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Résumé

L'éolien o�shore est l'énergie marine la plus avancée et utilisée dans le monde. A�n
d'accroîte l'énergie extraite du vent, les dimensions des éoliennes deviennent plus im-
portantes et les parcs éoliens sont installés de plus en plus loin des côtes, où les mers
sont agitées et les vents forts. De fait, les opérations marines sont plus complexes et
plus chères et les fenêtres météo sont écourtées et se raré�ent.

Dans le cadre de cette thèse, un logiciel de simulation numérique des opérations
marines est développé, en particulier pour des applications de descentes et de remon-
tées de colis lourds. L'Algorithme aux Corps Rigides Composites, implémenté dans
le logiciel InWave, est utilisé pour modéliser le système multicorps. Un modèle de
câble et de treuil est développé, suivant la théorie multicorps utilisée, et comparé à
la théorie câble classique dite �lumped mass�. Les e�orts hydrodynamiques ainsi que
les interactions hydrodynamiques sont modélisés par une théorie d'écoulement poten-
tiel instationnaire satisfaisant l'hypothèse de faible perturbation, dite �weak-scatterer�.
L'approche �weak-scatterer� du logiciel WS_CN est étendue aux simulations multi-
�otteurs et validée par comparaison avec des données expérimentales.

InWave et WS_CN sont couplés a�n de résoudre l'interaction houle-structure pour
des systèmes multicorps articulés en mer. Un couplage fort est adopté pour sa ro-
bustesse. L'équation de couplage est établie et validée via des comparaisons avec
WS_CN. Le logiciel ainsi créé se nomme InWaveS_CN et utilise un code d'intégration
en Python.

Une nouvelle stratégie de maillage, basée sur un algorithme de découpe de maillages
et une méthode par avance de front, est développée dans WS_CN.

En�n, des essais en bassin d'une opération de redressement ont été menés à l'École
Centrale de Nantes. La comparaison entre les simulations numériques et les données
expérimentales o�re une première et prometteuse validation d'InWaveS_CN.

Mots-clés : Opérations marines, Dynamique multicorps, Dynamique de câbles, Écoule-
ment potentiel, Weak-scatterer, Interaction �uide-structure, Découpe de maillages.
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Abstract

O�shore wind represents the most advanced and used marine energy in the world.
To increase the wind power extraction, turbines grow in size and wind farms are installed
further o�shore in presence of rough seas and strong winds. Marine operations become
more challenging and expensive, weather windows are shorter and less frequent.

This PhD work focuses on the development of a numerical tool to simulate ma-
rine operations with consistency, in particular lowering and lifting operations. The
Composite-Rigid-Body Algorithm, implemented in the numerical tool InWave, is used
to model multibody systems. A cable model and a winch model are developed fol-
lowing this multibody approach and compared to the classical low-order lumped mass
theory. Hydrodynamic loads and hydrodynamic interactions are simulated using an
unsteady potential �ow theory based on the weak-scatterer hypothesis, implemented in
the numerical tool WS_CN. This approach is extended to multibody simulations and
validated with comparisons to experimental data.

InWave andWS_CN are coupled to solve wave-structure interaction for articulated
multibody systems with large relative motions in waves. A tight coupling is selected
for its robustness. The coupling equation is derived and validated from comparisons
with WS_CN. This leads to the creation of a new numerical tool, InWaveS_CN, using
Python as glue code language.

A new mesh strategy, based on the coupling between a panel cutting method and
an advance front method, is developed in WS_CN.

Experiments of an upending operation were conducted at Ecole Centrale de Nantes.
The comparison between the numerical simulations and the experimental data leads to
a �rst and promising validation of InWaveS_CN.

Keywords: Marine operations, Multibody dynamics, Cable dynamics, Potential �ow
theory, Weak-scatterer, Fluid-structure interaction, Panel cutting method.
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Introduction

1 Marine renewable energies

Marine renewable energies (MRE ) are the renewable energies that can be extracted
from the ocean. Their main use is electricity generation. They are expected to con-
tribute to the mitigation of climate change. Marine renewable energies encompass
various kinds of energies:

� Wave energy;

� Tidal energy;

� O�shore wind energy;

� Ocean thermal energy;

� Osmotic energy.

In 2017, 42.6 GWh were generated from these MRE devices. This represents 0.17 % of
the global electricity production1. 19 GW capacity have been installed so far2. O�shore
wind contributed to 41.6 GWh of the electricity generation and 18.7 MW of the installed
capacity, namely 98 % of the total. Thus, o�shore wind is the most advanced and used
marine energy. Between 2016 and 2017, the o�shore wind installed capacity grew by 30
%. Industrial o�shore wind farms are currently operational while other marine energies
are still in their earliest stage.

Two types of o�shore wind turbines exist (Figure 1):

� Bottom-�xed turbines, mainly used in shallow waters (up to 40 m) for near-shore
sites. The foundations include three main designs:

• Monopiles;

• Jackets;

• Gravity-based.

� Floating turbines, for wind farms in deep water. The advantages of such a technol-
ogy are the more powerful and constant winds found further o�shore, the increase
in available sites and the reduction of visual impact. Turbines may be horizontal-
axis or vertical-axis, this latter enabling to lower the center of gravity of the
structure and becoming insensitive to wind direction. Only few �oating wind
turbines have been installed so far. Three main di�erent �oaters are considered:

• Semi-submersibles;

• Spars;

• Tension-leg platforms.

To increase the wind power extraction, turbines get taller and blades become longer.
Furthermore, wind farms are further o�shore and so, subject to rough seas and strong
winds. Consequently, o�shore installations are more challenging and weather windows
for marine operations are shorter and less frequent. Marine operations costs (instal-
lation, operations and maintenance) are signi�cant in o�shore wind and have a large
impact on the cost of electricity. This latter is split into two expenditures:

1https://yearbook.enerdata.net
2http://www.irena.org
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2. Marine operations

� Capital expenditure or CAPEX : purchase or improvement of assets (turbine, foun-
dation, sub-station, cables, installation, transportation to the site, etc.);

� Operational expenditure or OPEX : ongoing costs to operate a product (land
rental, insurance, taxes, operation, maintenance, etc.).

According to Crabtree et al. [1], CAPEX accounts for 70 % of the cost of electricity,
while OPEX represents 30 %. The reduction of both CAPEX and OPEX is necessary
to reach the cost of the onshore wind industry and make the marine renewable energies
competitive with other energy sources (coal, oil, gas, etc.). Including installation, the
marine operations for o�shore wind account for 30 % of the cost of electricity. The
reduction of these costs goes through the improvement and the optimization of the
marine operations, such as installations, maintenance and decommissioning operations
[2]. The reduction of their risks, their duration and the increase of the available weather
windows are also necessary. That is why, the study of marine operations (theoretically,
experimentally and numerically) is a very important topic for the development of marine
renewable energies.

(a) Bottom-�xed3 (b) Floating4

Figure 1 � O�shore wind turbines

2 Marine operations

Marine operations are all the activities conducted at sea to transport and install
o�shore structures, from the organization and the planning to the realisation of the
projects. These operations needs to be conducted within the operation limits of sea
states (or weather windows) [3]. These limits are de�ned to ensure the safety of both
personnel and assets. Di�erent types of marine operations exist:

� Towing operations: transport of subsea or �oating structures to site using a barge
or a towing vessel (Figure 2);

� Up-ending operations: controlled rotation of a structure from its horizontal po-
sition to its upright position by means of a ballasting system and/or a �oating

3https://stoprust.com
4https://www.ideol-offshore.com
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crane and setting it down on the sea bottom, its foundation or leaving at its
stable-�oating position (Figure 3);

� O�oading operations: two vessels (for instance a FPSO5 and a shuttle tanker)
are connected to each other (to transfer the oil from the FPSO to the shuttle
tanker) in tandem (in front of each other) (Figure 4) or side-by-side;

� Floatover installation: a vessel transports the topsides (upper parts of o�shore
structures) to site, then the vessel places the topsides over the �xed or �oating
substructures and lowers the topsides while sustaining the vessel position (Fig-
ure 5);

� Loadout operations: transferring the cargo from the quay onto a barge using
cranes, skid rails, trailer, etc. (Figure 6);

� Laying operations: deployment of cables, umbilicals or power cables from a pipe-
laying vessel equipped with a chute (Figure 7);

� Piling operations: o�shore monopiles pushed into the seabed (Figure 8);

� Lowering and lifting operations;

� Etc.

The lowering and lifting operations are the goal of this PhD work, consequently they
are presented in details in the next section.

5Floating, Production, Storage and O�oading
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2. Marine operations

Figure 2 � Towing of the �oating wind turbine WindFloat6

Figure 3 � Upending of a monopile7

6http://www.rechargenews.com
7https://ocean-energyresources.com
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Figure 4 � Tandem o�oading operation between a FPSO and a shuttle tanker8

Figure 5 � Floatover installation of a topside9

8http://www.colindelarue.com
9http://www.offshoretechllc.com
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Figure 6 � Loadout of a tension-leg platform using skid rails10

Figure 7 � Power cable laying11. The buoys indicate the cable position.

10https://www.ynfpublishers.com
11http://www.emr-paysdelaloire.fr
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Figure 8 � Piling operation of a monopile12

3 Lowering and lifting operations

Lowering and lifting operations are used to lower or lift an object into the sea. The
lifting equipment is made of:

� A vessel;

� A crane on top of the vessel, with possibly several booms;

� A hoisting cable connecting the crane to the hook;

� A winch to wind or unwind the hoisting cable;

� Slings (loops of material around the payload and connected to the hook) or riggings
(ropes or chains connecting the payload to the hook);

� The payload to be lowered or lifted.

Vessels may be jack-up vessels (Figure 9) or �oating crane vessels (Figure 10) (mono-
hull, semi-submersible or catamaran). Jack-up vessels are self-elevating platforms pro-
viding a stable position for installation operations.

Payloads may be:

� A subsea template [4];

12https://www.delta.tudelft.nl
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� A subsea manifold [5];

� A ship;

� A ROV (Remotely Operated Vehicle);

� A wind turbine component (blade, nacelle, foundation) [6];

� A pre-installed wind turbine [7];

� A tidal turbine (Figure 10);

� A wave energy converter;

� An anchor;

� Etc.

An example of lifting operation is displayed in Figure 10 with a crane-mounted ship, a
hoisting cable, riggings and a payload which is a tidal turbine.

A lowering operation is split into four steps [5, 8]:

� The payload is lifted o� from the deck of the vessel and manoeuvred in the air
before being lowered. Snap loads (high tension in the hoisting cable) or pendulum
motion involving risks of collision may occur.

� The hoisting cable is unwound and the cargo is lowered through the wave zone.
Hydrodynamic loads appear, in particular slamming loads (due to the hydrody-
namic impact) which can cause snap loads. In case of lifting operation, slamming
loads become water exit loads.

� The payload is lowered deeply into the sea. The increase of the cable length in-
volves a modi�cation of the natural frequencies of the system. Vertical oscillations
of the payload due to the vessel motion induced by the waves may be signi�cant.
Current (with possibly both time-dependent velocity and direction) needs to be
taken into account and leads to a horizontal o�set. The drift motion of the vessel
may occur if a dynamic positioning system is not used.

� Once the payload is close enough to the seabed, the �nal step is the landing
operation. In case of lifting operation, it is a retrieval operation. The impact
of the object on the seabed must not lead to any damage. The accuracy of the
payload position must be guaranteed.

Thus, before starting any lowering or lifting operation, every lifting equipment has
to be checked to avoid overloads. This includes the crane capacity, the rigging design,
the structural strength of the cargo or the seakeeping of the vessel. This analysis can
be e�ciently support by models. Di�erent branches of the physics are necessary:

� Multibody dynamics: the �oating crane forms an articulated body system (vessel,
crane, cable, payload) in mechanical interactions (the motion of the vessel involves
a motion of the payload through the cables, and conversely);

� Cable dynamics;

9
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� Hydrodynamics: several bodies are subject to hydrodynamic loads (vessel, pay-
load), hydrodynamic interactions and slamming loads;

� Fluid-structure interaction: waves induce the motion of the vessel and the payload,
in return the motion of those bodies modi�es the wave �eld;

� Control systems: for reducing the motion of the payload by controlling its position
and the tension in the hoisting cable.

A sketch of these several physical �elds is presented in Figure 11.

Figure 9 � Jack-up vessel13

13http://www.heavyliftspecialist.com
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3. Lowering and lifting operations

Figure 10 � Lifting operation of the Sabella D10 tidal turbine14

Figure 11 � Modeling of a lowering operation. The hoisting cable is in black. The thick arrows
represent the �uid-structure coupling and the double-headed thin arrows denote
the mechanical interactions between bodies.

14http://www.sabella-d10.bzh
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Note

Other methods exist to lower a payload without using a �oating crane. For example,
the pendulous installation method requires two vessels: a transportation vessel and an
installation vessel, separated one from the other by a distance roughly equal to the
water depth. The payload is hung to the transportation vessel by a cable which the
other extremity is �xed to the installation vessel. Then the payload is detached from
the transportation vessel and lowers following a pendulous motion [9].

Another possibility is based on the pencil buoy method [10]. The payload is im-
mersed inshore, then towed to site suspended from a pencil shaped buoy and �nally
lowered o�shore using a winch.

4 State of the art of the numerical simulation of lowering

or lifting operations

To schedule the operations, establish the operational conditions (weather windows
and uptime levels), design the equipments or predict the body motions to reduce risks,
collisions or any injury to the workers, numerical simulation has become an essential
tool.

The numerical simulation of lowering or lifting operations at sea has been extensively
studied in the literature. These works can be gathered in three domains:

� Structural analysis;

� Hydrodynamic analysis;

� Motion control analysis.

4.1 Structural analysis

O�shore lifting or lowering operations require to model an articulated multibody
system. The �rst structural studies were based on simpli�ed approaches. For instance,
by assumption, the crane tip follows a prescribed motion. This mechanical model un-
couples the dynamics of the payload from the dynamics of the �oating crane. It assumes
that the payload does not in�uence the crane and the supporting vessel. This hypothe-
sis is justi�ed in case of small ratio of the payload mass over the vessel mass [11]. Elling
and McClinton [12] and Chin et al. [13] computed the dynamics of a single concentrated
mass, such as a pendulum, linked to a crane tip by a rigid cable with a prescribed har-
monic displacement of the boom. This approach allows studying the motion of the
lifted object subject to a parametric excitation. For instance, Elling and McClinton
[12] highlighted a resonance phenomenon when the frequency of the harmonic imposed
crane tip motion matches the pendulum natural frequency. Nevertheless mechanical
coupling e�ects can be important [14].

It is also possible to linearize the motion equation at the system's equilibrium posi-
tion. The purpose of a linearized model is to perform a frequency-domain analysis and
compute the natural frequencies of the system. Comparisons between nonlinear and
linearized models along with experimental measurements showed a good agreement for
small amplitude motions but not near the resonance [15, 16].

Another simpli�cation is to consider a two-dimensional problem. Ellermann et al.
[17, 18] simulated a �oating crane linked to a suspended lumped mass by assuming
a motion in a vertical plane. Then, this model was simpli�ed in order to study the

12



4. State of the art of the numerical simulation of lowering or lifting operations

in�uence of di�erent parameters using a multiple scales method and a path-following
technique to perform a bifurcation analysis.

Uncoupled or linearized or two-dimensional models su�er from a lack of generality.
Payload dynamics may in�uence the motion of the �oating crane in case of heavy lifting
operations, nonlinearities are present in the physics (mechanics, mooring, hoisting cable
dynamics, etc.) and a two-dimensional model restricts the simulation to planar motions.
Thus, more complex coupled models were necessary. Lots of studies (Schellin et al.
[16], Van Den Boom et al. [19], Witz [20], Malenica et al. [21], etc.) were devoted to the
simulation of a �oating crane with a payload hanging in the air. The problem is in three
dimensions and the cable is either rigid or elastic. Only few studies consider the payload
in the water. The dynamics of a submerged payload with a constrained motion using a
rigid cable was studied by Bai et al. [22]. Hannan and Bai [23] performed a dynamical
analysis of the same constrained payload near a �oating barge. The barge is motionless,
which simpli�es the mechanical problem. They used phase trajectories, Poincaré maps
and bifurcation diagrams to analyse the payload motion in waves. Bashir et al. [24] and
Nam et al. [5] did a numerical study with both a �oating crane and a payload in water.

Since Cha et al. [25], mechanical models have started being based on fully coupled
multibody dynamics. These authors used constraint equations to include the internal
degrees of freedom of their multibody system. Using this approach, they could simu-
late two rigid bodies with six degrees of freedom each and linked by an elastic cable (a
�oating crane with a lifted heavy cargo). This model was also used by Ku and Roh [7]
in order to simulate the dynamic response of an o�shore wind turbine suspended in the
air by a �oating crane.

So far, motion equations were derived manually. In case of a change in the multi-
body system, they had to be derived again. Hence, it became convenient to use multi-
body dynamic algorithms to write automatically the motion equation for most or any
multibody systems. Ku and Ha [26] used multibody dynamic algorithms based on the
Newton-Euler equation to model a heavy load lifting operation with multi-cranes. These
algorithms are based on a recursive formulation and can be applied to all multibody
systems. Ham et al. [27] preferred the Euler-Lagrange equation. They formulated it
with constraint equations. An application was done with a dynamic analysis of a �oat-
ing crane with two booms and a heavy load in the air.

Hitherto, only rigid bodies were considered. According to Ren et al. [28], rigid crane
boom can be used in case of short crane booms and small payload-to-ship ratios, oth-
erwise the crane boom �exibility should be taken into account. Some studies considers
a �exible crane boom. Ren et al. [28] simulated a �exible boom �oating crane with
a point mass payload linked by a rigid rope by assuming a two-dimensional motion.
The authors showed the �exibility involves high-frequency vibrations in the surge vessel
motion along with a reduction of the payload-swing angle. Park et al. [29] modeled
a �exible boom �oating crane in three dimensions using a �nite-element method and
two six-degree-of-freedom rigid bodies for the crane and the payload. Surge and pitch
motions were increased in case of the �exibility. The high-frequency vibrations found
in [28] are not reported.

Thus, the mechanical model of the lifting and lowering operations becomes more
complex with time, from uncoupled bi-dimensional approaches to fully coupled nonlinear
dynamics handling mechanical interactions. The same applies for cable models, from a
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single rigid cable to possibly several elastic cables (slings).

4.2 Hydrodynamic and aerodynamic analysis

The main external loads acting on a �oating crane and the payload are:

� Weight;

� Wind loads;

� Mooring loads;

� Hydrodynamic loads.

Wind loads are not always considered in the numerical simulations of lowering or
lifting operations. They may induce large motions in case of blade installations [3]
or light payloads [8]. When they are computed, the wind loads are mainly expressed
following a drag equation [19, 26, 30]:

FWind =
1

2
CWind
D ρairAV2

Wind (1)

with:

� FWind the wind loads;

� CWind
D the dimensionless drag coe�cient;

� ρair the air density;

� A the projected area of the bodies which contact with wind;

� VWind the wind velocity.

More complex models using a time-varying wind velocity [31] and taking into account
wind turbulence [6] are also developed. No wind loads will be considered in this PhD
work.

Regarding mooring loads, di�erent theories are used: quasi-static [31], linear [20] or
nonlinear [16]. These models are presented in chapter II.

Hydrodynamic loads are split into several components:

� Hydrostatic loads;

� Hydrodynamic loads which include loads due to:

• Wave-structure interaction e�ects;

• Current;

• Viscous e�ects.

14
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When the current and viscous loads are computed, they follow a drag equation
[16, 30, 31]. Hydrostatic loads may be either linear or nonlinear. A linear approach is
used when the hydrostatic loads are computed based on the mean wetted surface of the
bodies. They are expressed with a linear hydrostatic matrix [5, 16, 19]:

FHydrostatic = FB −KHydrostaticX (2)

where FHydrostatic, FB, KHydrostatic and X represent the hydrostatic loads, the buoy-
ancy force, the hydrostatic sti�ness matrix and the position vector of the body, respec-
tively.

When hydrostatic loads are nonlinear, the pressure is integrated over the exact
wetted body surface [7, 25]. Lee et al. [32] compared the use of linear and nonlinear
hydrostatics in case of a lowering operation and showed that nonlinearities in the hy-
drostatic loads increase the dynamic motion.

Concerning the wave-structure interaction, most of the studies are based on the
linear frequency-domain potential �ow theory [7, 16, 19, 21, 25]. A linear time-domain
potential �ow theory is used by Ku and Ha [26]. Linear theory (both in frequency and
time domains) assumes a small amplitude motion of the bodies and a small steepness
of the waves. It is valid when the payload is in the air as it is the case in the majority
of the works. When the payload is in the water and is lowered or lifted, the linear
potential �ow theory is not applicable with consistency. The presence of two bodies
close to each other leads to hydrodynamic interactions and the lowering or the lifting of
the payload involves a large relative amplitude motion. That is why, Hannan [11] used
a fully nonlinear potential �ow theory to simulate such marine operations in his PhD
work. In this case, the assumptions of the linear theory do not have to be satis�ed.
One part of his work focused on the motion of a fully immersed cylinder in waves and
subject to a constrained pendulum motion with a lowering velocity [22]. He also studied
the hydrodynamic interactions between a �xed �oating barge and the same cylindrical
payload [23]. The presence of the barge close to the payload modi�ed the motion of
this latter due to the hydrodynamic interactions.

More details about the di�erent hydrodynamic approaches are given in chapter III.

Thus, as for the mechanical models, the wave-structure interaction models become
more complex with time. Most of the studies are based on the linear frequency-domain
potential �ow theory which involves two strong assumptions on the body motion and
the wave steepness. A whole lowering operation cannot be consistently simulated with
this theory. The use of an unsteady potential �ow based solver to simulate the �oating
crane and the payload in waves gains in importance.

4.3 Motion control analysis

In order to attenuate the heave motion of the lifted object and reduce the tension
variation in the hoisting cable, heave compensation systems are used. Their �nal goal is
to decouple the payload motion from the wave-induced motion of the vessel, especially
during a deepwater lowering or lifting operation. Three families of heave compensation
exist [5, 33]:

15



Introduction

� Passive heave compensation: a spring-damper system is placed along the hoisting
line to shift the heave natural frequency of the lifting equipment. These systems
do not require any energy to operate.

� Active heave compensation: sensors and controlled actuators (winches, pistons)
are used to oppose the heave motion. These systems require energy to operate
and are more complex, expensive and e�cient than passive heave compensators.

� Hybrid active-passive heave compensation: combination of features of passive and
active heave compensation systems.

Other motion compensation systems are possible such as an active tugger line force
control for single blade installation [34]. Motion compensation systems will not be
considered in this PhD work.

4.4 Norms

Det Norske Veritas (DNV ) provides guidelines about the modelling and the analysis
of marine operations [8]. Three models are proposed for estimating the loads acting on
a lowered payload through the wave zone:

� A simpli�ed method;

� A regular design wave approach;

� A time-domain approach.

The simpli�ed method assumes:

� The horizontal extent of the payload is small compared to the wave length;

� The vertical motion of the payload follows the crane tip motion;

� The vertical acting loads are dominant.

This method gives simple conservative estimates of the loads acting on the lifted ob-
ject. Only characteristic values are included in the computation. For example, the
characteristic wave amplitude ηa is:

ηa = 0.9HS (3)

with HS the signi�cant wave height.

The characteristic hydrodynamic force may be evaluated by:

FHyd =

√
(FD + FSlam)2 + (FM − Fρ)2 (4)

with

� FD the characteristic hydrodynamic drag force;

� FSlam the characteristic slamming impact force;

� FM the characteristic hydrodynamic mass force;

� Fρ the characteristic varying buoyancy force.
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In the regular design wave approach, a single regular wave is applied to the payload
which is subject to a prescribed harmonic motion. The design wave amplitude η is:

η =

{
0.9HS for operations performed within 30 min

HS for operations performed in more than 30 min
(5)

The time-domain approach of an object lowered into the wave zone is based on the
motion equation for a vertical motion only. No horizontal displacement is considered.
The payload is subject to the following forces: hoisting cable force, weight, buoyancy
force, steady force due to current, inertia force, wave damping force, drag force, wave
excitation force and slamming or water exit force.

Regarding the simulation of both the �oating crane and the payload, DNV guidelines
split the problem into two categories:

� Light lifts, where the mass of the payload is less than 2 % of the �oating crane
displacement;

� Heavy lifts, where the mass of the payload is more than 2 % of the �oating crane
displacement.

In the �rst case, it is assumed that the vessel motion is not a�ected by the pay-
load motion and the mechanical model is uncoupled. In the second case, the coupled
dynamics is required.

The coupled approach of DNV is a nine degree-of-freedom model (six for the crane
and three for the payload). The two bodies are linked by a spring. The hydrodynamic
loads are evaluated for the crane and the payload using a hydrodynamic database pro-
vided by a linear potential �ow based solver. Hydrostatic loads are linear too. The
mechanical coupling is ensured by a coupling sti�ness matrix. Thus, this model takes
into account both hydrodynamic and mechanical interactions.

In case of a deepwater lowering, DNV norms provide a more accurate approach
which models the control of the vertical motion of the lifted object and the horizontal
o�set due to the current. Additional recommendations are given in case of landing on
seabed or retrieval.

DNV norms have been compared to commercial numerical tools (cf. subsection 4.5).
Jacobsen and Leira [4] simulated a submerged towing operation. The simpli�ed method
and the numerical results of SIMO were compared to experiments. It was shown that
DNV guidelines did not provide an accurate response estimation and should only be
used for feasibility studies at an early design stage. Kimiaei et al. [35] used DNV
guidelines released in 1996 and 2008 and compared them to OrcaFlex on the installation
of a subsea frame through the wave zone. They concluded that the two versions of the
norms overestimates the numerical results of OrcaFlex, the earliest guidelines being less
conservative.

4.5 Software packages

Several commercial time-domain numerical tools are available for performing simu-
lations of marine operations:

� SIMO15 (SImulation of Marine Operations) developed by SINTEF Ocean and
DNV [36];

15https://www.dnvgl.com/services/complex-multibody-calculations-simo-2311
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� aNySIM 16 developed by MARIN [37];

� OrcaFlex 17 developed by Orcina [38];

� DeepLines18 developed by Principia and IFP Energies Nouvelles [39];

� ProteusDS 19 developed by DSA [40];

� ARIANE 20 developed by Bureau Veritas [41];

� ANSYS Aqwa21 developed by ANSYS ;

� FryDoM 22 (Flexible and Rigid body Dynamic modeling for Marine operations)
developed by D-ICE ENGINEERING and Ecole Centrale de Nantes;

� MOSES 23 (Multi Operational Structural Engineering Simulator) developed by
Bentley Systems [42].

These software packages have the same features overall:

� Dynamical computations are multibody;

� Bodies are rigid with six degrees of freedom;

� Mechanical interactions between bodies are taken into account;

� Wave loads are computed using a frequency-domain potential �ow theory;

� Hydrostatic loads are based on a linear approach;

� Wave-structure interaction between �oating bodies are taken into account;

� Additional loads (wind, current, mooring, second-order wave loads, etc.) may be
speci�ed.

Nevertheless, there are di�erences in the details. For example, OrcaFlex and ProteusDS
use a high-order lumped mass cable theory while DeepLines and FryDoM use the �nite
element method (cf. section II.1). Nonlinear hydrostatic calculations are available in
DeepLines and FRyDoM. Kinematic loops are supported by FRyDoM (cf. section I.1).

4.6 Conclusions of the state of the art

From this review of the state of the art of the numerical simulation of lowering and
lifting operations, the following main conclusions arise:

� Dynamical solvers have been improved over the years until being able to simulate
multibody systems including cables and mechanical interactions;

16https://www.marin.nl/publication/anysim-a-versatile-hydrodynamics-engineering-tool
17https://www.orcina.com/
18http://www.principia-group.com/blog/product/produit-deeplines/
19https://dsa-ltd.ca
20https://www.bureauveritas.com/home/about-us/our-business/marine-and-offshore/

offshore/our-solutions/software
21https://www.ansys.com/fr-fr/products/structures/ansys-aqwa
22https://frydom.org/
23https://www.bentley.com/en/products/brands/moses
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5. Context of the project

� These dynamical solvers have been coupled to wave-structure interaction solvers,
primarily using the linear potential �ow theory, enabling the simulation of �oating
cranes with a payload in the air only;

� Hydrodynamic interactions between the �oating crane and the payload are rarely
studied and when it is done, it is at the price of a too simple mechanical model;

� The use of a linear frequency-domain potential �ow based solver is not consistent
when the payload is lowered or lifted due to the violation of the small amplitude
motion hypothesis;

� Similarly, the steadiness of the wave-structure interaction due to the linear poten-
tial �ow theory is not consistent when �oating and immersed bodies have a large
relative motion;

� Commercial software packages are based on the same approach: a multibody
dynamical solver coupled with a linear potential �ow based solver and su�er of the
aforementioned conclusions when lowering and lifting operations are simulated;

� Norms present guidelines based models which can be too simple.

That is why a new approach is required for performing numerical simulations of
lowering and lifting operations. It is necessary to couple both a dynamical solver which
would be able to handle multibody numerical computations involving several bodies,
articulations, cables and a winch and a wave-structure interaction solver which would be
consistent enough to evaluate the unsteady hydrodynamic loads and the hydrodynamic
interactions between bodies with a large relative amplitude motion. This analysis is the
motivation for this PhD project.

5 Context of the project

This PhD work was supported by a CIFRE 24 scholarship through a partnership
between the LHEEA25 laboratory of Ecole Centrale de Nantes and INNOSEA.

5.1 The LHEEA laboratory of Ecole Centrale de Nantes

The LHEEA laboratory of Ecole Centrale de Nantes is an internationally well-known
laboratory specialized in numerical simulations and experiments at model scale and in
situ in four themes:

� Free surface hydrodynamics;

� Fluid-structure interaction;

� Dynamics of the atmosphere;

� Systems approach for ground and marine propulsion systems.

24Convention Industrielle de Formation par la Recherche or Industrial Convention of Formation by
Research

25Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphèrique
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One research topic, dedicated to the Ocean Energy and Ocean Waves Group of the
lab., is the study of the marine renewable energy devices (o�shore wind turbines, wave
energy converters, tidal turbines) by numerical simulation of the resource (wave, wind),
the motion of the systems and their performance.

This PhD is the continuation of several works of the LHEEA. For example Rongère
and Clément [43] presented a methodology to model and simulate multibody o�shore
structures. To do so, a dynamic algorithm was coupled with the linear potential �ow
theory in case of a single �oating body (a wave energy converter in the paper).

The laboratory has also developed a potential �ow based solver using the weak-
scatterer hypothesis [44, 45], named WS_CN. This numerical tool computes the un-
steady hydrodynamic loads without doing any assumption on the amplitude of the body
motion nor on the wave steepness. So far, the application of this tool has been the sim-
ulation of single wave energy converters to evaluate more accurately their performance.
This solver will be used in our work.

Thus, the interests of the LHEEA for this PhD are the pursuit of research about
the numerical simulation of multibody o�shore structures, the continuation of the de-
velopment of an unsteady potential �ow based solver, the quanti�cation of its interest
and its application in a new �eld: marine operations.

5.2 INNOSEA

INNOSEA is an engineering company specialized in marine renewable energy projects
and is a spin-o� company from Ecole Centrale de Nantes. INNOSEA's main areas of
expertise include hydrodynamic, aeroelastic, structural and metocean analyses. The
company is also an editor of software tools for the numerical simulation of marine re-
newable energy devices.

This PhD is part of the research and development strategy of INNOSEA to create
a numerical tool able to simulate multibody o�shore structures. To do so, the software
InWave has been developed by INNOSEA and the LHEEA to simulate articulated
marine energy devices [46]. This tool is coupled with the linear potential �ow based
solver Nemoh [47].

The interests of INNOSEA for this PhD are the extension of InWave to handle the
simulation of marine operations and the coupling with an unsteady potential �ow based
solver when the use of Nemoh could not be consistent and accurate enough.

6 Objectives

In order to �ll the knowledge gaps exposed in subsection 4.6 and bring a contribution
to the numerical simulation of lowering and lifting operations, the main objectives of
the PhD thesis are:

� The implementation of cable and winch modelling capabilities in the existing
multibody dynamic numerical tool (InWave);

� The extension of the existing hydrodynamic numerical tool (WS_CN ) to perform
simulations involving several immersed or surface-piercing bodies;

� The coupling between these two solvers to simulate lowering and lifting operations;
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� The comparison of the classical approach to model lowering operations using the
linear potential �ow theory and the developed numerical tool to quantify the
e�ects of the wave-structure interaction theory used in WS_CN.

7 Layout

The �rst chapter of the thesis introduces the multibody theory used in InWave.
After a state of the art of the multibody system dynamics, the modelling approach
based on relative coordinates along with the dynamic algorithm, named the Composite
Rigid-Body Algorithm or CRBA, are presented in details. The motion equation of the
multibody systems is established.

The second chapter is devoted to cable dynamics. A state of the art of the di�erent
cable modelling approaches is exposed. Two approaches are used to simulate cables, one
is based on the CRBA while the second method uses the low-order lumped mass theory.
The latter is developed into a solver named CableDyn, validated from comparisons with
experiments. Comparisons are done between the two approaches. A winch model is
also presented to wind or unwind a cable by modifying the number of cable elements
during the numerical simulations.

The third chapter is dedicated to the hydrodynamic theory. A state of the art of
the di�erent potential �ow approach is presented. The theory of the model used in this
PhD, based on the weak-scatterer hypothesis, is presented. Its numerical implemen-
tation through the solver WS_CN is introduced for the solving of the hydrodynamic
problem as well as for the mesh generator. This numerical tool has been extended to
multibody simulations and validated from comparisons with measurements in case of
forced motions and with a linear potential-�ow based solver for free motions. Other
developments such as the free surface remeshing, the parallelization of the computation
of the in�uence coe�cients or the use of a sparse linear system solver are also presented.

The fourth chapter introduces the �uid-structure coupling between the multibody
solver InWave and the hydrodynamic solver WS_CN. A state of the art of the �uid-
structure interaction is provided. Then, the theory of the tight coupling is explained.
The language binding between the two existing numerical tools is detailed as InWave
is implemented in C++ and WS_CN in Fortran. The tight coupling is checked from
comparisons with the hydrodynamic solver alone. Other coupling strategies are also
studied. The coupling between InWave and CableDyn is presented.

The �fth chapter proposes a new mesh strategy to overcome the lack of robustness
of the initial mesh generator inWS_CN originally. The explanation of this choice along
with a state of the art of the mesh generation are provided. The development of each
step of this new mesh generator and its comparison with the initial one are given.

The last chapter is dedicated to the experiments of an upending operation of a spar
conducted in the wave basin of Ecole Centrale de Nantes. The experimental device is
presented, together with the measurements obtained. These results are used for compar-
ison with the numerical results coming from the coupling between InWave, CableDyn,
WS_CN and the new mesh generator.
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Multibody System Dynamics

The simulation of marine operations requires solving the dynamics of a multibody
system, constituted, at least, of a �oating crane, a cable and a payload in the case of a
lowering operation. This chapter introduces a state of the art of the multibody system
dynamics which leads to the presentation of the di�erent methods to model a multibody
system. Several dynamic algorithms are exposed. The Composite-Rigid-Body Algorithm,
which is used through this PhD thesis, is presented in details.

I.1 State of the art

I.1.1 Classi�cation of multibody systems

A multibody system is an assembly of connected rigid or �exible bodies. Each
connection between two bodies is called a joint. Only rigid bodies are considered in this
work. Three families of multibody systems exist:

� Open-loop or open-chain systems;

� Kinematic trees or open chain with multiple branches;

� Closed-loop systems.

Open-loop systems are unbranched kinematic trees and are composed of bodies which
have exactly one ancestor and one successor. With kinematic trees, each body may
have several successors but always a single ancestor. The consequence of this de�nition
is the appearance of branches in the multibody system. Finally, closed-loop systems
form the most general case. Each body may have several successors and ancestors,
leading to kinematic loops. One example of each family of multibody systems is shown
in Figure I.1.

(a) Open-loop system (b) Kinematic tree (c) Closed-loop system

Figure I.1 � Sketches of the di�erent multibody system families. Black circle: body, black
point: joint and red arrow: kinematic loop.
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I.1.2 Dynamic approaches to multibody simulation

Multibody dynamics is composed of:

� Forward or direct dynamics: the acceleration is evaluated from the knowledge of
the loads acting on the multibody system;

� Inverse dynamics: the loads produced by a given acceleration are computed.

Direct dynamics is used for the simulation of the free body motion. Inverse dynamics is
required for the motion control or the trajectory planning. Both approaches are based
on the motion equation of the multibody system but used di�erently. The mathematical
model of the forward dynamics (FD) and the inverse dynamics (ID) can be written as
follows [48]:

q̈ = FD(model,q, q̇,Γ) (I.1)

and
Γ = ID(model,q, q̇, q̈) (I.2)

with:

� q the position vector;

� q̇ the velocity vector;

� q̈ the acceleration vector;

� Γ the vector of the internal loads;

� model the input characteristics of the multibody system (mass, inertia, external
loads, etc.).

Only forward dynamics will be used in this PhD thesis.

I.1.3 Direct dynamics algorithms

Direct dynamics algorithms can mainly be formulated according to four di�erent
approaches [31, 49]:

� The Articulated-Body Algorithm (ABA);

� The Composite-Rigid-Body Algorithm (CRBA);

� The Augmented Formulation;

� The Discrete Euler-Lagrange Equation.

I.1.3.1 The ABA and the CRBA

Both the Articulated-Body Algorithm and the Composite-Rigid-Body Algorithm
are part of the embedding technique as de�ned by Shabana [50]. Instead of using
the classical Cartesian coordinates (also named the redundant coordinate set [51]),
these algorithms are based on a joint coordinate set (also named a reduced or relative
coordinate set). With the Cartesian coordinates, each body is located from a unique
global frame whereas by using joint coordinates, each body is located from one of its
ancestors. The Articulated-Body Algorithm and the Composite-Rigid-Body Algorithm
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are directly applicable to kinematic trees (which include open-chain systems). Both of
them are based on the Newton-Euler equation, written in a recursive way. But they
di�er in the way they compute the accelerations. The Articulated-Body Algorithm
propagates the constraints from one body to the next one and calculates the acceleration
of one body at a time. The Composite-Rigid-Body Algorithm is more general, because
it consists in writing the motion equation of the whole system to �nd the accelerations
of all bodies at one time [48].

The ABA has been applied by Rongère and Clément [43] to simulate the motion of
a single wave energy converter. To evaluate the hydrodynamic loads, the Articulated-
Body Algorithm was coupled with the linear potential �ow-based theory. Within this
theory, one part of the hydrodynamic loads depends on the acceleration of the body:
the added-mass loads. The ABA enables the simulation of a single body subject to
hydrodynamic loads. But the simulation of several �oating or immerged bodies in
hydrodynamic interactions is more challenging and requires the use of the Composite-
Rigid-Body Algorithm. Indeed, in this case, the added-mass loads of one body depend
not only on the acceleration of the body itself, but also on the acceleration of all other
bodies subject to hydrodynamic loads. As the ABA computes the acceleration of one
body at a time, it fails to simulate hydrodynamic interactions, hence the need to use
the CRBA. Combourieu et al. [46] coupled the CRBA with a linear potential �ow-
based theory to simulate a complex wave energy converter with several moving bodies
in hydrodynamic interactions.

Closed-loop systems can be modeled by the ABA and the CRBA but with additional
developments compared to kinematic trees. Closed-loops involve joint variables which
are not independent anymore. The main strategy to deal with such multibody systems
is to make cuts in the closed-loop system in order to �nd a kinematic tree, named a
spanning tree. At the cuts, a constraint equation is used based on Lagrangian multipliers
[48].

I.1.3.2 The Augmented Formulation

Lagrangian multipliers form the key point of the Augmented Formulation. Within
this approach, the redundant Cartesian coordinates are used to locate each body of the
multibody system. The motion equation of the whole multibody system is established
assuming each body has six degrees of freedom (dof ). As the redundancy of the chosen
coordinate system is due to the geometrical constraints in the multibody system, it is
necessary to add constraint equations to take into account these kinematic constraints.
For the sake of clarity, let us consider two six-dof bodies linked by a revolute joint.
There are seventeen unknowns in total: the six degrees of freedom of each body and
�ve components of the internal loads in the joint. But only twelve scalar motion equa-
tions are available. Nevertheless, an algebraic equation may be written to ensure the
contact between the two bodies despite their relative rotational motion. This constraint
equation allows to express the internal loads in the joint and then to close the system
of equations.

Constraint equations and inequations (represented by the function φ) are sorted
in several categories (Figure I.2). Equality kinematic constraints represent permanent
physical contacts between bodies, whereas inequality constraints arise when bodies can
make contact or impact and be separated [52].

Constraint equations mainly depend on time and positions only (holonomic con-
straints) or are velocity-dependent (nonholonomic constraints). Nonholonomic con-
straints appear for rolling contact whereas holonomic constraints occur for sliding con-
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tact. Holonomic constraint group is split into two categories according to the time
dependency. Rheonomic constraints are time-dependent and used to add prescribed
motions (excitation) in joints. Scleronomic constraints are time-independent and form
the most common category of constraints.

Figure I.2 � Classi�cation of constraints (from [48])

For instance, considering a two-dimensional pendulum made of a punctual mass and
an inextensible rod of negligible mass (Figure I.3), the scleronomic constraint equation
is:

φ(x, y) = x2 + y2 − l2 = 0 (I.3)

with:

� x the vertical position of the mass;

� y the horizontal position of the mass;

� l the rod length.

Figure I.3 � Simple pendulum

If this example was modelled using a reduced coordinate set, the unique variable
in two dimensions would be θ, the angular position of the mass. With the Augmented
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Formulation, the Newton-Euler motion equation of the whole multibody system is:

MẌ = Fc + Fext (I.4)

with:

� M the whole system mass matrix;

� Ẍ the vector of the Cartesian accelerations of all the bodies;

� Fc the internal loads in the whole system;

� Fext the external loads acting on the whole system;

Both Fc and Ẍ are unknown in a direct dynamics algorithm. Constraint equations are
added to close the system of equations:

φ(X, t) = 0 (I.5)

Internal loads are linked to the constraint equations by the use of Lagrange multipliers
λ:

Fc =
∂φ

∂X

T

λ (I.6)

Two time-di�erentiations of (I.5) allow to couple the constraint equations to the
whole system motion equation (I.4): M − ∂φ

∂X

T

∂φ

∂X
0

(Ẍ
λ

)
=

 Fext

∂2φ

∂t∂X
Ẋ

 (I.7)

Equations (I.4) and (I.5) form a di�erential-algebraic system of equations (DAE ) of
index 3. The index is given by the number of time-di�erentiations required to transform
a DAE into a �rst-order system of ordinary di�erential equations (ODE ). Two time-
di�erentiations were necessary to write (I.7). In order to obtain the time-derivation of
the Lagrange multipliers, a third time-di�erentiation is applied and leads to a DAE of
index 3. The index also indicates the numerical di�culty to solve the DAE [53].

Several techniques exist to solve index-3 DAE. The direct integration of index-3 DAE
(Equations (I.4) and (I.5)) being subject to numerical instabilities, other strategies are
preferred [54]. One approach is to use a stabilization method. Equation I.7 is integrated
in time. Doing so, the validity of (I.5) is not ensured and a drift motion appears because
of the time integration. This is why a stabilization method is used to take into account
the violation of (I.5). It is based on an alteration of the internal loads to compensate
the errors of the direct integration [53, 55]. Another possible method is based on the
reduction of the DAE -index to 1 or 2 [54]. Additional Lagrange multipliers (reduction
to index 2) or new variables which match the same time-derivative of the Lagrange
multipliers (reduction to index 1) are added to the system of equations.

The use of a relative coordinate set with the ABA or the CRBA to model kinematic
trees always leads to an ODE system which is greatly easier to solve numerically.

I.1.3.3 The Discrete Euler-Lagrange equation

The last main direct dynamics algorithm formulation is the use of the Euler-Lagrange
equation instead of the Newton-Euler equation. Ham et al. [27] discretized the Euler-
Lagrange equation in presence of kinematic constraints, di�erent kinds of joints and
closed-loops. This method also leads to an automatic writing of the multibody motion
equations.
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I.1.3.4 Discussion

Each formulation of the direct dynamics algorithms enables the simulation of all
multibody systems but with di�erent numerical di�culties. Both the Articulated-Body-
Algorithm and the Composite-Rigid-Body-Algorithm are e�cient and straightforward
for computing the dynamics of kinematic trees but need much more attention on how
the input data are carried out due to the use of a reduced coordinate set. The extension
to closed-loop systems can be challenging too. Regarding the Augmented Formulation,
no distinction is done between kinematic trees and closed-loop systems as constraint
equations are always required. The solving of the kinematic constraints coupled with
the motion equations is a di�cult numerical task.

I.1.4 InWave

The multibody dynamics solver used through this PhD thesis is InWave. It has been
the result of a joint development between the LHEEA laboratory of Ecole Centrale de
Nantes and INNOSEA since 2014. The direct dynamics algorithm of InWave is the
Composite-Rigid-Body Algorithm for kinematic trees. It is implemented in C++. This
algorithm has been coupled with the linear potential �ow-based solver NEMOH [47]. In
its early developments, InWave was a numerical tool purely dedicated to the modeling
of Wave Energy Converters (WEC ) [46]. Since 2015, three PhD projects have been
launched to extend the capabilities of InWave.

The work of Vincent Leroy, PhD student at the LHEEA laboratory and INNOSEA,
is about the unsteady behaviour of o�shore �oating wind turbines. InWave has been
coupled to a free-vortex wake theory-based unsteady aerodynamic solver [56]. This
coupling was �rstly used to investigate the behaviour of �oating horizontal-axis wind
turbines and was compared to state-of-the-art steady aerodynamic models. Eventually,
a steady double multiple streamtube theory-based solver has been implemented and
coupled to InWave to study �oating vertical-axis wind turbines. The impact of the
aerodynamic solver on the behaviour at sea of such systems has been investigated with
a comparison to the unsteady aerodynamic coupling results [57].

The work of David Ogden, EngD student at University of Edinburgh (UK) and IN-
NOSEA focuses on the numerical simulation of complex wave energy converters with
kinematic loops, �exible bodies, etc. To do so, InWave has been coupled to the multi-
body numerical tool HotInt. This has opened new features: complex joints between
bodies, closed-loops or ropes. The developed coupling is being validated with a series
of WECs [58].

The last axis of development of InWave is the aim of this PhD thesis: the simulation
of marine operations.

I.2 Modeling of multibody systems

I.2.1 Numbering of the bodies

A multibody system is composed of n + 1 bodies. As InWave only considers kine-
matic trees, the number of joints is n. If the number of joints is higher than n, there
is at least one kinematic loop. In Figure I.1b, n = 5 and is equal to the number of
joints, whereas in Figure I.1c, n = 5 but the number of joints is 6 and one closed-loop
is present.
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A number is given to each body. The body numbered 0 is the base of the multibody
system. It is the unique body for which Cartesian coordinates with respect to the global
earth-�xed inertial frame are used . The base can be either �xed or �oating (moving).
Other bodies are numbered with increasing order from the base. Their position is based
on the modi�ed Denavit-Hartenberg parameters (mDH ). The numbering of the bodies
de�nes an antecedence relationship through the multibody system. Mathematically,
if the i-th body is the ancestor of the j-th body, then i < j and the antecedence
relationship is written:

i = aj (I.8)

By de�nition, the base is the single body without ancestor and the terminal bodies,
considered as the leaves of the kinematic tree, are the bodies without successor. Joints
are numbered such as the joint j connects the body aj to the body j .

