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Abbreviation List 

 

[]D   specific rotation at wavelength of sodium D line 

Å   Ångström 

AAA   asymmetric allylic alkylation 

Ac   acetyl 

acac   acetylacetonate 
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ATR   attenuated total reflectance 

BINAP 2,2’-bis(diphenylphosphino)-1,1’-binaphthlene 

BINOL  1,1’-bi-2-naphthol 
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d   doublet 

dba   dibenzylideneacetone 
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ND   non-determined 
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NOESY  nuclear Overhauser effect spectroscopy 
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Ph   phenyl 

PHANEPHOS  4,12-bis(diphenylphosphino)-[2,2]-paracyclophane 

PHOX   phosphinoxazoline 

pKa   pK for association of an acid 

PPY   4-pyrrolidinopyridine 

PTC   phase-transfer catalysis 

q   quadruplet 

R   non-defined group or alkyl 

rac   racemic 

Rf   retention factor 

rt   room temperature 

s   singlet 

sc   super critic 
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SEGPHOS  5,5’-bis(diphenylphosphino)-4,4’-bi-1,3-benzodioxole 

SFC   supercritical fluid chromatography 

SN2   second-order nucleophilic substitution 

T   temperature 

t   tert or triplet 

t-Bu   tert-butyl 

Tipp   1-(2,4,6-triisopropyl)phenyl 

Tf   triflate 

TFA   trifluoroacetic acid 

THF   tetrahydrofuran 

TLC   thin layer chromatography 

TMEDA  N,N,N’,N’-tetramethylethylenediamine 

TMS   trimethylsilyl 

tR   retention time 

TRAP   2,2’’-bis[1-(diphenylphosphino)ethyl]-1,1’-biferrocene 
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TS   transition state 
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Introduction Générale 

 

 Le développement de méthodes catalytiques énantiosélectives permettant la synthèse 

des produits naturels ou pharmaceutiques, possédant un ou plusieurs centres quaternaires, 

représente un objectif majeur dans le domaine de la synthèse organique. Dans ce contexte, 

l’alkylation allylique asymétrique décarboxylante pallado-catalysée est apparue comme l’une 

des méthodes les plus efficaces pour former des centres stéréogènes quaternaires. L’intérêt 

d’utiliser l’allylation asymétrique catalysée au palladium comme étape clé pour la formation 

de la liaison CC dans la synthèse de molécules structurellement complexes a été largement 

démontré depuis sa mise au point. Cette réaction tolère une large gamme de groupes 

fonctionnels et permet d’accéder à des produits hautement énantioenrichis. 
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Le premier chapitre de cette thèse est consacré à l’application de la réaction 

d’alkylation allylique asymétrique décarboxylante catalysée au palladium à une large gamme 

d’énols carbonates allyliques cycliques et exocycliques, permettant d’accéder à des 

-butyrolactones énantioenrichies possédant un centre stéréogénique quaternaire en position  

(Schéma I). La présence du motif -butyrolactones dans de nombreux produits bioactifs 

explique l’intérêt croissant des chimistes pour réaliser la synthèse de ces motifs de manière 

simple et efficace. Ces lactones chirales possédant un centre quaternaire ont été reconnues 

comme briques moléculaires extrêmement flexibles qui peuvent être transformées en motifs 

structurellement plus complexes particulièrement utiles en synthèse totale de produits 

naturels. 

 

 

 

Schéma I. L’application de la Pd-DAAA aux énols carbonates allyliques cycliques et 

exocycliques. 

 

 Le second chapitre est dévolu à la synthèse asymétrique des isoxazolidin-5-ones 

possédant un centre quaternaire en position  à travers une réaction d’alkylation allylique 

asymétrique pallado-catalysée. Cette méthode nous a permis d’accéder à des acides 

2,2-aminés après coupure réductrice de la liaison NO (Schéma II). Malgré le nombre de 

méthodes qui ont été développées pour la synthèse asymétrique de précurseurs d’acides 

aminés, une stratégie plus générale permettant de préparer de tels motifs de manière 

catalytique et énantiosélective représente encore aujourd’hui un défi. Dans ce contexte, 

l’allylation asymétrique catalysée au palladium des isoxazolidin-5-ones substituées en 

position 4 est apparue comme une méthode particulièrement intéressante pour répondre à ce 

défi. Elle permet notamment d’accéder à des précurseurs d’acides aminés dans des conditions 

douces et opérationnellement simple. 
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Schéma II. Synthèse d’acides 2,2-aminés en utilisant la Pd-AAA comme étape clé. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapitre 1 

 

Synthèse de -butyrolactones -quaternaires par alkylation 

allylique asymétrique décarboxylante pallado-catalysée 

 

1. Principales méthodes de synthèse des -butyrolactones possédant un 

centre quaternaire en  

 

Les lactones sont considérées comme une classe importante de produits naturels en 

raison d’une vaste gamme d’activités biologiques présentées par ces composés. C’est aussi 
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que les -butyrolactones représentent environ 10% de tous les produits naturels décrits dans la 

littérature.1 Parmi eux, on trouve aussi un grand nombre de -butyrolactones possédant un 

centre stéréogène quaternaire en . Ce motif par exemple a été identifié dans le 

(+)-hopeahainol A (Figure 1), qui possède une activité inhibitrice de l’acétylcholinestérase, 

une enzyme liée à la maladie d’Alzheimer.10 Un autre exemple de -butyrolactone bioactive 

possédant un centre stéréogène quaternaire en  est le rosmanol (Figure 1), qui a montré un 

effet cytotoxique remarquable.11 Un grand nombre de composés synthétiques ont également 

été identifiés comme ayant des activités biologiques intéressantes. L’évaluation de deux 

énantiomères de L.1 a par exemple montré que ces composés exerçaient un effet à la fois 

inhibiteur et stimulant sur le récepteur GABAA (acide -aminobutyrique A) selon 

l’énantiomère (Figure 1).12 

 

 

 

Figure 1. Structures du (+)-hopeahainol A, du rosmanol et du GBL. 

 

 En conséquence, l’intérêt pour le développement de nouvelles méthodes vers la 

construction énantiosélective de -butyrolactones possédant un centre stéréogène quaternaire 

en  s’est trouvé être le centre d’intérêt de plusieurs groupes de recherche dont le nôtre. 

Malgré l’avancement significatif dans le domaine de la synthèse asymétrique, les approches 

catalytiques et énantiosélectives restent relativement limitées. 

 Petersen et Wilent ont décrit l’utilisation d’acides de Brønsted chiraux pour réaliser la 

désymétrisation de différents esters prochiraux. Cette stratégie s’est révélée extrêmement 

efficace pour préparer des -butyrolactones énantioenrichies avec de bons rendements et 

d’excellentes énantiosélectivités (ees supérieurs à 98%) (Schéma 1).23 
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Schéma 1. Désymétrisation des esters prochiraux réalisée par Petersen et Wilent. 

 

 Inspiré par les travaux de Buchwald et al. sur des réactions de couplage-croisé 

asymétrique d’halogénures d’aryle avec différentes cétones, catalysé au palladium, Zhang et 

al. ont étendu la méthode d’-arylation asymétrique aux -méthyl -butyrolactones 

(Schéma 2, éq 1). Ce système catalytique a permis d’obtenir les lactones désirées avec des 

rendements modérés (55-65%) et de faibles énantiosélectivités (ee = 15-65%).33 Surpris par 

les faibles sélectivités obtenues lors de l’-arylation de -butyrolactones, Buchwald et 

Spielvogel ont développé une méthode alternative utilisant une catalyse au nickel (Schéma 2, 

éq 2).34 Le système catalytique Ni/(S)-BINAP a fourni une variété de -butyrolactones 

possédant un centre stéréogène quaternaire en  à partir de précurseurs -substitués et de 

chlorures d’aryle avec d’excellents excès énantiomériques compris entre 83% et 97%. 

 

 

 

Schéma 2. -Arylation de -butyrolactones par couplage-croisé asymétrique catalysé au 

palladium et nickel. 

 

Maruoka et al. ont développé des conditions de transfert de phase permettant 

d’accéder à des -céto esters possédant un centre quaternaire en  en utilisant une nouvelle 
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classe de sels d’ammonium N-spirocycliques. Plus récemment, ces mêmes auteurs ont étendu 

l’utilisation de ces catalyseurs à des -acyle -butyrolactones, donnant un accès direct à un 

certain nombre de -butyrolactones -alkylées chirales L.11 avec de très bons rendements et 

d’excellentes énantiosélectivités (Schéma 3).37 

 

 

 

Schéma 3. Synthèse d’-acyle -alkyle -butyrolactones réalisée par Maruoka et al. 

 

 Une stratégie alternative a été rapportée par Fu et al. Ces auteurs ont réalisé une 

réaction de C-acylation asymétrique directe d’acétals de cétènes silylés organocatalysée 

(Schéma 4). Cette méthode fait intervenir des catalyseurs à chiralité planaire de type 

4-pyrrolidinopyridine (PPY) L.13 et a permis d’ouvrir une voie d’accès aux -butyrolactones 

-acylées possédant un centre stéréogène quaternaire en . 

 

 

 

Schéma 4. C-Acylation asymétrique d’acétals de cétènes silylés réalisée par Fu et al. 

 

2. Alkylation allylique asymétrique décarboxylante pallado-catalysée 

 

L’avènement de l’alkylation allylique asymétrique décarboxylante catalysée par des 

complexes de palladium (Pd-DAAA) a permis de faire un énorme bon en avant dans le 

domaine de la catalyse asymétrique. Cette méthode, à la fois robuste et efficace, a permis le 

contrôle de centres stéréogènes dans la synthèse d’un grand nombre de produits naturels et de 

composés pharmaceutiques. Ce processus énantiosélectif, également connu sous le nom de 
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réaction de Tsuji-Trost, est devenu au cours de ces dernières années un outil très performant 

en raison de sa capacité de coupler des allyles électrophiles avec des nucléophiles de manière 

chimio-, régio- et stéréosélective, dans des conditions douces et neutres.46, 47 

 

3. Contexte de l’étude et objectifs 

 

Comme nous l’avons vu, la synthèse stéréosélective des -butyrolactones possédant un 

centre stéréogène quaternaire en  a entraîné le développement de nouvelles méthodes 

catalytiques et énantiosélectives. Cependant, dans la plupart des cas, les résultats obtenus lors 

de la formation du centre stéréogène quaternaire se sont révélés insatisfaisants. La réaction 

d’alkylation allylique asymétrique décarboxylante catalysée par des complexes de palladium 

nous a paru être une alternative intéressante. 

En effet, précédemment au laboratoire, le contrôle de centres quaternaires 

stéréodefinis a été réalisé en appliquant la Pd-DAAA aux diénols carbonates allyliques L.15. 

Cette réaction a permis d’accéder à des buténolides L.16 énantiomériquement enrichies 

(Schéma 5, éq 1).63 Par analogie, nous avons envisagé d’appliquer cette réaction aux énols 

carbonates d’allyle cycliques et exocycliques, L.17 et L.19 respectivement. Ces derniers 

pourraient subir une allylation asymétrique décarboxylante en présence d’un précurseur de 

palladium et un ligand chiral, et fournir les -butyrolactones correspondantes L.18 et L.20 

possédant un centre quaternaire en position  (Schéma 5, éq 2 et 3). 

 

 

 

Schéma 5. Application de la Pd-DAAA aux énols carbonates allyliques cycliques et 

exocycliques. 
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4. Résultats et discussion 

 

4.1. Synthèse des substrats 

 

Nous avons commencé notre étude en développant deux stratégies générales d’accès 

aux énols carbonates allyliques L.23. Dans un premier temps, les précurseurs portant un 

substituant aryle en  ont été préparés à partir de l’-bromofuranone II.21 grâce à un 

couplage de type Suzuki suivi d’une réaction d’hydrogénation et d’une réaction de 

O-acylation. Les énols carbonates L.23 ont ainsi pu être obtenus avec des rendements qui 

varient entre 10% et 94% (Schéma 6). 

 

 

 

Schéma 6. Synthèse des énols carbonates allyliques -arylés. 

 

 Afin d’apporter plus de diversité structurale, une seconde méthode de synthèse des 

énols carbonates a été envisagée. Celle-ci consiste à former l’enolate de lithium à partir de la 

-butyrolactone L.24 et à effectuer une réaction de substitution nucléophile à l’aide 

d’halogénures d’alkyles afin d’accéder aux lactones -alkylés L.25. Ces dernières ont ensuite 

été transformées en carbonates allyliques en utilisant la méthode décrite dans le Schéma 6 

(NaHMDS, TMEDA, THF, 78 ºC, chloroformate d’allyle) avec des rendements allant de 

33% à 44% (Schéma 7). 

 

 

 

Schéma 7. Synthèse des énols carbonates allyliques -alkylés. 
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4.2. Optimisation des conditions réactionnelles 

 

 Dans le but de valider notre hypothèse devant conduire à des -butyrolactones 

possédant un centre quaternaire en , nous avons testé la réaction Pd-DAAA sur l’énol 

carbonate L.23a. Celui-ci a été mis en réaction avec 5 mol % de Pd2(dba)3.CHCl3 et 

10 mol % d’un ligand chiral (L1-L11, Tableau 1) dans le THF à 0 ºC. Les résultats sont 

résumés dans le Tableau 1. Dans tous les cas, les réactions ont fourni la -butyrolactone 

allylée L.27a avec de bons rendements allant de 83% à 99% (Tableau 1, entrées 1 à 11). 

L’utilisation de diphosphines chirales (Tableau 1, entrées 6 et 11) et des ligands de type 

PHOX (Tableau 1, entrées 4 et 5) a donné les produits désirés avec des excès énantiomériques 

inférieurs à ceux obtenus avec les phosphines chirales L1-L3 développées par Trost et al. 

(Tableau 1, entrées 1-3). Ces dernières se sont révélées particulièrement efficaces. En effet, 

l’utilisation de ligand de Trost (R,R)-DACH phényle (L1) a fourni la butyrolactone L.27a 

avec un rendement de 98% et un excès de 77% (Table 1, entrée 1). 

 

 

 

 

Tableau 1. Influence du ligand. 

 

Entrée Ligand Rdt (%) ee (%) 

1 (R,R)-L1 98 77 

2 (R,R)-L2 85 64 

3 (R,R)-L3 99 55 

4 (S)-L4 83 12 

5 (S)-L5 95 7 

6 (R)-L6 80 10 

7 (R,R)-L7 98 4 

8 (R)-L8 92 -2 

9 (R)-L9 95 -9 

10 (pS,R)-L10 92 0 
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Encouragés par ces résultats préliminaires, nous avons examiné l’influence du solvant. 

Curieusement, lorsque la réaction est réalisée dans l’hexane, le rendement et l’ee de L.27a ont 

diminué de manière très considérable (35% et 29%, respectivement) (Tableau 2, entrée 2). 

L’utilisation d’autres solvants tels que MeCN, toluène, Et2O, AcOMe, DMF et CH2Cl2 a 

conduit à de bonnes conversions mais à des excès faibles (Tableau 1, entrées 3-8). Enfin, la 

réaction effectuée dans le THF à 78 ºC a permis d’améliorer la sélectivité et d’obtenir la 

butyrolactone L.27a avec un ee de 80% (Tableau 1, entrée 9). Le THF a donc été utilisé dans 

la suite de l’étude. 

 

Tableau 2. Influence du solvant. 

 

Entrée Solvant T (ºC) t (h) Rdt (%) ee (%) 
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1 THF 0 3 98 77 

2 Hexane 0 24 35 29 

3 MeCN 0 1 94 56 

4 PhMe 0 3 87 64 

5 Et2O 0 1 97 65 

6 MeOAc 0 3 97 67 

7 DMF 0 3 87 69 

8 CH2Cl2 0 3 72 70 

9 THF 78 ºC 3 89 80 

 

4.3. Généralisation de la réaction 

 

 Après avoir déterminé les conditions optimales d’allylation asymétrique [5 mol % de 

Pd2(dba)3.CHCl3 et 10 mol % du ligand de Trost (L1) dans le THF à 78 ºC], celles-ci ont été 

appliquées aux divers énols carbonates qui ont été synthétisés précédemment (Schéma 8). En 

général, les -butyrolactones ,-disubstituées correspondantes ont été obtenues avec 

d’excellents rendements compris entre 76% et 99% et des énantiosélectivités pouvant 

atteindre 90%. Cependant, les substrats portant un substituant aromatique riche en électron ou 

un groupe alkyle, en particulier, ont été isolés avec des sélectivités inférieures aux substrats 

substitués par un groupement aromatique possédant un effet électronique modéré. 
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Schéma 8. Scope de la réaction avec les énols carbonates allyliques cycliques. 

 

 Afin d’élargir le champ d’application de la réaction, nous l’avons également étendue 

aux énols carbonates d’allyle exocycliques. Ces derniers ont été préparés en deux étapes à 

partir de la -butyrolactone L.24 en réalisant une C-acylation suivie d’une O-acylation 

(Schéma 9). 

 

 

 

Schéma 9. Synthèse des énols carbonates allyliques exocycliques. 

 

 Lors de l’application des conditions optimisées d’allylation décarboxylante, un 

changement drastique de la réactivité a été observé. En effet, ces énols carbonates 

exocycliques semblaient être moins réactifs, ce qui, en toute, n’est pas surprenant vu que lors 

du processus de décarboxylation la charge négative générée est délocalisée sur les deux 

carbonyles. En conséquence, toutes les réactions ont été effectuées à 20 ºC étant donné 
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qu’aucune conversion n’a été observée à 78 ºC. Néanmoins, les -butyrolactones 

,-disubstituées désirées ont été obtenues avec de bons rendements allant de 83% à 98% et 

de bonnes énantiosélectivités (Schéma 10) ; les meilleurs résultats ont été obtenus avec l’énol 

carbonate dérivé de l’-formyle -butyrolactone (ee = 94%). 

 

 

 

Schéma 10. Scope de la réaction avec les énols carbonates allyliques exocycliques. 

 

4.4. Post-fonctionnalisation 

 

Prenant en compte l’importance du motif spirocyclique qui est présent dans un certain 

nombre de produits naturels et pharmaceutiques, nous avons ensuite décidé d’appliquer la 

réaction Pd-DAAA à la synthèse des spirocycles dérivés de -butyrolactones. Notre première 

stratégie fait intervenir une réaction d’allylation asymétrique décarboxylante suivie d’une 

réaction de métathèse cyclisante, ce qui nous a permis d’obtenir la spirolactone désirée L.31 

avec un rendement global de 88% sans érosion de l’ee (Schéma 11, éq 1). La seconde 

stratégie implique une réduction de Luche appliquée à la -butyrolactone ,-disubstituée 

L.30b suivie d’une iodocyclisation. Dans ces conditions, le composé spirocyclique L.33 a été 

obtenu avec un rendement global de 85% et un rapport diastéréomérique de 3,5:1 en faveur de 

l’isomère trans (Schéma 11, éq 2). 
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Schéma 11. Application de la Pd-DAAA à la synthèse des spirocycles. 

 

5. Résumé 

 

 Nous avons développé une méthode extrêmement douce et particulièrement efficace 

d’accès à des -butyrolactones possédant un centre stéréogène quaternaire en  à partir 

d’énols carbonates d’allyle cycliques et exocycliques. Cette réaction a été utilisée comme 

étape clé dans la synthèse des spirolactones chirales. 

 

 

 

 

 

 

 

 

Chapitre 2 
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Alkylation allylique asymétrique pallado-catalysée de 

4-isoxazolidin-5-ones vers la synthèse d’acides 2,2-aminés 

 

1. Principales méthodes de synthèse des précurseurs d’acides 2,2-aminés 

 

La synthèse stéréosélective d’acides aminés est devenue un sujet d’intérêt croissant 

ces dernières années, en raison de l’utilité de ces composés comme précurseurs de protéines, 

de -peptides, et de -lactames ou encore pour réaliser la synthèse de produits naturels, tels 

comme la cryptophycine 1 et le jasplakinolide qui possèdent des propriétés biologiques 

intéressantes (Figure 2). 

 

 

 

Figure 2. Structure de la cryptophycine 1 et du jasplakinolide. 

 

 Vu l’importance des acides -aminés, un certain nombre de méthodes permettant 

d’accéder à ce type de motif ont été décrites dans la littérature. Cependant, parmi toutes ces 

méthodes, seules quelques-unes permettent d’accéder à ces acides aminés possédant un centre 

stéréogène quaternaire en . La première partie de ce chapitre sera donc consacrée à ces 

méthodes. 

 De nombreuses équipes se sont intéressées à la mise au point de réactions d’alkylation 

diastéréosélective d’-cyanoesters racémiques pour accéder à des précurseurs des acides 

2,2-aminés. C’est ainsi que l’introduction diastéréosélective d’une variété de groupements 

alkyles en position  du carbonyle a fourni les produits d’alkylation correspondant avec 

d’excellents rapports diastéréomériques (dr = 98:2) (Schéma 12).101 
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Schéma 12. Synthèse diastéréosélective des précurseurs des acides 2,2-aminés. 

 

 Cependant, l’utilisation d’-cyanoesters comme précurseurs d’acides aminés 

possédant un centre quartenaire  ne se cantonne pas aux approches diastéréosélectives. En 

effet, plusieurs versions catalytiques énantiosélectives ont été mises au point depuis le début 

des années 90.  

L’addition conjuguée d’-cyanoesters -substitués sur des oléfines activées constitue 

une méthode de choix pour la construction des liaisons CC en raison du nombre de 

partenaires commercialement disponibles. 

 La première réaction de Michael catalytique énantiosélective a été décrite par Ito et al. 

en 1992 et permet l’addition conjuguée d’-méthyle -cyanoesters L.36 sur des enones L.37 

avec de bons rendements et d’excellentes énantiosélectivités en utilisant des complexes de 

Rh(I) en présence de la diphosphine chiral TRAP, L.38 (Schéma 13, éq 1).106 Des procédures 

alternatives inspirées par ce travail ont ensuite été rapportées notamment par les équipes de 

Takaya, Nozaki et Motoyama.107, 108 Ces équipes ont étendu cette réaction à la 

méthylevinylecétone et à l’acroléine (Schéma 13, éq 2 et 3, respectivement), conduisant à la 

formation des adduits de Michael correspondants avec de bons rendements, malgré les excès 

énantiomériques modestes. 
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Schéma 13. Addition de Michael d’-méthyle -cyanoesters catalysée au rhodium. 

 

 Malgré les bons résultats obtenus au cours de cette réaction d’addition de Michael 

d’-méthyle -cyanoesters, catalysée au rhodium, celle s’est montrée incapable de fournir 

des niveaux d’énantiosélectivité satisfaisants pour l’addition conjuguée d’-cyanoesters 

possédant des substituants plus encombrants que le méthyle. Par conséquent, Peters et Jautze 

ont décrit l’application d’un système catalytique alternatif basé sur l’utilisation de complexes 

de palladium.112 L’utilisation de complexes bimétalliques capables d’activer simultanément 

l’accepteur du Michael et l’-cyanoénolate s’est révélée particulièrement intéressante pour 

surmonter les limites observées avec la catalyse au rhodium (Schéma 14). 
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Schéma 14. Addition d’-cyanoesters sur vinyles cétones catalysée au palladium. 

 

 Des approches organocatalytiques ont également été mises au point. C’est ainsi qu’en 

2005, un dérivé d’alcaloïde cinchona L.50 a été utilisé comme catalyseur pour réaliser 

l’addition conjuguée asymétrique d’-cyanoesters L.48, structurellement diversifiés, sur 

vinyles sulfones L.49. Les produits d’addition L.51 ont pu être obtenus avec de très bon 

rendements et d’excellentes énantiosélectivités (Schéma 15).114 

 

 

 

Schéma 15. Addition de Michael d’-alkyle cyanoesters sur vinyle sulfones par 

organocatalyse. 

 

2. Alkylation allylique asymétrique pallado-catalysée 

 

La construction énantiosélective de centres tertiaires et quartenaires par addition de 

différents types de nucléophile sur des complexes -allyliques de palladium chiraux 

représente une méthode de choix pour la formation de liaisons CC. Cette approche a été très 

largement utilisée pour la synthèse d’intermédiaires clés dans le cadre de la synthèse de 
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différents produits naturels et autres composés bioactifs. La réaction d’alkylation allylique 

asymétrique catalysée au palladium (Pd-AAA) a permis d’accéder à des structures très variées 

avec de bons rendements et d’excellentes régio- et énantiosélectivités.144, 145 

 

3. Contexte de l’étude et objectifs 

 

Comme nous l’avons déjà souligné, les méthodes asymétriques permettant un accès 

direct aux acides -aminés ont fait l’objet d’efforts considérables par de nombreux groupes de 

recherche dû à l’importance de ce motif. Les acides -aminés sont devenus des précurseurs 

potentiels de -lactames, de -peptides résistants aux protéases et de peptides hybrides de 

type /. Malgré les méthodes établies pour la synthèse d’acides 2- et 3-aminés, le 

développement d’une stratégie plus générale de production énantiosélective d’acides 

2,2-aminés reste un défi. L’alkylation allylique asymétrique catalysée au palladium 

d’isoxazolidin-5-ones substituées en position 4 est apparue comme une approche 

particulièrement intéressante pour résoudre ce problème. 

En effet, suite aux résultats préliminaires que nous avions obtenu sur la Pd-AAA de 

-butyrolactones (Chapitre 1, Section 4.9), nous avons envisagé une approche basée sur une 

réaction d’alkylation allylique énantiosélective pallado-catalysée d’isoxazolidin-5-ones L.52. 

Cette stratégie devait nous permettre d’accéder aux acides 2,2-aminés souhaités L.54 après 

une coupure réductrice de la liaison NO (Schéma 16). 

 

 

 

Schéma 16. Synthèse d’acides 2,2-aminés en utilisant la Pd-AAA comme étape clé. 

 

 

 

 

 

 

 



 

 
 

37 

4. Résultats et discussion 

 

4.1. Synthèse des substrats 

 

Cette étude a débuté par le développement de deux stratégies générales de préparation 

des isoxazolidin-5-ones substituées en position 4. Les isoxazolidinones -arylées ont été 

synthétisées à partir du malonate de diéthyle grâce à une séquence réactionnelle comprenant 

l’introduction du groupement aromatique par une réaction de couplage-croisé, saponification, 

une étape de formation de l’acide de Meldrum correspondant et une cycloaddition formelle 

[3+2] (Schéma 17).120-124 

 

 

 

Schéma 17. Synthèse des isoxazolidinones -arylées. 

 

 Les substrats portant un substituant alkyle ont été synthétisés en suivant le protocole 

développé par Rachamary et al. Dans cette approche, une réaction de condensation de 

Knoevenagel entre l’acide de Meldrum et des aldéhydes permet de former les produits 

d’homologation qui ont ensuite été réduits par l’ester de Hantzsch pour produire les acides de 

Meldrum alkylés correspondants. Ces derniers ont ensuite été engagés dans une réaction de 

cycloaddition [3+2] pour donner les isoxazolidinones désirées avec de bons rendements 

(Schéma 18). 

 

 

 

Schéma 18. Synthèse des isoxazolidinones -alkylées. 

4.2. Optimisation de conditions réactionnelles 
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Nous avons décidé d’évaluer dans un premier temps l’influence du ligand sur 

l’allylation asymétrique de l’isoxazolidin-5-one L.52a. Les réactions ont été menées dans le 

THF à température ambiante en présence de 5 mol % de Pd2(dba)3, 2 équivalents de Na2CO3, 

1 équivalent d’acétate d’allyle et 10 mol % d’un ligand chiral. Les résultats sont résumés dans 

le Tableau 3. Le produit désiré L.57a a été obtenu avec de bons rendements allant de 85% à 

95%, indépendamment du ligand utilisé. Cependant, comme nous avons pu le voir dans notre 

étude précédente, la nature du ligand a un impact important sur la énantiosélectivité et, encore 

une fois, les diphosphines développées par Trost et al. (L1-L3) ont fourni les excès 

énantiomériques les plus élevés allant jusqu’à 90%, les meilleurs résultats étant obtenus avec 

L1 (Tableau 3, entrée 1). 

Suite à ces résultats, nous avons évalué l’influence de la base, mais aucune influence 

significative n’a pu être observée puisque les excès énantiomériques sont tous compris entre 

80% et 90% (Tableau 3, entrées 8-12). Néanmoins, alors que la plupart des bases ont donné le 

produit allylé avec de bons rendements (83-95%), l’utilisation de DBU a eu un impact négatif 

sur le rendement en L.57a (14%) (Tableau 3, entrée 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tableau 3. Influence du ligand et de la base. 
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Entrée Ligand Base Rdt (%) ee (%) 

1 (R,R)-L1 Na2CO3 95 90 

2 (R,R)-L2 Na2CO3 81 82 

3 (R,R)-L3 Na2CO3 93 26 

4 (S)-L4 Na2CO3 92 4 

5 (R)-L5 Na2CO3 94 22 

6 (S,R,R)-L6 Na2CO3 85 8 

7 (S)-L7 Na2CO3 90 3 

8 (R,R)-L1 Li2CO3 90 87 

9 (R,R)-L1 K2CO3 83 82 

10 (R,R)-L1 NaH 96 87 

11 (R,R)-L1 BSA 85 80 

12 (R,R)-L1 DBU 14 86 

 

 

 

 

 

 

 

 Nous avons également étudié l’effet du solvant sur l’énantiosélectivité. En général, les 

solvants éthérés comme le THF (Tableau 4, entrée 1), le MTBE (Tableau 4, entrée 5) et le 
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1,4-dioxane (Tableau 4, entrée 6) ou encore un solvant plus polaire telle que la NMP 

(Tableau 4, entrée 4) ont donné les meilleures énantiosélectivités (ee = 82-90%). Les solvants 

tels que le toluène (Tableau 4, entrée 2) et le MeCN (Tableau 4, entrée 3) ont donné le produit 

allylé avec des rendements quasiment quantitatifs, mais avec des énantiosélectivités beaucoup 

plus faibles (66% et 42% respectivement). Finalement, les ees ont pu être légèrement 

améliorés en réalisant la réaction à une température plus basse, telle que 0 ºC ou 10 ºC 

(Tableau 4, entrées 7 et 8). Cependant, pour de raisons pratiques, nous avons choisi de mener 

nos réactions à 0 ºC. 

 

Tableau 4. Influence du solvant. 

 

Entrée Solvant T Rdt (%) ee (%) 

1 THF ta 95 90 

2 PhMe ta 99 66 

3 MeCN ta 92 42 

4 NMP ta 78 82 

5 MTBE ta 99 89 

6 1,4-dioxane ta 85 83 

7 THF 0 ºC 95 91 

8 THF 10 ºC 94 92 

 

4.3. Généralisation de la réaction 

 

Après avoir optimisé les conditions réactionnelles, nous avons examiné le champ 

d’application de la Pd-AAA en appliquant les conditions optimisées, à savoir Pd2(dba)3 

(5 mol %), Na2CO3 (2 équiv), THF à 0 ºC, à divers isoxazolidin-5-ones substituées en 

position 4 (Schéma 19). Ces conditions se sont révélées être applicables à une large gamme 

d’isoxazolidinones portant un groupe -aryle/hétéroaryle, confirmés par les bons rendements 

(86-97%) et les excellentes énantiosélectivités (85-92%) obtenus. Les substrats contenant un 

fragment aryle substitué par un groupe électrodonneur, tel qu’un groupement méthoxy 
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(86%, ee = 87%) ou un méthyle (91%, ee = 90%), ainsi que des noyaux aromatiques 

substitués par un groupement électroattracteur, tel qu’un atome de fluor (97%, ee = 92%) or 

un CF3 (92%, ee = 91%) semblaient être tolérés. Cependant, cette méthode s’est montrée 

moins performante sur les composés -alkylés qui ont fournis à la fois de faibles rendements 

et des mauvaises sélectivités en L.57. 

 

 

 

Schéma19. Scope de la réaction avec les isoxazolidin-5-ones substituées en position 4. 

 

Afin d’élargir le champ d’application de la réaction, l’utilisation des acétates d’allyle 

substitués en positon 2 a ensuite été réalisée. Les résultats sont présentés dans le Tableau 5. 

D’une manière générale, lorsque l’isoxazolidinone L.52a a été engagée dans la réaction 

d’alkylation allylique avec différents acétates allyliques substitués en position 2, nous avons 

pu isoler les produits -allylés correspondants avec d’excellentes énantiosélectivités (jusqu’à 

ee = 95%). En général, les effets électroniques semblaient avoir un impact beaucoup plus 
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important sur l’énantiosélectivité que les effets stériques. En effet, lorsque l’encombrement 

stérique devient plus significatif, aucune amélioration de la sélectivité n’a été observée. C’est 

ainsi que le remplacement de l’atome d’hydrogène (Table 5, entrée 1) par un groupement 

triméthylsilyle (Table 5, entrée 3) permet d’obtenir l’excès énantiomérique de 93% au lieu de 

91% pour L.57. En revanche, le remplacement de l’hydrogène par un atome de chlore 

(ee = 74%) (Table 5, entrée 6) ou un groupe ester méthylique (ee = 25%) (Table 5, entrée 7) a 

eu un effet négatif à la fois sur l’énantiosélectivité et sur les rendements. Une disparition 

totale de réactivité a même été observée avec l’acétate d’allyle substitué en position 2 par un 

groupement méthoxy (Table 5, entrée 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tableau 5 Scope de la réaction avec les acétates d’allyle substituées en position 2. 
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Entrée R Produit Rdt (%) ee (%) 

 

1 

 

H 

 

 

95 

 

91 

 

2 

 

Me 

 

 

88 

 

95 

 

3 

 

TMS 

 

 

76 

 

93 

 

4 

 

CH2TMS 

 

 

94 

 

90 

 

5 

 

Ph 

 

 

71 

 

95 

 

6 

 

Cl 

 

 

22 

 

74 

 

7 

 

CO2Me 

 

 

25 

 

25 

 

8 

 

OMe 

 

 

NR 





 

 

 

4.4. Post-fonctionnalisation 
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Après avoir établi une voie pratique et hautement énantiosélective permettant 

d’accéder aux isoxazolidinones ,-disubstituées L.57, nous avons décidé d’en démontrer 

son utilité synthétique en développant des conditions permettant de convertir ces composés en 

acides 2,2-aminés et en -lactames (Schéma 20). 

 

 

 

Schéma 20. Synthèse d’acide 2,2-aminé et de -lactame. 

 

Pour effectuer la coupure de la liaison NO, nous avons testé différentes conditions 

réactionnelles (Na2S2O4/EtOH/H2O, SmI2/THF et Zn/AcOH). Cependant, aucune n’a menée à 

l’acide aminé désiré. En revanche, l’utilisation du naphthalénure de sodium dans le THF à 

78 ºC a donné le produit L.58 avec un rendement de 90%. Ce dernier a par la suite été 

engagé dans une estérification de l’acide carboxylique par le TMSCHN2, suivi d’une 

déprotection de l’azote avec du TFA (coupure du N-Boc) et, finalement, l’utilisation de 

TMSCl/Et3N/t-BuMgCl a conduit au -lactame L.59 correspondant avec un rendement global 

de 31%. 

 

5. Résumé 

 

Nous avons développé une nouvelle méthode catalytique robuste et hautement 

énantiosélective permettant d’accéder aux isoxazolidinones ,-disubstituées. Ce protocole 

repose sur une alkylation allylique asymétrique catalysée par des complexes de palladium 

chiraux et amène aux produits désirés avec de bons rendements et d’excellents excès 

énantiomériques (jusqu’à 95%). Par ailleurs, nous avons également mis au point des 

conditions permettant de convertir ces isoxazolidinones ,-disubstituées en acides 

2,2-aminés et en -lactames. 

 

Abstract 
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 Structural units containing an all-carbon quaternary stereogenic center are found in a 

plethora of bioactive natural products and pharmaceuticals. However, due to the steric 

hindrance enforced by the four distinct carbon substituents, the construction of such 

frameworks remains a particularly challenging task in organic synthesis. The development of 

catalytic enantioselective methods enabling the preparation of such compounds has been a 

major concern in the last decades. In this regard, the palladium-catalyzed asymmetric allylic 

alkylation has appeared as the utmost relevance method for the assembly of all-carbon 

quaternary stereogenic centers. Indeed, since its introduction by Trost et al. in the late 70s, the 

fundamental role of this key transformation has been extensively demonstrated as showcased 

by number of applications reported in the literature. 

 In the first chapter of this thesis, we will describe how we have applied the 

palladium-catalyzed asymmetric decarboxylative allylic alkylation (Pd-DAAA) to a range of 

cyclic and exocyclic allyl enol carbonates providing a straightforward access to 

enantiomerically enriched -butyrolactones bearing an -quaternary stereogenic center 

(Scheme I). The interest of accessing such motifs has been growing in both academia and 

industry, due to the ubiquity and importance of lactones in natural products and bioactive 

compounds. Furthermore, these enantioenriched -quaternary lactones have been shown to be 

particularly versatile building blocks that can be further converted to more complex structural 

motifs. 

 

 

 

Scheme I. Pd-DAAA of cyclic and exocyclic allyl enol carbonates. 

 

 In the second chapter of this thesis, we will present our efforts towards the asymmetric 

synthesis of -quaternary isoxazolidin-5-ones using our key palladium-catalyzed asymmetric 

allylic alkylation (Pd-AAA). This culminated in the development of a highly enantioselective 

route to 2,2-amino acids (Scheme II). Despite the number of methods that have been 

developed for the asymmetric synthesis of -amino acids over the last two decades, a general 

strategy to produce such motifs in a highly enantioselective fashion remained a challenge, 
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particularly for 2,2-amino acids bearing an all-carbon quaternary stereogenic centers. The 

palladium-catalyzed asymmetric allylic alkylation of 4-substituted isoxazolidin-5-ones 

appeared as a particularly attractive approach to successfully address this issue. 

 

 

 

Scheme II. Synthesis of 2,2-amino acids via a key Pd-AAA. 
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Palladium-Catalyzed Asymmetric Decarboxylative Allylic 

Alkylation: 

Synthesis of All-Carbon -Quaternary -Butyrolactones 
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1. Occurrence of the -butyrolactone motif in natural and/or bioactive 

compounds 

 

1.1. Natural products and biological activity 

 

Lactones are considered to be one of the most significant class of natural products due 

to their occurrence in a variety of compounds exhibiting a broad range of biological activities. 

Organic chemists have shown considerable interest to their potential synthetic use as key 

building blocks since they displayed a vast structural diversity including ring size. Among 

them, naturally occurring -butyrolactones represent about 10% of all known natural products 

of which few representative examples are shown below (Figure 1).1 

 

 

 

Figure 1. Structures of various -butyrolactone-containing natural products. 

 

The -butyrolactone ring is a prevalent structural motif in natural products, usually 

found as part of a more complex framework, such as bicyclic or tricyclic systems. 

                                                        
1 (a) Janecki, T., Natural Lactones and Lactams. 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 

2013; (b) Ogliaruso, M.; Wolfe, J., Synthesis of lactone and lactamas. John Wiley & Sons: New York, 1993; 

(c) Koch, S.; Chamberlin, R. Stud. Nat. Prod. Chem. 1995, 16, 687. 
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A multitude of biological profiles have been discovered for this class of molecules including 

antibiotic, antitumor, antifungal, antiviral and anti-inflammatory properties, to name a few.2 

Natural products bearing a -butyrolactone motif are so abundant that it would be 

impossible to describe all of them in this chapter. We therefore decided to present the three 

major classes of -butyrolactones. 

 

1.1.1. -Alkylidene--butyrolactones 

 

-Alkylidene--butyrolactones represent the largest group of naturally occurring 

-butyrolactones, many of which are biologically active species. The conjugated exocyclic 

double bond of these lactones is believed to be a key element for their biological properties.3 

The first representative compound of this class, the -methylene--butyrolactone named 

pyrethrosin, was isolated at the end of 19th century (Figure 2). Since then, numerous other 

members of this family have been reported. According to Kitson’s review, published in 

2009,4 approximately 5000 natural -alkylidene--butyrolactones have been reported. 

 

 

 

Figure 2. Structure of pyrethrosin. 

 

Naturally occurring -alkylidene--butyrolactones can be further classified into two 

main categories. The first one is the sesquiterpenic lactones (terpenoids possessing 15 

carbons), which represent the largest and the most diversified category, usually isolated from 

plants belonging to the families of Compositae, Acanthaceae, Lauraceae, Magnoliaceae and 

Rutaceae. These sesquiterpenic lactones can be further classified according to the carbocyclic 

scaffold attached to the lactone ring e.g. germacranolides, guaianolides, eudesmanolides and 

pseudoguaianolides (Figure 3). 

 

                                                        
2 (a) Dong, D.; Zhang, R.; Zhang, D.; Liang, Y. Synthesis 2012, 44, 1679; (b) Seitz, M.; Reiser, O. Curr. Opin. 

Chem. Biol. 2005, 9, 285. 
3 Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. 1985, 24, 94. 
4 Kitson, R. R.; Millemaggi, A.; Taylor, R. J. Angew. Chem. Int. Ed. 2009, 48, 9426. 



 

 
 

51 

 

 

Figure 3. General structures of sesquiterpene lactones. 

 

The second category is constituted by the -alkylidene--butyrolactone diterpenes that 

have a 14-membred ring attached to the lactone skeleton (Figure 4). These diterpenic 

lactones, also referred to as Cembranolides, have been predominantly found in marine soft 

corals of the genus lobophytum, Sinularia, and Sacrophyton and in gorgonian octocorals of 

the genus Eunicea. Crassocolide A (Figure 4), isolated from Sarcophyton crassocaule, 

bearing a trans-fused lactone ring to the carbocyclic scaffold, is a representative example. 

This -methylene--butyrolactone diterpene exhibits cytotoxic activity against breast, liver 

and lung cancer cell lines. 

 

 

 

Figure 4. General structure of cembranolides and structure of crassocolide A. 

 

 

 

 

 



 

 
 

52 

1.1.2. Paraconic acids 

 

Paraconic acids are naturally occurring trisubstituted -butyrolactones bearing a 

3-carboxylic acid group, and these lactones are mainly isolated from lichens. The carboxylic 

functionality at the C-4 position and the pendent alkyl chain at the C-5 position are 

characteristic features of this class of lactones, while the -methylene/methyl group on the 

lactone moiety seems to be crucial for its antibiotic and antitumor activities.5 The well-known 

protolichesterinic acid, found in Parmelia species (lichens indigenous to India), is probably 

the best representative example of this class of molecules, which includes nephrosterinic, 

roccellaric, protopraesorediosic and protolichesterinic acids (Figure 5).6 

 

 

 

Figure 5. Structures of nephrosteranic, roccellaric, protopraesorediosic and protolichesterinic 

acids. 

 

1.1.3. Lignan lactones 

 

Lignans are naturally occurring secondary metabolites extensively encountered in 

many plant species. Structurally, they are dimeric propyl phenols linked by a ’-bond 

(Figure 6), which is the result from the union of two cinnamic acid residues via oxidative 

coupling. The lignan lactones is an important family among the eight different categories of 

lignans, due to their variety of biological properties.7 Within the lignan lactone class, the 

dibenzyl--butyrolactone and aryltetralin--butyrolactone lignans have been recognized as 

particularly important natural products, due to their remarkable biological activities. 

                                                        
5 (a) Bandichhor, R.; Nosse, B.; Reiser, O. Top. Curr. Chem. 2005, 243, 43; (b) Blanc, D.; Madec, J.; 

Popowyck, F.; Ayad, T.; Phansavath, P.; Ratovelomanana-Vidal, V.; Genêt, J.-P. Adv. Synth. Catal. 2007, 

349, 943. 

6 Murta, M. M.; Azevedo, M. B. M. d.; Greene, A. E. J. Org. Chem. 1993, 58, 7537. 
7 Ward, R. S. Chem. Soc. Rev. 1982, 11, 75. 
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The (+)-5’-methoxyyatein (Figure 6), a dibenzyl--butyrolactone, isolated from 

Peperomia duclouxii (a whole plant), has shown to possess potent cytotoxicity toward several 

cancer types.8 The aryltetralin--butyrolactone lignan, podophyllotoxin, is the most prominent 

example of its class (Figure 6). They can be found in plants belonging to the Berberidaceae 

family (Podophyllum peltatum and Podophyllum emodi) and it has been recognized to possess 

potent anti-mitotic activity.9  

 

 

 

Figure 6. General structure of lignans and structures of (+)-5’-methoxyyatein  

and podophyllotoxin. 

 

2. Stereoselective synthesis of all-carbon -quaternary carbonyl derivatives 

 

The ubiquitousness of the -butyrolactone motif in naturally occurring molecules, 

many of them being recognized for their biological properties, has been briefly described in 

the previous section. The occurrence of biologically active -butyrolactones bearing an 

all-carbon -quaternary stereocenter is also common, albeit to a lesser extent. Such scaffold 

has been identified, for example in (+)-hopeahainol A (Figure 7), which possesses inhibitory 

activity against acetylcholinesterase, an enzyme related to the Alzheimer’s disease.10 Another 

example of -butyrolactone with a stereochemically defined all-carbon -quaternary center of 

particular biological importance is rosmanol (Figure 7). The latter is found in the culinary and 

medicinal herbal rosemary (Rosmarinus officinalis), and exhibits marked cytotoxic effects.11 

Alongside natural products, the synthetic -quaternary -butyrolactones have also 

                                                        
8 Amancha, P. K.; Liu, H.-J.; Ly, T. W.; Shia, K.-S. Eur. J. Org. Chem. 2010, 18, 3473. 

9 Sellars, J. D.; Steel, P. G. Eur. J. Org. Chem. 2007, 23, 3815. 
10 (a) Snyder, S. A.; Thomas, S. B.; Mayer, A. C.; Breazzano, S. P. Angew. Chem. Int. Ed. 2012, 51, 4080; (b) 

Nicolaou, K. C.; Wu, T. R.; Kang, Q.; Chen, D. Y. Angew. Chem. Int. Ed. 2009, 48, 3440. 

11 (a) Cheng, A. C.; Lee, M. F.; Tsai, M. L.; Lai, C. S.; Lee, J. H.; Ho, C. T.; Pan, M. H. Food Chem. Toxicol. 

2011, 49, 485; (b) Zhang, Y.; Smuts, J. P.; Dodbiba, E.; Rangarajan, R.; Lang, J. C.; Armstrong, D. W. J. 

Agric. Food Chem. 2012, 60, 9305. 
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demonstrated interesting biological activities. The biological evaluation of ()- and (+)-L1.1 

has shown that these compounds have both inhibitory and stimulatory effects on the GABAA 

(-aminobutyric acidA) receptor, depending on the enantiomer.12 

 

 

 

Figure 7. Structures of (+)-hopeahainol A, rosmanol and (−)- and (+)-L1.1. 

 

Consequently, the interest in developing new methods toward the enantioselective 

construction of all-carbon -quaternary -butyrolactones has been the focus of intensive 

efforts. Despite the significant advances in asymmetric synthesis, the stereoselective 

approaches allowing the access to such chiral compounds remains limited.  

The main goal of this section is to provide and outline a detailed coverage of the most 

recent available methods applied to the asymmetric synthesis of all-carbon -quaternary 

-butyrolactones, in particular the ones involving catalytic enantioselective methods. 

 

2.1. Diastereoselective method 

 

The indirect asymmetric synthesis involving the transfer of asymmetry from a chiral 

auxiliary have been extensively used to control the formation of stereogenic centers. On the 

other hand, the asymmetric induction by chiral leaving groups in the straightforward 

construction of all-carbon quaternary stereocenters remains relatively less explored.13 The 

first successful chiral induction through this approach was reported by Cram and Wilson,14 

and involves a one-pot addition/elimination sequence in the synthesis of chiral binaphthyls. 

                                                        
12 Gonzales, E. B.; Bell-Horner, C. L.; de la Cruz, M. A.; Ferrendelli, J. A.; Covey, D. F.; Dillon, G. H. J. 

Pharmacol. Exp. Ther. 2004, 309, 677. 
13 Roos, G., Key Chiral Auxiliary Applications. 2nd ed.; Academic Press: Oxford, 2014. 

14 (a) Wilson, J. M.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 881; (b) Wilson, J. M.; Cram, D. J. J. Org. 

Chem. 1984, 49, 4930. 
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Inspired by this work, Fuji et al. 15  described the diastereoselective synthesis of chiral 

all-carbon -quaternary lactones L1.4 using a similar strategy, as shown in the Scheme 1. 

 

 

 

Scheme 1. Fuji’s diastereoselective synthesis of chiral -quaternary lactones. 

 

Fuji et al. described the reaction of enolates of -substituted - and -lactones L1.2 

with optically active nitro enamines L1.3 through a Michael-type addition/elimination process 

(Scheme 1). This method allowed the access to -quaternary -lactones in high yields and 

excellent enantioselectivities ranging from 82% to 93% ee. Although, the extension of this 

process to -butyrolactones led to less satisfactory results with ee values comprised between 

56% and 63%, revealing the limit of this approach. 

During the investigation of this reaction, the authors realized that the enantiomeric 

excess could be dramatically affected by the choice of the cation, thus showcasing the 

importance of the chelation in the transition state. A cyclic transition model was proposed to 

rationalize the stereoselectivity, as depicted in Scheme 2. Considering the two possible 

transition states, TS1 and TS2, the Michael-type addition of the enolate onto the enamine 

governs the absolute stereochemistry of the formed -quaternary lactone. The chair like 

transition state TS1 resulting from the combination of the re-face of both the enolate and the 

nitro enamine is preferred rather than TS2 since the nitroalkyl group is disposed equatorially 

                                                        
15 Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Taga, T.; Machida, K.; Snatzke, G. J. Am. Chem. Soc. 1989, 

111, 7921. 
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in the transition state TS1, avoiding an additional 1,3-diaxial interaction and thus providing 

the observed (S)-isomer preferentially (Scheme 2). 

 

 

 

Scheme 2. Understanding the stereoselectivity outcome. 

 

2.2. Enantioselective methods 

 

2.2.1. Kinetic resolution 

 

Since the seminal work of Akiyama et al.,16 Uraguchi and Terada17, chiral Brønsted 

acid catalysis has been widely used to achieve a plethora of enantioselective 

transformations.18 List et al., for example, used chiral phosphoric acids to catalyze the kinetic 

resolution of homoaldols via a transacetalization.19 This approach was eventually applied to 

-hydroxy esters rac-L1.5 to obtain to enantioenriched -substituted -butyrolactones L1.6 

(Table 1).20 

The strategy for the synthesis of stereochemically defined lactones L1.6 was based on 

the separation of the enantiomers of rac-L1.5 via selective lactonization of one enantiomer 

over the other in the presence of the chiral BINOL-derived phosphoric acid catalyst L1.7. The 

separation of the two enantiomers was possible due to the different intramolecular 

transesterification rates of the two enantiomers. Unfortunately, the substrate scope revealed 

                                                        
16 Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566. 

17 Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356. 

18 (a) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chem. Soc. Rev. 2011, 40, 4539; (b) Akiyama, T.; Itoh, J.; 

Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. 

19 Coric, I.; Muller, S.; List, B. J. Am. Chem. Soc. 2010, 132, 17370. 

20 Qabaja, G.; Wilent, J. E.; Benavides, A. R.; Bullard, G. E.; Petersen, K. S. Org. Lett. 2013, 15, 1266. 
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that the -substituted hydroxy esters underwent a very modest kinetic resolution. In most 

cases, the transacetalization proceeded with poor to moderate enantioselectivities. However, a 

remarkable result came along when an -quaternary hydroxy ester was subjected to the 

kinetic resolution, leading to the formation of the all-carbon -quaternary -butyrolactone 

L1.6e (Table 1, entry 6) with the best selectivity factor (s = 16.7). 21  Thus, this kinetic 

resolution offers a potentially complementary tool for the chiral Brønsted acid-catalyzed 

construction of all-carbon -quaternary -butyrolactone. 

 

Table 1. Kinetic resolution of homoaldols via catalytic asymmetric transacetalization. 

 

Entry Product L1.6 Conversion (%) L1.5 ee% L1.6 ee% s 

 

1  

 

L1.6a 

 

68 

 

21 

 

24 

 

1.4 

 

2[a]  

 

L1.6b 

 

56 

 

52 

 

37 

 

3.9 

 

3[b] 
 

 

L1.6c 

 

71 

 

50 

 

26 

 

2.3 

 

4  

 

L1.6d 

 

63 

 

86 

 

50 

 

7.9 

 

5 
 

 

L1.6e 

 

53 

 

83 

 

66 

 

16.7 

[a]
Hexane was used as solvent. [b]

Toluene was used as solvent. 

 

 

 

2.2.1.1. Desymmetrization 

 

                                                        
21 (a) The selectivity factor (s) was determined using the Kagan’s equation: 

s = krel(fast/slow) = ln [(1  c)(1  ees)]/ln[(1  c)(1  ees)], where c = conversion and ees the ee of the recovered 

starting material. (b) Eliel, E. L., Topics in Stereochemistry; Wiley & Sons: New York, 1988; Vol. 18. 
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 The desymmetrization of meso and prochiral compounds consists of a modification of 

the substrate that results in the removal of one or more elements of symmetry, making 

attainable the introduction of chirality. Such transformation represents an important variant of 

the standard kinetic resolution process as it prevented the intrinsic limitation related to the 

traditional kinetic resolution. The desymmetrization differs from the latter in a very practical 

reason; In kinetic resolution, the two enantiomers of a racemic mixture react with different 

reaction rates in a chemical transformation, which allows their separation through the 

transformation of one enantiomer into product and recovery of the other. While in a 

desymmetrization process, the reaction proceeds faster at one of the two enantiotopic groups 

or faces of the substrate, affording only one enantiomer of the product, preferentially, with 

possible 100% yield. For this advantage, more attention has been recently paid on the 

desymmetrization of meso and prochiral molecules which represents a powerful tool in 

asymmetric synthesis.22 

Chiral Brønsted acids have been recognized to be highly efficient in the 

desymmetrization of different prochiral esters, compounds that can be easily synthesized from 

inexpensive starting materials as showcased by Petersen and Wilent in their elegant 

desymmetrization of meso hydroxy diesters L1.8 into all-carbon -quaternary lactones L1.9 

(Scheme 3).23 

The successful synthesis of chiral lactones L1.9 by means of desymmetrization of 

meso hydroxy diesters L1.8 in the presence of the chiral Brønsted acid L1.7 have been 

accomplished through an enantioselective activation of one ester functionality by the chiral 

phosphoric acid, promoting an intramolecular transesterification (Scheme 3). This method 

proved to be an extremely effective synthetic route for the enantioselective preparation of 

lactones bearing the challenging all-carbon -quaternary stereogenic center, particularly 

-quaternary -butyrolactones but also -quaternary -lactones, which could be obtained in 

good yields and excellent enantioselectivities (ee up to 98%). 

 

                                                        
22 (a) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999; (b) García-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. 

Rev. 2005, 105, 313. 

23 Wilent, J.; Petersen, K. S. J. Org. Chem. 2014, 79, 2303. 
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a The opposite enantiomer of L1.7 was used. 

 

Scheme 3. Petersen and Wilent desymmetrization of meso hydroxy diesters. 

 

2.2.2. Metal-mediated -arylation 

 

Cross-coupling reactions, mediated by transition metals, represent one of the most 

versatile methods for the formation of CC bonds.24 Since their introduction, the number of 

metal-based protocols published has increased considerably. In this vein, the asymmetric 

metal-catalyzed -arylation of enolates has received great attention, not only for the 

possibility of broadening the reaction scope and generality, but also for the potential 

construction of quaternary stereogenic centers  to the carbonyl moiety.25 Palladium- and 

nickel-based systems are typically used to catalyze the reaction between aryl halides or 

pseudohalides and enolates formed in situ from different carbonyl-containing compounds 

such as aldehydes, ketones, esters and amides (Scheme 4). 

 

 

                                                        
24 Meijere, A. d.; Diederich, F., Metal-Catalyzed Cross-Coupling Reactions. 2nd ed.; WILEY-VCH Verlag 

GmbH & Co. KGaA: Weinheim, 2004. 

25 Johansson, C. C.; Colacot, T. J. Angew. Chem. Int. Ed. 2010, 49, 676. 
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Scheme 4. Palladium- and nickel-catalyzed -arylation of enolates formed in situ. 

 

2.2.2.1. Palladium-catalyzed -arylation 

 

The first examples of palladium-catalyzed direct -arylation of ketones were reported 

by Miura et al., 26  Buchwald and Palucki, 27  and Hartwig and Hamman, 28  almost 

simultaneously in the late 1990s. In this series of publications, the coupling of aryl bromides 

and iodides with a variety of ketones is described (Scheme 5). These contributions have 

allowed the direct access to aryl ketones starting from the readily available and cheap starting 

materials, offering an excellent alternative to the toxic bismuth and lead reagents typically 

employed in this kind of transformation. 

