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ÉCOLE DOCTORALE DE MATHÉMATIQUES HADAMARD
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École Normale Supérieure de Paris
Directeur de thèse
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Résumé

On étudie les propriétés de rigidité symplectique des difféomorphismes hamiltoniens en dimension
finie et en dimension infinie. En dimension finie, les outils principaux qu’on utilise sont les
fonctions génératrices et les capacités symplectiques. En dimension infinie on regarde les flots
des équations en dérivées partielles (EDPs) hamiltoniennes et, en particulier, les flots qui peuvent
être approchés uniformément par des flots hamiltoniens de dimension finie.

Dans la première partie de la thèse on étudie les sélecteurs d’action définies à partir des
fonctions génératrices et on construit des invariants hamiltoniens pour les sous-ensembles de
R2m × T ∗Tk. Cela nous permet de démontrer un théorème non-squeezing coisotrope pour les
difféomorphismes hamiltoniens à support compact de R2n. On montre à continuation que cette
propriété apparaisse dans certains cas non compacts. Finalement, on explique comment ce résultat
donne aussi l’information sur le problème de rigidité symplectique en dimension intermédiaire.
Encore en dimension finie, on démontre qu’on peut utiliser le théorème du chameau symplectique
pour produire des sous-ensembles invariants compacts dans des surfaces d’energie.

Dans la deuxième partie on étudie les propriétés de rigidité symplectique des flots des EDPs
hamiltoniennes. On se place dans le contexte introduit par Kuksin et on étudie une classe parti-
culière de EDPs semi-linéaires qui peuvent être approchées par flots hamiltoniens de dimension
finie. D’abord on donne une nouvelle construction de capacité symplectique en dimension infinie
à partir des capacités de Viterbo. Puis on démontre l’analogue de la rigidité intermédiaire pour
certaines EDPs hamiltoniennes. Cette classe inclue l’équation d’ondes en dimension 1 avec une
nonlinéarité bornée, comme par exemple l’équation de Sine-Gordon. Dans la dernière partie de
la thèse on s’intéresse à un analogue de la conjecture d’Arnold pour l’équation de Schrödinguer
périodique avec une non linéarité de convolution.
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Abstract

We study symplectic rigidity properties in both finite and infinite dimension. In finite dimension,
the main tools that we use are generating functions and symplectic capacities. In infinite dimen-
sion we study flows of Hamiltonian partial differential equations (PDEs) and, in particular, flows
which can be uniformly approximated by finite dimensional Hamiltonian diffeomorphisms.

In the first part of this thesis we study the action selectors defined from generating functions
and we build Hamiltonian invariants for subsets of R2m × T ∗Tk. This allows us to prove a
coisotropic non-squeezing theorem for compactly supported Hamiltonian diffeomorphisms of R2n.
We then extend this result to some non-compact settings. Finally we explain how this result
can give information about the middle dimensional symplectic rigidity problem. Still in finite
dimensions, we show that it is possible to use the symplectic camel theorem to create energy
surfaces with compact invariant subsets.

In the second part of the thesis we study symplectic rigidity properties of flows of Hamiltonian
PDEs. We work in the context introduced by Kuksin and study a particular class of semi-linear
Hamiltonian PDEs that can be approximated by finite dimensional Hamiltonian diffeomorphisms.
We first give a new construction of an infinite dimensional capacity using Viterbo’s capacities. The
main result of this part is the proof of the analogue of the middle dimensional rigidity for certain
types of Hamiltonian PDEs. These include nonlinear string equations with bounded nonlinearity
such as the Sine-Gordon equation. In the final part of this thesis we study an analogue of Arnold’s
conjecture for the periodic Schrödinger equations with a convolution nonlinearity.
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Introduction

La géométrie symplectique trouve ses origines dans la formulation mathématique de la mécanique
classique. Au XIXème siècle, Hamilton donne une interprétation variationnelle des équations
du mouvement. Considérons l’espace de phases R2n avec coordonnées (q, p), où q représente la
position d’une particule et p représente le moment. L’évolution γ : [0, 1] → R2n d’une particule
dans l’espace de phases sous l’influence d’une fonction d’énergie H : [0, 1]×R2n → R est un point
stationnaire de l’action

AH(γ) =

∫ 1

0
p(t) · q̇(t) dt−

∫ 1

0
H(t, γ(t)) dt

Sous cette formulation, les points stationnaires sont décrits par les équations de Hamilton:{
q̇ = ∂H

∂p

ṗ = −∂H
∂q

Par exemple, la fonction d’énergie d’une particule sous l’influence d’un potentiel V (q) a une
fonction d’énergie donnée par H(q, p) = 1

2m |p|
2 + V (q). Les équations de Hamilton donnent alors

l’équation de Newton classique

mq̈ = −∇V (q).

En général, les équations de Hamilton donnent lieu à une transformation de l’espace de phases.
Lorsque l’espace de phases est de dimension deux, cette transformation préserve l’aire des sous-
ensembles de R2. Dans les dimensions supérieures, l’énoncé équivalent est le suivant: le flot
des équations de Hamilton préserve la forme différentielle ω0 =

∑n
i=1 dqi ∧ dpi. Cette forme

différentielle est ce que nous appelons la forme symplectique standard de R2n. Afin de comprendre
la dynamique de la mécanique classique, on est amené à étudier les structures symplectiques et,
en particulier, les transformations de l’espace qui préservent la forme symplectique. Le concept de
forme symplectique se généralise à des variétés lisses M : une structure symplectique ω sur M est
une deux-forme fermée non dégénérée. Le fait que ω soit non-dégénérée permet de généraliser les
équations de Hamilton: pour toute fonction d’énergie H, le champ vectoriel hamiltonien XH est
défini comme l’unique champ de vecteurs qui satisfait iXHω = dH. En utilisant le fait que ω est
fermée, nous obtenons que le flot généré par XH préserve la structure symplectique. Le principal
exemple de variété symplectique avec laquelle nous allons travailler sont les espaces cotangents
T ∗N . Ils représentent les espaces de phase de la mécanique classique où le mouvement est limité
à une variété N . Chaque espace cotangent est équipé d’une structure symplectique canonique
qui est donnée localement par la structure standard dans T ∗Rn ' R2n. Plus généralement, la
structure locale des variétés symplectiques est décrite par le théorème suivante:

Théorème (Darboux). Toute variété symplectique de dimension 2n est localement symplecto-
morphe à (R2n, ω0).
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Introduction

Ce théorème implique que les variétés symplectiques n’ont pas d’invariants locaux. Les pro-
priétés symplectiques de M sont déterminées par la géométrie de (R2n, ω0) et par la structure
globale des objets dans M . Afin d’étudier la géométrie de l’espace, on est alors conduit à l’étude
des difféomorphismes globaux qui préservent la structure symplectique. Nous les appellerons sym-
plectomorphismes. La première propriété vérifiée par symplectomorphismes est le théorème de
Liouville: chaque difféomorphisme symplectique préserve le volume des sous-ensembles. L’un des
premiers résultats qui a montré la différence entre les difféomorphismes conservant le volume et
les symplectomorphismes, est le théorème non-squeezing de Gromov:

Théorème (Gromov 1985, [Gro85]). Soit (R2n, ω0) l’espace symplectique standard. Notons B2n
r

une boule de rayon r dans R2n et soit B2
R ×R2n−2 le cylindre symplectique standard de rayon R.

Si ϕ : R2n → R2n est un difféomorphisme symplectique alors

ϕ(B2n
r ) ⊆ B2

R × R2n−2 implique r ≤ R

Capacités symplectiques

La preuve originale du théorème non-squeezing de Gromov reposait sur la technique des courbes
pseudoholomorphes. Peu après, plusieurs auteurs[EH90, HZ90, Vit92] ont donné des preuves
indépendantes du théorème de Gromov en utilisant le concept de capacités symplectiques. Une
capacité symplectique est une fonction c : P(R2n)→ [0,+∞] qui vérifie les propriétés suivantes:

1. (croissance) Si U ⊆ V alors c(U) ≤ c(V ).

2. (conformalité) c(λU) = λ2c(U) pour tout λ ∈ R.

3. (invariance symplectique) Si φ : R2n → R2n est un symplectomorphisme, alors c(φ(U)) =
c(U).

4. (non-trivialité+normalisation) c(B2n
1 ) = π = c(B2

1 × R2n−2).

L’existence d’une fonction avec ces propriétés implique le théorème de Gromov. La construction
de certaines capacités (cf. [EH90, HZ90, Vit92]) provient de l’étude des orbites périodiques des
systèmes hamiltoniens. C’est l’approche qui va nous intéresser par la suite.

Le spectre d’action en tant qu’invariant symplectique

Rappelons que le principe de Hamilton affirme que les orbites périodiques d’un système hamil-
tonien associé à H sont les points extrêmes de l’action:

AH(γ) =

∫ 1

0
p(t) · q̇(t) dt−

∫ 1

0
H(t, γ(t)) dt.

En particulier, les points critiques de AH contiennent des informations dynamiques très impor-
tantes. Cette information peut être utilisée pour construire des capacités symplectiques. Con-
sidérons un difféomorphisme hamiltonien à support compact H dans R2n. Dans ce cas, nous
pouvons intégrer les équations de Hamilton pour obtenir un flot global ψHt de R2n. Une orbite
périodique du système peut être vue comme un point fixe z0 de ψH1 , c’est-à-dire un point vérifiant
ψH1 (z0) = z0. Notons A(z0, H) = AH(ψHt (z0)) la valeur de l’action associée au point fixe z0. A
première vue, cette quantité dépend de la fonction H et de tout le chemin ψHt , mais en fait ce
n’est pas le cas. On peut montrer que cette valeur d’action ne dépend pas du chemin hamiltonien

xii



Capacités symplectiques

utilisé pour engendrer ψH1 . Plus précisément, si K une autre fonction hamiltonienne à support
compact tel que ψK1 = ψH1 , alors

A(z0, H) = A(z0,K).

Les valeurs d’action définissent donc un sous-ensemble de R qui dépend uniquement du temps un
ψ = ψH1 . On peut alors associer à tout ψ son spectre d’action σ(ψ) ⊆ R défini par

σ(ψ) = {A(z,H) | z ∈ Fix(ψ = ψH1 )}.

Il s’avère que le spectre d’action est invariant par conjugaisons symplectiques: pour tout sym-
plectomorphisme ϕ de R2n on a

σ(ϕψϕ−1) = σ(ψ).

En particulier, le spectre d’action des difféomorphismes hamiltoniens supportés en U est exacte-
ment le même que celui qu’on trouve pour les difféomorphismes hamiltoniens supportés dans ϕ(U).
Cette remarque importante est le point de départ de la construction des capacités symplectiques
que Viterbo a donné dans [Vit92].

Capacités de Viterbo

Pour chaque ensemble ouvert, U on note Hamc(U) l’ensemble de temps un des flots hamil-
toniens avec un support compact contenu dans U . Pour un ensemble ouvert borné U , la capacité
de Viterbo c(U) est définie en utilisant l’information dynamique des éléments dans Hamc(U).
Plus précisément, cette information va provenir de la valeur d’action associée à certaines orbites
périodiques dynamiquement importantes. Ces valeurs d’action sont choisies par deux sélecteurs,
désignés par c(µ, ·) et c(1, ·), qui prennent un élément ψH de Hamc(R2n) et donnent deux valeurs

c(µ, ψ) = AH(σ(t)) et c(1, ψ) = AH(β(t))

où σ(t) = ψHt (x) et β(t) = ψHt (y) avec x, y ∈ Fix(ψH1 ). Ces valeurs vérifient c(µ, ψ) ≥ 0 et
c(1, ψ) ≤ 0. On peut prouver que la valeur γ(ψ) = c(µ, ψ)− c(1, ψ) est nulle si et seulement si ψ
est l’identité. Intuitivement, cela signifie que ces valeurs d’action peuvent être interprétées comme
un maximum et minimum dynamique de ψ. De plus, on peut prouver que γ définit une distance
sur Hamc(R2n). En utilisant l’invariance par conjugaison symplectique du spectre d’action, on
peut voir que les sélecteurs sont invariants sous la conjugaison symplectique, c’est-à-dire,

c(µ, ψ) = c(µ, ϕψϕ−1),

donc ces valeurs peuvent être utilisées pour définir deux invariants symplectiques sur des ensembles
ouverts bornés :

c(U) = sup{c(µ, ψ) |ψ ∈ Hamc(U)}
γ(U) = inf{γ(ψ) |ψ ∈ Hamc(R2n) et ψ(U) ∩ U = ∅}

Sur les ensembles ouverts non bornés V , la capacité c(V ) et γ(V ) est définie comme le sup sur tous
les ensembles bornés ouverts contenus dans V . Enfin, sur des sous-ensembles arbitraires X ⊆ R2n

les deux capacités sont définies comme l’infimum sur tous les ensembles ouverts V qui contiennent
X. La valeur c(U) mesure la taille de ce maximum dynamique si le support est contenu dans
U . Il a de plus la propriété que, sur un corps lisse convexe K, la valeur c(K) cöıncide avec la
quantité géométrique de l’aire minimale d’une caractéristique fermée sur la frontière ∂K. D’autre
part, γ est défini en utilisant la distance de Viterbo sur Hamc(R2n): si nous définissons l’énergie
d’un difféomorphisme comme la distance à l’identité, alors γ(U) mesure l’énergie minimale dont
on a besoin pour déplacer U . Les deux capacités sont toujours liées par l’inégalité c(X) ≤ γ(X).
En dimension deux, si ψ est un difféomorphisme hamiltonien à support compact qui déplace un
disque d’aire πr2, alors nous avons πr2 ≤ γ(ψ).
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Construction des sélecteurs d’action

Afin d’extraire l’information des points fixes de ψH1 = ψ nous regardons le graphe de ψ, noté
Γψ = Id × ψ, dans R2n × R2n et les points d’intersection de Γψ avec ΓId . Si nous munissons
R2n×R2n avec la structure symplectique ω0⊕(−ω0) alors Γψ devient une sous-variété lagrangienne.
De plus, Γψ est isotope à la diagonale et cöıncide avec elle en dehors d’un compact. Travailler sur
la variété linéaire de R2n a l’avantage qu’il y a un symplectomorphisme explicite

I : (R2n × R2n, ω0 ⊕ (−ω0)) −→ (T ∗R2n,−dλ)

tel que ΓId est envoyé à la section nulle. En particulier, puisque l’application est symplectique,
l’image de Γψ est une sous-variété lagrangienne qui est isotope de façon hamiltonienne à section
nulle et cöıncide à l’infini avec la section nulle. Cela nous permet de considérer la compactification
en un point de R2n à S2n et de voir T ∗R2n comme un sous-ensemble de T ∗S2n. Chaque Γψ est
alors contenu dans une sphère lagrangienne Lψ ⊆ T ∗S2n qui est une isotopie hamiltonienne de
la section nulle. Nous voulons extraire des informations des points d’intersection de Lψ avec la
section nulle.

Il y a une manière naturelle de décrire les Lagrangiens dans l’espace contangent: toute fonction
f définit une sous-variété lagrangienne via le graphe de son différentiel df . Pour cette famille de
Lagrangiens, les points d’intersection avec la section nulle sont déterminés par les points critiques
de f . Nous allons décrire Lψ en utilisant une généralisation de cette description qui sont les
fonctions génératrices. On introduit une variable auxiliaire et on considère les fonctions S :
S2n×Rk → R. Le graphe de la différentielle est une sous-variété lagrangienne dans T ∗(S2n×Rk).
Nous allons pousser en avant cette sous-variété lagrangienne de manière symplectique pour obtenir
une lagrangienne dans T ∗S2n. Pour le faire, nous devons introduire le concept de réduction
symplectique.

Réduction symplectique. Soit V un espace vectoriel symplectique. On dit que W ⊆ V est
un sous-espace cöısotrope si W contient son orthogonal symplectique Wω, ou en autres termes,
un sous-espace W tel quel si u ∈ V vérifie ω(u,w) = 0 pour tout w ∈ W , alors u ∈ W . Puisque
Wω ⊆ W , on peut considérer le quotient W/Wω qui est par construction un espace vectoriel
symplectique avec la forme symplectique induite par ω. Notons π la projection naturelle π : W →
W/Wω et soit Z un sous-ensemble de V . La réduction symplectique de Z par W est

RedW (Z) := π(Z ∩W ),

qui est un sous-ensemble de W/Wω. Une des propriétés importantes de cette opération est que si
L ⊂ V est un sous-espace vectoriel lagrangien transverse à W , alors RedW (L) est lagrangien dans
le quotient. Cette définition s’applique au cas non linéaire, la seule difficulté qui peut survenir est
que W/Wω ne soit pas une variété.

Fonctions génératrices quadratiques à l’infini. Soit N une variété compacte et considérons
une fonction S : N×Rk → R. Le graphe de la différentielle est une sous-variété lagrangienne dans
T ∗(N×Rk). Considérons le sous-espace cöısotrope W := T ∗N×0Rk ⊆ T ∗N×T ∗Rk ' T ∗(N×Rk).
On peut voir que W/Wω ' T ∗N . Si dS est transverse à W alors

LS = RedW (dS)

est une sous-variété lagrangienne immergée dans T ∗N . Dans ce cas, nous disons que S est une
fonction génératrice ou fg de LS . La condition de transversalité implique que ΣS := dS−1(W )
est une sous-variété de dimension dimN . On note iS : ΣS → LS ⊆ T ∗N l’application iS(q, ξ) =
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Capacités symplectiques

RedW (dS(q, ξ)), c’est une immersion. Si de plus S(x, ξ) = Q(ξ) en dehors d’un compact avec Q
une forme quadratique non dégénérée, alors nous appellerons S une fonction génératrice quadra-
tique à l’infini ou fgqi . Il s’avère que cette description des lagrangiennes est suffisante pour décrire
tous nos Lψ dans T ∗S2n.

Théorème (Laudenbach et Sikorav [LS85, Sik86, Sik87]). Soit T ∗N l’espace contangent d’une
variété compacte et considérons un difféomorphisme hamiltonien Φ : T ∗N → T ∗N . Alors Φ(0N )
a une fgqi S telle que iS est un difféomorphisme.

Le fait que iS soit bijective implique qu’il y a une correspondance bijective entre les points
critiques de S et les points d’intersection de L avec la section nulle. Ce théorème d’existence
a déjà de fortes implications pour la topologie de ces sous-variétés. Il implique que ce type de
sous-variétés intersectent suffisamment la section nulle. Afin de définir les capacités de Viterbo,
nous devons pouvoir comparer les fonctions génératrices d’une même lagrangienne. Considérons
les opérations suivantes:

1. Addition d’une constante. Si c ∈ R, on pose S′ = S + c : N × Rk → R.

2. Composition par un difféomorphisme. Si φ : N ×RK → N ×Rk est un difféomorphisme qui
satisfait φ(x, ξ) = (x, ϕ(x, ξ)) alors on pose S′ = S ◦ φ.

3. Stabilisation. Si Q′ : Rk′ → R est une autre forme quadratique non dégénérée, alors nous
définissons S′ = S +Q′ : N × Rk × Rk′ → R.

On dit que une fgqi S′ est équivalente à une autre fgqi S si S′ peut être obtenue à partir de
S par une succession d’opérations ci-dessus. On peut vérifier facilement que pour chacune des
opérations précédentes, nous avons

RedW (dS′) = RedW (dS),

CritVal(S′) = CritVal(S) + c.

Le théorème suivant assure que ces trois opérations sont suffisantes pour aller d’une fgqi à une
autre fgqi à condition qu’elles décrivent une isotopie lagrangienne à la section nulle.

Théorème (Viterbo [Vit92] et Théret [Thé99a]). Soit T ∗N l’espace cotangent d’une variété com-
pacte et considérons un difféomorphisme hamiltonien Φ : T ∗N → T ∗N . Alors toutes les fgqi S de
Φ(0N ) telles que iS est un difféomorphisme sont équivalentes.

Il convient de remarquer que dans l’article de Théret l’hypothèse de que iS soit un difféomorphisme
n’est pas incluse dans la définition de fonction génératrice [Thé99a, Definition 2.1] mais elle est
incluse dans la terminologie “S engendre L” [Thé99a, Definition 2.2].

Définition de c(µ, ·) et c(1, ·). Puisque les fgqi sont de degré un, les points d’intersection de
Lψ avec la section nulle sont en correspondance bijective avec les points critiques de S. Rappelons
que ces points d’intersection sont en bijection avec les points fixes de ψ. Après avoir normalisé
la fgqi pour que la valeur critique à l’infini soit 0, on peut prouver que les valeurs critiques de S
cöıncident avec le spectre d’action de ψ

CritVal(S) = σ(ψ).

Pour sélectionner une valeur d’action, il suffit alors de sélectionner une valeur critique de S.
Viterbo le fait dans [Vit92] via la théorie de Liusternik-Schilermann. Dans cette théorie, les
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valeurs critiques sont considérées comme témoins des changements topologiques des ensembles de
niveaux de S. Soit S une fgqi qui cöıncide avec la forme quadratique Q à l’infini. Notons Sλ

l’ensemble des points (x, ξ) ∈ N × RK tels que S(x, ξ) ≤ λ. Le fait que S cöıncide avec Q à
l’infini implique que pour |λ| suffisamment grand les ensembles de niveau ne dépendent que de Q,
en d’autres termes: Sλ = Qλ. Pour un λ0 fixe assez grand qui vérifie cette propriété, on définit
S∞ = Sλ0 et S−∞ = S−λ0 . Alors la topologie de la paire (S∞, S−∞) ne dépend que de l’indice
de la forme quadratique et nous avons

(S∞, S−∞) ' (S2n ×D−, S2n × ∂D−)

où D− est le disque de dimension l’indice de Q. En particulier nous obtenons les isomorphismes
en cohomologie sur un corps

H∗(S∞, S−∞) ' H∗(N)⊗H(D−, ∂D−),

et nous pouvons définir une application T : H∗(N)→ H∗(S∞, S−∞) qui est appelé l’isomorphisme
de Thom. Afin de trouver les changements dans la topologie des ensembles de niveau, nous
déformons la paire (S∞, S−∞). Considérons l’inclusion naturelle iλ : Sλ → S∞. Nous obtenons
une application en cohomologie

iλ : H∗(S∞, S−∞)→ H∗(Sλ, S−∞).

Enfin, si on note µ le générateur de H2n(S2n) et par 1 le générateur de H0(S2n) nous peut définir
deux valeurs:

c(µ, S) = inf{λ | i∗λT (µ) 6= 0} and c(1, S) = inf{λ | i∗λT (1) 6= 0}

Ils détectent un ensemble de niveau qui subit un changement topologique, donc ils sont des valeurs
critiques de S. On peut alors définir c(µ, ψ) = c(µ, S) où S est un fgqi normalisé. Cette valeur
est bien définie grâce au théorème d’unicité des fgqi .

Rigidité cöısotrope

Pour le premier résultat original de cette thèse, nous prouvons un nouveau résultat de rigidité pour
une famille large de symplectomorphismes. Au lieu d’étudier l’évolution des boules, comme dans le
non-squeezing de Gromov, nous allons étudier l’évolution des cylindres coisotropes. Pour rappel,
(cf. section précédente), tout sous-espace cöısotrope W ⊆ R2n induit un espace symplectique
W/Wω. On note π : W →W/Wω la projection. La réduction de Z ⊆ R2n est définie comme

RedW (Z) = π(Z ∩W ).

Dans le cas particulier de W = Cm × iRn−m ⊆ Cm × Cn−m, π = πm est la projection sur les
m premières coordonnées complexes. Un cylindre cöısotrope est un sous-ensemble de la forme
X×Rn−m ⊆ Cm×Cn−m. On peut ainsi écrire X×Rn−m = X×0Rn−m et W = T ∗Rm×T ∗0 Rn−m.

Théorème (Non-squeezing coisotrope). Soit X ⊆ R2m un ensemble compact, on considère
X×Rn−m ⊆ Cm×Cn−m et on note W = Cm×iRn−m. Pour chaque difféomorphisme hamiltonien
à support compact ψ nous avons

c(X) ≤ γ(RedW [ψ(X × Rn−m)]).
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Figure 1: Cette figure représente l’image du cylindre cöısotrope par un difféomorphisme
hamiltonien à support compact ψ. Le plan transverse représente le sous-espace cöısotrope
complémentaire W . Le théorème précédent donne des informations sur la capacité de la pro-
jection de l’intersection avec W .

La démonstration de ce théorème est contenu dans l’article [Bus17]. Explicitement, la réduction
de W est πm(ψ(X ×Rn−m)∩ (Cm× iRn−m)), qui est la projection d’un ensemble borné. En par-
ticulier nous étudions des trajectoires où la composante de T ∗Rn−m commence avec un moment
nul et arrive à un point précis T ∗0 Rn−m. Nous soulignons que les capacités de Viterbo ne donnent
pas à elles seules des informations de rigidité pour l’image des cylindres coisotropes puisque

c(X × Rk) = 0 = γ(X × Rk).

Le cas X = (S1)m, et où RedW [ψ(X × Rn−m)] est contenu dans un cylindre a été prouvé par
Buhovski et Opshtein en utilisant la théorie de courbes pseudo-holomorphes. La preuve de notre
théorème est obtenue par une série d’inégalités entre les capacités de Viterbo d’ensembles et la
réduction symplectique de ces ensembles. L’avantage d’utiliser les capacités de Viterbo est qu’elles
sont construites en utilisant des fonctions génératrices, et la réduction symplectique peut être vue
comme une opération explicite sur les fonctions génératrices. Cette opération peut être ensuite
étudiée en détail. La preuve vient de l’extension des sélecteurs d’action à R2m × T ∗Tn−m.

Sélecteurs d’action sur R2m × T ∗Tk. La construction des sélecteurs d’action de Viterbo
s’appuie fortement sur la structure linéaire de l’espace. Nous ne pouvons pas utiliser la même con-
struction pour généraliser ces invariants à chaque variété symplectique, néanmoins nous sommes
encore capables de le faire si nous ajoutons un espace cotangent d’un tore.

Notons π la projection naturelle de T ∗R2m × T ∗R2k sur T ∗R2m × T ∗T2k. C’est la projection
induite par le quotient de T ∗R2m×T ∗R2k par translation de vecteurs dans Zk. Prenons une isotopie
hamiltonienne à support compact ψ de R2m × T ∗Tk et considérons le relevé ψ̃ sur R2m × T ∗Rk.
L’application ψ̃ commute avec l’action de Zk par translation, donc les points fixes de ψ̃ sont
regroupés dans Zk orbites. De plus, on peut voir que ces orbites sont en bijection avec des points
fixes contractiles de ψ. On peut définir le spectre d’action contractile de ψ comme

σc(ψ) = σ(ψ̃).

Pour chaque difféomorphisme hamiltonien de support compact ϕ de R2m×T ∗Tk on peut montrer
que

σc(ϕψϕ
−1) = σc(ψ).
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Comme dans le cas de R2n on considère le graphe de ψ̃ et on peut utiliser le symplectomorphisme
I pour le voir comme une sous-variété lagrangienne de T ∗R2m × T ∗R2k. Dans ce cas, les points
d’intersection avec la section nulle viennent dans des Zk orbites où chaque point de l’orbite a la
même valeur d’action. Afin de se débarrasser de cette redondance, nous utilisons les propriétés
périodiques du flot pour prendre le quotient par cette action et trouver une sous-variété lagrangi-
enne dans T ∗R2m × T ∗Rk × T ∗Tk. Les points d’intersection de cette lagrangienne avec la section
nulle sont en bijection avec les points fixes contractiles de ψ. Nous pouvons alors compactifier la
base pour obtenir une lagrangienne

Lψ ⊆ T ∗S2m × T ∗Sk × T ∗Tk.

Comme expliqué précédemment, cette sous-variété est isotope de façon hamiltonienne à la section
nulle donc elle a une fgqi . On peut alors utiliser les classes cohomologiques α⊗β⊗γ ∈ H∗(S2m)⊗
H∗(Sk)⊗H∗(Tk) pour sélectionner les valeurs critiques de S. Après normalisation, nous avons à
nouveau la propriété très importante

CritVal(S) = σc(ψ).

De la même façon que dans le cadre classique, nous pouvons alors définir une notion de capacité
pour les sous-ensembles de R2m × T ∗Tk. Pour les ensembles ouverts bornés U dans R2m × T ∗Tk
on définit

c(α⊗ β ⊗ γ, U) = sup{c(α⊗ β ⊗ γ, ψ) |ψ ∈ Hamc(U)}.

Cette fois ces quantités ne sont pas invariantes par les difféomorphismes symplectiques généraux
de R2m × T ∗Tk mais seulement par les isotopies hamiltoniennes.

Sélecteurs de valeurs critiques et réduction symplectique. L’étape suivante consiste à
relier ces nouveaux invariants aux capacités classiques de Viterbo. Ceci est fait via une séquence
d’inégalités qui relient les fonctions génératrices à l’opération de réduction symplectique. La
remarque clé est que si S : N ×B × Rl → R est une fonction génératrice pour LS ⊆ T ∗N × T ∗B
et si LS est transverse au sous-espace cöısotrope W = T ∗N × T ∗b B alors Sb = S(·, b, ·) engendre
RedW (LS). En plus, les sélecteurs de valeurs critiques se comportent bien par rapport à cette
opération. Plus précisément pour α ∈ H∗(N) et µ ∈ H∗(B) la classe d’orientation dans B nous
avons la châıne d’inégalités

c(α⊗ 1, S) ≤ c(α, Sb) ≤ c(α⊗ µ, S).

Ce résultat nous permet d’obtenir la relation désirée avec les capacités de Viterbo. Nous obtenons
d’abord la non trivialité de l’invariant via l’inégalité suivante:

Proposition. Si X ⊆ R2m est compacte alors c(X) ≤ c(µ⊗ µ⊗ 1, X × {0} × Tk).

Dans cette proposition, il est crucial d’avoir un ensemble avec Tk tout entier dans la variable
de la classe cohomologique 1 afin d’obtenir quelque chose de non trivial. La borne supérieure
provient d’une relation avec l’énergie de déplacement de Viterbo:

Proposition. Soit Z ⊆ R2m × Rk × Tk un ensemble compact. Pour w ∈ Tk on considère le
sous-espace cöısotrope W = R2m × Rk × {w}. On a

c(µ⊗ µ⊗ 1, Z) ≤ γ(RedW (Z)).

Afin de prouver le théorème de non-squeezing, nous étendons l’ensemble X ×Rk et le voyons
comme X × {0} × Tk ⊂ R2m × T ∗Tk. Nous étendons ensuite le difféomorphisme hamiltonien à
support compact à tout l’espace R2m × T ∗Tk et appliquons les propositions précédentes.
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Cas non compact

L’étape suivante consiste à étendre le théorème de non-squeezing cöısotrope à des cas où le
difféomorphisme hamiltonien n’a pas un support compact. Puisque nous regardons l’évolution
d’un ensemble non borné X × Rk ⊆ Cm × Ck nous devons avoir un flot globalement défini. Pour
cette raison nous restreignons l’étude à la classe des difféomorphismes hamiltoniens qui satisfont

|∇H(z)| ≤ A+B|z| for every (t, z) ∈ [0, T ]× R2n

pour deux constantes positives A and B. Ces difféomorphismes hamiltoniens définissent des appli-
cations globales ψHt pour tout t ∈ [0, T ]. La première remarque est qu’il existe un difféomorphisme
hamiltonien de ce type qui ne satisfait pas l’énoncé du théorème: considérons le difféomorphisme

φ(z1, . . . , zn) = (zm+1, . . . , zn, z1, . . . , zm)

avec zj = qj + ipj . C’est un difféomorphisme hamiltonien qui est engendré par une fonction
hamiltonienne quadratique. On peut voir facilement que

φ(X × Rk) = Rk ×X ⊆ Rk × Cm

de façon que l’image de πm est également contenue dans un sous-espace linéaire propre. Puisque
l’énergie de déplacement associée à un sous-espace linéaire est nulle nous obtenons

γ(RedW [φ(X × Rk)]) = 0.