I.2.2 The modi�ed Denavit-Hartenberg parameters

InWave uses a reduced set of coordinates to locate each body of the multibody sys-
tem. It is di�erent from the classical Cartesian coordinates. It follows the geometric
con�guration created by Denavit and Hartenberg for open chain systems and extended
to any multibody system (with or without closed-loops) by Khalil and Klein�nger [59].
The advantages of these coordinates are that they allow to describe any kind of multi-
body systems with a minimum of parameters without ambiguities.

Only one degree-of-freedom joints are considered, either revolute or prismatic. A
revolute joint, respectively a prismatic joint, grants for a rotation, respectively a trans-
lation, between two bodies. To produce more complex joints, virtual massless bodies
are added to ensure the necessary degrees of freedom. For instance, in case of a ball
joint linking two physical bodies, two virtual massless bodies are required to create
three concurrent-axis and orthogonal to each other revolute joints. The articular vari-
able de�ning the rotation around the revolute axis joint or the translation along the
prismatic axis joint is qj . The set of the articular variables, written q, is the articular
position vector of the multibody system.

Each body has a local frame, Σj , of origin Oj and orthonormal basis (xj ,yj , zj).
An extra unit vector, uj is also built to be able to de�ne the mDH parameters in every
situation. The local base frame, Σ0 is de�ned with respect to the global inertial earth
�xed reference frame Σe, of origin Oe and orthonormal basis (xe,ye, ze). Oe,xe and ye
lie on the mean water free surface and ze points upwards.

The step-by-step construction of these local frames is based on the following rules
[43, 60]:

� zj is along the axis of the joint j;

� xj is along the mutual perpendicular to zj and one of the succeeding joint axis zk
such as ak = j. This de�nition leads to three possible cases:

• If xaj is not perpendicular to zj , uj is de�ned along the mutual perpendicular
to zaj and zj .

• If xaj is perpendicular to zj , then uj is equal to xaj ;

• If the body j is a terminal body, xj can be de�ned arbitrarily.

� yj completes the basis such as (xj ,yj , zj) forms an orthonormal basis.
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In practice, zj-axes are �rst de�ned for all bodies, then both xj and uj and �nally yj .

Once the local frames are established, the six modi�ed Denavit-Hartenberg param-
eters are de�ned such as:

� i = aj ;

� γj the angle between xi and uj around zi;

� bj the distance between xi and uj along zi;

� αj the angle between zi and zj around uj ;

� dj the distance between zi and zj along uj ;

� θj the angle between uj and xj around zj ;

� rj the distance between uj and xj along zj .

If uj = xaj , then γj = 0 and bj = 0, so only four parameters are necessary. Otherwise,
the six parameters are useful. For a given multibody system, the set of mDH parame-
ters is not unique. It depends on the numbering of the bodies, the order of the joints
and the orientation of the local frame unit-vectors. Figure I.4 presents a sketch of the
local frames and the modi�ed Denavit-Hartenberg parameters in case of a set of three
bodies of a kinematic tree.

The six modi�ed Denavit-Hartenberg parameters (γj , bj , αj , dj , θj , rj) form the re-
duced coordinate set used in InWave. If the joint j is revolute, then qj = θj , otherwise
qj = rj for a prismatic joint. The general de�nition of the articular variable becomes:

qj = σ̄jθj + σjrj (I.9)

with:

� σj = 0 if the joint j is revolute;

� σj = 1 if the joint j is prismatic;

� σ̄j = 1− σj .

Other mDH parameters stay constant during the simulation.
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Figure I.4 � Local frames and modi�ed Denavit-Hartenberg parameters in case of a kinematic
tree (from [43])

From the mDH parameters, it is possible to de�ne the rotation matrix from Σj to
the ancestor local frame Σaj [43]:

ajRj =

CγjCθj − SγjCαjSθj −CγjSθj − SγjCαjCθj SγjSαj

SγjCθj + CγjCαjSθj −SγjSθj + CγjCαjCθj −CγjSαj

−SαjSθj SαjCθj Cαj

 (I.10)

with:

� C∗ = cos(∗);

� S∗ = sin(∗).

The composition of rotation matrices ensure:

jRi = jRk
kRi (I.11)

Regarding their inverse, the well-known formula is:

jR−1
i = jRT

i (I.12)

The position of the origin of Σj from the origin of Σaj and expressed in Σaj is:

ajPj =

djCγj + rjSγjCαj

djSγj − rjCγjSαj

rjCαj + bj

 (I.13)

In other words, if eOajOj represents the position of the frame Σj with respect to the
frame Σaj and expressed in Σe, it comes:

ajPj = ajRe
eOajOj (I.14)
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So far, local frames have been built except for the base. The base frame is directly
de�ned with respect to the earth-�xed inertial frame Σe. Σ0 is obtained after a trans-
lation of vector OeO0 and, then, three rotations based on the de�nition of the Cardan
angles. Their construction follows the next steps:

� Translation of vector OeO0 = eP0 to move Σe from Oe to O0;

� Rotation from Σe to Σψ0 around ze through an angle ψ0. Σψ0 is de�ned by the or-
thonormal basis (xψ0 ,yψ0 , zψ0) where zψ0 = ze. The associated rotation matrix is:

eRψ0 =

Cψ0 −Sψ0 0
Sψ0 Cψ0 0
0 0 1

 (I.15)

� Rotation from Σψ0 to Σθ0 around yψ0 through an angle θ0. Σθ0 is de�ned by the
orthonormal basis (xθ0 ,yθ0 , zθ0) where yθ0 = yψ0 . The associated rotation matrix
is:

ψ0Rθ0 =

 Cθ0 0 Sθ0
0 1 0
−Sθ0 0 Cθ0

 (I.16)

� Rotation from Σθ0 to Σϕ0 = Σ0 around xθ0 through an angle ϕ0. Σϕ0 is de�ned by
the orthonormal basis (xϕ0 ,yϕ0 , zϕ0) where xϕ0 = xθ0 . The associated rotation
matrix is:

θ0Rϕ0 =

1 0 0
0 Cϕ0 −Sϕ0

0 Sϕ0 Cϕ0

 (I.17)

The six-component generalized position vector to locate Σ0 with respect to Σe in
term of position and orientation is:

η0 =

(
ηtrans0

ηrot0

)
(I.18)

with:

� ηtrans0 =
(
x0 y0 z0

)T
= eP0 the Cartesian position of O0 from Oe;

� ηrot0 =
(
ϕ0 θ0 ψ0

)T
the angular position using the Cardan angles.

x0, y0, z0, ϕ0, θ0 and ψ0 represent the surge, sway, heave, roll, pitch and yaw of the base
body, respectively. If the base is �xed, then Σ0 = Σe and η̇0 = 06×1.

The rotation matrix from Σ0 to Σe becomes [43]:

eR0 = eRψ0
ψ0Rθ0

θ0Rϕ0 (I.19)

=

Cψ0Cθ0 −Sψ0Cϕ0 + Cψ0Sθ0Sϕ0 Sψ0Sϕ0 + Cψ0Cϕ0Sθ0
Sψ0Cθ0 Cψ0Cϕ0 + Sϕ0Sθ0Sψ0 −Cψ0Sϕ0 + Sψ0Cϕ0Sθ0
−Sθ0 Cθ0Sϕ0 Cθ0Cϕ0

 (I.20)

The results of this section allows to locate every point of each body in all local frames
Σj and in the global inertial frame Σe. To perform automatic dynamic computations,
it is necessary to �gure out the kinematic recursive relationships for the velocities and
the accelerations of each body. This is the goal of the next section.
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I.3 Kinematic recursive equations

The six-component generalized velocity vector of body j with respect to Σe and
expressed in Σj is:

jVj =

(
jvj
jωj

)
(I.21)

with:

� jvj the linear velocity of body j with respect to Σe at the point Oj and expressed
in Σj .

� jωj the angular velocity of body j with respect to Σe and expressed in Σj .

To establish the kinematic recursive equation for the velocities, let us introduce two
extra notations to manipulate more easily both linear and angular velocities:

� ev(Oj ,Σj/Σe) the velocity of the point Oj of Σj with respect to Σe and expressed
in Σe. The de�nition of jvj involes:

jvj = jRe
ev(Oj ,Σj/Σe) (I.22)

� eΩ(Σj/Σe) the angular velocity of Σj with respect to Σe and expressed in Σe.
The de�nition of jωj involes:

jωj = jRe
eΩ(Σj/Σe) (I.23)

In this section, it is assumed that i = aj .

The transport of the linear velocity from Oj of Σj to Oi of Σi provides:

ev(Oj ,Σj/Σe) = ev(Oj ,Σj/Σi) + ev(Oi,Σi/Σe) + eΩ(Σi/Σe) × eOiOj (I.24)

with:

� ev(Oj ,Σj/Σi) the relative linear velocity between the frames Σj and Σi. It only
depends on the nature of the joint j:

ev(Oj ,Σj/Σi) = σj q̇j
ezj (I.25)

� ezj the joint axis of joint j in Σe. Its value in the local frame of the body j is:

jzj = jRe
ezj =

(
0 0 1

)T
(I.26)

The transport of the angular velocity from Σj to Σi gives:

eΩ(Σj/Σe) = eΩ(Σj/Σi) + eΩ(Σi/Σe) (I.27)

with eΩ(Σj/Σi) the relative angular velocity between the frames Σj and Σi. It only
depends on the nature of the joint j:

eΩ(Σj/Σi) = σ̄j q̇j
ezj (I.28)

Equations (I.24) and (I.27) are now projected in the local frame of body j using
(I.14), (I.22) and (I.23):

jvj = jRi
ivi − jRiS(iPj)

iωi + σj q̇j
jzj (I.29)

jωj = jRi
iωi + σ̄j q̇j

jzj (I.30)

with:
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� S the skew-symmetric matrix of the cross product associated with the vector u
such as:

u× v = S(u)v (I.31)

The expression of S for a vector u =
(
u1 u2 u3

)T
is:

S(u) =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (I.32)

The adoption of a matrix format for (I.29) and (I.30) allows to write the �nal
kinematic recursive equation for the velocities:

jVj = jTi
iVi + q̇j

jaj (I.33)

with:

� jTi the transformation matrix between the six-component generalized velocity
vectors:

jTi =

(
jRi − jRiS(iPj)
03×3

jRi

)
(I.34)

These transformation matrices follow the same rule for their composition as the
rotation matrices:

pTq = pTk
kTq (I.35)

� jaj the six-component generalized joint axis:

jaj =
(
σj

jzTj σ̄j
jzTj

)T
(I.36)

As the base has no ancestor, (I.33) is not valid for j = 0. 0V0 is directly expressed
from the time-derivative of η0. By de�nition:

η̇trans0 = eR0
0v0 (I.37)

The angular velocity of the base depends on the time-di�erentiation of the Cardan
angles:

ω0 = ψ̇0 ze + θ̇0 yψ0 + ϕ̇0 xθ0 (I.38)

The three terms of ω0 are written in three di�erent frames, consequently it is necessary
to express this vector is the same unique frame. Two choices are possible:

� In Σe [45]:

eω0 =

 0
0

ψ̇0

+ eRψ0

 0

θ̇0

0

+ eRψ0
ψ0Rθ0

ϕ̇0

0
0

 (I.39)

= S0η̇
rot
0 (I.40)

S0 denotes the transformation matrix between the intermediate Cardan frames
and Σe:

S0 =

Cθ0Cψ0 −Sψ0 0
Cθ0Sψ0 Cψ0 0
−Sθ0 0 1

 (I.41)

This quantity is not used in the Composite-Rigid-Body Algorithm but is used in
the weakly nonlinear potential �ow-based theory which is presented in chapter III.
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� In Σ0 [43]:

0ω0 = ϕ0Rθ0
θ0Rψ0

 0
0

ψ̇0

+ ϕ0Rθ0

 0

θ̇0

0

+

ϕ̇0

0
0

 (I.42)

= eΩ−1
0 η̇rot0 (I.43)

eΩ0 noti�es the transformation matrix between Σ0 and the intermediate Cardan
frames:

eΩ0 =


1 Sϕ0Tθ0 Cϕ0Tθ0
0 Cϕ0 −Sϕ0

0
Sϕ0

Cθ0

Cϕ0

Cθ0

 (I.44)

with T∗ = tan(∗).
eΩ0 and S0 are linked to eR0 by the following formula:

S0
eΩ0 = eR0 (I.45)

Finally the relationship between 0V0 and η̇0 becomes:

η̇0 = eJ0
0V0 (I.46)

eJ0 denotes the Jacobian matrix between Σ0 and Σe:

eJ0 =

(
eR0 03×3

03×3
eΩ0

)
(I.47)

The kinematic recursive equation for the accelerations is derived using the same
method as for the velocities (cf. Appendix A):

jV̇j = jTi
iV̇i + jγj + q̈j

jaj (I.48)

with:

� jV̇j the projection in Σj of the generalized acceleration vector of body j with
respect to Σe:

jVj =

(
jv̇j
jω̇j

)
=

(
jRe

ev̇j
jRe

eω̇j

)
(I.49)

� jγj the Coriolis and relative angular and linear accelerations:

jγj =

(
jRiS(iωi)S(iωi)

iPj + 2σj q̇jS( jRi
iωi )

jzj
σ̄j q̇jS( jRi

iωi )
jzj

)
(I.50)

Regarding the linear acceleration, jv̇j does not match the time-di�erentiation of
jvj = jRe

evj . A correction is required. Two results about the time-derivation of
rotation matrices needs to be reminded:(

d eRj

dt

)
/Σe

= S( eωj)
eRj (I.51)(

d eR−1
j

dt

)
/Σe

= − eR−1
j

(
d eRj

dt

)
/Σe

eR−1
j (I.52)
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Furthermore, for any rotation matrix M and any 3-component vectors a and b, the
cross product follows the formula:

(Ma)× (Mb) = M(a× b) (I.53)

Or using the cross product matrix S:

S(Ma)Mb = MS(a)b (I.54)

The time-di�erentiation of jvj leads to:(
d jvj
dt

)
/Σe

=

(
d jRe

evj
dt

)
/Σe

(I.55)

=

(
d eR−1

j

dt

)
/Σe

evj + jRe
ev̇j (I.56)

And using (I.51) and (I.52):

(I.57)(
d jvj
dt

)
/Σe

= − jReS( eωj ) eRj
jvj +j v̇j (I.58)

Making eRj appear in the cross product matrix S and using (I.53), it comes:(
d jvj
dt

)
/Σe

= jv̇j − S( jωj)
jvj (I.59)

Regarding the angular acceleration:(
d jωj
dt

)
/Σe

= jω̇j (I.60)

Let us de�ne νj as equal to jVj . The application of (I.59) and (I.60) to the base
body, by using the six-component generalized accelerations, gives:

ν̇0 = 0V̇0 −
(

S(0ω0) 0v0

03×1

)
(I.61)

This section established the kinematic recursive equations for the velocities (I.33)
and the accelerations (I.48). These relationships are at the base of the Composite-Rigid-
Body Algorithm, presented in details in the next section.

I.4 The Composite-Rigid-Body Algorithm

The Newton-Euler motion equation of the whole multibody system is:

H(q)

(
0V̇0

q̈

)
=

(
06×1

Γ

)
−C(q, q̇) (I.62)

with:
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� H =

(
H11 H12

H21 H22

)
the (6 +n)× (6 +n) generalized mass matrix of the multibody

system;

� H11 the (6× 6) mass matrix of the whole multibody system seen as a single rigid
body;

� H22 the (n× n) mass matrix of the multibody system when the base is �xed;

� H12 the (6 × n) coupled mass matrix representing the inertial e�ects caused by
the articulations on the base;

� H21 = HT
12 the (n×6) coupled mass matrix representing the inertial e�ects caused

by the base on the articulations;

� C =

(
C1

C2

)
the (6 + n) vector of the external loads and the Coriolis and relative

accelerations on the base (C1) and the articulations (C2). This vector depends
neither on the base acceleration 0V̇0 nor on the articular articulation q̈.

� Γ the (6 + n) vector of the internal loads along or around the joint axes;

� 0V̇0 the acceleration of the base with respect to the global inertial frame and
expressed in the base local frame;

� q̈ the vector of the articular accelerations.

The solving of (I.62) requires the knowledge of H, C and Γ. This latter is de�ned by
the user of the multibody solver. For instance, for a wave energy converter, Γ represents
the power take-o� force (PTO) of the device. Spring-damper systems are often used
[61]. In that case, the internal load in a joint takes the following form:

Γj = −kPTOqj −BPTO q̇j (I.63)

with:

� qj the articular variable;

� kPTO the power take-o� sti�ness;

� BPTO the power take-o� damping.

The Composite-Rigid-Body Algorithm aims at computing H and C. To do so,
the preliminary step is the writing of the motion equation for each body. The motion
equation of body j at Oj expressed in its local frame Σj is:

jΦj = jFTj (I.64)

with:

� jΦj the time-di�erentiation of the linear and angular momentum;

� jFTj the sum of external and internal loads acting on body j.
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The time-di�erentiation of the linear and angular momenta at Oj projected in Σj

is (cf. Appendix A):

jΦj = jMj
jV̇j +

(
mjS( jωj )S( jωj ) jSj

S( jωj ) jIOj
jωj

)
(I.65)

with:

� jMj the (6× 6) mass matrix of body j expressed in Σj :

jMj =

(
mjI3 −mjS( jSj )

mjS( jSj ) jIOj

)
(I.66)

� mj the mass of body j;

� jIOj the (3× 3) inertia matrix of body j reduced at Oj with respect to Σj ;

� jSj the position of the center of gravity of body j with respect to Σj . In other
words, if jOjGj denotes the position of the center of gravity of body j with respect
to the origin of Σj and expressed in Σj , then:

jSj = jOjGj (I.67)

� I3 the (3× 3) identity matrix.

The loads applied to the body j are:

� The external loads at Oj expressed in Σj such as weight, hydrodynamic loads,
aerodynamic loads, mooring loads, etc.: jFej ;

� The internal loads due to the unique ancestor, at Oj and expressed in Σj : jFj ;

� The internal loads jFk due to the successor bodies k such as ak = j, at Oj and
expressed in Σj : −

∑
k/ak=j

jFk .

After the transport of jFk to Ok and in Σk, it yields:

jFk = kTT
j
kFk (I.68)

Finally:
jFTj = jFej + jFj −

∑
k/ak=j

kTT
j
kFk (I.69)

Hence, (I.64) becomes:

jMj
jV̇j +

(
mjS( jωj )S( jωj ) jSj

S( jωj ) jIOj
jωj

)
= jFej + jFj −

∑
k/ak=j

kTT
j
kFk (I.70)

The weight is an example of external loads applied to each body. Its expression in
the local frame Σj is:

jFWeight
ej = −

(
mjg

jRe ze
mjgS( jSj ) jRe ze

)
(I.71)

where g is the gravity constant.
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The Coriolis and relative accelerations along with the external loads are grouped
together to give the generalized loads acting on body j:

jβj = − jFej +

(
mjS( jωj )S( jωj ) jSj

S( jωj ) jIOj
jωj

)
(I.72)

Finally, Equation I.70 is simpli�ed using (I.72):

jMj
jV̇j = jFj −

∑
k/ak=j

kTT
j
kFk − jβj (I.73)

The Composite-Rigid-Body Algorithm unfolds in three stages:

� A forward loop through the bodies ∀j ∈ J1 ; nK;

� A backward loop through the bodies ∀j ∈ Jn ; 0K;

� The construction of the matrix H and the vector C.

The state vector of this algorithm is:

YCRBA =


η0

ν0

q
q̇

 (I.74)

I.4.1 The forward loop

The aim of this loop is the computation of all quantities which depend neither on
the articular accelerations nor on the base acceleration nor on the internal loads. That
is to say, ∀j ∈ J1 ; nK:

� i = aj ;

� iRj from (I.10);

� iPj from (I.13);

� jTi from (I.34);

� jVj from (I.33);

� jγj from (I.50);

� jβj from (I.72).

The initialization of this loop is achieved using the state vector (I.74) to calculate:

� eR0 from (I.20);

� η̇0 from (I.46).
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I.4.2 The backward loop

The aim of this loop is the computation of the (6× 6) mass matrix and the gener-
alized loads of the composite bodies. The composite body j is composed of the body
j and all its successors until the terminal bodies of the branch, whose the branch-root
body is body j. For instance, in Figure I.1b, the composite body 1 is made of the
bodies 1, 3 and 4. By de�nition, a composite body has no successor. The composite
body of a terminal body is the terminal body itself. The composite body of the base
is the whole multibody system. The use of composite bodies justi�es the name of this
direct dynamics algorithm.

The motion equation of the composite body j, using (I.73), is:

jMc
j
jV̇j = jFj − jβcj (I.75)

with:

� jMc
j the (6× 6) mass matrix of the composite body j expressed in Σj ;

� jβcj the generalized loads (external and inertial) acting on the composite body j
and expressed in Σj ;

� jFj the internal loads due to the unique ancestor of the composite body j, at Oj

and expressed in Σj .

Applying (I.73) to the ancestor of body j (the body i such as i = aj) and by
introducing (I.75) and then (I.48), it comes:

iMi
iV̇i = iFi −

∑
k/ak=i

kTT
i

[
kMc

k

(
kTi

iV̇i + kγk + q̈k
kak

)
+ kβck

]
− iβi (I.76)

After the identi�cation of the terms of (I.76) with (I.75), the following recursive
equations arise:

jMc
j = jMj +

∑
k/ak=j

kTT
j
kMc

k
kTj (I.77)

jβcj = jβj +
∑

k/ak=j

kTT
j

[
kMc

k

(
kγk + q̈k

kak

)
+ kβck

]
(I.78)

I.4.3 Construction of H and C

The �rst row of (I.62) is:

H11
0V̇0 + H12q̈ + C1 = 06×1 (I.79)

By de�nition, the base has no ancestor therefore 0F0 = 06×1. Thus, (I.75) for j = 0
becomes:

0Mc
0

0V̇0 = −0βc0 (I.80)

0βc0 is obtained by developing recursively jβcj from n to 0 using (I.78):

0βc0 = 0β0 +
n∑
k=1

kTT
0
kMc

k
kak q̈k +

n∑
k=1

kTT
0

(
kβk + kMc

k
kγk

)
(I.81)
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The identi�cation of the terms of (I.80) and (I.81) with (I.79) gives [62]:

H11 = 0Mc
0 (I.82)

colq(H12) = qTT
0
qMc

q
qaq ∀q ∈ J1 ; nK (I.83)

C1 = 0β0 +
n∑
k=1

kTT
0

(
kβk + kMc

k
kγk

)
(I.84)

colq(H12) denotes the q-th column of the matrix H12.

The second row of (I.62) is:

H21
0V̇0 + H22q̈ = Γ−C2 (I.85)

Γj denotes the j-th component of Γ and by de�nition of Γ:

Γj = jaTj
jFj (I.86)

The left-multiplication of (I.75) by jaj allows to write:

jaTj
jMc

j
jV̇j = Γj − jaTj

jβcj (I.87)

Let β(j) be the set of the bodies on the direct branch between the base (not included)
and the body j (included). The iterative introduction of (I.48) in (I.87) leads to:

jaTj
jMc

j
jT0

0V̇0 + jaTj
jMc

j

∑
k∈β(j)

jTk
kak q̈k = Γj− jaTj

jMc
j

∑
k∈β(j)

jTk
kγk − jaTj

jβcj

(I.88)
Equation I.85 involves that if 0V̇0 = 06×1 and q̈ = 0n×1 then Γ = C2. By denoting

jβ̃cj = jβcj

∣∣∣∣0V̇0=06×1
q̈=0n×1

, (I.78) becomes:

jβ̃cj = jβj +
∑

k/ak=j

kTT
j

[
kMc

k
kγk + kβ̃ck

]
(I.89)

The identi�cation of the terms of (I.88) and (I.89) with (I.85) gives [62]:

rowp(colq(H22)) = paTp
pMc

p
pTq

qaq ∀(p, q) ∈ J1 ; nK2 such as p > q (I.90)

The upper triangle of H is �lled by symmetry.

H21 = HT
12 (I.91)

rowp(C2) = paTp

pMc
p

∑
k∈β(p)

pTk
kγk + pβ̃cp

 (I.92)

rowp(H22) denotes the p-th row of the matrix H22.

Eventually, the backward loop may be summed up in the following way: ∀j ∈ Jn ; 0K:

� i = aj ;

� iβ̃ci is computed from (I.89);
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� iMc
i is computed from (I.77).

The computation of H is achieved using:

� (I.82) for H11;

� (I.83) for H12;

� (I.91) for H21;

� (I.90) for H22.

The calculation of C is based on:

� (I.84) for C1;

� (I.92) for C2.

Once the motion equation of the whole multibody system is formed, it remains to
solve this linear system of size (6 + n):(

0V̇0

q̈

)
= H−1

[(
06×1

Γ

)
−C

]
(I.93)

A LU decomposition method is used.

Degrees of freedom can be blocked by removing columns and rows from H, C and
Γ in order to delete the interactions between the blocked and active dof. Hence, the
corresponding components of 0V̇0 and/or q̈ are zeroed. Much attention is necessary in
case of base-dof blocking because 0V̇0 6= η̈0. For example, if the fourth dof of the base
is blocked then 0ω̇0(1) = 0 which is not always equivalent to ϕ̈0 = 0.

I.5 Time integration

The �nal set of governing equations leads to an ordinary di�erential equation system
such as Ẏ = f(Y, t). The time-di�erentiation of the state vector (I.74) is obtained using:

� (I.46) for η̇0;

� (I.93) and (I.61) for ν̇0;

� (I.93) for q̈

In InWave, the state vector is time-stepped using either a fourth-order explicit
Runge-Kutta (RK4 ) scheme or an adaptive Adams-Moulton scheme. Only the RK4
scheme will be used in this work. We remind the classical time-step equation of the
RK4 scheme:

Y(t+ dt) = Y(t) +
dt

6
(k1 + 2k2 + 2k3 + k4) (I.94)

with:

� dt the �xed time step of the RK4 scheme;
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� k1 = f(Y, t);

� k2 = f(Y +
dt

2
k1, t+

dt

2
);

� k3 = f(Y +
dt

2
k2, t+

dt

2
);

� k4 = f(Y + dtk3, t+ dt).

I.6 Conclusion

This chapter presented a review of the general concepts used for multibody dynam-
ics. Several multibody modelings and direct dynamics algorithms were exhibited. In
this PhD thesis, bodies are modeled using the modi�ed Denavit-Hartenberg parameters.
The details of the Composite-Rigid-Body Algorithm were also given and demonstrated.
This algorithm is based on few hypotheses: multibody systems are limited to kinematic
trees of rigid bodies linked by one-dof joints. The CRBA unfolds in three steps which
lead to the construction and the solving of the motion equation for the whole multibody
system. The numerical tool InWave relies on this algorithm and is used in this PhD to
perform time-domain simulations of marine operations. The next chapter focus on cable
dynamics, presents the application of the CRBA to model cables and its comparison to
a classical cable dynamic theory.
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II.1. State of the art

The simulation of marine operations involves the use of cables and thus solving
the cable dynamics. This chapter introduces a state of the art of cable dynamics. Two
models are presented in details: the low-order lumped mass model and the multibody
model. This latter is based on the Composite-Rigid-Body Algorithm presented in the last
chapter. A validation of these theories is exposed for each model.

This chapter also presents a state of the art of the winch modeling to wind or
unwind a cable. The chosen winch approach is detailed and an example of its use is
given.

II.1 State of the art

Cables are extensively used in o�shore engineering. Mooring lines maintain the
�oating bodies on station by preventing their drift motion. Mooring cables are also the
key point of the stability of tension-leg platforms for instance. Power cables convey the
energy production of a marine renewable energy device to the �xed power-grid connec-
tions resting on the seabed [63]. A wide range of marine operations require the use of
cables. For example, towing operations need towlines and lowering / lifting operations
use hoisting lines. This is why it is necessary to compute the cable dynamics to achieve
a marine operation simulation.

Cables are subject to three types of deformation (Figure II.1):

� An axial deformation: the stretching;

� A curvature deformation: the bending;

� A twisting deformation: the torsion.

If the cable is not considered as rigid, the stretching is of �rst importance. Bending
and torsion e�ects are signi�cant in case of low-tension cables where internal loads
dominate the cable dynamics [64]. But, the modeling of the bending and torsion loads
increase markedly the complexity of the numerical models.

Figure II.1 � Deformations of a cable element: stretching of length dx , bending with a radius
of curvature R and torsion by an angle θ

A physical e�ect must be avoided in any cable: snap loads. Snap or snatch load is
a spike of very short duration in the cable tension caused when a line becomes slack
and then suddenly taut [65]. The amplitude of these loads is much higher than the
maximum of the dynamic loads. Snapping phenomenon produces shocks in the line
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material and reduces the fatigue life [66]. DNV de�nes a criterion, in case of a lowering
operation, to avoid snap loads using a 10 % margin for safety [8]:

Fhyd 6 0.9Fstatic (II.1)

with:

� Fhyd the characteristic hydrodynamic force, from (4);

� Fstatic the static weight of the payload (di�erence between the weight and the
buoyancy force).

II.1.1 Mathematical modellings

Six di�erent mathematical models exist to evaluate cable loads:

� Quasi-static approach;

� Force-displacement-velocity model;

� Lumped mass models;

� Finite-element method;

� Finite-di�erence method;

� Multibody approach.

II.1.1.1 Quasi-static approach

The quasi-static theory computes the line position and the tension from the cate-
nary equation for a continuous slack cable. Cable dynamics, internal axial damping
loads and hydrodynamic loads are omitted. This model assumes each cable element is
only subject to the internal axial tension, the weight and the buoyancy. The line is
permanently in static equilibrium during the simulation and the tension only depends
on the position of its two end points (the fairlead for the extremity attached to the
vessel and the anchor for the other extremity, connected to the seabed). This approach
is widely used to describe a mooring system due to its quickness and its ease of im-
plementation [67]. But the important assumptions lead to large possible discrepancies
[65]. Nevertheless this method can also be used to initialize the position of a slack cable
in order to perform dynamic computations [65]. The initialization of the position of a
taut cable is �gured out by assuming a straight line between the extremities of the cable.

The motion equation for a cable element in quasi-static equilibrium, in the plane
de�ned by these two end points (Figure II.2), gives:

� Along the normal axis of the cable element:

Tdφ = (W −B) cos(φ) +Dn (II.2)

with:

• T the tension;

• W the weight;
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• B the buoyancy;

• Dn the normal drag force;

• φ the angle between the cable element and the horizontal axis;

• dφ a small variation of φ.

� Along the tangential axis of the cable element:

dT = (W −B) sin(φ)−Dt (II.3)

with:

• Dt the tangential drag force;

• dT a small variation of the tension T .

Figure II.2 � Loads on a cable element in quasi-static equilibrium

The quasi-static hypothesis assumes gravity forces (weight and buoyancy) are pre-
dominant on drag loads, leading to:

Tdφ = (W −B) cos(φ) (II.4)

dT = (W −B) sin(φ) (II.5)

These equations implies that the horizontal tension is constant throughout the line
and the vertical tension follows the formula [67]:

V = µs+ VA (II.6)

with:

� V the vertical tension;

� µ the linear weight such as µ = (ρ− ρwater)Ag;

� ρ the cable density;

� ρwater the water density;
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� A the cross sectional area of the cable;

� VA the vertical tension at the anchor;

� s the curvilinear coordinate along the cable such as s = 0 at the anchor and
s = Lu at the fairlead;

� Lu the unstretched length of the cable.

The tension at any point of the cable is given by:

T (s) =
√
H2 + (µs+ VA)2 (II.7)

where H denotes the (constant) horizontal tension in the cable.

The cable position is described by the catenary equation [67]:
x(s) =

H

µ

[
sinh−1

(
µs+ VA
H

)
− sinh−1

(
VA
H

)]
+
Hs

EA

z(s) =
H

µ

√1 +

(
µs+ VA
H

)2

−

√
1 +

(
VA
H

)2
+

1

EA

(
µs2

2
+ VAs

) (II.8)

E is the cable Young's modulus.

Equation II.8 only depends on the horizontal and vertical tensions at the anchor (or
at the fairlead). Their computation is achieved by using a Newton-Raphson algorithm
to zero the vector F, de�ned by:

F(H,VA) =

(
x(Lu)− xinput(Lu)
z(Lu)− zinput(Lu)

)
(II.9)

xinput(Lu) and zinput(Lu) are the horizontal and vertical displacements between the two
end points of the cable.

II.1.1.2 Force-displacement-velocity model

Another simple approach is the use of a force-displacement-velocity model based on
cable sti�ness and damping matrices [68]:

Fcable = F0 −K(x)x−C(x)ẋ (II.10)

with:

� Fcable the cable loads;

� F0 a constant vertical force representing the mooring system weight, the cable
pretension, etc.;

� K the mooring sti�ness matrix;

� C the mooring damping matrix

� x the body position.
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If K and C are constant, the model is linear, otherwise it is nonlinear.

The cable loads computed in this way only represent the global mooring system.
There is no representation of the individual lines. But this approach is easy to imple-
ment and leads to fast computations as soon as the two matrices K and C are known.
Slack cables cannot adequately be simulated like this, except in case of small amplitude
motions. An example of the use of this forced-displacement-velocity model can be found
in [69].

The four other approaches are dynamic models. Inertia e�ects and hydrodynamic
loads are taken into account. Thus, a dynamic model is more accurate for predicting
the loads in a cable.

II.1.1.3 Lumped mass models

In the lumped mass theory, the cable is discretized into NElements cable elements
and NElements + 1 nodes where the mass is concentrated (or lumped) (Figure II.3).
Nodes are connected by spring-damper systems and located with respect to a global
inertial frame. Then, the motion equation is written at the position of the nodes [70]:

∀i ∈ J0 ; NK (Mi + Ai)r̈i = Wi + Bi + Ti + Ci + Di (II.11)

with, at the node i:

� Mi the 3× 3 mass matrix;

� Ai the 3× 3 added-mass matrix;

� Wi the weight;

� Bi the buoyancy force;

� Ti the axial tension due to the adjacent nodes;

� Ci the axial damping loads due to the adjacent nodes;

� Di the hydrodynamic loads;

� ri the position vector.
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Figure II.3 � Spatial discretization of a cable. The position vector of the nodes are in red.
The nodes are the black points and the cable elements the black lines.

The main advantage of the lumped mass theory lies in the strictly diagonal total
mass matrix (including mass and added-mass matrices). No matrix inversion is required
in this approach. By doing that, the coupling terms of the total mass matrix are
neglected. Cases where lines are connected between them, such as nets, may lead
to a loss of accuracy [71]. Equation II.11 does not include either bending or torsion
e�ects, deriving a low-order lumped mass formulation. Buckham [64] developed a high-
order lumped mass formulation including bending and torsion e�ects. Bending and
torsion loads are computed based on the continuous cable equation (II.12) and a �nite-
element model which approximates the cable by a cubic spline. The total mass matrix
is maintained strictly diagonal.{

Mr̈ = F′ + h + w

Jω̇ = N′ + r′ × F + n
(II.12)

with:

� M the total mass matrix per cable unit length;

� r the position vector;

� F the internal forces per cable unit length;

� h the hydrodynamic loads per cable unit length;

� w the weight and buoyancy per cable unit length;

� J the inertia matrix per cable unit length;

� ω the angular velocity;

� N the internal moments per cable unit length;

� n the external moments per cable unit length;

� ( )′ the spatial di�erentiation.
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The lumped mass theory is widespread and several examples of its use can be found
in the literature [70, 72, 73]. The low-order lumped mass theory is detailed in sec-
tion II.2.

II.1.1.4 Finite-element method

The �nite-element method uses the same cable discretization as the lumped mass
theory but using the integral form of (II.12). The motion equation is derived from the
virtual work principle [74]. The mass distribution is considered as continuous compared
to the lumped mass approach where the mass is discretized at the position of the nodes.
It results in a total mass matrix with o�-diagonal coe�cients expressing the inertial
coupling terms. The �nite-element method is known to require less cable elements com-
pared to the lumped mass approach but requires a complex mathematical formulation
and larger computational time [65].

II.1.1.5 Finite-di�erence method

The lumped mass and �nite-element formulation only discretize the cable in space.
The time-stepping is achieved by an external integrator scheme. Time derivatives are
considered as continuous. The �nite-di�erence method discretizes (II.12) in both space
and time. The time-step dt becomes inherent to the discretization as the cable dis-
cretization in nodes was inherent in the previous mathematical modellings. Thus, a
time-dependent variable x may be discretized, for instance, using a forward, backward
or centred scheme [65]:

∂x

∂t
≈ xi+1 − xi

dt
≈ xi − xi−1

dt
≈ xi+1 − xi−1

2dt
(II.13)

This approach is easier to implement than a �nite-element theory but is prone to nu-
merical di�culties [71]. Details on the discretization of the motion equations can be
found in [75, 76].

II.1.1.6 Multibody approach

A multibody approach, based on the Augmented Formulation presented in sec-
tion I.1, is another way to model cables. It uses constraint equations to de�ne a cable
joint. Servin and Lacoursière [77] use the following constraint equation to simulate rigid
body cables for virtual environments (visual simulations):

φ =

pi+1 − pi
θi
Ωi

 = 05×1 (II.14)

Where pi, θi and Ωi denote the position of the body i, its bend and twist angles,
respectively. The stretching (elasticity), bending and torsion coe�cients are introduced
in the system through constraint regularization [77, 78]. This approach was also used by
Ham et al. [27] to model a �oating crane with a heavy load suspended with a constraint-
based wire rope.

II.1.2 Time integration and numerical damping

Regarding the numerical integration of cable dynamics, several schemes are possi-
ble. The fourth-order Runge-Kutta scheme, presented in section I.5, remains a popular
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technique. This time-stepper is robust but requires a small time step due to the sti�-
ness of the system of equations [64]. That is why another approach is often chosen: the
use of an implicit time integrator which includes numerical damping to attenuate high-
frequency waves in cables and more generally in structural dynamics. Most of them are
based on the Newmark's scheme [79]. It integrates numerically second-order ordinary
di�erential equations whereas a RK4 scheme deals with �rst-order ordinary di�erential
equations. Let us consider the displacement un, the velocity u̇n and the acceleration
ün at the time tn, the second-order ODE to solve is:

Mün = F(tn,un, u̇n) (II.15)

Integration algorithms are compared in terms of accuracy, stability and numeri-
cal dissipation. Accuracy depends on the local truncation error to compute the time-
dependent variables. An algorithm is accurate to n-order if the error accumulated is
O(dtn). The stability is the property of an algorithm, under any initial conditions,
to limit the numerical error during a simulation. An algorithm is said unconditionally
stable if the convergence of the solution is independent of the time step dt, otherwise
it is conditionally stable for a range of values of dt [80]. As all explicit methods, the
RK4 scheme is conditionally stable. The stability relies on the spectral radius of the
numerical ampli�cation matrix, A, de�ned by:un+1

u̇n+1

ün+1

 = A

un
u̇n
ün

 (II.16)

The spectral radius of A, noti�ed ρ(A), is the largest absolute value of its eigenvalues.
To ensure the stability of an algorithm, it must satisfy [80]:

ρ(A) 6 1 (II.17)

The numerical dissipation is the capacity of an algorithm to eliminate spurious high-
frequency oscillations. The spectral radius of the ampli�cation matrix also measures
the dissipation. If ρ(A) = 1 then no dissipation is present but if ρ(A) is lower, the
numerical damping increases.

The Newmark's scheme time-steps the displacement and the velocity by the following
equations [79]: un+1 = un + dtu̇n +

(
1

2
− β

)
dt2ün + βdt2ün+1

u̇n+1 = u̇n + (1− γ)dtün + γün+1

(II.18)

Where β and γ are the Newmark's parameters. This scheme is unconditionally stable

if 2β > γ >
1

2
. Numerical damping is introduced if γ >

1

2
and β >

1

4

(
γ +

1

2

)
but the

accuracy is only of �rst order [81].

This scheme has been improved to reach a second-order accuracy. Hilber et al. [82]
proposed to weight the internal loads between two time steps by adding a third param-
eter, this is the HHT-α scheme, whereas Wood et al. [83] weighted the inertial loads,
obtaining the WBZ scheme. Finally, Chung and Hulbert [84] decided to weight both
internal and inertial loads, leading to the Generalized-α method [85]. The equations
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of the Newmark's scheme (II.18) are used along with a variant of the motion equation
solved at each time step:

Mün+1−αM = F(tn+1−αF ,un+1−αF , u̇n+1−αF )

(∗)n+1−αM = (1− αM )(∗)n+1 + αM (∗)n
(∗)n+1−αF = (1− αF )(∗)n+1 + αF (∗)n

(II.19)

The Generalized-α method includes the HHT-α scheme (αM = 0), theWBZ scheme
(αF = 0) and the Newmark's scheme (αM = αF = 0). This method is second-order

accurate if γ =
1

2
− αM + αF and unconditionally stable if αM 6 αF 6

1

2
and β >

1

4
+

1

2
(αF − αM ). The optimal high-frequency dissipation with minimal low-frequency

impact is achieved by using [84]:

β =
1

4
(1− αM + αF )2 (II.20)

αM =
2ρ∞ − 1

ρ∞ + 1
(II.21)

αF =
ρ∞

ρ∞ + 1
(II.22)

where ρ∞ is the desirable value of spectral radius at in�nite frequency, leading to a
controllable numerical dissipation.

The Generalized-α method is used, for example, by Buckham [64] with a high-order
lumped mass theory and by Gobat [76] with a �nite-di�erence approach.

II.1.3 Cable software packages

Several commercial or o�-the-shelf numerical tools dedicated to cable dynamics exist.
Some of them, considered as the most common, are listed in Table II.1.

Software package Status Cable theory Time-stepper

MAP++ [67] Open-source Quasi-static ø

MoorDyn [70] Open-source Low-order lumped mass RK2 1

OrcaFlex [38] Commercial High-order lumped mass Generalized-α2

DeepLines [39] Commercial Finite elements Newmark

ProteusDS [40] Commercial High-order lumped mass RK4

Table II.1 � Cable theory and time-stepper in di�erent software packages

MAP++3 models mooring lines based on a multi-segmented quasi-static approach.
It handles seabed contact and friction. It is released as an open-source library under the

1A constant-time-step second order Runge-Kutta integration scheme.
2For the implicit scheme only, an explicit integration scheme based on a semi-implicit Euler method

is also available.
3https://map-plus-plus.readthedocs.io/en/latest
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Apache License by NREL4 and can be run with Python, C, C++ or Fortran programs.
Another open-source software package is MoorDyn5 [86]. It uses the low-order lumped
mass theory and handles line interconnections, clump weights, �oats and seabed friction
[87]. It is released under a GPLv3 license for its C++-based version and under an
Apache License for its Fortran-based version.

Regarding the commercial numerical tools, OrcaFlex and ProteusDS use the high-
order lumped mass theory whereas DeepLines relies on a �nite-element approach.

II.2 The low-order lumped mass theory

II.2.1 The need of an in-house cable solver

The simulation of lowering or lifting operations involves the computation of cable
dynamics. Based on the review of the previous section, it appears that a quasi-static or
force-displacement-velocity approaches are not su�cient for lowering or lifting opera-
tions as neither inertial loads nor hydrodynamic loads are evaluated. Bending and tor-
sion e�ects may be signi�cant for slack cables whereas hoisting cables are taut. They also
lead to higher computational cost [70]. Consequently, a dynamic model with only the
e�ects of the stretching seems enough in our case. Finite-element and �nite-di�erence
approaches require both complex developments and a coupling between these theories
and the Composite-Rigid-Body Algorithm. This leads to two potential solutions for the
problem of interest in this PhD: the lumped mass theory and the multibody approach.
The former leads to simple developments if bending and torsion are omitted but the
coupling between the lumped mass theory and the CRBA remains. The latter leads
to the simulation of cables within the multibody system theory. At the beginning of
this PhD work, InWave could not simulate cable dynamics. Therefore, the decision was
taken to use both theories.

As seen in subsection II.1.3, MoorDyn is an open-source low-order lumped mass
theory-based numerical tool which matches our speci�cations. This software package is
available with a C++-based version and a Fortran-based version. As InWave is imple-
mented in C++, the Fortran-based version involves overcoming the non-interoperability
of the two programming languages. Regarding the C++-based version of MoorDyn, it
is released under the GPLv3 license. Therefore, if this numerical tool is included in
InWave, the total source code must be released. This is not possible for INNOSEA as
InWave is their in-house numerical tool.

That is why, it was decided to develop an in-house low-order lumped mass-based
cable solver. This solution allows to reach multiple goals:

� The comparison between this cable theory and the CRBA;

� In case of failure of the simulation of cables by the CRBA, this solver could be
used as a third-party module;

� There is no problem of license;

� It can also be used as a dynamic mooring solver.

4https://www.nrel.gov
5http://www.matt-hall.ca/moordyn.html
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II.2.2 Theoretical developments

As explained in subsubsection II.1.1.3, the cable is discretized into NElements ele-
ments and NElements + 1 nodes. In case of a mooring cable, the node 0 represents the
fairlead whereas the node NElements is the anchor. The motion equation at the position
of the nodes and in the global inertial frame is:

∀i ∈ J0 ; NElementsK (Mi + Ai)r̈i = Wi + Bi + Ti + Ci + Di (II.23)

The expressions of each load component can be found in [70]. For a better un-
derstanding of the physics of the low-order lumped mass theory, they are reminded
below.

Figure II.4 � Loads at the node i

Each force at the node i is due to the two adjacent cable elements i and i+1. Thus,
the weight Wi is the result of the weight of both the half element i and the half element
i+ 1:

Wi = WElement
i + WElement

i+1 (II.24)

with:

WElement
i =

1

2
ALuρcg (II.25)

where Lu, ρc and g represent, respectively, the unstretched length of the cable element,
the cable density and the gravity acceleration vector. Lu is assumed to be constant
through the cable.

The expression of the buoyancy force is given by:

Bi = BElement
i + BElement

i+1 (II.26)

with:

BElement
i = −1

2
ALuρg (II.27)

where ρ is the water density.
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The axial tension due to the cable element i is:

TElement
i =

−
EA

Lu
(‖ri − ri−1‖ − Lu)

(
ri − ri−1

‖ri − ri−1‖

)
if ‖ri − ri−1‖ > Lu

03×1 otherwise
(II.28)

The second condition means there is no compression of the cable.

