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Résumé étendu en Français

Introduction

L e travail réalisé dans cette thèse s’inscrit dans un contexte de développement croissant de l’utili-
sation de nouvelles technologies pour la surveillance de structures. Le contrôle de santé des
infrastructures est primordial afin d’assurer la pérennité des réseaux de transports et des con-

structions. Au regard des récents évènements en Italie, la prévention et la réparation des infrastruc-
tures est un enjeu à la fois social et économique. Pour pallier la vétusté des structures, des moyens
de mesures afin de quantifier leur état sont nécessaires. En particulier, l’utilisation de caméras in-
frarouges bas-coûts pour la surveillance long-terme d’infrastructures est prometteuse grâce aux ré-
centes avancées technologiques du domaine. En effet, les derniers développements technologiques
ainsi que la miniaturisation des détecteurs infrarouges non-refroidis permettent d’avoir des caméras
bas-coûts et faciles à mettre en œuvre. La thermographie infrarouge vise alors à fournir une mesure
sans-contact et plein champs de la température. Cependant, une mesure précise de la température des
surfaces observées in-situ se heurte aumanque de connaissance des propriétés radiatives de la scène. En
effet, la thermographie infrarouge permet demesurer un flux radiatif arrivant à la caméra. Cependant,
ce flux est la résultante de différentes contributions radiatives : l’émission propre de l’objet, perme-
ttant de remonter - en théorie - à sa température, mais aussi l’atmosphère, le soleil, les autres objets
environnants de la scène, l’optique de la caméra, etc.

Une étude bibliographique de lamesure par thermographie infrarouge ainsi que l’écriture des équa-
tions du transfert radiatif met en exergue ce phénomène complexe multi-varié. De cette étude se dé-
gage trois voies d’amélioration de la précision de la mesure par thermographie infrarouge.

Surveillance long-terme d’infrastructures par thermographie infrarouge

Dans un premier temps, il est montré que la correction des paramètres environnementaux in-
hérents à la mesure ainsi que l’exploitation de données issues d’une instrumentation multi-capteurs
permettent d’accroître la précision de la mesure. Dans l’optique d’une mesure précise, les processus
de calibration spatiale et thermique sont tout d’abord présentés. Afin d’exploiter l’ensemble des don-
nées provenant d’une instrumentation multi-capteurs, un logiciel de visualisation et de traitement est
présenté. En particulier, unmodule YAML permet un traitement d’un large nombre de données par lots ;
facilitant ainsi l’ensemble du processus. L’interface graphique du logiciel permet une vue d’ensemble
des mesures et assiste les utilisateurs dans l’exploitation des données. Lemodèle de conversion des im-



Figure 1: Principe de la mesure par thermographie infrarouge: le flux résultant dépend de
l’environnement et des différentes réflections de la scène.

ages infrarouges en niveaux numériques vers la température est parallélisé par une approche GPGPU
(General-purpose processing on graphics processing units), afin d’obtenir un logiciel de traitement efficace.

Ensuite, l’exploitationdes donnéesmulti-capteursmontre qu’il est possible d’améliorer l’estimation
de la température. De plus, des solutions faisant usage de bases de données climatiques en ligne et libres
d’accès sont proposées pour pallier tout manque d’instrument de mesure.

Enfin, une étudede sensibilité des différents paramètres estmenée. Il apparaît alors que l’émissivité,
propriété radiative propre à tout matériaux, est un facteur prépondérant dans l’estimation de la tem-
pérature ; nonobstant l’usage de données multi-capteurs. Par conséquent, des méthodes d’estimation
conjointe d’émissivité et de température sont proposées dans la suite.

Simulateur multi-spectral de scènes 3D

Dans un second temps et dans l’optique d’évaluer les méthodes d’estimation conjointe d’émissivité
et de température, un simulateur de scènes 3D complexes dans l’infrarouge a été étudié et développé.
Suite à une étude bibliographique, la méthode des radiosités progressives est sélectionnée pour son
approche par éléments finis. Cet algorithme a été implémenté en utilisant l’accélérationmatérielle des
machines ainsi que les dernières bibliothèques graphiques. Une approche GPGPU permet une paral-
lélisation des calculs pour un rendu accéléré des radiosités.

L’importation de scènes 3D issues d’outils de CAO (Conception assistée par ordinateurs) ainsi que
la visualisation et le rendu sont faits en temps réel via une interface graphique. L’intégration d’un
interpréteur Python au sein du logiciel le rend programmable par l’utilisateur. Ainsi, des scripts Python



peuvent être utilisés pour interagir avec la scène 3D et le moteur de rendu. Des scènes statiques ou
dynamiques peuvent alors être générées.

Deplus, l’intégrationd’unmodèle de rayonnement solaire spectral et de transmission atmosphérique
permet une simulation accrue de scènes in-situ. De même, l’introduction d’un premier modèle de
caméra infrarouge équipéed’undétecteur quantiquedont les performancesmétrologiques sont paramé-
trables permet d’optimiser de nouvelles solutions d’instrumentations pour des essais in-situ.

Figure 2: Exemple de rendu dynamique avec des boogies de trains, sur deux bandes spectrales dif-
férentes. Les données simulées sont comparées à des données terrain.

Méthodes d’estimation conjointe d’émissivité et de température

Enfin, quatreméthodes d’estimation conjointe d’émissivité et de température sont comparées, dont
trois nouvelles. Un cas d’étude est réalisé à l’aide du simulateur précédemment introduit dans le but de
tester ces méthodes. Ce cas d’étude est constitué d’une cible composée de quatre matériaux différents
dont les propriétés radiatives sont connues. Les matériaux sont supposés être des couches minces,
contrôlées en température. À l’aide d’une commande en température provenant de mesures in-situ
au sol sur deux jours, des images sont simulées. Un parangonnage des différentes méthodes est alors
réalisé.

Le premier algorithme, inspiré de la littérature, se base sur uneméthodedeMonte-Carlo par chaînes
de Markov. Par inférence statistique d’a priori sur les distributions d’émissivité et de température,
l’estimation simultanée d’émissivité et de température est réalisée pixel par pixel à chaque instant de
la mesure. Les résultats ainsi obtenus sont satisfaisants et permettent de remonter aux valeurs d’essai.
Cependant, malgré ces résultats encourageants, le temps de calcul est important. Des améliorations de
cette technique sont possibles en utilisant une parallélisation voire une méthode MCMC d’ensemble.



(a) Méthode MCMC: estimation de l’émissivité, ici
avec un profile correspondant à l’or.

(b) Méthode MCMC: histogramme permettant
d’obtenir l’estimé en température.

Figure 3: Exemple de résultat pour laméthodeMCMCpour un pixel à un temps donné. (a) Estimation de
l’émissivité. La valeur attendue (continue) est comparée à la valeur estimée (par bande). (b) Estimation
de la température. La valeur attendue est représentée en pointillés.

La seconde méthode s’appuie sur un filtre de Kalman en interaction. Ce filtre permet de suivre
l’évolution temporelle de la température via unfiltre de Kalman ainsi qu’une estimation des paramètres
du modèle grâce à un filtre particulaire. La méthode montre de bons résultats sur le cas d’étude mais
repose cependant sur une hypothèse de bandes spectrales fines, dont le cas d’application se limite à
des données hyper-spectrales et non multi-spectrales.

Figure 4: Exemple de résultat pour la méthode CMA-ES. Une erreur relativement faible sur une valeur
faible d’émissivité peut induire une erreur importante dans l’estimation de la température

Ensuite, la métaheuristique d’optimisation CMA-ES (covariance matrix adaptation evolution strategy) a
été appliquée au problème en utilisant l’hypothèse de surfaces homogènes localement. En supposant
que des pixels adjacents ont la même température à l’équilibre thermodynamique local, il devient pos-



sible de résoudre le système d’équations et d’estimer ainsi l’émissivité et la température. À nouveau, les
résultats sont satisfaisants et l’application de laméthode est aisée. Cependant, comme pour laméthode
MCMC, le temps d’exécution est important. Bien qu’une parallélisation soit possible, une application à
des données multi-spectrales long-terme avec déploiement in-situ entièrement basé sur cette méthode
semble difficile.

Afin de pallier ces précédentes limitations, une dernière méthode reposant sur un filtre de Kalman
en interaction krigé (KIKF) est proposé. Cette méthode combine la précédente méthode du filtre de
Kalman en intéraction avec uneméthode deKrigeage dans le but d’inférer unmodèle de covariance spa-
tiale à l’émissivité. L’hypothèse de température homogène locale est aussi considérée. L’ensemble des
solutions possibles est alors réduit permettant de résoudre le problème en mono-spectral. L’avantage
de cette méthode est sa capacité à suivre l’évolution des paramètres et de la température en même
temps. Ainsi, lorsque le krigeage dégénère, il est possible de remarquer une modification des pro-
priétés spatiales. De plus, par comparaison aux précédentes métaheuristiques, l’exécution est réalisée
en un temps raisonnable qui est potentiellement parallélisable (moins d’une minute d’exécution entre
deux mesures sans parallélisation).

Figure 5: Estimé final après traitement de l’ensemble desmesures sur une bande spectrale avec laméth-
ode KIKF, pour deux jours de mesures simulées.



Figure 6: Température estimée sur un pixel avec la méthode KIKF: evolution de la température au cours
du temps. Comparaison avec la valeur attendue.

Conclusions et perspectives

Les travaux effectués dans cette thèse mettent en perspective l’utilisation de la thermographie in-
frarouge pour la surveillance de structures comme outil quantitatif. Une étude bibliographique a per-
mis de mettre en avant trois moyens d’améliorer la précision de la mesure de la température.

Premièrement, l’exploitation de données issues de multiples capteurs permet de corriger les effets
environnementaux et d’améliorer ainsi l’estimation de la température. Lorsque les données locales ne
sont pas disponibles, des solutions en ligne et libres d’accès sont proposées.

Ensuite, le développement d’un simulateur d’échanges radiatifs diffus sur des scènes 3D complexes
permet d’optimiser de nouvelles solutions d’instrumentation et ce, en amont de toute exploitation.
Ce simulateur peut être amélioré pour intégrer d’autres phénomènes physiques tels que la diffusion
ou la convection, ainsi que des environnements participatifs. De plus amples modèles de caméras et
détecteurs peuvent aussi être ajoutés.

Enfin, un ensemble de méthodes utilisant l’inférence statistique a été proposé. Chacune de ces
méthodes s’appuie sur un ensemble d’hypothèses et des méthodes de résolutions différentes. Si les
méthodes MCMC et CMA-ES offrent de bons résultats, leur temps d’exécution reste long et un suivi dy-
namique des paramètres n’est pour l’instant pas possible. A contrario, la méthode KIKF offre une résolu-
tion en un temps relativement faible. Des travaux complémentaires, notamment sur l’optimisation des
paramètres intrinsèques au filtre pourraient être conduits. De plus, d’autres approches d’optimisation
pourraient être étudiée en vue d’améliorer la convergence du filtre.

Dans tous les cas, les méthodes proposées offrent un résultat prometteur. En effet, une quantifica-
tion de la mesure de la température par thermographie infrarouge est réalisée grâce à une estimation
de l’incertitude, inhérente à ces méthodes statistiques.
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Subscript

·a Aerosol related

·atm Atmospheric contribution

·env Environmental contribution

·g Mixed gas related (mainly O2 and CO2)

·λ Spectral quantity (wavelength dependent) µm

·∆̄λi
Defined on the median of the spectral band

·∆λi
Defined on a given spectral band (

∫ λi+∆λ/2
λi−∆λ/2 (·) dλ)

·land Land surface contribution

·n Nitrogen dioxide related

·o Ozone related

·obj Object contribution

·opt Optical contribution

·R Rayleigh scattering related

·sun Solar contribution

·tot Total contribution

·w Water vapor related

·pc Pixel p and channel c

Superscript

·◦ Black-body related quantity

·(i,j) Defined for a given pixel (i, j)

·↑ Up-welling quantity

·↓ Down-welling quantity

Constants

C1 First radiation constant (= 2hc2) 3.741 771 790 075 259× 10−16 J ·m2 · s−1
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Nomenclature

C2 Second radiation constant (= hc
kB
) 1.438 777 353 827 7× 10−2 m ·K

kB Boltzmann constant 1.380 649× 10−23 J ·K−1

Greek letters

α Absorption coefficient

δ Declination angle

ϵ Emissivity

γs Azimuth angle

λ Wavelength µm

ν Electromagnetic wave frequency of a given photon Hz

Ω Solid angle sr

Φ Radiant flux W

ϕ Flux emitted W

φ Latitude

ρ Reflection coefficient

σ Stefan-Boltzmann constant 5.670 374× 10−8 W ·m−2 ·K−4

τ Transmission coefficient

θz Zenith angle

Σv Covariance matrix of process noise

Σw Covariance matrix of measurement noise

Other Variables

(cx, cy) Principle points

Ak State matrix

Bk Control matrix

Ck Observation matrix

Dk Feedthrough matrix

Kk Kalman gain

uk Control vector

xk State vector
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yk Output vector

a Aspect ratio

B Thermal calibration constant 2

c Speed of light in vacuum 299 792 458 m · s−1

E Irradiance W ·m−2

e Photon energy J

h Planck constant 6.626 070 15× 10−34 J · s

I Radiant intensity W · sr−1

Ĩ Directional emissive power W · sr−1

J Radiosity W ·m−2

L Radiance W ·m−2 · sr−1

l Longitude

M Radiant exitance W ·m−2

MT Transformation matrix

n nth day of the year

Q Radiant energy J

R Thermal calibration constant 1

s Skew

T Temperature K

F Thermal calibration constant 3

f Focal length

Fi→j Form factor (or view factor) from element i to element j
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Chapter 1

Introduction

I nfrared thermography is a non-contact and full-field measurement technique used in numerous
infrastructure diagnosis applications thanks to its non-invasive nature and large scale implemen-
tation potential. In the context of energy savings, the thermal characterization of buildings en-

velopes plays an essential role. Determining the thermal properties of a structure helps at refining and
integrating various phenomena in diagnostics tools in order to measure its thermal efficiency but also
its aging. Obtaining refined data on large infrastructures makes it possible to optimize repair costs,
and thus save both energy and economic expenses. The latest improvements on uncooled infrared (IR)
cameras have brought new opportunities for inexpensive thermal diagnostics in the Civil Engineering’s
field. Although the technological maturity is ready, the methods to retrieve an accurate temperature
measurement or at least with a known uncertainty are missing. In fact, the radiative flux that arrives
at the camera’s sensors is not directly related to the observed target temperature. Instead, this flux
depends on a combination of many parameters that varies with the 3D geometry of the scene, the me-
teorological conditions, the self radiative properties of the objects, etc. In such context, the estimation
of the temperature from those measurements is not trivial. If some parameters can be estimated from
other local or onlinemeasurements, themost influential radiative quantity that will affect the temper-
ature estimation is locally difficult to evaluate. This quantity is called the emissivity and depends on
the object’s own characteristics (material, roughness), but also the angle of view and the temperature.
As a consequence, in-situ infrared thermography for the thermal inspection of infrastructures ismainly
used as a qualitative tool.

The work done in this thesis aims at providing methods to estimate simultaneously the emissiv-
ity and the temperature during long-term and in-situmulti-spectral infrared thermography measure-
ments. One of the advantage of in-situ measurements is the presence of the sun as a natural heating
source to excite the observed surfaces. Those various conditions coupled with long-term monitoring
and multi-spectral measurements provide a set of data from which the emissivity and temperature
can be extracted under some assumptions and statistical priors. Even more, a confidence interval is
deducted to make the infrared thermography usable as a quantitative tool. In order to develop such
method, the equations that govern the radiative heat transfer are introduced and presented in Chap-
ter 2. The radiative phenomenon is complex and the equations are written at different observations
scales to understand fully the assumptions used in the final model equation. In particular, it is shown
that even if multi-spectral data brings more information to the system it is still insufficient to estimate
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Chapter 1 – Introduction

simultaneously the temperature and the emissivity.
A bibliographical review on the IR measurement process and radiative balance, the numerical sim-

ulation of 3D thermal infrared scenes and the simultaneous estimation of emissivity and tempera-
ture through multi-spectral infrared thermal measurements has been conducted. This bibliographical
study, presented in Chapter 3, highlights three ways to improve the temperature estimation accuracy.

The first way is to correct the environmental effects and exploit in-situ complementary environ-
mental measurements. In Chapter 4, a description of how coupled environmental data measurements
can improve the estimation result is presented. Moreover, when localmeasurements frommulti-sensor
acquisitions are not available, it is shown that open-data available online can also be exploited.

Then, in order to optimize new instrumentation solutions for in-situ studies and test developed
emissivity and temperature estimation methods, a 3D simulation software tool has been developed
and studied. This software, presented in Chapter 5 is implemented on graphic hardware to reduce
the computational time. It enables the numerical simulation of the radiative diffuses exchanges of 3D
complex scenes. Thanks to an atmospheric spectral solar irradiance model and sun modelization, in-
situ dynamic scenes can be simulated. Furthermore, the acquisition chain of the irradiance received at
the camera sensor is also modeled and complete the measurement process simulation.

Developed mathematical models for the simultaneous estimation of the temperature and emissiv-
ity are presented in Chapter 6. Two methods from the literature have been implemented and three
new methods are then proposed. The first one is an interacting Kalman filter which is the combina-
tion of a particle filter on a Kalman filter. While the Kalman filter tracks the temperature evolution
through time, the particle filter estimates the model’s parameters. However, satisfying results are ob-
tained only for small spectral bandwidth, which is suitable for hyper-spectral applications only. The
second one is based on the covariance matrix adaptation evolution strategy (CMA-ES) meta-heuristic
optimization algorithm. By assuming that on a given pixel’s neighborhood the temperature is homo-
geneous, the equation system can be solved on a single-band image, at every moment. However, this
robust method induces important computational costs. To overcome those previous issues, a combi-
nation of an interacting Kalman filter with a spatial approximation is proposed. By using a priori on
the spatial distribution of the emissivity through Kriging, a single-band or multi-band emissivity and
temperature estimation method that tracks the parameters through time is proposed. Those methods
are applied to a study case, obtained by the previous introduced simulation tool and compared.

Finally, conclusions and perspectives on in-situ infrared thermography for themonitoring of infras-
tructures as well as obtained results are proposed and discussed.
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Chapter 2

Context and problem positioning

P roposedmethods in this thesis aim at making the temperature measurement of infrared ther-
mal structure monitoring more accurate, or at least with a quantifiable error. This can only be
achieved by identifying the surface properties of the observed object and in particular its emis-

sivity, as exposed in this chapter. After introducing the concepts of the radiative transfer theory, the
main equations to describe radiative exchanges in this thesis will be derived. Then, the main scientific
challenges for in-situ infrared thermal monitoring are presented as well as the technological context
on which this thesis is part of.

2.1 Structural Health Monitoring (SHM)

Structural health monitoring aims at detecting and characterizing damages on engineering struc-
tures. It has become a major public concern due to aging infrastructures and their intensive use [113].
A damage can be any change in the geometry or the material’s properties of the infrastructure system
thatmay affect its performance. The system is observed over time thanks to various sensors. This gath-
ered information is then exploited to prevent catastrophic events, save maintenance costs but also for
prognostic. Therefore, SHM relies onmultiple pillars (see Fig. 2.1). The first one concerns the diagnosis
of the infrastructure through the observed physical phenomenon, which can be seen as an extension
of Non Destructive Evaluation (NDE) [13]. The second one is the monitoring system in itself and all the
parameters that defines it: sensors technology, acquisition architecture, data processing, communica-
tion, etc. Therefore, SHM needs to consider the monitoring as a whole sub-system inside the structure:
embedded and connectedmonitoring system integration, communication layers, power and even real-
time data processing ability. All those elements need to reconsider the design and management of the
structure to make it "smarter". Such complete systems have been studied for the monitoring of road
transport infrastructures for example in [95], [176] or [49]. In those SHM applications, the monitoring
is long-term, which needs to have a fully autonomous acquisition systems. Those systems are therefore
critical for themonitoring andneed to be scalable to any specific application. This implies to handle the
various sensors [50], the amount of data to store, send [108] and process [63, 62]. One concern about
most civil engineering structures is their subject to environmental parameters due to their outdoor
characteristic.

The thermal monitoring of infrastructure is an interesting component of SHM. In fact, outdoor
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Figure 2.1: Main steps of structural health monitoring process

structures are subject to environmental parameters and more particularly to the solar flux, a natu-
ral heating excitation source for the system [105]. Thermo-physical properties of the structure can
therefore been followed through time. In this thesis, emphasis is given to themonitoring of infrastruc-
tures through infrared cameras. In fact, infrared thermography cameras have experienced significant
technological development over the last decade. Uncooled cameras with good resolution, relatively
inexpensive and even multi-spectral are now possible [193]. Infrared thermography offers an interest-
ing solution to monitor structure’s thermal evolution through time. First, infrared cameras provide a
non-contact and non-destructive technique which simplifies the setting up on field. Then, infrared
thermography offers a multi-point measurement with a large field of view, suitable for large scale
structures [36]. However, in-situ infrared measurements are often used as qualitative data only [80].
In fact, the measured flux that arrives at the sensor depends on the surrounding and meteorological
environment (see Section 2.4.1 and Chapter 4). As a consequence, complementary data measurements
are needed to estimate the temperature of the observed object. The objective of this thesis is to use
this multiple sensors configuration and propose a method to estimate the temperature with a known
uncertainty. The sensitivity of the measurement model to its different parameters will be studied on
actual measurements.

Some elements of the thermal radiative transfers theory are given in the following section. This
theoretical background will be used to derive the equations that govern the main phenomena that
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occur during infrared thermography.

2.2 Thermal radiative transfers

Radiation transfer is one of the three means for thermal energy to be transferred with conduction
and convection. The diffusion represents the transfer of heat via molecular interactions whereas radi-
ation represents the transfer of heat via photons/electromagnetic waves. The radiative transfer theory
(RT) aims at studying the absorption, emission and scattering of electromagnetic radiation as it passes
through a medium. Such interactions can be described mathematically by the equation of radiative
transfer. RT is involved in a wide variety of fields, including remote sensing, atmospheric science, as-
trophysics, optics etc. The purpose of this section is to provide themain principles of the RT theory and
to introduce its concepts through the equations. Those definitions and a more detailed description of
RT theory can be found in standard textbooks [93, 26, 53]

2.2.1 Radiative transfer theory

For the purposes of this study, radiation is viewed as the transport of energy in electromagnetic
waves. All substances continuously emit electromagnetic radiation due to the different interactions
and motions of the molecules and atoms they are made. The term thermal radiation is reserved for the
visible and infrared portion of the spectrum since the related radiation should be detected by either
heat or light [23]. The infrared part of the electromagnetic spectrum is given in Fig. 2.2.

Figure 2.2: Focus on the IR part of the electromagnetic spectrum. Common spectral bands of IR are
shown: Near-infrared (NIR: 0.75 − 1.4µm); Short-wavelength infrared (SWIR 1.4 − 3µm); Mid-wavelength
infrared (MWIR 3−8µm); Long-wavelength infrared (LWIR 8−15µm); Far infrared (FIR 15−1000µm). The
atmospheric transmission is also represented.

In addition to emitting their own radiation, the radiation can be scattered, absorbed, reflected and
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transmitted (also, those effects can affect the frequency of the radiation beam). All those different in-
teractions make the thermal radiation a complex phenomenon. Absorption and scattering effects can
be studied on their own: the size of the particle relative to the wavelength of the radiation, the index
of refraction (complex) of the material and also the shape of the particle will have an impact on the
scattered proportion of the incident radiation. All of this leads to the study of different parameters
such as the particle’s phase function, the scatter cross section and the absorption cross section. The pur-
pose of this study is not to go too deeply in the description of all the physical effects that occur since
it will make the approach too complicated. However, it is still important to know that other physical
phenomena exist at lower scales that cannot be taken into account in the presented models. For more
readings on this subject, see [182] and [21]. Two approaches can be used for describing the radiation
theory: the classical electromagnetic theory and quantum mechanics. Whereas quantum mechanics
will take into account the microscopic interactions of the radiation with matter, the classical theory
such as Maxwell’s equations will only derive themacroscopic behavior. As explained before, we cannot
go too deeply onto lower scales since the mathematical complexity of the approach will increase and
become unusable for practical study cases. Therefore, a combination of the two approaches is generally
used in the litterature. For example, the spectral intensity is derived from the photon model whereas
the absorption, transmission and emissivities are considered from a more classical approach as con-
stant of proportionnality in the equations. This is why most of the time those parameters are derived
from experimental studies even though they could be developed by the quantum mechanics through
Einstein’s transition probability coefficients. In such context, the main physical quantities involved
into the RT theory and mainly described in [93] will be presented. Then, based on those definitions,
the different radiative transfer equations will be derived.

2.2.2 Basic radiation properties

Let first start by giving some definitions on temperature. One can define temperature differently
[16]:

• Thermodynamic temperature: T is defined according to the second principle of thermodynamics,
for amedium in thermal equilibrium,which canbemeasureddirectly by a thermometer. For non-
isothermal bodies, the temperature T (x, y, z) is defined as the temperature of an elementary
isothermal volume at the location (x, y, z). The surface temperature is then defined by the limit
of T (x, y, 0) with a width approaching zero.

• Radiometric temperature: This time, the temperature is defined from the radianceLλ emitted by a
surface and defined later on in this chapter. The radiance Lλ measured by a radiometer may be
written with appropriate approximations and the temperature retrieved from those equations.

It is important to note that the surface temperature is well-defined for homogeneousmaterials at ther-
mal equilibrium. However, it becomes much more complicated when considering non isothermal and
heterogeneousmaterials. Most of the time in this thesis, thematerials will be considered homogeneous
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and that thermal equilibrium is reached.
Radiation can be viewed as the transport of energy by discrete photons for which the relationship

between its energy and frequency ν (or wavelength λ = c/ν) is given by Planck’s relation:

ϵ = hν = hc

λ
(2.1)

where h is Planck’s constant and c the speed of light in vacuum. Eq. (2.1) shows an interesting fact:
the energy of the radiation is inversely proportional to the radiation wavelength. This property can
be easily observed by looking at the change of a burning flame as it goes hotter. Hotter temperatures
mean higher energy which leads to a shift in frequency and therefore, in its color. In the XIXth century,
the Stefan-Boltzmann law was established, deriving the maximum emission value for a given surface
at a given temperature.

Definition 2.2.1 (Stefan-Boltzmann Law). We can describe the power radiated from the black-body in
terms of its temperature:

M◦(T ) = σT 4 (2.2)

This relation describes the power radiated from a black body surface (denoted with the superscript
◦) which depends only on the temperature of the surface and is expressed in W/m2. All real surfaces
will emit radiation at a rate smaller thanM◦ which represents an ideal surface called black body (more
details on black body and real surfaces radiation will be given in the next section). Then, at the be-
ginning of the XXth century, Planck showed that the radiative energy emitted by a black body could be
expressed over the spectrum a relation now called the Planck’s law.

Definition 2.2.2 (Planck’s law). Planck’s law describes the radiative energy emitted by a black body to
its temperature (T ) over the spectrum through the Planck’s function denoted L◦

λ(T ). An increase of
temperature will lead to an increase of the emitted frequency.

L◦
λ(T ) = 2hc2

λ5
1

e
hc

λkBT − 1
(2.3)

Two constants are often used to simplify the writing of Planck’s law C1 = 2hc2 and C2 = hc
kB
:

L◦
λ(T ) = C1

e
C2
λT − 1

(2.4)

By integrating Planck’s Law over the spectrum, the Stefan-Boltzmann law is found:∫ ∞

0
L◦

λ(T )dλ = σT 4 (2.5)

Fig. 2.3 shows the Planck’s law as a function of wavelength, for different temperatures values. The
maximum of this distribution is shifted as the temperature changes. This is known as the displacement
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Figure 2.3: Planck’s law as a function of wavelength at different temperature values

law of Wien: the wavelength that maximizes the emission relies on the temperature but the product
λmax(T )T ≈ 2.898 × 10−3mK remains constant. Such property explains why an incandescent bulb
filament emits in the red at about 700◦C and becomes white and then blue for higher temperatures.

At the same time, two other relations linking the radiative energy emitted by a black body were
found the Rayleigh-Jeans formula and the Wien’s approximation law. Both of those formulae can be
retrieved by Planck’s law and may be used for particular applications as an approximation of Planck’s
law.

Definition 2.2.3 (Rayleigh-Jeans formula). Byexpanding the exponential of the denominator of Eq. (2.21)
in a series:

e
hc

λkT =
∞∑

n=0

( hc
λkT )n

n!
, ∀ hc

λkT
> 0 (always the case) (2.6)

For λT >> hc
k , we can approximate the denominator by using the development until n = 1which

gives:

L◦
λ(T ) = 2ckT

λ4 (2.7)

Definition 2.2.4 (Wien’s approximation law). This was the model originaly proposed by Wien to de-
scribe the complete spectrum of thermal radiation until Planck’s one.
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Wien’s approximation can now be derived from Planck’s law when hν ≫ kT :

L◦
λ(T ) = 2hc2

λ5
1

e
hc

λkBT − 1
≈ 2hc2

λ5 e
−hc

λkBT (2.8)

The temperature of a black body can therefore be deducted from Planck’s law:

T = C2

ln
(

(C1+λ5M◦
λ

)λ

(λ5M◦
λ

)λ

) (2.9)

Figure 2.4: Temperature as a function of exitance at different wavelengths.

Fig. 2.4 shows the temperature value as a function of radiant exitance, for different wavelength
values. This figure shows twomain trends regarding the temperature and exitance dependence. In the
MWIR-LWIR bands, highest energy levels correspond to a more important increase of the temperature
than in the NIR-SWIR bands.

In the next section, the main quantities of the radiative transfer theory will be defined in order to
derive - at the end - the radiative transfer equations and get a better understanding of this physical
phenomenon.
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Wien’s approximation is often used to approximate Planck’s law and partic-
ularly to linearize the equation system as shown on the emissivity - tem-
perature section. This approximation can be justified in common civil en-
gineering applications: since hc

k = 14388µm ·K, in the LWIR band (λ ∈
[8µm; 14µm]), we must have 959.2 >> T .

Note

2.2.3 Radiative transfer quantities definitions

Radiative transfer represents exchanges between surfaces and insidemedium. Due to the complex-
ity of the phenomenon it is important to keep in mind that the radiative transfer deals with waves that
propagate among surfaces and through a medium. Therefore, the surfaces particularities and the ge-
ometry between the surfaces will have an effect on this heat transfer. To describe those exchanges, it
is necessary to remind the solid angle definition.

Definition 2.2.5 (Solid angle). The solid angle is an equivalent of theplanar angle but in three-dimensional
space. It represents a part of 3D space delimited by a cone (the vertex of the cone is the vertex of the
solid angle). It is a measure of the field of view from a particle point that an object covers and therefore
used in radiometry to determine the exchanges between two bodies. The solid angle is defined as the
ratio of its base area to the square of chord length. Its dimension is the steradian sr:

dΩ = A

r2 (2.10)

The solid angle can also be defined on an unit hemisphere, which will be used later on (see Fig. 2.5):

dΩ = rdθr sin(θ)dΦ
r2 = sin θdθdΦ (2.11)

In radiometry, the quantities are defined for a given solid angle, to represent the beam direction.
However, for approximation and simplicity needs or sometimes due to uniformity, the quantities may
be referred to as hemispherical. In that case, it means that the quantity is integrated on the unit hemi-
sphere over the surface. Hemispherical properties get rid of the angle component and propose a more
global representation of the quantity, as an average over the surface.

Definition 2.2.6 (Radiance). The analysis of radiation field deals with the analysis of the amount of
energy dQλ(x, Ω, t) that is transported across an element of area dA [26]. The radiation will then be
highly dependent on the spatial geometry and the location of this area element. Let D ⊂ Rd (d ∈
{2, 3}) and A be the unit sphere of Rd. This energy is defined by unit of projected surface, dA cos(θ)
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Figure 2.5: Solid angle on hemisphere. Note that the solid angle is not necessary a circular cone

to be located at x in time dt, in the solid angle dΩ about the direction n⃗ in the wavelength interval
[λ; λ + dλ]:

dQλ(x, Ω, t) = Lλ(x, Ω, t) cos θdλdAdΩdt (2.12)

where θ is the angle which the direction consideredmakes the outward normal to dn⃗. The quantity
Lλ(x, Ω, t) is called spectral radiance (W · sr−1 ·m−2 · µm−1)We have to note the fact thatLλ(x, Ω, t)
depends on seven variables in total:

• 3 variables giving the position in space x,
• 2 variables giving the direction of the radiationΩ, in which we use the inclination angle θ and the
azimuth angle φ,
• The time variable t,
• The wavelength λ or sometimes the energy hν or the frequency ν = c

λ .

This dimensionality makes the solving of the general radiative transfer equation difficult both analyti-
cally and numerically. Moreover, most of the time, the radiation has an impact on the crossedmaterial,
which also has an impact on the incomming radiation. Therefore, the resolution of the problem must
be coupled, iteratively.

For simplification in thewritting, and regarding the amount of dependent variables thatLλ(x, Ω, t)
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depends on, we may abusively write 1:

Lλ ≡ Lλ(x, Ω, t) (2.13)

Definition 2.2.7 (Radiant flux). Radiant flux is the radiant energy emitted, reflected, transmitted or
received, per unit of time (W).

ϕ = ∂Q

∂t
(2.14)

where Q is the radiant energy emitted, reflected, transmitted or received (J). From Eq. (2.1) we can
define the spectral flux in frequency ϕν = ∂ϕ

∂ν and the spectral flux in wavelength ϕλ = ∂ϕ
∂λ

1.

Finally, one can combine Eq. (2.4) and Eq. (2.1) to get the spectral radiance in terms of flux which
represents how much of the power is emitted, reflected, transmitted or received by a surface when an
optical system is looking at the surface from a specified angle of view as unit.

Lλ = ∂2ϕλ

cos(θ)∂Ω∂A
(2.15)

where:

• ϕλ is the radiant spectral flux (emitted, reflected, transmitted or received),
• Ω is the solid angle,
• ∂A cos(θ) is the projected surface.

Definition 2.2.8 (Irradiance). The irradiance denoted E is defined as the local value of the ratio of
the flux ϕr received by an object and the area of this object. It is the power received per unit area
(W ·m−2):

E = ∂ϕr

∂A
(2.16)

Definition 2.2.9 (Exitance). The radiant exitance denotedM is defined as the local value of the ratio
of the flux ϕe emitted by an object and the area of this object. It is the power emitted per unit area
(W ·m−2):

M = ∂ϕe

∂A
(2.17)

Definition 2.2.10 (Radiosity). The radiosity of a surface denoted J is the radiant flux leaving (emitted,
reflected and transmitted by) a surface per unit area. It is the power left per unit area (W ·m−2).
Therefore:

J = ∂ϕ

∂A
= M + Jreflected + Jtransmitted (2.18)

When the surface is opaque, Jtransmitted = 0 =⇒ J = M + Jreflected.

1The same notations are applied to the other quantities.
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Definition 2.2.11 (Radiant intensity). The radiant intensity is the ratio of the flux ϕe emitted per unit
solid angle dΩ:

I = ∂ϕe

∂Ω
(2.19)

As explained in [93], the intensity of radiation from a black-body is defined on the basis of the nor-
mal area. It means that I is independent of the direction of emission, by definition which enables the
description of a black-body intensity without defining the normal of the surface or the angles (θ, Φ).

Definition 2.2.12 (Directional emissive power). The radiant intensity is defined by its normal which
means that themaximumenergy emitted by a surface is reached if the surface is normal to the receiver.
When there is an angle between the two surfaces, then the energy reaching the receiver is not the
radiant intensity anymore. By assuming that the emission is uniform in all directions, the directional
spectral emissive power for a black surface can be derived:

Ĩ(θ, Φ) = I cos(θ) = Ĩ(θ) (2.20)

where Ĩ stands for the directional emissive power. This equations is valid for Lambertian surfaceswhich
represent a perfect diffusion: the brightness of the surface appears the same no matter the observer’s
angle of view (Fig. 2.6). The emission is therefore isotropic and the intensity follows Eq. (2.20) called
Lambert’s cosine law.

Figure 2.6: Emission rate in a normal direction and off direction with the Lambert’s cosine law on the
right.

Based on this law, one can integrate the emission of a black-body through a unit hemisphere over
the surface. The spectral emission from an infinitesimal area dA per unit of time and unit surface area
passing through the element on the hemisphere is given by:

Ĩλ cos(θ)dΩdλ = Ĩλ cos θ sin θdθdΦdλ (2.21)
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By integrating over the hemisphere and using Eq. (2.20)

Ĩλdλ = Iλdλ

∫ 2π

Φ=0

∫ π
2

θ=0
cos θ sin θdθdΦ = πIλdλ (2.22)

The black-body hemispherical emissive power is therefore π times the black-body intensity.

We also have the equivalent in luminance. For a flux leaving the surface in an isotropic way:

Mλ = πLλ (2.23)

Definition 2.2.13 (Bouguer’s law). Finally, Bouguer’s law defines the relation between the irradianceE

of a receiving surface, due to a source S and the intensity of that source in the direction of the receiver
lying at a distance d. In the case of a nonparticipating media.

E = I cos(θ)
d2 (2.24)

The Lambert’s cosine law can be recognized in this expression as well as the inverse square law.

Now that the main quantities that describe the radiation theory have been introduced, the next
section aims at developing the principles behind the actual phenomena that occur at a given surface.