Si l’on considère un cylindre cöısotrope de la forme X × Rk avec c(X) > 0 alors l’énoncé du
non-squeezing cöısotrope n’est pas vrai pour cette application φ. Nous prouvons qu’il existe une
classe d’applications qui vérifient l’énonce. Plus précisément, nous prouvons:

Théorème. Considérons une fonction hamiltonienne de la forme

Ht(z) =
1

2
〈Az, z〉+ Ut(z), avec |∇U(z)| ≤ C pour tout (t, z) ∈ R× R2n

avec un C positive. Supposons que A = A1 ⊕ · · · ⊕ An où Ak est une application linéaire sur
V ect{ ∂

∂qk
, ∂
∂pk
} pour tout 1 ≤ k ≤ n. Soit X ⊆ R2m un ensemble compact et considérons le

sous-espace cöısotrope W := Cm × iRn−m. Alors pour tout t ∈ R tel que

Rn−m + e−tJAiRn−m = Cn−m,

nous avons

c(X) ≤ γ(RedW [ψt(X × Rn−m)]).

Un exemple de difféomorphisme hamiltonien qui vérifie les hypothèses est la classe des flots
définis à partir des fonctions hamiltoniennes mécaniques de la forme

Ht(q, p) =
1

2
|p|2 + Ut(q), avec |∇Ut(z)| ≤ C.

En particulier, le théorème est vrai si U est un potentiel périodique en q.

xix



Introduction

Rigidité cöısotrope sur T ∗Tn

En utilisant cette extension non-compacte, nous pouvons regarder le véritable cas périodique
T ∗Tn. Dans ce cas, nous prouvons que nous avons toujours ce comportement dans le cas des
difféomorphismes hamiltoniens à support compact.

Théorème. Soit ψ un difféomorphisme hamiltonien à support compact de T ∗Tn = T ∗Tm ×
T ∗Tn−m. Pour tout w ∈ Tn−m on note Wf = T ∗Tm × T ∗mTn−m et W0 = T ∗Tm × 0Tn−m. Soit Br
une boule de rayon r dans T ∗Tm. Alors l’inclusion

RedWf
[ψ(Br × 0Tn−m)] ⊆ BR ou RedW0 [ψ(Br × T ∗wTn−m)] ⊆ BR

entrâıne r ≤ R.

Ce théorème est également vrai pour les difféomorphismes hamiltoniens mécaniques. Il indique
également que ce type de rigidité cöısotrope peut apparâıtre dans le cadre des produits d’espaces
cotangent de bases compactes. Par boule symplectique de rayon r dans une variété symplectique
(M,ω) on entend une boule de rayon r dans R2n qui est plongée de façon symplectique dans M
En particulier, nous pouvons conjecturer le comportement suivant:

Conjecture. Soit N et M deux variétés compactes et ψ une isotopie hamiltonienne compacte
de T ∗N × T ∗M . Pour tout m ∈M on note Wf = T ∗N × T ∗mM et W0 = T ∗N × 0M . Soit Br une
boule symplectique de rayon r dans T ∗N . Alors l’inclusion

RedWf
[ψ(Br × 0M )] ⊆ BR ou RedW0 [ψ(Br × T ∗mM)] ⊆ BR

implique r ≤ R.

Rigidité symplectique de dimension intermédiaire

L’une des conséquences du théorème non-squeezing cöısotrope est son interprétation dans le con-
texte du problème de rigidité de dimension intermédiaire. Une des premières questions concernant
ce problème est apparue dans [Hof90b] où Hofer s’est interrogé sur la généralisation des capacités
aux dimensions intermédiaires. Les capacités symplectiques sont une sorte de mesure bidimen-
sionnelle des ensembles car, du point de vue des capacités symplectiques, tous les cylindres d’un
même rayon mais avec une base de dimensions différentes, sont exactement identiques. Afin
d’essayer de voir si ces cylindres sont différents pour la géométrie symplectique, Hofer a demandé
s’il existe une capacité symplectique k-intermédiaire ck satisfaisant la monotonie, la k-conformité,
l’invariance symplectique et telle que

ck(B2k
1 × R2n−2k) < +∞ mais ck(B2k−2

1 × R2 × R2n−2k) = +∞?

La première inégalité est déjà vérifiée par les capacités standards et c’est la deuxième qui diffère.
L’un des premiers résultats indiquant que les capacités intermédiaires n’existaient pas est apparu
dans une publication de Guth [Gut08]. Il s’est intéressé à la question des plongements des poly-
disques P = B2

R1
× · · · × B2

Rn
avec R1 ≤ · · · ≤ Rn dans un autre P ′ = B2

R′1
× · · · × B2

R′n
avec

R′1 ≤ · · · ≤ R′n en utilisant une application symplectique. ll y a deux obstacles évidents à ce
problème. Le premier provient du non-squeezing de Gromov qui implique R1 ≤ R′1. Le deuxième
est le volume qui implique que R1 · · ·Rn ≤ R′1 · · ·R′n. En utilisant les techniques de l’article de
Traynor [Tra95] on peut voir que l’on pourrait plonger P dans P ′ dès que R1 · · ·Rk . R′1 · · ·R′k
pour chaque k entre 1 et n. Guth a montré que, modulo une constante dimensionnelle, k = 1 et
k = n sont les deux seules obstructions. Plus précisément:
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Théorème (Guth 2008 [Gut08]). Il existe une constante dimensionnelle C(n) telle que si
C(n)R1 ≤ R′1 et C(n)R1 · · ·Rn ≤ R′1 · · ·R′n alors P se plonge symplectiquement dans P ′.

Ce théorème a donné une réponse partielle à la question de Hofer. Cela implique que si
1 < k < n alors k-capacités qui vérifient l’hypothèse de continuité suivante :

lim
R→+∞

c(B2k
1 ×B2n−2k

R ) < +∞ et lim
R→+∞

c(B2k−2
1 ×B2n−2k+2

R ) = +∞

n’existe pas. Son théorème était quasiment une réponse définitive, mais la question des capacités
moins régulières restait ouverte. Cela a été récemment résolu par la négative de Pelayo et Vũ Ngo.c
dans [PVuN15]. Ils ont appliqué un argument limite à la construction de Guth et Hind-Kerman
[HK14] afin de prouver la version non-bornée du théorème de Guth.

Théorème (Pelayo-Vũ Ngo.c 2015 [PVuN15]). Si n ≥ 2 alors le cylindre B2
1 × R2n−2 peut être

plongé de façon simplectiquement dans le produit B2n−2
R × R2 pour tout R ≥

√
2n−1 + 2n−2 − 2.

Avec ce théorème, la question des capacités symplectiques intermédiaires était définitivement
résolue. Ils ont montré que les difféomorphismes symplectiques généraux sont trop flexibles pour
capturer ce type de rigidité cylindrique. Un autre point de vue sur le problème de la dimension
intermédiaire vient d’une reformulation du théorème non-squeezing de Gromov. En dimension
2 les symplectomorphismes sont les mêmes que les applications préservant les aires donc Eliash-
berg et Gromov [EG91] ont souligné que (en utilisant un théorème de Moser sur l’existence de
difféomorphismes conservant l’aire) le théorème de Gromov est équivalent à

area(Π1φ(B2n
r )) ≥ πr2 pour tout symplectomorphisme φ.

On note Πk la projection sur les 2k premières coordonnées. Une généralisation possible de cet
énoncé aux dimensions supérieures est

Vol(Πkφ(B2n
r )) ≥ Vol(ΠkB

2n
r ) = Vol(B2k

r ) pour chaque symplectomorphisme φ.

Ce problème a été étudié par Abbondandolo et Matveyev dans [AM13]. Dans leur article, ils ont
d’abord prouvé que l’inégalité est vraie dans le cas linéaire:

Théorème (Abbondandolo-Matveyev 2013 [AM13]). Soit Φ automorphisme symplectique linéaire
de R2n, et soit P : R2n → R2n soit la projection orthogonale sur un sous-espace linéaire complexe
V ⊆ R2n de dimension 2k, 1 ≤ k ≤ n. Alors

Vol(PΦ(B2n
r )) ≥ Vol(B2k

r )

avec égalité si et seulement si le sous-espace linéaire ΦTV est complexe.

Contrairement au résultat linéaire, ils prouvent que les difféomorphismes symplectiques sont à
nouveau trop flexibles pour avoir cette sorte de rigidité symplectique de dimension intermédiaire.
Plus précisément, cela montre qu’on peut écraser arbitrairement la projection symplectique de
l’image de la boule par des symplectomorphismes.

Théorème (Abbondandolo-Matveyev 2013 [AM13]). Soit P : R2n → R2n la projection orthog-
onale sur un sous-espace linéaire complexe V ⊆ R2n de dimension 2k, 1 < k < n. Pour chaque
ε > 0 il existe une application symplectique lisse φ : B2n

1 → R2n telle que

Vol(Pφ(B2n
r )) < ε.
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Malgré tous ces résultats négatifs, il y a eu un résultat récent de Rigolli dans [Rig15] qui prouve
qu’il y a aussi une rigidité intermédiaire locale si l’on restreint la classe des symplectomorphismes
aux analytiques.

Théorème (Rigolli 2015 [Rig15]). Soit φt : B
2n
1 → R2n un chemin analytique des plongements

symplectiques, avec t ∈ [0, 1], tel que φ0 est linéaire. Alors l’inégalité de non-squeezing de dimen-
sion intermédiaire

Vol(Pφt(B
2n
1 )) ≥ Vol(B2k

r )

est vérifiée pour tout t assez petit.

Ce résultat indique que cette rigidité intermédiaire pourrait être possible en restreignant la
classe des difféomorphismes symplectiques que nous considérons. De plus, ce résultat a une autre
implication locale:

Théorème (Rigolli 2015 [Rig15]). Pour chaque inclusion analytique symplectique d’un domaine
D il existe une fonction r0 : D → (0,+∞) telle que l’inégalité à dimension intermédiaire

Vol(Pφ(B2n
r (x))) ≥ Vol(B2k

r )

est valable pour tout x ∈ D et pour tout r < r(x). De plus, r0 est borné inférieurement par une
constante positive sur des sous-ensembles compacts K ⊆ D.

Nous aimerions souligner une autre généralisation possible du problème de dimensions in-
termédiaires. Dans la dimension 2, la valeur des capacités symplectique des disques topologiques
cöıncide avec l’aire, donc on peut aussi réécrire le théorème de Gromov comme

c(Π1φ(B2n
r )) ≥ πr2 pour tout symplectomorphisme φ,

où c est une capacité symplectique. On peut alors se demander si cette inégalité est vraie avec
Π1 remplacé par Πk, et plus généralement, s’intéresser aux sous-ensembles Z différents de B2n

r et
remplacer πr2 par la capacité de ΠkZ. Les résultats précédents montrent qu’il y a peu d’espoir
qu’une telle inégalité soit toujours vraie, il faut donc restreindre le type de symplectomorphismes
considérés. Notre théorème de non-squeezing cöısotrope implique une rigidité de dimension in-
termédiaire pour les déformations des cylindres cöısotropes Z = X × Rn−m ⊆ Cm × Cn−m à
condition de restreindre la classe de symplectomorphismes aux isotopies hamiltoniennes à vitesse
bornée.

Théorème. Soit X ⊂ R2m un ensemble compact. On considère X×Rn−m ⊆ Cm×Cn−m et soit
ψ un difféomorphisme hamiltonien engendré par une fonction avec un gradient borné. Alors

c(X) ≤ γ(Πmψ(X × Rn−m)).

On remarque que, contrairement à ce qui se passe dans le problème de rigidité intermédiaire
du volume, cette affirmation n’est pas vraie pour tout symplectomorphisme linéaire. Comme il
est habituel en géométrie symplectique, ce résultat de rigidité peut être utilisé pour définir un
invariant. L’exemple classique de ce fait est la définition de la largeur de Gromov après avoir
prouvé le théorème non-squeezing. Dans notre cas, nous devrions considérer la quantité suivante:

γmG (U) = inf{γ(Πmφ(U)) |φ ∈ G}

où G est un sous-groupe du groupe des difféomorphismes symplectiques. Pour G = Sympl(R2n)
on sait que γmG est nul dans les cylindres cöısotropes de dimension m. En particulier, il pourrait

xxii
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être trivial pour chaque sous-ensemble de R2n. D’autre part, si les éléments de G sont des
difféomorphismes hamiltoniens engendrés par des fonctions à gradient borné, alors le théorème
précédent implique que γmG est borné inférieurement sur les cylindres cöısotropes de dimension m.
A titre d’exemple de G on peut prendre le sous-groupe des difféomorphismes hamiltoniens ϕHt où
H, ϕHt , et (ϕHt )−1 sont Lipschitz sur la variable d’espace sur des intervalles de temps compacts.
Pour ce sous-groupe, le théorème précédent donne

c(X) ≤ γmG (X × Rn−m) ≤ γ(X).

Plus précisément γmG possède les propriétés suivantes:

1. (monotonie) Si U ⊆ V donc γmG (U) ≤ γmG (V ).

2. (conformalité) γmG (λU) = λ2γmG (U) pour tout λ ∈ R.

3. (G invariance) Si φ ∈ G on a γmG (φ(U)) = γmG (U).

4. (non-trivialité+normalisation) γmG (B2m
r × Rn−m) = πr2.

Enfin, on veut souligner que cet invariant satisfait une propriété 2 -conformalité au lieu de la k
-conformalité demandée par Hofer pour les capacités symplectiques de dimension intermédiaire

Rigidité sur les surfaces d’énergie

Dans la partie suivante de cette thèse, nous étudions les propriétés de rigidité du flot car-
actéristique des surfaces d’énergie. Soit (M,ω) une variété symplectique et soit H : M → R
une fonction hamiltonienne lisse. Chaque valeur régulière λ définit une hypersurface lisse Σ de
M . Les propriétés du flot ψH sur Σ ont toujours été un sujet de recherche important (voir par
exemple [HZ94, Chapitre 4]). A titre d’exemple, nous rappelons l’étude des orbites périodiques
dans les surfaces d’énergie. Nous nous intéressons aux sous-ensembles compacts de Σ qui sont
invariants par le flot. Ceux-ci incluent les orbites périodiques et aussi d’autres types de sous-
ensembles de dimension supérieure. Nous utilisons le théorème du chameau symplectique pour
créer des sous-ensembles invariants compacts dans les déformations de Σ. Rappelons que l’énoncé
du théorème du chameau symplectique est:

Théorème ([Vit92] et aussi [MT93] pour dim = 4). On considère l’espace E = R2n−1 × {0} \
B2n(0, r) et on suppose qu’il existe une isotopie symplectique ϕt de R2n à support dans R2n \ E
tel que

B2n
R ⊆ {pn < 0} et ϕ1(B2n

R ) ⊆ {pn > 0}.

Alors r ≥ R.

Il y a aussi une démonstration non publiée de ce résultat par Gromov et Eliashberg.
Localement nous pouvons trouver un ouvert assez petit U ⊆ M , et un petit voisinage ouvert

de l’origine dans R2n tel que nous avons un symplectomorphisme

U ∩ Σ ' V ∩ R2n−1 × {0}.

C’est pour cela qu’on va regarder des déformations de R2n−1 × {0} contenus dans V avec les
propriétés désirés. On définit d’abord le concept de fonction (r,R)-simple (voir Figure 2 (a))
pour laquelle les niveaux d’énergie sont des déformations compactes de R2n−1 × {λ}. Puis on
définit les perturbations simples: perturbations C0 dans la classe des fonctions simples.
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(a) Niveaux d’énergie. (b) Trajectoire coincée.

Figure 2: (a) Les niveaux d’énergie entre 0 et 1 pour une fonction (r,R)-simple avec r < R.
(b) Une représentation d’une trajectoire coincée dans un sous-ensemble borné. Cette trajectoire
produit un sous-ensemble invariant compact.

Dans cette section on montre d’abord qu’on peut déformer facilement Σ pour produire des
sous-ensembles invariants compacts et puis on démontre en utilisant le théorème du chameau
symplectique que ces sous-ensembles persistent sous des perturbations C0 de la fonction H. Plus
précisément:

Théorème. Soit H : R2n → R une fonction (r,R)-simple avec r < R. Alors il existe un λ ∈ [0, 1]
tel que Σλ a un sous-ensemble invariant compact. En conséquence, pour toute perturbation ε-
simple Hε of H avec ε ∈ [0, R−r2 [ il existe un λε ∈ [0, 1] tel que Σε

λ = H−1
ε (λε) a un sous-ensemble

invariant compact.

La preuve est par l’absurde. S’il n’y a pas de sous-ensemble invariant compact, alors chaque
trajectoire caractéristique va d’un côté de l’espace à l’autre (voir Figure 2). Dans ce cas, nous
pouvons construire une isotopie symplectique qui vérifie l’hypothèse du théorème du chameau
symplectique mais qui contredit la conclusion. Puisque ce n’est pas possible, nous concluons qu’il
doit y avoir une trajectoire qui est coincée dans un ensemble borné. Cette trajectoire doit alors
être arbitrairement proche d’un sous-ensemble invariant compact.

EDPs hamiltoniennes

Dans la deuxième partie de ce manuscrit, nous étudions les propriétés de rigidité symplectique dans
les espaces de Hilbert de dimension infinie. De nombreuses équations en dérivées partielles (EDPs)
apparaissant en physique peuvent être vues comme des systèmes hamiltoniens de dimension infinie

u̇ = J∇Ht(u).

Ici, la fonction hamiltonienne H est définie sur un espace de Hilbert de dimension infinie. J est
un opérateur anti-symétrique non dégénéré qui définit une structure symplectique via le produit
scalaire. Les principaux exemples d’EDP hamiltoniennes sont:

1. Equation d’onde non-linéaire

utt −∆u+ f(t, x, u) = 0,

2. Equation de Schrödinger non-linéaire

iut −∆u+ f(t, x, |u|2)u = 0,
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3. Equation des membranes

utt + ∆2u+ f(t, x, u) = 0,

4. Equation de Korteweg-de Vries (KdV)

ut − uux + uxxx = 0.

Contrairement à ce qui se passe dans les dimensions finies, la fonction hamiltonienne Ht utilisée
pour définir le champ vectoriel n’est pas définie sur tout l’espace de phase symplectique E, mais
seulement sur un sous-espace dense de E. Cela implique également que le champ de vecteurs
ne sera défini que sur un sous-espace dense. En particulier, avant d’examiner les propriétés
symplectiques du flot, il faut d’abord se demander quelle est la définition précise du flot, et en
particulier quelle est la définition d’une solution. Une façon de résoudre ce problème est de
regarder des équations semi-linéaires, c’est-à-dire, des équations dont la fonction hamiltonienne
peut être écrite comme Ht(u) = 1

2〈Au, u〉 + ht(u). Ici A est un opérateur linéaire possiblement
non borné et ht est une fonction lisse définie sur tout l’espace E. Par exemple, dans le cas de
l’équation de Schrödinger, l’espace de Hilbert est E = L2(Td,C), l’opérateur est A = ∆ et h est
défini par une intégrale en utilisant f . Pour ce type d’équations, on peut utiliser la formule de
Duhamel pour définir des solutions. Ceci donne la notion de solution généralisée, et (dans des
conditions de régularité sur la non-linéarité) les résultats d’existence et d’unicité peuvent être
dérivés en utilisant des arguments de points fixes.

Rigidité Symplectique

Dans le cas de dimension infinie, on connâıt peu les propriétés de rigidité des symplectomorphismes
généraux. L’étude des propriétés de rigidité symplectique pour les EDPs a commencé avec Kuksin
en 1995 [Kuk95]. Il s’est intéressé à un type d’équations qui sont une perturbation compacte
d’une application linéaire symplectique. La propriété clé de ces applications symplectiques est
qu’ils peuvent être approximés sur des ensembles bornés par des flots hamiltoniens de dimension
finie. Cette approximation lui a permis de construire un analogue infini de la capacité symplectique
définie par Hofer-Zehnder. Cette capacité est construite comme une sorte de limite de la dimension
finie, et hérite ainsi en grande partie les propriétés des capacités symplectiques. En particulier,
elle vérifie la propriété de normalisation, de sorte qu’on peut l’utiliser pour dériver un analogue du
théorème de non-squeezing. Cependant, contrairement à la capacité en dimension finie, la capacité
de Kuksin n’est pas invariante par des symplectomorphismes généraux de l’espace symplectique
de Hilbert, mais seulement par ceux qui sont une perturbation compacte d’une application linéaire
symplectique, et où l’application linéaire est bien adaptée à la base qui est utilisé pour construire
la capacité.

Peu après ce travail, plusieurs auteurs se sont intéressés au comportement non-squeezing dans
des flots plus généraux. Bourgain a été le premier à prouver le non-squeezing pour un flot qui
n’est pas une perturbation compacte d’une application linéaire [Bou94]. Il a étudié l’équation de
Schrödinger non linéaire cubique

i∂tu = −∆u+ |u|2u,

sur le tore. Encore une fois, la technique consistait à approximer d’une certaine façon le flot
de l’équation par des flots hamiltoniens en dimension finie afin d’appliquer le théorème de Gro-
mov. Ensuite, Colliander et ses collaborateurs [CKS+05] ont prouvé, en utilisant à nouveau une

approximation en dimension finie, que l’équation KdV sur H−
1
2 (T) a aussi une propriété non-

squeezing. Encore une fois, le principal défi de la preuve est de prouver l’approximation. D’autres
équations où le non-squeezing a été prouvée sont : l’équation de Klein-Gordon périodique, par
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Mendelson [Men17] et l’équation de BBM périodique [Rou10]. Il est important de citer l’article
de Killip-Visan-Zhang [KVZ16] où ils ont donné la première preuve du non-squeezing dans un
volume infini. Ils considèrent de nouveau le NLS cubique sur R2 et montrent qu’il a une bonne
approximation par des flots de dimension finie.

Toutes les démonstrations précédentes s’appuient sur la structure particulière des équations.
Un point de vue différent est venu dans l’article [AM15] d’Abbondandolo et Majer. Ils ont étudié
la propriété de non-squeezing pour des difféomorphismes symplectiques arbitraires d’un espace
de Hilbert séparable en utilisant une approche géométrique. Ils ont prouvé que l’écrasement ne
peut pas se produire au moins pour les images convexes de la boule. Ils l’ont fait en construisant
une capacité pour les ensembles convexes en utilisant le principe d’action dual. Leur argument
est le premier à ne pas être basé sur l’approximation par des flots de dimension finie. Nous citons
également aussi les articles de Sukhov et Tumanov [ST16a, ST16b] où ils donnent une nouvelle
preuve du non-squeezing de Gromov et l’utilisent ensuite pour explorer les limites de cette preuve
dans le contexte des espaces de Hilbert.

Capacités Symplectiques

Le premier résultat de cette partie de la thèse est une construction de capacités en dimensions
infinies, différente de celle donnée par Kuksin dans [Kuk95] mais aussi basée sur l’approximation
en dimension finie. Nous nous limitons aux EDPs semi-linéaires du type décrit dans [Kuk95]. La
structure symplectique sur E est définie en utilisant le produit scalaire et une structure presque
complexe J . Les fonctions hamiltoniennes sont de la forme

Ht(u) =
1

2
〈Au, u〉+ ht(u),

où A est un opérateur linéaire auto-adjoint (peut être non-borné) et ht est une fonction lisse. Le
champ de vecteurs hamiltonien est

XH(u) = JAu+ J∇ht(u)

Si etJA est borné, les solutions peuvent être définies à partir de la formule de Duhamel. On note
{ϕ±j | j ≥ 1} une base orthonormée de E et on suppose que Jϕ±j = ±ϕ∓ et que A est diagonal

pour cette base. Soit En le sous-espace de dimensions finie engendré par {ϕ±j | 1 ≤ j ≤ n} et
Πn la projection naturelle sur En. Sous des hypothèses de compacité sur la non-linéarité, les
flots sont des symplectomorphismes qui peuvent être approchés sur des ensembles bornés par
les flots hamiltoniens de dimension finie engendrés par la projection du champ de vecteurs sur
En. Des exemples spécifiques de ce type d’équations sont (voir [Kuk95]): équation de cordes non
linéaire dans T avec une non linéarité qui a au plus une croissance polynomiale à l’infini, équation
d’onde non linéaire quadratique dans T2, équation des membranes non-linéare sur T2 avec une
non-linéarité qui a au plus une croissance polynomiale à l’infini et l’équation de Schrödinger avec
une non-linéarité de convolution dans Tn.

Definition d’une capacité Comme dans le cas de dimension finie, pour calculer la capacité
d’un ensemble, on examine l’action des orbites périodiques associées aux fonctions avec support
dans cet ensemble. Dans les dimensions infinies, on se doit d’être plus prudents car une fonction
avec un support borné peut ne pas induire un flot hamiltonien globalement défini. On considère
un sous-ensemble ouvert borné U ⊆ E. On définit l’ensemble de la façon suivante

F(U) = { fonctions lisses f : E → R telles que Supp f ⊆ U et d(Supp f, ∂U) > 0}.
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On considère le sélecteur d’action c(µ, ·) défini au début de l’introduction et on écrit c(µ,H) =
c(µ, ψH1 ). On note fn = f|En et on définit

co(µ, f) = lim inf
n

c(µ, fn) et co(µ, f) = lim sup
n

c(µ, fn)

On remarque que le support de fn est contenu dans Supp f ∩ En qui est borné, donc fn a un
support compact. En particulier c(µ, fn) est bien définit. De plus, on remarque que pour chaque
n il existe une orbite périodique zn : [0, 1] → En tel que c(µ, fn) est l’action de zn, mais ces
orbites peuvent ne pas converger. On utilise c(µ, f) pour définir la capacité des ensembles ouverts
bornées U comme

co(U) = sup{co(µ, f) pour f ∈ F(U)} et co(U) = sup{co(µ, f) pour f ∈ F(U)},

Il s’avère que cette définition est invariante par le flot des équations précédentes et possède les
propriétés des capacités symplectiques. En particulier, il profite de la normalisation et on peut
donc l’utiliser pour dériver le théorème de non-squeezing:

Théorème (Kuksin [Kuk95]). Si Φ : E → R est le flot d’une EDP hamiltonienne satisfaisant la
condition de compacité, alors Φ(Br) ⊆ ZR implique r ≤ R.

La construction originale d’une capacité symplectique de dimension infinie par Kuksin était
une généralisation de la capacité de Hofer-Zehnder. Il utilise la notion d’orbites périodiques
rapides des systèmes hamiltoniens: orbites de période T ≤ 1 qui ne sont pas des points fixes. La
capacité de U est alors (grossièrement) définie comme la variation maximale d’un difféomorphisme
hamiltonien qui ne produit pas de trajectoires rapides. Comme dans notre cas, la définition
implique une sorte de limite de la capacité à mesure que la dimension croit.

Ridigité en dimensions intermédiaires

Le deuxième résultat de ce chapitre concerne l’étude de la rigidité en dimension intermédiaire
pour les équations de Kuksin. La première étape consiste à définir le cylindre cöısotrope dans ce
contexte. Nous expliquons le résultat pour l’exemple concret de l’équation des cordes non linéaire.

ü = uxx − f(t, x, u), u = u(t, x),

où x ∈ T = R/2πZ. Si on note par B l’opérateur B = (−∂2/∂x2 + 1)1/2 alors on peut écrire
l’équation sous la forme

u̇ = −Bv,
v̇ = (B −B−1)u+B−1f(t, x, u).

On définit E = H
1
2 (T) ×H

1
2 (T) comme le produit des espaces de Hilbert. Maintenant, on écrit

A = (B − B−1) × B et on définit J : E → E par J(u, v) = (−v, u) on peut écrire l’équation de
cordes non-linéaire comme une EDPs semi-linéaire dans E comme

(u̇, v̇) = JA(u, v) + J∇ht(u, v).

On suppose que f est borné et que toutes ses dérivées sont à croissance polynomiale. On note
E = E+×E− = H

1
2 (T)×H

1
2 (T). On écrit un élément de E = E+×E− dans la base de Fourier et

on note par Ek le sous-espace de dimension finie de E dont les éléments (u, v) sont une combinaison
linéaire de termes de fréquences allant jusqu’à k. On note par Πk : E → Ek la projection naturelle
et soit X × Ek+ le sous-espace de E formé d’éléments (u, v) qui se projettent sur X sous Πk et
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tels que (0, v) ∈ Ek. Ceci est la définition naturelle d’un cylindre cöısotrope en dimension infinie.
Comme dans le cas de dimension finie, les capacités précédemment construites ne donnent pas
d’information de rigidité sur ces cylindres cöısotropes. On note que le sous-ensemble X×Ek+ n’est
pas borné, donc nous ne pouvons pas déduire directement la rigidité à partir de l’approximation
en dimension finie sur les ensembles bornés. Nous avons besoin d’une étape intermédiaire et cela
vient du théorème de non-squeezing coisotrope. Soit Φ : E → E le flot de l’équation de cordes
non linéaire, on le décompose en

Φt(u) = etJAV t(u).

L’application V t peut être approchée sur des ensembles bornés par une application dimension finie
V t
n(un, u

n) = (ϕtn(un), un) (par les hypothèse sur f) où ϕtn vérifie la propriété du non-squeezing
cöısotrope (car f est bornée). Le fait que V t

n soit l’identité sur les grands modes de Fourier permet
de prouver que si ∇h est borné sur l’ensemble de l’espace, alors l’ensemble

V t(X × Ek+) ∩ {Πk
+ = 0}

n’est pas seulement borné, mais est aussi compact. Cela nous permet d’avoir un contrôle précis
sur cet sous-ensemble. En particulier, nous prouvons que cette intersection est symplectiquement
rigide:

Proposition. On note Φt : E → E le flot de l’équation de cordes non linéaire avec f bornée et
ses dérivées avec croissance polynomiale. Pour chaque k ∈ N, pour chaque ensemble compact X
de Ek, et pour tout t ∈ R on a

c(X) ≤ γ(Πk(V
t(X × Ek+) ∩ {Πk

+ = 0})).

Une fois que nous avons ceci, nous pouvons utiliser l’invariance symplectique des capacités et
le fait que etJA est une application symplectique qui commute avec Πk pour obtenir le résultat
suivant :

Théorème. On note Φt : E → E le flot de l’équation de cordes non linéaire avec f bornée et
ses dérivées avec croissance polynomiale. Pour chaque k ∈ N, pour chaque ensemble compact X
de Ek, et pour tout t ∈ R on a

c(X) ≤ γ(ΠkΦ
t(X × Ek+)).

La démonstration de ce théorème est contenu dans l’article [Bus17]. Un exemple particulier
d’équation qui vérifie ces l’hypothèses est l’équation de Sine-Gordon:

utt = uxx − sinu, u = u(t, x),

où x ∈ T = R/2πZ. Pour k = 0 l’ensemble X × Ek+ est constitué d’éléments (u, v) où la paire
(u0, v0) des valeurs moyennes est contenu dans X ⊂ R2 et telles que (0, v) ∈ E0, c’est-à-dire
que, v est une constante égale à v0. Nous voyons que ce théorème donne des informations sur
le comportement global des solutions à vitesse initiale constante et telle que la paire des valeurs
moyennes est en X. D’un autre côté, si nous échangeons les rôles de E+ et E− nous obtenons des
informations sur le comportement des solutions où la position initiale de la corde est constante.

