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ABSTRACT 
 

Intraspecific variability plays a pivotal role in short and long term responses of species to 

environmental fluctuations. This variability, expressed through different traits of individuals, 

can potentially influence species sensitivity to chemical contamination. This intraspecific 

variability is currently not taken into account in ecotoxicological risk assessment, whereas it 

can mislead its results. To examine this hypothesis, the importance of intraspecific variability 

in the response to copper (Cu) was quantified in controlled conditions for three aquatic 

macrophyte species, Lemna minor, Myriophyllum spicatum and Ceratophyllum demersum. 

Variations among genotypes of each of these 3 species were compared to interspecific 

variability. Results have highlighted a significant genotypic variability, whose importance 

depends on the species considered. Indeed, L. minor demonstrated a low variability, contrarily 

to M. spicatum whose variability in growth inhibition by Cu was higher than interspecific 

differences. In order to specify the extent and the mechanisms of genotypic variability in M. 

spicatum, other experiments involving measurements of life-history traits have been conducted 

on 7 genotypes exposed to Cu. Results showed that some genotypes were up to eightfold more 

sensitive to Cu than others (at concentrations ranging between 0.15 and 0.5 mg/L). These 

differences in sensitivity were partly explained by the traits measured, but physiological or 

transcriptomic endpoints may explain more precisely the source of these differences in 

sensitivity. Finally, 3 experiments with fluctuations in nutrient concentrations, light intensity 

and Cu pre-exposure have demonstrated that phenotypic plasticity plays an important role in L. 

minor sensitivity to Cu. Indeed, the weakening of individuals, as a result of unfavorable 

environmental conditions, can lead to a two-fold increase in sensitivity to Cu. All these results 

demonstrated that intraspecific variability, whether it comes from genotypic variations or is 

linked to phenotypic plasticity, was in general lower than interspecific variability for the species 

and endpoints studied. However, its extent can vary depending on the species. It can therefore 

significantly influence aquatic macrophyte sensitivity to chemical contamination, and it would 

be relevant to account for it in ecotoxicological risk assessment. 

 

Keywords: Copper, ecotoxicological risk assessment, aquatic macrophyte, intraspecific 

variability, genotypic variation, phenotypic plasticity  

 

 

 

 

 

 



RESUME 
 

La variabilité intraspécifique fait partie intégrante de la réponse à court et à long terme des 

organismes vivants aux fluctuations environnementales. Cette variabilité, exprimée au travers 

de différents traits des individus, peut potentiellement influencer la sensibilité des espèces à une 

contamination chimique. La variabilité intraspécifique n’est pas, à l’heure actuelle,  prise en 

compte en évaluation des risques écotoxicologiques, alors même qu’elle pourrait en biaiser les 

résultats. Pour examiner cette hypothèse, l’importance de la variabilité intraspécifique dans la 

réponse au cuivre (Cu) a été quantifiée en conditions contrôlées pour trois espèces de 

macrophytes aquatiques, Lemna minor, Myriophyllum spicatum et Ceratophyllum demersum. 

Les variations entre génotypes de chacune de ces 3 espèces ont été comparées à la variabilité 

interspécifique. Les résultats ont mis en évidence une variabilité génotypique significative, dont 

l’importance dépend de l’espèce considérée. En effet, L. minor a montré une faible variabilité, 

au contraire de M. spicatum dont la variabilité de l’inhibition de croissance par le Cu est 

supérieure aux différences interspécifiques. Afin de préciser l’étendue et les mécanismes de la 

variabilité génotypique chez M. spicatum, d’autres expériences impliquant des mesures de traits 

d’histoire de vie ont été réalisées sur 7 génotypes exposés au Cu. Les résultats ont montré que 

certains génotypes étaient jusqu’à 8 fois plus sensibles au Cu à des concentrations allant de 0.15 

à 0.5 mg/L). Ces différences de sensibilité sont en partie expliquées par les traits mesurés, mais 

des mesures physiologiques et/ou des approches en transcriptomique devraient pouvoir 

expliquer de façon plus consistante la source de ces différences de sensibilité. Enfin, 3 

expériences faisant varier respectivement la teneur en nutriments, l’intensité lumineuse et la 

préexposition au Cu, ont démontré que la plasticité phénotypique joue un rôle majeur dans la 

sensibilité au Cu chez L. minor. En effet, l’affaiblissement des individus, résultant des 

conditions environnementales défavorables, peut conduire au doublement de la sensibilité de 

L. minor au Cu. L’ensemble des résultats obtenus montre donc que la variabilité intraspécifique, 

qu’elle soit d’origine génotypique ou liée à la plasticité phénotypique, demeure en règle 

générale inférieure à la variabilité interspécifique concernant les traits et les espèces étudiés. 

Cependant, son importance varie selon l’espèce considérée. Elle peut donc influer 

significativement sur la sensibilité des macrophytes aquatiques à la contamination chimique, et 

gagnerait donc à être prise en compte dans le cadre de l’évaluation des risques 

écotoxicologiques.  

 

Mots clés : Cuivre, évaluation des risques écotoxicologiques, macrophyte aquatique, variabilité 

intraspécifique, variation génotypique, plasticité phénotypique 
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1. Impacts de l’homme sur l’environnement 

 

Durant les deux derniers siècles, la révolution industrielle a mené à une forte augmentation 

de la population humaine (Figure 1.1). Pour répondre à ses besoins toujours croissants, des 

changements, notamment dans les pratiques agricoles, ont été mis en place, et ont mené à la 

révolution verte. Ainsi, ces cinquante dernières années, la population a plus que doublé, et la 

production céréalière a triplé, avec seulement 30 % d’augmentation de terres cultivées (Pingali 

2012). La croissance de la population humaine, ainsi que la modification des modes de vie, ont 

mené à l’augmentation des besoins pour les ressources, l’énergie, la nourriture, le logement, les 

terres cultivables. Réponde à ces besoins demeure un challenge à l’heure actuelle (Goulding et 

al. 2008; Mozner 2013; García-Mier et al. 2013). De plus, cela a mené à l’augmentation des 

déchets sous-produits. Jusqu’à maintenant, la croissance humaine a été exponentielle, et son 

impact sur les écosystèmes a suivi. 

 

Figure 1.1. Evolution de la population mondiale entre 1950 et 2100. Source: Secrétariat des 

Nations Unies, prévision de la population mondiale, révisions de 2017 (United Nations 2017). 

 

Les activités humaines constituent une menace majeure pour la biodiversité de la planète, 

ainsi que pour la santé des écosystèmes (Tilman and Lehman 1987; Dubois et al. 2018; Dodds 

et al. 2013). Entre autre, ces effets nocifs sur l’environnement sont liés à un changement 

d’utilisation des terres (urbanisation, industrie minière), qui va perturber et morceler les 

écosystèmes présents. Ces activités produisent également une multitude de polluants tels que 



14 

 

des hydrocarbures aromatiques polycycliques (HAP), des éléments traces métalliques (ETM), 

des nanoparticules, des hormones ou encore des microplastiques, avec de nombreuses voies 

d’entrée dans les écosystèmes.  

 

2. L’environnement aquatique, réceptacle ultime de la contamination 

chimique 

 

Les eaux douces occupent seulement 0.8 % de la surface planétaire, mais sont l’habitat 

d’environ 6 % des espèces existantes (Woodward et al. 2010).  

En raison de différents processus, tels que l’érosion des sols, la volatilisation atmosphérique 

et la redéposition des polluants en suspension, les écosystèmes aquatiques sont le réceptacle 

final de la contamination chimique (Figure 2.1, Ærtebjerg et al. 2003; Woodward et al. 2010). 

Selon Dodds et al.  (2013), les impacts anthropiques sur les écosystèmes d’eau douce sont 

globaux. Ils peuvent entre autres altérer le flux d’écoulement, causer des invasions biologiques, 

des altérations thermiques, causer des extinctions biologiques ou encore des contaminations 

chimiques et ainsi menacer l’équilibre fragile de ces écosystèmes, et donc à plus ou moins long 

terme mettre en péril les services écosystémiques rendus. Les services écosystémiques sont 

définis comme les bénéfices que les humains retirent des écosystèmes, tels que la production 

d’oxygène, de biomasse (bois, nourriture pour l’homme ou pour les animaux d’élevage), ou 

encore l’activité des pollinisateurs pour les cultures (Seppelt et al. 2011). Enfin, les humains 

utilisent également une portion substantielle de cette ressource en eau douce, que ce soit pour 

leur survie ou leurs activités domestiques et industrielles (Dodds et al. 2013). 
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Figure 2.1. Voies d’entrée de la contamination chimique dans les environnements aquatiques 

(Ærtebjerg et al. 2003). 

 

3. Ecotoxicologie et évaluation des risques écotoxicologiques  

A. Prise de conscience et développement de l’écotoxicologie 

Certains événements ont contribué à la prise de conscience globale de l’effet néfaste que 

nos activités pouvaient avoir sur les écosystèmes. Entre autres, l'explosion de la première 

bombe atomique dans le désert du Nouveau-Mexique en 1945, qui marque l’aboutissement du 

projet Manhattan et la contamination des écosystèmes par des composés radioactifs. Un autre 

exemple fut la guerre du Vietnam, qualifiée de guerre écologique car elle détruisit durablement 

des écosystèmes au moyen d'herbicides de synthèse (Neilands 1970; Prăvălie 2014). Certaines 

publications ont également eu un retentissement très important, tels que le livre ‘Silent Spring’ 

de Rachel Carson, paru en 1962, qui a démontré que l'arme atomique n'était pas la seule à 

menacer de détruire la vie, et que les pesticides pouvaient à long terme conduire à des résultats 

similaires. Ce livre a notamment mené à la création des premières lois environnementales aux 

Etats-Unis et à la formation de l’agence de protection environnementale (US-EPA). En réponse 
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à cette prise de conscience croissante, un nouveau champ disciplinaire s’est développé dans les 

années 1970, l’écotoxicologie, qui vise à étudier la toxicité des activités humaines sur 

l’environnement (Truhaut 1977).  

 

B. Politiques environnementales 

Au niveau politique, afin de limiter l’impact de l’homme sur l’environnement, plusieurs 

mesures ont été mises en place, à la fois pour déterminer la toxicité de molécules manufacturées 

par l’homme, et pour évaluer et diminuer la pollution potentielle émise par certaines pratiques 

agricoles et/ou industrielles. Notamment, la Directive Cadre sur l’Eau européenne a été 

implémentée en octobre 2000, afin de limiter l’impact des activités humaines sur les 

écosystèmes aquatiques, et augmenter leur qualité (European Commission 2000). Par ailleurs, 

le règlement REACH (Enregistrement, Evaluation, Autorisation, Restrictions des Substances 

Chimiques règlement n°1907/2006) a été mis en place en 2007 afin d’évaluer la toxicité des 

produits chimiques présents sur le marché, ou nouvellement créés. Pour ce faire, des outils 

spécifiques ont donc été développés faisant l’objet de protocoles standardisés (pour plus de 

détails: Chapitre 1.3) se focalisant généralement sur des unités taxonomiques et/ou niveaux 

trophiques différents. L’évaluation des risques écotoxicologiques permet ainsi une approche 

intégrative, notamment au travers de tests en laboratoire sur des espèces modèles, pour 

déterminer la toxicité potentielle sur un écosystème donné des produits chimiques présent sur 

le marché. 

 

C. Les macrophytes, un modèle biologique aquatique pertinent 

De par leur place dans les écosystèmes aquatiques en tant que producteurs primaires, leurs 

implications dans les cycles biogéochimiques ainsi que leur sensibilité aux paramètres 

environnementaux, les macrophytes sont des organismes très pertinents pour évaluer l’impact 

potentiel de molécules sur les écosystèmes. En effet, ces organismes chlorophylliens visibles à 

l’œil nu sont pour la plupart sessiles, et sont de ce fait, utilisés en tant que bioindicateurs de 

l’état de santé des écosystèmes aquatiques. En d’autres termes, ils attestent de la qualité 

physico-chimique d’un écosystème de par leur présence, leur diversité ainsi que leur réponse 

métabolique. Ils sont également utilisés en biosurveillance car l’analyse de leurs tissus reflète 

souvent le degré de contamination de leur environnement (Haury et al., 2001; Ferrat, Pergent-

Martini et Roméo, 2003). Si leur capacité à accumuler les polluants est un atout pour utiliser 
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ces organismes en tant que sentinelles au sein des écosystèmes, c’est également la raison pour 

laquelle les macrophytes sont parmi les premiers organismes impactés par les contaminations 

d’origine anthropique.  

Ces organismes sont faciles à manipuler en laboratoire, et sont aujourd’hui incontournables 

dans les tests de toxicité en laboratoire. De ce fait plusieurs protocoles standardisés ont été mis 

au point sur les macrophytes par l’Organisation de Coopération et de Développement 

Economique, ou OCDE (OECD 2006, 2014a, 2014b). 

 

D. La variabilité intraspécifique en évaluation des risques écotoxicologiques 

L’impact des polluants organiques comme des ETM sur les macrophytes aquatiques a été 

démontré dans diverses publications (Pflugmacher et al. 1997; Samecka-Cymerman and 

Kempers 2004; Knauert et al. 2010; Ladislas et al. 2012). Afin d’améliorer continuellement les 

démarches d’évaluation des risques écotoxicologiques, leur pertinence et leur transposition in 

situ, de nombreuses études essaient de rendre compte des facteurs qui ne sont pas encore pris 

en compte dans ces approches (Belanger et al. 2017; Maltby et al. 2005; Forbes and Calow 

2002; Pathiratne and Kroon 2016). C’est dans ce contexte que s’inscrit ce travail de thèse, qui 

vise à étudier l’importance de la variabilité intraspécifique de la réponse des macrophytes 

aquatiques face à une  contamination chimique. 

La variabilité intraspécifique peut être définie comme la variabilité observable entre des 

individus d’une même espèce. Cette variabilité est le fruit de différences génétiques entre ces 

individus, et de l’influence de l’environnement sur l’expression de leur patrimoine génétique. 

Elle est considérée comme une étape clé dans l’évolution des espèces et leur adaptation à un 

nouvel environnement, et les différents mécanismes impliqués sont expliqués plus en détails 

dans le chapitre I.4. Cette variabilité intraspécifique n’est pas prise en compte en évaluation des 

risques écotoxicologiques à l’heure actuelle, et elle peut potentiellement impacter de façon 

significative les résultats des tests en laboratoire (Chapitre I.3). En effet, beaucoup d’études 

font part de l’influence des facteurs environnementaux, tels que le pH ou la teneur en 

nutriments, sur la morphologie et la physiologie des plantes aquatiques (Puijalon et al. 2008; 

Vasseur and Aarssen 1992; Gratani 2014). D’autres études font état de l’importance de la 

diversité génétique au sein des macrophytes aquatiques, et des différences morphologiques et 

physiologiques entre populations qui peuvent en résulter (Eckert et al.  2008; Pollux et al. 2007; 

Othman et al. 2007). Cependant, à l’heure actuelle, très peu d’études ont cherché à déterminer 
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l’importance de la variabilité intraspécifique dans la réponse des plantes aquatiques aux 

contaminations chimiques. Cette question est pourtant très pertinente, si l’on considère 

l’importance de la pollution des écosystèmes par les activités humaines. 

Ce projet de thèse a pour but de pallier ce manque de connaissances, et de déterminer 

l’impact que la variabilité intraspécifique pourrait avoir sur les procédures d’évaluation des 

risques écotoxicologiques telles que nous les connaissons. 

Dans cette optique, nous avons cherché à déterminer l’importance de cette variabilité 

intraspécifique chez des plantes aquatiques exposées à un élément trace métallique, le cuivre. 

Cette thèse s’articule autour de trois questions principales: 

1) Quelle est l’étendue de la variabilité intraspécifique dans la réponse des plantes 

aquatiques à la contamination chimique ? J’ai cherché à répondre à cette question pour 

trois espèces dans le chapitre III. 

2) Cette variabilité intraspécifique chez les plantes aquatiques est-elle expliquée par leur 

variabilité génotypique ? C’est ce que j’analyse dans le chapitre IV, en me focalisant 

sur une espèce de plante aquatique, le myriophylle en épis (Myriophyllum spicatum). 

3) La plasticité phénotypique peut-elle moduler la réponse des plantes aquatiques aux 

contaminations chimiques ? Les résultats que j’ai obtenus pour répondre à cette 

question, concernant une autre espèce, la lentille d’eau (Lemna minor), sont présentés 

dans le chapitre V. 
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1. Aquatic macrophytes 

A. Definition and evolutionary history 

Aquatic macrophytes refer to large photosynthetic organisms visible to the naked eye, and 

adapted to partial or total life in aquatic habitats. They are represented in several plant clades, 

the main ones being macroalgae (Chlorophyta and Charophyta, or green algae, Xanthophyta, 

or yellow-green algae, Rhodophyta, or red algae, Cyanobacteria, or blue-green algae, and 

Phaeophyta, or brown algae), mosses (Bryophyta), ferns (Pteridophyta) and seed-bearing plants 

(Spermatophyta) (Haury et al. 2001; Chambers et al. 2008). Vascular macrophytes are found 

among ferns and seed-bearing plants. 

In the early Paleozoic (541 to 251 million years ago), ancestral marine plants colonized 

land, giving rise to the evolution of vascular plants (Chambers et al. 2008). As angiosperms 

diversified and thrived in terrestrial habitats, some species came back to aquatic environments 

(freshwater and marine), and became aquatic. The transition back to an aquatic life has been 

achieved by only 3 % of the approximately 350,000 angiosperm species (Cook 1999). 

According to the same study, probably 252 events of independent colonization have occurred, 

with at least seven reversion events in ferns, and 204-245 reversion events in angiosperms.  

 

B. General traits of vascular aquatic macrophytes  

Reproductive traits and other life-history traits of aquatic angiosperms are tightly associated 

with their growth form (e.g. root disappearance, free-floating), as they represent different 

degrees of aquatic life adaptation, and are convergent among aquatic angiosperms (Thomaz et 

al. 2008). Angiosperms is the main group representing vascular aquatic macrophytes. They can 

be divided in five main life forms (Figure 1.1):  

- Emergent (also known as helophyte), with plants being rooted in the sediments with 

above parts extending into the air, such as Typha species, 

- Floating-leaved, with plants rooted in the sediments with leaves floating at the water 

surface, such as Nymphaea species, 

- Rooted submerged, with plants that are rooted into the sediments and are completely 

submerged, such as Myriophyllum species, 

- Free-submerged, with plants non rooted to sediments, and floating freely in the water 

column, such as Ceratophyllum species, 
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- Free-floating, with plants floating at the water surface without being rooted to the 

sediments, such as Lemna species. 

 

Figure 1.1. Zonation of the different vascular aquatic plants, depending on their life history 

traits: emergent plants, floating-leaved plants, submerged plants, free-submerged plants and 

free-floating plants. 

 

As a consequence of this return to aquatic life, many physiological and morphological 

adaptations occurred in aquatic angiosperms, in order to cope with limited CO2 (e.g. use of 

bicarbonates) and reduced light and oxygen availability (Chambers et al. 2008). For instance, 

they have large leaf surface, often highly dissected, to increase surface area (e.g. Ceratophyllum 

demersum, Myriophyllum spicatum) in order to enhance light, carbon and nutrient uptake 

through an increased surface contact with the environment (Bornette and Puijalon 2009). They 

have a thin cuticle, and also show a high concentration of chloroplasts near the leaf surface to 

cope with the decreased light availability in water. They are usually poorly lignified, as water 

preserves plants from gravitational stress, and they are characterized by the presence of 

aerenchyma, a plant tissue which forms spaces or air channels in the leaves, stems and roots, 

and increases oxygen flux from shoots to roots. Macrophytes growing in shallow water can 

overcome aqueous inorganic carbon limitations for photosynthesis through the absorption of 

atmospheric CO2 with aerial or floating leaves. 
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Their dispersal partly relies on water drift, thus on seed buoyancy and on plant ability to 

break themselves up and regrow from broken fragments, and partly on anemochory and 

zoochory (e.g. by birds or fish). Some species can reproduce under water, relying on underwater 

transport of pollen, such as Ceratophyllum demersum. 

Some traits found in submerged species, such as aerial pollination, aquatic pollination and 

presence of stomata, are interpreted only under an evolutionary perspective.   

 

C. Habitat diversity  

Aquatic macrophytes colonize a wide variety of aquatic habitats, from tiny temporary ponds 

to thermal springs (e.g. Najas tequefolia) passing by waterfalls (e.g. Podostemaceae family). 

They are also found in rivers, lakes, lagoons and reservoirs (Thomaz et al. 2008). According to 

Chambers et al. (2008), the diversity of vascular macrophytes is the highest in the Neotropics 

(984 species), intermediate in the Orient, Nearctic and Afrotropics (664, 644 and 614 species, 

respectively), lower in the Palearctic and Australasia (497 and 439 species, respectively), and 

even lower in the Pacific region and Oceanic islands (108 species). Only very few species have 

been found in the Antarctica, all confined to sub-Antarctic freshwater habitats. 

Free-floating and tall species with floating leaves, or forming a canopy just below the water 

surface, are often the most competitive species for light resource, and dominate when sufficient 

nutrients are available in the water column, while rooted species are dominant in lotic 

ecosystems (Bornette and Puijalon, 2009). 

 

D. Ecological services 

Aquatic macrophytes are involved in the structure and functioning of aquatic ecosystems. 

They influence nutrient cycles through the transfer of chemical elements from sediments to 

water, by both active and passive processes, both during their growth phase and during their 

senescence and decomposition (Magela et al. 2010). Nutrients (phosphorus and nitrogen) and 

dissolved organic carbon released by aquatic plants are quickly used by micro-algae and 

bacteria which are free-living or attached to macrophyte surfaces (Sand-Jensen and Borum 

1991). They also impact nutrient cycling through the retention of solids (detritus) and nutrients, 

by their submerged roots and leaves through protection against wave actions (Madsen et al. 

2001). Thus, they protect sediments and riverine soils from erosion, and can inflect water 
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flow if they form dense canopies. They also influence underwater light availability, hence they 

interfere with photosynthesis of other organisms.   

Aquatic macrophytes have been characterized as an important food resource for aquatic 

organisms, both through dead organic matter for detritivorous organisms, and for living 

organisms through grazing (Magela et al. 2010). The influence of macrophyte species on 

populations and communities has been widely studied for a variety of organisms. They foster 

species diversity, as they are substrate for several species of algae and bacteria and can provide 

shelter for periphyton (Van Donk and Van de Bund 2002), micro- and macroinvertebrates 

(Schramm and Jirka 1989; Ferreiro et al. 2010; Kouamé et al. 2011), but also interact with fish 

species (Theel et al. 2008; Schultz and Dibble 2012) and waterbirds (Klaassen and Nolet 2007; 

Guadagnin et al. 2009; Laguna et al. 2016). To draw a general picture, Scheffer (2004) 

illustrated the role of aquatic macrophytes as a luxuriant forest full of biodiversity. 

Last but not least, some macrophyte species (e.g. rice) are widely cultivated for human 

consumption and represent a major food source for many populations.  

However, several of the worst invasive weeds are aquatic macrophytes, e.g., Myriophyllum 

spicatum in North America, Eichhornia crassipes in China, Hydrilla verticillata in the US, 

Ludwigia grandiflora in Southern Europe (Olden and Tamayo, 2014; Wang et al., 2016; Zhu 

et al., 2017). 

 

E. Role of macrophytes as bioindicators and biomonitors in aquatic ecosystems 

A bioindicator is defined as an organism (or a part of an organism) or a community of 

organisms, that provides qualitative information on the environment, whereas a biomonitor is 

an organism or a community of organisms that provides quantitative information of 

environmental status (Markert et a. 2003). Some species are also considered as ‘sentinel’, as 

these species accumulate and concentrate pollutants from their surroundings and the analysis 

of their tissues provides an estimate of the environmentally available concentrations of 

pollutants (Gerhardt 2011). 

The role of macrophytes as bioindicator and for biomonitoring has been extensively 

studied over the years. As primary producers, and due both to their involvement in aquatic 

ecosystem functioning and their sensitivity to environmental modifications, they are an ideal 

tool to assess ecosystem health. For instance, Pereira et al. (2012) have demonstrated that 
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macrophyte communities were relevant bioindicators of limnological conditions of lakes in 

southern Brazil, as species richness and growth-forms varied depending on nutrients, pH and 

dissolved oxygen. Furthermore, it was often demonstrated that submerged macrophyte 

community and diversity respond to changes in the nutrient concentrations of their environment 

(Kohler and Schneider 2003; Lukács et al. 2009).  

To go further, several methodologies based on macrophyte composition, diversity and 

abundance, have been developed to assess the ecological status of freshwater ecosystems, as 

tools for the Water Framework Directive (see chapter I.3). For instance, the LEAFPACS 

method uses macrophyte composition to define ecological quality of rivers and lakes (Willby, 

Pitt, and Phillips 2012; Penning et al. 2008). Other methods exist, such as the Trophic Index of 

Macrophytes (TIM) and the Macrophyte Biological Index for Rivers (IBMR) in running waters, 

or the Macrophyte Index (MI) and the Ecological State Macrophyte Index (ESMI) in lakes 

(Kohler and Schneider 2003; Fabris et al. 2009; J. Haury et al. 2006; Ciecierska and Kolada 

2014). 

Many studies focused on the assessment of chemical pollution by macrophytes. For 

instance, Ladislas et al. (2012) have demonstrated that aquatic plants were relevant to assess 

metal pollution in ecosystems, as plant concentration indicated cumulative effects of 

environmental pollution from water and sediment. Khellaf and Zerdaoui (2010) have shown 

that Lemna minor was highly relevant in biomonitoring program of copper contamination. 

Ferrat et al., (2003) have suggested that seagrasses showed an early response to environmental 

pollution, and are thus good bioindicators. Likewise, several species of macrophytes were 

successfully used in Russia to evaluate trace element contamination of water bodies (Kurilenko 

and Osmolovskaya 2006). Aquatic macrophytes are therefore highly relevant to assess the 

toxicity of given molecules, or the impact of agricultural practices through runoffs of crop soils, 

as well as wastewater treatment quality, among others. 

The ability of some species to take up trace elements, as well as to thrive in highly eutrophic 

waters (i.e. rich in ammonia and phosphorus) has led to the development of depollution 

practices, such as phytoremediation to remove pollutants from sediments and water, or for 

wastewater treatment (Nirmal Kumar et al. 2008; Dosnon-Olette et al. 2011; Nair and Kani, 

2016; Newete and Byrne, 2016). The use of macrophytes in phytoremediation of copper has 

been extensively studied as this metal is broadly found in aquatic ecosystems due to multiple 

uses, and because its excess is known to cause damages to aquatic organisms ( Ha et al. 2009; 
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Mokhtar et al. 2011; Basile et al. 2012; Sood et al. 2012; Üçüncü et al. 2013; Putra et al. 2015; 

Costa et al. 2018). 

 

2. Copper fate and toxicity in the environment 

A. Generalities 

Copper occurs naturally in the Earth crust and topsoils, with concentrations around 24 to 68 

mg kg−1 and below 30 mg kg−1, respectively (Karczewska et al. 2015).  

In the industry, Cu is broadly used for its conductive properties. In Europe, according to 

the European Copper Institute, 50 % of the Cu produced is used in electricity industry, 25 % is 

used for construction, 10 % for mechanic and thermal exchanges, and 5 % for vehicle 

manufacturing. Worldwide, Asia is the main user of Cu and use it primarily in construction 

(Figure 2.1).  

  

 

Figure 2.1. Major uses of copper: usage by region and end use sector, 2016. Graphic from the 

International Copper Study Group, ICSG [http://www.icsg.org/]. ROW: rest of the world.  

 

 

Copper is also broadly used in agriculture, both as fertilizer and as biocide (Borkow and 

Gabbay 2005; Fan et al. 2011; Ochoa-Herrera et al. 2011; Rajasekaran et al. 2016). Copper-

based biocidal compounds such as Cu hydroxide, Cu oxychloride and Cu chelates, have been 

widely used in prevention of microbial diseases. The use of Cu as fungicide has been 

generalized in agriculture since the late 19th century (Alloway 2013). In viticulture, Cu-based 
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fungicides are used at typical application doses of 2 to 4 kg Cu ha−1 year−1, and soil 

concentration sometimes surpass concentration range tolerable for most cultivated crops 

(Komárek et al. 2010, Alloway, 2013). 

 

B. Copper dissemination in the environment 

The wide use of Cu in past decades for anthropogenic activities has led to Cu residues 

accumulation in soils and in surrounding ecosystems, especially in aquatic ecosystems 

through multiple entry points, such as lixiviation (soluble matter) and leaching (solid matter) 

processes (Heijerick et al. 2006; Schuler et al. 2008).  

Recently, a study from Ballabio et al. (2018), has assessed Cu concentrations in European 

topsoils, using 21 682 samples from the LUCAS topsoil survey (Figure 2.2). They highlighted 

that among land uses, vineyards have the highest Cu concentration with on average 49.3 mg 

kg−1 Cu, and olive grove as well as fruit tree crops also had high Cu concentrations in topsoil 

with on average 33.5 mg kg−1 and 27.3 mg kg−1, respectively. The highest Cu concentration in 

Europe was found in French vineyards, with on average 91.3 mg kg−1 Cu, with almost half of 

the samples having values above 100 mg kg−1. Indeed, viticulture is a very important 

agricultural sector in the Mediterranean region, and 60 % of the global wine production 

originates from just France, Italy and Spain (Hall and Richard 2000).  
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Figure 2.2. Copper distribution in European topsoils: an assessment based on LUCAS soil 

survey from 2017, and produced by Gallagher et al. 2018. The resulting map shows quite high 

Cu concentrations in areas typically devoted to wine production, especially in France and 

northern Italy. 

 

Ultimately, Cu contained in soils can reach aquatic ecosystems. Many studies have 

highlighted the problems triggered by Cu concentrations in runoff from agricultural systems 

and mining sites (Karczewska et al. 2015; Knabb et al. 2016). It was demonstrated by Gallagher 

et al. (2001) that although only 1% of Cu was found to leave crop fields, it was enough to cause 

high Cu concentrations in runoff waters, with on average 2102 ± 433 µg L-1 of total Cu, and 

189 ± 139 µg L-1 of dissolved Cu. They showed that Cu concentrations in groundwater samples 

were also high, with an average of 312 ± 198 µg L−1 of total Cu, and 216 ± 99 µg L−1 of 

dissolved Cu. Other sources of Cu for aquatic systems include wood preservative treatment, 
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iron and steel production, waste incineration, coal combustion, non-ferrous metal mining, oil 

and gasoline combustion, and phosphate fertilizer manufacturing (Willis and Bishop 2016). 

Direct applications of Cu in aquatic systems also account for approximately 13% of Cu 

contamination, as it is used as biocide to manage noxious algae and invasive weeds. After a 

pesticide application, Cu will quickly partitions to suspended matter and algae, and more than 

90% will be transferred to sediments within 2 days. 

 

C. Copper in living organisms 

Copper is an essential redox-active transition metal which is found in all living organisms, 

from bacteria to fungi, passing by mammals and plants (Festa and Thiele 2013). It is required 

in small amounts (5-20 µg g-1) by living organisms for respiration, carbohydrate metabolism 

and the functioning of more than 30 enzymes (Solomon 2009; Yruela 2009). For instance, Cu 

acts as a cofactor in Cu/Zn superoxide dismutase (SOD), cytochrome c oxidase, amino-oxidase, 

laccase and polyphenol oxidase. It also plays an essential role at the cellular level, in signaling 

of transcription and protein trafficking machinery, as well as in iron mobilization.  

In plants, Cu plays even more important roles as it is a co-factor for several enzymes 

involved in photosynthesis, as the most abundant Cu protein is plastocyanin, a protein involved 

in the electron flow transfer (Droppa and Horváth 1990; Yruela 2009; Printz et al. 2016). 

Several Cu-dependent proteins are also unique to plants, such as transporters like Copper 

transporters (Ctr) family involved in Cu acquisition in roots or Heavy metal ATPases (HMA), 

which are responsible for the export and uptake of Cu (Huffman and O’Halloran 2001; Hötzer 

et al. 2012). 

Under physiological conditions, it exists in two forms, one oxidized (Cu2+), which has 

affinity for thiol and thioether groups (e.g. cysteine or methionine), and one reduced (Cu+), 

which has affinity for oxygen or imidazole nitrogen groups (e.g. aspartic acid). As such, it is 

involved in a wide spectrum of physiological processes, from structural changes to biochemical 

reactions, because it can exist in multiple oxidation states in vivo (Yruela 2009). Those redox 

properties that make Cu an essential element also contribute to its inherent toxicity. Indeed, Cu 

is considered to be one of the most toxic metal in aquatic ecosystems (Solomon 2009).  

Copper internal concentrations that exceed 20-30 µg g-1 can be toxic for organisms, 

although the threshold is species-dependent (Bradl 2005; Gomes et al. 2012; Marschner and 
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Marschner 2012). Several toxicity mechanisms have been demonstrated throughout the past 

decades. At high concentration, Cu will trigger the production of reactive oxygen species (ROS) 

through the Fenton and Haber-weiss reaction (Shahid et al. 2014; Printz et al. 2016):  

Cu+ + H2O2   Cu2+ + OH- + OH∙ 

This reaction is the oxygen transfer mediated by certain metals in the presence of hydrogen 

peroxyde, and the reaction generates hydroxyl radical (OH.), a highly toxic ROS (Candeias and 

Wardman 1996). Reactive oxygen species, such as hydroxyl radicals, can cause damage to 

DNA (DNA adducts), lipid peroxidation, and protein denaturation when the natural antioxidant 

balance is overwhelmed (Halliwell and Gutteridge 1984; Festa and Thiele 2013; Cadet and 

Wagner 2013). Another toxicity mechanism is Cu competition with essential metals for binding 

and uptake, triggering metabolism disturbances (Stauber and Davies 2000). It can therefore lead 

to non-specific binding of metals, resulting in the blocking of biologically essential functional 

groups of molecules (Janssen et al. 2003). Furthermore, for photosynthetic organisms, Cu2+ will 

compete with manganese ions in stroma proteins, resulting in the total inhibition of chloroplast 

photosynthesis (Pádua et al. 2010). 

To illustrate aquatic biota sensitivity to copper, fish and crustaceans are 10 to 100 times 

more sensitive to the toxic effects of Cu than mammals, and algae are 1 000 times more sensitive 

than mammals (Förstner and Wittmann 1981; Solomon 2009; Wright and Welbourn 2002). 

