
HAL Id: tel-02388507
https://theses.hal.science/tel-02388507v1

Submitted on 2 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Description and evaluation of elasticity strategies for
business processes in the Cloud

Aïcha Ben Jrad

To cite this version:
Aïcha Ben Jrad. Description and evaluation of elasticity strategies for business processes in the Cloud.
Modeling and Simulation. Université Paris Saclay (COmUE); École nationale d’ingénieurs de Tunis
(Tunisie), 2019. English. �NNT : 2019SACLL012�. �tel-02388507�

https://theses.hal.science/tel-02388507v1
https://hal.archives-ouvertes.fr

Description and Evaluation of
Elasticity Strategies for Business

Processes in the Cloud

Thèse de doctorat de l'Université Paris-Saclay
préparée à Télécom SudParis et l’Ecole Nationale d’Ingénieurs de Tunis

École doctorale n°580 :
Sciences et technologies de l’information et de la communication

(STIC)
Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Tunis, le 05/07/2019, par

Aïcha Ben Jrad

Composition du Jury :

M. Nejib Ben Hadj- Alouane
Professeur, ENIT, Université Tunis El Manar, Tunisie Président
Mme. Parisa Ghodous
Professeur, Univeristé de Lyon 1, France Rapporteur
Mme. Sonia Ayachi Ghannouchi
Maître de conférences (HDR), ISG de Sousse, Rapporteur
Université de Sousse, Tunisie
M. Jean-Marc Delosme
Professeur, Université d’Evry-Val d’Essonne, France Examinateur
M. Bruno Defude
Professeur, Télécom SudParis, France Examinateur

M. Samir Tata
Professeur, Télécom SudParis (SAMOVAR), France Directeur de thèse
M. Sami Bhiri
Maître de conférences (HDR), ISIMM, Université de Monastir, Co-Directeur de thèse
 (OASIS), Tunisie

N
N

T
: 2

01
9S

AC
LL

01
2

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Description et évaluation de stratégies d'élasticité des processus métiers dans le Cloud

Mots clés : Applications à base de services, Stratégies d’élasticité, Evaluation, Modèle d’élasticité,
Cloud Computing.

Résumé : De nos jours, de plus en plus
d'entreprises migrent leurs applications à base
de services (AbSs) vers le Cloud. L'élasticité du
Cloud Computing est la caractéristique
principale derrière ce phénomène de migration.
Le principe d'élasticité a attiré beaucoup
d'attention ces dernières années comme une
tâche pivot qui permet d'assurer un bon
compromis entre les Qualités de service
désirées et les coûts opérationnels des AbSs.
Toutefois, le contrôle d'élasticité des AbSs et la
définition des stratégies d'élasticité non-triviales
sont encore des tâches difficiles à réaliser. La
difficulté de ces tâches est de plus accentuée
avec l'absence d'un langage unifié pour
exprimer ces stratégies et un moyen pour les
évaluer et les valider avant de les utiliser dans
un environnement Cloud réel. Dans notre
travail, nous nous intéressons à la définition et
l'évaluation des stratégies d'élasticité des
applications à base de services dans le Cloud.

Dans ce contexte, nous avons proposé un
framework d'évaluation des stratégies
d'élasticité basé sur des mèthodes formelles
pour evaluer le comportement des stratégies.
Pour cela, nous avons défini un modèle formel
pour l'élasticité des AbSs dans le cloud. Nous
avons modélisé le modèle de déploiement des
AbSs en utilisant les réseaux de petri et défini
des opérations d'élasticité pour l'élasticité
hybrid. Le modèle proposé permet de décrire les

caractéristiques des services composant un
AbS et leurs requêtes afin de définir des
stratégies non-triviales. Après la modèlisation
de l'élasticité des AbSs, deux langages dédiés,
nommé STRATModel et STRAT, sont proposés
pour faciliter la description des stratégies
d'élasticité qui sont basées sur des modèles
d'élasticité différents. STRATModel permet de
définir des modèles d'élasticité et de générer
leur contrôleurs associés qui seront utilisés
pour contrôler l'élasticité des AbSs et évaluer
les stratégies. En se basant sur le langage
STRATModel, STRAT est proposé pour décrire
d'une manière unifiée des stratégies
d'élasticité pour des AbSs. Il est défini comme
un langage à base des règles permettant de
définir un ensemble des conditions pour des
actions spécifiées dans un modèle
STRATModel. En prennant ces langages et
notre modèle formel comme une base, un
framework, nommé STRATFram, est proposé
pour être utilisé par les responsables de
configuration des AbSs comme un support qui
leur permet de décrire et d'évaluer leur
stratégies d'élasticité avant de les utiliser dans
le cloud. L'évaluation des stratégies consiste à
fournir un ensemble de courbes permettant
l'analyse et la comparaison de leur
comportement. Nos contributions et
développements permettent aux responsable
des AbSs de choisir les stratégies d'élasticité
les plus adaptées à leurs AbSs.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title : Description and evaluation of elasticity strategies for business processes in the cloud

Keywords : Service-based business process, Elasticity Strategies, Evaluation, Elasticity Model,
Cloud Computing.

Abstract : In the recent years, growing
attention has been paid to the concept of Cloud
Computing as a new computing paradigm for
executing and handling business processes in
an efficient and cost-effective way. Cloud
Computing's elasticity and its flexibility in
service delivery are the most important features
behind this attention which encourage
companies to migrate their operation/processes
to the cloud to ensure the required Quality of
Service (QoS) while using resources and
reduce their expenses. Elasticity management
has been considered as a pivotal issue among
IT community that works on finding the right
tradeoffs between QoS levels and operational
costs by developing novel methods and
mechanisms. However, controlling process
elasticity and defining non-trivial elasticity
strategies are still challenging tasks. Also,
despite the growing attention paid to the cloud
and its elasticity property in particular, there is
still a lack of solutions that support the
evaluation of elasticity strategies used to ensure
the elasticity of business processes at service-
level before using them in real cloud
environments.

In this thesis, a framework for describing and
evaluating elasticity strategies for service-based
business processes (SBPs) is proposed.
Starting from representing elastic SBPs, a
formal elasticity approach is proposed to allow
the evaluation of elasticity strategies before
using them in the cloud. The proposed
approach is composed of (i) a formal model,
that describes elastic execution environments
for SBPs while considering the distinguish

requirements for services requests, and (ii)
elasticity operations/capabilities for hybrid
scaling that are defined and formalized to
illustrate their application on the model to
ensure its elasticity. The proposed model is
defined based on high-level petri nets to
describe not only the characteristics of service
engines, hosting SBPs services, but also the
characteristics of their requests that allows
defining more sophisticated elasticity
strategies. After modeling SBPs elasticity for
the purpose of evaluating elasticity strategies,
two domain-specific languages, named
STRATModel and STRAT, are designed to be
used together to describe elasticity strategies
for different elasticity models. STRATModel
language allows describing elasticity models
with different elasticity capabilities and
generating their associated elasticity controllers
that are used to manage SBPs elasticity and
evaluate strategies. Based on STRATModel
language, STRAT language is designed to allow
specifying elasticity strategies governing SBP
elasticity according to a given elasticity model
written using STRATModel language. With the
formal model and the designed languages as
basis, a framework, named STRATFram, is
proposed in order to provide SBPs holders a
support on which they can describe and
evaluate their elasticity strategies before
investing in using them in the cloud. The
evaluation consists in providing a set of plots
that allows the analysis and the comparison of
strategies. Our contributions and developments
provide SBP holders with facilities to choose
elasticity strategies that fit to their elastic SBPs
and usage behaviors.

To my family, my parents,
for their unconditional love and support

Acknowledgements

It is with great pleasure that I reserve this page as a sign of profound gratitude to all
the supportive people in my life who have given me strength, encouragement and support
that enabled me to survive difficult times during my PhD journey. This thesis becomes
a reality with their generous help and support.

I would like to start by thanking all the members of the jury for accepting to evalu-
ate my work. My special appreciation goes to the committee president Professor Nejib
Ben Hadj-Alouane for accepting to chair my Phd defense, to the reading committee
members Professor Parisa Ghodous and Dr. Sonia Ayachi Ghannouchi for their
interest and to Professor Jean-Marc Delosme for being my thesis examiners.

I owe my wholehearted gratitude to my supervisors Professor Samir Tata and Dr.
Sami Bhiri for their patient guidance and continuous support without which this thesis
would not have been possible. Despite their many responsibilities, they have always
found time to provide feedbacks, new ideas and suggestions on my work. I would like to
thank them for allowing me to develop a better understanding of research and to grow
as a research scientist. I would also like to express my appreciation to Professor Bruno
Defude for accepting to be my co-thesis advisor and for his valuable advice, guidance
and encouragement.

I would also like to express my appreciation to Professor Bruno Defude for his
kindness and his valuable advice and for accepting to be in my Phd defense.

I also want to give special thanks to all the members of the computer science de-
partment of Telecom SudParis, especially Brigitte Houassine for her kind help and
assistance. Many thanks to all my colleagues and friends inside Telecom SudParis and
outside also for the excellent and truly enjoyable ambiance. My warmest thanks go
to: Leila, Hayet, Nabila, Amina, Ines, Rania, Wided, Nouha, Marwa, Kaouther, Imen,
Sarra, Mehdi and Tuanir. I am grateful to all of you, for your kindness, encouragements
and support, and for the lovely moments we have spent together.

iv Acknowledgements

Finally, I want to thank and dedicate this thesis to my family. I am eternally grateful
to my parents, Mohamed and Selma, who have given me the chance of a good education,
and so much love and support over the years. I probably owe them much more than they
think. Thank you for having faith in me even when doubting myself. My warm thanks
to my grand-father, Mohamed, and my sisters, Asma, Amina and Rabeb, for their love,
their kindness and their continuous support. Last but not least, I am grateful to other
members of my family and friends who have been there for me through ups and downs.

. . .Thank you all once again!

List of Publications

[1] "STRATFram: A framework for describing and evaluating Elasticity Strategies
for Service-based business processes in the Cloud", Aicha Ben Jrad, Sami Bhiri
and Samir Tata, Future Generation Computer Systems, vol. 97, pages 69-89,
2019. (Journal Q1, Impact-factor = 4.639)

[2] "STRATModel: Elasticity Model Description Language for evaluating Elastic-
ity Strategies for Business Processes", Aicha Ben Jrad, Sami Bhiri and Samir
Tata, in: On the Move to Meaningful Internet Systems. OTM 2017 Conferences:
Confederated International Conferences: CoopIS, C&TC, and ODBASE, Rhodes,
Greece, October 23-27, 2017. (Rank A)

[3] "Data-Aware Modeling Of Elastic Processes For Elasticity Strategies Evaluation",
Aicha Ben Jrad, Sami Bhiri and Samir Tata, in: IEEE 10th International Con-
ference on Cloud Computing (CLOUD), Honolulu, HI, USA, June 25-30, 2017.
(Rank B)

[4] "Description and Evaluation of Elasticity Strategies for Business Processes in the
Cloud", Aicha Ben Jrad, Sami Bhiri and Samir Tata, in: IEEE International Con-
ference on Services Computing (SCC), San Francisco, CA, USA, June 27 - July
2, 2016. (Rank A)

Table of contents

1 Introduction 1
1.1 General Context: Elastic Service-based Business Processes 1
1.2 Problem Statement . 4
1.3 Motivating example . 6
1.4 Scientific Contributions . 8
1.5 Thesis Structure . 11

2 Cloud Computing & Business Process 13
2.1 Introduction . 13
2.2 Cloud Computing . 14

2.2.1 What is a Cloud Computing ? . 14
2.2.2 Characteristics of Cloud computing 16
2.2.3 Elasticity . 16

2.2.3.1 Elasticity in physics . 16
2.2.3.2 Elasticity in the cloud 17
2.2.3.3 Characteristics of elasticity in the cloud 18

2.3 Business Processes . 21
2.3.1 What is a Business process? . 21
2.3.2 Business process life-cycle . 22
2.3.3 Business process Modeling . 24

2.4 Business Processes in the Cloud . 24
2.5 Conclusion . 26

3 State of the Art 27
3.1 Introduction . 27
3.2 Models and mechanisms of elasticity . 28
3.3 Elasticity strategies description . 34
3.4 Elasticity strategies evaluation . 37
3.5 Synthesis of Related Work . 41

viii Table of contents

3.6 Conclusion . 44

4 Modeling of Data-aware Elastic SBPs 47
4.1 Introduction . 47
4.2 Preliminaries . 48

4.2.1 Basic notions . 48
4.2.2 Petri nets . 49

4.3 Formal Modeling of data-based SBP . 52
4.3.1 Structural modeling . 52
4.3.2 Behavior Modeling . 55

4.4 Elasticity Operations . 58
4.4.1 Duplication Operator . 58
4.4.2 Consolidation Operator . 62

4.5 Conclusion . 63

5 Description of Elasticity Strategies for Elastic SBPs 67
5.1 Introduction . 67
5.2 Domain specific language . 68
5.3 Languages design . 69
5.4 STRATModel: Elasticity Model Description Language 69

5.4.1 STARTModel Overview . 70
5.4.2 STRATModel Grammar . 70

5.4.2.1 Elasticity Model Description 71
5.4.2.2 Business process transformation state definition 76

5.4.3 StratModel core . 78
5.5 STRAT: Elasticity Strategies Description Language 81

5.5.1 Strat Overview . 81
5.5.2 Strat Grammar . 81
5.5.3 Strat Core . 85

5.6 Conclusion . 86

6 Elasticity Strategies Evaluation Framework 89
6.1 Introduction . 89
6.2 STRATFram: Elasticity Strategies Evaluation Framework for SBPs . . . 90

6.2.1 StratFram overview . 90
6.2.2 SBP Language . 92

6.2.2.1 SBP Grammar . 92
6.2.2.2 SBP Core . 100

6.2.3 StratSim language . 100
6.3 Implementation and evaluation . 101

6.3.1 Implementation . 102
6.3.2 Evaluation . 102

Table of contents ix

6.3.2.1 1st Evaluation Scenario 102
6.3.2.2 2nd Evaluation Scenario 104
6.3.2.3 Evaluation results . 109

6.4 Conclusion . 109

7 Conclusions and Future work 113
7.1 Conclusions . 113
7.2 Future work . 115

Bibliography 117

List of Figures

1.1 Elastic system architecture . 3
1.2 BPMN model of Molecular Evolution Reconstruction Process 6

2.1 Service models of Cloud computing [Hogan 2011] 15
2.2 The principle of elasticity . 18
2.3 Elasticity Characteristics . 20
2.4 The different type of resources elasticity: (a) Vertical Elasticity, (b) Hor-

izontal Elasticity, (c) Hybrid Elasticity. 21
2.5 Business process life-cycle . 23
2.6 Service-based business process in the cloud - Elastic SBP 25

3.1 ViePEP architecture overview [Hoenisch 2014] 29
3.2 Horizontal Elasticity Controller Model[Ali-Eldin 2012] 30
3.3 Vadara architecture overview [Loff 2014] 31
3.4 The architecture of OnlineElastMan [Liu 2016] 32
3.5 The architecture of the hybrid memory controller[Farokhi 2016] 32
3.6 CloudVAMP architecture [Moltó 2016] 33
3.7 SRL Modeling Constructs - Scalability Rules Specification [Kritikos 2014] 36
3.8 Modeling cloud service behavior process [Copil 2015] 38
3.9 Markov Decision Process (MDP) model overview [Naskos 2015b] 39
3.10 The analytical model for elasticity evaluation [Suleiman 2013] 40
3.11 High-level petri net model of the elasticity controller for evaluating SBPs

elasticity [Amziani 2015] . 40

4.1 Simple examples of (a) a classic petri net and (b) a high-level petri net . 50
4.2 TC-SBP petri net system of MER process 58
4.3 Application of Duplication operation on service engines S2.1 and S6.2.1

of MER process . 61

xii List of Figures

4.4 Application of Consolidation operation on service engine S2.1 of MER
process . 64

5.1 Elasticity Controller Petri Net Model Template 79
5.2 Example of a generated elasticity controller Petri Net Model 80

6.1 StratFram architecture overview . 91
6.2 BPMN models of (a) the SBP No. 3 (top) and (b) the SBP No. 5 103
6.3 Elasticity model and strategy of the 1st Evaluation Scenario 104
6.4 SPEEDL elasticity model and its generated controller and actions 105
6.5 Elasticity strategies and simulation script for Evaluation project 1 . . . 106
6.6 Jrad et al. elasticity model and its generated controller and actions . . . 107
6.7 Elasticity strategies and simulation script for Evaluation project 2 . . . 108
6.8 The evolution of capacity of a service in each SBP Models in the 1st

Evaluation Scenario . 110
6.9 The evolution of capacity of SBP Model in the 2nd Evaluation Scenario . 111
6.10 (a) Violation rate (%) in each elastic service engine and process using

different strategies of evaluation project 1 (b) Violation rate (%) in each
elastic service engine and process using different strategies of evaluation
project 2 . 112

List of Grammars

3.1 SYBL Language Constructs [Copil 2013] 35
3.2 General SPEEDL Language Specification [Zabolotnyi 2015] 37
5.1 General StratModel Grammar . 71
5.2 Grammar for describing elasticity model in StratModel 71
5.3 Grammar for general description of an elasticity model in StratModel . 72
5.4 Grammar for describing elasticity actions in StratModel 73
5.5 Grammar for describing metrics in StratModel 75
5.6 Grammar for describing properties in StratModel 76
5.7 Grammar for defining a SBP state in StratModel 77
5.8 General Strat Grammar . 82
5.9 Grammar of defining Sets in Strat . 82
5.10 Grammar of specifying Actions and their Rules in Strat 83
5.11 Grammar for Conditions in Strat . 84
6.1 General SBP Grammar . 93
6.2 Grammar for describing process groups in SBP 94
6.3 Grammar for describing ServiceEngine in SBP 95
6.4 Grammar for describing LoadBalancers in SBP 96
6.5 Grammar for describing process routers in SBP 97
6.6 Grammar for specifying links between nodes and routers in SBP 97
6.7 Grammar for defining Requests in SBP 98
6.8 General StratSim Grammar . 101

List of Listings

5.1 Example of describing an Elasticity Model with StratModel 72
5.2 Example of describing an action with StratModel 74
5.3 Example of describing metrics with StratModel 75
5.4 Example of describing properties with StratModel 76
5.5 Example of describing transformation states with StratModel 77
5.6 Example of defined maximum execution time Set with Strat 82
5.7 Describing an elasticity strategy using Strat 85
6.1 Example of describing an SBP Model with SBP language 99
6.2 Example of simulation scenario with StratSim 101

List of Tables

3.1 Synthesis of Related Work. 43

5.1 Examples of Strat Functions . 86

6.1 Evaluation SBP models . 103

CHAPTER

1 Introduction

”Science is like a tree: contrary to popular belief,
both trees and science grow at their edges,

not at their core.”
Peter Mika

Contents
1.1 General Context: Elastic Service-based Business Processes . . 1

1.2 Problem Statement . 4

1.3 Motivating example . 6

1.4 Scientific Contributions . 8

1.5 Thesis Structure . 11

1.1 General Context: Elastic Service-based Business Pro-
cesses

Cloud Computing is gaining more and more importance in the Information Technologies
(IT) scope as an emerging computing paradigm for managing and delivering services
over the internet. One of the major assets of this paradigm is its economic model based
on pay-as-you-go model. It allows the delivery of computing applications as a service
rather than a product by enabling ubiquitous, convenient, and on-demand network
access to large pools of computing resources (e.g., computing, applications, services,
storage, and network) that can be dynamically provisioned by increasing and decreasing
services capacity to match workloads demands and usage optimization [Hogan 2011].

In today’s information society, many companies of all sizes have started to make
Cloud technology as the default technology that is used to handle their day-to-day
activities, and more will do so increasingly in the near future. According to a survey

2 Introduction

conducted by IDG Communications across different IT decision-makers at a variety of
industries in 2018 [IDG 2018], nine out of ten companies already have at least some of
their applications or a portion of computing infrastructure in the cloud or plan to move
them to the cloud in the next 12 months.

The movement to the Cloud Computing as an IT infrastructure enables companies
to operate more efficiently on the continuous incremental change in business opera-
tions/processes. By using it for executing their business processes, particularly their
service-based business processes (SBPs) which consist of a set of elementary IT-enabled
services, companies are able to remove the worry associated with the constraints and
service interruptions that might occur in an internal data center infrastructure during
peak periods. Especially in this digital age, many industry domains and business ar-
eas, such as eHealth [Mans 2010], manufacturing [Schulte 2014], or SmartGrids in the
energy industry [Rohjans 2012], are dealing with a large number of SBP requests/in-
stances, which might occur in a regular as well as in an ad-hoc manner, and/or the
need to process a massive amount of data in particular tasks/services in a short time
under specific Quality of Service (QoS) requirements which require a large amount of
computational resources that can not be predicted in advance. The rapid elasticity
feature of cloud computing has been the answer to such situations and one of the key
drivers for companies to adopt cloud computing’s technologies and move their business
processes to it.

Elasticity is defined as the ability of a system to be adjustable to workload changes
by provisioning as many resources as needed in autonomic manner in order to meet the
required QoS [Herbst 2013]. Provisioning of resources can be made using horizontal elas-
ticity, vertical elasticity, or the combination of both (i.e., hybrid elasticity). Horizontal
elasticity consists in replicating/removing instances of system elements to balance the
current workload. It is also known as replication of resources. On the other hand, ver-
tical elasticity consists in changing the characteristics/properties (e.g., memory, CPU
cores) of the used instances in the system by increasing or decreasing them. It is also
known as resizing of resources. As a combination of horizontal and vertical elasticity,
hybrid elasticity allows to add/remove instances with different characteristics. These
elasticity capabilities are the main constructions of an elasticity model which defines
the ground terms and functionalities that describe the elasticity of the managed system
such as (1) the elasticity actions to be undertaken, (2) metrics to monitor to trigger the
elasticity actions and (3) properties to access and reconfigure.

Elastic systems are usually composed of a managed system and a control system
which is responsible on managing the former and ensuring its elasticity as shown in
Figure 1.1. A control system mainly comprises an elasticity controller (EC) representing
its functional component and elasticity information representing the basis for designing
the controller and for its elasticity decisions. Elasticity information is categorized into:
(i) an elasticity model (EM) which specifies the basic information (elasticity actions,
metrics, etc.) on which the design of the EC is based, and (ii) an elasticity strategy
(ES) which defines the rules for deciding when, where and how to use elasticity actions

1.1. General Context: Elastic Service-based Business Processes 3

(e.g., adding or removing resources) defined in the EM. In other words, the elasticity of
the managed system is ensured by an EC, implementing a specific EM, according to an
ES which is, in turn, defined based on the same EM.

Figure 1.1: Elastic system architecture

The realisation of elastic systems has been the focus of several efforts in the re-
cent years from IT community that worked on elasticity management to find the
right tradeoffs between QoS levels and operational costs. Among these efforts, a
new research trend in elastic systems has been emerged named elastic processes (or
elastic SBPs) [Dustdar 2011] which refers to process automation and workflows that
utilize cloud resources dynamically by acquiring and/or releasing them per workload
changes to perform their tasks in an efficient and cost-effective way according to a
predefined ES. The realisation of elastic processes requires taking into consideration
the elasticity property of Cloud computing during business process life-cycle phases
[Weske 2012]: including the definition of a SBP [Amziani 2015] and its enactment
[Bessai 2012b, Bessai 2012a, Rosinosky 2016, Hoenisch 2014]. Notably, within this the-
sis, only the definition of SBPs is of further interest. The definition of a SBP is divided
into two parts: (i) a conceptual definition and (ii) a technical definition. These parts
correspond respectively to the first two phases in the business process life-cycle, namely
(i) modeling and analysis and (ii) configuration. During the modeling and analysis
phase, SBPs are identified, validated, and represented by SBP models which are used
as a communication basis for SBP holders and help to refine and improve processes.
Thereafter, in the configuration phase, technical information is provided to enhance the
SBP model. This kind of information is used to facilitate its enactment by the business
process management system (BPMS). In the cloud computing context, SBP holders
are required to specify not only the cloud resources in which the SBP’s services will
be deployed but also any information/component that is needed to manage the process

4 Introduction

elasticity in the cloud such as specifying the ES that should be used to control the
SBP’s elasticity and preserve the required QoS.

1.2 Problem Statement

Elastic systems in general and elastic SBPs in particular are still in their infancy, and
their development and management face a lot of challenges that need to be tackled
[Copil 2016]. One of the main challenges is specifying effective elasticity strategies that
define requirements on the elasticity behavior of the system and able to prevent QoS
violations. Specifying an elasticity strategy has been considered as a very hard task
and likely to be doomed to fail if not defined with considerable care [Dutreilh 2010].

Usually, when developing elastic systems, elasticity strategies are hard-coded in the
controller which makes defining complex strategies especially for SBPs using diverse
metrics and information becomes easily cumbersome, error-prone and hard to maintain
and to reuse. Moreover, many strategies can be defined for the same SBP where some
of them are more effective than others.

Without providing a proper definition according to elastic SBP workload character-
istics, elasticity strategies might lead to loss of QoS and large waste of resources. So,
it is necessary to have a deeper understanding on how elasticity strategies behave and
a high degree of expertise on how they should be specified to prevent (or minimize the
occurrence of) unwanted results when using them in the cloud. However, this level of
knowledge and expertise is hard to achieve in practice especially when we deal with
a heterogeneous environment such the cloud and a large number of possible elasticity
strategies that can be defined for a SBP. Furthermore, even with the need to find an
effective elasticity strategy among possible defined strategies, the latter tend to be spec-
ified and used without guaranteeing their effectiveness [Naskos 2015a]. Therefore, SBP
holders need means to assist them in defining and evaluating elasticity strategies before
putting them in use in a real cloud environment.

The research conducted throughout this thesis has been motivated by those chal-
lenges which can be summarized in the following research question :

General Research Question :
How to assist in describing and evaluating elasticity strategies for Service-based

Business Processes?

Hence, in this work, we particularly address the following research issues in defining
and evaluating elasticity strategies for SBPs :

• Control System Decoupling :

As mentioned in Section 1.1, elastic systems have a control system that man-
ages the actual system through an elasticity controller designed to make elasticity
decision and to perform system’s adaptation/adjustment according to particular

1.2. Problem Statement 5

elasticity information (i.e., elasticity model and an elasticity strategy). This in-
formation is usually hard-coded in the controller. In the literature, as discussed
in Chapter 3, some authors have proposed to decouple elasticity strategies from
the controller to allow using different elasticity strategies and facilitate changing
them. However, all the existing works were proposed based on a specific elastic-
ity model restricting the definition and use of elasticity strategies to a particular
elasticity capabilities and QoS metrics. Since elastic systems (SBPs) might have
different control systems exposing different elasticity capabilities and different
elasticity behavior, SBP holders need to be able to define and evaluate elasticity
strategies regardless of a particular elasticity model. Thus, beside decoupling elas-
ticity strategies from the controller, elasticity strategy specification should also be
decoupled from any particular elasticity model.

• Elastic data-aware SBPs:

With the proliferation of the use of mobile devices and sensor-equipped environ-
ments, such as smart buildings, social media, and financial markets, an overwhelm-
ing "data deluge" is being streamingly produced every second around the world.
This massive amount of data is a valuable asset in our today’s information society.
To harvest the valuable information hidden in these "data deluge", the concept of
business processes is currently applied to streamline data processing and analyti-
cal steps [Dustdar 2011]. Therefore, resource-intensive tasks/services are no long
part of only Scientific Workflows [Hoffa 2008, Juve 2010], but occur now in all
kind of industries that have to handle and process large amounts of data in short
time under specified QoS requirements. In such case, tasks requests are heavily
different in the sense that some requests can be more data-intense than others
and therefore have different performance expectation and require different QoS
requirements. We believe that the data dimension of today’s SBPs should have
a particular attention during designing elastic SBPs and defining their elasticity
information. Although some research works exist on elastic SBPs management,
they do not consider the data-oriented characteristic of services requests and their
distinguish requirements.

• Specification & Evaluation Support :

As previously mentioned, elasticity strategies as well as elasticity models are usu-
ally hard-coded in the controllers which makes them difficult to define and to
maintain. The elastic SBP developers have to spend a lot of time and effort in
putting together the control system (i.e., elasticity controller, elasticity strategies
and developing the logic of the elasticity capabilities that ensures the adaptation
of the managed SBPs, etc.) and the evaluation system (using methods and tech-
niques that require deep knowledge on them) rather than focusing on developing
the business logic of the managed SBPs. To the best on our knowledge, there is
a lack of comprehensive supports for defining and evaluating elasticity strategies

6 Introduction

for SBPs that facilitate the task of IT managers/developers of elastic SBPs.

1.3 Motivating example

We provide here a simplified example of an elastic system for a data-aware process to
motivate this thesis and to use it as a running example throughout this manuscript.
We consider a data-aware process for molecular evolution reconstruction (MER) based
on an input protein sequence of genomes [Ocaña 2012]. As illustrated in Figure 1.2, the
MER process is composed of 8 services. The first service performs the pre-processing of
FASTA file which contains a representation of nucleotide or peptide sequences. Its time
complexity is O(NxL), where N is the number of sequences in the input file and L is the
length of each sequence. The second service consists in constructing a Multi Sequence
Alignment (MSA) using a program with time complexity O(N2 × L) + O(N × L2)

[Katoh 2008]. Thereafter, the third service converts the generated MSA in FASTA
format to that in PHYLIP format. This conversion is performed with time complexity
of O(N) where N is the number of entries in the file. Then, the fourth service which
consists in pre-processing PHYLIP file formats the input file according to the format
definition and generates a second PHYLIP file. This service is simply performed with
a time complexity of O(N). After that, the fifth service receives the PHYLIP file as
input and produces a phylogenetic tree as output [Stamatakis 2014]. It is of time
complexity O(N2). The constructed phylogenetic tree is used for the MER exploration.
We consider in this example that the latter is performed by two parallel services (i.e.,
6.1 and 6.2) which output a set of files containing evolutionary information. Each
of the services executes different phase of MER exploration in time complexity O(N3)
[Jansen 2001]. The last service processes the evolutionary information resulted from the
previous services. This service is of time complexity O(N) where N is the summation
of sizes of the output files resulted from services S6.1 and S6.2.