 

 

 

Scheme 5. Miura’s, Buchwald’s and Hartwig’s Pd-catalyzed -arylation of enolates. 

 

                                                        
26 Satoh, T.; Inoh, J.-i.; Kawamura, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 

2239. 

27 Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108. 

28 Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382. 
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Mechanistic investigations revealed that the palladium-catalyzed -arylation of 

ketones tend to follow the same reaction pathway than cross-coupling processes in which the 

enolates behave as the nucleophilic organometallic reagents. Hence, the catalytic cycle 

involves the oxidative addition of the aryl halide onto an active Pd(0) species, followed by a 

subsequent transmetalation step. In the case of ketone enolates, both C- and O-palladium 

bound species can be formed depending on the catalytic system used. The reductive 

elimination eventually takes place to afford the -arylated ketone and regenerate Pd(0) as 

shown in Scheme 6.29 

 

 

 

Scheme 6. Proposed mechanism for the Pd-catalyzed -arylation of enolates. 

 

Encouraged by the successful development of the palladium-catalyzed coupling 

protocols of aryl halides and ketones, Buchwald et al. reported the first version of the 

asymmetric arylation method of enolates to afford all-carbon quaternary stereogenic centers. 

In this asymmetric variant, the initial Pd/rac-BINAP based catalytic system was then replaced 

by the Pd/(S)-BINAP. 30  However, to achieve high yields and enantioselectivities, harsh 

conditions and elevated catalytic loading were necessary. Therefore, an improvement in the 

catalytic system by changing the ligand allowed the asymmetric arylation of ketone enolates 

to proceed under mild reaction conditions and with a considerable decrease in the catalyst 

                                                        
29 Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 1360. 

30 Ahman, J.; Wolfe, J. P.; Troutman, M. V.; Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 1918. 
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amount, as depicted in the Table 2.31 The improved conditions were Pd2(dba)3 (1 mol %) and 

the binaphthyl ligand (R)-L1.12 (1.5 mol %) at rt. 

 

Table 2. Asymmetric arylation of ketone enolates. 

 

 Conditions 

   Pd2(dba)3 (5 mol %) 

(S)-BINAP (7.5 mol %) 

100 ºC 

Pd2(dba)3 (1 mol %) 

(R)-L1.12 (1.5 mol %) 

rt 

Entry Product L1.11 Yield, ee, (conf) Yield, ee, (conf) 

 

1 

 

 

L1.11a 

 

65%, ee = 63%, (S) 

 

84%, ee = 93%, (R) 

 

2 
 

 

L1.11b 

 

70%, ee = 80%, (S) 

 

85%, ee = 94%, (R) 

 

3 

 

 

L1.11c 

 

74%, ee = 57%, (S) 

 

80%, ee = 94%, (R) 

 

4 

 

 

L1.11d 

 

87%, ee = 85%, (S) 

 

80%, ee = 89%, (R) 

 

5 

 

 

L1.11e 

 

65%, ee = 88%, (S) 

 

84%, ee = 93%, (R) 

   

 
 

 

 

 

 

 

                                                        
31 Hamada, T.; Chieffi, A.; Ahman, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1261. 
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The abovementioned process has proved to be an attractive approach to prepare 

enantioenriched -aryl cyclic ketones. In contrast, there are only a few available arylation 

methods to access -aryl cyclic esters and amides.32 The enantioselective arylation of lactones 

remains a challenge owing to their inherent reactivity under basic conditions combined with 

the fact that esters can undergo a Claisen condensation. In 2003, Zhang et al. extended the 

palladium-catalyzed asymmetric -arylation method developed by Buchwald et al. to produce 

optically active -methyl -butyrolactones, as shown in the Scheme 7. 33  However, 

Buchwald’s catalytic system proved inefficient to enantioselectively access -quaternary 

-butyrolactones. The coupling of -methyl -butyrolactones with aryl bromides proceeded 

with moderate yields (55-65%) and enantioselectivities (ee = 15-65%). 

 

 

 

Scheme 7. Asymmetric -arylation of -methyl -butyrolactones by Zhang et al. 

 

 

 

 

 

                                                        
32 (a) de Filippis, A.; Gomez Pardo, D.; Cossy, J., Tetrahedron 2004, 60, 9757; (b) Cossy, J.; de Filippis, A.; 

Gomez Pardo, D., Synthesis 2004, 17, 2930. 

33  Proctor, C. S.; Zhang, H.; Zhang, T. Y. Enantioselective process for preparing arylated lactones and 

derivatives. US World Patent WO2001072731, Jan 16, 2003. 
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2.2.2.2. Nickel-catalyzed -arylation 

 

Although the palladium-based catalytic systems were widely used in -arylation of 

carbonyl compounds, they proved to be problematic in the context of -butyrolactones in 

delivering acceptable levels of enantioselectivity. To circumvent this issue, Buchwald and 

Spielvogel disclosed an alternative approach relying on nickel-based catalyst. The 

replacement of palladium by nickel, which is much cheaper than palladium, appeared to be 

crucial for the formation of enantioenriched -arylated products (Scheme 8). The authors 

argued that such enhancement in the enantioselectivity could be justified by a tighter chiral 

environment around the metallic center.34 

 

 

 

Scheme 8. Nickel-catalyzed -arylation of -butyrolactones by Buchwald and Spielvogel. 

 

The use of a Ni/(S)-BINAP catalytic system allowed the asymmetric synthesis of 

-quaternary -butyrolactones with excellent ee ranging from 83% to 97% albeit with 

moderate yields starting from -substituted -butyrolactones and aryl chlorides. Interestingly, 

the addition of ZnBr2 to the reaction mixture considerably improved the yield, suggesting that 

this additive acted as a Lewis acid to facilitate the bromide abstraction from 

                                                        
34 Spielvogel, D. J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 3500. 
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[(BINAP)Ni(Ar)(Br)] to generate the cationic [(BINAP)Ni(Ar)] species, which subsequently 

undergoes a transmetalation more rapidly. 

 

2.2.3. Phase-transfer catalyzed -alkylation 

 

Since the seminal work of Starks et al., numerous chiral phase-transfer catalysts have 

been developed and successfully used to achieve a range of asymmetric transformations.35 

The application of a phase-transfer catalysis (PTC) to asymmetric alkylation was initially 

introduced, in 1984 by Grabowski et al., a Merck research group, 36  which used the 

cinchona-based quaternary ammonium salt L1.18 to catalyze the methylation of 

phenylindanone L1.17 (Scheme 9). 

 

 

 

Scheme 9. Asymmetric phase-transfer catalyzed alkylation of phenylindanone. 

 

In 2007, Maruoka et al. unveiled a new class of N-spiro C2-symmetric chiral 

ammonium salts, which were used to catalyze the stereoselective alkylation of -ketoesters 

under phase-transfer conditions. The use of this conditions provided a straightforward access 

to a number of enantioenriched -alkylated -butyrolactones L1.23 in both excellent yields 

and enantioselectivities (Scheme 10).37 

 

                                                        
35 Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656. 

36 Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. J. Am. Chem. Soc. 1984, 106, 446. 
37 Ooi, T.; Miki, T.; Fukumoto, K.; Maruoka, K. Adv. Synth. Catal. 2006, 348, 1539. 
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Scheme 10. Synthesis of -acyl -alkyl -butyrolactones by Maruoka et al. 

 

Two similar applications were independently reported by Dixon et al.38  and Park 

et al. 39  on the synthesis of -quaternary -butyrolactones. Dixon et al. conducted the 

enantioselective -alkylation of -carboxy -butyrolactones using the cinchona-derived 

phase-transfer catalyst L1.26, to promote the ring-opening of five-membered cyclic 

sulfamidates (Scheme 11, eq 1). Park et al. used a N-spiro chiral ammonium salt L1.29 to 

catalyze the alkylation of -carboxy -butyrolactones with improved selectivities, compared 

to the selectivities obtained by Maruoka et al. (Scheme 11. eq 2). 

 

 

                                                        
38 Moss, T. A.; Alonso, B.; Fenwick, D. R.; Dixon, D. J. Angew. Chem. Int. Ed. 2010, 49, 568. 

39 Ha, M. W.; Lee, H.; Yi, H. Y.; Park, Y.; Kim, S.; Hong, S.; Lee, M.; Kim, M.-h.; Kim, T.-S.; Park, H.-g. 

Adv. Synth. Catal. 2013, 355, 637. 
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Scheme 11. Stereoselective alkylation of -butyrolactones under phase-transfer catalysis. 

 

2.2.4. Organocatalyzed -acylation 

 

Alternative strategies for the enantioselective construction of all-carbon quaternary 

centers of carbonyl derivatives, such as the straightforward asymmetric C-acylation of 

enolates, have remained elusive. Over the years, the asymmetric Steglich, O- to 

C-rearrangement have been the principal synthetic route to C-acylated derivatives, usually 

mediated by Lewis base chiral catalysts.40 As a matter of fact, among all the chiral catalysts 

employed in this asymmetric acyl transfer process, planar-chiral DMAP 

(4-(N,N-dimethylamino)pyridine) and PPY (4-pyrrolidinopyridine) scaffolds have been long 

recognized as being the most remarkable and powerful catalysts for the enantioselective 

assembly of quaternary stereocenters.41 This was illustrated in the Steglich rearrangement of 

O-acylated azlactone L1.31 (Scheme 12).42 

According to kinetic studies, the formation of the ion pair, issued from the reaction of 

the catalyst L1.32 with the O-acylated azlactone led to an “acyl-pyridinium” ion along with 

an enolate counterion, and this step is believed to be reversible, while the C-acylation step is 

not (Scheme 12). 

 

                                                        
40 Furuta, T.; Kawabata, T. Science of Synthesis: Asymmetric Organocatalysis; List, B.; Maruoka, K., Ed. 

Thieme: Stuttgart, 2012; Vol. 1, pp 497. 

41 Wurz, R. P. Chem. Rev. 2007, 107, 5570. 

42 Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532. 
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Scheme 12. Steglich rearrangement pathway of O-acylated azlactones. 

 

Fu and Mermerian also reported a challenging intermolecular version of this reaction. 

The authors described the asymmetric C-acetylation of ketene silyl acetals with acetic 

anhydride catalyzed by planar-chiral PPY L1.35 (Scheme 13, eq 1). 43  The catalytic 

enantioselective -acetylation of -substituted -butyrolactones L1.34 afforded lactones 

bearing an all-carbon quaternary stereogenic center and the acylated lactones were isolated 

with good enantioselectivities from a variety of aryl- and heteroaryl-substituted silyl ketene 

acetals. Inspired by these results, Smith et al. successively applied a chiral isothiourea catalyst 

to the asymmetric C-acylation of ketene silyl acetals with propionic anhydride (Scheme 13, 

eq 2).44 The chiral isothiourea L1.38 promoted the direct enantioselective C-acylation in good 

yields, however in slightly reduced levels of enantioselectivity compared to the PPY 

catalyst L1.35. 

 

                                                        
43 Mermerian, A. H.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 4050. 

44 Woods, P. A.; Morrill, L. C.; Bragg, R. A.; Smith, A. D. Chemistry 2011, 17, 11060. 
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Scheme 13. Fu and Mermerian, and Smith et al. asymmetric C-acylation of ketene silyl 

acetals. 

 

More recently, Jacobsen et al. disclosed a fundamentally innovative approach to the 

field of asymmetric acyl transfer.45 Indeed, they introduced the first successful dual catalysis 

anion-binding process involving a chiral thiourea and PPY for the enantioselective 

C-acylation (Scheme 14). The reaction involved the C-acylation of ketene silyl acetals L1.40 

with acyl fluorides L1.41 promoted by the thiourea catalyst L1.42 and 

PPY (4-pyrrolidinopyridine). The use of dual catalysis provided a useful route to 

-quaternary -butyrolactones L1.43, which could thus be obtained with excellent 

enantioselectivities. Interestingly, the use of acyl fluorides played a crucial role not only for 

the achievement of high enantioselectivities but also to improve the reactivity  as no 

reaction was observed using acyl chlorides. 

 

 

 

Scheme 14. Jacobsen et al. enantioselective C-acylation of ketene silyl acetals. 

                                                        
45 Birrell, J. A.; Desrosiers, J. N.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 13872. 
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A proposed catalytic cycle is shown in Scheme 15. Accordingly, the thiourea catalyst 

activates the acyl fluoride via complexation with the carbonyl moiety to give intermediate A. 

The latter is eventually converted to the corresponding thiourea-bound 

acylpyridinium/fluoride intermediate B, in which the thiourea is associated to the fluoride 

anion and the catalyst aryl substituent is engaged in the stabilizing interaction with the 

acylpyridinium cation. The reaction of B with silyl ketene acetal is believed to be 

rate-determining on the basis of the observed dependence of the overall rate on the identity of 

the silyl group, while C-acylation of the thiourea-bound enolate in C is assumed to be the 

enantiodetermining step as the enantioselectivity is independent of the nature of the silyl 

group. 

 

 

 

Scheme 15. Mechanism of the enantioselective C-acylation of ketene silyl acetals. 
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3. Palladium-catalyzed asymmetric decarboxylative allylic alkylation 

(Pd-DAAA) 

 

The Palladium-catalyzed Asymmetric Decarboxylative Allylic Alkylation 

(Pd-DAAA) has emerged as a particularly appealing tool for the construction of quaternary 

stereogenic centers. This powerful method has enabled the direct asymmetric construction of 

CC bonds in several pharmaceuticals and biologically relevant natural products.46 Over the 

past two decades, this enantioselective process, also referred to the Tsuji-Trost reaction, has 

been the subject of ever-growing interest owing to its ability to couple allylic electrophiles 

with a variety of nucleophiles in a chemo-, regio- and stereoselective fashion, 47  taking 

advantage of the formation of CO2 as a driving force for the site-specific generation of 

nucleophiles under mild and formally neutral conditions. This section will focus on the 

subclass of the Tsuji-Trost reactions relying on the in situ generation of pro-chiral enolates 

after an initial decarboxylative step. 

 

3.1. Decarboxylative allylic alkylation of enolates 

 

After the advent of the palladium-mediated allylic alkylation,48 Tsuji et al. attempted 

an intramolecular allylic alkylation of an acetoacetic acid-derived allylic ester (L1.44) and 

observed the formation of the corresponding decarboxylative alkylated product 

(Scheme 16).49 According to the proposed mechanism, allyl ketoester L1.44 underwent a 

facile oxidative addition in the presence of palladium(0) to afford the palladium(II) -allyl 

complex L1.45, which subsequently underwent a decarboxylation. Finally, upon reductive 

elimination of L1.46, the allylated product L1.47 was isolated. 

 

 

 

 

 

 

                                                        
46 Hong, A. Y.; Stoltz, B. M. European J Org Chem 2013, 14, 2745. 

47 (a) Mohr, J. T.; Stoltz, B. M. Chem Asian J 2007, 2, 1476; (b) Weaver, J. D.; Recio, A., 3rd; Grenning, A. J.; 

Tunge, J. A. Chem. Rev. 2011, 111, 1846. 

48 Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 49, 4387. 

49 Shimizu, I.; Yamada, T.; Tsuji, J. Tetrahedron Lett. 1980, 21, 3199. 
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Scheme 16. Pioneering work on the palladium-catalyzed allylic alkylation by Tsuji et al. 

 

Despite the increasing number of reports published in the field of palladium-catalyzed 

decarboxylative allylic alkylation since its introduction, it was only in 2004 that the first 

example of an enantioselective version of this reaction was reported.50 Hence, by introducing 

a chiral environment around the metal, Tunge and Burger were able to favor the nucleophilic 

attack of the enolate to proceed selectively at one of the prochiral allylic termini (Scheme 17). 

Under their optimized reaction conditions, a number of homoallylic ketones L1.50 bearing a 

tertiary stereogenic center at the -position were prepared in high yields and excellent 

stereoselectivity. 

 

 

 

Scheme 17. Asymmetric palladium-catalyzed allylic alkylation by Tunge and Burger. 

 

                                                        
50 Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113. 



 

 
 

73 

Following an earlier account by Saegusa et al. who had shown that cyclic -ketoesters 

L1.52 could undergo decarboxylative coupling (Scheme 18, eq 1),51 Stoltz et al. demonstrated 

that the use of a chiral ligand on the palladium-catalyzed asymmetric decarboxylative allylic 

alkylation (Pd-DAAA) of such -ketoesters L1.54 could lead to the formation of all-carbon 

quaternary center at the -position of ketones L1.56 in high enantioselectivities (Scheme 18, 

eq 2), 52  while in Tunge and Burger’s approach only tertiary stereogenic centers at the 

-position of ketones could be achieved through the Pd-DAAA. 

This stereoablative enantioconvergent process, pioneered by Stoltz et al. relied on the 

use of a racemic starting material (allylic -ketoester), which would undergo the destruction 

of its stereochemical information to produce a prochiral enolate intermediate which, upon 

interaction with a chiral allyl-palladium complex could lead to the selective formation of one 

enantiomer of the -allylated ketone. 

 

 

 

Scheme 18. Palladium-catalyzed asymmetric decarboxylative allylic alkylation of allyl 

-ketoesters. 

 

Ultimately, it was found that the treatment of allyl -ketoesters with the N,P chelating 

chiral phosphinoxazoline ligand (PHOX ligand) in conjunction with a palladium complex 

could promote high asymmetric induction on non-stabilized unbiased enolates providing high 

degrees of enantioenrichment of -quaternary ketones. Thus, this process represented a 

considerable advance in the construction of -quaternary centers of carbonyl compounds. 

                                                        
51 Tsuda, T.; Chujo, Y.; Nishi, S.-i.; Tawara, K.; Saegusa, T. J. Am. Chem. Soc. 1980, 102, 6381. 

52 Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew. Chem. Int. Ed. 2005, 44, 6924. 
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Since this seminal work, many research groups, particularly Stoltz’s group, have 

significantly contributed to broaden the scope of this transformation. Notably, by performing 

the Pd-DAAA on oxygen- and/or nitrogen-based heterocyclic substrates offering a facile 

entry to useful chiral building blocks (Scheme 19).53 

 

 

 

Scheme 19. Pd-DAAA of allyl -ketoesters by Stoltz et al. 

 

Stoltz and Behenna were able to show that their palladium/PHOX-based catalytic 

system was also highly effective for the enantioselective intramolecular allylic alkylation by 

the use of allyl -ketoesters L1.59 or allyl enol carbonates L1.60 (Scheme 20).54 The in situ 

formation of both the allyl electrophile and the enolate nucleophile, initiated by a Pd(0) 

catalyst and starting from allyl enol carbonates or isomeric allyl -ketoesters, lends credence 

to the proposal of a common intermediate. Most importantly, each of these palladium-

catalyzed decarboxylative reactions from both substrate types affords the alkylated products 

bearing an all-carbon -quaternary center with a high level of enantioselectivity and 

regiochemical fidelity. As a general trend, allylic -ketoesters have practical advantages over 

allyl enol carbonates such as the easier introduction of various -substituents under relatively 

mild conditions and their typically higher thermal and chemical stability. All the 

disadvantages associated with allyl enol carbonates are mitigated by their ability to form 

highly enantioenriched compounds and by the fact that the Pd-DAAA is more facile to take 

                                                        
53 Bhat, V.; Welin, E. R.; Guo, X.; Stoltz, B. M. Chem. Rev. 2017, 117, 4528. 

54 Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044. 
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place with allyl enol carbonates compared to allylic -ketoesters, presumably due to the faster 

decarboxylation of enol carbonates. 

 

 

 

Scheme 20. Convergent Pd-DAAA of allyl -ketoesters and allyl enol carbonates. 

 

Shortly afterward, Trost and Xu disclosed a study involving the development of a 

different catalytic system for the enantioselective decarboxylative allylic alkylation of allyl 

enol carbonate substrates (Scheme 21).55 As a result of a screening of various C2-symmetric 

ligands with modified diamine backbones (Scheme 21), the P,P chelating Trost ligand L1.68 

in conjunction with Pd2(dba)3.CHCl3 provided an effective catalyst for the synthesis of chiral 

all-carbon -quaternary ketones. The extension of this result to more complex systems proved 

to be rewarding. The mild reaction conditions were tolerant to a variety of substituents and 

functional groups. Furthermore, cyclic allyl enol carbonates of various ring sizes, including 

benzoannulated and non-benzoannulated substrates, could undergo asymmetric 

decarboxylative allylation to afford products in high enantioselectivities. Notably, several 

heterocyclic ketones could also be prepared. 

 

                                                        
55 Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 2846. 
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Scheme 21. Pd-DAAA of cyclic allyl enol carbonates by Trost et al. 

 

Despite the successful Trost’s approach in the formation of -tertiary stereocenters 

with acyclic allyl enol carbonates (cf Appendix 1), the extension of this chemistry in creating 

all-carbon quaternary centers at the -position of acyclic carbonyl compounds has remained 

elusive. To date, Hossain et al. described few examples of the synthesis of -quaternary 

aldehydes by applying the palladium-catalyzed asymmetric decarboxylative allylic alkyl 

process to allyl enol carbonates L1.69 (Scheme 22).56  Considering that the double bond 

geometry of the enol carbonate turned out to have different reactivities and furnished the 

product with different degrees of enantiodifferentiation (cf Appendix 1), both stereoisomers 

were investigated. Unfortunately, neither the Z- nor E-allyl enol carbonate afforded high 

levels of enantioselectivity. The Pd-DAAA of the E-allyl enol carbonate substrates proceeded 

smoothly, giving rise to -quaternary aldehydes L1.71 in excellent yield (99% average), 

albeit moderate enantioselectivities varying between 53% and 76% ee. 

 

                                                        
56 Hossain, M.; Alberch, E.; Brook, C.; Asad, S.; Shevyrev, M.; Ulicki, J. Synlett 2015, 26, 388. 
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Scheme 22. Pd-DAAA of the E-allyl enol carbonate by Hossain et al. 

 

3.2. Mechanistic considerations in the decarboxylative allylic alkylation of enol 

carbonates and allyl -ketoesters 

 

Along with the advances made in the palladium-catalyzed asymmetric decarboxylative 

allylic alkylation protocols, several mechanistic proposals have emerged. Despite some 

differences among the proposed mechanisms, a simplified mechanism can be presented to 

roughly outline the convergence of the various propositions. This generic mechanism relies 

on the following common steps: first the coordination of the Pd(0)Ln* to the allyl moiety, 

second the ionization of the ester or the carbonate, followed by the Pd-promoted 

decarboxylation to generate the corresponding enolate in situ and a final recombination of the 

enolate with the -allyl complex to afford the allylated product and regeneration of the 

catalyst (Scheme 23).57 It is worth mentioning that a change in the ligand or in the reaction 

conditions, for instance, may result in a significant modification in the reaction mechanism. 

Stoltz et al. suggested a convergent mechanism for the palladium-catalyzed 

decarboxylative allylic alkylation of both allyl enol carbonates and allylic -ketoesters. 

Kinetic studies determined that both were first order in the catalyst and zero order in the 

substrate, indicating that the reaction rate is linearly dependent on the concentration of the 

catalyst, and not on the concentration of the substrate.58 

 

 

                                                        
57 Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343. 
58 Keith, J. A.; Behenna, D. C.; Mohr, J. T.; Ma, S.; Marinescu, S. C.; Oxgaard, J.; Stoltz, B. M.; Goddard, III, 

W. A. J. Am. Chem. Soc. 2007, 129, 11876. 
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Scheme 23. Accepted mechanisms for the Pd-DAAA. 

 

Notably, these two classes of substrates afford the allylated product in similar yields 

and practically identical enantioselectivity (Table 3).52, 54 These results strongly supported a 

single underlying mechanism that must converge at or before the formation of the ketone 

enolate intermediate. 
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Table 3. Pd-DAAA of allyl -ketoesters and allyl enol carbonate. 

 

 From allyl -ketoester From allyl enol carbonate 

Product Yield (%) ee (%) Yield (%) ee (%) 

 

 

85 

 

88 

 

85 

 

87 

 

 

87 

 

92 

 

89 

 

92 

 

 

94 

 

85 

 

87 

 

86 

 

 

83 

 

87 

 

81 

 

87 

 

The mechanism of the palladium-catalyzed allylic alkylation of stabilized nucleophiles 

has been extensively investigated and is now well understood.59 According to these studies, 

the CC bond formation is believed to occur through the direct nucleophilic attack on the 

allyl moiety of the -allyl complex, generally referred as an outer-sphere mechanism. 

However, there is still a debate over whether non-stabilized palladium enolates proceed via an 

outer-sphere mechanism where the free enolate directly attacks the allyl termini (Scheme 24, 

left) or through an inner-sphere mechanism where the enolate is bound to the palladium prior 

to the reductive elimination (Scheme 24, right). 

 

                                                        
59 Trost, B. M. Chem. Rev. 1996, 96, 395. 
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Scheme 24. Inner-sphere versus outer-sphere mechanism. 

 

For the allylic alkylation of non-stabilized ketone enolates, an outer-sphere 

mechanism would imply the formation of a free enolate species, at least transiently, during 

the course of the reaction. However, a number of non-stabilized enolate precursors  allyl 

enol carbonates and allyl -oxo esters  bearing multiple acid sites sensitive to such free 

enolates has been synthesized and subjected to the palladium-catalyzed asymmetric allylic 

alkylation, undergoing the decarboxylative allylation with no more than traces of side 

products, as depicted throughout this section. Even the introduction of up to 33.3 equivalents 

of H2O into the reaction failed to quench the putative intermediate enolate and had only 

moderate effect on the yield of the allylated product.60 This observed H2O tolerance contrasts 

with the typical behavior of enolates, which are readily quenched by H2O, and suggests that 

once decarboxylation takes place, the enolate intermediate is tightly associated with or 

covalently bound to the palladium counterion for most of its lifetime. Together these results 

raised serious questions about the possible nonexistence of a free enolate intermediate and 

thus the nature of the mechanism itself. 

Substantial efforts have been done by Stoltz et al. and Trost et al. in order to fate the 

allyl and enolate fragments in the course of the reaction. They have all performed similar 

crossover experiments using equimolar amounts of deuterium labeled allyl enol carbonates 

under decarboxylative allylation conditions (Scheme 25).52, 57 Mass spectral analysis of the 

products from each reaction showed a complete scrambling of the allyl and ketone moieties, 

                                                        
60 Behenna, D. C.; Mohr, J. T.; Sherden, N. H.; Marinescu, S. C.; Harned, A. M.; Tani, K.; Seto, M.; Ma, S.; 

Novak, Z.; Krout, M. R.; McFadden, R. M.; Roizen, J. L.; Enquist, J. A., Jr.; White, D. E.; Levine, S. R.; 

Petrova, K. V.; Iwashita, A.; Virgil, S. C.; Stoltz, B. M. Chemistry 2011, 17, 14199. 
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with an almost perfect statistical distribution of all six possible products for each case, which 

is a clear indication of complete crossover. 

 

 

 

Scheme 25. Mechanistic investigation. 

 

Although it is important to shine some light on the fact that the initial ionization of the 

allyl enol carbonate via oxidative addition likely creates ion pairs that are also capable of 

complete crossover prior to the decarboxylation, the observation of crossover products leads 

to an ambiguous or even a misinterpretation of the evidence as an apparent proof of an 

outer-sphere mechanism. In this context, Stoltz et al. succeeded to isolate and characterize a 

(-allyl)palladium--ketoester intermediate which was found to be the resting state for the 

catalytic cycle mediated by the Pd/PHOX complex.61 Consequently, they concluded that the 

                                                        
61 Sherden, N. H.; Behenna, D. C.; Virgil, S. C.; Stoltz, B. M. Angew. Chem. Int. Ed. Engl. 2009, 48, 6840. 

These outcomes are in line with the previous mentioned kinetic data for the overall reaction which showed a 

first order dependence on the catalyst concentration and a zero-order dependence on the substrate 

concentration. 
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decarboxylation was the rate-determining step and that rapid CC bond-forming reductive 

elimination was the enantiodetermining step for the allylic alkylation of allyl -ketoesters. 

This implies that any ion-pair scrambling might undergo ion exchange prior to the 

decarboxylation  preceding to the palladium enolate stage  lending credence to an 

inner-sphere mechanism. 

In search of a better mechanistic understanding, Stoltz et al. used the density 

functional theory (DFT) calculations to investigate the possible reaction pathway for the 

palladium enolate intermediate L1.76 (Figure 8).58 Considering a traditional outer-sphere 

allylic alkylation pathway, the DFT simulation predicted a favored nucleophilic attack at the 

-allyl terminus trans to the phosphorus (L1.77). Although, practically no energy difference 

between the two facial approaches of the prochiral enolate nucleophile was identified. 

Therefore, such outer-sphere mechanism would imply the formation of a racemic allylated 

product, which is totally inconsistent with the highly enantioenriched allylated ketone 

experimentally observed. 

Following the unsatisfactory results obtained for the outer-sphere pathway, an 

alternative inner-sphere allylic alkylation mechanism was investigated using DFT 

calculations. From the palladium allyl enolate L1.80, the O- to C-bond rearrangement and 

subsequent traditional three-centered reductive elimination (L1.81) was calculated to have 

prohibitively high kinetic barrier. However, a seven-centered doubly vinylogous reductive 

elimination (L1.82) directly from the palladium allyl enolate L1.80 was determined to have a 

smaller kinetic barrier and thus a viable mechanism for the formation of the ketone L1.62. 

Furthermore, in the lowest-energy seven-membered pathway for the CC bond formation, 

similar to a Claisen-like transition state originally proposed by Echavarren et al., accounts for 

a higher facial selectivity of the ligand in the allylic alkylation.62 

 

                                                        
62 Méndez, M.; Cuerva, J. M.; Gómez-Bengoa, E.; Cárdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2002, 8, 

3620. 
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Figure 8. Reaction pathway according to DFT calculations. 

 

Overall, these results contradict the usual results for the allylic alkylation of stabilized 

nucleophiles which have been determined to proceed through an outer-sphere mechanism. 

However, the remarkable H2O and functional group tolerance, and the high regioselectivity 

obtained with allyl enol carbonates and allyl -ketoesters, along with the support of the 

crossover experiments and DFT calculations strongly suggested an inner-sphere 

mechanism. 
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4. Results and discussion 

 

4.1. Context and objective 

 

As shown throughout this chapter, the stereoselective synthesis of all-carbon 

-quaternary -butyrolactones has been the focus of various research groups around the 

world, resulting in the development of new catalytic enantioselective methods. However, 

most of these methods were far less effective when generating of all-carbon quaternary 

stereocenters. In this context, the palladium-catalyzed decarboxylative asymmetric allylic 

alkylation has appeared as an interesting alternative. 

Our group has previously reported the formation of stereochemically defined 

-quaternary centers by applying the Pd-DAAA to cyclic dienol carbonates I.1, providing a 

straightforward access to enantiomerically enriched butenolides (Scheme 26, eq 1).63  By 

analogy, we have envisioned to apply the Pd-DAAA process to cyclic and exocyclic allyl enol 

carbonates I.3 and I.5, respectively, which might undergo asymmetric decarboxylative 

allylation in the presence of a chiral Pd(0) complex, allowing the synthesis of a range of chiral 

-butyrolactones I.4 and I.6 bearing an -quaternary stereocenter (Scheme 26, eq 2 and 3). 

 

 

 

Scheme 26. Pd-DAAA of cyclic and exocyclic allyl enol carbonates. 

 

 

 

 

                                                        
63 Fournier, J.; Lozano, O.; Menozzi, C.; Arseniyadis, S.; Cossy, J. Angew. Chem. Int. Ed. 2013, 52, 1257. 
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4.2. Synthesis of the cyclic allyl enol carbonates 

 

We initiated our study by synthesizing the cyclic allyl carbonates A from 

-substituted lactones B. Depending on the substituent at the -position, lactones B can be 

obtained by either a Suzuki cross-coupling reaction applied to I.8 if R = aryl, or by an 

alkylation of -butyrolactone I.11 if R = alkyl (Scheme 27). 

 

 

 

Scheme 27. Strategies for the synthesis of allyl enol carbonates. 

 

4.2.1. Synthesis of aryl lactones 

 

The synthesis of the aryl substituted lactones I.10 started from the commercially 

available 2-(5H)-furanone I.7, which was transformed to the -bromofuranone I.8 by 

treatment with Br2 in CCl4 at reflux. After 3 h, Et3N was added to the reaction media 

(1 h, 0 ºC) to produce I.8 in 89% yield. Then, the introduction of the aryl group was achieved 

by using two different Suzuki cross-coupling protocols depending on the aryl group, as shown 

in the Table 4.63, 64  For the placement of the phenyl and 4-tert-butylphenyl groups, the 

arylation was performed by treatment of I.8 (1 equiv) with Pd(PPh3)4 (0.05 equiv) and 

Na2CO3 (2 equiv) in the presence of the corresponding boronic acid ArB(OH)2 (1.5 equiv) in 

a solvent mixture of benzene/H2O (3:1) under microwave irradiation at 100 ºC for 30 min. 

Under these conditions the arylated lactones I.9a and I.9c were obtained in modest to good 

yields, 57% and 68%, respectively (Table 4, entries 1 and 3). On the other hand, for the 

introduction of 1-naphthyl, 3-methylphenyl, 3,4-dimethoxyphenyl, 3,5-difluorophenyl and 

3,5-bis(trifluoromethyl)phenyl groups, the Suzuki cross-coupling was conducted using 

                                                        
64 Banwell, M. G.; Jones, M. T.; Loong, D. T. J.; Lupton, D. W.; Pinkerton, D. M.; Ray, J. K.; Willis, A. C. 

Tetrahedron 2010, 66, 9252. 
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I.8 (1 equiv), PdCl2(PPh3)2 (0.05 equiv), KF (3 equiv) and AliquatTM 336 (0.05 equiv) in the 

presence of the corresponding boronic acid ArB(OH)2 (2 equiv) in a solvent mixture of 

toluene/H2O (1:1) under microwave irradiation at 110 ºC for 30 min. The coupling products 

were formed in yields varying between 23% and 70% (Table 4, entries 2, 4-7). It is worth 

mentioning that the presence of strong electron-donating groups (Table 4, entry 5) or strong 

electron-withdrawing groups (Table 4, entry 7) on the aryl moiety led to slightly lower yields 

than aryl groups bearing substituents with moderate electronic effects, except for the case of 

the difluoro substituted arene, which furnished the lowest yield of 23% (Table 4, entry 6). We 

have to point out as well that, in the case of the heteroaryl-containing boronic acids such as 

2-furyl and 2-thiophenyl, only traces of the desired products were obtained, independently of 

the method used (Table 4, entries 8 and 9). 

It is well-known that the mechanism of the Suzuki cross-coupling is analogous to the 

catalytic cycle for the other cross-coupling reactions (as briefly shown in Section 2.2.2), 

involving the oxidative addition of the -bromofuranone I.8 to the Pd(0) species to form the 

Pd(II), transmetalation between Pd(II) and the borate  organo boronic acids do not 

transmetalate to the Pd(II) complexes, although the corresponding ate-complex readily 

undergoes transmetalation  and reductive elimination to form the C-C bond (Scheme 28).24 

 

 

 

Scheme 28. Synthesis of -aryl substituted furanones. 
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To access the -aryl -butyrolactones I.10, the hydrogenation of the crude Suzuki 

cross-coupling products I.9 was accomplished in a mixture of MeOH/EtOAc (3:2) at rt using 

Pd/C 10% as catalyst under 1 atm of H2 (Table 4). In most cases, the desired products were 

isolated in good yields, however it is worth pointing out that in some cases, after “long” 

reaction times (15 h), some of the butyrolactones were converted to the corresponding 

ring-opening products (-hydroxymethyl ester). 

 

Table 4. Synthesis of -aryl substituted -butyrolactones. 

 

Entry Method  Ar I.9 (yield[a]) I.10 (yield[b]) 

1 A 
 

I.9a (57%) I.10a (41%) 

 

2 

 

 

B 

 

 

I.9b (54%) 

 

I.10b (29%) 

3 A 
 

I.9c (68%) I.10c (48%) 

4 B 

 

I.9d (70%) I.10d (55%) 

5 B 

 

I.9e (30%) I.10e (29%) 

 

6 

 

B 

 

 

I.9f (23%) 

 

I.10f (17%) 

 

7 

 

B 

 

 

I.9g (46%) 

 

I.10g (34%) 

8 A or B 
 

I.9h (0%) 

9 A or B 
 

I.9i (0%)  

Method A: I.8 (1 equiv), Pd(PPh3)4 (0.05 equiv), ArB(OH)2 (1.5 equiv), Na2CO3 (2 equiv), benzene/H2O (3:1), 

30 min (μW), 100 °C. Method B: I.8 (1 equiv), PdCl2(PPh3)2 (0.05 equiv), ArB(OH)2 (2 equiv), KF (3 equiv), 

AliquatTM 336 (0.05 equiv), toluene/H2O (1:1), 30 min (μW), 110 °C. [a] Determined by NMR. [b] Isolated yield. 
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4.2.2. Synthesis of alkyl lactones 

 

 Once we have accomplished the synthesis of the -aryl -butyrolactones, the access to 

-alkyl substituted -butyrolactones I.13 was achieved by alkylation of the commercially 

available -butyrolactone I.11. After initial formation of the lithium enolate of I.11 by 

treatment with LiHMDS (1.1 equiv) in THF at 78 ºC, the resulting enolate was quenched 

with an alkyl halide, e.g. benzyl and cinnamyl bromide, leading to the formation of the 

corresponding alkylated products I.13a and I.13b in 46% and 71%, respectively (Table 5, 

entries 1 and 2).44 However, this approach seemed to be unsuccessful with propargyl chloride 

(Table 5, entry 3). Indeed, even after adding 1 equivalent of NaI to the reaction mixture or 

raising the reaction temperature, we were not able to isolate any of the desired product. The 

yields are summarized in the Table 5. 

 

Table 5. Alkylation of -butyrolactone. 

 

Entry I.12 I.13 R Yield[a] (%) 

1 
 

I.13a 
 

46 

2 
 

I.13b 

 

71 

3 

 

I.13c 
 

0 

[a] Isolated yield. 

 

4.2.3. Formation of cyclic allyl enol carbonates 

 

 Having the -substituted -butyrolactones in hands, they were transformed into their 

corresponding allyl enol carbonates using the method developed by Trost et al.57 After 

treatment of I.10 and I.13 by NaHMDS (1.2 equiv), TMEDA (3 equiv) in THF at 78 ºC, the 

sodium enolate was generated and quenched with allyl chloroformate at low temperature 

(78 ºC). As listed in the Table 6, a variety of allyl enol carbonates were synthesized in 

modest to excellent yields. 
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 The major inconvenience in the synthesis of allyl enol carbonates is the competition 

between the O- and the C-acylation process. As a matter of fact, the generation of the allyl 

carboxylate byproduct was observed in a few reactions in a lesser or greater extent, depending 

on the substrate. Curiously, in the case of the lactones substituted by aryl groups bearing 

electron-withdrawing groups (Table 6, entries 6 and 7), the C-acylated products I.15f, and 

I.15g were exclusively obtained in 58% and 47% yield, respectively, even by performing the 

reaction in a coordinating solvent such as THF in the presence of TMEDA, which should 

stabilize the charge separated ion-pairs and favor the formation of the O-acylated product. On 

the other hand, it is comprehensible that the C-acylation might take place more easily than the 

O-acylation for these substrates, since there is a better stabilization of the negative charge at 

C2 due to the presence of the aromatic ring containing electron-withdrawing groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Synthesis of the Pd-DAAA precursors. 
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Entry R I.14 (yield[a]) I.15 (yield[a]) 

1 
 

I.14a (94%) I.15a (0%) 

 

2 

  

 

I.14b (62%)  

 

I.15b (0%) 

3 
 

I.14c (70%) I.15c (0%) 

4 

 

I.14d (10%) I.15d (0%) 

5 

 

I.14e (32%) I.15e (0%) 

 

6 

 

 

I.14f (0%) 

 

I.15f (58%) 

 

7 

 

 

I.14g (0%) 

 

I.15g (47%) 

8 

 

I.14h (33%) I.15h (0%) 

 

9 

 

 

I.14i (44%) 

 

I.15i (0%) 

[a] Isolated yield. 

 

 

 

 

 

 

 

 

 

4.3. Optimization of the Pd-DAAA conditions for cyclic allyl enol carbonates 
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To test our hypothesis and to access enantioenriched all-carbon -quaternary 

-butyrolactones, we decided to initiate our study by engaging the allyl enol carbonate I.14a 

in a reactivity and enantioselectivity screening through an array of chiral ligands, solvents, 

temperatures and palladium sources. 

The influence of the ligand was initially investigated by subjecting the model allyl 

enol carbonate I.14a to the palladium-catalyzed decarboxylative asymmetric allylic alkylation 

conditions using Pd2(dba)3.CHCl3 (5 mol %) as the source of palladium and a variety of chiral 

ligands (Table 7, entries 1-11) in THF at 0 ºC. 

All the reactions afforded the corresponding ,-disubstituted -butyrolactone I.16a 

in good to excellent yields ranging from 80% to 99%, independently of the ligand used. 

Interestingly, the ligands commonly used in this type of transformation, including the 

N,P chelating chiral phosphinoxazoline ligands (PHOX) such as t-Bu-PHOX (S)-L4 and 

iPr-PHOX (S)-L5, the axially dissymmetric C2-chiral diphosphine ligands such as (R)-L6, 

DIOP (R,R)-L7, SEGPHOS (S)-L8, and BINAP (S)-L9, and the diphosphines exhibiting 

either central, and planar or only planar chirality such as PHANEPHOS (pR)-L11 and 

JOSIPHOS (pS,R)-L10 (Table 7, entries 4-11) induced lower levels of selectivity compared to 

the C2-symmetric chiral ligands, derived from 2-diphenylphosphinobenzoic or 1-naphthoic 

acid and scalemic diamines developed by Trost, (R,R)-L1, (R,R)-L2, and (R,R)-L3, (Table 7, 

entries 1-3). Among the eleven chiral ligands tested, the DACH phenyl Trost ligand (R,R)-L1 

led to the best results, affording the allylated -butyrolactone I.16a in 98% yield and 77% ee 

(Table 7, entry 1). 

 

 

 

 

 

 

 

 

 

 

Table 7. Influence of the ligand.[a] 
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Entry Ligand Yield[b] (%) ee[c] (%) 

1 (R,R)-L1 98 77 

2 (R,R)-L2 85 64 

3 (R,R)-L3 99 55 

4 (S)-L4 83 12 

5 (S)-L5 95 7 

6 (R)-L6 80 10 

7 (R,R)-L7 98 4 

8 (R)-L8 92 -2 

9 (R)-L9 95 -9 

10 (pS,R)-L10 92 0 

11 (pR)-L11 94 0 

 
[a] All the reactions were performed on 0.1 mmol. [b] Isolated yield. [c] Determined by SFC analysis. 
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 As reported in Table 7, the choice of the ligand appeared to be crucial for achieving 

high selectivities. However, besides the ligand, other parameters, such as the palladium 

catalyst, may be equally important to ensure the success of this reaction. Therefore, the 

influence of the source of palladium in the overall efficacy of the reaction was evaluated 

(Table 8). 

 

Table 8. Influence of the source of palladium.[a] 

 

Entry [Pd2] t (h) Yield[b] (%) ee[c] (%) 

1 Pd(OAc)2 24 91 77 

2 Pd2(dba)3.CHCl3 3 98 77 

[a] All the reactions were performed on 0.1 mmol. [b] Isolated yield. [c] Determined by SFC analysis. 

 

Interestingly, the treatment of the allyl carbonate with Pd(OAc)2 (Table 8, entry 1) 

afforded the same enantioselectivity (ee = 77%) and a comparable reaction yield of 91% 

(Table 8, entry 2). However, the Pd2(dba)3.CHCl3 appeared to be more efficient as a complete 

conversion of I.14a was observed after only 3 h versus 24 h when the Pd(OAc)2 was utilized. 

The longer reaction time with Pd(OAc)2 precursor can be explained by the fact that the latter 

needs to get to be reduced in situ into a Pd(0), which is the active species able to promote the 

Pd-DAAA process. According to Amatore, Jutand et al.,65  a mixture of Pd(OAc)2 and a 

phosphine spontaneously evolves in the formation of the Pd(0) complex. Ozawa, Hayashi 

et al. proved that the presence of H2O was essential for the quantitative formation of the 

Pd(0), as the use of water-free solvents results in lower conversions.66 It is worth pointing out 

that in our case, all the reactions were performed in the absence of purposely added H2O, 

however residual H2O in the carefully distilled THF may be responsible for the formation of 

the active Pd(0) species and, consequently allowing the formation of the allylated 

-butyrolactone I.16a. 

 

 

                                                        
65 Amatore, C.; Carré, E.; Jutand, A.; M’Barki, M. A. Organometallics 1995, 14, 1818. 

66 Ozawa, F.; Kubo, A.; Hayashi, T. Chem. Lett. 1992, 21, 2177. 
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After screening the sources of palladium, we systematically investigated the 

Pd-DAAA by varying the solvent under otherwise identical conditions (Table 9). We could 

notice that the solvent had a significant impact on both the enantiomeric excess and the yield. 

As a matter of fact, by performing the reaction in THF resulted in the formation of the 

allylated product I.16a in 98% yield and 77% ee (Table 9, entry 1), while running the reaction 

in hexane led to a decrease in both the yield (35%) and the ee (29%) (Table 9, entry 2). 

Otherwise, the reaction proceeded with comparable good yields and enantioselectivities in 

solvents of a wide polarity range, such as toluene, Et2O and DMF (Table 9, entries 4, 5 and 7, 

respectively). However, we were not able to improve the enantioselectivities. Ultimately, 

among all the solvents examined, THF appeared to be the one that offered the highest 

enantioselectivity. Decreasing the reaction temperature from 0 ºC to 78 ºC, under otherwise 

identical conditions, allowed a slight improvement of the ee, which reached 80% (Table 9, 

entry 9). 

 

Table 9. Solvent and temperature effect.[a] 

 

Entry Solvent T (ºC) t (h) Yield[b] (%) ee[c] (%) 

1 THF 0 3 98 77 

2 Hexane 0 24 35 29 

3 MeCN 0 1 94 56 

4 PhMe 0 3 87 64 

5 Et2O 0 1 97 65 

6 MeOAc 0 3 97 67 

7 DMF 0 3 87 69 

8 CH2Cl2 0 3 72 70 

9 THF 78 ºC 3 89 80 

[a] All the reactions were performed on 0.1 mmol. [b] Isolated yield. [c] Determined by SFC analysis. 

 

 

 

 

4.4. Reaction scope of the cyclic allyl enol carbonates 



 

 
 

95 

 

After the identification of the best set of reaction conditions (5 mol % of 

Pd2(dba)3.CHCl3 and 10 mol % of (R,R)-L1 in THF at 78 ºC), the reaction scope was 

examined by applying these optimized reaction conditions to various -aryl (I.14a-e) 

substituted allyl enol carbonates (Scheme 29). In all cases, the total conversion of the starting 

materials to the corresponding -quaternary -butyrolactone I.16 was observed. These 

butyrolactones were isolated in excellent yields ranging from 78% to 99%, and good to 

excellent enantioselectivities (up to 90%). Interestingly, the allyl enol carbonates bearing an 

aryl group containing strong electron-donating substituents such as two methoxy groups 

(I.14e) furnished a lower ee value (48%) than substrates possessing an aryl group substituted 

by an alkyl group (I.14c-d), which afforded an average ee of 70%. 

 

 

 

Scheme 29. Scope of the reaction with aryl containing allyl enol carbonate. 

  

 

 

 

The synthesized -alkyl substituted allyl enol carbonates I.14i-h were equally 

engaged in the asymmetric allylation process (Scheme 30). The corresponding -alkyl 
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-butyrolactones I.16f-g could be isolated in good yields of 87% (I.16f) and 76%(I.16g). 

However, in general, the -alkyl substituted allyl enol carbonates I.14i-h gave lower ee 

values than the -aryl substituted ones (I.14a-e), which varied between 43% and 55%. 

 

 

 

Scheme 30. Scope of the reaction with alkyl containing allyl enol carbonate. 

 

4.5. Reaction scope of the allyl carboxylates 

 

As mentioned in Section 3.2, allyl enol carbonates and allyl carboxylates have a 

similar underlying mechanism. Therefore, we comforted the idea that our optimized reaction 

conditions would also be applicable to the ally carboxylates into the formation of 

-quaternary -butyrolactones. To check this hypothesis, we subjected the various allyl 

carboxylates I.15.f-g to the identical Pd-DAAA conditions (Scheme 31). As expected, each 

substrate smoothly underwent decarboxylative asymmetric allylation to form the 

corresponding -quaternary--butyrolactones I.16h-i in good yields. While I.16h was 

obtained with a high enantiomeric excess (92%), we were not able to determine the ee of I.14i 

by SFC analysis. Most importantly, these results revealed a plausible alternative route to 

access the valuable chiral -butyrolactones using our optimized catalytic system, since the 

allyl carboxylates can be readily synthesized. 
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Scheme 31. Scope of the reaction with allyl carboxylates. 

 

 These results could lend credence that a more stable transient enolate may have a 

better degree of enantiodifferentiation, by trivial comparison of substrates bearing 

electron-rich aromatic substituents or alkyl groups versus substrates bearing 

electron-withdrawing groups. However, this is a simple extrapolation without any further 

experimental support since we have not compared both allyl enol carbonates and allyl 

carboxylates bearing the same -substituent group. 

 

4.6. Exocyclic allyl enol carbonates 

 

To broaden the scope, we envisaged to perform the first palladium-catalyzed 

decarboxylative asymmetric allylic alkylation of exocyclic allyl enol carbonates derived from 

-acyl -butyrolactones, synthesized using three different strategies. 

 

4.6.1. Synthesis of exocyclic allyl enol carbonates 

 

The exocyclic allyl enol carbonates were prepared starting from the commercially 

available -butyrolactone I.11 using three different strategies. At first, the 

-butyrolactone I.11 was treated with LDA (THF, 78 ºC), followed by the addition of the 

crotonaldehyde to the enolate to form the hydroxylactone I.17 (75%). After an oxidation step 

using the Dess-Martin periodinane reagent (DMP) in CH2Cl2 at rt, the corresponding 

ketolactone I.18 was isolated in 94% yield. The latter was transformed into the desired allyl 
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enol carbonate I.19a (37%), after treatment with NaHMDS in the presence of TMEDA, 

followed by the addition of allyl chloroformate, in 26% overall yield (Scheme 32).67 

 

 

 

Scheme 32. Synthesis of allyl enol carbonates derived from -acyl -butyrolactones. 

 

In an effort to improve the synthetic route to -acyl -butyrolactones, a more 

straightforward strategy was envisioned. This approach relies on the direct C-acylation of the 

-butyrolactone I.11 with an acyl chloride, followed by the transformation of the resulting 

-ketolactone I.20 into the allyl enol carbonate I.19 by using the usual O-acylation conditions 

(NaHMDS, TMEDA, allyl chloroformate, THF, 78 ºC) (Table 10). 68  In this second 

approach, the desired allyl enol carbonates I.19b-d were obtained, albeit disappointingly 

lower overall yields ranging from 13% to 24%, with the Z-isomer as the major product. The 

C-acylation step, contradictory to the results reported in the literature, revealed inefficient in 

the generation of the desired -ketolactone. Actually, in most cases, the major product 

revealed to be the di-C-acylated products. 

 

 

 

 

 

 

 

 

 

 

 

                                                        
67 (a) Petrovic, D.; Bruckner, R. Org. Lett. 2011, 13, 6524; (b) Sai, H.; Ogiku, T.; Ohmizu, H. Tetrahedron 

2007, 63, 10345. 

68 Jiang, X.; Fu, D.; Zhang, G.; Cao, Y.; Liu, L.; Song, J.; Wang, R. Chem Commun. 2010, 46, 4294. 
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Table 10. Synthesis of allyl enol carbonates derived from -acyl -butyrolactones. 

 

Entry R I.20 (Yield[a]) I.19 (Yield[a]) Z/E[b] 

1 
 

I.20a (39%) I.19b (34%) 95:5 

2 
 

I.20b (42%) I.19c (58%) 96:4 

3 
 

I.20c (18%) I.19d (80%) 66:34 

[a] Isolated yield. [b] Determined by 1H NMR analysis. 

 

Since the desired allyl enol carbonates were obtained in low yields, a third approach 

was envisioned. The third strategy relied on a sequential one-pot C-acylation/O-acylation 

(Table 11). The synthesis of I.19 began with the generation of the sodium enolate 

(NaH, THF) of the -butyrolactone I.11 which was engaged in a Claisen condensation with an 

ethyl ester. The resulting -ketoester intermediate was subsequently deprotonate by the 

sodium ethoxide which is generated in situ as a result of the Claisen condensation. The 

resulting -ketoester anion was quenched with allyl chloroformate in the presence of TMEDA 

at 78 ºC to promote the O-acylation resulting in the formation of the allyl enol carbonate 

I.19e-f in moderate overall yields of 38% and 43%. Even if the yields were slightly better 

than the ones previously obtained, it appeared that this method was the most convenient and 

straightforward pathway to access the desired allyl enol carbonates. 
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Table 11. One-pot synthesis of allyl enol carbonates. 

 

Entry R I.19 Yield[a] (%) 

1 H I.19e 38 

2 CF3 I.19f 42 

[a] Isolated yield. 

 

4.7. Optimization of the Pd-DAAA conditions for exocyclic allyl enol carbonates 

 

By subjecting the newly synthesized exocyclic allyl enol carbonates to our previously 

optimized Pd-DAAA conditions (5 mol % of Pd2(dba)3.CHCl3 and 10 mol % of (R,R)-L1 in 

THF at 78 ºC), a change in the reactivity was observed  comparing to cyclic allyl enol 

carbonates I.14  as these allyl enol carbonates II.19 appeared to be unreactive under such 

conditions. This lack of reactivity is not surprising considering that the transient enolate, 

generated in situ during the Pd-DAAA process, is a stabilized nucleophile with the negative 

charge delocalized on both carbonyl groups, thus turning this latter less reactive than its 

non-stabilized counterpart. Consequently, in order to find the best set of reaction conditions, a 

brief screening of the reaction conditions was carried out, using the exocyclic allyl enol 

carbonate I.19b as a model substrate. This substrate was treated with 5 mol % of 

Pd2(dba)3.CHCl3 and 10 mol % (R,R)-L1 in THF at different temperatures (Table 12). This 

investigation revealed that raising the temperature from 78 ºC to 20 ºC allowed the allyl 

enol carbonate I.19b to undergo the decarboxylative asymmetric allylation in good yield and 

enantioselectivity (83% yield and ee = 74%) (Table 12, entry 2). However, by increasing the 

reaction temperature to 0 ºC led to a slightly lower enantioselectivity (ee = 72%) and, 

curiously, also decreased reaction yield to 75% versus 83% (Table 12, entry 3). As a 

consequence, we have established the best reaction conditions to transform I.19b into I.20a, 

e.g. by using 5 mol % of Pd2(dba)3.CHCl3 and 10 mol % (R,R)-L1 in THF at 20 ºC. 
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Table 12. Influence of the temperature. 

 

Entry T (ºC) Yield[a] (%) ee[b] (%) 

1 78 NR - 

2 20 83 74 

3 0 75 72 

[a] Isolated yield. [b] Determined by SFC analysis. 

 

4.8. Reaction scope of exocyclic allyl enol carbonates 

 

The use of our optimal Pd-DAAA conditions to the exocyclic allyl enol carbonates 

I.19 gave rise to the desired -quaternary -butyrolactones in high yields ranging from 83% 

and 98%, and good to excellent enantioselectivities, superior to 60% and up to ee = 94% 

(Scheme 33). The structural diversity and heterogeneity in the obtained results made the 

rationalization slightly challenging. Both steric and electronic effects induced by the 

-substituent to the carbonate appeared to have a significant impact not only on the 

enantioselectivity but also on the overall reactivity. 
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a Enantiomeric excess determined after chemical derivatization. b The allyl enol substrate was synthesized from 

the commercially available -acetyl -butyrolactone following the usual procedure. 

 

Scheme 33. Scope of the reaction with exocyclic allyl enol carbonates. 

 

In the case of benzoyl-containing substrates such as I.19b-d, a better 

enantioselectivity was observed with electron-rich aromatic substituents (I.19c) than with 

electron-deficient ones (I.19d). Nonetheless, this comparison is not absolutely accurate since 

the E/Z ratios of the allyl enol carbonates I.19c (Z/E = 96:4) and I.19d (Z/E = 66:34) are 

totally different. As the geometry of the preformed enolate intermediate can also influence the 

selectivity and the reactivity (cf Appendix 1). So, it is difficult to have a clear understanding 

of which parameter is contributing the most to the enantioselectivity enhancement. 