2.2.4 Surface properties

Until now, the black body has been said to be a body that emits the maximum of energy for a given
temperature. To be more accurate, a black body is an idealized physical body that absorbs all incident
electromagnetic radiation, regardless of the frequency or the angle of incidence [144]. At the oppo-
site of a black body, a white body will reflect all incident rays uniformly and entirely in all directions.
Whereas black body represents an idealized object, real materials are considered to emit energy at a
fraction of a black body energy levels. The ratio that links the twomaterials is called emissivity (ϵ, more
rigorously defined later on). Finally, surfaces that have their properties independent of wavelength are
called grey surfaces. When dealing with real radiating materials, multiple interactions at interfaces
may occur and are schematized in Fig. 2.7. The emission has been defined previously for a black body,
as well as the incident radiation. However, the reflectivity, absorption and transmission have not been
mentioned yet and are addressed in this section.

To understand well the complexity of those phenomena, it is necessary to view those quantities
as local properties of the material. As for the previous quantities, they will depend on the solid angle,
the wavelength and the temperature but also on the intrinsic characteristics of the surface’s material.
Wood and metal will not absorb or reflect the same way; as well as polished iron will not have the
same properties as unpolished one. From a practical point of view, giving values to those quantities
is difficult. In fact, when the reflection or the absorption of a given material is given in the literature
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2.2. Thermal radiative transfers

(usually the hemispherical one), it cannot take into account the local roughness of the material or its
detailed atomic composition. However, some analytic results exist for specific materials, in particular
for dielectric ones. Determining the material’s properties represents a field on its own.

Figure 2.7: Interactions that occur at the interface of an object

Definition 2.2.14 (Reflectivity and transmissivity). The reflectivity represents the effectiveness of a
surface of a material in reflecting incoming radiant energy. If the specular reflectance can be known
for particular materials such as dielectric ones, derived from the electromagnetic theory, analytical
formulations are most of the time unknowns for other materials. The reflectivity can be defined as a
bidirectional function and denoted by ρλ(θ1, ϕ1, θ2, ϕ2). In that case, it means that the reflected beam
depends on the incoming beam solid angle.

The directional hemispherical spectral reflectivity can be derived from this definition:

ρλ(θ, ϕ) = d2Qλ, r(θ, ϕ)
d2Qλ, i(θ, ϕ)

=
∫

ρλ(θr, ϕr, θ, ϕ) cos(θr)dΩ (2.25)

Similarly, the transmissivity can be defined as a bidirectional spectra quantity τλ(θ1, ϕ1, θ2, ϕ2).
For an opaque material, τλ(θ1, ϕ1, θ2, ϕ2) = 0.

Definition 2.2.15 (Emissivity). The emissivity represents the effectiveness of a surface of a material
in emitting energy as thermal radiation. Based on the Planck’s law and as explained previously, the
directional spectral emissivity ϵλ(θ, ϕ, T ) can be defined mathematically as the ratio of the radiance
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Lλ(T ) emitted by a body at temperature T to the radiance L◦
λ(T ) emitted by a black body at the same

temperature T :

ϵλ(θ, ϕ, T ) = Lλ(T )
L◦

λ(T )
(2.26)

Definition 2.2.16 (Absorptivity). The absorptivity represents the part of the incoming energy that is
absorbed by the material. It is denoted as αλ(θ, ϕ, T ) and is strongly related to absorbing surface’s
temperature property. If the incident surrounding of the surface is a black body at temperature T ◦ and
the total absorbed energy isQλ,a(θ, ϕ, T ), the absorptivity can be written as:

αλ(θ, ϕ, T ) = d2Qλ,a(θ, ϕ, T )dλ

I◦
λ(T ◦)dA cos(θ)dΩdλ

(2.27)

Definition 2.2.17 (Kirchhoff’s law). Kirchhoff’s law links the absorptivity and the emissivity capacities
of a given body. It actually depends on which of the spectral, directional or hemispherical quantities
are considered. A general statement is that at thermal equilibrium, for a given body in a radiative
enclosure, the body needs to return the same amount of energy its has absorbed to the enclosure in
order to keep the thermal equilibrium.

By using the definition of the emissivity, the energy emitted per unit time by an element dA in a
wavelength interval dλ and solid angle dΩ is

d2Qλ,e(θ, ϕ, T )dλ = ϵλ(θ, ϕ, T )I◦
λ(T )dA cos(θ)dΩdλ (2.28)

To ensure thermal equilibrium and isotropy within the black enclosure:

d2Qλ,e(θ, ϕ, T )dλ = d2Qλ,a(θ, ϕ, T )dλ (2.29)

which leads by using the definition of emissivity and absorptivity to:

αλ(θ, ϕ, T ) = ϵλ(θ, ϕ, T ) (2.30)

Please note that when considering the polarization of the radiation, this equality holds only for the
components that have the same polarization.

For an opaque material, we can write the directional spectral emissivity and
reflectivitiy ϵλ(θ, ϕ, T ) = 1− ρλ(θ, ϕ, T ).

Note

The emissivity is one of the most important parameters in the physical process of radiation heat
transfer. The emissivity depends on the view angle, wavelength, temperature and intrinsic character-
istics of the material. Fig. 2.8 shows some examples of different materials’ emissivity profiles.
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2.3. Radiative Transfer Equation (RTE)

Figure 2.8: Spectral emissivity of a series of various materials. (Data from reflectance spectra in ASTER
spectral libraryhttp://speclib.jpl.nasa.gov, Copyright: Jet Propulsion Laboratory, California In-
stitute of Technology, Pasadena, CA; see also Balridge, A.M. et al., Remote Sens. Environ., 113, 711,
2009.). The alumina is from previous studies [130].

Most of the time, the emissivity of a material is given on a particular spectral band and integrated
over the directions (called hemispherical emissivity). The material is then considered optically thick.
As a consequence, emissivity values found in the literature must be taken with care. In fact, the vari-
ation of the emissivity of a surface with the observation’s angle means that surfaces that are not flat
will have a locally varying apparent emissivity, even for a given material. The roughness of a material
will therefore impact the emissivity value, leading to important uncertainties (see Fig. 2.9).

2.3 Radiative Transfer Equation (RTE)

2.3.1 Differential form

The RTE represents what affects a beam radiation as it travels. Three main effects can occur:

• Absorption⇒ Energy is lost
• Emission⇒ Energy is gained
• Scattering⇒ Energy is redistributed

We will see in that section how to consider those different effects and how it affects the final equation.

We can construct the radiative transfer equation by summing the different effects that will affect
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Chapter 2 – Context and problem positioning

Figure 2.9: Effect of the state of the surface on emissivity (from [71])

the radiation [93]:

Change in radiative energy =Gain due to emission− Loss due to absorption

− Loss due to out-scattering+ Gain due to in-scattering
(2.31)

This physical phenomenon can be formulated mathematically through the differential form of the
radiative transfer equation:

1
c

∂Lν

∂t
+ Ω̂.∇Lν = jν − (κν,s + κν,a)Lν + 1

4π

∫
Ω

κν,sLνdΩ (2.32)

where:
• c is the speed of light,
• Lν is the spectral radiance,
• Ω̂ is the propagation direction,
• kν,a is the absorption coefficient,
• kν,s is the scattering coefficient,
• jν is the emission coefficient,
• κν

4π

∫
Ω LνdΩ is the radiation scattered from other directions onto the surface.

Most of the time the term 1
c

∂Lν
∂t is neglected since it would involve fast responsive systems com-

pared to the involved distances. 2 More details on this equation can be found in [93]. Analytical so-
lutions of the RTE exist only under some assumptions and numerical ones based on finite elements

2Fast here means systems for which the variation of Lν in time is comparable to the light of speed. For most of the
systems, we have 1

c
≪ ∂Lν

∂t
which justifies the use of this approximation. However, when the distances become bigger like

in astronomy for example, this approximation should be re-considered.
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2.3. Radiative Transfer Equation (RTE)

models are more often used. In the thermography field, this equation is replaced by a simplified radio-
metric equation, often partially integrated in space that represents the radiative exchanges at a more
macroscopic level, presented in section Section 2.4.1.

2.3.2 Radiative transfer in nonparticipating medium

The previous equation is suited for participating mediums. However, obtaining a solution for such
equation is non trivial especially in 3-dimensions. This equation is often simplified and used for solv-
ing complex systems through finite elements methods by using physical approximations. Eq. (2.32)
describes a change in radiative energy during the propagation of a beam of radiative energy in a par-
ticipating medium. However, for a numerous number of systems, the scattering from a participating
medium can be neglected without introducing any significant error to calculations. When it is the case
and that there is no scattering particles involved, the RTE is reduced to a partial differential equation.

Exchange between two surfaces

Let now consider a simpler case of nonparticipating (i.e. no scattering, no absorption and no emis-
sion) medium. Instead of looking at a single beam propagation phenomenon, let make the balance on
a given surface since the medium is nonparticipating. Let consider two infinitesimal surfaces of area
dA1 and dA2 and separated by a distance r. In this simplified case, the infinitesimal surfaces emit uni-
formly in all directions and reflect the energy received from other surfaces. Properties of emission and
reflections will be more described later on. The energy dQλ,d1 leaving dA1 in direction x1 is given by:

dQλ,d1 = Ĩλ,d1 cos θ1dλdA1dΩ1 (2.33)

The solid angle can be written by:

dΩ1 = cos(θ2)
r2 dA2 (2.34)

where dA2 cos(θ2) is the projection of dA2 on the direction x1. When no absorption is considered in
the medium, the radiative energy reaching dA2 is therefore given by:

dQλ,d1→d2 = Ĩλ,d1

(cos(θ1) cos(θ2)
r2

)
dλdA1dA2 (2.35)

When Eq. (2.32) was integrated on the direction, Eq. (2.34) is now integrated on the area only. For finite
element surface, the integration yields to:

Qλ,1→2 =
∫ ∫

A1,A2
dQλ,d1→d2 =

∫ ∫
A1,A2

Ĩλ,d1
cos(θ1) cos(θ2)

r2 dλdA1dA2 (2.36)
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By considering the previous stated assumptions that the radiation leaving A1 is directionally uni-
form, Ĩλ,d1 = Ĩλ,1 = Iλ,1π and can be taken outside the integral:

Qλ,1→2 = Ĩλ,1

∫ ∫
A1,A2

cos(θ1) cos(θ2)
r2 dλdA1dA2

= Iλ,1

(∫ ∫
A1,A2

cos(θ1) cos(θ2)
πr2 dA1dA2

)
dλ

(2.37)

The term inside the parenthesis is called a form factor (sometimes configuration or view factor) and
represents the geometrical exchanges interaction coefficient between the two surfaces A1 and A2. It
depends only on the geometry of the scene and is denoted F1→2:

Qλ,1→2 = Iλ,1A1F1→2dλ (2.38)

where
A1F1→2 =

∫ ∫
A1,A2

cos(θ1) cos(θ2)
πr2 dA1dA2 (2.39)

Radiosity equation

Let now consider an enclosure S ∈ R3 with a nonparticipating medium inside and opaque surface.
Let x be a parametric point of such enclosure and an infinitesimal surface dA (see Fig. 2.10). Based on
its definition, the radiance at a given point x of the enclosure and given time can be derived as:

Lλ,leaving(x, Ω) = Lλ,emitted(x, Ω) + Lλ,reflected(x, Ω) (2.40)

The reflected termLλ,reflected(x) is the radiation part that is received at x (by all the other radiated
parts) and reflected by x. Based on the definition of the bidirectional reflectivity and Eq. (2.37), this
term can be written as a sum of the energy received from all other directions.

Lλ,reflected(x, Ω) =
∫

(x′,Ω′)∈S,cos(θ)>0
ρλ(x, Ω, Ω′)V (x, x′)Lλ,leaving(x′, Ω′) cos(θ)dΩ′ (2.41)

where cos(θ) = nx.(x−x′)/||x−x′||2 (Lambert’s cosine law) andV (x, x′) represents a visibility factor
which is equal to 1 if x sees x′ and 0 otherwise, as illustrated in Fig. 2.10. By using the expression of dΩ′

as previously, the integral can be integrated with the areas and expressed through the form factors:

Lλ,reflected(x, Ω) =
∫

(x′,Ω′)∈S,cos(θ)>0
ρλ(x, Ω, Ω′)V (x, x′)Lλ,leaving(x′, Ω′)cos(θ) cos(θ′)

||x− x′||22
dA′ (2.42)
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Figure 2.10: Enclosure for which the radiosity is computed at the surface. Point x3 and x2 cannot see
them each other.

Finally, the radiance at x and solid angle Ω is:

Lλ,leaving(x, Ω) = Lλ,emitted(x, Ω) +
∫

(x′,Ω′)∈S,cos(θ)>0
ρλ(x, Ω, Ω′)F (x, x′)Lλ,leaving(x′, Ω′)dA′

(2.43)
where

F (x, x′) = V (x, x′)cos(θ) cos(θ′)
||x− x′||22

(2.44)

Let suppose now that the surfaces are lambertians, and therefore does not depend on the direction.
The Eq. (2.24) can be used for diffuse surfaces for which the reflectivity is independent of (θr, ϕr):

ρλ,h = ρλ(θ, ϕ)
∫

cos(θr)dΩ = πρλ(θ, ϕ) (2.45)

which is analogous to the Eq. (2.22). As pointed by [93], since ρλ,h = 1 − αλ, the reflectivity cannot
depend on the angle of incidence:

ρλ,h = πρλ (2.46)

Therefore, for diffuse surfaces:

Lλ,leaving(x) = Lλ,emitted(x) + ρλ(x)
π

∫
S

F (x, x′)Lλ,leaving(x′)dA′ (2.47)
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Instead of dealing with punctual quantities, it is possible to integrate those quantities over the hemi-
sphere:∫

∩
Lλ,leaving(x) cos(θ)dΩ︸ ︷︷ ︸

Jλ(x)

=
∫

∩
Lλ,emitted(x) cos(θ)dΩ︸ ︷︷ ︸

Mλ(x)

+ ρλ(x)
π

∫
S

F (x, x′)
∫ ′

∩
Lλ,leaving(x′) cos

(
θ′)dΩ′︸ ︷︷ ︸∫

S
F (x,x′)Jλ(x′)dA′

dA′
(2.48)

Jλ(x) = Mλ(x) + ρλ(x)
π

∫
S

F (x, x′)Jλ(x′)dA′ (2.49)

Eq. (2.48) is called the radiosity equation. Originally developed for solving heat transfer problems,
it has been largely used in the image synthesis domain, for global illumination algorithms. The solving
and discretization of this equation will be detailed in Chapter 3. This equation will be used as a for-
ward model in order to simulate data in Chapter 5 which is a convenient way to test the efficiency and
robustness of the developed algorithms.

2.4 Infrared thermography

2.4.1 Simplified radiometric equation

Themainquantities involved in the radiation theoryhavebeenpresented and two radiative transfer
equations have been derived. In this part, a simplified model that governs the radiative exchanges for
in-situ infrared thermography measurements will be exposed. This equation will rely on looking at the
exchanges asfluxes on the scene instead of beams and focuses on the irradiance received at the camera’s
detectors. Thermography aims at determining the spatial distribution of heat in the observed scene as
well as its time dependence. However, the actual radiation received at the sensors will not only depend
on the observed object thermal properties but it will also depend on environmental conditions (e.g.
weather), the thermo-optics and the geometrical properties of the measurement scene [27, 35, 183].
Therefore, the irradiance received at one sensor is the result ofmany radiometric interactions, different
from scene to scene. Since most of the quantities derived in the previous sections are unknown when
using an infrared camera, a simpler model is needed to be able to describe the quantity received at the
sensor. The main interactions involved in such radiometric balance are represented in Fig. 2.11. To
take into account the flux arriving at an infrared detector, a mathematical model is necessary and can
be derived from a flux balance that reaches the detector [127].

Fig. 2.11 shows the different flux (ϕ emitted, Φ received) that are considered:
• ϕobj , the flux emitted by the object
• ϕenv , the flux emitted by the ambient environment and reflected by the object
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2.4. Infrared thermography

• ϕatm, the flux emitted by the atmosphere
• ϕsun, the sun flux contribution, reflected by the object
• ϕopt, the flux emitted by the optical system of the camera
• Φtot, the total flux received by the detectors

Figure 2.11: Main radiatives contributions received by the infrared camera

The total flux received at the sensor can then be considered as a sumof contribution from the others
fluxes:

Φtot = ϕobj + ϕenv + ϕatm + ϕsun + ϕopt (2.50)

This radiative flux balance corresponds to the macroscopic exchanges between the different sur-
faces of the scene, without considering internal scattering. At the opposite, the Eq. (2.32) represents
a local change in radiative energy for a given radiation beam. Doing a complete thermal and radiative
balance would combine those two approaches, for which Eq. (2.49) would represent boundary condi-
tions of Eq. (2.32). However, the simplified radiometric equation is used in thermography due to the
approximation that the signal received at the sensors represents a combination of the emitted radiation
of the observed surfaces.

Therefore, we can derive the simplified radiometric equation at pixel (i, j) for a given time [71]. In
this equation, multiple approximations are implicitly done. First, the surfaces are considered as grey-
body in the considered band. Usually, surfaces are assumed to be diffuse (Lambertian hypothesis). The
atmospheric, environment and sun contributions are assumed to be black-body equivalent radiative
surfaces. The environmental contribution is considered to be an equivalent contribution of the sum of
all the radiation that come from the surroundings. The sun contribution represents the radiance that
arrives at the sensor, from the sun emittance that crosses the atmosphere both direct and indirect. The
optical, atmospheric, sun and environmental contributions are supposed to be constant over the image
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as a first approximation. The contribution from the scene can be expressed as:

L
(i,j)
∆λ,total(T ) =τopt

[
τatm

(
ϵ
(i,j)
∆λ,objL

◦(i,j)
∆λ,obj(T

(i,j)
obj ) + (1− ϵ

(i,j)
∆λ,obj)(L

◦
∆λ,env + L◦

∆λ,sun

)
+(1− τatm)L◦

∆λ,atm

]
+ (1− τopt)L◦

∆λ,opt

(2.51)

Where τatm and τopt are respectively the atmospheric and optic transmissions.

From Eq. (2.50) we can find the radiative contribution of the observed object:

L
◦(i,j)
∆λ,obj(T

(i,j)
obj ) =

L
(i,j)
∆λ,total(T )− (1− ϵ

(i,j)
∆λ,obj)τatmτopt(L◦

∆λ,env + L◦
∆λ,sun)

ϵ
(i,j)
∆λ,objτatmτopt

−(1− τatm)τoptL
◦
∆λ,atm − (1− τopt)L◦

∆λ,opt

ϵ
(i,j)
∆λ,objτatmτopt

(2.52)

By using the contribution of the observed object and Planck’s law, it is possible to find back the
object’s temperature. However, this can be achieved if and only if the other parameters of the model
are well known. This is the topic of the following section.

2.4.2 Needs for emissivity-temperature simultaneous estimation methods

Once the contribution of our object has been derived, we still need to convert this quantity to tem-
perature. We usually use a conversion model based on a thermal camera calibration to achieve this.
Such step will be detailed in Chapter 4. Nevertheless, this equation shows how difficult it is to estimate
the temperature from IRmeasurements without prior knowledge of the observed scene. In fact, even if
the involved quantities can be determined through local weather reports and phenomenological laws
with some errors (see Chapter 4), the system still needs to get the knowledge of the observed emissivity
to retrieve the temperature from the measurements. Assuming that all the parameters are known ex-
cept for the temperature and emissivity, the Fig. 2.12 shows the solution space for a givenmeasurement
value. Needs for methods that would estimate simultaneously the emissivity and the temperature can
be emphasized from this figure. Without any knowledge about the emissivity, the temperature cannot
be derived. Even more, an error made on the emissivity will lead to an error made on the temperature
estimation.

Analytic values of spectral emissivities are often unknowns in practical applications. For an opaque
material dielectric ormetallic, typical directional and spectral emissivity canbederived from theHagen-
Rubens relation and based on the electro-magnetic theory. Another possibility is to obtain spectral
emissivity values from databases. However, such approach is generally not enough for in-situ thermal
monitoring of infrastructures to get an accurate estimate because of the lack of information about the
observed material, the unknown roughness of the observed surface or even the angle of view with
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Figure 2.12: Possible solutions for a given measurement when everything but temperature and emis-
sivity are known

the camera. Other possibilities involves local emissivity measurements. Such solution can be time-
consuming for large infrastructures or even impossible in some cases for security purposes (e.g. remote
recognition of weakening features of a rock cliff).

To overcome those issues, temperature-emissivity separation methods appeared in order to get rid
of the emissivity in the thermal measurement procedure. Finally, with the development of Bayesian
inference, new separation methods appeared in order to estimate conjointly the emissivity and the
temperature from statistical a priori, having the potential to give an estimate with a known standard
deviation error. In this thesis, different methods that separates emissivity and temperature that are
used in the pyrometry or remote sensing fields are presented and compared to newmethods involving
spatial and temporal information usage.

The evaluation of emissivity and temperature can be performed through active methods, on which
a surface is heated by a laser for example in the case of noncontact measurements. Those methods
are often used for materials characterization, defects detection and are well-developed in those fields.
However, active measurement for long-term infrared monitoring of infrastructure may not be possible
for a couple of reasons. First of all, when dealing with large infrastructures, it may not be possible to
perform a characterization on the entire structure. Such investigation will have an impact on the cost
of the operation and may not be feasible for security purposes again. Furthermore, retrieving local
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information may not be useful if the structure is observed in its entirety through a particular point
of view. In this thesis, the focus is done on noncontact and passive temperature / emissivity retrieval
methods for in-situ infrared thermal monitoring. This topic will have a dedicated bibliographical study
in Chapter 3 and proposed method will be developed in Chapter 6

2.4.3 Measurements bias due to environmental and spatial conditions

The wide range of variables involved in the balance have to be identified and considered in any
in-situ temperature estimation through IR thermography. We will review here the different impacts of
the environment, the geometry of the scene and the digitization on our temperature estimate.

Spatial resolution and angle of view

The measurement set up will influence the obtained image. As we have seen previously, the emis-
sivity depends on the material and its roughness but it also depends on the angle of view. As a conse-
quence, the positioning and the angle of view of the camera on the scene will have an impact on the
measurement (see Fig. 2.13b). Moreover, the perspective projection induced by the camera field of view
will result on a non-constant spatial discretization, that will have to be considered in order to estimate
the final temperature estimation error.

(a) Example of an IR image of a building (b) Angle between camera and object

Figure 2.13: The geometry of the scene leads to different angle of view between the object and the
camera in the image

Perspective projection The image acquired by the IR camera will result in a projection of the 3D world
coordinates to the 2D frame of the image. Therefore, the resulting image and projection will depend
on the position of the camera onto the scene, the focal length, the aperture, the field of view etc. As
said previously, the radiation measurement depends on the distance and angle of the sensor to the
object. Most of the time, for in-situ civil engineering applications, large field of view are used to get a
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full view of the structure and the complex geometry of those 3D structures leads to a wide variety of
angles between the object and the camera view (see Fig. 2.13a).

Induced discretization The position of the camera and its optical properties has to be considered in
order to achieve a proper estimation of the temperature of the observed object. However, the angle of
view is not the only geometrical quantity that will impact the measurement. The discretization and
in particular the non-constant spatial sampling size will give a maximum accuracy reachable that will
variate within the image, as represented in Fig. 2.14.

Figure 2.14: Different views of the same scene, the spatial sampling is not constant within the images

In Chapter 4, a spatial calibration procedure will be presented and the interpolation due to such
resectioning will be discussed.

Mixed pixel effect Last but not least, the discretizationwill lead to the so called "mixed pixel effect". In
fact, one sensor may see multiple materials for which the measurement will lead to a mixture of those
materials. Fig. 2.15 illustrates this effect. In a mixed pixel, the material property of the observed area
can be considered as a combination of the properties of the mixed materials whereas in a pure pixel,
we can consider only the material properties of the observed area. Therefore, most of the time, it is
difficult to identify the emissivity of a particular pixel / material (especially when dealing with angles).
As a consequence, the radiative properties are often estimated in terms of pixels i.e. an equivalent
temperature and emissivity of the real observed surface.

2.4.4 Infrared cameras for thermal radiative measurements

As seen in the previous sections, the estimation of temperature from infrared measurements is a
challenging task in which many factors are involved, from theoretical approximation in the radiative
model to the actual measurements system and configuration. In order to understand the concept be-
hind infrared thermography, IR cameras technologies principles are briefly introduced. Then a simple
use-case measurement equation in single-band and multi-band thermography are derived.
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Figure 2.15: Mixed pixel effect illustration with three different materials.

History and basic principles

Since the discovery of infrared radiation byHerschel first experiment in 1800with a prism andmea-
suring the temperature of each color, needs for quantitative detection of radiation for many different
application field, and in particular for Defense purposes appeared [147]. Over the past 80 years, many
developments have been done in the infrared detectors which are used now in many fields, ranging
from satellite defense applications to building insulation inspection. In particular, the latest improve-
ments have lead to the development of small infrared uncooled cameras with the size of a smartphone
camera: inexpensive and easy to deploy on site.

Because of the two bands of good transmission in the infrared range of the atmosphere, most de-
tectors are divided into short-wave (SW - 1.4−3µm) and long-wave (LW - 8−15µm) camera devices.
However, we can still find detectors that will work in the near IR (NIR - 0.75−1.4µm) or even the far IR
(FIR - 15−1000µm)

Cameras can then be classified into two different groups: cooled or uncooled systems. Cooled sys-
tems have to maintain a low temperature at ranges that may vary between 4K to 203.15K depending
on type and performance levels. At the opposite, uncooled systems, appearedmore recently, operate at
ambient temperature. Such systems are cheaper but measurements may not provide the same quality.
We aimed at using our developed model on such devices, for their simplicity of exploitation and price.

Uncooled cameras Uncooled cameras comewith thermal detectors (microbolometer) thatwhenheated
through IR radiation, measure a temperature change. When an infrared radiation with wavelength be-
tween 8−15µm strikes the IR absorbing metal, it heats it, thus changing its electrical resistance. The
change of the resistance is measured and processed through a CMOS (Complementarymetaloxidesemi-
conductor) ROIC (readout integrated circuit) [189]. Additionally, a reflector can be put beneath the
absorbing metal to send back to the absorption layer the energy that it did not absorbed previously,
thus enhancing the maximum energy absorption. Since the system is uncooled, the absorbing ma-
terial must be thermally isolated from the bottom. This is achieved by performing a sacrificial layer.
This micro-bridge structure makes an optical resonant cavity possible at λ/4 (i.e. 2 µm for the 8 µm to
14 µm spectral band) between the probe and the substrate. An example of a microbolometer structure
is shown on Fig. 2.17.
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Figure 2.16: Small uncooled IR camera with 3D-printed case. A coin of 1e is placed at the top as a scale
factor.

∼ 2µm
CMOS ROIC
Electrodes
Gold contact
IR absorbing metal
Reflector
Silicon substrate

Figure 2.17: Cross-sectional view of a bolometer pixel structure principle
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The drift of such system may be important and the calibration is an essential part of the trust you
can accord to the temperature measurement [120].

Main advantages

• Low power consumption
• Lower cost
• Moderate sensitivity
• No mechanical cooling

Main drawbacks

• Fixed and long-time constants
• Relatively slow frame rate
• No control over timing or triggering
• Sensitivity to ambient temperature

=⇒ needs for thermal calibration

Cooled cameras In order to count the number of photons, such cameras use quantum detectors that
need to be cooled for cutting thermal noise. The materials are mainly semiconductors with narrow
band gaps. Incoming photons will bring energy into those semiconductors causing excitation that will
bemeasured. The necessity of cooling those detectors makes themanufacturingmore complicated but
the sensitivity of those cameras is much better than the uncooled systems.

Main advantages

• Very short integration times
• Fast frame rates
• Superior sensitivity
• Ability to see and measure small tar-
gets

Main drawbacks

• High cost
• Power consumption
• Requires cryogenic cooling

Thermograms creation In order to create an image from an array of detectors, two main technolo-
gies exist. The first one is to use a single detector or a ruler of detectors and perform a scan of the
observed area. In a single detector camera, the image is built point by point, in a ruler of detectors, it is
constructed line by line (see Fig. 2.18). On a single point detector, one can note that all points of a ther-
mogram have identical parameters because the temperature measured at every point is measured by
the same detector. Such property can be useful in detecting the temperature difference at two points of
a homogeneous object. Historically, the point scanner cameras was the first system used. Then, rulers
of detectors and finally arrays of detectors were created. In the last systems, there is no mechanical
scanning parts: the array observes the scene through the camera optics. Such system enables the cre-
ation of cameras that can record fast thermal processes such as 100 thermograms per second. Each
pixel is read 25 times per second (PAL system - Europe) or 30 times (NTSC system - USA) [128].
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2.4. Infrared thermography

(a) Point scanning (b) Line scanning (c) Array of detectors

Figure 2.18: Different types of detectors reading

Single-band pyrometry

In order to emphasis again the needs for emissivity and temperature separation, let consider a
simple case in which the irradiance at a sensor located at a distance r of an object is derived. Such case
of study needs some assumptions:

Assumptions

• Flat surfaces are small enough to be considered punctuals.
• Only the diffuse interaction between the sensor and the object is considered.
• The scene geometry is known

Figure 2.19: Sensor / Object configuration

Under those assumptions, the irradiance received at the sensor can be derived from Bouguer’s law:

Esensor =
Iobject cos(θsensor)

r2 (2.53)
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Where Esensor is the irradiance at the sensor, Iobject, the radiant intensity leaving the object, r and
θsensor are defined in Fig. 2.19. With the infinitesimal surfaces hypothesis, one can get the luminance
from the intensity:

dIobject = Lobject cos
(
θobject

)
dSobject (2.54)

By using the fact that the surfaces are punctuals, the irradiance received at the sensor is finally:

Esensor =
cos
(
θobject

)
cos(θsensor)Sobject

r2 Lobject (2.55)

By using Planck’s law and defining g : (θsensor, θobject, r)→ cos(θobject) cos(θsensor)Sobject

r2 , assumed to be
known in this case:

Esensor = g(θsensor, θobject, r)ϵobject
C1

λ5(e
C2

λTobject − 1)
(2.56)

with C1 = 2hc2

λ5 and C2 = hc
k .

By using Wien’s approximation and taking the logarithm of the previous expresion, the emissivity
and temperature can be separated to derive the following expression:

ln(Esensor) + ln
(

λ5

C1g(θsensor, θobject, r)

)
= ln(ϵobject)−

C2
λTobject

(2.57)

The first term in Eq. (2.56) is the physical quantity that will be measured at the sensor. The second
termdepends on the geometry of the scene and is assumed to be knownhere. Finally, the last two terms
represent theunknownsof the system: the temperature and the emissivity of the object. Therefore, one
can see that a passive infrared thermographymeasurement system is facing an undetermined problem
with one equation and two unknowns.

Multi-band thermography

Multiband sensors provide a measurement set of spectrally integrated radiance in various finite-
bandwidth spectral channels. An idea that could come into mind is to perform a measurement at
another wavelength in order to bring new information to the system. However, new unknowns are
also added when working inmulti-band thermography, the spectral emissivity at those supplementary
wavelengths [15]. Let N be the number of spectral bands, i ∈ N, i ∈ [1, N ] and ∆̄λi be the median
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value of the ith spectral band:

ln
(
E∆̄λ1,sensor

)
+ ln

(
∆̄λ

5
1

C1g(θsensor,θobject,r)

)
= ln

(
ϵ∆̄λ1,object

)
− C2

∆̄λ1Tobject

ln
(
E∆̄λ2,sensor

)
+ ln

(
∆̄λ

5
2

C1g(θsensor,θobject,r)

)
= ln

(
ϵ∆̄λ2,object

)
− C2

∆̄λ2Tobject

...

ln
(
E∆̄λN ,sensor

)
+ ln

(
∆̄λ

5
N

C1g(θsensor,θobject,r)

)
= ln

(
ϵ∆̄λN ,object

)
− C2

∆̄λN Tobject

(2.58)

As a consequence the system is still undetermined and is composed of N equations for N + 1
unknowns. Even if the equation system is unknown, multispectral measurements did brought infor-
mation. Indeed, the infrared energy radiated by an object is proporional to its absolute temperature
Tobject and emissivity ϵobject. However, sources of stray radiation (background, sky, sun and so on) hav-
ing a temperature Tenv and emissivity ϵenv can add, after reflection a disturbing radiative contribution
to the previous intrinsic emission and reflectance of the object. Of course, an infrared imager will be
sensitive to the sum of all those energies and will become a function of all the parameters that will in-
terfere. In the case of the grey-body assumption, ameasurement on a single spectral bandwill give one
relation between Tobj and ϵobj . Multispectral measurements can therefore provide more information
and particularly when ϵobj is a function of wavelength. For example, if the same radiance is produced
in one band (∆λ2 in Fig. 2.20) because of a lower emissivity compensated by a higher temperature; it
will probably not be the case for another band (∆λ1):

2.5 Synthesis

Infrared thermography for structural healthmonitoring has been introduced in this chapter. Equa-
tions that govern the physical phenomena of radiative transfers have been derived and studied for
the particular case of IR thermography measurements. It has been shown that the IR thermography
measurement process involves many variables that need to be taken into account in the hope of get-
ting accurate temperature measurements. In particular, the emissivity plays an important role in the
equations. Without emissivity, the temperature estimation uncertainty may be high and therefore,
emissivity-temperature simultaneous estimation methods are needed. The objective of this thesis is to
develop such method, applied to in-situ long-term thermal monitoring of infrastructures. To achieve
this, the understanding of the full measurement process is needed. In particular and as shown in the
former sections, the knowledge of the environmental parameters helps at improving the accuracy of
the temperature estimation. Moreover, the infrared camera needs to be calibrated both spatially and
thermally. These topics will be discussed in Chapter 4. Furthermore, it has been shown that the set-up
of the instrumentation will have an impact on the obtained measurement and therefore the potential
temperature estimate. In order to optimize such instrumentation but also to test the emissivity and
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Figure 2.20: Multi-band measurements bring more information

temperature estimation methods, a 3D simulation software tool has been developed and studied.
In the next chapter, the methods developed in the literature for separating the emissivity and the

temperature will be presented. Then, a bibliographical study about solving the radiosity equation will
also be done in view of implementing a custom simulation software.

34



Chapter 3

Bibliographical study

I n this chapter we will review the problem of extracting the temperature and the emissivity infor-
mation from thermal infrared multispectral radiance data. We will present the different methods
that exist in the litterature and discuss them. Being able to identify the emissivity and the tem-

perature at the same time while knowing the approximation made on the measurement is a challenge
that could enhance infrared data exploitation and infrared cameras applications possibilities. We will
focus here on the simultaneous evaluation of emissivity and surface temperature of objects observed
by infrared thermography, for in-situ applications.

Moreover, in order to test the efficiency, and robustness of those methods but also to optimize the
in-situ instrumentation, a simulation software tool using the forward radiosity equation solution has
been developed. Thanks to literature’s models, infrared images can be simulated from 3D models. A
brief state of the art of illumination algorithms to render such images is therefore presented in this
chapter. As explained previously, the temperature cannot be deduced from IR measurements without
a good emissivity estimate.

3.1 Emissivity and temperature separation methods

As seen before, the lack of knowledge on radiation properties of the real scene makes the thermal
measurement through infrared thermography complicated. In first approximation, the irradiance re-
ceived by a sensor for a givenwavelength depends on the objects’ temperature and its emissivity at this
wavelength, as explained in the previous chapter. However, the radiative system of such configuration
leads to an undetermined system. Therefore, retrieving the temperature from such a measurement
needs the knowledge of the object, or by default, the use of inferences and approximations on the
observed system. The methods are classified into two categories. A first category regroup the opti-
mization based methods that are derived from a mathematical approximation at some point to reduce
the number of variables or to increase the redundancy of data to get more equations. The second one
gathers the Bayesian methods for which a prior statistical information is added to the system in order
to be able to solve it. The literature has different models for estimating the emissivity from remotely
sensed images and most of those models are used for computing satellite data. The main difficulty
here is to separate the two unknowns of the equation: the emissivity and the temperature. Even if the
equations behind airborne applications and in-situ applications are close, the conditions and assump-
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tions to be applied may differ, in particular when considering the atmospheric contribution. However,
the methods used in the remote field sensing can be inspiring for in-situ long-term thermal monitor-
ing. [102] is a good introduction for having a global point of view on general noncontact temperature
measurement by radiative methods.

3.1.1 In the field of Remote Sensing

Land surface temperature (LST) is an important parameter for various applications. Such indicator
provides information on the temporal and spatial variations of the surface equilibrium state and is used
for vegetation monitoring, hydrological cycle, urban and environmental studies or climate change for
example. Many methods have been developed to retrieve the LST from satellite infrared data. The ra-
diative transfer equation for measurements performed at the top of the atmosphere is different than
the one used for in-situ measurements and presented in the previous chapter. Those measurements
have to take into account the atmospheric path that the beam has taken until it reaches the satellite
sensor. Even though themodel is different, it is still interesting to take a look at the developed emissiv-
ity / temperature separations methods and see if it can be applied to in-situ long-term IRT on ground.
The measured radiance at sensor level can be written [117]:

Lλ(θ, ϕ, T ) = τλ(θ, ϕ)
(
ϵλ(θ, ϕ)L◦

λ,land(T ) + (1− ϵλ(θ, ϕ))(L↓
λ,a + L↓

λ,sun) + L̃λ,sun

)
+L↑

λ,atm+L̃↑
λ,atm

(3.1)
where (see Fig. 3.1):

• τλ(θ, ϕ) is the atmospheric transmission,
• ϵλ(θ, ϕ) is the land surface emissivity,
• T is the land surface temperature,
• L◦

λ,land(T ) is the land surface emission,
• L↓

λ,atm is the down-welling atmospheric radiance reflected by the surface,
• L↓

λ,sun is the down-welling diffuse solar radiance reflected by the surface,

– Lλ,sun is the direct solar radiance,

• L̃λ,sun is the direct solar radiance reflected by the surface,
• L↑

λ,atm is the atmospheric emission,
• L̃↑

λ,atm is the atmospheric scattering.

and L̃λ,sun is defined by:

L̃λ,sun = ρλ(θ, ϕ, θs, ϕs)Lλ,sun cos(θs)τλ(θs, ϕs) (3.2)
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For simplification in the writting, the formalism of the Remote Sensing field
will be used in this section. In fact, due to the narrow bands involved, λ no-
tation is used in place of∆λ.

