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Abstract

Supervised detection models can be deployed in detection systems, as an adjunct to traditional
detection techniques, to strengthen detection. Supervised learning has been successfully applied to
various computer security detection problems: Android applications, PDF, or portable executable
files to mention only the most obvious examples. Despite these encouraging results, there remain
some significant barriers to the widespread deployment of machine learning in operational detection
Systems.

The standard supervised learning pipeline consists of data annotation, feature extraction, train-
ing and evaluation. Security experts must carry out all these steps to set up supervised detection
models ready for deployment. In this thesis, we adopt an end-to-end approach. We work on
the whole machine learning pipeline with security experts as its core since it is crucial to pursue
real-world impact.

First of all, security experts may have little knowledge about machine learning. They may
therefore have difficulty taking full advantage of this data analysis technique in their detection
systems.

This thesis provides methodological guidance to help security experts build supervised detection
models that suit their operational constraints. Moreover, we design and implement DIADEM, an
interactive visualization tool that helps security experts apply the methodology set out. DIADEM
deals with the machine learning machinery to let security experts focus mainly on detection.

Besides, most research works assume that a representative annotated dataset is available for
training while such datasets are particularly expensive to build in computer security. Active learning
has been introduced to reduce expert effort in annotation projects. However, it usually focuses on
minimizing only the number of manual annotations, while security experts would rather minimize
the overall time spent annotating. Moreover, user experience is often overlooked while active
learning is an interactive procedure that should ensure a good expert-model interaction.

This thesis proposes a solution to effectively reduce the labeling cost in computer security
annotation projects. We design and implement an end-to-end active learning system, ILAB, tailored
to security experts needs. Our user experiments on a real-world annotation project demonstrate
that security experts can gather an annotated dataset with a low workload thanks to ILAB.

Finally, feature extraction is usually implemented manually for each data type. Nonetheless,
detection systems process many data types and designing a feature extraction method for each
of them is tedious. Automatic feature generation would significantly ease, and thus foster, the
deployment of machine learning in detection systems.

In this thesis, we define the constraints that such methods should meet to be effective in building
detection models. We compare three state-of-the-art methods based on these criteria, and we point
out some avenues of research to better tailor these techniques to computer security experts needs.
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Chapter 1

Introduction

1.1 Computer Security Detection Systems

Computer security incidents can significantly disrupt governments, companies, and end-users
in possession of computer platforms (e.g. desktop computers, laptops, tablets, smartphones, or
other connected objects such as smart watches, or fitness trackers). As regards end-users, attackers
may steal sensitive information (e.g. credit card numbers, compromising pictures), watch end-
users through their webcam, or display unwanted adds. The consequences can be more serious for
governments and companies. Attackers can exploit security incidents to commit industrial, military,
or political espionage. They can also significantly undermine the functioning of organizations. For
instance, ransomware is a type of malicious software that encrypts victims’ data, making them
inaccessible, and requests a ransom payment to decrypt them. Currently, most organizations rely
entirely on their information system which makes them even more sensitive to security incidents.

Computer security detection systems are crucial to avoid or limit the impact of security incidents.
They monitor a network, or a system to identify potential threats. Detection can take place at two
levels: 1) detecting attempted attacks, and 2) detecting successful attacks.

Detecting attempted attacks involves for example identifying malicious files attached to email
messages (e.g. PDF files, or Windows Office documents), or phishing email messages. In this case,
there is no security incident as long as the email recipient has not opened the attached malicious
file, or been lured by the phishing content.

Detecting successful attacks includes identifying data exfiltration, distributed denial of service,
and malware communications. In this situation, there is already a security incident, but detection
is still critical to act quickly and reduce its negative impact.

Detection systems involve several detection methods based on diverse techniques operating in
parallel. The suspicious activities identified by the detection methods are generally reported to a
security information and event management (SIEM) system. Then, the STEM system combines the
outputs from the multiple detection methods. It relies on aggregation and correlation techniques
to expose a more condensed views of the security issues identified by all the detection methods [43,
38, 140, 31]. In this thesis, we focus on detection methods. Correlation and aggregation techniques
are out of scope.
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Figure 1.1: Security Operators and Security Administrators.

We define two roles that operate in security operation centers (SOC): security administrators
and security operators (see Figure 1.1).

Security Administrators. Security administrators are responsible for setting up detection
methods. First of all, they define the detection target, i.e. in which circumstances an alert should
be triggered. Detection targets depend on deployment environments since they have their own
security policy which may be more or less permissive. Moreover, security administrators usually
set up an alert taxonomy. It establishes the way the malicious behaviors are grouped into families
that are then exploited to tag the alerts.

Once security administrators have defined the detection target and the alert taxonomy, they
implement and deploy detection methods accordingly. Finally, they make detection methods evolve
over time to follow threat evolution. They may also need to update the detection target and the
alert taxonomy when new threats emerge.

Security Operators. Once the detection methods have been deployed, security operators
exploit the alerts. They must decide whether alerts have been triggered rightly to discard false
alarms. Then, they examine the actual alerts carefully in order to take the appropriate actions to
avoid or handle potential security incidents.

Security operators need contextual information to conduct their analyses. For instance, the
tags of the alert taxonomy can categorize the alerts. Since the alerts sharing the same tag are
likely to have significant similarities, security operators can take advantage of the previous analyses
associated to the same tag.

Our definitions of security administrators and operators may encompass several roles encoun-
tered in security operation centers. We rely on these two roles throughout the thesis, since they
are precise enough for our needs.

1.2 Operational Constraints

Detection methods must meet operational constraints to ensure their operability in detection
systems. We introduce the main constraints mostly synthesized from [127] and [111].



1.2.1 Local and Online Processing

The sensitivity of the data processed by detection systems, and regulatory requirements, hinder
the use of cloud computing services. Detection methods should be processed locally.

In addition, detection methods must be integrated into security operation centers that analyze
streaming data that cannot be stored due to volumetry and privacy. As a result, detection methods
must be suitable for streaming data. They must enjoy a low time complexity to be executed in
near real time.

In conclusion, detection methods should not require too much computation to enable local
online processing.

1.2.2 Effectiveness

Detection methods can make two kinds of errors: false megatives, i.e. malicious events which
have not been detected, and false positives, i.e. benign events which have generated a false alarm.
Both types of errors are extremely costly in computer security.

One the one hand, a false positive requires a security operator to spend time analyzing the
alert to eventually determine that it reflects a benign activity. If the false positive rate is too high,
meaningless alarms will overwhelm security operators, and they will have less time to analyze the
significant ones. As argued by Axelsson, even a very small false positive rate can quickly make
a detection system unusable [12]. On the other hand, false negatives have the potential to cause
serious damage to the defended network. Even a single compromised node can seriously undermine
the integrity of the whole network.

Security administrators must choose the trade off between false positives and negatives, keeping
in mind that the false positive rate must remain low enough to ensure the operability of the detection
system.

1.2.3 Transparency

Security operators need information to discard false alarms, and to figure out the origin of actual
alarms. A binary answer indicating only whether an alert is triggered or not is not satisfactory.
Detection methods must provide information about the cause of alerts. Relevant contextual infor-
mation can significantly streamline their exploitation, and thus increase the efficiency of detection
systems. For instance, an alert taxonomy set up by security administrators can tag the alerts.

Moreover, security administrators will not deploy black-box detection methods. They need to
trust detection methods before their deployment, they want to understand how they work. To
that end, security administrators can inspect individual detection results, and infer the overall
behavior. It is even better if they can grasp how detection methods work as a whole with higher-
level descriptions.

Therefore, detection methods must be transparent to suit both security administrators and
operators. The generated alerts must be understandable to ease their exploitation by security
operators. Besides, we recommend detection methods to be understandable as a whole for security
administrators.



1.2.4 Controllability

Security administrators shall retain control over detection methods. They must be able to update
them to correct potential errors forthwith. Updating detection methods should be straightforward,
since swiftness is crucial to detect emerging threats as soon as possible.

False positives must be fixed to avoid security operators from keeping analyzing always the
same false alarms. Besides, if undetected malicious behaviors are identified by other means, the
detection method must be patched to improve its performance in the future. For instance, security
operation centers can have access to the knowledge base of an intern or commercial computer
security incident response team (CSIRT). CSIRTSs monitor technological developments related to
security: they analyze new attacks, new malware, and the latest vulnerabilities. Their analyses
should be leveraged to improve detection methods.

Basically, detection methods should not make mistakes on known examples. They should be
adaptable to trigger alerts on known malicious behaviors, and not generate false alerts on known
benign behaviors. If they make errors on known examples, security administrators must be able to
revise detection methods swiftly.

1.2.5 Robustness

Detection methods are deployed in adversarial environments where attackers are willing to cir-
cumvent them. Malicious behaviors constantly evolve as adversaries attempt to deceive detectors.
Detection methods must therefore be designed to resist evasion attempts, and to detect yet unknown
threats as soon as possible.

For instance, polymorphism [34, 134, 48] and mimicry [144, 76, 83] are usual evasion techniques.
Polymorphism modifies slightly attacks to create numerous variants. Every variant looks different,
for the purpose of evading detection, and yet carries out the same malicious payload. As for mimicry
evasion techniques, they attempt to make attacks look legitimate while maintaining the malicious
payload.

In the next section, we present the main detection techniques deployed in detection systems,
and we compare them according to the constraints stated in this section. We want to emphasize
that the objective is not to determine which approach is best. These diverse detection techniques
are complementary, and are often deployed in parallel to strengthen detection. The objective is
rather to point out the pros and cons of each approach, and to explain why we focus on supervised
learning in this thesis.

1.3 Detection Techniques

Since Anderson’s seminal work [9] on computer security detection, many detection techniques
have been designed. They are traditionally divided into two categories [42]: misuse and anomaly de-
tection. Misuse detection relies on detection rules characterizing malicious activities while anomaly
detection models the legitimate behavior and triggers alerts each time the behavior deviates too
much from the baseline.



Additionally, some detection techniques rely on supervised learning that characterizes both mali-
cious and benign behaviors. The traditional taxonomy above-mentioned does not allow to categorize
these techniques consistently. Some consider that they belong to misuse detection [80] while others
think they are a subcategory of anomaly detection techniques [56].

In line with Axelson [13], we decide to consider that supervised learning forms its own category of
detection techniques. This distinction is relevant for the purposes of comparing detection techniques
according to the operational constraints of detection systems.

In brief, we regroup detection techniques into three categories according to the type of be-
haviors they characterize. Misuse detection characterizes malicious activities (see Section 1.3.1),
and anomaly detection defines a model of legitimate behaviors (see Section 1.3.2), while supervised
learning models both legitimate and malicious behaviors (see Section 1.3.3).

1.3.1 Misuse Detection

Detection systems traditionally rely on misuse detection techniques: patterns or sets of detection
rules characterizing malicious behaviors. Security administrators build them manually based on an
in-depth analysis of malicious events. Signatures are the best known misuse detection techniques,
but there are more sophisticated methods [42].

Highly Transparent. This approach is prevalent in practice thanks in part to its high level
of transparency. Security administrators trust detection methods based on expert knowledge, and
it is straightforward for security operators to understand why an alert has been triggered.

Rather Controllable. Moreover, misuse detection methods are rather controllable. False
positives can be avoided by making detection rules more precise. False negatives can be analyzed
by security administrators to make a detection rule more generic, or to create a new one. Thus,
security administrators can update the detection rules to avoid both false positives and negatives.
Controllability is, nevertheless, not perfect since the updates involve manual work that can be time-
consuming. Analyzing a malicious behavior to characterize it can involve sophisticated methods of
reverse engineering.

Prone to Polymorphism Attacks. Misuse detection is based on the knowledge of past
attacks or known vulnerabilities. This approach is efficient against threats that have already been
identified and for which a detection rule has been generated. However, it fails to generalize across
evolving threats and thereby enables attackers to evade detection. It often cannot detect new
threats, and slight changes, such as polymorphism, may circumvent detection rules. Security ad-
ministrators need to update the knowledge base manually periodically to follow threat evolution.

1.3.2 Anomaly or Behavior-Based Detection

Anomaly detection methods have been introduced by Denning [46] to detect yet unknown threats.
These methods proceed in two steps: 1) a set of rules defining the legitimate behavior are designed,
and 2) the rules are applied to detect deviant behaviors automatically.

Anomaly detection is appealing because it may detect yet unknown threats. These detection
techniques do not have any characterization of malicious behavior and are therefore more likely to
detect new threats than misuse detection techniques.



Prone to Mimicry Attacks. Anomaly detection is not prone to polymorphism attacks, but
to mimicry techniques. Attackers can make their attack look like the legitimate behavior while
keeping the malicious payload to avoid detection.

In this section, we present two types of anomaly detection methods: expert systems, and unsuper-
vised learning. They are distinguished by the way the first step, defining the legitimate behavior, is
performed: manually or automatically. In the case of expert systems, security administrators build
rules defining the legitimate behavior manually thanks to their domain expertise. On the contrary,
unsupervised learning characterizes the legitimate behavior automatically from legitimate data
gathered by security administrators. There are many other anomaly detection techniques that
are not detailed in this thesis. The reader may refer to [53] for more information about anomaly
detection.

Anomaly-Based Expert Systems

Expert systems are knowledge-based detection techniques: they consist of sets of rules manually
defined. They can be misuse or anomaly detection methods depending on the type of behavior
they characterize. Here we consider anomaly-based expert systems that characterize the legitimate
behavior.

Security administrators establish a set of rules to define the model of legitimate behavior. Once
the model has been designed, it can be applied to detect anomalous behaviors automatically.

Rather Transparent. Anomaly-based expert systems have almost the same level of trans-
parency as misuse detection techniques. Security administrators understand without difficulty how
detection works within expert systems since they have built the rules themselves. Nonetheless, the
generated alerts can be more difficult to interpret than misuse detection rules, since they have not
been triggered by a specific malicious behavior.

Rather Controllable. Anomaly-based expert systems are more likely to detect yet unknown
threats than misuse detection, but they have the same drawback in terms of controllability. Indeed,
security administrators can update the model of legitimate behavior to avoid both false positives
and negatives, but the update is performed manually, and can thus be time-consuming.

Unsupervised learning is a solution to make anomaly detection more controllable: it automates
the construction of the legitimate behavior model.

Unsupervised Learning

Unsupervised learning is a kind of machine learning that requires only non-malicious data to
build anomaly detection models. The model of legitimate behavior is induced automatically from
the benign data provided initially by security administrators. Then, the model triggers an alert
each time an event differs too much from the legitimate behavior.

At first sight, unsupervised anomaly detection models are attractive for detection systems. They
are more likely to detect yet unknown threats than misuse detection. Besides, they seem more
controllable than expert systems since they automate the generation of the legitimate behavior
model. Finally, their deployment is frequently claimed to be straightforward: it requires only a
benign dataset which does not contain any malicious event.



High Risk of False Positives. Anomaly detection models rely on two strong assumptions:
1) the dataset is attack-free, and 2) all anomalous events are malicious [55]. However, these as-
sumptions do not usually hold in practice which is likely to damage the performance of anomaly
detection models.

Acquiring an attack-free dataset is not easy since there is no simple way to ensure the absence
of malicious events. If the dataset that is assumed to be clean contains malicious events, it may
mislead the detection model and prevent some threats from being detected.

Besides, anomaly detection models trigger alerts for anomalous events which are not necessarily
malicious. For instance, an anomalous transmission/reception ratio on HTTPS may be evidence
of a data exfiltration, but may also be caused by certain social networks ; popular web sites can
generate much traffic without being malicious ; and mere configuration errors or policy changes can
lead to anomalous behaviors generating false alerts. As a result, anomaly detection methods often
suffer from a high false alarm rate and overwhelm security operators with meaningless alerts.

Unsupervised learning may be responsible for the poor reputation of machine learning techniques
among security administrators. These techniques are reputed to suffer from high false positive
rates that make them inconsistent with operational constraints. Since the training of unsupervised
anomaly detection models seems straightforward, many security administrators have tried out these
techniques. The resulting detection models have often triggered many false alarms since the two
assumptions stated above hardly hold in practice.

Interpretation is not Straightforward. Unsupervised learning is less transparent than
expert systems. The automation of the definition of the legitimate behavior comes at the expense
of transparency. Indeed, anomaly detection models built with unsupervised learning cannot be
interpreted as easily as sets of rules built with expert knowledge. Anomaly detection models can
be interpreted, but it requires additional work.

Rather Controllable. Unsupervised anomaly detection models are more controllable than
expert systems, since they update automatically the model of legitimate behavior. Nonetheless,
they still suffer from a lack of controllability. If some false negatives are identified by other means,
they cannot be injected in the model to improve the detection of similar attacks in the future.
Security administrators cannot guide these models with malicious examples as their training takes
into account only benign events. Only false alarms can be added to the attack-free dataset to
update the anomaly detection model.

In conclusion, anomaly detection techniques are attractive to be deployed in detection systems, as
an adjunct to misuse detection, since they are more likely to detect yet unknown threats. Anomaly-
based expert systems are, nevertheless, as controllable as misuse detection rules: they cannot be
updated automatically to correct false positives or negatives. Unsupervised learning is a good
solution to deal with the lack of automation of expert systems, but at the expense of effectiveness
and transparency. Finally, even if unsupervised learning automates the update of the legitimate
behavior model, it still lacks controllability: security administrators cannot guide anomaly detection
models with malicious examples. Supervised detection addresses this need for integration of expert
knowledge.



1.3.3 Supervised Detection

Supervised learning is another kind of machine learning. It proceeds in two steps as unsupervised
anomaly detection: 1) a supervised detection model is trained from annotated data provided by
security administrators, and 2) the detection model is applied to detect malicious events automat-
ically. The main difference with unsupervised learning is the content of the training dataset: it
contains benign examples, but also malicious ones to guide the detection model. The training algo-
rithm finds automatically the similarities of the examples within each class and the discriminating
characteristics to build the detection model.

Highly Controllable. Thanks to supervised learning, security operators can easily improve
the detection model from the alerts they analyze. False alarms can rectify the model and avoid
generating the same false alarms in the future. True alarms can also be injected in the model to
follow threat evolution. Besides, if malicious examples are detected by other means, they can guide
the model to improve its detection performance. As a result, security administrators do not hand
control of detection systems to automatic models, but they actively supervise them to improve their
performance over time. In brief, supervised detection models are highly controllable: they can be
updated automatically with both benign and malicious examples.

Interpretation is not Straightforward. Supervised detection models are built automati-
cally from data like unsupervised anomaly detection models. They have thus the same drawback
with regard to transparency. Their interpretation is not straightforward, and some supervised
model classes are more easily interpretable than others.

Compromise Between Misuse and Anomaly Detection. Supervised learning does not
rely on specific malicious behaviors as much as misuse detection. It builds a generic representation
of malicious and benign behaviors from many benign and malicious examples. Supervised detection
models are thus more likely to detect yet unknown threats than misuse detection rules.

Unlike unsupervised learning, supervised learning is driven by malicious examples provided
by security administrators. Supervised detection models have some characterization of malicious
behavior which makes them less likely to detect yet unknown threats than anomaly detection meth-
ods [79, 148]. However, supervision reduces the false positive rate which is crucial for operational
deployments.

To sum up, supervised detection is a good compromise between misuse and anomaly detection
with regard to effectiveness and robustness. Supervised detection models are more likely to detect
yet unknown threats than misuse detection rules, and they are less prone to false positives than
anomaly detection models.

In this thesis, we focus on supervised learning for two main reasons that have been detailed above.
First, this detection technique is highly controllable: supervised detection models can be updated
automatically with both benign and malicious examples. Second, we have shown that it is a good
compromise between misuse and anomaly detection with regard to effectiveness and robustness.
Hereinafter, we employ the terms supervised learning and machine learning interchangeably.



Despite these assets, there remain some challenges to improve the operability of supervised
learning in detection systems. In the next section, we detail the main issues this thesis addresses.

1.4 Challenges for Deploying Supervised Detection Models

Supervised detection models can be deployed in detection systems, to improve the detection of
yet unknown threats. Various detection problems have been tackled with supervised learning :
Android applications [54], PDF files [124, 37|, Flash files [49, 141], portable executable files [75],
botnets [25, 10, 27], Windows audit logs [22], and memory dumps [17]. Despite these encouraging
results, there remain some significant barriers to the widespread deployment of machine learning
in operational detection systems.

The standard supervised learning pipeline consists of data annotation, feature extraction, train-
ing and evaluation. Security administrators must carry out all these steps to set up supervised
detection models ready for deployment. Once supervised detection models are deployed, security
operators exploit the alerts they trigger. In this section, we identify three issues that should be
addressed to foster the deployment of machine learning in operational detection systems.

1.4.1 How to Set up the Whole Machine Learning Pipeline ?

Security administrators may have little knowledge about machine learning. It may therefore be
difficult for them to take full advantage of this data analysis technique in their detection systems.

First, there are many supervised model classes: deep neural networks, random forests, Support
Vector Machines (SVM), k-nearest neighbors or naive Bayes classifiers to mention only the most
obvious examples. Security administrators may need guidance to pick a model class that suits their
operational constraints. Can all supervised detection models make predictions quickly enough to
operate on streaming data ? Are some model classes easier to interpret, or robuster than others ?

Besides, detection models must be thoroughly evaluated before deployment to operate success-
fully. Security administrators may need advice about the assessment protocol. They may wonder
how they can diagnose and handle potential accuracy issues.

Finally, security administrators should not have to deal too much with the machine learning
machinery. Machine learning tools should enable them to build detection models even they have
little or no knowledge about machine learning. Graphical user interfaces should enable security
administrators to understand how detection models behave, i.e. which factors mainly influence
their decision-making to trigger alerts. They should also provide information to help security
administrators identify and address potential accuracy issues.

To sum up, security administrators are usually not machine learning experts, and they may
need support to take full advantage of machine learning in their detection systems. They may
need guidance to understand machine learning methodology, and how to design well-performing
detection models. Finally, they should have access to machine learning tools to focus more on
detection than on machine learning machinery.



1.4.2 How to Ease Data Annotation ?

Training data play a central role in supervised learning. Their quality has a direct impact on the
performance of resulting detection models. Most research works on supervised detection assume
that a representative annotated dataset is available for training while such datasets are particularly
expensive to build in computer security. Some annotated datasets related to computer security
are public (e.g. Malicia project [91], KDD99 [136], kyoto2006 [128], Contagio [1], Drebin [11]) but
they are quickly outdated and they often do not account for the idiosyncrasies of each deployment
context.

Annotated datasets of files (e.g. portable executable, PDF, or Windows Office documents)
can be exploited to train detection models deployed in diverse environments. These kinds of
data are likely to vary slightly from one environment to another. On the contrary, event logs
(network or operating system event logs) and detection targets are highly dependent on deployment
environments: a same behavior can be legitimate in an environment, but irregular in another. As
a result, a detection model trained for a given environment is likely to perform poorly in another.
These types of data require to build detection models in-situ [132], i.e. with training data coming
from production environments.

A solution to meet this in-situ constraint is to ask security administrators to annotate data com-
ing from production environments. In comparison to designing new machine learning algorithms,
designing new annotation interfaces has received far less attention [85]. Some annotation inter-
faces are readily available for image, video, or text data, but they are too specific and do not suit
computer security detection problems.

Besides, expert knowledge is required to annotate and data processed by detection systems are
often sensitive. As a result, crowd-sourcing [126] and gamification [65] cannot be applied as in
computer vision or natural language processing to acquire annotated datasets at low cost.

Active learning strategies [119] have been introduced in the machine learning community to
reduce the number of manual annotations. Active learning is an iterative process: at each iteration,
the strategy selects the most informative examples, asks security administrators to annotate them,
and update the detection model accordingly. Active learning is thus an expert-in-the-loop process,
where user experience should not be overlooked.

The computer security community has exploited active learning, but the expert-model inter-
action has often been neglected. They have mostly focused on query strategies, and not on their
integration in annotation systems. It is, however, crucial to design both components jointly, the
active learning strategy and the annotation system, to effectively reduce the annotation workload.
Security administrators do not want to minimize only the number of manual annotations, but the
overall time spent annotating.

In brief, there is a real need for active learning systems that are tailored to security experts needs.
User experience must be taken into account while designing such systems to effectively streamline
annotation projects.
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1.4.3 How to Automate Feature Extraction ?

Standard machine learning algorithms do not take raw data as input, but instances represented
as fixed-length vectors of features. Features are binary, numerical, or categorical values describing
an instance that are exploited by detection models to make decisions. The feature extraction step
of the machine learning pipeline depends on the data type considered.

The vast majority of research works on supervised detection have implemented a feature ex-
traction method specific to their detection problem. Nonetheless, detection systems process many
data types and designing a feature extraction method for each of them is tedious.

Automatic feature generation [129, 28, 72, 78] can significantly ease the deployment of machine
learning in detection systems. The primary aim of such techniques is to generate discriminating
features to get well-performing detection models. In the context of detection systems, there are
additional constraints. First, the generated features must be interpretable and robust, so that
the resulting detection models have the same properties. Besides, security administrators have
domain knowledge that can lead the feature generation process to get better features. The fea-
ture generation method should thus be semi-automatic to let security administrators share their
expertise.

To sum up, we emphasize three points that we think are critical to ease, and thus foster, the
deployment of machine learning in operational detection systems:

1. provide interactive tools to set up the whole machine learning pipeline ;
2. ease the acquisition of annotated datasets ;

3. automate feature extraction.

1.5 Contributions

The overall objective of this thesis is to foster the deployment of supervised learning in detection
systems to increase detection capabilities. To that end, we adopt an end-to-end approach. We take
into account the whole machine learning pipeline (data annotation, feature extraction, training,
and evaluation) with security administrators and operators as its core since it is crucial to pursue
real-world impact [145, 85].

Part I concerns the whole machine learning pipeline, while Parts II and III focus on data
annotation and feature extraction respectively.

Part I. First of all, Part I aims to help security administrators understand how they can apply
machine learning, and make this data analysis technique suits their operational constraints. This
part addresses the challenge stated in Section 1.4.1. Its content has been published in French at
the Symposium sur la sécurité des technologies de linformation et des communications (SSTIC
2017) [26].
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Chapter 2 reviews machine learning techniques and methodologies with a computer security
point of view. We explain how the operational constraints should guide the selection of the super-
vised model class. Besides, we expose a three-step evaluation protocol that security administrators
should conduct to diagnose and address potential accuracy issues.