Steric effects seemed to play a more important than the electronic effects. This is, 

particularly, the case for substrates bearing an alkyl side chain (I.19f-g). Indeed, a slightly 

increase in the enantiomeric excess was observed as the size of the acyl chain became 

sterically less demanding. As a matter of fact, the allyl enol carbonate I.19f bearing a CF3 

group afforded the corresponding allylated -butytolactone in lower ee value (ee = 60%) than 

the allyl enol carbonate I.19g containing a smaller CH3 group (ee = 67%). Replacing the alkyl 

chain by an even less hindering group, such as a hydrogen (I.19e), led to a sharp improvement 

in the enantiomeric excess, as the product was obtained in up to 94% ee. 

 



 

 
 

103 

4.9. Intramolecular versus intermolecular asymmetric allylation 

 

In an effort to further improve the asymmetric allylation method, we next evaluated 

whether a change in the enantioselectivity would be observed by running the asymmetric 

allylation of a preformed enolate in an intermolecular fashion, using an external source of 

allyl, instead of using an allyl enol carbonate (Scheme 34).59, 69 

Interestingly, both the yield and the ee remained roughly unchanged whether the 

reaction was performed on the allyl enol carbonate (Scheme 34, Method A) or on the -acyl 

-butyrolactone using allyl acetate as the allyl donor (Scheme 34, Method B). In addition, it is 

worth pointing out that the nature of the base did not have an impact on the enantioselectivity, 

as both Na2CO3 and Li2CO3 led to similar ee values. Nonetheless, this intermolecular 

approach seemed much more appealing, since it does not require the synthesis of the allyl 

enol carbonate and can afford diversely substituted -quaternary -butyrolactones by simply 

changing the allyl donor. 

 

 

 

Scheme 34. Intramolecular versus intermolecular asymmetric allylation. 

 

 

 

 

                                                        
69 Trost, B. M. Tetrahedron 2015, 71, 5708. 
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4.10. Origin of enantioselectivity 

 

A great deal of work has been devoted in developing a mechanistic understanding of 

the diphenylphosphino benzoic acid (DPPBA) based palladium-catalyzed asymmetric allylic 

alkylation. In particular, Trost’s group has coupled mechanistic insights with a working 

model for predicting the stereochemical outcome of the allylations.70 

Given the mechanism (discussed in Section 3.2), the seven-membered reductive 

elimination step was identified as the enantiodetermining step which will, thus, define the 

resulting stereochemistry outcome of the product. Using a ground state minimized 

conformation and assuming a 1:1 ratio of Pd/Trost ligand (R,R)-L1, a simplified cartoon 

model of the chiral pocket was developed (Figure 9).71 In this conformation, two phenyl 

“walls” are approximately perpendicular to the other two phenyl “flaps”. As illustrated in this 

model, this creates a chiral environment where the back right and front left are effectively 

blocked, allowing the quadrants to be differentiated on steric basis. 

 

 

 

Figure 9. Cartoon model representation. 

 

Considering the allylation of the corresponding enolate of I.14a following this model, 

we can assume that the preferred transition state will place the sterically “bulky” aryl ring 

under the flap rather than close to the wall (Figure 10). Then, minimizing the steric 

interactions between the enolate and the ligand differentiates the two enantiotopic faces of the 

enolate. Hence, this analysis predicts the (R) stereochemistry which was further confirmed by 

comparison of the optical rotation of its two enantiomers. Since the []D value obtained for 

compound I.16a, the []20
D = +120 (c 0.21, CH3Cl, ee = 80%), has the opposite sign to the 

                                                        
70 (a) Lloyd-Jones, G. C.; Stephen, S. C.; Fairlamb, I. J. S.; Aina Martorell, B. D.; Tomlin, P. M.; Murray, M.; 

Fernandez, J. M.; Jeffery, J. C.; Riis-Johannessen, T.; Guerziz, T. Pure Appl. Chem. 2004, 76, 589; (b) Trost, 

B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545; (c) Trost, B. M.; Vranken, D. L. V.; Bingel, C. J. Am. 

Chem. Soc. 1992, 114, 9327. 

71 Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747. 
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(S)-I.16a assigned by Buchwald and Spielvogel,34 []20
D = 7.6 (c 1.6, CH3Cl, ee = 83%), we 

concluded that the absolute configuration for I.16a synthesized through our method is (R), 

which is in line with the prediction of the cartoon model. 

 

 

 

Figure 10. Stereochemistry prediction of I.16a. 

 

4.11. Post-functionalization: the synthesis of spirocyclic compounds 

 

The spirocyclic motif is found in a variety of natural products and it has become more 

prevalent as a template in drug candidates. The synthesis of spirocyclic compounds have been 

the focus of many chemists, due to their biological activities, but also to the challenge of 

generating spiro quaternary centers and/or multiple chiral centers. 72  In this context, we 

decided to demonstrate the synthetic utility of the compounds that we have obtained through 

the Pd-DAAA process. Our first strategy to access such spirocyclic scaffolds relied on a 

Pd-DAAA applied to the allyl enol carbonate I.19a followed by a ring-closing metathesis in 

the presence of the second generation Hoveyda-Grubbs catalyst (G-H II), affording the 

desired spirolactone I.21 in 88% overall yield without any erosion of the enantiomeric excess 

(Scheme 35).73 

                                                        
72 (a) Smith, L. K.; Baxendale, I. R. Org Biomol Chem 2015, 13, 9907; (b) Singh, G. S.; Desta, Z. Y. Chem. 

Rev. 2012, 112, 6104; (c) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023. 

73 Lafaye, K.; Nicolas, L.; Guerinot, A.; Reymond, S.; Cossy, J., Org. Lett. 2014, 16, 4972. 
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Scheme 35. Application of the Pd-DAAA to the synthesis of spirocyclic compound. 

 

The second method utilized to prepare spirocycles allowed the access to spirocyclic 

tetrahydrofuran. This strategy started with the formation of compound I.20b through a 

decarboxylative asymmetric allylation, followed by a Luche reduction by using NaBH4 and 

CeCl3.7H2O in a 1:1 mixture of CH2Cl2/MeOH, providing a 4:1 diastereomeric mixture of the 

hydroxy -butyrolactone I.22 in 66% yield (Scheme 36).74 The resulting alcohol I.22 was, 

subsequently, engaged in a diastereoselective iodocyclization with N-iodosuccinimide (NIS) 

in the presence of a silyl enol ether.75 The stereoselective cyclization proceeded smoothly 

affording two spirocyclic compounds trans-I.23 and cis-I.23 in 87% yield isolated from a 

mixture of trans/cis-I.22 (dr = 3.5:1); the dr was determined by 1H NMR analysis of the 

crude. The relative configuration of the two newly formed stereocenters was assigned by a 

chemical correlation established by NMR spectroscopy (NOESY). 

 

 

 

Scheme 36. Application of the Pd-DAAA to the synthesis of spirocyclic tetrahydrofuran. 

 

                                                        
74 Pohmakotr, M.; Pinsa, A.; Mophuang, T.; Tuchinda, P.; Prabpai, S.; Kongsaeree, P.; Reutrakul, V. J. Org. 

Chem. 2006, 71, 386. 

75 Fujioka, H.; Maehata, R.; Wakamatsu, S.; Nakahara, K.; Hayashi, T.; Oki, T. Org. Lett. 2012, 14, 1054. 
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A plausible explanation for the reaction mechanism has been proposed by Bartlett and 

Rychnovsky (Scheme 37).76 Initially, the silyl enol ether I.24 gets activated by NIS (“I+”) and 

reacts with the alcohol I.22 to give the intermediate I.25. According to this mechanistic 

proposal, the minor product trans-I.23 should be generated through a high-energy transition 

state due to the unfavorable 1,2-steric interactions. On the other hand, the cis-I.23 should be 

obtained favorably as a result of a lower energy barrier. However, considering the moderate 

selectivity obtained in this process, two hypotheses can be raised: either the silyl enol ether is 

not bulky enough or the 1,2-steric interaction between the aryl ring and the iodomethylenic 

moiety is higher in energy than the 1,2-interaction between the TMS and the iodomethylene. 

Consequently, the diastereomeric ratio observed through this approach is similar to any 

traditional halocyclization without the silyl enol ether, producing the thermodynamically 

more stable trans-2,5-THF derivative as the major product. 

 

 

 

Scheme 37. Iodocyclization mechanism proposed by Bartlett and Rychnovsky. 

 

 

 

 

 

 

                                                        
76 Rychnovsky, S. D.; Bartlett, P. A., J. Am. Chem. Soc. 1981, 103, 3964. 
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5. Conclusion 

 

The development of a palladium-catalyzed decarboxylative allylic alkylation protocol 

applied to allyl enol carbonates has allowed a highly enantioselective access to a range of 

-butyrolactones bearing an all-carbon -quaternary stereogenic center. Remarkably, the use 

of the cyclic and exocyclic allyl enol carbonates appeared to be sensitive to stereoelectronic 

considerations. However, despite the drawbacks, this approach allowed the extension of the 

Pd-DAAA to substrates with no precedent in the literature, such as the exocyclic allyl enol 

carbonates. Alternatively, we have demonstrated that all-carbon -quaternary 

-butyrolactones could also be achieved without erosion of the enantioselectivity and in a 

straightforward fashion via the intermolecular asymmetric Tsuji-Trost reaction, since this 

approach does not require the preparation of the challenging allyl enol carbonates. In addition, 

a greater structural diversity can be introduced by the use of different allyl donors. The 

Pd-DAAA process was eventually used for the synthesis of chiral spirolactones, which were 

readily obtained in high yields and in high optical purity.77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
77 Nascimento de Oliveira, M.; Fournier, J.; Arseniyadis, S.; Cossy, J. Org. Lett. 2017, 19, 14. 
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All reactions were run under an argon atmosphere in oven-dried glassware unless 

otherwise specified. All commercially available compounds were purchased from Aldrich 

Chemical Co. and used as received. Dichloromethane (CHCl2) was distilled from calcium 

hydride. Tetrahydrofuran (THF) and diethyl ether (Et2O) were distilled from 

sodium/benzophenone. N,N-dimethylformamide (DMF) was distilled under vacuum over 

anhydrous MgSO4. 

Analytical thin layer chromatography (TLC) was performed on silica gel plates 

(Merck 60F254) visualized either with a UV lamp (254 nm) or by using solutions of 

p-anisaldehyde/sulfuric acid/acetic acid in ethanol or KMnO4/K2CO3 in water followed by 

heating. Flash chromatography was performed on silica gel (230-400 mesh). 

The experiences under microwave irradiation were performed in an Initiator Biotage 

TM EXP (0-400 W, 2.45 GHz) apparatus. 

Melting points (Mp) were recorded using a Wagner & Munz Kofler bench. 

Infrared spectra (IR) were recorded on a Bruker TENSOR™ 27 (IR-FT) with 

attenuated total reflectance (ATR) and wavenumbers are indicated in cm-1. 

1H NMR spectra were recorded on a Bruker AVANCE 400 at 400 MHz in CDCl3 

(unless otherwise specified) and the observed signals are reported as follows: chemical shift 

in parts per million from tetramethylsilane with the solvent as an internal indicator (CDCl3 δ 

7.26 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or 

overlap of non-equivalent resonances), integration. 13C NMR spectra were recorded at 100 

MHz in CDCl3 (unless otherwise specified) and the observed signals were reported as 

follows: chemical shift in parts per million from tetramethylsilane with the solvent as an 

internal indicator (CDCl3 δ 77.16 ppm), multiplicity on respect to proton (deduced from 

DEPT experiments, s = quaternary C, d = CH, t = CH2, q = CH3). Coupling constants (J) are 

reported in Hertz (Hz). All NMR spectra were obtained at room temperature unless otherwise 

specified. 

Mass spectra with electronic impact (EI–MS) were recorded with a Shimadzu 

GCM-QP 2010S gas chromatography-mass spectrometer. High-resolution mass spectra 

(HRMS) were performed by "Groupe de Spectrométrie de masse de l'Université Pierre et 

Marie Curie (Paris)". 

Optical rotations were determined using a Perkin Elmer 343 polarimeter. The 

enantiomeric excesses were determined by supercritical fluid chromatography (SFC) analysis 
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on a chiral stationary phase using a Minigram Berger SFC-Mettler Toledo apparatus. The sign 

before the ees values is arbitrary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Synthesis of α-aryl butyrolactones 
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2.1. Synthesis of 3-bromofuran-2(5H)-one (I.8) 

 

 

 

To a stirred solution of furan-2(5H)-one I.7 (3.00 g, 35.7 mmol, 1.0 equiv) in CCl4 (60 mL) 

was slowly added a solution of bromine (4.20 mL, 82.1 mmol, 2.3 equiv) in CCl4 (40 mL). 

The resulting reaction mixture was heated at reflux and after 4 h, the excess of bromine was 

removed by bubbling argon in the reaction mixture for 10 min. The resulting solution was 

cooled to 0 °C and treated, dropwise over 10 min, with Et3N (11.4 mL, 82.1 mmol, 2.3 equiv). 

Stirring was continued for one additional hour, and then the temperature was allowed to reach 

rt. The mixture was then washed with H2O (3 x 40 mL) and brine (40 mL), dried over 

anhydrous MgSO4, filtered and concentrated, under reduced pressure. The crude residue was 

finally purified by flash column chromatography over silica gel (PE/EtOAc = 7:3) to afford 

the desired product I.8 as light brown crystals (5.18 g, 89%). The spectroscopic and physical 

data of the product were identical to those reported in the literature.64 

 

IR (ATR): 3101, 1783, 1704, 1604, 1453, 1346, 1279, 1155, 1040, 988, 828 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.63 (t, J = 1.9 Hz, 1H, H3), 4.86 (d, J = 1.9 Hz, 2H, H2).  

13C NMR (100 MHz, CDCl3): δ 169.0 (s, C1), 149.4 (d, C3), 113.1 (s, C4), 71.6 (t, C2). 

 

2.2. General procedures for the synthesis of α-arylbutyrolactones (I.10a-g) 

 

 

 

Method A: To a solution of vinyl bromide I.8 (3.0 mmol, 1.0 equiv) in benzene (9 mL) was 

added the boronic acid (4.5 mmol, 1.5 equiv), Pd(PPh3)4 (0.15 mmol, 0.05 equiv) and a 

solution of Na2CO3 (6.0 mmol, 2.0 equiv) in 3 mL of distilled H2O. The reaction mixture was 

heated at 100 °C for 15 min under microwave irradiation (400 W). Then a saturated solution 

of brine was added and the aqueous phase was extracted with EtOAc (3 x 10 mL). The 
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combined organic layers were finally dried over MgSO4, filtered and concentrated under 

reduced pressure. The crude residue was then dissolved in anhydrous MeOH/EtOAc 3:2 (30 

mL) at rt and Pd/C 10% (0.30 mmol, 0.10 equiv) was added. The reaction mixture was stirred, 

under 1 atm of H2 for 15 h at rt. The mixture was finally filtered on Celite® (EtOAc) and the 

residue was purified by flash column chromatography over silica gel to afford the desired 

lactone I.10. 

 

Method B: To a solution of vinyl bromide I.8 (3.0 mmol, 1.0 equiv) in a 1:1 mixture of 

toluene/H2O (12 mL) was added boronic acid (6.0 mmol, 2.0 equiv), PdCl2(PPh3)2 (0.15 

mmol, 0.05 equiv), KF (9.0 mmol, 3.0 equiv) and Aliquat® 336 (0.015 mmol, 0.005 equiv). 

The reaction mixture was heated at 110 °C for 30 min under microwave irradiation (400 W). 

A saturated solution of brine was then added and the aqueous phase was extracted with 

EtOAc (3 x 10 mL). The combined organic layers were finally dried over MgSO4, filtered and 

concentrated under reduced pressure.2 The crude residue was then dissolved in anhydrous 

MeOH/EtOAc 3:2 (30 mL) at rt and Pd/C 10% (0.30 mmol, 0.10 equiv) was added. The 

reaction mixture was stirred, under 1 atm of H2 for 15 h at rt. The mixture was finally filtered 

over Celite® (EtOAc) and the residue was purified by flash column chromatography on silica 

gel to afford the desired lactone I.10.63 

 

α-Phenyl-γ-butyrolactone (I.10a)78 

 

 

 

Synthesized according to Method A. 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 8:2) as a clear oil (199 mg, 41%). 

 

Rf: 0.41 (PE/EtOAc = 8:2) 

IR (ATR): 2917, 1767, 1497, 1453, 1374, 1151, 1024 cm-1. 

                                                        
78 McElvian, S. M.; Laughton, P. M., J. Am. Chem. Soc. 1951, 73, 448. 
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1H NMR (400 MHz, CDCl3): δ 7.40-7.27 (m, 5H, HAr), 4.48 (td, J = 8.7, 3.3 Hz, 1H, H2), 

4.35 (td, J = 9.2, 6.7 Hz, 1H, H2’), 3.81 (dd, J = 10.2, 9.1 Hz, 1H, H4), 2.79-2.66 (m, 1H, H3), 

2.52-2.36 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 177.5 (s, C1), 136.8 (s, C5), 129.0 (d, 2C, C7), 128.0 (d, 2C, 

C6), 127.8 (d, C8), 66.6 (t, C2), 45.6 (d, C4), 31.7 (t, C3). 

HRMS (ESI) m/z: calcd for C10H10O2 [M+H]+: 163.0754, found: 163.0754. 

 

α-(1-Naphthyl)-γ-butyrolactone (I.10b) 

 

 

 

Synthesized according to Method B. 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 8:2) as a clear oil (185 mg, 29%). 

Rf: 0.33 (PE/EtOAc = 8:2) 

IR (ATR): 3049, 2911, 1766, 1598, 1511, 1373, 1211, 1153, 1025, 991, 952, 909 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.90 (dd, J = 7.7, 2.0 Hz, 2H, HAr), 7.83 (dt, J = 8.2, 1.0 Hz, 

1H, HAr), 7.60-7.40 (m, 4H, HAr), 4.56-4.44 (m, 3H, H3 and H4), 2.89 (m, 1H, H3), 2.47 (m, 

1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 177.9 (s, C1), 134.3 (s, C5), 133.3 (s, C9 or C14), 131.4 (s, C9 

or C14), 129.3 (d, CAr), 128.6 (d, CAr), 126.7 (d, CAr), 126.1 (d, CAr), 125.6 (d, CAr), 125.4 (d, 

CAr), 123.0 (d, CAr), 66.9 (t, C2), 43.0 (d, C4), 31.8 (t, C3). 

HRMS (ESI) m/z: calcd for C14H13O2 [M+H]+: 213.0910, found: 213.0910. 

 

 

 

 

 

 

α-(4-t-Butylphenyl)-γ-butyrolactone (I.10c) 
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Synthesized according to Method A. 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 9:1) as a clear oil (314 mg, 48%). 

 

Rf: 0.56 (PE/EtOAc = 8:2) 

IR (ATR): 2962, 2869, 1769, 1515, 1461, 1371, 1268, 1215, 1150, 1025 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.40 (dapp, J = 8.1 Hz, 2H, H7), 7.23 (dapp, J = 8.1 Hz, 2H, 

H6), 4.48 (td, J = 8.8, 3.3 Hz, 1H, H2), 4.35 (td, J = 8.8, 6.8 Hz, 1H, H2’), 3.80 (dd, J = 9.2, 9.0 

Hz, 1H, H4), 2.70 (m, 1H, H3), 2.46 (m, 1H, H3’), 1.32 (s, 9H, H10). 

13C NMR (100 MHz, CDCl3): δ 177.8 (s, C1), 150.7 (s, C8), 133.6 (s, C5), 127.7 (d, 2C, C6), 

126.0 (d, 2C, C7), 66.7 (t, C2), 45.2 (d, C4), 34.7 (s, C9), 31.7 (t, C3), 31.4 (q, 3C, C10). 

HRMS (ESI) m/z: calcd for C14H9O2 [M+H]+: 219.1377, found: 219.1380. 

 

α-(m-Tolyl)-γ-butyrolactone (I.10d) 

 

 

 

Synthesized according to Method B. 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 9:1) as a clear oil (290 mg, 55%). 

 

Rf: 0.51 (PE/EtOAc = 8:2) 

IR (ATR): 2915, 1765, 1608, 1491, 1456, 1372, 1213, 1148, 1025, 950 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.29-7.23 (m, 2H, HAr), 7.15-7.05 (m, 3H, HAr), 4.47 (td, J = 

8.2, 3.3 Hz, 1H, H2), 4.35 (td, J = 9.6, 7.2 Hz, 1H, H2’), 3.78 (tapp, J = 10.1, 9.0 Hz, 1H, H4), 

2.71 (m, 1H, H3), 2.44 (m, 1H, H3’), 2.36 (s, 3H, H11). 
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13C NMR (100 MHz, CDCl3): δ 177.7 (s, C1), 138.8 (s, C5), 136.7 (s, C9), 129.0 (d, C6), 128.8 

(d, C10), 128.6 (d, C8), 125.0 (d, C7), 66.7 (t, C2), 45.6 (d, C4), 31.8 (t, C3), 21.6 (q, C11). 

HRMS (ESI) m/z: calcd for C11H13O2 [M+H]+: 177.0911, found: 177.0910. 

 

α-(3,4-Dimethoxyphenyl)-γ-butyrolactone (I.10e)79 

 

 

 

Synthesized according to Method B. 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 7:3) as a clear oil (191 mg, 29%). 

 

Rf: 0.47 (PE/EtOAc = 6:4) 

IR (ATR): 2937, 2838, 1755, 1592, 1470, 1463, 1420, 1373, 1253, 1235, 1150, 1010, 950 cm-

1. 

1H NMR (400 MHz, CDCl3): δ 6.88-6.80 (m, 3H, HAr), 4.47 (td, J = 8.6, 3.3 Hz, 1H, H2), 

4.34 (td, J = 9.2, 6.6 Hz, 1H, H2’), 3.89 (s, 3H, H11 or H12), 3.87 (s, 3H, H11 or H12), 3.76 (dd, 

J = 9.9, 8.9 Hz, 1H, H4), 2.71 (m, 1H, H3), 2.44 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 177.7 (s, C1), 149.4 (s, C9), 148.7 (s, C8), 129.1 (s, C5), 120.1 

(d, C6), 111.5 (d, C10), 111.2 (d, C7), 66.6 (t, C2), 56.1 (q, C11 or C12), 56.0 (q, C11 or C12), 

45.2 (d, C4), 31.8 (t, C3). 

MS m/z (relative intensity): 222 (M+.,100), 178 (20), 163 (50), 147 (48), 135 (20), 115 (17), 

107 (67), 91 (60), 77 (40), 65 (21), 51 (51). 

 

 

 

α-(3,5-difluorophenyl)-γ-butyrolactone (I.10f) 

 

                                                        
79 Gu, J. X.; Holland, H. L. Synth. Commun. 1998, 28, 3305. 
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Synthesized according to Method B. 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 8:2) as clear oil (101 mg, 17%). 

 

Rf: 0.38 (PE/EtOAc = 7:3) 

IR (ATR): 3090, 2919, 1769, 1626, 1595, 1460, 1375, 1212, 1150, 1095, 1021, 855, 684 cm-

1. 

1H NMR (400 MHz, CDCl3): δ 6.90-6.82 (m, 2H, H6), 6.76 (tt, J = 8.8, 2.3 Hz, 1H, H8), 4.50 

(td, J = 8.9, 2.9 Hz, 1H, H2), 4.36 (td, J = 8.9, 2.9 Hz, 1H, H2’), 3.80 (dd, J = 10.8, 8.9 Hz, 1H, 

H4), 2.74 (m, 1H, H3), 2.43 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 176.1 (s, C1), 163.3 (s, 1JC-F = 236, 13.8 Hz, 2C, C7), 140.1 

(s, 3JC-F = 9.2 Hz, C5), 111.2 (d, 2JC-F = 12.2, 7.3 Hz, 2C, C6), 103.4 (d, 2JC-F = 25.9 Hz, C8), 

66.5 (t, C2), 45.0 (d, C4), 31.1 (t, C3). 

HRMS (ESI) m/z: calcd for C10H8F2O2Na [M+Na]+: 221.0385, found: 221.0385. 

 

α-(3,5-bis(trifluoromethyl)phenyl)-γ-butyrolactone (I.10g) 

 

 

 

Synthesized according to Method B. 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 8:2) as clear oil (302 mg, 34%). 

 

Rf: 0.35 (PE/EtOAc = 8:2) 

IR (ATR): 2915, 1766, 1598, 1459, 1420, 1371, 1211, 1150, 1025, 952, 855, 681 cm-1. 
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1H NMR (400 MHz, CDCl3): δ 7.92-7.76 (m, 3H, HAr), 4.56 (td, J = 8.4, 2.2 Hz, 1H, H2), 

4.41 (ddd, J = 10.9, 9.2, 6.3 Hz, 1H, H2’), 3.96 (dd, J = 11.5, 8.8 Hz, 1H, H4), 2.82 (m, 1H, 

H3), 2.51 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 175.7 (s, C1), 138.9 (s, C5), 132.4 (s, 2JC-F = 33.5 Hz, 2C, C7), 

128.5 (d, 3JC-F = 3.2 Hz, 2C, C6), 123.3 (s, 1JC-F = 273 Hz, 2C, C8), 122.0 (d, C9), 66.5 (t, C2), 

45.1 (d, C4), 31.2 (t, C3). 

HRMS (ESI) m/z: calcd for C12H8F6O2Na [M+Na]+: 321.0321, found: 321.0323. 

 

3. Synthesis of α-alkyl butyrolactones 

 

General procedures for the synthesis of α-alkyl butyrolactones (I.13a-b)44 

 

 

 

To a solution of LiHMDS (12.8 mL, 1.0 M in THF, 12.8 mmol, 1.1 equiv) in THF (103 mL) 

at 78 °C was added γ-butyrolactone (1.00 g, 11.6 mmol, 1.0 equiv) dropwise followed by the 

addition of alkyl bromide (13.9 mmol, 1.2 equiv). After 1 h, stirring was continued at 78 °C, 

the reaction was quenched with a saturated aqueous solution of NH4Cl, extracted with Et2O, 

dried over Na2SO4, filtered and concentrated under vacuum. The residue was purified by flash 

column chromatography on silica gel to afford the desired lactone. 

 

α-Benzyl-γ-butyrolactone (I.13a) 

 

 

 

I.13a was synthesized according to the method aforementioned from γ-butyrolactone (1.00 g, 

11.6 mmol, 1.0 equiv) and benzyl bromide (1.67 mL, 13.9 mmol, 1.2 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/EtOAc = 8:2) as 

a colorless oil (940 mg, 46%). 
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Rf: 0.35 (PE/EtOAc = 8:2) 

IR (ATR): 2914, 1770, 1603, 1495, 1454, 1374, 1203, 1184, 1145, 1049, 1020, 958, 915 cm-

1. 

1H NMR (400 MHz, CDCl3): δ 7.28-7.20 (m, 2H, HAr), 7.21-7.11 (m, 3H, HAr), 4.16 (td, J = 

8.8, 3.0 Hz, 1H, H2), 4.08 (td, J = 9.3, 6.7 Hz, 1H, H2’), 3.19 (dd, J = 13.6, 4.0 Hz, 1H, H5), 

2.78 (m, 1H, H4), 2.69 (dd, J = 13.6, 9.4 Hz, 1H, H5’), 2.18 (m, 1H, H3), 1.93 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 178.9 (s, C1), 138.5 (s, C6), 129.0 (d, 2C, C8), 128.8 (d, 2C, 

C7), 126.9 (d, C9), 66.7 (t, C2), 41.2 (d, C4), 36.2 (d, C5), 28.2 (t, C3). 

MS m/z (relative intensity): 176 (M+.,42), 148 (47), 147 (54), 131 (16), 117 (12), 104 (32), 91 

(100), 78 (9), 77 (8), 65 (21), 51 (10). 

 

α-Cinnamyl-γ-butyrolactone (I.13b) 

 

 

 

I.13b was synthesized according to the method aforementioned from γ-butyrolactone (1.00 g, 

11.6 mmol, 1.0 equiv) and cinnamyl bromide (2.06 mL, 13.9 mmol, 1.2 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/EtOAc = 9:1) as 

a colorless oil (1.658 g, 71%). 

 

Rf: 0.45 (PE/EtOAc = 9:1) 

IR (ATR): 3025, 2985, 2909, 1775, 1598, 1495, 1449, 1374, 1183, 1149, 1021, 967 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.39-7.28 (m, 4H, HAr), 7.23 (m, 1H, HAr), 6.49 (dapp, J = 15.7 

Hz, H7), 6.17 (dt, J = 15.7, 7.2 Hz, 1H, H6), 4.35 (td, J = 8.9, 3.2 Hz, 1H, H2), 4.21 (td, J = 

9.4, 6.8 Hz, 1H, H2’), 2.80-2.68 (m, 2H, H4 and H5), 2.52-2.33 (m, 2H, H5’ and H3), 2.06 (m, 

1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 178.9 (s, C1), 137.0 (s, C8), 133.1 (d, C7), 128.7 (d, 2C, C10), 

127.6 (d, C11), 126.3 (d, 2C, C9), 125.9 (d, C6), 66.7 (t, C2), 39.4 (d, C4), 33.7 (t, C5), 27.9 (t, 

C3). 
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MS m/z (relative intensity): 202 (M+.,50), 184 (2), 174 (12), 156 (6), 141 (4), 129 (71), 117 

(100), 104 (13), 91 (42), 77 (10), 65 (10), 51 (10). 

 

4. Synthesis of cyclic allyl enol carbonates 

 

General procedures for the synthesis of allyl enol carbonates (I.14a-e/h-i and I.15f-g) 

(Representative procedure) 

 

 

 

To a solution of NaHMDS (1.20 mL, 1.0 M in THF, 1.2 mmol, 1.2 equiv) in THF (9 mL) at 

78 °C was added TMEDA (0.45 mL, 3.0 mmol, 3.0 equiv). A solution of lactone (1.0 mmol, 

1.0 equiv) in THF (1 mL) was added dropwise. After 1 h at 78 °C, allyl chloroformate (0.32 

mL, 3.0 mmol, 3.0 equiv) was added, after 15 min, a saturated aqueous solution of NH4Cl 

was then added and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined 

organic phases were dried over MgSO4, filtered and evaporated under reduced pressure to 

afford a crude residue, which was purified by flash column chromatography on silica gel to 

afford the corresponding allyl enol carbonate I.14 or, eventually, the allyl carboxylate I.15. 

 

Allyl (3-phenyl-4,5-dihydrofuran-2-yl) carbonate (I.14a) 

 

 

 

I.14a was synthesized according to the method aforementioned from α-phenyl-γ-

butyrolactone I.10a (445 mg, 2.74 mmol, 1.0 equiv). The titled compound was obtained after 

flash column chromatography on silica gel (PE/EtOAc = 95:5) as colorless oil (634 mg, 

94%). 
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Rf: 0.58 (PE/EtOAc = 9:1) 

IR (ATR): 2922, 1784, 1679, 1617, 1247, 1209, 1103, 1021, 946, 843, 692 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.35-7.27 (m, 4H, H7 and H6), 7.19-7.12 (m, 1H, H8), 5.97 

(ddt, J = 17.2, 10.4, 5.8 Hz, 1H, H11), 5.42 (dq, J = 17.2, 1.4 Hz, 1H, H12), 5.34 (dq, J = 10.4, 

1.2 Hz, 1H, H12’), 4.75 (dt, J = 5.9, 1.3 Hz, 2H, H10), 4.56 (dd, J = 9.6, 8.8 Hz, 2H, H2), 3.14 

(dd, J = 9.6, 8.8 Hz, 2H, H3). 

13C NMR (100 MHz, CDCl3): δ 150.9 (s, C1), 149.9 (s, C9), 132.7 (s, C5), 130.7 (d, C11), 

128.6 (d, 2C, C7), 125.7 (d, C8), 125.2 (d, 2C, C6), 120.1 (t, C12), 94.2 (s, C4), 70.1 (t, C2), 

67.7 (t, C10), 30.8 (t, C3). 

HRMS (ESI) m/z: calcd for C14H14O4Na [M+Na]+: 269.0784, found: 269.0790. 

 

Allyl (3-(naphthalen-1-yl)-4,5-dihydrofuran-2-yl) carbonate (14.b) 

 

 

 

I.14b was synthesized according to the method aforementioned from α-(1-naphthyl)-γ-

butyrolactone I.10b (170 mg, 0.80 mmol, 1.0 equiv). The titled compound was obtained after 

flash column chromatography on silica gel (PE/EtOAc = 95:5) as a colorless oil (147 mg, 

62%). 

 

Rf: 0.71 (PE/EtOAc = 8:2) 

IR (ATR): 2970, 1775, 1710, 1509, 1453, 1370, 1246, 1205, 1088, 1028, 933, 802 cm-1.  

1H NMR (400 MHz, CDCl3): δ 8.04-7.98 (m, 1H, H13), 7.89-7.81 (m, 1H, H10), 7.77 (m, 1H, 

H8), 7.37 (m, 4H, H6 and H7 and H11 and H12), 5.77 (ddt, J = 17.2, 10.4, 5.8 Hz, 1H, H17), 

5.26-5.17 (m, 2H, H18), 4.69 (dd, J = 9.4, 8.8 Hz, 2H, H2), 4.55 (dt, J = 5.8, 1.3 Hz, 2H, H16), 

3.25 (dd, J = 9.4, 8.9 Hz, 2H, H3). 

13C NMR (100 MHz, CDCl3): δ 151.1 (s, C1), 150.1 (s, C15), 133.9 (s, 2C, C9 and C14), 131.8 

(s, C5), 130.6 (d, C17), 128.5 (d, C10), 127.8 (d, C8), 126.7 (d, CAr), 126.1 (d, CAr), 125.9 (d, 

CAr), 125.7 (d, CAr), 125.6 (d, CAr), 119.5 (t, C18), 93.5(s, C4), 69.7 (t, C2), 68.3 (t, C16), 34.4 

(t, C3). 
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HRMS (ESI) m/z: calcd for C18H16O4Na [M+Na]+: 319.0941, found: 319.0940. 

 

Allyl (3-(4-(tert-butyl)phenyl)-4,5-dihydrofuran-2-yl) carbonate (I.14c) 

 

 

 

I.14c was synthesized according to the method aforementioned from α-(4-t-butylphenyl)-γ-

butyrolactone I.10c (73 mg, 0.33 mmol, 1.0 equiv). The titled compound was obtained after 

flash column chromatography on silica gel (PE/EtOAc = 95:5) as a colorless oil (70 mg, 

70%). 

 

Rf: 0.58 (PE/EtOAc = 9:1) 

IR (ATR): 2963, 2869, 1773, 1607, 1514, 1461, 1368, 1250, 1206, 1153, 1024, 957, 829 cm-

1. 

1H NMR (400 MHz, CDCl3): δ 7.38-7.31 (m, 2H, H7), 7.28-7.21 (m, 2H, H6), 5.97 (ddt, J = 

17.2, 10.4, 5.8 Hz, 1H, H13), 5.43 (dq, J = 17.2, 1.4 Hz, 1H, H14), 5.34 (dq, J = 10.4, 1.2 Hz, 

1H, H14’), 4.74 (dt, J = 5.8, 1.4 Hz, 2H, H12), 4.54 (dd, J = 9.5, 8.8 Hz, 2H, H2), 3.13 (dd, J = 

9.6, 8.8 Hz, 2H, H3), 1.32 (s, 9H, H10). 

13C NMR (100 MHz, CDCl3): δ 130.8 (d, C13), 129.8 (s, C5), 125.5 (d, 2C, C6), 125.0 (d, 2C, 

C7), 94.1 (s, C4), 70.0 (t, C2), 67.6 (t, C12), 34.6 (s, C9), 31.4 (q, 3C, C10), 30.8 (t, C3). 

Note: The C1, C8 and C11 signals were not observed. 

HRMS (ESI) m/z: calcd for C18H22O4Na [M+Na]+: 325.1410, found: 325.1410. 

 

Allyl (3-(m-tolyl)-4,5-dihydrofuran-2-yl) carbonate (I.14d) 
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I.14d was synthesized according to the method aforementioned from α-(m-tolyl)-γ-

butyrolactone I.10d (190 mg, 1.1 mmol, 1.0 equiv). The titled compound was obtained after 

flash column chromatography on silica gel (PE/EtOAc = 95:5) as colorless oil (28 mg, 10%). 

 

Rf: 0.53 (PE/EtOAc = 9:1) 

IR (ATR): 2925, 1779, 1685, 1606, 1454, 1371, 1252, 1206, 1113, 1025, 942, 840, 784, 696 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.20 (t, J = 7.6 Hz, 1H, H7), 7.14-7.06 (m, 2H, H6 and H10), 

6.97 (m, 1H, H8), 5.96 (ddt, J = 17.1, 10.3, 5.8 Hz, 1H, H14), 5.42 (dq, J = 17.2, 1.5 Hz, 1H, 

H13), 5.33 (dq, J = 10.5, 1.2 Hz, 1H, H13’), 4.74 (dt, J = 5.8, 1.4 Hz, 2H, H15), 4.54 (dd, J = 

9.6, 8.8 Hz, 2H, H2), 3.13 (dd, J = 9.6, 8.8 Hz, 2H, H3), 2.33 (dapp, J = 0.7 Hz, 3H, H11). 

13C NMR (100 MHz, CDCl3): δ 151.0 (s, C1), 149.8 (s, C12), 138.1 (s, C9), 132.7 (s, C5), 

130.7 (d, C14), 128.5 (d, C8), 126.6 (d, C10), 125.9 (d, C6), 122.4 (d, C7), 120.0 (t, C15), 94.23 

(s, C4), 70.0 (t, C2), 67.6 (t, C13), 30.9 (t, C3), 21.7 (q, H11). 

HRMS (ESI) m/z: calcd for C15H16O4Na [M+Na]+: 283.0941, found: 283.0943. 

 

Allyl (3-(3,4-dimethoxyphenyl)-4,5-dihydrofuran-2-yl) carbonate (I.14e) 

 

 

 

I.14e was synthesized according to the method aforementioned from α-(3,4-

dimethoxyphenyl)-γ-butyrolactone I.10e (183 mg, 0.82 mmol, 1.0 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/EtOAc = 8:2) as 

a colorless oil (80 mg, 32%). 

 

Rf: 0.22 (PE/EtOAc = 8:2) 

IR (ATR): 2936, 1771, 1688, 1519, 1464, 1367, 1251, 1206, 1147,1103, 1026, 941, 858, 765 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 6.92 (d, J = 2.0 Hz, 1H, H10), 6.84-6.75 (m, 2H, H6 and H7), 

5.94 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H, H15), 5.40 (dq, J = 17.2, 1.4 Hz, 1H, H16), 5.32 (dq, J = 
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10.4, 1.1 Hz, 1H, H16’), 4.72 (dt, J = 5.9, 1.3 Hz, 2H, H14), 4.53 (dd, J = 9.5, 8.8 Hz, 2H, H2), 

3.85 (s, 3H, H11 or H12), 3.86 (s, 3H, H11 or H12), 3.11 (dd, J = 9.6, 8.8 Hz, 2H, H3). 

13C NMR (100 MHz, CDCl3): δ 151.1 (s, C1), 149.0 (s, C8 or C9), 148.9 (s, C8 or C9), 147.3 

(s, C13), 130.6 (d, C15), 125.7 (s, C5), 120.2 (t, C16), 117.8 (d, C7), 111.3 (d, C6), 108.5 (d, 

C10), 94.0 (s, C4), 70.0 (t, C14), 67.5 (t, C2), 56.0 (q, C11 or C12), 55.8 (q, C11 or C12), 31.0 (t, 

C3). 

HRMS (ESI) m/z: calcd for C16H18O6Na [M+Na]+: 329.0996, found: 329.0995. 

 

Allyl (3-benzyl-4,5-dihydrofuran-2-yl) carbonate (I.14h) 

 

 

 

I.14h was synthesized according to the method aforementioned from α-benzyl-γ-

butyrolactone I.13a (300 mg, 1.70 mmol, 1.0 equiv). The titled compound was obtained after 

flash column chromatography on silica gel (PE/EtOAc = 95:5 to 8:2) as a colorless oil (145 

mg, 33%). 

 

Rf: 0.71 (PE/EtOAc = 8:2) 

IR (ATR): 3063, 3028, 2901, 2863, 1774, 1728, 1494, 1453, 1365, 1256, 1204, 1085, 1028, 

995, 941, 701 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.33-7.16 (m, 5H, HAr), 5.95 (ddt, J = 17.1, 10.3, 5.7 Hz, 1H, 

H12), 5.40 (dq, J = 17.2, 1.3 Hz, 1H, H13), 5.32 (dq, J = 10.5, 1.2 Hz, 1H, H13’), 4.71 (dt, J = 

5.9, 1.3 Hz, 2H, H11), 4.40 (dd, J = 9.5, 8.8 Hz, 2H, H2), 3.34 (s, 2H, H5), 2.58 (ddd, J = 9.9, 

8.7, 1.0 Hz, 2H, H3). 

13C NMR (100 MHz, CDCl3): δ 151.8 (s, C1), 149.3 (s, C10), 139.0 (s, C6), 130.8 (d, C12), 

128.6 (d, 2C, C7 or C8), 128.4 (d, 2C, C7 or C8), 126.4 (d, C9), 120.0 (t, C13), 92.8 (s, C4), 69.8 

(t, C11), 67.8 (t, C2), 31.2 (t, C5), 30.9 (t, C3). 

HRMS (ESI) m/z: calcd for C15H16O4Na [M+Na]+: 283.0941, found: 283.0941. 
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Allyl (3-cinnamyl-4,5-dihydrofuran-2-yl) carbonate (I.14i) 

 

 

I.14i was synthesized according to the method aforementioned from α-cinnamyl-γ-

butyrolactone I.13b (300 mg, 1.48 mmol, 1.0 equiv). The titled compound was obtained after 

flash column chromatography on silica gel (PE/EtOAc = 95:5) as a colorless oil (185 mg, 

44%). 

 

Rf: 0.40 (PE/EtOAc = 9:1) 

IR (ATR): 3026, 2900, 2861, 1775, 1728, 1449, 1366, 1251, 1203, 1089, 1028, 967, 941, 

750, 694 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.38-7.26 (m, 4H, HAr), 7.21 (m, 1H, H11), 6.47-6.39 (m, 1H, 

H7), 6.15 (dt, J = 15.8, 6.8 Hz, 1H, H6), 5.89 (ddt, J = 17.2, 10.3, 5.7 Hz, 1H, H14), 5.37 (dq, J 

= 17.2, 1.5 Hz, 1H, H15), 5.29 (dq, J = 10.5, 1.2 Hz, 1H, H15’), 4.64 (dt, J = 5.9, 1.3 Hz, 2H, 

H13), 4.42 (dd, J = 9.5, 8.8 Hz, 2H, H2), 2.90 (dt, J = 6.8, 1.3 Hz, 2H, H5), 2.72 (tapp, J = 9.2 

Hz, 2H, H3). 

13C NMR (100 MHz, CDCl3): δ 151.7 (s, C1), 149.1 (s, C12), 137.5 (s, C8), 131.3 (d, C7), 

130.8 (d, C14), 128.6 (d, 2C, C9 or C10), 127.3 (d, C11), 126.9 (d, C6), 126.2 (d, 2C, C9 or C10), 

119.9 (t, C15), 91.7 (s, C4), 69.8 (t, C13), 67.8 (t, C2), 31.3 (t, C3), 28.5 (t, C5). 

HRMS (ESI) m/z: calcd for C17H18O4Na [M+Na]+: 309.1097, found: 309.1095. 

 

Allyl 3-(3,5-difluorophenyl)-2-oxotetrahydrofuran-3-carboxylate (I.15f) 
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I.15f was synthesized according to the method aforementioned from α-(3,5-difluorophenyl)-γ-

butyrolactone I.10f (84 mg, 0.42 mmol, 1.0 equiv). The titled compound was obtained after 

flash column chromatography on silica gel (PE/EtOAc = 9:1) as colorless oil (69 mg, 58%). 

 

Note: Only for this case, the allyl carboxylate was obtained exclusively, even using otherwise 

identical conditions. 

 

Rf: 0.11 (PE/EtOAc = 9:1)  

IR (ATR): 3091, 2957, 2924, 2854, 1770, 1686, 1626, 1600, 1439, 1375, 1248, 1213, 1155, 

1027, 938, 858, 795, 681 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.17-7.06 (m, 2H, H6), 6.81 (tt, J = 8.7, 2.3 Hz, 1H, H8), 5.84 

(ddt, J = 17.2, 10.5, 5.6 Hz, 1H, H11), 5.33-5.21 (m, 2H, H12), 4.73-4.61 (m, 2H, H10), 4.46-

4.24 (m, 2H, H2), 3.24 (ddd, J = 13.0, 6.7, 4.6 Hz, 1H, H3), 2.68 (dt, J = 13.0, 7.7 Hz, 1H, 

H3’). 

13C NMR (100 MHz, CDCl3): δ 171.9 (s, C1), 167.6 (s, C9), 163.2 (s, 1JC-F = 236, 14 Hz, 2C, 

C7), 138.8 (s, C5), 130.7 (d, C11), 119.6 (t, C12), 110.9 (d, 2JC-F = 20.1, 7.0 Hz, 2C, C6), 103.4 

(d, 2JC-F = 25.9 Hz, C8), 67.5 (t, C10), 65.8 (t, C2), 58.2 (s, C4), 34.9 (t, C3). 

HRMS (ESI) m/z: calcd for C14H12F2O4Na [M+Na]+: 305.0596, found: 305.0596. 

 

Allyl 3-(3,5-bis(trifluoromethyl)phenyl)-2-oxotetrahydrofuran-3-carboxylate (I.15g) 

 

 

 

I.15g was synthesized according to the method aforementioned from α-(3,5-

bis(trifluoromethyl)phenyl)-γ-butyrolactone I.10g (200 mg, 0.67 mmol, 1.0 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/EtOAc = 9:1) as 

colorless oil (122 mg, 47%). 

 

Note: Only for this case, the allyl carboxylate was obtained exclusively, even using otherwise 

identical conditions. 
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Rf: 0.27 (PE/EtOAc = 8:2) 

IR (ATR): 2927, 1778, 1738, 1456, 1374, 1277, 1168, 1129, 1029, 938, 900, 844, 704, 682 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 8.11-8.06 (m, 2H, H6), 7.89 (m, 1H, H8), 5.84 (ddt, J = 17.1, 

10.4, 5.8 Hz, 1H, H12), 5.29 (dq, J = 17.2, 1.5 Hz, 1H, H13), 5.26 (m, 1H, H13’) 4.77-4.62 (m, 

2H, H11), 4.53-4.37 (m, 2H, H2), 3.32 (ddd, J = 13.0, 6.4, 3.7 Hz, 1H, H3), 2.77 (ddd, J = 13.0, 

8.7, 8.0 Hz, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 171.7 (s, C1), 167.3 (s, C10), 137.9 (s, C5), 132.2 (s, 2JC-F = 

33.6 Hz, 2C, C7), 130.4 (d, C12), 127.9 (d, 3JC-F = 3.6 Hz, 2C, C6), 123.2 (s, 1JC-F = 273 Hz, 

2C, C9), 122.6 (d, C8), 120.1 (t, C13), 67.8 (t, C11), 66.0 (t, C2), 58.1 (s, C4), 34.7 (t, C3). 

HRMS (ESI) m/z: calcd for C16H12F6O4Na [M+Na]+: 405.0532, found: 405.0535. 

 

5. General Procedures for the Pd-DAAA of cyclic allyl enol carbonate 

 

synthesis of α-allyl-α-aryl and α-alkyl butyrolactones (I.16a-g) 

(Representative procedure) 

 

 

 

To a solution of Pd2(dba)3.CHCl3 (0.01 mmol, 0.05 equiv) in THF (1 mL) at room 

temperature was added (R,R)-DACH phenyl Trost ligand (0.02 mmol, 0.1 equiv) and the 

mixture was stirred for 30 min. This solution was then cooled to 78 °C and transferred via 

cannula to a flask containing a cooled solution (78 °C) of allyl enol carbonate (0.2 mmol, 1 

equiv) in THF (1 mL). The reaction mixture was then stirred at the same temperature until 

complete consumption of the starting material (confirmed by TLC). A saturated solution of 

brine was then added and the aqueous phase was extracted with EtOAc (3 x 2 mL). The 

combined organic phases were washed with brine, dried over anhydrous MgSO4, filtered and 

evaporated under reduced pressure to afford a crude residue, which was purified by flash 

column chromatography on silica gel to afford the corresponding allylated butyrolactone. 

 

General procedure for the synthesis of racemic compounds 
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(Representative procedure) 

 

To a solution of allyl enol carbonate (0.1 mmol, 1 equiv) in THF (1 mL) at room temperature 

was added Pd(PPh3)4 (0.005 mmol, 0.05 equiv). The reaction mixture was then stirred at the 

same temperature for 10 min as the complete consumption of the starting material (confirmed 

by TLC). The solvent was then evaporated under reduced pressure to afford a crude residue, 

which was purified following the same procedure described for the corresponding 

enantioenriched compound. 

 

(R)-3-Allyl-3-phenyldihydrofuran-2(3H)-one (I.16a) 

 

 

 

I.16a was synthesized according to the method aforementioned from allyl (3-phenyl-4,5-

dihydrofuran-2-yl) carbonate I.14a (25 mg, 0.1 mmol, 1.0 equiv). The titled compound was 

obtained after flash column chromatography on silica gel (PE/EtOAc = 95:5) as a colorless oil 

(18 mg, 89%). 

 

Rf: 0.52 (PE/EtOAc = 9:1) 

[α]20 
D = +120 (c 0.21, CHCl3) 

ee = 80% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 90:10, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 1.60 min (minor) and tR = 1.89 min (major). 

IR (ATR): 2981, 2914, 1766, 1600, 1495, 1447, 1372, 1164, 1081, 1025, 925, 769 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.49-7.41 (m, 2H, H6), 7.41-7.33 (m, 2H, H7), 7.33-7.26 (m, 

1H, H8), 5.64 (m, 1H, H10), 5.16-5.07 (m, 2H, H11), 4.31 (ddd, J = 9.0, 8.0, 3.3 Hz, 1H, H2), 

4.11 (tdapp, J = 9.2, 6.5 Hz, 1H, H2’), 2.68 (dt, J = 7.3, 1.1 Hz, 2H, H9), 2.63 (ddd, J = 13.1, 

6.5, 3.3 Hz, 1H, H3), 2.54 (ddd, J = 13.1, 9.4, 8.0 Hz, 1H, H3’). 
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13C NMR (100 MHz, CDCl3): δ 178.8 (s, C1), 139.1 (s, C5), 133.0 (d, C10), 128.9 (d, 2C, C7), 

127.7 (d, C8), 126.4 (d, 2C, C6), 119.6 (t, C11), 65.4 (t, C2), 51.1 (s, C4), 43.6 (t, C9), 33.4 (t, 

C3). 

HRMS (ESI) m/z: calcd for C13H15O2 [M+H]+: 203.1067, found: 203.1068. 

 

 

 

(R)-3-Allyl-3-(naphthalen-1-yl)dihydrofuran-2(3H)-one (I.16b) 

 

 

 

I.16b was synthesized according to the method aforementioned from allyl (3-(naphthalen-1-

yl)-4,5-dihydrofuran-2-yl) carbonate I.14b (27 mg, 0.09 mmol, 1.0 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/EtOAc = 95:5 

to 9:1) as a colorless oil (22 mg, 95%). 

 

Rf: 0.47 (PE/EtOAc = 9:1) 

[α]20 
D = +119 (c 0.43, CHCl3) 

ee = 90% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 95:5, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 4.42 min (major) and tR = 4.97 min (minor). 

IR (ATR): 3051, 2918, 2850, 1768, 1639, 1599, 1510, 1375, 1219, 1176, 1030, 925, 804, 778 

cm-1. 
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1H NMR (400 MHz, CDCl3): δ 8.02(dd, J = 8.1, 1.6 Hz, 1H, H13), 7.92 (dd, J = 8.0, 1.6 Hz, 

1H, H10), 7.81 (dt, J = 8.2, 1.1 Hz, 1H, H8), 7.59-7.46 (m, 3H, H6 and H7 and H12), 7.40 (dd, J 

= 8.2, 7.3 Hz, 1H, H11), 5.88 (m, 1H, H16), 5.33-5.18 (m, 2H, H17), 4.35 (td, J = 8.8, 3.4 Hz, 

1H, H2), 4.12 (td, J = 9.0, 7.1 Hz, 1H, H2’), 3.18 (m, 1H, H15), 3.11-2.90 (m, 2H, H15’ and H3), 

2.79 (dt, J = 13.0, 8.9 Hz, 1H, H3). 

13C NMR (100 MHz, CDCl3): δ 179.8 (s, C1), 135.6 (s, C9 or C14), 135.4 (s, C9 or C14), 133.4 

(d, C16), 130.2 (d, C10), 130.1 (s, C5), 129.3 (d, C8), 126.1 (d, CAr), 125.6 (d, CAr), 125.5 (d, 

CAr), 125.3 (d, CAr), 124.7 (d, C13), 120.1 (t, C17), 65.8 (t, C2), 53.0 (s, C4), 41.5 (t, C15), 33.9 

(t, C3). 

HRMS (ESI) m/z: calcd for C17H16O2Na [M+Na]+: 275.1043, found: 275.1044. 

 

 

 

(R)-3-Allyl-3-(4-(tert-butyl)phenyl)dihydrofuran-2(3H)-one (I.16c) 

 

 

 

I.16c was synthesized according to the method aforementioned from allyl (3-(4-(tert-

butyl)phenyl)-4,5-dihydrofuran-2-yl) carbonate I.14c (31 mg, 0.1 mmol, 1.0 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/EtOAc = 95:5 

to 9:1) as a colorless oil (26 mg, 98%). 

 

Rf: 0.28 (PE/EtOAc = 9:1) 
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[α]20 
D = +30.2 (c 1.23, CHCl3) 

ee = 71% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 95:5, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 2.58 min (minor) and tR = 3.38 min (major). 

IR (ATR): 2961, 2925, 2853, 1768, 1640, 1512, 1461, 1370, 1216, 1165, 1119, 1026, 923, 

832 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.37 (s, 4H, HAr), 5.65 (m, 1H, H12), 5.16-5.08 (m, 2H, H13), 

4.30 (ddd, J = 9.0, 8.0, 3.2 Hz, 1H, H2), 4.12 (ddd, J = 9.5, 8.9, 6.5 Hz, 1H, H2’), 2.67 (m, 2H, 

H11), 2.61 (ddd, J = 13.1, 6.5, 3.1 Hz, 1H, H3), 2.52 (ddd, J = 13.1, 9.5, 8.1 Hz, 1H, H3’), 1.30 

(s, 9H, H10). 

13C NMR (100 MHz, CDCl3): δ 179.0 (s, C1), 150.6 (s, C8), 136.0 (s, C5), 133.3 (d, C12), 

126.1 (d, 2C, C6 or C7), 125.9 (d, 2C, C6 or C7), 119.5 (t, C13), 65.4 (t, C2), 50.7 (s, C4), 43.5 

(t, C11), 34.6 (s, C9), 33.4 (t, C3), 31.4 (q, 3C, C10). 

HRMS (ESI) m/z: calcd for C17H22O2Na [M+Na]+: 281.1512, found: 281.1512. 

 

  

 

(R)-3-Allyl-3-(m-tolyl)dihydrofuran-2(3H)-one (I.16d) 

 

 

 

I.16d was synthesized according to the method aforementioned from allyl (3-(m-tolyl)-4,5-

dihydrofuran-2-yl) carbonate I.14d (8 mg, 0.03 mmol, 1.0 equiv). The titled compound was 
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obtained after flash column chromatography on silica gel (PE/EtOAc = from 95:5 to 9:1) as a 

colorless oil (5.2 mg, 78%). 

 

Rf: 0.37 (9:1 PE/EtOAc)  

[α]20 
D = +57.0 (c 0.12, CHCl3) 

ee = 70% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 3.36 min (minor) and tR = 3.97 min (major). 

