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Professeur, Université de Bordeaux Rapporteur

Uta Hinrichs
Professeur, University of St Andrews Examinateur

Jean-Daniel Fekete
Directeur de Recherche, Inria Saclay Examinateur

Caroline Appert
Directeur de Recherche, CNRS Co-directeur de thèse
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Abstract

Au cours de la dernière décennie, la quantité de données n’a cessé d’augmenter.
Ces données peuvent provenir de sources variées, telles que des smartphones, des
enregistreurs audio, des caméras, des capteurs, des simulations, et peuvent avoir
différentes structures. Bien que les ordinateurs puissent nous aider à traiter ces
données, c’est le jugement et l’expertise humaine qui les transforment réellement
en connaissances. Cependant, pour donner un sens à ces données de plus en plus
diversifiées, des techniques de visualisation et d’interaction sont nécessaires. Ce
travail de thèse contribue de telles techniques pour faciliter l’exploration et la
présentation des données, lors d’activités visant à faire sens des données.

Dans la première partie de cette thèse, nous nous concentrons sur les systèmes
interactifs et les techniques d’interaction pour aider les utilisateurs à faire sens
des données. Nous étudions comment les utilisateurs travaillent avec des contenus
divers afin de leur permettre d’externaliser leurs pensées par le biais d’annotations
digitales. Nous présentons notre approche avec deux systèmes. Le premier,
ActiveInk, permet l’utilisation naturelle du stylet pour la lecture active, lors
d’un processus d’exploration de données. Dans le cadre d’une étude qualitative
menée auprès de huit participants, nous contribuons des observations sur les
comportements de la lecture active au cours de l’exploration des données, et, des
principes aidant les utilisateurs à faire sens des données. Le second système,
SpaceInk, est un espace de conception de techniques en utilisant le stylet et les
gestes, qui permet de créer de l’espace pour les annotations, pendant la lecture
active, en ajustant dynamiquement le contenu du document.

Dans la deuxième partie de cette thèse, nous avons étudié les techniques permettant
de représenter visuellement les éléments de réponses aux questions quand les
utilisateurs essaient de faire sense des données. Nous nous concentrons sur
l’une des structures de données les plus élaborées : les réseaux multi-variés, que
nous visualisons à l’aide de diagrammes noeuds-liens. Nous étudions comment
permettre un processus de conception itératif flexible lors de la création de
diagrammes nœuds-liens pour les réseaux multi-variés. Nous présentons d’abord
un système, Graphies, qui permet la création de visualisations expressives de
diagrammes noeuds-liens en fournissant aux concepteurs un environnement de
travail flexible qui rationalise le processus créatif et offre un support efficace pour
les itérations rapides de conception. Allant au-delà de l’utilisation de variables
visuelles statiques dans les diagrammes nœuds-liens, nous avons étudié le potential
des variables liées au mouvement pour encoder les attributs des données.

En conclusion, nous montrons dans cette thèse que le processus visant à faire
sens des données peut être amélioré à la fois dans le processus d’exploration et de
présentation, en utilisant l’annotation comme nouveau moyen de transition entre
exploration et externalisation, et en suivant un processus itératif et flexible pour
créer des représentations expressives de données. Les systèmes qui en résultent
établissent un cadre de recherche où la présentation et l’exploration sont au cœur
des systèmes de données visuelles.
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The rate at which data gets produced keeps increasing: user-generated content
disseminated through social networks; new Web sites (one is created every minute on
average); scientific and technical data; business-related data; open government data and
data published by public institutions such as national libraries. Taken together, these
represent a spectacular wealth of very diverse information. However, value can be
gained from these data only if we are able to make sense of them and find the relevant
pieces of information in this overwhelming volume of data.

Making sense of data can mean different things, ranging from understanding a simple
table in a document to surveying the scientific and technical literature on a given topic
to get a clear picture of opportunities for technological innovation in that area. In
the latter case, subject-matter experts have to extract and cross-reference information
from multiple sources, often relying on visual representations of the data to help
them in their sense-making activity. The variety in data sources often adds value
given the complementary nature of the data held by each source, but also means
that multiple visual representations are required to convey those data to users, that
provide relevant, understandable views on the data, supporting tasks such as identifying
trends, locating elements in their spatial-temporal context, etc. Only then can users
turn the data collection into actual knowledge, using those representations as support
for understanding as well as reasoning: biologists looking at the interaction between
proteins, data scientists investigating the impact of a patent in the scientific literature,
or sociologists looking at relationships between people.

Beyond the volume of data and the variety of sources, another challenge knowledge
workers have to deal with is the multiple ways we can give structure to data: raw
text, quantitative data stored in simple tables, relation databases, structured document
formats, semi-structured data distributed over the Web, multivariate networks, etc.
Some have a clearly defined model, strongly enforced by the schema that describes
them, which in turn makes exploration of the data themselves easier, if only by defining
more clearly the perimeter of possible queries. Other formats provide more flexibility, at
the cost of heterogeneity, irregularity and incompleteness. Again, users are confronted
to the difficulty of having to deal with different formats and different data structures in
their sense-making activities, as they combine data from multiple sources.

Significant progress has been made over the years in our ability to collect, store and
query large volumes of varied data. However, there are still strong bottlenecks in sense-
making activities, one of them being our difficulty to quickly find relevant information
in large, heterogeneous dataset collections and represent them in a meaningful manner.
This PhD thesis is about helping users in various activities that relate to manipulating,
and making sense of, data thanks to interactive systems, with a focus on two types of
such systems:

• domain-specific tools focused on one specific type of data, used by subject-matter
experts;

• more general-purpose tools that target a broader range of knowledge workers.

Domain-specific Tools for Subject-matter Experts

Work on this CIFRE PhD thesis has been conducted at Inria and in collaboration with
a French SME: TecKnowMetrix (TKM), in which I was hired as a member of the
Research and Development department. TKM is a consulting company that develops
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methods and tools for analyzing scientific and technological information in a given
technological domain. Applying these methods to large volumes of data (patents,
scientific publications, etc.) enables TKM analysts to produce a synthetic vision of
a complex domain. The job TKM analysts are tasked with consists of gathering the
relevant scientific literature, exploring and analyzing it in order to gain insights about
this domain and answer specific questions TKM customers have about it. Visualizing
those large volumes of data and document collections is essential, as it helps analysts
not only understand and analyze the data, but also communicate findings about it to
customers.

During my PhD, I had the opportunity to follow 4 TKM analysts during 3 years. I
observed the main steps of the various activities performed by these experts in the
workflow of a typical project: (i) Data collection/Creation: Analysts first survey the
literature to find documents related to a project question such as, e.g., identifying
emerging technologies in a particular domain. Such a survey will yield several
thousands of patents and publications, that they store in a database. (ii) Visualizing,
Exploring and Analyzing: Once all documents and data have been captured and stored
in that relational database with the corresponding descriptive metadata, they explore
the collection by visualizing its items based on those metadata. (iii) Presenting: The
resulting insights and answers to specific questions are compiled into a report, often
using graph-based visual representations that capture the dependencies and other
relationships between items.

I focused part of my PhD work on that latter step: investigating ways to support users
in the authoring of visual representations of complex, multivariate networks. Indeed,
the current authoring workflow for producing such visual representations is suboptimal.
Analysts use network visualizations tools to produce an initial representation of their
graph, but then almost systematically switch to a general-purpose vector-graphics editor
to fine-tune the visual appearance of the resulting node-link diagram, using graphics
editing capabilities that are not available in the first family of tools. This makes
the process tedious and incompatible with an iterative graphical design approach,
even more so when considering that any operation that requires regenerating the
diagram from the actual multivariate network data requires going back to the network
visualization tool and then performing all customizations again.

General-purpose Tools for a Broad Range of Knowledge Workers

The target audience of tools such as those described above is relatively limited, even
though it goes well beyond TKM analysts and actually encompasses all authors of node-
link diagrams. In the context of a 3-month internship in the EPIC team at Microsoft
Research in Redmond during the fall of 2018, I had the opportunity to investigate
another context of use still related to data sense-making, but this time targeting the
broader audience of knowledge workers at large, who use software suites such as
Microsoft Office. Such software suites contain multiple applications, including a word
processor (e.g., MS-Word or Apple Pages), a spreadsheet editor (e.g., MS-Excel or
Apple Numbers), a presentation application (e.g., MS-Powerpoint or Apple Keynote).
These tools are easy-to-use and generic enough to be used by a wide variety of users,
ranging from business analysts to scientists from all disciplines, computer scientists,
researchers, office workers and team managers.

Each of these applications specializes in the interactive editing and viewing of
essentially one type of data: text documents, tabular data, etc.. But even though
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they are all grouped in software suites, it remains difficult to merge those different data
in a single workspace. For instance, a word processor will often have some limited
support for tables, but that remains far from the capabilities of a spreadsheet editor.
Consequently, users need to switch between applications both to manipulate the data
and to analyze them.

Recently, Microsoft has started moving toward implementing a vision based on a single
workspace by making data of various types coexist in a single application: OneNote.
In this application, users interact with content laid out on an infinite canvas. They can
bring different types of content and manipulate them. Common actions are supported
such as copying, pasting, resizing and moving items. However, the interaction is limited
to a common denominator, making this application not particularly more powerful than
a paper notebook. This severely limits the efficiency of such tools, and even if such
systems could support both the viewing and in-situ editing of a wide range of data
types and document formats, the way users interact with these varied content types
would still have to be deeply reconsidered.

0.1 Research Question

In both contexts of use (general-purpose tools for a broad range of knowledge workers
& domain-specific tools for subject-matter experts), users are likely to be confronted to
significant complexity in the data they have to handle.

In the former case, one challenge is to enable people to more actively engage
and think with data. General-purpose tools should better adapt interaction to the
diversity of content, as well as provide a better integration between operations aimed
at manipulating content and operations aimed at annotating that content, thereby
externalizing thoughts. The first part of this PhD thesis makes contributions in this
direction, that can be summed up with the following research question:

How to enhance sense-making activities
when working with multiple types of content?

In the latter case, one challenge is to enable people to author more expressive
visualizations of complex data structures such as multivariate networks, supporting
a more flexible and iterative design process. Interactive authoring environments
should provide a flexible workflow that streamlines the creative process and effectively
supports quick design iterations. They should support complex data structures and
elaborate visual mappings. Support for the exploration of several design alternatives
is also key to effectively enabling an iterative design workflow. The second part of
this PhD thesis makes contributions in this direction, that can be summed up with the
following research question:

How to make the authoring of expressive visualizations
for complex data structures more efficient?

0.2 Thesis Overview

During sense-making and active-reading activities, people annotate documents and
data with their insights: they underline sentences in a document, circle regions on
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a map or underline a part of a text document. They jot down their hypotheses in
the margin, draw correlation lines on scatterplots, or create personal legends to track
patterns. Annotations are central to the active-reading and sense-making process. In
the first part of this thesis, I focus on ink as a medium to seamlessly transition between
interacting with data and externalizing thoughts using a digital pen. This general
idea is at the core of the first two chapters, that describe an interactive environment
for sense-making from varied data sources, and interaction techniques for annotating
documents, respectively. Each chapter describes the general approach, the software
prototype implementation, and the studies that have been conducted to gather feedback
and validate the approach.

In Chapter 1, I introduce ActiveInk, a system that enables people to actively engage
and think with data. ActiveInk enables users to manipulate visual representations of
data from varied sources laid out on an infinite canvas, as well as annotate them. Each
element on the canvas can be manipulated and rearranged. Instead of keeping users’
annotations passive, the system lets users turn them into actions. It considers each
annotation as a deferred command that can be activated later. Pen+touch interaction
enables users to take notes as well as manipulate data.

When editing or reviewing a document, people directly overlay ink marks on content.
For instance, they underline words, or circle elements in a figure. In Chapter 2,
I introduce SpaceInk, a design space of pen+touch techniques that make room
(white space) for placing annotations in text documents by dynamically reflowing
a document’s content. SpaceInk lets users concentrate on capturing fleeting thoughts,
streamlining the overall annotation process by enabling the fluid inverleaving of space-
making gestures with freeform ink. SpaceInk focuses specifically on text documents,
leveraging the power of digital inking for active reading.

While the first two chapters focus on interactive systems and techniques as a means
to support sense-making activities, the second part of this thesis focuses on means to
visually present the results of such activities: questions answered and insights gained
from data analysis. Authors of such presentations will often seek to convey a specific
message through data visualization. I focus here on an intrinsically complex type of
data: multivariate networks. Again, each chapter describes the general approach, the
software prototype implementation, and the studies that have been conducted to gather
feedback and validate the approach.

In Chapter 3 I introduce Graphies, an environment for authoring network visualizations
for communication purpose. Informed by a user-centered design process involving
TKM analysts, Graphies has been developed as an expressive design environment for
node-link diagrams supporting a flexible and iterative design process. Graphies lets
designers incrementally populate an infinite canvas with nodes and links of interest
from multivariate graph datasets; specify visual mappings and apply them to arbitrary
selections of such elements; and customize the visual appearance of individual elements
as well.

Graphies enables users to create elaborate visual mappings that can involve a wide
range of visual variables. This set of variables, however, remains limited in classic
node-link diagrams, especially when considering the available variables for edges. In
Chapter 4, I study the potential of motion variables to encode additional information
on edges in node-link diagrams. Our model relies on particles flowing along the links,
represented as animated edge textures. I describe the model and associated Web-based
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framework for generating animated edge textures, and illustrate its capabilities using
different examples of visual mappings. I report on two evaluations of particle properties
in terms of visual perception. An initial evaluation that studies the perception of each
motion variable in isolation, and a second evaluation that evaluates the influence of
two visual variables, particle color and particle size, on the perception of particle speed
across links in a diagram.
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PART I

Making sense of varied types of data
using ink as a medium



CONTENTS

Analysts often get insights by bringing complementary, heterogeneous data and
documents, comparing and cross referencing them. Digital annotations help these
analysts make sense of the information coming from these different sources, as they
enable them to externalize their ideas, jotting down comments directly on those
documents. Annotations can also serve other purposes such as emphasizing important
parts of the information, creating reminders for later reading, or sketching actions to be
performed on the data. However, working with such diversity of content, and being
able to externalize thoughts through digital annotations, are difficult tasks that current
interactive systems do not support well, especially in the case of subject-matter experts
such as data analysts who perform advanced sense making tasks.

The two chapters in this first part describe work that aimed at better supporting the sense-
making process using digital ink to transition between externalization and exploration;
and interaction techniques to better support the process of annotating reflowable
documents by exploiting their properties to flexibly make space to jot down insights
and comments close to the target of annotations.
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CHAPTER 1
Using ink to transition between

interacting with data and
externalizing thoughts

The work presented here was published at CHI 2019 [136]. I led the project and I was
responsible for the design and implementation of prototypes, designing and conducting
the studies. The paper was written collaboratively by all authors.

Pen and touch technology with high-resolution displays, such as the Microsoft Surface
Studio or Apple iPad Pro, are becoming mainstream. These devices both detect and
differentiate touch from pen, offering much potential for knowledge workers. They
afford large workspaces to handle multiple charts and documents, and make users
to take advantage from their experience with physical pen and paper. Visualization
researchers have started to explore this technology in systems tailored for pen and
touch interactions (e.g., SketchInsight [93], VizDom [40], DataInk [190]). But these
previous efforts have focused much less on how to enable people to externalize their
thoughts as they engage in sensemaking activities.

Previous studies showed that a key affordance of analog pen and paper is to
externalize one’s thoughts and capture fleeting ideas via annotating content and taking
notes [102, 110, 134, 154]. Externalizing thoughts has many cognitive and social
benefits such as lowering working memory load, supporting idea reformulation, and
providing common ground to share insights with others [91]. These affordances are
particularly important for sensemaking and data exploration tasks, as people need to
keep track of numerous insights found while browsing through the data, which typically
involves many visualizations and documents [127].

We contribute ActiveInk, a system that enables people to actively engage and think with
data. It allows for a seamless transition between interacting with data and documents,
and externalizing thoughts with pen (Figure 4.1). We designed and evaluated two
alternative methods of working with ActiveInk. First, prefix provides pen modes and
bimanual interaction to allow for switching between ink pens and action pens. Second,
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Figure 1.1: ActiveInk affords smooth transition between using a pen for high-precision
selections of data and for externalizing thinking via notes and annotations. Ink strokes
can be leveraged to perform operations on underlying data.

postfix provides ink for all pen strokes, and enables people to activate any ink stroke
to perform analytic actions. For example, an annotation made at one point during the
exploration process, such as underlining sentences in a document or circling a region
in a map, may be activated at any time to filter, highlight, or color the underlying data.
All actions propagate to all visualizations and documents in the workspace.

A study comparing these two approaches to a baseline of ink + touch (no actions)
revealed benefits and drawbacks to each approach. We also observed that annotating
data and taking ink notes were a common part of the analysis process across all
conditions, but that ink actions, when available, supplanted some forms of annotation
in active reading.

Informed by the study results, we expanded ActiveInk with a hybrid interface,
combining both prefix and postfix approaches. This interface provides both specific pens
and a magic ink pen, whose resulting ink strokes can be activated later on. We enhanced
the analytic capabilities of ActiveInk to provide new functions such as activating a
sketched correlation line to trigger a regression or hatching an interval on an axis or
legend to filter corresponding values. The resulting version of ActiveInk recognizes
handwritten content as people take notes, allowing for words and shapes to be searched,
filtered, and retrieved to facilitate revisitation.

In summary, our work contributes the following:

1. A novel set of pen-enabled actions for interacting with visualizations, documents,
and images in a coordinated workspace;

2. A study on a task showing that users rely on these actions when available for
exploratory data analysis, and that both prefix and postfix have benefits;

3. A hybrid prototype demonstrating how both approaches can be combined in the
same environment.
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1.1. Related Work

These contributions bring people closer to their data, enabling them to interweave
reading and acting on data. ActiveInk provides for seamless annotation, note-taking,
and invocation of analytical operations, without even putting the pen down.

1.1 Related Work

This research sits at the intersection of information visualization and human-computer
interaction, building on previous designs of pen and touch interfaces for visualization,
general digital pen approaches for annotation and note-taking, and findings about the
role of externalizing knowledge in solving data analysis tasks.

1.1.1 Pen and Touch Visualization Systems

Visualization researchers have recognized the potential of leveraging input modalities
beyond mouse and keyboard in the past decade [92]. Advances in display technology
and, in particular, the ability to offer simultaneous pen and touch on high-resolution
displays have made possible new approaches to interact with visualizations.

There have been several approaches to design a coherent set of touch gestures for
interacting with visualizations on tablets [45, 85, 142, 143, 144], but these do not
fully take advantage of the different inking capabilities. Visualization systems such as
SketchInsight [93], PanoramicData [196], and VizDom [40] offer novel experiences
leveraging pen and touch interactions for data analysis tasks. The research focus of
these systems is on the design of interactions to create and interact with visualizations.
Pen interactions often support two modes: free-form note-taking and predefined
gestures to invoke commands. For example, sketching a particular shape (e.g., a
circle) creates a specific type of visualization (e.g., a pie chart) in SketchInsight;
drawing a line between two visualizations activates coordination through brushing
and linking in PanoramicData. These interactions require learning and remembering a
potentially large set of gestures. Although free-form inking supported by these systems
enables analysts to externalize their thoughts as they interact with the data, none of
these ink marks are leveraged for further interaction.

A recent system, DataInk [190], enables people to sketch arbitrary shapes on a canvas
and bind their visual properties (color, size, thickness) to data. While this research
focused on creating expressive visualizations for storytelling and art purposes, it
demonstrates one way to leverage the unique strengths of using a digital pen for
visualizing data. In this work, we do not address data visualization authoring, but rather
focus on interaction with existing content.

1.1.2 Unique Affordances of Digital Pens

A recent study by Riche et al. [134] compiled and compared activities of people with
an analog pen and using mainstream digital pen devices. They extracted a set of
pen use cases, several of which are unique to digital pens. A key property of digital
pens for working with visualizations is the accuracy for direct pointing and dragging,
providing the ability to compose precise selections by sketching complex shapes on top
of visualizations, while reducing the occlusion caused by touch. Digital pen systems
have other capabilities beyond analog pens, most notably the ability for the same pen
to perform different functions in quick succession[77].
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Multiple use cases of an analog pen also appear to transfer to a digital pen [134]
such as externalizing thoughts and capturing fleeting ideas. Research in human-
computer interaction studied and leveraged these phenomena, in particular, for making
annotations during active reading of documents [106, 110, 151], drawing,[188, 189]
taking notes [76], gathering information [74, 169], generating ideas [95], and sharing
ideas with others [198]. However, we are not aware of works which specifically
focus on studying and supporting externalization using a pen for data analysis and
sensemaking scenarios.

1.1.3 Externalization in Visualization

Externalizing thoughts through annotations on content, taking notes, and drawing
diagrams has multiple benefits when engaging in long and complex tasks [91].
Externalizing thoughts enables people to limit their working memory load [148],
articulate and reformulate thoughts which can lead to substantial improvements in
understanding and retention [116], or share their thinking with peers to generate
a shared object of thoughts to support communication and decision-making [34].
Indeed, Kidd hints that the act of annotation itself creates knowledge in the knowledge
worker, which may be more important to the process than the marks that remain on the
page [88].

These benefits are particularly relevant for visual analytics and sensemaking activities.
The sensemaking process is a loop [127] involving phases of analysis and interpretation
of visualizations and documents to gain insights, and phases of revisitation to compare
and contrast these insights to generate and investigate hypotheses. Externalizing
thoughts is critical to facilitate revisitation and keep track of insights and hypotheses,
especially over long periods of time.

Recent research started to study active reading of visualizations. Walny et al. [180]
conducted a series of studies on active reading with both printed and digital
visualizations. They demonstrated that active reading behaviors previously observed
on textual documents (e.g., underlining, writing notes in margin) occurred when
people interpreted visualizations, and that such behaviors transferred in the digital
world. While they did not consider complex sensemaking activities involving multiple
visualizations and documents, their results suggest that inking with a pen on or around
visualizations is an activity that people naturally do when working with visualizations
(and given the ability to do so). This work builds upon their findings and reveals
externalization strategies people employ during sensemaking activities using a digital
pen on interactive data visualizations.

1.2 ActiveInk

Our goal with ActiveInk is to empower people to think with data. We aim at leveraging
the digital pen to enable people to interweave high-precision interactions performed on
visualizations and documents with externalizing their thoughts during the exploration
process, as they would do with a regular pen on documents and blank paper. In the
following, we define note as ink separated from data views, annotations as ink on data
views and actions as ink that changes the visual appearance of data.

ActiveInk does not target expert data analysts as they would likely require extensive
computations, analytic functions, and the ability to handle large amounts of data (better
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supported by systems such as Vizdom [40]). Rather, we seek to exemplify a more
fluid sensemaking experience than what exists today for knowledge workers and data
enthusiasts. We designed ActiveInk to primarily support thinking as people make sense
of their data. We describe below the general principles that guided our design, and
ActiveInk’s key interface components.

1.2.1 Design Principles

We followed three driving principles to maximize opportunities for people to externalize
thoughts while retaining the ability to interact with visualizations, minimizing the
physical and cognitive costs of switching between the two.

D1. Support sensemaking through interaction with a set of heterogeneous information.

While many visualization systems focus on interacting with data visualizations, our
goal is to support the broader activity of sensemaking, integrating documents and
images as well. This activity involves extracting and cross-referencing information
from multiple sources. Thus, ActiveInk should provide people with space to think [4],
i.e., support viewing multiple of these assets at once and enable individual spatial
organizations, where space can be given meaning.

D2. Use the digital pen for interacting with data and for externalizing thoughts.

A pen is more precise than a finger for fine positioning and free-form drawing.
Composing a selection in a visualization often relates to drawing as it involves the
creation of complex arbitrary shape enclosing a set of points while avoiding others.
Having the pen already in hand also increases the opportunities for externalizing
thoughts (annotation, note-taking). Thus, we designed a set of pen actions to enable
analysis. To reduce the cost of switching between analysis and externalization, we
propose two interface strategies (Figure 1.2), which operate on an infinite canvas that
we detailed below:

1. prefix: select an action to associate with the pen through touch first, and then ink
the scope for this action with the pen. Contrary to [191, 27, 124] that consider
touch and pen actions performed in parallel with two hands, prefix consists of
sequential touch and pen actions (potentially but not necessarily performed using
two hands).

2. postfix: the pen always lays ink on the screen. Tapping an ink stroke with a
finger reveals a marking menu of actions to perform on the data associated with
that stroke. This a posteriori activation of ink strokes takes inspiration from the
Scriboli system [73].

D3. Avoid requiring memorization of gestures.

Previous research on active reading and annotation has shown that the form of
annotations varies between individuals, and even across tasks within individuals.
A circle in one place may not serve the same annotative function as a circle in
another, though similar annotations in spatio-temporal proximity often have the same
intent [110]. Learning a collection of gestures may be difficult and recalling them may
disrupt the flow of annotation. Instead, we aim to provide complete freedom of pen
inking, and to support actions that users can a posteriori associate with any ink stroke.
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Figure 1.2: Different sequences of interactions to perform an action such as paint on
the data underlying the ink stroke.

Ink Highlight Paint

California

Label

Hide Remove Cut Copy

Stroke Activation Menu

ink

highlight

hide

label

   cut

   copypaint

removetap

slide

1
2

3

a a

a a

a

a

a

a b

Figure 1.3: Visual effects produced by our 8 different types of pens in prefix (a). In
postfix (b), tapping an ink stroke reveals the activation menu. Sliding a finger from the
center to an action previews its effect, while lifting the finger triggers it.