Microorganism sensitivity to Cu has also been broadly documented for the past 30 years, with 

Lethal Concentrations 50% (LC50) ranging from 3 to 47 µg/L Cu in different algae species 

(Trevors and Cotter 1990; Cervantes and Gutierrezcorona 1994; Kunito et al. 1999; Dupont et 

al. 2011; Ochoa-Herrera et al. 2011). Toxic effects were demonstrated as well as on 

invertebrates, such as Daphnia species, with LC50 values ranging between 34 and 80 µg/L 

(Campana et al. 2012; Hunting et al. 2013; James et al. 2008; Casares et al. 2012; Crémazy et 

al. 2016). Noxious effects have been demonstrated on different fish species, with LC50 ranging 

between 35 µg/L to 2.8 mg/L Cu. Gill and gut are commonly considered to be the first targets 

for metal uptake and toxicity (waterborne and dietary exposure), and Cu sensitivity appears to 

greatly vary among fish species and exposure pathway, i.e. dietary Cu or waterborne Cu 

(Allinson et al. 2000). 

Cu toxicity has been extensively investigated on many macrophyte species with different 

life-history traits. It was studied on Ceratophyllum demersum (Devi and Prasad 1998; Thomas 

et al. 2013), Lemna minor (Razinger et al. 2007; Khellaf and Zerdaoui 2010; Basile et al. 2012), 
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Spirodela polyrrhiza (Xing et Huang 2009), Myriophyllum spicatum (Samecka-Cymerman and 

Kempers 2004; Li et al. 2010; Yan and Xue 2013), Elodea canadensis (Mal et al. 2002), 

Hydrilla verticillata (Gupta et al. 1996), and Potamogeton pectinatus (Samecka-Cymerman and 

Kempers 2004; Costa et al. 2018), among others. The sensitivity is highly species-dependent in 

vascular aquatic plants, starting with a very high Cu toxicity for C. demersum, showing toxicity 

signs from 4.7 ng/L Cu, passing by L. minor, demonstrating an LC50 of 0.47 mg/L, and to M. 

spicatum, showing an LC50 of 1.54 mg/L Cu. 

As plants are sessile organisms, they have developed several ways to cope with excess Cu; 

intracellular copper level is regulated by metallochaperones, and by phytochelatins (Pang et al. 

2013). Those mechanisms developed by plants to cope with Cu, in addition with the activation 

of regulation pathways, come with a cost, as energy is partially allocated in those paths, and not 

only in growth. Thus several studies have observed a decrease in growth upon Cu exposure, 

resulting from energy allocation in stress response and coping mechanisms (Khellaf and 

Zardoui 2010; Roussel et al. 2007; Huffman and O’Halloran 2001; Thomas et al. 2013; Török 

et al. 2015).  

Several water parameters will influence Cu toxicity, rendering hard to properly assess its 

potential impact if conditions are changing rapidly. A study from Meyer et al. (1999) showed 

that water quality (such as pH, hardness and alkalinity) strongly influenced sensitivity of several 

organisms to Cu. 

 

3. Policies and methodologies in ecotoxicological risk assessment 

A. History of environmental regulations 

The raise of concern that anthropic activities may be harmful to the environment triggered 

the implementation of regulations. This increase of public awareness began in the 60s’, with 

Rachel Carsons’ book, ‘Silent spring’ written in 1962, explaining how the use of synthetic 

pesticides is harmful to wildlife and to the environment (Carson, 1962). This book ignited the 

first environmental policies in the US, notably the Wilderness act in 1964 (Crocco et al. 2016). 

In the early 1970s’, the first regulation in the US to preserve the environment from 

industrialization was implemented, known as the National Environmental Policy Act (NEPA, 

US EPA, 1969). Further legislations were implemented following the NEPA, such as the Clean 

Air Act in 1970, and the amendment of the Federal Pollution Control Act in 1948, becoming 
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the Clean Water Act in 1972 (United States Federal Law 2002; US Environmental Protection 

Agency 1997).  

In Europe, the Paris Summit meeting of the European Economic Community (EEC) in 

October 1972 drew the first action program for environmental protection, which was adopted 

in July 1973, and signed the beginning of EU’s environmental policies (European Union 1972). 

The first United Nation conference on the environment took place in Stockholm in 1972. After 

this conference, the European Community adopted its first Environmental Action Program 

(EAP, from 1973 to 1976), which allowed to determine the principles and the priorities that 

would guide its policies in the future. By the end of 1992, the European environmental law 

contained 196 Directives and 40 regulations (Markus-Johansson et al. 2008). In October 2000, 

the EU Water Framework Directive (WFD) was adopted to be an operational tool to set the 

objectives for water protection for the future (European Commission 2000). Although water 

legislation in Europe started in 1975 with standards for rivers and lakes used for drinking water, 

and has set binding quality for drinking water in 1980, it was only in 1991 that water pollution 

by agricultural runoffs and wastewater was accounted for into regulations (European 

Commission Website).  

To go further into chemical control, a regulation on Registration, Evaluation, Authorization 

and Restriction of Chemicals, also called “REACH”, came into force in 2007 and replaced the 

former legislation framework on chemicals (European Commission 2007). The main reason for 

implementing this regulation was that many substances in various amounts were manufactured 

and placed on the European market for many years with insufficient information about their 

harmfulness toward humans and environment. This regulation aims to protect the environment 

and humans by controlling the type and the amount of chemicals authorized on the European 

market, and follows the idea "No data no market", as it expects industries to provide safety 

information on the substances (Regulation No. 1488/94). Nowadays, new substances need to 

be registered immediately before being placed in the EU market (Directive 93/67/EEC). 

The registration of chemicals, which is carried out on all newly notified substances and on 

priority existing chemicals, is made through a risk assessment process. Ecotoxicological risk 

assessment is the approach used to assess the impact of a given molecule on ecosystems, 

through the study of its toxicity on non-target organisms (Shea and Thorsen 2012).  

For instance, due to its impact on aquatic biota, several regulations have been implemented 

throughout the years to limit Cu impact on ecosystems. Europe approved but regulated Cu-
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based compounds in organic farming, particularly for potato, grape, tomato and apple 

production systems, and the authorization has been renewed in 2018 for bactericide and 

fungicide uses. It is, along with sulfur, the only mineral product allowed in organic agriculture 

for vineyard in Europe, with up to 6 kg/ha/year, averaged over 5 years (regulation N° 889/2008, 

EFSA, 2008). No regulation in conventional agriculture has been implemented in Europe, 

although a European regulation sets the Cu concentration limit at 150 mg/kg in soils. In 1998, 

the directive 98/83/EC has limited Cu to a maximal concentration of 2 mg/L in drinking water, 

however no limit has been set groundwater and surface water concentrations, despite the 

harmful effects demonstrated on aquatic environments. 

 

B. Introduction to ecotoxicological risk assessment 

In a context of increasing chemical production, risk assessment has been defined at the 

Earth Summit in Rio de Janeiro as “a scientific process which identifies, characterizes and 

quantifies the potential adverse effects on human health or ecosystems of defined exposures to 

a chemical substance or mixture or to a chemically hazardous process or situation”. The risk is 

defined by the European Commission as “the combination of the probability of occurrence of a 

hazard generating harm in a given scenario, and the severity of that harm” notably depending 

on the vulnerability of the system considered (European Commission 2015). Risk assessment 

is used in a wide range of professions and academic subjects. 

In that framework, Ecotoxicological Risk Assessment (ERA) is the scientific process 

which allows to determine the nature and the likelihood of toxic effects of chemicals on the 

environment, through exposure and effect evaluations (Brunström and Halldin 2000; Dimitra 

G. et al. 2005; Suanon et al. 2018). Ecotoxicological Risk Assessment has emerged as an 

important part of environmental protection programs. It has first started in the 1970s, when 

it was adapted from health risk assessment to environmental health risk assessment, along with 

the first environmental regulations. Although similarities exist between the two approaches, 

ERA is more complex due to the inherent complexity of ecosystems. The EPA and others have 

issued guidelines in the 1990s, which present a basic framework for conducting ERAs. This 

framework still persists today, although it has evolved with scientific discoveries and has been 

complexified through step addition, to increase reliability of the process (Hansen 2007; Hunka 

et al. 2015; Johnson and Sumpter 2016). 
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ERA deals with changes caused by humans that may alter ecological systems, such as lakes, 

rivers, forests, and others. When a new chemical is introduced in an environment, such as the 

spread of pesticides, it is necessary to assess the changes that will be triggered on species in the 

area. The approach may be very local, such as wastewater treatment plant site, or regional, such 

as Virginia coast or the Great Barrier Reef. The risk may be global, such as global warming or 

global distillation (also known as grasshopper effect), and may involve particular species which 

are likely to be exposed to the changes, or involve an ecosystem with all its biotic and abiotic 

components (SETAC 1997). 

 

C. Ecotoxicological risk assessment in Europe 

In Europe, the standard approach in ERA includes 4 different phases (Manuilova, 2003; 

Leeuwen and Vermeire, 2007; ECHA, 2016, Figure 3.1): 

 

1) The first step is the hazard identification. The effects of concern that a chemical has an 

inherent capacity to cause are identified. The hazard classification of the substance 

according to the Global Harmonised System (GHS) is established or reviewed. 

2) The second step is the dose-response assessment. The relationship between dose or level 

of exposure of the substance and the severity of the effect are estimated, and the predicted 

no-effect concentration (PNEC) is developed, for at least three taxonomic/trophic levels. 

The PNEC is the threshold concentration which must not be exceeded in order to avoid 

deleterious effects on the environment. The PNEC is derived by applying appropriate 

assessment factors (AF), which are used to extrapolate from laboratory single-species 

toxicity test data to multi-species ecosystem effects, following the EU-Technical Guidance 

Document (TGD). It also takes into account the extrapolation from acute to chronic 

exposure and the variability among experimental data. If the number of available data and 

their adequacy increase, the AF will decrease. PNECs are derived from the most sensitive 

species tested. 

3) The third step is the exposure assessment, which is an estimation of the concentration to 

which environmental compartments are or may be exposed. The sources, emission routes 

and degradation pathways of the chemical are determined by using environmental 

monitoring data, or by modelling exposure in a hypothetical standard environment. For 

REACH, the model from the European Union System for the Evaluation of Substances 
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(EUSES) is employed (ECHA, 2016). It was developed for the quantitative assessment of 

the risks posed by existing and new chemical substances to the environment. EUSES can 

work with very limited data sets (Brandes et al, 1996). The Predicted Environmental 

Concentrations (PECs) are derived for each environmental compartment, and are usually 

modelled due to the lack of monitoring data. 

4) The last step is the risk characterization, which is the estimation of the severity and the 

incidence of the effects likely to occur in an environmental compartment, due to actual or 

predicted exposure to a given chemical. The Risk Characterization Ratio (RC), is calculated 

thanks to the PEC and the PNEC, as RCR= PEC/PNEC, for a given compartment. The 

RCRs take into account populations, exposure routes, time scales, and environmental and 

human impacts. The RCR needs to be below 1, if not, further refinements (such as the 

generation of toxicity data to reduce the AF) must be performed to ensure an RCR < 1. The 

RCR is based on worst-case assumptions on sensitivity and exposure, assuming the 

presence of the most sensitive species.  

 
Figure 3.1. Schematic presentation of the four steps in EU ecotoxicological risk assessment: 

(1) Hazard identification, (2) hazard assessment, (3) exposure assessment and (4) risk 

characterization. The iteration of the process depends on the toxicity of the product and its 

probable environmental concentration. Adapted from the European Environment Agency 

(2016). 
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As it is not possible to test all chemicals on all species, along with the numerous variables 

that can inflect the outcomes of laboratory testing, ERA is an iterative process. As conditions 

change and new information is available during the study, the assessment has to be revised in 

light of the new information, and improved where needed.  

 

D. Ecotoxicological risk assessment in other countries 

Outside Europe, ERA approaches slightly vary, and they are mostly derived from the model 

proposed by the US. This approach includes 3 phases: problem formulation, analysis through 

existing or potential exposure characterization, and risk characterization through assessment 

of exposure effect and toxicity. Notably, in the US, the risk assessment is made through an 

assessment endpoint, meaning that an “integrative” endpoint which is judged important to 

protect, and is defined in phase 1. Furthermore, there is a clear separation between the risk 

manager, i.e. the changes that need to be implemented following the risk assessment results, 

and the risk assessor, the persons realizing the risk assessment. In Europe, risk posed by 

chemical to the environment is assessed for all environmental compartments, and there is no 

clear separation between the role of risk manager and risk assessor (Manuilova 2003). 

 

E. Tiered approach in ecotoxicological risk assessment 

ERA nearly always follows a tiered approach in order to balance required details and efforts 

to obtain them (EFSA PPR Panel, 2013). However in US, the USEPA does not explicitly 

provide a tiered approach, and leave the decision to the risk assessors. The tiered approach 

consists in increasingly detailed assessment of exposure and effects, and ends up with the 

determination of a safe concentration for the environment. Each tier is an extended evaluation 

of the previous one (Figure 3.2,  Leeuwen and Vermeire, 2007; EFSA PPR Panel, 2013). 

Furthermore, depending on the RCR value within each tier, an iteration within the tier is 

performed to refine the RCR. 

The assessment often starts with conservative assumptions in order to be resource efficient, 

and uses the PNEC values from the most sensitive species used in laboratory tests. This is based 

primarily on the precautionary principle, which was described by Forbes and Calow (2002) as: 

‘applying controls to chemicals in advance of scientific understanding if there is a presumption 

that harm will be caused.’ Therefore in principle, safely passing the first tier guarantees passing 

all the superior tiers. If the risk is not controlled, these conservative assumptions are replaced 
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with less conservative assumptions, and if possible with measured data, to increase the realism 

of the approach. The tiers are described below: 

1) The first tier is laboratory experiments (bioassays) conducted on the most sensitive 

species from the standard laboratory species (core species), to acquire acute and chronic toxicity 

data depending on the dose (PNEC predictions), on at least 3 species.  

2) The second tier is growth chamber and glasshouse experiments, which are both acute and 

chronic lab tests performed with additional species to represent a sample of the community that 

needs to be protected. It takes into account the species interactions, along with the indirect 

effects. An extrapolation is performed to properly represent the sensitivity of all species in the 

community, through species sensitivity distribution (SSD) methods performed on at least 6 

species (described below). The approach can also be enhanced to better address the risks of 

time-variable exposures, through toxicokinetic (TK) and toxicodynamic (TD) models. 

3) The third tier relies on constructed model ecosystems, with experiments at population 

and community levels with a range of trophic levels. It can simulate environmentally realistic 

exposure regimes. 

4) Finally the fourth tier is a mix of field studies and landscape modelling, through the 

monitoring of long term and large scale impact assessment.  It refines the realism both in terms 

of exposure and of ecological relevance of the species community. 
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Figure 3.2. Schematic presentation of the four tiers of ecotoxicological risk assessment, with 

acute (left part) and chronic (right part) effect assessment. Adapted from EFSA PPR Panel, 

(2013). 

 

F. Toxicity data used in ecotoxicological risk assessment  

During tier 1 and tier 2, laboratory bioassays are performed to assess the effect of a given 

molecule on a species, depending on its concentrations. Predicted No Effect Concentration 

(PNEC) or No Observed Effect Concentration (NOEC) are extracted from those laboratory 

tests, which are often realized on at least 3 species. A PNEC value from the most sensitive 

species is used for derivation by an AF. The use of the NOEC and PNEC has been controversial 

for the past decade: firstly, because the concept is based on a wrong interpretation of the 

statistical output (no statistically significant effect does not mean no effect). Secondly, because 

those values are strongly dependent on the experimental setup and design, and their derivation 

relies on assessment factors (Fox 2008; Warne and Van Dam 2008; Delignette-Muller et al. 

2011; D. R. Fox et al. 2012; Belanger et al. 2017).  

Laboratory testing can also produce concentration - response (or effect) curves for different 

endpoints. Each curve can be summarized by a single value, such as the Effective Concentration 
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(EC) at which 𝑥 % of the effect is observed, also known as the 𝐸𝐶𝑥 value. To estimate EC 

values, a model is fitted to the concentration – effect curves, usually log-logistic with 3 or 4 

parameters, and the EC values are calculated as a model parameter. A 4 parameters log-logistic 

is presented below (Ritz 2010): 𝑓(𝑥) =
𝑑−𝑐

1+(
𝑥

𝑒
)

𝑏 + 𝑐 

where 𝑓 is the measured endpoint, 𝑥 is the concentration, 𝑐 is the asymptotic value of the 

endpoint when the concentration grows to infitiny, 𝑑 the value of the endpoint at 0 

concentration, b is a shape parameter and 𝑒 is the concentration at 50% effect (𝐸𝐶50). 

The problem in the whole methodology is that it assesses toxicity thresholds only on few 

species, as it is impossible to test all the chemical compounds on all species. Those toxicity 

thresholds are based on observations of effects of a chemical on growth, survival and 

reproduction. In order to be more ecologically relevant and to extrapolate those results to a 

community or an ecosystem, several approaches have been developed, such as the SSD. 

 

G. Species Sensitivity Distribution (SSD): a tool for ecotoxicological risk assessment 

Nowadays the SSD is routinely used in tier 1 and tier 2 of the ERA process (Del Signore et 

al. 2016). The SSD method has a significant influence on national and international decision 

making regarding assessment of chemical exposure to ecosystems (Belanger et al. 2017). The 

formal adoption of SSDs for the derivation of environmental thresholds dates back to 1985 in 

the U.S. and 1989 in Europe (Stephan et al. 1985; Van Straalen and Denneman 1989).  

It is a process which aims to compare the sensitivity of several species, in order to determine 

a threshold concentration for which the chemical harms less than 5 % of the species tested 

(Newman et al. 2000; Del Signore et al. 2016; Pathiratne and Kroon 2016). 

The principle of SSD is to select at least 6 species (to ensure the robustness of the model) 

to carry out bioassay experiments, to estimate their tolerance through EC values, usually EC50 

or LC50 (lethal concentration), and to fit a distribution model to those values which describes 

the sensitivity of the species pool, assimilated to a community (Figure 3.3). The sensitivity of 

this community is then estimated by the Hazardous Concentration for 5 % of the species (HC5), 

also known as the benchmark, which is used as a threshold concentration at which 95 % of the 

species should not be affected. However, this concentration is not considered as conservative, 

and several AF are applied. 
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Figure 3.3. SSD representing the toxicity of trichlorfon in freshwater based on short‐term LC50 

and EC50 values for 26 aquatic species versus the proportion of species affected. The dashed 

line in black represent the HC5 (Canadian Council of Ministers of the Environment, 2012). 

 

It was discussed in the European Centre for Ecotoxicology and Toxicology of Chemicals 

(ECETOC 2014) that extrapolation approaches based on SSDs to derive toxicity threshold 

concentrations, should provide a more relevant assessment of risks than PNEC derivation using 

generic factors applied to single-species bioassay data (Hanson and Solomon 2002; D. Fox 

2008; D. R. Fox et al. 2012; Belanger et al. 2017).  

 

H. Limits of ecotoxicological risk assessment and pitfalls of the SSD approach 

Usually, the ERA process is hampered by four types of uncertainty: the lack of information, 

the measurement uncertainties (low statistical power, inappropriateness of measurements…), 

the observation conditions (spatio-temporal variability in environmental factors, species 

sensitivity, differences between natural and laboratory conditions…), and the inadequacies of 

models (lack of knowledge concerning underlying mechanisms, failure to consider multiple 

stressors, instability of parameter estimates…).  

General limits of ERA: 

1) Statistical power and uncertainties in PNEC derivations need to be identified. As 

explained previously by Fox et al. (2008; 2012), the interpretation of the statistical output is 
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wrong, and an absence of significant difference does not mean no effect, especially knowing 

that PNECs are based on one single endpoint. 

2) The bioavailable concentrations should be properly assessed. Indeed, Morselli et al., 

(2015) have demonstrated that emission, environmental and biomass dynamics caused up to 4.5 

times variations in exposure levels. They highlighted the need to identify environmental and 

ecological conditions in which risk is expected to be the highest.  

3) The relevance of parameters chosen in laboratory testing for each species. Indeed, ERA 

aims to extrapolate bioassay results to population level. It takes into account effects on survival, 

growth and reproduction parameters, but does not consider the fact that effects might be only 

visible at the metabolism, behavioral or genetic levels, depending on the species. Only 

monitoring of diversity and abundance approaches can say, over time, if the current approaches 

are truly protecting the environment from chemicals.  

4) The baseline of a given ecosystem, or its variation, needs to be quantified before taking 

management measures. Johnson and Sumpter (2016) took as an example the Swiss initiative to 

improve many of their sewage treatment plants (STP) in the hope to decrease the chemical 

release in rivers and increase fish biodiversity. However, it has been demonstrated that fish 

decline was more closely associated with kidney diseases and declining habitat than by sewage 

effluent exposure, and that fish populations greatly varied from one year to another. Therefore, 

investments to improve STPs may not enhance fish populations.  

 

Current limit of SSD approaches: 

1) Species relevance in laboratory testing during SSD approaches has to be addressed. 

Indeed, the concept of keystone species is not taken into account in SSD approaches. All 

species are weighted equally, assuming that the loss of any species will be equally important to 

the ecosystem. However, keystone or other functionally important species may not be protected 

by the HC5 concentration, and would therefore inflect the entire ecosystem dynamics and 

impact the other species (Forbes and Calow 2002). 

2) Pulsed contaminations are not taken into account, and SSDs are restricted to constant 

concentration scenarios (Maltby et al. 2005). This is of concern, as chronic exposure occur very 

often in ecosystems. Only time-averaged concentrations may partially circumvent the problem, 

but does not assess the possible weakening of individuals.  

3) Although it aims to assess a community sensitivity, it does not take into account species 

interactions, such as predation or competition, as observations are based on single-species 
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bioassays. However species interactions may significantly inflect the harmfulness of chemicals, 

as it can impact preys or predators thus indirectly impact other species they interact with. To 

remedy this issue, it was proposed to validate HC5 with mesocosms and real ecosystems 

(Belanger et al. 2017). 

4)  Intraspecific variation, i.e. variability within species, is not taken into account during 

the laboratory testing. It is of concern, as SSD aims to compare the sensitivity between species, 

and assumes that interspecific variation is higher than intraspecific variation. Laboratory 

bioassays assume that the harvested individuals from a given species are representative of their 

entire species sensitivity. These tests do not take into account that some populations or some 

individuals may have different sensitivities due to environmental factors, selective pressure, 

gene pool and local adaptation, among others. Extrapolating the sensitivity of an entire species 

from few individuals can therefore be misleading, as intraspecific variation could be very high; 

the results of a given laboratory toxicity-test might thus arise from a sampling effect. As such, 

comparison of sensitivity among species may be distorted, and the determination of a HC5 may 

misrepresent the real sensitivity of a given community, and therefore the impact of the chemical 

on a given ecosystem.  

 

4. Ecological importance of intraspecific variability 

A. What is intraspecific variability? 

Intraspecific variability is defined as the differences that occur between different 

individuals from a same species. Variations can be recognized through various characteristics, 

such as morphology, development, biochemical or physiological properties, but also through 

genetic differences (i.e. differences in the complete set of genes). The term genotype is used to 

describe variations in genetic makeup among individuals, whereas the term phenotype is used 

to describe the observable traits of an individual. 

All species, terrestrial or aquatic, demonstrate intraspecific variability from a genotypic and 

a phenotypic point of view: for instance, all mammals are genetically distinct from each other 

(excepted homozygous twins), and a person will be physically different from another because 

their genetic makeup will be different, this is called genetic variation. It is due to differences 

in gene versions, as all members of the same species have the same genes, but these can exhibit 

different forms, called alleles. Heterozygosity is when an organism has two different 

versions/forms of alleles for one gene. The different alleles can cause variations in phenotypes, 
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such as eye color or blood group, but can also provide resistance to environmental stressors. 

For instance, it has been widely studied for crop plants in agriculture, and to understand the 

development of herbicide resistance in weeds, such as Azolla and Hydrilla species (Mitra 2001; 

Moody et al. 2008). Genetic variation is inherited, transferred from parents to offspring. It is 

considered that heterozygosity increases genetic variation, as there is more genetic material 

available (Amos and Harwood 1998). 

In addition to its gene makeup, an individual may exhibit different phenotypes in its lifespan 

as a response to environmental changes that will inflect gene expression. The ability of an 

individual to produce different phenotypes in response to environmental variations is called 

phenotypic plasticity (Bradshaw 1965). For instance, Himalayan rabbits exhibit changes in 

melanization depending on temperature, and their fur turns black when temperatures drop 

below 25 degrees (West-Eberhard 2003). Gotham and Song (2013) have demonstrated that two 

grasshopper species exhibited different morphologies and colors depending on crowding. Plants 

can also exhibit different phenotypes depending on light intensity, nutrient availability, 

mechanical constraint, among others (Robe and Griffiths 2000; Pigliucci and Kolodynska 2002; 

Sultan 2003).  

 

B. Genetic variations 

Genetic variations (or variability) can be caused by multiple processes. Changes may occur 

due to mutations with an error in the DNA replication that will cause structural changes in a 

gene. Mutations are considered to be the only source of new alleles in a population. In plants, 

genotypic variation can be expressed through several traits, such as root morphology (O’Toole 

and Bland 1987), photosynthetic capacity (Flood et al. 2011), leaf anatomy (Olsen et al. 2013), 

and phenology (Chuine et al. 2000).  

1) Processes that inflect genetic variation 

The main process which hampers genetic variability is natural selection. As a consequence 

of natural selection, the frequency of favorable alleles increases over several generations, while 

that of unfavorable ones tends to decrease (Grenier et al. 2016). As a result of this process, 

differences in reproductive efficiencies will be found, also called fitness, among genotypes 

under a given set of environmental conditions. Natural selection will tend to decrease genetic 

diversity within a population, as all genotypes will converge: it is called directional selection.  

If a strong selective pressure is applied, only individuals able to survive and reproduce will 
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remain, decreasing the gene pool of the population. It follows the natural selection theory 

developed by Darwin, which states that individuals who are best adapted to live in an area will 

survive and reproduce, whereas the others will disappear. However, within a population, there 

is a certain degree of genetic variation, which may or may not make an individual more adapted 

to its environment, or to changes in its environment. It has been demonstrated that selection 

pressures on different populations will increase genetic variation among populations, and 

decrease genetic variation within population (Fraser et al. 2014). 

The second process modifying genetic variability is genetic drift, which is due to random 

changes in allele frequencies occurring from generation to generation, due to a finite population 

size. Its effects are strongest in small populations, where alleles poorly represented face a 

greater chance of being lost (Fujisawa et al. 2014). Genetic drift continues until the involved 

allele is either lost or is the only one present at a particular gene locus in a population. Indeed, 

if the number of individuals in a population is small, the gene pool in the next generation will 

demonstrate reduced variation. Genetic drift is particularly common after a population 

bottleneck, when a significant number of individuals in a population die, or is prevented from 

breeding, as it results in a strong decrease in the size of the population and of its gene pool 

(Grenier et al. 2016). Bottlenecks often arise as a result of habitat fragmentation. It can also 

result in a genetic differentiation from the original population, and if the new population is 

genetically isolated, in its speciation. This has led to the hypothesis that genetic drift plays a 

role in the evolution of new species, as they adapt to their new environment without any 

exchange with other populations. 

Both mutations and gene flow increase genetic variability. Gene flow is the exchange of 

genetic information among populations, through migration of individuals or long distance 

transport of pollen in the case of plants. Gene flow increases when populations are connected, 

without geographical barriers between them. Nowadays, human activities considerably 

influence gene flow due to transports and connecting roads, which can increase gene flows for 

species associated to man-modified habitats. At the opposite, landscape fragmentation can 

reduce gene flow of separate populations, especially in plants (Aguilar et al. 2008; Chaput-

bardy 2008; Abbasi et al. 2016).  
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2) Genetic variability in plant species evolution  

Genetic variability is very important in species evolution. Indeed, a population having a 

broad gene pool will more likely adapt to environmental changes. Individuals separated from 

their original population may form a new species due to speciation, combining both geographic 

isolation and gene flux isolation. For instance, Martínez-Garrido et al. (2016) have 

demonstrated with genetic analyses that processes like speciation and hybridization within the 

genus Ruppia resulted in new species. It has been shown by Barker et al. (2018) that genotypic 

variation in tree traits (e.g. growth and phenology) shapes other organism community, 

highlighting the importance of genotypic variation in ecosystems. This corroborates the finding 

made by Whitlock et al. (2010), and Zytynska et al. (2011), who demonstrated that genotypic 

variation in plants plays an important role in community structure.  

 

C. Phenotypic plasticity 

1) Process 

The plastic traits of individuals are modified, without modifying the genetic diversity of the 

populations, as the modifications are not heritable. These changes occur in the lifespan of 

individuals, and can influence their fitness, as well as be the target of natural selection (Fusco 

and Minelli 2010).  

The relationship between environmental factors and traits is called the reaction norm. This 

term was first introduced by Woltereck in 1909. The norm of reaction is a curve that relates, for 

a given genotype, the contribution of environmental variation to observed phenotypic variation  

(Debat and David, 2001, Figure 4.1). For instance, the shape of the curve may be flat across 

environments if the trait is not subject to phenotypic plasticity (Figure 4.1A). By opposition, a 

plastic trait will demonstrate some variation between two environmental sets (Figure 4.1B) and 

genotypes can sometimes exhibit contrasted plasticity for a given trait (Figure 4.1C). Although 

it was first applied to morphological traits, it has been widely demonstrated that a broad range 

of traits can demonstrate phenotypic plasticity (Woltereck 1909; Schlichting and Pigliucci 

1998). Indeed, organisms can also alter their biochemistry, behavior, physiology, and life 

history, as a response to environmental changes. Those alterations can include heat shock 

reaction, learning and imprinting, environmentally induced transcription and translation, and 

general stress responses.  
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Figure 4.1. Reaction norms of a given trait of three genotypes (different color lines in each 

graph) under two environments, with (A) absence of phenotypic plasticity, (B) presence of 

phenotypic plasticity and (C) presence of phenotypic plasticity, and genotype-environment 

(G*E) interaction. 

 

As explained by Whitman and Agrawal (2009), virtually all phenotypic traits are the result 

from underlying biochemical and physiological processes, thus phenotypic plasticity results 

from altered physiology through several mechanisms, such as epigenetic, transcriptional and 

post-translational regulations (Figure 4.2).  

Plasticity can be characterized as active or passive, because there might be differences in 

the way these two types of phenotypic plasticity affect the ecological success of individuals and 

populations (Kurashige and Callahan 2007; Whitman and Agrawal 2009; Forsman 2015). 

Active plasticity is considered as anticipatory, and reflects modifications of developmental 

pathways and regulatory genes. A plant or animal with a plastic trait will receive a cue from the 

environment that will determine the subsequent value of the trait. Organisms can evolve 

mechanisms to sense and adjust to respond to certain cues that predict environmental changes 

(Whitman and Agrawal 2009). Cues tend to be non-harmful stimuli, such as predator-released 

chemicals, or photoperiod, and the magnitude of the phenotypic response induced by the cue is 

not obviously correlated with the strength of the environmental signal. Passive plasticity is 

considered when the environment directly acts on the expression of the trait, and phenotypic 

changes are often proportional to environmental differences. Direct environmental stimuli are 

often harmful, such as an increase in temperature, or a toxin (Whitman and Agrawal 2009). An 

example of the reaction chain triggered by environmental cue or signal is depicted in Figure 

4.2, with in panel (a) the reaction chain, in panel (b) the reaction norms induced both by 

genotype and environment and in (c).the physiological outcomes of the reaction. 
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Figure 4.2. Phenotypic plasticity in the production of leaf anthocyanins as a defensive 

mechanism in response to an excess of light or temperature or to osmotic extremes. (a) 

Molecular mechanisms involved in plastic response, which translate an environmental signal 

(excess light in this case) into a phenotype. (b) Responses graphically presented as reaction 

norms. Here, the blue and red lines indicate the reaction norms of two different genotypes 

responding to a change from a low light environment (Env1) to a high light one (Env2). The 

extent of phenotypic change in response to an environmental signal is its phenotypic plasticity. 

Asterisks in the panels denote the significant effects of environment (E) or genotype (G), and 

an interaction between both (G × E). (c) Examples of the mechanisms underlying the cases 

depicted in panels 1–3 are given separately for each point in the signal pathway. The leaves on 

the left and right represent the phenotypes in Env1 and Env2, respectively. Figure from Nicotra 

et al., 2010. 

 

2) Role of phenotypic plasticity in plant adaptation 

Phenotypic plasticity was first considered as a nuisance in evolutionary biology, at the time 

of the discovery of Mendel’s laws on heredity. At that time, biologists considered 

environmental effects as a problem hampering natural and artificial selection of a given trait 
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(Falconer, 1952). In the 1980s, it was finally considered as quantity of interest in our 

understanding of how organisms interact with their environment (Debat and David 2001; 

Massimo Pigliucci 2005). According to Forsman (2015), research on phenotypic plasticity has 

grown exponentially, passing from < 10 papers before 1983 to nearly 1300 papers in 2013.  

The role of phenotypic plasticity in plants, as an alternative strategy to genetic 

differentiation in response to environmental variations, was first reviewed by Bradshaw (1965). 

Many questions are asked to unravel the role of phenotypic plasticity mechanisms in adaptation, 

and its influence in individual, population and species diversity.  

Plasticity is considered as adaptive if it increases an organism’s fitness under a given 

environment, compared to organisms that are not plastic (Liefting et al. 2009). Plasticity can 

also be non-adaptive and maladaptive. A non-adaptive phenotypic plastic response is when 

environmental response is passive, and a maladaptive response is when a new environment 

induces a phenotype which is further away from the optimal phenotype in a given 

environmental set (Bradshaw 1965; Ghalambor et al. 2007). 

Phenotypic plasticity can respond to natural selection, and suggests that adaptive plasticity 

occurs in natural populations (Massimo Pigliucci 2005). Current literature broadly 

demonstrates gene-by-environment interactions (G×E, genetic variation for plasticity) in 

organisms (West-Eberhard 1989; Debat and David 2001; Pigliucci and Kolodynska 2002; 

Pigliucci 2006; Fusco and Minelli 2010; Grenier et al. 2016).  

Furthermore, recent studies suggest that phenotypic plasticity can compete with species 

composition in their effects in environment functioning ( Crutsinger et al. 2008; Martin and 

Blossey 2013; Jackrel et al. 2016;). For instance, Jackrel and Morton (2018) have shown that 

herbivory resistance demonstrated by some tree species, which is mediated by environmental 

factors, decreases leaf litter decomposition in streams, and thus strongly alters the carbon source 

in those aquatic ecosystems.  