The axial tension at the node i is expressed by:

Ti = TElement
i −TElement

i+1 (II.29)

The friction between the strands of the cable dissipates energy and is modeled by a
linear viscous damper [64]:

CElement
i = −CA

Lu

[
∂

∂t
(‖ri − ri−1‖ − Lu)

](
ri − ri−1

‖ri − ri−1‖

)
(II.30)

with:
∂

∂t
(‖ri − ri−1‖ − Lu) =

1

‖ri − ri−1‖

3∑
j=1

(rji − r
j
i−1)(ṙji − ṙ

j
i−1) (II.31)

rji is the jth component of the position vector ri. C is the internal viscous damping
coe�cient of the cable. Finally, the axial damping force at the node i is:

Ci = CElement
i −CElement

i+1 (II.32)

The drag loads are computed from Morison's equation [88] as the cable can be seen
as a slender cylinder. By neglecting the wave kinematics, the relative velocity at the
node i is −ṙi. Its tangential component is (−ṙi · qi)qi. qi is the tangent unit-vector at
the node i, de�ned by:

qi =
ri+1 − ri−1

‖ri+1 − ri−1‖
(II.33)

The normal and tangential drag loads, Dn
i and Dt

i, are:

Dn
i =

1

2
ρCdndLu‖(ṙi · qi)qi − ṙi‖[(ṙi · qi)qi − ṙi] (II.34)

Dt
i =

1

2
ρCdtdLu‖(−ṙi · qi)qi‖(−ṙi · qi)qi (II.35)

where Cdn, Cdt and d are the normal and tangential drag coe�cients and the cable
diameter. Hence:

Di = Dn
i + Dt

i (II.36)

With the same reasoning, the normal and tangential added-mass loads, An
i r̈i and

At
ir̈i, are:

An
i r̈i = ρCanALu[(r̈i · qi)qi − r̈i] (II.37)

At
ir̈i = ρCatALu[(−r̈i · qi)qi] (II.38)

where Can and Cat are the normal and tangential added-mass coe�cients. The tan-
gential added-mass force may be used, for example, in case of chains [70]. Finally, it
comes:

Ai = An
i + At

i (II.39)

= ρALu
[
Can(I3×3 − qiq

T
i ) + Cat(qiq

T
i )
]

(II.40)
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Thus, once all the loads are computed, the acceleration of every node may be eval-
uated:

∀i ∈ J0 ; NElementsK r̈i = (Mi + Ai)
−1(Wi + Bi + Ti + Ci + Di) (II.41)

II.2.3 State vector and time integration

The state vector of the low-order lumped mass theory (LM) is:

YLM =

(
r
ṙ

)
(II.42)

where r and ṙ gather the positions and the velocities of all nodes in following the num-
bering of Figure II.3.

The time-derivative of the state vector is obtained from (II.41). The time-stepping is
achieved using a fourth-order explicit Runge-Kutta scheme with a �xed time step (I.94).

These theoretical developments have been implemented in a Python numerical tool
named CableDyn.

II.2.4 Validation

Buckham [64] presented a validation of his low-order lumped mass-based numerical
tool using two test cases considering a single towline. A kinematic boundary condition
is applied at the towpoint, located at the node 0 of the cable and at the mean sea
level (r2

0 = r3
0 = 0). The �rst maneuver consists in a horizontal acceleration of this

point while the second one is a horizontal deceleration. Comparisons are made with
the numerical results of Buckham and experimental data of Vaz and Patel [89]. The
characteristics of the 6-element cable are listed in Table II.2. This cable represents an
armoured optical �bre cable.

Parameter Value

Equivalent diameter (m) 0.0332

Cable density (kg/m3) 3121

Young's modulus (GPa) 77.5

Damping coe�cient (N s/m2) 11 551

Total unstretched length (m) 300

Normal drag coe�cient 1.649

Tangential drag coe�cient 0

Normal added-mass coe�cient 1

Tangential added-mass coe�cient 0

Table II.2 � Cable mechanical and hydrodynamic properties

The water density, ρ, is 1025 kg /m3 and the time step is 0.1 s.
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In the acceleration test case, the cable is towed at a velocity of 0.566 m/s for a
1000 s period so that it reaches a steady state, then the towpoint is accelerated at a
constant acceleration of 0.011 15 m/s2 over a 60 s interval and achieves a constant speed
of 1.235 m/s. The kinematic boundary condition at the towpoint is:

r1
0 =


0.566t if t 6 1000 s

566 + 0.566(t− 1000) + 0.005575(t− 1000)2 if t > 1000 s and t 6 1060 s

620.03 + 1.235(t− 1060) if t > 1060 s

(II.43)

Regarding the deceleration test case, the cable is towed at a velocity of 1.286 m/s for
the same period of 1000 s. Then the towpoint is decelerated at a constant acceleration
of −0.0129 m/s2 over a 60 s interval and achieves a constant speed of 0.514 m/s. The
kinematic boundary condition at the towpoint in this test case is:

r1
0 =


1.286t if t 6 1000 s

1286 + 1.286(t− 1000)− 0.00643(t− 1000)2 if t > 1000 s and t 6 1060 s

1340.012 + 0.514(t− 1060) if t > 1060 s

(II.44)
The comparisons between the experimental data provided by Vaz and Patel [89],

the numerical results of Buckham [64] and CableDyn are shown in Figure II.5 for the
acceleration test case and in Figure II.6 for the deceleration test case. A fair agreement
is observed in both cases. Nevertheless, numerical results obtained from CableDyn and
from Buckham do not exactly match. This may be explained by the di�erent formulation
of the hydrodynamic loads (drag and added-mass loads) in the two low-order lumped
mass theories compared here. For example, Buckham [64] used a loading function in
the expression of the drag loads for accounting for the non-linear breakup between the
normal and tangential components.

Figure II.5 � Cable pro�les during the acceleration test case at di�erent times: in red at
t =120 s, in blue at t =180 s, in green at t =240 s and in black at t =540 s.
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Figure II.6 � Cable pro�les during the deceleration test case at di�erent times: in red at
t =1000 s, in blue at t =1120 s, in green at t =1300 s and in black at t =1720 s.

II.3 Cable dynamics using the CRBA

II.3.1 Theoretical developments

In the low-order lumped mass theory, each node has three degrees of freedom.
Within the multibody system modeling, each node needs three joints to ensure two rota-
tions at the position of the node and one translation to take into account the stretching
along the cable element linked to the node. As the theory of the Composite-Rigid-Body
Algorithm, presented in section I.4, only used single-degree-of-freedom joints, three
bodies are necessary, including two massless bodies and one physical body. To sum-up,
every cable element j is made of:

� A massless body 3j − 2;

� A revolute joint 3j − 2 around y3(j−1) = z3j−2;

� A massless body 3j − 1;

� A revolute joint 3j − 1 around y3j−2 = z3j−1;

� A physical body 3j where the mass is lumped;

� A prismatic joint 3j along y3j−1 = z3j .

The numbering of the bodies, given in this list for indication, assumes the cable starts
at the body 1 which, obviously, is not always the case. The local frames are de�ned in
Figure II.7. For each body uj = xi with i = aj .
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Figure II.7 � Local frames for the cable element j in assuming q3j−1 = 0. The red color is
dedicated to the prismatic joints (3(j − 1) and 3j) while the blue and green
colors are used for the revolute joins 3j − 1 and 3j − 2 respectively.

The modi�ed Denavit-Hartenberg parameters, de�ned in subsection I.2.2, for these
three bodies are given in Table II.3. Based on the construction of the local frames, q3j

is negative. In case of a straight vertical cable, q3j−2 = q3j−1 = −π
2

rad.

σj γj (rad) bj (m) αj (rad) dj (m) θj (rad) rj (m)

Body 3j − 2 0 0 0 −π
2

0 q3j−2 0

Body 3j − 1 0 0 0 −π
2

0 q3j−1 0

Body 3j 1 0 0 −π
2

0 −π
2

q3j

Table II.3 � Modi�ed Denavit-Hartenberg parameters for the cable element j

To ensure the internal loads in the cable, articular torques and forces must be applied
to match (II.29) and (II.32). They are de�ned by [90]:

Γ3j−2 = 0 (II.45)

Γ3j−1 = 0 (II.46)

Γ3j =


−EA
Lu

(q3j + Lu)− CA

Lu
q̇3j if |q3j | > Lu

−CA
Lu

q̇3j otherwise
(II.47)

Equations (II.45) and (II.46) involve that no internal torque is added in the revolute
joints as neither bending nor torsion e�ect are modeled. Equation II.47 ensures the
stretching e�ects due to the elasticity and the viscous damping. As with the low-order
lumped mass theory, no compression of the cable is modeled.
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Regarding the hydrodynamic loads, they are only applied on the physical body 3j.
The expression of the buoyancy force is:

3jFBuoyancy
e3j =

(
ρALug

3jRe ze
03×1

)
(II.48)

3jv3j is the velocity of the physical body 3j in its own local frame. Its two �rst
components, 3jv3j(1) and 3jv3j(2), represent the normal velocity while the third com-
ponent, 3jv3j(3), is the tangential velocity of the cable element. So the drag force at
the body 3j is expressed by:

3jFDrag
e3j = −

1

2
ρdLu

Cdn
∥∥∥∥∥∥
3jv3j(1)

3jv3j(2)
0

∥∥∥∥∥∥
3jv3j(1)

3jv3j(2)
0

+ πCdt|3jv3j(3)|

 0
0

3jv3j(3)


03×1


(II.49)

By the same reasoning, the added-mass matrix arises:

3jMAdded−mass
3j =

(
3jA3j 03×1

03×1 03×1

)
(II.50)

3jA3j = ρALu

Can 0
0 Can 0
0 0 Cat

 (II.51)

These developments have been implemented in InWave. Furthermore, as nothing in
this section is speci�c to the Composite-Rigid-Body Algorithm, this model can also be
applied to the Articulated-Body Algorithm.

II.3.2 Validation

The multibody approach for computing cable dynamics, based on the Composite-
Rigid-Body Algorithm, is now compared to the low-order lumped mass theory. The two
test cases presented in subsection II.2.4 require the control of the towpoint position.
The cable modeling described in the previous section cannot be used immediately for
this purpose. Extra joints should be added to enable the translational motion of the
towpoint. For the sake of understanding, a more suitable test case is de�ned. A 3-
element cable is considered with the same mechanical properties as de�ned in Table II.2,
except for:

� The Young's modulus: 77.5 MPa;

� The damping coe�cient:
105

A
N s/m2;

� The total unstretched length: 10 m.

The time step is 0.001 s and the total duration of the simulation is 10 s.

The node 0 is kept at the position r0 = 03×1 during the simulation while the start-
ing position of the node 3 is r3 = (−2, 0,−10)T . The two internal nodes are along the
straight line between the nodes 0 and 3. In the multibody modeling, 10 bodies are
necessary: 9 due to the three cable elements and one more for the base. The cable

motion is in the the plane (Oe,xe, ze) so q3j−1 = −π
2

rad ∀j ∈ J1 ; 3K. As the cable is
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straight, q4 = q7 = −π
2

rad at the starting time. Finally, the initial angle is imposed by

�xing q1 =−1.3734 rad.

Di�erent cable pro�les are presented in Figure II.8.

Figure II.8 � Pro�les of an oscillating 3-element cable. The triangles represent the position
of the nodes. The black lines denote the cable elements.

The relative length, respectively the relative velocity, of the third cable element
(matching the articular variable q9, respectively q̇9) obtained with the CRBA and the
lumped mass theory (LM ) are compared in Figure II.9, respectively Figure II.10. A
very good agreement is observed. Some di�erences are observed, due to the di�erent
formulation of the hydrodynamic loads. For example, with the lumped mass approach,
to de�ne the drag loads, the tangent direction is given by Equation II.33 and is the
approximated direction of a line passing between the two adjacent node points, whereas
with the CRBA, qj = ezj , the direction of the cable element j.
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Figure II.9 � Comparison of q9 from numerical results of the CRBA and the lumped mass
theory (LM )

Figure II.10 � Comparison of q̇9 from numerical results of the CRBA and the lumped mass
theory (LM )

II.4 Cable joints in the CRBA

II.4.1 Theoretical developments

Each cable element results in three bodies in the multibody system and two of them
are massless. This leads to useless computations. In order to speed up the CRBA,
instead of using single-degree-of-freedom, cable joints are created. They are formed of
the same three bodies presented in the last section.

The forward loop of the Composite-Rigid-Body Algorithm stays identical, because
all elementary physical quantities must still be computed. Regarding the backward loop
of the CRBA, (I.77) and (I.89) become [90]:

3(j−1)Mc
3(j−1) = 3(j−1)M3(j−1) + 3jTT

3(j−1)
3jMc

3j
3jT3(j−1) (II.52)

3(j−1)β̃c3(j−1) = 3(j−1)β3(j−1) + 3jTT
3(j−1)

[
3jMc

3j

(
2∑

k=0

3jT3j−k
3j−kγ3j−k

)
+ 3jβ̃c3j

]
(II.53)
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Regarding the construction of the matrix H and the vector C, (I.83), (I.90) and
(I.92) turn to:
∀q ∈ J1 ; NElementsK:

col[3q−2,3q−1,3q](H12) = 3qTT
0

3qMc
3q

3qPq (II.54)

∀(p, q) ∈ J1 ; NElementsK2 such as p > q:

row[3p−2,3p−1,3p](col[3q−2,3q−1,3q](H22)) = 3pPT
p

3pMc
3p

3pT3q
3qPq (II.55)

∀p ∈ J1 ; NElementsK:

row[3p−2,3p−1,3p](C2) = 3pPT
p

3pMc
3p

∑
i∈β(3p)

3pT3i

(
2∑

k=0

3iT3i−k
3i−kγ3i−k

)
+ 3pβ̃c3p


(II.56)

col[3q−2,3q−1,3q](A), respectively row[3q−2,3q−1,3q](A), denotes the (3q−2)-th, (3q−1)-th
and 3q-th columns, respectively rows, of A. NElements is the number of cable elements.

3jPj represents the (6×3) generalized projection matrix of the cable joint j expressed
in the local frame of the body 3j, equivalent of jaj for the single-dof joints, and de�ned
by:

3jPj =
(

3jT3j−2
3j−2a3j−2

3jT3j−1
3j−1a3j−1

3ja3j

)
(II.57)

II.4.2 Validation

The test case presented in subsection II.3.2 now serves to compare the cable modeling
with the CRBA using the single-dof joint formulation and the cable joint formulation.
Numerical results are displayed in Figure II.11. The two formulations match perfectly.

Figure II.11 � Comparison of q9 from numerical results of the CRBA with both the single-dof
formulation and the cable joint formulation

The CPU-time comparison of the di�erent cable approaches can only be done with
the same programming language. But InWave is implemented in C++ and CableDyn
in Python. To achieve the CPU-time comparison, InWave is substituted for Direct-
Dyn, a Python numerical tool where the Articulated-Body-Algorithm along with the
Composite-Body-Algorithm with both single-dof and cable joint formulations are imple-
mented. The mean CPU-time over 10 runs of the pendulum test case for each approach
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is presented in Table II.4. The ABA used here has a single-dof formulation. Obvi-
ously, the implementation of cable joints could also be achieved in this direct dynamics
algorithm.

ABA Single-dof CRBA Cable joint CRBA LM

160.3 s 175.1 s 89.0 s 35.2 s

Table II.4 � CPU-time of di�erent cable dynamics theories applied to the pendulum test case

The use of cable joints in the CRBA involves a time reduction of 49.2 % compared to
the use of single-dof joints. The forward loop is not a�ected by this reduction because
every elementary quantity (velocities, Coriolis accelerations, external loads, etc.) always
has to be evaluated for each body. The backward loop, which now iterates the number of
cable elements instead of the number of bodies, and the construction of the generalized
mass matrix H and the load vector C, previously coe�cient-by-coe�cient and now by
sets of 3× 3 matrices for H and 3× 1 vectors for C, are at the origin of the CPU-time
reduction.

As expected, the ABA is less time-consuming than the CRBA when both of them are
based on single-dof joints. Indeed, the Composite-Body-Algorithm needs the inversion
of H whereas the Articulated-Body Algorithm does not. It is interesting to notice
that the CRBA with a cable joint formulation is less cumbersome than the ABA with
single-dof joints.

The time gap between the multibody approaches and the lumped-mass theory orig-
inates from the mechanical interactions which are not taken into account by the latter
theory. Only one loop is achieved over the nodes of the cable per Runge-Kutta step
whereas several loops are made through the multibody system in both the CRBA and
the ABA.

II.5 Winch modeling

In a lowering or lifting operation, the hoisting cable is unwound or wound using
a winch. A winch is also used in case of a towed body [91] or a tethered underwater
vehicle system [92]. Therefore, a winch model has to be added to our numerical tool to
perform marine operation simulations.

II.5.1 State of the art

Although lot of works exist about the simulation of the dynamics of �xed length
cables, only a few deal with variable length cables [92]. Banerjee and Do [93] devel-
oped an underwater cable dynamics model using a cable controller to achieve the cable
deployment or retrieval at the ship. The cable deployment control law was:

L̇ = KV (LC − L) (II.58)

with:

� L is the cable scope;

� LC denotes the controlled cable length;
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� KV represents the gain.

Wang et al. [94] used a �nite-element method to model a time-varying length cable.
The cable length L(t) followed the formula:

L = L0 + vdt (II.59)

where L0 is the initial cable length, vd the deployment cable velocity and t the time.

Kamman and Huston [91] presented a model of variable length towed cable based
on a lumped mass theory. They assumed the number of cable elements to be held
constant during the simulation. Thus, when a cable was paid out, respectively reel-in,
cable elements were expanded, respectively shortened, one after the other. The thrust
force created by the mass �ux between the vessel and the cable through the winch was
not accounted for. The mass �ux is created by the increase or the decrease of the cable
mass due its variable length. Prabhakar and Buckham [92] developed a model in which
the topmost cable element length became a time varying quantity while the rest of
the cables remained constituted of constant length elements. The force induced by the
winch was added to the motion equation of the topmost element.

When the element connected to the winch is too long, it is split into a �xed length
element and a new variable length element. On the contrary, when the topmost element
is too small, it is merged with the subsequent downstream element. This model was
used by Zand et al. [95] too.

In the software OrcaFlex, the unstretched length of the cable element linked to the
winch is controlled and time-dependent [38].

A winch model based on the work of Zand et al. [95] and the theory of OrcaFlex has
been developed for both the low-order lumped mass theory and the multibody theory.

II.5.2 Thrust force and cable loads

The deployment or the retrieval of a cable by a winch involves a variation of the
mass of the cable hanging from the winch. The force due to the momentum �ux at the
winch boundary, which matches the position of the node 0 is [95]:

FWinch
0 = vd

(
r1 − r0

‖r1 − r0‖

)
dM0

dt
(II.60)

where vd is the deployment velocity of the winch, positive for a payout, negative for a
retrieval.

The unstretched length of the �rst cable element is given by:

Lu(t) = Lu(0) +

ˆ t

0
vd(τ) dτ (II.61)

Thus, the mass �ux follows the expression:

dM0

dt
= Aρcvd (II.62)

Equation II.23 for the �rst node becomes:

(M0 + A0)r̈0 = W0 + B0 + T0 + C0 + D0 + FWinch
0 (II.63)
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The axial tension and damping due to the top cable element are updated with the
time-varying unstretched length.

TElement
1 =

−
EA

Lu(t)
(‖r1 − r0‖ − Lu(t))

(
r1 − r0

‖r1 − r0‖

)
if ‖r1 − r0‖ > Lu(t)

03×1 otherwise
(II.64)

CElement
1 = − CA

Lu(t)

[
∂

∂t
(‖r1 − r0‖ − Lu(t))

](
r1 − r0

‖r1 − r0‖

)
(II.65)

with:

∂

∂t
(‖r1 − r0‖ − Lu(t)) =

1

‖r1 − r0‖

3∑
j=1

(rj1 − r
j
0)(ṙj1 − ṙ

j
0)− vd(t) (II.66)

Regarding the multibody theory, the cable loads are expressed by:

Γ3 =


− EA

Lu(t)
(q3 + Lu(t))− CA

Lu(t)
(q̇3 + vd(t)) + vd(t)

dM0

dt
if |q3| > Lu(t)

− CA

Lu(t)
(q̇3 + vd(t)) + vd(t)

dM0

dt
otherwise

(II.67)

II.5.3 Cable deployment

During a pay-out, the unstretched length of the cable element connecting to the
winch is increased using (II.61). Once the cable length is too long, the �rst element
is divided into two elements. The one linked to the winch is a variable-length element
while the other ones are constant-length elements of unstretched length Lu(0). The
splitting criterion is:

Lu(t) = αLu(0) (II.68)

with α > 1.

If α is too small, the new variable-length element is too small and numerical errors
may appear. If α is too big, large elements arise which could also lead to numerical
errors. A good compromise is to create a new element whose its length is the half of
the initial cable element size, so:

α =
3

2
(II.69)

II.5.3.1 Low-order lumped mass model

Figure II.12 shows the scheme of the cable splitting using the lumped mass approach.
It consists of adding a new node between the two top nodes.
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Figure II.12 � Cable splitting with the low-order lumped mass theory

The position and the velocity of the new node are:

rNew = r0 +
1

3
(r1 − r0) (II.70)

ṙNew = ṙ0 +
1

3
(ṙ1 − ṙ0) (II.71)

The mass distribution is updated, which gives for the new node:

MNew =
1

2
Aρc(Lu(t) + Lu) (II.72)

where Lu(t) represents the length of the new �rst cable element.

II.5.3.2 Multibody model

Figure II.13 displays the scheme of the cable splitting using the multibody approach.
A cable element, made of three bodies and joints as explained in subsection II.3.1, is
added. It requires to initialize the prismatic joint of the new cable element and to
update the relative coordinates of the succeeding cable element.

70



II.5. Winch modeling

Figure II.13 � Cable slitting with the multibody theory

The new articular positions and velocities are:

q̃3 =
1

3
q3 (II.73)

˙̃q3 =
1

3
q̇3 (II.74)

q4 = −π
2

(II.75)

q̇4 = 0 (II.76)

q5 = −π
2

(II.77)

q̇5 = 0 (II.78)

q6 = q3 − q̃3 (II.79)

q̇6 = q̇3 − ˙̃q3 (II.80)

The mass distribution distribution is updated as for the low-order lumped mass
model.

II.5.3.3 Comparison

These two models, for the lumped mass theory and the multibody theory, are com-
pared using the test case presented in subsection II.3.2. The lowering velocity is �xed
to 0.5 m/s between 8 s and 44 s. No ramp is used on the lowering velocity.

Figure II.14 shows the length of the topmost cable element or the articular variable
of the �rst prismatic joint. The discontinuity of the length indicates the addition of
a new cable element while the straight lines indicate the increase of the unstretched

length. The cut-o� length for adding a new element, equal to
3

2
Lu is time-varying due

to the elasticity of the cable, q3 denoting the real length of the cable element and not its
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unstretched length. The two curves match perfectly, demonstrating that both Cartesian
and multibody approaches allow to unwind a cable. Figure II.15 presents the angle of
the top cable element with respect to the vertical axis. Contrary to the previous graph,
this curve is continuous despite the creation of the new cable elements. As a reminder,
at the starting time, the cable has an angle of −78.69◦ with the vertical. Then the

cable reaches a vertical position, leading to a �nal angle of q1 =
−π
2

rad. Figure II.16

features the cable pro�le at di�erent time steps.

Figure II.14 � Comparison of the length of the topmost cable element from numerical results
of the CRBA and the lumped mass theory (LM )

Figure II.15 � Angle between the topmost cable element and the vertical axis from numerical
results of the CRBA
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(a) t = 0 s (b) t = 13 s

(c) t = 25 s (d) t = 50 s

Figure II.16 � Cable pro�le during a lowering operation at di�erent time steps

II.5.4 Cable retrieval

During a pay-in, the unstretched length of the cable element connected to the winch
is decreased using (II.61). Once the cable length is too small, the two �rst elements are
merged. The resulting element is a variable-length element. The merging criterion is:

Lu(t) = βLu(0) (II.81)

with β < 1.

For the same reasons as given in subsection II.5.3, a good compromise is to merge
the elements when:

β =
1

2
(II.82)

II.5.4.1 Low-order lumped mass model

Figure II.17 displays the scheme of the cable merging using the lumped mass ap-
proach. The second node is simply deleted. Then, the �rst node is directly connected
to the third one.
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Figure II.17 � Cable merging with the low-order lumped mass theory

The mass distribution is updated, which gives for the node 1:

M1 =
1

2
Aρc(Lu(t) + Lu) (II.83)

where Lu(t) represents the length of the new �rst cable element.

II.5.4.2 Multibody model

Figure II.18 shows the scheme of the cable merging using the multibody approach. A
cable node is deleted, which involves the deletion of two cable elements and the creation
of a new one. The impact of this transformation also concerns the initial third cable
element.
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Figure II.18 � Cable merging with the multibody theory

The initialization of the articular positions and velocities requires the use of the
Cartesian positions and velocities. The Cartesian positions are computed from the
homogeneous transformation matrices jhi, de�ned for the body j with i = aj , by:

jhi =

(
jRi

iPj

01×3 1

)
(II.84)

And for the base, by:
0he =

(
0Re

0Re η0

01×3 1

)
(II.85)

The recursive equation for the homogeneous matrices is:

jhe = jhi
ihe (II.86)

Finally, the Cartesian position of the body j, ePj , is evaluated by:

ehj = jh−1
e =

(
eRj

ePj

01×3 1

)
(II.87)

Regarding the Cartesian velocities, they are computed from:

eVj = eRj
jVj (II.88)
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Finally, the articular positions and velocities are [64]:

q̃1 = −π
2

+ arctan

(
r1

2 − r1
0

r3
2 − r3

0

)
(II.89)

˙̃q1 =
(ṙ1

2 − ṙ1
0)(r3

2 − r3
0)− (ṙ3

2 − ṙ3
0)(r1

2 − r1
0)

(r1
2 − r1

0)2 + (r3
2 − r3

0)2
(II.90)

q̃2 =


−π

2
+ arctan

−(r2
2 − r2

0)cos
(
q̃1 +

π

2

)
(r3

2 − r3
0)

 if cos
(
q̃1 +

π

2

)
> sin

(
q̃1 +

π

2

)
;

−π
2

+ arctan

−(r2
2 − r2

0)sin
(
q̃1 +

π

2

)
(r1

2 − r1
0)

 otherwise.

(II.91)

˙̃q2 =
−
[(

(ṙ2
2 − ṙ2

0)cos
(
q̃1 +

π

2

)
− ˙̃q1sin

(
q̃1 +

π

2

)
(r2

2 − r2
0)
)

(r3
2 − r3

0)− (ṙ3
2 − ṙ3

0)(r2
2 − r2

0)cos
(
q̃1 +

π

2

)]
(r3

2 − r3
0)2

1 +

−(r2
2 − r2

0)cos
(
q̃1 +

π

2

)
(r3

2 − r3
0)

2


(II.92)

q̃3 = −‖r2 − r0‖ (II.93)

˙̃q3 =
1

‖r2 − r0‖

3∑
j=1

(rj2 − r
j
0)(ṙj2 − ṙ

j
0) (II.94)

q̃4 = −π
2

+ arctan

(
r1

3 − r1
2

r3
3 − r3

2

)
− q̃1 (II.95)

˙̃q4 =
(ṙ1

3 − ṙ1
2)(r3

3 − r3
2)− (ṙ3

3 − ṙ3
2)(r1

3 − r1
2)

(r1
3 − r1

2)2 + (r3
3 − r3

2)2
− ˙̃q1 (II.96)

q̃5 =


−π + arctan

−(r2
3 − r2

2)cos
(
q̃4 +

π

2

)
(r3

3 − r3
2)

− q̃2 if cos
(
q̃4 +

π

2

)
> sin

(
q̃4 +

π

2

)
;

−π + arctan

−(r2
3 − r2

2)sin
(
q̃4 +

π

2

)
(r1

3 − r1
2)

− q̃2 otherwise.

(II.97)

˙̃q5 =
−
[(

(ṙ2
3 − ṙ2

2)cos
(
q̃4 +

π

2

)
− ˙̃q4sin

(
q̃4 +

π

2

)
(r2

3 − r2
2)
)

(r3
3 − r3

2)− (ṙ3
3 − ṙ3

2)(r2
3 − r2

2)cos
(
q̃4 +

π

2

)]
(r3

3 − r3
2)2

1 +

−(r2
3 − r2

2)cos
(
q̃4 +

π

2

)
(r3

3 − r3
2)

2


(II.98)

q̃6 = q9 (II.99)

˙̃q6 = q̇9 (II.100)

where rji is the j
th component of the position vector ri of the node i.

The mass distribution distribution is updated as for the low-order lumped mass
model.
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II.5.4.3 Comparison

These two models of reel-in are compared from a modi�ed version of the test case
presented in subsection II.3.2. The initial angle of −78.69◦ is kept but the cable is three
times longer and split into six elements instead of three. The node 0 stays at r0 = 03×1

but the other extremity is now at r6 = (−6, 0,−30)T . The lifting velocity is �xed to
0.5 m/s between 8 s and 44 s. No ramp is used on the lifting velocity.

Figure II.19 shows the length of the topmost cable element or the articular variable
of the �rst prismatic joint. The discontinuity of the length outlines the deletion of
a new cable element while the straight lines indicate the decrease of the unstretched
length. The two curves match perfectly, demonstrating both Cartesian and multibody
approaches allow to model the winding of a cable. Figure II.20 presents the angle of
the top cable element with respect to the vertical axis. Contrary to the reel-in test
case, some discontinuities were expected. Indeed, the suppression of a node involves an
angular error close to the winch as it can be seen in Figure II.18. In the present test
case, the cable remains almost vertical so this error is very small. Figure II.21 displays
the cable pro�le at di�erent time steps.

Figure II.19 � Comparison of the length of the topmost cable element from numerical results
of the CRBA and the lumped mass theory (LM )

Figure II.20 � Angle between the topmost cable element and the vertical axis from numerical
results of the CRBA
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(a) t = 0 s (b) t = 17 s

(c) t = 30 s (d) t = 50 s

Figure II.21 � Cable pro�le during a lifting operation at di�erent time steps

II.6 Conclusion

This chapter presented a review of the di�erent theories to model cables. Two
models were detailed and compared: the low-order lumped mass theory implementing
in CableDyn and a multibody approach using the CRBA of InWave. These two theories
model the stretching of the cable but neither the bending nor the torsion. The mass
is discretized at the nodes of the cable. First, the low-order lumped mass theory has
been validated with two test cases using numerical results and experimental data of the
literature. A good agreement is observed. Then, a comparison was done between the
two theories of cable dynamics and showed a perfect agreement. A cable joint has also
been developed in the CRBA to speed-up the numerical simulations.

A state of the art of the winch models was exposed in this chapter. The cable element
connecting to the winch becomes variable-unstretched length. The spatial discretization
of the cable changes to ensure the elements are not too long or too short. This model
may be used with both the low-order lumped mass theory and the multibody theory.
Its implementation in the low-order lumped mass theory and the multibody theory gave
the same results.

The next chapter presents the hydrodynamic theory used in this PhD work.
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III.1. State of the art

The simulation of marine operations may involve the presence of two bodies sub-
ject to hydrodynamic loads which have a large relative amplitude motion. Then, the
classical frequency-domain linear potential �ow approach is not applicable anymore. Af-
ter presenting a review of the hydrodynamic theories, this chapter details the potential
�ow theory based on the weak-scatterer hypothesis, used in the numerical tool WS_CN.
The developments done during this PhD are exposed: the extension to multibody sim-
ulation, the free surface remeshing and the parallelization of the computation of the
in�uence coe�cients.

III.1 State of the art

III.1.1 Potential �ow theory

Three hypotheses are done:

� The �ow is irrotational (H1 );

� The �ow is incompressible (H2 );

� The �uid is inviscid (H3 ).

The �ows based on these assumptions are named the potential �ows. Viscosity
and turbulence are neglected. This approximation is valid in case of wave propagation
for instance. When a body is present, viscous e�ects may be important, depending
on the body shape. Viscous loads are less important in case of slender body shapes.
Nevertheless, the potential �ow theory is widely used, shows some good agreements
in case of seakeeping, manoeuvring and wave propagation between the theory and the
experiments and presents a good compromise between the accuracy and the CPU-time.
This theory is applied here in hydrodynamics but it may be also used in aerodynamics
[96].

III.1.1.1 Laplace's equation

(H1 ) involves:
∇× v = 03×1 (III.1)

where v is the �uid velocity.

Equation III.1 leads to:
v = ∇φ (III.2)

where φ is the velocity potential. Thus, only one scalar function is necessary to compute
the three dimensional �uid velocity, reducing the number of unknowns.

The incompressibility of the �ow (H2 ) allows to write:

∇ · v = 0 (III.3)

From (III.3), the Laplace's equation in the �uid domain D arises:

∆φ = 0 (III.4)

Consequently, the velocity potential is a harmonic function.
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III.1.1.2 Bernoulli's equation

The Bernoulli's equation is derived from the momentum conservation using the three
hypotheses of the potential �ow theory. Its expression is:

p = −ρ
(
∂φ

∂t
+

1

2
∇φ · ∇φ+ gz

)
(III.5)

where p denotes the total pressure, ρ the �uid density, g the gravity constant and z the

vertical position.
∂∗
∂t

represents the Eulerian (or partial) derivative.

The last term of the right-hand side of (III.5) is the hydrostatic pressure:

pStatic = −ρgz (III.6)

III.1.1.3 Boundary conditions

Two types of boundaries have to be considered:

� Free surface;

� Solid surfaces (immersed or �oating bodies, surfaces of the numerical tank walls
and the sea bottom).

Free surface boundary conditions

The free surface is de�ned by the function η named the free surface elevation or
wave elevation. It is assumed that η is a single-valued function. In this condition, the
wave breaking cannot be modeled. The equation of the free surface is:

z = η(x, y, t) (III.7)

The kinematic free surface boundary condition re�ects that a particle on the free
surface always remains part of the free surface:

∂η

∂t
= −∇φ · ∇η +

∂φ

∂z
at z = η(x, y, t) (III.8)

The dynamic free surface boundary condition ensures the continuity of the pressure
at the interface. The atmospheric pressure being taken equal to 0, it yields from the
Bernoulli's equation:

∂φ

∂t
= −1

2
∇φ · ∇φ− gη at z = η(x, y, t) (III.9)

Solid surface boundary condition

The inviscidness of the �uid (H3 ) involves a slip condition on solid boundaries of
normal n:

v · n =
∂φ

∂n
= vSolid · n (III.10)

This body condition ensures the impermeability of the surface. The equality of the
tangential components would lead to the creation of a boundary layer which is not
consistent with the hypothesis of inviscidness.
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III.1.1.4 Hydrodynamic loads

By integration of the total pressure over the instantaneous wetted surface of the body
j, SBj (t), of normal vector n, pointing outwards the �uid domain, the hydrodynamic
loads at the center of gravity Gj arise:

eFHydro
j =


¨
SBj

(t)
pn dS

¨
SBj

(t)
p(eGjM)× n dS

 (III.11)

The hydrostatic loads are obtained by the integration of the hydrostatic pressure
(III.6):

eFStatic
j =


¨
SBj

(t)
pStaticn dS

¨
SBj

(t)
pStatic(eGjM)× n dS

 (III.12)

III.1.2 Numerical simulation of potential �ows

Even if the potential �ow approximation is the result of many assumptions, the
problem stays complex and several nonlinearities are present:

� The free surface nonlinearities: the free surface boundary equations needs to be
ful�lled on an unknown surface z = η(x, y, t);

� The slip condition is applied on the instantaneous position of the bodies;

� The hydrodynamic loads are nonlinear and coupled with the unknown motion of
the bodies.

Thus, several classes of potential �ow models exist and their di�erences lie in the
treatment of these nonlinearities:

� Fully nonlinear models;

� Weakly nonlinear models based on the weak-scatterer hypothesis;

� Body-exact models;

� Linear models.

III.1.2.1 Fully nonlinear models

When the potential �ow theory presented above is directly applied, it leads to fully
nonlinear models. The bodies and the free surface are meshed at their real position and
the pressure is integrated over the instantaneous wetted surface as shown in Figure III.1.
It is the most accurate method based on the potential �ow approximation. It is widely
used to simulate wave propagation [97].

But, the �uid-structure simulation makes the di�culties of the method appear.
Indeed, the boundary conditions on the bodies and the free surface are expressed at
the exact positions. Thus, the regridding of the mesh is a necessity: �rstly, to update
the position of the boundaries, and secondly, to keep a good quality mesh which is
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deformed by the waves and the bodies. In case of surface-piercing bodies, sawtooth
instabilities can appear and smoothing techniques are required. The computation of
the intersection curves between the free surface and the bodies for any translational
and rotational motion is a di�cult task. To avoid the re�ection of the perturbed waves
at the numerical boundaries, arti�cial damping coe�cients are used on the free surface.
Wave breaking may occur in such a description of the free surface and causes the
stop of the simulation. Finally, the space discretization of the mesh must be small
enough to simulate all the perturbed waves generated by the presence of the bodies.
All these characteristics make the fully nonlinear models cumbersome and numerically
challenging, despite their accuracy.

Nevertheless, fully nonlinear models are subject of an important number of publica-
tions [98, 99]. To reduce the complexity of the fully nonlinear approach, other models
have been developed.

Figure III.1 � Fully nonlinear model of a �oating body (yellow) in waves at their exact ele-
vation (solid blue line) and its wetted surface (hatched area)

III.1.2.2 Weakly nonlinear models based on the weak-scatterer hypothesis

In most of the other models, both the velocity potential and the wave elevation are
decomposed into an incident component and a perturbed component. This latter may
also be decomposed into several elementary quantities as it will be presented further.
For the moment: {

φ = φI + φP

η = ηI + ηP
(III.13)

with:

� (∗)I the incident component;

� (∗)P the perturbed component.

The incident component is assumed to be known while the perturbed part is unknown.
This decomposition allows to apply everywhere in the domain any kind of incident
waves (regular or irregular). The incident wave does not have to be propagated, hence
no wave maker model is necessary.

The weak-scatterer hypothesis assumes the perturbed quantities have to be small
compared to the incident quantity: {

φP � φI

ηP � ηI
(III.14)
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Doing so, the free surface boundary equations are linearized around the incident free
surface elevation z = ηI(x, y, t). The free surface nonlinearities are simpli�ed. Contrary
to the fully nonlinear approach, this surface is known. Thus, it is not necessary to
mesh the perturbed waves, only the incident waves needs to be meshed. The pressure is
integrated over the instantaneous wetted body surface delimited by the incident wave
elevation as presented in Figure III.2. The weak-scatterer hypothesis involves the possi-
bility to use a larger spatial discretization and therefore reduces the CPU-time. But the
ful�lment of this hypothesis is required, which could limit the application of this theory.
No assumption has been done about the body nonlinearities. As it will be presented in
subsection III.1.3, this method is particularly adapted to slender surface-piercing bodies
with or without forward speed and immersed bodies.

This model is the hydrodynamic theory used in this PhD work. More details and
explanations about this approach are given in the rest of this chapter.

Figure III.2 � Weakly nonlinear model based on the weak-scatterer hypothesis of a �oating
body (yellow) in waves at their incident elevation (solid blue line) and its wetted
surface (hatched area)

III.1.2.3 Body-exact models

A further simpli�cation may be applied to the free surface conditions. These con-
ditions can be linearized around the mean free surface elevation z = 0. Thus, the free
surface mesh remains planar (Figure III.3), which enables a faster mesh convergence
and the reduction of computing time. In that case, the pressure is integrated over the
wetted body surface delimited by the mean wave elevation. This method is only con-
sistent if small steepness waves are present. The wave steepness, ε, for a regular wave
of amplitude A and wave number k, is de�ned by:

ε = kA (III.15)

This method is named the body-exact approximation. An example of such an approach
is given in [100].
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Figure III.3 � Body exact model of a �oating body (yellow) in waves at their mean elevation
(solid blue line) and its wetted surface (hatched area)

III.1.2.4 Linear models

In addition to the simpli�cation of the free surface conditions, the body nonlinearities
may be also simpli�ed. To do so, bodies are assumed to have a small amplitude motion.
Body meshes are �xed at the equilibrium position of the bodies (Figure III.4). It
results a linear model. The perturbed components are expressed using a Stokes' series
expansion based on the perturbation technique (here up to an order of magnitude of
two): {

φP = φP (0) + εφP (1) + ε2φP (2) +O(ε3)

ηP = ηP (0) + εηP (1) + ε2ηP (2) +O(ε3)
(III.16)

with (∗)P (j) the jth order perturbed component.

This decomposition is introduced in each equation of the potential �ow theory.
Terms of the same order of magnitude are collected, de�ning several problems of dif-
ferent order. Each one depends on the problems of smaller order of magnitude. The
zeroth-order matches the hydrostatics. The �rst-order problem corresponds to the fully
linear problem while the second-order problem bring quadratic terms. In these models,
the body boundary conditions are linearized on the mean position of the bodies and the
pressure is integrated over this �xed mean wetted body surface. Hence, the mesh of the
bodies is �xed. The linearization of the free surface boundary conditions is also applied,
leading to a totally still mesh. The CPU-time is much lower than for the aforementioned
models. An example of such an approach for the �rst-order problem is also given in [100].

Figure III.4 � Linear model of a �oating body (yellow) in waves at their mean elevation (solid
blue line) and its wetted surface (hatched area)

Another decomposition is classically applied. Based on the superposition principle,
the velocity potential is written:

φP = φD + φR (III.17)
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φD represents the velocity potential of di�raction, when the body is �xed and the
incoming wave is present. φR denotes the total radiation velocity potential, when the
body is moving with a forced motion without incoming wave. This latter velocity
potential is decomposed into elementary quantities:

φR =
6∑
j=1

φRj (III.18)

where φRj is the velocity of radiation for the jth degree of freedom. The elementary
problems for these velocity potentials are solved and the global solution is obtained by
superposition.

In order to add some nonlinearities, some works integrate the incident and hydro-
static pressure over the instantaneous wetted body surface delimited by the incident free
surface elevation while the dynamic pressure is computed over the mean body surface.
This is the so-called nonlinear Froude-Krylov approximation. The Froude-Krylov loads
are de�ned by:

eFFK
j =


¨
SBj

(t)
pIn dS

¨
SBj

(t)
pI(eGjM)× n dS

 (III.19)

where pI represents the pressure due to the incident velocity potential φI :

pI = −ρ
(
∂φI

∂t
+

1

2
∇φI · ∇φI

)
(III.20)

Although this method can show good results, it su�ers from an inconsistency as the
hydrodynamic loads are not assessed over the same surfaces. An example of application
of this approach is given by Gilloteaux [101].

The linear models can also be solved in frequency domain. In this case, the body
motion is assumed steady and all time-dependent quantities f(x, y, z, t) are written as
follows:

f(x, y, z, t) = Re
(
f(x, y, z)e−iωt

)
(III.21)

where i is the imaginary unit, ω the wave frequency and f the complex amplitude of f .
The radiation problems are considered for an harmonic motion and for each of

the wave frequencies and directions of interest. Once these hydrodynamic problems
are solved, a hydrodynamic database is created with the added-mass and damping
coe�cients and the exciting forces [47]. These frequency-dependent quantities serve
to compute the impulse responses and then to achieve time-domain simulations using
Cummin's equation [102] (cf. Appendix B).

Based on the Stokes' series expansion (III.16), a second-order problem may also be
de�ned and leads to a new set of frequency-dependent coe�cients, named the quadratic
transfer functions or QTF [103]. Even if some extra physical phenomenon can be taken
into account by this way (mean drift, resonance due to the low-frequency and high-
frequency second-order wave loads), the assumptions of the theory always have to be
ful�lled: small steepness waves and small amplitude body motion. The �rst-order and
second-order frequency-domain models are among the most used hydrodynamic theories
both in the industry and in the laboratories, for ship resistance, manoeuvrability, design
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optimization as well as seakeeping of marine renewable energy devices. Examples of such
solvers are: Nemoh1 [47], WAMIT 2, Diodore3, HydroSTAR4, ANSYS Aqwa5, etc.

The small amplitude body motion condition may often be very restrictive especially
in multibody simulations. This is why some researchers working with a frequency-
domain model update their hydrodynamic database during their simulation when the
relative motion between the bodies becomes too important. Nevertheless, such an ap-
proach is inconsistent due to the retardation functions, taking into account the �ow
memory, which are not computed at the same position anymore [104].

III.1.2.5 Selected model

Table III.1 summarizes the main di�erences between the aforementioned potential
�ow theories.

As highlighted in subsection 4.2, so far, only three approaches have been used to
compute the hydrodynamic loads in marine operation simulations: a frequency-domain
model [7, 16, 25], a linear time-domain model [26] and a fully nonlinear potential �ow
model [105]. The hydrodynamic theory used in this PhD is a weakly nonlinear model
based on the weak-scatterer hypothesis. This approach is consistent with the simula-
tion of marine operations since they often involve several bodies with, possibly, a large
relative motion. Therefore, the full linearization of the body condition made in a lin-
ear potential-�ow based solver is likely too restrictive for this application. Moreover, a
frequency-domain model assumes a steady state motion. Using a weakly nonlinear the-
ory, no hypothesis is done about the body motion amplitude, the unsteadiness of the �ow
and the wave steepness. Compared to a fully nonlinear approach, it is expected to lead to
more stable simulations. But some nonlinear e�ects (wave drift, hydrodynamic impact)
may be underestimated. No comparison has been made between the weakly nonlinear
model based on the weak-scatterer hypothesis and a classical frequency-domain model
in the case of a marine operation. Thus, it is of interest to compare them and quantify
their di�erences.

1https://lheea.ec-nantes.fr/logiciels-et-brevets/nemoh-presentation-192863.kjsp
2https://www.wamit.com
3http://www.principia-group.com/blog/product/diodore
4https://www.veristar.com/portal/veristarinfo/detail/software/

SeakeepingandMooringAnalysis/HYDROSTAR/Hydros
5https://www.ansys.com/fr-fr/products/structures/ansys-aqwa
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III.1.3 State of the art of the potential �ow theory based on the

weak-scatterer hypothesis

The weak-scatterer hypothesis was introduced by Pawlowski and Bass [106] in 1991
to perform time-domain computations of large ship motions in heavy seas. They de-
scribed their assumption by the words:

�The disturbance induced by the moving ship in the wave �ow is con-
sidered to be of smaller magnitude than the wave �ow quantities which are
proportional to the wave height, but at least of the same magnitude as the
wave �ow quantities proportional to the square of the wave height. This
assumption, explained here in simple terms, is called the weak scatterer
hypothesis.�

Thus, the scattered wave components are assumed much smaller than the incident wave
components. The scope of application of this hypothesis is [106]:

�In the theoretical model described [. . . ], the oncoming wave which in-
teracts with the ship, is assumed to be high and steep, so that the quantities
proportional to the square of its height cannot be neglected. The motions of
the ship, induced by the wave, are also considered to be large, of a magnitude
proportional to the wave height.�

This theory, according to Pawlowski and Bass [106], should be applied in case of:

� Large body motions;

� Steep waves.

If the weak-scatterer hypothesis is not ful�lled [107]:

�[. . . ] this theory still gives a non-linear time domain formulation of the
scattering problem, albeit not consistent in its non-linear part. In other
words, the applicability of the weak scatterer hypothesis is necessary to
construct a consistent non-linear scattering theory in which the linear free
surface condition is used.�

This method was applied by Pawlowski in [106, 107, 108]. Comparisons were made
for a Series 60 and a trawler between numerical results and experimental data in small
amplitude and steep regular waves. A good agreement was observed which con�rmed
the validity of the hypothesis. Only few research studies have been published so far.

Lin et al. [109] developed a time-domain solver based on the weak-scatterer hypothe-
sis, called LAMP-4. This numerical tool is part of the program LAMP (Large Amplitude
Motions Program) for the computation of the motions and loads of a ship operating in
extreme sea conditions. It exists four versions of the solver LAMP [110]:

� LAMP-1 follows a linear approach;

� LAMP-2 is based on a nonlinear Froude-Krylov model;

� LAMP-3 is similar to LAMP-2 but allows large lateral displacements of the ship;

� LAMP-4 applies the weak-scatterer method.
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Kring et al. [111] presented another multi-level potential �ow based numerical tools:
SWAN, short of Ship Wave ANanlysis, developed at the Massachusetts Institute of
Technology. It includes:

� SWAN-1 : a linear frequency-domain code;

� SWAN-2 : a linear time-domain code with linear or nonlinear Froude-Krylov loads;

� SWAN-4 : a time-domain code based on the weak-scatterer hypothesis.

