
HAL Id: tel-02389839
https://theses.hal.science/tel-02389839v1

Submitted on 2 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional encryption applied to privacy-preserving
classification : practical use, performances and security

Damien Ligier

To cite this version:
Damien Ligier. Functional encryption applied to privacy-preserving classification : practical use, per-
formances and security. Cryptography and Security [cs.CR]. Ecole nationale supérieure Mines-Télécom
Atlantique, 2018. English. �NNT : 2018IMTA0040�. �tel-02389839�

https://theses.hal.science/tel-02389839v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE
COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : informatique

Functional encryption applied to privacy-preserving classification:

Practical use, performances and security

Thèse présentée et soutenue à Palaiseau, le 15 octobre 2018
Unité de recherche : Lab-STICC
Thèse N° : 2018IMTA0040

Par

Damien Ligier

Rapporteurs avant soutenance :

Patrick Bas Directeur de recherche CNRS CRISTAL Lab
Dario Fiore Assistant research professor IMDEA

Composition du Jury :

Président : David Pointcheval Directeur de recherche CNRS, ENS
Examinateurs : Patrick Bas Directeur de recherche CNRS CRISTAL Lab

Dario Fiore Assistant research professor IMDEA

Dir. de thèse : Caroline Fontaine Chargée de recherche CNRS/Lab-STICC et IMT Atlantique
Co-dir. de thèse : Renaud Sirdey Directeur de recherche CEA LIST/L3S
Encadrant de thèse : Sergiu Carpov Cheucheur CEA LIST/L3S

Functional encryption applied to

privacy-preserving classification: practical use,

performances and security

Damien Ligier

2

Contents

1 Introduction 7

I State of the art 13

2 Functional Encryption 15

2.1 Public key cryptography . 15
2.1.1 Decisional Diffie-Hellman assumption 16
2.1.2 Extended learning with errors assumption 17

2.2 Introduction to Functional encryption 17
2.2.1 Public-key setting versus private-key setting 20
2.2.2 Functional encryption’s security 21
2.2.3 Difference between functional encryption and fully ho-

momorphic encryption 21
2.2.4 Functional encryption’s leakage 22

2.3 Inner-product functional encryption 23
2.3.1 Inner-product functional encryption based on the DDH

assumption . 23
2.3.2 Inner-product functional encryption based on the LWE

assumption . 25
2.4 Functional encryption beyond the inner-product functionality 26

3 Necessary machine learning background 29

3.1 Machine learning basics . 29
3.1.1 Supervised machine learning 30
3.1.2 Unsupervised machine learning 30

3.2 Classification algorithms . 31
3.2.1 Linear classification . 31
3.2.2 Extremely randomized trees classifier 31

3.3 Artificial neural networks . 32
3.3.1 Fully connected neural network 33

3

4 CONTENTS

3.3.2 Convolutional Neural Networks 33

3.3.3 Generative Adversarial Networks 34

3.3.4 Activation functions 34

3.3.5 Neural network measures 35

3.4 Other related details . 36

3.4.1 MNIST dataset . 36

3.4.2 Principal component analysis 37

II Contributions 39

4 Privacy-preserving classification based on functional encryp-

tion 41

4.1 Overview . 42

4.2 Implementation of inner-product functional encryption schemes 45

4.3 Privacy-preserving classification based on inner-product func-
tional encryption . 46

4.3.1 Linear classification . 48

4.3.2 Extremely randomized trees classification 48

4.3.3 Neural network classification 48

4.3.4 Experimental results 51

4.4 Privacy-preserving classification based on quadratic polyno-
mial functional encryption . 54

4.4.1 Experimental results 55

4.5 Discussion . 55

5 Leakage-based attacks on functional encryption settings 59

5.1 Context of the attack . 59

5.2 Attack methods . 60

5.2.1 Principal component analysis 62

5.2.2 Fully connected network 62

5.2.3 Convolutional network 65

5.3 Results analysis . 68

5.3.1 Digit comparison . 68

5.3.2 Privacy-preserving classification and MNIST dataset
use case . 69

5.4 Generalization to others functional encryption schemes 82

5.5 Discussion . 82

CONTENTS 5

6 Tradeoff between classification performance and attack effi-

ciency 83

6.1 Vectors with the best classification performance 83
6.2 Generating vectors with different approaches 84

6.2.1 Random vectors . 84
6.2.2 GAN obtained vectors 84

6.3 Results analysis . 98
6.4 Discussion . 99

7 Conclusion 101

8 Résumé en français 103

6 CONTENTS

Chapter 1

Introduction

Classification algorithms, and more generally machine learning, have proven
themselves to be very powerful tools for identifying useful information in
large datasets. Since we are now living in the big data era, they help us
extracting information from huge amounts of collected data. However it
raises concerns about privacy, which brought to the forefront the challenge
of designing secure machine learning algorithms able to preserve data con-
fidentiality. Privacy is an important goal of cryptography, so it makes sense
to take advantage of it for preserving data privacy in machine learning al-
gorithms.

Context. In the cloud computing era, massive amounts of collected
data bring onto the agenda the issue of its privacy. One solution would
be to use privacy preserving computation systems, but we desperately lack
such efficient systems supporting a large class of functionalities. It would
for instance allow an email server to filter spam messages without decrypting
anything or, detect criminal faces on encrypted public video surveillance. One
of the most important application would be in the medical world. Hospitals
and research centers may be legally prevented from sharing their medical
databases which in turn precludes them from exploiting different kind of
data mining techniques over aggregated datasets. Note that classification
algorithms are essential in the aforementioned situations, either medical or
not. Hence, we could in fact use privacy preserving computation systems to
bring some privacy back in many applications of our daily life.

Data privacy may seem to conflict with other important properties such
as the ability to learn and predict or to authenticate, but we really need
systems that guarantee more than just privacy. Designing such systems is
very challenging. In the literature, there are some constructions regarding
authentication, such as the privacy preserving authentication and access con-

7

8 CHAPTER 1. INTRODUCTION

trol scheme [RLKD06] based on blind signature and hash chain. This scheme
proposed by Ren et al., achieves both security and privacy and has at the
same time a highly flexible and light weight authentication and session key
establishment protocol. Lu et al. designed a different one which has a strong
and lightweight RFID privacy authentication protocol [LHH+07] allowing
valid readers to explicitly authenticate their dominated tags without leaking
private information.

We already mentioned the need for algorithms that would be able to clas-
sify encrypted data, but to train a model while keeping the training dataset
private is also very important. We do not investigate the last one in this thesis
but cite a few constructions from the literature. Chaudhuri and Monteleoni
designed a privacy-preserving logistic regression algorithm [CM09] that has
a bounded sensitivity of regularized logistic regression and a perturbed clas-
sifier. We can also cite Mohan et al. who presented a platform [MTS+12]
allowing organizations to delegate external aggregate analysis on their data-
sets, while ensuring that the data analysis is performed in a differentially
private manner. Shokri and Shmatikov have designed, implemented and
evaluated a practical system [SS15] based on parallelized and asynchronous
learning algorithms. It enables multiple parties to jointly learn an accurate
neural network model for a given objective, without sharing their input data-
sets. Abadi et al. developed new algorithmic techniques for learning, and a
refined analysis of privacy costs within the framework of differential privacy
[ACG+16]. There is an important tradeoff between privacy and learnabil-
ity. It offers many different settings and the community is still focusing on
designing solutions with better privacy and better learnability.

The following use case illustrates what one could do with a privacy pre-
serving classifier, which is the focus of this thesis. We assume that a pharma-
ceutical company has constructed a classifier that takes as input medical and
private pieces of information. The company also does not want to divulge
its secret classifier. However, it wants to conduct a study on real human
data, for example the patients of a hospital. The law about patient medical
data disclosure can be very restrictive depending on the country. For in-
stance in France, a hospital cannot share private data of its patients without
a slow and cumbersome administrative process. A privacy preserving clas-
sifier does the job. A trusted third party generates the public key and the
secret keys associated with the company classifier. The hospital encrypts the
data of its patients with the pubic key and sends it to the company. The
company decrypts them with the secret keys provided by the trusted third
party. After decryption, the company only gets the result of the classification
which involves the patients data. It is important to notice that the critical
data remains encrypted during the whole process. Proceeding in this way, it

9

can perform its study on real medical data without endangering patient data
privacy.

Cryptographers are determined to address cloud computing era concerns.
From a theoretical point of view, a perfect solution is to compute over en-
crypted data without having to decrypt. There was a breakthrough with the
emergence of pairing-based and lattice-based constructions, but the more
general they are, the less practical. There are several primitives such as
among others, fully and/or somewhat homomorphic encryption [AGH10,
VDGHV10, BGV12, FV12, BV14, BLLN13, GSW13, AP14, DM15, BR15,
CGGI16], functional encryption [GKP+13, GGH+13], attribute based en-
cryption [Wat11, LYZ+13] or searchable encryption [VLSD+10].

In this thesis we focus on Functional Encryption (FE) [SW05, BSW11,
BCFG17] which is a quite recent generalization of public-key cryptography.
Within this paradigm, an authority allows users to partially decrypt cipher-
texts. Therefore, it enables fine-grained access control to encrypted data but
also limits the computations which can be performed on the ciphertexts. The
authority of the system generates secret keys associated with functions. For
example (cf. figure 1.1) let skf be a secret key associated with function f and
ctx be an encryption of x, the output of the decryption algorithm taking skf
and ctx as inputs is f(x) (rather than x as in an usual public-key encryption
system).

The holy grail of this domain is to design a scheme that enables to derive
a secret key skf for any polynomial time computable function f . Regretfully,
up today literature provides practical functional encryption schemes for linear
(i.e. inner-product) and quadratic polynomial evaluation functionalities only.

Contribution. In this thesis we focus on a specific architecture of privacy
preserving classification, which is based on the use of functional encryption.
More precisely, we propose a combination of functional encryption and ma-
chine learning in order to perform classification over encrypted data. Our
construction is generic to any functional encryption scheme but we needed to
observe it in a real life scenario. This is why we chose to mainly focus on the
inner-product functional encryption, the only functional encryption scheme
known to be practical when this thesis began. We also experimented and
then compared it with quadratic polynomial functional encryption, which
has been later proposed in the literature. We then placed ourselves in an
attacker shoes and tried to exploit the construction we had proposed. Our
goal at this moment was to break its privacy preserving property. We pro-
pose different ways to attack use cases using machine learning and functional
encryption. Finally, we study how to avoid this kind of attacks and propose

10 CHAPTER 1. INTRODUCTION

authority

keyowner
f(x) decrypt(skf , ctx)

user
ctx encrypt(PUB, x)

skf

ctx

Figure 1.1: An overview of a functional encryption system.

a way to manage the trade-off between the performance of the privacy pre-
serving classification and the efficiency of the attack.

Overview. The first part of this thesis is dedicated to the state of the
art. We first recall the context of public-key cryptography and then move
to functional encryption. We describe what is different in a private-key set-
ting, but also its security, what is making it different to fully homomorphic
encryption and finally its notion of leakage. At this point, we focus on a
particular instance of functional encryption: inner-product functional en-
cryption. We describe two constructions from the literature based on the
decisional Diffie-Hellman assumption or on the learning with error assump-
tion. In this thesis, machine learning techniques are used, so, we introduce
the required background on classification algorithms. We begin with linear
classification, moving on to extremely randomized trees classifiers, and fi-
nally artificial neural networks. We also describe the principal component
analysis and the MNIST dataset of handwritten digits that we used all along
this thesis.

The second part of this thesis is for our contributions. We begin by
presenting our construction of a privacy-preserved classification system. We
begin by giving details about our implementation of the inner-product func-
tional encryption scheme from [ALS16]. Then we expose different ways to
use inner-product functional encryption to achieve privacy preserving clas-
sification: using a linear classifier, an extremely randomized trees classifier
or a neural network classifier. We also detail the setup of our experiment-
ations using the MNIST dataset. We then do the same experimentation
but with a quadratic polynomial functional encryption scheme instead of the
inner-product functional encryption one and give some results.

The next chapter focuses on how to attack the previously introduced

11

privacy preserving classification scheme. We give the context of the attack
and then describe three attack instantiations: one based on the principal
component analysis, other based on fully connected neural networks, and
the last one based on convolutional neural networks. An analysis of the
practical experimentation results of those attacks on the MNIST dataset
follows. Finally, we discuss its generalization to other functional encryption
schemes.

The last chapter of the second part aims to study the trade-off between
the performances of the classification and the efficiency of the attacks, in a
context of privacy-preserving classification based on inner-product functional
encryption. We recall how we get those vectors associated with the functional
encryption secret keys, and then propose two ways to get different ones:
generating randoms vectors, and using a generative adversarial network in
different settings. We finally provide an extensive discussion on the results
we obtained.

12 CHAPTER 1. INTRODUCTION

Part I

State of the art

13

Chapter 2

Functional Encryption

Functional encryption (FE) is a generalization of the traditional public key
cryptography that enables a fine-grained access control for encrypted data.
We introduce in this chapter the cryptographic notions used in this thesis.
We start by traditional public key cryptography, and two computational
hardness assumptions which the security of cryptographic primitives we use
will rely on. Then, we describe what are functional encryption schemes. We
then focus on inner-product functional encryption, its private-key setting,
its security, but also what makes it very different from fully homomorphic
encryption. In particular, we introduce two particular designs of functional
encryption for the inner-product functionality. Finally, we look at functional
encryption beyond the inner-product functionality.

2.1 Public key cryptography

During the 70’s, Diffie and Hellman [DH76b, DH76a] introduced a radically
new concept of public-key cryptography. It depicts a secure communication
between two parties without having them to share a secret (symmetric-key
cryptography), which was the only trusted solution back then. Since that,
we have at our disposal several public-key encryption schemes. They are
based on a few computational problems as the hardness of factoring or the
hardness of computing discrete logarithms [DH76a, RSA78, McE78, AD97].

Today, public-key cryptography is widely present in our lives to the
point where it is impossible to envision current electronic commerce secur-
ity without it. Indeed, symmetric-key cryptography and public-key cryp-
tography complete each other: the heavier public-key cryptography is used
first to achieve authentication but also to provide both parties the same
temporary secret used for the second part of symmetric-key communication.

15

16 CHAPTER 2. FUNCTIONAL ENCRYPTION

alice bob
ctx encrypt(PUBalice, x)

ctx
x decrypt(PRIValice, ctx)

Figure 2.1: An overview of public-key cryptography. In this figure the public
and the private key are respectively called PUB and PRIV.

Figure 2.1 illustrates how public-key encryption works. Alice had already
generated her keys (the private key PRIValice and the public-key PUBalice)
and had published the public one. Bob uses her published key to encrypt
a message x into a ciphertext ctx. When Alice gets ctx from Bob, she can
decrypt it with her private key PRIValice and gets the message x. Note that
she is the only one able to decrypt it.

A computational hardness assumption states that a particular problem
cannot be solved efficiently, i.e. ”in polynomial time”. Cryptographers use
those assumptions to proove cryptographic scheme security. In this thesis we
will refer to some of them such as the Decisional Diffie-Hellman assumption,
the computational Diffie-Hellman assumption or the Extended learning with
errors assumption. We introduce them in the next section.

2.1.1 Decisional Diffie-Hellman assumption

The Decisional Diffie-Hellman assumption (DDH) has been used to prove
that the Diffie-Hellman protocol [DH76a] was useful for practical crypto-
graphic purposes. It speaks about groups and in practice those are finite
groups. The computational Diffie-Hellman assumption (CDH) which states
that in a particular group, no efficient algorithm can compute gab with only
g, ga, gb, was not sufficient. The DDH assumption is way stronger than the
CDH assumption. Assuming that DDH stands in a group means that there
is no efficient probabilistic algorithm that given any triplet ga, gb, gc outputs
“true” if a = bc and “false” otherwise. We note that there exist groups where
DDH assumption is false but for which the CDH assumption is believed to
be true. We now give the formal definition of the DDH assumption.

For more details about CDH and DDH please refer to [Bon98, Gal12].

Definition 1. [Bon98] In a cyclic group G of prime order q, the Decisional
Diffie-Hellman (DDH) problem is to distinguish the distributions

D0 = {(g, g
a, gb, gab)|g

R
 - G, a, b

R
 - Zq}

and

2.2. INTRODUCTION TO FUNCTIONAL ENCRYPTION 17

D1 = {(g, g
a, gb, gc)|g

R
 - G, a, b, c

R
 - Zq}.

2.1.2 Extended learning with errors assumption

The extended learning with error problem has been introduced by O’Neil,
Peikert and Waters [OPW11]. It can be described as LWE↵,q, with a number
m fixed. The problem is to distinguish between the following two distribu-
tions (where z is sampled from a specific distribution):

D0 = {(A,A · s+ e, z, he, zi)|A - Zm⇥n
q , s - Zn

q , e - D
m
Z,↵q}

and
D1 = {(A, u, z, he, zi)|A - Z

m⇥n
q , u - Zm

q , e - D
m
Z,↵q}.

Many variants of the learning with error problem exist. One of those is
the multi-hint extended-LWE problem [ALS16]. Its definition follows.

Definition 2. [ALS16] The multi-hint extended-LWE problem is a variant of
extended-LWE problem for which multiple hints are given for the same noise
term. It exists a reduction from LWE to mheLWE [ABDCP15]. It is formal-
ized as follows. Let q,m, t be integers, ↵ be a real and ⌧ be a distribution over
Zt ⇥m , all of them functions of a parameter n. The multi-hint extended-
LWE problem mheLWEq,↵,m,t,⌧ is to distinguish between the distributions of
the tuples

(A,A · s+ e, Z, Z · e) and (A, u, Z, Z · e) ,

where A - Zm⇥n
q , s - Zn

q , u - Zm
q , e - Dm

Z,↵q , and Z - ⌧ .

2.2 Introduction to Functional encryption

Functional encryption (FE) is a generalization of traditional public key cryp-
tography. Obviously, there is a public key required to encrypt messages. But
it offers the possibility to decrypt ciphertexts partially with a fine-grained
control. Its design makes it well suited for purposes such as cloud computing
[BSW11] or verifiable computation [PRV12] among others.