Figure 1.2: BPMN model of Molecular Evolution Reconstruction Process

As we can see, some services (e.g. S2) are more complex than others which make
them expensive in terms of time and resources consumption. Their time and resources
consumption are strongly related to the size of the request. Let’s consider two sets of
protein sequences of genomes P1 and P2. P1 contains 5000 sequences of length 25000

while P2 contains 10000 sequences of length 200000. The execution of S2 for P1 and

1.3. Motivating example 7

P2 will be performed respectively in 36 seconds and 65 minutes using a processor type
Intel Core i7-3770k at 3.9 GHZ frequency which performs 106 924 MIPS (Millions of
Instructions Per Second). The gap in execution time of P1 and P2 is very large, so would
be the difference in users’ expectations. Consequently, it is important to note that the
characteristics of SBP requests should be considered when specifying QoS requirements
and elasticity strategies.

We assume that at some point of time the process will be invoked many times with
different input files which leads to overcome the composed services capacity which in
turn leads to loss of QoS. Some input files will contain small sets of protein sequences
of genomes that are expected to be processed in short time and to use a little amount
of computational resources, while others will contain large sets that are expected to
take much more time to be processed and its processing occupies a large amount of
computational resources. For instance, the waiting for heavy requests to finish leads
to unacceptable increase in the response time of light requests which in turn leads to
disappointing users’ expectations. So, we need to make sure that the process will keep
running as expected and that all the requests will be processed while maintaining the
desired QoS and satisfying users’ expectations.

In order to prevent QoS degradation, we have to first specify the elasticity informa-
tion (i.e., the elasticity model and the elasticity strategy) on which the design and the
functionality of the elasticity controller will be based. Different elasticity models can be
specified describing different monitoring metrics and elasticity capabilities (e.g., chang-
ing the characteristics/properties of the used resources, replicating the process/service,
etc.) for ensuring the process adjustment to preserve the required QoS. For example,
one may choose to maintain the required QoS by allowing the controller to duplicate/-
consolidate the whole process (i.e., all the services that compose the process) as many
times as needed. So, he would specify an elasticity model describing two elasticity ac-
tions, i.e., duplication and consolidation actions, to be implemented by the controller
and applied for ensuring the process elasticity at process level. However, duplicating
the whole process, while there are only few services, such as the service S2, requiring
more capacity to serve the incoming requests, creates an over-provisioning of resources.

As the QoS violations at some point of time may come from one particular service,
e.g., service S2, and one particular category of requests, e.g., light requests that are
waiting for the heavy ones to finish, we thing it would be a better choice if the controller
actions that will be performed to avoid such violations will be applied only on the
bottleneck services while considering the characteristics of the requests causing the
QoS degradation. Thus, we consider specifying an elasticity model for hybrid scaling
that performs two main elasticity actions, namely Duplicate and Consolidate. The
duplication action allows to add new service copy with different configuration. The
service capacity and request groups property of a service are re-configurable by the
action. The consolidation action allows to release service copies whenever needed.

To decide when, where and how these actions should be applied on our MER process,
an elasticity strategy should be defined to be used by the controller. Many strategies

8 Introduction

can be defined to provide better resource consumption and preserve the required QoS
level using different metrics, rules composition, thresholds, etc. We consider, in our
elastic system, the use of a reactive strategy that defines rules for the actions specified
in the elasticity model based on the waiting time of requests. So, the duplication action
creates a new copy of a service for requests under a specific group if at least one of
waiting requests of that group exceeds the maximum waiting time threshold and the
same applied for all its copies. Otherwise, if there is no longer waiting requests and the
consumed capacity of a service copy is equal to 0 and the response time of the service is
below its minimum threshold, a consolidate action is triggered by releasing the service
copy. Here, nothing ensures the effectiveness of this strategy or the consistency between
its rules if not carefully implemented/defined.

1.4 Scientific Contributions

The main objective of this thesis is to provide SBP holders a support for describing
and evaluating their elasticity strategies to guarantee their effectiveness by detecting
any suspicious behavior before investing in using them in the cloud. Defining a specific
elasticity strategy or proposing resources allocation and scheduling algorithms for elastic
SBPs are out of the scope of this thesis. We are mainly focusing on providing a support
to the configuration phase in business process life-cycle based on petri-nets to allow
the evaluation of strategies. In the light of the aforementioned problems, the main
contributions that will be thoroughly detailed in the next chapters are the following.

Contribution I
Modeling data-aware elastic SBPs

Evaluating elasticity strategies for SBPs before using them in the cloud requires em-
ploying formal methods to describe their elastic execution environment which provide
rigorous description and allows analysing elasticity behavior and guarantee their effec-
tiveness. In our work, we employ High-level Petri Nets as a basis for this contribution
which can be summarized as follows:

• We propose a data-aware formal model for describing elastic execution environ-
ment of SBPs based on high-Level Petri Nets. The model describes the character-
istics of service engines, hosting services in a SBP, and their requests, by allowing
to introduce the features that characterize them and distinguish them from each
other, which makes it possible to define more sophisticated elasticity strategies
using different elasticity indicators.

• We define and formalize two elasticity mechanisms/capabilities that allow per-
forming hybrid scaling on the model by adding/removing service engine copies

1.4. Scientific Contributions 9

with different configurations. The use of hybrid scaling method permits to cus-
tomize the provided resources according to service’s requests characteristics. Ap-
plying the defined elasticity mechanisms on our formal model according to a spe-
cific elasticity strategy changes its structure and status allowing the evaluation of
the elasticity strategy to ensure its effectiveness before using it in a real Cloud
environment.

A detailed description is given in Chapter 4. This contribution was originally pre-
sented in [Jrad 2017a].

Contribution II
Elasticity Model Description Language

An elastic system is usually managed by a controller that implements a specific
elasticity model and uses an elasticity strategy to control the system adjustment deci-
sions. In the context of elastic SBPs, an elasticity model defines the ground terms and
functionalities that describe SBPs elasticity such as the elasticity capabilities/actions
to be undertaken, metrics to monitor to trigger the actions and properties to access
and reconfigure. It is the basis for specifying elasticity strategies and constructing an
elasticity controller that manages and evaluates the elasticity of SBPs. Most of the
existing works for providing elastic systems have been proposed based on a specific
elasticity model that allows either vertical or horizontal elasticity. In order to provide a
generic solution for describing and evaluating elasticity strategies for SBPs, we propose
a domain-specific language, named StratModel, that allows :

• Describing different elasticity models, with different elasticity mechanisms/capa-
bilities and customized monitoring metrics;

• Generating elasticity controllers, for a given elasticity model, that can be used to
evaluate elasticity strategies for a given SBP model.

The elasticity capabilities in StratModel is defined by providing their mechanisms
through a set of examples which illustrate how the generated controller should operate
when applying an action that changes the structure of the managed SBP model. The
language allows to generate elasticity controllers using a pre-defined template described
using high-level petri net to allow the formal evaluation of strategies. A detailed descrip-
tion is given in Chapter 5. This contribution was originally presented in [Jrad 2017b]

Contribution III
A language for describing elasticity strategies

As mentioned in the previous section, defining non-trivial elasticity strategies that
go beyond the set of features provided by existing solutions is still a challenging task. In

10 Introduction

our work, we proposed a rule-based domain specific language, called Strat, for spec-
ifying elasticity strategies governing SBP elasticity. An elasticity strategy is specified
for/based on a specific elasticity model that provides the elasticity capabilities that can
be applied on SBPs to ensure their elasticity. During designing Strat language, two
solutions have been in mind to make Strat generic enough to describe strategies for
different elasticity models which are as follows :

• The first solution was to provide Strat language grammar with a constant set
of actions used in the commercial cloud-solutions and the research papers. Such
solution makes the users (SBPs holders) constrained to a set of pre-defined actions
and parameters and does not enable the adaptation to new elasticity capabilities
that can be provided by the community;

• The second solution, that we adopt, consists in linking Strat to StratModel
(i.e., contribution II) that allows users to separately provide the description of
an elasticity model on which Strat language will be based. So, the latter will
provide users with only the elasticity capabilities defined in the elasticity model
when defining their strategies.

We should note here that we use the terms "users" and "SBP holders" in the rest of
this manuscript interchangeably to refer to the users of our solutions who can be anyone
responsible for the configuration phase of elastic SBP in the cloud, such as IT manager.
A detailed description of our language is given in Chapter 5. This contribution was
originally presented in [Jrad 2016], and extended in [Jrad 2017b].

Contribution IV
Elasticity Strategy Evaluation Framework for elastic SBPs

Many elasticity strategies can be defined to steer SBPs elasticity. The abundance
of possible strategies requires their evaluation in order to guarantee their effectiveness
before using them in real Cloud environments. Based on the previous contributions,
we introduce a framework, called StratFram, for describing and evaluating, through
simulation, different elasticity strategies for elastic SBPs. The framework allows users
(SBP holders) to first define different elements of the elastic systems they want to
evaluate their elasticity behavior, which are typically comprised of :

1. An elasticity model on which the strategies will be based;

2. A SBP model for which the strategies will be defined;

3. Elasticity strategies that will be evaluated;

4. A simulation configuration that specifies the needed parameters for the purpose
of the evaluation.

1.5. Thesis Structure 11

StratFram provides a set of languages, including StratModel (i.e, contribution
II) and Strat (i.e., contribution III), designed to generalize the use of the framework
and to facilitate the description of each element. The evaluation of elasticity strategies
using StratFram consists in providing a set of plots that allows the analysis and the
comparison of strategies to choose the ones that fit to the target SBP and usage behav-
iors. A detailed description of our framework is given in Chapter 6. This contribution
was presented in [Jrad 2019].

1.5 Thesis Structure

The remainder of this manuscript is organized as follows.

Chapter 2: Cloud Computing & Business Process

This chapter briefly introduces the concepts of cloud computing and business pro-
cesses that are needed to grasp the remainder of this thesis. In the first part, we present
the definitions of Cloud computing and its fundamental characteristics. Particularly, we
focus on defining the principles and characteristics of one of the most important cloud
computing feature which is Elasticity. The second part presents how the research and
industry communities have viewed and defined business processes and what phases a
business process goes through during its life-cycle. The final part of this chapter gives
a short introduction to the concept of elastic service-based business processes (elastic
SBPs), or simply elastic processes.

Chapter 3: State of the Art

This chapter is devoted to review existing literature related to the present research.
We first study existing works proposing elasticity models and mechanisms for ensuring
elasticity of cloud systems. Then, we survey existing languages for describing elasticity
strategies as well as works on elasticity strategies evaluation. The final part of this
chapter gives a synthesis of the studied works.

Chapter 4: Modeling of Data-aware Elastic SBPs

In this chapter, we present our proposal for modeling elastic execution environment
of data-centric processes. The proposed model is defined based on high-level petri nets.
It permits to describe the characteristics of service engines hosting SBPs services and
their requests. For better understanding, we start the chapter with a brief introduction
to some basic mathematical notations and petri net related concepts. Thereafter, we
detail our formal model that intertwines two elasticity mechanisms for ensuring hybrid
elasticity of SBPs at the service level.

Chapter 5: Description of Elasticity Strategies for Elastic SBPs

12 Introduction

This chapter is devoted to present our contributions (II) and (III), namely StratModel
language for describing elasticity models and Strat language for describing elastic-
ity strategies for elastic SBPs for a given elasticity model defined using StratModel.
We start the chapter with a short introduction to the concept of domain-specific lan-
guage followed by an overview of languages design. Then, we present the details of
StratModel language and Strat language with their use in defining respectively the
elasticity model and the elasticity strategy of the motivation example.

Chapter 6: Elasticity Strategies Evaluation Framework

In this chapter, we present a framework, named StratFram, for describing and
evaluating elasticity strategies for elastic SBPs. It enables the evaluation, through
simulation, different elasticity strategies for different elasticity models based on our
formal model of elastic execution environment of SBPs. The chapter is divided into
two parts. In the first part, we introduce our framework architecture and describe its
components. Then, in the second part, we detail the implementation aspects and the
evaluation scenarios as well as their results.

Chapter 7: Conclusion and Perspectives

This chapter concludes our thesis by summarizing the contributions. We also present
in this chapter our research perspectives that we aim to realize at short and long term.

CHAPTER

2 Cloud Computing &
Business Process

Contents
2.1 Introduction . 13

2.2 Cloud Computing . 14

2.2.1 What is a Cloud Computing ? . 14

2.2.2 Characteristics of Cloud computing 16

2.2.3 Elasticity . 16

2.3 Business Processes . 21

2.3.1 What is a Business process? . 21

2.3.2 Business process life-cycle . 22

2.3.3 Business process Modeling . 24

2.4 Business Processes in the Cloud 24

2.5 Conclusion . 26

2.1 Introduction

In this chapter, we present background knowledge (basic concepts) required for the un-
derstanding of the remainder of this thesis. The chapter is divided into three essential
parts. The first part covers the definitions and fundamental characteristics of Cloud
Computing, in general, and its elasticity property, in particular. Afterwards, we intro-
duce in the second part what exactly is a business process according to the research
and industry community. Finally, we present the integration of Business process and
Cloud Computing which emerged the so-called Elastic SBP.

14 Cloud Computing & Business Process

2.2 Cloud Computing

2.2.1 What is a Cloud Computing ?

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction" [Hogan 2011]. This is how
the National Institute of Standards and Technology (NIST) defined the cloud com-
puting. It has been considered as the best definition among several other definitions
abound for cloud computing from both academia and industry [Ruparelia 2016]. Some
of the other definitions are listed to give an idea of how the notion of ’cloud computing ’
has been viewed by researchers and industry analysts.

"A computing Cloud is a set of network enabled services, providing scal-
able, Quality of Service (QoS) guaranteed, normally customized, inexpen-
sive computing platforms on demand, which could be accessed in a simple
and pervasive way", [Wang 2008].

"Building on compute and storage virtualization technologies, and leveraging
the modern Web, Cloud computing provides scalable and affordable compute
utilities as on-demand services with variable pricing schemes, enabling a new
consumer mass market", [Klems 2009].

"Cloud Computing is a style of computing where scalable and elastic IT-
related capabilities are provided as a service to external customers using
internet technologies", [Cearley 2010].

"Cloud computing is a large pool of easily usable and accessible virtualized
resources (such as hardware, development platforms and/or services). These
resources can be dynamically reconfigured to optimum resource utilization.
This pool of resources is typically exploited by a pay-per-use model in which
guarantees are offered by the Infrastructure Provider by means of customized
SLA’s", [Vaquero 2009].

"Cloud Computing is an emerging IT development, deployment and delivery
model, enabling real-time delivery of products, services and solutions over
the Internet (i.e., enabling cloud services)", [Gens 2008].

Services in the Cloud are basically delivered under three well discussed layers namely
the Infrastructure-as-a-Service (IaaS), the Platform-as-a-Service (PaaS) and the Software-
as-a-Service (SaaS). Figure 2.1 shows the service models of the cloud as viewed by NIST
and the general requirements and processes for cloud providers to build each of them.

2.2. Cloud Computing 15

Figure 2.1: Service models of Cloud computing [Hogan 2011]

Software-as-a-Service (SaaS) : Consumers are offered to use running applications
deployed on a cloud infrastructure as long as they want and pay for what they
use. They are not responsible for managing or controlling the underlying cloud
resources or even individual application capabilities. The most widely used SaaS
is Google Apps.

Platform-as-a-Service (PaaS): Consumers are provided with a plaform that in-
cludes programming languages, libraries, services and tools needed to deploy and
run consumer-created or acquired applications in the cloud infrastructure. The
consumer is only responsible on controlling the deployed applications and option-
ally configuration settings of the environment on which the application is hosted.
Google AppEngine and Microsoft Azure are well-known examples of PaaS.

Infrastructure-as-a-Service (IaaS): Consumers are provided with the capability of
provisioning computing resources on which they can deploy and run any software
from operating systems to applications. The consumer is not responsible for
controlling and managing the underlying cloud infrastructure. Amazon EC2 is a
key example of IaaS.

The building of the three cloud service models can be made either on top of one
another (i.e., SaaS built upon PaaS and PaaS built upon IaaS) or directly upon the
underlying cloud resources. For example, a SaaS application can be implemented and
hosted on virtual machines running in IaaS or directly on top of physical cloud resources
without using IaaS [Hogan 2011].

16 Cloud Computing & Business Process

Nowadays, more services have appeared targeting a specific area called generally as
XaaS. For example, there is the NaaS for Network as a Service, DaaS for Desktop as a
Service, etc.

2.2.2 Characteristics of Cloud computing

The Cloud Computing has been recognized for its features that distinguish it from other
computing paradigms, like Grid Computing. These features can be summarized in the
following aspects [Wang 2008, Hogan 2011]:

• On-demand self-service: A consumer is able to provision computing resources
on demand whenever needed in a simple and flexible way without requiring human
intervention on the service provider’s side.

• Quality Of Service (QoS) guaranteed offer : Cloud computing provides
consumers with computing environments that can guarantee the required QoS
such as memory size, availability, response time, service throughput, etc. that are
generally provided in Service Level Agreement (SLA). The latter is a negotiation
between the service consumer and the service provider on the levels of availability,
performance, operation, billing and even penalties in the case of violation of the
SLA, etc.;

• Resource pooling : Cloud providers are allowed to pool large scale comput-
ing resources to serve multiple consumers. Different physical and virtual cloud
resources are dynamically assigned and reassigned according to consumer demand.

• Rapid elasticity: Cloud computing resources can be dynamically provisioned
for cloud services on demand whenever needed and released when they are no
longer needed. They appear to consumers that they are unlimited and can be
taken in any quantity at any time.

• Measured service : Cloud services are monitored and controlled for variour rea-
sons, including effective resources utilization, billing or overall predictive planning.
This feature provides transparency for both the service provider and consumer.

In the following section, we describe in more details what is the elasticity and which
are the characteristics of the elasticity in the cloud.

2.2.3 Elasticity

2.2.3.1 Elasticity in physics

Elasticity is the ability of an object to resist a distorting influence and to return to
its original size and shape after that influence or force is removed. When appropriate
forces are applied on solid objects, they will deform and change their shape/size. If

2.2. Cloud Computing 17

their material is elastic, they will return to their initial size and shape when the applied
forces are removed [Shawky 2012].

2.2.3.2 Elasticity in the cloud

Elasticity is the most important feature of cloud computing which distinguishes it from
the other computing paradigms, e.g., cluster and grid computing. It is considered as
the primary reason behind choosing many companies to move their operations to the
cloud and to adopt the cloud-based technologies in their day-to-day activities. Many
researchers have attempted, for years, to define the cloud computing elasticity. Despite
that, there is no consensus on a common definition of the term elasticity in the cloud
computing context [Bikas 2016]. Here, we list some of the commonly used definitions
of cloud elasticity to get the perspective about different usages of this term.

"Computing resources can be elastically provisioned and released, in some
cases automatically, to scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available for provisioning often
appear to be unlimited and can be appropriated in any quantity at any time",
NIST’s definition of Elasticity [Mell 2011].

"Elasticity is the degree to which a system is able to adapt to workload
changes by (de)allocating resources in an autonomic manner, such that at
each point in time the available resources match the current demand as
closely as possible" [Herbst 2013].

"Ability of the system to adaptively scale resources up and down in order to
meet varying application demand" [Han 2014].

"How quickly a system can adapt to changes in the workload that may happen
in a short amount of time." [Li 2011].

"How much a cloud service can be scaled up and down during the peak times"
[Garg 2013].

"Capacity at runtime by adding and removing virtual resources without ser-
vice interruption in order to handle variation in the workload" [Perez-Sorrosal 2011].

"Elasticity is basically a ’rename’ of scalability, which has been a known
non-functional requirement in IT architectures for many years already. Scal-
ability is the ability to add or remove capacity, mostly processing, memory,
or both, to or from an IT environment when this is needed," as defined by
Edwin Schouten, IBM [Schouten 2012].

18 Cloud Computing & Business Process

(a) (b)

Figure 2.2: The principle of elasticity

In this thesis, we consider the elasticity as the ability of a system to be adjustable to
the variation in the workload by provisioning as many resources as required in autonomic
manner in order to meet the QoS requirements. Traditionally, the resource allocation
has been done by provisioning a fixed amount of IT resources that could handle high
demands at peak periods. This approach is not suitable to be used in high dynamic
environments such as Cloud environments. Acquiring a fixed amount of resources would
lead to an over-provisioning of resources at the majority of period of time and therefore
to loss of money. Also, when demands gets higher than expected in peak periods,
the fixed allocated resources will not be sufficient to handle them which would lead to
under-provisioning of resources and therefore to violate QoS requirements. Ensuring
elasticity makes it possible to have a resource provisioning that automatically adjusts
to workload changes in order to meet QoS requirements while reducing cost.

Let’s take the resource demands shown in Figure 2.2, the used resource allocation
approach should ensure the provisioning of sufficient resources that can satisfy the de-
mands at any period of time while preventing the under-utilization of resources. Figure
2.2(a) illustrates the use of traditional resource allocation approach. As illustrated,
this approach causes an over-utilization of resources most of the time and an under-
utilisation of resources when the demands get higher than the capacity of the already
allocated resources. In this case, the best solution as shown in Figure 2.2(b) is to en-
sure the dynamic allocation of resources that automatically adjusts to demands changes
while ensuring QoS and reducing cost.

2.2.3.3 Characteristics of elasticity in the cloud

The elasticity can be described based on four characteristics as illustrated in Figure 2.3:
(1) Scope, (2) Method/Technique, (3) Metric, and (4) Strategy [Galante 2012].

1. Scope : Scope defines the cloud level in which the elasticity actions are applied,
i.e., infrastructure level (IaaS clouds), platform level (PaaS clouds) or service level

2.2. Cloud Computing 19

(SaaS). Generally, elasticity actions (supported by underlying infrastructure) are
trigged by an elasticity controller that is either provided by IaaS clouds or em-
bedded in the application or within the execution environment (called containers)
used by PaaS clouds to automatically manage the resources used by application;

2. Method/Technique : An elasticity method/technique refers to the method of
provisioning resources employed in the elasticity solutions. Provisioning of re-
sources can be made using either horizontal elasticity, vertical elasticity, or hy-
brid elasticity (combination of horizontal and vertical elasticity) (cf., Figure 2.4).
Horizontal elasticity consists in adding/removing instances of system elements to
balance the current workload. It is also known as replication or duplication/con-
solidation of resources. On the other hand, vertical elasticity consists in changing
the properties/characteristics (e.g., CPU cores, memory) of the used instances
in the system by increasing or decreasing them. It is also known as resizing of
resources. As a combination of vertical and horizontal elasticity, hybrid elastic-
ity allows the adding/removing of instances with different characteristics to/from
the systems. Along these basics methods of elasticity, another method, named
Migration, is used to allow different way of resource resizing (vertical elasticity).
It consists in transferring an instance that is running on a specific physical re-
source to another one that might have different properties/characteristics (e.g.,
more memory or less memory) and best fits to the system load. These elasticity
capabilities/methods are the main constructions of an elasticity model that de-
fines the ground terms and functionalities/features supported by the target cloud
environment and used to describe the elasticity of the managed system such as
the elasticity actions to be undertaken, metrics to monitor to trigger the elasticity
actions and properties to access and reconfigure.

3. Metric : A metric represents an elasticity indicator that is monitored and used
for making elasticity decisions. There are generally four categories of metrics used
in the literature [Ameller 227, Emeakaroha 2010, Heidari 2014, Frey 2013]: (1)
Instance-based metrics such as CPU utilization, memory utilization, and Surge
Queue length (a count of total number of requests that are waiting to be submitter
to a target resource); (2) Service-level metrics such as service availability, service
response time, and service throughput; (3) Network-based metrics such as network
utilization and network latency; and (4) elasticity constraints such as task/process
deadline and cost/price;

4. Strategy : An elasticity strategy is a policy used to make elasticity decisions.
There are two common elasticity strategies: manual and automatic. Manual
strategies mean that the user is responsible for monitoring his/her deployed ap-
plication and for performing elasticity actions whenever needed through a public
interface provided by the cloud provider. On the other hand, automatic strategies
mean that the control and the elasticity actions are taken by an elasticity com-

20 Cloud Computing & Business Process

Figure 2.3: Elasticity Characteristics

ponent (e.g., elasticity controller) provided by the cloud system or embedded in
the application or within the execution environment. The elasticity component is
responsible for monitoring the deployed application, collecting information related
to its execution, and performing elasticity actions in accordance with user-defined
rules such as the ones specified in the Service-Level Agreement (SLA). An elas-
ticity strategy can be either (i) reactive, (ii) predictive, (iii) programmed, or (iv)
hybrid.

• A reactive strategy is a rule-based strategy in which a rule is in the form
of Rule-Condition-Action. A rule is composed of a set of conditions and an
action to be performed. An action is triggered when specific conditions are
satisfied. A condition considers either an event or a metric of the system. It
is generally a threshold-based condition. So, once a threshold is violated, an
action will be performed.

• A predictive strategy is a policy that uses heuristics and analytic techniques
such as predictive performance models and load forecasts to anticipate the
future system violations and to decide how and when to perform elasticity
actions in order to prevent these violations.

• A programmed strategy is based on scheduling the execution of an elasticity
action at a specific period of time or after a period of time (e.g., increase the
number of resources at the peak period).

• A hybrid strategy is a combination of using Rule-Condition-Action mecha-

2.3. Business Processes 21

(a) (b) (c)

Figure 2.4: The different type of resources elasticity: (a) Vertical Elasticity, (b) Hori-
zontal Elasticity, (c) Hybrid Elasticity.

nism with some heuristics and analytic techniques and some scheduled ac-
tions.

2.3 Business Processes

2.3.1 What is a Business process?

A business process is a set of one or more linked activities/steps performed collectively
by a group of stakeholders in order to achieve a business objective or policy goal, within
the context of an organizational structure defining functional roles and relationships.
Each activity/step in a business process denotes a task that is completely performed
by either a human actor or an IT system. A process can be fully contained within a
single organizational unit or can extend across several different organizations such as in
a customer-supplier relationship. It is the fundamental building block for many related
ideas such as Business Process Management (BMP), Process Automation, etc. As with
most of terms, many researchers have tried over the years to define what exactly is a
business process. In the following, we provide the most common definitions found in
the literature.

"A business process is a collection of activities that takes one or more kinds
of input and creates an output that is of value to the customer. A business
process has a goal and is affected by events occurring in the external world
or in other processes" [Hammer 1993].

"A business process is simply a structured set of activities designed to pro-
duce a specified output for a particular customer or market. It implies a
strong emphasis on how work is done within an organisation, in contrast to a

22 Cloud Computing & Business Process

product’s focus on what. A process is thus a specific ordering of work activ-
ities across time and place, with a beginning, an end, and clearly identified
inputs and outputs: a structure for action" [Davenport 1993].

"A business process is the set of internal activities performed to serve a
customer" [Jacobson 1994].

"A Business process is a lateral or horizontal organisational form that encap-
sulates the interdependence of tasks, roles, people, departments and func-
tions required to provide a customer with a product or a service" [Earl 1994].

"Business process is a purposeful activity carried out collaboratively by a
group, often crossing functional boundaries and invariably driven by outside
agents or customers" [Ould 1995].

In this thesis, we consider a special case of business processes, named Service-based
Business processes (SBP). A SBP is a business process that is composed of only a set
of elementary IT-enabled services related to each other according to their contribution
to the overall goal of the process. Typically, a service refers to the smallest unit of
work representing a module that offers computational or data capabilities. Services
composing a SBP carry out specific business activities and they can be assembled to
form the SBP via any appropriate service composition specifications such as Business
Process Execution Language (BPEL) [Juric 2006], Business Process Modeling Notation
(BPMN) [Allweyer 2010], etc.

2.3.2 Business process life-cycle

A business process goes through four main phases related to each other representing
its life-cycle: (i) Modeling (also referred to Design) & Analysis, (ii) Configuration,
(iii) Enactment, and (iv) Evaluation [Weske 2012] (cf., Figure 2.5). These phases
are organized as a loop structure showing their logical dependencies and allowing a
continuous evolution of the business process.

Modeling & Analysis : Business process modeling is the first and fundamental step
in a business process life cycle. It allows companies to identify and validate
their processes. So, after determining each component that can contribute in the
construction of business processes from the set of activities that compose them to
the roles and the link between them, a graphical notation is used to express the
processes and produce the so-called a business process model. Such models are
used as a communication basis for different BP holders and aid at refining and
improving processes. They provide BP holders the process logic independently of
a possible IT infrastructure. In order to ensure their correctness, the described
process models are also analysed and verified within this phases to provide a well
described models.

2.3. Business Processes 23

Figure 2.5: Business process life-cycle

Configuration : The objective of this phases is to enhance the described business
process models with technical information that facilitates the enactment of the
process by a dedicated business process management system. So, the process
management system and IT system have to be configured according to the orga-
nizational environments of the company. Thus, this configuration phase outputs
process models that are configured for a particular enactment infrastructure.

Enactment : After completed the configuration phase, instances of the configured
processes can be enacted. They are executed within the enactment phase in order
to fulfil particular business goals. During their execution, business process man-
agement system controls them in order to gather valuable execution information
and visualize their status. At the end of this phase, several process instance have
been performed and their execution information has been gathered in execution
log files.

Evaluation : The evaluation phase is the last phase in business process life-cycle which
uses the information gathered during the execution of process instances to evaluate
and improve the original business process models and their implementations. So,
the execution log files are used and evaluated using process mining techniques
which aim at identifying the quality of process models and the adequacy of the
execution environment.

24 Cloud Computing & Business Process

As the work presented in this thesis targets one particular aspect of business process
modeling and can be used during the configuration phase that is based on process
models, we present in the next section more details on the process modeling.

2.3.3 Business process Modeling

Business process modeling, often known as process modeling, is the activity of providing
an analytical representation (or illustration) of business processes of an organization.
It allows organizations to visually document, analyse, improve and automate their pro-
cesses. Process modeling is widely seen by business process community as a critical
component for providing successful business process management (BPM).

A wide variety of graphical process modeling languages coming from different facets
of scientific tradition have been used in research and industry to model and represent
business processes. These languages can be categorized as formal, conceptual or exe-
cution languages. Formal languages are designed based on mathematical foundation.
They are generally provided with unambiguous semantics for modeling the behavior of
a system and allows analysis methods/techniques, such as model checking and simula-
tion, to provide answers for questions related to correctness and performance. Petri Nets
[Murata 1989] are one example of such languages. They are state-transition systems
that are conventionally used to formally model concurrent systems. Their particularity
is in having a mathematical definition of their execution semantics and a well-developed
mathematical theory for process analysis.

Unlike formal languages, conceptual languages are typically informal and they lack a
well-defined semantics and analysis capability. BPMN [Allweyer 2010] is the most used
conceptual language for modeling business processes. It is considered as the world-
wide recognized industry standard notation for specifying business processes. BPMN is
viewed by many consultants as the "Rolls Royce" of process modeling languages since
most of the other modeling languages have been developed for other purposes and then
adapted for modeling business processes. Though, there are other analysts and consul-
tants who prefer to use other languages/methods to model their processes depending
on what they want to do with the models. Beside conceptual languages, there are
execution languages which are "technical" languages used for specifying enactment of
business processes. BPEL [Juric 2006] is the most known example of such languages. It
is a standard executable language that can be used to specify business process behavior
based on web services.