Note

Figure 3.1: Radiative transfer equation for satellite measurements, done at the top of the atmosphere.

Moreover, when dealingwith satellite data, the atmospheric effects along the path from the ground
to the sensor are assumed to be properly estimated. This case makes the emissivity retrieval close to
the problem that occurs on land measurements (N measurements for N + 1 unknowns). In order to
get rid of those parameters, atmospheric radiative transfer models such as SMARTS2 ([82]), MODTRAN
([19]) or MATISSE ([67]) can be used. In this field, the unknowns are referred to LSE and LST for land
surface emissivity and land surface temperature reciprocally. Many of the temperature and emissivity
separation methods presented here are introduced and discussed in [117] state of the art.

Known emissivity

The following methods are temperature - emissivity separation methods but those methods do not
actually estimate conjointly the temperature and emissivity. They need prior knowledge on LSE [117].
Those methods are still presented here for their data information extraction from IR measurements.
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Thermal log residuals By usingWien’s approximation of Planck’s law Eq. (2.8) the log can be expressed
as:

ln

ϵ× C1
πλ5 exp

(
C2
λT

)
 = ln(ϵ) + ln(C1)− 5 ln(λ)− ln(π)− C2

λT
(3.3)

By multiplying this equation by λ, we can dissociate T from λ. Let Xpc be the resulting quantity
for the pixel p and the channel c of a multispectral infrared sensor.

Xpc = λc ln(ϵpc) + λc ln(C1)− 5λc ln(λ)− λc ln(π)− C2
Tp

(3.4)

Then, the "residuals" (Ypc) are defined as the remaining of this quantity after having substracted
the average value over the image (X̃c), the average value over the channels (X̃p) and the average value
over both images and channels (X̃):

Ypc = Xpc − X̃p − X̃c + X̃ (3.5)

WithN the number of spectral channels andM the number of pixels in one image:

X̃p = 1
N

N∑
j=1

Xpj

X̃c = 1
M

M∑
i=1

Xic

X̃ = 1
NM

M∑
i=1

N∑
j=1

Xij

(3.6)

From equations Eq. (3.4) and Eq. (3.6):

Ypc = λc ln(ϵpc)−
1
N

N∑
j=1

λj ln(ϵpj)− λc

M

M∑
i=1

ln(ϵic) + 1
NM

N∑
j=1

M∑
i=1

λj ln(ϵij) (3.7)

Finally, let lc = λc

λ̃
and ϵpc = e−lc

pc where λ̃ is the mean of the central wavelengths of all channels,
then:

Ypc

λ̃
= ln(epc)−

1
N

N∑
j=1

ln(epj)− 1
M

M∑
i=1

ln(eic) + 1
NM

N∑
j=1

M∑
i=1

ln(eij)

= ln(epc)−
1
N

ln

 N∏
j=1

epj

− 1
M

ln
(

M∏
i=1

eic

)
+ 1

NM
ln

 N∏
j=1

M∏
i=1

eij

 (3.8)
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Therefore, the thermal log residual enables to separate the variation of temperature and emissivity
to a variation of combined emissivity.

Alpha residuals Similarly to thermal log residuals, the alpha log residuals performs a mean substrac-
tion but only with the wavelength-weighted log pixel this time [90].

αpc = Xpc − X̃p (3.9)

Therefore, let d : xc 7→ xc − 1
N

∑N
c=1 xc, the alpha log residuals equals to:

αpc = d(λc ln(ϵpc)) + (ln(C1)− ln(π))d(λc)− 5d(λc ln(λc))︸ ︷︷ ︸
Kc

(3.10)

WhereKc is a constant known for a given channel and depends only on the wavelength.

Let r be one reference channel. Therefore, it is possible to write:

ϵpc

ϵnc
pr

= e
1

λc
[(αpc+Kc)−(αpr+Kr)], nc = λc

λr
(3.11)

The same authors showed that

αpc = d(λc ln(Bpc)) + Kc (3.12)

Meaning that the alpha residuals can be directly computed from the measured radiance.

Those two methods (alpha log and thermal log residuals) have the advantages of being simple and
applicable to one channel sensors only. However, some priors on the emissivity are required and the
important source of errors in those methods will be the accuracy of the emissivity pixel’s estimate.
Moreover, the uncertainty on atmospheric estimated parameters will have a strong effect on LST re-
trieval [117].

Other methods with known emissivity Othermethodswith known emissivity rather than the log resid-
uals have been developed. Those methods use different assumptions to improve the accuracy of the
estimated LST or, more generally to reduce the strong knowledge requirement of known emissivity at
each pixel. Multi-channel algorithms for example use different atmospheric absorption in adjacent
channels and reduce the need for accurate atmospheric profiles [18, 2, 167, 123].

Similarly, another way is to use the angle dependence of the atmospheric parameters. A change
of the angle will change the atmospheric absorption due to the different path-lengths from different
views. Again, such method reduces the need for accurate atmospheric profiles. However, the angular
emissivity variation with angle needs to be known and also geometric registration becomes fundamen-
tal [169, 168, 137].
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Unknown emissivity - two steps-methods

The previous presented methods were assuming that the LSE was known at some point. However,
in practice, knowing LSE is challenging due to the heterogeneity of the surfaces and its angular and
spectral variations. Moreover, an uncertainty on the emissivity leads to an important uncertainty on
the temperature estimation (see next chapter for a sensitivity study regarding in-situ long-term moni-
toring). Therefore, methods for estimating both LSE and LST have been developed in the literature. In
[117] those methods are classified into two groups: the two-steps methods and the simultaneous esti-
mation of LSE and LST. The first group methods estimate first the LSE and then use one of the former
method to estimate the LST. At the opposite, the simultaneous estimation methods aims at providing
a-priori on the system to estimate at the same time LSE and LST.

Temperature Independent Spectral Indices (TISI) TISI coefficients have been proposed for spectral
analysis in the TIR (thermal infrared, centered at 8.9µm) band. Those coefficients aim at getting rid of
surface temperature in their expression to only express a variation of emissivity through a reference
channel. Those coefficients are called Temperature-Independent Spectral Indices (TISI). Please note
that TISI theory and algebra have been developed in the original article and different application
examples are provided in [17]. Based on those coefficients, a new two-steps method has been proposed
by assuming that TISI coefficients on particular channels will not vary substantially between day and
night [114, 115]. The TISIij are referred by two channels i and j, usually i is the MIR (mid infrared,
centered at 3.8µm) channel and j the TIR (thermal infrared, centered at 8.9µm) reference channel.
TISIij are defined by using the power law approximation of Planck’s function:

L◦
i (T ) = aiT

ni (3.13)

where ai and ni are channel-specific constants. TISIij indices are therefore defined by:

TISIij =
L◦

i (Tgi)− L↓
i,a

L◦
i (Tgj)− L↓

i,a

(3.14)

which they shown mathematically that [17]:

TISIij ≈
ϵi

ϵ
ni/nj

j

(3.15)

Those spectral indices are therefore independent of ground surface temperature and are an indicator of
the LSE evolution in the two channels. By assuming that the TISI variation can be neglected between
daytime without the contribution of solar illumination and nighttime then the bidirectional reflectiv-
ity in MIR channel is found back by removing the emitted radiance during the day and comparing it
with night TISIij coefficients. LSEs in the TIR channels are then deducted based on the TISI and
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emissivity in the MIR channel. Former methods are then used to estimate the LST.

TISI indices have been used in different methods and have shown satisfying overall results [116].
However, due to the constant emissivity ratio during day and night assumption, a strong requirement
is to have the same observation view during night and day with accurate geometry registration. Fur-
thermore, this method works only for one MIR channel and one TIR channel at least.

Unknown emissivity - simultaneous estimation of LSE and LST

The following methods aim at estimating conjointly LSE and LST. This time, the methods provide
directly both estimates, without estimating first the LSE and then the LST as in two-steps methods.

Normalized-Emissivity separationmethod (NES) Let assume that themaximumemissivity ϵmax is known,
without knowing especially its associated wavelength or band. Firstly, a relatively high temperature T̃

is chosen. The following radiometric model is then solved for each spectral band at each pixel to get a
first estimate of the emissivity :

ϵ̃λ =
Lλ,land(T )− L↓

λ

L◦
λ,land(T̃ )− L↓

λ

(3.16)

Where L↓
λ = L↓

λ,a + L↓
λ,s and Lλ,land is the ground-leaving radiance. The temperature T̃ is then

decreased respectively increased until ϵ̃λ = ϵmax if Lλ,land(T ) > L↓
λ, respectively Lλ,land(T ) < L↓

λ.
Another way to achieve such separation is to make the gray body assumption where ϵλ = ϵmax. In this
case, the temperature can be found when Lλ,land(T ) > L↓

λ:

T̃ = max
λ

[
L◦−1

(
Lλ,land(T )− L↓

λ

ϵmax
+ L↓

λ

)]
(3.17)

WhenLλ,land(T ) < L↓
λ, a minimummust be found instead. Once T̃ has been estimated, the emissivity

spectrum is deduced from Eq. (3.16).

According to [102], in the case of bare soils with rocks, this method is quite precise (0.02 emissivity
uncertainty, ϵmax = 0.96). However, when the surface is unknown, the underlying hypothesis is not
satisfied and the inacurracy increase and becomes finally high (±3K).

Temperature-Emissivity separation method (TES) In order to overcome the high inaccuracies induced
by the NES method, the TES method has been developed. Proposed by [3], the TES method is based on
the fact that authors have observed that the relative emissivity of βλ = ϵ̃λ/¯̃ϵ is rather insensitive to
the error made on the temperature estimation [102]. ϵ̃λ is derived from Eq. (3.16) and ¯̃ϵ its average on
wavelength. In order to obtain the absolute spectrum from this relative one, [3] proposed a correlation:
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ϵλ = βλ
ϵmin
βmin

, ϵmin ≈ A−B(βmax − βmin)C (3.18)

The coefficients A, B and C are obtained through a regression depending on a material database. In
their article, A = 0.994, B = 0.687 and C = 0.737 but other values can be found in the literature.
Finally, the temperature is derived from:

T = L◦−1

LλM
(T )− L↓

λM

ϵmax
+ L↓

λM

 , λM = arg max
λ

(ϵλ) (3.19)

TESmethod is used to calclulate surface temperature for ASTER satelite. The TES has been validated
on different sites, showing that TES performswell for ASTER data (+1.5K and+0.015 of correct values)
[150]. However, the correlation is highly dependent on the chosen database materials and thus the
generalization to any site and any scale of this method seems tricky [74].

Classification based methods Classificationmethods are widespread for identifying parameters in im-
ages. In order to derive LSE from the measurements, a classification algorithm is performed to classify
a given pixel to a given class. By using the right database these methods offer good accuracy results
(about 0.01) [166]. Once the LSE has been estimated, LST is derived from previous methods. However,
the classification algorithm needs a strong knowledge of the emissivity of each class as well as robust
and reliable classificationmapwhich becomes complicated when considering soil moisture, seasoning,
snow etc. Moreover, classification is also more difficult to perform for coarse pixels, due to the mixed
materials observation and then strong correlation within classes [73].

Other methods Please note that this method list is not comprehensive, and other methods could be
quoted. For example, the spectra smoothness method which states that if LST is not well estimated,
then saw-teeth will appear on the estimated LSE signal due to atmospheric absorption lines [117].
When the estimated LST comes closer to the real temperature, the estimated LSE becomes progres-
sively smoother. The estimate is then found when LSE is the smoothest. This method offers interesting
results for satelite and airborne applications. However, the underlying hypothesis is to use the atmo-
spherical spectrum properties to have a better estimate of the temperature and emissivity. Further-
more, this method requires hyperspectral instruments and a good high spectral resolution in order to
be able to distinguish the atmospheric spectral features from the emissivity features. Such method is
therefore out of scope for in-situmultispectral measurements.

3.1.2 General separation methods

Whereas the previous section introduced Remote Sensing field specific methods, this section pre-
sents a more general overview of the temperature and emissivity separation problem, from a mathe-

42



3.1. Emissivity and temperature separation methods

matical basis. Whatever the field of application, once the environmental or atmospheric parameters
have been identified, it is possible to bring themodel back to the case: γ∆λi

= f(∆λi, ϵ∆λi
, T )where f

is known without accounting for specific channels or atmospheric properties to estimate the tempera-
ture and emissivity. Therefore, some presented methods such as the grey body and multi-temperature
methods have been actually developed in the Remote Sensing field. In the following, the conjoint esti-
mation of emissivity and temperature will be studied, based on the sensor - object Eq. (2.56).

Linearization of the problem

Let γ∆λi
be g−1(θsensor, θobject, r)C−1

1 ∆λi
5E∆λi,sensor. This quantity is assumed to be known in

the following, representing themeasurements for which we have prior knowledge about the geometry.
As a reminder, we want to solve the system:

ln(γ∆λi
) = ln(ϵ∆λi

)− C2
∆λiT

, ∀i ∈ [1; N ] (3.20)

Monomial model

In order to solve this underdetermined problem, a first approach is to estimate ln(ϵ∆λi
) by a poly-

nom. Let (α0, α1, ..., αm) ∈ Rm+1 wherem ≤ N − 2 such as:

ln(ϵ∆λi
) =

m∑
k=0

αk∆λi
k, ∀i ∈ [|1; N |] (3.21)

Such approximation leads to the following equation system:

Γ = MX =


1 ∆λ1 ∆λ1

2 . . . ∆λ1
m − C2

∆λ1

1 ∆λ2 ∆λ2
2 . . . ∆λ2

m − C2
∆λ2

...
...

...
...

...
...

1 ∆λN ∆λN
2 . . . ∆λN

m − C2
∆λN





α0

α1

α2
...

αm

1
T ′


(3.22)

Where Γ = (ln(γ∆λi
))1≤i≤N and M is a [N × (m + 2)] matrix and T ′ is the estimated temperature

obtained from the polynomial approximation and measurement. In the following, we will remove the
∆ notation inferring that the sensor integrates on a small band. Then, the λi notation will refer to a
band and not a particular wavelength.

Monomial model (m = N −2) Let study the case where we have exactly N equations for N unknowns.
This is possible by using aN − 2 order polynomial. By rewriting Eq. (3.22), we get a square matrix on
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which we recognize the shape of a Vandermonde matrix and we can compute the determinant:

det(M) = C2(−1)N+1
∏

1≤i<j≤N (λi − λj)∏N
i=1 λi

≤ C2(−1)N+1 ∆λN
max∏N

i=1 λi

(3.23)

where∆λmax is the maximum difference of two bands. We can see that the absolute value of this
determinant decreases exponentially asN increases, meaning thatM is approaching singularity when
the number of bands increases. The literature shows that the polynomial approximation leads to un-
realistics temperatures for N > 3 [37]. Such behavior can be explained by the fact that even if the
Taylors serie development of the ln function enables us to estimate the logarithm in Eq. (3.21) because
of the boundaries of ϵ, we need to get a N large enough to get a good approximation as shown on
Fig. 3.2. Therefore, for a N too small, the variables will be considered sufficiently independents but
the approximation is rough. At the opposite, when N increases, the approximation of the logarithm
becomes satisfying but we induce correlation between the different variables which makes the system
difficult to inverse.

Figure 3.2: ln approximation with its Taylor serie

Since the polynom has exactlyN equations forN unknowns, it means that the fitting will pass ex-
actly by theN values of γλi

. As shown in [37], bymultiplying Eq. (3.21) by λi and rearranging Eq. (3.20),
one can find the set ofN equations

λiln(ϵi) =
N−2∑
j=0

aj−1λj
i (3.24)
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where a−1 is the constant term evaluated on λi = 0, giving an idea of the error made on the
temperature, from Eq. (3.20):

a−1 = C2

( 1
T
− 1

T ′

)
(3.25)

Since the polynomwill pass exactly through theN values of λiln(ϵi), we can use Lagrange polyno-
mials to find the values

p(λ) =
N−2∑
j=0

aj−1λj =
N∑

i=1

λiln(ϵi)
N∏

j=1,j ̸=i

λj − λ

λj − λi

 (3.26)

With Eq. (3.18), we get the value of a−1 [37]:

a−1 = C2

( 1
T
− 1

T ′

)
=

N∏
j=1

λj

N∑
i=1

[
ln(ϵi)∏N

j=1,j ̸=i(λj − λi)

]
(3.27)

Therefore, only a polynom that will exactly match theN values of ln(ϵi) will have a null extrapo-
lation error and be the real emissivity; which is unlikely to happen.

Based on those equations, a particular study of the different pyrometry techniques (two, three and
four colors) can be done ( [100, 37, 135]). We can observe the conditions that are necessaries to get a
null error (id est solving α−1 = 0). Let λi ̸= λj , ∀i, j ∈ [|1, N |], i ̸= j

N = 2 C2

( 1
T
− 1

T ′

)
= λ1λ2

λ1 − λ2
ln(ϵ2

ϵ1
) = 0 ⇐⇒ ϵ1 = ϵ2

N = 3 C2

( 1
T
− 1

T ′

)
= 0 ⇐⇒ ϵ1ϵ3 = ϵ2

2 (equidistant bands)
(3.28)

Those results show that strong hypothesis are needed on the systemwe use thatmay lead to uncer-
tainmeasurements without prior knowledge on emissivities. Finally, it is well known that overfitting of
the orignal data on interpolation basedmethods leads to errors (Runge’s phenomenon). Suchmethods
can be retained only for simple pyrometers (two or three wavelengths at most) [37].

To overcome the previous overfitting issue, one may try to reduce the order of the polynom used
to fit the data. In that case, the estimated temperature value is obtained by a least-square method, to
solve the overdetermined problem.

Monomial model (m < N − 2) To overcome some numerical issues, it is necessary to normalize the
system matrix in order to reduce its condition number. This can be achieved by replacing the wave-
length band in the previous polynomial expression by its reduced centered value such as: λ∗

i ∈ [−1; 1]
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[135]:

λ∗
i = 2 λi − λmin

λmax − λmin
(3.29)

For the same reasons, we normalize the temperature with Tref such as C2
λiTref

is close to one. There-
fore, we can write the new normalized system:

Γ = MX =


1 λ∗

1 λ∗
1

2 . . . λ∗
1

m − C2
λ∗

1Tref

1 λ∗
2 λ∗

2
2 . . . λ∗

2
m − C2

λ∗
2Tref

...
...

...
...

...
...

1 λ∗
N λ∗

N
2 . . . λ∗

N
m − C2

λ∗
N Tref





α∗
0

α∗
1

α∗
2
...

α∗
m

Tref

T ′


(3.30)

In that case, the least-square method resolution leads to solve the normal equations, to minimize
the sum of the square differences .

(MT M)X = MT Γ (3.31)

Many methods exist in the literature to solve such equation system such as the Singular Value De-
composition (SVD), the QR decomposition, etc. [52]

Orthogonal basis (m < N − 2) The approximation of taking the logarithm as a polynomial could
be improved by choosing the right polynomial basis instead of the previous presented basis function
{P0, P1, ..., PN}. In fact, it is clear that the approximation of a function to a polynomial is like a pro-
jection on the space spanned by the basis function. Using orthogonal polynomials helps to have uncor-
related explanatory variables. Let {Φ0, Φ1, ..., Φm} an orthogonal set of functions of R+∗ and scalars
(α0, α1..., αm) such as:

Γ = MX =


Φ0(∆λ∗

1) Φ1(∆λ∗
1) . . . Φm(∆λ∗

1) − C2
λ1Tref

Φ0(∆λ∗
2) Φ1(∆λ∗

2) . . . Φm(∆λ∗
2) − C2

λ2Tref

...
...

...
...

...
Φ0(∆λ∗

N ) Φ1(∆λ∗
N ) . . . Φm(∆λ∗

N ) − C2
λN Tref





α0

α1
...

αm
Tref

T ′


(3.32)

By combining equations Eq. (3.31) and Eq. (3.32), one can see that the orthogonal basis will increase
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diagonal coefficients and reduce other coefficients :

MT M=



∑N

i=1 Φ0
2(∆λ∗

i
)

∑N

i=1 Φ0(∆λ∗
i

)Φ1(∆λ∗
i

) ...
∑N

i=1 Φ0(∆λ∗
i

)Φm(∆λ∗
i

) −
∑N

i=1 Φ0(∆λ∗
i

) C2
λiTref∑N

i=1 Φ0(∆λ∗
i

)Φ1(∆λ∗
i

)
∑N

i=1 Φ1
2(∆λ∗

i
) ...

∑N

i=1 Φ1(∆λ∗
i

)Φm(∆λ∗
i

) −
∑N

i=1 Φ1(∆λ∗
i

) C2
λiTref

...
...

...
...

...

−
∑N

i=1 Φ0(∆λ∗
i

) C2
λiTref

−
∑N

i=1 Φ1(∆λ∗
i

) C2
λiTref

... −
∑N

i=1 Φm(∆λ∗
i

) C2
λiTref

∑N

i=1

(
C2

λiTref

)2


(3.33)

In order to illustrate the effect of the orthogonalization onto the final estimation, a simple use-
case has been experimented. The Eq. (3.20) is computed for ∆λi = {2.5µm, 3µm, 4µm, 5µm, 8µm,
10µm, 12µm}, a given temperature profile (represented in Fig. 3.4), random emissivity values, θsensor =
θobject = 0 and r = 1. Once the data have been simulated, the emissivities and temperatures are found
back with the polynomial model presented in Eq. (3.30) and the Tchebychev polynomials of first kind
applied to the system Eq. (3.32). The systems are solved with the constraint : ln(ϵ∆λi

) ≤ 0, ∀i ∈
[1, N ]. Moreover, the emissivity profile is generated randomly. The purpose of this is to test the ro-
bustness of the fitting on a random profile. The inversion becomes more difficult when the standard
deviation of the emissivity profile is larger, due to the important discontinuity that appears and the
small amount of band measurements.

Figure 3.3: Original irradiance at sensor compared to the irradiance with the estimated emissivity and
temperature
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The Fig. 3.3 shows the simulated irradiance in comparison to the irradiance computed with the
estimated parameters. One can see that this reprojection error can be important since the algorithm
stops when a local minimum has been found. However, the Fig. 3.4 shows that the estimation is slightly
different between the Tchebychev basis and themonomial basis. The orthogonal basis tends to bemore
robust than the monomial’s one, as expected.

Figure 3.4: Found temperature and emissivity profiles

However, the results are not quite satysfying in the simple test case, even when using an orthog-
onal basis. In fact, the polynomial approximation is also depending on the temperature estimation
sensitivity [102].

Splines In the previous approximation procedures, the emissivity was evaluated to a single identi-
cal polynomial. It is possible instead to split the domain into different region and define a polyno-
mial’s function piecewise. Such function is called a spline and is often prefered to the previous meth-
ods for interpolation problems. Let now Sj(λ), j ∈ [1, N − 1] be the polynoms that interpolate the
ln(ϵ∆λi

), i ∈ [1, N ] knots values andm the degree of the polynoms.

Sj =
m∑

k=0
αj,kΦk(λ∗),∀j ∈ [1, N − 1] (3.34)
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Figure 3.5: Cubic spline interpolation with quadratic boundaries conditions.

To satisfy the knot’s equality :

(C0) =



S1(∆λ∗
1) = ln

(
ϵ∆λ∗

1

)
S1(∆λ∗

2) = ln
(
ϵ∆λ∗

2

)
S2(∆λ∗

2) = ln
(
ϵ∆λ∗

2

)
S2(∆λ∗

3) = ln
(
ϵ∆λ∗

3

)
. . .

S(N−1)(∆λ∗
N ) = ln

(
ϵ∆λ∗

N

)
(3.35)

The Eq. (3.35) implies 2(N − 1) equations, to satisfy the knots equalities. In order to be able to solve
the system and reduce the number of unknowns, one needs to impose conditions to the system. In
the case of cubic interpolation (m = 3), the number of unknowns is : 4(N − 1) + 1 (4 coefficients
forN − 1 polynoms and the temperature). The constraint of equality of the first derivatives at knot’s
points can be added, to smooth the curves and avoid discontinuities. Therefore, we have the second
equation system:

(C1) =



S
′
1(∆λ∗

2) = S
′
2(∆λ∗

2)

S
′
2(∆λ∗

3) = S
′
3(∆λ∗

3)

. . .

S
′
N−2(∆λ∗

N−1) = S
′
N−1(∆λ∗

N−1)

(3.36)
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Moreover, one can also add the same constraint for the second derivatives:

(C2) =



S
′′
1 (∆λ∗

2) = S
′′
2 (∆λ∗

2)

S
′′
2 (∆λ∗

3) = S
′′
3 (∆λ∗

3)

. . .

S
′′
N−2(∆λ∗

N−1) = S
′′
N−1(∆λ∗

N−1)

(3.37)

Finally, (C0) + (C1) + (C2) constraints lead to 4N − 6 equations, for 4(N − 1) + 1 unknowns, an un-
determined system. To overcome this, boundaries constraints can be added. For example, a quadratic
boundary constraint and a second derivative equal to zero for the first and last polynomials will re-
sult in a overdetermined system. Let modify the first and last polynomial to be quadratic. Eq. (3.34)
becomes :

Sj(λ∗) =


∑2

k=0 αj,kΦk(λ∗) if j ∈ {1, N − 1}∑3
k=0 αj,kΦk(λ∗) if j ∈ [2, N − 2]

(3.38)

We also add their first and second derivatives to be equal at the boundaries (called "Periodic Spline"):

S
′
1(∆λ∗

1) = S
′
N−1(∆λ∗

N )

S
′′
1 (∆λ∗

1) = S
′′
N−1(∆λ∗

N )
=⇒

α1,1 = αN−1,1

α1,2 = αN−1,2
(3.39)
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In that case, the number of unknowns becomes 4N − 5 for 4(N − 1) equations. The system Eq. (3.32)
to be solved can be updated with the constraints :



Γ∗ =


ln
(

γ∆λ1

)
ln
(

γ∆λ2

)
ln
(

γ∆λ2

)
...

ln
(

γ∆λN

)

 =



Φ0(∆λ∗
1) Φ1(∆λ∗

1) Φ2(∆λ∗
1) 0 0 . . . 0 −C2

∆λ1Tref

Φ0(∆λ∗
2) Φ1(∆λ∗

2) Φ2(∆λ∗
2) 0 0 . . . 0 −C2

∆λ2Tref

0 0 0 Φ0(∆λ∗
2) Φ1(∆λ∗

2) . . . 0 −C2
∆λ2Tref

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . Φ2(∆λ∗
N ) −C2

∆λN Tref


︸ ︷︷ ︸

M0


α1,0

α1,1
...

αN−1,2
Tref

T ′



0 =


Φ′

0(∆λ∗
2) Φ′

1(∆λ∗
2) Φ′

2(∆λ∗
2) −Φ′

0(∆λ∗
2) . . . 0 0

0 0 0 Φ′
0(∆λ∗

3) . . . 0 0
...

...
...

...
. . . 0

...

0 0 0 0 . . . −Φ′
3(∆λ∗

N−1) 0


︸ ︷︷ ︸

M1


α1,0

α1,1
...

αN−1,2
Tref

T ′



0 =


Φ′′

0 (∆λ∗
2) Φ′′

1 (∆λ∗
2) Φ′′

2 (∆λ∗
2) −Φ′′

0 (∆λ∗
2) −Φ′′

1 (∆λ∗
2) . . . 0 0

0 0 0 Φ′′
0 (∆λ∗

3) Φ′′
1 (∆λ∗

3) . . . 0 0
...

...
...

...
...

. . . 0
...

0 0 0 0 0 . . . −Φ′′
2 (∆λ∗

N−1) 0


︸ ︷︷ ︸

M2


α1,0

α1,1
...

αN−1,2
Tref

T ′



0 =

(
0 1 0 . . . 0 −1 0 0

0 0 1 . . . 0 0 −1 0

)
︸ ︷︷ ︸

M3


α1,0

α1,1
...

αN−1,2
Tref

T ′


(3.40)

The matricesM0,M1 andM2 andM3 can be merged together to form the following linear system:


Γ∗

0
0

 =


M0

M1

M2

M3





α1,0

α1,1
...

αN−1,2
Tref

T ′


(3.41)

Using splines interpolation has the advantage of adding continuity constraints to the interpolating
function. Due to the fact that the emissivity is a continuous function in wavelength, splines interpola-
tion should be preferred to the simple polynomial fitting.
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Multi-temperature optimization

One way to overcome the undetermined system is to perform multiple measurements, at multiple
temperatures, assuming that the emissivity will not change. In principle, such assumption makes the
equations’ system solvable by removing one temperature variable. This multi-temporal method seems
attractive in theory. However, thismethod is highly sensitive tomeasurement noise due to the constant
emissivity hypothesis between the two measurements [117, 102].

Similarly, multi-temperature has been used in the Remote Sensing field by
assuming that the emissivity is invariant at two times. However, this method
requires accurate geometry registration to get observation under similar an-
gles (which favors geostrationary satellite data). Moreover, it requires multi-
temporal data and important temperature gradient between the measure-
ments.

Note

Grey body hypothesis

The grey body emissivitymethod tackles also the equation system unknown issue by assuming that
on two given area of the spectrum, the emissivity is constant. Such flat region in the emissivity profile
is actually a strong requirement and is not applicable to most of the observed materials.

Similarly, grey bodymethods have been used in the Remote Sensing field [15]
but for the same reason, the assumption is not satisfyed in most cases.

Note

3.1.3 Bayesian methods

In this section are presented the Bayesian inference based methods. Those statistical methods are
based on the Bayes’ theorem, used to update the probability for a hypothesis as more information be-
comes available. With the increase of computationmeans, thosemethods have become common. More
details on Bayesian inference are given on Chapter 6.

Dynamic filtering with Kalman and particle filters

The Kalman Filter applied to the emissivity / temperature retrieval has been used in the litera-
ture, in [121, 185] with SEVIRI data for example. In particular [121] formulates a four-dimensional
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approach (i.e. space-time) but applies only a temporal constraint in their article. The Kalman filter
is used conjointly with the σ − SEVIRI model based on look-up tables. Such method is specific to
the SEVIRI measurements and cannot be applied directly to the in-situ IRT measurements case. How-
ever, the Kalman Filter appears to be an interesting approach to perform parameters estimation on the
emissivity/temperature retrieval problem. In particular, the temporal approach for long-term mon-
itoring through a Kalman filter is used in Chapter 6 on which more details on the Kalman Filter are
given. Likewise, particle filters which are also Bayesian filters have been used in the Remote sensing
field. However, particle filter has not been particularly used for LST / LSE simultaneous retrieval to
our knowledge. This can be particularly explained by the fact that satellite measurements represent a
huge amount of data for which particle filtering may not be suitable due to its complexity. Yet, particle
filtering and ensemble kalman filters have been used for data assimilation [118] or data downscaling
purposes [124]. The particle filter is also more described in Chapter 6.

Monte-Carlo Markov Chains (MCMC)

The Monte-Carlo Markov Chains (MCMC) methods are meta-heuristic methods that sample prob-
ability distributions. The basic idea is to be able to browse a Markov Chain that will have the targeted
distribution as equilibrium distribution. Such method can be employed for the temperature and emis-
sivity retrieval [10]. This method has been implemented for comparison purposes in this thesis and
is therefore more detailed here. In this case, knowing the measurement vector γ, the objective is to
determine the probability distributions of p(T |γ) and p(ϵ|γ). For this, let suppose that the emissivity
ϵ = (ϵλi

)1≤i≤N and temperature T are independent, and follow a given prior:

p(ϵ) = N (µϵ, Σϵ)

p(T ) = U(Tmin, Tmax)
(3.42)

The radiative equation used is derived from Eq. (2.50) where the optical transmission is assumed equal
to 1 [20] and the sun contribution is included in the environmental contribution. A difference is made
by considering the variables as stochastic and therefore adding a measurement noise η:

L
(i,j)
λ,d⃗,tot

(T ) = τatm

(
ϵλL◦

λ(T (i,j)
obj ) + (1− ϵλ)(Lλ,env)

)
+ (1− τatm)L◦

λ,atm + η (3.43)

This equation can be written:
γ = DT ϵ + c + η (3.44)

where DT = diag(τatm

(
L◦

λ(T (i,j)
obj )− Lλ,env

)
and c = τatmLλ,env + (1 − τatm)L◦

λ,atm. Finally, it
is possible to derive the conditional distributions with this equation. Since γ is a linear function of a
Gaussian variable ϵ plus noise η, then the distribution of ϵ knowing γ has also to be Gaussian [10]. By
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using Gaussian conditioning:

p(ϵ|T, γ) = N (µ̃ϵ, Σ̃ϵ)

µ̃ϵ = µϵ + ΣϵDT (DT ΣϵDT + Ση)−1 (γ −DT µϵ − c)

Σ̃ϵ = Σϵ −ΣϵDT (DT ΣϵDT + Ση)−1 DT Σϵ

(3.45)

The temperature distribution is determined up-to proportionality:

p(T |ϵ, γ) ∝ p(γ|T, ϵ)p(T |ϵ)

= p(γ|T, ϵ)p(T )
(3.46)

Since the joint density a posteriori of ϵ and T are difficult to derive and interpret, a Gibbs sampler
will allow to sample the probability of p(ϵ, T |γ) based on the conditional probabilities p(ϵ|T, γ) and
p(T |ϵ, γ).

Let π a distribution over a universeΩ. Drawing randomly an element ofΩ following π can be done
through a Gibbs sampler [66].

Algorithm 1: Pseudo code for a Gibbs sampler

Function Gibbs(p(T ), p(ϵ|Ti−1, y), p(T |ϵi, γ),Nmcmc,Nburn)
ϵ(0..Nmcmc)← 0 ;
T (0..Nmcmc)← 0 ;
Draw T (0) ∼ p(T );
For i← 1..Nmcmc

Draw ϵ(i) ∼ p(ϵ|T (i− 1), γ);
Draw T (i) ∼ p(T |ϵ(i), γ);

RemoveNburn samples from T and ϵ;

However, since the distribution p(T |ϵ, γ) is difficult to compute, a slice-sampling algorithm [72] is
used to sample from it.

Algorithm 2: Pseudo code for a slice sampling

Function Slice-sampling(f )
Choose x such as f(x) > 0;
Repeat once

Draw y ∼ U(0, f(x));
Plot an horizontal line at y;
Sample the point (x, y) with the edge created at the intersection of f(x) and the
horizontal line;

This type of sampling is called a slice-within-Gibbs sampling. Even though this method provides
quite accurate results and its convergence is ensured in this case, the required computation is heavy
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and processing time important. Such method can therefore be used for post-process or handling a
small amount of data but the complexity of it makes it difficult to use on full resolution IR images and
real-time processing. A comparison of MCMC method with other ones is done in Chapter 6.

Artificial Neural Network (ANN)

Artificial neural network can robustly performnon-linear andparallel computations andhave there-
fore been largely used for remote sensing [6, 117, 5, 146]. A neuron represents a particular transfer
function that will transform the inputs to outputs according to a particular rule (which can be summa-
tion, thresholding etc.). Neurons are then connected between them with different possible patterns.
Through statistical (usually Bayesian) learning methods based on a particular data-set, interconnected
neurons store their acquired knowledge by updating their weight value (this behavior replicates the
synaptic plasticity of biological networks). However, suchmethods are facingmultiple difficulties such
as overfitting which occurs when a given model is too dependent on training data and may not corre-
spond to the actual targeted model. As a consequence, the selection of training data and their charac-
teristics are essential for the method to give accurate results. Furthermore, the architecture used for
the network is also one of the key-point [177]. Unfortunately, there is no standard way to help in the
choice of those parameters. Most of the time, a subjective trial and error approach is performed to set
the network. In addition, the retrieval LST/LSE process cannot be well controlled and improving the
output is complex due to the difficulty to interpret the network weights.

3.1.4 Synthesis

A review of the different emissivity / temperature separation methods have been made. Generally
speaking, the algorithms can be distinguished into three main families:

• Purely mathematics algorithms where a mathematical model aims at simplifying the equation
• Derived from physical characteristics of the measurements or the observed object
• Derived from a statistical prior on the measurement or the observed object

It has been shown that adding more wavelengths to the system does not help to solve the equations’
system. The sole introduction of an emissivity polynomial model introduces high correlations and
therefore leads to poor results [102]. However, using some prior knowledge about the observed mate-
rials is facing the mixed pixel issue: the sensor does not see a unique material but a combination of
materials with their own properties. The resulting measurement is a new equivalent material with its
own equivalent thermal properties. It is important to note also that some methods that works well
in the Remote Sensing field cannot be applied for in-situ infrared thermography measurements. As a
conclusion, the Bayesian approaches seem to offer interesting prospects, particularly due to the low
priors that can be put on the system. One difficulty of those methods is to adjust well the priors. One
drawback also can be the computation time of such methods, particularly when meta-heuristics are
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involved.

Othermethods than the presented one exist. For example, activemethods but
out-of-scope in this application (see previous chapter). It is also possible to
put a reference targetwith a knownemissivity on thefield. However, for long-
term practical applications of infrastructures, the reference emissivity may
drift through time leading to inaccuracies. It may also been difficult to place
the target so that the reference measurement is not too much influenced by
its surroundings or modifies the dynamic of the measure.