Conjecture d’Arnold pour EDPs hamiltoniennes

Toujours dans la recherche de la rigidité symplectique dans les EDPs hamiltoniennes, nous attirons
notre attention sur la conjecture d’Arnold. Cette conjecture affirme que les difféomorphismes
hamiltoniens ont toujours des points fixes. Plus précisément:
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EDPs hamiltoniennes

Figure 3: Le graphe de la condition initiale u(0, x) et à chaque point le vecteur de vitesse initiale
v(0, x). A gauche, u(0, x) est constant. A droite, v(0, x) est constant.

Conjecture. Tout difféomorphisme hamiltonien sur une variété symplectique compacte (M,ω)
a au moins autant de points fixes qu’une fonction sur M a des points critiques.

La version non-dégénérée de cette conjecture a été établie sur chaque variété symplectique.
La preuve a donné lieu à l’homologie de Floer, une théorie homologique construite à partir de
points critiques de la fonctionnelle d’action. Un exemple particulier où cette conjecture est vraie,
est l’espace projectif complexe CPn où le nombre de points fixes est n + 1. La preuve originale
de ce cas [For85] n’utilise pas les techniques de Floer mais profite de la symétrie de CPn pour
étudier la fonctionnelle d’action pour des difféomorphismes hamiltoniens dans R2n.

Afin de relier ce contexte compact avec le flot des EDPs hamiltoniennes sur les espaces de
Hilbert, nous devons considérer un contexte spécifique introduit par Fabert dans [Fab18]. On
considère l’équation de Schrödinger non-linéaire sur T avec non-linéarité de convolution,

iut = uxx +
[
f(|u ∗ ξ|2, x, t)u ∗ ξ

]
∗ ξ,

où u : T → C. C’est l’un des exemples donnés par Kuksin dans [Kuk95] des équations qui
peuvent être approchées par des difféomorphismes hamiltoniens de dimension finie. De plus, cette
équation définit un flot Φt sur tout l’espace L2(T,C). Après restriction à la sphère unité S de L2

le difféomorphisme Φt descend en une application sur l’espace projectif PL2. Cette application
est approchée par des applications de dimensions finies Ψt

n : CPn → CPn et chacune de ces
applications a au moins n+ 1 points fixes.

Conjecture. Pour tout t ∈ R, l’application Ψt : PL2 → PL2 a un nombre infini de points fixes.

Nous prouvons le cas indépendant du temps. Dans ce cas, il suffit de chercher les points
critiques de H restreints à la sphère unité. Cela équivaut à chercher des ondes stationnaires,
c’est-à-dire des solutions de l’équation de la forme

u(t, x) = eiµtv(x), avec v ∈ L2.

Théorème. On suppose que f est indépendant de t. Alors, pour tout t ∈ R le flot Ψt a un
nombre infini de points fixes. Plus précisément, il y a une séquence de points un ∈ H1 et µn ∈ R
tels que

Φt(un) = un(t, x) = eitµnun(x) et H(un)→ +∞ si n→ +∞,
pour tout (t, x) ∈ R× T.

La première étape de la démonstration consiste à établir une sorte de condition de Palais-Smale
pour les restrictions dimensionnelles Hn. En autres termes, nous montrons qu’une suite de points
critiques un de Hn avec une énergie bornée converge vers un point critique de H. Ensuite, il faut
appliquer des méthodes variationnelles pour trouver ces séquences à énergie bornée indépendantes
de n.
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Chapter 1

Introduction

Symplectic geometry has its origins in the mathematical formulation of classical mechanics. In
the 19th century Hamilton gave a variational interpretation of the equations of motion. Consider
the phase space R2n with coordinates (q, p), where q represents the position of a particle and p
represents the momentum. Let H : [0, 1] × R2n → R be an energy function. Then the evolution
γ : [0, 1]→ R2n of a particle in the phase space is a stationary point of the action

AH(γ) =

∫ 1

0
p(t) · q̇(t) dt−

∫ 1

0
H(t, γ(t)) dt

Under this formulation the extremal points are described by Hamilton’s equations:{
q̇ = ∂H

∂p

ṗ = −∂H
∂q

For example the movement of a particle under the influence of a potential V (q) has an energy
function given by H(q, p) = 1

2m |p|
2 + V (q). Hamilton’s equations for the motion associated to

this Hamiltonian give the classical Newtonian equation

mq̈ = −∇V (q).

In general, Hamilton’s differential equations give rise to a transformation of the phase space.
When the phase space has dimension two this transformation will preserve the area of subsets
of R2. In higher dimensions, the equivalent statement is the following: the flow of Hamilton’s
equations preserves the differential form ω0 =

∑n
i=1 dqi ∧ dpi. This differential form is what we

call the standard symplectic structure of R2n. In order to understand the dynamics of classical
mechanics one is led to the study of symplectic structures and, in particular, the transformations
of the space that preserve the symplectic form.

The concept of symplectic form generalizes to arbitrary smooth manifolds M : a symplectic
structure ω on M is a non-degenerate closed two form. The fact that ω is non-degenerate allows
us to generalize Hamilton’s equations: for any energy function H, the Hamiltonian vector field
XH is defined as the unique vector field that satisfies iXHω = dH. Using the fact that ω is closed
we then get that the flow generated by XH preserves the symplectic structure.

The main example of symplectic manifold that we are going to work with are cotangent bundles
T ∗N . They represent the phase spaces of classical mechanics where the movement is confined to
a manifold N . Every cotangent bundle is equipped with a canonical symplectic structure which
is localy given by the standard structure in T ∗Rn ' R2n. This local behavior is shared by every
symplectic manifold M :
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Chapter 1. Introduction

Theorem (Darboux). Every symplectic manifold of dimension 2n is locally symplectomorphic
to (R2n, ω0).

This theorem implies that symplectic manifolds do not have local invariants. The symplectic
properties of M are determined by the geometry of (R2n, ω0) and by the global structure of
the objects in M . In order to study the geometry of the space one is then led to the study
of the global diffeomorphisms that preserve the symplectic structure. We will refer to them as
symplectomorphisms. The first property verified by symplectomorphisms is Liouville’s theorem:
every symplectic maps preserves the volume of subsets. One of the first results that pointed ot
the difference between volume preserving maps and symplectomorphisms was Gromov’s influential
non-squeezing theorem:

Theorem (Gromov 1985, [Gro85]). Let (R2n, ω0) be the standard symplectic space. Denote by
B2n
r a ball of radius r in R2n and let B2

R×R2n−2 be the standard symplectic cylinder of radius R.
If ϕ : R2n → R2n is a symplectic diffeomorphism then

ϕ(B2n
r ) ⊆ B2

R × R2n−2 implies r ≤ R

1.1 Symplectic capacities

The original proof of Gromov’s nonsqueezing theorem relied on the technique of pseudoholo-
morphic curves. Shortly after, several authors [EH90, HZ90, Vit92] gave independent proofs of
Gromov’s theorem using the concept of symplectic capacities. A symplectic capacity is a function
c : P(R2n)→ [0,+∞] that verifies the following properties:

1. (monotonicity) If U ⊆ V then c(U) ≤ c(V ).

2. (conformality) c(λU) = λ2c(U) for all λ ∈ R.

3. (symplectic invariance) If φ : R2n → R2n is a symplectomorphism then c(φ(U)) = c(U).

4. (non-triviality+normalization) c(B2n
1 ) = π = c(B2

1 × R2n−2).

The existence of a function with these properties implies Gromov’s theorem. The construction
of some of the capacities (cf. [EH90, HZ90, Vit92]) comes from the study of periodic orbits of
Hamiltonian systems. This is the approach that we are interested in.

The action spectrum as a symplectic invariant

Recall that Hamilton’s principle states that the periodic orbits of a Hamiltonian system associated
to H are the extremal points of the action:

AH(γ) =

∫ 1

0
p(t) · q̇(t) dt−

∫ 1

0
H(t, γ(t)) dt.

In particular, the critical points of AH contain very important dynamical information. This
information can be used to build symplectic capacities.

Consider a compactly supported Hamiltonian H in R2n. In this case we can integrate Hamil-
ton’s equations to get a global flow ψHt of R2n. A one periodic orbit of the system can be seen as
a fixed point z0 of ψH1 , that is, a point verifying ψH1 (z0) = z0. Denote by A(z0, H) = AH(ψHt (z0))
the action value associated to the fixed point z0. At first sight, this quantity depends on the
function H and on the whole path ψHt , but this is surprisingly not true. One can prove that this

2



1.1. Symplectic capacities

action value does not depend on the particular Hamiltonian path used to generate ψH1 . More
precisely, let K be another compactly supported Hamiltonian such that ψK1 = ψH1 , then

A(z0, H) = A(z0,K).

The action values define a subset of R that depends only on the time one map ψ = ψH1 . We can
then associate to every ψ its action spectrum σ(ψ) ⊆ R defined by

σ(ψ) = {A(z,H) | z ∈ Fix(ψ = ψH1 )}.

It turns out that the action spectrum is invariant by symplectic conjugations: for every symplec-
tomorphisms ϕ of R2n we have

σ(ϕψϕ−1) = σ(ψ).

In particular, the action spectrum of Hamiltonians supported in U is exactly the same as the one
found for Hamiltonians supported in ϕ(U). This important remark is the starting point of the
construction of symplectic capacities that Viterbo gave in [Vit92].

Viterbo’s capacities

For every open set U we denote by Hamc(U) the set of time one maps of Hamiltonian flows with
compact support contained in U . For an open bounded set U Viterbo’s capacity c(U) is defined
using the dynamical information of the elements in Hamc(U). More precisely, this information is
going to come from the action value associated to certain important periodic orbits. These action
values are chosen by two selectors, denoted by c(µ, ·) and c(1, ·), that take as an input an element
ψH of Hamc(R2n) and give two values

c(µ, ψ) = AH(σ(t)) and c(1, ψ) = AH(β(t))

where σ(t) = ψHt (x) and β(t) = ψHt (y) with x, y ∈ Fix(ψH1 ). These values verify c(µ, ψ) ≥ 0
and c(1, ψ) ≤ 0 for every ψ. One can prove that the value γ(ψ) = c(µ, ψ)− c(1, ψ) is zero if and
only if ψ is the identity. Intuitively, this means that these action values can be interpreted as a
dynamical maximun and minumum of ψ. Moreover, one can prove that γ has the property of
defining a distance on Hamc(R2n). Using the invariance by symplectic conjugation of the action
spectrum one can see that the selectors are invariant under symplectic conjugation, i.e.

c(µ, ψ) = c(µ, ϕψϕ−1),

so these values can be used to define two symplectic invariants on open bounded sets:

c(U) = sup{c(µ, ψ) |ψ ∈ Hamc(U)}

γ(U) = inf{γ(ψ) |ψ ∈ Hamc(R2n) and ψ(U) ∩ U = ∅}
On open unbounded sets V , the capacity c(V ) and γ(V ) is defined as the sup over every open
bounded sets contained in V . Finally, on arbitrary subsets X ⊆ R2n both capacities are defined
as the infimum over all open sets V that contain X.

The value c(U) measures how big this dynamical maximum can be provided that the support
is contained in U . It moreover has the property that, on a convex smooth body K, the value
c(K) coincides with the geometric quantity of the minimal area of a closed characteristic on the
boundary ∂K. On the other hand γ is defined using Viterbo’s distance on Hamc(R2n): if we
define the energy of a diffeomorphism as the distance to the identity, then γ(U) measures the
minimal energy that one needs to displace U from itself. Both capacities are always related
by the inequality c(X) ≤ γ(X). In dimension two, if ψ is a compactly supported Hamiltonian
diffeomorphism which displaces a disc of area πr2, then we have πr2 ≤ γ(ψ).
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Chapter 1. Introduction

Construction of the action selectors

In order to extract information from the fixed points of ψH1 = ψ we look at the graph of ψ, denoted
by Γψ = Id × ψ in R2n × R2n and look at the intersection points of Γψ with ΓId . If we endow
R2n×R2n with the symplectic structure ω0⊕ (−ω0) then Γψ becomes a Lagrangian sub-manifold.
In addition Γψ is isotopic to the diagonal and coincides with it outside a compact set. Working
on the linear manifold of R2n has the advantage that there is an explicit symplectomorphism

I : (R2n × R2n, ω0 ⊕ (−ω0)) −→ (T ∗R2n,−dλ)

such that ΓId is sent to the zero section. In particular, since the map is symplectic, the image
of every Γψ is a Lagrangian submanifold which is Hamiltonian isotopic to the zero section and
coincides at infinity with the zero section. This allows us to consider the one point compactification
of R2n to S2n and see T ∗R2n as a subset of T ∗S2n. Every Γψ is contained in a Lagrangian sphere
Lψ ⊆ T ∗S2n which is Hamiltonian isotopic to the zero section. We want to extract information
from the intersection points of Lψ with the zero section.

There is a natural way of describing Lagrangians in the contangent space: every function f de-
fines a Lagrangian submanifold via the graph of its differential df . For this family of Lagrangians,
the intersection points with the zero section are determined by the critical points of f . We are
going to describe Lψ using a generalization of this description called generating functions. Intro-
duce an auxiliary variable and consider functions S : S2n×Rk → R. The graph of the differential
is a Lagrangian submanifold in T ∗(S2n × Rk). We are going to push forward this Lagrangian
submanifold in a symplectic way to get a Lagrangian in T ∗S2n. To do this we need to introduce
the concept of symplectic reduction.

Symplectic reduction. Let V be a symplectic vector space. We say that W ⊆ V is a
coisotropic subspace if W contains its symplectic orthogonal Wω, or in other words, a subspace
W such that if u ∈ V verifies ω(u,w) = 0 for every w ∈ W , then u ∈ W . Since Wω ⊆ W we can
consider the quotient W/Wω which is by construction a symplectic vector space with symplectic
form induced by ω. Denote by π the natural projection π : W →W/Wω and let Z be a subset of
V . The symplectic reduction of Z by W is

RedW (Z) := π(Z ∩W ),

which is a subset of W/Wω. One of the important properties of this operation is that if L ⊂ V
is a Lagrangian vector subspace transverse to W , then RedW (L) is Lagrangian in the quotient.
This definition carries over to the nonlinear case at the level of tangent spaces. The only difficulty
that may arise is that W/Wω may not be a manifold.

Generating functions quadratic at infinity. Let N be a compact manifold and consider a
function S : N×Rk → R. The graph of the differential is a Lagrangian submanifold in T ∗(N×Rk).
Consider the coisotropic subspace W := T ∗N × 0Rk ⊆ T ∗N × T ∗Rk ' T ∗(N ×Rk). One may see
that W/Wω ' T ∗N . If dS is transverse to W then

LS = RedW (dS)

is an immersed Lagrangian submanifold in T ∗N . In this case we say that S is a generating function
or gf of LS . The transversality condition implies that ΣS := dS−1(W ) is a sub-manifold of di-
mension dimN . We denote by iS : ΣS → LS ⊆ T ∗N the induced map iS(q, ξ) = RedW (dS(q, ξ)),
it is an immersion. If moreover S(x, ξ) = Q(ξ) outside a compact set with Q a nondegenerate
quadratic form, then we will call S a generating function quadratic at infinity or gfqi . It turns
out that this description of Lagrangians is enough to describe all of our Lψ in T ∗S2n.
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1.1. Symplectic capacities

Theorem (Laudenbach and Sikorav [LS85, Sik86, Sik87]). Let T ∗N be the contangent space of
a compact manifold and consider a Hamiltonian diffeomorphism Φ : T ∗N → T ∗N . Then Φ(0N )
has a gfqi S such that iS is a diffeomorphism.

The fact that iS is bijective implies that there is a bijective correspondence between the critical
points of S and the intersection points of L with the zero section. This existence theorem already
has strong implications for the intersection points of these Lagrangians with the zero section. It
implies that these type of submanifolds intersect the zero section enough times. In order to define
Viterbo’s capacities, we need to be able to compare generating functions of the same Lagrangian.
Consider the following operations:

1. Addition of a constant. If c ∈ R, we set S′ = S + c : N × Rk → R.

2. Diffeomorphism operation. If φ : N × RK → N × Rk is a diffeomorphisms that satisfies
φ(x, ξ) = (x, ϕ(x, ξ)) then we set S′ = S ◦ φ.

3. Stabilization. If Q′ : Rk′ → R is another nondegenerate quadratic form, then we set S′ =
S +Q′ : N × Rk × Rk′ → R.

We will say that a gfqi S′ is equivalent to another gfqi S if S′ can be obtained from S after a
succession of the above basic operations. It is an easy exercise to verify that for every operation
in the above definition we have

RedW (dS′) = RedW (dS),

CritVal(S′) = CritVal(S) + c.

The following theorem assures that these three operations are enough to go from one gfqi to
another gfqi provided that they describe a Lagrangian isotopic to the zero section.

Theorem (Viterbo [Vit92] and Théret [Thé99a]). Let T ∗N be the cotangent bundle of a compact
manifold and consider a Hamiltonian diffeomorphism Φ : T ∗N → T ∗N . Then all gfqi S of Φ(0N )
such that iS is a diffeomorphism are equivalent.

Note that in Théret’s article the hypothesis of iS diffeomorphism is not included in the defini-
tion of gf [Thé99a, Definition 2.1] but it is included in the terminology “S generates L” [Thé99a,
Definition 2.2].

Definition of c(µ, ·) and c(1, ·). By the existence theorem, every Lagrangian Lψ has a gfqi
with iS bijective. Since iS is bijective, intersection points of Lψ with the zero section are in one to
one correspondence with critical points of S. Recall that these intersection points are in bijective
correspondence with the fixed points of ψ. After normalizing the gfqi so that the critical value at
infinity is 0, one can prove that the critical values of S coincide with the action spectrum of ψ

CritVal(S) = σ(ψ).

In order to select an action value it is then enough to select a critical value of S. Viterbo does
this in [Vit92] via Liusternik-Schilermann theory. In this theory, the critical values are seen as
witnesses of the topological changes of the level sets of S. Let S be a gfqi which coincides with
the quadratic form Q at infinity. Define Sλ to be the level set of points (x, ξ) ∈ N × RK such
that S(x, ξ) ≤ λ. The fact that S coincided with Q at infinity implies that for |λ| large enough
the level sets only depend on Q, in other words: Sλ = Qλ. For a fixed λ0 big enough that verifies
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this property we define S∞ = Sλ0 and S−∞ = S−λ0 . Then the topology of the pair (S∞, S−∞)
only depends on the index of the quadratic form and we have

(S∞, S−∞) ' (S2n ×D−, S2n × ∂D−)

where D− is the disc of dimension the index of Q. In particular we get the isomorphisms in
cohomology over a field

H∗(S∞, S−∞) ' H∗(N)⊗H(D−, ∂D−),

and we can define a map T : H∗(N) → H∗(S∞, S−∞) which is called the Thom isomorphism.
In order to find the change in the topology of the sublevel sets we deform the pair (S∞, S−∞).
Consider the natural inclusion iλ : Sλ → S∞. We get a map in cohomology

iλ : H∗(S∞, S−∞)→ H∗(Sλ, S−∞).

Finally, if we denote by µ the generator of H2n(S2n) and by 1 the generator of H0(S2n) we may
define two values:

c(µ, S) = inf{λ | i∗λT (µ) 6= 0} and c(1, S) = inf{λ | i∗λT (1) 6= 0}

They find a level set that undergoes a topological change so they are critical values of S. We can
then define c(µ, ψ) = c(µ, S) where S is a normalized gfqi . This value is well defined thanks to
the uniqueness theorem for gfqi .

1.2 Coisotropic rigidity

For the first original result of this thesis we use a generalization of Viterbo’s spectral invariants
in order to prove a new rigidity result for a wide family of symplectomorphisms. Instead of
studying the evolution of balls, as in Gromov’s nonsqueezing, we are going to study the evolution
of coisotropic cylinders. Recall from the previous section that every coisotropic subspace W ⊆ R2n

induces a symplectic space W/Wω. Denote by π : W →W/Wω the projection. The reduction of
Z ⊆ R2n is defined as

RedW (Z) = π(Z ∩W ).

In the particular case of W = Cm× iRn−m ⊆ Cm×Cn−m, π = πm is the projection onto the first
m complex coordinates. A coisotropic cylinder is a subset of the form X ×Rn−m ⊆ Cm ×Cn−m.
One may also write X × Rn−m = X × 0Rn−m and W = T ∗Rm × T ∗0 Rn−m.

Theorem (Coisotropic non-squeezing). Let X ⊆ R2m be a compact set, consider X × Rn−m ⊆
Cm × Cn−m and denote W = Cm × iRn−m. For every compactly supported Hamiltonian diffeo-
morphism ψ we have

c(X) ≤ γ(RedW [ψ(X × Rn−m)]).

The proof of this theorem is contained in the article [Bus17]. Explicitly, the reduction by W
is πm(ψ(X × Rn−m) ∩ (Cm × iRn−m)), which is the projection of a bounded set. In particular
we are studying trajectories where the component of T ∗Rn−m starts with zero momentum and
arrives at a precise point T ∗0 Rn−m. We point out that Viterbo’s capacities all alone do not give
rigidity information for the image of coisotropic cylinders since

c(X × Rk) = 0 = γ(X × Rk).
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Figure 1.1: This figure represents the image of the coisotropic cylinder by a compactly supported
Hamiltonian diffeomorphism ψ. The transverse plane represents the complementary coisotropic
subspace W . The previous theorem gives information about the capacity of the projection of the
intersection with W .

The case X = (S1)m and RedW [ψ(X×Rn−m)] contained in a cylinder was proved by Buhovski and
Opshtein using the theory of pseudo-holomorphic curves. The proof of our theorem is achieved
by a series of inequalities between Viterbo’s capacities of subsets and the symplectic reduction
of these subsets. The advantage of using Viterbo’s capacities is that they are constructed using
generating functions, and symplectic reduction can be seen as an explicit operation on generating
functions. This operation can be then studied in detail. The proof comes from the extension of
the action selectors to R2m × T ∗Tn−m.

Action selectors on R2m × T ∗Tk. The construction Viterbo’s action selectors relies heavily
on the linear structure of the space. We cannot use the same construction to generalize these
invariants to every symplectic manifold, but nevertheless we are still able to do it if we add a
contangent space of a torus.

Denote by π the natural projection of T ∗R2m×T ∗R2k onto T ∗R2m×T ∗T2k. It is the projection
induced by the quotient of T ∗R2m × T ∗R2k by translation of vectors in Zk. Take a compactly
supported Hamiltonian isotopy ψ of R2m × T ∗Tk and consider the lift ψ̃ on R2m × T ∗Rk. The
map ψ̃ commutes with the action of Zk by translation so the fixed points of ψ̃ come in Zk orbits.
Moreover one may see that these orbits are in bijective correspondence with contractible fixed
points of ψ. Define the contractible action spectrum of ψ as

σc(ψ) = σ(ψ̃).

For every compactly supported Hamiltonian ϕ of R2m × T ∗Tk one can prove that

σc(ϕψϕ
−1) = σc(ψ).

As in the case of R2n we consider the graph of ψ̃ and we can use the symplectomorphism I to
see it as a Lagrangian submanifold of T ∗R2m × T ∗R2k. In this case intersection points with the
zero section come in Zk orbits where every point in the orbit has the same action value. In order
to get rid of this redundancy, we use the periodic properties of the flow to quotient out by this
action and find a Lagrangian submanifold in T ∗R2m × T ∗Rk × T ∗Tk whose intersection points
with the zero section are in bijective correspondence with contractible fixed points of ψ. We may
then compactify the basis to get a Lagrangian

Lψ ⊆ T ∗S2m × T ∗Sk × T ∗Tk.
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As before, this submanifold is Hamiltonian isotopic to the zero section so it has a gfqi . We can
then use the cohomological classes α ⊗ β ⊗ γ ∈ H∗(S2m) ⊗ H∗(Sk) ⊗ H∗(Tk) to select critical
values of S. After normalization, we again have the very important property

CritVal(S) = σc(ψ).

We can then define a notion of capacity for subsets of R2m × T ∗Tk in the same way as in the
classical setting. For open bounded sets U in R2m × T ∗Tk we define

c(α⊗ β ⊗ γ, U) = sup{c(α⊗ β ⊗ γ, ψ) |ψ ∈ Hamc(U)}.

This time these quantities are not invariant by general symplectic diffeomorphisms of R2m×T ∗Tk
but only by Hamiltonian isotopies.

Critical values selectors and symplectic reduction. The next step is to relate these new
invariants to Viterbo’s classical capacities. This is done via a sequence of inequalities that relate
generating functions with the operation of symplectic reduction. The key remark is that if S :
N × B × Rl → R is a generating function for LS ⊆ T ∗N × T ∗B and if LS is transverse to the
coisotropic subspace W = T ∗N × T ∗b B then Sb = S(·, b, ·) generates RedW (LS). In addition, the
critical value selectors are also well behaved by this operation. More precisely for α ∈ H∗(N) and
µ ∈ H∗(B) the orientation class in B we have the chain of inequalities

c(α⊗ 1, S) ≤ c(α, Sb) ≤ c(α⊗ µ, S).

This result allows us to get the desired relation with Viterbo’s capacities if we look at the invariants
with respect to the cohomological class µ⊗ µ⊗ 1. We first get the non triviality of the invariant
via the following inequality:

Proposition. If X ⊆ R2m is compact then c(X) ≤ c(µ⊗ µ⊗ 1, X × {0} × Tk).

In this proposition it is crucial that we have a set with the whole Tk in the variable of the
cohomological class 1 in order to get something non-trivial. The upper bound comes from a
relation with Viterbo’s displacement energy:

Proposition. Let Z ⊆ R2m × Rk × Tk be a compact set. For w ∈ Tk consider the coisotropic
subspace W = R2m × Rk × {w}. We have

c(µ⊗ µ⊗ 1, Z) ≤ γ(RedW (Z)).

In order to prove the coisotropic non-squeezing theorem we extend the set X × Rk and see it
as X × {0} × Tk ⊂ R2m × T ∗Tk. We then extend the compactly supported Hamiltonian to the
whole space R2m × T ∗Tk and apply the previous propositions.

Non-compact setting

The next step is to extend the coisotropic non-squeezing theorem to settings where the Hamil-
tonian does not have compact support. Since we look at the evolution of an unbounded set
X ×Rk ⊆ Cm×Ck we need to have a globally defined flow. For this reason we restrict the study
to the class of Hamiltonians that satisfy

|∇H(z)| ≤ A+B|z| for every (t, z) ∈ [0, T ]× R2n

8



1.2. Coisotropic rigidity

for two positive constants A and B. These Hamiltonians define global maps ψHt for every t ∈ [0, T ].
The first remark is that there exist a Hamiltonian diffeomorphism of this type that does not satisfy
the statement of the theorem: consider the map

φ(z1, . . . , zn) = (zm+1, . . . , zn, z1, . . . , zm)

with zj = qj + ipj . It is a Hamiltonian diffeomorphisms which is generated by a quadratic
Hamiltonian. One can easily see that

φ(X × Rk) = Rk ×X ⊆ Rk × Cm

so the image by πm is also contained in a proper linear subspace. Since the displacement energy
associated to a linear subspace is zero we get

γ(RedW [φ(X × Rk)]) = 0.

If we consider a coisotropic cylinder of the form X × Rk with c(X) > 0 then the statement of
the coisotropic non-squeezing is not true for this map φ. We prove that there is a class of maps
in-between that verify the coisotropic non-squeezing. More precisely we prove:

Theorem. Consider a Hamiltonian function of the form

Ht(z) =
1

2
〈Az, z〉+ Ut(z), with |∇U(z)| ≤ C for every (t, z) ∈ R× R2n

with a positive C. Suppose that A = A1 ⊕ · · · ⊕ An where Ak is a linear map on V ect{ ∂
∂qk

, ∂
∂pk
}

for every 1 ≤ k ≤ n. Let X ⊆ R2m be a compact set and consider the two coisotropic subspace
W := Cm × iRn−m. Then for every t ∈ R such that

Rn−m + e−tJAiRn−m = Cn−m

we have

c(X) ≤ γ(RedW [ψt(X × Rn−m)]).

As an example of one such Hamiltonian, we have the class of mechanical Hamiltonians of the
form

Ht(q, p) =
1

2
|p|2 + Ut(q), with |∇Ut(z)| ≤ C.

In particular, the theorem is true if U is a periodic potential in q.

Coisotropic rigidity on T ∗Tn

Using this non-compact extension we are able to look at the true periodic case T ∗Tn. In this case
we prove that we still have this behavior for compactly supported Hamiltonians. It can be stated
as the following nonsqueezing statement.

Theorem. Let ψ be a compactly supported Hamiltonian isotopy of T ∗Tn = T ∗Tm × T ∗Tn−m.
For any w ∈ Tn−m denote Wf = T ∗Tm × T ∗mTn−m and W0 = T ∗Tm × 0Tn−m. Let Br denote a
ball of radius r in T ∗Tm. Then the inclusion

RedWf
[ψ(Br × 0Tn−m)] ⊆ BR or RedW0 [ψ(Br × T ∗wTn−m)] ⊆ BR

imply r ≤ R.

9
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This theorem is also true for mechanical Hamiltonians. It also indicates that this type of
coisotropic rigidity may also appear in the setting of product contangent spaces of compact mani-
folds. By symplectic ball of radius r in a symplectic manifold (M,ω) we understand a ball of radius
r of R2n which is symplectically embedded in M . We may conjecture the following behavior:

Conjecture. Let N and M be two compact manifolds and consider ψ a compactly supported
Hamiltonian isotopy of T ∗N × T ∗M . For any m ∈ M denote Wf = T ∗N × T ∗mM and W0 =
T ∗N × 0M . Let Br denote a symplectic ball of radius r in T ∗N . Then the inclusion

RedWf
[ψ(Br × 0M )] ⊆ BR or RedW0 [ψ(Br × T ∗mM)] ⊆ BR

imply r ≤ R.

Middle dimensional symplectic rigidity

One of the consequences of the coisotropic non-squeezing theorem is its interpretation in the
context of the middle dimensional rigidity problem. One of the first questions regarding this
problem appeared in [Hof90b] where Hofer asked about the generalization of capacities to middle
dimensions. Symplectic capacities are a sort of two dimensional way of measuring sets since
from the point of view of symplectic capacities all cylinders of the same radius but with a base
of different dimensions look exactly the same. In order to try and see if those cylinders are
different for symplectic geometry Hofer asked if there exists a k-intermediate symplectic capacity
ck satisfying monotonicity, k-conformality, symplectic invariance and such that

ck(B2k
1 × R2n−2k) < +∞ but ck(B2k−2

1 × R2 × R2n−2k) = +∞?