1.2.2 Unified Infinite Canvas

ActiveInk is built around a zoomable infinite canvas, on which people can drop
visualizations, documents, and images, which we collectively refer to as views, and
rearrange them. The ability to lay out the workspace, reorganize and manipulate
views was previously shown to be an important component of active reading of
visualizations [180].

Freeform inking is provided anywhere on the canvas and on views alike. Ink on a view
stays with the view when moved. Interaction with the canvas and views uses two-finger
pinch to zoom. Single finger slide moves views or pans the canvas.

To provide powerful analysis across visualizations, the views imported into the
ActiveInk canvas are always tightly coupled. Each view responds to operations such as
filter or highlight performed on the others. To maximize usability and minimize the
cognitive effort of tracking coordination, we chose to coordinate all views of the data on
the canvas. The data is loaded from tabular data file formats such as CSV, and is stored
in-memory as a JSON data structure. In this first prototype we do not use a visualization
toolkit, but rather rely on a set of basic, common chart types implemented from scratch
in our environment for the sake of easy customization. ActiveInk currently supports
binned histograms, scatterplots, maps, and text documents. We selected this subset
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Figure 1.4: Depiction of the canvas of a data journalist organizing their workspace
and annotating findings (1-ink , 2-cut , 3-remove ) and interacting on the data
to identify salient subsets (4-hide , 5-highlight , 6-paint and label , and
7-copy a subset of a histogram).

for the diversity of data, interactions, and insights they can offer. However, adding
additional types of visualizations such as line charts or density plots is straightforward.

1.2.3 Pen Actions

ActiveInk supports the set of operations on views illustrated in Figure 1.3. The
following scenario, illustrated in Figure 1.4, describes the pen actions of ActiveInk and
how one can use these operations for sensemaking using the prefix strategy.

Emma is a data journalist writing a piece about the best states in the U.S. to start a
family. She has collected data about each state, such as school quality, air pollution,
and median home price, as well as documents about this topic. She organizes the
most interesting views in her canvas, moving them with a finger and pinching them to
resize. She annotates salient insights with ink as she encounters them. For example,
she notes that the school quality index mostly correlates with math scores in Grade
8. She uses cut to slice the binned histogram of house prices, as the distribution
is skewed. Providing a healthy environment being critical, she decides to remove all
states that have higher air pollution by switching to the remove pen and using it
on dark regions of the map. Data is removed from the entire canvas, and the scales in
scatterplots and histograms are updated in response.

Since school quality is an important factor to raise a child, Emma opts to hide the
lower quadrant of the scatterplot, deemphasizing those states in all views. She then
chooses a blue color to highlight the higher portion of happiness score. She notices
that one of them, Vermont, pops up in the document and thus reads the corresponding
paragraph. To identify all data about Vermont, she switches to a purple color to paint
and label it from the text. Since Emma wants to have more details on house prices
in Vermont, she uses the copy instrument and lassos the interval containing Vermont.
She sees Vermont is in the lower range, concluding that it is the place to be!
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1.2.4 Prefix Interface: Switching between Types of Pen

The prefix interface offers the pen actions described above as different types of
instruments people can acquire with the pen (Figure 1.3). This paradigm of different
modes of interaction is usually found in mainstream interfaces today, although modes
generally appear in a menu or ribbon positioned at the top. In contrast, ActiveInk
presents it on the non-dominant hand side of the workspace to make users able to select
(tap) modes with the thumb of their non-dominant hand, and then use the pen with
their other hand. The selected mode remains active until users select another one. This
design may lower the cost of interaction for mode switching [6].

The ActiveInk prefix interface uses a paradigm familiar to most people and provides a
comprehensive view of all actions at all times, which is important for non-experts [149].
This paradigm is also efficient for accomplishing actions in batches. However, people
need to decide on mode before performing actions, and interweaving different types of
activities may require numerous mode switches. Also, contrary to quasimodes [130], it
avoids maintaining tense postures but with the drawback of potentially forgetting what
mode is currently activated.

Forgetting to switch modes may result in mistakes to undo later (e.g., people want
to rapidly jot down thoughts next to highlighted points in a scatterplot but the pen
highlights more points instead). Action pens in prefix lay down dashed ink to mitigate
mode errors, and the interface includes buttons for global undo and redo to correct
mistakes. The clear pen is used to clear all visual properties of data elements
resulting from prior interactions (highlight, paint, etc.), affording some level of local
undo.

1.2.5 Postfix Interface: Activating Ink Strokes

The postfix interface offers the pen actions described above through an in-place menu
invoked by tapping an ink stroke (Figure 1.3, right). Activated ink strokes remain on
canvas and can be deactivated to undo the action. We hypothesized that this design
would stimulate externalizations as the pen always lays down ink first without requiring
to switch back to this mode after interacting with the data.

Inspired by the design of the ZoomCatcher menu [191] and recommendation about
Multi-Stroke Marking Menus [73, 197], we created a marking menu and organized the
actions along three semantic axes:

1 Visual saliency of data elements that one can increase with Highlight and Paint
, and decrease with Hide and ultimately Remove .

2 Display data about the underlying elements with Label displaying the name of
data entities and their values in histograms.

3 View manipulations that do neither affect the data nor propagate to other views,
including cut and copy .

Once the menu is invoked by tapping a stroke, one can preview the effects of any
action before executing it by sliding their finger from the central ink action to any other
menu item. Lifting the finger triggers the action and fades out the ink stroke to limit
visual clutter . Note that actions that are unavailable (e.g., due to no underlying data to
highlight) are greyed out. Erasing an activated (faded-out) stroke undoes the action and
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reverts the stroke to a regular ink (that can potentially be activated again to perform
an action using the menu, or fully erased). This mechanism allows for local undo of
actions during the exploration.

The postfix interface uses a paradigm that is less familiar to people, and certainly has a
steeper learning curve, as all actions are not visible at all times. Given the additional
cost of tapping after each ink stroke, this paradigm may slow down actions performed
in batches. However, it enables the smooth interweaving of interactions with data and
ink externalizations without mode switch (e.g., paint a set of points and hand write the
reason for this action next to them). Additionally, actions can be carried out at any
time: an underline, arrow, or circle made early during an initial read of the data can
later be activated by tapping, thus turning externalizations into potential interaction
locations. Since activated strokes remain on the canvas, we also hypothesized that they
would provide additional benefits for analytic provenance — assist people in recalling
their process to gain insights on the data. Finally, the postfix interface has fewer tool
icons, and thus is less cluttered.

1.2.6 Implementation

ActiveInk is built as a web-based application in JavaScript and runs on a NodeJS server.
The vector graphics canvas is implemented using Paper.js [94] and the visualizations
are created with d3.js [25] and BubbleSets.js [37]. To best associate ink strokes with
data, ActiveInk tests for data item enclosure or intersection. This allows for marks
such as circles and arrows to appropriately associate with the intended data.

1.3 Qualitative Study

1.3.1 Hardware Capabilities

As hardware capabilities might impact the externalization process and users’ experience
with digital pens, we scope our research questions and results to the hardware device
that we considered. For this study, we used a Microsoft Surface Studio [114], with a
28” screen of resolution 4500×3000 pixels, supporting multitouch and pen input.

1.3.2 Research questions

While previous work has investigated active reading of simple graph visualiza-
tions [180], it is not yet clear how to support externalization for data analysis, and
complex sensemaking scenarios that involve multiple visualizations and documents.
To gain insights on the externalization process during sensemaking using a digital

pen for data analysis, we conducted a qualitative observation study. We designed the
procedure to investigate the following research questions:

Q1. How do externalizations manifest during sensemaking with digital inking when
working with multiple visualizations?

Our first question is whether results from Walny et al. [180] will transfer to more
complex tasks involving extracting and comparing insights from multiple visualizations
and documents to make sense of the data. We seek to observe how people organize
their findings and extract information from multiple sources using an infinite canvas.
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Q2. How do externalizations manifest during sensemaking with ActiveInk?

We seek to observe if and how annotation and note-taking behaviors change when
offered the possibility to interact with the data to visually encode it (e.g., highlight).
In particular, a key question is whether the cost of switching mode between
interaction with data (e.g., highlight, filter) and inking in prefix may discourage
spontaneous externalization of thinking. In contrast, while postfix may encourage
such externalization, it uses a less familiar interaction paradigm where actions are not
visible at all time, which may prove more difficult to use.

Study material and screenshots of canvases created by participants are available as
supplemental material.

1.3.3 Study Design

We used a within-participants design as prior work on active-reading [102, 110, 180]
indicated that individual variability would be high given the diverse range of strategies
for sensemaking and behaviors for externalization. Thus, participants experienced the
following three interfaces in a single session, on a Microsoft Surface Studio using our
web-based prototype.

1.3.3.1 Ink

The condition explored sensemaking using only digital ink and touch. Participants
could browse through a set of views (visualizations and documents), adding and
organizing them in the workspace with touch. To inspect underlying data, participants
could tap and hold with a finger on a visual element to display its label and data values
in all views. Inking was available anywhere on the canvas, including on views. This
condition served as our baseline, enabling us to build knowledge on active reading and
externalization behaviors without any analytic functions linked to pen interactions.

1.3.3.2 ActiveInk Prefix and Postfix

In the second and third conditions, participants used ActiveInk with prefix and postfix
interfaces, as described above. Inking and touch capabilities were also provided as in
the ink condition. As we hypothesized an order effect (due to fatigue or learning), we
counterbalanced the presentation order of these two conditions. Participants also had
to complete different scenarios in each of these two conditions. Assignment between
a scenario and a condition was counterbalanced across participants in order to avoid
observing an effect of the dataset instead of observing an effect of the ink condition.

1.3.4 Participants and Method

We recruited 8 participants (2 females, 6 males; 7 in 30s and 1 in 20s) from a large
software company (over 60000 employees), screening them in to cover different age
ranges, genders, and roles (team managers, administrative assistants, developers, data
scientists, researchers). We screened participants for at least one year of experience
with a pen-enabled device and recent experience reading and creating simple charts
from data. Only P5 reported data analysis is not part of his/her job. We piloted the
study with 2 people to streamline the training and fix minor usability issues.
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Participants were encouraged to adjust the orientation and incline of the device
for comfortable pen and touch interactions. The study was held in a quiet room;
experimenters observed live, from behind a space divider, using a camera.

1.3.4.1 Data and Task

As our goal was to observe externalization during sensemaking, we designed high-level
tasks involving browsing through a set of views, making hypotheses, and investigating
queries to understand the data. We prepared 3 similar analytic scenarios based on
identifying a subset of states in the U.S. In the ink condition, participants searched for
states where tobacco and alcohol use was correlated to accidents and overdoses. In
the prefix and postfix conditions we counterbalanced across two scenarios: identifying
the best and worst states to retire, or start a new job and raise a family. A different
multivariate dataset was provided for each scenario, containing factors such as nursing
home quality (retirement) and home prices (new job). Examples appear in Figures 4.1
and 1.4. Participants were instructed to imagine they were conducting research to write
an article about their findings, and should create a canvas that would enable them to
recall these findings in several weeks. To limit the duration of the session, we selected
a subset of visualizations and documents (9 histograms, 9 scatterplots, 3 documents,
and 3 maps) for each exploration task.

1.3.4.2 Procedure

An experimenter first instructed participants to sign a consent form and fill out a
demographics questionnaire. The study was structured in three phases, one per
condition. For each condition, the experimenter briefly described the interface and
dataset at the start of the training. To cover the interaction mechanics, the experimenter
instructed participants to perform each action available in the interface (pen and touch),
explaining the interaction and resulting effects, and informing participants of efficient
interaction techniques if needed (e.g., bi-manual interactions). This training lasted
about 10 minutes. Since ActiveInk features a large number of actions, these conditions
included an additional 5 minute practice task, in which participants completed a brief
analysis task while asking questions and receiving experimenter guidance as needed.

After training, participants completed the main data exploration task for a maximum
of 15 minutes. After each task, participants completed a questionnaire and had a brief
interview with the experimenter about their likes, dislikes, and wishes. Participants
were instructed to take a 5 minute break after the second condition. After experiencing
all conditions, participants answered a preference questionnaire and verbally explained
the advantages and drawbacks of each technique. The entire experiment lasted two
hours. Participants received a $150 gift card as compensation.

1.3.4.3 Data Collection & Data Analysis

We logged pen interactions with ActiveInk, and used a screen video capture and video-
audio recordings. At least two experimenters were present for each session: one person
interacted with the participant while the other took notes.

We then gathered pen interactions, analyzed and plotted them using the PowerBI tool
into a color coded diagram (Figure 1.5). We also gathered and categorized feedback we
got from participants during the study into the following categories: positive feedback,
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Ink Prefix Postfix

P1
P2
P3
P4
P5
P6
P7
P8

ClearNote Annotation Highlight Paint Label Cut/Copy Hide/Remove Mode Error

Figure 1.5: Inking and action sequences per participant across conditions. Each block
reflects a 15 minute analysis task. Participants carried out the most annotations in the
ink condition, followed by postfix. The most common operations were highlight, paint,
and label, which provide details on the data. Split bars in postfix indicate ink strokes
used for multiple actions. Note that P8-postfix logs were not saved due to a technical
error.

negative feedback, problems they encountered with the interface and wishes about
additional functionality. Finally, we cross-referenced users’ observations, feedback
from the study and answers from the reference questionnaires to better understand their
sense-making strategies and preferences using either postfix or prefix.

1.3.5 Results

Figure 1.5 depicts the interactions of each participant over the course of each
exploration task. All canvases created in the study are available at: https://hugoromat.
github.io/ActiveInk/ and in Appendix A.2.

1.3.5.1 Ink

In the first condition, six participants used inking extensively for making sense of data
(Figure 1.5). The largest portion of ink across participants are notes separated from data
(78.0% of strokes), as opposed to direct annotations on views (22.0%). Participants
exhibited different behaviors: P1 and P5 laid down most ink, however, P1 made both
notes and annotations while P5 only took notes. While P4 and P8 did not ink as much
as others, their ink mostly consisted of annotations.

Figure 1.6 depicts externalizations in the ink-only condition. It is interesting to note
that two participants (P1,P4 in Figure 1.6) used inking to coordinate multiple subsets
of data permanently on the canvas. These behaviors correspond to the paint, highlight,
and label actions of ActiveInk. We also observed the depiction of hypotheses about
the data (e.g., drawing a correlation line) and externalized queries (e.g., drawing a
threshold). Both of these annotations are illustrated in Figure 1.6-P1.

Most of the notes on the canvas were phrases summarizing findings, hypotheses, or
describing the sensemaking process itself. However, we also saw instances of pictorial
representations such as arrows (6 participants), or lines on the canvas to divide the
workspace into regions (P3, P5). We also observed participants visually link a pictorial
annotation in a visualization to a separate handwritten note. For example, P1 drew a
box in red around the word “threshold” referencing the line sketched with the same pen
in both scatterplots (Figure 1.6-P1). Other participants (P1, P2, P6, P7) used different
colors, visually connecting notes to relevant annotations.
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Figure 1.6: Examples of participants’ externalizations during sensemaking with ink.
P1 used color to connect notes and annotations, while P4 drew lines to connect data
items across views.

1.3.5.2 Externalizations with ActiveInk

In contrast to the ink-only condition, the amount of regular ink in both ActiveInk
conditions decreased, with fewer annotations. The prevalence of notes did not decrease
as much: 8% lower in prefix and slightly higher in postfix. The total number of
annotation + action strokes was consistently between 19–26% across all conditions.
This may indicate that actions serve the role of some annotations in ActiveInk.

While there were fewer annotations than in the ink condition, we noted several
interesting types of annotations created after operating on the data: (1) depicting
how views relate after applying cut or copy (e.g., copying a subset of a view), (2)
depicting insights (e.g., correlation between two data dimensions), (3) identifying data
of interest (e.g., circling), and (4) characterizing data of interest (e.g., good vs. bad
candidates). In the ink condition, we saw annotations to connect specific data points
across multiple views. We did not observe this type of annotation with ActiveInk since
actions such as highlight and paint fulfilled this role.

The ink stroke log analysis (Table 1.1) indicates that postfix encourages more annotation
than prefix. In observing the use of prefix, we saw that participants chose a pen and
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Figure 1.7: Examples of participants’ externalizations during sensemaking with
ActiveInk, including batch highlighting with prefix on the left, and interwoven actions
and note-taking with colors using postfix on the right.

Stroke Type Ink prefix postfix

Notes 1082 78.0% 983 70.1% 783 80.2%
Annotations 305 22.0% 59 4.2% 98 10.1%
Actions 0 314 22.4% 89 9.1%
Errors 0 46 3.3% 6 0.6%
Total 1387 100% 1402 100% 976 100%

Table 1.1: Ink stroke analysis. Errors are data action on empty canvas.

repeatedly made short strokes on items one by one, whereas with postfix they more
commonly used enclosures to select groups of items, then activated the ink.

The most frequent action performed across both ActiveInk conditions was highlight
(187), followed by label (55), paint (50), filter (30), cut (6), copy (3), hide (3), and
remove (2). Video analysis shows that cut and remove were primarily used on skewed
distributions and outliers in scatterplots and histograms. In the prefix condition, the
clear function was used to remove actions 47 times, and undo was used 39 times. Undo
and clear were not provided in postfix as ink actions were locally reversible at all times.
All participants commented that ActiveInk analytic functions on data were useful in
contrast to the ink condition.

While a higher fraction of strokes were used for note-taking in postfix, the note-
taking behavior was consistent in both ActiveInk conditions. For example, P7 wrote
hypotheses on top of the canvas, interacted with data visualizations to investigate them,
and wrote answers next to original notes in both conditions. Similar to the ink condition,
participants created colored legends (e.g., Figure 1.7-P2) in both ActiveInk conditions.
Overall, we observed meaning assigned to color in 75% of all exploration tasks across
participants and conditions. We observed that participants generally followed one or
more of these strategies: 1) write the data dimension name or value, 2) use the same
color to mark the data subset, and 3) use a pictorial representation (e.g., underline,
check mark) to connect notes in one place to data in different visualizations.
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Figure 1.8: Advanced actions added to ActiveInk, informed by results of our qualitative
study.

1.3.5.3 Sensemaking strategies with ActiveInk

We observed two different strategies that reflect advantages of each interface
(Figure 1.7). P2 (Figure 1.7-P2) seamlessly interweaved paint action on data item,
and in-place annotation with the same color to create a pictorial legend about this
data and value. He sketched glyphs such as check marks and thumbs up to indicate
positive aspects, and sad faces and thumbs down to indicate negative aspects. This
strategy worked well with postfix as the pen “automatically” switched to ink after
performing an action on the data. In contrast, P6’s strategy was to do actions in batches
(Figure 1.7-P6). Using the ink pen, P6 first handwrote a legend to associate certain
data values to positives and negatives, then switched to the highlight pen to perform
highlights in batches, only switching colors. This strategy worked well with prefix, as it
did not require tapping strokes, but rather pick a single type of pen to apply successive
strokes on the views.

We observed differences between participants but each followed a personal
sensemaking strategy, generally remaining consistent across conditions (Figure 1.5).
For example, P1 used inking extensively in the first condition and continued to take
more notes than others in prefix and postfix while most of the annotations were replaced
by pen actions. In contrast, P4 mostly relied on annotations in ink condition, which
were replaced by pen actions (mostly highlight) in ActiveInk.

Most participants (6/8) attempted to lay out visualizations and documents on the
canvas so they were all in view without requiring zooming or panning. P7 made
use of the larger surface, storing handwritten notes on hypotheses and results out of
screen. Two participants used a lower corner to place temporary visualizations. P8 used
the histograms as one would use dynamic queries in conventional coordinated view
interfaces, as a way to filter the data according to different attributes. P8 is also the
only one who leveraged multiple tabs to segment the workspace by different questions
investigated (e.g., one canvas for identifying the best states where to retire, another for
the worst ones).

1.3.5.4 Ratings and Preferences

Participants praised the quality of both interfaces. For example, P1 said “I really like
it, it’s the optimal for this type of task really.” (referring to the general principle of
ActiveInk, independently of prefix or postfix). Note that while our questionnaire did
not have an option to rate as equal, three participants verbally indicated that they did
not have a clear favorite. Overall, six participants preferred prefix and two preferred
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postfix. In prefix, six participants used bimanual interaction, five of whom preferred
prefix over postfix overall.

Results of the subjective experience questionnaire administered after each condition
revealed similar ratings for all conditions, although postfix rated slightly higher than
prefix on most measures. Most (6/8 in prefix and 8/8 in postfix) felt efficient with
ActiveInk. Participants made more notes and annotations with postfix, while with
prefix, they carried out more actions. In prefix, at least 3.3% were mode errors (actions
on the canvas) (Table 1.1). Although, note that we could not detect mode errors
resulting from accidental inking. Four participants specifically mentioned mode errors
as frustrating, e.g., P3: “I keep just forgetting which one I’m in,” P7: “When I was
highlighting and wanted to go back to my notes I forgot to click here.”

In postfix, the menu was activated without previewing or applying any action 6 times,
which we also counted as errors. We also observed three participants experiencing
usability issues with the postfix menu. In particular, P1 said: “I would like something
faster, like tap and choose rather than tap, wait for animation, and drag to choose.”
While dragging on the menu was intended to preview action results before executing
them, these previews were not frequently used (only six instances from three
participants). Several requested to see all available actions at once. This may be
especially important during the learning period as participants are not familiar with the
semantics of the actions available and thus do not fully comprehend their organization
in the menu.

1.3.5.5 Wishes

Three participants mentioned the potential of a hybrid interface, integrating the best of
both approaches. P3 said, “Can you make something where some people can choose
the tool first and other people can select things and change them?" while P9 suggested
using physical buttons on the pen to activate the most common actions. P5 suggested
the ability to see the underlying data in a table, and to be able to change data values
directly in the interface. P8 commented on the need for transient pen highlights “I
would like to drag my ink across the thing and ‘boom’ things light up.” In addition to
local undo provided by erasing an activated ink in postfix, P2 and P6 suggested a global
undo button would also be helpful. P2 and P6 also suggested functions to align or
snap views together for neater canvases. Finally, both P1 and P5 suggested sketching
dividing lines on the canvas to create different sets of coordinated views (in addition to
different tabs).

1.3.6 Summary and Discussion

Our results suggest that the results of Walny et al. on active reading of one
visualization [180] transfer to sensemaking tasks involving multiple visualizations
and documents. When ink actions are available, people favor visually marking the
data using actions rather than annotating with regular ink, though note-taking was
present in all conditions. We observed that several annotations were used to add
information not built into the action tools (e.g., sketched glyphs, semantic use of
color). Annotations were reused by all participants in describing their findings and
strategies to the experimenter, though we did not specifically test for the benefit of
inking for recall. While we believe there are sensemaking benefits resulting from the
low cost of externalizing thoughts with digital inking, more investigation is needed to
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check whether this behavior also happens in conventional systems using mouse and
keyboards.

Most participants used notes, physically separated from the data, to record their
questions and hypotheses, and evidence to confirm or reject them. Participants linked
their handwritten notes to data by either rewriting the data dimension name or value,
using the same ink color as used for data highlights, or using a pictorial representation
(e.g., a check mark, an arrow). These techniques reflect the creation of ad-hoc visual
indices to connect and cross-reference related information from different sources. This
manual and iterative process may explain why most participants attempted to keep
everything in one view, and suggests the need to better support management of large
canvases or multiple pages of information.

1.3.7 Implications for Design

As evidenced by the ink stroke analysis, the prefix and postfix interfaces lead to different
behaviors: prefix supported rapid sequential actions, while postfix better integrated
with annotation and note-taking. This implies a better solution would be to support
both paradigms. Thus, we created a hybrid version which offers the same set of pens
available in the prefix interface, as well as the ability to activate strokes laid down with
the ink pen and marker using the postfix activation menu. As before, activated ink
strokes remain on the canvas, constituting a visual trace of the action performed, and a
means to undo the action later on.

The observations we made about note-taking during sensemaking with ActiveInk
prompted us to add a 4th design principle:

D4. Make externalizations useful.

We observed that, as people explore data, they took notes separated from the data
visualizations or documents to capture their hypotheses or summarize their findings.
These ink strokes contained explicit references to data dimensions or values through
textual content, color, or associated shape to enable cross-referencing insights in
multiple sources (notes, data visualizations, and documents). ActiveInk should leverage
these externalizations for further analysis.

1.3.8 Advanced Actions to Support Sensemaking

The result of our qualitative study informed a set of 6 new functions depicted in
Figure 1.8, inspired by our observations and comments from our participants.

Compute statistics: Sketching hypotheses about statistical properties of the data directly
on the visualization is common (e.g., sketching a correlation line in a scatterplot).
While laying ink is a mean to quickly mark potentially important insights discovered
serendipitously while exploring the data, getting back to these and assessing their
correctness is important when drawing conclusions about the data. For this reason, we
added the ability to compute such statistics by tapping on a stroke and selecting the
statistics action (i.e., adding a new options in the postfix menu). Note that ActiveInk
currently supports computing a correlation line in scatterplots and averaging the values
of a set of data items in histograms as we mostly observed these behaviors in the study.

Interactive legends: We also observed participants attempting to draw on the map
legend (and sometimes tap it with a finger). We incorporated the ability to sketch on
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the legend to perform actions (highlight, paint, label, hide, etc.) on the corresponding
data elements.

Ink lenses: Study participants surfaced the need for transient and interactive pen
interactions akin to brushing in conventional data visualization systems. We added the
ability to create and activate any set of strokes on empty canvas with functions such as
highlight or paint. Moving these activated strokes with a finger over views immediately
performs the corresponding action on the underlying data, effective acting as lenses on
the data [173] and acting as dynamic queries [160] when activated with filtering.