Note

3.2 Solving the radiative transfer equation

The equations presented in Chapter 2 can be used as a forward model to simulate the radiative ex-
changes that occur in a 3D scene. Such simulation tool can be useful for sizing infrared thermography
on site before any exploitation and also generate data to test or train algorithms. As a matter of fact,
recent buildings constructions comewith a building informationmodeling (BIM) that contains amodel
of the constructed building, usable for simulation purpose. The presented RTE (Eq. (2.32)) can be solved
numerically as in [180] where diffusion, convection and radiative transfers are coupled on a discretized
domain in space and angles. However, even if such methodology provides accurate results relatively to
its discrete domain, it is also computationally intensive and unfortunately not suitable for fast compu-
tation on large refined 3D models. Instead of using the full equation governing the radiation beam in
a participating medium Eq. (2.32), the radiosity equation reminded in Eq. (2.48) for the particular case
of nonparticipating mediums and diffuse surfaces is used.

Jλ(x) = Mλ(x) + ρλ(x)
π

∫
S

F (x, x
′)Jλ(x′)dS(x′) (3.47)

Eq. (3.47) is called a Fredholm integral equation of the second kind.

Note

3.2.1 Finite element approach

Analytical solutions to Eq. (2.48) exist in particular cases only. Instead, a numerical solution can
be computed by decomposing the radiosity function on a given basis. Such approximation is called a
Galerkine method, on which the domain of study is meshed and the estimated function is interpolated
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on this mesh. The Galerkine methods are a set of methods that transform a continuous problem to a
discrete one and is often used in finite elements methods. Finite element method needs to make the
study domain discrete. In the radiosity equation (nonparticipatingmedium), it leads to cut the domain
into a finite number of elementary surfaces (mesh). Let S ⊂ R3 be the study domain and L2(S) the
space of square-integrable functions (Lebesgue space):

L2(S) =
{

f ∈ S

∣∣∣∣ ∫
S
|f(x)|2dS(x) <∞

}
(3.48)

That is to say, the function is (almost) finite everywhere in the domain. Let define the inner product
on L2(S) ⟨·, ·⟩:

∀u, v ∈ L2(S), ⟨u, v⟩ =
∫

S
uvdS (3.49)

Let now V = Hm(S) be an Hilbert space of functions of L2(S) with the inner product Eq. (3.49). Let
also ∥·∥V = ∥·∥Hm . A weak form can be derived from Eq. (3.48). Let v ∈ V :

∫
S

Jλ(x)v(x)dS(x) =
∫

S
Mλ(x)v(x)dS(x) +

∫
S

ρλ(x)
π

∫
S

F (x, x
′)Jλ(x′)v(x)dS(x′)dS(x) (3.50)

A bilinear form a(·, ·) and a linear form L(·) defined respectively over L2(S)×L2(S) and L2(S) such
as:

a(Jλ, v) = ⟨Jλ, v⟩V −
∫

S

ρλ(x)
π

∫
S

F (x, x
′)Jλ(x′)v(x)dS(x′)dS(x)

L(v) = ⟨Mλ, v⟩V
(3.51)

Such writing gives the following variationnal form: finding v ∈ L2(S) such as:

a(Jλ, v) = L(v), ∀v ∈ L2(S) (3.52)

In order to use the Lax-Milgram theorem, let show that a(·, ·) is continuous on V × V and V -elliptical
and thatL(·) is a linear continuous form on V.F (x, x

′) is square integrable. By using Cauchy-Schwartz
and triangular inequality, it follows that:

∀u, v ∈ V, ∥a(u, v)∥ ≤ 2∥u∥V ∥v∥V
∀u ∈ V, ∥L(u)∥ ≤ ∥Mλ∥V ∥u∥V

(3.53)

and therefore a(·, ·) is continuous on V ×V andL(·) is continuous on V . From a physical point of view,
since the emissivity ranges in the interval ]0; 1[, thus there exists a positive number ϵ0 such as [122]:

∀x ∈ S, ϵ(x) ≥ ϵ0 > 0 (3.54)
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Which shows that a(·, ·) is V -elliptical:

∀v ∈ V, a(v, v) ≥ ϵ0∥v∥2V (3.55)

As a conclusion, Lax-Milgram theorem ensures that a solution v ∈ L2(S) of Eq. (3.52) exists and is
unique.

Based on this weak formulation, let Vh ⊂ L2(S) a finite-dimensional subspace. And let suppose
(ϕi)1≤i≤N a basis function of Vh. The study domain is now a subset of H1(S) made of polynomial
functions defined on every element of the mesh. Based on the Galerkine formulation, it is possible to
approximate the continuous function Jλ to a discrete one J̃λ ∈ Vh expressed as:

a(J̃λ, v) = b(v), ∀v ∈ Vh (3.56)

Since J̃λ ∈ Vh, J̃λ can be expressed with the basis functions of Vh:

Jλ ≈ J̃λ =
n∑

j=1
J̃λ,ja(ϕj , ϕi) = b(ϕi) (3.57)

With Eq. (3.51) and Eq. (3.57):

n∑
j=1

J̃λ,j

(
⟨ϕj , ϕi⟩Vh

−
∫

S

ρλ(x)
π

∫
S

F (x, x
′)ϕj(x′)ϕi(x)dS(x′)dS(x)

)
=
∫

S
ϕi(x)Mλ(x)dS(x)

(3.58)
For orthonormal basis functions:

⟨ϕj , ϕi⟩Vh
= δij∫

S

ρλ(x)
π

∫
S

F (x, x
′)ϕj(x′)ϕi(x)dS(x′)dS(x) = ρiFi→j∫

S
ϕi(x)Mλ(x)dS(x) = Mλ,i

(3.59)

whereFi→j are the form factor defined in the previous chapter, ρi is the average reflectance of element
i andMλ,i the average emission of element i. For an opaque material it follows that:

Jλ,i = Mλ,i + (1− ϵλ,i)
n∑

j=1
Fi→jJλ,j (3.60)

Eq. (3.60) is the discrete version of the radiosity equation. In the following, methods for solving this
equation will be reviewed. In particular, even if the origin of this radiosity equation is derived from
the thermal transfer theory, it has been widely used in a very different field: graphics rendering [75].
In fact, if radiative heat transfer is interesting in the propagation of thermal radiation through sur-
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faces, the equations are analogous for light propagation to render diffuses surfaces. Therefore, the
following methods are presented from this former field, even though those methods could be applied
from a more finite element point of view. In this thesis, the mathematical quantities refer to radiome-
try and not photometry. The photometry aims at measuring the light in terms of human’s perception
whereas radiometry measure radiant energy (including light) in terms of absolute power. Therefore,
terms radiance, radiant flux and radiant intensity are used in place of luminance, luminous flux and
luminous intensity for consistency. Please note that the twofields aim at different goals. When thermal
specialists look for an accurate thermal solution of radiative exchanges equations, computer graphics
specialists look for a fast solution as real as possible (through the following presentedmethods). In this
thesis, the aim is to develop a simulation tool that gathers those two approaches.

3.2.2 3D image synthesis

Image synthesis history starts during the end of the 1950s for automotive and aeronautic researches
purposes. First electronic pens appeared in the first 1960s into an IBM computer so drafting the first
mechanical parts through a computer for General Motors was possible [94]. Further development have
been performed during the 1960s in order to develop computer aided design (CAD) programs for 2D and
3D production drawings. The Computer Graphics term appeared in 1961 and is attributed to Boeing
art’s CAD director William Fetter. In the late 1960s, Utah university specialized in the 3D modeling
which aimed at forming a computer model of an object’s shape. In beginning of 1970s, Martin Newell
at Utah university proposed a 3D model of what will become the famous Utah teapot, which was an
object challenging to model but still possible with curves and reflective surfaces. In the late 1970s, 3D
computer graphics software appeared for home computers such as 3D Art Graphics in the Apple II. The
development of 3D computer graphics were slowdown during the 1970s due to the high hardware cost
but with the apparition of home computers, the 1980s are an upsurge time for computer graphics. But
it is only in the 1990s that image synthesis and 3D become trendy and now used in many application
thanks to the hardware development of graphical processing units (GPU): scientific simulations, CAD,
art but also video games. Nowadays, the many algorithms and various applications exist for image
synthesis and it is a constant evolving field mixing video games, scientific simulation and animation
movies. In this thesis, the objective is to develop a scientific simulation software to render infrared
images from in-situ 3D scenes. The light transport equations used in the image synthesis field are similar
to the radiation transfer equation. However, one of the main differences between the radiation theory
and the 3D image synthesis is the initialization condition. In fact, in most image synthesis algorithms,
the emissivity of the surfaces are initialized as follows:

ϵ =

0, if it is not a light object

1, if it is a light object
(3.61)
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Then, the reflectivity of the surface is used to reflect light. Even if emissive objects are sometimes
considered, it represents only a - usually - small part of the scene. At the opposite, in the radiative
transfer field all surfaces are supposed to emit which is a non negligible fact. A bibliographic overview
of image synthesis is therefore presented in this section.

3D image synthesis algorithms can be classified into two categories: local illumination and global
illumination. Local illumination methods as their name stipulate consider only the local parameters
of the scene (usually the probe lights sources, meshes material properties and normal) to compute
the apparent luminosity of the meshes. Those algorithms when executed on material hardware are
rendered in real-time really efficiently. However those algorithms (Lamberts, Gouraud, Phong, Cook-
Torrance, Kajiya, etc.) are only based on the aesthetic of the rendering and computed empirically. Those
methods take into account direct lightning only and therefore exchanges between the elements other
than the light→ object interactions are not considered. This can even lead to inconsistencies with the
first thermodynamic law.

At the opposite, global illumination (GI) based algorithms compute both direct and indirect light-
ning that take into account the incoming radiation (or light) and also the different recursives reflec-
tions with the surrounding environment. Those algorithms are mostly based on the radiosity equation
presented below.

Most recent developed algorithms are now called PBR for physically based
rendering (the 2004 reference book has now its 3rd free online edition [142])
and tend to respect as most as possible physics’ laws to make the rendering
as real as possible.

Note

GI algorithms are used in 3D image synthesis and take into account not only the direct illumina-
tion of light sources but also the scattered and reflected light form other patches present in the scene.
Therefore, each elementary surface’s illumination cannot be computed individually and the system
thatmodelize all the radiative exchanges can only be rendered globally. Many applications are involved
such as animationmovies (e.g. Disney, Pixar), special effects or video games for texture rendering. Two
main types of algorithms exists [163]:

• Ray tracing based methods (ray tracing, photon mapping, metropolis light transport, etc.)
• Direct computation of the radiosity’s coefficients equation (radiosity method, finite elements,
optimization, etc.)

A review of those methods are presented in this section.
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Ray tracing

Ray tracing methods principle is to browse the light path backward from reality: a ray is thrown
from the camera toward the 3D scene and bounces until it reaches the light. This behavior is the op-
posite than reality where the ray goes from the light to the camera. Each time a ray encounter an
obstacle, its energy can be distributed according to the different physical phenomena that occur on
the object (absorption, reflection, transmission, diffraction, etc.). The first algorithm was developed in
1968 by Arthur Appel from IBM [8]. The idea was to throw a ray from the eye, one per pixel and stop
once the closest object blocked the ray. This led to determine the shading of an object. Then, in 1979,
the algorithm was improved by performing multiple bounces and casting new rays from an incoming
ray that represents the reflection, refraction and shadow [190]. Then, improvements on the method
and the consideration of many other phenomena were made on the literature [64]. A few methods for
ray tracing based rendering are presented. Basic ray tracing algorithm are straightforward to imple-
ment nowadays (for simple considerations of physical phenomena) and can provide realistic results
(see Fig. 3.6 for an advanced result).

Figure 3.6: Ray tracing images can be realistics, example with the POV-Ray software rendering
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Moreover, only a geometrical description of the scene is required, and may not need to be dis-
cretized. Due to the independence of the rays, the algorithm can be parallelized. However the main
drawbacks are that the rendering equation is not used in basic ray tracingmethods and is therefore not
considered as photo-realistic since the physic may not be respected. Also, the ray tracing algorithm
produces noise due to the random sampling which reduces with the number of particles thrown per
pixel (see Fig. 3.7). Finally, the rendered image is view-dependent for standard ray tracingwhichmeans
that for any movement of the camera in static scenes, the algorithm needs to be computed again. This
behavior enables the methods to compute the solution quickly. In fact, the rays are thrown from the
pixels of the camera only. View independent ray tracing methods does exist, especially by rendering
the scene from multiple views. However, such fix induces a high increase of computation time [64].

(a) Ray-traced Sponza sample scene with Cycles ren-
derer (zoom).

(b) Ray-traced Sponza sample scene with Cycles ren-
derer after denoising (zoom).

Figure 3.7: Example of ray-traced rendering with the Sponza scene and Cycles open source renderer.

Monte-Carlo ray tracing Monte-Carlo methods are a set of methods that compute a given numerical
value based on stochastic processes. The numerical value is approximated by running multiple simu-
lation.
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A simple example of this method is to approximate π value. Let C be a circle
of R2 of radius r. Let now S be the square in which C is inscribed, x and y

drawn from a uniform distribution in the square. The probability that the
point p(x, y) lies into C can be given by the ratio between the area of the
square to the area of the circle:

P (p ∈ C) = AS

AC
= 4r2

πr2 (3.62)

Which means that π = 4P (p ∈ C). By drawing multiple times p into the
square and counting the number of occurrences that p lied into C, then π can
be approximated (see Fig. 3.8). Of course, this method is actually not efficient
but it serves Monte-Carlo principle demonstration purposes.

Note

Figure 3.8: Monte-Carlo π approximation after 500 iterations and 10000 iterations.
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TheMonte-Carlo ray tracing method is the basic ray tracing that was used to throw a lot of random
particles in random directions over the 3D scene and observe their evolution. This method has the
advantage of being light and simple to develop and to consider all radiative transfer effects without
approximation. However, as shown with the simple π approximation example, the convergence may
take a long time and an important particles number to be thrown [158]. As a consequence, this method
may lead to an important computational cost.

Path tracing Instead of throwing randomly the rays, other methods were developed to optimize the
path taken by the rays. In path tracing, the thrown rays may not have randomness in its process.
This is the most common behavior used in most ray tracing algorithms. A ray can be drawn from a
deterministic way even if some randomness can be used, particularly for taking into account advanced
physical phenomena [64].

Radiosity methods

In order to get a more realistic global illumination algorithm, many developments have been made
to solve the radiosity equation. This equation faces multiple challenges: computing the visibility be-
tween the surfaces, computing their form factor and finally solving the equation system. Even if the
discrete version of the equation is a linear system, this system can become very large for refinedmeshes
and therefore computationally intensive to solve. On the contrary of ray tracing algorithm, once the
radiosity have been computed, the solution is global and does not depend on camera’s view.

In real-time 3D computer graphics, radiosity is used to compute the so-called
lightmaps. Lightmaps are precomputed textures that aim at caching light
data of a 3D scene. Once the radiosity of the scene have been computed, the
brightness of the surfaces is stored on such texture. To render the scene, the
texture is then mapped against the surfaces.

Note

Progressive radiosity To overcome this issue, Cohen et al. [41] proposed an iterative approach to the
solution system. The advantage of this method is its ability to progressively solve the equation system
and display the result at each iteration. The original algorithm takes into account diffuses surfaces on
nonparticipating media with occlusion. Please note that improvements have been made on this algo-
rithm over time to take into account transmission, absorption, specular reflection, participatingmedia
or bidirectional reflection [162, 164, 25, 40]. Thanks to the technological development of computer’s
graphical processing units and related software, this algorithm can be optimized to render more effi-
ciently the radiative transfer exchanges inside 3D scenes. The parallelization task is however challeng-
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ing due to the high dependence that exists between the mesh elements [42, 187, 7]. This algorithm has
been retained in this thesis for its physical and view-independent approach. Therefore, more details
on this algorithm and implementation will be given on the dedicated Chapter 5.

Improvements on the radiosity method As stated previously, improvements for computing the radios-
ity have been done in the literature, in particular to increase the speed of the rendering or to inject
more phenomena in the radiosity equation. Some possible improvements are described here.

As for example, general reflectance functions can be approximated by spherical harmonics [164].
This method consists in decomposing the radiance into a sum of spherical harmonics, linked to Legen-
dre polynomials, and has been developed as well in the radiative transfer field [129].

Meshing is an important part of the radiosity process which will have an impact on both accuracy
and speed computation. In fact, shadows can fall betweenmesh vertices and can be entirely missed for
example. A common extension to the progressive radiositymethod is to refine themesh as the solution
is computed [86, 184, 136] or in post process, which is common in finite element methods [156].

Hierarchical methods are a meshing strategy used to reduce the computational cost of the radios-
ity solution. A hierarchical subdivision method is based on the previous adaptive subdivision but this
time, the radiosity solution is approximated at different scales [38, 40]. The same number of elements
is kept but if a local patch needs to be refined due to an important gradient for example, a subdivision
can be made on this part only of the solution and a hierarchy is performed which implies to keep only
a hierarchical interaction (see Fig. 3.9). This method provides important improvements if the original

Figure 3.9: Hierarchical subdivision
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mesh can be refined without any need of new tesselation (mainly for planes and square shapes). When
dealing with concave and convex geometries, the improvements falls drastically: a curved surface al-
ready needs to be represented as small polygons and thus, the hierarchical radiosity will not bring a lot
of improvements. Nevertheless, some techniques can be added to the radiosity method in the particu-
lar case of curved shapes [89, 25]. This algorithm has been used recently for the simulation of thermal
radiative transfer inside houses and implemented on a central processing unit (CPU) [107].

When parallelized, the adaptive subdivision becomes more complex; fortu-
nately this can be overcome on current graphic hardwares with the use of
quadtree textures [79].

Note

For participating media, the classical radiosity method can be extended through voxels (i.e. pixels
in 3D) to consider the radiative exchanges in 3D [138, 9, 161].

To complete the previous note on quadtree textures to represent subdivided
patches, the voxel representation in recent hardware is made possible by the
use of octree [110]

Note

Finally, please note that othermethods also exists. For examplemeshlessmethods have been devel-
oped [112, 111] on which only a mathematical description of the domain is needed, without any need
for meshes. In this case, a basis function is used to approximate the solution on the 3D objects at some
points. Those points are then interpolated to get the final estimate.

Hybrid methods

To overcome the radiosity difficulty to take into account specular reflection, participating media
and also dynamic scenes, hybrid methods that combine both ray tracing and radiosity have also been
developed [157]. Two common methods called photon mapping and instant radiosity are presented
first. Then more recent and advanced ones will be briefly presented.

Photon mapping The photon mapping approach introduced by Jensen and Chris-tensen [65] is a two-
pass algorithm. First, the photons are traced from the light sources into the scene. Each time a photon
intersects a surface, the intersection point and incoming direction are stored on a cache called photon
map. Then, based on this photon map, the rendering can be performed using the radiosity equation. A
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ray tracingmethod is usedwhere the ray is divided into categories: direct illumination, specular reflec-
tion, transmission and indirect illumination. The direct illumination, specular reflection and transmis-
sion are ray-traced but the indirect illumination is computed using the previously cached photonmap.
For a given point, N nearest photons are gathered. The photon density is then computed by adding
the flux of those photons and divided by the projected area of the sphere that contains those N pho-
tons [64]. Photon mapping is a simple and efficient method able to deal with complex geometries and
multiple light phenomena such as caustics. However, as stated in [25], it suffers from various artifacts
such as blurred shadows and requires a high amount of memory when a lot of light are present on the
scene. In fact the photon map is a shortcut that allows the interpolation of photon density. However,
if all surfaces are considered to emit such as in the radiation field, then the photon map may not be
efficient.

Instant radiosity Instant radiosity is also a two-pass hybrid approach. The aim of the algorithm is
to provide a real-time radiosity solution [99]. In this method, the indirect illumination is replaced by
the direct illumination from new light source points (called virtual point light (VPL)). As for the pho-
ton mapping, a first set of photons are thrown on the scene and new point sources are placed where
a trajectory intersects a surface. Then the direct illumination due to these point light sources is accu-
mulated, resulting in an approximation of both direct and indirect illumination. This method provides
actually fast results. However, the resulting image may have bias due to the VPL introduced into the
scene. First, a too much intensity at the location of the VPL can occur. Then, if the VPL number is too
small or not well sampled regarding the geometry, some interactions may be missed. A solution to this
issue is given in [154].

Recent developments Based on the VPL, more recent developments have been made, in particular to
improve the computation speed of the process and adapt it to modern hardware [188, 33, 106].

Also, efficient and nowadays often used methods for real-time global illumination algorithms are
the light propagation volumemethod which is an extent of VPL where a hierarchical storing data is per-
formed: every VPL stores which points in the world they light up on a 3D grid. Then the light is spread
by using spherical harmonics for the directional reflectance function approximation. This method was
developed by Crytek for their rendering engine CryEngine.

Finally, anothermethod is the voxel cone tracing. Again the scene is represented by volume elements
(voxels) and stored in an octree texture. Then, instead of tracing a ray represented by a line, the ray is
represented by a cone. This cone can then propagates its energy through the octree across the different
refinements scales [47].

Those advanced algorithms render a highly looking realistic scene in real-time but still resides in
a view-dependent solution and approximation on the radiosity equation. The number of bounces or
VPL in those algorithms will refine the solution but increase the computational time. Moreover, those
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algorithms are also based on the fact that not all the surfaces on the scene are a source of light.

Softwares for radiative simulations

Softwares have been developed in the literature for computing radiative exchanges of 3D scenes.
SOLENE notably, initially developed for architectural purposes, takes into account the radiative ex-
changes in urban scenes [81, 88]. It proposes thermal balance, building surface temperature, effect of
vegetation on streets etc. This software has multiple modules to make different thermal interactions
based on finite element models. The method used for solving the radiative exchanges is the progres-
sive radiosity refinement method, for its rigorous physical approach [103]. Although the results are
interesting and the models used are complete to simulate a micro-climate urban scene, this software is
not available freely and suffers from a lack of online documentation.

Synthesis

The radiosity continuous equation have been discretized through a finite elementmethod, inspired
from the radiative transfer field. This equation has then been taken to the image synthesis field for
rendering realistic 3D scenes. Then, a short overview of different techniques used in image synthesis
have been shown. If the ray tracing based algorithms offer a way to render complex phenomena, those
methods suffer from their view-point dependence, and the need for denoising the rendered image in
post-process. Moreover, some of those methods may not strictly respect the physical equations. At
the opposite, methods that aim at solving the radiosity equation are view-independent and respect
the physical equations (relative to the spatial discretization). However, radiosity based methods are
computationally intensive and are not able to take into account all physical phenomena easily. To
conclude, many methods have been developed to simulate the light transport. Some algorithms will
therefore perform better in specific situations: from a generic perspective, radiosity based algorithms
will behave better in pure diffuse environment and ray tracing in highly specular scenes. In order to
simulate the radiative exchange between surfaces for in-situ infrared thermographymeasurements, the
progressive radiosity method has been chosen. It has been implemented on recent graphic hardware
and slightly adapted with a GPGPU approach inspired from the image synthesis field and presented in
Chapter 5.

Multiples solutions exist to improve the temperature estimation on in-situ infrared thermography.
As shown in this chapter, the first way is to develop emissivity and temperature separation methods to
get a more accurate estimate of the temperature, or at least a known uncertainty on this estimation.
This can be achieved through the use of Bayesian methods. Secondly, the optimization of in-situ set-
up due to the angle and view dependency of the measurement will also have an important impact on
the final temperature estimation. As a consequence, a 3D radiative exchanges simulation tool can be
used to optimize and visualize the measurement, before any setting up. This tool, can also be used
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to test the previous temperature and emissivity separation methods. Finally, the estimation of the
parameters other than emissivity and temperature can also help to improve the estimation accuracy.
The next chapter aims at introducing the concepts of practical infrared thermography measurements
and the impact of the environmental parameters on the final temperature estimation.
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Chapter 4

In-situ long-term thermal monitoring of
structures: environmental measurements

bias compensation

I n the previous chapters, the different equations that govern the thermal radiative transfer have
been exposed. It has been shown that the simplified radiometric equation, used to derive the tem-
perature from infrared measurements depends on many factors. To overcome the lack of knowl-

edge about most of those parameters, one solution is to use other in-situmeasurements, or at least find
a way to estimate those secondaries variables. Practical instrumentation considerations for in-situ in-
frared thermal monitoring will be exposed in this chapter. In particular, the need for couplingmultiple
sensors with an infrared camera will be presented. Handling multi-sensors data over long-term ther-
mal monitoring can lead to an important amount of information to store. Those data need to be well
registered. In this case, this is done by using standardized file formats for the records that allow the
writing of metadata (a description of the recorded data). Moreover, a specific tool has been developed
during this thesis to visualize and process such amount of data.

Like any measuring tool, an infrared camera needs to be calibrated. In order to retrieve the tem-
perature from the digital levels returned by the camera, the process of thermal calibration is shown.
Also, due to the geometrical dependency between the camera and the observed surfaces, a spatial cali-
bration is proposed. Such spatial calibration allows the retrieval of some geometrical parameters such
as the angle and distance between the object and the camera.

Moreover, a study of the effects of the different parameters that influence the measurement are
also exposed. Finally, it will be shown that it is still possible to estimate some parameters of the model
when no coupling has been done. This is achieved by using open data available online.

4.1 Infrared camera calibration

This section introduces the thermal and spatial calibration processes, needed to make as trustful
measurements as possible. The thermal calibration process is performed prior to the measurements in
laboratory conditions. The spatial calibration can be done in different ways, exposed below.
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4.1.1 Thermal calibration

Thermal calibration functions

The equations behind the measurements have been presented previously. Once the object radi-
ation L

◦(i,j)
∆λ (T (i,j)

obj ) has been estimated, it is still necessary to convert this radiation to temperature.
The most popular calibration function used for radiation thermometers is the Sakuma-Hattori equa-
tion [128, 104, 175]. Introduced in 1982 [151], the Sakuma-Hattori equation provide the electromagnetic
signal of thermal radiation froman object’s temperature. This equation is then used during the thermal
calibration process to relate the blackbody source temperature to the signal received at sensors. Mul-
tiple equations have been derived then from this main equation to fit different bandwidth and needs
[153]. The Planckian form of the Sakuma-Hattori function is given in the following, whereA,B and C

are constant values and C2 is the second radiation constant.

S(T ) = C

exp( C2
AT +B )− 1

(4.1)

where S(T ) is the measured quantity, in digital levels. An equivalent function is often found in the IR
thermography field called the RBF-function.

S(T ) = R

exp(B
T ) + F

(4.2)

This equations are mainly used due to their close form to the integrated over spectral responsivity’s
Planck’s law and the fact that it can be inverted.

Thermal calibration process

In order to calibrate thermally the camera, a black body calibration source is used. The infrared
camera is placed in a climatic chamberwhere the temperature is controlled. Differentmeasurements at
different source temperature aremade. Finally, the RBF function is fitted to themeasurements through
an optimization algorithm, deriving theR,B and F constants. An example of such calibration process
is presented in the next part.

Thermal calibration example

A black body calibration sourceMikronM310 (ϵeff = 1, ∀λ ∈ [8µm, 14µm]) has been used for ther-
mally calibrating the infrared camera Fig. 4.1. Experimental calibration at 10K sampling has beenmade
forT ∈ [293.15K, 343.15K]. The quantity

(
Tobject − Tcalibration

)2
isminimized through the Levenberg-

Marquardt algorithm.
The Fig. 4.2 shows the optimized parameters improvement on the conversion process from the

measurements. The distance between the objective temperature and the measure one is reduced and
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(a) Mikron M310 (b) Infrared view of the source

Figure 4.1: Black-body calibration source

the standard deviation is also reduced.

Figure 4.2: Result of thermal calibration

4.1.2 Spatial calibration

The necessity of knowing the geometrical information has been presented earlier. Some method-
ologies and algorithms to perform camera resectioning (i.e. calibrate spatially the camera) are pro-
posed. Many algorithms and methods have been developed in the computer vision field for many dif-
ferent applications such as machine vision, mobile robot navigation, biomedical, etc. Some differences
from the traditional algorithms that we can find in the literature can be noted. In the case of infrared
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structure monitoring, the input images comes from other spectral ranges than the visible spectrum
which leads to a different pixel range dynamics. Moreover, in some cases, it can be difficult to put
a geometric reference on a test site for safety purposes. However, we usually use a 3D model of the
structure we are monitoring that is assumed to be available.

Camera resectioning

Introduction The objective of camera resectioning is to find the new coordinates of the projected
points into the image from the real scene (see Fig. 4.3). Such calibration gives the position informa-
tion from an image to its corresponding points in the real scene. Different calibration methods exists,
mainly depending of what we know about the observed scene.

x y

z

y′
z′

x′
j

i

MT

World coordinates Camera coordinates Image coordinates

Figure 4.3: Principle of camera resectioning.

A camera resectioning model can be defined through two types of parameters, represented in
Fig. 4.4:

• Extrinsic parameters, that transform the 3D coordinates of the scene into the 3D coordinates of
the camera. These parameters mainly depend on the scene and the camera disposition relative
to it.

• Intrinsic parameters, that transform the 3D coordinates of the camera into pixels coordinates.
The intrisic parameters depend on the camera properties due to the lens used for example.

The simplest model of a perspective matrix is given below. We will review in this section how to
extend this model and how to estimate the different parameters.


f 0 0 0
0 f 0 0
0 0 1 0




x

y

z

1

 =


fx

fy

z

 (4.3)
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x y

z

Extrinsic Parameters
y′

z′

x′

Intrinsic Parameters
j

i

MT

World coordinates Camera coordinates Image coordinates

Figure 4.4: Extrinsics and intrinsics parameters over the camera resectioning.

Extrinsic parameters The first step for converting the real world coordinates into pixel coordinates
is to translate the information of the camera position.

The camera can be translated and/or rotated from the real world. Therefore, a combination of
rotation and translation is enough to define the camera position from the real world:

−→p c = Rw→c
−→p w +

−→
T w→c (4.4)

where −→p c, −→p w respectively define the point from the camera frame and a point from the scene
frame. Rw→c is the rotation matrix from the world to the camera and Tw→c is the translation one.

This transformation creates 5 degrees of freedom (DOF), due to the need of setting 3 points in R3.

• First point p1: 3 degrees of freedom (x1, y1, z1)
• Second point p2: 1 degree of freedom d = ∥p1, p2∥
• Third point p3: 1 degree of freedom θ, angle around the line created by p1, p2.

In order to get from this new camera 3D frame to the pixel frame, we now need to get the intrinsic
parameters.

Intrinsic parameters With Eq. (4.3), the simple perspective transformation can be written as:

u = f
x

z
+ u0

v = f
y

z
+ v0

(4.5)

where u0 and v0 are the camera origin coordinates in the pixel frame. However, by consediring the fact
that pixels are in some arbitrary spatial units, and not always square:

u = α
x

z
+ u0

v = β
y

z
+ v0

(4.6)
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Moreover, we can also consider a coefficient of non-orthogonality between x-axis and y-axis of our
frame, called "skew" and represented by Fig. 4.5:

u = α
x

z
− α cot(θ)y

z
+ u0

v = β

sin(θ)
y

z
+ v0

(4.7)

u

v v′

u′

θ

v′ sin(θ) = v

u′ = u− cos(θ)v′

= u− cot(θ)v

Figure 4.5: Frame skew

Such equation leads us to the following matrix in homogeneous coordinates:


zu

zv

z

 =


α −α cot(θ) u0 0
0 β

sin(θ) v0 0
0 0 1 0




x

y

z

1


−→p ′ =K −→p

In order to have a more readable and understable matrix, let s be the skew, (cx, cy) the camera
center and a the aspect ratio:

K =


f s cx

0 af cy

0 0 1

 (4.8)

Parameters combination By combining Equation 4.4 and Equation 4.8:

−→p ′ = K(Rw→c
−→
T w→c)−→p

= MT
−→p

(4.9)

With I3 the identity matrix,MT is:

MT =


f s cx

0 af cy

0 0 1




1 0 0 0
0 1 0 0
0 0 1 0


(

R3x3 03x1

01x3 1

)(
I3 T3x1

01x3 1

)
(4.10)

The equation 4.10 is called the pin-hole model. Therefore, a camera matrix is described by several
parameters:
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Extrinsics

• Translation T from the origin of
world coordinates

• Rotation R from the world coordi-
nates

Intrinsics

• Focal length f

• Principle points (cx, cy)
• Aspect ratio a

• Skew s

Finally, we have 11 = 5(Projection) + 3(Rotation) + 3(Translation) degrees of freedom.

Therefore, we can estimate the transformationmatrix if we have a prior knowledge of our observed
scene. Which means having at least 6 points for which we know the position in the scene frame and in
the image.

Camera resectioning algorithms

The methods can be divided into two main categories, traditional methods and self-calibration
methods [145]. We use in the next part the non-linear basedmethod that can take into account the dis-
torsion of the camera. We assume that some reference are known in the image. At least, the Computer-
aided design (CAD) is known, which is the case for most recent applications of civil engineering.

Classic camera calibration In traditionalmethods, a reference on the scene or a set of correspondances
points between the scene and the image are known. Then, an optimization algorithm is used to find the
camera model parameters. Different methods exists such as direct linear transformation, non-linear
methods, two-steps method (Tsai’s algorithm), Zhang’s method, etc..

Camera auto-calibration When there is no reference on the scene or that nothing on the scene is
known, self-calibration techniques determines the internal camera parameters directly. Such calibra-
tion techniques can use multiple views or when the camera is moving perform an active camera self-
calibration.

Direct Linear Transformation The direct linear transformation (DLT) was introduced in 1974 by I.E
Sutherland [174] for digitizing 2D drawings to 3D model with a pen. This algorithm solves a set of
variables links to a set of similarity equations. Based on this algorithm, [85] have provided a "Gold
standard" algorithm for calibration We have seen in the previous section that at least 6 points were
needed to solve the equation system. If we have at least such points, we can create a homogeneous set
of equations that defines a least squares problem when over constrained.
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WithMT = (mij)1≤i≤2
1≤j≤3

and by writting the system for n points, we have:

A2nx12



m00

m01

m02

...

m22

m23


= 02n (4.11)

Where

A =



X1 Y1 Z1 1 0 0 0 0 −u1X1 −u1Y1 −u1Z1 −u1

0 0 0 0 X1 Y1 Z1 1 −v1X1 −v1Y1 −v1Z1 −v1

... ... ... ... ... ... ... ... ... ... ... ...

Xn Yn Zn 1 0 0 0 0 −u1Xn −u1Yn −u1Zn −u1

0 0 0 0 Xn Yn Zn 1 −v1Xn −v1Yn −v1Zn −v1


(4.12)

Therefore, we can minimize ∥Am∥ to get a least squares problem when over constrained (6 or more
points). Since the scale is arbitrary, we can also add the constraint ∥m∥ = 1. This can finally be
formulated as a homogeneous least square problem:

min
∥x∥=1

∥Ax∥ (4.13)

(Get the eigenvector ofAT A with the smallest associated eigenvalue).

Singular Value Decomposition

Theorem 1. LetM be am× nmatrix for which coefficients belongs to the fieldK whereK = R orK = C.
M can be decomposed such as:

M = UΣV ∗ (4.14)

where U is a m × m unitary matrix on K , Σ is a m × n matrix for which the diagonal coefficients are reals
positives or zero and all others are zeros. V ∗ is the conjugate transpose to V , a n× n unitary matrix onK . This
decomposition is called the singular value decomposition ofM .

The first way to get the parameters is to solve 4.13 by eigenvalue decomposition. This can be
achieved by a singular value decomposition ofA.

Proof. Let A = UDV T be the singular decomposition of A (with real coefficients) such asD is sorted
by decreasing values.

∥Ax∥ = ∥UDV T x∥ = ∥DV T x∥ (4.15)
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Let y = V T x, therefore we want to minimize ∥Dy∥ subject to ∥x∥ = ∥V T x∥ = ∥y∥ = 1. However,
sinceD is diagonal with decreasing values, the minimum of ∥Dy∥ is found when

y = (0, 0, 0, ..., 0, 1)T (4.16)

Therefore, x = V y is the last column in V .
Moreover,

AT A = (UDV T )T (UDV T ) = V DT UT UDV T = V DT DV T (4.17)

SinceDT D is diagonal, thismeans that the singular value decomposition corresponds to the eigenvalue
decomposition. DT D contains the square eigenvalues ofA and V contains the eigenvectors.

Algorithm 3: Pseudo-code of the SVD computation
Objective: Given n ≥ 6 image point correspondences xi ↔ Xi, compute the singular value
decomposition ofA that will minimize the homogeneous least square problem:

min
∥x∥=1

∥Ax∥

Initialization Generate matrixA with xi andXi inputs

Compute SVD
Perform eigenvalues decompositionAT A = V DV T

Find the minimum value ofD diagonal corresponding to the smallest eigenvalue
return the corresponding eigenvector from V

Output: Estimate of the calibration matrixMT

Nonlinear methods Those methods are preferred to the previous one. The idea is to define an error
function between the two sets of points (projected 3D points and image positions). Then minimize
E with nonlinear optimization methods such as Levenberg-Marquardt. This concept has been intro-
duced by [85] with the direct linear transformation (DLT) algorithm. The objective is to estimate the
transformation matrixM by minimizing an error function f :

min
MT

f(xi, MT Xi) (4.18)
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Prior to this minimization, a normalization is recommended since it provides an invariant behavior
regarding the scale and coordinate origins of the input points. Moreover, it also improves the accuracy
of the results (see section 4.4.4 of [85]). Different normalization are possible. We will present here the
isotropic scaling that we apply to the 3D and 2D dataset of points:

• The points are translated so that their centroid will be at the origin.
• The points are scaled so that in average, they will be around the unit ball of there space in eu-
clidian norm.