IR (ATR): 2917, 2925, 1768, 1640, 1606, 1488, 1372, 1213, 1173, 1026, 923, 787, 705, 670 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.31-7.20 (m, 3H, HAr), 7.11 (m, 1H, HAr), 5.66 (m, 1H, H13), 

5.16-5.08 (m, 2H, H14), 4.30 (ddd, J = 9.0, 8.0, 3.0 Hz, 1H, H2), 4.10 (ddd, J = 9.6, 8.9, 6.4 

Hz, 1H, H2’), 2.71-2.47 (m, 4H, H12 and H3), 2.36 (s, 3H, H11). 

13C NMR (100 MHz, CDCl3): δ 178.9 (s, C1), 139.1 (s, C5 or C9), 138.7 (s, C5 or C9), 133.2 

(d, C13), 128.8 (d, CAr), 128.5 (d, CAr), 127.2 (d, CAr), 123.4 (d, CAr), 119.5 (t, C14), 65.4 (t, 

C2), 51.1 (s, C4), 43.5 (t, C12), 33.6 (t, C3), 21.8 (q, C11).
 

HRMS (ESI) m/z: calcd for C14H16O2Na [M+Na]+: 239.1043, found: 239.1041. 

 

 

 

(R)-3-Allyl-3-(3,4-dimethoxyphenyl)dihydrofuran-2(3H)-one (I.16e) 
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I.16e was synthesized according to the method aforementioned from allyl (3-(3,4-

dimethoxyphenyl)-4,5-dihydrofuran-2-yl) carbonate I.14e (19 mg, 0.08 mmol, 1.0 equiv). 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 9:1 to 8:2) as a colorless oil (19 mg, 95%). 

 

Rf: 0.20 (PE/EtOAc = 8:2) 

[α]20 
D = +30.0 (c 0.48, CHCl3) 

ee = 48% (determined by SFC) 

SFC: AD-H column, Pressure = 150 bar, eluent = sc CO2/i-PrOH = 92:8, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 2.35 min (major) and tR = 2.91 min (minor). 

IR (ATR): 2923, 2853, 1768, 1604, 1588, 1513, 1412, 1373, 1227, 1165, 1030, 926, 867, 

767, 688 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.05 (d, J = 2.3 Hz, 1H, H10), 6.93 (dd, J = 8.4, 2.3 Hz, 1H, 

H6), 6.83 (d, J = 8.4 Hz, 1H, H7), 5.64 (m, 1H, H14), 5.14-5.07 (m, 2H, H15), 4.31 (ddd, J = 

8.9, 8.0, 3.1 Hz, 1H, H2), 4.13 (ddd, J = 9.4, 8.9, 6.4 Hz, 1H, H2’), 3.89 (s, 3H, H11 or H12), 

3.88 (s, 3H, H11 or H12), 2.67-2.57 (m, 3H, H13 and H3), 2.50 (ddd, J = 13.1, 9.4, 8.0 Hz, 1H, 

H3’). 

13C NMR (100 MHz, CDCl3): δ 179.1 (s, C1), 149.3 (s, C8 or C9), 148.6 (s, C8 or C9), 133.1 

(d, C14), 131.2 (s, C5), 119.5 (t, C15), 118.5 (d, C6), 111.0 (d, C10), 110.0 (d, C7), 65.4 (t, C2), 

56.1 (q, C11 or C12), 56.0 (q, C11 or C12), 50.6 (s, C4), 43.8 (t, C13), 33.5 (t, C3). 

MS m/z (relative intensity): 262 (M+.,21), 221 (100), 175 (4), 163 (17), 146 (5), 131 (3), 115 

(4), 103 (3),91 (5), 77 (5), 65 (3), 51 (3). 
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(S)-3-Allyl-3-benzyldihydrofuran-2(3H)-one (I.16f) 

 

 

 

I.16f was synthesized according to the method aforementioned from allyl (3-benzyl-4,5-

dihydrofuran-2-yl) carbonate I.14h (26 mg, 0.1 mmol, 1.0 equiv). The titled compound was 

obtained after flash column chromatography on silica gel (PE/EtOAc = 9:1 to8:2) as a 

colorless oil (19 mg, 87%). 

 

Rf: 0.33 (PE/EtOAc = 9:1) 

[α]20 
D = +1.88 (c 0.43, CHCl3) 

ee = 55% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 95:5, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 2.53 min (major) and tR = 3.92 min (minor). 

IR (ATR): 2918, 2850, 1768, 1640, 1495, 1378, 1216, 1170, 1029, 921, 772, 702 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.33-7.23 (m, 3H, H8 and H9), 7.23-7.17 (m, 2H, H7), 5.79 

(m, 1H, H11), 5.23-5.15 (m, 2H, H12), 4.02 (ddd, J = 8.9, 7.8, 6.2 Hz, 1H, H2), 3.46 (ddd, J = 

9.0, 7.8, 6.5 Hz, 1H, H2’), 3.07 (d, J = 13.4 Hz, 1H, H5), 2.74 (d, J = 13.5 Hz, 1H, H5’), 2.51 

(ddt, J = 13.8, 6.4, 1.4 Hz, 1H, H10), 2.33 (ddt, J = 13.8, 8.4, 1.0 Hz, 1H, H10’), 2.19-2.12 (m, 

2H, H3). 

13C NMR (100 MHz, CDCl3): δ 181.0 (s, C1), 136.6 (s, C6), 132.8 (d, C11), 130.1 (d, 2C, C7), 

128.7 (d, 2C, C8), 127.3 (d, C9), 120.0 (t, C12), 65.5 (t, C2), 48.1 (s, C4), 42.9 (t, C5), 42.2 (t, 

C10), 29.9 (t, C3). 

MS m/z (relative intensity): 216 (M+.,2), 198 (2), 188 (15), 175 (7), 156 (3), 143 (7), 129 (9), 

125 (17), 115 (6), 91 (100), 79 (5), 77 (3), 65 (11), 53 (3). 
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(S)-3-Allyl-3-cinnamyldihydrofuran-2(3H)-one (I.16g) 

 

 

 

I.16g was synthesized according to the method aforementioned from allyl (3-cinnamyl-4,5-

dihydrofuran-2-yl) carbonate I.14i (29 mg, 0.1 mmol, 1.0 equiv). The titled compound was 

obtained after flash column chromatography on silica gel (PE/EtOAc = 9:1) as a colorless oil 

(18 mg, 75%). 

 

Rf: 0.25 (PE/EtOAc = 9:1) 

[α]20 
D = +1.65 (c 0.43, CHCl3) 

ee = 43% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 90:10, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 3.08 min (major) and tR = 4.29 min (minor).  

IR (ATR): 2918, 1768, 1640, 1598, 1494, 1449, 1437, 1376, 1214, 1174, 1028, 969, 922, 747 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.31-7.10 (m, 5H, HAr), 6.41 (dd, J = 15.7, 1.5 Hz, 1H, H7), 

6.14 (m, 1H, H6), 5.70 (m, 1H, H13), 5.14-5.05 (m, 2H, H14), 4.12 (td, J = 8.5, 1.8 Hz, 2H, 

H2), 2.48 (m, 1H, H5), 2.42-2.31 (m, 2H, H12), 2.26 (m, 1H, H5’), 2.21 (td, J = 8.7, 3.5 Hz, 2H, 

H3). 
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13C NMR (100 MHz, CDCl3): δ 180.7 (s, C1), 137.0 (s, C8), 134.6 (d, C7), 132.7 (d, C13), 

128.7 (d, 2C, C10), 127.7 (d, C11), 126.4 (d, 2C, C9), 124.1 (d, C6), 119.9 (t, C14), 65.5 (t, C2), 

46.7 (s, C4), 41.2 (t, C5), 40.3 (t, C12), 30.7 (t, C3). 

MS m/z (relative intensity): 242 (M+.,8), 214 (3), 201 (11), 169 (3), 155 (6), 144 (14), 129 

(12), 117 (100), 104 (36), 91 (28), 77 (6), 65 (5), 50 (2). 

 

 

 

6. General Procedures for the Pd-AAA of allyl carboxylates 

 

synthesis of α-allyl-α-aryl butyrolactones (I.16h-i) 

(Representative procedure) 

 

 

 

To a solution of Pd2(dba)3.CHCl3 (0.01 mmol, 0.05 equiv) in THF (1 mL) at room 

temperature was added (R,R)-DACH phenyl Trost ligand (0.02 mmol, 0.1 equiv) and the 

mixture was stirred for 30 min. This solution was then cooled to 78 °C and transferred via 

cannula to a flask containing a cooled solution (78 °C) of allyl carboxylate (0.2 mmol, 1 

equiv) in THF (1 mL). The reaction mixture was then stirred at the same temperature until 

complete consumption of the starting material (confirmed by TLC). A saturated solution of 

brine was then added and the aqueous phase was extracted with EtOAc (3 x 2 mL). The 

combined organic phases were washed with brine, dried over anhydrous MgSO4, filtered and 
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evaporated under reduced pressure to afford a crude residue, which was purified by flash 

column chromatography on silica gel to afford the corresponding allylated butyrolactone. 

 

 

General procedure for the synthesis of racemic compounds 

(Representative procedure) 

 

To a solution of allyl carboxylate (0.1 mmol, 1 equiv) in THF (1 mL) at room temperature 

was added Pd(PPh3)4 (0.005 mmol, 0.05 equiv). The reaction mixture was then stirred at the 

same temperature for 10 min as the complete consumption of the starting material (confirmed 

by TLC). The solvent was then evaporated under reduced pressure to afford a crude residue, 

which was purified following the same procedure described for the corresponding 

enantioenriched compound. 

 

(R)-3-allyl-3-(3,5-difluorophenyl)dihydrofuran-2(3H)-one (I.16h) 

 

 

 

I.16h was synthesized according to the method aforementioned from allyl 3-(3,5-

difluorophenyl)-2-oxotetrahydrofuran-3-carboxylate I.15f (19 mg, 0.067 mmol, 1.0 equiv). 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 9:1) as colorless oil (13 mg, 81%). 

 

Rf: 0.52 (PE/EtOAc = 8:2) 

[α]20 
D = +54.6 (c 0.23, CHCl3) 

ee = 92% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 90:10, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 1.09 min (minor) and tR = 1.62 min (major). 

IR (ATR): 3084, 2923, 2854, 1765, 1624, 1436, 1374, 1321, 1175, 1080, 1028, 928, 857, 693 

cm-1. 
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1H NMR (400 MHz, CDCl3): δ 7.09-6.97 (m, 2H, H6), 6.81-6.70 (m, 1H, H8), 5.68-5.52 (m, 

1H, H10), 5.19-5.04 (m, 2H, H11), 4.34 (m, 1H, H2), 4.17 (m, 1H, H2’), 2.68-2.60 (m, 2H, H9), 

2.60-2.48 (m, 2H, H3). 

13C NMR (100 MHz, CDCl3): δ 177.8 (s, C1), 163.3 (s, 1JC-F = 248, 13 Hz, 2C, C7), 143.2 (s, 

C5), 132.0 (d, C10), 120.5 (t, C11), 110.9 (d, 2JC-F = 25.0, 7.3 Hz, 2C, C6), 103.4 (d, 2JC-F = 

25.1 Hz, C8), 65.3 (t, C2), 50.8 (s, C4), 43.6 (t, C9), 33.3 (t, C3). 

HRMS (ESI) m/z: calcd for C13H12F2O2Na [M+Na]+: 261.0698, found: 261.0700. 

 

  

 

(R)-3-allyl-3-(3,5-(trifluoromethyl)phenyl)dihydrofuran-2(3H)-one (I.16i) 

 

 

 

I.16i was synthesized according to the method aforementioned from allyl 3-(3,5-

difluorophenyl)-2-oxotetrahydrofuran-3-carboxylate I.15g (22 mg, 0.058 mmol, 1.0 equiv). 

The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 9:1) as colorless oil (18 mg, 89%). 

 

Rf: 0.51 (PE/EtOAc = 8:2) 

[α]20 
D = +54.2 (c 0.22, CHCl3) 

ee = Not determined 

SFC: The enantiomers could not be separated using any SFC conditions. 

IR (ATR): 2922, 1768, 1471, 1374, 1277, 1169, 1129, 1030, 928, 897, 846, 706, 683 cm-1. 
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1H NMR (400 MHz, CDCl3): δ 7.99-7.94 (m, 2H, H6), 7.84 (m, 1H, H8), 5.59 (m, 1H, H11), 

5.18 (ddt, J = 10.1, 1.6, 0.8 Hz, 2H, H12), 5.13 (dq, J = 16.9, 1.4 Hz, 1H, H12’), 4.40 (ddd, J = 

9.3, 6.9, 6.2 Hz, 1H, H2), 4.23 (dt, J = 9.3, 7.2 Hz, 1H, H2’), 2.77-2.60 (m, 4H, H3 and H9). 

13C NMR (100 MHz, CDCl3): δ 177.4 (s, C1), 142.3 (s, C5), 132.2 (s, 2JC-F = 33.4 Hz, 2C, 

C7), 131.4 (d, C11), 127.0 (d, 3JC-F = 3.6 Hz, 2C, C6), 123.3 (s, 1JC-F = 273 Hz, 2C, C9), 121.9 

(d, C8), 121.2 (t, C12), 65.2 (t, C2), 50.8 (s, C4), 43.8 (t, C10), 33.2 (t, C3). 

HRMS (ESI) m/z: calcd for C15H12F6O2H [M+H]+: 339.0814, found: 339.0818. 

 

7. Synthesis of α-acyl butyrolactones 

 

(E)-3-(But-2-enoyl)dihydrofuran-2(3H)-one (I.18)67a 

 

 

 

At −78 °C, n-BuLi (5.92 mL, 2.16 M in hexanes, 12.8 mmol, 1.1 equiv) was added to a 

solution of diisopropylamine (1.08 mL, 12.8 mmol, 1.1 equiv) in THF (25 mL) and the 

reaction mixture was stirred for 1 h. Then, a solution of γ-butyrolactone (1.00 g, 11.6 mmol, 

1.0 equiv) in THF (2.5 mL) was added dropwise within 10 min and after stirring 1 h, a 

solution of crotonaldehyde (1.04 mL, 12.8 mmol, 1.1 equiv) in THF (5 mL) was added 

dropwise during 60 min. The temperature was raised to rt within 30 min. The mixture was 

cooled to 0 °C and the reaction was quenched by the addition of a saturated aqueous solution 

of NH4Cl and CH2Cl2 (15 mL). The layers were separated, and the aqueous layer was 

extracted with CH2Cl2 (4 x 10 mL). The combined organic extracts were washed with a 

saturated aqueous brine solution (10 mL), dried over MgSO4 and concentrated under vacuum. 

The crude residue was finally purified by flash column chromatography on silica gel 

(PE/EtOAc = 75:25) to afford I.17 (1.35 g, 75%) as a mixture of two diastereomeres (syn:anti 

= 50:50) as a viscous oil. This mixture was engaged without purification in the oxidation step. 

To a solution of alcohol I.17 (350 mg, 2.24 mmol, 1.0 equiv) in CH2Cl2 (18 mL) at rt was 

added Dess-Martin periodinane (1.175 g, 2.69 mmol, 1.2 equiv) in one portion. The reaction 

mixture was stirred for 24 h at rt. Then the solvent was removed under vacuum and the 
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residue was purified by flash chromatography on silica gel (PE/EtOAc = 7:3) to give I.18 

(323 mg, 94%) as viscous oil. 

 

Rf: 0.36 (PE/EtOAc = 7:3) 

IR (ATR): 2918, 2360, 1765, 1693, 1656, 1629, 1442, 1375, 1340, 1294, 1227, 1156, 1016, 

966, 910 cm-1. 

1H NMR (400 MHz, CDCl3) mixture of enol-I.18/keto-I.18 = 1:2: δ 10.78 (d, J = 1.7 Hz, 

0.33H, (OH)H5 of enol-I.18), 7.07 (dq, J = 15.7, 6.9 Hz, 0.66H, H7 of keto-I.18), 6.71 (m, 0.33H, H7 of 

enol-I.18), 6.47-6.39 (dq, J = 15.8, 1.5 Hz, 0.66H, H6 of keto-I.18), 5.89 (dt, J = 15.5, 1.6 Hz, 0.33H, 

H6 of enol-I.18), 4.43-4.29 (m, 1.98H, H2 of enol-I.18 and H2 of keto-I.18), 3.89 (dd, J = 9.2, 5.8 Hz, 

0.66H, H4 of keto-I.18), 2.93 (t, J = 7.8 Hz, 0.66H, H3 of enol-I.18), 2.76 (m, 0.66H, H3 of keto-I.18), 2.35 

(m, 0.66H, H3’ of keto-I.18), 1.96 (ddd, J = 6.9, 1.7, 0.5 Hz, 1.98H, H8 of keto-I.18), 1.91 (ddt, J = 

7.0, 1.6, 0.7 Hz, 0.99H, H8 of enol-I.18). 

13C NMR (400 MHz, CDCl3) mixture of enol-I.18/keto-I.18 = 1:2: δ 191.4 (s, C5 of keto-I.18), 

177.1 (s, C5 of enol-I.18), 173.2 (s, C1 of keto-I.18), 161.9 (s, C1 of enol-I.18), 147.0 (d, C6 of keto-I.18), 

138.0 (d, C6 of enol-I.18), 129.8 (d, C7 of keto-I.18), 123.2 (d, C7 of enol-I.18), 94.3 (s, C4 of enol-I.18), 67.8 

(t, C2 of keto-I.18), 66.9 (t, C2 of enol-I.18), 50.2 (d, C4 of keto-I.18), 24.7 (t, C3 of keto-I.18), 24.0 (t, C3 of enol-

I.18), 18.8 (q, C8 of enol-I.18), 18.7 (q, C8 of keto-I.18). 

MS m/z (relative intensity): 154 (M+.,3), 139 (3), 126 (5), 70 (5), 69 (100), 55 (3). 

 

General procedures for the synthesis of α-acylbutyrolactones (I.20a-c)68 

 

 

 

To a solution of γ-butyrolactone (1.00 g, 11.6 mmol, 1.0 equiv) in THF (103 mL) at 78 °C 

was added LiHMDS (12.8 mL, 1.0 M in THF, 12.8 mmol, 1.1 equiv). After 1 h at 78 °C, 

benzoyl chloride (11.6 mmol, 1.0 equiv) was added over a period of 30 min. After 15 min at 

78 °C, the reaction mixture was diluted with HCl (1 M) and then extracted with EtOAc, 

dried over Na2SO4, filtered and concentrated under vacuum. The residue was purified by flash 

column chromatography on silica gel to afford the desired lactone. 

 

α-Benzoyl-γ-butyrolactone (I.20a) 
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I.20a was synthesized according to the method aforementioned from γ-butyrolactone (1.00 g, 

11.6 mmol, 1.0 equiv) and benzoyl chloride (1.35 mL, 11.6 mmol, 1.0 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/EtOAc = 7:3 to 

6:4) as a colorless oil (862 mg, 39%). 

 

Note: Only the ketone is reported. 

 

Rf: 0.26 (PE/EtOAc = 7:3) 

IR (ATR): 3063, 2981, 2918, 1760, 1680, 1596, 1579, 1448, 1374, 1343, 1294, 1243, 1213, 

1151, 1070, 1019 cm-1. 

1H NMR (400 MHz, CDCl3) mixture of enol-I.20a/keto-I.20a = 1:18: δ 8.13-8.05 (dapp, J = 

8.1 Hz, 2H, H7), 7.63 (m, 1H, H9), 7.57-7.48 (tapp, J = 7.5 Hz, 2H, H8), 4.62-4.49 (m, 2H, H2), 

4.48-4.39 (m, 1H, H4), 2.87 (m, 1H, H3), 2.52 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3) mixture of enol-I.20a/keto-I.20a = 1:18: δ 193.1 (s, C5), 172.9 

(s, C1), 135.4 (s, C6), 134.2 (d, C9), 129.6 (d, 2C, C8), 128.9 (d, 2C, C7), 68.0 (t, C2), 48.2 (d, 

C4), 26.2 (t, C3). 

MS m/z (relative intensity): 190 (M+.,4), 162 (6), 133 (2), 115 (1), 105 (100), 85 (2), 77 (45), 

51 (13). 

 

α-(4-Methoxybenzoyl)-γ-butyrolactone (I.20b)80 

 

 

 

                                                        
80 Yamamoto, Y.; Yamada, K.-i.; Tomioka, K. Tetrahedron Lett. 2004, 45, 795. 
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I.20b was synthesized according to the method aforementioned from γ-butyrolactone (1.00 g, 

11.6 mmol, 1.0 equiv) and 4-methoxybenzoyl chloride (1.57 mL, 11.6 mmol, 1.0 equiv). The 

titled compound was obtained after flash column chromatography on silica gel (PE/EtOAc = 

7:3) as a colorless oil (1.081 g, 42%). 

 

Note: Only the ketone is reported. 

 

Rf: 0.17 (PE/EtOAc = 7:3) 

IR (ATR): 2920, 1760, 1668, 1597, 1573, 1510, 1458, 1421, 1375, 1249, 1149, 1021, 844 cm-

1. 

1H NMR (400 MHz, CDCl3) mixture of enol-I.20b/keto-I.20b = 1:33: δ 8.09-8.00 (m, 2H, 

H7), 6.96 (dq, J = 9.1, 2.4, 1.9 Hz, 2H, H8), 4.55-4.45 (m, 2H, H2), 4.41 (td, J = 8.4, 5.3 Hz, 

1H, H4), 3.87 (s, 3H, H10), 2.85 (ddt, J = 13.1, 7.8, 5.3 Hz, 1H, H3), 2.48 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3) mixture of enol-I.20b/keto-I.20b = 1:33: δ 193.1 (s, C5), 173.3 

(s, C1), 164.4 (s, C9), 132.5 (d, 2C, C7), 128.3 (s, C6), 114.1 (d, 2C, C8), 68.0 (t, C2), 55.7 (q, 

C10), 47.8 (d, C4), 26.1 (t, C3). 

MS m/z (relative intensity): 220 (M+.,16), 192 (3), 163 (2), 135 (100), 107 (17), 92 (20), 77 

(22), 64 (7), 50 (3). 

 

α-(4-Bis(trifluoromethyl)benzoyl)-γ-butyrolactone (I.20c) 

 

 

 

I.20c was synthesized according to the method aforementioned from γ-butyrolactone (1.00 g, 

11.6 mmol, 1.0 equiv) and 4-bis(trifluoromethyl)benzoyl chloride (1.73 mL ,11.6 mmol, 1.0 

equiv). The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 8:2 to 7:3) as a colorless oil (545 mg, 18%). 

 

Note: Only the ketone is reported. 

 

Rf: 0.18 (PE/EtOAc = 8:2) 
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IR (ATR): 2924, 2854, 1764, 1692, 1579, 1410, 1377, 1327, 1164, 1113, 1068, 1026 cm-1. 

1H NMR (400 MHz, CDCl3) mixture of enol-I.20c/keto-I.20c = 1:100: δ 8.20 (dapp, J = 7.7 

Hz, 2H, H7), 7.81-7.74 (m, 2H, H8), 4.62-4.48 (m, 2H, H4 and H2), 4.44 (ddd, J = 8.8, 8.0, 5.8 

Hz, 1H, H2’), 2.92 (ddt, J = 13.1, 8.0, 5.9 Hz, 1H, H3), 2.52 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3) mixture of enol-I.20c/keto-I.20c = 1:100: δ 192.1 (s, C5), 172.4 

(s, C1), 138.0 (s, C6), 135.6 (s, 2JC-F = 32.2 Hz, C9), 130.0 (d, 2C, C7), 125.9 (d, 3JC-F = 3.8 Hz, 

2C, C8), 123.5 (s, 1JC-F = 272 Hz, C10), 68.0 (t, C2), 48.6 (d, C4), 26.7 (t, C3). 

HRMS (ESI) m/z: calcd for C12H9F3O3Na [M+Na]+: 281.0396, found: 281.0399. 

 

8. Synthesis of exocyclic allyl enol carbonates 

 

8.1. General procedures for the synthesis of allyl enol carbonates (I.19) 

(Representative procedure) 

 

 

 

To a solution of NaHMDS (1.20 mL, 1.0 M in THF, 1.2 mmol, 1.2 equiv) in THF (9 mL) at 

78 °C was added TMEDA (0.45 mL, 3.0 mmol, 3.0 equiv). A solution of lactone (1.0 mmol, 

1.0 equiv) in THF (1 mL) was added dropwise. After 1 h at 78 °C, allyl chloroformate (0.32 

mL, 3.0 mmol, 3.0 equiv) was added, after 15 min, a saturated aqueous solution of NH4Cl 

was then added and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined 

organic phases were dried over MgSO4, filtered and evaporated under reduced pressure to 

afford a crude residue, which was purified by flash column chromatography on silica gel to 

afford the corresponding allyl enol carbonate I.19. 

 

Allyl ((1Z,2E)-1-(2-oxodihydrofuran-3(2H)-ylidene)but-2-en-1-yl) carbonate (I.19a) 
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I.19a was synthesized according to the method aforementioned from (E)-3-(but-2-

enoyl)dihydrofuran-2(3H)-one I.18 (300 mg, 1.95 mmol, 1.0 equiv). The titled compound 

was obtained after flash column chromatography on silica gel (PE/EtOAc = 9:1 to 8:2) as a 

colorless oil (171 mg, 37%). 

 

Rf: 0.22 (PE/EtOAc = 8:2) 

IR (ATR): 2918, 1761, 1659, 1627, 1442, 1375, 1295, 1206, 1116, 1078, 1031, 958, 909, 

774, 676 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.38-7.30 (m, 1H, H6), 6.26 (m, 1H, H7), 6.02-5.89 (m, 1H, 

H11), 5.42-5.31 (m, 2H, H12), 4.72 (dq, J = 5.8, 1.1 Hz, 2H, H10), 4.35 (td, J = 7.5, 0.8 Hz, 2H, 

H2), 2.94 (t, J = 7.5 Hz, 2H, H3), 1.91 (ddt, J = 7.0, 2.1, 1.1 Hz, 3H, H8). 

13C NMR (100 MHz, CDCl3): δ 169.7 (s, C1), 153.7 (s, C9), 151.2 (s, C5), 134.7 (d, C7), 130.8 

(d, C11), 121.8 (d, C6), 120.1 (t, C12), 112.8 (s, C4), 69.7 (t, C10), 64.9 (t, C2), 26.2 (t, C3), 18.7 

(q, C8). 

HRMS (ESI) m/z: calcd for C12H15O5 [M+H]+: 239.0914, found: 239.0914. 

 

(Z)-Allyl ((2-oxodihydrofuran-3(2H)-ylidene)(phenyl)methyl) carbonate (I.19b) 

 

 

 

I.19b was synthesized according to the method aforementioned from α-benzoyl-γ-

butyrolactone I.20a (300 mg, 1.58 mmol, 1.0 equiv). The titled compound was obtained after 

flash column chromatography on silica gel (PE/EtOAc = 9:1 to 8:2) as a colorless oil (147 

mg, 34%). 

 

Rf: 0.26 (PE/EtOAc = 8:2) 

IR (ATR): 2988, 2901, 1761, 1672, 1447, 1377, 1212, 1135, 1067, 976, 774, 746, 696 cm-1. 

1H NMR (400 MHz, CDCl3) mixture of (E)-I.19b/(Z)-I.19b = 5:95: δ 7.63-7.57 (m, 2H, H7), 

7.42 (m, 3H, H8 and H9), 5.87 (ddt, J = 17.2, 10.4, 5.8 Hz, 1H, H12), 5.37-5.26 (m, 2H, H13), 
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4.62 (dt, J = 5.8, 1.4 Hz, 2H, H11), 4.40 (tapp, J = 7.6, 7.1 Hz, 2H, H2), 3.13 (t, J = 7.4 Hz, 2H, 

H3). 

13C NMR (100 MHz, CDCl3) mixture of (E)-I.19b/(Z)-I.19b = 5:95: δ 168.5 (s, C1), 155.7 (s, 

C10), 151.3 (s, C5), 131.2 (s, C6), 130.9 (d, C12), 130.7 (d, C9), 129.2 (d, 2C, C8), 128.1 (d, 2C, 

C7), 120.0 (t, C13), 114.8 (s, C4), 69.7 (t, C11), 64.6 (t, C2), 27.2 (t, C3). 

HRMS (ESI) m/z: calcd for C15H14O5Na [M+Na]+: 297.0733, found: 297.0731. 

 

(Z)-Allyl ((4-methoxyphenyl)(2-oxodihydrofuran-3(2H)-ylidene)methyl) carbonate 

(I.19c) 

 

 

 

I.19c was synthesized according to the method aforementioned from α-(4-methoxybenzoyl)-

γ-butyrolactone I.20b (300 mg, 1.36 mmol, 1.0 equiv). The titled compound was obtained 

after flash column chromatography on silica gel (PE/EtOAc = 8:2 to 7:3) as a colorless oil 

(241 mg, 58%). 

 

Rf: 0.26 (PE/EtOAc = 6:4) 

IR (ATR): 2934, 1752, 1650, 1604, 1512, 1442, 1365, 1231, 1214, 1117, 1082, 1031, 906, 

725 cm-1. 

1H NMR (400 MHz, CDCl3) mixture of (E)-I.19c/(Z)-I.19c = 4:96: δ 7.58-7.47 (m, 2H, H7), 

7.01-6.89 (m, 2H, H8), 5.99 (m, 1H, H13), 5.47-5.35 (m, 1H, H14), 5.29 (m, 1H, H14’), 4.73 

(dq, J = 5.8, 1.2 Hz, 2H, H12), 4.33 (tapp, J = 7.2 Hz, 2H, H2), 3.84 (s, 3H, H10), 3.24 (tapp, J = 

7.2 Hz, 2H, H3). 

13C NMR (100 MHz, CDCl3) mixture of (E)-I.19c/(Z)-I.19c = 4:96: δ 168.7 (s, C1), 161.6 (s, 

C9), 152.2 (s, C11), 151.7 (s, C5), 131.3 (d, C13), 129.5 (d, 2C, C7), 125.6 (s, C6), 119.3 (t, C14), 

114.3 (d, 2C, C8), 111.8 (s, C4), 69.6 (t, C12), 64.9 (t, C2), 55.6 (q, C10), 28.6 (t, C3). 

HRMS (ESI) m/z: calcd for C16H16O6Na [M+Na]+: 327.0839, found: 327.0838. 
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(Z)-allyl ((2-oxodihydrofuran-3(2H)-ylidene)(4-(trifluoromethyl)phenyl)methyl) 

carbonate (I.19d) 

 

 

 

I.19d was synthesized according to the method aforementioned from 

α-(4-bis(trifluoromethyl)benzoyl)-γ-butyrolactone I.20c (300 mg, 1.16 mmol, 1.0 equiv). The 

titled compound was obtained after flash column chromatography o silica gel (PE/EtOAc = 

7:3 to 1:1) as a colorless oil (319 mg, 80%). 

 

Rf: 0.55 (PE/EtOAc = 1:1) 

IR (ATR): 2929, 1775, 1665, 1410, 1367, 1326, 1231, 1214, 1169, 1127, 1067, 1014, 850 cm-

1. 

1H NMR (400 MHz, CDCl3) mixture of (E)-I.19d/(Z)-I.19d = 1:2: δ 7.75-7.64 (m, 3.96H, 

HAr of (E)-I.19d and HAr of (Z)-I.19d), 5.99 (m, 0.66H, H13 of (Z)-I.19d), 5.87 (m, 0.33H, H13 of (E)-I.19d), 

5.43 (dq, J = 17.2, 1.5 Hz, 0.66H, H14 of (E)-I.19d), 5.39-5.28 (m, 1.32H, H14 of (Z)-I.19d), 4.74 (dt, J 

= 5.8, 1.4 Hz, 1.32H, H12 of (Z)-I.19d), 4.63 (dt, J = 5.9, 1.3 Hz, 0.66H, H12 of (E)-I.19d), 4.43 (t, J = 

7.3 Hz, 0.66H, H2 of (E)-I.19d), 4.39 (t, J = 7.2 Hz, 1.32H, H2 of (Z)-I.19d), 3.26 (t, J = 7.1 Hz, 

1.32H, H3 of (Z)-I.19d), 3.16 (t, J = 7.3 Hz, 0.66H, H3 of (E)-I.19d). 

13C NMR (100 MHz, CDCl3) mixture of (E)-I.19d/(Z)-I.19d = 1:2: δ 168.2 (s, C1 of (Z)-I.19d), 

167.8 (s, C1 of (E)-I.19d), 153.8 (s, C11 of (E)-I.19d), 152.1 (s, C11 of (Z)-I.19d), 151.2 (s, C5 of (E)-I.19d), 

150.2 (s, C5 of (Z)-I.19d), 136.9 (s, C6 of (Z)-I.19d), 134.7 (s, C6 of (E)-I.19d), 132.5 (s, 2JC-F = 33 Hz, C9 

of (Z)-I.19d), 131.0 (t, C13 of (Z)-I.19d), 130.5 (t, C13 of (E)-I.19d), 129.7 (d, 2C, C7 of (E)-I.19d), 128.2 (d, 

2C, C7 of (Z)-I.19d), 125.9 (d, 3JC-F = 3.9 Hz, 2C, C8 of (Z)-I.19d), 125.2 (d, 3JC-F = 3.9 Hz, 2C, C8 of 

(E)-I.19d), 123.6 (s, 1JC-F = 272 Hz, C10 of (Z)-I.19d), 120.3 (t, C14 of (E)-I.19d), 119.7 (t, C14 of (Z)-I.19d), 

116.7 (s, C4 of (E)-I.19d), 116.1 (s, C4 of (Z)-I.19d), 70.1 (t, C12 of (Z)-I.19d), 70.0 (t, C12 of (E)-I.19d), 65.0 

(t, C2 of (Z)-I.19d), 64.8 (t, C2 of (E)-I.19d), 28.4 (t, C3 of (Z)-I.19d), 27.1 (t, C3 of (E)-I.19d). 

Note: The C9 and C10 signals of (E)-I.19d were not observed. 

HRMS (ESI) m/z: calcd for C16H13F3O5Na [M+Na]+: 365.0607, found: 365.0610. 
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(Z)-Allyl (1-(2-oxodihydrofuran-3(2H)-ylidene)ethyl) carbonate (I.19g) 

 

 

 

I.19g was synthesized according to the method aforementioned from the commercially 

available α-acetyl-γ-butyrolactone (1.00 g, 7.81 mmol, 1.0 equiv). The titled compound was 

obtained after flash column chromatography on silica gel (PE/EtOAc = 9:1) as a colorless oil 

(976 mg, 59%). 

 

Rf: 0.31 (PE/EtOAc = 8:2) 

IR (ATR): 2924, 1754, 1696, 1443, 1377, 1277, 1185, 1116, 1021, 946, 903, 779, 750 cm-1. 

1H NMR (400 MHz, CDCl3): δ 6.01-5.88 (m, 1H, H9), 5.45-5.36 (m, 1H, H10), 5.33 (m, 1H, 

H10’), 4.69 (dq, J = 5.8, 1.1 Hz, 2H, H8), 4.30 (tapp, J = 8.4 Hz, 2H, H2), 2.96-2.87 (m, 2H, H3), 

2.43 (td, J = 2.4, 0.8 Hz, 3H, H6). 

13C NMR (100 MHz, CDCl3): δ 170.2 (s, C1), 157.5 (s, C7), 151.1 (s, C5), 130.8 (d, C9), 120.0 

(t, C10), 114.1 (s, C4), 69.6 (t, C8), 64.8 (t, C2), 25.7 (t, C3), 16.3 (q, C6). 

HRMS (ESI) m/z: calcd for C10H13O5 [M+H]+: 213.0758, found: 213.0760. 
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8.2. General procedures for the synthesis of allyl enol carbonates via one-pot 

reaction (I.19e-f) 

 

 

 

(Z)-Allyl ((2-oxodihydrofuran-3(2H)-ylidene)methyl) carbonate (I.19e) 

 

 

 

A dispersion of NaH (2.44 g, 60% in mineral oil, 61.0 mmol, 1.05 equiv) was washed with 

hexanes and suspended in THF (120 mL) then cooled to 0 °C. A solution of γ-butyrolactone 

(5.00 g, 58.1 mmol, 1.0 equiv) and ethyl formate (4.69 mL, 58.1 mmol, 1.0 equiv) in THF 

(5.00 mL) was added dropwise over a period of 30 min. The reaction temperature was kept at 

0 °C and after 1 h, the temperature was raised to rt. After 16 h, the reaction mixture was 

cooled to 78 °C, TMEDA (26.0 mL, 174 mmol, 3.0 equiv) and allyl chloroformate (18.6 

mL, 174 mmol, 3.0 equiv) were added successively. The reaction mixture was stirred for an 

additional 15 min. A saturated aqueous solution of NH4Cl was then added and the aqueous 

phase was extracted with Et2O. The combined organic phases were dried over MgSO4, 

filtered and evaporated under reduced pressure to afford a crude residue, which was 

recrystallized from ether/hexane to afford the corresponding allyl enol carbonate as a white 

solid (4.33 g, 38%). 

 

Note: Due to the presence of ethanol in the media, a mixture (I.19e/(Z)-ethyl 

((2-oxodihydrofuran-3(2H)-ylidene)methyl) carbonate = 10:1) was observed. Only I.19e is 

reported. 

 

Mp = 69-72 °C 
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Rf: 0.31 (PE/EtOAc = 7:3) 

IR (ATR): 2925, 1770, 1699, 1452, 1369, 1216, 1166, 1074, 1025, 944, 777, 734 cm-1. 

1H NMR (400 MHz, CDCl3) mixture of ethyl-I.19e/I.19e = 1:10: δ 8.07 (tapp, J = 3.0 Hz, 1H, 

H5), 5.90 (m, 1H, H8), 5.42 (dq, J = 17.2, 1.4 Hz, 1H, H9), 5.34 (dq, J = 10.4, 1.1 Hz, 1H, 

H9’), 4.76-4.71 (m, 2H, H10), 4.43-4.47 (m, 2H, H2), 3.04-2.93 (m, 2H, H3). 

13C NMR (100 MHz, CDCl3) mixture of ethyl-I.19e/I.19e = 1:10: δ 171.0 (s, C1), 151.4 (s, 

C6), 144.2 (s, C5), 130.4 (d, C8), 120.7 (t, C9), 110.7 (s, C4), 70.2 (t, C7), 66.0 (t, C2), 24.2 (t, 

C3). 

HRMS (ESI) m/z: calcd for C9H11O5 [M+H]+: 199.0601, found: 199.0602. 

 

(Z)-Allyl (2,2,2-trifluoro-1-(2-oxodihydrofuran-3(2H)-ylidene)ethyl) carbonate (I.19f) 

 

 

 

A dispersion of NaH (975 mg, 60% in mineral oil, 24.4 mmol, 1.05 equiv) was washed with 

hexanes and suspended in THF (48 mL) then cooled to 0°C. A solution of γ-butyrolactone 

(2.00 g, 23.2 mmol, 1.0 equiv) and ethyl trifluoracetate (2.75 mL, 23.2 mmol, 1.0 equiv) in 

THF (5.00 mL) was added dropwise over a period of 30 min. The reaction temperature was 

kept at 0 °C and after 1 h, the temperature was raised to rt. After 16 h, the reaction mixture 

was cooled to 78 °C, TMEDA (10.5 mL, 69.7 mmol, 3.0 equiv) and allyl chloroformate 

(7.45 mL, 69.7 mmol, 3.0 equiv) were added successively. The reaction mixture was stirred 

for an additional 15 min. A saturated aqueous solution of NH4Cl was then added and the 

aqueous phase was extracted with Et2O. The combined organic phases were dried over 

MgSO4, filtered and evaporated under reduced pressure to afford a crude residue, which was 

recrystallized from ether/hexane to afford the corresponding allyl enol carbonate as a white 

solid (2.60 g, 42%). 

 

Note: Due to the presence of ethanol in the media, a mixture (I.19f/(Z)-ethyl (2,2,2-trifluoro-

1-(2-oxodihydrofuran-3(2H)-ylidene)ethyl) carbonate = 10:1) was observed. Only I.19f is 

reported. 
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Mp = 39-41 °C 

Rf: 0.68 (PE/EtOAc = 7:3) 

IR (ATR): 2998, 2928, 2853, 1766, 1695, 1486, 1345, 1195, 1140, 1103, 1022, 990, 938, 890 

cm-1. 

1H NMR (400 MHz, CDCl3) mixture of ethyl-I.19f/I.19f = 1:10: δ 5.97 (m, 1H, H9), 5.43 

(dq, J = 17.2, 1.4 Hz, 1H, H10), 5.33 (dq, J = 10.4, 1.2 Hz, 1H, H10’), 4.76 (dtapp, J = 5.8, 1.4 

Hz, 2H, H8), 4.44 (t, J = 7.2 Hz, 2H, H2), 3.29 (m, 2H, H3). 

13C NMR (100 MHz, CDCl3) mixture of ethyl-I.19f/I.19f = 1:10: δ 166.3 (s, C1), 150.9 (s, 

C7), 139.6 (s, 2JC-F = 38.5 Hz, C5), 130.6 (d, C9), 121.7 (s, 3JC-F = 2.1 Hz, C4), 120.1 (t, C10), 

119.3 (s, 1JC-F = 274 Hz, C6), 70.7 (t, C8), 65.3 (t, C2), 25.7 (t, 4JC-F = 2.7 Hz, C3). 

HRMS (ESI) m/z: calcd for C10H9F3O5Na [M+Na]+: 289.0294, found: 289.0296. 

 

9. General Procedures for the Pd-DAAA of exocyclic allyl enol carbonate 

 

synthesis of α-allyl-α-acyl butyrolactones (I.20a-g) 

(Representative procedure) 

 

 

 

To a solution of Pd2(dba)3.CHCl3 (0.01 mmol, 0.05 equiv) in THF (1 mL) at room 

temperature was added (R,R)-DACH phenyl Trost ligand (0.02 mmol, 0.1 equiv) and the 

mixture was stirred for 30 min. This solution was then cooled to 20 °C and transferred via 

cannula to a flask containing a cooled solution (20 °C) of allyl enol carbonate (0.2 mmol, 1 

equiv) in THF (1 mL). The reaction mixture was then stirred at the same temperature until 

complete consumption of the starting material (confirmed by TLC). A saturated solution of 

brine was then added and the aqueous phase was extracted with EtOAc (3 x 2 mL). The 

combined organic phases were washed with brine, dried over anhydrous MgSO4, filtered and 

evaporated under reduced pressure to afford a crude residue, which was purified by flash 

column chromatography on silica gel to afford the corresponding allylated butyrolactone. 

 

 



 

 
 

153 

General procedure for the synthesis of racemic compounds 

(Representative procedure) 

 

To a solution of allyl enol carbonate (0.1 mmol, 1 equiv) in THF (1 mL) at room temperature 

was added Pd(PPh3)4 (0.005 mmol, 0.05 equiv). The reaction mixture was then stirred at the 

same temperature for 10 min as the complete consumption of the starting material (confirmed 

by TLC). The solvent was then evaporated under reduced pressure to afford a crude residue, 

which was purified following the same procedure described for the corresponding 

enantioenriched compound. 

 

(R)-3-Allyl-3-benzoyldihydrofuran-2(3H)-one (I.20a) 

 

 

 

I.20a was synthesized according to the method aforementioned from (Z)-allyl ((2-

oxodihydrofuran-3(2H)-ylidene)(phenyl)methyl) carbonate I.19b (27 mg, 0.1 mmol, 1.0 

equiv). The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 9:1 to 8:2) as a colorless oil (19 mg, 83%). 

 

Rf: 0.38 (PE/EtOAc = 8:2) 

[α]20 
D = 7.89 (c 0.19, CHCl3) 

ee = 74% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 92:8, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 2.07 min (minor) and tR = 2.26 min (major). 

IR (ATR): 3077, 2924, 2853, 1761, 1678, 1597, 1578, 1447, 1375, 1245, 1213, 1172, 1028, 

1000, 928, 788, 752 cm-1. 

1H NMR (400 MHz, CDCl3): δ 8.06-8.00 (m, 2H, H7), 7.60-7.52 (m, 1H, H9), 7.50-7.41 (m, 

2H, H8), 5.66 (m, 1H, H11), 5.17-5.05 (m, 2H, H12), 4.45-4.33 (m, 2H, H2), 3.02-2.92 (m, 2H, 

H3 and H10), 2.79 (m, 1H, H10’), 2.33 (ddd, J = 13.1, 8.5, 8.0 Hz, 1H, H3’). 
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13C NMR (100 MHz, CDCl3): δ 195.6 (s, C5), 175.9 (s, C1), 135.6 (s, C6), 133.2 (d, C9), 131.7 

(d, C11), 129.2 (d, 2C, C7), 128.7 (d, 2C, C8), 120.5 (t, C12), 66.7 (t, C2), 59.5 (s, C4), 40.1 (t, 

C10), 32.2 (t, C3). 

HRMS (ESI) m/z: calcd for C14H14O3Na [M+Na]+: 253.0835, found: 253.0833. 

 

 

 

(R)-3-Allyl-3-(4-methoxybenzoyl)dihydrofuran-2(3H)-one (I.20b) 

 

 

 

I.20b was synthesized according to the method aforementioned from (Z)-allyl 

((4-methoxyphenyl)(2-oxodihydrofuran-3(2H)-ylidene)methyl) carbonate I.19c (31 mg, 0.1 

mmol, 1.0 equiv). The titled compound was obtained after flash column chromatography on 

silica gel (PE/EtOAc = 8:2) as a colorless oil (26 mg, 93%). 

 

Rf: 0.39 (PE/EtOAc = 7:3) 

[α]20 
D = 22.3 (c 0.22, CHCl3) 

ee = 87% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 92:8, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 3.31 min (minor) and tR = 3.63 min (major).  

IR (ATR): 3079, 2921, 2843, 1763, 1667, 1600, 1510, 1374, 1251, 1172, 1027, 930, 845, 612 

cm-1. 
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1H NMR (400 MHz, CDCl3): δ 8.13-8.07 (m, 2H, H7), 6.95-6.89 (m, 2H, H8), 5.66 (m, 1H, 

H12), 5.14-5.05 (m, 2H, H13), 4.39-4.32 (m, 2H, H2), 3.86 (s, 3H, H10), 3.05-2.96 (m, 2H, H3 

and H11), 2.82-2.74 (m, 1H, H11’), 2.30 (dt, J = 13.1, 8.4 Hz, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 193.2 (s, C5), 176.3 (s, C1), 163.6 (s, C9), 132.0 (d, 2C, C7), 

131.8 (d, C12), 127.9 (s, C6), 120.3 (t, C13), 113.9 (d, 2C, C8), 66.7 (t, C2), 59.3 (s, C4), 55.6 (q, 

C10), 40.3 (t, C11), 32.4 (t, C3). 

HRMS (ESI) m/z: calcd for C15H16O4Na [M+Na]+: 283.0941, found: 283.0940. 

 

 

 

(R)-3-Allyl-3-(4-(trifluoromethyl)benzoyl)dihydrofuran-2(3H)-one (I.20c) 

 

 

 

I.20c was synthesized according to the method aforementioned (Z)-allyl ((2-oxodihydrofuran-

3(2H)-ylidene)(4-(trifluoromethyl)phenyl)methyl) carbonate I.19d (44 mg, 0.13 mmol, 1.0 

equiv). The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 8:2) as a colorless oil (37 mg, 96%). 

 

Rf: 0.55 (PE/EtOAc = 7:3) 

[α]20 
D = 2.62 (c 0.65, CHCl3) 

ee = 75% (determined by SFC) 

SFC: AS-H column, Pressure = 100 bar, eluent = sc CO2/i-PrOH = 99:1, Flow rate = 1 

mL/min, detection wavelength = 220 nm. tR = 10.64 min (minor) and tR = 12.25 min (major). 
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IR (ATR): 3082, 2924, 2853, 1764, 1683, 1408, 1375, 1326, 1167, 1127, 1067, 1029, 996, 

930, 855 cm-1. 

1H NMR (400 MHz, CDCl3): δ 8.22-8.07 (dapp, J = 8.3 Hz, 2H, H7), 7.72 (dapp, J = 8.5 Hz, 

2H, H8), 5.61 (m, 1H, H12), 5.15-5.00 (m, 2H, H13), 4.44-4.34 (m, 2H, H2), 3.04-2.91 (m, 2H, 

H3 and H11), 2.77 (ddt, J = 14.3, 6.7, 1.4 Hz, 1H, H11’), 2.33 (dt, J = 13.2, 8.4 Hz, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 195.1 (s, C5), 175.3 (s, C1), 138.8 (s, C6), 134.3 (s, 2JC-F = 

33.1 Hz, C9), 131.1 (d, C12), 129.6 (d, 2C, C7), 125.7 (d, 3JC-F = 3.8 Hz, 2C, C8), 123.5 (s, 1JC-

F = 274 Hz, C8), 120.8 (t, C13), 66.9 (t, C2), 59.9 (s, C4), 40.0 (t, C11), 32.0 (t, C3). 

HRMS (ESI) m/z: calcd for C15H13F3O3Na [M+Na]+: 321.0709, found: 321.0711. 

 

 

 

(R,E)-3-Allyl-3-(but-2-enoyl)dihydrofuran-2(3H)-one (I.20d) 

 

 

 

I.20d was synthesized according to the method aforementioned from allyl ((1Z,2E)-1-(2-

oxodihydrofuran-3(2H)-ylidene)but-2-en-1-yl) carbonate I.19a (125 mg, 0.53 mmol, 1.0 

equiv). The titled compound was obtained after flash column chromatography on silica gel 

(PE/EtOAc = 9:1 to 8:2) as a colorless oil (99 mg, 97%). 

 

Rf: 0.50 (PE/EtOAc = 8:2) 

[α]20 
D = +14.0 (c 1.25, CHCl3) 

ee = 86% (determined by SFC) 
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SFC: AS-H column, Pressure = 100 bar, eluent = sc CO2/i-PrOH = 99:1, Flow rate = 2 

mL/min, detection wavelength = 220 nm. tR = 3.69 min (minor) and tR = 4.25 min (major).  

IR (ATR): 2981, 2917, 1764, 1690, 1627, 1441, 1374, 1291, 1218, 1163, 1067, 1026, 970, 

930, 811 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.09 (dq, J = 15.2, 7.0 Hz, 1H, H7), 6.77 (dq, J = 15.2, 1.6 Hz, 

1H, H6), 5.56 (m, 1H, H10), 5.18-5.09 (m, 2H, H11), 4.28 (td, J = 8.9, 3.0 Hz, 1H, H2), 4.14 

(td, J = 9.2, 7.1 Hz, 1H, H2’), 2.93 (ddd, J = 13.0, 7.1, 3.0 Hz, 1H, H3), 2.73 (m, 1H, H9), 2.62 

(ddt, J = 14.3, 6.9, 1.3 Hz, 1H, H9’), 2.11 (ddd, J = 13.1, 9.3, 8.8 Hz, 1H, H3’), 1.93 (dd, J = 

7.0, 1.6 Hz, 3H, H8). 

13C NMR (100 MHz, CDCl3): δ 191.9 (s, C5), 175.7 (s, C1), 146.8 (d, C7), 131.4 (d, C10), 

125.4 (d, C6), 120.2 (t, C11), 66.5 (t, C2), 59.6 (s, C4), 39.0 (t, C9), 28.8 (t, C3), 18.7 (q, C6). 

HRMS (ESI) m/z: calcd for C11H14O3Na [M+Na]+: 217.0835, found: 217.0834. 

 

  

 

(R)-3-Allyl-3-(2,2,2-trifluoroacetyl)dihydrofuran-2(3H)-one (I.20e) 

 

 

 

I.20e was synthesized according to the method aforementioned from (Z)-allyl (2,2,2-trifluoro-

1-(2-oxodihydrofuran-3(2H)-ylidene)ethyl) carbonate I.19f (130 mg, 0.49 mmol, 1.0 equiv). 

Compounds I.20e and I.20e hydrate were obtained as an inseparable mixture (3:7) after flash 

column chromatography on silica gel (PE/EtOAc = 9:1 to 8:2) as a colorless oil (105 mg, 

90%). 
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Rf: 0.70 (PE/EtOAc = 8:2) 

[α]20 
D = 13.5 (c 0.73, CHCl3) 

ee = 60% (determined by SFC) 

Note: The I.20e compound could not be detected at 220 nm by SFC analysis. The ee was 

therefore determined after subjecting I.20e to further derivatization (see description of 

compound I.20e-deriv). 

IR (ATR): 3410, 2990, 2931, 1742, 1644, 1488, 1443, 1390, 1263, 1184, 1165, 1103, 1061, 

1031, 989, 934, 898, 866, 741 cm-1. 

Mixture of I.20e/I.20e hydrate = 3:7 

1H NMR (400 MHz, CDCl3)  compound I.20e: δ 5.77-5.63 (m, 1H, H8), 5.35-5.19 (m, 2H, 

H9), 4.47-4.31 (m, 2H, H2), 2.88-2.70 (m, 2H, H3 and H7), 2.46-2.34 (m, 1H, H7’), 2.25-2.13 

(m, 1H, H3’). 

1H NMR (400 MHz, CDCl3)  compound I.20e hydrate: δ 6.42-6.34 (m, 1H, H5), 5.77-5.63 

(m, 1H, H8), 5.35-5.19 (m, 2H, H9), 4.47-4.31 (m, 1H, H2), 4.22 (q, J = 8.6 Hz, 1H, H2’), 3.44 

(d, J = 9.5 Hz, 1H, H5’), 2.94 (m, 1H, H3), 2.88-2.70 (m, 2H, H7), 2.46-2.34 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3)  compound I.20e: δ 186.8 (s, 2JC-F = 35 Hz, C5), 172.6 (s, C1), 

130.2 (d, C8), 122.2 (t, C9), 66.2 (t, C2), 57.3 (s, C4), 37.4 (t, C7), 28.9 (t, C3). 

Note: The C6 signal was not observed. 

13C NMR (100 MHz, CDCl3)  compound I.20e hydrate: δ 180.7 (s, C1), 131.3 (d, C8), 

122.4 (s, 1JC-F = 286 Hz, C6), 121.5 (t, C9), 95.2 (s, 2JC-F = 35 Hz, C5), 67.5 (t, C2), 52.0 (s, 

C4), 37.7 (t, 4JC-F = 2.3 Hz, C7), 28.7 (t, 4JC-F = 2.7 Hz, C3). 

HRMS (ESI) m/z: compound I.20e is not stable under ESI (see HRMS of compound 

I.20e-deriv, compound I.20e after derivatization). 

 

Derivatization for enantiomeric excess determination through Cross-metathesis73 

 

Benzyl (R,E)-4-(2-oxo-3-(2,2,2-trifluoroacetyl)tetrahydrofuran-3-yl)but-2-enoate (I.20e-

deriv) 
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To a microvial containing (R)-3-allyl-3-(2,2,2-trifluoroacetyl)dihydrofuran-2(3H)-one I.20e 

(50 mg, 0.21 mmol, 1.0 equiv), benzyl acrylate (99 μL, 0.63 mmol, 3.0 equiv) and Grubbs-

Hoveyda second generation catalyst (13 mg, 0.021 mmol, 0.1 equiv) was added CH2Cl2 (2 

mL). The vial was sealed and heated at 50 °C for 24 h. Concentration under reduced pressure 

afforded a crude residue, which was purified by flash chromatography on silica gel. 

Compounds I.20e-deriv and I.20e-deriv hydrate were obtained as an inseparable mixture 

(1:4) after flash column chromatography on silica gel (PE/EtOAc = 8:2) as colorless oil (60 

mg, 77%). 

 

Rf: 0.27 (PE/EtOAc = 8:2) 

[α]20 
D = 31.4 (c 0.69, CHCl3) 

ee = 60% (determined by SFC) 

SFC: AS-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 90:10, Flow rate = 4 

mL/min, detection wavelength = 220 nm. tR = 2.08 min (major) and tR = 2.42 min (minor).  

IR (ATR): 3390, 2925, 1719, 1656, 1456, 1382, 1327, 1260, 1161, 1060, 1028, 982, 741, 697 

cm-1. 

Mixture of I.20e-deriv/I.20e-deriv hydrate = 1:4 

1H NMR (400 MHz, CDCl3)  compound I.20e-deriv: δ 7.42-7.30 (m, 5H, HAr), 6.89-6.76 

(m, 1H, H8), 6.06 (ddt, J = 15.4, 4.3, 1.4 Hz, 1H, H9), 5.21-5.13 (m, 2H, H11), 4.50-4.33 (m, 

2H, H2), 3.04-2.90 (m, 1H, H7), 2.90-2.79 (m, 2H, H3), 2.40-2.30 (m, 1H, H7’). 