2.4 Business Processes in the Cloud

In today’s industry, business processes, especially service-based business processes (SBPs),
are getting more and more complex and resource-intensive. In fact, resource-intensive
tasks are no long part of only Scientific Workflows [Hoffa 2008, Juve 2010], but occur
now in all kind of industries that have to handle and process large amounts of data

2.4. Business Processes in the Cloud 25

Figure 2.6: Service-based business process in the cloud - Elastic SBP

in short time. In fact, many industry domains and business areas, such as eHealth
[Mans 2010], manufacturing [Schulte 2014], or SmartGrids [Rohjans 2012], feature ex-
tensive business process landscapes that are hard to predict essentially with the large
number of changing business process requests/instances, which might occur in a regular
as well as in an ad-hoc manner, and/or the need to process a massive amount of data
in particular tasks. Especially when there is a large amount of data to be processed
by some tasks in the process or having large number of process requests that occur
in an ad-hoc manner, the process will rapidly change its resource requirements which
might lead to a suboptimal usage of the available computational resources such as RAM
or CPU. This may lead to either over-provisioning or under-provisioning of resources
[Schulte 2014].

Cloud computing offers business process organizations a promising solution for man-
aging the steadily increase of complexity in their business process executions and pro-
viding optimal usage of computational resources using its basic features such as the
rapid elasticity (cf., Section 2.2.2). In this context, a new research trend has emerged
called Elastic SBPs (or elastic processes) [Dustdar 2011]. It refers to business processes
that utilize cloud resources dynamically according to workload changes and then per-
forming their tasks in an efficient and cost effective way. For instance, the concept of
elastic SBPs can be realized in an industry domain like the financial industry. The
latter can be considered as one of many other industry domains that feature extensive
business process landscapes that need to be executed using cloud resources. Figure 2.6
illustrates a simplified service-based business process scenario from the banking indus-
try deployed and running in the cloud. It describes a process of an international bank
with branches in Asia and Europe. Each branch operates using a private/public cloud
for data processing. Computational resources are needed to perform long-running data
analytic processes as well as carrying out shorter processes such as the ones for trading
or credit approval. However, the exact amount of the required computational resources
is hard to predict since the number of process requests/instances and the amount of
data that have to be handled concurrently can vary to a very large extent. So, in case of

26 Cloud Computing & Business Process

over-provisioning of resources, the bank should lease more resources to extend the avail-
able computational resources. In such case, traditional BPMSs are no longer suitable.
Hence, with the functionalities of BPMS, an elasticity controller is needed to automate
the provisioning of resources by controlling when, where and how to provision and/or
deprovision resources as provided by a given elasticity strategy in order to adjust them
to the process/service workload.

2.5 Conclusion

In this chapter, we introduced the basic concepts related to the work presented in
this thesis. We detailed in the first part the principles and characteristics of cloud
computing focusing, in particular, on its elasticity property which is considered the
most important feature behind its popularity. In the second part, we presented what is
a business process from the perspective of industry and research communities as well as
its life-cycle and particular its modeling. To conclude this chapter, we presented a newly
emerged trend, named elastic processes, that combines the two presented concepts, i.e.,
business process and cloud computing. The next chapter will discuss in more details
the principle approaches that proposed elasticity models and mechanisms for elastic
systems and the ones that especially targeted the definition and evaluation of elasticity
strategies.

CHAPTER

3 State of the Art

Contents
3.1 Introduction . 27

3.2 Models and mechanisms of elasticity 28

3.3 Elasticity strategies description 34

3.4 Elasticity strategies evaluation 37

3.5 Synthesis of Related Work . 41

3.6 Conclusion . 44

3.1 Introduction

Since the advent of Cloud Computing, more and more companies are moving their busi-
ness process to the Cloud. They are now required to manage their cloud services at any
time to preserve their Quality of Service (QoS). The quality and reliability of the cloud
services become an important aspect, as customers have no direct influence on ser-
vices. QoS has been a critical issue in several customer-centric disciplines such as man-
ufacturing ([Zhou 2009, Xu 2012]), healthcare ([Kenagy 1999, Ray 1999, Aktas 2015,
K. 2015]) and information management ([Liu 2000, Smith 2005, Garcia-Recuero 2014,
Sandhu 2015]). It denotes the levels of performance, reliability, and availability of a
service/process offered by the platform or the infrastructure that hosts it. The expec-
tation of cloud users from providers to deliver the required level of service quality and
the neediness of cloud providers to find a good compromise between QoS levels and
operational costs, are what make QoS a fundamental issue for both parties.

Elasticity played an important role in many research works that propose methods
and mechanisms to harness the ability of services/processes running in the cloud to be
elastic regarding the change in workload to ensure that the customer gets the desired
level of QoS while avoiding over-provisioning and under-provisioning of resources. While

28 State of the Art

few works have tackled the problem of elastic processes in the cloud, there is a plethora
of works dealing with ensuring applications elasticity in the cloud. In this chapter, we
will discuss a selection of works dealing with providing efficient elastic systems in the
cloud. We will start by presenting approaches that propose models and mechanisms for
ensuring systems elasticity (e.g., service, application, SBP, etc.) 3.2. Thereafter, we will
present different languages for describing elasticity strategies in Section 3.3. In Section
3.4, we will present the state of the art of elasticity strategies evaluation. Finally, we
will conclude this chapter by a synthesis of the presented works comparing them on the
basis of our research objective in Section 3.5.

3.2 Models and mechanisms of elasticity

In this section, we will present a selection of works dealing with/considering elasticity
models and mechanisms in cloud environments.

In [Bessai 2012b, Bessai 2012a], cloud computing’s elasticity has been considered
during tackling the problem of resource allocation and task scheduling for business pro-
cesses. In their works, Bessai et al. proposed bi-criterion approaches based on two
objective functions defined for the overall completion time and the execution cost of
using a set of resources composed of virtual machines (VMs) and human resources.
Their proposals were based on the assumption that the users dispose of an unbounded
number of VMs that can be used to execute business process tasks while minimizing
the overall completion time and/or the execution cost of executing the business process
instances. The authors suppose that the users will manually lease and release VMs
whenever needed in order to perform the task allocation and scheduling of tasks of
business process instance with the illusion of having unbounded number of VMs. How-
ever, this requires effort from the users to monitor and control system state in order
to lease (release) additional (unneeded) VMs in the right time. In this work, we are
interested in automatically ensuring service-based business processes elasticity which
can be performed by elasticity controllers based on elasticity strategies.

In [Hoenisch 2014], the authors have worked on providing elastic Business process
management system (eBPMS) for the cloud. They presented a platform named ViePEP
- the Vienna Platform for Elastic Processes which acts at the same time as BPMS and as
an elasticity controller. ViePEP is proposed as a broker middleware that is responsible
on receiving process requests sent by the clients and managing their execution in the
cloud. It is designed according a control loop used in the field of autonomic computing
named MAPE-K loop (i.e., Monitor, Analyse, Plan, Execute, Knowledge) [Jacob 2004]
in order to allow it to handle hundreds of process requests by ensuring the process elas-
ticity while preserving the required QoS which can be provided for the process level or
even the service level. The platform ensures the process elasticity by allowing the lease
and release of VMs whenever needed and its stability by allowing the migration of a
service deployed in one VM to another one. Figure 3.1 illustrates that ViePEP has five
essential entities, i.e., client, BPMS VM, Backend VM, service repository, and shared

3.2. Models and mechanisms of elasticity 29

memory. So, the client models his service-based process using a modeling API and
optionally defines SLAs that provided the QoS requirements . The BPMS VM is the
central component of ViePEP. It offers ViePEP core functionalities from receiving pro-
cess requests, scheduling them according to given deadlines, and computing the amount
of required resources based on an implicit predictive elasticity strategy for predicting
future resources demands from historical data published in the shared memory allowing
the reasoner component to decide on what action should be performed, i.e., lease a VM,
release a VM or move a running service to another VM, allowing then the horizontal
scaling.

Figure 3.1: ViePEP architecture overview [Hoenisch 2014]

In [Ali-Eldin 2012], Ali-Eldin et al. proposed two adaptive horizontal elasticity
controllers that control cloud services elasticity by adding and removing VMs whenever
needed to preserve QoS requirements, i.e., service capacity. The authors first proposed
to model cloud services using queuing theory to allow the estimation of the future
service load. Then, using the service model, the authors created two adaptive proactive
elasticity controllers that base their decisions on the history of service load (cf., Figure
3.2). These proactive controllers have been used to build an hybrid elasticity controller
that consists of two controllers, one for deciding scale-out actions while the other for
deciding scale-in actions. This hybrid controller is constructed to use both reactive and
proactive controllers to dynamically change the number of VMs allocated to a cloud
service. While the proactive controller made its decision based on the workload history,
the reactive controller makes elasticity decisions based on the current workload.

In their work [Loff 2014], Loff et Garcia proposed a generic elasticity controller for
cloud applications, named Vadara, that transparently connects and abstracts differ-
ent existing cloud providers and enables to use different elasticity strategies defined

30 State of the Art

Figure 3.2: Horizontal Elasticity Controller Model[Ali-Eldin 2012]

in unified manner. Vadara designed based on an elasticity model for horizontal scal-
ing allowing a cloud application running in a cloud provider to scale out/in when the
controller detects any under-provisioning/over-provisioning of resources based on their
usage such as CPU utilisation. The authors have proposed in their work to decouple
elasticity strategies from their controller allowing then the use of different strategies
for deciding whether to lease or release cloud provider’s resources. In order to connect
Vadara to a particular cloud provider and allow the management of cloud applications
elasticity, an extension of Vadara abstract components should be provided according to
the cloud provider specification. As shown in Figure 3.3, Vadara is composed of four
main components and a repository component that stores any valuable information
needed by the other components. The central component of Vadara is the core compo-
nent which is responsible on configuring and initializing the other components including
the cloud provider extensions. The monitor component is responsible on collecting, ag-
gregating and sending monitoring metrics to the decider component to analyse them
and decide on the appropriate elasticity actions that are therefore communicated to
the scaler component. The scaler in Vadara is responsible on forwarding the received
elasticity actions requests to providers scaling services in order to execute them.

A self-trained elasticity controller, called OnlineElastMan, has been proposed in
[Liu 2016] for managing cloud-based storage systems elasticity. It has been defined to
automatically train and evolve itself while serving workload. This self training allows
the controller to update its control model that is used to make elasticity decisions
for adding/removing servers to/from the underlying storage system to guarantee the
required QoS, i.e., required level of percentile latency. As illustrated in Figure 3.4,
OnlineElastMan is composed of (i) a elasticity controller, (ii) an online model training

3.2. Models and mechanisms of elasticity 31

Figure 3.3: Vadara architecture overview [Loff 2014]

module, and (iii) optionally a workload prediction module that allows to predict in
advance the future system workload based on patterns found in the current workload
using an algorithm based on the regression trees. The elasticity controller is responsible
of making scaling decisions for adding or removing servers/VMs for the underlying
storage system by analysing the predicted future workload received from the workload
prediction module and the multi-dimensional performance model sent by the online
model training module. The latter is designed as an online model that automatically
evolves and updates periodically using SVM (Support vector machine) model training
technique to adapt to execution environment changes.

In their work [Farokhi 2016], Farokhi et al. have proposed a hybrid elasticity ap-
proach that uses control theory to synthesize a controller, named hybrid memory con-
troller, for vertical memory elasticity of cloud applications. The controller is designed
following a Monitoring, Analysis, Planning and Execution (MAPE) loop for autonomic
computing [IBM 2005]. As shown in Figure 3.5, the monitoring phase consists in gath-
ering the application- and VM- level real time performance information, i.e., the mean
response time and the average memory utilisation, periodically using sensors. Then,
during the analysis phase, the memory controller computes from the gathered informa-
tion, which are used as decision making criteria, the amount of memory required by
the application in order to meet its target performance. The strategy logic used in the

32 State of the Art

Figure 3.4: The architecture of OnlineElastMan [Liu 2016]

decision making is hard-coded in the controller. Therefore, during the final phases (i.e.,
planning and execution), the actuator is invoked by the controller to either increase or
decrease the allocated memory of the VM hosting the application at runtime according
to the required memory previously computed in order to preserve the required level of
the application performance, i.e., response time.

Figure 3.5: The architecture of the hybrid memory controller[Farokhi 2016]

Another work tackled the problem of memory elasticity of VMs has been proposed
in [Moltó 2016]. The authors introduced a framework, named CloudVAMP (Cloud
Virtual machine Automatic Memory Procurement), for monitoring VMs and adjusting
their allocated memory to the memory requirements of their running applications us-
ing a cloud vertical elasticity controller/manager. This framework is proposed to be
integrated with a Cloud Management Platform (CMP), to provide automatic vertical
elasticity featuring live migration to prevent physical machine overloading. The ar-

3.2. Models and mechanisms of elasticity 33

chitecture of CloudVAMP as depicted in Figure 3.6 consists of three components: (1)
a component named Cloud Vertical Elasticity Manager (CVEM) that runs alongside
a CMP to obtain the monitoring information regarding the memory usage of all the
VMs and analyse the amount of memory needed by the VMs according to an elastic-
ity strategy, implemented in CloudVAMP, in order to dynamically update the memory
allocated to each of them; (2) a component named Memory Reporter (MR) which is
used to periodically report the free, used memory in the VMs to a monitoring system;
and (3) a component named Memory Over-subscription Granter (MOG) which is used
to inform the CMP about how much memory can be oversubscribed on the hosts to be
considered by the scheduler of the CMP.

Figure 3.6: CloudVAMP architecture [Moltó 2016]

While most of the presented approaches are recently proposed, they focused on a
specific elasticity model for constructing their elasticity controllers, which only tackle
either horizontal or vertical elasticity at infrastructure scope.

34 State of the Art

3.3 Elasticity strategies description

In the last few years, researchers have started to pay attention to the importance of
providing an unified way to define elasticity strategies that tend to become very complex
and hard to develop in hard-coded way. We will present in the following the few
attempts that have been made by the research community so far.

In [Copil 2013], a domain-specific language, called Simple Yet-Beautiful Language
(SYBL), has been proposed for controlling elasticity in Cloud applications. SYBL is
designed based on the use of programming directives (which are used to control work
distribution and communication at runtime) to monitor and specify different constraints
(describing QoS requirements) and strategies at different granularities, i.e., application,
component, and programming level. So, some elasticity specifications can be provided
at the application level to describe certain global application characteristics such as
application response time. Some others can be provided either at the component level
to describe certain characteristics of a specific component, such as the average number of
IOs of the component, or at the programming level to specify the elasticity requirements
within the application component code, e.g., data accuracy, CPU usage of a portion
of code. Elasticity specifications are defined in SYBL using directives for monitoring,
constraints and strategies, as shown in Grammar 3.1, and can be specified as Java
annotations or as SYBL enriched XML descriptions. The monitoring directives are
used to assign to a variable an existing cloud metric to be monitored or a formulas
constructed from combining several cloud metrics. The constraints directives are used
to allow to specify constraints established either on a simple metric or on a complex
cloud metric determined by formulas. A constraint is used to describe the maximum
and the minimum thresholds of the monitored cloud metrics. In order to describe the
elasticity strategies, SYBL uses strategy directives that define elasticity strategies in the
form of: (1) Condition:Action that triggers the execution of an elasticity action, i.e.,
ScaleOut or ScaleIn, or a migration action, i.e., Migrate, specified in case the condition
is true, or (2) WAIT Condition that tells to wait until the condition became true. A
condition in a strategy can be expressed as logical combination of constraints defined
using constraint directives. The violation or fulfilment of those constraints can lead to
triggering particular elasticity actions.

A DSL language, named Scalability Rule Language (SRL), has been proposed in
[Kritikos 2014] for specifying scalability rules through defining event patterns of multi-
Cloud application as well as scaling actions. SRL has been inspired by OWL-Q language
for specifying QoS metrics as well as the Esper Processing Language (EPL) for specifying
event patterns. Thus, it has been constructed as a modeling language that provides
modeling concepts for defining scalability rules, events, conditions, and actions. Figure
3.7 illustrates SRL specification model for defining scalability rules, scaling policies,
and actions. A scalability rule is associated with a set of actions, an event, a set of
scaling policies that restrict how scaling actions are performed, and optionally entities
representing the user or organisation owning the rule. An action in SRL can be either

3.3. Elasticity strategies description 35

Mi := MONITORING varName = xj |
MONITORING varName = formula(x1 . . . xn)

where xj ∈, c ∈ ApplicationDescriptionInfo

Ci := CONSTRAINT p ∈ formulai(x) rel formulaj(y)

where x, y ∈ ApplicationDescriptionInfo,

rel ∈ {≤, ≥, 6=, =}

Si := STRATEGY CASE [Condition : Action] |
WAIT Condition | STOP | RESUME |
EXECUTE strategyName parameter1...n

where Condition : DefFunctions → {true, false}

Grammar 3.1: SYBL Language Constructs [Copil 2013]

a scaling action or an event creation action that represents the inability of scaling
actions to maintain the required QoS for cloud application/components. The scaling
action can be either a horizontal scaling action, i.e., scale-out and scale-in actions to
scale the number of VMs, or a vertical scaling action, i.e., scale-up and scale-down
actions, to scale VM’s resources. The execution of these actions are triggered by the
occurrence of an event. The latter is classified in SRL as a simple event or an event
pattern representing a composition of events (simple events or other event patterns). A
simple event can be either a functional event representing a functional error, or a non
functional event representing the violation of a QoS metric that occurs when the current
value of the QoS metric exceeds its defined threshold that is provided in SRL as a metric
condition. All of these elements are the construction of a SRL conceptual model that
represents scalability rules used to ensure application/component’s elasticity. Though,
the modeling aspect of SRL makes it effortful to use and express complex rules.

Contrary to our work, an elasticity rule in SYBL and SRL is associated to one
specific component identified by its name. SBP holder cannot attach the same rule to
different tasks/services. Moreover, these languages don’t use symbolic constants and
embed rather constant values directly in rule specifications what makes rule definitions
and maintenance difficult.

Another work has been presented in [Zabolotnyi 2015] where the authors proposed

36 State of the Art

Figure 3.7: SRL Modeling Constructs - Scalability Rules Specification [Kritikos 2014]

a declarative domain-specific language, called SPEEDL, for specifying scaling policies
for applications deployed in IaaS clouds. SPEEDL allows to define scaling policies as
a set of event-condition-action (ECA) rules for resource management as well as task
mapping. A scaling policy in SPEEDL can be seen as a 2-tuple TP =< TM,RM >

where TM denotes a set of task management rules and RM denotes a set of resource
management rules. The top level of SPEEDL grammar for defining scaling policy is
given in Grammar 3.2. The user is allowed using SPEEDL to describe a scaling policy by
providing a sequence of task management and/or resource management rules followed
by optionally a validation statement that allows to check the consistency of rules, i.e.,
internal rule validation, and a terminal statement. Rules are of four types: scheduling
and migration rules for task management, and scale-up and scale-down rules for resource
management. Resource management rules are used to manage the adding and removing
of VMs to/from the managed application according to the workload change to meet the
application QoS requirements. This happens through performing scale-up action for
adding VMs and scale-down for releasing them. On the other hand, task management

3.4. Elasticity strategies evaluation 37

rules are used in SPEEDL to map tasks to resources through either task scheduling or
task migration. Task scheduling represents the mapping of a new task to a resource while
task migration consists on arranging and moving tasks from one resource to another in
order to maintain overall system stability.

〈ScalingPolicy〉 ::= 〈SPConigElements〉

〈SPConfigElements〉 ::= 〈Rule〉 〈SPConfigElements〉
| 〈Validation〉 〈SPTerminalStatement〉
| 〈SPTerminalStatement〉

〈SPTerminalStatement〉 ::= ’build ’

〈Rule〉 ::= 〈ScaleUpRule〉
| 〈ScaleDownRule〉
| 〈SchedulingRule〉
| 〈MigrationRule〉

Grammar 3.2: General SPEEDL Language Specification [Zabolotnyi 2015]

A part from language related aspects; these works don’t take into consideration
fundamental characteristics of service-based processes, which make them unsuitable for
defining elasticity strategies for elastic SBPs. Indeed, the executions of process instances
are scattered over a set of services related to each other according to the process control
flow. First, these services may have different resource requirements and have thereafter
different elastic behavior. Second, due to task/service dependencies prescribed by the
control flow an elasticity strategy of a given service may need to refer to other related
services’ states. It is not clear how current approaches can expand their local analysis
of the monitored information to have a more global view.

3.4 Elasticity strategies evaluation

To the best of our knowledge, few works were interested in the evaluation of elasticity
strategies.

In [Copil 2015], Copil et al. have proposed a framework, named ADVISE (evAlu-
ating clouD serVIce elaSticity bEhavior), for the evaluation of Cloud service elasticity
behavior. It has been designed based on a learning process and a clustering-based
evaluation process that allows to determine at runtime the expected elasticity behavior
of Cloud service. ADVISE can be used to improve the quality of elasticity controller
decisions as well as to evaluate different elasticity control processes (i.e., elasticity en-
forcement plans composed actions to be applied to enforce a service/component elastic-

38 State of the Art

ity) and determine the most appropriate one for the service/component in a particular
situation. As shown in Figure 3.8, the learning process receives periodically current
information about the metrics that might have influence on the Cloud service behavior
such as service structure and workload, deployment strategies, the control processes
enforced and the resource used by the service, etc. Then, it transforms them to multi-
dimensional points to detect and evaluate the expected elasticity behavior. ADVICE
is designed to be integrated with elasticity controllers allowing evaluating at runtime
elasticity control processes for their elasticity capabilities.

Figure 3.8: Modeling cloud service behavior process [Copil 2015]

In [Naskos 2015b], Naskos et al. proposed a formal model for quantitative analy-
sis of horizontal elasticity at the infrastructure scope using Markov Decision Processes
(MDPs). The model has been defined to formally control at runtime the adding and
removing of VMs to/from the managed system. Figure 3.9 shows a MDP model that is
represented as a set of states and the enabled elasticity actions in each state. A state in
the model corresponds to the number of VMs provisioned for the application. A tran-
sition is connecting a source state to a target state which corresponds to the execution
of an enabled action (i.e., adding/removing of VMs or doing nothing). The transitions
in the model are mapped to a probability representing the possibility of meeting the
response latency threshold when applying a specific action based on the future incom-
ing load and the collected logs. Based on MDP models, the authors have proposed
continuous online verification in order to execute specific elasticity actions. This is
done by dynamically instantiate MDPs at runtime according to the current workload
and environment conditions and verifying them using a model checker for provision-
ing/deprovisioning of cloud resources. This approach allows the runtime evaluation of
different elasticity strategies for horizontal scaling in terms of maximizing the system
utility (i.e., avoiding over-provisioning).

However, despite the usefulness of runtime approaches in improving the used elastic-
ity strategies, the effectiveness of the latter have to be guaranteed before putting them
in use in real cloud environments to prevent any suspicious elasticity behavior that can
be detected during the strategies design time.

Suleiman et al. have proposed in [Suleiman 2013] an analytical model, using queuing
theory, to study the effects of elasticity strategies on the performance of multi-tier ap-
plications (more particularly three-tier applications) deployed on cloud infrastructures.

3.4. Elasticity strategies evaluation 39

Figure 3.9: Markov Decision Process (MDP) model overview [Naskos 2015b]

Particularly, they studied the impact of changing the threshold values, used by the
elasticity strategy, on application performance. The proposed model allows application
owners to evaluate different thresholds-based elasticity strategies and choose the most
effective one for their applications. The authors claim that their model enables the
application owners to determine approximately the values of CPU utilization, response
time of the application, and the number of servers needed to handle their application
workload. Figure 3.10 illustrates the authors’ model for three-tier applications architec-
ture using queuing theory. Each tier is assumed to be deployed on separate servers on
a public cloud infrastructure. Each server in a tier is represented as a queue. The first
tier, i.e., the web server, acts as a load balancer which balances the incoming requests
between application servers in the second tier. To serve a request, an application server
sends a set of queries to the database server. The authors focused in their work on
modeling the elasticity of the application tier. So, they modelled the application tier
as an M/M/m queue where m is a variable representing the number of servers and the
requests arrival is represented as a Poisson process. The model has a set of parameters
defined for a particular time interval. These parameters are used to approximate the
average CPU utilization and the mean application’s response time during a time inter-
val. Based on their model, the authors proposed two elasticity algorithms that simulate
scale-out and scale-in logic for horizontal scaling based on CPU utilization. The scale-
out and scale-in algorithms compare the value of the estimated CPU utilization to the
given CPU utilization threshold in order to decide to perform elasticity actions on the
cloud infrastructures.

In [Amziani 2015],the author proposed an approach for ensuring and evaluating
SBPs elasticity in the cloud by defining: (i) a formal model representing the deployment
model of SBPs associated with two elasticity mechanisms (Duplication/Consolidation)

40 State of the Art

Figure 3.10: The analytical model for elasticity evaluation [Suleiman 2013]

for horizontal scaling that allow to add/remove service’s copies in order to preserve some
QoS requirements (process/service level) and (ii) an elasticity controller that is used
to ensure SBPs elasticity through applying the defined elasticity mechanisms according
to a given elasticity strategy and allows to evaluate different elasticity strategies. The
formal model for SBP elasticity has been modelled based on Petri nets to describe
their composed services and the relationship between them without considering the
distinguish characteristics of services requests. Using this formal model, the authors
have defined and formalized the elasticity operations representing the duplication and
consolidation mechanisms. The duplication operation is defined to ensure that only
overloaded services are duplicated while the consolidation operation is defined to prevent
the over-provisioning of services. These operations are the basis for constructing the
elasticity controller which is modelled as a high-level petri net as shown in Figure 3.11.

Figure 3.11: High-level petri net model of the elasticity controller for evaluating SBPs
elasticity [Amziani 2015]

The high-level petri net model of the controller contains one place of type net system

3.5. Synthesis of Related Work 41

representing the SBP petri net model. It is composed of four transitions representing
the main actions, i.e., calls transfer (Router), the elapse of time (Time elapse), the du-
plication of an overloaded service (Duplication) and the consolidation of an underused
service (Consolidation), that the controller could perform on the SBP petri net model
and makes it evolve over time. Each transition is guarded by a condition that decides
when, where and how to perform the action. The provided conditions and their asso-
ciated actions represent a specific elasticity strategy. Based on its formal aspect, the
controller is able to evaluate the effectiveness of different elasticity strategies, described
for horizontal scaling, before using them in the cloud.

In [Evangelidis 2018], Evangelidis et al. proposed an approach based on performance
modeling and formal verification to provide performance guarantees on auto-scaling
strategies that describe rules for scaling-out and scaling-in cloud-based applications.
The application performance is modelled as a probabilistic model using a discrete-time
Markov chain (DTCM) in which the model’s states represent the performance infor-
mation (i.e., CPU utilisation and/or response time) required to capture the impact of
the auto-scaling strategy on QoS (i.e., CPU utilisation and/or response time) while the
transitions between states capture the probability of changing from a state to another
particular state when applying scale-out or scale-in actions. The authors have proposed
to used a clustering algorithm, i.e., k-means, to initialize their model from the CPU
utilisation and response time traces gathered from running the application on different
number of VMs rented from either Amazon EC2 or Microsoft Azure. The number of
generated clusters for a single run of k-means algorithm is considered as the number of
possible states to which the application can go when a scaling action occurs. Based on
the probabilistic model, the verification process start by passing an auto-scaling strat-
egy or a set of strategies to verify some defined properties such as checking whether the
cloud application will end up in a state where the QoS requirements (i.e., maximum
CPU utilisation and maximum response time) will be violated. Despite the importance
of providing formal verification to guarantee QoS requirements with respect to a given
strategy, the proposed verification approach is not suitable and could not be applied
for SBPs in which QoS requirements could be provided for different levels (i.e., process,
service and request level). To the best of our knowledge, existing model checkers are
not applicable for formally verifying the elasticity of SBPs at service level considering
QoS requirements for requests. Moreover, the proposed approach requires application
owners to run their target application on a real cloud environment in order to be able
to evaluate the defined auto-scaling strategies.