Moreover, multiple error functions can be chosen even if they are obviously based on a geometric
error function.

1. Error in one image The simplest way is to minimize the geometric distance of the projeted
points with the objectives points:

∑
i

d(xi, MT Xi)2 (4.19)

2. Error in both images - symmetric transfer errorHowever, in amore realistic casewhere image
measurement errors occur in both the images, we can minimize the error for the forward (MT )
and backward (M−1

T ) transformations:

∑
i

d(xi, MT Xi)2 + d(Xi, M−1
T xi)2 (4.20)

3. Error in both images - reprojection error In this case, we want to get a perfect match of the
forward and backward projected points. To do so, we determine new correspondences of our
input points xi ↔ x̃i,Xi ↔ X̃i so thatM will perfectly match the two points and minimize the
distance between the correspondances.

∑
i

d(xi, x̃i)2 + d(Xi, X̃i)2, with x̃i = MT X̃i (4.21)

The illustration in Fig. 4.6 inspired from [85] shows the differences between the symmetric trans-
fer error and the reprojection error.
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Figure 4.6: A comparison between the symmetric and reprojection error, as proposed in [85]

4. Sampson error Another cost function that can be used is called the Sampson error [85], based
on the approximation used in [152] for conic fitting.

5. "Gold Standard" Algorithm: Algorithm 4

Algorithm 4: DLT based algorithm for calibration matrix estimation
Objective: Given n ≥ 6 image point correspondences xi ↔ Xi, determine the "Maximum
Likelihood Estimation" ofM
Initialization Compute a linear solution to get an initial estimate

Normalization: Compute the normalization matrices U and V : X̃i = UXi, x̃i = V xi. We
call M̃T the matrix such as: x̃i = M̃T X̃i;
Singular Value Decomposition: By stacking the equations, we get a 2n× 12matrixA on
which we solveAm̃ = 0 by SVD where m̃ is the vector containing M̃T entries.

Levenberg-Marquadt
By using the linear estimate as a starting-point, we minimize the geometric error:∑

1≤i≤N d(x̃i, M̃T X̃i)
Denormalization

The matrix is finally obtained by: MT = V −1M̃T U

6. Improving the estimation It has been shown that at least 6 correspondences were needed to
solve the system, meaning that the only source of error is in the measurement’s point position.
Most of the time this error is said to follow a Gaussian distribution. However, in practical, this
assumption may not be verified since mismatch points will be outliers for the Gaussian distribu-
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tion. Therefore, if we have n > 6 correspondences, a more robust estimation can be made by
performing a Random sample consensus (RANSAC) [68] algorithm. A pseudo-code of a general-
ized RANSAC algorithm for this purpose is given on Algorithm 5.

Algorithm 5: Pseudo-code for RANSAC algorithm where the error function and the model are
defined appart.

Function RANSAC(data, fcnModel, fcnError, nData, nIteration, thres, nMinData)
data set of observations

(ObservationsA
ObservationsB

)
fcnModel model to be adjusted to the data, returns the parameters p

of the model (p = fcnModel(inputPoints))
fcnError estimate error between a point and the parameters: e = fcnError(point, p)
nData number of data used to adjust the model
nIteration number of maximum iterations
thres a threshold value to adjust the data to the model
nMinData number of minimal data necessary to consider this model
Initialization iIteration = 0, finalError =∞, other allocations here
while iIteration < nIteration

rPoints = select nData random points from data;
modelParameters = fcnModel(rPoints) ; /* Get those parameters */
setOfPoints = rPoints ; /* We initialize the set of points */
foreach iPoint ∈ data and iPoint /∈ rPoints /* For all other points */

if fcnError(iPoint, modelParameters)< thres
add iPoint to setOfPoints;

/* If the number of elements is satisfying */
if numberOfElements(setOfPoints) > nMinData

e = fcnError(setOfPoints, modelParameters) ; /* Compute the error with all
the points */
if e < finalError /* Best model yet */

/* Save the data */
finalModelParameters = modelParameters;
finalSetOfPoints = setOfPoints;
finalError = e;

iIteration++;
Result: finalModelParameters, finalSetOfPoints, finalError
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Summary of main resectioning algorithms

Type of view Algorithm Input Data Output Data

One view DLT At least n ≥ 6 correspon-
dences

Transformation matrix
M

DLT + RANSAC A bunch of correspon-
dences

Transformation matrix

Gold Standard At least n ≥ 6 correspon-
dences

Model parameters

Gold Standard + RANSAC A bunch of correspon-
dances

Model parameters

Two views Zhang’s method Multiple images views
with patterns and cali-
brated cameras

Essential matrix and pa-
rameters

Zhang’s method Multiple images views
with patterns and uncali-
brated cameras

Fundamental matrix and
parameters

With the development of technologies to realize the 3D design of civil engi-
neering structures, we can use those virtual object to help the camera resec-
tioning. Some articles can be found in the literature formatching textured 3D
models and 2D images ([29], [28]). [60] have proposed an algorithm for per-
forming a calibration based on the CAD of the observed scene. This approach
seems interesting but unfortunately has not been tested in this thesis.

Note

Spatial sampling

Another topic that is also challenging is the extraction of profiles from infrared images. In fact,
it can be interesting to extract thermal profiles from infrared images to compare them to theoretical
models for example. In particular, the error made on the profile compared to the theoretical thermal
one can be complicated to compute.

Monitoring a civil engineering structure requires a large angle of view which forces users to use a
mast to place the camera. This situation results in imageswith varying spatial resolution and important
angle between the object and the camera (e.g. Fig. 2.14). The underlying consequences are non-square
pixels in the real-world and varying angles values along the same plane which has an impact on the
emissivity values to be considered. Oneway to overcome this is to perform spatial calibration on images
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to be able to recover the region of interest (ROI). However, such operation induces a new sampling
obtained by an interpolation and illustrated in Fig. 4.7. The reference image in this figure shows the
non-square and non-constant spatial sampling in the image.

Figure 4.7: Result of interpolation after calibration and ROI recovering

When re-sampled, the extracted profile will be dilated and smoothed due to the interpolation, as
we can see on Fig. 4.8a. Similarly, Fig. 4.8b shows that the dilation coefficient is not constant within
the image and therefore, the error induced by the interpolation is varying depending on the pixels
position. The common errors for such interpolations are a blurring of the edges and jagged artifacts.

Therefore, the profile extraction will induce errors from which an upper bound can be derived
from Taylor’s series in the case of polynomial interpolation. Of course, those errors are only from
a mathematical point of view. Physically, it is even more complicated. In fact, considering the fact
that one pixel in the image represents a varying surface in reality make the process of sampling more
complex. A square pixel will potentially represent a non-square surface and all the pixels within the
image may not represent the same surface in reality. Furthermore it is likely to have the mixed pixel
effect, on which the pixel value does not represent a single surface material properties but multiple
ones [96] (see also Fig. 2.15). This is actually a challenge often addressed in Remote Sensing [30].

Recent infrared thermography applications make use of unmanned aerial vehicles (UAV) to inspect
large-scale structures [133]. The use of UAVs in the field of civil engineering has been investigated years
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(a) The re-sampled profile is dilated and smoothed due
to the interpolation

(b) The dilation coefficient depends on pixels position

Figure 4.8: Spatial re-sampling influence

ago [56] but thanks to the development of drones, UAVs offer new possibilities. Such technique enables
an advanced inspection of the structure and can therefore overcome the former sampling issues. How-
ever, those applications are facing other technical difficulties such as motion blur, image stabilization,
georeferencing, etc. Furthermore, UAVsmay not be suitable for the livemonitoring of running systems
for security purposes such as bridges with operating cars and most of the employed methods are ac-
tives. Nevertheless, IR thermography combined with UAVs is an emerging promisingmethod for many
different applications [54].

4.2 Multi-sensor data exploitation

In order to perform a complete thermal monitoring of an infrastructure, one needs to set up a
complex instrumentation based onvarious sensors. The aimof such instrumentation is to overcome the
lack of knowledge about environmental and meteorological parameters. A reminder of the simplified
radiometric equation to solve is given in Eq. (4.22). Thus, a multi-sensor instrumentation helps for
estimating the different involved parameters.

L
(i,j)
∆λ,total(T ) =τopt

[
τatm

(
ϵ
(i,j)
∆λ,objL

◦(i,j)
∆λ,obj(T

(i,j)
obj ) + (1− ϵ

(i,j)
∆λ,obj)(L

◦
∆λ,env + L◦

∆λ,sun

)
+(1− τatm)L◦

∆λ,atm

]
+ (1− τopt)L◦

∆λ,opt

(4.22)

Therefore, a need for connected sensors and a flexible architecture with different types of measure-
ments (punctual, in-situ full field thermal images, distributed measurements, etc.) appeared. Even if
some tools have already been studied and developed for gathering and recording all the data from such
instrumentation [51, 50], a software for exploiting and helping to process all this amount of data was
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lacking. In such context, a thermal infrared images post-processing tool has been developed under
MATLAB® in order to visualize infrared images and process data from various sensors. The developed
software had to be user-friendly to help for importing data, to navigate between different time stamps
of the experiment and also export data to other formats.

4.2.1 Input data and standard formats

The need for interoperability between previously developed tools from the community is primary.
In this sense, the developed software makes use of OGC standards. The Open Geospatial Consortium (OGC)
is an international not for profit organization committed to developing open standards. The advantage
of using standards is a certain guarantee of the interoperability with other developed tools. Therefore,
one of themain feature of the developed software is its ability to read and convert infrared images from
various files formats; from proprietary ones to OGC ones such as HDF. Hierarchical Data Format (HDF) is a
digital container format used to structure andhandle large amount of data. It is supported bynumerous
programming languages and offers possibilities to compress data. The data is structured around groups
that handles different type of data and datasets that represents a single type of data. Such type of format
is necessary for in-situ large scale monitoring. In fact, it allows recording and gathering multiple type
of data in one single file (see Fig. 4.9).

• GPS: location, time (up to synchro-
nization)

• LocalWeather: humidity, pressure,
temperature, hail data, rain data,
wind data, . . .

• Regional data: METAR network
data or alternative accessible open
source

• Shortwave radiation data
• Longwave radiation data
• Full field IR camera: 16 bits data,

640× 480
• Metadata: Full description and re-
marks for each recording data

(a) Description of one HDF5 file record (b) View of the recorded file through HDFView software

Figure 4.9: HDF file recording format: different data type from various sensors can be registered and
then read back fastly due to the HDF internal architecture.
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The software can therefore read and import different data through multiple file formats (.hdf; pro-
prietary IR: .seq, .fff; binaries IR: .irl; common ones: .csv, .txt etc.) and make the conversion between
any of those formats. The importation and formatting is facilitated by a custom importation module
(see Fig. 4.10).

Figure 4.10: Any text file format can be imported and formated easily

4.2.2 Data processing

Conversion process

The tool supports different data processing algorithm. The conversion model from digital levels to
temperature can be customized and the parameters derived from the thermal calibration can be sets.
The defaults values are the one stored into the metadata of the input file. Even though the conversion
from digital levels to temperature is not a difficult computation to perform for MATLAB®, it may be
too long for fast visualization purposes. In fact, when displaying the images and browsing from them,
any latency can make the user’s experience complicated. As a consequence, the computation speed
has been improved by the parallelization of the conversion model. The digital levels to temperature
conversion is then quickly done and can be customized depending on user’s hardware. Three choices
are available, from the slowest to the quickest: CPU only, GPU through gpuArray’s built-in MATLAB®

functions and CUDA using custom GPU kernel. Compute Unified Device Architecture (CUDA) is a General-
Purpose Computing on Graphics Processing Units (GPGPU) technology. Due to the constant improvements
of graphic hardware for 3D graphics compute-intensive real-time applications, the GPUs became really
efficient for performing highly parallel tasks on large blocks of data. Therefore, this design led to in-
crease the number of applications and therefore derive the original purpose of 3D graphics to scientific
general computations. CUDA was therefore developed by NVidia for their hardware to achieve such
goals and interface directly with the GPU.
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To develop such CUDA kernel on MATLAB®, a C program linked with the CUDA kernel is developed
and interfacedwithMATLAB® through aMEX compilation [78]. In order to be able to compare the three
implementations, the processing time is calculated from the beginning of the conversion call process
to the final converted image (it means that it includes the transfer communication CPU↔ GPU). More-
over, this amount has been averaged over 60 different images conversions. The standard gpuArray
represents an improvement of a factor 10 compared to the CPU conversion whereas the custom CUDA
kernel represents an improvement of a factor 40. The difference between the gpuArray and the CUDA
kernel can be explained due to the fact that gpuArray offers an easy way for developers to parallelize
their algorithm. As a result, it also need to perform multiple checking to be able to handle any user
code. Please note that with the built-in functions, developers only need to declare their variables
as gpuArray, the code does not change. At the opposite, the CUDA kernel development needs some
knowledge on C, CUDA and compilation. Fig. 4.11 shows the comparison of those implementations.

(a) CUDA kernels in MATLAB® (b) Time performances for the different methods

Figure 4.11: Parallelization of the temperature conversion process onto the GPU. Comparison of the
different implementations

Graphical User’s Interface (GUI)

To be able to visualize the data efficiently, an interface has been developed to facilitate the process-
ing and be able to detect easily errors or aberration. Fig. 4.12 shows the user’s interface.
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Figure 4.12: GUI of the tool

Batch processing

Even though a GUI is user friendly, it is not efficient to process a large amount of data at once.
Instead, in order to apply some specific processes on a large amount of data, a batch process module
have been created. This module relies on YAML Ain’t Markup Language (YAML) language [178]. It is
a markup language that has the advantage of being readable for humans, representing data through
lists. Furthermore, its non-hierarchical structure but relational based one avoid redundancy: identical
data can be referencedmultiple times in the same file without the need to repeat the data. The process
works as follow, as shown in the schematic in Fig. 4.13:

1. The user describe the input data,
• Folders / files paths,
• Begin date and end date,
• Optionally how to extract the date from the file.

2. The output that will be stored into a global structure with its data type.
3. The actions to be executed,

• Name of the action.
4. Definition of the action,

• Name of the action (as in 3.),
• When the action is executed (Begin / For every file or given frame rate / End),
• Function to call for executing the action.

An example of such YAML configuration file is given in Appendix A.

89



Chapter 4 – In-situ long-term thermal monitoring of structures: environmental measurements bias compensation

Figure 4.13: YAML batch processing flowchart

4.3 Tests sites and use cases

In order to illustrate the bias through practical use-cases, long-term in-situ measurements made
on two mock-up are used: an instrumented wood house and an instrumented road section that are
presented in the following.

4.3.1 Instrumented road section

(a) Image of the road in the infrared spectrum (b) Image of the road in the visible spectrum

Figure 4.14: Road section instrumentation: IR image (a) and test site overview (b)

A road section that can be internally heated has been instrumented with different sensors. The
infrared thermal monitoring is done with a FLIR SC655 thermal infrared camera (640× 480 LWIR FPA,
pitch 17µm, and a 13.1mm optical focal length). Aweather station (VaisalaWXT 520), a net radiometer
(CNR4) and a pyranometer (SPLite2) provides complementarymeasurements withmeteorological data
(rain, wind, temperature, etc.) and radiative heat fluxes. All those data are synchronized in time thanks

90



4.4. Parameters sensitivity

to our multi-sensor data acquisition system Cloud2IR. Due to the particular angle of view, distance and
planar properties of the scene, those data are interesting to process to observe spatial sampling issues,
mixed pixels and transmissions effects. Moreover, the presence of thermocouples on the road enables
us some comparison with infrared measurements.

4.3.2 Instrumented wood house

A wood house has been built and instrumented for multiple years in Paris under the SenseCity
project of IFSTTAR. The house is monitored with a FLIR A65 thermal infrared camera (640× 512 LWIR
FPA, pitch 17µm, 13mm optical focal length), a weather station (Vaisala WXT 520) and a sunshine
pyranometer (SPN1) for the total and diffuse solar radiation. Cloud2IR is also used here for recording
synchronized data.

(a) Image of the house in the infrared spectrum (b) Image of the house in the visible spectrum

Figure 4.15: Wood house instrumentation: IR image (a) and test site overview (b)

4.4 Parameters sensitivity

4.4.1 Sensitivity to emissivity

Different analysis of emissivity sensitivity have been previously done in the literature [34, 35, 141,
102, 71] and [128] especially. Those analyses are extended to the case of the in-situ model presented
previously and focus on the emissivity, environment temperature and atmospheric transmission ef-
fects. In particular, the use of multi-sensors data for practical use cases to improve the temperature
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estimation is discussed. By considering that the object’s temperature and emissivity are independent:
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(4.23)

Those equationswill be used in the following in order to observe the impact of the differentmodel’s
parameters to the temperature retrieval.

Emissivity measurements have been made on the wood house (test site #2) in order to get an emis-
sivity map, represented in Fig. 4.16. Table 4.1 shows the associated emissivity measurements.

Material Color Emissivity
Wood wall (west) Blue 0.95
Wood wall (east) Yellow 0.90
Grass Green 0.95
Sidewalk Red 0.89
Tar Grey 0.95
Roof Purple 0.92

Table 4.1: Emissivity measurements values
in the 8µm− 14µm band.

Figure 4.16: Emissivity map for the wood house,
colors represents one particular emissivity mea-
surement

Fig. 4.17 shows the effect of adjusting the emissivity to a particular material. Unfortunately, the
comparison can only be made relatively due to the lack of ground truth temperature measurements at
the surface of the different materials.

Figure 4.17: Effect of adjusting the emissivity for different material compared to a constant emissivity
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However, one can see that adjusting the emissivity will make the temperature estimation more
accurate. In fact, in this example, wehave chosen the best candidate for a constant emissivity value over
all the image because the average emissivity value is 0.93 with a standard deviation of 0.025 (derived
fromTable 1). As a consequence, we can see that evenwhen the best constant emissivity value is chosen,
this is still leading to, at most, 0.5K difference compared to the use of an emissivity map.

4.4.2 Sensitivity to sky temperature and atmospheric transmission

The sky temperature (Tsky) will also have an impact on the final temperature estimation (T̃obj), as
shown in Fig. 4.18 where the difference between the estimated sky temperature (T̃sky) is compared to
the difference made on the estimated object temperature, for different values of Tobj and Tsky . The
R,B and F values used in the model to compute this figure are derived from a thermal calibration, as
explained previously [109]. One can note that those coefficients are only valid for a limited range of
object temperature (283.15K − 343.15K in this case) and could expect some more important error
out of this range. The following figures compare the differences between the actual object temperature
and the estimated one by using estimates on Tenv (T̃env) and ϵobj (ϵ̃obj).

Figure 4.18: Difference between true object temperature and estimated one depending on the error
made on the environment temperature and emissivity. In this case, the true object is at 293.15K and
its emissivity is 0.93.
How to read: on the left the true object’s temperature and emissivity. A point on the image represents
the difference between the true object temperature and the estimated one with T̃env (x-axis) and ϵ̃obj

(y-axis) values. The images represent different environment temperatures values.

To overcome this, one can use the measurements made in-situ to get the sky temperature. In

93



Chapter 4 – In-situ long-term thermal monitoring of structures: environmental measurements bias compensation

Fig. 4.19, the ground truth temperature obtained from thermocouples data is compared to the tem-
peratures estimated with and without sky correction. In the case of the sky correction, the sky tem-
perature is derived from a pyrgeometer data whereas a constant sky temperature is taken in the other
case. The Fig. 4.19 shows that taking into account the sky temperature from local measurements gives
a better estimate of the object temperature. In this particular example, we compare the estimation of
the temperature with and without the sky temperature correction to thermocouples measurements
at the surface of a concrete pavement structure. The sky correction reduces in average the difference
between the thermocouples measurements and the estimated temperature from infrared data.

Figure 4.19: Comparison of ground truth temperature values to temperature estimation with and with-
out sky correction

Another possibility is to use correlations from air temperature to estimate the sky temperature.
Such correlations can be found in the literature [4]. Fig. 4.20 shows the effect of the Swinbanks correla-
tion for two different periods: in december and august. Moreover, one can see that the sky temperature
derived from the correlation will have an impact of the same magnitude’s order as if using in-situmea-
surements.

If localmeasurements data are not available, the Swinbanks’ formula can be used frommeteorologi-
cal air temperature data. The following figure shows the sky temperature derived from air temperature
from three different data sources:

• Local weather station
• Copernicus’ data store [44]
• METAR data
Even if differences exists in term of sky temperature (see Fig. 4.21), it represents a small quantity of

thermal radiation, regarding the involved temperatures. Therefore, it is always possible to enrich the
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Figure 4.20: Effect of using a correlation for the sky temperature based on the air temperature

radiative model conversion thanks to online and open data.

Figure 4.21: Sky temperature derived from different sources of air temperature

Based on Eq. (4.22), the differences maps can also be made for the atmospheric transmission, illus-
trated in Fig. 4.22.

Moreover, the atmospheric transmission is also influenced by the involved distances. In particular,
when dealing with infrastructures monitoring applications, great distances differences may occur due
to large field of views (e.g. during the monitoring of a bridge). In such case, a spatial calibration is nec-
essary to compute a distance map and take into account those distances. As for example, the Fig. 4.23
shows the effect of the distance to the atmospheric transmission in the 7.5µm − 13µm band and the
need for considering the distances due to the camera view projection within the image. As shown in
this figure, considering the same distance between the observed surface and the camera may lead to
inaccuracies.
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Figure 4.22: Difference between true object temperature and estimated one depending on the er-
ror made on the atmospheric transmission. Here is the difference map for an object temperature of
293.15K and emissivity of 0.93.

Figure 4.23: Different distance values for the atmospheric transmission, through time.

4.4.3 Sensitivity to sun contribution

The sun’s irradiance will also have an impact on the final temperature estimation. In fact, depend-
ing on the emissivity of the observed object, the irradiance at camera’s sensor will contain the sun’s
reflected contribution, both specular and diffuse. An estimation of the solar irradiance can be obtained
thanks to a pyrgeometer for example. In the case of the LWIR (7.5µm − 13µm), even though the sun
contribution may be small compared to the NIR, SWIR and MWIR bands, it stills represents a source of
error in the conversion process. In particular for low object’s temperatures as illustrated in Fig. 4.24,
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we can see that the direct sun irradiance contribution can be responsible for up-to 3% of the object’s
emittance, leading to incorrect temperature estimation if not considered. In the case of SWIR-MWIR
band the sun contribution should not be neglected, in particular when observing surfaces with low
temperatures (Fig. 4.25).

Figure 4.24: Sun irradiance reflection on 7.5µm− 13µm band for a normal object and different emis-
sivity values

Figure 4.25: Sun irradiance reflection on 1.5µm− 5.4µm band for a normal object and different emis-
sivity values

Moreover, one can see that the error made on the temperature estimation will therefore vary de-
pending on the time of the day. When local measurements are not available, one can use literature’s
models. The Fig. 4.26 shows the SMARTS2 [165] (see next chapter) irradiance’s simulation compared to
a local pyranometer measure in the SWIR band.

4.4.4 Other parameters

Finally, rain and fog conditions will have an important impact on the flux received at cameras sen-
sors. Fig. 4.27 illustrates the weather variation during a measurement campaign. Such variation will
produce measurements that are difficult to exploit for accurate temperature estimation (see Fig. 4.28).
This may not lead to accurate temperature measurements. However, such effect could be compen-
sated by using a black-body source and perform automatic thermal calibration in case of rain or using
adequate radiative transmission model (for instance in case of fog [62]).

97



Chapter 4 – In-situ long-term thermal monitoring of structures: environmental measurements bias compensation

Figure 4.26: Comparison of sun’s irradiancemeasured and simulated onmay 5th in the 0.3µm−2.8µm
band

Figure 4.27: Rain and wind in-situmeasurements

4.4.5 Summary

A review of the different parameters that may affect the temperature estimation has been made.
Temperature estimation based on in-situ infrared thermography measurements needs to consider the
geometry of the scene and the environmental parameters to get a better estimate. When local data are
not available, it is possible to find online open data thanks to meteorological reports or forecasts. The
Fig. 4.29 shows an example of the amount of data that can be gathered during a long-term experiment
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(a) Dry situation (b) Raining and optic issues

Figure 4.28: IR image view: in dry environment (a), rain with optic issues (b)

with missing data in red due to various experiment issues (sensor failure, current shortage etc.). This
study showed that even if those measurements are missing, it is still possible to estimate those data
thanks to open access online data to enable the usage of a refined model.

Figure 4.29: A set of environmental data for long-term thermal monitoring

Fig. 4.30 shows a comparison between the temperature conversion with and without the consider-
ation of the environmental parameters for two measurement points on the house: on the roof and on
the wall. The measurements are made on the 7.5µm − 13µm band for which the sun contribution is
relatively low (see Fig. 4.24). In this particular case, the final temperature estimation difference with
the multi-sensors conversion and without it can be up-to 2K and could be even more in a NIR band
due to the sun influence. In this example, the error made on the sky contribution and the emissivity
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Figure 4.30: Comparison between the temperature estimation by consideringMtot = ϵobjMobj or using
the presented model and multi-sensor data

one will be the main parameters that will influence the temperature estimation. Here, the open access
online data to fix the missing ones are not used since the IR measurements are also lacking.

4.5 Synthesis

The long-term infrared thermography measurement process has been reviewed in this chapter:
from the calibration of the sensors to the actual data processing tools. Moreover, the sensitivity of
the simplified radiometric equation to its parameters has been studied. It was shown that estimating
the parameters through multi-sensors data is efficient. When local sensors data are not available, it
is still possible to use online data from various sources (METAR, Copernicus, etc.). After such compen-
sation, one of the most important source of temperature retrieval error is the emissivity. This is why
temperature / emissivity retrieval methods are fundamental in the infrared thermal monitoring pro-
cess. The objective of the last chapter is to propose simultaneous temperature / emissivity separation
methods for long-term infrared thermal monitoring. However, finding back the presented in-situ data
is a challenging task, particularly because there is no ground truth to trust. As a consequence, an in-
frared multi-spectral images simulation tool has been developed. This simulation tool is a way to test
the developed methods on simple cases. Then, noise can be added by the simulator by considering
various environmental parameters. The next chapter will present this simulator based on the progres-
sive radiosity algorithm. Then, developed methods will be presented and finally tested via simulated
images.
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Chapter 5

Study and development of an infrared
multispectral images simulator

A forward solution simulation software has been implemented in order to generate data based
on 3D object models. The objectives of this software are to simulate radiative diffuses ex-
changes between surfaces on a 3D scene aswell as integrating atmospheric and infrared camera

models for in-situ infrared thermography. The spectral bands used in the software can be adjusted and
the computation time has been optimized by using graphical hardware acceleration. Different appli-
cations can be done with such simulation tool: simulation’s generated data are an efficient and quick
way to test temperature and emissivity separation methods robustness or infrared thermal monitor-
ing systems sizing for example. The proposed software gives a forward solution to the diffuse radiative
transfer equation through the radiosity method, more detailed in this chapter. The radiosity equations
and the form factors computation will be firstly presented. The progressive radiosity method used
in the developed software and its implementation on graphic hardware is introduced and discussed.
Then, models to simulate solar spectral irradiance at ground and camera’s detectors are conferred to
finish with some practical applications examples.

5.1 Radiosity method

The radiosity method has been chosen for its physical equations solving approach. The idea is to
solve a simplified linear system representing all the contributions of the elements present in the scene.
Such algorithm can be combined with Monte-Carlo methods [157] or the equations to be solved can be
extended to consider multiple physical phenomena [162, 186] for considering advanced reflections,
participating medium, Fresnel effect, etc. Contrary to Monte-Carlo algorithm, such approach renders
the 3D scene globally, id est the generated image does not depend on the viewpoint. Once the scene has
been rendered, the camera can be moved inside to inspect each surface. Moreover, Monte-Carlo algo-
rithms suffer from sampling issues and noise. The advantage of Monte-Carlo methods are their abil-
ity to consider participating medium, specular reflections and directional reflectance functions easily.
However, in order to get accurate results, multiple bounces are needed which means casting a lot of
rays which make the complexity and the time processing more important.
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5.1.1 Radiosity equations

The different radiosity methods are all based on the radiosity equation. The aim of the different
methods is to solve this linear equation as fast as possible either by providing improved algorithms or
by giving an approximation of the solution. The assumptionsmade here are nonparticipatingmedium,
with orthotropy and lambertian diffuses materials.

Figure 5.1: Form factors for
two infinitesimal elements

Let A1 and A2 be the surface of two elements denoted 1 and 2.
The form factor F1→2 which characterizes the geometric interaction
between those two diffuse elements is defined in Eq. (5.1) [93]

F1→2 =
∫

A1

∫
A2

cos(θ1) cos(θ2)
πr2 dA1dA2 (5.1)

For a given spectral band ∆λi, the radiosity Bk,∆λi
of a patch k

is given by its self emission Ek,∆λi
added to the contribution of all

others patches j present on the scene. Therefore, after discretization
(see Eq. (3.60)):

Jk,∆λi
= Mk,∆λi

+ (1− ϵk,∆λi
)

j=Nelements∑
j=1,j ̸=k

VkjFk→jJj,∆λi
(5.2)

where Vkj represents an occulting factor

Vkj =

1 if k sees j

0 otherwise
(5.3)

One can see that three main steps appear from equation 5.3. First, the visibility between the differ-
ent patches must be solved. Then, the form factors must be computed and finally the system has to be
solved. The next part will expose the different methods used for solving those three main steps.

5.1.2 Form factors computation

The direct calculus of the integral of the form factors is computationally intensive, in particular
when an important amount of patches is used. Therefore, different methods have been developed
for improving the computation speed of the form factors. Many tables of pre-computed form factors
can be found in the literature and used as-is in lookup tables [93]. However, such technique cannot
be generalized and can only be used on simple cases. In the following, some of the main methods to
compute or approximate the form factors are presented.
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Contour integration

Instead of being evaluated through the areas, the integral can be evaluated through a contour in-
tegration, by applying Stokes’ theorem. As a consequence, the multiple integration over a surface area
is reduced to a single integration around the boundary of the area [131, 170]. In such context, the
form factor from an infinitesimal element to a finite area Fd1→2 can be expressed as a sum of single
integrations. Such method improves both accuracy and computing time as shown in [155].

Nusselt analog

The form factors can also be computed through the unit spheremethod introduced byNusselt [132].
The idea is to build a hemisphere around the differential element dA1 and project onto the hemisphere
plane the area to be integrated. In such case, the form factor from dA1 toA2 becomes:

Fd1→2 = 1
π

∫
A2

cos(θ1)cos(θ2)dA2
r2 = 1

π

∫
A2

cos(θ1)dΩ (5.4)

(dΩ = dAp = cos(θ2)dA2
r2 ). Moreover, cos(θ1)dAp is the projection of dAp onto the hemisphere plan

(see Fig. 5.2). By integrating the previous quantities, we can derive the form factor such as:

Fd1→2 = 1
π

∫
A2

cos(θ1)dΩ = An

π
(5.5)

Figure 5.2: Nusselt’s analog
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The relation Eq. (5.5) can be used to improve the computation speed of the form factors by using the
hardware acceleration [79]. In practical, the Z-Buffer hardware algorithm can be exploited to compute
the form factors and patches visibility at the same time. However, one drawback of this method is that
although polygon edges project to curves on a hemisphere, rasterization produces only straight edges.
As a consequence, tessellation should be important in the image. More details for such projection are
given in the next section.

Hemicube method

One of the most common method used for computing the form factors is the hemicube approach.
Rather than using a unit-sphere, the projection is done on a cube centered over the receiving element
[39]. Suchmethod has been developed for its simplicity and efficiency to be implemented on hardware.
However, this method needs to render each face of the hemicube (5 rendering) and depends on the
resolution of the chosen hemicube. Small elements that fall into a too large hemicube’s resolution will
have an important form factor approximation. The Z-Buffer algorithm can also be used for determining
the visibility and form factors at the same time. Moreover, in recent hardwares, a special hemicube
buffers are available to render hemicubes efficiently. One drawback of the hemicube method is its
linear projection that induces issues at edges of the hemicube, particularly for coarse meshing [40].

Single plane method

Different methods have been developed through years for increasing the computation speed such
as the planar projection proposed by F. Sillion [162]. In this method, a projection plane just above
the surface of interest on which other elements are projected is used. This plane is then subdivided
adaptively depending on the size of the projected elements to improve sampling. The advantage of this
method is to reduce the number of rays to be thrown for the computation of form factors. In particular,
in this study, F. Sillion introduces extended form factors for computing specular component.

Monte-Carlo method

Similarly to the ray tracing algorithms for rendering presented in Chapter 3, a ray casting approach
is possible to compute the form factors. One of the main advantages of this technique is its ability to
handle many surface types, including curved ones. Moreover, it is also possible to get a priori upper
bound as described in [140]. However, one drawback is that the expense can be more important de-
pending on the distribution to approximate [40]. In Monte-Carlo methods, the full area-to-area form
factor integral can be approximated or the Nusselt’s analog can be derived [40].
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5.2 Numerical solution to the linear radiosity system

Once the form factors have been computed, the radiosity system can be solved. The Eq. (5.2) shows
that the radiosity system is a set of linear equations which can be summarized by:

Ax = b (5.6)

where A is the interactions matrix, x a vector of radiosity values and b a vector of emission terms. By
combining Eq. (5.2) and Eq. (5.6), we can get the shape ofA:

A =


1− (1− ϵ1,∆λi

)F1→1 −(1− ϵ1,∆λi
)F1→2 ... −(1− ϵ1,∆λi

)F1→n

(1− ϵ2,∆λi
)F2→1 1− (1− ϵ2,∆λi

)F2→2 ... −(1− ϵ2,∆λi
)F2→n

... ... ... ...

(1− ϵn,∆λi
)Fn→1 (1− ϵn,∆λi

)Fn→2 ... 1− (1− ϵn,∆λi
)Fn→n

 (5.7)

Most of the time, the diagonal coefficient of A are equals to 1. In fact, one
assumption is to consider that one element cannot "see" itself (in practical,
the meshing is supposed to be refined enough and the involved patches are
often planar surfaces). Therefore, in the following for all i ∈ N, Fi→i = 0.

Note

Many numerical methods for solving linear equation’s systems can be found in the literature. It
should be noted here that the system involved in the radiosity is a large matrix most of the time. Fur-
thermore, when dynamic scenes are involved, themain difficulty is that thematrix will be changed and
that it should be inversed again. As a consequence fast algorithms are needed. Solving such system is a
large active field on its own, so only a review of the main algorithms used in the literature and applied
to the radiosity’s equation is proposed here. The next section focuses onmethods for solving the linear
system Eq. (5.6) of unknown x.

5.2.1 Solving the linear system

Once the system has been solved, the radiosity values are found and the rendering is completed. As
a consequence, finding the exact solution in a fast way seems to be the best option. However, finding
the inverse of A is non trivial and simple inversions methods (e.g. Gauss-Jordan elimination or LU-
decomposition) will not work to solve the system in a reasonable amount of time. Those algorithms
are usually in order of O(n3) which is not suitable for the large matrix that is involved in the radios-
ity equation system. Instead, iterative methods that provide an approximation of the solution will be
preferred.
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5.2.2 Approximate solution to the linear system

Some iterative methods that could be used for solving the linear radiosity system of equations are
presented in this section and translated to the radiosity problem [40]. Most of these methods are avail-
able in standard numerical texts books. In this part, the idea is to find the solution to the linear system
Ax = b, withA = (aij)1≤i,j≤n, x = (xi)1≤i≤n. Then at the end of the proposedmethod, the algorithm
is developed for the radiosity problem.

Relaxation methods

The basic idea behind relaxationmethods is to compute iteratively the result of the systemAx = b

for large systems.

Fixed point methods In order to introduce the Jacobi and Gauss-Seidel methods, let decomposeA such
asA = G−H withG invertible:

Ax = b⇔ x = G−1Hx + G−1b (5.8)

The previous linear equation system is therefore transformed to a problem fixed point search 1:

x0 ∈ Rn

x(k+1) = G−1Hx(k) + G−1b
(5.9)

If this sequence converges, then its limit is the solution to the previous linear systemAx = b.

Jacobi method The Jacobi method has been introduced by C.G.J. Jacobi in the XIXth century. Based on
the previous equation, A can be decomposed into two components, a diagonal matrix G (which is in-
vertible provided that its coefficients are also invertibles, assumedhere) and a remainderH constituted
of the others elements ofA:

A = G−H with G =


a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann

 and H = −


0 a12 . . . a1n

a21 0 . . . a2n

...
...

. . .
...

an1 an2 . . . 0

 (5.10)

1The superscript (k) denotes the kth complete iteration. The superscript (0) corresponds to a prior given as input.
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The matrixG−1H is then called the Jacobi matrix and the system can be solved iteratively:

x
(k+1)
i =

bi −
∑n

j=1,j ̸=i aijx
(k)
j

aii
(5.11)

A sufficient condition for this method to converge for all x(0) is to have a diagonally dominant
matrix. Let now r be the residual vector: r = Ax− b. In that case, we have:

r
(k)
i = bi − aiix

(k)
i −

n∑
j=1,j ̸=i

aijx
(k)
j

⇒ x
(k+1)
i = x

(k)
i + r

(k)
i

aii

(5.12)

Where the residuals are updated after each iteration.

Algorithm 6: Pseudo-code for Jacobi radiosity solver

Initialization x
(0)
i = emissioni, r = b−Ax

while not converged
for i ∈ Faces

x
(k+1)
i = x

(k)
i −

r
(k)
i
aii

r(k+1) = b−Ax(k+1)
return x

Gauss-Seidel The Gauss-Seidel method is a slight variation of the Jacobi one. Instead of taking the
diagonal matrix asG, the Gauss-Seidel method uses the lower triangular part of the matrix:

A = G−H with G =


a11 0 . . . 0
a21 a22 . . . 0
...