SWAN-4 was used with a Series 60 and a Snowdrift moving in head seas and com-
pared to SWAN-2. Both the linear theory and the weak-scatterer approach were in good
agreement with the experimental data. The weak-scatterer simulations only brought a
small correction [111]. The extension of SWAN to the weak-scatterer hypothesis was
the PhD work of Huang [112]. In his thesis, other comparisons were made between
the linear and weak-scatterer theories with a containership in head seas. A signi�-
cant improvement was noticed using SWAN-4 compared to SWAN-2 especially at the
resonance. Moreover, for small wave slopes, the weak-scatterer method converged to
the linear theory results. But, the steeper the incoming waves were, the larger the
di�erences between the weak-scatterer method and the linear theory were.

SWAN-1, SWAN-2 and SWAN-4 were compared by Grigoropoulos et al. [113] to
experimental results for several kinds of ships: a Series 60, a reefer and a ROPAX. Both
SWAN-1 and SWAN-2 gave robust numerical results for every test cases, the use of
nonlinear Froude-Krylov loads added accuracy to the predictions. But, SWAN-4 gave
some unreasonable results which could be very di�erent from the experiments. No ex-
planations were given of these surprising results.

A third numerical tool, named WISH (Wave-Induced loads and Ship motion), of
the Seoul National University, uses the weak-scatterer hypothesis. As for LAMP and
SWAN, WISH exists with several hydrodynamic theories [114]:

� WISH-1 : a linear time-domain code;

� WISH-2 : a linear time-domain code with nonlinear Froude-Krylov loads;

� WISH-3 : a time-domain code based on the weak-scatterer hypothesis.

Comparisons between SWAN-4, WISH-3 and experimental data were achieved in
[115] for a Series 60 and a containership in head seas and showed a good agreement
albeit the formulations were slightly di�erent. Other comparisons to experimental data
and the three versions of WISH in case of a containership in head seas showed an
overall good agreement of every method. Best agreements were obtained using the
weak-scatterer formulation, especially in rough seas. WISH has been coupled to a
�exible-body mechanical solver, giving WISH-FLEX.

The weak-scatterer theory has only been applied to a non-ship like body by Bretl
[116]. His PhD work focused on the study of a wave energy converter made of a �oating
rigid hemisphere coupled with a planar pendulum.

To sum up, it stems from this state of the art that the weak-scatterer approach has
been mainly applied to the computation of the motions and the hydrodynamic loads of
a moving slender ship in steep head regular waves. Large deformations of the mesh, for
instance due to a lateral motion, have not been encountered. Irregular trains of waves
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have not been tested either. Since 2012, a potential �ow based solver following the
weak-scatterer hypothesis has been under development at LHEEA laboratory of Ecole
Centrale de Nantes. It is named WS_CN.

Letournel [44] developed a �rst version of WS_CN dealing with a single submerged
body with translational motions. Several validation cases were presented, all of them
consider a submerged sphere. First, the weak-scatterer theory was compared to the
linear approach in the case of the di�raction of regular waves by a �xed sphere. Small
steepness regular waves involved the matching of the hydrodynamic loads from the two
theories for every frequency, whereas high steepness regular waves caused important
di�erences. Then, radiation cases due to a heave harmonic motion of the sphere were
treated. The weak-scatterer approach was compared to several other theories: linear,
body-exact and fully nonlinear. A good agreement between all theories was observed
for the harmonic coe�cients in case of a small amplitude motion. Afterwards, three
decay tests were displayed with di�erent initial positions. The motion of the sphere
from the linear and weak-scatterer approaches matched in every scenario. These re-
sults constituted the �rst validation of the weak-scatterer approach compared to other
�uid potential theory for a non-ship like body. An application was performed by Le-
tournel with CETO-type wave energy converter with a spring-damper power-take-o�.
Numerical comparisons were achieved using NEMOH and WS_CN. Once again, the
two models showed a good agreement for small amplitude motions and small steep-
ness waves, but some di�erences appeared otherwise. The mean absorbed power by the
WEC was modi�ed in this case. Another submergedWEC has been simulated using the
weak-scatterer approach: an oscillating wave surge converter or wave roller-type WEC
[117]. The same conclusions were obtained as with the CETO-type WEC. Letournel
also showed the weak-scatterer hypothesis could be not veri�ed punctually when the
heaving sphere got close to the free surface.

Chauvigné [45] extendedWS_CN to a single surface-piercing body with an arbitrary
motion. An advance front method was used to generate the total mesh or regenerate
the body mesh. Two mesh morphing methods were also adopted to avoid the remesh-
ing in case of small deformations: a linear spring analogy on the body surface and an
interpolation scheme based on a radial basis function on the free surface. Several vali-
dation cases were presented by Chauvigné. The di�raction of a regular wave by either a
bottom-�xed or truncated surface-piercing vertical cylinder was studied. Comparisons
were made with respect to linear and fully nonlinear theories and experimental data for
the maximum run-up around the cylinder. This case was highly nonlinear, such as a
linear approach was not accurate enough. In the two con�gurations (�xed-bottom or
truncated cylinder), the weak-scatterer model showed a good agreement with the fully
nonlinear theory and experimental data on the bow side of the cylinder but overesti-
mated the maximum run-up on the lee side, probably due to important free surface
nonlinearities. Then the radiation of a truncated cylinder in surge or pitch motion was
evaluated and compared to a nonlinear approach. In both cases, a very good agreement
between the two approaches was observed in the time series of the maximum run-up.
In details, the relative error on the �rst harmonic was very low but larger discrepancies
were observed for higher harmonics. A free motion validation test with a truncated
cylinder linked to its equilibrium position by a spring was presented. As with Letour-
nel [44], numerical results from WS_CN matched the linear theory in case of small
amplitude regular wave but di�erences appear with a higher amplitude wave. Finally,
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an application with the WaveStar wave energy converter was featured. Comparisons
were done with the o�shore numerical tool DeepLines and the experimental data. The
numerical results with the weak-scatterer method for a di�raction case were conclusive
and matched DeepLines and the experimental measures. But, the free motion of the
WaveStar device was not accurately simulated by the two numerical tools due to an
improper modeling of the power take o�. Nevertheless, the linear and weak-scatterer
results matched again. As explained by Chauvigné [45], the weak-scatterer hypothesis
was not always validated in this latter application. The disturbed wave elevation could
be roughly of the same order of magnitude as the incident component.

These two PhDs have brought the weak-scatterer theory in a new direction: the sim-
ulation of a single submerged or �oating wave energy converter. Intensive comparisons
with the linear and nonlinear potential �ow theories were achieved and demonstrated
the capacity of the method to perform seakeeping computations. As said by Huang
[112], non-slender body shapes may induce important wave perturbations and this phe-
nomenon was observed in [44, 45], leading to an unvalidated weak-scatterer hypothesis.
Regarding the computation time, Letournel et al. [117] found the weak-scatterer ap-
proach is one order of magnitude faster than a fully nonlinear approach and two orders
of magnitude greater than the real time (in sequential calculations). It appears from
these works that the weak-scatterer theory has been compared to a body-exact approach
only once. Yet, this latter method could be e�cient if the steepness of the waves is not
too large. In the case of still water, the two theories match.

Regarding the CPU-time reduction, several types of symmetries were implemented
by Letournel et al. [117] in WS_CN : vertical along the (xOz) plane and horizontal on
the �at sea bottom. Simulations in open domain are also possible when the lateral nu-
merical tank surfaces are far enough. Chauvigné [45] have allowed a partial calculation
of the in�uence coe�cients when sub-domains are motionless.

At the beginning of this PhD work, the simulations using WS_CN dealt with a
single submerged or �oating body in sequential computations. Surface-piercing body
simulations have been performed by Chauvigné [45] but only with a small amplitude
motion of the body and so with only small deformations of the free surface mesh. There-
fore, simulations with a large deformation of the free surface mesh were not possible, as
well as multibody simulations.

Note

In the literature, the term weakly nonlinear covers a variety of situations. For ex-
ample, in [114, 115] and [118], the so-called weakly nonlinear approach matched the
nonlinear Froude-Krylov approach. Greco and Lugni [119] de�ned their potential �ow
based solver relied on the weak-scatterer hypothesis as weakly nonlinear but their hy-
drodynamic loads were estimated as linear in frequency domain while the Froude-Krylov
and hydrostatic loads were nonlinear. Ruggeri et al. [120] presented some weakly nonlin-
ear computations but their time-domain solver was fully linear using a high-order panel
method and computing second-order mean drift forces. Thus, the expression weakly
nonlinear includes di�erent types of approximations and is de�nitely unclear. In this
PhD thesis, following the denominations of Letournel et al. [117] and Chauvigné [45],
there is an equivalence between the terms weak-scatterer and weakly nonlinear.
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III.2 Theory of the potential �ow based on the

weak-scatterer hypothesis

III.2.1 Assumptions and governing equations

The hydrodynamic theory used in this PhD assumes:

� A tri-dimensional, unsteady and potential �ow;

� A �at sea bottom;

� A single-valued free surface elevation;

� The unawareness of the surface tension;

� The knowledge of the incoming wave �eld;

� The nullity of the pressure above the free surface;

� The rigidity of the �oating and immersed bodies;

� The validity of the weak-scatterer hypothesis.

The �uid domain, D, has a boundary, S, constituted of the free surface FS, the wetted
body surfaces SB and the numerical tank surfaces (including the sea bottom) T . The
reference frame is Σe, as de�ned in subsection I.2.2. The number of hydrodynamic
bodies is NWSC .

From the assumptions, the potential �ow theory is applied. The governing equations
have already been demonstrated:

� (III.4) in the �ow;

� (III.8) and (III.9) for the free surface;

� (III.10) for the solid boundaries (bodies and sea bottom);

� A permeability condition on the numerical tank walls:

∂φ

∂n
=
∂φI

∂n
⇒ ∂φP

∂n
= 0 (III.22)

� A radiation condition, the wave �eld far from the bodies matches the incident
wave �eld: φ −−−−→r→+∞

φI

η −−−−→
r→+∞

ηI
(III.23)
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The use of the decomposition (III.13) gives:

∆φP = −∆φI in the �uid domain D
∂ηP

∂t
= −∂η

I

∂t
−∇φI · ∇ηI −∇φI · ∇ηP −∇φP · ∇ηI −∇φP · ∇ηP

+
∂φI

∂z
+
∂φP

∂z
at z = η(x, y, t)

∂φP

∂t
= −∂φ

I

∂t
− 1

2
∇φI · ∇φI −∇φI · ∇φP − 1

2
∇φP · ∇φP − g(ηI + ηP ) at z = η(x, y, t)

∂φP

∂n
= −∂φ

I

∂n
+ vSolid · n on SB(t) and the seabed

∂φP

∂n
= 0 on the numerical tank walls

φP −−−−→
r→+∞

0

ηP −−−−→
r→+∞

0

(III.24)

The incoming wave �eld is computed following a potential �ow approximation, con-
sequently:

∆φI = 0 in the �uid domain D (III.25)

The weak-scatterer approximation enables the linearization of the free surface bound-
ary equations at the incident wave elevation. By application of the Taylor's theorem
for a function f at the point z = ηI(x, y, t), it yields:

f(x, y, z, t)

∣∣∣∣z=η(x,y,t) = f(x, y, z, t)

∣∣∣∣z=ηI(x,y,t)+(η−ηI)∂f(x, y, z, t)

∂z

∣∣∣∣z=ηI(x,y,t)+O(φP2)+O(ηP2)

(III.26)
Equation III.26 is used with the free surface boundary equations of (III.24) and,

after applying the weak-scatterer hypothesis (III.14):

∂ηP

∂t
= −∂η

I

∂t
−∇φI · ∇ηI −∇φI · ∇ηP −∇φP · ∇ηI +

∂φI

∂z
+
∂φP

∂z

+ηP
(
∂2φI

∂z2
−∇ηI · ∂∇φ

I

∂z

)
at z = ηI(x, y, t)

∂φP

∂t
= −∂φ

I

∂t
− 1

2
∇φI · ∇φI −∇φI · ∇φP − g(ηI + ηP )

−ηP
(
∂2φI

∂z∂t
+∇φI · ∂∇φ

I

∂z

)
at z = ηI(x, y, t)

(III.27)

III.2.2 Arbitrary Lagrangian-Eulerian description

The solving of the �uid governing equations involves the use of a computational
mesh. There are three possible descriptions of the motion in a continuum media:

� The Lagrangian description: the nodes of the mesh follow the material points, so
that the boundaries can be easily followed in case of small deformations. If large
deformations occur, the quality of the panels geometry is not guaranteed and the
mesh has to be regenerated. This approach is mainly used in structural mechanics
or in the Smooth Particle Hydrodynamics method [121] for instance.
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� The Eulerian description: the nodes of the mesh are �xed. This approach is easy
to implement, robust and large deformations of the mesh may be applied. The
mesh quality is preserved, but tracking the boundaries of the domain requires a
�ne mesh.

� The arbitrary Lagrangian-Eulerian (ALE ) description combines the better char-
acteristics of the two previous approaches. The boundary equations are solved
at the material nodes taking into account the arbitrary motion of the mesh and
ensuring its good quality. This approach is preferred in case of free surface �ows.

In order to track the physical quantities at the nodes of the mesh under an arbitrary
motion, the ALE description is preferred. Thus, the free surface boundary equations
need to be updated at the nodes of the mesh moving with an arbitrary motion.

Let Ωa(t) be an arbitrary control volume moving at the velocity va. Then the
derivative of a quantity f of Ωa(t) is:

δf

δt
=
∂f

∂t
+ (va · ∇)f (III.28)

where
δ∗
δt

represents the derivative with respect to an ALE description.

In our case, va is the velocity of the nodes of the mesh, denoted vmesh. The free
surface boundary equations become:

δηP

δt
= −∂η

I

∂t
−∇φI · ∇ηI − (∇φI − vmesh) · ∇ηP −∇φP · ∇ηI +

∂φI

∂z
+
∂φP

∂z

+ηP
(
∂2φI

∂z2
−∇ηI · ∂∇φ

I

∂z

)
at z = ηI(x, y, t)

δφP

δt
= −∂φ

I

∂t
− 1

2
∇φI · ∇φI − (∇φI − vmesh) · ∇φP − g(ηI + ηP )

−ηP
(
∂2φI

∂z∂t
+∇φI · ∂∇φ

I

∂z

)
at z = ηI(x, y, t)

(III.29)
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III.2.3 The boundary value problem

Eventually, the boundary value problem (BVP) to solve is:

∆φP = 0 in the �uid domain D
δηP

δt
= −∂η

I

∂t
−∇φI · ∇ηI − (∇φI − vmesh) · ∇ηP −∇φP · ∇ηI +

∂φI

∂z
+
∂φP

∂z

+ηP
(
∂2φI

∂z2
−∇ηI · ∂∇φ

I

∂z
)

)
at z = ηI(x, y, t)

δφP

δt
= −∂φ

I

∂t
− 1

2
∇φI · ∇φI − (∇φI − vmesh) · ∇φP − g(ηI + ηP )

−ηP
(
∂2φI

∂z∂t
+∇φI · ∂∇φ

I

∂z

)
at z = ηI(x, y, t)

∂φP

∂n
= −∂φ

I

∂n
+ vSolid · n on SB(t) and the seabed

∂φP

∂n
= 0 on the numerical tank walls

φP −−−−→
r→+∞

0

ηP −−−−→
r→+∞

0

(III.30)
Di�erent methods exist to solve this problem, for instance:

� The �nite-di�erence method;

� The �nite-element method;

� The boundary element method (BEM ).

Apart from their di�erent formulations, these methods mainly di�er on the mesh
requirement and the sparsity of the linear systems they involve. The �nite-di�erence
method and the �nite-element method require volume meshes whereas the boundary
element methods need surface meshes and so less unknowns and smaller linear systems.
But, these linear systems are dense in case of BEM and sparse otherwise. Sparse
matrices require less memory to store their coe�cients and e�cient algorithms exist to
solve large sparse linear systems. Nevertheless, the easier mesh management o�ered by
the BEM makes its method widely used. WS_CN is based on the boundary element
method.

III.2.4 The boundary element method

III.2.4.1 The boundary integral equation

Note

So far the normal unit vector n pointed outward the �uid, from now on, the normal
unit vector points inward the �uid.

The boundary element method is based on the Green's second identity:

Theorem 1. Let Ω(t) be a volume of R3, ∂Ω(t) its boundary and n the inward unit
normal to this boundary. Let dV and dS be an elementary volume and surface of Ω(t)
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and ∂Ω(t), respectively. Let f and g be both twice continuously di�erentiable scalar
functions. Then:

˚
Ω(t)

(f∆g − g∆f) dV = −
¨
∂Ω(t)

(
f
∂g

∂n
− g∂f

∂n

)
dS (III.31)

where
∂f

∂n
represents the normal derivative:

∂f

∂n
= ∇f · n = fn (III.32)

The functions f and g are chosen such as:{
f = φP

g = G
(III.33)

where G represents the Green's function, solution of the equation:

∆G(xi,xj) = δ(xi − xj) (III.34)

δ denotes the Dirac delta function, xi and xj are two points of R3.

Basically, it exists two ways to �nd the Green's function. Either G only satis�es
(III.34) and becomes a Rankine source Green's function or G also satis�es the free
surface boundary equations and the radiation condition and becomes a Kelvin source
Green's function or free surface Green's function. InWS_CN, a Rankine source Green's
function is used, that is to say:

G(xi,xj) = − 1

4π‖xi − xj‖
= − 1

4π‖rij‖
(III.35)

In WS_CN, with no loss of generality, the Green's function is simply de�ned by:

G(xi,xj) =
1

‖rij‖
(III.36)

Its normal derivative is:
∂G

∂nj
(xi,xj) = −rij · nj

‖rij‖3
(III.37)

∂∗
∂nj

is the normal derivative with respect to nj .

Applying (III.31) over the whole �uid domain D bounded by the surface S at the
point xi gives:

˚
D

(
φP (xj)∆G(xi,xj)−G(xi,xj)∆φ

P (xj)
)
dV = −

¨
S

(
φP (xj)

∂G

∂nj
(xi,xj)−G(xi,xj)

∂φP

∂n
(xj)

)
dS

(III.38)
Here xj is the variable of integration.

98



III.2. Theory of the potential �ow based on the weak-scatterer hypothesis

The integral of the Laplacian of the Green's function may be expressed by:
˚
D

∆G(xi,xj) dV =

˚
D

∆

(
1

‖r‖

)
dV (III.39)

=

˚
D
∇ ·
(
− r

‖r‖3

)
dV (III.40)

=

¨
S

r · n
‖r‖3

dS (III.41)

= −
¨
S

∂G

∂nj
(xi,xj) dS (III.42)

= Ω(xi) (III.43)

Ω(xi) may be seen as the solid angle at the point xi. The generalization of this latter
expression yields:
˚
D
φP (xj)∆G(xi,xj) dV = −φP (xi)

¨
S

∂G

∂nj
(xi,xj) dS = φP (xi)Ω(xi) (III.44)

The �rst term of the left hand side of (III.38) is zeroed:

∆φP (xj) = 0 in D ⇒
˚
D
G(xi,xj)∆φ

P (xj) dV = 0 (III.45)

Finally (III.38) becomes:

− φP (xi)Ω(xi)−
¨
S
φP (xj)

∂G

∂nj
(xi,xj) dS +

¨
S
G(xi,xj)

∂φP

∂n
(xj) dS = 0 (III.46)

Equation III.46 is the boundary integral equation (BIE ) in the �uid. Only two
surface integrals are present so the computational domain is the boundary S of the
�uid domain D: the free surface FS, the wetted body surfaces SB and the numerical
tank surfaces (including the sea bottom) T :

S = FS ∪ SB ∪ T (III.47)

Where SB is composed of the wetted surface SBj of each body j:

SB =
NWSC⋃
j=1

SBj (III.48)

Two terms of (III.46) need to be clari�ed:

¨
S
φP (xj)

∂G

∂nj
(xi,xj) dS and

¨
S
G(xi,xj)

∂φP

∂n
(xj) dS (III.49)

III.2.4.2 The in�uence coe�cients

The boundary integral equation is solved using the collocation method. The bound-
ary surface of the �uid domain is discretized into Np panels of surface Sp and N nodes:

S =

Np⋃
p=1

Sp (III.50)
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The integral equation is written at each node i of the mesh:

− φP (xi)Ω(xi)−
Np∑
p=1

¨
Sp
φP (xj)

∂G

∂nj
(xi,xj) dS +

Np∑
p=1

¨
Sp
G(xi,xj)

∂φP

∂n
(xj) dS = 0

(III.51)
In WS_CN, panels are triangular. This ensures their �atness and it is also a com-

mon mesh format. Each triangle p is de�ned by its three vertices (xp1,x
p
2,x

p
3). Its centre

of gravity is at xpG. Its contour is denoted Cp. The unknowns are at the nodes. The
computation of the surface integrals is achieved analytically, assuming a linear approx-
imation of the physical quantities over the panels. For instance, for a quantity f over
the panel p:

f(x) = f(xpG) +∇S(f) · (x− xpG) (III.52)

∇S(f) is the surface gradient, de�ned by:

∇S(f) = Σ

f(xp1)
f(xp2)
f(xp3)

 (III.53)

with:

Σ =
1

∆

[
−(A + B) A B

]
(III.54)

∆ = ‖xp2 − xp1‖
2‖xp3 − xp1‖

2 − [(xp2 − xp1) · (xp3 − xp1)]
2 (III.55)

A = ‖xp3 − xp1‖
2
(xp2 − xp1)− [(xp2 − xp1) · (xp3 − xp1)](xp3 − xp1) (III.56)

B = −[(xp2 − xp1) · (xp3 − xp1)](xp2 − xp1) + ‖xp2 − xp1‖
2
(xp3 − xp1) (III.57)

Letournel [44] gives the expressions of the two surface integrals:

¨
Sp
φP (xj)

∂G

∂nj
(xi,xj) dS =

∆̃

¨
Sp

∂G

∂nj
(xi,xj) dS −

(˛
Cp
G(xi,xj)(xj − xi)× dl

)T
Σ

φP (xp1)
φP (xp2)
φP (xp3)


(III.58)

= Ci
p

φP (xp1)
φP (xp2)
φP (xp3)

 (III.59)

¨
Sp
G(xi,xj)

∂φP

∂n
(xj) dS =

∆̃

¨
Sp
G(xi,xj) dS −

(˛
Cp

np × dl

G(xi,xj)

)T
Σ



∂φP

∂n
(xp1)

∂φP

∂n
(xp2)

∂φP

∂n
(xp3)


(III.60)

= Di
p


∂φP

∂n
(xp1)

∂φP

∂n
(xp2)

∂φP

∂n
(xp3)

 (III.61)
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with:

∆̃ =
1

3

(
1 1 1

)
+ (xi − xpG)TΣ (III.62)

np represents the normal of the panel p.

Equation III.51 expresses the boundary integral equation with respect to the panels
of the mesh, but the use of the collocation method involves writing this equation with
respect to the nodes of the mesh:

− φP (xi)Ω(xi)−
N∑
j=1

Gijφ
P (xj) +

N∑
j=1

Hij
∂φP

∂n
(xj) = 0 (III.63)

where G and H are the matrices of the in�uence coe�cients or in�uence matrices. They
represent the in�uence of every node on every node. Their elements are:

Gij =
∑

p∈P(j)

Cip(δ
j
p) (III.64)

Hij =
∑

p∈P(j)

Di
p(δ

j
p) (III.65)

δjp = q ∈ {1, 2, 3} such as xj = xpq (III.66)

P(j) represents the set of the adjacent panels of which the node j is a vertex. Cip(k)

and Di
p(k) denote the kth component of the row vectors Ci

p and Di
p.

Regarding the solid angle, Equations (III.63) and (III.44) give:

φP (xi)Ω(xi) = −φP (xi)

¨
S

∂G

∂nj
(xi,xj) dS (III.67)

= −φP (xi)

N∑
j=1

Gij (III.68)

leading to:
N∑
j=1

Gijφ
P (xj) =

N∑
j=1

Hij
∂φP

∂n
(xj) (III.69)

with:

Gii = −
N∑
j=1
j 6=i

Gij (III.70)

Finally the boundary integral equation can be written with a matrix format:

GφP = HφPn (III.71)

φP and φPn are the velocity potential and normal velocity vectors of size N . The ith

component of φP , respectively φPn , is φ(xi), respectively φn(xi).

Note

As the unknowns are at the nodes, there is a singularity at the interfaces free surface
/ bodies and free surface / numerical tank because both the free surface boundary
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equations and the slip condition are applied. Moreover, at the sharp edges in the body
meshes, it arises a discontinuity of the normal vectors so the slip condition is not well
de�ned. Consequently multiple node technique is used at the interfaces and at the sharp
edges. Doing so, several boundary conditions are satis�ed at the same location. This
method increases the number of nodes in the mesh but ensures that all the boundary
equations are treated properly. The continuity of the velocity potential at the multiple
nodes is also checked during the simulation.

III.2.4.3 The linear system

In our problem, the velocity potential is known on the free surface and its normal
derivative is known on the solid surfaces (bodies, sea bottom, numerical tank walls).
The goal of the BEM is to compute the missing quantity on each surface. Thus, the
velocity potential will be evaluated on the solid surface and its normal derivative will
be found on the free surface.

Mathematically, it means the boundary integral equation (III.71) is decomposed into
block matrices and vectors to separate the known quantities from the unknown ones.
Consequently, the in�uence matrices are written:

G =
(
G(FS) G(T ) · · · G(Bj) · · ·

)
(III.72)

H =
(
H(FS) H(T ) · · · H(Bj) · · ·

)
(III.73)

FS, T and Bj represents respectively the free surface, the numerical tank and the body
j. Each block is a rectangular matrix of size the number of nodes in the whole mesh
times the number of the nodes in the considered part of the mesh. For instance, G(Bj)
is of size N ×N(Bj) with N the number of nodes in the mesh and N(Bj) the number
of nodes in the mesh of the body j.

Equation III.71 becomes a linear system AX = B of size N such as:

A =
(
H(FS) −G(T ) · · · −G(Bj) · · ·

)
(III.74)

X =


φPn (FS)
φP (T )

...
φP (Bj)

...

 (III.75)

B =
(
−H(T ) · · · −H(Bj) · · ·G(FS)

)

φPn (T )

...
φPn (Bj)

...
φPn (FS)

 (III.76)

The matrix A is dense, as explained in subsection III.2.3. The solving of this linear
system is done using a generalised minimal residual iterative scheme (GMRES ) with a
diagonal preconditioner.

III.2.5 Gradients

Once the velocity potential is known at every node of the mesh, it remains to
compute the gradient of both the velocity potential and the free surface elevation to
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III.2. Theory of the potential �ow based on the weak-scatterer hypothesis

apply the free surface boundary equation (III.29). Regarding wave elevation η(x, y), its
gradient is given by:

∇ηP =


∂ηP

∂x
∂ηP

∂y
0

 (III.77)

As the velocity potential also depends on z, its gradient is split into a surface component

∇S and a normal component
∂

∂n
such as:

∇φP = ∇SφP +
∂φP

∂n
n (III.78)

The normal component on the bodies comes from the slip condition (III.30) and on
the free surface from the boundary element method (III.76). The horizontal derivatives
of the wave elevation and the surface gradient of the velocity potential are computed
using a polyharmonic spline approximation [44]. The main results are reminded here-
inafter. The approximation of the function s at the node xi is:

s(xi) =

N i
v∑

j=0

αjψ(‖xi − xj‖) + p(xi) (III.79)

with:

� ψ the radial basis function;

� p the unknown polynomial;

� N i
v the number of �rst-order and second-order neighboring nodes of the node i;

� xj the neighboring nodes;

� αj the unknown coe�cients.

Note

The �rst-order neighboring nodes are de�ned as the immediate neighboring nodes
while the second-order neighboring nodes are de�ned as the neighboring nodes of the
�rst-order neighboring nodes, as shown in Figure III.5.

Figure III.5 � Example of the neighborhood (from [44])
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In WS_CN , a third-order polynomial spline is used so the kernel ψ and the poly-
nomial p are:

ψ(x) = x3 (III.80)

p(x) = αN i
v+1 + αN i

v+2x+ αN i
v+3y + αN i

v+4xy + αN i
v+5x

2 + αN i
v+6y

2 (III.81)

αj and p are determined by the interpolation conditions on the nodes xj , neighbors
of the node xi:

s(xj) = sj (III.82)

N i
v∑

j=1

αjq(xj) = 0 (III.83)

where sj is the known velocity potential or wave elevation of the node j and q denotes
all polynomials with a degree less or equal than two.

Finally, these equations form a linear system of size N i
v + 7:(

M P
PT 03×3

)(
α
β

)
=

(
s

03×1

)
(III.84)

with:

� M the matrix containing the evaluation of the radial basis function:

Mij = ψ(‖xi − xj‖) (III.85)

� P the matrix with row j is given by the vector
(
1 xj yj xjyj x2

j y2
j

)
;

� α the vector of the coe�cients αj , including the coe�cients of p.

The spatial derivatives of the wave elevation arise:

∂ηP

∂x
(xi) =

N i
v∑

j=0

αj
∂ψ

∂x
(‖xi − xj‖) +

∂p

∂x
(xi)

∂ηP

∂y
(xi) =

N i
v∑

j=0

αj
∂ψ

∂y
(‖xi − xj‖) +

∂p

∂y
(xi)

(III.86)

Concerning the gradient of the velocity potential, a change of variables is necessary to
take into account the z-dependency [44].

To ensure the continuity of the gradient of the velocity potential at the multiple
nodes in case of intersection curve or sharp edges, the following system is solved (here
for a double node): 

∇φP · nD1 =
∂φP

∂n1

∇φP · nD2 =
∂φP

∂n2

∇φP · (nD1 × nD2) = ∇φP · (nD1 × nD2)

(III.87)
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where nD1, nD2,
∂φP

∂n1
and

∂φP

∂n2
represent the normals and the normal derivative of the

velocity potential of the two intersecting surfaces.

If nD1 ≈ nD2, the two �rst equations of the linear system are identical, a new system
has to be de�ned:

∇φP · nD1 =
∂φP

∂n1

∇φP · (nD1 × nD2) = ∇φP · (nD1 × nD2)

∇φP · [nD2 × (nD1 × nD2)] = ∇φP · [nD2 × (nD1 × nD2)]

(III.88)

III.2.6 Fluid-structure interaction

If the �oating and immersed bodies are still or following a prescribed motion, the
hydrodynamic problem is completely described by the previous sections. But, in case of
free body motions, the motion equation of each body needs to be solved. In WS_CN ,
bodies are assumed not to be in mechanical interactions but only in hydrodynamic
interactions, so that the motion equation for the body j at its centre of gravity Gj

takes the following form:

eMHydro
j η̈j = eFWSC

j + eFInertia
j + eFOther

j (III.89)

with:

� eMHydro
j the mass matrix used in the hydrodynamic theory:

eMHydro
j =

(
mjI3 03×3

03×3
eIGjSj

)
(III.90)

This matrix is di�erent from eMj used in section I.4 in expression and in point
of computation (Gj for eM

Hydro
j , the center of the joint Oj for eMj). Sj comes

from (I.41) and eIGj is the (3 × 3) inertia matrix of body j reduced at Gj with
respect to Σe.

� eFInertia
j the inertial loads:

eFInertia
j =

(
03×3

−eIGj ṠjS
−1
j

eωj − S(eωj)
eIGj

eωj

)
(III.91)

� eFWSC
j the hydrodynamic loads based on the weak-scatterer hypothesis;

� eFOther
j the other external loads (weight, aerodynamic loads, mooring loads, power

take-o� loads, etc.);

� ηj the generalized position vector of the body j:

ηj =



xj
yj
zj
φj
θj
ψj

 (III.92)

where these coordinates represent, respectively, the surge, sway, heave, roll, pitch
and yaw of the body j.
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Note

In [45, 117], the expression of the inertial loads is di�erent:

eFInertia
j =

(
03×3

−
(
eIGj Ṡj + eİGjSj

)
η̇j

)
(III.93)

This latter expression matches (III.91).

The hydrodynamic loads are obtained by the integration of the pressure from Bernoulli's
equation. To be consistent with the hydrodynamic theory developed here, the decompo-
sition (III.13) and the weak-scatterer hypothesis (III.14) are applied in (III.5), leading
to the following expression of the pressure:

pWSC = −ρ
(
∂φI

∂t
+
∂φP

∂t
+

1

2
∇φI · ∇φI +∇φI · ∇φP + gz

)
(III.94)

Then, the expression of the hydrodynamic loads of the body j at its center of gravity
is:

eFWSC
j =


−
¨
SBj

(t)
pWSCn dS

−
¨
SBj

(t)
pWSC(x− eSj)× n dS

 (III.95)

In the expression of the pressure:

� z is known from the node positions;

� φI , ∇φI and ∂φI

∂t
are known from the incoming wave �eld which is assumed to be

known;

� φP is known from the boundary value problem subsection III.2.3 and the solving
of the boundary integral equation (III.2.4.3);

� ∇φP is known using the B-spline approximation subsection III.2.5;

�
∂φP

∂t
is unknown.

Thereby, (III.89) involves two unknowns: the acceleration η̈j and the time-di�erentiation

of the velocity potential
∂φP

∂t
. The �uid-structure interaction appears here.

III.2.6.1 State of the art of the computation of the time-di�erentiation of

the velocity potential

Five methods exist to solve this �uid-structure interaction in case of an unsteady
potential �ow theory [122, 123, 124]:

� The backward �nite di�erence method;

� The iterative method;

� The mode-decomposition method;

� The indirect method;
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III.2. Theory of the potential �ow based on the weak-scatterer hypothesis

� The implicit boundary method.

The backward �nite di�erence method is the most straightforward approach due to
its simplicity. The time-di�erentiation of the velocity potential is obtained from the
velocity potential at the current and previous time steps:

Dφ

Dt
=
φ(t)− φ(t− dt)

dt
(III.96)

where
D∗
Dt

denotes the Lagrangian derivative. This method is known to be numerically

unstable [122].

The iterative method adds a retroactive loop along with a predictor-corrector to
converge on the values of the body accelerations and the time-derivative of the velocity
potential. This method is used by Cao et al. [125] for example.

The mode-decomposition method splits the time-di�erentiation of the velocity po-
tential into seven elementary functions (or modes) which correspond to an unit accel-
eration for each degree of freedom (ψj) and the acceleration due to the velocity �eld
(ψ7):

∂φ

∂t
=

6∑
j=1

ajψj + ψ7 (III.97)

Each mode is solved using a boundary integral equation. Once these modes are found,
the body acceleration can be determined. This method was applied by Koo and Kim
[122] for instance.

The indirect method does not compute directly
∂φ

∂t
but only its integration over the

body surface. To do so, auxiliary functions are introduced and the use of the Green's
second identity leads to an expression of the hydrodynamic forces from these auxiliary
functions. Therefore the boundary integral equation of the time-derivative of the veloc-
ity potential is not solved. Nevertheless, the body-surface pressure cannot be obtained
with this approach. This method has been proposed by Wu and Eatock Taylor [126]
and has been widely used so far [11, 127, 128].

The implicit boundary method couples the motion equation to the boundary inte-

gral equation satis�ed by
∂φ

∂t
. Then, this latter quantity is integrated over the body

surface to evaluate the hydrodynamic loads. This approach requires to develop the time-
derivative of the body boundary condition, which is a di�cult task. Two expressions of
this body condition were derived:

� One developed by Cointe et al. [129] in 2D and by Van Daalen [130] in 3D using
local normal and tangential components of body and �uid velocities;

� The second proposed by Tanizawa [131] in 2D and extended in 3D by Berkvens
[132] based on the acceleration of a �uid particle sliding on the body surface.

The proof of the equivalence of these two expressions is demonstrated by Letournel
et al. [133] and a uni�ed expression is given.
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InWS_CN, the implicit boundary method was preferred for its e�ciency in terms of
stability and time-consuming to the other methods and follows the formalism developed
by Letournel [44].

III.2.6.2 The implicit boundary method

The method consists in solving a new boundary value problem. The Laplacian of

the
∂φP

∂t
is found using (III.30):

∆
∂φP

∂t
=
∂∆φP

∂t
= 0 in the �uid domain D (III.98)

Note

The time-derivative of the velocity potential,
∂φ

∂t
, is named the acceleration potential

sometimes but it is not equal to the Lagrangian time-di�erentiation of the velocity:

Dv

Dt
=
D∇φ
Dt

=
∂∇φ
∂t

+ (∇φ) · ∇φ = ∇
(
∂φ

∂t
+

1

2
∇φ · ∇φ

)
(III.99)

Because for all vectors a:

1

2
∇(a · a) = (a · ∇)a + a× (∇× a) (III.100)

∂φ

∂t
+

1

2
∇φ · ∇φ does not satisfy Laplace's equation because of the velocity-squared

term [123]. The terms time-derivative or time-di�erentiation of the velocity potential
are preferred.

The free surface boundary equation is given by (III.28):

∂φP

∂t
=
δφP

δt
−+(vmesh · ∇)φP at z = ηI(x, y, t) (III.101)

The slip condition needs to use the normal derivative of the time-di�erentiation of the
velocity potential, de�ned by:

∂2φP

∂t∂n
=
∂2φP

∂n∂t
= ∇

(
∂φP

∂t

)
· n (III.102)

On the seabed and the numerical tank walls, this quantity is:

∂2φP

∂t∂n
= −∂

2φI

∂t∂n
on the seabed (III.103)

∂2φP

∂t∂n
= 0 on the numerical tank walls (III.104)

On the wetted body surfaces for the body j, the slip condition is given by Letournel et al.
[133] in case of translational motions and extended to rotational motions by Chauvigné
[45], here at the node xi:

∂2φP

∂t∂n
= −∂

2φI

∂t∂n
+

(
n

[(xi − eSj)× n]TSj

)
· η̈j + qj (III.105)
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qj is given by:

qj = eωj · s1

(
∂φP

∂s2
− 2(η̇transj · s2)

)
− eωj · s2

(
∂φP

∂s1
− 2(η̇transj · s1)

)
+

(η̇transj · s1)

R1

(
∂φP

∂s1
− (ηtransj · s1)

)
+

(η̇transj · s2)

R2

(
∂φP

∂s2
− (ηtransj · s2)

)
+ (η̇transj · n)

[
∂2φP

∂s2
1

+
∂2φP

∂s2
2

+

(
1

R1
+

1

R2

)
∂φP

∂n

]
+
[
(Ṡjη̇

rot
j )× (xi − eSj) + eωj × (eωj × (xi − eSj))

]
· n

(III.106)

where s1 and s2 are the two local tangent vectors and R1 and R2 denote the local cur-
vature associated to these vectors.

The boundary integral equation used with the velocity potential (III.46) is also valid
with its time-derivative, here written at the point xi:

− ∂φP

∂t
(xi)Ω(xi)−

¨
S

∂φP

∂t
(xj)

∂G

∂nj
(xi,xj) dS +

¨
S
G(xi,xj)

∂2φP

∂n∂t
(xj) dS = 0

(III.107)

III.2.6.3 The discretization

Note

The time-di�erentiation is written either
∂∗
∂t

or ˙(∗).

As the boundary integral equation is the same as in the �rst boundary value problem,
except that the velocity potential is substituted for its time-di�erentiation, then the
in�uence matrices G and H stay identical. Therefore, (III.71) becomes:

Gφ̇ = Hφ̇n (III.108)

Regarding the slip condition of the body j (III.105), its discretization gives:

φ̇Pn (Bj) = −φ̇In(Bj) + CKjη̈j + Qj (III.109)

CKj is a rectangular matrix of size N(Bj)× 6 and Qj is a vector of size N(Bj).

The hydrodynamic loads of the body j (III.95) becomes:

eFWSC
j = eCTjφ̇

P (Bj) + eTWSC
j (III.110)

where eCTj is a 6×N(Bj) matrix and eTWSC
j is a vector of size 6 including the known

components of the hydrodynamic loads.

Thus, the discretized motion equation arises:

eMHydro
j η̈j − eCTjφ̇

P (Bj) = eTWSC
j + eFInertia

j + eFOther
j (III.111)
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III.2.6.4 The linear system

The set of ordinary di�erential equations to solve is:
Gφ̇ = Hφ̇n
eMHydro

j η̈j − eCTjφ̇
P (Bj) = eTWSC

j + eFInertia
j + eFOther

j ∀j ∈ J1 ; NWSCK

φ̇Pn (Bj) = −φ̇In(Bj) + CKjη̈j + Qj ∀j ∈ J1 ; NWSCK
(III.112)

Equation III.112 forms a linear system AX = B of size N +
NWSC∑
j=1

N(Bj)+6NWSC .

The matrix A is dense so the solving of this linear system is achieved using a GMRES
method with a diagonal preconditioner. The vector X is:

X =



φ̇Pn (FS)

φ̇P (T )
...

φ̇P (Bj)
...

φ̇Pn (Bj)
...
η̈j
...


(III.113)

III.3 Mesh generation

The solving of the two boundary value problems requires the use of a surface mesh
on the whole domain: free surface, wetted body surfaces and numerical tank walls. To
avoid numerical discrepancies, a good quality triangulated mesh is necessary, in terms
of size and shape. Using an unsteady hydrodynamic solver, the mesh changes with time.
Consequently, not only a mesh has to be created at the initial stage, but also at any
time during the simulation, independently of the wave �eld and the body motions.

In his PhD work, Letournel [44] only performed simulations with a single submerged
body so the surface mesh of the domain was easy to generate. Indeed, in this case, the
body mesh and the free surface do not intersect each other. Then, Chauvigné [45] has
extended the code to the simulation of a single surface-piercing body. This involves the
tracking of the intersection curve and the continuity of the mesh at this interface. The
(free-)surface-to-(body-)surface intersection is seeked using a marching method which
starts from a known starting point on the intersection curve and then steps along it in
a direction prescribed by the curve local geometry. Regarding the mesh generation, an
advance front method has been developed by Chauvigné [45] and applied for both the
body and the free surface meshes.
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III.3. Mesh generation

III.3.1 Intersection curve tracking

III.3.1.1 Initial point

Each body is formed of a set of parametric surfaces S(u, v). For example, a cylinder
is made of two discs and a cylindrical body. Its parametric equation is:

SCylinder(u, v) =

R cos(u)
R sin(u)

v

 (III.114)

A cube is formed of six planes. The parametric equation of a plane is:

SPlane(u, v) =

uv
0

 (III.115)

The initial point on the intersection curve is searched along an isoparametric curve
Figure III.6 and found using a dichotomy method.

Figure III.6 � Example of an isoparametric line for a cylinder (from [45])

III.3.1.2 Marching method

Once the initial point P0 = S(u0, v0) of the intersection line is found, the rest
of the curve is tracked using a marching method. The intersection curve C(s) =
S(uC(s), vC(s)) is de�ned by the equation:

T(s) · nFS = 0 (III.116)

where:

� T is the local tangent vector of the surface S(u, v):

T(s) = Su
∂u

∂s
+ Sv

∂v

∂s
(III.117)

with: 
Su =

∂S

∂u

Sv =
∂S

∂v

(III.118)
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� nFS is the free surface normal vector;

� s is the curvilinear coordinate.

The rates of change of (uC , vC) along the intersection are solutions of the following
system of di�erential equation:

duC
ds

=
Sv · nFS√

E(Sv · nFS)2 − 2F (Sv · nFS)(Su · nFS) +G(Su · nFS)2

dvC
ds

=
Su · nFS√

E(Sv · nFS)2 − 2F (Sv · nFS)(Su · nFS) +G(Su · nFS)2

(III.119)

where: 
E = Su · Su
F = Su · Sv
G = Sv · Sv

(III.120)

As the initial point on the intersection curve is known, the other points are found from
the integration of (III.119):

P = S(u0 + δu, v0 + δv) (III.121)

with: 
δu =

s0+dsˆ

s0

du

δv =

s0+dsˆ

s0

dv

(III.122)

A fourth-order explicit Runge-Kutta scheme with a �xed spatial step ds is used (I.94).

III.3.2 Grid generation

As soon as the intersection curve is known (Figure III.7b) from the parametric
surfaces of the bodies (Figure III.7a), the mesh generation process may start. It unfolds
in �ve steps:

� The extremities of the edges of the geometries are tracked (for instance, the ver-
tices of a cube);

� The intersection curves are meshed (Figure III.7c);

� The edges of all geometries are meshed, the multiple nodes are de�ned (Figures
III.7c and III.7d);

� The wetted body surfaces are meshed (Figure III.7e);

� The free surface and the numerical tank walls are meshed and connected to the
wetted body meshes (Figure III.7f).
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III.3. Mesh generation

The grid generation is based on the advance front method. The mesh front is initialized
by the meshed edges of a surface. Then, new triangular panels are created successively,
which updates the front of the mesh, until the whole surface is meshed. A new panel
is generated from three existing nodes of the front or, if it is not possible, from two
existing nodes of the same edge of the front and a new node. The position of this new
node Pnew satis�es the following equation:

MPnew =

√
δ2

1 −
(
δref

2

)2

nFront (III.123)

with:

� nFront the normal vector oriented from the mesh part of the surface to the un-
meshed part;

� M the midpoint of the edge of the front;

� δref the reference panel size;

� δ1 a distance de�ned by:

δ1 =


δref if 0.5` < δref and ` > δref

0.55δref if 0.55` > δref

2δref if 2` > δref

(III.124)

� ` the length of the edge.

Intersection tests are used to avoid the creation of forbidden or degenerate panels. The
advance front method leads to an unstructured mesh.
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(a) Parametric surfaces of
a cylinder

(b) Intersection curve (c) Mesh of the edges of a
cylinder

(d) Mesh of all edges of the
domain

(e) Mesh of the free surface
and the numerical tank
walls

(f) Final mesh including
the cylinder

Figure III.7 � The steps of the mesh generation of the whole domain with a �oating vertical
cylinder

III.3.3 Reference panel size

The reference panel size δref is often constant over a surface but not on the free
surface. Indeed, to avoid the creation of meshes with too many panels, the free surface
mesh is �ner close to the surface-piercing bodies than far from the bodies. The evolution
of δref over the free surface is �gured out by solving the following problem [45]:{

∆δref = 0 on the free surface

δref = δinput at the boundaries of the free surface
(III.125)

The boundaries of the free surface are the intersection curves with the surface-piercing
bodies and the intersection between the free surface and the numerical tank walls. δinput
is the input panel size �xed by the user.

These equations are discretized over a �rst free surface mesh matching the plane
z = 0. The mesh is structured with a constant spatial discretization href in both x and
y directions. To make the di�erence with the �nal unstructured mesh, the structured
mesh is named the Cartesian grid. The solution is searched at the center of every cell of
this grid. A second-order central �nite-di�erence scheme is used to solve the Laplace's
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III.3. Mesh generation

equation. And after discretization:

δi+1,j
ref − 2δi,jref + δi−1,j

ref

h2
ref

+
δi,j+1
ref − 2δi,jref + δi,j−1

ref

h2
ref

= 0 (III.126)

δi,jref represents the value of δref in the cell (i, j) of the Cartesian grid. Equation III.126
leads to a linear system AX = B of size Nref , the number of cells in the grid. A LU
factorization is used. The value of δref at the position of the created point is found
from a bilinear interpolation.

Figure III.8a shows the values of δref over the free surface for a domain of radius 3 m
with δu = 0.2 m with a surface-piercing �oating cylinder of radius 0.2 m and δu = 0.022
m. Figure III.8b displays the �nal mesh with high quality panels and a smooth transition
between the �nest area to the coarsest area.

(a) δref over the free surface, the black lines
represent the Cartesian grid.

(b) Final mesh

Figure III.8 � href = 0.3 m - y = 0 m

In case of a large amplitude motion, the mesh can drastically lose its quality. For
instance in Figure III.9, the cylinder is moved 0.15 m along y-axis. An important dis-
continuity of the mesh discretization appears which leads to numerical errors, especially
when local interpolations are used (cf. section III.8).
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(a) δref over the free surface, the black lines
represent the Cartesian grid.