3.5 Synthesis of Related Work

In this chapter, we proposed an overview on existing works that aim at (i) proposing
models and mechanisms for ensuring elasticity, (ii) describing elasticity strategies and
(iii) evaluating them. In this section, we synthesize the studied research works, as
illustrated in Table 3.1, based on their general characteristics and how they respond

42 State of the Art

to the challenges presented in Chapter 1. For each work, we highlight the following
characteristics :

1. Target : represents the kind of applications for which the proposed solution is
designed, e.g., a simple cloud application/service, a SBP etc.;

2. Phase : indicates in which phase of system life-cycle the proposed solution can
be used. We distinguish two main phases : (i) design phase and (ii) execution
phase (equivalent to enactment phase in business process life-cycle);

3. QoS requirement level : QoS requirements can be specified for the solution’s
target at different granularity levels. This characteristic indicates the different
levels at which the solution allows QoS requirements to be specified;

4. Elasticity Capability : different elasticity capabilities can be considered by the
solution: "Horizontal", "Vertical", "Hybrid" or "Manual";

5. Level of decoupling : indicates whether the solution decouples the elasticity
information from the elasticity controller allowing different elasticity information
to be considered (provided) and at which level the decoupling is made. We distin-
guish two levels of decoupling : (i) decoupling elasticity strategies from elasticity
controller (ES/EC), (ii) decoupling between elasticity strategies, elasticity model
and elasticity controller (ES/EM/EC). The value ’-’ indicates the absence of de-
coupling which means that elasticity information is hard-coded in the controller,
if exists;

6. Support : indicates whether a comprehensive support system is provided by the
solution.

3.5. Synthesis of Related Work 43

S
tu
di
ed

so
lu
ti
on

s
T
ar
ge
t

P
ha
se

Q
oS

re
qu
ir
em

en
t

E
la
st
ic
it
y

L
ev
el

of
S
up

po
rt

le
ve
l

C
ap
ab
il
it
y

de
co
up

li
n
g

M
od
el
s
an

d
M
ec
ha
n
is
m
s
of

el
as
ti
ci
ty

[B
es
sa
i2

01
2b

,B
es
sa
i2

01
2a
]

B
us
in
es
s
pr
oc
es
s

E
xe
cu
ti
on

P
ro
ce
ss

M
an

ua
l

-
-

[H
oe
ni
sc
h
20
14
]

SB
P

E
xe
cu
ti
on

P
ro
ce
ss
/

H
or
iz
on

ta
l

-
-

Se
rv
ic
e

[A
li-
E
ld
in

20
12

]
C
lo
ud

se
rv
ic
e

E
xe
cu
ti
on

Se
rv
ic
e

H
or
iz
on

ta
l

[L
off

20
14
]

C
lo
ud

ap
pl
ic
at
io
n

E
xe
cu
ti
on

A
pp

lic
at
io
n

H
or
iz
on

ta
l

E
S/

E
C

-
[L
iu

20
16
]

St
or
ag
e
sy
st
em

E
xe
cu
ti
on

N
et
w
or
k

H
or
iz
on

ta
l

-
-

[F
ar
ok

hi
20
16
]

C
lo
ud

ap
pl
ic
at
io
n

E
xe
cu
ti
on

A
pp

lic
at
io
n

V
er
ti
ca
l

-
-

[M
ol
tó

20
16

]
C
lo
ud

ap
pl
ic
at
io
n

E
xe
cu
ti
on

A
pp

lic
at
io
n

V
er
ti
ca
l

-
-

E
la
st
ic
it
y
st
ra
te
gi
es

de
sc
ri
pt
io
n

[C
op

il
20
13
]

C
lo
ud

ap
pl
ic
at
io
n

D
es
ig
n

A
pp

lic
at
io
n/

H
or
iz
on

ta
l

E
S/

E
C

-
C
om

po
ne
nt
/

P
ro
gr
am

m
in
g

[K
ri
ti
ko
s
20
14
]

C
lo
ud

ap
pl
ic
at
io
n

D
es
ig
n

A
pp

lic
at
io
n/

H
or
iz
on

ta
l

E
S/

E
C

√
C
om

po
ne
nt

V
er
ti
ca
l

[Z
ab

ol
ot
ny

i2
01
5]

C
lo
ud

ap
pl
ic
at
io
n

D
es
ig
n

A
pp

lic
at
io
n

H
or
iz
on

ta
l

E
S/

E
C

√

E
la
st
ic
it
y
st
ra
te
gi
es

E
va
lu
at
io
n

[C
op

il
20
15
]

C
lo
ud

se
rv
ic
e

E
xe
cu
ti
on

-
C
on

tr
ol
le
r’
s

-
-

ca
pa

bi
lit
ie
s

[N
as
ko
s
20
15
b]

C
lo
ud

sy
st
em

E
xe
cu
ti
on

-
H
or
iz
on

ta
l

-
-

[S
ul
ei
m
an

20
13

]
C
lo
ud

ap
pl
ic
at
io
n

D
es
ig
n

A
pp

lic
at
io
n

H
or
iz
on

ta
l

-
-

[A
m
zi
an

i2
01
5]

SB
P

D
es
ig
n

Se
rv
ic
e

H
or
iz
on

ta
l

E
S/

E
C

-
[E
va
ng

el
id
is

20
18
]

C
lo
ud

ap
pl
ic
at
io
n

D
es
ig
n

A
pp

lic
at
io
n

H
or
iz
on

ta
l

E
S/

E
C

-

T
ab

le
3.
1:

Sy
nt
he
si
s
of

R
el
at
ed

W
or
k.

44 State of the Art

In the light of the aforementioned works and their synthesis in Table 3.1, it is
noticeable that even with the remarkable literature works and efforts that have been
made during the recent years in order to provide efficient elastic systems, there is still
lack of supports that can be characterized by being comprehensive, granular (in terms
of supporting QoS requirements) and generic, especially for SBPs. The related work
limitations regarding our objective can be summarized as follows :

• Granularity : Even though some of the studied approaches [Hoenisch 2014,
Copil 2013, Kritikos 2014] have tried specifying QoS requirements (e.g, the defined
thresholds for QoS metrics) at different granularity levels, none of them have
considered the request level, i.e., distinguishing between requests requirements.
In fact, all of them have assumed that QoS related requirements are the same
for all requests. However, enactment requests of a SBP are different and require
therefore different amount of resources. Especially when dealing with data-aware
SBPs, some requests can be more data-intense than others, which could make a
huge influence on the QoS if we handle them in the same manner.

• Genericity : Except the work of [Copil 2015] that detects the elasticity capabil-
ities of the control system (e.g., elasticity controller) at runtime to evaluate the
effect of the used elasticity strategy during the application execution in the cloud,
all of the proposed approaches have been designed according to a specific elastic-
ity model restricting the definition and use of elasticity strategies to a particular
constant set of actions. Though some authors have proposed to decouple elasticity
strategies from the controller in order to generalize the use of their systems, they
are still tied to a specific elasticity model, therefore to particular elasticity capa-
bilities and QoS metrics. None of them have considered the decoupling between
elasticity strategies, elasticity model and elasticity controller (ES/EM/EC).

• Comprehensive : Our last findings concerns the absence of user-friendly sup-
ports for defining and evaluating elasticity strategies. Some authors [Kritikos 2014,
Zabolotnyi 2015] have indicated providing users with a support to facilitate the
definition of their elasticity strategies using the proposed DSL. However, none of
the studied solutions for evaluating elasticity strategies have been designed with
a way to facilitate their use by IT manager or cloud system designer.

3.6 Conclusion

In this chapter, we presented an overview of the existing works on different aspects
related to elasticity models/mechanisms and elasticity strategies. It is worthy to say
that some works could have been presented for more than one area such as the work of
[Amziani 2015] which provided an attempt for elasticity strategy evaluation and propos-
ing elasticity mechanisms for horizontal scaling. We started this chapter by discussing
recently proposed works that propose models and mechanisms for ensuring systems

3.6. Conclusion 45

elasticity. Then, we studied the languages that have been proposed to facilitate the def-
inition of elasticity strategies. Thereafter, we investigated how researchers have tackled
the problem of evaluating elasticity strategies. Table 3.1 presents an illustrative pic-
ture to show the limitations of the studied works regarding our research objective. We
start presenting in detail our contributions in the next chapters. In Chapter 4, we will
propose a formal elasticity approach for data-aware SBPs allowing the evaluation of
elasticity strategies before using them in the cloud. The approach is composed of a
formal model for describing elastic execution environments for SBPs while considering
the distinguish requirements for services requests, and elasticity mechanisms/capabil-
ities for hybrid scaling. In Chapter 5, we will present two domain-specific languages
for describing elasticity models and elasticity strategies. Thereafter, we will propose an
end-to-end framework for evaluating elasticity strategies in Chapter 6.

CHAPTER

4 Modeling of Data-aware
Elastic SBPs

Contents
4.1 Introduction . 47

4.2 Preliminaries . 48

4.2.1 Basic notions . 48

4.2.2 Petri nets . 49

4.3 Formal Modeling of data-based SBP 52

4.3.1 Structural modeling . 52

4.3.2 Behavior Modeling . 55

4.4 Elasticity Operations . 58

4.4.1 Duplication Operator . 58

4.4.2 Consolidation Operator . 62

4.5 Conclusion . 63

4.1 Introduction

In this chapter, we propose a data-aware formal model that describes the elastic exe-
cution environment of SBPs. The execution environment of a given elastic SBP can be
seen as a network, of service engines (refer to containers such as Docker [Merkel 2014],
micro-container [Yangui 2011]) isomorphic to the SBP model. The SBP instance (re-
quest) execution is routed over several services (execution) engines that match each of
the SBP component services via routers which represent resources that provide mes-
sage format transformations and routing. The execution environment structure of a
SBP evolves over time according to requests load by adding/removing service engine

48 Modeling of Data-aware Elastic SBPs

copies to meet its QoS requirements (e.g., maximum response time). The copies of a ser-
vice engine are related to a load balancer service to balance the incoming load between
them. In our data-aware formal model, we describe the characteristics of services engines
composing an execution environment of a SBP and their requests. Such a model allows
users distinguishing between different requests requirements when defining elasticity
strategies. Furthermore, our model formalizes elasticity mechanisms for hybrid scaling
which allows adding/removing service engine copies with different configurations. The
use of hybrid scaling method allows to customize the provided resources according to
service’s requests characteristics. Applying the defined elasticity mechanisms on the
formal model according to a specific elasticity strategy changes its structure and status
allowing the evaluation of the elasticity strategy and ensuring its effectiveness before
using it in real Cloud environment.

This chapter is organized as follows: Section 4.2 presents some basic mathematical
notations and petri net related concepts used in the remainder of this chapter. In
Section 4.3, we introduce our approach for data-aware modeling of elastic SBPs. Then,
we propose elasticity mechanisms for ensuring hybrid elasticity of SBPs at service level
(cf., Section 4.4).

4.2 Preliminaries

Before presenting our formal model, we present a simplified definition for some used
notions throughout in this chapter, namely sets, multi-sets, and high-level petri nets.

4.2.1 Basic notions

In this section, we introduce the basic notations, for sets and multi-sets. A set is defined
as follows:

Definition 1 (Set) A set S is an infinite collection of elements listed between braces,
e.g. , S = {a, b, c, d}. The empty set is denoted by ∅. ‖S‖ denotes the set’s size, i.e., the
number of elements in the set S. For example, ‖S‖ = 4. P(S) denotes the power set of
S which is the set of all subsets of S, including the empty set and S itself. For example
P(S) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c},
{a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}}.

Three operations are defined over sets, namely, union, intersection and difference.
Let S1 = {a, b, c} and S2 = {b, c, d} be two sets. The union of S1 and S2 is a set of
elements which are in S1, in S2, or both. S1 ∪ S2 denotes the union of the two sets. For
example S1 ∪ S2 = {a, b, c, d}. The intersection of S1 and S2 is a set of elements which
are in both S1 and S2. S1 ∩ S2 denotes the intersection of the two sets. For example,
S1 ∩ S2 = {b, c}. The difference between S1 and S2 is a set of elements which are in
S1 and not in S2. S1 \ S2 denotes the difference between the two sets. For example S1
\ S2 = {a}.

4.2. Preliminaries 49

A multi-set is a generalization of a set. We define it as follows:

Definition 2 (Multi-set) A multi-set m over a set S is a function that maps each
element s ∈ S into a non-negative integer N representing the number of appearances
(coefficient) of s in the multi-set M. We denote by m(s) the number of appearances of
s in m. The element s is a member of a multi-set m iff ∀s ∈ S : s ∈ m ⇔ m(s) > 0.
SMS denotes the set of all multi-sets over S. The empty multi-set is denoted by ∅S. A
multi-set m is usually represented by the formal sum notation as follows:

m =
∑
s∈S

m(s) ′s

An example of a multi-set m over S = {a, b} is m = (2’a + 1’b).

The intersection and union operations defined over sets can be extended to multi-
sets. Let’s m1 = (1’a + 1’b) and m2 = (2’a + 1’c) be two multi-sets over S = {a, b, c}.
The intersection ofm1 andm2 is a multi-setm3 where for all s ∈ S: m3(s) = min(m1(s),
m2(s)). For example (1’a + 1’b) ∩ (2’a + 1’c) = (1’a). The union of m1 and m2 is a
multi-set m3 where for all s ∈ S: m3(s) = max(m1(s), m2(s)). For example (1’a + 1’b)
∪ (2’a + 1’c) = (2’a + 1’b + 1’c).

4.2.2 Petri nets

Petri nets [Murata 1989] are formal models used to describe concurrent distributed
systems. They are divided into low-level Petri Nets and high-level Petri Nets. Low-level
Petri Nets, simply called Petri Nets or Place/Transition nets, have been widely used to
model, analyse and verify business processes [van der Aalst 1998, van der Aalst 2011]
for their mathematical foundation which allows to apply various analysis techniques.
A Petri net is considered as a bipartite directed graphs with four types of objects, i.e.,
places (represented with circles), transitions (represented with rectangles), directed arcs
connecting either places to transitions or transitions to places, and tokens (represented
with black dots) (cf., Figure 4.1(a)). A Petri net is defined as follows.

Definition 3 A petri net is defined as 5-tuple SN = (P, T, Pre, Post, M0) where:

• P = {P1, P2, . . . , Pn} is a set of places;

• T = {T1, T2, . . . , Tm} is a set of transitions;

• Pre: P × T → N is a function indicating the input arcs from places to transitions;

• Post: T × P → N is a function indicating the output arcs from transitions to
places;

• M0 is an initial marking.

50 Modeling of Data-aware Elastic SBPs

(a) (b)

Figure 4.1: Simple examples of (a) a classic petri net and (b) a high-level petri net

A petri net structure is denoted by N = (P, T, Pre, Post) without the initial marking.
The petri net system can be denoted by SN = (N, M0).

High-Level Petri Nets have been proposed to extend low-level petri nets by intro-
ducing higher-level concepts, such as representing tokens by complex data structure,
and using expressions to annotate net elements (i.e., places, transitions, and arcs)
[Jensen 2009]. They have been widely used for modeling and simulating engineering and
scientific problems with complex structures. Colored Petri nets and Timed Coloured
Petri nets represent popular classes of high-level Petri nets. Their main advantage over
other Petri nets classes is that tokens involved in Timed/Untimed Colored Petri nets
are distinguishable by their attached data values called colors, so, each token has a set
of attributes characterising it. In addition to data values, tokens in Timed Colored
Petri nets have also timing information attached to them allowing to model and vali-
date real-time systems. So, each token can carry a second value along with its color,
called a timestamp. Figure 4.1(b) illustrates an example of a Timed-Colored Petri net
composed of a transition and two places of type DATA×INT. One of the places contains
four tokens representing its marking where two of token have a data value d1 ∈ DATA
and a timestamp t1. A marking of a place in Timed-Colored Petri nets is a timed
multi-set. A timed multi-set has been proposed as an extension for a multi-set.

A timed multi-set tm over a non-empty set S specifies the elements in the multi-set
over S together with their number of appearances and their timestamps. An element
in a timed multi-set tm is often represented as tm(s, t)′s : t where s is an element of S,
t is a timestamps and tm(s, t) is the number of appearances of s with the timesptamps
t. So, the timed multi-set tm can be viewed as a function that determines the number
of appearances for each pair (s, t) and it is represented as a summation of its elements
tm(s, t)′s : t. STMS denotes the set of all timed multi-sets over S.

Definition 4 (Timed Multi-set) Let S be a non-empty set. A timed multi-set tm
over S is a function that maps each element (s,t) from S×N into a non-negative integer
N representing the number of appearances (coefficient) of (s,t) in the timed multi-set tm.

4.2. Preliminaries 51

The number of appearances tm(s,.) of an element s ∈ S is the number of times that s
appears with some timestamp t in tm, i.e., tm(s, .) =

∑
t∈T

tm(s, t). The element s is a

member of a timed multi-set tm iff ∀s ∈ S : s ∈ tm ⇔ tm(s, .) > 0. STMS denotes the
set of all timed multi-sets over S. The empty timed multi-set is denoted by ∅S. We often
represent the timed multi-set tm using the formal sum notation as follows:

tm =
∑
s∈S

∑
t∈T

tm(s, t) ′s : t

Example 1 Let’s consider a color set C = {a, b, c, . . .}, the timed multi-sets (3’a:3),
(1’b:3 + 1’d:5), (1’a:0 + 2’b:5 + 3’c:3 + 4’d:10) and ∅C over C are members of CTMS.

Definition 5 (Timed Multi-set addition) Let tm1 and tm2 be two timed multi-sets
over a set S. The addition of tm1 and tm2, noted tm1 +++ tm2, is computed by adding
for each element (s,t) its coefficient tm1(s, t) in tm1 and its coefficient tm2(s, t) in tm2,
i.e.,

tm1 + + + tm2 =
∑

(s,t)∈tm1∪tm2

(tm1(s, t) + tm2(s, t))’s:t

Definition 6 (Timed Multi-set inclusion) Let tm1 and tm2 be two timed multi-sets
over a set S. The tm1 is a sub-timed multi-set of or equal to tm2, noted tm1 j tm2, iff
each element (s,t) of tm1 is also a member of tm2 and its coefficient tm1(s, t) in tm1

is less than or equal to its coefficient tm2(s, t) in tm2, i.e., ∀ (s,t) ∈ tm1, tm1(s, t) ≤
tm2(s, t).

Definition 7 (Timed Multi-set comparison) Let tm1 and tm2 be two timed multi-
sets over a set S. The tm1 is smaller than or equal to tm2, noted tm1 ≪= tm2, iff (1)

the number of appearances of each element s in tm1 is less than or equal to the number
of appearances of the element s in tm2, i.e., ∀ s ∈ tm1: tm1(s, .) ≤ tm2(s, .), and (2)

the largest timestamp t1 of the element s in tm1 is smaller than or equal to the largest
timestamp t2 of the element s in tm2, i.e., ∀ (s,t1) ∈ tm1 ∃ (s,t2) ∈ tm2: t1 ≤ t2.

Definition 8 (Timed Multi-set subtraction) Let tm1 and tm2 be two timed multi-
sets over a set S. The subtraction of tm1 from tm2, noted tm2 −−− tm1, is computed
when tm1 ≪= tm2 by removing tm1(s, .) occurrences of the element s in tm1 from the
occurrences of s in tm2 that have the largest timestamps, i.e., the oldest elements (s,t)
in tm2 are removed first for each element s in tm1.

A formal definition of Timed-Colored Petri nets is given as follows. EXPR is used
to define an expression which can be a function, a variable, a color constant, or an
empty expression denoted by ∅.

Definition 9 (Timed-Colored Petri net) A Timed-Colored Petri net is formally
defined as a nine-tuple STCN= (Σ, P, T, σ, V, G, Pre, Post, M0) where:

52 Modeling of Data-aware Elastic SBPs

• Σ a set of types. Each type corresponds to a set of colors.

• P = {P1, P2, . . . , Pn} is a set of places;

• T = {T1, T2, . . . , Tm} is a set of transitions;

• σ: P → Σ is a function that assigns a color set to each place in P.

• V: a set of typed variables such that for all v ∈ V : Type(v) ∈ Σ .

• G: T → EXPR is a guard function that assigns a boolean expression to each
transition Ti to control the flow of tokens passed by the transition.

• Pre: P × T→ EXPR in an input arc expression. An empty expression ∅ indicates
the absence of an arc from a place Pi to a transition Ti.

• Post: T × P → EXPR is an output arc expression. An empty expression ∅
indicates the absence of an arc from a transition Ti to a place Pi.

• M0 is an initial marking that maps each place Pi ∈ P into a timed multi-set of
tokens in σ(Pi)TMS → ΣTMS.

A Timed-Colored Petri net structure is denoted by TCN = (Σ, P, T, σ, V, G, Pre,
Post) without the initial marking. The Timed-Colored Petri net system can be denoted
by STCN = (TCN, M0).

4.3 Formal Modeling of data-based SBP

In the following sections, we present our formal model for describing, the structure and
the behavior of elastic execution environments for SBPs.

4.3.1 Structural modeling

Our model is based on High-Level Petri Nets [Jensen 1991] to describe the service en-
gines, hosting services in a SBP, and their requests, by allowing distinguishing between
them, which makes it possible to define more sophisticated elasticity strategies using
different elasticity indicators. The high-level concepts introducted in high-level petri
net make the description of the elements of our execution environment of SBPs possi-
ble. Thus, our model, named Time Colored-Service based Process (TC-SBP) petri net
model, is composed of a place denoting either a service engine or a load balancer, a
transition denoting a router and a token denoting a service request/instance which may
carry a data value represented by a token color.

A service (engine) place is characterised by a capacity indicating how much data the
service engine can process simultaneously, a processing speed, and a function denoting
the time complexity of the corresponding hosted service which allows to estimate the

4.3. Formal Modeling of data-based SBP 53

processing time required by the service to handle a given request. Also, it can be spec-
ified either as an elastic service engine or not. So, if the service engine is considered as
an elastic one, it is allowed to have many copies of it hosting the same service related to
each other by an equivalence relation and connected to a load balancer. A load balancer
place, aka ’buffer place’, is characterized by a capacity property representing its queue
length. In addition, a temporal information can be provided to a buffer place as well
as a service engine place to specify when a request should become outdated. A service
request which is represented as a token in our model is characterized by a data size, a
belonging category which might represents a tenant or defined according to the data
size, and a state indicating the request progress inside the service engine place which
can be either in waiting state, under-processing or finished. These properties repre-
sent the request/token’s data value. A request might have also a processing/waiting
time representing its age in a place. A data value with an age for a request/token is
called timed token color. Each place in our model can hold many tokens representing
its marking. So, the tokens distribution in our TC-SBP Petri net is called TC-SBP
marking (cf., Section 4.3.2)). The marking is dynamic and changes over time when
requests/tokens move from service to service in the SBP until the end of the process. A
transition is used as a router to connect places in our model to allow transferring tokens
between them according to the behavioral specification of the SBP. Finally, places and
transitions are connected through arcs that allow to modify the characteristics of tokens
when they are "transferred" from one place to another using expressions on them.

In the following, we introduce the definition of our TC-SBP petri net model. Given
an expression e ∈ EXPR, Var(e) is used to indicate the set of variables appearing in e.

Definition 10 (TC-SBP Petri Net model) A Time Colored-Service based Process
(TC-SBP) petri net model is a Petri net N = < Σ, P, T, σ, Capacity, Speed, Elastic,
V, C, G, Pre, Post, ≡P , ≡T , I > where:

• Σ: a set of types. Each type corresponds to a set of colors which may be attached
to one of places.

• P = S ∪ B a set of places where S and B represent respectively a set of service
(engine) places and a set of buffer places corresponding to load balancer services.

• T: a set of transitions connecting places.

• σ: P → Σ is a function that assigns a color set to each place in P.

• Capacity: P → N is a function that assigns a natural integer to each place repre-
senting its capacity.

• Speed: S → N is a function that assigns a natural integer to each service place
representing the number of instructions that can be processed per time unit.

• Elastic: S → BOOLEAN is a function that indicates if a service (engine) place
is an elastic one or not.

54 Modeling of Data-aware Elastic SBPs

• V: a set of typed variables such that forall v ∈ V : Type(v) ∈ Σ .

• C: S→ EXPR is a complexity function that assigns an expression to each service
place. The expression is used to estimate the execution time of a request in a
service engine.

• G: T → EXPR is a guard function that assigns a boolean expression to each
transition tr to control the flow of tokens passed by the transition.

• Pre: P × T→ EXPR in an input arc expression. An empty expression ∅ indicates
the absence of a connection between a place p and a transition t through an input
arc.

• Post: T × P → EXPR is an output arc expression. An empty expression ∅
indicates the absence of a connection between a place p and a transition t through
an output arc.

• ≡P ⊆ P × P: represents an equivalence relation over P that identifies the set of
service’s copies.

• ≡T ⊆ T × T: represents an equivalence relation over T that identifies the set of
transition’s copies.

• I: P → I is an assignment of timing requirement to each place in P to indicate
the staying time interval for a token. A token that stays in a place from more than
the upper bound of its time interval is considered as outdated. I represents the set
of time intervals defined by I::= [a, a]|[a, b]|[a,∞[where a, b ∈ N and a < b.

For a place p and a transition tr we give the following notations:

• [p]≡P = {p’ | (p,p’) ∈ ≡P}

• [t]≡T = {t’ | (t,t’) ∈ ≡T}

• p• = {t ∈ T | Pre(p, t) 6= ∅}

• •p = {t ∈ T | Post(t, p) 6= ∅}

• t• = {p ∈ P | Post(t, p) 6= ∅}

• •t = {p ∈ P |Pre(p, t) 6= ∅}

• (p•)• =
⋃
t∈p•

t•

• •(•p) =
⋃
t∈•p

(•t)

• ([p]•≡P
)• =

⋃
p′∈[p]≡P

(p′•)•

4.3. Formal Modeling of data-based SBP 55

• •(•[p]≡P) =
⋃

p′∈[p]≡P

(•(•p′))

• V ar(t) = {vi | vi ∈ G(t) ∨ vi ∈ V ar(Pre(., t)) ∪ V ar(Post(t, .))

Definition 11 (Buffer place) A buffer place in a TC-SBP Petri Net model is a place
bp ∈ B where all its related places are equivalent, i.e., iff ∀ p’ ∈ (bp•)• : (bp•)• =
[p′]≡P.

Definition 12 (Well-formed TC-SBP Petri Net model) A TC-SBP Petri Net model
is called well-formed iff:

1. each set of equivalent places is preceded by only one buffer place in B, if [p]≡P 6=
{p} then •(•[p]≡P) = {bp} ∧ bp is a buffer place in B,

2. each variable in a guard function of a transition has a type in Σ, i.e., ∀ t ∈ T, ∀
v ∈ V ar(G(t)), Type(v) ∈ Σ,

3. each arc expression between a place p and a transition tr has the type of the place
p and each variable in the arc expression has a type in Σ.

• ∀ p ∈ P, ∀ t ∈ T, iff Pre(p, t) 6= ∅: Type(Pre(p, t)) = σ(p)TMS ∧ ∀ v ∈
V ar(Pre(p, t)), Type(v) ∈ Σ,

• ∀ p ∈ P, ∀ t ∈ T, iff Post(t, p) 6= ∅: Type(Post(t, p)) = σ(p)TMS ∧ ∀ v ∈
V ar(Post(p, t)), Type(v) ∈ Σ,

4. each variable in an output arc expression of a transition tr appears in at least one
of its input arcs expressions, i.e., ∀ t ∈ T ∀ p ∈ t•, Var(Post(t,p)) ⊆ Var(Pre(.,t))
with Var(Pre(.,t)) = ∪p′∈•t Var(Pre(p’,t)).

4.3.2 Behavior Modeling

In order to define our TC-SBP marking, we use the so-called Timed Multi-set presented
in [Jensen 2009] in which elements are specified with their number of appearances and
their timestamps. An element in a timed multi-set represents the data value of a
request and its timestamps represents the request age (precessing/waiting time). In the
following we present the definition of TC-SBP marking.

Definition 13 (TC-SBP marking) Let N be TC-SBP petri net model. A marking
M on N is a function that represents each place as a timed multi-set of tokens matching
the type of the place, i.e., M(p) ∈ σ(p)TMS. The marking is also extended to equivalent
classes, i.e., M([p]) = +++

∑
p′∈[p]M(p′). The set of all markings over N is denoted by

M(N).

56 Modeling of Data-aware Elastic SBPs

Example 2 Let D be a set of colors representing the data values of tokens, and let
tmA=(1’d1:0 + 2’d3:5 + 3’d2:3) be a timed multi-set over D. The timed multi-set tmA

denotes the marking of the place A in the TC-SBP petri net model. It indicates that
A contains one token with data value d1 and having an age equal to 0, two tokens with
data value d3 and have been in the place for 5 time units, and three tokens with data
value d2 and an age equal to 3.

Definition 14 (TC-SBP net system) A Time Colored-Service based Process (TC-
SBP) net system is a pair S = 〈N,M〉 where N is a TC-SBP Petri Net model and M is
one of its marking. The marking of N represents all the distributions of requests over
the set of services composing the SBP and the set of load balancers while a TC-SBP net
system models a particular distribution of requests.

As stated above, a token models a service request carrying a data value and having
an age. The data value is represented by a triplet (c, s, t) where c represents a request
category, s represents a request size, and t represents its state. A request might have
one of the following states: waiting (0), under-processing (1) or finished (2). A request
in a buffer place is always considered in a waiting state. When a request gets in a service
place, its state will be either waiting or under-processing depending on the fullness of
the service engine, i.e., if it has some capacity left to be used by the current request.
Each request stays in under-processing state for a certain amount of time determined
by the complexity function of the service and its processing speed given the data size
of the request. After spending the amount of time needed to process the request, its
state changes to finished indicating its availability to be transferred to the next services
in the process. A function called Finished is used to provide if a given token has
been processed in the service engine. Therefore, a token can be considered either as:
Available or Unavailable, depending on its state and its age. The token (d, a) is available
in a place p under a marking M if it is in finished state and its age a is within the time
interval [t1, t2] of the place p, i.e., (d, a) ∈ M(p) ∧ a ∈ [t1, t2]p. It is considered an
unavailable token either when its age is greater than the upper bound of the place time
interval or when its processing has not been started/finished yet.

Definition 15 (Available/Unavailable marking) Let M be a marking and p be a
place. An available marking (resp. unavailable marking) is a function Avail: σ(p)TMS →
σ(p)TMS (resp. Unavail) that returns a sub-timed multiset of tokens from the timed
multi-set M(p) such that the age of tokens is within the time boundary of the place p
and their state is finished. , i.e., Avail(M(p)) j M(p) ∧ ∀(d, a) ∈ Avail(M(p)) : a ∈
I(p)∧Finished((d, a)) (resp. Unavail(M(p)) jM(p)∧∀(d, a) ∈ Unavail(M(p)) : a 6∈
I(p) ∨ ¬Finished((d, a))).

The available marking, returned by the function Avail, is used for enabling tran-
sitions in the set T in the TC-SBP net system S=〈N,M〉 that have to be fired in the
markingM . The firing of transitions changes the net system S to S′ by taking available

4.3. Formal Modeling of data-based SBP 57

tokens from the input places of transitions and adding them to their output places which
changes the marking M to M ′. Thus, by firing a transition t, tokens from the available
marking of the input places of t that verify the guard expression G(t) and match the
type of the output places of t will be transferred to the corresponding output places.

Definition 16 (Binding transition) Let t be a transition. A binding b of t is a
function that associates each variable v in Var(t) to a value b(v) such that b(v) ∈
Type(v). We write a a binding as: b = 〈v1 = val1, v2 = val2, . . . , vn = valn〉, where vi
is a variable in Var(t) and vali is the bounded value to vi. The set of all bindings for a
transition t is denoted B(t).

The result of evaluating the guard expression G(t) of a transition t in a binding b
can be denoted as G(t)〈b〉. Similarly, we denote by Pre(p, t)〈b〉 (resp. Post(t, p)〈b〉) the
result of the evaluation of the expression Pre(p,t) (resp. Post(t,p)) of the arc connecting
the place p to the transition tr in the binding b. Pre(p, t)〈b〉 (resp. Post(t, p)〈b〉) is a
timed multiset over σ(p).

Definition 17 (Fireable transition) Given a TC-SBP net system S = 〈N,M〉 and
a transition t, we say that a transition t is fireable in the marking M, noted by M[t〉b iff
we can find a binding b such that the following properties hold true:

1. G(t)〈b〉 = true,

2. ∀p ∈• t, Pre(p, t)〈b〉≪= Avail(M(p)).

A class of transitions is fireable in M, M [[t]〉b, iff ∃ t′ ∈ [t] : M [t′〉b

Definition 18 (Firing transition) Let M be a marking and t be a transition, the
firing of t using a binding b changes the marking M to M ′ s.t. ∀ p ∈ P : M’(p) =
Unavail(M(p))+++[(Avail(M(p))−−−Pre(p, t)〈b〉)+++Post(t, p)〈b〉]. We denote
the firing byM [t〉bM’. The transition notation is extend to classes usingM [[t]〉bM’ where
M’ ∈ {M”|∃t′ ∈ [t] : M [t′〉bM”}.