FE requires a new party, called the authority, but also an algorithm called
key generation. The authority generates and keeps the master secret key
MSK along with the public key. This particular key is necessary to deriv-
ate what are called secret keys (using the key generation algorithm), which
are given to users and must stay secret. Those secret keys are associated
with functions, for instance, we denote by skf the secret key associated with

18 CHAPTER 2. FUNCTIONAL ENCRYPTION

secret key owner
en
cr
yp
ti
on

x

x

de
cr
yp
ti
onf

f(x)

Figure 2.2: An overview of FE systems. The green key represents the public
key of the system, the silver key is a secret key associated with the function
f . The envelope with the padlock represents a ciphertext.

function f . Let ctx be an encryption of a message x. When a user owning
skf and ctx computes the decryption algorithm with skf and ctx as inputs,
he gets f(x) as output. This is not a traditional way to decrypt, but it
can be considered as an evaluation of f over encrypted messages, giving an
unencrypted output. Figure 2.3 illustrates the system described above.

By ”partially decripted” we mean that the output of the decryption al-
gorithm is not the plaintext x but f(x), which will reveal partially x.

Boneh et al. give in [BSW11] the following standard definitions for func-
tional encryption using the notion of functionality. Note that the previous
notation is the one used in this thesis and they do not match with the de-
scription that follows (f is renamed F (K, ·)).

Definition 3. A functionality F defined with (K,X) is a function F : K ⇥
X ! Σ [{?}. The set K is the key space, the set X is the plaintext space,
and the set Σ is the output space and does not contain the special symbol ?.

Definition 4. A functional encryption scheme for a functionality F is a
tuple FE = (setup, keyGen, encrypt, decrypt) of four algorithms with the
following properties.

• The setup algorithm takes as input the security parameter 1λ and out-
puts a pair of a public key and a master secret key (PUB,MSK).

• The keyGen algorithm takes as inputs the master secret key MSK and
k 2 K which is a key of the functionality F . It outputs a secret key sk
for k.

• The encrypt algorithm takes as inputs the public key PUB and a plain-
text x 2 X. This randomized algorithm outputs a ciphertext cx for x.

2.2. INTRODUCTION TO FUNCTIONAL ENCRYPTION 19

authority
(PUB,MSK) setup(1λ)
skf keyGen(MSK, f)

keyowner
f(x) decrypt(skf , ctx)

user
ctx encrypt(PUB, x)

skf

ctx

Figure 2.3: The three actors of a functional encryption system, the algorithm
they use and their communications. In this figure, the public key, the master
secret key and the secret key associated with the function f are respectively
called PUB, MSK and skf .

• The decrypt algorithm takes as inputs the public key PUB, a secret
key and a ciphertext. It outputs y 2 Σ [{?}.

It is required that for all (PUB,MSK) setup(1λ), all keys k 2 K and all
plaintexts x 2 X, if sk keyGen(MSK, k) and c encrypt(PUB, x) we
have F (K,X) = decrypt(PUB, sk, c) with an overwhelming probability.

We do not follow those notations in this thesis. For instance the decryp-
tion algorithm explicitly requires the public key in the previous definition,
however, we will use a decryption algorithm notation that implicitly takes as
input the public parameters (public key) of the system (as in figure 2.3).

The cryptographic community is looking for public-key functional encryp-
tion schemes enabling to evaluate any polynomial time computable function.
Goldwasser et al. proposed a construction based on fully homomorphic en-
cryption [GKP+13], Garg et al. proposed another construction using an
indistinguishability obfuscator [GGH+13]. At present, however, these con-
structions remain mostly of theoretical interest. Nevertheless, more recently
schemes for simpler functionalities have been proposed. For example inner-
product functional encryption (IPFE) [ABDCP15, ALS16] or functional en-
cryption for quadratic functions [BCFG17].

Functional encryption generalizes among others, attribute-based encryp-
tion [Wat11, LYZ+13, Wat05], identity based encryption [BF01, SW05] or
predicate encryption [KSW08, OT09]. Figure 2.4 shows it with more details.

20 CHAPTER 2. FUNCTIONAL ENCRYPTION

functional encryption

predicate encryption

predicate encryption
with private index

predicate encryption
with public index

attribute-based
encryption

functional encryption
for regular language

anonymous identity-
based encryption

hidden vector
encyption

identity-based
encryption

Figure 2.4: An overview of what is generalized by functional encryption.

Those primitives are also public key encryption schemes that perform some
light computation over ciphertexts.

2.2.1 Public-key setting versus private-key setting

Because of the public-key setting, every constant in the function associated
with a secret key is known by its owner. Indeed, since Bob is able to encrypt
every message xi with Alice’s public key, and also to decrypt all of them
with his secret key skf associated with the function f , he gets an unlimited
number of couples (xi, f(xi)) which enables him to determine the constants
of f . On the contrary, with a private-key setting, it is possible to have
hidden values in secret key functions. There is, of course, no public key
in such systems, and the encryption algorithm takes instead as input the
master secret key. When it is about private-key functional encryption, we
can find in the literature some inner-product functional encryption schemes
[BS15, SSW09, BRS13], but also some multi-input inner-product functional
encryption schemes [BKS16, DOT18, KS17]. This thesis focuses on public-
key functional encryption.

2.2. INTRODUCTION TO FUNCTIONAL ENCRYPTION 21

2.2.2 Functional encryption’s security

A fundamental security requirement for functional encryption schemes is
called collusion resistance. Indeed, the authority of a functional encryp-
tion scheme delivers several secret keys associated with different functions
(authorized function evaluation) to the users. The idea behind collusion
resistance is that if a user owns different secret keys {skfi}i and an en-
cryption of x, he cannot learn about x more than {fi(x)}i (the set of the
evaluation outputs). This property is captured by two security definitions:
indistinguishability-based security and simulation-based security.

The idea behind indistinguishability-based security (IND) is that an at-
tacker is given two messages x0 and x1 such that, for all the secret keys
{skfi} he owns, fi(x0) = fi(x1). Then, when he gets an encryption of xb,
he has to determine if b = 0 or if b = 1. It shows how a single message can
remain secure against an arbitrary number of users performing a collusion.
However, it appears that the IND definition is not strong enough: indeed,
it has been shown [BSW11, O’N10] that a trivially insecure scheme can be
proved IND-secure.

The simulation-based security (SIM) means that a secret key associated
with a function f makes it only possible to get f(x) from an encryption of
x. Some results [BSW11, BO13, AGVW13] show that the SIM definition
is not always achievable. To sum up, the SIM-based security is has real
security guarantee but might be impossible to achieve for som cases, and the
IND-based security does not prevent a scheme from being insecure.

2.2.3 Difference between functional encryption and fully

homomorphic encryption

Traditional public-key cryptography has been generalized in many ways,
among others, Functional Encryption (FE) but also Fully Homomorphic En-
cryption (FHE) [G+09, AGH10, VDGHV10, BGV12, Bra12, FV12, GSW13,
BGV14, CGGI16, BDF18]. Both enable to compute algorithms over encryp-
ted inputs but one difference between them is that FE’s decryption algorithm
output is unencrypted, when FHE one’s remains encrypted. Figure 2.5 shows
an overview of an FHE system.

There is no need of a trusted authority within FHE systems. It works as a
traditional public key system except that there are two additional algorithms:
add and mul. The first one takes two ciphertexts cm and cm0 of two plaintexts
m and m0, and it returns a new ciphertext, which is the encryption of the
message m + m0. The second algorithm takes also cm and cm0 bur returns
a new ciphertext, which is the encryption of the message m⇥m0. It means

22 CHAPTER 2. FUNCTIONAL ENCRYPTION

circuit evaluator

private key
owner

en
cr
yp
ti
on

x

x
en
cr
yp
ti
on

y

y

ci
rc
ui
t
C C(x, y)

de
cr
yp
ti
on

C(x, y)

Figure 2.5: An overview of FHE systems. The green key represents the
public key of the system, the red one is the private key of the system. The
circuit C is composed of homomorphic gates addition and multiplication.
The envelopes with a padlock represents ciphertexts.

that it is possible to perform algorithms over encrypted data.
Another difference between FE and FHE is that the first one enable the

evaluation of any circuit over encrypted data when the second one enable
only the computation of some functions. It means that one can compute
what he wants using add and mul algorithms on encrypted data but will
never have access to the result. In a FE context, algorithms that can be
computed are fixed thanks to the secret keys and cannot be modified. Note
that the output is unencrypted.

Concerning keys, FHE follows the traditional public key cryptography
with a public key and a secret key, but the FHE renamed the secret key in
master secret key and uses it to generate secret keys (associated with some
functions) that end up being given to users.

FHE and FE share some resemblance such as the fact that they perform
computation over encrypted inputs. To illustrate this, we can mention that
FHE has been used to construct a theoretical FE for all circuits [GGH+13].

2.2.4 Functional encryption’s leakage

The main purpose of functional encryption is to provide something more ”in
between” than the traditional ”all or nothing” decryption in cryptography.

2.3. INNER-PRODUCT FUNCTIONAL ENCRYPTION 23

It enables a fine-grained partial decryption of cyphertexts. When one knows
about the context of a FE system, it may be possible to use it to get closer
to the ”all” decryption than he should be. This leakage is independent of
the cryptographic system security. Note that in a FE system, functions
(associated with the secret keys) may be computed over every plaintext, so
as a consequence all plaintexts share similarities. Those shared similarities
could be used to build approximations of messages that have been encrypted.
This is one of our concerns in this work.

2.3 Inner-product functional encryption

Functional encryption schemes that enable the evaluation of inner products
[ABDCP15, ALS16] are called functional encryption for the inner-product
functionality, inner-product functional encryption, or inner-product encryp-
tion. In those schemes, secret keys are associated with inner-product func-
tions. Let ~v, ~w be vectors, sk~v be the secret key associated with the inner-
product function h~v, ·i, and ct~w be an encryption of ~w. The decryption
algorithm with sk~v and ct~w as inputs, outputs h~v, ~wi.

Recently, Abdalla et al. [ABDCP15] proposed constructions for the in-
ner product encryption schemes satisfying standard security definitions, un-
der well-understood assumptions: the Decisional Diffie-Hellman (DDH) and
Learning With Errors (LWE). However they only proved their schemes to be
secure against selective adversaries. Agrawal et al. [ALS16] upgraded those
schemes to provide them a full security (security against adaptive attacks).
In this work, we focus on these inner product schemes, thus on the fully
secure functional encryption for the inner product functionality under the
DDH assumption [ALS16].

2.3.1 Inner-product functional encryption based on the

DDH assumption

We now recall the algorithms used in the design of functional encryption
for inner-product scheme from [ALS16], that provides full security under the
DDH assumption. There is no need to recall the scheme security proof in
this thesis however it can be found in the paper that introduced it.

Let ~w = (w1, · · · , wm) 2 Z
m
q be the vector we want to associate a key.

Let ~v = (v1, · · · , vm) 2 Z
m
q be a plaintext we want to encrypt.

The decryption algorithm uses a discrete logarithm computation in a large
size group (which in general is hard to compute). Coefficients of the plaintext
vector ~w and the key vector ~v belong to {−β, ..., 0, ..., β} where β is a small

24 CHAPTER 2. FUNCTIONAL ENCRYPTION

authority
(PUB,MSK) setup(1λ)
sk~w keyGen(MSK, ~w)

keyowner
h~v, ~wi decrypt(sk~w, ct~v)

user
ct~v encrypt(PUB,~v)

sk~w

ct~v

Figure 2.6: The three actors of an inner product functional encryption sys-
tem, the algorithm they use and their communications. In this figure, the
public key, the master secret key and the secret key associated with the vector
~w are respectively called PUB and MSK and sk~w.

Algorithm 1 setup(1λ,1m)

1: choose a cyclic group G of prime order q > 2λ with generators g, h 2 G

2: for all 1 i m do

3: si, ti
R
 - Zq

4: hi gsi · hti

5: PUB (G, g, h, {hi}1im)
6: MSK ({si}1im, {ti}1im)
7: return (PUB,MSK)

Algorithm 2 keyGen(MSK,~w)

1: s~w
Pm

i=1 si · vi . MSK = ({si}1im, {ti}1im)
2: t~w

Pm

i=1 ti · vi
3: return sk (s~w, t~w)

Algorithm 3 encrypt(PUB,~v)

1: r
R
 - Zq . PUB = (G, g, h, {hi}1im)

2: C gr , D hr

3: for all 1 i m do

4: Ei = gvi · hr
i

5: return ct (C,D, {Ei}1im)

2.3. INNER-PRODUCT FUNCTIONAL ENCRYPTION 25

integer, so the possible interval of h~v, ~wi is small as well. When the output
interval of the discrete logarithm is small and known we can use Shank’s
baby step giant step algorithm [Sha71] to compute it efficiently, simply use
a lookup table or a combination of both.

Algorithm 4 decrypt(PUB,sk,ct)

1: E
Qm

i=1 E
vi
i /(Csv ·Dtv) . c = (C,D, {Ei}1im)

2: r logg(E) . sk = (s~w, t~w)
3: return r

2.3.2 Inner-product functional encryption based on the

LWE assumption

Agrawal, Libert and Stehlé [ALS16] proposed a construction of a fully se-
cure inner-product functional encryption based on the learning with errors
assumption. More precisely, its security relies on the hardness of a variant
of the LWE problem called multi-hint extended-LWE problem, that was first
introduced by O’neill, Peikert and Waters [OPW11], and more deeply in-
vestigated in [ASP12, BLP+13]. Details about the LWE problem and its
multi-hint variant are given is 2.1.2.

Note that, in this scheme, the inner product is computed modulo p.

We now recall algorithms from this particular inner-product functional
encryption based on the LWE assumption [ALS16].

Algorithm 5 setup(1n,1`,p)

1: set integers m and k, a real 0 ↵ 1 and a distribution ⌧ over Z`⇥m

2: set q = pk and sample A - Zm⇥n
q and Z - ⌧

3: compute U = Z · A 2 Z
`⇥n
q

4: set mpk (A,U) and msk Z
5: return (mpk,msk)

Let ~x = (x1, · · · , x`) 2 Z
`
p be the vector we want to associate a key, and

let st be a state.

26 CHAPTER 2. FUNCTIONAL ENCRYPTION

Algorithm 6 keyGen(msk,~x,st)

1: if ~x linearly independent from key queries that have been made so far
then

2: set x̄ x
3: set z~x x̄T · Zm . msk = Z
4: add (~x, x̄, z~x) to st
5: else

6: set x̄
P

i kix̄i

7: set zx
P

i kizi

8: return (x̄, zx)

Let ~y = (y1, · · · , y`) 2 Z
`
p be the vector we want to encrypt. mpk is the

public key.

Algorithm 7 encrypt(mpk,~y)

1: sample s - Z`
p, e0 - D

m
Z,↵q and e1 - D

`
Z,↵q . mpk = (A,U)

2: compute c0 A · s+ e0 and c1 U · s+ e1 + pk−1 · ~y
3: return C (c0, c1)

mpk is the public key, (x̄, zx) is a secret key associated with the vector ~x
and C is an encryption on the vector ~y.

Algorithm 8 decrypt(mpk,(x̄, zx),C)

1: compute µ0 hx̄, c1i − hzx, c0imodq . C = (c0, c1)
2: compute µ that minimize |pk−1 · µ− µ0|
3: return µ

2.4 Functional encryption beyond the inner-

product functionality

We can find in the literature other kind of functional encryption schemes.
Multi-input inner-product functional encryption [KLM+16, LL16, AGRW17,
ACF+17] or quadratic polynomial functional encryption [BCFG17] are pretty
close to IPFE schemes and can also be efficient in a practical point of view.
The dream of designing a functional encryption scheme for all circuits[GGHZ16a,
GKP+13, GVW12, GGH+13] is yet still out of reach in real life scenario. In
addition to being not realistic, proposed schemes support sometimes only a

SECTION 2.4. FUNCTIONAL ENCRYPTION BEYOND IPFE 27

authority
fW (~v) =

P

vi · vj ·Wi,j

(PUB,MSK) setup(1λ)
skW keyGen(MSK, f(·,W))

keyowner
fW (~v) decrypt(skW , ct~v)

user
ct~v encrypt(PUB,~v)

skW

ct~v

Figure 2.7: The three actors of a functional encryption system for quadratic
functions, the algorithm they use and their communications. In this figure,
the public key, the master secret key and the secret key associated with the
matrix W are respectively called PUB and MSK and skW .

bounded number of collusions or have their security based on poorly under-
stood assumptions.

We will describe few of those, as functional encryption for quadratic poly-
nomial, multi-input functional encryption and some theoretical functional
encryption for all circuits.

Functional encryption is also a generalization of identity based encryption
[BF01, SW05], attribute based encryption [Wat11, LYZ+13, Wat05], predic-
ate encryption [KSW08, OT09] among others. Figure 2.4 shows some of the
encryption schemes generalized by functional encryption.

Quadratic polynomial functional encryption

We call functional encryption for quadratic functions a functional encryption
system that can evaluate degree-two polynomials [BCFG17]. Let ~v be a
vector, ct~v an encryption of ~v, W a square matrix and skW the secret key
associated with W . The decryption of ct~v with skW returns ~v · W · ~vT =
P

vi · vj · wi,j.

28 CHAPTER 2. FUNCTIONAL ENCRYPTION

Multi-input inner-product functional encryption

Multi-input functional encryption[GGG+14] is a generalization of functional
encryption. Let f be a n-ary function. With a multi-input functional en-
cryption one can encrypt n different messages m1, ... ,mn into n ciphertexts
c1, ... ,cn . The authority can generate a secret key skf associated with
the function f . Then when the decryption algorithm is used with skf and
c1,...,cn, it outputs f(x1, ..., xn). Some practical schemes have been proposed
for the inner-product functionality[KLM+16, LL16].

Functional encryption for all circuits

Goldwasser et al.[GKP+13] proposed a functional encryption scheme for all
circuits using heavy construction blocks as an attribute-based encryption
scheme, a fully homomorphic encryption scheme and a garbled circuit.