(b) Final mesh

Figure III.9 � href = 0.3 m - y = 0.15 m

The discontinuity can be more important if a larger href is used. In Figure III.10, the
whole cell containing the cylinder has a �ner discretization than the rest of the mesh.

(a) δref over the free surface, the black lines
represent the Cartesian grid.

(b) Final mesh

Figure III.10 � href = 0.6 m - y = 0 m

Consequently, the structured mesh, necessary to solve (III.125), has to be �ne enough
to ensure a high quality mesh for any arbitrary motion of the bodies, especially in case
of multibody simulations with large relative motions. This involves choosing a small
href and so increase signi�cantly the size of the linear system to solve. In the two cases
presented above, Nref = 400 and 100 for href = 0.3 m and 0.6 m. If href = 0.01 m,
then Nref = 360000 (sic), which requires a tremendous quantity of memory if the linear
system is considered as dense. Nevertheless, the linear system is not dense: (III.126)
involves a large sparse linear system. In his PhD work, Chauvigné [45] did not use
the sparsity of the linear system to solve it and it was not possible to compute δref
in case of �ne meshes. The quality of the mesh could not be maintained during the
simulation if δref was not small enough. Thus, a new linear system solver has been
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III.3. Mesh generation

coupled with WS_CN in order to improve the memory e�ciency: PARDISO6 (Parallel
Sparse Direct And Multi-Recursive Iterative Linear Solvers). A LU decomposition is
always performed but the method is optimized for sparse linear systems. The non-zero
coe�cients of the matrix A are stored using a Compressed Sparse Row format (or CSR),
based on three arrays:

� aa, containing the non-zero coe�cients;

� ja, storing the column indices of the non-zero coe�cients in increasing order;

� ia, listing the �rst column indices of the previous array for every row.

For example, if the matrix A is 7:

A =


4 ∗ ∗ 7 ∗
∗ ∗ 6 ∗ ∗
−3 ∗ ∗ −2 9
∗ 1 ∗ 3 ∗
∗ ∗ 8 ∗ 6

 (III.127)

Then, the CSR format of A is:
aa =

(
4 7 5 −3 −2 9 1 3 8 6

)
ja =

(
1 4 3 1 4 5 2 4 3 5

)
ia =

(
1 3 4 7 9

) (III.128)

The use of this storage automatically allows to deal with very large linear system
and therefore small discretization step href . The case presented in Figure III.9 is now
displayed again but with href = 0.01 m in Figure III.11 and show a very good quality
mesh.

(a) δref over the free surface, the black lines
represent the Cartesian grid.

(b) Final mesh

Figure III.11 � href = 0.01 m - y = 0.15 m

6https://www.pardiso-project.org
7∗ denotes a zero.
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Table III.2 presents the CPU-time for solving (III.125) in the present test case by
considering the sparsity of the linear system (Sparse) or not (Dense). As it can be
seen, not only the use of PARDISO allows to deal with larger linear systems but also it
is quite faster. As a reminder, a mesh counts roughly between 5000 and 15 000 nodes,
giving the size of the linear system to solve for the �rst boundary value problem. Hence,
the computation of the δref with a �ne Cartesian grid can easily lead to larger linear
systems to solve than the boundary element methods.

href (m) Nref Density (%)
CPU time (s)
Dense Sparse

0.6 100 2.92 0.001 0.094

0.3 400 9.45× 10−1 0.004 0.094

0.1 3600 1.29× 10−1 0.525 0.125

0.07 7225 6.59× 10−2 2.494 0.140

0.06 10 000 4.80× 10−2 5.785 0.187

0.05 14 400 3.36× 10−2 ø 0.234

0.01 360 000 1.38× 10−3 ø 4.227

0.005 1 440 000 3.46× 10−6 ø ø

Table III.2 � CPU-times for di�erent sizes of linear system using or not its sparsity

The density of a linear system is the number of non-zero coe�cients in A divided
by the total number of coe�cients, i.e. N2

ref . ø indicates that the calculation was not
possible because of the lack of memory on the local computer used during this PhD
work.

III.4 Mesh morphing

Once the mesh is generated, it has to be updated at each time step of the simulation
to take into account the motion of both the bodies and the free surface. Two choices are
possible. Either the generation of a new mesh or the deformation of the existing mesh.
The �rst method ensures a good mesh quality through the time-domain simulation but
involves the interpolation of the physical quantities on the free surface (cf. section III.8)
and is time-consuming. Nevertheless this �rst method can handle large deformations.
The second approach is possible when small deformations occur and requires a smaller
CPU time.

To avoid too many remeshings, two mesh morphing algorithms are implemented in
WS_CN [45]:

� A spring analogy method for the mesh of the bodies;

� A mesh deformation method using radial basis functions for the free surface mesh.

When the deformations are too large, a remeshing process is applied.
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III.4. Mesh morphing

III.4.1 Body mesh morphing

The spring analogy method consists of a physical analogy which replaces every edge
of the mesh by a �ctitious spring connecting two vertices. The method was introduced
by Batina [134] for unstructured meshes in case of an unsteady aerodynamic analysis of
oscillating airfoils. But it is also used in hydrodynamics, for example by Leroyer [135]
and Jacquin [136] with a viscous �ow solver. The spring analogy method is applied in
case of [137]:

� Moving boundary problems;

� Unstructured mesh smoothing.

In this latter application, the nodes are moved inside the mesh to obtain better shape
panels and a higher quality mesh. This method will be used in section V.1. An ex-
ample of such a mesh optimization may be found in [138]. The spring analogy method
used in the present hydrodynamic solver enables to deform the mesh subject to moving
boundaries.

The force exerted on the node i by its neighboring nodes follows Hooke's law [137]:

Fi =

N i
v∑

j=1

kij(xj − xi − dij) (III.129)

where:

� xi is the position of the node i;

� dij is the equilibrium vector between the node i and j;

� kij denotes the spring sti�ness;

� N i
v represents the number of �rst-order neighboring nodes of the node i.

Two di�erent linear spring analogy exist, depending on the expression of the equilibrium
vector:

� The segment spring analogy when the equilibrium lengths are equal to the initial
lengths of the edges: dij = xoldj −xoldi . The expression of the spring loads becomes:

Fi =

N i
v∑

j=1

kij(δj − δi) (III.130)

with δi = xi−xoldi , the displacement of the node i. The mesh is only deformed if
its boundaries are deformed themselves. Consequently this approach is chosen to
solve moving boundary problems.

� The vertex spring analogy when the equilibrium lengths are zeroed: dij = 03×1.
Doing so, the mesh can be deformed even if its boundaries are still, which is the
case for a mesh smoothing.
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Here, the mesh deformation algorithm is used to update the mesh after a modi�cation
of the position of the bodies, thus the segment spring analogy is chosen.

In order to prevent the colliding of nodes and the interpenetration of neighboring
panels, the spring sti�ness is inversely proportional to the square of the edge length.
Thus, if two vertices get closer, the spring becomes sti�er and conversely.

kij =
1

‖xj − xi‖2
(III.131)

The static equilibrium of the mesh leads to:

Fi = 03×1 (III.132)

This equation may be solved iteratively for every node i or the whole linear system can
be written and solved for all the nodes at a time.

Torsional springs also exist to handle larger deformations [139, 140]. Other modi�-
cations of the linear spring analogy are available too [141].

To ensure the spring loads are along the edge axis, Chauvigné [45] preferred the
following expression:

Fi =

N i
v∑

j=1

kij(δj · nij − δi · nij) (III.133)

with nij the tangential unit vector along the edge formed by the nodes i and j.

The displacement is written in the local direct orthonormal base (ui,vi,ni) of the
node i:

δi = diuui + divvi + diwni (III.134)

where:

� ni is the inward normal vector of the body surfaces;

� ui and vi are the two tangential vectors.

The slip condition on the body j at the node i involves:

diw = [evj +e ωj × (xi − eSj)] · nidt (III.135)

On the intersection curve or at the sharp edges of the body meshes, a node on this
intersection has to remain on it. Thus, ni is normal to one of the surfaces, ui is along
the intersection line and vi is chosen such as the local basis is orthonormal and direct.
In that case, dv is de�ned by:

div =


∂φI

∂nFS
nFS · vidt on the intersection curve

[evj +e ωj × (xi − eSj)] · vidt at the sharp edges
(III.136)

nFS is the normal vector of the double node linked to the free surface on the intersection
curve.
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If three surfaces or more intersect each other at the same node i, then the condition
is imposed on diu:

diu = [evj +e ωj × (xi − eSj)] · uidt (III.137)

The use of the slip condition at every node makes the problem bi-dimensional, so
the static equilibrium of this segment spring analogy method is for every node i:{

Fi · ui = 0

Fi · vi = 0
(III.138)

After mathematical developments, the system of equations becomes for a node i on
a smooth surface:

N i
v∑

j=1
kij(uj · nij)(ui · nij)dju −

[
N i

v∑
j=1

kij(ui · nij)2

]
diu +

N i
v∑

j=1
kij(vj · nij)(ui · nij)djv

−

[
N i

v∑
j=1

kij(ui · nij)(vi · nij)

]
div =

N i
v∑

j=1
kij(nj · nij)(ui · nij)djw −

[
N i

v∑
j=1

kij(ni · nij)(ui · nij)

]
diw

N i
v∑

j=1
kij(uj · nij)(vi · nij)dju −

[
N i

v∑
j=1

kij(ui · nij)(vi · nij)

]
diu +

N i
v∑

j=1
kij(vj · nij)(vi · nij)djv

−

[
N i

v∑
j=1

kij(vi · nij)2

]
div =

N i
v∑

j=1
kij(nj · nij)(vi · nij)djw −

[
N i

v∑
j=1

kij(ni · nij)(vi · nij)

]
diw

(III.139)
Equation III.139 leads to a sparse linear system of size twice the number of nodes in
the body mesh AX = B with:

X =


...
diu
div
...

 (III.140)

The solution is achieved using a LU factorization. This algorithm enables the de�nition
of the node velocity in the body meshes:

vmesh =
diu
dt

ui +
div
dt

vi +
diw
dt

ni (III.141)

III.4.2 Free surface mesh morphing

Regarding the free surface mesh morphing, the spring analogy method is not per-
formed. It would lead to important CPU times, consequently another approach is
chosen: an interpolation scheme of the free surface node displacement based on radial
basis functions (RBF ) [45, 142].

The interpolation function s is expressed by:

s(x) =

Nc∑
j=1

αjψ(
∥∥x− xcj

∥∥) + p(x) (III.142)

with:

� ψ the radial basis function de�ned by:

ψ(x) = x2log(x) (III.143)

121



Hydrodynamics

� p an unknown �rst degree polynomial;

� xcj the control nodes where the displacements are known;

� Nc the number of control nodes;

� αj the unknown coe�cients.

αj and p are determined by the interpolation conditions:

s(xcj) = dcj (III.144)
Nc∑
j=1

αjq(x
c
j) = 0 (III.145)

where dcj is the known displacement of the node j and q denotes all polynomials with a
degree less or equal than that of p.

Finally, these equations form a linear system of size Nc + 3:(
M P
PT 03×3

)(
α
β

)
=

(
dc

03×1

)
(III.146)

with M the matrix containing the evaluation of the radial basis function such as

Mij = ψ(
∥∥∥xci − xcj

∥∥∥) and P is the matrix with row j is given by the vector
(

1, xcj , y
c
j

)
.

α is the vector of the coe�cients αj and β the vector of the coe�cients of p.

The coe�cients α and β are computed twice: a �rst time for the displacements
along the x-axis and a second time along the y-axis. Two interpolation functions are
obtained: sx and sy. Then, the node velocity in the free surface mesh is �gured out by
solving the following system of equations:

vmesh · nFS =
∂φ

∂nFS

vmesh · exe =
sx(xi)

dt

vmesh · eye =
sy(xi)

dt

(III.147)

III.5 Incident wave models

In the decomposition (III.13), the incident components are assumed to be known.
Two models of incoming wave �elds are used in WS_CN :

� The Airy wave theory:

φI(x, t) =

Nwaves∑
j=1

Ajg

ωj

cosh[k(z +D)]

cosh(kD)
sin(kj · x− ωjt+ φj) (III.148)

where Aj , ωj , kj and φj represent the wave amplitude, the wave frequency, the
wave vector and the phase of the jth Airy wave. Nwaves is the total number of
waves.
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III.6. Absorbing numerical beach

� The stream function theory of Rienecker and Fenton [143]:

φI(x, t) =

NRF∑
j=1

Bj
cosh[jk(z +D)]

cosh(jkD)
sin[j(kRF · x− ωRF t+ φRF )] (III.149)

where Bj and NRF are the coe�cients and the order of the Fourier series. ωRF ,
kRF and φRF represent the wave frequency, the wave vector and the phase of the
Rienecker and Fenton's wave.

The Airy wave model is linear whereas the Rienecker and Fenton's wave theory is
nonlinear and therefore more consistent with the weakly nonlinear hydrodynamic solver
used in this PhD work.

The dispersion relation for a wave of frequency ω and wave number is:

ω2 = gk tanh(kh) (III.150)

where h is the water depth and g the gravity constant.

The incident wave �eld is present from the starting time of the simulation. To avoid
the generation of non-physical and spurious waves due to the abrupt appearance of
the bodies in the �ow, a ramp function is applied on the body conditions (III.30) and
(III.105):

f(t) =


0 when t 6 T1

1 when t > T2

1

2

[
1− cos

(
π
t− T1

T2 − T1

)]
otherwise

(III.151)

with T1 and T2 the starting and �nal time of application of the ramp function.

III.6 Absorbing numerical beach

To ensure the permeability condition on the numerical tank walls (III.22) and to
avoid the wave re�ection, a so-called absorbing numerical beach is applied. Its length is
often equal to the greatest wave length of the incident wave �eld. A damping coe�cient
ν is added in the free surface boundary conditions:

δηP

δt
= −∂η

I

∂t
−∇φI · ∇ηI − (∇φI − vmesh) · ∇ηP −∇φP · ∇ηI +

∂φI

∂z
+
∂φP

∂z

+ηP
(
∂2φI

∂z2
−∇ηI · ∂∇φ

I

∂z
)

)
− νηP at z = ηI(x, y, t)

δφP

δt
= −∂φ

I

∂t
− 1

2
∇φI · ∇φI − (∇φI − vmesh) · ∇φP − g(ηI + ηP )

−ηP
(
∂2φI

∂z∂t
+∇φI · ∂∇φ

I

∂z

)
− νφP at z = ηI(x, y, t)

(III.152)
The expression of the damping coe�cient is:

ν(r) =


0 when r 6 r0

1 when r > R
1

2

[
1− cos

(
π
r − r0

R− r0

)]
otherwise

(III.153)
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with r the distance of a node with respect to the center of the domain, R the radius
of the cylindrical domain and r0 = R − Labs with Labs the length of the absorbing
numerical beach.

Figure III.12 � Example of a damping numerical beach with Labs = 1 m and R = 3 m

III.7 State vector and time integration

The state vector of the weakly nonlinear potential �ow theory based on the weak-
scatterer hypothesis is:

YWSC =



φP (FS)
ηP

Pmesh
...
ηj
...
η̇j
...


(III.154)

Pmesh represents the position of all the nodes of the mesh. Its time-derivative is vmesh of

The time-di�erentiation of YWSC is obtained using:

� (III.29) for φ̇P (FS) and η̇P ;

� (III.141) and (III.147) for vmesh;

� (III.113) for η̈j .

The time-stepping is achieved using a fourth-order explicit Runge-Kutta scheme
with a �xed time step (I.94).
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At the initial time t = 0s, the �ow is assumed to be at rest so the scattered quantities
are zeroed:

φP (FS) = 0NFS×1 (III.155)

φ̇P (FS) = 0NFS×1 (III.156)

ηP (FS) = 0NFS×1 (III.157)

η̇P (FS) = 0NFS×1 (III.158)

where NFS is the number of nodes of the free surface mesh.

III.8 Free surface remeshing

The simulations of �oating bodies with large amplitude motions involve important
deformations of the mesh and the appearance of degenerated panels even if mesh morph-
ing methods are available (cf. Figure III.13). This leads to numerical errors. Therefore,
it becomes necessary to regenerate the mesh of the domain when the panel shape qual-
ity decreases. The regeneration of the wetted body surface meshes only requires the
call to the mesh generator as presented in section III.3. The hydrodynamic solver is
not a�ected by this change. Chauvigné [45] developed the remeshing of the bodies in
his PhD work. In contrast, the remeshing of the free surface mesh has an impact on
the hydrodynamic simulation. Indeed, two quantities of the state vector (III.154) are
located at the free surface nodes: the perturbed velocity potential φP (FS) and the
scattered wave elevation ηP . These quantities are known for the current free surface
mesh but unknown for the new free surface mesh. An interpolation scheme based on
third-order polynomial splines used for the computation of the surface gradients (cf.
subsection III.2.5) is applied to evaluate φP (FS) and ηP on the new free surface mesh
from the current one. The free surface remeshing process unfolds in three steps:

� A new free surface mesh (xNewi )i∈J1 ; NNew
FS K is created using the advance front

method, the former (old) mesh (xOldi )i∈J1 ; NOld
FS K is saved (Figure III.14a);

� For each node of this new mesh, the nearest node of the former mesh is searched
(Figure III.14b);

� A third-order polynomial spline interpolation is applied to evaluate the perturbed
velocity potential and the scattered wave elevation at the location of the new
nodes, based on the nearest node and its neighboring nodes in the former mesh
(Figure III.14c).

For example, for the wave elevation, the spline approximation is:

ηP (xNewi ) =

N i,Old
v +1∑
j=0

αjψ
(∥∥∥xNewi − xOldj

∥∥∥)+ p(xNewi ) (III.159)

N i,Old
v refers to the number of �rst-order and second-order neighboring nodes of the

nearest point in the former mesh of xNewi . +1 signi�es that the nearest point of xNewi

in the former mesh is included. αj and p are determined by the interpolation conditions

125



Hydrodynamics

on the nodes xOldj , neighbors of the nearest node in the former mesh of the node xNewi

in the new mesh:

s(xOldj ) = ηP (xOldj ) (III.160)

N i,Old
v +1∑
j=1

αjq(x
Old
j ) = 0 (III.161)

The same notations are used here as in subsection III.2.5.

Figure III.13 � Mesh distortion due to the translation of a cylinder along the y-axis (left).
The second cylinder is �xed (right).
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III.8. Free surface remeshing

(a) Former mesh (blue) and new mesh (red)

(b) One node in the new mesh (arrow tail) and its nearest point in green in the former mesh
(arrow head)

(c) Nodes in the former mesh used for the interpolation (in green)

Figure III.14 � The three steps of the interpolation scheme on the free surface mesh

The case of a cylinder in waves with a heaving motion is used for the validation of
the free surface remeshing. Its mass is 12.88 kg, its radius 0.2 m, its length 0.2 m and
its draft 0.1 m. An incoming regular wave of amplitude 0.005 m and wave frequency
8 rad/s is used. A wave probe is located at the position (0.4, 0, 0). The mesh and time
step convergences were checked and lead to a mesh of 10 000 panels and a time step
of 0.01 s. Two sets of numerical results are compared based on when the free surface
remeshing process is called:

� When it is necessary: the size or the shape of a panel on the free surface is too
poor (20 remeshings for 20 s);

� At every time step: the remeshing is forced (2000 remeshings in total).

Figure III.15 presents the comparison of the time series of the cylinder motion and
the wave elevation at the wave probe. The numerical results are similar even if few
di�erences are observed. They are caused by the interpolations during the free surface
remeshing algorithm which involves numerical errors.
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Figure III.15 � Comparison of time series of the heave motion (top) and the wave eleva-
tion (bottom) from numerical results with and without forced free surface
remeshing processes

III.9 Gaussian �lter

The free surface remeshing is not able to remove all the numerical errors on the
free surface mesh. It is necessary to use a �lter to remove the high-frequency non-
physical waves or saw-tooth waves. Letournel [144] implemented a Gaussian �lter on
the perturbed wave elevation in WS_CN. The �lter is classically used every �ve time
steps. Its formula is:

ηP (xi) =
1

α

ˆ
S
ηP (x)Gfilter(xi,x) dS (III.162)

with

α =

ˆ
S
Gfilter(xi,x) dS (III.163)

Gfilter(xi,x) =
1√
2πσ

exp

(
−‖x− xi‖2

2σ2

)
(III.164)

The standard deviation σ is �xed to
1

2

√
Ai(1 + ν) where Ai is the area associated with

the node i and ν the damping of the absorbing numerical beach (III.153).

After discretization, (III.162) becomes:

ηP (xi) =
1

α

N i
v∑

j=1

ηP (xj)Gfilter(xi,xj)Aj (III.165)

where N i
v is the number of �rst-order and second-order neighboring nodes of the node

i.
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The e�ect of the �ltering is outlined in Figure III.16. The free surface mesh is
regenerated when it is necessary, consequently the mesh is of good quality. Nevertheless,
the sawtooth waves are clearly visible in Figure III.16a. The Gaussian �lter removes
them as it can bee seen in Figure III.16b.

(a) Without �ltering (b) Filtering every �ve time steps

Figure III.16 � E�ect of the �ltering of the scattered wave elevation on a simulation with a
translation cylinder along the y-axis (left) and a �xed cylinder (right).

III.10 Parallelization

Several techniques are used to decrease the CPU time of WS_CN. In the PhD work
of Letournel [44]:

� The (xOz) plane is used as symmetry plane to divide the number of panels by
two if the physical problem is symmetric;

� The �atness of the sea bottom allows not to mesh this surface because it is used
as a symmetry plane;

� A far-�eld approximation of the in�uence coe�cients enables to speed-up their
computation;

Chauvigné [45] developed a partial computation of the in�uence coe�cients. The
parts of the mesh which only have a small relative motion between each other keep
the same in�uence coe�cients. For example the panels of the numerical tank wall are
almost still during a simulation, so their in�uence on themselves is constant and does
not need to be evaluated again.
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Three new developments were added:

� The use of the sparse linear system solver PARDISO in the body mesh morphing
algorithm (cf. subsection III.4.1), as it was done in subsection III.3.3;

� The respect of the column-major order because WS_CN is implemented in For-
tran;

� The parallelization using OpenMP8 (Open Multi-Processing) of the computation
of the in�uence coe�cients.

Figure III.17 presents the results of the parallelization for a simulation with two
surface-piercing cylinders and a mesh of 8300 panels and 4550 nodes and without free
surface remeshing. The top �gure shows that the time saving is more important if the
in�uence coe�cients are completely evaluated. The interest of the partial computation
of the in�uence coe�cients depends on the relative velocity between the mesh parts and
so of the dynamics of the problem. The bottom �gure shows that the same �nal time is
reached with the two methods once the main e�ects of the parallelization are obtained.
From 5 threads, the interest of the partial computation of the in�uence coe�cients is
negligible. The partial computation is interesting for a sequential computation as it
lowers the simulation time of 50 %.

8https://www.openmp.org
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III.10. Parallelization

(a) Value of 100 for one thread

(b) Value of 100 for one thread and for the total computation

Figure III.17 � In�uence of the parallelization on the CPU time reduction for a partial and
total calculation.

The following pie charts outline the pro�ling of WS_CN with one and ten threads.
The reduction of the share of the in�uence coe�cient computation is compensated by the
inversion of the linear systems for the �rst and second boundary value problems. Hence,
further e�orts towards computational time reduction should focus on the algorithms for
solving the BVP problems.
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(a) One thread

(b) Ten threads

Figure III.18 � Pro�ling of WS_CN

The same validation case as in III.8 is used to compare the numerical results obtained
with and without the parallelization. Figure III.19 presents the comparison of the time
series of the cylinder motion and the wave elevation at the wave probe using a sequential
computation (nth = 1) and a parallel computation with 5 threads (nth = 5). The results
are identical.
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Figure III.19 � Comparison of time series of the heave motion (top) and the wave elevation
(bottom) from numerical results using a sequential (nth = 1) and parallel
(nth = 5) computation

III.11 Extension to multibody simulations

Letournel [44] and Chauvigné [45] only run single body simulations with WS_CN.
The extension to multibody simulations was necessary to perform marine operation
simulations involving at least two bodies subject to hydrodynamic loads. It unfolds in
two steps:

� The extension of the mesh generator;

� The extension of the hydrodynamic solver.

These developments were directly presented by taking into account a multibody format
for writing the equations in the previous sections. It stays to validate them both in
forced and free motions.

III.11.1 Forced motion

The test cases presented by Watai et al. [145] are used for the validation of the
capacity of WS_CN to deal with multiple interacting �oating bodies.

III.11.1.1 Presentation of the test cases

Watai et al. [145] conducted experimental tests at the University of Sao Paulo
(Brazil) with two cylinders in regular waves:

� One �xed cylinder, named Body 1 ;

� One moving cylinder, named Body 2, with a large prescribed harmonic motion
along the x-axis.
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The characteristics of these cylinders are listed in Table III.3.

Diameter (m) 0.4
Height (m) 0.36
Draft (m) 0.2

Position of Body 1 (m) (0, 0.3, 0)
Initial position of Body 2 (m) (0,−0.3, 0)

Table III.3 � Characteristics of the two cylinders

Three wave probes (WP1, WP2, WP3 ) are also used. Their position is given in
Table III.4.

WP1 (m) (0, 0.7, 0)
WP2 (m) (0, 0, 0)
WP3 (m) (0,−0.7, 0)

Table III.4 � Wave probe locations

The incident wave �eld coming from the negative y, so WP1 is upstream and WP3
downstream. The positions of every device are highlighted in Figure III.20.

Figure III.20 � Sketch of the top view of the experimental set-up (from [145])

Watai et al. [145] considered four regular waves, listed in Table III.5.

For each regular wave, three wave frequencies, ωpm, of the harmonic prescribed mo-
tion of Body 2 were selected. The motion amplitude, Apm is �xed at 0.37 m. Table III.6
presents the twelve test cases.

III.11.1.2 Results

A cylindrical domain is used for the simulations, with a radius of two wave lengths
(2λ). One wave length is used for the numerical absorbing beach. Bodies are meshed
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ID ω (rad/s) λ (m) A (m)

Reg 1 6.400 1.506 0.0115
Reg 2 6.800 1.330 0.0100
Reg 3 7.000 1.259 0.0095
Reg 4 7.200 1.190 0.0090

Table III.5 � Regular wave characteristics. λ and A represent the wave length and the wave
amplitude.

Case Wave ωpm (rad/s) Apm (m)

1 Reg 1 0.427 0.37
2 Reg 1 0.213 0.37
3 Reg 1 0.107 0.37
4 Reg 2 0.453 0.37
5 Reg 2 0.227 0.37
6 Reg 2 0.113 0.37
7 Reg 3 0.467 0.37
8 Reg 3 0.233 0.37
9 Reg 3 0.117 0.37
10 Reg 4 0.480 0.37
11 Reg 4 0.240 0.37
12 Reg 4 0.120 0.37

Table III.6 � Characteristics of the twelve test cases

at real scale. The ramp function (III.151) is applied for a wave period from the start of
the simulation.

The mesh convergence for Case 1 is presented in Figures III.21 and III.22. It is
noticed that the mesh convergence is slow along the x axis of the hydrodynamic loads
compared to the two other directions. A mesh of 20 000 panels is used. The time step
convergence is presented in Figures III.23 and III.24. It is also slow along the x-axis. A
time step of 0.005 s is used hereinafter. Figures III.25 and III.26 show the mesh of the
domain for Case 1.
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Figure III.21 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical results for di�erent meshes for Case 1

Figure III.22 � Comparison of time series of the wave elevations at WP1, WP2 and WP3

from numerical results for di�erent meshes for Case 1
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Figure III.23 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical results for di�erent time steps for Case 1

Figure III.24 � Comparison of time series of the wave elevations at WP1, WP2 and WP3

from numerical results for di�erent time steps for Case 1
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Figure III.25 � Top view of the mesh for Case 1

Figure III.26 � Bottom view of the mesh for Case 1

The prescribed harmonic motion of Body 2 for Case 1 is shown in Figure III.27.

Figure III.27 � Prescribed harmonic motion of Body 2 for Case 1

Numerical results of WS_CN and experimental data of Watai et al. [145] are com-
pared by using the wave elevations at the three wave probes and the hydrodynamic loads
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on Body 1 after removal of the hydrostatic part of the Bernoulli's equation (III.94). The
results of Case 1 are presented in Figure III.28 for the loads on Body 1, Figure III.29
for the wave elevations and Figure III.30 for the loads on Body 2. Case 5 and 10 were
also studied and comparisons are presented after digitization of the data of Watai et al.
[145]. Hydrodynamic loads on Body 1 are presented for Case 5 in Figure III.31 and
for Case 10 in Figure III.32. Experimental and numerical signals were synchronized a
posteriori, as the incident wave signals are not provided in [145].

Figure III.28 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical and experimental results for Case 1
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Figure III.29 � Comparison of time series of the wave elevations at WP1, WP2 and WP3

from numerical and experimental results for Case 1

Figure III.30 � Time series of the hydrodynamic loads on Body 2 from numerical results for
Case 1

140



III.11. Extension to multibody simulations

Figure III.31 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical and experimental results for Case 5

Figure III.32 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical and experimental results for Case 10
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The time series of the hydrodynamic loads show an overall good agreement between
the experimental data and WS_CN. The modulation of the amplitude of F x1 in Figures
III.28, III.31 and III.32 is well captured. The low frequency oscillations match the har-
monic motion of Body 2. In the three test cases, one can note that WS_CN appears to
overestimate the amplitude of the loads, especially for F x1 and F y1 while an underesti-
mation is observed for F z1 . Regarding the wave elevation, the modulations in η1 and η2

in Figure III.29 is observed in the numerical computations. The same overestimations,
as the hydrodynamic loads, are noticed.

Overestimations are also present in the work of Watai et al. [145] and are likely due
to the main hypotheses of the �uid solver (inviscid �uid, irrotational �ow). Nevertheless
Watai et al. [145] needed much less panels (4010 panels in total for Case 1) than the
present �uid method (around 20 000 on the free surface mesh for Case 1). These authors
used a body-exact approximation (using a linearized free surface at z = 0) whereas
a weak-scatterer hypothesis is applied here, which could explain the need of many
more panels and so a slower mesh convergence. The use of many remeshing processes,
because of the large relative motion, leads to interpolations of the physical quantity
on the free surface and could deteriorate the accuracy. In Case 1, the total mesh is
regenerated around 200 times during the simulations (5 % of the number of times
steps). Figure III.33 shows the e�ect of a forced remeshing process at every time
step. It is only noticeable along the x-axis. The remeshing processes cannot be deleted
otherwise large numerical error arise. Therefore, the e�ect of the required 200 remeshing
processes cannot be quanti�ed. Another possible explanation of the di�erences between
the numerical results and the experimental data is the use of the Gaussian �ltering.
In our simulations, the �ltering is applied every �ve time steps. If the �ltering is not
used, sawtooth waves appear (cf. Figure III.16) which lead to numerical errors. The
e�ect of the modi�cation of the frequency of call of the Gaussian �ltering is shown in
Figure III.34. Only few di�erences are present.

For the sake of illustration, the perturbed wave pattern for Case 1 at t = 24.595 s
is displayed in Figure III.35.
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Figure III.33 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical and experimental results for Case 1 with and without forced remeshing
processes

Figure III.34 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical and experimental results for Case 1 for di�erent frequencies of call of the
Gaussian �ltering (nliss)
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Figure III.35 � Perturbed component of the wave pattern (ηP ) at t = 24.595 s

III.11.1.3 Impact of the weak-scatterer hypothesis and in�uence of the

free surface nonlinearities

Figure III.36 presents the incident and perturbed components of the wave elevation
at the three wave probe locations. The weak-scatterer hypothesis (III.14) is not ful�lled
at every moment and everywhere even if the scattered component is lower than the
incident one. However, the incident wave �eld is always of small amplitude and steepness
(ε 6 1%) and the use of a body-exact approximation would be fully consistent. Watai
et al. [145] used this approach.
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Figure III.36 � Comparison of time series of the incident and scattered components of the
wave elevation at WP1, WP2 and WP3 from numerical results for Case 1

WS_CN may be switched to a body-exact approximation in order to evaluate the
interest of the weak-scatterer method for Case 1. The mesh convergence in case of a
body exact approximation is presented in Figures III.37 and III.38. The mesh with
12 000 panels is chosen. The time step is 0.005 s. The body-exact method requires less
panels than the weak-scatterer method (with 20 000 panels). Figures III.39 and III.40
present the comparison between the experimental data and both the weak-scatterer
and body-exact approximations. Only small di�erences are noticed between the weak-
scatterer and the body-exact approximations.

Finally, the weak-scatterer method seems to be slightly more accurate than the
body-exact method. This con�rms that the weak-scatterer method leads to a body-
exact approximation when the incident wave sti�ness and the free surface nonlinearities
are small as required by the body-exact approximation.

If the wave steepness (III.15) is increased, and so the free surface nonlinearities too,
then the di�erences between the two methods increase. Numerical results are showed
in Figures III.41 and III.42 for a wave amplitude twice higher than for Case 1 and in
Figures III.43 and III.44 for a wave amplitude three times bigger than Case 1. The
wave steepness for Case 1 is ε = 0.048. The wave length is kept constant, only the wave
amplitude is modi�ed.
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Figure III.37 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical results for Case 1 with a body-exact approximation and several meshes

Figure III.38 � Comparison of time series of the wave elevations at WP1, WP2 and WP3

from numerical results for Case 1 with a body-exact approximation and sev-
eral meshes

146



III.11. Extension to multibody simulations

Figure III.39 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical and experimental results for Case 1 with two hydrodynamic approxima-
tions

Figure III.40 � Comparison of time series of the wave elevations at WP1, WP2 and WP3

from numerical and experimental results for Case 1 with two hydrodynamic
approximations
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Figure III.41 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical results for ε = 0.096

Figure III.42 � Comparison of time series of the wave elevations at WP1, WP2 and WP3

from numerical results for ε = 0.096
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Figure III.43 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical results for ε = 0.144

Figure III.44 � Comparison of time series of the wave elevations at WP1, WP2 and WP3

from numerical results for ε = 0.144
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III.11.1.4 In�uence of the body nonlinearities

WS_CN may also be switched to a fully linear approximation. In this case, the free
surface is linearized at its mean position (z = 0) and the body conditions are linearized
at the equilibrium position of the bodies (initial position here). The mesh convergence
is shown in Figures III.45 and III.46. The mesh with 9000 panels is chosen. The time
step is 0.005 s. Less panels are required compared to the weak-scatterer and body-exact
approaches. Figures III.47 and III.48 present the comparison between the experimental
data, the weak-scatterer, the body-exact and the fully linear approximations. The am-
plitude and the frequency of F y1 and F z1 are good but the modulation of the amplitude
is not captured. The hydrodynamic load along the x-axis, F x1 , does not match the ex-
perimental data and the other numerical methods at all. Regarding the wave elevations,
the modulation is not captured either. Larger di�erences are observed for η1 and η2

because the hydrodynamic interactions are more important than for η3. Indeed, the
wave probe 3 is located in a sheltered area provided by Body 1 [145], which explains the
better agreement of the linear model with the weak-scatterer and body-exact models.

Finally, the linear model is not accurate enough to simulate the hydrodynamic in-
teractions in the present case. The free surface nonlinearities are small, which enables
the use of the body-exact approximation but the body nonlinearities are too important
to use a linear approximation. This con�rms that an unsteady potential �ow based
solver is required in case of large relative motions.

Figure III.45 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical results for Case 1 with a linear approximation and several meshes
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Figure III.46 � Comparison of time series of the wave elevations at WP1, WP2 and WP3

from numerical results for Case 1 with a linear approximation and several
meshes

Figure III.47 � Comparison of time series of the hydrodynamic loads on Body 1 from numer-
ical and experimental results for Case 1 with three hydrodynamic approxi-
mations
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Figure III.48 � Comparison of time series of the wave elevations at WP1, WP2 and WP3

from numerical and experimental results for Case 1 with three hydrodynamic
approximations

III.11.2 Free motion

In this section, the extension ofWS_CN to multibody simulations is veri�ed for sev-
eral bodies in free motion. A comparison is done between WS_CN and the di�raction-
radiation code Nemoh [47] coupled with InWave.

Two identical vertical cylinders (named Cylinder 1 and Cylinder 2 ) of radius 0.2 m,
length 0.2 m and draft 0.1 m are considered. The initial positions of Cylinder 1 and
Cylinder 2 are (0,−0.4, 0) and (0, 0.4, 0).

Their mass is 12.88 kg. An incoming regular wave of amplitude 0.001 m and wave
frequency 8 rad/s is used. A wave probe is present at the position (0.4, 0, 0). The
cylinders only move in heave. The multibody system used in InWave-Nemoh is made
of two bodies linked by a prismatic joint. Cylinder 1 is the base while Cylinder 2 is the
body 1. The set of modi�ed Denavit-Hartenberg coe�cients is given in Table III.7.

j σj γj (rad) bj (m) αj (rad) dj (m) θj (rad) rj (m)

1 1
π

2
0 0 0.8 -

π

2
0

Table III.7 � mDH parameters for the free motion test case in InWave-Nemoh

The mesh convergence using WS_CN is shown in Figure III.49 while the time step
convergence for a mesh of 15 000 panels is presented in Figure III.50. From these results,
a mesh of 15 000 panels with a time step of 0.005 s are selected in WS_CN.
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Figure III.49 � Mesh convergence using WS_CN for the heave motion of Cylinder 1 (top)
and Cylinder 2 (bottom)

Figure III.50 � Time step convergence using WS_CN for the heave motion of Cylinder 1

(top) and Cylinder 2 (bottom)

The mesh convergence of the hydrodynamic coe�cients (added mass, hydrodynamic
damping, exciting loads) using Nemoh is presented in Figure III.51. A33 and A77 repre-
sent the added mass coe�cients in heave of the whole multibody system and Cylinder
2 due to a unit heave acceleration of the whole multibody system and Cylinder 2, re-
spectively. B33 and B77 are the damping coe�cients in heave of the whole multibody
system and Cylinder 2 due to a unit heave velocity of the whole multibody system and
Cylinder 2, respectively. F3 and F7 denote the exciting forces in heave of the whole
multibody system and Cylinder 2, respectively. Based on the results of Figure III.51,
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the mesh with 2000 panels per cylinder is chosen.

(a) Added mass coe�cients

(b) Hydrodynamic damping coe�cients

(c) Exciting forces

Figure III.51 � Mesh convergence of the hydrodynamic coe�cients using Nemoh. The num-
ber of panels is given for one cylinder.

The �nal meshes for every hydrodynamic solver are displayed in Figure III.52.
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(a) Nemoh (b) WS_CN

Figure III.52 � Final meshes

In the linear model, once the hydrodynamic database is computed from Nemoh,
time-domain simulations are performed based on Cummins' equation [102] (cf. Ap-
pendix B) using InWave. The time step convergence is shown in Figure III.53. A time
step of 0.01 s is enough. It can be seen that the linear potential �ow approach requires
a smaller time step than the weak-scatterer approach. Regarding the number of pan-
els, the mesh of 15 000 panels used in WS_CN represents a mesh of 3300 panels per
cylinder. A smaller number of panels is required by the linear approach to reach the
convergence of the numerical results.

Figure III.53 � Time step convergence using InWave for the heave motion of Cylinder 1

The comparison between InWave-Nemoh andWS_CN is presented in Figure III.54.
The agreement is good between the two di�erent hydrodynamic models. The di�erences
observed at the beginning of the simulation are due to the e�ects of the ramp for
smoothing the appearance of the waves.
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Figure III.54 � Comparison of time series of the heave motion of Cylinder 1 from numerical
results of InWave-Nemoh and WS_CN

The comparison between the motion of the two cylinders is shown in Figure III.55 for
the weakly nonlinear solver and in Figure III.56 for the linear solver. q1 represents the
relative motion between the two bodies of the multibody system. For every method,
the two cylinders have the same motion, which is expected because the problem is
symmetrical.

Figure III.55 � Comparison of time series of the heave motion of Cylinder 1 and Cylinder 2

from numerical results of WS_CN

Figure III.56 � Comparison of time series of the relative heave motion between Cylinder 1

and Cylinder 2 from numerical results of Nemoh
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III.12 Conclusion

This chapter presented the hydrodynamic theory used in this PhD work inWS_CN :
the potential �ow approach based on the weak-scatterer hypothesis. A review of the
di�erent approximations of the potential �ow theory was provided along with a state
of the art of the use of the weak-scatterer approximation. In order to simulate ma-
rine operations involving several bodies subject to hydrodynamic loads, WS_CN has
been extended to multibody simulations. A validation in forced motion was presented
using experimental data. The comparison between the experimental data and the weak-
scatterer model gave good results for both the hydrodynamic loads and the wave el-
evations. Hydrodynamic interactions between the �oating bodies were well captured.
An analysis of the weak-scatterer hypothesis was done through the comparison with
a body-exact approximation and a fully linear approximation. As the wave steepness
was small, the body-exact model also gave good results compared to the experiments
but with fewer panels in the mesh. Nevertheless, when the wave steepness and the free
surface nonlinearities were increased, the weak-scatterer and body-exact approaches
started being di�erent. The linear approximation gave insu�ciently accurate results
compared to the experimental data.

These results have proved the interest of an unsteady potential �ow theory in case of
large relative motions. Furthermore, the weak-scatterer approximation is fully relevant
when the free surface nonlinearities are important, otherwise a body-exact could be
enough. If a body-exact approximation is used, in order to reduce the size of the mesh
and therefore the CPU time, a free surface Green's function (or Kelvin source Green's
function) could be preferred to the Rankine source Green's function used in WS_CN.
The free surface would not be meshed.

The extension to multibody simulations in free motion was validated by the com-
parison with the frequency-domain potential �ow-based solver Nemoh coupled with
InWave.

The stability of WS_CN has been improved by the implementation of the free
surface remeshing process. The CPU time has been decreased by the parallelization of
the computation of the in�uence coe�cients using OpenMP. The memory footprint has
been reduced by the use of the sparse linear system solver PARDISO.

The coupling of the potential �ow theory based on the weak-scatterer hypothesis of
WS_CN with the Composite-Rigid-Body Algorithm of InWave is the goal of the next
chapter.
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The previous chapters presented the main technical requirements to simulate ma-
rine operations: multibody dynamics, cable dynamics and hydrodynamics. The goal of
this chapter is to introduce the coupling between these models. First, a state of the art of
the multiphysics couplings is presented. Then, a coupling strategy, between the potential
�ow theory based on the weak-scatterer hypothesis of WS_CN and the Composite-Rigid-
Body Algorithm of InWave, is proposed and detailed. A validation of these developments
along with a comparison with other coupling strategies are presented.

IV.1 State of the art

IV.1.1 Multiphysics problems

Multiphysics problems are met in many �elds [146, 147]:

� Civil engineering: wind-structure interaction, soil dynamics, etc.;

� Ocean engineering: �uid-structure interaction, cavitation, acoustics, etc.;

� Aerospace, nuclear or automotive engineering: �uid-structure interaction, thermal-
structure interaction, etc.;

� Biological engineering: �uid-structure interaction, etc.;

� Other.

These multiphysics problems can be represented by partial di�erential equations in
space and time coupled at their physical boundaries. Software modules are generally
available to solve one domain of the physics (named a �eld). For coupled problems,
it is necessary to couple several software packages. Park et al. [148] published one of
the �rst papers on �uid-structure interaction (�nite-element methods for the structure,
boundary integral technique for the �uid). Since the early works, three schemes to
simulate multiphysics problems have arisen [146, 149]:

� Field elimination;

� Monolithic treatment;

� Partitioned treatment.

IV.1.1.1 Field elimination

The �eld elimination method eliminates one or more �elds in the coupled equations.
The other �elds are time-stepped simultaneously. For instance, in a �uid-structure
problem, this method implies to introduce the �uid equations into the motion equation,
so that this latter is the only equation to solve. The advantage of this method is
that it reduces the number of variables to time-step. But it leads to the increase in
the complexity of the multiphysics problem to solve (high-order time-derivatives can
appear) and the loss of mathematical properties [146]. This approach is rarely used.
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IV.1.1.2 Monolithic treatment

With a monolithic treatment, the governing di�erential equations are time-stepped
simultaneously. This system of di�erential equations is called the coupling equation.
The advantages of a monolithic treatment are the robustness and the accuracy as the
governing equations of the system are solved synchronously. But this approach involves
a complex assembling and solving of the set of equations. Furthermore, the temporal
discretization needs to be the same (although several time integrators may be used
[150]). Fixed time-step through the �eld solvers are inconvenient if one of them re-
quires a much smaller time step compared to the other ones. An example of monolithic
treatment is given by Blom [151] with a monolithic �uid-structure coupling using Eu-
ler's equation for the �uid and the motion equation for a rigid body. A scheme of a
monolithic coupling is shown in Figure IV.1.

Figure IV.1 � Monolithic approach in case of a �uid-structure coupling. X and F represent
the motion of the structure and the hydrodynamic loads.

IV.1.1.3 Partitioned treatment

With a partitioned treatment, each �eld of the physics is treated in isolation and
separately stepped in time. Several strategies exist to do so. Since 1980s, a general
theory of partitioned procedures for second-order systems has been developed by Park et
al. [152, 153]. In case of sequential execution of the �eld solvers, partitioned approaches
are named staggered solutions. This case was studied in detail by Felippa and Park
[146]. Di�erent algorithms were developed for the staggered approach [154, 155, 156].
The positive aspects of a partitioned treatment are the inherent modularity along with
the possibility to �t the time step, the time integrator and more generally the physical
model for every �eld solver. Thereby, each �eld solver is independent from the others.

161



Fluid-structure interaction

For complex coupled problems, this approach is more software-wise and less challenging
than the monolithic treatment. The drawbacks are the numerical errors and the stability
problems.

As the solvers are called asynchronously, it always exists a time-lag between the time
integrations of the �elds. For instance, the exact position of a �uid-structure interface is
not necessarily the same in every solver because the spatial discretizations are di�erent.
Therefore, the slip condition for an inviscid �uid or the no-slip condition for a viscous
�uid is not exactly enforced. The result of this is an arti�cial increase or decrease of the
energy in the system which leads to a loss of accuracy. The conservation of the energy
at the �uid-structure interface allows to improve the robustness and accuracy of such
partitioned approaches [157]. The energy conservation has also to be ensured with a
monolithic treatment when several spatial discretizations (meshes) are used [158]. The
use of a predictor can reduce the e�ects of the time-lag [157].

Amongst the staggered methods or loose couplings, there are two classes: the purely
sequential methods or explicit couplings and the iterative methods or implicit couplings
[156, 159]. Each method can also be divided into two versions: serial or parallel, leading
to four classical staggered coupling algorithms [160] (Figure IV.2):

� The explicit couplings:

• The conventional serial staggered method (CSS ) (Figure IV.3);

• The conventional parallel staggered method (CPS ).

� The implicit couplings:

• The block Gauss-Seidel method (Figure IV.4);

• The block Jacobi method.

The only advantage of the parallel version of a coupling method is the possibility of
parallelization. The numerical properties are better for the serial version [121]. By
using a retroactive loop, an implicit coupling gives the same results as a monolithic
treatment, other things being equal [156]. But, the solvers are called more than once
per time step. Consequently implicit couplings lead to an increase of the CPU time
compared to explicit couplings.

Figure IV.2 � Main loose coupling algorithms
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(a) Fluid formulation (b) Mechanical formulation

Figure IV.3 � CSS algorithms. X and F represent the motion of the structure and the hy-
drodynamic loads.