Recognizing ink content: Since we saw many references to data dimensions and values
in the notes participants took, we added handwriting recognition to ActiveInk. This
capability turns handwritten notes into content coordinated with the views. In particular,
ActiveInk now offers the ability to tap a written word and perform an action on related
data. This capability is inspired from the behavior we saw participants exhibit when
referring to data dimensions or values in their notes to connect them to the data. For
example, one would observe states with low unemployement, identifyng Texas and
California. Highlighting Texas to further investigate its values along other dimensions,
they would make a note to get back to California later. ActiveInk facilitates this process
as one would simply tap the written word California, select paint from the postfix menu
and see the corresponding data items in visualizations and text using the same ink color.
Note that handwriting recognition is performed with the MS Ink Analysis API [155].

Search similar ink shapes: Since we observed people draw the same glyph on different
views, we added the ability to search for similar sets of strokes making up a glyph.
When a search is triggered on a glyph, ActiveInk retrieves similar sets of strokes and
brings them, and their underlying content, close to the location of the search action.
This facilitates cross-referencing and may prove useful for a large canvas. Strokes are
associated with glyphs using a spatiotemporal distance function and threshold, while
glyphs are associated with each other using the $N-recognizer [5].

Show and edit underlying data: Participants requested the ability to see the underlying
data table for a subset of data, and one participant suggested she would like to edit the
data directly. We added the show data action to reveal the underlying data table for
items associated with a pen stroke. When writing numbers in the table, the written
values are recognized and the corresponding data items are updated across all views.

1.4 Conclusion and Future Work

ActiveInk represents a foray into active reading applications for heterogeneous data
including visualizations, maps, and documents. It blends the operations of externalizing
thoughts with analytic actions in a seamless combination of functions to be carried
out with digital pen+touch. The hybrid interface of ActiveInk integrates two ways
of working with pen actions, which our study revealed to be complementary for
sensemaking activities. Prefix inking is useful for batch operations, while postfix ink
activation is useful for interleaving multiple actions with externalizing thoughts.

This work offers several opportunities for extension. The ink recognition system we
used does not distinguish between classes of marks, such as enclosures, underlines,
and arrows. Our data selection model associates marks with any data items enclosed
or intersected by an ink stroke. Distinguishing types of mark could be interesting
to implement a finer ink-data association strategy. ActiveInk was designed as a web
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application to work on many plateforms and devices. However, in our study we have
only used a Microsoft Surface. To better understand the externalization process on
digital devices, it would be interesting to investigate how the hardware experience
might changes the way people interact with application designed to work with digital
ink.

ActiveInk was made to demonstrate the possibilities of thinking with ink, but does
not scale to a large number of views or with very large volumes of data. Addressing
scalability issues requires further development, and implementing the ability to save,
recall, and share analysis canvases. It also implies adding support for a wider diversity
of charts, which could be achieved by moving to, e.g., Vega-lite [146].

To better understand the impact of ActiveInk on sensemaking and externalization,
including any potential effects on the depth and quality of insights, we would like to
run a longitudinal study in which participants analyze their own data using the hybrid
interface. We suspect performance may improve with long-term use, and sensemaking
strategies may change as people feel more engaged with their data. Furthermore, it
would be interesting to study the use of ActiveInk in collaborative synchronous and
asynchronous sensemaking scenarios.

35





CHAPTER 2
Making space for externalizing

thoughts on reflowable
documents that support various

content

The work presented here was published at UIST 2019 [138]. During this project I
was responsible for the design and implementation of prototypes and techniques, and
I designed and conducted the studies. The paper was written collaboratively by all
authors.

Annotations are central to active reading. They are a means to emphasize and memorize
specific pieces of information, to facilitate re-reading, to identify passages to revise
and suggest edits, or to support sense-making [121, 102, 194, 134]. When annotating
a document, people make ink marks directly on the content: they underline words,
they draw links between related items, they circle elements in figures. These overlay
marks are often accompanied by in-context annotations, that typically take the form of
handwritten footnotes, marginalia, or sketches. In-context annotations are not overlaid
on top of the document’s text and figures, but rather placed close to the content that
elicited them, wherever there is free space to accommodate them.

On paper, of course, such space is extremely limited and constrained by physical
pages. But with digital ink, there is a whole zoo of design choices and trade-offs that
are possible. In this work, we seek to articulate some of these options, explore their
implications, and thereby sketch out this new design space of digital annotations that
are not necessarily constrained by the physical space.

Starting with the first active reading machine introduced in 1998 [151], many research
projects have sought to improve active reading on digital devices (e.g., [128, 169, 106]).
Together with technological advances in hardware, including multi-touch input and
high-resolution pens, digital devices enable people to mark up documents in ways that
may go beyond what is possible with physical pen and paper [115]. Digital ink does
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not dry. Digital annotations can easily be removed, repositioned, or revisited. They
can be archived, shared with others, turned into navigation bookmarks [169], and even
made active, triggering search and queries on the underlying content [58, 76].

But while annotating a printed document is just about jotting brief comments or ideas
and anchoring them to a particular passage (e.g. by call-out lines) , annotating an
electronic document is often much more cumbersome. People have to create post-it like
notes and fill them in, or create comments that will appear in a dedicated sidebar. These
interactions with the interface impact active reading as they interfere with the capture
of fleeting thoughts, driving many people to instead rely on pen and paper [134].

The goal of our research is to reduce such interface friction and offer fluid interactions
for interleaving overlay marks and in-context annotations. We also consider digital
documents more broadly than previous research: digital ink may not dry, but the content
of electronic documents does not dry either. Document content evolves, most online
web pages are non-paginated and render content differently depending on screen sizes.
Anchoring in-context annotations at the right location in the document to facilitate
re-reading becomes critical. To articulate design choices and trade-offs for in-context
annotation, we introduce SpaceInk, a design space of pen+touch input techniques that
make room for in-context annotations by dynamically reflowing a document’s content.
The design space organizes techniques according to when additional space is created:
before, while or after the user handwrites annotations; and where additional space
is created: on the paragraph’s side, wrapped inside the paragraph, between lines, or
between words.

SpaceInk encompasses existing techniques such as TextTearing [193] – enabling the
creation of white space between paragraphs in paginated documents to write annotations
– and uncovers variations – e.g. space is made a posteriori avoiding user’s premature
commitment. It also suggests several new techniques taking into account annotations’
scope – whether annotations are anchored to a word, a sentence or a paragraph; and
multiple levels of user agency – whether users control the location and size of the space
needed, the system automatically adjust it as they write or a combination thereof. We
gather feedback about these techniques in a user study, the results of which inform the
design of a prototype system that lets users concentrate on capturing fleeting thoughts,
streamlining the overall annotation input process by enabling the fluid interleaving of
space-making and inking actions, not only making space to ink, but also making space
to think.

To summarize, our contributions are the following:

• SpaceInk: a design space of pen+touch input techniques for in-context
annotations

• Insights from a user study on 5 techniques in this design space

• Design rationale and implementation of a prototype system for fluidly
interleaving space-making and inking actions
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2.1 Related Work

2.1.1 Digital Active Reading

Researchers from the XLibris project [151, 58, 57] were the first to propose an “active
reading machine”, with which users could annotate text using freeform marks on
a pen+tablet. The prototype made it possible for handwritten notes to coexist with
regular text, offering an experience close to taking notes with an analog pen on a printed
document. As opposed to text input with a keyboard, handwriting with a stylus allows
readers to write on the material while keeping their marks clearly distinguishable from
the original content, a feature that is especially important to readers [121, 102].

Active reading with stylus-equipped devices has been further investigated since then.
Matulic and Norrie [106] describe an application for active reading that uses pen+touch
input on a tabletop. Pen input is dedicated to annotations, while multi-touch gestures
support navigation: flipping pages, jumping to a specific page using space-filling
thumbnails [36]. PapierCraft [96] tries to bring the best of both worlds into one
application, by letting people interact with Paper Augmented Digital Documents
allowing an extendable command set Another example is LiquidText [169, 168], an
application that builds upon the XLibris notebook’s design, where users could paste
annotated text segments as clippings [57]. LiquidText splits the viewport into two areas:
one shows the main document while the other shows a workspace that stores excerpts
from it, dropped there by users. This workspace features advanced interactions for
grouping annotations, linking them to several parts of the document, and even using
them as navigational cues into the paginated document. LiquidText also enables users
to collapse portions of a document in the spirit of the Mélange technique [49] to better
support the sort of side-by-side comparisons that active readers often make [121, 115].

2.1.2 Active Annotations

As mentioned earlier, digital annotations can be leveraged to perform actions their
analog counterparts are incapable of. For example, the MATE system [64] allows
users to turn some specific handwritten marks into actual content edits. The digital
world is also particularly effective at indexing content, as demonstrated in XLibris [58]
and InkSeine [76]. Both systems infer queries from freeform annotations in order
to bring up results that are likely to be of interest to users. XLibris builds queries
from the content to which annotations are anchored, while InkSeine directly uses the
handwritten words. In both, the system makes the hypothesis that annotations capture
users’ interests, and that they can act as starting points for further investigation. Very
recently, the ActiveInk system 1 has gone one step further, making it possible to turn
annotations made on data visualizations into analytical actions on the underlying data,
such as filtering items out.

A frequent problem with annotations on printed paper is the lack of available space
to accommodate them. Electronic documents offer opportunities to overcome this
limitation. The DIZI system [3] partially addresses this problem by facilitating pen
input in small spaces, thanks to a magnifying lens that pops up when users start
annotating. Space between lines gets larger, making handwriting with a stylus more
comfortable. However, the available space for annotations remains limited, and
handwritten text can be very difficult to read when not magnified. Chang et al. [31]
consider the problem from a navigation perspective. Frequent movements between
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pages are often poorly supported when reading on a digital device [158], and they
introduce an architecture that facilitates navigation between primary material and
supporting material in order to minimize such movements. They describe several
techniques such as moving blocks and compressing interlines of primary material, or
adding an overlay to make space for supporting material in the context of the primary
material. While their system has not been implemented for ink-based annotations but
rather for supporting material such as footnotes, it is relevant here as it transiently alters
the layout of the primary material to make space for additional, related material.

Existing software implement more radical solutions, such as inserting user interface
components floating over the text (e.g., digital Post-It notes) or embedded within the
text (e.g., text boxes); or switching to a different view mode displaying a dedicated
comment sidebar. However, these techniques interrupt the users’ workflow as they
require navigating menus and, in some cases, moving and resizing interface components.
This disruption may impact the active reading process and interfere with the capture
of fleeting thoughts. TextTearing techniques by Yoon et al. [193] offer pen+touch
interactions that enable a more fluid workflow. Users explicitly create white space
boxes between paragraphs to accommodate their annotations, thus actively changing
the document’s layout. The canvas of the page is resized, altering the page aspect
ratio across the document, so as to preserve its pagination and ensure that all pieces of
content remain on their original page. In their study, Yoon et al. found that participants
preferred annotating in the extra space created with the technique than in the white
space that was there in the original layout. The approach lets users integrate in-context
annotations tightly with the document’s content, which is particularly efficient when
collaborating with other users. RichReview [194] implements TextTearing techniques
coupled with the capability to record speech and deictic gestures associated with their
annotations to facilitate communication between co-workers.

Our design space includes the above TextTearing techniques, but explores a wider
range of possibilities to make space for in-context annotations. It relaxes contraints
on document layout much further, taking advantage of content reflowing techniques,
that provide opportunities not explored so far. Beyond space-making strategies, it
also considers the different moments when it might be appropriate to make space for
annotations from an interaction perspective, as we detail later.

2.1.3 Overlay Ink and Reflowable Documents

The HCI community has already started studying the problem of embedding annotations
into reflowable documents such as Web pages. It has investigated several questions:
how to store annotations and access them later on [129]; how to reconcile them with
their scope when a Web page’s content changes [28]; how to share them with other
people [29, 194].

Closer to our work, other projects have looked at the problem of making annotations
behave properly in case of content reflowing. This typically occurs when looking at
the same page on another device, but on the same device as well, for instance when the
browser window gets resized or when the font size gets changed [28, 57].

Systems such as u-Annotate [32] and iAnnotate [128] let users annotate Web pages
with handwritten annotations. Both are implemented as plug-ins that put annotations
on a transparent layer on top of the page. Annotations are anchored to the closest
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HTML element, so that their position can be properly restored no matter the actual
layout rendered on screen.

Golovchinsky et al. also investigated the problem of making freeform annotations
robust to content reflowing for non-paginated documents in XLibris [57]. The system
computes the scope of the ink marks (the words that users have circled or underlined
with the pen) so as to not only restore the position of those marks, but properly adapt
their shape as well: they can get stretched or split to remain aligned and coherent with
their initial scope, which might end up distributed on different lines or even successive
pages. Bargeron and Moscovich [13] studied how users react to such techniques. They
found that users like the automatic adaptation to the reflowing when the system does it
properly; and that users prefer it when the system beautifies their freeform annotations,
as opposed to re-rendering them with their original drawing style. While these projects
have focused on making overlay ink reflow with the content, the SpaceInk design space
proposed here is about techniques to make room for in-context annotations.

To summarize, previous work explored multiple aspects of digital annotation,
suggesting strategies to reflow overlay ink as the document content evolves, as well as
devising interaction techniques for making room for annotations within the content.
Our research advances our understanding of in-context annotations, providing a space
for reflecting on design dimensions that impact the user experience, and reporting on
a study shedding light on their implications. Our work is also the first to consider
how both overlay marks and in-context annotations coexist during active reading
(Figure 2.10) with the goal of identifying a set of considerations about the design of
interactions to fluidly interleave them.

2.2 SpaceInk

In this section, we first map the space of interaction techniques for in-context
annotations, organizing them around two salient dimensions. We describe our rationale,
as well as a set of representative techniques that we implemented for further empirical
study.

2.2.1 Design Space

Interaction techniques for in-context annotations consists of space-making actions
(causing the document content to reflow) and inking actions (freeform input of the
annotation content). SpaceInk organizes them along two dimensions, as illustrated in
Figure 2.1:

• where the annotation is inserted relative to the corresponding content –
annotations can be inserted between words, between lines, or they can be wrapped
in a paragraph or put on the side of a paragraph;

• when do users interact to make space for the annotation – they can push content
before annotating, while annotating, or after annotating.

Considering where the annotation is inserted is important, as it defines the spatial
proximity with its scope – the content to which the annotation is anchored to. Allowing
users to precisely adjust their annotations’ position ensures that in-context annotations
are rendered as close as possible to the content they refer to.

41



2. MAKING SPACE FOR EXTERNALIZING THOUGHTS ON REFLOWABLE
DOCUMENTS THAT SUPPORT VARIOUS CONTENT

Considering when the space is made for the annotation is also important, as this
interaction may interefere with active reading. Deciding of the location and size
of the space needed beforehand takes the focus away from the capture of fleeting
thoughts, while doing it after may obfuscate key content that could be necessary to
finish formulating an idea.

side of paragraph

where

when
before while after

between words

wrapped in 
paragraph 

between lines

TextTearingTOUCH-BASED PEN-BASED

Figure 2.1: SpaceInk is organized along two dimensions: when and where. It includes
the six techniques tested in our study (orange and blue), as well as TextTearing
techniques [193] (green).

Figure 2.1 shows where TextTearing techniques [193] are situated in this space. They
mostly fall in cell where = between lines and when = before, as they require users to
first create some space between paragraphs (i.e., between the last line of a paragraph
and the first line of the following paragraph), and only then put ink in that space. Yoon
et al. also decribe a margin technique that allows users to widen a document’s margin
to get more space for annotations. We position this technique in the {side of paragraph
× before} cell, as it corresponds to the case where users create extra space on the side
of paragraphs. It is not an exact fit though, as the technique from [193] affects all
paragraphs that belong to the page.

This design space opens up new possibilities regarding strategies to make space for
in-context annotations, that we start to explore with examples of techniques in the next
section.
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Figure 2.2: Both Touch-Based and Pen-Based techniques let users specify where they
want annotations to be included relative to the content.
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Figure 2.3: Both Touch-Based and Pen-Based techniques let users specify the strategy
for creating white space at different moments (when): either before, while, or after
annotating. With Touch-Based techniques, users were free to both gesture and write
with a single hand (as illustrated in the after condition) or with two hands (as illustrated
in the before condition).

2.2.2 Implemented Techniques

We used SpaceInk to generate two sets of techniques: those that are Touch-Based, and
those that are Pen-Based (Figure 2.2). Each set is comprised of three techniques (the
vertical lines in Figure 2.1), one per value of when. For each technique, users choose
where to make room for annotations among four options, as detailed below:

• Touch-Based (Figure 2.2, left column): Given the ubiquitous use of single-finger
panning gestures to scroll Web pages while reading them, we decided to co-opt
the pinch-to-zoom gesture instead. We reasoned that zoom level would likely
be set once before the active reading started and seldom adjusted. Co-opting
it thus seemed less disruptive to users’ workflow. Diagonal pinch gestures1

create white space wrapped inside text; vertical gestures create space between
lines; and horizontal gestures create space between words. However, as pinch-
to-zoom proved often awkward to perform in tight spaces close to the screen
bezel, we decide to use a swipe gesture for margin expansion, as proposed in
[193]. This gesture can be distinguished from horizontal scrolling in web pages
or page flipping in paginated documents by recognizing a swipe starting from
the bezel [139].

• Pen-Based (Figure 2.2, right column): different types of white space are generated
depending on where the pen is when users start annotating. If starting in the
margin of a paragraph, the paragraph gets pushed towards the right. If starting

1whose direction d ∈ [20◦,70◦] in our current implementation.
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Figure 2.4: Experimental task. (left) stimulus: a participant is instructed to annotate the
highlighted text sharing of annotations with words Never too rich. (right)
response: she annotates in-context, making space for her ink using a between-words
strategy.

between two lines, the lines below the pen’s position get pushed downward.
If starting on the first word of a line, an empty box is added there and the
paragraph’s text gets wrapped around it. Finally, if starting on another word, or
between two words of the same line, words that follow the pen’s position are
pushed toward the right, reflowing all sentences that follow (if need be).

Figure 2.3 illustrates how gestures (or pen-down events) and actual inking actions are
temporally organized in each of the six techniques:

• Top row: users create space before inking. Touch-Based case: the size of the
white-space box is defined by the amplitude of the pinch gesture. Pen-Based case:
a box with a predefined size is created when the pen hovers the surface. In the
current proof-of-concept implementation, assuming an average font size of 3mm
(ascent+descent), a box on the side of a paragraph is 19mm wide; a box wrapped
in a paragraph is 19×19mm; a box between lines is 9mm high; a box between
words is 38mm wide.

• Middle row: users create space while inking. Touch-Based case: white space is
created by means of a pinch gesture. Pen-Based case: white space is automatically
added as the annotation gets longer, so as to prevent it from overlapping the
document’s content.

• Bottom row: users directly ink above the text and create white space to
accommodate their annotations only after they are done inking; using a pinch
gesture (Touch-Based case) or tapping on the ink to tell the system to create the
necessary amount of white space (Pen-Based case).

We implemented all six techniques and iterated on them through pilot studies.2 We
eventually decided to discard the Touch-Based technique that lets users adjust white
space while inking, as it proved too difficult for users to perform a pinch gesture while
writing at the same time. We identified properties of the remaining five techniques
that might affect user experience. In particular, the extent to which content adaptation
is under the user’s control is higher for Touch-Based techniques than for Pen-Based
techniques. With Touch-Based techniques, the pinch gesture acts as a rubber-band

2Short videos demonstrating each technique are available at
http://ilda.saclay.inria.fr/spaceink.
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interaction that defines the location and size of the created space. With Pen-Based
techniques, which rely on a single input channel, the control of the white-space
area is merged with the act of annotating. The system plays a more active role
in the specification of the area’s dimensions, which is either predefined (before) or
automatically computed by the system (while/after).

2.3 User Study

The aim of our experiment is to gather qualitative feedback about these representative
techniques, and to relate their performance with the contexts in which annotations are
made. Based on the definition of an annotation as a marking made of some content and
an anchor from [28], we introduce the following two factors to operationalize different
contexts in which annotations are made:q annotation Length: Short, Long, or Expanding; andq annotation Scope: Inline or Block.

The annotation’s Length corresponds to how many handwritten letters and symbols it
contains. This number can vary with the annotation context. For example, personal
annotations tend to be tacit and short, as opposed to annotations to be shared, which are
more verbose and explicit [103]. In addition to these two cases (Short and Long), we
also consider Expanding annotations in order to operationalize the situation where users
are incrementally structuring their thoughts, or where they want to add more ink to an
annotation, as a result of further investigation. This contrasts with the study reported
in [193] where users were always able to anticipate the content, and thus the length,
of their annotation. We believe that this is an important factor to consider, as long
or expanding annotations make it difficult or impossible for users to anticipate how
much space they will need to fit their markings. We expect this factor to impact before
techniques particularly. Indeed, users have to anticipate how much space to create so
as to make the annotation fit, which induces much premature commitment [61]. This
leads to our first hypothesis:

• H1: the usability of before techniques is affected by the length of the annotation.

The Scope factor can take the two values described by Marshall [102]: Block
corresponds to her margin anchor (i.e., the annotation’s scope is a paragraph), and Inline
to her range anchor (i.e., the annotation’s scope is a highlighted portion in a paragraph).
As people like to ensure proximity between an annotation and its anchor [103], Scope
might have an impact on their annotation strategy. This leads to our second hypothesis:

• H2: users want to embed the annotation inside the content when the anchor is a
portion of a paragraph (Inline).

The hypotheses formulated above suggest that there is no a priori clear winner, but
rather that each technique might have strengths and weaknesses. Our study aims at
identifying what strategies were effective and in what context. We follow a within-
subject design where participants have to perform annotation tasks under the above
six conditions, with each of the five techniques introduced in the previous section:
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Touch-Based+before, Touch-Based+after, Pen-Based+before, Pen-Based+while, and Pen-
Based+after. In all conditions, participants are instructed to put annotations as close as
possible to the highlighted anchor, and to minimize the amount of wasted white space.

2.3.1 Task

The experimental task is illustrated in Figure 2.4. Participants are presented with i) a
document in which a specific text fragment is highlighted (the annotation’s anchor), and
ii) the text of the annotation they have to write. We deliberately designed a task focused
on low-level aspects of interaction (visual perception, motor control), avoiding higher-
level cognitive processes that would have added noise due to inter-user variability in
the handling of different kinds of annotations. The document to annotate was derived
from the Wikipedia page about text annotation. The contents of annotations come
from MacKenzie and Soukoreff’s phrase set [101], and are not semantically related
to their scope. Short annotations consist of 3 words; Long ones of 7. In the case of
variable-length annotations (random length between 5 and 10 words), the system starts
by showing the first 3 words, revealing one more word every two seconds until all
words are shown. An ellipsis (. . . ) is shown to indicate when more words are yet to be
revealed.

2.3.2 Participants and Apparatus

Twelve unpaid volunteers (4 female), daily computer users, age 23 to 43 year-old
(average 27.3, median 25), served in the experiment. It was conducted on a Microsoft
Surface Book 2, equipped with a 13" screen (resolution 3000×2000 pixels) that
supports multitouch and pen input. Participants were encouraged to take the device
and adjust their hold for comfortable pen and touch interaction.

2.3.3 Procedure

Participants first sign a consent form and fill out a demographic questionnaire. The
experiment is then split in two blocks, one per set of techniques (Touch-Based and
Pen-Based). Each block is then divided into sub-blocks, one for each technique (two
for Touch-Based, three for Pen-Based). The presentation order of blocks and sub-
blocks is counterbalanced across participants. In each sub-block, the operator briefly
introduces the technique using a short video clip, and then lets participants train with
the technique.3 After this training phase, participants complete a series of 12 trials, 2
replications presented in a row for each Length× Scope condition. The presentation
order of these conditions is counterbalanced across participants as well. At the end of
each sub-block, participants are asked to rate the technique along five 6-point Likert
scales for: physical comfort, cognitive load, enjoyment, efficiency (for Short, Long
and Expanding annotations separately), and system predictability. At the end of the
experiment, participants are further asked to rank the five techniques along these same
axes (with the exception of system predictability, which might sound too abstract
to participants). We use this final ranking in order to sanity-check that individual
scores given after using each technique actually reflect participants’ relative ranking of
techniques (as individual scores might have been influenced by the presentation order).

3This training phase consistently lasted about 5 minutes for all participants, even though they were not
given any time limit.
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Participants are encouraged to verbally share their impressions all along the experiment.
In addition to audio recordings, the operator writes down a summary of each
participant’s feedback. The system logs participants’ strategy for annotating (i.e.,
where they create space), and takes screenshots at the end of each trial. The whole
procedure lasts around 75 minutes.

2.3.3.1 Data Collection & Data Analysis

Our experimental software collected data about how users made space for their
annotations, where they made space in the document, the amount of time they took to
perform each gesture. It also recorded the final set of annotations before proceeding
to the next trial. We also audio recorded participants to capture their thoughts and
comments. A single experimenter was present for each session. The experimenter
retrieved comments and feedback using pen and paper notebook.

We then analyzed all data gathered depending on where people have annotated. We
categorized feedback and comments as follows: positive feedback, negative feedback,
problems encountered with the interface and wishes about additional functionality.
Finally, we compared feedback from participants and results from the study to better
understand people strategies’ to make space for annotations.

P1 P11 P6 P1(a) (b) (c) (d)

Figure 2.5: Sample participant annotations illustrating different strategies.