M’(p) =
{
Unavail(M(p)) + + + [Avail(M(p))−−− Pre(p, t)〈b〉] iff Pre(p, t) 6= ∅
Unavail(M(p)) + + + [Avail(M(p)) + + + Post(t, p)〈b〉] iff Post(t, p) 6= ∅

Example 3 Let’s take the example of SBP presented in Section 1.3 to illustrate our TC-
SBP net system. Figure 4.2 represents the corresponding TC-SBP Net system of SBP
for MER. Each place in the petri net model is annotated with its type, its time complexity
function C, its capacity, its processing speed, its time interval I, the marking M for no
empty places and whether the place is elastic or not. The accepted token format for the
places is of type CAT×PAIR×INT×INT where CAT is a set of categories which contains
three categories c1, c2 and c3 respectively for the small, medium and large sequence files
(request), PAIR represents a couple of integer values (N, L) for the number of sequences
in the file and the length of sequences, INTxINT represents the state and the age of the

58 Modeling of Data-aware Elastic SBPs

Figure 4.2: TC-SBP petri net system of MER process

token. For example, the service place S2.1 corresponding to the service S2 in Figure
1.2, is of time complexity O(N2×L+N×L2). We assume that its corresponding service
engine has a capacity 6×105 (quantity of data that the service engine can process) and
can process 105 instructions per time unit and it considers any request that has been in
it for more than 2440 time units as an outdated request. We assume that at time t1 the
service engine associated to the place S2.1 holds four requests: one waiting request (c1,
(20,80), 0) of category c1 with data size (20,80) and an age equal to 3, three under-
processing requests with data value (c2, (1000,200), 1) and an age 20.

We assume in our example that, after a period of time, certain requests will overcome
the maximum response time leading to loss of QoS in some services. For the clarity
of the example, we will focus specially on service S2.1 to illustrate the application of
Duplication/Consolidation operations that we present in the following section.

4.4 Elasticity Operations

An execution environment of a SBP evolves over time (changes its structure) according
to requests load by adding/removing service engine copies in order to meet its QoS
requirements (e.g., maximum response time). Elasticity operations enable acquiring
and releasing resources. Elasticity strategies govern the application of these operations.

In our work, elasticity operations operate on service and not on the entire process
level. That means these operations can be applied on component services separately as
dictated by the used strategy. The initial execution environment contains one service
engine for each service involved in the SBP. In the following, we present the Duplication
and Consolidation operators enabling to implement the infrastructure elasticity.

4.4.1 Duplication Operator

The duplication operator D(S,p, [δ, θ, η]) allows to create a new copy of a service
engine in a TC-SBP net system. The created copy might have a new configuration, i.e.

4.4. Elasticity Operations 59

a new request category δ, a new capacity θ and/or a new processing speed η. Thus
the duplication operator takes as input (i) a TC-SBP net system S = 〈N,M〉 that will
be changed to a new TC-SBP net system S’ = 〈N ′,M ′〉 by applying the operator, (ii)
a place p representing the service engine to be duplicated, and (iii) optionally a new
service engine configuration [δ, θ, η].

The duplication of p is performed either by connecting (i) two places pcδθη and bp to
the current net where the first place is the new copy of p with a color set δ, a capacity
θ and a processing speed η, and the latter is a buffer place in B to be shared between
p and pcδθη if this is the first duplication of the initial service engine, or (ii) by adding
only the new copy pcδθη otherwise.

Definition 19 (Duplication Operator) Let S = 〈N,M〉 be a TC-SBP net system,
p be a place in S and [δ, θ, η] be a new configuration. The duplication operator D(S,p, [
delta, θ, η]) changes the status of the TC-SBP net system S to a new TC-SBP net system
S’ = 〈N ′,M ′〉 where:

• Σ′ = Σ

• P’ = S’ ∪ B’ with S’ = S ∪ {pcδθη} and B’ = B ∪ {bp} iff | [p]≡P |= 1

• T’ = T ∪ T" with

T" =

(i) {t, t′ | t is a new transition ∧ t′ = η(t)}

∪ {tc | t ∈ p• ∧ tc = η(t)} if | [p]≡P |= 1

(ii) {tc | t ∈ (•p ∪ p•) ∧ tc = η(t)} otherwise

where η(t) generates a new copy of t which is not in T.

• σ′: P’ → Σ′ with σ′(p’) = σ(p’) for all p’ ∈ P and σ′(pcδθη) = δ.

• Capacity’: P’→ N with Capacity’(p’) = Capacity(p’) for all p’ ∈ P and Capacity’(pcδθη)
= θ.

• Speed’: S’ → N with Speed’(p’) = Speed(p’) for all p’ ∈ S and Speed’(pcδθη) = η.

• Elastic’: S’ → BOOLEAN with Elastic’(p’) = Elastic(p’) for all p’ ∈ S and
Elastic’(pcδθη) = Elastic(p).

• V’ = V .

• C′: S’ → EXPR with C′(p’) = C(p’) for all p’ in S and C′(pcδθ) = C(p)

• G′: T’ → EXPR with G′(t’)=G(t’) for all t’ ∈ T and G′(tc) = G(t) | t ∈ T ∧ tc ∈
T” ∧ tc = n−1(t)

• Pre’: P’ × T’ → EXPR

• Post’: T’ × P’ → EXPR

60 Modeling of Data-aware Elastic SBPs

• ≡P ′⊆ P ′×P ′ with ≡P ′=≡P ∪{(p, pcδθ)}. The place p and its copy are equivalent.

• ≡T ′⊆ T ′ × T ′ with ≡T ′=≡T ∪{(t, tc)|tc ∈ T” ∧ tc = n−1(t)}. Each transition is
equivalent to its copy.

• I ′: P’ → I with I ′(p’) = I(p’) for all p’ ∈ P and I ′(pcδθ) = I(p).

• M’: a marking that maps each place p’∈ P’ into a timed multi-set of tokens in
σ(p′)TMS → ΣTMS with

M’(p’) =
{
M(p′) if p′ 6= pcδθ ∧ ¬(p′ = bp∧ | [p]≡P |= 1)

∅σ(p′) otherwise

The Pre’ (respectively Post’) functions are defined as follow:

Pre’(p’,t’) =

Pre(p′, t′) if p′ ∈ P ∧ t′ ∈ T

Pre(p′, t) if t ∈ T

∧ t′ ∈ (T ′ \ T)

∧ t′ ∈ [t]≡T ′

∧ p′ ∈ (P \ {p})
Pre(p, t) if t ∈ T

∧ t′ ∈ (T ′ \ T)

∧ t′ ∈ [t]≡T ′

∧ p′ = pcδθ
x if p′ = bp

∧ | [p]≡P | = 1

∧ t′ ∈ (T ′ \ T)

∧[t′]≡′T ∩ T = ∅
∅ otherwise

4.4. Elasticity Operations 61

Figure 4.3: Application of Duplication operation on service engines S2.1 and S6.2.1 of
MER process

Post’(t’,p’) =

Post(t′, p′) if p′ ∈ P \ {p}
∧ t′ ∈ T

Post(t, p′) if t ∈ T

∧ t′ ∈ (T ′ \ T)
∧ t′ ∈ [t]≡T ′

∧ p′ ∈ (P \ {p})
∧ p′ �∈ [p]≡′

P

Post(t′, p) if t′ ∈ T

∧ | [p]≡P | = 1

∧ p′ = bp

Post(t, p) if t ∈ T

∧ t′ ∈ (T ′ \ T)
∧ t′ ∈ [t]≡T ′

∧ | [p]≡P | �= 1

∧ p′ = pcδθ
x if (p′ = p ∨ p′ = pcδθ)

∧ | [p]≡P | = 1

∧ t′ ∈ (T ′ \ T)
∧ [t′]≡′

T
∩ T = ∅

∅ otherwise
In the following, we present an illustrative example for applying this operator.

Example 4 Let’s take the TC-SBP net system state presented in Figure 4.2. We as-
sume that after some period of time the request of category c1 in service engine S2.1 has
been waiting for too long which led it to overcome the maximum response time defined
as QoS requirement. Using an elasticity strategy for hybrid scaling, the service S2.1 is

62 Modeling of Data-aware Elastic SBPs

duplicated to create a new copy of the service engine represented by the place S2.2 for
requests in the category c1 with new capacity specified for small requests. Figure 4.3 is
the resulting system for applying a duplication operation on the service S2.1 in Figure
4.2. We remark the adding of two places to the initial TC-SBP net system where the
first one is a copy of the service S2.1 contained an empty set of tokens and the other
is a buffer place B2 representing the load balancer of S2.1 with a queue length equal
to 6. At the same time, the duplication operation is also applied on the service engine
S6.2.1 that we assume it has violated the specified QoS. So, the application of the opera-
tion creates a new copy of the service engine S6.2.1 and a buffer place B6.2 connecting
them. The pairs indicated in Figure 4.3, e.g., (S2.1, S2.2) and (T6.1, T6.2), represent
places or transitions connected by an equivalence relation (i.e., (S2.1, S2.2) ∈≡P and
(T6.1, T6.2) ∈≡T)

4.4.2 Consolidation Operator

The consolidation operator C(S,p,pc, bp) removes a service copy in a TC-SBP net
system. The consolidation of a copy pc of a given service engine place p is performed
either (i) by removing only the place pc from S if there will remain p and another copy,
or (ii) by removing the place pc and releasing its related buffer place bp otherwise. An
illustrative example is presented in the following.

Definition 20 (Consolidation Operator) Let S = 〈N,M〉 be a TC-SBP net system
and let p, pc, bp, be places in N with (p,pc) ∈ ≡P ∧ p 6= pc and bp is a buffer place in
B shared between p and pc. The consolidation operator C(S,p,pc, bp) changes the status
of the TC-SBP net system S to a new TC-SBP net system S’=〈N ′,M ′〉 where:

• Σ′ = Σ

• P’ = S’ ∪ B’ with S’ = S \ {pc} and B’ = B \ {bp} iff | [p]≡P |= 2

• T’ = T \ T" with

T" =
{

(pc)• ∪ [•pc] if | [p]≡P |= 2

(pc)• ∪• pc otherwise

• σ’: P’ → Σ′ with σ’(p’) = σ(p’) for all p’ ∈ P’

• Capacity’: P’ → N with Capacity’(p’) = Capacity(p’) for all p’ ∈ P’

• Speed’: S’ → N with Speed’(p’) = Speed(p’) for all p’ ∈ S’

• Elastic’: S’ → BOOLEAN with Elastic’(p’) = Elastic(p’) for all p’ ∈ S and
Elastic’(pcδθη) = Elastic(p).

• V’ = V

• C’: S’ → EXPR with C’(p’) = C(p’) for all p’ ∈ S’

4.5. Conclusion 63

• G′: T’ → EXPR with G′(t’) = G(t’) for all t’ ∈ T’

• Pre’: P’ × T’ → EXPR

• Post’: T’ × P’ → EXPR

• ≡P ′⊆ P ′ × P ′ with ≡P ′=≡P \{(p, pc)}.

• ≡T ′⊆ T ′ × T ′ with ≡T ′=≡T \{(t, tc)|tc ∈ T”}.

• I ′: P’ → I with I ′(p’) = I(p’) for all p’ ∈ P’

• M’: a marking that maps each place p’∈ P’ into a timed multi-set of tokens in
σ(p′)TMS → ΣTMS with:

M’(p’) =

M(p) + + +M(pc) + + +M(bp) if p′ = p

∧ | [p]≡P |= 2

M(p) + + +M(pc) if p′ = p

M(p′) otherwise

The Pre’ (respectively Post’) functions are defined as follow:

Post’(t’,p’)=

Post(t′, p′) if p′ ∈ P ′ \ {p}

∧ t′ ∈ T ′

Post(t′, bp) if t′ ∈ T ′ ∧ p′ = p

Pre’(p’,t’) = Pre(p’,t’) | p′ ∈ P ′ ∧ t′ ∈ T ′

Example 5 Figure 4.4(b) illustrates the consolidation of the service S2.1 by releasing
its copy S2.2 along with their associated load balancer (i.e., B2) to change the state of
the net system from the state in Figure 4.4(a) to the state presented in Figure 4.4(b).
The red section in the Figure 4.4(a) represents the removed components when the con-
solidation operation is applied and the blue arc is the added component that reconnects
the transition t1.1 to the service place S2.1. Before removing the buffer place B2, the
requests that it contains are transferred from B2 to the service place S2.1 in which they
will be processed.

4.5 Conclusion

In this chapter, we presented a formal model, based on timed-colored Petri net, for
describing elastic execution environments of SBPs. Contrary to similar work, our model
enables (i) the description of service engines characteristics that allows the simulation
of processing data-based requests, (ii) the description of requests characteristics which
allows them to be distinguished from each other, and (ii) the adding of a load balance to

64 Modeling of Data-aware Elastic SBPs

(a
)

(b
)

F
ig
ur
e
4.
4:

A
pp

lic
at
io
n
of

C
on

so
lid

at
io
n
op

er
at
io
n
on

se
rv
ic
e
en
gi
ne

S2
.1

of
M
E
R

pr
oc
es
s

4.5. Conclusion 65

balance the load between several service copies. Our model allowed thereafter defining
new elasticity operations such as hybrid scaling and considering additional metrics when
defining elasticity strategies.

We tackle in the next chapter the problem of defining elasticity strategies for SBPs
by proposing two linked domain-specific language (DSL) that allow describing different
strategies for different elasticity models.

CHAPTER

5 Description of Elasticity
Strategies for Elastic
SBPs

Contents
5.1 Introduction . 67

5.2 Domain specific language . 68

5.3 Languages design . 69

5.4 STRATModel: Elasticity Model Description Language 69

5.4.1 STARTModel Overview . 70

5.4.2 STRATModel Grammar . 70

5.4.3 StratModel core . 78

5.5 STRAT: Elasticity Strategies Description Language 81

5.5.1 Strat Overview . 81

5.5.2 Strat Grammar . 81

5.5.3 Strat Core . 85

5.6 Conclusion . 86

5.1 Introduction

Elasticity strategies are policies that are used to manage elasticity by deciding when,
where and how to use elasticity capabilities/actions (e.g., adding or removing resources)
that are defined in the elasticity model of the managed system. Usually, an elastic
system is managed by a controller that implements a specific elasticity model and uses
an elasticity strategy to control the system adjustment decisions. When defining a

68 Description of Elasticity Strategies for Elastic SBPs

strategy, only the elasticity capabilities that could be performed by the controller of the
elastic system should be allowed.

In this chapter, we propose two domain-specific languages for elastic SBPs that al-
low together to describe different elasticity strategies for different elasticity models. Our
first language, named StratModel, is a descriptive language for describing elasticity
models. It permits users to define different elasticity models, with different elasticity
capabilities/actions and customized monitoring metrics, and to generate their associ-
ated elasticity controllers in order to use them to evaluate elasticity strategies on a SBP
model. Our second language, named Strat, is a rule-based language for describing
elasticity strategies. It is proposed relied on StratModel to define the elasticity model
on which its grammar will be adapted. This chapter is organized as follows. In Sec-
tion 5.2, we introduce the concept of domain-specific language. Then, we present our
languages design in Section 5.3. Thereafter, we describe the details of StratModel
language in Section 5.4, followed by the details of Strat language in Section 5.5.

5.2 Domain specific language

A Domain Specific language (DSL) is defined as a small and usually declarative com-
puter language that provides, through appropriate abstractions and notations, expres-
sive power for a particular problem domain contrary to a General Purpose Language
(GPL) which is broadly applicable for any kind of software problem, like Java, C++
[Deursen 2000]. DSLs have been around for almost as long as computing has existed.
Some examples of DSLs are APT that was developed in 1957-1958 for generating in-
structions for numerically controlled machine tools [Ross 1978]; BNF which is a syntax
specification formalism developed in 1959 [Backus 1959]; SQL, a DSL for handling per-
sistent data developed in the early 1970s; VHDL that has been first introduced in 1983
as a VHSIC Hardware Description Language, and many other widely used DSLs.

The key advantages of DSLs compared to other GPLs reside in the fact that they
provide significant gains in expressiveness and ease of use for a particular problem
domain which in turn lead to gains in productivity and reduced maintenance costs
[Mernik 2005]. Usually, domain experts are not familiar with GPLs to solve their do-
main problems. So, it is more suitable for them to address their domain problems
through a DSL that represents the abstractions of their own domain knowledge. Even
for professional trained developers, using DSLs within a software development project
brings a lot of benefits like increasing flexibility, reliability, productivity, and usability as
proven through evaluating many case studies [Czarnecki 2000, Mernik 2005, Wile 2004].
In this chapter, we present two DSLs that are proposed to facilitate the description of
elasticity strategies for different elasticity models.

5.3. Languages design 69

5.3 Languages design

During designing our domain-specific language for describing elasticity strategies for
SBPs, we went from providing a language that is specified for a particular elasticity
model to a language that can be adapted to any elasticity model. At first, we proposed
a rule-based DSL named Strat that allows to define elasticity rules only for three main
actions that provide horizontal elasticity, namely, (i) duplicate that creates a new copy
of an overloaded service in order to meet its workload increase, (ii) consolidate that
releases an unnecessary copy of a service in order to meet its workload decrease, and
(iii) routing that controls the way a load of a service is routed over the set of its copies.
This was our first attempt in designing our language. However, in this way, the use
of our language will be restricted to defining strategies that will be used only by an
elasticity controller implementing such elasticity model. So, in order to make it general
enough to describe strategies for different elasticity models and allows the adding of new
possible actions, two solutions come in mind. The first solution is to provide Strat
language grammar with a constant set of actions used in the commercial cloud-solutions
and the research papers. Such solution makes the users (i.e., SBP holders) constrained
to a set of pre-defined actions and parameters and does not enable the adaptation to
new elasticity capabilities that can be provided by the community.

The second solution, that we adopt in our work, consists in designing another lan-
guage named StratModel for describing elasticity models for SBPs and relying Strat
to it. In this way, users are allowed to separately provide the description of an elasticity
model on which Strat language will be based. So, the latter will provide users with
only the elasticity capabilities defined in the elasticity model by the elasticity manager.
This solution is based on the notion of "cross-reference" to create links between the
languages. The elasticity capabilities are defined using StratModel as objects and
then their references are used in Strat language as part of its grammar. Along the
elasticity capabilities, StratModel allows users to define a set of metrics that can be
used as QoS metrics or functions called inside Strat script using their references, and
to specify the properties that the users can re-configure when applying an action accord-
ing to a Strat strategy. The links created between the two languages only constraints
the users with the order of defining their system elements. So, they have to first define
an elasticity model using StratModel on which Strat will be based and then they
can define their elasticity strategies.

In the following sections, we describe the details of StratModel language and
Strat language with their use in defining respectively the elasticity model and the
elasticity strategy of the elastic system given in Section 1.3

5.4 STRATModel: Elasticity Model Description Language

In the following, we present an overview of our StratModel language, followed by
the details of its grammar for describing elasticity models. Thereafter, we detail the

70 Description of Elasticity Strategies for Elastic SBPs

template used to generate elasticity controllers for evaluating elasticity strategies for
SBPs.

5.4.1 STARTModel Overview

StratModel language is proposed as a part of StratFram framework for evaluating
elasticity strategies for SBPs that we present in the next chapter (cf. Chapter 6). It
is designed to allow the description of elasticity models and the generation of their
corresponding elasticity controllers using a pre-defined elasticity controller template.
An elasticity model defines the ground terms and functionalities that describe SBPs
elasticity such as the elasticity actions to be undertaken, metrics to monitor to trigger
the elasticity actions and properties to access and reconfigure. Hence, it is the basis for
specifying elasticity strategies and constructing an elasticity controller that manages
and evaluates the elasticity of SBPs. An elasticity controller is used to monitor a
SBP and analyse its performance by inspecting an elasticity strategy to decide whether
some actions that might reconfigure some properties of the managed component are
needed to be applied. So, the monitoring metrics, actions, and properties are the main
compositions of an elasticity model in StratModel. A StratModel metric can be
defined as either a basic metric, i.e., obtained directly from the monitored component
property, or a composed metric. A StratModel action is defined to be applied on
a specific type of component of a SBP model, e.g., Service, and make changes on it.
StratModel is designed relying on the specification of SBP model which defines the
components of modelling elastic SBPs (cf., Chapter 4).

Describing elasticity model in StratModel depends on what kind of information
encoded in the SBP models that business process holders want to provide and manage
by the generated elasticity controller, and which type of elasticity strategies they want
to specify. Such information is required to choose either to include or exclude some
functionalities to/from the generated elasticity controller. In the following, we discuss
in more details the StratModel grammar used to define elasticity models, followed by
how the elasticity controllers are generated from the defined elasticity models.

5.4.2 STRATModel Grammar

The top-level of StratModel specification grammar is given in Grammar 5.1 using
the Backus Normal Form (BNF). StratModel documents are composed of two main
parts. The first part, i.e., the elasticity model description part, contains the definition
of the essential elements to describe an elasticity model. The second part is for defining
business process transformation states which specify the transformations that occur on
the business process model when applying some defined actions. In the following, we
will provide a detailed description of each of these parts.

5.4. STRATModel: Elasticity Model Description Language 71

〈ElasticityModel〉 ::= 〈ModelDescription〉 〈ProcessStates〉

〈ProcessStates〉 ::= 〈ProcessState〉 〈ProcessStates〉 | 〈empty〉

Grammar 5.1: General StratModel Grammar

5.4.2.1 Elasticity Model Description

As shown in Grammar 5.2, an elasticity model in StratModel is mainly composed of
two sets of statements, descriptive and functional, encapsulated in a block defined by
ElasticityModel and identified by a name.

〈ModelDescription〉 ::= ’ElasticityModel ’ 〈id〉 ’{’ 〈ModelStatements〉 ’}’

〈ModelStatements〉 ::= 〈GeneralDescription〉 〈ItemsDefinitions〉

〈ItemsDefinitions〉 ::= 〈ItemDefinition〉 〈ItemsDefinitions〉 | 〈empty〉

〈ItemDefintion〉 ::= 〈Action〉 | 〈Metric〉 | 〈Property〉

Grammar 5.2: Grammar for describing elasticity model in StratModel

The user is allowed to first describe the general aspect of an elasticity model. As
shown in Grammar 5.3, it consists on providing a reference ID with optionally a ref-
erence to the managed component. The managed component refers to a model for
elastic execution environment of a SBP described using a domain specific language
called SBP, cf. Section 6.2.2. In addition, the user can specify whether to use a default
routing mechanism or a customized one specified as a StratModel action. Depending
on whether a temporal information is a part of SBP models the business process holders
want to manage, it is essential to indicate if a timer is needed to be included in the elas-
ticity controller implementing in order to update the value of the time related attributes
in the model. Also, some elasticity strategies may need to use previously gathered data
of monitored metrics to make elasticity decisions. Such data are stored in a knowledge
base. So, the user may also indicate the use of a knowledge base and the frequency of
monitoring. Thereafter, the functional statements are provided to define the essential
elements for describing the functionalities of the elasticity controller implementing the
elasticity model. They are divided into actions to be undertaken, metrics to monitor
and properties to access and to reconfigure.

Example 6 Let’s take the elasticity model for hybrid scaling that performs two main

72 Description of Elasticity Strategies for Elastic SBPs

〈GeneralDescription〉 ::= 〈Reference〉 〈ManagedComponent〉 〈Routing〉 〈Timer〉
〈KnowledgeBase〉 〈Frequency〉

〈Reference〉 ::= ’referenceID ’ ’:’ 〈id〉

〈ManagedComponent〉 ::= ’managedComponent ’ ’:’ [SBP::SBPModel] | 〈empty〉

〈Routing〉 ::= ’routing ’ ’:’ 〈RT 〉 | 〈empty〉

〈Timer〉 ::= ’timer ’ ’:’ 〈boolean〉 | 〈empty〉

〈KnowledgeBase〉 ::= ’knowledgebase ’ ’:’ 〈Boolean〉 | 〈empty〉

〈Frequency〉 ::= ’frequency ’ ’:’ 〈int〉 | 〈empty〉

〈RT 〉 ::= ’DEFAULT’ | ’GENERATED’

Grammar 5.3: Grammar for general description of an elasticity model in StratModel

elasticity actions namely ’Duplication’ and ’Consolidation as described in Section 1.3.
We use our SBP model for molecular evolution reconstruction as the managed compo-
nent. The elasticity strategies that will be defined and used are reactive and they do not
need a knowledge base for making elasticity decisions. Listing 5.1 provides a general
description of the elasticity model named ’ElasticityModel1’.

ElasticityModel ElasticityModel1 {
referenceID : ’ElasticityModel1’
managedComponent : MERProcess
routing : DEFAULT
timer : true
knowledgebase : false
frequency : 3
...

}

Listing 5.1: Example of describing an Elasticity Model with StratModel

• Action : A StratModel action is defined by a set of statements for describing
its functionality and details that are used to generate its implementation mech-
anism. As given in Grammar 5.4, it is defined by a name, a reference ID and a
component. The latter is used to specify the type of elements on which the action
can be applied, i.e., Process, Service or Router. For instance, a Routing action
can be defined for Router component to allow to control the execution flow of

5.4. STRATModel: Elasticity Model Description Language 73

requests between SBP’s services. The keywords delay and multiple are used to
specify respectively the time delay of applying the action and whether its multiple
application is allowed.

〈Action〉 ::= ’action ’ ’:’ 〈ActionStatements〉 ’;’

〈ActionStatements〉 ::= 〈Name〉 〈Reference〉 〈Component〉 〈Delay〉 〈Multiple〉
〈Transformation〉

〈Name〉 ::= ’name ’ ’:’ 〈string〉

〈Reference〉 ::= ’referenceID ’ ’:’ 〈id〉

〈Delay〉 ::= ’delay ’ ’:’ 〈int〉 | 〈empty〉

〈Multiple〉 ::= ’multiple ’ ’:’ 〈Boolean〉 | 〈empty〉

〈Transformation〉 ::= ’cases ’ ’:’ 〈Examples〉

〈Examples〉 ::= 〈Example〉 〈Examples〉 | 〈empty〉

〈Example〉 ::= ’apply ’ ’on ’ 〈Elements〉 ’transform ’ 〈id〉 ’to ’ 〈id〉

〈Elements〉 ::= 〈string〉 ’,’ 〈Elements〉 | 〈string〉

Grammar 5.4: Grammar for describing elasticity actions in StratModel

Applying the defined action on the managed SBP model changes its structure. It
transforms it from one state to another. This transformation can be described in
StratModel as transformation cases. A transformation case is specified through
giving an example of an initial state of the SBP model and the resulting state after
applying the action (cf. Section 5.4.2.2). The idea of using examples to define the
transformations on SBP model follows the by-example paradigm [Cypher 1993]
that allows the software to drive information from a set of examples that specify
how things are done or what the user expects. The most prominent approaches for
by-example paradigm are Programming by-example [Lieberman 2001] which per-
mits to create a program from user’s actions recorded as replayable macros, and
Query by-example [Zloof 1975] which has been developed for querying database
systems by allowing end-users to provide examples of query results. These ap-
proaches allow to use examples in some way to overcome the complexity of selected
problems in the field of computer science. In our work, we argue that giving ex-
amples of transformations can be more friendly for business process holders than
providing complex formal transformations instructions. So, in StratModel, the
user is allowed to give a set of examples that describe different cases of applying
the action on specific elements.

74 Description of Elasticity Strategies for Elastic SBPs

Example 7 In the following, we provide the description of the duplication action
in the elasticity model that we have presented in Section 1.3. This action is defined
to be applied on service engines components. Its execution will be delayed by 4 time
units. There are two transformation cases. The first case is when the duplication
action will be applied for the first time on a service engine to create a new copy
and a service engine load balancer. The second case is when there already exists
more than one service copy sharing a load balancer in the process model. The
description of the action is given in Listing 5.2.

ElasticityModel ElasticityModel1 {
...
action :
name : ’Duplicate’

referenceID : ’D’
component : Service
delay : 4
cases:
apply on ’S2’ transform state1 to state2
apply on ’S2’ transform state3 to state4

;
...

}

Listing 5.2: Example of describing an action with StratModel

• Metric: A StratModel metric is identified by a name and has a low-level
reference ID. It is associated to an entity that can be a process, a service, a load
balancer or a requests. It can also be obtained for a specific group of requests by
allowing grouping and may have a defined unit of measure. A StratModel metric
can be either a basic metric obtained from a low-level property or a composite
metric whose values are defined by a mathematical expression involving other basic
or composite metrics. For example, the metric ExecutionTime is defined as a
basic metric that refers to the age of a service request. When specifying composite
metrics, expression is used to define how the value is computed. A StratModel
metric can also be obtained for a specific group of requests by indicating group as
true. The StratModel metric specification is given by Grammar 5.5 using also
the Backus Normal Form (BNF).

Example 8 Listing 5.3 illustrates the description of a metric named ’waiting-
Time’ which captures the waiting time of a request in a service. It is the subtrac-
tion of the values of two metrics: ’processingTime’ and ’executionTime’ which
refers to a request attribute named ’age’.

5.4. STRATModel: Elasticity Model Description Language 75

〈Metric〉 ::= ’metric ’ ’:’ 〈MetricStatements〉 ’;’

〈MetricStatements〉 ::= 〈Name〉 〈Reference〉 〈Entity〉 〈OnGroups〉 〈Unit〉
〈MetricExpression〉

〈Name〉 ::= ’name ’ ’:’ 〈string〉

〈Reference〉 ::= ’referenceID ’ ’:’ 〈id〉

〈Entity〉 ::= ’level ’ ’:’ 〈MetricLevel〉

〈MetricLevel〉 ::= ’Service ’ | ’LoadBalancer’ | ’Process’ | ’Request’

〈OnGroups〉 ::= ’group ’ ’:’ 〈Boolean〉 | 〈empty〉

〈Unit〉 ::= ’unit ’ ’:’ 〈string〉 | 〈empty〉

〈MetricExpression〉 ::= ’expression ’ ’:’ 〈Expression〉

〈Expression〉 ::= 〈Exp〉 〈MathOp〉 〈Expression〉 | [Metric] | 〈Double〉

〈Exp〉 ::= ’(’ 〈Expression〉 ’)’ | [Metric] | 〈Double〉

〈MathOp〉 ::= ’+’ | ’-’ | ’*’ | ’/’

Grammar 5.5: Grammar for describing metrics in StratModel

ElasticityModel ElasticityModel1 {
...
metric :
name : ’WaitingTime’

level : Request
expression : executionTime − processingTime

;
metric :

name : ’executionTime’
referenceID : ’age’
level: Request

;
...