 

3) Phenotypic plasticity in aquatic plants 

Many studies have demonstrated that phenotypic plasticity is common in aquatic plants as 

a response to environmental fluctuations, such as nutrient availability, flooding conditions 

(mechanical and hypoxic constraints), water depth, light intensity, and others. Those 

environmental changes then trigger modifications in their morphology, reproductive traits or 

their composition and so on. 
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For instance, Yang et al. (2004) have shown that both Myriophyllum spicatum and 

Potamogeton maackianus allocated their biomass differently depending on flooding 

constraints. The same observation was made by Arshid and Wani (2013) and Cao et al. (2012), 

that M. spicatum demonstrates a plastic response to flooding and nutrient levels both for 

biomass allocation and for clonal architecture. Phragmites australis acclimatizes to water depth 

through resource allocation in stem weight and length (Vretare et al. 2001). 

Olesen and Madsen (2000) have demonstrated that photosynthesis in Elodea canadensis 

and Callitriche cophocarpa adjust to temperature and carbon availability to promote growth. 

Puijalon et al. (2008) have shown adaptive and maladaptive phenotypic plasticity in four aquatic 

plant species in response to mechanical stress. Sagittaria latifolia, known as duck-potatoe, 

shows different phenotypic plasticity responses to nutrient availability between monoecious 

and dioecious plants (Dorken and Barrett 2004). Vasseur et al. (1992;1994) demonstrated that 

Lemna minor showed a high plasticity in response to short term environmental variations, and 

that the degree of phenotypic plasticity varied depending on the genotype, highlighting the 

influence of genotypic variation on phenotypic plasticity potential. 

Furthermore, phenotypic plasticity can play a role in species repartition. Indeed, it has been 

highlighted by Ganie et al. (2015) that phenotypic plasticity was the cause of the successful 

spread of Potamogeton genus in the Kashmir Himalaya, with ten species demonstrating 

differences in their morphological and reproductive traits depending on environmental 

conditions. This phenotypic plasticity may inflect ecosystem dynamics, as aquatic plants play 

pivotal role in ecosystem functioning. 

 

D. Implications of intraspecific variability in species evolution and ecosystem resilience 

1) Intraspecific variability in aquatic plant evolution  

Although we still hear sometimes that plasticity and genetic adaptation are opposite 

processes in adaptation, it has been widely acknowledged that plasticity is a property of the 

genotype, and that the two mechanisms are non-exclusive and tightly linked to one another 

(Grenier et al. 2016). The relationship between genotype and phenotype is complex, as they are 

both part of species evolution. The survival of populations in environments showing spatial and 

temporal fluctuations goes through shifts in genetic composition or individual phenotype. 

Phenotypic plasticity within species, and across both time and space, has broad implications 

both for communities and ecosystem functioning, such as energy flux among trophic levels 
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(Jackrel and Morton 2018). Plants especially are considered as highly plastic organisms, 

because they are sessile organisms, incapable of movement (Bradshaw 1965). Indeed, because 

animals possess locomotory mechanisms and complex behavioral responses, they are less prone 

to plasticity. They can evade unsatisfactory environments, and select others which are more 

suitable for them (Waddington 1957).  

The process of selection takes more or less time depending on the genetic pool of each 

population, and their ability to survive. Each population will have a genetic pool, with 

organisms having different abilities to produce a plastic response, depending on organism’s 

DNA. Selection pressure will occur on phenotypic plasticity as well, as phenotypic plasticity 

can inflect the fitness of organisms, depending of their adaptive potential to the given 

environmental set.  

For instance, in an aquatic environment, light intensity could drastically decrease during a 

short time. Aquatic plants will have to quickly adjust to survive in this environment. Some 

individuals will produce high chlorophyll concentrations as a fixed trait, and will survive 

without having to adjust to this new environment. Some individuals will adjust to this 

environment through phenotypic plasticity and produce more chlorophylls to cope with the 

decrease in available light for photosynthesis. The plastic response may be adaptive if the cost 

is not at the expense of growth, and will result in individual’s survival, and the given trait can 

even be fixed over time (i.e. assimilation, Waddington, 1953). The response may be 

maladaptive and result in their death and disappearance, if the production costs are too high, or 

if chlorophyll production is not high enough to cope with light decrease. Either way, individuals 

able to produce a proper response to the environmental pressure will remain if the cost is not 

too high, whereas those unable to produce the proper response will disappear. Both genetic 

diversity and plasticity will shape the response, and the cost of plasticity will strongly inflect 

the resulting diversity of the population over time (Figure 4.3). 
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Figure 4.3. Impact of selection and plasticity on genetic diversity, according to the cost of 

plasticity. Genetic diversity is represented by different forms, and different phenotypes are 

represented by different colors. The population size is kept constant. (a) Without plasticity, 

showing a strong decline of genetic diversity, (b) with equal plasticity among genotypes and a 

very strong cost of plasticity resulting in a strong decline of genetic diversity; (c) with equal 

plasticity among genotypes and a medium cost of plasticity for the circles and strong cost for 

the rectangles resulting in a low decline of genetic diversity, and (d) with equal plasticity among 

genotypes and no cost of plasticity, resulting in the maintenance of genetic diversity. Figure 

from Grenier et al. 2016. 

 

Several studies have been focused on intraspecific variation as a strategy for aquatic 

plants to spread and adapt in different ecosystems, whether it results from genotypic variation 

or phenotypic plasticity (Riis et al. 2010; Ganie et al. 2015; Weyl and Coetzee 2016). 

Furthermore, it has been broadly demonstrated that aquatic plants show geographic patterns 

and intraspecific variations among climatic regions ( Garbey et al. 2004; Arshid and Wani 2013; 

Wu et al. 2016; Hu et al. 2017; King et al. 2017; Reynolds et al. 2017).  

In a changing environment, it is essential to properly assess macrophyte species ability 

to adjust and thrive under new conditions. However, the study of combined environmental 

fluctuations and chemical stress has been poorly investigated so far on aquatic plants, even 

though it is widely acknowledged that aquatic ecosystems are particularly impacted both by 
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environmental fluctuations and chemical loads (Meyer et al. 1999; Howarth 1991; Woodward 

et al. 2010; Angeler et al. 2014). 

 

2) The role of the intraspecific variability in ecosystem resilience  

Although there is increasing interest for the ecological effects of intraspecific variation, the 

importance of such effects compared with species effects (e.g. ecological services) is not well 

resolved, and recent studies demonstrated that ecological effects of species was partly caused 

by intraspecific variation ( Fussmann et al. 2007; Read et al. 2016). A meta-analysis from Des 

Roches et al. (2017) has shown that intraspecific variation effects are often comparable to 

species effects in ecosystems, and stronger when it comes to indirect interactions that may alter 

community composition. This finding corroborates the results from Reusch and Hughes (2006), 

that effects and mechanisms of genotypic and species diversity are analogous. This highlights 

the importance of intraspecific variability in ecosystem functioning, and its potential 

implication in ecosystem resilience.  

Resilience is usually defined as the capacity of an ecosystem to absorb disturbance without 

shifting self-organized processes, structures and losing function and services (Holling 1973; 

Carpenter et al. 2001; Oliver et al. 2015). According to Côté and Darling (2010), the concept 

encompasses two separate processes: resistance, which is the magnitude of disturbance that 

causes a change in structure and functions, and recovery, which is the speed of return to the 

original structure and functions (Tilman and Downing 1994; Holling 1996). 

Species composition and its stability are very important for ecosystem functioning, and are 

often considered as the target for conservation, as ecosystem functions can suffer from a species 

disappearance if this one has important functional roles. However, it is the ecosystem functions, 

rather than species composition, that need to be resilient to maintain ecosystem services. 

As explained before, intraspecific variation plays a very important part in adaptive capacity 

of species toward environmental changes. Several studies have found that intraspecific variation 

in macrophytes enhances aquatic ecosystem resilience, because intraspecific variation in their 

life-traits diminishes recovery time after a disturbance (Oliver et al. 2015; Jackrel and Morton 

2018). For instance, Reynolds, McGlathery and Waycott (2012) have demonstrated through 

recovery experiments that a higher genetic diversity in Zostera marina allowed ecosystems to 

recover faster, as they provided more ecosystem services (e.g. invertebrate habitat, increased 
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primary productivity, and nutrient retention). Furthermore, some studies have observed that the 

adaptive capacity of ecosystems, notably via the phenotypic plasticity or genotypic variability 

of species, favours ecosystem resilience to climate change (Bernhardt and Leslie 2013; Gibbin 

et al. 2017). For instance, Reusch et al. (2005) have demonstrated that genotypic diversity of 

the seagrass Zostera marina replaced the role of species diversity in a species-poor coastal 

ecosystem, and buffered against extreme climatic events.  

 

E. Intraspecific variation in risk assessment approaches 

Although intraspecific variation has been studied as a way to cope with environmental 

fluctuations and to contribute to species adaptation, almost no study has focused on the 

importance of intraspecific variation in the sensitivity of macrophytes to chemicals.  

We explained before that plants can acclimatize to short term environmental fluctuations 

through phenotypic plasticity, and at a longer time scale, through genetic fixation of efficient 

traits. In a context of environmental pollution, species sensitivity may be influenced by those 

adaptive capacities. Furthermore, intraspecific variation is not currently taken into account in 

ERA, as explained previously in part III. Laboratory testing usually assesses the sensitivity of 

one population of individuals, or of one clonal population, to a given chemical. However, the 

population sensitivity may not reflect the species sensitivity across different populations, and 

in different environments (Figure 4.4). As such, the threshold concentrations determined may 

be over- or under-protective for aquatic ecosystems, if the results obtained in laboratory testing 

are only the result of a sampling effect, and not representative of the entire species sensitivity. 

Several studies have demonstrated that environmental factors can strongly affect trace 

element uptake by aquatic plants (Fritioff et al. 2005; Verma and Suthar 2015), as well as their 

sensitivity to chemicals (Gupta et al. 1996; Leblebici and Aksoy 2011; Nuttens and Gross 

2017). Dalton et al. (2013) have shown that geographically distinct populations of Lemna minor 

demonstrated different sensitivities to atrazine, with some populations being twice as sensitive 

as others. This is so far the only study which has investigated the possible impact of genotypic 

variation in chemical sensitivity of aquatic plants.  

However, in terrestrial plants, the importance of genetic variability has been widely studied 

through the adaptation of plants exposed to herbicides. Indeed, the increasing occurrence of 

widespread herbicide resistance in weeds has been widely investigated over the years, as the 

use of herbicides still increases (Caseley et al. 1991; Kandasamy et al. 2002). According to 
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Schütte et al. (2017), in 2016 a total of 249 weed species (and sometimes several genotypes per 

species) resistant to various herbicides have been recorded, occupying hundreds of thousands 

of fields worldwide. The resistance genes can spread by hybridization between related weed 

species (Green 2014; WSSA Herbicide-Resistant Weeds Committee 1990).  

In that context, it is imperative to assess the importance of intraspecific variation, its 

mechanisms and its impact on the sensitivity of aquatic plants to chemical stress, as aquatic 

ecosystems are the final receptacle of chemical contamination.  

 

Figure 4.4. Graphical scheme representing the potential impact of intraspecific variation in 

chemical sensitivity, with (a) genotypic variability among four genotypes of aquatic plants and 

(b) phenotypic plasticity in the chemical sensitivity of one genotype across four environmental 

sets. Genotypic variability takes time, as it occur through several generations, whereas 

phenotypic plasticity occur during an individual lifespan. Phenotypic plasticity is a costlier 

process, as it require sensors for environmental cues, and constant adjustments, compared to a 

fixed trait which will not vary across environmental ranges. 
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5. Thesis outline 

 

Overall, few studies have assessed the importance of intraspecific variation in species 

sensitivity to chemicals. As explained in part 1 of this chapter, aquatic plants play a pivotal role 

in ecosystems, are sensitive to chemical contaminations, and are particularly subject to 

intraspecific variation due to their absence of motility. Furthermore, these organisms are also 

model species in ERA, and are extensively used in toxicity laboratory testing. Copper is 

considered as a model contaminant, as it is environmentally relevant and its effects on the 

environment have been broadly studied, as explained in part 2 of this chapter. 

In order to cope with the current lack of knowledge on the subject, I aimed to investigate 

the importance of intraspecific variations in macrophyte sensitivity to Cu. 

 To do so, after describing the materials and methods used along the experiments (chapter 

II), I addressed three main questions, which are presented below and summarized in Figure 

5.1; 

(1) What is the relative importance of intraspecific vs. interspecific variations in the 

chemical sensitivity of macrophytes? 

I first aimed to compare intraspecific and interspecific variation in terms of chemical sensitivity, 

across the following species: Myriophyllum spicatum, Lemna minor and Ceratophyllum 

demersum. The study is presented in chapter III. 

(2) How important is genotypic variation in the intraspecific variability of macrophyte 

sensitivity to chemicals? 

Therefore, the importance of genotypic variability in the response of Myriophyllum spicatum 

to Cu exposure was investigated, through the study of seven genotypes. The results are 

described in chapter IV. 

(3)  How important is phenotypic plasticity in the intraspecific variability of macrophyte 

sensitivity to chemicals? 

The importance of phenotypic plasticity in the sensitivity of Lemna minor exposed to Cu was 

thus investigated across three experiments and two distinct environments for each experiment. 

The study is presented in chapter V. 
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Figure 5.1. Graphical scheme of the questions addressed during my PhD project. Importance 

of intraspecific compared with interspecific variations in three macrophytes species exposed to 

copper (Cu), with several genotypes per species (A). Underlying mechanisms of intraspecific 

variation with (B) importance of genotypic variability in the sensitivity of seven genotypes of 

Myriophyllum spicatum exposed to Cu and (C) importance of phenotypic plasticity in the 

sensitivity of Lemna minor exposed to Cu under favorable and unfavorable environments 

(Envi.). 
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CHAPTER II 
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1. Model species  

 

Three species with different life-history traits were selected to study interspecific 

variability, and the importance of intraspecific variability: Lemna minor, Ceratophyllum 

demersum and Myriophyllum spicatum. These species are complementary from each other, as 

they thrive in the different compartments of an aquatic ecosystem: the water surface, the water 

column and the sediment/water column. As such, they are representative of the different life 

forms that can be found across aquatic plants, and are commonly grown if the same water body. 

These species have also been selected due to their wide repartition area and their use in 

standardized ecotoxicological tests for two of them. 

A. Lemna minor 

1) Morphology  

Lemna minor L., or “duckweed”, is a free floating species living at the water-atmosphere 

interface. It is composed of a rosette of one to twelve “fronds” (resulting from the contraction 

of stems and leaves in a simplified photosynthetic structure), each of these having a single root 

which can be several centimeters long (Figure 1.1A, B). The fronds are oval, 1 to 8 mm long 

and 0.6 to 6 mm wide, with a developed aerenchyma (i.e. small air gaps between their 

parenchymatous cells) to allow their flotation. When the plant grows older and produces more 

fronds, these are split to separate individuals. Flowers are rarely produced (1 to 5% of the 

fronds), and are about 1 mm in diameter, with a cup shape (Landolt and Kandeler 1987). 

 

Figure 1.1. (A) Lemna minor in an axenic culture inside an Erlenmeyer flask, (B) close-up 

picture of L. minor controls during Cu exposure. Both pictures were taken in a growth chamber. 

2) Distribution and ecology 
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Lemna minor is a monocotyledon species which belongs to the Araceae family, and is able 

to perform both sexual and clonal reproduction, the last being prevalent. L. minor is a fast-

growing species which is broadly used in biomonitoring of aquatic environments (Gopalapillai 

et al. 2014; Szczerbińska and Gałczyńska 2015). Its growth is optimal at pH between 6.5 and 

8, and from mesotrophic to eutrophic water (Amoros et al. 2000; Melzer, 1999). Growth stops 

when the temperature drops below 6°C, but otherwise occurs between 6 to 33°C. L. minor can 

be grown in completely mineral medium, and can be cultivated under axenic conditions 

(Landolt and Kandeler 1987). This species is easy to cultivate in laboratory conditions; its rapid 

vegetative reproduction allows the production of genetically uniform clones, and makes them 

valuable in research.  

L. minor has a wide distribution area due to easy dispersion through wind, human transports 

and animals (Figure 1.2). It is found from northern Scandinavia to New Zealand, and therefore 

lives in a very broad ecological range with different environmental conditions, in freshwater 

ponds, channels or slow moving streams (Hillman 1961; Landolt and Kandeler 1987). 

This species also shows high potential for phytoremediation, due to its very high uptake 

capacity of different metals such as Pb, Zn, Cu and As (Razinger et al. 2007; Dosnon-Olette et 

al. 2011; Basile et al. 2012). Its uptake efficiency of phosphorous and ammonia in water makes 

this species a precious tool for wastewater management (Gürtekin and Şekerdağ 2008). 

Furthermore, L. minor provides food and habitat for numerous species, and plays important 

roles in ecosystem dynamics. A specific standardized protocol for risk assessment use L. minor 

as a model species since 2006 (OECD protocol n°221, Khellaf & Zerdaoui, 2010; Leblebici & 

Aksoy, 2011). 
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Figure 1.2. Distribution map of Lemna minor across the globe. Red dots are the countries/states 

where the species has been reported (CABI, Centre for Agriculture and Biosciences 

International, 2011, [www.cabi.org/isc/]). 

 

3) Laboratory cultivation and global maintenance 

Three clonal strains were harvested in three different locations across France (Figure 1.3). 

Genetic characterization was performed to ensure that the clonal strains had different genotypes 

(see section 7 for further details).  

From each location, one single frond was placed under axenic conditions through calcium 

hypochlorite treatment, 1% during 3 minutes (CaO(Cl)2, purchased from Sigma Aldrich). Each 

stock culture was started from a single frond, and was grown in a specific medium at pH 5.8. A 

new stock culture was started every 3 weeks for each clonal strain, with 8 to 12 fronds from the 

older stock culture, in the medium described in Table 1.1. 
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Figure 1.3. (A) Geographic origin of the different clonal strains of L. minor used for 

experiments and (B) GPS location of the harvesting sites. 

 

During experiments, the Steinberg medium was used in accordance with OECD protocol 

n°221, with modifications (OECD 2006). Notably, a pH of 6.5 instead of 5.5 and an 

azote/phosphate ratio of 20:1 (38 mg/L KH2PO4 and 5 mg/L K2HPO4) to decrease algae 

proliferation, and an Fe-EDTA solution at a 1:1 ratio, (Table 1.2 for nutrient concentrations). 

Table 1.1. Composition of the medium used for stock cultivation of L. minor under axenic 

conditions in a growth chamber, maintained at a pH of 5.8. 

Macroelements Molecular weight mg/L 

KNO3 101.1 60.66 

NH4NO3 80.04 10.88 

K2HPO4 174.4 7.308 

KH2PO4 136.08 16.2 

MgSO4, 7H2O 246.47 36.95 

NaHCO3 84.007 63 

Fe EDTA 55.845 0.5 

Ca(NO3)2, 4H2O 236.15 150 

CaCl2, 2H2O 147.02 0.72 

Oligoelements Molecular weight µg/L 

MnSO4, 2H2O 169.01 70 

CuSO4, 5H2O 249.69 1 

ZnSO4, 7H2O 287.55 22 

H2SeO3 128.98 1.6 

Na2MoO4, 2H2O 241.95 24 
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Table 1.2. Steinberg medium used for Lemna minor experiments, modified from the OECD 

protocol, with a pH of 6.5. 

Macroelements Molecular weight mg/L 

KNO3 101.12 350 

Ca(NO3)2 4H2O 236.12 295 

KH2PO4 136.09 38 

K2HPO4 174.18 5 

MgSO4 7H2O 246.37 100 

Microelements Molecular weight µg/L 

H3BO3 61.83 120 

ZnSO4 7H2O 287.43 180 

Na2MoO4 2H2O 241.92 44 

MnCl2 4H2O 197.84 180 

Fe EDTA 55.845 160 

 

B. Myriophyllum spicatum 

1) Morphology 

Myriophyllum spicatum L., or “Eurasian watermilfoil”, is a submerged rooted 

dicotyledonous plant which belongs to the Haloragaceae family. It is rooted in sediments, and 

grows in the water column. It has thin stems, which can appear green, brown, or red-pink 

(Figure 1.4A, B, C). It can grow up to 3 meters in length, and stems become thinner when they 

grow further from the main stem (Aiken et al. 1979). There are four leaves of 1.5-4 cm long, 

feather-like, whorled around the stems, with 14 or more uniform leaflets on each leaf. M. 

spicatum is a perennial plant that flowers twice a year, in mid-June and July-August, and the 

flowering is followed by auto-fragmentation, easing its dispersion (Nichols 1975; Madsen and 

Smith 1997). This species is able to take up nutrients both through the leaves and the roots, 

although the root absorption is preferential (Barko and Smart 1981). The inflorescence rises 5 

to 10 cm above the surface of the water from the terminal spike, with both male and female 

flowers on the same inflorescence (Aiken et al. 1979). M. spicatum produces a high quantity of 

secondary metabolites, like phenolic compounds such as tannins. Among them, the 

tellimagradin II is well known to be the source of M. spicatum allelopathy, as it is repellant for 

most herbivores (Gross 2001). Furthermore, it has been demonstrated that tellimagrandin II 
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provide a competitive power, as it shows a seasonal variation in accordance with the 

developmental peak of the species (Gross 2001; Gross and Jüttner 2003).  

 

Figure 1.4. (A) Picture of stock culture of Myriophyllum spicatum in a 220 L outdoor tank, (B, 

C) pictures of M. spicatum in another stock culture in the growth chamber in an 80 L aquarium. 

 

2) Distribution and ecology 

Myriophyllum spicatum L. originates from Asia, Europe and northern Africa (Figure 1.5). 

Nowadays, this species is considered invasive in South Africa and in Northern America due to 

its high competitiveness (Weyl and Coetzee 2016). Indeed, M. spicatum can easily spread 

through clonal reproduction with fragment dispersal, and also through sexual reproduction with 

seed dispersion through water and animal transport, and grows quickly to form canopies (Gross 

2001). It has been demonstrated that seed production is more important in eutrophic than in 

mesotrophic waters, and contributes to the expansion of populations (Madsen and Boylen 1989; 

Wani and Arshid 2013). 

This species is found worldwide, in pH ranking from 5.4 to 11, and is tolerant to a wide 

range of water quality. It prefers hard water (alkaline water) systems with high dissolved 

inorganic carbon, and usually grows in mesotrophic and eutrophic waters (Barko 1990; Melzer 

1999; Amoros et al. 2000; CABI 2011). It can be found at depths of one to ten meters in lakes, 

ponds, shallow reservoirs and low energy areas of rivers and streams (Amoros et al. 2000). It 

grows well in areas that have experienced disturbances such as intense plant management, or 

abundant motorboat use (Aiken et al. 1979). It is considered as a pioneer species, as it is among 

the first species to colonize ecosystems after a disturbance. It also rapidly colonizes polluted 
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waters which are usually unsuitable for other species (Yan and Xue 2013). Furthermore, M. 

spicatum is resistant to herbivory, as it is rich in tannins which are repellant to generalist 

herbivorists, and it provides an advantage in ecosystems with high fish and bird densities (Iason 

et al. 2012). 

Due to its ability to take up metals and other pollutants from waters, M. spicatum is used 

both for phytoremediation and biomonitoring purposes (Sivaci and Sökmen 2004; Keskinkan 

et al. 2004; Yan and Xue 2013). It also has a high ecological importance, as M. spicatum is used 

as substrate for periphyton and as shelter and forage for other organisms. Furthermore, it has 

key functions in biogeochemical cycles through the translocation of nutrients from sediments, 

organic carbon production, and the uptake of phosphorus and ammonia, thus improving water 

quality (Bornette and Puijalon 2011). 

As this species is representative of rooted submerged aquatic plants species, and has a broad 

ecological range, two OECD protocols have been implemented in 2014 for ecotoxicological 

risk assessment; one non-rooted protocol under axenic conditions with a medium containing 

sucrose (OECD test n°238) and one rooted test with sediments but no sugar addition in water 

(OECD test n°239). 

 

Figure 1.5. Distribution map of Myriophyllum spicatum across the globe. Red dots are the 

countries/states where the species has been reported (CABI, Centre for Agriculture and 

Biosciences International, 2011, [www.cabi.org/isc/]). 
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3) Laboratory cultivation and global maintenance 

Eight clonal strains were harvested in the field, between 2011 and 2015, from various 

watersheds in France and Germany (Figure 1.6). Within a given watershed, the clonal strains 

were harvested from different rivers upstream of their confluence to increase the chance to 

sample genetically different plants. Genetic characterization was performed to ensure that the 

clonal strains had indeed different genotypes (see section 7 for further details). 

 

Figure 1.6. (A) Geographic origin of the different clonal strains of Myriophyllum spicatum used 

for experiments and (B) GPS coordinates of the harvesting sites. 

 

Each stock culture was started from one stem fragment, placed in 220 L tank with 5 L of 

quartz sediments mixed with 1.33 g Osmocote® (granulated fertilizers with slow release, NPK: 

16-8-12, KB) per liter of sediment. Sediments were changed twice a year, and inflorescences 

were cut every week during flowering period to avoid hybridization among genotypes. Snails 

(Radix sp. and Physa sp.) were added to the containers for algae regulation. These stock cultures 

were also kept in 80 L aquariums with similar sediment conditions.  

In order to ensure optimum conditions with maximal growth during exposure experiments, 

different media were tested (Steinberg, Smart and Barko, Hoagland, Andrew), with or without 

sediment, and with different pH (from 5 to 8), bicarbonate sources and sediment levels when 

sediment was present (OECD 2006, 2014b; Hoagland and Arnon 1950). At first, media with 
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high N/P concentrations were used, as they were optimized for aquatic plant growth without 

algae proliferation. Our preliminary results demonstrated that a richer media, bicarbonate 

supplementation and alkaline pH increased growth of M. spicatum, but strongly enhanced algae 

growth as well in our experimental containers. This proved to be noxious for M. spicatum 

during long term exposure (over a week), and made it difficult to distinguish between algae and 

pollutant effects at low concentrations. We finally selected Smart and Barko media, with a pH 

6.5 instead of 7.8, and with 50mL quartz sediment containing Osmocote® per experimental 

unit, as the best compromise for growth of M. spicatum without having copper precipitation 

and algae proliferation as the nutrients were mainly in sediments (OECD, 2014, Table 1.3, 

Figure 1.7). 

 

 

Figure 1.7. Growth media for Myriophyllum spicatum tested with sediments mixed with 

Osmocote® over 10 days. S&B: Smart and Barko media pH6.5, Andrew media pH6.5 and 

Steinberg media pH6.5. RER stands for Relative Elongation Rate in cm.cm-1.d-1, and RGR for 

Relative Growth Rate in mg.mg-1.d-1. 

 

Exposure experiments were adapted from OECD protocols and adjusted to fit with non-

axenic conditions and with the intrinsic properties of the different clonal strains. Indeed, the 

growth of the different strains was not always meeting the requirements of the OECD protocols, 

notably concerning the doubling time for length during exposure. Furthermore, OECD 

protocols required to have three shoots per replicate, but this requirement could not be reached 
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due to the high amount of biomass required for the experiments with multiple genotypes 

(Paragraph 32 of OECD protocol N°239).  

 

Table 1.3. Medium and sediment used for Myriophyllum spicatum: Smart and Barko medium 

according to OECD protocol n°239 on the left, and Osmocote® (NPK: 16-8-12) composition 

per g, with 66.6 mg of Osmocote® per experimental unit. 

Smart & Barko Osmocote® NPK: 16-8-12 

 Molecular 

weight g/L 

mg/L  Molecular 

weight g/L 

mg/g Osmocote ® 

CaCl2 2H2O 

MgSO4 7H2O 

147.01 

246.47 

91.7 

69 

NO3- 

NH4 

62.005 

18.039 

71 

89 

NaHCO3 

KHCO3 

84.007 

100.12 

58.4 

15.4 

P2O5 

K2O 

MgO 

283.886 

94.2 

40.304 

157 

100 

20 

   Bo 

Fe 

Cu 

26.809 

55.845 

65.546 

0.1 

4 

4 

   Mn 

Mo 

Zn 

54.938 

95.94 

65.38 

1 

0.1 

0.3 

 

C. Ceratophyllum demersum 

1) Morphology 

Ceratophyllum demersum L., or “hornwort”, is a submerged rootless macrophyte 

belonging to the Ceratophyllaceae family. It has stems that reach lengths up to 3 meters, with 

numerous side shoots. Leaves are produced in whorls of 6 to 8, they are forked into thread-like 

segments that are edged with spiny teeth (Figure 1.8A, B). Leaves can be up to 4 cm long, and 

are stiff and rough due to carbonate inclusions (Sheldon 1987). The shoot color can be yellow 

to clear brown, and the leaves are green. Roots are lacking. This is a perennial plant, and during 

autumn it forms hibernacula, which are modified buds consisting of a short main axis, and 

tightly clustered dark green leaves, containing starch. It remains dormant until spring, when 

environmental conditions are favorable for growth (Sculthorpe 1967). In temperate regions, the 

release of hibernacula from the layer of detritus at the bottom of the lake is essential for 

dispersal, as water temperature is generally too low for flowering and for seed development. 

Flowering occurs in warmer areas, in Papua New Guinea for example, where seeds are 

commonly found (Osborne and Polunin 1986). It is monoecious, with separate male and female 
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flowers produced on the same plant. Sexual reproduction happens underwater, with 

hydrophilous pollen transport. Vegetative buds are formed in the axil of leaves. Stems break 

easily, and the pieces continue to grow separately, allowing a very competitive clonal 

reproduction  (Godfrey and Wooten 1981). 

C. demersum has allelopathic capacities, and secretes sulfur compounds that inhibit the growth 

of phytoplankton, including cyanobacteria (Gross et al. 2003). 

 

Figure 1.8. (A) Stock culture of Ceratophyllum demersum in an 80 L aquarium in a growth 

chamber with M. spicatum, (B) close-up picture of C. demersum shoots. 

 

2) Distribution and ecology 

Ceratophyllum position within the phylogeny of angiosperms has been controversial for 

some time; the first phylogenetical analysis placed C. demersum in a sister group of 

angiosperms. The Angiosperm Phylogeny Group (APG IV) and more recent studies using more 

data sets but with low support values, have placed Ceratophyllum close to the eudicots 

(Iwamoto et al. 2015; Chase et al. 2016).  

This species can perform both sexual and clonal reproduction, and is therefore easily spread. 

Is has a wide ecological tolerance and a fast growth, and is therefore considered as an ubiquitous 

species. C. demersum grows in hard waters, in moderately to highly eutrophic lakes, slow-

moving water streams and ditches (CABI 2011). It thrives under various environmental 

conditions with high nitrogen and phosphorus concentrations, at temperatures between 18°C to 

26°C, and a pH ranging from 6 to 8. In natural environments, the growth starts in March and 

ends in November, during the time for which the environmental conditions (e.g. temperature, 

light intensity and photoperiod) are favorable. Under experimental conditions, plants undergo 
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a dormant stage as well, reducing the growth period even under constant environment (Best 

1977, 1979). 

This species is cosmopolitan, being found on every continent, Antartica excepted. It has a 

weed status in Tasmania, and is on list the of unwanted organisms in New Zealand (MPI) as it 

could unbalance aquatic ecosystems (De Winton et al. 2009,  Figure 1.9). It is used as a 

bioindicator and for phytoremediation of metals (Ostroumov and Shestakova 2009; Zuccarini 

and Kampuš 2011). Like other macrophyte species, C. demersum plays important roles in 

ecosystem dynamics, due to both direct effects, through interactions with other organisms, and 

to indirect effects on organisms, through biogeochemical cycles of nutrients and impact on 

water quality (Kurilenko and Osmolovskaya 2006; Dhote 2007; Magela et al. 2010). 

 

Figure 1.9. Distribution map of Ceratophyllum demersum across the world. Red dots indicate 

the countries/states where the species has been reported (CABI, Centre for Agriculture and 

Biosciences International, 2011, [www.cabi.org/isc/]). 

 

3) Laboratory cultivation and global maintenance 

Three distinct genotypes were harvested in the field, between 2011 and 2015, from distinct 

populations in France (Figure 1.10). When harvested in two rivers within a same watershed, 

the clonal strains were taken upstream of the confluence to increase the chance to sample 

genetically different plants. Genetic characterization was performed to ensure that the clonal 

strains had indeed different genotypes (see section 7 for further details). 
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Figure 1.10. (A) Geographic origin of the different clonal strains of Ceratophyllum demersum 

and (B) GPS coordinates of the harvesting sites. 

 

Each stock culture was started from one individual stem, placed in 220 L tanks with M. 

spicatum. Nutrient fertilization was brought through the 5 L of quartz sediments mixed with 

1.33 g Osmocote® (granulated fertilizers with slow release, NPK: 16-8-12, KB) per liter of 

sediment. Sediments were changed twice a year. These stock cultures were also kept in 80 L 

aquariums with M. spicatum genotypes.  Aquatic gastropods (Radix sp. and Physa sp.) were 

added to the tanks for algae regulation. 

In order to determine which culture medium was optimal to obtain maximal growth during 

exposure of C. demersum, several tests were conducted with different media at pH6.5 to 

decrease algae proliferation: Steinberg 1
2⁄  strength, Steinberg 1 5⁄  strength (OECD 2006), Combo 

medium (Kilham et al. 1998), Hoagland full strength, Hoagland 1 5⁄  and Hoagland 1 10⁄  (Hoagland 

and Arnon 1950). Although no significant differences were found for the relative elongation 

rate (RER) due to high variation among replicates, the Steinberg 1
2⁄  was selected as it 

demonstrated in average the highest RGR and RER compared to the other tested media (Figure 

1.11), see Table 1.4 for medium composition.  
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Figure 1.11. Relative Elongation Rate (RER) based on length in cm.cm-1.d-1, and Relative 

Growth Rate (RGR) based on fresh in mg.mg-1.d-1 of Ceratophyllum demersum growing in 

different media during 7 days. Stb: Steinberg, Hoag.: Hoagland. 

 

Table 1.4. Steinberg half strength composition used for experiments on 

Ceratophyllum demersum. 

 

2. Copper exposure and experimental designs 

A. Growth chamber parameters 

Each genotype was cultivated in a growth chamber at 20°C ± 0.1, with a light:dark 

photoperiod of 14h:10h. Photosynthetic photon flux density was maintained at approximately 

95 to 120 µmol m−2 s−1 photosynthetic photon flux density, provided by fluorescent lamp tubes 

(Philips TL5 HO 39W “day light”, and Sylvania T5 Grolux 39W “plant growth”). 