Chapter 3 introduces DIADEM, an interactive visualization tool we have designed and imple-
mented to help security administrators apply the methodology set out. DIADEM deals with the
machine learning machinery to let security administrators focus mainly on detection. We illustrate
how DIADEM can be leveraged to set up detection models with a case study on malicious PDF
files detection.

Part II. Then, Part II addresses the challenge stated in Section 1.4.2. It proposes a solution to
effectively reduce the workload in computer security annotation projects. We present an end-to-
end active learning system, ILAB, tailored to security administrators needs. We have designed the
active learning strategy and the user interface jointly to effectively reduce the annotation effort.

First, Chapter 5 introduces ILAB active learning strategy that we have designed to minimize
not only the number of manual annotations, but also the waiting-periods. We compare ILAB active
learning strategy with three state-of-the-art methods [4, 130, 63]. It shows that ILAB improves
the detection performance without increasing the execution time. This chapter content has been
published at the 20th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2017) [18].

Second, in Chapter 6 we explain how we have integrated ILAB active learning strategy into
a user interface. We carry out user experiments with security administrators to get feedback
from intended end-users. It demonstrates that ILAB is an efficient active learning system that
security administrators can deploy in real-world annotation projects. This chapter content has
been published at the Artificial Intelligence for Computer Security workshop (AICS 2018) [19].

Part III. Finally, Part III provides the beginning of an answer to the last challenge stated in
Section 1.4.3. It focuses on automatic feature generation in the context of detection systems.

First, we define the constraints that such methods should meet to be effective to build detection
models. Then, we review some related works in various communities. On the one hand, Hidost [129]
has been introduced in the computer security community to generate features automatically from
hierarchical files. On the other hand, more generic approaches, relying on relational data, have
been proposed in the machine learning community [28, 72, 78]. To the best of our knowledge, these
generic feature extraction techniques [28, 72, 78] have never been applied to detection systems,
while they could be beneficial. Therefore, we compare Hidost [129] to [28, 72] on two detection
problems. This comparison leads to some avenues of research to better tailor automatic feature
generation to security administrators needs.

In this thesis, we work on the whole machine learning pipeline with security administrators and
operators as its core since it is crucial to pursue real-world impact. Moreover, the solutions we
propose are completely generic to be beneficial to any detection problem on any data type.

We have implemented the SecuML [20] framework to help security administrators build machine
learning models and interact with them. We provide open-source implementations of DIADEM and
ILAB in SecuML to ease comparison in future research works, and to enable security administrators
to build their own detection models.
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Part 1

Setting up Supervised Detection
Models
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Chapter 2

Methodology of Supervised Detection
for Security Administrators

Security administrators are willing to deploy supervised detection models, in parallel to tradi-
tional detection methods, to enhance detection. They may, however, have little or no knowledge
about machine learning. They may therefore have trouble building supervised detection models
ready for deployment.

This chapter reviews machine learning techniques and methodologies with a computer security
point of view. We present the whole machine learning pipeline, and we explain how the operational
constraints should drive the choice of the supervised model class. We place a particular emphasis
on evaluating properly supervised detection models since it is critical for successful deployments.
This chapter introduces a three-step evaluation procedure that security administrators should carry
out to diagnose and handle potential accuracy issues before deployment.

This chapter content has been published in French at the Symposium sur la sécurité des tech-
nologies de linformation et des communications (SSTIC 2017) [26].
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2.1 Introduction

Supervised detection models can be deployed in detection systems to improve detection capabil-
ities. However, security administrators, who are responsible for setting up detection methods, may
have little or no knowledge about machine learning.

They may wonder how to build supervised detection models that fulfill their operational con-
straints (see Section 1.2). Can a detection method based on machine learning process streaming
data 7 Is the false alarm rate of supervised detection models low enough to prevent meaningless
alerts from overwhelming security operators 7 Machine learning based detection models are re-
puted to be black-box methods among security administrators. How can they trust such models to
deploy them in operational detection systems 7 Are the alerts generated by such models sufficiently
interpretable for security operators to exploit them ?

Moreover, evaluating detection models is not a straightforward procedure, while it is a criti-
cal step to ensure successful deployments. Security administrators may need advice to evaluate
detection models thoroughly and to find solutions in case of performance issues.

This chapter reviews machine learning techniques and methodologies with a computer security
point of view.

e We present the whole machine learning pipeline that security administrators must set up to
build supervised detection models ready for deployment.

e We explain how each operational constraint (see Section 1.2) should drive the choice of the
supervised model class.

e We expose a three-step evaluation protocol that security administrators should conduct to
diagnose and address potential accuracy issues.

The rest of the chapter is organized as follows. Section 2.2 provides a broad overview of supervised
learning, and explains the different stages of the machine learning pipeline. Then, Section 2.3
presents some supervised model classes, and Section 2.4 provides guidance for selecting a model
class that meets the operational constraints of detection systems. Finally, Section 2.5 provides
methodological advice to diagnose and handle potential accuracy issues.

2.2 Overview of Supervised Detection

2.2.1 A Two-Stage Process: Training and Detection

A binary classifier based on supervised learning can be deployed in detection systems as a means
of detection (see Figure 2.1). The classifier takes as input an instance, a PDF file for example, and
returns the predicted class label, benign or malicious (in green and red in the figure), as output.
The binary classifier is called a detection model in the context of detection systems.

Our presentation of supervised learning is based on the example of malicious PDF files detection,
but we want to emphasize that supervised learning is a generic approach. It can be applied to any
data type: the instance can also be a Windows Office document, an Android application, or the
traffic associated to an IP address.
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Figure 2.1: Detection Model based on a Binary Classifier.

Supervised learning involves two stages (see Figure 2.2) [52, 8|:
1. Training: the detection model is trained from annotated data ;

2. Detection: the detection model predicts whether an alert should be triggered or not.

Training. During the first step, the classifier is built from annotated data: a set of instances,
malicious and benign, for which the label is known (see Figure 2.2a). The annotated data lever-
aged to train the model are called training data. The training algorithm finds automatically the
similarities of the instances within each class and the discriminating characteristics to build the
detection model.

Detection. Once the model has been trained on an annotated dataset, it can be deployed in
the detection system to detect malicious instances automatically. In practice, most classifiers do
not provide a binary answer (benign vs. malicious), but rather a probability of maliciousness (see
Figure 2.2Db).

The detection system triggers an alert only if the probability of maliciousness is above the
detection threshold set by security administrators. In the example depicted in Figure 2.2b, an
alert will be triggered for the input PDF file only if the detection threshold is below 75%. The
probability of maliciousness predicted by the detection model allows to sort alerts according to the
confidence of the predictions, and thus to identify which alerts security operators should analyze
foremost.

2.2.2 Detection Performance Metrics

Classification Error Rate. The most prominent measure of performance is the classification
error rate, i.e. the percentage of misclassified instances, but it is not suitable in the context of
threat detection. Indeed, the data are usually unbalanced with a small proportion of malicious
instances.

We present an example demonstrating the limits of the classification error rate. We consider
100 instances: 2 malicious and 98 benign. In this situation, a dumb detection model predicting
always benign has a classification error rate of only 2% while it is not able to detect any malicious
instance.

Confusion Matrix. To assess properly the performance of a detection method, we must begin
by writing the confusion matrix. The confusion matrix takes into account the two possible types of
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Figure 2.2: Supervised Learning: a Two-Stage Process.
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errors: false negatives, i.e. malicious instances which have not been detected, and false positives, i.e.
benign instances which have triggered a false alarm. Figure 2.3 explains the content of a confusion
matrix.

Predicted label

Malicious Benign
Malicious | True Positive (TP) | False Negative (FN)
True label . — ‘ -
Benign False Positive (FP) | True Negative (TN)
True the prediction is true (predicted label = true label)
False the prediction is wrong (predicted label # true label)
Positive the prediction is Malicious
Negative the prediction is Benign

Figure 2.3: Explanation of the Confusion Matrix.

False Positive and Detection Rates. The confusion matrix allows to express measures of
performance such as the detection rate (2.1) and the false positive rate (2.2), also called false alarm
rate.

FP
False Positive Rate = FPLTN (2.1)
TP
Detection Rate = ———— 2.2
etection Rate = 7 (2.2)

The performance of a detection model can be properly assessed with both measures taken
jointly. On the one hand, the false positive rate must be low enough to prevent false alarms from
overwhelming security operators. On the other hand, the detection rate must be high to avoid
missing a threat that could lead to a security incident.

The detection threshold determines the sensibility of the detection: decreasing it increases the
detection rate, but also the false alarm rate. Security administrators set the detection threshold
depending on the desired tradeoff between detection and false alarm rates.

ROC Curve. The measures of performance we have introduced so far depend on the value of the
detection threshold. The ROC (Receiver Operating Characteristic) curve [67] is another measure
of performance. It has the benefit of being independent of the detection threshold. This curve
represents the detection rate according to the false positive rate for various values of the detection
threshold (see Figure 2.4).

For a threshold of 100%, the detection and false alarm rates are null, and for a threshold of
0% they are both equal to 100%. A good detection model has a ROC curve close to the upper left
corner : a high detection rate with a low false alarm rate. The AUC, which stands for Area Under
the ROC Curve, is often computed to assess the performance of a detection model independently
of the detection threshold. A good detection model has an AUC close to 100%.

The ROC curve of a classifier predicting randomly the probability of maliciousness is the straight
red line depicted in Figure 2.4. A ROC curve is always above this straight line and the AUC is at
least 50%. Thanks to the ROC curve, security administrators can set the value of the detection
threshold according to the detection rate desired or the false alarm rate tolerated.
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Figure 2.4: Explanation of the ROC Curve.

2.2.3 Underfitting-Overfitting Tradeoff

The underfitting-overfitting tradeoff is critical in supervised learning.

Underfitting. Supervised detection models should capture the relevant relations between the
input data and the labels we want to predict. Underfitting occurs when the detection model cannot
capture the underlying trend of the data. Intuitively, the model is not complex enough to fit the
data properly.

Overfitting. The primary objective of supervised learning is not to predict perfectly the labels
of training data, but to generalize properly to yet unseen instances. Owerfitting means that the
detection model is too flexible and fits too much the training data. The noise or random fluctuations
in the training data is picked up and learned as concepts by the model. However, these concepts
may not apply to new data and negatively impact the generalization capabilities of the model.

There is a tradeoff between underfitting and overfitting because these concepts are directly related
to model complexity. Simple models with little flexibility are likely to suffer from underfitting
while more complex and flexible models are likely to suffer from overfitting. The real challenge of
machine learning is to find a detection model complex enough to fit the training data well, but not
too complex to generalize properly to yet unseen instances.

2.2.4 The Whole Machine Learning Pipeline

Section 2.2.1 provides a simplified picture of the training step (see Figure 2.2a). It is not straight-
forward to build supervised detection models ready for deployment. It involves a whole processing
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Figure 2.5: The Whole Machine Learning Pipeline.

pipeline composed of the following steps (see Figure 2.5): 1) data annotation, 2) feature extraction,
3) training, and 4) evaluation. In this section, we briefly outline each step.

1. Data Annotation. Building a supervised detection model requires training data for which
the labels, benign or malicious, are known. These training data must contain malicious and benign
instances consistent with the desired detection target, i.e. what security administrators wish to
detect. Security administrators must supervise closely the collection of annotated data, to ensure
it suits their detection target.

Some principles must be respected while collecting a training dataset. First of all, it must
contain enough instances so that the supervised detection model generalizes the malicious and
benign behaviors properly. Besides, it must not be too much unbalanced, i.e a label must not
represent only a tiny proportion of the instances. We cannot provide a generic rule defining the
minimal number of instances required to train a detection model, nor the level of imbalance allowed.
These values depend deeply on the detection problem considered, and on the instances in the
dataset.

2. Feature Extraction. Standard machine learning algorithms do not take raw data as input,
but instances represented as fixed-length vectors of features. Features are binary, numerical, or
categorical values describing an instance that detection models exploit to make decisions. The more
discriminating the features are, the more efficient the detection model is. Security administrators
should leverage their domain expertise to extract features that are relevant for their detection
target.

Feature extraction is a three-step process: 1) identifying discriminating information, 2) parsing
the data to extract this information, and 3) transforming this information into fixed-length vectors
of features. The first two steps require a good knowledge of the data format and of the detection
target while the last one can exploit generic techniques.

Feature extraction provides a standard representation of instances that makes training of de-
tection models independent of the data type.
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3. Training. There are many types of supervised detection models that are referred to as model
classes [52]: neural networks, random forests, k-nearest neighbors, or support vector machines
(SVM) to name only the most obvious examples. The reader may refer to Section 2.3 for more
information about supervised model classes.

First, security administrators must pick a model class that suits their operational constraints.
Then, they can leverage one of the many libraries dedicated to machine learning (e.g. scikit-learn
in python, Spark, Mahout or Weka in java, or Vowpal Wabbit in C++) to train the model class they
have chosen on their training data.

4. Evaluation. Supervised detection models are not flawless, they may make prediction errors.
It is critical to carry out a thorough evaluation of detection models before their deployment in
detection systems to avoid unpleasant surprises.

The detection rate must be satisfactory, and the false positive rate low enough to prevent false
alarms from overwhelming security operators. The reader may refer to Section 2.2.2 for more detail
about detection performance metrics.

The detection performance of detection models must be assessed on an independent dataset.
It is crucial that the evaluation dataset, also called validation dataset, is completely independent
from the training one. Indeed, the objective is to ensure that the detection model is able to predict
accurately the label of instances unseen during the training phase.

The first trained model is usually not satisfactory. Setting up a detection model is an iterative
process where the evaluation phase provides avenues for improving training (see Figure 2.5).
At each iteration, security administrators train and validate a detection model. Based on the
results, they can either consider that the detection model is good enough for deployment or perform
a new iteration by modifying the annotated dataset, the extracted features or the model class.

In this chapter, we provide general guidance for two steps of the machine learning pipeline:
training and evaluation. In Section 2.3, we provide a broad overview of supervised model classes,
and in Section 2.4, we advise security administrators on how they should pick a model class that
fulfills their operational constraints. Finally, in Section 2.5, we introduce a three-step evaluation
protocol that security administrators should follow before any deployment.

2.3 Supervised Model Classes

Neural networks have become so popular that the confusion between deep learning and machine
learning is often made. However, neural networks used in deep learning are only one supervised
model class, with both benefits and drawbacks. There are many others: decision trees, random
forests, k-nearest neighbors, linear or quadratic discriminant analyses, logistic regression, Support
Vector Machines (SVM) or naive Bayes classifiers, to cite just a few examples.

The objective of this section is not to provide a comprehensive review of supervised model
classes, but rather to present the best-known and to explain how they are related. We also provide
some technical details about the model classes, because they are crucial to choose a model class
that meets the operational constraints of detection systems.
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Notations. In order to explain how supervised models work, we need some notations. Let z € R™
denote an input instance represented by m real-valued features. In the context of computer security
detection, an input instance x can represent a PDF file, an Android application, the traffic of an
IP address, or the activity of a user on a computer platform. Let y € {0,1} be the output class
variable, i.e. the outcome we want to predict : 0 for Benign, and 1 for Malicious.

We seek a mapping function f for predicting Y given x. Supervised learning fits the mapping
function f from a training dataset D = {(a',y") | ' € R™,y" € {0, 1}}1<Z< Supervised learning
makes the assumption that the training instances are independent and identically distributed.

The model classes differ by the form of the function f and by the criteria they intend to opti-
mize while fitting f from training data. In this section, we review model classes from two broad
categories [106]: parametric and non-parametric models.

2.3.1 Parametric Models

Definition. Russell et al. [114] define parametric models as follows: “A learning model that
summarizes data with a set of parameters of fixed size (independent of the number of training
examples) is called a parametric model. No matter how much data you throw at a parametric
model, it won’t change its mind about how many parameters it needs.”.

Parametric models impose a specific form to the mapping function f that is characterized by
a fixed number of parameters that do not depend on the amount of training data. They usually
make assumptions about the data, such as their underlying distribution, while designing the form
of the mapping function f.

Naive Bayes classifiers, logistic regression, Support Vector Machines (SVM), and neural net-
works (with a fixed architecture) are examples of parametric models.

Naive Bayes Classifiers

Mapping Function. Naive Bayes classifiers fit a function fyp based on a maximum a posteriori
decision rule (2.3).

fynp(z) =argmax Py =k | x) (2.3)
ke{0,1}

They make a strong features independence assumption. They assume that the value of a particular
feature x; is independent of the value of any other feature, given the class variable y (2.4).

P(x|y=Fk) =[] Plaly =) (2.4)
j=1

This assumption (2.4) combined with the Bayes rule (2.5) leads to a new formulation of the mapping
function f (2.6).

Py | ) = T (25)
flz) = a]f;g{r()ngx P(y jl;[l (zj |y =k) (2.6)
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Estimation of the Parameters. The training phase must estimate the probability distributions
P(y) and P(z; | y) from the training instances. P(y) is usually estimated empirically by the class
frequency in the training dataset. P(y = 0) is estimated with P(y = 0), the empirical proportion
of Benign instances within the training data (2.7). P(y = 1) is easily derived from P(y = 0) with
Ply=1)=1—-P(y=0).

Ply=0)< {(@,y") Ef |y' =0} |

(2.7)

We need to make assumptions about the distribution of z; | y to parametrize it. Since the
features are continuous, we can use Gaussian distributions (2.8).

zj|y=k~N(ujrosy) < Plaj|ly=k) =

1 (
exp 5
\/ 271'0']2-7k 2Jj,k

The parameters of the Gaussian distributions, u;; and O'JQ-’k, are estimated empirically from the

training data with the empirical mean, fi; (2.9), and the empirical variance, JAQj,k (2.10).

N 1 ;
g =— Y (2.9)

. 1 P
cri,C = - Z(ajz — uj7k)2 (2.10)

Naive Bayes classifiers are parametric models. Their mapping functions are characterized by
4m + 1 parameters if the probability 2? | y is modelized wih a Gaussian distribution: P(y = 0)
and {(ﬂj,k, ‘%2‘,14) |1<j<m, ke{0, 1}} They are highly scalable since they are characterized by
a number of parameters linear in the number of features and these parameters can be estimated
quickly with a closed-form expression. However, the assumptions made by naive Bayes classifiers
(features independence, underlying distribution of x; | y) may not hold in practice and therefore
damage the detection performance.

Linear Models: Logistic Regression and SVM

Mapping Functions. Logistic regression and Support Vector Machines (SVM) are linear models.
The computation of the output class variable y depends only on the sum (no product or more
complex functions) of the input features and parameters. Logistic regression and SVM have their
own type of mapping functions.

Logistic regression modelizes the probability of maliciousness P(y = 1 | z) with a sigmoid

function (2.11).
1

Plu=112) = T T (o 1+ 570) @1)
The parameters By € R and 5 € R™ are learned from the training dataset D. They characterize the
linear decision boundary: g is usually called the intercept, and 5 associates a weight to each feature.
Once these parameters have been fit, the mapping function frr (2.12) is used to make predictions.

It depends on a detection threshold ¢ € [0, 1] that must be set by security administrators manually
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according to the desired tradeoff between detection and false alarm rates. The mapping function
frr only checks whether the predicted probability of maliciousness is above the detection threshold
t.

1
frr(x) = sign ( — t> 2.12
@) T+ exp (— (o + 572) (242

SVM builds a hyperplane that separates the benign from the malicious instances. The hyper-
plane is characterized by the equation g+ 872 = 0, where By € R and 5 € R™. These parameters
are fit during the training phase. The function mapping fsyas (2.13) predicts the outcome y for
an input instance x according to its position in relation with the hyperplane.

fsva(z) = sign(Bo + ' z) (2.13)

Estimation of the Parameters. The training algorithms of logistic regression and SVM opti-
mize an objective function on the training data to fit the parameters. Equation (2.14) presents the
general form of objective functions. 6 corresponds to the parameters of the mapping function f
that should be learned during the training phase. For logistic regression and SVM, 6 = (B, ).

mein%Zl(yi,f(:ci,G)) +e-0(0) (2.14)
=0

The objective function (2.14) is composed of two terms: 1) a loss function, I(y¢, f(z%,0)), and 2) a
regularization penalty, ¢ - Q(f). We explain the purpose of each term below.

Loss Function. The function [ is a loss function, or cost function, that assesses the difference
between the predictions made by the model f(z?,6), and the ground-truth labels y’. The objective
of the first term of the objective function (2.14) is to penalize the prediction errors on the training
dataset.

Logistic regression and SVM rely on different loss functions. They are not detailed in this thesis.
The reader may refer to [52] for more detail.

Regularization Penalty. The primary aim of mapping functions f is not to predict perfectly
the output class variables of training data, but to generalize properly to unseen instances during
the training phase. The second term, c - €2(0), called regularization penalty, is added to improve
generalization. It controls the underfitting-overfitting tradeoff (see Section 2.2.3). The function €
evaluates the complexity of the detection model according to its parameters, and the hyperparam-
eter ¢ € Rt controls the strength of the regularization.

Increasing ¢ decreases the strength of the regularization and tends therefore to generate more
complex models that may overfit. On the contrary, decreasing c strengthens the regularization and
favors simpler models that may underfit. To sum up, the hyperparameter ¢ is crucial to control
the underfitting-overfitting tradeoff. Its value must be set properly to avoid both overfitting and
underfitting.

Many loss functions have been introduced in the literature. The most common are the ¢; and
{3 norms [52]. The ¢; norm performs also feature selection: it induces sparse models where many
components of 5 are null.
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Optimization of the Objective Function. Training algorithms rely on optimization techniques
[29] to fit the parameters 6 from the training data. The logistic regression and SVM model classes
were introduced decades ago in the machine community, and were originally trained with classical
optimization techniques [149]. There is still ongoing research work on optimization to improve
the fitting of their parameters [44, 115]. The new optimization techniques are more efficient on
large datasets (the number of instances and/or the number of features are large), and they allow
to train models on streaming annotated data. On the contrary, iterative optimization techniques
(e.g. gradient descent, Newton methods, or quasi-Newton methods) need to store the training data.
They go through the training instances several times to fit the parameters.

More Complex Model Classes

The parametric models we have introduced so far, naive Bayes classifiers, SVM and logistic
regression, are simple, and may not be flexible enough to fit the data properly. Naive Bayes
classifiers assume that the features are independent, while SVM and logistic regression assume
that the data are linearly separable. These assumptions may not hold in practice and lead to
underfitting.

Some parametric models are more flexible, and can fit more complex distributions. The objective
function (2.14) is generic and leads to various model classes through the choice of the form of
the mapping function f, the loss function [, and the regularization function 2. SVM and logistic
regression are linear models: their mapping function f is linear in the input features. More complex
models are derived with non-linear mapping functions (e.g. quadratic discriminant analysis).

Neural networks are also parametric models, whose complexity can be arbitrarily increased by
adding layers of neurons. Moreover, linear SVM can be extended to fit more complex distributions
thanks to kernels that transform the input data. The reader may refer to [52] for more detail about
more complex parametric models.

2.3.2 Non-Parametric Models

Definition. Non-parametric models have a potentially infinite number of parameters that grows
with the number of training instances. They usually make mild structure assumptions, and can
therefore adapt to any situation. However, they may perform poorly on high-dimensional data
because of the curse of dimensionality [52].

k-Nearest Neighbors

k-nearest neighbors proceed as follows to predict the label of an instance x. First, it looks for
the k-nearest neighbors of the instance x, denoted by Ny (x), among all the training data D. Then,
it predicts the most represented label among the k-nearest neighbors (2.15).

fun(z) = argmax |{(2,y") € D, 2’ € Ni(z),y" = y}| (2.15)
ye{0,1}

k-nearest neighbors require to specify: 1) the number of neighbors k, and 2) the distance between
the instances. The Euclidean distance is the default distance, but problem-specific distances can
be defined.

k-nearest neighbors are called lazy learners. They have no training phase, and they therefore
need all the training data during the prediction phase.
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Decision Trees

Decision trees predict the output class variable by learning simple decision rules inferred from
the training data. Internal nodes of decision trees contain binary conditions based on input features
while leaves are associated with class labels (Malicious or Benign).

The class label for a new instance is predicted by going through the tree from the root to a leaf
according to the conditions at each internal node and the instance input features. The final leaf
predicts the class label.

Building Decision Trees. Decision trees are built recursively [104]. The root node contains
all the training instances D, and each internal node splits its training instances into two subsets
(the children nodes) according to a condition based on the input features. The split conditions are
selected in a way to minimize the node impurity.

A node is completely pure if all its instances share the same label: they are all benign or
malicious. The impurity of a node is the largest when half the instances are benign, and the other
half malicious. Several node impurity measures have been defined to build decision trees [52] (e.g.
entropy or Gini index).

The stop condition of the recursive algorithm is usually specified by a minimum node impurity
threshold. If the impurity of a node is below this threshold, then we stop splitting it. It becomes
a leaf associated to the most common label among its training instances.

Tree-Based Ensemble Methods

Decision trees are very flexible models and may therefore suffer from overfitting. They may create
over-complex trees that do not generalize the data well. In order to address this issue, ensemble
methods, such as adaptive boosting classifiers [50] and random forests [30], have been introduced.
They consist of several decision trees, called weak learners. The output class labels are computed
through aggregations of the predictions of the individual decision trees.

In this section, we have explained how some model classes work and how they are related. These
explanations will be leveraged in Section 2.4 to drive the choice of model classes that meet the
operational constraints of detection systems.

Model classes (parametric or not) may have hyperparameters, i.e. parameters that must be set
before the training phase. These parameters are not fit automatically by the training algorithm. For
example, logistic regression has two hyperparameters: the regularization strength ¢ and the penalty
norm (¢ or ¢3). Regarding k-nearest neighbors, the number of neighbors k is an hyperparameter.
In the next section, we explain how the values of the hyperparameters can be set automatically.

