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Chapter 1. Introduction

Additive Manufacturing (AM), as a rapidly growing manufacturing technology nowa-
days, was first explored and applied in the automotive, aerospace and medical industries.
It is considered as one of the pillars of the fourth industrial revolution. AM is also known
as Rapid Prototyping, Direct Digital Manufacturing, Freeform Fabrication, 3D Print-
ing and Layered Manufacturing. Different from traditional machining, in which parts
are made by removing materials from a larger stock through different processes, AM
fabricates volumes layer by layer from their three-dimensional CAD model data, thus
enabling the fabrication of products with more complex shape and internal structure.

The different technologies of AM have been comprehensively investigated by re-
searchers from industry and academia. A classification of additive manufacturing tech-

nologies can be found in Table 1.1 according to their characteristics.

Categories Description Related technologies

Binding agent selectively de-
posited to join powder parti-
cles

Droplets of build material se-
lectively deposited and fused

Binder jetting Ink-jetting, 3D Printing

Material jetting Multi-Jet Modeling (MJM)

Electron beam melting
: Regions of powder bed selec- (EBM),  Selective  Laser
Powder bed fusion tively fused by thermal energy  Sintering (SLS), Selective

Laser Melting (SLM)

Directed energy depo-  Deposited materials fused by

sition
Sheet lamination

Vat photopolymeriza-
tion

Material extrusion

focused thermal energy

Sheets of material trimmed
and bonded together in layers

Liquid photopolymer selec-
tively cured by light activation
Material selectively dispensed
through nozzle or orifice

Laser metal deposition (LMD)

Laminated object manufactur-
ing (LOM), Ultrasonic Consol-
idation(UC)

Stereolithography (SLA), Dig-
ital Light Processing (DLP)
Fused Deposition Modeling
(FDM)

Table 1.1: Categories of AM processes as classified by ASTM [AST13]

Despite the advantages brought by AM, the control of geometrical accuracy remains
a major bottleneck that hinders its mass adoption. The geometric deviations resulting
from different error sources, including geometric approximation errors, machine errors
and especially material related errors, demonstrate far more complex patterns than
traditional manufacturing processes. Therefore, effective modeling of these geometric
deviations becomes an important topic within the research of AM and will significantly

benefit different aspects of the AM process chain.




Among the many investigated tasks of Design for Additive Manufacturing (DfAM),
the geometrical validation aiming to ensure the consistency between digital product and
the final outcome, as well as design optimization intended to achieve optimal geometrical
or topological design incorporating process knowledge, are also closely concerned with
geometric deviations [LSAL15, TMVT16]. In the tolerancing domain, driven by the new
characteristics and capabilities of AM, challenges with the tolerance specifications are
emerging, posing the need for a more comprehensive investigation of geometric deviations
with respect to process-, material- and geometry-related properties of AM [AWMLI15,
MPP17]. The quality control of AM process calls for accurate prediction of geometrical
defects on manufactured products, so that appropriate compensation plans can be made
to improve the products’ geometric accuracy. All these demands have motivated the
research to develop a deviation modeling framework for AM processes. However, existing

methods are not mature yet to be used for this purpose due to several reasons:

e Methods developed for traditional manufacturing process cannot account for the

new layer-per-layer mechanism of AM;

e Methods developed for AM tend to focus on some specific issues such as material
shrinkage, warpage effect, etc., making them unsuitable for modeling the deviation

of the overall part geometry;

e Most methods ignore the effects of process conditions, while the thermal and me-
chanical behavior in the AM manufacturing process is quite sensitive to the changes

of process conditions.

Therefore, a comprehensive deviation modeling framework is necessary for geometry and
quality control in AM.

With the theoretical background of Geometrical Product Specification and Verifica-
tion (GPS), the Skin Model Shapes (SMS) is proposed as a comprehensive deviation
modeling framework that could be used in different stages of the product life-cycle to
model shape variability [ABM13]. SMS considers geometric deviations that are either
predictable or observable in actual manufacturing processes. Though SMS has proved its
effectiveness in several engineering applications, the extension to AM has seldom been
exploited and the challenges are non-trivial. From the prediction perspective, since

AM remains a new kind of manufacturing process, the process knowledge from either
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industries or the academic world is yet immature. From the observation perspective,
common measurement devices hardly allow to gain information of deviations that occur
within the layers, which impedes the layer-wise investigation of the deviations. On the
other hand, AM simulation techniques came into development only in recent years and
their capability remains to be further exploited. The varieties of deviation sources in
AM cause much fuzziness in identifying the systematic and random properties of de-
viations, and result in unrepeatable deviation patterns that are hard to capture using
conventional methods developed for the current SMS framework.

The challenges have elicited new research questions, among which the followings are

identified in this thesis:

e How to represent deviations in an appropriate deviation space, in which the devi-

ation signatures or patterns could be intuitively identified?

e How to parameterize the deviations in the deviation space, thus a limited number

of parameters could sufficiently explain the deviation signatures or patterns?

e Considering observation data from measurement or simulations, how to estimate
the parameters and derive predictive deviation models that could be used to predict

deviations for new parts?

Therefore, in this thesis, we address these questions with new deviation modeling
methods and a novel framework is proposed to build SMS for Additive Manufacturing.
With detailed discussion as well as experimental validation of the methods, the rest of
this thesis is organized as follows:

In Chapter 2, the current status of research on the geometric deviation modeling
methods for AM processes are investigated. Three major categories of methods are
identified and their respective characteristics are discussed. The theoretical background
as well as the applications of the SMS is introduced. Regarding the characteristics
of AM, a classification of in-plane and out-of-plane deviation has been made which
respectively models the shape variations within each layer and the deformation of each
layer towards the build direction. This classification decomposes the whole part surface
into separate layers on which the modeling problem will be addressed and conforms
to the layer-based nature of AM processes. Based on this classification, the general

framework for developing the SMS for AM is proposed.

4



In Chapter 3, the in-plane deviation modeling is discussed. The shape parameteri-
zation methods aim at deriving parametric models to describe the nominal and actual
in-plane shapes and to represent the in-plane deviation as their radial difference in the
Polar Coordinate System. A transformation based method is proposed to parameterize
the in-plane deviation with a set of transformation parameters which capture the typical
variations of the in-plane shape. Bayesian inference is adopted to gain an estimation of
the transformation parameters in the parametric function together with evaluation of
the estimation uncertainty. A multi-task Gaussian Process model is further proposed
which conducts concurrent learning of the residual deviations for a batch of parts.

In Chapter 4, the out-of-plane deviation modeling is proposed. To begin with, the
deviations are modeled from the whole part surface combining systematic and random
deviation models with surface deformation techniques such as Free-form Deformation.
In order to achieve more precise investigation, statistical modal analysis methods are
adopted to realize layer-level modeling of out-of-plane deviations. A grid-based structure
is used for deviation representation, based on which mode-decomposition methods are
adopted to parameterize the deviation with frequency or geometrical modes. These
modes are further characterized with respect to design and process parameters, and
finally a deviation model is obtained that could make layer-wise prediction of out-of-
plane deviations.

In Chapter 5, the deviation models are applied to obtain the deformed geometry of
each layer of a part and a layer connection algorithm is proposed to conduct inter-layer
triangulation to finally construct the complete SMS of the AM part. A case study is
presented to illustrate all the mentioned methods on a graphical user interface developed
on the MATLAB platform.

In Chapter 6, the conclusion is drawn. Perspectives on the possible improvements of

the existing research and some promising directions for the future work are envisioned.
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Chapter 2. Literature review

2.1 Introduction

Deviation modeling requires effective identification of error sources in the process.
Though the mechanisms of different AM processes may vary, they typically share a
similar work-flow, as illustrated in Figure 2.1. This work-flow is composed of an input
phase, a build phase and an output phase. The input phase deals with the preparation of
input data, in which the CAD part model is converted as a STereoLithography (STL) file
format that provides the geometric information readable for the AM machine. This file
is further processed to repair the possible defects in geometry before being transferred
to the machine. In the build phase, following process settings such as build orientation,
layer thickness, energy intensity and support structure, the part is manufactured in a
layer-by-layer manner. To meet quality and performance requirements, in the output
phase, procedures like support removal, cleaning, heat treatment and NC machining are

conducted.

Input Phase

-
. Support Structure b
Geometry Repair Generation
~

CAD Modeling Con?/-glr_sion :‘>( Part Orientation J( Slicing

File Transfer to
Machine

J
Gool Path Generatioa G/Iachine Parametera
&
- ™\ s p b
Applica- Post Remove Build Machine
tion Process Setup
\ 8 J
Output Phase Build Phase

Figure 2.1: Typical work-flow of an AM process

Factors arising from each of the above phases may induce or affect the geometric
deviations on the manufactured part. Based on [Reh10], Figure 2.2 provides a cause-
and-effect diagram that makes a summary of such factors. Starting from these factors,
research efforts are devoted either to modeling their relationships with resulting devi-
ations or to improve them in product design according to the quantified magnitude of

deviations, among which three major categories of methods can be identified focusing on
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the following topics: geometric approximation error, machine error and process parame-
ters, and quality issues from material behavior. Therefore, in Section 2.2 of this chapter,
a brief review is conducted on these methods and remarks will be given regarding their

strengths and weaknesses.

Material Part geometry CAD data

Mechanical

—— Support generation
properties Shape _ o FPREES
Thermal Size  Slicing «—— Positioning
properties Orientation Data quality —
Geometric Deviations
in
Support
Process control Heat source removal
Mechanical iirrel Surface finish
Process components treatment —
parameters
Process Machine Post-processing

Figure 2.2: Cause-and-effect diagram of geometric deviations in AM [Reh10)]

Whereas, the capability of the mentioned works is still limited, since they could cover
only specific issues or phases of the process. Hence, a more comprehensive deviation
modeling framework is anticipated, which could provide detailed solutions to the predic-
tion and representation of deviations. In this regard, the SMS will be demonstrated as a
promising choice for this framework. As a background, the concept, methodology as well
as applications of SMS are introduced in Section 2.3. The challenges upon extension of
SMS to the AM process are non-trivial. Considering the layer-per-layer characteristics
of AM, new methods have to be developed shifting the current feature-wise modeling
manner to the layer-wise manner. Therefore, in Section 2.4, a general framework for the
development of SMS in AM is proposed, which serves as the guideline of the following

chapters.

2.2 Geometric deviation modeling in Additive Manufacturing

2.2.1 Geometric approximation errors

The investigation of geometric approximation errors is motivated by the fact that

current AM technologies do not work directly on the original CAD model, but use the
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STL file as input, in which the nominal part surface is approximated as a triangular
mesh representation. Therefore, a “chordal error” is introduced during the translation
from CAD to STL, and is defined as the distance between the STL surface patch and
the CAD surface, as can be seen from Figure 2.3(a). Besides, a “staircase error” takes
place due to slicing of the STL file when building the part layer-by-layer, as shown in
Figure 2.3(b). The average chordal error and maximum cusp height have been adopted

to estimate the two errors respectively.

CAD Surface CAD Model

Boundary

Cusp Height

AM Part Boundary

Chordal Error

(a) (b)

Figure 2.3: 2D illustration of (a) the chordal error (b) the staircase error

To reduce the chordal error, the Vertex Translation Algorithm (VTA) is proposed
by Navangul et al. [NPA13], in which the chordal error is computed as the distance
between selected points on the STL facet and their correspondences on the NURBS
patch of the CAD surface. In each facet, the point with maximum chordal error is
identified and translated to the CAD surface. By connecting the translated point with
the facet vertices, three new triangle facets are then generated and updated in the STL
file, while the original facet is deleted, as shown in Figure 2.4. This algorithm aims at
improving the STL file quality by modifying the facets iteratively until chordal errors
are minimized. However, to meet the predefined tolerance criteria, a large number of
iterations may be expected, each requiring significant computational cost. The STL
file size will also be increase with the newly added facets. Similarly, the Surface-based
Modification Algorithm [ZA15] modifies the STL file by adaptively increasing the facet
density at individual part surfaces whose average chordal error and cusp height error
are above a threshold. Whereas, the possibility to induce exponential growth of file size

makes it only preferable for high-accuracy part models.

Another solution proposed by Kunal [Shal4| attempts to minimize the errors by

10
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Translated vertex with

maximum chordal error / CAD surface
, \
e ¢
PY \ b N | __— New facets

N (Added)

b A

Triangular facet in STL file
(Deleted)

Figure 2.4: Illustration of the VTA algorithm

modifying 2D contours obtained by slicing the STL model. Chordal points are sampled
on each chord of the 2D slice contour and the chordal error is evaluated as the distance
between such points and their nearest counterparts on the NURBS surface. If the
chordal error is above the predefined threshold, related chordal points are shifted to
the NURBS surface. This process is iterated until the chordal error falls below the
threshold, and new slice contours are constructed by linking the new points. This
method quite resembles a 2D version of the VTA algorithm, but operates directly on the
slice geometry and achieves a manufacturing-level modification. As an alternative to the
de-facto STL file format, new file formats are emerging that support the representation
of curved surface patches and manage to achieve more accurate approximation to the
CAD surface with reduced chordal errors. Typical representatives of such formats are

the Steiner patch [PA15] and the Additive Manufacturing Format (AMF)[ISO16].

The reduction of staircase error has been approached with different adaptive slicing
methods. Instead of the traditional practice which applies a uniform slice thickness on
the whole part, adaptive slicing conducts slicing with variable slice thicknesses in order
for improved surface quality and reduced build time. In [SPA15], a method termed
as Modified Boundary Octree Data Structure is used to convert the STL file of an
object to an Octree structure, by iteratively subdividing a universal cube enclosing the
STL file into small node cubes according to the defined subdivision conditions. The
heights of the final cubes can then be identified as slice thicknesses. Within a virtual
manufacturing framework, the ability of this method in improving geometrical accuracy
of the manufactured part has been proved. However, the lack of direct support for

adaptive slicing in current AM machines has limited its application. Regarding this

11
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limitation, a clustered adaptive slicing approach is introduced in [PPA14|. The whole
part model is subdivided into subparts stacking on top of each other along the build
direction. A uniform slice thickness is calculated for each subpart and the appropriate
thickness values are determined using a KD-tree structure. The local adaptive slicing

strategy also facilitates the convenient mitigation and evaluation of GD&'T errors.

The aforementioned approaches mainly focus on improving the quality of input file
to reduce shape deviations, so they are independent from any specific AM process and
can be applied in the early design stage when no process information is available yet and
only digital models are at hand. Nevertheless, they cannot provide a analytical form of
geometric deviations and an appropriate criterion for modification is difficult to choose
due to the costly trial and error process. In this thesis, since the deviation modeling
problem will be tackled based on the STL model directly and the objective is to derive
a complete model of the geometric deviations in AM, the approximation error will not

be considered.

2.2.2 Machine error and process parameters

Tong et al. [TALJO3, TL.J04, TJLO8| propose a parametric model of the repeat-
able errors in SLA and FDM machines. The model parameters are estimated through
regression on measurement data gathered at specific points of the manufactured part
surface. The model allows for the prediction of systematic geometric deviations, and
appropriate compensations can be made on the input files (STL or slice file) to miti-
gate the deviations. However, since only a small number of points are considered for
model estimation, the continuity may not be guaranteed when the model is applied to
the whole part surface. Dantan et al. [DHG 17| consider the deviations resulting from
different types of machine errors as a set of deviation modes. For a cylindrical part, the
‘ellipse mode’” and 'rounded rectangle mode’ are used to describe the effects of machine
movement control errors, and the 'gap mode’ is used to describe the gap in the machine
moving axis. These modes are mutually independent and correct identification of them

would facilitate the understanding of the machine errors.

In metallic AM processes, the shrinkage behavior has been investigated with re-
spect to process parameters. The overall shrinkage is measured by the shrinkage ratio

along the x,y and z coordinates axes, and is represented as the dimensional changes in

12
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the manufactured part compared to the nominal dimension. Non-linear models of the
shrinkage ratio are studied with respect to the hatch length [NWF05] and scan speed
parameters [NWFL06| in direct metal laser sintering (DMLS). Through optimization
of the models, more homogeneous sintered material properties and improved part qual-
ity can be obtained. In [RP07, SPR08, SPR09a, SPR09b|, the relationship between
shrinkage ratio and various SLS process parameters is investigated. A linear function
combining the considered parameters as well as their interactions is proposed and anal-
ysis of variance (ANOVA) is conducted to identify the most significant parameters.
In a similar manner, an empirical model of the cylindricity and flatness is developed
in [SPR12| considering laser power, scan speed, powder bed temperature, part size and
build orientation. These approaches bypass the black box of the potential mechanical or
physical mechanisms in AM, but directly correlate the observed deviations with machine
and process parameters through experiments. Though the shrinkage ratio alone cannot
capture the detailed deviations at specific locations of part surface, the results of such
approaches help to gain an insight of the effects from process parameters and lay the

foundation for experimental studies involved in this thesis.

2.2.3 Quality issues from material behavior

Another major research force is from the researchers in quality control for AM, with
the aim to build analytical models of shape shrinkage through statistical analysis of
manufactured parts. A series of studies conducted by Huang et al. [XHSD13, SWHT14,
HNX"14b, SDH" 14, HZSD15a] have been dedicated to developing a predictive shape
deviation model that is able to learn from the deviation data obtained from a small
number of test product shapes and accordingly make compensation on new and untested
shapes. Since AM is a layer-wise building process, the shrinkage deviations occur both
inside each 2D layer and along the build direction. Therefore, they subdivide the overall
deviation into in-plane and out-of-plane deviation. The in-plane case deals with the
shrinkage of the 2D shape in a single fabricated layer and the out-of-plane deviation

denotes the deviation of a layer along the build direction.

The work initiates in modeling the in-plane shrinkage for the mask-image-projection-

based Stereolithography (MIP-SLA) and FDM processes. To develop this model, a Polar
Coordinate System (PCS) is established on the 2D layer and the deviation is defined as

13
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the difference between nominal shape and the actual shape in different polar angles. By
observing the distribution of deviation along the shape profile, a parametric function is
"prescribed" and the function parameters are estimated using Bayesian inference based
on measurement data. This idea is first validated on circular shapes with different sizes,
and further extended to polygonal shapes by adding an extra "cookie-cutter" compo-
nent [HNX"14a]. The applications on free-form shapes [LH15] and metallic AM pro-
cess [LGCHI19] are also exploited. However, these methods are formulated in a shape-
and process-specific way, and therefore cannot be well generalized to other shapes or
identical shapes manufactured in a different process setting. Especially, if the target
shape has internal features or is not convex, multiple PCSs need to be established and
coordinated, thus increasing the model complexity. Cheng et al. [CTW17]| further im-
prove the in-plane model with a statistical transfer learning perspective that decomposes
shape deviation into shape-specific and shape-independent components, the knowledge
acquired from the latter could be transferred across different shapes. On the other hand,
in order to enrich the in-plane model with the consideration of process parameters, a
statistical model is developed by Cheng et al. [CWT18] that formulates the deviation
of the 2D shape profile manufactured by the FDM process with two influential factors:

part size and infill percentage.

With the foundations of in-plane deviation modeling, the out-of-plane deviation prob-
lem is tackled in a similar way by introducing the Spherical Coordinate System (SCS)
established on the whole part body with the z-axis along the build direction [JQH15,
JQHI16, JJH16]. Then outer boundary of the product shape is divided into vertical cross-
sections and the out-of-plane deviation is represented as the displacement of points on
the cross-section contour in the build direction. For cylindrical shapes, the cross-section
is a rectangular shape and the model derived for in-plane deviation can be easily adapted

here.

The classification of in-plane and out-of-plane deviation is justifiable when consid-
ering the layer-wise working mechanism of AM. The initiative to use PCS for in-plane
deviation modeling enables the convenient and generic parametrization of deviation,
without having to incorporate extra shape-related parameters. The main challenge,
however, is the limited transferability between different shapes and the lack of consider-
ation for process conditions. These approaches have significantly motivated this thesis

work, the same classification is made in this thesis and new methods have been proposed

14
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on this basis aiming at overcoming the weaknesses of current methods.

2.2.4 FEA-based deviation simulation

Finite Element Analysis (FEA) methods have been extensively investigated regarding
different AM processes. The geometric deviations on AM parts mainly result from the
thermal and mechanical effects in the building and cooling process. An FE model of
the FDM process is developed in [ZC06], in which the ’element activation-deactivation’
technique is used to simulate the extruder movement over time. The temperature and
displacement fields of the part are then calculated. This model is further applied in a
parametric study [ZC08] to investigate the effects of process parameters on the resulting
part deviations. It is revealed in this study that the scan speed, layer thickness as well as
bead width are the major influential factors. The curl distortion on parts manufactured
by the SLA process is investigated in [BCLO95] with an FE model. The curl distortion
denotes the deviation of the fabricated layer towards the build direction and is induced
by the shrinkage of the resin after solidification. It can be treated as a kind of out-
of-plane deviation and according to this research, its magnitude is closely related to
the part size and layer thickness. Whereas, the major research attention has focused on
powder bed-based AM processes with the aim to derive efficient FE models for prediction
of residual stress and part distortion. Most works adopt thermo-mechanical models.
Given material properties and process parameters, the transient temperature field of
the whole part is calculated, following which mechanical calculations are performed to
derive the stress and distortion [DIM14, MZD17|. Multi-scale models are also proposed
which sequentially investigate the melt pool at micro-scale, the layer temperature history
at meso-scale and the stress/distortion field at macro-scale [LFGF16, LLG17]. Though
current research on FEA of AM processes is still limited due to assumptions made on
the physical conditions and simplified geometries used for model validation, as indicated
in [BS18|, they could be used in the design stage to provide preliminary information

about the possible geometric deviations of AM parts.

The methods mentioned above mainly come from the academic world, some of which
are further integrated in commercial AM simulation tools for industrial applications, for

example Amphyon® [KNXP13] and Netfabb® [MMP*14]. Apart from the flexibility

in building parts with different geometric complexities, the industry is more concerned
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with the gaps between as-designed and as-built part introduced in the AM process. To
allow for improved geometric accuracy and optimized process parameter selection and to
assess the effect of process parameters on part behavior, multiple AM simulation tools
have been released by different companies across the world. In this section, a review of

these tools is provided and a comparison is made regarding their key characteristics.

Mainstream AM simulation tools conduct simulations based on FE analyses consid-
ering characteristics of AM processes. Apart from traditional FEA software, for example
Abaqus, other companies are rapidly growing and new software tools are developed in
collaboration with academia. Table 2.1 and 2.2 give a comprehensive overview of 6 AM
simulation tools, in which the input, output, simulation model and some other charac-
teristics are summarized. Mainstream AM simulation tools mainly focus on metal-based
AM processes and share a similar workflow. Starting from the CAD model or STL file
of the part, a discretized Finite Element mesh model is generated. Based on speci-
fied process parameters, build orientation and support structures that are manually or
automatically generated, the simulation procedure is conducted typically by activat-
ing inactive mesh elements layer-by-layer according to the predefined scanning strategy,
which resembles the sintering or melting effect of lasers or electron beams. The residual
stresses and part deformations are the main concerns of the simulation process since
they have significant influence on the performance and geometrical accuracy of the end-
part. To make an accurate prediction of them, different FEA methods are adopted in
these tools. Multi-scale and multi-physics models are used to take into account the ther-
mal, metallurgical and mechanical effects in either micro-, meso- or macro-scale. The
simulation result provides information about the part distortions and a compensated
geometry of the part is automatically generated in some tools. Figure 2.5 shows the

general procedures of an AM simulation tool.