Figure IV.4 � Block Gauss-Seidel algorithm in case of a �uid-structure coupling. X and F
represent the motion of the structure and the hydrodynamic loads.
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Other algorithms exist. For instance, subcyles can be added if a �eld needs much
smaller time step, couplings can be asynchronous, the exit condition in a iterative loop
may be enhanced by using a Newton or Newton-like method in order to accelerate the
implicit coupling [160], etc.

In 1995, Belanger et al. [161] encountered numerical instabilities in their staggered
�uid-structure coupling when the �uid added-mass became larger than the structural
mass. They proposed a method to avoid these numerical discrepancies by adding a
virtual added-mass in the motion equation to stabilize their simulation [161]. An expla-
nation was given using a theoretical model [162]. It showed that the ratio of the �uid
density over the structural density is critical for the stability of the staggered coupling.
Moreover, when decreasing the time step, instabilities become more important. Förster
et al. [163] showed that this problem does not depend on the time integration scheme.
The added-mass e�ect was also studied for compressible �ows by van Brummelen [164].
Yvin [160] used a relaxation method to reduce the numerical instabilities without modi-
�cations of the �uid or structure solvers. As this added-mass e�ect depends on the �uid
density, it does not appear when the �uid is the air, because its density is too small.
This numerical problem is mostly encountered in partitioned water-structure coupling.

IV.1.2 Computer programming

In the previous section, coupling schemes were presented from a physical and nu-
merical point of view. The software architecture of multiphysics numerical tools is an
important consideration too. Two options are possible to solve a coupled problem:
either a new numerical tool is created and dedicated to the multiphysics problem or
di�erent existing numerical tools are coupled.

Partitioned approaches are modular by their nature. The use of legacy codes is pos-
sible. The independence of the implementation of the di�erent solvers is guaranteed.
For the monolithic treatment of a coupled problem, it is not straightforward. This is
why it is necessary to make a distinction between a monolithic formulation, where a
new numerical tool is created ex nihilo, including all the solvers, and a tight coupling in
which di�erent independent subsystems solving a unique �eld of the physics are linked
through a coupling equation and time-stepped simultaneously. This latter coupling is
considered as a partitioned approach [159]. It gathers the numerical advantages of a
monolithic treatment (robustness, accuracy) and the modularity and the software-wise
approach of a partitioned treatment. Loose couplings are distinct of tight couplings by
the separate time-stepping of the solvers. For example, Li [150] used a tight coupling
approach with a Smooth-Particle-Hydrodynamics model and a �nite-element method.

Finally, the di�erent coupling strategies are summarized in Figure IV.5.
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Figure IV.5 � Main coupling strategies

IV.1.3 Language binding

In partitioned approaches, the implementation of the solvers is independent from
the others. Consequently, di�erent programming languages may be used, for instance
to take advantage of the speed of low-level languages and the ease of implementation of
high-level languages. Doing so input-output communication between solver may become
challenging. Di�erent methods exist to overcome this di�culty.

The simplest approach relies on temporary text �les. Each matrix, vector or scalar
required by a solver is written in a temporary �le. In case of an important bulk of data,
the time of writing and reading makes this method prohibitive.

The use of a glue code is another possibility [165]. All modules are interfaced with
one high-level program which manages the input-output relationships for the whole code
via DLLs (Dynamic Link Library) or the direct coupling of the source codes. This latter
option needs the use of a speci�c programming language dedicated to the interfacing
with other existing applications. Python1 is an example of such a language. Di�erent
tools exist to compile low-level languages with Python. For example, Cython2 allows
linking scripts written in C or C++ with Python [166], f2py3 does the same between
Fortran and Python [167], etc. The availability of the source codes restrains clearly this
method (for instance when commercial tools are used).

Finally the use of message passing between solvers is another possibility. For in-
stance, MPI communication (Message Passing Interface) enabled the coupling between
the �uid solver SPH-�ow4 and the structural solver Code_Aster5 [121]. Yvin [160]
preferred employing network sockets to link the multibody dynamics software package
MBDyn6 and the hydrodynamic solver ISIS-CFD7.

1https://www.python.org
2http://cython.org
3https://docs.scipy.org/doc/numpy/f2py
4http://www.sph-flow.com
5https://www.code-aster.org
6https://www.mbdyn.org
7https://lheea.ec-nantes.fr/software-and-patents/isis-cfd-193387.kjsp
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IV.2 Coupling between the CRBA and the weakly

nonlinear potential �ow theory

IV.2.1 The original coupling in WS_CN

The terms to de�ne the di�erent methods to solve the �uid-structure interaction,
presented in subsubsection III.2.6.1, do not match those presented in section IV.1. Each
�eld (�elds of the potential �ow theory and multiphysics coupling theory) has de�ned
its own terms. Nevertheless, an equivalence is possible and is presented in Table IV.1.
The number of boundary value problems to solve for computing the time-di�erentiation
of the velocity potential is given for each method. The boundary value problem for
solving the velocity potential is not included.

Potential �ow theory Multiphysics coupling theory NBIE

Backward �nite di�erence Loose explicit 0
Iterative Loose implicit 1 + i

Mode decomposition Monolithic 7
Indirect Monolithic 6

Implicit boundary Monolithic 1

Table IV.1 � Equivalence of the terms to de�ne the �uid-structure couplings used in the
potential �ow theory and in the multiphysics coupling theory. NBIE denotes
the number of boundary integral equations to solve at each time step to compute
∂φ

∂t
. i represents the number of iterations to reach the convergence at each time

step.

The mode decomposition and indirect methods are two monolithic couplings because
the di�erential equations are time-stepped simultaneously. But they are speci�c to the
potential �ow modelling because of the mode decomposition and the use of the Green's
second identity. The implicit boundary method is strictly a monolithic coupling, as the
di�erential equations of the potential �ow theory and the motion equations are solved
at the same time.

IV.2.2 The choice of a coupling strategy

As presented in the previous sections, several coupling strategies are possible. In-
Wave and WS_CN already existed before this PhD work, therefore a monolithic cou-
pling, which leads to a new implementation of both solvers was not a meaningful option.
An implicit loose coupling would lead to a higher CPU time cost than a tight coupling.
An explicit loose coupling would only give a small reduction of the computation time,
as the second Boundary Value Problem always needs to be �gured out, for the price of
a decrease of the accuracy and the stability of the simulation.

An advantage of a loose coupling approach is the possibility to �t the time step
for each solver. The mechanical solver needs to simulate cables and leads to a sti�
system of di�erential equations, so small time steps are expected. The suitable order
of magnitude of the �uid solver time step is not predictable with accuracy. But the
subcycling of the mechanical solver in a tight coupling could �x this problem.

This is why, in order to maintain the robustness, the stability and the accuracy,
without increasing signi�cantly the CPU time while creating a modular architecture, a
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tight coupling between the Composite-Rigid-Body Algorithm of InWave and the weakly
nonlinear potential �ow theory of WS_CN is preferred.

IV.2.3 Theoretical developments

The tight coupling between the Composite-Rigid-Body Algorithm and the weakly
nonlinear potential �ow theory involves solving both the mechanical and �uid governing
equations in the same time. It requires the introduction of the hydrodynamic loads in
the multibody motion equation (I.62) and the expression of the slip condition (III.105)
with respect to the articular accelerations.

IV.2.3.1 Multibody motion equation

Two methods are possible for taking into account the hydrodynamic loads in the
multibody motion equation. The �rst method involves to include the hydrodynamic
loads in the external load vector jFej (Method 1 ). For example, the weight is added
in the multibody motion equation following this method (cf. section I.4). The second
method requires the projection of the hydrodynamic loads in the articular space using
the articular variables (Method 2 ). For instance, the vector of the internal loads along
the joint axes Γ (I.62) follows this approach.

In the case of the weight, Method 1 is straight forward. But, Method 2 could also be
applied. Regarding the hydrodynamic loads, Method 1 is not as feasible. As seen in sub-
section III.2.6, the hydrodynamic loads bring a new unknown: the time-di�erentiation
of the velocity potential. This unknown must be accessible and isolated to form the
linear system of the �uid-structure coupling. Method 1 does not enable that. That is
why, Method 2 is preferred.

The application of Method 2 to include the hydrodynamics loads in (I.62) gives:

H

(
0V̇0

q̈

)
=

(
06×1

Γ

)
−C +

(
0FWSC

ΓWSC

)
(IV.1)

0FWSC is the sum of all hydrodynamic loads acting on the whole multibody system
at O0 and projected in the base frame:

0FWSC =
∑

j∈FWSC

0Nj
e
eGj

eFWSC
j (IV.2)

with:

� FWSC the set of the bodies subject to the hydrodynamic loads. Each hydro-
dynamic body has a number in the multibody system and a number in FWSC .
There is:

card(FWSC) = NWSC (IV.3)

card(∗) represents the number of elements of a set.

� eFWSC
j the hydrodynamic loads acting on the body j at Gj in Σe given by (III.95);

� eGj the (6× 6) matrix to change the point of computation of the hydrodynamic
loads from Gj to Oj :

eGj =

(
I3 03×3

S( eRj
jSj ) I3

)
(IV.4)
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� 0Nj
e the (6 × 6) matrix to project the hydrodynamic loads into the base frame

from Oj to O0:

0Nj
e =

(
0Re 03×3

S(0Pj )0Re
0Re

)
(IV.5)

ΓWSC is the sum of the hydrodynamic articular loads:

ΓWSC =
∑

j∈FWSC\{0}

ΓWSC
j (IV.6)

where ΓWSC
j is the projection of the hydrodynamic loads acting on the body j into the

articular space [48]:
ΓWSC
j = jJTj

jρe
eGj

eFWSC
j (IV.7)

with:

� jρe the (6× 6) projection matrix of the hydrodynamic loads from Σe to Σj :

jρe =

(
jRe 03×3

03×3
jRe

)
(IV.8)

� jJj the (6× n) Jacobian matrix of the body j, de�ned by:

jVj = jT0
0V0 + jJj q̇ (IV.9)

The Jacobian matrix represents the mapping between the operating space (using Carte-
sian coordinates) and the articular space (using articular variables). If the base is �xed,
the kth column of jJj represents the contribution of the kth articular velocity to the
Cartesian velocity jVj . Following this de�nition, the Jacobian matrix does not exist
for the base (j = 0).

The hydrodynamic loads are expressed by (III.110). Equation IV.1 becomes:

H

(
0V̇0

q̈

)
−


∑

j∈FWSC

0Nj
e
eGj

eCTj φ̇
P (Bj)∑

j∈FWSC\{0}

jJTj
jρe

eGj
eCTj φ̇

P (Bj)



=

(
06×1

Γ

)
−C +


∑

j∈FWSC

0Nj
e
eGj

eTWSC
j∑

j∈FWSC\{0}

jJTj
jρe

eGj
eTWSC

j

 (IV.10)

IV.2.3.2 Slip conditions

The slip conditions (III.109) need to be expressed with respect to the articular accel-
erations instead of the Cartesian accelerations. The �rst step is to write the Cartesian
velocity with respect to the velocity of the base and the articular velocities. From (I.40),
one has:

eωj = Sj

ϕ̇jθ̇j
ψ̇j

 (IV.11)
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with:

Sj =

CθjCψj
−Sψj

0

CθjSψj
Cψj

0

−Sθj 0 1

 (IV.12)

eVj is the Cartesian velocity of body j at Oj with respect to Σe. η̇j is de�ned by
(I.18) for the body 0 but its de�nition is extended for every body j. This velocity is
expressed at Gj and using the Cardan angles. eVj and η̇j are related by:

η̇j = τ−1
j

eVj (IV.13)

with:

τ−1
j =

(
I3 −S( eRj

jSj )

03×3 S−1
j

)
(IV.14)

The (6×(n+6)) generalized Jacobian matrix eΛj allows to relate the (6×1) velocity
vector of body j in Σe to the base and articular velocities:

eVj = eΛj

(
0V0

q̇

)
(IV.15)

The kth column of eΛj represents the contribution of the kth component of the base ve-
locity 0V0, if k 6 6, or the kth, if k > 6, articular velocity to the Cartesian velocity eVj .

After time-di�erentiation of (IV.15) and (IV.13) and the introduction of (I.61),
the Cartesian acceleration, η̈j , can be expressed as function of the base and articular
accelerations:

η̈j = τ̇−1
j

eΛj

(
0V0

q̇

)
+ τ−1

j
eΛ̇j

(
0V0

q̇

)

+ τ−1
j

eΛj

(0V̇0

q̈

)
−

(S(0ω0 )0v0

03×1

)
0n×1

 (IV.16)

The time-derivation of τ−1
j is expressed by:

τ̇−1
j =

(
03×3 − eRj S( jωj )S( jSj ) jRe

03×3 −S−1
j ṠjS

−1
j

)
(IV.17)

Finally, the introduction of (IV.16) in (III.109) yields:

φ̇Pn (Bj) = −φ̇In(Bj) + CKjτ
−1
j

eΛj

(
0V̇0

q̈

)

+ CKj

(τ̇−1
j

eΛj + τ−1
j

eΛ̇j )

(
0V0

q̇

)
− τ−1

j
eΛj

(S(0ω0 )0v0

03×1

)
0n×1

+ Qj (IV.18)

It remains to clarify the expressions of the Jacobian matrix jJj , the generalized
Jacobian matrix eΛj and its time-di�erentiation eΛ̇j .
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IV.2.3.3 Jacobian matrices

From the de�nition of the Jacobian matrices given in IV.2.3.1, let us consider the
kth articulation of a multibody system and a body j such as j > k. The base is assumed
motionless. The articular velocity q̇k leads to a velocity vector kVk

j for the body j:

kVk
j =

([
σk

kzk + σ̄k(
kzk × kPj )

]
q̇k

σ̄k
kzk q̇k

)
(IV.19)

By summing the contributions of all the joints of the direct branch β(j) (as de�ned
in subsection I.4.3), one can have:

Vj =
∑
k∈β(j)

kVk
j (IV.20)

=


∑

k∈β(j)

[
σk

kzk + σ̄k(
kzk × kPj )

]
q̇k∑

k∈β(j)

σ̄k
kzk q̇k

 (IV.21)

It is necessary to de�ne a common frame of projection, for instance Σj :

jVj =


∑

k∈β(j)

[
σk

jzk + σ̄kS( jzk ) jRk
kPj )

]
q̇k∑

k∈β(j)

σ̄k
jzk q̇k

 (IV.22)

Thus, following the matrix format of (IV.9), the expression of jJj is:

colk(
jJj ) =


([
σk

jzk + σ̄kS( jzk ) jRk
kPj )

]
q̇k

σ̄k
jzk q̇k

)
if k ∈ β(j)

06×1 if k /∈ β(j)

(IV.23)

The change of frames is achieved using the projection matrix (IV.8), for instance in
the base frame:

0Jj = 0ρj
jJj (IV.24)

IV.2.3.4 Expression of eΛj

The projection in Σe of (IV.9) leads to:
eVj = eρj

jVj (IV.25)

= eρj
jT0

0V0 + eρj
jJj q̇ (IV.26)

= eρ0
0Lj

0V0 + eρ0
0Jj q̇ (IV.27)

= eρ0

(
0Lj

0V0 + 0Jj q̇
)

(IV.28)

where:

� 0Lj changes the point of computation of 0V0 from O0 to Oj :

0Lj =

(
I3 −S(0Pj )

03×3 I3

)
(IV.29)

� the expression of 0Jj is given by (IV.24).

Based on (IV.15), the expression of the generalized Jacobian matrix is:

eΛj =


eρ0

(
0Lj

0Jj

)
if j 6= 0

eρ0

(
0Lj 06×n

)
if j = 0

(IV.30)
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IV.2.3.5 Expression of eΛ̇j

The time-di�erentiation of (IV.30) is challenging because of the Jacobian matrix
0Jj . Two methods exist to compute the time-derivation of such a Jacobian matrix. The
�rst one is a direct calculation as presented by Hourtash [168]. The drawback of this
approach is its complexity. The second method is based on a recursive algorithm which

computes eΛ̇j

(
0V0

q̇

)
instead of eΛ̇j directly [169].

The time-derivative of (IV.15) is:

eV̇j = eΛ̇j

(
0V0

q̇

)
+ eΛj

(0V̇0

q̈

)
−

(S(0ω0 )0v0

03×1

)
0n×1

 (IV.31)

Assuming 0V̇0 = 06×1 and q̈ = 0n×1 and applying (IV.30):

eV̇∗j = eΛ̇j

(
0V0

q̇

)
− eρ0

(
S(0ω0 )0v0

03×1

)
(IV.32)

By denoting:
eV̇∗j = eV̇j

∣∣∣∣0V̇0=06×1
q̈=0n×1

(IV.33)

eV̇∗j can also be expressed by:
eV̇∗j = eρj

jV̇∗j (IV.34)

The introduction of (IV.34) in (IV.32) gives:

eΛ̇j

(
0V0

q̇

)
= eρj

jV̇∗j + eρ0

(
S(0ω0 )0v0

03×1

)
(IV.35)

Using the assumption q̈ = 0n×1 in (I.48) allows writing for i = aj :

jV̇∗j = jTi
iV̇∗i + jγj (IV.36)

While the hypothesis 0V̇0 = 06×1 initializes this recursive equation:

0V̇∗0 = 06×1 (IV.37)

Using (IV.36) and (IV.37), jV̇∗j can be computed for each body during the Composite-

Rigid-Body Algorithm. Then, the quantity eΛ̇j

(
0V0

q̇

)
can be calculated from (IV.35).

Thereby:

eΛ̇j

(
0V0

q̇

)
=





eρj
jV̇∗j + eρ0

(
S(0ω0 )0v0

03×1

)
with:
jV̇∗j = jTi

iV̇∗i + jγj for i = aj
0V̇∗0 = 06×1


if j 6= 0

eρ0

(
S(0ω0 )0v0

03×1

)
if j = 0

(IV.38)
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IV.2.3.6 Linear system and time integration

The tight �uid-structure coupling between the Composite-Rigid-Body Algorithm
and the weakly nonlinear potential �ow theory is formed by (III.108), (IV.10) and
(IV.18):

Gφ̇ = Hφ̇n

H

(
0V̇0

q̈

)
−


∑

j∈FWSC

0Nj
e
eGj

eCTj φ̇
P (Bj)∑

j∈FWSC\{0}

jJTj
jρe

eGj
eCTj φ̇

P (Bj)

 =

(
06×1

Γ

)
−C +


∑

j∈FWSC

0Nj
e
eGj

eTWSC
j∑

j∈FWSC\{0}

jJTj
jρe

eGj
eTWSC

j


φ̇Pn (Bj)−CKjτ

−1
j

eΛj

(
0V̇0

q̈

)
=

−φ̇In(Bj) + CKj

(τ̇−1
j

eΛj + τ−1
j

eΛ̇j )

(
0V0

q̇

)
− τ−1

j
eΛj


(

S(0ω0 )0v0

03×1

)
0n×1


+ Qj ∀j ∈ FWSC

(IV.39)
Equation IV.39 may be re-written as a (N +

∑
j∈FWSC

N(Bj) + n+ 6) linear system:

AX = B. N is the total number of nodes in the mesh, N(Bj) is the number of nodes
in the mesh of the body j and n is the number of degrees of freedom in the multibody
system. It is solved by using a GMRES method with a diagonal preconditioner. Doing
so, the vector X is known:

X =



φ̇Pn (FS)

φ̇P (T )
...

φ̇P (Bj)
...

φ̇Pn (Bj)
...

0V̇0

q̈


(IV.40)
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The state vector of this coupling (CRBA−WSC ) is:

YCRBA−WSC =



φP (FS)
ηP

Pmesh
...
ηj
...
η̇j
...
ν0

q
q̇



(IV.41)

Its time-di�erentiation is obtained using:

� (III.29) for φ̇P (FS) and η̇P ;

� (III.141) and (III.147) for vmesh;

� (IV.16) for η̈j ;

� (I.93) and (I.61) for ν̇0;

� (I.93) for q̈.

The time-stepping is achieved using a fourth-order explicit Runge-Kutta scheme
with a �xed time step (I.94).

IV.2.4 Language binding

The Composite-Rigid-Body Algorithm is implemented in C++ in the numerical tool
InWave while the weakly nonlinear potential �ow theory is implemented in Fortran 90 in
the solver WS_CN. Thus, a language binding is mandatory because of the two di�erent
programming languages. As explained in subsection IV.1.3, di�erent possibilities of
language binding exist. The source code of both InWave and WS_CN are available
so the use of a glue code to guarantee the modularity of the numerical �uid-structure
coupling is favoured. The co-simulation is driven in a Python environment. Cython
makes the language binding between the C++ source code and the Python glue code
whereas f2py does the same for the Fortran 90 source code. These tools compile the
source code and create a Python library (.pyd) for each solver which can be called in a
Python environment.

The creation and the solving of the tight �uid-structure coupling along with the
temporal loop of the co-simulation are achieved by a Python numerical tool named
InWaveS_CN. Figure IV.6 presents the relationships between InWave, WS_CN and
InWaveS_CN.
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Figure IV.6 � Language binding between InWave and WS_CN using Python as glue code
language. The red, green and blue colors represent the C++, Python and
Fortran languages.

IV.2.5 Implementation

The implementation of the tight coupling between InWave and WS_CN unfolds in
seven steps:

InWave performs the three stages of the Composite-Rigid-Body Algorithm
while WS_CN computes the in�uence coe�cients and solves the �rst boundary
value problem;

The quantities, required for solving the �uid-structure interaction, are sent to
InWaveS_CN ;

The linear system (IV.39) is formed;

The linear operator, the right-hand side along with the initialization of the
solution are sent to WS_CN ;

The iterative method GMRES is applied to solve the linear system;

The solution of the linear system is sent to InWaveS_CN ;

The solution is assigned to the �uid and mechanical solvers, the multibody
acceleration is expressed into the Cartesian space. The state vector of each solver
is time-stepped.

Figure IV.7 presents the sketch of the seven di�erent steps. Only one stage of the
fourth-order Runge-Kutta method is represented.
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Figure IV.7 � The seven steps of the tight coupling between InWave and WS_CN. The red,
green and blue colors represent the C++, Python and Fortran languages. The
arrows denote the communication between the modules. The color of the ar-
rows depends on the programming language which sends the data. The super-
script n denotes the nth time step.

IV.3 Validation

The �uid-structure coupling presented in this chapter is now compared to an aca-
demic test case which can also be run by the weakly nonlinear potential �ow-based
solver alone.

Two identical surface-piercing �oating circular cylinders are considered. Both �oat-
ing bodies (named Cylinder 1 and Cylinder 2 ) have a radius of 0.2 m, a height of 1 m
and a draft of 0.5 m. The position of the centers of gravity along with inertia charac-
teristics are given in Table IV.2. At the starting time, the two cylinders are aligned
along the y-axis and separated by 1 m. The incident wave is regular, with an amplitude
of 0.01 m, a frequency of 8 rad/s and propagating towards the positive x. A cylindrical
domain of radius 2λ is used with an absorbing beach length of λ. The initial mesh, with
10 650 panels, is showed in Figure IV.8. The time step is 0.01 s.

Each body has three degrees of freedom; surge, heave and pitch. Regarding the
multibody modelling, Cylinder 1 is considered as the base of the multibody system.
Three joints are necessary to ensure the three dof of Cylinder 2. The two �rst joints are
prismatic while the last one is revolute. The modi�ed Denavit-Hartenberg parameters
of the multibody system are given in Table IV.3. d1 represents the relative distance
between the two cylinders.

The time series of the motions of both Cylinder 1 and Cylinder 2 are presented
in Figures IV.9 and IV.10. Numerical results coming from WS_CN are based on
(III.112) while those obtained with InWaveS_CN use (IV.39). They show a perfect
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agreement between the two formulations which validates the implementation of the
present coupling.

Figure IV.8 � Initial mesh of the comparison test case between WS_CN and InWaveS_CN

CoG of Cylinder 1 (m) (0,−0.5, 0)

CoG of Cylinder 2 (m) (0, 0.5, 0)

Mass (kg) 64.4

IGyy (kg m2) 10

Table IV.2 � Inertia characteristics and initial position of the centres of gravity of Cylinder 1
and 2

j σj γj (rad) bj (m) αj (rad) dj (m) θj (rad) rj (m)

1 1
π

2
0

π

2
1 π 0

2 1 0 0
π

2
0 −π

2
0

3 0 0 0
π

2
0

π

2
0

Table IV.3 � mDH parameters associated with the multibody system
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Figure IV.9 � Comparison of time series of the motions of Cylinder 1 from numerical results
of InWaveS_CN and WS_CN

Figure IV.10 � Comparison of time series of the motions of Cylinder 2 from numerical results
of InWaveS_CN and WS_CN
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IV.4 Other coupling strategies

Using the Python environment, loose coupling strategies are easily feasible and may
be compared to the tight coupling presented above. A tight coupling solves (IV.39)
whereas a loose coupling solves Equations (III.108) and (III.109) �rst and then (IV.1)
or vice versa. In case of an iterative loose coupling (or implicit loose coupling) a test
condition is necessary within the internal loop. It is given by (IV.42). The triplet
(p, n, i) denotes the pth component of the vector, the nth time step and the ith internal
step. 

∣∣∣0V̇0(p, n, i+ 1) − 0V̇0(p, n, i)
∣∣∣ 6 ε ∀p ∈ J1 ; 6K

|q̈(p, n, i+ 1)− q̈(p, n, i)| 6 ε ∀p ∈ J1 ; nK

max
(∣∣∣φ̇P (Bj , n, i+ 1)− φ̇P (Bj , n, i)

∣∣∣) 6 ε ∀j ∈ J1 ; NK

(IV.42)

ε represents the tolerance of the GMRES method. For the sake of speed, a maximum
of 30 internal steps is �xed.

Three following couplings are considered:

� Tight;

� Explicit loose with a �uid formulation;

� Implicit loose with a �uid formulation.

They are compared using the test case presented in section IV.3. Figure IV.11
and Figure IV.12 show the surge, heave and pitch motions for the Cylinders 1 and 2
based on a tight, loose explicit and loose implicit couplings. Loose couplings use a
�uid formulation. As expected, the tight and implicit loose couplings match perfectly
while the explicit loose coupling shows some di�erences. This is due to the time lag
between the computations of the hydrodynamic loads and the accelerations. Regarding
the implicit loose coupling, this approach needs between 15 and 25 internal iterations
per computation. The addition of a predictor and/or corrector within the internal loop
could reduce the number of iterations. Table IV.4 presents the CPU time for each
coupling strategy without using the parallelization of the in�uence coe�cients. The
explicit loose coupling is quicker than the tight coupling but it is less accurate. The
implicit loose coupling has an opposite behaviour. Finally, the tight coupling is a good
compromise between the CPU cost, the robustness and the accuracy. The increase of
the CPU time when the tight coupling is used is a consequence of the communication
time between the di�erent modules and the di�erent languages.

The level of di�erences between a tight and a loose explicit coupling depends on
the case (incident wave, hydrodynamic interactions, etc.). For instance, if the center-
to-center distance the two cylinders is 0.6 m instead of 1.0 m (d1 = 0.6), the di�erences
in heave motion increase because of the more important hydrodynamic interactions
between the bodies (Figure IV.13).

Moreover, the tight and implicit loose couplings of InWaveS_CN along with the
weakly nonlinear potential �ow-based solver WS_CN lead to the same results whereas
three di�erent sets of di�erential equations need to be solved. This fact ensures the
validation of the di�erent �uid-structure couplings presented in this chapter.
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Figure IV.11 � Comparison of time series of the motions of Cylinder 1 from numerical results
of InWaveS_CN for a tight, loose explicit and implicit couplings

Figure IV.12 � Comparison of time series of the motions of Cylinder 2 from numerical results
of InWaveS_CN for a tight, loose explicit and implicit couplings
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Coupling strategy Numerical tool CPU time (h)

Monolithic WS_CN 40.7

Tight InWaveS_CN 49.2

Explicit loose InWaveS_CN 33.6

Implicit loose InWaveS_CN 67.0

Table IV.4 � Comparison between di�erent coupling strategies

Figure IV.13 � Comparison of the heave motion of Cylinder 1 with d1 = 0.6 from numerical
results of WS_CN and InWaveS_CN with a loose explicit coupling

IV.5 Coupling between the CRBA and the low-order

lumped mass theory

The coupling between the InWave and WS_CN may be used to performed a lower-
ing operation including a vessel, a hoisting cable and a payload. But, as soon as there is
a cable with one extremity connected to the multibody system and the other extremity
�xed in the Cartesian frame, the CRBA cannot be used. This is the case, for example,
for the mooring cables where the endpoints are �xed to the vessel and the seabed or
the hoisting cable used in chapter VI where the position of the winch and the rotation
axis of the buoy are �xed in the global frame. In the direct dynamics algorithms of
InWave, it is only possible to prescribe the position of the base in Σe, the other bodies
being located using relative coordinates. The body positions may be prescribed when
inverse dynamics algorithms are used. Consequently, two choices are possible to �gure
out this problem. Either developing some inverse dynamics algorithms or simulating
cables using the Cartesian coordinates. This latter approach is preferred because, as ex-
plained in section II.2, a low-order lumped mass theory based solver, named CableDyn,
has been developed and can be easily coupled with InWaveS_CN.

IV.5.1 Coupling strategy

The low-order lumped mass theory and the Composite-Rigid-Body algorithm are
coupled using an explicit loose coupling for the sake of ease of development (cf. subsub-
section IV.1.1.3). In other words, at each time step, the spring loads are evaluated from
the position of the multibody system at the previous time step. Then, these loads are
added to the multibody motion equation (IV.1). A tight coupling would have been more
complex to implement as it would require to solve both the multibody motion equation
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(IV.1) and the motion equation for each cable node (II.23) simultaneously. Further-
more, the low-order lumped mass theory is based on Cartesian coordinates whereas the
multibody theory uses relative coordinates, therefore a change of coordinate system for
one of the two solvers would be mandatory. A loose coupling between a �oating body
and cables (for example a mooring system) provides good results compared to a tight
coupling as shown by Jacob et al. [170].

One advantage of the loose coupling with the cable solver is the possibility to �t the
time step, by the use of the subcycling technique. Indeed, the time step to solve the
cable dynamics is usually much smaller than for the �uid-structure dynamics. It is also
possible to use another time integration scheme than the fourth-order Runge-Kutta
scheme of InWave to add some numerical damping in the cable solver (cf. subsec-
tion II.1.2). If necessary, it is easy to transform the present explicit loose coupling in
an implicit loose coupling with the addition of an retroactive loop.

Finally, the �uid-structure coupling is tight while the cable-structure coupling is
loose and explicit. Figure IV.14 shows the algorithm of the coupling between the three
solvers: InWave, WS_CN and CableDyn.

Figure IV.14 � Tight-loose coupling between InWave (structure solver), WS_CN (�uid
solver) and CableDyn (cable solver). X, F and T represent the motion of
the structure, the hydrodynamic loads and the cable loads.

IV.5.2 Theoretical developments

Let us consider a cable of which one extremity, the anchor, is position-controlled
and the other extremity, the fairlead, is �xed to the jth body of the multibody system
at the point Aj . The notations de�ned in chapter I are used in the rest of this section.
Following the method used in subsubsection IV.2.3.1 to apply the hydrodynamic loads,
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the cable loads are directly added to the multibody motion equation (IV.1):

H

(
0V̇0

q̈

)
=

(
06×1

Γ

)
−C +

(
0FWSC

ΓWSC

)
+

(
0FCable

ΓCable

)
(IV.43)

0FCable is the sum of all cable loads acting on the whole multibody system at O0

and projected in the base frame:

0FCable =
∑

j∈FCable

0Nj
e
eGCable

j
eFCable

j (IV.44)

with:

� FCable the set of the bodies subject to cable loads;

� eFCable
j the cable loads acting on the body j at Aj in Σe and expressed by:

eFCable
j = T0 + C0 (IV.45)

The subscript 0 refers to the node 0 of the cable (cf. subsection II.2.2), which is
the fairlead by de�nition. The axial tension T0 and the axial damping force C0

are evaluated from (II.29) and (II.32), for each cable.

� eGCable
j the (6× 6) matrix to change the point of computation of the cable loads

from Aj to Oj :

eGCable
j =

(
I3 03×3

S(eRj
jOjAj) I3

)
(IV.46)

� jOjAj the position of the fairlead connected to the body j with respect to Σj ;

� 0Nj
e given by (IV.5).

ΓCable is the sum of the cable articular loads:

ΓCable =
∑

j∈FCable\{0}

ΓCablej (IV.47)

where ΓCablej is the projection of the cable loads acting on the body j into the articular
space:

ΓCablej = jJTj
jρe

eGCable
j

eFCable
j (IV.48)

where:

� jρe is obtained from (IV.8);

� jJj results of (IV.23).

IV.5.3 Time integration

The time integration of the whole coupling is achieved using a fourth-order explicit
Runge-Kutta scheme. The positions and the velocities of the fairleads are updated from
(IV.49) and (IV.50).

eOAj = ePj + eRj
jOjAj (IV.49)

ev(Oj ,Σj/Σe) = eRj

[
jvj + S( jωj ) jOjAj

]
(IV.50)
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IV.5.4 Language binding

CableDyn is implemented in Python, so it becomes a new module of the existing
coupling between InWave and WS_CN. Figure IV.15 presents the updated scheme of
the coupling.

Figure IV.15 � Language binding between InWave, WS_CN and CableDyn using Python
as glue code language. The red, green and blue colors represent the C++,
Python and Fortran languages.

IV.6 Conclusion

This chapter presented the theory, the implementation and the language binding of a
tight coupling between the CRBA of InWave and the potential �ow theory based on the
weak-scatterer of WS_CN. The Python numerical tool dedicated to this coupling has
been named InWaveS_CN. A validation of its development was achieved by comparison
with WS_CN alone and showed a perfect agreement. The tight coupling was also
compared to di�erent loose coupling strategies. The implicit loose coupling gave the
same results as the tight coupling but required a larger CPU time while the explicit
loose coupling presented some di�erences which could be more important if the case
was changed. The tight coupling represents a robust compromise between accuracy and
CPU time.

CableDyn, the cable dynamics solver based on the low-order lumped mass theory
has been included into InWaveS_CN as a new module to perform cable simulations.
The theory of this coupling was presented.

The next chapter presents a new strategy for generating meshes in WS_CN, which
will be used in the last chapter of this PhD work to validate InWaveS_CN with exper-
imental data.
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Development of a new mesh

generator

Contents

V.1 The need of a new mesh generator . . . . . . . . . . . . . . . . . . 186

V.2 Functional speci�cation . . . . . . . . . . . . . . . . . . . . . . . . 186

V.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

V.4 Coupling between the panel cutting method and the advance front
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

V.4.1 The mesh clipping . . . . . . . . . . . . . . . . . . . . . . . 190

V.4.2 Panel merging . . . . . . . . . . . . . . . . . . . . . . . . . . 193

V.4.3 The spring analogy method . . . . . . . . . . . . . . . . . . 196

V.4.4 Multiple node tracking . . . . . . . . . . . . . . . . . . . . . 197

V.4.5 Mesh qualities . . . . . . . . . . . . . . . . . . . . . . . . . . 199

V.4.6 Intersection curve tracking and free surface mesh generation 203

V.5 Language binding . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

V.6 Pro�ling and CPU time comparison . . . . . . . . . . . . . . . . . 208

V.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

V.7.1 Heave test case . . . . . . . . . . . . . . . . . . . . . . . . . 210

V.7.2 Pitch test case . . . . . . . . . . . . . . . . . . . . . . . . . 213

V.8 Compliance with the functional speci�cation and conclusions . . . 216

185



Development of a new mesh generator

The mesh generator of WS_CN, which was implemented before the start of this
PhD, presents a lack of robustness when the surface-piercing body is not analytic and,
so far, has only been used with academic geometries (sphere, vertical cylinder, cube,
Wigley hull). Consequently a new mesh generator is required. This is the aim of this
chapter. A state of the art of the mesh generation and the intersection curve tracking
is presented. Then, all the steps of the new mesh strategy are detailed. Two validation
test cases and a study of the CPU time are exposed.

V.1 The need of a new mesh generator

The mesh generator presented in section III.3 is able to deal with academic surface-
piercing bodies (vertical cylinder, sphere, cube, Wigley hull) or immersed bodies. How-
ever, it su�ers of a lack of robustness for more complex shapes. For example, the
simulation of the experiments, detailed in chapter VI, requires to deal with a horizon-
tal �oating cylinder and the mesh generator fails to properly mesh it. The problem
comes from the intersection curve tracking (cf. subsection III.3.1) which is not robust
enough to �nd the interface in this case. As pointed out by Ko et al. [171], the march-
ing method, as used in WS_CN, becomes problematic when the shape of the body is
complicated and the con�guration of the intersection with the free surface is complex.
With a horizontal cylinder, sharp edges are present on the intersection curve and two
types of surfaces intersect the free surface: the cylindrical surface and the discs.

Following the observation of the lack of robustness of the present mesh generator,
two choices are possible. Either trying to enhance it or launching the development of
a new mesh generator which could be more robust, universal and usable for industrial
applications. We chose the second option for four reasons:

� The implementation of the initial mesh generator makes the task of enhancement
hard and the success uncertain;

� The improvement of the initial mesh generator involves the development of a
robust geometric modeller for any �oating body, for instance based on NURBS
[45]. This requires lots of work and means the development of a computer-aided
design tool from scratch, whereas some tools already exist and some of them are
free and open-source.

� The initial mesh generator su�ers of important memory leaks which deeply a�ect
the performance of the code when long simulations are run;

� The development of a new mesh generator gives us the opportunity to test a new
strategy of grid generation.

V.2 Functional speci�cation

The development of a new approach could solve some problems of the initial mesh
generator. Its functional speci�cation is:

� Quality : the new mesh generator has to create good quality meshes able to be
used in an unsteady potential �ow based solver;

� Non-regression: the new mesh generator has to give the same or better results in
terms of stability and accuracy as the initial mesh generator;
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� Robustness: the new mesh generator has to be able to deal with any �oating body
with a single intersection curve with the free surface and for any wave model;

� Modularity : the new mesh generator has to retain the modularity of the coupling
between InWave and WS_CN ;

� User-friendliness: the new mesh generator does not have to require any extra
coding when a new geometry is used. This also means the solver WS_CN may
be run as a black box by a user who is not a developer.

� Memory allocation: the new mesh generator does not have to su�er of memory
leaks;

� Process time: the new mesh generator does not have to involve an important
increase of the CPU-time compared to the initial mesh generator.

V.3 State of the art

A mesh generation algorithm needs to know the shape of the bodies to compute
their intersection with waves. This is achieved using an interface tracking method. The
body surfaces can be modeled using several formats [172]:

� Analytical expressions of the parametric surfaces when the geometries are simple
(cylinder, sphere, cube, axisymmetric geometry, etc.);

� B-splines [171, 173];

� NURBS (Non-uniform rational basis splines), as it is commonly done in the
computer-aided design tools [45].

Several methods exist to compute the intersection curve between a body and the free
surface, that is to say a surface-to-surface intersection [45, 101, 172, 174]:

� The analytical methods where the exact solution is seeked;

� The lattice methods where the surface-to-surface intersection is transformed into
a curve-to-surface intersection;

� The subdivision methods where the problem is decomposed recursively into sub-
problems easier to solve;

� The marching methods, which start from a known starting point on the inter-
section curve and then step along it in a direction prescribed by the curve local
geometry.

Once the intersection curve is obtained, the mesh generation follows. Several algorithms
are available, for instance:

� The quadtree method where the domain is enclosed into a bounding box which is
recursively subdivided into smaller panels by taking into account the presence of
the bodies. The positioning of the nodes is not optimal but the method is simple
and robust.
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� The advance front method where the boundaries (including the intersection curves)
are meshed and form the initial front of the mesh. Then, this front is updated by
creating new nodes and panels until all the surfaces are covered. The panels have
a good shape but the convergence is not always ensured.

� The Delaunay triangulation method creates panels from a given set of nodes such
as no point is present in the circumcircle of any triangular panel. This method
requires in a �rst step the creation of the nodes. This approach may be time
consuming.

In WS_CN, as explained in subsection III.3.1 and subsection III.3.2, a marching
method and an advance front method are used, respectively, for the intersection curve
tracking and the mesh generation.

The main drawback of this approach (Parametric curves - Intersection curves - Mesh
generation) is the mandatory knowledge of a parametric representation of the bodies.
In most hydrodynamic solvers (StarCCM+1, OpenFOAM 2, FINE/Marine3, Nemoh,
WAMIT, etc.), the mesh of the bodies is an input of the numerical tool, using an exter-
nal mesh generator (BlockMesh4, HEXPRESS 5, Gmsh6, Rhinoceros 3D7, SALOME 8,
etc.). Then, the mesh is created by the solver. So, another approach is possible if the
mesh of the bodies is known initially. The initial mesh is cut at the known free surface
and then the the free surface mesh is generated from the intersection curves. This ap-
proach is called the panel cutting method and has been implemented at the end of this
PhD.

So far, the panel cutting method has been used in two cases:

� The computation of the nonlinear hydrostatic and Froude-Krylov loads;

� The solving of the steady nonlinear wave resistance problem.

Examples of the computation of the nonlinear hydrostatic and Froude-Krylov loads
based on a panel cutting method may be found in [31, 175, 176]. The original mesh
is recursively subdivided on the intersection curve using a quadtree process. Then
the adjacent underwater subpanels are agglomerated to form bigger panels and coarse
meshes. Horel et al. [177] and Sengupta et al. [178] applied directly the panel cutting
method by clipping the panels of the initial mesh to �t the incoming waves. Lee and
Lee [179] used the panel cutting method in case of hydrostatic calculations with �exible
structures and non-matching meshes.

Regarding the solution of the steady nonlinear wave resistance problem, this was
achieved by Choi et al. [180]. The panels were cut at the real wave elevation and then
the mesh generated was used to perform a hydrodynamic computation and not only
the hydrostatic and the Froude-Krylov calculations. Nevertheless, due to the steadiness
of the problem, an iterative method was used to compute the velocity potential and

1https://mdx.plm.automation.siemens.com/star-ccm-plus
2https://openfoam.org
3https://www.numeca.com/product/finemarine
4https://cfd.direct/openfoam/user-guide/v6-blockMesh
5https://www.numeca.com/product/hexpress
6http://gmsh.info
7https://www.rhino3d.com
8https://www.salome-platform.org
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the wave elevation such as the nonlinear steady free surface boundary conditions were
satis�ed. Between 5 and 25 iterations are usually necessary in such problems according
to Raven [181]. 25 computations represent less than 7 time steps when a fourth-order
Runge-Kutta integration scheme is used (with four solvings of the hydrodynamic prob-
lem per time step). For comparison, a time-domain method needs several hundreds or
even thousands of time steps per numerical simulation. Consequently, the mesh quality
required for a time-domain simulation is much higher than for an iterative method.
Moreover, Choi et al. [180] used quadrangular panels which were approximately recti-
linear with the intersection curve, therefore the panel cutting method did not generate
lots of tiny panels which could lead to numerical errors. The panels smaller than 10
% of the smallest panel of the initial mesh were eliminated. Nevertheless, in another
con�guration, with triangular panels, the number of tiny panels could be much more
important and would lead to poor quality meshes. Finally, the panel cutting method
has only been used by Choi et al. [180] in case of ships, that is to say with smooth
surfaces without sharp edges.

Note

In CFD solvers9, the cutting method is also used and is called the cut-cell method
(because volume meshes, made of cells, are required instead of surface meshes, made of
panels) [182]. The cells are cut to �t the body geometry. When poorly formed cells are
generated, a cell merging method is applied to delete them [183]. As it will be described
in subsection V.4.2, this problem is also present with surface meshes.

V.4 Coupling between the panel cutting method and the

advance front method

The originality of the proposed method is the generation of meshes adapted for a
time-domain unsteady potential �ow approach requiring high quality connected nodes
surface meshes using triangular panels with possibly sharp edges for thousands of time
steps. This method assumes the initial mesh is of best quality. It unfolds in �ve steps:

� An initial mesh is obtained from an external mesh generator (Figure V.1a);

� The mesh is cut at the incident wave �eld (Figure V.1b);

� The intersection curve is tracked from the cut mesh (Figure V.1c);

� The free surface and the numerical tank walls are meshed using the same advance
front method as in subsection III.3.2 (Figure V.1d);

� The cut mesh is connected with the free surface mesh, leading to the �nal mesh
(Figure V.1e).

9Computational Fluid Dynamics, for the simulation of viscous and turbulent �ows.
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(a) Initial mesh of a cylin-
der

(b) Cut mesh obtained
from the panel cutting
method

(c) Intersection curve

(d) Mesh of the free surface and the numeri-
cal tank walls

(e) Final mesh including the cylinder

Figure V.1 � The steps of the mesh generation of the whole domain with a �oating vertical
cylinder using the panel cutting method

V.4.1 The mesh clipping

The panel cutting method comes from the numerical tool: Meshmagick10. This
software package has been developed at Ecole Centrale de Nantes by François Rongère.
It enables the management of surface meshes encountered in the potential �ow theory:

� The conversion between major �le formats for hydrodynamic computations tools
(Nemoh, WAMIT, HydroSTAR or Diodore);

� Elementary transformations such as translation, rotation, scaling, symmetry, nor-
mals orientation veri�cation, etc.;

� Hydrostatics computations: sti�ness matrix, position of the center of buoyancy,
displacement, etc.;

� The clipping of the mesh by a plane.

10https://github.com/LHEEA/meshmagick
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V.4. Coupling between the panel cutting method and the advance front method

This tool is implemented in Python and released under the GPLv3 license.

The mesh clipping starts with a partition of the mesh: for instance in Figure V.2
for a cylinder of radius 0.2 m and height 1 m. The panels which are strictly above the
incident wave �elds are not taking into account while those strictly below the incident
wave �elds are automatically kept. Regarding the panels where some vertices are above
the incident free surface and some others below, they form the crown mesh. The panel
cutting method is only applied to this part of the mesh.

(a) Initial mesh of a cylinder (b) Partition of the mesh. Blue: lower mesh,
green: upper mesh, red: crown mesh. The
black line represents the mean sea level.
The space between the parts is added for
the visualization.

Figure V.2 � Partition of a mesh in Meshmagick

Figure V.3 presents the two main cases of panel cutting: when one or two vertices
are above the sea level. Other cases appear when one or two nodes are exactly on the
intersection curve. As a reminder, WS_CN only deals with triangular panels.

(a) (p0p1p2) becomes (p0p
′
1p
′
2) (b) (p0p1p2) becomes (p1p

′
2p
′
1) and (p1p2p

′
2)

Figure V.3 � Examples of panel clipping

Originally, only the clipping with planes was considered in Meshmagick. The trian-
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gular panel - plane intersection was �gured out analytically. Indeed, the equation of a
plane is:

x · nPlane = c (V.1)

where nPlane and c are the panel normal and constant. For instance for the plane z = 0,
nPlane = eze and c = 0.

The intersection point x between the edge (p0p1) and the plane equation (V.1)
satis�es:

x = tp0 + (1− t)p1 (V.2)

with:
t =

c− p1 · nPlane
p0 · nPlane − p1 · nPlane

(V.3)

For an arbitrary single-valued incident wave �eld, a mathematical model is not
necessarily available. For the sake of simplicity and robustness, a numerical approach
is preferred. A bisection method has been implemented in Meshmagick to do so. Thus,
if an edge has one node above the free surface and one below, the intersection node is
searched iteratively. Examples of clipping are displayed in Figure V.4. The clipping of
the present cylinder with a regular wave of amplitude 0.1 m and wave frequency 12 rad/s
is used as example in the rest of this section.

(a) Plane z = 0 (b) Regular wave of amplitude 0.1 m and wave
frequency 12 rad/s

Figure V.4 � Clippings of a vertical cylinder against a plane and a regular wave. The red line
represents the analytical incident wave elevation.