Macroelements Molecular weight mg/L 

KNO3 101.12 175 

Ca(NO3)2 4H2O 236.12 147.5 

KH2PO4 136.09 19 

K2HPO4 174.18 2.5 

MgSO4 7H2O 246.37 50 

Microelements Molecular weight µg/L 

H3BO3 61.83 60 

ZnSO4 7H2O 287.43 90 

Na2MoO4 2H2O 241.92 22 

MnCl2 4H2O 197.84 90 

Fe EDTA 55.845 80 
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B. Effective Cu concentrations in water samples 

Effective concentrations of ionic copper in water samples were measured through 

inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis (Thermo-

Electron IRIS Intrepid II XLD, see section 3.b for further details). Measurements were 

performed with three technical replicates per biological replicate. Tubes of 15 mL were filled 

with 7 to 10 mL of samples, and two steps of acidification were performed in order to ensure 

Cu dissolution: one drop of 60% HNO3 was added per sample before being stored in a cold 

chamber, and one drop before being analyzed with ICP-AES. Samples were filtrated with a 

0.45 µm cellulose membrane before the first acidification step. 

Monitoring of ionic Cu concentrations performed in preliminary experiments on the three 

species over 24 hours and 7 days allowed to determine the drop of Cu over time (likely due to 

plant absorption and/or adsorption), depending on the concentration and the species. It was 

determined that for M. spicatum and C. demersum species, Cu concentration in the media 

decreased by 20% after 4 hours, and the drop was stabilized after 24 hours. The renewal of the 

media did not achieved a balanced concentration between the media and the plants, therefore 

the drop was the same after the change of media. 

 

C. Intraspecific and interspecific variations 

To determine the relative importance of intraspecific compared to interspecific variations, 

several experiments were carried out to obtain the effective concentrations at which 50% of the 

effect is observed (EC50 values) for at least 3 genotypes among the 3 species. 

For each species, at least two experiments were performed to obtain EC50 values for 

maximum quantum yield of photosystem II (Fv:Fm) and for growth-related endpoints (RGRs). 

Indeed, in preliminary experiments the Fv:Fm showed high variation among replicates after a 

week of exposure, which strongly influenced the EC50 values, that showed too much variation 

to distinguish a genotype effect. On the contrary, due to varying growth rates depending on the 

life-traits of each species, growth experiments were realized for at least a week; it was therefore 

necessary to perform two different experiments. The exposure duration for Fv:Fm was set at 96 

h for all species. Growth experiments were set at 7 days of exposure for L. minor, 12 days of 

exposure for M. spicatum and 14 days of exposure for C. demersum, as their growth rate is 
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lower than that of L. minor. For M. spicatum and C. demersum, the medium was renewed in the 

middle of the experiment (6 or 7 days), as preliminary experiments showed the high 

ab/adsorption of Cu by those 2 species, which strongly decreased the Cu in the medium. 

Exposures were therefore semi-static. Prior to exposure, every species was acclimatized during 

5 days. 

Copper exposures were realized in 0.5 L plastic glasses, filled with specific medium for 

each species as determined either by OECD protocols, or by preliminary experiments. For C. 

demersum and M. spicatum, each experimental unit was composed of one single shoot which 

was cut at 6 cm at the beginning of acclimatization. L. minor was exposed in Steinberg medium 

at pH 6.5 (Figure 2.1A), C. demersum was exposed in half-strength Steinberg at pH 6.5 (Figure 

2.1B). Finally, M. spicatum was exposed in Smart & Barko medium at pH 6.5 with 50 mL of 

quartz sediment mixed with 66.6 mg Osmocote® (Figure 2.1C). 

 

Figure 2.1. Exposure conditions to ionic Cu for the three species (A) Lemna minor in Steinberg 

medium, (B) Ceratophyllum demersum in half strength Steinberg, (C) Myriophyllum spicatum 

in Smart & Barko medium with sediment. 

D. Genotypic variability 

The genotypic variability of M. spicatum and its importance in Cu sensitivity was 

investigated through two exposure experiments conducted on 7 genotypes. These exposures 

were realized in 0.6 L plastic glasses filled with 0.5 L of Smart and Barko medium at pH 6.5 

with 50 mL of quartz sediment mixed with Osmocote® (66.6 mg for 50 mL of sediments, e.g. 

per experimental unit). Prior to exposure, plants were acclimatized in 30 L aquariums during 5 

days, rooted in quartz sediment mixed with Osmocote® in the same quantity as for exposure. 

Each experimental unit was composed of one single shoot which was cut at 6 cm at the 

beginning of acclimatization. 
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E. Phenotypic plasticity 

To assess the impact of environmental variations on L. minor sensitivity to Cu, a crossed 

experimental design was realized to avoid any confounding effect of environmental conditions 

prior to the experiments, and also to distinguish between the effects of average environmental 

conditions and temporal change regime (Figure 2.2). The experiments were carried out on L. 

minor, as little variation among replicates was observed during previous experiments, which 

was a prerequisite to obtain accurate estimations of average effects of the different 

environmental conditions without increasing too much the number of replicates. There was also 

less limitation in obtaining biomass for experiments with this species, whatever the season, than 

for the two other species. The influence of light intensity, nutrient concentrations and Cu pre-

exposure was investigated through three distinct experiments. A first phase of acclimatization 

during 14 days was realized at two levels of environmental conditions (e.g. environment 1, rich 

in nutrients, and environment 2, poor in nutrients). A second phase of Cu exposure was realized 

during 7 days, both in the same environment as during acclimatization, and in the different 

environment to trigger an environmental variation (Figure 2.2). 

 These experiments were realized in erlenmeyer flasks to ease experimentation for shading 

effect and limit water evaporation throughout the exposure. 

 

Figure 2.2. Experimental design to highlight the phenotypic plasticity in the response of Lemna 

minor exposed to Cu, with an acclimatization phase (14 days) and exposure phase (7 days). 
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3. Plant responses to copper 

A. Growth related endpoints 

1) Relative growth rates 

Relative growth rates (RGR) based on fresh mass or frond number were calculated with 

the OECD formula (protocols n°221, 238, 239) as follows:  

𝑅𝐺𝑅𝑖−𝑗 = (ln(𝑁𝑗) − ln(𝑁𝑖))/𝑡 

where RGRi-j is the relative growth rate from time i to j, Ni is the endpoint (fresh weight, frond 

number) in the test or control vessel at time i, Nj is the same variable in the test or control vessel 

at time j, and t is the time period from i to j. 

Fresh masses of M. spicatum and C. demersum at the beginning of exposure were assessed 

through the weighting of each shoot after being gently dried on a blotting paper.  

Fresh mass of L. minor at the beginning of exposure was estimated by weighting at least 15 

different bunches of individuals (between 9 to 14 fronds) which were not used afterwards in the 

experiments, due to the destructiveness of the measurement on L. minor (breaking of the roots). 

The mass at the end of exposure was measured by weighting all the individuals within one 

experimental unit, with the same balance used for the first weighting. 

 

2) Relative elongation rate  

The relative elongation rates (RER) were calculated following the same formula as for 

the RGRs: 

𝑅𝐸𝑅𝑖−𝑗 = (ln(𝐿𝑗) − ln(𝐿𝑖))/𝑡 

where RERi-j is the relative elongation rate from time i to j, Li is the length in the test or control 

vessel at time i, Lj is the same variable in the test or control vessel at time j, and t is the time 

period from i to j. 

The length of M. spicatum and C. demersum were measured from the beginning of the shoot 

to the tip of the apex. Length was measured at the beginning of acclimatization when shoots 

were cut at 6 cm length, at the beginning of exposure, and at the end of exposure. 
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B. Maximal Quantum Yield of PSII (Fv:Fm) 

1) Principle  

The measurement of maximal quantum yield of photosystem II (Fv:Fm) lies on the 

principle of chlorophyll fluorescence. Light energy (photons) is absorbed by the chlorophyll 

pigments located in the chloroplasts of photosynthetic cells. It can undergo three different fates: 

chemical energy produced by photosynthesis, excess light energy that can be dissipated as heat, 

or excess light energy that is re-emitted as light (chlorophyll fluorescence). From the total 

absorbed light, 1 to 2% is turned into chlorophyll fluorescence, which has a longer wavelength 

than the absorbed light (Maxwell and Johnson 2000).  

The Fv:Fm is the maximal ability of the plant to absorb light energy and to convert it into 

chemical energy. It is measured by using the Kautksy effect discovered in the early 60s 

(Maxwell and Johnson 2000; Murchie and Lawson 2013). When photosynthetic material is 

transferred from the dark to the light, the yield of chlorophyll fluorescence increases during 

around 1s. It is explained by the reduction of electron acceptors (e.g. plastoquinone QA) in the 

photosynthetic pathway downstream of photosystem II (PSII); QA is not able to accept another 

electron unless the first is passed to a subsequent electron carrier (QB) (Figure 3.1A). During 

that time, the reaction center is considered as ‘closed’, and when too many reaction centers are 

‘closed’ this leads to a decrease in photochemistry efficiency, and to an increase in fluorescence 

(Figure 3.1B). 

When a leaf is transferred from the darkness to the light, the PSII centers are closed (or 

saturated) progressively due to massive inflow of photons on the chlorophylls. It is resulting in 

an increase in chlorophyll fluorescence for a second, then a decrease in the next few minutes.  

The Fv:Fm is the quantum yield (maximal efficiency) of PSII, when all the PSII centers are 

opened. It is given by the following equation: 

𝐹𝑣: 𝐹𝑚 =
𝐹𝑚 − 𝐹𝑜

𝐹𝑚
= 𝜙 PSII/𝑞𝑃 

where Fm is the maximal fluorescence, Fo is the basal fluorescence, 𝜙PSII is the efficiency of 

PSII chemistry, and qP is an indication of the proportion of open PSII centers. 
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Figure 3.1. A simplified description of the steps occurring in PSII explaining the main 

parameters in fluorescence analysis. (A) A schematic figure showing electron transport within 

the PSII reaction centre complex. Light energy is absorbed by chlorophyll within the light-

harvesting complex, and can be dissipated either via photochemistry, by heat (non-

photochemical quenching), or through fluorescence emission. The competition between these 

processes allows us to resolve the efficiency of PSII. LHC= Light Harvesting Complex, CP = 

Chlorophyll-proteins, Pheo = Pheophytin, QA and QB = Quinones A and B, PQ = Plastoquinone, 

OEC = Oxygen-Evolving Complex. (B) Fluorescence trace made on dark-adapted leaf material, 

showing the formation of Fo and Fm. The measuring beam excites chlorophyll, but its energy is 

not of a sufficient intensity to induce electron transport through PSII, giving the Fo, 

corresponding to the minimal level of fluorescence. At this state, the reaction centres are said 

to be open. Then a saturating pulse of light will result in the formation of the Fm, which is the 

formation of the maximum possible level of fluorescence, as this pulse closes the reaction 

centres. (Adapted from Murchie & Lawson, 2013). 

 

2) Measurement settings 

The Fv:Fm measurement is considered to be non-invasive and non-destructive. 

Measurements were made using an underwater fluorometer Diving-Pam (Heinz Walz GmbH, 

Germany). All measurements were performed in the darkness, after a 30 minute acclimatization 

into a dark chamber. A special halogen green lamp without actinic light allowed viewing in the 

dark without interfering with chlorophylls and disturbing the measurements (Sylvania, PAR38 

E27 80W). 

The basic settings of the Diving-Pam, namely measuring light intensity (50: MEAS-INT) 

and amplification factor (49: GAIN) were set to 8 and 2 at the beginning of all experiments 

(over a scale of 0 to 12). When the plant fluorescence was too high and saturated the sensor, 

the intensity of measuring light was lowered to 4.  
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At the end of experiments, changes in the Diving-Pam parameters (increase in intensity of 

measuring light and amplification factor up to 11 over 12) were made when plants were too 

chlorotic to emit sufficient signal for the light sensor. 

 

C. Cu concentrations in plant samples 

1) Mineralization of plant samples 

Concentrations in plant samples were measured after rinsing each shoot in 3 baths of 

deionized water in order to remove copper at the surface. Plant samples were dried during 48 h 

at 70°C, and mineralized using a DigiPrep (Block Digestion Systems, SCP Science). A first 

acid digestion step was performed with a ratio of 1:1 HNO3 65%: deionized H2O during 30 min 

at 94°C. After the first heating step, samples were cooled down at room temperature then 

brought to a 2:1 ratio of HNO3 65%:H2O2 30%, then heated at 94°C during 2 h. Finally, samples 

were returned to room temperature before being diluted to a final concentration of 2% HNO3, 

then filtered through a 0.45 µm membrane.  

 

2) Copper measurement using inductively coupled plasma - atomic emission 

spectroscopy (ICP-AES) 

Principle 

Inductively coupled plasma - atomic emission spectroscopy, or ICP-AES, is based on the 

interaction of a plasma torch and an atomic emission spectrophotometer, and is used for the 

determination of elementary chemical composition of a sample. This technique allows the 

quantification of elements due to the ionization of those elements through a plasma flame 

supplied by electric currents, themselves produced by electromagnetic induction. 

The sample is first transformed into a cloud of very thin droplets through a nebulizer, then 

ionized through an argon flame at 8 000 K, which thermally excites the outer-shell electrons of 

the elements (Figure 3.2). The return to the ground state of excited electrons is accompanied 

by the emission of photons (light energy) with an energy (wavelength) characteristic of the 

element. As the sample contains a mixture of different elements, several light wavelengths are 

emitted simultaneously. The light is then dispersed by a grating in the spectrometer using a 

photochromator (in our case, a monochromator), separating the different element emissions and 
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directing them to a dedicated photomultiplier tube detector. The concentration is proportional 

to the light intensity. The electronic signal is then converted into concentrations by a computer, 

using calibration solutions. 

 

Figure 3.2. Sample analysis using ICP-AES method with the different steps, from the 

nebulization of the sample to its ionization in the plasma flame, and the separation of the 

wavelength spectrum and its detection by the detector, ending with concentration determination 

by the computer. 

 

Analyses 

Quality standards were measured by the machine every 60 samples to ensure the accuracy 

of the measurements, and a rinse step with 5% HNO3 was performed automatically between 

each sample. 

 

D. Biomacromolecule analyses using FTIR spectroscopy 

1) Principle 

Fourier Transform Infrared (FTIR) spectrometers are widely used in chemical industry, 

polymer science, and others. This technique probes the interactions between infrared radiations 

and matter (in our case, a solid sample). It can be analyzed in three ways, by measuring 
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absorption, emission and reflection from the sample. For our analysis, we used emission 

spectroscopy, which measures the emitted infrared wavelength by the sample. FTIR relies on 

the fact that most molecules absorb light in the infra-red region of the electromagnetic spectrum 

(Bacsik, Mink, and Keresztury 2004). This absorption corresponds to the bonds present in the 

molecule; each bond has a specific frequency of vibration, thus indicates the presence of 

different functional groups and chemical bonds in the sample. 

 

2) Analyses 

Analyses were performed using a Thermo Nicolet NEXUS 470 FTIR, with a 30,000-200 

cm-1 diamond and a spectral resolution of 4 cm-1. The frequency range are measured as wave 

numbers, over the range of 5000 – 400 cm-1. Each sample was measured 3 times, with one 

background measure before each sample measure. For each measure, 64 scans were made with 

a laser frequency of 15.798 cm-1. Finally, data were processed backward by a computer, to infer 

what the absorption is at each wavenumber. Results were analyzed with Orange software. 

 

E. Genetic differentiation using Inter Simple Sequence Repeats 

1) Principle 

Analyses on Inter Simple Sequence Repeats (ISSR) were performed to ensure that the 

different clonal strains used throughout our experiments had different genotypes (Pradeep 

Reddy, Sarla, and Siddiq 2002). These analyses were performed by Hervé Gryta, through a 

collaboration with the Evolution and Biological Diversity research unit (EDB, Paul Sabatier 

University). 

ISSRs are DNA fragments which are flanked by microsatellite sequences. They are short 

DNA pattern (2-5 nucleotides long) repeated multiple times (e.g. GCGCGCGC). These 

fragments are amplified through PCR (Polymerase Chain Reaction), by using microsatellite 

core sequence as a primer, with few nucleotides used as an anchor into the non-repeat adjacent 

region (Ng and Tan 2015) (Figure 3.3). 
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Figure 3.3. Genotypic differentiation with PCR amplification using an ISSR primer on three 

genotypes of M. spicatum. First, DNA is extracted from fresh plant material, and amplified 

through a PCR step using ISSR primers. Finally, amplified fragments were separated through 

electrophoresis. 

 

2) Analysis 

Plant samples were collected and stored at -20°C in Nuclei Lysis Solution (Promega) until 

DNA extraction. DNA was extracted and purified from about 100 mg of sample fragments 

using the WIZARD Genomic DNA Purification kit (Promega) and following the procedure 

described in Carriconde et al. (2008). 

Twenty-two ISSR primers were tested with the three species studied. These primers included 

primers previously used with different Lemna species (UBC811 to UBC861, Xue et al. 2012), 

with Ceratophyllum demersum (ISSR5 to ISSR12, Triest et al., 2010) and with other organisms 

(RP1 to RP7 and R1 to R6, Hantula et al. 1996 ; Liang et al. 2005 ; Carriconde et al. 2008). Out 

of these primers, 13, 8 and 20 were selected for their ability to produce clear patterns and 

polymorphic bands for Myriophyllum spicatum, Ceratophyllum demersum and Lemna minor, 

respectively. 



85 

 

ISSR amplifications were carried out with 1X GoTaq green buffer (Promega), 0.2 mM of 

each dNTP, 1 µM of primer, 0.25 U of GoTaq G2 Hot Start polymerase (Promega) and 10 ng 

of template DNA. Reactions were performed in a MasterCycler Pro S thermal cycler 

(Eppendorf) with an initial denaturation step of 3 min at 95°C, followed by 37 cycles of 55 s at 

95°C, 1 min at annealing temperature required for the considered primer , 3 min at 72°C, and a 

final extension step of 10 min at 72°C. A negative control without DNA was included in each 

run. 

Amplified fragments were separated by electrophoresis in 0.5X TAE buffer on 1.4% agarose 

gel including ClearSightDNA (Euromedex) to reveal ISSR banding patterns. Images of patterns 

were then captured under UV light. The reproducibility of ISSR patterns was assessed by 

repeating twice the amplifications for each primer and, also, by comparing patterns obtained 

with two independent DNA extractions of the samples. Only clear and well-separated ISSR 

fragments were retained and scored as present (1) or absent (0). For each plant species, resulting 

patterns were compared to discriminate the samples.  

Finally, in order to estimate genetic relationships among samples within each species, a 

matrix of pairwise genetic distance was constructed by calculating for all pair of samples the 

Sørensen–Dice dissimilarity index GD = 1 - 2nXY/(nX + nY) where 2nXY is the number of 

fragments shared by two samples X and Y, and nX and nY are the numbers of present fragments 

in sample X and in sample Y respectively. Cluster analyses based on UPGMA (Unweighted 

pair group method with arithmetic mean) were performed with GD matrices and dendrograms 

were constructed to visualize genetic relationships among samples of each species. 

Computation of GD matrices and of UPGMA clusters were done with FAMD 1.30 software 

(Schülter et al. 2006; http://www.famd.me.uk/famd.html) and dendrograms were edited with 

MEGA 7 (Kumar et al. 2016). 
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CHAPTER III 

Importance of intraspecific variation on macrophyte 

sensitivity to chemicals 
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1. Does intraspecific variability inflect macrophyte sensitivity to 

copper? 

 

Effects of copper on aquatic macrophytes have been studied for a long time (see chapter 

I.2). Although studies have compared the sensitivity to Cu and the ability to uptake this metal 

for numerous species, none has considered possible differences in terms of sensitivity within 

species. The only study having focused on the importance of intraspecific variation, more 

specifically genotypic variation, in the sensitivity of aquatic plants to chemicals, is that of 

Dalton et al. (2013). They studied the impact of atrazine on different strains of L. minor, and 

found significant differences in sensitivity among strains, some being twice more sensitive than 

others. This may have implications in ecotoxicological risk assessment, as current approaches 

aim to compare the differences of sensitivity among species (i.e. SSD) but do not assess how 

intraspecific variability may influence their outcomes (see chapter I.3).  

In this chapter, the extent of genotypic variability was studied in three aquatic macrophyte 

species (Lemna minor, Ceratophyllum demersum and Myriophyllum spicatum). I assessed 

whether or not this has implications in risk assessment approaches. To do so, Cu toxicity was 

measured on growth related endpoints (based on biomass production and shoot elongation or 

frond number) and light harvesting ratio (maximal quantum yield of PSII). From the modelling 

of concentration-response curves for these different endpoints, EC50 values for each genotype 

were extracted and compared, to assess the relative importance of intraspecific and interspecific 

variations in the sensitivity of the aquatic macrophytes studied to Cu contamination.  
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Figure 1.1. Summary of the experimental design to assess the influence of intraspecific 

variability, more specifically genotypic variation, in three aquatic macrophyte species 

sensitivity to copper contamination. At least three genotypes of Lemna minor, Ceratophyllum 

demersum and Myriophyllum spicatum were exposed to Cu.  
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1. Abstract 

 

To limit anthropogenic impact on ecosystems, regulations have been implemented along with 

global awareness that human activities were harmful to the environment. Ecotoxicological risk 

assessment is the main process which allows to assess the toxicity potential of contaminants, 

through different steps of laboratory testing. This process evolves along with scientific 

knowledge, to better predict the impact on an ecosystem. In this paper we address the 

importance of intraspecific variability as a potential source of error in the laboratory evaluation 

of harmfulness of pollutants. To answer this question, three aquatic macrophyte species with 

different life-history traits were chosen to cover the main life-forms found in aquatic 

ecosystems, Lemna minor and Myriophyllum spicatum, two OECD model species, and 

Ceratophyllum demersum. For each species, three or four genotypes were exposed to 7-8 copper 

concentrations. To assess species sensitivity, growth-related endpoints such as Relative Growth 

Rate (RGR), based either on biomass production or on length/frond production, and chlorophyll 

fluorescence Fv:Fm, were measured. For each endpoint, EC50 was calculated. Our results 

showed that all endpoints were affected by Cu exposure, Fv:Fm of M. spicatum excepted, and 

significant differences were found among genotypes in terms of Cu sensitivity. L. minor 

sensitivity to Cu significantly varied for Fv:Fm, which showed up to 35 % of variation in EC50 

values among genotypes. Significant differences in EC50 values were found for RGR based on 

length for M. spicatum, with up to 72% of variation. Finally, C. demersum demonstrated 

significant sensitivity differences among genotypes with up to 78 % variation for EC50 based 

on length. Overall, interspecific variation was higher than intraspecific variation, and explained 

77% of the variation found among genotypes for RGR based on biomass, and 99% of the 

variation found for Fv:Fm. Our results highlight that depending on the endpoint, sensitivity can 

vary greatly within a species, and not all endpoints should be considered relevant in risk 

assessment.  

Keywords: Genotype, copper toxicity, freshwater macrophyte, interspecific variation, 

intraspecific variation 
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2. Introduction 

 

Over the past decades, the increase of global population has led to an intensification of 

agricultural practices. To sustain a sufficient yield, many fertilizers and pesticides have been 

used. The extended use of these chemicals triggers the progressive contamination of 

environment. Aquatic ecosystems are the final receivers of these contaminations, through 

different processes such as atmospheric deposition, runoff and soil leaching (Moss 2008; 

Knauert et al. 2010). 

Organisms within these environments can therefore be exposed to many pollutants 

(Gallagher, Johnston, and Dietrich 2001; Ribolzi et al. 2002). Some organic chemicals can be 

degraded by biotic or abiotic processes, some can be modified and become even more harmful 

through metabolization by living organisms and accumulated. Metals can also accumulate in 

ecosystems, in particular in sediments, and can be further transferred into the food chain with 

possible biomagnification (Cardwell et al. 2013; Andresen et al. 2016). This process can lead 

to the imbalance of aquatic ecosystems through the disruption of food webs, which are essential 

for biogeochemical cycles (Nõges et al. 2016). 

To limit environmental contaminations and increase waterbody quality, several regulations 

have been implemented worldwide (e.g. REACH, the European Water Framework Directive, 

Hering et al., 2010; Voulvoulis, Arpon and Giakoumis, 2017). These regulations aim to 

decrease the impact of chemicals, by controlling the quantity used and their toxicity through 

risk assessment evaluations before giving a marketing authorization. Therefore, new threshold 

concentrations and land management have been enacted in several countries to limit waterbody 

contamination by pesticides and fertilizers. For instance, copper (Cu) concentration in organic 

agriculture was limited in Europe with  concentrations up to 6 kg/ha/year, averaged over 5 years 

(regulation N° 889/2008, EFSA, 2008). Indeed, Cu is broadly used as a fertilizer and a biocide, 

and have a dose-dependent toxicity on living organisms (Jiao et al., 2012; Peng et al., 2012). 

To properly assess the potential impact of chemicals on the environment, new approaches 

have been implemented in ecotoxicological risk assessment to determine the impact of target 

molecules on aquatic biota. Among these approaches, Sensitivity Species Distribution (SSD) 

aims to compare the sensitivity of several species, which allows to determine a threshold 

concentration at which less than 5% of the species may be impacted (Del Signore et al. 2016). 

Species used for risk assessment are usually subject to standardized toxicity tests (such as 
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OECD protocols), to ensure the reproducibility of the results. These species are often 

ubiquitous, with a very wide repartition area and with a generalist strategy. Among the model 

species used for ecotoxicological risk assessment in aquatic environment, macrophytes are very 

important, as they play a fundamental role in aquatic ecosystems due to their involvement in 

biogeochemical cycles and their interactions with other organisms (Bornette and Puijalon 2011; 

Coutris et al. 2011). As such, pollution effects on aquatic macrophytes has the potential to 

strongly alter ecosystem structure and functioning (Bornette and Puijalon 2011). 

However, species found across the globe could show variations in sensitivity among 

populations. Indeed, populations growing under different environmental conditions (e.g. 

pristine vs. polluted waters) can present genetic differentiation (Santamaría 2002). Toxicity 

tests in ecotoxicological risk assessment usually use one clonal strain per species and per 

experiment, assuming that one strain is representative of the entire species. If these tests can 

potentially be used to rank various species in terms of sensitivity to chemicals, such a ranking 

may be biased by the sensitivity of given strains, and may result more from a sampling effect 

than from real differences among species (Figure 2.1). Obviously, the greater the intraspecific 

variation in sensitivity to chemicals, the higher is the risk of biased conclusions. 

Intraspecific variation can be explained by two processes. The first is phenotypic plasticity, 

which is the ability of one genotype to produce several phenotypes depending on its 

environment (Vasseur and Aarssen 1992; Barrett, Eckert, and Husband 1993). The second is 

genotypic variation, which is the result of mutations over several generations and their selection 

by biotic and abiotic pressures in a given environment, or by other processes such as genetic 

drift (Silander 1985; B. K. Ehlers, Damgard, and Laroche 2016). Some authors suggested that 

intraspecific variation could increase ecosystem productivity and resilience when exposed to 

disturbance (Loreau and Hector 2001; Reusch and Hughes 2006). However, intraspecific 

variation, especially in aquatic plants, has so far been poorly investigated, particularly when it 

comes to the sensitivity to contamination (Weyl and Coetzee 2016). The few existing studies 

have highlighted some differences in terms of sensitivity among strains of a same species, but 

the importance of intraspecific variation was never compared to interspecific variation (Dalton 

et al. 2013; Sree et al. 2015). Therefore, the extent of intraspecific variation needs to be studied 

to properly understand the impact of chemicals on aquatic environments, and how genotypic 

variability may inflect risk assessment results.   

To address this question, we have performed toxicity tests on three different species of 

aquatic macrophytes with different life-history traits. For each of the three species, several 
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clonal strains from different populations were tested. We chose the lesser duckweed (Lemna 

minor L.), which is free floating at the water surface, the Eurasian watermilfoil (Myriophyllum 

spicatum L.), which is rooted and submerged in the water column, and the common hornwort 

(Ceratophyllum demersum L.), which is submerged but has no root, and can be attached to the 

sediment or freely sustained in the water column. The use of the two first species in chemical 

risk assessment is standardized in OECD protocols, n°221 for L. minor and n°238-239 for M. 

spicatum (OECD 2006, 2014b). Copper (Cu) was used as a model contaminant, as it is broadly 

used in industry and agriculture, and therefore found at high concentrations in some aquatic 

environments.  

 

Figure 2.1. Sensitivity to chemicals for five hypothetic species determined using individuals 

from a single population per species (in black). In this kind of approach, the real variability of 

the species response to contamination is ignored, and interspecific differences which are 

highlighted here may be spurious and result from a “sampling effect” (i.e. these differences may 

be related more to the sensitivities of the populations sampled than to intrinsic characteristics 

of the species). 

 

3. Materials and methods 

A.  Studied species and chemicals 

Three species (L. minor, M. spicatum, C. demersum) with three to four distinct clonal strains 

were randomly harvested from 2013 to 2016 in natural freshwater rivers in France and one 
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strain of M. spicatum was regrown from an axenic culture established from material collected 

in Germany in 1990, following the protocol of Gross et al. (1996) (Table 3.1 for geographic 

origin of strains).  

Table 3.1. GPS coordinates of collecting sites for the different genotypes within species used 

in copper exposure experiments. 

Species Genotypes GPS coordinates 

Lemna minor 
Authume 47.12256, 5.50560 

Canal 43.56515, 1.47148 

Metz 49.02943, 5.71536 

Myriophyllum spicatum 

Tarn 43.89067, 1.50656 

Doubs 47.23153, 6.02252 

Dordogne 44.84584, 0.90596 

Schöhsee 54.16624, 10.44114 

Ceratophyllum demersum 
Tarn 44.11785, 1.15908 

Garonne 44.01804, 1.07639 

Dordogne 44.83811, 0.73947 

 

Each strain of M. spicatum and C. demersum were grown in 210 L outdoor containers with 

quartz sediments enriched with Osmocote® for at least six months before experiments were 

conducted. L. minor populations were grown under axenic conditions in the lab, and were 

placed under non-axenic environment one month prior to the experiments (Table 3.2). 

Inter simple sequence repeat (ISSR) molecular typing method was used to verify that clonal 

strains corresponded to different genotypes (more details in section 4). 

Copper sulfate from Merck KGaA (CAS number 7758-98-7, Darmstadt, Germany) was 

prepared in ultrapure water at a concentration of 1 g/L Cu2+, and diluted in the different media. 
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Table 3.2. Environmental conditions and experimental design of copper exposure experiments 

conducted on three different species (L. minor, M. spicatum, C. demersum). RGR: Relative 

Growth Rate, based on fresh weight (RGRfw), frond number (RGRfronds) or length (RGRlength); 

Fv:Fm: maximum quantum yield of PSII, n = number of replicates. S&B: Smart and Barko 

medium, Stb: Steinberg medium, Sed. + Osm: Sediments + Osmocote®, for growth experiment 

with M. spicatum, 50mL of quartz sediments were enriched with 66.6 mg Osmocote®, NPK 
16-8-12, KB. Light intensity was measured at the bottom of the water column for M. spicatum 

and C. demersum. 

 

 

B. Genetic differentiation of strains by ISSR 

DNA was extracted and purified from about 100 mg of plant fragments by using the 

WIZARD Genomic DNA Purification kit (Promega) and following the procedure described in 

Carriconde et al., (2008). Out twenty-two ISSR primers (Table S1) previously used with the 

three studied species (Triest et al. 2010; Cao et al. 2017; Xue et al. 2012) or with other 

organisms (Carriconde et al. 2008; Hantula et al. 1996), 13, 9 and 20 were selected for their 

ability to produce clear banding patterns and polymorphic bands with studied strains of M. 

spicatum, C. demersum and L. minor, respectively (Table S1). ISSR amplification procedure, 

banding patterns analysis and calculation of genetic distances among strains were modified and 

adapted from Carriconde et al., (2008), and are detailed in Supplemental Material I. 

 

C. Effective Cu concentration 

Three Cu concentrations (the lowest, intermediate and highest) were sampled at the 

beginning of Cu exposure, to assess effective concentrations in the media. These were measured 

Species L. minor M. spicatum C. demersum 

EC50 

Endpoints 

RGRfw 

RGRfronds   
Fv:Fm 

RGRfw 

RGRlength 
Fv:Fm 

RGRfw 

RGRlength 
Fv:Fm 

Copper 
0 - 1.25 

mg/L n=6 

0 - 2 mg/L  

n=4 

0 – 2 mg/L  

n=5 

0 – 35 mg/L  

n=5 

0 – 0.5 mg/L 

n=5 

0 – 2 mg/L  

n=5 

Exposure 

time 
7 days 96 h 12 days 96h 14 days 96h 

 23.0 ± 0.1°C 23.0 ± 0.1°C 23.0 ± 0.1°C 23.0 ± 0.1°C 23.0 ± 0.1°C 23.0 ± 0.1°C 

Experimental 

conditions 
Stb 

pH 6.5 ± 0.1 

Stb 

pH 6.5 ± 0.1 

S & B 

Sed. + Osm. 

pH 6.5 ± 0.1 

S & B 

pH 6.5 ± 0.1 

Stb ½  

pH 6.5 ± 0.1 

Stb ½ 

pH 6.5 ± 0.1 

105.4 ± 9.3 

µE 

121.4 ± 2.3 

µE 
98.3 ± 1.7 µE 98.7 ± 2.1 µE 94.7 ± 1.3 µE 97.0 ± 2.0 µE 
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using inductively coupled plasma with optical emission spectrometry (ICP-OES, Thermo 

Electron, IRIS INTREPID II XLD). 

 

D. Growth experiments 

Prior to exposure, plants were acclimatized during 5 days under the same environmental 

conditions as during exposure (Table 3.2). Different media were used for each species as they 

had different life-history traits to ensure maximal growth. Media were adapted from OECD 

protocols for the two model species, L. minor and M. spicatum. Exposure times differed among 

species according to their growth rates under control conditions. 

 

1) Lemna minor 

Each experimental unit was composed of a plastic glass of 500 mL, containing 300 mL of 

Steinberg medium at pH 6.5 ± 0.1 and between ten to fourteen fronds of L. minor. The exposure 

phase lasted seven days, and eight Cu concentrations were tested, from 0 to 1.25 mg/L Cu. The 

number of fronds was counted at the beginning and at the end of the exposure to calculate the 

relative growth rate (RGR) based on frond number (section 3.f for formula). Fresh weight per 

frond at the beginning of exposure was estimated by weighting different bunches of fronds from 

the different clonal strains. At the end of the exposure phase and for each experimental unit, 

plants were placed on blotting paper to be dried softly before fresh weight measurements to 

calculate RGR based on biomass production. Three genotypes were tested. 