...
. . .

...
an1 0 . . . ann

 and H = −


0 a12 . . . a1n

0 0 . . . a2n

...
...

. . .
...

0 0 . . . 0

 (5.13)

By using forward substitution, a sequential formula is obtained:

x
(k+1)
i =

bi −
∑i−1

j=1 aijx
(k+1)
j −

∑n
j=i+1 aijx

(k)
j

aii
(5.14)

The differences between the Gauss-Seidel and the Jacobi methods reside in the amount of elements
that are needed to be stored. For a very large problem, Gauss-Seidel is preferred due to the fact that only
one storage vector is required due to the fact that elements can be overwritten as they are computed.
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Similarly to the Jacobi method, one can express the iteration based on the residuals:

x
(k+1)
i = x

(k)
i + r

(k)
i

aii
(5.15)

Where this time the residuals are updated after each step.

Algorithm 7: Pseudo-code for Gauss-Seidel radiosity solver

Initialization x
(0)
i = emissioni

while not converged
for i ∈ Faces

x
(k+1)
i = x

(k)
i + r

(k)
i
aii

r
(k)
i = bi −

∑n
j=1 Aijx

(k)
j

return x

By looking more closely to the Gauss-Seidel algorithm and its physical interpretation in terms of
radiosities, one can see that at each step a surface radiosity value i is updated by summing all the
contribution of the others surfaces on the scene. Physically speaking, this step is equivalent to take a
single patch and consider the radiation from all the surrounding patches which is called a gathering
step in the global illumination field, as illustrated in Fig. 5.3.

Figure 5.3: Gathering step as in the Gauss-Seidel algorithm, figure inspired from [40]

Southwell method A variant of the Gauss-Seidel method is the Southwell algorithm. Developed during
the 40’, the Southwell algorithm was made for solving linear systems for humans. In this method, in-
stead of relaxing in the ith order, the relaxation is performed on the element with the greatest residual.
Such ordering is called a Southwell iteration [77, 70]. However, in order to knowwhich element has the
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greatest residual at iteration k it seems that all the ri should be computed. To overcome this, a trick is
to make use of the changes∆x(k) between one approximation to the other:

x(k+1) = x(k) + ∆x(k) (5.16)

The residuals are given by:

r(k+1) = b−A
(
x(k) + ∆x(k)

)
= r(k) −A∆x(k) (5.17)

Since for a given iteration, only∆xarg max r
(k)
i ,∀i∈[1,n] is not zero, we have:

∀j ∈ [1, n], r
(k+1)
j = r

(k)
j − aji

aii
r

(k)
i (5.18)

In such case, the point fixed algorithm is applied to the residuals. The initialization is straightforwardly
adapted:

r(0) = b x(0) = 0 (5.19)

The pseudo-code for the Southwell relaxation is given in Algorithm 8

Algorithm 8: Pseudo-code for Southwell radiosity solver

Initialization ri = emissioni xi = 0
while not converged

i = arg max rj
j∈[1,N ]

xi = xi + ri
aii

temp = ri

for j ∈ Faces
rj = rj − aji

aii

return x

If each step of the Gauss-Seidel algorithm isO(n), it is more complicated to characterize the com-
plexity of the Southwell algorithm since one given element may be visited multiple times before visit-
ing some other element. The physical comparison with the Gauss-Seidel method can be made. In the
Southwell solver, the greatest residual is taken and then the residual of the other surfaces are updated,
at each step. On the contrary of Gauss-Seidel, a given element updates the others: it is called a shooting
step.
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Figure 5.4: Shooting step as in the Southwell algorithm, figure inspired from [40]

The Southwell method is actually a successive over-relaxation (SOR) method.
A SORmethod is a variant of the Gauss-Seidel one onwhich a relaxation factor
is incorporated and the A matrix is defined by A = D + L + U whereD is
diagonal, L lower and U upper triangulars matrices.

(D + ωL)xk+1 = ωb− (ωU + (ω − 1)D) xk (5.20)

For a positive definite matrix, the algorithm converges for ω ∈ [0, 2]. For
ω = 1, the equation is equivalent to Gauss-Seidel.

Note

Progressive Radiosity

Based on the Southwell algorithm, [41] proposed a similar approach to render the radiosities which
enables both computation efficiency and rendering called progressive radiosity or sometimes progressive
refinement. As for the Southwell method, the progressive radiosity method processes the patches in a
sorted order according to their energy contribution to the environment. This approach avoid comput-
ing all the form factors at the beginning of the algorithm. Thus, each iteration needs the computation
of the form factor from the current patch to all other patches which can, however, lead to redundant
computations. The pseudo-code for the progressive refinement method is presented in Algorithm 9.
The Southwell method is slightly changed so that the result can be shown progressively. To achieve
this, an additional variable is introduced: unshot radiosities which can be stored during the process.
Taking into account the unshot radiosities is a way to take into account what part of energy remains to
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be distributed. At each iteration, the current approximation can be displayed.

Algorithm 9: Pseudo-code for progressive radiosity

Initialization xi = emissioni ∆xi = xi

while not converged
i = arg max (xjAreaj)

j∈[1,N ]
//Maximum of energy

for j ∈ Faces
∆ui = ∆xiaji //Unshot energy to be distributed to j
∆xj = ∆xj + ∆ui //j will have to distribute this part of energy
xj = xj + ∆ui //Update the approximation of j

∆xi = 0 //i has shot its unshot energy
dispImage(x) //Display current approximation

return x

By looking at the algorithm, one can see that by changing x in the progressive radiosity algorithm
byx+r in the Southwell one gives the same algorithm. One difference though is that in the progressive
radiosity, the largest energy to shoot is taken instead of the largest residual. Fig. 5.5 shows an example
of the progressive radiosity algorithm, for which the implementation is detailed in the next section.

Figure 5.5: Progressive radiosity examples with a Cornell’s Box where all surfaces emit in [1.5µm −
5.4µm] band. (a) Initial state. The ceiling source is at 353.15K and the objects at 293.15K with dif-
ferent emissivities. (b) After 10 iterations (≈ 0.15s). (c) After 100 iterations (≈ 0.3s). (d) After 1000
iterations with interpolation to smooth the result (≈ 4.4s). Almost all surfaces have shot their unshot
radiosity (red texture).
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5.3 Implementation on accelerated hardware

The progressive refinement approach described previously has been implemented in C++. Parallel
radiosity is difficult to have in practice since the computation of the visibility and the form factors in the
scene impliesmany links between the different patches of the scene and therefore to be able to know at
a given time the value of other patches. The objective of the software is to provide a fast way to render
the radiosities of a 3D scene thanks to recent hardware and software technologies as long as returning
physical quantities that can be exploited for infrared thermography. The OpenGL®’s API [134] has been
used for the graphics rendering, Assimp’s library [11] for loading 3D objects and Nuklear’s library for
rendering the GUI (Graphical User Interface) elements [126].

5.3.1 Hardware acceleration and OpenGL®

Figure 5.6: OpenGL® pipeline. Blue boxes
are programmable steps and dashed lines
correspond to optional stages [191].

OpenGL® (Open Graphics Library) is an API for ren-
dering 2D and 3D vector graphics. This library defines a
set of abstract functions that are normalized among the
Khronos Group consortium. Graphics processing unit ven-
dors provides an implementation of OpenGL® (and addi-
tional functionalities specifics to each vendors/cards) with
their graphic cards so that softwares can interact with the
GPU thanks to OpenGL®. OpenGL® is used in many types of
applications from video games (see Fig. 5.7) to CAD.

Initially, the rendering of any object in 3D was normal-
ized through a rendering pipeline (see Fig. 5.6) that includes
automatically and efficiently the tesselation, the clipping,
the rasterization, the memory management, the buffers
management, etc. Such architecture was designed to be
handy, so that the user only had to create 2 type of scripts
: one for handling the geometry and manipulating vertices
(called vertex shader) and one for handling the rendered im-
age (called the fragment shader). However, with the develop-
ment of new technologies and new needs for imaging and
rendering, the pipeline has been extended so that any part of the pipeline could be customized through
scripts. More recently, with the apparition of GPGPU needs for scientist and computing resources, com-
pute shaders appeared with OpenGL® version 4.3. This time, the compute shaders replace entirely the
pipeline and users can perform data manipulation on the GPU with OpenGL®. This feature has been
used in our implementation in order to optimize the computation time of the algorithm.
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Figure 5.7: Mirror’s Edge Catalyst driven by Unreal Engine 3, which can interface OpenGL® - Credits to
deadendthrills.com

5.3.2 Progressive radiosity GPGPU implementation

The compute shader enable a GPGPU approach within the OpenGL® API which appears to be an inter-
esting architecture for the radiosities. The computation of the radiosities is done in a texture through
a compute shader. This texture is read for the rendering through a classical OpenGL® pipeline by using
a vertex shader and a fragment shader. This architecture minimizes CPU/GPU transfers. The size of the
texture depends on the number of bands and number of patches. The actual texture stores radiosi-
ties values as-is and should be improved in the future by using mipmap textures or even hierarchical
storage. A flowchart of the developed architecture is presented in Fig. 5.8.

The main steps of the developed software are summarized below:

1. The 3D geometry of the scene is loaded thanks to a 3D file model description
2. Textures are initialized (radiosities values, residuals, areas, etc.) and stored on the GPU memory
through 32bits 2D textures

3. A first projection/rendering is done on a hemisphere onto a buffer
4. The highest patch is selected on the GPU
5. The progressive radiosity algorithm is executed with all the previous computed data on a com-
pute shader

The algorithms presented previously are derived from realistic images synthesis that mainly work
in the visible spectrum (generally 3 bands). In this particular case, sources (that emits light) must
be distinguished from other elements. As a consequence, in the classical approach the radiosities are
initialized to a floating-point (usually between 0 and 1), representing the light intensity if it is a source
and to 0 otherwise. The values are then kept on [0; 1] interval since only the rendering view aspect
reallymatters. However, in the infrared spectrum any patch will emit radiation and in order to retrieve

113



Chapter 5 – Study and development of an infrared multispectral images simulator

Figure 5.8: Principle of the progressive radiosity GPGPU implementation

physical data, the values are on R not on [0; 1] anymore which makes the algorithm more difficult to
implement on the GPU. Due to the fact that all objects are considered as sources, the initialization needs
to compute the spectral emittance of all patches:

Mk,∆λi
= ϵk,∆λi

∫
∆λi

L◦(λ, Tk)dλ (5.21)

Those computed spectral emittances are the initialization of the radiosity and unshot radiosity tex-
tures, which corresponds to the first picture of Fig. 5.5.

114



5.3. Implementation on accelerated hardware

The initialization step is performed at the beginning, once the 3D model has
been loaded. If the meshing is finely refined, the process can be quite long.
The arrays are filled on the CPU and then transfered to the GPU textures. To
overcome this, one possible way (not yet implemented) is to parallelize the
texture filling. In any case, the textures are saved onto OpenEXR textures
files to avoid computing those values again. OpenEXR is a widespread format
developed by George Lucas’ ILM company for saving 32-bits values textures
up-to 64 different channels.

Note

Once the textures have been initialized, some parameters such as atmospherics, solar, or camera pa-
rameters and described in the next sections can be tuned. Then, the parallelized progressive radiosity
algorithm can be started.

5.3.3 Form factors computation

Instead of using the classical hemicube algorithm, the Nusselt’s Analog hemisphere has been used
to reduce the number of renderings and avoid cubemaps usage. In fact, hemicube rendering needs to
render the scene from the five sides of the hemicube. Instead, a non-linear projection is performed and
used with the Nusselt equations to derive an approximation of the form factors [79]. A square texture
is used in offline rendering to render the view from the current’s element of interest. Surrounding
elements are then projected onto a unit hemisphere by using a non-linear transformation, analogous
to a fisheye lens as shown in Fig. 5.9. Even though a non-linear projection is more costly than a linear
one, this extra-cost is manageable over 5 renderings.

A comparative study of form factors computation with stereographic projections is done in [7].
This article points out the fact that using a stereographic projection in the vertex shader accelerates
the creation of visibility textures but hasmany drawbacks. Among those drawbacks, the information of
overlapped surfaces is distorted and leads to incorrect shadow boundaries. In fact, since only vertices
are affected by the projection, straight edges in the scene are mapped onto straight edges in the pro-
jected surface instead of curved segments. This issue becomes critical when the meshes are too coarse.
Extreme deformations may lead to incorrect visibility classification and therefore incorrect distribu-
tion of energy. This last drawback leads to inconsistent values and increases the algorithm computation
time [7] due to the fact that the algorithm may not converge correctly if the visibility is not well com-
puted. Instead, a real non-linear projection is shown to overcome most of those issues and to decrease
the rendering time considerably. This algorithm has been developed by [69] and propose actual non-
linear projection for coarse meshes. However, this method has not been implemented in the software.
First, most of the 3D scenes used can be refined thanks to the important amount of available memory
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on recent hardware, reducing the approximation of elliptic edges to straight ones. The drawback is that
the meshing has to be refined everywhere and adaptive subdivision is therefore not possible otherwise
distortion will lead to wrong refinement. It seems that adaptive refinement would be possible by using
a real non-linear projection (including edges) as described in [69].

When loading the 3Dmesh, each surface is given a color-id. This unique id is then used to retrieved
back corresponding elements on the projection texture.

In the actual implementation a limit of 2563 − 2 faces can be used due to the
color-id limit (2 colors (black and white) are kept special to check the back-
ground for example). This number could be extended by using a hierarchical
method or a specific texture containing the ids. In such case, no limit on the
number of faces would exist.

Note

The Eq. (5.5) is then used by counting the number of pixels for each element seen on the projection
texture. By dividing by the total number of pixels in the hemispherical base, an approximation of the
form factors can be obtained. The algorithm is implemented onto the GPU. The OpenGL® rendering
pipeline is used for projecting the scene at every iteration from the point of view of the element that
needs to distribute its energy. To keep the texture onto the GPU and avoid back and forths exchanges
between the CPU and GPU, the counting of the pixels is performed by using compute shaders, memory
barriers and atomic counters [159]. Even though memory barriers break the parallelism essence of the
method, it enables the process to be kept onto the GPU without any additional memory transfer.

By taking the equations of the form factors and using the Nusselt analog:

F1→2 = 1
A1

∫
A1

∫
A2

dFd1→d2dA1 = 1
A1

∫
A1

Fd1→2dA1

= 1
A1

∫
A1

An

π
dA1

By assuming that the meshing is refined enough and that the surfaces dk are
small enough regarding the involved scene distances; the quantityFd1→2 can
be considered constant overA1:

F1→2 ≈
An

π

1
A1

∫
A1

dA1 = An

π

Note
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The radiosity equation is therefore adapted to the implemented Nusselt hemisphere form factor
algorithm. LetNb be the number of pixels in the hemisphere basis of the projection texture and el(i)
the function that returns the element index based on the pixel color id. SinceAn = Nn/Nb

Jk,∆λi
= Mk,∆λi

+ (1− ϵk,∆λi
) 1
πNb

Nb∑
p=1

Jel(p),∆λi
(5.22)

Figure 5.9: Projection image of one of the
plane from an element of the other plane

Please note that by using the projection, the visibility
is automatically computed through a Z-buffering algorithm
in the rendering pipeline. Therefore, the summation per-
formed in the previous equation is done only on the visible
elements of k. Furthermore, the sum of the form factors is
always equals to 1 by design which prevents the algorithm
from diverging. In order to validate the implementation
of the form factors, a particular unit-test has been imple-
mented in the simulator. Identical and parallel directly op-
posed rectangles have been taken to compute the form fac-
tors and compare to analytical solutions [1, 83, 91]. The model has been created with the 3D modeling
software Blender. The unit test is passed with an error smaller than 0.1%

5.3.4 Progressive radiosity implementation

Now that the form factors can be computed, the full algorithm can be implemented and its more
detailed pseudo-code is given in Algorithm 10. The distribution of energy is made through a GPGPU ap-
proach by using compute shaders. The rendered projection texture is the input of the compute shader
which processes each pixel separately on a single grid element. The purpose of this method is to par-
allelize the For each loop in Algorithm 10 and is applicable thanks to the coherent memory access
of OpenGL®’s Image Load Store functions property.

Next element function

As in the standard progressive radiosity algorithm, the next shooting element is the one with the
greatest energy. From a practical point of view, it means that the largest unshot radiosity times area
element textures must be found. If finding the maximum value in an array through the CPU is a stan-
dard thing it is more difficult on a GPU. In fact, looking into a GPU array the maximum value can be
done in parallel but may fail due to concurrent writings and readings.

Concurrency: occurs when two asynchronous processes try to write / read to the same location at
the "same" time which can lead to memory corruptions and wrong data written or read. Concurrency
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Algorithm 10: Proposed code for progressive radiosities algorithm on hardware

Function RADIOSITY()
Initialisation radiosity = residuals = emission, stopCriteria =∞, i = nextElement()
While stopCriteria unsatisfied

hemiProjection = nonLinearProjection(i);
For each pixels j ∈ hemiProjection

; //performed on the compute shader
Fij = computeFormFactor(i,j);
∆J = (1− ϵj) ∗ Fij ∗ residualsi ∗ Ai

Aj
;

radiosityj = radiosityj + ∆B;
residualsj = residualsj + ∆B;

residualsi = 0 ; //i contribution is reset
i = nextElement() ; //choose i such as Bi ∗Ai is larger

can be avoided by different methods such as message-passing where the requested are queued.

Many possibilities can be investigated to overcome the concurrency on the GPU. The most effi-
cient one would probably be to interface with CUDA or OpenCL libraries and a specific kernel. One
drawback of this method is that the code becomes more complicated and an overload of includes li-
braries just to find a maximum value. Another possibility is to get the texture back to the CPU and
find the maximum on the CPU but the efficiency of this method may vary between hardwares and
breaks the GPU-only process. Instead, the chosen solution is to use again atomic counters thanks to
the GL_ARB_shader_atomic_counter_ops extension which incorporates an atomic max operation.

Atomic counter: a specific openGL variable type which can be seen as a limited buffer image vari-
able on which atomic memory operations can be performed on them. Therefore, no memory barriers
are needed to synchronize their access: each read/modify orwrite operation is completed in its entirety
before other operations are permitted.

The current implementation uses two atomic counters, one for keeping the maximum value and
one for keeping the index of the maximum. Such design leads to a lack of synchronization in-between
the counters:

1. atomicCounterMax function replaces the value of the max atomic counter if the new value is
greater than the oldest one.

2. atomicCounterExchange exchanges the old value in the index atomic counter by the new index

Therefore, if the atomicCounterMax function always guarantees to store the maximum, the
atomicCounterExchange does not guarantees that the index actually corresponds to the max found.
In fact, even if the queues of the counters are synchronized by themselves, themaximum and exchange
queues are not synchronized together, as shown in Fig. 5.10.

The algorithm is different from the progressive refinement on which the maximum of energy is
not always chosen but one of the maximum patch energy is instead. Concurrency can occur when two
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Figure 5.10: Concurrency example. At first, the maximum value is 10 at index 0. The concurrency
makes the orders in the queues not the same. The maximum value is always guarantee but not its
corresponding index

elements are both greater than the current atomic counter which has more probabilities to happen at
the beginning of the algorithm (even though the greatest energy is the same onmultiple elements) but
less and less while the algorithm progresses, as shown in Fig. 5.11. Trying to add synchronization and
barriers into this part of the algorithm may lead to a lack of efficiency due to the induced slowdown.

Post-process

Finally, once the radiosity have been computed, the rasterized triangles cannot be directly used for
texturing so missing values are linearly interpolated.

5.4 Camera model

Camera parameters such as focal length, position, resolution or even acquisition frequency for ex-
ample are inputs to the software that are used to visualize the 3D scene through this specific camera
fromone side and also to compute the infrared image from the other part. For instance, the focal length,
position and camera resolution are used for the projection of the scene through the pinhole model for
the visualization. In the current version, there is no optical transfer function to simulate advanced ef-
fects such as diffraction, opening shape and various aberrations but such feature could be added in the
future. However, the camera is also defined by amatrix of detectors that can be customized to take into
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Figure 5.11: Energy shot at a given time of the algorithm as a percentage of the first shot

account the acquisition process, from the irradiance at the camera to the digital image. As for exam-
ple, the quantum CCD/CMOS detectors defined in [101] have been implemented directly into the GPU
through shaders for a real-time rendering and visualization. The parameters of the detectors can be
customized and visualized in live. This model considers the following conversion process: photons→
electrons→ voltage→ digital levels. Different noises parameters can be adjusted such as shot noise,
dark current, gains, analog to digital converter etc. Fig. 5.12 shows an example of a camera impulse
response.

Figure 5.12: Signal received at the camera (left). Generated image by the camera (impulse response),
the digitization can be observed as well as the noises impact on the image.

5.5 Solar spectral irradiance

In order to consider the in-situ characteristic of the infrared thermography structure monitoring,
environmental models have been implemented to simulate the sun contribution, in particular in the
NIR band. Such simulation needs the knowledge of the location at a given time to get the solar position
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in the sky and an atmospheric model to take into account the different absorption, reflection and dif-
fusion effects of the extraterrestrial radiation through the atmosphere. Many radiative transfer codes
have been developed through years (a Wikipedia page with a non exhaustive list even exists [12]) for
various applications such as climate models or solar photo-voltaic systems efficiency optimization for
example. In this thesis, the concern was about finding a solar spectral model that could give the solar
spectral irradiance at ground and fully documented to be integrated into the software. Those require-
ments were met by the SMARTS2 (Simple Model for the Atmospheric Radiative Transfer of Sunshine)
algorithmdescribed in [82]. Thismodel is derived from SPCTRAL2 and SMARTS1, improved by the com-
parison and fitting of MODTRAN model for adjusting look-up tables coefficient values [181]. By using
look-up tables, the SMARTS2 algorithm provides a fast way to simulate the solar spectral irradiance at
ground by considering various atmospheric factors.

5.5.1 Sun position

The sun position can be derived thanks to the knowledge of the longitude (l), latitude (φ), date and
time considered [180]. The declination angle δ that represents the angular position of the sun at solar
midday from the equatorial plan can be written, from [43]:

δ = 23.45 sin
(284 + n

365
× 360

)
(5.23)

Where n is the nth day of the year. Solar hour can be expressed as a function of the legal hour that
depends on the time zone UTC+X by:

hsol = 4
60
× (15×X − l) + E

60
+ hleg (5.24)

where the minute correctionE that comes from the variation of the Earth self-rotating speed is given
by [172] (see footnote in [180]).

Therefore, the zenith angle is obtained from [61]:

cos(θz) = sin(δ) sin(φ) + cos(δ) cos(φ) cos(ω) (5.25)

Finally, the azimuth angle, from the same reference:

γs = sign(ω)
∣∣∣∣arccos

(cos(θz) sin(φ)− sin(δ)
sin(θz) cos(φ)

)∣∣∣∣ (5.26)

An example of the change of the sun position over the sky vault in the software is shown in Fig. 5.13.
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Figure 5.13: Sun position over the sky vault for a 3D wood house scene

5.5.2 Atmosphere

Figure 5.14: Atmospheric model parame-
ters in the software

The atmosphere of Earth is composed of multiple gases
layers. Depending on the composition of those layers, the
solar radiation received from the sun and that goes through
the atmosphere will be scattered, absorbed, polarized and
transmitted before reaching the ground. Furthermore, the
atmosphere will emit itself some radiation, particularly in
the infrared spectrum due to the involved temperatures.
Many models exist in the literature, from advanced and
complex ones using finite elements and/or ray tracing so-
lutions to simpler ones using fitted formulas from experi-
ments.

Now that the zenith angle is known based on the day
of the year, time and location the solar spectral irradiance
can be derived from SMARTS2 algorithm. The SMARTS2
algorithm gives direct beam and diffuse beam radiations.
For more details about how those quantities are derived,
please refer to the original article [82]. The SMARTS2 al-
gorithm uses 10 reference atmospheres included 6 used in
MODTRAN. Those reference atmospheres take into account
different vertical profiles of air temperature, pressure, relative humidity, pathlengths ofO2,H2O, etc.
based on altitude variation. Also, 4 aerosol models (urban, rural, maritime and tropospheric) can be
chosen. Fig. 5.14 shows the configuration window in the software with the possibility to plot the re-
sulting transmittance and solar spectrum.
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Extraterrestrial solar spectrum

SMARTS2uses a reference extraterrestrial solar spectrumwith1nm resolution in [280nm; 1700nm]
range and 5nm in [1705nm; 4000nm] range. This spectrumwas derived from previous studies and ad-
justed to satellite data. Since this spectrum is interpolated in the current implementation to fit the
user’s requested resolution, this input spectrum could be changed or adapted to more recent data; if
needed.

Direct beam radiation

The direct beam radiation by a surface normal to the sun is obtained by using the following formula:

Ebn,λ = Eon,λτR,λτo,λτn,λτg,λτw,λτa,λ (5.27)

with

• Eon,λ the extraterrestrial irradiance reaching the Earth,
• τR,λ transmittance due to rayleigh scattering,
• τo,λ transmittance due to ozone absorption,
• τn,λ transmittance due to nitrogen dioxide absorption,
• τg,λ transmittance due to mixed gases absorption (mainlyO2 and CO2),
• τw,λ transmittance due to water vapor absorption,
• τa,λ transmittance due to aerosol extinction.

Some examples are provided in the following figures. Fig. 5.15a shows the impact of the zenith
angle to the received direct irradiance component whereas Fig. 5.15b shows the impact of the visibility.

(a) (b)

Figure 5.15: Spectrum of the solar irradiance received by a surface normal to the sun for different
visibility and altitude values
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An example of the effect of zenith angle over the transmittance is shown in Fig. 5.16.

Figure 5.16: Transmittance values for different zenith angles

Diffuse beam radiation

The diffuse component of the sun spectral radiation is approximated by using the same transmit-
tance functions used in the direct component in order to simplify the computation. A physical justifi-
cation can be that the photons that are not directly transmitted are scattered in all directions for which
a roughly predictable fraction will be directed downwards [82]. The diffuse irradiance is then given by:

Ed,λ = Ed,R,λ + Ea,R,λ + Eb,R,λ (5.28)

with
• Ed,R,λ due to Rayleigh scattering,
• Ea,R,λ due to aerosol scattering,
• Eb,R,λ due to backscattering (interreflections between the ground and the atmosphere).

Implementation and units tests

The SMARTS2 algorithm and its corresponding look-up tables have been implemented in C++ pro-
viding a model to simulate the radiation from the sun. The different parameters can be customized
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in a specific window as shown in Fig. 5.14. The sun and sky are considered as a hemisphere over the
scene and contribute to the radiation through the standard radiosity algorithm for which the patches
only emit. The diffuse component is spread over the entire sphere whereas the direct one affects the
patches based on the zenith angle. Currently, the circumsolar radiation part of the SMARTS2 algorithm
is not implemented yet.

Again, units tests have been implemented to check the reliability between the expected article re-
sults and the implemented ones. The results in the article have been reproduced (see Fig. 5.17) and
units tests for the different look-up tables interpolations algorithms performed.

Figure 5.17: Effect of the pathlengths of ozone and NO2 to their transmittance and comparison with
the original figure.

5.6 Results and examples

The different algorithms and models used to simulate the radiative exchanges on a 3D scene have
been exposed and their implementation commented in the previous section. In this section, results are
provided and some examples of usage are shown to illustrate the user-friendly part of the developed
software and its possible applications.

5.6.1 Graphical User Interface (GUI)

Once the radiosity algorithm has been computed - or during the computation -, the user can switch
between multiple rendering shaders for displaying different available results. The radiosites values on
every surface on the scene can therefore be observed andmore information can be obtained by clicking
on a specific surface. Another rendering shader enables the visualization of the energy received at
camera’s sensor that simulates the irradiance at the camera. This is achieved through Bouguer’s law
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Eq. (2.24) and a model of the detectors of the camera as explained in the next section.

Ik,∆λi
=

Jk,∆λi
cos(θ)

d2 (5.29)

Where I is the irradiance received at the camera, d is the distance and θ the angle between the pixel of
the camera and the observed surface of radiosityB.

5.6.2 YAML files configuration

The simulation settings can be customized by a YAML (YAMLAin’tMarkup Language) configuration
file. The YAML syntax [178] allows readable and easy to write syntax. A user can therefore customize
the simulation settings and such configurationfile is a goodway to save and restore different simulation
parameters. Variables can be defined locally on the YAMLfile, according to the YAML 1.2 specification.
Moreover, a specific feature has been added to the YAML parser of the software so that it understands
formulas through the ExprTk library [24] and the tag !!formula. An example and more details about
those configuration files are given in Appendix B

5.6.3 Python interpreter and module

Even if the graphical user interface enables interactions with the software, it may be complicated
to batch process multiple simulations. Moreover, extending the software or writing C++ code in it to
fits the expectations may be difficult for most users. That is why a Python interpreter (CPython) has
been included and a specific Python module has been developed so that the user can interface with
the software from Python. Python is a widespread high-level programming language among scientist
with a strong and dynamic typing. CPython offers a C implementation of Python. Interacting with
the software is made easier thanks to the Python interpreter. The user has access to the 3D scene and
the radiosity renderer programmatically, which can be useful to perform multiple simulations with
different parameters or even animate the 3D scene (see Fig. 5.18).

1 import time
2 for i in range(0,200): # For 200 iterations
3 infrashell.rotate("floor_Plane", (0,4,0), True) # Rotate the object
4 infrashell.draw() # Update the screen
5 time.sleep(0.1) # Pause to see the update

Figure 5.18: Animation of an object in the 3D scene through Python: an object on the scene is rotated
of 4 degrees and the scene is displayed on screen at each iteration.
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5.6.4 Static results

Fig. 5.19 shows an example of radiosity map that can be obtained in a static configuration with a
building (near infrared band to view the effect of the sun). The sun contribution can be observed among
with the created shadow due to this illumination. The meshing impact on the final resolution and the
interpolation quality is also visible, and very documented in the literature [40]. The Python script used
to generate the simulation is given in Appendix C

Figure 5.19: Radiosity map of a building for a given day, at different time (from left to right: 6AM, 12PM
and 4PM)

5.6.5 Dynamic results

The simulation enables to have a first sense of the infrared measurement on site, which can be
viewed as a decisionmaking tool for infraredmeasurements systems sizing. Simulating data can help to
choose the rightmeasurement system, prior to the exploitation. In the following use-case, this tool has
been used in this philosophy to study the feasibility of measuring train’s hot boxes [179] through two
different infrared cameras. The first camera used was an uncooled FLIR SC655 at 100Hz in the spectral
band [7.5µm13µm] (LWIR) and the second one a cooled FLIR XC6540 at 250Hz in the [1.4µm5.4µm]
(SWIR-MWIR) band. A 3D model of a train boogie has been used as shown in Fig. 5.20

Figure 5.20: 3D model of the boogie in its scene environment

Then, based on the radiosity rendering equation, the irradiance received at the camera has been
computed by using the Bouguer’s law. An example of the boogie in the software is shown Fig. 5.21.

127



Chapter 5 – Study and development of an infrared multispectral images simulator

Figure 5.21: Boogie and environment in the simulation software. The preview of the rendered infrared
image is done in real-time at the bottom left corner.

Then, experimental measurements have been performed in order to make a visual comparison be-
tween experiment and simulation. As shown in Fig. 5.22.

Figure 5.22: Comparison of simulation data with experimental ones. The motion blur is well repre-
sented in the simulation. The temperature levels however are not well represented due to a lack of
information about the initial temperatures values of the boogie.

5.6.6 Comparison with literature

In order to validate the software, a comparison with a common literature sample called the Cornell
Box has been made. The Cornell Box is a famous model which aims at determining the accuracy of
rendering software. Themodel with the data found in [45] has been used. In order to simplify the image
creation, the renderinghas beenmade on 3 bands: [400nm; 495nm], [495nm; 590nm], [590nm; 700nm]
assuming that those bands correspond approximately to blue, green and red, respectively. Therefore,
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the reflectivity spectrum given by the original Cornell Box has been averaged on this bands, leading to
the dashed spectrum in Fig. 5.23.

Figure 5.23: Original and approximated reflectivity spectrum used for the validation

The following results are shown below, for two different light temperature, one light white and
another one that goes onto the red. In Fig. 5.24, the first top left zoom shows the diffusion that occurs
between the red wall to the tall box, as expected. However, the classical issues of the radiosity method
can also be found and are well addressed in the literature [163]. An example is the wrong shadows, on
the second zoomed box at the lower right corner of Fig. 5.24. Such issue is due to the too coarse mesh
in this region and the aliasing algorithm. It can be prevented bymodifying the aliasing method and/or
modify the mesh so that it is more refined where the gradient is important [86, 184, 136].

Figure 5.24: Cornell’s box result for two different lights. Such result is computed on a professional
laptop - M1000M Nvidia graphic card, Intel i7-6820HQ CPU @ 2.70GHz. The computation time is ap-
proximately 60 seconds with a progressive rendering and aliasing on screen every 50 iterations.
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5.7 Synthesis

An infrared imaging software that simulates radiative exchanges of 3D scenes statics and dynam-
ics have been produced. The implementation of the progressive radiosity method on GPU by using
OpenGL® enables a parallelized rendering and visualization at the same time. Thanks to detectors and
solar irradiance spectral data models from the literature, advanced in-situ multi-band infrared ther-
mography simulations are possible. Settings different parameters onto the models through multiple
simulations helps in setting infrared measurements systems before the exploitation. Moreover, thanks
to the Python module, batch processing and advanced dynamic use-cases can be automatically ren-
dered. However, improvements can be made in the simulation tool. In fact, the parallelized radiosity
method could be improved by using an adaptive meshing that makes some refinement based on the
energy gradient [79] and therefore modify the projection algorithm [7, 69]. Moreover, an overshooting
method is not performed but could be incorporated to speed-up the convergence [77]. Also, to over-
come the orthotropy, a BRDF (Bidirectional reflectance distribution function) could be used [163] and
specular reflection as well as transmission could be incorporated as in [187].

The developed software provides a way to study different parameters for in-situ infrared thermog-
raphymeasurements. Its parallel implementation on graphics hardware uses advances from the image
synthesis and computer science fields to enables fast interaction and visualization of in-situ 3D spectral
scene which has not been done previously according to our knowledge. Moreover, the use of solar and
camera’s detectors models from the literature and parallelized through the graphics hardware offer a
tool to simulate IR in-situăacquisition from the radiative exchanges to the generated image in digitial
levels.

A flowchart that summarizes the developed software is given in Fig. 5.25. The software will be used
in the following to simulate data for the evaluation of different emissivity and temperature retrieval
methods.

130



Figure 5.25: Flowchart overview of the developed software showing the different steps of the numerical
simulation





Chapter 6

Proposed and studied methods for the
simultaneous estimation of temperature

and emissivity

I n the previous chapter, different emissivity and temperature estimation methods were presented.
Those methods are either restricted to a range of applications and materials or computationally
intensive. In particular, no specific method for in-situ IRT structure monitoring was introduced. In

this chapter, a presentation of the developed methods for the simultaneous estimation of temperature
and emissivity through IRT is made.

Firstly, the state-space representation of the problem is derived from the equations presented in
Chapter 3. In order to track the dynamic component of the measured signal (i.e. the temperature
under our assumptions), a Kalman filter has been implemented. However, the lack of knowledge about
the emissivity and the non-linear characteristics of the model lead us to extend this Kalman filter to
a particle filter. Such approach exploits the temporal and multi-bands aspects of the signal but does
not take into account the spatial one. Therefore, a Kriging step is finally added to the particle filter
which serves two purposes. The first purpose is to integrate into the model a spatial description for
themeasured signal. The second purpose is to use the Kriging as an interpolator and thus avoid having
the particle filter to run on all the pixels of the image but only on a selection of the pixels. This last
step reduces the required computation needs.

Results of the different implementations are presented and discussed around a theoretical test case
simulation scenario.

6.1 Linear time varying (LTV) systems in state-space representation

The methods presented in the following make use of a state-space representation in their formu-
lation of the problem. Let define the state-space model of a linear system with i ∈ N inputs, o ∈ N
outputs and n ∈ N so called state variables. A general state-space representation is given in the fol-
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lowing equation:
ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(6.1)

where:

• x ∈ Rn is the state vector,
• y ∈ Ro is the output vector,
• u ∈ Ri is the control vector,
• A ∈Mn(R) is the state matrix,
• B ∈Mn,i(R) is the control matrix,
• C ∈Mo,n(R) is the observation matrix,
• D ∈Mo,i(R) is the feedthrough matrix.

withMn(R) the set of matrices with coefficients inR. The first equation is usually called the dynamic
equation and the second one the measurement equation.

A discrete version of the previous state-space model can be derived from Eq. (6.1):

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk

(6.2)

Based on the linearization of the temperature-emissivity problem for IRT (Eq. (3.20)), a state-space
representation of the emissivity and temperature estimation problem for IRT can be derived. By as-
suming that the emissivity is constant through time and using the notation defined in Chapter 3, the
measurement equation can be defined as:

yk =


1 ∆λ1 ∆λ1

2 . . . ∆λ1
m − C2

∆λ1

1 ∆λ2 ∆λ2
2 . . . ∆λ2

m − C2
∆λ2

...
...

...
...

...
...

1 ∆λN ∆λN
2 . . . ∆λN

m − C2
∆λN





α0

α1

α2
...

αm

1
T ′

k


(6.3)
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for a given discrete time k. The associated state-space representation can be defined as:

xk = 1
Tk

yk = (ln (γ∆λi
))1≤i≤N uk = u =



α0

α1

α2
...

αm


Bk = 0

Ck = C =


− C2

∆λ1

− C2
∆λ2
...