The first inequality is already verified by the standard capacities and it is the second one which
differs. One of the first results indicating that intermediate capacities do not exist appeared
in an article by Guth [Gut08]. He was interested in the question of embeddings of polydiscs
P = B2

R1
× · · · × B2

Rn
with R1 ≤ · · · ≤ Rn into another one P ′ = B2

R′1
× · · · × B2

R′n
with

R′1 ≤ · · · ≤ R′n using a symplectic map. There are two obvious obstructions to this problem.
The first one comes from Gromov’s nonsquezing which implies R1 ≤ R′1. The second one is the
volume which implies that R1 · · ·Rn ≤ R′1 · · ·R′n. Using the techniques in the article by Traynor
[Tra95] one can see that one could embed P into P ′ roughly if and only if R1 · · ·Rk . R′1 · · ·R′k
for every k between 1 and n. Guth proved that, modulo a dimensional constant, k = 1 and k = n
are the only two obstructions. More precisely:

Theorem (Guth 2008 [Gut08]). There is a dimensional constant C(n) such that if C(n)R1 ≤ R′1
and C(n)R1 · · ·Rn ≤ R′1 · · ·R′n then P symplectically embeds into P ′.

This theorem gave a partial answer to Hofer’s question. It implies that if 1 < k < n then
k-capacities that verify the following continuity hypothesis:

lim
R→+∞

c(B2k
1 ×B2n−2k

R ) < +∞ and lim
R→+∞

c(B2k−2
1 ×B2n−2k+2

R ) = +∞

do not exist. His theorem was a close definitive answer but the question of less regular capacities
remained open. This was recently solved in the negative by Pelayo and Vũ Ngo.c in [PVuN15].
They applied a limit argument to the construction of Guth and Hind-Kerman [HK14] in order to
prove the unbounded version of Guth’s theorem:

Theorem (Pelayo-Vũ Ngo.c 2015 [PVuN15]). If n ≥ 2 then the cylinder B2
1 × R2n−2 can be

symplectically embedded into the product B2n−2
R × R2 for all R ≥

√
2n−1 + 2n−2 − 2.

10



1.2. Coisotropic rigidity

With this theorem the question of intermediate symplectic capacities was definitely settled. It
showed that general symplectic diffeomorphisms are too flexible to capture this type of cylindrical
rigidity.

Another point of view for the middle dimensional problem comes from a reformulation of
Gromov’s non-squeezing theorem. In dimension 2 symplectomorphims are the same as area pre-
serving maps so in [EG91] Eliashberg and Gromov pointed out that (using a theorem of Moser
about the existence of area preserving diffeomorphisms) Gromov’s theorem is equivalent to

area(Π1φ(B2n
r )) ≥ πr2 for every symplectomorphism φ.

Denote by Πk the projection on the first 2k coordinates. A possible generalization of this statement
to higher dimensions is

Vol(Πkφ(B2n
r )) ≥ Vol(ΠkB

2n
r ) = Vol(B2k

r ) for every symplectomorphism φ.

This problem was studied by Abbondandolo and Matveyev in [AM13]. In their article they first
proved that the inequality is true in the linear case:

Theorem (Abbondandolo-Matveyev 2013 [AM13]). Let Φ be a linear symplectic automorphism
of R2n, and let P : R2n → R2n be the orthogonal projector onto a complex linear subspace V ⊆ R2n

of dimension 2k, 1 ≤ k ≤ n. Then

Vol(PΦ(B2n
r )) ≥ Vol(B2k

r )

with equality if and only if the linear subspace ΦTV is complex.

In contrast with the linear result, they prove that symplectic diffeomorphisms are again too
flexible to have this kind of middle dimensional symplectic rigidity. More precisely, this shows that
one can squeeze arbitrarily the symplectic projection of image of the ball by symplectomorhisms.

Theorem (Abbondandolo-Matveyev 2013 [AM13]). Let P : R2n → R2n be the orthogonal pro-
jector onto a complex linear subspace V ⊆ R2n of dimension 2k, 1 < k < n. For every ε > 0 there
exists a smooth symplectic embedding φ : B2n

1 → R2n such that

Vol(Pφ(B2n
r )) < ε.

In spite of all this negative results, there was a recent result by Rigolli in [Rig15] where he
proved that there is also local middle dimensional volume rigidity if one restricts the class of
symplectomorphisms to analytic ones.

Theorem (Rigolli 2015 [Rig15]). Let φt : B
2n
1 → R2n be an analitic path of symplectic embed-

dings, with t ∈ [0, 1], such that φ0 is linear. Then the middle dimensional non-squeezing inequality

Vol(Pφt(B
2n
1 )) ≥ Vol(B2k

r )

holds for t small enough.

This result points out in the direction that this middle dimensional rigidity might be possible
upon restriction of the class of symplectic diffeomorphisms that we consider. Moreover, this result
has another local implication:

Theorem (Rigolli 2015 [Rig15]). For every analytic symplectic embedding of a domain D there
exists a function r0 : D → (0,+∞) such that the middle dimensional inequality

Vol(Pφ(B2n
r (x))) ≥ Vol(B2k

r )

holds for every x ∈ D and for every r < r(x). Moreover r0 is bounded away from zero on compact
subsets K ⊆ D.

11
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We would like to point out another possible middle dimensional generalization of the squeezing
problem. In dimension 2 the value of any normalized symplectic capacity on topological discs
coincides with the area, so one may also rewrite Gromov’s theorem as

c(Π1φ(B2n
r )) ≥ πr2 for every symplectomorphism φ,

where c is a symplectic capacity. One can then ask if this inequality is true with Π1 replaced by
Πk, and more generally look at subsets Z different from B2n

r and replace πr2 with the capacity
of ΠkZ. The previous results show that there is little hope that one such inequality is always
true so one has to restrict the type of symplectomorphisms considered. Our coisotropic non-
squeezing theorem implies middle dimensional rigidity for deformations of coisotropic cylinders
Z = X × Rn−m ⊆ Cm × Cn−m provided that we restrict the class of symplectomorphisms to
Hamiltonian isotopies with bounded speed.

Theorem. Let X ⊂ R2m be a compact set. Consider X × Rn−m ⊆ Cm × Cn−m and let ψ be a
Hamiltonian diffeomorphism generated by a function with bounded gradient. Then

c(X) ≤ γ(Πmψ(X × Rn−m)).

Remark that, in contrast to what happens in the middle volume rigidity problem, this state-
ment is not true for every linear symplectomorphism. As it is usual in symplectic geometry, this
rigidity result can be used to define an invariant. The classical example of this fact is the definition
of Gromov’s width after he proved the nonsqueezing theorem. In our case we should consider the
following quantity:

γmG (U) = inf{γ(Πmφ(U)) |φ ∈ G}

where G is a subgroup of the group of symplectic diffeomorphisms. For G = Sympl(R2n) we know
that γmG is zero on coisotropic cylinders of dimension m. In particular, it might be trivial for every
subset of R2n. On the other hand, if the elements of G are Hamiltonian diffeomorphisms generated
by functions with bounded gradient then the previous theorem implies that γmG is bounded from
below on coisotropic cylinders of dimension m. As an example of G one can take the subgroup of
Hamiltonian diffeomorphisms ϕHt where H, ϕHt , and (ϕHt )−1 are Lipschitz on the space variable
over compact time intervals. For this subgroup the previous theorem gives

c(X) ≤ γmG (X × Rn−m) ≤ γ(X).

More precisely γmG has the following properties:

1. (monotonicity) If U ⊆ V then γmG (U) ≤ γmG (V ).

2. (conformality) γmG (λU) = λ2γmG (U) for all λ ∈ R.

3. (G invariance) If φ ∈ G we have γmG (φ(U)) = γmG (U).

4. (non-triviality+normalization) γmG (B2m
r × Rn−m) = πr2.

Finally we want to point out that this invariant satisfies a 2-conformality property instead of the
k-conformality asked by Hofer for the middle dimensional symplectic capacities.
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1.3. Rigidity on energy surfaces

1.3 Rigidity on energy surfaces

In the next part of this thesis we study rigidity properties of the characteristic flow of energy
surfaces. Let (M,ω) be a symplectic manifold and let H : M → R be a smooth Hamiltonian
function. Every regular value λ defines a smooth hypersurface Σ of M . The properties of the flow
ψH on Σ have historically been an important subject of research (see for example [HZ94, Chapter
4]). As an example we recall the study of periodic orbits in energy surfaces. We are interested
in the compact subsets of Σ which are invariant by the flow. These include the periodic orbits
and also other types subsets of higher dimension. We use the symplectic camel theorem to create
compact invariant subsets in deformations of Σ. Recall that the statement of the symplectic camel
theorem is:

Theorem ([Vit92] and [MT93] in dimension 4). Consider the space E = R2n−1×{0} \B2n(0, r)
and suppose that there is a symplectic isotopy ϕt of R2n with support in R2n \ E such that

B2n
R ⊆ {pn < 0} and ϕ1(B2n

R ) ⊆ {pn > 0}.

Then r ≥ R.

There is also an unpublished proof of this result by Gromov and Eliashberg.
Recall that locally we may find a small enough open set U ⊆ M , and a small enough open

neighbourhood of the origin in R2n such that we have a symplectomorphism

U ∩ Σ ' V ∩ R2n−1 × {0}.

Taking this into account we look at deformations of R2n−1×{0} contained in V with the desired
properties. We first define the concept of (r,R)-simple function (see Figure 1.2 (a)) whose energy
levels are compact deformations of R2n−1 × {0}. We then define simple perturbations: these are
C0 perturbations inside our class of simple functions.

(a) Energy levels. (b) Trapped trajectory.

Figure 1.2: (a) The energy levels between 0 and 1 of a (r,R)-simple function with r < R. (b)
A representation of a trajectory that is trapped in a bounded set. The closure of the trajectory
creates a compact invariant subset.

In this section we first show that one can easily deform Σ to produce compact invariant subsets
and then we prove using the symplectic camel theorem that these subsets are going to persist
under C0 perturbations of the energy function H. More precisely:

Theorem. Let H : R2n → R be a (r,R)-simple function with r < R. Then there exists a
λ ∈ [0, 1] such that Σλ has a compact invariant subset. As a consequence, for every ε-simple
perturbation Hε of H with ε ∈ [0, R−r2 [ there exists a λε ∈ [0, 1] such that Σε

λ = H−1
ε (λε) has a

compact invariant subset.

13



Chapter 1. Introduction

The proof is by contradiction. If there is no compact invariant subset, then every characteristic
trajectory goes from one side of the space to the other (see Figure 1.2). If this is the case, we can
build a symplectic isotopy that verifies the hypothesis of the symplectic camel theorem but which
contradicts the conclusion. Since this is not possible, we conclude that there must be a trajectory
that gets trapped in a bounded set. This trajectory then has to be arbitrarily close to a compact
invariant subset.

1.4 Hamiltonian PDEs

In the second part of this manuscript we study symplectic rigidity properties in infinite dimensional
Hilbert spaces. Many partial differential equations (PDEs) arising in physics can be seen as infinite
dimensional Hamiltonian systems

u̇ = J∇Ht(u).

Here the Hamiltonian function H is defined on some infinite dimensional Hilbert space and J is a
nondegenerate anti-symmetric operator that defines a symplectic structure via the scalar product.
The main examples of Hamiltonian PDEs are:

1. the nonlinear wave equation
utt −∆u+ f(t, x, u) = 0,

2. the nonlinear Schrödinger equation

iut −∆u+ f(t, x, |u|2)u = 0,

3. the membrane equation
utt + ∆2u+ f(t, x, u) = 0,

4. The Korteweg-de Vries (KdV) equation

ut − uux + uxxx = 0.

In contrast to what happens in finite dimensions, the Hamiltonian function Ht that is used
to define the vector field is not defined on the whole symplectic phase space E, but only on a
dense subspace of E. This also implies that the vector field is going to be defined only on a dense
subspace. In particular, before looking at the symplectic properties of the flow, one has to first
ask what is the precise definition of the flow, and in particular what is the definition of a solution.

One way of solving this issue is to look at semilinear equations, that is, equations whose
Hamiltonian can be written as Ht(u) = 1

2〈Au, u〉+ ht(u). Here A is a possibly unbounded linear
operator and ht is a smooth function defined on the whole space E. For example, in the case of the
Schrödinger equation, the Hilbert space is E = L2(Td,C), the operator is A = ∆ and h is defined
via an integral using f . For these type of equations one can use Duhamel’s formula to define
solutions. This gives the notion of generalized solution, and (under smoothness conditions on the
nonlinearity) the existence and uniqueness results can be derived using fixed point arguments.

Symplectic rigidity: prior work

In the infinite dimensional case little is known about the rigidity properties of general symplecto-
morphisms. The investigation of symplectic rigidity properties for PDEs started with Kuksin in
1995 [Kuk95]. He studied a type of equations which are a compact perturbation of a symplectic
linear flow. The key property of these symplectic mappings is that they can be approximated
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on bounded sets by finite dimensional Hamiltonian flows. This approximation allowed him to
construct an infinite dimensional analogue of the symplectic capacity defined by Hofer-Zehnder.
This capacity is built as a sort of limit of the finite dimensional one, and as such inherits much
of the properties of symplectic capacitites. In particular it verifies the normalization property so
one can use it to derive an analogue of the nonsqueezing theorem. However, in contrast to the
finite dimensional capacity, Kuksin’s capacity is not invariant by general symplectomorphism of
the symplectic Hilbert space, but only by those which are a compact perturbation of a symplectic
linear map, and where the linear map is well adapted to the basis which is used to construct the
capacity.

Shortly after Kuksin’s work, several authors took the task of investigating if one could expect
nonsqueezing behavior in more general flows. Bourgain was the first to prove nonsqueezing for a
flow which is not a compact perturbation of a linear map [Bou94]. He studied the cubic nonlinear
Schrödinger equation

i∂tu = −∆u+ |u|2u,

on the torus. Again, the technique was to approximate in a certain way the flow of the equation
by finite dimensional Hamiltonian flows in order to apply Gromov’s theorem. The fact of looking
at periodic solutions allows to apply a Fourier cutoff to the nonlinearity. Next, Colliander et
al. [CKS+05] proved, using again a finite dimensional approximation that the KdV equation on

H−
1
2 (T) also has the nonsqueezing property. Again, the main challenge in the proof is to prove

the approximation. Other equations where nonsqueezing has been proven are the periodic Klein-
Gordon, by Mendelson [Men17] or the periodic BBM [Rou10]. It is worth mentioning the article
of Killip-Visan-Zhang [KVZ16] where they gave the first proof of non-squeezing in infinite volume.
They consider again the cubic NLS on R2 and show again that it has a good approximation by
finite dimensional flows.

All the previous proofs rely on the particular structure of the equations. A different point of
view came in the article [AM15] of Abbondandolo and Majer. They studied the non-squeezing
property for arbitrary symplectic diffeomorphisms of a separable Hilbert space using a geometric
approach. They proved that squeezing cannot happen at least for convex images of the ball. They
did this by constructing a capacity for convex sets profiting from the dual action principle. Their
argument is the first one which is not based on the approximation by finite dimensional flows. We
also mention the articles by Sukhov and Tumanov [ST16a, ST16b] where they give a new proof
of Gromov’s non-squeezing and then use it to explore the limits of this proof in the context of
Hilbert spaces.

Symplectic capacities

The first result of this part of the thesis is a construction of infinite dimensional capacities different
from the one that Kuksin gave in [Kuk95] but also based in the finite dimensional approxima-
tion. We restrict ourselves to semilinear PDEs of the type described in [Kuk95]. The symplectic
structure on E is defined using the scalar product and an almost complex structure J . The
Hamiltonian functions are of the form

Ht(u) =
1

2
〈Au, u〉+ ht(u),

where A is a (possibly unbounded) self-adjoint linear operator and ht is a smooth function. The
Hamiltonian vector field is

XH(u) = JAu+ J∇ht(u)

If etJA is bounded, then solutions can be defined via Duhamel’s formula. Denote by {ϕ±j | j ≥ 1}
a Hilbert orthonormal basis of E and suppose that Jϕ±j = ±ϕ∓ and that A is diagonal for this
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basis. Let En be the finite dimensional subspace generated by {ϕ±j | 1 ≤ j ≤ n} and Πn the
natural projection on En. Under compactness assumptions on the nonlinearity, flow-maps are
symplectomorphisms which can be approximated on bounded sets by finite dimensional Hamilto-
nian flows by projection of the vector field on En. Specific examples of this type of equations are
(see [Kuk95]): nonlinear string equation in T with a nonlinearity which has at most polynomial
growth at infinity, quadratic nonlinear wave equation in T2, nonlinear membrane equation on T2

with a nonlinearity which has at most polynomial growth at infinity and Schrödinger equation
with a convolution nonlinearity in Tn.

Definition of the capacity As in the finite dimensional case, in order to calculate the capacity
of a set we are going to look at the action of periodic orbits associated to functions with support
in that set. In infite dimensions we have to be more careful since a function with bounded support
may not induce a globally defined Hamiltonian flow. Consider a bounded open subset U ⊆ E.
We define the set

F(U) = {smooth functions f : E → R such that Supp f ⊆ U And d(Supp f, ∂U) > 0}.

Consider the action selector c(µ, ·) defined at the beginning of the introduction and write c(µ,H) =
c(µ, ψH1 ). Denote fn = f|En and define

co(µ, f) = lim inf
n

c(µ, fn) and co(µ, f) = lim sup
n

c(µ, fn)

Remark that the support of fn is contained in Supp f ∩En which is bounded, so fn has compact
support. In particular c(µ, fn) is well defined. Remark moreover that for every n there is a
periodic orbit zn : [0, 1] → En such that c(µ, fn) is the action of zn, but these orbits may not
converge in any way. We now use c(µ, f) to define the capacity of open bounded sets U as

co(U) = sup{co(µ, f) for f ∈ F(U)} and co(U) = sup{co(µ, f) for f ∈ F(U)},

It turns out that this definition has the properties of symplectic capacities and in particular it
benefits from normalization property. Moreover under compactness assumptions on the flow Φ
we have co(U) ≤ co(Φ(U)) and co(U) ≤ co(Φ(U)) so one may use it to derive the nonsqueezing
theorem:

Theorem (Kuksin [Kuk95]). If Φ : E → R is the flow of a Hamiltonian PDEs satisfying the
compactness condition, then Φ(Br) ⊆ ZR implies r ≤ R.

The original construction of an infinite dimensional symplectic capacity by Kuksin was a
generalization of Hofer-Zehnder’s capacity. It uses the notion of fast periodic orbits of Hamiltonian
systems: orbits with period T ≤ 1 which are not fixed points. The capacity of U is then (roughly)
defined as the maximal variation of a Hamiltonian which does not produce a fast trajectory. As
in our case, the definition involves some sort of limit of the capacity as the dimension grows.

Middle dimensional rigidity

The second result of this chapter concerns the study of middle dimensional rigidity for Kuksin’s
equations. The first step is to define the coisotropic cylinder in this context. We explain the
result for the concrete example of the nonlinear string equation.

ü = uxx − f(t, x, u), u = u(t, x),
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where x ∈ T = R/2πZ Recall that if we denote by B the operator B = (−∂2/∂x2 + 1)1/2 then we
may write the equation in the form

u̇ = −Bv,
v̇ = (B −B−1)u+B−1f(t, x, u).

Suppose that f is bounded and that all its derivatives have polynomial growth. Define E =
H

1
2 (T)×H

1
2 (T) as the product of Hilbert spaces. Now putting A = (B −B−1)×B and defining

J : E → E by J(u, v) = (−v, u) we can write the nonlinear string equation as the semilinear PDE
on E as

(u̇, v̇) = JA(u, v) + J∇ht(u, v).

Denote E = E+×E− = H
1
2 (T)×H

1
2 (T). Write an element of E = E+×E− in Fourier basis and

denote by Ek the finite dimensional subspace of E whose elements (u, v) are a linear combination
of terms of frequencies up to k. Denote by Πk : E → Ek be the natural projection and let X×Ek+
be the subset of E that consists of elements (u, v) that project onto X under Πk and such that
(0, v) ∈ Ek. This is the natural definition of an infinite dimensional coisotropic cylinder.

As in the finite dimensional case, the capacities previously constructed do not give rigidity
information about these coisotropic cylinders. Note that the subset X×Ek+ is not bounded so we
cannot deduce directly middle dimensional rigidity for these Hamiltonian PDEs from the finite
dimensional approximation on bounded sets. We need an intermediate step and this will come
from the coisotropic non-squeezing theorem. Let Φ : E → E be the flow of the nonlinear string
equation and decompose it as

Φt(u) = etJAV t(u).

The map V t can be approximated on bounded sets by a finite dimensional map V t
n(un, u

n) =
(ϕtn(un), un) (by the hypothesis on f) where ϕtn verifies the coisotropic non-squeezing (since f is
bounded). The fact that V t

n acts as the identity on big Fourier modes allows us to prove that if
∇h is bounded on the whole space, then the set

V t(X × Ek+) ∩ {Πk
+ = 0}

is not only bounded, but compact. This allows us to have a precise control of the subset. In
particular we prove that this intersection is symplectically rigid:

Proposition. Denote by Φt : E → E the flow of the nonlinear string equation with f bounded
and such that all its derivatives have polynomial growth. For every k ∈ N, every compact subset
X of Ek and every t ∈ R we have

c(X) ≤ γ(Πk(V
t(X × Ek+) ∩ {Πk

+ = 0})).

Once we have this, we can use the symplectic invariance of the capacities together with the
fact that etJA is a symplectic map which commutes with Πk to get the middle dimensional rigidity
for the actual flow of the equation:

Theorem. Denote by Φt : E → E the flow of the nonlinear string equation with f bounded and
such that all its derivatives have polynomial growth. For every k ∈ N, every compact subset X of
Ek and every t ∈ R we have

c(X) ≤ γ(ΠkΦ
t(X × Ek+)).

The proof of this theorem is contained in the article [Bus17]. A particular example of equation
which verifies all the hypothesis is the Sine-Gordon equation:

utt = uxx − sinu, u = u(t, x),

17



Chapter 1. Introduction

where x ∈ T = R/2πZ. For k = 0 the set X×Ek+ consists of elements (u, v) where the pair (u0, v0)
of the mean values is in X ⊂ R2 and such that (0, v) ∈ E0, that is, v is constant equal to v0. We
see that these theorem gives information on the global behavior of solutions with constant initial
velocity such that the pair of the mean values is in X. On the other hand, if we interchange the
roles of E+ and E− we get information on the behavior of solutions where the initial position of
the string is constant.

Figure 1.3: The representation the graph of the initial condition u(0, x) and at each point the
vector of the initial speed v(0, x). On the left, u(0, x) is constant. On the right, v(0, x) is constant.

Arnold conjecture for Hamiltonian PDEs

Still in the search of symplectic rigidity in Hamiltonian PDEs, we point our attention to Arnold’s
conjecture. This conjecture asserts that Hamiltonian diffeomorphisms always have fixed points.
More precisely:

Conjecture. On every compact symplectic manifold (M,ω) a Hamiltonian diffeomorphism has
at least as many fixed points as a function on M has critical points.

The non-degenerate version of this conjecture has been established on every symplectic man-
ifold. The proof gave rise to Floer’s homology, a homological theory built from critical points of
the action functional. As a particular example where this conjecture is true we have the complex
projective space CPn where the number of fixed points is n + 1. The original proof of this case
[For85] did not use Floer’s techniques but profited from the symmetry of CPn to study the action
functional for Hamiltonians in R2n.

In order to relate this compact setting with the flow of Hamiltonian PDEs on Hilbert spaces
we need to consider a specific setting introduced by Fabert in [Fab18]. Consider the nonlinear
Schrödinger equation on T with convolution nonlinearity,

iut = uxx +
[
f(|u ∗ ξ|2, x, t)u ∗ ξ

]
∗ ξ,

where u : T → C. This is one of the examples given by Kuksin in [Kuk95] of equations that
can be approximated by finite dimensional Hamiltonian diffeomorphisms. Moreover this equation
defines a flow Φt on the whole space L2(T,C). After restriction to the unit sphere S of L2 the
diffeomorphism Φt descends to a map on the projective space PL2. This map is approximated by
finite dimensional maps Ψt

n : CPn → CPn and each of this maps has at least n+ 1 fixed points.

Conjecture. For every t ∈ R, the map Ψt : PL2 → PL2 has infinitely many fixed points.

We prove the time-independent case. In this case it is enough to look for critical points of H
restricted to the unit sphere. This is equivalent to looking for standing waves, that is, solutions
of the equation of the form

u(t, x) = eiµtv(x), with v ∈ L2.

18



1.4. Hamiltonian PDEs

Theorem. Suppose that f is independent of t. Then for every t ∈ R the flow Ψt has infinitely
many fixed points. More precisely, there is a sequence of points un ∈ H1 and µn ∈ R such that

Φt(un) = un(t, x) = eitµnun(x) and H(un)→ +∞ as n→ +∞,

for every (t, x) ∈ R× T.

The first step in the proof is establishing a kind of Palais-Smale condition for the finite
dimensional reductions Hn of the Hamiltonian. In other words, we show that a sequence of
critical points un of Hn with bounded energy converges to a critical point of H. Then one has to
apply variational methods to find those sequences with bounded energy independent of n.
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Chapter 2

The action spectrum as a symplectic
invariant

In the variational approach of symplectic geometry Hamiltonian trajectories can be identified with
critical values of the action functional. In this setting, looking for periodic orbits of Hamiltonian
systems amounts to finding critical values of a functional on an infinite dimensional space. In this
chapter we recall the basic properties of the set of critical values of this functional and explain
how it can be used to define symplectic invariants. A more detailed exposition of these results
can be found in Hofer and Zehnder’s book [HZ94].

2.1 The action functional.

Consider R2n with coordinates z = (q1, p1, . . . , qn, pn). We endow R2n with the standard symplec-
tic structure

ω0 =
n∑
i=1

dqi ∧ dpi.

It is a non-degenerate, closed two form. For any function H : [0, 1] × R2n → R there exists a
unique time-dependent vector field XH on R2n such that

ω0(XH , ·) = dHt(·).

We call XH the Hamiltonian vector field generated by H. Using the isomorphism R2n ' Cn we
have

XH(z) = −i∇Ht(z) = J∇Ht(z),

where J is the multiplication by −i. Denote by H the set of smooth functions H : [0, 1]×R2n → R
such that SuppH is contained in a compact set. Here, by support of H we mean

SuppH =
⋃

t∈[0,1]

SuppHt with SuppHt = {z ∈ R2n |Ht(z) 6= 0}.

Every element of H generates a compactly supported vector field, which in turn, generates a
globally defined flow ψHt = ψt on R2n. We denote by Hamc(R2n) the set of time one maps
ψH1 = ψH of the flows generated by functions on H. By Cartan’s formula these flows preserve the
symplectic structure:

d

dt
ψ∗t ω0 = LXHω0 = diXHω0 + iXHdω0 = ddHt = 0,

We are interested in the dynamical information coming from periodic orbits, that is, fixed points
of ψH1 . More precisely, this information is going to come from the action value of the orbits.
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Chapter 2. The action spectrum as a symplectic invariant

2.1.1 Periodic orbits as critical points.

Let z : [0, 1]→ R2n be a closed loop, i.e. a smooth curve such that z(0) = z(1). For every smooth
fuction H : [0, 1]× R2n → R we consider the value

AH(z(t)) =

∫ 1

0
p(t) · q̇(t) dt−

∫ 1

0
Ht(z(t))dt.

Using integration by parts and the fact that z(t) is periodic we get the equivalent expression

AH(z(t)) = −
∫ 1

0

1

2
Jż(t) · z(t) dt−

∫ 1

0
Ht(z(t)) dt,

where the dot represents the real scalar product. Suppose that z ∈ L2(S1,R2n), then we may
decompose it as a sum of Fourier modes

z(t) =
∑
k∈Z

e2iπktzk,

with zk ∈ R2n. With this decomposition the first part of the action becomes∫ 1

0

1

2
Jż(t) · z(t) dt = π

∑
k∈Z

k|zk|2,

which defines a continuous quadratic form on the dense subspace H
1
2 (S1,R2n) ⊆ L2(S1,R2n).

We want to see AH as a function defined on H
1
2 . The functions in H

1
2 may not be continuous so

one has to impose some condition on H in order to, for example, have the second term bounded.
In what follows we suppose that H is compactly supported although one may make the weaker
assumption that H and all its derivatives have polynomial growth (see [HZ94] appendix A.3).

Lemma 2.1. If H is compactly supported the functional AH : H
1
2 (S1,R2n) → R is smooth and

its critical points are exactly the smooth closed loops that solve

ż(t) = XH(z(t)).

Proof. The smoothness follows from the fact that H and all its derivatives have polynomial
growth. For a proof see [HZ94] appendix A.3. For the second claim, a straightforward calculation
yields

dAH(z)(w) =

∫ 1

0
[−Jż(t)−∇Ht(z(t))]w(t) dt.

A point z verifies dAH(z)(w) = 0 for every w ∈ H
1
2 (S1,R2n) if and only if

ż(t) = J∇Ht(z(t)) = XH(z(t)).

It remains to show that z(t) is actually in C∞([0, 1],R2n). First, dAH(z)(1) = 0 implies that
∇Ht(z(t)) has vanishing mean. Moreover, since H is compactly supported we have ∇Ht(z(t)) ∈
L2(S1,R2n). These two facts imply that there exists a ξ ∈ H1(S1,R2n) such that

ξ̇(t) = J∇Ht(z(t)),

so z = ξ ∈ H1(S1,R2n). In particular z is a continuous weak solution of the Hamiltonian equation.
This implies that

z(t) = z(0) +

∫ t

0
J∇Ht(z(t))

must be C1. The right hand side is then C2 so z is C2. By recursion we get the z is in fact
smooth.
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2.1. The action functional.

2.1.2 The action spectrum.

For H ∈ H we denote the set of fixed points of the Hamiltonian map ψH = ψH1 by

Fix(ψH) = {z ∈ R2n |ψH(z) = z}.

If z0 ∈ Fix(ψH) then the curve z = (q, p) : [0, 1]→ R2n defined by t 7→ ψHt (z0) satisfies z(0) = z(1)
and hence is a loop in R2n. Its action is the real number

A(z0, H) = AH(z(t)) =

∫ 1

0
p(t) · q̇(t) dt−

∫ 1

0
Ht(z(t)) dt.

Note that if t 7→ z(t) is a constant curve, then the first term is zero. If in addition the Hamiltonian
function H is time-independent then the action is just

A(z0, H) = AH(z(t)) = −H(z0).

It turns out that the A(z0, H) depends only on the fixed point z0 and on the map ψH and not on
the particular H that generates ψH . This observation is contained in the following lemma:

Lemma 2.2 (see [HZ94] p. 151). If H and K in H generate the same time one map ψH1 = ψK1 ,
then

A(z0, H) = A(z0,K)

for every z0 ∈ Fix(ψH) = Fix(ψK).

We can then associate to every fixed point z0 of a map ψ ∈ Hamc(R2n) the action

A(z0, ψ) = A(z0, H) if ψ = ψH1 ,

and we may consider the set of all such actions.

Definition 2.3. The action spectrum of ψ ∈ Hamc(R2n) is the set σ(ψ) ⊆ R defined by

σ(ψ) = {A(z, ψ) | z ∈ Fix(ψ)}.

Note that 0 ∈ σ(ψ) for every ψ ∈ Hamc(R2n) since the Hamiltonians functions have compact
support. The following lemma allows us to use the action spectrum to extract symplectic informa-
tion. Denote by G the group of conformally symplectic diffeomorphisms, that is, diffeomorphisms
φ which satisfy

φ∗ω0 = αω0

for some α = α(φ) ∈]0,∞[.

Lemma 2.4 (see [HZ94] p.152). If ψ ∈ Hamc(R2n) and φ ∈ G with φ∗ω0 = αω0 then

A(φ(z), φψφ−1) = αA(z, ψ).

In particular
σ(φψφ−1) = ασ(ψ).