2.3.3 Setting the Hyperparameters

Grid Search. We usually consider all the combinations of hyperparameters values in a grid search
to find the best ones. First, we evaluate the performance of the detection models trained with
each combination. Then, we select the hyperparameters values that result in the best-performing
detection model.
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The grid search sets the values of the hyperparameters automatically. Security administrators
must only specify: 1) the values of the hyperparameters they want to consider in the grid search,
and 2), the criteria they want to maximize (e.g. AUC or F-score). The detection model performance
is usually assessed with cross validation.

Cross Validation. Cross validation processes as follows to assess the performance of a detection
model for a given combination of hyperparameters values.

1. The training dataset D is divided into g folds. Each fold has approximately the same number
of instances and the same proportion of benign/malicious instances as the whole training
dataset.

2. The detection model is trained g times: each time, one fold is the testing set and the other
folds form the training set.

3. Each instance in the training dataset is used once for testing. As a result, at the end of the
cross validation, we have a unique predicted label for each instance x € D. We rely on these
predictions to compute the performance criteria that security administrators have selected
for the grid search.

2.4 How to Choose a Suitable Model Class ?

The choice of the model class has a direct impact on the adequacy of the resulting detection
model with the operational constraints (see Section 1.2). In this section, we explain how each
constraint should drive the choice of the model class.

2.4.1 Controllability

When a detection model is deployed, security operators analyze the generated alerts. The primary
purpose of their analyses is to detect false alarms and to take the necessary measures in the event
of a security incident. Their analyses, both false and true positives, can also be integrated into the
detection model to improve its detection capabilities.

All supervised model classes enjoy a high level of controllability. They can be updated with
both malicious and benign examples. Besides, the update is performed automatically, so known
detection errors can be corrected forthwith.

All supervised model classes fulfill perfectly the controllability constraint. This constraint does
not restrict at all the set of suited model classes.

2.4.2 Online Processing

Supervised detection models must make predictions, whether an alert should be triggered or
not, quickly enough to suit online processing. This is not a difficult requirement to meet since
the training phase of supervised models is usually time-consuming but not the predictions. The
training phase is thus performed offline, and once the model has been trained, its application to
new data is usually extremely fast.

Nevertheless, lazy learners, such as k-nearest neighbors, should be avoided in the context of
detection systems. These models have no training phase, and they therefore need all the training
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data during the prediction phase. The prediction phase of k-nearest neighbors has a temporal
complexity in O(nd) which depends on the number of features d, but also on the number of training
instances n. However, n should be large to get well-performing detection models, and n increases
over time when new instances are used to update the detection model. The prediction phase of this
model class is far too long for detection systems.

To sum up, most model classes meet the online processing constraint. Only lazy learners, such
as k-nearest neighbors, should be avoided. The online processing constraint is therefore not too
restrictive.

2.4.3 Transparency

Machine learning based detection models are reputed to be black-box methods among the com-
puter security community. Nonetheless, it is crucial to make them more transparent to deploy
them successfully in operational detection systems [111]. First, security administrators need to
trust detection models before their deployment. They want to understand their behavior as a
whole. Second, security operators require information about why an alert has been triggered to
handle it swiftly. Predictions of detection models should be interpretable to assist security opera-
tors in processing alerts. As a result, both individual predictions and detection models as a whole
must be interpretable to meet security administrators and operators needs.

k-Nearest Neighbors. The predictions made by k-nearest neighbors are rather interpretable.
The k-nearest neighbors can be displayed to security operators to explain why an alert has been
triggered, but the detection model cannot be described as a whole. Besides, we have explained in
Section 2.4.2 that it does not suit the online processing constraint.

Linear Models. Linear models, such as logistic regression or SVM, meet perfectly the trans-
parency constraint. Both individual predictions and detection models as a whole can be easily
interpreted.

The parameter 5 € R™ associates a coeflicient to each feature that allows to understand their
behavior. The greater the absolute value of the coefficient of a feature is, the more the feature
influences the prediction. Features with a zero coeflicient have no influence on predictions. Features
with negative coefficients point out benign instances (the greater these features are, the lower the
probability of maliciousness is) while features with positive coefficients point out malicious instances
(the greater these attributes are, the greater the probability of maliciousness is).

The parameter [ allows to interpret not only linear models as a whole, but also their individual
predictions. For a given instance z, its prediction f(z) can be interpreted with the product 57 z.
Indeed, the components 3;x; having the greatest absolute values are the ones influencing the most
the decision-making.

This interpretation approach has been criticized [89]: it may be misleading because of feature
correlations. Indeed, features associated to a coefficient with a small absolute value are not nec-
essarily useless to distinguish malicious from benign instances. For example, if two features are
highly correlated, and share the same discriminative power, only one of them will be associated
with a coefficient with a high absolute value. This is not an issue in our case. We are not interested
in pointing out all the features that bring discriminative information, but rather the features that
influence decision-making. In practice, security administrators and operators do not analyze all the
coefficients, but only the ones having the highest absolute values.
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Computer security experts usually appreciate linear models because they can make an analogy
with expert systems (see Section 1.3.2). Linear models associate a weight to various variables
that are called features in the machine learning context. The main advantage of linear models
over expert systems is their controllability. The weights associated with each variable are not set
manually with expert knowledge, but automatically from annotated data. As a result, the weights
can be swiftly updated to follow threat evolution.

Tree-Based Models. Decision trees are transparent models. If the decision tree does not contain
too many nodes, security administrators can understand its global behavior, and security operators
can interpret individual predictions.

Tree-based ensemble methods (e.g. adaptive boosting classifiers, random forests [30]) are more
complex than decision trees, but they are still rather transparent. Their overall behavior can be
described by the features’ importance. The importance of a feature corresponds to the increase in
the model prediction error after permuting the features values randomly [30]. Feature importance
provides a highly compressed, global insight into the model behavior, but individual predictions
are hard to interpret.

In this section, we have reviewed three supervised model classes that can be easily interpreted:
k-nearest neighbors, linear models, and tree-based models. If we focus only on interpretable models,
there are only a few options left.

Since transparency matters in many application domains, model-agnostic interpretability meth-
ods have been introduced in the machine learning community [109]. These methods intend to
separate explanations from machine learning models, in order to explain any model class, even
the most complex. In this thesis, we do not detail how these methods work. The reader may
refer to [110, 131, 84] for examples of such methods, or to [89] for more information about the
interpretation of machine learning models.

2.4.4 Robustness

Evasion Attacks: Adversarial Examples. Supervised detection models are less prone to poly-
morphism attacks than misuse detection techniques since they are more generic. Attackers can,
nevertheless, craft adversarial examples that evade detection while maintaining the same malicious
payload [23, 24]. They usually make slight perturbations to their attack to cross the decision bound-
ary of the detection model. Several methods to generate adversarial examples have been proposed:
gradient-based evasion attacks [23], fast gradient sign method [60], and Jacobian based-saliency map
approach [98]. These evasion techniques are generic, they are not tailored to any specific model
class. Therefore, security administrators cannot pick a model class that is particularly robust.
They are all vulnerable to adversarial examples.

Papernot et al. have created cleverhans [97], an open-source library for benchmarking the
vulnerability of machine learning models to adversarial examples. This library cannot, however,
benchmark computer security detection models directly. Indeed, adversarial methods do not di-
rectly manipulate real-world objects (e.g. PDF files, Android applications, event logs) but numerical
vectors in the feature space. Adversarial learning has been mostly applied to image recognition
where the mapping between the real-world objects, i.e. the images, and the features is straightfor-
ward. The features are simply the pixel values. Nonetheless, feature mappings may not be easily
inverted in the context of threat detection. Besides, the adverse perturbations must not corrupt
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the data format and must maintain the malicious payload. Adversarial methods must therefore be
constrained to suit threat detection.

Biggio et al. [23] adapt their gradient-based evasion attacks to PDF files. In their experiments,
they use the following feature mapping: each PDF file is represented by the number of occurrences
of some keywords (e.g. OpenAction, Comment, PageLayout). They restrict their adversarial attacks
to adding keywords since it is easy to insert new objects without corrupting the PDF file structure.
In the feature space, this constraint is equivalent to accepting only feature increments. Adversarial
examples have also been generated for Android applications [64, 45].

To sum up, supervised detection models can be evaded with adversarial examples whatever
model class is chosen. Nonetheless, such examples are difficult to craft in the context of threat
detection since feature mappings are usually hard to invert.

Defenses Against Adversarial Examples. Adversarial examples are hard to defend against
because they require machine learning models to produce good outputs for every possible input.
Most of the time, machine learning models work very well but only on a very small amount of all
the many possible inputs they might encounter [59].

Two defense techniques against adversarial examples have been proposed, adversarial train-
ing [133, 60] and defensive distillation [99], but they do not work perfectly: they close some vul-
nerabilities, but leave others open [59].

In brief, making supervised detection models robust against evasion attempts is critical since
they are deployed in adversarial environments, but it remains an open problem. There is currently
no perfect defense against adversarial examples. Such examples are, nevertheless, more difficult to
craft for detection systems since the feature mappings are usually harder to invert.

2.4.5 Effectiveness

There is no way to determine which model classes are the most effective. The effectiveness of a
given model class depends deeply on the data.

For instance, linear models are simple, but they require benign and malicious instances to be
linearly separable to work properly. If the data are not linearly separable, more complex models
such are quadratic models, tree-based models, or neural networks must be trained.

Selecting the most effective model class is data-dependent. The model selection is therefore
performed empirically. In Section 2.5, we provide advice on how to choose the best model class
empirically.

To sum up, the controllability and online processing constraints hardly restrict the set of model
classes that suit detection systems. The robustness constraint is critical in adversarial environments,
but there is still no consensus about the best method to make detection models robust against
evasion attempts. Transparency and effectiveness are thus the most important criteria to pick a
model class that suits detection systems.

We usually begin by training a linear model (e.g. logistic regression or SVM) that can be
easily interpreted by security administrators and operators. If a linear model does not perform
well-enough, we may move ahead to more flexible model classes (e.g. tree-based models, neural
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(a) Linear Model:  does not fit well the training (b) Quadratic Model: fits well the training data.
data.

Figure 2.6: Illustration of Underfitting. The two diagrams represent the training dataset. The bold
black line represents the classifier decision boundary, and the crosses point out the classification
errors.

networks). In the next section, we explain how to decide whether a more flexible model class is
required.

2.5 How to Diagnose and Handle Potential Accuracy Issues ?

In this section, we introduce a three-step evaluation protocol that security administrators should
follow before any deployment. Each step intends to diagnose a problem that may degrade the
detection performance. We propose not only protocols to diagnose the problems, but also solutions
to address them.

2.5.1 How to Diagnose and Handle Underfitting ?

Diagnosis. Underfitting (see Section 2.2.3) can be diagnosed by evaluating the performance of
the detection model on the training dataset. There is underfitting if the ROC curve is close to that
of a random generator (see the random curve in Figure 2.4). When there is underfitting, the model
does not fit the training data well enough, and it makes prediction almost like a random generator.

Solution. Security administrators can solve underfitting in two ways: adding discriminating fea-
tures or training a more complex classification model class.

When a model fails to discriminate between the malicious and benign instances on the training
data, it is often because security administrators have not extracted good input features. They must
therefore resume the feature extraction phase to add more discriminating characteristics.

Besides, security administrators may have provided discriminating features, but the chosen
model class is not complex enough to discriminate between malicious and benign instances. Fig-
ure 2.6a shows a two-dimensional dataset where a linear model is too simple and cannot properly
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separate malicious from benign instances, while a slightly more complex model, a quadratic model
is perfectly adapted (see Figure 2.6b).

We want to point out that the performance of a detection model on its training data is not a
satisfactory assessment of its true performance. Analyzing the training performance is a good way
to diagnose underfitting, but it is not enough to ensure that the detection model makes accurate
predictions. The purpose of detection models is not to classify training data correctly, but to be
able to generalize, i.e. correctly classify data unseen during the training phase. The next section
explains how to assess the generalization capabilities of detection models, and how to react if they
are not satisfactory.

2.5.2 How to Diagnose and Handle Overfitting ?

Diagnosis. Overfitting (see Section 2.2.3) occurs when the detection model predicts accurately
the label of training data, but fails to predict correctly the label of data unseen during the training
phase. It can be diagnosed by analyzing the model performance on an independent validation set.
If the detection model performs well on the training dataset, but poorly on the validation set, it
suffers from overfitting.

In general, security administrators have access to a single annotated dataset to set up their
detection model. They must therefore split it into a training and a validation datasets. The
simplest way to split it up is to select some instances randomly for training, and to keep the
remaining instances for validation.

If the instances are timestamped, i.e. the times of first appearance are known, then a better
evaluation process can be devised. Security administrators can set a cutoff timestamp: all the
instances occurring before the cutoff timestamp constitute the training dataset, while the remaining
instances are retained for validation purposes. This temporally consistent evaluation process [88]
better assesses the performance of detection models since future instances are not available at
training time. This evaluation process should thus be preferred when timestamps are available.
The reader may refer to [71, 88, 108] for more detail about the validation of detection models.

Solution. Overfitting is usually caused by a too complex model class (see Figure 2.7) that has
much flexibility to learn a decision boundary.

When the detection model is too complex (see Figures 2.7a and 2.7c), it predicts perfectly
the label of the training instances (see Figure 2.7a), but it makes many prediction errors on the
validation dataset (see Figure 2.7c¢). Indeed, the complex model fits perfectly the training data,
but it has weak generalization capabilities. On the other hand, a simpler model (see Figures 2.7b
and 2.7d). is able to avoid outliers to generalize much better on unseen data.

A detection model can make prediction errors on training data, but it must generalize well to
unseen data. Training data may contain outliers or annotation errors, that the training algorithm
should not take into account when building the model to improve its generalization capabilities.

To sum up, it is critical to strike an appropriate balance to avoid both underfitting and over-
fitting. The detection model must be neither too simple to avoid underfitting nor too complex to
avoid overfitting. To avoid both pitfalls, security administrators must assess the performance of a
detection model both on its training data, and on an independent validation dataset.
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outlier.

(¢) Complex Model: many classification errors on the (d) Simple Model: no classification errors on the val-
validation dataset. idation dataset.

Figure 2.7: Illustration of Overfitting. The top row represents the training dataset while the
bottom line represents the validation dataset. The bold black line represents the classifier decision
boundary, and the crosses point out the classification errors.
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These two assessment steps may not be sufficient to ensure a successful deployment of detection
models. They may not be able to identify a training bias. In the next section, we explain what a
training bias is, and how to diagnose and solve this issue.

2.5.3 How to Diagnose and Handle Training Biases ?

Training Bias. There is a training bias if the training dataset is not representative of the data
encountered in the deployment environment. Training biases negatively impact the performance of
detection models once deployed.

Training bias is common with computer security detection models since training datasets do
not often come from deployment environments. Annotating data is costly, so security adminis-
trators usually rely on public annotated datasets that may not be representative of deployment
environments. Besides, they may contain biases that the model picks up and learns as concepts.

Diagnosis. The study of the model performance on the training and validation datasets is not
sufficient to detect any training bias prior to deployment: the model behavior must be thoroughly
analyzed. In Section 2.4.3, we have explained that detection models must be interpretable to
fit security administrators and operators needs. This interpretability is also critical to diagnose
training biases before deployment.

When detection models are interpretable, security administrators can inspect the features having
the greatest impact on decision-making, and decide for each of them whether they are consistent
with the detection target, or they reveal a training bias.

Solution. We propose two solutions to reduce the impact of training biases when the available
annotated data, used as a training dataset, are not representative of the data in production.

An intermediate adaptation phase of the model in production can reduce the training bias. The
false alerts and the true positives analyzed by security operators can be reinjected in the training
data to reduce the training bias. However, this method has a major flaw since security operators
inspect only the alerts, not the other predictions: some false negatives caused by the initial training
bias may never be detected.

The best solution to avoid training bias is to perform in-situ training [132]. This method
requires security administrators to annotate data directly from the production environment. This
way annotated dataset is perfectly representative of the deployment environment, but it is expensive
since it requires to annotate data manually. We propose a solution to reduce the cost of in-situ
training in Part II.

In brief, security administrators must carry out these three evaluation steps thoroughly before
any deployment. We want to emphasize that evaluation should not be reduced to analyzing numer-
ical performance measures such as false alarm and detection rates. Security administrators must
conduct a more in-depth analysis of the model behavior to diagnose potential training biases.
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2.6 Conclusion

In this chapter, we present the whole machine pipeline that security administrators must set up
to build supervised detection models ready for deployment. We focus more particularly on two
steps: training and evaluation.

We provide a broad overview of supervised model classes and we explain how security admin-
istrators should choose a model class that suits their operational constraints. We point out two
constraints that are critical factors in the selection process: transparency and robustness.

Transparency matters both to security operators and administrators. Security operators need
information to exploit the triggered alerts. As for security administrators, they need to understand
the detection model behavior before deployment to diagnose potential training biases. In this
chapter, we present model classes that are inherently transparent: k-nearest neighbors, linear
models (e.g. logistic regression, SVM) and tree-based models (e.g. decision trees, random forests).
Moreover, model-agnostic interpretability methods can be exploited to interpret any model class,
even the most complex.

Robustness is also crucial since detection models are deployed in adversarial environments where
attackers are willing to circumvent them. Supervised detection models are less prone to evasion
attempts than misuse detection techniques since they are more generic, but robustness should still
be taken into account. Many research works focus on making detection models robuster to evasion
attempts, but it remains an open problem. There is still no consensus to provide a solution ready
to apply by security administrators.

This chapter places a particular emphasis on evaluating properly supervised detection models
before deployment. It introduces a three-step evaluation procedure that security administrators
should carry out thoroughly before any deployment. Each step explains not only how to diagnose
a potential problem, but also how to address it.

In brief, this chapter provides methodological guidance to help security administrators build su-
pervised detection models that suit their operational constraints. In the next chapter, we introduce
DIADEM (DIAgnosis of DEtection Models) an interactive visualization tool that we have designed
and implemented to help security administrators apply the methodology presented in this chapter.
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Chapter 3

Build and Diagnose Detection Models
with DIADEM

Security administrators are interested in machine learning to increase detection capabilities, but
they usually have little knowledge about this data analysis technique. Besides, they do not want to
deal too much with the machine learning machinery, they would rather focus mainly on detection.

In this chapter, we present DIADEM, an interactive visualization tool we have designed and
implemented to help security administrators apply the methodology set out in the previous chapter.
DIADEM deals with the machine learning machinery, and includes a graphical user interface to
diagnose and handle potential accuracy issues. Besides, we illustrate how security administrators
can leverage DIADEM to set up detection models with a case study on malicious PDF files detec-
tion. We provide an open-source implementation of DIADEM in SecuML [20] to enable security
administrators to set up their own detection models.

This chapter content has been published in French at the Symposium sur la sécurité des tech-
nologies de linformation et des communications (SSTIC 2017) [26].
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3.1 Introduction

Security administrators are willing to deploy supervised detection models in their detection sys-
tems to strengthen detection. Since they usually have little or no knowledge about machine learning,
they need tools to help them build and diagnose supervised detection models. These tools should
deal with the machine learning machinery to let security administrators focus mainly on detection.

Many libraries dedicated to machine learning (e.g. scikit-learn in python, Spark, Mahout or
Weka in java, or Vowpal Wabbit in C++) allow to train various models with a low workload. These
libraries are a crucial asset to encourage domain experts to apply machine learning even if they have
little or no knowledge about this data analysis technique. However, they do not offer user interfaces
to analyze the models behavior while it is crucial to diagnose and address potential accuracy issues
before deployment.

Online services such as Google Cloud ML, Microsoft Azure, or Amazon Machine offer visualiza-
tion solutions, but they require to store the data in the cloud which is incompatible with detection
systems.

Some research works have introduced user interfaces to ease the application of machine learning
by non-experts [6, 73, 86, 135]. Nonetheless, these publications present only screen shots of the
user interfaces. They do not provide any implementation which is a strong barrier for their wide
use [33, 85, 145].

To address these shortcomings, we have designed and implemented DIADEM, which stands for
DIAgnosis of DEtection Models. DIADEM helps security administrators apply the methodology
presented in Chapter 2. It allows to build supervised detection models with little machine expertise.
It includes a graphical user interface to diagnose potential accuracy issues and to find solutions to
address them. DIADEM is a generic solution that can be used on any detection problem. It is not
intended for production, but rather to set up detection models before deployment.

This chapter presents the following contributions:

e We present DIADEM, a tool that helps security administrators build and analyze supervised
detection models before deployment. The diagnosis interface provides information about the
global behavior of detection models. It also enables more in-depth analysis of individual
predictions.

e We illustrate how security administrators can leverage DIADEM to set up detection models
with a case study on malicious PDF files detection.

e We provide an open-source implementation of DIADEM in SecuML [20] to enable security
administrators to build and diagnose their own detection models.

3.2 DIADEM: a Tool to Diagnose Supervised Detection Models

We have designed and implemented DIADEM (DIAgnosis of DEtection Models) to help security
administrators set up the machine pipeline that has been presented in Section 2.2.4. It allows to
train detection models easily. Moreover, it includes a user interface to evaluate detection models
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according to the protocol introduced in Section 2.5. We have released DIADEM as an open-source
software in SecuML [20].

3.2.1 Running DTADEM

Security administrators must perform the first two steps of the machine learning pipeline : data
annotation and feature extraction. They must provide as input to DIADEM a set of annotated
instances represented as fixed-length vectors of features. Data annotation and feature extraction
are specific to each detection problem, that is why security administrators must complete them
beforehand.

In this section, we explain how DIADEM carries out the training and evaluation steps of the
machine learning pipeline.

Training

DIADEM offers several model classes (e.g. naive Bayes classifiers, logistic regression, SVM,
decision trees, random forests, and gradient boosting). Its modular design allows to easily add
support for other model classes if necessary. The reader may refer to Section 2.4 for advice on the
choice of the model class.

DIADEM relies on scikit-learn [101] to train the detection models. However, training a detection
model requires some pre-processing steps: feature standardization, and setting the hyperparameters.
In contrast with scikit-learn, DTADEM performs these pre-processing steps automatically to conceal
some of the machine learning machinery to security administrators.

Feature Standardization. Standardization (or Z-score normalization) rescales the features
so that they have the properties of a standard normal distribution with 4 = 0 and ¢ = 1 where p
is the mean and o is the standard deviation from the mean.

Standardizing the features, so that they are centered around 0 with a standard deviation of 1,
is not only important if we are comparing measurements that have different units, but it is also a
general requirement for many machine learning algorithms [107].

DIADEM standardizes the features before training. This way, security administrators cannot
forget to perform this critical pre-processing step.

Setting the Hyperparameters. Many model classes have hyperparameters whose values
must be set before the training process begins (see Section 2.3.3). DIADEM sets the values of
the hyperparameters automatically through a grid-search cross validation optimizing the AUC (see
Section 2.2.2).

For example, DIADEM sets the hyperparameters of logistic regression models automatically:
the penalty norm €, and the regularization strength ¢ (see Section 2.3.1). The penalty norm is
either ¢ or {9, and the regularization strength c is selected among the values {0.01,0.1,1,10,100}.

Evaluation

DIADEM offers several ways to set the validation dataset used for evaluation. Security adminis-
trators can provide two separate annotated datasets, one for training and one for evaluation, or a
single annotated dataset and DIADEM splits it up. In the latter case, security administrators can
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Figure 3.1: Visualization of the Model Performance with DTADEM.

specify how the annotated dataset should be split : randomly or temporally. The reader may refer
to Section 2.5.2 for more information about ways to generate validation datasets.

DIADEM is launched with a single command line where security administrators must specify the
model class they want to train, and the way the validation dataset should be set. Once DIADEM
has trained the detection model and applied it to the validation dataset, security administrators
can analyze its performance and behavior in DIADEM web user interface.

DIADEM primary purpose is to build detection models and to assess their performance with
fully annotated datasets. Nonetheless, DIADEM can also train a model, and apply it to an unla-
beled dataset. In this case, the diagnosis interface still displays some monitoring information, but
DIADEM cannot assess the performance of the detection model on the validation dataset.

3.2.2 DIADEM Diagnosis Interface

The graphical interface displays the necessary elements to carry out the diagnosis steps introduced
in Section 2.5. DIADEM provides visualizations for the global behavior of detection models, but
also for individual predictions. Moreover, it allows to analyze the alerts triggered on the validation
dataset.

High-Level Analysis of Detection Models

Visualization of the Model Performance. DIADEM displays the performance evaluation of
the detection model both on the training and validation datasets (see Figure 3.1). This way, security
administrators can diagnose both underfitting (see Section 2.5.1) and overfitting (see Section 2.5.2).
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Figure 3.2: Visualization of the Model Behavior with DTADEM.

Performance evaluation panels display the performance metrics presented in Section 2.2.2. They
display the confusion matrix, the ROC curve, and the detection and false alarm rates for a given de-
tection threshold. Security administrators can change the value of the detection threshold through
a slider to see the impact on the detection and false alarm rates.

Visualization of the Model Behavior. DIADEM displays information about the global be-
havior of detection models. This visualization allows security administrators to grasp how detection
models make decisions and to diagnose potential training biases (see Section 2.5.3).

This visualization is currently implemented for linear (see Figure 3.2a) and tree-based models
(see Figure 3.2b). DIADEM does not yet support model-agnostic interpretation methods (see
Section 2.4.3).

Thanks to these graphic depictions, security administrators can focus on the most influential
features of the detection model. They can click on a given feature to access to its descriptive
statistics on the training data. These statistics allow security administrators to understand why
a feature has a significant impact on decision-making, and may point out biases in the training
dataset.

Analysis of Individual Predictions

Security administrators can examine individual predictions with the diagnosis interface. They
can click on the confusion matrix to review the false positives and negatives.
Besides, DIADEM displays the histogram of the predicted probabilities of maliciousness. Secu-
rity administrators can exploit this histogram to analyze the instances whose predicted probability
is within a given range. For instance, they can review the instances close to the decision boundary

44



= 15th : 0.0
e 1st:0.0
« 20th : 0.0
* 2nd : 0.0

Mail

Weighted Features

Weighted Features

Mail Features

*3d:0.0 compan|
* 3rd : 0.0
* 4th : 0.0 free
« 5th:0.0

« _digit_:4.0
*a4:00

e ab:0.0

» abil : 0.0

* abl: 0.0

« abov : 0.0
« absolut: 0.0
« abstract : 0.0 million
*ac:00

= academ : 0.0
« academi : 0.0
« accent: 0.0

(a) All the Features. (b) Most Important Features.