2.3.4 Results

Figure 2.6 shows what strategies (where) participants used to annotate and Figure 2.5
illustrates examples resulting from these different strategies. Data and screenshots
collected during the study, as well as additional charts, are available at http://ilda.
saclay.inria.fr/spaceink

All participants experience each technique. The experiment design can be summarized
as follows:

12 users
× 5 techniques
× 3 levels of annotation Length
× 2 levels of Scope
= 360 trials in total

2.3.4.1 People use the full range of strategies

Overall, participants mostly wrapped their annotations in paragraphs (36.4%) or
inserted them between lines (34.2%) (Figure 2.6-a). Strategies that consist of annotating
between words (16.9%) or on the side of a paragraph (12.6%) were used less frequently.
They favored the three strategies that embed annotations inside the content over
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Figure 2.6: Distribution of participants’ space-making strategies (where): (a) for
all trials, (b) per Length, (c) per Scope, (d-e) per technique conditions, and (f) per
participant.

annotations on the paragraph’s side. This is consistent with findings reported in [193].
A breakdown of the distribution of strategies per annotation Length (Figure 2.6-b) also
reveals that participants tend to embed annotations between words when they are Short
(33.3%), but not when they are Expanding (6.6%) or Long (10.7%). This effect is not
very surprising, as our implementation of the between-words strategy is limited to a
single line. As soon as the whitespace area is taller than a line, it becomes wrapped in
paragraph.

What is particularly interesting to constrast with previous findings is that participants
did adopt the between-words strategy. They used it to closely integrate annotation and
content, especially to annotate a portion of text within a paragraph (Inline). Figure 2.6-c
shows that the between-words strategy was often chosen (25.1%) in the Inline condition.
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Comparing the two Scope conditions, we can see a clear inversion in the distribution
between side-of-paragraph and between-words strategies. This is in line with our
expectations about users’ will to minimize the distance between an annotation and its
anchor (H2).

The technique itself does not seem to influence the choice of strategy (Figure 2.6-(d-
e)). What is noteworthy, however, is the variability between participants (Figure 2.6-
f). During the experiment, the operator noticed that participants had their personal
preferences regarding their strategy, which remained rather consistent all along the
experiment. Figure 2.6-f reports the distribution of strategies per participant, and Figure
2.5 shows sample trials that illustrate those different strategies. For instance, participant
P11 liked using vertical expansion. She used it both when the anchor was the Block
and when the anchor was Inline, by creating some space below the paragraph or below
the line containing the highlighted portion of text. In contrast, participant P6 wrapped
almost all his annotations in the text, whatever the anchor, without worrying about
consequences in terms of content reflowing. Finally, although the annotations’ anchor
was always highlighted, two participants chose to visually represent their scope (see
P1’s bracket in Figure 2.5-d). These observations support the fact that the strategy for
annotating is personal, and that techniques should offer as much flexibility as possible
to accommodate a wide variety of users.

2.3.4.2 People do not estimate required space accurately

The screenshots taken by the system at the end of each trial reveal that participants
were often unable to estimate the length of their handwritten annotations, and ended
up annotating over the text with before techniques in some cases. This is in line with
hypothesis H1 but, surprisingly, this happened even in the case of Short annotations
(Figure 2.7). The cost of premature commitment and its impact on the perceived
usability of before techniques is reflected in participants’ ratings. They found before
techniques much less efficient than while and after techniques. They also often
complained about the predefined size of boxes with the Pen-Based+before technique.

Participants’ ratings, reported in Figure 2.8, suggest that Touch-Based techniques were
rated slightly higher regarding predictability, as users explicitly define the space for
annotating with a pinch gesture. But Pen-Based techniques were enjoyed much more.
Participants found them more comfortable, and easier to use. This suggests a trade-off
between predictability and fluidity: while Touch-Based techniques are more predictable,
users might favor the fluidity offered by Pen-Based techniques, which rely on a single
input channel for completing all steps in the annotation process. Interestingly, the
difference in terms of predictability is quite small. Although there were some cases
where participants got surprised by the space-making strategy the system applied when
using Pen-Based techniques – especially so with the after version – participants quickly
got accustomed to the fact that the choice of strategy was driven by the location of the
first pen-down event. We even observed that 10 out of 12 participants tapped on the
predefined area before actually annotating when using the Pen-Based+before technique.
The initial tap was a means to explicitly tell the system where to make room for the
annotation.
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Figure 2.7: Sample trials with techniques making space before inking, in which
participants had difficulties anticipating the length of annotations.
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Figure 2.8: Participants’ ratings of the five techniques.

2.3.4.3 Less agency may prove more comfortable

A few participants commented that they did not like writing over the text when
using after techniques. However, participants’ average ratings about comfort do not
strongly reflect this: both Pen-Based+while and Pen-Based+after received positive scores.
Participants actually rated these two techniques high, as they really enjoyed not having
to perform gestures. Interestingly, the fact that the text was dynamically reflowing
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as they were inking (in the Pen-Based+while condition) did not seem to disturb them.
This suggests a trade-off between visual interference and the number of actions: users
might find it somewhat disturbing to annotate on top of content, or to see the document
getting continuously reflowed as they write, but they find this preferable to performing
more interaction steps. However, this observation might not hold in more realistic
contexts where users check some elements downstream in the text while annotating. In
such cases, the reflowing of content might be a nuisance.

Pen-Based+while and Pen-Based+after seem to be the favored techniques overall, but
results remain contrasted. For instance, in terms of predictability, Touch-Based+after
fares better than Pen-Based+after. This is reflected in participants’ comments that praise
the quality of all techniques. Five participants actually commented that they would like
to have a tool that integrates the best of each approach. For example, P3 said: "I could
clearly see where each technique performed well. If you merge them into one, I would
use such a tool."

2.4 In-Context Annotations In Practice

The above user study sheds light on different aspects of in-context annotations, that
require interleaving space-making interactions and inking. So far, we investigated
two techniques in each cell of the design space (pen-only and pen+touch), favoring
easy-to-learn and -use techniques based on common gestures. Our main goal was to
understand what strategies were effective and in what context. But our general intent
is to better support users over the entire document annotation process: when they
are making in-context annotations, but when they are inking overlay marks as well.
Aiming at streamlining these different types of annotations and considering insights
from our study, we identify three key design requirements:

R1: enable lightweight, seamless transitions between overlay ink and in-context
annotations, as users make use of both, simultaneously;

R2: support several space-making strategies for in-context annotations, as the
choice of strategy is both context- and user-dependent;

R3: make overlay ink reflow with content, as making space for in-context
annotations causes such content reflowing.

We describe our rationale for a Web-based annotation environment that meets these
requirements. Implemented in Javascript as a Google Chrome extension, this proof-of-
concept allows us to test SpaceInk techniques with various devices, annotating arbitrary
single-column HTML pages as well as fixed page size formats after conversion (for
instance, PDF documents), as demonstrated in the companion video.

2.4.1 Seamless Transitions between Inks (R1)

During active reading, people interleave marks such as circles or underlines to highlight
some portion of content to explicitly anchor their thoughts, which they express through
the body of their annotation [104]. Letting users make both overlay ink marks and
space for handwritten in-context annotations is thus essential. It alleviates constraints
imposed by the document’s layout and lets them focus on capturing their thoughts.
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(a)

(b)

(c)

Figure 2.9: Using both overlay ink and in-context annotations to fix a typo (a), or to
suggest higher-level revisions (b-c).

Figure 2.9 illustrates such simple cases. However, we must be careful about the cost of
mode-switching between the two types of ink.

The mode-switch problem is ubiquitous in UI design, and HCI researchers have already
faced it in similar contexts, for instance when designing systems where freeform
ink coexists with ink-based commands (or stroke shortcuts [7]). The Inferred-Mode
protocol [147] addresses the problem by attempting to infer users’ intent from the
context. By doing so, it removes the need for an explicit delimiter to switch between
modes. This is an elegant solution, but because of the high variability in handwriting
and annotating, it is unclear in our context which criteria could effectively disambiguate
between the two types of inks. The very same variability makes pigtail delimiters [73],
as used in TextTearing [193, 194], prone to false activations. For instance, a curly
bracket might get confused with a pigtail gesture.
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We rather opted for prefix flicks [195]: by default,
the pen overlays ink on top of the content, without
changing the layout; but when performing a flick
gesture, the pen turns into an in-context annotation
tool. This delimiter is particularly interesting because
it allows users to specify the space-making strategy
while switching mode: the strategy is inferred from
the relative position of the initial point of contact
and direction of the flick gesture, as detailed next.

When the flick gesture is initiated in
a margin, the subsequent annotation
will push the paragraph, widening that
margin. When performed over text, i) a

diagonal flick gesture sets the strategy to wrapped
in paragraph; ii) a horizontal one sets it to between
words ; and iii) a vertical one sets it to
between lines. Pen-based flick gestures avoid breaking

the fluidity of interaction, as they only involve one
input modality and avoid artificial pauses. The pen
automatically reverts back to overlay-ink mode when
its location is more than 1cm from the bounding box
of the in-context annotation. This solution avoids both
bezel swipe gestures, which are usually dedicated to
existing commands [139], and pinch gestures, which
are often already assigned to navigation actions [141].
An alternative to prefix flicks for mode switching could
come from [30]. For example, users could slide their
index down the barrel of the pen to touch the surface
with their finger while inking with the pen, which
could be discriminated from pen-only input.

In addition to the above, a SpaceInk icon , displayed in the bottom left corner,
slowly pulses when SpaceInk is activated. Users can rely on this explicit representation
to check the current mode, and can tap the icon to force a mode switch. They can also
hold their finger still on the icon, using it as a spring-loaded control [75] to change the
current mode temporarily.
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flick

write

Figure 2.10: In-context annotations coexist with overlay ink. (a) A user highlights and
underlines some content (overlaid ink). (b) She performs a horizontal flick gesture to
add some white space between two words. (c) She inserts an in-context annotation.
White space automatically expands to accommodate the annotation, causing the content
to reflow. All ink marks overlaid on content remain spatially-aligned with their scope.

2.4.2 Combining Strategies for Making Space (R2)

Observations from our study can inform the design of input techniques that make space
for in-context annotations:

G1: rely, as far as possible, on pen input only;
G2: avoid premature commitment;
G3: enable users to easily switch between different space-making strategies.

We address G1 and G2 by combining prefix flicks to specify the space-making
strategy (described earlier) with techniques that adjust the white-space area while
inking (Figure 2.3, middle row). The created white space incrementally expands to
accommodate the annotation, as the user writes it. We also enable users to make
more space on demand. Selecting an annotation activates it, enabling users to adjust
the underlying white space using a pinch gesture, or manipulating the handles of its
resizing box. That box is transient, progressively fading out when not interacted with,
and instantaneously disappearing as soon as users start annotating again. Giving users
control over the white space area’s dimensions is important. For instance, it lets them
prevent dynamic content from reflowing if they would rather not have it move while
they are annotating. It also lets them create some white space for, e.g., sketching, and
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<body>

  Text annotations can serve
  a variety of functions for

  <span
    class= "floatSpace"
    id="floatElement"
    style= "
      width: 148.636px;
      height: 180.909px;
      float: left;" >
  </span>

  both private and public
  reading and communication
  practices. In their article

...

</body>

Figure 2.11: An annotation’s spatial scope is encoded as a <span> element in the
DOM of the Web page.

then freely draw strokes anywhere in that space, since those strokes do not have to
remain inside the 1cm-distance threshold introduced earlier.

We address G3 by adding Touch-Based-after to the suite of techniques available in
the environment. At any moment, users can grab an existing in-context annotation
with a finger and move it. The associated space-making strategy gets automatically
updated based on the finger’s location (in the margin, between lines, on the first word
of a line, anywhere else on a line). When the strategy is updated, white space around
the annotation gets cropped, minimizing wasted space. This also provides users with
a way to quickly optimize space a posteriori when the extra white space is deemed
unnecessary.

In addition to addressing the above guidelines, the system lets users turn in-context
annotations into overlaid ink and vice versa. Annotation bounding boxes (which appear
when tapping on them) are decorated with the SpaceInk icon . Tapping that icon
toggles between states (overlaid or in-context).

Finally, users can restore the document’s original layout at any time by performing a
hand swipe (i.e., a swipe gesture using three or more fingers). The document’s outer
margins grow wider, and all in-context annotations get moved there, the document’s
content reflowing back to its original layout. Performing the same gesture again puts
all annotations back in context, with all user-created white-space areas restored.

In summary, our prototype is designed to support a workflow in which users fluidly
interweave both overlay marks and in-context annotations. As shown in Figure 2.10,
users only require a pen, which they use both to ink and to make room for annotations.
The latter action is triggered by flick gestures, the system automatically creating some
white space and expanding it according to the specific gesture made. Users can also
explicitly take control on-demand and adjust space precisely, either before or after the
annotation has been written.
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2.4.3 Aligning Ink(s) and Content (R3)

As already mentioned, prior work has studied solutions to keep overlay marks consistent
with their scope when the document gets reflowed [13, 57]. In our case, this is of
primary importance as in-context annotations can themselves cause the content to
reflow. Figure 2.10 illustrates this on a simple example.

To ensure that in-context annotations preserve their position relative to the content,
and that overlay ink remains spatially-aligned with its scope, our proof-of-concept
implementation relies on a dual-layer UI canvas. Interaction with, and rendering
of, annotations are handled in a transparent layer on top of the document using
Paper.js (http://paperjs.org). White space for annotations is then inserted in the
content by adding <span> elements of the appropriate size to the HTML page’s DOM
(Figure 2.11). These <span> element are inserted as children of the closest-ancestor
block (<div>, <p>, etc.), right after the word that is closest to the annotation’s starting
point.

Dummy <span> elements also get inserted for overlay ink. Their size is null, as their
purpose is not to push content, but rather to act as spatial anchors for the overlaid ink
marks. As the <span> nodes get reflowed along with all other inline CSS elements
in the block, ensuring that overlay marks remain consistently aligned with their scope
is straightforward. It can be achieved just by listening for DOM reflow events and
requesting the upper layer to re-render annotations in the right place. This approach
works in most cases, and could be extended with techniques described in [13, 57] to
handle more advanced cases where overlay marks should be stretched or split.

2.5 Future Work

One limitation of our approach lies in the technique for positioning annotations relative
to the document’s content: it assumes that this content does not change. Reconciling
annotations with content that does change, as is often the case with Web pages, can be
a difficult problem [128]. Additional studies in the spirit of the one by Brush et al. [28]
are needed to design more elaborate repositioning strategies. Such strategies could
prevent, e.g., the orphaning of annotations, which is perceived as an important issue by
users [29].

Another question worth further investigation is the potential adverse impact of content
reflowing on users’ mental map of the document. When performing active reading
on paper, people sometimes use annotations to build a spatial representation of the
document [121]. If reading the document in a non-linear way, in-context annotations
might interfere with this mental process, as they could be changing the document’s
layout frequently. At the same time, people are increasingly used to switching between
different devices that render documents differently depending on factors such as, e.g.,
screen size. It is thus actually unclear whether they build such spatial maps with digital
content. Nevertheless, studying this type of annotations in higher-level tasks than
the ones we considered in our study would help understand what are the benefits and
drawbacks of content reflowing in terms of cognition.

Finally, we believe that an approach complementary to the one explored in SpaceInk
is also worth investigating. Elaborating upon what was initiated with overlay ink
in [13, 57], in-context annotations could be transformed dynamically to make them
fit inside the available white space while optimizing spatial proximity with their
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scope. Techniques could include simple affine transforms applied to vector-based
ink, morphing annotations (treated as textures) into arbitrary shapes, and reflowing
handwritten text, for instance turning a long line into several shorter ones.
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Projects in the previous part focused on interactive systems and interaction techniques
to support sense-making activities. This second part investigates techniques to visually
represent insights and answers to questions gained from such sense-making activities.
We focus on one of the most elaborate data structure: multivariate networks. Their
complex structure can be represented in various manners, using node-link diagrams or
adjacency matrices. Visual representations of those structures help users in a variety of
tasks, such as understanding relationships between people, visualizing co-occurrences
between words, etc. When creating a visualization of such structures for communication
purposes, node-link diagrams remain the favored representation. But the authoring of
node-link diagrams from multivariate networks remains a difficult task, especially for
designers who want to have flexibility and be able to work iteratively in the design
process.

Projects in this part investigate solutions to better support creativity in the design
workflow of node-link diagrams, and to extend the set of encoding variables available
to designers to represent data attributes associated with the edges of multi-variate
networks, by considering motion variables and evaluating their potential from a
perception perspective.
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CHAPTER 3
Creating expressive node-link

diagrams using Graphies

The work presented here is under review as a journal submission. During this project I
was responsible for the design and implementation of prototypes and techniques, and
I designed and conducted the studies. The paper was written collaboratively by all
authors.

The design of a visualization is primarily driven by decisions about chart type and
visual mappings, which focus essentially on perceptual effectiveness. But when
the primary purpose of a visualization is to communicate a message and engage its
audience [145], designers will adopt a more creative process. This process will include
considerations about, e.g., memorability and aesthetics [90], which will uniquely
influence the decisions made by each designer.

Expressive design approaches bring flexibility in this creative process, enabling
designers to easily customize their visualizations and quickly test alternatives. They
achieve this in part by removing the artificial boundary between the specification of
the visualization on one side, and its interactive customization on the other side. They
either integrate both activities in a single environment [90, 97, 145] or build bridges
between them [24]. These tools support a wide range of charts, as long as they can be
derived from tabular data.

They offer little or no support for graph data, however. Designers who want to create
expressive network visualizations must resort to dedicated visualization and analysis
software and then customize the output in a general-purpose vector graphics editor.
Such software [18, 8, 120] are good generative tools [24], but they fail to support the
flexible, iterative design process that is key to expressive visualization authoring.

Informed by a user-centered design process involving data analysts working with
networks, we contribute Graphies,1 an expressive design environment for creating
node-link diagrams for communication purposes.

1https://hugoromat.github.io/graphies
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Figure 3.1: Overview of Graphies’ Web-based interface, running on a tablet with
support for pen+touch.

Graphies, illustrated in Figure 4.1, lets designers incrementally populate a canvas
with nodes and links of interest from multivariate graph datasets; specify visual
mappings and apply them to arbitrary selections of such elements; and customize
the visual appearance of individual elements as well. All such actions can be freely
intertwined, providing designers with a flexible workflow that streamlines the creative
process [23, 97], effectively supporting quick design iterations. Individual creativity is
further supported by the possibility to, e.g., sketch node shapes or interactively bundle
or fan links. Graphies also provides designers with communication-oriented features,
including an automatic legend generator and tools to export sequences of snapshots or
animated movies that convey different perspectives on the same graph or illustrate its
evolution over time.

After giving an overview of related work, we describe our user-centered design process.
We then discuss Graphies’ interaction model and features. Finally, we report on a
first-use study in which participants successfully reproduced several expressive designs,
and created their own designs as well.

3.1 Related Work

The literature about graph visualization is rich. We limit our overview to the most
related systems for general-purpose expressive visualization design on one side, and
for visual graph analysis and graph visualization authoring on the other side, as we
draw from both research areas.

3.1.1 General-purpose Expressive Visualization Design

In their taxonomy, Grammel et al. [59] identify the template editor and the visual
builder as the best user interface scheme for creating visualizations. By using templates
as starting points, editors such as Tableau [167] or ManyEyes [178] allow users to
quickly design visuals. However, template-based approaches offer limited support
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for customization [145] in comparison to visual builders. With the latter, users have
more control over how the graphical marks are assembled, and how data attributes are
mapped to visual properties.

Mendez et al. [111] compare Tableau’s classic top-down approach with iVolver’s [112]
bottom-up (or constructive [82]) approach. The top-down approach of Tableau is
observed to be faster, but less transparent and less flexible, thus less adapted to the
design of personalized, creative visuals. On the contrary, the bottom-up approach of
iVolver is observed to encourage users to explore alternative visual designs.

Recent work has focused on environments that explicitly support expressive design.
Prominent examples include Lyra [145] and Data Illustrator [97]. Users associate
data with initially-agnostic vector glyphs, thus avoiding too much premature
commitment [61] in the creative process. The two differ in their interaction model for
mapping data to visual variables. Lyra works with drag-and-drop actions from data
to interactive placeholders on glyphs, while Data Illustrator integrates data bindings
as possible values for glyph (or layout) properties, that users can select in inspectors.
Charticulator [132] follows the same general approach but considers layout as a driving
element in the authoring process. With Data-driven guides [90], designers create
freeform illustrations in a vector graphics editing environment, and can bind geometric
properties of those shapes (length, position and area) to data attributes.

These expressive authoring tools offer much more flexibility than generative tools (e.g.,
programming frameworks such as D3 [25], or business intelligence products such as
Tableau [167]), the latter often requiring designers to resort to vector graphics drawing
tools to manually customize their output [24]. However, while expressive tools enable
the creation of a wide range of visualizations, they work with tabular data, and have
little or no support for graph data structures. Those that do, such as iVisDesigner [131]
or Charticulator [132], are forced to expose the concepts of nodes and links in an
indirect, somewhat cumbersome manner, failing to explicitly represent the multivariate
data in the context of the graph’s topology.

3.1.2 Authoring Graph Visualizations

While the above environments make it possible to create a wide range of visualizations,
other systems are specifically designed for working with graph data structures and
the specific challenges that they raise. Indeed, representing the topological structure
and the attributes associated with the nodes and links of multivariate graphs is often
difficult. For instance, spatial position is typically under the control of the graph layout
algorithm, which tries to produce a representation that is legible, based on heuristics
such as minimizing the amount of link crossings [183]. As a consequence, node size
variations are fairly constrained, eventually limiting the number of encoding channels
for the visual mapping of data attributes [135]. The problem gets more difficult when
graphs grow in size and complexity [179] and when they evolve [89].

Some systems operate at a very low-level: GraphViz [48] consists of command-line
programs taking graph data files as input, that users can edit in any text editor to change
the appearance of nodes and links. GUESS [2] provides users with an interactive
interpreter in which they can perform selections and filtering operations on the loaded
data, and specify visual mappings by means of code instructions. D3 [25] provides
developers with a full-featured API to generate interactive graph visualizations on the
Web. Still on the Web, GraphCoiffure [165] is a system that lets users apply style
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sheets to static graphs. These systems have much expressive power but they all require
programming skills. Users cannot edit the visual representation directly, which severely
limits the accessibility of those tools [90, 145] and does not favor an iterative design
process.

NodeXL [164, 162], as a Microsoft Excel plug-in for the creation of node-link diagrams,
is accessible to a broader audience. NodeXL lets users specify mappings from data
attributes to several visual variables. Users benefit from their experience with the
well-known spreadsheet program, but NodeXL has to comply with Excel’s model for
producing charts: users have to work conjointly with raw data in a tabular form and
with the graphics. Again, direct editing of the visual representation is limited.

Focused on data-driven storytelling, DataToon [89] has some commonalities with
Graphies, which we discuss in Section 3.3. Its focus is different, however, as it is
designed for creating comics-inspired, paginated representations of relatively small
dynamic networks [10]; whereas Graphies rather puts emphasis on the creation of
elaborate visual mappings for larger multivariate networks.

3.1.3 Visual Exploration of Multivariate Graphs

Beyond the above systems, that are focused on authoring graph visualizations, there
is a variety of tools for the visual analysis of graphs. We focus here on systems that
provide effective support for the visualization of multivariate graphs. One possibility
consists in forcing specific layouts by mapping up to two node attributes to spatial
position. Both Semantic substrates [161] and PivotGraph [184] lay out nodes in a
scatterplot-like manner. This makes it possible to encode attributes with position,
but can also adversely impact the graphs’ legibility as node placement is no longer
optimized with respect to the earlier-mentioned legibility heuristics. This calls for
some interaction in order to enable users to switch between different projected views,
an idea that was further explored in GraphDice [22].

The Network Lens [86], as all systems that adopt a focus+context strategy, heavily
relies on interaction. Users move a lens on top of the graph represented as a basic
node-link diagram to reveal plots associated with its nodes’ attributes. Another option
consists of aggregating nodes using different clustering strategies based not only on
topology, but on attribute values as well [1, 125, 157].

GraphTrail [46] takes a radically different approach, focusing on the multi-variate data
associated with the graph’s elements, that get displayed using charts that bin nodes
and links according to selected attributes. Users can get an overview of the graph
by juxtaposing several such charts. The idea of hiding the topology to the benefit of
attribute-based statistical charts had already been explored in NetLens [87], but was
limited to a specific meta-model at the time. DOSA [176] explores a compromise
between this approach and node-link diagrams, embedding the charts into the node-link
diagram to represent aggregated nodes.

Systems such as Gephi [18], Tulip [8] and Pajek [120] are designed to support the
exploration of large graphs. They typically have a steep learning curve, as they provide
users with a rich set of features: filtering, aggregation and analysis functions, as well
as presentation functions. Users can change the appearance of graph elements by
specifying basic visual mappings. However, these apply globally, limiting flexibility
as elements cannot be edited individually by direct manipulation. The workflow is
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primarily intended to support data analysis, and the associated interaction model is
often indirect and complex [22, 71]. Again, the flexibility and accessibility of the
design workflow is limited.

In summary: on one hand, general-purpose expressive visualization environments are
accessible solutions that bring much flexibility to the design workflow, but that are
not well-adapted to graph data; and on the other hand, graph visualization software
are well adapted to these particular data structures, but feature very limited support
for expressive design. Our goal with Graphies is to reconcile both, so as to ease the
expressive design of node-link diagrams from graph-structured data.