The last property that we need from the action spectrum is the following lemma. A possible
proof can be given using generating functions as in Chapter 3. It is the key property that allows
us to prove the symplectic invariance for continuous action selectors.

Lemma 2.5 (see [HZ94] p.152). The action spectrum σ(ψ) is compact and nowhere dense.
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Chapter 2. The action spectrum as a symplectic invariant

2.2 Action value selectors

In view of Lemma 2.4 we may use the action spectrum to define symplectic invariants. For
example, since the spectrum is compact by Lemma 2.5 we can define the quantity

s(ψ) = supσ(ψ) = sup{A(z, ψ) | z ∈ Fix(ψ)}.

Then, for every open set U ⊆ R2n we may consider

s(U) = sup{c(ψ) |ψ ∈ Hamc(R2n)}.

If φ is a symplectic diffeomorphism then by symplectic invariance of the spectrum s(ψ) =
s(φψφ−1) so as a consequence s(ϕ(U)) = s(U). Unfortunately this invariant is trivial. Indeed,
for every open set one may construct an autonomous Hamiltonian with a minimum as small as
we want, and this minimum generates a fixed point with action value equal to the value of −H at
this point. Since this minimum is arbitrary, we conclude c(U) = +∞ for every open set. In order
to construct a nontrivial capacity from an action selector we have to make a less obvious choice.
In particular this choice has to be of a dynamical nature, so that it has useful information.

Over the group Hamc(R2n) we can define the action spectrum ”bundle”

A =
⋃

ψ∈Hamc(R2n)

{ψ} × σ(ψ).

Every fiber is a compact nowhere dense set. Since 0 ∈ σ(ψ) for every ψ there is a trivial section
of A. In the following chapter we give constructions of nontrivial sections

c : Hamc(R2n)→ A

i.e. maps that verify c(ψ) ∈ σ(ψ). We use these sections to define a symplectic capacity. The
following lemma assures that this can be done under some continuity hypothesis on c.

Lemma 2.6. Let c : Hamc(R2n)→ A be a section of the action bundle such that for any symplectic
isotopy ψt the map

t 7→ c(ψt)

is continuous. Then for every conformaly symplectic isotopy φt starting at the identity and every
ψ ∈ Hamc(R2n) we have

c(φtψ(φt)
−1) = α(t)c(ψ) for every t ∈ [0, 1].

Proof. Every ψ ∈ Hamc(R2n) and every conformally symplectic map defines a path of compactly
supported symplectic maps (which is in fact a path in Hamc(R2n)) given by t 7→ φtψ(φt)

−1 for
t ∈ [0, 1]. For α(t) = α(φt) > 0 the map

t 7→ 1

α(t)
c(φtψ(φt)

−1)

is continuous and by Lemma 2.4 takes values in σ(ψ). By Lemma 2.5 the subset σ(ψ) is nowhere
dense so this map must be constant equal to c(φ0ψφ

−1
0 ) = c(ψ).

In particular, we see that a section satisfying this continuity hypothesis is invariant by sym-
plectic conjugation. We can use it to define a symplectic invariant for open bounded sets of R2n

by
c̄(U) = sup{c(ψ) |ψ ∈ Hamc(U)},

where the notation Hamc(U) stands for the set of compactly supported Hamiltonian diffeomor-
phisms with support contained in U . Recall that the definition of a symplectic capacity is:
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2.2. Action value selectors

Figure 2.1: The shaded region represents the support of a Hamiltonian diffeomorphism ψ. The
curve represents the periodic orbit γ such that c(ψ) = AH(γ).

Definition 2.7. Denote by P(R2n) the power set of R2n. A symplectic capacity on R2n is a
function c : P(R2n)→ [0,+∞] that verifies the following properties:

1. (monotonicity) If U ⊆ V then c(U) ≤ c(V ).

2. (conformality) c(λU) = λ2c(U) for all λ ∈ R.

3. (symplectic invariance) If φ : R2n → R2n is a symplectomorphism then c(φ(U)) = c(U).

4. (non-triviality+normalization) c(B2n
1 ) = π = c(B2

1 × R2n−2).

The invariant c̄ defined using a section satisfying the hypothesis of Lemma 2.6 verifies the
three first properties of symplectic capacities. Let us explain a classical way of obtaining the
normalization property:

For every small ε find a smooth compactly supported decreasing function h : R→ R such that
h(t) = 1 − ε for t ≤ 0, h(t) = 0 for t ≥ 1 + ε, and 0 ≤ |h′(t)| ≤ (1− ε). We can use it to defined
an autonomous Hamiltonian H : R2n → R by H(z) = −πh(‖z‖2). The gradient for this function
is ∇H(z) = −2πh′(‖z‖2)z so the Hamiltonian equation is

ż = J∇H(z) = 2πih′(‖z‖2)z.

In order to understand its flow, note that if z : R→ R2n is a Hamiltonian trajectory then

d

dt
‖z(t)‖2=

d

dt
〈z(t), z(t)〉 = 2〈ż(t), z(t)〉 = 2πh′(‖z(t)‖2)〈iz(t), z(t)〉 = 0,

so the norm is an invariant of the flow. In particular we can now write the explicit form of the
flow as

ψt(z) = e2πith′(‖z‖2)z.

We conclude using the bound for h′ that the only 1-periodic orbits are the ones with h′ = 0. The
orbits are the trivial ones with h(z) = 0 and the ones with h(z) = −1 + ε. In particular

σ(ψH) = {0, π − επ}

If the selector c is nontrivial on this map we have c(ψ) = π− επ. Since ε can be chosen arbitrarily
close to zero, we may prove the following lemma.

Lemma 2.8. Suppose that c is an action selector verifying the assumptions of Lemma 2.6 and
non-zero on functions h as above. Then the invariant defined by c verifies c̄(B2n

1 )) ≥ π.
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Chapter 2. The action spectrum as a symplectic invariant

2.2.1 Energy-capacity inequality

The classical way of obtaining the reverse inequality for c̄(B2n
1 ), of more precisely, of obtaining

c̄(B2
1 × R2n−2) ≤ π comes from the concept of displacement energy: for an open bounded subset

U ⊆ R2n we say that a Hamiltonian diffeomorphisms ψH displaces U if

ψH(U) ∩ U = ∅.

Figure 2.2: An open set U displaced by ψ.

One way of measuring the energy of a diffeomorphism ψH is via the following quantity:

Definition 2.9 (see [HZ94] p.146 or [Hof90a] ). For every H ∈ H define

‖H‖ =

∫ 1

0
sup
z
H(t, z) dt−

∫ 1

0
inf
z
H(t, z) dt,

and for every ψ ∈ Hamc(R2n) define

E(ψ) = inf{‖H‖ |ψ = ψH1 }.

This measures the minimal variation of H that we need in order to generate the Hamiltonian
diffeomorphisms ψ. A priori it is not clear if E(ψ) > 0 for a non-identity element. It is possible
to prove (for example using the tools of the following chapter) the following important result:

Theorem 2.10 (see [HZ94] p.146 or [Hof90a]). Let ψ be an element of Hamc(R2n). Then E(ψ) =
0 if and only if ψ = Id .

For every compactly supported diffeomorphisms ψ,ϕ ∈ Hamc(R2n) Hofer defines

d(ψ,ϕ) = E(ψϕ−1).

The previous result implies that d(ψ,ϕ) = 0 is and only if ψ = ϕ. Using the definition for E
one can moreover prove that d is bi-invariant by symplectic diffeomorphisms and that it moreover
verifies the triangle inequality. In particular, it is a bi-invariand distance on the group of compactly
supported Hamiltonian diffeomorphisms called the Hofer distance on Hamc(R2n) (see [HZ94] for
more details). We will not explicitly use this distance on this manuscript, but we present it to give
an intuition for the closely related Viterbo displacement energy. Note that with this vocabulary,
the energy E(ψ) is the distance of ψ to the identity. Hofer uses E to define a new symplectic
capacity:

26



2.2. Action value selectors

Definition 2.11 (see [HZ94]). For every bounded open set U ⊆ R2n we define the displacement
energy of U as

E(U) = inf{E(ψ) |ψ(U) ∩ U = ∅}.

For every open subset V ∈ R2n we define E(V ) as the supremum of E(U) for every open bounded
set U ∈ V . For every set X ⊆ R2n we define E(X) as the infumun of E(V ) for every open set V
that contains X.

This time, the inequality that one may easily prove goes in the opposite direction.

Theorem 2.12 ([HZ94] p. 171). Let Z2n
r = {z ∈ R2n | q2

1 +p2
1 ≤ r2} be a standard cylinder. Then

E(Z2m
r ) ≤ πr2.

Proof. Fix r = 1. Every bounded open subset of Z2n
1 is contained in B2

1 ×B
2n−2
R for some R > 0,

so it is enough to prove that

E(B2
1 ×B2n−2

R ) ≤ π

for every R > 0. We start by constructing a Hamiltonian in R2 that displaces B2
1 . For this we

first use an area- and orientation- preserving diffeomorphism ϕ of R2 to send the ball inside C,
the square of sides

√
π + ε on the positive quadrant with a vertex on (0, 0). Remark that the

Hamiltonian H(x, y) = (
√
π+ 2ε)x displaces C vertically for t = 1. In order to make it compactly

supported we may multiply H by a function ξ which is equal to one on a neighborhood of the
trajectory of C. In particular we can choose χ = 0 outside −ε ≤ x ≤

√
π+ 2ε. Then K = χH has

norm ‖K‖ = π+ o(ε). Moreover ϕ−1 ◦ψKt ◦ϕ displaces the ball from itself and it is generated by
K ◦ ϕ (see appendix A). In order to get the diffeomorphism on R2n we can just multiply K ◦ ϕ
by another compactly supported function of R2n with values on [0, 1] and equal to one on the
trajectory of B2

1 ×B
2n−2
R .

In order to prove that both c̄ and E are normalized one usually proves an energy-capacity
inequality: suppose that for every ψ Hamiltonian diffeomorphisms supported on a bounded open
set U , and every ϕ ∈ Hamc(R2n) such that it displaces U from itself, i.e. ϕ(U) ∩ U = ∅, we have

c(ψ) ≤ E(ϕ).

Then the definition of the invariants imply that

c̄(U) ≤ E(U).

Taking into account Lemma 2.8 and Theorem 2.12 we conclude that both c and E are normalized.
The energy-capacity inequality is always a consequence of the following very important property
of the action spectrum (see Definition 2.3).

Lemma 2.13 (see [HZ94] p.166). Let ψt be a Hamiltonian flow supported on a bounded open set
U , and let ϕ ∈ Hamc(R2n) be such that it displaces U from itself, i.e. ϕ(U) ∩ U = ∅. Then for
every t we have

σ(ψt ◦ ϕ) = σ(ϕ) = σ(ϕ ◦ ψt).
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2.3 Other symplectic capacities

We end this chapter with a short description of another type of symplectic capacity which is
not defined via a section of the action spectrum. This capacity also verifies an energy-capacity
inequality. We introduce it since it was used by Kuksin in [Kuk95] to define an infinite dimensional
capacity for Hamiltonian PDEs so it will appear again in Chapter 6.

We say that an autonomous Hamiltonian (i.e. a time independent Hamiltonian function) is
slow if it does not have any periodic orbit of period smaller 1 other than its critical points. In
[HZ90] they define the following capacity:

Definition 2.14. For every open set U of R2n we define

cHZ(U) = sup{maxH |H is slow and compactly supported in U}.

Using a function as in Lemma 2.8 one may prove that cHZ(B2n
1 ) ≥ π. The nontrivial inequality

is again the opposite one, which can be recovered with an energy-capacity inequality.

Theorem 2.15 (see [HZ94] p.166). For every open bounded set U we have

cHZ(U) ≤ E(U).

This was one of the first capacities that was discovered.
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Chapter 3

Generating functions and spectral
invariants

In the previous section we saw that the action spectrum depends only on the time one map of the
Hamiltonian diffeomorphism, an not on the precise Hamiltonian function that generates it. In
particular all the symplectic information of the action is contained on the fixed points of ψ = ψH1 .
A classical way of studying the fixed points of diffeomorphisms is to consider its graph

Γψ = {(z, ψ(z)) | z ∈ R2n}

and look at the intersection points with the diagonal, i.e., the graph of the identity. Remark
that ψ is compactly supported so both graphs coincide outside a compact set. One may use the
symplectic structure of R2n to see Γψ as a Lagrangian submanifold of the symplectic manifold

(R2n×R2n, ω0⊕(−ω0)) = R2n×R2n. Working with linear manifolds has the advantage that there
exists an explicit global symplectomorphism I : R2n × R2n → T ∗R2n such that I(ΓId ) = 0R2n .
This symplectomorphism is given by

I(q, p,Q, P ) = (
q +Q

2
,
p+ P

2
, p− P,Q− q).

Since I is a symplectomorphism, I(Γψ) continues to be a Lagrangian submanifold which is Hamil-
tonian isotopic to the zero section. We will see that after compactification of the base manifold
of T ∗R2n to T ∗S2n, these Lagrangian submanifolds can be described by the symplectic reduction
of differential of functions S : S2n × Rm → R called generating functions. The critical points of
S are in one to one correspondence with the intersection points of I(Γψ) with the zero section
I(ΓId ). We show that after normalization of S the set of critical values of S is exactly the action
spectrum of ψ. We then review how to use minmax selectors of critical values to build a contin-
uous sections of the action spectrum bundle verifying Lemma 2.8. These invariants are used to
define a symplectic capacity and a displacement energy. Most of the results of this section can be
found in Viterbo’s original article [Vit92].

3.1 Definition

Let N be a compact smooth manifold and let L be a Lagrangian submanifold of T ∗N which is
Hamiltonian isotopic to the zero section. In light of the previous discussion we want to give a
description of this submanifold which allows us to extract information from the intersection points
with the zero section. Recall that the standard symplectic structure of T ∗N is given by ω = −dλ
where λ is the unique one form that verifies α∗λ = α for every section of the contangent space.
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Chapter 3. Generating functions and spectral invariants

This characterization already yields a description of a big family of Lagrangian submanifolds:
the graph of every closed one form of T ∗N . In particular, the differential of a function gives
a description of Lagrangian submanifolds but this description is not enough for Hamiltonian
deformations of the zero section. These type of deformations are too flexible and they need not
project one-to-one onto the zero section (see Figure 3.1), so we need a more general description.

Figure 3.1: A possible Hamiltonian deformation of the zero section in T ∗T.

Introduce an auxiliary variable and consider functions S : N × Rm → R. The graph of the
differential dS is a Lagrangian submanifold (still denoted dS) of the cotangent space T ∗(N×Rm) =
T ∗N × T ∗Rm. We will push forward the Lagrangian in a symplectic way by the projection onto
the first coordinate to get a Lagrangian in T ∗N . This operation is called symplectic reduction
and is based on the following lemma:

Lemma 3.1. Let V be a symplectic vector space, let W ⊆ V a coisotropic subspace and let L ⊆ V
be a Lagrangian subspace. Denote by π : W → W/Wω the natural projection. If L is transverse
to W then π(L ∩W ) ⊆W/Wω is a Lagrangian subspace.

Proof. First note that L is isotropic so L ∩W is also isotropic and this implies that π(L ∩W ) is
also isotropic. In order to prove that π(L∩W ) is Lagrangian it remains to prove that it has half
of the dimension of W/Wω. Now remark that L+W = V implies Lω ∩Wω = V ω and using that
L is Lagrangian we get L∩Wω = {0}. This means that π is injective on L∩W so π(L∩W ) has
the same dimension as L ∩W . Using dimW + dimWω = 2n we get

dimW/Wω = 2n− 2 dimWω.

On the other hand we have

dimL ∩W = dimL+ dimW − 2n = dimW − n = (2n− dimWω)− n = n− dimWω,

and using the previous two equalities we get

dimL ∩W =
1

2
dimW/Wω,

which finishes the proof.

We are going to apply this lemma to L = dS and W = T ∗N × 0Rm . We are no longer in the
linear case so we have to make sure that the result carries over. A coisotropic submanifold is a
submanifold with coisotropic tangent spaces (see Appendix A). The symplectic orthogonal will
define an integrable distrubution and a foliation called characteristic foliation (see Lemma A.7).
In order to consider subsets on the quotient, one first needs to be sure that the quotient by the
characteristic foliation is a well defined manifold. This is not always be the case.
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Example 3.2. Consider the cotangent space T ∗N × T ∗M for two smooth manifolds N and M .
Then

T ∗N × 0M and T ∗N × T ∗mM with m ∈M

are coisotropic submanifolds. The symplectic reduction W/Wω is in both cases naturally isomor-
phic to T ∗N .

Definition 3.3 (Symplectic reduction). Let M be a symplectic manifold and let W ⊆ M be a
coisotropic submanifold. Consider a subset Z ⊆M , then we will denote

RedW (Z) := π(Z ∩W ) ⊆W/Wω.

Together Lemma 3.1 and Example 3.2 imply that if dS is transverse to T ∗N × 0Rm then the
projection π restricted to dS gives a Lagrangian immersion into T ∗N . This is the definition of a
generating function. We will moreover ask for a condition at infinity. This condition will allow us
to have a better control of the function and in particular guarantees that S has enough critical
points.

Definition 3.4. We say that a function S : N × Rm → R is a generating function or gf for an
immersed Lagrangian submanifold L ⊆ T ∗N if

• dS is transverse to W = T ∗N × 0Rm .

• L = RedW (dS).

Moreover we say that S is quadratic at infinity or gfqi if S coincides with a nondegenerate
quadratic form Q outside a compact set.

Explicitly, the first condition amounts to asking that the map

(q, ξ) 7−→ ∂S

∂ξ
(q, ξ)

has zero as a regular value. The transversality condition implies that

ΣS := dS−1(dS ∩W ) =
∂S

∂ξ

−1

(0)

is a submanifold contained in N ×Rm of the same dimension of N . We will denote by iS : ΣS 7→
T ∗N the immersion

(q, ξ) 7−→ (q,
∂S

∂q
(q, ξ)).

By definition of S the image of this map is L. The condition of being exactly quadratic at infinity
may seem a little strong. An important remark is that it can be relaxed to a condition on the
fiber derivative. This is the content of the following proposition which is taken from Théret’s
thesis.

Proposition 3.5 (see [Thé95]). Let N be a compact manifold and let S : N × Rk → R be
a gf for an immersed Lagrangian L. Suppose that there exists a nondegenerate quadratic form
Q of Rl for which ∂ξ(S − Q) is bounded. Then there exists a fiber preserving diffeomorphism
ϕ : N × Rk → N × Rk such that S′ = S ◦ ϕ is a gfqi for L with quadratic form Q.
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Chapter 3. Generating functions and spectral invariants

Proof. Denote R = S − Q and St = Q + tR = (1 − t)Q + tS. We look for a fiber isotopy
ϕt(q, ξ) = (q, σt(q, ξ)) such that St ◦ ϕt = Q outside a compact set. Differentiating with respect
to t, and denoting by (0, Xt) the infinitesimal generator of ϕt we want Xt to verify

∂ξSt(Xt) + ∂tSt = 0 outside a compact set.

We may write the condition as (
∇Q+ t∂ξ(S −Q)

)
(Xt) = −R.

Note that Q is a non-degenerate quadratic form so |∇Q(ξ)| goes to infinity with ξ. Note moreover
that by hypothesis t∂ξ(S−Q) is bounded. Using these two facts we see that outside a big enough
compact set, ∂ξSt is non zero so we may define

Xt =
−R
|∂ξSt|2

∂ξSt

which verifies the desired equality outside a compact set. Now make this vector field global with
the help of a step function which is zero on a big enough compact set, and equal to one at infinity.
In order to finish the proof we just need to check that this vector field is globally integrable. We
have

|Xt| ≤
|R|
|∂ξSt|

≤ a|R(q, ξ)| ≤ a|R(q, 0) +

∫ 1

0
∂ξR(q, tξ) · ξdt| ≤ a′ + b′|ξ|

where we used that N is compact and that ∂ξR is bounded. We may now use Gronwall’s Lemma
to prove that trajectories do not explode in finite time, so the flow is globally defined.

In the case where L is not only immersed but also embedded, one can characterize the map
iS . This is important since we want to have a bijective correspondence between critical points of
S and intersection points with the zero section.

Lemma 3.6. Let N be a connected compact manifold and let S be a gfqi for a Hamiltonian isotopy
of the zero section in T ∗N . Then ΣS is a covering space of L and iS is a covering map of finite
degree.

Proof. By definition ΣS is a closed set. Moreover, the quadratic at infinity condition implies that
ΣS is contained in a compact set so we conclude that it is a compact submanifold. The map iS is
an immersion and both ΣS and L have the same dimension so iS is in fact a local diffeomorphism.
Note that ΣS is compact and L connected so a standard argument shows that the fibers are finite
with the same cardinal, which gives the result.

Example 3.7. Let N be a compact manifold, we are going to build a gfqi for the zero section
where iS is not a diffeomorphism. We look for gf S : N × R→ R of the form

S(q, ξ) = F (ξ),

with F : R → R. Once the transversality condition is verified, it is clear that S will generate
the zero section. Denote by f the derivative of F . In this case the transversality condition of
Definition 3.4 amounts to asking that the map

(q, ξ) 7−→ ∂S

∂ξ
(q, ξ) = f(ξ)

has zero as a regular value. In other words, we want that for every ξ ∈ f−1(0) we have f ′(ξ) 6= 0.
In order to address the quadratic at infinity condition we first recall that quadratic forms of R
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are of the form Q(ξ) = aξ2. If we want an S quadratic at infinity, using Proposition 3.5 we see
that it is enough to find a function f and a constat C such that |f(ξ)− 2aξ| ≤ C for every ξ ∈ R.
Fix 2a = 1 and consider the function

f(ξ) =


ξ − 1 if 1 ≤ ξ
− sinπξ

π if − 1 ≤ ξ ≤ 1

ξ + 1 if ξ ≤ −1

We have f(ξ) = 0 if and only if ξ ∈ {−1, 0, 1}. Moreover f ′(−1) = 1, f ′(0) = −1 and f ′(1) = 1

Figure 3.2: A representation of the graph of f .

so the transversality condition is verified. We may now use Proposition 3.5 in order to find a fiber
preserving diffeomorphism ϕ : R → R such that S ◦ ϕ = F ◦ ϕ is exactly quadratic at infinity.
Moreover we may chose ϕ to be the identity on a neighbourhood of [−1, 1]. In particular we have

ΣS = N × {−1}
⋃
N × {0}

⋃
N × {1}

and iS : ΣS → 0N ⊆ T ∗N is a 3-to-1 covering map. We see that in this case the critical points of
S are not in one to one correspondence with the intersection points with the zero section.

3.2 Existence

In this section we prove the existence of generating functions quadratic at infinity S where the map
iS is a diffeomorphism for compactly supported Hamiltonian deformations of the zero section in
T ∗Rn. The proof that we present is based on the one that appears in [Vit06]. The proof for general
compact manifolds N follows using the argument in Brunella’s article [Bru91]. Let ψ = ψHt be a
compactly supported Hamiltonian diffeomorphisms in T ∗Rn. The key observation is that for small
t, the generating function of ψt(L) can be explicitly described using the concept of generating
functions for symplectic diffeomorphisms and the gf for L.

Consider the graph of a symplectomorphism ϕ as a Lagrangian submanifold in T ∗Rn×T ∗Rn.
Then using the involution (q, p) 7→ (q,−p) for the second coordinate we may send it in a sim-
plectic way into T ∗(Rn × Rn) to get another Lagrangian submanifold. We want to identify the
diffeomorphisms ϕ whose image in T ∗(Rn×Rn) can be described by the differential of a function
h.

Definition 3.8. Let ϕ be a symplectic diffeomorphisms of T ∗Rn. We say that a function h :
Rnx × Rny → R is a generating function for ϕ if

ϕ(q1, p1) = (q2, p2) if and only if p1 =
∂h

∂x
(q1, q2) and p2 = −∂h

∂y
(q1, q2).

In that case we write ϕ = ϕh.
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Example 3.9. Consider the function h0(x, y) = 1
2 |x− y|

2. In this case we want

p1 =
∂h

∂x
(q1, q2) = q1 − q2 and p2 = −∂h

∂y
(q1, q2) = q1 − q2,

so h0 generates the diffeomorphism

ϕ(q1, p1) = (q1 − p1, p1).

Moreover, the same easy calculation tells us that ϕ−1 is generated by −h0.

Lemma 3.10. Every compactly supported Hamiltonian diffeomorphism ψ = ψH1 can be written
as a composition

ψ = ϕhm ◦ · · · ◦ ϕh1 ,

where hi is equal to h0 or −h0 outside a compact set.

Proof. Write ψt = ψt ◦ϕh0 ◦ϕ−h0 . The map ψt ◦ϕh0 is symplectic and coincides with ϕh0 outside
a compact set. Its image in T ∗(Rn×Rn) is Lagrangian and coincides with dh0 outside a compact
set. For t small enough it is also the graph of a closed one form, which is exact since we are in
Rn × Rn. It is then the graph of dh and coincides with dh0 outside a compact set. We conclude
that ψt ◦ ϕh0 = ϕh. For bigger t we just need to decompose ψt in small pieces. The map ψt is
compactly supported so for every ε we may find a decomposition such that each piece is at least
ε close to the identity.

We now give the stability of the property of having gf by symplectic maps of the form ϕh.

Proposition 3.11 (Chekanov’s composition formula). Let L ⊆ T ∗Rn be a Lagrangian submani-
fold generated by a generating function S : Rn×Rm → R. Let ϕ be a symplectomorphisms of T ∗Rn
that has a generating function h. If h is sufficiently C2 close to h0 then ϕ(L) has a generating
function given by

K :Rn × Rm × Rn → R
(q, ξ, η) 7→ −h(η, q) + S(η, ξ)

Proof. We have that (q, ξ, η) ∈ ΣK if and only if

∂S

∂ξ
(η, ξ) = 0 and

∂h

∂x
(η, q) =

∂S

∂q
(η, ξ).

Moreover, using the fact that ϕ is generated by h (see Definition 3.8) we get

iK(q, ξ, η) = (q,
∂K

∂q
(q, ξ, η)) = (q,−∂h

∂y
(η, q)) = ϕ(η,

∂h

∂x
(η, q)) = ϕ(η,

∂S

∂q
(η, ξ))

which implies LK = ϕ(L). To end the proof we need to see that K verifies the transversality
condition. Denote by F the function

F (q, ξ, η) = (
∂K

∂ξ
,
∂K

∂η
) = (

∂S

∂ξ
,
∂S

∂q
− ∂h

∂x
)

By hypothesis S satisfies the transversality condition. If we denote Πm the projection on the first
m coordinates, then for x ∈ ΣK ,

ΠmDxF ({0} × Rm+n) = Rm × {0}.
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To end the proof it is enough to show that

DxF (Rn × {0}) = {0} × Rn.

This means that we have to show that q 7→ ∂h
∂x(η, q) is a submersion. To conclude, recall that

x 7→ ∂h0
∂x (x, y) = x− y is a submersion for every y, so the same property will be true for every h

sufficiently C2 close to h0.

Definition 3.12. We say that a generating function S : Rn × Rm → R satisfies property (P ) if

• there exists a non-degenerate quadratic form Q : Rm → R such that for every C > 0

Supp (S −Q) ∩ {(q, ξ) ∈ Rn × Rm | |ξ| ≤ C}

is compact.

• S −Q has bounded Ck norm for every k.

We will say that a Lagrangian submanifold L satisfies property (P ) if it is generated by a gf which
satisfies property (P ).

Remark 3.13. The importance of property (P ) is that it guarantees that S has a smooth exten-
sion to Sn × Rm by S(N, ξ) = Q(ξ).

Lemma 3.14. Let L ⊆ T ∗Rn be a Lagrangian submanifold that satisfies property (P ). Then if
is h sufficiently close to h0 (or −h0) and coincides with it outside a compact set, the Lagrangian
ϕh(L) ⊆ T ∗Rn satisfies property (P ).

Proof. Let S be a gf satisfying property (P ) and let K be the gf obtained using Proposition 3.11.
Define f(q, ξ, η) = (q, ξ, q − η). We claim that K ◦ f satisfies property (P ). The map f is a fiber
preserving diffeomorphism so K ◦f generates the same Lagrangian. Note that h0(q−η, q) = 1

2 |η|
2

is a non-degenerate quadratic form and denote it by Q0(η). By definition of K we have

K ◦ f(q, ξ, η) = K(q, ξ, q − η) = −h(q − η, q) + S(q − η, ξ).

We know that h = h0 outside a compact set and that S satisfies property (P ) so for any C > 0,
if |(ξ, η)| ≤ C then for q big enough we will have K ◦ f(q, ξ, η) = −Q0(η) + Q(ξ). Finally, using
again these same properties one can see that K ◦ f + Q0 − Q has bounded Ck norm for every
k.

Corollary 3.15. Let L ⊆ T ∗Rn be a Lagrangian submanifold that satisfies property (P ) and let
ψt be a compactly supported hamiltonian isotopy of T ∗Rn. Then for sufficiently small t0, there
is a continuous path t 7→ St of gf satisfying property (P ) for the same Q such that St generates
ψt(L) for 0 ≤ t ≤ t0.

Proof. We just need to check at every step that if we introduce the parameter t nothing changes.
First one checks that dht depends continuously on t, so ht too. And then that we can choose
ht = h0 outside a compact set independent of t, this is the case since the support of ψt is contained
in a compact set independent of t. The result follows from the previous lemma since for small
enough t we have ψt = ψt ◦ ϕh0 ◦ ϕ−h0 = ϕh ◦ ϕ−h0 .

Corollary 3.16. Let L ⊆ T ∗Rn be a Lagrangian submanifold that satisfies property (P ) and let ψt
be a compactly supported hamiltonian isotopy of T ∗Rn. Then for t ∈ [0, 1], there is a continuous
path St of gf satisfying property (P ) for the same Q such that St generates ψt(L) for 0 ≤ t ≤ 1.
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Proof. Since ψt is compactly supported, we can divide the time interval in a fixed number of
pieces as we did in Lemma 3.10, such that on each piece we have a small enough diffeomorphisms
which will verify Corollary 3.15.

Theorem 3.17 (Laudenbach and Sikorav [LS85, Sik86, Sik87]). Let ψt be a compactly supported
Hamiltonian isotopy of R2n and for every t consider the image of its graph I(Γψt) in T ∗R2n (see
the beginning of the chapter). Let Lt be the one point compactification of the Lagrangians I(Γψt)
in T ∗S2n. Then for t ∈ [0, 1], there exists a continuous path t 7→ St of gfqi for the same Q such
that St generates Lt and iSt is a diffeomorphism.

Proof. Denote by π̄ : R2n×R2n → R2n the projection. The Hamiltonian isotopy ψt = ψHt induces
a Hamiltonian isotopy in R2n × R2n via the Hamiltonian function H ◦ π̄ which is not compactly
supported. We are interested in the deformation of the zero section given by I(Γψt) in T ∗R2n.
This deformation is induced by the Hamiltonian K = H ◦ π̄ ◦ I−1. An explicit calculation yields
that I−1 : T ∗R2n → R2n × R2n is given by

I−1(x, y,X, Y ) = (
2x− Y

2
,
2y +X

2
,
2x+ Y

2
,
2y −X

2
).