Figure 3.3: Default Description Panel for Spam Detection.

(probability of maliciousness close to 50%) to understand why the detection model is undecided.
Moreover, they can inspect instances that have been misclassified with a high level of confidence.
The analysis of these individual predictions can point out potential annotation errors, or help
security administrators find new discriminating features.

Description Panel. DIADEM displays each instance in a Description panel. Figure 3.3

depicts the default Description panel for spam detection.

By default, the Description panel displays the features of the instance. This visualization may
be hard to interpret especially when the feature space is in high dimension. Figure 3.3a displays
the features extracted from an email: the number of occurrences of each word in the vocabulary.
Since the vocabulary contains 1000 words, this visualization is hardly interpretable for humans.

If an interpretable model has been trained, DIADEM also displays the features that have the
most impact on the prediction (see Figure 3.3b). This visualization is easier to interpret than the
previous one since the features are sorted according to their impact in the decision-making process.

Other visualizations specific to the detection problem may be more relevant to analyze individ-
ual predictions. In order to address this need, DIADEM enables security administrators to plug
problem-specific visualizations.

Problem-Specific Visualization. Custom visualizations should be easily interpretable by
security administrators and display the most relevant elements from a detection perspective. They
may point to external tools or information to provide some context. Security administrators can
implement several custom visualizations for a same data type to show the instances from different
angles.

Figure 3.4 depicts a problem-specific visualization we have implemented for spam detection. It
displays simply the raw content of the email. We strongly encourage security administrators to
provide convenient problem-specific visualizations, since they can significantly ease the analysis of
individual predictions.
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Figure 3.4: Problem-Specific Visualization for Spam Detection.

Analysis of the Triggered Alerts

DIADEM provides a graphical user interface to analyze the triggered alerts. This interface
is similar to a supervision interface used by security operators to exploit the triggered alerts.
DIADEM offers such a visualization to allow security administrators check the exploitability of the
alerts before deployment.

Security administrators must first choose a detection threshold. Then, DIADEM alert interface
offers three views of the triggered alerts. It can display the top N, or some randomly selected alerts,
or cluster all the alerts to ease their analysis.

Alerts Clustering. Clustering similar alerts can significantly help security operators: they
can take advantage of the analysis of alerts belonging to the same cluster. Accordingly, DIADEM
provides solutions to cluster alerts.

If the malicious instances of the training dataset have been tagged with a malicious family,
DIADEM can leverage this information to regroup the alerts according to the alert taxonomy set
up by security administrators. In this case, DIADEM trains a multi-class classification model on
the malicious instances to tag the triggered alerts automatically.

If the annotated dataset does not contain information about the malicious families, DIADEM
can nonetheless cluster the alerts, but in an unsupervised way. In this case, the clustering is unlikely
to regroup instances according to user-defined families.

To sum up, DIADEM is a generic solution that helps security administrators set up detection
models before deployment. DIADEM can be applied to any detection problem on any data type.
In the next section, we illustrate how security administrators can leverage DIADEM to build and
diagnose a PDF detection model.

3.3 Case Study: Malicious PDF Files Detection

The PDF format is an open document description format created by the Adobe company in
1993 in order to preserve a document page layout regardless of the computer platform being used.
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PDF viewers are available on many computer platforms. The PDF format is therefore widely used
in most organizations to create and exchange electronic files. Besides, the PDF format is highly
sophisticated: the technical specifications exceed the 1,300 pages in length, and it depends on many
third-party libraries. As a result, vulnerabilities related to the PDF format are often discovered
which makes it even more attractive for attackers.

In this section, we explain how to leverage DIADEM to build a supervised detection model of
malicious PDF files. First of all, we prepare the input data for DIADEM: we collect an annotated
dataset (see Section 3.3.1) and we extract features (see Section 3.3.2). Then, we run DIADEM
on this annotated dataset (see Section 3.3.3), and we analyze the resulting detection model with
DIADEM visualization interface (see Section 3.3.4).

3.3.1 Data Annotation

It is easy to collect a training dataset of PDF files, because this data format is popular and
commonly misused to spread malicious code. This case study relies on two annotated datasets :
Contagio [1] (9,000 benign files and 11,001 malicious files) and WebPDF (2,078 benign files and 767
malicious files). Contagio is a public annotated dataset used in various research works. WebPDF
consists of benign files resulting from requests on the Google search engine, and of malicious files
queried from the VirusTotal [3] platform.

In the PDF case study, we assume that we have only access to the Contagio dataset to set up
the detection model before deployment. The WebPDF dataset simulates PDF files encountered in
a deployment environment.

3.3.2 Feature Extraction

Feature extraction is a three step-process: 1) identifying discriminating information, 2) parsing
the data to extract this information, and 3) transforming this information into fixed-length vectors
of features. In this section, we explain how we perform each step for the PDF case study.

Identifying and Parsing Discriminating Information

PDF files are composed of metadata (e.g. author, producer, title, creation and modification
dates) and of objects of different types. The objects can contain text, images, videos, or even
JavaScript code. PDF files are hierarchically structured: the objects reference each other, they
form a graph that may contain cycles.

In most cases, attackers forge malicious PDF files to exploit vulnerabilities that allow to execute
arbitrary code on victims’ computer platforms. For instance, some JavaScript code can exploit a
vulnerability of the JavaScript engine included in the PDF viewer, or a TTF font can exploit a
vulnerability of the operating system.

We list a few elements that can be examined to identify malicious PDF files : typical features
linked to the triggering of vulnerabilities (e.g. JavaScript code, or OpenAction functions), presence
of a malicious payload (e.g. shellcode), functions aiming to evade detection (e.g. multiple encoding
technologies, or concealment of objects), or the aspect of the file which is more or less realistic (e.g.
malformations, few pages, or few objects).

In the PDF case study, we leverage a PDF parser to extract the discriminating information
identified. More generally, parsers are already deployed in detection systems for traditional detec-
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tion methods (e.g. signatures or expert systems). Feature extraction can also exploit them to build
machine learning-based detection models.

Generating Fixed-Length Vectors of Features

In this section, we present a few common techniques to transform discriminating information
into fixed-length vectors of features, and we give practical examples based on the PDF case study.
Some information contained in PDF files can be directly inserted into a fixed-length vector
of features : the size of the file, the creation and modification dates can be transformed into
timestamps. Other information such as the author or the objects are not binary, numerical, or
categorical values. They must be transformed before being inserted in the vector of features.
Moreover, PDF files have a variable number of objects, and this information should be represented
as a fixed-length vector of features.

Numerical Lists of Variable Sizes. Standard training algorithms do not take numerical lists of
variable sizes as input. They must be transformed into fixed-length vectors of features beforehand.
The usual method is to compute statistical indicators such as the mean, the standard deviation,
the number of elements, or the extrema.

In the PDF case study, we have extracted the size of the objects composing PDF files which
is a numerical list of variable size since PDF files do not always have the same number of objects.
We have computed the mean, the standard deviation, the minimum, and the maximum of this list.

Character String. Discriminating information can take the form of character strings in the raw
data. A classic way to handle with this type of data is to transform them into a fixed-length
numerical vector where each feature corresponds to a family of characters (e.g. uppercase letters,
lowercase letters, digits). The value of each feature is the number of occurrences, or the proportion,
of the family of characters in the string.

Authors of PDF files are character strings that we have transformed into seven numerical
features: the size of the string, the number of lowercase letters, uppercase letters, digits, occurrences
of the character ‘.’, spaces, and special characters.

Categorical Information. The type of PDF objects is an example of categorical variable that
includes the values Image, Text and Police (there are other possible values, but we restrict the set
of values in this example). These three values cannot be ordered, and we cannot define a similarity
measure or a distance metric between them.

Some classification model classes accept categorical features as input (e.g. tree-based models
such as decision trees or random forests), while others require to transform them into binary or
numerical features beforehand( e.g. SVM, logistic regression). The simplest method to transform
categorical features into numerical values is to associate a number to each category (e.g. Image — 0,
Text — 1, and Police — 2). However, this method is unsuitable since learning algorithms rely on
distances between features. With this method, learning algorithms would interpret the categories
as being ordered while it may not be the case.

A better solution is to transform a categorical feature with m possible values into m binary
features with only one active (e.g. Image — [1,0,0], Text — [0,1,0], Police — [0,0,1]). This
transformation technique can be extended to lists of categorical features by counting the number
of occurrences of each value (e.g. [Police, Text, Image, Image, Text] — [2,2, 1]).

48



In the PDF case study, we have extracted 113 numeric features from PDF files. These features
are similar to those presented by Smutz and Stravou [124, 125].
In Sections 3.3.1 and 3.3.2, we have explained how to get an annotated dataset of PDF files
ready to use for DIADEM. In the next section, we detail how we run DIADEM on this annotated
dataset.

3.3.3 Running DIADEM on the PDF Annotated Dataset

In the PDF case study, we have access only to Contagio to set up a PDF detection model. This
dataset does not have any timestamp information. The dates available in the metadata (creation
and modification dates) are not relevant to timestamp the PDF files. Indeed, these dates do not
correspond to the first date of appearance of the files. Besides, attackers can arbitrarily set their
values. As a result, we ask DIADEM to split the Contagio dataset into a training and a validation
dataset randomly: 90% of the data (Contagio_ 90%) is used for training, and the remaining 10%
(Contagio_10%) for validation.

We ask DIADEM to train a logistic regression on the annotated dataset by following the advice
given in Section 2.4. If this model class is too simple to discriminate malicious from benign PDF
files, we will move toward a more complex model class.

In brief, we launch DTADEM with the following command line:

SecuML_DIADEM Pdf Contagio LogisticRegression --validation random --test-size 0.1.

Once DIADEM has trained the detection model on Contagio_ 90% and applied it to Contagio_10%,
we can analyze its performance and behavior with the DIADEM diagnosis interface.

3.3.4 Diagnosis of the PDF Detection Model with DIADEM

In this section, we leverage DIADEM visualization interface (see Section 3.2.2) to diagnose the
PDF detection model by following the steps presented in Section 2.5.

Problem-Specific Visualizations

We have implemented two problem-specific visualizations for PDF files to ease the analysis of
individual predictions. The first view represents the PDF file as raw text, while the second one
represents its graphs of objects.

Diagnosis of Underfitting and Overfitting

DIADEM allows to diagnose whether the detection model suffers from underfitting (see Sec-
tion 2.5.1) thanks to the Training panel. In the PDF case study, it shows that the training AUC
is 99.85%: there is no underfitting. Logistic regression is a model class complex enough to dis-
criminate the malicious PDF files from the benign ones. There is no need to move toward a more
complex detection model class.

Besides, DIADEM allows to diagnose if the detection model suffers from overfitting (see Sec-
tion 2.5.2) thanks to the Testing panel. It reveals that the validation AUC of the PDF detection
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Figure 3.5: Coefficients Associated to the Most Influential Features of the PDF Detection Model.

model is 99.68%. The PDF detection model is able to predict accurately the label of instances
unseen during the training phase.
To sum up, the detection model passes the first two diagnosis steps.

Diagnosis of Training Bias

This diagnosis step requires a more in-depth analysis of the behavior of the detection model.
DIADEM displays the features that have the greatest impact on decision-making. Figure 3.5
depicts the coefficients of the logistic regression model trained on Contagio.

The number of embedded fonts (Font_count), the number of automatic actions (AA_count), the
number of large images (Image_large) and the number of objects (obj_count) are among the most
influential features, and they are associated to negative coefficients. The model tends therefore to
consider that files with much content are benign. Conversely, the detection model considers that
the presence of JavaScript is an indicator of maliciousness since the feature JavaScript_count is
associated to a positive coefficient.

DIADEM displays the distributions of the most important features. The analysis of these
distributions emphasizes that the malicious PDF files of Contagio are often small and simple, while
the benign PDF files are more complex. Indeed, most malicious PDF files of Contagio contain only
a malicious JavaScript payload that is executed on opening. These very simple files, consisting of
a single page without images or fonts, are very different from the benign PDF files which are more
complex with many objects, images and embedded fonts.

In Contagio, almost all the malicious files contain some JavaScript code, while hardly any benign
files include such content. Besides, the vast majority of the malicious files in Contagio do not
contain any content such as text or image objects.

These discrepancies are relevant with the detection target, but they are too pronounced in the
Contagio dataset. As a result, the detection model trained on Contagio_90% considers almost that
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the presence of JavaScript is a sufficient criterion to trigger an alert, as well as a reduced content.
Contagio is a stereotyped dataset that lead to a training bias.

In order to emphasize this training bias, we have launched DIADEM with Contagio as training
dataset, and WebPDF as validation dataset. It shows that the detection model is not as efficient
on WebPDF as on Contagio 10%: the AUC on WebPDF is only 89.63% while it is 99.68% on
Contagio_10%. DIADEM allows to inspect the false positives and negatives on WebPDF. Our
analyses show that many false positives are due to the presence of JavaScript code in benign files.
Besides, most false negatives are malicious PDF files whose malicious payload is concealed among
a rich content.

In brief, DIADEM diagnosis interface displays the necessary information to diagnose training
biases. First, security administrators should analyze the features that have the greatest impact on
decision-making. Then, they decide whether they are relevant with the detection target, or they
reveal a training bias. DIADEM can also display the distributions of the most important features
to assist security administrators in their analysis.

A solution to address the training bias is to get a training dataset less stereotyped than Contagio.
The training dataset should contain more ambivalent instances (e.g. malicious PDF files with richer
content, and benign files with JavaScript code), to get a smarter and more subtle detection model.

3.4 Conclusion

This chapter presents DIADEM, a tool we have designed and implemented to help security
administrators build and diagnose supervised detection models before deployment. DIADEM deals
with the machine learning machinery (e.g. feature standardization, setting of the hyperparameters)
to let security administrators focus mainly on detection. Besides, its diagnosis interface helps
security administrators apply the three-step evaluation procedure exposed in Section 2.5.

The PDF case study conducted in this chapter illustrates the whole machine learning pipeline
(data annotation, feature extraction, training, evaluation) and demonstrates how security admin-
istrators can leverage DIADEM to perform the training and evaluation steps. This case study
shows how DIADEM diagnosis interface is helpful to carry out the evaluation procedure. Besides,
it emphasizes how important it is to analyze the model behavior to detect potential training biases.
Evaluation must not be reduced to analyzing numerical performance measures such as false alarm
and detection rates. Security administrators must conduct a more in-depth analysis of the model
behavior before deployment.

DIADEM helps security administrators with two steps of the machine learning pipeline: training
and evaluation. The first two steps, data annotation and feature extraction, are left to security
administrators. They must provide as input to DIADEM a set of annotated instances represented
as fixed-length vectors of features.

The following parts of this thesis focus on these two steps that can be difficult and tedious
to perform for security administrators. Part II introduces an end-to-end active learning system,
ILAB, to help security administrators annotate datasets with a reduced effort. Part III examines
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automatic features generation as a means to help security administrators extract discriminating
features.
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Part 11

End-to-End Active Learning for
Detection Systems
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Chapter 4

Active Learning: Related Work and
Problem Statement

The performance of supervised detection models depends deeply on the quality of training data.
Good training datasets are, however, extremely difficult and expensive to acquire in the context of
computer security detection.

Active learning has been introduced in the machine learning community to reduce human effort.
A strategy asks the expert to annotate only the most informative examples to minimize the number
of manual annotations.

In this chapter, we provide an overview of how active learning can be leveraged in detection
systems. Then, we review the literature and we show the limits of existing approaches. Finally, we
formalize the problem that this part of the thesis aims to address.
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4.1 Introduction

The performance of supervised detection models depends deeply on the quality of the training
data, but good training datasets are extremely difficult to acquire in the context of threat detec-
tion. Some annotated datasets related to computer security are public (e.g. Malicia project [91],
KDD99 [136], kyoto2006 [128]) but they quickly become outdated and they often do not account
for the idiosyncrasies of each deployment context.

Annotated datasets of files (e.g. portable executable, PDF, Windows Office documents) can be
exploited to train detection models deployed in diverse environments. These kinds of data are likely
to vary slightly from one environment to another. On the contrary, event logs (network or operating
system event logs) and detection targets are highly dependent on deployment environments: a same
behavior can be legitimate in an environment, but irregular in another.

As a result, a detection model trained for a given environment is likely to perform poorly in
another. These types of data require to build detection models in-situ [132] with training data
coming from production environments.

Security administrators can deploy annotation systems to build representative training datasets
in-situ. The annotation system picks some instances from a pool of unlabeled data originating from
the deployment environment, displays them to security administrators, and gathers their answers.

Security administrators are essential for annotating but they are an expensive resource. The
labeling process must thus exploit their time efficiently. Active learning strategies [119] have been
introduced in the machine learning community to reduce human effort. They select only the most
informative examples to minimize the number of manual annotations.

In this thesis, we define an active learning system as an annotation system that leverages
an active learning strategy to select the instances to be annotated. It is crucial to design both
components, the active learning strategy and the annotation system, jointly to effectively reduce
experts annotation effort. Security administrators do not want to minimize only the number of
manual annotations, but the overall time spent annotating.

The rest of the chapter is organized as follows. First, Section 4.2 provides an overview of active
learning in detection systems and Section 4.3 presents some related works with regard to annotation
systems, active learning strategies, and applications to computer security detection systems. Then,
Section 4.4 introduces the notations and formalizes the problem. Finally, Section 4.5 summarizes
the contributions of our end-to-end active learning system, ILAB, that will be presented in detail
in Chapters 5 and 6.

4.2 Overview of Active Learning in Detection Systems

Active learning systems are annotation systems that leverage active learning strategies to select
the instances to be annotated. They rely on an interactive process where a domain expert is asked
to annotate some unlabeled instances to improve the performance of the supervised model (see
Figure 4.1). The active learning strategy queries the most informative instances to reduce the
number of manual annotations. As for the annotation system, it displays the annotation queries
and gathers the answers. It should be tailored to the needs of domain experts who perform the
annotations.
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Figure 4.1: Active Learning: An Interactive Process.

In the context of detection systems, annotating consists in assigning a binary label, malicious or
benign, and optionally a family detailing the binary label. Instances sharing the same family behave
similarly and have the same level of criticality. For example, malicious instances belonging to the
same family may exploit the same vulnerability, they may be polymorphic variants of the same
malware, or they may be emails coming from the same spam campaign. The malicious families
correspond to the alert taxonomy set by security administrators (see Section 1.1).

DIADEM can leverage the malicious families to cluster the alerts according to the alert taxon-
omy (see Section 3.2.2). This way, security operators can take advantage of the analysis of alerts
belonging to the same cluster. Clustering alerts based on an alert taxonomy significantly helps
security operators, and thus makes detection systems more efficient.

There are two active learning scenarios of interest for detection systems: pool-based active learning
and stream-based active learning. Pool-based active learning can be used to acquire annotated
datasets and deploy initial detection models. As for stream-based active learning, it can update
already deployed detection models over time to follow threat evolution.

4.2.1 Pool-based Active Learning to Build Initial Detection Models

Pool-based active learning queries instances to be annotated from a pool of unlabeled data that
does not change throughout the annotation process [119]. At each iteration, the active learning
strategy queries some instances from the unlabeled pool for annotation. The instances that have
not been selected at a given iteration can be picked afterward.

When security administrators do not have access to good training datasets, they can leverage
pool-based active learning in annotation projects. Unlabeled data are usually easy to acquire from
deployment environments. Pool-based active learning is therefore well-suited to build representative
training datasets in-situ.

Security administrators should perform the annotations, or at least supervise the annotation
process. One can be surprised that security operators do not execute this task, since annotating is
closely related to checking whether an alert is a true or a false positive. Annotations are, however,
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directly linked to the definitions of detection targets and alert taxonomies, which are under the
responsibility of security administrators (see Section 1.1).

At the beginning of annotation projects, the detection target and the alert taxonomy are usually
not perfectly delineated. Security administrators have usually vague specifications in mind that
they refine as they examine new instances queried by the pool-based active learning strategy.

As a result, security administrators must be deeply involved in annotation projects that aim to
build initial detection models. The annotation process determines both the detection target and
the alert taxonomy.

4.2.2 Stream-based Active Learning to Follow Threat Evolution

Stream-based active learning queries instances to be annotated from a stream of unlabeled
data [119]. Each time a new instance comes up, the active learning strategy decides whether
to query it for annotation or to discard it. In this context, discarded instances cannot be queried
for annotation afterward.

Security administrators can leverage stream-based active learning to update deployed detection
models in order to follow threat evolution. In this scenario, a supervised detection model has
already been deployed and security operators analyze the triggered alerts. The detection target
and the alert taxonomy are therefore well specified.

Security operators can answer some annotation queries with the alerts they analyze, but security
administrators must also be involved. First, the strategy may query supposedly benign instances
that are not analyzed by security operators, and therefore security administrators must annotate
them. Second, they should always review the annotations that are leveraged to update a detection
model since they may change the detection target.

When a detection model is updated online through stream-based active learning, it is critical to
monitor its evolution. Adding new annotated instances can significantly change the model behavior,
and security administrators must make sure that the detection model converges properly.

In this thesis, we focus on pool-based active learning to build initial detection models, and we
assume that a single security administrator performs the annotations. We aim to design and im-
plement an end-to-end active learning system with security administrators at its core. We consider
not only the active learning strategy, but also its integration in an annotation system.

In the next section, we review some related work about annotation systems, active learning
strategies, and applications to computer security detection systems.

4.3 Related Work

4.3.1 Annotation Systems

Guidelines for Annotation Systems. Annotating data manually may be needed to train a
supervised model, but it is a tedious work. Appropriate annotation systems can streamline an-
notation projects. Amershi et al. [5] and Settles [119] have described generic guidelines that any
annotation system should follow.
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First of all, annotation systems must offer an ergonomic user interface to display the
queries and to gather the corresponding answers. Special care shall be taken to the ergonomics of
the interface as it may greatly impact the overall annotation time.

Besides, annotation systems are intended for application domain experts who are likely to have
no or little knowledge about machine learning. Consequently, the user interface must be accessible
to non-machine learning experts. In particular, it should not contain words belonging to the
machine learning jargon.

Moreover, people will invest time to improve their model only if they view the task as more
beneficial than costly. Annotation systems must provide feedback to users to show them the
benefit of their annotations, and that they are on track to achieve their goal.

At each iteration, the integration of new annotations improves not only the performance of the
detection model but also the relevance of the following queries. Frequent updates are thus beneficial,
but they must be performed efficiently to minimize waiting-periods. Annotation systems with
long waiting-periods alter the expert-model interaction and are unlikely to be accepted by experts.

Structured Labeling [77]. Machine learning is based on the idea that similar inputs should have
similar outputs. Annotators must thus provide consistent labels to avoid degrading the performance
of the resulting classification model. Kulesza et al. [77] have introduced structured labeling to help
annotators define and refine their concept, i.e. the abstract notion of the target class annotators
are labeling for, as they annotate data. Thanks to structured labels, annotators can organize their
concept definition by grouping and tagging data. Structured labeling increases label consistency
by helping annotators recall labeling decisions. The structure is malleable (annotators can create,
delete, split and merge tags), it is well suited for situations where annotators are likely to frequently
refine their concept definition as they observe new data.

In the context of detection systems, the concept corresponds to the detection target, i.e. the
abstract notion of benign behavior, and suspicious behaviors that should trigger alerts. Besides,
we can draw a parallel between the tags defined in structured labeling and benign and malicious
families. Structured labeling can be very convenient in annotation projects aiming to build com-
puter security detection models (see Section 4.2.1). Indeed, at the beginning of annotation projects,
security administrators have a vague idea of their detection target, and it may evolve throughout
the annotation process. Some annotation queries may puzzle them: they may wonder whether an
alert should be triggered or not. Some annotation queries can even question previous annotations.

Real-World Annotation Systems. Some research works have introduced whole annotation
systems but they are especially designed for image [77, 122], video [14] or text [123, 36, 15, 105]
annotations. In computer security, several kinds of data (e.g. PDF files, Windows Office documents,
NetFlow, pcap, or event logs) are processed by detection systems. As a result, the annotation system
must be generic and flexible enough to operate with these diverse data types.

How to Select the Instances for Annotation ? Many annotation systems select the instances
to be annotated randomly, without leveraging active learning. There are some reassessment about
the benefit of active learning strategies over random sampling [36]. Some consider it is not worth
deploying active learning strategies in annotation systems: it may be complex and lead to a com-
putation overhead.
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Computer vision and natural language processing annotation projects can take advantage of
low-cost annotators on crowd-sourcing market places such as Amazon Mechanical Turk!. In this
scenario, there is no need for active learning since annotations are cheap. However, crowd-sourcing
does not suit detection systems since the data they process are often sensitive, and annotating
requires expert knowledge.

Moreover, active learning is crucial in the context of detection systems. The data is unbalanced,
with a tiny portion of malicious instances, and the less common malicious behaviors are often the
most interesting. If the annotation system queries instances selected uniformly, it is likely to query
only benign and very common malicious behaviors.

To sum up, in the context of threat detection, annotation systems must leverage an active
learning strategy to be effective. The active learning strategy should, nevertheless, be designed
carefully to minimize the computation overhead.

4.3.2 Active Learning Strategies

Annotation systems can rely on an active learning strategy [119, 82, 139, 40] to maximize the
impact of the annotations. A query strategy picks the most informative instances, i.e. the ones
that lead to the best detection model, to minimize the number of manual annotations.

Search through the Hypothesis Space. Search through the hypothesis space is a broad cat-
egory of active learning strategies that ask the expert to annotate the instances which provide the
most information to improve a classification model. For instance, uncertainty sampling [82] and
version space reduction [139] belong to this category and query the closest instances to the decision
boundary. Query by committee [51] and error reduction [113] propose other utility measures to
select the most informative instances which are more computationally expensive than uncertainty
sampling and version space reduction.

The drawback of these active learning methods based on a utility measure is that they may
introduce a sampling bias.