 

2) Myriophyllum spicatum and Ceratophyllum demersum 

Each apical shoot was cut at a length of 6 cm before the one week acclimatization in medium 

Smart & Barko pH 6.5 ± 0.1, with 400 mL medium per experimental unit containing 50 mL of 

quartz sediments enriched with 66.6 mg Osmocote ® (granulated slow-release fertilizers, NPK: 

16-8-12, KB) for M. spicatum, and in half strength Steinberg medium at pH 6.5 ± 0.1 for C. 

demersum. For exposure, one apical shoot was placed in each experimental unit with quartz 

sediments during 12 days for M. spicatum and 14 days for C. demersum, with renewal of the 

medium at day 6 or day 7, respectively. Seven copper concentrations were used, ranging from 

0 to 2 mg/L for M. spicatum and from 0 to 0.5 mg/L for C. demersum. Length was measured at 
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the beginning and at the end of exposure to calculate the RGR based on shoot length, and fresh 

weight was recorded at the same time after having placed the plants on blotting paper, to 

calculate the RGR based on biomass production. Three genotypes of C. demersum and four 

genotypes of M. spicatum were used. 

 

E. Maximum quantum yield of photosystem II (Fv:Fm) experiments 

Fv:Fm ratio, which is the maximal ability of the plant to harvest light, calculated by using 

the Kautsky effect, was measured (Maxwell and Johnson 2000; Murchie and Lawson 2013). 

Measures were conducted using a Diving-PAM fluorometer (Heinz Walz GmbH, Germany). 

The basic settings of the Diving-PAM, namely intensity of measuring light (50: MEAS-INT) 

and amplification factor (49: GAIN) were set to 8 and 2, respectively. An exposure period of 

96 h was used, and Cu concentrations were higher than in growth experiment to obtain sufficient 

inhibition. For each species, Fv:Fm measurements were taken before and after Cu exposure, in 

a dark chamber, 30 minutes after dark acclimatization of the plant to ensure that all reaction 

centers were opened for new photons. The same media as those used for growth experiments 

were used, except for M. spicatum, which had no sediment (presumably not necessary for the 

short duration of the experiment). Each species was acclimatized during three days under 

similar environmental conditions as used during exposure, and shoots of M. spicatum and C. 

demersum were cut at 6 cm length at the beginning of acclimatization. Three genotypes of L. 

minor were tested, four genotypes of M. spicatum, and two genotypes of C. demersum due to 

the lack of available biomass. At the end of the experiments, the DIVING-PAM parameters 

were adjusted (increase in intensity of measuring light and amplification factor, up to 11 over 

12) when plants were too chlorotic to emit sufficient signal for accurate measurement of Fv:Fm. 

Eight concentrations of Cu (0 – 2 mg/L) were used for L. minor. Four replicates containing 

ten to fourteen fronds were used for each concentration. Fv:Fm was measured at the beginning 

of the experiment on fifteen randomly-chosen L. minor bunches of three-four fronds within 

each clonal strain. Three measurements per experimental unit were taken at the end of the 

experiment.  

Seven concentrations of Cu ranging from 0 to 35 mg/L were used for M. spicatum. Eight 

concentrations of Cu ranging from 0 to 2 mg/L were used for C. demersum. For these two 

species, five replicates containing one apical shoot each were used per concentration. 
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F. Calculations and statistics 

Relative growth rates based on biomass production, frond number, or shoot length were 

calculated for each experimental unit as follows:  

𝑅𝐺𝑅𝑖−𝑗 = (ln(𝑁𝑗) − ln(𝑁𝑖))/𝑡 

where RGRi-j is the relative growth rate from time i to j, Ni and Nj are the endpoint (frond 

number, fresh weight or length) in the test or control vessel at time i and j, respectively, and t 

is the time period from i to j. 

The inhibition percentage of RGR was also calculated on each experimental unit, to assess 

the sensitivity of genotypes to Cu exposure regardless of their growth performance, following 

the formula:  

%𝐼𝑟 = (
𝑅𝐺𝑅̅̅ ̅̅ ̅̅ 𝑐 −  𝑅𝐺𝑅𝑡

𝑅𝐺𝑅𝑐
) ∗ 100 

where %Ir is the inhibition percentage of the average specific growth rate, 𝑅𝐺𝑅̅̅ ̅̅ ̅̅ c is the mean 

value for RGR in the control and RGRt is an individual value for RGR in the treatment group. 

Results were analyzed using R studio software (R Core Team (2016) V 3.3.1). 

Homoscedasticity was tested using Bartlett test. Data normality was tested with Shapiro test on 

ANOVA residuals, with log-transformation when normality assumption was not met with raw 

data. One-way ANOVAs were performed on results showing normal and homoscedastic 

distribution, with or without log transformation, to assess the differences among genotypes for 

control vessels. Tukey HSD post-hoc tests were used to identify significant differences among 

Cu concentrations and genotypes.. Non-linear log-logistic models with 3 or 4 parameters were 

used to calculate the half maximal effective concentration (EC50), or exponential decay model 

for the Fv:Fm experiment of C. demersum species, using the drm() function from the drc R 

package (Ritz et al. 2015). Coefficients of variation among EC50 values were calculated by 

dividing standard deviation by mean. Comparison of non-linear models among genotypes 

within species were performed using Akaike information criterion (AIC), through the 

comparison of models with or without the genotype considered as factor. The best model was 

selected as the one with the lowest AIC value, and models were considered different when a 

difference of at least 2 in AIC values was observed. Interspecific variability in EC50 (in %) was 

assessed using the R2 obtained from one-way ANOVA testing the species effect on EC50 values 

collected for all genotypes during the experiments.  

 



100 

 

4. Results 

A. Effective concentrations in the exposure media 

At the beginning of the experiments, effective concentrations varied between 98.9 % and 

99.3 % of nominal concentration for L. minor between 94.4 % and 105.5 % for M. spicatum, 

and between 97.9 % and 112.0 % for C. demersum. At the end of exposures, effective 

concentrations were measured, and time-averaged concentrations were calculated using 

effectives concentrations at the beginning and at the end of exposure, as well as at media 

renewal. Time-averaged concentrations were used for the result analysis. In average on both 

experiments, the time-averaged concentrations were 77.4 % of nominal concentrations for L. 

minor, 69.5 % and 74.1 % for M. spicatum and C. demersum, respectively. 

 

B.  Intraspecific variations in plant sensitivity to copper 

1) Lemna minor 

Without Cu exposure, differences among genotypes were found for RGRfm, showing that 

some genotypes were more efficient than others in terms of biomass production, with RGRfm 

ranging from 0.349 d-1 for the “Canal” genotype to 0.434 d-1 for the “Metz” genotype (1-way 

ANOVA, F2,15= 5.12, P = 0.0327). Similar observation was realized for Fv:Fm, with the 

“Authume” genotype being performing slightly less well than other genotypes regarding light 

harvesting (1-way ANOVA, F2,9 = 9.003, P = 0.0027).  

Based on growth parameters, Cu exposure did not highlight a strong difference in sensitivity 

or resistance patterns among genotypes, although biomass production significantly differed 

among genotypes, with the “Canal” genotype being inhibited by 4.2 % at low Cu concentration 

(0.05 mg/L), against 16.2 % for the two other genotypes. At higher Cu concentration (0.5 mg/L) 

differences in sensitivity were less observable, with RGRfm being inhibited from 88.4 % to 98.0 

% (Figure 4.1A). Confirming those results, EC50 values for RGRfm ranged from 0.133 to 0.154 

mg/L Cu, and showed 7.14% of variation among genotypes (Table 4.1). The genotype effect 

on Cu sensitivity was significant according to the concentration-response model, exhibiting an 

AIC of -508.9, against -499.4 for the model without genotype effect. The RGRfronds varied as 

well, although differences were not significant (Figure 4.1B). At 0.5 mg/L it was inhibited by 

67.7 % for “Canal” genotype, and by 75.37 % for “Authume”, and EC50 values ranged from 

0.127 to 0.157 mg/L Cu, showing 10.9 % of variation among genotypes (Table 4.1). 
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The Fv:Fm showed stronger variations among genotypes, and a pattern of resistance was 

observable for the “Canal” genotype (Figure 4.1C). Indeed, at 0.5 mg/L, the Fv:Fm was 

inhibited by 8% for the “Canal” genotype, and by 40% for the “Authume” genotype. The pattern 

was even more contrasted at 1 mg/L Cu, with Fv:Fm being inhibited by 44.73 % for the “Canal” 

genotype, and by 97.67 % for the “Authume” genotype. Those results are consistent with the 

EC50 values ranging from 0.39 to 0.72 mg/L Cu, and showing 35% of variation among 

genotypes (Table 4.1).The genotype effect on Cu sensitivity was significant according to the 

concentration-response model, showing an AIC of -161.6, against -97.9 for the model without 

genotype effect. However, these differences were apparently not linked to differences in the 

sensitivity to Cu in terms of RGR, as the “Canal” genotype did not show a higher tolerance in 

terms of growth compared to the other genotypes.  

 

 

 

Figure 4.1. Concentration-

response curves for three 

genotypes of L. minor 

exposed to copper, with 

relative growth rates 

(RGR) based on fresh 

weight (A) and frond 

number (B) after 7 days of 

exposure, and (C) Fv:Fm 

after 96h. Curves were 

fitted with non-linear log-

logistic models with 4 

parameters (A and B) and 

3 parameters (C). 
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2) Myriophyllum spicatum 

No significant difference among genotypes was found for growth-related endpoints in absence 

of contamination, however a trend was observed with the “Doubs” genotype, which appeared 

to grow the fastest, especially in length, with a RGRlength of 0.0258 d-1 against 0.0187 d-1 on 

average for the others ( 

Figure 4.2B). The Fv:Fm was slightly different among controls, varying from 0.71 for 

“Doubs” to 0.76 for “Tarn” (1-way ANOVA, F3, 16 =  9.356, P < 0.001), and was thus not 

correlated with growth trends found among genotypes. 

Copper exposure revealed strong variations in sensitivity within and among genotypes for 

growth related endpoints ( 

Figure 4.2). However, those variations were only significantly different for RGRlength, which 

concentration-response model exhibited an AIC of -1095.2, against -1075.3 for the model 

without genotype effect. The “Schöhsee” genotype was the most resistant genotype to Cu. For 

instance, at 0.1 mg/L Cu the RGRlength was inhibited by 33.1 % for “Schöhsee”, and by 58.3 % 

for the other genotypes.  Furthermore, EC50 ranged from 0.042 mg/L Cu for “Dordogne”, which 

was the most sensitive genotype, to 0.296 mg/L Cu for “Schöhsee” genotype. A variation 

coefficient of 93.8 % was found among the EC50 values of those genotypes, highlighting the 

broad range of sensitivity found among those genotypes for this endpoint (Table 4.1,  

Figure 4.2). Although no difference in sensitivity was significant, the RGRfm exhibited 

variations among genotypes and some trends were observed. For instance, at 0.1 mg/L Cu the 

“Schöhsee” was inhibited by 17.9 %, and the “Doubs” by 52.9 %. Accordingly, EC50 values 

varied from 0.077 for “Doubs” which was the most sensitive, to 0.46 mg/L Cu for “Schöhsee” 

genotype which was the most resistant. EC50 values showed a coefficient of variation of 72%, 

although a high standard deviation was observed for those EC50 values, partially explained by 

the high variability among replicates (Table 4.1,  

Figure 4.2A).  

Contrasting with the growth-related endpoints, Fv:Fm was not much impacted by Cu 

exposure, and a decrease by 50% of this ratio was not reached, even with a Cu concentration 

up to 35 mg/L. Therefore, no concentration-response curve was produced and no EC50 value 

could be calculated. No difference in sensitivity was identified among genotypes, as this 

endpoint was obviously insensitive to Cu exposure in the case of M. spicatum. 
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Figure 4.2. Concentration-

response curves for four 

genotypes of M. spicatum 

exposed to copper, relative 

growth rates (RGR) based 

on fresh weight (A) and 

shoot length (B) after 12 

days of exposure. Curves 

were fitted with non-linear 

log-logistic models with 3 

parameters. 

 

 

 

3) Ceratophyllum demersum 

No significant difference was observed among genotypes both in their Fv:Fm and biomass 

production in absence of Cu exposure, although some variations were observed for RGRfm, 

ranging from 0.019 d-1 for “Garonne” to 0.029 d-1 for “Tarn” genotype (Figure 4.3A).  

However, significant differences were observed in their elongation rate, ranging from 0.017 d-

1 for “Tarn” to 0.037 d-1 for “Garonne” genotype (Figure 4.3B). This showed an inverse 

relationship between RGRfm and RGRlength, as the most productive genotype in terms of biomass 

exhibited the lowest elongation rate. 

All endpoints were impacted by Cu exposure, and significant differences in sensitivity were 

highlighted among genotypes despite the high variation among replicates demonstrated for 

growth-related endpoints (Figure 4.3A, B, and C). For instance, at 0.1 mg/L Cu, RGRfm was 

inhibited by 31.2 % to 82.9 % for “Garonne” and by “Tarn” genotypes, respectively. At the 

same Cu concentration, the RGRlength was inhibited by 46.1 % for “Dordogne”, up to 76.3 % 

for “Tarn” genotype. EC50 values varied among genotypes, from 0.06 to 0.086 mg/L Cu for 

RGRfm and showed a coefficient of variation of 19 %. The genotype effect in Cu sensitivity of 

biomass production was confirmed by the concentration-response model, which exhibited an 

AIC value of -547.9, against -515.5 for the model without genotype effect. For RGRlength, EC50 

varied from 0.006 to 0.067 mg/L Cu, and exhibited a coefficient of variation of 75.9 %. The 

genotype effect in Cu sensitivity for RGRlength was confirmed by the most negative AIC value 

for the response-model with genotype effect (-661.8, against -653.9). 
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The Fv:Fm was not impacted enough by Cu exposure to reach a decrease of 50% of the 

signal; at 2 mg/L, this endpoint was inhibited by 41.5 % for “Dordogne” genotype and by 46.8 

% for “Garonne” genotype (Figure 4.3C). The EC50 values were predicted by the model to be 

between 2.15 and 2.2 mg/L depending on the genotype, showing a low variation coefficient of 

1.9 %. This highlights that, as for M. spicatum, this endpoint only responds to very high Cu 

concentration for this species and do not appear relevant as an exposure biomarker. 

 

 

Figure 4.3. Concentration-

response curves for two to 

three genotypes of C. 

demersum exposed to 

copper, with relative 

growth rates (RGR) based 

on fresh weight (A) and 

shoot length (B) after 14 

days of exposure, and Fv:Fm 

(C) after 96h. Curves were 

fitted with non-linear log-

logistic models with 4 

parameters for growth 

related endpoints (A, B) 

and exponential decay 

models with 2 parameters 

for Fv:Fm (C). 

 

 

 

 

 

 

C. Relative importance of intraspecific vs. interspecific variations 

Interspecific variability was the main source of variation among species as indicated by a 

comparison of the EC50 values obtained for the various genotypes of each species (Table 4.1). 

Indeed, 78.3 % and 99% of the variation in EC50 values for RGRfm and Fv:Fm, were due to 

interspecific variability, respectively. EC50 values based on RGRlength were only compared 
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among C. demersum and M. spicatum as this endpoint was not used for L. minor, and 66 % of 

the variability was explained by interspecific differences. RGRlength was three times more 

sensitive to Cu for C. demersum than for M. spicatum, however up to tenfold differences in 

sensitivity were observed among genotypes. Furthermore, this endpoint demonstrated the most 

variability among genotypes for both species compared to the other endpoints.  

 

Table 4.1. Half maximal effective concentrations (EC50, mean ± SD) for different genotypes of 

three macrophyte species: L minor, M. spicatum and C. demersum exposed to Cu. Maximal 

Quantum Yield of PSII (Fv:Fm) experiment lasted for 96 h. Growth experiments (relative growth 

rates, RGR) lasted for 7, 12 and 14 days for L. minor, M. spicatum and C. demersum 

respectively. CV: coefficient of variation among EC50 values in %, calculated within species 

(based on averaged EC50 values per genotype and endpoint). Interspecific variability was 

assessed from the R2 value from ANOVA. * For RGRlength, interspecific variability was only 

compared between C. demersum and M. spicatum, as this endpoint was not used for L. minor. 

 

For RGRfm, C. demersum was the most sensitive species to Cu, with an average EC50 value 

of 0.077 ± 0.01 mg/L Cu, against 0.144 ± 0.001 and 0.237 ± 0.09 mg/L Cu for L. minor and M. 

spicatum, respectively (Figure 4.4). For Fv:Fm, L. minor was the most sensitive species with an 

average EC50 value of 0.513 ± 0.1 mg/L Cu, against 2.18 ± 0.03 for C. demersum, and no 

calculated EC50 for M. spicatum, as no significant inhibition of this endpoint could be observed 

during the experiment. The comparison among species showed that high variation occurred 

Species Genotypes 
EC50 values EC50 values EC50 values 

RGRfm RGRfronds /RGRlength Fv:Fm 

L. minor  

(n = 4 for 

RGR, n = 6 

for Fv:Fm) 

Metz 0.133 ± 0.01 0.127 ± 0.02 0.423 ± 0.02 

Doubs 0.154 ± 0.02 0.157 ± 0.03 0.394 ± 0.02 

Canal 0.146 ± 0.02 0.151 ± 0.02 0.72 ± 0.04 

Average 0.144 ± 0.01 0.145 ± 0.01 0.513 ± 0.1 

EC50 CV % 7.1 10.9 35.2 

M. spicatum 

(n = 5) 

Schöhsee 0.46 ± 0.11 0.296 ± 0.23 NA 

Doubs 0.077 ± 0.07 0.042 ± 0.03 NA 

Tarn 0.271± 0.15 0.132 ± 0.25 NA 

Dordogne 0.137 ± 0.09 0.043 ± 0.19 NA 

Average 0.237 ± 0.09 0.128 ± 0.06 NA 

EC50 CV %  72.0 93.8 NA 

C. demersum 

(n = 5) 

Dordogne 0.059 ± 0.01 0.051 ± 0.06 2.21 ± 0.28 

Garonne 0.086 ± 0.05 0.006 ± 0.004 2.15 ± 0.27 

Tarn 0.085 ± 0.02 0.067 ± 0.03 NA 

Average 0.077 ± 0.01 0.042 ± 0.02 2.18 ± 0.03 

EC50 CV %  19.4 76.0 1.9 

% of interspecific 

variability 
78.3 66.0* 99.8 
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depending on the endpoint considered. For instance, EC50 values for RGRlength of M. spicatum 

and C. demersum demonstrated a coefficient of variation above 90 and 75 %, against 72 % and 

19 % for RGRfm, respectively. It suggests that shoot elongation is more subject to variations 

among genotypes than biomass production, or even light harvesting capacities. 

 

 

Figure 4.4. EC50 values for Relative Growth Rates based on fresh mass of three species, L. 

minor, M. spicatum and C. demersum exposed to copper. From three to four genotypes of each 

species were exposed during 7 days (L. minor), 12 days (M. spicatum) or 14 days (C. 

demersum) to concentrations from 0 to 1.25 mg/L, 0 to 2 mg/L and 0 to 0.5 mg/L Cu, 

respectively. Same letters within a given species indicate genotypes whose EC50 values do not 

differ significantly. 

 

5. Discussion  

A. Endpoint sensitivity 

Species sensitivity to Cu was strongly linked to the endpoints considered, and Fv:Fm was 

the least sensitive for all species. This suggests that Fv:Fm is not relevant to reveal Cu 

contamination of aquatic environments for these species, and that growth-related endpoints 

would be more consistent to use in the case of biomonitoring, as they are more sensitive. 

However, several studies have shown for different aquatic plant species that Fv:Fm was relevant 

for very short term exposure to pesticides (few hours), but showed some recovery over time 

(Macinnis-Ng and Ralph 2003; Choi, Berges, and Young 2012). The fact that Fv:Fm was not 

relevant to reveal the sensitivity of M. spicatum highlights the importance of selecting proper 
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endpoints for each species. One mechanism which might explain the Fv:Fm signal of M. 

spicatum at so high concentrations, and despite a brownish appearance of plants, would be the 

replacement of Mg2+ ions by Cu2+ ions in chlorophyll, resulting in a fluorescent signal even if 

the plant was dead (Pádua et al., 2010). However, no further experiments have been conducted 

to explore this mechanism, but it could be a further step in the understanding of Cu toxicity on 

M. spicatum.  

The high variability in growth among replicates for M. spicatum and C. demersum exposed 

to Cu might be explained by the fact that fragments were not completely identical at the start 

of the experiment, despite using the same length. The morphology between fragments showed 

more variation e.g. in stem thickness and capacity to elongate than L. minor individuals, which 

have a completely different growth form with floating leaves. Another explanation would be 

that Cu is an essential element for living organisms. It is the element for which most chelators 

are found at natural state in cell cytosol, and as such, it already has metabolic pathways and 

transporters with regulation paths (Huffman and O’Halloran 2001; Printz et al. 2016). All these 

elements increase the possibility for variation among individuals and replicates, as numerous 

pathways to regulate Cu exists at the cellular level, and may vary from one shoot to another. 

Furthermore, even among clonal individuals some variations can be observed, due to alternative 

splicing, post-translational modifications or preferential gene expression (Grativol et al. 2012). 

 

B. Intraspecific variation 

Lemna minor and M. spicatum, but not C. demersum, showed statistically significant 

differences of sensitivity among genotypes, depending on the endpoint considered.  

The high variability within genotypes among replicates, especially for C. demersum and M. 

spicatum, affected the significance of the results. ANOVAs sometimes failed to highlight 

differences in sensitivity among genotypes, whereas a trend was visually observable for the two 

species. Indeed, for M. spicatum, the shape of the concentration-response curves differed among 

genotypes for both RGRs despite no significant interaction between Cu and Genotype, whereas 

it was visually observable that “Doubs” genotype was more sensitive and “Schöhsee” was more 

resistant to Cu.  

It was interesting to notice that for L. minor, the difference in sensitivity of Fv:Fm among 

genotypes did not confer any growth advantage in terms of sensitivity to the genotype that had 
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a more tolerant Fv:Fm. Furthermore, traits showing significant differences in sensitivity to Cu 

among genotypes (RGRfw) also showed a genotype effect for control plants, although EC50 

values were not always significantly different. It is consistent with the fact that based on life-

history traits (e.g. RGRs) some genotypes are more efficient than others under normal 

conditions, but respond identically as the less-competitive genotypes when facing a chemical 

stress. On the contrary, M. spicatum did not show significant genotypic effect based on life-

history traits in absence of contamination, but Cu stress highlighted significant differences in 

sensitivity, as demonstrated by the different EC50 values. This suggests that genetic variations 

among those genotypes might influence their response to chemicals, and therefore their 

susceptibility and their resilience capacity. Genetic diversity within ecosystems may enhance 

their resilience to abiotic factors, as well as their productivity (Reusch and Hughes 2006; Sgrò 

et al. 2011; Sjöqvist and Kremp 2016). 

The fact that genotypes were coming from relatively similar environments in terms of 

temperature, light, eutrophication levels and water flows, with no highly contaminated nor 

pristine environments, decreased the probability to harvest a genotype with a different 

sensitivity to chemicals (Cao et al. 2017). Indeed, contamination will trigger a strong selection 

pressure on populations and only individuals able to thrive under chemical stress will be 

selected. Individuals with increased resistance and/or copping capacities to contamination will 

progressively be selected due to the chemical pressure (Brown et al. 2009). This is depicted by 

the pollution-induced-tolerance concept, or PICT, which evaluates the selection pressure 

applied by chemicals on natural populations (Tlili et al. 2016).  

In our case, it could partially explain the low difference in sensitivity among genotypes, 

except for M. spicatum. Here, we can assume that no strong selection pressure was applied in 

the environments in which the genotypes were harvested from, and therefore no structuration 

was found in term of sensitivity to contamination. It has been well documented that plant 

adaptation to environmental pressures (metal resistance, pathogen resistance…) is a costly 

process which decreases fitness when the pressure considered is removed, so these strategy are 

only selected under stressful conditions (Huot et al. 2014). 

 

C. Interspecific variation in Cu sensitivity 

Overall, interspecific variation was more important than intraspecific variation. Indeed, 

total variation in EC50 values among species was explained by interspecific variation at 77% 
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for RGRfw and 99% for Fv:Fm, although M. spicatum had no EC50 value for the last endpoint. 

Based on RGRfw, C. demersum was the most sensitive species, and M. spicatum was the most 

tolerant once EC50 values were averaged among genotypes. The duckweed L. minor was in the 

middle of the sensitivity range covered by the three species, however our EC50 values were 

lower than those found in literature. Khellaf and Zerdaoui (2010) have found an EC50 of 0.47 

mg/L for Cu on L. minor on RGRfronds against 0.25 mg/L Cu in our study; however the pH used 

in their experiment was lower (6.1) and the duration was over four days. 

These three species are found across the globe, which denotes a certain ability to tolerate 

and adjust to a wide range of environments (Grenier et al. 2016). In this study, whatever the 

species, no evidence of a relation between intergenotype genetic distance and geographic 

distance of their origin was found (ISSR analyses, supplementary data). Anyway, the number 

of genotypes used per species and per population do not allow to assess for the relative 

importance of geographic distance in genetic structure. Several studies have investigated the 

importance of geographic distance in shaping the genetic structure of populations, and have 

demonstrated contrasting results depending on the species (Pollux et al. 2009; Honnay et al. 

2010; Z. Wu et al. 2016). Phenotypic plasticity could play an important role in this tolerance to 

abiotic factors (including chemical stress) and has been widely investigated as a response to 

environmental variations (Bradshaw 2006; Vitasse et al. 2010; Steam 2012). 

Finally, only M. spicatum showed a significantly high range of EC50 values for RGR values 

among genotypes. It might require further investigations to assess the importance of genotypic 

variability in its sensitivity to chemicals, and whether or not this variability should be taken into 

account in risk assessment during lab tests. 

 

6. Conclusion 

In this study, we assessed the importance of intraspecific variation in the sensitivity of 

aquatic macrophytes to chemicals. We focused on genotypic variation, which is one source of 

intraspecific variability. Our results demonstrated that despite some differences in sensitivity 

among genotypes within species, interspecific variation remained much higher than 

intraspecific variation. SSD approaches are thus not questioned by our results. As the species 

studied can be found across a broad range of environmental conditions, phenotypic plasticity, 

which occurs during the life time of an individual, may thus play a more important part in 

intraspecific variation than genotypic variation. However, supplementary investigations, on 
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more genotypes, are required to assess variability in the sensitivity of M. spicatum to chemicals. 

Indeed, further studies have demonstrated that this species shows broad variations in its life-

traits and genetic shape among populations. Furthermore, it has been demonstrated that 

environmental conditions (e.g. light, nutrients) strongly affect macrophyte phenotypes, and 

should therefore be considered as a potential source of variation in sensitivity. 
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8. Supplementary data 

Supplemental material 1. Details of ISSR amplification procedure, of banding pattern analysis 

and of genetic distance calculation. 

ISSR amplifications were carried out in a final volume of 25 µl containing 1X of GoTaq green 

buffer (Promega), 0.2 mM of each dNTP, 1 µM of primer, 0.25 U of GoTaq G2 Hot Start 

polymerase (Promega) and 10 ng of template DNA. Reactions were performed in a 

MasterCycler Pro S (Eppendorf) thermal cycler with an initial denaturation step of 3 min at 

95°C, followed by 37 cycles of 55 s at 95°C, 1 min at annealing temperature required for the 

primer (Table S1) and 3 min at 72°C, and a final extension step of 10 min at 72°C. A negative 

control without DNA was included in each run. Amplified fragments were separated by 

electrophoresis in 0.5X TAE buffer on 1.4% agarose gel including ClearSightDNA 

(Euromedex) to reveal ISSR banding patterns. Images of patterns were then captured under UV 

light. The reproducibility of ISSR patterns was assessed by repeating twice the amplifications 
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for each primer and, also, by comparing patterns obtained with two independent DNA 

extractions of the samples. 

For each plant species, resulting ISSR patterns were compared to discriminate the strains. In 

order to estimate genetic relationships among strains within each species, clear and well-

separated ISSR fragments were retained and scored as present (1) or absent (0). A matrix of 

pairwise genetic distance was constructed by calculating for all pairs of samples the DICE 

dissimilarity index GD = 1 - 2nXY/(nX + nY) where 2nXY is the number of fragments shared 

by two strains X and Y, and nX and nY are the numbers of present fragments in strain X and in 

strain Y respectively. Cluster analyses based on UPGMA were performed with GD matrices 

and dendrograms were constructed to visualize genetic differences among strains of each 

species. Computation of GD matrices and of UPGMA clusters were done with FAMD 1.30 

software (Schülter et al., 2006, Molecular Ecology Notes, 6, pp. 569-572; 

http://www.famd.me.uk/famd.html) and dendrograms were edited with MEGA 7 (Kumar et al., 

2016, Molecular Biology and Evolution, 33, pp. 1870-1874). 

Table S1 Primers used to amplify ISSR fragments in each species, annealing temperatures 

(TA), number of scored fragments and number of polymorphic fragments. 

  Myriophyllum spicatum  Ceratophyllum demersum  Lemna minor 

Prime

rs* 

Sequenc

es** 

(5'-3') 

T

A 

No. 

scored 

fragm

ents 

No. 

polymor

phic 

fragment

s 

 
T

A 

No. 

scored 

fragm

ents 

No. 

polymor

phic 

fragment

s 

 
T

A 

No. 

scored 

fragm

ents 

No. 

polymor

phic 

fragment

s 

ISSR

5 

(CA)8 

GT 

4

6

°

C 

7 4  

4

6

°

C 

7 2  

5

0

°

C 

6 4 

ISSR

8 

(CA)7 

ATCC 

4

6

°

C 

4 1  

4

6

°

C 

7 3  

5

0

°

C 

4 2 

ISSR

9 

(CA)7 

GTCT 

4

6

°

C 

7 3  

4

6

°

C 

6 2  

5

0

°

C 

5 3 

ISSR

12 

GGTC(

AC)7 
- - -  

5

3

°

C 

5 1  

5

3

°

C 

7 2 

UBC

811 
(GA)8 C 

5

3

°

C 

8 3  

5

2

°

C 

6 3  -   

UBC

827 
(AC)8 G - - -  

5

2

°

C 

4 2  

5

3

°

C 

9 4 

UBC

845 

(CT)8 

GG 
- - -  - - -  

5

3

°

C 

8 5 
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UBC

849 

(GT)8 

CA 

5

3

°

C 

6 2  - - -  

5

3

°

C 

8 4 

UBC

855 

(AC)8 

CT 

5

3

°

C 

7 5  

5

2

°

C 

4 2  

5

3

°

C 

6 4 

UBC

856 

(AC)8 

CA 

5

3

°

C 

6 2  - - -  

5

3

°

C 

6 3 

UBC

857 

(AC)8 

TG 
- - -  - - -  

5

3

°

C 

11 6 

UBC

861 
(ACC)6 - - -  - - -  

5

3

°

C 

7 4 

R1 
DHB(C

GA)5 
- - -  - - -  

5

3

°

C 

7 2 

R2 
DDB(C

CA)5 

5

3

°

C 

8 2  - - -  

5

3

°

C 

10 1 

R3 
BDB(A

CA)5 

5

3

°

C 

5 1  - - -  

5

3

°

C 

6 2 

R5 
(CCA)5 

S 

5

3

°

C 

5 2  

5

0

°

C 

4 1  

5

3

°

C 

6 1 

R6 
(ACA)5 

S 

5

3

°

C 

8 3  -    

5

3

°

C 

11 4 

RP1 
(AC)8 

YT 
- - -  

5

3

°

C 

4 1  

5

3

°

C 

13 7 

RP2 
(CA)6 

RY 
- - -  - - -  

5

3

°

C 

7 2 

RP5 
(CTC)4 

RC 
- - -  - - -  

5

3

°

C 

10 5 

RP6 
(GTG)3 

GC 

5

3

°

C 

8 3  - - -  -   

RP7 
(CAC)4 

RC 

5

3

°

C 

5 4  - - -  

5

3

°

C 

9 1 

All   84 35   47 17   156 66 

* References for primers : ISSR5 to ISSR12 : Triest et al. (2010) ; UBC811 to UBC861 : Primers designed 

by the University of British Columbia Biotechnology Laboratory (Canada) and used by Xue et al. (2012) with 

Lemna and by Cao et al. (2017) with Myriophyllum and Ceratophyllum ; R1 to R3 : Hantula et al. (1996) ; R5 

and R6 : Carriconde et al. (2008) ; RP1 to RP7 : Liang et al. (2005). 

**With B = T, C or G ; D = A, T or G ; H = A, C or T ; R = A or G ; S = C or G and Y = C or T. 
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Figure S1. UPGMA cluster analysis based on ISSR data showing genetic relationships among 

strains of Myriophyllum spicatum, Ceratophyllum demersum and Lemna minor. The scale refers 

to genetic distances (Nei and Li 1979). 
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CHAPTER IV 

Influence of genotypic variability on Myriophyllum 

spicatum exposed to chemicals 
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1. Does genotypic variability of M. spicatum affect its sensitivity to 

copper? 

 

Genotypic variability has been considered as an important characteristic for species 

adaptation to new environments (see chapter I.4). Several studies have investigated how genetic 

variability may inflect species adaptation to climate change, and how geographical distribution 

may shape the genetic structure of populations. However, no study has examined how genotypic 

variability may affect species sensitivity to chemical contamination.  

Assessing the importance of intraspecific variability in response to chemicals is highly 

important, given the current pollution of ecosystems. Furthermore, it should give insight on 

how species adjust and adapt to cope with chemical stressors, and if resistance or sensitivity to 

these stressors can be connected with specific life-history traits. 