In this thesis, data-driven models are proposed combining statistical learning meth-
ods to obtain reliable deviation models. Data-driven methods pose a need for large
amounts of observation data. However, considering the time-consuming manufacturing
and measurement process even for just one part, a tremendous effort may be anticipated
for data collection from the real manufacturing process. In this context, AM simulation
tools make it possible to conduct quick and easy-to-control virtual manufacturing of
numbers of parts with simple settings of related parameters. And the results are given

in a regular data structure from which meaningful in-process and post-process informa-
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Figure 2.5: General procedures of an AM simulation|Geol8|

tion could be conveniently retrieved. In addition, a unique benefit of AM simulation
is its ability to predict the deviation of internal part structure, which is impossible or
quite difficult to be obtained from real manufactured parts. Therefore, AM simulation

will be used in several topics of this thesis to provide deviation data for analysis.
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Solution Provider Process Input Mesh Hatching Stmulation routine
Virfac FE mesh Predefined Progressive activation of
IREAC GeoNX SLM, LMD CAD model (hexahedral : ‘inactive’ elements by a
[Geol§] \% . Customized .
[0 mevarun ercron elements) selection box along the path
Ansys Additive Ansvs FE mesh Predefined
(Exasim) v Metal based STL file (hexahedral : N/A (Not available)
(3DSIM) Customized
[ANS18] elements)
Simufact A FE mesh
A ; MSC software Metal based CAD model (hexahedral Customized N/A
[Com18] <m_3C._n®O._” clements)
Z.m%mv_o Autodesk Powder bed FE mesh . . Nﬁomﬁmmm:\m mQE.mSo: of .
(Project Pan) AUTODESK (pan Computing) Wirefed STL file (Hex8 Customized ‘inactive’ elements using a hybrid
|[Aut1§] ® NETEABE puting elements) inactive element activation method
Abaqs Dassault Progressive activation of
UUMHE s simuLia Svst Metal based CAD model FE mesh Customized ‘inactive’ elements according
ABAQUS ySLems to the machine code
Amphyon i Additive
(Worls] = >3_ur< on Works LBM,SLM,DMLS STL file FE mesh Predefined N/A

Table 2.1: Comparison of commercial AM simulation solutions: Part 1
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2.3 The Skin Model Shapes

Looking back at the reviewed deviation modeling methods, it can be seen that they
respectively have a specific application scope and their transferability is limited when
being used for other applications. A unified framework combining the miscellaneous
methods will significantly assist different activities in the AM process chain. The SMS,
as a new paradigm for geometric deviation modeling that has gained active development
in the past decade, is a promising choice for this framework. It has the ability to model
both 2D and 3D deviations either by prediction based on assumptions, or by learning
from observation data of manufactured or simulated samples, thus covering multiple
stages of the AM process. This section is dedicated to a general introduction to the

SMS, together with a discussion on the challenges in its extension to AM.

2.3.1 The Skin Model Shapes concept

The ISO GPS (Geometrical Product Specifications) standards are based on a model/
language description of the actual shape of the mechanical parts and a set of operations
to geometrically specify constraints and requirements for design, manufacturing and
metrological control. Although these standards have led to unambiguous descriptions
and better communication between the various actors in the product life cycle, digital
modelling and simulation tools do not yet allow an accurate geometric representation
of the real shape of mechanical parts, thus contributing to very restrictive or even

incomplete studies of the real behavior of complex mechanical systems.

GeoSpelling is proposed by Mathieu and Ballu [BM96] as a univocal language that
could be used across design, manufacturing, and inspection to communicate geometric
information and requirements along the product life cycle [SAMW14]. In Geospelling, a
geometric specification is defined as "a condition on a characteristic defined from one or
between several geometric features", as shown in Figure 2.6. Multiple operations, namely
partition, extraction, filtration, association, collection and construction are defined to
extract certain ideal or non-ideal geometric features, among which the non-ideal features
refer to features obtained from the Skin Model. Table 2.3 and Figure 2.7 shows the
operations defined in the GPS standard [17411].

The Skin Model refers to the interface, or skin of the part that separates its material

from the surrounding environment. This Skin Model conveys the designer’s idea about
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Figure 2.6: The Geospelling concept [DBMOS|

Operations Ezplanation

Partition To identify bounded features from ideal /non-ideal features
Extraction To identify specific points from a non-ideal feature

Filtration To create a non-ideal feature by reducing the level of information
Association To fit ideal features to non-ideal features

Collection To consider more than one features together

Construction To build ideal features from other ideal features with constraints

Table 2.3: Operations defined in the GPS standard [ZAMZI11]

all the possible defects on the nominal geometry. This surface model of non-ideal geom-
etry is not unique and can take on an infinite number of forms and representations. It is
also considered as a continuous surface consisting of an infinite number of points [22411].
Whereas, driven by the need for computation and processing of the Skin Model for en-
gineering applications, a finite representation has to be developed, thus the idea of SMS
has been introduced as finite Skin Model representatives composed of a finite number
of geometric parameters or points [SAMWI14].

The generation of SMS is typically divided in two stages: the 'Prediction stage’ refers
to the design stage when geometric deviations are not yet observable and therefore an
"a-prior’ model has to be developed according to knowledge or by making assumptions
on systematic and random deviations; the 'Observation stage’ refers to the more detailed

design stage when information of geometric deviations is made available through process

21



Chapter 2. Literature review
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Figure 2.7: The operations defined in Geospelling [DBMO0S|

simulations or measurement of manufactured samples. Such information is further used
either to calibrate the deviation models in the prediction stage, or to derive statistical
models to generate deviations of new samples [SWW 12 SAMWI14, ASMW14]. The
generated SMSs, however, do not necessarily conform to the tolerance specifications.
Therefore, the deviations on features of SMSs need to be evaluated and consequently

scaled with respect to the specified tolerances [SW15b].

2.3.2 Geometric representation of Skin Model Shapes

Discrete geometry based on point clouds and polygonal meshes has been adopted to
facilitate representation of SMS in computer systems, due to its convenient accessibility
from CAD tools and manufacturing data as well as the ability to flexibly approximate
surfaces. As shown in Figure 2.8, the representation scheme of SMS starts from the
nominal CAD model of a part. A tessellation procedure is conducted to convert the
CAD model to a point cloud or triangular mesh that serves as representative of the
external part surface. In order to consider geometric deviations with respect to tolerance
specifications, geometric operations such as partition and extraction are executed on
the tessellated model to extract the specific toleranced features, on which geometric
deviations are simulated using different deviation modeling methods. Thereafter, these
deviated features are combined with other features through collection and association

operations to obtain the non-ideal part geometry. This procedure is called deviation
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simulation. Furthermore, by assessing the deviated geometry with respect to the nominal
part model, visualization techniques at different scales can be utilized to illustrate the

magnitude and distribution of deviations on the part surface.

Lt .
Nominal Tessellated Point set Mesh  Deviations Simulation
model model Deviations model Visualization

Figure 2.8: Skin Model Shape creation process [ABM13]

2.3.3 Deviation modeling in Skin Model Shapes generation

Modeling of geometric deviations is the core of SMS representation. In this section,
deviation modeling methods in the two respective stages as mentioned above will be

summarized.

2.3.3.1 Modeling deviations in the prediction phase

In the prediction phase, due to lack of knowledge, assumptions have to be made
on systematic and random deviations. Systematic deviations denote deviations that
can be observed in a majority of parts manufactured under the identical or similar
manufacturing conditions, and show repeatable patterns. Whereas, random deviations
result from unpredictable factors in the manufacturing process such as tool wear and

unexpected changes in the surrounding environment.

Modeling systematic deviations

Based on the experience that most observable systematic deviations of a planar
feature can be represented by a single second-order shape or a superposition of mul-

tiple such shapes, Zhang et al. [ZAS"13] and Schleich et al. [SAMW14] proposed to

model systematic deviations following a general equation of second-order shapes shown
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as Equation 2.1, in which z,y and z are coordinates of surface points and f;(z,vy, 2)
is the function of a typical second-order shape. According to the calculated deviation

values, each point is deviated in the direction of vertex normal to obtain the deviated

geometry.

N

0z, y.2) = > aifiz,y,2) (2.1)

i=1

Common second-order shapes are cone, cylinder, paraboloid, ellipsoid and sphere, each
corresponding to a different set of coefficients in Equation (2.1). The value of these co-
efficients can be determined according to experience. Figure 2.9 illustrates the variation

of a nominal plane with four typical second order shapes.
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Figure 2.9: Variation of a nominal plane with typical second order shapes

Mode-based methods, such as Zernike polynomials [YB18a, Z1.DS18| and Discrete
Cosine Transform (DCT) [LZDS18], are also introduced to model systematic deviations

of planar features. The Zernike polynomials are specifically used to represent typical
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form deviations of spherical or annular shapes with a combination of basis functions
defined on the associated polar coordinate system (PCS), while the idea of DCT is to
decompose the deviation of a rectangular planar feature into a set of cosine functions with
varying spatial frequencies. Figure 2.10 illustrates a subset of deviation modes identified
by DCT. The basis functions with fixed functional forms reflect the systematic property
of both methods. In practice, the weighted sum of a subset of basis functions is sufficient
to represent the overall deviations, where the weighting coefficients can be determined
from historical data through fitting algorithms. In this thesis, the DCT method will be

involved in the study of out-of-plane deviation in AM.
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Figure 2.10: DCT modes identified from the deviation of a planar surface

Wu et al.[WQZA19] develop a new systematic deviation modeling method specifically
for cylindrical features. The curvilinear coordinate system is adopted to represent the
nominal cylindrical surface and a deviation dimension is added along the vertex normal
of the surface to model the associated deviations. Taking into account typical errors in

the machining process, Hermite polynomials and Fourier Series are combined to achieve
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a unified expression of deviations.

5(z,0) = Z Hi(z)[z az;cos(j0) + Z bi;sin(j6)] (2.2)

As shown in Equation 2.2, § is the deviation of the non-ideal surface, H;(z) is the
Hermite polynomial as a function of the height z and w is its order, a;;, b;; and v are the
coefficients and order of Fourier series. Therefore, the deviated position of a point on

the cylindrical surface can be represented in the curvilinear coordinate system as
r(z,0) =10+ 9(2,0), (2.3)

where 7 is the nominal radius of the cylindrical feature. This combined Hermite-Fourier
polynomial can be flexibly customized in a matrix form to represent multiple patterns
of geometric deviations introduced by the manufacturing process, such as cutting force
error, spindle motion error, fixture error, error caused by tool wear and thermal factors,
etc. Figure 2.11 illustrates three kinds of systematic deviations in the manufacturing

process of a cylindrical feature modeled by the proposed method.
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Figure 2.11: Three kinds of systematic deviations modeled by the Hermite-Fourier poly-
nomials

In the Cartesian Coordinate System (CCS), Homri et al. [HGLD17] develop a Metric
Modal Decomposition (MMD) method for form defect modeling of cylindrical parts.
Three classes of modes are identified as rigid mode, rippled mode and mode of section.

The functional forms of the modes are developed and their applications in assembly
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simulation and tolerance analysis are discussed.

Modeling random deviations

The modeling of random deviations have been investigated using several statistical
methods, among which the 1D Gaussian distribution, multi-Gaussian distribution and
Gibbs sampling methods were proposed by Zhang et al. [ZAMZ11] based on the hy-
pothesis that the random deviations follow Gaussian distributions. The 1D Gaussian
method is to randomly generate a deviation value in the vertex normal of each point
following a univariate Gaussian distribution d ~ N (u, 0?) centered at the nominal point
position. The variance of the distribution is set to control the magnitude of the gener-
ated deviation. While the 3D Gaussian method is to simultaneously generate deviations
in the x,y and z directions following a tri-variate Gaussian distribution d ~ N(pu, ).
Figure 2.12 illustrates the principle of these two methods. Instead of independently
sampling random deviations for each point, the Gibbs method allows sequential sam-
pling of deviations from the joint probability distribution of the whole point set based
on Markov Chain Monte Carlo (MCMC) algorithms.

Vertex normal

Univariate Gaussian
.°+.. distribution

Surface points

1D Gaussian

.7 ., Tri-variate Gaussian
... - . distribution

Surface points

3D Gaussian

Figure 2.12: Principle of the 1D Gaussian and 3D Gaussian method [ZAMZ11]

It should be noted that the above-mentioned methods model random deviations in a
point-wise manner, while overlooking the spatial correlation between points, which may

cause inconsistency in the resulting shape, especially when large differences occur in
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the deviations of adjacent points. To overcome this weakness, the random field method
that has been widely used in geology and earth sciences to sample spatially correlated
random variables is adopted by [SAMWI14|. A random field can be seen as a generalized
stochastic process with multi-dimensional input variables (e.g. Cartesian coordinates).

Through discretization, an approximation of the random field can be expressed as:
Sx)=p+o-M-NY2. ¢ (2.4)

where p and o are the mean value vector and standard deviation matrix of the random
field; N and M are matrices composed of the k largest eigenvalues and their corre-
sponding eigenvectors of an auto-correlation matrix C; € is a vector of random variables

following the standard normal distribution. C' is determined by
22
CZ_] = Seij = e(Hwi_ij /lp ) (25)

, where se;; is the squared exponential correlation function defined between two points
x; and x;; [, is the correlation length to determine the strength of correlation and could
be calibrated through analysis of experimental data. Similarly, the calculated random
deviations are incorporated by deviating points in the nominal geometry in the vertex
normal direction. Figure 2.13 shows four sample SMSs of a planar surface generated

using the random field method.

. Deviation [mm]
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Figure 2.13: Samples of a planar surface generated with random fields [SWW*12]

2.3.3.2 Modeling deviations in the observation phase

In the observation phase, based on a training set consisting of sample shapes gath-
ered from measurement data or manufacturing process simulation results, the objective

of deviation modeling is to conduct statistical shape analysis (SSA) on the training set
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and establish a statistical shape model (SSM) that could analyze the statistical distri-
bution of points on the sample shapes and therefore generate new samples following
the deduced distribution. To achieve this goal, an SSM that combines Kernel Prin-
cipal Component Analysis (KPCA), Kernel Density Estimate (KDE) and the Point
Distribution Model (PDM) has been developed by [SAMW14]. Following the idea of
PDM, each shape X;,7 = 1,--- ,n in the training set is represented by a mean shape
X = >, X;/n combined with variation of the shape around the mean shape along

multiple main variation modes ¢:

, in which ¢ are identified by applying KPCA and s are scores of the modes whose
distribution can be estimated using KDE. Therefore, new SMSs can be generated by
sampling new scores from their distribution through inverse transform sampling. The
new samples also imply the consideration of systematic and random deviations, which
are embodied in the mean shape and variation modes respectively. Figure 2.14 illustrates
the SSA process. In this thesis, a new PDM-based statistical method will be discussed

in the modeling of ot-of-plane deviation.

Training sample shapes

. .
< - ‘.“ ...,: -

KDE/PDM l

Principle component
Mean shape score distributions

Prediction 1

. "N NP
- - - -.‘

Figure 2.14: The statistical shape analysis process [SWW12]

Another FEA-based approach has been proposed in [LB17], in which an SMS of a
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surface feature is developed from a small number of measured discrete sample points
obtained from coordinate metrology. Based on the sampled points, a best substitute
geometry of the feature is fitted following the least-squares principle. Thereafter, the
geometry is parameterized and the deviations of sampled points from the geometry are
calculated by comparing with their nearest corresponding points on the geometry, thus
forming a 3D parameter space u, v, d, where u, v are parameters defining the substitute
geometry and d denotes the deviations. An iso-parametric finite element modeling
method is then used to resolve a continuous function of the manufacturing errors which
enables to propagate the geometric deviations of sample points to the whole surface. The
output of the method is an SMS that preserves the deviation patterns, and the function
can be reused for prediction purposes for new manufactured parts. The weakness of this
approach, however, is the lack of statistical insight on the measured deviations, which

may hinder its application due to generalization issues.

2.3.4 Engineering applications of the Skin Model Shapes

The generated SMS are the building blocks for different engineering applications.
The non-ideal product shape conveyed by the SMS has numerous advantages over the

nominal shape. In this section, the current applications of SMS will be discussed.

2.3.4.1 Tolerance modeling

The generation of SMSs using the deviation modeling methods introduced in the pre-
vious section didn’t take the dimensional and geometrical specifications into account.
As a consequence, invalid SMS samples may be yielded that violate the design intent.
Therefore, before applying SMSs for downstream applications, especially tolerance anal-
ysis, the generated samples need to be evaluated with respect to the tolerance design
and modifications need to be performed on invalid ones. A general guideline for this

process has been indicated in [SW15b]| as:

e If a datum reference frame (DRF) exists, determine the associated least-squares

feature of each non-ideal datum feature.

e Compute the tolerance zone of the toleranced non-ideal feature according to the
tolerance type. If a DRF exists, the computation is done with respect to the

associated features derived in the previous step.
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e Compare the size of the tolerance zone with the specified tolerance value. If the
specification is violated, either drop the current sample and redraw a new valid
sample [SAMWI14], or scale the geometric deviation of the toleranced feature until

the specification is respected [SW15h].

The exhaustive ’drop-and-redraw’ process would be time-consuming and computa-
tionally intensive for large-scale SMS. Therefore, the scaling operation is preferable due
to its ability to preserve the deviation patterns while ensuring the conformance to spec-
ification. The actual scaling operation differs when it comes to different tolerance types.
For form tolerance, scaling is to proportionally reduce the deviation values as projected
to the associated feature. For orientation tolerance, scaling is to find an appropriate
quantity of rotation of the toleranced feature such that the rotated feature shall lie
within the tolerance zone. And scaling for position tolerance should consider both opti-
mal translation and rotation of the toleranced feature. Since all the scaling methods are
actually based on affine transformations of the non-ideal toleranced feature, the intrinsic
characteristics of deviations stay unaffected.

Different evaluation and scaling methods have been developed for dimensional and
geometrical tolerances following the guideline. Figure 2.15 illustrates the evaluation of

tolerance zones of three types of tolerances.

Flatness Parallelism

.Tolernaced . Datum Tolerance Substitute
feature feature zone boundary feature

-
M

Position Cylindricity

Figure 2.15: Evaluation of tolerance zone for four types of tolerances
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2.3.4.2 Assembly simulation

The nominal CAD product model has been extensively adopted in mainstream CAD
systems for assembly simulation. However, the effect of geometric deviations on the
assemblability and functionality of the final product is non-trivial [SAMW15]. Minor
deviations on components may be accumulated and propagated to the key characteris-
tics, resulting in large discrepancies from the functional requirement. Therefore, the use
of SMS in assembly simulation will enable the designer to gain an insight of possible
outcomes of such effects.

The investigation on assembly of SMSs was initiated in [SAMW15]. Since SMSs are
represented as point clouds or surface meshes, the assembly of two SMSs can actually
be formulated as the registration of two sets of points belonging to mating features of
the SMSs, in which one is denoted as the reference feature that stays still and the other
is the target feature to be positioned relative to the reference. Two major constraints
should be satisfied when implementing the registration algorithm: the distance between
any corresponding point pairs on the two features should be minimized, and the two
point sets shall not interpenetrate each other.

Following this principle, a constraint registration algorithm is proposed in [SAMW15,
SW1ba, SW18]. This algorithm aims at finding an optimal rigid-body transformation
of the target feature S, to best fit with the reference feature S, while ensuring non-
interference between the features. A transformation vector is defined as a = (o, @),
where oy, o, € R? are the translation and rotation vectors defined with respect to the
coordinate system origin and axes respectively. Suppose S! is the transformed target
feature given a, it can be derived that S! = ¢(a, S,) = S, + o + a,. X S,. With this
goal, an optimization problem is formulated as Eqn.(2.7), where f(-) is the objective
function to be minimized and g¢(-) is the constraint function.

min f(a; Sy, Sp)
* (2.7)
s.t.g(a; S,, Sy) <0
Several metrics exist for the choice of the objective function, including Hausdorff dis-
tance, sum of squared distance, sum of signed and unsigned distance, etc., among which
the sum of absolute signed normal distance metric has been validated in [SW18| as a
practical choice specifically for this purpose. This metric measures the sum of absolute

signed distance between one point ¢(a, p,), . € S, on the transformed target feature
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and its corresponding point p, on the reference feature S, as projected on the normal

np, of p,, as shown in Equation 2.8. Figure 2.16 provides a 2D illustration of this
metric.

f(:80,8) = Y Iale,pa) — ) - 1y, | (2.8)
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Figure 2.16: The absolute signed distance metric used in the objective function

The non-interference constraint can be interpreted as a set of inequalities ensuring
that the aforementioned signed distance holds a negative value for each corresponding

point pairs, as seen in Equation 2.9.
Vpa S Saag(a; Saa Sb) - <Q(aapa> - pb) ' n;;b S 0 (29)

A prerequisite for both the objective function and the constraints is to determine the
correspondences between points of the two features. Dynamic calculation of the cor-
respondence during each iteration of the optimization process may be computationally
costful, therefore, it is determined at a pre-defined relative position of two features. For
each p, of the target feature, the point on S, with minimum projected distance on n,,
is deemed as its corresponding point, as shown in Equation 2.10.

vpz € Sbapb = Dj, (2 10)

j = argmin(||(p; — p.) - |
An intuitive difference surface method is also proposed in [SW15a, SW18|. The dif-
ference surface S of two mating features is defined at z- and y- coordinates of the target
feature points as the distances between each pair of corresponding points projected on
the assembly direction w, namely S = (xg,,ys,,d). The idea of this method is quite
straightforward: the final contact position of the target feature should be the position

where the convex hull of S intersects the driving assembly force imposed on a point p,
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of S, in the assembly direction. Finding the intersection triangle on the convex hull and
registering points of S, to the triangle vertices, the final target feature position is deter-
mined. It should be mentioned that, in the discussion of both methods, the registration
has been conducted on mating features, the derived rigid-body transformation effects,
however, are actually applied on the whole SMS where the features are associated in

order to achieve the positioning of parts.

A similar approach has been adopted in [LZDS18] which treats the assembly of two
non-ideal features as the assembly of a rigid perfect feature and the difference surface
established from these features, as can be seen in Fig. 2.17. Instead of considering the
difference surface as a rigid body in [SW15a], the local surface deformations along the
assembly direction is modeled by the Boundary Element Method. Under the assumption
of frictionless non-adhesive contact, physical properties including assembly force and
material elasticity, are incorporated in the assembly model and the elastic displacement
(the displacement is assumed in the z-direction here) of the discrete points can be

calculated as:

M N
Ui = Z Z Kk j-ipr (2.11)

k=1 l=1

, where M and N represent the number of discrete points in z- and y- directions re-
spectively; p is the contact force on each discrete point; and K denotes the matrix that

collects the influence coefficients, which can be calculated as:

Kf,g

2
= g Ym108(@m + V2l +y5) + Tm10g(ym + VT, + yn)

— Ym log(zp + /22 +y2) — 2plog(ym + /72 + y2,) (2.12)
— yplog(Tm + /22, + yp) — Tm log(yp + /27, + 43)
+yplog(x, + (/22 + y2) + 2, log(y, + /72 + y2)]

, where x,, = 2+ Az /2, v, = vy — Az /2, yp, =y, + Ay /2, y, = y, — Ay/2, Az and Ay
represent the distance between two adjacent discrete points in the x- and y- directions;
E’ denotes the effective composite elastic modulus, and can be obtained by:

2_1—V12 1—vs
E E E,

(2.13)

, with 1 and E5 being the Young’s moduli of elasticity and v; and v, being the Poisson’s
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ratios for the two contacting non-ideal features.
To ensure that there is no penetration between the two surfaces and the discrete

points do not bear negative forces, the following restrictions should be fulfilled:

Cij <0,p;; <0 (2.14)
Ci,jpij =0

, where ¢; ; represents the gap distance between the corresponding points on the two

surfaces, and it is determined by w; j; p;; represents the contact force on each point.

Based on the principle of minimizing the total complementary potential energy, the

calculation of a contact problem can be transformed into a quadratic programming

problem, which can be expressed as:

min W(p) = c"p+ p" Kp/2
(2.15)

st ¢ <0,pi; <0,¢,p; =0
Comparing with FEA calculation, BEM is far more efficient while ensuring the calcu-
lation accuracy. The interactions between SMS and local surface deformations hence
provide a novel strategy for non-rigid assembly simulation.

In order to tackle more complex assembly structures involving multiple components
and physical effects from internal and external loads, an improved assembly simulation
approach is proposed in [YB18b]. As a complement to the non-interference constraint
considered in previous works, the internal reaction forces, external forces and torques
as well as the balance of internal and external loads are newly added as boundary

conditions.

2.3.4.3 Tolerance analysis

Traditional Computer-Aided Tolerancing (CAT) systems rely on nominal CAD mod-
els and ignore the effects of form deviations [ASGT07], which doesn’t fully conform to
GD&T standards [SAZ™14] and may give unrealistic results. In this context, tolerance
analysis based on SMSs offers the potential to gain more reliable results.The research in
assembly of SMSs lays a solid foundation for the downstream application on tolerance
analysis [LZDS18, YB18b, SW1ba, SW18, ZQA16]. A three-stage tolerance analysis
routine is developed in [SAMWI5] as:

e Pre-processing. Following the methodologies explained in Section 2.3.3, SMSs are
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Figure 2.17: The difference surface considering assembly force and material elasticity

generated for each part of the assembly to be analyzed. The generated SMSs are
checked with respect to the tolerance specifications, and due scaling or re-drawing

operations are conducted to gather a given number of valid assembly samples.

e Processing. Guided by the predefined assembly process plan, the SMSs of parts
in each assembly sample are assembled using the simulation techniques explained

in 2.3.4.2.

e Post-processing. Given the final position of SMSs, the key characteristics (KCs),
such as clearances, gaps or angles between features in concern, are evaluated for
each sample. As a result, a sufficient number of KC values are obtained, from
which statistical distribution is drawn and sensitivity analysis is done to provide

significant information about the potential effects of the tolerances.