}

Listing 5.3: Example of describing metrics with StratModel

• Property : In elasticity model, some defined actions may require to access or
modify/adjust some low-level properties of the managed SBP and its services. So,
the user has to be able to define those properties and whether they are configurable
or not. A StratModel property is primary defined by a name and a reference.

76 Description of Elasticity Strategies for Elastic SBPs

〈Property〉 ::= ’property’ ’:’ 〈PropertyStatements〉 ’;’

〈PropertyStatements〉 ::= 〈Name〉 〈Reference〉 〈Config〉

〈Name〉 ::= ’name ’ ’:’ 〈string〉

〈Reference〉 ::= ’referenceID ’ ’:’ 〈id〉

〈Config〉 ::= ’configurable’ ’:’ 〈Boolean〉

Grammar 5.6: Grammar for describing properties in StratModel

Example 9 As we indicated in our example in Section 1.3, there are two prop-
erties that are accessible and reconfigurable by the duplication action. Listing 5.4
shows how they are specified using StratModel.

ElasticityModel ElasticityModel1 {
...
property :

name : ’cap’
referenceID : ’capacity’
config : true

;
property :

name : ’cat’
referenceID : ’groups’
config : true

;
...

}

Listing 5.4: Example of describing properties with StratModel

5.4.2.2 Business process transformation state definition

As previously stated, applying an action on a SBP model transforms it from one state
to another. A transformation state represents the managed SBP model at a specific
timestamp t. It is described in a block defined by ProcessState and identified by a
name that is used to refer to the state in the action description section (cf. Grammar
5.7).

Two ways are allowed to define the state of a SBP model at timestamp t. The
first is by specifying the process and its components using specific notation. The block
defined by < SBPModel > encapsulates the process general decription, the groups
of requests allowed in the process, its services that are split into service engines and
load balancer, the routers that connect its services, and the links between services and

5.4. STRATModel: Elasticity Model Description Language 77

routers. A detailed discussion of the grammar used to describe processes in which
< SBPModel > is the enter point can be found in Section 6.2.2. The second way to
provide the SBP model description at timestamp t, is by specifying the URL of the
business process petri net model encoded in the Petri Net Markup Language (PNML).

〈ProcessState〉 ::= ’ProcessState ’ 〈id〉 ’{’ 〈ProcessDefinition〉 ’}’

〈ProcessDefinition〉 ::= 〈SBPModel〉
| ’url ’ ’:’ 〈string〉

Grammar 5.7: Grammar for defining a SBP state in StratModel

Example 10 Listing 5.5 presents two states of the transformation cases used to de-
scribe the mechanism of the duplication action. We focus on the service ’S2’ to show
how the states can be described in StratModel. The process used to describe the states
is our SBP model for molecular evolution reconstruction.

ProcessState state1 {
Process Process1 {

...
serviceEngine :
name : ’S2’
complexity : ’N∗N∗L + N∗L∗L’
groups : c1, c2, c3
capacity : 600000
...
requests : req1, req2, req3

;
...

}
...

}
ProcessState state2 {
Process Process1 {

...
serviceEngine :
name : ’S2’
complexity : ’N∗N∗L + N∗L∗L’
groups : c1, c2, c3
capacity : 600000
...
lb : LB_S2
copies : S21
requests : req1, req2, req3

;

78 Description of Elasticity Strategies for Elastic SBPs

serviceEngine :
name : ’S21’
initial : S2
complexity : ’N∗N∗L + N∗L∗L’
groups : c1
capacity : 50000
...
lb : LB_S2

;
loadBalancer :
name : ’LB_S2’
service : S2

;
...

}
...

}
...

Listing 5.5: Example of describing transformation states with StratModel

5.4.3 StratModel core

After defining an elasticity model using StratModel syntax, the corresponding elastic-
ity controller should be generated from the constructed StratModel document based
on a pre-defined template that groups the common functionalities of a controller. In or-
der to achieve this, StratModel language is provided with a set of functionalities that
constitute its core. It includes the following components: (1) a validator that allows to
check the coherence of the provided elements, (2) a scope provider, and (3) a generator
that uses a pre-defined template grouping the common functionalities of a controller to
generate an elasticity controller from a given StratModel document.

Usually, a controller is represented by a control loop to perform autonomic man-
agement of a system by allowing self-healing, self-protecting, self-configuring and self-
optimizing which gives the system the ability to manage its resources automatically and
dynamically whenever needed. This loop is named Monitor, Analyze, Plan, Execute,
and Knowledge (MAPE-K) loop. It consists in (i) harvesting monitoring data, (ii) an-
alyzing them using (optionally) a knowledge base and (iii) generating reconfiguration
actions to correct/prevent violations (self-healing and self-protecting) or to target a new
state of the system (self-configuring and self-optimizing) [Jacob 2004].

Figure 5.1 illustrates the pre-defined template used to generate elasticity controllers
from elasticity models. It is modelled using high-level petri nets [Jensen 1991] to allow
the formal evaluation of elasticity strategies on a SBP model. This template represents
the basic construction of elasticity controllers on which the generation is based. It
contains a central place of type net system, named BP , representing the managed com-
ponent and surrounded with a set of transitions for the actions that can be performed
on a SBP model (token in the place BP). The Monitor transition is used to monitor

5.4. STRATModel: Elasticity Model Description Language 79

Figure 5.1: Elasticity Controller Petri Net Model Template

the given SBP execution. It is guarded with a delay value representing the frequency
of monitoring. For example, if the Monitor transition has a value ’3’ associated to it,
it means that there are three cycles between two successive monitoring actions. The
firing of this transition adds new value for each registered metric (pre-defined metrics
or StratModel metrics) to the place KB that represents the used knowledge base in
which the history of monitoring metrics are stored. The Check transition is used to
inspect a given elasticity strategy and to check for any QoS violations. If it is indi-
cated in the elasticity model that a knowledge base is needed, a connection between the
knowledge base component (i.e., place KB) and the Check transition will be added in
the generated model of elasticity controller allowing the use of the stored information
when inspecting the elasticity strategy. The firing of this transition executes a function
named ′generateActions that generates a set of actions needed to be performed on
the SBP model and locks the entities on which the actions will be applied. The place
Actions holds those actions generated from firing the Check transition. The transition
Inv is used to introduce new requests to the SBP model from the place Seq which
stores the sequence of requests arrival. According to the elasticity model description,
two other transitions can be used (optionally) from the template. The first one is the
Routing transition which is responsible for transferring requests between services in the
SBP model. It can be omitted from the template to allow the user to use a customized
routing action defined in his/her elasticity model. The second one is the T imer tran-
sition which can be used and included in the template when the SBP model includes
temporal information. It is used to increment the clocks in the SBP model.

80 Description of Elasticity Strategies for Elastic SBPs

Figure 5.2: Example of a generated elasticity controller Petri Net Model

Given an elasticity model, the elasticity controller petri net model is generated by
enriching the pre-defined template with a new set of transitions for the defined actions.
Each action is translated to a transition where the transition’s name corresponds to
the name of the action. It can be associated with a time delay of applying the action.
The transition is enabled if there is at least one stored action in the place Actions

corresponding to the action of the transition. The reference ID of the action is used to
identify it in the place Actions. The firing of the transition applies the action mechanism
on the SBP model using the attributes of the retrieved action from the place Actions.

Example 11 Let’s take the elasticity model described in Section 1.3 and specified us-
ing StratModel. As we previously indicated, it performs two main actions namely
Duplicate and Consolidate. So, the default routing mechanism is used by the gener-
ated controller. The elasticity strategies that will be used are reactive and they do not
need a knowledge base for their elasticity decisions. Figure 5.2 illustrates the generated
elasticity controller petri net model. We added two transitions to the template named
Duplicate and Consolidate corresponding respectively to the action ’Duplicate’ and the
action ’Consolidate’ in the elasticity model. Since the used SBP model contains tem-
poral information, the T imer transition is allowed in the final controller model. Also,
the elasticity model specifies that the default routing mechanism will be used and there
is no need for a knowledge base in the analysing step (i.e., the Check transition).

5.5. STRAT: Elasticity Strategies Description Language 81

5.5 STRAT: Elasticity Strategies Description Language

After introducing our StratModel language for describing elasticity model, we present
in the following sections our DSL language for defining elasticity strategies for SBPs
that relies on elasticity models defined using StratModel.

5.5.1 Strat Overview

Elasticity Strategy Description Language (Strat for short) is a rule-based DSL for
specifying strategies governing SBP elasticity. Strat language allows users to specify
QoS requirements of a SBP at different granularity levels (i.e., process, service, and
instance level) with taking into consideration the fundamental characteristics of elastic
SBPs. An elasticity strategy is specified for/based on a specific elasticity model which
defines the elasticity capabilities/actions to be used to manage SBPs, the metrics to be
called in action’s rules and the properties that users can access and reconfigure. The
elasticity capabilities are defined using StratModel as objects and then their references
are used in Strat language as part of its grammar. Along the elasticity capabilities,
StratModel allows users to define a set of customised metrics that can be used as QoS
metrics or functions called inside Strat script using their references, and to specify
the properties that the users can reconfigure when applying an action according to a
Strat strategy. So, a StratModel script is required from the users before defining
elasticity strategies to adapt Strat to the described elasticity model.

5.5.2 Strat Grammar

The top-level of Strat specification grammar is given in Grammar 5.8 using the Backus
Normal Form (BNF). A Strat document is composed of two main sections encapsu-
lated in a block defined by the keyword ′Strategy′ (i.e., indicates the beginning of the
strategy) and identified by a name. The user is allowed to separate the rules section
identified by the keyword ′Actions′ from the definition of constants sets used by the
rules such as thresholds sets and time constrains. This separation facilitates the main-
tenance and the adjustment of strategy’s code. The latter is an optional section and is
identified by keyword ′Sets′.

The ’Sets’ section as shown in Grammar 5.9 could either be empty or consist of
several constants sets. A set can be defined as an upper or lower bound of a quality of
service metric by specifying the represented metric, which refers to a metric defined in
the provided elasticity model. It allows the specification of the invariant characteristics
and requirements of a SBP and its services, e.g., the minimum and the maximum ca-
pacity of services in a SBP, time constraint, budget for deployment a service, etc. Users
can specify these invariants hierarchically from the top-level component, e.g., a process,
to its fine-granular level, e.g., a sub-group of service’s requests. This is done by using
sets of sets which provide the hierarchical construction. So, an item in a set can be asso-
ciated either to a value or to another set specializing the item. The keyword ′Default′

82 Description of Elasticity Strategies for Elastic SBPs

〈ScalingPolicy〉 ::= ’Strategy ’ 〈name〉 ’{’ 〈Statements〉 ’}’

〈Statements〉 ::= 〈Initialization〉 〈ActionsBlock〉 | 〈ActionsBlock〉

〈Initialization〉 ::= ’Sets ’ ’:’ 〈Sets〉

〈ActionsBlock〉 ::= ’Actions ’ ’:’ 〈Actions〉

Grammar 5.8: General Strat Grammar

is used in the latter case to provide the requirement (or characteristic) of the item in
its top-level. Listing 5.6 illustrates an example of specifying the maximum execution
time for two elastic services s2 and s4 according to their groups of requests c1 and c2.
This specification allows the user to define elasticity action rules that incorporate the
characteristic of requests into the decision making.

〈Sets〉 ::= 〈Set〉 ’;’ 〈Sets〉 | 〈empty〉

〈Set〉 ::= 〈id〉 ’=’ ’{’ 〈Items〉 ’}’ 〈QoS 〉

〈QoS 〉 ::= ’as ’ 〈Bound〉 [StratModel::Metric] | 〈empty〉

〈Bound〉 ::= ’upper_bound_qos ’ | ’lower_bound_qos ’

〈Items〉 ::= 〈Item〉 ’,’ 〈Items〉 | 〈Item〉

〈Item〉 ::= 〈id〉 ’=’ 〈value〉
| 〈id〉 ’:’ ’{’ 〈Items〉 ’}’ ’Default’ 〈value〉

Grammar 5.9: Grammar of defining Sets in Strat

Strategy ...{
Sets:

max_ex = {s2:{c1=65, c2=120} Default 70,
s4:{c1=25, c2=75} Default 30}

...
Actions:

...
}

Listing 5.6: Example of defined maximum execution time Set with Strat

5.5. STRAT: Elasticity Strategies Description Language 83

〈Actions〉 ::= 〈Action〉 ’:’ 〈Rules〉 ’.’
| 〈Action〉 ’:’ 〈Rules〉 ’.’ 〈Actions〉

〈Rules〉 ::= 〈Rule〉 | 〈Rule〉 ’;’ 〈Rules〉

〈Rule〉 ::= 〈Condition〉 〈Operator〉 〈Condition〉
| 〈Condition〉

〈Action〉 ::= [StratModel::Action] ’(’ 〈id〉 〈Copies〉 〈Configuration〉 ’)’ 〈Multiple〉

〈Configuration〉 ::= ’,’ ’[’ 〈ConfigItem〉 〈ConfigItems〉 ’]’ | 〈empty〉

〈ConfigItems〉 ::= ’,’ 〈ConfigItem〉 〈ConfigItems〉 | 〈empty〉

〈ConfigItem〉 ::= [StratModel::Property] 〈ConfigOps〉 〈ItemValue〉

〈Multiple〉 ::= ’by ’ 〈int〉 | 〈empty〉

〈Copies〉 ::= ’,’ 〈id〉 〈Copies〉 | 〈empty〉

〈Operator〉 ::= ’and ’ | ’or ’

〈ConfigOps〉 ::= ’=’ | ’+=’ | ’-=’

Grammar 5.10: Grammar of specifying Actions and their Rules in Strat

Under the ’Actions’ section, elasticity mechanisms can be provided by setting a set
of rules grouped by their intended elasticity action as illustrated in Grammar 5.10. The
actions allowed in Strat are the ones specified in the given StratModel script. So,
the actions allowed in Strat change by changing the provided script. Moreover, we
provide the grammar with a syntactic validator and scope provider modules to adjust
actions parameters according to their definitions in the elasticity model by dynamically
activate and deactivate parts of syntactic definition of ’Action’. The parameters of
an action are: (1) the elements on which the action will be performed, (2) the new
configuration that will be used on the elements when applying the action, and (3) the
multiplicity of applying the action. The first two parameters are identified from the
defined cases of the action while the multiplicity of the action is allowed if the action is
defined as multiple. The configurable items used in the second parameter, i.e., the new
configuration, are referred to the properties defined in StratModel as configurable.
Each action in Strat can have one or more rules ordered according to their priority.
This means that the first provided rule for a specific action is the most priority one from
all the action’s rules, then the next one is the second most priority and so on. A Strat
rule is composed of a set of conditions connected by logical operators (i.e., and/or).

84 Description of Elasticity Strategies for Elastic SBPs

〈Condition〉 ::= 〈Boolean〉 | 〈Function〉 | 〈Comparison〉
| 〈Iteration〉 | 〈Condition〉 ’for’ 〈value〉
| ’not’ 〈Condition〉 | ’(’ 〈Rule〉 ’)’

〈Comparison〉 ::= 〈Operand〉 〈Ops〉 〈Operand〉

〈Iteration〉 ::= ’foreach ’ 〈name〉 ’in ’ 〈Sequence〉 ’:’ 〈Condition〉
| ’exists ’ 〈name〉 ’in ’ 〈Sequence〉 ’:’ 〈Condition〉

〈Sequence〉 ::= 〈Function〉 | ’{’ 〈List〉 ’}’

〈Operand〉 ::= 〈Function〉 | 〈value〉 | 〈SetOperand〉 | 〈string〉

〈Function〉 ::= 〈FunctionName〉 ’(’ 〈Parameters〉 ’)’

〈List〉 ::= 〈item〉 ’,’ 〈List〉 | 〈item〉

〈FunctionName〉 ::= [StratModel::Metric] | ’STRAT. ’ 〈id〉

〈SetOperand〉 ::= [Set] 〈QualifiedName〉

〈QualifiedName〉 ::= ’[’ 〈item〉 ’]’ 〈QualifiedName〉 | ’[’ 〈item〉 ’]’

〈Parameters〉 ::= 〈Operand〉 ’,’ 〈SetOperands〉 | 〈Operand〉

〈item〉 ::= 〈id〉 | 〈string〉

〈Ops〉 ::= ’<=’ | ’ < ’ | ’>=’ | ’>’ | ’==’ | ’!=’

Grammar 5.11: Grammar for Conditions in Strat

Conditions are the reflection of system’s state at a specific point of time. They
are split into boolean (i.e., true/false), boolean function, comparison, iteration, time-
based condition, negation, or another rule. The comparison is mathematical comparison
between two operands. A operand in Strat can be: (1) a numeric value, (2) a function
returning numeric value or a string, (3) a string, or (4) an entry in a set defined in the
′Sets′ section and referred by its name. The time-based condition allows the action
execution after some period of time or after the persistence of system’s state for some
period using the keyword ′for′ to specify that period, e.g., the rule "Duplicate(s):
true for 120 min" schedules a duplication of each elastic service s in every two hours,
i.e., "120 min". Unlike existing languages in the literature for describing elasticity
strategies, we incorporate the concept of iteration into the definition of Strat to get
a global view of the system’s state. For example, in order to determine the state of

5.5. STRAT: Elasticity Strategies Description Language 85

a service at a given time, we have to check the state of all its copies that will give us
a global view instead of a local one (i.e., for only one service’s copy). To do so, the
keywords ′foreach′ and ′exists′ operators are used to respectively express ’∀’ and ’∃’
symbols of the first-order logic. The Sequence element of an iteration represents either
a function returning a list or a constant list. A function is referred by its name which
can be either a reference to a defined StratModel metric or the name of a pre-defined
function concatenated to the keyword ′STRAT.′. The conditions specification in Strat
is given by Grammar 5.11 using the Backus Normal Form (BNF).

Example 12 We describe in Listing 5.7 how the strategy, used in our example in Sec-
tion 1.3), can be specified using our Strat language. We indicate that the set ’max_t’
contains the QoS thresholds for each service and group and associated to the metric
’executionT ime’ defined in the elasticity model ’ElasticityModel1’. The Duplicate
action is provided to allow to create a new copy for a specific group with different ca-
pacity when the requests of that group with waiting status has been waiting for a certain
amount of time. The waiting time thresholds are given in a set named ’maxw’.
Strategy Strategy1{
Sets :

max_t = {S1:{c1=12, ...} Default 195, ...}
as upper_bound_qos executionTime

min_t = {S1 = 1, ...}
...

Actions :
Duplicate(s,[cat=’c3’,cap+=600000]) :

STRAT.has_group(s, ’c3’) and
(exists req in STRAT.waitingRequests(s,’c3’) :

waitingTime(req) >= max_w[s][’c3’]) and
foreach ss in STRAT.copies(s) :

(exists req2 in STRAT.waitingRequests(ss,’c3’) :
waitingTime(req2) >= max_w[s][’c3’]) .

...
}

Listing 5.7: Describing an elasticity strategy using Strat

5.5.3 Strat Core

It groups the basic functionalities of Strat that allow the processing of Strat scripts,
validating the coherence of the given rules and applying them.

• Strat Scope provider : The scope provider is responsible for aiding users to edit
their script by providing a set of expected elements;

• Strat Validator : the validator is responsible for checking rules consistency. We
can distinguish two kinds of consistency checking: (1) intra-rule validation that
checks contradiction in each rule separately, and (2) inter-rule validation that
checks for inconsistencies between rules.

86 Description of Elasticity Strategies for Elastic SBPs

Function Description

services provides the set of services in the current
model (basic+copies)

enabled checks whether a given router is ready to
transfer requests

copies returns all the copies of a given service

Table 5.1: Examples of Strat Functions

• Strat Generator : It is a code generator for Strat language that translates
a Strat script into a GPL such as Python. The generator interacts with the
parser used by Strat to extract the sets and rules from the given script and
convert them into GPL (in our case python) code according to a strategy template.
The generated code provides mainly the methods used in the generated elasticity
controller by StratModel, namely ′check′ and ′GenerateActions′. The first one
is provided to check for elasticity rules and find whether there is at least one
rule applicable for a particular situation while the second method is called by the
elasticity controller to generate the applicable actions and their parameters.

• Strat Functions : It provides a set of pre-defined functions used to perform
certain tasks on a given business process model. Additionally, it includes the
basic functions like arithmetic functions (i.e., add, mul, sub, mod, div), pre-
defined metrics and counter function (i.e., count). Some of these functions that
can be used in defined a Strat strategy are given in table 5.1.

5.6 Conclusion

In this chapter, we proposed two linked DSLs used to allow the description of elastic-
ity strategies for different elasticity models. Our first language named StratModel is
designed to define elasticity model for business processes. StratModel enables busi-
ness process holders to define their proper elasticity models by describing customized
metrics, properties and elasticity actions. The mechanism of a defined action can be
provided through a set of examples illustrating how the action should be applying in
certain cases. It follows the by-example paradigm in generating elasticity mechanisms.
Moreover, StratModel generates customized elasticity controllers. Our Second lan-
guage named Strat is designed as an adaptive rule-based DSL for expressing elasticity
strategies for SBPs that can be customized according a given elasticity model written
using StratModel. Relying on StratModel allows Strat to define elasticity strate-
gies that describe rules for different elasticity actions using customized metrics. Besides
its link to StratModel, Strat enables the differentiation between requests with dif-
ferent QoS requirements and allows taking several (component) services status when
defining elasticity rules.

5.6. Conclusion 87

In the next chapter, we will present the overall framework for evaluating elasticity
strategies for business processes in the cloud. This framework basis its evaluation on
our formal model for SBPs elasticity and has StratModel and Strat as main building
components.

CHAPTER

6 Elasticity Strategies
Evaluation Framework

Contents
6.1 Introduction . 89

6.2 STRATFram: Elasticity Strategies Evaluation Framework for
SBPs . 90

6.2.1 StratFram overview . 90

6.2.2 SBP Language . 92

6.2.3 StratSim language . 100

6.3 Implementation and evaluation 101

6.3.1 Implementation . 102

6.3.2 Evaluation . 102

6.4 Conclusion . 109

6.1 Introduction

In the previous chapters, we first introduced our data-aware modeling of SBPs elas-
ticity using high-level petri nets which allows the evaluation of elasticity strategies for
SBPs. Then, two languages have been proposed to facilitate the description of elasticity
strategies for different elasticity models. We presented a DSL, named StratModel for
describing elasticity models and generating their corresponding elasticity controllers us-
ing a pre-defined elasticity controller template. We also presented another DSL, named
Strat, for describing elasticity strategies for SBPs based on the elasticity capabilities
provided in a specific elasticity model written in StratModel.

This chapter presents an evaluation framework, named StratFram, for describing
and evaluating elasticity strategies for SBPs using StratModel and Strat languages.

90 Elasticity Strategies Evaluation Framework

The StratFram framework enables the evaluation, through simulation, of different
elasticity strategies for different elasticity models based on our model for elastic execu-
tion environment of SBPs. It is designed based on a set of DSLs for describing different
simulation elements from the elasticity model to the simulation configuration in order
to conceal the used formal methods/systems and the implementation complexity from
users. Using StratFram, SBP holders can define (i) an elasticity model with specific
elasticity capabilities on which they want to define and evaluate their elasticity strate-
gies, (ii) a SBP model for which the elasticity strategies will be defined and evaluated,
(iii) a set of elasticity strategies based on the elasticity model and the provided SBP
model, and (iv) a simulation configuration which identifies the elements of the evalua-
tion. As results for an evaluation, StratFram provides a set of plots that allows the
analysis and the comparison of strategies.

This chapter is organized as follows. In Section 6.2, we introduce our framework
architecture. Then, we describe its components, namely, SBP language in Section
6.2.2 and StratSim language in Section 6.2.3. We chain up with the evaluation of
our framework in Section 6.3, which contains the implementation details and some
experiment results.

6.2 STRATFram: Elasticity Strategies Evaluation Frame-
work for SBPs

Elasticity strategies govern the provisioning of necessary and sufficient resources to en-
sure the agreed QoS and handle the incoming workload despite variations in enactment
requests load. Many strategies can be defined to steer SBPs elasticity. The abundance
of possible elasticity strategies requires their evaluation in order to guarantee their ef-
fectiveness before using them in real Cloud environments. In this section, we present
our elasticity strategies evaluation framework for SBPs, named StratFram.

6.2.1 StratFram overview

Figure 6.1 shows an overview of StratFram framework for evaluating elasticity strate-
gies. StratFram allows users (SBP holders) to evaluate, through simulation, elasticity
strategies for a given SBP model and under a given usage behavior based on a specific
elasticity model. As illustrated in Figure 6.1, the framework is composed of two main
parts: (1) StratFram languages, and (2) StratFram functions. The first part is com-
posed of a set of DSLs including StratModel and Strat (cf., Chapter 5) designed
to generalize the use of the framework and to facilitate the description of evaluation
elements, i.e., elasticity strategies that will be evaluated, a SBP model for which the
elasticity strategies will be defined, an elasticity model on which the elasticity strategies
will be based, and simulation configuration that specifies the needed parameters for a
simulation, while hiding the implementation complexity and the used formal method
from the users. Each language in StratFram is provided with its dedicated editor

6.2. STRATFram: Elasticity Strategies Evaluation Framework for SBPs91

Figure 6.1: StratFram architecture overview

from which the users define the evaluation elements and perform the evaluation. The
StratFram languages part is composed of four basic languages: (i) SBP language for
defining a SBP model that represents the elastic execution environment of a SBP in
the cloud, (ii) StratModel language presented in Section 5.4, (iii) Strat language
presented in Section 5.5, and (iv) StratSim language for specifying simulation proper-
ties/elements in a declarative manner and providing users with a simulation launcher for
their evaluation scenario. As we described in the previous chapter, Start language has
been designed relying on StartModel language. Other links are also made between
StratModel and SBP language, and StratSim and all the other languages. Using
StratModel, a user can (optionally) define his elasticity model for a specific SBP by
indicating the reference to an already defined SBP model using SBP as the managed
component of the elasticity model. Since it is designed to indicate the elements of an
evaluation scenario, StratSim provides users with references to the already defined el-
ements that can be used in an evaluation. Each one of these languages is provided with
a code generator that is responsible for generating a concrete implementation of the
described elements based on the formal method/system used in the second part of the
framework. The latter represents the StratFram core/engine that provides common
classes and functions used and triggered by the generated items either for processing
or profiling the SBP model. The provided classes and functions are implemented based
on the underlying used api for a specific formal method/system, e.g., SNAKES API for
defining and executing petri-nets.

92 Elasticity Strategies Evaluation Framework

In the current state of StratFram, the evaluation results are displayed as plots
showing the behavior of resource allocations for executing each elastic service in the
defined SBP model as well as the one of the overall process according to some defined
indicators for a specific elasticity strategy. In the following, we will present our SBP
language for describing elastic execution environment of SBPs based on our formal
model defined in Chapter 4, followed by the details of StratSim language for describing
simulation configurations.

6.2.2 SBP Language

SBP language is proposed to facilitate the description of elastic execution environment
of SBPs by using elements composing an elastic execution environment in the cloud.
As mentioned in Chapter 4, we argue that it is beneficial to adopt formal models to
describe elastic execution environment of SBPs which provides rigorous description
and allows formal evaluation and verification of SBPs elasticity. So, we proposed to
use petri nets to formally describe SBP models. However, allowing users to express
their models in terms of petri nets needs knowledge on petri net concepts and how
to use them for describing elastic execution environment of SBPs. To facilitate the
modeling of SBPs elasticity and the extensibility of our framework, we propose a DSL,
named SBP, for describing an elastic execution environment of SBP and generating its
corresponding SBP model according to the provided SBP generator. So, SBP language
can be seen as an interface that provides an abstract representation of SBP model
entities. By providing different SBP generators for different formal modeling techniques
or systems, we allow StratFram to be extensible and used across different systems. In
the following, we present the grammar of our SBP language.

6.2.2.1 SBP Grammar

Based on the composition of an elastic execution environment, we define the SBP gram-
mar to allow to describe SBP models using elastic execution environment components
rather than using formal notation and terminologies of the used formal method. The
top-level of SBP grammar is given in Grammar 6.1 using the Backus Normal Form
(BNF).

A SBP document/model is composed of two parts: (1) a structure description part
and (2) a marking part that corresponds to a set of requests in the process. The first
part is specified in a block defined by the keyword ′Process′ to indicate the beginning
of the SBP structure description and identified by a name. As described in the formal
model presented in Chapter 4, the structure of a SBP can be defined by four sets: (i)
a set of groups, (ii) a set of nodes where a node is either a service engine or a load
balancer, (iii) a set of routers, and (iv) a set of directed links connecting either nodes
to routers or routers to nodes. To describe a SBP, the user/SBP holder can provide
the process with a reference ID to indicate its name outside the framework and with a
descriptive text.

6.2. STRATFram: Elasticity Strategies Evaluation Framework for SBPs93

〈SBPModel〉 ::= ’Process’ 〈id〉 ’{’ 〈ProcessDescription〉 ’}’ 〈Requests〉

〈ProcessDescription〉 ::= 〈Reference〉 〈Description〉 〈Groups〉 〈Nodes〉 〈Routers〉
〈Links〉

〈Groups〉 ::= 〈Group〉 〈Groups〉 | 〈empty〉

〈Nodes〉 ::= 〈Node〉 〈Nodes〉 | 〈Node〉

〈Node〉 ::= 〈ServiceEngine〉 | 〈LoadBalancer〉

〈Routers〉 ::= 〈Router〉 〈Routers〉 | 〈empty〉

〈Links〉 ::= 〈Link〉 〈Links〉 | 〈empty〉

〈Requests〉 ::= 〈Request〉 〈Requests〉 | 〈empty〉

Grammar 6.1: General SBP Grammar

A group represents a set of requests with specific characteristics/requirements. As
illustrated in Grammar 6.2, it is described by a name which refers to a tenant, a group
of users (such as premium user, normal user, and guest user), or a group of requests
(i.e., REQUEST_DATA) according to the indicated type. The group of type REQUEST_DATA
is defined depending on the size of requests data. In order to specify the boundary of
such a group, the user is allowed in SBP to indicate the range of requests data size
by specifying the maximum size for a request to be considered as a member of the
group. This categorization of requests allows users (SBP holders) to specify different
QoS requirements for different groups and assign groups to specific service engine copies.