Based on the results of the previous chapter, I aimed to assess the influence of genotypic 

variability in the sensitivity to Cu for 7 genotypes of Myriophyllum spicatum. This species is 

used in standardized protocols in ecotoxicological risk assessment, and significant variations 

among genotypes were demonstrated in previous experiments. There is therefore a need to 

better evaluate the extent of M. spicatum genotypic variation, to identify more contrasted strains 

in terms of Cu sensitivity. In parallel, this would be particularly relevant to characterize the 

different genotypes studied in terms of their life-history traits, which may allow the definition 

of some trait syndromes possibly related to the sensitivity of M. spicatum to chemical 

contamination.  
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Figure 1.1. Geographic origin of the 7 genotypes of M. spicatum used to assess the influence 

of genotypic variability in chemical sensitivity. 
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2. Abstract 

Genotypic variability has been considered for years as a key attribute in species adaptation 

to new environments. Extended research on mechanisms of chemical resistance has been 

conducted for agriculture and weed management purposes. Genotypic variability notably 

influences the ability of plants to cope with environmental changes in a context of global 

warming. Aquatic ecosystems are particularly impacted by these environmental changes, and 

aquatic plants play pivotal role in these ecosystems. Although effects of chemicals and 

environmental changes have been studied on these organisms, no study has focused on how this 

variability triggered by environmental changes could inflect the sensitivity of aquatic plants to 

chemicals. In this study, we assessed the importance of genotypic variability in copper (Cu) 

sensitivity for seven genotypes of Myriophyllum spicatum, a species used in standardized 

protocols for ecotoxicological risk assessment. Three Cu concentrations were used, 0, 0.15 and 

0.5 mg/L. Through various endpoints such as lateral shoot and root production, dry matter 

content, relative growth rate (RGR), relative elongation rate of shoots (RERall), main shoot 

elongation (RERmain), internode length, bio-macromolecular composition, as well as Cu 

content, differences in sensitivity were assessed among these genotypes. Our results showed 

strong variation in sensitivity depending on the genotype, with up to eightfold difference in 

sensitivity for RGR at low Cu concentration (0.15 mg/L), and sevenfold difference in RER at 

high Cu concentration (0.5 mg/L). Genotypes exhibited significant differences in their life-

history traits in the absence of chemical contamination, and co-inertia analysis revealed that 

these life-history traits explained 62% of the total variation in sensitivity to Cu. Indeed, some 
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life-history trait syndromes were observed: total shoot elongation and lateral shoot production 

were correlated positively, with internode length and negatively with whorls production and 

DMC. Main shoot elongation was mainly correlated with RGR. Some genotypes thus 

demonstrated contrasting strategies, either producing lateral shoots and having a high global 

elongation rate to promote light harvesting, or producing denser whorls with higher DMC to 

promote nutrient absorption and conservation. Our results confirm that genotypic variability 

can significantly inflect the outcomes of laboratory testing, and thus should be studied more in 

depth. 

Keywords: Genotypic variability, aquatic macrophyte, copper, ecotoxicological risk 

assessment, life-history traits 

 

3. Introduction 

Intraspecific variability has been investigated over the years as an important attribute in the 

adaptation and evolution of species (Bradshaw 1965; Matesanz et al. 2010; Oliver et al. 2015). 

It has been acknowledged to play an important role in species adjustment to short term 

environmental shifts, via phenotypic plasticity, i.e. the ability of one genotype to produce 

several phenotypes depending on its environment (Sultan 1995, 2000; Whitman and Agrawal 

2009), and to long term environmental changes, via genotypic variation, i.e. the evolution of 

the genetic code due to somatic mutations, selection pressures and gene fluxes (Harris et al. 

1992; Cao et al. 2017). Genotypic variation can sometimes confer specific life-history traits 

differing among genotypes and populations (Harris et al. 1992; Hughes and Stachowicz 2004; 

Reusch and Hughes 2006; Weyl and Coetzee 2016; Tóth et al. 2017). Recently, it has been 

demonstrated that intraspecific variability, more specifically genotypic variation, strongly 

inflects the resilience of ecosystems after a disturbance (Reusch and Hughes 2006; Ehlers et 

al. 2016; Oliver et al. 2015; Timpane-Padgham et al. 2017). Indeed, a broad gene pool will be 

more likely to provide the proper response to an environmental shift, such as changes in nutrient 

load, heat waves or chemical contaminations (Reynolds et al. 2012). Conversely, a population 

exhibiting a low gene pool and not able to cope with a given environmental pressure may 

disappear from the ecosystem, whose dynamics and functions may drift due to the change in its 

species composition (Timpane-Padgham et al. 2017). As such, genotypic variation is considered 

as a driver of ecosystem functioning, as it will inflect population resistance and resilience 
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under various environments (Woodward et al. 2010; Oliver et al. 2015; Timpane-Padgham et 

al. 2017). 

Differences in the sensitivity to various stressors among populations might increase over 

time due to their adaptation to contrasting environments through selective pressures (Dalton et 

al. 2013; Esteves et al. 2017; Brown et al. 2009). Changes in environmental conditions are more 

likely to occur with human activities, which inevitably impact ecosystems, notably via 

chemical contamination due to runoffs, wastewaters and atmospheric deposition ( Ehlers et al. 

2008; Oliver et al. 2015). In order to limit human impact on ecosystems, several policies have 

been implemented over years, such as the E.U. Water Framework Directive, the E.U. REACH 

regulation, the U.S. Endangered Species Act or the U.S. Clean Water Act (Bouwma et al. 2018; 

Rouillard et al. 2018). Those policies are based on ecotoxicological risk assessment (ERA) 

which allows to assess ecosystem health and chemical harmfulness.  

It first started in the 1970s and has evolved since, along with environmental policies and 

global awareness of human impact on the environment (Shea and Thorsen 2012; Bouwma et 

al. 2018). The realism and complexity of ERA increase as scientific breakthrough highlights 

different processes which may inflect the current approaches and their outcomes (Johnson and 

Sumpter 2016). It is difficult to properly assess in laboratory testing the impact of a given 

molecule on its environment, as many factors in situ will strongly influence the toxicity of 

molecules, or the sensitivity of organisms. Among those factors, genotypic variation, which 

might have a significant impact on results, is not taken into account in ERA approaches 

Very few studies have looked into the impact of genetic variability in aquatic species 

sensitivity to chemicals. This is of concern, as this sensitivity might significantly vary among 

genotypes due to contrasting morphological or physiological traits, and ultimately among 

populations, depending on selection pressures having filtered out unfitted genotypes (Dalton et 

al. 2013; Brown et al. 2009). Among those studies, one has looked into the difference in 

sensitivity to pesticides between Myriophyllum spicatum populations and hybrid populations 

(Thum et al. 2012), an another one in resistance development of Hydricilla verticillata in 

populations exposed to chemicals for weed control (Arias et al. 2005). Indeed, occurrence of 

resistant weeds increases with the use of pesticides, which still rise over the years, resulting in 

ecosystem disturbances.  

In this study, we examined whether contrasting sensitivities to copper (Cu) exposure can 

be found across seven genotypes of M. spicatum differing in their life-history traits. Copper is 
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an essential trace element which is involved in several metabolic pathways, such as reactive 

oxygen metabolism, photosynthesis and respiration (Hötzer et al. 2012; Thomas et al. 2013; 

Peñarrubia et al. 2015). It is also harmful beyond a certain physiological threshold, which is 

species-specific, due to excessive reactive oxygen species (ROS) production which trigger 

cellular damages (Razinger et al. 2007; Fidalgo et al. 2013; Costa et al. 2018).  For example, 

Cu concentrations in leaves of terrestrial plants range between 5 to 20 µg g-1 dry mass (Yruela 

2009), and the toxicity threshold in leaves of crop species is generally above 20 - 30 µg g-1 dry 

mass (Marschner and Marschner 2012). Copper is widely used in agriculture as fungicide, and 

is also released by industries and mining activities; thus high Cu concentrations can 

subsequently be found in top soils and aquatic ecosystems (Willis and Bishop 2016; Ballabio 

et al. 2018). According to a recent study, Cu concentration in European top soils is on average 

16.0 mg kg-1 in all soils combined, and 49.3 mg kg−1 in vineyards, going up to 91.3 mg kg−1 on 

average in French vineyards (Ballabio et al. 2018).  

Because of its environmental relevance and the extensive documentation on its effects on 

aquatic plants, Cu was used in this study to assess the importance of genotypic variation of M. 

spicatum in its sensitivity to chemical contamination (Thomas et al. 2013; Yan and Xue 2013). 

This species is spread worldwide and considered as a model species for rooted aquatic plants 

in freshwater ecosystems. As such, it is the subject of two standardized protocols in ERA since 

2014 (OECD tests n°238 and n°239). Its genotypic variation and phenotypic plasticity have 

been widely documented regarding different populations and their genetic structure, or their 

plasticity toward environmental variations (Barko and Smart 1981; Hussner et al. 2009; Cao et 

al. 2012; Li et al. 2010; Weyl and Coetzee 2016; Tóth et al. 2017). 

 

4. Material and methods 

A. Growth and copper exposure 

Seven genotypes of M. spicatum were randomly harvested in natural freshwater rivers in 

France and Germany between 2013 and 2016, and one strain of M. spicatum was regrown from 

an axenic culture established from material collected in Germany in 1990 (Table 4.1). Each 

genotype was grown in a 210 L tank with quartz sediment enriched with Osmocote ® 

(granulated fertilizer, Hortensia, KB) during at least six months prior to exposure experiments. 

For genotype differentiation, inter simple sequence repeat (ISSR) method was used on 

polymorphic fragments, see section 2.2 for further details. 
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Prior to Cu exposure, each shoot was cut to a length of 6 cm and rinsed in tap water before 

an acclimatization of 5 days in Smart & Barko medium pH 7.0 ± 0.1. Experimental units 

contained 500 mL media with 50 mL of quartz sediment enriched with 66.6 mg Osmocote ®. 

For exposure, one apex was placed in each experimental unit during 10 days, with 1 cm of the 

shoot placed in sediment for root development. Three Cu concentrations were used: 0, 0.15 and 

0.5 mg/L Cu2+. Copper sulfate was purchased from Sigma (CAS number 7758-98-7, Saint 

Quentin Fallavier, France). A concentrated solution of 1 g/L Cu2+ was prepared in ultrapure 

water, and diluted in the different media before pH adjustments. 

Table 4.1. GPS coordinates of the French (Fr.) and German (Ge.) sites from which the seven 

genotypes of Myriophyllum spicatum were harvested between 2013 and 2016. 

 

 

 

 

 

 

B. Distinction of genotypes  

Genotypes were distinguished, and genetic distances among genotypes were calculated, 

using inter simple sequence repeats (ISSRs, 40). Plant samples were collected and stored at -

20°C in Nuclei Lysis Solution (Promega) until DNA extraction. DNA was extracted and 

purified from about 100 mg of sample fragments by using the WIZARD Genomic DNA 

Purification kit (Promega) and following the procedure described in Carriconde et al. (2008).  

 

C. Copper concentration in water samples 

Copper concentrations in the media were calculated by sampling water from experimental 

units at the beginning and at the end of Cu exposure, in order to assess effective concentrations. 

Samples were measured after acidification using inductively coupled plasma with mass 

spectrometer (ICP-MS, Agilent 7500ce). Effective Cu concentrations in the media were in 

average at 96.7 ± 1.9 % at the beginning of exposure, and averaged concentrations were at 54.7 

± 0.6 % and 50.9 ± 1.4 % of nominal concentration for 0.15 mg/L and 0.5 mg/L Cu respectively. 

Names Streams Stations GPS coordinates 

DOU Doubs (Fr.) Gare d’eau 47.23153, 6.02252 

DOR Dordogne (Fr.) Scierie 44.84584, 0.90596 

SCH Schöhsee (Ge.) Plön 54.16624, 10.44114 

CAM Camargue (Fr.) Badon 43.51133, 4.60584 

GAR1 Garonne (Fr.) St Aignan 44.02281, 1.07797 

GAR2 Garonne (Fr.) Bourret 43.94622, 1.1711 

AGO Agout (Fr.) Burlat 43.6395, 2.31875 
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D. Life-history traits 

1) Growth-related and morphological traits 

The number of roots, lateral shoots, as well as the number of whorls over 5 cm from the 

bottom of the shoot, were recorded on the first and the last day of Cu exposure for each 

experimental unit. Shoot length based on total shoot length and lateral shoots was measured at 

the beginning and at the end of exposure to calculate the Relative elongation rate (RERall), and 

main shoot length was assessed as well, to calculate the Relative elongation rate of the main 

shoot (RERmain). Fresh mass was measured at the same time after having gently dried the 

plants with blotting paper, to calculate the relative growth rate (RGR). 

RGR, RERall and RERmai were calculated for each experimental unit as follow:  

𝑅𝐺𝑅𝑖−𝑗 = (ln(𝑁𝑗) − ln(𝑁𝑖)) / 𝑡 

where RGRi-j is the relative growth rate from time i to j, Ni and Nj are the endpoint (frond 

number, fresh mass or length) in the test or control vessel at time i and j, respectively, and t is 

the time period from i to j. 

Dry matter content (DMC) in % was calculated as:   

%𝐷𝑀𝐶 = (
100 × 𝐷𝑀

𝐹𝑀
) 

where FM is fresh mass of plant samples, DM is their corresponding dry mass. 

Root number and lateral shoots (LS) were counted at the beginning and at the end of 

exposure, and whorl number per cm was calculated by measuring the number of whorls on 5 

cm of shoot, at the beginning and at the end of exposure. 

 

E. Biomacromolecule composition 

Fourier Transform InfraRed spectroscopy (FTIR) was used to probe molecular vibrations 

in plant samples and thus gain information on their biochemical composition (lipids, 

carbohydrates, proteins). Samples were analyzed with a microscope FTIR (Thermo Nicolet 

NEXUS 470, ESRF) over the range of 4000 – 400 cm-1 with a spectral resolution of 4 cm-1. 

One spectrum is an average of 64 scans per sample. Each powdered plant was placed on the 
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sample plate and three independent technical replicates for each sample (5 biological replicates 

per treatment) were acquired. The full experimental setup for FTIR acquisition is given in 

supplementary information. OMNIC software was used to export experimental spectra (Thermo 

Scientific™ OMNIC™ FTIR Software). FTIR data treatment was performed using the Orange 

software (Demšar et al. 2013). Briefly, data were pre-processed which implies selection of the 

region of interest (including most of the variance among samples), vector normalization and 

smoothing by Savitzky-Golay filter. Using the second derivative, a principal component 

analysis (PCA) was carried out and the components permitting to explain at least 70% of the 

variance were used to perform a subsequent linear discriminant analysis (LDA). This approach 

permitted to plot the samples and detect differences among groups of samples. In case a 

difference was detected, a logistic regression was applied to the pre-processed data to identify 

wavenumbers contributing to the difference detected between groups thanks to the PCLDA. 

 

F. Endpoints assessing Cu sensitivity 

1) Growth inhibition 

The inhibition percentage of RGR and RER was also calculated for each treated plant to 

assess the sensitivity of genotypes to Cu exposure regardless of their growth performance in 

absence of chemical contamination, following the formula:  

%𝐼𝑟 = (
𝑅𝐺𝑅̅̅ ̅̅ ̅̅ 𝑐 −  𝑅𝐺𝑅𝑡

𝑅𝐺𝑅𝑐̅̅ ̅̅ ̅̅ ̅
) ×  100 

where %Ir is the inhibition percentage of the specific growth rate for a given individual plant 

from the treatment group, 𝑅𝐺𝑅̅̅ ̅̅ ̅̅ c is the average value for RGR in the control group and RGRt is 

the RGR value of the individual treated plant. 

 

2) Copper concentration in plants 

Copper concentration in each shoot at the end of Cu exposure was measured after acid 

digestion of plant material, which occurred in two steps. First, plant material was heated at 94°C 

during 30 minutes in a 1:1 ratio of deionized water: HNO3 (65%), then allowed to return to 

room temperature. Then the samples were brought to a 2:1 ratio of HNO3 (65%):H2O2 and 

heated at 94°C during 2 hours. Once the temperature cooled down to room temperature, samples 
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were filtered with a 0.45 µm filter and diluted to obtain a final HNO3 concentration of 2%. 

Samples were measured using ICP-MS (Agilent 7500ce).  

 

G. Statistical analyses 

Results were analyzed using the R studio software (R Core Team (2016) V 3.3.1). 

Homoscedasticity was tested using Bartlett test. Data normality was tested with Shapiro test on 

ANOVA residuals, with log-transformation when normality assumption was not met with raw 

data. Two-way ANOVAs were performed on results showing normal distribution, with or 

without log transformation, to assess the interactive effects of genotype and Cu concentrations 

during exposure. Tukey HSD post-hoc tests were used to identify significant differences among 

Cu concentrations and among genotypes. Generalized linear models (GLMs) with gamma 

distribution were used to assess interactions in dataset showing no normality despite log-

transformation. The correlation among traits was assessed through principal component 

analysis (PCA) using FactoMineR package (Lê, Josse, and Husson 2008). The link between 

life-history traits and Cu responses was determined with co-inertia analysis, with the RV 

coefficient indicating the degree of correlation between the two matrices (MASS package, 42). 

The differences in plant response among genotypes and Cu concentrations were analyzed with 

linear discriminant analysis (LDA) (ade4 package,48) and plotted using the FactoMineR 

package. The significance of co-inertia and discriminant analyses were assessed with Monte-

Carlo tests on the sum of eigenvalues, with 1000 repetitions. 

 

5. Results 

A. Genetic differentiation of the seven genotypes 

In total, 22 primers were tested, and 84 fragments were scored. Among those, 35 were 

polymorphic. The primer N°20 was selected for its ability to produce clear banding patterns 

and polymorphic bands. Analyzes showed that all the clonal strains differed from each other, 

and thus corresponded to different genotypes (supplementary material S2). 
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B. Differences in life-history traits among genotypes 

In absence of Cu exposure, the studied genotypes showed differences in their life-history 

traits, with 4 of the 7 traits considered being significantly different among genotypes (Figure 

5.1). Some genotypes were significantly more efficient than others regarding RERall, with the 

“AGO” genotype having a RERall of 0.049 cm/d, compared to 0.018 cm/d for the “DOR” 

genotype (Figure 5.1A). The main shoot elongation demonstrated significant differences 

among genotypes as well, with “GAR1” having a RERmain of 0.042 cm/d, against 0.018 cm/d 

for the “DOR” genotype (Figure 5.1C). The number of whorls significantly differed from one 

genotype to another as well, with the “DOR” genotype having on average more whorls per unit 

length (i.e. a shorter internode length) than the others, with 2.0 whorls/cm compared to 1.3 for 

all the other genotypes (Figure 5.1D). The number of lateral shoots also varied among 

genotypes, with three genotypes which did not produce any lateral shoot (“GAR”, “DOU”, 

“DOR”) compared to the others which produced from one to two lateral shoots during the 

experiment (Figure 5.1E). RGR, DMC, as well as root number, did not significantly vary 

among genotypes (Figure 5.1F, G and H, respectively) 
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Figure 5.1. Life-history traits measured on 7 genotypes of Myriophyllum spicatum in absence 

of copper contamination. RERall, Relative elongation rate based on total shoots length (A), 

Main shoot elongation (C), whorl number (D), lateral shoot development (E), relative growth 

rate based on fresh mass (F), dry matter content (G) and root number (H) were measured. The 

legend with color code is displayed in (B). 

 

According to the FTIR analysis, bio-macromolecule composition significantly differed 

among genotypes, although two genotypes, “AGO” and “GAR1” were not analyzed due to lack 
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of biomass. In Figure 5.2, it is clearly visible that “SCHO’ and “GAR2” were clustered aside 

from the 3 other genotypes, suggesting that they were quite different regarding their bio-

macromolecule composition. 

 

 

 

 

 

Figure 5.2. Principal component 

analysis conducted on wavelength 

numbers from FTIR analysis, 

performed on five genotypes of 

Myriophyllum spicatum. 

 

 

 

 

 

 

C. Relationship among life-history traits  

The relationships among life-history traits were assessed through PCA on control plants 

(Figure 5.3). It showed that DMC and whorls/cm were correlated, and both were anti-correlated 

to RER and lateral shoot number. Expectedly, RERall was relatively correlated with lateral 

shoot number. RGR was clustered with RERmain and Root number, although the former was 

poorly represented in the factorial plan. RERall was the main contributor to the second axis, 

whereas RERmain was the main contributor of the first axis. 
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Figure 5.3. Principal Component Analysis (PCA) performed on 7 life-history traits for 7 

genotypes of Myriophyllum spicatum. Relationship between Relative Growth Rate (RGR), 

Relative Elongation Rate based on total shoot length (RERall); RER based on main shoot 

elongation (RERmain), whorl number per cm (whorls_cm), Dry Matter Content (DMC), root 

number (Roots) as well as lateral shoot number (LS) is assessed. Color gradient represents the 

goodness of representation of each variable in the factorial plan defined by axes 1 and 2. 

 

D. Copper impact on M. spicatum: general patterns and intraspecific variation 

Copper exposure negatively affected all genotypes, with a dose-dependent effect on growth 

related endpoints, and sensitivity to Cu significantly differed among genotypes (Figure 5.4). 

Variation in sensitivity at low Cu varied up to 8 times for RGR depending on the concentration, 

with biomass production inhibited from 7 % for “CAM” to 62 % for “SCHO” at 0.15 mg/L. At 

0.5 mg/L Cu, the range of inhibition slightly differed as the Cu stress increased, and growth 

production was inhibited from 40 % for “DOR” to 90 % for “DOU” (Figure 5.4A). RERall 

demonstrated slightly less variation among genotypes, with differences in sensitivity up to 7 
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fold depending on the Cu concentration (Figure 5.4B). Shoots elongation inhibition ranged 

from 10.9 % for “DOR” to 56.1 % for “AGO” at 0.15 mg/L, and from 10.8 % for “DOR” to 

70.1 % for “DOU” at 0.5 mg/L. Generally, the “DOU” genotype was the most impacted at high 

Cu concentration, and “DOR” the least impacted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Copper sensitivity of 7 genotypes of Myriophyllum spicatum, assessed through the 

inhibition of their Relative Growth Rates (RGR) (A) and Relative Elongation Rates based on 

total shoots elongation (RERall) (B) during a 10-day exposure. ANOVA P-values for genotype 

effects are provided; genotypes with same letters for a given combination endpoint x Cu 

concentration are not significantly different in terms of copper sensitivity (HSD Tukey test). 

 

RERmain was identically affected by Cu as RERall (assessed from both the main shoot and 

the lateral ones), and its sensitivity was similar, with at 0.5 mg/L “DOR” being the least 

impacted, and “DOU” the most sensitive (2-way ANOVA, F6, 84 = 6,16, P<0.0001). Root 

development was significantly affected by Cu, and significantly differed among genotypes, 

with a decrease in root production associated to the increase in Cu concentration (2-way 
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ANOVA, F6, 84 = 8.94, P<0.0001). Indeed, root production greatly differed among genotypes, 

with the “CAM” being the least impacted, with inhibition in root production of 22.7 % at 0.5 

mg/L, against the “DOU” genotype which was the most impacted, with a complete inhibition 

(100 %) of root production at the same Cu concentration. In contrast, lateral shoot production, 

DMC, and the number of whorls per cm were not significantly affected by Cu.  

At the end of exposure, the different genotypes accumulated between 0.39 for “GAR1” and 

0.84 mg Cu/g DW for “DOU” when exposed at 0.15 mg/L Cu, and between 2.68 for “GAR1” 

and 5.18 mg Cu/g DW for “SCHO” when exposed at 0.5 mg/L Cu. Significant differences were 

found among genotypes exposed at 0.5 mg/L, with the “SCHO” genotype accumulating more 

Cu than others (supplementary data S3). No pattern was found between Cu concentration in 

plants and the inhibition of growth-related endpoints, with the “DOR”, being the least impacted 

genotype and having a Cu concentration of 3.64 mg Cu/g DW, and the “DOU”, the most 

sensitive genotype, having 3.62 mg Cu/g DW at 0.5 mg/L Cu. Furthermore, Cu accumulation 

was not directly linked with growth capacities of the different genotypes, as the genotypes with 

the fastest growth production and elongation (“AGO”, “DOU”) were not those accumulating 

the most Cu. The increase in Cu concentration in plants was tightly correlated with Cu in the 

exposure media, as expected, with a r² of 0.96. 

Based on discriminant analysis, a Monte-Carlo test showed that Cu and Genotype had a 

highly significant effect on the response variables (Monte-Carlo test, P = 0.001), and 43.7 % of 

the total inertia came from the differences between genotypes and between Cu concentrations 

(Figure 5.5). Indeed, 18.8 % were explained by genotypes, 14.0 % by Cu concentrations, and 

10.9 % by the interactions between genotypes and Cu concentrations. Graphically, a strong 

separation among Cu concentrations was observed (Figure 5.5, right panel). Indeed, plants 

exposed to 0.5 mg/L Cu were horizontally opposed to the two other concentrations and 

clustered on the right side of the vertical axis toward the Cu concentration variable, whereas 

the two other concentrations were on the left side of the vertical axis. Furthermore, these two 

concentrations were themselves separated vertically, with the non-exposed plants below the 

horizontal axis and strongly correlated to the growth-related endpoints, and the plants exposed 

at 0.15 mg/L being anti-correlated with growth variables, “CAM:0.15” excepted. Both RERall 

and Whorls/cm were anti-correlated to other life-history traits, and RERall was correlated with 

plants exposed at 0.15 mg/L. The discriminant analysis revealed that RGR and other growth 

parameters (Figure 5.5, left panel) were associated with the absence of Cu in the media (right 

panel), which is consistent with previous results, showing than Cu decreased growth. 
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Furthermore, Cu concentration in the plant was correlated with the high Cu concentration in 

water (0.5 mg/L), which is consistent with an increase in Cu accumulation in plants along with 

an increase of Cu in water. 

The link between the life-history traits of genotypes and their sensitivity to Cu, examined 

via co-inertia analysis, revealed that the studied life-history traits explained 62.4 % of the 

response variables. However, according to the Monte-Carlo test, it was only marginally 

significant (Monte-Carlo test, P = 0.09). 

 

 

Figure 5.5: Linear discriminant analysis on 7 genotypes of Myriophyllum spicatum exposed to 

Cu during 10 days. The left panel displays the canonical weights of the different variables, with 

the number of whorls/cm, the number of lateral shoots (LS), Cu plant concentration, dry matter 

content (DMC), RGR (Relative Growth Rate based on fresh mass), RERall (Relative 

Elongation Rate, based on total shoots length) and RERmain (RER based on main shoot 

elongation). The percentages correspond to the inertia of each axis. The right panel displays the 

scores of the experimental units. These were grouped with ellipses and labelled after the 

combination genotype x Cu concentration.  
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6. Discussion 

A. Intraspecific trait variability and trait syndromes 

Our results showed that the different genotypes of M. spicatum significantly differed in their 

morphology traits and their growth abilities. Indeed, whorl number per length unit, lateral shoot 

production as well as shoot elongation (both for main and lateral shoots) greatly varied among 

genotypes when no chemical stress was applied. It has been acknowledged before that different 

plant individuals can exhibit contrasting morphologies depending on their environment, both 

through phenotypic plasticity and genotypic variation (Madsen 2013; Arshid and Wani 2013; 

Ganie et al. 2015; Weyl and Coetzee 2016; Grenier et al. 2016; Tóth et al. 2017). In our case, 

the plants were grown during at least 6 month in a similar environment prior to the experiment, 

and genotype morphologies never converged, indicating that genotypic variation would be the 

main source of the observed differences. Five of the seven genotypes were harvested from 

different populations in different streams which were not connected (Garonne genotypes 

excepted, see supplementary data, Figure S1), increasing the probability to get clonal strains 

with different genotypes, due to genetic heterogeneity among populations (Harris et al. 1992; 

Chen et al. 2009; Cao et al. 2017). The ISSR analysis confirmed that clonal strains were 

different genotypes, even for the Garonne individuals (see supplementary data, Figure S2).  

The PCA showed that RERall and lateral shoot production were positively correlated, and 

were anti-correlated with DMC and Whorls/cm (which were strongly positively correlated). 

RERmain was not correlated to these variables, but clustered with RGR. This first suggests that 

two strategies exist to promote elongation, with either resource allocation in lateral shoot 

production, or in main shoot elongation. Secondly, this suggests a contrast between actively 

elongating plants with lateral shoots, long internodes and often a low DMC (e.g. “CAM” and 

“AGO” genotypes), and plants with lower elongation and internode length, with a higher DMC 

(e.g. “DOR”). This can result (1) in numerous, dense whorls, likely promoting nutrient 

absorption and possibly also light if water is clear enough, (2) an architecture with low tissue 

density which allows to be closer to the light source through lateral shoot production to form a 

canopy or (3) a high growth rate associated with a preferential elongation of the main shoot, 

with traits otherwise intermediate between the two other cases. This possibly illustrates 

different growth strategies, whose fitness will depend on environmental conditions. 
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RERall and lateral shoot production were negatively correlated to DMC, suggesting that 

elongation was mainly promoted by cell elongation, and/or by the production of tissue with 

high water content and thin cell walls. RGR and DMC were not correlated, which was 

unexpected, as DMC or close correlates such as specific leaf area (SLA), are considered as good 

indicators of the resource allocation of plants to growth processes ( Westoby 1998; Elger and 

Willby 2003).  

FTIR analysis revealed that some genotypes were different in terms of composition, 

although those differences do not appear to be correlated with a sensitivity or resistance pattern. 

Indeed, “SCHO” and “GAR2” genotypes were not more sensitive or resistant, and these are the 

two genotypes which appear to greatly differ from others. However, further analyses will be 

performed to complement the results, to assess more precisely M. spicatum bio-macromolecule 

content; the two genotypes currently missing will also be added to the current analysis. 

 

B. Variations in copper sensitivity 

Strong differences in sensitivity to Cu were observed among genotypes, as shown by the 

broad range of inhibition of growth-related endpoints. We demonstrated that genotypes differed 

in terms of morphology, and those differences were expected to be the cause of the differences 

in sensitivity to Cu. Further analysis revealed that the results of the analysis were explained 

slightly more by genotypes than by copper concentrations, supporting the fact that genotypes 

play an important part in species sensitivity to chemicals. However, according to the co-inertia 

analysis, 62% of the results were explained by the life-history traits considered in this study. 

However, the co-structure was not significant, suggesting that some physiological and 

metabolic traits may better explain differences in copper sensitivity (Singh et al. 2016).  

For instance, different leaf color among genotypes were visually observed (supplementary 

data S4), and pigment content might change from one genotype to another, impacting 

photosynthetic efficiency, antioxidant properties and metal interactions. Indeed, it has been 

widely demonstrated that plant pigments can chelate metallic compounds, and have antioxidant 

properties (Zvezdanović and Marković 2009; Brewer 2011). Some genotypes had very red 

shoots, and were apparently less sensitive to algae proliferation, which could be correlated with 

phenolic compound production, such as tellimagrandin II, which is an allelopathic compound 

known to be present in M. spicatum (Gross 2001; Gross et al. 1996). Polyphenols are also 

antioxidant compounds and metal chelators, and their production could provide an advantage 
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in terms of stress response mechanisms, as they are ROS scavengers (Das and Roychoudhury 

2014). However, a study has demonstrated that phenolic compounds act as pro-oxidant in 

presence of Cu2+, thus increasing ROS production (Iwasaki et al. 2011). Stress tolerance is also 

mediated by changes in proline production and enzymatic responses, which will be mainly 

triggered when plants are exposed to stressful conditions (Pflugmacher et al. 1997; Kanoun-

Boulé et al. 2009; Fidalgo et al. 2013; Thomas et al. 2013). Some individuals may have higher 

basal level of production of these compounds, and may therefore be more tolerant. To go 

further, it has been widely demonstrated that preferential gene expression and post-translational 

modifications are involved in stress response pathways in plants, but very few studies have 

investigated their impact in aquatic plants as a way to cope with abiotic stressors (Regier et al. 

2013; Gamain et al. 2017). This highlights the need to go further into the mechanisms 

explaining aquatic plant responses and adaptation to environmental factors, including chemical 

stressors. 

The genotypes used in these experiments were coming from relatively similar aquatic 

environments in terms of nutrient loads, climate and environmental pollution, thus decreasing 

the probability to harvest very different genotypes undergoing strong selection pressures. To 

complement the current dataset and better understand the sources of variability in sensitivity 

among genotypes, we aim to harvest genotypes originating from more contrasted environments, 

and to study additional physiological traits in further experiments, listed in Table 6.1. 

Furthermore, some transcriptomic studies will be performed on two contrasted genotypes to 

assess genetic differences (i.e. preferential translation) that may explain different sensitivities 

to Cu. 

Table 6.1: Life-history traits that will be studied in further experiments to help understanding 

the mechanisms of variations in the sensitivity of Myriophyllum spicatum to copper. 

Life-traits Role 

Fv :Fm Photosynthesis 

Pigment composition Phytosynthesis & ROS scavenging 

C, N, P content Elemental composition 

Phenolic compounds Allelopathy & ROS scavenging, Biomass conservation 

SLA Photosynthesis, nutrient absorption 

Shoot diameter & resistance Biomass conservation 
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C. Implications of intraspecific variation for ecotoxicological risk assessment  

The genotypic variation detected in M. spicatum might inflect the outcomes of laboratory 

tests, as our results have shown that the sensitivity may vary from one genotype to another, with 

up to fourfold growth inhibition differences among genotypes. This implies that depending on 

the genotype used in the laboratory, the benchmark values derived from those toxicity tests for 

an ecosystem compartment may not be protective enough to ensure the absence of harmful 

effects on organisms living in this compartment. Therefore, a given genotype might not be 

representative of the species sensitivity, and therefore might mislead the following steps of 

ecotoxicological risk assessment (Clark et al. 1999; Johnson and Sumpter 2016). Indeed, hazard 

characterization with lab assays, from which benchmark values and guidelines are derived from, 

is one of the first steps of ERA. Two main methodologies are used to determine a benchmark 

value; first, the Predicted No Effect Concentration (PNEC) of the most sensitive species used 

during lab assays (with a minimal of 3 species tested), which is derived with assessment factors. 

The second method is the use of Hazardous Concentration 5% (HC5), which is extracted from 

Species Sensitivity Distribution (SSD) method, which compares the sensitivity of at least 6 

species, and extracts the concentration which will harm 5% of the species tested. If the 

sensitivity of a given species in those tests is only the fruit of a sampling effect, and is not 

representative of the entire population sensitivity, then the first step of risk assessment may be 

impaired, as well as subsequent ones. 

It is therefore crucial to properly assess species sensitivity to chemicals, by taking into 

account the different sources of variation that may influence the outcomes of laboratory testing, 

in order to insure their reliability.  

 

D. Ecological implications of intraspecific variation 

Intraspecific variability has been recognized for decades as a promoter of diversity and as a 

condition for coexistence (Bolnick et al. 2011). Recent work in trait-based community ecology 

has shed light on the need to integrate intraspecific variability in community ecology studies 

(Violle et al. 2012; Isaac et al. 2017). 