− C2
∆λN

 Dk = D =


1 ∆λ1 ∆λ1

2 . . . ∆λ1
m

1 ∆λ2 ∆λ2
2 . . . ∆λ2

m

...
...

...
...

...
1 ∆λN ∆λN

2 . . . ∆λN
m



(6.4)

The state matrix Ak that represents the dynamic evolution of the state vector is undefined, yet. In
fact, the evolution of the temperature remains difficult to predict. In the following, different dynamic
equations will be considered for characterizing the evolution of the temperature. Even if some models
can be found in the literature, a perfect dynamic clear sky ground’s temperature evolution may not be
suitable for having a goodAk estimate. On the other hand, choosing a complex model will lead to add
more information onto the system that may not be always available. For the Kalman filter, the dynamic
model will be taken asAk = 1, leading to a randomwalkmodel. In the particle filtering basedmethods,
the Ak will be considered as a parameter to be estimated as well as the emissivity. However, even if it
has not been implemented in this work, an auto-regressive based dynamic model is possible. In fact,
by using daily temperature measurements, an auto-regressive model can be fitted and then applied
to the dynamic equation. Such model is proposed in Appendix D. Finally, such notations lead to this
simplified state-space representation:

xk+1 = Akxk

yk = Cxk + Du
(6.5)

TheC matrix can therefore be defined as in Eq. (3.32) for polynomial approximation or in Eq. (3.41) for
spline approximation.

This state-space representation hides many assumptions. The first one is that only the tempera-
ture and its evolution are supposed to vary through time (or the emissivity is assumed to vary slowly
regarding the variation of temperature). The emissivity and the temperature are assumed to be in-
dependent. Those assumptions will be discussed later on. Please note that the presented model will
evolve through this chapter to fit the developed methods. In the following, Bayesian filters that will be
used to develop the estimation methods are presented.
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6.2 Optimal Bayes filter

6.2.1 Prediction

The idea is to estimate the next state of the system given past measurements (next and past are
related to current time). Let noteY t the measurement up to time t, including the past t− 1measure-
ments. Consider the state-space system (xt, yt). The objective is to find the prediction p(xt|Y t−1)
given the belief p(xt−1|Y t−1). By using the law of total probability, we have:

p(xt|Y t−1) =
∫

p(xt, xt−1|Y t−1)dxt−1

=
∫

p(xt|xt−1, Y t−1)p(xt−1|Y t−1)dxt−1

=
∫

p(xt|xt−1)p(xt−1|Y t−1)dxt−1

(6.6)

The last line of the equation is obtained by assuming that the phenomena are independent: state xt

depends only on statext−1. Such assumptionmeans that only the immediate past matters: p(xt|xt−1,

xt−2, . . . , x0) = p(xt|xt−1).

6.2.2 Update

The update step involves computing p(xt|Y t) given a prediction p(xt|Y t−1) and a measurement
yt. By applying Bayes rule:

p(xt|Y t) = p(xt|Y t−1)p(yt|xt, Y t−1)
p(yt|Y t−1)

= p(xt|Y t−1)p(yt|xt)
p(yt|Y t−1)

(6.7)

Again, the last line is obtained through independence assumptions. That is to say, the observations
only depends on the current state: p(yt|xt, xt−1, . . . , x0, Y t−1) = p(yt|xt). By applying Chapman-
Kolmogorov equations, one can get

p(yt|Y t−1) =
∫

p(yt|xt)p(xt|Y t−1)dxt (6.8)

which appears to be a normalization factor in Eq. (6.7).

136



6.3. Kalman Filter

6.2.3 Synthesis

Assuming that p(x0) is known, the recursive computation of p(xt, Y t) is based on the optimal filter
Eq. (6.6) and Eq. (6.7):


p(xt|Y t−1) =

∫
p(xt|xt−1)p(xt−1|Y t−1)dxt−1 prediction

p(xt|Y t) = p(xt|Y t−1)p(yt|xt)∫
p(yt|xt)p(xt|Y t−1)dxt

update
(6.9)

To conclude, the Bayesian filter is based on two main steps:

• Make prediction based upon previous belief
• Update belief based upon Measurement

Three algorithms (Kalman filter, particle filter and interacting Kalman filter) based on those equations
are now introduced and then written for the particular case of the conjoint estimation of temperature
and emissivity.

6.3 Kalman Filter

The Kalman Filter is an infinite impulse response filter that estimates the current state of a linear
system based on the previous one and the current measurements. The filter can therefore track lin-
ear dynamical models in Gaussian noise. This filter involves two main steps, the prediction and the
correction based on the observations.

6.3.1 Equations

White noises are now added to the dynamic andmeasurement equations and the state-spacemodel
is considered as a stochastic process with stochastic variables. The purpose of the Kalman filter is to
reconstruct the state variable through time by taking into account this state-space model when the
system to observe is assumed to be linear. Initial conditions are assumed to be relatively well-known
in order to allow a reliable linearization.

The estimate of the state at time k is denoted by x̂k|k and x̂k|k−1 represents the estimate of the
system’s state at time stepk beforek -thmeasurement. Letvk andwk be random independentGaussian
noises white in time (i.e. vi and vj are independent one another for all i ̸= j, same for wk). The
covariance matrices of x̂k|k, vk andwk are respectively denoted by Σk|k, Σv and Σw.
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Usually normal distributions are taken as a priori. Apart from the fact that this
distribution is widely observed in nature, such assumptions comes mainly
from its mathematical properties:
• Stable with finite variance

N (x, Σx) +N (y, Σy) ∼ N (x + y, Σx + Σy)

• Convenient to generate isotropic search points
• Maximum entropy relative to all probability distributions covering R
but having finite mean and variance [46].

Note

Prediction

Given the measurements (yi)0≤i<k, the expectation x̂k|k−1 and covariance matrix Σ̂k|k−1 can be
written:

x̂k|k−1 = Akx̂k−1|k−1 + Bkuk

Σk|k−1 = AkΣk−1|k−1AT
k + Σv

(6.10)

Correction

The Kalman filter alternates two stages: the prediction and the correction of the prediction based
on input measurements at step k: yk. The expectation x̂k|k and covariance matrix Σk|k are given by
using the equations of the best unbiased linear estimator.

ỹk = yk − Ckx̂k|k−1 −Dkuk Innovation

Sk = CkΣk|k−1CT
k + Σw Covariance of the innovation

Kk = Σk|k−1CT
k S−1

k Kalman gain

x̂k|k = x̂k|k−1 + Kkỹk Corrected estimation

Σk|k = Σk|k−1 −KkCkΣk|k−1 Corrected covariance

(6.11)

The Kalman filter aims at correcting the vector’s state based on measurements. By taking Eq. (6.9):

• The prediction is obtained by using the previous corrected estimate p(xt−1|Yt−1) and the dy-
namic model linking the previous state to the next one in time: p(xt|xt−1).
• The correction at step t is obtained by using the prediction and an observation model p(yt|xt).

As a consequence, on a Kalman filter, the Gaussian is propagated through time. Themean and standard
deviation associated to the dynamic noisy model can be predicted and corrected. The Kalman filter is
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therefore a feedback systemonwhich the state vector expectation and covariancematrices are updated
as new measurements are made. The Kalman filter gives an estimation of xk but also an appreciation
of the result through the estimation of the covariance matrixΣk.

6.3.2 Test case

In order to test this method, emissivity profiles have been taken from the database provided in
[57]. The emissivity profile is decimated to get a smaller number of samples. A standard temperature
1st-order time evolution has been considered (see Fig. 6.1).

Figure 6.1: Temperature and emissivity profiles

Firstly, the model defined in Eq. (3.32), by using a 6-order Tchebychev polynomials basis has been
taken. The results are presented in Fig. 6.2. One can see that the polynomial does not fit the emissivity
profile. This is mainly due to a local minimum that is found in the process at the beginning and that
will not change through the Kalman evolution. However, the temperature evolution does follow the
original time profile.

To overcome the issue of the emissivity profile, the Kalman filter is combined with a gradient de-
scent. As a consequence, the emissivity profile is updated at each step, following the temperature
evolution as in a Levenberg-Marquardt algorithm. The prediction step in the Kalman is replaced by a
gradient descent (with a dumping factor like in the Levenberg-Marquardt algorithm). Let J be the Ja-
cobian matrix of the vectorial function defined by Eq. (3.20) and β the dumping factor. The prediction
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Figure 6.2: 6-order Tchebychev approximation through Kalman filtering

step in Eq. (6.10) is replaced by:
x̂k|k−1 = Ak

((
JT J + βdiag(JT J)

)−1
JT (yk −Cx̂k−1|k−1)

)
+ Bu

Σk|k−1 = AkΣk−1|k−1AT
k + Σv

(6.12)

Let µ ∈ R, the dumping factor is then updated once the correction has been made:

β = β

µ
, if

∥∥∥yk −Cx̂k|k−1

∥∥∥
2

<
∥∥∥yk−1 −Cx̂k−1|k−1

∥∥∥
2

(6.13)

Fig. 6.3 shows the effect of the gradient descent. The first approximations are rough but once more
data arrive into the system, the polynomfitsmore andmore to the original profile. Of course, the same
input parameters have been used for a fair comparison. As a consequence, the difference between the
temperature estimate and the original one is reduced. Even if those results are encouraging, two main
issues still remain. The first one is the fact that the emissivity profile is not bounded inside the [0; 1]
interval. The second one is that the 6-order polynomial seems insufficient for fitting the emissivity
profile. The first issue can been tackled by using a modified parameterization to fit [121]:

e∆λi
= ln

(
ϵ∆λi

1− ϵ∆λi

)
(6.14)

The advantage is that e∆λi
is defined on R while ϵ∆λi

is kept into [0; 1]. The second part could be
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Figure 6.3: 6-order Tchebychev polynomial approximation through combined Kalman filter and gradi-
ent descent.

tackled with the previous presented splines system. Even though the convergence occurs to a better
estimate, the algorithm is still leading to a local solution which is not satisfying even with the splines
equation.

6.3.3 Synthesis

One of themain advantages of the Kalman filter is that updates are computationally efficient. How-
ever, the Kalman filter is restricted to unimodal distributionswith single hypothesis and it can be sensi-
tive to process noise. In the presented Kalman filter, the emissivity, temperature are estimated as state
variables of our systemwhich is not accurate regarding Eq. (6.5). In fact, the Kalman applied on the pre-
vious defined system leads to a local solution of the actual system. The Kalman filter is not well suited
since the previousmodel is not linear (an extended Kalman filter would also in this particular case con-
verge to a local solution due to a lack of information on the system parameters). Instead, theAk scalar
and emissivity should be considered as model parameters and therefore be estimated as is. In the next
part, a particle filter in addition to the Kalman filter is presented in order to estimate conjointly the
model’s parameters and the temperature. Therefore, a particle filter is running in supplement to the
Kalman one.
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Figure 6.4: Kalman filter flowchart overview
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6.4 Particle filter

As for the Kalman filter, the particle filter is a Bayes filter that uses a Monte-Carlo process to esti-
mate a probability density function. The density is represented by a set of particles (one possible state)
and their associated weights. In the Kalman filter, the prediction is made through the dynamics and
uncertainty is added based upon the process noise (dynamic noise). In the particle filter, a prediction
distribution is generated by sampling particles based upon their probability, which enables the usage
of the Bayes filter in the case that the state-space system is nonlinear. In fact, in that particular case
the optimal filter equations cannot be solved explicitly. Then those particles states are propagated
through dynamics and perturbed with noise. By tacking back the state system previously presented
and formulating it as a non-linear state-system:

xk+1 ∼ fk(xk+1|xk) + vk

yk ∼ gk(yk|xk) + wk

(6.15)

Let B(Rn) be the Borel σ-algebra on Rn. The objective is to get p(xt ∈ A) ≈ p(xt|Y t), where A ∈
B(Rn). IfNparticles is the number of particles: p(xt ∈ A) =

Nparticles→∞
p(xt|Y t). To make those particles

evolve through time, a genetic mutation-selection algorithm is performed.

In the particle filter, only the posterior density p(xt|Y t) is followed by the
estimates. In contrast, the estimates obtained with the MCMC method pre-
sented in Chapter 3 follows the full posterior density p(xt, xt−1, . . . , x0|Y t).

Note

Let (ζi
k)1≤i≤Nparticles a set of independent random samples particles with their associated weightwi

k,
following a probability density p(x0). Two stages are then applied at each iteration: the mutation and
the selection. Those two steps are similar to the prediction and update steps performed in the Bayes
filter. More details of those equations and convergence results can be found in many textbooks such as
[55].

6.4.1 Mutation

A random move is locally applied to every particle at the beginning of the iteration according to
p(xk|xk−1). Suchmove allows the set of particles to browse thefield of solutions. The term

∑Nparticles
i=1 wi

k1ζi
k

is therefore an approximation of the conditional probability density p(yk|xk). Once the randommove
has been done, an approximation of p(yk|xk) is given by

∑Nparticles
i=1 wi

k1ζ̂i
k
.
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6.4.2 Selection

The weights of every particle ζ̂i
k are evaluated using the Bayes filter equations :

wi
k =

wi
k−1p(yk|xk = ζ̂i

k)∑Nparticles
j=1 wj

k−1p(yk|xk = ζ̂j
k)

(6.16)

6.4.3 Resampling

As the weights are updated, some particles may be irrelevant due to their lowweight. A resampling
is therefore done to replace this particle by a new one that will bring more significant information.
Different sampling strategies can be used such as sequential importance resampling (SIR) [76] or se-
quential importance sampling (SIS). In order to estimate the moment to perform resampling, the stan-
dard effective particles number Neff is used. The resampling is performed when Neff < 0.9Nparticles,
according to [119]

Neff = 1∑Nparticles
i=1

(
wi

k

)2 (6.17)

Resampling consists in sampling newparticles based on theirweights and removing the oneswhose
weight is less than 1/Nparticles. Then all weights are sets to 1/Nparticles.

6.4.4 Synthesis

The particle filter can be used in the temperature - emissivity estimation by modifying the Eq. (6.5)
and including the emissivity in the state vector [31]. Let x̃k be this new state vector at time k:

x̃k =
(
xk uT

k

)T
ũk = 0

C̃k =
(
Dk Ck

)
D̃k = 0

Ãk =
(

Ak 0
0 I

) (6.18)

In such method, the particles have components that correspond to both parameters and state approx-
imations. Thus, the computed likelihood will take into account the overall approximation, which may
not give a good indication about the approximation of the state or the parameters. This is also link
with the expression of Ãk for which the parameters are only following a random walk. Instead, an-
other possibility is to use the Kalman filter for the state estimation and combine it with a particle filter
for parameters estimation, which is called the interacting Kalman filter (IKF).
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6.5 Interacting Kalman filter

In this section, a Bayesian parameter recursive estimation based on an interacting Kalman filter is
presented. The parameters to be estimated are the emissivity and the scalar Ak. Interacting Kalman
filter is a combination of two widely used Bayesian estimation methods: the particle filter and the
Kalman filter [194]. Please note that in this case, the particle filter is used to estimate the parameters
of the model and not the state vector, which is estimated by a Kalman filter [97].

6.5.1 Test case

A first approximation of f is to take the previous linear function fk : xk → Akxk withAk a scalar.
Such function could be extended to a more complicated one. As for example, [98] shows a regression
model of surface temperature depending on wind speed and air temperature, [58] presents other mod-
els to predict road’s surface and depth temperature based on the air temperature. In Appendix D, a
seasonal autoregressive integratedmoving average model (SARIMA) is presented in order to model the
fk function.

Depending on the different sensors available on the test site, the g function could also be extended.
In a theoretical case, the g function could be taken as the material’s emittance (used in the following
test case). However, in a more realistic study case and as done later on in Section 6.8, it should be inte-
grated over the sensor’s measurement band and derived from the simplified radiative transfer model,
presented in Eq. (2.51).

A given particle is defined through its parameter vector ζk:

ζk =
(
aζ

k αζ
0,k αζ

1,k . . . αζ
m,k

)T
=
(
aζ

k αζ
k

T
)T

(6.19)

Where aζ
k ∈ R is a scalar that describes the temperature evolution through time and

αζ
k = (αζ

i,k = ln(ϵζ
k(∆λi)))T

1≤i≤N (6.20)

Please note that the linearized emissivity model could also be used for which emissivity would be given
by ϵζ

k(∆λ) =
∑m

i=0 αζ
i,kΦi(∆λ) for a given (Φi)1≤i≤m function basis (see Eq. (3.32)). In this case, the

linearized state-space system could still be used. The state-space model for a given particle is then
defined as: xζ

k+1 = Ak(ζk)xζ
k + vζ

k

yζ
k = g(xk, ζk) + wζ

k

(6.21)

Based on the previous measurement equation, and Eq. (6.20), g can be defined as:

g : (xk, ζk) 7→ αζ
k −

C2
∆λ

xk = αζ
k + Cxk (6.22)
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The likelihood criterion p(yk|ζk|k−1) is therefore given by [194]:

p(yk|ζk|k−1) = N
(
αζ

k + Cx̂ζ
k|k−1, CΣζ

k|k−1 + Σv

)
(6.23)

One can see that the weights are adjusted based on a combination of the Kalman filter and the particle
one. In order to improve the result, an additional criterion is added to the particles weights compu-
tation, based on the first derivative of the measurement equation in wavelength. By using the linear
continuous equation measurement of the system:

∂y(t, λ)
∂λ

= 1
ϵ(λ)

dϵ(λ)
dλ

(6.24)

6.5.2 Synthesis

Fig. 6.5 shows the result on the theoretical test case. One can see that the emissivity profile shape
is restored leading to a satisfying temperature estimation. However, it is important to note that the
current algorithm implementation is computationally intensive. Although the algorithm can be par-
allelized with a GPGPU approach, the number of particles needed for a high image resolution would
make the algorithm complexity explode. Furthermore, due to the additional wavelength first deriva-
tive criterion, the algorithm is suitable for hyper-spectral measurement data only, with short distances
between the spectral bands.

Figure 6.5: Temperature and emissivity estimation through the interacting Kalman filter (8000 parti-
cles)
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Figure 6.6: Interacting Kalman filter flowchart overview147
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6.6 Kriging

In the previous section, the temporal and multi-band parts of the data have been used to get an
estimate of the temperature and emissivity from infrared image. However, one interesting part in those
data has not been taken into acount yet: the spatial information of the image. Spatial issues have been
presented in Chapter 4, in terms of discretization, angle of view and calibration. This section focuses
on extracting spatial information on the images. Moreover, even if the interactive Kalman filter has
shown interesting results on a simple sensor data, the required computation time to process an entire
image may not be convenient for in-situ practical applications. This section focuses on exploiting the
spatial information to serve two purposes:

• Bringing spatial information to the temperature/emissivity retrieval,
• Get rid of the short spectral band distance requirement,
• Reducing the required computation time.
Such goals have been reached by using a Kriging model on top of the interactive Kalman filter. The

kriging method was developed in the 60’s by Georges Matheron, from Danie G. Krige works in the geo-
statistical field. Kriging is a spatial interpolationmethod that provides estimates at unknown locations
based on sampled ones. Under some assumptions, kriging gives the best linear unbiased prediction
for the intermediate values. Based on the modeling of the experimental variogram, the spatial inter-
polation is made by computing the expected value of a random variable. We will introduce first the
Kriging equations and in the next section present the final temperature / emissivity retrieval method
KIKF (Kriged Interactive Kalman Filter).

LetS ⊂ R2 be the studied spatial domain, S ⊂ S be the measurement domain and S∗ ⊂ S be
the spatial domain where lies the points on which the estimation has to be made such as S ∪ S∗ = S .

6.6.1 Variogram

Definition

Let s ∈ S a spatial point with its associated measurement y(s). Consider now the measure-
ment at point s + h, h ∈ R2. The variogram is defined as the expectation of the random variable
(y(s)− y(s + h))2 [92]. Since in practice only one realization of the couple (y(s), y(s+h)) is known,
the hypothesis behind themodelization of the variogram is to assume that the variogram only depends
on the modulus and direction h and not its location s. Therefore, the variogram is defined as:

2γ(h) = 1
N(h)

N(h)∑
i=1

(y(si)− y(si + h))2 (6.25)

where N(h) represents the number of points separated by a vector h in S . The variogram can be
viewed as the estimation of the variance of the resulting estimation prediction error when the mea-
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surement in s + h is estimated from the measurement in s. Modeling the variogram during kriging
is one of the most important part since the final estimation will depend on this spatial model. In the
particular case of a spatially stationnary field, this variogram can be expressed as a spatial covariance
[48].

Variogram models

The variogram can be deduced from the experimental data based on Eq. (6.25) (experimental var-
iogram). However, such methodology will not give a predictive model neither respect kriging con-
straint’s hypothesis (continuous variance function, the variance function is defined on S2 and is sta-
tionnary of order 2). As a consequence, once the experimental variogram is computed, a variogram
model is fitted to it. The choice of the variogram model is usually problem-dependant and the choice
for amodel should be done carefully, by considering the physics behind themeasurements and looking
at the experimental’s variogram shape. Many variograms model exists, the following non-exhaustive
list of models is an illustration of the most common ones:

Pure nugget This model corresponds to a constant one. It corresponds to a white noise.

γ(h) =

C, if h > 0

0, if h = 0
(6.26)

Gaussian
γ(h) = C(1− e−( h

a )2
) (6.27)

Matérn The Matérn covariance function is commonly used for its mathematicals properties, in par-
ticular due to its finite differentiability (for finite ν) [173] and the fact that it includes the modified
Bessel function of second kind makes it respect physical equations, depending on the choice of ν.

Cν(h) = σ2 21−ν

Γ(ν)

(√
2ν

h

ν

)ν

Kν

(√
2ν

h

ν

)
(6.28)

whereΓ is the gamma function, andKν themodified Bessel function of second kind, ρ ∈ R+∗, ν ∈ R+∗

6.6.2 Simple Kriging

Depending on the knowledge that one can get on its data, or the knowledge that one wants to
infere into its model, the kriging method and formula has to be adapted. In Simple Kriging (SK), the
measurements y are assumed to be the sum of a known trend function µ : s ∈ S → µ(s) ∈ R and a
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centered square-integrable processZ . The covariance ofZ is known (learned from previous section) :

y(s) = µ(s) + Z(s) (6.29)

Let s∗ ∈ S ∗ and S = (si)1≤i≤n, the Simple Kriging equations are [148]:

µ(s∗|S) = µ(s∗) + C(s∗, S)T C−1(y − µ(S))

σ2(s∗|S) = C(s∗, s∗)−C(s∗, S)T C−1C(s∗, S)
(6.30)

whereC = C(si, sj)1≤i,j≤n is the covariance matrix of y(S)

Let consider now that Z is a Gaussian random vectorN (0, C) where the covariance function C is
known: [

Y (S) = µ(S) + Z(S)
Y (s∗) = µ(s∗) + Z(s∗)

]
∼ N

([
µ(S)
µ(s∗)

]
,

[
C C(s∗, s)T

C(s∗, s) C(s∗, s∗)

])
(6.31)

The conditioning on a Gaussian vector leads to

p(Y (s∗)|Y (S) = y) ∼ N (µ(s∗) + C(s∗, S)T C−1 (y − µ(S)) ,

C(s∗, s∗)−C(s∗, S)T C−1C(s∗, S)
(6.32)

In the previous equation, we recognize the SK equations. In fact, in the case that Z is assumed
Gaussian, the SK equations coincide with the classical conditionning equations. From the SK equations,
one can note the following properties of the Kriging: the SK interpolates exactly the experimental data.
The SK variance is independant of themeasurements y (homoscedasticity), whatever the chosen kernel
C . For a spatially stationary field, the kriging equations are a simple linearminimummean square error
(LMMSE) interpolator.

6.6.3 Universal Kriging

In SK, the trend function µ is assumed to be known. However, in most practical applications, this is
not the case. Universal Kriging’s (UK) objective is to estimate on the fly the best linear predictions of
Y onS and the trend µ. In this case, the trend is of the form µ(s) =

∑q
i=1 βifi(s) where the vector

β = (βi)1≤i≤q is unknown and fi : R2 → R are given basis functions. Therefore, we have:

Y (s) =
q∑

i=1
βifi(s) + Z(s) (6.33)
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Let note F (s∗) = (fi(s∗))1≤i≤q and abusively, F (S) = (fi(sj))1≤i≤q,1≤j≤n. In the case that Z ∼
N (0, C) and β ∼ N (b, B):

[
Y (S)
Y (s∗)

]
=
[

F (S)T β + Z(S)
F (s∗)T β + Z(s∗)

]

∼ N
([

F (S)T b

F (s∗)T b

]
,

[
C + F (S)BF (S)T C(S, s∗) + F (S)BF (s∗)T

C(S, s∗)T + F (s∗)BF (S)T C(s∗, s∗) + F (s∗)BF (s∗)T

]) (6.34)

By using the conditionning on Eq. (6.34), we get the kriging estimator’s equations:

µ(s∗|S) =F (s∗)T b +
(
C(S, s∗)T + F (s∗)BF (S)T

)
(
C + F (S)BF (S)T

)−1 (
y − F (S)T b

)
σ2(s∗|S) =C(s∗, s∗) + F (s∗)BF (s∗)T −

(
C(S, s∗)T + F (s∗)BF (S)T

)
(
C + F (S)BF (S)T

)−1 (
C(S, s∗)T + F (s∗)BF (S)T

)T

(6.35)

In order to get the UK formula, we take the limits of µ(s∗|S) and σ2(s∗|S)when the prior on the trend
weights β ∼ N (b, B = λB̃), λ ∈ R becomes non informative. That is to say when λ→∞ and b = 0.
Therefore, we define the estimates as:

µ̂(s∗) = lim
λ→∞
b=0

µ(s∗|S)

σ̂2(s∗) = lim
λ→∞
b=0

σ2(s∗|S)
(6.36)

In order to simplify the expression of the previous equation, the two following matrix inversion
lemma are used [87]:

Lemme 6.6.1 ((A + UBV )−1 = A−1 −A−1U
(
I + BV A−1U

)−1
BV A−1).

Lemme 6.6.2 ((A−1+B−1)−1 = A−A(A+B)−1A). LetK be a commutative field. LetA andB be two
inversible matrices ofKN and suppose that their sum and the sum of their inverse are also inversible.
Let x ∈ KN , I be the identity matrix ofKN and look for a solution such as (A−1 + B−1)−1 = A + x.
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Therefore,
(A + X)(A−1 + B−1) = I

⇐⇒ AA−1 + AB−1 + X(A−1 + B−1) = I

⇐⇒ X = −AB−1(A−1 + B−1)−1

⇐⇒ X = −AB−1
[
(A−1B + I)B−1

]−1

⇐⇒ X = −AB−1B(A−1B + I)−1

⇐⇒ X = −A(A−1B + I)−1

⇐⇒ X = −A(A + B)−1A

(6.37)

Byusing successively thefirst and second lemma,we canderive the expressionof (C+F (s)BF (s)T )−1:

(
C + F (S)BF (S)T

)−1
= C−1 −C−1F (S)

(
B−1 + F (S)T C−1F (S)

)−1
F (S)T C−1

= C−1 −C−1F (S)
[(

F (S)T C−1F (S)
)−1
−
(
F (S)T C−1F (S)

)−1
((

F (S)T C−1F (S)
)−1

+ B

)−1

(
F (S)T C−1F (S)

)−1
]

F (S)T C−1

(6.38)

By multiplying the previous equation on the left by F (s∗)BF (S)T and on the right by y:

F (s∗)BF (S)T (C + F (S)BF (S)T )−1y

= F (s∗)B((F (S)T C−1F (S))−1 + B)−1(F (S)T C−1F (S))−1F (S)T C−1y

= F (s∗)((F (S)T C−1F (S))−1B−1 + I)−1(F (S)T C−1F (S))−1F (S)T C−1y

→
B→∞

F (s∗)(F (S)T C−1F (S))−1F (S)T C−1y

(6.39)

Let β̃ = (F (S)T C−1F (S))−1F (S)T C−1y:

F (s∗)BF (S)T (C + F (S)BF (S)T )−1y →
B→∞

F (s∗) β̃ (6.40)

This time, by multiplying the Eq. (6.38) on the left byC (S, s∗)T and on the right by y:

C (S, s∗)T (C + F (S)BF (S)T )−1y

= C (S, s∗)T
[
C−1 −C−1F (S)

(
B−1 + F (S)T C−1F (S)

)−1
F (S)T C−1

]
y

→
B→∞

C (S, s∗)T C−1
[
y − F (S)

(
F (S)T C−1F (S)

)−1
F (S)T C−1y

]
= C (S, s∗)T C−1

[
y − F (S)β̃

]
(6.41)
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Eq. (6.40) and Eq. (6.41) are the two terms in Eq. (6.36):

µ̂(s∗) = F (s∗) β̃ + C (S, s∗)T C−1
[
y − F (S)β̃

]
(6.42)

Similarly,

σ̂2(s∗) = C(s∗, s∗)−C(S, s∗)T C−1C(S, s∗) + UT
(
F (S)T C−1F (S)

)−1
U (6.43)

whereU = F (S)T C−1C(S, s∗)− F (s∗)T .

6.6.4 Kriging examples

In order to get an overview of Kriging, here are simple examples made with the DiceKriging [149]
library in R. Those examples are inspired from the DiceKriging help package.

1D interpolation case: covariance kernel type influence

Let 5 measurement points taken every 0.5s starting at 1s. We want to make the interpolation on
t ∈ [0, 4] with a second order polynomial trend.

(a) (b) (c)

Figure 6.7: Influence of the covariance kernel on the prediction (in black). The 95% confidence interval
in light gray and the input measurements points in red.

It is clear on this simple case that the interpolation will perform differently depending on the cho-
sen covariance. The choice of the covariance kernel will mainly depend on the shape and nature of the
input data. As described earlier, the Matérn 5/2 is often used by default, and it is the standard option
in the DiceKriging package. Moreover, the confidence interval is larger at the boundaries, due to the
lack of information. At the opposite, the measurements points are exactly interpolated.
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1D interpolation case: trend influence

Similarly to the choice of the covariance kernel, the choice of the trend function will also have an
impact on the prediction. By using the same example but this timewith aMatérn 5/2 covariance kernel
and different trend models, Fig. 6.8 shows the influence of the trend model, for three different cases:
constant, effing and sinusoidal.

(a) (b) (c)

Figure 6.8: Influence of the trend on the prediction (in black). The 95% confidence interval in light
gray and the input measurements points in red.

2D interpolation case: experimental variogram

In order to illustrate the importance of choosing the right model for the variogram fitting, a simple
example of 2D data have been taken from the Meuse R package [139]. Zinc concentration over a region
has to be estimated based on some measurements. Fig. 6.9 shows the differences between a Spherical
and aMatérnmodel for this specific case. The final concentration estimationwill therefore be different
depending on the chosen covariance model.

6.6.5 Synthesis

The equations of the Kriging have been derived in this section. The simple examples at the end
show that the variogrammodel choice is a fundamental parameter in Kriging estimation. In particular,
the fit of the experimental variogram has to be done cautiously in order to be consistent results. In the
following, a Kriging step will be combined with the previously presented IKF method.
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Figure 6.9: Difference between a spherical and Matérn variogram models for a 2D problem

6.7 New Bayesian approaches

6.7.1 A Kriged Interacting Kalman Filter based temperature and emissivity estimation

In order to exploit most information from the recorded images, a combination of both Kriging and
Kalman methods has been developed. The idea behind this approach is to use the Kriging to conserve
the spatial correlation between the objects in the scene and the Kalman filter to use the long-term
characteristic of the measurements. Kriged-Kalman Filters (KKF) have been particularly used in the
climatic domain, to establish temporal and spatial evolving models with few a-priori [48, 143]. Such
filters can also be used for optimal sensors placement as in [171] for example.

Main problem statement

Let S ⊂ R2 be the image space domain and T ⊂ R the time domain. Let suppose that an ob-
ject has a slow varying emissivity value through time. After removing the geometric coefficients, the
measurement equation can be written as:

y(s, t, λ) = ϵ(s, λ)M(s, t, λ), s ∈ S, t ∈ T, λ ∈ R (6.44)

with y themeasured value at the sensor and wavelength λ after considering the geometry of the scene,
ϵ the emissivity at location s andM the emittance at location s and time t.

A separation of the dynamic and stationary parts of the measure is performed:

log(y(s, t, λ)) = log(ϵ(s, λ))︸ ︷︷ ︸
stationnary

+ log(M(s, t, λ))︸ ︷︷ ︸
dynamic

(6.45)

155



Chapter 6 – Proposed and studied methods for the simultaneous estimation of temperature and emissivity

As done previously by usingWien’s approximation and putting a linearized model on ϵ(s, λ), let vs and
vd be the stationary component and the dynamic one respectively.

ỹ(s, t, λ) = log(ϵ(s, λ))− C2
λT (s, t)

= Ct(λ) (vs(s) + vd(s, t))
(6.46)

In the following, one important assumption will be that the quantities follow a Gaussian law. This
assumption can be discussed regarding the involved log functions in the previous equations. However,
since the sampling of the IRT is generally more important than the involved thermal time constants of
the observed surfaces, this oversampling is used so that the measurements are averaged over N time
values. We finally get the spatio-temporal evolution with the following state model, with a process
noise vector νs(t) ∼ N (0, σs(t)):

ỹ(s, t, λ) = Ct(λ) (vs(s) + vd(s, t)) + νs(t) (6.47)

Tracking of the dynamic component - Kalman

Let the spatially stationary field vs(s) follows a random process with µϵ its spatial expectation and
Σϵ its spatial covariance matrix:

vs(s) ∼ N (µϵ, Σϵ) (6.48)

vs(s) is firstly interpreted as a noise term to get the measurement equation that will be used in the
Kalman filter [192]:

ỹ(s, t, λ)− Ct(λ)µϵ = Ct(λ)vd(s, t) + Ct(λ) (vs(s)− µϵ) + νs(t) (6.49)

The measurement model equation is therefore derived from Eq. (6.49):

ŷ(s, t, λ) = Ct(λ)vd(s, t) + es(t), with


ŷ(s, t, λ) = ỹ(s, t, λ)− Ct(λ)µϵ

es(t) = Ct(λ) (vs(s)− µϵ) + νs(t)

es(t) ∼ N (0, Ct(λ)ΣϵCt(λ)T + σ2
ν)

(6.50)

With the dynamic equation defined in the previous section and process noise ηs(t) ∼ N (0, σ2
η), the

resulting state-space model is:

ŷ(s, t, λ) = Ct(λ)vd(s, t) + es(t)

vd(s, t) = Atvd(s, t) + ηs(t)
(6.51)
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This state-space model is updated each time new incoming data are gathered through a Kalman Filter,
as explained in Section 6.3.

One can see from Eq. (6.50) that the presented method needs the priors µϵ andΣϵ. The prior onΣϵ

can be roughly estimated by the input data assuming that the space covariance emissivity matrix will
remain the same through time (as long as the scene is static). However, the prior on µϵ is a strong one
that will have an impact on the final temperature and emissivity estimation. If reference emissivity
points are available and spread in the image, then those references should be taken as locations for
which the Kalman filter must be executed due to a fair estimation of µϵ.

More generally, to overcome the lack of knowledge onµϵ, a possibility is to replace the Kalman filter
by an interacting Kalman filter. In that case, the weights of the particles are updated by assuming that
for each s’s neighbors measurements locations, the temperature is the same as in s.

Furthermore, theAt dynamic evolution of the temperature is also unknown. TheAt value is there-
fore added to the unknowns of the model and added to the components of the particles.

At represents the temperature’s evolution from one time to the next one. As
a consequence, At can be greater than 1. This is actually an issue for the
Kalman recursive filter. If At is greater than 1, the initial temperature value
may not be forgotten as the algorithm is computed. To overcome this issue,
and for outdoor data process, the algorithm is started during the morning to
guarantee thatAt < 1most of the time (the dynamic evolution is in 1

T ).

Note

Spatial data information - Kriging

The Kriging step is used in order to exploit the spatial information by using the assumption that the
spatial covariancematrix model is constant through time. The Kriging interpolation is used to retrieve
the emissivity values on the entire image. As a consequence, only a few points on the image are tracked
through time. This methodology helps to reduce the computation time of the particle filter algorithm
on the entire image. By writing the measurement equation with the stationary component Eq. (6.52),
the emissivity at any new location s̃ ∈ S within the image can be derived from the Kriging Eq. (6.53)
(see Section 6.6):

ỹ(s, t, λ)− Ct(λ)vd(s, t) = Ct(λ)vs(s) + νs(t) (6.52)

vs(s̃, t) = µϵ + ΣϵC
T
t (CT

t ΣϵC
T
t + σ2

νI)−1(ŷ(s, t, λ)− Ctvd(s, t)− Ctµϵ) (6.53)
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The Kriging needs therefore an experimental variogram to fit amodel to the emissivity component.
In order to get an initial estimate of the emissivity, it is necessary to give a first estimate of the temper-
ature at locations s. This is achieved by choosing a measurement for which the temperature is uniform
or at least some knowledge about the temperature gradient is known for the considered image.

Particles update

The weights of the particles are then updated by assuming that locally (on a given neighborhood)
the temperature is the same. The likelihood is then derived by reprojecting the estimated emissivity
and the given local temperature to a measurement value and computing the mean square error. Con-
trary to the particle filter presented in section Section 6.4, the particles are thrown for only a given
number of pixel over the entire image and not for a single pixel, which reduces the algorithm complex-
ity.
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Figure 6.10: Kriged Interacting Kalman filter flowchart overview
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6.7.2 CMA-ES applied to the temperature / emissivity estimation

CMA-ES (covariancematrix adaptation evolution strategy) belongs to stochastic and derivative-free
methods, based on an evolution strategy [84]. It has been used to address the temperature and emissiv-
ity separation problem and compare it to the KIKF method. The idea behind an evolution strategy is to
choose λ children from µ parents population. In order to produce one child, ρ parents are combined.
Then children are mutated, usually based on a multivariate normal distribution. Finally, the µ best
children based on the evaluation of a minimization criteria are selected and become the new parents
population.