1H NMR (400 MHz, CDCl3)  compound I.20e-deriv hydrate: δ 7.42-7.30 (m, 5H, HAr), 

6.89-6.76 (m, 1H, H8), 6.24 (q, J = 1.1 Hz, 1H, H5), 6.06 (ddt, J = 15.4, 4.3, 1.4 Hz, 1H, H9), 

5.21-5.13 (m, 2H, H11), 4.50-4.33 (m, 1H, H2), 4.17 (td, J = 8.9, 8.2 Hz, 1H, H2’), 3.77 (dapp, J 

= 5.1 Hz, 1H, H5’), 3.04-2.90 (m, 2H, H3 and H7), 2.58 (m, 1H, H7’), 2.17 (ddd, J = 13.8, 8.0, 

3.4 Hz, 1H, H3’). 

13C NMR (100 MHz, CDCl3)  compound I.20e-deriv: δ 171.9 (s, C1), 165.3 (s, C10), 140.0 

(d, C8), 135.6 (s, C12), 128.8 (d, 2C, C13 or C14), 128.6 (d, C15), 127.4 (d, C9), 66.8 (t, C2), 66.2 

(t, C11), 56.9 (s, C4), 35.4 (t, C7), 29.8 (t, C3). 

Note: The C5, C6 and C13/C14 signals were not observed. 

13C NMR (100 MHz, CDCl3)  compound I.20e-deriv hydrate: δ 179.8 (s, C1), 165.4 (s, 

C10), 141.1 (d, C8), 135.7 (s, C12), 128.7 (d, 2C, C13 or C14), 128.5 (d, C15), 128.4 (d, 2C, C13 

or C14), 126.8 (d, C9), 122.4 (s, 1JC-F = 289 Hz, C6), 95.1 (s, 2JC-F = 33 Hz, C5), 67.2 (t, C2), 

66.7 (t, C11), 51.8 (s, C4), 35.6 (t, 4JC-F = 2.4 Hz, C7), 28.9 (t, 4JC-F = 2.4 Hz, C3). 
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HRMS (ESI) m/z: calcd for C17H18F3O6 [M+H]+: 375.1050, found: 375.1052. 

 

 

 

(R)-3-Acetyl-3-allyldihydrofuran-2(3H)-one (I.20f)81 

 

 

I.20f was synthesized according to the method aforementioned from (Z)-allyl (1-(2-

oxodihydrofuran-3(2H)-ylidene)ethyl) carbonate I.19g (120 mg, 0.57 mmol, 1.0 equiv). The 

titled compound was obtained after flash column chromatography on silica gel (PE/EtOAc = 

9:1 to 8:2) as a colorless oil (91 mg, 96%). 

 

Rf: 0.40 (PE/EtOAc = 8:2) 

[α]20 
D = +58.1 (c 0.87, CHCl3) 

ee = 67% (determined by SFC) 

Note: The I.20f compound could not be detected at 220 nm by SFC analysis. The ee was 

therefore determined after subjecting I.20f to further derivatization (see description of 

compound I.20f-deriv). 

IR (ATR): 3082, 2982, 2920, 1761, 1711, 1641, 1485, 1437, 1360, 1373, 1219, 1276, 1167, 

1025, 999, 926 cm-1. 

1H NMR (400 MHz, CDCl3): δ 5.65-5.52 (m, 1H, H8), 5.22-5.12 (m, 2H, H9), 4.27 (td, J = 

8.9, 3.5 Hz, 1H, H2), 4.16 (td, J = 8.9, 7.3 Hz, 1H, H2’), 2.85 (ddd, J = 13.1, 7.4, 3.5 Hz, 1H, 

                                                        
81 Molander, G. A.; Kenny, C. Tetrahedron Lett. 1987, 28, 4367. 
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H3), 2.75 (ddt, J = 14.5, 8.0, 1.0 Hz, 1H, H7), 2.62 (ddt, J = 14.4, 6.5, 1.4 Hz, 1H, H7’), 2.32 

(s, 3H, H6), 2.10 (dt, J = 13.1, 8.8 Hz, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 202.2 (s, C5), 175.2 (s, C1), 131.4 (d, C8), 120.3 (t, C9), 66.5 

(t, C2), 61.1 (s, C4), 39.1 (t, C7), 28.8 (t, C3), 25.8 (q, C6). 

MS m/z (relative intensity): 167 (M+-H, 1), 126 (100), 125 (34), 111 (18), 97 (11), 81 (34), 92 

(20), 67 (40), 53 (13). 

 

Derivatization for enantiomeric excess determination through hydrazone derivatives 

formation 

 

(R,E)-N'-(1-(3-allyl-2-oxotetrahydrofuran-3-yl)ethylidene)-4-methylbenzenesulfono-

hydrazide (I.20f-deriv) 

 

 

 

To a solution of (R)-3-acetyl-3-allyldihydrofuran-2(3H)-one I.20f (50 mg, 0.3 mmol, 1.0 

equiv) in THF (1.25 mL) was added tosyl hydrazide (0.30 mmol, 1.0 equiv) at rt. The 

resulting reaction mixture was heated at reflux for 18 h, and then concentrated under reduced 

pressure to afford a crude residue. The titled compound was obtained after flash column 

chromatography on silica gel (PE/EtOAc = 7:3) as a yellow oil (73 mg, 73%). 

 

Rf: 0.36 (PE/EtOAc = 6:4) 

[α]20 
D = +30.2 (c 0.33, CHCl3) 

ee = 67% (determined by SFC) 

SFC: AS-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 90:10, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 3.85 min (minor) and tR = 6.30 min (major). 

IR (ATR): 3535, 3217, 2923, 1751, 1642, 1597, 1439, 1376, 1167, 1091, 1022, 922, 815, 

730, 667 cm-1. 
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1H NMR (400 MHz, CDCl3): δ 7.85-7.72 (m, 3H, H7 and H9), 7.31 (d, J = 8.1 Hz, 2H, H10), 

5.37 (m, 1H, H14), 5.08-4.94 (m, 2H, H15), 4.17 (td, J = 8.6, 2.8 Hz, 1H, H2), 3.93 (tdd, J = 

9.1, 6.7, 2.9 Hz, 1H, H2’), 2.84 (ddd, J = 12.9, 6.7, 2.9 Hz, 1H, H3), 2.57 (m, 1H, H13), 2.47-

2.33 (m, 4H, H12 and H13’), 2.06 (m, 1H, H3’), 1.86 (s, 3H, H6). 

Note: During the 13C NMR analysis a complex mixture of (E)-I.20f-deriv, (Z)-I.20f-deriv, 

I.20f and tosyl hydrazide was observed. 

13C NMR (100 MHz, CDCl3)  compound (E)-I.20f-deriv: δ 176.5 (s, C1), 151.6 (s, C5), 

144.6 (s, C11), 135.1 (s, C8), 131.8 (d, C14), 129.7 (d, 2C, C10), 128.2 (d, 2C, C9), 119.6 (t, 

C15), 66.3 (t, C2), 54.0 (s, C4), 38.9 (t, C13), 30.1 (t, C3), 21.8 (q, C12), 12.3 (q, C6). 

13C NMR (100 MHz, CDCl3)  compound (Z)-I.20f-deriv: δ 175.3 (s, C1), 164.1 (s, C5), 

145.6 (s, C11), 134.9 (s, C8), 129.8 (d, 2C, C10), 129.4 (d, C14), 128.4 (d, 2C, C9), 120.4 (t, 

C15), 58.6 (t, C2), 57.5 (s, C4), 40.0 (t, C13), 37.3 (t, C3), 21.9 (q, C12), 14.7 (q, C6). 

HRMS (ESI) m/z: calcd for C16H21N2O4S [M+H]+: 337.1217, found: 337.1217. 

 

 

 

(R)-3-Allyl-2-oxotetrahydrofuran-3-carbaldehyde (I.20g) 

 

 

 

I.20g was synthesized according to the method aforementioned (Z)-allyl ((2-oxodihydrofuran-

3(2H)-ylidene)methyl) carbonate I.19e (100 mg, 0.51 mmol, 1.0 equiv). The titled compound 

was obtained after flash column chromatography on silica gel (PE/EtOAc = 8:2 to 7:3) as a 

colorless oil (54 mg, 69%). 



 

 
 

163 

Rf: 0.27 (PE/EtOAc = 7:3) 

[α]20 
D = +4.31 (c 0.33, CHCl3) 

ee = 94% (determined by SFC) 

Note: The I.20g compound could not be detected at 220 nm by SFC analysis. The ee was 

therefore determined after subjecting I.20g to further derivatization (see description of 

compound I.20g-deriv). 

IR (ATR): 2986, 2920, 2850, 1763, 1721, 1641, 1486, 1439, 1373, 1218, 1170, 1023, 928, 

884, 682 cm-1. 

1H NMR (400 MHz, CDCl3): δ 9.57 (d, J = 0.9 Hz, 1H, H5), 5.71-5.57 (m, 1H, H7), 5.27-5.18 

(m, 2H, H8), 4.35-4.21 (m, 2H, H2), 2.77 (ddd, J = 13.3, 8.0, 5.3 Hz, 1H, H3), 2.72-2.61 (m, 

2H, H11), 2.15 (m, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 196.0 (s, C5), 174.1 (s, C1), 130.4 (d, C7), 121.1 (t, C8), 66.3 

(t, C2), 59.3 (s, C4), 36.9 (t, C6), 26.2 (t, C3). 

HRMS (ESI) m/z: calcd for C8H10O3Na [M+Na]+: 177.0522, found: 177.0523. 

 

Derivatization for enantiomeric excess determination through hydrazone derivatives 

formation 

 

(R,E)-N'-((3-allyl-2-oxotetrahydrofuran-3-yl)methylene)-4-methylbenzenesulfono-

hydrazide (I.20g-deriv) 

 

 

 

To a solution of (R)-3-allyl-2-oxotetrahydrofuran-3-carbaldehyde I.20g (30 mg, 0.2 mmol, 

1.0 equiv) in THF (1.25 mL) was added tosyl hydrazide (0.30 mmol, 1.0 equiv) at rt. The 

resulting reaction mixture was heated at reflux for 18 h, and then concentrated under reduced 

pressure to afford a crude residue. The titled compound was obtained after flash column 

chromatography on silica gel (PE/EtOAc = 7:3) as a yellow oil (57 mg, 91%). 
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Rf: 0.36 (PE/EtOAc = 6:4) 

[α]20 
D = +2.46 (c 0.69, CHCl3) 

ee = 94% (determined by SFC) 

SFC: AS-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 90:10, Flow rate = 4 

mL/min, detection wavelength = 220 nm. tR = 6.91 min (major) and tR = 7.65 min (minor).  

IR (ATR): 3195, 2889, 2852, 1760, 1597, 1440, 1361, 1218, 1166, 1092, 1025, 926, 815, 669 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 8.34 (s, 1H, H5), 7.79-7.72 (m, 2H, H8), 7.33-7.27 (m, 2H, 

H9), 7.12 (s, 1H, H6), 5.47 (ddt, J = 17.4, 10.1, 7.3 Hz, 1H, H11), 5.12-5.03 (m, 2H, H14), 4.23 

(ddd, J = 9.0, 8.3, 4.8 Hz, 1H, H2), 4.11 (dt, J = 8.9, 7.6 Hz, 1H, H2’), 2.66 (ddd, J = 13.2, 7.6, 

4.8 Hz, 1H, H3), 2.50-2.39 (m, 5H, H11 and H12), 2.14 (dt, J = 13.2, 7.9 Hz, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 176.9 (s, C1), 147.7 (d, C5), 144.7 (s, C10), 135.0 (s, C7), 

131.2 (d, C13), 129.8 (d, 2C, C9), 128.0 (d, 2C, C8), 120.5 (t, C14), 66.4 (t, C2), 50.4 (s, C4), 

39.2 (t, C12), 29.2 (t, C3), 21.8 (q, C11). 

HRMS (ESI) m/z: calcd for C15H18N2O4SNa [M+Na]+: 345.0880, found: 345.0877. 
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10. Synthesis of spirocyclic compounds 

 

10.1. Synthesis of spirocycle through ring-closing metathesis 

 

(R)-2-Oxaspiro[4.4]non-7-ene-1,6-dione (I.21) 

 

 

 

To a vial containing (R,E)-3-allyl-3-(but-2-enoyl)dihydrofuran-2(3H)-one I.20d (28 mg, 0.14 

mmol, 1.0 equiv) and Grubbs-Hoveyda second generation catalyst (9 mg, 0.014 mmol, 0.1 

equiv) was added CH2Cl2 (0.7 mL). The vial was sealed and heated at 50 °C for 24 h. 

Concentration under reduced pressure afforded a crude residue, which was purified by flash 

column chromatography over silica gel. The titled compound was obtained after flash column 

chromatography on silica gel (PE/EtOAc = 6:4) as a colorless oil (20 mg, 91%). 

 

Rf: 0.32 (PE/EtOAc = 1:1) 

[α]20 
D = 67.7 (c 0.53, CHCl3) 

ee = 83% (determined by SFC) 

SFC: AS-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 90:10, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 1.19 min (major) and tR = 1.32 min (minor). 

IR (ATR): 2923, 2853, 1760, 1700, 1589, 1422, 1376, 1343, 1312, 1219, 1175, 1134, 1107, 

1082, 1023, 952, 814, 766, 725 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.84 (dt, J = 5.5, 2.7 Hz, 1H, H7), 6.16 (dt, J = 5.8, 2.2 Hz, 

1H, H6), 4.65 (ddd, J = 9.3, 8.7, 7.2 Hz, 1H, H2), 4.39 (td, J = 8.7, 3.1 Hz, 1H, H2’), 3.27 (dt, J 

= 19.1, 2.5 Hz, 1H, H8), 2.67 (dt, J = 19.1, 2.4 Hz, 1H, H8’), 2.60 (m, 1H, H3), 2.35 (dt, J = 

12.8, 9.0 Hz, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 204.9 (s, C5), 175.3 (s, C1), 164.7 (d, C7), 131.6 (d, C6), 66.5 

(t, C2), 54.2 (s, C4), 40.4 (t, C8), 32.9 (t, C3). 

HRMS (ESI) m/z: calcd for C8H9O3 [M+H]+: 153.0546, found: 153.0545. 
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10.2. Synthesis of spirocycle through iodocyclization 

 

 

 

(R*)-3-allyl-3-((R*)-hydroxy(4-methoxyphenyl)methyl)dihydrofuran-2(3H)-one (I.22)74 

 

 

 

A solution of CeCl3.7H2O (120 μL, 1.0 M in MeOH, 0.12 mmol, 1.5 equiv) was added to a 

solution of (R)-3-allyl-3-(4-methoxybenzoyl)dihydrofuran-2(3H)-one I.20b (21 mg, 0.081 

mmol, 1 equiv) in a mixture of methanol (0.8 mL) and CH2Cl2 (0.8 mL). NaBH4 (12 mg, 0.32 

mmol, 4 equiv) was then slowly added at 0 °C under an argon atmosphere. After stirring for 2 

h at the same temperature, the reaction mixture was quenched with a saturated aqueous 

solution of NH4Cl (4 mL), diluted with water (8 mL), and a 2 M HCl solution was added until 

the reaction mixture became clear. The mixture was extracted with EtOAc (3 x 8 mL). The 

combined organic layers were washed with H2O, brine and dried over anhydrous Na2SO4, 

filtered and evaporated under reduced pressure to afford a crude residue, which was purified 

by flash column chromatography on silica gel (PE/EtOAc = 8:2 to 7:3) to afford a colorless 
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oil of I.22 (14 mg, 66%) as single diastereoisomer, isolated from a mixture 4:1 dr determined 

by 1H NMR analysis of crude. 

 

Rf: 0.18 (PE/EtOAc = 8:2) 

[α]20 
D = 27.0 (c 0.46, CHCl3) 

IR (ATR): 3458, 3077, 2920, 2851, 1746, 1612, 1513, 1458, 1441, 1381, 1249, 1178, 1031, 

925, 840 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.36-7.30 (m, 2H, H7), 6.90-6.85 (m, 2H, H8), 5.77 (m, 1H, 

H12), 5.22-5.13 (m, 2H, H13), 4.90 (s, 1H, H5), 4.04 (td, J = 8.9, 6.0 Hz, 1H, H2), 3.80 (s, 3H, 

H10), 3.68 (td, J = 8.9, 6.2 Hz, 1H, H3), 2.99 (s, 1H, H5(OH)), 2.73 (ddt, J = 13.7, 6.2, 1.4 Hz, 

1H, H11), 2.47-2.33 (m, 2H, H3 and H11’), 2.01 (ddd, J = 13.4, 8.9, 6.2 Hz, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 180.4 (s, C1), 159.7 (s, C9), 133.2 (d, C12), 131.3 (s, C6), 

128.3 (d, 2C, C7), 120.0 (t, C13), 113.8 (d, 2C, C8), 76.5 (d, C5), 66.4 (t, C2), 55. 4 (q, C10), 

52.5 (s, C4), 38.6 (t, C11), 28.1 (t, C3). 

HRMS (ESI) m/z: calcd for C15H18O4Na [M+Na]+: 285.1097, found: 285.1098. 

 

Iodocyclization (general procedure)75 

 

Under argon atmosphere, 1-cyclohexenyloxytrimethylsilane (9 μL, 0.045 mmol, 1.5 equiv) 

was added to a solution of (R*)-3-allyl-3-((R*)-hydroxy(4-methoxyphenyl)methyl)-

dihydrofuran-2(3H)-one I.22 (8.0 mg, 0.030 mmol, 1.0 equiv) in CH2Cl2 at 0 °C. The reaction 

was stirred for 10 min at 0 °C and NIS (17 mg, 0.075 mmol, 2.5 equiv) was added to the 

mixture at 0 °C. The reaction mixture was stirred for 20 min at 0 °C and then stirred at rt for 

16 h. After checking the complete consumption of the starting material by TLC, a saturated 

solution of brine was added and the aqueous phase was extracted with CH2Cl2. The combined 

organic phases were dried over anhydrous Na2SO4, filtered and evaporated under reduced 

pressure to afford a crude residue, which was purified by flash column chromatography on 

silica gel (PE/EtOAc = 8:2) to afford a colorless oil of trans-I.23 (10 mg) and cis-I.23 (3 mg) 

in 87% yield isolated from a mixture of trans-I.23/cis-I.23 (dr = 3.5:1) determined by 1H 

NMR analysis of crude. 

 

 

(5S*,6R*,8S*)-8-(Iodomethyl)-6-(4-methoxyphenyl)-2,7-dioxaspiro[4.4]nonan-1-one 

(trans-I.23) 
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(10 mg, 67%) 

Rf: 0.33 (PE/EtOAc = 8:2) 

[α]20 
D = 6.60 (c 0.50, CHCl3) 

IR (ATR): 2923, 2853, 1761, 1613, 1514, 1454, 1376, 1303, 1250, 1215, 1174, 1026, 837, 

787 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.25-7.20 (m, 2H, H7), 6.90-6.84 (m, 2H, H8), 5.32 (s, 1H, 

H5), 4.43 (tdd, J = 8.6, 6.5, 4.7 Hz, 1H, H12), 4.04 (ddd, J = 9.1, 8.3, 5.4 Hz, 1H, H2), 3.80 (s, 

3H, H10), 3.45 (dd, J = 9.8, 4.7 Hz, 1H, H13), 3.38-3.29 (m, 2H, H13’ and H2’), 2.49-2.37 (m, 

2H, H11), 2.17 (ddd, J = 13.3, 8.0, 5.4 Hz, 1H, H3), 1.91 (ddd, J = 13.2, 8.4, 6.9 Hz, 1H, H3’). 

13C NMR (100 MHz, CDCl3): δ 178.2 (s, C1), 159.8 (s, C9), 128.5 (s, C6), 127.1 (d, 2C, C7), 

114.1 (d, 2C, C8), 84.9 (d, C5), 78.2 (d, C12), 65.8 (t, C2), 55. 4 (q, C10), 55.1 (s, C4), 45.1 (t, 

C11), 29.9 (t, C3), 9.1 (t, C13). 

HRMS (ESI) m/z: calcd for C15H7IO4Na [M+Na]+: 411.0064, found: 411.0065. 

 

 

 

 

 

 

 

 

 

 

 

(5S*,6R*,8R*)-8-(Iodomethyl)-6-(4-methoxyphenyl)-2,7-dioxaspiro[4.4]nonan-1-one (cis-

I.23) 
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(3 mg, 20%)  

Rf: 0.29 (PE/EtOAc = 8:2) 

[α]20 
D = +12.0 (c 0.20, CHCl3) 

IR (ATR): 2924, 2853, 1764, 1614, 1515, 1462, 1375, 1304, 1251, 1216, 1174, 1028, 839 cm-

1. 

1H NMR (400 MHz, CDCl3) mixture of trans-I.23/cis-I.23 = 1:20: δ 7.32-7.27 (m, 2H, H7), 

6.93-6.85 (m, 2H, H6), 5.12 (s, 1H, H5), 4.19 (dtd, J = 8.2, 6.0, 4.1 Hz, 1H, H12), 4.01 (ddd, J 

= 9.0, 8.3, 5.0 Hz, 1H, H2), 3.81 (s, 3H, H10), 3.48 (dd, J = 10.5, 5.7 Hz, 1H, H13), 3.39 (dd, J 

= 10.5, 4.1 Hz, 1H, H13’), 3.32 (dt, J = 9.0, 7.6 Hz, 1H, H2’), 2.81 (dd, J = 13.2, 8.2 Hz, 1H, 

H11), 2.21 (ddd, J = 12.9, 7.7, 5.0 Hz, 1H, H3), 1.99 (dt, J = 13.4, 7.8 Hz, 1H, H3’), 1.92 (dd, J 

= 13.2, 6.2 Hz, 1H, H11’). 

13C NMR (100 MHz, CDCl3) mixture of trans-I.23/cis-I.23 = 1:20: δ 179.8 (s, C1), 159.9 (s, 

C9), 128.4 (s, C6), 127.6 (d, 2C, C7), 114.1 (d, 2C, C8), 86.1 (d, C5), 76.1 (d, C12), 66.2 (t, C2), 

55. 4 (q, C10), 53.7 (s, C4), 44.7 (t, C11), 32.8 (t, C3), 9.8 (t, C13). 

HRMS (ESI) m/z: calcd for C15H7IO4Na [M+Na]+: 411.0064, found: 411.0069. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

171 

 

 

 

 

 

 

 

Palladium-Catalyzed Asymmetric Allylic Alkylation 

of 4-Substituted Isoxazolidin-5-ones 

Toward the Synthesis of 2,2-Amino Acids 
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1. Occurrence of -amino acid motif in natural products and/or bioactive 

compounds 
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1.1. -Amino acids 

 

-Amino acids occur in Nature in the form of the free amino acids or as substructures 

of peptides and alkaloids. Although less abundant than their -analogues, -amino acids have 

been found in a number of biologically relevant natural products.82  Due to their unique 

pharmacological properties and the synthetic challenge they represent, the preparation of such 

compounds has emerged as a particularly important and stimulating endeavor.83 

-Amino acids can be associated with different designations, depending on which 

carbon the substitution takes place. Seebach et al. introduced a very effective nomenclature, 

using the term x-amino acid where x indicates the position of the side chain on the carbon 

backbone to distinguish positional isomers (Figure 11).84 

 

 

 

Figure 11. Various types of -amino acids. 

 

 

 

 

 

1.2. Naturally occurring -amino acids 

 

In contrast to proteinogenic -amino acids, which are the primary constituents of all 

enzymes which in turn control the metabolism in living organisms, most -amino acids only 

                                                        
82 Juaristi, E.; Soloshonok, V. A., Enantioselective synhtesis of beta-amino acids. 2nd ed.; John Wiley & Sons: 

Hoboken NJ, 2005. 

83 Windholz, M.; Budavari, S.; Stroumtsos, L. Y.; Fertig, M. N., The Merck Index: An Encyclopedia of 

Chemicals and Drugs. 9th ed.; Merck: Rahway, NJ, 1976. 

84 (a) Hintermann, T.; Seebach, D. Synlett 1997, 437; (b) Seebach, D.; Gademann, K.; Schreiber, J. V.; 

Matthews, J. L.; Hintermann, T.; Jaun, B., Helv. Chim. Acta 1997, 80, 2033. 
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occur as constituents of distinct natural products such as peptides, cyclopeptides, 

depsipeptides, glycopeptides, alkaloids, or terpenoids of which selected representative 

examples are depicted in Figure 12.85  

 

 

 

Figure 12. Structures of various -amino acid-containing natural products. 

 

These compounds are often characterized by potent biological activities that are often 

crucially dependent on the -amino acid subunit such as, for example, bestatin, dolastatin, 

cryptophycin 1, bleomycin A2 and taxol (Figure 12). As a consequence, these naturally 

occurring molecules containing a -amino acid motif have inspired the development of new 

drug candidates.86 

Moreover, the incorporation of -amino acids into peptides instead of -amino acids 

increases their stability against degradation by mammalian peptidases. This enhanced stability 

is caused by the lack of enzymes capable of cleaving the peptide bonds between -amino 

                                                        
85 Schmuck, C.; Wennemers, H. -Amino Acids in Nature in Highlights in Bioorganic Chemistry: Methods and 

Applications. Wiley-VCH: Weinheim, 2004. 

86 (a) Ballard, C. E.; Wang, H. Y. a. B. Curr. Med. Chem. 2002, 9, 471; (b) Steer, D. L.; Lew, R. A.; Perlmutter, 

P.; Smith, A. I.; Aguilar, M.-I. Curr. Med. Chem. 2002, 9, 811. 
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acids and -amino acids.87 Therefore, -amino acids are an important tool in the development 

of drugs capable of withstanding hydrolytic degradation. 

To date, there is no evidence that animals are able to produce any -amino acids, 

except -alanine L2.1 and -aminoisobutyric acid L2.2 which are present in all living 

organisms, since they are directly involved in primary metabolism (Figure 13, a). The 

reported occurrence of -amino acids in natural products, isolated from animals such as 

sponges and mollusks, are not contradictory to that hypothesis since it has been demonstrated 

that the cyanobacteria, which live in a symbiotic relationship with sponges or serving as 

nutrition for mollusks, are the real producers of the -amino acids in question.88 On the other 

hand, many -amino acids are formed by 2,3-aminomutase, which catalyzes the ,-shift of 

the amino group. These enzymes are present in bacteria, plants and fungi.85 A few other 

-amino acids that are directly derived from the corresponding proteinogenic -amino acids 

has been discovered in Nature in their free form or as part of larger molecules (Figure 13, b). 

 

 

 

 

 

Figure 13. -Amino acids found in Nature. 

 

A considerable number of reviews covering the synthesis, biosynthesis and biological 

activities inherent to -amino acid-containing natural products are available.82, 85, 89 

                                                        
87 Pegova, A.; Abe, H.; Boldyrev, A. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 2000, 127, 443. 

88 Bewley, C. A.; Faulkner, D. J. Angew. Chem. Int. Ed. 1998, 37, 2162. 
89 Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 25, 117. 
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Therefore, a brief overview of examples of natural and synthetic products bearing a -amino 

acid moiety with interesting biological properties are reported in Table 12 and classified 

according to their substitution pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12. Representative examples of bioactive -amino acid-containing molecules. 

-Amino acid Type Representative example Biological activity 

 

 

2 

 

 

antitumor 

(depsipeptide) 

 

 

 

 

 

3 

 

 

anthelminthic 

insecticidal 

antifungal 

(polyketide-depsipeptide) 
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2,2 

 

 

antitumor 

(non-natural peptide) 

 

 

 

 

 

2,3 

 

 

 

antitumor 

(cyclodepsipeptide) 

 

 

 

2,2,3 

 

 

antithrombotic agent 

(non-natural peptide) 

 

 

 

 

 

 

 

1.3. The use of -amino acids as precursors 

 

1.3.1. -Amino acids in -lactams 

 

-Lactam antibiotics, such as penicillins L2.3 and cephalosporins L2.4 (Figure 14), 

are still the most prominent class of therapeutic antibacterial agents. They are clearly the most 

important group of naturally occurring molecules used as drugs that contain a -amino acid 

substructure. 90  Nowadays, they represent more than 60% of all clinically administrated 

antibiotics.91 Due to the occurrence of resistant bacterial strains that possess -lactamases, 

which are thus able to deactivate -lactam antibiotics by hydrolytic ring-opening, the 

                                                        
90 Schofield, C. J.; Walter, M. W. Amino-acids, Peptides, and Proteins Royal Society of Chemistry: 

Cambridge, 1999; Vol. 30. 

91 Lee, W.; McDonough, M. A.; Kotra, L. P.; Li, Z.-H.; Silvaggi, N. R.; Takeda, Y.; Kelly, J. A.; Mobashery, S. 

Proc. Natl. Acad. Sci. USA 2001, 98, 1427. 
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development of new types of synthetic -lactam antibiotics to overcome these problems 

remains still today an important challenge.92 

 

 

 

Figure 14. Structures of -lactam-containing antibiotics. 

 

The access to the -lactam skeleton has been appealing to organic chemists because of 

its medicinal significance. There are a few synthetic approaches to construct the -lactam 

ring. Among them, the cyclization of -amino acids or -amino esters is the most obvious 

pathway to construct the -lactam ring.93 In this approach, the design of new compounds 

involving structural modifications of the -amino acid substrate through the introduction of 

substituents onto the less explored -position  forming new 2,2-amino acids  has led to 

the discovery of a few compounds with promising antibacterial activities, as shown below 

Figure 15.94 

 

 

 

Figure 15. Structures of various -lactams. 

 

1.3.2. -Amino acids in - and /-peptides and peptidomimetics 

 

Exciting discoveries in the field of -peptides have provided an ever-growing interest 

in recent years for the development of synthetic routes to -amino acids. While individual 

                                                        
92 (a) Matagne, A.; Dubus, A.; Galleni, M.; Frère, J.-M. Natural Product Reports 1999, 16, 1; (b) Kelly, J. A.; 

Dideberg, O.; Charlier, P.; Wery, J. P.; M. Libert; Moews, P. C.; Knox, J. R.; Duez, C.; Fraipont, C.; B. Joris; 

Dusart, J.; Frère, J. M.; Ghuysen, J. M. Science 1986, 231, 1429. 
93 Singh, G. S. Tetrahedron 2003, 59, 7631. 

94 (a) Avenoza, A.; Cativiela, C.; París, M.; Peregrina, J. M. Tetrahedron: Asymmetry 1995, 6, 1409; (b) 

Cativiela, C.; Diaz-de-Villegas, M. D.; Gálvez, J. A. J. Org. Chem. 1994, 59, 2497. 
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-amino acids and closely related compounds, most notably the -lactams, have long held a 

prominent position in medicinal chemistry, the study of -peptides has been very limited until 

the past two decades. Research on -peptides has undergone a tremendous development ever 

since and has revealed that peptides, derived from proteinogenic amino acids, form more 

stable secondary structures  helix, turn and sheet  than their natural counterpart. 95 

Furthermore, -peptides and the hybrid /-peptides generally exhibit increased proteolytic 

and metabolic stability (Figure 16). Consequently, many strategies have been unveiled to 

develop molecules that mimic natural peptides. These approaches rely on the strategical 

replacement of specific -amino acids within a given peptide sequence by suitable -amino 

acids.96 

 

 

 

 

 

 

 

Figure 16. The achievement of a proteolically stable bond after replacement of -amino acid 

fragment by an -amino acid in a peptide. 

 

The field of peptidomimetics has been revolutionized due to the remarkable structure 

and the proteolytic stability of these unnatural peptides. Hence, researchers have been 

presented with significant opportunities to provide new chemical therapies for a range of 

human diseases. Indeed, a number of examples of potent anticancer peptides containing a 

-amino acid unit, more specifically, a 2,2-amino acid unit, have been recently disclosed by 

medicinal chemists. These peptides include linear heptapeptides and cyclic tetrapeptides 

bearing a lipophilic 2,2-amino acid and a series of short peptidomimetics consisting of a 

                                                        
95 (a) Seebach, D.; Beck, A. K.; Capone, S.; Deniau, G.; Grošelj, U.; Zass, E. Synthesis 2009, 1, 1; (b) Seebach, 

D.; Abele, S.; Gademann, K.; Jaun, B. Angew. Chem. Int. Ed. 1999, 38, 1595; (c) Seebach, D.; Matthews, J. 

L. Chem. Commun. 1991, 2015; (d) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F., Chem. Rev. 2001, 101, 

3219. 

96 (a) Aguilar, M. I.; Purcell, A. W.; Devi, R.; Lew, R.; Rossjohn, J.; Smith, A. I.; Perlmutter, P. Org Biomol 

Chem 2007, 5, 2884; (b) Seebach, D.; Gardiner, J. Acc. Chem. Res. 2008, 41, 1366. 



 

 
 

180 

single 2,2-amino acid, displaying antimicrobial and anticancer activities (Figure 17).97 These 

anticancer peptides have a unique mode of action by selectively interfering with cancer cells 

via a charge-triggered membrane disruption. This has led to the development of anticancer 

peptide-chemotherapeutic drugs. 

 

 

 

Figure 17. Representative examples of potent antimicrobial and anticancer peptides 

containing a 2,2-amino acid unit. 

 

2. Stereoselective syntheses of 2,2-amino acid precursors 

 

                                                        
97 (a) Hansen, T.; Ausbacher, D.; Flaten, G. E.; Havelkova, M.; Strom, M. B. J. Med. Chem. 2011, 54 , 858; (b) 

Hansen, T.; Alst, T.; Havelkova, M.; Strom, M. B. J. Med. Chem. 2010, 53 , 595; (c) Ausbacher, D.; 

Svineng, G.; Hansen, T.; Strom, M. B. Biochim. Biophys. Acta 2012, 1818 , 2917; (d) Hansen, T.; 

Ausbacher, D.; Zachariassen, Z. G.; Anderssen, T.; Havelkova, M.; Strom, M. B. Eur. J. Med. Chem. 2012, 

58, 22; (e) Sivertsen, A.; Torfoss, V.; Isaksson, J.; Ausbacher, D.; Anderssen, T.; Brandsdal, B. O.; 

Havelkova, M.; Skjorholm, A. E.; Strom, M. B. J. Pept. Sci. 2014, 20 , 279; (f) Cabrele, C.; Martinek, T. A.; 

Reiser, O.; Berlicki, L. J. Med. Chem. 2014, 57 , 9718; (g) Sharma, G. V. M.; Reddy, P. S.; Chatterjee, D.; 

Kunwar, A. C. Tetrahedron 2012, 68 , 4390; (h) Torfoss, V.; Isaksson, J.; Ausbacher, D.; Brandsdal, B. O.; 

Flaten, G. E.; Anderssen, T.; Cavalcanti-Jacobsen C de, A.; Havelkova, M.; Nguyen, L. T.; Vogel, H. J.; 

Strom, M. B. J. Pept. Sci. 2012, 18 , 609; (i) Torfoss, V.; Ausbacher, D.; Cavalcanti-Jacobsen C de, A.; 

Hansen, T.; Brandsdal, B. O.; Havelkova, M.; Strom, M. B. J. Pept. Sci. 2012, 18 , 170. 
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The stereoselective synthesis of -amino acids has become a subject of growing 

interest in recent years, due to the wide utility of such compounds as components of proteins, 

peptides, and -lactams and, as well as, starting materials for the synthesis of naturally 

occurring biologically active compounds. Given the importance of -amino acids, a number 

of methods allowing the access to -amino acids with various substitution patterns have been 

described in the literature. However, among all the available methods for the preparation of 

-amino acids, only a few approaches provided the generation of -amino acids bearing an 

all-carbon -quaternary stereocenter. 98  In the following section, the stereoselective 

preparation of 2,2-amino acid precursors will be presented. 

 

 

2.1. Diastereoselective alkylation using chiral auxiliaries 

 

2.1.1. Pyrimidinone derivative 

 

The diastereoselective introduction of two alkyl substituents at the -position of 

(S)-1-benzoyl-2-tert-butyl-3methylperhydropyrimidin-4-one L2.13 has been reported by 

Juaristi et al. as a particular efficient way to access enantioenriched 2,2-amino acid precursors 

(Scheme 38).99 The successive alkylations of the enolates derived of L2.13 by two different 

alkyl halides gave rise to -quaternary products L2.14 in high yields and diastereoselectivities 

(up to dr = 95:5). In both alkylation steps, only one single diastereoisomer was observed. This 

approach did not seem to be very efficient, since the authors pointed out that drastic 

conditions had to be used to achieve the hydrolysis of compounds L2.14 toward the formation 

of their corresponding 2,2-amino acid, such as long reaction time and high temperature 

(HCl 8 M, 100-140 ºC, 48-72 h). 

 

                                                        
98 Abele, S.; Seebach, D. Eur. J. Org. Chem. 2000, 1, 1. 

99 Juaristi, E.; Balderas, M.; Ramírez-Quirós, Y. Tetrahedron: Asymmetry 1998, 9, 3881. 
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Scheme 38. Diastereoselective double alkylation strategy by Juaristi et al. 

 

 

 

 

 

 

2.1.2. Oppolzer’s sultam analogue 

 

In a conceptually related system, Cativiela et al. reported the diastereoselective 

alkylation of the corresponding lithium enolate of L2.15 in the preparation of -quaternary 

cyanoesters derivatives L2.16 (Scheme 39).100 Hence, the alkylation of an epimeric mixture 

of -cyanoester L2.15 containing Oppolzer’s sultam chiral auxiliary revealed to be 

compatible with a range of -substituents in L2.15, affording the desired products L2.16 in 

high yields and diastereoselectivities. One advantage of this procedure is that the chiral 

auxiliary can be easily removed under mild alkaline conditions (KOH, MeOH, reflux, 6 h).101 

 

                                                        
100 Cativiela, C.; Diaz-de-Villegas, M. D.; Gálvez, J. A. J. Org. Chem. 1994, 59, 2497. 

101 (a) Cativiela, C.; Diaz-de-Villegas, M. D.; Gálvez, J. A. Tetrahedron: Asymmetry 1993, 4, 1445; (b) Ramón 

Badorrey, C. C., Maria D. Dias-de-Villegas, José A. Gálvez and; Lapeña, Y. Tetrahedron: Asymmetry 1997, 

8, 311. 
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Scheme 39. Diastereoselective alkylation of chiral -cyanoesters by Cativiela et al. 

 

 

 

2.1.3. Pyrrolidine derivative 

 

Similarly, Katsuki et al. have disclosed a diastereoselective synthesis of all-carbon 

-quaternary cyanoacetamides L2.18 by alkylation of the lithium amide enolate of L2.17 

using trans-2,5-bis(methoxymethoxymethyl)pyrrolidine as chiral auxiliary (Scheme 40).102 

The disubstituted pyrrolidine used by the authors accounted for a highly diastereoselective 

alkylation, leading to the formation of the desired 2,2-amino acid precursors in high 

diastereomeric ratios and almost quantitative yields. Furthermore, the chiral auxiliary could 

be cleaved under mild acid media (HCl 6 M, rt, 12 h). 

 

                                                        
102 Hanamoto, T.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 2463. 
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Scheme 40. Diastereoselective synthesis of -quaternary cyanoacetamides by Katsuki et al. 

 

 

 

 

 

 

 

 

 

2.1.4. Lactic acid derivative 

 

For the preparation of 2,2-amino acid precursors, Cativiela et al. explored a totally 

different approach (Scheme 41).103 They used (E)--cyanocinnamate L2.19 containing the 

(S)-ethyl lactate as the chiral auxiliary in a diastereoselective Diels-Alder reaction with 

1,3-butadiene as the key step to produce the all-carbon -quaternary center. The asymmetric 

Diels-Alder reaction of this chiral dienophile L2.19 in the presence of equimolar amounts of 

TiCl4 allowed the synthesis of the cycloadduct L2.20 in good yield and diastereoselectivity. 

The asymmetric induction was in line with the seven-membered TiCl4-dienophile chelate 

complex model, favoring the approach of the diene from the Si face. The hydrolysis and 

                                                        
103 Avenoza, A.; París, M.; Peregrina, J. M. J. Org. Chem. 1994, 59, 7774. 
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subsequent hydrogenations afforded the corresponding 2,2-amino acid methyl ester in 

enantioenriched form.104 

 

 

 

Scheme 41. Diastereoselective Diels-Alder approach by Cativiela et al. 

 

 

 

 

 

 

 

 

 

2.2. Enantioselective Michael addition 

 

Enantioenriched -cyanoesters bearing all-carbon quaternary centers have been 

recognized as attractive precursors for the synthesis of all-carbon -quaternary amino acid 

precursors and more specifically, 2,2-amino acids, and other biologically relevant 

compounds. In this context, several catalytic enantioselective Michael addition approaches 

toward the synthesis of these stereodefined compounds have been reported since the early 

1990’s.105 

 

2.2.1. Transition metal catalysis 

                                                        
104 Avenoza, A.; Cativiela, C.; París, M.; Peregrina, J. M. Tetrahedron: Asymmetry 1995, 6, 1409. 
105 Peters, R.; Jautze, S. Synthesis 2010, 3, 365. 
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2.2.1.1. Rhodium catalysts 

 

The direct enantioselective conjugate addition of -substituted -cyanoesters to 

activated olefins is among the most established and attractive method for CC bond 

construction, due to their ideal atom economy and the availability of the required starting 

materials. 

The first enantioselective catalytic Michael addition was disclosed by Ito et al. in 

1992, enabling the conjugate addition of -methyl -cyanoesters L2.21 to enones L2.22 in 

good yields and enantioselectivities by using a Rh(I) complex in conjunction with a chiral 

diphosphine (TRAP L2.23) (Scheme 42, eq 1). 106  The authors argued that the 

trans-coordinating mode of the TRAP ligand was crucial to obtain high enantioselectivities, 

since the usual cis-coordinating ligands, such as BINAP or DIOP, led to racemic products. 

Moreover, the proposed mechanistic model suggests a rhodium complex via the coordination 

of the cyano moiety to the metal, whereas the concave chiral environment created by the 

TRAP ligand allows an efficient differentiation of both enantiotopic faces of the cyanoester 

enolate. 

Inspired by the pioneering work of Ito et al., Takaya, Nozaki et al. later extended the 

Michael addition of -methyl -cyanoesters L2.21 to the methyl vinyl ketone employing the 

binaphthol-derived ligand L2.24 in combination with Rh(acac)(CO)2, thus, obtaining Michael 

adducts in good yields but modest enantioselectivities (Scheme 42, eq 2).107 

An alternative procedure was later reported by Motoyama et al. where a positive 

influence in the enantioselectivity was observed by using the pre-catalyst 

[(Phebox)SnMe3)] L2.26 in combination with a Rh(I) source which undergoes an oxidative 

addition into the carbon-tin bond to provide the catalytic active Rh(III) species, leading to the 

formation of the Michael adduct in good yields but still with modest ee values (Scheme 42, 

eq 3).108 

 

                                                        
106 Sawamura, M.; Hamashima, H.; Ito, Y. J. Am. Chem. Soc. 1992, 114, 8295 
107 Inagaki, K.; Nozaki, K.; Takaya, H. Synlett 1997, 119. 

108 Motoyama, Y.; Koga, Y.; Kobayashi, K.; Aoki, K.; Nishiyama, H. Chem. Eur. J. 2002, 2968. 
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Scheme 42. Rh-catalyzed Michael addition of -methyl -cyanoesters. 

 

As shown above, three different elements of chirality  planar, axial and central  

have been used with rhodium catalysts, however, the planar-chiral complex reported by Ito 

et al. provided the best results in terms of enantioselectivity in the Michael addition of 

-methyl -cyanoesters. 

 

 

2.2.1.2. Palladium catalysts 

 

Although good results were obtained using the rhodium catalysis to realize Michael 

addition involving -methyl -cyanoesters, this method revealed unable to afford satisfactory 

levels of enantioselectivity for -substituents larger than methyl. Therefore, alternative 

catalytic systems, such as palladium-based ones, were evaluated in an effort to address this 

issue. 

Richard et al. reported the first example of a palladium-catalyzed asymmetric Michael 

addition of -methyl -cyanoesters L2.21 (Scheme 43, eq 1). In contrast to the 

rhodium-catalyzed Michael addition, a base was required to enable the reaction to take place. 
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Despite the series of different bisoxazoline palladium pincer complexes L2.28 examined, 

these palladium catalysts were not able to afford better selectivities.109 

An alternative palladium-based system was later developed by Mazet and Gade 

involving an asymmetric Michael addition of -cyanoesters L2.21 to methyl vinyl ketone 

(Scheme 43, eq 2).110 Although slightly higher enantioselectivities were attained with the 

C2-symetric N,N,N-palladium complex L2.30, yields remained poor due to low reactivity of 

the palladium catalyst, even after activating it with a silver salt. 

Uozimi et al. introduced a very interesting new type of ligand to improve the 

enantioselectivity with palladium catalysts. Indeed, the use of NCN pincer palladium complex 

L2.32 in combination with the Hünig’s base as a co-catalyst afforded up to 83% ee 

(Scheme 43, eq 3).111 The free hydroxyl groups revealed to be a key structural element for 

delivering high levels of enantioselectivity, since the selectivity dropped if the hydroxyl 

groups were protected or replaced by other substituents. These results lend credence to a 

possible higher organized transition state via hydrogen bonding of the hydroxyl groups to the 

-cyanoenolate and the Michael acceptor. Unfortunately, like all the other transition metal 

catalysts evaluated, this system seemed to be limited to -methyl substituted -cyanoesters, 

as no -substituents bulkier than methyl were reported. 

 

                                                        
109 Stark, M. A.; Jones, G.; Richards, C. J. Organometallics 2000, 19, 1282. 

110 Mazet, C.; Gade, L. H. Chem. Eur. J. 2003, 9, 1759. 

111 Takenaka, K.; Minakawa, M.; Uozumi, Y. J. Am. Chem. Soc. 2005, 127, 12273. 
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Scheme 43. Pd-catalyzed Michael addition of -methyl -cyanoesters. 

 

Based on the idea that an enhancement in the level of stereocontrol would be achieved 

with a highly-organized transition state, Peters and Jautze reported the application of a soft 

bimetallic complex capable of simultaneously activating both the Michael acceptor and the 

-cyanoenolate (Scheme 44).112  According to this hypothesis, an -cyanoacetate such as 

L2.34 should be activated by enolization promoted by coordination of the nitrile moiety to 

one Pd(II) center of the bispalladacycle complex FBIP-Cl L2.36, while the enone L2.35 

should be activated as an electrophile by coordination to the carbophilic Lewis acid. As a 

matter of fact, the use of the bimetallic catalyst L2.36 induced high levels of 

enantioselectivity for the addition of different -aryl -cyanoacetate donors to Michael 

acceptors, revealing to be a successful alternative to overcome the limitations of the other 

transition metals based catalytic system had in the formation of bulkier ,-disubstituted 

cyanoesters. 

                                                        
112 Jautze, S.; Peters, R. Angew. Chem. Int. Ed. 2008, 47, 9284. 
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Scheme 44. Addition of -cyanoesters to vinyl ketone by Jautze and Peters. 

 

2.2.2. Organocatalysis 

 

2.2.2.1. Cinchona catalysts 

 

The use of organocatalysts in the enantioselective Michael addition of -cyanoesters 

has been reported since 1975, when the first example of quinine L2.39 catalyzed Michael 

addition of the -cyanoester L2.38 to methyl vinyl ketone was described by Wynberg and 

Helder (Scheme 45). 113  Unfortunately, neither the yields and enantiomeric excess were 

reported by the authors in this seminal work. 

                                                        
113 Wynberg, H.; Helder, R. Tetrahedron Lett. 1975, 16, 4057. 
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Scheme 45. Addition of -cyanoester to methyl vinyl ketone by Wynberg and Helder. 

 

 Nonetheless it was only in 2005 that the use of cinchona alkaloid derivatives was 

reported in the asymmetric Michael addition of -cyanoesters. Deng et al. employed the 

quinine derivative L2.43 in the conjugate addition of a range of structurally diverse 

-cyanoesters L2.41 onto vinyl sulfones L2.42. The addition products L2.44 were obtained in 

both good yields and enantioselectivities (Scheme 46).114 In the case of -alkyl cyanoesters, 

the sulfonyl group was needed to exert a stronger electron-withdrawing effect to have a useful 

reactivity, due their lower enolization tendency. The observation of a slower reactivity of 

-aryl cyanoesters, in which the aryl moiety was substituted by electron-rich groups, is in line 

with this assumption. 

 

 

 

Scheme 46. Enantioselective addition of -alkyl cyanoesters onto vinyl sulfones. 

                                                        
114 Li, H.; Song, J.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2005, 127, 8948. 
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 The broad applicability of alkaloid derivatives was even further extended by 

Deng et al. They disclosed the synthesis of a series of enantioenriched aldehydes L2.47 

through an asymmetric Michael reaction, using the catalyst L2.46, which plays a dual role of 

Brønsted acid-base catalyst. However, despite the good results, this procedure revealed to be 

limited to -aryl and -heteroaryl substituted cyano esters (Scheme 47).115 

 

 

 

Scheme 47. Asymmetric Michael addition of -cyanoesters onto acrolein by Deng et al. 

 

 A totally new approach was introduced by Jørgensen et al. in the formation of chiral 

quaternary aldehydes by Michael addition.116 This conceptually different approach relied on 

the deprotonation of ,-unsaturated -cyanoesters L2.48 at the -position by using cinchona 

alkaloid derivative L2.49. The resulting allylic anion intermediate subsequently underwent a 

conjugate addition, reacting preferentially at the -position over to the -position. Despite the 

fact that this method relies on the use of readily available starting materials prepared by a 

simple Knoevenagel condensation, the enantioselectivities and yields remained moderate, 

ee = 39-56% and yield = 34-68% (Scheme 48). 

 

                                                        
115 Wu, F.; Hong, R.; Khan, J.; Liu, X.; Deng, L. Angew. Chem. Int. Ed. 2006, 45, 4301. 
116 Bell, M.; Frisch, K.; Jørgensen, K. A. J. Org. Chem. 2006, 71, 5407. 
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Scheme 48. Addition of ,-unsaturated -cyanoesters onto acrolein by Jørgensen et al. 

 

2.2.2.2. Thiourea-derived catalysts 

 

Chen et al. have showed that thiourea functionalized with a scalemic diamine moiety 

could also be used as catalyst in the enantioselective Michael addition of -aryl substituted 

-cyanoesters L2.51 to vinyl sulfones L2.52 (Scheme 49).117 The thiourea-based catalyst 

L2.53 allowed the access to Michael products bearing -quaternary center in both high yields 

and enantioselectivities. It is worth pointing out that the sulfone group in the Michael acceptor 

has a fundamental role in this reaction. 

 

                                                        
117 Liu, T. Y.; Long, J.; Li, B. J.; Jiang, L.; Li, R.; Wu, Y.; Ding, L. S.; Chen, Y. C. Org. Biomol. Chem. 2006, 

4, 2097. 
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Scheme 49. Enantioselective Michael addition of -aryl substituted -cyanoesters onto vinyl 

sulfones. 

 

Nonetheless, the abovementioned catalytic system revealed to be inefficient for 

-alkyl substituted -cyanoesters L2.55, requiring longer reaction times and higher catalyst 

loadings. In order to overcome the low reactivity and selectivity, the same authors used a 

thiourea-based catalyst L2.57 containing a different chiral amine scaffold and a more 

electron-deficient Michael acceptor L2.56 to afford the Michael products L2.58 in good 

selectivities and yields (Scheme 50).117 
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Scheme 50. Enantioselective Michael addition of -substituted -cyanoesters onto vinyl 

disulfones. 

 

The remarkable catalytic efficiency demonstrated by cinchona alkaloids and 

thiourea-derived catalysts for the asymmetric Michael reaction of -cyanoesters with a 

variety of Michael acceptors prompted Deng et al. to explore their ability to promote the 

enantioselective conjugate addition onto acrylonitrile, which had no precedent in the 

literature.118 Partially due to its weak activity as Michael acceptor, the acrylonitrile appears to 

be particularly challenging for catalytic asymmetric conjugate additions. While both cinchona 

and thiourea catalysts failed to afford useful levels of enantioselectivity, the hybrid 

cinchona-thiourea catalyst L2.60 was found to afford dramatically enhanced 

enantioselectivities in the formation of the Michael adducts L2.61 (Scheme 51). Constituting 

the first highly enantioselective catalytic conjugate addition of -cyanoesters onto 

acrylonitiles. 

 

                                                        
118 Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768. 
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Scheme 51. First highly enantioselective catalytic conjugate addition onto acrylonitiles. 

 

2.2.2.3. Phase-transfer catalysts 

 

As shown throughout this Section, several research groups have developed chiral 

metal complexes and chiral secondary amines that are capable of catalyzing the Michael 

addition of -cyanoesters in a highly enantioselectivity fashion. Ultimately, Jørgensen et al. 

disclosed a powerful catalytic system relying on the chiral phase-transfer catalyst L2.64 

derived from cinchonine (Scheme 52).119 They described a synthetic method based on the 

asymmetric conjugated addition of -substituted -cyanoesters L2.62 to -chloro 

,-unsaturated carbonyl compounds L2.63, leading to the stereoselective construction of 

all-carbon -quaternary centers in good yields, high ees and excellent control of the double 

bond geometry. 

The vinylic substitution occurs through an initial conjugate addition of the -cyano 

cesium enolate onto the Michael acceptor, resulting in the formation of a -chloro substituted 

enolate L2.65 which undergoes rapid elimination of the halide to form the double bond. More 

importantly, this type of addition/elimination sequence takes place with retention of the 

                                                        
119 Bell, M.; Poulsen, T. B.; Jørgensen, K. A. J. Org. Chem. 2007, 72, 3053. 
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configuration of the double bond due to the stereoelectronic properties of the -chloro enolate 

intermediate L2.65. 

 

 

 

Scheme 52. Phase-transfer catalyzed enantioselective Michael addition of -cyanoesters. 
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3. Results and discussion 

 

3.1. Context and objective 

 

As mentioned previously, asymmetric methods allowing a straightforward access to 

-amino acids have been the focus of tremendous efforts over the past decade. Based on our 

previous results obtained in the synthesis of -quaternary -butyrolactones via an 

intermolecular palladium-catalyzed asymmetric allylation (Chapter 1 - Section 4.9),77 we 

envisioned that the 2,2-amino acids II.3 could be prepared from all-carbon -quaternary 

isoxazolidin-5-ones II.2, after reductive cleavage of NO bond, which will be obtained, in 

turn, by the enantioselective allylic alkylation of 4-substituted isoxazolidin-5-ones II.1 

(Scheme 53). 

 

 

 

Scheme 53. Synthesis of 2,2-amino acids via a key Pd-AAA. 
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3.2. Synthesis of 4-substituted isoxazolidin-5-ones 

 

This investigation began with the development of two general strategies toward the 

preparation of 4-substituted isoxazolidin-5-ones required for this study. The synthesis of the 

substrates II.1 bearing different substituents at the 4-position should be accomplished through 

an anionic formal [3+2] cycloaddition between the enolate of Meldrum’s acid II.4’ and the 

nitrone II.5’, which will be respectively issued from the Meldrum’s acid II.4 and the 

N-hydroxyamine sulfone II.5 (Scheme 54).120 

 

 

 

Scheme 54. General strategy for the synthesis of 4-substituted isoxazolidin-5-ones II.1. 

 

3.2.1. Synthesis of substituted Meldrum’s acid 

 

3.2.1.1. From diethyl malonate by using cross-coupling 

 

The Meldrum’s acids II.4 containing an aromatic substituent were prepared from the 

commercially available diethyl malonate II.6 in three steps. The first step consisted of the 

arylation of II.6 catalyzed by either Pd and Cu catalysts. The palladium-catalyzed arylation 

was performed according to the procedure reported by Hartwig and Beare,121 by preparing the 

enolate of diethyl malonate II.6 (NaH 1.1 equiv) and treatment with ArBr (1 equiv) in the 

presence of Pd(t-Bu3P)2 (4 mol %) in THF at 70 ºC for 48 h. In the case of copper-catalyzed 

arylation, the reaction was performed following Ma et al. procedure,122 e.g. by using Cs2CO3 

(4 equiv) and ArI (1 equiv) in the presence of CuI (10 mol %) and L-proline (20 mol %) in 

                                                        
120 (a) Tite, T.; Sabbah, M.; Levacher, V.; Briere, J. F. Chem Commun 2013, 49, 11569; (b) Postikova, S.; Tite, 

T.; Levacher, V.; Brière, J.-F. Adv. Synth. Catal. 2013, 355, 2513. 