SMS has also been combined with other tolerance models to enhance their ability
in dealing with form defects. The polytope is a classical 3D tolerance analysis method
that represents the geometric, contact or functional specification with a set of con-
straints limiting the variation of a feature relative to the reference [HTB15]. Though
the polytope-based method has demonstrated effectiveness in modeling the propagation

of geometric variations, the fact that it lacks consideration of form deviations has mo-
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tivated the effort to combine it with the SMS in [LPAT19]. Identifying all toleranced
features in the assembly chain, the SMSs of these features are generated. Substituting
the nominal features with non-ideal features conveyed by the SMS, modified polytopes
are obtained and the Minkowski sum or intersection of these polytopes is calculated to

derive the accumulated error at the KCs.

2.3.4.4 Challenges in extension of SMS to AM

As the name "Skin Model Shapes" suggests, current methods within the SMS frame-
work focus on the deviation of the ’skin’, namely the part surface, since the effects of
manufacturing errors are directly reflected on the external surface in traditional sub-
tractive manufacturing processes. Whereas in AM process, the deviations are actually
an outcome of the accumulated deviation of each layer. For example, the undesired
displacement of machine axes or energy sources, may cause slight shifting of the shape
of the fabricated layer with respect to the machine coordinate system, and material
shrinkage due to thermal effects may cause local variations of shape from its nominal
form. The stack-up of these deviated shapes will undoubtedly overlay the deviations and
as a result affect the overall product form. Moreover, the residual stresses may induce
a warpage or deflection of the layers in the build direction, and the effect exhibits a
decreasing tendency from bottom layer to top layer. Such issues pose new challenges to
the extension of SMS to AM, motivating new methodologies to be developed shifting
the current paradigm from part-level to layer-level, as illustrated in Figure 2.18. In the
next section, a new deviation modeling framework will be introduced as an extension of

current SMS framework with consideration of the new challenges.
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Figure 2.18: Deviation modeling from (a)part-level, (b)layer-level
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2.4 New AM deviation modeling framework

In face of the new challenges, the classification of in-plane and out-of-plane deviation
as mentioned in Section 2.2.3 is followed, thus reducing the 3D modeling problem to 2.5D.
In-plane (x-y plane) deviation denotes transformation of the nominal 2D shape of the
layer due to material behavior or machine errors. While the out-of-plane is to account for
deformation of the in-plane shape toward the build direction. Figure 2.19 demonstrates
these two types of deviation on one layer of the cylindrical part. It can be observed that
the in-plane deviation causes contraction of the nominal circular shape to its center. The
stack-up of layers will accumulate these deviations and as a result affect the form of side
surfaces. The out-of-plane deviation captures the upward bending of the in-plane shape.
This effect, after accumulation, will result in the overall curling of the part, especially
at the top and bottom surfaces. Compared to those works dedicated to modeling of
the global shrinkage factor which applies on the entire part [RP07, SPR09b, SPR12],
this classification conforms to the layer-wise nature of AM processes and could facilitate

local investigation of individual layers.

Figure 2.20 illustrates the general work-flow of the new SMS framework. To start
with, the CAD part model is converted to an STL model, since it is the de-facto input
format of most AM processes. To obtain the nominal shape of each layer, the STL
is then sliced with a plane that is perpendicular to the build direction and located
at corresponding layer heights. The result of the slicing procedure is a set of layer
contour points. By connecting these points consecutively in counter-clockwise direction,
the layer contour is reconstructed representing the nominal shape of the layer. The

deviation models will be developed based on the nominal layer shapes.

According to the definition of in-plane deviation, it can be treated as the variation
of the nominal 2D contour. In this regard, the PCS becomes a suitable choice for devi-
ation representation, since it enables the formulation of 2D shapes as a single function.
Empirical models proposed by existing works can be readily adopted for predicting in-
plane deviations without process knowledge. Further, by analyzing observed deviation
data, new models can be developed by mapping effects of error sources to the systematic
transformation of the nominal shape. Moreover, statistical methods could be adopted

to derive more reliable models from a number of manufactured samples.

Instead of the layer contour, the out-of-plane is more concerned with the variation
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Figure 2.20: AM Deviation modeling framework based on SMS

of the whole internal layer geometry. Some research outcomes on the warpage or curling

effects can provide a preliminary vision of the out-of-plane deviation at bottom and top
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layers. Through mesh deformation techniques, such as Free-form Deformation, the local
deviations can be propagated to all the layers. Though the accuracy of such methods
remains to be improved, they could be applied for deviation prediction when no process
knowledge or manufactured samples are available. The deviations that occur on the
internal layer shape of a manufactured part are difficult to obtain with common mea-
surement devices. Hence, AM simulation becomes a preferable means of deviation data
collection. To realize parameterization of out-of-plane deviation data gathered from sim-
ulation results at discrete points of each layer, modal analysis techniques can be used,
which reduce the modeling problem to the characterization of some significant deviation
modes. These modes inherently correspond to certain types of deviation patterns and
their significance varies under different process conditions. Based on a number of sim-
ulated deviation data, through identification of deviation modes and prediction of their
significance, the out-of-plane deviation of a layer can be effectively predicted.

In the modeling process of both types of deviations, the consideration of the pre-
diction and observation stage is implicitly conveyed. The empirical models used for
the early prediction of deviations correspond to the definition of prediction stage in
SMS. While the statistical models are built with support of observation data gathered
from measurement or simulation, thereby conforming to the observation stage in SMS.
Meanwhile, the model structures are designed in consistency with the assumption of
systematic and random deviations, as will be introduced in the following chapters.

Based on the derived deviation models, the nominal layer shapes are deformed.
Whereas, the topological information is lost after slicing the surface model to inde-
pendent layers. To reconstruct the surface, a layer connection strategy is used to find
a triangulation plan between each pair of adjacent deformed layers. Finally, a new
surface is generated incorporating both the in-plane and out-of-plane deviations, which
represents an SMS of the part.

The general procedure of this framework is as follows: starting from the nominal
product model consisted in the STL file, slicing is conducted with a given slice thickness
to obtain the nominal shape of each 2D layer. This process differs from the traditional
SMS in that the deviation modeling problem is now treated on separate layers instead
of individual surface features. Thereafter, in-plane and out-of-plane deviation models
are derived and used to deform the layer geometry. In this process, either empirical

models can be used or new statistical models are proposed by learning from simulation
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and measurement data. The idea inherently involves the consideration of the predic-
tion and observation stage, since empirical models are applied when no manufacturing
data are available, while statistical models are built with support from observation data.
Furthermore, the model structures are designed in consistency with the assumption of
systematic and random deviations. The deformed layer geometries are finally consecu-
tively connected to reconstruct a triangular mesh representing an SMS. The generated
SMSs can be further developed for different applications as a realistic model of AM
products. Figure 2.20 provides an illustration of the proposed framework. It inherits

some key concepts of the existing SMS paradigm and covers the AM process chain.

2.5 Conclusion

Effective characterization of geometric deviations is the key to modeling SMS for
AM. To facilitate understanding of the research problems in AM deviation modeling,
existing methods are reviewed based on three main categories. The geometric approxi-
mation errors are studied by investigating the errors brought by conversion of the part
geometry from the CAD model to the input model of the process. These methods are
process-independent and can be applied prior to the manufacturing process. The study
on machine errors and process parameters aims at capturing their effects on the re-
sulting deviations through parametric functions. The findings suggest the significant
contribution of some key process parameters in powder-bed based processes, including
laser power, layer thickness and scan speed, thus providing the evidence for experimental
design in this thesis. In some works related to modeling material-related shape devia-
tions, the novel classification of in-plane and out-of-plane deviations is made, which is
well suited to the layer-wise building strategy of AM and substantially motivates the

new SMS framework developed in this thesis.

Driven by the demand for a comprehensive AM deviation modeling framework, the
extension of SMS to AM is proposed. The traditional deviation modeling methods for
generation of SMS are discussed, some of which are inherited in the new framework. The
random field method enables the consideration of random deviations while maintaining
the correlation between surface points. The SSA method is a powerful tool to identify
the deviation modes among a set of manufactured samples. Though the new challenges

in AM shift the modeling strategy from part-level to layer-level, these methods can be
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adaptively customized to model deviations on the layers.

The aim of this chapter is to provide the context and motivation for development
of the SMS framework for AM. With all such background, a detailed explanation to
the work-flow of the framework is made at the end of this chapter, which serves as the
guideline for the following chapters.

Section 2.2 of this chapter is based on a published work included in Advances on Me-
chanics, Design Engineering and Manufacturing as a presentation in the International
Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM

2016) [ZKA17].
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3.1. Introduction

3.1 Introduction

The modeling of in-plane deviations aims at capturing the variability of the 2D
shape of each layer in AM processes. In order to provide an analytical formulation of
the deviations, previous works have focused on deriving shape-dependent parametric
functions based on the PCS established in 2D space, as reviewed in Section 2.2.3. In
face of their weaknesses regarding transferability across shapes, in this chapter, new
in-plane deviation methods will be discussed aiming at more general models that can
be used independently from the specific in-plane shape. The PCS is still adopted since

it facilitates the analytical representation of common 2D shapes with a single function.

Since in-plane deviation is defined as difference between the nominal input shape
and the actual shape resulting from AM process, the modeling problem can be tackled
by investigating the two shapes. The nominal shape of a layer can be obtained by
slicing the STL model at the corresponding layer height and connecting the contour
points to form a nominal contour. Similarly, the actual shape of each layer can be
obtained either from AM simulation results or by slicing the triangulation of point clouds
gathered from measurement data of manufactured samples. Therefore, in Section 3.2 of
this chapter, methods that are dedicated to the parameterization of in-plane deviations
are introduced and their respective characteristics are discussed. The weakness of these
methods, however, is the large number of parameters needed to approximate the in-plane
shape, which mitigates their performance on complex shapes. The shape-dependence of

such methods also motivates the development of more general methods.

Therefore, to incorporate more consideration of process-related factors, a new shape
transformation based method is proposed in Section 3.3. The effects of potential er-
ror sources are mapped to the transformation of the in-plane shape. Deviations are
then parameterized with three kinds of transformation parameters in the PCS. The pa-
rameterization is investigated for different shapes, including simple cylindrical shapes
and arbitrary polygonal shapes. The estimation of parameters is discussed based on
the least-squares principle and a case study is presented to justify the validity of the

transformation perspective.

Moreover, to account for the uncertainties in model estimation, a statistical learn-
ing method is presented in Section 3.4.1 which applies Bayesian inference to derive the

distribution of each transformation parameter based on measurement data. The ca-
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Chapter 3. In-plane geometric deviation modeling for AM

pability to provide both the mean prediction and the prediction interval enhances the
transformation-based model in explaining the deviation data of more samples. Never-
theless, The local deviations along the shape boundary can hardly be captured by the
transformation parameters that are derived for the global shape. Their patterns also
vary among different shapes. To characterize these patterns and increase prediction per-
formance, in Section 3.4.2, a multi-task learning model is added to the transformation-
based model to enable simultaneous learning from deviation data of multiple shapes and

improve the prediction performance for all shapes.

3.2 Parameterization of in-plane deviations

In this section, the parameterization of in-plane deviations is discussed in two ways:
(1) parametrization of nominal and actual in-plane shapes and calculation of their dif-
ference, (2) analytical parametric modeling based on observed deviations. The former
way is implemented using Fourier descriptors and Fourier series expansion in preliminary
research, as introduced in Section 3.2.1 and 3.2.2. The latter way has been studied in
several existing works using prescriptive methods for different shapes and will be briefly

discussed in Section 3.2.3.

3.2.1 Fourier descriptors based method

For 2D shapes with closed contour, the Fourier Descriptors (FD) enable their pa-
rameterization with convenient and compact representations [ZL702]. Being invariant
to rotation, translation and scaling, and less sensitive to the location and number of
contour points, FDs have been extensively investigated in computer vision for shape
recognition, classification and retrieval. In this research, FDs are used to describe the
in-plane shape of AM products, and to derive a parametric representation of the shape
deviations in 2D.

In the FD representation, a closed 2D shape is parameterized as a one-dimensional
function known as the shape signature that uniquely defines the shape. Different sig-
natures have been proposed including complex coordinates, centroid distance, contour
curvature, etc. [ZL04], among which the cumulative bend angle signature is used in this
research.

Given an arbitrary closed shape composed of m vertices Vj,...,V,,_1 arranged in
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3.2. Parameterization of in-plane deviations

clockwise sequence, with the length of each arc (V;_1,V;) as Al;, then the change in
angular direction at vertex V; is Ag;, the total arc length is given by L = 3" | Al; and
the elapsed arc length at V; is [ = Zle Al;, as illustrated in Figure 3.1. The shape
signature is thereby defined as ¢(l) = Zle Agp; denoting the amount of angular bend
between V; and the starting point where [ = 0 [PF77|. To obtain a desired periodic
representation, we note that ¢(0) = 0 and ¢(L) = 27, so a normalization can be done
by replacing [ as t, where t is the normalized elapsed arc length: 0 <t = 27l/L < 27,
and ¢*(t) = p(Lt/2m) —t.

Performing Fourier series expansion on ¢*(t) gives

©*(t) = po + Z (@, cosnt + by, sinnt) (3.1)

n=1
It has been proved that parameters of a truncated form of the above Fourier series

containing N terms can be derived as|ZR72]:

1 m
Mo = —T — 7 ;lkAgbk

2n7le

1 m
n=—— E A¢y, si
“ nm O sin

1 & 2nmly,
b, = — A 3
— kz_; O COS 7

k
=Y Alin=1,N
k=1

The Fourier series can also be transformed into an amplitude/phase angle form as

©*(t) = po + Z A, cos (nt — o)

n=1

by combining the trigonometric components, where A,, = /a2 + b2, a,, = arctan (b,/a,).
(A, o) are the FDs of the shape.

Based on the FDs, the parametric formulation can be obtained in the frequency do-
main for an arbitrary closed shape from just the coordinates of contour points. Whereas,
in order to represent geometric deviations in the spatial domain, it is also important to

know how to reconstruct the original shape from the FDs. A solution exists which
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Figure 3.1: Description of a closed curve with respect to edge lengths and vertex bend
angles [ZR72]

sufficiently approximates the original shape with N truncated components |ZR72]:
N

P(l) = P(0) + % /OQﬂl/L exp {i[—t+do+po+ Z Ay, cos (kt — )] }dt (3.3)

, where the real and imaginary parts of P(l) denote the x and y coordinates of the point
at | = Lt/2m; P(0), do, L are the specified starting point coordinates, initial direction and

total arc length that should be carefully selected to ensure the reconstruction accuracy.

To use FDs to describe in-plane deviation, in a first step, both the nominal shape
and manufactured shape are parameterized with FDs. Denote F D" = uj, {A}, o}, k =
1,..., N™} as the truncated FDs for the nominal shape obtained by slicing the STL file,
and FD* = pd, {AS,af, k = 1,..., N} for the manufactured shape constructed from
the observation data, in-plane deviation is defined as the distance between correspond-
ing points on shapes reconstructed from F'D™ and F'D®. These corresponding points
(P"(1;), P*(l;)) are determined by sampling a series of ¢; from the range [0,2x] and in-
putting I; = Lt; /2w to Equation 3.3 together with the respective FDs. Based thereon,
the deviation is defined as

d(t;) = [P"(l;) — P*(ls)] (3.4)

, note that P"(l;) and P%(l;) are complex numbers conveying the coordinates of nominal
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shape points and manufactured shape points respectively.

The challenges of FDs are also worth mentioning. The shape reconstruction pro-
cedure inevitably introduces errors that are subsequently confused with the calculated
deviations. Therefore, a larger number of truncation terms are required to minimize
the reconstruction error, which in turn increases the number of FD parameters. The
selection of starting point for Equation 3.3 is also non-trivial, since the correspondence
between points of two shapes is established along the shape boundary from their respec-
tive starting point. For regular shapes, identifiable features such as corner points can
be used as the starting point, while for more complex shapes, registration techniques
may be needed. Moreover, the function in Equation 3.4 only provides the deviation as
a scalar. When applying this function to predict deviations for a new shape, it is also
necessary to know the direction in which the deviation is applied, a provisional solution

is to use the tangent normal of shape points.

3.2.2 Fourier-series expansion (FSE) based method

The FD-based method enables the parameterization of in-plane shape in the CCS,
however, the representation is not intuitive owing to the fact that a mapping from the
frequency domain to spatial domain is required. For closed convex shapes, a more
straightforward means is to adopt the PCS and describe the radius of shape as a single
function of the polar angle. By translating the nominal and actual shapes into a com-
mon PCS, the in-plane deviation is then defined as their radial difference as shown in

Equation 3.5 and Figure 3.2.
Ar(0) =r(0) —r°(0) (3.5)

r°(0) is known from the nominal shape, the actual shape function r(6) can be further
represented as a truncated Fourier series expansion as:

r(0) = ag + Z [ay cos (k) + by, sin (k)] (3.6)

k=1

In Equation 3.6, ag, {ax, by, k = 1, ..., M} are shape parameters that can be estimated
from observation data. A reasonable choice of M could enable a close approximation
to the original shape. Combining Equation 3.5 and 3.6, Ar(f) can be represented in

a polar form as seen in Equation 3.7, in which ¢y is an extra term to account for the
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Figure 3.2: In plane shape and in-plane deviation

random noise in deviation data.

Ar(0) =ag+ Y Apcos(kd —ay) —1r°(0) + €
; (3.7)

Ay =1/ ai + b3, o, = arctan(by/ay)

This method provides a continuous representation of in-plane deviation in the PCS and
could serve as an empirical deviation model for parts manufactured under the same or
similar process conditions. In essence, the Fourier series is a combination of continuous
trigonometric terms with varying frequencies, so it is well suited for smooth shapes, for
instance, circles. When it comes to a polygonal shape whose radius in the PCS illustrates
drastic changes at corner points, more high-frequency terms need to be introduced, thus

increasing the model complexity.

3.2.3 Prescriptive analytics

The modeling of in-plane deviation has been extensively investigated by Huang et al.
for quality control of different AM processes [HNX " 14a, HZSD15b, LH15, Hual6, LH17].
In a series of publications, statistical methods have been adopted to derive predictive in-
plane deviation models for shapes ranging from basic cylindrical shapes to complex free-
form shapes. In this subsection, a review of such methods will be made as a background
for our proposed method. The primary goal of Huang’s research is to derive optimal
compensation plan on the CAD product model based on analytical in-plane deviation
models through analysis of measurement data. For a cylindrical shape manufactured

by the Stereolithography (SLA) process, an empirical deviation function is given as
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3.2. Parameterization of in-plane deviations

Equation 3.8 in the PCS, in which r° is the radius of the cylindrical shape [Hual6].

Jeu(0,7°(0)) = Bo(r°)* + Br(r®)" cos(20) (3-8)

An intuitive cookie-cutter based method has been used to extend the deviation function
of cylindrical shape to regular polygonal shapes, based on the observation that the
deviation profile of a manufactured polygonal shape shows sharp transitions in PCS at
the corner points. The idea of cookie-cutter is to treat a polygon as a portion of its
circumcircle that can be precisely cut off by designing a cookie-cutter function. Two

kinds of such functions have been defined [HNX™14a]:

e Square wave function. A square wave is a non-sinusoidal periodic waveform whose
amplitude varies with a constant frequency between fixed minimum and maximum
values while keeping the same duration at these values. In order to use the square
wave function to cut a given polygon off its circumcircle, the period of the function
should be set according to the number of edges of the polygon. Therefore, for a

polygon with n edges, the function is given as:
Cwan(0) = signlcos(n(0 — ¢y))/2] (3.9)

, where sign|-] is a sign function, and ¢ is a shifting variable that denotes where
the first sharp transitions take place in the PCS and is determined as the smallest
angular distance between a polygon vertex and the PCS axis in counterclockwise

direction.

e Saw tooth function. In a similar manner, the saw tooth function is defined as:
Csaw(0) = (6 — Po)mod(27, n) (3.10)

, where mod(+,-) is the modulo operator. Figure 3.3 illustrates a regular hexagon
shape and the corresponding square wave function as well as saw tooth function

derived from the shape.

Based thereon, the deviation function of a polygonal shape is given as the com-
bination of the cylindrical shape deviation function and an appropriate cookie cutter

function:

fpol(97 TO(Q» = 91(97 TO(Q)) + 92(‘97 To(@))
= Jey(0,7°(0)) + Ba(r®)*c(0)

(3.11)
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, here r° is the circumcircle radius of the polygon and ¢(f) is properly chosen between
Cwav(0) and cgq(0) or as a combination of the two according to observation of the

deviation profile.

Square wave values
o

Angle (rad)

Saw tooth values
o
o (4] -

-0.5

Angles (rad)

Figure 3.3: Hexagon shape and the corresponding cookie cutter functions

This methodology has been further developed for freeform shapes using a Circular
Approximation with Selective Cornering (CASC) strategy [LH17|. The strategy is to
approximate the freeform shape with multiple small sectors that share the common
PCS origin, each of which has a distinct radius r;(6;), and the deviation at each sector
is represented with Equation 3.8. Since the radii of sectors are mutually different, sharp
transitions may be observed between adjacent sectors. These transitions are captured
along the shape boundary at corner points where the shared line between two adjacent
sectors intersects with the shape. Thereafter, the transitions can be modeled in the

same way as the polygon case. Figure 3.4 illustrates the CASC strategy.

Freeform shape
boundary

Fan-shaped sector
boundary

v

Approximated polygon
edge

° Corner point

Figure 3.4: The CASC strategy for freeform shape deviation modeling
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Following the CASC strategy, the deviation function of a freeform shape is similarly

given with two components: g;(-,-) and go(-, ), in which ¢;(-,-) is reformulated as:

91(0,7°(0)) = Po(ri(0:))*+51(ri(6:))" cos(20)

forQi_1§9<0i,1§i§n,90:9n

(3.12)

, where 6; is the angular position of the corner points in PCS and r;(6;) is the radius of

the corresponding sector at 6;. And go(-,-) is reformulated as:

g (9 TO(G)) ﬁ?(ri(9i>)a2 W(9_9i2—(16)7’7’_12:1_(?i)_9i—1)7 if gi—l S 0 < eia 1 S ? S n, 60 = Hna
2\Y, = o

0, otherwise
(3.13)
The deviation function parameters are estimated based on measurement data using
Bayesian inference, and the estimated function can be used to derive optimal compen-

sation plans on the nominal CAD part model in order for improved quality.

3.2.4 Discussion

The aforementioned deviation modeling methods all aim at providing a parametric
functional form of the in-plane deviation. The first two methods focus on comparing
the parameterized nominal and actual shapes. Both the FDs and the Fourier Series are
used to derive a parametric shape function. The difference is that, the former represents
deviation as the Euclidean point distance with respect to normalized arc length between
0 and 2w, while the latter represents deviation as the radial difference with respect to
polar angles. The FDs-based method doesn’t operate on coordinates of shape points, so
it is not sensitive to the shape complexity. However, the accuracy is comparatively low,
and since integrals needs to be computed for shape reconstruction, the computational
cost is high. The FSE-based method is much easier to understand and implement, and
the adoption of PCS allows an intuitive representation of deviations. But for complex
shapes, more terms of the Fourier Series need to be incorporated, thus increasing the
number of function parameters. Figure 3.5 illustrates the representation of a hexagon
shape with both methods under a 30-order expansion. A zoom-in view is also provided
at one corner to highlight the differences. Apparently, with the same order of expansion,
the FSE-based method achieves a higher accuracy of representation than the FDs-based
method.
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The prescriptive methods directly models the deviations in the PCS, where the actual
shape is assumed to be centered with the nominal shape. The title 'prescriptive’ comes
from the fact that they follow an ’observation-prescription-validation’ process for model
development. First, by observing the deviation profile from the measurement data, an
assumption is made on the global function form which may roughly approximate the
observation. Then, detailed local variations along the shape boundary are considered by
adding extra terms to the global function. Finally, the function is validated and refined
using measurement data of new parts. This methodology is quite effective for the quality
control purpose due to its ability to statistically identify patterns in the deviation profile.
However, the adoption of PCS in both the FSE method and the prescriptive methods
limits their application to convex shapes. It’s also important to note that the mentioned
works focus on a geometrical view, but lack the consideration of physical contributors
to the deviation. In the next section, a new shape transformation based method will be

proposed which inherently implies the effects of process- and material-related errors.

