing. As a result: ∀x ∈]0, 1/10], (1 -x) 1/x ≥ 0.9 10 > 1/3. If sp (v) > c then for all s ∈ S such that v(s) > min x v(x) + c we have u(s) = min x v(x) + c (there exists at least one such state since sp (v) > c) while for all other states we have u(s) = v(s) (there also exists at least one such state). This implies that max{v -Γ c v} = max x v(x) -min x v(x) -c = sp (v) -c and min{v -Γ c v} = 0. As a result, we also have

For any vector z ∈ B c i.e., such that sp (z) ≤ c, by reverse triangle inequality 1 we have that:

which concludes the proof.

C.2 Aperiodicity transformation (proof of Lem. 5.3)

We prove a slightly more general result.

Theorem C.1

Let P be any stochastic matrix and H P its associated deviation matrix i.e., the Drazin inverse of I -P : H P := (I -P + P * ) -1 (I -P * ) (see Sec. 2.2). For any 0 ≤ α < 1 we denote by P α := (1 -α)P + αI the aperiodic transform of P with parameter α. The deviation matrix of P α can be expressed as H Pα = 1/(1 -α)H P .

Proof. Let A be a square matrix and assume there exists a matrix A # that satisfies the following properties:

then A # is the Drazin inverse of A. We know from App. A of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] that these properties hold for A = P and A # = H P . By definition: I -P α = (1 -α)P + αI -I = (1 -α)(I -P ). Based on this result and using the properties of P and H P , we can derive the same relations for P α and H Pα : 

C.3 Operator of SCAL * (proof of Lem. 5.13)

We start the proof of Lem. 5.13 with a simple definition.

Let B ⊆ ∆ S be a non-empty compact convex subset of the probability simplex, q ∈ B a probability vector in B and β ≥ 0 a positive scalar. For all vectors v ∈ R S we define

Definition C.1

Since q ∈ B and β ≥ 0 by assumption, q ∈ B q β (v) for all v ∈ R S and so B q β (v) is never empty.

For any vector v ∈ R S , we define p v ∈ arg max p∈B q β (v) p v (we drop the dependency in β and q for simplicity) and

The following lemma provides a sufficient condition for the equality to hold.

C.3. Operator of scal * (proof of Lem. 5.13)

Lemma C.1

Proof. We define the function f :

Since p v achieves the maximum value of p v for all p ∈ B q β (v), this contradicts the assumption that

Thanks to Lem. C.1, we know that whenever the constraint p v ≤ q v + β is strict, the maximum of p v over B q β (v) matches the maximum over B. We deduce the following lemma.

If u, v ∈ R S and v ≤ u then max

Lemma C.2

Proof. We distinguish two possible cases:

1. If p u u < q u + β: From Lem. C.1, we have that

The first inequality follows from the fact that p u is the argmax over all p ∈ B and p v ∈ B, while the second inequality follows from the fact that u ≥ v (by assumption).

2. If p u u = q u + β:

where the first inequality follows from the assumption u ≥ v and the second inequality is a consequence of the fact that p v ∈ B q β (v) by definition.

If we take B ← B k p (s, a), q ← p k (•|s, a) and β ← cβ sa k all the requirements of Def. C.1 are satisfied and all the above lemmas hold with a, v). Given the definition of L k (see Eq. 5.34), it is immediate to see that the monotonicity of L k is a direct consequence of Lem. C.2. The linearity simply follows from the fact that p (v +λe) = p v +λe for all p ∈ ∆ S and λ ∈ R. To prove the non-expansiveness of L k , we denote v(s + ) -u(s

where the implication is a direct application of the monotonicity and linearity of L k . It follows that: 

C.4 Perturbation of SCAL * operator (proof of Lem. 5.14)

We use the same notations as in App. C.3 above.

To prove that L k is a (1 -η k )-contraction we first prove the following lemma.

For all u, v ∈ R S there exists p u,v ∈ B such that

Lemma C.3

Proof. We distinguish between two cases:

where the inequality holds because p v ∈ B q β (v). Since q ∈ B, we can take p u,v ← q.

Just like Lem. C.2, Lem. C.3 can be applied to operators L k and L k . In the case of L k , B = B k p (s, a) ⊆ {p ∈ ∆ S : p(s) ≥ η} where s ∈ S is an arbitrary reference state and η > 0. We then use similar arguments as Puterman (1994, Theorem 6.6.6). Let's denote L k by L (for the sake of clarity) and Lv(s + ) -Lu(s + ) := max s∈S {Lv(s) -Lu(s)} and Lv(s -) -Lu(s -) := min s∈S {Lv(s) -Lu(s)}. Applying Lem. C.2, we obtain that

C.4. Perturbation of scal * operator (proof of Lem. 5.14) where p + u,v , p - v,u ∈ B and in particular p + u,v (s), p - v,u (s) ≥ η. More generally, for any s ∈ S, we can bound Lv(s) -Lu(s) using corresponding vectors p s u,v and p s v,u . If we concatenate all the S probability vectors, we obtain two transition matrices P u,v and P v,u . Like in the proof of Theorem 6.6.6 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] we have

The last inequality follows from Proposition 6.6.1 of [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] and the fact that

To quantify the impact of the perturbation, we rely on the proof of Lem. 5.10 (Fruit et al., 2018b, Lemma 19, Appendix E). We denote by p v ∈ arg max p∈ B q β (v) p v and p v ∈ arg max p∈ B p v (a tilde indicates an η-perturbation). We bound the difference p v v -p v v (the opposite can be bounded in the same way).

where the last inequality is proved in (Fruit et al., 2018b, Lemma 19, Appendix E).