Sampling Bias. When active learning strategies focus only on the most informative instances,
they may completely miss a family of observations. In this case, the overlooked family may have a
negative impact on the performance of the detection model. The reader may refer to [116, 40] for
a theoretical example.

Figure 4.2 provides an example of sampling bias in one dimension with uncertainty sampling [82]
which queries the closest instances to the decision boundary. Each block represents a malicious
or a benign family. With this data distribution, instances from the family M; are unlikely to be
part of the initial training dataset, and so the initial decision boundary is likely to lie between
the families By and Ms. As active learning proceeds, the classifier will gradually converge to
the decision boundary between the families Bo and Ms and will only ask the expert to annotate
instances from these two families to further refine the decision boundary. The query algorithm
completely overlooks the malicious family M; on the left as the classifier is mistakenly confident
that the entire family is benign. As the malicious family M; is on the wrong side of the decision
boundary, the classifier will not be able to detect this malicious family thereafter.

"https://www.mturk. com/
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Figure 4.2: Sampling Bias Example.

Sampling bias is a significant problem for detection systems that may lead to malicious families
remaining completely undetected. Besides, the risk of sampling bias is even higher for computer
security detection than for other application domains because the initial annotations are not uni-
formly distributed. Uniform random sampling does not allow to acquire the initial annotated
instances as the malicious class is too under-represented. Misuse detection techniques widely de-
ployed in detection systems can provide initial annotations, but they likely all belong to the same
family or to a small number of families.

Exploiting Structure in Data. In order to avoid sampling bias, a new kind of active learning
strategies exploiting the structure in data has been introduced in the machine learning commu-
nity [39, 152, 40]. For instance, Dasgupta et al. [40] have proposed to build a hierarchical clustering
to annotate while exploring the dataset. This active learning strategy is efficient only if the clus-
ters are aligned with the ground-truth labels, i.e. all their instances share the same class label.
This is difficult to obtain in practice without any supervision. Building the hierarchical clustering
with constraints based on initial annotations can ease this alignment [32]. Besides, if during the
annotation process the clusters are not aligned with the ground-truth labels, the clustering can be
rebuilt with constraints based on all the annotations performed by the expert so far. However,
this active learning strategy has two practical issues. First, the method does not specify when
the clusters should be rebuilt with the new constraints to ease the alignment of the clusters with
the class labels. Second, each rebuilding of the clustering with the new constraints is highly time
consuming since it takes into account all the instances. This leads to long waiting-periods for the
expert who annotates, and thus damages the expert-model interaction.

Some works rely on rare category detection to avoid sampling bias [102, 68, 142, 130]. Cate-
gorical labels corresponding to families (a single benign family and several malicious families) are
considered instead of malicious vs. benign binary labels, and the objective is to annotate at least
one instance from each family. These approaches assume that all classification errors have the same
cost while it is not the case in practice. Indeed, a misclassification between two malicious families
is less severe than a misclassification between the benign family and a malicious family which cor-
responds to a false positive or a false negative. Besides, [142] does not scale to large datasets and
[68] is unworkable on real-world annotation projects: it requires the number of families that should
be discovered and their proportion to be known at the beginning of annotation projects.

Challenge. The real challenge for designing an active learning strategy is to avoid sampling bias
while keeping a low computation cost. One the one hand, preventing sampling bias is crucial to
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prevent the whole family from being misclassified. One the other hand, a low computation cost
reduces the waiting-periods, and thus ensures a good expert-model interaction.

4.3.3 Applications to Computer Security Detection Systems

Triage of Network Alarms [7]. Amershi et al. have introduced CueT, an interactive machine
learning system intended for computer security experts [7]. It helps them triage network alarms
into existing alarm categories by making group recommendations via a ranked list accompanying
confidence visualization. This system works in dynamic, continually evolving environments, but it
has been specifically designed to triage network alarms. It is not a generic solution that can process
any data type.

Stream-based Active Learning. Stream-based active learning (see Section 4.2.2) has been
applied to computer security detection problems [147, 118, 143, 117, 87] to follow threat evolution.
In this setting, the detection model in production has been initially trained on an annotated dataset
representative of the deployment environment. In our case, such a representative annotated dataset
is unavailable and the objective is to acquire it offline to train the initial detection model.

Pool-based Active Learning. Some works focus on pool-based active learning to build an-
notated datasets for detection systems. First, Almgren et al. [4] have applied plain uncertainty
sampling [82] to intrusion detection before Schiitze et al. [116] have introduced the sampling bias
issue. Thereafter, many research works have applied active learning to computer security detection
problems without taking sampling bias into account [90, 95, 93, 94, 92]. Moskovitch et al. [90] have
applied plain version space reduction [139] and error reduction [113]. Nissim et al. [95] have intro-
duced a new active learning strategy based on version space reduction that also queries the most
malicious instances according to the detection model. They have then applied the same strategy to
other data types: PDF files [93], Android applications [94], and Microsoft Office documents [92].

Some research works intend to avoid sampling bias. Aladin [130] and Gornitz et al. [63] have
proposed new active learning strategies for intrusion detection that aim to discover the different
malicious families. Aladin applies rare category detection [102] on top of active learning to foster
the discovery of the different families, and Gornitz et al. rely on k-nearest neighbors to detect
yet unknown malicious families. However, both approaches [130, 63] avoid sampling bias at the
expense of the expert-model interaction. These strategies require heavy computations to generate
the annotation queries. They cause long waiting-periods that experts cannot exploit.

User Experience is Often Overlooked. Most research works [4, 90, 95, 93, 94, 92, 63| have only
run simulations on fully annotated datasets: an oracle answers the annotation queries automatically
with the ground-truth labels. They have not set up their strategy in real-world annotation projects,
and they have not mentioned any user interface.

Simulations consider that the annotation cost is the number of manual annotations whereas
security administrators want to minimize the overall time spent annotating. The time required
to compute the annotation queries is rarely monitored. It corresponds, nevertheless, to waiting-
periods that should also be minimized. Besides, simulations ignore annotation interfaces while
the way the instances are displayed impacts significantly the average annotation cost. Moreover,
simulations assimilate annotators to mere oracles, while they are human experts. They are not
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machines, they need feedback to understand the benefit of their annotations, otherwise they will
stop annotating.

Stokes et al. [130] have carried out user experiments with computer security experts. Aladin
includes a graphical user interface but the authors do not provide any detail about it. Besides,
the interactions between the expert and the model are poor due to a high execution time. The
expert is asked to annotate a thousand instances each day, and new queries are computed every
night. Their solution reduces the waiting-periods, but it significantly damages the expert-model
interaction since the expert feedback is integrated only once a day.

In brief, research works focus mostly on active learning strategies and not on their integration
in annotation systems. User interfaces designed to set up active learning strategies in real-world
annotation projects have, however, a significant impact on the overall user experience [119, 5, 47,
120] and on the actual application of such methods in practice [85, 15, 138].

4.4 Problem Statement

Out goal is to design and implement an end-to-end active learning system to help security admin-
istrators acquire representative annotated datasets with a reduced human effort. We consider that
a single security administrator answers the queries of a pool-based active learning strategy. The
security administrator who annotates the data is also referred to as the expert and the annotator
throughout Part II.

We assume that there is no adversary attempting to mislead the annotation process: a trusted
security administrator performs the annotations offline before the detection model is deployed in
production. In this section, we introduce the notations used in Chapters 5 and 6, and we detail
our objective.

4.4.1 Notations

Let D = {:17’ € Rm}l <<, De the dataset we want to annotate partially to train a supervised
detection model M. It contains n instances described by m real-valued features. For example, each
instance z? € D could represent a PDF file, an Android application, the traffic of an IP address, or
the activity of a user. Such unlabeled data are usually easy to acquire from the environment where
the detection system is deployed (e.g. files, network traffic captures, or event logs).

Standard active learning strategies do not take raw data as input, but instances represented as
fixed-length vectors of features (see Section 2.2.4). Many research works focus on feature extraction
for given detection problems: Android applications [54], PDF files [37, 124], Windows audit logs [22],
portable executable files [75]. In Chapters 5 and 6, we build upon these works, and we focus on
reducing the cost of building a representative annotated dataset with an effective annotation system.
All instances are represented by numeric vectors after feature extraction. As a result, active learning
strategies are generic regarding the detection problem.

Let £ = {Malicious,Benign} be the set of labels and F, be the set containing the user-defined
families of the label y € £. For example, malicious instances belonging to the same family may
exploit the same vulnerability, they may be polymorphic variants of the same malware, or they
may be emails coming from the same spam campaign.
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Our aim is to create an annotated dataset
DL g {(.’L’,y,Z) ’.TJ GD, yGE, ZEfy}

maximizing the accuracy of the detection model M trained on Dy. Dy, associates a label y € £
and a family z € F, to each instance 2! € D. The annotated dataset Dy, is built with an iterative
active learning strategy. At each iteration, a security administrator annotates, with a label and a
family, b € N instances selected from the pool of remaining unlabeled instances denoted by Dy.
Throughout the annotation process, the expert cannot annotate more instances than the annotation
budget B € N.

4.4.2 Objective

Our goal is to conceive an end-to-end pool-based active learning system tailored to security
administrators needs. It consists of an active learning strategy integrated in an annotation system.
The two components must fulfill the following constraints to effectively reduce human effort in
annotation projects.

Active Learning Strategy. The objective of the active learning strategy is to build the anno-
tated dataset Dy, that maximizes the accuracy of the detection model M while asking the expert
to annotate at most B instances. In other words, the strategy aims to ask the expert to annotate
the B instances that maximize the performance of the detection model M. Besides, the strategy
must be scalable to work on large datasets while maintaining short waiting-periods.

The real challenge faced by the active learning strategy is to avoid the sampling bias issue (see
Section 4.3.2) to ensure a well-performing detection model, while keeping short waiting-periods to
guarantee a good expert-model interaction.

Annotation System. The annotation system must provide an ergonomic user interface to stream-
line the annotation process. It must be suitable for non-machine learning experts since it is intended
for security administrators.

First of all, the annotation system must provide an annotation interface to display and gather
the answers to the annotation queries. It must be workable on any annotation project for detection
systems. As a result, the annotation interface should be able to display different data types such
as PDF files, Windows Office documents, pcap, NetFlow, Windows audit logs, or memory dumps.

Moreover, the annotation system should not be reduced to an annotation interface. It should
provide feedback frequently to show experts the benefit of their annotations, and that they are
on track to achieve their goal. Besides, it should help security administrators provide consistent
annotations, even if they delineate the detection target and the alert taxonomy throughout the
annotation process.

4.5 Overview of our Contributions

The two following chapters introduce ILAB, an end-to-end active learning system designed to
help security administrators build annotated datasets with a reduced effort. We describe the active
learning strategy (see Chapter 5) and its integration in an annotation system (see Chapter 6). The
active learning strategy reduces the number of manual annotations and the waiting-periods. As for
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the user interface, it can be used on any data type and it provides feedback to show the benefit of
the annotations.

We make the following contributions:

We present an active learning strategy designed to avoid sampling bias and to reduce experts
waiting-periods. Security administrators can annotate some instances while the algorithm is
still computing new annotation queries.

We compare ILAB active learning strategy with two state-of-the-art methods for intrusion
detection [130, 63] on two detection problems. We demonstrate that ILAB improves the
scalability without reducing the effectiveness. Up to our knowledge, [130, 63] have never been
compared.

We integrate this strategy in an annotation system tailored to security administrators needs.
We have designed the interface for annotators who may have little knowledge about machine
learning, and the generic interface can manipulate any data type. Moreover, it provides feed-
back to encourage security administrators to go on annotating. Finally, it helps them provide
consistent annotations even if they delineate the detection target and the alert taxonomy as
they annotate.

We ask intended end-users, security administrators, to annotate a large unlabeled NetFlow
dataset coming from a production environment with ILAB. These user experiments validate
our design choices and highlight potential improvements.

We provide an open-source implementation of the whole active learning system in SecuML [20)]
to foster comparison in future research works, and to enable security administrators to anno-
tate their own datasets.
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Chapter 5

ILAB Active Learning Strategy

Active learning has been introduced in the machine learning community to reduce the cost of
building annotated datasets. A query strategy asks the expert to annotate only the most informative
instances to reduce the number of manual annotations. The main challenge for an effective active
learning strategy is to avoid sampling bias without inducing long waiting-periods.

In this chapter, we introduce a novel active learning strategy, ILAB, that helps security admin-
istrators annotate large datasets with a reduced workload. First, we present the active learning
strategy and we explain how it avoids the sampling bias issue while keeping short waiting-periods.
Then, we compare ILAB with two state-of-the-art approaches [130, 63] on public annotated datasets
and demonstrate that it is both an effective and a scalable solution. We provide open-source im-
plementations of ILAB and of the above-mentioned state-of-the-art strategies to ease comparison
in future research works [20].

This chapter content has been mostly published at the 20th International Symposium on Re-
search in Attacks, Intrusions and Defenses (RAID 2017) [18]. It includes some additional content
related to previous submissions.
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5.1 Introduction

Active learning strategies have been proposed to reduce the annotation cost by asking experts to
annotate only the most informative instances [119]. However, classical active learning methods often
suffer from sampling bias [116, 121]: query strategies that pick only the most informative instances
can completely overlook a family (a group of similar malicious or benign instances). Sampling bias
is a significant issue for detection systems: it may lead to missing a malicious family during the
labeling process, and being unable to detect it thereafter. The reader may refer to Section 4.3.2 for
more information about sampling bias.

Moreover, active learning is an interactive process which must ensure a good expert-model
interaction, i.e. a good interaction between the security administrator who annotates and the
detection model [120, 138]. The annotations improve not only the detection model but also the
relevance of the following annotation queries. A low execution time is thus required to allow
frequent updates of the detection model with the expert feedback. Query strategies with a high
execution time would alter the expert-model interaction and are unlikely to be accepted by security
administrators. Besides, active learning strategies must scale to large datasets to be workable on
real-world annotation projects.

To sum up, active learning strategies must avoid sampling bias to guarantee a good detection
performance while keeping short waiting periods to ensure a good expert-model interaction.

In this chapter, we introduce a new active learning strategy, ILAB, that reduces the annotation
cost to build supervised detection models. It relies on a new hierarchical active learning strategy
with binary labels (malicious vs. benign) and user-defined malicious and benign families. It avoids
the sampling bias issue encountered by classical active learning as it is designed to discover the
different malicious and benign families. Moreover, the scalable algorithms used in ILAB make it
workable on large datasets and guarantee short waiting-periods for a good expert-model interaction.

This chapter presents the following contributions:

e We present ILAB, which stands for Interactive LABeling, a novel active learning strategy
designed to avoid sampling bias while keeping short waiting-periods. It has a low computation
cost to ensure a good expert-model interaction, and it is scalable to large datasets. ILAB
relies on a divide-and-conquer approach to reduce waiting-periods: experts can annotate some
instances while the algorithm is still computing new annotation queries.

e We compare ILAB with two state-of-the-art active learning methods designed for intrusion
detection, Aladin [130] and Gornitz et al. active learning strategy [63], on two detection prob-
lems. We demonstrate that ILAB improves the scalability without reducing the effectiveness.
Up to our knowledge, [130] and [63] have never been compared.

e We provide an open-source implementation of ILAB, Aladin and Gornitz et al. active learning
strategy in SecuML [20] to foster comparison in future research works.

The rest of the chapter is organized as follows. Section 5.2 presents ILAB active learning strategy
and Section 5.3 explains our design choices. Finally, Section 5.4 presents comparisons with two
state-of-the-art approaches [130, 63] on two public fully annotated datasets.
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Figure 5.1: ILAB Active Learning Strategy.

5.2 ILAB Active Learning Strategy

ILAB is an iterative annotation process based on active learning [119] and rare category detec-
tion [102]. At each iteration, the expert is asked to annotate b instances to improve the current
detection model and to discover yet unknown families. Active learning improves the binary clas-
sification model generating the alerts while rare category detection fosters the discovery of new
families to avoid sampling bias.

The iterations are performed until the annotation budget B has been spent. At each iteration,
buncertain annotation queries are generated with uncertainty sampling to improve the detection
model and bsanilies = O — buncertain instances are queried for annotation with rare category detection
to avoid sampling bias (see Figure 5.1). In this section, we explain the active learning strategy, i.e.
which instances are selected from the unlabeled pool to be annotated by the security administrator.

5.2.1 Uncertainty Sampling

We train a binary probabilistic detection model M from the annotated instances in Dy. We use
a discriminant linear model, i.e. logistic regression (see Section 2.3.1).

Security administrators, who do not trust black-box detection models [111], highly value linear
models. They can interpret these models because the coefficients associated with each feature
represent their contribution to the detection model. The reader may refer to Section 2.4.3 for more
information about the interpretation of logistic regression models.

Besides, discriminant models are known to be better than generative ones in active learning
settings [151]. Finally, learning a logistic regression model and applying it to predict the label of
new instances is fast so the expert does not wait a long time between iterations. Our approach
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is generic: security administrators can choose another model class particularly suited for their
application.

The rare malicious families are often the most interesting for detection systems, hence the impact
of the training instances from rare families is increased. The logistic regression model is trained
with sample weights inverse to the proportion of the family in the training dataset:

DL
oy, Z)YeDL |y =yn =z}

a(z,y,2) = T (5.1)

The weights are capped, & = min(a, 100), to avoid giving too much weight to very rare families.
Training the logistic regression detection model with these weights is crucial to ensure a good
detection of the rare malicious families.

During the training phase, the parameters 5y € R and 8 € R of the logistic regression model M
are fit from the annotated dataset Dr. Then, the model M can compute the probability p(z) that
an unlabeled instance x € Dy is Malicious:

1
1+ exp (= (Bo+ BTx))

Vx € Dy, p(x) = Ppm(y = Malicious | z) = (5.2)

Annotation Queries. The security administrator annotates the buyncertain Unlabeled instances
which are the closest to the decision boundary of M :

arg min |p(x) — 1/2|. (5.3)
z€Dy

The detection model is uncertain about the label of these instances, that is why their annotations
improve the detection model.

This step corresponds to uncertainty sampling [82], a classical active learning method applied
to intrusion detection in [4]. Uncertainty sampling suffers from sampling bias [116], so we also
perform rare category detection to foster the discovery of yet unknown families.

5.2.2 Rare Category Detection

We apply rare category detection on the instances that are more likely to be Malicious and
Benign (according to the detection model M) separately. Not all families are present in the initial
annotated dataset and rare category detection [102] fosters the discovery of yet unknown families
to avoid sampling bias.

One might think that we could run rare category detection only on the malicious instances
since it is the class of interest for detection systems. However, a whole malicious family may be
on the wrong side of the decision boundary (see the family M; in Figure 4.2), and thus, running
rare category detection on the predicted benign instances is necessary. Hereafter, we only detail
the rare category detection run on the Malicious predictions since the analysis of the Benign ones
is performed similarly.
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Let Dfaticious he the set of instances whose predicted label by M is Malicious (for a detection
threshold ¢t = 50%), and D%alicmus be the set of malicious instances already annotated by the
expert.

First, we train a multi-class logistic regression model from the families specified in DYeticious
to predict the family of the instances in DYfeticious  We denote by C; the set of instances from
DYaticious | pilalicious whoge family (annotated or predicted) is f.

Then, we model each family f with a Gaussian distribution N (u¢, X¢) depicted by an ellipsoid
is Figure 5.1. The mean 1y and the diagonal covariance matrix ¥ are learned with Gaussian Naive
Bayes (see Section 2.3.1). We denote by par(, > f)(:c) the probability that = follows the Gaussian
distribution N (g, X¢).

Annotation Queries. The family annotation budget bsapiiies 1S evenly distributed among the
different families. We now explain which unlabeled instances are queried for annotation from each
family.

First, ILAB asks the security administrator to annotate instances that are likely to belong to a
yet unknown family to avoid sampling bias. These instances are located at the edge of the ellipsoid,
they have a low likelihood of belonging to the family f [102, 130]:

argmin  pur(u; 5, (). (5.4)
CCECf \Dbialicious

Then, ILAB queries representative examples of each family for annotation. These instances are
close to the center of the ellipsoid, they have a high likelihood of belonging to the family f:

ATgMAx  Par(uyxp) (7). (5.5)
xecf\fz)l‘l’l/allclous

The budget is evenly allocated to low and high likelihood instances. Low likelihood instances are
likely to belong to yet unknown families that is why these annotation queries foster the discovery of
new families. They are, nonetheless, more likely to be outliers that may impair the detection model
performance. ILAB also asks the security administrator to annotate high likelihood instances to get
more representative examples of the families in the annotated dataset for a better generalization of
the detection model.

5.3 Design Choices

5.3.1 Avoiding Sampling Bias

ILAB active learning strategy is a hybrid method (see Section 4.3.2): a) uncertainty sampling [82],
a search through the hypothesis space method, improves the supervised detection model, and b)
rare category detection exploits the structure in data to avoid sampling bias.
At the beginning, we have not considered rare category detection, but semi-supervised cluster-
ing [32, 150] to avoid sampling bias. This method leads to poorer results, but is still interesting to
review.
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We run the semi-supervised clustering analysis on the instances that are more likely to be
Malicious, Dyelicious and Benign, DBUenign, separately. Hereafter, we only detail the rare category
detection run on the Malicious predictions since the analysis of the Benign ones is performed
similarly.

We leverage semi-supervised clustering to get interpretable clusters corresponding to user-
defined families. Indeed, a completely unsupervised clustering is unlikely to regroup instances
according to the expert definition of families. The clusters are built with soft constraints steaming
from the families assigned to previously annotated instances in DYalicious — Ag g result, instances
belonging to the same family are more likely to share the same cluster than instances belonging to
different families.

The semi-supervised clustering proceeds in three steps:

1. We learn a projection space where the Malicious instances with different families are fur-
ther apart than the ones sharing the same family from DYali¢i¥s with a metric learning
algorithm [21].

We have considered several algorithms during our experimentations: Linear Discriminant
Analysis(LDA) [52], Large Margin Nearest Neighbors (LMNN) [146], Neighborhood Com-
ponents Analysis (NCA) [57], Information-Theoretic Metric Learning (ITML) [41], Sparse
Determinant Metric Learning (SDML) [103], and Relative Components Analysis (RCA) [16].
We have not considered Principal Component Analysis (PCA) during our experiments since
it is unsuitable for semi-supervised clustering. It is an unsupervised projection method which
finds the axes with maximum variance, and thus it may lose the discriminative information.

2. We project the instances of DJf#11ious into this subspace.

3. We cluster the projected instances with Gaussian mixture models restricted to a diagonal
covariance matrix. It is a scalable solution that reduces the expert waiting-periods and makes
the query strategy workable on large datasets. It is a sound compromise between computation
time and efficiency: Gaussian mixture models with a diagonal covariance matrix build more
sophisticated clusters than k-means while keeping a low time complexity. The objective is to
align each cluster with a family, so we set the number of clusters to the number of malicious
families currently discovered, k = |Lyaticious|-

The active learning strategy queries instances close to the center and the edge of the ellipsoids
as in the strategy presented in Section 5.2.2.

Among the metric learning algorithms considered, only LDA, NCA, and RCA project the data
into a lower dimensional feature space. This trait is appealing to shorten experts waiting-periods
since reducing the dimension of the data decreases the cost of the clustering algorithm. Our
experiments show that RCA meets our scalability objective, and provides the best results, but
they are poorer than the ones obtained with rare category detection. Therefore, we have discarded
semi-supervised clustering, and ILAB relies on the Pelleg and Moore’s method [102].

5.3.2 Semi-Automatic Annotations

During our research, we have considered semi-automatic annotations in order to reduce expert
effort during annotation projects. The idea is to identify homogeneous clusters aligned with families
to assign them a semi-automatic annotation, and no longer consider them in the annotation process.
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A cluster is said aligned with a family, if all its instances belong to this family, they share the
same label and family. The instances in an aligned cluster are similar enough for the expert to
interpret them as a whole. During the annotation process, we can consider that a cluster is aligned
with a family if all its queried instances (near the center and close to the edge) share the same family.
In this case, all the remaining unlabeled instances in the cluster are annotated semi-automatically
with the shared label and family.

Semi-automatic annotations may be inaccurate if a cluster has been wrongly considered aligned
with a family. Therefore, we do not add the semi-automatic annotations to the annotated dataset
Dy, they are not used to train the model. They are simply removed from the unlabeled pool Dy:
they cannot be queried for annotation in the following iterations.

We have looked at the concept of semi-automatic annotations for the following reasons. First,
removing the most common behaviors from the unlabeled pool is expected to help the active
learning strategy query instances behaving unusually.

Besides, semi-automatic annotations is a way to improve expert-model interaction by shortening
expert-waiting periods. Indeed, semi-automatic annotations reduce the size of the unlabeled pool
more significantly than manual annotations. When the size of the unlabeled pool decreases, the
execution time of the analyses (rare category detection or semi-supervised clustering) decreases.
Therefore, semi-automatic annotations reduce the expert waiting-periods across the iterations.

However, once the most common behaviors have been removed from the unlabeled pool, there
remain only peculiar behaviors which raises two major problems. First, the clusters built from
peculiar behaviors are hard to interpret. Second, annotating peculiar behaviors may mislead the
detection model as the instances are not representative enough of the benign and malicious instances
commonly encountered.

Besides, semi-automatic annotations can lead to missing rare families. Indeed, a cluster can be
wrongly considered aligned with a family: the instances annotated near the center and close to the
edge of the cluster share the same label and family, but the cluster contains instances belonging to a
different family. In this situation, the expert cannot rectify the wrong semi-automatic annotations:
the instances semi-automatically annotated with a wrong family will never be queried thereafter
in the annotation process. If all the instances of a rare family are wrongly semi-automatically
annotated, the active learning completely overlooks this family, and it may lead to false positives
or negatives.

After having weighed up all the pros and cons, we have decided not to propose semi-automatic
annotations in ILAB.

5.3.3 Reducing Waiting-Periods

We have designed ILAB keeping in mind that the expert waiting-periods must be minimized to
ensure a good expert-model interaction. First of all, ILAB relies on efficient algorithms to reduce
the execution time: uncertainty sampling [82] and Pelleg and Moore’s rare category detection
method [102].