—Orig-inal éhape

—Shape represented by FS
107 —Shape represented by FD
* Original shape points

5t Points represented by FS

* Points represented by FD
> 0f
5+t

>l /

Detail at the corner

Figure 3.5: Comparison between the representations of a hexagon shape by Fourier
Series-based method and the Fourier Descriptors-based method
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3.3 Shape transformation perspective for deviation modeling

As major contributors to geometric deviations, the manifold deviation sources in the
manufacturing process induce the variations of the nominal in-plane shape. Investigation
of the variational effects is critical to the effective modeling of in-plane deviation. In
an AM process, on one hand, process-related errors such as unexpected displacement
of energy sources or machine axes, may result in slight translation or rotation of shape
relative to the machine coordinate system; on the other hand, material-related errors
such as thermal shrinkage, may cause deformation of shape from its nominal design. Such
variations will be accumulated after the layer-wise building process and as a consequence
affect the global product form. Even though it’s unrealistic to quantitatively correlate
the variations with each deviation source, a reasonable assumption can be made that
they could be mapped to the transformations of the nominal shape. In this context,
three types of transformations can be defined on the nominal shape as: translations along
x- and y-axis Az, Ay, rotation with respect to the coordinate system origin o and the
scaling in x- and y-direction ¢, ¢,. Figure 3.6 illustrates the respective transformation

effects on the nominal shape in an AM process.

inw R @\( A4y l;@ﬁ%—

Translation Rotation Scaling

Nominal shape — Actual shape

Figure 3.6: Variation of 2D product shape in an AM process

3.3.1 Model formulation

With the defined parameters, the transformation effects could be represented with
homogeneous transformation matrices as seen in Equation 3.14, where Mg, Mg, My are

matrices corresponding to scaling, rotation and translation effect respectively.
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v, 0 0 1 0 Az cos(a) —sin(a) 0
Ms=10 ¢, 0| Mr=10 1 Ay|Mr= |sin(a) cos(a) 0 (3.14)
0 0 1 00 1 0 0 1

The transformation of coordinates between the nominal shape €2° and the actual man-
ufactured shape 2* can thereby be mathematically represented based on the parameter
set W = {¢y, vy, @, Az, Ay}. Denote corresponding points on Q° and Q* as (2°,y°) and
(x*,y*) in the CCS, the coordinate transformation is then formulated as Equation 3.15,

where My is the integrated transformation matrix combining Mg, Mg, Mr.

(z*, ", D)7 = My(2°,9°, 1)T (3.15)

The reverse transformation is then derived as:

(Ioayo) = (h1<I*,y*,\I/),h2<I*,y*,\I/)) (316)

Since we are dealing with the in-plane deviation in PCS, a mechanism needs to be
established to map this relationship from the Cartesian Coordinate System (CCS) to
PCS. The objective is to have a parametric deviation function with the form shown
in Equation 3.17, where 7°(f) denotes the polar function of the nominal shape and
r*(0; W, r°(0)) the polar function of the manufactured shape approximated by applying
transformation on the nominal shape; €4 is a noise term to account for the random
variation of shape profile and is assumed to be independent and identically distributed

(i.i.d) at each 6, with gy ~ N(0, 0?).

F(0;9) =7*(0; 9, 7r°(0)) — r°(0) + cq (3.17)

Given a shape that can be analytically expressed by a function CCS, it is convenient
to derive both r°(6) and 7*(0; ¥, 7°(#)) combining Equation 3.16. In Appendix A, some
details are discussed regarding the derivation of in-plane deviation functions for common
shapes, including circular shapes (A.1), bi-circular shapes (A.2), elliptical shapes (A.3)
and arbitrary polygonal shapes (A.4).
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3.3.2 Model estimation

Effective estimation of the model parameters is the key to understanding the actual

deviation patterns and the downstream application of this model for prediction purposes.

Based on the measurement data gathered from manufactured product samples, the

estimation will be conducted following the least-squares principle. The measurement

data are provided as point clouds collected from the product surface using a laser scanner.

A flowchart of the model estimation procedure is illustrated in Figure 3.7
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converges?

Optimal model
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/
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Figure 3.7: Flowchart of the model estimation process

No

The procedure initiates with the reconstruction of manufactured in-plane shape from

boundary points of each layer, which can be extracted from the point cloud according

to the layer height determined based on the layer thickness specified for the building

process. The extraction is executed as follows:

VP (o, Yms 2m) € P,

(T, Ym) € S if(hi — A < 2 < hy + N),

1i=1,..Ngm=1,... M

(3.18)

Among all M points in the cloud P, the point P,,, whose z-coordinate z,, lies within

the bounding zone around the layer height h; of the i-th layer, is deemed as the layer’s
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boundary point and its x and y coordinates (Z,,, ¥ ) are used to reconstruct the man-
ufactured in-plane shape of the layer. The bounding zone is defined by a threshold
value A\ that controls the density of collected points in a layer, which should be much
smaller than the layer thickness to avoid confusion between data of adjacent layers. Af-
ter performing the extraction for all N, layers, each in-plane shape is approximated by
connecting the extracted 2D points S sequentially. With a sufficiently high collection
density, the approximation accuracy can be guaranteed. Thereafter, both the nominal
shape and the reconstructed shape are transformed to a common PCS to obtain (6, 7°(6))

and (0,7*(6)). Thus the in-plane deviation data are obtained following Equation 3.5.

The collected points, however, are not always uniformly distributed on the boundary,
thus adding difficulty to the calculation and comparison of deviations due to the absence
of correspondence between points of different layers. As a solution to this issue, the
obtained deviation data of each layer are sampled at K angles uniformly distributed
within the range [0, 27], denoted as (6}, ..., 0% ). Suppose the original data in a layer are
evaluated at L(L > K) angles as (07, Ar(607)),..., (6%, Ar(6Y)), for a sample angle 6,
its two neighboring angles 07,07,, and the corresponding deviations Ar(67), Ar(67, ;)
are identified, the deviation at this sample point is thereby linearly interpolated as
Equation 3.19. The high density of collected points facilitates the minor loss of accuracy

due to interpolation.

Ar(0°,,) — Ar(6
i éjl)_ef(J)(ey—e;%m(e;);eye(ev 0] =1y L—1 (3.19)

Jr i+l
Jj+1 J

Ar(6Y) =

()

With the aligned deviation data, the objective now is to derive the optimal trans-
formation parameters U = {@x,cﬁy,d,ﬁx,ﬁy} that best fit the measured deviations
{Ar(6*)} for each layer of the manufactured part. The least-squares based constrained
optimization is adopted aiming at minimizing the squared difference between data and
model response, as shown in Equation 3.20. Constraints are imposed on the scaling,
rotation and translation parameters using predefined J,,d,,d; in order to limit search
range of the optimization algorithm. Since the magnitude of deviation is small in com-

parison to the product size, limiting the parameters within an anticipated small range

could facilitate convergence of the algorithm.
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X Ouy Py € [1=05, 1+64]
U = argmin Z [£(6%; W) — Ar(6%)]s.t. a € [—6,,6,] (3.20)

501,(,0@/70,A93,Ay i=1
AZE, Ay € [_5757575]

Considering f(6; ¥) is a non-linear function in general cases, the non-linear program-
ming solver fmincon of MATLAB® is adopted to implement the optimization. Setting
the initial parameter values as ¥ = (1,1, 0,0, 0), the algorithm iteratively searches within
the specified constraints with trial steps aiming to decrease value of the objective func-
tion in Equation 3.20. When the current step size is smaller than a predefined step

tolerance, convergence is met and the optimal parameters ¥ are found.

3.3.3 Case study and comparison with Fourier Series method

In this section, a case study will be presented to validate the proposed transformation
perspective with the measured deviation data of a manufactured part. The part is
designed as a 5mm-high regular hexagon shape with its circumscribed radius as 20mm.
A comparison between the proposed method and the FSE method will be made regarding
the model complexity and accuracy.

The part is manufactured on a Prusa i3 MK2® FDM printer with 0.2mm layer
thickness and the rectilinear infill pattern is adopted. The measurement is conducted
using the Kreon Aquilon 50 laser scanner. Calibration results indicate that the average
measurement error of this scanner in all involved scanning orientations is approximately
0.002mm, which is negligible compared with the magnitude of geometric deviations and
can be attributed to the noise term in Equation 3.7. The point cloud captured from
the part surface contains a total sum of 795935 points, from which the layer boundary
points are extracted every 0.2mm along the build direction with the threshold A\ =
0.003mm (Equation 3.18). Converting the extracted points to PCS, in-plane deviations
are evaluated and subsequently aligned at K = 360 uniformly distributed locations along
the boundary based on Equation 3.19. The deviation model parameters are estimated for
each layer and the fitting result at the 10" layer is provided as an example in Figure 3.8,
in which the blue line with dot markers denotes the measured deviation, and red line is
the fitted curve given by the proposed method. For better visualization of the result, the

noise term is not included in this curve. As a comparison, the Fourier series expansion
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(FSE) based method discussed in Section 3.2.2 is also used to fit the same data. Different
orders of expansion have been performed and their fitting results can be found as the
black curves in Figure 3.8(a), 3.8(b), 3.8(c) respectively. It can be observed from the
figure that, the proposed method overcomes the previous FSE method by accurately
capturing the patterns in deviation data with much fewer parameters. Especially, in
order to approximate sharp transitions of data that take place at corner points of the
hexagon shape, plenty of high-frequency terms should be included in the expansion, so

even the 35" order expansion can hardly provide a satisfying modeling accuracy.
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Figure 3.8: Comparison between the results provided by the proposed method and FSE
method of (a) 5 order; (b) 15" order; (¢)35™ order

The modeling accuracy is quantified by the Root Mean Square Error (RMSE) be-
tween measured deviations and the fitted values given by the estimated models. Fig-
ure 3.9 presents RMSEs of the proposed method and the FSE method evaluated at all
layers of the manufactured part, from which it is evident that the modeling accuracy of
the proposed method with only 5 parameters, is comparable to the FSE method with
more than 35 parameters, thus the model complexity is substantially reduced. More-
over, since the transformation parameters are closely related to physical factors in the

manufacturing process, the patterns recognized by the proposed model are more realistic.
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Figure 3.9: Comparison of RMSE of both methods for each slice

3.3.4 Discussion

In this section, in-plane geometric deviations are investigated based on a transforma-
tion perspective that maps effects of AM deviation sources to different transformation
effects on the nominal shape. Parametric deviation models are formulated for circular
and polygonal shapes based on the transformation parameters. This transformation
perspective implies the consideration of deviation sources in AM and is based on the ge-
ometric information of the designed shape, therefore, compared to the FSE method that
approximates the actual shape using high-order Fourier Series, the model generalizes
well to different shapes and the model complexity is significantly reduced. Neverthe-
less, limitations of the method also exist. The transformation parameters are currently
treated as constants and applied to the overall shape, thus the model doesn’t general-
ize well for deviations resulted from location-dependent deviation sources. The current
model estimation procedure is lacking in a learning capability, so existing parameter
settings cannot be effectively reused as knowledge to facilitate the generalization to new
process conditions. In the next section, statistical learning methods will be investigated

as a complement to the current transformation-based model.
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3.4 Statistical learning methods for deviation modeling

3.4.1 Bayesian inference

In the previous section, the least-squares criterion has been adopted to give a point-
estimate for the parameters in Equation 3.17. As has been indicated by [GW15], a major
weakness of this classic method is that it fails to fully capture the uncertainty within
the data, and therefore may yield different parametric models for a set of observation
data related to the identical sources of uncertainty. Hence, the Bayesian inference-based
method is a desirable alternative in order for improved robustness in parameter estima-
tion. When using Bayesian inference for model estimation, f(0; V) in Equation 3.17 is
the model structure that provides a function form consisting the parameters © = {U, o}
to be estimated. Given the measurement data D = {(6, Ar(6))}, the conditional prob-

ability of © on f and D is repeatedly assessed by applying Bayes’ theorem:

(Do, f)p(elf)
p(D|f)

p(D[f)p(f)
D) (3.21)

p(DIf) = / p(DIO, )p(©]f)de

e~p®|D, f) ="

p(f|D) =

Here O is treated as a vector of random variables conditioned on the available data, and
instead of estimating fixed parameter values, the idea is to specify the confidence in their
values. Equation 3.21 enables us to convert an a prior probability density of © into a
posterior density with evidence of the data D [GW15]. The objective now is to derive a
predictive model to infer the distribution of in-plane deviation Ar(6*) given new input
0* based on training data D, model structure f and the parameters O, i.e., to deter-
mine the posterior predictive distribution of Ar(6*) as: Ar(6*) ~ p(Ar(6*)|0*,0, D, f).
Considering the fact that © are unknown yet, we aim at marginalizing the probability

over the parameter estimates:

p(AF(67)[6°, D, f) = / p(Ar(67)]6°,©, F)p(O] D, 1)dO (3.22)

, where p(©|D, f) is the posterior parameter distribution following the form given in
Equation 3.21. The solution to the integral in Equation 3.22 and Equation 3.21 is simple
for linear model structures since the probabilities are numerically tractable. However, it

is obvious from Equation A.1 that our model exhibits a complex non-linear structure, in
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this situation, the Markov Chain Monte Carlo (MCMC) algorithm provides a possibility
to draw samples from the posterior parameter distribution without tackling the complex
p(©|D, f). The drawn samples are further used for Monte-Carlo simulation to propagate
the uncertainties in parameters to the output of the predictive model while circumventing
the analytical evaluation of Equation 3.22 [GW15]. The MCMC algorithm consists the

following steps:
e Specify a prior probability distribution for © with hyper-parameters Ilg.

e Draw from the joint distribution of © to obtain a set of sample parameter values o.
Calculate predictions Ar() on training data points 6 using the model structure

£(6;©) and compare Ar(0) with the observed values Ar(6) using a loss function.

e Evaluate the density of the drawn parameter samples and update the joint distri-

butions of ©.

e [terate the sampling and updating steps in search for samples of parameters that
are capable of producing better predictions which could reduce the loss function,

until a convergence is met where new samples don’t contribute to loss reduction.

e MCMC sampling follows the Markov-Chain form, which means the current position
of step n + 1 is independent of all other steps except for that of its previous step
n. The sampler moves around the joint distribution in a semi-random manner and
the distance as well as direction of movement is decided by the specific sampling

method used.

e After the convergence is met, further iterations are performed to obtain samples
for inference of the posterior distribution of parameters. While the process before
convergence is called the ’burn-in’ process, and the samples drawn in this process

will be discarded since they are likely to be poor estimates of the parameter values.

In this research, the Metropolis-Hastings algorithm has been applied for MCMC
sampling and the pyMC3 package developed on the Python platform is adopted to
implement the Bayesian inference for estimation of parameters in Equation A.1. The
details of the algorithm can be found in [Has70] and will not be discussed here. Recall

that in the deviation function, we have 6 parameters © = {p,, ¢,, o, Az, Ay,o}. For

63



Chapter 3. In-plane geometric deviation modeling for AM

the first step, prior distributions are assigned for these parameters as Equation 3.23.

0z ~ N(1,0.01%),, ~ N(1,0.01%)
Ax ~ N(0,0.2%),Ay ~ N(0,0.2%) (3.23)
a~ N(0,0.1%),0 ~ |[N(0,0.05%)|

The mean and standard deviation values specified for each of the parameters are hyper-
parameters Ilg. The in-plane deviation data extracted from measurement are organized
as {(0,Ar(0))} and serve as the training data. As an example, deviation data at the
10%" layer of the manufactured part mentioned in Section 3.3.3 is used to validate the
performance of Bayesian inference. Following the MCMC strategy, the parameters are
sampled with 6000 draws together with a 500-draw burn-in process [HZSD15a]. The
posterior distribution of each parameter is obtained by marginalizing the joint posterior
distribution and important statistics, including mean, standard deviation as well as 2.5%
and 97.5% quantiles are summarized as Table 3.1. A traceplot of sampling process is
shown in Figure 3.10 providing the distribution of drawn samples, in which the samples

drawn in the burn-in process have been discarded.

With the estimated parameters, the posterior predictive distribution of in-plane de-
viation is calculated and compared with the measured deviation data, as illustrated in
Figure 3.11. The 95% prediction interval is also indicated which captures most varia-
tions of data from the mean prediction. In comparison to the fitting result in Figure 3.8
that gives only a point estimate, Bayesian inference also provides an insight into the

uncertainty of data and the estimated model is more robust for prediction purposes.

Standard

Parameters Mean Joviati 2.5% 97.5%
eviation
. 0.9963 7.0le-4 0.9961 0.9964
Py 0.9923 1.44e-3 0.9917 0.9927
Qo 0.0022 3.99e-4 0.0017 0.0028
Az -0.0354 7.41e-3 -0.0386 -0.0341
Ay -0.0712 1.37e-3 -0.0798 -0.0634
o 0.0602 2.56e-2 0.0533 0.0670

Table 3.1: Posterior statistics of deviation function parameters
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3.4.2 Transfer learning with Multi-task Gaussian process

In Section 3.3, the transformation-based approach has been introduced which applies
the transformation parameters in Equation 3.14 to the whole shape and manages to cap-
ture the global pattern of in-plane deviation. Whereas, unexplained location-dependent
variations still exist around the layer boundary that manifest more complicated patterns.
These patterns might be shape-specific and can hardly be interpreted in an analytical
way. To obtain an effective characterization of such patterns and increase prediction
performance, current model should be enhanced with a learning capability enabling
the concurrent learning from deviation data of multiple shapes, sharing the knowledge
gained from each shape and providing consistent data-driven predictions for all shapes.
With this motivation, a multi-task Gaussian Process (GP) learning algorithm is adopted
as an addition to the transformation-based model to cooperatively tackle the deviation

modeling problem.

3.4.2.1 Model design

GP is a statistical method widely used in statistics and machine learning due to its
ability to capture the intricate non-linear relationship between predictors and responses
with limited training data and a moderate number of runs [Ras06, CWT18]. By intro-
ducing a new GP component, the new in-plane deviation model aiming at concurrent
learning for M objective shapes is presented as Equation 3.24, where [ = 1,..., M is
the index of shape. f;(6;¥,) is the transformation-based deviation function of shape I
derived by Equation 3.17, as discussed in Section 3.3.1. It’s supposed to capture the
systematic variations of global shape. g¢;(0) denotes a zero-mean GP that models the
local variation of shape [ that cannot be explained by f;(-). The multi-task learning
algorithm will be used to jointly learn from the deviation data of all M shapes and give

optimal estimation of each g¢;(-), as illustrated in Figure 3.12.

yi(0) = fi(0; V1) + 9.(0) (3.24)

With this new model, the objective is to predict the deviation at any location 6 of a
given shape [ provided with the knowledge transferred from other shapes manufactured
under similar conditions. The knowledge could be process- or material-related, and the

transfer mechanism could avoid over-fitting in comparison with GPs trained indepen-
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Training Training Training
Deviation Data 1 Deviation Data 2 Deviation Data M
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Figure 3.12: Multi-task Gaussian Process learning for multiple shape deviation
data [SRW16]

dently for each shape. Predictions made by the model could also provide an overall

understanding of in-plane deviation along the shape boundary.

3.4.2.2 Model Estimation

The optimal parameter values in f;(0; ¥;) and the GP models §,(f) are estimated
based on deviation data extracted from measurement. For each shape, deviations are
sampled at N uniformly distributed angles @ in PCS, thus composing a deviation dataset
A € RN*M_ The estimation of f;(0;¥;) is conducted following the same least-squares

principle as depicted in Section 3.3.2.

Deviations that remain unexplained by the estimated f;(6; \ill) subsequently serve
as the training data for multi-task learning. The input for learning is the polar angles
0 and the set of responses corresponding to data of the M shapes are grouped as a
vector v = (V11 .., UN1, -, V1M, -, UNM ), in Which vy = Ay — fi(0;; \ill) is the unexplained
deviation of shape [ at #; and A; is the measured deviation at the same location. The
dataset (@, v) is further randomly subdivided into a training set (6,,v,) and a test set,
and the training-test size can be varied to validate the prediction performance. The
trained {g;(-)} is expected to be capable of predicting the unobserved deviation of each
shape at any new 6*. Inspired by the research of Bonilla et al. [BCWO08|, the multi-task
learning for GP is conducted by placing a prior on the latent GP functions {g(-)} to

directly induce correlations between tasks. The zero-mean GP is fully defined by

(9:1(0), 9:(0")) = K} k°(6,6',7)
vy ~ N(gi(6:), 07)

(3.25)
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where K9 is a positive semi-definite matrix that specifies the inter-task similarities, &’
is the correlation function over input data with hyper-parameter v and o7 is the noise
variance for task [.

The standard GP formulae is followed to infer the mean and variance of the predictive
distribution of data. For a new data-point 6* from the task [, the mean prediction is

given by
(0" = (K @ )T "o -
Y=K'@K'+D®I
where ® is the Kronecker product, &7 is the I-th column of K9, k? is the covariance
vector calculated with respect to 6* and training points 6,, K? is the covariance matrix
between training points, D is an M x M diagonal matrix whose ([, [)-th element is o7
and Y is an M N x M N matrix. The hyper-parameters of the model, namely ~ of &°

and the matrix K9, are learned by maximizing the marginal likelihood p(v, | 8,~, K9)

with a gradient-based method.

3.4.2.3 Case study

To verify the learning ability of this statistical model, a case study is provided in
this section regarding three shapes, including a circular shape, a regular pentagon and
a regular hexagon. Each shape is designed with three sizes and manufactured by the
same Prusa i3 MK2 printer. The part size, denoting the radius of the circular shape and
the circumcircle radius for the two polygonal shapes, are selected as 10mm, 15mm and
20mm and the height of all parts is set as 8mm. The manufacturing process is configured
with the layer thickness as 0.2mm and the infill percentage as 100%. Figure 3.13 shows
a photo of the printed parts.

Figure 3.13: Manufactured parts for the case study
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The point cloud of each part is obtained by a laser scanner, from which the layer
boundary points are extracted with the strategy in Equation 3.18. To ensure point
density, a £0.0lmm bounding zone is used for extraction. Since all the shapes are
manufactured at the center of printer platform, the PCS origin always coincides with
the machine coordinate system origin. Hence, the in-plane deviation of each shape is
calculated at N = 360 uniformly distributed angles as the average value of deviations
from all layers observed at these angles.

Following the procedure described in Section 3.4.2.2, first f;(6; V;) is estimated sep-
arately for each shape through least-squares fitting. The derived parameter values are

given as Table 3.2.

TransX TransY Rotation ScaleX ScaleY

(mm) (mm) (rad) (%) (%)
Hex R20 0.101 -0.033 -0.020 98.69 98.88
Hex R15 0.050 -0.023 -0.020 98.83 98.45
Hex R10 0.006 0.009 -0.020 97.77 98.25
Pen R20 -0.005 -0.087 0.0035 99.19 98.80
Pen R15 0.009 -0.018 0.0032 99.14 98.72
Pen R10 -0.018 0.010 0.0038 98.41 98.26
Cir R20 -0.056 -0.075 0 99.21 98.98
Cir R15 -0.052 -0.009 0 99.07 98.84
Cir R10 -0.068 0.037 0 98.52 98.36

Table 3.2: Estimated transformation parameters for each shape

As parts are manufactured independently, the positioning error may not be repro-
duced from part to part. Therefore, the estimated translation parameters are inconsis-
tent between different parts. The rotation parameters, however, exhibit much similarity
among parts of the same shape. This phenomenon can be explained by the fact that
rotation error is closely affected by the extruder tool-path, the planning of which in turn
differs with the specific shape. The scaling parameters clearly indicate the shrinkage of
each part in x- and y-direction, thus confirming the assumption of shape transformation
on the FDM process. Prediction made by f;(0; \ifl) on the deviation of three shapes is
shown in Figure 3.14, from which it’s clear that the main deviation patterns have been
explained.

The remaining deviations are grouped into 9 sets of input data for estimation of
g1(0), each corresponding to one shape and treated as input for one task. The 9-task

GP learning algorithm is then trained respectively on 45%, 60% and 75% of randomly
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Figure 3.14: Deviation predicted by f(-) for three shapes of size R15

selected training set. The prediction made by the estimated §;(6) trained with the 60%
training set is shown in Figure 3.15, with regard to the same shapes as in 3.14. It can be
observed that ¢;(f) ensures a close prediction of all the deviations even with only 60%

of available data.