Note that ψt is compactly supported so the deformation of the diagonal in R2n × R2n happens
in a compact set. As a consequence for t ∈ [0, 1] the deformation I(Γψt) will not leave the disc
bundle DR ⊆ T ∗R2n for some R where DR denotes the subset of points (x, y,X, Y ) ∈ T ∗R2n

with |(X,Y )| ≤ R. Consider now a smooth function ρ equal to one on DR and equal to zero
on the complement of DR′ for some R′ > R. The Hamiltonian ρK is compactly supported (use
the expression of I−1 and the fact that H is compactly supported) and it generates a compactly
supported Hamiltonian isotopy of T ∗R2n whose deformation of the zero section coincides with
I(Γψt). Since the zero section has the zero function as a gfqi that satisfies property (P ), we may
use Corollary 3.16 to get a continuous deformation of gf St satisfying property (P ). Property
(P) now guarantees that we can extend the functions St smoothly to S2n. In order to make them
exactly quadratic at infinity we use Proposition 3.5.

To see that the map iSt for the gfqi St is a diffeomorphism, note that by Lemma 3.6 we know
that iS is a covering map with finite fiber. By definition of the extension to S2n of S we have
S(N, ξ) = Q(ξ) and this implies that i−1

S (N, 0) = (N, 0) is the only preimage.

3.3 Uniqueness

We now explain the uniqueness theorem for gfqi . There are three ways of obtaining a new gf from
an existing one. These basic operations are the following:

Definition 3.18. Let S : N × Rm → R be a generating function.

• (Addition of a constant) If c ∈ R, we set S′ := S + c : N × Rm → R.

• (Diffeomorphisms operation) Let Φ be a fiber preserving diffeomorphisms of N × Rm, i.e.
Φ(q, ξ) = (q, φ(q, ξ)). We set S′ := S ◦ Φ : N × Rm → R.

• (Stabilization) Let Q′ : Rm′ → R be a non-degenerate quadratic form. We set S′ := S+Q′ :
N × Rm × Rm′ → R.

Remark 3.19. If we start with a gfqi then the addition of a constant or stabilization do not
give a gfqi . Nevertheless, using Proposition 3.5 one may compose by a fiber preserving diffeomor-
phism which makes the gf exactly quadratic at infinity. The diffeomorphism operation does not
always preserve the quadratic at infinity property, but it will be the case if the diffeomorphism is
compactly supported.
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Definition 3.20. Two generating functions are equivalent if they can be made equal by a suc-
cession of basic operations.

Remark 3.21. The set of critical values of two equivalent generating functions differ only by a
constant.

It was Viterbo’s idea to use the set of critical values of gfqi to define symplectic invariants.
The following theorem is the starting point of the construction.

Theorem 3.22 (Viterbo [Vit92] and Théret [Thé99a]). Let N be a compact manifold and let
ψ : T ∗N → T ∗N be a Hamiltonian diffeomorphism. Then the gfqi S of ψ(0N ) such that iS is a
diffeomorphism are all equivalent.

Outline of the proof. The proof is carried out in two steps:
(1)The set of closed Lagrangian submanifolds whose gfqi of degree one are all equivalent is

stable under Hamiltonian isotopies. To see this, let L0 and L1 = ψ(L0) be two Lagrangian
sumbanifolds. Suppose that the gfqi of L0 are all equivalent and let S and S′ be two gfqi for L1.
Using Sikorav’s existence theorem (a generalization of Theorem 3.17) one may build two paths of
gfqi of degree one St and S′t that generate ψt(L0) for all t ∈ [0, 1]. Now since L0 has the uniqueness
property, we may build a loop of gfqi which starts and ends at L1. One now proves that since
this loop is contractible at the level of Lagrangians it will also be contractible at the level of gfqi
(more precisely that the map that send S to LS is a Serre fibration). This reduces the case to
proving that a smooth path of gfqi which generate the same L1 are all equivalent. To prove this
one may use Moser’s trick and look for a fiber preserving isotopy Φt such that St ◦ Φt = S0.

(2) The gfqi S of the zero section such that iS is a diffeomorphism are all equivalent. This is
a purely differential problem. Let S : N × Rm → R be one such gfqi . We are going to consider
the family Sq = S(q, ·) : Rm → R. Since S generates the zero section and iS is a diffeomorphism,
each Sq has only one critical point which is non-degenerate and we may suppose that it is located
at the origin. Then one proves that S is equivalent to

Q(q, ξ) =
1

2
d2Sq(0)(ξ, ξ).

Sq is a Morse function so locally we always have Sq ' Q(q, ·). The difficulty arises when we try to
find a global equality which depends smoothly on the variable q. Remark that Q is not constant
on the base variable, but one may easily construct a fiber preserving diffeomorphism which makes
it constant.

Remark 3.23. In Théret’s article the hypothesis of iS diffeomorphism is not included in the
definition of gf [Thé99a, Definition 2.1] but it is included in the terminology “S generates L”
[Thé99a, Definition 2.2].

3.4 Critical value selectors

In this section we will exploit the quadratic at infinity condition in order to find critical values
for gfqi . We are going to use the minmax principle on the sublevel sets of a gfqi . Denote

Sc := {(q, ξ) ∈ N × Rm |S(q, ξ) ≤ c}.

Let [a, b] be an interval of regular values of S. The classical argument of deformation of sublevel
sets in Morse theory tells us that Sa is diffeomorphic to Sb. Now remark that since S is quadratic
at infinity, all the critical values of S are contained in a compact set. In particular for c ∈ R big
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enough all the pairs of sublevel sets (Sc, S−c) are diffeomorphic. We will fix one such c and denote
(S+∞, S−∞) = (Sc0 , S−c0). We use the topology of the sublevel set to find critical values of the
generating function using minmax arguments. More precisely, we look for the sub-levels where
particular cohomological classes disappear. This indicates that there is a topological change of
the sub-level, so there has to be a critical point.

It turns out that for gfqi there is a way of choosing the cohomological class α that depends
only on N . To see this, note that for c ∈ R big enough

(S+∞, S−∞) = (N ×Q+∞, N ×Q−∞).

Now Q is a Morse function with only one critical point at the origin of index Ind(Q) = k. A
standard argument in Morse theory now tells us that Q+∞ is a deformation retract of Q−∞ with
one k cell attached. Going to cohomology over al field, one finds that

H∗(S+∞, S−∞) = H∗(N × (Q+∞, Q−∞)) ' H∗(N)⊗H∗(Q+∞, Q−∞) ' H∗(N)⊗H∗(Dk, ∂Dk).

where Hn(Dk, ∂Dk) is non-zero if and only if n = k. In that case Hk(Dk, ∂Dk) is a vector space
of dimension one. Using the previous chain of isomorphisms, we get an isomorphism

T : H∗(N)→ H∗+k(S+∞, S−∞)

that we will call the Thom isomorphism.

Definition 3.24. For every α ∈ H∗(N) we define

c(α, S) = inf{c | i∗cTα 6= 0}.

It is a critical value of S (see Appendix C or for example [Nic11, section 2.7]).

3.4.1 Properties

The advantage of this critical value selector is that one may exploit the algebraic properties of
the cohomology groups. The following theorem tells us that these selectors are continuous with
respect to the C0 norm on gfqi , that we have a triangular inequality and a kind of nondegeneracy.
The interested reader can look at the original reference [Vit92] for a proof using algebraic topology
or the article [Mil99] for a proof using Morse theory.

Theorem 3.25 ([Vit92]). Let N be a compact connected and oriented manifold of dimension n
and consider a gfqi S : N × Rm → R which generates a Lagrangian submanifold L ⊆ T ∗N .

• For every α ∈ H∗(N), the map c(α, ·) : S 7→ c(α, S) is C0 continuous. Moreover, it has the
following behavior with respect to the basic operations on gfqi (cf. Definition 3.18):

c(α, S + c) = c(α, S) + c

c(α, S ◦ Φ) = c(α, S)

c(α, S ⊕Q) = c(α, S)

• If µ ∈ Hn(N) and 1 ∈ H0(N) are the generators of Hn(N) and H0(N), then

c(1,−S) = −c(µ, S).

Moreover, we have the inequality

c(1, S) ≤ c(µ, S)

with c(µ, S) = c(1, S) if and only if S generates the zero section.
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• Let S1 : N × Rm → R and S2 : N × Rm′ → R be two generating functions, and consider

S1#S2(q, ξ, η) = S1(q, ξ) + S2(q, η).

It is a function which can be made quadratic at infinity via a fiber preserving diffeomorphism
(Proposition 3.5) so we can use the minmax selector of critical values. For every u, v ∈
H∗(N) we have

c(u ∪ v, S1#S2) ≥ c(u, S1) + c(v, S2).

The function S1#S2 is not always a gfqi since the transversality condition may not be verified.
Nevertheless, in some cases we can prove that the critical value that we select for this function
coincides with the critical value that we select for a true gfqi . Let ψ,ϕ ∈ Hamc(R2n) and consider
Lψ and Lϕ be the two lagrangian submnifolds in T ∗S2n induced by them. They coincide with
the zero section on a neighborhood of the north pole. If we normalize the gfqi of degree one
asking that S(i−1

S (N, 0)) = 0 then the previous theorem implies that the critical value of S is
independent of the gfqi used to calculate it. We denote by Sψ a normalized gfqi for Lψ.

Proposition 3.26 (see [Vit92] proposition 3.5). Using the notation of the previous paragraph for
every u ∈ H∗(S2n) we have

c(u, Sψ◦ϕ) = c(u, Sϕ#(−Sψ−1)).

3.5 Viterbo’s capacities

We now use the previous results to study the properties of compactly supported Hamiltonian
diffeomorphisms of R2n. Recall (Lemma 2.2) that the action spectrum depends only on the time
one map of the Hamiltonian diffeomorphism, an not on the precise Hamiltonian function that
generates it. For this reason we will just study the fixed points of ψ = ψH1 instead of the whole
path. Consider the graph of ψ

Γψ = {(z, ψ(z)) | z ∈ R2n}
and look at the intersection points with the diagonal, i.e., the graph of the identity. Γψ is a

Lagrangian submanifold of R2n × R2n and we can see it as a Lagrangian inside T ∗R2n using the
explicit global symplectomorphism I : R2n × R2n → T ∗R2n given by

I(q, p,Q, P ) = (
q +Q

2
,
p+ P

2
, p− P,Q− q).

Since I is a symplectomorphism, I(Γψ) continues to be a Lagrangian submanifold which is Hamil-
tonian isotopic to the zero section. The fixed points of ψ are then sent to intersection points with
the zero section. The manifold I(Γψ) is still Hamiltonian isotopic to the zero section and coincides
with it at infinity. Now note that the diffeomorphism R2n ' S2n \ {N} induces a diffeomorphism
T ∗R2n ' T ∗(S2n \ {N}) and that by definition of the symplectic structure on cotangent bundles,
it is a symplectomorphism. Using this symplectomorphism we see that the one point compactifi-
cation of I(Γψ) in T ∗S2n, which we denote by Lψ, is also Hamiltonian isotopic to the zero section.
Theorem 3.17 tells us that this Lagrangian submanifold has a generating function quadratic at
infinity S such that iS is a diffeomorphism. Intersection points with the zero section are then
in one to one correspondence with the critical points of S. We want to extract symplectic in-
formation from these intersection points. This information is going to come from the critical
values. The key remark is that if S is suitably normalized, then its critical values are exactly
the action spectrum associated to ψ. In the following we will suppose that generating functions
are normalized by having the critical value associated to points close to infinity to be zero, i.e.
S(i−1

S (N, 0)) = 0. Remark that we also have S(i−1
S (q, 0)) = 0 if |q| > R for a certain radius R

that verifies Φ(Γψ) ∩ {|q| > R} = {(q, 0) | |q| > R}.
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The action spectrum as the set of critical values of a generating function. Let λ̃ = pdq
be the Liouville form of T ∗R2n, an easy calculation yields i∗Sλ̃ = dS|ΣS . A simple calculation shows
that one can recover the critical values of S integrating paths: let γ̃ be a path on LS = I(Γψ)
with endpoints on the zero section. Then i−1

S (γ̃(0)) and i−1
S (γ̃(1)) are critical values of S and,

if γ̃(0) is close to infinity, we have by normalization S(i−1
S (γ̃(0))) = 0. Integration of λ̃ along γ̃

yields ∫
γ̃
λ̃ =

∫
i−1
S (γ̃)

i∗Sλ̃ =

∫
i−1
S (γ̃)

dS|ΣS = S(i−1
S (γ̃(1))).

Lemma 3.27. Let ψ = ψH1 be a compactly supported Hamiltonian of R2n. Consider the image of
the graph I(Γψ) in T ∗R2n and its one point compactification Lψ ⊆ T ∗S2n. Let S be a normalized
gfqi for Lψ. Then

CritVal(S) = σ(ψ).

Proof. Choose a critical value of S and find it as integration over a path γ̃ as before. Let λ̃ be
the Liouville form on T ∗R2n. We have γ̃ = I(γ, ψ(γ)). Using the fact that d(I∗λ̃−λ⊕ (−λ)) = 0
and that γ̃ is a closed path we get∫

γ̃
λ̃ =

∫
(γ,ψ(γ))

I∗λ̃ =

∫
(γ,ψ(γ))

λ⊕ (−λ).

so in particular

S(i−1
S (γ̃(1))) =

∫
γ
λ−

∫
ψ(γ)

λ.

If Ψ : [0, 1]2 → R2n is the mapping Ψ(t, s) = ψt(γ(s)) then one may see that on the extended
phase space we have ∫

Ψ[0,1]2
d(λ−Hdt) = 0.

Now by Stokes theorem we have∫
γ
λ+

∫
ψt(γ(0))

(λ−Hdt)−
∫
ψ(γ)

λ−
∫
ψt(γ(1))

(λ−Hdt) = 0.

We now use the fact that γ(0) is outside the support of H to conclude that

S(i−1
S (γ̃(1))) =

∫
ψt(γ(1))

(λ−Hdt) = A(γ(1), H).

This Lemma tells us that the critical values of the generating function carry indeed symplectic
information in the form of the action spectrum. The next step is to build a section of the action
spectrum bundle using the minmax critical value selectors that we saw in Section 3.4.

Consider the one point smooth compactification Lψ ⊆ T ∗S2n of I(Γψ). We know by Theorem
3.17 that this submanifold is generated by a gfqi S. By Section 3.4 we may use the two coho-
mological classes µ ∈ H2n(S2n) and 1 ∈ H0(S2n) so select two critical values c(µ, S) and c(1, S).
Then by Section 3.3 together with Theorem 3.25 we know that if we normalize the gfqi then the
indeterminacy of the addition by a constant is removed. In particular, these values do not depend
on the gfqi used to select it. In our case we are going to suppose that de gfqi are normalized
at infinity, that is, we require that S(i−1

S (N, 0)) = 0. With this normalization the critical value
selection depends only on ψ. and not on the particular gfqi that we use. We will denote the
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selectors by c(µ, ψ) and c(1, ψ). By Lemma 3.27 we know that they take values in the spectrum
of ψ: we have constructed two sections of the action spectrum bundle A. We now give proofs of
the properties that we saw in Chapter 2 that guarantee that we can build a symplectic capacity
with these invariants.

Proposition 3.28. The functions c(µ, ·) : Hamc(R2n)→ A are sections of the action bundle such
that for any compactly supported symplectic isotopy ψt the map

t 7→ c(µ, ψt)

is continuous. Moreover c(µ, ·) is nontrivial over the maps defined by h as in Lemma 2.8.

Proof. Using the existence theorem (Theorem 3.17) we see that for every compactly supported
symplectic isotopy ψt there is a continuous path of normalized gfqi St generating Lψt that coincide
with the same quadratic form Q outside a compact set. We now use that the critical value selectors
are continuous with respect to the C0 norm (see Theorem 3.25) to conclude that

t 7→ c(µ, ψt) = c(µ, St)

is continuous with respect to t.

For the second claim, recall that by Theorem 3.25 for every ψ different from the identity we
have c(1, ψ) < c(µ, ψ). Since for the map ψ defined by h as in Lemma 2.8 we have σ(ψ) =
{0, π − επ} we conclude that c(1, ψ) = 0 and c(µ, ψ) = π − επ.

Definition 3.29 (see [Vit92]). For every open bounded subset U ∈ R2n the Viterbo capacity is
defined as

c(U) = sup{c(µ, ψ) |ψ ∈ Hamc(U)}.

For every general open subset V ∈ R2n we define c(V ) as the supremum of c(U) for every open
bounded set U ∈ V . For every set X ⊆ R2n we define c(X) as the infumun of c(V ) for every open
set V that contains X.

Remark 3.30. In the article [Vit92] Viterbo defines the capacities using c+(ψ) = −c(1, ψ) =
c(µ, ψ−1). He does this in order to have c+(ψ) > 0 if ψ is generated by a non-negative Hamiltonian.
An easy exercise shows that the capacity defined this way is the same.

Proposition 3.28 together with Lemma 2.8 tell us that c(B2n
r ) ≥ πr2. In the following subsec-

tion we are going to deduce the reverse inequality using an energy-capacity inequality, as we did in
Chapter 2. Before that, we explain that there is another geometric way to prove the normalization
of Viterbo’s capacity.

Representation theorem. Let C be a smooth convex body with smooth boundary ∂C. It
is a hypersurface so it is a coisotropic submanifold of R2n. Its symplectic orthogonal defines a
foliation called the characteristic foliation, which in the case of hypersurfaces is a line bundle.
Since it is one dimensional it is integrable so we may talk about the trajectory of a point, and
in particular we may talk about closed trajectories. We define the symplectic action of a closed
characteristic γ in ∂C as the integral along the Liouville form λ of R2n:

A(γ) =

∫
γ
λ

The action is clearly a symplectic invariant.
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Example 3.31. Consider the ball B2n
r in R2n. The boundary is the energy surface of the function

H(z) = ‖z‖2 at level r2. The characteristic foliation in this case is defined by the Hamiltonian
vector field of H,

XH(z) = J∇H(z) = −2iz

which generates the Hamiltonian flow

ψHt (z) = e−2itz.

In this case every trajectory is periodic. Denoting z(t) = ψHt we get

A(γ) =

∫
γ
λ = −1

2

∫ π

0
Jż(t) · z(t) dt =

∫ π

0
r2 dt = πr2.

Theorem 3.32 (Representation theorem). Let C ⊂ R2n be a convex body with smooth boundary
∂C. Then the Viterbo capacity equals the action of some closed characteristic on ∂C.

In this sense we say that the capacity of C can be represented by a closed characteristic on
the boundary. A proof of this theorem for starshaped domains can be found in [San14]. Note
that the action and the capacity are invariant by symplectomorphisms but the property of being
convex is not. In fact, the previous theorem is also true if C verifies the symplectic property of
having a boundary of restricted contact type. We can then use this theorem together with the
previous example to get following corollary:

Corollary 3.33. The Viterbo capacity of the ball B2n
r is πr2.

If we look at the ellipsoid

E2n(r1, . . . , rn) = {z ∈ R2n |
n∑
i=1

1

ri
(q2
i + p2

i ) < 1}

with r1 ≤ · · · ≤ rn, then the set of actions of closed characteristics is {πr2
1, . . . , πr

2
n}. In order to

identify which of these actions define the capacity we have to understand what type of orbit is
going to be selected by the action selector c(µ, ·). One may see that there is a relation between the
index of the critical point associated to the orbit, and the index of the characteristic trajectory
(see [San14] for details). This explicit relation allows us to get the following result

Proposition 3.34. The Viterbo capacity of the ellipsoid E2n(r1, . . . , rn) with r1 ≤ · · · ≤ rn is
equal to πr2

1.

For every open bounded subset U ⊆ C2n
r of the standard symplectic cylinder one may find an

R > 0 and an ellipsoid E(r,R, . . . , R) containing U . By monotonicity of the invariants and by
Proposition 3.34 we see that c(U) ≤ c(E(r,R, . . . , R)) = πr2. As a corollary we get that Viterbo’s
invariant c is normalized, so it is indeed a symplectic capacity.

3.5.1 Energy-capacity inequality

The action selectors that Viterbo defined can be used to define a displacement energy for subsets
of R2n. This time (compare with Definition 2.9), the maximum and minimum of a Hamiltonian
function that displaces a bounded open set are going to be a ”dynamical” maximum and minimun.
More precisely, we consider the quantity

γ(ψ) = c(µ, ψ)− c(1, ψ).
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One may prove (for example using Proposition 4.8) that c(1, ψ) ≤ 0 ≤ c(µ, ψ) so γ(ψ) ≥ 0.
Moreover Theorem 3.25 implies that γ(ψ) = 0 if and only if ψ = Id . This is one of the reasons
why we say that c(µ, ψ) is a ”dynamical maximum” and c(1, ψ) is a ”dynamical minimum”. The
following proposition gives an interpretation of the triangular inequality for generating functions
that we saw in Theorem 3.25 in terms of spectral invariants for compactly supported Hamiltonian
diffeomorphisms.

Proposition 3.35 (see [Vit92]). For every two compactly supported Hamiltonian diffeomorphisms
ψ and ϕ we have

c(µ, ψ ◦ ϕ) ≤ c(µ, ψ) + c(µ, ϕ)

c(1, ψ ◦ ϕ) ≥ c(1, ψ) + c(1, ϕ)

γ(ψ ◦ ϕ) ≤ γ(ψ) + γ(ϕ)

These properties together with Lemma 2.13 are used to prove an energy-capacity inequality:

Proposition 3.36. Let ψ be a Hamiltonian diffeomorphisms supported on a bounded open set U ,
and let ϕ ∈ Hamc(R2n) be such that it displaces U from itself, i.e. ϕ(U) ∩ U = ∅. Then

c(µ, ψ) ≤ γ(ϕ).

Proof. By Proposition 3.28 the map t 7→ c(µ, ψt ◦ ϕ) is continuous. By Lemma 3.27 this function
takes values on σ(ψt ◦ ϕ) and by Lemma 2.13 we know that σ(ψt ◦ ϕ) = σ(ϕ). The set σ(ϕ) is
totally discontinuous so we conclude that the function is constant and

c(µ, ϕ) = c(µ, ψ0 ◦ ϕ) = c(µ, ψ1 ◦ ϕ) = c(µ, ψ ◦ ϕ).

To conclude use the previous proposition to get

c(µ, ψ) ≤ c(µ, ψ ◦ ϕ) + c(µ, ϕ−1)

together with c(µ, ϕ−1) = −c(1, ϕ).

Definition 3.37 (see [Vit92]). For every bounded open set U ⊆ R2n we define Viterbo’s displace-
ment energy of U as

γ(U) = inf{γ(ψ) |ψ(U) ∩ U = ∅}.

For every open subset V ∈ R2n we define γ(V ) as the supremum of γ(U) for every open bounded
set U ∈ V . For every set X ⊆ R2n we define γ(X) as the infumun of γ(V ) for every open set V
that contains X.

Proposition 3.36 gives the classical energy-capacity inequality:

Theorem 3.38. For every subset X ⊆ R2n we have

c(X) ≤ γ(X).

In order to prove that γ is also a symplectic capacity, we have to prove the normalization
property. Taking into account the fact that c(X) ≤ γ(X), it is enough to show that the capacity
of the standard cylinder is less or equal than πr2. We are going to use the same map as in
Theorem 2.12. Remark that we have no control on the periodic orbits of this map. In order to
solve this problem, we use that the selector γ is continuous with respect to the C0 topology in H.
More precisely we have the following proposition:
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Proposition 3.39 (see [Vit92]). Let H1, H2 be two compactly supported Hamiltonians. Let ψ1, ψ2

be the associated time one flows. If |H1−H2| ≤ ε then we have |γ(ψ1)− γ(ψ2)| ≤ ε. In particular

γ(ψ) ≤ ‖H‖C0 .

This proposition allows us to reason as in Chapter 2 and use the same Hamiltonian diffeomor-
phisms as in Theorem 2.12 to get the following result.

Corollary 3.40. Let Z2n
r ⊆ R2n be the standard symplectic cylinder. Then γ(Z2n

r ) = πr2.

This is an example of the utility of the energy capacity inequality. Another example which is
going to be useful is the calculation of the displacement energy of a vector subspace of R2n.

Proposition 3.41. Consider the coisotropic subspace R2k × Rn−k ⊆ Ck × Cn−k with 0 ≤ k < n.
We have

c(R2k × Rn−k) = 0 = γ(R2k × Rn−k).

Proof. For every λ 6= 0 we have λ · (R2k × Rn−k) = R2k × Rn−k so by homogeneity of symplectic
capacities we deduce that the capacity is either 0 or +∞. Since we have the inequality c(R2k ×
Rn−k) ≤ γ(R2k × Rn−k) it is enough to show that γ(R2k × Rn−k) < +∞. By definition

γ(R2k × Rn−k) = inf{γ(V ) |V is open and R2k × Rn−k ⊆ V },

so we have to find an open set V containing R2k×Rn−k with finite γ value. We will use Proposition
3.39. Find a smooth bounded function f : R → R with values on ]0, 1[ and f ′(s) > 0 for every
s ∈ R (every strictly positive integrable function f ′ works).

Figure 3.3: A possible graph of f ′.

Define the open set

V = {(q1, p1, . . . , qn, pn) ∈ R2n such that |pn| < f ′(qn)}.

By hypothesis k < n so R2k × Rn−k ⊆ V . We claim that γ(V ) < +∞. To see this consider the
bounded Hamiltonian H(q, p) = −2f(qn) which generates the flow

ψt(q, p) = (q1, p1, . . . , qn, pn + t2f ′(qn)).

If (q, p) ∈ V then
|pn + 2f ′(qn)| ≥ 2f ′(qn)− |pn| > f ′(qn)

which implies that ψ1(V ) ∩ V = ∅. Let U be an open bounded set contained in V , we have
ψ1(U) ∩ U = ∅. Find a compactly supported smooth function χ : R2n → R with values on [0, 1]
and constant equal to 1 on a neighbourhood of

⋃
t∈[0,1] ψt(U). Then χH verifies ‖χH‖C0 ≤ ‖H‖C0

and by construction its flow still displaces the open set U . We conclude by Proposition 3.39 that
γ(U) ≤ ‖H‖C0 . Since the bound does not depend on U this implies that γ(V ) ≤ ‖H‖C0 which
finally gives

γ(R2k × Rn−k) ≤ ‖H‖C0 < +∞

concluding the proof.
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Lagrangian non-triviality. The previous proof was possible because a vector subspace is
invariant by multiplication by constants. One may think that the property of having zero capacity
is shared by the subsets with empty interior. This is clearly not true for the displacement energy
since the boundary of a connected open set has at least the displacement energy of the set that
it bounds. This is not clear for the capacity c. The following theorem contained in the article of
Théret [Thé99b] tells us that there are Lagrangian submanifolds of R2n with nontrivial c capacity.

Theorem 3.42 (see [Thé99b]). Let L = S(r1) × S(r2) × · · · × S(rn) be a split torus in Cn =
C× C× · · · × C, each S(rk) being the euclidean circle of radius rk. Then

c(L) = π(min rk)
2.
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Chapter 4

Generating functions and symplectic
reduction

In this chapter we extend Viterbo’s construction to build capacities of subsets of R2m×T ∗Tk. This
type of extension was already pointed out in [Vit92, Section 5] in order to prove the symplectic
camel theorem, but we will consider a slightly different setting. It is in this chapter that the true
advantage of using generating functions is going to appear.

In the previous chapter we saw that generating functions are by definition a symplectic re-
duction of the graph of the differential of functions. The key observation of this chapter is that
under some transversality condition the restriction of the domain gives a new gfqi from a known
one. Moreover, the spectral invariants associated to this two generating functions are related by
an explicit inequality. This observation is used to relate Viterbo’s capacities to the new capacities
defined on R2m × T ∗Tk.

Using these relations we prove a coisotropic non-squeezing theorem: a new rigidity theorem
for compactly supported Hamiltonian diffeomorphisms. We then extend this result to some non-
compact settings. As a corollary we get a type of middle dimensional rigidity for Hamiltonian
flows under some growth condition on the Hamiltonian function.

4.1 Restriction as a symplectic reduction

Recall that any function S : N × Rk → R defines a Lagrangian submanifold of T ∗(N × Rk) via
the graph of dS. We say that S is a generating function if dS is transverse to T ∗N × 0Rk . In this
case we may apply symplectic reduction by the coisotropic submanifold W = T ∗N × 0Rk to get a
Lagrangian submanifold

LS = RedW (dS).

Consider a submanifold V of N and look at the restriction S|V : V ×Rk → R. The graph of dS|V
defines a Lagrangian submanifold in T ∗(V ×Rk). We want to understand the cases in which this
function is going to be a generating function. The first remark is that dS|V is in fact a symplectic
reduction.

Lemma 4.1. Let N be a smooth manifold and let V ⊆ N be a smooth submanifold. Denote by i
the natural inclusion. Let f : N → R be a smooth function and consider the restriction f|V = f ◦i.
Then i∗T ∗N = T ∗N|V ⊆ T ∗N is a coisotropic submanifold and

df|V = RedT ∗N|V (df).
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Proof. We start by proving that T ∗N|V is a coisotropic submanifold. Recall that for every (q, p) ∈
T ∗N we have

T(q,p)T
∗N = TqN ⊕ T ∗qN.

Restriction on the base variable gives

T(q,p)T
∗N|V = TqV ⊕ T ∗qN = TqV ⊕ T ∗q V ⊕N∗q V,

where N∗q V is the conormal of T ∗q V in T ∗qN . Denote by ω the standard symplectic form in T ∗N .
Using normal coordinates for V ⊆ N we get the identification

(T(q,p)T
∗N|V )ω = N∗q V,

so W = T ∗N|V is a coisotopic submaifold and the coisotropic leaves are given by the conormal
subspaces. In particular there is a canonical identification between W/Wω and T ∗V . It is now
clear that RedT ∗N|V (df) are the differential of f on points of V , where we forget the conormal
direction, and this is exactly df|V .

Remark 4.2. The transversality condition between L and W is naturally verified in this case, so
we get a Lagrangian submanifold in the reduction.

Example 4.3. Consider a function f : R2 → R2. Then

df(x, y) =
∂f

∂x
(x, y)dx+

∂f

∂y
(x, y)dy.

Its intersection with W = T ∗R2
|R×{0} is df(x, 0) and the reduction is just

RedW (df) =
∂f

∂x
(x, 0)dx

which is precisely d(f ◦ i).

The following proposition gives a sufficient condition for SV to be a generating function, and
moreover describes the relation between the Lagrangian submanifolds generated by S and SV .

Proposition 4.4. Let V be a submanifold of N and let L ⊆ T ∗N be a Lagrangian submanifold
generated by a gf S : N × Rk → R such that iS is a diffeomorphism. If L is transverse to T ∗N|V
then the restriction SV is a generating function of

LV = RedT ∗N|V (L)

Remark 4.5. Let i : V ↪→ N be the inclusion. One may also write the last equality as

RedT ∗V×0Rk
(Redi∗T ∗(N×Rk)(dS)) = Redi∗T ∗N×0Rk

(dS) = Redi∗T ∗N (RedT ∗N×0Rk
(dS)),

which means the natural fact that the reduction by the zero section commutes with the reduction
by restriction.

Proof of Proposition 4.4. Taking into account Lemma 4.1 we just need to verify the transversality
condition. Denote by πk the projection πk : T ∗N ×T ∗Rk → Rk given by πk(q, p, ξ, η) = η. Define
F = πk ◦ dS : N × Rk → Rk. By definition of gf zero is a regular value of F . Remark that the
restriction of F to V , denoted by F|V is equal to πk ◦ d(S|V ). In particular we have

ΣS|V = F−1
|V (0) = F−1(0) ∩ (V × Rk) = ΣS ∩ (V × Rk)
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We need to show that 0 is a regular value of F|V , or in other words, that for (q, ξ) ∈ ΣS|V we have
the following equality:

d(q,ξ)F (T(q,ξ)(V × Rk)) = Rk.