121 Beare, N. A.; Hartwig, J. F. J. Org. Chem. 2002, 67, 541. 
122 Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693. 
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DMSO at 40 ºC for 48 h. A second copper-based protocol was also used to realize the 

arylation of II.6, by utilizing Cs2CO3 (3 equiv), CuI (10 mol %), 2-picolinic acid (10 mol %) 

and ArI (1 equiv) in 1,4-dioxane at rt for 48 h (Table 13).123 

The palladium-catalyzed arylation protocol (Method A) reported by Hartwig and 

Beare generally afforded inferior results compared to the copper-based protocols (Method B 

and C), which afforded the cross-coupling products in yields ranging between 44% and 50%. 

The moderate electron-rich aryl bromide (Table 13, entry 3) furnished a slightly higher yield 

than the electron-deficient one (Table 13, entry 7). The milder copper-based systems reported 

by Ma et al. and Kwong et al. allowed the synthesis of the arylated malonates in good yields. 

The catalytic system developed by Ma (Method B: CuI (10 mol %), L-proline (20 mol %) in 

DMSO at 40 ºC) appeared to be efficient in coupling aryl iodides with diethyl malonate 

(Table 13, entry 4), although the improved Kwong’s system (Method C), which could be 

carried out at room temperature and with a lower catalytic loading of 5 mol % of CuI and 

10 mol % of 2-picolinic acid, proved to be even more efficient in delivering the cross-coupled 

product in up to 81% yield (Table 13, entry 6). Interestingly, neither the palladium- nor the 

copper-catalytic systems were able to realize the coupling of aryl halides bearing strong 

electron-withdrawing groups with the enolate of diethyl malonate II.6, and resulted in the 

recovery of the corresponding dehalogenated arenes. 

With the aryl group in place, compounds II.7 were transformed to II.4 in two steps. 

After saponification using NaOH (4 equiv) in a mixture of Et2O/H2O (3:1) at rt, the 

corresponding malonic acids were isolated in good to excellent yields (see experimental 

section for further details). Ultimately, the synthesis of Meldrum’s acid could be 

accomplished after treatment of the dicarboxylic acids with acetone under acidic conditions 

(H2SO4, Ac2O, rt, 12 h). The Meldrum’s acids formation seemed to be substrate dependent, 

with yields varying between 31% and 82% (Table 13). Besides the modest to good yields 

obtained in the Meldrum’s acid formation step, the latter revealed to be incompatible to 

functionalities possessing alkaline sites, since this reaction is performed in acidic media.124 

 

 

 

 

                                                        
123 Yip, S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett. 2007, 9, 3469. 
124 (a) Crooy, P.; Neys, R. d.; Eliaers, J.; Liveyns, R.; Simonet, G.; Vandevelde, J. Bull. Soc. Chim. Belg. 1977, 

86, 991; (b) Dandala, R. S., M. S. P.; Chaudhary, H.; Sivakumaran, M. An improved process for the 

preparation of penicillin derivatives. Indian Pat. Appl. IN 2004CH01095, 2006. 
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Table 13. Synthesis of aryl-containing Meldrum’s acids from diethyl malonate. 

 

Entry Catalyst / Method II.7 

(yield[a]) 

Ar II.4 (yield[a]) 

1 [b] II.7a (%) 
 

II.4a (64%) 

 

2 

 

Pd / A 

 

II.7b (50%) 

 

 

II.4b (15%) 

3 Pd / A II.7c (49%) 
 

II.4c (24%) 

4 Cu / B II.7d (59%) 
 

II.4d (47%) 

5 Pd or Cu / A or B (0%) 
 

 

6 Cu / C II.7e (81%) 
 

II.4e (41%) 

7 Pd / A II.7f (44%) 
 

II.4f (52%) 

8 Pd or Cu / A or B (0%) 
 

 

9 [b] II.7g (%) 
 

II.4g (79%) 

Method A: II.6 (1.1 equiv), ArBr (1 equiv), Pd(t-Bu3P)2 (4 mol %), NaH (1.1 equiv), THF, 70 ºC, 48h. Method 

B: II.6 (1.2 equiv), ArI (1 equiv), CuI (10 mol %), L-proline (20 mol %), Cs2CO3 (4 equiv), DMSO, 40 ºC, 48h. 

Method C: II.6 (2 equiv), ArI (1 equiv), CuI (5 mol %), 2-picolinic acid (10 mol %), Cs2CO3 (3 equiv), 1,4-

dioxane, rt, 48h. [a] Isolated yield over two steps. [b] The corresponding -aryl malonic acid is commercially 

available. 

 

3.2.1.2. From -aryl acetic acids by using C-acylation 

 

 In order to broaden the set of synthesized Meldrum’s acids II.4, we next decided to 

prepare various substrates bearing halide-substituted aromatic rings. Since the transition 

metal-catalyzed cross-coupling approaches could not be used, an alternative strategy was 

envisioned. This strategy relied on the use of commercially available -aryl acetic acids II.8 

and featured an esterification reaction by using H2SO4 (3 equiv) in refluxing MeOH,125 

followed by a C-acylation. This C-acylation was achieved by the treatment of the 

corresponding methyl ester of II.8 with NaH (2.4 equiv) in THF, and then by trapping the 

                                                        
125 Ringstrand, B.; Oltmanns, M.; Batt, J. A.; Jankowiak, A.; Denicola, R. P.; Kaszynski, P. Beilstein J Org 

Chem 2011, 7, 386. 
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resulting sodium enolate with dimethyl carbonate. 126  The corresponding dimethyl 

malonates II.9 were then subjected to the same above-mentioned saponification conditions 

(NaOH, Et2O, H2O), followed by treatment with acetone under acidic conditions (H2SO4, 

Ac2O, rt, 12 h) toward the Meldrum’s acid formation as previously. The desired products II.4, 

bearing the desired halide-substituted aromatic rings, were obtained in much better overall 

yields compared to the previous approach, ranging from 51% to 67%, as depicted in Table 14. 

 

Table 14. Synthesis of aryl-containing Meldrum’s acids from -aryl acetic acids. 

 

Entry Ar II.4 Yield[a] (%) 

1 
 

II.4h 63 

2 
 

II.4i 67 

3 

 

II.4j 51 

[a] Isolated yield over four steps. 

 

3.2.1.3. From diethyl malonates by using SNAr and a radical heteroarylation 

 

 Two other strategies have been used to access the malonic ester-containing 

heteroaromatic moieties. The first one, consisting of an aromatic substitution reaction 

between diethyl malonic ester sodium enolate, generated from diethyl malonic ester II.6 in 

the presence of NaH (2 equiv) in THF, and 2-substituted thiazoles (Scheme 55, eq 1).127 

Unfortunately, neither the 2-bromo nor the 2-phenylsulfonyl thiazoles appeared to be reactive 

enough to lead to the desired product, even when running the reaction at higher temperature, 

resulting in complete recovery of the starting material. The second approach, based on a 

Ce(IV)-promoted reaction between the malonyl radical issued from II.6 and electron-rich 

heteroaromatic molecules such as 2-methylfuran and benzofuran, proved unsuccessful for 

                                                        
126 Zi, W.; Toste, F. D. Angew. Chem. Int. Ed. 2015, 54, 14447. 
127 (a) Yamanaka, H.; Ohba, S.; Sakamoto, T. Heterocycles 1990, 31, 1115; (b) Liang, S.; Zhang, R. Y.; Xi, L. 

Y.; Chen, S. Y.; Yu, X. Q. J. Org. Chem. 2013, 78, 11874. 
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delivering the heteroarylated malonates, as only traces of the product were detected 

(Scheme 55, eq 2).128 

 

 

 

Scheme 55. Attempts for the preparation of heteroaryl-containing diethyl malonates toward 

the synthesis of Meldrum’s acids. 

 

3.2.1.4. From the Meldrum’s acid by using a Tandem Knoevenagel/Reduction 

 

 In the case of alkyl substituted Meldrum’s acid II.4, we considered the protocol 

developed by Ramachary et al.129 involving a tandem Knoevenagel condensation of the native 

Meldrum’s acid II.14 with aldehydes II.15 in the presence of a catalytic amount of L-proline 

(20 mol %) in EtOH. The reactions afforded the homologated products, which subsequently 

underwent the double bond reduction in the presence of Hantzsch ester II.16 to produce the 

substituted Meldrum’s acid II.4 (Table 15). 

 

 

 

 

 

 

                                                        
128 Weinstock, L. M.; Corley, E.; Abramson, N. L.; King, A. O.; Karady, S. Heterocycles 1988, 27, 2726. 
129 (a) Ramachary, D. B.; Kishor, M.; Reddy, Y. V. Eur. J. Org. Chem. 2008, 2008, 975; (b) Ramachary, D. B.; 

Kishor, M.; Ramakumar, K. Tetrahedron Lett. 2006, 47, 651. 
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Table 15. Synthesis of alkyl-containing Meldrum’s acids. 

 

Entry R II.4 Yield[a] (%) 

1 
 

II.4k 74 

2 

 

II.4l 75 

[a] Isolated yield. 

 

 The products II.4k and II.4l, resulting from the tandem reaction, were isolated in 74% 

and 75% yield, respectively, albeit the total conversion of the starting material. The biggest 

disadvantage of this method relied on the though purification process due to the co-elution of 

the corresponding byproduct of the Hantzsch ester and the Meldrum’s acid II.4. 

 

3.2.2. Synthesis of the nitrone precursors: N-hydroxyamine sulfones 

 

The synthesis of the first example of N-hydroxyamine sulfones II.5, which are the 

nitrone precursors required in the synthesis of isoxazolidinones II.1, was easily realized 

following the procedure described in the pioneering work of Denis et al.130 Hence, starting 

from formaldehyde and t-butyl N-hydroxycarbamate in a mixture of MeOH/H2O (1:2) in the 

presence of sodium benzene sulfonate and formic acid at rt, the sulfone II.5a was isolated in 

an excellent yield of 92% after simple filtration of the reaction mixture, followed by 

recrystallization from a mixture of hexane/AcOEt (3:1) (Table 16, entry 1). 

With this procedure in hands, we then aimed at preparing various N-hydroxyamine 

sulfones bearing a protecting group with different electronic and steric features imbedded 

within alkyl, aryl and acyl groups (Table 16, entries 2-6). Unfortunately, all our attempts to 

prepare these compounds failed. It seems that the reactivity of these N-hydroxyamines II.17 

toward the formation of nitrone precursors is strongly dependent on the nature of the 

substituent directly attached to the nitrogen atom, as only the Boc protected 

nitrogen-containing substrate afforded the desired sulfone II.5.131 

 

                                                        
130 Guinchard, X.; Vallée, Y.; Denis, J.-N. Org. Lett. 2005, 7, 5147. 
131 Gioia, C.; Fini, F.; Mazzanti, A.; Bernardi, L.; Ricci, A. J. Am. Chem. Soc. 2009, 131, 9614. 
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Table 16. Synthesis of nitrone precursors. 

 

Entry PG II.5 Yield[a] (%) 

1 

 

II.5a 92 

2 

 

 0 

3 

 

 0 

 

4 

 



 

 

0 

 

5 
 



 

 

0 

6 
 

 0 

[a] Isolated yield. 

 

3.2.3. Formation of 4-substituted isoxazolidin-5-ones 

 

Once we had accomplished the synthesis of the Meldrum’s acids II.4 and nitrone 

precursor II.5a, these compounds were engaged into the formation of the corresponding 

isoxazolidin-5-ones II.1, following the method previously mentioned, e.g. by using basic 

conditions such as K2CO3 (2.5 equiv) in THF at rt for 24 h. The results are depicted in 

Table17.120 

As shown in Table 17, a variety of 4-substituted isoxazolidin-5-ones was prepared in 

this manner in good to excellent yields. In contrast to the observation made by Brière et al. for 

non-formation of isoxazolidin-5-ones bearing an aryl substituent at the 4-position, we were 

able to successfully synthesize these compounds, albeit in slightly reduced yields compared to 

the alkylated compounds. However, we have noticed one exception, 5-naphthyl Meldrum’s 

acid II.4b, which demonstrated to be unreactive and did not lead to the formation of the 

corresponding isoxazolidinone (Table 17, entry 2). In the case of isoxazolidinone II.1h, 

containing a dichloro-substituted aryl group, the observed low yield of 41% is most probably 

the result of a low solubility of the Meldrum’s acid precursor (Table 17, entry 9). 
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Table 17. Synthesis of 4-substituted isoxazolidin-5-ones. 

 

Entry R II.1 Yield[a] (%) 

1 
 

II.1a 70 

 

2 

 





 

NR 

3 
 

II.1b 63 

4 
 

II.1c 59 

5 
 

II.1d 74 

6 
 

II.1e 75 

7 
 

II.1f 69 

8 
 

II.1g 65 

9 

 

II.1h 41 

10 
 

II.1i 79 

 

11 
 

 

II.1j 

 

90 

 

12 
 

 

II.1k 

 

69 

[a] Isolated yield. 
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In the presence of the Meldrum’s acid enolate, the nitrone, generated in situ from II.5a 

under basic conditions (K2CO3, THF, rt), underwent an anionic domino formal [3+2] 

cycloaddition, triggering the domino fragmentation-decarboxylation-protonation sequence in 

the formation of the corresponding isoxazolidinone derivatives II.1 (Scheme 56). 

 

 

 

Scheme 56. Reaction pathway toward the formation of the isoxazolidinones. 

 

3.3. Optimization study to access all-carbon -quaternary isoxazolidinones 

 

Once the syntheses were completed, each 4-substituted isoxazolidin-5-ones II.1 were 

engaged in the palladium-catalyzed allylic alkylation reaction (Pd-AAA) to evaluate their 

reactivity and determine any eventual selectivity. 

The study started with the 4-phenyl isoxazolidin-5-one II.1a as the model substrate 

and the allyl acetate as the allyl donor. These two compounds were subjected to an array of 

conditions including different bases, solvents, additives, reaction temperatures, palladium 

sources and chiral ligands. The results are summarized in Table 18.  

The asymmetric allylic alkylation of isoxazolidin-5-one II.1a was first examined 

using Pd2(dba)3 (5 mol %) and a variety of chiral ligands (Table 18, entries 1-7). As a general 

trend, the reaction afforded the corresponding allylated isoxazolidinone II.18a in good yields 

ranging from 85% to 95%, independently of the ligand used. The investigation revealed that 

neither the t-Bu-PHOX ligand (S)-L4, nor the axially chiral diphosphine-type ligands such as 

BINAP (R)-L5, and the spirocyclic SDP (R)-L7, or the phosphoramidite-type ligand 

(S,R,R)-L6 could induce high levels of enantioselectivity (Table 18, entries 4-7). As observed 

in Chapter 1 – Section 4.3, the C2-symmetric diphosphines developed by Trost (R,R)-L1, 

(R,R)-L2, and (R,R)-L3, again led to useful level of selectivity. Interestingly, the DACH 

phenyl Trost ligand (R,R)-L1 was once again the best ligand, affording the best results for 

,-disubstituted isoxazolidinone II.18a, which was isolated in 95% yield and 90% ee 

(Table 18, entry 1). 
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Table 18. Influence of the ligand[a] 

 

Entry Ligand Yield[b] (%) ee[c] (%) 

1 (R,R)-L1 95 90 

2 (R,R)-L2 81 82 

3 (R,R)-L3 93 26 

4 (S)-L4 92 4 

5 (R)-L5 94 22 

6 (S,R,R)-L6 85 8 

7 (S)-L7 90 3 

 
[a] All the reactions were performed on 0.2 mmol. [b] Isolated yield. [c] Determined by SFC analysis. 

 

 Encouraged by these preliminary results, the effect of the palladium catalyst precursor 

on the enantioselectivity was then evaluated. In general, changing the palladium source 

drastically influenced both the yield and the enantiomeric excess. Indeed, [Pd(allyl)Cl]2 

(Table 19, entry 3) and [Pd(cinnamyl)Cl]2 (Table 19, entry 4) both afforded the allylated 

product in similar yields but with a significant difference in the ee values, 70% and 80%, 

respectively. The use of Pd(OAc)2 (Table 19, entry 5), on the other hand, provided the poorest 

yield, albeit with a comparable enantioselectivity to [Pd(cinnamyl)Cl]2 (ee = 78%) (Table 19, 

entry 4). The use Pd2(dba)3 (5 mol %) in conjunction with the Trost ligand (R,R)-L1 

(10 mol %), led to the best results in terms of yield and ee (95% yield and ee = 90%) 

(Table 19, entry 2). Surprisingly, decreasing the amount of Pd2(dba)3 from 5 mol % to 

1.25 mol % led to a considerable erosion of the ee from 90% to 79% (Table 19, entry 1). 
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Table 19. Influence of palladium.[a] 

 

Entry [Pd2] (mol %) (R,R)-L1 (mol%) Yield[b] 

(%) 

ee[c] (%) 

1 Pd2(dba)3 (1.25) 10 83 79 

2 Pd2(dba)3 (5) 10 95 90 

3 [Pd(allyl)Cl]2 (5) 10 43 70 

4 [Pd(cinnamyl)Cl]2 (5) 10 40 80 

5 Pd(OAc)2 (5) 20 10 78 

[a] All the reactions were performed on 0.2 mmol. [b] Isolated yield. [c] Determined by SFC analysis. 

 

 After screening the source of palladium, we systematically investigated the 

aforementioned Pd-AAA by varying the nature of the base under otherwise identical 

conditions. The results are summarized in Table 20. 

 Interestingly, the nature of the base appeared to have a tremendous impact on the 

reactivity as exemplified by the use of NaH (Table 20, entry 4) and DBU (Table 20, entry 6), 

which induced similar enantioselectivities but totally different yields. Indeed, the use of NaH 

afforded the desired isoxazolidinone II.18a in an excellent 96% yield, while switching the 

base to DBU led to only 14% yield. Employing another organic base such as BSA in the 

presence of a catalytic amount of KOAc disclosed a complete different scenario in 

comparison to DBU, affording II.18a in 85% yield (Table 20, entry 5). A brief investigation 

of mineral bases such as Li2CO3, Na2CO3 and K2CO3 (Table 20, entries 1-3) revealed that 

good results could be obtained, independent of the base used, albeit a slightly variation of 

both the reactivity and the enantioselectivity. The best results were achieved with Na2CO3 as 

II.18a was isolated in 95% yield and a ee of 90% (Table 20, entry 2). 

 

 

 

 

Table 20. Base and additive influence.[a] 
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Entry Base (pKa) Additive (equiv) Yield[b] (%) ee[c] (%) 

1 Li2CO3 (10)  90 87 

2 Na2CO3 (10)  95 90 

3 K2CO3 (10)  83 82 

4 NaH (30)  96 87 

5 BSA[d] (18)  85 80 

6 DBU (12)  14 86 

7 Na2CO3 (10) LiCl (1) NR 

8 Na2CO3 (10) 15-Crown-5 (2) 90 88 

[a] All the reactions were performed on 0.2 mmol. [b] Isolated yield. [c] Determined by SFC analysis. [d] 20 mol % 

of KOAc were used. pKa source: Scifinder. 

 

 As additives can have an influence on the enantioselectivity outcome, we then 

performed the Pd-AAA process along with some additives. Interestingly, a lack of reactivity 

was observed by adding stoichiometric amounts of LiCl (Table 20, entry 7). As a matter of 

fact, the starting material was entirely recovered after 20 h. In another experiment, we 

envisioned that the use of a 15-crown-5 (Table 20, entry 8) would render the enolate less 

associated to the cation and perhaps will lead to a better level of selectivity.156 However, the 

addition of the crown ether provided a comparable enantioselectivity and a lower yield. 

 In order to improve the enantioselectivity, one last important parameter on the 

Pd-AAA reaction was explored: the solvent. As depicted in Table 21, we noticed, in a brief 

screening of different solvents, a pronounced impact of the solvent on the enantiomeric 

excess was observed depending, but in a less extent on the yield. The reaction proceeded with 

good to excellent selectivity and yield in ethereal solvents (Table 21, entries 1, 5 and 6). 

Among them, THF (ee = 90%) (Table 21, entry 1) and MTBE (ee = 89%) (Table 21, entry 5) 

provided the best results. Curiously, by switching to a polar solvent such as MeCN (Table 21, 

entry 3), we were able to isolate isoxazolidin-5-one II.18a in an excellent 92% yield, however 

the enantioselectivity was dramatically decreased from 90% to 42%. Running the reaction in 

either polar or non-polar solvents, such as NMP (ee = 82%) (Table 21, entry 4) and toluene 

(ee = 66%) (Table 21, entry 2), did not improve the selectivity. Hence, THF appeared to be 
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the solvent of choice offering the best compromise between yield and enantioselectivity 

(95% yield, ee = 90%) (Table 21, entry 1). Diluting the reaction (Table 21, entry 7) did not 

improve the selectivity, however by reducing the temperature, first to 0 ºC (ee = 91%) 

(Table 21, entry 8) and then to 10 ºC (ee = 92%) (Table 21, entry 9) led to a slight increase 

in the ee. Performing the reaction at 0 ºC however appeared to be the best compromise 

between practicality, reactivity and selectivity. 

 

Table 21. Influence of the solvent.[a] 

 

Entry Solvent T Yield[b] (%) ee[c] (%) 

1 THF rt 95 90 

2 PhMe rt 99 66 

3 MeCN rt 92 42 

4 NMP rt 78 82 

5 MTBE rt 99 89 

6 1,4-dioxane rt 85 83 

7 THF (0.033 M) rt 90 89 

8 THF 0 ºC 95 91 

9 THF 10 ºC 94 92 

[a] All the reactions were performed on 0.2 mmol. [b] Isolated yield. [c] Determined by SFC analysis. 

 

3.4. Reaction scope of the 4-substituted isoxazolidin-5-ones 

 

Having identified the best set of reaction conditions (5 mol % of Pd2(dba)3, 10 mol % 

of (R,R)-L1 and 2 equivalents of Na2CO3 in THF at 0 ºC), we next examined the reaction 

scope by applying the optimized Pd-AAA reaction conditions to various 4-substituted 

isoxazolidin-5-ones (II.1). These conditions appeared to be tolerant to a wide range of 

functionalities as a variety of 4-aryl/heteroaryl isoxazolidin-5-ones (II.1) were converted to 

the corresponding allylated products in both excellent yields ranging from 86% to 97% and 

enatioselectivies (up to 92%) (Scheme 57). As a general trend, substrates bearing strong 

electron-donating or electron-withdrawing groups on the aryl ring, such as OMe (II.18c, 
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ee = 87%) and CF3 (II.18e, ee = 86%), led to slightly lower selectivities than substrates 

bearing substituents with moderate electronic effects, such as Me (II.18b, ee = 90%), 

F (II.18d, ee = 92%), Cl (II.18f, ee = 91%) and Br (II.18g, ee = 89%). In addition, the optical 

purity of the products could be further improved after recrystallization from a mixture of 

pentane/Et2O (7:3). This was the case for II.18a which was obtained in a highly 

enantioenriched form (ee > 99%). Unfortunately, the method appeared to be less efficient for 

4-alkyl substituted isoxazolidin-5-ones, where both low yield and enantioselectivity were 

observed for II.1j (23% yield and ee = 27%), and a complete lack of reactivity was noticed 

for II.1k. 

 

 

 

Scheme 57. Scope of the reaction of 4-substituted isoxazolidin-5-ones. 

 

 

3.5. Synthesis of 2-substituted allyl acetates 
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In an effort to broaden the scope of the reaction, we subsequently turned our attention 

to introducing more structural diversity to the chiral isoxazolidinones, using substituted allyl 

acetates, more specifically 2-substituted allyl acetates. Hence, the allyl acetates were 

prepared, mainly starting from commercially available allylic alcohols and by implementing a 

classical acetylation protocol (Ac2O, DMAP and Et3N in CH2Cl2 at 0 ºC), as showcased in 

Table 22.132 Hence, the desired allyl acetates were isolated in good yields varying from 67% 

to 97% (Table 22, entries 1-3). 

 

Table 22. Synthesis of allyl acetates from commercially available allyl alcohols. 

 

Entry R II.20 Yield[a] (%) 

1 Me II.20a 97 

2 Cl II.20b 90 

3 CO2Me II.20c 67 

[a] Isolated yield. 

 

 To access the allyl acetate II.20d, the vinyl bromide II.21 was subjected to a 

three-step sequence featuring a lithium-halogen exchange process, followed by a nucleophilic 

addition of the organolithium intermediate on paraformaldehyde to give rise to its 

corresponding allylic alcohol II.22, which was subsequently engaged in the acetylation using 

the same method described above (Ac2O, DMAP and Et3N in CH2Cl2 at 0 ºC). The desired 

product was thus obtained in 94% over the two steps (Scheme 58).133 

 

 

 

Scheme 58. Synthesis of TMS-modified allyl acetate II.20d. 

                                                        
132 Blaisdell, T. P.; Caya, T. C.; Zhang, L.; Sanz-Marco, A.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 9264. 

133 Amat, M.; Arioli, F.; Pérez, M.; Molins, E.; Bosh, J. Org. Lett. 2013, 15, 2470. 
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 In a different approach, 2-phenyl allyl acetate II.20e was prepared from propargyl 

alcohol II.23 through a simple and particularly versatile strategy depicted in Scheme 59. 

Hence, propargyl alcohol II.23 was subjected to a regioselective Grignard addition in the 

presence of CuI (15 mol %) to yield the corresponding allylic alcohol II.24. The latter was 

eventually subjected to the acetylation conditions to afford the target allyl reagent II.20e in a 

86% overall yield.134 

 

 

 

Scheme 59. Synthesis of the phenyl-modified allyl acetate II.20e. 

 

 In contrast to the excellent results obtained previously for the synthesis of the allyl 

acetates, compound II.20f was isolated in a very low overall yield of 17% following the 

sequence depicted in Scheme 60. The first step smoothly provided the methyl 2-methoxy 

acrylate II.26 in a moderate yield of 45%, after the reduction of the ester with LiAlH4 

followed by an acetylation, the desired allyl compound II.20f was isolated in a modest 38% 

yield. 

 

 

 

Scheme 60. Synthesis of methoxy-modified allyl acetate II.20e. 

 

3.6. Reaction scope with 2-substituted allyl acetates 

 

4-Phenyl isoxazolidin-5-one II.1a was subjected to an array of 2-substituted allyl 

acetates under our previously optimized Tsuji-Trost reaction conditions. Interestingly, 

electronic effects demonstrated a more pronounced impact on the enantioselectivity than the 

                                                        
134 Duan, Z. C.; Hu, X. P.; Zhang, C.; Wang, D. Y.; Yu, S. B.; Zheng, Z. J. Org. Chem. 2009, 74, 9191. 
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steric effects as shown in Table 23. The desired allylated products were isolated in good 

yields and excellent enantioselectivities when treated with allyl acetates bearing substituents 

having a moderate electronic effect such as a Me (II.18l, ee = 91%), a TMS (II.18m, 

ee = 93%) or a Ph (II.18o, ee = 95%). The replacement of the hydrogen atom on the allyl 

acetate by a more sterically hindered group such as a Me or a TMS group did not induce an 

erosion of the enantioselectivity, it did lead to a slightly loss of reactivity though. On the other 

hand, replacing the hydrogen atom by moderate or strong electron deficient groups such as a 

Cl (II.18p, ee = 74%) or a CO2Me (II.18q, ee = 25%) had a crucial impact on both the 

reactivity and the enantioselectivity. It is worth pointing out that no evident reason was found 

to explain the astonishing result obtained with the 2-chloro allyl acetate (Table 23, entry 6), 

which usually behaves as an excellent partner for Pd-AAA. Besides, a complete lack of 

reactivity was even observed when using a 2-methoxy substituted allyl reagent (Table 23, 

entry 8). Interestingly, the reaction between II.1a and the commercially available 

2-[(TMS)methyl] allyl acetate furnished the same compound that the 2-methyl allyl acetate 

II.20a (Table 23, entry 4). The loss of the TMS group might have taken place after the 

formation of the -allyl palladium complex A, when the CSi bond got weakened by the 

proximal positive charge and subsequent attack of acetate anion on the silicon atom resulted 

in the formation of palladium complex of TMM (trimethylmethane) B (Scheme 61), which 

eventually evolved to produce the isoxazolidinone II.18n.135 

 

 

 

Scheme 61. Formation of TMM-palladium complex. 

 

 

 

 

 

 

                                                        
135 Trost, B. M. Angew. Chem. Int. Ed. 1986, 25, 1. 
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Table 23. Scope of the reaction with 2-substituted allyl acetates. 

 

Entry Allyl acetate II.18 Yield[a] (%) ee[b] (%) 

 

1 

 

 
 

 

95 

 

91 

 

2 

 

 
 

 

88 

 

95 

 

3 

 

 
 

 

76 

 

93 

 

4 

 

 
 

 

94 

 

90 

 

5 

 

 
 

 

71 

 

95 

 

6 

 

 
 

 

22 

 

74 

 

7 

 

 
 

 

25 

 

25 

 

8 

 

 
 

 

NR 





[a] Isolated yield. [b] Determined by SFC analysis. 
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3.7. Origin of the enantioselectivity 

 

The sense of asymmetric induction using the Trost ‘standard ligand’ (R,R)-L1 could 

be explained by the cartoon model presented in Chapter 1 – Section 4.9 and in the Appendix 2 

– Section 1.3. Indeed, according to the model, the enolate approaches the -allyl palladium 

complex by its Re face to avoid any disfavored interaction between the ‘wall’ of the ligand 

and the Boc group of the substrate, delivering the product with the (S) configuration. This 

explanation is in line with the model improved by Lloyd-Jones et al. and Norrby et al., which 

predicts a facilitated approach of the stabilized nucleophile  pro-S approach  by hydrogen 

bonding with one amide NH. In II.18a, the absolute configuration of the formed stereocenter 

was later confirmed by a single crystal X-Ray analysis (Figure 18). 

 

 

 

 

Figure 18. Stereochemistry prediction of II.18a. 
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3.8. Post-functionalization: the synthesis of 2,2-amino acid and -lactam 

 

Finally, after having established a practical and highly enantioselective route to 

enantioenriched ,-disubstituted isoxazolidinones II.18, we decided to demonstrate the 

synthetic utility of the method by developing a straightforward sequence which would allow 

to convert the isoxazolidinones to the corresponding 2,2-amino acids II.27 and -lactam 

II.28. 

To access the enantioenriched 2,2-amino acids bearing an all-carbon -quaternary 

stereogenic center, we carried out a brief screen of reagents to cleave the NO bond using the 

isoxazolidinone II.18a as model substrate. As shown in Table 24,136 none of the reducing 

agents used such as Na2S2O4, SmI2 or Zn, led to the desired amino acid. Luckily, the use of 

sodium naphthalenide in THF at 78 ºC afforded the 2,2-amino acid II.27 in 90% isolated 

yield. 

 

Table 24. Screening of reducing reagents toward the formation of 2,2-amino acid. 

 

Entry Reducing agent Solvent T t Yield[a] (%) 

1 Na2S2O4 EtOH/H2O 78 ºC 24 h NR 

2 SmI2 THF rt 24 h NR 

3 Zn AcOH rt 24 h NR 

4 Na/Naphthalene THF 78 ºC 10 min 90 

[a] Isolated yield. 

 

Once we had accomplished the synthesis of the 2,2-amino acid II.27, we directly 

engaged the amino acid in an esterification of the carboxylic acid using TMSCHN2 and a 

Boc-deprotection using TFA. The resulting N-Boc methyl -amino ester was treated with 

TMSCl and Et3N followed by the addition of t-BuMgCl at 0 ºC, leading to the formation of 

                                                        
136 (a) Jones, A. L.; Snider, J. K. Org. Lett. 2010, 12, 1592; (b) Pearson, C.; Rinehart, K. L.; Sugano, M.; 

Costerison, J. R. Org. Lett. 2000, 2, 2901; (c) Bergmeier, S. C.; Seth, P. P. Tetrahedron Lett. 1999, 40, 6181; 

(d) Adam, W.; Degen, H.-G.; Krebs, O.; Saha-Moller, C. R. J. Am. Chem. Soc. 2002, 124, 12938. 
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the corresponding -lactam II.28 which was N-Boc re-protected for purification purposes 

(Scheme 62).137 

 

 

 

Scheme 62. Synthesis of -lactam II.28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

                                                        
137 Gianelli, C.; Sambri, L.; Carlone, A.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2008, 47, 8700. 
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We have developed a palladium-catalyzed asymmetric allylic alkylation of 

4-substituted isoxazolidin-5-ones with an array of 2-substituted allyl acetates to produce 

isoxazolidin-5-ones bearing highly stereodefined all-carbon -quaternary center. The reaction 

proceeded in both excellent enantioselectivity and yield with 4-substituted 

isoxazolidin-5-ones containing an -aryl substituents or an -heteroaryl moieties, such as 

thiophene. Unfortunately, -alkyl substituents revealed to be not suitable for this approach. 

Nonetheless, this robust and highly enantioselective method allowed the access to valuable 

2,2-amino acids and -lactams. 
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All reactions were run under an argon atmosphere in oven-dried glassware unless 

otherwise specified. All commercially available compounds were purchased from Aldrich 

Chemical Co. and used as received. Dichloromethane (CHCl2) was distilled from calcium 

hydride. Tetrahydrofuran (THF) and diethyl ether (Et2O) were distilled from 

sodium/benzophenone. N,N-dimethylformamide (DMF) was distilled under vacuum over 

anhydrous MgSO4. 

Analytical thin layer chromatography (TLC) was performed on silica gel plates 

(Merck 60F254) visualized either with a UV lamp (254 nm) or by using solutions of 

p-anisaldehyde/sulfuric acid/acetic acid in ethanol or KMnO4/K2CO3 in H2O followed by 

heating. Flash chromatography was performed on silica gel (230-400 mesh). 

Melting points (Mp) were recorded using a Wagner & Munz Kofler bench. 

Infrared spectra (IR) were recorded on a Bruker TENSOR™ 27 (IR-FT) with 

attenuated total reflectance (ATR) and wavenumbers are indicated in cm-1. 

1H NMR spectra were recorded on a Bruker AVANCE 400 at 400 MHz in CDCl3 

(unless otherwise specified) and the observed signals are reported as follows: chemical shift 

in parts per million from tetramethylsilane with the solvent as an internal indicator (CDCl3 δ 

7.26 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or 

overlap of non-equivalent resonances), integration. 13C NMR spectra were recorded at 100 

MHz in CDCl3 (unless otherwise specified) and the observed signals were reported as 

follows: chemical shift in parts per million from tetramethylsilane with the solvent as an 

internal indicator (CDCl3 δ 77.16 ppm), multiplicity on respect to proton (deduced from 

DEPT experiments, s = quaternary C, d = CH, t = CH2, q = CH3). Coupling constants (J) are 

reported in Hertz (Hz). All NMR spectra were obtained at room temperature unless otherwise 

specified. 

Mass spectra with electronic impact (EI–MS) were recorded with a Shimadzu 

GCM-QP 2010S gas chromatography-mass spectrometer. High-resolution mass spectra 

(HRMS) were performed by "Groupe de Spectrométrie de masse de l'Université Pierre et 

Marie Curie (Paris)". 

Optical rotations were determined using a Perkin Elmer 343 polarimeter. The 

enantiomeric excesses were determined by supercritical fluid chromatography (SFC) analysis 

on a chiral stationary phase using a Minigram Berger SFC-Mettler Toledo apparatus. The sign 

before the ees values is arbitrary. 
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2. Synthesis of Meldrum’s acids (II.4a-l) 

 

2,2-Dimethyl-5-phenyl-1,3-dioxane-4,6-dione (II.4a)124a 
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To a suspension of phenylmalonic acid (9.00 g, 50.0 mmol, 1.00 equiv) in Ac2O (24 mL) was 

added concentrated H2SO4 (1.0 mL, 18 mmol, 0.4 equiv) dropwise, which caused complete 

dissolution. After 1 minute of the addition of acetone (6.00 mL, 81.6 mmol, 1.60 equiv), the 

product began to precipitate. The reaction mixture was stirred for 10 min, cooled, and filtered. 

The precipitate was washed thoroughly with ice-cold H2O and then dissolved in CH2Cl2 (200 

mL). The resulting solution was washed with a saturated brine solution, dried over MgSO4, 

filtered, and concentrated under reduced pressure. The crude solid was purified by trituration 

in hexane/EtOAc = 7:3 to give II.4a as a white solid (7.07 g, 64%). 

 

Mp = 143-145 C 

IR (ATR): 2884, 1780, 1735, 1503, 1457, 1387, 1349, 1319, 1284, 1261, 1217, 1068, 1014, 

886 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.46-7.35 (m, 3H, H7 and H8), 7.33-7.25 (m, 2H, H6), 4.79 (s, 

1H, H4), 1.84 (s, 3H, H1), 1.74 (s, 3H, H1’). 

13C NMR (100 MHz, CDCl3): δ 164.9 (s, 2C, C3), 130.7 (s, C5), 129.3 (d, 2C, C6 or C7), 

129.2 (d, 2C, C6 or C7), 128.9 (d, C8), 105.8 (s, C2), 52.9 (d, C4), 28.6 (q, C1’), 27.5 (q, C1). 

HRMS (ESI) m/z: calcd for C12H12O4Na [M+Na]+: 243.0628, found: 243.0627. 

 

 

 

 

 

 

 

2,2-Dimethyl-5-(naphthalen-1-yl)-1,3-dioxane-4,6-dione (II.4b) 
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Method Pd: to a flame-dried flask containing a dispersion of NaH (750 mg, 60% in mineral 

oil, 19 mmol, 1.1 equiv) in THF (17 mL) was added diethyl malonate (2.85 mL, 18.8 mmol, 

1.10 equiv) dropwise. Upon evolution of hydrogen (approximately 2 min), 1-

bromonaphthalene (2.44 mL, 17.0 mmol, 1.00 equiv), Pd(t-Bu3P)2 (174 mg, 0.340 mmol, 

0.020 equiv) and THF (34 mL) were added. The reaction mixture was stirred at 70 C. After 

48 h, the reaction was cooled to rt and an aqueous solution of HCl (1 M) was added. The 

layers were separated, and the aqueous layer was extracted with EtOAc (2 x 100 mL). The 

combined organic extracts were washed with a saturated aqueous brine solution (100 mL), 

dried over MgSO4, filtered and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography on silica gel (PE/EtOAc = 9:1) to afford a clear oil 

(2.43 g, 50%) which was engaged in the saponification step without further purification or 

characterization. 

 

The 1,3-diethyl 2-(naphthalene-1-yl)propanedioate (2.00 g, 7.00 mmol, 1.00 equiv) was 

dissolved in Et2O (7.0 mL) and then added to a flask containing a solution of NaOH (1.12 g, 

28.0 mmol, 4.00 equiv) in H2O (23 mL) at 0 C over a period of 10 min. The resulting 

mixture was stirred at rt for 20 h. The aqueous layer was separated and washed with EtOAc (2 

x 100 mL), acidified to pH 2 with an aqueous solution of HCl (6 M), and extracted with 

EtOAc (2 x 200 mL). The combined organic extracts were washed with a saturated aqueous 

brine solution (100 mL), dried over MgSO4, filtered and concentrated under reduced pressure 

to result in a white solid (1.30 g, 81%) that was used in the next step without further 

purification or characterization. 

 

To a suspension of 2-(naphthalen-1-yl)propanedioic acid (1.00 g, 4.34 mmol, 1.00 equiv) in 

Ac2O (2.0 mL) was added concentrated H2SO4 (95 L, 1.7 mmol, 0.4 equiv) dropwise, which 

caused complete dissolution. After 1 minute of the addition of acetone (0.50 mL, 6.94 mmol, 

1.60 equiv), the product began to precipitate. The reaction mixture was stirred for 12 h, 
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cooled, and filtered. The precipitate was washed thoroughly with ice-cold H2O and then 

dissolved in CH2Cl2 (20 mL). The resulting solution was washed with a saturated brine 

solution, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

solid was purified by trituration in hexane/EtOAc = 7:3 to give II.4b as a white solid (188 

mg, 16%). 

 

Mp = 138-139 C 

IR (ATR): 2999, 1784, 1739, 1513, 1455, 1395, 1384, 1311, 1270, 1236, 1201, 1185, 1069, 

1009, 894, 862, 804, 780 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.96-7.87 (m, 2H, HAr), 7.56-7.41 (m, 5H, HAr), 5.09 (s, 1H, 

H4), 1.97 (s, 6H, H1 and H1’). 

13C NMR (100 MHz, CDCl3): δ 164.9 (s, 2C, C3), 134.4 (s, C5), 130.5 (s, C9 or C14), 130.4 (d, 

CAr), 130.3 (d, CAr), 129.6 (d, CAr), 128.0 (s, C9 or C14), 127.3 (d, CAr), 126.3 (d, CAr), 125.3 

(d, CAr), 122.9 (d, CAr), 105.7 (s, C2), 52.2 (d, C4), 28.6 (q, C1 or C1’), 27.4 (q, C1 or C1’). 

HRMS (ESI) m/z: calcd for C16H14O4Na[M+Na]+: 293.0784, found: 293.0786. 

 

2,2-Dimethyl-5-(4-methylphenyl)-1,3-dioxane-4,6-dione (II.4c) 

 

 

 

Method Pd: to a flame-dried flask containing a dispersion of NaH (751 mg, 60% in mineral 

oil, 19 mmol, 1.1 equiv) in THF (17 mL) was added diethyl malonate (2.85 mL, 18.8 mmol, 

1.10 equiv) dropwise. Upon evolution of hydrogen (approximately 2 min), 4-bromotoluene 

(2.10 mL, 17.1 mmol, 1.00 equiv), Pd(t-Bu3P)2 (174 mg, 0.340 mmol, 0.020 equiv) and THF 

(34 mL) were added. The reaction mixture was stirred at 70 C. After 48 h, the reaction was 

cooled to rt and an aqueous solution of HCl (1 M) was added. The layers were separated, and 

the aqueous layer was extracted with EtOAc (2 x 100 mL). The combined organic extracts 

were washed with a saturated aqueous brine solution (100 mL), dried over MgSO4, filtered 

and concentrated under reduced pressure. The crude residue was purified by flash column 
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chromatography on silica gel (PE/EtOAc = 9:1) to afford a clear oil (2.10 g, 49%) which was 

engaged in the saponification step without further purification or characterization.121 

 

The 1,3-diethyl 2-(4-methylphenyl)propanedioate (2.00 g, 8.00 mmol, 1.00 equiv) was 

dissolved in Et2O (8.0 mL) and then added to a flask containing a solution of NaOH (1.28 g, 

32.0 mmol, 4.00 equiv) in H2O (26 mL) at 0 C over a period of 10 min. The resulting 

mixture was stirred at rt for 20 h. The aqueous layer was separated and washed with EtOAc (2 

x 100 mL), acidified to pH 2 with an aqueous solution of HCl (6 M), and extracted with 

EtOAc (2 x 200 mL). The combined organic extracts were washed with a saturated aqueous 

brine solution (100 mL), dried over MgSO4, filtered and concentrated under reduced pressure 

to result in a white solid (1.21 g, 77%) that was used in the next step without further 

purification or characterization.138 

 

To a suspension of 2-(4-methylphenyl)propanedioic acid (1.00 g, 5.20 mmol, 1.00 equiv) in 

Ac2O (2.5 mL) was added concentrated H2SO4 (120 mL, 2.1 mmol, 0.4 equiv) dropwise, 

which caused complete dissolution. After 1 minute of the addition of acetone (0.60 mL, 8.3 

mmol, 1.60 equiv), the product began to precipitate. The reaction mixture was stirred for 12 h, 

cooled, and filtered. The precipitate was washed thoroughly with ice-cold H2O and then 

dissolved in CH2Cl2 (20 mL). The crude solid was purified by trituration in hexane/EtOAc = 

7:3 to give II.4c as a white solid (374 mg, 31%). 

 

Mp = 141-143 C 

IR (ATR): 2892, 1773, 1735, 1707, 1519, 1430, 1385, 1346, 1319, 1288, 1260, 1223, 1210, 

1064, 1014, 895, 806 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.25-7.15 (m, 4H, H6 and H7), 4.73 (s, 1H, H4), 2.36 (s, 3H, 

H9), 1.87 (s, 3H, H1), 1.75 (s, 3H, H1’). 

13C NMR (100 MHz, CDCl3): δ 165.0 (s, 2C, C3), 138.9 (s, C5), 130.0 (d, 2C, C6), 129.0 (d, 

2C, C7), 127.6 (s, C8), 105.8 (s, C2), 52.6 (d, C4), 28.7 (q, C1’), 27.7 (q, C1), 21.3 (q, C9). 

HRMS (ESI) m/z: calcd for C13H14O4Na[M+Na]+: 257.0784, found: 257.0784. 

 

 

2,2-Dimethyl-5-(4-methoxyphenyl)-1,3-dioxane-4,6-dione (II.4d) 

                                                        
138 Reddy Chidipudi, S.; Khan, I.; Lam, H. W. Angew. Chem. Int. Ed. 2012, 51, 12115. 
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Method Cu A: a flame-dried flask was charged with 4-iodoanisole (5.00 g, 21.3 mmol, 1.00 

equiv), CuI (407 mg, 2.10 mmol, 0.100 equiv), L-proline (492 mg, 4.20 mmol, 0.200 equiv) 

and Cs2CO3 (27.8 g, 85.2 mmol, 4.00 equiv), evacuated and backfilled with argon. Then 

diethyl malonate (3.90 mL, 26.0 mmol, 1.20 equiv) and DMSO (42.5 mL) were added under 

argon. The reaction mixture was stirred at 40 C. After 48 h, the cooled mixture was 

partitioned between EtOAc and a saturated aqueous solution of NH4Cl, the organic layer was 

washed with a saturated aqueous brine solution, dried over MgSO4, filtered and concentrated 

under reduced pressure. The residue was purified by flash column chromatography on silica 

gel (PE/EtOAc = 9:1) to provide a clear oil (3.34 g, 59%) which was engaged in the 

saponification step without further purification or characterization.the desired product.122 

 

The 1,3-diethyl 2-(4-methoxyphenyl)propanedioate (3.00 g, 11.3 mmol, 1.00 equiv) was 

dissolved in Et2O (11.0 mL) and then added to a flask containing a solution of NaOH (1.81 g, 

45.2 mmol, 4.00 equiv) in H2O (36 mL) at 0 C over a period of 10 min. The resulting 

mixture was stirred at rt for 20 h. The aqueous layer was separated and washed with EtOAc (2 

x 150 mL), acidified to pH 2 with an aqueous solution of HCl (6 M), and extracted with 

EtOAc (2 x 200 mL). The combined organic extracts were washed with a saturated aqueous 

brine solution (100 mL), dried over MgSO4, filtered and concentrated under reduced pressure 

to afford a white solid (1.70 g, 72%) that was used in the next step without further purification 

or characterization. 

 

To a suspension of 2-(4-methoxyphenyl)propanedioic acid (1.50 g, 7.10 mmol, 1.00 equiv) in 

Ac2O (3.4 mL) was added concentrated H2SO4 (156 L, 2.8 mmol, 0.4 equiv) dropwise, 

which caused complete dissolution. After 1 minute of the addition of acetone (0.85 mL, 11.4 

mmol, 1.60 equiv), the product began to precipitate. The reaction mixture was stirred for 12 h, 

cooled, and filtered. The precipitate was washed thoroughly with ice-cold H2O and then 

dissolved in CH2Cl2 (30 mL). The resulting solution was washed with a saturated brine 
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solution, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

solid was purified by trituration in hexane/EtOAc = 7:3 to give II.4d as an off-white solid 

(1.16 g, 65%). 

 

Mp = 129-130 C 

IR (ATR): 1737, 1615, 1518, 1430, 1299, 1251, 1217, 1179, 1066, 1013, 893, 820, 757, 652 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.23-7.16 (m, 2H, H6), 6.97-6.89 (m, 2H, H7), 4.74 (s, 1H, 

H4), 3.81 (s, 3H, H9), 1.85 (s, 3H, H1), 1.75 (s, 3H, H1’). 

13C NMR (100 MHz, CDCl3): δ 165.2 (s, 2C, C3), 159.9 (s, C8), 130.4 (s, 2C, C6), 122.5 (s, 

C5), 114.7 (d, 2C, C7), 105.7 (s, C2), 55.4 (q, C9), 52.2 (d, C4), 28.6 (q, C1’), 27.5 (q, C1). 

HRMS (ESI) m/z: calcd for C13H15O5 [M+H]+: 251.0914, found: 251.0914. 

 

2,2-Dimethyl-5-(4-fluorophenyl)-1,3-dioxane-4,6-dione (II.4e) 

 

 

 

Method Cu B: a flame-dried flask was charged with CuI (132 mg, 0.690 mmol, 0.050 equiv), 

2-picolinic acid (171 mg, 1.39 mmol, 0.100 equiv) and Cs2CO3 (13.6 g, 41.7 mmol, 3.00 

equiv), evacuated and backfilled with argon. Then 1,4-dioxane (14 mL), diethyl malonate 

(4.20 mL, 28.0 mmol, 2.00 equiv) and 1-fluoro-4-iodobenzene (1.60 mL, 14.0 mmol, 1.00 

equiv) were added under argon. The reaction mixture was stirred at rt. After 48 h, the cooled 

mixture was partitioned between EtOAc and a saturated aqueous solution of NH4Cl, the 

organic layer was washed with a saturated aqueous brine solution, dried over MgSO4, filtered 

and concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (PE/EtOAc = 9:1) to provide a yellow oil (2.84 g, 81%) which 

was engaged in the saponification step without further purification or characterization.the 

desired product.123 
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The 1,3-diethyl 2-(4-fluorophenyl)propanedioate (2.70 g, 10.6 mmol, 1.00 equiv) was 

dissolved in Et2O (11.0 mL) and then added to a flask containing a solution of NaOH (1.70 g, 

42.4 mmol, 4.00 equiv) in H2O (36 mL) at 0 C over a period of 10 min. The resulting 

mixture was stirred at rt for 20 h. The aqueous layer was separated and washed with EtOAc (2 

x 100 mL), acidified to pH 2 with an aqueous solution of HCl (6 M), and extracted with 

EtOAc (2 x 200 mL). The combined organic extracts were washed with a saturated aqueous 

brine solution (100 mL), dried over MgSO4, filtered and concentrated under reduced pressure 

to afford a white solid (2.05 g, 97%) that was used in the next step without further purification 

or characterization. 

 

To a suspension of 2-(4-fluorophenyl)propanedioic acid (1.80 g, 9.10 mmol, 1.00 equiv) in 

Ac2O (4.4 mL) was added concentrated H2SO4 (200 L, 3.6 mmol, 0.4 equiv) dropwise, 

which caused complete dissolution. After 1 minute of the addition of acetone (1.00 mL, 14.6 

mmol, 1.60 equiv), the product began to precipitate. The reaction mixture was stirred for 12 h, 

cooled, and filtered. The precipitate was washed thoroughly with ice-cold H2O and then 

dissolved in CH2Cl2 (40 mL). The resulting solution was washed with a saturated brine 

solution, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

solid was purified by trituration in hexane/EtOAc = 7:3 to give II.4e as a beige solid (909 mg, 

42%). 

 

Mp = 143-144 C 

IR (ATR): 1737, 1606, 1515, 1393, 1347, 1310, 1294, 1218, 1159, 1072, 1017, 898, 823, 

733, 651 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.30-7.23 (m, 2H, H6), 7.15-7.07 (m, 2H, H7), 4.75 (s, 1H, 

H4), 1.88 (s, 3H, H1), 1.78 (s, 3H, H1’). 

13C NMR (100 MHz, CDCl3): δ 164.7 (s, 2C, C3), 163.0 (s, 1JC-F = 247 Hz, C8), 131.3 (d, 3JC-

F = 8.1 Hz, 2C, C6), 126.4 (s, 4JC-F = 3.6 Hz, C5), 116.4 (d, 2JC-F = 21.9 Hz, 2C, C7), 105.9 (s, 

C2), 52.3 (d, C4), 28.7 (q, C1’), 27.5 (q, C1). 

HRMS (ESI) m/z: calcd for C12H12FO4 [M+H]+: 239.0714, found: 239.0713. 
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2,2-Dimethyl-5-(4-(trifluoromethyl)phenyl)-1,3-dioxane-4,6-dione (II.4f) 

 

 

 

Method Pd: to a flame-dried flask containing a dispersion of NaH (375 mg, 60% in mineral 

oil, 9.4 mmol, 1.1 equiv) in THF (8.5 mL) was added diethyl malonate (1.40 mL, 9.39 mmol, 

1.10 equiv) dropwise. Upon evolution of hydrogen (approximately 2 min), 4-

bromobenzotrifluoride (1.20 mL, 8.53 mmol, 1.00 equiv), Pd(t-Bu3P)2 (87 mg, 0.17 mmol, 

0.020 equiv) and THF (17 mL) were added. The reaction mixture was stirred at 70 C. After 

48 h, the reaction was cooled to rt and an aqueous solution of HCl (1 M) was added. The 

layers were separated, and the aqueous layer was extracted with EtOAc (2 x 50 mL). The 

combined organic extracts were washed with a saturated aqueous brine solution (50 mL), 

dried over MgSO4, filtered and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography on silica gel (PE/EtOAc = 95:5) to afford a 

colorless oil (1.15 g, 44%) which was engaged in the saponification step without further 

purification or characterization. 

 

The 1,3-diethyl 2-(4-(trifluoromethyl)phenyl)propanedioate (1.00 g, 3.29 mmol, 1.00 equiv) 

was dissolved in Et2O (3.5 mL) and then added to a flask containing a solution of NaOH (528 

mg, 13.2 mmol, 4.00 equiv) in H2O (11 mL) at 0 C over a period of 10 min. The resulting 

mixture was stirred at rt for 20 h. The aqueous layer was separated and washed with EtOAc (2 

x 50 mL), acidified to pH 2 with an aqueous solution of HCl (6 M), and extracted with EtOAc 

(2 x 100 mL). The combined organic extracts were washed with a saturated aqueous brine 

solution (50 mL), dried over MgSO4, filtered and concentrated under reduced pressure to 

afford a white solid (792 mg, 97%) that was used in the next step without further purification 

or characterization. 

 

To a suspension of 2-(4-(trifluoromethyl)phenyl)propanedioic acid (750 mg, 3.00 mmol, 1.00 

equiv) in Ac2O (1.4 mL) was added concentrated H2SO4 (10 L, 1.2 mmol, 0.4 equiv) 

dropwise, which caused complete dissolution. After 1 minute of the addition of acetone (0.4 
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mL, 4.8 mmol, 1.60 equiv), the product began to precipitate. The reaction mixture was stirred 

for 12 h, cooled, and filtered. The precipitate was washed thoroughly with ice-cold H2O and 

then dissolved in CH2Cl2 (15 mL). The resulting solution was washed with a saturated brine 

solution, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

solid was purified by trituration in hexane/EtOAc = 7:3 to give II.4f as a beige solid (472 mg, 

54%). 

 

Mp = 155-156 C 

IR (ATR): 2891, 1701, 1619, 1414, 1326, 1295, 1238, 1227, 1164, 1123, 1068, 1020, 917, 

833, 685 cm-1. 

Note: A mixture of the corresponding malonic acid/ II.4f = 1:4 was observed during NMR 

acquisition. Only II.4f is reported. 

1H NMR (400 MHz, (CD3)2CO): δ 7.79-7.71 (m, 2H, H7), 7.65-7.59 (m, 2H, H6), 5.72 (s, 1H, 

H4), 2.02 (s, 3H, H1), 1.80 (s, 3H, H1’). 

13C NMR (100 MHz, (CD3)2CO): δ 165.1 (s, 2C, C3), 137.9 (s, C5), 132.4 (d, 2C, C6), 130.5 

(s, 2JC-F = 32.4 Hz, C8), 125.3 (s, 1JC-F = 272 Hz, C9), 125.0 (d, 3JC-F = 3.9 Hz, 2C, C7), 106.3 

(s, C2), 53.6 (d, C4), 28.8 (q, C1’), 26.5 (q, C1). 

HRMS (ESI) m/z: calcd for C13H12F3O4 [M+H]+: 289.0682, found: 289.0683. 

 

2,2-Dimethyl-5-(thiophen-3-yl)-1,3-dioxane-4,6-dione (II.4g)124b 

 

 

 

To a suspension of 3-thiophenemalonic acid (1.00 g, 5.37 mmol, 1.00 equiv) in Ac2O (1.0 

mL) was added concentrated H2SO4 (22 µL, 0.4 mmol, 0.08 equiv) dropwise. The resulting 

suspension was stirred for 30 min and then diluted with acetone (1.0 mL, 14 mmol, 2.5 

equiv). The reaction mass was quenched by the addition of cold H2O (20 mL), the precipitate 

was filtered and washed with cold water (3 x 15 mL). The resulting solid was suspended in (i-

Pr)2O (4 mL) and stirred for 30 min. Then filtered to furnish II.4g as an off-white (beige) 

solid (962 mg, 79%). 