Moreover, the prediction performance is measured by the R-square of models trained
with the three training sets, as seen in Table 3.3. With 45%, 60% and 75% of training
data, the model achieves average R-squares as 0.9332, 0.9478, and 0.9716 respectively,
thus proving the prediction accuracy of this new model on unobserved data. It is also
worth noting that, the model reaches a promising accuracy based upon 45% of training
data, which approves its practicality for situations where observed data is insufficient.
Multi-task learning enhances the previous model with the ability to simultaneously learn

from deviation data of multiple shapes and improve the prediction results on all shapes.
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Figure 3.15: Deviation predicted by g(-) for three shapes of size R15

Training set size 45% 60% 5%
Hex R20 0.9765 0.9798 0.9833
Hex R15 0.9674 0.9661 0.9768
Hex R10 0.8749 0.8774 0.9482
Pen R20 0.9747 0.9813 0.9874
Pen R15 0.8982 0.9348 0.9659
Pen R10 0.7937 0.8355 0.9022
Cir R20 0.9897 0.9959 0.9977
Cir R15 0.9356 0.9709 0.9899
Cir R10 0.9883 0.9889 0.9929

Table 3.3: R-square evaluated on training sets of different sizes

3.4.3 Discussion

In this section, statistical learning methods are discussed on the basis of Section 3.3.
The transformation-based method captures the global variation of the in-plane shape

and can be seen as a systematic deviation model. However, the point-estimate of trans-
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formation parameters limits its ability to represent the randomness of deviation data.
Therefore, Bayesian inference is introduced to derive the distribution of these parameters
based on training data, thus the uncertainty of the estimated model is accounted for.
To model the local variations along the shape boundary and to improve the knowledge
sharing between different shapes, a multi-task Gaussian process model is proposed as an
addition to the transformation-based model. It enables the simultaneous learning from
deviation data of multiple shapes and the improvement of prediction performance on all
shapes. The limitation of this multi-task learning approach, however, is that it considers
only the polar angles as input. So the 'multi-task’ actually denotes 'multi-shape’. Fur-
ther development of this approach can be made regarding 'multi-layer’ or 'multi-process
condition’, thus enhancing the learning ability by considering different layers of a part

or parts manufactured under different process conditions.

3.5 Conclusion

In-plane deviation denotes the shape variation of a fabricated layer. The accumu-
lation of in-plane deviations will result in a global effect to the surface form errors, for
example, the cylindricity of a cylindrical part. The main concern is to derive a model
that could represent variation of the layer contour, so the modeling problem can be

reduced to a 2D problem.

In this chapter, approaches for the modeling of in-plane deviations are discussed.
Motivated by the awareness that in-plane deviation measures the difference of manufac-
tured shape with nominal shape in a single layer, the parameterization of in-plane shapes
is investigated with FDs and Fouriers series with the objective to have a parametric de-
viation representation. With this basis, considering the weaknesses of such methods
and the importance to account for physical deviation sources in AM, a transformation
based model is newly introduced which manages to capture deviation patterns regard-
less of the complexity of shape. To enhance model capability and robustness, statistical
methods are developed enabling both the learning for single shape and the knowledge
transfer between shapes. The discussed methods are mainly based on the PCS to pro-
vide more intuitive understanding of the deviation patterns along the shape boundary.
Whereas, current methods are only validated on convex shapes. When dealing with

concave shapes or shapes with internal holes where more than one point may exist along
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one polar angle, multiple PCSs have to be established to collectively model the concave
segments or the boundary of holes. When using these deviation models for SMS build-
ing, the nominal in-plane shape is deformed with the predicted deviations in the PCS
and then transformed back to the CCS, since the SMS are always represented in CCS.

Some sections of this chapter include published works, including Section 3.2.2 pub-
lished in 27th CIRP Design Conference [ZAMI17], Section 3.3 in 15th CIRP Conference
on Computer Aided Tolerancing [ZAMI18] and Section 3.4.2 in the journal CIRP Annals
- Manufacturing Technology |ZAHM18|.
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4.1. Introduction

4.1 Introduction

The modeling of in-plane deviation focuses more on how the contour of in-plane shape
varies in independent layers. For out-of-plane deviation, there are new issues that need
special attention when developing the model. Since out-of-plane deviation is defined as
the deformation of layer in the build direction, the internal layer geometry should also be
considered, which is different from the in-plane case where only the external boundary
is concerned. Especially for building the Skin Model Shapes, deviations on points of
the top and bottom part surface have to be modeled. Therefore, the PCS is no longer
a suitable choice. The out-of-plane of one layer may be affected by other layers due
to the inter-layer propagation of thermal and mechanical effects. The accumulation of
deviations from previous layers also has an impact on the current layer, so the modeling

problem should be dealt with in a layer-wise manner.

The warpage effect that has been investigated in a number of studies can also be
treated as a kind of out-of-plane deviation, since the effect causes deflection of layers in
the build direction, especially at the part bottom. In the first section of this chapter,
some analytical out-of-plane deviation models will be summarized. The cross-section-
wise method introduced in Section 4.2.1 and the warpage models in Section 4.2.2 aim at
developing analytical functions based on measurement data to describe deviation. The
derived functions can be used as systematic models to predict deviations on the part
surface. As a complement, the random field method is introduced in Section 4.2.3 to
account for randomness of deviation while ensuring the topological consistency. How-
ever, such methods operate only on the whole part surface and therefore are insufficient

to meet up with the demands posed by the new concerns mentioned above.

Data-driven methods have received increasing attention in research related to AM,
especially in the study of process effects on the different phenomena in AM, including
shape shrinkage [CWT18], thermal field distribution [LJY 18|, melt-pool depth [Kam16],
etc. Based on experimental data collected from a number of Finite Element simulations,
these methods allow for building statistical models to predict the concerned responses
given the process parameters under which experiments are conducted. Motivated by
the challenges in out-of-plane deviation modeling and the multiple advantages offered
by data-driven methods, a new method is proposed in Section 4.3 focusing on a layer-

wise investigation of out-of-plane deviation patterns in AM parts, with respect to some
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key influential parameters. The identification of deviation patterns is approached with
two methods: Discrete Cosine Transform and Statistical Shape Analysis, both being
able to extract the most significant modes from deviation data. The effect of design and
process parameters on the identified modes is further characterized with a statistical
model. By training the model with observation data collected from experimental parts
simulated with designed combinations of process parameters, this model is able to make
effective predictions of out-of-plane deviations of new parts. A case study is presented
in Section 4.4 to validate the proposed methods and a comparison of the two modal

analysis methods is made in Section 4.5 based on results of the case study.

4.2 Modeling out-of-plane deviation from external surface

4.2.1 Prescriptive deviation model in Spherical Coordinate System

In a series of works by Huang et al. [JQH15, JQH16, JJH16], the out-of-plane devi-
ation has been modeled with prescriptive methods based on the Spherical Coordinate
System (SCS). Figure 4.1(a) illustrates the representation of out-of-plane deviation for a
cylindrical part in the SCS. The central axis of the SCS is parallel to the build direction
and any point on the part surface is represented with the coordinate (r°,p,0), where
r° is the radial distance to the origin, ¢ is the polar angle and # is the azimuth angle.
Hence, the surface can be subdivided into vertical cross-sections by specifying 6. The
boundary points of a cross section at 6 can then be represented in an associated PCS, and
the deviation f,(r°, ¢|0) is defined as the displacement of points in vertical direction, as
shown in Figure 4.1(b). Therefore, for each cross-section, the deviation can be modeled
in a similar way to that of the in-plane case as discussed in Section 3.2.3. The difference
is that, in-plane deviation is modeled along radial direction while out-of-plane deviation
is along the vertical direction [JQH15], and the latter illustrates different patterns from
the former due to inter-layer reactions and gravity [JJH16]. With such considerations,

a predictive deviation function for each cross-section 0 is derived as:

f(r,010) = g1(&,7°(0)10) + g2(', 7°(')|0)

¢ =mod(r/2 — p,27)

(4.1)

, where g1 (¢, 7°(¢")|0) is the cylindrical basis function transferred from Equation 3.8 to

consider deviation in vertical direction and to incorporate inter-layer interaction effect,
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and go(¢’, 7°(¢)]0) is the refined cookie-cutter function combining both saw-tooth and
square wave forms to fully describe the transition of deviation along the cross-section

shape boundary.
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Figure 4.1: The out-of-plane deviation represented in (a) the Spherical Coordinate Sys-
tem; (b) the vertical cross-section [JQH16]

This predictive function has been validated with experimental data of cylindrical and
simple polygonal shapes manufactured by the SLA process. However, this work is limited
to only a specific process setting, since no process parameters are taken into account
in the model. Moreover, the fact that this function is derived for single cross-sections

hinders its performance on complex shapes that are not rotation symmetric.

4.2.2 Systematic model of warpage deviation

The warpage distortions that are commonly observed on flat and thin additive man-
ufactured parts, can be deemed as a visible effect of the out-of-plane deviation. Warpage
could be attributed to the shrinkage occurring inhomogeneously across the part volume
in the AM process [SZZ16], or to the bending distortion when part is removed from the
platform and thermal stresses are released [ABC18]. The modeling of warpage behavior
has been approached to by researchers regarding different AM processes. In [SZZ16],

the warpage effects in AM are classified into the following categories:
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Clurling effect, denoting the bending of the peripheral regions in the build direction
due to residual stresses induced by heterogeneous shrinkage of individual part

layers.

e Trapezoid deformation occurring at part edges as a consequence of internal force

transition between fabricated layers.

e Blocked shrinkage, which is usually observed in powder-based AM processes as
a result of the resistance of enclosed loose powder against the shrinkage of part

geometry.

e Pincushion effect denoting the contraction of external planes where the binder
solidifies more quickly than internal regions, commonly observed in binder jetting

processes.

Among all the effects, the curling effect is the most significant contributor to out-of-
plane deviation. Figure 4.2 illustrates the curling effect on a manufactured thin-plate
rectangular part, from which it can be seen that the deviation occurs in z-direction and
is parameterized with three factors [SZZ16, SBJT16]: affected length d, deviation of the
bottom surface 9, and the top surface J;. By measuring these factors, reverse compensa-
tion is conducted on the CAD model in order for improved geometrical accuracy of the
manufactured part. However, no mathematical representation of the warpage deviation

was investigated with respect to the mentioned factors in this work.

Nominal part shape

Manufactured part shape 4 d
with warpage deviation

Figure 4.2: Depiction of the curling effect on a manufactured thin-plate part
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4.2. Modeling out-of-plane deviation from external surface

In [ABC18|, a function of the warpage deviation in FDM process is derived through
experimental studies. Variables including part geometry, material property and process
parameters are taken into account and test artifacts are manufactured with different
combinations of the variables. Similarly, the designed artifacts are flat rectangular plates.
In this research, warpage is interpreted as the flatness error of the top surface evaluated
from the point cloud collected by a 3D scanner, as denoted by §; in Figure 4.2. Since
the experimental part is a thin plate, it is assumed that , ~ d; and the function is given

as:

3 ’mAh mAh
5() = Zla<Tg - Tc) B2 (1 - h )f(h‘v Ah>m7 CL)
(
1, ifa >3
1, ifa < 4 h> SmAh
f(h, Ah,m, a) = 1 L i (4.2)
1—1(24—0)(1—0)2, 1fa<§,h<2_:;m
__ _a— _ mA
L ¢c= 3b(1—bb)’ b= mph
Oy
a=———
Eo(T,—-T.)

, where « is coefficient of thermal expansion, T} is the glass transition temperature, Tt is
temperature of the heated chamber; [, w, h denote the length, width and height of part,
Ah is the layer thickness; a measures the thermo-mechanical properties of the material
and is a function of yield point oy, Young’s modulus £, «, T, and T,. This model,
though comprehensive, only gives an empirical estimation of the deviation value and

therefore cannot be used to predict deviation at specific locations of the geometry.

Another empirical model is reported in [WX.J07| which considers both the inter-layer

and intra-layer warpage deformation. The model is given as:

n3Ah 3aL n—1
(Sb = 6a(Tg — TC)(TL — 1) X {1 — COS {m(Tg — TC)7:| } (43)

, where Ty, T,, Ah share the same definition as in Equation 4.2; L denotes the stacking
section length and n is the number of deposited layers. The two functions, namely
Equation 4.2 and Equation 4.3, can further be combined with Figure 4.2 to determine

where and how the nominal surface could be deformed.

However, the warpage effect is represented as a single scalar and validated on sim-
ple thin-plate parts in these empirical models, and only the top and bottom layers are
considered. Therefore, they can hardly capture the precise information about deviation

of the whole part surface. Nevertheless, they provide some geometrical and physical
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insights into how the part surface varies due to the warpage effect. Based on the sur-
face geometry and warpage value calculated from the models, a polynomial deviation
function can be fitted as Az(x,y) = f(z,y), which could serve as a systematic deviation
function for modeling out-of-plane deviations when no observation data are available.
The function can also be used to predict deviations on certain control points, and with
the help of Free-form Deformation (FFD), the deviation on all points of the part surface

can be known.

4.2.3 Random deviation modeling with random field

Apart from the systematic deviations that can be analytically modeled, the unex-
pected deviations should also be considered in order to achieve more realistic approxi-
mation to the reality. The random field method introduced in Section 2.3.3.1 to model
the random deviations of SMS is well suited for this purpose. Instead of calculating
the random deviation values on vertex normals of the whole geometry, the random
out-of-plane deviation is considered for contour points of layers in the vertical build
direction, as illustrated in Figure 4.3(a) and (b). To begin with, the contour points
at each layer are obtained by slicing the STL representation with horizontal planes at
corresponding layer heights, resembling the procedure in obtaining the nominal in-plane
shape. The obtained points together form a point cloud, whose coordinates are treated
as random variables of the random field. With an assumed covariance function and
correlation length, the correlation matrix is calculated following Equation 2.5. With the
eigenvectors and eigenvalues derived from the correlation matrix, the random deviation
associated with each point is calculated with Equation 2.4. Finally, the slice contour

points are displaced in the vertical direction with the amount of deviation values.

Random deviations [mm]
Out-of-plane

nic B 0.063
deviation

0.04
Build o7
-0.0057
-0.029
-0.051
-0.074
-0.097

-0.12

(a) STL representation (b) Slice contour points (c) Random deviations calculated
with random field

Figure 4.3: Generation of random deviations on nominal part model with random field
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4.2. Modeling out-of-plane deviation from external surface

The correlation matrix measures the impact of one point on its neighboring points,
either within the same layer or in adjacent layers, thus capturing the intra-layer and
inter-layer random effects between points. Figure 4.3(c) shows the generated random
deviations for the cone surface, where the deviation values are displayed with a color

map.

4.2.4 Deformation of nominal model with Free-Form Deformation (FFD)

In this section, the FFD-based method will be introduced aiming at integrating the
above-mentioned deviation models to obtain the out-of-plane deviation on part surface.
Originally presented in [SP86], free-form deformation (FIF'D) is a technique that enables
the transformation of a geometric model by deforming the cube or hull that encloses
the model. Instead of performing deformations directly on the object, FFD bypasses
the intra-object interactions and brings more efficiency benefits [LFCT18]. To begin
with, a parallelepiped volume is constructed that fully wraps the geometric model. The
volume is further subdivided into a lattice structure which is composed of tricubic Bezier
hyperpatches specified by a 3D grid of control points Pj;;. Each hyperpatch defines a
volume of space parametrized by the three parameters u,v, and w, where u, v, w € [0, 1].

Any point (z,y, z) inside the volume can be represented as Equation 4.4:

FFD(x,y.2) =Y 33 Bl(wB} (v) B (w) Py (4.4)

, where Bj(u),B}*(v) and Bf(w) are Bernstein polynomials of degree I,m and n, for

example B (w) = 7f—ik)!w’“(l—u;)"*’“; [+1,m+1 and n+1 denote the number of control

kI

points along the coordinate axes. By deforming the control points, the deformations are
further applied to each point enclosed in the volume through Equation 4.4. A larger
number of control points implies a more precise control of the local deformations. The

generation of an SMS from the nominal STL model using FFD consists of the following

steps:

e Construct the parallelepiped volume enclosing the STL model. According to level
of control on the accuracy, specify the number of control points F;j; on each

dimension of the bounding volume and obtain the lattice structure.

e For each point M, (x,y, z) of the STL model, assign the corresponding parame-
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ters (u,v,w) according to its relative position in the lattice that it lies in.

e Calculate the out-of-plane deviations AP;j; of each control point according to the

empirical models and obtain the deviated control point as R/gk = Pji + AP;j.

e Calculate the deviated coordinates Mge,(x,y, z) of the STL points by replacing
Py, with P/ in 4.4.

4.2.5 Application

As an example, the modeling of out-of-plane deviation is demonstrated on a square
part with L = 40mm side-length and h = 10mm height. The STL representation as well
as its bounding volume can be found in Figure 4.4(a). A number of 10 control points
are specified on z and y dimension of the bounding volume, together with 2 points on z
dimension representing the bottom and top layer, thus defining the lattice structure as
seen in Figure 4.4(b). Following Equation 4.3, the warpage deviations are calculated at
the bottom and top layer, denoted as ¢, and ¢§; that are illustrated in Figure 4.2. The
control points at corners of the two layer, colored with blue and red in Figure 4.4(b),
are deformed in z direction with the distance ¢, and J, respectively. The affected length
d is selected as d = L /2, which means the center point of the layer remains undeformed.
Under the constraints of the center and corner control points, two cubic polynomial
deviation functions Azy(z,y) = fi(x,y) and Az(z,y) = fi(z,y) are fitted respectively
for the bottom and top layer, and used to deform other control points. The deformed
points are shown in Figure 4.5(a) as compared to their original positions.

According to the deformed control points, FFD is performed on all points of the STL
and their original coordinates are replaced with the deformed ones. Figure 4.5(b) shows
the STL representation of the part incorporating the out-of-plane deviations, where the
magnitude of deviation values is visualized with a color map.

The random out-of-plane deviations are calculated with the random field method.
With no available experimental data, here an assumption is made on the random field
parameters by setting the mean as y = 0, the standard deviation as ¢ = 0.05 and the
correlation length as [, = 10. The calculated values are added to the z-coordinate of
each STL point, and finally the part model with both systematic and random out-of-
plane deviations is obtained. Figure 4.6(a) shows the calculated random deviations and

4.6(b) shows the final part model.
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(a) Nominal STL representation and the (b) FFD lattice structure defined on the
bounding volume bounding volume

Figure 4.4: STL representation of the part and the FFD lattice structure defined on its
bounding volume
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Figure 4.5: Deformation of control points and the deformed STL incorporating the
calculated out-of-plane deviations

4.2.6 Discussion

In this section, some empirical out-of-plane deviation models are discussed. The
prescriptive method operates on the SCS by subdividing the whole part model into
vertical cross sections. Bayesian inference is adopted to fit a parametric function that
represents deviations at each cross section. The obvious limitation is that it could only
be applied to parts that have uniform vertical cross sections. And the deviation function

has to be completely redesigned if the cross section shape changes. On the other hand,
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Figure 4.6: Random deviations calculated by random field and the total out-of-plane
deviation on part surface

some existing works that focus on modeling the warpage effects provide a systematic
solution to modeling the out-of-plane deviations. The empirical functions describing the
warpage considering process parameters and material properties can be used to predict
the systematic deviations at local sections of the part surface, such as the top and
bottom layers. Through FFD, the local deviations are propagated to the whole product
surface. Moreover, the random field method is used to model the random deviations
at each layer. The combination of systematic and random deviations realizes the early

prediction of out-of-plane deviations for the whole part surface in the design stage.

4.3 Layer-wise modeling of out-of-plane deviation by statisti-

cal modal analysis

The previous section discussed the approaches to modeling of systematic and ran-
dom out-of-plane deviations. They can be used in the Prediction Stage as empirical
predictive models but are limited to simple shapes and fixed process conditions. With
varied objectives, the studies focus on deviation of the overall external part surface with
thin-plate rectangular shapes or rotation symmetric shapes. However, it is important
to realize that the geometric deviations are actually a result of accumulated deviation
of each layer, a deeper investigation into the layer-wise behavior could facilitate under-
standing of the deviation patterns. On the way to this goal, a data-driven approach

will be proposed in this section to model the out-of-plane deviation of the SLM process
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based on FEA and statistical modal analysis (SMA). The method enables the layer-level
deviation prediction with consideration of the effects from part and process parameters.

A case study is presented to validate performance of the method.

4.3.1 The framework

To conclude from current research status, the major challenges in out-of-plane devi-

ation modeling can be stated as follows:

e The deviation of a fabricated layer can hardly be observed from the measure-
ment data, since the internal layer geometry is neither visible nor accessible with

common measurement devices.

e The pattern and magnitude of out-of-plane deviation may vary among parts manu-
factured under various process settings and among different layers of one part [CWT18,
RPO07]. On the other hand, as the part size varies, the magnitude of deviations
also demonstrates substantial difference [CWT18, SPR12|. Hence, a high-fidelity

predictive model should account for these effects.

e The complex deviation sources hardly allows for an analytical deviation model

respect to the concerned process parameters.

In face of such challenges, we propose to use FEA to obtain the internal layer devia-
tion data and derive a layer-level data-driven model considering effects of design and pro-
cess parameters. As shown in Figure 4.7, the proposed method starts from an experimen-
tal design procedure, in which a number of parameter combinations p = (p!, p?, p?, p?)
are selected for the design and manufacturing of experimental parts. In this thesis, the
considered process parameters are layer thickness (p'), laser power (p?) and scan speed
(p®). The size of part is denoted by p* and the layer height h is used to identify the
different layers of a part. The choice of these parameters is made based on reports about
their effects on part distortions. The main contributor to the out-of-plane deviation is
the high tensile residual stresses induced by the thermal effects [LLG17]. Within the
powder-bed AM process, both the laser power and scan speed has an impact on energy
density of the laser beam and consequently the thermal gradient of the part [SPR12].
The significant influence of layer thickness on residual stresses of the SLM process is

also reported in [LLG17, MZD17]. These parameters are shape-independent and ap-

87



Chapter 4. Out-of-plane geometric deviation modeling for AM

plied in the simulation model as a global setting, which makes them well-suited to be
included in a statistical model. Other parameters, for example those related to the
scanning strategy, need to be considered together with the specific scan patterns at each
layer. Therefore, they are not included in this research and are kept as constants for all

simulated parts.
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Figure 4.7: General framework of the proposed deviation modeling approach

Next, in the data processing stage, to obtain reliable deviation data of each fabricated
layer, thermo-mechanical FEA is conducted on a proprietary AM simulation package
following the parameters selected in experimental design. The layer-wise out-of-plane
deviation data are extracted from the simulation results at specific layer height A and
further organized as deviation profiles that describe the out-of-plane deviation of each
layer.

To account for discontinuities in part geometry and to align the deviation profiles to
a uniform structure, data smoothing should be performed. Based thereon, the patterns
within these deviation profiles are identified through modal analysis. To this end, two
approaches are investigated, namely Discrete Cosine Transform (DCT) and Statistical
Shape Analysis (SSA). The identified deviation modes are represented by mode indica-
tors, e.g., mode coefficients in DCT and principle component scores in SSA. Both of these
approaches have been discussed in literature with respect to geometric deviation mod-
eling [HC02, MCHR10, LLH10, HLC"14] and the SMS [ZAS*13, SAMW14, LZDS18],
but rare attempts have been made to study the effects of process parameters on the
identified deviation modes, especially in the scope of AM. Therefore, a Gaussian Pro-

cess (GP) model is proposed to statistically characterize these effects. The parameter
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sets selected through experimental design as well as the derived mode indicator values
compose the data for training the GP model, leading to a predictive model that could

make predictions on new part deviations.

The method enables layer-level deviation prediction with consideration of the effects
from part size and process parameters, and can be used for modeling the layer-per-
layer out-of-plane deviation of SMS and through reverse compensation, the geometrical

consistency between design and manufacture part can be significantly improved.

4.3.2 FE simulation of AM process

Data-driven methods pose a need for plenty of observation data for statistical mod-
eling training. However, the time-consuming manufacturing and measurement process
even for a single part hardly allows for massive data collection from real manufactured
parts. Meanwhile, AM simulation offers the possibility to conduct straightforward vir-
tual manufacturing given settings of machine and process parameters. Most solutions
transform the STL into an FE mesh containing hexahedral elements, also known as vox-
els, to facilitate computation. So the simulation results are provided in a regular data
structure, from which users could extract important in-process and post-process infor-
mation. Besides, since the simulated deviation data are associated with each element of

the FE mesh, the deviation of internal layer geometry is also accessible.

Therefore, AM process simulation is conducted on a proprietary software package
Ansys Additive® for data collection. Through experimental design, N, parameter com-
binations p € RM»*4 are selected for the simulation of a specific shape, then CAD models
of parts of this shape are designed with the selected sizes p? and the tessellated STL
files are obtained as simulation input. The process parameters (p', p?, p?) are set follow-
ing the selected combinations. In the simulation process, the triangular mesh in STL
is converted into a voxel representation with a specified voxel size, on which thermo-
mechanical analysis is conducted. The simulation outputs are provided in a binary file
consisting the coordinates of voxel points and the resulting deviations along x,y and z at
each voxel point. The layer-wise out-of-plane deviation data are collected from this file
as Az(z,y), where (x,y) is the 2D coordinate of voxel point on a layer, to which Az is
associated. Suppose for each simulated part, N; layers of deviation data are extracted at

varying layer height £, a total number of N, = N, x N; deviation data can be obtained,
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corresponding to different combinations of (p, h).