According to Albert et al. (2011), interspecific variability is relatively larger than 

intraspecific variability at large scale, whereas intraspecific variability gains in importance as 

the scale of study decreases. As such, intraspecific variability should be taken into account, 
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especially in small studies, as it could inflect ecological studies outcomes. Furthermore, linking 

ecosystems and species relies on approaches that consider how species traits affect ecosystem 

processes (Bolnick et al. 2011). Cianciaruso et al. (2009) have studied the importance of 

intraspecific variation in functional diversity of plant communities, and they demonstrated that 

there was no relationship between species richness and functional diversity, as intraspecific 

variability in functional traits was very high. They concluded that intraspecific variation should 

allow a better understanding of processes linking individuals and ecosystems, and would also 

provide better predictions in species extinction consequences for ecosystem processes. Indeed, 

intraspecific variability in life-history traits (from allelopathy to growth) could strongly inflect 

the structure and dynamic of assemblages of organisms that co-occur within a local place and 

time (Violle et al. 2012). For instance, Wolf et al. (2018) have investigated the importance of 

intraspecific variability in Artic diatoms in the adaptation to climate change, and showed very 

high variability in their sensitivity due to plastic responses. Similar finding was demonstrated 

by Kremp et al. (2012); they assessed the importance of intraspecific variability, more 

specifically phenotypic plasticity, in diatoms response to climate change and highlighted its 

importance in ecosystem resilience.  

However, very few studies have looked into the role of genotypic variation in species 

adaptation to a changing environment, and even less when it comes to sensitivity to chemical 

contamination (Dalton et al. 2013). To fill these gaps, the role of intraspecific variability in 

species sensitivity, ecosystem resilience and recovery needs to be properly assessed (Oliver et 

al. 2015). Our results have shed light on the importance of genotypic variation in the sensitivity 

of M. spicatum to Cu, demonstrating that individuals can exhibit significantly different 

sensitivities, depending on their traits. Although we did not measure the genetic variability 

within populations, our results give insights on the resilience potential that a broad genetic 

diversity could provide to an ecosystem, if genotypes exhibit differences in sensitivity to 

stressors and in trait syndromes. Indeed, individuals with traits conferring reduced sensitivity 

or high coping capacities will confer higher resistance to ecosystem functions (Oliver et al. 

2015). 

 

7. Conclusion 

We assessed the importance of genotypic variation in the intraspecific variability of M. 

spicatum sensitivity to Cu, and demonstrated impact differences up to fourfold among 
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genotypes regarding growth related endpoints. ERA is an always evolving process, along with 

scientific discoveries, in order to increase environmental quality, and reduce as much as 

possible the impact of chemicals on non-target organisms. As such, we bring to knowledge that 

genotypic variability is a source of variation in species sensitivity to chemicals, and that further 

studies should be conducted to properly understand the mechanisms involved. We demonstrated 

that morphological endpoints do not completely explain these differences in sensitivity, and we 

highlight that further studies should be focused on physiological endpoints and genetic changes 

(e.g. alternative splicing, preferential translation) to assess the mechanisms of such variation. If 

those further studies confirm that genotypic variation is correlated with specific traits, it might 

allow to integrate such variability in ERA approaches, thus enhancing their robustness. 
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9. Supplementary data 

 

Figure S1. Geographic origin of the seven genotypes of M. spicatum. 

 

 

Figure S2. UPGMA cluster analysis based on ISSR data showing genetic relationships among 

samples of Myriophyllum spicatum. The scale refers to genetic distance based on the primer 

n°20. 

 

Figure S3. Copper concentration in mg Cu per grams of dry weight in seven genotypes of 

Myriophyllum spicatum exposed to three Cu concentration during 10 days. N=5. 
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Figure S4. Pictures of the shoots of the seven genotypes exposed during 10 days to copper. 

Genotypes demonstrate different leaf and shoot colors. Colors match with the color code used 

in the different figures. 
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CHAPTER V 

Influence of phenotypic plasticity on macrophyte 

sensitivity to chemicals 
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1. Does phenotypic plasticity inflect the sensitivity of Lemna minor to 

copper? 

 

Phenotypic plasticity has long been considered by evolutionary ecologists as a nuisance 

for organisms, hampering the selection of favorable traits in a given environment (see 

chapter I.4). However it was finally recognized as a way to cope with short-term 

environmental fluctuations. Many studies have notably highlighted the importance of 

phenotypic plasticity in the adjustment to environmental changes in a context of global 

warming. Some studies have also investigated how changes in nutrient loads or pH may 

affect trace elements uptake by aquatic plants in a purpose of phytoremediation. However, 

no study has directly linked phenotypic plasticity with chemical exposure, and its influence 

on species sensitivity. This is of concerns, as human activities trigger both environmental 

fluctuations and ecosystems modification through chemical contamination.  

As phenotypic plasticity plays an important role in the adaptive response of species to 

environmental changes, it is relevant to assess if this process can influence species 

sensitivity to chemicals.  

Thus, in this chapter, I aimed to assess whether or not phenotypic plasticity plays a role 

in aquatic macrophyte response to Cu exposure. Lemna minor was used as a model species, 

since previous results (chapter III) have shown that L. minor does not exhibit broad 

variations in sensitivity among genotypes, and may thus rely more on phenotypic variability 

to cope with environmental changes. 
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2. Abstract 

Environmentally mediated sensitivity of Lemna minor to copper (Cu) was evaluated for the 

first time in three experiments: the effects of two levels of nutrient concentration, light 

irradiance or Cu pre-exposure were tested. Various Cu concentrations ranging from 0 to 0.25 

mg/L were used to assess the sensitivity of L. minor to this metal, using one common strain 

previously acclimatized to two different levels of light intensity, nutrient enrichment and Cu 

pre-exposure. Our results showed a phenotypic plastic response of the relative growth rates 

based on frond number and fresh mass production, and maximum quantum yield of 

photosystem II (Fv:Fm). Growth was affected by the three environmental conditions both prior 

and during Cu exposure, whereas Fv:Fm was mostly affected during Cu exposure. Copper 

significantly influenced all the parameters measured in the three experiments. Environmental 

conditions significantly modified L. minor sensitivity to Cu in all experiments, with up to 

twofold difference depending on the treatment. Growth rate was the parameter the most 

impacted. Our study revealed for the first time the existence of phenotypic plasticity in L. minor 

sensitivity to chemical contamination, and implies that environmental context need to be taken 

into account for a relevant risk assessment.  

 

Keywords: Lemna minor, copper, phenotypic plasticity, ecotoxicological risk assessment 
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3. Introduction 

Aquatic macrophytes – photosynthetic organisms that can be seen to the naked eye – play 

a pivotal role in aquatic ecosystems. They have a wide range of life history traits, as they can 

be free-floating at the water surface, emergent, or submersed in the water column, and are found 

across various environmental and ecological conditions (Chambers et al. 2008; Thomaz et al. 

2008). They provide shelter for other species, and also improve water quality through their 

involvement in biogeochemical cycles (Onaindia et al. 2005; Bornette & Puijalon 2011; Coutris 

et al. 2011). As primary producers, they are also the first step of the trophic chain (Chambers 

et al. 2008; Li et al. 2010; Bornette & Puijalon 2011). Their direct response to changes of their 

biotic and abiotic environments has the potential to unbalance the whole aquatic ecosystem 

functioning and food web (Bornette and Puijalon 2011).  

Some aquatic macrophyte species are used as bioindicators and for chemical risk assessment 

in aquatic environment because they have a wide geographical distribution and are sensitive to 

various environmental parameters and to anthropogenic chemicals (Ferrat et al. 2003; Onaindia 

et al. 2005; Rai 2009). Among these species, Lemna minor was the first macrophyte species to 

be included in OECD guidelines, as it is a free-floating fast-growing species easily grown in 

the laboratory (Test N°221, OECD 2006). L. minor is composed of photosynthetic fronds 

grouped by one to twelve, which form new individuals once they are separated. This species is 

distributed worldwide from northern Scandinavia to southern New Zealand, which is an 

essential quality for bioindicator species. It thrives under varying environmental conditions, 

and shows therefore a high potential for phenotypic plasticity (Vasseur and Aarssen 1992).  

Phenotypic plasticity, which is the ability for a similar genotype to produce different 

observable characteristics in different environments, is more likely observed in fast-growing 

species with clonal reproduction and with a wide geographic range, such as L. minor. (Barrett, 

Eckert, and Husband 1993). Plasticity has received growing interest over the past decades 

because it can increase the ability of species to survive and adjust to the short-term 

environmental fluctuations that are more frequent with climate change and agriculture 

intensification (Bradshaw 1965; Wells and Pigliucci 2000; Matesanz et al. 2010; Vitasse et al. 

2010; Eissa and Zaki 2011; Woodward et al. 2016). For instance, it has been shown that several 

clonal strains of L. minor respond by changes at both morphological and biochemical levels to 

rapid environmental fluctuations (Vasseur, Aarssen, and Lefebvre 1994). Going et al. (2008) 

have found that Nasturtium officinal, another macrophyte species, harbors some morphological 

plasticity in leaf area to adjust to low light availability. Likewise, Myriophyllum spicatum is 
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characterized by plastic biomass allocation and clonal architecture depending on flooding 

conditions (Yang et al. 2004; Arshid and Wani 2013). There is growing evidence for the 

potential for phenotypic plasticity to play a role in the adaptation of aquatic macrophytes to 

environmental fluctuation (Sultan 1995; van Kleunen and Fischer 2005; Ghalambor et al. 2007; 

Matesanz et al. 2010).  

Plasticity starts to be well acknowledged in aquatic plants, however the importance of 

abiotic factors on sensitivity to chemicals has been rarely investigated (McLay, 1976; Gupta et 

al. 1996; Li et al., 2010, Nuttens and Gross, 2016). The effects of chemicals on aquatic 

macrophytes have been extensively studied, as well as the effect of environmental fluctuations. 

But very few studies have jointly considered environmental variation and chemical 

contamination (Fairchild, Ruessler, and Ron 1998; Fritioff et al. 2005; Knauer et al. 2006; Li et 

al. 2010; Coutris et al. 2011; Boxall et al. 2013; Verma and Suthar 2015). To the best of our 

knowledge, none has investigated the involvement of phenotypic plasticity in the coping 

process of chemical stress by aquatic macrophytes.  

In order to assess properly the impact of pollutants on aquatic plants, we need to understand 

how environmental factors can inflect their sensitivity and their response to pollution, and 

therefore both the resistance and resilience of a given ecosystem to such pressure. In chemical 

risk assessment, toxicity assays are performed following very clear and reproducible guidelines 

(e.g. OECD protocols). The hypothesis that a given species could be more or less sensitive to 

one pollutant depending on environmental conditions remains to be tested. This has 

implications because results obtained in toxicity assays may not reflect what is found in the 

natural environment.  

In this study, we investigated the phenotypic plasticity of L. minor sensitivity to Cu 

contamination by measuring the impact of environmental fluctuations (light intensity, nutrient 

concentration and Cu pre-exposure). Copper is an environmentally relevant contaminant due to 

its broad use in both agriculture and industries, and its impact on aquatic biota is well studied. 

At high concentration, Cu becomes toxic to living organisms, leading to reactive oxygen species 

(ROS) production and disruption of photosynthesis in chlorophyllous organisms, and therefore 

to chlorosis (Razinger et al. 2007; Wei Xing, Wenmin Huang 2009; Li et al. 2010; Thomas et 

al. 2013; Üçüncü et al. 2013). Growth related endpoints (Relative Growth Rates) and 

photosynthesis endpoint (maximum quantum yield of photosystem II, or Fv:Fm), which are 

acknowledged to be fitness related traits (Molina-Montenegro et al. 2013; Younginger et al. 

2017), were used to quantify L. minor response to Cu and environmental factors.  
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4. Material and methods 

A. Experimental design 

Three independent experiments were conducted with one clonal strain of L. minor, from 

Avillers-Sainte-Croix, France (49°02’01’’N, 5°43’16’’E). In order to avoid genetic variation, 

stock culture was established from one single frond. It was then kept under axenic conditions 

in 250 mL erlenmeyer flasks containing Steinberg medium at pH 6.5. Environmental conditions 

in the growth chamber were 23.0 ± 0.1 °C inside experimental units with a 14h/10h day/night 

period and a light intensity of 96.1 ± 2.3 µmol m-2 s-1. All three experiments were conducted 

with non-axenic Steinberg medium, modified according to table 1 for nutrient and Cu pre-

exposure experiments, with a pH of 6.5 ± 0.1.  

For each experiment, L. minor individuals were first acclimatized for two weeks in a given 

set of conditions (either “favorable”, e.g. high light irradiance or “unfavorable”, e.g. with a low 

light irradiance), and then exposed for one week to various Cu concentrations under 

environmental conditions, similar or contrasting with those from the acclimatization period 

(Table 4.1). This set-up allowed to avoid any confounding effect of environmental conditions 

prior to the experiments and also to distinguish between the effects of average environmental 

conditions and temporal change regime (i.e. changing from “favorable” to “unfavorable”, or 

vice-versa, vs. stable conditions for the whole experiment, see Figure 4.1).  

Copper sulfate was purchased from Sigma (CAS number 7758-98-7, Saint Quentin 

Fallavier, France) and a concentrated solution of 1 g/L CuSO4 was prepared in ultrapure water, 

and diluted in the different media before pH adjustments. 
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Figure 4.1. The crossed experimental design used in our study, with an acclimatization and a 

copper exposure phase. One environmental factor (light intensity, nutrient level or copper pre-

exposure) varied per experiment, with ‘favorable’ and ‘unfavorable’ conditions for plant 

growth.  For example, light intensity was either the one routinely used on the stock cultures, 

and considered as ‘favorable’ (L+), or lowered using a shading mesh, and considered as 

‘unfavorable’ (L-) for plant growth. The various combinations of conditions during 

acclimatization and Cu exposure allowed to avoid any confounding effect of environmental 

conditions prior to the experiment, and to distinguish between the effects of average 

environmental conditions and of temporal change regime. 

 

Three water samples per Cu concentration were taken at the beginning of Cu exposure, in 

order to assess effective concentrations in the media. The samples were measured using 

inductively coupled plasma with optical emission spectrometry (ICP-OES, Thermo Electron, 

IRIS INTREPID II XLD). Effective Cu concentrations in the experimental units were on 

average at 97.0 ± 2.1 % of nominal concentrations at the beginning of experiments. According 
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to previous measurements conducted in similar conditions, Cu concentration remained > 80% 

of nominal concentrations after 7 days of exposure. 

All experiments were conducted following OECD TG 221 guideline, with some deviations in 

environmental parameters as described below.  

Influence of light intensity 

Low light irradiance, which corresponded to a light intensity of 21.7 ± 0.8 µmol m-2 s-1 of 

photosynthetic active radiation, was considered as an “unfavorable condition”. High light 

irradiance was considered as a more “favorable condition”, with a light intensity of 96.1 ± 2.3 

µmol m-2 s-1. Copper concentrations tested were 0, 0.05 and 0.25 mg/L (4 replicates per 

combination of Cu concentration × light irradiance during acclimatization × light irradiance 

during exposure). 

Influence of nutrient concentration 

Low nutrient levels, that corresponded to low nitrate and phosphate concentrations (6.5 

mg/L KNO3, 0.66mg/L KH2PO4 and 86.9 µg/L K2HPO4), were considered as an “unfavorable 

condition”. High nutrient levels were considered as a more “favorable condition” with high 

nitrate and phosphate concentrations (350 mg/L KNO3, 38 mg/L KH2PO4, and 5 mg/L 

K2HPO4). Copper concentrations tested were 0, 0.1 and 0.25 mg/L (5 replicates per combination 

of Cu concentration × nutrient concentration during acclimatization × nutrient concentration 

during exposure). 

Influence of Cu pre-exposure 

Two sets of environmental conditions were used during the two-week acclimatization: pre-

exposure to 0.05 mg/L Cu (i.e. “unfavorable” condition) and no pre-exposure to Cu (i.e. 

“favorable” condition). Copper concentrations used during subsequent exposure were 0, 0.015 

and 0.20 mg/L (6 replicates per combination of Cu pre-exposure conditions × Cu concentration 

during subsequent exposure).  
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Table 4.1. Summary of environmental conditions for the three experiments, during 

acclimatization and exposure: time. L: light intensity, N: nutrients (KNO3, KH2PO4 and 

K2HPO4), +/- symbols are used for “favorable” (+) and “unfavorable” (-) conditions, and “P-

E” for pre-exposed to Cu.  

 

 

B. Endpoints 

The number of fronds was recorded on the first and the last day of Cu exposure for each 

experimental unit. Fresh mass per frond was estimated from stock cultures at the beginning of 

Cu exposure under each environmental set of conditions. For this purpose, six weighings of 9 

to 14 randomly chosen fronds were realized for each acclimatization condition, and averaged. 

These average values were used to assess total biomass in each flask at the beginning of Cu 

exposure (direct weighting was avoided, as this often breaks roots, and is thus stressful to the 

plants). Fronds within each flask were counted and weighted at the end of experiments to assess 

their fresh mass, then oven dried at 70°C until constant weight to assess their dry mass. Relative 

growth rates (RGR) based on fresh mass or frond number were calculated for each experimental 

unit (i.e. erlenmeyer flask) as follows:  

𝑅𝐺𝑅𝑖−𝑗 = (ln(𝑁𝑗) − ln(𝑁𝑖))/𝑡 

where RGRi-j is the relative growth rate from time i to j, Ni is the endpoint (frond number or 

fresh mass) in the test or control flask at time i, Nj is the same variable in the test or control 

flask at time j, and t is the time period from i to j. 

Experiments 
Copper during 

exposure mg/L 

Acclimatization and exposure 

conditions 

Nutrients  

n = 5 
0, 0.1, 0.25  

N + 350 mg/L KNO3 

38 mg/L KH2PO4 

5 mg/L K2HPO4 
 

N - 6.5 mg/L KNO3 

0.66mg/L KH2PO4 

86.9 µg/L K2HPO4 

Light intensity 

n = 4 
0, 0.05, 0.25  

L + 96.1 ± 2.3 µmol m-2 s-1 
 

L - 21.7 ± 0.8  µmol m-2 s-1 

Copper pre-exposure  

n = 6 
0, 0.05, 0.25  

Not P-E 0 mg/L Cu 
 

P-E 0.05 mg/L Cu 
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The inhibition percentage of RGR was also calculated for the experimental units in the 

different treatment groups to assess both effects of environmental conditions and Cu exposure, 

following the formula:  

%𝐼𝑟 = (
𝑅𝐺𝑅̅̅ ̅̅ ̅̅ 𝑐 −  𝑅𝐺𝑅𝑡

𝑅𝐺𝑅̅̅ ̅̅ ̅̅ 𝑐
) ∗ 100 

where %Ir is the inhibition percentage of the relative growth rate, 𝑅𝐺𝑅̅̅ ̅̅ ̅̅ c is the average value 

for RGR in the control and RGRt is an individual value for RGR in the treatment group. 

Dry matter content (DMC) in % was calculated as:   

%𝐷𝑀𝐶 = (
100 ∗ 𝐷𝑀

𝐹𝑀
) 

where FM is fresh mass of plant samples, DM is their corresponding dry mass. 

Maximum quantum yield of photosystem II (Fv:Fm), which is the maximal ability of the 

plant to harvest light, calculated by using the Kautsky effect (Maxwell and Johnson 2000; 

Murchie and Lawson 2013), was measured using an underwater fluorometer Diving-Pam 

(Heinz Walz GmbH, Germany). The basic settings of the Diving-Pam, namely intensity of 

measuring light (50: MEAS-INT) and amplification factor (49: GAIN) were set to 8 and 2, 

respectively. At the beginning of the experiment, fifteen randomly-chosen L. minor bunches of 

three-four fronds per environmental condition were dark acclimatized during 30 minutes to 

ensure the opening of reaction centers. At the end of the experiment, three measurements were 

similarly taken from each experimental unit, with changes in the Diving-Pam parameters 

(increase in intensity of measuring light and/or amplification factor) when plants were too 

chlorotic to emit sufficient signal for accurate measurement of Fv:Fm. 

 

C. Statistical analysis 

Normality was assessed by a Shapiro-test on ANOVA residuals. Log-transformation of raw 

data was conducted when the normality assumption was not met. Homoscedasticity was tested 

by using a Bartlett test. Three-way ANOVAs were performed to assess the interactive effects 

of acclimatization conditions, exposure conditions and Cu concentrations during exposure. 

Tukey HSD post-hoc tests were used to identify significant differences between the various 

combinations of experimental treatments. Generalized Linear Model with Gamma distribution 

were performed to assess interactions in dataset showing no normality despite log-
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transformation. The fit of the models were assessed using the pseudo-R² and Akaike 

Information Criterion (AIC).  Statistical analyses were conducted using R studio software (R 

Core Team (2016) V 3.3.1). 

 

5. Results  

All the endpoints, except dry matter content in two experiments, were affected by 

environmental conditions. We also found that sensitivity to Cu was modified as a result of 

environmental variations (Table 5.1).  

 

A. Light variation 

1) Quantum yield of PSII 

The results suggest that light intensity had an impact on L. minor Fv:Fm and its sensitivity 

to Cu, which is supported by a three-way interaction between Cu concentration and light 

intensities during both acclimatization and exposure (P = 0.006, see Table 5.1). Copper 

negatively affected Fv:Fm (P < 0.0001), and the effect was more pronounced when 

environmental conditions were favorable. Plants exposed to low light intensity throughout the 

experiment were less affected by Cu than in other treatments, especially at high Cu (0.25 mg/L), 

with 4.8% of Fv:Fm inhibition, against 11.4% for high light (Figure 5.1a). It was visually 

observed that fronds from controls exposed to low light irradiance were thicker and darker. 

 

2) Relative growth rates 

Growth rates were significantly impacted by light intensity during Cu exposure (P < 0.0001 

for both RGRs) but not during the acclimatization phase (Figure 5.1b, Table 5.1). Therefore, 

only data with steady environmental conditions between acclimatization and Cu exposure were 

kept for subsequent statistical analysis. Unfavorable treatment (L-) strongly decreased growth 

of L. minor, with a RGRfresh mass in the controls of 0.126 d-1 under low light intensity, against 

0.342 d-1 at high light intensity.  

Copper negatively affected growth, and its impact was driven by light intensity, as 

illustrated by a significant two-way interaction for both RGRs (P < 0.001) between Cu and light 
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intensity during Cu exposure (Table 5.1). Under low light intensity, low Cu dose (0.05 mg/L) 

did not affect growth, whereas plants under high light had a RGRfresh mass inhibited by 24.2% 

(Figure 5.1b). However, the highest Cu concentration (0.25 mg/L) inhibited the RGRfresh mass 

by 99% under low light intensity, against 72% under high light intensity. 

 

Figure 5.1. (a) Maximum quantum yield (Fv:Fm) of L. minor under favorable” (L+) and 

“unfavorable” (L-) light conditions during the phase of acclimatization (first letter in the legend) 

and the phase of Cu exposure (second letter in the legend). (b) Relative growth rate (RGR) 

based on biomass production under “favorable” (- / L+) and “unfavorable” (- / L-) light 

conditions during Cu exposure at 0, 0.05 and 0.25 mg/L. Only steady conditions are shown in 

figure 1b, as no significant effect of acclimatization was found. Significant differences among 

treatments and Cu concentrations are labelled with different letters from a to d, error bars 

correspond to standard errors.  
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Table 5.1. Summary table of the P-values and significance levels for factorial ANOVAs and 

GLM (in italic) testing the effects of the independent variables copper concentration (Cu), 

environmental conditions during acclimatization( Acc.) and during copper exposure (Expo.), 

and their interactions (Cu*Acc, Cu*Expo, Cu*Acc*Expo). df res.: residual degrees of freedom; 

df: treatment degrees of freedom; F: Fisher calculated values. DMC: Dry matter content, fm: 

fresh mass. Stars highlight significant P-values. 

 

 

B. Variation in nutrient concentrations 

1) Quantum yield of PSII 

Nutrient concentrations significantly affected the sensitivity of Fv:Fm to Cu (Figure 5.2a), 

and it was supported by an interaction between Cu concentrations and nutrient richness, both 

during acclimatization and Cu exposure (P = 0.0126 and P = 0.0059, respectively, Table 5.1).  

Experiment Endpoint df res. 
P-value 

Cu 

P-value 

Acclim. 

P-value 

Expo. 

P-value 

interactions 

Light 

variations 

Fv :Fm 

df , F values 
47 < 0.0001 * 

2, 49.54 

0.001 * 

1, 12.369 

< 0.0001 * 

1, 60.549 

Cu*Acc*Expo 0.006 * 

2, 5.791 

RGRfrond 

df , F values 
36 < 0.0001 * 

2, 42.515 

0.0550 

1, 3.933 

< 0.0001 * 

1, 126.836 

Cu*Expo : 0.0007 * 

2, 8.912 

RGRfm 

df , F values 
36 < 0.0001 * 

2, 206.709 

0.0751 

1, 3.360 

< 0.0001 * 

1, 306.107 

Cu*Expo < 0.0001 * 

2, 22.252 

DMC 

df , F values 
40 

< 0.0001 * 

1, 21.212 

0.2428 

1, 1.406 

0.0012 * 

1, 12.153 

0.3672 

1, 0.832 

Nutrient 

variations 

Fv :Fm 

df , F values 
48 < 0.0001 * 

2, 304.187 

0.0075 * 

1, 7.999 

0.0003 * 

1, 15.303 

Cu*Acc : 0.0126 * 

2, 4.795 

Cu*Expo : 0.0059 * 

2, 8.718 

RGRfrond 

df , F values 
59 < 0.0001 * 

2, 286.978 

< 0.0001 * 

1, 22.534 

 

0.0049 * 

1, 8.723 

Cu*Expo : 0.0003 * 

2, 9.635 

RGRfm 

df , F values 
48 < 0.0001 * 

2, 509.128 

< 0.0001 * 

1, 38.429 

< 0.0001 * 

1, 40.055 

Cu*Acc*Expo : 0.0072 * 

2, 5.474 

DMC 

df , F values 
24 < 0.0001 * 

2, 30.193 

0.0694 

1, 0.069 

0.322 

1, 0.322 

0.899 

2, 0.246 

Copper pre-

exposure 

Fv :Fm 

df , F values 
18 < 0.0001 * 

2, 159.218 

0.0234 * 

1, 6.136 

 0.8169 

2, 0.204 

RGRfrond 

df , F values 
30 < 0.0001 * 

2, 308.967 

0.5365 

1, 0.391 

 Acc*Expo : 0.0057 * 

2, 6.176 

RGRfm 

df , F values 
30 < 0.0001 * 

2, 542.423 

0.0833 

1, 3.209 

 Acc*Expo : 0.0005 * 

2, 9.82 

DMC 

df , F values 
30 0.0004 * 

2, 10.119 

0.0522 

1, 4.085 

 Acc*Cu : 0.0012 * 

2, 8.516 
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Copper significantly reduced Fv:Fm at all tested concentrations (P < 0.0001), but this effect 

varied with the level of nutrient concentrations: plants under low nutrient levels were less 

impacted than plants growing under high nutrient levels. Indeed, when L. minor was exposed 

to 0.1 mg/L Cu, plants growing on rich media during Cu exposure were slightly more impacted 

than plants growing in poor media (inhibition of 7.4% against 2%, Figure 5.2a). At 0.25 mg/L, 

differences in sensitivity associated with different levels of nutrient concentrations covered a 

range of inhibition values from 9 to 19%, and plants acclimatized under low nutrient level were 

less inhibited than plants acclimatized under high nutrient level.  

 

2) Relative growth rates 

Growth sensitivity to Cu was mediated by variations in nutrient concentrations, as shown 

by the three-way interaction between Cu concentration, nutrient levels during acclimatization 

and exposure, that affected RGRfresh mass (P = 0.0072, Table 5.1). Growth was impacted by 

nutrient levels: RGRfresh mass for control plants passing from a rich medium during 

acclimatization to a poor medium during exposure was <0.300 d-1, against >0.350 d-1 for control 

plants passing from poor to rich nutrient media (Figure 5.2b). Furthermore, plants acclimatized 

in condition of high nutrient level had the lowest RGRfresh mass (0.304 d-1) but the highest 

RGRfrond (0.305 d-1, data not shown), whereas plants acclimatized in condition of low nutrient 

concentration had the highest RGRfresh mass (0.361 d-1) and the lowest RGRfrond (0.290 d-1).  

Copper significantly decreased the two types of RGR measurements (P < 0.0001) for both 

concentrations. At 0.1 mg/L Cu, a slight decrease of RGRs was observed, following the same 

pattern as for controls: plants acclimatized under low nutrient level had a higher RGRfresh mass 

and a lower RGRfrond number compared to plants acclimatized under high nutrient level. Copper 

impact was more pronounced at 0.25 mg/L Cu, in which case the RGRfresh mass inhibition ranged 

from 56% for plants passing from poor to rich nutrient concentration, to 83% for plants under 

low nutrient concentration throughout the experiment.  
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Figure 5.2. (a) Maximum quantum yield (Fv:Fm) and (b) relative growth rate (RGR) of L. minor 

under “favorable” (N+) and “unfavorable” (N-) nutrient concentrations (KNO3 and KH2PO4) 

during the phase of acclimatization (first letter in the legend) and the phase of Cu exposure 

(second letter in the legend), at 0, 0.1 and 0.25 mg/L. Significant differences among treatments 

and Cu concentrations are labelled with different letters from a to h, error bars correspond to 

standard errors. 

 

C. Effect of copper pre-exposure 

1) Quantum yield of PSII 

According to our results, Cu exposure decreased the Fv:Fm at all concentrations (P < 

0.0001), with a concentration-related effect (Figure 5.3a). Cu pre-exposure had a significant 

impact on Fv:Fm (P=0.0234), with an increased inhibition for pre-exposed plants compared to 

those not-pre exposed. Indeed, the Fv:Fm of pre-exposed plants was inhibited from 13.3% at 

0.015mg/L Cu to 19.6%  at 0.2 mg/L Cu, against 6.7% and 14.3% for not pre-exposed plants, 

respectively. However, no significant interaction was found between acclimatization and 

exposure (Table 5.1).  
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2) Relative growth rates 

As observed for Fv:Fm, relative growth rates of L. minor were significantly influenced by 

Cu (P < 0.0001, Table 5.1). However, interactions between conditions during acclimatization 

and Cu exposure were found for both types of RGR measurements (P < 0.01). Control plants 

were not significantly affected by acclimatization, with similar growth rates between plants pre-

exposed or not (Figure 5.3b). Copper exposure impacted growth at all concentrations (P < 

0.0001), and significant differences depending on acclimatization conditions were observed at 

low Cu concentration (0.015 mg/L). Indeed, pre-exposed plants were more impacted by Cu, 

with a RGRfresh mass inhibited by 55.8%, against 34.8% for plants not pre-exposed. At 0.2 mg/L 

Cu, no significant difference was observed between acclimatization conditions, but growth was 

strongly impaired for both treatments, with RGRfresh mass < 0 d-1 on average, due to partial plant 

decomposition (Figure 5.3b).  

 

Figure 5.3. (a) Maximum 

quantum yield (Fv:Fm), and 

(b) relative growth rate 

(RGR) of L. minor pre-

exposed to 0.05 mg/L Cu or 

not pre-exposed before Cu 

exposure at 0, 0.015 and 0.2 

mg/L. Significant differences 

among treatments and 

concentrations are labelled 

with different letters from a to 

d, error bars correspond to 

standard errors. 
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6. Discussion 

A. Phenotypic plasticity of L. minor exposed to copper 

Our results showed that the relative growth rate and photosynthetic efficiency of L. minor 

were affected by exposure to Cu after one week of exposure, and that this response was altered 

by changes in light irradiance, nutrient concentration, and Cu pre-exposure. They revealed that 

the influence of environmental changes on L. minor sensitivity to Cu was not negligible, with 

up to a twofold difference in growth inhibition induced by a same Cu concentration under 

contrasted environments (nutrient variation and pre-exposure experiments). Limitation of 

resources (nutrients, light) decreased growth, as well as Cu exposure, with a concentration-

related effect. Combination of resource limitation and Cu exposure triggered a cumulative 

environmental stress, which decreased growth even more, but probably limited Cu intake by 

the plant (Figure 5.1b, Figure 5.2b). As a result, the Fv:Fm ratio that reflects the light-harvesting 

efficiency of plants was less impacted by Cu under “unfavorable” conditions than under 

“favorable” environmental conditions, in contrast to what was observed for growth (Figure 

5.1a, Figure 5.2a).  

It has been widely acknowledged that resource limitation decreases growth of aquatic plants 

because they depend on their environment to convert light energy and produce biomass (Barko 

and Smart 1981; Hussner et al. 2009; Bornette and Puijalon 2011; Cao et al. 2012). It has also 

been well documented that Cu is toxic and has a negative impact on both growth and 

photosynthetic capacity of aquatic plants beyond a physiological threshold, and that this 

threshold concentration is species-dependent (Razinger et al. 2007; Wei Xing, Wenmin Huang 

2009; Khellaf and Zerdaoui 2010; Thomas et al. 2016). Our findings corroborate on L. minor 

the demonstration  that nutrient enrichment can increase tolerance of aquatic plants to metals, 

as previously observed on S. polyrhiza and M. spicatum (Leblebici and Aksoy 2011; Nuttens 

and Gross 2017). 

According to our results, the Fv:Fm of the plant was not affected by either nutrient 

availability or light limitation, suggesting an adjustment of plants to ensure maximum 

photosynthesis, as demonstrated by previous studies (Evans 1989; Eichelmann et al. 2005; 

Going et al. 2008; Gratani 2014). At low concentration, Cu had a strong impact on the Fv:Fm of 

actively growing plants (i.e. without resources limitation), but this impact was not found on 

plants for which growth was decreased by resource limitation (Figure 5.1, Figure 5.2 and 

Figure 5.3). However, at high Cu concentration, plants under resource limitation or pre-
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exposed to Cu were the most impacted, suggesting that the level of cumulative environmental 

stress was too high to be copped with (Razinger et al. 2007; Bornette and Puijalon 2011; 

Thomas et al. 2013, 2016).  

 

B. Ecological and ecotoxicological implications 

Environmental changes can occur during the life of an individual, and as demonstrated by 

our results, these changes might inflect the ability of aquatic plants to respond to chemical 

exposure. It is widely acknowledged that environmental conditions affect growth and fitness in 

plants, and L. minor is no exception to this rule (Vasseur et al. 1992). Such examples of 

phenotypic plasticity are common in plants (Barko and Smart 1981; Olesen and Madsen 2000; 

Hussner et al. 2009; Bornette and Puijalon 2011; Xie and Yu 2011; Cao et al. 2012; Madsen 

2013). L. minor is a species found worldwide in very different environments that shows high 

plasticity in its response to abiotic factors. Its high plasticity might be the key to its thrive under 

various environments (Ghalambor et al. 2007). 