If p

where the last inequality follows from the fact that q is an 1 -projection of q onto B (see Sec. 5.8).

• r(s 1 |s 0 , a 0 ) = r(s 2 |s 1 , a 1 ) = r(s 3 |s 2 , a 2 ) = r(s 4 |s 3 , a 3 ) = r(s 4 |s 4 , a 4 ) = 0,

• r(s 4 |s 3 , a 3 * ) = 1.

We define policy π ∈ Π SD by: π(s 3 ) = a 3 (we don't need to specify the actions taken in other states since there is only one possible action in those states). The optimal policy is such that: π * (s 3 ) = a 3 * . Trivially we have:

In other words, π is -optimal in s 0 but not in s 3 .

Let's define two options, o and o * , by:

If we denote by M O the SMDP formed by M and the set of options O = {o, o * , a 4 }, we have that v * O = v * γ (O is an optimal set of options). Suppose we execute a SMDP-learning algorithm A (e.g. SMDP-RMAX) which starts in s 0 . The SMDP-sample complexity is always 0 because both o and o * are -optimal in s 0 , and a 4 is optimal in s 4 . However, the MDP-sample complexity of A is at least equal to 1 if option o is taken (and equals 0 when o * is chosen instead). There is no reason that the algorithm should select o * rather than o (the SMDP is initially unknown). So we can not guarantee that the event {o is taken in s 0 } will happen with probability lower than δ. In this example, the SMDP-sample complexity is not upper bounding the MDP-sample complexity (not even with high probability).

It is true that γ is usually close to one (e.g. γ = 0.9) and thus, in the previous example, cannot be too small ( > γ 3 0.73). But it is possible to consider longer options in a bigger MDP and apply the same kind of reasoning. We would then obtain ≥ γ k with γ k sufficiently small when k is sufficiently big.

One might argue that our example is not relevant since the cumulative reward does not increase after s 4 is reached (i.e. after step t = 4) because we have an absorbing state. But it is possible to make some minor changes and assume for example that action a 4 leads back to state s 0 instead of looping on state s 4 . We would then need to choose 1 ≥ > γ 3 1 -γ 5 , or more generally 1 ≥ > γ k 1 -γ k+2 with a longer chain, because in that case: 

The SMDP-sample complexity is again 0 because in s 0 the algorithm is necessarily -optimal since 0 > v * γ (s 0 ) -. But the MDP sample complexity is at least 1 if A 0 (s 0 ) = o. The same holds as long as o is chosen at least once in s 0 (not necessarily at t 0 = 0). Indeed, at the iteration where o is chosen in s 0 , the value function in s k is upper bounded by

D.2.2 Counter-example 2

In Example 1, we had deterministic transitions. We now consider the case where the transitions are random. To simplify the calculations, we assume that γ = 1. The graph of the MDP is represented on Figure D.2. In this example we have: S = {s 0 , s 1 , s 2 , s 3 } and

We define p as follows:

• action a 0 : p(s 1 |s 0 , a 0 ) = 1/3, p(s 2 |s 0 , a 0 ) = 2/3,

We define r as follows:

Note that in this example all rewards depend only on the initial and final state of the transitions (it does not depend on the action taken). There are four deterministic policies:

• policy π 1 : π 1 (s 0 ) = a 0 , π 1 (s 1 ) = a 1 ,

• policy π 2 : π 2 (s 0 ) = a * 0 , π 2 (s 1 ) = a * 1 ,

• policy π 3 : π 3 (s 0 ) = a * 0 , π 3 (s 1 ) = a 1 ,

• policy π 4 : π 4 (s 0 ) = a 0 , π 4 (s 1 ) = a * 1 .

The value functions associated to these policies are:

We deduce that:

γ (s 0 ) -and v π 1 γ (s 1 ) ≤ v * γ (s 1 ) -. In other words, π 1 is -optimal in s 0 but not in s 1 . If we denote by M O the SMDP formed by M and the set of options O = {o, o * , a 2 , a 3 }, we have that v * O = v * γ (O is an optimal set of options). Suppose we execute a SMDP-learning algorithm A which starts in s 0 . The SMDP-sample complexity is always 0 because both o and o * are -optimal in s 0 , and a 2 and a 3 are optimal in s 2 and s 3 respectively. However, the MDP-sample complexity of A is equal to 1 when option o is taken and s 1 is reached (when option o is chosen in s 0 , s 1 is reached with probability 1/3). There is no reason that the algorithm should select o * rather than o (the SMDP is initially unknown). So we can not guarantee that o will be chosen with probability lower than δ. So the expected MDP-sample complexity will be (strictly) positive. In this example, the SMDP-sample complexity is not upper bounding the MDP-sample complexity.

It should be possible to change Example 2 as we did with Example 1 to make sure that the cumulated reward keeps increasing (i.e. delete all absorbing states), but this is likely to require tedious calculations. The purpose of this example was only to show that the MDPsample complexity can be higher than its SMDP analogue for other reasons than the presence of a discounting factor (namely, the presence of random transitions).

D.2.3 Conclusion

In the previous examples we have shown that in an MDP with options, the SMDP-sample complexity does not upper-bound the MDP-sample complexity in general, even when the set of option is optimal. It is not difficult to show that the opposite is also true: the MDPsample complexity does not upper-bound the SMDP-sample complexity. Thus, without any additional assumptions on the options and/or the algorithm, it is not possible to use the SMDP-sample complexity to prove that options can be beneficial to learn a MDP.