4.3.3 Deviation profile smoothing with Discrete Smooth Interpolation

For parts of different sizes, the obtained deviation data may be distributed at varied
number of voxel points. Figure 4.8(a) shows the out-of-plane deviation data of two
example parts obtained from the simulation result, in which the color intensity indicates
the magnitude of deviation values on voxel points. To enable correspondences for modal
analysis, especially for performing DCT, data of all involved layers are mapped to a
uniform M x N grid structure, regardless of the actual size and shape of layer geometry.
For a specific layer, this is done by finding an axis-aligned bounding rectangle that
fully encloses all the voxel points and subdividing the rectangle with M nodes along z-
dimension and N nodes along y-dimension. The out-of-plane deviation values on these
nodes are obtained based on the known values on voxel points, as shown in Figure 4.8(b).
Suppose the distance between grid points in both z and y direction is set as d, = 0, =
1mm, this grid structure can be seen as a 2D shape. Adding the sampled out-of-plane
deviations to points of the 2D shape in z direction, the deviation profile is obtained as
(Tny Yny A2(py yn));m = 0,--- M — 1;n = 0,--- N — 1, as shown in Figure 4.8(c).
This profile enables an intuitive perception of how deviations are distributed on the layer

and can be treated as a "shape" of deviations.

Whereas, the geometry of an AM fabricated layer is always complex and the resulting
voxel structure is not regular enough to assign values on all points of the rectangular
grid, thus causing non-continuity issues at empty grid points that may result in undesired
modes and add to the difficulty in identifying the most significant modes that we are
concerned with. For instance, in Figure 4.8(a), a clear discontinuity can be observed
in the deviation profile of the cylindrical part at the boundary of square shape. In
addition, the grid interval may not be consistent with the voxel side length, making
it difficult to realize one-to-one mapping between the voxel data and grid data, as
seen in Figure 4.8(b). Therefore, before performing modal analysis, a pre-processing
procedure is needed to interpolate each grid point (z,,,y,) of the deviation field with
appropriate deviation values Az(z,,,y,), given the data (zq,yo, Azo(zo,yo)) obtained

from the simulation result. At the same time, in order to guarantee sufficient smoothness,

this procedure can be justifiably treated as a surface modeling problem by transforming
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Figure 4.8: Deviation profile extraction from simulation results

the target deviation profile into a surface S whose points are (2., Yn, A2(Zpm, yn)). The
connectivity between points is obtained through Delaunay triangulation and represented
as F(S). As a surface modeling algorithm that has been widely used in geometric
modeling and geology, Discrete Smooth Interpolation (DSI) has demonstrated good
performance in dealing with discontinuities [Mal89], thus will be adopted in this thesis
for smoothing the deviation profile. DSI treats the surface as a 2D graph and smoothly
interpolates the surface nodes based on their graph connectivity F(S) and geometric
constraints [Mal92]. Specific to our problem, two kinds of geometric constraints are
available: for grid points that are coincident with the voxel points, the deviation values
are directly known (known point constraint); for other grid points, their values can be
interpolated from P(xg, 30, Azo(x0, yo)) as control points (control point constraint).
Denote € as the graph nodes of S, the out-of-plane deviation of the nodes is defined
by a set of functions n(k),k = 1,...K, where K = M % N is the number of nodes.
According to the first constraint, £ can be further divided into two subsets: Q° and Q!,
where the deviations n(Q") are known and 7(Q') are to be interpolated. Among all sets

of possible functions n(k) for €, DSI attempts to find one that minimizes a generalized
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roughness criterion defined as:

= (k) n\k+zwz (n]As) (4.5)

keQ
, where R(n|k) denotes a local roughness function at node k and is measured with re-
spect to the neighboring nodes of k; p(n|A;) measures the degree of violation of n(k)
with respect to linear constraints A;; u(k) is a positive parameter that modulates the
contribution of R(n|k) and w; s a positive ‘certainty factor’ weighting the relative im-
portance of each constraint. Both p(k) and w; are set as 1 to assign equal importance to
the geometric information. The components R(n|k) and p(n|A;) respectively account for
the aforementioned geometric constraints and their mathematical formulation is given

as:

aEN (k) (4.6)

=) Ai(a) — b

a€el)

p(n|A)

, where N(k) are the neighboring nodes of node k that could be retrieved from graph
connectivity F'(S), and v*(k) is the weighting parameter calculated from the neighbor-
hood. (A;,b;) are coefficients that fully define A;, which is specified following the control
point constraints. As shown in Figure 4.9, for a given control point P and a given
direction D, a triangle T'(n(ay), n(a1),n(az)) can be found on S that intersects with
the line containing P and parallel to D. And the control point constraint is to ensure
that during the interpolation process, the intersection point p shall be coincident with
P. Therefore, numbers of control point constraints can be imposed and the directions
are determined as the positive or negative z-direction according to the relative position
between the control points and the surface. The details of the control point constraint
and the calculation of coefficients (A;, ;) can be found in [Mal89).

According to Mallet et al., a unique solution n* exists that minimizes the generalized

roughness function if the following conditions are met [Mal89]:

e (! is a non-empty set.

v (k) > 0,Ya € N(k) . _
. , where N (k) are the neighboring nodes of node k that

Uk(k) == ZQEN(k) v (k)
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[_lInterpolated mesh
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Figure 4.9: The control point constraint in DSI

could be retrieved from graph G.

p(k) > 0,vk € Q

w; > O,VZ

Apparently Condition 1 and 3 are already met. Condition 2 can also be satisfied by
setting an appropriate form of v®(k). With all the defined concepts, the solution to
an optimum interpolation is achieved if OR*(n)/0n(k) = 0 for all k € Q, yielding the
following equation:

G(k) + I'(k)

n(k) = ok £ (k) (4.7)

, where G(k), g(k) are dedicated to the minimization of the local roughness at node k
and I'(k),v(k) to the minimization of violation of the control point constraints imposed
on k. The complete form of these functions can be referred to in [Mal97|, and will not
be discussed in detail in this thesis.

As illustrated in Algorithm 1, the final deviation values of unknown nodes are de-
termined by iterating Equation 4.7 starting from an arbitrary initial solution. This
iterative process has been proved to converge to the unique solution if the conditions of
uniqueness are satisfied. As illustrated in Algorithm 1, the final locations of unknown
nodes are determined by iterating Equation 1 on all the unknown nodes starting from
an arbitrary initial solution. This iterative process has been proved to converge to the
unique solution if the conditions of uniqueness are satisfied.

After implementing DSI on all the N,; layers of deviation data, a smooth deviation
profile is achieved for each layer in which all points of the rectangular grid have been
assigned meaningful deviation values so that modal analysis could be more efficiently

conducted. Figure 4.10 shows an example of the application of DSI on a planar surface
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Algorithme 1 DSI algorithm

Inputs: deviation values of known nodes n(Q°), connectivity graph G, coefficients
(), v (k)

Outputs: interpolated deviation values on unknown nodes n(Q')

: n(Q') < arbitrary initial solution

while more iterations are needed do

for all o € Q' do
_ _ G@)+I'(«)
n(@) = — o
end for

end while

composed of a triangulated grid structure. It can be observed that, following the control

point constraints, the planar surface has been smoothed with all the points assigned

appropriate deviation values.
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Figure 4.10: (a) DSI control points and the surface before interpolation; (b) the surface
interpolated with DSI

4.3.4 Identification of deviation patterns with modal analysis

In this section, the obtained N,; deviation profiles are processes by modal analysis
methods, including DCT and SSA, to identify the deviation modes. The identified
modes are expressed with mode indicators that measure the mode significance. In the

following, the principles of both methods and the derivation of mode indicators will be

explained.
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4.3. Layer-wise modeling of out-of-plane deviation by statistical modal analysis

4.3.4.1 Modal analysis with DCT

DCT is a technique that represents a finite sequence of data points as an accumulation
of cosine functions with different frequencies [ANRT74| and has been massively applied
in image and audio processing. In terms of manufacturing variation modeling, the DCT
was originally introduced by Huang et al. [HC02| to develop a general form deviation
model by identifying the most significant deviation modes. The out-of-plane deviation
of an AM-fabricated layer, denoting deviation of the layer from the nominal plane in
the build direction, can actually be treated as a form deviation.

Thus, the out-of-plane deviation field f(m,n) = Az(x,,, y,) can be similarly defined
at sample points (z,,,y,) = (md,, nd,) distributed on a regular grid along z and y
axes of the nominal layer plane, where 0., d, denote the sampling density and should be
adaptively set with respect to the actual size of shape. m =0,.. M —1;n=0,..,N —1
is the location of the sample point on the grid. Two assumptions are made to simplify

the DCT modeling process [HC02]:

e Smoothness assumption: the deviation of the layer plane is highly spatially cor-
related, thus guaranteeing a sufficient smoothness of the deviation field signal,
and high-frequency components within the signal (such as surface roughness or

waviness) are small enough to be ignored.

o Height field assumption: the deviation can be expressed as a single-valued height

field function that is defined within the 2D domain, as we did in defining f(m,n).

By performing DCT, the sampled deviation data are transformed into the spatial
frequency domain, from which a series of deviation modes can be identified, each rep-
resenting a typical form of deviation pattern. Likewise, an inverse transformation can
be conducted to reconstruct the original deviation data from the identified modes. The

forward and inverse transformation routines are given as:

M-1N-1 M-1N-1
m=0 n=0 u=0 v=0
( ) 1 1 Cm+Dmu  (2n+ 1D)mv
My N, UV) = —— ———0, (0 COS cos
Lulv=0
Qyly =
V2, ulv #0
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Chapter 4. Out-of-plane geometric deviation modeling for AM

, where C'(u,v) are DCT coefficients denoting the contribution of an error mode with
space frequency (u,v) on the two axes. The advantage of applying the DCT for devi-
ation modeling lies in its ability to parameterize the deviations with mode coefficients,
and moreover, through truncation, only a small number of the most significant modes
need to be preserved in order to satisfy a specified modeling accuracy. Since the contri-
bution of each mode is measured by the magnitude of its corresponding coefficient, an
energy significance mode truncation criterion (ESC) can be defined for a given energy

preservation ratio g € [0, 1]:

Z‘I’E 02(u7 U)
M—-1N-1

>, 2. f*m,n)

m=0 n=0

> 0p; (u,v) € Up (4.9)

, where U is a minimum set of significant modes that could preserve dg of the energy in
the original deviation field. Another truncation criterion is the Hausdorff Distance Cri-
terion (HDC) which conveys more geometric information [HLC"14]. Among all sets of
modes, HDC keeps the one ¥y that contains the minimum number of modes while ensur-
ing that the Hausdorff distance between the original field f(m,n) and the field fy, (m,n)
reconstructed from these modes falls below a threshold d4: d(f(m,n), fu,,(m,n)) <y,
where d(-,-) is the Hausdorff distance operator. Here a combined criterion is adopted
and defined as the intersection between the two sets satisfying ESC and HDC respec-
tively: (u,v) € Ue = Vg [ Vg. Aslong as this criterion is met, the complete model can
be truncated to a subset of deviation modes, and f(m,n) as defined in 4.8 can be ap-
proximated as a function of the truncated mode coefficients C' = {C(u,v) }ypew,. Now
the deviation profile of a layer is represented as Equation 4.10, where £(m,n) denotes
the residuals that are not explained by the truncated modes and can be ignored if a

high accuracy of reconstruction is reached.

f(m,n,C) = Z C(u,v)g(m,n,u,v) + e(m,n) (4.10)

uveW o

Through modal analysis, the deviation profile could be parameterized by the co-
efficients of a small number of truncated modes on condition that these modes could
preserve sufficient information of the original deviation data, and as a consequence, the
deviation modeling problem is reduced to the modeling of the mode coefficients C, as
illustrated in Figure 4.11.

Among all the modes identified from all the N,,; profiles, it is possible to recognize a
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Figure 4.11: Identification of significant modes

common set of modes that are significant across all profiles and some trivial modes that
are only significant for individual profiles, thus composing a mode union Il containing
N, different modes, as shown in Figure 4.12. The corresponding mode coefficients of
II¢ can also be recognized, and represented as a NN, x N, matrix whose (¢, j)-th entry

denotes the coefficient of Mode j on profile i, as shown in Equation 4.11.

Oll C’12 e ClNc
T (1)
_ONpll CNpl2 e CNplNC_

Each column C; € R™? of the matrix contains the coefficients of one mode observed
on all the experimented layer deviation profiles and is treated as the response to the
RNet*% parameter data set, altogether they compose the training data (p, h, C;) for the

consequent statistical modeling process.

4.3.4.2 Modal analysis with SSA

SSA refers to a set of techniques to investigate the geometrical properties of shapes
using statistical methods. It is widely adopted in computer vision and medical image
processing. In the engineering domain, SSA has been applied by several researchers
to model geometric shape variations [MCHR10, WLLS14]. In the observation stage of
SMS, SSA has also been implemented with the KDE-PDM method (2.3.3.2) to capture
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Figure 4.12: Significant mode identification from deviation data of multiple part layers

the statistical distribution of major deviation models within a number of manufactured
shapes [SAMW14]. The same Point Distribution Model (PDM) is adopted in this section
to conduct modal analysis on the out-of-plane deviation profiles.

In Section 4.3.3, we have obtained deviation profiles for N, layers of deviation data
corresponding to different parameters (a,h). The objective of SSA is to identify the
main patterns (or variation modes) within these deviation profiles.

The general procedure of SSA is as follows [SG02]:

Training set acquisition. The deviation profiles to be analyzed are acquired as the

training shapes for SSA.

e Correspondence determination. The correspondence between training shapes is

determined by recognizing and associating corresponding points on each shape.

e Shape Alignment. The differences between training shapes in terms of location,
scale and rotational effects are corrected. Since all the deviation profiles are based
on a common grid structure, the correspondence can be easily determined and

alignment is not needed.

e Statistical Shape Model(SSM). Based on the aligned training shapes, an appropri-
ate SSM is established for shape analysis. In this paper, the Point Distribution
Model (PDM) will be adopted.
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4.3. Layer-wise modeling of out-of-plane deviation by statistical modal analysis

Developed by Cootes et al. [CTCG95, CETO01], PDM has been recognized as the
fundamental model for statistical study of shape [DTA"03]|. The rationale behind PDM
is to represent each of the training shapes as a mean shape combined with variations of
the mean shape along the main variation modes. To start with, the coordinates of each

aligned deviation profiles are reorganized as a vectorized representation
T., _
Xi =[x, @2, 20, Y1, Y2, Yy, D2, Azgy o Az ] i =100+ Ny

, where M, is the number of points in the deviation profile which is identical to the
number of grid points M * N, and Az; = Az(z;,y;) is the out-of-plane deviation. A
mean shape is considered as X = Zf\[ﬂ X, /Ny, and the shape covariance matrix is
given by ¥ x = Zfﬁ{ (X; — X)(X; — X)T/N,. The identification of variation modes is
realized through Principle Component Analysis (PCA) on the shape data X, the steps
of PCA are as follows:

e Calculate the eigenvectors V' and eigenvalues A of the covariance matrix Y x.

e Rearrange the eigenvector/eigenvalue pairs in descending order according to the
eigenvalues. Each eigenvalue indicates the amount of variance of the original data
explained by its corresponding principle component. Therefore, given a threshold
ratio, a subset of ¢ components needs to be retained to explain a considerable

amount of variance in the original data.

t

—1 i .

arg min (Z’% > ratzo) (4.12)
t Zj:pl Aj

e Transform the original shape to the reduced ¢-dimensional space and compute the

its scores as 8; = V,T(X; — X) € R!, where V} is the matrix composed of the

eigenvectors of the first ¢ principle components.

e The original shape can be approximated as

X; =~ X +V;s; (4‘13)

The scores represent the distribution of a layer’s deviation profile in the reduced PCA
space. Similar to the DCT-based method, a N,; X ¢ matrix is organized as Equation 4.14,
in which the (4, j)-th entry denotes the j-th principle component score of profile ¢ in the

PCA space and each column s; € R contains the scores of one principle component
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Chapter 4. Out-of-plane geometric deviation modeling for AM

on all the deviation profiles. Since each profile corresponds to a part layer manufactured

under a specific design and process parameter setting, therefore, s; is treated as the

response to the RM»** parameter data set, thus composing the training data (p, h, ;).
_811 S12 Slt_

s=| T (414
_SNpll SN2 " SNplt_

4.3.5 Predictive model building with Gaussian Process

As has been stated by Huang et al. [HC02], the modes identified by modal analy-
sis are closely related to typical deviation patterns and the patterns are characterized
by some indicators, namely the mode coefficients in DCT and the principle component
scores in SSA. Unlike traditional manufacturing processes whose deviation patterns il-
lustrate clear relationship with the deviation sources and could be analytically modeled
by investigating the characteristics of the sources, the sources in AM process are far
more complex, thus one-to-one mapping between the sources and the identified modes

cannot hardly be established.

Therefore, based on the training data from modal analysis, a Gaussian Process model
is proposed in this section which statistically investigate the effect of parameter setting
on the mode indicators. Through effective training of the model, given any new param-
eter setting, the deviation profile of the manufactured layer can be predicted and the

geometric deviations can be derived.

GP has been recognized by the machine learning community as a supervised learning
approach that could make prediction on new inputs by measuring the similarity between

the points among training data. To facilitate model description, here I; is used to

denote the mode indicator, either the mode coefficient C;,j = 1,--- , N, or PCA score
sj,7 = 1,--- ,t. For each identified mode indicator, a GP model can be established as:
Ii(p,h) = p;(p, h) + Z;(p, h) (4.15)

, where p;(p, h) serves as a mean function that models the global effect of input pa-
rameters on an indicator and Z;(p, h) is a zero-mean GP which captures the non-linear

effects that are beyond interpretability of the mean function. p;(p, h) is considered as a
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4.3. Layer-wise modeling of out-of-plane deviation by statistical modal analysis

linear combination of a series of basis functions and represented as p1;(p, h) = 37 ®(p, h),
where

&(p,h) = (1,h,..p% ... h%, .(p")% .. hp®, .., pp", . );a,b=1,...,4 (4.16)

are the first- and second-order monomials of p and h; 3 are the coefficients. This
typical form of mean function is designed to measure the individual, quadratic and in-
teraction effects between the input parameters. In practice, the function can be reduced
by removing some unnecessary components through regularization. Here the Lasso algo-
rithm |Tib96] is used which conducts both regularization and regression on the function
parameters 3 and gives an optimal estimation as ji;(-, ). The covariance function of the
GP model is quite critical since it measures the correlation between inputs. A variant

of the 'radial basis function (RBF)’-based covariance is selected as Equation 4.17.

k((p1, M), (P2, ha))

! ) ) (4.17)
=ojexp |— > N —ph)” = Ao(h1 — ha)
=1

The hyper-parameters (X, ..., \q) and o are estimated following the maximum like-
lihood principle based on the training data (p, h, I;) and the optimal predictor for each

mode coefficient is given as:

jj(pvh) :ﬂj(pvh)"{'KfK_l(Ij _:&j(p’ h)) (4'18)

, where f1;(p,h) is the estimated mean; K, is a Ny-dimensional vector with the p-
th element as k((p,, k), (p,h)); K is the N, x N, training set covariance matrix
with the (a,b)-th entry as k((pa,ha), (P, hs)); k(-,-) is the RBF covariance function
with the estimated hyper-parameters. The estimated GP functions {I;(x,h)},j =
1,..., N, are consequently used to predict the deviation mode indicators for layers of
any part built with new parameters (p*,h*). And through the inverse transforma-
tion of DCT f(m,n,I(p*,h*)) (Equation 4.10) or the shape reconstruction of SSA
X; ~ X+ ‘/}f(p*, h*) (Equation 4.13), the out-of-plane deviation profile is obtained.
Recall that in Section 4.3.3, the smoothed deviation profile is defined on the grid as
Az(Zy,, yn). Therefore, the deviation Az at points of the original layer geometry (o, yo)
can be conveniently obtained from the grid points (z,,,y,) through techniques such as
cubic spline interpolation, which has been widely adopted to map gridded data to query

points. With a sufficient grid density, the interpolation can achieve a desirable accuracy.
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Chapter 4. Out-of-plane geometric deviation modeling for AM

Meanwhile, the out-of-plane deviations of layer contour points can be obtained from the

predicted deviation profiles, laying the basis for building the SMS.

4.4 Application

In this section, a case study is presented to validate the proposed approach based on
square shape parts. Latin Hypercube Design (LHD) is adopted to sample from 15 levels
of each parameter and based thereon, /N, = 15 simulations are run for model train-
ing. Two extra simulations are conducted following two randomly generated parameter
samples to test performance of the trained model. All simulations are performed on a
mobile workstation equipped with a 2.40 GHz Intel Core i7 CPU, an 8 GB RAM and
the Windows 10 operating system. The parameter setting of each simulation can be
found in Tab. 4.1, in which the Time column lists the time consumed by each simulation

and the Type column denotes whether the data are used for model training or testing.

Simulation  Part size  Layer thickness Laser power  Scan speed  Time

NO. (mm) (um) (W) (mm/s)  (min) 9P
1 15 85 280 2400 14  Train
2 18 90 190 1600 16  Train
3 21 40 230 1300 91 Train
4 24 60 160 1700 30  Train
5] 27 35 180 2100 83  Train
6 30 75 200 1000 158  Train
7 33 50 220 1900 75  Train
8 36 65 270 2200 51 Train
9 39 30 260 1400 706  Train
10 42 80 290 1800 187 Train
11 45 70 170 1100 362 Train
12 48 45 250 1200 661 Train
13 51 95 240 1500 354 Train
14 54 55 210 2000 139  Train
15 57 100 150 2300 195 Train
16 26 80 245 1850 40 Test,
17 35 95 195 2250 54 Test

Table 4.1: Parameter values determined by experimental design for simulation

102



4.4. Application

Following the part sizes specified in the Part size column, CAD part models are
designed with a common height of 5mm. Note that part size denotes the edge length of
square shape parts. Simulations are run by setting the layer thickness, laser power and
scan speed as corresponding values in the table while retaining a common setting for
other parameters, for instance, material (Inconel 718), baseplate temperature (353K),
hatch spacing (100um). The layer-wise deviation data are collected from each simulated
part with a Imm-interval from bottom to top layer, thus N; = 6 layers of data are

obtained for each part and N, = 90 layers in total.

The out-of-plane deviation profile of each part layer is further obtained on an M (=
20) x N (20) rectangular grid with 1mm grid size and smoothed by DSI to ensure that the
deviation data are aligned for parts of different sizes. In the following, the performance

of both DCT and SSA will be discussed respectively.

4.4.1 Performance of the DCT-based method

DCT is performed with the combined mode truncation criteria, in which the en-
ergy preservation ratio is selected as 0.95 and the Hausdorff distance threshold as 0.03.
Among the whole set of truncated modes, the most significant ones common for all the
N, part layers are preserved, yielding N, = 15 modes and their coefficients C' serve as
the response data for GP training. Figure 4.13 illustrates the first nine most significant
modes. The deviation profiles of two sample layers reconstructed from these modes are
also shown. It can be seen that with different coefficients, the same set of modes could
represent different deviation patterns. The original out-of-plane deviation of sample
layer 1 demonstrates an obvious upward curling at the four corners. The first 2 modes
manage to capture this curling effect along x and y axes with an emphasis on the shape
boundary. Mode 3 is to account for the global elevation of the layer in build direction.
Mode 4, 6 and 9 modulate the magnitude of deviations along the two axes, and Mode 5,
7 and 8 characterize the significant difference between deviations of the shape boundary
and the corners. Especially, the deviations of sample layer 2 show discrepancies between

corners of the two diagonals, which can be captured mainly by Mode 2, 4, 5 and 7.

For each of the common mode coefficients, a GP model is constructed and trained
with the predictors (p, h) and corresponding responses using a 5-fold cross validation.

The trained model is tested on the two test parts, Figure 4.14 and Fig. 4.15 respectively
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Figure 4.13: First nine most significant modes identified from the simulated deviation
data

illustrate the prediction of deviation profiles on the 6 layers of test part NO.16 and
NO.17. In both figures, the solid black dots denote the original out-of-plane deviation
of points on the corresponding layer and the hollow dots are the mean prediction of
deviations made by the proposed model. It can be observed that the mean prediction
reaches a pretty close fitting to the original deviation. The GP models also provide the
95% prediction interval for each mode coefficient. After reconstruction of the deviation
profiles from these coefficients, two bounds are derived around the mean as the confidence
interval for deviation prediction, as represented by the cyan and brown surfaces in the
figures. It’s clear that a major portion of the original data falls within the interval, thus

proving the effectiveness of the predictive model.