A service engine represents the container on which a service is hosted. A con-
tainer can be either a VM or a container like Docker [Merkel 2014] or micro-container
[Yangui 2011]. A service engine, as shown in Grammar 6.3, is described by a set of
attributes specifying its characteristics. A name is given to a service engine to identify
it inside the framework while its reference indicates its actual name or location. A
service engine can be created for a particular set of groups. So, users can associate a
set of groups to the service engine by referring to their names as given in the groups
description section. For the simulation purpose, a complexity function can be provided
for a service engine to refer to the time complexity of the hosted service and therefore
to estimate the processing time needed for handling each request. The capacity and
processing speed attributes can be given to indicate the quantity of data that can be
processed simultaneously by the service engine and how fast this processing can be
done. These processing specifications can be provided to a service with a cost which
may restrict the use of resources. The timeout attribute can be given to indicate after

94 Elasticity Strategies Evaluation Framework

〈Group〉 ::= ’group ’ ’:’ 〈GroupDescription〉 ’;’

〈GroupDescription〉 ::= 〈Name〉 〈Type〉 〈Range〉

〈Name〉 ::= ’name ’ ’:’ 〈id〉

〈Type〉 ::= ’type ’:’ 〈GroupType〉 | 〈empty〉

〈Range〉 ::= ’range ’ ’:’ 〈value〉 | 〈empty〉

〈GroupType〉 ::= ’REQUEST_DATA’ | ’REQUEST_USER’ | ’TENANT’

Grammar 6.2: Grammar for describing process groups in SBP

how much time a request should become (be considered) outdated inside the service
engine. Additionally, a service engine can be described as an elastic service engine or
not. In the first case, it may have many copies hosting the same service and connected
to a particular load balancer. So, ’initial ’, ’copies’ and ’lb’ attributes are used to refer
respectively to the original service engine copy from which the current one has been
duplicated, the list of service engine copies which are given by referring to their names,
and a reference to the load balancer node that is associated to the current service.
Moreover, the set of belonging requests can be given by referring to their identifiers in
the request description section.

After introducing the service engines composing a SBP, load balancers can be pro-
vided for the described elastic service engines to connect theirs copies and balance the
incoming load between them. As shown in Grammar 6.4, a load balancer in SBP is
primary described by a name, (optionally) a reference and an associated service engine.
It represents a service that is responsible for receiving requests and forward them to
a specific service engine copy in order to balancer the load between different copies of
the same service according to a load balancing algorithm such as Round Robin. Addi-
tionally, a load balancer may have a capacity (or a queue) representing the maximum
number of requests that can keep in its queue before forward them to their target service
engine copy. Similar to service engines, it can also have a temporal information (i.e.,
timeout) indicating when a request in the queue will be considered outdated, a set of
allowed groups referred to by their name as provided in the groups description section,
and a set of belonging requests.

In order to transfer requests between services in the SBP (either service engines or
load balancers), a router is used to connect them to each other and to take requests from
services as output and transfer them to the next services as input. For simulation pur-
pose, a router can be provided with an expression representing a condition on requests
to be transferred by it. As we may have more than one copy of a service engine, we can

6.2. STRATFram: Elasticity Strategies Evaluation Framework for SBPs95

〈ServiceEngine〉 ::= ’serviceEngine’ ’:’ 〈SEDesc〉 ’;’

〈SEDesc〉 ::= 〈Name〉 〈Reference〉 〈OriginalCopy〉 〈Container〉 〈Complexity〉
〈NodeGroups〉 〈Capacity〉 〈Speed〉 〈Elastic〉 〈Cost〉 〈TimeOut〉
〈ServiceLoadBalancer〉 〈ServiceCopies〉 〈NodeRequests〉

〈Name〉 ::= ’name ’ ’:’ 〈string〉

〈Reference〉 ::= ’referenceID ’ ’:’ 〈id〉 | 〈empty〉

〈OriginalCopy〉 ::= ’initial ’ ’:’ [ServiceEngine] | 〈empty〉

〈Container〉 ::= ’container ’ ’:’ 〈ContainerType〉 | 〈empty〉

〈Complexity〉 ::= ’complexity ’ ’:’ 〈string〉 | 〈empty〉

〈NodeGroups〉 ::= ’groups ’ ’:’ 〈SetGroups〉 | 〈empty〉

〈SetGroups〉 ::= [Group] ’,’ 〈SetGroups〉 | [Group]

〈Capacity〉 ::= ’capacity ’ ’:’ 〈Double〉 〈CapacityUnit〉 | 〈empty〉

〈Speed〉 ::= ’speed ’ ’:’ 〈Double〉 〈SpeedUnit〉 | 〈empty〉

〈elastic〉 ::= ’elastic ’ :’ 〈Boolean〉 | 〈empty〉

〈Cost〉 ::= ’cost ’ ’:’ 〈Double〉 〈CostUnit〉 | 〈empty〉

〈TimeOut〉 ::= ’timeout ’ ’:’ ’after 〈Double〉 〈TimeUnit〉 | 〈empty〉

〈ServiceLoadBalancer〉 ::= ’lb ’ ’:’ [LoadBalancer] | 〈empty〉

〈ServiceCopies〉 ::= ’copies ’ ’:’ 〈SetCopies〉 | 〈empty〉

〈SetCopies〉 ::= [ServiceEngine] ’,’ 〈SetCopies〉 | [ServiceEngine]

〈NodeRequests〉 ::= ’requests ’ ’:’ 〈SetRequests〉 | 〈empty〉

〈SetRequests〉 ::= [Request] ’,’ 〈SetRequest〉 | [Request]

Grammar 6.3: Grammar for describing ServiceEngine in SBP

96 Elasticity Strategies Evaluation Framework

〈LoadBalancer〉 ::= ’loadBalancer ’ ’:’ 〈LBDesc〉 ’;’

〈LBDesc〉 ::= 〈Name〉 〈Reference〉 〈Service〉 〈NodeGroups〉 〈Queue〉 〈TimeOut〉
〈Algorithm〉 〈NodeRequests〉

〈Name〉 ::= ’name ’ ’:’ 〈string〉

〈Reference〉 ::= ’referenceID ’ ’:’ 〈id〉 | 〈empty〉

〈Service〉 ::= ’service ’ ’:’ [ServiceEngine]

〈NodeGroups〉 ::= ’groups ’ ’:’ 〈SetGroups〉 | 〈empty〉

〈SetGroups〉 ::= [Group] ’,’ 〈SetGroups〉 | [Group]

〈Queue〉 ::= ’queue ’ ’:’ 〈Double〉 | 〈empty〉

〈TimeOut〉 ::= ’timeout ’ ’:’ 〈Double〉 〈TimeUnit〉 | 〈empty〉

〈Algorithm〉 ::= ’algorithm ’ ’:’ 〈LBAlgorithm〉 | 〈empty〉

〈NodeRequests〉 ::= ’requests ’ ’:’ 〈SetRequests〉 | 〈empty〉

〈SetRequests〉 ::= [Request] ’,’ 〈SetRequest〉 | [Request]

Grammar 6.4: Grammar for describing LoadBalancers in SBP

also have a set of routers related by equivalent relation connected to the service engine
copies. So, in the router description, the user can identify the initial router element,
from which the other copies are copied, by referring to its name. Additionally, the
router copies can be specified by referring to their name as a list. The formal grammar
for defining routers is given in Grammar 6.5.

Therefore, for routers to be able to do their function, they have to be connected
to services via input and output links. As illustrated in Grammar 6.6, an input link
connects a router to a service (either a service engine or a load balancer) and gives
requests to the latter as input. On the other hand, an output link connects a service
to a router and takes requests from the former as output. In order to describe the
changes that can be made by services on input requests, the user can provide links
with an expression that allows to modify the characteristics of requests when they are
transferred from node to node.

A request can be characterized in SBP by a set of attributes defining its static
and dynamic aspects. The static characteristics of a request are its identifier and its

6.2. STRATFram: Elasticity Strategies Evaluation Framework for SBPs97

〈Router〉 ::= ’router ’ ’:’ 〈RouterDesc〉 ’;’

〈RouterDesc〉 ::= 〈Name〉 〈OriginalRouter〉 〈Expression〉 〈RouterCopies〉

〈Name〉 ::= ’name ’ ’:’ 〈string〉

〈OriginalRouter〉 ::= ’initial ’ ’:’ [Router] | 〈empty〉

〈Expression〉 ::= ’guard ’ ’:’ 〈string〉 | 〈empty〉 〈RouterCopies〉 ::= ’copies ’ ’:’
〈SetRouters〉 | 〈empty〉

〈SetRouters〉 ::= [Router] ’,’ 〈SetRouter〉 | [Router]

Grammar 6.5: Grammar for describing process routers in SBP

〈Link〉 ::= 〈InLink〉 | 〈OutLink〉

〈InLink〉 ::= ’in ’ ’:’ [Router] ’to ’ [Node] 〈LinkExpression〉

〈OutLink〉 ::= ’out ’ ’:’ [Node] ’to ’ [Router] 〈LinkExpression〉

〈LinkExpression〉 ::= ’with ’ 〈string〉 | 〈empty〉

Grammar 6.6: Grammar for specifying links between nodes and routers in SBP

reference. The same request sent by a user traverses a set of services to complete the
final result. So, some request’s characteristics can be changed when transferred from
service to service, such as its data size and its belonging group (if the group type is
data based) which can take new values according to the output data of one service
and the input data of the next service. The request data size can be provided as a set
of tuples indicating the size of different dimension of the input data. For example, if
a request input data is a two dimensional matrix with ’x’ lines and ’y’ columns, the
user can specify using SBP its size as a tuple (x,y). Also, a request may belong to
a specific group referred by its name as defined in the groups description section and
exists a specific node, either a service engine node or a load balancer node specified by
its name. Some other request characteristics/attributes are changeable inside the node
such as the request’s age which represents the processing/waiting timeand the request’s
status which defines the request’s progress (waiting/running/finished/dead).

As shown in Grammar 6.7, more than one attribute can be specified for a request to
indicate time information. The ’age’ attribute can be provided to indicate the total wait-

98 Elasticity Strategies Evaluation Framework

ing and processing time of the request since it entered the service. The ’executionT ime’
attribute represents the processing time of a request and from which the waiting time
can be concluded while the ’totalT ime’ attribute represents the total time spent by the
request since the beginning of the process.

〈Request〉 ::= ’Request’ 〈id〉 ’{’ 〈RequestDesc〉 ’}’

〈RequestDesc〉 ::= 〈Reference〉 〈RequestNode〉 〈RequestGroup〉 〈RequestStatus〉
〈RequestAge〉 〈RequestExecutionTime〉 〈RequestTotalTime〉
〈RequestData〉

〈Reference〉 ::= ’referenceID ’ ’:’ 〈id〉 | 〈empty〉

〈RequestNode〉 ::= ’node’ ’:’ [Node]

〈RequestGroup〉 ::= ’group’ ’:’ [Group] | 〈empty〉

〈RequestStatus〉 ::= ’status’ ’:’ 〈Status〉 | 〈empty〉

〈RequestAge〉 ::= ’age ’ ’:’ 〈Double〉 〈TimeUnit〉 | 〈empty〉

〈RequestExecutionTime〉 ::= ’executionTime ’ ’:’ 〈Double〉 〈TimeUnit〉 | 〈empty〉

〈RequestTotalTime〉 ::= ’totalTime ’ ’:’ 〈Double〉 〈TimeUnit〉 | 〈empty〉

〈RequestData〉 ::= ’data ’ ’:’ 〈Tuple〉 | 〈empty〉

〈Tuple〉 ::= 〈Double〉 ’, 〈Tuple〉 | 〈Double〉

〈Status〉 ::= ’WAITING’ | ’RUNNING’ | ’FINISHED’ | ’DEAD’

Grammar 6.7: Grammar for defining Requests in SBP

Example 13 Listing 6.1 describes our SBP model, presented in Section 1.3, using SBP
language. It presents the description of a group named ’c1’ that represents a group of
small requests. The group is defined depending on the size of requests data. In our
motivating example, the requests data size is the size of a two-dimension matrix, cf.,
N ×M where N is the number of lines in the input data and M is the number of column
(i.e., the length of a sequence). The group ’c1’ is one of the groups associated to the
service engine ’S2’. This service engine is of time complexity O(N2 × L+N × L2). It
has a capacity of 6×105 (maximum quantity of request data that the service engine can
simultaneously process) and is allowed to process 105 instructions per time unit. Also,
the service engine ’S2’ considers requests that has been in it for more than 2440 time

6.2. STRATFram: Elasticity Strategies Evaluation Framework for SBPs99

units as an outdated request. Initially, ’S2’ does not need a load balancer service to
balance the incoming load. With the creation of more new service copies to serve the
increasing incoming load, a load balancer service will be integrated in the SBP model
and used as an entry point to the copies of ’S2’. So, a load balancer service named ’B2’
is specified for ’S2’ and characterized with a queue indicating how many requests it can
keep waiting before forwarding them to a specific copy of the service. The requests in
’B2’ are considered outdated after 150 time units of waiting in the queue.

Process MERProcess{
referenceID : ’MolecularEvolutionReconstruction’
group :

name : c1
type : REQUEST_DATA
range : 10000

;
...

serviceEngine :
name : ’S2’
complexity : ’N∗N∗L+N∗L∗L’
groups : c1, c2, c3
capacity : 600000
speed : 200000
elastic : true
timeout : 2440

;
loadBalancer :

name : ’B2’
service : S2
groups : c1, c2, c3
queue: 10
timeout : 150

;
...

router : name : ’T1’
...

out : S1 to R1
in : R1 to S2

...
}
Request Req1 {

referenceID : ’req1’
node : S2
group : c1
age : 0
executionTime : 0
totalTime : 0
data : 100.0,100.0

}

Listing 6.1: Example of describing an SBP Model with SBP language

100 Elasticity Strategies Evaluation Framework

6.2.2.2 SBP Core

After describing a SBP model using SBP language, the resulting script have to be
processed to generate it corresponding formal model according to the chosen technique
on which the evaluation of elasticity strategies will be performed. In order to do so,
we provide the language with some basic functionalities constituting its core/engine.
This part is composed of the three main components that can be adapted to the chosen
formal technique by providing a new implementation.

• SBP Validator : The validator is responsible for checking the coherence of the
described model structure and the correctness of the expressions provided for
routers and links. The checking of correctness is performed according to the
syntax of expressions as provided by the used tool of formal modeling technique
such as SNAKES toolkit [Pommereau 2015] for petri nets.

• SBP Scope provider : The scope provider is responsible for aiding users to edit
their SBP scripts by providing them with a set of expected elements;

• SBP Generator : The code generator in SBP language translates a SBP docu-
ment into the corresponding formal model. In the current version of StratFram,
we provide SBP language with a code generator that allows to generate a petri
net model from a SBP document/script. According to the described SBP model,
the generator chooses to generate: (i) a stateless petri net model where the re-
quests/tokens are defined as black tokens, (ii) a timed petri net model where a
request is specified with time information, or (iii) a timed colored petri net model,
as presented in Chapter 4, that presents a request with certain information such
as a belonging group, time information, and data.

6.2.3 StratSim language

StratSim is a DSL for specifying simulation properties/elements in a declarative man-
ner and generating a simulator launcher that will trigger the evaluation of the specified
elasticity strategies. StratSim document is composed of a set of (property, value)
pairs representing the parameters that customize the simulator to perform the wanted
simulations.

As shown in Grammar 6.8, users have to specify the elasticity model on which the
simulations will be based on, by referring to an existing elasticity model (described
using StratModel). Also, they can provide a set of items composed of: (i) processes
described using SBP language, (ii) elasticity strategies written in Strat language,
and (iii) workloads representing different configurations of specifying the arrival law
of process enactment requests. These items indicate the series of simulations that
have to be performed by the simulator. Additionally, the users can optionally indicate
the process invocations frequency which represents the distance between two process

6.3. Implementation and evaluation 101

〈Simulation〉 ::= 〈ElasticityModel〉 〈Items〉 〈Invocation〉 〈OutputPath〉

〈ElasticityModel〉 ::= ’elasticityModel’ ’:’ [StratModel::ElasticityModel]

〈Items〉 ::= 〈Item〉 〈Items〉 | 〈empty〉

〈Item〉 ::= 〈Process〉 | 〈Strategy〉 | 〈UsageBehavior〉

〈Process〉 ::= ’process’ ’:’ [SBP::SBPModel]

〈Strategy〉 ::= ’strategy’ ’:’ [Strat::ScalingPolicy]

〈UsageBehavior〉 ::= ’workload’ ’:’ 〈string〉 〈Values〉

〈Invocation〉 ::= ’frequency’ ’:’ 〈int〉
| 〈empty〉

〈OutputPath〉 ::= ’output’ ’:’ 〈string〉

Grammar 6.8: General StratSim Grammar

invocations. Finally, a property named ’output’ is used to specify the path in which the
evaluation results will be saved.

Example 14 Listing 6.2 illustrates an example of simulation script writen in StratSim.
This script indicates that the elasticity strategy ’Strategy1’ (presented in Section 5.5)
will be evaluated on the SBP model ’MERProcess’ using the elasticity model ’ElasticityModel1’
(presented in Section 5.4). The poisson distribution will be used to generate the requests
arrival and a number of requests will be introduced to the process each 12 cycles.

elasticityModel : ElasticityModel1
process : MERProcess
strategy : Strategy1
workload : ’...generators.hpoisson’ 4 100
frequency : 12
output : ’path’

Listing 6.2: Example of simulation scenario with StratSim

6.3 Implementation and evaluation

We present in this section an overview of the implementation of StratFram framework.
We also provide insights on its use through two evaluation scenarios.

102 Elasticity Strategies Evaluation Framework

6.3.1 Implementation

The StratFram frameworkis an eclipse-based framework. It is designed and imple-
mented on two parts: (1) the StratFram languages part and (2) the StratFram
functions part.

The first part is developed using Xtext1 an eclipse-based development framework
for creating DSLs. Each designed language in StratFram has its editor which pro-
vides user with code completion, syntax highlighting, automated parsing and quick
fixes functionalities that facilities the edition of scripts. In addition to these functional-
ities, we provided each language with a scope provider that is customized according to
the semantics of the language, along with a validator that is implemented to perform
additional constraint checks.

In the current implementation of StratFram, the second part of the framework is
composed of a set of functions and classes designed and implemented based on SNAKES
toolkit [Pommereau 2015] a Python library that provides all the necessary to define and
execute many sorts of Petri nets, in particular algebras of Petri nets. The functions
and classes implemented in this part are mainly provide the common functionalities
of StratFram that manipulate SBP models and triggered by the generated elasticity
controller. A set of functions are implemented as a pre-defined functions for Strat
language that can be used in defined a strategy.

6.3.2 Evaluation

In order to validate our framework, we present in this section two evaluation scenarios:
the first one focuses on simulating the use of a strategy on publicly available SBPs
using an elasticity model, while the second one consists on two use cases for two different
elasticity model and using our SBP model for molecular evolution construction in which
different elasticity strategies are evaluated and compared. Thereafter, we describe the
preliminary results.

6.3.2.1 1st Evaluation Scenario

In this evaluation scenario, we choose to evaluate the elasticity of a set of publicly avail-
able process models selected from the SAP reference model [Cur 1998], using an elastic-
ity model described according to the elasticity controller used in [Amziani 2013]. The
SAP reference model has been widely used in many research papers [Mendling 2008].
It contains 205 business process models. A node in a process model can be a func-
tion/service, an event or a gateway. In order to use the available process models in
SAP reference model, we transformed the models to a SBP models by eliminating the
events and their connections and focusing on services/functions. From the transformed
models, we selected a set of 5 exemplary SBP models which feature different complexity
degrees in terms of business process patterns. Table 6.1 shows the characteristics of each

1https://eclipse.org/Xtext/

https://eclipse.org/Xtext/

6.3. Implementation and evaluation 103

SBP |Services| |AND| |XOR|
1 3 0 0
2 3 0 1
3 4 1 0
4 5 1 3
5 8 1 1

Table 6.1: Evaluation SBP models

(a)

(b)

Figure 6.2: BPMN models of (a) the SBP No. 3 (top) and (b) the SBP No. 5

selected SBP models in term of number of services in the SBP, number of AND-blocks
and number of XOR-blocks. Figure 6.2 illustrates two SBP models from the selected set
of SBPs. The first model ,named SBP No. 3, contains 4 services and one AND-block.
The second model, named SBP No. 5 contains 8 services and one XOR-block in which
one branch leads to an AND-block.

For each service in the SBP models, we associate a capacity value randomly gen-
erated that indicates the maximum number of requests that can be handled by the
service. So, in order to evaluate the elasticity of the SBP models, we choose to describe
an elasticity model for the elasticity controller proposed in [Amziani 2013] which has
been proposed for stateless SBP models and performs the following elasticity actions:
(1) a Routing action which controls the way a load of a service is routed over the set of
its copies, (2) a Duplicate action which creates a new exact copy of an overloaded service
in order to meet its workload increase and (3) a Consolidate action which releases an
unnecessary copy of a service in order to meet its workload decrease. Along with these
actions, we specify a ’capacityUtilization’ metric that provides the number of requests
in a given service. In this evaluation scenario, we choose to define elasticity strategies

104 Elasticity Strategies Evaluation Framework

Figure 6.3: Elasticity model and strategy of the 1st Evaluation Scenario

for our SBP models that share the same set of rules while changing the defined threshold
sets which have been specified according to the generated capacity values.

The strategy is defined to scale up or down the number of copies according to
the threshold of each service. So, the duplication action for a specific service s is
triggered when its workload (determined by the ’capacityUtilization’ metric) as well
as the workload of all its copies reached its QoS threshold in the set max represented by
the metric ’capacityUtilization’. Otherwise, in case a service copy cp doesn’t contain
any request and the workload of the service s is below its minimum threshold defined
in the set min, a consolidation action is triggered by releasing the service copy cp from
the set of copies of s. The Routing action is defined to route a request if the router
t does not exceed the capacity of its post-services. It is triggered when neither of the
previous actions are allowed. Figure 6.3 shows the described elasticity model and the
used elasticity strategy.

By this scenario, we show how the same elasticity model and strategy can be reused
with different SBP models without making any changes as long as the logic and the
requirements are the same. The only change made in the strategy is the values in the
defined sets which depend on the services in the managed process.

6.3.2.2 2nd Evaluation Scenario

Using StratFram interface, we create two projects where in each one we create an
elasticity model using StratModel editor, a SBP model using SBP editor, three elas-
ticity strategies using Strat editor, and a simulator script using StratSim editor. In

6.3. Implementation and evaluation 105

Figure 6.4: SPEEDL elasticity model and its generated controller and actions

the both projects, we use the SBP model for molecular evolution reconstruction (MER)
presented in Section 1.3. We assume that each elastic service engine is provided with a
maximum response time thresholds (execution time) depending on requests groups as
their required QoS given with the elasticity strategies. Above the maximum threshold,
the QoS would no longer be guaranteed. We used the following QoS requirement in
each elasticity strategy defined in the projects:

• Max_t = {S1:{c1=12,c2=102,c3=202},
S2:{c1=10,c2=500,c3=1995},
S5:{c1=4,c2=255,c3=1005},
S6.1:{c1=4,c2=130,c3=1005},
S6.2:{c1=4,c2=130,c3=1005},
S7:{c1=100,c2=1005,c3=2005}}

1. Evaluation project 1: Along with the SBP model, this project is composed of
the following elements :

(a) The elasticity model on which SPEEDL language [Zabolotnyi 2015] is based.
It is composed of four main actions: (1) Request scheduling that represents
the mapping of a request to the next service engine in the process, (2) Re-
quest migration which re-maps an already existing request to another service
engine copy, (3) scale-up that adds a new service engine copy, and (4) scale-
down that remove unused service engine copy. With the set of actions, we

106 Elasticity Strategies Evaluation Framework

Figure 6.5: Elasticity strategies and simulation script for Evaluation project 1

define in this elasticity model ’executionT ime’ metric that provides the age
(execution time) of a given request. Figure 6.4 illustrates the elasticity model
script and its generated controller and actions implementation.

(b) A strategy named StrategyResponseTime that defines rules for scaling-up,
scaling-down, and scheduling of request. In this strategy, the conditions
of elasticity actions do not consider the distinguishing between services re-
quests and their different QoS requirements. So, we define a fixed maximum
response time threshold for each elastic service engine regardless of requests
groups as an elasticity indicator. The scale-up action is triggered when the
response time of at least one service request in each service engine copy has
reached the maximum response time threshold. Otherwise, if the consumed
capacity of a service engine copy is equal to 0 and the response time of the
service is below its minimum threshold, a scale-down action is triggered by
releasing the service engine copy.

(c) A strategy named StrategyWithMigration that defines rules for scaling-
up, scaling-down, scheduling of requests, and migrating of requests. In this
strategy as well, the conditions of elasticity actions do not consider the dis-
tinguishing between services requests and their different QoS requirements.
So, we use the same defined fixed maximum response time threshold. This
strategies provides a rule for migration action in addition to the rules defined
in the strategy StrategyResponseTime.

6.3. Implementation and evaluation 107

Figure 6.6: Jrad et al. elasticity model and its generated controller and actions

(d) A strategy named StrategyWithMigrationGP that defines rules for scaling-
up, scaling-down, scheduling of requests, and migrating of requests. Contrary
to the previous strategies, this strategy uses the provided QoS requirement
as an elasticity indicator to scale-up the service engine while uses the same
rules as in the strategy StrategyWithMigration for the other actions.

(e) A simulation script that specifies that the three provided strategies should
be evaluated and compared on the SBP model using the elasticity controller
generated from the SPEEDL elasticity model. Figure 6.5 illustrates the
defined strategies and the simulation script.

2. Evaluation project 2: Along with the SBP model, this project is composed of
the following elements:

(a) An elasticity model for hybrid scaling (cf., Section 4.4) is defined composed
of three main actions: (1) duplication action that adds a new copy of ser-
vice engine with different configuration (2) consolidation action that removes
unused service engine copy, (3) routing action which transfers request from
a service engine to the next service engine in the process. With the set
of actions, we define in this elasticity model ’executionT ime’ metric and
’waitingT ime’ metric that provide respectively the age (execution time)
and the waiting time of a given request. Also, we specify two properties
as re-configurable namely the property ’groups’ and the property ’capacity’.
Figure 6.6 illustrates the elasticity model script and its generated controller

108 Elasticity Strategies Evaluation Framework

Figure 6.7: Elasticity strategies and simulation script for Evaluation project 2

and actions implementation.

(b) A strategy named RTWithCategories that defines rules for duplicate action,
consolidate action, routing action. It uses the provided QoS requirement
as an elasticity indicator to duplicate the service engine and the minimum
response time thresholds an indicator to consolidate a service engine copy.
So, the duplication action for a specific service engine s is triggered when
the maximum response time threshold has been reached for at least one of
request groups and the same applied for all its copies. Otherwise, if the
consumed capacity of a service engine copy is equal to 0 and the response
time of the service is below its minimum threshold, a consolidate action is
triggered by releasing the service engine copy.

(c) A strategy named StrategyRTWithHybrid that defines rules for hybrid scal-
ing that allows to add a new service engine copy with specific configuration
whenever needed. So, the duplication action for a specific service engine
is triggered depending on the requests groups. It creates a new copy of a
service engine for requests under a specific group if at least one of requests
of that group exceeds the maximum response time threshold and the same
applied to all its copies. The consolidation and routing rules are the same
for all the strategies defined in this project.

(d) A strategy named StrategyWTWithHybrid that defines rules for hybrid scal-
ing that allows to add a new service engine copy with specific configuration

6.4. Conclusion 109

whenever needed based on the waiting time of requests. So, the duplication
action creates a new copy of a service engine for requests under a specific
group if at least one of waiting requests of that group exceeds the maximum
waiting time threshold and the same applied to all its copies.

(e) A simulation script that specifies that the three provided strategies should
be evaluated and compared on the SBP model using the elasticity controller
generated from our elasticity model. Figure 6.7 illustrates the defined strate-
gies and the simulation script.

6.3.2.3 Evaluation results

In order to evaluate elasticity strategies, we have defined some evaluation indicators
that can be obtained from monitoring a given SBP model. In Figure 6.8 and Figure
6.9, we compare the amount of used capacity to the total provided capacity over time for
a given service engine. The used capacity is computed by summing up the consumed
capacity in each copy of the service engine. The provided capacity is computed by
summing up the provided capacity for each service engine copy per strategy. The
histogram in Figure 6.10 illustrates the rate of QoS violation for each strategy in the
2nd evaluation scenario. We compute at each monitoring cycle the number of requests
violated the QoS requirement. Then, we compute the violation rate by dividing the
number of violations by the total number of process requests. The resulted plots for
the first evaluation scenario show how the same strategy logic can behave differently
for different process models even when it is used for the same workload. We can see
the perfect adjustment of capacity for services in the SBP No. 3 and the SBP No. 4
while for other processes the plots shows more unused capacity which may indicate the
necessity to adapt the strategy logic to the specificity of the process by, for example,
changing thresholds or adding some conditions. On the other hand, the resulted plots for
the second evaluation scenario show how each strategy is performed for both elasticity
models which allows SBP holders to not only compare strategies but also elasticity
models providing them with insight on which one of elasticity models (or actions) is more
suitable for their process and their QoS requirements. The SBP holders can observe the
elasticity behavior of their processes by analyzing the difference between the allocated
and the consumed capacity and the violation rate of each strategy for different elasticity
model. This analyses allows to make decision on adjusting the defined thresholds or
changing some conditions in the elasticity strategy.

6.4 Conclusion

In this chapter, we presented a framework for describing and evaluating elasticity strate-
gies for elastic SBPs, called StratFram. StratFram enables users through a set of
editors for different DSLs to define their elastic systems by providing their elasticity

110 Elasticity Strategies Evaluation Framework

(a) SBP No. 1 (b) SBP No. 2

(c) SBP No. 3 (d) SBP No.4

(e) SBP No. 5

Figure 6.8: The evolution of capacity of a service in each SBP Models in the 1st Eval-
uation Scenario

6.4. Conclusion 111

(a) Service S1 using StrategyResponseTime with
SPEEDL elasticity model

(b) Service S1 using StrategyWithMigration with
SPEEDL elasticity model

(c) Service S1 using StrategyWithMigrationGP
with SPEEDL elasticity model

(d) Service S1 using RTWithCategories with
Jrad et al. elasticity model

(e) Service S1 using StrategyRTWithHybrid with
Jrad et al. elasticity model

(f) Service S1 using StrategyWTWithHybrid
with Jrad et al. elasticity model

Figure 6.9: The evolution of capacity of SBP Model in the 2nd Evaluation Scenario

112 Elasticity Strategies Evaluation Framework

(a) (b)

Figure 6.10: (a) Violation rate (%) in each elastic service engine and process using
different strategies of evaluation project 1 (b) Violation rate (%) in each elastic service
engine and process using different strategies of evaluation project 2

model along with their SBP models and strategies. It provides them with a set of
languages that facilitate the description and the evaluation of elasticity strategies that
can be based on different elasticity models. It has been designed in a way to separate
the description part from the functional part of the framework. The description part
which is represented by StratFram languages is designed to conceal the complexity
and the type of underlying techniques and systems used for the evaluation which makes
the framework extensible to other techniques and systems without affecting the users
interaction with the framework and the previously defined scripts. We illustrated the
use of our framework through two evaluation scenarios where we used in the first one
publicly available SBPs while, in the second one, we defined two use cases for two
different elasticity models.