Garg et al. proposed another construction based on non-interactive zero-
knowledge protocols and indistinguishability obfuscators [GGH+13]. In [GGHZ16b],
Garg et al. also proposed a different construction based on graded encoding,
branching programs and punctured pseudorandom functions. Nevertheless,
these both constructions cannot today lead to practical schemes, as it is
still an open problem to build secure versions of some of their parts, as for
examples multi-linear maps.

Hence, at present these three temptations to build functional encryption
schemes for all circuits remain only of theoretical interest.

Chapter 3

Necessary machine learning

background

In this thesis, we are exploiting some of the powerful Machine learning tools.
This field gives the ability to a computer to learn a task through data, without
being explicitly programmed. It means that the computer will progressively
improve its performances on that specific task.

In this chapter we detail a few machine learning basics, as defining su-
pervised and unsupervised machine learning, training and test sets. We also
introduce the MNIST dataset of handwritten digits that we used in this
thesis. We then focus on classification and detail linear classifiers, principal
component analysis and extremely randomized trees. We finally move on to
artificial neural networks. We broach convolutional networks and generat-
ive adversarial one before going deeper with their activation functions and
different measures involved.

3.1 Machine learning basics

Machine learning (ML) [WFHP16] aims for automatic detection of mean-
ingful patterns in data. It provides algorithms enabling program to “learn”.
The “learn” word refers to the process of converting training data into a
program that can perform some tasks. This program represents, in a way,
some expertise or knowledge.

The advantages of ML are, among others, the adaptability, the fact that
they can be better than a human-written programs, and also easier to con-
ceive than an algorithm by hand.

29

30 CHAPTER 3. NECESSARY MACHINE LEARNING BACKGROUND

machine learning

supervised learning unsupervised learning

clusteringclassification regression

Figure 3.1: A succinct description of ML categories.

3.1.1 Supervised machine learning

Supervised machine learning denotes machine learning algorithms that learn
how to map inputs to outputs according to a set of input-output pairs. It is
among ML techniques, the one that has the highest economic value.

Those algorithms are split into two successive parts. The first one is the
learning phase, which analyses the inputs and learns how to make proper
predictions on such kind of data. The second part is the prediction phase,
where classification of new data is performed using the produced algorithm
of the first phase. When the prediction result is a discrete value, we speak
about classification (class prediction for example), while for a continuous
value, we speak about regression (temperature prediction for example).

During the training process, the training set is used to learn more about
the task, i.e. modifies the weights in a way that make the prediction closer to
the outputs (or labels). Then, the validation set is used to verify that there
is not just an improvement for the training set. Finally the test set enables
to test the actual predictive power of the network.

3.1.2 Unsupervised machine learning

Unsupervised machine learning regroups methods that find hidden structure
from data with no labels. There is no possibility to evaluate the accuracy
of the algorithms produced. Unsupervised learning includes among others
clustering. It tries to group objects when they share similarities. Those
groups are called clusters.

Figure 3.1 shows how ML and its subcategories can be represented. In
this thesis we employ only supervised ML.

3.2. CLASSIFICATION ALGORITHMS 31

3.2 Classification algorithms

Statistical classification identifies which class an object belongs to, using
its characteristics. This process is based on the learning phase performed
on a training set. Classification use cases are for example the detection of
spam emails, speech recognition, handwritten recognition or the elaboration
of patient’s diagnosis using its medical characteristics.

3.2.1 Linear classification

Linear classification algorithms compute a linear combination of an object’s
characteristics to determine its class. The characteristics are also called fea-
ture values. As an example, if one classifies images, the feature values can
be the pixel values.

We speak about binary or binomial classification when there are only two
classes. In this case the decision is made with both a threshold and the
inner-product between object features and linear classifier coefficients.

When there are more than two classes there are two possibilities:

• One-vs.-rest, in which a binary classifier is built for each class in order
to distinguish between this class and all the others. The decision is
made as a function of the resulting dot product amplitude.

• One-vs.-all, in which a binary classifier is built for any pair of classes.
The decision is made as a function of the number of positive votes
received by each class.

3.2.2 Extremely randomized trees classifier

In ensemble learning methods, the predictions of several (usually small) base
classifiers are combined in order to make an aggregated classifier which is
more powerful and more robust than separate ones [Die00]. One of the
possibilities to build an ensemble method is to average the decisions of many
base classifiers. The combined classifier is stronger than any of the base
classifiers.

A decision tree classifier [SL91] represents a tree-like structure where an
internal node is a test on a single data feature, node output edges are the
outcomes of this test and the tree leafs are decision classes. A decision tree
classifier prediction is built by following a tree path from the root node to a
leaf node. At each step a decision is made as a function of node condition.

32 CHAPTER 3. NECESSARY MACHINE LEARNING BACKGROUND

y 1

P

3 i=
1
x
k
·w

i

y 2

y 1
+
b

y

f
(y

2
)

A B C

x2

x1

x3

y

Figure 3.2: An artificial neuron with its 3 internal steps: (A) computes the
weighted sum, (B) adds the bias, and finaly, (C) computes the activation
function f . x1, x2 and x3 are its inputs and y is the value it outputs.

Extremely randomized trees (ERT) classifier is an ensemble learning method
in which base classifiers are decision trees. Roughly speaking, an ERT clas-
sifier builds many decision trees on different sub-sets of input data features.
Prediction is performed by averaging the classes resulting from each decision
tree. For more details, please refer to [GEW06].

3.3 Artificial neural networks

Artificial Neural Networks (ANN) [Yeg09] are a computational model in-
spired by the biological brain, included in the supervised machine learning
methods. They are built with artificial neurons, a high level abstraction
of real neurons. An artificial neuron is a function that firstly computes a
weighted sum between its input values and predefined weights, then it adds
a bias, and finally, the obtained value is passed through a so called activation
function which can be among others the sigmoid function. The activation
function’s output is the neuron output. Figure 3.2 shows in detail an artificial
neuron.

Artificial neural networks are organized in layers of neurons, outputs of
one layer’s neurons are the next layer neuron’s inputs. Figure 3.3 shows an
example of such architecture.

Neural networks include a lot of different algorithms as perceptrons,
Hopfield networks, Boltzmann machines, fully connected neural networks,

3.3. ARTIFICIAL NEURAL NETWORKS 33

x1

x2

Input layer Hidden layer Output layer

y1

y2

y3

Figure 3.3: A neural network architecture.

convolutional neural networks, recurrent neural networks, long short term
memory neural networks, autoencoders, deep belief networks, or generative
adversarial networks among others.

3.3.1 Fully connected neural network

In a fully connected neural network each neuron is connected to every neurons
in the previous layer. Figure 3.3 is in fact a fully connected network.

It used to be the dominating algorithm in neural networks. It is still the
first type that comes in mind when talking about neural networks. Note that
they have a huge number of parameters because each connection has it’s own
weight. It makes them quite expensive in terms of computation and memory.

3.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [LBBH98, MMCS11] are a specific
type of ANN inspired by the organization of the animal visual cortex, and
have demonstrated excellent performance for computer vision and natural
language processing.

In a convolutional neural network, each neuron is only connected to a few
neurons from the previous layer and they also share weights. It consider-
ably reduces the number of parameters in comparison with a fully connected
network and make it relatively cheap in terms of computation and memory.

There are three main types of layers to build a convolutional neural net-
work: convolutional layer, pooling layer, and fully connected layer.

34 CHAPTER 3. NECESSARY MACHINE LEARNING BACKGROUND

3.3.3 Generative Adversarial Networks

In a generative adversarial networks[GPAM+14] there are 2 players repres-
ented by neural networks and one of them (the generator) is trying to forge
new elements that look like those in a certain distribution while the other
neural network (the evaluator) tries to determine whether this forged element
is from the distribution or not. The GAN is trained is a way that when the
evaluator detects a fake element, the generator tries to adapt to the feedback
send a new forged element again and again.

3.3.4 Activation functions

In an artificial neural network, every neuron has an activation function. It
can be for example the rectified activation function, the sigmoid function,
or the tanh function among others. It comes from the biological model of
neural networks where neurons fire an action potential or not (are activated
or not), if the sum of its inputs signals exceeds a given threshold.

An artificial neuron calculates a weighted sum of its input and adds to
it a bias and finally applies its activation function to that value. This result
is the output of the neuron. Because it exists different activation functions
with different properties and effects, when one is designing a neural network
model, he as to chose carefully those functions.

The step function that outputs 0 if the sum is less than the threshold and
output 1 otherwise, if the closest activation function to the biological neuron
behavior. The fact that it is a binary function makes that it can work for a
binary classifier, but what if the classifier has more than two classes? We are
unable to determine the class when we have more than one neuron activated.
This is why we need not binary activation function.

We will give details about two function: the rectified activation and the
sigmoid function.

Rectified linear unit

A rectified linear unit (ReLU) is an artificial neuron employing the rectifier
activation function which is defined as the function f(x) = max(0, x). It
outputs the input if it is positive and 0 otherwise. Figure 3.4 shows its graph.
It was introduced in 2000 [HSM+00] and is now a very popular activation
function for deep neural networks.

It is a non linear function and a helpful one because any function can be
approximated with a combination of ReLU. Nevertheless it is not bounded,
which means that several layers of ReLU can blow up. Because it is a simple

3.3. ARTIFICIAL NEURAL NETWORKS 35

4

0
0 4−4

ReLU

1

0.5

0
04 −42 −2

sigmoid

Figure 3.4: Two activation functions: ReLU and Sigmoid.

mathematical operation, ReLU is less computationally expensive which is
a great advantage when one is designing deep neural networks. Note that
ReLU can cause some neurons to die, meaning that they output 0 and make
a part of the network passive. This is called the dying ReLU problem and
is the origin of some variations of ReLU as ”leaky ReLU” that prevent this
situation to happen.

Sigmoid activation function

The sigmoid function is one of the most widely used activation function. It
is defined as the function f(x) = 1

1+e−x . Figure 3.4 shows its graph.
It is non linear and its combinations are also non linear which means that

it is not a problem to have layers of neurons with sigmoid as their activation
function. It is not a binary function: it has infinite Y values all between 0
and 1. Nevertheless this function has a tendency to bring the Y values to
its bounds. In fact a small change in the X value when we are between −2
and 2 modifies the Y value significantly. The sigmoid function is therefore
great for classification. Another good thing is that it prevents output values
from blowing up, it stays between 0 and 1. Note that because of its two
plateaux (the 0 plateau on the left and the 1 plateau on the right of the
graph), a network can reach a point where it learns very slowly or is not
learning anymore, but there are ways to work around this issue.

3.3.5 Neural network measures

The process of learning for a neural network is achieved in terms of adapta-
tion of the network parameters. With a supervised network, those parameters

36 CHAPTER 3. NECESSARY MACHINE LEARNING BACKGROUND

may be changed according to the error measurement between the output of
the model and the desired output. When a network is learning, it actually
tries to minimize this error measure, iteration after iteration. This minimiz-
ation might be performed by gradient descent optimization method.

Note that we must avoid to train to much a model. If it is not stopped
at the right time, it will overlearn, which means that the neural network
replace the relevant information of the general case by information from the
individual cases.

We will now give details about two error measurements that we will need
in this thesis.

Mean squared error measure

The mean squared error measure (MSE) is the simplest and the most used
error function in neural networks for regression.

The mean squared error measure for two vectors ~v and ~w is defined as
1
n

Pn

i=1(vi − wi)
2. MSE measure is always non-negative, and the best value

is 0.

Cross entropy measure

It is sometimes preferable to use the cross entropy measure instead of the
MSE. Indeed it may accelerate the backpropagation algorithm. Sometimes,
when one uses the MSE measure for training a neural network, the reduction
of the error value can be extremely slow. The cross entropy can help avoiding
those periods of stagnation [NBJ02].

This measure aim to quantify the difference between two probability dis-
tributions. Its formula is H(p, q) = −

P

x p(x) log q(x) where p(x) is the
wanted probability and q − x the actual probability.

3.4 Other related details

3.4.1 MNIST dataset

The MNIST dataset of handwritten digits [LCB] is a database composed
of a training set, a test set and all the corresponding labels. It is a very
famous and popular dataset in the machine learning community. Therefore
it is a good set for performances comparison. Image sizes are 784 = 28⇥ 28
pixels and each pixel has 256 levels of gray. The digits have been size-
normalized and centered in a fixed-size image. There are 10 possible labels
(digits from 0 to 9). This database has been used a lot for the validation of

3.4. OTHER RELATED DETAILS 37

(a) (b)

Figure 3.5: Sample digit images from the MNIST database: (a) is the 60th
image and (b) is the 61st.

classification algorithms. Refer to [BCD+94, LBBH98] for more information
about machine learning studies over this dataset.

Figure 3.5 shows two samples from the MNIST dataset with a grey leveled
representation. In this thesis we prefer to show MNIST images and other
similar kind of images with a colored representation of the levels of grey.

3.4.2 Principal component analysis

Principal Component Analysis (PCA) [WEG87, Jol86] is a mathematical al-
gorithm that reduces the dimentionality of the data while retaining most
of the data set information. It identifies linear combinations of the original
variables containing most of the information and basically goes from cor-
related variables into a smaller set of uncorrelated variables called principal
components. Then using just those few principal components, each sample
can be correctly represented with less variables.

Since it is just linear combinations that are needed, the PCA procedure
simply outputs a matrix called correlation matrix, and the transformation is
done by computing a matrix product between the correlation matrix and an
input sample.

It is often used as a preprocessing for reducing the dimentionality of a
machine learning dataset.

38 CHAPTER 3. NECESSARY MACHINE LEARNING BACKGROUND

Part II

Contributions

39

Chapter 4

Privacy-preserving

classification based on

functional encryption

Privacy preserving computation allows multiple parties to run a function over
their private inputs while the output is revealed.

With the generalization of data outsourcing, more and more concerns
raise about the privacy and the security of outsourced data. In this context,
machine learning methods have to be conceived and deployed, but with users
privacy concerns addressed.

In a privacy preserving data classification process, one has to be able
to extract knowledge (e.g. in the case of a classifier, deduction of the class
label of an individual without compromising his private data) by assuring
the protection of the sensitive data and, if possible, by hiding data access
patterns from which useful properties could be inferred.

This is why privacy preserving classification [MWF08, YZW05] is a com-
plex challenge. Several approaches have been proposed, using perturbation
techniques like randomization [AH05, YZW05], condensation [AP04], or us-
ing k-anonymization [FWP07].

These approaches are different from the ones using Fuly Homomorphic
Encryption (FHE), as for example [CdWM+17]. Indeed, with FHE one del-
egates the computation of the classification algorithm to a server and gets an
encryption of the result, while with FE the computation is also delegated to
the server but the server gets the unencrypted result of the classification too.
Hence, with FE the server is able to perform the classification and get the
output while with FHE it cannot. They are really different settings aiming
at very different use cases.

The goal of a privacy preserving classification system is, as an example,

41

42CHAPTER 4. PRIVACY-PRESERVING CLASSIFICATION BASEDON FE

user

classifier

en
cr
yp
ti
on

msg

msg d
ec
ry
p
ti
on

f1, ..., fn
f1(msg)

.

.

.
fn(msg)

cl
as
si
fi
ca
ti
on

class of msg

Figure 4.1: Privacy preserving classification using functional encryption. The
classifier uses n secret keys. Each one enables an evaluation of a function
from {fi}1in.

to deal with medical data that sometimes have to observe restrictive laws
concerning their open access. It would be useful in this context (or for every
kind of private data) and would enable to perform statistical studies without
having a full access to the data.

In this chapter we describe our privacy-preserving classification algorithm
based on functional encryption. We also give some details about our imple-
mentation of an inner-product functional encryption scheme [ALS16] that
we used for experimentation. Since our algorithm requires a classification
algorithm, we describe three different classification algorithms that we ex-
perimented. Finally, we give the classification performances obtained over
the MNIST dataset [LCB] in different contexts.

4.1 Overview

As mentioned before, privacy-preserving classification is a complex challenge
that has many different possible approaches. In this thesis, we propose a
privacy-preserving classification algorithm based on functional encryption.
The idea is to partially decrypt ciphertexts using a functional encryption
scheme, and then to classify those outputs, consequently, original plaintexts
are not revealed and classification is indeed performed. Figure 4.1 illustrates
this concept. The privacy remains due to the functional encryption scheme.
Roughly speaking, the data item on which a prediction must be made is
encrypted. From the encrypted data, information is extracted and is used
afterwards to produce the class of the data.

In our protocol, there is an entity called the server that has already
performed the training step of a classification process. The output of this
training process is used to determine the coefficients of the functionalities

4.1. OVERVIEW 43

f1, ..., fn that will be associated with the n secret keys (as shown in Figure
4.1). The server wants to keep its classifier weights secret, but he also wants
to classify data with it, without delegating its computation.

It may be possible to have many users which have data that they want to
keep secret but, at the same time, they also want to release the classification
results of those data to the server (for example in order to obtain a service).
There is a third party that both the server and the users can trust, named
authority, that will be the functional encryption scheme authority. The au-
thority only plays a role when the privacy-preserving classification system
is set up, neither the server nor the users need the authority to encrypt or
classify once the keys (public key and secret keys) are all generated. Its goal
is in a first step to check that the server’s functionalities f1, ..., fn are not
dishonest (the server is not trying to rebuilt the original plaintexts). In a
second time, the authority has to generate an instance of an inner-product
encryption scheme.

We now describe in detail this protocol, illustrated in Figure 4.2. The
initialization phase has two steps:

First, the authority generates the public key and the master secret key
with the Setup algorithm of the FE and publish the public key.

The following steps are repeated each time a server wants to join the
system:

(A) The server uses the training algorithm on his training set.

(B) The authority receives the f1, ..., fn from the server, checks them and
generates the private keys {skfi}1in using the Keygen algorithm of
the FE, and afterwards sends them to the server.

The following steps are repeated each time a user sends its data to a
server:

(1) The user encrypts private data msg with the Encrypt algorithm of the
FE, and sends it to the server.

(2) The server decrypts it with all of his secret keys {skfi}1in using the
Decrypt algorithm of the FE, and obtains the evaluations {fi(m)}1in

of FE scheme’s functionalities.