The CMA-ES algorithm relies on this principle. However, instead of mutating the children with a
multivariate normal distribution a priori, the covariance matrix of this distribution is updated.

Theory

As for the particle filter presented previously, the CMA-ES algorithm will have a sampling step, a
mutation and then a selection. However, instead of updating only the mean of the search points, the
covariance matrix (i.e. the shape of the distribution ellipsoid) is also updated. Let λ be the population
size and i ∈ [1, λ]. A samplexi is therefore normally distributedwith itsmeanm and covariancematrix
C

xi ∼ m + σNi(0, C)︸ ︷︷ ︸
yi

(6.54)

Where σ ∈ R+ is a step-size that controls the particles evolution.
From Eq. (6.54) different evolution strategies (ES) can be applied to update µi, Σi and σ. The

(µ/µ, λ)-ES chooses the best µ points from new solutions which is a non-elitistic selection. Then,
recombination is applied. Let f be the objective function to be minimized. The solutions points are
ranked according to their objective value f(x1:λ) ≤ . . . ≤ f(xλ:λ). The mean is then updated accord-
ing to their weights:

m̃ = m + σ
µ∑

i=1
wiyi:λ (6.55)

with w1 ≥ . . . ≥ wµ > 0,
∑µ

i=1 wi = 1 and Neff ≈ λ/4 where Neff has been defined in the particle
filter section.

In order to control the algorithm evolution, a path length control quantity p is introduced to update
both the covariance matrix and the step-size factor. This is achieved by using a cumulative step-size
adaptation (CSA) as described in [32]:

Spatial optimization problem

As for the KIKF method, the approximation that the temperature is the same on a given pixel’s
window has been used.
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Let wp a window of size W × H (where W, H ∈ N are usually odd) that is centered on pixel p =
(i, j), where i ∈ [2, N − 1] and j ∈ [2, N − 1]. The assumption that the emissivity and temperature
are constant over this window is made:

∀k ∈ w,

ϵk = ϵp

Tk = Tp

(6.56)

Therefore, we can formulate the following optimization problem, where Y is the image data and g :
(x)→ R the observation model :

∀p ∈ (N − 2)× (M − 2), xp = (ϵp, Tp) = arg min
x⃗

∑
k∈wp

∥Yk − g(x)∥22

 (6.57)

Such optimization problem can be solved by using the standard algorithms such as lsqnonlin
function from MATLAB. However, the lsqnonlin does not guarantee a global minimum, but a local
one. As a consequence, we compare here the lsqnonlin function with the Trust-Region-Reflective
Least Squares algorithm to the CMA-ES metaheuristic.

Trust-Region-Reflective Least Squares algorithm

In order to browse the solution space, the idea is to update the current point to x + h if f(x + h) <

f(x). If f(x+h) ≥ f(x) then the region is shrunk and a new h is computed. This algorithm is based on
an approximation of the function f to beminimized to a quadratic approximation. Such approximation
can be defined with the first two terms of the Taylor approximation of f at x. Then, the problem is
formulated as follow:

min
(1

2
hT Hh + hT g such that∥Dh∥2 < ∆

)
(6.58)

where H is the Hessian matrix, g the gradient at x, D is a diagonal scaling matrix and ∆ a positive
scalar.

Multi-level approach

In order to solve this system through an optimization problem, a multi-level approach has been
used. The algorithm is first applied to a high level (low-resolution) image. Then, the result is used as
input to the algorithm on the next lowest level. Therefore, this multi-resolution approach makes the
window size defined previously varying automatically. Also, it provides an estimate to the next level.
Of course, the result obtained at low resolution looks blurry, but this result is refined at each iteration,
as shown in Fig. 6.11.
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Figure 6.11: Multi-resolution approach for solving the optimization problem. From left to right: coarse
level to highest final resolution details.

Results

Whereas the lsqnonlin can give a local optimum, the CMA-ES has the advantage of providing a
global optimum, making it more robust. One other advantage of the CMA-ES is its quasi parameter-
free aspect: only the initial solution point, the initial step-size and population size have to be provided.
However such algorithm has a cost and the computation of the result is quite long and expensive, see
Fig. 6.14.

Fig. 6.12 shows the comparison of the two algorithms. The first row shows the result for a con-
stant emissivity over the entire image. The second one shows the result of the trust-region-reflective
algorithm and the last one the result obtained with the CMA-ES algorithm. One can see that the result
of the CMA-ES differs from the two others. Whereas in the lsqnonlin, a local solution is computed
where the emissivity is almost constant, the CMA-ES tends to a more homogeneous temperature field.
In this algorithm, the emissivity map makes more sense in terms of physics. In fact, the emissivity has
slight changes in this image with the angle of view.

In particular, if we focus on the cuboid at the middle-right part of the scene, we can see that the
CMA-ES and lsqnonlin emissivity take into account the angle of view, leading to amore homogeneous
surface’s temperature, as shown in the Fig. 6.13. An homogeneous temperature surface in this case
makes more sense. However, no ground truth information on those data are available, so the final
interpretation of this result is difficult. One can still note that the CMA-ES emissivity map is quite
blurry, this detail could be improved in a post-processing step.

In order to perform a comparison as fair as possible, it is necessary to compare not only the re-
sult but also the processing time. Since the CMA-ES is a stochastic global optimization algorithm, the
number of iteration is quite important compared to the trust reflective algorithm. Fig. 6.14 shows the
processing time for each algorithm, depending on the number of pixels in the image, for a 3 × 3 win-
dow size. One can see that depending on image’s size, the processing time is quite large for the CMA-ES
algorithm. on a 41 × 36 image, the CMA-ES takes over 2 minutes and 40 seconds (just for this image,
not for the entire multi-scale pyramid’s process). For the full image (480 × 640), it represents more
than 10 hours of process, compared to 1 hour and a half for the lsqnonlin function.
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Figure 6.12: Comparison of the trust-region-reflective algorithm and the CMA-ES

Figure 6.13: Cuboid’s result comparison
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Figure 6.14: Comparison of processing time, for one given scale with a given number of pixels

6.7.3 Synthesis

Anoverviewof differentmethods for the simultaneous emissivity and temperature estimation have
been proposed. In the following section, those methods will be compared to a test case obtained by
numerical simulation.

6.8 Results analysis

In order to test the developed methods, a study case presented in the next section has been set up.
A comparison of the different introduced methods is performed: MCMC, CMA-ES and KIKF. Due to the
fact that the IKF needs small spectral bandwidth, this method has not been tested but will be part of
the final results summary proposed at the end of this section.

6.8.1 Study case

The comparison of the methods is done through the creation of a material target (see Fig. 6.15),
similarly to colorimetric calibration. This material target is made of four materials with known radia-
tive properties. By using the developed software presented in Chapter 5, infrared images acquisition
has been simulated. In this case, a simple configuration has been chosen. The emissivity is assumed to
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be constant over a given spectral band and the ambient environment is at 293.15K . The materials are
thin layers, directly controlled in temperature without any diffusion or convection phenomena.

(a) (b)

Figure 6.15: Target used for the study case. (a) Rendering of the scene in the visible spectrum. The
camera is represented, the target and the hemisphere for the environment. (b) Result example for a
frame at 20◦C and other materials at 5.2◦C

The material properties are derived from the ECOSTRESS spectral library [14, 125] except from the
alumina spectrum, derived from previous studies [130]. The four materials have been chosen for their
particular emissivity spectral profile as shown in Fig. 6.16. The gold offers a reflective material, while
black paint from which the frame is made of, an emissive one. The alumina is particularly interesting
for its particular emissive window in the thermal IR band. Wood and concrete materials are commonly
used in the civil engineering field. Five different spectral bands are used corresponding to possible
infrared detectors spectral bands:

• Band 1: 1.5µm− 3µm
• Band 2: 3µm− 5µm
• Band 3: 8µm− 10µm
• Band 4: 10µm− 12µm
• Band 5: 8µm− 12µm

In the proposed scenario, the frame temperature remains constant at 293.15K. The temperature
of the different materials is assumed to be controlled by a Peltier device and varies according to real
temperature measurements at ground taken from the instrumented road section, presented in Chap-
ter 4 and shown in Fig. 6.17. The temperature profile has been decimated to have a sampling rate every
16min.
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Figure 6.16: Emissivity spectrum of the materials of the target.

Figure 6.17: Target material’s temperature evolution through time. The measurements correpond to
the temperature at ground during two days of january 2017. The decimated temperature profile is
shifted by 1K for drawing purposes.

6.8.2 Monte-Carlo Markov Chain (MCMC)

The Monte-Carlo Markov Chain algorithm, as presented in Chapter 3 has been used on the simu-
lated data. The prior used in this test for the emissivity is weak: N (0.5, 0.5). For the temperature, the
initial prior has been chosen with N (273.15, 5) which is reasonable for practical applications where
a first guess could be taken by using the air temperature for example. Fig. 6.18 and Fig. 6.19 show the
result obtained with the algorithm after 10k iterations, for a single pixel value of each material for
each spectral band. The histograms Fig. 6.19b, Fig. 6.19d, Fig. 6.19f and Fig. 6.19h show a shift of the
mean in the posterior distribution of the temperature. The temperature and emissivity simultaneous
estimation is satisfying on this test case. In fact, one can see that the emissivity spectral shape is re-
trieved and that the temperature mean tends to the actual temperature. This meta-heuristic provides
interesting results on single-time spectral data, with weak priors. However, one drawback of theMCMC
method is that it is difficult to know when the convergence has been reached. Moreover, the method
is computationally intensive and may need many iterations to have a good estimate. The result has

166



6.8. Results analysis

been computed in approximately 4 × 5 = 20minute on a i7-6820HQ CPU @ 2.70GHz on MATLAB®),
for a single pixel at a single timestamp. As a consequence, only the temperature and emissivity of one
pixel at one time for each of the material have been estimated. The implementation could be paral-
lelized through a GPGPU approach to reduce the computation time. Nevertheless, even with a parallel
implementation the time needed for a full resolution image over multiple days would take a long time.
Instead, the method could be improved. For instance, a change of the proposal distribution and / or
going onto an Ensemble MCMC method or other more advanced methods could be investigated to get
better results and faster convergence [59].

(a) Gold material (b) Alumina material.

(c) Wood material (d) Concrete material.

Figure 6.18: Focus on the emissivity retrieval on one pixel of each of the four materials for the 8µm −
12µm spectral band.
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(a) Gold material (b) Gold temperature posterior histogram.

(c) Alumina material (d) Alumine temperature posterior histogram.

(e) Wood material (f) Wood temperature posterior histogram.

(g) Concrete material (h) Concrete temperature posterior histogram.

Figure 6.19: Results of the temperature / emissivity retrieval on one pixel of each of the four materials.
(a) (c) (e) (g): Emissivity retrieval. The ground truth profile (continous) is compared to the estimated
one (per spectral band).(b) (d) (f) (h): Temperature estimation. The ground truth temperature is rep-
resented by the dashed line.
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6.8.3 CMA-ES

Then, the CMA-ES described in this chapter has been tested on the simulated data. As explained
previously, the temperature is assumed to be constant over a given pixel’s neighborhood. Such assump-
tion can be discussed. In fact, at thermal equilibrium, for a short distance and small angle of view this
assumption remains valid. However, when important distances are involved, a given pixel’s represents
a larger area. In that case, two pixels may have very different temperature. The method has been ap-
plied over the entire image at one timestamp and the results are presented for the band (10µm−12µm).
Boundaries are applied to the optimization problem: 0 < ϵ < 1 and 260.15K < T < 300.15K.

An initial emissivity constant value is given as a starting point of the optimization algorithm. This
first guess shown in Fig. 6.20 leads to important difference between initial temperature and ground
truth temperature.

Figure 6.20: Initial prior for the CMA-ES optimization algorithm. A constant emissivity is chosen lead-
ing to important differences with the ground truth values. Band: 10µm− 12µm.

The result at level 3 is shown in Fig. 6.21. The emissivity map starts to appear in this coarse prelim-
inary result. However, the temperature estimation suffers from the coarse approximation, due to the
assumption that it is constant over a given neighborhood.
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Figure 6.21: Coarse level preliminary CMAES result. The image is blurry due to the level used. Band:
10µm− 12µm.

Fig. 6.22 shows the final result at fine resolution. Due to the window size of 5× 5 pixels, the result
looks noisy. This noise could be removed either by increment the window size to an extent that would
not compromise the results or, as done here, by a post-process filtering (median filter).

Figure 6.22: Full result of the CMAES algorithm at a given time and given band. At the opposite of
Fig. 6.21, the image is noisy due to the small neighborhood involved. Band: 10µm− 12µm.
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The post process of Fig. 6.22 is shown in Fig. 6.23.

Figure 6.23: Filtered CMAES result after a 2Dmedian filter. The materials have distinct emissivities val-
ues on the emissivity map. As stated in Chapter 4 and observed on the temperature absolute difference
image, a small error on low emissivity values can lead to important error in the temperature estimate.
Band: 10µm− 12µm.

Two metrics have been used to compare the result given by the CMAES method with the ground
truth images. The first one is the root-mean-square error (RMSE) that evaluates the distance between
the estimated values and the expected ones. The RMSE is performed locally on a given window of 5×5
pixels. The second one is called the structural similarity (SSIM) which aims at measuring the similarity
between two images, developed for image reconstruction and compression. The SSIM index is defined
between two window u and v as:

SSIMindex(u, v) = (2µuµv + c1) (2σuσv + c2) (2covuv + c3)
(µ2

u + µ2
v + c1) (σ2

u + σ2
v + c2) (σuσv + c3)

(6.59)

where

• µu is the mean of u,
• µv is the mean of v,
• σu is the variance of u,
• σv is the variance of v,
• covuv is the covariance of u and v,
• c1, c2 and c3 are constants that aim to characterize the saturation effects and ensure numerical
stability for denominators close to zero.
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In this study, a SSIM SSIMm metrics is used instead of the SSIM index, for its mathematical proper-
ties [22]:

SSIM =
√

1− SSIMindex (6.60)

Finally, Fig. 6.24 shows the comparison of ground truth values to estimated ones. As shown in
Fig. 6.23, the different emissivity materials levels are found. However, some differences exist between
the expected value and the estimated one. By looking at the RMSE of the emissivity, an important gap
exists between the bottom right material (alumina) emissivity expected and estimated values. How-
ever, the SSIM shows that this estimated solution is found over the entire material and that the spatial
structure of the emissivity map corresponds to the expected values.

Figure 6.24: CMAES: SSIM and RMSE local values between estimated emissivity and temperature and
ground truth values. A small error on materials with low emissivity leads to a more important error in
temperature thanmaterials with higher emissivity. Thematerial average RMSE is up to 4K against 0.05
for the emissivity, which is still lower in average than for a constant emissivity case. Band: 10µm −
12µm.

As stated in Chapter 4, a small error on a small emissivity value will lead to an important one on
the temperature. Such behaviour is shown with the gold material (top right material). Even if the
RMSE and SSIM have low values, the final RMSE and SSIM on the temperature are more important. As
a comparison to the MCMC method, the CMA-ES provides interesting results due to its constant local
temperature assumption only. No other priors are given. In the current implementation (MATLAB®),
the full image is processed in approximately 10h. As a consequence, the CMA-ES seems to be a goodway
to get an emissivitymap of the scenewithout any knowledge. As shown in Chapter 4, an emissivitymap
can reduce the temperature estimation error drastically. Another possibility for this algorithm is the

172



6.8. Results analysis

possibility to identify the different materials within the scene, for classification purposes for example.
Moreover, the algorithm could be improved by using the multi-band measurements, which has not
been done yet. Such improvement could lead to disambiguate the solutions and therefore improve the
emissivity estimation. In any case, the estimated temperature error is still lower in average than in a
constant emissivity case as in Fig. 6.20.

6.8.4 KIKF

Finally, the developed KIKF method has been tested on the study case. However, some adjustments
need to be performed in order to have a fair comparison with the other algorithms. First, in the sim-
ulation, the materials are assumed to be heated by Peltier modules whereas the frame is at constant
temperature of 20◦C . One of the assumption of the KIKF is to suppose that the scene temperature is
heated by the sun which does not apply here. As a consequence, the references locations (denoted
previously by s) are taken within the materials areas, outside the target’s frame. The initial tempera-
ture is taken at T0 = 270K. Fig. 6.25 shows the result of the first kriging step, with this first T0. The
first image in this figure shows the estimated emissivity at T0 and the second and third one the kriging
interpolation from this emissivity map and the references points.

Figure 6.25: Initial estimate by using a constant temperature value T = T0 = 270K. The emissivity at
T0 is shown in the first image. The Kriged model result from this emissivity map is shown in the two
other images with the mean estimate and standard deviation. Band: 10µm− 12µm.

Then, from this first estimate, the KIKF is run as new data are incoming. During the morning (cor-
responding to Ak < 1), the KIKF filter is applied while a simple Kalman filter is applied during the
rest of the day, with the last emissivity approximation. The final estimates are shown in Fig. 6.26. For
one given time, the estimation of the emissivity can be more or less accurate. Such behavior could be
improved by modifying the particle filter to mutate accordingly to other particles solutions, similarly
to particle swarm optimization algorithms. Moreover, it appears that the estimation is more difficult
for reflective materials which is an expected result in reality, particularly when dealing with direct
solar illumination (not considered here). Fig. 6.27 is an example of one pixel’s time evolution. Again,
depending on the selected pixel, the estimationwill bemore or less accurate. In any case, the filter pro-
vides information about how the estimates can be trusted: if the estimated temperature is not exact,
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the error made is at least quantifiable.

Figure 6.26: Final estimate over the entire period. The ground truth values are compared to the esti-
mates. As for the CMA-ES the materials emissivities are distincts. Band: 10µm− 12µm.

Figure 6.27: Estimated temperature time evolution at one pixel
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As for the CMA-ES method, the SSIM and RMSE are shown in Fig. 6.28. As a comparison, the results
errors aremore homogeneous in the KIKFmethod, with a RMSE around 2.5K in this case. However, this
result is conditioned by the estimate found with the IKF. As a consequence, it may be better or worst
depending on the time evolution of the temperature (see Fig. 6.27).

Figure 6.28: KIKF: SSIM and RMSE local values between estimated emissivity and temperature and
ground truth values. A small error on materials with low emissivity leads to a more important er-
ror in temperature than materials with higher emissivity. The material average RMSE is less than 3K
against 0.04 for the emissivity, which is still lower in average than for a constant emissivity case. Band:
10µm− 12µm.

This method provides an interesting option to the previous meta-heuristics. In fact, the model is
able to track in time the evolution of the system’s parameters and could, at term, indicates of a change
of properties in the observed structure. Such change can be noticed by the Kriging prediction that will
be compromised. A reset factor could be introduced to catch-up any change. Thanks to the Kriging,
only part of the pixels are tracked through time, reducing the data storage and computation time. The
current implementation in R has estimated the results in 10min for two days of single-band data over
the entire image. Moreover, the method is designed for a single-band camera. Introducing the other
bands could, as for the CMA-ES disambiguate the solutions. Furthermore, the Kriging model has been
put on the pixel spatial covariance. In Chapter 4, the spatial calibration process has been introduced.
This calibration process could be used to get a spatial covariance model based on the world scale and
not the image scale anymore which would lead to a more physical meaning. The KIKF method could be
extended to take into account the previous remarks but more particularly to improve its robustness.
In fact, the current method needs to set-up the parameters of the Kalman filter, the particle filter and
the Kriging which is not always trivial.
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6.8.5 Synthesis

In this thesis, methods have been studied and developed to estimate conjointly the temperature
and emissivity for in-situ infraredmulti-spectral measurements. Bayesianmethods offer amanor of in-
cluding prior information that could be used when additional knowledge is available such as emissivity
material specific prior [10]. Furthermore, Bayesian methods offer a way to measure the uncertainty
made on the estimation which is valuable for practical applications. Table 6.1 shows a summary of the
physical assumptions and the application domain of the algorithms.

Method Physical hypothesis Application
ϵ and T independent Per pixel

MCMC Single-band
Single sample

ϵ and T independent Per pixel
CMA-ES T homogeneous on a given neighborhood Single-band

Single sample
ϵ and T independent Per pixel

IKF Small bandwidth Multi-band only
Needs temporal data

ϵ and T independent Full image
KIKF T0 at thermal equilibrium Single-band

T homogeneous on a given neighborhood Needs temporal data
ϵ time evolution slow compared to T

Table 6.1: Summary of the compared simultaneous emissivity and temperature methods: physical as-
sumptions

If the MCMC and CMA-ES methods provide interesting results, the computation energy and time
needed are an obstacle to a practical long-termmonitoring solution. At the opposite, the KIKF method
proposes a time tracking solution suitable for long-term thermal monitoring of infrastructures. How-
ever, this method needs to be deepened to be more robust and easier to setup. Table 6.2 summarizes
the method’s pros and cons.
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Method Pros Cons
Weak assumption Computationally intensive

MCMC Can be parallelized No temporal tracking

Faster than MCMC Computationally intensive
CMA-ES Coarse approximation possible No temporal tracking

Faster than the former Bandwidth assumption
IKF T tracked through time Multi-spectral only

Temporal data needed
Faster than the former Assumption on T0

KIKF T tracked through time Temporal data needed
ϵ covariance tracking through time

Table 6.2: Summary of the compared simultaneous emissivity and temperaturemethods: pros and cons

Finally, in order to improve the estimation process, one idea is to use hybridmethods by combining
for example the CMA-ES and KIKF. The CMA-ES could provide a first estimate to the KIKF method that
would track dynamically the evolution of the system’s parameters. When the KIKF tracking is made
difficult, the CMA-ES could be called again.
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Chapter 7

Conclusion and future work

Thework done in this thesis allowed to review the infrared thermography for in-situ infrastructures
long-term thermalmonitoring. The necessity and advantages of infrared thermography on a structural
health monitoring context has been presented. In order to understand fully the measurement process
of infrared thermography, the different equations and quantities used in the radiative transfer theory
have been introduced as well. Then, needs for emissivity and temperature separation methods have
been emphasized based on those equations.

A bibliographical study has been driven. The temperature and emissivity separationmethods from
the literature and particularly in the Remote Sensing field have been listed and analysed first. Secondly,
with an aim of developing a 3D in-situ infrared scene simulator, the main algorithms of the image syn-
thesis field have been described. Based on the study of literature’s algorithms, it has been shown that
the progressive radiosity method allows an iterative resolution of the radiative equation system that
respect the physical equations.

As a consequence, an infrared simulation tool that uses the progressive radiosity method has been
developed. This tool uses the latest computer graphics technologies and has a graphical interface to
visualize the 3D scene and the rendering. Based on image synthesis and derived from the thermal field,
the progressive radiosity method solves the radiosity equation in a computationally efficient way. Due
to the fact that all the surfaces emit in the infrared spectrum, the algorithm has been parallelized and
more particularly the shooting step through a GPGPU approach. The software makes use of the graph-
ical libraries and hardware algorithms to render the scene. In addition, a simple model of atmospheric
transfer has been transcribed in the software to simulate the spectral solar irradiance at ground. Fur-
thermore, a camera and detectormodels are used. Please note that the camera and detector implemen-
tations are parallelized and rendered on the GPU in real-time by benefiting fromhardware acceleration.
However, the detector model is based on quantum detectors and should be modified to other type of
detector so that it would actually fit the infrared thermography measurement process. Moreover, the
camera model optic does not consider the optical aberrations yet. A transfer function of the camera
could therefore be added.

A sensitivity analysis of the parameters that influence the infrared thermography measurement
has also been conducted. In particular, the use of coupled measurements refines the radiative model
and helps at reducing the uncertainty on the temperature estimate. If for some reason sensors and
local data are not available, it is possible to retrieve those informations online thanks to recent open
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databases. Especially, the use of the European Copernicus climate data store and their API coupled with
empirical models from the literature provides a way to estimate most of the parameters of the equa-
tion. Moreover, a tool has been developed to visualize and process the large amount of data gathered
by long-termmeasurements. This tool and its graphical interface helps users to get an overview of the
spatial, spectral and time data. To improve the display of the images, the radiative conversion process
from digital levels to temperatures have been implemented onto the graphical processing unit (GPU).
Some extensions could be added to this software. At the present time, the data from online sources
are firstly saved onto files and then read and parsed via the software. However, it would be interesting
to incorporate the gathering of online data from different sources directly onto the software’s inter-
face. Furthermore, a batch processing tool that allows the process of many data at once in a simplified
configuration file was developed. This tool is helpful for repeating tasks on different data and could be
generalized to any other application.

Finally, newmethods for estimating simultaneously the temperature and emissivity have been pre-
sented. The Monte-Carlo Markov chains method from the literature has been implemented. By us-
ing statistical priors on the temperature and emissivity distributions, the simultaneous estimation of
temperature and emissivity is performed, pixel by pixel, at every moment. If this method provides
satisfying results, its current implementation suffers from a long processing time. However, improve-
ments could be made by using Ensemble MCMC for example and some parallelization process. A sec-
ond method based on an interacting Kalman filter has been proposed. It enables the tracking of the
temperature through time and the estimation of the emissivity. However, this estimation relies on a
hypothesis of small bandwidth which is suitable for hyper-spectral applications only. Then, the CMA-
ES optimization method has been used, relying on a local homogeneous hypothesis. As for the MCMC
method, if CMA-ES provides interesting results, its computation is intensive. To overcome those issues,
a Kriged Interacting Kalman filter (KIKF) has been developed. By using a prior on the spatial emissivity
distribution, an interacting kalman filter tracks the temperature and estimates the system parame-
ters. Preliminary results are interesting: on simulation data, the temperature profile is retrieved and
the emissivity map values restoration satisfying even if differences with actual values exist. The algo-
rithm needs to be improved to be more reliable, particularly in setting the different filters parameters.
Moreover, tests on laboratory with real measurements data and then on-field measurements need to
be performed to fully validate the method.
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Appendix A

YAML batch processing

This appendix shows an example of a YAML batch processing file used in the multi-sensors data
visualization and processing tool.

1 #=================================================================
2 # This is a sample YAML file for running batch processes
3 # [o] stands for optionnal
4 properties: # [o] -> properties of the simulation
5 recursive: # -> Either to look onto subfolder or not.
6 showprogress: # -> show progress of the process
7 logfile: # [o] -> save the output to a log file
8

9 input: # -> tag for defining the IR data
10 folders: # -> can be a path to a file or a folder
11 date: # [o] -> defines the range of time to consider
12 beginDate: # ->
13 endDate: # ->
14 fileFormat: # -> the format of date in the filename
15 fileDateExtract: # -> the way to extract the date in the filename (regexp)
16 output: # -> Initialize the fields of outputData
17

18 actionList: # -> which actions should be executed in which order
19 myaction: # -> the action name
20 ...
21

22 myaction: # -> The actual definition of the action "myaction"
23 func: # -> The function that will be executed
24 type: # -> batch: will be executed for every single file
25 # -> before/after: will be executed in the main program
26 frameRate: # [o] -> FrameRate if batch
27 beginDate: # [o] -> Begin date if batch
28 endDate: # -> End date if batch
29 args: # [o] -> arguments that will be given to the function
30 extra: # [o] -> extra arguments. For clarity, you can pass
31 name1: value1 # arguments with the tag 'extra'. Its child tags
32 name2: value2 # will be parsed as 'name', 'value' arguments.
33 #=================================================================
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Appendix B

YAML example configuration file

An example of a YAML configuration file used in the infrared multi-spectral images simulator is
given.

1 #=================================================================
2 # This is a sample YAML file for creating a simulation.
3 # The configuration can be defined using the following tags
4 # [o] stands for optionnal
5 parameters: # [o] -> parameters used in the following, always FIRST
6 width : &width 800 # You can also create anchors with the '&' operator
7 height : &height 600 #
8 wheelSize : &wheelSize 5
9

10 scene: # -> Scene properties
11 file : "./defaults/cornellBox.obj" # -> Path to the 3D model
12 working-directory : "/tmp" # [o] -> Where to save variables
13 exr-data: # [o] -> to save / import data
14 type : "export" # -> export / import mode
15 file : "/tmp/cornellBox.exr" # -> which file
16

17 cameras: # -> Cameras defined here, at least one
18 - name : "Camera 1" # -> name of the camera
19 width : *width # -> width (resolution in pixels)
20 height : *height # -> height (resolution in pixels)
21 position : # -> position in the scene
22 - !!formula "floor(-6.5 + 5 * 2)" #ă-> use of formulae
23 - !!formula "floor(-6.5 + 5 * 2)"
24 - !!formula "1.0 + wheelSize"
25 ...
26 objects: # [o] -> Scene objects list properties
27 - name : "left" # -> name of the object
28 material : "brick" # -> which material to use (see below)
29 temperature : 293.15 # -> Object's temperature
30 materials: # [o] -> Scene materials
31 - name : "brick" # -> name of the material, for reference in the objects list
32 emissivity : [0.9, 0.6] # -> emissivity (put brackets even with one band: [0.9])
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Appendix C

Simulator Python script example

This appendix shows an example of a Python script, used to simulate a 3D scene over 3 days.

1 from matplotlib.image import imsave
2 from matplotlib import pyplot as plt
3

4 print("Simulation over 3 days from 19th march")
5 days = range(79, 82, 1)
6 hours = range(0, 24, 1) # 24H
7 minutes = range(0, 59, 60) # 24H
8 radValues = [] # For saving data
9 for idxD, day in enumerate(days):
10 infrashell.set_day(day) # Set the current day
11 for idxH, hour in enumerate(hours): # For every hour
12 infrashell.log(str(idxH+1) + '/' + str(len(hours))) # Print progress
13 infrashell.set_hour(hour) # Set the current hour
14 for idxMn, mn in enumerate(minutes): # For every minute
15 infrashell.set_minutes(mn) # Set the current minute
16 infrashell.reset_radiosity() # Reset the computation
17 infrashell.render() # Render the radiosity
18 img = infrashell.get_image() # Get the result
19 fname = 'day_' + str(day) + \
20 '_hour_' + str(hour) + \
21 '_mn_' + str(mn) + '.png'; # Save it
22 imsave('./'+fname, img, origin='lower')
23 radValues.append(infrashell.get_value("roof", 91)) # Value from 91st face
24

25 plt.plot(radValues) # The values can be plotted
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Appendix D

Temperature auto-regressive model

In this appendix, the dynamic model that will describe the temperature’s evolution through time
is discussed. Since the temperature evolution through time has to be predicted in the Kalman filter, a
model for this prediction is needed. The evolution of daily temperature follows some patterns that can
be exploited.

D.1 Seasonal ARIMA model

In order to get a dynamicmodel from thedata, an autoregressive integratedmoving average (ARIMA)
model with seasoning can be used. Let {Xt, t ∈ Z} be a time serie process. An autocorrelation function
(ACF) gives correlations between the different measurementsXt−1, Xt−2, Xt−3,. . . respectively called
lags 1, 2, 3,. . . (time span between observations).

Definition D.1.1 (Weakly stationary). The process {Xt, t ∈ Z} is weakly stationary if
• The mean value µ is the same at all time points
• The variance γ is the same at all time points
• The covariance between any two time points t, t− k depends only on k and not on the value of t

The definition of a weakly stationary process is important for the ACF to make sense and therefore
for an ARIMA model. An ARIMA model is defined by the combination of an autoregressive model (AR),
a moving average one (MA) and a differencing part (I).

An autoregressive model of order p, denotedAR(p) is given by:

Definition D.1.2 (AR(p)).

Xt = c + ϕ1Xt−1 + ϕ2Xt−2 + ... + ϕpXt−p + wt (D.1)

with (Φi)1≤i≤p the model parameters, c a constant and wt ∼ N (0, σ2
w)

A moving average model of order q, denotedMA(q) is a weighted past error, given by:

Definition D.1.3 (MA(q)).

Xt = µ + wt + θ1wt−1 + θ2wt−2 + ... + +θqwt−q (D.2)
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Let defines the lag operator, L which will be used in the ARIMA model definition.

Definition D.1.4 (Lag operator). Given the time serieXt, t ∈ Z, the lag operator L produces the pre-
vious element of a time serie:

LXt = Xt−1,∀t ≥ 1 (D.3)

AnARMA(p, q)model can be defined as:

Xt = c + ϕ1Xt−1 + ϕ2Xt−2 + ... + ϕpXt−p + wt + θ1wt−1 + θ2wt−2 + ... + +θqwt−q (D.4)

By using the lag operator L:(
1−

p∑
i=1

ϕiL
i

)
Xt = c +

(
1 +

q∑
i=1

θiL
i

)
wt (D.5)

In the case that thepolynomial
(
1−

∑p
i=1 ϕiL

i
)
has aunit root ofmultiplicityd, this defines anARIMA(p’,

d, q) model: 1−
p′∑

i=1
ϕiL

i

 (1− L)d Xt = c +
(

1 +
q∑

i=1
θiL

i

)
wt (D.6)

Please note that an ARIMA(0,1,0) leads to a random walk. Moreover, seasonality can be added to
the ARIMA model when high values or low values tend always occur in particular pattern. In that
case, a seasonal ARIMA model (SARIMA) can be added for which an ARIMA model is multiplied by the
seasonality lag:

Definition D.1.5 (Seasonal ARIMAmodel). In a SARIMAmodel, seasonal and non-seasonal components
are mixed up. Let S be the seasonality (S = 12 for monthly seasonality for example). We define the
SARIMA model such as: (p, d, q) × (P, D, Q)S where (p, d, q) and (P, D, Q) are the non-seasonal and
seasonal components respectively.


(
1−

∑p
i=1 ϕiL

i
)

(1− L)d Xt = c +
(
1 +

∑q
i=1 θiL

i
)

wt(
1−

∑P
i=1 ϕiL

Si
)

(1− L)D Xt = c +
(
1 +

∑Q
i=1 θiL

Si
)

wt

(D.7)

By removing the seasonal component of the signal, the SARIMA model enables the use of lower
polynomial orders than an ARIMA equivalent would have used in order to improve the computation
performances.

D.2 SARIMA model for daily surface temperature

The SARIMAmodel have been fitted to actualmeasurements by using the astsa (Applied Statistical
Time Series Analysis) R package [160]. A daily seasonal model has been chosen to take into account the
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day / night variation of the temperature.
The figure Fig. D.1 shows the result of such model applied to one pixel’s measurement evolution

through time. The SARIMA model ((2, 0, 0)× (0, 1, 1)1) is trained on the last 3 days and 1 day forecast
is performed and compared to the next day measurement.

Figure D.1: A day forecasting with the SARIMA model used (2, 0, 0) × (0, 1, 1)1 and its comparison to
actual measurements with the 95% confidence interval

Even though the forecast result is satisfying in most cases, it is more difficult when the meteoro-
logical conditions vary from one day to another, as shown in figure Fig. D.2. Nevertheless, the SARIMA
model can be trained periodically to take into account such variations.

Figure D.2: A day forecasting with the SARIMA model used (2, 0, 0) × (0, 1, 1)1 and its comparison to
actual measurements with the 95% confidence interval
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Mot clés : thermographie infrarouge, monitoring thermique, propriétés thermo-optiques, approche Bayési-
enne, filtres de Kalman, radiosités progressives

Résumé : L’utilisation de caméras infrarouges bas
coûts pour la surveillance long-terme d’infrastructures
est prometteuse grâce aux dernières avancées tech-
nologiques du domaine. Une mesure précise de la tem-
pérature des surfaces observées in-situ se heurte au
manque de connaissance des propriétés radiatives de
la scène. L’utilisation d’une instrumentation multi-
capteurs permet d’affiner le modèle de mesure afin
d’obtenir une estimation plus précise de la tempéra-
ture. A contrario, il estmontré qu’il est toujours possible
d’exploiter des données climatiques en ligne pour pal-
lier un manque de capteur. Des méthodes Bayesiennes

d’estimation conjointe d’émissivité et de température
sont ensuite développées et comparées aux méthodes
de la littérature. Un simulateur d’échanges radiatifs
diffus de scènes 3D a été implémenté afin de tester ces
différentes méthodes. Ce logiciel utilise l’accélération
matérielle de la machine pour réduire les temps de
calcul. Les résultats numériques obtenus mettent en
perspective une utilisation avancée de la thermogra-
phie infrarouge multi-spectrale pour la surveillance de
structures. Cette estimation conjointe permet alors
d’obtenir un estimé de la température par thermogra-
phie infrarouge avec une incertitude connue.

Title: Simultaneous characterization of objects temperature and radia-
tive properties through multispectral infrared thermography

Keywords : infrared thermography, thermalmonitoring, thermo-optical properties, Bayesianmethods, Kalman
filters, progressive radiosities

Abstract : The latest technological improvements in
low-cost infrared cameras have brought new opportu-
nities for long-term infrastructures monitoring. The
accuratemeasurement of surfaces’ temperatures is fac-
ing the lack of knowledge of radiatives properties of
the scene. By usingmulti-sensors instrumentation, the
measurement model can be refined to get a better esti-
mate of the temperature. To overcome a lack of sensors
instrumentation, it is shown that online and free avail-
able climatic data can be used. Then, Bayesian meth-
ods to estimate simultaneously the emissivity and tem-

perature have been developed and compared to litera-
ture’s methods. A radiative exchange simulator of 3D
scenes have been developed to compare those differ-
ent methods on numerical data. This software uses the
hardware acceleration as well as a GPGPU approach to
reduce the computation time. As a consequence, ob-
tained numerical results emphasized an advanced use
of multi-spectral infrared thermography for the moni-
toring of structures. This simultaneous estimation en-
ables to have an estimate of the temperature by in-
frared thermography with a known uncertainty.
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