Moreover, to quantitatively evaluate the performance, the Root Mean Sum of Squares
Error (RMSE) and R-square are calculated on each simulated part to measure the overall
difference between the real and predicted data, as shown in Figure 4.16 and Figure 4.17.
The RMSEs of predictions on both the training set and test set keep at a low level, and
the R-square which measures the accuracy of fitting also maintains a high average value

across the simulated parts. It’s clear from both figures that, as the part size increases,
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Figure 4.14: Out-of-plane deviation of layers of the test part (NO.16) predicted by GP
with 95% confidence interval
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Figure 4.15: Out-of-plane deviation of layers of the test part (NO.17) predicted by GP
with 95% confidence interval
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the prediction accuracy shows a decreasing tendency. This is due to the fact that the
deviation data are mapped to an identical grid structure, and for larger parts, some
details will be lost after performing DSI. One possible solution is to increase the grid

density at the cost of raising also the computational intensity.
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Figure 4.16: RMSE of predictions on layers of each part - DCT based method
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Figure 4.17: R-square of prediction on layers of each part- DCT based method

4.4.2 Performance of the SSA-based method

The same experimental results of the square shape parts are used to verify the
SSA based method. The PDM of the N, deviation profiles is derived by calculating

the mean profile and the deviation modes, or principle components. Among all the
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identified modes, the first t = 4 modes explain 98.944% of variance in the original data
and therefore are kept for dimension reduction. The main mode scores s are calculated
and provided to the GP model as response variables together with the corresponding
parameters (p, h) as predictor variables. Independent GPs are trained to model each of
the scores.

The trained GPs are further tested on deviations of test parts. Given the test
parameters p* as listed in Row NO.16 and NO.17 of Table 4.1, the scores s* of test
part layers are predicted by the GPs and the deviation profile of each layer can be
reconstructed by Equation 4.13. The deviation values associated with the grid points of
the deviation profile are consequently inversely mapped to the nominal layer geometry
to obtain the actual out-of-plane deviation. The prediction results of both test parts
regarding the 6 sampled layers are illustrated in Figure 4.18 and Figure 4.19. Since
the magnitude of scores doesn’t necessarily determine the magnitude of reconstructed
deviations, the confidence interval of deviations is hard to obtain with the intervals of

scores predicted by the GP model. Therefore, in both figures, only the mean prediction

is provided.
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Figure 4.18: Predicted out-of-plane deviation compared with the actual deviation of
Test Part NO.16

It can be seen from the figures that, the SSA-based method achieves an accurate
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Figure 4.19: Predicted out-of-plane deviation compared with the actual deviation of
Test Part NO.17

prediction of the deviations for both test parts. Figure 4.20 further provides a boxplot
of the RMSEs of the prediction results on all parts. Compared with those predicted by
the DCT-based method, current method reaches an overall improvement in the accuracy.
The R-square computed on both the training and test parts maintains at a high level of

over 98%, thus is not illustrated here.
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Figure 4.20: RMSE of predictions on layers of each part - SSA based method

108



4.5. Conclusion

4.5 Conclusion

In this chapter, a data-driven approach has been proposed aiming at the layer-level
modeling of out-of-plane geometric deviations for AM parts. Based on deviation data
obtained from FEA, modal analysis is conducted to identify the significant deviation
modes in the layer data. Through statistical modeling of the mode indicators with
respect to design and process characteristics, the approach enables accurate prediction of
out-of-plane deviation on layers of AM parts fabricated under different process settings.
Modal analysis is done using two approaches: DCT and SSA. From the case study, some

general remarks can be made regarding the two approaches:

e For the same training shapes, the number of modes identified by SSA is much
smaller than DCT. The modes identified by SSA contain more geometrical infor-
mation about the original shape data, while the DCT is performed purely in the
frequency domain. And the prediction results given by SSA illustrate a better
accuracy than DCT.

e Both methods require a data alignment procedure, while since DCT should be
strictly conducted on a rectangular grid structure, for non-rectangular shapes, the
data needs to be interpolated or extrapolated to assign meaningful values to the
grid points, which may sometimes bring in undesired modes. SSA allows for more
flexibility in data alignment, as long as the correspondence between a common set
of landmarks can be guaranteed. Therefore, SSA offers more convenience when it
comes to complex free-form shapes. In this thesis, to unify the model description,

the grid structure is used for both methods.

e The SSA-based method is highly dependent on the training shapes. In other words,
it is hardly applicable to make prediction on shapes with a different form from the
training shapes. In comparison, the modes identified by DCT are independent

from the actual shapes and thus could be generalized to other shapes as well.

The incentive to use FEA is due to the difficulty in acquisition of internal layer devi-
ation data from measurement, whereas, the credibility of the simulation results remains
to be validated from real manufactured parts. The proposed method can also be gener-
alized to measured deviations if such data are accessible with the help of more advanced

measurement techniques, such as Computer Tomography (CT). Though the DCT-based
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method demonstrates a satisfactory performance on the square part, in order to main-
tain the performance for prediction of other shapes, the shape characteristics should
be considered in the statistical model such that the deviation modes could be corre-
lated to the actual shape. Therefore, parameterization of the shape-related properties
is also worthwhile to be investigated. The shape descriptors can be used as a way to
implement the parameterization. Based on a series of statistical models built for some
basis shapes, the prediction of new shapes can be made by measuring their similarity
to the basis shapes through the shape descriptors. Apart from modeling deviations for
the generation of SMS, more applications of the proposed method can be envisioned.
In quality control, given process settings, the prediction made by the method can be
used to derive appropriate compensation plans on the CAD model prior to the manu-
facturing process, thus improving the geometrical accuracy of the final part. Moreover,
with enriched process information, the method could assist in building the digital twin
of AM products [SAMWI17]. By providing information on the geometric deviations,
high-fidelity virtual model can be built as a reference to the physical part and used in
design and manufacturing for different purposes.

Some sections of this chapter include published works or works submitted for pub-
lication. The DCT-based method is submitted to Journal of Mechanical Science and
Engineering as a paper entitled Statistical Modal Analysis for Out-of-plane Deviation
Prediction in Additive Manufacturing. The SSA-based method has been presented in
29th CIRP Design Conference as a paper entitled Geometric deviation modeling with
Statistical Shape Analysis in Design for Additive Manufacturing.
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Chapter 5. Implementation and case study

5.1 Introduction

In the previous chapters, deviation models have been discussed with respect to the
single layers obtained after slicing the nominal STL file input to the AM process. The
slicing procedure, however, has decomposed the overall product model and the topolog-
ical information is totally lost. The Skin Model Shape, as its definition conveys, should
be the non-ideal product model incorporating the geometric deviations, which means
that the deviations should be mapped to the nominal geometry while maintaining its
original topology. The topological information is conveyed in the STL as points and
triangle facets that establish the connection between points. Both the in-plane and out-
of-plane deviation models operate on points of separate layers and can be used to obtain
deviated point coordinates P. Therefore, reconstruction of the topology implies recreat-
ing the triangular connection F' between these deviated points. Traditional techniques,
Delaunay Triangulation for example, generally perform on the whole point set and may
result in the inter-penetration between points of several different layers, thus reducing
the geometric quality of the final model. In this chapter, an inter-layer triangulation so-
lution will be presented which is able to generate a new surface model incorporating the
deviation information by sequentially connecting the deviated layer boundary points.
Based on case studies presented in previous chapters, an integrated process for building
the SMS from the nominal STL model will be illustrated on a toolbox developed with
MATLAB.

5.2 Construction of Skin Model Shapes based on layer-wise

deviation models

The layer connection problem has been intensively discussed within the computer
graphics community as the problem of ’surface reconstruction from planar cross sec-
tions’ |[Boi88| or ’triangulation of contour lines’ [Kep75] and has been successfully im-
plemented in medical image processing to reconstruct the 3D surface model from 2D
cross-sectional images acquired from computed tomography (CT) and magnetic reso-
nance imaging (MRI) [PK96]. Given a set of NN, planar contours represented as orderly
connected points on the deviated layer geometry P = {P;},i = 1,..., N;, the objective

is to reconstruct a triangulated surface (P, V') by triangulating each pair of adjacent
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5.2. Construction of Skin Model Shapes based on layer-wise deviation models

contours. In order to illustrate how the triangulation is performed, we take two sets
of counter-clockwise (CCW) ordered points from two adjacent contours for example as
P*={A;},i=1,...,mand P®={B;},j =1,...,n, as shown in Figure 5.1. The points
need to be reasonably connected to form the edges of triangle facets, resulting in a total
number of n % m possible connections. Denote a binary matrix M with size m x n as a
connection graph, then each element a;; equals 1 if the i-th point A; of contour P is
connected to the j-th point B, of contour PP, otherwise a;; equals 0. Several constraints

must be satisfied in order for a geometrically valid triangulation [Kep75|:

e Each triangle should contain two consecutive contour points either from contour

P or contour P®. That is to say, if a;; = 1, then either a;1; ; =1 or a; ;41 = 1.

e FEach point on one contour should be connected at least once with a point on the

other contour, yielding the constraint: » " a;; > 1 and Y7, a;; > 1.

e Cross-over between two connected contour lines is not allowed. Therefore, if a;; = 1
and a;y1,; = 1, then it should be guaranteed that a; j;1 = 0, likewise, a;1;; = 0 if

both a;; = 1 and a; ;41 = 1 stand.

Bn-1

Bn=B1 Bj+2

Figure 5.1: Triangulation of two parallel contours with ordered contour points

In this thesis, we introduce two different approaches to this triangulation problem:

the span tour method and the graph-based method.
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Chapter 5. Implementation and case study

5.2.1 The span tour method

The two CCW-ordered contours can be expanded as two parallel lines as seen in
Figure 5.2. Starting from an arbitrary point A; in P?, this method performs a tour
on the upper and lower point pairs until reaching the rightmost of the lines, while
conforming to the above-mentioned constraints [HK95]. This procedure can be explained

as follows:

1. Contour P is translated in its 2D plane so that the line formed by its centroid
and the centroid of P? is perpendicular to the 2D plane of P?.

2. Starting from a point A; € P®, a span tour S; is searched. Initially, a shortest
span S(i,7) is determined denoting the line that connects A; with B; € P* and

has the shortest length among all n candidates, namely arg min |A; B;|.
J

3. Once a current span is determined, the next span is chosen as either S((i+1)%m, j)
or S(i, (j+1)%n). The feasibility of these spans should be checked in case of cross-
over between previous spans, as illustrated in Figure 5.2. If both spans are feasible,

the one with smaller length is selected.

4. The span tour terminates when the current span being evaluated is either S((i —
1)%m, j) or S(i,(j — 1)%n). The sum of all span lengths is then calculated as
L(S;).

5. Step 2 to Step 4 are repeated on all points A;,¢ = 1, ..., m, resulting in m span
tours. The optimal span tour is selected as the one with index i = argmin L(S;).
i

The corresponding spans in this span tour together with the edges of two contours

form the reconstructed triangles.

The span tour method adopts a greedy solution when selecting the feasible spans and

the complexity of this algorithm is O(m(m + n)).

5.2.2 Graph based method

The formulation of triangles actually corresponds to consecutively connecting two
nearest 1-elements of M from ay; to a,,, while conforming to the constraints, and the
best configuration needs to be selected from all possible candidates according to some

given metrics. An intuitive solution was proposed in [SWPF15] by introducing a graph
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5.2. Construction of Skin Model Shapes based on layer-wise deviation models
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Figure 5.2: Span tour method

G = {N, E}, where a node N;; of the graph denotes the element a;; in M, and an
arc E connecting two nodes (N;;, Ny;) actually reflects the formulation of a triangle
A;B;By,. The triangulation problem now reduces to a path finding problem, in which a
path traversing through G from Ni; to N,,, while satisfying the constraints represents
a possible configuration of triangulation. An optimal path is found by maximizing or

minimizing given metrics specified on the nodes or edges of the graph. Common metrics

are [MSS92]:

o Volume metric [KKep75]. The volume metric is to assign each arc E;; = (N;j, Niy1 ;)
or (Nij, N;j+1) a weight as the volume v(i, j) of the tetrahedron A;A;1B,0, or
AiB;Bj;10,, with ¢ and j ranging from 1 to m — 1 and n — 1. O, and O, are
origins of the x —y coordinate system associated with the plane where contours P*
or P’ lies respectively. Among all the possible paths, one that maximizes the total
volume is selected, which can be formulated as 7 = arg max ZEU@ v(7,7). Figure
5.3 provides an illustration of the volume metric. It is (;rvident that the maximum
volume criterion doesn’t hold for concave shapes, therefore, some special care must
be taken to the concave subsets of a shape by altering the max-operator to min-

operator.

e Area metric |[FKU77|. This metric is to assign each arc E;; = (N;j, Niy1,) or
(Nij, N;j+1) a weight as the area s(i, j) of the corresponding triangle formed by
A;Ai1Bjor A;B;Bj 1. Among all the possible paths, one that minimizes the total

triangle area is selected, which can be formulated as 7 = argmin ZEU@ s(i, 7).
K
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Upper contour points
A1 A2 Am

Bn=B1

Bn

Lower contour
points

Figure 5.3: The volume metric
Figure 5.4 provides an illustration of the area metric.

Upper contour points

Bn=B1

Bn

Lower contour
points

Figure 5.4: The area metric

e Span length metric [CS78, SWPF15]. The ’span’ shares the same definition as that
introduced in the span tour method, denoting a line connecting two points from
each contour. This metric is to assign each node V;; a weight as the corresponding
span length (4, j) = |A;B;|. Among all the possible paths, one that minimizes the

total span length is selected, which can be formulated as 7 = arg min ZNUE?T (i, 7).
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5.2. Construction of Skin Model Shapes based on layer-wise deviation models

Figure 5.5 provides an illustration of the span length metric. This quite resembles

the span tour method.

Upper contour points

B4 (1.1
B2
Bn-1
Bn=B1 Bj+2
Bn
Lower contour
points

Figure 5.5: The span length metric

In this research, the span-length metric has been chosen due to its robustness in deal-
ing with different special cases [MSS92]. With the defined metric and the corresponding
weights calculated for all the nodes of the graph G, the optimal triangulation can be
found by solving a minimum cost path problem using a dynamic programming method.

Here we simply introduce how this method is implemented:

e Initialize an m xn zero matrix (). Each element of this matrix will be consequently
updated by measuring the cost accumulated while traveling from Ny; to it.

e Set Qi1 =1(1,1), where I(7, ) is the span length weight of node N;;. Sequentially
update the first row and first column of Q) following
Qi =Qii-1+lhit=2,...,m,
Qi =Qj11+tl]=2,..,n

e Update the remaining elements row-by-row following
Qij = lij +min(Qi—1,Qij—1); 1 =2,..,m;j =2,..,n.

e The final updated value of @,,, should be the minimum cost of all paths, i.e. the
minimum total arc length. Then trace back from @),,, to ()11 to find the sequence

of nodes that composes the path.
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Chapter 5. Implementation and case study

Algorithme 2 Minimum cost path finding for optimal triangulation of two contours
Inputs: Span length weight {I(7,7)} on each node N;; of G
Outputs: List of node indices L denoting the minimum cost path

1: Initialize m x n zero matrix @), list L, stack S
2: for ¢ in 2 to m do

32 QU] = Q[ — 1] + I[1][4]

4: end for

5: for j in 2 to n do

6: QU] = Q[ — 1] +{[j][1]

7: end for

8: for i in 2 to n do

9: for jin 2 to m do

10: Q[il[5] = U][j] + min(Q[i — 1][j], QL][j — 1])
11: end for

12: end for

13: 14— N, <—m

14: while?>1or 7 >1do

15:  if 7 > 1 and (Q[i][j] equals Q[i — 1][j] + I[4][j]) then
16: if j equals n then

17: S.push((i —1,1))

18: else

19: S.push((i — 1, 7))
20: end if
21: i—i—1
22: else
23: if Qli][j] equals Q[i][j — 1] + I[i][j] then
24: if 7 equals m then
25: S.push((1,7 — 1))
26: else
27 S.push((i,7 — 1))
28: end if
29: j+—7—1
30: end if
31: end if
32: end while
33: while not S.isEmpty do

34:  L.append(S.pop)
35: end while

The detailed explanation of the path finding algorithm is provided in Algorithm 2.
The output list L contains a sequence of graph nodes, namely triangle edges, to be
connected. With this guideline, a triangulation can be established to connect the two
contours. The graph-based method adopts a dynamic programming strategy to reach
a global search for the optimal solution. Compared to the span tour method, the span

lengths are pre-calculated, so the searching process needn’t be performed repeatedly for
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5.3. Development of an integrated deviation modeling system

each point of the contour, thus reducing the complexity to O(mn) and improving the
computational efficiency. Therefore, the graph-based method will be applied for layer

connection.

So far, the triangulation problem has been discussed regarding two single adjacent
contours, while there exists some far more complex scenarios. For instance, a correspon-
dence issue would arise when there are multiple contours in both layers and a branching
problem needs to be tackled when one single contour needs to be connected with several
contours from the other layer. Since these problems are not the focus of this research,
their solutions will be omitted here. Iterating the layer connection algorithm on each
pair of adjacent layers along the build direction, a geometrically valid triangular surface
model is obtained incorporating the modeled geometric deviations. This model serves

as an SMS of the nominal product model.

5.3 Development of an integrated deviation modeling system

With the layer connection method, now we could define the whole process for building
SMSs from the STL. The triangular surface model in the STL is first sliced with a given
layer thickness, resulting in a total number of N; layers of contour points {P;},i =
1,---, N;. The contour points are sequentially connected in CCW direction to form the
nominal in-plane shape. By transforming the shape into the PCS, the in-plane deviation
models can be used to obtain the deviated shape, which is subsequently transformed
back to the CCS. Meanwhile, based on the layer height and specified design and process
parameters, the deviation of the in-plane shape is derived from the out-of-plane deviation
models. Likewise, a new shape is obtained which comprises both kinds of deviations.
Finally, the graph-based layer connection method is used to perform triangulation on all
pair of adjacent layer contours and the reconstructed surface model can be treated as
the SMS. A platform has been developed on MATLAB with a user interface to facilitate
the interactive illustrations of all methods mentioned in this thesis. The architecture
of this toolbox can be found in Figure 5.6, which has been organized according to the
workflow mentioned above. The functions of this toolbox will be explained with respect
to different panels based on a square part designed with 23mm side length and 5mm

height.
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Chapter 5. Implementation and case study

4 SMS4AM
|Data processing | |in Plane Deviation | | Out Plane Deviation Statistical Shape Anaiysis| | SMS Generation |

In- plane Out-of| P'a"e Com lete Skin
Data processing deviation deviation Layer connection Mod':al Shape
Modeling Modeling P

Layer contour il i
points

Figure 5.6: The architecture of the toolbox

5.3.1 The data processing panel

In the data processing panel, the part geometry is imported from the STL file and
layer contours {P;},i = 1,---, N; are obtained by slicing the STL with user-defined
layer thickness and error threshold. To avoid redundant density of the resulting SMS,
a default thickness of 1mm is provided, thus N; = 6. The layer contours are further
transformed into the PCS as {r;(¢)} for the subsequent in-plane deviation modeling
procedure. The 2D shape of each layer in the PCS can be visualized in a plot widget by
adjusting the slider to select the target layer to be plotted.

5.3.2 The in-plane deviation modeling panel

In the in-plane deviation modeling panel, both the Fourier Series expansion based
method (FSE) and the transformation-based method are supported. As seen from Fig-
ure 5.8(a), the FSE method receives predefined Fourier Series (FS) coefficients {a;, b;},7 =
1,---, N; as input, where a;, b; are N-dimensional vectors and N denotes the order of
expansion. To better illustrate the transformation effects on the in-plane deviation, five
slider widgets are provided and users can conveniently adjust different combinations
of scaling, rotation and translation parameters to observe the resulting deviation pat-
terns in PCS, as shown in Figure 5.8(b). Alternatively, empirical parameter settings
{U;},i = 1,---,N; could be imported from external files, where U, is the 5-element

vector containing the parameter values. Either the FS coefficients or transformation
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5.3. Development of an integrated deviation modeling system
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Figure 5.7: The data processing panel

parameters are gathered from experience data and saved in a .mat file. The devia-
tions of each layer are calculated as {Ar;(f)} and can be visualized on plot widgets
by adjusting the target layer. The deviated in-plane shape is then derived in the PCS
as ri(0) = r;(0) + Ar;(#). By transforming the deviated shape back to the CCS and
comparing with the nominal shape, the modeled in-plane deviations can be derived and
intuitively visualized on the part surface regarding the overall magnitude as well as its

projection in X and Y direction, as can be found in Figure 5.8.

5.3.3 The out-of-plane deviation panel

Following the discussion in Chapter 4, the out-of-plane deviation is modeled either on
the whole external surface or in a layer-wise manner through statistical modal analysis.
Free-form Deformation (FFD) and the random field method are used to respectively
model systematic and random out-of-plane deviation on the part surface. The FFD
operation starts with the bounding box calculation and subdivision of control points on

the box. The number of control points can be flexibly adjusted by the user to reach
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Figure 5.8: The in-plane deviation modeling panel

different levels of control on the details. Deformations of these control points can be
predefined according to out-of-plane deviation models and loaded to the toolbox, based
on which FFD is performed to obtain the deviation on the whole part surface. In the
next step, random deviations are generated based on random field parameters specified
by the user. These sequential procedures are demonstrated in Figure 5.9 with numbers
together with their results on the test square part. Finally, the deviations modeled
respectively by FFD and random field are integrated to obtain a complete non-ideal

part model with out-of-plane deviation.

Modal analysis is performed on observed deviation data gathered from AM simula-
tion. The out-of-plane deviations, along with the associated voxel points, are stored in
a .csv file in the simulation result and loaded to the toolbox, as seen in Figure 5.10(a).
These data are further smoothed layer-by-layer to a regular grid whose range and interval
are specified by the user. Thereafter, given the energy preservation ratio, DCT is per-
formed on the deviation data of each layer, and the most significant DCT modes as well
as the deviation reconstructed from them are visualized. As shown in Figure 5.10(b), the
deviation of Layer 4 can be closely approximated with 6 DCT modes while preserving

over 95% of information in the original data.

To enable effective deviation prediction based on experimental data, a design of

experiments (DoE) is conducted to select a set of design and process parameters p €
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Figure 5.10: The out-of-plane deviation modeling panel - modal analysis with DCT
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RN»>*4guided by which simulations are performed. The experimental design and the
collected simulation data used in Section 4.4 are adopted here. A table widget is provided
in the toolbox showing the designed parameter combinations. The deviation profile of a
specific layer of the experimental parts can be visualized by selecting the corresponding
row element of the target part and adjusting the layer height h through the slider widget,

as shown in Figure 5.11.

Design of experiments Out-of-plane deviation profile
Simulation NO.4, Layer 2

Part size (mm

15 85 280 2400

1
2 18 2 190 1600 A
3 21 40 230 1300
l 4 24| 60 160 1700] il 04
5 27 35 160 2100 =
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9 39 30 260 1400
10 42 80 290 1800 0.05-
11 45 70 170 1100 20 ~.
12 48 45 250 1200 ~ 20

Load process params Layer Height
1

| | | |
0 2 3 4

|
5

Figure 5.11: The out-of-plane deviation modeling panel - deviation profile of experimen-
tal parts

The N, = N, * N; pieces of layer-wise deviation profiles are further processed with
SSA to extract the most significant modes capable of explaining an adequate amount
of information in the data. By specifying the number of principle components, SSA is
performed and as a result, the mean deviation profile is plotted and the scores of profiles
corresponding to each mode are displayed in a table. Each row of the table corresponds
to the scores of one deviation profile. The deviation explained by mode j of profile ¢ will
be demonstrated when the (i, j)-th entry of the table is clicked, along with the deviation
profile reconstructed by addition of the mean profile and the identified modes, as seen
in Figure 5.12. Gaussian Process models are trained with the parameters as predictors
and the mode scores as response. The trained models are then used to predict the

out-of-plane deviation for new parts.

5.3.4 The Skin Model Shapes generation panel

The test part involved in this case study is simulated with new parameters specified in
the table of Figure 5.13. Combining the trained Gaussian Process models with the result

of SSA, the out-of-plane deviation of each layer of the test part are predicted. It can be
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Figure 5.12: The out-of-plane deviation modeling panel - statistical shape analysis

found from Figure 5.13 that the prediction result reaches a high consistency with the
observed deviation. The contours with in-plane deviations obtained in Section 5.3.2 are
further deviated in the build directions based on these predicted out-of-plane deviations.
Different from the in-plane deviation that is only modeled on the contour points, the
out-of-plane deviation also has an effect on the internal points of the top and bottom
surface, therefore, these points should also be considered. At the last step, the layer
connection method introduced in Section 5.2 is adopted to triangulate the deviated layer
geometries to eventually generate the comprehensive SMS of the test part. The overall
deviation of the SMS surface along x, y and z direction is also demonstrated, as shown

in Figure 5.13.