(3) The server uses its classification algorithm in order to predict the class
of private data m using values {fi(msg)}1in.

44CHAPTER 4. PRIVACY-PRESERVING CLASSIFICATION BASEDON FE

authority

(PUB,MSK) FE.Setup(1λ)

(B) {skfi} FE.Keygen(MSK, fi) 8i

server

(A) {fi} Classifier.Training(trainingSet)
(2) {fi(msg)} FE.Decrypt(PUB, skfi , ctmsg) 8i

(3) c Classifier.Classify({fi(msg)})

user

(1) ctmsg FE.Encrypt(PUB,msg)

PUB

{fi}

PUB, {skfi}

ctmsg

Figure 4.2: Privacy preserving classification protocol using a functional en-
cryption system.

We experimented this construction using inner-product functional encryp-
tion [ALS16] over the well known MNIST database [LCB]. Details about our
IPFE implementation are given in 4.2.

To illustrate the advantage of our construction, we now describe a realistic
use case. We assume that there is a pharmaceutical company which has
constructed a classifier that takes as input medical and private pieces of
information. The company also does not want to divulge its secret classifier.
However, it wants to conduct a study on real human data, for example the
patients of a hospital. The law about patient medical data disclosure can be
very restrictive depending on the country. For instance in France, a hospital
cannot share private data of its patients without a slow and cumbersome
administrative process. Our construction provides a solution to this use case.
We simply need a third party that can be trusted by the company and by the
hospital. For example, a governmental agency should be able to do it. So,
the agency generates the public key and the secret keys associated with the
company classifier. The hospital encrypts the data of its patients and sends
it to the company. The company decrypts them with its secret keys. After
decryption, the company only gets the result of a computation which involves
the patients data. It is important to notice that the critical data remains
encrypted during the whole process. Nevertheless, the company can use the
computation result (i.e. the inner-products) to perform the classification.

4.2. IMPLEMENTATION OF INNER-PRODUCT FUNCTIONAL ENCRYPTION SCHEMES45

user

classifier

en
cr
yp
ti
on

~v

~v d
ec
ry
p
ti
on

~w1, ..., ~wn

h~v, ~w1i
.
.
.

h~v, ~wni

cl
as
si
fi
ca
ti
on

class of ~v

Figure 4.3: Privacy preserving classification using functional encryption. The
classifier uses n secret keys. Each one enables an evaluation of an inner-
product with a vector from ~w1 to ~wn.

Proceeding in this way, it can perform its study on real medical data without
endangering patient data privacy. Moreover, our solution can involve several
hospitals and companies if needed (the agency has to generate new secret
keys for each new classifier).

It is also important to notice that there is always a risk of collusion. In the
previous scenario, it means that few classifiers can share their secret keys and
extract more information than what they are allowed to have. The effective
security of our construction is studied in the next chapters.

4.2 Implementation of inner-product functional

encryption schemes

Agrawal et al. proposed [ALS16] two different constructions of fully secured
inner-product functional encryption schemes. One has its security based on
the learning with errors (LWE) problem, and the other one security is based
on the decisional Diffie-Hellman (DDH) problem. The recommendations from
the French Network and Information Security Agency (ANSSI) [ans] suggest
to use, for the latter, 2048 bit groups in a discrete logarithm context.

We implemented the DDH construction following this recommendation.
Which means using a prime field Fp such that p is a safe prime of approx-
imately 2048 bits. The description of the context and the algorithms are
given in section 2.3. The group where DDH is assumed to be difficult is the
subgroup of F⇤

p which has the prime order size of (p − 1)/2, we called it G.
Refer to Section 2.1.1 for more details about DDH assumption.

The decryption of the IPFE scheme is performed by computing a discrete
logarithm. In our case, the inner products obtained by the application of

46CHAPTER 4. PRIVACY-PRESERVING CLASSIFICATION BASEDON FE

plaintext ciphertext secret key
784 B 196 kB 1296 B

Table 4.1: Sizes from our IPFE implementation. The secret key also counts
the coefficients of the vector that the secret key is associated with. Plaintexts
are vectors of size 784.

the learned linear coefficients on the MNIST database belong to a small
interval. We have pre-computed a lookup table with all the (↵, g↵) for ↵ in
{−933197 . . . 424769}. This pre-computation took 6.2 seconds and the size
of the obtained lookup table is about 337MB. The size of the lookup can be
reduced to 10.4MB if only the first 32-bits of all the g↵ are kept, which can
be seen as a hashing of g↵ (less than 0.1% of collisions are obtained in this
case). Solving the discrete logarithm using the lookup table takes under 0.18
seconds. We measured the execution time of the algorithms: 0.0004 seconds
for Keygen, 0.15 seconds for Encrypt and 2.3 seconds for Decrypt.

The IPFE algorithms were implemented in C++ using the FLINT library
[HJP13] for computations over field F

⇤
p computations. The experiments were

performed on a regular laptop computer with an Intel Core i7-4650U CPU
and 8GB of RAM. A ciphertext in 256 times bigger than a plaintext and a
secret key has a size of 1.3 kB, the exact sizes of the elements we manipulate
in the IPFE instantiation are given in the table 4.1. Those sizes are given in
the context of a classification algorithm applied to the MNIST database: the
plaintexts are an images (vectors of size 784), the ciphertexts are encrypted
images.

We have an implementation that is practical both in terms of space in
time. Indeed, the step that takes the most time is the decryption process, and
it needs less than 3 seconds without any optimization on a regular laptop.
Details about the execution times are presented in Table 4.2. The key gener-
ation process and the encryption process are faster. The key generation and
the decryption process can be parallelized: for any number of secret keys,
the computation time can be reduced to the time needed for just one key
generation and decryption.

4.3 Privacy-preserving classification based on

inner-product functional encryption

For practical purpose, we used an inner product functional encryption scheme
[ALS16] to experiment our construction. Details about our implementation

SECTION 4.3. PRIVACY-PRESERVING CLASSIF. BASED ON IPFE 47

Number of secret keys Keys generation(s) Encryption Decryption(s)
1 0.0004 s

0.15 s

2.3 s
10 0.004 s 23 s
20 0.008 s 46 s
30 0.012 s 69 s

Table 4.2: Execution times (in seconds) for the inner product functional en-
cryption implementation. The key generation and decryption columns con-
tain the needed time without any parallelization. Secret keys are associated
with vectors of size 784.

user

classifier

en
cr
yp
ti
on

~v

~v d
ec
ry
p
ti
on

~w1, ..., ~wn

h~v, ~w1i
...

h~v, ~wni A
rg
M
ax

class of ~v

Figure 4.4: Privacy preserving classification using functional encryption with
a linear classifier. The classifier uses n secret keys. Each one enables an
evaluation of an inner-product with a vector from ~w1 to ~wn. There are
m = n classes with this classifier.

are given in 4.2.

The use of an inner-product functional encryption implies that messages
are basically vectors. The secret keys are associated with vectors as well,
and after decryption, we get an inner-product between a plaintext and secret
key’s vector.

Figure 4.3 shows the inner product functional encryption specification of
our construction. As we can see, the privacy-preserving classifier has n secret
keys, previously provided by the authority (not mentioned in this figure). As
soon as it gets a ciphertext, it decrypts the ciphertext n times with n secret
keys. Then, there is the machine learning part: those inner-products have
to be used by a ML algorithm to classify the encrypted vector ~v. This is
the object of this section that describe 3 algorithms that we used: linear
classifier, extremely randomized tree classifier and, finally, neural network
classifier. Details about those algorithms can be found in 3.2 and 3.3.

48CHAPTER 4. PRIVACY-PRESERVING CLASSIFICATION BASEDON FE

4.3.1 Linear classification

The simplest way to classify is to use a linear one-vs.-rest classifier (refer to
Section 3.2.1 for details about linear classification). Figure 4.4 shows this
construction. Since it is a linear classifier, we have m = n classes, each one
represented by vectors from ~w1 to ~wn.

The training step outputs the vector set { ~wi}1in. These are the vectors
associated with the secret keys that will be generated by the authority and
then given to the privacy preserved classifier. We suppose that a vector ~v has
been encrypted into a ciphertext by an user. When the privacy-preserving
classifier gets it, it will decrypt it n times with the n secret keys. Then, it
will just have to compute the argMax({h~v, ~wii}1in) which gives the class
of the vectors ~w1 to ~wn.

The linear classifier is not the best in terms of classification performance,
which is why we tried two other algorithms.

4.3.2 Extremely randomized trees classification

In order to improve our privacy-preserving classifier, we have replaced the
linear classifier with an extremely randomized tree classifier. For details
about this type of classifier please refer to Section 3.2.2. Figure 4.5 shows
the updated construction of our scheme. We keep the same secret keys
associated with the same vectors. This time, the privacy-preserving classifier
has to train an ERT classifier over a transformation of the original training
set. In fact this time instead of learning with a vector ~v from the training
set, we will learn with {h~v, ~w1i, ..., h~v, ~wni}.

Then, when using the system of privacy-preserving classification, in the
same manner, inner-product values obtained after decryption are provided
to the ERT classifier. The ERT classifier succeeds in extracting information
from the n inner-products values and classify with better performances that
the linear classifier.

Using the extremely randomized tree classifier improves the performances
but we can still make it even better.

4.3.3 Neural network classification

We now reach our best solution in terms of performance of classification. The
ERT classifier is now replaced with a neural network classifier. For details
about neural networks please refer to Section 3.3.2. Figure 4.6 shows the
updated construction.

SECTION 4.3. PRIVACY-PRESERVING CLASSIF. BASED ON IPFE 49

user

classifier

en
cr
yp
ti
on

~v

~v d
ec
ry
p
ti
on

~w1, ..., ~wn

h~v, ~w1i
.
.
.

h~v, ~wni

p
re
d
ic
ti
on

E
R
T

class of ~v

Figure 4.5: Privacy preserving classification using functional encryption and
ERT classification. The classifier uses n secret keys. Each one enables an
evaluation of an inner-product with a vector from ~w1 to ~wn.

The classifier party trains a neural network model with the training set
from Figure 4.7. The first layer of this network model reproduce the inner-
product from the IPFE’s decryption. So it is composed by n neurons for
the n secret keys of the system. As soon as the model is trained, the n
vectors have been generated in the first layer of the model. The authority
can generate the n secret keys associated with those vectors.

The privacy-preserving classifier party has now to remove the first layer of
the neural network (which becomes the network from Figure 4.8), and to train
it a little more with (as done with the ERT) this time not with the training
set but instead with the inner-products of the training set vectors. This has
to be done because values are converted from integers (inner products) to
reals between 0 and 1 (network inputs) which cause a little decrease of the
classification efficiency. Finally, once a ciphertext is decrypted n times with
the n secret keys, the classifier party uses its neural network and gets the
class of the plaintext.

The fist layer of the model from Figure 4.7 is a fully connected layer with
the identity function as the activation function. The rest of this model is
the final neural network model (Figure 4.8), and it is composed of 3 hidden
layers. Every layers are fully connected and all the activation functions are
the ReLU function, except for the last one which is the sigmoid function.

In this context, the number of classes m can be different from the number
of secret keys n. n determines the size of the input layer of the neural network
model and m the size of the output layer of the model.

50CHAPTER 4. PRIVACY-PRESERVING CLASSIFICATION BASEDON FE

user

classifier

en
cr
yp
ti
on

~v

~v d
ec
ry
p
ti
on

~w1, ..., ~wn

h~v, ~w1i
.
.
.

h~v, ~wni

n
et
w
or
kn
eu
ra
l

class of ~v

Figure 4.6: Privacy preserving classification using functional encryption and
a neural network classifier. The classifier uses n secret keys. Each one enables
an evaluation of an inner-product with a vector from ~w1 to ~wn. There are
m = n classes with this classifier.

vs

vs−1

vs−2

vs−3

vs−4

...

v5

v4

v3

v2

v1

...
...

...

fid

...

ReLU

...

ReLU

...

Sigmoid

wm

...

w1

n neurons

128 neurons

256 neurons

512 neurons

Figure 4.7: Description of the ANN model used to generate the vectors for
secret keys. All the layers are fully connected layers. Variable n stands for
the number of secret keys, and m for the number of classes (or subclasses)
according to the classifier. Variable s denotes the length of the vectors from
the dataset, and also the length of vectors {wi}1in.

SECTION 4.3. PRIVACY-PRESERVING CLASSIF. BASED ON IPFE 51

hv, wni

...

hv, w1i

...
...

...

ReLU

...

ReLU

...

Sigmoid

wm

...

w1

128 neurons

256 neurons

512 neurons

Figure 4.8: Description of the ANN model used for the classification. All
the layers are fully connected layers. Variable n standn for the number of
secret keys, and m for the number of classes (or subclasses) according to the
classifier.

Classifier Learning Prediction Performance
Linear 6 sec.

< 0.1 sec.
86.07%

ERT 30 sec. 92.68%
NN 185 sec. 96.69%

Table 4.3: Execution results of the proposed classifiers in a n = 10 secret
keys scenario.

4.3.4 Experimental results

We experimented the three privacy-preserving classifiers we have described
above on the MNIST dataset of handwritten digits [LCB]. Please refer to
Section 3.4.1 for more details. Since we use the MNIST dataset, m has a
fixed value of 10 classes.

The experiments were performed on a regular laptop computer with an
Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz and 16GB of RAM. Classifier
error rate is the percentage of miss-predictions reported to the total number
of predictions.

52CHAPTER 4. PRIVACY-PRESERVING CLASSIFICATION BASEDON FE

Classifier Performance
ERT with n = 10 classes 92.68%
ERT with n = 20 classes 95.14%
ERT with n = 30 classes 95, 64%

Figure 4.9: Error rates for the ERT classifier.

Linear classification

Table 4.3 presents execution times for the 3 proposed classification methods
when we use n = 10 secret keys. The performance of the linear classifier is
about 86%.

It is possible to increase the performance of these privacy-preserving linear
classifiers. Indeed, we can further split each input class into several sub-
classes. This corresponds to assigning new “artificial” labels to input data
set (simply relabeling the target values).

ERT classification

As we can see in table 4.3, the ERT classifier is better than the linear one.
Indeed, using the extremely randomized tree learning process enables to in-
crease classification performances. Its performance is about 93% with 10
secret keys.

It is also possible to increase the performance of this privacy-preserving
ERT classifiers. In the same way than with the linear one, we can further
split each input class into several sub-classes by simply relabeling the target
values. This corresponds to assigning new “artificial” labels to the input
data set. We give experimental results of that in table 4.9, with n = 20 and
n = 30 secret keys.

Neural network classification

As we can see in table 4.3, the neural network classifier is better than the
linear and the ERT ones. Its performance is about 96%.

Details about neural network models used are given in Figures 4.7 and
4.8. In our experimentation, the numbers of neurons in the hidden layers
are sequentially 128, 256, and finally 512. The number of classes is m = 10
because of the 10 digits from the MNIST dataset. The variable n represents
the number of secret keys and is set to 10 at first for comparison with the
previous results.

We also experimented values for n varying from 1 to 9. Classification
performances of those experiments are given in Figure 4.10. We emphasize

SECTION 4.3. PRIVACY-PRESERVING CLASSIF. BASED ON IPFE 53

40

50

60

70

80

90

100

51.27

79.93

84.35

89.07
91.48 92.89 94.3 95.16 96.03 96.69

1 2 3 4 5 6 7 8 9 10

Figure 4.10: Classification performance of the inner-product functional en-
cryption based privacy-preserving classifier. The x-axis shows the number of
secret keys n varying (from 1 to 10), and the y-axis shows the percentage of
classification success.

the fact that the use of a functional encryption scheme does not really change
anything from the classification point of view. Indeed it just force us to
classify projections (inner-products) of input (images) instead. Note that
best classification performances on the MNIST dataset reach more than 99%
[WZZ+13]. With only n = 6 secret keys, the performance of the classifier
reaches 93% which is better than what we can do with n = 10 secret keys
and the ERT classifier.

The previous classification performances are average values over all digits.
However, we notice that there is a disparity between digits. Indeed, from one
to another, the average classification performance can vary a lot: from 63%
for the 8 to 94% for the 1 digit (with the n = 2 secret keys scenario). We
show those disparities for the n = 1, n = 2 and n = 10 secret keys scenarios,
in Figure 4.11. It suggests that some digits are harder to recognize than then
others. It can be explained by the fact that some digits have a more complex
shape, with curves for instance. The one which is a simple straight line is
the easiest one to classify.

54CHAPTER 4. PRIVACY-PRESERVING CLASSIFICATION BASEDON FE

0 1 2 3 4 5 6 7 8 9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4.11: Classification performance of the inner-product functional en-
cryption based privacy preserving classifier. The x-axis shows the 10 digits,
and the y-axis shows the percentage of classification performance per digit.
The blue, green and red bars respectively correspond to n = 1, n = 2 and
n = 10 secret keys scenarios.

4.4 Privacy-preserving classification based on

quadratic polynomial functional encryp-

tion

Functional encryption for quadratic polynomial functionality [BCFG17] is an
attractive solution to increase the performance of classification or to reduce
the number of secret keys to generate. We provide details about such schemes
in Section 2.4. At the beginning of the thesis, there was no such construction
in the literature, so we abstracted our privacy-preserving classifier from a
practical quadratic polynomial functional encryption scheme. We indeed
experimented our privacy-preserving classifier while considering that it was
using a functional encryption for quadratic polynomial function instead of
the inner-product functional encryption one. Figure 4.12 shows this different
instance of our PPC construction. The advantage is that we can compute
more precise prediction with less secret keys.

4.5. DISCUSSION 55

user

classifier

en
cr
yp
ti
on

~v

~v d
ec
ry
p
ti
on

W1, ...,Wn

~v ·W1 · ~vT

.

.

.
~v ·Wn · ~vT

n
et
w
or
kn
eu
ra
l

class of ~v

Figure 4.12: Privacy preserving classification using a quadratic polynomial
functional encryption and a neural network classifier. The classifier uses n
secret keys. Each one is associated with a matrix from W1 to Wn.