The clipping process can lead to large deformations of the panels located close to
the intersection curve (Figure V.5). Two problems arise:

� The density of nodes and panels is much higher at the interface than in the rest
of the mesh;

� The panel shape is poor.

As a consequence, the mesh cannot be used in a hydrodynamic solver. An extra step
of mesh enhancement is mandatory.
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Figure V.5 � Deformed panels close to the intersection curve. Zoom from Figure V.4b.

V.4.2 Panel merging

One can distinguish two types of very deformed panels:

� The vertical tiny triangles where two vertices are close to each other on the inter-
section curve;

� The horizontal tiny triangles where two vertices are on the intersection curve and
the third one is strictly in the mesh but close to the interface.

The following �gure displays deformed panels from Figure V.5.

Figure V.6 � Examples of vertical (red solid line) and horizontal (red dashed line) tiny trian-
gles with αH = βH = 0.3, αV = 0.4 and βV = 0.3

By deleting these tiny panels, the density of nodes and panels on the intersection
curve decreases. This solves one of the two mesh problems presented in the subsec-
tion V.4.1. Regarding the vertical tiny triangles, the two nodes on the intersection
curve are merged and located at the position of one of these nodes, as shown in Fig-
ure V.7a. This leads to the deletion of one node and one panel. For the horizontal tiny
triangles, the single node below the waterline is merged with one node on the intersec-
tion curve, the second node on the intersection curve being also deleted, as displayed in
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Figure V.7b. This involves the deletion of at least two nodes and one panel, depending
on the connectivities between the nodes.

(a) Deletion of a vertical tiny triangle

(b) Deletion of a horizontal tiny triangle

Figure V.7 � Schemes of the panel merging algorithms

To preserve the geometry of the mesh, these two algorithms are applied conditionally.
Two geometric criteria are de�ned per algorithm: the �rst one about the panel area,
the second one about a characteristic distance. These criteria are detailed in Table V.1.

Criterion Vertical Horizontal

Area A 6 αVAmean A 6 αHAmean
Distance ‖p1p2‖ 6 βV `mean

∣∣z − ηI ∣∣ 6 βH`mean

Table V.1 � Geometric criteria to apply the panel merging

where:

� A is the panel area;

� Amean denotes the mean of the panel areas in the initial mesh;

� `mean represents the mean of the edge lengths in the initial mesh;

� p1 and p2 are de�ned in Figure V.7a

� z is the vertical coordinate of the node p0 in Figure V.7b;

� ηI means the incident wave elevation at the vertical of the node p0 in Figure V.7b;

� αV , αH , βV and βH are the panel merging coe�cients. The subscript indicates if
the coe�cient is used for the vertical (V ) or horizontal (H) tiny panels.
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The higher these coe�cients are, the more important the number of deleted panels
is, but, the more important the risk of interpenetration of neighboring panels is. An
example of a panel overlapping is shown in Figure V.8.

(a) αH = βH = 0.3, αV = 0.4 and βV = 0.3 (b) αH = βH = αV = βV = 0.5. The dark
area indicates the panel overlapping.

Figure V.8 � Example of a panel overlapping. The wave height is 0.15 m.

The values of αV , αH , βV and βH are chosen empirically. An example of a set of
coe�cients is given below: 

αV = 0.4

αH = 0.1

βV = 0.3

βH = 0.1

(V.4)

A special attention is paid to the nodes along the sharp edges of the mesh. They
are not moved. The sharp edges are tracked using the discontinuity of the panel normals.

Figure V.9 shows the application of the panel merging algorithm. The density of
nodes and panels is reduced on the intersection curve as wanted, but the panel shape
is still not good enough. This problem is addressed in the next section.

(a) Mesh before the panel merging (b) Mesh after the panel merging

Figure V.9 � Example of the application of the panel merging with αH = βH = 0.3, αV = 0.4
and βV = 0.3
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V.4.3 The spring analogy method

The panel merging method reduces the density of nodes and panels close to the inter-
section curve but the node positions and the panel shapes are still not good enough. To
improve them, an unstructured mesh smoothing algorithm based on the spring analogy
is used. As explained in subsection III.4.1, it is based on a vertex spring analogy.

The expression of the spring loads is:

Fi =

N i
v∑

j=1

kij(xj − xi) (V.5)

As we want the small panels to get larger and the large panels to get smaller, all the
panels have to be able to be deformed. So, the sti�ness is taken constant. Its value has
no in�uence so it is chosen as unity:

kij = 1 (V.6)

The same notations as in subsection III.4.1 are used. The position is decomposed
into three components:

xi = xiuui + xivvi + xiwni (V.7)

To ensure the nodes stay on the body surfaces, the normal displacement is zeroed:

(xi − xoldi ) · ni = 0 (V.8)

On the intersection curve or at the sharp edges in the body mesh, a node on this
intersection has to remain on it. Thus, ni is normal to one of the surfaces, ui is along
the intersection line and vi is chosen such as the local basis is orthonormal and direct.
In that case, the displacement along vi is zeroed:

(xi − xoldi ) · vi = 0 (V.9)

If three surfaces intersect each other at the same node i, then the displacement along
ui is also zeroed:

(xi − xoldi ) · ui = 0 (V.10)

In case of a node on a smooth surface, the �nal system of equations to solve yields:
Fi · ui = 0

Fi · vi = 0

(xi − xoldi ) · ni = 0

(V.11)

And after some mathematical developments and by including the condition on the nor-
mal displacement, the system of three equations is reduced to a bi-dimensional problem:

N i
v∑

j=1
kij(uj · ui)xju −

[
N i

v∑
j=1

kij

]
xiu +

N i
v∑

j=1
kij(vj · ui)xjv = −

N i
v∑

j=1
kij(ui · nj)(xoldj · nj)

N i
v∑

j=1
kij(uj · vi)xju +

N i
v∑

j=1
kij(vj · vi)xjv −

[
N i

v∑
j=1

kij

]
xiv = −

N i
v∑

j=1
kij(vi · nj)(xoldj · nj)

(V.12)
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Equation V.12 leads to a sparse linear system of size twice the number of nodes in the
body mesh such as AX = B with:

X =


...
xiu
xiv
...

 (V.13)

The solution is obtained using the same sparse linear system solver PARDISO [184] as
in subsection III.4.1.

Figure V.10 presents the application of the spring analogy method once the mesh
clipping and the panel merging are applied. The panel shape is improved on the in-
tersection curve as expected. This mesh is now good enough to be used in the �uid
solver.

(a) Mesh after the panel merging (b) Mesh after the spring analogy method

Figure V.10 � Example of the application of the vertex spring analogy method

The use of the spring analogy method faintly deforms the geometry of the body. To
avoid this numerical error, the algorithm is not applied to the full body mesh but only
to a part of the mesh close to the intersection curve. The nodes below this part are
considered as �xed and the three displacement conditions (V.8), (V.9) and (V.10) are
assumed satis�ed. The geometry is preserved and the number of non-zero coe�cients
in the linear system is reduced, involving a CPU time reduction.

V.4.4 Multiple node tracking

In the previous section, it was assumed multiple nodes were known. Therefore, the
boundary conditions (V.9) and (V.10) are directly applied at the proper nodes. But,
when an initial mesh is used, it only includes a set of nodes and a table of connectivities.
Consequently, multiple nodes need to be automatically identi�ed.

The multiple node tracking algorithm unfolds in three steps:

� The detection of multiple nodes is achieved from the discontinuity of the outward
panel normals in the body mesh (at this stage, the free surface mesh is not gen-
erated yet). A node is multiple if and only if it exists at least two neighboring
panels of normal vectors u and v such as:

u · v < ε (V.14)
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ε is a constant, arbitrary de�ned as equal to cos(20◦). Consequently, an angle of
20◦ between two neighboring normal vectors leads to a multiple node.

� Then, the order of multiplicity of the node needs to be �gured out. It is necessary
to know if the node is double, triple, quadruple, etc. The following rule is applied:

• If it exists a neighboring normal vector w such as

{
u ·w < ε

v ·w < ε
, then the node

is at least triple, otherwise it is double;

• If it exists a neighboring normal vector x such as


u · x < ε

v · x < ε

w · x < ε

, then the node

is at least quadruple, otherwise it is triple;

• Etc.

� Once a multiple node is found with its order of multiplicity, new nodes are created
at the same position. Therefore, each multiple node is made of several elementary
nodes: two for a double node, three for a triple node, four for a quadruple node,
etc. The table of connectivities needs to be updated to associate each elementary
node to a surface. Each neighboring panel of normal vector n is connected to the
correct elementary node from the following rule (here for a quadruple node) using
u, v and w previously de�ned:

• If


u · n > ε

v · n < ε

w · n < ε

, then the neighboring panel belongs to the same surface as u;

• If


u · n < ε

v · n > ε

w · n < ε

, then the neighboring panel belongs to the same surface as v;

• If


u · n < ε

v · n < ε

w · n > ε

, then the neighboring panel belongs to the same surface as w;

• Otherwise, n belongs to the fourth surface.

Only double, triple and quadruple nodes are tracked.

Examples of multiple nodes tracking are shown in Figure V.11. Multiple nodes are
properly found.
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(a) Vertical cylinder (b) Horizontal cylinder (c) Cube

Figure V.11 � Examples of multiple node tracking. The panels including a simple, double
or triple node are, respectively, in blue, green and red.

V.4.5 Mesh qualities

To evaluate the mesh qualities, algebraic metrics f are used. They have the following
properties [185, 186]:

� f is dimensionless;

� f is referenced to an ideal element, here an equilateral triangle of edge length `;

� f ∈ J0 ; 1K with f = 1 if and only if the panel matches an equilateral triangle of
edge length ` and f = 0 if and only if the triangle is degenerated;

� f is invariant by translation;

� f does not depend on the orientation of the panel (except for the orientation
metrics which are not studied here);

� f is a function of the node positions.

Three metrics are used:

� The relative size metric fsize which detects triangles which are unusually large or
small relative to an equilateral triangle of reference. Its de�nition is:

fsize = min

(
τ,

1

τ

)
(V.15)

with τ the ratio of the panel area A to the area of an equilateral triangle of edge
length `:

τ =
A√
3

4
`2

(V.16)

fsize = 1 if and only if the triangle has the same area as an equilateral triangle of
edge length ` and fsize = 0 if the triangle is degenerate.
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� The shape metric fshape which detects distortions in the shape of a triangle, in-
dependently of its size, compared to an equilateral triangle. Its de�nition is:

fshape =
2
√

3A
L1 · L1 + L1 · L2 + L2 · L2

(V.17)

with L1 = p0 − p2 and L2 = p1 − p0, by keeping the notations of Figure V.3.
fshape = 1 if and only if the triangle is equilateral and fshape = 0 if the triangle is
degenerate.

� The size-shape metric fsize−shape that measures both size and shape simultane-
ously:

fsize−shape = fsizefshape (V.18)

fshape = 1 if and only if the triangle is equilateral with an area equal to

√
3

4
`2 and

fshape = 0 if the triangle is degenerate.

The area of a panel is given by:

A =
1

2
‖L1 × L2‖ (V.19)

Figures V.12, V.13 and V.14 show the evolution of fsize, fshape and fsize−shape
during the mesh generation. In this cases, ` = 0.02 m. The use of both the panel
merging and the vertex spring analogy method improves signi�cantly the quality of the
mesh, especially on the intersection curve. If the mesh optimization algorithm is not
applied, the mesh stays of poor quality.
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(a) After the mesh clipping (b) After the panel merging

(c) After the spring analogy method (d) After the spring analogy method without
using the panel merging

Figure V.12 � Evolution of fsize during the mesh generation
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(a) After the mesh clipping (b) After the panel merging

(c) After the spring analogy method (d) After the spring analogy method without
using the panel merging

Figure V.13 � Evolution of fshape during the mesh generation
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(a) After the mesh clipping (b) After the panel merging

(c) After the spring analogy method (d) After the spring analogy method without
using the panel merging

Figure V.14 � Evolution of fsize−shape during the mesh generation

V.4.6 Intersection curve tracking and free surface mesh generation

Once the �nal body mesh is obtained, the intersection curve is tracked from the
nodes which satis�es z = ηI . But, doing so, the list of nodes does not form an oriented
curve which is mandatory to generate the free surface mesh. Consequently, the nodes
on the intersection curve have to be sorted. The process unfolds in three steps.

� An initial node xinit is randomly chosen on the intersection curve. This point
has exactly two neighbors, xa and xb. The curve orientation demands to de�ne a
predecessor, xpred, and a successor, xsuc. For instance, let us assume xpred = xa.
xb becomes the successor of xinit, so its ancestor is known.

� For each node, the ancestor is known, so there is only one possibility for the
successor. Thus, the curve is built step by step along the succeeding nodes.

� When the successor matches the initial point, the curve is de�ned and oriented.

When the intersection curve is found, the free surface mesh is generated using the
advance front method presented in subsection III.3.2. Then, the body mesh and the
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free surface mesh are connected. An example of an intersection curve and a �nal mesh
are displayed in Figures V.15 and V.16. The same vertical cylinder is used as in the
previous section. The amplitude of the regular wave is 0.02 m and its wave frequency
12 rad/s. Other �nal meshes for two academic geometries are shown: a horizontal
cylinder in Figure V.17 and a cube in Figure V.18. Three non-academic geometries are
also displayed:

� The wave energy converter: SEAREV 11;

� A FPSO ;

� A tension-leg platform (TLP).

These three geometries are presented in Figure V.19. Their incorporation in a free
surface mesh is displayed in Figure V.20 for the SEAREV, in Figure V.21 for the FPSO
and in Figure V.22 for the TLP.

Figure V.15 � Example of an intersection curve for a vertical cylinder. The red points are
the nodes, the blue line is the intersection curve, the black arrow represents
the orientation of the curve, the black cross denotes the gravity center of the
water-plane area.

11Système Électrique Autonome de Récupération de l'Energie des Vagues
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V.4. Coupling between the panel cutting method and the advance front method

(a) Whole mesh (b) Zoom on the intersection curve

Figure V.16 � Vertical cylinder

(a) Whole mesh (b) Zoom on the intersection curve

Figure V.17 � Horizontal cylinder

(a) Whole mesh (b) Zoom on the intersection curve

Figure V.18 � Cube
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(a) SEAREV (b) FPSO (c) TLP

Figure V.19 � Non-academic initial meshes

(a) Whole mesh (b) Zoom on the intersec-
tion curve

(c) Zoom on the intersec-
tion curve with trans-
parency

Figure V.20 � SEAREV

(a) Whole mesh (b) Zoom on the intersection curve

Figure V.21 � FPSO
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(a) Whole mesh (b) Zoom on the intersec-
tion curve

(c) View from below

Figure V.22 � TLP

V.5 Language binding

Meshmagick is implemented in Python, therefore this code becomes a new module
of the existing coupling between InWave, WS_CN and CableDyn. Figure V.23 displays
the updated scheme of the coupling. This is the �nal state of the numerical tool
developed during this PhD work. In the rest of the PhD thesis, when Meshmagick
is used, the mechanical solver is always InWave.

Figure V.23 � Language binding between InWave, WS_CN, CableDyn and Meshmagick us-
ing Python as glue code language. The red, green and blue colors represent
the C++, Python and Fortran languages
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Table V.2 shows the distribution of each step of the new mesh generator amongst
the modules and the languages.

Module Meshmagick InWaveS_CN WS_CN

Language Python Python Fortran

Mesh clipping X

Panel merging X

Multiple node tracking X

Spring analogy method X

Intersection curve tracking X X

Free surface mesh generation X

Final mesh X

Table V.2 � Distribution of the steps of the new mesh generator amongst the modules and
the languages

V.6 Pro�ling and CPU time comparison

The CPU time used by the initial mesh generators is presented in Table V.3, while
the results for the new mesh generator are displayed in Table V.4. The same test case
is run to obtain these results and leads to a mesh of roughly 9500 panels with a single
surface-piercing body. As expected, the time necessary to create the free surface and
numerical walls meshes is almost constant with the two methods. The time to track
the intersection curve is always small. The use of the new mesh generator involves an
increase of 62 % of the CPU time. Nevertheless, it stays in the same order of magnitude
and small compared to the time of a whole WS_CN simulation.

Task CPU time (s)

Intersection curve tracking 0.003

Body meshes 0.771

Free surface and numerical walls meshes 1.170

Total 1.944

Table V.3 � CPU time for every main task of the initial mesh generator

The pro�ling of the two mesh generators is shown in Figure V.24. 40 % of CPU time
to create a whole mesh based on the new mesh strategy comes from Meshmagick, that is
to say the Python scripts (in blue on the pie chart). As Python is slower than Fortran,
the time required for the mesh clipping and the panel merging could be signi�cantly
reduced by a translation of the Python scripts into Fortran.
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Task CPU time (s)

Mesh clipping 0.696

Panel merging 0.558

Mesh optimization 0.621

Intersection curve tracking 0.009

Free surface and numerical walls meshes 1.270

Total 3.154

Table V.4 � CPU time for every main task of the new mesh generator

(a) Initial mesh generator (b) New mesh generator

Figure V.24 � Pro�ling of the new mesh generator. The colors follow the rule de�ned in
Figure V.23: green for Python, blue for Fortran.

Note

If the sparsity of the linear system obtained in the spring analogy method is not
used (i.e. PARDISO is not used) and if each node is considered with three degrees
of freedom instead of two (tri-dimensional problem instead of bi-dimensional), then it
involves an increase of the mesh optimization part of 1270 %, or 8.513 s instead of 0.621
s. The method becomes too long to be applied e�ciently. The pro�ling is updated in
V.25.
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Figure V.25 � Pro�ling of the new mesh generator without using PARDISO. The colors follow
the rule de�ned in Figure V.23: green for Python, blue for Fortran.

V.7 Validation

The initial and new mesh generators are compared using validation test cases that
both of them can run. A vertical cylinder of radius 0.2 m, length 0.2 m and draft 0.1 m
is considered. Two test cases are chosen:

� A free motion in heave from the equilibrium position;

� A free motion in pitch around the geometrical center of the cylinder with an initial
angle of 4◦.

The cylinder mass is 12.88 kg and its inertia in pitch 0.5 kg m2. The center of gravity
of the cylinder is located at its geometrical center. The same incoming regular wave of
amplitude 0.005 m and wave frequency 8 rad/s is used in the two test cases. A wave
probe is present at the position (0.4, 0, 0).

V.7.1 Heave test case

The mesh convergence for the two strategies is displayed in Figure V.26. It shows
that a mesh of 10000 panels for the initial mesh generator and of 9600 panels for the new
one are su�cient. The initial meshes for the heave test case are shown in Figure V.28.
The time step convergence is presented in Figure V.27, showing that a time step of 0.01
s is enough. The comparison between the numerical results of the two mesh generators
is shown in Figure V.29 for the heave motion and the wave elevation at the wave probe.
The perturbed wave pattern at t = 5.15 s is displayed in Figure V.30.

A very good agreement is obtained for all these results. Some slight di�erences are
observed, probably due to the permanent remeshing process in the new mesh generator
whereas in the initial mesh strategy the mesh is only deformed if the regeneration is not
necessary. The remeshing involves an interpolation between the old and the new mesh
as explained in section III.8 and so numerical errors occur.

The sum of the incident wave amplitude and the amplitude of the heave body motion
represents 9 % of the draft, which involves a signi�cant deformation of the body mesh
during the simulation.
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(a) Initial mesh generator

(b) New mesh generator

Figure V.26 � Mesh convergence for the heave test case

(a) Initial mesh generator

(b) New mesh generator

Figure V.27 � Time step convergence for the heave test case
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(a) Initial mesh generator (b) New mesh generator

Figure V.28 � Initial meshes for the heave test case

Figure V.29 � Comparison of time series of the heave motion and the wave elevation from
numerical results using the two mesh generators
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(a) Initial mesh generator (b) New mesh generator

Figure V.30 � Perturbed component of the wave pattern (ηP ) at t = 5.15 s

V.7.2 Pitch test case

In this test case, the heave motion is blocked and only the pitch motion is free.
The mesh convergence for the two strategies is displayed in Figure V.31. It results a
mesh of 9600 panels for both the initial mesh generator and the new one is su�cient.
The time step convergence is presented in Figure V.32, a time step of 0.01 s is enough.
The comparison between the numerical results of the two mesh generators is shown
in Figure V.33 for the pitch motion and the wave elevation at the wave probe. The
perturbed wave pattern at t = 5.95 s is displayed in Figure V.34.

A good agreement is obtained for all these results, except the appearance of a slow
phase shift in the pitch motion. As in subsection V.7.1, it is probably the consequence of
the permanent remeshing with the new mesh strategy which leads to numerical errors.
Moreover, the mesh quality of the new mesh generator is less good compared to the
initial one.

To prove the e�ect of the permanent remeshing in the di�erences observed in Fig-
ure V.33, a simulation using the initial mesh generator with a forced remeshing at every
time step has been performed. The results are displayed in Figure V.35. The numeri-
cal results obtained with the new mesh generator and the initial mesh generator with
a forced remeshing match perfectly. This agreement enforces the conclusion that the
permanent remeshing is the cause of the numerical di�erences between the two mesh
strategies.
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(a) Initial mesh generator

(b) New mesh generator

Figure V.31 � Mesh convergence for the pitch test case

(a) Initial mesh generator

(b) New mesh generator

Figure V.32 � Time step convergence for the pitch test case
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Figure V.33 � Comparison of time series of the pitch motion and the wave elevation from
numerical results using the two mesh generators

(a) Initial mesh generator (b) New mesh generator

Figure V.34 � Perturbed component of the wave pattern (ηP ) at t = 5.95 s
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Figure V.35 � Comparison of time series of the pitch motion and the wave elevation from nu-
merical results using the two mesh generators with forced free surface remesh-
ing or not

V.8 Compliance with the functional speci�cation and

conclusions

The functional speci�cation of the new mesh generator, listed in section V.2, is now
checked:

� The quality of the new meshes is good and su�cient for performing a time-domain
simulation. Nevertheless, at the time of writing, the free surface mesh close to the
intersection curve is not as good as in the initial mesh. For example, Figure V.36
shows a close-up of the mesh around the intersection curve in the case of a surface-
piercing vertical cylinder. The distribution of the area of the panels should be
axisymmetric with the two mesh strategies. It is the case with the initial mesh
generator but not with the new mesh generator where some regions with smaller
panels arise. This is due to the non-equidistance of the nodes on the intersection
line in the new mesh generator, despite the use of the spring analogy method. This
equidistance is guaranteed in the initial mesh generator because the intersection
curve is meshed �rst, the body and free surface meshes being generated from it.
Possible enhancements would be the improvement of the panel merging method
and the projection of the nodes on the intersection curve before clipping the mesh
to avoid the creation of tiny panels. The use of an another open-source library
such as GTS 12 which deals with surface meshes is also a possibility.

� The non-regression of the new mesh generator is proved by the two test cases
presented in section V.7. The same simulations could be performed, involving a
good accuracy in the numerical results.

12http://gts.sourceforge.net
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V.8. Compliance with the functional speci�cation and conclusions

� The robustness is demonstrated by the creation of meshes which could not be
taken into account by the initial mesh generator (horizontal cylinder, SEAREV,
TLP, FPSO). The possibilities o�ered by the new mesh generator mainly depend
on the quality of the initial mesh. So far, only one body in one piece and involving
a single intersection curve (no moon pool) is considered. The new mesh strategy
is feasible with any wave model by the use of a bisection method to �nd the
intersection curve as presented in subsection V.4.1.

� The modularity is checked as displayed on the scheme of the coupling in Fig-
ure V.23;

� The user-friendlyness of the new mesh strategy is ensured by the use of an initial
mesh. The rest of the process is totally automatic for any body. No extra-coding
is required.

� The memory allocation is good, without memory leak in the scripts of the new
mesh generator which were implemented for this purpose. Consequently, only the
memory leaks coming from the use of the advance front method remain. But those
created for the body mesh generation and the intersection curve tracking in the
initial mesh generator disappear.

� The process time is slightly more important with the new mesh generator than
with the initial one due to the spring analogy method and some parts in Python
(cf. section V.6). The translation of the Python code into Fortran and the use of
another smoothing method would reduce the CPU time.

Hence, a new mesh strategy has been developed in this chapter, based on the idea:
the body mesh for the user, the free surface mesh for the solver. It enables to mesh non-
academic surface-piercing bodies and gives very good results compared to the initial
mesh generator. Meshmagick becomes the last module of InWaveS_CN. The next
chapter presents an application of InWaveS_CN in the case of an upending operation.

(a) Initial mesh generator (b) New mesh generator

Figure V.36 � Area of the free surface panels close to the intersection curve with the two
mesh strategies
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Experiments

In order to validate the numerical tool created during this PhD work, some ex-
periments were conducted in a wave basin of Ecole Centrale de Nantes. The numerical
simulations of these experiments involve the use of multibody dynamics (InWave), cable
dynamics and a winch (CableDyn), hydrodynamics for a body with a large amplitude
motion (WS_CN) and with a complex geometry (Meshmagick). All the modules consti-
tuting InWaveS_CN are required. First, the experiments are detailed. The numerical
results and the comparison with the measurements close this �nal chapter.

VI.1 Presentation of the experiments

In order to validate the coupling between the Composite-Rigid-Body algorithm and
the unsteady potential �ow theory based on the weak-scatterer hypothesis, experiments
were conducted in the shallow water tank of Ecole Centrale de Nantes. These exper-
iments represent the upending of a spar in waves. A spar is moved from a horizontal
position to its equilibrium vertical position using a cable on a winch. These experiments
follow three steps:

� At the beginning of the experiments, the spar is kept horizontal with a cable
(Figure VI.1a);

� The cable is unwound using a winch, the spar has a rotating motion around a
horizontal �xed axis (Figure VI.1b);

� The spar reaches its vertical equilibrium position (Figure VI.1c).

An upending operation was preferred to a lowering operation because the experi-
mental set-up was more straightforward. Only one body, available in the laboratory,
was required and the set-up was easier and quicker to install: one body linked with a
cable and a winch to the �xed footbridge instead of two bodies in free motion linked to
each other through a cable and winch.

The interests of these experiments are:

� The presence of an articulated multibody system (the spar and its revolute joint);

� A cable is unwound using a winch;

� The wetted surface of the spar is subject to a large deformation;

� The spar has a free motion so a �uid-structure coupling arises.

These characteristics are at the heart of the numerical tool developed during our work
(InWaveS_CN ) and match the work achieved in the previous �ve chapters of the present
PhD thesis.
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(a) Initial horizontal position

(b) Unwound cable

(c) Vertical equilibrium position

Figure VI.1 � Three steps of the spar upending. The �xed axis is indicated by the cross
and the winch by the circle.

VI.1.1 Experimental set-up

The experiments were conducted in the shallow water basin of Ecole Centrale de
Nantes (Figure VI.2). Its dimensions are 20 m × 9.5 m with a water depth of 1 m.
The basin is equipped with a �ap-type wave maker generating unidirectional waves.
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Opposite the wave generator, a passive wave absorber is installed (absorbing beach).
The size of the basin makes it suitable for short waves. The basin is �lled of freshwater
so the water density is 1000 kg/m3.

Figure VI.2 � Shallow water basin of Ecole Centrale de Nantes

The spar is a cylindrical buoy (illustrated in Figures VI.3 and VI.4) made of three
parts:

� An external PVC waterproof pipe;

� A lead weight;

� A threaded rod.

Tables VI.1 and VI.2 present the geometrical and inertia characteristics of the buoy.
The total mass is 28 kg and the center of gravity is located at 37 cm from the bottom
of the buoy. The draft in the vertical equilibrium position is 0.89 m. The buoy and the
footbridge of the basin are connected by a revolute joint. Its axis is positioned above the
mean free surface in the vertical equilibrium position of the buoy. By this way, no joint
loads exist at the equilibrium. The revolute joint system is displayed in Figure VI.5.

222



VI.1. Presentation of the experiments

Figure VI.3 � Buoy1

Figure VI.4 � Sketch of the buoy

1The heave plate was not present during the experiments.
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Length Symbol Value (m)

Buoy length L 1.32
Buoy diameter D 0.2

Leads location from the bottom d 0.13

Table VI.1 � Geometrical characteristics of the buoy

Element Mass (kg) Inertia (kg m2) Reference point

Pipe 10 1.5 Ob
Leads 16 0.058 Op

Threaded rod 2 0.27 Ob

Table VI.2 � Mass and inertia of each part of the buoy. The points are de�ned in Figure VI.4.

Figure VI.5 � Revolute joint system

The cable is made of Dyneema with a diameter of 4 mm. This leads to a very sti�
cable. The cable is �xed to the spar at its bottom. The winch, shown in Figure VI.6,
unwinds the cable at a constant velocity after a linear velocity ramp.

Finally, the experimental set-up is presented in Figure VI.7.
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Figure VI.6 � Winch

Figure VI.7 � Experimental set-up
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VI.1.2 Test matrix

The test matrix depends on four parameters:

� The wave amplitude;

� The wave period;

� The orientation of the moving buoy with respect to the �xed wave direction;

� The lowering velocity of the cable.

Only regular waves were used as WS_CN cannot deal with irregular waves without
adding extra developments. The test matrix is given by Table VI.3. Cases 1, 8 and 15
represent three tests without waves. Each test lasts less than one minute.

Case Wave amplitude (m) Wave period (s) Heading angle (◦) Lowering velocity (m/s)

1 0 ø 90 0.067
2 0.01 0.7 90 0.067
3 0.01 1 90 0.067
4 0.01 1.5 90 0.067
5 0.02 0.7 90 0.067
6 0.02 1 90 0.067
7 0.02 1.5 90 0.067
8 0 ø 0 0.067
9 0.01 0.7 0 0.067
10 0.01 1 0 0.067
11 0.01 1.5 0 0.067
12 0.02 0.7 0 0.067
13 0.02 1 0 0.067
14 0.02 1.5 0 0.067
15 0 ø 0 0.033
16 0.01 0.7 0 0.033
17 0.01 1 0 0.033
18 0.01 1.5 0 0.033
19 0.02 0.7 0 0.033
20 0.02 1 0 0.033
21 0.02 1.5 0 0.033

Table VI.3 � Test matrix of the experimental tests. The heading angle is the angle between
the buoy vertical axis and the wave direction.

VI.1.3 Output data

Five output data are measured:

� The position of the buoy;

� The position of the cable;

� The tension in the cable;
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� The lowering velocity;

� The wave elevation.

The positions of the buoy, the wave elevation and the cable pro�le are tracked using
spherical markers. The motion capture software Qualisys follows the markers with two
infrared cameras. Three markers are necessary to track the three-dimensional motion
of the buoy. Figure VI.8 shows the markers of the buoy, the cable and the winch.
Figure VI.9 presents the results of Qualisys at the initial stage for Case 15.

(a) Buoy (b) Cable, footbridge and free surface

(c) Winch

Figure VI.8 � Positions of the markers
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Figure VI.9 � Markers position using Qualisys for Case 15. CoG denotes the position of the
center of gravity of the buoy. C# represents the cable markers. The horizontal
dashed line indicates the mean sea level. The left vertical dashed line is the
vertical axis at the revolute axis and the right vertical dashed line is the initial
cable pro�le.

VI.1.4 Measurements

VI.1.4.1 Winch velocity

In Cases 15, 16, 17 and 18, the winch velocity is 0.033 m/s. A linear ramp is used
for 3 s. The winch velocity command signal is displayed in Figure VI.10.

Figure VI.10 � Winch velocity for Cases 15, 16, 17 and 18. t = 0 s denotes the starting time
of the winch.
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VI.1.4.2 Buoy motion and tension

The cable tension and the motion of the buoy are presented in Figure VI.11. The
initial position is horizontal and once the cable is lowered, a vertical position is reached.
Oscillations are present around the vertical equilibrium position.

Regarding the cable tension, the initial tension when the buoy is horizontal is 122 N.
When the �oating body is lowered into the water, this value decreases due to the increase
of the hydrostatic loads. Once the vertical equilibrium position of the cylinder is reached,
the cable is slack and so the tension is zero.

Figure VI.11 � Cable tension and rotational motion for Case 15. t = 0 s denotes the starting
time of the winch.

Analytically, the equilibrium of the buoy at the initial stage is given by the following
motion equation written at the keel:

PBuoy + FStatic
Buoy + TBuoy = 03×1 (VI.1)

PBuoy ×KG + FStatic
Buoy ×KB + TBuoy ×KF = 03×1 (VI.2)

with:

� PBuoy the weight of the buoy;

� FStatic
Buoy the hydrostatic loads;

� TBuoy the cable tension;

� K the keel position;

� G the position of the center of gravity;

� B the buoyancy center position;

� F the fairlead position.
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The projection of (VI.1) along the vertical axis and (VI.2) along the axis perpen-
dicular to the plane including the buoy and the cable give:

−mg + ρV g + T = 0 (VI.3)

−mgKG+ ρV gKB + TKT = 0 (VI.4)

where m, g and V are the mass of the buoy, the gravity constant and the immersed
volume.

Equation VI.3 leads to:

V =
1

ρ

(
m− T

g

)
(VI.5)

Equation VI.4 involves:

T = mg

(
KB −KG
KB −KT

)
(VI.6)

The cable is �xed at the keel of the buoy soKT = 0 and at the horizontal initial position

KB =
L

2
with L the length of the buoy, consequently:

T = mg

(
1− 2

L
KG

)
(VI.7)

Thus, the tension in the initial con�guration is 120.65 N. This does not match per-
fectly with the experimental value observed in Figure VI.13 because the buoy is not
totally horizontal in its initial position.

Figure VI.12 presents the wave elevation for Case 17 for a regular wave of amplitude
0.01 m and a wave period of 1 s. The e�ect of the waves on the buoy rotation motion is
insigni�cant (Figure VI.13). But it is clearly noticeable on the cable tension. The ten-
sion di�erence between the tension in still water and in waves is shown in Figure VI.14.
The dynamic tension clearly depends on the wave period. But, when the buoy reaches
its �nal position, the tension is independent of the waves, because the cable is slack.

Figure VI.12 � Wave elevation for Case 17. t = 0 s denotes the starting time of the winch.
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Figure VI.13 � Cable tension and rotational motion for Cases 15, 16, 17 and 18. t = 0 s
denotes the starting time of the winch.

Figure VI.14 � Tension di�erence between Case 15 (still water) and Cases 16, 17 and 18 (in
waves). t = 0 s denotes the starting time of the winch.

VI.1.4.3 Cable pro�le

The trajectory of the markers in Case 15 is presented in Figure VI.15. As expected,
the winch is motionless. The position of the center of gravity follows a circular trajectory
because of the constrained buoy motion due to the rotation axis. The center of the
circular motion enables to �nd the position of the revolute axis. The other markers
show the lowering of the cable and its horizontal displacement due to the buoy motion.
When the cable is slack, the marker trajectories become arbitrary. Once the cable
markers are in the water, they could not be tracked anymore by the infrared cameras.
The markers on the buoy could be tracked because there were never immersed.

The in-plane horizontal and vertical motions of the markers trajectory are displayed
in Figure VI.16 while the out-of-plane motion is shown in Figure VI.17. The cable is
out-of-plane when it becomes slack.
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Figure VI.15 � Trajectory of the markers for Case 15. CoG denotes the position of the center
of gravity of the buoy. C# represents the cable markers.

Figure VI.16 � Horizontal (x) and vertical (z) motion of the markers for Case 15. CoG

denotes the position of the center of gravity of the buoy. C# represents the
cable markers. t = 0 s is the starting time of the winch.
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Figure VI.17 � Out-of-plane (y) motion of the markers for Case 15. CoG denotes the position
of the center of gravity of the buoy. C# represents the cable markers. t = 0 s
is the starting time of the winch.

The cable pro�le is presented in Figures VI.18, VI.19 and VI.20 for Case 18. The
e�ects of the waves is only noticeable when the cable is slack of the end of the experi-
ments.

Figure VI.18 � Trajectory of the markers for Case 18. CoG denotes the position of the center
of gravity of the buoy. C# represents the cable markers.
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Figure VI.19 � Horizontal (x) and vertical (z) motion of the markers for Case 18. CoG

denotes the position of the center of gravity of the buoy. C# represents the
cable markers. t = 0 s is the starting time of the winch.

Figure VI.20 � Out-of-plane (y) motion of the markers for Case 18. CoG denotes the position
of the center of gravity of the buoy. C# represents the cable markers. t = 0 s
is the starting time of the winch.

The experimental results for other Cases are presented in Appendix C.
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VI.2 Comparisons between the experiments and the

numerical simulations

The �nal coupling between InWave, CableDyn, WS_CN and Meshmagick, as pre-
sented in Figure V.23, is used to perform the numerical simulations of the experimental
tests.

VI.2.1 Case 15

The initial mesh of the buoy given in input of Meshmagick is shown in Figure VI.21.
It is made of 8862 panels.

The multibody system is composed of two bodies:

� The base (body 0) which represents the footbridge of the basin and is motionless:

η0 = 06×1 (VI.8)

� The buoy (body 1) linked to the base by a revolute joint to model the rotation
axis. The initial modi�ed Denavit-Hartenberg parameters are given in Table VI.4.

j σj γj (rad) bj (m) αj (rad) dj (m) θj (rad) rj (m)

1 0
π

2
0.0183

π

2
0 -

π

2
0

Table VI.4 � mDH parameters for Case 15

The cable is made of one element. The fairlead position in the body frame is:

1O1A1 = (−0.1,−0.908, 0)T (VI.9)

The hydrodynamic loads on the cable are neglected.

Figure VI.22 presents the comparison of the initial position of the winch, the ca-
ble, the buoy center of gravity and the rotation axis between the experiments and the
numerical simulation.

Figure VI.21 � Initial mesh of the buoy with 8862 panels
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Figure VI.22 � Position of the cable, the buoy center of gravity (CoG) and the rotation axis
(Axis) in the experiments (red) and the numerical simulation (blue) for Case
15

The command of the lowering velocity at the winch is shown in Figure VI.23. A
constant velocity of 0.033 m/s is reached after a linear ramp of 3 s. The time series are
identical in the experimental and numerical results.

Figure VI.23 � Comparison of time series of the lowering velocity at the winch from numerical
and experimental results for Case 15. t = 0 s denotes the starting time of the
winch.

The mesh convergence is presented in Figure VI.24 and indicates a total mesh of
8000 panels is enough for Case 15. This mesh is displayed in Figures VI.25 and VI.26.
The domain is cylindrical with a radius of 2 m and an absorbing beach of 1 m. The
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VI.2. Comparisons between the experiments and the numerical simulations

Meshmagick input coe�cients are: 
αV = 0.5

αH = 0.2

βV = 0.4

βH = 0.2

(VI.10)

Figure VI.24 � Comparison of time series of the cable tension and the angular position from
numerical results with di�erent meshes for Case 15. t = 0 s denotes the
starting time of the winch.
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Figure VI.25 � Three-dimensional view of the initial mesh for Case 15. The cable is in red.

Figure VI.26 � Bi-dimensional view of the initial mesh for Case 15. The cable is in red.

The cable used in the experiments is sti� so the value of the numerical cable sti�ness
has to be high enough not to modify the numerical results. If the sti�ness increases,
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the necessary time step to be converged decreases. Consequently, the in�uence of the
cable sti�ness is studied at the same time as the time step convergence. Three cases
are considered:

� An axial sti�ness of 6.7× 105 N and an axial damping coe�cient of 3× 107 N s/m2,
which form the reference;

� A sti�ness which is twice as high as the reference with the same damping coe�-
cient;

� A sti�ness which is �ve times as high as the reference with the same damping
coe�cient.

The time step convergence for these three cases are presented in Figures VI.27, VI.28
and VI.29. As expected, a very small time step is required when the cable sti�ness is
higher. A comparison of the numerical results after convergence for the three values of
the cable sti�ness is displayed in Figure VI.30. The tension and the rotational motion
are independent of the cable sti�ness. The simulations do not last the same duration
because of memory leak problems. Finally, an axial sti�ness of 6.7× 105 N, an axial
damping coe�cient of 3× 107 N s/m2 and a time step of 0.001 s are chosen.

Figure VI.27 � Comparison of time series of the cable tension and the angular position from
numerical results for Case 15 for a cable sti�ness of 6.7× 105 N. t = 0 s
denotes the starting time of the winch.
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Figure VI.28 � Comparison of time series of the cable tension and the angular position from
numerical results for Case 15 for a cable sti�ness of 1.34× 106 N. t = 0 s
denotes the starting time of the winch.

Figure VI.29 � Comparison of time series of the cable tension and the angular position from
numerical results for Case 15 for a cable sti�ness of 3.35× 106 N. t = 0 s
denotes the starting time of the winch.
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Figure VI.30 � Comparison of time series of the cable tension and the angular position from
numerical results for Case 15 for a cable sti�ness of 3.35× 106 N. t = 0 s
denotes the starting time of the winch.

Figure VI.31 presents the comparison of the angular position of the buoy and the
cable tension between the experimental and numerical results. It can be seen the hori-
zontality of the buoy at the initial time was not perfect during the experiments. Despite
that, for both the motion and the tension, the agreement is very good. The tension
decrease during the increase of the lowering velocity due to the ramp is well captured.
The perturbed wave pattern at t = 4.5 s is shown in Figure VI.32.

The simulation only lasts 5.8 s because at that moment, one extremity of the buoy
(bottom) is fully immersed whereas it was piercing at the initial time. Consequently
the body mesh is tangent to the free surface mesh which leads to important numerical
errors. The mesh at the �nal time step is displayed in Figure VI.33.
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Figure VI.31 � Comparison of time series of the cable tension and the angular position from
numerical and experimental results for Case 15. t = 0 s denotes the starting
time of the winch.

Figure VI.32 � Perturbed component of the wave pattern (ηP ) at t = 4.5 s. The cable is in
red.
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Figure VI.33 � Bi-dimensional view of the �nal mesh for Case 15. The cable is in red.

VI.2.2 Case 8

Case 8 is now studied. Compared to Case 15, the lowering velocity is double
(0.067 m/s instead of 0.033 m/s) with a half linear ramp (1.5 s instead of 3 s). The
position of the rotational axis is given in Table VI.5. The lowering velocity at the winch
is presented in Figure VI.34. The cable tension and the angular position of the buoy are
displayed in Figure VI.35. The initial tension is di�erent from the experimental value
due to the di�erent initial position. The tension loss, after the activation of the winch,
is well captured. As for Case 15, the simulation stops when one extremity of the buoy
is close to be immersed.

j γj (rad) bj (m) αj (rad) dj (m) θj (rad) rj (m)

1
π

2
0.0116

π

2
0 -

π

2
0

Table VI.5 � mDH parameters for Case 8

Figure VI.34 � Comparison of time series of the lowering velocity at the winch from numerical
and experimental results for Case 8. t = 0 s denotes the starting time of the
winch.
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Figure VI.35 � Comparison of time series of the cable tension and the angular position from
numerical and experimental results for Case 8. t = 0 s denotes the starting
time of the winch.

VI.2.3 Case 17

Case 17 is now considered. An incident regular wave of amplitude 0.01 m and wave
period 1 s is present. The lowering velocity is 0.033 m/s with a linear ramp of 3 s.
Because of the presence of the waves, the radius of the domain is �xed to two wave
lengths (3 m) and the numerical absorbing to one wave length (1.5 m). The position
of the rotational axis is given in Table VI.6. The lowering velocity at the winch is
presented in Figure VI.36. The cable tension and the angular position of the buoy are
displayed in Figure VI.37. A good agreement is observed between the experimental
data and the numerical results. As with Cases 8 and 15, a di�erence is noticed in the
initial tension. The e�ects of the waves is well captured for both the tension and the
rotational motion. The tension decreases due to the winch and oscillates at the wave
frequency. The angular motion is not a�ected by the waves. Once more, the simulation
stops when one extremity of the buoy is close to be immersed.

j γj (rad) bj (m) αj (rad) dj (m) θj (rad) rj (m)

1
π

2
0.024

π

2
0 -

π

2
0

Table VI.6 � mDH parameters for Case 17
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Figure VI.36 � Comparison of time series of the lowering velocity at the winch from numerical
and experimental results for Case 17. t = 0 s denotes the starting time of the
winch.

Figure VI.37 � Comparison of time series of the cable tension and the angular position from
numerical and experimental results for Case 17. t = 0 s denotes the starting
time of the winch.

VI.2.4 Case 18

Case 18 allows to change the wave period compared to Case 17. It is �xed to 1.5 s
. The other parameters are unchanged. The position of the rotational axis is given in
Table VI.7. The lowering velocity at the winch is presented in Figure VI.38. The cable
tension and the angular position of the buoy are displayed in Figure VI.39. A good
agreement is observed between the experimental data and the numerical results with
the modi�cation of the wave period. The e�ect of the waves on the angular motion is
still negligible. As for the other cases, the simulations stops when one extremity of the
buoy is close to the free surface.

j γj (rad) bj (m) αj (rad) dj (m) θj (rad) rj (m)

1
π

2
0.019

π

2
0 -

π

2
0

Table VI.7 � mDH parameters for Case 18
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Figure VI.38 � Comparison of time series of the lowering velocity at the winch from numerical
and experimental results for Case 18. t = 0 s denotes the starting time of the
winch.

Figure VI.39 � Comparison of time series of the cable tension and the angular position from
numerical and experimental results for Case 18. t = 0 s denotes the starting
time of the winch.

VI.2.5 Case 20

The e�ect of the wave amplitude may be studied from Case 20. Compared to Case
17, the wave amplitude is double. Other parameters (wave period, lowering velocity
and ramp) stay identical. The position of the rotational axis is given in Table VI.8.
The lowering velocity at the winch is presented in Figure VI.40. The cable tension
and the angular position of the buoy are displayed in Figure VI.41. A good agreement
is observed and the modi�cation of the wave amplitude compared to Case 17 is well
captured in the cable tension. The angular motion is not a�ected by the waves.

j γj (rad) bj (m) αj (rad) dj (m) θj (rad) rj (m)

1
π

2
0.020

π

2
0 -

π

2
0

Table VI.8 � mDH parameters for Case 20
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Figure VI.40 � Comparison of time series of the lowering velocity at the winch from numerical
and experimental results for Case 20. t = 0 s denotes the starting time of the
winch.

Figure VI.41 � Comparison of time series of the cable tension and the angular position from
numerical and experimental results for Case 20. t = 0 s denotes the starting
time of the winch.

VI.3 Conclusion

This chapter presented the experiments of an upending operation conducted in the
shallow water basin of Ecole Centrale de Nantes and the comparisons with the nu-
merical results of InWaveS_CN. All the modules constituting this numerical tool were
required. Five cases were investigated, two cases without waves and with di�erent low-
ering velocities and ramps, three cases with an incident regular wave with di�erent wave
parameters. Each comparison gave a good agreement between the experimental data
and the numerical results, in term of cable tension and angular position of the buoy.
The e�ects of the winch (velocity and linear ramp) and the waves were well captured.
The di�erence in the initial horizontal position of the cylinder at the starting time
could be responsible of the di�erences observed. In every case, the numerical simula-
tion stopped when one extremity of the buoy was close to be immersed, leading to a
body mesh tangent to the free surface mesh and therefore numerical errors. Neverthe-
less, these comparisons to experimental data has given a �rst and promising validation
of InWaveS_CN.
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The goal of our PhD work was the numerical simulation of marine operations, in
particular of lowering and lifting operations. Such simulations require models of multi-
body dynamics, cable dynamics, hydrodynamics and �uid-structure interaction. This
analysis has driven our project.