3.2 Design process

We have been working on the design of Graphies over the course of one year with data
analysts from a consulting company. The company provides services such as making
cartographies of innovation in various domains of activity, by surveying and monitoring
the scientific and technological production of the different actors in these domains.
The analysts’ work is supported by a large database that contains multiple types of
resources (actors, scientific articles, patents, technical documents) and multiple types
of relations (authorship, collaboration, citation). Based on these data, which form a
large, multivariate, and heterogeneous network [119], analysts can picture a complex
domain, and advise their clients about opportunities for innovation. Depending on
their clients’ needs, they work on tasks such as, e.g., identifying the main actors in
a given domain, how different domains are articulated, what domains are active in
academia and industry. Essentially, they have to find insights in the data, and present
those findings to their clients, which often involves creating node-link diagrams.

The first author working in close collaboration with the above-mentioned company,
we had the opportunity to involve data analysts regularly in the iterative development
of Graphies. We conducted a longitudinal observation that helped us understand
their tasks and workflow, the tools they use, how they use them, and what sort of
problems they face. These observations informed the initial design of Graphies. We
then conducted five sessions of demonstrations and interviews regularly distributed
throughout the design process. During those sessions, data analysts played with the
latest iteration on the Graphies prototype. We gathered feedback about 1) the features
that we had already implemented, 2) the features that were under development, and
3) the features that data analysts wanted us to include.

Our first high-level observation is consistent with what Spritzer et al. report about
journalists [165]. The typical network visualization construction workflow of these
expert users involves at least two types of tools: 1) a graph analysis tool such as Pajek
or Gephi to delimit the subgraph of interest and apply coarse-grained visual mappings
to it (such as setting node size based on a data attribute, color on another, and showing
node labels); and 2) a vector drawing editor such as Adobe Illustrator or even Microsoft
Powerpoint to further edit the diagram: making manual adjustments to the layout
and visual variables of some nodes and links to emphasize them, adding annotations,
improving the overall visual design. This also echoes the observations reported by
Bigelow et al. in their study of “how designers design with data" [23], as well as the
general observations made about design workflows in recent work about expressive
visualization environments [24, 90, 97, 145, 89]. This kind of two-step workflow that
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involves two independent tools suffers from multiple usability problems, as mentioned
already.

The main problem is the artificial, and sometimes fuzzy, boundary imposed by the
use of two standalone applications. When moving from the graph analysis tool to
the vector-graphics editor, relations between visual marks and data are lost [24]. Any
small modification that involves updating visual variables based on data attribute values
entails going back to the first tool, regenerating the raw diagram, and then redoing all
personalization edits in the second tool [23]. Another problem in the case of node-link
diagrams is that, topological information having been lost in the vector graphics editor,
editing operations in the personalization phase that rely on this information, such as,
e.g., adjusting the topology, or bundling and fanning edges, require tedious low-level
geometry editing. In addition, a striking observation we made was how often users
have to go back and forth between the visualization and the raw data in the graph
analysis tool. This is consistent with Grammel et al.’s study [60], who observed that
users switch back and forth between visual mappings and data attribute selection when
constructing a visualization.

Relating our observations to Green’s cognitive dimensions framework [61], we see that
our users’ design process is impeded mostly by significant premature commitment and
by the viscosity associated with any small change, which is particularly pronounced
when handling node-link diagrams. Based on these observations, we identified the
following set of initial design requirements:

• R1: Avoid artificial boundaries between the data encoding stage and the visual
design stage [97]: populating the canvas with nodes and links; specifying visual
mappings; manually adjusting the layout and appearance of individual elements;
adding static content such as annotations. All such actions should be seamlessly
integrated into the same workspace, enabling designers to interleave them at
will.

• R2: Enable designers to perform those operations using rapid, incremental,
reversible actions whose effects on the objects of interest are visible immediately,
following the principles of direct manipulation [159].

• R3: Enable designers to specify a wide range of on-node and on-edge
encodings [119], for both categorical and numerical attributes.

In one of the later sessions with data analysts, our prototype had reached a sufficient
level of maturity to conduct a preliminary evaluation. We asked three data analysts
to perform a series of three specific tasks, first with their usual set of tools, then with
Graphies. We worked in collaboration with a fourth analyst so as to make the tasks
representative of their work. The other three data analysts were then asked to explore
a dataset to answer a question that a client could have, and subsequently design a
visualization to present their findings. The task was over when participants were
satisfied with the node-link diagram they had made. We encouraged them to express
out loud their actions when using Graphies. We also conducted a semi-structured
interview at the end of the session to capture their general impressions. This preliminary
study yielded encouraging results: all participants were satisfied with the produced
visualizations, and never felt the need to resort to external tools. They particularly
appreciated the ability to access data in-situ, directly from the canvas where they were
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designing their visualization (R1), and how rich (R3) and easy-to-explore (R2) the
design space of visual encodings was.

At different stages during these sessions, data analysts expressed the need for additional
features, which we took into consideration at various stages in the development of
Graphies. For instance, in situations where they had to deal with networks similar
in structure and content to other networks they had created visualizations of before,
they wanted to be able to reuse those existing visualizations as starting points. We
further discuss this feature in Section 3.3.4. They also made a set of related feature
requests: be able to easily explore different designs and compare them; be able to
animate between the stages of a design to better understand the differences between
them; make it possible to export series of diagrams for the same network, arranged
into an image gallery for storytelling purposes [89]. We derived the following two
additional requirements from these feature requests:

• R4: Going beyond support for basic undo (R2), enable multiple visualizations of
the same network to co-exist, and let users easily fork and switch between them
to explore alternative designs.

• R5: Enable smooth, animated transitions between these different visualizations,
both as a means to help users keep track of changes and to produce animated
node-link diagrams [11] that can support a rudimentary form of network
storytelling [26].

3.3 Graphies

Figure 3.2: Graphies: main user interface components. The MetaGraph, Visual
Mappings and Timeline are organized on independent layers.
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(a) (b) (c)

(d) (e)
Figure 3.3: Applying a filter to nodes of type keyword: (a) there are initially 220 such
nodes; (b-c) only selecting nodes whose attribute numberTimeUsed > 200 yields 4
results; (d-e) dragging-and-dropping those 4 nodes on the canvas.

As an expressive design tool, Graphies is primarily aimed at supporting the authoring
of node-link diagrams made for communication purposes. In such contexts, users often
know what elements or types of elements they want to show. They also have some idea
about how they want to show them, but need to be able to quickly test different options.
The core challenge is not to display all nodes and links, but rather to let designers build
personalized views on subsets of the data using a flexible, iterative workflow.

Figure 3.2 shows Graphies’ interface. Its main component is a zoomable canvas
that holds the diagram. The MetaGraph on the left provides a summary of the full
dataset (showing the different types of nodes and how they are connected), allowing
users to incrementally populate the main canvas by dragging-and-dropping meta-nodes
and meta-links directly in it. All interactions to modify the nodes’ and links’ visual
appearance and spatial layout are performed by direct manipulations in the canvas or
by invoking contextual widgets (shown in Figures 3.4 & 3.6). The Toolbar features
icons that trigger global actions: optimize the layout, toggle annotation mode, save the
workspace, export the diagram as a picture or video. Finally, a Timeline enables users
to revert back to any past state of the diagram.

Implemented as a Web application, Graphies runs on a variety of devices: workstations
equipped with mouse and keyboard, multi-touch devices, devices with support for pen
+ touch. On tactile surfaces, all navigation actions and manipulations of graphical
elements can be triggered with touch gestures. When the device supports pen input,
all interactions (including text entry) can be performed directly on screen (Figure 4.1).
Such pen + touch environments are particularly well suited to designing node-link
diagrams, as they make precise, arbitrarily-shaped selections of graph elements easy
to perform. They also provide good support for free-form annotations, which can be
useful when designing for communication purposes.

3.3.1 Populating the Canvas with Data

Users can import graphs from JSON files, or load previously-saved diagrams. The
MetaGraph gets automatically populated with the different types of nodes and links
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Figure 3.4: Contextual toolbars for node and link selections.

(a) (b) (c) (d)

Figure 3.5: Sample node-link diagrams designed with Graphies: (a) Star Wars character
co-occurrences; (b) character co-occurrences in Victor Hugo’s Les Misérables; (c)
subset of SIGCHI publications and authors with keyword “Information Visualization";
and (d) flights in the USA. Annotations are used in (b) to add a title, and in (d) to show
the axes used for node layout.

that are declared in the graph: for instance, in Figure 3.2, which shows HCI publication
data, nodes are of type: document, keyword and author. Each node (resp. link) in
the MetaGraph is thus an aggregated representation of all nodes (resp. links) of the
corresponding type in the dataset.

The MetaGraph allows users to populate the canvas without requiring them to interact
with the raw data. It takes inspiration from OntoVis [156], while adding support
for multivariate edges, and filtering. Similar to DataToon [89], the basic interaction
consists of dragging a node or link type from the MetaGraph to the canvas to populate
the latter with the corresponding elements. But unlike DataToon, which only enables
a posteriori filtering of elements by direct selection after they have been dropped on
the canvas, Graphies enables a priori declarative restrictions based on attribute values,
before dragging elements. For instance, clicking on meta-node keyword in Figure 3.3
enables users to restrict the selection to those with the highest frequency of use (e.g.,
those used at least 200 times). Once a filter is defined, users can drag either the whole
result list or individual items to the canvas. Such a priori declarative filtering enables
designers to deal with larger, more complex graphs featuring multiple attributes, both
categorical and quantitative.

Dragging and dropping meta-nodes in the canvas only populates it with the
corresponding nodes. To add links, users then have to drag-and-drop meta-links.
They can be dropped on a node selection, in which case the canvas will be populated
with the subset of links that have their source or target in that selection. Dropping on
one specific node has a similar effect, adding links to this node only. This lets users
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Figure 3.6: Visual mapping widget. (a) A long press on a node pops up a widget to
set the scope of the mappings to be created. (b) Creating mappings by connecting
attributes to visual variables, and adjusting ranges, all with immediate visual feedback.

start from a node of interest and make the graph expand incrementally, in the spirit of
the “Search, Show Context, Expand on Demand” navigation paradigm [177]. Filters
can be set on meta-links in the same manner as on meta-nodes.

This interaction model brings flexibility, letting users adopt either a bottom-up approach
to the construction of their diagram by populating the canvas only with elements of
interest after filtering; or a more classic top-down approach by populating the canvas
with all elements first, and then defining filters for elements to be removed, as in [89].
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3.3.2 Customizing the Layout

Node and link placement is a central concern when designing node-link diagrams.
Graphies relies on D3’s implementation of the Barnes–Hut force-calculation
algorithm [14] to optimize the graph layout. Force-directed layout algorithms have
the good property of supporting incremental modifications to the graph. Users can
drag and drop new nodes and links into the canvas, or remove existing ones, and the
layout will smoothly adapt to these topological changes. The layout can be frozen by
stopping an ongoing simulation, and the spatial density can be adjusted using a slider
that controls the node repulsion force in the simulation. At any moment, users can also
ask Graphies to optimize the layout again, with the option of forcing nodes into a radial
layout (see, e.g., Figure 3.5-c). Finally, they can adjust the position of any node freely
by direct manipulation on the canvas. They can pin nodes as well, thus preventing the
force simulation from moving them in subsequent runs.

Pinning is one of several commands exposed in the contextual toolbar that pops up
when clicking on a node or making a lasso selection. The list of commands depends
on whether the underlying selection consists of nodes (Figure 3.4-a) or links only
(Figure 3.4-b). Beyond aggregate, pin and delete commands, the toolbar also makes it
possible to further refine the selection. Indeed, some diagrams can make it extremely
tedious to select only nodes or links of a given type in a particular region depending on
the layout. With selection refinement, users can first delineate the region of interest
on the canvas, regardless of the type of elements that lie inside, and then restrict the
selection within those bounds to one type only.

Link-centric commands include interactive bundling [133] using a handle to manipulate
the attenuation circle that parameterizes the bundle’s attraction force and location. In
Figure 3.2, outgoing links from the three most-frequently-used keyword nodes have
been bundled. In the same spirit, Graphies also makes it possible to interactively fan
links [133] connected to a node, i.e., to radially distribute them in a uniform way to
decrease clutter.

3.3.3 Creating Visual Mappings

Multivariate graphs associate data attributes with nodes and links. Visualizations of
multivariate graphs will typically show some of these attributes by mapping them to
visual variables such as, e.g., color, size, shape, stroke width, etc.

Figure 3.6 illustrates how such mappings can be defined with Graphies. A long-press
on a node or on a link pops up the visual mapping widget. The first step consists of
specifying the scope of the mappings that will be defined next. For nodes, the scope can
be set (Figure 3.6-a) to: the node on which the widget was invoked ; all nodes of the
same type ; all nodes regardless of their type ; the selected node’s neighborhood

; all nodes in active lasso selections on the canvas . Setting the scope then reveals
the full visual mapping widget, as shown in Figure 3.6-b.

Data attributes are listed on the left, and visual variables on the right, along with domain
and range information, respectively. Users declare visual mappings by connecting a
data attribute with a visual variable. Both the domain and range of each mapping can
be adjusted using interactive sliders and color selectors that behave according to direct
manipulation principles. Changes made to visual mappings are directly propagated
to the elements in the canvas, providing immediate visual feedback to users. Visual
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Figure 3.7: Legend generated automatically by Graphies for nodes and links.

variables that are not linked to a data attribute have the same value for all elements that
fall in the scope of the mapping. This value can be adjusted using the same type of
direct manipulation.

Graphies differentiates between categorical and quantitative data attributes. When
the attribute is quantitative, the mapping between domain and range uses linear
interpolation (in HSL space for color). When it is categorical, attribute values are
mapped to discrete values evenly distributed in the visual variable’s range (choosing
from predefined schemes in the case of color hue).

Graphies supports a rich set of visual variables, giving users much flexibility in how
they can represent the data. Users can map node attributes to the following visual
variables: spatial position , size , stroke width , stroke color , fill color ,
shape , label size and color . Mapping attributes to spatial position makes it
straightforward to create attribute-driven layouts [161, 184]. For instance, nodes in
Figure 3.2 are arranged in columns by mapping type (a categorical attribute) to the
node’s x-coordinate. Label size and color are managed as visual node properties. By
default, labels are shown only when hovering. They can also be made always visible by
setting the label size to a constant value. Finally, the node shape can be chosen among
a set of basic geometries: circle, square, triangle. It can also be sketched, in the spirit
of [190, 89] (Figures 3.5-b & 3.7), or replaced by a bitmap (Figure 3.5-a).

Similarly, users can map data attributes to link variables: stroke width , stroke
color , curvature (which has recently been proposed as a means to encode data
on links [133]), and texture . The latter can be based on a sketch or a bitmap. In
each case, the texture consists of the input rendered in a repeating pattern along the
link.

The variety of possible visual mappings on both nodes and links means that designers
might want to create a legend to accompany their diagram. This is particularly relevant
in the case of expressive designs intended for communication purposes. As creating
such legends can be a tedious task, Graphies features a legend generator (see Figure 3.7)
that automatically builds a summary of visual mappings that can later be manually
edited. Mappings that have a global scope come first, followed by mappings that
apply to a subset of elements only. The legend can also serve as a quick selection tool:
clicking an item will select all nodes or links the corresponding visual mapping applies
to.

72



3.3. Graphies

3.3.4 Supporting an Iterative Design Process

A key characteristic of expressive visualization design environments is not only to
provide designers with a wide range of options to visually encode data, but to enable
a flexible design workflow as well. The environment should let designers quickly try
multiple alternatives and iterate on their diagram, in an exploratory design process.

As discussed earlier, this is primarily supported by enabling designers to perform all
steps of the workflow in a single environment without imposing artificial divisions
between, e.g., the data encoding stage and the visual design stage [97]. But additional
features contribute to facilitating an iterative design process in Graphies, as detailed
next.

One important design choice we made in Graphies was about the visual mapping
evaluation strategy. Visual mappings can be seen as rules that apply a set of styling
instructions to a selection of elements as in, e.g., the Cascading Style Sheet language
(CSS). The two main options to handle such sets of rules in Graphies were: a) to always
enforce mappings; or b) to apply them on-demand only. While option (a) will typically
yield a higher level of consistency, it does this by restricting the designers’ options, or
resolving conflicts, or both. Option (b), on the other hand, applies mappings blindly,
without imposing any restriction. However, it will also override values previously set by
other visual mappings that apply to (some of) the same graph elements. As flexibility is
key to expressive design, we eventually opted for option (b). Active mappings are not
enforced continuously by the system, but rather applied to the associated selection of
nodes or links on-demand, implicitly, when designers interact with the corresponding
widget. As it is important to be able to adjust the mappings, they can be accessed
quickly from an independent layer drawn on top of the canvas. All mappings reside
in this layer indefinitely (unless explicitly deleted), even if they conflict with other
mappings. That layer can be hidden, or the mappings can be minimized individually to
limit clutter.

Beyond the adjustment of existing mappings by direct manipulation, the exploratory
design process is also supported by the possibility to backtrack to previous states. In a
similar setting, Lyra’s authors observed that the absence of undo had a negative impact
on users’ willingness to explore alternative designs [145]. Graphies not only supports
basic undo, but branching as well, enabling designers to explore several alternative
designs in parallel. A new state is created when: nodes or links are added/removed
from the canvas; and when visual mappings are modified. Past states are accessed from
the timeline (Figure 3.2). Branches appear as multiple connected tracks in the timeline,
as can be seen in Figure 4.1. Each small circle corresponds to a past state. Hovering
a circle pops-up a preview thumbnail image rendering of the diagram in that state, to
make it easier for users to find the appropriate past state. Resuming editing from a
past state will automatically create a new branch, and the corresponding track in the
timeline. Loading a saved project restores the entire history, including branches.

3.3.5 Exporting Visual Designs

Diagrams designed with Graphies can be exported as SVG files, but more elaborate
export functions relevant to the use of node-link diagrams for communication purposes
have also been implemented. Designers can export selected keyframes (stages) as an
image gallery, with the possibility to add textual annotations to each image in order to
tell a story [10, 89].
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T1 T2 T3, step 1 → T3, step 2
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Number of authors on a paper
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Figure 3.8: The three target visualizations that participants had to reproduce during the
experiment.

The evolution of a graph over time [11] can also be animated and exported as a video
clip (MPEG-4). Here again, designers select stages from the timeline, that they use to
populate the track of a simple video editor. These states, which can be reordered, define
the keyframes of the animation. Graphies then renders the video clip by smoothly
interpolating between those keyframes.

As discussed in Section 3.2, such animations can be useful when telling stories about the
data: incrementally bringing data to make a point step-by-step, showing complementary
perspectives on the data, showing the actual evolution of a graph over time, or even
documenting the incremental construction of the diagram. To further support the use
of these diagrams for communication purposes, Graphies enables designers to add
freeform annotations to the canvas, as illustrated in Figures 3.5-b & 3.5-d.

3.3.6 Implementation

Graphies is a Web-based application, implemented with D3 [25] and paper.js. The
former handles SVG UI widgets, as well as many computations (visual mappings,
force-directed layout, etc.), while the latter is used to draw the node-link diagram. We
draw the diagram using 2D primitives directly in an HTML <canvas>, as opposed
to manipulating an SVG DOM hierarchy, for the sake of performance. The two UI
components are seamlessly integrated using CSS rules and input event redirections.
Edit history management and MPEG-4 video export are handled on the server side.

3.4 User study

The interaction model proposed in Graphies differing significantly from that of other
graph visualization tools, we conducted a first-use study (using a term coined by
Hartmann et al. [68]) to gather empirical observations about: 1) users’ ability to
reproduce existing expressive visualizations using Graphies; and 2) how effective the
tool is at supporting the creation of expressive designs.

3.4.1 Procedure

Participants start the experiment by following a tutorial (≤ 30mn) introducing Graphies
using a dataset about interactions between Star Wars characters (that dataset was not
used afterwards). The operator follows a script, demonstrating a series of features in
the same manner to all participants. Each time a new feature is introduced, he asks
participants to use it on a different example to make sure they have understood how
to use it. The list of features is: add all nodes of a given type; add only nodes that
match an attribute value filter; add all links of a given type to a specific node; then to
a selection of nodes; change the visual variables of a set of elements; create a visual
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mapping; use the selection menu to remove some nodes and links; bundle or fan a
selection of links; add keyframes to the video editor and play the resulting video; pan,
zoom and reset the view; make some annotations.

Participants then have to reproduce each of the three visualizations in Figure 3.8,
which use visual presentation techniques from the recent literature. These are re-
creation or reproduction tasks, conceptually similar to those used to evaluate many
recent visualization authoring tools, e.g., [145, 90, 97, 190, 89, 132]. Participants are
presented with a printed image of each visualization, accompanied by a short text
listing the main steps (what attribute to show, what visual encoding to use, etc.), in
order to avoid ambiguities. The three tasks are always presented in the same order.

The diagram in task T1 shows documents about four product categories, as well as their
authors. The two node types use different sketch-based glyphs. The size of author
nodes indicates how many documents they have authored.

Task T2 is about reproducing a co-authorship network. The network consists of authors
and publications. Fill color encodes node type. Size encodes the number of articles
published (author nodes), or the number of co-authors (publication nodes). Emphasis
is put on central actor Ben Shneiderman by 1) using his picture to decorate his node (as
in, e.g., Vizster [69]); and 2) forcing all publication nodes on the left and all co-author
nodes on the right, bundling edges interactively [133] on each side.

Task T3 is inspired by PivotGraph [184]. Participants have to create an animation
between two views on the same US air traffic network. In step 1, airport nodes are laid
out according to their geolocation attributes (latitude/longitude). Links show routes
between south-east and north-west airports only. Stroke-width encodes the number of
carriers on a route. In step 2, the same airport nodes are laid out in a scatterplot-like
manner: the number of transiting passengers is mapped to the x-axis, the number of
routes connecting this airport is mapped to the y-axis. In both steps, participants have
to use free-form annotations to indicate the axes.

Finally, participants are asked to perform an open-ended task (Tf ree): design
a visualization of their choosing about publications in the field of Information
Visualization. The visualization should show the most prolific authors and their articles,
emphasizing highly-visible articles. Instructions make it clear that highly-visible should
be interpreted here as having a large number of citations.

3.4.2 Participants & Apparatus

Ten volunteers (1 female), aged 21 to 42 year-old (average 27, median 25), participated
in the experiment. Three of them were undergraduate students (P2, P7, P9), three were
software engineers (P4, P6, P8), three were PhD students in HCI (P0, P1, P3) and one
was a PhD student in Information Visualization (P5). We conducted the experiment on
a Microsoft Surface Book 2 13” (3000 × 2000 pixels), equipped with an Intel Core i7
processor, 16GB RAM, and an NVIDIA GTX 1050 (2GB) graphics card.

3.4.2.1 Data Collection

We used screen capture software and audio-video recordings. We also timed users for
each task. At the end of each task, we captured the visualization they created. A single
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experimenter was present for each session. When users were performing trials, the
experimenter retrieved comments and feedback using a pen and a paper notebook.

3.4.3 Results

Figure 3.9 shows all visualizations produced by the participants, using the last frame of
the animation (step 2) for T3. All study material is made available on the project’s Web
site, including datasets, instructions, and the animations created by participants in T3:
https://hugoromat.github.io/graphies/user_study.html and in Appendix A.1. All
participants managed to properly reproduce the target visualizations from Figure 3.8 on
their own. Indeed, once the tutorial completed, the operator never gave any additional
explanation about Graphies’ features. He only answered the few questions participants
had about how precise their reproductions had to be, telling them that the goal was to
achieve a visualization that would show the same data, using the same visual encodings;
but that they should not try to accurately replicate the spatial layout and link bundles,
or use the exact same sketches (for nodes in T1) and colors.

To give an indication, task completion times per task were (in seconds): 353±90s (T1),
498±81s (T2) and 582±59s (T3). But more importantly, all reproductions, regardless
of the task and participant, feature the correct number of nodes and links. Given the
above instructions, there are obviously variations in the local placement of elements,
but the global layout strategy matches that of the templates, as do colors and other
visual variables (compare Figures 3.8 & 3.9).

Participants spent 463±120s on the open-ended task (Tf ree) where they had to create
a design of their own. What is striking when looking at the rightmost column in
Figure 3.9 is the diversity of visualizations that participants created from the same
dataset. While 4 participants exclusively made use of the size visual variable in their
mappings, all others used additional channels, including position, color, transparency,
and node shape (sketched glyphs). As expected, several of them also performed manual
layout adjustments.

3.5 Discussion, Feedback and Future Work

The diagrams produced in Tf ree (rightmost column in Figure 3.9) demonstrate that
users can be very creative when designing node-link diagrams. This diversity is also an
encouraging result for Graphies, as participants were able to create those visualizations
in a very short amount of time. Overall, these observations suggest that the approach
has good potential; even more so when considering that our participants, while they all
had a background in Computer Science, were not professional visualization designers.
Indeed, with the exception of P5, none of them had significant experience in Information
Visualization. At best, the three PhD students had followed an introductory course.

Beyond these high-level observations, we noted some interesting behaviors and
gathered feedback from study participants. We discuss these along with additional
feedback from the data analysts who were involved in the design process (Section 3.2),
that was gathered after the study. Some of this feedback has already been taken into
account, while other features are left as future work, as detailed next.
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Figure 3.9: Visualizations created by all ten study participants (one line per participant,
zoom-in to see details). From left to right: T1, T2, T3 (step 2) and Tf ree. (*) P7 asked
for the possibility to make two complementary visualizations for Tf ree.
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3.5.1 Observations

All participants did not follow the same workflow, confirming the need for flexibility in
the authoring process already observed in prior work [97, 23, 24]. Some participants
started by populating the workspace with all relevant elements, spatially arranging them
before creating any visual mapping; while other participants quickly moved to creating
visual mappings, intermingling actions to populate the canvas, arrange elements, and
change their visual appearance.