4.4.1 Experimental results

In order to compare between quadratic polynomial and inner-product, we
select only 784 monomials. So we have in both cases 784 constants.

We trained a classifier that does the quadratic polynomial step before
being fully connected. Then we selected the 784 biggest weights from the
quadratic polynomial layer.

In Figure 4.13, we give the classification performances of this construction
still using the MNIST dataset of handwritten digits [LCB]. As we did in
Figure 4.10, we give performances for scenarios with n = 1 secret key to n =
10. We also plot in this Figure the performances of the IPFE based classifier
in gray (from Figure 4.10). As we can see the classification performances are
better way better than with the IPFE based classifier. In fact, We have the
same performances for n = 5 secret keys with the IPFE version than with
only n = 2 keys with the quadratic polynomial functional encryption: 91%.

4.5 Discussion

Our construction combine functional encryption and machine learning to
achieve privacy preserving classification.

We experimented mainly with an inner-product functional encryption
scheme. We tried three different machine learning algorithms with it, and
find out that the neural network was the best in terms of both classification
performance and the number of secret keys needed. Indeed, with only five
secret keys the performance is above 91%.

We also tried with a functional encryption schemes for quadratic poly-
nomial combined with a neural network. It increased the performances and

56CHAPTER 4. PRIVACY-PRESERVING CLASSIFICATION BASEDON FE

40

50

60

70

80

90

100

72.6

91.28

95.82 96.95 97.2 97.33 97.67 97.83 97.78 97.21

1 2 3 4 5 6 7 8 9 10

Figure 4.13: Classification performance of the quadratic polynomial func-
tional encryption based privacy preserving classifier (black dots). The x-axis
shows the number n of secret keys provided, and the y-axis shows the per-
centage of classification success. We add the gray dots corresponding to the
performances of classification with an IPFE scheme (Figure 4.10) for com-
parison.

4.5. DISCUSSION 57

also reduced the number of keys needed.
Note that there are still few practical functional encryption schemes

nowadays, but since the classification performances are independent of the
functional encryption scheme used in our construction, it is possible to de-
termine performances without having the practical FE scheme yet.

The functional encryption scheme that we used is fully secure under the
decisional Diffie-Hellman assumption. Details about it are in 2.1.1. But
since a functional encryption reveals after decryption only a part of the ori-
ginal plaintext, we want to know what can be known exactly in our privacy
preserving classification use case. It is the object of the next chapter.

58CHAPTER 4. PRIVACY-PRESERVING CLASSIFICATION BASEDON FE

Chapter 5

Leakage-based attacks on

functional encryption settings

In this chapter we study the functional encryption information leakage, in
particular for the use case described in Chapter 4. We consider attackers
who respect the protocol, but try to get more information than what they
are supposed to. This investigation goes beyond the cryptographic security
of the underlying FE scheme. Indeed, the result of the computation provided
by a secure FE scheme may leak more information about the plaintext than
expected. If, in a particular use case, this information leakage compromises
the plaintext, it means the FE system may not be considered as secure for
this particular use case, even if the underlying FE scheme is proved to be
stand alone secure. Our goal is to study the security of a FE system when
one has infomation about the plaintext’s semantic, and one key or more.
We propose attacks based on machine learning to estimate the information
leakage, mainly focusing on inner product functional encryption. Finally,
we experiment our attacks on the MNIST dataset [LCB] (details about this
dataset are given in Section 3.4.1), and we provide experimental results.

5.1 Context of the attack

As a starting point of this security study we investigate our privacy preserving
classification protocol based on functional encryption described in Chapter
4. Our attack setting is the following: the malicious classifier (the attacker)
knows exactly the semantic of data that has been encrypted and has access
to a training set (see Figure 5.1).

The owner of the secret key skf associated to the function f is malicious
and designs an attack using only the output of the FE decryption algorithm

59

60 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

authority
(PUB,MSK) setup(1λ)
skf keyGen(MSK, f)

attacker
f(x) decrypt(skf , ctx)
x attack(f(x))

user
ctx encrypt(PUB, x)

skf

ctx

Figure 5.1: Description of the considered attack on a FE use case and the
actors involved.

to get original plaintexts.

5.2 Attack methods

The attacker owns a set of n secret keys {sk~w`
}1`n associated with the n

vectors ~w`, 1 ` n. We consider vectors of length m. When he gets an
encryption ct~v of a vector ~v, he is able to compute {h~v, ~w`i}1`n using the
decryption algorithm of the IPFE scheme, which gives him the class c of ~v
according to his own classifier.

So he has the following system with ~v0 as unknowns.

8

>

>

>

>

<

>

>

>

>

:

ip1 = h~v0, ~w1i

ip2 = h~v0, ~w2i
...

...
...

ipn = h~v0, ~wni

(5.1)

Solving this system is equivalent to finding all the vectors ~v0 that satisfy
the equation:

~ip = W · ~v0 (5.2)

with ~ip
T
= (ip1, · · · , ipm), ~w0

T
= (w0

1, · · · , w
0
m) and the matrix W with n

lines and m columns (composed by the n vertical vectors w1, ..., wn). The
plaintext ~v is one of the solutions of the system and the difficulty to find

5.2. ATTACK METHODS 61

user

attacker

en
cr
yp
ti
on

m

m d
ec
ry
p
ti
on

f1, ..., fn
f1(m)

.

.

.
fn(m) at

ta
ck m

Figure 5.2: Description of the considered attack on a FE use case.

it depends on m, n, {~vi}1in and on the intrinsic properties of the used
messages (specific images, particular data, random, ...).

Yet, in many cases, such an attack is possible. To illustrate it, we will
consider the following example in Z. Let m = 16 and n = 4. The plaintexts
belong to {0, 1}16 which is included into the definition space Z

16. Let ~vT =
(0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1). Vectors ~w1 = (2, 81, 80, 82, 3,
78, 90, 14, 66, 29, 52, 36, 11, 40, 83, 31), ~w2 = (70, 64, 65, 46, 74, 10, 2, 85,
23, 54, 2, 41, 95, 83, 38, 6), ~w3 = (54, 43, 98, 0, 93, 78, 23, 91, 52, 39, 43,
62, 19, 57, 95, 50) and ~w4 = (87, 49, 3, 33, 28, 47, 96, 18, 17, 8, 92, 69, 89,

38, 84, 10) are randomly chosen in {0, · · · , 99}16. So, we have ~ip
T
= (460,

334, 502, 400). There are an infinite number of solutions in Z
m but only one

in the subset that our plaintexts come from: ~w 2 {0, 1}16. With a brute
force attack we find it in a few seconds even if ~v was encrypted with an inner
product functional encryption scheme that is secure!

A small space is clearly insecure. That is why on the one hand the
parameter m and the size of the ”realistic” plaintext space has to be large
enough, and on the other hand the number of inner products n has to be
limited. Within our MNIST use case, a brute force attack is unthinkable
because of the size of our plaintext space: (28)784. Nevertheless it does not
mean that it is not possible to get more information than the inner-product
using vector w1, ..., wn.

There are k classes in his classifier : 1, ..., k. The attacker’s challenge is
to recover input vector ~v from {h~v, ~w`i}1`n and c. Because he determines
the classes c of every plaintexts ~v, he is able to specialize attacks for every
class of its classification process. The attacker also knows what kind of data
has been encrypted, so he is able to get a valid training set. He can then use
it as he wants.

62 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

5.2.1 Principal component analysis

The idea of this attack is to use PCA properties to exploit the inner products
values and recover an approximation of the original image. Refer to Sec-
tion 3.4.2 for details about PCA.

Let A 2 Mn,m(R) be the matrix composed of row vectors ~w1, ..., ~wn and

let ~v be a vector of c-class. Let ~ip = A ·~v = (ip1, ..., ipn)
T be the vector of all

the inner products obtained with the FE scheme. So, for 1 ` n we have
ip` = h~v, ~w`i.

The attacker uses PCA for each class c over its training set. He gets
k matrices : {MPCA,c}1ck ⇢ Mn,m(R). The PCA procedure ensures the
following property ~v w MT

PCA,c ·MPCA,c · ~v when ~v is from the class c.
Then, the attacker computes matrices {Pc}1ck such that for all 1 c

k, MPCA,c w Pc ·A. This can be done using a gradient descent algorithm (op-
timization algorithm used to find a local minimum for a continuous function).
He determines the matrix Pc by minimizing

P

i,j((Pc · A−MPCA,c)i,j)
2.

He is now able to generate a vector relatively close to the original one.
When he gets an encryption ct~v of a vector ~v, he gets the ~ip vector with
the IPFE decryption algorithm, then he determines its c-class and simply
computes MT

PCA,c · Pc · ~ip:

MT
PCA,c · Pc · ~ip = MT

PCA,c · Pc · A · ~v
w MT

PCA,c ·MPCA,c · ~v
w ~v

(5.3)

In equation (5.3), we have the second line because Pc · A w MPCA,c, and
we have the third line because ~v w MT

PCA,c ·MPCA,c · ~v when ~v is from the
class c.

Figures 5.3 and 5.4 show some images obtained using the PCA attack
over the MNIST dataset. We consider 3 instances of the attack here: 30, 20
and 10 secret keys scenario. As we can see on those figures, the more the
attacker has secret keys, the better are the attack results. About Figure 5.4:
the image in the first row is the one with the lowest MSE (2154) from the
test set in the 10 secret keys scenario and the image in the second row is the
one with the highest MSE (15590) from the the test set in the 10 secret keys
scenario.

5.2.2 Fully connected network

This attack uses an Artificial Neural Network (refer to Section 3.3 for more
details). The network model is composed of ↵ hidden layers of fully connected
neurons. Each hidden layer is composed of βi neurons for 1 i ↵. The

5.2. ATTACK METHODS 63

Figure 5.3: Samples of the PCA attack results. The columns are respectively
(from left to right) original MNIST images, attack result in a 30, 20 and 10
secret keys scenario.

Figure 5.4: Original MNIST images and PCA attack results over them, in
30, 20 and 10 secret keys scenario. The MNIST image in the first row is the
one from the test set with the lowest MSE (2154) in a 10 secret keys scenario,
and the MNIST image in the second row is the one from the test set with
the highest MSE (15590) in a 10 secrets key scenario.

64 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

ip1

...

ipn

...
...

ReLU

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...

ReLU

...

Sigmoid

w1

w2

...

wm−1

wm

α fully connected layer

of {βi}1i↵ neurons

Figure 5.5: Description of the ANN model used for the ANN-attack.

last layer activation function is the sigmoid function, the ReLU function is
the activation function for the other layers (details are given in Section 3.3).
Figure 5.5 gives a visual description of this model. Note that we use the
same notations as in the previous section.

We use the mean squared error function as the neural network training
loss function.

Again, we decompose the attack on a per-class basis, so there are k ANN
to train for each class c. The ANNc denotes the class c ANN. Let {~tc,i}i be
the set of c-class vectors from the training set. The ANNc training algorithm
is run with {A ⇤ ~tc,i}i as ANN inputs and {~tc,i}i as ANN outputs.

The attacker is now able to generate a vector relatively close to the ori-
ginal one, which should be kept secret. When he gets an encryption of a
vector ~v, he gets the ~ip vector with the IPFE decryption algorithm, then he
determines its c-class and simply use its ANNc with ~ip as input.

In our experimentation, the parameters used for this attack are: ↵ = 4,
β1 = 128, β2 = 256, β3 = 512 and β4 = 784.

Examples of the attack results are given in Figure 5.6. It shows the results
of our attacks on some images from the MNIST [LCB] test set. Again, rows
are composed from left to right, by the original MNIST image, the result of
the attack in a 30 secret keys scenario, the result of the attack in a 20 secret
keys scenario and the result of the attack in a 10 secret keys scenario. We
select again the two images from the MNIST test set that has for the first
row the lowest MSE (72) in a 10 secret keys scenario and for the second the
image with the highest MSE (10093) in a 10 secret keys scenario.

5.2. ATTACK METHODS 65

Figure 5.6: Original images and fully connected ANN attack results over
them, in 30, 20 and 10 secret keys scenario. The MNIST image in the first
row is the one from the test set with the lowest MSE (72) in a 10 secret keys
scenario, and the MNIST image in the second row is the one from the test
set with the highest MSE (10093) in a 10 secret keys scenario.

Visually, ANN attacks are more efficient than the PCA attack (Figures
5.3 and 5.4).

In a 30 secret keys scenario, it is clear that the leakage is enough to recover
an image looking exactly like the original one, even if the shape of the digit
is complex.

5.2.3 Convolutional network

This attack is equivalent to the previous one, except that it is using a different
structure for the neural network. Since we are using the MNIST [LCB]
database to experiment our attacks, we consider using Convolutional Neural
Networks (CNN) which tend to have better performances over images.

The convolutional neural network we use, shown in Figure 5.7, has ten
hidden layers, and the input is a vector of length n, the inner products
ip1, ..., ipn. The layers used are either fully connected, convolutional, max
pooling or upsampling layers. This CNN is inspired by the autoencoder
CNN model suggested in Keras [C+15] for image denoising.

• The first hidden layer is a fully connected layer that converts the small
vector into a two dimensional array of size 28⇥ 28.

• The second layer is a convolutional layer with 32 feature maps. Each
unit in each feature map is connected to a 3 ⇥ 3 neighborhood in the

66 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

input. The size of the feature maps is the same as the input size
because the area outside of the input, that is needed to compute the
convolution, is padded with zeros. The activation function is the ReLU
function.

• The third layer is a max pooling layer. Each unit in each feature map
is connected to a 2⇥2 neighborhood in the previous layer and its value
is the maximum value of this neighborhood. The feature maps have
now a size of 14⇥ 14.

• The fourth layer is another convolutional layer with the same char-
acteristics as the second layer, except that the feature maps size is
14⇥ 14.

• The fifth layer is another max pooling layer with the same character-
istics as the third layer. The feature maps have now with a size of
7⇥ 7.

• The sixth layer is another convolutional layer with the same character-
istics as the second layer, except that the feature maps size is 7⇥ 7.

• The seventh layer is an upsampling layer. It duplicates the rows and
columns of the features maps. The feature maps have now a size of
14⇥ 14.

• The eighth layer is another convolutional layer with exactly the same
characteristics as the fourth layer.

• The ninth layer is another upsampling layer which is exactly the same
as the seventh layer. The feature maps have now a size of 28⇥ 28.

• The tenth layer is the last convolutional layer with only one feature
map of size 28 ⇥ 28. Each unit in the feature map is connected to a
3 ⇥ 3 neighborhood in the previous layer. The activation function is
the sigmoid function.

We use the mean squared error function as the neural network training
loss function.

The attack is also split into k parts, one for every c-class. Therefore,
there are k CNN to train. The rest of the attack is exactly the same as the
previous one.

Examples of the attack results are given in Figure 5.8. Since the exper-
iment is performed over images, it is not surprising that the CNN attack is
visually better than the fully connected ANN attack.

5.2. ATTACK METHODS 67

Dense Conv MaxPool

Conv

MaxPoolConvUpSampl

Conv

UpSampl Conv

Figure 5.7: Description of the CNN model used for the CNN-attack.

Figure 5.8: Original images and CNN attack results over them, in 30, 20 and
10 secret keys scenario. The MNIST image in the first row is the one from
the test set with the lowest MSE (68) in a 10 secret keys scenario, and the
MNIST image in the second row is the one from the test set with the highest
MSE (12683) in a 10 secret keys scenario.

68 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

0 1 2 3 4 5 6 7 8 9
0

1300

2600

3900

5200

6500

7800

9100

Figure 5.9: Comparison between PCA (left column), fully connected ANN
(middle column) and CNN (right column) attacks in the 10 inner-product
context. the x-axis shows the average MSE for all digits in abscissa.

5.3 Results analysis

The experiments were performed on a regular laptop computer with an In-
tel(R) Core(TM) i7-6600U CPU @ 2.60GHz and 16GB of RAM. The Keras
framework [C+15] was used to implement ANN and CNN attacks.

The Mean Squared Error (MSE) (details are given in Section 3.3.2) is
used to compare the resemblance between original and recovered images.

5.3.1 Digit comparison

Figure 5.9 shows for each digit and for each scenario (30, 20 and 10 key) the
average MSE measure between the result of each of the three attacks and
the original test set. We observe that the results of fully connected ANN
attack and CNN attack are almost the same in terms of MSE, even if fully
connected ANN score is better by a small amount.

We can also notice from Figure 5.9, that there is an important inequality
between the MSE measures obtained for different digits. Indeed, some of the
digits reveal more about their shape than others. The digit “1” , for example,
has the simplest shape and leaks the most, while curve shaped digits (like
digit “2”, digit “5” or digit “8”) leak less and are the hardest to recover. We
will now focus on the 10 secret keys scenario with the CNN attack and we

5.3. RESULTS ANALYSIS 69

will show that it leaks already too much.

Figure 5.10 shows the MSE distribution in the CNN attack results over
the test set in the 10 secret keys scenario. It also shows image examples with
MSE values of 1300, 2600, 3900, 5200, 6500 and 7800 for digit “9”. Attack
results with MSE under 2600 give images really close to the originals, as we
can see from the two image examples on the left. Such images (MSE under
2600) represent 70% of the test set.

Figure 5.11 shows for each digit, in a descending order, the percentage
of images with MSE under 2600 with the CNN attack in a 10 secret keys
scenario. As mentioned before, the results depend on the digits. In this figure
we can see that almost every digit “1” (> 98%) are “correctly” recovered with
the CNN attack, while digits “2”, “5” and “8” are “correctly” recovered for
more than half of the examples (< 60%). In a 20 secret keys scenario, the
percentages are all higher than 93% and in a 30 secret keys scenario, they
are higher than 97%.

Figures 5.13 to 5.22 provide for each digit and for 10 scenarios (from 1
to 10 secret keys) the result of the attack network from the neural network
attack for 5 different samples and all the MSE measures. For the same
sample we can notice that the MSE is not always decreasing when we increase
the number of secret key. It is explained by the fact that all scenario are
completely different and their training process had led to a different way to
rebuilt images. The average of all the MSE measures for all the images in the
test set is indeed decreasing when we increase the number of secret keys, but
when we consider only one particular image, it becomes more or less efficient
according to the training process performed before.