74



Training

Detection model M

Rare category detection : ; Rare category detection
on D%alicious Uncertainty sampling on D?]enign

J J

Malicious queries Uncertain queries Benign queries

Figure 5.2: Parallelization of the Computations of the Annotation Queries.

Besides, ILAB computations can be parallelized with annotations. ILAB active learning strategy
runs rare category detection on the benign and malicious instances independently. This divide-and-
conquer approach allows the expert to annotate some instances while the strategy is still computing
annotation queries.

The active learning strategy starts with training a binary detection model. To reduce the cost of
this step, we pick a linear model, logistic regression, which can be trained faster than more complex
model classes. If this model class is not flexible enough for a given annotation project, other model
classes can be plugged into ILAB but may result in longer waiting-periods. The reader may refer
to Chapter 2 for more information about model class selection.

Once the binary detection model has been trained, the active learning strategy generates the
queries (see Figure 5.2). The generation of the different kinds of queries (uncertain, malicious
and benign) are completely independent. This presents two advantages: 1) the computations can
be parallelized, and, 2) the security administrator can start annotating while ILAB generates the
remaining queries.

To sum up, ILAB design reduces the expert waiting-periods in two ways: 1) selection of efficient
algorithms, and 2) parallelization of computations and annotations.

5.4 FEvaluation

5.4.1 Datasets

Active learning strategies are generic methods that can be applied to any detection problem
once the features have been extracted. In these experiments, we consider a system and a network
detection problem: 1) detection of malicious PDF files with the Contagio dataset [1], and 2) network
intrusion detection with the NSL-KDD dataset [2]. These datasets cannot be exploited to train
models intended for production as they are non-representative of real-world data. Our comparisons
are still relevant since we are not comparing attack detection models but active learning strategies
in order to train attack detection models on new problems.

Contagio is a public dataset composed of 11,101 malicious and 9,000 benign PDF files. We
transform each PDF file into 113 numerical features similar to the ones proposed by Smutz and
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Dataset #instances #features Fmalicious families F#benign families

Contagio_10% 10,000 113 16 30
NSL-KDD_10% 74,826 122 19 15

Table 5.1: Description of the Public Datasets.

Stavrou [124, 125] (see Section 3.3.2).

NSL-KDD contains 58,630 malicious and 67,343 benign instances. Each instance represents a
connection on a network and is described by 7 categorical features and 34 numerical features. The
7 categorical features (e.g. protocol_type with the possible values tcp, udp or icmp) are encoded
into several binary features corresponding to each value (e.g. tcp — [1,0,0], udp — [0,1,0],
icmp — [0,0,1]). We end up with 122 features.

The malicious instances in NSL-KDD are annotated with a family but the benign ones are not,
and Contagio does not provide any family information. The families are, nevertheless, required to
run simulations with Aladin [130] and ILAB, and to assess the sampling bias of the different active
learning strategies. We have assigned families to the remaining instances with a k-means clustering
and we have selected the number of families k visually with the silhouette coefficient [112].

Neither dataset has a proportion of malicious instances representative of a typical network (55%
for Contagio and 47% for NSL-KDD). We have uniformly sub-sampled the malicious class to get
10% of malicious instances. Table 5.1 describes the resulting datasets: Contagio_10% and NSL-
KDD_10%.

5.4.2 Active Learning Strategies

We compare ILAB to three other active learning strategies: uncertainty sampling [82], Gornitz
et al. labeling strategy [63], and Aladin [130]. Since there is no open-source implementation of
these techniques, we have implemented them in Python with the machine learning library scikit-
learn [101]. We have released all the implementations in SecuML [20] to ease comparison in future
research works.

These active learning strategies share two parameters: 1) the global annotation budget B € N,
and 2) the number of annotations answered at each iteration b € N. In this section, we briefly
present each method, we provide some details about our implementations and how we set the
additional parameters if relevant.

Uncertainty Sampling [82]. At each iteration, a binary logistic regression model is trained on
the annotated instances, and the expert is asked to annotate the b most uncertain predictions, i.e.
the closest to the decision boundary. Uncertainty sampling has no additional parameter.

Gornitz et al. labeling strategy [63]. At each iteration, a semi-supervised anomaly detection
model is trained on both the annotated and the unlabeled instances. The model relies on an adapta-
tion of an unsupervised anomaly detection model, Support Vector Data Description (SVDD) [137],
that takes into account annotated instances. It consists in a sphere defined by a center ¢ € R™ and
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a radius r € R: the instances inside the sphere are considered benign, and the ones outside mali-
cious. The labeling strategy queries instances that are both close to the decision boundary and have
few malicious neighbors to foster the discovery of new malicious families. We compute the nearest
neighbors with the Euclidean distance. We leverage the scikit-learn ball tree implementation [96]
that is effective with a large number of instances in high dimension.

Semi-supervised SVDD has no open-source implementation, so we have implemented it for our
experiments with the information provided in [62, 61, 63]. The center ¢ € R™, the radius r € R,
and the margin v € R are determined with the quasi-Newton optimization method BFGS [149]
available in scipy [69]. The optimization algorithm requires initial values for ¢, r, and 7 that are not
specified by the authors. We initialize ¢ with the mean of the unlabeled and benign instances, r with
the average distance of the unlabeled and benign instances to the center ¢, and v with the default
value 1. Moreover, the detection model has three hyperparameters that must be set before training:
nu € R and n;, € R, the weights of the unlabeled and annotated instances, and x the weight of
the margin +. The authors provide no information about how to set these hyperparameters. When
we set them to the default value 1, numerical instabilities prevent the optimization algorithm from
converging properly, and lead to an extremely high execution time and very poor performance
(more than 2 hours for training the model on Contagio-10% to get an AUC below 93%). We have
thus worked on the setting of these hyperparameters. We have set ny and nr to the inverse of
the number of unlabeled and labeled instances, to give as much weight to unlabeled and labeled
instances, and to ensure numerical stability. The detection model is trained without any kernel as
in the experiments presented in [62, 61, 63].

Finally, the active learning strategy requires to set two additional parameters: £ € N the number
of neighbors considered, and ¢ € [0, 1] the trade-off between querying instances close to the decision
boundary and instances with few malicious neighbors. We use k£ = 10 as in [63] and the default
value § = 0.5.

Aladin [130]. Aladin runs rare category detection on all the data. It asks the expert to annotate
uncertain instances lying between two families to refine the decision boundaries, and low likelihood
instances to discover yet unknown families. Aladin does not have additional parameters.

This labeling strategy relies on a multi-class logistic regression model and a multi-class Gaussian
Naive Bayes model. The logistic regression hyperparameters, the penalty norm and the regulariza-
tion strength, are selected automatically with a grid-search 4-fold cross validation [52] optimizing
the AUC [67]. The penalty norm is either ¢; or {5 and the regularization strength is selected among
the values {0.01,0.1,1,10,100}. The Gaussian Naive Bayes model is trained without any prior.

ILAB. ILAB active learning strategy has only an additional parameter: byncertain. We set its
value to 10% of the number of annotations performed at each iteration. Some instances near
the decision boundary are annotated to help the detection model make a decision about these
instances, but not too many since these instances are often harder to annotate for the security
administrator [120, 66, 15] and they may lead to a sampling bias [116].

The logistic regression and Gaussian Naive Bayes models are trained in the same way as for
Aladin.
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Figure 5.3: Average Number of Families Discovered.

In the next section, we compare all these methods to ILAB. We run all Linux 3.16 on a dual-
socket computer with 64Go RAM. Processors are Intel Xeon E5-5620 CPUs clocked at 2.40 GHz
with 4 cores each and 2 threads per core. We run each method 15 times and we report the average
performance with the 95% confidence interval.

5.4.3 Comparison

The datasets Contagio_-10% and NSL-KDD_10% are split uniformly into two datasets: 1) an
active learning dataset (90%) used as an unlabeled pool queried to build the annotated dataset Dy,
and 2) a validation dataset (10%) to assess the performance of the detection model trained on Dy..

We compare the different labeling strategies automatically without involving security adminis-
trators. An oracle answers the annotation queries with the ground-truth labels and families.

We run all the strategies with b = 100 annotations at each iteration. We set the annotation
budget to B = 1000 for Contagio_10%, and to B = 2000 for NSL-KDD _10% as this dataset contains
more instances. The initial annotated datasets are composed of instances belonging to the most
represented families: 7 malicious instances and 13 benign instances.

First, we compare the number of known families across the iterations to assess sampling bias
(see Figure 5.3). Then, we compare the performance of the detection models on the validation
dataset (see Figure 5.4). Finally, we monitor the execution time of the query generation algorithms
to evaluate the expert waiting time between iterations (see Figure 5.5).

Families Detection. Figure 5.3 shows that uncertainty sampling and Gornitz et al. labeling
strategy miss many families during the annotation process. Both labeling strategies suffer from
sampling bias. Gornitz et al. labeling strategy relies on k-nearest neighbors to detect yet unknown
malicious families but only close to the decision boundary, that is why many families further from
the decision boundary are not discovered. Their strategy to foster the discovery of yet unknown
families is ineffective on both datasets.
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ILAB dedicates only a part of its annotation budget to the detection of yet unknown families,
that is why Aladin detects slightly more families than ILAB. ILAB queries some high likelihood
instances which are unlikely to belong to new families, but they allow to keep the detection perfor-
mance increasing across the iterations (see Figure 5.4).

ILAB and Aladin discover about as many families across the iterations on both datasets. These
labeling strategies are effective at avoiding sampling bias. They are designed to detect rare cate-
gories, and they are able to discover almost all the families on both datasets.

Detection Performance. Figure 5.4 represents the evolution of the Area Under the Curve
(AUC) [67] on the validation datasets. It shows that ILAB performs better than the other labeling
strategies on both datasets.

Gornitz et al. labeling strategy performs very poorly on Contagio_10%. The detection per-
formance increases at the first iteration, but then it keeps on decreasing when new instances are
added to the annotated dataset. This peculiar behavior can be explained by the simplicity of the
SVDD detection model which cannot discriminate the benign from the malicious instances properly.
The geometry of the data prevents SVDD from isolating the benign instances from the malicious
instances in a sphere. We notice the same behavior but less pronounced on NSL-KDD_10%. A
solution to address this issue is to train SVDD with a kernel to increase its flexibility, but it will
considerably increase the execution time which is already too high to ensure a good expert-model
interaction (see Figure 5.5).

Gornitz et al. labeling strategy performs much better initially on NSL-KDD_10% than the
other labeling strategies. Indeed, thanks to semi-supervision, Gornitz et al. leverage not only
the 20 initial annotated instances to train their detection model, but also all the instances from
the unlabeled pool. Gornitz et al. semi-supervised detection model is, however, not as effective
as logistic regression initially on Contagio_10%. SVDD makes the assumption that the unlabeled
instances are mostly benign, so the malicious instances in the unlabeled pool may damage the
detection model performance.

Uncertainty sampling has a better detection performance than ILAB during the first iterations
on NSL-KDD_10% because it allocates all its annotation budget to refining the decision boundary.
On the contrary, ILAB dedicates 90% of its annotation budget to rare category detection to avoid
sampling bias. In the end, uncertainty sampling suffers from sampling bias and converges to a
poorer performance.

The detection performance of uncertainty sampling and Aladin decreases during the first iter-
ations on Contagio_10%. Sampling bias causes this undesirable behavior: non-representative in-
stances are queried for annotation, added to the training dataset and prevent the detection model
from generalizing properly. Uncertainty sampling queries instances close to the decision boundary
that are hard to classify for the detection model, but not representative of the malicious or benign
behaviors. Aladin queries only uncertain and low likelihood instances which are not necessarily
representative of the malicious and benign behaviors either. ILAB addresses this problem by ded-
icating a part of its annotation budget to high likelihood instances to get representative examples
of each family. Therefore, the detection performance keeps on increasing across the iterations.

Scalability. Figure 5.5 depicts the query generation execution time (in seconds) across the itera-
tions. Gornitz et al. query generation algorithm is very slow. For NSL-KDD_10%, the expert waits
more than 10 minutes between each iteration while the labeling strategy computes the annotation
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queries. A third of the execution time corresponds to the computation of the semi-supervised
SVDD model, and the remaining two thirds corresponds to the k-nearest neighbor algorithm. The
execution time of Gornitz et al. labeling strategy is thus too high to ensure a good expert-model
interaction even on a dataset containing fewer than 100,000 instances.

ILAB has an execution time comparable to uncertainty sampling. For NSL-KDD_10%, the
expert waits less than 1 minute between each iteration. On the contrary, Aladin execution time
increases drastically when new instances are added to the annotated dataset and new families are
discovered. Aladin runs rare category detection on all the instances, while ILAB runs it on the
malicious and the benign instances separately. ILAB divide-and-conquer approach reduces the
execution time as running rare category detection twice on smaller datasets with fewer families
is faster than running it on the whole dataset. Aladin’s authors are aware of this high execution
time. During their experiments, the expert is asked to annotate a thousand instances each day, and
the new annotation queries are computed every night. Their solution shortens the expert waiting-
periods, but it significantly damages the expert-model interaction since the expert feedback is
integrated only once a day.

In conclusion, uncertainty sampling and Gornitz et al. labeling strategy suffer from sampling
bias. Aladin and ILAB are the only labeling strategies able to avoid sampling bias thanks to
rare category detection performed at the family level (see Figure 5.3). As a result, Aladin and
ILAB detect more families than the other strategies, and they also end up with better performing
detection models (see Figure 5.4). ILAB main advantage over Aladin is its divide-and-conquer
approach that significantly reduces the execution time (see Figure 5.5) and thus improves the
expert-model interaction. Our comparisons show that ILAB is both an effective and a scalable
active learning strategy.

5.5 Conclusion

This chapter introduces ILAB, a novel active learning strategy we have designed and implemented
to streamline annotation projects. It minimizes the number of manual annotations, but also the
expert waiting-periods.

It relies on uncertainty sampling and rare category detection to avoid sampling bias. Besides,
its divide-and-conquer approach reduces the computation cost, and enables security administrators
to annotate some instances while new annotation queries are computed. ILAB ensures a good
expert-model interaction: the detection model can be updated frequently with expert feedback
without inducing long waiting-periods.

We demonstrate that ILAB offers a better scalability than two state-of-the-art active learning
strategies, Aladin [130] and Gornitz et al. labeling strategy [63], without damaging the effective-
ness. Up to our knowledge, [130] and [63] had never been compared. We provide open-source
implementations of ILAB, Aladin, and Gornitz et al. labeling strategy in SecuML [20] to foster
comparison in future research works.

In the next chapter, we present the integration of ILAB active learning strategy into an anno-
tation system and we evaluate the whole active learning system with user experiments performed
on a real-world annotation project. Integrating ILAB active learning strategy into an annotation
system is crucial to bridge the gap between theoretical active learning and real-world annotation
projects [145, 85].
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Chapter 6

ILAB Active Learning System

Active learning should not be reduced to a strategy querying instances for annotation. It is an
interactive procedure where user experience must be taken into account to efficiently streamline
annotation projects. In consequence, active learning strategies should not be evaluated only with
simulations where oracles answer the annotation queries automatically. It is critical to carry out
user experiments with intended end-users to ensure that active learning is effective at reducing the
workload.

In this chapter, we integrate ILAB active learning strategy in an annotation system to get an
end-to-end active learning system. It helps security administrators annotate large datasets with
a reduced workload. Our user experiments show that ILAB is an effective active learning system
that security administrators can deploy in real-world annotation projects.

This chapter content has been published at the Artificial Intelligence for Computer Security
workshop (AICS 2018) [19].
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6.1 Introduction

Most research works on active learning focus on query strategies [63, 4, 82, 139, 51, 40] to minimize
the number of manual annotations. These works assume that annotators are mere oracles providing
ground-truth labels while active learning is an interactive procedure where user experience should
not be overlooked [120, 145]. A user interface is needed to gather the annotations and it must be
suitable for security administrators who are usually not machine learning experts. Besides, some
feedback must show the usefulness of the annotations, and annotators should not wait too long
while the next annotation queries are computed.

We define an active learning system as an annotation system that leverages an active learning
strategy to select the instances to be annotated. It is crucial to design both components jointly
to effectively reduce annotation effort and to foster the adoption of active learning in annotation
projects [85, 15, 138]. Security administrators do not want to minimize only the number of manual
annotations, but the overall time spent annotating.

We have described ILAB active learning strategy and extensively compared it to state-of-the-art
methods [4, 63, 130] in Chapter 5. It avoids sampling bias [116] without inducing long waiting-
periods to ensure a good user experience. In this chapter, we integrate ILAB active learning
strategy in an annotation system to bridge the gap between theoretical active learning and real-
world annotation projects. We present the following contributions:

o We integrate ILAB active strategy in an annotation system tailored to security administrators
needs. We have designed the graphical interface for annotators who may have little knowledge
about machine learning, and it can manipulate any data type. Moreover, it helps security
administrators provide consistent annotations even if they delineate the detection target and
the alert taxonomy as they annotate.

e We ask intended end-users, security administrators, to use ILAB on a large unlabeled NetFlow
dataset coming from a production environment. These experiments validate our design choices
and highlight potential improvements.

e We provide an open-source implementation of the whole active learning system in SecuML [20]
to foster comparison in future research works, and to enable security administrators to anno-
tate their own datasets.

The rest of the chapter is organized as follows. Section 6.2 describes the annotation system
we have designed and implemented to deploy ILAB active learning strategy in computer security
annotation projects. Then, Section 6.4 presents the protocol of the user experiments carried out
with security administrators on a real-world annotation project. Finally, Section 6.5 leverages the
user experiments to validate ILAB design, and Section 6.6 presents additional feedback and points
out some avenues of research to further improve user experience in annotation projects.

6.2 ILAB Annotation System

In this section, we describe ILAB annotation system, and we explain how it has been designed
to ensure a good user experience. It obviously includes an Annotation Interface (see Section 6.2.1)
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Figure 6.1: ILAB Annotation Interface.

to display and gather the answers to the annotation queries. Moreover, ILAB annotation system
offers additional graphical user interfaces to ease data annotation: a Monitoring Interface (see
Section 6.2.2), a Family Editor and an Annotated Instances Interface (see Section 6.2.3).

6.2.1 Annotation Interface

Security administrators answer ILAB queries from the graphical user interface depicted in Fig-
ure 6.1. It is intended for non-machine learning experts, it does not contain any word belonging to
the machine learning jargon. The layout of the panels is designed to ensure a logical reading order.

Experts can select a type of queries with one of the top buttons: Uncertain for the instances near
the decision boundary, Malicious and Benign for the queries generated by rare category detection.
The reader may refer to Section 5.2 for more detail about ILAB active learning strategy.

The Annotation Queries panel displays the queries. Malicious and benign queries are grouped
by families. The bottom panel displays the queried instances (Description panel), and gathers the
annotations (Annotation panel).

Description panel. The Description panel contains information about the instance that the
security administrator must annotate. It consists of a standard visualization depicting the instance
features, and of optional problem-specific visualizations. Figure 6.1 shows the custom visualization
we have implemented for NetFlow datal.

We strongly encourage security administrators to design and implement convenient problem-
specific visualizations, since they can considerably ease the annotations. The custom visualizations
should display the most relevant information to help annotators make decisions, i.e. assigning

!We have hidden the IP addresses for privacy reasons.
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a label and a family to a given instance. Security administrators can implement several custom
visualizations to show the instances from different angles.

ILAB and DIADEM (see Chapter 3) rely on the same Description panel to display instances.
The reader may refer to Section 3.2.2 for more information about this panel. As a result, once
security administrators have implemented custom visualizations for a given detection problem,
they can take advantage of them both with ILAB to annotate data and with DIADEM to diagnose
detection models.

Annotation panel. Experts can annotate the selected instance with the Annotation panel. For
each label, it displays the list of the families already discovered. Experts can pick a family among
a list or add a new one.

The interface suggests a family for high likelihood queries and pre-selects it. It helps experts
since the model is confident about these predictions. On the contrary, ILAB makes no suggestion
for uncertain and low likelihood queries. The model is indeed unsure about the family of these
instances and unreliable suggestions may mislead experts [15].

The next query is displayed automatically after each annotation validation. Experts can click
on the Next Iteration button to generate the next queries after answering all the queries of the
current iteration. If some queries have not been answered, a pop-up window asks the annotator to
answer them.

6.2.2 Monitoring Interface

ILAB Monitoring Interface (see Figure 6.2) displays information about the current detection
model (Model Coefficients, Train and Cross Validation panels), and feedback about the annota-
tion progress (Feedback panel). Moreover, the Monitoring Interface gives access to the Annotated
Instances Interface and to the Family Editor that are introduced in the next section.

Feedback about Annotation Progress. Annotation systems must provide feedback to experts
to show them the benefit of their annotations, and that they are on track to achieve their goal [5].
In simulated experiments, where an oracle answers the queries automatically with the ground-truth
labels, the performance of the detection model M on an independent validation dataset is usually
reported. Nevertheless, this approach is not applicable in a real-world setting: when security
administrators deploy an annotation system to build a training dataset they do not have access to
an annotated validation dataset.

ILAB Feedback panel displays two kinds of feedback that do not require an annotated validation
dataset: 1) the number of malicious and benign families discovered so far, and, 2) the accuracy of
the suggested labels and families. At each iteration, ILAB suggests a family for the high likelihood
queries. At the next iteration, ILAB computes the accuracy of these suggestions according to the
last annotations performed by the expert.

This feedback can provide insight into the impact of new annotations. If the number of fam-
ilies discovered and the accuracy of the suggestions are stable for several iterations, the security
administrator may stop annotating.

Current Detection Model. The Monitoring Interface displays information about the detection
model trained at a given iteration: the coefficients of the logistic regression model (Model Coeffi-
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Figure 6.2: ILAB Monitoring Interface.

88



cients panel) and performance indicators (Train and Cross Validation panels). These monitoring
panels are part of DIADEM. The reader may refer to Section 3.2 for a more detailed presentation.

ILAB Monitoring Interface can be used in two scenarios: 1) real-world annotation projects where
human annotators answer the annotation queries, and 2) simulated experiments where oracles
answer the annotation queries automatically with the ground-truth labels and families.

In the first case, security administrators leverage ILAB to build annotated datasets. The
Monitoring Interface provides some feedback to annotators even if there is no annotated validation
dataset available.

The second scenario is interesting for researchers working on new active learning strategies.
They can run ILAB in automatic mode : an oracle answers the annotation queries automatically.
In this case, ILAB can monitor the accuracy of the detection model across the iterations on an
annotated validation dataset. We have run ILAB in this setting for the experiments presented in
Chapter 5.

6.2.3 Annotated Instances and Family Editor

At the beginning of annotation projects, security administrators have usually vague specifications
in mind of the detection target and of the alert taxonomy they want to set up. They refine these
specifications as they examine new instances queried for annotation. Some annotation queries may
puzzle them, make them adjust the detection target and/or the alert taxonomy, or even question
previous annotations.

Even if the detection target and the alert taxonomy evolve in security administrators’ mind,
they must provide consistent annotations not to mislead the detection model.

ILAB offers two user interfaces to help security administrators refine the detection target and
the alert taxonomy while remaining consistent with their previous annotations: a Family Editor
and an Annotated Instances Interface.

Family Editor. The family editor enables annotators to perform three actions over the families:
1. Change Name to clarify the name of a family ;
2. Merge Families to regroup similar families ;
3. Swap Malicious / Benign to change the label corresponding to a given family.

The family editor is similar to the one introduced by Kulesza et al. [77] (see Section 4.3.1).

Annotated Instances Interface. This interface enables experts to review their previous anno-
tations. It displays the currently annotated instances grouped according to their associated label
or family.

Security administrators can leverage this interface to examine the instances of a given family, or
to rectify previous annotations. Thanks to the Family Editor, they can perform high-level changes
on the families, but they cannot split them. They can split a family thanks to the Annotated
Instances Interface by going through all its instances and updating the annotations.
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Security administrators work on diverse data types. A strength of ILAB is to be generic, so
that they can use a unique annotation system. Once they get used to ILAB on a given detection
problem, they will be more efficient at using it on other detection problems.

Moreover, ILAB and DIADEM are both part of SecuML [20], and they rely on the same
Description panel to display instances. As a result, once security administrators have implemented
custom visualizations for a given detection problem, they can take advantage of them both with
ILAB to annotate data and with DIADEM to diagnose detection models.

6.3 Deployment of ILAB Active Learning System

In this section, we explain the steps that security administrators should take to deploy ILAB
active learning system in real-world annotation projects.

First of all, ILAB does not take raw data as input, but instances represented as fixed-length
vectors of features. Feature extraction must thus be performed before launching ILAB. Besides,
security administrators are strongly encouraged to provide problem-specific visualizations to ease
the annotations.

We detail below how security administrators should set the parameters of ILAB active learning
strategy, and how they can collect an initial annotated dataset to launch the first active learning
iteration.

6.3.1 Settings of the Parameters

Security administrators need to set three parameters to deploy ILAB in annotation projects.
First, two parameters are shared by all active learning strategies: 1) the global annotation budget
B € N and 2) the number of annotation queries answered at each iteration, b € N. Besides,
ILAB strategy has one specific parameter, buyncertain € N, the number of uncertain queries (see
Section 5.2).

How to Set b 7 At each iteration, ILAB active learning strategy queries b instances for anno-
tation. A security administrator annotates them, they are added to the annotated dataset Dy,
and the detection model is updated. The parameter b controls the trade-off between reducing
waiting-periods and integrating expert feedback frequently.

One the one hand, simulations where oracles answer annotation queries with ground-truth labels
are often carried out with b = 1. This setting does not suit real-world annotation projects since it
would induce too frequent waiting-periods for security administrators. One the other hand, Stokes
et al. [130] have set b to 1000 in their user experiments. This high iteration budget damages the
expert-model interaction : security administrators spend their day annotating, and their feedback
is taken into account only every night to improve the detection model.