Our interaction model aims at making most actions accessible directly from the main
canvas, and at enabling users to easily iterate on their designs. This entails keeping all
visual mapping widgets close at hand, on a dedicated layer. While we have dedicated
much effort to designing a compact widget, the fact that it gets replicated each time a
new visual mapping scope is defined means that this layer in the workspace may get
cluttered quickly. Users can move, minimize and even discard the widgets, but our
observation of study participants suggests that users do not take the time to organize
their workspace. As the study was relatively short, it would be interesting to see if this
remains true for longer work sessions and more frequent use of the tool. If it turned
out to be the case, mechanisms such as automatically minimizing mapping widgets
and moving them to the edge of the workspace could be investigated. However, this
should be done with caution, as users might then experience difficulty keeping track of
what elements in the canvas a given mapping widget applies to (its scope).

3.5.2 Feedback from Study Participants

Several participants spontaneously commented positively about the richness of visual
mappings. So did they about the possibility to filter elements before adding them to
the canvas (see rationale in Section 3.3.1), especially participants who had started by
adding all elements of a given type before backtracking, as their diagram had become
too complicated.

Participants raised a few issues too. Related to the mapping-widget clutter problem,
one participant said that he would have liked to be able to relate widgets to the elements
in their scope. We had actually discussed this issue during the design phase. But while
we can use transient highlighting to emphasize the scope of mappings one at a time
(using, e.g., legends - Section 3.3.3), we have not yet found a satisfying solution that
would work for all widgets simultaneously without causing considerable clutter.

Still related to visual mapping widgets, some participants were a bit confused about the
meaning of the trash icon in the bottom-right corner of the widget (Figure 3.6-a).
They expected it not just to discard the widget, but to actually cancel the effects of
the mapping on the visual appearance of elements in its scope. Such a behavior could
indeed make sense, but is not compatible with the visual mapping evaluation strategy
we chose. The system applies mappings on-demand only, i.e., implicitly, whenever their
parameters are adjusted; it does not enforce them continuously. With this evaluation
strategy (see Section 3.3.4 for the details and rationale), discarding the rules has no
impact on the diagram. To alleviate this source of confusion, we switched to a cross
icon as a more appropriate symbol.

One participant asked if Graphies could suggest appropriate mappings [60].
Visualization grammars such as Vega-Lite [146] do this, and it would indeed be
interesting to study such a possibility in future work.
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3.5.3 Feedback from Data Analysts

The data analysts involved in the design process were invited to participate in one last
session organized after the user study. They made several feature requests that also
relate to bootstrapping the design workflow.

One straightforward request was to include a global search function to quickly access
specific elements whose name is already known, when the designer is highly familiar
with the dataset. More interestingly, in the opposite context of working with a dataset
that is not necessarily very familiar to the designer, the analysts asked if, in addition to
suggesting visual mappings, Graphies could also suggest a subset of nodes and links
to start populating the diagram based on metrics such as centrality or similarity. They
indicated that this would be, again, particularly useful in the context of unfamiliar
datasets. Such features, which echo Crnovrsanin et al.’s recommendations for network
navigation [39] and DataToon’s suggestions based on the detection of structural
patterns [89], can also help users who are intimidated by a blank canvas [145].

Visual mapping and subgraph suggestions relate more generally to the concept of
templates, which is another feature we discussed with analysts. They often use datasets
that share the same structure (node and link types, associated attributes) to produce
different visualizations across projects. It makes sense to reuse mappings defined
in earlier projects, at least as a basis for the new diagrams. In this context, the idea
of reusable templates arose. In Graphies, templates correspond to a set of visual
mappings that each have a fairly general scope, typically a specific type of node or link
(Figure 3.10). They essentially play the role of reusable stylesheets, as skilled users can
write with Graph Coiffure [165]. By calling a template on datasets that share the same
general structure, designers can quickly populate their canvas with nodes and links
whose appearance has already been predefined according to the rules in the mappings.

Figure 3.10: Different templates for a dataset featuring multiple node types, including:
authors, organizations, documents, thematics.

Finally, as the direct manipulation of nodes and links is a central activity when designing
expressive node-link diagrams, it would also be relevant to include subgraph selection
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and manipulation techniques by McGuffin & Jurisica [107], as they would make tasks
such as node selection and layout customization easier to perform.
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CHAPTER 4
Using motion as an encoding

channel in node-link diagrams

The work presented here was published at CHI 2018 and INTERACT 2019 [135, 137].
During this project I implemented the WebGL version of Animated Edge Textures, and
conducted the first study. Dylan Lebout implemented the SVG version, and conducted
the second study. The paper was written collaboratively by all authors.

The amount of literature on graph visualization is considerable [20, 63, 179]. Beyond
research on layout algorithms for node-link representations, the community has
explored several aspects pertaining to the visual encoding of data attributes on
nodes [184] and links [80, 72]. Focusing on links only, data attributes are usually
encoded using the following visual variables: color, opacity, stroke thickness and
stroke pattern. In the case of dynamic visualizations, this relatively limited set of
variables can be augmented using animations [35].

Animating directed edges in node-link diagrams is typically achieved by having
sequences of small glyphs, which we will call particles, dynamically move along the
links [9]. The visual effect is that of an animated texture applied to links. In some cases,
there is a one-to-one correspondence between particles and entities actually traversing
the network, as for instance in the case of traffic visualizations where each particle
represents one vehicle [33, 150]. In other cases, there is no such correspondence: the
particles are elements of a cyclic animated texture, whose visual properties (pattern,
speed, frequency – see Figure 4.1) encode more abstract data attributes. Examples of
the latter include visualizations of telecommunication networks (attributes such as, e.g.,
failure rate, lag, bandwidth) or import/export of goods between countries [38].

This chapter seeks to provide a deeper understanding of the perceptual quality of
animated edge textures, as well as to explore more systematically their design space.
After providing a motivation for our work, we introduce a model and associated Web-
based framework for generating animated edge textures, and illustrate its capabilities
using different examples of visual mappings. We then report on an initial evaluation
of particle properties in terms of visual perception. The results suggest that the
three motion variables defining animated edge textures - speed, frequency and pattern
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(Figure 4.1) can be used individually for encoding data attributes. We conclude with
a discussion of the limitations of this first study, and an outline of the next steps to
pursue this line of research.

4.1 Background and Motivation

The number of visual variables available for edge attribute encoding in node-link
diagrams is limited, and while there are opportunities for combining those variables,
they are not completely orthogonal. For instance, color and opacity will, to some extent,
mutually interfere. Stroke width, color and opacity will also all influence the saliency
of an edge. The practical range of values for these variables is also fairly limited. For
instance, wide strokes are likely to cause visual occlusion of elements in the background,
or of other edges in dense graphs. Beyond the question of efficiency of the encoding
in terms of visual perception, issues related to the aesthetics of the visualization can
quickly arise, that go beyond pure considerations of graph layout [183].

Taking the example of a statistical dataset about domestic flights in the USA,1 the
number of featured edge attributes far exceeds the number of visual variables. As
illustrated in Figure 4.2, the number of airlines operating on a route could be encoded
using the stroke width; the daily number of flights could be encoded using a stroke
pattern made of dashes whose spacing is a function of that value; and the daily number
of passengers on a given route could be encoded using color brilliance. But encoding
more attributes would be challenging.

By gaining a better understanding of what other visual variables can be used to encode
data in node-link diagrams, our goal is not to find better visual variables, but rather
to identify alternative encodings, widening the design space of visual mappings in
node-link diagrams, in the same spirit as Henry Riche et al. [133], who explored the
design space of link curvature to represent attributes such as edge directionality. In this

1Obtained from https://www.transtats.bts.gov.
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Figure 4.1: The three variables defining the dynamic behavior of particles in animated
edge textures: the particle pattern, or rhythm, is the sequence of particles that gets
repeated cyclically; the pattern frequency corresponds to the firing frequency of the
particle sequence; the particle speed corresponds to the velocity of particles on screen.
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4.1. Background and Motivation

Figure 4.2: Mapping three data attributes on three static visual variables.

work we focus on motion, which has been identified by Bartram, Ware and colleagues
as “hold[-ing] promise [...] as a perceptually efficient display dimension" [16].

Coming back to the above example about air traffic statistics, the introduction of
motion as a means to encode data widens the space of possibilities in two ways. It can
either be seen as a way to encode additional data attributes: for instance, the average
speed on a route can be encoded using particle speed. Or it can be seen as a way to
encode some data attributes using a different visual variable deemed better suited: for
instance, mapping the daily number of passengers to particle speed can give a sense of
route "throughput" that color brilliance might not convey as effectively. Motion-based
encodings can also provide alternatives when visual variables such as color are not
available, for example when the underlying layers in the visualization already make
use of color to encode other data, or on electronic ink (monochrome) displays.

Motion has potential as a means to encode edge data attributes in graphs, and more
specifically in directed graphs, as motion along an edge explicitly suggests a specific
orientation of that edge. But possible usages of motion in network visualization need
to be better understood. Our goal is to define a design space of motion-based data
encoding in node-link diagrams, and to enable the in-depth empirical assessment of
their characteristics in terms of perception. To this end, we introduce a framework
called Animated Edge Textures. Before introducing this framework, we discuss findings
from the literature that are relevant to our research.

4.1.1 Motion in Human-Computer Interaction

While animations, including motion, should be used with caution [175], there are
situations where they have proven useful. Studies about the potential of motion in HCI
date back to the early 1990s with seminal work such as Ware et al.’s investigation of
motion as a means to attract user attention [182]. Motion is also useful in scientific
visualization [81], as the processes visualized often involve the dimension of time [53].
Very early, Bartram started investigating motion as an “abstractly codable dimension
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in its own right" [15], a direction explored in other projects [16, 17, 98, 99], and in
which we situate our own work.

In information visualization, animations might not be effective as an exploration
aid, but can be powerful tools for presentation [53]. Motion can be useful for
filtering and brushing [16, 50, 181]. It can help emphasize spatial relationships,
explain functionality, illustrate causality [113, 17]. It is also used extensively in
flow visualizations [66, 81, 109] and representations of other scientific data such as
cosmological particles [65].

Motion has been observed to evoke affect [52] and has an impact on the perceived
aesthetic qualities of a visualization. This likely plays a role in the use of particle-based
animations in some design-oriented visualizations [38, 41, 78, 117, 126].

4.1.2 Motion Perception

The body of literature on motion perception in experimental psychology is very
large [153]. While it is not our intent to report them exhaustively in this section,
we highlight key findings on motion perception that makes this encoding compelling
to explore for information visualization researchers. We also motivate the need for
perception studies closer to visualization applications.

Early research demonstrated the ability of simple motions to communicate complex or
nuanced behaviors [70]. A crucial insight for information visualization is that motion
belongs to the limited set of visual encodings that is perceived preattentively [174], i.e.,
detected before focused attention. Motion can make moving shapes naturally “pop out”
in visualizations. Orban et al. [122] observed that different motion velocities are easier
to discriminate in the central visual field, the just-noticeable difference in velocity
increasing as eccentricity increases, particularly so for low reference velocities.

The perception of motion in conjunction with other encodings such as color has been
studied in prior work showing, for example, that a conjunctive search for motion and
color is serial rather than parallel [118], whereas a conjunctive search for motion and
form is parallel [108]. Questions related to conjunction in guided search have been
further studied by Driver and colleagues. They observed that it can be parallel under
some circumstances, but that out-of-phase motion across elements had a significant
negative impact on search performance [44]. They also observed that the search for a
target with a different orientation was faster among moving distractors than stationary
ones, provided the target’s orientation is not too close to that of non targets [43].

Beyond the Gestalt law of common fate, which states that elements tend to be perceived
as a group if they move together, another interesting observation is that moving objects
can capture attention [54]. Scimeca and Franconeri [152] highlight the main findings
related to tracking multiple objects (or groups of objects) in motion. Multiple studies
have investigated our ability to detect changes in direction [170], speed [105, 83] or
both [62, 79]. The role that the color and luminance of elements play in the perception
of motion direction and velocity has also been studied extensively, as summarized by
Weiskopf [185].

The above psychophysiological-level findings can guide and inform the research and
design of novel visualization techniques, but they cannot, alone, answer higher-level
questions related to the perceptual efficiency of motion-based visual encodings in
node-link diagrams. Indeed, the use of motion on graph edges is quite specific. The
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considered elements (particles) only move along predefined visual paths. Particles that
belong to the same edge get perceived as a group not only because they have a common
fate but also because they visually materialize a first-class entity: edges. The nature
of the movement and the number of different directions, considering that edges have
different orientations and that they can be curved, is very particular compared to the
conditions evaluated in the above-cited studies. Empirical studies that focus on these
conditions are necessary to get a clear understanding, and to quantify the limits, of
motion-based data encodings in tree and network visualization.

4.2 Animated Edge Textures

Our model of animated edge textures consists of three main motion-related variables
describing the behavior of particles flowing along links, as illustrated in Figure 4.1:
the pattern of particles, which can be seen as the rhythm at which they get fired;
the frequency of this pattern, and finally, the speed of particles along the link. Each
variable can be mapped to different data attributes. They can also be combined with
other visual variables that define the appearance of both the particles (e.g., their color,
their shape) and of the link itself to encode additional edge data. In this section,
we describe the design space of animated edge textures, and introduce an API for
mapping data attributes to visual variables in this design space, along with a prototype
implementation in WebGL.

4.2.1 Model

The simplest way to animate particles along an edge would be to define a repeating
stroke pattern, as one can do in vector graphics editors such as Adobe Illustrator,
and have this repetition of the pattern animate by gradually increasing its start offset.
However, this approach is limited in terms of expressive power. It also fails to expose
all motion variables for direct mapping with data attributes. We seek to strike a balance
between simplicity of the model, expressive power, and ease of mapping between data
attributes and visual variables.

Our model is based on the following core concepts:

• The link itself, which encodes the path geometry of the corresponding edge (for
a given layout). The link can be seen as a tunnel through which the particles
flow. The visual appearance of that tunnel is defined by the static visual variables
usually associated with links in a node-link diagram: color, opacity, stroke
width.2

• The particle emitter fires particles from the source node of an edge according
to the particle pattern and pattern frequency. A particle emitter defines the
properties of particles it fires: their shape, color, size, and speed.

• The particles themselves, which are the individual glyphs that flow along the
link.

Two additional concepts are introduced to enable more elaborate motion-based
encodings:

2A stroke pattern other than solid should be avoided, as it would visually interfere with the particles
flowing along the link.
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• Gates, placed at arbitrary positions along an edge, can change one or more
variables of the particles flowing along that edge, including their color, opacity,
size and speed. Indeed, once emitted, particles are independent entities whose
properties can be altered as they progress along the link. Gates perform those
alterations smoothly: the variable gets interpolated between the old and the new
value over a short span centered on the gate, so as to avoid abrupt changes that
would be aesthetically unpleasant and visually disturbing. Several examples
in the next section use gates to alter particle variables. Variations in particle
speed encode specific data attributes in Figure 4.3. Variations in particle opacity
minimize legibility issues in Figure 4.4. Variations in particle color can be used,
e.g., for aesthetic purposes, or to visually illustrate the notion of transformation
of what flows through the edges.

• Tracks enable particles to flow along multiple parallel paths inside the same
link tunnel. All tracks that belong to the same link share the same emitter, for
the sake of model simplicity. Nevertheless, the model allows for multiple links
between two nodes, thus enabling different particle patterns on parallel tracks,
as is done in Figure 4.5.

4.2.2 API

We have designed a Javascript API to map data attributes to any edge variable, including
all three motion variables (pattern, frequency and speed). The following code fragment
illustrates the simplicity of our API. It shows how a graph is loaded and laid out (lines
1-5), similar to D3 [25] or cola.js [47]. Lines 6-7 set the parameters controlling the
particles’ visual properties, while lines 8-10 set motion properties.

Mapping these parameters to actual edge data attributes is achieved using anonymous
functions, as shown below (d being a link instance, following the same convention as
in D3). In this example, particle speed is set to be proportional (×10) to the value of
edge attribute val on each link:

Temporal patterns are specified as arrays of floats in [0,1[. Each item in the array
corresponds to a particle in the sequence defining the motif. Line 8 in the above code
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fragment defines a pattern made of three particles, fired by the emitter at the beginning
(0.0), middle (0.5) and three quarters (.75) of each cycle. The actual timing depends on
the pattern frequency for each edge. In this case, the pattern frequency being set to 0.4
Hz, the three particles are fired at 0s, 1.25s and 1.875s, repeating every 2.5s. Patterns
can be assigned to individual edges based on any attribute, as shown below with a test
of attribute cat:

In the example below, either one or two tracks are created, depending on the value of
attribute cat for each edge:

Alterations to visual and motion attributes when passing through gates are specified by
passing one additional parameter to function particles(). In the example below, particles
are colored green on the first half of the link, and red on the second. Similarly, the
speed of particles is 10 times the value of edge attribute val during the first 80% of their
course, and increases to 20 times that value on the remaining 20%:

4.2.3 Prototype Implementation

We have developed a prototype Javascript implementation of our model, called
FlowNet. FlowNet can be used in conjunction with D3 to load and prepare the data for
visualization, and graph layout libraries such as cola.js to compute node placements.
Rendering takes place in an HTML5 canvas element using Three.js [42]. Using SVG
for rendering would have enabled a tighter integration of FlowNet with D3, but our
early tests showed that this solution would not have been able to handle large numbers
of particles. Using WebGL enables us to take advantage of GPU rendering, vertex and
fragment shaders being able to manage larger amounts of particles.

4.3 Examples of Use

We illustrate different combinations of motion variables using subsets of the air traffic
statistics dataset introduced earlier. The data are not about individual flights, but are
rather aggregated statistics over all airlines on each route, thus forming a network
that features a rich set of attributes for both nodes (airports) and links (flight routes).
Animated versions of the examples shown here are available in the companion video
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and Website.3 For the sake of clarity, we selected very small data subsets, which
lend themselves better to static representations for inclusion in this thesis. As stated
earlier, motion variables should not be seen as systematic replacements for other visual
variables such as color and stroke width, but rather as alternative visual variables that
widen the space of possibilities and have their own strengths and weaknesses.

4.3.1 Encoding a single attribute

The simplest example consists of encoding a single edge attribute using a motion
variable. Both numerical and categorical data can be encoded using motion. In the
air traffic dataset, numerical attributes associated with each edge include the number
of flights on the corresponding route, or the average departure delay on that route.
Categorical attributes include the type of route (passenger transportation, mail, or
freight).

4.3.1.1 Encoding a numerical attribute.

Numerical attributes can be directly mapped to speed or frequency. One guiding
principle in the selection of which motion variable to choose in the design space is to
pay attention to the semantics inherently conveyed by that variable. For instance, when
seeking to encode the number of flights on a route, frequency is a more appropriate
choice than speed, as users will tend to interpret a higher frequency, which entails a
higher particle density on the link, as a larger number of flights. Conversely, speed
may convey the notion of a more efficient flight route in terms of, e.g., travel time, or
passenger “throughput” as already hinted at in the Motivation section.

More complex attribute sets can be encoded using elaborate particle motion behaviors.
The air traffic dataset contains information about the average departure and arrival
delays on each route. As illustrated in Figure 4.3, this information can be encoded by
inserting two gates on the link to vary the speed of particles as they progress from origin
to destination. Routes with no delay on either side will feature particles travelling at
constant speed. Routes with departure delay will feature particles that start at a low
speed, attaining their normal speed once they have travelled 20% of the link’s length.
On routes with arrival delay, particles decelerate once they reach 80% of the link’s
length.

4.3.1.2 Reducing Visual Complexity

Gates can also be used to reduce visual complexity in the diagram, for instance by
removing some clutter. The node-link diagram from the previous example (Figure 4.3)
features numerous crossing and overlapping edges, in part because of the constraints
on the nodes, which are geolocated. Inspired by Becker et al.’s shortening lines [21],
we used gates to fade particles away in the central portion of the links, as illustrated in
Figure 4.4. Decreasing the particles’ opacity in this manner helps reduce visual clutter.
Here, the motion of particles helps track a particular link, in part thanks to the Gestalt
law of common fate that contributes to apprehending the particles that flow on that
edge as one coherent group.

3http://ilda.saclay.inria.fr/flownet
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Figure 4.3: Particle speed mapped to departure and arrival delay.

Figure 4.4: Same as in Figure 4.3, also reducing edge clutter by gradually fading
particles out in the central portion of each edge.
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Figure 4.5: Using tracks to show different route types between airports.

4.3.1.3 Encoding a categorical attribute.

Categorical attributes are best encoded using variables that do not inherently convey an
order, such as temporal pattern (which is akin to Morse code). For example, particles
can be emitted according to different patterns depending on the route type (passenger,
mail, freight). Difficulties will arise when an edge has more than one value for the
same attribute. When using shape or color hue to encode categorical data, multiple
values can be represented by, e.g., merging the shapes, or creating a hatched pattern
featuring all relevant color hues. Similarly, all relevant individual particle patterns can
be juxtaposed to form a more elaborate pattern that is representative of this combination.
However, as in the case of shape or color hue, this solution only works for a very small
amount of values. It also requires a minimum edge length to be discernible, as the
length of the pattern is equal to, and even slightly larger than, the sum of all individual
patterns involved.

4.3.2 Encoding multiple attributes

Combining multiple attributes (one might want to also display, e.g., the average number
of passenger or cargo flights) can be achieved using motion variables in conjunction
with other visual variables such as the particles’ color or size. For combinations
of numerical and categorical attributes, particle speed or frequency can encode the
numerical attribute, while particle hue (color) encodes the categorical attribute. For
combinations of numerical attributes, one can leverage visual variables such as size or
opacity in conjunction with motion.

However, encoding multiple categories on a single edge can rapidly become visually
complex. One possible solution is to use more than one track on an edge, each track
being mapped to a different attribute. In Figure 4.5, the three tracks are associated
with passengers, mail and freight, respectively. The category each track represents is
visualized using a dual encoding: the track index (they are always ordered in the same
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way), and one of three particle patterns. Indeed the track index is likely not sufficient,
considering that links can have different orientations. Then, the average number of
flights for each of the three categories on each route is encoded using the particles’
speed, which can thus be different on each track.

4.4 Experiment 1: Encoding edge attributes with motion
variables only

The above examples try to illustrate a set of representative encodings that use motion,
but they say nothing about users’ ability to perceive the values encoded in this manner.
A few user studies of graph visualization techniques include one or more conditions
that involve motion in the way animated edge textures do [80, 181]. However, to the
best of our knowledge, there are no empirical data on the number and type of motion
patterns of edge particules that users can discern. Based on the model presented earlier,
we start to explore the design space defined by animated edge textures, and provide
initial empirical data about their potential for encoding information.

We report on an experiment that aims at evaluating the encoding potential of each
motion variable individually. This is an initial study, and more studies will be necessary
to fully understand the interplay between motion variables as well as with other visual
variables, as discussed later. In our experiment, participants were presented with
node-link diagrams whose links featured different animated edge textures. They were
asked to group edges based on the motion of particles.

Our primary factor is the type of motion variable (Motion_Variable ∈ {Pattern, Speed,
Frequency}) that can take up to six different values (i.e., participants have to identify
up to six different groups of edges). Pattern is the pattern of particles flowing along the
edge. Speed and Frequency are respectively the speed of particles and the frequency at
which the source node emits the pattern. As mentioned above, our experimental design
varies a single motion property at a time, keeping the other two properties set to their
default value (Pattern0, Speed0 and Frequency0). Pattern0 is a single particle, i.e.,
the simplest pattern. Speed0 and Frequency0 were chosen so as to ensure that there
is always more than one occurence of the pattern visible on the smallest link that the
diagrams used in the experiment can feature.4

We used one of two different strategies for choosing the different values to test,
depending on the property considered. In the case of Pattern, there is no natural order
between different rhythms, which makes it a categorical property. Inspired by previous
work on rhythmic interaction [56], we chose the six different particle patterns shown
in Figure 4.1. In the case of Speed and Frequency, which are continuous properties,
we had to ensure a minimal difference threshold between consecutive levels, above
their Just Noticeable Difference (JND) [51] in order to ensure that participants could
perceive them as different. We first explain how we chose this difference threshold,
and then report on our experimental design and observations.

4In the Pattern condition, Speed0 is 6 mm.s−1, and Frequency0 is 0.3 Hz. In the Speed condition,
Frequency0 is 1.2 Hz. In the Frequency condition, Speed0 is 7.5 mm.s−1.
We also make nodes emit particles with a phase shift in order to prevent participants from discriminating
frequencies among edges connected to a node simply by looking in its immediate vicinity.
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4.4.1 Difference Threshold for Speed and Frequency

According to the Weber-Fechner law [51], the JND must be assessed as a constant
proportion of the original stimulus I, meaning that detecting a change from an initially-
high level requires a higher-amplitude change than detecting a change from an initially-
low level: JND = ∆I/I.

The notion of JND has been applied to various perceptual channels such as sound [171]
and chromaticity [100]. Previous studies have considered perception of changes in
speed or frequency, but those findings do not readily apply to the specific context
of animated edge textures. For example, studies in experimental psychology have
considered reaction time to a sudden change in velocity of a single stimulus [105]. This
differs significantly from our context, where people must compare multiple stimuli
(animated links in a diagram) that co-exist on screen. Huber et al. [81] have studied
users’ ability to identify a target group within a larger group, based on its difference in
velocity or flickering frequency relative to an otherwise-uniform group. However, in
their experiments, the elements were simple squares that filled the display area. In a
node-link diagram, edges are not uniform elements paving the space. They are distant
from one another, and vary in both direction and size.