5.3.2 Privacy-preserving classification and MNIST data-

set use case

Ten secret keys are leaking enough to recover every shapes of each digit “1”,
and more than 50% of the other digit shapes. In this case, the privacy-
preserving feature seems to be compromised.

Our study is not only valid with this particular cryptographic scheme and
this particular classifier. As long as an inner-product functional encryption
scheme is deployed, attacks like those we presented can be used.

The more limited the plaintexts are, the more efficient the attacks are.
An attacker can easily cut the plaintext space into classes, and then process
as explained in the previous section to attack any ciphertext he receives.
So it seems really essential to make sure that we have a precise idea of the
leakage when we use such schemes.

70 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

200

400

600

800

1000

1200

0 1300 2600 3900 5200 6500 7800

70% 30% of the test set

Figure 5.10: Histogram of the MSE result of the CNN attack. The x-axis
represents MSE mesure, and the y-axis shows the number of image from the
test set (total of 10, 000 images). We omit the results for which the MSE is
larger than 8400, because it represents less than 0.1% of the test set.

1 7 9 4 6
98.50% 80.93% 75.61% 69.95% 68.99%

0 3 2 5 8
66.93% 64.55% 57.17% 56.05% 55.13%

Figure 5.11: For each digit, percentage of images from the test with an MSE
under 2600 with the CNN attack in a 10 secret keys scenario (ordered in
descending order).

5.3. RESULTS ANALYSIS 71

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3248

3093

2886

2713

2495

2275

1924 1941

1630

1453

1 2 3 4 5 6 7 8 9 10

Figure 5.12: For each scenarios between 1 secret key to 10, the average MSE
for the MNIST test set.

72 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

1

2

3

4

5

6

7

8

9

10

original

3247

4433

3916

3637

3011

4980

2748

3226

2215

1317

4639

4375

3993

5234

2007

3804

1302

1914

3993

1378

6962

4989

6808

3606

5368

2502

7189

1829

1766

1267

2905

3966

3023

2132

5034

4191

3370

939

2270

1176

3008

3010

2838

2339

2043

2371

1699

995

883

1047

Figure 5.13: Five samples from the MNIST test set of 0 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

5.3. RESULTS ANALYSIS 73

1

2

3

4

5

6

7

8

9

10

original

2626

1975

2175

1719

481

571

451

356

684

251

4311

4851

3667

2538

2287

499

170

163

215

269

3692

4238

4033

4224

416

2482

529

604

243

256

1116

1253

1044

840

259

279

160

129

118

224

2309

1803

1507

1069

257

430

288

334

572

284

Figure 5.14: Five samples from the MNIST test set of 1 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

74 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

1

2

3

4

5

6

7

8

9

10

original

2844

3221

2602

2652

1826

2637

2047

2079

1838

2039

4010

3832

3383

3248

3013

3002

2651

2017

3113

1960

3874

4031

3990

2994

3389

2814

2043

1439

1476

2035

4164

4451

2464

3126

2780

2283

2967

3323

1863

2038

3762

4077

3483

4018

3269

3923

2640

2780

2493

1938

Figure 5.15: Five samples from the MNIST test set of 2 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

5.3. RESULTS ANALYSIS 75

1

2

3

4

5

6

7

8

9

10

original

3793

3480

3712

2570

1786

2051

1352

1336

1517

1755

3213

2917

2849

3339

3382

2106

2350

1755

1957

1678

5592

5789

6289

4467

4020

3058

2449

2382

1952

1810

3125

2941

2825

2565

1895

1751

2534

1798

1250

1665

3096

3170

2979

2391

2225

2655

1259

1400

937

1729

Figure 5.16: Five samples from the MNIST test set of 3 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

76 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

1

2

3

4

5

6

7

8

9

10

original

2987

2416

1900

1853

1358

1647

1562

1302

787

1535

3411

3712

3665

3477

3589

1886

2100

2668

1228

1495

3501

3829

3620

2581

3562

3850

3278

1166

1920

1432

3294

3348

3193

3564

4117

2527

2913

3149

2672

1650

6634

5960

6232

7205

6392

2754

3956

3198

2060

1603

Figure 5.17: Five samples from the MNIST test set of 4 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

5.3. RESULTS ANALYSIS 77

1

2

3

4

5

6

7

8

9

10

original

3718

2920

2129

2715

1854

1895

2103

2377

1963

2075

4273

4416

4670

3468

3108

5349

3340

3304

1744

2263

2560

2795

2615

2133

1833

2130

1074

867

1381

2091

5106

5708

4263

5076

6272

2318

4428

2615

2809

2107

3485

3537

3569

4323

3280

3972

2572

2486

2655

2234

Figure 5.18: Five samples from the MNIST test set of 5 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

78 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

1

2

3

4

5

6

7

8

9

10

original

2207

1631

1690

1698

1746

1580

1216

1939

1066

1347

3949

4078

3522

3973

2269

4354

3427

2100

1273

1324

5340

5617

4478

5527

5875

5567

3500

2001

1537

1408

4710

4786

4554

3842

2173

2387

1682

1424

1546

1442

5786

5421

3987

2448

3330

1019

1444

1325

1072

1380

Figure 5.19: Five samples from the MNIST test set of 6 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

5.3. RESULTS ANALYSIS 79

1

2

3

4

5

6

7

8

9

10

original

2416

3232

3057

3060

1599

2591

1793

2930

1275

1075

2765

2043

2108

1989

2273

1742

1218

1210

2731

1015

2336

2240

1955

1760

1875

1817

1853

2290

1458

995

3125

4106

4618

5178

3579

2536

1476

1706

1112

964

3922

4898

1551

1586

776

1231

1727

660

830

972

Figure 5.20: Five samples from the MNIST test set of 7 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

80 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

1

2

3

4

5

6

7

8

9

10

original

3500

3679

3829

2476

2803

1725

1728

3644

1420

2103

4015

3782

3739

3504

3444

3060

2148

2889

2260

2193

3078

2975

2807

2092

2218

2264

2107

2374

2051

2141

2772

2416

2007

1713

2079

2083

1975

1947

2123

2085

3639

3214

4136

4007

3593

3895

3460

2604

2758

2214

Figure 5.21: Five samples from the MNIST test set of 8 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

5.3. RESULTS ANALYSIS 81

1

2

3

4

5

6

7

8

9

10

original

3834

4490

1433

949

673

1225

1184

1866

872

1302

2965

2635

2611

2090

2101

3238

1472

2115

1136

1276

2320

2428

2691

1737

2119

1732

1798

1172

994

1261

4536

5007

3490

4827

3042

2362

1819

2082

1251

1289

3220

3465

3164

3629

2833

3023

2218

1869

1513

1387

Figure 5.22: Five samples from the MNIST test set of 9 digit images and
the result of the ANN attack on it for 1 secret key scenario to 10 secret keys
scenario

82 CHAPTER 5. LEAKAGE-BASED ATTACKS ON FE SETTINGS

5.4 Generalization to others functional en-

cryption schemes

The neural network based method to analyse the leakage of an IPFE scheme
can be used for any other FE scheme. Indeed, even if the functional encryp-
tion scheme is used for something else than classification, those attacks may
still be fitting. When plaintexts are random, it has the worst efficiency, but
as soon as plaintexts are sharing some properties, those attacks, can exploit
those similarities.

As we found out with our quadratic polynomial functional encryption
experimentation (in 4.4), increasing the degree of the polynomial function
evaluation makes classification easier. Our intuition is that it leaks more
which makes an attack also easier. We need schemes which are also design
to compute maximum/minimum functions or argmax/argmin functions for
example. In fact, it would definitely make the leakage harder to exploit.

5.5 Discussion

We just proposed attacks designed to exploit inner-product functional en-
cryption’s leakage. The attack based on neural networks is the most efficient.
It can be shifted to whatever functional encryption scheme.

In our particular use case, which is classification of digit images, thus
appear to be quite easy to get a good approximation of most of the plaintexts.
The more secret keys are provided, the better is the approximation. For
instance with ten secret keys from an IPFE, one is able to built a good
approximation for more than half of the digit images!

This is what we want to stress in this thesis: a cryptographically-secure
functional encryption scheme may not achieve the desire security goeal de-
pending on the use case. These attacks represent a way to estimate this risk.
We go further in the next chapter by trying to decrease the attack efficiency
while keeping a high classification performance.

Chapter 6

Tradeoff between classification

performance and attack

efficiency

Chapter 4 shows how to combine functional encryption and machine learning
in order to perform classification over encrypted data. Chapter 5 proposes
ways to attack a practical and secure functional encryption such as the use
case described in the previous chapter. This chapter aims to manage the
amount of information released by the functional encryption scheme. In our
privacy-preserved classification use case, we must classify efficiently (chapter
4) but also resist to attacks (chapter 5).

The leakage depends on the secret keys. In an inner-product functional
encryption case, it depends on vectors associated with the generated secret
keys. The challenge is to find vectors that provide the best classification
performance and the worst attack efficiency.

In this chapter we investigate the trade-off between classification perform-
ance and attack efficiency for those vectors. At first we recall how we got our
vectors that give the best classification performance, then we take an interest
in random vector sets. We later propose a way to generate ”better” vectors
using a generative adversarial neural network (GAN). We finally discuss our
results at the end of this chapter.

6.1 Vectors with the best classification per-

formance

We generated vector sets in chapter 4 that offer the best performance of clas-
sification. They are chosen using a neural network that has for objective to

83

84 CHAPTER 6. TRADEOFF: CLASSIF. PERF. / ATTACK EFFIC.

classify digits. This network is composed by the inner-products computation
and then a fully-connected network as in Figure 4.8. For those vector sets,
figures from 6.2 to 6.11 show (for each digit) the performance of the classi-
fication and the efficiency of the fully connected neural network attack (note
that Figure 6.1 clarify how to read those figures). We consider 10 different
sizes n of the vector sets {w1, ..., wn}: from 1 to 10. We represented it on
the figures with blue ”B0” to ”B10” inscriptions. As we can see the more we
have vectors (secret keys) the better is the classification but also the more
efficient is the attack.

6.2 Generating vectors with different approaches

To get a better idea of the spectrum where vectors are, we try to classify and
to attack with random vectors. It shows what we get in the spectrum when
we use vectors that are absolutely not designed for this classification task.
We then use a generative adversarial neural network to explore a different
area of that spectrum.

6.2.1 Random vectors

As mentioned before, it seems that vectors w1, ..., wn may influence the sys-
tem leakage. Indeed, the zero vector will leak nothing, ten collinear vectors
will leak as much as just one of them, etc. So we studied sets of random
vectors to determine the performance of the classification and the efficiency
of the attack. We considered three cases: 1,5 and 10 vectors. For each case
our result is the average of the 5 different generated instances of random vec-
tor sets. Figures from 6.2 to 6.11 show those results for all the digits (note
that Figure 6.1 clarifies how to read those figures). The random sets are
represented by red ”R1”, ”R5” and ”R9” inscriptions for 1, 5 and 9 vectors.

As we can see, random sets makes the classification performance worse
and also the attack efficiency worse. It means that vector sets can provide
very different classification performance and attack efficiency. It makes sense
that random vectors are less useful than vectors design to classify those kind
of images. The question is wheter or not there exist vector sets that classify
well and do not lend themselves to the attack.

6.2.2 GAN obtained vectors

As we see with the random vector sets and the best vector for classification
sets, just n, the number of vectors w1, ..., wn does not determine the per-

6.2. GENERATING VECTORS WITH DIFFERENT APPROACHES 85

The attack is more
and more efficient

T
h
e
cl
as
si
fi
ca
ti
on

is
m
or
e
an

d
m
or
e
effi

ci
en
t

The best place for
the secret key vectors

Figure 6.1: How to read the next figures. The gradation of green symbolizes
the y-axis and that higher a point is the better the classification is. The
gradation of red symbolizes the x-axis and that the more red it is, the better
the attack works. Then we are looking for vectors in the area with just the
color green (up right corner).

86 CHAPTER 6. TRADEOFF: CLASSIF. PERF. / ATTACK EFFIC.

0

10

20

30

40

50

60

70

80

90

100

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

B1

B2

B3
B4

B5B6B7B8
B9B10

G5

G5

G5

R1

R5

R9

Figure 6.2: Classification performances VS mean of the MSE with the attack
for the 0 digit

6.2. GENERATING VECTORS WITH DIFFERENT APPROACHES 87

0

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

B1

B2B3
B4B5B6

B7B8B9B10

G5

G5

G5

R1

R5R9

Figure 6.3: Classification performances VS mean of the MSE with the attack
on the 1 digit

88 CHAPTER 6. TRADEOFF: CLASSIF. PERF. / ATTACK EFFIC.

0

10

20

30

40

50

60

70

80

90

100

1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

B1

B2
B3

B4
B5

B6B7
B8B9B10

G5

G5

G5

R1

R5

R9

Figure 6.4: Classification performances VS mean of the MSE with the attack
for the 2 digit

6.2. GENERATING VECTORS WITH DIFFERENT APPROACHES 89

0

10

20

30

40

50

60

70

80

90

100

1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600
B1

B2

B3

B4

B5
B6

B7
B8B9

B10

G5

G5

G5

R1

R5
R9

Figure 6.5: Classification performances VS mean of the MSE with the attack
for the 3 digit

90 CHAPTER 6. TRADEOFF: CLASSIF. PERF. / ATTACK EFFIC.

0

10

20

30

40

50

60

70

80

90

100

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

B1

B2
B3

B4B5
B6

B7B8B9
B10

G5

G5

G5

R1

R5

R9

Figure 6.6: Classification performances VS mean of the MSE with the attack
for the 4 digit

6.2. GENERATING VECTORS WITH DIFFERENT APPROACHES 91

0

10

20

30

40

50

60

70

80

90

100

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

B1

B2

B3

B4
B5

B6
B7

B8

B9B10

G5

G5

G5

R1

R5

R9

Figure 6.7: Classification performances VS mean of the MSE with the attack
on the 5 digit

92 CHAPTER 6. TRADEOFF: CLASSIF. PERF. / ATTACK EFFIC.

0

10

20

30

40

50

60

70

80

90

100

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

B1

B2B3B4B5

B6B7
B8B9B10

G5

G5

G5

R1

R5

R9

Figure 6.8: Classification performances VS mean of the MSE with the attack
for the 6 digit

6.2. GENERATING VECTORS WITH DIFFERENT APPROACHES 93

0

10

20

30

40

50

60

70

80

90

100

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

B1

B2B3

B4
B5

B6B7B8B9B10

G5

G5

G5

R1

R5
R9

Figure 6.9: Classification performances VS mean of the MSE with the attack
for the 7 digit

94 CHAPTER 6. TRADEOFF: CLASSIF. PERF. / ATTACK EFFIC.

0

10

20

30

40

50

60

70

80

90

100

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

B1

B2

B3

B4

B5

B6B7

B8
B9

B10

G5

G5

G5

R1

R5

R9

Figure 6.10: Classification performances VS mean of the MSE with the attack
for the 8 digit

6.2. GENERATING VECTORS WITH DIFFERENT APPROACHES 95

0

10

20

30

40

50

60

70

80

90

100

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

B1

B2B3

B4

B5
B6

B7B8
B9

B10

G5

G5

G5

R1

R5

R9

Figure 6.11: Classification performances VS mean of the MSE with the attack
for the 9 digit

96 CHAPTER 6. TRADEOFF: CLASSIF. PERF. / ATTACK EFFIC.

Inner-product
neural network

Attack neural
network

Classification
neural network

6

Chapter 4

Chapter 5

Figure 6.12: Overview of the GAN network architecture.

formance of the classification or the efficiency of the attack. We now want to
visualize more precisely what happens when the number of vectors is fixed.
This is why we used a Generative Adversarial Networks (GAN) to built dif-
ferent sets of 5 vectors with different properties for the classification and the
attack. For details about GAN please refer to Section 3.3.3.

Our GAN is composed by 2 players: ”the classifier” and ”the attacker”.
When it is the classifier turn to be trained, its loss function aim to reduce
the distance between the actual label of the image and the predicted label.
When it is the attacker turn to be trained, its loss function aim to make
the attack less efficient, which means to increase the distance between the
original image and its reconstruction by the attack neural network.

An overview of our GAN architecture is provided in Figure 6.13. The

6.2. GENERATING VECTORS WITH DIFFERENT APPROACHES 97

(img,lab)

Inner-product
neural network

Attack neural
network

Classification
neural network

lab0 img0

m
in
im

iz
e
d
(i
m
g
,i
m
g
0)

m
in
im

iz
e
d
(l
a
b,
la
b0
)

Figure 6.13: The GAN network architecture and its training objectives.

98 CHAPTER 6. TRADEOFF: CLASSIF. PERF. / ATTACK EFFIC.

”classification neural network” refers to the network described in Figure 4.8
with the same settings that we used in Figure 4.3.4. The ”attack neural
network” refers to the network described in Figure 5.5 but this time we use
↵ = 5 layers with respectively 128, 512, 3136, 6272 and 784 neurons. This
attack network is not specialized for a particular digit, it is general and aim
to rebuilt all digit images.

There is an other parameter for the training process of our GAN which
determine the compromise between our 2 players objectives. We experiment
the GAN network for 3 different settings, the first one favors the classification
performance over attack resistance, the second one favors none of the players,
and finally the third one favors attack resistance over classification efficiency.
Those 3 settings count only 5 secret keys.

Those results are shown in Figures 6.2 to 6.11 (note that Figure 6.1
clarifies how to read those figures). They give for each digit the performance
of the classification (Y axis) and the efficiency of the attack (X axis) for our
3 instances of a GAN (green writings), but also (as mentioned before) for
3 scenarios with random vectors sets (red writings) and finally for the 10
scenarios with the best vector sets according to classification (blue writings).

6.3 Results analysis

For an easier reading of the figures from 6.2 to 6.11 we give a visual explan-
ation in Figure 6.1. The Y axis represents performances of classification and
has a green gradation. Basically the best vectors should be in the green area.
The X axis represents the efficiency of the attack and has a red gradation.
We do not want our vectors to lie in the red area because it means that they
are weak against attacks.