Mp = 129-130 C 
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IR (ATR): 1781, 1739, 1392, 1341, 1268, 1216, 1075, 1022, 900, 840, 786, 696, 664, 644, 

600 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.40 (dd, J = 5.1, 3.0 Hz, 1H, H7), 7.34 (m, 1H, H8), 7.09 (dd, 

J = 5.0, 1.4 Hz, 1H, H6), 4.91 (s, 1H, H4), 1.84 (s, 3H, H1), 1.67 (s, 3H, H1’). 

13C NMR (100 MHz, CDCl3): δ 164.5 (s, 2C, C3), 129.1 (s, C5), 127.3 (d, C6 or C7), 127.2 (d, 

C6 or C7), 125.0 (d, C8), 106.2 (s, C2), 48.2 (d, C4), 28.6 (q, C1’), 27.7 (q, C1). 

HRMS (ESI) m/z: calcd for C10H10O4SNa [M+Na]+: 249.0192, found: 249.0193. 

 

2,2-Dimethyl-5-(4-chlorophenyl)-1,3-dioxane-4,6-dione (II.4h) 

 

 

 

A flame-dried flask was charged with 4-chlorophenylacetic acid (3.00 g, 17.6 mmol, 1.00 

equiv), MeOH (30.0 mL) and H2SO4 (3.0 mL, 55 mmol, 3.1 equiv) and the reaction mixture 

was heated at reflux for 12 h. Then, the reaction mixture was cooled to rt and concentrated 

under reduced pressure. The resulting residue was partitioned between H2O (30 mL) and Et2O 

(30 mL), and the aqueous phase was extracted with Et2O (3  30 mL). The organic layers 

were combined, washed with a saturated aqueous solution of NaHCO3 (3  30 mL), dried 

over MgSO4, filtered and concentrated under reduced pressure to afford the methyl 

4-chlorophenylacetate as a slight yellow oil (2.78 g, 86%) which was engaged in the next step 

without further purification or characterization.125 

 

To a solution of methyl 4-chlorophenylacetate (2.78 g, 15.1 mmol, 1.00 equiv) in THF (75 

mL) was added NaH (1.45 g, 60% in mineral oil, 36 mmol, 2.4 equiv), followed by dimethyl 

carbonate (3.8 mL, 45 mmol, 3.0 equiv). The mixture was heated at reflux for 5 h and then 

cooled to rt, stirring was kept for additional 48 h. Then a saturated aqueous solution of NH4Cl 

was carefully added to quench the reaction. The organic layer was extracted with EtOAc (3 x 

30 mL), dried over MgSO4, filtered and concentrated under reduced pressure to afford the 

corresponding dimethyl malonate as a yellow solid (3.50 g, 96%) which was engaged in the 

saponification step without further purification or characterization.126 
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The 1,3-dimethyl 2-(4-chlorophenyl)propanedioate (3.50 g, 14.4 mmol, 1.00 equiv) was 

dissolved in Et2O (15 mL) and then added to a flask containing a solution of NaOH (2.30 g, 

57.6 mmol, 4.00 equiv) in H2O (50 mL) at 0 C over a period of 10 min. The resulting 

mixture was stirred at rt for 20 h. The aqueous layer was separated and washed with EtOAc (2 

x 200 mL), acidified to pH 2 with an aqueous solution of HCl (6 M), and extracted with 

EtOAc (2 x 200 mL). The combined organic extracts were washed with a saturated aqueous 

brine solution (100 mL), dried over MgSO4, filtered and concentrated under reduced pressure 

to afford a slightly yellow solid (2.87 g, 93%) that was used in the next step without further 

purification or characterization. 

 

To a suspension of 2-(4-chlorophenyl)propanedioic acid (2.80 g, 13.1 mmol, 1.00 equiv) in 

Ac2O (6.3 mL) was added concentrated H2SO4 (290 L, 5.2 mmol, 0.4 equiv) dropwise, 

which caused complete dissolution. After 1 minute of the addition of acetone (2.50 mL, 34.1 

mmol, 1.60 equiv), the product began to precipitate. The reaction mixture was stirred for 12 h, 

cooled, and filtered. The precipitate was washed thoroughly with ice-cold H2O and then 

dissolved in CH2Cl2 (200 mL). The resulting solution was washed with a saturated brine 

solution, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

solid was purified by trituration in hexane/EtOAc = 7:3 to give II.4h as a white pale solid 

(2.71 g, 82%). 

 

Mp = 145-147 C 

IR (ATR): 1739, 1496, 1393, 1344, 1311, 1282, 1260, 1222, 1090, 1072, 1015, 895, 815, 

728, 647 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.40 (dapp, J = 8.5 Hz, 2H, H7), 7.22 (dapp, J = 8.6 Hz, 2H, 

H6), 4.74 (s, 1H, H4), 1.87 (s, 3H, H1), 1.78 (s, 3H, H1’). 

13C NMR (100 MHz, CDCl3): δ 164.5 (s, 2C, C3), 135.2 (s, C5), 130.8 (d, 2C, C6), 129.5 (d, 

2C, C7), 129.1 (s, C8), 105.9 (s, C2), 52.4 (d, C4), 28.7 (q, C1’), 27.5 (q, C1). 

HRMS (ESI) m/z: calcd for C12H11ClO4Na [M+Na]+: 277.0238, found: 277.0240. 

 

 

2,2-Dimethyl-5-(4-bromophenyl)-1,3-dioxane-4,6-dione (II.4i) 
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A flame-dried flask was charged with 4-bromophenylacetic acid (3.00 g, 14.0 mmol, 1.00 

equiv), MeOH (24.0 mL) and H2SO4 (2.4 mL, 43 mmol, 3.1 equiv) and the reaction mixture 

was heated at reflux for 12 h. Then, the reaction mixture was cooled to rt and concentrated 

under reduced pressure. The resulting residue was partitioned between H2O (30 mL) and Et2O 

(30 mL), and the aqueous phase was extracted with Et2O (3  30 mL). The organic layers 

were combined, washed with a saturated aqueous solution of NaHCO3 (3  30 mL), dried 

over MgSO4, filtered and concentrated under reduced pressure to afford the methyl 4-

bromophenylacetate as a clear oil (3.07 g, 96%) which was engaged in the next step without 

further purification or characterization. 

 

To a solution of methyl 4-bromophenylacetate (3.00 g, 13.1 mmol, 1.00 equiv) in THF (66 

mL) was added NaH (1.26 g, 60% in mineral oil, 31 mmol, 2.4 equiv), followed by dimethyl 

carbonate (3.3 mL, 39 mmol, 3.0 equiv). The mixture was heated at reflux for 5 h and then 

cooled to rt, stirring was kept for additional 48 h. Then a saturated aqueous solution of NH4Cl 

was carefully added to quench the reaction. The organic layer was extracted with EtOAc (3 x 

30 mL), dried over MgSO4, filtered and concentrated under reduced pressure to afford the 

corresponding dimethyl malonate as a yellow solid (3.74 g, 99%) which was engaged in the 

saponification step without further purification or characterization. 

 

The 1,3-dimethyl 2-(4-bromophenyl)propanedioate (3.74 g, 13.0 mmol, 1.00 equiv) was 

dissolved in Et2O (13.0 mL) and then added to a flask containing a solution of NaOH (2.08 g, 

52.0 mmol, 4.00 equiv) in H2O (42 mL) at 0 C over a period of 10 min. The resulting 

mixture was stirred at rt for 20 h. The aqueous layer was separated and washed with EtOAc (2 

x 100 mL), acidified to pH 2 with an aqueous solution of HCl (6 M), and extracted with 

EtOAc (2 x 200 mL). The combined organic extracts were washed with a saturated aqueous 

brine solution (100 mL), dried over MgSO4, filtered and concentrated under reduced pressure 

to afford an off-white solid (3.32 g, 98%) that was used in the next step without further 

purification or characterization. 
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To a suspension of using 2-(4-bromophenyl)propanedioic acid (3.32 g, 12.8 mmol, 1.00 

equiv) in Ac2O (6.1 mL) was added concentrated H2SO4 (280 L, 5.1 mmol, 0.4 equiv) 

dropwise, which caused complete dissolution. After 1 minute of the addition of acetone (1.50 

mL, 20.5 mmol, 1.60 equiv), the product began to precipitate. The reaction mixture was 

stirred for 12 h, cooled, and filtered. The precipitate was washed thoroughly with ice-cold 

H2O and then dissolved in CH2Cl2 (200 mL). The resulting solution was washed with a 

saturated brine solution, dried over MgSO4, filtered, and concentrated under reduced pressure. 

The crude solid was purified by trituration in hexane/EtOAc = 7:3 to give II.4i as a white 

solid (2.76 g, 72%). 

 

Mp = 137-139 C 

IR (ATR): 1786, 1745, 1494, 1394, 1384, 1340, 1312, 1280, 1259, 1216, 1074, 1055, 1008, 

894, 813, 649 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.59-7.53 (m, 2H, H7), 7.20-7.13 (m, 2H, H6), 4.72 (s, 1H, 

H4), 1.88 (s, 3H, H1), 1.78 (s, 3H, H1’). 

13C NMR (100 MHz, CDCl3): δ 164.4 (s, 2C, C3), 132.5 (d, 2C, C7), 131.1 (d, 2C, C6), 129.6 

(s, C5), 123.4 (s, C8), 105.9 (s, C2), 52.5 (d, C4), 28.7 (q, C1’), 27.5 (q, C1). 

HRMS (ESI) m/z: calcd for C12H11BrO4Na [M+Na]+: 320.9733, found: 320.9736. 

 

2,2-Dimethyl-5-(3,4-dichlorophenyl)-1,3-dioxane-4,6-dione (II.4j) 

 

 

 

A flame-dried flask was charged with 3,4-dichlorophenylacetic acid (3.00 g, 14.6 mmol, 1.00 

equiv), MeOH (25.0 mL) and H2SO4 (2.5 mL, 45 mmol, 3.1 equiv) and the reaction mixture 

was heated at reflux for 12 h. Then, the reaction mixture was cooled to rt and concentrated 

under reduced pressure. The resulting residue was partitioned between H2O (30 mL) and Et2O 

(30 mL), and the aqueous phase was extracted with Et2O (3  30 mL). The organic layers 

were combined, washed with a saturated aqueous solution of NaHCO3 (3  30 mL), dried 
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over MgSO4, filtered and concentrated under reduced pressure to afford the methyl 3,4-

dichlorophenylacetate as a clear oil (3.20 g, 99%) which was engaged in the next step without 

further purification or characterization. 

 

To a solution of methyl 3,4-dichlorophenylacetate (3.20 g, 14.5 mmol, 1.00 equiv) in THF 

(73 mL) was added NaH (1.40 g, 60% in mineral oil, 35 mmol, 2.4 equiv), followed by 

dimethyl carbonate (3.7 mL, 44 mmol, 3.0 equiv). The mixture was heated at reflux for 5 h 

and then cooled to rt, stirring was kept for additional 48 h. Then a saturated aqueous solution 

of NH4Cl was carefully added to quench the reaction. The organic layer was extracted with 

EtOAc (3 x 30 mL), dried over MgSO4, filtered and concentrated under reduced pressure to 

afford the corresponding dimethyl malonate as a yellow solid (4.00 g, 99%) which was 

engaged in the saponification step without further purification or characterization. 

 

The 1,3-dimethyl 2-(3,4-dichlorophenyl)propanedioate (4.00 g, 14.4 mmol, 1.00 equiv) was 

dissolved in Et2O (15 mL) and then added to a flask containing a solution of NaOH (2.30 g, 

57.6 mmol, 4.00 equiv) in H2O (50 mL) at 0 C over a period of 10 min. The resulting 

mixture was stirred at rt for 20 h. The aqueous layer was separated and washed with EtOAc (2 

x 100 mL), acidified to pH 2 with an aqueous solution of HCl (6 M), and extracted with 

EtOAc (2 x 200 mL). The combined organic extracts were washed with a saturated aqueous 

brine solution (100 mL), dried over MgSO4, filtered and concentrated under reduced pressure 

to afford a beige solid (3.20 g, 89%) that was used in the next step without further purification 

or characterization. 

 

To a suspension of 2-(3,4-dichlorophenyl)propanedioic acid (3.20 g, 12.8 mmol, 1.00 equiv) 

in Ac2O (6.1 mL) was added concentrated H2SO4 (280 L, 5.1 mmol, 0.4 equiv) dropwise, 

which caused complete dissolution. After 1 minute of the addition of acetone (1.50 mL, 20.5 

mmol, 1.60 equiv), the product began to precipitate. The reaction mixture was stirred for 12 h, 

cooled, and filtered. The precipitate was washed thoroughly with ice-cold H2O and then 

dissolved in CH2Cl2 (200 mL). The resulting solution was washed with a saturated brine 

solution, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

solid was purified by trituration in hexane/EtOAc = 7:3 to give II.4j as a white solid (2.20 g, 

59%). 
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Mp = 157-158 C 

IR (ATR): 2891, 1785, 1743, 1732, 1475, 1395, 1384, 1344, 1284, 1258, 1227, 1077, 1022, 

910, 873, 821, 773, 679, 639 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.50 (d, J = 8.3 Hz, 1H, H9), 7.40 (d, J = 2.3 Hz, 1H, H6), 

7.12 (dd, J = 8.3, 2.2 Hz, 1H, H10), 4.71 (s, 1H, H4), 1.90 (s, 3H, H1), 1.81 (s, 3H, H1’). 

13C NMR (100 MHz, CDCl3): δ 163.9 (s, 2C, C3), 133.7 (s, C8), 133.5 (s, C7), 131.8 (d, C6), 

131.2 (d, C9), 130.5 (s, C5), 128.9 (d, C10), 106.1 (s, C2), 52.1 (d, C4), 28.8 (q, C1’), 27.4 (q, 

C1). 

HRMS (ESI) m/z: calcd for C12H10Cl2O4Na [M+Na]+: 310.9848, found: 310.9851. 

 

2,2-Dimethyl-5-benzyl-1,3-dioxane-4,6-dione (II.4k) 

 

 

 

To a solution of the native Meldrum’s acid  2,2-dimethyl-1,3-dioxane-4,6-dione  (569 

mg, 3.95 mmol, 1.00 equiv) in EtOH (13 mL) was added benzaldehyde (400 L, 3.95 mmol, 

1.00 equiv), followed by L-proline (91 mg, 1.6 mmol, 0.20 equiv) and the Hantzsch ester 

(1.00 g, 3.95 mmol, 1.00 equiv). The reaction mixture was stirred at rt for 24h. EtOAc (50 

mL) was added and, then, H2O (50 mL). The layers were separated, and the aqueous layer 

extracted with EtOAc (2 x 25 mL). The combined organic extracts were dried over MgSO4, 

filtered and concentrated under reduced pressure. The crude was purified by flash column 

chromatography on silica gel (PE/EtOAc from 95:5 to 9:1) to afford the cascade product II.4k 

as viscous oil (684mg, 74%).129 

 

Rf: 0.70 (PE/EtOAc = 7:3) 

IR (ATR): 2985, 2934, 1719, 1689, 1593, 1443, 1374, 1292, 1043, 1227, 852, 773 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.36-7.19 (m, 5H, HAr), 3.76 (t, J = 5.0 Hz, 1H, H4), 3.49 (d, J 

= 5.0 Hz, 2H, H5), 1.73 (s, 3H, H1), 1.49 (s, 3H, H1’). 
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13C NMR (100 MHz, CDCl3): δ 165.7 (s, 2C, C3), 136.9 (s, C6), 129.5 (d, 2C, C7 or C8), 

128.4 (d, 2C, C7 or C8), 127.0 (d, C9), 105.0 (s, C2), 48.1 (d, C4), 32.1 (t, C5), 28.2 (q, C1’), 

27.0 (q, C1). 

 

2,2-Dimethyl-5-cinnamyl-1,3-dioxane-4,6-dione (II.4l) 

 

 

 

To a solution of the native Meldrum’s acid  2,2-dimethyl-1,3-dioxane-4,6-dione  (569 

mg, 3.95 mmol, 1.00 equiv) in MeCN (13 mL) was added trans-cinnamaldehyde (500 L, 

3.95 mmol, 1.00 equiv), followed by L-proline (91 mg, 1.6 mmol, 0.20 equiv) and the 

Hantzsch ester (1.00 g, 3.95 mmol, 1.00 equiv). The reaction mixture was stirred at rt for 24h. 

EtOAc (50 mL) was added and, then, H2O (50 mL). The layers were separated, and the 

aqueous layer extracted with EtOAc (2 x 25 mL). The combined organic extracts were dried 

over MgSO4, filtered and concentrated under reduced pressure. The crude was purified by 

flash column chromatography on silica gel (PE/EtOAc from 95:5 to 9:1) to afford the cascade 

product II.4l as viscous oil (769mg, 75%). 

 

Rf: 0.73 (PE/EtOAc = 7:3) 

IR (ATR): 1776, 1737, 1598, 1494, 1450, 1384, 1289, 1202, 1167, 1070, 970, 944, 751, 696 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.43-7.19 (m, 5H, HAr), 6.62 (dapp, J = 15.8 Hz, 1H, H7), 6.28 

(dt, J = 15.8, 7.3 Hz, 1H, H6), 3.68 (t, J = 5.1 Hz, 1H, H4), 3.05 (ddd, J = 7.4, 5.0, 1.3 Hz, 2H, 

H5), 1.81 (s, 3H, H1), 1.76 (s, 3H, H1’). 

13C NMR (100 MHz, CDCl3): δ 165.1 (s, 2C, C3), 136.9 (s, C8), 134.9 (d, C7), 128.7 (d, 2C, 

C9 or C10), 127.7 (d, C11), 126.5 (d, 2C, C9 or C10), 124.0 (d, C6), 105.2 (s, C2), 46.8 (d, C4), 

29.8 (t, C5), 28.6 (q, C1’), 27.1 (q, C1). 

HRMS (ESI) m/z: calcd for C15H16O4Na [M+Na]+: 283.0941, found: 283.0941. 
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3. Preparation of N-Boc Nitrone precursor 

 

tert-Butyl ((phenylsulfonyl)methyl)-N-hydroxycarbamate (II.5a)130 

 

 

 

Sodium benzenesulfinate (15.5 g, 93.9 mmol, 2.50 equiv) was dissolved in H2O/MeOH 2:1 

(111 mL). To this solution was added sequentially tert-butyl-N-hydroxycarbamate (5.00 g, 

37.6 mmol, 1.00 equiv), formaldehyde (5.6 mL, 37% wt in H2O, 75 mmol, 2.0 equiv) and 

formic acid 95% (1.8 mL, 45 mmol, 1.2 equiv). This mixture was stirred for 24 h at rt. The 

resulting precipitate was collected by filtration, washed with H2O and pentane, and then 

purified by trituration in hexane/EtOAc = 3:1. The sulfone was obtained as a white solid (9.90 

g, 92%). 

 

Mp = 138-139 C 

IR (ATR): 3362, 3009, 2985, 2931, 1707, 1476, 1448, 1394, 1368, 1309, 1287, 1223, 1140, 

1094, 1082, 905 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.97-7.92 (m, 2H, H7), 7.68 (m, 1H, H9), 7.60-7.54 (m, 2H, 

H8), 4.90 (s, 2H, H5), 1.32 (s, 9H, H1). 

Note: The signal corresponding to the OH moiety was not observed. 

13C NMR (100 MHz, CDCl3): δ 154.3 (s, C3), 138.3 (s, C6), 134.3 (d, C9), 129.5 (d, 2C, C8), 

128.9 (d, 2C, C7), 83.9 (s, C2), 71.2 (t, C5), 28.0 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C12H17NO5SNa [M+Na]+: 310.0720, found: 310.0720. 

 

 

 

 

4. Synthesis of 4-substituted isoxazolidin-5-ones (II.1a-k) 
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General procedure for the synthesis of 4-aryl isoxazolidin-5-ones 

 

 

 

To a mixture of meldrum’s acid II.4 (1.1 equiv), nitrone precursor II.5a (1.0 equiv) and 

K2CO3 (2.5 equiv) was added THF (0.1 M) at rt. The reaction mixture was stirred for 24 h and 

filtrated. The solid was washed with Et2O and the filtrate was concentrated under reduced 

pressure. The crude product was purified by flash column chromatography on silica gel using 

Et2O/PE as eluent to afford the desired isoxazolidin-5-one II.1.120 

 

tert-Butyl 5-oxo-4-phenylisoxazolidine-2-carboxylate (II.1a)120 

 

 

II.1a was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (1.19 g, 4.13 mmol, 1.00 equiv) and 2,2-

dimethyl-5-phenyl-1,3-dioxane-4,6-dione II.4a (1.00 g, 4.54 mmol, 1.10 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/Et2O = 9:1) as a 

colorless viscous oil (755 mg, 70%). 

 

Rf: 0.16 (PE/Et2O = 8:2) 

IR (ATR): 2981, 1798, 1745, 1718, 1456, 1369, 1318, 1258, 1216, 1137, 975, 897, 846 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.43-7.27 (m, 5H, HAr), 4.56 (m, 1H, H4), 4.14-4.06 (m, 2H, 

H4’ and H5), 1.52 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 173.5 (s, C6), 156.1 (s, C3), 133.4 (s, C7), 129.4 (d, 2C, C8 or 

C9), 128.6 (d, C10), 128.0 (d, 2C, C8 or C9), 84.5 (s, C2), 55.8 (t, C4) 46.5 (d, C5), 28.2 (q, 3C, 

C1). 

MS m/z (relative intensity): 264 ([M+H]+.,1), 248 (1), 204 (3), 163 (10), 135 (8), 118 (6), 104 

(9), 91 (4), 77 (3), 57 (100). 
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tert-Butyl 5-oxo-4-(p-tolyl)isoxazolidine-2-carboxylate (II.1b) 

 

 

 

II.1b was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (279 mg, 0.970 mmol, 1.00 equiv) and 

2,2-dimethyl-5-(4-methylphenyl)-1,3-dioxane-4,6-dione II.4c (250 mg, 1.07 mmol, 1.10 

equiv). The titled compound was obtained after flash column chromatography on silica gel 

(PE/Et2O = 9:1) as a colorless oil (169 mg, 63%). 

 

Rf: 0.26 (PE/Et2O = 8:2) 

IR (ATR): 2980, 2919, 1796, 1745, 1718, 1517, 1458, 1370, 1316, 1258, 1217, 1138, 975, 

904, 847, 773 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.22-7.16 (m, 4H, HAr), 4.54 (dd, J = 12.3, 2.6 Hz, 1H, H4), 

4.10-4.02 (m, 2H, H4’ and H5), 2.35 (s, 3H, H11), 1.52 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 173.6 (s, C6), 156.1 (s, C3), 138.5 (s, C7), 130.4 (s, C10), 

130.0 (d, 2C, C8 or C9), 127.9 (d, 2C, C8 or C9), 84.5 (s, C2), 55.8 (t, C4), 46.2 (d, C5), 28.2 (q, 

3C, C1), 21.2 (q, C11). 

HRMS (ESI) m/z: calcd for C15H19NO4Na [M+Na]+: 300.1206, found: 300.1208. 

 

tert-Butyl 4-(4-methoxyphenyl)-5-oxoisoxazolidine-2-carboxylate (II.1c) 

 

 

II.1c was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (1.04 g, 3.63 mmol, 1.00 equiv) and 2,2-
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dimethyl-5-(4-methoxyphenyl)-1,3-dioxane-4,6-dione II.4d (1.00 g, 4.00 mmol, 1.10 equiv). 

The titled compound was obtained after flash column chromatography on silica gel (PE/Et2O 

= 7:3) as a colorless oil (628 mg, 59%). 

 

Rf: 0.51 (PE/Et2O = 1:1) 

IR (ATR): 1796, 1719, 1613, 1515, 1369, 1250, 1138, 1031, 905, 834, 776 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.21 (m, 2H, H8), 6.91 (m, 2H, H9), 4.53 (m, 1H, H4), 4.10-

3.99 (m, 2H, H4’ and H5), 3.80 (s, 3H, H11), 1.52 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 173.8 (s, C6), 159.7 (s, C10), 156.1 (s, C3), 129.2 (d, 2C, C8), 

125.3 (s, C7), 114.8 (d, 2C, C9), 84.5 (s, C2), 55.9 (t, C4), 55.5 (q, C11), 45.8 (d, C5), 28.2 (q, 

3C, C1). 

HRMS (ESI) m/z: calcd for C15H19NO5Na [M+Na]+: 316.1155, found: 316.1156. 

 

tert-Butyl 4-(4-fluorophenyl)-5-oxoisoxazolidine-2-carboxylate (II.1d) 

 

 

 

II.1d was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (548 mg, 1.91 mmol, 1.00 equiv) and 

2,2-dimethyl-5-(4-fluorphenyl)-1,3-dioxane-4,6-dione II.4e (500 mg, 2.10 mmol, 1.10 equiv). 

The titled compound was obtained after flash column chromatography on silica gel (PE/Et2O 

= 8:2) as a colorless oil (398 mg, 74%). 

 

Rf: 0.16 (PE/Et2O = 8:2) 

IR (ATR): 2982, 1718, 1607, 1512, 1459, 1395, 1370, 1320, 1227, 1137, 1016, 977, 907, 

840, 780, 735, 685 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.32-7.26 (m, 2H, H8), 7.12-7.05 (m, 2H, H9), 4.56 (dd, J = 

10.4, 7.8 Hz, 1H, H4), 4.14-4.00 (m, 2H, H4’ and H5), 1.52 (s, 9H, H1). 
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13C NMR (100 MHz, CDCl3): δ 173.2 (s, C6), 162.8 (s, 1JC-F = 249 Hz, C10), 156.0 (s, C3), 

129.8 (d, 3JC-F = 8.3 Hz, 2C, C8), 129.1 (s, 4JC-F = 3.4 Hz, C7), 116.4 (d, 2JC-F = 21.8 Hz, 2C, 

C9), 84.7 (s, C2), 55.7 (t, C4), 45.8 (d, C5), 28.2 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C14H16FNO4Na [M+Na]+: 304.0956, found: 304.0959. 

 

tert-Butyl 5-oxo-4-(4-(trifluoromethyl)phenyl)isoxazolidine-2-carboxylate (II.1e) 

 

 

 

II.1e was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (287 mg, 0.552 mmol, 1.00 equiv) and 

2,2-dimethyl-5-(4-(trifluoromethyl)phenyl)-1,3-dioxane-4,6-dione II.4f (175 mg, 0.607 

mmol, 1.10 equiv). The titled compound was obtained after flash column chromatography on 

silica gel (PE/Et2O = 9:1) as a colorless oil (141 mg, 75%). 

 

Rf: 0.33 (PE/Et2O = 8:2) 

IR (ATR): 2983, 1798, 1720, 1622, 1459, 1422, 1396, 1371, 1325, 1260, 1126, 1069, 1019, 

909, 845, 767, 694, 607 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.67 (dapp, J = 8.1 Hz, 2H, H9), 7.46 (dapp, J = 8.3 Hz, 2H, 

H8), 4.61 (dd, J = 11.0, 8.3 Hz, 1H, H4), 4.19 (tapp, J = 8.7 Hz, 1H, H5), 4.09 (dd, J = 11.0, 9.1 

Hz, 1H, H4’), 1.53 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 172.6 (s, C6), 155.9 (s, C3), 137.2 (s, C7), 131.1 (s, 2JC-F = 

32.9 Hz, C10), 128.6 (d, 2C, C8), 126.4 (d, 3JC-F = 3.7 Hz, 2C, C9), 123.9 (s, 1JC-F = 273 Hz, 

C11), 84.9 (s, C2), 55.4 (t, C4), 46.2 (d, C5), 28.2 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C15H16F3NO4Na [M+Na]+: 354.0924, found: 354.0926. 
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tert-Butyl 5-oxo-4-(4-chlorophenyl)isoxazolidine-2-carboxylate (II.1f) 

 

 

 

II.1f was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (1.03 g, 3.57 mmol, 1.00 equiv) and 2,2-

dimethyl-5-(4-chlorophenyl)-1,3-dioxane-4,6-dione II.4h (1.00 g, 3.93 mmol, 1.10 equiv). 

The titled compound was obtained after flash column chromatography on silica gel (PE/Et2O 

= 8:2) as an off-white solid (736 mg, 69%). 

 

Mp = 87-89 °C 

Rf: 0.21 (PE/Et2O = 8:2) 

IR (ATR): 2981, 1796, 1716, 1599, 1494, 1477, 1459, 1395, 1370, 1321, 1258, 1217, 1138, 

1090, 1016, 906, 844, 768, 731, 649 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.40-7.34 (m, 2H, H8), 7.27-7.22 (m, 2H, H9), 4.56 (dd, J = 

10.3, 7.6 Hz, 1H, H4), 4.14-3.99 (m, 2H, H4’ and H5), 1.52 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 173.0 (s, C6), 155.9 (s, C3), 134.8 (s, C7), 131.7 (s, C10), 

129.6 (d, 2C, C8), 129.4 (d, 2C, C9), 84.7 (s, C2), 55.5 (t, C4), 45.9 (d, C5), 28.2 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C14H16ClNO4Na [M+Na]+: 320.0660, found: 320.0663. 

 

tert-Butyl 5-oxo-4-(4-bromophenyl)isoxazolidine-2-carboxylate (II.1g) 

 

 

 

II.1g was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (500 mg, 1.74 mmol, 1.00 equiv) and 
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2,2-dimethyl-5-(4-bromophenyl)-1,3-dioxane-4,6-dione II.4i (573 mg, 1.91 mmol, 1.10 

equiv). The titled compound was obtained after flash column chromatography on silica gel 

(PE/Et2O = 8:2) as a white solid (386 mg, 65%). 

 

Mp = 88-89 °C 

Rf: 0.20 (PE/Et2O = 8:2) 

IR (ATR): 2980, 1795, 1718, 1491, 1370, 1320, 1258, 1139, 1073, 1012, 905, 845, 778 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.55-7.50 (m, 2H, H9), 7.21-7.16 (m, 2H, H8), 4.57 (m, 1H, 

H4), 4.11-3.99 (m, 2H, H4’ and H5), 1.52 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 172.9 (s, C6), 155.9 (s, C3), 132.5 (d, 2C, C9), 132.3 (s, C7), 

129.7 (d, 2C, C8), 122.9 (s, C10), 84.7 (s, C2), 55.4 (t, C4), 45.9 (d, C5), 28.2 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C14H16BrNO4Na [M+Na]+: 364.0155, found: 364.0157. 

 

tert-Butyl 5-oxo-4-(3,4-dichlorophenyl)isoxazolidine-2-carboxylate (II.1h) 

 

 

 

II.1h was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (500 mg, 1.74 mmol, 1.00 equiv) and 

2,2-dimethyl-5-(3,4-dichlorophenyl)-1,3-dioxane-4,6-dione II.4j (553 mg, 1.91 mmol, 1.10 

equiv). The titled compound was obtained after flash column chromatography on silica gel 

(PE/Et2O = 8:2) as a white solid (236 mg, 41%). 

 

Mp = 113-114 °C 

Rf: 0.15 (PE/Et2O = 8:2) 

IR (ATR): 2981, 1797, 1719, 1475, 1395, 1370, 1319, 1258, 1136, 1033, 936, 846, 771, 678 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.48 (d, J = 8.3 Hz, 1H, H11), 7.42 (d, J = 2.2 Hz, 1H, H8), 

7.17 (ddd, J = 8.4, 2.2, 0.4 Hz, 1H, H12), 4.56 (m, 1H, H4), 4.11-4.00 (m, 2H, H4’ and H5), 

1.53 (s, 9H, H1). 
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13C NMR (100 MHz, CDCl3): δ 172.4 (s, C6), 155.9 (s, C3), 133.6 (s, C10), 133.3 (s, C7), 

133.2 (s, C9), 131.3 (d, C11), 130.1 (d, C8), 127.4 (d, C12), 85.0 (s, C2), 55.2 (t, C4), 45.5 (d, 

C5), 28.2 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C14H15Cl2NO4Na [M+Na]+: 354.0270, found: 354.0273. 

 

tert-Butyl 5-oxo-4-(thiophen-3-yl)isoxazolidine-2-carboxylate (II.1i) 

 

 

 

II.1i was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (693 mg, 2.41 mmol, 1.00 equiv) and 

2,2-dimethyl-5-(thiophen-3-yl)-1,3-dioxane-4,6-dione II.4g (600 mg, 2.65 mmol, 1.10 equiv). 

The titled compound was obtained after flash column chromatography on silica gel (PE/Et2O 

= 8:2) as a yellowish oil (515 mg, 79%). 

 

Rf: 0.25 (PE/Et2O = 8:2) 

IR (ATR): 2980, 1798, 1715, 1458, 1394, 1370, 1319, 1259, 1220, 1136, 985, 958, 844, 786, 

641 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.38 (dd, J = 5.0, 2.9 Hz, 1H, H9), 7.30 (m, 1H, H10), 7.08 

(dd, J = 5.1, 1.4 Hz, 1H, H8), 4.53 (dd, J = 10.3, 7.6 Hz, 1H, H4), 4.22-4.08 (m, 2H, H4’ and 

H5), 1.50 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 173.0 (s, C6), 156.1 (s, C3), 132.7 (s, C7), 127.4 (d, C9), 126.6 

(d, C8), 123.5 (d, C10), 84.6 (s, C2), 55.1 (t, C4), 41.9 (d, C5), 28.1 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C12H15NO4SNa [M+Na]+: 292.0614, found: 292.0617. 
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tert-Butyl 5-oxo-4-benzylisoxazolidine-2-carboxylate (II.1j)120 

 

 

II.1j was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (703 mg, 2.45 mmol, 1.00 equiv) and 

2,2-dimethyl-5-benzyl-1,3-dioxane-4,6-dione II.4k (630 mg, 2.69 mmol, 1.10 equiv). The 

titled compound was obtained after flash column chromatography on silica gel (PE/Et2O = 

from 95:5 to 8:2) as a viscous oil (612 mg, 90%). 

 

Rf: 0.40 (PE/Et2O = 8:2) 

IR (ATR): 2982, 1790, 1710, 1454, 1357, 1319, 1263, 1145, 1029, 994, 846, 747, 705 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.38-7.15 (m, 5H, HAr), 4.14 (dd, J = 11.1, 8.4 Hz, 1H, H4), 

3.71 (dd, J = 11.1, 9.2 Hz, 1H, H4’), 3.26 (dd, J = 14.0, 4.5 Hz, 1H, H7), 3.17 (m, 1H, H5), 

2.80 (dd, J = 14.0, 9.9 Hz, 1H, H7’), 1.51 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 174.1 (s, C6), 155.9 (s, C3), 136.8 (s, C8), 128.9 (d, 2C, C9 or 

C10), 128.7 (d, 2C, C9 or C10), 127.3 (d, C11), 84.0 (s, C2), 52.9 (t, C4), 42.1 (d, C5), 34.3 (t, 

C7), 28.0 (q, 3C, C1). 

 

tert-Butyl 5-oxo-4-cinnamylisoxazolidine-2-carboxylate (II.1k) 

 

 

 

II.1k was synthesized according to the method aforementioned from tert-butyl 

((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (251 mg, 0.87 mmol, 1.00 equiv) and 

2,2-dimethyl-5-cinnamyl-1,3-dioxane-4,6-dione II.4l (230 mg, 0.96 mmol, 1.10 equiv). The 
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titled compound was obtained after flash column chromatography on silica gel (PE/Et2O = 

9:1) as a viscous oil (183 mg, 69%). 

 

Rf: 0.37 (PE/Et2O = 7:3) 

IR (ATR): 2980, 2917, 1796, 1743, 1726, 1451, 1369, 1329, 1254, 1212, 1138, 966, 846, 

746, 693 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.39-7.20 (m, 5H, HAr), 6.51 (dtapp, J = 15.7, 1.4 Hz, 1H, H9), 

6.13 (ddd, J = 15.7, 7.7, 6.8 Hz, 1H, H8), 4.29 (dd, J = 11.0, 8.7 Hz, 1H, H4), 3.75 (dd, J = 

11.1, 9.3 Hz, 1H, H4’), 3.06 (m, 1H, H5), 2.77 (m, 1H, H7), 2.50 (m, 1H, H7’), 1.51 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 174.2 (s, C6), 155.9 (s, C3), 136.5 (s, C10), 133.1 (d, C13), 

128.6 (d, 2C, C11 or C12), 127.8 (d, C9), 126.3 (d, 2C, C11 or C12), 124.1 (d, C8), 84.2 (s, C2), 

52.9 (t, C4), 40.4 (d, C5), 31.9 (t, C7), 28.1 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C17H21NO4Na [M+Na]+: 326.1363, found: 326.1363. 

 

5. General procedures for the Pd-AAA of 4-substituted isoxazolidin-5-ones 

 

Synthesis of isoxazolidin-5-ones (II.18a-j) 

(Representative procedure) 

 

 

 

To a solution of Pd2(dba)3 (0.01 mmol, 0.05 equiv) in THF (2.0 mL) at rt was added 

(R,R)-DACH phenyl Trost ligand (0.02 mmol, 0.10 equiv) and the mixture was stirred for 30 

min. This solution was then cooled to 0 °C and transferred via cannula to a flask containing 4-

substituted isoxazolidin-5-one (0.2 mmol, 1 equiv) and Na2CO3 (0.4 mmol, 2 equiv). 

Followed by the addition of allyl acetate (0.2 mmol, 1 equiv) and stirring was continued at the 

same temperature until complete consumption of the starting material (confirmed by TLC). 

The reaction mixture was filtered through a plug of Celite® and concentrated under reduced 

pressure to afford a crude residue, which was purified by flash column chromatography on 

silica gel to afford the corresponding allylated isoxalidin-5-one. 

General procedure for the synthesis of the racemic compounds 
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(Representative procedure) 

 

To a flask containing 4-substituted isoxazolidin-5-one (0.2 mmol, 1 equiv) and Na2CO3 (0.4 

mmol, 2 equiv) in THF (2 mL) at rt was added Pd(PPh3)4 (0.01 mmol, 0.05 equiv). Followed 

by the addition of allyl acetate (0.2 mmol, 1 equiv) and stirring was continued at the same 

temperature until complete consumption of the starting material (confirmed by TLC). The 

reaction mixture was filtered through a plug of Celite® and concentrated under reduced 

pressure to afford a crude residue, which was purified following the same procedure described 

for the corresponding enantioenriched compound. 

 

tert-Butyl (S)-4-allyl-5-oxo-4-phenylisoxazolidine-2-carboxylate (II.18a) 

 

 

 

II.18a was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-

phenylisoxazolidine-2-carboxylate II.1a (55 mg, 0.21 mmol, 1.0 equiv) and allyl acetate (23 

µL, 0.21 mmol, 1.0 equiv). The titled compound was obtained after flash column 

chromatography on silica gel (PE/Et2O = 95:5) as a white solid (60 mg, 95%). 

 

Mp = 94-95 °C 

Rf: 0.49 (PE/Et2O = 8:2)  

[α]20 
D = + 118 (c 0.50, CHCl3) 

ee = 91% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3 

mL/min, detection wavelength = 220 nm. tR = 4.98 min (major) and tR = 5.62 min (minor). 

IR (ATR): 2981, 2933, 1796, 1747, 1721, 1497, 1450, 1370, 1342, 1258, 1145, 1080, 1033, 

994, 929, 848 cm-1. 
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1H NMR (400 MHz, CDCl3): δ 7.47-7.29 (m, 5H, HAr), 5.61 (m, 1H, H12), 5.19-5.09 (m, 2H, 

H13), 4.61 (d, J = 11.8 Hz, 1H, H4), 4.16 (d, J = 11.7 Hz, 1H, H4’), 2.75-2.64 (m, 2H, H11), 

1.33 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 175.7 (s, C6), 156.1 (s, C3), 136.5 (s, C7), 131.5, (d, C12), 

129.1 (d, 2C, C8 or C9), 128.4 (d, C10), 126.6 (d, 2C, C8 or C9), 120.8 (t, C13), 84.1 (s, C2), 

57.6 (t, C4), 52.2 (s, C5), 41.9 (t, C11), 27.9 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C17H21NO4Na [M+Na]+: 326.1363, found: 326.1362. 

 

 

 

tert-Butyl (S)-4-allyl-5-oxo-4-(p-tolyl)isoxazolidine-2-carboxylate (II.18b) 

 

 

 

II.18b was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-

(p-tolyl)isoxazolidine-2-carboxylate II.1b (50 mg, 0.18 mmol, 1.0 equiv) and allyl acetate (20 

µL, 0.19 mmol, 1.0 equiv). The titled compound was obtained after flash column 

chromatography on silica gel (PE/Et2O = 9:1) as a colorless oil (52 mg, 91%). 

 

Rf: 0.45 (PE/Et2O = 8:2) 

[α]20 
D = +65.2 (c 0.65, CHCl3) 

ee = 90% (determined by SFC) 
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SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3 

mL/min, detection wavelength = 220 nm. tR = 4.93 min (major) and tR = 5.86 min (minor). 

IR (ATR): 2980, 2918, 2850, 1795, 1746, 1719, 1641, 1515, 1458, 1370, 1144, 995, 928, 

848, 815, 782, 766 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.33-7.28 (m, 2H, H8), 7.21-7.15 (m, 2H, H9), 5.61 (ddt, J = 

16.5, 10.7, 7.3 Hz, 1H, H13), 5.18-5.08 (m, 2H, H14), 4.57 (d, J = 11.7 Hz, 1H, H4), 4.14 (d, J 

= 11.7 Hz, 1H, H4’), 2.74-2.61 (m, 2H, H12), 2.33 (s, 3H, H11), 1.34 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 175.5 (s, C6), 156.1 (s, C3), 138.2 (s, C7), 133.4 (s, C10), 

131.6 (d, C13), 129.7 (d, 2C, C9), 126.5 (d, 2C, C8), 120.6 (t, C14), 84.0 (s, C2), 57.7 (t, C4), 

51.9 (s, C5), 41.8 (t, C12), 27.9 (q, 3C, C1), 21.0 (q, C11). 

HRMS (ESI) m/z: calcd for C18H23NO4Na [M+Na]+: 340.1519, found: 340.1520. 

 

 

 

tert-Butyl (S)-4-allyl-4-(4-methoxyphenyl)-5-oxoisoxazolidine-2-carboxylate (II.18c) 

 

 

 

II.18c was synthesized according to the method aforementioned from tert-butyl 4-(4-

methoxyphenyl)-5-oxoisoxazolidine-2-carboxylate II.1c (50 mg, 0.17 mmol, 1.0 equiv) and 

allyl acetate (18 µL, 0.17 mmol, 1.0 equiv). The titled compound was obtained after flash 

column chromatography on silica gel (PE/Et2O = 8:2) as a colorless oil (49 mg, 86%). 
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Rf: 0.26 (PE/Et2O = 8:2) 

[α]20 
D = +35.5 (c 0.22, CHCl3) 

ee = 87% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 95:5, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 1.96 min (major) and tR = 2.95 min (minor). 

IR (ATR): 2980, 1794, 1745, 1719, 1610, 1515, 1459, 1370, 1300, 1253, 1142, 1031, 994, 

928, 830, 783, 685 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.37-7.31 (m, 2H, H8), 6.92-6.86 (m, 2H, H9), 5.60 (ddt, J = 

16.6, 10.4, 7.3 Hz, 1H, H13), 5.20-5.08 (m, 2H, H14), 4.56 (d, J = 11.8 Hz, 1H, H4), 4.12 (d, J 

= 11.7 Hz, 1H, H4’), 3.79 (s, 3H, H11), 2.73-2.59 (m, 2H, H12), 1.35 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 175.6 (s, C6), 159.6 (s, C10), 156.1 (s, C3), 131.6 (d, C13), 

128.2 (s, C7), 127.8 (d, 2C, C8), 120.6 (t, C14), 114.4 (d, 2C, C9), 84.0 (s, C2), 57.6 (t, C4), 55.5 

(q, C11), 51.6 (s, C5), 41.9 (t, C12), 27.9 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C18H23NO5Na [M+Na]+: 356.1468, found: 356.1470. 

 

 

 

tert-Butyl (S)-4-allyl-4-(4-fluorophenyl)-5-oxoisoxazolidine-2-carboxylate (II.18d) 
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II.18d was synthesized according to the method aforementioned from tert-butyl 4-(4-

fluorophenyl)-5-oxoisoxazolidine-2-carboxylate II.1d (50 mg, 0.18 mmol, 1.0 equiv) and 

allyl acetate (20 µL, 0.19 mmol, 1.0 equiv). The titled compound was obtained after flash 

column chromatography on silica gel (PE/Et2O = 8:2) as a colorless oil (56 mg, 97%). 

 

Rf: 0.41 (PE/Et2O = 8:2) 

[α]20 
D = +41.5 (c 0.20, CHCl3) 

ee = 92% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 96:4, Flow rate = 4 

mL/min, detection wavelength = 220 nm. tR = 1.98 min (minor) and tR = 2.30 min (major). 

IR (ATR): 2981, 1794, 1719, 1606, 1511, 1459, 1370, 1236, 1143, 1035, 995, 929, 836, 783, 

684 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.46-7.39 (m, 2H, H8), 7.11-7.03 (m, 2H, H9), 5.57 (ddt, J = 

16.8, 10.2, 7.3 Hz, 1H, H12), 5.19-5.09 (m, 2H, H13), 4.56 (d, J = 11.8 Hz, 1H, H4), 4.17 (d, J 

= 11.8 Hz, 1H, H4’), 2.73-2.60 (m, 2H, H11), 1.36 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 175.2 (s, C6), 162.6 (s, 1JC-F = 248 Hz, C10), 156.1 (s, C3), 

132.1 (s, 4JC-F = 3.5 Hz, C7), 131.1 (d, C12), 128.5 (d, 3JC-F = 8.1 Hz, 2C, C8), 121.0 (t, C13), 

116.0 (d, 2JC-F = 21.6 Hz, 2C, C9), 84.3 (s, C2), 57.5 (t, C4), 51.7 (s, C5), 42.0 (t, C11), 28.0 (q, 

3C, C1). 

HRMS (ESI) m/z: calcd for C17H20FNO4Na [M+Na]+: 344.1269, found: 344.1268. 
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tert-Butyl (S)-4-allyl-5-oxo-4-(4-(trifluoromethyl)phenyl)isoxazolidine-2-carboxylate 

(II.18e) 

 

 

 

II.18e was synthesized according to the method aforementioned from tert-butyl 4-(4-

(trifluoromethyl)phenyl)-5-oxoisoxazolidine-2-carboxylate II.1e (50 mg, 0.15 mmol, 1.0 

equiv) and allyl acetate (16 µL, 0.15 mmol, 1.0 equiv). The titled compound was obtained 

after flash column chromatography on silica gel (PE/Et2O = 8:2) as a colorless oil (53 mg, 

95%). 

 

Rf: 0.48 (PE/Et2O = 8:2) 

[α]20 
D = +57.0 (c 0.68, CHCl3) 

ee = 86% (determined by SFC) 

SFC: OD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3 

mL/min, detection wavelength = 220 nm. tR = 3.28 min (minor) and tR = 3.52 min (major). 

IR (ATR): 2918, 2850, 1798, 1722, 1371, 1328, 1168, 1146, 1129, 1073, 1017, 931, 845, 705 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.68-7.62 (m, 2H, H9), 7.61-7.55 (m, 2H, H8), 5.57 (ddt, J = 

16.8, 10.2, 7.3 Hz, 1H, H13), 5.23-5.10 (m, 2H, H14), 4.58 (d, J = 11.8 Hz, 1H, H4), 4.22 (d, J 

= 11.8 Hz, 1H, H4’), 2.76-2.65 (m, 2H, H12), 1.35 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 174.7 (s, C6), 156.0 (s, C3), 140.5 (s, C7), 130.8 (s, 2JC-F = 

32.5 Hz, C10), 130.7 (d, C13), 127.2 (d, 2C, C8), 126.0 (d, 3JC-F = 3.7 Hz, 2C, C9), 123.9 (s, 1JC-

F = 273 Hz, C11), 121.4 (t, C14), 84.5 (s, C2), 57.3 (t, C4), 52.3 (s, C5), 41.8 (t, C12), 27.9 (q, 

3C, C1). 

Note: Two signals corresponding to C10 quadruplet were not observed. 

HRMS (ESI) m/z: calcd for C18H20F3NO4Na [M+Na]+: 394.1237, found: 394.1238. 
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tert-Butyl (S)-4-allyl-4-(4-chlorophenyl)-5-oxoisoxazolidine-2-carboxylate (II.18f) 

 

 

 

II.18f was synthesized according to the method aforementioned from tert-butyl 4-(4-

chlorophenyl)-5-oxoisoxazolidine-2-carboxylate II.1f (50 mg, 0.17 mmol, 1.0 equiv) and 

allyl acetate (18 µL, 0.17 mmol, 1.0 equiv). The titled compound was obtained after flash 

column chromatography on silica gel (PE/Et2O = 8:2) as a white solid (52 mg, 92%). 

 

Mp = 58-60 °C 

Rf: 0.42 (PE/Et2O = 8:2) 

[α]20 
D = +88.9 (c 1.40, CHCl3) 

ee = 91% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 96:4, Flow rate = 4 

mL/min, detection wavelength = 220 nm. tR = 3.13 min (minor) and tR = 3.34 min (major). 

IR (ATR): 2981, 1794, 1746, 1720, 1496, 1458, 1370, 1324, 1258, 1144, 1096, 1014, 994, 

929, 847, 828, 741, 683 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.40-7.33 (m, 4H, HAr), 5.57 (ddt, J = 16.8, 10.2, 7.3 Hz, 1H, 

H12), 5.21-5.08 (m, 2H, H13), 4.54 (d, J = 11.8 Hz, 1H, H4), 4.17 (d, J = 11.8 Hz, 1H, H4’), 

2.74-2.59 (m, 2H, H11), 1.37 (s, 9H, H1). 
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13C NMR (100 MHz, CDCl3): δ 174.9 (s, C6), 156.0 (s, C3), 134.9 (s, C7), 134.6 (s, C10), 

131.0 (d, C12), 129.2 (d, 2C, C8 or C9), 128.1 (d, 2C, C8 or C9), 121.2 (t, C13), 84.4 (s, C2), 

57.3 (t, C4), 51.8 (s, C5), 41.8 (t, C11), 27.9 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C17H20ClNO4Na [M+Na]+: 360.0973, found: 360.0975. 

 

 

 

tert-Butyl (S)-4-allyl-4-(4-bromophenyl)-5-oxoisoxazolidine-2-carboxylate (II.18g) 

 

 

 

II.18g was synthesized according to the method aforementioned from tert-butyl 4-(4-

bromophenyl)-5-oxoisoxazolidine-2-carboxylate II.1g (50 mg, 0.15 mmol, 1.0 equiv) and 

allyl acetate (16 µL, 0.15 mmol, 1.0 equiv). The titled compound was obtained after flash 

column chromatography on silica gel (PE/Et2O = 8:2) as a clear solid (51 mg, 91%). 

 

Rf: 0.42 (PE/Et2O = 8:2) 

[α]20 
D = +24.7 (c 1.84, CHCl3) 

ee = 89% (determined by SFC) 

SFC: OJ-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 96:4, Flow rate = 4 

mL/min, detection wavelength = 220 nm. tR = 2.20 min (major) and tR = 3.44 min (minor). 



 

 
 

260 

IR (ATR): 2981, 1795, 1746, 1720, 1493, 1397, 1370, 1324, 1145, 1079, 1010, 929, 847, 

823, 768, 726 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.54-7.48 (m, 2H, H9), 7.35-7.28 (m, 2H, H8), 5.57 (ddt, J = 

16.8, 10.2, 7.3 Hz, 1H, H12), 5.21-5.08 (m, 2H, H13), 4.53 (d, J = 11.8 Hz, 1H, H4), 4.16 (d, J 

= 11.8 Hz, 1H, H4’), 2.72-2.61 (m, 2H, H11), 1.37 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 174.9 (s, C6), 156.0 (s, C3), 135.5 (s, C7), 132.2 (d, 2C, C9), 

131.0 (d, C12), 128.4 (d, 2C, C8), 122.7 (s, C10), 121.2 (t, C13), 84.4 (s, C2), 57.3 (t, C4), 51.9 

(s, C5), 41.8 (t, C11), 28.0 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C17H20BrNO4Na [M+Na]+: 404.0468, found: 404.0468. 

 

 

 

tert-Butyl (S)-4-allyl-4-(3,4-dichlorophenyl)-5-oxoisoxazolidine-2-carboxylate (II.18h) 

 

 

 

II.18h was synthesized according to the method aforementioned from tert-butyl 4-(4-

chlorophenyl)-5-oxoisoxazolidine-2-carboxylate II.1h (50 mg, 0.15 mmol, 1.0 equiv) and 

allyl acetate (16 µL, 0.15 mmol, 1.0 equiv). The titled compound was obtained after flash 

column chromatography on silica gel (PE/Et2O = 8:2) as a white solid (52 mg, 93%). 

 

Mp = 114-115 °C 



 

 
 

261 

Rf: 0.28 (PE/Et2O = 8:2) 

[α]20 
D = +22.5 (c 0.08, CHCl3) 

ee = 85% (determined by SFC) 

SFC: OJ-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 96:4, Flow rate = 4 

mL/min, detection wavelength = 220 nm. tR = 2.41 min (major) and tR = 4.09 min (minor). 

IR (ATR): 1796, 1722, 1476, 1371, 1340, 1259, 1144, 1031, 995, 930, 847, 768, 678 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.54 (d, J = 2.4 Hz, 1H, H8), 7.46 (d, J = 8.5 Hz, 1H, H11), 

7.30 (dd, J = 8.5, 2.4 Hz, 1H, H12), 5.56 (ddt, J = 16.9, 10.2, 7.3 Hz, 1H, H14), 5.22-5.10 (m, 

2H, H15), 4.50 (d, J = 11.9 Hz, 1H, H4), 4.18 (d, J = 11.9 Hz, 1H, H4’), 2.71-2.61 (m, 2H, 

H13), 1.40 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 174.4 (s, C6), 155.9 (s, C3), 136.6 (s, C7), 133.4 (s, C10), 

132.9 (s, C9), 131.0 (d, C11), 130.6 (d, C14), 128.8 (d, C8), 126.2 (d, C12), 121.5 (t, C15), 84.6 

(s, C2), 57.1 (t, C4), 51.7 (s, C5), 41.7 (t, C13), 28.0 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C17H19Cl2NO4Na [M+Na]+: 394.0583, found: 394.0586. 

 

 

 

tert-Butyl (S)-4-allyl-5-oxo-4-(thiophen-3-yl)isoxazolidine-2-carboxylate (II.18i) 

 

 

II.18i was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-

(thiophen-3-yl)isoxazolidine-2-carboxylate II.1i (50 mg, 0.19 mmol, 1.0 equiv) and allyl 
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acetate (20 µL, 0.19 mmol, 1.0 equiv). The titled compound was obtained after flash column 

chromatography on silica gel (PE/Et2O = 9:1) as an off-white solid (57 mg, 97%). 

 

Mp = 75-77 °C 

Rf: 0.47 (PE/Et2O = 8:2) 

[α]20 
D = +86.9 (c 1.76, CHCl3) 

ee = 89% (determined by SFC) 

SFC: OD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3 

mL/min, detection wavelength = 220 nm. tR = 5.62 min (major) and tR = 6.36 min (minor). 

IR (ATR): 2918, 2850, 1795, 1718, 1458, 1370, 1322, 1142, 995, 925, 847, 789, 690 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.36 (dd, J = 5.1, 3.0 Hz, 1H, H9), 7.28 (dd, J = 3.0, 1.5 Hz, 

1H, H10), 7.13 (dd, J = 5.1, 1.5 Hz, 1H, H8), 5.61 (ddt, J = 16.7, 10.5, 7.3 Hz, 1H, H12), 

5.20-5.10 (m, 2H, H13), 4.53 (d, J = 11.7 Hz, 1H, H4), 4.14 (d, J = 11.7 Hz, 1H, H4’), 2.75-

2.60 (m, 2H, H11), 1.39 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 175.1 (s, C6), 156.2 (s, C3), 136.9 (s, C7), 131.3 (d, C12), 

127.2 (d, C9), 126.0 (d, C8), 122.9 (d, C10), 120.7 (t, C13), 84.2 (s, C2), 57.7 (t, C4), 49.8 (s, 

C5), 41.4 (t, C11), 28.0 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C15H19NO4SNa [M+Na]+: 332.0927, found: 332.0930. 
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tert-Butyl (S)-4-allyl-5-oxo-4-benzylisoxazolidine-2-carboxylate (II.18j) 

 

 

 

II.18j was synthesized according to the method aforementioned with minor modifications, 

from tert-butyl 5-oxo-4-phenylisoxazolidine-2-carboxylate II.1j (50 mg, 0.18 mmol, 1.0 

equiv), allyl acetate (20 µL, 0.18 mmol, 1.0 equiv), BSA (45 µL, 0.18 mmol, 1.0 equiv) and 

KOAc (1.8 mg, 0.18 mmol, 0.1 equiv). The titled compound was obtained after flash column 

chromatography on silica gel (PE/Et2O = from 95:5 to 9:1) as a colorless oil (13 mg, 23%). 