CHAPTER

7 Conclusions and Future
work

”This is not the end.
It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.”
Winston Churchill

This last chapter summarizes the main results of our current research, emphasizing
the PhD thesis contributions. Furthermore, possible future research directions related
to the research work presented in this thesis are outlined and discussed based on the
challenges that were not fully addressed due to the limited time frame of the PhD thesis.

7.1 Conclusions

The thesis is based on the observation that there is a lack of solutions (both commercial
and research) that allow SBP holders to describe non-trivial elasticity strategies for
elastic SBPs, while considering their specific characteristics and different requirements,
and to guarantee their effectiveness before putting them in use in the cloud. So, our
main objective in this thesis was to provide SBP holders with a framework for defining
and evaluating elasticity strategies that will be used to ensure the elasticity of their
SBPs in the cloud.

As a first contribution toward this objective, we proposed a formal model for de-
scribing elastic execution environments of SBPs, on which the decisions of strategies
will be applied. We argued that it is beneficial to employ formal methods for mod-
eling elastic SBPs that allow analysing their elasticity behavior resulted from using a
specific elasticity strategy. The proposed model defined based on timed-colored petri
nets. It describes the characteristics of services engines, hosting SBP’s services, as well
as the characteristics of their requests. Using this model, SBPs holders are allowed to

114 Conclusions and Future work

define strategies using different elasticity indicators and to consider different require-
ments for requests. Besides the formal model, we defined and formalized two elasticity
mechanisms (i.e., duplication and consolidation) for hybrid scaling to show their appli-
cation on our model for ensuring the elasticity of the execution environment of SBPs
at service-level by allowing adding/removing service engine copies with different config-
urations. Applying the defined mechanisms/capabilities by an elasticity controller on
our model according to an elasticity strategy changes its structure and status allowing
the evaluation of the elasticity strategy before using it in a real Cloud environment.

Since the elasticity model is the basis for specifying elasticity strategies and con-
structing an elasticity controller that manages and evaluates the elasticity of SBPs, we
proposed in this work StratModel language to allow describing elasticity models with
different elasticity capabilities and to generate their corresponding elasticity controllers
that can be used to evaluate strategies on our formal model. StratModel enables SBP
holders to define their elasticity models by specifying customized metrics, properties
and elasticity actions. An action mechanism is provided through a set of examples
illustrating how the generated controller should operate when applies the action that
changes the structure of the managed SBP. The customized controller is generated by
StratModel using a pre-defined template described using high-level petri net to allow
the evaluation of strategies.

Based on StratModel language, we designed Strat, a rule-based domain specific
language, for describing elasticity strategies governing SBP elasticity. It enables SBP
holders to specify QoS requirements of a SBP at different granularity levels (i.e., process,
service, and instance level) with taking into account the fundamental characteristics of
elastic SBPs. It relies on StratModel to define the elasticity model on which its
grammar will be adapted. So, when using Strat to define strategies, SBP holders will
be provided with only the elasticity capabilities that are specified in the StratModel
document.

After developing our languages, a framework supporting SBPs holders in choosing
a proper elasticity strategy to be used during the configuration phase of their elastic
SBPs was developed. StratFram, the framework for describing and evaluating elas-
ticity strategies for elastic SBPs, considers evaluating, through simulation, different
elasticity strategies for different elasticity models based on our formal model for elastic
SBPs. It has been designed based on a set of languages including StratModel and
Strat for describing respectively elasticity models and elasticity strategies along with
two other languages where the first one, named SBP, is for describing elastic execution
environments of SBPs and generating their corresponding formal models and the sec-
ond one, named StratSim, is for specifying simulation properties/elements used for
the evaluation. These languages which represent the descriptive part of the framework
were designed to facilitate the description of the elastic system to be evaluated while
concealing the implementation complexity and the type of underlying techniques/sys-
tems used for the evaluation. The evaluation of elasticity strategies using StratFram
consists in providing a set of plots that allows the analysis and the comparison of strate-

7.2. Future work 115

gies to choose the effective ones. The use of StratFram has been illustrated through
two evaluation scenarios where the first one was based on publicly available SBPs while,
the second one described two use cases for two different elasticity models.

7.2 Future work

In this thesis, we faced different complex problems in order to provide a framework
for evaluating elasticity strategies for elastic SBPs. As a future work, we envision
extending the framework, or the used model, for addressing remaining issues. The
following research perspectives are feasible for future work in short, medium and long
term.

• As short term future work, we plan to extend our formal model by incorporating
other properties/aspects related to data storage and network. In our modeling
approach, we mainly focused on describing the characteristics of service engines,
hosting services in SBPs, provisioned from one single cloud provider as well as
the characteristics of services requests. However, some other properties, such as
network latency, time and cost of data exchange between service engines and
external database, should be also considered to allow the model to cover more
possible cases occurred in the cloud.

• As medium term work, we aim to extend StratFram by providing other imple-
mentations for different systems. Our goal behind this extension is to allow SBP
holders to evaluate their strategies not only using formal method such as petri
nets but also to simulate and analyze their performance using a business process
engine such as Activiti1 or evaluating them in real cloud environments as well
using Open Cloud Computing Interface (OCCI) [Nyren 2011]. So, they will be
able to choose between different ways to evaluate their strategies.

• Finally, as long term future work, we will work on developing a domain-specific
model checker that considers the specificity of elastic SBPs. This model checker
will be integrated in our framework to allow the formal verification of properties.
StratFram was developed based on formal methods to formally evaluate and
verify the correctness of strategies using especially model-checkers. However, the
existing model-checkers are incapable of manipulating models that are changeable
in structure due to the applications of elasticity mechanisms.

1https://www.activiti.org/

Bibliography

[Aktas 2015] A. Aktas, S. Cebi and I. Temiz. A new evaluation model for service
quality of health care systems based on AHP and information axiom. Journal of
Intelligent and Fuzzy Systems, vol. 28, no. 3, pages 1009–1021, 2015. (Cited on
page 27.)

[Ali-Eldin 2012] A. Ali-Eldin, J. Tordsson and E. Elmroth. An adaptive hybrid elasticity
controller for cloud infrastructures. In NOMS, pages 204–21, 2012. (Cited on
pages xi, 29, 30 and 43.)

[Allweyer 2010] Th. Allweyer. Bpmn 2.0. BoD, 2010. (Cited on pages 22 and 24.)

[Ameller 227] D. Ameller and X. Franch. Service Level Agreement Monitor (SALMon).
In Proceedings of the Seventh International Conference on Composition-Based
Software Systems, ICCBSS’2008, page 2008, Madrid, Spain, 224-227. (Cited on
page 19.)

[Amziani 2013] M. Amziani, T. Melliti and S. Tata. Formal Modeling and Evaluation
of Stateful Service-Based Business Process Elasticity in the Cloud. In CoopIS,
pages 21–38, 2013. (Cited on pages 102 and 103.)

[Amziani 2015] M. Amziani. Modeling, Evaluation and Provisioning of Elastic Service-
based Business Processes in the Cloud. PhD thesis, Telecom Sudparis et
l’University Evry Val d’Essonne, Paris, France, 2015. (Cited on pages xi, 3,
39, 40, 43 and 44.)

[Backus 1959] J. W. Backus. The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM Conference. In IFIP Congress,
pages 125–131, 1959. (Cited on page 68.)

[Bessai 2012a] K. Bessai, S. Youcef, A. Oulamara, C. Godart and S. Nurcan. Bi-
criteria workflow tasks allocation and scheduling in Cloud computing environ-
ments. In Proceedings of the 5th International Conference on Cloud Computing,
CLOUD’2012, Honolulu, Hawaii, USA, 2012. (Cited on pages 3, 28 and 43.)

118 Bibliography

[Bessai 2012b] K. Bessai, S. Youcef, A. Oulamara, C. Godart and S. Nurcan. Resources
allocation and scheduling approaches for business process applications in Cloud
contexts. In Proceedings of the 4th IEEE International Conference on Cloud
Computing Technology and Science, CloudCom’2012, pages 496–503, Taipei,
Taiwan, 2012. (Cited on pages 3, 28 and 43.)

[Bikas 2016] M.A.N. Bikas, A. Alourani and M. Grechanik. How Elasticity Property
Plays an Important Role in the Cloud: A Survey. In Advances in Computers,
volume 103, pages 1–30. 2016. (Cited on page 17.)

[Cearley 2010] D. W. Cearley. Cloud Computing. Technical report, Gartner, 2010.
(Cited on page 14.)

[Copil 2013] G. Copil, D. Moldovan, T. Hong-Linh and S. Dustdar. SYBL: An Exten-
sible Language for Controlling Elasticity in Cloud Applications. In CCGRID,
pages 112–119, 2013. (Cited on pages xiii, 34, 35, 43 and 44.)

[Copil 2015] G. Copil, H. L. Truong, D. Moldovan, S. Dustdar, D. Trihinas, G. Pallis
and M. D. Dikaiakos. Evaluating Cloud Service Elasticity Behavior. International
Journal of Cooperative Information Systems, vol. 24, no. 3, 2015. (Cited on
pages xi, 37, 38, 43 and 44.)

[Copil 2016] G. Copil, D. Moldovan, H. L. Truong and S. Dustdar. Continuous elastic-
ity: Design and operation of elastic systems. it - Information Technology, vol. 58,
no. 6, pages 329–348, 2016. (Cited on page 4.)

[Cur 1998] Sap r/3 business blueprint: Understanding the business process reference
model. Inc. Prentice-Hall, 1998. (Cited on page 102.)

[Cypher 1993] A. Cypher, editor. Watch what i do – programming by demonstration.
MIT Press, Cambridge, MA, USA, 1993. (Cited on page 73.)

[Czarnecki 2000] K. Czarnecki and U.W. Eisenecker. Generative programming: Meth-
ods, techniques, and application, volume 1st edition. Addison-Wesley, 2000.
(Cited on page 68.)

[Davenport 1993] Th. H. Davenport. Process innovation - reengineering work through
information technology. Harvard Business School Press, 1993. (Cited on
page 22.)

[Deursen 2000] A. V. Deursen, P. Klint and J. Visser. Domain-specific Languages: An
Annotated Bibliography. ACM SIGPLAN Notices, vol. 35, no. 6, pages 26–36,
2000. (Cited on page 68.)

[Dustdar 2011] S. Dustdar, Y. Guo, B. Satzger and H. L. Truong. Principles of Elastic
Processes. IEEE Internet Computing, vol. 15, no. 5, pages 66–71, 2011. (Cited
on pages 3, 5 and 25.)

Bibliography 119

[Dutreilh 2010] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre and I. Truck. From
Data Center Resource Allocation to Control Theory and Back. In Proceedings
of the 3rd IEEE International Conference on Cloud Computing, CLOUD’2010,
pages 410–417, Miami, Florida, US, 2010. (Cited on page 4.)

[Earl 1994] M. J. Earl. The new and the old of business process redesign. The Journal
of Strategic Information Systems, vol. 3, no. 1, pages 5–22, 1994. (Cited on
page 22.)

[Emeakaroha 2010] V. C. Emeakaroha, I. Brandic, M. Maurer and S. Dustdar. Low level
Metrics to High level SLAs - LoM2HiS framework: Bridging the gap between
monitored metrics and SLA parameters in cloud environments. In Proceedings
of the 2010 International Conference on High Performance Computing and Sim-
ulation, HPCS’2010, pages 48–54, Caen, France, 2010. (Cited on page 19.)

[Evangelidis 2018] A. Evangelidis, D. Parker and R. Bahsoon. Performance modelling
and verification of cloud-based auto-scaling policies. Future Generation Com-
puter Systems, vol. 87, pages 629–638, 2018. (Cited on pages 41 and 43.)

[Farokhi 2016] S. Farokhi, P. Jamshidi, E. B. Lakew, I. Brandic and E. Elmroth. A hy-
brid cloud controller for vertical memory elasticity: A control-theoretic approach.
Future Generation Computer Systems, vol. 65, pages 57–72, 2016. (Cited on
pages xi, 31, 32 and 43.)

[Frey 2013] S. Frey, C. Luthje and Ch. Reich. Key Performance Indicators for Cloud
Computing SLAs. In Proceedings of The Fifth International Conference on
Emerging Network Intelligence, EMERGING’13, pages 60–64, Porto, Portugal,
2013. (Cited on page 19.)

[Galante 2012] G. Galante and L. C. E. d. Bona. A Survey on Cloud Computing Elas-
ticity. In Proceedings of the fifth IEEE International Conference on Utility and
Cloud Computing, UCC’2012, pages 263–270, 2012. (Cited on page 18.)

[Garcia-Recuero 2014] A. Garcia-Recuero, S. Esteves and L. Veiga. Towards quality-
of-service driven consistency for Big Data management. International Journal
of Big Data Intelligence, vol. 1, no. 1-2, pages 74–88, 2014. (Cited on page 27.)

[Garg 2013] S. K. Garg, S. Versteeg and R. Buyya. A framework for ranking of cloud
computing services. Future Generation Computer Systems, vol. 29, no. 4, pages
1012–1023, 2013. (Cited on page 17.)

[Gens 2008] F. Gens. Defining Cloud Services and Cloud Computing. Technical report,
IDC exchange, 2008. (Cited on page 14.)

[Hammer 1993] M. Hammer and J. Champy. Reengineering the corporation: A man-
ifesto for business revolution. Nicholas Brealey Publishing, London, UK, 1993.
(Cited on page 21.)

120 Bibliography

[Han 2014] R. Han, M. M. Ghanem, L. Guo, Y. Guo and M. Osmond. Enabling cost-
aware and adaptive elasticity of multi-tier cloud applications. Future Generation
Computer Systems, vol. 32, pages 82 – 98, 2014. (Cited on page 17.)

[Heidari 2014] F. Heidari and P. Loucopoulos. Quality Evaluation Framework (QEF):
Modeling and Evaluating Quality of Business Processes. International Journal
of Accounting Information Systems, vol. 15, no. 3, pages 193–223, 2014. (Cited
on page 19.)

[Herbst 2013] N. R. Herbst, S. Kounev and R. Reussner. Elasticity in Cloud Computing:
What It Is, and What It Is Not. In ICAC, pages 23–27, 2013. (Cited on pages 2
and 17.)

[Hoenisch 2014] Ph. Hoenisch. ViePEP - A BPMS for Elastic Processes. In Proceed-
ings of the 6th Central European Workshop on Services and their Composition,
ZEUS’2014, Potsdam, Germany, 2014. (Cited on pages xi, 3, 28, 29, 43 and 44.)

[Hoffa 2008] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman
and J. Good. On the Use of Cloud Computing for Scientific Workflows. In Pro-
ceedings of the 4th IEEE International Conference on eScience, eScience’2008,
pages 640–645, Indianapolis, USA, 2008. (Cited on pages 5 and 24.)

[Hogan 2011] M. Hogan, F. Liu, A. Sokole and J. Tong. NIST Cloud Computing Stan-
dards Roadmap. Technical report, National Institute of Standards & Technology,
Gaithersburg, MD, United States, 2011. (Cited on pages xi, 1, 14, 15 and 16.)

[IBM 2005] An Architectural Blueprint for Autonomic Computing. Technical report,
IBM, 2005. (Cited on page 31.)

[IDG 2018] IDG. 2018 Cloud Computing Survey. https://www.idg.com/tools-for-
marketers/2018-cloud-computing-survey/, 2018. (Cited on page 2.)

[Jacob 2004] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir and A. F. Yassin. A practical
guide to the ibm autonomic computing toolkit. IBM redbooks. IBM Corporation,
International Technical Support Organization, 2004. (Cited on pages 28 and 78.)

[Jacobson 1994] I. Jacobson, M. Ericsson and A. Jacobson. The object advantage:
Business process reengineering with object technology. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1994. (Cited on page 22.)

[Jansen 2001] T. Jansen and I. Wegener. Evolutionary Algorithms - How to Cope with
Plateaus of Constant Fitness and when to Reject Strings of the Same Fitness.
TEVC, vol. 5, no. 6, pages 589–599, 2001. (Cited on page 6.)

[Jensen 1991] K. Jensen and G. Rozenberg. High-level petri nets: Theory and applica-
tion. Springer-Verlag, London, UK, 1991. (Cited on pages 52 and 78.)

Bibliography 121

[Jensen 2009] K. Jensen and L. M. Kristensen. Coloured petri nets: Modelling and
validation of concurrent systems. Springer Publishing Company, Incorporated,
1st édition, 2009. (Cited on pages 50 and 55.)

[Jrad 2016] A. B. Jrad, S. Bhiri and S. Tata. Description and Evaluation of Elasticity
Strategies for Business processes in the Cloud. In Proceedings of the IEEE
International Conference on Services Computing (SCC), pages 203–210, San
francisco, California, USA, 2016. (Cited on page 10.)

[Jrad 2017a] A. B. Jrad, S. Bhiri and S. Tata. Data-Aware Modeling Of Elastic Pro-
cesses For Elasticity Strategies Evaluation. In Proceedings of the IEEE 10th
International Conference on Cloud Computing (CLOUD), pages 464–471, Hon-
olulu, Hawaii, USA, 2017. (Cited on page 9.)

[Jrad 2017b] A. B. Jrad, S. Bhiri and S. Tata. STRATModel: Elasticity Model Descrip-
tion Language for Evaluating Elasticity Strategies for Business Processes. In On
the Move to Meaningful Internet Systems. OTM 2017 Conferences: Confeder-
ated International Conferences: CoopIS, C&TC, and ODBASE, pages 448–466,
Rhodes, Greece, 2017. (Cited on pages 9 and 10.)

[Jrad 2019] A. B. Jrad, S. Bhiri and S. Tata. STRATFram: A framework for describing
and evaluating elasticity strategies for service-based business processes in the
cloud. Future Generation Computer Systems, vol. 97, pages 69–89, 2019. (Cited
on page 11.)

[Juric 2006] M. B. Juric. Business process execution language for web services bpel and
bpel4ws 2nd edition. Packt Publishing, 2006. (Cited on pages 22 and 24.)

[Juve 2010] G. Juve and E. Deelman. Scientific Workflows and Clouds. ACM Cross-
roads, vol. 16, no. 3, pages 14–18, 2010. (Cited on pages 5 and 24.)

[K. 2015] K., Q. Wang, J. Hur, K.-J. Park and L. Sha. Medical-Grade Quality of Service
for Real-Time Mobile Healthcare. Computer, vol. 48, no. 2, pages 41–49, 2015.
(Cited on page 27.)

[Katoh 2008] K. Katoh and H. Toh. Recent developments in the MAFFT multiple
sequence alignment program. Briefings in Bioinformatics, vol. 9, no. 4, pages
286–298, 2008. (Cited on page 6.)

[Kenagy 1999] J. W. Kenagy, D. M. Berwick and M. F. Shore. Service Quality in Health
Care. The Journal of the American Medical Association (JAMA), vol. 281, no. 7,
pages 661–665, 1999. (Cited on page 27.)

[Klems 2009] M. Klems, J. Nimis and S. Tai. Do Clouds Compute? A Framework for
Estimating the Value of Cloud Computing. In Proceedings of the 7th Workshop
on E-Business: Designing E-Business Systems. Markets, Services, and Networks,
pages 110–123, Paris, France, 2009. (Cited on page 14.)

122 Bibliography

[Kritikos 2014] K. Kritikos, J. Domaschka and A. Rossini. SRL: A Scalability Rule
Language for Multi-cloud Environments. In Proceedings of the IEEE 6th In-
ternational Conference on Cloud Computing Technology and Science, Cloud-
Com’2014, pages 1–9, Singapore, 2014. (Cited on pages xi, 34, 36, 43 and 44.)

[Li 2011] M. Li, F. Ye, M. Kim, H. Chen and H. Lei. A Scalable and Elastic Publish/-
Subscribe Service. In Proceedings of the 25th IEEE International Parallel Dis-
tributed Processing Symposium, IPDPS, pages 1254–1265, Alaska, USA, 2011.
(Cited on page 17.)

[Lieberman 2001] H. Lieberman, editor. Your wish is my command: Programming by
example. organ Kaufmann Publishers Inc., 2001. (Cited on page 73.)

[Liu 2000] L. Liu, C. PU, K. Schwan and J. Walpole. InfoFilter: Supporting quality of
service for fresh information delivery. New Generation Computing, 2000. (Cited
on page 27.)

[Liu 2016] Y. Liu, D. Gureya, A. Al-Shishtawy and V. Vlassov. OnlineElastMan: Self-
Trained Proactive Elasticity Manager for Cloud-Based Storage Services. In IC-
CAC, 2016. (Cited on pages xi, 30, 32 and 43.)

[Loff 2014] J. Loff and J. Garcia. Vadara: Predictive Elasticity for Cloud Applications.
In Proceedings of the IEEE 6th International Conference on Cloud Computing
Technology and Science, pages 541–546, 2014. (Cited on pages xi, 29, 31 and 43.)

[Mans 2010] R. S. Mans, N. C. Russell, W. M. P. van der Aalst, A. J. Moleman and
P. J. M. Bakker. Transactions on petri nets and other models of concurrency
iv, chapter Schedule-Aware Workflow Management Systems, pages 121–143.
Springer Berlin Heidelberg, 2010. (Cited on pages 2 and 25.)

[Mell 2011] P. Mell and T. Grance. The NIST Definition of Cloud Computing. Tech-
nical report, National Institute of Standards and Technology, 2011. (Cited on
page 17.)

[Mendling 2008] J. Mendling, H.M.W. Verbeek, B.F. van Dongen, W.M.P. van der
Aalst and G. Neumann. Detection and prediction of errors in EPCs of the SAP
reference model. Data & Knowledge Engineering, vol. 64, no. 1, pages 312–329,
2008. (Cited on page 102.)

[Merkel 2014] D. Merkel. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux Journal, vol. 2014, no. 239, 2014. (Cited on
pages 47 and 93.)

[Mernik 2005] M. Mernik, J. Heering and A. M. Sloane. When and How to Develop
Domain-specific Languages. ACM Computing Surveys, vol. 37, no. 4, pages
316–344, 2005. (Cited on page 68.)

Bibliography 123

[Moltó 2016] G. Moltó, M. Caballer and C. de Alfonso. Automatic memory-based verti-
cal elasticity and oversubscription on cloud platforms. Future Generation Com-
puter Systems, vol. 56, pages 1–10, 2016. (Cited on pages xi, 32, 33 and 43.)

[Murata 1989] T. Murata. Petri nets: Properties, analysis and applications. In Pro-
ceedings of the IEEE, volume 77, pages 541–580, 1989. (Cited on pages 24
and 49.)

[Naskos 2015a] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos,
I. Konstantinou and S. Sioutas. Dependable Horizontal Scaling Based on Prob-
abilistic Model Checking. In Proceedings of the 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid’2015, pages 31–40,
Shenzhen, China, 2015. (Cited on page 4.)

[Naskos 2015b] A. Naskos, E. Stachtiari, P. Katsaros and A. Gounaris. Probabilistic
Model Checking at Runtime for the Provisioning of Cloud Resources. In Pro-
ceedings of the 6th International Conference on Runtime Verification, pages
275–280, 2015. (Cited on pages xi, 38, 39 and 43.)

[Nyren 2011] R. Nyren, A. Edmonds, A. Papaspyrou, and T. Metsch. Open Cloud
Computing Interface - Core. Technical report, Open Grid Forum (OGF), 2011.
(Cited on page 115.)

[Ocaña 2012] K. A. C. S. Ocaña, D. d. Oliveira, F. Horta, J. Dias, E. S. Ogasawara
and M. Mattoso. Exploring Molecular Evolution Reconstruction Using a Parallel
Cloud Based Scientific Workflow. In BSB, 2012. (Cited on page 6.)

[Ould 1995] M. A. Ould. Business processes: Modelling and analysis for re-engineering
and improvement. West Sussex, England: John Wiley and Sons, 1995. (Cited
on page 22.)

[Perez-Sorrosal 2011] F. Perez-Sorrosal, M. Pati no Martinez, R. Jimenez-Peris and
B. Kemme. Elastic SI-Cache: Consistent and Scalable Caching in Multi-tier
Architectures. The VLDB Journal, vol. 20, no. 6, pages 841–865, 2011. (Cited
on page 17.)

[Pommereau 2015] F. Pommereau. SNAKES: A Flexible High-Level Petri Nets Library
(Tool Paper). In Proceedings of the 36th International Conference on Application
and Theory of Petri Nets and Concurrency, pages 254–265, Brussels, Belgium,
2015. (Cited on pages 100 and 102.)

[Ray 1999] P. Ray and G. Weerakkody. Quality of service management in health care
organizations: a case study. In Proceedings of the 12th IEEE Symposium on
Computer-Based Medical Systems, CBMS’99, pages 80–85, Stamford, CT, USA,
1999. (Cited on page 27.)

124 Bibliography

[Rohjans 2012] S. Rohjans, C. Dänekas and M. Uslar. Requirements for Smart Grid
ICT-architectures. In Proceedings of the 2012 3rd IEEE PES Innovative Smart
Grid Technologies Europe (ISGT Europe), pages 1–8, 2012. (Cited on pages 2
and 25.)

[Rosinosky 2016] G. Rosinosky, S. Youcef and F. Charoy. An Efficient Approach for
Multi-tenant Elastic Business Processes Management in Cloud Computing en-
vironment. In Proceedings of the 9th IEEE International Conference on Cloud
Computing, CLOUD’2016, San Francisco, USA, 2016. (Cited on page 3.)

[Ross 1978] D. T. Ross. Origins of the APT Language for Automatically Programmed
Tools. ACM SIGPLAN Notices - Special issue: History of programming lan-
guages conference, vol. 13, no. 8, pages 61–99, 1978. (Cited on page 68.)

[Ruparelia 2016] N. B. Ruparelia. Cloud computing. The MIT Press Essential Knowl-
edge series, 2016. (Cited on page 14.)

[Sandhu 2015] R. Sandhu and S. K. Sood. Scheduling of big data applications on dis-
tributed cloud based on QoS parameters. Cluster Computing, vol. 18, no. 2, pages
817–828, 2015. (Cited on page 27.)

[Schouten 2012] E. Schouten. Rapid Elasticity and the Cloud.
https://www.ibm.com/blogs/cloud-computing/2012/09/12/rapid-elasticity-
and-the-cloud/, September 2012. (Cited on page 17.)

[Schulte 2014] S. Schulte, Ch. Janiesch, S. Venugopal, I. Weber and Ph. Hoenisch.
Elastic Business Process Management: State of the Art and Open Challenges
for BPM in the Cloud. Future Generation Computer Systems, 2014. (Cited on
pages 2 and 25.)

[Shawky 2012] D. M. Shawky and A. F. Ali. Defining a measure of cloud computing
booktitle=Proceedings of the 2012 1st International Conference on Systems and
Computer Science (ICSCS), elasticity. pages 1–5, 2012. (Cited on page 17.)

[Smith 2005] T. Smith. Quality of service requirements for system wide information
management (SWIM). In Proceedings of the 24th Digital Avionics Systems
Conference, volume 1 of DASC’2005, pages 1–8, Hyatt Regency Crystal City,
Washington, D.C., 2005. (Cited on page 27.)

[Stamatakis 2014] A. Stamatakis. RAxML Version 8: A Tool for Phylogenetic Analysis
and Post-Analysis of Large Phylogenies. Bioinformatic, vol. 30, no. 9, 2014.
(Cited on page 6.)

[Suleiman 2013] B. Suleiman and S. Venugopal. Modeling Performance of Elasticity
Rules for Cloud-Based Applications. In EDOC, pages 201–206, 2013. (Cited on
pages xi, 38, 40 and 43.)

Bibliography 125

[van der Aalst 1998] W. M. P. van der Aalst. The application of perti nets to workflow
management. Journal of Circuits, Systems, and Computers, vol. 8, no. 1, pages
21–66, 1998. (Cited on page 49.)

[van der Aalst 2011] W.M.P. van der Aalst and Ch. Stahl. Modeling business processes:
A petri net-oriented approach. The MIT Press, 2011. (Cited on page 49.)

[Vaquero 2009] L. M. Vaquero, L. Rodero-Merino, J. Caceres and M. Lindner. A Break
in the Clouds: Towards a Cloud Definition. ACM SIGCOMM Computer Com-
munication Review, vol. 39, no. 1, pages 50–55, 2009. (Cited on page 14.)

[Wang 2008] L. Wang, J. Tao, M. Kunze, A.C. Castellanos, D. Kramer and W. Karl.
Scientific Cloud Computing: Early Definition and Experience. In Proceedings
of the 10th IEEE International Conference on High Performance Computing
and Communications, HPCC’08, pages 825–830, Dalian, China, 2008. (Cited on
pages 14 and 16.)

[Weske 2012] M. Weske. Business process management - concepts, languages, architec-
tures, volume 2nd edition. Springer, 2012. (Cited on pages 3 and 22.)

[Wile 2004] D. Wile. Lessons Learned from real DSL Experiments. Science of Computer
Programming, vol. 51, no. 3, pages 265–290, 2004. (Cited on page 68.)

[Xu 2012] W. Xu, Z. Zhou, D.T. Pham, Q. Liu, C. Ji and W. Meng. Quality of service
in manufacturing networks: a service framework and its implementation. The
International Journal of Advanced Manufacturing Technology, vol. 63, no. 9-12,
pages 1227–1237, 2012. (Cited on page 27.)

[Yangui 2011] S. Yangui, M. Mohamed, S. Tata and S. Moalla. Scalable service con-
tainers. In CloudCom, pages 348–356, 2011. (Cited on pages 47 and 93.)

[Zabolotnyi 2015] R. Zabolotnyi, Ph. Leitner, S. Schulte and S. Dustdar. SPEEDL -
A Declarative Event-Based Language for Cloud Scaling Definition. In IEEESer-
vices, 2015. (Cited on pages xiii, 35, 37, 43, 44 and 105.)

[Zhou 2009] Z. Zhou, W. Xu, D.T. Pham and C. Ji. QoS modeling and analysis for
manufacturing networks: A service framework. In Proceedings of the 7th IEEE
International Conference on Industrial Informatics, INDIN’2009, pages 825–830,
Cardiff, Wales, UK, 2009. (Cited on page 27.)

[Zloof 1975] M. M. Zloof. Query By Example. In Proceedings of National Compute
Conference, pages 431–438. AFIPS Press, 1975. (Cited on page 73.)