Figures from 6.2 to 6.11 show our results about both the efficiency of the
attack on the X axis and the performances of the classification on the Y axis.

Random vector sets are represented in red with respectively ”R1”, ”R5”
and ”R9” writings for 1, 5 and 9 secret keys (i.e. vectors). Those vectors are
obviously not designed for anything specific, and it is interesting to see that
they are quite bad for classifying (”R9” is around 50% and is always worth
that ”B2”) but seem more useful for rebuilding original images with neural
network attacks (most of the time it has the same x value as ”B6”).

As we can see every digit follows roughly the same pattern. The main
difference is where it stands on the X axis. The MSE can be shifted from
1400 for the 1 digit to 3200 for the 2 digit. The blue dots are always the
highest. It seems that the highest of the GAN points (green) is on the curve
drawn by the blue dots. This makes sense because the blue dots only focus on

6.4. DISCUSSION 99

classifying and this particular green point is the one that favors classification
performances over preventing an attack with 5 secret keys. We can see that
”B5” is very close to this green point. The GAN point tries a little to prevent
an attack, which makes it less good at classifying (shifted on the bottom a
little) and better at preventing an attack (shifted a little bit on the right).

We can observe that ”B5” and ”R5” have quite the same x value, so do
”B1” and ”R1”. However ”B9” and ”R9” have not. It suggests that for a
few secret keys, having random vectors and vectors designed for classification
leak the same amount of information regarding our neural networks attacks.
When the number of vectors increases, 9 for example, random vectors are
harder to attack.

6.4 Discussion

We investigated in this chapter the dependency between vectors (associated
with IPFE secret keys), classification performance and attack efficiency. We
ended up with the observation that those three are strongly linked in the
sense that the better the classification performance is, the easier it is to
attack and vice versa, and it is all determined by the vectors.

We saw that the random vectors are the worst in terms of both classifica-
tion performances and attack efficiency which makes sense. Indeed, it seems
logical that in this special use case about handwritten digit images, the pixels
that are given the biggest weights, should be carefully chosen. However they
are way worse for classification than resistant to neural network attacks.

When we considered the vectors providing the best classification perform-
ance, we also got that it is very easy to attack with a neural network. We
needed another way to design vectors that can resist to an attacker.

This analysis leads us to generate vectors with a generative adversarial
network (GAN). The idea was to target both goals: generating vectors for
classification but also vectors that resist to attackers. There is a parameter
within the GAN that defines the weights for those two goals. We observed
that when we generate 5 vectors (i.e. secret keys) with our GAN, according
to the goals weights, they can have the same measures than our 5 vectors
that give the best classification performances (”B5” in figures from 6.2 to
6.11) or the same measures than our one random vector.

It suggests that it is very difficult to find vectors satisfying those two
goals, and that vectors good for classification implies that they are easy to
attack. We also observed that the number of vectors (i.e. secret keys) is not
the parameter that defines their efficiency.

100 CHAPTER 6. TRADEOFF: CLASSIF. PERF. / ATTACK EFFIC.

Chapter 7

Conclusion

Classification, which is included in the powerful Machine Learning (ML) field,
provides a very efficient way to extract information from a huge amount of
labeled data. However there is no privacy involved, but in some contexts
such as medical data for example, privacy can be compulsory. Yet, designing
a privacy-preserving classifier is a challenging quest.

In this thesis, we introduced a generic construction based on both a func-
tional encryption scheme and a classifier. It is generic in the sense that we can
use any functional encryption scheme, and also a large variety of classification
algorithms in our construction. Regarding cryptography, we experimented
it with inner-product functional encryption (IPFE) and also with functional
encryption for quadratic polynomial function. Regarding classification, we
experimented it with linear classifier, extremely randomized trees and also
neural networks. With an IPFE, we got the best performances of classifica-
tion using neural networks: 96% of classification success on the MNIST test
set with 9 secret keys. We got even better results with a quadratic polyno-
mial functional encryption and neural networks: 96% of classification success
on the MNIST test set with only 3 secret keys.

We put ourselves in an attacker shoes and studied the security of the
construction we proposed. We supposed that an attacker knows which kind
of messages are encrypted in our privacy-preserving classifier, and tried to
find a way to build a good approximation of original plaintexts with only their
IPFE decryptions. For instance, with the MNIST dataset, we consider that
an attacker is aware of the digit classification use case. When an IPFE is used,
it means that the attacker has some secret keys so for each ciphertexts he has
some inner-products between every ciphertexts and every vectors associated
with his secret keys. We proposed three attacks: one based on principal
component analysis, another one based on fully connected neural networks,
and a last one based on convolutional neural networks. We found out that

101

102 CHAPTER 7. CONCLUSION

when 10 IPFE secret keys are provided to someone in a context of MNIST
classification, he is able to compute a good approximation for more than 50%
of the test set which represent a threat for this use case. We showed that
with the quadratic polynomial functional encryption scenario it is easier to
classify. We think that an attack on it will be also easier to perform than an
attack on the IPFE.

It led us to our deeper study of those vectors associated with the IPFE
secret keys. We basically wanted to generate a set of vectors resisting to our
attacks, but in the same time that are good-enough for classifying handwrit-
ten digit images. We investigated by generating vectors randomly on the
one hand, and on the other hand by using a generative adversarial network
to generate new vectors. We ended up with the conclusion that if a vector
set is good for classifying, it implies that it is easy to attack it with neural
networks.

We believe that this neural network approach is a good way for estim-
ating the actual leakage of some use cases based on functional encryption
schemes. We also think that it is crucial to estimate it before using such
schemes with confidential data. Even though functional encryption schemes
are cryptographically secure, one must have some consideration for its use
case and what is really revealed to its users. Furthermore, it seems that a
functional encryption evaluating polynomials of a certain degree will always
leak more than what we need just for classification. A solution would be
to use other functional encryption schemes able to compute other functions
such as max, min, argmax or argmin, in addition of a polynomial evalu-
ation. Indeed it would enable to perform the whole linear prediction in the
decryptions process without revealing any transitional values that makes our
plaintext reconstruction possible. It would then be very hard to build a
good approximation of an object with this setting. However, designing such
schemes remains a huge challenge, as of today, particularly when practicality
is a concern.

Chapter 8

Résumé en français

Les algorithmes de classification et plus généralement l’apprentissage auto-
matique ont prouvé être des outils très puissants pour détecter de l’information
dans un ensemble de données. Comme nous vivons aujourd’hui dans le re du
”big data”, ils nous aident à extraire l’information présente dans d’énormes
quantités do données. Cependant cela soulève des questions concernant la
confidentialité, d’où l’importance de créer des systèmes d’apprentissage auto-
matique garantissant la confidentialité. Cette dernière est l’un des buts
de la cryptographie, il semble donc logique de vouloir en tirer profit afin
de pouvoir réaliser de l’apprentissage automatique sans rien reveler. Nous
réalisons que nous manquons cruellement de solutions efficaces garantissant
la confidentialité de nos données. Si cela n’était pas le cas, nous pourrions
imaginer que notre serveur email soit capable de filtrer ce que nous jugeons
indésirable, sans avoir connaissance de nos courriers. On pourrait peut-être
aussi détecter seulement les visages de personnes recherches sur nos vidéos de
surveillances qui seraient et resteraient chiffrées. Ce qui serait peut-être en-
core plus populaire serait que les hôpitaux pourraient partager nos données
médicales chiffrées afin que des laboratoires puissent s’en servir pour des
études sans trahir la confidentialité de ces données sensibles et légalement
protegees. Si seulement nous possédions ce genre de solutions, nous pour-
rions récupérer un peu de cette vie privée que nous avons renoncé depuis
l’arrivée de l’informatique dans nos quotidiens.

La confidentialité des données semble ne semble pas faire bon ménage
avec d’autres importantes propriétés telles que la capacité à entrainer un
modèle ou à prédire. Cela explique pourquoi il n’est pas trivial de constru-
ire des systèmes alliant les deux. Dans cette thèse, on se concentre sur le
chiffrement fonctionnel [SW05, BSW11, BCFG17] qui est une récente gener-
alisation de la cryptographie à clef publique. Avec un chiffrement fonctionnel,
celui que déploie le système va pouvoir autoriser des serveurs à partiellement

103

104 CHAPTER 8. RÉSUMÉ EN FRANÇAIS

autorité

serveur
f(x) decrypt(skf , ctx)

utilisateur
ctx encrypt(PUB, x)

skf

ctx

Figure 8.1: Un aperçu des chiffrements fonctionnels.

décrypter des chiffrés, ce qui permet un déchiffrement plus contrôlé offrant
une alternative au tout ou rien. L’autorité du système va générer une clef
secrète maitresse et une clef publique, et elle va pouvoir générer des clefs
secrètes associées à des certaines fonctions grace à sa clef secrète maitresse.
Imaginons qu’elle génère une clef secrète associée à la fonction f , qu’elle la
donne a un serveur et que ce serveur reçoive un chiffré de m, celui-ci va
pouvoir le déchiffrer et utilisant sa clef et obtenir f(m). La figure 8.1 donne
un aperçu de ce genre de systèmes.

Dans cette thèse, on propose une construction alliant chiffrements fonc-
tionnels et apprentissage automatique afin de classifier tout en conservant
la confidentialité des données fournies en entree. Notre construction est
générique dans le sens ou elle peut supporter n’importe quel type de chiffre-
ment fonctionnel. On a voulu faire l’expérience réelle de cette construction,
et à l’époque, le seul schéma pratique propose était celui du chiffrement fonc-
tionnel pour le produit scalaire. On a aussi expérimenté ce qui se produirait
en supposant que du quadratique existait (ce qui fut le cas un peu plus tard).
On a finalement imaginé être des attaquants de notre construction et montré
que quand on utilise des chiffrements fonctionnels il faut faire attention à
ne pas trop fuiter d’information au risque de perdre la confidentialité une
chiffrée.

Apprentissage automatique

Les algorithmes de classement automatique arrivent à identifier à quelle classe
un objet appartient. Ce processus est basé sur une phase d’entrainement qui
nécessite un ensemble de couples de la forme objet et classe de cet objet.

105

y 1

P

3 i=
1
x
k
·w

i

y 2

y 1
+
b

y

f
(y

2
)

A B C

x2

x1

x3

y

Figure 8.2: Un neurone artificiel avec ses 3 étapes internes : (A) calcul de
la somme des poids, (B) ajout du biais, et enfin, (C) calcul de la fonction
d’activation f . x1, x2 et x3 sont les valeurs d’entrée et y est la valeur de
sortie.

x1

x2

Input layer Hidden layer Output layer

y1

y2

y3

Figure 8.3: L’architecture d’un réseau de neurones.

106 CHAPTER 8. RÉSUMÉ EN FRANÇAIS

(a) (b)

Figure 8.4: Exemples d’images de chiffre du MNIST: (a) la 60-ième image
(b) la 61-ième image.

user

classifier

ch
iff
re
m
en
t

msg

msg

d
éc
h
iff
re
m
en
t

f1, ..., fn
f1(msg)

...
fn(msg)

cl
as
si
fi
ca
ti
on

classe de msg

Figure 8.5: Classifieur préservant la confidentialité des données base sur les
chiffrements fonctionnels. Le classifieur utilise n clefs secrètes, chacune d’elles
permettant l’évaluation d’une fonction de {fi}1in.

Classification préservant la confidentialité

Avec un classifieur préservant la confidentialité des données, on doit être cap-
able de chiffrer les données de telle façon qu’une autre partie (autorisée) va
pouvoir extraire les données nécessaires à sa classification, mais que quiconque
autre ne puisse pas inférer quoi que ce soit sur les données chiffrées.

Nous proposons un système de classification préservant la confidentialité
des données basé sur des chiffrements fonctionnels et sur des algorithmes
de classification. La figure 8.5 illustre notre système ou la confidentialité est
obtenue grace au chiffrement fonctionnel, et l’évaluation sur données chiffrées
est possible grace aux clefs secrètes du chiffrement fonctionnel.

Dans notre système, il y a une entité appelée serveur qui a déjà en-
traine un modèle de classification sur un ensemble de données d’entrainement.
Grâce à cet entrainement, le serveur va pouvoir déterminer les fonctionnalités
à évaluer avec le chiffrement fonctionnel dans le but de classifier au mieux.

107

Figure 8.6: Images originales (à gauche) et reconstructions (de gauche à
droite: 30, 20 et 10 clefs secrètes) obtenues avec une attaque basée sur des
réseaux de neurones convolutionels.

Attaques basées sur la fuite d’information

Nous considérons des attaquants qui respectent le protocole et sont curieux
d’inférer plus que ce qu’ils ont. Comme ils disposent de valeurs intermédiaires
il est possible de concevoir des méthodes pour par exemple approximer l’input
qui est sensée rester confidentielle. Ceci n’est pas capture par le modèle de
sécurité des chiffrements fonctionnels. Nous proposons des attaques basées
sur des algorithmes d’apprentissage automatique et nous allons nous con-
centrer sur le cas du chiffrement fonctionnel pour le produit scalaire.

Conclusion

Dans cette thèse nous avons proposé une construction générique basée sur un
chiffrement fonctionnel et un classifieur. C’est générique dans le sens qu’il est
possible de choisir n’importe quel type de chiffrement fonctionnel mais aussi
n’importe quel type de classifieur. Nous avons fait des expérimentations avec
des chiffrements fonctionnels pour le produit scalaire mais aussi quadratiques,
et concernant la classification, nous avons utilisé des classifieurs linéaires, des
forêts d’arbres décisionnels, et aussi des réseaux de neurones. Nous avons eu
96% d’efficacité de classification en utilisant un chiffrement fonctionnel pour
le produit scalaire (avec 9 clefs secrètes) et un réseau de neurones. Avec des
chiffrements fonctionnels quadratiques, on a la même efficacité en utilisant
seulement 3 clefs secrètes.

108 CHAPTER 8. RÉSUMÉ EN FRANÇAIS

On s’est aussi mis à la place d’un attaquant et nous avons étudié la
sécurité de notre construction. On suppose qu’un attaquant a connaissance
de quel genre de messages sont chiffrés dans notre système de classification
ayant pour but de conserver la confidentialité des données. Son but est de
calculer une approximation des inputs qui ont été chiffrés. Par exemple dans
le cas où on utilise la base de données du MNIST qui regroupe des images de
chiffres écrits á la main, le but est d’être capable de déterminer quel chiffre
est écrit sans avoir connaissance de la façon dont le chiffre a ete tracé. Ceci
implique que le but de l’attaquant est d’obtenir le tracé des messages qui
ont ete chiffres. Si on imagine que nous avons utilisé un chiffrement fonc-
tionnel pour le produit scalaire, l’attaquant possède un certain nombre de
produits scalaires (entre des vecteurs connus et l’image qui doit rester caché)
qu’il peut exploiter á sa guise. Nous avons proposé trois attaques : une
première qui est basée sur l’analyse en composantes principales, une seconde
qui se sert de réseaux de neurones entièrement connectés, et une troisième
qui utilise des réseaux de neurones convolutions. Nous avons montré qu’avec
10 clefs secrètes, l’attaquant peut construire une bonne approximation pour
plus 50%% du test set, ce qui est une menace non négligeable. Lorsqu’un
chiffrement fonctionnel quand pratique est utilisé, il est plus facile de clas-
sifier, ce qui nous amèné à penser que la fuite d’information est encore plus
grande.

Tout ceci nous a conduits à une étude plus profonde des vecteurs associés
aux clefs secrètes du chiffrement fonctionnel pour le produit scalaire. L’idée
est de générer des vecteurs pouvant résister à nos attaques. Nous avons pu
voir que pour un nombre de vecteurs fixés, l’efficacité des attaques baisse
lorsque ces vecteurs ont ete pris aléatoirement, ce qui n’est pas étonnant.
Nous avons par la suite utilisé des réseaux antagonistes génératifs afin de
générer des vecteurs les plus résistants aux attaques mais en même temps
bon pour classifier. Nous sommes arrivé à la conjecture que si un ensemble de
vecteurs est bon pour classifier, il est aussi bon pour reconstruire, parce que
dans le cas d’usage de la reconnaissance de chiffre, les deux sont intimement
liés.

Nous pensons que cette approche basée sur les réseaux de neurones est
une bonne façon pour estimer la fuite d’information dans des cas d’utilisation
qui se servent de chiffrements fonctionnels. Nous pensons aussi qu’il est très
important d’estimer cette fuite avant de déployer un système qui traitera des
données confidentielles. Même si le chiffrement fonctionnel en question est
prouvé sur, il faut quand même se poser la question de qu’est ce qui peut
être appris des données que l’on chiffre.

Dans le cas de la classification, une solution afin de ne rien apprendre de
plus sur un input que sa classe, serait d’utiliser des chiffrements fonctionnels

109

capables d’évaluer des fonctions plus complexes tels que max, min, argmax
ou argmin, en plus d’une évaluation polynomiale. En effet, cela permettrait
de calculer la totalité de la classification linéaire avec le chiffrement fonction-
nel et donc ne reveler aucune valeur intermédiaire (qui sert aux attaques).
Concevoir de tels cryptosystèmes reste aujourd’hui quelque chose de difficile.

110 CHAPTER 8. RÉSUMÉ EN FRANÇAIS

Bibliography

[ABDCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David
Pointcheval. Simple functional encryption schemes for inner
products. In IACR International Workshop on Public Key
Cryptography, pages 733–751. Springer, 2015.

[ACF+17] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay,
and Bogdan Ursu. Multi-input functional encryption for in-
ner products: Function-hiding realizations and constructions
without pairings. Cryptology ePrint Archive, Report 2017/972,
2017. http://eprint.iacr.org/2017/972.

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMa-
han, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning
with differential privacy. In Proceedings of the 2016 ACM SIG-
SAC Conference on Computer and Communications Security,
pages 308–318. ACM, 2016.

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem
with worst-case/average-case equivalence. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing,
pages 284–293. ACM, 1997.