Security administrators should set the value of the parameter b on the following principle:
experts should not spend more time waiting for queries than annotating, but their feedback must
still be integrated rather frequently to show them the benefit of their annotations. The value of
b is therefore data dependent: it must be set according to the average time required to answer
annotation queries.
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How to Set buncertain ¢ The parameter bypcertain fixes the portion of the iteration budget b
dedicated to uncertain queries. Some instances near the decision boundary are annotated to help
the detection model make decision about these instances [82], but not too many since they are
often harder to annotate [15, 66, 120], and they may lead to sampling bias [116].

How to Set B 7 The global annotation budget B specifies the stop condition of the annotation
process. It can be set to a maximum number of annotations, or to a global time spent annotating.

In the case of an unlimited budget, security administrators can end the annotation process
when convergence is reached: several iterations have not led to the discovery of a new family,
and the model predictions are consistent with the expert annotations. ILAB Monitoring Interface
(see Section 6.2.2) informs security administrators about the state of convergence of the annota-
tion procedure: it depicts the number of families discovered, and the accuracy of the suggested
annotations.

6.3.2 Initialization

The active learning process needs some initial annotated instances to train the first supervised
detection model. This initial supervision can be difficult to acquire for computer security detection
problems. The Malicious class is usually underrepresented for uniform random sampling to be
effective at collecting a representative annotated dataset.

If a public annotated dataset is available for the detection problem considered, it can serve as
initial supervision. Otherwise, misuse detection techniques widely deployed in detection systems
can provide Malicious examples at low cost, and random sampling can provide Benign exam-
ples. In both cases, the initial annotated dataset does not contain all the malicious families we
want to detect, and it is not representative of the data in the deployment environment. We use
ILAB to enrich the initial annotated dataset with more diverse malicious behaviors and to make it
representative of the environment where the detection system is deployed.

6.4 Setting of the User Experiments

In this section, we ask security administrators to use ILAB to acquire an annotated dataset from
unlabeled NetFlow data coming from a production environment. The primary objective is to collect
feedback from intended end-users to validate our design choices: both the active learning strategy
(see Section 5.2) and the annotation system (see Section 6.2). Another objective is to highlight
possible improvements that will be beneficial to other annotation projects.

The competing active learning methods [4, 63, 130] compared to ILAB with simulations in
Chapter 5 have not designed or they provide too few details about the user interface. As a result,
these active learning strategies are not considered during the user experiments.

6.4.1 Annotation Project

The annotation project consists in acquiring an annotated dataset from unlabeled NetFlow data
recorded at the border of a defended network. The objective is to train a supervised detection
model that identifies external IP addresses (i.e. IP addresses communicating with the defended
network) with an anomalous behavior.
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Day 1 Day 2

Number of flows 1.2-10% 1.2-10%
Number of IP addresses 463913 507258
Number of features 134 134
Number of TRW [70] alerts 72 82

Table 6.1: NetFlow Datasets.

As stated in [25]: “NetFlow is a network protocol proposed and implemented by Cisco [35] for
summarizing network traffic as a collection of network flows. A flow is a unidirectional sequence of
packets that share specific network properties (e.g. IP source/destination addresses, and TCP or
UDP source/destination ports).” Each flow is described by features and summary statistics: source
and destination IP addresses, source and destination ports, protocol (e.g. TCP, UDP, ICMP, or
ESP), start and end time stamps, number of bytes, number of packets, and aggregation of the TCP
flags for TCP flows.

Security administrators involved in the annotation project must annotate external IP addresses
according to their flows during a 24-hour time window.

The NetFlow data are recorded at the border of a defended network during two consecutive
working days in 2016 (see Table 6.1). The Day 1 dataset constitutes the unlabeled pool from which
some instances are queried for annotation, and the Day 2 dataset serves as a validation dataset to
assess the performance of the resulting detection model.

6.4.2 ILAB Deployment

In this section, we explain how we deploy ILAB active learning system before the user experiments
without involving participants.

Feature Extraction

We compute features describing each external IP address communicating with the defended
network from its flows. We compute the mean and the variance of the number of bytes and packets
sent and received at different levels: globally, for some specific port numbers (80, 443, 53 and
25), and for some specific TCP flags aggregates (e.g. ....S, .A..S., or .AP.SF). Besides, we
compute other aggregated values: number of contacted IP addresses and ports, number of ports
used, entropy according to the contacted IP addresses and according to the contacted ports.

In the end, each external IP address is described by 134 features computed from its list of flows.

Problem-Specific Visualization

Figure 6.1 displays the problem-specific visualization we have implemented for the NetFlow
annotation project. An instance is represented by its list of flows. A color coding eases the
analysis: the extern IP address and the intern IP addresses it communicates with have different
colors, and the main protocols (TCP, UDP, and ICMP) have also their own color.
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Settings of the Parameters

We set he parameters of ILAB active learning strategy, b and bupcertain, according to the guidelines
presented in Section 6.3.1: b = 100 and buypcertain = 10. We do not set the global annotation budget
B to a number of manual annotations, but we stop the annotations after 90 minutes while letting
annotators complete their current iteration.

Initialization

The active learning process is initialized with some annotated instances. The alerts triggered
by the Threshold Random Walk (TRW) [70] module of Bro [100] provide the initial anomalous
examples and we draw the normal examples randomly. All the initial labels are checked manually.
The initial annotated dataset is composed of 70 obvious scans detected by TRW, and of 70 normal
examples belonging to the Web, SMTP and DNS families. Malicious activities in well-established
connections cannot be detected without the payload, which is not available in NetFlow data, that
is why we consider the families Web, SMTP and DNS to be normal.

ILAB is deployed to enrich this initial annotated dataset. The detection model should not be
restricted to the detection of obvious scans. ILAB should discover additional anomalous behaviors
from the NetFlow data.

6.4.3 Experimental Protocol

Four security administrators take part in the experiments. They are used to working with
NetFlow data, but they have no or little knowledge about machine learning. They have never used
ILAB or any other annotation system before.

We carry out the experiments independently with each expert for half a day. Each participant
starts the annotation process from scratch. In real-world annotation projects, security administra-
tors would take into account the annotations performed by previous annotators. Our objective is,
however, to validate our design choices, so participants must annotate under the same conditions.

We run all the experiments on a dual-socket computer with 64Go RAM. Processors are Intel
Xeon E5-5620 CPUs clocked at 2.40 GHz with 4 cores each and 2 threads per core. We timestamp
and log all the users’ actions in ILAB graphical interface to assess the time required for annotating
and the waiting-periods.

Presentation of the Experiment to the Participants. First, we inform the participants
that they are going to use ILAB to build a machine learning detection model from NetFlow data
interactively, and that the aim of the experiments is to get their feedback to improve the tool. We
emphasize that NetFlow is but one example, and that ILAB is a generic tool that can be deployed
on any data type. Their feedback will therefore be beneficial to other applications.

The task is divided into two parts. First, the experts acquire an annotated dataset with ILAB
from the unlabeled pool Day 1. Then, they analyze the alerts triggered on Day 2 by the detection
model trained on the annotated instances. Once the participants have completed the task, we
collect their feedback.
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Data Annotation with ILAB

Information about Extracted Features. The first two participants have no information about
the features of the detection model for the purposes of hiding the machine learning complexity.
This approach may lead annotators to create families that the detection model cannot properly
discriminate due to a lack of information about the features extracted from the NetFlow data.

The last two participants know the features of the model, and we briefly explain the implications
on the families they may create. Port numbers are a relevant example. The features include the
number of bytes and packets sent and received globally, and for the port numbers 80, 443, 53 and
25. We emphasize that it is therefore counterproductive to create families corresponding to scans
on specific services such as Telnet scans (port 23) or SSH scans (port 22).

Consistent Annotations. Before launching the ILAB annotation process, we ask the experts to
check the initial annotated instances, and tell them that they may change the assigned labels and
families as they wish. This step is crucial to ensure that the annotations they perform afterward
are consistent with the initial ones.

Besides, we highlight that the annotations must be consistent throughout the whole annotation
process, otherwise the detection model will perform poorly. We point out that the Family Editor
and the Annotated Instances Interface can help them to remain consistent. Finally, we point out
that ILAB suggestions, for labels and families, may be wrong. The objective of the interactive
process is to correct the model if it makes a mistake to improve its performance.

Alerts Analysis with DIADEM

Once the security administrator has annotated a dataset with ILAB, we leverage DIADEM (see
Chapter 3) to train a supervised detection model and to apply it to Day 2 data. We train a
logistic regression model to follow the advice provided in Section 2.4. Then, the security adminis-
trator analyzes the alerts triggered on Day 2 data from DIADEM alert visualization interface (see
Section 3.2.2).

This step is crucial: the objective of security administrators is not to acquire an annotated
dataset, but to build a detection model and to assess its performance.

Feedback Collection

Once the experts have annotated a dataset with ILAB and analyzed the alerts triggered with
DIADEM, we collect their feedback through an informal discussion. We cover several topics: the
relevance of the alerts triggered by the resulting detection model, the ergonomics of the user inter-
face, the waiting-periods, the usefulness of the Family Editor and Annotated Instances interfaces,
and the feedback provided across the iterations.

In Section 6.5, we explain how the user experiments validate our design choices. Then, in
Section 6.6, we present additional feedback from the participants and point out some avenues of
research to further improve user experience in annotation projects.
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User #lter. # Queries +# Created Families # Final Families

1 3 300 15 10
2 2 200 16 15
3 2 200 29 26
4 2 200 22 17

Table 6.2: Number of Created and Final Families.

6.5 Validation of ILAB Design

6.5.1 Accessible to Non-Machine Learning Experts

The participants have not faced any difficulty in building a detection model with ILAB even if
they have little or no knowledge about machine learning. They have reported some minor ergonomic
problems not related to machine learning especially. We will address these issues to further improve
the user experience. Globally, the participants have been pleased with ILAB, and convinced that
it will be beneficial to other annotation projects.

6.5.2 Detection Target and Alert Taxonomy

Across the iterations, ILAB has queried stealthier scans than the ones detected by TRW: slow
scans (only one flow with a single defended IP address contacted on a single port), and furtive
scans (a slow scan in parallel with a well-established connection). Besides, it has detected TCP
Syn flooding activities designed to exhaust the resources of the defended network. Finally, ILAB has
asked the participants to annotate IP addresses with anomalous behaviors which are not malicious:
misconfigurations and backscatters.

To sum up, the detection target has evolved across the iterations thanks to ILAB queries. At the
beginning of the annotation process, the annotated dataset contains only obvious scan activities,
and ILAB queries other anomalous behaviors. The rare category detection analyses carried out by
ILAB (see Section 5.2.2) are effective for pointing out new anomalous behaviors.

Table 6.2 presents the number of families created by each participant, and the number of families
at the end of the annotation process. It reveals that the participants begin by creating specific
families and they end up merging some of them with the Family Editor to remove needless detail.
The participants have declared that the Family Editor and the Annotated Instances Interface help
them provide consistent annotations throughout the annotation process. Furthermore, they have
stated that these tools are crucial if the annotation process lasts several days.

In brief, the participants rely on ILAB to define the malicious and benign families. At the
beginning of the annotation project, they have a vague idea of how to group the benign and malicious
behaviors into families. Then, ILAB queries bring them to change their families definitions. The
user experiments show that the Family Editor and the Annotated Instances Interface are critical
components of ILAB to define the families interactively.
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Figure 6.3: Average Annotation Costs.

6.5.3 Annotation Cost

The cost of the annotation process is usually reported as the number of manual annotations [4,
63, 130]. However, all the annotations do not have the same cost in terms of time for making a
decision and experts have their own annotation speed. Figure 6.3 presents the average annotation
cost, i.e. the average time required to answer annotation queries, with the corresponding 95%
confidence interval, for each participant, at each iteration and for each query type.

Figure 6.3a shows that the annotation speed varies significantly from participant to participant.
Besides, the annotation cost always decreases across the iterations: they get used to the data
they annotate and to ILAB user interface and so they answer queries faster. As the participants
annotate, they get a more precise idea of the detection target and of the malicious and benign
families, so they spend less time making decision.

Uncertain queries, close to the decision boundary, are often considered harder to annotate [15, 66,
120]. The statistics presented in figure 6.3b support this statement for only two participants out of
four. This low agreement may be explained by the fact that we have run only a few iterations, and
therefore the model has not yet converged and is still uncertain about instances easy to annotate
for security administrators.

Figure 6.3b also points out that the benign queries are harder to annotate than the malicious
ones for two out of four participants. One explanation is that security administrators are not used
to analyzing benign behaviors and to group them into families. They analyze malicious behaviors
when they design misuse detection techniques, and they are accustomed to grouping malicious
behaviors into families when they define alert taxonomies.
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User Whole Process Computations Waiting-Periods Efficiency

1 1h28min 197.53 sec 10.81 sec 99.76%
2 1h29min 91.56 sec 7.32 sec 99.86%
3 1h36min 87.54 sec 7.31 sec 99.87%
4 1h57min 93.56 sec 7.37 sec 99.89%

Table 6.3: Computations and Waiting-Periods.

6.5.4 Resulting Detection Model

The participants have analyzed the alerts triggered by their detection model on Day 2 with DIA-
DEM alert analysis interface (see Section 3.2.2). They have assessed that the alerts are consistent
with their malicious annotations and that the number of false positives is low enough to meet op-
erational constraints. The top N alerts are obvious scans where many ports are scanned on many
IP addresses. The randomly selected alerts correspond to the most common anomalies, i.e. slow
Syn scans on port 23.

The participants have pointed out that grouping alerts according to their predicted malicious
families eases their analysis, and reveals more interesting alerts, i.e. less common malicious behav-
iors, than top N and random. The families of some alerts have, however, been wrongly predicted
due to a lack of annotated instances for some malicious families. Some families have been discov-
ered only at the last iteration and too few examples are in the annotated dataset for the detection
model to generalize properly.

More iterations are required to improve the automatic qualification of the alerts.

6.5.5 Short Waiting-Periods

Table 6.3 presents an analysis of the cumulated computation times and waiting-periods through-
out the whole annotation process. The column Computations stores the duration of the compu-
tation of all the annotation queries. The column Waiting-Periods corresponds to the cumulated
waiting-periods : the time during which the users are waiting for the active learning strategy to
compute new annotation queries. FEfficiency represents the percentage of time allocated to the
improvement of the detection model (annotating, editing families, inspecting annotated instances)
during the annotation process.

The cumulated waiting-periods are smaller than the cumulated computation times since ILAB
parallelizes the annotations and the computations (see Section 5.3.3): experts can annotate some
instances while the remaining annotation queries are computed. Experts wait only while the detec-
tion model is trained on the current annotated instances, and the uncertain queries are generated.
Then, they start answering the uncertain queries while ILAB generates the malicious and benign
queries. During our experiments, ILAB has always completed the computation of the malicious
and benign queries before the experts have finished answering the uncertain queries. As a result,
the participants have waited less than 5 seconds between each iteration. All the participants have
declared that the waiting-periods are short enough not to damage the expert-model interaction.

ILAB divide-and-conquer approach ensures a good expert-model interaction: the detection
model is updated frequently with expert feedback without inducing long waiting-periods.
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6.5.6 Feedback to Annotators

Three out of the four participants have declared that they have perceived the benefit of their
annotations across the iterations. In their view, they appreciate the improvement of the detec-
tion model thanks to the clustering of the queries according to labels and families. They assess
the false negatives while annotating the Benign queries, and the false positives while annotating
the Malicious ones. Moreover, they evaluate the relevance of the predicted families with the
suggestions.

The participants have not mentioned the two feedback graphs displayed by ILAB (the number
of discovered families and the precision of the suggestions), as a means of seeing the benefit of
their annotations. These graphs depict a global evolution over several iterations, while the method
used by the participants grasps local evolutions between two consecutive iterations. The number
of iterations performed during the user experiments may be too low to show the relevance of these
graphs.

6.6 Further Feedback from the User Experiments

6.6.1 Security Administrators Annotate Differently

The participants answer the queries very differently. In particular, they disagree on the label
corresponding to the misconfigurations. Some consider they are anomalous, while others think they
are too common in network traffic. Besides, they annotate the instances with different levels of
detail. Some create families based on combinations of services (e.g. Web-DNS, Web-SMTP, Web-
SMTP-DNS), while others differentiate the services depending on whether the external IP address
is the client or the server (e.g. Web-from-external and Web-from-internal). They also build scan
families with different levels of detail (e.g. obvious-Syn-scans, obvious-Syn-scans-Reset-response,
multihosts-multiports-scans, udp-multihosts-scans).

In short, at the end of the annotation project, the participants have neither the same detection
target, nor the same alert taxonomy.

These discrepancies are not surprising since the participants have annotated independently, but
we can draw lessons from these user experiments for future annotation projects involving several
annotators. We have designed ILAB for a single annotator. How can we adapt it to work this
several annotators ?

The main difficulty with several annotators is the definitions of the detection target and the
alert taxonomy. They are usually not well delineated at the beginning of annotation projects, and
security administrators refine their specifications as they annotate queried instances.

One way is to ask the annotators to agree on the detection target and the alert taxonomy
during a preliminary stage. During the first iterations, the annotators answer the annotation
queries together. Once the iterations do not lead to the identification of new families, we can stop
the preliminary stage. At the end of the preliminary stage, the detection target and the alert
taxonomy are more precisely delineated than at the beginning of the annotation project. The
annotators can then use ILAB alternately to gather more annotations. If they discover a new
family, or they are uncertain about an annotation, they can consult each other to make decision.
An interesting avenue of research is to adapt ILAB to work with multi-annotators.
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6.6.2 Security Administrators are Willing to Skip Some Annotation Queries

ILAB makes sure that experts answer all the queries at each iteration, and all participants have
asked during the experiments a question like “Do I need to answer all the annotation queries ?” or
“Is there a middle category between Malicious and Benign 7”.

Experts are often reluctant to answer tricky queries as they worry about making mistakes. ILAB
does not propose a middle category, and forces experts to answer each query, to prevent them from
taking no risk. Indeed, if we let them discard queries as they like, they may annotate only obvious
instances which can lead to a model detecting only the most common malicious behaviors.

Annotators can create a new family to isolate some uncertain annotations, and come back to these
instances later with the Annotated Instances Interface and the Family Editor. One participant has
had no difficulty in assigning a binary label, nor in assigning a family to benign instances. However,
he has had trouble assigning a family to some malicious instances whose behavior is hard to explain
or even to describe. He has created an unknown malicious family to handle these tricky cases.

Security administrators may want some instances to stay close to the decision boundary, because
they cannot make a decision with their expert knowledge. Skipping these queries is not a solution,
as the query strategy may keep on asking to annotate the same kind of instances in the following
iterations. A future line of research is to design an active learning algorithm that can take into
account a middle category to generate the next queries. Moreover, we should make sure that
annotators do not choose too often the middle category to take no risk. A potential solution is to
allow to pick the middle category up to k times at each iteration.

6.6.3 Data Annotation and Feature Extraction are Intertwined

The first two participants have no information about the features of the detection model to hide
the machine learning complexity. This lack of information has led to the creation of families that
the detection model could not discriminate. The first participant has ended up merging these too
specific families, there has therefore been no negative impact on the resulting detection model. On
the contrary, the second participant has kept the specific families until the end of the annotation
process. It has damaged the performance of the detection model.

The last two participants know the features, and they have not created families that the detec-
tion model could not discriminate properly by the detection model. They have had no difficulty
understanding the features included in the model, nor their implications on the families they can
create. They have, however, confirmed their desire to build more specific families that necessitate
additional features.

ILAB, as the state-of-the-art active learning strategies [4, 130, 63], assumes that the features are
set at the beginning of the annotation process and do not change across the iterations. The user
experiments have, nevertheless, shown that the discovery of new families may necessitate adding
new features so that the detection model discriminates them properly. The detection target and
the alert taxonomy are usually not well delineated at the beginning of the annotation process, so
it is hard to anticipate which features should be extracted.

A new avenue of research is to consider active learning strategies where the features change
across iterations. Human annotators could change the features manually, or they could be updated
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automatically according to the new annotations with a method similar to [28, 72, 78]. In both
cases, a particular care shall be taken to maintain short waiting-periods and to avoid numerical
instabilities.

6.6.4 Security Administrators are More Than Oracles

Annotation projects where security administrators build detection models differ significantly
from crowd-sourcing annotation projects. Security administrators involved in annotation projects
are not mere oracles. At each iteration, they do more than answering queries. They delineate the
detection target and the alert taxonomy, and they want to understand the behavior of the detection
model.

During the user experiments, some participants have wondered why the detection model is
uncertain or wrong about a prediction. Security administrators are willing to follow the evolution
of the detection model across the iterations.

In order to address this need, ILAB annotation system is not reduced to an Annotation Inter-
face. It also offers a Monitoring Interface to help security administrators understand the behavior
of detection models. Moreover, the Family Editor and the Annotated Instances Interface assist
security administrators in delineating the detection target and the alert taxonomy.

To sum up, ILAB active learning system is not a mere annotation system, it helps security
administrators build detection models interactively.

6.7 Conclusion

In this chapter, we integrate ILAB active learning strategy (see Chapter 5) in an annotation
system. This way, we get an end-to-end active learning system that security administrators can
deploy in real-world annotation projects.

ILAB annotation system is not reduced to an annotation interface, it provides additional user
interfaces (Monitoring Interface, Family Editor, Annotated Instances Interface) to assist security
administrators. During annotation projects, they do not simply answer annotation queries, but
they define the detection target and the alert taxonomy. We have designed ILAB active learning
system to help them build detection models interactively.

The user experiments show that ILAB in an effective active learning system that security
administrators can deploy in a real-world annotation project. They also point out some avenues
of research to further improve user experience in annotation projects. We provide an open-source
implementation of the whole active learning system in SecuML [20] to foster research in this area,
and to enable security administrators to annotate their own datasets.

The machine learning pipeline is composed of four steps: 1) data annotation, 2) feature extrac-
tion, 3) training, and 4) evaluation. DIADEM (see Chapter 3) helps security administrators carry
out the last two steps, while ILAB streamlines data annotation. The next and last part of this
thesis focuses on the remaining step of the machine learning pipeline: feature extraction. It exam-
ines automatic feature extraction as a means to help security administrators extract discriminating
features.
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Chapter 7

Automatic Feature Generation for
Detection Systems

Most research works on supervised threat detection have implemented a feature extraction
method specific to their detection problem. However, detection systems process many data types
and designing a feature extraction method for each of them is tedious. Automatic feature genera-
tion can significantly ease and thus foster the deployment of machine learning in computer security
detection systems.

In this chapter, we start by defining the constraints that automatic feature extraction tech-
niques should meet to be tailored to detection systems. Then, we compare three state-of-the-art
methods [129, 28, 72] according to these constraints on PDF files and Windows event logs. Finally,
we point out some interesting avenues of research to better tailor automatic feature extraction to
security administrators needs.
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7.1 Introduction

Machine learning has been successfully applied to various computer security detection problems:
Android applications [54], PDF files [124, 37|, Flash files [49, 141], portable executable files [75],
botnets [25, 10, 27], Windows audit logs [22], and memory dumps [17]. Most research works
implement their own feature extraction method to represent raw data as fixed-length vectors of
features.

Computer security detection systems process many data types and designing a feature extraction
method for each of them is tedious. Worst, threat evolution may also require to go through this
manual process multiple times. Indeed, the discovery of new threats may require to add new
features to detect them properly.

Feature extraction is a three step-process: 1) identifying discriminating information, 2) parsing
the data to extract this information, and 3) transforming this information into fixed-length vectors
of features. The first two steps can be hardly automated since it requires a good knowledge of
the data format and specific domain expertise to extract the discriminating information. On the
contrary, the last step can be easily automated since it usually exploits generic techniques (see
Section 3.3.2).

Automatic feature generation can significantly help security administrators with this tedious
task. They still need to be involved in the first two steps, since their domain expertise is critical.
However, it can remove the burden of the last step. Besides, if annotated data are available, they
can be exploited to identify discriminating information automatically.

In the computer security community, Hidost [129] extracts features automatically from hierar-
chical file formats such as PDF or XML. In the machine learning community, Khiops [28] and
Featuretools [72] exploit already structured data to generate features automatically. To the best
of our knowledge, these generic feature extraction techniques [28, 72| have never been applied to
threat detection, while they could be beneficial.

In this chapter, we outline the specific constraints that feature extraction methods should meet to
operate successfully on detection problems. We compare three state-of-the-art methods [129, 28, 72]
in the context of threat detection on two data types, PDF files and Windows event logs. Our
comparison shows the strengths and limitations of each approach, and points out some interesting
avenues of research to make automatic feature extraction better tailored to security administrators
needs.

First, Section 7.2 states the problem of automatic feature extraction and the specific constraints
related to detection systems. Section 7.3 presents some automatic feature generation methods
developed in diverse communities. Then, Section 7.4 explains the experimental protocol designed
to compare three state-of-the-art methods [129, 28, 72] on two data types, PDF files and Windows
event logs. Finally, Section 7.5 presents the results of the comparison and Section 7.6 highlights
some avenues of research.
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7.2 Problem Statement

Standard machine learning algorithms do not take raw data as input, but instances represented
as fixed-length vectors of features. Features are binary, numerical, or categorical values describing
an instance that detection models exploit to make decisions. The more discriminating the features
are, the more efficient the detection model is.

The main objective of automatic feature generation techniques is to derive features automati-
cally from raw data, and to get well-performing detection models. Besides, some constraints specific
to computer security detection systems should be met.

Support Files and Event Logs. Detection systems usually process two broad categories of
data: files (e.g. PDF, Flash, or Windows Office documents) and event logs (network or operating
system event logs). The automatic feature generation algorithm must, thus, support both data

types.

Scalability. The size of computer security datasets can be considerable. The method must,
therefore, be able to process arbitrarily large datasets.

Reasonable Execution Time. First of all, security administrators must be able to update
detection models swiftly to detect new threats or to avoid overwhelming false positives (see Sec-
tion 1.2.4).

Moreover, automatic feature generation algorithms can be integrated into active learning sys-
tems, such as ILAB (see Chapters 5 and 6), to make features evolve automatically during the
annotation process (see Section 6.6.3). In this scenario, the feature generation must be quick
enough to not damage too much the expert-model interaction.

The execution time of the generation algorithm must therefore be low enough to suit security
administrators needs.