5.4 Conclusion

In this chapter, the approach to building the complete SMS for an AM part is ex-
plained. The span tour based and graph based methods are introduced which could
connect the deviated contours to generate the non-ideal part surface. The final SMS
incorporates both the in-plane and out-of-plane deviations, and the layer-per-layer mod-
eling process conforms to the characteristic of AM. With all such theoretical foundations,
a toolbox is developed which provides an interactive platform integrating the deviation
modeling methods discussed in previous chapters to build the SMS step-wise. Differ-

ent functions of the toolbox as well as the intermediate results produced by them are
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demonstrated on a test part.
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Chapter 6. Conclusion

The geometrical inaccuracies of final products pose a critical demand for effective
modeling of geometric deviations for AM processes. The complicated error sources in
AM, however, are beyond the interpretability of traditional deviation modeling methods.
The new layer-per-layer building mechanism also calls for a new perspective that could
capture the intra-layer and inter-layer information about deviations. In view of the
mature theoretical background and rich practical application of the SMS framework in
geometric deviation modeling, new attempts are made in this thesis to develop a new

SMS framework specifically for AM processes.

6.1 Contributions

To summarize, the major contributions of this work are listed as follows:

e A survey has been made regarding existing research on the deviation modeling for
AM processes. The reviewed methods are divided into three categories according to
their specific focus on: geometric approximation errors, machine errors and process
parameters and material shrinkage. General remarks are made on these methods
with respect to their strength, weakness and application scope. The mainstream
AM simulation software packages are also introduced with a benchmark has been
made summarizing their respective features, especially in the support for prediction
of geometric deviations. This survey has covered a substantial range of research
interests in AM deviation modeling and provides the basis for development of new

methods for AM.

e The methodologies and applications of SMS are comprehensively reviewed. As
the background information, the origin and concept of the SMS are introduced.
The different mathematical models used for generating the SMS in both the pre-
diction and observation stage are explained, some of which are inherited for AM
deviation modeling. The engineering applications are also discussed, including
tolerance modeling, assembly simulation and tolerance analysis. For each applica-
tion, the problem formulation, technical details and the characteristics of solutions
are elaborated. The new challenges when extending the current framework to AM
are also depicted. This review presents an overview of the SMS framework and

serves as a reference for the new AM deviation modeling framework. The consid-
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eration of systematic and random deviations, and the classification of prediction

and observation stage, are inherently conveyed in the new framework.

e The transformation perspective achieves more efficient parameterization of in-
plane deviation and is more consistent with the potential effects of AM process
errors. The variational effects on the in-plane shape are mapped into affine shape
transformations and the transformation parameters are estimated from observed
deviation data using statistical methods. This parametric model manages to rep-
resent the in-plane deviation patterns with reduced complexity and enhanced gen-

erality among different shapes.

e The statistical modal analysis enables the layer-level investigation of out-of-plane
deviation with a data-driven approach. The method enables the deviation pre-
diction under different combinations of design and process parameters, enhancing
the transferability among different process conditions. A novel strategy is also
proposed to build SMS from the deviated geometry of each layer. The data-driven
methods endows the new framework with improved expandability to conveniently

adapt to new shapes and process conditions.

e A toolbox is developed on MATLAB with a graphical user interface to demonstrate
the works developed in this thesis. The toolbox starts from reading the STL file
of a part and conducts step-wise modeling of in-plane and out-of-plane deviations
for each layer of the part. Users could flexibly specify the parameters to view the
resulting deviations and generate the final SMS of the part. Beyond the demon-
stration purpose, this toolbox could be further upgraded with more interactivity

to serve as a fully functional platform.

6.2 Future perspectives

The work discussed in this thesis are not sufficient yet, and some interesting research
topics remain to be exploited on the basis of this thesis. In the following, some possible

directions of the future work are envisioned.

e The statistical modal analysis method used for out-of-plane deviation modeling

can also be applied for in-plane deviation modeling. In Chapter4, the out-of-plane
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deviation profiles serve as the input for modal analysis, so it is possible to obtain
the in-plane deviation profiles for deviations in x and y directions as well. Likewise,
the deviations are added to the planar grid structure in the z direction to form
the profiles. Since the deviation patterns along the three directions are mutually
different, both the DCT and SSA method, as well as the GP models, should be
established independently. In this way, the modal analysis could be extended to
tackle the complete deviation modeling task, and a unified processing work-flow

can be achieved for both type of deviations.

e Current methods are validated mostly on simulation data, the model calibration
on measurement data from manufactured samples remains to be accomplished.
The use of simulation data brings multiple benefits, including time-saving data
acquisition, simplified data processing and low noise in data. However, there are
some phenomena in the real AM process that cannot be reflected from simulation,
such as porosity, surface finish and defects caused by support removal. In order for
a reliable model which could be used in industrial applications, such phenomena
should also be accounted for. Nevertheless, despite the huge task for manufactur-
ing and measurement of a moderate number of sample parts, how to obtain the
deviation of the internal layer geometry is another unavoidable challenge which

could be solved only if more advanced measurement device is available.

e The out-of-plane model could still be enriched with consideration of more factors
in the AM process. Though current model covers several process parameters in the
SLM process, it is anticipated that more parameters could be incorporated, such as
hatch spacing, build orientation, scan pattern, powder bed temperature, material
properties etc. However, simply adding these parameters into the statistical model
may not make sense in explaining the physical effects of such factors. For example,
a different build orientation results in changes of the shape of each layer, hence
the deviation profiles are significantly inconsistent and cannot be analyzed with a
common statistical shape model. This problem may also arise when the shape of
different layers of a part are not uniform. In this case, it is important to develop

new models to accommodate the characteristics of new factors.

e The shape-specific deviation model can be improved with enhanced transferability

among shapes of different complexities using deep learning techniques. Ongoing
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work has been made to adopt a Convolutional Neural Network (CNN) to learn
to predict geometric deviations given the input shape and process parameters.
A typical CNN is composed of a number of hidden layers, including convolution
layer, non-linearity layer, pooling layer and fully-connected layer, which are able
to extract the features from input images and make predictions for either clas-
sification or regression tasks. The motivation to use CNN for our research is
the expectation to capture the shape characteristics within deviation data taking
advantage of the feature extraction capability of CNN. To this end, a CNN archi-
tecture has been designed as illustrated in Figure 6.1. The input to this network is
a multi-dimensional matrix imitating a multi-channel image for traditional image
classification tasks. The first dimension of the matrix is the geometry dimension
which comprises the 2D shape information of a layer. Each of the other dimen-
sions is filled with constants representing the design and process parameters. The
output is a three-dimensional matrix containing the deviations of the input shape
along x,y and z respectively. Therefore, this network is actually performing a
element-wise regression task aiming at predicting the deviation at each location
of the shape dimension given the assigned values in the parameter dimensions.
If a sufficient number of training data from a large range of different shapes are
available, the trained network would be able to identify the features of a new un-
seen shape and make the desired prediction of deviations. The results obtained
from existing work have demonstrated satisfactory prediction performance of this
network on simple cylindrical and rectangular shapes, and more efforts will be
devoted to extending the variety of shapes. Moreover, the laser scan pattern could
be formulated as another input dimension to help gain a better understanding of

the distribution of deviations.

Apart from improvement of the deviation models, the future applications of SMS in

AM processes could be envisioned as follows.

e The deviation modeling methods could assist Design for Additive Manufacturing
(DfAM). Among the many investigated tasks of DFAM, the geometrical validation
aiming to ensure the consistency between digital product and the final outcome,
as well as design optimization intended to achieve optimal geometrical or topolog-

ical design incorporating process knowledge, are closely concerned with geometric
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Figure 6.1: The CNN architecture for AM deviation modeling

deviations [LSALIL5, LSALC14, TMV'16]. Through the deviation modeling meth-
ods discussed in this thesis, designers could have a predictive view of the probable
geometrical defects on the manufactured product prior to mass production, and
make correction and compensation on the original model to obtain optimized geo-
metric consistency with the design intent. Therefore, more technical details can be

explored based on this thesis to develop the methodologies well suited for DfAM.

e The generated SMSs could be used for multiple purposes in tolerancing. Though
the deviations are modeled layer by layer, the final SMS is reconstructed as a non-
ideal surface model and the tolerance modeling method introduced in Section 2.3.4
can be used to evaluate the deviations with respect to tolerance specifications.
Likewise, the assembly simulation and tolerance analysis techniques regarding the

non-ideal models of multiple parts can be adapted to AM.

e The generated SMSs can serve as reference models for developing the digital twin
of AM products. The digital twin is recognized as ’a comprehensive physical and
functional description of a product that includes its major information covering the
life-cycle’ |[BR16]. The use of SMS in building the digital twin has been discussed
in [SAMW17| regarding its concept, representation and implementation along the
product life-cyle. The work in this thesis could be incorporated in the digital twin
research as a branch to AM and will be further investigated towards industrial

applications.
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A.1. Transformation of circular shapes

In the appendix, a complementary discussion is be made on the derivation of in-plane
deviation functions based on the transformation-based method introduced in Section 3.3.
Two regular shapes, namely the bi-circular shape and the elliptical shape, are used as
examples. The mathematical forms of these shapes and the deviations resulting from the
scaling transformation effects are presented, together with illustrations of the deviation

patterns under specific settings of the scaling parameters.

A.1 Transformation of circular shapes

The representation of a circular shape with radius r is given by 7°(6) = r, 0 € [0, 27|
in PCS and (z°)? 4 (y°)? = r? in CCS. Assuming that the manufactured shape shares
the same PCS origin with the nominal one, then combining the two representations

and Equation 3.16, we get the analytical form of 7*(6; ¥, r°(0)) from A.1 and therefore
f(0;0).

(hn (2", y", 0))* + (ho(z", y", W) = (r°(0))?
x* =r*cos(0),y" = r*sin(0)
hi(a®,y", ¥) = [(2" — Ay)cos(a) — (y" — Az)sin(a)]/¢,
ha(z™,y", W) = [(2" — Ay)sin(a) — (y* — Az)cos(a)]/¢q

The derived f(0; V) is quite lengthy, so its complete form will not be presented

(A.1)

here. By varying the transformation parameter values input to f(0; V), it is possible to
recognize some typical deviation patterns. In Figure A.1, 3 such patterns are illustrated
on a circular shape with radius » = 10mm, as a result of scaling in x-axis ¢, = 0.98
(A.1(a)), translation along x-axis Az = 0.2mm (A.1(b)) and combined scaling and
rotation ¢, = 0.98,a« = 7/9(rad) (A.1(c)).

A.2 Transformation of bi-circular shapes

Another interesting shape that is worth investigating on is the bi-circular shape,
which is a joint of two circles that have the same radius but different center points,
and the inner part of the joint is removed. Consider the simple case in which the two
center points lie on the X axis and are symmetric with respect to the Y axis, then two

parameters can be used to define such a shape, namely ry that defines the radius of two
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Figure A.1: Deviation of circular shape under (a) Scaling effect; (b) Translation effect;
(¢) Combined scaling and rotation effect

circles and 2a(0 < a < r() that defines the distance between the two center points, as

can be seen in Figure A.2.

Figure A.2: Bi-circular shape in a simplified case

It is easy to derive the mathematical representation of the shape in the CCS as

(|z] — a)* + y* = r2. Likewise, substituting z,y with r cos(6), r sin(6), we get the polar
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A.3. Transformation of elliptical shapes

representation of the shape as r(0) = a| cos(6)| + /2 — a2sin(f)2. Figure A.3 provides
a plot of this function for a shape with ry = 4mm, a = 3mm, two sharp transitions can
be observed at 7/2 and 37/2 where the two circles join. Transformation of the shape
is applied using the approach discussed in Section 3.3.1 and the mathematical form of
the transformed shape in the PCS can be derived using symbolic transformation. As
an example, the derivation of the deviation function under the scaling effects will be
briefly demonstrated. Denote ¢, and ¢, as the scaling factors, the in-plane deviation is

represented as the radial difference between the scaled shape and the original shape:

Ary(0) = rs(0) —r(0)

apa73] cOs(0)| + a1 (O)? + g cos(O) — g sin(O))
) (im0 + 73 cos(0)] 70

Radius {mm)

"o 1 2 3 4 5 6 7
Angle (rad)

Figure A.3: Polar representation of the bi-circular shape
By setting different values to the scaling factors, the in-plane deviation patterns can

be visualized, as seen in Figure A.4.

A.3 Transformation of elliptical shapes

An ellipse can be defined by two parameters, the semi-major axis length a and

semi-minor axis length b. For elliptical shapes, its polar representation is r(0) =

ab/+/b? cos(0)? + a®sin(f)2. This representation is derived by substituting the Carte-
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Figure A.4: In-plane deviation patterns of the bi-circular shape under different scaling
factors along X and Y axis

sian coordinates x,y with 7 cos(#), r sin(f) in the function z%/a? +1?/b* = 1. Figure A.5
shows the polar representation of an elliptical shape with a = 4mm,b = 3mm. Simi-
larly, we can derive the polar equation of the transformed ellipse shape and therefore
the shape deviation function following the same method as adopted in dealing with the
circular shape. The equation is too long to be put in this document, but the simplified

equation under single scaling transformation effects will be discussed here.

3.87

w
o)

Radius (mm)
w
S

327

0 1 2 3 < 5 6 7
Angle (rad)

Figure A.5: Polar representation of the bi-circular shape

Following the transformation approach in Section 3.3.1, the scaled elliptical shape is
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A.4. Transformation of polygonal shapes

represented in PCS as Equation A.3.

2aby,
(0) = Voobpt (A3)
\/bz cos(0)? + a?sin(0)? + (b*p2 — a?p?2) cos(20)
Therefore, the in-plane deviation is derived as:
Ary(0) =
PPy 1
V2ab 2 2 2ain(0)2
\/62 cos(0)? + a?sin(0)? + (b2p2 — a*p?2) cos(20) V/b? cos(0)? + a? sin(0)
(A4)

By setting different values to the scaling factors, the in-plane deviation patterns can

be visualized, as seen in Figure A.6.
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Figure A.6: In-plane deviation patterns of the elliptical shape under different scaling
factors along X and Y axis

Even though only the scaling parameters are considered for bi-circular and elliptical
shapes, the complete deviation function incorporating all the transformation parame-
ters can be calculated through symbolic computation. More deviation patterns can be

discovered by varying the parameter values.

A.4 Transformation of polygonal shapes

A more general case that is worth investigating is the polygonal shape. For an
arbitrary convex polygon with N vertices sorted in counter-clockwise order, f(6; W)
could be represented by evaluating the polar function of nominal and transformed shape

in an edge-wise routine. Different from circles whose polar function is simply constant,
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the radius of a polygon varies discretely as the polar angle scans along the boundary and
should be specifically treated for each edge. The edges are defined by adjacent point
pairs as [Py, Py, [P, Ps), ..., [Pn_1, Pn], [Py, P1]. Transforming point coordinates to the
PCS, the angular range covered by each edge is determined by the angles of its end
points. It can be seen from Figure A.7(a) that, the polygon radius at 6 is computed
with regard to the specific edge whose angular range contains . Assuming that this
edge is [Py(xy, ), Pa(a, ya)] with the range [0y,0,];a,b = 1,2, ..., N, the radius is then

derived as r°(f) in Equation A.5.

z(0) = xp — t(0)(xp — x,)

y(0) = y» = 1) (4 — va)

B yp — tan (0)x,
1) = tan (0)(ra — ) + Yb — Va

ro(0) = /2(8)" + y(6)*

0 € (6,0,

»

b.1) Scaling: 99% in x- direction, 98% in x- direction

04}
0.6

-0.8 1

b.2) Rotatién: pi/360(ra:d) counter-cliockwise

r \[\I\]\[\J\]\[\
02t |

Deviation (mm)
o

b.3) Translz:ation: -O.2(rﬁlm) in x- diréction, -O.1(rr;1m) iny- diréction

0.2r J
15 0 Wf__f—l_/\/L_\/
Nominal shape 0.2 1

Manufactured
shape

0 1 2 3 4 5 6
Angle (rad)

(a) (b)

Figure A.7: (a) In-plane deviation of a polygonal shape (b) Deviation patterns in the
deviation space

The radius of the transformed shape is calculated by the same means, other than
that the angular ranges of edges have to be re-estimated according to new positions of
their end points calculated following Equation 3.15. As seen in Figure A.7(a), the orig-
inal points P, P, now become P, P; after applying the transformations. In this way,

a

f(6;¥) is known by evaluating r°(6) and r*(6; ¥, r°()) at any given 6. Figure A.7(b)
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A.4. Transformation of polygonal shapes

illustrates three deviation patterns of the polygonal shape obtained by separately as-
signing the parameters as ¢, = 0.99, ¢, = 0.98 (A.7(b.1)), a = 7/360(rad) (A.7(b.2))
and Az = —0.2mm, Az = —0.1mm (A.7(b.3)). This model can also be extended to
freeform shape by densely sampling points on its boundary and approximating the shape
with a complex polygon constructed from the sequentially connected points. Since W
is the only parameter, this model is insensitive to the complexity of shape and the
number of parameters is substantially reduced compared with methods as discussed in
Section 3.2. Given the explicit form of the deviation functions and observed deviation
data, the parameters can be estimated, thus helping understanding of the causes of

in-plane deviations.
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Abstract

The intricate error sources within different stages of the Additive Manufacturing (AM)
process have brought about major issues regarding the dimensional and geometrical
accuracy of the manufactured product. Therefore, effective modeling of the geometric
deviations is critical for AM. The Skin Model Shapes (SMS) paradigm offers a com-
prehensive framework aiming at addressing the deviation modeling problem at different
stages of product lifecycle, and is thus a promising solution for deviation modeling in AM.
In this thesis, considering the layer-wise characteristic of AM, a new SMS framework
is proposed which characterizes the deviations in AM with in-plane and out-of-plane
perspectives.

The modeling of in-plane deviation aims at capturing the variability of the 2D shape
of each layer. A shape transformation perspective is proposed which maps the variational
effects of deviation sources into affine transformations of the nominal shape. With this
assumption, a parametric deviation model is established based on the Polar Coordinate
System which manages to capture deviation patterns regardless of the shape complexity.
This model is further enhanced with a statistical learning capability to simultaneously
learn from deviation data of multiple shapes and improve the performance on all shapes.

Out-of-plane deviation is defined as the deformation of layer in the build direction.
A layer-level investigation of out-of-plane deviation is conducted with a data-driven
method. Based on the deviation data collected from a number of Finite Element simu-
lations, two modal analysis methods, Discrete Cosine Transform (DCT) and Statistical
Shape Analysis (SSA), are adopted to identify the most significant deviation modes in
the layer-wise data. The effect of part and process parameters on the identified modes
is further characterized with a Gaussian Process (GP) model.

The discussed methods are finally used to obtain high-fidelity SMSs of AM products
by deforming the nominal layer contours with predicted deviations and rebuilding the
complete non-ideal surface model from the deformed contours. A toolbox is developed

in the MATLAB environment to demonstrate the effectiveness of the proposed methods.
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Résume

Les différentes étapes et processus de la fabrication additive (FA) induisent des erreurs
de sources multiples et complexes qui soulévent des problémes majeurs au niveau de
la qualité géométrique du produit fabriqué. Par conséquent, une modélisation effective
des écarts géométriques est essentielle pour la FA. Le paradigme Skin Model Shapes
(SMS) offre un cadre intégral pour la modélisation des écarts géométriques des produits
manufacturés et constitue ainsi une solution efficace pour la modélisation des écarts
géométriques en FA.

Dans cette thése, compte tenu de la spécificité de fabrication par couche en FA, un
nouveau cadre de modélisation a base de SMS est proposé pour caractériser les écarts
géométriques en FA en combinant une approche dans le plan et une approche hors plan.

La modélisation des écarts dans le plan vise & capturer la variabilité de la forme
2D de chaque couche. Une méthode de transformation des formes est proposée et qui
consiste a représenter les effets de variations sous la forme de transformations affines
appliquées 4 la forme nominale. Un modéle paramétrique des écarts est alors établi
dans un systéme de coordonnées polaires, quelle que soit la complexité de la forme. Ce
modéle est par la suite enrichi par un apprentissage statistique permettant la collecte
simultanée de données des écarts de formes multiples et ’amélioration des performances
de la méthode.

La modélisation des écarts hors plan est réalisée par la déformation de la couche dans
la direction de fabrication. La modélisation des écarts hors plan est effectuée a 1'aide
d’une méthode orientée données. Sur la base des données des écarts obtenues a partir
de simulations par éléments finis, deux méthodes d’analyse modale: la transformée en
cosinus discréte (DCT) et l'analyse statistique des formes (SSA) sont exploitées. De
plus, les effets des paramétres des piéces et des procédés sur les modes identifiés sont
caractérisés par le biais d’un modéle & base de processus Gaussien.

Les méthodes présentées sont finalement utilisées pour obtenir des SMSs haute-

fidélité pour la fabrication additive en déformant les contours de la couche nominale
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Résumé

avec les écarts prédits et en reconstruisant le modéle de surface non idéale complet
a partir de ces contours déformés. Une toolbox est développée dans I’environnement

MATLAB pour démontrer 'efficacité des méthodes proposées.
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Résumé :

Les différentes étapes et processus de la fabrication
additive (FA) induisent des erreurs de sources mul-
tiples et complexes qui soulévent des problemes ma-
jeurs au niveau de la qualité géométrique du pro-
duit fabriqué. Par conséquent, une modélisation ef-
fective des écarts géométriques est essentielle pour
la FA. Le paradigme Skin Model Shapes (SMS) offre
un cadre intégral pour la modélisation des écarts
géométriques des produits manufacturés et constitue
ainsi une solution efficace pour la modélisation des
écarts géométriques en FA. Dans cette thése, compte
tenu de la spécificité de fabrication par couche en FA,
un nouveau cadre de modélisation a base de SMS est
proposé pour caractériser les écarts géométriques en
FA en combinant une approche dans le plan et une
approche hors plan. La modélisation des écarts dans
le plan vise a capturer la variabilité de la forme 2D
de chaque couche. Une méthode de transformation
des formes est proposée et qui consiste a représenter
les effets de variations sous la forme de transfor-
mations affines appliquées a la forme nominale. Un
modele paramétrique des écarts est alors établi dans
un systéme de coordonnées polaires, quelle que soit

la complexité de la forme. Ce modele est par la suite
enrichi par un apprentissage statistique permettant la
collecte simultanée de données des écarts de formes
multiples et 'amélioration des performances de la
méthode. La modélisation des écarts hors plan est
réalisée par la déformation de la couche dans la di-
rection de fabrication. La modélisation des écarts hors
plan est effectuée a l'aide d'une méthode orientée
données. Sur la base des données des écarts ob-
tenues a partir de simulations par éléments finis,
deux méthodes d’analyse modale: la transformée
en cosinus discrete (DCT) et l'analyse statistique
des formes (SSA) sont exploitées. De plus, les ef-
fets des paramétres des pieces et des procédés sur
les modes identifiés sont caractérisés par le biais
d’'un modéle a base de processus Gaussien. Les
méthodes présentées sont finalement utilisées pour
obtenir des SMSs haute-fidélité pour la fabrication ad-
ditive en déformant les contours de la couche nomi-
nale avec les écarts prédits et en reconstruisant le
modele de surface non idéale complet a partir de ces
contours déformés. Une toolbox est développée dans
I'environnement MATLAB pour démontrer I'efficacité
des méthodes proposées.
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Abstract :

Effective modeling of the geometric deviations is criti-
cal for Additive Manufacturing (AM). The Skin Model
Shapes (SMS) offers a comprehensive framework ai-
ming at addressing the deviation modeling problem
at different stages of product lifecycle, and is thus a
promising solution for deviation modeling of AM. In
this thesis, considering the layer-wise characteristic of
AM, a new SMS framework is proposed which charac-
terizes the deviations in AM with in-plane and out-of-
plane perspectives. The modeling of in-plane devia-
tion aims at capturing the variability of the 2D shape
of each layer. A shape transformation perspective is
proposed which maps the variational effects of devia-
tion sources into affine transformations of the nominal
shape. With this assumption, a parametric deviation
model is established which manages to capture de-
viation patterns regardless of the shape complexity.

This model is further enhanced with a statistical lear-
ning capability to simultaneously learn from deviation
data of multiple shapes and improve the modeling ac-
curacy on all shapes. A layer-level investigation of out-
of-plane deviation is conducted with a data-driven me-
thod. Based on the deviation data collected from a
number of Finite Element simulations, two modal ana-
lysis methods, Discrete Cosine Transform (DCT) and
Statistical Shape Analysis (SSA), are adopted to iden-
tify the most significant deviation modes in the layer-
wise data. The effect of part and process parameters
on the identified modes is further characterized with
a Gaussian Process (GP) model. The discussed me-
thods are finally used to obtain high-fidelity SMSs of
AM products by deforming the nominal layer contours
with predicted deviations and using a graph-based
layer connection technique to rebuild the complete
non-ideal surface model from the deformed contours.
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