[AGH10] Carlos Aguilar-Melchor, Philippe Gaborit, and Javier Herranz.
Additively Homomorphic Encryption with d-Operand Multi-
plications. In Tal Rabin, editor, CRYPTO 2010, volume 6223
of LNCS, pages 138–154, Santa Barbara, CA, USA, August 15–
19, 2010. Springer, Heidelberg, Germany.

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck
Wee. Multi-input inner-product functional encryption from
pairings. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS,

111

112 BIBLIOGRAPHY

pages 601–626, Paris, France, April 30 – May 4, 2017. Springer,
Heidelberg, Germany.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan,
and Hoeteck Wee. Functional encryption: New perspectives
and lower bounds. In Advances in Cryptology–CRYPTO 2013,
pages 500–518. Springer, 2013.

[AH05] Shipra Agrawal and Jayant R Haritsa. A framework for high-
accuracy privacy-preserving mining. In Data Engineering,
2005. ICDE 2005. Proceedings. 21st International Conference
on, pages 193–204. IEEE, 2005.

[ALS16] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully se-
cure functional encryption for inner products, from standard
assumptions. In Matthew Robshaw and Jonathan Katz, edit-
ors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–
362, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany.

[ans] Recommendations from the french network and information se-
curity agency (anssi) about information systems security. http:
//www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf.

[AP04] Charu C Aggarwal and S Yu Philip. A condensation approach
to privacy preserving data mining. In International Conference
on Extending Database Technology, pages 183–199. Springer,
2004.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping
with polynomial error. In Juan A. Garay and Rosario Gen-
naro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 297–314, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Heidelberg, Germany.

[ASP12] Jacob Alperin-Sheriff and Chris Peikert. Circular and kdm se-
curity for identity-based encryption. In International Workshop
on Public Key Cryptography, pages 334–352. Springer, 2012.

[BCD+94] Léon Bottou, Corinna Cortes, John S Denker, Harris Drucker,
Isabelle Guyon, Lawrence D Jackel, Yann LeCun, Urs A Muller,
Edward Sackinger, Patrice Simard, et al. Comparison of classi-
fier methods: a case study in handwritten digit recognition. In

BIBLIOGRAPHY 113

International conference on pattern recognition, pages 77–77.
IEEE Computer Society Press, 1994.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore,
and Romain Gay. Practical functional encryption for quadratic
functions with applications to predicate encryption. In Annual
International Cryptology Conference, pages 67–98. Springer,
2017.

[BDF18] Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large
FHE gates from tensored homomorphic accumulator. In Ant-
oine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, ed-
itors, AFRICACRYPT 18, volume 10831 of LNCS, pages 217–
251, Marrakesh, Morocco, May 7–9, 2018. Springer, Heidelberg,
Germany.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from
the weil pairing. In Advances in Cryptology – CRYPTO 2001,
pages 213–229. Springer, 2001.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(leveled) fully homomorphic encryption without bootstrapping.
In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, pages 309–325. ACM, 2012.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(leveled) fully homomorphic encryption without bootstrapping.
ACM Transactions on Computation Theory (TOCT), 6(3):13,
2014.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input
functional encryption in the private-key setting: Stronger se-
curity from weaker assumptions. In Annual International Con-
ference on the Theory and Applications of Cryptographic Tech-
niques, pages 852–880. Springer, 2016.

[BLLN13] Joppe W Bos, Kristin E Lauter, Jake Loftus, and Michael
Naehrig. Improved Security for a Ring-Based Fully Homo-
morphic Encryption Scheme. In IMA Int. Conf., pages 45–64.
Springer, 2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev,
and Damien Stehlé. Classical hardness of learning with er-

114 BIBLIOGRAPHY

rors. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 575–584. ACM, 2013.

[BO13] Mihir Bellare and Adam O’Neill. Semantically-secure func-
tional encryption: Possibility results, impossibility results and
the quest for a general definition. In International Conference
on Cryptology and Network Security, pages 218–234. Springer,
2013.

[Bon98] Dan Boneh. The decision diffie-hellman problem. In Inter-
national Algorithmic Number Theory Symposium, pages 48–63.
Springer, 1998.

[BR15] Jean-François Biasse and Luis Ruiz. FHEW with efficient
multibit bootstrapping. In Kristin E. Lauter and Francisco
Rodŕıguez-Henŕıquez, editors, LATINCRYPT 2015, volume
9230 of LNCS, pages 119–135, Guadalajara, Mexico, Au-
gust 23–26, 2015. Springer, Heidelberg, Germany.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without mod-
ulus switching from classical GapSVP. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 868–886, Santa Barbara, CA, USA, August 19–
23, 2012. Springer, Heidelberg, Germany.

[BRS13] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-
private identity-based encryption: Hiding the function in func-
tional encryption. In Advances in Cryptology–CRYPTO 2013,
pages 461–478. Springer, 2013.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional en-
cryption in the private-key setting. In Theory of Cryptography
Conference, pages 306–324. Springer, 2015.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryp-
tion: Definitions and challenges. In Theory of Cryptography
Conference, pages 253–273. Springer, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully ho-
momorphic encryption from (standard) lwe. SIAM Journal on
Computing, 43(2):831–871, 2014.

[C+15] François Chollet et al. Keras. https://github.com/

fchollet/keras, 2015.

BIBLIOGRAPHY 115

[CdWM+17] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Con-
stance Morel, and Emmanuel Prouff. Privacy-preserving clas-
sification on deep neural network. IACR Cryptology ePrint
Archive, 2017:35, 2017.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. Faster fully homomorphic encryption: Bootstrap-
ping in less than 0.1 seconds. In Jung Hee Cheon and Tsuy-
oshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031
of LNCS, pages 3–33, Hanoi, Vietnam, December 4–8, 2016.
Springer, Heidelberg, Germany.

[CM09] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving logistic regression. In Advances in Neural Informa-
tion Processing Systems, pages 289–296, 2009.

[DH76a] Whitfield Diffie and Martin Hellman. New directions in crypto-
graphy. IEEE transactions on Information Theory, 22(6):644–
654, 1976.

[DH76b] Whitfield Diffie and Martin E Hellman. Multiuser crypto-
graphic techniques. In Proceedings of the June 7-10, 1976,
national computer conference and exposition, pages 109–112.
ACM, 1976.

[Die00] Thomas G Dietterich. Ensemble methods in machine learning.
In International workshop on multiple classifier systems, pages
1–15. Springer, 2000.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping ho-
momorphic encryption in less than a second. In Elisabeth Os-
wald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 617–640, Sofia, Bulgaria, April 26–
30, 2015. Springer, Heidelberg, Germany.

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-
hiding (unbounded) multi-input inner product functional en-
cryption from the k-linear assumption. In IACR Interna-
tional Workshop on Public Key Cryptography, pages 245–277.
Springer, 2018.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical
fully homomorphic encryption. Cryptology ePrint Archive, Re-
port 2012/144, 2012. http://eprint.iacr.org/2012/144.

116 BIBLIOGRAPHY

[FWP07] Benjamin CM Fung, Ke Wang, and S Yu Philip. Anonymizing
classification data for privacy preservation. IEEE transactions
on knowledge and data engineering, 19(5), 2007.

[G+09] Craig Gentry et al. Fully homomorphic encryption using ideal
lattices. In STOC, volume 9, pages 169–178, 2009.

[Gal12] Steven D Galbraith. Mathematics of public key cryptography.
Cambridge University Press, 2012.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely
randomized trees. volume 63, pages 3–42. Springer, 2006.

[GGG+14] Shafi Goldwasser, S Dov Gordon, Vipul Goyal, Abhishek Jain,
Jonathan Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and
Hong-Sheng Zhou. Multi-input functional encryption. In An-
nual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 578–602. Springer, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova,
Amit Sahai, and Brent Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In Found-
ations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 40–49. IEEE, 2013.

[GGHZ16a] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry.
Functional encryption without obfuscation. In Theory of Cryp-
tography Conference, pages 480–511. Springer, 2016.

[GGHZ16b] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry.
Functional encryption without obfuscation. In Eyal Kushilevitz
and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of
LNCS, pages 480–511, Tel Aviv, Israel, January 10–13, 2016.
Springer, Heidelberg, Germany.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. Reusable garbled circuits and
succinct functional encryption. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 555–
564. ACM, 2013.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

BIBLIOGRAPHY 117

Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of
LNCS, pages 75–92, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption with bounded collusions via multi-party
computation. In Advances in Cryptology–CRYPTO 2012, pages
162–179. Springer, 2012.

[HJP13] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library
for Number Theory, 2013. Version 2.4.0, http://flintlib.
org.

[HSM+00] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald,
Rodney J Douglas, and H Sebastian Seung. Digital selection
and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature, 405(6789):947–951, 2000.

[Jol86] Ian T Jolliffe. Principal component analysis and factor analysis.
In Principal component analysis, pages 115–128. Springer, 1986.

[KLM+16] Sam Kim, Kevin Lewi, Avradip Mandal, Hart William Mont-
gomery, Arnab Roy, and David J Wu. Function-hiding in-
ner product encryption is practical. IACR Cryptology ePrint
Archive, 2016:440, 2016.

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia
via private-key functional encryption. In Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, pages 122–151. Springer, 2017.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate en-
cryption supporting disjunctions, polynomial equations, and in-
ner products. In Advances in Cryptology – EUROCRYPT 2008,
pages 146–162. Springer, 2008.

118 BIBLIOGRAPHY

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recogni-
tion. volume 86, pages 2278–2324. IEEE, 1998.

[LCB] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges.
The MNIST Database. http://yann.lecun.com/exdb/mnist/.

[LHH+07] Li Lu, Jinsong Han, Lei Hu, Yunhao Liu, and Lionel M Ni.
Dynamic key-updating: Privacy-preserving authentication for
rfid systems. In Pervasive Computing and Communications,
2007. PerCom’07. Fifth Annual IEEE International Conference
on, pages 13–22. IEEE, 2007.

[LL16] Kwangsu Lee and Dong Hoon Lee. Two-input functional en-
cryption for inner products from bilinear maps. IACR Crypto-
logy ePrint Archive, 2016:432, 2016.

[LYZ+13] Ming Li, Shucheng Yu, Yao Zheng, Kui Ren, and Wenjing Lou.
Scalable and secure sharing of personal health records in cloud
computing using attribute-based encryption. IEEE transac-
tions on parallel and distributed systems, 24(1):131–143, 2013.

[McE78] Robert J McEliece. A public-key cryptosystem based on algeb-
raic. Coding Thv, 4244:114–116, 1978.

[MMCS11] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen
Schmidhuber. Stacked convolutional auto-encoders for hier-
archical feature extraction. Artificial Neural Networks and Ma-
chine Learning–ICANN 2011, pages 52–59, 2011.

[MTS+12] Prashanth Mohan, Abhradeep Thakurta, Elaine Shi, Dawn
Song, and David Culler. Gupt: privacy preserving data analysis
made easy. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data, pages 349–360.
ACM, 2012.

[MWF08] Olvi L. Mangasarian, Edward W. Wild, and Glenn M. Fung.
Privacy-preserving classification of vertically partitioned data
via random kernels. ACM Trans. Knowl. Discov. Data,
2(3):12:1–12:16, October 2008.

[NBJ02] George E Nasr, EA Badr, and C Joun. Cross entropy error
function in neural networks: Forecasting gasoline demand. In
FLAIRS Conference, pages 381–384, 2002.

BIBLIOGRAPHY 119

[O’N10] Adam O’Neill. Definitional issues in functional encryption.
IACR Cryptology ePrint Archive, 2010:556, 2010.

[OPW11] Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable
public-key encryption. In Annual Cryptology Conference, pages
525–542. Springer, 2011.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical pre-
dicate encryption for inner-products. In International Confer-
ence on the Theory and Application of Cryptology and Inform-
ation Security, pages 214–231. Springer, 2009.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan.
How to delegate and verify in public: Verifiable computation
from attribute-based encryption. In Theory of Cryptography
Conference, pages 422–439. Springer, 2012.

[RLKD06] Kui Ren, Wenjing Lou, Kwangjo Kim, and Robert Deng.
A novel privacy preserving authentication and access control
scheme for pervasive computing environments. IEEE Transac-
tions on Vehicular technology, 55(4):1373–1384, 2006.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method
for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and
genera. In Proc. Symp. Pure Math, volume 20, pages 415–440,
1971.

[SL91] S. Rasoul Safavian and David A. Landgrebe. A survey of de-
cision tree classifier methodology. volume 21, pages 660–674,
1991.

[SS15] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep
learning. In Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, pages 1310–1321.
ACM, 2015.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy
in encryption systems. In Theory of Cryptography Conference,
pages 457–473. Springer, 2009.

120 BIBLIOGRAPHY

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption.
In Annual International Conference on the Theory and Applic-
ations of Cryptographic Techniques, pages 457–473. Springer,
2005.

[VDGHV10] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan. Fully homomorphic encryption over the in-
tegers. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 24–43.
Springer, 2010.

[VLSD+10] Peter Van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Har-
tel, and Willem Jonker. Computationally efficient searchable
symmetric encryption. In Workshop on Secure Data Manage-
ment, pages 87–100. Springer, 2010.

[Wat05] Brent Waters. Efficient identity-based encryption without ran-
dom oracles. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 114–127.
Springer, 2005.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption:
An expressive, efficient, and provably secure realization. In
International Workshop on Public Key Cryptography, pages 53–
70. Springer, 2011.

[WEG87] Svante Wold, Kim Esbensen, and Paul Geladi. Principal com-
ponent analysis. Chemometrics and intelligent laboratory sys-
tems, 2(1-3):37–52, 1987.

[WFHP16] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal.
Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2016.

[WZZ+13] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob
Fergus. Regularization of neural networks using dropconnect.
In International Conference on Machine Learning, pages 1058–
1066, 2013.

[Yeg09] B Yegnanarayana. Artificial neural networks. PHI Learning
Pvt. Ltd., 2009.

BIBLIOGRAPHY 121

[YZW05] Zhiqiang Yang, Sheng Zhong, and Rebecca N Wright. Privacy-
preserving classification of customer data without loss of accur-
acy. In Proceedings of the 2005 SIAM International Conference
on Data Mining, pages 92–102. SIAM, 2005.

Titre : Chiffrement fonctionnel appliqué à la classification respectant la confidentialité des

données : utilisation pratique, performances et sécurité

Mots clés : sécurité, apprentissage automatique, chiffrement fonctionnel, classification,
confidentialité

Résumé : L'apprentissage automatique (en
anglais machine learning) ou apprentissage
statistique, a prouvé être un ensemble de
techniques très puissantes. La classification
automatique en particulier, permettant d'identifier
efficacement des informations contenues dans
des gros ensembles de données. Cependant, cela
lève le souci de la confidentialité des données.
C'est pour cela que le besoin de créer des
algorithmes d'apprentissage automatique capable
de garantir la confidentialité a été mis en avant.
Cette thèse propose une façon de combiner
certains systèmes cryptographiques avec des
algorithmes de classification afin d'obtenir un
classifieur que veille à la confidentialité. Les
systèmes cryptographiques en question sont la
famille des chiffrements fonctionnels. Il s'agit
d'une généralisation de la cryptographie à clef
publique traditionnelle dans laquelle les clefs de
déchiffrement sont associées à des fonctions.

Nous avons mené des expérimentations sur cette
construction avec un scénario réaliste se servant
de la base de données du MNIST composée
d'images de digits écrits à la main. Notre système
est capable dans ce cas d'utilisation de savoir quel
digit est écrit sur une image en ayant seulement
un chiffre de l'image.
Nous avons aussi étudié la sécurité de cette
construction dans un contexte réaliste. Ceci a
révélé des risques quant à l'utilisation des
chiffrements fonctionnels en général et pas
seulement dans notre cas d'utilisation. Nous avons
ensuite proposé une méthode pour négocier (dans
notre construction) entre les performances de
classification et les risques encourus.

Title: Functional encryption applied to privacy-preserving classification: practical use,
performances and security

Keywords: security, privacy, functional encryption, classification, machine learning

Abstract: Machine Learning (ML) algorithms
have proven themselves very powerful. Especially
classification, enabling to efficiently identify
information in large datasets. However, it raises
concerns about the privacy of this data. Therefore,
it brought to the forefront the challenge of designing
machine learning algorithms able to preserve
confidentiality.

This thesis proposes a way to combine some
cryptographic systems with classification
algorithms to achieve privacy preserving classifier.
The cryptographic system family in question is the
functional encryption one. It is a generalization of
the traditional public key encryption in which
decryption keys are associated with a function.

We did some experimentations on that
combination on realistic scenario using the MNIST
dataset of handwritten digit images. Our system is
able in this use case to know which digit is written
in an encrypted digit image.

We also study its security in this real life scenario.
It raises concerns about uses of functional
encryption schemes in general and not just in our
use case. We then introduce a way to balance in
our construction efficiency of the classification and
the risks.

	Contents
	Chapter 1 Introduction
	Part I State of the art
	Chapter 2 Functional Encryption
	2.1 Public key cryptography
	2.2 Introduction to Functional encryption
	2.3 Inner-product functional encryption
	2.4 Functional encryption beyond the innerproductfunctionality

	Chapter 3 Necessary machine learningbackground
	3.1 Machine learning basics
	3.3 Artificial neural networks
	3.4 Other related details

	Part II Contributions
	Chapter 4 Privacy-preservingclassification based onfunctional encryption
	4.1 Overview
	4.2 Implementation of inner-product functionalencryption schemes
	4.3 Privacy-preserving classification based oninner-product functional encryption
	4.4 Privacy-preserving classification based onquadratic polynomial functional encryption
	4.5 Discussion

	Chapter 5 Leakage-based attacks onfunctional encryption settings
	5.1 Context of the attack
	5.2 Attack methods
	5.3 Results analysis
	5.4 Generalization to others functional encryptionschemes
	5.5 Discussion

	Chapter 6 Tradeo↵ between classificationperformance and attackefficiency
	6.1 Vectors with the best classification performance
	6.2 Generating vectors with di↵erent approaches
	6.3 Results analysis
	6.4 Discussion

	Chapter 7 Conclusion
	Chapter 8 Résumé en français

	Bibliography