We ran a pilot study to get an approximation (accurate-enough for our purposes) of the
JND at different reference values for both the Speed and Frequency motion variables.
Six participants were asked to tell whether or not they perceived a difference between
a source edge and a target edge, which varied in their orientation. At the beginning of
each trial, both edges were animated with particles flowing at the same Speed (resp.
Frequency). Participants had to press a key repeatedly until they saw a difference.
Then they had to say whether the difference was an increase or a decrease. For both
motion variables, we observed difference thresholds between 0.13 and 0.26, with no
significant effect of the difference in orientation between the source and the target
edges on the perceived difference. We then chose thresholds significantly higher than
the observed JNDs (0.7 for Speed, 0.5 for Frequency) based on pilot tests on actual
node-link diagrams, accounting for the fact that comparing particle frequencies and
speeds in a node-link diagram featuring dozens of nodes and edges is necessarily more
difficult than the comparison of a single pair of edges in an otherwise empty display.

4.4.2 Encoding Edge Attributes

This experiment followed a between-subject design, with three independent groups
of participants testing three different motion variables: Pattern, Speed and Frequency.
Our experiment software is available for illustration and replication purposes.3

4.4.2.1 Task and Procedure

The experimental task consisted in grouping edges according to the values of the tested
Motion_Variable (several links could have the same texture assigned to them). While
such a task is definitely not a realistic visual graph analysis task, we believe it provides
a relevant operationalization for the purpose of this visual perception experiment, as it
requires participants to perform visual comparisons between edges not only to identify
how many different values exist in the graph, but also to perform pairwise comparisons
to identify which edges belong to the same group.
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Figure 4.6: The second phase of our experimental task. The diagram on the left pane
features animated edge textures, while the one on the right contains a copy of that
diagram featuring static, solid edges. The right pane is interactive. It allows participants
to create new tag types, which get added to the tag bar, and to tag individual edges.
The background and edge colors have both been inverted in this screen capture: during
the experiment, the background was black, and the edges were light gray.

As we aim at estimating the number of different values that each motion variable can
encode, we want to find out whether users can group edges according to the different
values of these properties present in the graph. Figure 4.6 shows a trial in the Pattern
condition. The graph features six different Pattern values, meaning that participants
should identify six groups of edges, provided they can actually discriminate all six
values. A trial was divided into two phases.

In the first phase, participants had up to 45 seconds to tell how many different groups
they perceived. They were encouraged to answer as fast as they could. They could
press the space bar at any time before the timer expired. Either of these events (space
bar pressed or the 45 seconds elapsed) made the graph disappear. Participants then had
to input their answer in a text field. This task was an estimation task, as opposed to a
subitization or counting task [67].

In the second phase, illustrated in Figure 4.6, participants had to actually identify these
groups, creating the appropriate number of group tags and tagging each individual
edge. Participants were instructed to be as accurate as they could. To avoid the
tags interfering with the perception of the diagram, the display was split in two parts.
The diagram on the left featured animated edge textures, while the one on the right
contained a copy of that diagram featuring static, solid edges. Participants looked at
the left-hand side diagram to identify groups, and used the right-hand side one to tag
edges. They were able to create new tag types in the tag bar on-demand, using a button.
Tagging an edge then entailed either dragging a tag from the bar and dropping it on
that edge, or selecting a tag in the bar and clicking on the edge. The bar tag selection
being persistent, the latter mechanism was especially useful to tag several edges in a
row. Each edge could only hold one tag.

The operator insisted on the fact that it did not matter if the number of groups found
in the second phase of a trial did not match that found in the first phase. The first
phase rather aims at evaluating the potential of each Motion_Variable to convey a first
impression, while the second step aims at capturing a more thorough analysis of the
diagram (i.e., where users have to tell whether two edges share the same animated
texture or not in graphs featuring more or less diversity).
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4. USING MOTION AS AN ENCODING CHANNEL IN NODE-LINK DIAGRAMS

In addition to the Motion_Variable (Pattern, Speed and Frequency), our experiment
also considered tasks of varying difficulty, which we operationalized using two factors.

First, we tested different graph sizes: Graph_Size ∈ {LOW, MEDIUM, HIGH}. The
node-link diagram layout was computed using D3’s force-layout algorithm, with 8
nodes and 7 links for LOW, 16 nodes and 14 edges for MEDIUM, and 22 nodes and 21
links for HIGH. In order to avoid introducing too many factors in this first evaluation,
we considered planar graphs only (the layouts did not contain any edge crossing).

Second, we varied the number of groups (Group_Count). Our purpose was to test
whether increasing the number of different values of a motion variable diminishes
users’ ability to discriminate them. Factor Group_Count ∈ {SMALL=2, MEDIUM=4,
LARGE=6} corresponds to the number of different values that Motion_Variable could
take. As already mentioned, we picked the six different rhythms shown in Figure 4.1,
which we believed would be discriminable considering the range of edge sizes in
our layouts (average: 3.18mm, min: 2.87mm, max: 3.45mm). Values of Speed and
Frequency were computed as successive values right above the corresponding difference
threshold (0.7 for Speed, 0.5 for Frequency) yielding, for each group count:

Group_Count Speed values (mm.s−1)
SMALL G1 = 3.3,G2 = 5.6

MEDIUM G1 = 3.3,G2 = 5.6,G3 = 9.5,G4 = 16.2
LARGE G1 = 3.3,G2 = 5.6,G3 = 9.5,G4 = 16.2,G5 = 27.5,

G6 = 46.7

Group_Count Frequency values (Hz)
SMALL G1 = 0.3,G2 = 0.5

MEDIUM G1 = 0.3,G2 = 0.5,G3 = 0.7,G4 = 1.0
LARGE G1 = 0.3,G2 = 0.5,G3 = 0.7,G4 = 1.0,G5 = 1.5,

G6 = 2.3

We chose to limit the maximum number of different values to 6 as a higher number
of conditions would have resulted in an intractable experiment design. We ran pilot
studies to identify an upper bound, which showed that differentiating 6 values was
already challenging. In addition, going far beyond 6 values would have resulted in
overly low-or-high speeds and frequencies, that would have been of little practical
value.

Our three factors were tested following a mixed experiment design. To keep a
reasonable experiment length (i.e., ∼ an hour), Motion_Variable was tested as a
between-subject factor, each participant seeing only one of the three conditions.
Group_Count and Graph_Size were tested as within-subject factors, all participants
seeing all Group_Count × Graph_Size conditions. In order to get familiar with the
task and the interactive tagging technique, participants started with 3 practice trials
on small graphs featuring 2, 4, and 6 different groups. Then, each measured trial was
replicated twice. In total, each participant had to complete 18 trials for analysis (3
Group_Count × 3 Graph_Size × 2 replications), presented in a random order. At the
end of the experiment, participants filled in a short questionnaire asking them about
the strategies that they used to identify the different groups of edges.

4.4.2.2 Participants & Apparatus

Thirty six volunteers (18 female), aged 21 to 47 year-old (average 30.8, median 29),
participated in the experiment. We conducted the experiment on a PC Dell Precision
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Figure 4.9: Confusion between groups per Group_Count condition. In a matrix, a row
corresponds to a Motion_Variable condition, and a column to a group of edges. The
color of a cell depends on the average accuracy of that group during the experiment
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T5500, equipped with an Intel Xeon Quad Core processor, 8GB RAM, and an NVidia
Quadro 2000 graphics card driving a 23" LCD FullHD 1080p monitor (1920x1080, 96
dpi). The experiment software was developed in JavaScript using node.js [172] and the
animated edge texture library described earlier.
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4.4.2.3 Data Collection & Data Analysis

Our experimental software collected the estimation of the number of groups that users
reported in the first phase, GC1 (which stands for Group Count in 1st phase). It also
recorded the full set of mappings <tag, edge> of the 2nd phase, from which it derived
GC2, the number of groups identified in that phase. We considered different measures
for analyzing the collected data. We first computed the Group Count Accuracy (GCA)
in both phases as follows:

GCA1 = 1 - (|GC1 - Group_Count|) / Group_Count, and

GCA2 = 1 - (|GC2 - Group_Count|) / Group_Count.

However, GCA2 alone is not sufficient to account for the grouping accuracy, as the
number of tag groups can be accurate while having some edges misclassified. For
each group, we thus also computed a measure of its accuracy using the Jaccard
coefficient [84]. This coefficient estimates similarity between finite sample sets using
the ratio between the size of the intersection and the size of the union of the sample
sets. As we cannot know a priori what actual groups users were tagging, we try to
associate each group Gi with the most similar tag group. The Grouping Accuracy of a
group Gi, GA(Gi), is thus the maximum of all Jaccard coefficients computed on each
pair made of Gi and one of the groups Tj (1≤ j ≤GC2) that the participant has tagged:

GA(Gi) = max
1≤ j≤GC2

count(Tj
⋂

Gi)

count(Tj
⋃

Gi)
1≤ i≤ Group_Count

4.4.2.4 Results

In the first phase, we observe an average accuracy GCA1 of 0.81 for Frequency, 0.88
for Speed and 0.68 for Pattern. Participants seem to have more trouble estimating the
number of groups when the discriminating motion variable is Pattern. However, an
analysis of variance reveals that the difference between the three motion variables on
GCA1 is not significant (p = 0.7). In the second phase, the average accuracy GCA2
increases to 0.88 for Frequency, 0.93 for Speed and 0.99 for Pattern. Here, the effect of
Motion_Variable is significant on GCA2 (F2,33 = 3.5, p = 0.04, η2

G = 0.17), with each pair
of conditions significantly differing according to pairwise t-tests.5 Figure 4.7 illustrates
these results. An interesting observation is that while Pattern performs relatively poorly
as a means to get a quick estimate of the number of groups, it actually outperforms both
other variables when the task is to more precisely count those groups. We tentatively
explain this observation based on the fact that particle frequency and speed can be
quickly perceived, while the identification of different patterns requires more cognitive
processing. When trying to get an estimate under time pressure, different Frequencies
or different Speeds will be easier to perceive, while when trying to get a precise
count without such time pressure, Pattern will provide a cognitively more demanding,
but more reliable, solution. Answers to the final questionnaire actually support this
interpretation: participants reported experiencing difficulty memorizing patterns. On
the opposite, in Speed and Frequency conditions, some of them reported using the

5We get the same results with or without Bonferroni correction.

96



4.4. Experiment 1: Encoding edge attributes with motion variables only

simple strategy of looking only at the spacing between two particles to discriminate
different values.

Figure 4.8 provides a detailed view of how the different motion variables are robust
against increasing difficulty. Even if an analysis of variance of Graph_Size ×
Group_Count on GCA2 does not reveal any significant difference in any of the
Motion_Variable conditions, some edge properties seem to scale better to complex
tasks (large graph, high number of groups) than others. Pattern and Speed seem to
scale quite well with both Graph_Size and Group_Count, while users’ accuracy with
Frequency appears to drop down on average as the graph becomes larger. However,
our GCA2 measure makes by definition the error cost inversely proportional to the
number of groups (e.g., a misclassified edge impacts the accuracy three times more
when Group_Count=SMALL than when Group_Count=LARGE). We complement our
error analysis with an absolute measure of errors, that is the number of misclassified
edges NME. An analysis of variance of Graph_Size× Group_Count on NME revealed
more contrasted differences. For Pattern, there is still no significant difference between
conditions. But, when Motion_Variable=Frequency, Graph_Size has a significant effect
on NME (F2,22 = 9, p = 0.001, η2

G = 0.27), with NME significantly increasing with
Graph_Size. Finally, when Motion_Variable=Speed, all Graph_Size, Group_Count
and Graph_Size × Group_Count interaction effects are significant on NME.6 Pairwise
t-tests reveal that the effect of Group_Count is significant only when Graph_Size =
HIGH. For SMALL- and MEDIUM-sized graphs, the number of misclassified edges
does not significantly increase with the number of groups.

Figure 4.9 helps understand where the confusion between groups comes from. In
those matrices, a cell represents a group of edges Gi, and the color of that cell is
proportional to the average Grouping Accuracy of that group GA(Gi). The darker
a cell, the most accurate a group is. We can observe that increasing the number of
groups for Frequency and Speed makes the accuracy drop down. We can also observe
that participants tend to make more confusions between high values of Frequency and
Speed, the accuracy being lower starting from G4. It is important to remember that we
increase Group_Count by adding values at the end of the range, which entails that a
group Gi, when it exists in two different Group_Count conditions, is exactly the same
in those two conditions.

In summary, Pattern seems to have good potential as a means to encode edge attributes.
In this condition, participants in our experiment were able to identify the different
edge groups almost perfectly, no matter the task difficulty. Participants also performed
well with Speed and Frequency, but these properties seem to suffer more from an
increase in the number of links. When Frequency or Speed are used to encode edge
data attributes, users may experience some difficulty with large networks, and may
experience difficulty discriminating between the higher frequencies and between the
higher speeds.

4.4.3 Follow-Up Study

Answers to the questionnaire in the study reported above revealed that some participants
had relied on the spacing between particles to compare different values of Speeds or

6Graph_Size: F2,22 = 10, p < 0.0001, η2
G = 0.27; Group_Count: F2,22 = 10, p < 0.0001,

η2
G = 0.2; and Graph_Size×Group_Count: F4,44 = 6, p < 0.0001, η2

G = 0.16
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4. USING MOTION AS AN ENCODING CHANNEL IN NODE-LINK DIAGRAMS

Frequencies. Because Speed and Frequency can be manipulated independently in our
model, modifying the value of one of these motions variables impacts the spacing
between particles. Because this latter property can also be perceived on a static
representation of the texture (e.g., on a snapshot of the graph), we also wanted to test
what users can discriminate using motion dynamics only. We ran a follow-up study to
test a fourth value for Motion_Variable, that we call FASpeed, for Frequency-Adjusted
Speed. FASpeed adapts the frequency as speed varies so as to preserve a constant
spacing between particles across the different Speed conditions.

As in the main experiment, we ran a pilot study to estimate the Just Noticeable
Difference in a comparison task between a pair of edges. This informed the choice of
consecutive values of FASpeed, computed using a threshold of 0.9:

Group_Count FASpeed values (mm.s−1)
SMALL [G1 = 3.75,G2 = 7.125]

MEDIUM [G1 = 3.75,G2 = 7.125,G3 = 13,5375,G4 = 25,725]
LARGE [G1 = 3.75,G2 = 7.125,G3 = 13,5375,G4 = 25,725,

G5 = 48,8775,G6 = 93]

4.4.3.1 Participants & Apparatus

Fifteen volunteers (3 female), aged 23 to 37 year-old (average 27.87, median 28),
participated in this experiment. None of them was involved in the previous study. The
experiment was run on a 2.7GHz Intel Core i5 Macbook Pro, equipped with 8GB RAM
and an Intel Iris Graphics 6100 1536 Mo driving a 27" LCD monitor (2560x1440, 100
dpi).

4.4.3.2 Task & Procedure

Participants were exposed to the Motion_Variable=FASpeed condition only. As before,
Group_Count and Graph_Size were tested using a within-subject design with two
replications, with participants seeing a total of 18 trials for analysis. Trials were
presented in a random order, after 3 practice trials. At the end of the experiment,
participants filled in a short questionnaire about their strategies for grouping edges.

4.4.3.3 Results

We observe a similar trend to what we have observed in the previous experiment:
accuracy increases between the 1st and the 2nd phases, with GCA1 = 0.82 and GCA2
= 0.89 on average. Group_Count does not have a significant effect on these two
measures, suggesting that users can discriminate up to six different values. However,
participants experienced more difficulty with large graphs than with small ones. The
effect of Graph_Size is significant on both GCA1(F2,28 = 8.86, p = 0.001, η2

G = 0.08)
and GCA2(F2,28 = 9.02, p = 0.001, η2

G = 0.11), with pairwise t-tests revealing that all
Graph_Size conditions were significantly different from each other (LOW > MEDIUM
> HIGH). Figure 4.10-(a) illustrates these results for GCA2.

The effect of Graph_Size on the total number of misclassified edges (NME) is larger
(F2,28 = 15.7, p = 0.00001, η2

G = 0.25) than that of Group_Count (F2,28 = 3.5, p = 0.04,
η2

G = 0.08). This is consistent with what we observed about Speed and Frequency in the
previous experiment, where the number of misclassified edges grew with Graph_Size.
However, as opposed to the Speed condition in the previous experiment, confusion
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Figure 4.10: (a) Average accuracy in second step (GCA2) per Graph_Size ×
Group_Count. (b) Confusion between groups per Group_Count.

matrices (Figure 4.10-(b)) illustrate that confusions are more frequent between low
values than high values of FASpeed.

In summary, participants were able to discriminate up to six different values based
exclusively on the motion dynamics of flowing particles, with an accuracy of ∼ 90%.
However, we also observe that the size of the graph impacts participants’ accuracy.
Large graphs involve comparisons between edges that can be far away from each other,
and we observe that comparing two edges based on their dynamics is a difficult task
when they do not both fall simultaneously in the center of visual attention. This is in
line with participants’ comments at the end of the experiment, where they reported
having difficulty to “recall” the speed of the two edges that they wanted to compare
when they were distant from each other.

4.5 Experiment 2: Encoding edge attributes with both
static and motion variables

The two perception experiments reported in this section provide initial quantitative
data about each motion variable studied in isolation. However, more empirical
evidence needs to be gathered to fully understand the interplay between variables
and comprehensively evaluate the potential of animated edge textures. In particular,
it is not clear how motion variables interfere with variables that control the visual
appearance of particles.

In this section, we report on a study that investigates the interplay between particle
speed, two particle-color attributes (luminance and chromaticity), and two particle-
size attributes (length and width). Results show that neither the luminance, nor the
chromaticity, nor the width of particles interferes with their perceived speed. Only
variations in their length interfere with the perception of their relative speed across
edges. We discuss these findings and illustrate applications with simple examples of
mappings that make effective use of combinations of encoding channels to represent
multivariate edges.

We report on a series of experiments that assess users’ ability to compare motion
speed between two edges, when particles flowing along those edges also vary along a
static visual variable. Each participant takes part in four experiments, presented in a
random order, and performed in separate, non-consecutive sessions. Each experiment
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4. USING MOTION AS AN ENCODING CHANNEL IN NODE-LINK DIAGRAMS

investigates the combination of speed and one of the following four visual variables
(VV): Length, Width, Luminance, and Chromaticity. For example, for VV=Width,
the experiment aims at answering the following practical question: do users perceive
particles to be moving at the same speed when they are thin and when they are thicker?

4.5.1 Task

i

ii

Figure 4.11: Experimental task. (i) The system first indicates to participants which
two edges they will have to compare. (ii) When participants press the Enter key, the
visualization gets animated. Participants have to adjust the speed of particles on edge
B so that it matches that of particles on edge A, using the slider on the right.

Figure 4.11 illustrates the experimental task. Participants are instructed to focus on
two edges only (indicated by A and B). They have to adjust the speed of particles on
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response edge B so as to make it match that of particles on reference edge A. Moving
the slider knob toward the left decreases the speed of particles flowing along edge B.
Moving the knob toward the right increases it. At the beginning of a trial, the slider
knob is always positioned in the middle of the slider. The slider has 120 steps, each
step corresponding to an increment (resp. decrement) in speed that is proportional to
the speed of reference edge A (slider_unit = speed(A)

40 ). This design ensures that the
target speed (i.e., that of reference edge A) is contained in the slider’s range, but that
it does not always correspond to the same position of the knob relative to the slider
across trials.

We generate eight planar graphs, which are drawn without edge crossings. The
presentation of these graphs is counterbalanced across experimental conditions.
Layouts consist of 20 to 28 links, and 21 to 29 nodes, and are generated using D3’s
force-directed algorithm [25]. Each layout meets the following requirements:

• nodes are distributed in a spatially uniform way;

• there is no pair of nodes that are too close to each other.

The resulting node-link diagrams have the following characteristics:

• average distance between connected nodes: 61mm (min=18, max=165,
median=59);

• average distance of the two links to be compared: 147mm (min=105, max=194,
median=148)7;

• average length of these links: 66mm (min=42, max=106, median=64)8;

• average relative difference in orientation between two links (modulo 180◦): 56◦

(min=1◦, max=172◦, median=36◦).

All eight layouts are available on the companion website, as well as the data collected
during the study.9

The study of phenomena related to motion perception requires that we are very careful
about the visual design of the experimental setup. In particular, we have to ensure that
differences in luminance will not impact participants’ perception of particles’ color
(i.e., avoid phenomena such as “dark particles on a light background appear darker
than they actually are”). Szafir [166] showed that the minimal difference in luminance
that is required in order not to impact the perception of color depends on the size
of the visual mark considered. Based on her recommendations and on the minimal
size that particles can have in our series of experiments, we computed a minimal
difference of luminance of 11%.10 A background color of (50,0,0)CIELAB and link

7Distance between links is computed as the minimum distance among all four pairs of endpoints between
the two links.

8Calculation of link length ignores the link’s curvature.
9To keep the submission anonymous, the companion website is provided only as supplemental material

for now.
10We use formula (8) in [166] considering that particles are small elongated marks that can have various

orientations.
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speed of edge A
(SPEEDA)

initial speed of edge B
(SPEEDB/A=Lower)

initial speed of edge B
(SPEEDB/A=Higher)

(Low) 5.36 mm.s−1 1.55 mm.s−1 10.18 mm.s−1

(Medium) 19.35 mm.s−1 10.18 mm.s−1 36.76 mm.s−1

(High) 36.76 mm.s−1 19.35 mm.s−1 69.94 mm.s−1

Table 4.1: Tested speeds in the experiment, in millimeters per second. The first column
corresponds to the speed of reference edge A, which remains fixed throughout a trial.
The second (resp. third) column corresponds to the initial speed of response edge B in
condition SPEEDB/A=Lower (resp. SPEEDB/A=Higher).

color of (49,0,0)CIELAB ensure that particles always have a minimal 16% difference in
luminance with both the background and the link itself, in all tested conditions.

Each of the four experiments follows a within-subject design considering four factors:

• SPEEDA: the speed of reference edge A, SPEEDA ∈{Low, Medium, High};

• SPEEDB/A: the initial speed of response edge B relative to that of reference edge
A, SPEEDB/A ∈{Lower, Higher};

• ∆VV : the difference in value between the reference and response edges for
the considered visual variable (Length, Width, Luminance or Chromaticity).
The difference can be small, medium, large or there can be no difference
(∆VV ∈ {Same, Small, Medium, Large}). Figure 4.12 details the exact values
corresponding to these different levels, per visual variable. Factor ∆VV is handled
differently in the case of Chromaticity as it is two-dimensional, compared to
Length, Width and Luminance, which are one-dimensional. For Chromaticity, we
consider the four colors that correspond to the extrema of the two axes defining
the chromaticity space in the CIELAB model (at a constant luminance level
of 75), and test the following four difference cases: no difference (Same), and
difference with one of the three other colors.

Perception studies with animated gratings have shown that visual variables can alter
perceived velocity to a different extent depending on how fast the grating moves (e.g.,
[55, 187]). They have also shown that the relative speed of another ‘modifier’ grating
can affect the perceived velocity of the grating of interest [163]. In our experiment,
factors SPEEDA and SPEEDB/A are introduced to account for these potential effects in
the context of animated edge textures. To limit the duration of the experiment, we
chose a sample of three values ({Low, Medium and High}) for the speed of reference
edge A out of the six that were tested in [135]. Initial speed for response edge B was
set relative to that of edge A in order to make the difference between edges sufficient
to be perceivable without significant effort. Table 4.1 details the actual speeds we test
in the different SPEEDA × SPEEDB/A conditions. According to recommendations from
[135], the emission frequency of particles is adjusted depending on their speed, in order
to preserve a constant spacing between them.
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Figure 4.12: Possible values for all four visual variables (VV): Length, Width,
Luminance, Chromaticity.

After a series of four practice trials (corresponding to a sample of possible conditions),
each participant completes two blocks. Each block contains 48 trials, corresponding to
the 24 (3× 2× 4) conditions, repeated twice. Conditions SPEEDA × ∆VV are presented
in a random order. For each SPEEDA × ∆VV condition, the two conditions SPEEDB/A =
Lower and SPEEDB/A = Higher are presented in series, but in a random order across
conditions.
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In each of the four experiments, motion variable speed is combined with a different
visual variable VV: Length, Width, Luminance, Chromaticity. We have computed
fifteen random orders of the four experiments to counterbalance their presentation
across our fifteen participants.

4.5.2 Participants & Apparatus

Fifteen volunteers (4 female), aged 21 to 42 year-old (average 26, median 24), all
with normal or corrected to normal vision, no color blindness, participated in the
experiments. There was no remuneration involved. We conducted the experiments on a
PC Dell Precision 5520, equipped with an Intel core i7-7820HQ processor (3.9GHz),
16GB RAM, and an NVidia Quadro M1200 graphics card (4GB), driving an 27" DELL
U2715H external monitor (2560 x 1440 QHD, 109 ppi). The monitor features a 16:9
ratio and a luminosity of 350cd.m2. Contrast ratio is 1000:1 (native), and 2000000:1
(dynamic). Participants are seated at a distance of 0.6m from the screen.

4.5.3 Results

The main measure of the experiment is ∆speed : the absolute difference in speed between
response edge B and reference edge A at the end of the trial. The lower this difference,
the better participants are at estimating speed regardless of variations along another
visual variable. In other words, ∆speed is a measure of how much a visual variable
(Length, Width, Luminance or Chromaticity) interferes with the speed motion variable.