The transversality condition for S tells us that for (q, ξ) ∈ ΣS we have

d(q,ξ)F (T(q,ξ)(N × Rk)) = Rk.

If we use that T(q,ξ)ΣS = ker d(q,ξ)F we see that it is enough to show that

T(q,ξ)ΣS + T(q,ξ)(V × Rk) = T(q,ξ)(N × Rk).

Note that we already have {0} × Rk ⊆ T(q,ξ)(V × Rk), in order to prove the previous equality it

is enough to prove that the first projection is onto TqN . More precisely, for πN : N × Rk → N ,
we need to show that

d(q,ξ)πN (T(q,ξ)ΣS + T(q,ξ)(V × Rk)) = TqN.

Denote by π the bundle projection associated to T ∗N . Since iS is a diffeomorphism we have

TiS(q,ξ)L = d(q,ξ)iS(T(q,ξ)ΣS).

The transversality condition on L implies

TqN = diS(q,ξ)π(TiS(q,ξ)L) + TqV

We have πN = π ◦ iS so using the two previous equalities we get

TqN = diS(q,ξ)π(TiS(q,ξ)L) + TqV = d(q,ξ)πN (T(q,ξ)ΣS + T(q,ξ)(V × Rk)),

which gives the desired result.

The example that we are going to use is the case of the cotangent bundle of a product manifold.
This is contained in the following corollary.

Corollary 4.6. Let N and B be to smooth manifolds, and consider a gfqi S : N × B × Rk → R
for an embedded submanifold L ⊆ T ∗(N × B) = T ∗N × T ∗B such that iS is a diffeomorphism.
For any b ∈ B, if L is transverse to W = T ∗N × T ∗b B then Sb = S(·, b, ·) : N × Rk → R is a gfqi
for the immersed Lagrangian submanifold Lb = RedW (L) ⊆ T ∗N .

Remark 4.7. If L = Ψ(0N×B) is Hamiltonian isotopic to the zero section in T ∗(N × B), then
there is a smooth path St of gfqi that generate Lt = Ψt(0) for every t ∈ [0, 1]. If L = L1 verifies
the transversality condition of the previous corollary, then (S1)b = S1(·, b, ·) is a gfqi , but this may
not be the case for every t ∈ [0, 1]. Nevertheless one can still find the critical values using minmax
selectors c((St)b, α). In particular this quantity is continuous with respect to t. Finally, the path
of Lagrangians Lt = Ψt(0) may not descend to a path of immersed Lagrangian submanifolds, and
Lb may not be Hamiltonian isotopic to the zero section. This means in particular that Lb may
not verify the uniqueness property. All these remarks will be usefull in the following sections.
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4.1.1 Relation with the critical value selectors

In this subsection we present the behavior of the minmax selectors under restriction of the domain.
Critical values are selected using cohomology classes of the base manifold, so we first need a
relation between the cohomology of N and the cohomology of the submanifold V . Consider the
cohomology with coefficients on a field, then Kunneth’s formula gives

H∗(N ×B) ' H∗(N)⊗H∗(B).

The first part of the following proposition comes from proposition 5.1 in [Vit92]. We also give a
proof for a sufficient condition that guarantees the equality of the minmax critical values. This
property will be very useful in the sequel.

Proposition 4.8. Let N and B be two connected compact oriented manifolds, S a gfqi for a
Lagrangian submanifold in T ∗(N × B), b a point in B and Sb := S(·, b, ·). Let α ∈ H∗(N) and
µB ∈ HdimB(B) the orientation class of B, and 1 ∈ H0(B). Then,

c(α⊗ 1, S) ≤ c(α, Sb) ≤ c(α⊗ µB, S).

Moreover, if K̃(x, b, ξ) = K(x, ξ) for all (x, b, ξ) ∈ N ×B × RN then

c(α⊗ 1, K̃) = c(α,K) = c(α⊗ µB, K̃).

Proof. Let as before Eλ := {S 6 λ}, and Eλb := {Sb 6 λ}. Consider the commutative diagram

H∗(N ×B)
T //

��

H∗(E∞, E−∞)
i∗λ //

��

H∗(Eλ, E−∞)

��

H∗(N)
T // H∗(E∞b , E

−∞
b )

i∗λ // H∗(Eλb , E
−∞
b )

where the map H∗(N × B) → H∗(N) is induced by the injection N → N × {b} → N × B, and
coincides with the composition of the projection on H∗(N)⊗H0(B) and the obvious identification
H∗(N)⊗H0(B)→ H∗(N). Since the diagram is commutative, i∗λT (α) 6= 0 implies i∗λT (α⊗1) 6= 0,
so c(α ⊗ 1, S) ≤ c(α, Sb). To get the second inequality, we need to introduce spectral invariants
defined via homology. The Thom isomorphism is now T : H∗(S

2n)
∼→ H∗(E

+∞, E−∞), and

c(A,S) = inf{λ | TA ∈ Im (iλ∗)}.

The homological and cohomological invariants are related by the following equality c(α, S) =
−c(PD(α),−S) [Vit92, Proposition 2.7]. In the homology setting, the commutative diagram
becomes

H∗(N ×B)
T // H∗(E

∞, E−∞) H∗(E
λ, E−∞)

iλ∗oo

H∗(N)

OO

T // H∗(E
∞
b , E

−∞
b )

OO

H∗(E
λ
b , E

−∞
b )

OO

iλ∗oo

.

As before, if A ∈ H∗(N) verifies T (A) ∈ Im (iλ∗), then T (A ⊗ [b]) ∈ Im (iλ∗), so c(A ⊗ [b], S) 6
c(A,Sb) for all A ∈ H∗(N) (and all S). Thus,

c(α, Sb) = −c(PD(α),−Sb) 6 −c(PD(α)⊗ [b],−S) = −c(PD(α⊗ µB),−S)

and −c(PD(α⊗µB),−S) = c(α⊗µB, S) so we get c(α, Sb) ≤ c(α⊗µB, S). Finally, if K̃(x, b, ξ) =
K(x, ξ) for all (x, b, ξ) ∈ N × B × RN then Eλ = Eλb × B so i∗λ(α ⊗ β) = (i∗λα) ⊗ β. This gives
c(α⊗ 1, K̃) = c(α⊗ µB, K̃) = c(α,K).
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To understand how this proposition may be useful and the subtleties involved, consider the
following setting: suppose that we are interested in Lagrangian submanifolds of T ∗(N × B) =
T ∗N ×T ∗B which are isotopic to the zero section. Suppose moreover that we are only looking at
Lagrangian submanifolds which intersect the zero section at a particular point (q, b) ∈ N×B. We
may then suppose that all gfqi of degree one are normalized such that the critical value associated
to this point is 0. Then for every Ψ(0) ⊆ T ∗(N×B) and α⊗1 ∈ H∗(N)⊗H0(B) we may consider
the value

c(α⊗ 1,Ψ(0)) = c(α⊗ 1, S),

which does not depend on the normalized generating function quadratic at infinity S. Of course,
we may do the same for Lagrangian submanifolds ψ(0) ⊆ T ∗N and consider

c(α,ψ(0)) = c(α,K),

for a gfqi K normalized at q ∈ N . Suppose moreover that Ψ(0) intersects transversely T ∗N×T ∗b B.
Then Proposition 4.8 gives

c(α⊗ 1,Ψ(0)) ≤ c(α, Sb).

Note that this last quantity is not always equal to c(α,Ψ(0)b) since this is only meaningful if Ψ(0)b
is Hamiltonian isotopic to the zero section (so it has the uniqueness property). Even if this is the
case, Sb, which is a gfqi , may not verify the fact that iSb is a diffeomorphism, so the uniqueness
theorem may not apply, and the equality

c(α,Ψ(0)b) = c(α, Sb)

may not be true. To sum up, in order for the previous proposition to be useful, one has to verify
that

• Ψ(0) is transverse to T ∗N × T ∗b B.

• Ψ(0)b is Hamiltonian isotopic to the zero section.

• iSb is a diffeomorphism.

4.2 Spectral invariants on R2m × T ∗Tk

We now move on to extend the definition of Viterbo’s spectral invariants to the periodic case
R2m×T ∗Tk. Recall that the general idea of this invariants is to use generating functions to build
a section of the action spectrum bundle associated to a Hamiltonian diffeomorphism. The facts
that made this possible are that the spectrum does not depend on the Hamiltonian function, that
it is invariant by symplectic conjugation, and finally, that the action spectrum coincides with the
critical values of a normalized gfqi . The following subsection contains the justification of these
facts in the periodic case.

4.2.1 Preliminary results

Consider the space T ∗Rm × T ∗Rk with coordinates (z, q̃, p). Then R2m × T ∗Tk = T ∗Rm × T ∗Tk
is defined as the quotient by the Zk-action given by k · (z, q̃, p) = (z, q̃+ k, p). We will denote the
coordinates of R2m × T ∗Tk by (z, q, p) and the projection by

π : T ∗Rm × T ∗Rk → T ∗Rm × T ∗Tk.
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Remark that
π∗p = p,

and that, even if q is only defined up to a constant, dq is globally well defined and

π∗dq = dq̃.

In particular, the Liouville form λ̃ on T ∗Rm × T ∗Rk is Zk-invariant and induces in the quotient
a form λ which coincides with the Liouville form in T ∗Rm × T ∗Tk and verifies

π∗λ = λ̃.

Let Ht : R2m × T ∗Tk → R be a compactly supported Hamiltonian and denote its flow by ψHt =
ψt = (ψz, ψq, ψp). Consider moreover the new Hamiltonian function H̃t = Ht◦π. It will also define

a new global Hamiltonian flow ψH̃t = ψ̃t = (ψ̃z, ψ̃q̃, ψ̃p). Note that H̃t(k · (z, q̃, p)) = H̃t(z, q̃, p),
and since dk is the identity we get

XH(k · (z, q̃, p)) = XH(z, q̃, p).

In particular this implies that ψ̃t(k · (z, q̃, p)) = k · ψ̃t(z, q̃, p), or in coordinates
ψ̃z(z, q̃ + k, q) = ψ̃z(z, q̃, p)

ψ̃q̃(z, q̃ + k, p) = ψ̃q̃(z, q̃, p) + k

ψ̃p(z, q̃ + k, p) = ψ̃p(z, q̃, p)

The flow ψ̃t being equivariant, it induces a diffeomorphism in the quotient, which is precisely ψt.
In other words, we have the following commutative diagram:

T ∗Rm × T ∗Rk ψ̃t
//

π
��

T ∗Rm × T ∗Rk

π
��

T ∗Rm × T ∗Tk ψt
// T ∗Rm × T ∗Tk

We start with the following key remark:

Lemma 4.9. The natural projection π sends periodic orbits of ψ̃t to contractible periodic orbits
of ψt. Moreover the set of fixed points of ψ̃t is invariant by the Zk action.

Proof. If γ̃(t) := ψ̃t(z0) is a periodic orbit then the equality π ◦ ψ̃t = ψt ◦ π implies that γ(t) :=
π ◦ γ(t) = ψt ◦ π(z0) is also a periodic orbit. The second claim is a consequence of the Zk
equivariance of ψ̃t: if z0 is a fixed point of ψ̃t then ψ̃t(k · z0) = k · ψ̃t(z0) = k · z0.

Remark 4.10. Choose a fixed point of z0 = (z, q̃, p) of ψ̃ and denote z(t) = ψ̃t(z0). The action
of this point is given by

A(z0, H̃) =

∫ 1

0

1

2
〈−Jż(t), z(t)〉 dt−

∫ 1

0
H̃t(z(t))dt.

For every k ∈ Zk the path associated to k · z0 is given by k · z(t) which has derivative equal to
ż(t). Moreover H̃t(k · z(t)) = H̃t(z(t)). In particular the action of k · z0 is equal to

A(k · z0, H̃) =

∫ 1

0

1

2
〈−Jż(t), k · z(t)〉 dt−

∫ 1

0
H̃t(z(t))dt

= A(z0, H̃) +

∫ 1

0

1

2
〈−Jż(t), k〉 dt

= A(z0, H̃) +
1

2
〈−Jz(1), k〉 − 1

2
〈−Jz(0), k〉

= A(z0, H̃)
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We see that the whole Zk orbit of a fixed point of ψ̃ shares the same dynamical information.

Definition 4.11. The contractible action spectrum σc(ψ) of ψ = ψ1 is defined as the action
spectrum σ(ψ̃) associated to ψ̃ = ψ̃1.

We start with the verification that the previous definition makes sense, and then we show that
the contractible action spectrum is invariant by conjugation by compactly supported Hamiltonian
diffeomorphisms. This time the contractible action spectrum is not invariant by general symplectic
diffeomorphisms. This is a consequence of the fact that in R2m × T ∗Tk there are symplectic
diffeomorphisms which are not Hamiltonian, in contrast to R2n.

Lemma 4.12. The contractible action spectrum is well defined for compactly supported Hamilto-
nian diffeomorphisms.

Proof. We have to show that the contractible action spectrum does not depend on the particular
path chosen to generate the Hamiltonian map. Let ψHt and ψKt be two paths such that ψH1 =

ψ = ψK1 . Then ψH̃1 and ψK̃1 are two maps that lift ψ which coincide outside a compact set, so

they must be equal on the whole space. Lemma 2.2 now gives σ(ψH̃1 ) = σ(ψK̃1 ) and this finishes
the proof.

Lemma 4.13. For every compactly supported Hamiltonian isotopy ϕ of R2m × T ∗Tk we have

σc(ϕψϕ
−1) = σc(ψ).

Proof. By Lemma 2.4 it is enough to check that the lift of ϕψϕ−1 is ϕ̃ψ̃ϕ̃−1. Recall that if ψ is
generated by Ht, then ϕψϕ−1 and ϕ̃ψ̃ϕ̃−1 are generated by

Hϕ(t, z, q, p) = H(t, ϕ−1(z, q, p)) and H̃ϕ̃(t, z, q, p) = H̃(t, ϕ̃−1(z, q, p)).

Now we use that H̃ = H ◦ π and that ϕ ◦ π = π ◦ ϕ̃ to get

H̃ϕ(t, z, q̃, p) = H(t, ϕ−1(π(z, q̃, p))) = H(t, π(ϕ̃−1(z, q̃, p))) = H̃(t, ϕ̃−1(z, q̃, p)),

and this implies that the lift of ϕψϕ−1 is ϕ̃ψ̃ϕ̃−1, finishing the proof.

4.2.2 Definition of the invariants

As in the case of the classical Viterbo capacities, we want to associate to each ψ a Lagrangian
submanifold Hamiltonian isotopic to the zero section whose intersection points with the zero
section capture the information about the contractible action spectrum. As before, we work on
R2m × T ∗Tk which we will reorder as R2m × Rk × Tk endowed with coordinates (z, p, q). Let
ψ ∈ Hamc(R2m×T ∗Tk) be a compactly supported Hamiltonian diffeomorphism with coordinates
(ψz, ψp, ψq) generated by Ht. The Hamiltonian H̃t = Ht ◦π generates a lift ψ̃ ∈ Ham(R2m×Rk×
Rk) with coordinates with coordinates (ψ̃z, ψ̃p, ψ̃q̃) such that

ψ̃z(z, p, q̃ + 1) = ψ̃z(z, p, q̃) = ψz(z, p, q) (with (z, p, q) = π(z, p, q̃))

ψ̃p(z, p, q̃ + 1) = ψ̃p(z, p, q̃) = ψp(z, p, q)

ψ̃q̃(z, p, q̃ + 1) = ψ̃q̃(z, p, q̃) + 1

Again, the graph of ψ̃ is a Lagrangian submanifold Γ(ψ̃) ⊂ R2m × R2k × R2m × R2k. Recall that
for every n there is a symplectomorphism I : R2n ×R2n → T ∗R2n such that I(ΓId ) = 0R2n . This
symplectomorphism is given by

I(q, p,Q, P ) = (
q +Q

2
,
p+ P

2
, p− P,Q− q).
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Under I, the graph Γ(ψ̃) becomes a Lagrangian submanifold of T ∗R2m×T ∗R2k whose points are
denoted by Γψ̃(z, p, q̃) equal to

(
I(z, ψz(z, p, q)),

p+ ψp(z, p, q)

2
,
q̃ + ψ̃q̃(z, p, q̃)

2
, q̃ − ψ̃q̃(z, p, q̃), ψp(z, p, q)− p

)
.

As usual, the intersection points of this Lagrangian submanifold are in bijective correspondence
with the fixed points of ψ̃. Moreover, it is Hamiltonian isotopic to the zero section. Remark that
this Lagrangian submanifold does not coincide at infinity with the zero section since ψ̃ is periodic
in q̃. In order to get this property we have to take the quotient.

Taking the quotient. As we saw in Remark 4.10, the whole Zk orbit of a fixed point of ψ̃
shares the same action value. In particular, the repetition of these intersection points with the
zero section will not give any new dynamical information. We are now going to quotient out
by this action in order to get a Lagrangian which coincides outside a compact set with the zero
section and such that it only has one intersection point with the zero section for each Zk orbit.
First remark that the fact that ψ̃q̃(z, p, q̃ + 1) = ψ̃q̃(z, p, q̃) + 1 implies that Γψ̃ descends to an

embedding Γ̃ψ : R2m × Rk × Tk → T ∗R2m × T ∗Rk × T ∗Tk, given by

Γ̃ψ(z, p, q) =
(
I(z, ψz),

p+ ψp
2

, q − ψq,
q + ψq

2
, ψp − p

)
.

Lemma 4.14. The image of Γ̃ψ is a Lagrangian submanifold Hamiltonian isotopic to the zero
section, which coincides with the zero section outside a compact set. Moreover, the intersection
points of Γ̃ψ with the zero section are in one to one correspondence with Zk orbits of fixed points
of ψ̃.

Proof. Everything is a consequence of the natural construction of the Lagrangian. The manifold
Γψ is the quotient of Γ(ψ̃) in T ∗R2m × T ∗R2k which is Hamiltonian to the zero section via

K̃ = H̃ ◦ π̄ ◦ I−1 where π̄ : R2n × R2n → R2n is the projection (here n = m + k). An explicit
calculation yields that I−1 : T ∗R2n → R2n × R2n is given by

I−1(x, y,X, Y ) = (
2x− Y

2
,
2y +X

2
,
2x+ Y

2
,
2y −X

2
).

In particular,

I−1(x+ k, y,X, Y ) = I−1(x, y,X, Y ) + (k, 0, k, 0).

Remark that H̃ ◦ π̄ does not take into account the fist pair of variables, so if H̃ is periodic on the
base variable, it will also be the case for K̃, so it induces a Hamiltonian K on the quotient such
that K̃ = K ◦ π. Denoting by Ψ̃t and Ψt the Hamiltonian diffeomorphisms associated to K̃ and
K, the same discussion as the one in Subsection 4.2.1 shows that we have a commutative diagram

T ∗R2m × T ∗Rk × T ∗Rk Ψ̃t //

π
��

T ∗R2m × T ∗Rk × T ∗Rk

π
��

T ∗R2m × T ∗Rk × T ∗Tk Ψt // T ∗R2m × T ∗Rk × T ∗Tk

By construction Ψ̃(0) = Γ(ψ̃) and Ψ(0) = Γ̃ψ, which proves the first claim. In order to see that
it coincides with the zero section at infinity, first recall that H is compactly supported. This
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means that if (z, p) is outside a fixed bounded set, then H̃(z, q̃, p) = 0 and ψ̃(z, q̃, p) = (z, q̃, p).
Moreover, we may see that for every (z, q̃, p) in the support of H̃, the base points

(
z + ψz

2
,
p+ ψp

2
) ∈ R2m × Rk

are contained in a bounded set. In particular, outside this bounded set, we only find points
coming from outside the support, so they are in the zero section.

Finally, to justify the last claim, remark that every point of Ψ(0) ∩ 0 is a projection of points
in Ψ̃(0)∩ 0, and that these points are divided into Zk orbits in T ∗R2m× T ∗Rk × T ∗Rk. It is then
enough to prove that the Zk orbits of points in Ψ̃(0) ∩ 0 are in one to one correspondence with
Zk orbits of fixed points of ψ̃. But this is trivial by construction.

Remark 4.15. We point out again that the intersection points of Γ̃ψ with the zero section are
not in one to one correspondence with the fixed points of ψ. Indeed if ψ(z, q, p) = (z, q, p) and
γ(t) = ψt(z, p, q) is not contractible, it lifts to a point that verifies ψ̃(z, q̃, p) = k · (z, q̃, p) for some
k ∈ Zk \ {0}, and then

q̃ − ψ̃q̃ = k 6= 0.

As in the classical setting, using Lemma 4.14, the Lagrangian image of Γ̃ψ can be compactified
to a Lagrangian submanifold

Lψ ⊂ T ∗(S2m × Sk × Tk),

which is Hamiltonian isotopic to the zero-section, and coincides with the zero-section on a neigh-
bourhood of {N}×Sk×Tk and of S2m×{N}×Tk. By Sikorav’s Theorem for arbitrary compact
base manifolds [LS85, Sik86, Sik87] (or Subsection 4.2.3 for this particular case), Lψ is generated
by a gfqi of degree one, which is moreover unique up to the three classical operations. After
normalization at infinity by S(i−1

S (N,N, 0, 0)) = 0, we may select critical values of S by minmax
over cohomological classes. These values do not depend on the gfqi used for Lψ so we get spectral
values c(α⊗ β ⊗ γ, ψ) for α ∈ H∗(S2m), β ∈ H∗(Sk) and γ ∈ H∗(Tk).

Definition 4.16. For every open bounded subset U ∈ R2m × T ∗Tk and every α ∈ H∗(S2m),
β ∈ H∗(Sk) and γ ∈ H∗(Tk) we define

c(α⊗ β ⊗ γ, U) = sup{c(α⊗ β ⊗ γ, ψ) |ψ ∈ Hamc(U)}.

For every general open subset V ∈ R2m × T ∗Tk we define c(α ⊗ β ⊗ γ, V ) as the supremum of
c(α ⊗ β ⊗ γ, U) for every open bounded set U ∈ V . For every set Z ⊆ R2m × T ∗Tk we define
c(α⊗ β ⊗ γ, Z) as the infimun of c(α⊗ β ⊗ γ, V ) for every open set V that contains Z.

Remark 4.17. Remark that we have chosen the compactification by S2m × Sk × Tk instead of
S2m+k × Tk as in [Vit92]. The reason for this is that the first one allows us to prove Proposition
4.25 which relates this new invariants with Viterbo’s capacity.

As in the classical case, the important property of these values is that they are contained in
the action spectrum. This is the content of the following proposition:

Proposition 4.18. Let ψ be a compactly supported Hamiltonian of R2m × T ∗Tk. Consider the
image of the graph Γ̃ψ in T ∗R2m × T ∗Rk × T ∗Tk. It is a Lagrangian submanifold Hamiltonian
isotopic to the zero section. Let S be a normalized gfqi of degree one for the compactification Lψ.
Then

CritVal(S) = σc(ψ).
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Proof. As in Lemma 3.27 we know that any critical value of S can be written as

S(i−1
S (γ(1))) =

∫
γ
λ

where γ is a path on Lψ between an intersection point at infinity and an intersection point
associated to the desired critical value. Here λ is the Liouville form of T ∗R2m × T ∗Rk × T ∗Tk.
On the other hand, the same argument as in Lemma 3.27 tells us that we may find the action of
a point z0 ∈ R2m × T ∗Tk associated to H̃ by

A(z0, H̃) =

∫
γ̃
λ̃

where γ̃ is a path on Γ(ψ̃) ⊆ T ∗R2m×T ∗Rk ×T ∗Rk between an intersection point at infinity and
an intersection point associated to the desired fixed point. Now remark that for every critical
point one may find a γ of the form γ = π ◦ γ̃, and viceversa, every γ̃ gives rise to one such γ. In
conclusion, it is enough to prove that for γ = π ◦ γ̃ we have the equality(∫

γ̃
π∗λ =

) ∫
γ̃
λ̃ =

∫
γ
λ

(
=

∫
π◦γ̃

λ
)
,

and this can be easily verified.

Corollary 4.19. For every compactly supported Hamiltonian diffeomorphism ϕ of R2m × T ∗Tk
and every subset Z ∈ R2m × T ∗Tk we have

c(α⊗ β ⊗ γ, ϕ(Z)) = c(α⊗ β ⊗ γ, Z).

Proof. By definition of the invariants it is enough to prove that for every compactly supported
Hamiltonian isotopy ϕ of R2m × T ∗Tk we have

c(α⊗ β ⊗ γ, ϕψϕ−1) = c(α⊗ β ⊗ γ, ψ).

By Proposition 4.18 we know that c(α ⊗ β ⊗ γ, ϕtψϕ−1
t ) takes values on the contractible action

spectrum of ϕtψϕ
−1
t . By Lemma 4.13 we know that the spectrum is independent of t. Let St be

a path of gfqi of degree one for Lϕtψϕ−1
t

. Then

t 7→ c(α⊗ β ⊗ γ, ϕtψϕ−1
t ) = c(α⊗ β ⊗ γ, St)

is continuous with respect to t, so using Lemma 2.5 we conclude that it must be constant.

4.2.3 The diffeomorphism property of gfqi in the reduction

We now give a proof of the existence of gfqi for Lagrangian submanifolds L of T ∗R2m×T ∗Rk×T ∗Tk
which are isotopic to the zero section by a compactly supported Hamiltonian diffeomorphism. The
main reason for giving the explicit construction is to be able to build concrete examples where
the reduction Sb of gfqi seen in Section 4.1.1 still verifies the fact that iSb is a diffeomorphism.

Consider a compactly supported Hamiltonian H defined on T ∗R2m × T ∗Rk × T ∗Tk. Let
j : Tk ↪→ Ck be the standard embedding and consider the standard projection given by r ·
(eiθ1 , . . . , eiθk) 7→ (eiθ1 , . . . , eiθk) with r = (r1, . . . , rk), which is defined on an open set W of Ck
that contains Tk. This projection induces a map π : T ∗W ⊆ T ∗Ck → T ∗Tk, which consists of
forgetting r and dr. Using π we can extend H to the whole T ∗R2m×T ∗Rk×T ∗R2k as a function
H̃ which verifies

H̃ = H ◦ π if |r − 1| ≤ 1

3
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and which is zero if |r − 1| ≥ 1
2 . Remark that H̃ is not compactly supported but the support of

the image of the zero section is contained in a compact set, so we may turn H̃ into a compactly
supported Hamiltonian without changing the image of the zero section. Denote by ψ̃t the flow
associated to H̃ and by ψt the flow associated to H.

Lemma 4.20. The Lagrangian submanifold ψ̃t(0) is transverse to the restriction of T ∗R2m ×
T ∗Rk × T ∗R2k to R2m × Rk × Tk.

The proof is left as an exercise (or see [Bru91] or [Vit06]). This transversality condition allows
us to reduce the Lagrangian submanifold ψ̃t(0), to get a Lagrangian in T ∗R2m × T ∗Rk × T ∗Tk.
The reduced Lagrangian is precisely ψt(0). Moreover, using Proposition 4.4 we see that any gf of
ψ̃t(0) descends to a gf of ψt(0) by restriction of the domain.

Proposition 4.21. The Lagrangian ψt(0) seen as a submanifold of T ∗S2m× T ∗Sk × T ∗Tk has a
generating function quadratic a infinity S : S2m×Sk×Tk×Rl → R such that S(N, p, q, ξ) = Q(ξ)
and S(z,N, q, ξ) = Q(ξ). In particular for any x in S2m, Sk or Tk, if Sx is a gfqi for an embedded
Lagrangian then iSx is a diffeomorphism.

Proof. By Theorem 3.17, we know that ψ̃t(0) admits a gf which extends smoothly at infinity by Q,
and this property is preserved by restriction. Since S(N, p, q, ξ) = Q(ξ) and S(z,N, q, ξ) = Q(ξ)
we see that there is just one critical point at infinity, so by Lemma 3.6 iS is a diffeomorphism.
Moreover, since we have two infinities, the same will be true for Sx.

4.2.4 First calculations

In this subsection we use the inequalities in Section 4.1.1 to get our first understanding of the
new invariants that we have built. We start with the following basic properties:

Proposition 4.22. Let ψ be a compactly supported Hamiltonian diffeomorphism of R2m×T ∗Tk.
Denote by µ and 1 the top and bottom cohomology classes of S2m and Sk. Then for every
α ∈ H∗(S2m), β ∈ H∗(Sk) and γ ∈ H∗(Tk),

• c(µ⊗ β ⊗ γ, ψ) ≥ 0 and c(1⊗ β ⊗ γ, ψ) ≤ 0.

• c(α⊗ µ⊗ γ, ψ) ≥ 0 and c(α⊗ 1⊗ γ, ψ) ≤ 0.

As a consequence we have c(µ⊗ 1⊗ γ, ψ) = 0 and c(1⊗ µ⊗ γ, ψ) = 0.

Proof. By Proposition 4.8 we know that for every gfqi S associated to ψ and every z ∈ S2m we
have

c(1⊗ β ⊗ γ, S) ≤ c(β ⊗ γ, Sz) ≤ c(µ⊗ β ⊗ γ, S).

Moreover we know by Proposition 4.21 that there exists a gfqi S for ψ such that S(N, p, q, ξ) =
Q(ξ) so we get

c(β ⊗ γ, SN ) = c(β ⊗ γ,Q) = 0,

which gives the desired result.

Remark 4.23. At first sight, the previous proposition may indicate that we do not gain any
new information by compactifying to S2m × Sk × Tk instead of S2m+k × Tk since every mixed
cohomology class (µ⊗1⊗γ and 1⊗µ⊗γ) finds trivial critical values. This question will be settled
in the next proposition. In contrast to this, if in the classical setting of T ∗R2n we compactify to
T ∗S2k×T ∗S2n−2k the same arguments give that we still only get two non-trivial action selectors,
so in that case there is no gain of information.
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The following lemma shows that this trivial critical value selectors may be used to normalize
a continuous path of gfqi . We will not use it, but it may be useful in some situations.

Lemma 4.24. Let ψ be a compactly supported Hamiltonian diffeomorphism of R2m×T ∗Tk and let
Ψt(0) be the associated Lagrangian path in T ∗S2m×T ∗Sk×T ∗Tk. Suppose that St is a continuous
path of gfqi of degree one that generate Ψt(0). Then there exists a continuous family of normalized
generating functions for Ψt(0).

Proof. To start with, we know that both functions StN (p, q, ξ) = St(N, p, q, ξ) and StN (z, q, ξ) =
St(z,N, q, ξ) generate the zero sections so they have just one critical value. Moreover we see that
St(i−1

St (N,N, q, 0)) is a common critical value so they are both the same. Using Proposition 4.8

we get c(1 ⊗ γ, StN ) ≤ c(µ ⊗ 1 ⊗ γ, St) ≤ c(µ ⊗ γ, StN ) so c(µ ⊗ 1 ⊗ γ, St) = St(i−1
St (N,N, q, 0))

determines continuously the critical value at infinity. Now define ct := c(µ⊗1⊗γ, St) and consider
St − ct. It is a normalized continuous path of gf which can be modified into a path of gfqi using
Proposition 3.5.