Our study is the first to document phenotypic plasticity in sensitivity to a chemical 

contamination of the environment in L. minor. Our finding that plants pre-exposed at low Cu 

concentration were more sensitive to further Cu contamination highlights the possible role of 

diffuse pollution in the weakening of populations facing mildly polluted environments. It was 

explained by Vitasse et al. (2010) that environmental variations might strongly affect the vigor 

of a species. This change could therefore influence its sensitivity to chemicals. This has 

implications for ecosystem assembly under chronic and acute contaminations. 

According to our results, phenotypic plasticity has the potential to affect the relevance of L. 

minor as a model species in chemical risk assessment. The well-defined environmental 

conditions in standardized ecotoxicological tests is nevertheless expected to avoid the 

interference of environmental factors in the sensitivity of a given species.  

Our findings imply that no deviation from standardized protocols in terms of environmental 

conditions during toxicity tests and chemical risk assessment evaluations (e.g. OECD 

guidelines) can be accepted. Otherwise, changes in abiotic conditions may significantly inflect 

the results of toxicity assessment, as illustrated by our results. Furthermore, caution should be 

taken when comparing results from different studies. In-between experiment differences in 

nutrient availability, even for a similar type of medium, and/or light intensity, or photoperiod, 
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have indeed the potential to modify the sensitivity of a species exposed to chemical stress. As 

a consequence, the potential for running meta-analyses and endpoint comparisons between 

studies may be limited if these did not use the same environmental settings, or did not account 

for possible variations induced by contrasted environmental conditions. Finally, it is important 

to acknowledge that the sensitivity observed during laboratory experiments is for one specific 

environmental setup, and is not necessarily representative of field conditions.  

 

7. Conclusion 

Improving our understanding of phenotypic plasticity is primordial to properly assess the 

impact of anthropic activities on ecosystems, and their resilience capacity. From the present 

study, we conclude that phenotypic plasticity is of major importance in the ability of L. minor 

to cope with chemicals in a changing environment. The strong influence of environmental 

conditions on Cu sensitivity of L. minor emphasizes the importance of strict guidelines in 

standardized protocols. It also highlights that laboratory results cannot be faithfully transposed 

to what is found in a natural environment and that further work should be done to evaluate the 

extent of phenotypic plasticity as a way to respond to chemicals. 
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Intraspecific variability plays an important role in species adaptation, and numerous studies 

have demonstrated the importance of this variability in aquatic plants, as a response to both 

short and long-term environmental changes (Reusch and Hughes, 2006; Richards et al. 2006; 

Mitchell and Bakker, 2014, chapter I.4). The role of this intraspecific variability in the response 

of organisms to chemicals remains poorly studied, despite the high occurrence of this 

contamination in different ecosystems, notably aquatic ones (Woodward et al. 2010; Friberg et 

al. 2011).  

My PhD had for purpose to cope with the lack of knowledge about this intraspecific 

variability, in particular its implications in organism sensitivity to chemicals, but also its 

implications in ecotoxicological risk assessment. 

This work is part of an original approach, as it bridges two topics very related, and yet 

poorly studied together: ecology and ecotoxicology. It also combines a multi-scale approach, 

as it starts with a plurispecific level down to an intra-individual level, with the study of 

physiological biomarkers. This PhD project has been organized in three main parts. The first 

part (1) had for purpose to identify the importance of intraspecific variability in the response of 

three aquatic macrophyte species to chemicals. Secondly (2) I aimed to explore more in depth 

the importance of genotypic variability in the sensitivity of Myriophyllum spicatum exposed to 

copper. Finally, in part (3) I determined the implication of phenotypic plasticity in the response 

of Lemna minor exposed to copper. 

 

1. The importance of intraspecific variability of aquatic macrophytes in 

the response to chemical contamination 

 

The main objective of this PhD was to determine the relative importance of intraspecific 

variability in the sensitivity of aquatic macrophytes to chemicals, compared to interspecific 

variability. 

Current approaches in ecotoxicological risk assessment, such as Species Sensitivity 

Distribution (SSD), aim to compare differences in the sensitivity of several species facing a 

pollutant, to determine its toxic potential in a given ecosystem (Del Signore et al. 2016). From 

this potential toxicity, established through different laboratory tests, a threshold concentration 

(or benchmark) is determined, expected to protect 95% of the species within a community 

(Pathiratne and Kroon 2016).  
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One of the problems of this approach is the assumption that individuals tested in laboratory 

are representative of their species in terms of chemical sensitivity (Forbes and Calow 2002). 

However, this can be asked whether the results obtained for a given species could be influenced 

by sampling hazards, and thus not properly represent entire species sensitivity. 

Indeed, the individuals tested are often collected at one given place, or raised in laboratory 

conditions, sometime coming from isogenic strains (i.e. individuals share the same gene pool) 

to decrease the variability of results (Festing and Altman 2002). One of the consequences would 

be to over- or under-estimate the toxicity of the molecule tested, and to establish an irrelevant 

threshold concentration, and in the worst case scenario, a non-protective concentration for 

ecosystems. 

Results in the chapter III demonstrated that genotypic variability can strongly influence 

species sensitivity to copper (Cu) contamination. The importance of this source of intraspecific 

variability appears to be species-dependent: the duckweed (Lemna minor) did not demonstrate 

a strong variability in its response to copper exposure among different genotypes in a given 

environmental set. Indeed, only the Fv:Fm sensitivity significantly varied among genotypes with 

up to 35% of variation, without conferring any significant change in terms of growth sensitivity 

among the same genotypes. On the other hand, a strong genotypic variability was observed for 

the water milfoil (Myriophyllum spicatum) in its sensitivity to copper exposure, based on 

growth related endpoints. Indeed, the sensitivity of growth related endpoints varied up to 72% 

for biomass production. Those differences were sometimes as high as interspecific variations, 

depending on the considered endpoint, highlighting the importance of accounting for 

intraspecific variability in SSD approaches. 

Furthermore, species choice in those ecotoxicological risk assessment approaches is 

critical, as some species have a fundamental role in ecosystem functioning (called keystone 

species) and an impact on those species may disturb the entire ecosystem (Forbes and Calow 

2002; Maltby et al. 2005; Connon et al. 2012). For instance, the duckweed is generally not 

considered as a keystone species, but is used as a model species in ecotoxicological risk 

assessment, because it is an ubiquist species, sensitive to chemicals and easy to use in laboratory 

assays. The water milfoil is more complicated to use in laboratory assays as it demonstrates a 

higher variation in its response to chemicals, but plays a very important part in ecosystem 

services, notably due to its implication in biogeochemical cycles (Sanchez et al. 2007). Its life 

history-traits, its representativity of submerged aquatic plants species as well as its structuring 

role in ecosystems, make this species very relevant in risk assessment (Mohr et al. 2013).  
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Those results, in addition to confirm that intraspecific variability can inflect the outcomes 

of laboratory testing and that it should be taken into account in risk assessment approaches, 

highlight the fact that the choice of the endpoint observed to represent species sensitivity is 

crucial. Indeed, a parameter such as growth based on biomass production can be less impacted, 

for example, than organ development, seed production or even the behavior of an individual 

(Connon et al. 2012; Horemans et al. 2016). The choice of the specific parameters should thus 

represent as best as possible the individual’s fitness, in order to offer a relevant measure able to 

inform of the potential impact on ecological functions ensured by this species (Forbes and 

Calow 2002; Del Signore et al. 2016; Belanger et al. 2017). This is especially highlighted by 

the results on M. spicatum, which demonstrated a maximal quantum yield of PSII (Fv:Fm) 

poorly impacted by Cu exposure; thus, although often used in plant ecotoxicology, as it is a 

quick and non-destructive measure of stress, this was irrelevant to assess the harmful impact of 

Cu on M. spicatum. 

 

2. Genotypic variability in the sensitivity of Myriophyllum spicatum to 

chemicals  

 

One of the secondary objectives of my PhD work was to determine the importance of 

genotypic variability in an aquatic macrophyte species, and its implication in the response to 

chemical contamination, by considering a greater number of genotypes than in chapter III. 

Following the results of this chapter, this research was focused on the water milfoil, M. 

spicatum, which demonstrated a broad intraspecific variability in its sensitivity to copper. 

Several studies have demonstrated that water milfoil shows a broad genetic diversity, and can 

exhibit different life-history traits depending on its gene pool (Miller 2001; Wu et al. 2016; 

Tóth et al. 2017; Cao et al. 2017). However, no study has studied whether or not this genotypic 

variability could influence aquatic macrophytes species sensitivity to chemical contamination, 

excepted on L. minor (Dalton et al. 2013). 

Results explained in chapter IV have shown that M. spicatum demonstrate a different 

sensitivity to Cu depending on the genotype, studied under steady environment. Indeed, some 

genotypes were 5 times more sensitive to Cu at low concentration (0.15 mg/L), and 7 times 

more sensitive at high concentration (0.5 mg/L) than others for some growth parameters. This 

difference in sensitivity can be partially explained by differences in terms of life-history traits 
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among those genotypes, such as dry matter content, internode length, root and lateral shoot 

production. Furthermore, some trait syndromes can be observed, e.g. correlations between 

them. For instance, elongation rate was correlated with lateral shoot production, and anti-

correlated with whorl production. Indeed, it would appear that plant allocate energy either in 

shoot elongation and ramification, or in a high whorl density / short internode. This relationship 

is notably illustrated by the “DOR” genotype, with a higher density of whorls than other 

genotypes, but showing the lowest elongation, also being the least impacted by Cu exposure. 

This demonstrates that Cu impact is higher on genotypes demonstrating the most active growth. 

Furthermore, the genotypes with higher whorl densities / lower elongation rates also tended to 

have higher dry matter contents and higher root productions (some traits typical of stress-

tolerant strategists; Grime, 2001) which is consistent with the hypothesis of a trade-off between 

biomass conservation and growth processes reflected by trait syndromes (Wilson et al. 1999; 

Elger and Willby 2003). This was notably demonstrated by “CAM” and “DOR” genotypes, 

which had those trait syndromes, and were less impacted than other genotypes. Despite the 

observed correlations among life-history traits, coinertia analysis realized in chapter IV was not 

significant, and 42% of the differences in sensitivity among genotypes remain to be explained.  

Indeed, observations were focused on life-history traits related to the morphology of the 

different genotypes, as it has been done on previous studies (Mohr et al. 2013; Cao et al. 2012). 

However I have not investigated yet the physiology of those different genotypes. Results thus 

suggest that traits explaining those differences in sensitivity may be more physiological, such 

as detoxification enzyme production, antioxidant balance and chelators (Pascal-Lorber et al. 

2004; Yadav 2010). Those mechanisms are directly dependent on the gene pool of individuals, 

therefore changes in DNA may confer inherent sensitivity or resistance, and transcriptomic 

approaches might answer the question as well ( Saminathan et al. 2015; Wu et al. 2017). Further 

studies, described in the perspectives, will be performed to complete the current dataset. 

 

3. Implication of phenotypic plasticity in the response of aquatic plants 

to chemical stress 

 

If it has been demonstrated that genotypic variability plays an important part in species 

adaptation to new environments, numerous studies showed the importance of phenotypic 

plasticity in the same context (chapter I.4, Bradshaw, 1965; Sultan, 1995; Pigliucci, 2005). 
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However, the influence of environmental fluctuations in the sensitivity of organisms exposed 

to contamination remains poorly studied in aquatic plants (Leblebici and Aksoy 2011; Nuttens 

and Gross 2017), and no study directly connect phenotypic plasticity and response to chemicals. 

In that context,  

I focused on the duckweed Lemna minor to study how phenotypic plasticity may impact its 

sensitivity to Cu. Indeed, previous results shown in chapter III demonstrate a low variability 

among replicates for this species, whose ease of multiplication in lab conditions is also 

favorable to its use in experimental designs crossing several factors. This species is therefore 

an ideal model to highlight response patterns to combined effects of environmental fluctuations 

and chemical stress. 

The results demonstrated that environmental changes highly impact Cu sensitivity of L. 

minor, inducing in some cases a  multiple stress, resulting from the combination of both 

environmental stress (such as nutrient or light limitation) and chemical stress. The decrease of 

light intensity or nutrient concentration does not appear to induce visible damage to the plant, 

but has a direct impact on its growth, which is strongly reduced due to the lack of resources. 

Low light intensity reduced plant growth by more than 50 % compared to high light treatment, 

but the cumulative effect of both low light and Cu stress were only visible at high Cu 

concentration (0.25 mg/L), where almost no growth was observed. Nutrient variation was less 

impacting for L. minor growth, with only slight differences in growth among nutrient treatments 

in absence of Cu contamination. Furthermore, the only cumulative effect was observed with 

plants under low nutrient concentrations during Cu exposure at 0.25 mg/L, with plants being 

up to twice more sensitive to Cu than plants under rich nutrient concentrations. 

Furthermore, the changing environmental conditions (i.e. favorable to unfavorable, and vice 

versa) appears to impact plant growth, while the maximal quantum yield of PSII is not strongly 

impacted. This appears to depend on the tested chemical, as other studies have shown that PSII 

was more sensitive than growth parameters (Geoffroy et al. 2004; Park et al. 2017). Copper 

exposure had a higher toxicity on individuals actively growing, thus on individuals in favorable 

environment with unlimited resources for their growth (such as high light intensity, or rich 

concentration in nutrients). Indeed, individuals growing faster may be more exposed to 

chemicals, as they will take up nutrients in the medium to produce organic matter. Those results 

underlined at an intraspecific level what had already been described in aquatic plants at an 

interspecific level, i.e. species with higher growth rates being more sensitive to chemical 

contaminants (Cedergreen et al. 2004; Coutris et al. 2011). Copper pre-exposure had a 
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deleterious effect on growth, although no difference was observed between pre-exposed plants 

and not pre-exposed plants at high Cu concentration (0.2 mg/L), suggesting that this 

concentration was too high and overwhelmed antioxidant balance. However, pre-exposure 

significantly weakened the plants subsequently exposed to a low Cu concentration (0.015 

mg/L), increasing Cu impact compared to the plants not pre-exposed. This finding address the 

question of progressive weakening of organisms in a context of chronic exposure, and on their 

ability to cope with a future stress.  

Growth-related endpoints and photosystem status were used as stress biomarkers, as they 

were considered more relevant indicators of L. minor fitness, compared to physiological 

endpoints such as antioxidant balance (Razinger et al. 2007). However, environmental 

fluctuations may have direct effects on plant physiology, which would be visible through e.g. 

its carbon content, proline concentration and pigment composition (J. Wu et al. 2017; Hayat et 

al. 2012; Brewer 2011). Those changes may also be the result of plasticity, however such 

variations in the chemical composition of the plant would not be enough by themselves to 

highlight a change in plant fitness. 

Those results highlight the importance to study how environmental fluctuations can inflect 

at short term the ability of individuals to cope with a chemical stress, such as an exposure to 

trace elements or pesticides.  

 

4. Implications for ecotoxicological risk assessment 

 

Several implications can be drawn from the presented results. The first, is that intraspecific 

variation can be compared with interspecific variation in terms of importance, depending on 

the species considered. This could therefore have an impact on SSD approaches, depending on 

the species used in laboratory testing, and great care should be taken during data extrapolation. 

Those results are consistent with other studies in terrestrial ecosystems which showed that 

intraspecific variability in plant life-trait can sometimes be as high as interspecific variability, 

although it was not in presence of chemical contamination (Jiang et al. 2016; Kichenin et al. 

2013; Cécile Hélène Albert et al. 2010; Bastias et al. 2017).  

Secondly, the mechanisms underneath intraspecific variations appear to be species-

dependent; although not enough genotypes were studied to draw definitive conclusions, it 

appears that phenotypic plasticity may be the main mechanism under intraspecific variations of 
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L. minor, whereas genotypic variability appears to have a strong influence on M. spicatum 

variations. Although intraspecific variation mechanisms were not investigated on C. demersum, 

it appears to demonstrate more genotypic variability than the duckweed, and thus may be closer 

from M. spicatum. This could be correlated with their life form, which is more related than with 

the duckweed. Indeed, several studies have highlighted that life forms of aquatic macrophytes 

significantly influenced their sensitivity to environmental factors (Schneider et al. 2018). 

Thirdly, results showed that endpoints could be highly variable in their sensitivity to 

chemicals, and even growth related endpoints can vary from each other, depending on the 

parameter they are based on, such as biomass production, frond number or shoot elongation 

(Bergtold and Dohmeny 2011; Horemans et al. 2016). Literature and databases do not always 

specify which endpoint is considered for calculations of EC50 values based on growth, and this 

could inflect meta-analysis if growth parameters do not respond the same way, as it was pointed 

out in previous chapters. 

Finally, to enhance the reliability of ecotoxicological risk assessment, it would be useful to 

determine how model species used in laboratory assays, and/or keystone species, respond to 

chemical stress under the influence of environmental changes at both short and long term. The 

variation in sensitivity to chemicals could be then modeled, and taken into account during the 

calculation of benchmark concentrations. It could contribute to increase the realism of such 

approaches, thus facilitate their transposition in situ. It could also allow a better prediction of 

toxic effects of given molecules on specific biological compartments or life-history traits.  

 

5. Limitations 

 

In all scientific research, no experimental design nor experiment can be perfectly controlled, 

and some limitations are encountered. During my PhD, I have faced several shortcomings that 

have to be acknowledged in order to interpret my results as best as possible.  

Firstly, the choice of the model contaminant. As described in Chapter I, Cu is particularly 

environmentally relevant. It is an essential trace element which already has metabolic pathways. 

Numerous chelators and transporters exist, and likely vary from one individual to another, thus 

increasing the inter-individual heterogeneity in the endpoints measured. Cu speciation is well 

known to be directly dependent of pH, nutrient concentrations and dissolved organic 
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compounds (DOC). Indeed, a decreased pH increases the solubility of Cu and thus its 

bioavailability, while nutrients and DOC interact with it, and thus reduce its bioavailability. pH 

in the exposure medium will evolve depending on plant photosynthesis, and plant biomass in 

each experimental unit will influence both pH and DOC. As pH was not measured for all 

experiments (Chapters III and V), it is not possible to evaluate which fraction of Cu was 

bioavailable for the plants, and thus to relate it to Cu phytotoxicity. Furthermore, different 

media with different nutrient concentrations were used for the different species in chapter III, 

and some plant species may produce more DOC than others, due to allelopathy which could 

further modify Cu speciation. The easiest way to assess which part of Cu in the media was 

really interacting with the plant, and thus impacting it, is to measure Cu uptake in the plant. 

This allows to measure, regardless of the factors quoted above, the fraction that caused the 

effects. Due to the cost, it was only realized for chapter IV and the 7 genotypes of M. spicatum. 

Secondly, our experiments revealed some variations among replicates, the importance of which 

depending on the species considered. Lemna minor did not demonstrate much variation, 

whereas Ceratophyllum demersum and Myriophyllum spicatum exhibited higher variations. It 

is consistent with the fact that those two species have more complex growth forms than Lemna 

minor, which has a very fast clonal reproduction and a simplified morphology. One way to cope 

with the high variation would be to increase the number of replicates to improve the accuracy 

of statistical estimates. Indeed, in OECD protocols for M. spicatum, at least 4 replicates with 

16 shoots in total (4 shoots per experimental unit, 4 experimental units) for control plants and 

3 replicates with 12 shoots in total for each chemical concentration are used. This experimental 

design allows to cope with high variations among replicates and within concentrations, but 

requires a lot of biomass for a single experiment with a single species to be tested. In our 

situation, it was not possible to implement, either due to the number of combinations species × 

genotype (Chapter III) or the number of genotypes (Chapter IV).  
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This PhD work aimed to build a bridge between ecology and ecotoxicology, in order to 

provide more realistic tools for ecotoxicological risk assessment and new insights on population 

biology and ecosystem functioning in a context of environmental pollution. I demonstrated that 

intraspecific variation can play a significant role in species response to pollutants, and therefore 

in ecosystem resilience to anthropogenic disturbances (Wolf et al. 2018; Reusch et al. 2005).  

The results showed that mechanisms underneath intraspecific variability, i.e. genotypic 

variability and phenotypic plasticity, are species-dependent and can play a role in species 

adjustment to environmental pressures. Indeed, I demonstrated that phenotypic plasticity has 

an important part in Lemna minor acclimatization to environmental changes, and can 

significantly inflect its sensitivity to chemicals. Furthermore, results demonstrated that 

Myriophyllum spicatum exhibits a high genotypic variability which modulates its response to 

copper, and that this variability depends on the observed endpoint. This highlights the need to 

properly understand the mechanisms underneath genotype variations. Several studies have 

underlined that intraspecific variation plays an important role in ecosystem resilience facing 

climate change, especially via experiments on diatoms, which are a very good model to 

investigate community assembly rules (Kremp et al. 2012; Sjöqvist and Kremp 2016; Zuo et al. 

2017; Esteves et al. 2017; Wolf et al. 2018). It would therefore be relevant to study intraspecific 

variability and its mechanisms in a context of acclimatization and adaptation to environmental 

pollution, through the study of different life forms sensitivity, harvested in contrasted sites. 

Furthermore, proper assessment of intraspecific variability on model species used in risk 

assessment should allow to integrate this variability in current approaches, such as SSD, making 

those more realistic and representative of natural environments (Del Signore et al. 2016). 

Further experiments will be performed to assess mechanisms underneath intraspecific 

variability of Myriophyllum spicatum, more specifically genotypic variability, across 

physiological traits. Those experiments would investigate antioxidant balance, photosynthesis 

efficiency, and biochemical composition including pigment composition, as these parameters 

can vary among genotypes and potentially provide advantages to cope with stressors.  A 

transcriptomic approach would also be developed. Indeed, metabolic pathways and chemical 

composition are driven by the genetic code of individuals, thus study the transcripome would 

therefore be highly relevant to investigate the source of the variations observed. It would allow 

us to take the measure of differences in transcription for a broad range of metabolic pathways, 

especially antioxidant balance, and thus to better understand the consequences of genotypic 

variation. For this purpose, two genotypes with contrasting responses to Cu would be 
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considered in the transcriptomic study. This should provide insights, along with the genome 

sequencing, on genetic differences that can be found between a resistant and a sensitive 

genotype, and on the importance of epigenetic as a response mechanism to abiotic stressors. 

One of the next steps would be to assess intraspecific variation among different populations 

of Myriophyllum spicatum across a contamination gradient, with harvesting sites highly 

contaminated and other pristine. This would allow to see if resistance or sensitivity patterns can 

be correlated with chemical contamination of the harvesting site, and with life-history traits of 

individuals within the different populations. It would also be very interesting to look across an 

environmental gradient, with for instance contrasting environmental conditions (regardless of 

the possible contamination) from one harvesting site to another, involving different selection 

pressures (such as water flow). Indeed, several studies have highlighted genetic patterns among 

geographically distinct populations. This approach should allow to understand and predict more 

efficiently the sensitivity and future behavior of those species depending on environmental 

constrains, whether they are climatic and/or chemical. It could also give insights on resistance 

mechanisms developed by some species, whether it is due to plastic traits that became fixed, or 

if some specific traits provide competitive or coping advantages in unfavorable environments. 

Finally, in a context of ecotoxicological risk assessment, it would be relevant to study 

how environmental fluctuations may inflect species sensitivity to chemicals. We 

demonstrated that Lemna minor is a plastic organism and that environmental fluctuations inflect 

its sensitivity to copper. It would be relevant to go further into the study of the extent of 

phenotypic plasticity in aquatic plants and other organisms, and its potential impact on species 

sensitivity to contamination. For instance, several studies have demonstrated that Myriophyllum 

spicatum shows phenotypic plasticity, however no study have looked into implications for its 

sensitivity to chemicals (Cao, et al. 2012; Sri et al. 2013). It is therefore important to properly 

assess phenotypic plasticity, and determine if it is a parameter of concern in risk assessment 

approaches. If so, it could be integrated in the assessment factors that are used to derive 

benchmark values, and would allow a more integrative approach, that accounts for those 

uncertainties.  
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Ce travail de thèse a eu pour but de réaliser un pont entre l’écologie et l’écotoxicologie, afin 

de fournir des outils plus réalistes pour les approches d’évaluation des risques 

écotoxicologiques, et de nouvelles connaissances sur le fonctionnement des écosystèmes dans 

un contexte de pollution environnementale. J’ai démontré que la variabilité intraspécifique peut 

jouer un rôle important dans la réponse des espèces aux polluants, et donc dans la résilience des 

écosystèmes exposés aux rejets anthropiques (Wolf et al; 2018; Reusch et al. 2005).  

Les résultats ont montré que les mécanismes sous-jacent de la variabilité intraspécifique, 

i.e. la variabilité génotypique et la plasticité phénotypique, est espèce-dépendante et peut 

influencer l’ajustement des espèces aux pressions environnementales. En effet, les résultats ont 

démontré que la plasticité phénotypique joue un rôle important dans l’ajustement de la lentille 

d’eau aux changements environnementaux, et peut impacter de façon significative sa sensibilité 

aux substances chimiques. De plus, j’ai démontré que Myriophyllum spicatum possède une forte 

variabilité génotypique qui module sa réponse au cuivre, et que cette variabilité dépend du 

paramètre observé. Cela surligne le besoin de comprendre les mécanismes sous-jacent de la 

variabilité génotypique. Plusieurs études ont souligné que la variation intraspécifique joue un 

rôle important dans la résilience des écosystèmes exposés au changement climatique, surtout 

au travers d’expériences menées sur les diatomées, qui sont un très bon modèle pour étudier 

l’assemblage des communautés (Kremp et al. 2012; Sjöqvist and Kremp 2016; Zuo et al. 2017; 

Esteves et al. 2017; Wolf et al. 2018). Il serait donc pertinent d’étudier la variabilité 

intraspécifique et ses mécanismes dans un contexte d’acclimatation et d’adaptation à la 

pollution environnementale. De plus, l’évaluation de la variabilité intraspécifique chez les 

espèces modèles utilisées en évaluation des risques devrait permettre d’intégrer cette variabilité 

dans les approches actuelles, comme les SSDs, les rendant plus réalistes et représentatives des 

environnements naturels (Del Signore et al. 2016). 

De prochaines expériences seront réalisées dans l’intention d’étudier les mécanismes 

expliquant la variabilité intraspécifique chez Myriophyllum spicatum, plus précisément la 

variabilité génotypique, à travers l’étude de traits physiologiques. Elles auront pour but 

notamment d’investiguer l’équilibre antioxydant, l’efficacité photosynthétique et la 

composition biochimique, incluant la composition pigmentaire, comme ces paramètres peuvent 

varier entre les génotypes, et potentiellement fournir des avantages dans la résistance aux 

polluants. Une approche transcriptomique sera également mise en place. En effet, le 

métabolisme et la composition chimique sont conduits par le code génétique des individus, et 

l’étude du transcriptome pourrait donc être hautement pertinente pour étudier la source de ces 
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variations. Cette approche permettrait de mesurer la différence de transcription pour un large 

panel de voies métaboliques, notamment l’équilibre antioxydant, et donc améliorer notre 

compréhension des conséquences de la variation génotypique. Pour ce faire, deux génotypes 

avec des réponses contrastées au Cu seraient étudiés pour l’approche transcriptomique. Cela 

donnera des indices, avec le séquençage du génome, sur les différences génétiques qui peuvent 

être trouvées entre un génotype résistant et un génotype sensible, et sur l’importance de 

l’épigénétique en tant que mécanisme de réponse aux stress abiotiques. 

L’une des étapes suivantes serait de déterminer l’étendue de la variation intraspécifique au 

travers de populations différentes de myriophylle en épis, le long d’un gradient de 

contamination, avec des sites de prélèvement très contaminés et d’autres non impactés par la 

contamination. Cela devrait permettre de voir si un schéma de résistance ou de sensibilité peut 

être corrélé à la contamination chimique du site de prélèvement, et aux traits d’histoire de vie 

des individus au sein des différentes populations. Il serait également très intéressant de regarder 

le long d’un gradient environnemental (indépendamment de la contamination chimique 

éventuelle), par exemple des conditions environnementales contrastées d’un site à l’autre, 

impliquant des pressions de sélection différentes (telles que le flux de l’eau). En effet, plusieurs 

études ont mis en évidence une structuration génétique entre des populations géographiquement 

distinctes. Cette approche devrait permettre de comprendre et de prédire plus efficacement la 

sensibilité et le comportement futur de ces espèces, en fonction des contraintes 

environnementales, que celles-ci soient climatiques et/ou chimiques. Cela pourrait également 

donner des indices quant aux mécanismes de la résistance développée par certaines espèces, si 

cela est dû à des traits plastiques devenant fixés, ou s’il s’agit de traits spécifiques conférant des 

avantages compétitifs ou de résistance dans des environnement défavorables.  

Finalement, dans un contexte d’évaluation des risques écotoxicologiques, il serait pertinent 

d’étudier comment les fluctuations environnementales pourraient influer sur la sensibilité des 

espèces à la contamination chimique. J’ai démontré que la lentille d’eau est un organisme 

plastique, et que les fluctuations environnementales influencent sa sensibilité au cuivre. Il serait 

pertinent d’aller plus loin dans l’étude de l’étendue de la plasticité phénotypique chez les plantes 

aquatiques et chez d’autres organismes, et de son impact potentiel dans la sensibilité des espèces 

à la contamination. Par exemple, plusieurs études ont démontré que le myriophylle en épis est 

une espèce plastique, cependant aucune étude ne s’est intéressée à l’implication de cette 

plasticité dans la sensibilité de l’espèce (Cao et al. 2012; Sri, Atapaththu, and Asaeda 2013). Il 

est donc important d’étudier l’étendue de cette plasticité phénotypique, et de déterminer si ce 
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paramètre est important dans les approches d’évaluation des risques. Le cas échéant, cette 

variabilité pourrait être intégrée dans les facteurs d’évaluation qui sont utilisés pour dériver les 

valeurs seuils, protectrices des écosystèmes, et pourrait donc permettre une approche plus 

intégrative qui réduirait les incertitudes. 
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Abstract 

 

Intraspecific variability plays a pivotal role in short and long term responses of species to 

environmental fluctuations. This variability, expressed through different traits of individuals, can 

potentially influence species sensitivity to chemical contamination. This intraspecific variability is 

currently not taken into account in ecotoxicological risk assessment, whereas it can mislead its 

results. To examine this hypothesis, the importance of intraspecific variability in the response to 

copper (Cu) was quantified in controlled conditions for three aquatic macrophyte species, Lemna 

minor, Myriophyllum spicatum and Ceratophyllum demersum. Variations among genotypes of 

each of these 3 species were compared to interspecific variability. Results have highlighted a 

significant genotypic variability, whose importance depends on the species considered. Indeed, L. 

minor demonstrated a low variability, contrarily to M. spicatum whose variability in growth 

inhibition by Cu was higher than interspecific differences. In order to specify the extent and the 

mechanisms of genotypic variability in M. spicatum, other experiments involving measurements 

of life-history traits have been conducted on 7 genotypes exposed to Cu. Results showed that 

some genotypes were up to eightfold more sensitive to Cu than others (at concentrations ranging 

between 0.15 and 0.5 mg/L). These differences in sensitivity were partly explained by the traits 

measured, but physiological or transcriptomic endpoints may explain more precisely the source of 

these differences in sensitivity. Finally, 3 experiments with fluctuations in nutrient concentrations, 

light intensity and Cu pre-exposure have demonstrated that phenotypic plasticity plays an 

important role in L. minor sensitivity to Cu. Indeed, the weakening of individuals, as a result of 

unfavorable environmental conditions, can lead to a two-fold increase in sensitivity to Cu. All 

these results demonstrated that intraspecific variability, whether it comes from genotypic 

variations or is linked to phenotypic plasticity, was in general lower than interspecific variability 

for the species and endpoints studied. However, its extent can vary depending on the species. It 

can therefore significantly influence aquatic macrophyte sensitivity to chemical contamination, 

and it would be relevant to account for it in ecotoxicological risk assessment.  

 

Keywords: Copper, ecotoxicological risk assessment, aquatic macrophyte, intraspecific 

variability, genotypic variation, phenotypic plasticity 



Résumé 

 

La variabilité intraspécifique fait partie intégrante de la réponse à court et à long terme des 

organismes vivants aux fluctuations environnementales. Cette variabilité, exprimée au travers de 

différents traits des individus, peut potentiellement influencer la sensibilité des espèces à une 

contamination chimique. La variabilité intraspécifique n’est pas, à l’heure actuelle, prise en 

compte en évaluation des risques écotoxicologiques, alors même qu’elle pourrait en biaiser les 

résultats. Pour examiner cette hypothèse, l’importance de la variabilité intraspécifique dans la 

réponse au cuivre (Cu) a été quantifiée en conditions contrôlées pour trois espèces de macrophytes 

aquatiques, Lemna minor, Myriophyllum spicatum et Ceratophyllum demersum. Les variations 

entre génotypes de chacune de ces 3 espèces ont été comparées à la variabilité interspécifique. Les 

résultats ont mis en évidence une variabilité génotypique significative, dont l’importance dépend 

de l’espèce considérée. En effet, L. minor a montré une faible variabilité, au contraire de M. 

spicatum dont la variabilité de l’inhibition de croissance par le Cu est supérieure aux différences 

interspécifiques. Afin de préciser l’étendue et les mécanismes de la variabilité génotypique chez 

M. spicatum, d’autres expériences impliquant des mesures de traits d’histoire de vie ont été 

réalisées sur 7 génotypes exposés au Cu. Les résultats ont montré que certains génotypes étaient 

jusqu’à 8 fois plus sensibles au Cu à des concentrations allant de 0.15 à 0.5 mg/L). Ces 

différences de sensibilité sont en partie expliquées par les traits mesurés, mais des mesures 

physiologiques et/ou des approches en transcriptomique devraient pouvoir expliquer de façon plus 

consistante la source de ces différences de sensibilité. Enfin, 3 expériences faisant varier 

respectivement la teneur en nutriments, l’intensité lumineuse et la préexposition au Cu, ont 

démontré que la plasticité phénotypique joue un rôle majeur dans la sensibilité au Cu chez L. 

minor. En effet, l’affaiblissement des individus, résultant des conditions environnementales 

défavorables, peut conduire au doublement de la sensibilité de L. minor au Cu. L’ensemble des 

résultats obtenus montre donc que la variabilité intraspécifique, qu’elle soit d’origine génotypique 

ou liée à la plasticité phénotypique, demeure en règle générale inférieure à la variabilité 

interspécifique concernant les traits et les espèces étudiés. Cependant, son importance varie selon 

l’espèce considérée. Elle peut donc influer significativement sur la sensibilité des macrophytes 

aquatiques à la contamination chimique, et gagnerait donc à être prise en compte dans le cadre de 

l’évaluation des risques écotoxicologiques.  

 

Mots clés : Cuivre, évaluation des risques écotoxicologiques, macrophyte aquatique, variabilité 

intraspécifique, variation génotypique, plasticité phénotypique  