A multibody theory has been handled to simulate mechanical interactions in multi-
body systems. No kinematic loops were considered. Bodies were rigid, with six degrees
of freedom, separated one from each other by a single-degree-of-freedom joint and lo-
cated using relative coordinates (modi�ed Denavit-Hartenberg parameters), except the
base of the multibody system which was tracked with Cartesian coordinates. The direct
dynamic algorithm was the Composite-Rigid-Body Algorithm (CRBA). Its implemen-
tation, in the numerical tool InWave, was done prior to the beginning of this PhD work.

The CRBA has been used to simulate cable dynamics. Cable elements were modelled
using three joints (two revolute joints and one prismatic joint). The internal loads in the
prismatic joint was modeled using a spring-damper system for simulating the stretching
of the cable. No bending nor torsion were considered. This multibody model has been
validated by comparison with the classical low-order lumped mass theory. This latter
theory is based on the discretization of a cable into lumped masses linked to each
other by a spring-damper system. The lumped mass theory has been implemented in
a numerical tool, CableDyn and validated with the numerical and experimental data
given by Buckham [64]. In order to speed-up the multibody solver when cables were
simulated, a cable joint has been elaborated and the CRBA updated in that way. A
reduction of 49.2 % of the CPU time was observed.

A winch model has been developed to simulate the lowering or the lifting of a pay-
load. The approach was based on the adding or deletion of cable elements during the
simulation. The cable element linked to the winch became variable-unstretched-length.
Both the multibody and the lumped mass approaches provided the same results after
comparisons.

In the literature, marine operations are mainly modelled using the linear potential
�ow theory for the computation of hydrodynamic loads. This theory assumes small
amplitude motions of the bodies around their mean position and small steepness waves.
In case of large (relative) amplitude motions and/or steep waves, this theory is not
valid anymore. In contrast, the originality of this PhD thesis has been the use of
an unsteady potential �ow theory based on the weak-scatterer hypothesis to simulate
marine operations. The velocity potential and the wave elevation were split into a
known incident component and an unknown perturbed component. The perturbed
quantities were assumed small in comparison to the incident ones. The free surface
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boundary conditions were linearized around the incident free surface elevation. This
approach is consistent in case of large (relative) amplitude motions and steep waves. The
velocity potential was computed using a boundary element method. The �uid-structure
interaction was formulated with a monolithic coupling using a second boundary element
method to evaluate both the time-derivative of the velocity potential and the body
acceleration. The implementation of this hydrodynamic theory, in the numerical tool
WS_CN, was already done before the start of our work in case of a single immersed or
surface-piercing body.

The main contribution toWS_CN has been the extension to multibody simulations
with large motions. Both the mesh generator and the hydrodynamic solver have been
modi�ed accordingly. A �rst validation has been achieved in forced motion by compar-
ison with the experimental data of Watai et al. [145]. Two cylinders were considered.
One body was still while the second body was subject to a prescribed large amplitude
motion. Comparisons were done based on the hydrodynamic loads of the �xed cylinder
and the wave elevations at three wave probes. The weak-scatterer approach showed a
very good agreement with the experiments, being able to simulate the hydrodynamic
interactions between the �oating bodies and the modulation of the hydrodynamic loads.
A large number of panels were required to reach the converge of the numerical results,
which led to important CPU times and computer memory demands for every simu-
lation. Super-computing facilities were used. WS_CN has also been switched to a
body-exact formulation (linearization of the free surface boundary equations around
the mean position) and a fully linear formulation (linearization of both the free sur-
face and the body boundary equations around the mean position). The body-exact
approach provided a good agreement with the experimental data too with a lower CPU
time because of coarser meshes. The agreement was good due to the small steepness
of the waves. When the wave steepness was increased, more di�erences were observed
between the weak-scatterer and the body-exact models. The fully linear approach did
not give accurate results, the body nonlinearities being important. Theses results have
proved the interest of an unsteady weakly nonlinear potential �ow theory, compared to
a fully linear approach, in case of large relative motions between bodies.

A second validation of the multibody extension was proposed, based on a com-
parison between the weak-scatterer approach and a classical linear frequency-domain
approach in free motion. This case presented a good agreement between the numerical
results of the two theories. Other developments have been achieved in WS_CN : the
implementation of a free surface remeshing process to ensure more robust simulations,
the parallelization of the computation of the in�uence coe�cients to speed up the code
and the reduction of the memory footprint with the use of the sparse linear system
solver PARDISO.

Thus, our contribution to WS_CN has enabled to reach multibody simulations
which are more robust, stable and faster. From the comparisons between the di�erent
approximations included in the code (weak-scatterer, body-exact and linear), it seems
relevant to us that WS_CN is seen as a multi-level potential �ow based numerical tool
able to �t the hydrodynamic theory for every case. The weak-scatterer method should
be used in case of large amplitude motion and steep waves. If the wave steepness is low
then a body-exact approximation would be su�cient and a linear approximation would
only be required when both the motion amplitude and the wave steepness are small.

The potential �ow theory based on the weak-scatterer hypothesis and the Composite-
Rigid-Body Algorithm have been coupled to solve the �uid-structure interaction and
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enable the simulation of multibody systems in waves with large relative motions, as ex-
pected in marine operations. For the sake of robustness and CPU time, a tight coupling
has been selected. The coupling equation, which gathered the multibody motion equa-
tion provided by the CRBA and the second boundary value problem of the potential
�ow theory, was derived and demonstrated. These developments have led to the cre-
ation of a new numerical tool, named InWaveS_CN. A signi�cant emphasis was placed
on its modularity through the language binding using Python as glue code language.
A validation of this coupling has been done by the comparison between InWaveS_CN
and WS_CN. A perfect agreement was noticed, giving the proof of the good derivation
of the coupling equation. The tight coupling was tested by comparison with two loose
couplings (explicit and implicit). As expected, the tight coupling matched the implicit
loose coupling results and the explicit loose coupling presented some di�erences because
of the time lag between the solvers.

The numerical tool CableDyn has been added as a module of InWaveS_CN, using
an explicit loose coupling, to simulate cables when kinematic loops appeared, as they
could not be handled by the CRBA.

The mesh generator of WS_CN, implemented prior to this PhD, was based on a
semi-analytical approach to track the intersection curve between a surface-piercing body
and the incident free surface. This approach was a marching method which required
the knowledge of a parametric equation of the body surface. Then, an advance front
method was used to generate the mesh of the bodies, the free surface and the numerical
tank walls. This mesh strategy su�ered of a lack of robustness and was only used with
academic bodies. Furthermore, it would involve the development of a computer-aided
design tool inside WS_CN, which is dedicated to the simulation and the analysis of
wave-structure interaction, without using the capacity of a professional mesh generator.
Consequently, it was decided to develop a new mesh generator based on a simple idea:
the body mesh for the user, the free surface mesh for the solver. The body mesh was
assumed to be obtained using a third-party mesh generator, then WS_CN had only to
generate the free surface mesh. The inclusion of the body mesh in the free surface mesh
was done with a panel cutting method, using the Python numerical tool Meshmagick,
coupled with the advance front method of WS_CN through the language binding de-
veloped previously. A special care was taken to generate good quality meshes by the
use of a panel merging algorithm and a spring analogy method to avoid tiny panels
and optimize the position of the nodes. Meshmagick has become a new module of In-
WaveS_CN. Two validation test cases were presented based on comparisons between
the initial mesh generator usingWS_CN and the new mesh generator of InWaveS_CN.
A very good agreement was noticed. Some di�erences were observed, probably due to
the remeshing process used at every time step.

Finally, the experiments of an upending operation in waves were conducted in the
shallow water basin of Ecole Centrale de Nantes and were presented in details. A hori-
zontal cylinder in waves was kept horizontal using a cable, then the cable was unwound
and the cylinder reached its vertical equilibrium position. InWaveS_CN was used to
simulate the experiments. All the modules constituting this numerical tool were re-
quired: InWave for the multibody dynamics, CableDyn for the cable dynamics and the
winch,WS_CN for the hydrodynamics with a body subject to a large amplitude motion
and Meshmagick for the complex geometry. Five cases were presented: two cases with-
out waves and with di�erent lowering velocities and ramps, three cases with an incident
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regular wave with di�erent wave parameters. A good agreement was observed in term
of buoy position and cable tension. The e�ects of the winch velocity, its linear ramp
and the waves were well captured. But, when one extremity of the cylinder crossed the
free surface, large numerical errors occurred. Nevertheless, these numerical simulations
constituted the �rst and promising validation of InWaveS_CN with experiments of a
marine operation.

This PhD work made e�ective progress in the �eld of the simulation of marine
operations:

� The potential �ow theory based on the weak-scatterer hypothesis has been ex-
tended to multibody simulations;.

� The interest of the weak-scatterer theory has been compared to other approaches:
body-exact and linear, leading to a better understanding of its use;

� A multibody solver, including a cable model and a winch model, has been coupled
to an unsteady potential �ow based solver through a tight coupling;

� A new strategy of mesh generation based on a panel cutting method coupled
with an advance front method has been developed and applied with an unsteady
potential �ow based solver;

� A consistent frame has been developed to simulate operations at sea with large
relative motions and compared to experimental data.

From this PhD work and its conclusions, future works may be considered. The
Composite-Rigid-Body Algorithm used in InWave cannot handle kinematic loops. As
seen in the simulation of the experiments, it may be problematic. A more general
mechanical solver could be useful for considering kinematic loops, contact-force models,
�exible bodies, etc. This is the goal of the PhD of David Ogden which has coupled the
frequency-domain potential �ow-based solver Nemoh with the multibody solver HotInt
[58]. A coupling of this multibody solver with WS_CN could lead to the simulation of
more complex articulated systems with large relative motions.

The simulation of cables requires small time steps because of the presence of spring-
damper systems. In InWaveS_CN, the time integrator is the fourth-order explicit
Runge-Kutta scheme (RK4 ) with a constant time step and is shared by all modules.
Consequently, the time step is �xed by the cable solver CableDyn or the multibody solver
InWave whereas most of the CPU time is due to the hydrodynamic solver WS_CN.
Simulations are too time-consuming uselessly when cables are present. This time step
could be reduced by �tting the time integrator: for instance by using a Newmark's
scheme to add numerical damping (cf. subsection II.1.2) in the mechanical and cable
solvers only and by keeping the RK4 scheme in WS_CN by simplicity or by chang-
ing the time integrator globally. Another possibility would be to add subcyles in the
temporal loop to use a lower time step with the cable and mechanical solvers.

Bending and torsion loads could be added to the cable model in case of low-tension
tethers, for example with a marine operation involving a Remotely Operated Vehicles
(ROV ) [64] or with a cable laying operation.

Motion compensation systems have not been considered in this PhD whereas they are
present for some particular operations in the lowering and lifting operations. Therefore,
their inclusion in the model is necessary for more realistic simulations.
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Vincent Leroy has coupled InWave with two aerodynamic solvers to compute the
aerodynamic loads a�ecting �oating wind turbines: a free-vortex wake theory-based
unsteady aerodynamic solver and a steady double multiple streamtube theory-based
solver [56]. It would be interesting to gather the couplings presented in our PhD work
with those developed by Vincent Leroy in order to simulate �oating wind turbines
subject to large amplitude motions in waves (because of the drift and/or the inclination
of the turbine due to the wind for instance).

Regarding WS_CN, several works could be planned. The code su�ers of memory
leaks in the marching method to track intersection curves and in the advance front
method. They reduce the performance and the duration of the simulations. If these
memory leaks cannot be �xed in the present implementation, a new implementation of
the algorithms would be necessary. The CPU times required by WS_CN are still large,
even after the parallelization of the computation of the in�uence coe�cients. This is
why, the PhD work of Yohan Poirier has started in 2017 accordingly. He has achieved
a GPU parallelization of the code and he now is developing a Parareal algorithm in
WS_CN. The Parareal algorithm is a parallel-in-time integration method [187]. The
goal is to reach real-time computations with a single body. If the body-exact approxi-
mation is used, the implementation of the free surface Green's function could reduce the
size of the mesh and so the CPU time. The expression of the free surface Green's func-
tion in the case of a weak-scatterer approximation does not exist yet. So far, WS_CN
has only handled incident regular waves, consequently, it would be interesting to extend
the incident wave models to irregular waves, by using a High-Order Spectral (HOS )
model [97] for instance. A fully nonlinear potential �ow model could be implemented
in WS_CN in the cases where the weak-scatterer hypothesis is not satis�ed. WS_CN
could also be extended to a second order of magnitude of the weak-scatterer hypothesis
(on the same principle as the Stokes' series expansion used in the linear models) to
add more free surface nonlinearities. Lots of application cases of the code have not
been tested yet: ships with forward speed (including hydrofoils for a larger motion),
side-by-side operations, slamming, etc.

The enhancement of the new mesh strategy, developed in this PhD, would require
the improvement of the panel merging method to reach better quality meshes, especially
at the intersection curve. The projection of the nodes on the intersection curve before
clipping the mesh could also be a solution to study. A body mesh morphing algorithm
should be developed to reduce the numerical errors due to the permanent remeshing
and update the intersection curve. The CPU time would be smaller too. An extension
of the new mesh generator to multibody simulations could be done easily.

InWaveS_CN could be more intensively used in case of lowering and lifting opera-
tions in order to quantify with accuracy the interest of the weak-scatterer method. The
e�ects of the distance between the payload and the vessel, the free surface or the seabed
and of the lowering and lifting velocities could be studied for example. The extension
to simulations with a payload in the air which is then immersed should be considered
through the modeling of the slamming loads in WS_CN. Finally, aerodynamic loads,
neglected in our work whereas winds may be strong far o�shore [6], could be included
in the model to improve accuracy of the analyses performed for marine operations.

To the happy few
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Appendix A

Multibody equations

This appendix presents the demonstration of two equations used in chapter I.

A.1 Kinematic recursive equation for accelerations

The goal of this section is to prove (I.48).

A.1.1 Linear acceleration

The time-di�erentiation of (I.24) gives:(
d ev(Oj ,Σj/Σe)

dt

)
/Σe

= ev̇(Oj ,Σj/Σe) (A.1)

=

(
d ev(Oj ,Σj/Σi)

dt

)
/Σe

+

(
d ev(Oi,Σi/Σe)

dt

)
/Σe

+

(
d( eΩ(Σi/Σe) × eOiOj )

dt

)
/Σe

(A.2)

By using (I.25):(
d ev(Oj ,Σj/Σi)

dt

)
/Σe

=

(
d ev(Oj ,Σj/Σi)

dt

)
/Σi

+ eΩ(Σi/Σe) × ev(Oj ,Σj/Σi)

(A.3)

= σj q̈j
ezj + σj q̇j

eΩ(Σi/Σe) × ezj (A.4)

And also: (
d( eΩ(Σi/Σe) × eOiOj )

dt

)
/Σe
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=

(
d eΩ(Σi/Σe)

dt

)
/Σe

× eOiOj + eΩ(Σi/Σe) ×
(
d eOiOj

dt

)
/Σe

(A.5)

= eΩ̇(Σi/Σe) × eOiOj

+ eΩ(Σi/Σe) ×

[(
d eOiOj

dt

)
/Σj

+ eΩ(Σi/Σe) × eOiOj

]
(A.6)

= eΩ̇(Σi/Σe) × eOiOj

+ eΩ(Σi/Σe) × [ ev(Oj ,Σj/Σi) + eΩ(Σi/Σe) × eOiOj ] (A.7)

= eΩ̇(Σi/Σe) × eOiOj

+ eΩ(Σi/Σe) × [σj q̇j
ezj + eΩ(Σi/Σe) × eOiOj ] (A.8)

Finally:

ev̇(Oj ,Σj/Σe) = ev̇(Oi,Σi/Σe) + eΩ̇(Σi/Σe) × eOiOj + eΩ(Σi/Σe) × [ eΩ(Σi/Σe) × eOiOj ]

+ 2σj q̇j
eΩ(Σi/Σe) × ezj + σj q̈j

ezj (A.9)

And by projecting in the local frame of body j:

jv̇j = jRi
iv̇i − jRiS(iPj)

iω̇i + jRiS(iωi)S(iωi)
iPj +2σj q̇jS( jRi

iωi )
jzj +σj q̈j

jzj
(A.10)

A.1.2 Angular acceleration

The time-di�erentiation of (I.27) gives:(
d eΩ(Σj/Σe)

dt

)
/Σe

= eΩ̇(Σj/Σe) (A.11)

=

(
d eΩ(Σj/Σi)

dt

)
/Σe

+

(
d eΩ(Σi/Σe)

dt

)
/Σe

(A.12)

=

(
d eΩ(Σj/Σi)

dt

)
/Σi

+ eΩ(Σi/Σe) × eΩ(Σj/Σi) + eΩ̇(Σi/Σe)

(A.13)

After using (I.28):

eΩ̇(Σj/Σe) = eΩ̇(Σi/Σe) + σ̄j q̇j
eΩ(Σi/Σe) × ezj + σ̄j q̈j

ezj (A.14)

By projecting in the local frame of body j:

jω̇j = jRi
iω̇i + σ̄j q̇jS( jRi

iωi )
jzj + σ̄j q̈j

jzj (A.15)

A.1.3 Final results

Equations (A.10) and (A.15) lead to:

jV̇j = jTi
iV̇i + jγj + q̈j

jaj (A.16)
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A.2. Time-di�erentiation of the linear and angular momenta

with:

jTi =

(
jRi − jRiS(iPj)
03×3

jRi

)
(A.17)

jγj =

(
jRiS(iωi)S(iωi)

iPj + 2σj q̇jS( jRi
iωi )

jzj
σ̄j q̇jS( jRi

iωi )
jzj

)
(A.18)

jaj =
(
σj

jzTj σ̄j
jzTj

)T
(A.19)

A.2 Time-di�erentiation of the linear and angular

momenta

The goal of this section is to prove (I.65). By de�nition, the time-di�erentiation of
the linear and angular momenta at Oj and expressed in Σe is:

eΦj =

mj

(
d ev(Gj ,Σj/Σe)

dt

)
/Σe

eδ(Oj ,Σj/Σe)

 (A.20)

where eδ(Oj ,Σj/Σe) is the time-derivative of the angular momentum at Oj .

A.2.1 Linear momentum

The transport of the linear momentum at Oj gives:

mj

(
d ev(Gj ,Σj/Σe)

dt

)
/Σe

= mj

(
d( ev(Gj ,Σj/Σe) + eΩ(Σj/Σe) × eOjGj )

dt

)
/Σe

(A.21)

= mj

[
ev̇(Oj ,Σj/Σe) +

(
d eΩ(Σj/Σe)

dt

)
/Σe

× eOjGj + eΩ(Σj/Σe) ×
(
d eOjGj

dt

)
/Σe

]
(A.22)

= mj

[
ev̇(Oj ,Σj/Σe) + eΩ̇(Σj/Σe) × eOjGj

]
+mj

[
eΩ(Σj/Σe) ×

((
d eOjGj

dt

)
/Σj

+ eΩ(Σj/Σe) × eOjGj

)]
(A.23)

But each body is rigid, consequently:(
d eOjGj

dt

)
/Σj

= 03×1 (A.24)

So:

mj

(
d ev(Gj ,Σj/Σe)

dt

)
/Σe

= mj

[
ev̇(Oj ,Σj/Σe) − S(eOjGj)

eΩ̇(Σj/Σe)
]

+mj [S( eΩ(Σj/Σe))S( eΩ(Σj/Σe)) eOjGj ] (A.25)
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A.2.2 Angular momentum

The transport of the angular momentum at Gj gives:

eδ(Oj ,Σj/Σe) = eδ(Gj ,Σj/Σe) +mj
ev̇(Gj ,Σj/Σe) × eGjOj (A.26)

Using (A.25):

eδ(Oj ,Σj/Σe) = eδ(Gj ,Σj/Σe) +mj

[
ev̇(Oj ,Σj/Σe) − S(eOjGj)

eΩ̇(Σj/Σe)
]
× eGjOj

+mj [S( eΩ(Σj/Σe))S( eΩ(Σj/Σe)) eOjGj ]× eGjOj (A.27)

with:

eδ(Gj ,Σj/Σe) =

(
d eIGj

eΩ(Σj/Σe)

dt

)
/Σe

(A.28)

= eIGj
eΩ̇(Σj/Σe) +

d
(
eRj

jIGj
eRT

j

)
dt


/Σe

eΩ(Σj/Σe) (A.29)

But each body is rigid, consequently:(
d jIGj

dt

)
/Σj

= 03×3 (A.30)

And using (I.51):

eδ(Gj ,Σj/Σe) = eIGj
eΩ̇(Σj/Σe) + eΩ(Σj/Σe) ×

(
eIGj

eΩ(Σj/Σe)
)

(A.31)

The transport of the inertia matrix from Gj to Oj , using the Huygens theorem gives:

eIOj = eIGj −mjS( eΩ(Σj/Σe))S( eΩ(Σj/Σe)) (A.32)

So:

eδ(Oj ,Σj/Σe) = eIOj
eΩ̇(Σj/Σe) +mjS(eOjGj)

ev̇(Oj ,Σj/Σe) + S( eΩ(Σj/Σe))
(
eIOj

eΩ(Σj/Σe)
)

(A.33)

A.2.3 Final results

After projecting in the local frame of body j, Equations (A.25) and (A.33) lead to:

jΦj = jMj
jV̇j +

(
mjS( jωj )S( jωj ) jSj

S( jωj ) jIOj
jωj

)
(A.34)

with:
jMj =

(
mjI3 −mjS( jSj )

mjS( jSj ) jIOj

)
(A.35)

272



Appendix B

Cummins' equation

This appendix presents Cummins' equation and how to use hydrodynamic databases
to perform time-domain simulations.

When a fully linear potential �ow-based solver is used in frequency-domain, as
Nemoh or WAMIT, three numerical results are obtained, constituting a hydrodynamic
database:

� Added mass matrices A(ω);

� Hydrodynamic damping matrices B(ω);

� Excitation force vectors fExc(ω).

A and B are square matrices of size 6×Nb while fExc is a complex vector of size 6×Nb,
with Nb the number of bodies.

From the hydrodynamic database, the time-domain hydrodynamic loads are com-
puted:

� The excitation force which represents the sum of the Froude-Krylov loads and the
di�raction loads:

fExc(t) =

ˆ ∞
−∞

KExc(t− τ)ηI(τ) dτ (B.1)

where ηI denotes the incident wave elevation and KExc is the impulse response
function vector of the complex excitation force vectors:

KExc(t) =
1

2π

ˆ ∞
−∞

Re
(
fExc(ω)eiωt

)
dω (B.2)

� The radiation force:

fR(t) = −A(∞)Ẍ(t)−
ˆ t

0
KR(t− τ)Ẋ(τ) dτ (B.3)

where X is the Cartesian position of the bodies, A(∞) represents the added mass
matrix at in�nity frequency and KR is the impulse response function matrix of
the radiation force:

KR(t) =
2

π

ˆ ∞
0

B(ω) cos(ωt) dω (B.4)
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Cummins' equation

Finally the motion equation of a body or Cummin's equation arises [102]:

[M + A(∞)]Ẍ(t) +

ˆ t

0
KR(t− τ)Ẋ(τ) dτ + CX(t) = fExc(t) (B.5)

with M is the mass matrix and C denotes the hydrostatic sti�ness matrix.

Other methods exist to compute the convolution integral of Cummins' equation,
such as Prony's method [188].
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Appendix C

Measurements

This appendix presents the experimental results of the Cases not displayed in chap-
ter VI.

C.1 Case 1

Figure C.1 � Winch velocity for Case 1. t = 0 s denotes the starting time of the winch.

Figure C.2 � Wave elevation for Case 1. t = 0 s denotes the starting time of the winch.
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Measurements

Figure C.3 � Cable tension and rotational motion for Case 1. t = 0 s denotes the starting
time of the winch.

C.2 Case 2

Figure C.4 � Winch velocity for Case 2. t = 0 s denotes the starting time of the winch.

Figure C.5 � Wave elevation for Case 2. t = 0 s denotes the starting time of the winch.
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C.3. Case 3

Figure C.6 � Cable tension and rotational motion for Case 2. t = 0 s denotes the starting
time of the winch.

C.3 Case 3

Figure C.7 � Winch velocity for Case 3. t = 0 s denotes the starting time of the winch.

Figure C.8 � Wave elevation for Case 3. t = 0 s denotes the starting time of the winch.
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Measurements

Figure C.9 � Cable tension and rotational motion for Case 3. t = 0 s denotes the starting
time of the winch.

C.4 Case 4

Figure C.10 � Winch velocity for Case 4. t = 0 s denotes the starting time of the winch.

Figure C.11 � Wave elevation for Case 4. t = 0 s denotes the starting time of the winch.
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C.5. Case 5

Figure C.12 � Cable tension and rotational motion for Case 4. t = 0 s denotes the starting
time of the winch.

C.5 Case 5

Figure C.13 � Winch velocity for Case 5. t = 0 s denotes the starting time of the winch.

Figure C.14 � Wave elevation for Case 5. t = 0 s denotes the starting time of the winch.
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Measurements

Figure C.15 � Cable tension and rotational motion for Case 5. t = 0 s denotes the starting
time of the winch.

C.6 Case 6

Figure C.16 � Winch velocity for Case 6. t = 0 s denotes the starting time of the winch.

Figure C.17 � Wave elevation for Case 6. t = 0 s denotes the starting time of the winch.
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C.7. Case 7

Figure C.18 � Cable tension and rotational motion for Case 6. t = 0 s denotes the starting
time of the winch.

C.7 Case 7

Figure C.19 � Winch velocity for Case 7. t = 0 s denotes the starting time of the winch.

Figure C.20 � Wave elevation for Case 7. t = 0 s denotes the starting time of the winch.
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Measurements

Figure C.21 � Cable tension and rotational motion for Case 7. t = 0 s denotes the starting
time of the winch.

C.8 Case 8

Figure C.22 � Winch velocity for Case 8. t = 0 s denotes the starting time of the winch.

Figure C.23 � Wave elevation for Case 8. t = 0 s denotes the starting time of the winch.
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C.9. Case 9

Figure C.24 � Cable tension and rotational motion for Case 8. t = 0 s denotes the starting
time of the winch.

C.9 Case 9

Figure C.25 � Winch velocity for Case 9. t = 0 s denotes the starting time of the winch.

Figure C.26 � Wave elevation for Case 9. t = 0 s denotes the starting time of the winch.
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Measurements

Figure C.27 � Cable tension and rotational motion for Case 9. t = 0 s denotes the starting
time of the winch.

C.10 Case 10

Figure C.28 � Winch velocity for Case 10. t = 0 s denotes the starting time of the winch.

Figure C.29 � Wave elevation for Case 10. t = 0 s denotes the starting time of the winch.
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C.11. Case 11

Figure C.30 � Cable tension and rotational motion for Case 10. t = 0 s denotes the starting
time of the winch.

C.11 Case 11

Figure C.31 � Winch velocity for Case 11. t = 0 s denotes the starting time of the winch.

Figure C.32 � Wave elevation for Case 11. t = 0 s denotes the starting time of the winch.
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Measurements

Figure C.33 � Cable tension and rotational motion for Case 11. t = 0 s denotes the starting
time of the winch.

C.12 Case 12

Figure C.34 � Winch velocity for Case 12. t = 0 s denotes the starting time of the winch.

Figure C.35 � Wave elevation for Case 12. t = 0 s denotes the starting time of the winch.
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C.13. Case 13

Figure C.36 � Cable tension and rotational motion for Case 12. t = 0 s denotes the starting
time of the winch.

C.13 Case 13

Figure C.37 � Winch velocity for Case 13. t = 0 s denotes the starting time of the winch.

Figure C.38 � Wave elevation for Case 13. t = 0 s denotes the starting time of the winch.
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Measurements

Figure C.39 � Cable tension and rotational motion for Case 13. t = 0 s denotes the starting
time of the winch.

C.14 Case 14

Figure C.40 � Winch velocity for Case 14. t = 0 s denotes the starting time of the winch.

Figure C.41 � Wave elevation for Case 14. t = 0 s denotes the starting time of the winch.
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C.15. Case 15

Figure C.42 � Cable tension and rotational motion for Case 14. t = 0 s denotes the starting
time of the winch.

C.15 Case 15

Figure C.43 � Winch velocity for Case 15. t = 0 s denotes the starting time of the winch.

Figure C.44 � Wave elevation for Case 15. t = 0 s denotes the starting time of the winch.
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Measurements

C.16 Case 16

Figure C.45 � Winch velocity for Case 16. t = 0 s denotes the starting time of the winch.

Figure C.46 � Wave elevation for Case 16. t = 0 s denotes the starting time of the winch.

Figure C.47 � Cable tension and rotational motion for Case 16. t = 0 s denotes the starting
time of the winch.
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C.17. Case 17

C.17 Case 17

Figure C.48 � Winch velocity for Case 17. t = 0 s denotes the starting time of the winch.

Figure C.49 � Cable tension and rotational motion for Case 17. t = 0 s denotes the starting
time of the winch.
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Measurements

C.18 Case 18

Figure C.50 � Winch velocity for Case 18. t = 0 s denotes the starting time of the winch.

Figure C.51 � Wave elevation for Case 18. t = 0 s denotes the starting time of the winch.

Figure C.52 � Cable tension and rotational motion for Case 18. t = 0 s denotes the starting
time of the winch.
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C.19. Case 19

C.19 Case 19

Figure C.53 � Winch velocity for Case 19. t = 0 s denotes the starting time of the winch.

Figure C.54 � Wave elevation for Case 19. t = 0 s denotes the starting time of the winch.

Figure C.55 � Cable tension and rotational motion for Case 19. t = 0 s denotes the starting
time of the winch.
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Measurements

C.20 Case 20

Figure C.56 � Winch velocity for Case 20. t = 0 s denotes the starting time of the winch.

Figure C.57 � Wave elevation for Case 20. t = 0 s denotes the starting time of the winch.

Figure C.58 � Cable tension and rotational motion for Case 20. t = 0 s denotes the starting
time of the winch.
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C.21. Case 21

C.21 Case 21

Figure C.59 � Winch velocity for Case 21. t = 0 s denotes the starting time of the winch.

Figure C.60 � Wave elevation for Case 21. t = 0 s denotes the starting time of the winch.

Figure C.61 � Cable tension and rotational motion for Case 21. t = 0 s denotes the starting
time of the winch.
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Appendix D

Résumé substantiel

D.1 Introduction

Avec l'augmentation des dimensions des éoliennes ainsi que leur implantation dans
des zones où les mers sont plus agitées et les vents plus forts, les opérations marines devi-
ennent de plus en plus complexes. Le coût de ces opérations représente 30 % du prix �nal
de l'électricité et in�ue donc signi�cativement sur la compétitivité des énergies marines
par rapport aux énergies conventionnelles (charbon, pétrole, gaz, etc.) [1]. D'où la né-
cessité d'étudier les opérations marines, aussi bien théoriquement qu'expérimentalement
ou numériquement, pour en diminuer les risques et les coûts et ainsi favoriser le développe-
ment des énergies marines renouvelables.

Il existe di�érents types d'opérations marines, tels que les opérations de remorquage,
de redressement, de déchargement, de dépose de câbles, d'enfoncement de monopieux,
etc. Cette thèse porte principalement sur un autre type d'opération : les opérations
de descente ou de remontée de colis lourds en mer. Ces dernières sont constituées d'un
navire, d'une grue installée sur le navire, d'un câble de levage, d'un treuil, d'élingues ou
de gréements et d'un colis à déposer ou remonter. Au cours de ces opérations, di�érents
risques sont présents : l'imprécision de la position du colis, la collision entre le colis et
le navire, des e�orts brusques dans les câbles, etc. C'est pourquoi il est nécessaire de
modéliser et simuler ce type d'opération pour en prévenir les risques.

La simulation numérique des opérations de descente et de remontée de colis a été
intensément étudiée dans la littérature. Ces travaux peuvent être classés en trois caté-
gories : les analyses mécaniques, hydrodynamiques, et de contrôle des mouvements.

Une opération de descente nécessite de simuler un système multicorps articulé. Le
navire, les câbles et le colis sont en interaction mécanique. Les premiers modèles mé-
caniques étaient basés sur des approches simpli�ées : découplage de la dynamique du
colis de celle du navire [12], linéarisation des équations du mouvement [15] ou problème
bidimensionnel [17]. Ensuite, des modèles tridimensionnels, non-linéaires et résolvant
l'interaction mécanique entre les corps apparurent [16, 19, 20]. Ces études avaient pour
point commun de maintenir le colis en l'air, de sorte que seul le navire subissait des
e�orts hydrodynamiques. A�n d'écrire et de résoudre automatiquement les équations
de mouvement, des algorithmes de mécanique multicorps furent utilisés, basées sur les
équations de Newton-Euler [26] ou de Euler-Lagrange [27].

Concernant le modèle hydrodynamique d'une opération de descente de colis, la plu-
part des travaux utilisèrent la théorie des écoulements potentiels linéarisés dans le do-
maine fréquentiel [7, 16, 19, 25]. Cette théorie suppose que les corps ont un mouvement
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Résumé substantiel

de faible amplitude et que la houle a une faible cambrure. Ces hypothèses sont valides
dans le cas où le colis est en l'air et en mer calme mais quand le colis est dans l'eau en
étant descendu ou remonté alors ces hypothèses sont violées (grand mouvement relatif
entre les corps). C'est pourquoi Hannan [11] utilisa une théorie des écoulements po-
tentiels non-linéaires dans sa thèse de doctorat car les hypothèses de la théorie linéaire
n'ont pas à être satisfaites. Néanmoins le modèle mécanique était constitué d'une barge
�xe et d'un câble rigide.

Les logiciels commerciaux de simulation numérique o�shore (OrcaFlex [38], DeepLines
[39], SIMO [36], etc.) sont capables de modéliser les interactions mécaniques mais sont
tous basés sur une approche d'écoulement potentiel linéarisé. C'est pourquoi il est
nécessaire de développer un outil de simulation numérique prenant en compte les inter-
actions mécaniques et étant cohérent d'un point de vue hydrodynamique pour modéliser
le couplage �uide-structure lors d'une opération de descente ou de remontée de colis.

Les objectifs de la thèse sont :

� L'implémentation d'un modèle de câble et de treuil dans le logiciel de simulation
mécanique utilisé (InWave);

� L'extension du logiciel de simulation hydrodynamique (WS_CN ), basé la théorie
des écoulements potentiels instationnaires satisfaisant l'hypothèse de faible per-
turbation, dite �weak-scatterer �, aux simulations multicorps;

� Le couplage entre InWave et WS_CN dans le but de simuler numériquement des
opérations de descente et de remontée de colis;

� La comparaison entre une modélisation classique utilisant la théorie des écoule-
ments potentiels linéarisés et l'outil développé pour quanti�er l'intérêt de la théorie
instationnaire �weak-scatterer �.

D.2 Dynamique des systèmes multicorps

La théorie de mécanique multicorps utilisée dans cette thèse permet de simuler des
systèmes multicorps articulés de type arbre cinématique, c'est-à-dire qu'ils ne disposent
pas de boucles cinématiques. Concrétement, chaque corps du système multicorps ne
posséde qu'un unique prédécesseur mais potentiellement plusieurs successeurs. Dans le
cas où plusieurs successeurs seraient présents, des boucles cinématiques apparaîtraient.
Les corps sont considérés comme rigides et séparés les uns des autres par une articulation
autorisant un seul degré de liberté soit en translation (liaison glissière) soit en rotation
(liaison pivot). Chaque corps est repéré via des coordonnées relatives par rapport à
son prédécesseur en utilisant les paramètres modi�és de Denavit-Hartenberg. Le corps
racine (ou la base) du système multicorps est repéré avec des coordonnées Cartésiennes.
Cette modélisation permet d'écrire les équations cinématiques récursives du système
multicorps.

L'algorithme utilisé se nomme l'Algorithme aux Corps Rigides Composites (ACRC )
et permet la résolution d'un problème de dynamique multicorps directe, c'est-à-dire
où les e�orts extérieurs et intérieurs sont connus et l'accélération des corps inconnue.
L'équation du mouvement du système multicorps est :

H(q)

(
0V̇0

q̈

)
=

(
06×1

Γ

)
−C(q, q̇) (D.1)
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D.3. Dynamique de câbles

avec :

� H la matrice masse généralisée du système multicorps;

� C le vecteur des e�orts extérieurs et des accélérations d'entrainement et de Cori-
olis;

� Γ le vecteur des e�orts internes projectés selon l'axe des liaisons;

� 0V̇0 l'accélération de la base par rapport au repère inertiel et exprimée dans le
repère de la base;

� q̈ le vecteur des accélérations articulaires.

L'ACRC permet le calcul de la matrice H et du vecteur C à partir des équa-
tions cinématiques récursives. Connaissant Γ, les accélérations peuvent être calculées.
L'ACRC est implémenté dans le logiciel InWave. L'intégration en temps se fait grâce
à un schéma de type Runge-Kutta d'ordre 4.

D.3 Dynamique de câbles

Les câbles sont simulés en utilisant un modèle dynamique, basé sur la discrétisa-
tion du câble en éléments et en noeuds, où la masse est concentrée. Chaque élément
comprend un ressort et un amortisseur, a�n de modéliser l'élasticité du câble et les
frottements internes. Lorsque cette approche utilise des coordonnées Cartésiennes pour
repérer les noeuds, elle est appelée la méthode �lumped mass �. Un programme, nommé
CableDyn a été développé en ce sens. Il est validé par comparaisons avec les résultats
numériques et expérimentaux fournis par Buckham [64]. Un bon accord est observé.

L'Algorithme aux Corps Rigides Composites est également utilisé pour simuler des
câbles par cette même approche, via InWave. Chaque élément câble est modélisé par
trois articulations : deux liaisons pivots et une liaison glissière. Les e�orts internes à la
liaison glissière permettent de modéliser l'élasticité et les frottements. Ils s'expriment
comme suit :

Γj =


−EA
Lu

(qj + Lu)− CA

Lu
q̇j si |qj | > Lu;

−CA
Lu

q̇j sinon.
(D.2)

où E, C, A et Lu représentent le module d'Young, le coe�cient d'amortissement, l'aire
de la section du câble et la longueur à vide de l'élément câble. L'indice j indique le
numéro du corps dans le système multicorps. Il n'y a pas d'e�orts internes dans les
liaisons pivots, la �exion et la torsion du câble ne sont donc pas modélisées.

La méthode �lumped mass� et l'ACRC sont comparés et prouvent, par leur accord,
que les approches sont identiques.

A�n d'accélérer les calculs de l'ACRC lorsque des câbles sont simulés, une réécriture
de l'algorithme dynamique est e�ectuée. Une articulation câble est créee pour séparer
deux corps par trois liaisons mécaniques, soit un élément câble. Une accélération de
49.2 % du temps de calcul est notée.

En�n, un modèle de treuil est développé pour simuler le déroulement et l'enroulement
d'un câble. Il se base sur l'ajout ou la suppression d'éléments câble pendant la simula-
tion temporelle. L'élément câble connecté au treuil voit sa longueur à vide être modi�ée.
Les méthodes �lumped mass� et multicorps (ACRC ) donnent les mêmes résultats pour
ce modèle de treuil après comparaison.
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D.4 Hydrodynamique

La théorie hydrodynamique utilisée dans cette thèse est la théorie des écoulements
potentiels satisfaisant l'hypothèse de faible perturbation, dite �weak-scatterer�. Le
potentiel de vitesse (φ) et l'élévation de surface libre (η) sont décomposés en une partie
incidente connue et une partie perturbée inconnue.{

φ = φI + φP

η = ηI + ηP
(D.3)

avec :

� (∗)I la composante incidente;

� (∗)P la composante perturbée.

L'hypothèse de faible perturbation implique que la composante perturbée est faible
devant la composante incidente. {

φP = o(φI)

ηP = o(ηI)
(D.4)

Les équations limites de surface libre sont ensuite linéarisées au niveau de la surface
libre incidente. Cette méthode est cohérente en cas de mouvements de grandes am-
plitudes et de houles cambrées, contrairement à la théorie des écoulements potentiels
linéarisés.

La composante perturbée du potentiel de vitesse est calculée à partir d'une méthode
aux éléments frontières en utilisant une fonction de Green de type Rankine. Le cou-
plage �uide-structure est basé sur une approche monolithique et nécessite l'utilisation
d'une deuxième méthode aux éléments frontières pour calculer la dérivée temporelle du
potentiel de vitesse. L'implémentation de cette théorie hydrodynamique a été e�ectuée
dans le codeWS_CN avant le début de cette thèse, dans le cas d'un seul corps immergé
ou �ottant [44, 45].

La contribution principale apportée à WS_CN est l'extension du solveur à des sim-
ulations multicorps en cas de mouvements de grandes amplitudes. Une première vali-
dation est entreprise par comparaison avec les résultats expérimentaux de Watai et al.
[145]. Le dispositif expérimental comprend deux cylindres dont l'un est �xe et l'autre
a un mouvement harmonique de grande amplitude. Une houle régulière est présente de
direction l'axe centre à centre des cylindres en con�guration initiale. L'approche hydro-
dynamique utilisée dans notre travail permet d'obtenir de très bons résultats numériques
par rapport aux données expérimentales, que ça soit en terme d'e�orts hydrodynamiques
ou d'élévations de surface libre. Les interactions hydrodynamiques entre les di�érents
corps sont bien captées. Une validation de l'extension aux simulations multicorps est
également faite en mouvement libre, par comparaison avec InWave couplé au logiciel
Nemoh. Ce dernier est basé sur la théorie des écoulements potentiels linéarisés. Les
résultats numériques des deux théories sont en accord. D'autres développements dans
WS_CN sont e�ectués : l'implémentation d'un algorithme de remaillage de surface li-
bre, la parallélisation du calcul des coe�cients d'in�uence et la réduction de la quantité
de mémoire utilisée via l'emploi d'un solveur de systèmes linéaires creux.
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D.5 Interaction �uide-structure

La théorie des écoulements potentiels basés sur l'hypothèse de faible perturbation
et l'Algorithme aux Corps Rigides Composites sont couplés pour calculer l'interaction
�uide-structure d'un système multicorps ayant un mouvement relatif de grande ampli-
tude dans une houle cambrée . Un couplage fort est choisi pour sa robustesse. L'équation
de couplage, qui rassemble l'équation du mouvement du système multicorps et le deux-
ième problème aux éléments frontières, est établie et démontrée. Ces développements
engendrent la création d'un nouveau logiciel nommé InWaveS_CN. Comme InWave
est implémenté en C++ et WS_CN en Frotran, il est nécessaire d'assurer les commu-
nications entre les deux solveurs. A�n de garantir la modularité du logiciel, le code
d'intégration est en Python. Une validation est e�ectuée par comparaison entre In-
WaveS_CN et WS_CN dans un cas multicorps sans interaction mécanique. Ceci per-
met de prouver la justesse de la démonstration et de l'implémentation de l'équation de
couplage. Le couplage fort est comparé à d'autres formes de couplages (faibles, explicite
et implicite) pour en démontrer la pertinence.

Le code de simulation de câbles, CableDyn est aussi couplé à InWaveS_CN en
utilisant un couplage faible explicite.

D.6 Développement d'un nouveau mailleur

Le mailleur deWS_CN, implémenté avant le début de ce travail de doctorat [45], est
basé sur une approche semi-analytique pour calculer la position de la courbe d'intersection
entre le corps �ottant et la surface libre incidente. Les maillages des corps et de la sur-
face libre sont générés via une méthode d'avance de front. Un manque de robustesse
de cette méthode est constaté, notamment pour mailler des géometries complexes. Une
nouvelle stratégie de maillage est développée en supposant que le maillage du corps en-
tier a été généré au préalable en utilisant un logiciel de maillage externe. Le maillage du
corps entier est alors coupé au niveau de la surface libre incidente par un algorithme de
découpe de maillages. Cette méthode déforme signi�cativement le maillage au niveau
de la courbe d'intersection avec la surface libre. Pour améliorer la qualité du maillage
du corps au niveau de la découpe, des algorithmes de fusion de facettes et de défor-
mation de maillages sont utilisés. Puis, le maillage du corps est connecté au maillage
de surface libre, généré par la méthode d'avance de front comme utilisée initialement.
L'outil de découpe de maillage se nomme Meshmagick et est incorporé à InWaveS_CN
en tant que nouveau module. Deux cas tests sont e�ectués a�n de valider la méthode
par des comparaisons entre le mailleur initial et la nouvelle stratégie de maillage. Un
très bon accord est obtenu, validant la nouvelle approche de génération de maillages
pour WS_CN.

D.7 Expériences

A�n de valider le couplage entre InWave etWS_CN, implémenté dans InWaveS_CN,
des essais en bassin ont été menés à l'École Centrale de Nantes. Ces expériences
représentent une opération de redressement dans la houle d'un �otteur d'éolienne de
type spar (cylindre). Initialement, le cylindre est maintenu horizontal au moyen d'un
câble, puis ce câble est déroulé grâce à un treuil entrainant la rotation autour d'un axe
�xe du cylindre, qui, �nalement, atteint sa position d'équilibre verticale. Ces expéri-
ences sont pertinentes au regard du modèle développé dans ce travail de thèse car il y a
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un système mécanique articulé (le cylindre et l'axe �xe), un câble, un treuil et un corps
soumis à des e�orts hydrodynamiques avec un mouvement libre de grande amplitude.

InWaveS_CN est utilisé pour simuler numériquement ces expériences. Tous les
modules le consituant sont sollicités : InWave pour la dynamique multicorps, CableDyn
pour la dynamique du cable et du treuil, WS_CN pour l'hydrodynamique, Meshmag-
ick pour la génération de maillages complexes. Cinq cas sont présentés : deux sans
houle et avec di�érentes lois de vitesses de déroulement du câble et trois en présence
d'une houle incidente régulière avec di�érents paramètres de houle. Les e�ets de la
vitesse de déroulement, de la rampe sur cette dernière et des vagues sont bien cap-
turés. Mais, quand une extrémité du cylindre traverse la surface de l'eau, des erreurs
numériques importantes apparaîssent. Néanmoins, la comparaison entre les simulations
numériques et les données expérimentales o�re une première et prometteuse validation
d'InWaveS_CN.
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Enfin, des essais en bassin d’une opération de 
redressement ont été menés à l’ECN. La 
comparaison entre les simulations numériques et les 
données expérimentales offre une première et 
prometteuse validation d’InWaveS_CN. 

 

Title : Numerical simulation of installation operations for offshore wind farms 
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Abstract: Offshore wind represents the most 
advanced and used marine energy in the world. To 
increase the wind power extraction, turbines grow in 
size and wind farms are installed further offshore in 
presence of rough seas and strong winds. Marine 
operations become more challenging and expensive, 
weather windows are shorter and less frequent. 

This PhD work focuses on the development of a 
numerical tool to simulate marine operations with 
consistency, in particular lowering and lifting 
operations.  The Composite-Rigid-Body Algorithm, 
implemented in the numerical tool InWave, is used to 
model multibody systems. A cable model and a winch 
model are developed following this multibody 
approach and compared to the classical low-order 
lumped mass theory.  Hydrodynamic loads and 
hydrodynamic interactions are simulated using an 
unsteady potential flow theory based on the weak-
scatterer hypothesis, implemented in the numerical 
tool WS_CN. This approach is extended to multibody 
simulations and validated with comparisons to 
experimental data. 

InWave and WS_CN are coupled to solve wave-
structure interaction for articulated multibody 
systems with large relative motions in waves. A tight 
coupling is selected for its robustness. The coupling 
equation is derived and validated from comparisons 
with WS_CN. This leads to the creation of a new 
numerical tool, InWaveS_CN, using Python as glue 
code language. 

A new mesh strategy, based on the coupling 
between a panel cutting method and an advance 
front method, is developed in WS_CN. 

Experiments of an upending operation were 
conducted at Ecole Centrale de Nantes. The 
comparison between the numerical simulations and 
the experimental data leads to a first and promising 
validation of InWaveS_CN. 
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