Interpretable Features. Security administrators need to trust detection models before their
deployment. They want to understand their behavior as a whole. Besides, security operators need
information to understand why an alert has been triggered. Binary answers (an alert has been
triggered or not) are not enough to handle alerts swiftly (see Section 1.2.3).

As a result, the generated features must be interpretable so that the resulting detection models
and their predictions have the same property.

Robust Features. Detection methods are deployed in adversarial environments where at-
tackers are willing to circumvent them (see Section 1.2.5). The generated features must not be too
specific to resist evasion attempts.

Specific features would act like signatures and would therefore be vulnerable to polymorphism
attacks (see Section 1.3.1). The generated features must be generic enough to enable detection of
yet unknown threats.

Moreover, the choice of good features is not trivial. Automatic feature generation algorithms can
usually compute an extremely large number of features, but finding the most discriminating ones
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is not straightforward. Automatic feature generation methods should, therefore, take advantage of
both expert knowledge and annotations if available.

Expert in the Loop. Security administrators are usually reluctant to hand over control
to a fully automated learning method [111]. Furthermore, their expertise can guide the feature
generation process to create better features. The automatic feature extraction technique should
thus enable security administrators to inject their knowledge.

Efficient Use of Annotations. Automatic feature generation techniques can be exploited
to build supervised and unsupervised detection models. In the case of supervised learning, the
generation process should leverage the annotated data to create discriminating features.

7.3 Related Work

Automatic feature generation is an active area of research in many domains. Most research works
focus on deep learning techniques [58] which perform well on image, audio and text classification
tasks. However, such techniques are hardly suited to threat detection since the generated features
are hard to interpret. In this section, we review methods generating more understandable features
from diverse communities: computer security, compilation and machine learning.

7.3.1 Computer Security

FeatureSmith [153] generates features automatically from scientific research papers to detect
malicious Android applications. It relies on natural language processing techniques to extract good
features from a corpus of relevant documents without human intervention. This method identifies
only features which are named entities such as Android API calls or permissions and therefore,
tends to generate signature lookalike features. Moreover, their solution cannot be applied if there
is no literature yet available. In our case, we are more interested in data-oriented solutions that
generate features directly from raw data even if there is no prior work.

Hidost [129] is a data-oriented solution that operates on hierarchical files (e.g. PDF, SWF, XML,
or HTML). First, it converts raw files into trees that represent the hierarchical structure of files.
Then, it creates features that correspond to paths in the hierarchy. The first step requires a specific
module for each file format. The authors provide the modules to support PDF and SWF files.

7.3.2 Compilation

Leather et al. [81] have designed an automatic feature generation technique for optimizing com-
pilation. As Hidost, this method operates on hierarchical data, intermediate representations of
programs, but it has a broader feature space. Indeed, it generates features based on subgraphs of
the hierarchy, whereas Hidost is limited to paths. Besides, a genetic algorithm leverages annotated
data to drive the feature generation process.
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7.3.3 Machine Learning

Some generic feature generation techniques, not tailored to any application domains, have been
recently proposed [28, 72, 78]. These methods rely on structured and relational data, i.e. a set of
tables with relational links, where the rows of the table called root table correspond to the instances.
They basically follow relationships from the root table to a given variable (a column in a table).
Then, they sequentially apply aggregation functions (e.g. mean, var or max for numerical variables,
mode! or num unique for categorical variables) to compute features. These techniques [28, 72, 78]
are hereinafter referred to as relational-based feature generation methods.

They cannot be directly applied to files or event logs. The raw data need to be transformed
into structured and relational data beforehand. We explain in Section 7.4.2 how to perform this
transformation.

To sum up, two kinds of data-oriented feature generation methods are relevant for detection
systems: hierarchy-based methods [81, 129], and relational-based methods [28, 72, 78]. They have
never been compared with regards to the specific constraints of threat detection. In the next
sections, we compare [129], [28] and [72] with the implementations provided by the authors. [78]
and [81] are not considered in this study since the authors did not provide any implementation.

7.4 Experimental Protocol

We compare three tools designed for automatic feature generation: Hidost [129], Featuretools [72],
and Khiops [28]. We use the open-source implementations provided for Hidost? and Featuretools®
and an evaluation license for Khiops?. We consider two data types during the comparison: PDF
files and Windows event logs. We describe the datasets in Section 7.4.1. Unlike Hidost, Featuretools
and Khiops do not take raw data as input, but relational data. We explain in Section 7.4.2 how
we meet this requirement.

We run Hidost with the configuration recommended by the authors: the paths that appear in
fewer than 1% of the instances are discarded. Featuretools is executed with its default parameters.
Khiops requires to indicate the number of features to generate. We set this parameter to 200 to
get a number of features comparable with Featuretools and Hidost.

We run all the experiments on Linux 3.16 on a dual-socket computer with 64Go RAM. Processors
are Intel Xeon E5-5620 CPUs clocked at 2.40 GHz with 4 cores each and 2 threads per core.

7.4.1 Datasets

PDF Files. We take into account two datasets: Contagio [1] (9,000 benign files and 11,001
malicious files) and WebPDF (2,078 benign files and 767 malicious files). Contagio is a public
annotated dataset. WebPDF consists of benign files resulting from requests on the Google search
engine, and of malicious files queried from the VirusTotal [3] platform.

!The value that has the highest number of occurrences.
https://github.com/srndic/hidost, version from November 29th 2015.
3https://github.com/Featuretools/featuretools, version 0.1.14.
“https://khiops.com/, version 8 with an evaluation license.
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Figure 7.1: Relational Diagrams. Root tables are represented in red. Arrows represent relationships
between tables. N and 1 correspond respectively to the many and to the one sides of relationships.

Windows Event Logs. Kent et al. [74] have released a dataset® consisting of 58 consecutive
days of event data collected within Los Alamos National Laboratory’s computer network. The
objective is to build a supervised detection model that identifies compromise events based on the
Windows-based authentication events (about one billion events).

7.4.2 Transforming Files and Logs into Relational Data

Featuretools and Khiops require relational data as input, i.e. a set of tables with relational links,
where the rows of the root table correspond to the instances. We explain here how we transform
the raw data presented in Section 7.4.1 into this standard format. Figure 7.1 depicts the resulting
relational diagrams and Table 7.1 the size of the resulting tables.

PDF Files. PDF files are hierarchically structured. They are composed of objects of different
types (e.g. stream or dict) which reference each other. The references form a graph which may

*https://csr.lanl.gov/data/cyberl/
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Datasets files objects references 10_day_activities 113,575

WebPDF 2,828 1,086,231 2,655,197 instances_auth 1,510,947,533
Contagio 20,078 2,379,128 6,128,275 authentifications 1,051,430,459
(a) PDF Files. (b) Windows Event Logs.

Table 7.1: Number of Rows in each Table.

contain cycles. Besides, PDF files have metadata such as author, producer, title, creation and
modification dates.

We leverage a PDF parser to represent the metadata and the structure of PDF files into a
relational format described in Figure 7.1a. More generally, parsers can easily transform files into
structured and relational data (trees or graphs). Parsers are already deployed in detection systems
for traditional detection methods. We can build upon them to make automatic feature extraction
generic regarding file formats.

Windows Event Logs. FEvent logs are already in a structured format: they contain a list of
events described by a predetermined number of fields. Nevertheless, we cannot build a detection
model directly from individual events, they do not contain enough information to detect malicious
activities. An instance must, therefore, group several event logs.

In our experiments, each instance represents the activity of a given user during a 10-day-time
window. Figure 7.1b depicts the relational diagram we obtain. It does not require to pre-process
the event logs beforehand and it prevents the duplication of the original data which is crucial when
handling large datasets.

7.5 Comparison

7.5.1 Deployment

Hidost. Hidost is an end-to-end solution that relies on specific modules to convert raw files into
hierarchical structures. In our experiments, it is straightforward to run Hidost on the PDF datasets,
since the authors provide the specific module for this file format. However, the specific modules are
tightly coupled with the feature generation process. Hidost is therefore hardly extensible to other
types of files.

Additionally, Hidost does not suit event logs data. It is highly specialized in deriving features
from hierarchical structures and logs are flat data that do not contain such structures. Hence, we
do not deploy Hidost on the Windows event logs dataset.

Featuretools and Khiops. Featuretools and Khiops take relational data as input but none of
them accept all relational patterns. Featuretools does not support 1 to 1 relationships: tables
linked this way must be merged manually beforehand.

Besides, Featuretools and Khiops do not support diamond patterns that are crucial to describe
hierarchies. In Figure 7.1a, the relationship between the tables objects and references is an ex-
ample of diamond pattern. In order to avoid this unsupported pattern, we chose to keep only the for-
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Methods Hidost [129] Khiops [28] Featuretools [72]

Datasets #Features Time #Features Time #Features Time
WebPDF 784 Tmin28s 200 1minl3s 100 9h30min
Contagio 561 23min3d4s 200 4minl6s 71 48h

Table 7.2: Number of Generated Features and Execution Times.

eign key referencing references.src_obj_id and not the one referencing references.dst_obj_id.
As a consequence, some information is lost: the number of references for a particular PDF object
can be computed but not the number of references pointing to it.

More generally, Khiops does not support association tables such as instances_auth in Fig-
ure 7.1b. A solution to make the Windows event logs dataset compliant with Khiops is to flatten
the relationships. However, this would duplicate rows which is not tractable on large datasets.
Thus, we do not generate features for the Windows event logs dataset with Khiops.

To sum up, we generate features for the PDF datasets with Hidost, Featuretools, and Khiops.
It is straightforward to run Hidost on PDF files. On the contrary, Featuretools and Khiops do not
accept all relational patterns, so we adapt the input data to suit their requirements.

We generate features for the Windows event logs dataset only with Featuretools. Indeed, Hidost
cannot generate features from flat data, it needs hierarchical structures. Besides, Khiops does not
support association tables, and we cannot afford to duplicate the rows of such a large dataset.

7.5.2 Scalability and Execution Time

Memory Usage. Khiops and Hidost allow to set the maximum memory usage to work on larger
datasets at the expense of the execution time. Featuretools is hardly scalable since it loads all the
data into RAM. Nonetheless, the authors claim in the documentation that their implementation
can be adjusted to work on Spark infrastructures to scale to big data.

Execution Time. Table 7.2 shows that Hidost and Khiops have both completed their compu-
tations within minutes, while Featuretools requires several hours. The time difference between
Hidost and Khiops is explained by their input data: Hidost parses raw PDF files, while Khiops
takes already pre-processed PDF files as input. Anyway, their execution times are both low enough
to enable periodic updates of detection models. On the contrary, Featuretools execution times are
extremely high even if the PDF datasets fit into RAM.

The Windows event logs dataset is much larger than the PDF datasets, and does not fit into
RAM. We did not use Khiops and Hidost on this dataset for reasons given in Section 7.5.1. As for
Featuretools, its high execution time and its lack of scalability prevent the feature generation process
from completing. These shortcomings have been demonstrated in [78] too and make Featuretools’
current implementation unsuitable for detection systems.

In brief, Hidost and Khiops enjoy low execution times which enable periodic updates. On the
contrary, Featuretools execution time is far too high which prevents it from completing on the
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Windows event log dataset.
As a result, none of the compared methods have managed to generate features for the Windows
event logs dataset. From now on, we compare them only on the PDF datasets.

7.5.3 Features Interpretability

Featuretools and Khiops. Featuretools and Khiops generate similar features whose names
are easy to understand. For example, NUM_UNIQUE (objects.type) corresponds to the number of
different object types and MEAN(objects.COUNT (references)) computes the average number of
references of the objects.

These approaches based on relational data may, nevertheless, rapidly generate complex features
with nested aggregation functions. We understand how such features are computed, but do not
know what they mean in practice. For instance, it is hard to understand what several nested
variance computations mean in practical terms.

Hidost. The names of the features generated by Hidost are easily interpretable since they corre-
spond to paths from the file structure. For example, the feature OpenAction/JS corresponds to a
JS object referenced by an OpenAction object.

However, the values of the features are hard to interpret since they result from a sophisticated
computation process. Each feature does not simply correspond to the number of occurrences of
a given path. First, Hidost associates each path with the content of its last element. Then, non-
numeric values are arbitrarily replaced by the constant value 1. Finally, Hidost groups the values
by path and aggregates them with a median function to generate the features.

7.5.4 Resulting Detection Models

Once the features have been generated, we leverage DIADEM (see Chapter 3) to train and
diagnose supervised detection models. We train a logistic regression model to follow the advice
provided in Section 2.4. Indeed, security administrators, who do not trust black-box detection
models [111], highly value linear models. They can understand their overall behavior because the
coefficients associated with each feature represent their contribution to the decision-making process.

Detection Performance. Our experiments do not point out significant differences between the
three resulting models on the basis of detection performance. They all perform similarly on both
PDF datasets with an AUC (Area Under the ROC Curve) near 99%. Moreover, the detection
models perform as well as the ones trained with the manually generated features presented in
Section 3.3.2.

Overall Behavior. Moreover, we leverage DIADEM diagnosis interface (see Section 3.2.2) to
analyze the most discriminating features of each model.

Hidost detection models rely mostly on the presence of JavaScript code (Names/JavaScript)
and automatic actions at the opening (OpenAction/S) that are usual in malicious files. Featuretools
and Khiops models rely not only on these aspects, but also on others that Hidost generation
algorithm cannot express. For instance, MEAN (objects.size) and NUM_UNIQUE(objects.type)
are useful features since benign files tend to contain more content than malicious ones that often
include only a payload.
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7.5.5 Features Robustness

Khiops. Khiops associates a complexity cost to each feature to penalize the most sophisticated
ones. The original intent of Khiops’ author is not to generate robust features but to avoid overfitting.
Nonetheless, this is relevant for threat detection since complex features are usually specific and easy
to forge to perform evasion attacks.

Hidost. Hidost’s authors consider that features based on simple string properties can be easily
evaded, so Hidost replaces strings with the constant value 1. Besides, security administrators can
provide rules to merge similar features in order to remove artifacts that may lead to evasion attacks
(see Section 7.5.6 for more detail).

Overall, Hidost’s authors have decided to rely mostly on the structure, and slightly on the
content, to hinder evasion attacks. However, they have not carried out any evasion robustness
evaluation, and their conclusion claims that leveraging more the content can improve detection
accuracy.

In brief, only Hidost and Khiops have paid attention to generating robust features. Besides, there
is a real trade-off between robustness and accuracy that should be further analyzed. Including more
information, to create more specific features, can improve the performance of the detection model,
but it may also lead to evasion attacks.

7.5.6 Expert in the Loop

Hidost. Hidost enables security administrators to provide rules to merge similar paths by defining
a list of regular expressions. The objective is to transform paths that may be polymorphic, into
a more general form removing artifacts. This injection of expert knowledge offers two advantages.
First, it reduces drastically the number of generated features. Second, it reduces the attack surface
since the features are less specific. Despite these advantages, we want to emphasize that it is a
tedious work to create these merging rules.

Featuretools and Khiops. Khiops and Featuretools enable security administrators to exclude
some variables from the feature generation process. They also propose a high level description
language to create features manually.

Moreover, Featuretools enables security administrators to define interesting values for each
variable. These interesting values are then exploited to add filters, i.e. WHERE clauses, to the feature
generation formulas (e.g. MAX(objects.COUNT(references)) WHERE objects.type = stream).
Khiops also generates features with filters but completely automatically. It does not provide security
administrators the opportunity to focus the generation process on some specific filter conditions.

All presented methods offer some mechanisms to enable security administrators to inject domain-
specific knowledge, but they are rather restrictive. Experts are forced to follow a specific format
to express their knowledge.

7.5.7 Efficient Use of Annotations

Khiops. Khiops is the only method that leverages annotations to drive the feature generation
process. It relies on annotations to perform feature selection during the generation process.
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However, feature selection is performed on each feature independently without taking correla-
tions into account. Therefore, two features highly correlated can be both selected, while they bring
almost the same information. Besides, if two features have little information separately, but are
informative taken together, the selection algorithm will not pick them.

7.5.8 Summary

Our experiments show that none of the compared approaches fulfills the constraints stated in
Section 7.2. Featuretools suffers from a high execution time which would impede periodic updates
of detection models. Hidost is not appropriate to process non-hierarchical data like event logs.
Moreover, it is hardly extensible to other types of files, since its specific modules are tightly coupled
with the feature generation process. Finally, Khiops and Featuretools do not support all relational
patterns which hinders their application to some real-world detection problems.

Hidost is highly specialized in hierarchically formatted data, while Khiops and Featuretools bring
a more generic approach relying on relational data. Future research works should thus follow up on
the line of Khiops and Featuretools while paying more attention to the constraints related to threat
detection. In the next section, we point out some major avenues of research to make relational
based feature generation methods better tailored to security administrators needs.

7.6 Avenues of Research

Relational based feature generation methods can be applied to any threat detection problem as
long as they support all relational patterns. These methods leverage large feature spaces: they
combine various transformations to compute features. In this section, we highlight some avenues
of research to improve the exploration of feature spaces while fulfilling the constraints of detection
systems.

Restricting the Feature Space. Features resulting from numerous transformations tend to be
less interpretable and too specific. In that regard, restricting the feature space efficiently to get
robust and interpretable features, without damaging the detection performance, remains an open
problem.

Leveraging Annotated Instances. Feature generation algorithms can leverage annotated in-
stances to explore the feature space more efficiently. A feature selection algorithm can select the
most discriminating features while they are generated. Besides, annotated instances could drive
the generation process to decide which features should be computed first.

Interacting with Experts. Expert knowledge is crucial for feature engineering. Automatic
feature generation techniques should thus offer advanced means for experts to guide the generation
process. They should enable experts to express their domain-specific knowledge at the beginning
of the generation process, but also to provide feedback in the middle. It would make automatic
feature generation an interactive tool to help experts explore the feature space [5, 85].
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7.7 Conclusion

In this chapter, we outline the constraints that any feature generation solution should meet to
suit threat detection. Then, we compare Hidost [129], highly specialized in hierarchically formatted
files, with Khiops [28] and Featuretools [72] that bring a more generic approach relying on relational
data. Our comparison shows that none of these approaches fulfill the operational constraints of
detection systems.

We are, however, confident that automatic feature generation can significantly ease, and thus
foster the deployment of machine learning in computer security detection systems. Khiops and
Featuretools bring a more generic approach than Hidost, so future research works should follow up
on their line. In this perspective, we point out some avenues of research to make relational based
feature generation methods better suited to security administrators needs.
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Chapter 8

Conclusion

8.1 Summary

Supervised detection models can be deployed in detection systems, as an adjunct to traditional
detection techniques, to strengthen detection. The aim of this thesis is to help security adminis-
trators deploy supervised detection models that suit their operational constraints. To that end,
we take into account the whole machine learning pipeline (data annotation, feature extraction,
training and evaluation) with security administrators and operators as its core. We propose an
expert-in-the-loop approach on the whole machine learning pipeline since it is crucial to pursue
real-world impact.

In the first part, we present the steps of the machine learning pipeline, and we review machine
learning techniques and methodologies with a computer security point of view. We place a particular
emphasis on evaluating properly supervised detection models to ensure successful deployments.
Moreover, we design and implement an interactive visualization tool, DIADEM, to help security
administrators apply the methodology set out.

DIADEM handles two steps of the machine learning pipeline: training and evaluation. Security
administrators must perform the first two steps: data annotation and feature extraction. They
must provide as input to DIADEM a set of annotated instances represented as fixed-length vectors
of features. The following parts of the thesis deal with these remaining steps.

The second part concerns the first step of the machine learning pipeline: data annotation. It aims
to reduce the workload in computer security annotation projects. We present an end-to-end active
learning system, ILAB, tailored to security administrators needs. We have designed the active
learning strategy and the annotation system jointly to effectively reduce the annotation effort.

ILAB active learning strategy minimizes not only the number of manual annotations, but also
the waiting-periods. The comparison of ILAB with three state-of-the-art active learning strate-
gies [4, 130, 63] demonstrates that it improves the detection performance without increasing the
number of manual annotations nor the waiting-periods.

We explain how ILAB active learning strategy has been integrated into an annotation system.
ILAB annotation system is not reduced to an annotation interface. It provides additional user
interfaces (Monitoring Interface, Family Editor, Annotated Instances Interface) to assist security
administrators. Security administrators do not simply answer annotation queries in annotation
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projects, they define the detection target and the alert taxonomy. We have designed ILAB ac-
tive learning system to help security administrators build detection models interactively. The user
experiments demonstrate that ILAB in an effective active learning system that helps security ad-
ministrators carry out real-world annotation projects.

Finally, the last part focuses on feature extraction. It considers automatic feature generation
techniques as a means to reduce security administrators’ workload while setting up supervised
detection models. First, we outline the constraints that such methods should meet to suit security
administrators needs. Then, we compare three state-of-the-art methods based on these criteria.
Unfortunately, none of these approaches fulfill the constraints. We are, however, confident that
automatic feature generation can significantly ease the deployment of machine learning in detection
systems. In this perspective, we point out some avenues of research to make automatic feature
generation better suited to security administrators needs.

The solutions we propose in this thesis are completely generic to be beneficial to any detection
problem on any data type. We have implemented the SecuML framework, available online through
GitHub [20], to help security administrators build machine learning models and interact with them.
We provide open-source implementations of DIADEM and ILAB in SecuML to ease comparison in
future research works, and to enable security administrators to build their own detection models.

8.2 Perspectives

This thesis presents solutions to ease, and thus foster, the deployment of supervised detection
models in detection systems. Our end-to-end approach has also pointed out some avenues of
research to better meet security administrators needs.

Make Detection Models More Robust to Evasion Attempts

Attackers can evade supervised detection models. They can craft adversarial examples designed
to circumvent detection models while keeping the malicious payloads. There is currently no perfect
defense against adversarial examples (see Section 2.4.4).

Even if adversarial examples are difficult to craft in the context of threat detection (feature
mappings are hard to invert) they remain a major problem. Indeed, detection models are deployed
in adversarial environments where attackers are constantly improving. It is therefore critical to
enhance the robustness of supervised detection models.

Better Tailor Automatic Feature Generation to Detection Systems

We are convinced that automatic feature generation can significantly reduce security admin-
istrators’ workload to set up supervised detection models. However, we have compared three
state-of-the-art methods, and none of them fulfills the constraints related to threat detection.

Our comparison has pointed out some avenues of research to better tailor automatic feature
generation to security administrators needs (see Section 7.6). First, the feature space should be
restricted to generate interpretable and robust features. Second, expert knowledge and annotations
should be better leveraged to generate discriminating features.
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Update Features Automatically during Annotation Projects

The first two steps of the machine learning pipeline, data annotation and feature extraction, are
usually considered completely independent. However, our user experiments, with ILAB active learn-
ing system, have pointed out that these two steps can be strongly intertwined (see Section 6.6.3).
The detection target and the alert taxonomy are usually not well delineated at the beginning of
annotation projects. In this case, new annotations may question the extracted features, and require
to generate new features.

A solution is to update features automatically during annotation projects. Even if an automatic
feature generation technique tailored to threat detection is available, there remain some challenges
to overcome. First, the active learning system must identify when the features should be updated.
Second, experiments should be carried out to inspect the behavior of an active learning system
where both the annotations and the features evolve across iterations.
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Résumé

L'objectif de cette thése est de faciliter
I'utilisation de I'apprentissage supervisé
dans les systemes de détection pour
renforcer la détection. Dans ce but, nous
considérons toute la chaine de traitement de

I'apprentissage supervisé (annotation,
extraction d’attributs, apprentissage, et
évaluation) en impliquant les experts en
sécurité.

Tout d’abord, nous donnons des conseils
méthodologiques pour les aider a construire
des modeles de détection supervisés qui
répondent a leurs contraintes
opérationnelles. De plus, nous concevons et
nous implémentons DIADEM, un outil de
visualisation interactif qui aide les experts en
sécurité  a appliquer la méthodologie
présentée. DIADEM s’occupe des rouages
de I'apprentissage supervisé pour laisser les
experts en  sécurité se  concentrer
principalement sur la détection.

Par ailleurs, nous proposons une solution
pour réduire le colt des projets
d’annotations en sécurité informatique. Nous
concevons et implémentons un systéme
d’apprentissage actif complet, ILAB, adapté
aux besoins des experts en sécurité. Nos
expériences utilisateur montrent qu’ils
peuvent annoter un jeu de données avec
une charge de travail réduite grace a ILAB.

Enfin, nous considérons la génération
automatique  d’attributs pour faciliter
I'utilisation de I'apprentissage supervisé

dans les systemes de détection. Nous
définissons les contraintes que de telles
méthodes doivent remplir pour étre utilisées
dans le cadre de la détection de menaces.
Nous comparons trois méthodes de I'état de
I’art en suivant ces critéres, et nous mettons
en avant des pistes de recherche pour mieux
adapter ces techniques aux besoins des
experts en sécurité.

Mots Clés

Sécurité informatique, systemes de
détection, apprentissage superviseé,
systemes interactifs, apprentissage actif,

génération automatique d'attributs.

Abstract

The overall objective of this thesis is to
foster the deployment of supervised learning
in detection systems to strengthen detection.
To that end, we consider the whole machine
learning pipeline (data annotation, feature
extraction, training, and evaluation) with
security experts as its core since it is crucial
to pursue real-world impact.

First, we provide methodological guidance to
help security experts build supervised
detection models that suit their operational
constraints. Moreover, we design and
implement DIADEM, an interactive
visualization tool that helps security experts
apply the methodology set out. DIADEM
deals with the machine learning machinery
to let security experts focus mainly on
detection.

Besides, we propose a solution to effectively
reduce the labeling cost in computer security
annotation projects. We design and
implement an end-to-end active learning
system, ILAB, tailored to security experts
needs. Our user experiments on a real-world
annotation project demonstrate that they can
annotate a dataset with a low workload
thanks to ILAB.

Finally, we consider automatic feature
generation as a means to ease, and thus
foster, the use of machine learning in
detection systems. We define the constraints
that such methods should meet to be
effective in building detection models. We
compare three state-of-the-art methods
based on these criteria, and we point out
some avenues of research to better tailor
automatic feature generation to computer
security experts needs.

Keywords

Computer security, detection systems,
supervised learning, interactive systems,
active learning, automatic feature
generation.