As all participants took part in each of the four conditions and experienced varying
presentation orders, data collected across the four experiments can be handled as a
single experiment with four factors (VV, SPEEDA, SPEEDB/A, ∆VV ), whose design can
be summarized as follows:

15 users
× 4 levels of VV
× 2 blocks
× 3 levels of SPEEDA
× 4 levels of ∆VV
× 2 levels of SPEEDB/A
= 2880 trials in total

A repeated measure ANOVA of the four factors on ∆speed reveals a main effect for each
of them.

We start our analysis with factor SPEEDB/A as it has a main effect (F1,14 = 10.9, p <

0.0001, η2
G = 0.03), but no interaction effect with other factors (p > 0.05). Participants

were slightly less precise when they had to decrease the speed of response edge B to
reach that of edge A (∆speed = 4.1 mm.s−1 when SPEEDB/A = Higher) than when they
had to increase it (∆speed = 3.1 mm.s−1 when SPEEDB/A = Lower). This difference
might be due to the fact that our ability to perceive changes is not linear. Actually,
according to the Weber-Fechner law [51], detecting a change from an initially-high
level requires a higher-amplitude change than detecting a change from an initially-low
level. However, the effect of SPEEDB/A is rather small and, as it has no or negligible
interaction with other factors, we ignore it for the rest of our analyses.
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Figure 4.13: Average final speed of response edge B per SPEEDA×VV condition. Error
bars represent the 95% confidence interval.

The remaining three factors all have a significant effect on ∆speed , and they all interact
with each other. First, factor SPEEDA has a large effect on ∆speed (F2,28 = 51.8, p< 0.0001,
η2

G = 0.31), which supports the Weber-Fechner law mentioned above: participants were
worse at estimating difference at high speeds than they were at low speeds. We then
look at factor VV, which is our primary factor of interest, in order to observe whether
visual variables of different nature have different levels of interference with the speed
motion variable. An ANOVA reveals a significant effect of VV on ∆speed (F3,42 = 18,
p < 0.0001, η2

G = 0.11). As illustrated in Figure 4.13, participants seem to have more
trouble in estimating particle speed when the particles vary in their length. Pairwise
comparisons between VV conditions using paired t-tests show that only the Length
condition is significantly different from all other VV conditions (p < 0.0001). The
other three visual variables are not significantly different from each other. Figure
4.13 also illustrates the interaction effect between VV and SPEEDA on ∆speed (F6,84 = 8,
p < 0.0001, η2

G = 0.07). Differences in luminance and length of particles have a higher
impact on their perceived speed when particles move at a high speed. However, even in
the SPEEDA=High condition, only the effect of the Length visual variable is significant.

The last factor, ∆VV , is the magnitude of the difference between the values of the
considered visual variable on the reference and response edges. Its value must be
interpreted relative to that of VV. We thus break down the rest of our analyses
by VV condition, in order to better understand what happens under the different
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Figure 4.14: Average final speed of response edge B for each SPEEDA × ∆VV condition
corresponding to color visual variables. Error bars represent the 95% confidence
interval.

visual variable conditions. Figures 4.14 & 4.15 illustrate our results for each visual
variable. For Chromaticity, Luminance and Width, only the effect of SPEEDA, already
mentioned above, is significant on ∆speed (F2,28 = 22, p < 0.0001, η2

G = 0.41, F2,28 = 39,
p < 0.0001, η2

G = 0.54 and F2,28 = 31, p < 0.0001, η2
G = 0.44 respectively). Neither ∆VV
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Figure 4.15: Average final speed of response edge B for each SPEEDA × ∆VV condition
corresponding to size visual variables. Error bars represent the 95% confidence interval.

nor SPEEDA×∆VV have a significant effect (p > 0.05). The situation is a bit different
for Length. We observe three significant effects on ∆speed : the effect of SPEEDA as
for other visual variables (F2,28 = 43, p < 0.0001, η2

G = 0.54), but also the effect of
∆VV (F3,42 = 13, p < 0.0001, η2

G = 0.23), and of the interaction SPEEDA×∆VV (F6,84 = 7,
p < 0.0001, η2

G = 0.12). The accuracy in estimating speed gets worse on average with

107



4. USING MOTION AS AN ENCODING CHANNEL IN NODE-LINK DIAGRAMS

larger differences in length, and this phenomenon gets amplified with the speed of
particles. Pairwise comparisons between ∆VV×SPEEDA support this interpretation.
For example, in the SPEEDA=Low condition, only Same is different from Medium
and Large (p < 0.05), while in SPEEDA=High condition, almost all pairs of conditions
significantly differ (p < 0.05). We tentatively attribute this to the size-speed illusion
studied in experimental psychology (smaller objects appear to move faster than larger
ones – see, e.g., [192]), although this remains speculation at this stage.

4.5.4 Summary of findings

In our experiment, the color of particles did not interfere with their perceived speed,
suggesting that visualization designers can safely communicate two attributes on links
using Speed and Color as the encoding channels. Regarding color, designers can make
use of either chromaticity, which is typically useful to encode categorical attributes,
or luminance, which is better suited to quantitative attributes. The perceived speed of
particles was not affected by either of those variables in our empirical observations.

On the contrary, our study shows that variations in the length of particles’ do have an
impact on their perceived speed, and that interferences between speed and length get
more important with large differences in length and at high speeds. This means that
using Speed and Size in combination should be done with caution.

In particular, our results support that a Speed+Width encoding should be preferred over
a Speed+Length one.

We illustrate these findings on two examples of possible combinations that do not
cause interferences. The first combines Speed and Color to visually encode two edge
attributes. The second combines Speed and Size. Animated versions of these node-link
diagrams are available on the companion website.

Speed+Color Figure 4.16 shows an example of a node-link diagram that encodes edge
attributes using a combination of particle speed and color. This node-link diagram
shows data about air traffic in the USA, where nodes represent airports and links aerial
routes connecting airports. The graph data are multi-variate, with multiple attributes
for both airports and routes that call for the use of multiple encoding channels. A
particle-based node-link diagram is especially well suited to represent air traffic, as
it effectively conveys the notion of transit from one airport to the other. The color of
particles encodes the main type of payload on a route (mail, freight or passengers). The
speed of particles encodes the average number of planes traveling on that route.

The resulting visualization makes it possible to make comparisons per type of payload
and across types of payloads. For example, the visualization shows that there are more
planes with passengers traveling from Salt Lake City to Chicago than to Seattle, and
that the number of planes carrying people to Chicago is higher than the number of
planes carrying mail to San Francisco.

Speed+Size Figure 4.17 illustrates another example of an animated node-link diagram
that shows Twitter activity of some politicians about two key topics: immigration and
global warming. While the air traffic example above was using flowing particles to
encode two attributes of different type (a categorical one and a quantitative one), this
example makes use of particles to encode two quantitative attributes. Particle speed
encodes the number of tweets mentioning a hashtag (shown as destination node) over
the last year; particle width encodes the number of such tweets over the last month.
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Figure 4.16: A node-link diagram representing air traffic from Salt Lake City to other
airports in the USA. Particle chromaticity encodes the main category of payload:
passengers in red, mail in blue and freight in yellow. Particle speed encodes the average
number of planes on that route.

This design choice makes it possible to see actors’ engagement on both a short- and a
longer-term basis in the same node-link diagram. For example, if we consider hashtag
“global warming”, the speed of particles shows that Emmanuel Macron and Angela
Merkel were more active over the entire year than Vladimir Putin and Donald Trump
were, while the thick particles for Macron reveal that he was the most active over the
last month.

4.6 Conclusion and Future Work

When designing node-link diagrams that feature animated particles, combining particle
speed with other visual variables should be handled with caution. In this section,
we observed that variations in chromaticity, luminance and width did not alter the
perceived speed of particles, while variations in their length did. These empirical
findings provide guidelines about which combinations between particle speed and
these four visual variables can be effective. But these findings also suggest that the
particle pattern should probably not be combined with particle speed. Indeed, particle
patterns are obtained by introducing variable-length interspaces to delimit series of
particles that form a pattern. An interspace between particles is conceptually close to
a transparent particle, which should thus not feature variations in length so as not to
interfere with perceived speed.

The effectiveness of animated edge textures in node-link diagrams might also be
challenged in the context of graphs that are larger than the ones tested in these studies.
Larger graphs will introduce a potentially larger distance between pairs of links that
can make comparison based on motion difficult. Similarly, animated edge textures
might be challenged with dense and non-planar graphs. A high density of links might
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Figure 4.17: A node-link diagram representing activity of some politicians about key
topics on the Twitter social network (the data are fictional, generated randomly for
illustration purposes only). The width of particles encodes the number of tweets
mentioning the destination hashtag (e.g., Global Warming) over the last month. The
speed of particles encodes the number of such tweets over the last year.

introduce many motion ‘distractors’, while link crossings might impact users’ ability
to follow flows of particles. Such effects remain to be studied in order to assess
how the use of animated particle flows, as encoding channels, scale with graph size
and complexity. Finally, our results provide guidelines about combining speed with
static visual variables when considered in isolation. Combinations of multiple static
variables in the context of animated edge textures should be studied next. For example,
luminance and chromaticity taken together might interfere with the perception of
motion [187].

110



Conclusion



4. USING MOTION AS AN ENCODING CHANNEL IN NODE-LINK DIAGRAMS

During the last decade, the amount of data has constantly increased. Such data can
come from several sources such as smartphones, audio recorders, cameras, or other
sensors, or e-commerce, open data and can have varying structure. While computers
can help us process these data, human judgment and domain expertise is what turns it
into actual knowledge. However, making sense of this increasing amount of diverse
data requires new visualization and interaction techniques. This thesis contributes such
techniques to facilitate data exploration and presentation in relation with sense-making
activities.

We present 4 contributions, with two of them more focused on data exploration and
the two others more on data presentation. First, we presented ActiveInk that enables
the natural use of pen for active reading of diverse data visualization. Then, we
introduced SpaceInk, a design space of pen & touch techniques that make space for
in-context annotations during active-reading of text documents. We presented Graphies,
a prototype environment for expressive node-link diagram authoring that supports a
flexible iterative design process. Finally, we introduced a set of motion variables to
extend the set of encoding variables that are available to designers to represent data
attributes associated with edges in multi-variate networks. We give a short summary of
each contribution below, and then open directions for future work.

4.6.1 Summary

In the first part of this thesis, we focused on interactive systems and interaction
techniques to support data exploration with the aim of making users able to externalize
their thoughts more fluidly with a digital pen. ActiveInk aims at better supporting
the sense-making process by using digital ink to transition between externalization
and exploration of diverse visualizations. Through a qualitative study with eight
participants, we contributed observations of active reading behaviors during data
exploration and design principles to support sense-making. Second, SpaceInk is a
design space of interaction techniques that can make space for pen writing in reflowable
document. SpaceInk techniques make it possible to tightly integrate handwritten
annotations with their scope in the document content. We identified representative
techniques in this design space, spanning both new ones and existing ones. We
evaluated them in a user study, whose results informed the design of a prototype system.
This final prototype lets users concentrate on capturing fleeting thoughts, streamlining
the overall annotation process by enabling the fluid inverleaving of space-making
gestures with freeform ink.

In the second part, we focused on techniques to visually represent insights and answers
to questions that arise during sense-making activities. We focused here on node-link
diagrams as TKM analysts work mostly with multivariate networks. We investigated
how to enable a flexible iterative design process when authoring node-link diagrams
for multivariate networks. We demonstrated our approach with one system, and a set
of motion variables. First, we present Graphies, a system that better supports creativity
in the design workflow of node-link diagrams by making the design process flexible
and iterative. We reported on a study where participants had to reproduce several
expressive designs, and create their own designs as well. Then, we presented Animated
Edge Textures, a set of motion variables that extend encoding possibilities available to
designers to represent data attributes associated with edges in multi-variate networks.
In two users studies, we evaluate their efficiency from a perception perspective.
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4.6.2 Perspectives

During this thesis, we have mainly focused on the data exploration process to support
sense-making activities, and on the presentation process to visually represent insights
and answers to questions gained from such sense-making activities. However, there are
still many research problems to address in both themes, as well as at their intersection.
We have also focused our work on regular devices that support pen touch interaction,
such as the Microsoft Surface Book that we have used in almost all of our studies. We
believe that we could do better by taking advantage of multiple devices. In particular,
specific sensing capabilities can support novel ways of exploring and consuming data.
I present my future direction in the following section along these two axes: 1) using
novel modalities for sense-making, and 2) removing the hard frontier between data
exploration and data presentation.

4.6.2.1 Optimizing interaction techniques based on hardware
capabilities

During the last 20 years, we have witnessed a phenomenal evolution of digital devices.
Those devices can be extremely large such as the Wilder Wall [19] or the Microsoft
surface Hub, or smaller such as the Apple iPad or the Microsoft Surface. Most of
them support touch input but some of them also support more: for example pen
touch technology has also become mainstream nowadays. Those devices offer new
opportunities for people to explore and consume data, and afford workspaces that
provide new interaction paradigms.

Researchers have started to explore how to foster unification and interoperability
between those devices during data analysis and exploration activities [12]. However,
interaction is usually not optimized for each of these devices, with a UI very similar
from one device to the other, without taking advantage of a potentially richer input. For
instance, when using Microsoft Word or Powerpoint and switching between a desktop
computer and a tactile device, the same interaction design is applied, without taking
advantage of the expressiveness of touch interaction: a click is transformed into a tap, a
double-click into a double tap, etc. Such applications could take into account hardware
capabilities that each device offers to make more features for data exploration and
consumption available.

When a pen becomes available, it makes it possible to rely on hand writing for
navigating in documents as well as for creating or modifying content. For example,
inking could be used for a faster navigation: users could directly ink short addresses in
the browser URL bar, or write the page number they would like to navigate to in a PDF
document. Such examples would extend the approach that we develop in ActiveInk,
where ink does more than just writing. Annotations can also be used as a reminder:
users could ink in the scroll bar, as a reminder of information they have explored in a
specific part of a document. Integrated together, such functionalities could help and
encourage people to optimize the use of their device capabilities. Future work needs to
investigate how to effectively transpose interaction techniques between devices, going
beyond the basic point-and-select inherited from mouse-based devices.

When working with large touch screen devices, such as the Microsoft Studio, users
orient it at different angles, either horizontal, vertical or oblique (Figure 4.18). While
the horizontal mode is preferred for performing bi-manual interaction using pen touch
for authoring documents, creating content or annotating, the vertical mode is preferred
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Figure 4.18: Several tilt orientation when working with the Surface Studio

for reading or showing information to other people. Users orient their devices with
different angles depending on the tasks they are performing, and the level of privacy
they need, either public for reading and consuming data, either more private for writing
annotations, or reviewing a document.

Several research projects have already used tilt input, but as a controller to navigate
through information. Roy et al [140], used the orientation of a smartphone to design
pointing techniques, allowing users to interact with virtual content displayed over the
real world, in active situations like standing and walking. In TiltType and TiltText
[186, 123], users can enter a text by pressing on specific buttons (on cell-phone keypad)
and tilting the device in the correct position to validate the letter. In such projects, tilt
is used as an explicit input channel, ignoring users’ natural way of changing device
orientation. The natural tilt angle users adopt with their devices when working with
applications, has never been taken in account. For instance, after having reviewed a
document in a horizontal position, when orienting the surface vertically, annotations
could fade out or go in the margin to support an easy reading. Further work should
investigate in which situations the use of tilt is relevant, and how to design effective
techniques that take into account device orientation.

4.6.2.2 Exploration vs Presentation

In the literature about data visualization, most tools are either presentation or
exploration oriented. For instance, some tools have been designed for presentation
purposes only, such as Powerpoint, or DataToon [89], while others aim to explore
data such as Pajek [120], Excel or Tulip [8]. The relatively strict boundary between
those processes does not yet allow a seamless transition between data exploration and
presentation. Users who want to build a presentation as well as explore their data
need to go back and forth between several applications, such as Excel and Powerpoint.
However, both exploration and presentation are intrinsically connected and should be
designed according to one another. In fact, users who want to find relevant information
and explore data usually want to present their findings afterwards or record a clear
presentation for personal use. Also, during an exploration process, it can help to work
with temporary representations to make information more readable and better support
the overall reasoning process about a higher-level question.

Graphies begins to unify presentation and exploration processes, with, e.g., a timeline
that allows users to organize several visualizations in the history to ease the exploration
process. In such presentation oriented tools, we could even further support exploration
by including graph metrics such as centrality or clustering coefficient. In exploration
oriented applications such as ActiveInk, presentation features could be added to support
a narrative process, such as replaying the exploration process that led to a specific result.
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Future work should investigate how systems could effectively support the transition
between exploration and presentation in a smooth manner, and how to integrate both
processes in a single workspace.

During our work, we have mostly investigated how people make sense of data
with visual representations such as node-link diagrams, maps, or barcharts. Such
representations are commonly used by people to understand, explore and present their
data thanks to their effectiveness to convey simple information. However, users also
work with more unstructured data such as images or videos. Those data formats
raise new challenges and opportunities for people to extract more information from
collections of various data. We have started, with SpaceInk, to show how we can
support sense-making with text. We believe that similar techniques could be designed
to support sense-making with images and videos. Further studies should investigate
how people make sense of collection of videos and images, and how people extract
insights from them.
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Instructions	
		
	
	
	
Welcome	and	thank	you	for	participating	in	this	study.	
All	results	gathered	during	this	test	will	be	anonymized.	
		
Feel	free	to	make	comments	aloud,	and	to	ask	questions	to	the	experimenter.	

Experiment	Description	
	
This	experiment	aims	at	evaluating	whether	Graphies	enables	the	design	of	engaging	and	expressive	node-link	
diagram	visualizations.	
	
The	experiment	is	organized	in	three	steps:	
	

1- You	will	watch	a	short	demonstration	perform	by	the	instructor	and	you	will	have	to	reproduce	some	specific	
actions	to	personalize	the	graph	visualization.	

	
2- Then	comes	the	main	experiment.	It	consists	of	a	series	of	3	tasks.	Each	task	is	similar	to	the	training	task:	you	

will	be	presented	with	a	target	visualization,	that	you	will	have	to	replicate.	For	each	visualization,	a	short	
text	explains	what	data	the	visualization	shows.	After	each	task,	you	will	complete	a	short	questionnaire.	

	
3- Finally,	we	will	ask	you	to	perform	a	more	open-ended	task,	in	which	you	will	be	free	to	design	the	

visualization	of	your	choice	for	the	“InfoVis”	dataset.	Design	the	visualization	that	you	consider	good	to:	
a. show	the	most	productive	actors	(i.e.,	authors	who	have	a	significant	number	of	articles)	
b. show	their	articles,	and	visually	emphasize	the	ones	that	have	a	high	number	of	citations	
c. [optional]	illustrate	the	trend	“when	important	actors	collaborate,	the	resulting	articles	have	a	high	

impact”	
	
At	the	end	of	the	experiment,	you	will	fill	in	another	questionnaire.	
	
Thank	you!	
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Use	Case	1	
	

	
	
In	this	use	case,	you	will	be	asked	to:	
-	show	authors	of	documents	about	home	appliances;	
-	emphasize	the	most	important	authors	(based	on	the	number	of	publications	they	have	authored).	
	
Steps:	

1) First,	show	the	four	documents	about	“machine	a	cafe”,	“seche	cheveux”,	“mixeur”	and	“robot	
multifonctions”.	

2) Then,	show	authors	who	have	collaborated	on	those	documents.	
3) Represent	authors	and	documents	with	glyphs	resembling	the	ones	shown	in	the	above	figure.	

Make	the	size	of	authors	dependent	on	their	number	of	publications,	and	the	labels	of	the	
document	nodes	visible.	

4) When	satisfied	with	the	result,	save	your	visualization.	
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Use	case	2	
	
	

	
	
In	this	use	case,	you	will	be	asked	to	represent	all	of	Ben	Shneiderman’s	papers,	as	well	as	all	his	co-
authors.	
	
Steps:	

1) Show	Ben	Shneiderman	with	the	picture	that	we	make	available	on	the	file	system.	
2) Show	all	his	co-authors	and	all	his	papers.		
3) Make	the	size	of	nodes	representing	papers	depend	on	their	number	of	authors.	
4) Make	the	size	of	nodes	representing	authors	depend	on	their	numbers	of	papers.	
5) Finally,	set	the	links’	color	to	orange,	and	bundle	edges	to	get	a	result	similar	to	the	one	in	the	above	

figure.	
6) When	satisfied	with	the	result,	save	your	visualization.	
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Use	case	3	
	
	
In	this	use	case,	you	will	be	asked	to	replicate	the	two	visualizations	(A)	and	(B)	above,	as	well	as	a	video	
transitioning	between	the	two.	

	

	

A	
	

B	

A.1. Detailed instructions participants received during Graphies’ study
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Steps:	

• For	Visualization	(A):	
1. Show	all	airports.	
2. Record	a	frame	in	the	video	editor	(video	frame	1)	
3. Lay	out	nodes	according	to	their	geographical	location	(longitude	on	the	x-axis,	latitude	on	the	

y-axis).	
4. Show	routes	(connections)	between	the	South	East	and	the	North	West	airports	only.	
5. Make	links	purple,	and	set	their	stroke	size	to	depend	on	the	number	of	carriers.	
6. Sketch	x-	and	y-	axes,	and	their	labels.	
7. When	satisfied	with	the	result,	record	it	as	frame	in	the	video	editor	(video	frame	2).	
	

• For	Visualization	(B):	
1. Change	the	nodes’	layout:	make	their	location	on	the	x-axis	depend	on	the	number	of	

passengers,	and	their	location	on	the	y-axis	depend	on	the	number	of	routes	(liaisons)	going	
through	them.	

2. Sketch	the	new	x-	and	y-axes,	and	their	labels.	
3. When	satisfied	with	the	result,	record	it	as	frame	in	the	video	editor	(video	frame	3).	
4. Export	the	3-frame	video.	
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Titre : De l’exploration des données à la présentation : concevoir de nouveaux systèmes et techniques d’in-
teraction pour améliorer la création de sens a partir de données

Mots clés : Stylet+Gestes, Manipulation de données, Techniques d’interaction

Résumé :
Au cours de la dernière décennie, la quantité
de données n’a cessé d’augmenter. Ces données
peuvent provenir de sources variées, telles que
des smartphones, des enregistreurs audio, des
caméras, des capteurs, des simulations, et peuvent
avoir différentes structures. Bien que les ordinateurs
puissent nous aider à traiter ces données, c’est le ju-
gement et l’expertise humaine qui les transforment
réellement en connaissances. Cependant, pour don-
ner un sens à ces données de plus en plus diver-
sifiées, des techniques de visualisation et d’interac-
tion sont nécessaires. Ce travail de thèse contribue
de telles techniques pour faciliter l’exploration et la
présentation des données, lors d’activités visant à
faire sens des données.
Dans la première partie de cette thèse, nous nous
concentrons sur les systèmes interactifs et les tech-
niques d’interaction pour aider les utilisateurs à faire
sens des données. Nous étudions comment les utili-
sateurs travaillent avec des contenus divers afin de
leur permettre d’externaliser leurs pensées par le
biais d’annotations digitales. Nous présentons notre
approche avec deux systèmes. Le premier, Acti-
veInk, permet l’utilisation naturelle du stylet pour la

lecture active, lors d’un processus d’exploration de
données.Le second système, SpaceInk, est un es-
pace de conception de techniques en utilisant le stylet
et les gestes, qui permet de créer de l’espace pour les
annotations, pendant la lecture active, en ajustant dy-
namiquement le contenu du document.
Dans la deuxième partie de cette thèse, nous avons
étudié les techniques permettant de représenter vi-
suellement les éléments de réponses aux questions
quand les utilisateurs essaient de faire sense des
données. Nous nous concentrons sur l’une des struc-
tures de données les plus élaborées : les réseaux
multi-variés, que nous visualisons à l’aide de dia-
grammes noeuds-liens. Nous présentons d’abord un
système, Graphies, qui permet la création de visua-
lisations expressives de diagrammes noeuds-liens
en fournissant aux concepteurs un environnement
de travail flexible qui rationalise le processus créatif
et offre un support efficace pour les itérations ra-
pides de conception. Allant au-delà de l’utilisation
de variables visuelles statiques dans les diagrammes
nœuds-liens, nous avons étudié le potential des va-
riables liées au mouvement pour encoder les attributs
des données.

Title : From data exploration to presentation: designing new systems and interaction techniques to enhance
the sense-making process

Keywords : Pen+Touch, Data manipulation, Interaction Techniques

Abstract : During the last decade, the amount of
data has been constantly increasing. These data can
come from several sources such as smartphones, au-
dio recorders, cameras, sensors, simulations, and can
have various structure. While computers can help us
process these data, human judgment and domain ex-
pertise is what turns the data into actual knowledge.
However, making sense of this increasing amount
of diverse data requires visualization and interaction
techniques. This thesis contributes such techniques
to facilitate data exploration and presentation, during
sense-making activities.
In the first part of this thesis, we focus on interactive
systems and interaction techniques to support sense-
making activities. We investigate how users work with
diverse content in order to make them able to externa-
lize thoughts through digital annotations. We present
our approach with two systems. The first system, Ac-
tiveInk enables the natural use of pen for active rea-

ding during a data exploration process. The second
system, SpaceInk, is a design space of pen & touch
techniques that make space for in-context annotations
during active reading by dynamically reflowing docu-
ments.
In the second part, we focus on techniques to visually
represent insights and answers to questions that arise
during sense-making activities. We focus on one of
the most elaborate data structures: multivariate net-
works, that we visualize using a node-link diagram vi-
sualization. We first present a system, Graphies, that
enables the creation of expressive node-link diagram
visualizations by providing designers with a flexible
workflow that streamlines the creative process, and
effectively supports quick design iterations. Moving
beyond the use of static visual variables in node-link
diagrams, we investigated the use of motion to en-
code data attributes.
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