 

Rf: 0.33 (PE/Et2O = 9:1)  

[α]20 
D = + 2.80 (c 0.20, CHCl3) 

ee = 27% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 95:5, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 1.77 min (major) and tR = 3.63 min (minor). 

IR (ATR): 2924, 1790, 1715, 1456, 1369, 1329, 1277, 1136, 1024, 967, 845, 744 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.35-7.06 (m, 5H, HAr), 5.68 (m, 1H, H13), 5.20-5.07 (m, 2H, 

H14), 3.88 (d, J = 11.2 Hz, 1H, H4), 3.81 (d, J = 11.2 Hz, 1H, H4’), 2.99 (d, J = 13.9 Hz, 1H, 

H7), 2.77 (d, J = 13.9 Hz, 1H, H7’), 2.42 (ddt, J = 14.1, 6.8, 2.3 Hz, 1H, H12), 2.24 (ddt, J = 

14.0, 7.9, 1.0 Hz, 1H, H12’), 1.41 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 176.0 (s, C6), 155.7 (s, C3), 135.0 (s, C8), 131.5, (d, C13), 

130.3 (d, 2C, C9 or C10), 129.9 (d, 2C, C9 or C10), 127.6 (d, C11), 121.2 (t, C14), 84.0 (s, C2), 

54.4 (t, C4), 49.5 (s, C5), 40.2 (t, C7), 39.3 (t, C12), 28.2 (q, 3C, C1). 
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6. Synthesis of allyl acetates (II.20a-f) 

 

Representative acetylation procedure 

 

 

 

To a flame-dried round bottom flask equipped with a magnetic stirring bar was added the 

2-substituted allyl alcohol (88 mmol, 1.0 equiv) and Ac2O (8.3 mL, 88 mmol, 1.0 equiv) 

under argon atmosphere. The flask was cooled to 0 C and DMAP (108 mg, 0.880 mmol, 

0.010 equiv) was quickly added. A solution of Et3N (12.2 mL, 88.0 mmol, 1.00 equiv) in 

CH2Cl2 (7.0 mL) was prepared in a separate flame-dried flask, then added dropwise to the 

first flask. The reaction mixture was allowed to stir while warming to rt for 2 h. The reaction 

mixture was poured into a flask containing an aqueous solution of HCl (2 M) and ice. The 

layers were separated, and the aqueous layer was extracted with CH2Cl2(2 x 10 mL). The 

combined organic extracts were washed with a saturated aqueous solution of NaHCO3 and 

then with a saturated aqueous brine solution, dried over MgSO4, filtered and carefully 

concentrated under reduced pressure. The crude residue was purified by flash column 

chromatography on silica gel (PE/Et2O) to afford the 2-substituted allyl acetate. 
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2-Methylallyl acetate (II.20a)132 

 

 

 

The tittle compound was synthesized according to the aforementioned procedure using 

2-methallyl alcohol (7.4 mL, 88 mmol, 1.0 equiv). The desired allyl acetate II.20a was 

obtained after flash column chromatography on silica gel (PE/Et2O = 95:5) as a clear oil (9.74 

g, 97%).139 

 

Rf: 0.18 (PE/Et2O = 95:5) 

IR (ATR): 2978, 2942, 1738, 1660, 1450, 1373, 1224, 1053, 1026, 957, 904, 844 cm-1. 

1H NMR (400 MHz, CDCl3): δ 4.96 (m, 1H, H1), 4.91 (m, 1H, H1’), 4.47 (s, 2H, H3), 2.08 (s, 

3H, H6), 1.75 (s, 3H, H4). 

13C NMR (100 MHz, CDCl3): δ 170.8 (s, C5), 140.0 (s, C2), 113.0 (t, C1), 67.8 (t, C3), 21.0 (q, 

C6), 19.6 (q, C4). 

HRMS (ESI) m/z: calcd for C6H10O2Na [M+Na]+: 137.0573, found: 137.0573. 

 

2-Chloroallyl acetate (II.20b) 

 

 

 

The tittle compound was synthesized according to the aforementioned procedure using 

2-chloroallyl alcohol (1.00 mL, 11.3 mmol, 1.00 equiv). The desired allyl acetate II.20b was 

obtained, without further purification, as a clear oil (1.37 g, 90%). 

 

IR (ATR): 1744, 1640, 1371, 1218, 1038, 895, 758, 665 cm-1. 

                                                        
139 Xi, Z.; Hao, W.; Wang, P.; Cai, M., Molecules 2009, 14, 3528. 
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1H NMR (400 MHz, CDCl3): δ 5.47 (m, 1H, H1), 5.41 (m, 1H, H1’), 4.65 (s, 2H, H3), 2.13 (s, 

3H, H5). 

13C NMR (100 MHz, CDCl3): δ 170.2 (s, C4), 136.0 (s, C2), 115.1 (t, C1), 66.2 (t, C3), 20.9 (q, 

C5). 

HRMS (ESI) m/z: calcd for C5H7ClO2Na [M+Na]+: 157.0027, found: 157.0835. 

 

Methyl 2-(acetoxymethyl)acrylate (II.20c) 

 

 

 

The tittle compound was synthesized according to the aforementioned procedure using methyl 

2-(hydroxymethyl)acrylate (1.00 g, 8.61 mmol, 1.00 equiv). The desired allyl acetate II.20c 

was obtained, without further purification, as a clear oil (912 mg, 67%). 

 

IR (ATR): 1720, 1641, 1369, 1309, 1273, 1227, 1197, 1153, 1049, 990, 951, 913, 834, 816, 

732, 647, 602 cm-1. 

1H NMR (400 MHz, CDCl3): δ 6.36 (dd, J = 2.0, 1.1 Hz, 1H, H1), 5.85 (dd, J = 2.7, 1.4 Hz, 

1H, H1’), 4.80 (t, J = 1.2 Hz, 2H, H3), 3.79 (s, 3H, H5), 2.10 (s, 3H, H7). 

13C NMR (100 MHz, CDCl3): δ 170.5 (s, C6), 165.8 (s, C4), 135.4 (s, C2), 127.7 (t, C1), 62.6 

(t, C3), 52.2 (q, C5), 21.0 (q, C7). 

HRMS (ESI) m/z: calcd for C7H10O4Na [M+Na]+: 181.0471, found: 181.0470. 

 

2-(Trimethylsilyl)allyl acetate (II.20d) 

 

 

 

To a solution of (1-bromovinyl)trimethylsilane II.21 (1.00 g, 5.58 mmol, 1.00 equiv) in Et2O 

(56 mL) at 78 C and under argon atmosphere was added t-BuLi (3.95 mL, 1.7 M in 
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pentane, 6.7 mmol, 1.2 equiv). The resulting mixture was stirred at 78 C for 3 h. Dry 

paraformaldehyde (168 mg, 1.86 mmol, 0.33 equiv) was then added, and the mixture was 

allowed to warm slowly to rt. After 18 h, H2O was carefully added and the organic layer was 

separated, and the aqueous layer was extracted with Et2O. The combined organic layers were 

dried over MgSO4, filtered and concentrated under reduced pressure. The resulting allyl 

alcohol II.22 was engaged in the formation of its corresponding acetate following the 

aforementioned general acetylation procedure; in order to afford the 2-(trimethylsilyl)allyl 

acetate II.20d, without further purification, as a clear oil (903 mg, 94%).133 

 

IR (ATR): 1741, 1372, 1232, 1147, 1031, 839, 759 cm-1. 

1H NMR (400 MHz, CDCl3): δ 5.77 (dt, J = 2.8, 1.8 Hz, 1H, H1), 5.46 (dt, J = 2.7, 1.4 Hz, 

1H, H1’), 4.69 (tapp, J = 1.6 Hz, 2H, H3), 2.09 (s, 3H, H6), 0.13 (s, 9H, H4). 

13C NMR (100 MHz, CDCl3): δ 170.9 (s, C5), 146.6 (s, C2), 125.7 (t, C1), 68.2 (t, C3), 21.1 (q, 

C6), 1.51 (q, 3C, C4). 

HRMS (ESI) m/z: calcd for C8H16O2SiNa[M+Na]+: 195.0812, found: 195.0813. 

 

2-Phenylallyl acetate (II.20e) 

 

 

 

To a solution of PhMgBr (50 mL, 1.0 M in THF, 50 mmol, 2.5 equiv) in Et2O (120 mL) was 

added CuI (571 mg, 3.00 mmol, 0.150 equiv). The mixture was stirred at rt for 30 min, and 

then a solution of propargyl alcohol II.23 (1.20 mL, 20.0 mmol, 1.00 equiv) in Et2O (20 mL) 

was added dropwise. Once the addition was done, the reaction mixture was heated at reflux 

for 24 h. After cooling to rt, a saturated aqueous solution of NH4Cl was added slowly. The 

organic layer was separated, and the aqueous layer was extracted with Et2O. The combined 

organic layers were dried over MgSO4, filtered and concentrated under reduced pressure.134 

The resulting allylic alcohol II.24 was engaged in the formation of its corresponding acetate 

following aforementioned general acetylation procedure. The crude residue was purified by 
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flash column chromatography on silica gel (PE/Et2O = 95:5) to afford the 2-phenylallyl 

acetate II.20e as a yellow oil (3.02 g, 86%).140 

 

Rf: 0.35 (PE/Et2O = 9:1) 

IR (ATR): 1736, 1634, 1575, 1496, 1444, 1373, 1222, 1027, 979, 907, 843 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.47-7.28 (m, 5H, HAr), 5.56 (m, 1H, H1), 5.37 (m, 1H, H1’), 

4.99-4.97 (m, 2H, H3), 2.08 (s, 3H, H9). 

13C NMR (100 MHz, CDCl3): δ 170.9 (s, C8), 142.6 (s, C2), 138.1 (s, C4), 128.6 (d, 2C, C6 or 

C5), 128.2 (d, C7), 126.1 (d, 2C, C6 or C5), 115.4 (t, C1), 65.9 (t, C3), 21.1 (q, C9). 

HRMS (ESI) m/z: calcd for C11H12O2Na [M+Na]+: 199.0730, found: 199.0731. 

 

2-(Methoxy)allyl acetate (II.20f) 

 

 

 

NaOMe (15.3 g, 268 mmol, 3.0 equiv) was dissolved in MeOH (120 mL) at 0 C. Then, 

methyl 2,3-dibromopropanoate II.25 (11.7 mL, 89.5 mmol, 1.00 equiv) was added dropwise 

and reaction mixture was allowed to stir at rt for 6 days. Afterward the reaction mixture was 

quenched by the addition of dry-ice until reaching pH 7. The resulting white suspension was 

diluted with CH2Cl2 (100 mL) and washed with H2O (2 x 120 mL). The organic layer was 

dried over Na2SO4, filtered and carefully concentrated under reduced pressure. The remaining 

product was purified by distillation under reduced pressure (30 mbar, 50 C) to give the ester 

II.26 (4.67 g, 45%) as a colorless liquid which was engaged in the next step without further 

purification or characterization.141 

 

The methyl 2-methoxy acrylate II.26 (1.00 g, 8.61 mmol, 1.00 equiv) was added dropwise to 

a solution of LiAIH4 (785 mg, 20.7 mmol, 2.4 equiv) in Et2O (18 mL) at 0 C over 10 min. 

The reaction was quenched carefully by dropwise addition of H2O (0.35 mL), an aqueous 

solution of NaOH (15%, 0.35 mL), and H2O (1.0 mL). The white precipitate was filtered and 

                                                        
140 Ruan, J.; Li, X.; Saidi, O.; Xiao, J., J. Am. Chem. Soc. 2008, 130, 2424. 
141 Marti, C.; Carreira, E. M., J. Am. Chem. Soc. 2005, 127, 11505. 
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washed with CH2Cl2. The organic phase was dried over Na2SO4 and filtered.142 This resulting 

solution was cooled to 0 C and then treated with Ac2O (0.80 mL, 8.6 mmol, 1.0 equiv), 

DMAP (11 mg, 0.86 mmol, 0.010 equiv) and a solution of Et3N (1.3 mL, 8.6 mmol, 1.0 

equiv) in CH2Cl2 (7.0 mL), prepared in a separate flame-dried flask. The reaction mixture was 

allowed to stir while warming to rt for 2 h. The reaction mixture was poured into a flask 

containing an aqueous solution of HCl (2 M) and ice. The layers were separated, and the 

aqueous layer was extracted with CH2Cl2 (2 x 10 mL). The combined organic extracts were 

washed with a saturated aqueous solution of NaHCO3 and then with a saturated aqueous brine 

solution, dried over MgSO4, filtered and carefully concentrated under reduced pressure. The 

crude residue was purified by flash column chromatography on silica gel (PE/Et2O = 95:5) to 

afford the 2-methoxyallyl acetate II.20f as a clear oil (425 mg, 38%). 

 

Rf: 0.32 (PE/Et2O = 95:5) 

IR (ATR): 1738, 1669, 1638, 1452, 1373, 1304, 1221, 1080, 1032, 977, 947, 916, 825, 733, 

605 cm-1. 

1H NMR (400 MHz, CDCl3): δ 4.50 (s, 2H, H3), 4.21 (dapp, J = 2.5 Hz, 1H, H1), 4.12 (d, J = 

2.6 Hz, 1H, H1’), 3.59 (s, 3H, H4), 2.10 (s, 3H, H6). 

13C NMR (100 MHz, CDCl3): δ 170.7 (s, C5), 158.3 (s, C2), 84.7 (t, C1), 64.7 (t, C3), 55.3 (q, 

C4), 21.1 (q, C6). 

HRMS (ESI) m/z: calcd for C3H10O3Na [M+Na]+: 153.0522, found: 153.0522. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
142 Coates, R. M.; Rogers, B. D.; Hobbs, S. J.; Peck, D. R.; Curran, D. P. J. Am. Chem. Soc. 1987, 109, 1160. 
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7. General procedures for the Pd-AAA of 2-substituted allyl reagents 

 

Synthesis of isoxazolidin-5-ones (II.18l-q) 

(Representative procedure) 

 

 

 

To a solution of Pd2(dba)3 (0.01 mmol, 0.05 equiv) in THF (2.0 mL) at rt was added 

(R,R)-DACH phenyl Trost ligand (0.02 mmol, 0.10 equiv) and the mixture was stirred for 30 

min. This solution was then cooled to 0 °C and transferred via cannula to a flask containing 

tert-butyl 5-oxo-4-phenylisoxazolidine-2-carboxylate II.1a (0.2 mmol, 1 equiv) and Na2CO3 

(0.4 mmol, 2 equiv). Followed by the addition of 2-substituted allyl acetate II.20 (0.2 mmol, 1 

equiv) and stirring was continued at the same temperature until complete consumption of the 

starting material (confirmed by TLC). The reaction mixture was filtered through a plug of 

Celite® and concentrated under reduced pressure to afford a crude residue, which was 

purified by flash column chromatography on silica gel to afford the corresponding allylated 

isoxalidin-5-one. 

 

General procedure for the synthesis of the racemic compounds 

(Representative procedure) 

 

To a flask containing tert-butyl 5-oxo-4-phenylisoxazolidine-2-carboxylate II.1a (0.2 mmol, 

1 equiv) and Na2CO3 (0.4 mmol, 2 equiv) in THF (2 mL) at rt was added Pd(PPh3)4 (0.01 

mmol, 0.05 equiv). Followed by the addition of 2-substituted allyl acetate II.20 (0.2 mmol, 1 

equiv) and stirring was continued at the same temperature until complete consumption of the 

starting material (confirmed by TLC). The reaction mixture was filtered through a plug of 

Celite® and concentrated under reduced pressure to afford a crude residue, which was 

purified following the same procedure described for the corresponding enantioenriched 

compound. 

 

tert-Butyl (S)-4-(2-methylallyl)-5-oxo-4-phenylisoxazolidine-2-carboxylate (II.18l) 
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II.18l was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-

phenylisoxazolidine-2-carboxylate II.1a (50 mg, 0.19 mmol, 1.0 equiv) and 2-methylallyl 

acetate II.20a (190 µL, 1.0 M in THF, 0.19 mmol, 1.0 equiv). The titled compound was 

obtained after flash column chromatography on silica gel (PE/Et2O = 9:1) as a white solid (53 

mg, 88%). 

 

Mp = 91-92 °C 

Rf: 0.24 (PE/Et2O = 9:1) 

[α]20 
D = +110 (c 0.29, CHCl3) 

ee = 95% (determined by SFC) 

SFC: OD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3 

mL/min, detection wavelength = 220 nm. tR = 5.04 min (major) and tR = 5.46 min (minor). 

IR (ATR): 2980, 2934, 1795, 1748, 1719, 1449, 1370, 1341, 1255, 1230, 1142, 1082, 1050, 

967, 904, 848 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.50-7.44 (m, 2H, H8), 7.40-7.28 (m, 3H, H9 and H10), 4.89 

(quint, J = 1.5 Hz, 1H, H13), 4.77-4.69 (m, 2H, H4 and H13’), 4.19 (d, J = 11.9 Hz, 1H, H4’), 

2.74 (dapp, J = 14.1 Hz, 1H, H11), 2.69 (dapp, J = 14.1 Hz, 1H, H11’), 1.49 (br s, 3H, H14), 1.33 

(s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 175.7 (s, C6), 156.1 (s, C3), 140.1 (s, C12), 136.3 (s, C7), 

129.0 (d, 2C, C9), 128.4 (d, C10), 126.7 (d, 2C, C8), 116.9 (t, C13), 84.1 (s, C2), 57.1 (t, C4), 

52.1 (s, C5), 45.6 (t, C11), 27.9 (q, 3C, C1), 23.8 (q, C14). 

HRMS (ESI) m/z: calcd for C18H23NO4Na [M+Na]+: 340.1519, found: 340.1518. 
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tert-Butyl (S)-5-oxo-4-phenyl-4-(2-(trimethylsilyl)allyl)isoxazolidine-2-carboxylate 

(II.18m) 

 

 

 

II.18m was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-

phenylisoxazolidine-2-carboxylate II.1a (50 mg, 0.19 mmol, 1.0 equiv) and 

2-(trimethylsilyl)allyl acetate II.20d (190 µL, 1.0 M in THF, 0.19 mmol, 1.0 equiv). The 

titled compound was obtained after flash column chromatography on silica gel (PE/Et2O = 

95:5) as a white solid (54 mg, 76%). 

 

Mp = 40-42 °C 

Rf: 0.41 (PE/Et2O = 9:1) 

[α]20 
D = +73.6 (c 1.12, CHCl3) 

ee = 93% (determined by SFC) 

SFC: OD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3 

mL/min, detection wavelength = 220 nm. tR = 3.88 min (major) and tR = 4.31 min (minor). 

IR (ATR): 2955, 1794, 1751, 1719, 1449, 1370, 1248, 1142, 1034, 990, 943, 838, 760, 697 

cm-1. 
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1H NMR (400 MHz, CDCl3): δ 7.48-7.25 (m, 5H, HAr), 5.54 (dapp, J = 13.2 Hz, 2H, H13), 4.73 

(d, J = 11.8 Hz, 1H, H4), 4.16 (d, J = 11.8 Hz, 1H, H4’), 2.84 (s, 2H, H11), 1.32 (s, 9H, H1), 

0.01 (s, 9H, H14). 

13C NMR (100 MHz, CDCl3): δ 175.8 (s, C6), 156.1 (s, C3), 146.4 (s, C12), 136.6 (s, C7), 

130.2 (t, C13), 129.1 (d, 2C, C9), 128.4 (d, C10), 126.8 (d, 2C, C8), 84.0 (s, C2), 57.4 (t, C4), 

53.0 (s, C5), 41.3 (t, C11), 27.9 (q, 3C, C1), 1.52 (q, 3C, C14). 

HRMS (ESI) m/z: calcd for C20H29NO4SiNa [M+Na]+: 398.1758, found: 398.1759. 

 

 

 

tert-Butyl (S)-4-(2-methylallyl)-5-oxo-4-phenylisoxazolidine-2-carboxylate (II.18n) 

 

 

 

II.18n was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-

phenylisoxazolidine-2-carboxylate 1a (70 mg, 0.27 mmol, 1.0 equiv) and the commercially 

available 2-((trimethylsilyl)methyl)allyl acetate (57 µL, 0.27 mmol, 1.0 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/Et2O = 9:1) as a 

white solid (81 mg, 94%). 

 

Mp = 91-92 °C 

Rf: 0.24 (PE/Et2O = 9:1) 
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[α]20 
D = +109 (c 0.25, CHCl3) 

ee = 90% (determined by SFC) 

SFC: OD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3 

mL/min, detection wavelength = 220 nm. tR = 5.28 min (major) and tR = 5.80 min (minor). 

Note: for full characterization of II.18n check II.18l. 

 

 

 

tert-Butyl (S)-5-oxo-4-phenyl-4-(2-phenylallyl)isoxazolidine-2-carboxylate (II.18o) 

 

 

 

II.18o was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-

phenylisoxazolidine-2-carboxylate 1a (50 mg, 0.19 mmol, 1.0 equiv) and 2-phenylallyl 

acetate II.20e (190 µL, 1.0 M in THF, 0.19 mmol, 1.0 equiv). The titled compound was 

obtained after flash column chromatography on silica gel (PE/Et2O = 9:1) as a colorless oil 

(51 mg, 71%). 

 

Rf: 0.38 (PE/Et2O = 9:1) 

[α]20 
D = +81.6 (c 0.17, CHCl3) 

ee = 95% (determined by SFC) 



 

 
 

275 

SFC: OD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 95:5, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 3.31 min (major) and tR = 3.76 min (minor). 

IR (ATR): 2980, 1794, 1748, 1718, 1448, 1370, 1344, 1311, 1257, 1232, 1142, 1079, 1030, 

990, 908, 847, 777, 731, 695 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.39-7.20 (m, 10H, HAr), 5.25 (m, 1H, H13), 4.94 (m, 1H, 

H13’), 4.43 (d, J = 12.2 Hz, 1H, H4), 3.87 (d, J = 12.2 Hz, 1H, H4’), 3.26-3.13 (m, 2H, H11), 

1.22 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 175.7 (s, C6), 156.0 (s, C3), 143.0 (s, C12), 141.0 (s, C14), 

135.4 (s, C7), 128.8 (d, 2C, C9 or C16), 128.7 (d, 2C, C9 or C16), 128.4 (d, C10 or C17), 128.0 

(d, C10 or C17), 126.9 (d, 2C, C8 or C15), 126.5 (d, 2C, C8 or C15), 119.1 (t, C13), 83.9 (s, C2), 

57.1 (t, C4), 53.1 (s, C5), 43.0 (t, C11), 27.8 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C23H25NO4Na [M+Na]+: 402.1676, found: 402.1678. 

 

 

 

tert-Butyl (S)-4-(2-chloroallyl)-5-oxo-4-phenylisoxazolidine-2-carboxylate (II.18p) 

 

 

 

II.18p was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-

phenylisoxazolidine-2-carboxylate 1a (50 mg, 0.19 mmol, 1.0 equiv) and 2-chloroallyl 
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acetate II.20b (18 µL, 0.19 mmol, 1.0 equiv). The titled compound was obtained after flash 

column chromatography on silica gel (PE/Et2O = 9:1) as a colorless oil (14 mg, 22%). 

 

Rf: 0.19 (PE/Et2O = 9:1) 

[α]20 
D = +10.7 (c 0.15, CHCl3) 

ee = 74% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3 

mL/min, detection wavelength = 220 nm. tR = 5.39 min (minor) and tR = 8.41 min (major). 

IR (ATR): 2919, 2850, 1795, 1749, 1720, 1634, 1458, 1371, 1145, 1034, 993, 900, 848, 767, 

698 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.48-7.29 (m, 5H, HAr), 5.19 (d, J = 1.6 Hz, 1H, H13), 5.05 (d, 

J = 12.4 Hz, 1H, H4), 4.97 (t, J = 1.3 Hz, 1H, H13’), 4.26 (d, J = 12.4 Hz, 1H, H4’), 3.05 (d, J = 

14.7 Hz, 1H, H11), 2.96 (dd, J = 14.7, 1.1 Hz, 1H, H11’), 1.26 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 175.2 (s, C6), 155.9 (s, C3), 135.7 (s, C12), 134.3 (s, C7), 

129.0 (d, 2C, C9), 128.6 (d, C10), 126.7 (d, 2C, C8), 118.4 (t, C13), 84.0 (s, C2), 57.7 (t, C4), 

52.3 (s, C5), 46.8 (t, C11), 27.7 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C17H20ClNO4Na [M+Na]+: 360.0973, found: 360.0973. 
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tert-Butyl (S)-4-(2-(methoxycarbonyl)allyl)-5-oxo-4-phenylisoxazolidine-2-carboxylate 

(II.18q) 

 

 

 

II.18q was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-

phenylisoxazolidine-2-carboxylate 1a (50 mg, 0.19 mmol, 1.0 equiv) and methyl 

2-(acetoxymethyl)acrylate II.20c (190 µL, 1.0 M in THF, 0.19 mmol, 1.0 equiv). The titled 

compound was obtained after flash column chromatography on silica gel (PE/Et2O = 9:1) in 

an inseparable mixture of II.1a/II.18q = 65:35 as a colorless viscous oil (48 mg, 25%). 

 

Rf: 0.16 (PE/Et2O = 8:2) 

ee = 25% (determined by SFC) 

SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 95:5, Flow rate = 5 

mL/min, detection wavelength = 220 nm. tR = 1.65 min (minor) and tR = 1.85 min (major). 

IR (ATR): 2970, 2919, 2850, 1797, 1737, 1724, 1456, 1371, 1217, 1144, 909, 848, 766, 732, 

700 cm-1. 

Note: the mixture of II.1a/II.18q = 65:35 is described separately. 

1H NMR (400 MHz, CDCl3) mixture of II.1a/II.18q = 65:35: 

Compound II.1a: δ 7.44-7.27 (m, 5H, HAr), 4.56 (m, 1H, H4), 4.14-4.06 (m, 2H, H4’ and H5), 

1.52 (s, 9H, H1). 

Compound II.18q: δ 7.44-7.27 (m, 5H, HAr), 6.24 (d, J = 1.1 Hz, 1H, H13), 5.52 (q, J = 1.0 

Hz, 1H, H13’), 4.70 (d, J = 12.2 Hz, 1H, H4), 4.14-4.06 (m, 1H, H4’), 3.69 (s, 3H, H15), 3.09 

(dapp, J = 14.1 Hz, 1H, H11), 2.90 (dd, J = 14.0, 0.9 Hz, 1H, H11’), 1.26 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3) mixture of 1a/3f = 65:35: 

Compound II.1a: δ 173.5 (s, C6), 156.1 (s, C3), 133.4 (s, C7), 129.4 (d, 2C, C8 or C9), 128.7 

(d, C10), 128.0 (d, 2C, C8 or C9), 84.5 (s, C2), 55.8 (t, C4) 46.5 (d, C5), 28.2 (q, 3C, C1). 
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Compound II.18q: δ 175.4 (s, C6), 167. 5 (s, C14), 136.0 (s, C12), 134.6 (s, C7), 131.1 (t, C13), 

129.1 (d, 2C, C8 or C9), 128.6 (d, C10), 126.9 (d, 2C, C8 or C9), 84.0 (s, C2), 57.9 (t, C4), 53.5 

(s, C5), 52.3 (q, C15), 38.9 (t, C11), 27.8 (q, 3C, C1). 

Note: the quaternary carbon corresponding to C3 was not observed. 

HRMS (ESI) m/z: calcd for C19H23NO6Na [M+Na]+: 384.1418, found: 384.1417. 
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8. Product derivatizations 

 

 

 

8.1. Synthesis of 2,2-amino acid 

 

(S)-2-(((tert-Butoxycarbonyl)amino)methyl)-2-phenylpent-4-enoic acid (II.27) 

 

 

 

To a solution of recrystallized naphthalene (960 mg, 7.50 mmol, 1.00 equiv) in THF (15.0 

mL) at rt was added finely chopped Na (190 mg, 8.25 mmol, 1.10 equiv) and the mixture was 

stirred for 2 h, to provide the dark green solution of sodium naphthalenide solution (0.5 M). 

Then to a second flask containing a solution of tert-butyl (S)-4-allyl-5-oxo-4-

phenylisoxazolidine-2-carboxylate II.18a (100 mg, 0.33 mmol, 1.0 equiv) in THF (11.0 mL) 

at 78 C was added dropwise, via syringe, the freshly prepared the sodium naphthalenide 

solution until the dark green color remained. The reaction was quenched, at 78 C, by the 

addition of H2O (10 mL) and the reaction mixture was warmed to rt. The pH was adjusted to 

2 with an aqueous solution of HCl (1 M). The layers were separated and the aqueous layer 

was extracted with CH2Cl2 (3 x 15 mL). The combined organic extracts were dried over 

MgSO4, filtered and concentrated under reduced pressure. The crude residue was purified by 

flash column chromatography on silica gel (CH2Cl2/MeOH = from 95:5 to 90:10) to afford 

the the amino acid II.27 as a clear oil (91 mg, 90%).136c 

 

Rf: 0.45 (CH2Cl2/MeOH = 9:1) 

[α]20 
D = 2.65 (c 0.98, CHCl3) 
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IR (ATR): 2978, 2929, 1703, 1653, 1507, 1448, 1404, 1368, 1248, 1167, 1075, 1029, 993, 

921, 855, 773, 726, 699, 633 cm-1. 

1H NMR (400 MHz, DMSO-d6): δ 12.62 (s, 1H, OH), 7.34-7.26 (m, 2H, HAr), 7.26-7.18 (m, 

3H, HAr), 6.32 (t, J = 6.1 Hz, 1H, NH), 5.66 (ddt, J = 17.3, 10.1, 7.2 Hz, 1H, H12), 5.12 (dapp, J 

= 17.2 Hz, 1H, H13), 5.01 (dapp, J = 10.2 Hz, 1H, H13’), 3.60 (dd, J = 13.8, 6.8 Hz, 1H, H4), 

3.48 (dd, J = 13.6, 5.7 Hz, 1H, H4’), 2.76 (dd, J = 13.8, 7.5 Hz, 1H, H11), 2.68 (dd, J = 13.8, 

7.5 Hz, 1H, H11’), 1.27 (s, 9H, H1). 

13C NMR (100 MHz, DMSO-d6): δ 175.2 (s, C6), 155.5 (s, C3), 140.6 (s, C7), 134.0 (d, C12), 

128.0 (d, 2C, C9), 126.7 (d, 2C, C8), 126.6 (d, C10), 118.7 (t, C13), 77.7 (s, C2), 54.1 (s, C5), 

43.7 (t, C4), 37.5 (t, C11), 28.1 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C17H23NO4Na [M+Na]+: 328.1519, found: 328.1521. 

 

8.2. Synthesis of -lactam 

 

tert-Butyl (S)-3-allyl-2-oxo-3-phenylazetidine-1-carboxylate (II.28) 

 

 

 

To a solution of (S)-2-(((tert-butoxycarbonyl)amino)methyl)-2-phenylpent-4-enoic acid II.27 

(174 mg, 0.57 mmol, 1.0 equiv) in toluene (3.0 mL) and MeOH (7.5 mL) at 0 C was added 

dropwise TMSCHN2 (2 M in Et2O) until the yellow color persisted. The solution was stirred 

for an additional 20 min and quenched with a drop of acetic acid. The reaction mixture was 

concentrated under reduced pressure to afford the crude methyl ester (180 mg, 99%) as a clear 

oil which was engaged in the next step without further purification or characterization.137 

The abovementioned methyl ester (180 mg, 0.56 mmol, 1.0 equiv) was dissolved in CH2Cl2 

(5.6 mL). The resulting solution was cooled to 0 C and TFA (840 L, 11.3 mmol, 20.0 

equiv) was added. The reaction mixture was stirred at rt for 2 h. Then, the mixture was cooled 

to 0 C and a saturated aqueous solution of NaHCO3 (20 mL) was added. The layers were 

separated and the aqueous layer was extracted CH2Cl2 (2 x 10 mL). The organic layers were 
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combined and washed with H2O (20 mL), dried over MgSO4, filtered and concentrated under 

reduced pressure, affording the crude -amino ester (120 mg, 98%) as a brownish oil which 

was engaged in the next step without further purification or characterization. 

 

A solution of the aforementioned -amino ester (50 mg, 0.23 mmol, 1.0 equi) in CH2Cl2 (1.2 

mL) was cooled to 0 C, and then treated with Et3N (35 L, 0.25 mmol, 1.1 equiv) and 

TMSCl (32 L, 0.25 mmol, 1.1 equiv), stirring was continued at same temperature for 30 

min. Then, t-BuMgCl (1.50 mL, 1 M in THF, 1.50 mmol, 6.6 equiv) was added dropwise. 

The reaction mixture was stirred at rt for 18 h, then H2O (2 mL) was added. The layers were 

separated and the aqueous layer was extracted with CH2Cl2 (3 x 10 mL). The combined 

organic extracts were dried over MgSO4, filtered and concentrated under reduced pressure.19 

The resulting residue was then dissolved in CH2Cl2 (1.0 mL), cooled to 0 C and treated with 

Et3N (38 L, 0.27 mmol, 1.2 equiv), Boc2O (128 mg, 0.60 mmol, 2.6 equiv) and DMAP (34 

mg, 0.27 mmol, 1.2 equiv). The mixture was stirred overnight at rt. The reaction was acidified 

with an aqueous solution of HCl (1M), the layers were separated and the aqueous layer was 

extracted with CH2Cl2 (3 x 10 mL). The combined organic extracts were dried over MgSO4, 

filtered and concentrated under reduced pressure. The crude residue was purified by flash 

column chromatography on silica gel (PE/Et2O = 9:1) to afford the desired -lactam II.28 as a 

clear oil (21 mg, 32%). 

 

Rf: 0.36 (PE/Et2O = 8:2) 

[α]20 
D = +16.4 (c 0.32, CHCl3) 

IR (ATR): 2980, 2919, 1798, 1723, 1370, 1345, 1258, 1146, 1051, 993, 850, 771, 701 cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.42-7.33 (m, 4H, HAr), 7.32-7.26 (m, 1H, HAr), 5.11 (m, 1H, 

H12), 5.18-5.08 (m, 2H, H13), 3.83 (d, J = 6.7 Hz, 1H, H4), 3.77 (d, J = 6.7 Hz, 1H, H4’), 2.76-

2.62 (m, 2H, H11), 1.52 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3): δ 167.9 (s, C6), 148.4 (s, C3), 138.3 (s, C7), 132.0 (d, C12), 

128.8 (d, 2C, C8 or C9), 127.7 (d, C10), 126.7 (d, 2C, C8 or C9), 119.9 (t, C13), 83.6 (s, C2), 

61.3 (s, C5), 49.4 (t, C4), 42.2 (t, C11), 28.2 (q, 3C, C1). 

HRMS (ESI) m/z: calcd for C17H21NO3Na [M+Na]+: 310.1414, found: 310.1416. 
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1. Palladium-catalyzed asymmetric decarboxylative allylic alkylation of 

acyclic allyl enol carbonates 

 

Controlling the stereochemistry in acyclic carbonyl compounds through 

palladium-catalyzed asymmetric decarboxylative allylic alkylation has proven difficult, 

generally affording low enantioselectivities. The appropriate positioning of functional groups 

to favor the formation of a single enolate geometry has emerged as the simplest solution to 

this problem. Indeed, Trost et al. showed that the use of preformed enol carbonates affected 

both the reaction rate and the absolute stereochemistry of the resulting stereogenic center 

(Scheme 1).143 

 

 

 

Scheme 1. Pd-DAAA of acyclic allyl enol carbonates by Trost and Xu. 

 

As a matter of fact, the E-enol carbonate E-A1.1 smoothly underwent decarboxylative 

allylation to afford the homoallylic ketone A1.2 in high yield and enantioselectivity (Scheme 

1, eq 1). In contrast, the opposite enantiomer (ent-L1.70) was obtained in both decreased 

yield and enantioselectivity, when the isomeric Z-enol Z-L1.69 was allowed to react under 

otherwise identical conditions (Scheme 1, eq 2). These results indicated a clear match-

mismatch effect where the E-isomer matched with the catalyst while the Z-isomer 

mismatched. More importantly, this investigation demonstrated that neither the enol 

carbonate nor the putative Pd-enolate underwent significant geometric isomerization. 

                                                        
143 Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 17180. 
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Interestingly, the reaction of Z-enol carbonates of acyclic aryl, heteroaryl and alkenyl 

ketones Z-A1.4, using the same Trost ligand (A1.2)/Pd2(dba)3.CHCl3 catalytic system, 

provided the formation of a wide range of -tertiary ketones A1.5 in excellent yields and 

enantioselectivities (Scheme 23) thus demonstrating that the mismatch case observed with 

alkyl ketone A1.1 was not general for all acyclic allyl enol carbonates. 

 

 

 

Scheme 2. Pd-DAAA of acyclic allyl enol carbonates by Trost and Xu. 
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The enantioselective construction of tertiary and quaternary stereocenters by reacting 

a chiral Pd(II)--allyl complex, generated from the oxidative addition of a Pd(0) species on an 

activated allylic substrates, represents another particularly appealing approach which is 

complementary with the Pd-DAAA strategy mentioned previously.59, 69 Indeed, the reaction 

proceeds under extremely mild conditions, it is highly functional group tolerant and as such 

has allowed the access to structurally diverse and synthetically useful chiral compounds in 

high yields and excellent regioselectivities and enantioselectivities.144  

A number of reviews and book chapters on the palladium-catalyzed asymmetric allylic 

alkylation have been published over the past years.24, 145 hence, the aim here is just to briefly 

introduce a few key aspects of the Pd-AAA process considered important to fully 

comprehension of the following sections. 

 

1.1. Introduction to Tsuji-Trost allylic alkylation reaction 

 

The advent of the palladium-mediated allylic alkylation was first reported by Tsuji in 

1965 by demonstrating that a stoichiometric amounts of a -allyl palladium chloride dimer 

could react with nucleophiles such as anions derived from diethyl malonate and ethyl 

acetoacetate to afford the corresponding allylated products (Scheme 1, eq 1).48 About a 

decade later, Trost described his first attempts at palladium-catalyzed asymmetric allylic 

alkylation of soft carbon nucleophiles in the presence of the chiral diphosphine ligand 

                                                        
144 (a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921; (b) Trost, B. M.; Strege, P. E. J. Am. Chem. 

Soc. 1977, 99, 1649; (c) Graening, T.; Schmalz, H. G. Angew. Chem. Int. Ed. 2003, 42 , 2580. 

145 (a) Lu, Z.; Ma, S. Angew. Chem. Int. Ed. 2008, 47 , 258; (b) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 

44 , 7929; (c) Tsuji, J. New J. Chem. 2000, 24, 127; (d) Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1; (e) 

Helmchen, G. J. Organomet. Chem. 1999, 576, 203; (f) Frost, C. G.; Howarth, J.; Williams, J. M. J. 

Tetrahedron: Asymmetry 1992, 3, 1089; (g) Tsuji, J. Pure Appl. Chem. 1999, 71, 1539; (h) Moberg, C.; 

Bremberg, U.; Hallman, K.; Svensson, M.; Norrby, P.-O.; Hallberg, A.; Larhed, M.; Csoregh, I. Pure Appl. 

Chem. 1999, 71, 1477; (i) Leeuwen, P. W. N. M. V.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 

2000, 100, 2741; (j) Heumann, A., Palladium-catalyzed allylic substitutions in Transition Metals for Organic 

Synthesis, Beller, M.; Bolm, C., Eds. WILEY-VCH Verlag GmbH: Weinheim, 1998; pp 251; (k) Mandai, T., 

Palladium-Catalyzed Allylic, Propargylic, and Allenic Substitution with Nitrogen, Oxygen, and Other 

Groups 15–17 Heteroatom Nucleophiles in Handbook of Organopalladium Chemistry for Organic Synthesis, 

Negishi, E.-i., Ed. John Wiley & Sons, Inc: New York, 2002; (l) Acemoglu, L.; Williams, J. M. J., Synthetic 

Scope of the Tsuji–Trost Reaction with Allylic Halides, Carboxylates, Ethers, and Related Oxygen 

Nucleophiles as Starting Compounds in Handbook of Organopalladium Chemistry for Organic Synthesis, 

Negishi, E.-i., Ed. John & Sons, Inc: New York, 2002; (m) Kazmaier, U., Transition Metal Catalyzed 

Enantioselective Allylic Substitution in Organic Synthesis. Springer-Verlag: Berlin, 2002. (n) Tsuji, J., 

Palladium Reagents and Catalysts: New perspectives for the 21st centurey. John Wiley & Sons, Ltd: 

Chichester, 2004. 
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(S,S)-DIOP A2.3, resulting in the allylation of the nucleophile with excellent regioselectivity 

and promising level of enantioselectivity as exemplified in Scheme 1, eq 2.144b 

 

 

 

Scheme 1. Pioneering work by Tsuji and Trost. 

 

 Since these seminal studies, the field of Pd-AAA has been extensively investigated by 

different research groups including ours, resulting in a fine understanding of the parameters 

involved in achieving high enantioselectivities. 

 The typical mechanism for a Pd-AAA can be summed up in two distinctive pathways 

depending on the nature of the nucleophile involved (Scheme 2). As a general trend, the 

reaction begins by the -coordination of the substrate to the Pd(0) complex which occurs 

trans with respect to the leaving group, thus affording a Pd(0)-coordinated substrate. 

Subsequent oxidative addition leads to the formation of the 3-allyl Pd(II) complex, which is 

in equilibrium with the isomeric 1-allyl Pd(II) complex. The actual CC bond forming step 

then occurs by a trapping of the electrophilic -allyl palladium intermediate with a 

carbon-nucleophile.145m, 146 

 

                                                        
146 Fiaud, J.-C.; Legros, J.-Y. J. Org. Chem. 1987, 52, 1907. 
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Scheme 2. Accepted mechanism. 

 

 For hard nucleophiles  defined as those whose conjugated acids have pKa > 25, 

such as “nonstabilized” carbanions: aryl and alkenylmetal reagents involving Al, B, Mg, Si, 

Sn, Zn and Zr  similarly to the mechanism presented in Chapter 1  Section 4 for the 

palladium-catalyzed decarboxylative allylic alkylation reaction, an inner-sphere pathway may 

be envisaged allowing the -allyl complex to be trapped by the hard nucleophiles as outlined 

in Scheme 2, left.147 In this pathway, the attack occurs directly on the electrophilic palladium 

center, generating an allyl(organyl)palladium complex intermediate by trans-metalation. The 

latter subsequently evolves via reductive elimination to a Pd(0)-olefin complex, which 

eventually releases the allylated product along with an activate Pd(0) species. 

 On the other hand, the reaction with soft nucleophiles  defined as those whose 

conjugated acids have pKa < 25, such as stabilized carbanions of diesters, -amides, -nitriles, -

aldehydes, -ketones, nitrones, sulfones, sulfoxides and phosphonates  normally follows a 

different course as outlined in Scheme 2, right.69, 148  As soft nucleophiles approach the 

                                                        
147 (a) Matsushita, H.; Negishi, E.-i. J. Am. Chem. Soc. 1981, 103, 2882; (b) Miyaura, N.; Yano, T.; Suzuki, A. 

Tetrahedron Lett. 1980, 21, 2865; (c) Hayashi, T.; Konishi, M.; Yokota, K.-I.; Kumada, M. J. Chem. Soc., 

Chem. Commun. 1981, 313; (d) Yoshida, J.-I.; Tamao, K.; Takahashi, M.; Kumada, M. Tetrahedron Lett. 

1978, 19, 2161; (e) Hayasi, Y.; Riediker, M.; Temple, J. S.; Schwartz, J. Tetrahedron Lett. 1981, 22, 2629. 

148 Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1976, 98, 630. 
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electrophilic -allyl complex on the face opposite of the metal, the bond forming event occurs 

out of the coordination sphere of the metal. This is referred as an outer sphere process and 

results in a 3-to-2 reorganization to afford the Pd(0)-olefin complex, which evolves to the 

allylated product and regenerates an activate Pd(0) species. 

Negishi et al. proved that Pd-AAA reactions involving hard nucleophiles proceeded 

through an inner-sphere mechanism. Indeed, by running the allylic substitution on a substrate 

which allows to track the stereochemistry of the intermediate such as cis-cyclohexenyl acetate 

A2.5, and using an alkenylalane such as A2.6 as a nucleophile under Pd(0) catalysis, they 

were able to observe an overall inversion of the relative stereochemistry in the allylated 

product A2.7 (Scheme 3, eq 1). Since the oxidative addition furnishes the transient -allyl 

palladium complex via inversion and the direct attack of the hard nucleophile A2.6 with 

subsequent reductive elimination proceeds via retention, this gave rise to the 1,3-disubstituted 

cyclohexene A2.6 with a trans relative configuration.149 

 On the other hand, Trost et al. observed that the allylic substitution of A2.5 with a soft 

nucleophile, under otherwise identical conditions, afforded the allylated product A2.9 with 

net retention of the relative stereochemistry. In this study case, they showed that the reaction 

with cis-cyclohexenyl acetate A2.5 and the carbon-nucleophile A2.8 derived from dimethyl 

malonate under Pd(0) catalysis proceeded through an outer-sphere mechanism (Scheme 3, 

eq 2). As the oxidative addition furnishes the transient -allyl palladium complex via 

inversion and the nucleophilic attack occurs anti to the palladium center, this results in the 

formation of the cis 1,3-disubstituted product A2.9.150 

                                                        
149 Matsushita, H.; Negishi, E.-i. J. Chem. Soc., Chem. Commun. 1982, 160. 
150 Trost, B. M.; Verhoeven, T. R. J. Org. Chem. 1976, 41, 3215. 
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Scheme 56. Pd-catalyzed allylation pathways involving hard and soft nucleophiles. 

 

1.2. Mechanistic features of 3-allyl palladium complex 

 

1.2.1. Generation of 3-allyl palladium complex 

 

 The oxidative addition of the allyl acetate to Pd(0) complex has been demonstrated by 

Yamamoto et al. in 1981, who isolated and characterized the corresponding 3-allyl(acetato) 

palladium intermediate. 151  Ultimately, studies performed by Amatore and Jutand 

demonstrated that the oxidative addition, leading to the formation of 3-allyl palladium 

complex from allyl acetate and Pd(0) is a reversible process and thermodynamically 

disfavored, of which equilibrium lies extensively in favor of the Pd(0) side.152 In this case, the 

1-allyl palladium complex maybe the resting state of the catalytic cycle. On the other hand, it 

                                                        
151 Yamamoto, T.; Saito, O.; Yamamoto, A. J. Am. Chem. Soc. 1981, 103, 5600. 

152 Amatore, C.; Gamez, S.; Jutand, A.; Meyer, G.; Moreno-Mañas, M.; Morral, L.; Pleixats, R. Chem. Eur. J. 

2000, 6, 3372 
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has been clearly demonstrated that the nature of the leaving group dramatically influences on 

the dislocation of the equilibrium and, therefore, on the entire substitution process.153 

 The rate-determining step can be either be the oxidative addition or the nucleophilic 

substitution, depending on the relative height of their respective transition state energy. Due 

to the irreversibility of the nucleophilic substitution by exogenous nucleophile, the global 

transformation can be usually entirely shifted toward the formation of the product. 

 

1.2.2. Isomerization of 3-allyl palladium complex 

 

In the case of a cationic 3-allyl palladium complex, two coordination sites are 

occupied by the allyl fragment. This complex features a square planar geometry around the 

metallic center, which can incorporate different stereogenic elements, depending on the 

substitution pattern of the allyl moiety and/or the nature of the ligands. Since the allyl metal 

complexes of this type exhibit a fluxional behavior, interconversion between these different 

isomeric forms is possible and can take place via different mechanisms.145m 

In the absence of a nucleophile, or if the nucleophilic attack step is slow enough, a 

generic 3-allyl palladium complex may undergo the following four different equilibria: a) 

31 isomerization, b) ligand association, c) ligand dissociation, d) nucleophilic 

displacement by Pd(0) complex (Scheme 4).154 The activation of these equilibria depends on 

the reaction conditions and can trigger the exchange of the allyl face complexed by the metal 

or the formal rotation of the allyl moiety with respect to the other coordinated ligands. 

 

                                                        
153 Vitagliano, A.; Akermark, B.; Hansson, S. Organometallics 1991, 10, 2592. 

154 Pregosin, P. S.; Salzmann, R. Coord. Chem. Rev. 1996, 155, 35. 
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Scheme 4. 3-Allyl palladium complex possible equilibria. 

 

31 Isomerization followed by CC bond rotation and 13 equilibration leads to a 

global syn-anti exchange of the substituent pair concerned in the rotation, with concomitant 

exchange of the complexed allyl face (Scheme 5). This equilibrium is very facile when 

R1 = R2 = H, and is very fast in coordinating solvents, according to studies performed by 

Szabó.155 

 

 

 

Scheme 5. 13 Equilibration of allyl palladium complex. 

 

1.2.2.1. Apparent allyl rotation 

 

Apparent Allyl Rotation (AAR) implies the formal rotation of the allyl moiety around 

the imaginary Pd-allyl bond axis. Such movement can bring about inversion of the 

stereogenic palladium center or of the stereogenic axis. As a consequence, apparent allyl 

rotation can regenerate a structure identical to the starting one, or bring about 

enantiomerization or diastereomerization, depending on the starting complex (Scheme 6). 

                                                        
155 Solin, N.; Szabó, K. Organometallics 2001, 20, 5464. 
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Scheme 6. AAR of 3 allyl palladium complex. 

 

 Importantly, an 3-allyl palladium complex can show the presence of slowly 

interconverting rotamers once coordinated by P,P ligands. Thus, for example, the 

13-membered 3-allyl palladium complex ligated to Trost ‘Standard Ligand’ A2.10, admits 

two possible diastereoisomeric forms A2.10endo and A2.10exo, of which 31P(1H) NMR 

spectrum shows two distinct and equally populated rotamers (Scheme 7).156 The different 

reactivity of endo/exo isomers of the corresponding A2.10 is a very important issue. As a 

matter of fact, nucleophilic attack to one or the other isomer may determine the formation of 

one enantiomer preferentially over the other. 

 

 

 

                                                        
156 Butts, C. P.; Filali, E.; Lloyd-Jones, G. C.; Norrby, P.-O.; Sale, D. A.; Schramm, Y. J. Am. Chem. Soc. 2009, 

131, 9945. 
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Scheme 7. Diastereoisomeric forms of Trost ‘Standard Ligand’. 

 

1.3. Enantiodiscriminating step using Trost ‘Standard Ligand’ 

 

The Trost ‘standard ligand’ A2.10 is undoubtedly the most successful chiral ligand 

used in asymmetric allylic alkylation substitution toward the natural product synthesis. 

Structural and computational studies have shown that the palladium atom is bonded through 

the phosphorus, while the nitrogen and the oxygen atoms are not involved in the 

chelation.156, 157 Furthermore, the phenyl groups on the phosphorus atoms are used to transfer 

the chiral information to the substrate, as previously shown in the Chapter 1- Section 3 with 

the cartoon model. 

This initial model to explain the sense of asymmetric induction has been improved as 

a result of the mechanistic studies performed by Lloyd-Jones and Norrby.156 Two phenomena 

add to the steric interactions due to the phenyl groups: pro-S delivery of the nucleophile can 

be facilitated by hydrogen bonding with one amide N-H, and pro-R delivery can be facilitated 

by an escort ion M+ binding to one amide carbonyl (Figure 1). 

 

 

 

Figure 1. Lloyd-Jones and Norrby improved model. 

 

 

 

                                                        
157 Amatore, C.; Jutand, A.; Mensah, L.; Ricard, L. J. Organomet. Chem. 2007, 692, 1457. 
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 In summary, we have successfully developed two synthetic methods to access 

all-carbon -quaternary functionalized heterocycles  the -butyrolactones and the 

isoxazolidin-5-ones  by palladium-catalyzed asymmetric allylic alkylations. 

The development of a palladium-catalyzed decarboxylative allylic alkylation protocol 

(Pd-DAAA) applied to cyclic and exocyclic allyl enol carbonates has allowed a highly 

enantioselective access to a range of -butyrolactones bearing an all-carbon -quaternary 

sterogenic center (Scheme I). Remarkably, despite the drawbacks, this approach allowed the 

extension of this reaction to substrates with no precedent in the literature, such as the 

exocyclic allyl enol carbonates. The Pd-DAAA process was eventually used for the synthesis 

of chiral spirolactones, which were readily obtained in high yields and in high optical purity. 

 

 

 

Scheme I. Synthesis of all-carbon -quaternary -butyrolactones by Pd-DAAA. 

 

The synthesis of different isoxazolidin-5-ones bearing highly stereodefined all-carbon 

-quaternary center was accomplished by palladium-catalyzed asymmetric allylic alkylation 

(Pd-AAA) of 4-substituted isoxazolidin-5-ones with an array of 2-substituted allyl acetates 

(Scheme II). The reaction proceeded in both excellent enantioselectivity and yield with 

isoxazolidin-5-ones containing an -aryl substituents or an -heteroaryl moieties, such as 

thiophene. Unfortunately, -alkyl substituents revealed to be not suitable for this approach. 

Nonetheless, this robust and highly enantioselective method allowed the access to valuable 

2,2-amino acids and -lactams. 
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Scheme II. Synthesis of all-carbon -quaternary isoxazolidin-5-ones by Pd-AAA. 
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Marllon NASCIMENTO DE OLIVEIRA 

Palladium-Catalyzed Asymmetric Allylic Alkylations: 

Control of All-Carbon Quaternary Centers 

Dans le cadre de nos travaux, nous avons développé une méthode extrêmement douce et 

particulièrement efficace d’accès à des -butyrolactones possédant un centre stéréogène 

quaternaire en  à partir d’énols carbonates d’allyle cycliques et exocycliques en utilisant la 

réaction d’alkylation allylique asymétrique décarboxylante pallado-catalysée (Pd-DAAA). 

Remarquablement, cette méthode a permis d’étendre l’utilisation de l’allylation asymétrique 

décarboxylante à des substrats sans précèdent dans la littérature, tels que les énols carbonates 

allyliques exocycliques. Cette réaction a été utilisée comme étape clé dans la synthèse des 

spirolactones chirales qui ont été obtenues avec de bons rendements et d’excellentes 

énantiosélectivités. 

 

Une nouvelle méthode catalytique robuste et hautement énantiosélective permettant d’accéder 

à des isoxazolidinones possédant un centre stéréogène quaternaire en  a été développée. Ce 

protocole repose sur une alkylation allylique asymétrique catalysée par des complexes de 

palladium chiraux (Pd-AAA) et amène aux produits désirés avec de bons rendements et 

d’excellents excès énantiomériques. Par ailleurs, nous avons également mis au point des 

conditions permettant de convertir ces isoxazolidinones ,-disubstituées en acides 

2,2-aminés et en -lactames. 
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(Pd-DAAA) applied to cyclic and exocyclic allyl enol carbonates has allowed a highly 

enantioselective access to a range of -butyrolactones bearing an all-carbon -quaternary 

stereogenic center. Remarkably, this approach allowed the extension of this reaction to 

substrates with no precedent in the literature, such as the exocyclic allyl enol carbonates. The 

Pd-DAAA process was eventually used for the synthesis of chiral spirolactones, which were 

readily obtained in high yields and in high optical purity. 

 

The synthesis of different isoxazolidin-5-ones bearing highly stereodefined all-carbon 

-quaternary center was accomplished by palladium-catalyzed asymmetric allylic alkylation 

(Pd-AAA) of 4-substituted isoxazolidin-5-ones with an array of 2-substituted allyl acetates. 

The reaction proceeded in both excellent enantioselectivity and yield with isoxazolidin-5-ones 

containing an -aryl substituents or an -heteroaryl moieties. This robust and highly 

enantioselective method allowed the access to valuable 2,2-amino acids and -lactams. 
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