We continue with the first nontrivial calculation associated to our new generalized capacities
in R2m × T ∗Tk. The following proposition relates the classical Viterbo capacity c with our new
invariant for the particular open bounded subsets containing compact subsets of the form X ×
{0} × Tk.
Proposition 4.25. Take γ equal to µ ∈ Hk(Tk) or 1 ∈ H0(Tk). For any open bounded subset
U × V × Tk ⊆ R2m × Rk × Tk we have

c(U) ≤ c(µ⊗ µ⊗ γ, U × V × Tk).

Proof. Suppose for simplicity that 0 ∈ V . Let φ ∈ Hamc(U). It is enough to find a Ψ ∈
Hamc(U × V × Tk) such that c(µ, φ) 6 c(µ ⊗ µ ⊗ 1,Ψ). Let H : R × R2m → R be a generator
of φ, and χ ∈ C∞c (V ) with χ(p) = 1 on a neighborhood of 0 (so ∂χ

∂p (p) = 0 on a neighborhood

of 0). The Hamiltonian χH of R2m × Rk × Tk generates a compactly supported Hamiltonian
diffeomorphism that we will denote Ψ = (ψz, ψp, ψq). It is easy to see that

Ψ(z, p, q) = (ψz(z, p), p, q + C(z, p))

with C(z, p) =
∫ 1

0
∂χ
∂p (p)H(t, z)dt, and that C(z, 0) = 0 and ψz(z, 0) = φ(z). The embedding

ΓΨ : R2m × Rk × Tk → T ∗R2m × T ∗Rk × T ∗Tk it thus given by

Γ̃Ψ(z, p, q) = (I(z, ψz(z, p)), p, −C(z, p), q +
1

2
C(z, p), 0).

By definition, when we compactify Im Γ̃Ψ we get LΨ which, by the previous expression, is easily
seen to be transverse to T ∗S2m × T0S

k × T ∗Tk. Now

Γ̃Ψ(z, 0, q) = (I(z, φ(z)), 0, 0, q, 0).

so LΨ ∩ T ∗S2m × T0S
k × T ∗Tk = Lφ × {(0, 0)} × 0Tk and the reduction is Lφ × 0Tk which is also

Hamiltonian isotopic to the zero-section. Therefore, by Proposition 4.21, there exists a gfqi S for
LΨ with iS diffeomorphism such that S0 is a gfqi for Lφ × 0Tk with iS0 diffeomorphism. On the
other hand, if K is a gfqi for Lφ then K̃(z, q, ξ) = K(z, ξ) is also a gfqi for Lφ × 0Tk . Moreover,
both S0 and K̃ have 0 as the critical value associated to {N} × {q}, so by uniqueness of gfqi
c(µ⊗ γ, K̃) = c(µ⊗ γ, S0). By Proposition 4.8,

c(µ,K) = c(µ⊗ γ, K̃) = c(µ⊗ γ, S0) ≤ c(µ⊗ µ⊗ γ, S),

which precisely means that c(µ, φ) ≤ c(µ⊗ µ⊗ γ,Ψ).

Remark 4.26. One may also prove that for the previous maps φ anf Ψ we have

γ(φ) ≤ c(µ⊗ µ⊗ γ,Ψ)− c(1⊗ 1⊗ γ,Ψ).
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4.2.5 Reduction energy-capacity inequality

The next proposition is a modified version of [Vit92, proposition 5.2] in order to adapt it to our
setting. For a subset U ⊂ R2m × Rk × Tk and a point w ∈ Tk we denote by Uw the reduction of
U by the coisotropic subspace W = R2m ×Rk × {w} = R2m × T ∗wTk, that is, Uw = RedW (U) (cf.
Definition 3.3). We will also explicitly write Uw := (U ∩ {q = w})/Rk which indicates that we
quotient out U ∩ {q = w} by the characteristic foliation Rk.

Proposition 4.27. Consider an open bounded subset U ⊂ R2m × Rk × Tk, a point w ∈ Tk and
the reduction Uw := (U ∩ {q = w})/Rk. Then

c(µ⊗ µ⊗ 1, U) ≤ γ(Uw).

Proof. Note that if U is open and bounded, then Uw is also open and bounded. Notice moreover
that any Hamiltonian diffeomorphism of R2m that displaces Uw also displaces its filling Ũw :=
R2m\F∞w , where F∞w is the unbounded connected component of R2m\Uw. Thus γ(Uw) = γ(Ũw).
Replacing U by the bigger open subset

(R2m × Rk × Tk \ {w}) ∪ (Ũw × Rk × Tk).

we may as well assume that R2m\Uw is connected and unbounded, which we do henceforth. Let
ψ ∈ Hamc(U) and ϕ ∈ Hamc(Cm) be such that ϕ(Uw) ∩ Uw = ∅. By definition of the capacities
on open bounded subsets we need to prove that

c(µ⊗ µ⊗ 1, ψ) ≤ γ(ϕ).

We know that the Lagrangian submanifold Lϕ in T ∗S2m is isotopic to the zero section by a
Hamiltonian diffeomorphism Φ and has a gfqi K : S2m×Rl → R. This diffeomorphism Φ induces
a Hamiltonian diffeomorphism Φ̃ := Φ × Id on T ∗S2m × T ∗Sk that verifies Φ̃(0) = Lϕ × 0Sk
and K̃(z, p, ξ) := K(p, ξ) (defined on S2m × Sk × Rd) is a gfqi for this submanifold. Now for a
normalized gfqi S of Lψ we have

c(µ⊗ µ⊗ 1, ψ) = c(µ⊗ µ⊗ 1, S) 6 c(µ⊗ µ, Sw) 6 c(µ⊗ µ, Sw#(−K̃))− c(1⊗ 1,−K̃).

The first inequality above follows from Proposition 4.4, while the second one is the triangle
inequality for spectral invariants in Theorem 3.25 (because (µ ⊗ µ) ∪ (1 ⊗ 1) = µ ⊗ µ). The
following Lemma 4.28 ensures that c(µ⊗ µ, Sw#(−K̃)) = c(µ⊗ µ,−K̃), so applying Proposition
4.4 and Theorem 3.25:

c(µ⊗ µ⊗ 1, ψ) 6 c(µ⊗ µ,−K̃)− c(1⊗ 1,−K̃) = c(µ,−K)− c(1,−K) = γ(ϕ),

where we used that for any gfqi we have c(µ,−S) = −c(1, S).

Consider a Hamiltonian path ψt from the identity to ψ in Hamc(U) and a Hamiltonian path
Ψt of T ∗S2m × T ∗Sk × T ∗Tk such that Ψt(0) = Lψt . This path gives rise to a family of gfqi St,
continuous in t, that generate Lψt for all t and that coincide with a fixed quadratic form Q outside
a compact set independent of t (see Subsection 4.2.3). Moreover the path St is normalized (see
Subsection 4.2.3 or Lemma 4.24).

Lemma 4.28. Let St be a continuous family of normalized gfqi for the Lagrangian Lψt. Then
c(µ⊗ µ, Stw#(−K̃)) is a critical value of −K̃ and as a consequence

c(µ⊗ µ, Sw#(−K̃)) = c(µ⊗ µ,−K̃).
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Proof. Recall that points in Lψt are of the form

Γ̃ψt(z, p, q) =
(
I(z, ψtz),

p+ ψtp
2

, q − ψtq,
q + ψtq

2
, ψtp − p

)
plus other points on the zero section that come from compactifying. Moreover, the functions Stw
formally generate the sets of points

(
I(z, ψtz),

p+ ψtp
2

, q − ψtq
)

for points (z, p, q) that verify
q + ψtq

2
= w,

plus other points in the zero section. This set is denoted henceforth Ltw. Recall that the notation
Stw#(−K̃) stands for the function (z, p, ξ, η) 7→ St(z, p, w, ξ) − K(z, η). It is enough to prove
that all critical points (z, p, ξ, η) of Stw#(−K̃) are such that (z, η) is a critical point of −K̃, while
(z, p, ξ) is a critical point of Stw with critical value 0. A critical point of Stw#(−K̃) verifies

∂Stw
∂z

=
∂K̃

∂z
,

∂Stw
∂p

=
∂K̃

∂p
= 0 and

∂Stw
∂ξ

=
∂K̃

∂η
= 0,

so it is associated to an intersection point of Ltw and Lϕ×0Sk in the fiber of (z, p). This intersection
point therefore verifies:

∂Stw
∂p

= q − ψtq = 0 and
q + ψtq

2
= w so q = ψtq = w,

or will be on the zero section coming from critical points of St at infinity.

We first claim that such a point of intersection must lie on I(Uw × Uw)c × T ∗Sk: Indeed, if
I(Uw×Uw)×T ∗Sk ∩ (Lϕ×0Sk) 6= ∅, then Φ−1(I(Uw×Uw))∩0S2m 6= ∅. But Φ−1(I(Uw×Uw)) =
I(Uw × ϕ−1(Uw)) does not intersect the zero section because ϕ displaces Uw. We now claim
that this implies that the intersection point is on the zero section: if a point of Ltw is in I(Uw ×
Uw)c × T ∗Sk, (z, ψtz) ∈ (Uw × Uw)c so z /∈ Uw or ψtz /∈ Uw. In both cases, ψt(z, p, w) = (z, p, w)
because q = ψtq = w, and ψt has support in U , whose intersection with {q = w} is contained in

Uw ×Rk × {w}. Thus, the point Γ̃ψt(z, p, w) is on the zero section, (z, p, w, ξ) is indeed a critical

point of St and as a consequence (z, η) is a critical point of −K̃. In addition (z, p, w) is in U c

because z /∈ Uw.

Now we prove that all the points in U c have critical value 0. Since Suppψt b U and U c

is connected, there is an open connected set W that contains U c and that does not intersect
Suppψt (for all t). Then 0W ⊂ Lt so if j : W ↪→ Lt is the inclusion on the zero section,
f := i−1

St ◦ j : W → ΣSt is an embedding into the set of critical points. The open set W is
connected so St ◦ f is constant and all the points in W have the same critical value. The fact
that St is normalized now implies that this value is zero.

Finally, Sard’s theorem ensures that the set of critical values of −K̃ has measure zero, so it is
totally disconnected. By continuity of the invariants, c(µ ⊗ µ, Stw#(−K̃)) is therefore constant,
so

c(µ⊗ µ,−K̃) = c(µ⊗ µ, S0
w#(−K̃)) = c(µ⊗ µ, S1

w#(−K̃)).

Corollary 4.29. We have the following inequalities for the generalized capacities on R2m×T ∗Tk.
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• For every open bounded subsets U ⊂ R2m and V ⊂ Rk we have

c(U) ≤ c(µ⊗ µ⊗ 1, U × V × Tk) ≤ γ(U),

and
c(µ⊗ µ⊗ 1, U × V × (Tk \ {w})) = 0.

• Let B2m
r ⊆ R2m be the open ball or radius r, then

c(µ⊗ µ⊗ 1, B2m
r × {0} × Tk) = πr2,

and
c(µ⊗ µ⊗ 1, B2m

r × T ∗Tk) = πr2,

• For every compact subset X ⊆ R2m,

c(X) ≤ c(µ⊗ µ⊗ 1, X × {0} × Tk) ≤ γ(X).

• Let Z ⊂ R2m × Rk × Tk be a compact set and consider a point w ∈ Tk. Denote by Zw :=
(Z ∩ {q = w})/Rk the reduction. Then

c(µ⊗ µ⊗ 1, Z) ≤ γ(Zw).

Proof. The only one that requires some justification is the last one. Let Z ⊂ R2m ×Rk × Tk and
Zw :=

(
Z ∩ {q = w}

)
/Rk. We need to show that c(µ ⊗ µ ⊗ 1, Z) 6 γ(Zw). Let V ⊂ R2m be an

arbitrary neighbourhood of Zw, and

U := (R2m × Rk × Tk \ {w}) ∪ (V × Rk × Tk).

Obviously, Z ⊂ U and Uw = V , so by monotonicity of c, it is enough to prove that c(µ⊗µ⊗1, U) 6
γ(Uw). And this is justified in Proposition 4.27.

4.3 Coisotropic non-squeezing

Corollary 4.29 can be used to prove a new non-squeezing statement for compactly supported
Hamiltonian diffeomorphisms of R2n = R2m × R2k. The first step is to place ourselves in the
previous setting of R2m × T ∗Tk. Denote by N the north pole of S1 = T. The diffeomorphism
R ' T \ {N} induces a diffeomorphism T ∗R ' T ∗(T \ {N}) and by definition of the symplectic
structure on cotangent bundles, it is a symplectomorphism. This symplectomorphism gives a
symplectomorphism R2m × R2k ' R2m × T ∗(T \ {N})× · · · × T ∗(T \ {N}). Remark now that if
ψt ∈ Hamc(R2n), then it is the identity outside a compact set so we may extend it as the identity
at infinity to get a diffeomorphism of R2m × T ∗Tk. Using the previous symplectomorphism we
conclude that the extension is also Hamiltonian. Now recall that if Z ⊆M with M a symplectic
manifold, and W is a coisotropic submanifold of M , then the symplectic reduction of Z is defined
by RedW (Z) = πW (Z ∩W ) where πW : W →W/Wω is the natural projection by the coisotropic
foliation (see Lemma 3.1 and Definition 3.3).

Example 4.30. Consider a subset Z ⊆ Cn = Cm × Cn−m and the coisotropic subspace W =
Cm × iRn−m. Then πW = πm : Cn → Cm is the projection onto the first m coordinates, and

RedW (Z) = πm(Z ∩ Cm × iRn−m).
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Theorem 4.31. Let X ⊆ R2m be a compact set and consider X × Rn−m ⊂ Cm × Cn−m and
denote by W := Cm × iRn−m. For every compactly supported Hamiltonian diffeomorphism ψ of
Cn we have

c(X) ≤ γ(RedW (ψ(X × Rn−m))).

Proof. Since ψ has compact support, we can view it as a symplectomorphism of Cm×T ∗Tn−m '
R2m×Rn−m×Tn−m. In this setting X ×Rn−m is seen as X ×{0}×Tn−m and ψ(X ×{0}×Tk)0

coincides with RedW (ψ(X × Rn−m)). Here 0 ∈ Tk is the image of 0 ∈ Rk by the symplecto-
morphism described in the beginning of Section 4.3. Now applying Corollary 4.29, invariance
(Corollary 4.19) and again Corollary 4.29 we get the chain of inequalities:

c(X) ≤ c(µ⊗ µ⊗ 1, X × {0} × Tk) = c(µ⊗ µ⊗ 1, ψ(X × {0} × Tk))
≤ γ(ψ(X × {0} × Tk)0) = γ(RedW (ψ(X × Rn−m))).

Figure 4.1: This figure represents the image of the coisotropic cylinder by a compactly supported
Hamiltonian diffeomorphism ψ. The transverse plane represents the complementary coisotropic
subspace. Theorem 1.2 gives information about the capacity of the projection of the intersection
with W .

Remark 4.32. Recall that we saw in Proposition 3.41 that for the coisotropic subspace R2k ×
Rn−k ⊆ Ck × Cn−k with 0 ≤ k < n we have

c(R2k × Rn−k) = 0 = γ(R2k × Rn−k).

In particular classical capacities do not give rigidity information on the image of coisotropic
cylinders by arbitrary symplectic maps.

Remark 4.33. The subset X × Rn−m ⊂ Cm × Cn−m can also be seen as X × 0Rn−m ⊂ T ∗Rm ×
T ∗Rn−m and W := Cm × iRn−m can be seen as T ∗Rm × T ∗0 Rn−m. With this notation we see
that Theorem 4.31 talks about the trajectories that start with zero momentum in the last n−m
coordinates and get to a particular point 0 ∈ Rn−m.

As a particular example we get the folowing rigidity theorem for Lagrangian tubes. There is
also an unpublished proof of the following corollary by Buhovsky and Opshtein using the theory
of pseudo-holomorphic curves.
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Corollary 4.34 (Buhovsky and Opshtein). Let L := S1(r)m×Rn−m ⊂ Cm×Cn−m be a standard
Lagrangian tube. Assume that there is a compactly supported Hamiltonian diffeomorphism ψ of
Cn such that ψ(L) ∩ (Cm × iRn−m) ⊂ Z(R) × iRn−m where Z(R) is a symplectic cylinder of
capacity R. Then r ≤ R.

Proof. Theorem 4.31 gives c(S1(r)m) 6 γ(Z(R)) = πR2 and c(S1(r)m) = πr2 by Theorem
3.42.

It will be useful to note that Theorem 4.31 is also true for two complementary Lagrangian
subspaces of Cn−m different from Rn−m and iRn−m. The proof follows from a simple argument
of symplectic linear algebra.

Lemma 4.35. Let R2n be the standard symplectic vector space and let L0, L1 be two Lagrangian
subspaces such that R2n = L0⊕L1. Then there exists a linear symplectic isomorphism A : R2n →
R2n such that A(Rn) = L0 and A(iRn) = L1.

Proof. Define the map ρ : L1 → L∗0 by

ρ(v) = ω(v, ·)|L0

It is an isomorphism since ρ(v) = 0 implies v ∈ L⊥ω0 = L0 and thus v = 0 since R2n = L0 ⊕ L1.
Let (bi)

n
i=1 be a basis of L0, then (bi+n := −ρ−1(b∗i ))

n
i=1 is a basis of L1. We claim that (bi)

2n
i=1 is

a symplectic basis of R2n. Indeed

ω(bi, bj+n) = −ω(bj+n, bi) = −ρ(bj+n)(bi) = b∗j (bi) = δi,j

Define A : R2n → R2n by A(ej) = bj and A(iej) = bj+n which is symplectic.

Theorem 4.36. Let Cn−m be the standard symplectic vector space and let L0, L1 be two La-
grangian subspaces such that Cn−m = L0 ⊕ L1. Let X be a compact set of Rm and consider
X ×L0 ⊂ Cm ×Cn−m and denote by W = Cm ×L1. For every compactly supported Hamiltonian
diffeomorphism ψ of Cn we have

c(X) ≤ γ(RedW (ψ(X × L0))).

Proof. Use Proposition 4.35 and consider the compactly supported Hamiltonian diffeomorphism
(I ×A−1) ◦ ψ ◦ (I ×A). Then apply Theorem 4.31.

4.3.1 Non-compact setting

In this subsection we explore the limits of Theorem 4.31 as we look into the flow of Hamiltonians
without compact support. The first remark is that there are Hamiltonian diffeomorphisms of R2n

that do not verify the statement of Theorem 4.31. In particular the statement is not verified by
the linear Hamiltonian diffeomorphism

φ(z1, . . . , zn) = (zm+1, . . . , zn, z1, . . . , zm)

with zj = qj + ipj . It is a rotation, and a Hamiltonian map which is generated by a quadratic
function. For this map one can easily see that

φ(R2m × Rn−m) = Rn−m × R2m.
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If m 6= n then the projection by πm is contained in a coisotropic subspace of R2m so by Proposition
3.41 and by monotonicity we get for every subset X ⊆ R2m

γ(RedW (ϕ(X × Rn−m))) = 0.

In particular if c(X) > 0 this gives an example of Hamiltonian diffeomorphism for which

c(X) > γ(RedW (ϕ(X × Rn−m))).

In order to explain where the statement starts to fail, we need some vocabulary:

Definition 4.37. Let ψ1 be a Hamiltonian diffeomorphism of R2n = Cn. We will say that
γ : [0, 1]→ R2n given by γ(s) = ψs(z) is a camel trajectory if

γ(0) = z ∈ X × Rn−m and γ(1) = ψ1(z) ∈ Cm × iRn−m.

For a camel trajectory γ we call γ(0) = z a camel point. The set of camel points of ψ1 is then
equal to

Cpt(ψ1) = X × Rn−m ∩ (ψ1)−1(Cm × iRn−m),

and the set of camel trajectories is equal to

Ctr(ψ1) =
⋃

s∈[0,1]

ψs(Cpt(ψ1)).

In order to extend Theorem 4.31 to the case without compact support we need to have some
control over the set of Camel points. More precisely we will need that this set is bounded. Remark
that an easy calculation yields that Cpt(φ) is unbounded where φ is the map of the beginning
of the subsection φ(z1, . . . , zn) = (zm+1, . . . , zn, z1, . . . , zm). Moreover, since the statement of
Theorem 4.31 deals with unbounded sets, we need to consider flows that are globally defined.
The following results are based on the previous two remarks. We start with the following classical
lemma:

Lemma 4.38. Let H : R× R2n → R be a Hamiltonian function such that

|∇Ht(z)| ≤ A+B|z| for every (t, z) ∈ [0, T ]× R2n,

for two positive constants A and B 6= 0. Then for every (t, z) ∈ [0, T ]× R2n

|ψt(z)| ≤ eBt|z|+
A

B
(eBt − 1) and |ψt(z)− z| ≤ (|z|+ A

B
)(eBt − 1).

In particular, solutions do not blow up and the flow is globally defined. If B = 0 then

|ψt(z)| ≤ |z|+ tA and |ψt(z)− z| ≤ tA.

Proof. By the hypothesis on the gradient we have

|ψt(z)| ≤ |z|+
∫ t

0
(A+B|ψs(z)|)ds = |z|+At+B

∫ t

0
|ψs(z)|ds =: R(t)

Then

R′(t) = A+B|ψt(z)| ≤ A+BR(t) and R(0) = |z|.
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We may now use Gronwall’s lemma to get

R(t) ≤ eBt|z|+A

∫ t

0
eBsds = eBt|z|+ A

B
(eBt − 1).

For the second inequality write

|ψt(z)− z| ≤
∫ t

0
(A+B|ψs(z)|)ds = At+B

∫ t

0
|ψs(z)|ds = R(t)− |z|

and use the previous inequality.

Now consider R2n = Cn = Cm × Cn−m. We denote by πm the projection on the first m
coordinates, by πm the projection on the second n−m coordinates, by πm+ the projection on the
real parts, and by πm− the projection on the imaginary parts. In particular, we may describe the
set X × Rn−m ∈ Cm × Cn−m by

X × Rn−m = {z ∈ Cn |πm(z) ∈ X and πm− (z) = 0}.

Theorem 4.39. Let H : R× R2n → R be a Hamiltonian function such that

|∇H(z)| ≤ A+B|z| for every (t, z) ∈ [0, T ]× R2n

for two positive constants A and B, and denote by ψt the Hamiltonian flow generated by H. Let
X ⊆ R2m be a compact set and consider the coisotropic subspace W := Cm × iRn−m. Then we
have

c(X) ≤ γ(RedW [ψt(X × Rn−m)])

for every |t| < min( ln 2
3B , T ) if B 6= 0 and for every t ∈ [0, T ] if B = 0.

Proof. We start with the case B 6= 0. By considering the Hamiltonian 1
BH t

B
we may suppose

B = 1. We start by bounding the camel points and camel trajectories for small times. Suppose
that z is a camel point at time t, then since X is compact, there exists an r such that

|z| ≤ |πm(z)|+ |πm+ (z)|+ |πm− (z)| ≤ r + |πm+ (z)|.

Moreover, since z is a camel point at time t we have

πm+ (ψt(z)) = 0.

By Lemma 4.38 we have
|ψt(z)− z| ≤ (et − 1)(|z|+A)

so we conclude that

|z| ≤ r + |πm+ (z)| = r + |πm+ (ψt(z)− z)| ≤ r + (et − 1)(|z|+A).

In particular we see that if et < 2, so if t < ln 2, the camel points verify

|z| ≤ r +A

2− et
,

and using Lemma 4.38 again we see that the set of camel trajectories Ctr(ψt) is also bounded.
The idea now is to build from ψt a compactly supported Hamiltonian diffeomorphism ϕt such
that

Ctr(ϕt) = Ctr(ψt),
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for |t| ≤ t0 for some t0 > 0. The we can apply Theorem 4.31 to get

c(X) ≤ γ(RedW (ϕt(X × Rn−m))) = γ(RedW (ψt(X × Rn−m)))

which is the desired result. Let ρ : R→ R be a smooth function with values on [0, 1] that equals
1 over the interval [0, R], vanishes over [2R,+∞[ and such that |ρ′| ≤ 2/R. Note that on the
support of ρ′ we have |z| ≤ 2R so

|ρ′(|z|)| ≤ 2

R
≤ 4

|z|
.

Define Gt(z) = ρ(|z|)Ht(z) (the value of R will be chosen later). It is a compactly supported
function that generates a Hamiltonian diffeomorphism ϕt. It is easy to see that if H(0) = 0 then
(since B = 1)

|H(z)| ≤ A|z|+ |z|
2

2
.

We have

|∇Gs(z)| = |ρ′(|z|)
z

|z|
Hs(z) + ρ(|z|)∇Hs(z)| ≤ 4A+ 2|z|+A+ |z| ≤ 5A+ 3|z|

(Remark that since G is compactly supported, the gradient is bounded by a constant. But the
key of the bound that we have is that it does not depend on R.) In particular, if |t| ≤ ln 2

3 we
know that the camel trajectories of ϕt are bounded by a constant independent of R. If we chose
R big enough then Ctr(ψt) and Ctr(ϕt) are contained in a bounded set where both flows coincide,
so a fortiori Ctr(ψt) = Ctr(ϕt) which gives the desired result.

We now prove the case B = 0. The only change with respect to the previous reasoning is that
this time we have

|πm+ (ψt(z)− z)| = |πm+
∫ t

0
XH(ψs(z)) ds| ≤ |t|A.

so if z ∈ Cpt(ψt) then |z| ≤ r+ |t|A and the camel points are bounded for every t ∈ R (see Figure
4.2). Moreover, the camel trajectories are also bounded by a constant that depends on t and
A. This time |H(z)| ≤ A|z| so if we consider the same G as in the previous paragraph we have
|∇Gs(z)| ≤ 5A. In particular the camel trajectories of ϕt are bounded for all t by a constant that
depends only on t and A and not on R. For R big enough we will have Ctr(ψt) = Ctr(ϕt) which
gives the desired result.

Remark 4.40. The time bound for B 6= 0 in the previous theorem is not optimal and one may
get a better one modifying the bound for |ρ′|. This bound cannot be extended much more since
the statement fails for bigger t as we saw with φ at the beginning of this subsection.

Remark 4.41. The general version with two Lagrangian subspaces L0 ⊕ L1 = Cn−m as in
Theorem 4.36 is also true. Indeed if H verifies the bound on the gradient, then the Hamiltonian
associated to (I ×A−1) ◦ψ ◦ (I ×A) will also verify a similar bound. Note that the bound on the
time for the case B 6= 0 might change.

Corollary 4.42. Consider a Hamiltonian function of the form

Ht(z) =
1

2
〈Az, z〉+ Ut(z),

Where U has bounded gradient. Suppose that A = A1 ⊕ · · · ⊕ An where Ak is a linear map on
V ect{ ∂

∂qk
, ∂
∂pk
} for every 1 ≤ k ≤ n. Let X ⊆ R2m be a compact set and consider the coisotropic

subspace W := Cm × iRn−m. Then for every t ∈ R such that

Rn−m + e−tJAiRn−m = Cn−m
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Figure 4.2: The light shaded balls represents the maximum length of a trajectory in [0, t]. The
dark shaded region represents the bounded sets that contains Cpt(ψt).

we have
c(X) ≤ γ(RedW [ψt(X × Rn−m)]).

Proof. Write Ht(z) = Q(z) + Ut(z). Then using Lemma A.9 in the Appendix we see that

ψHt = ψQt ◦ ψGt with Gt(z) = (−Q+H)(t, ψQt (z)) = Ut(ψ
Q
t (z)).

We have the equality ψQt (z) = etJAz so that

∇Gt(z) = et(JA)t∇Ut(etJA).

In particular we see that
|∇Gt(z)| ≤ e|t|‖A‖C

where C > 0 is a constant that bounds the gradient of U . This implies that ϕGt verifies the
hypothesis of the previous theorem. In particular (using Remark 4.41) we may take the two
transverse coisotropic subspaces

Cm × Rn−m and We = Cm × e−tJAiRn−m

and we conclude that
c(X) ≤ γ(RedWe [ψ

G
t (X × Rn−m)]).

Now recall that
RedWe [ψ

G
t (X × Rn−m)] = πm(ψGt (X × Rn−m) ∩We)

and that by hypothesis etJAπm = πme
tJA so

etJA RedWe [ψ
G
t (X × Rn−m)] = RedW [ψt(X × Rn−m)].

Finally etJA restricts to a symplectomorphism of Cm so we conclude using the invariance of γ.

Example 4.43. Mechanical systems in T ∗Rn. Consider a smooth Hamiltonian function
H : R× R2n → R of the form

Ht(q, p) =
1

2
|p|2 + Ut(q), with |∇Ut(z)| ≤ C for (t, z) ∈ [−T, T ]× R.
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Then H is of the form of Corollary 4.42. Remark that in this case A is zero on Rn ⊆ Cn and the
identity on iRn ⊆ Cn. In particular A clearly preserves every subspace of the form Vect{ ∂

∂qk
, ∂
∂pk
}.

Now, the system ż(t) = JAz(t) is a decoupled system on every subspace Vect{ ∂
∂qk

, ∂
∂pk
}. In those

planes we have

A =

(
0 0
0 1

)
and iA =

(
0 1
0 0

)
.

We see that JA is nilpotent so the exponential map is just

etJA = Id + tJA =

(
1 t
0 1

)
.

The transversality condition
Rn−m + e−tJAiRn−m = Cn−m

is verified for every m and every t ∈ R. We now give a possible interpretation of Corollary 4.42
in the context of mechanical systems. Consider N particles moving in R3 under the influence of
a smooth potential U : R3N → R which moreover has bounded gradient. Suppose that we have
the following information at t = 0:

• The first particle has initial position and momentum on an ε neighborhood of (x1, y1) ∈ R6.

• The rest of the N − 1 particles start at fixed positions x2, . . . , xN .

In other words, if we denote by Bε the ball of center (x1, y1) and radius ε in R6, we know that
the initial state of our system is contained in the coisotropic cylinder

Bε × T ∗x2R
3 × · · ·T ∗xNR

3 ⊆ C3 × C3(N−1).

Suppose moreover that we are interested in the solutions such that at time t the N − 1 particles
have stopped, so solutions that get to the subspace W = C3× 0R3(N−1) . Then we will never know
the state of the first particle with more precision that the one we had at t = 0, i.e. if the set of
states of the first particle are contained in Bδ then

πε2 ≤ γ(RedW [ψHt (Bε × T ∗x2R
3 × · · ·T ∗xNR

3)]) ≤ γ(Bδ) = πδ2,

so ε ≤ δ.

4.3.2 Coisotropic rigidity in T ∗Tn.

We now apply the previous results in the periodic setting. Denote by π : R2n → T ∗Tn the
standard projection. We start with a definition for a displacement energy in this context.

Definition 4.44. For every subset Z ∈ T ∗Tn we set

cT(Z) = c(π−1(Z)) and γT(Z) = γ(π−1(Z)).

Both quantities are invariant by Hamiltonian diffeomorphisms ψ of T ∗Tn. Indeed, any ψ lifts
to a Hamiltonian symplectomorphism ψ̃ of R2n such that π ◦ ψ̃ = ψ ◦ π. In particular

π−1(ψ(Z)) = (ψ−1 ◦ π)−1(Z) = (π ◦ ψ̃−1)−1(Z) = ψ̃(π−1(Z)).

Using this chain of inequalities and the symplectic invariance of γ we find

γT(ψ(Z)) = γ(π−1(ψ(Z))) = γ(ψ̃(π−1(Z))) = γ(π−1(Z)) = γT(Z).

Remark γT is not a true displacement energy on T ∗Tn since γT(0Tn) = 0 even though one cannot
displace the zero section from itself using a Hamiltonian isotopy in T ∗Tn. The following lemma
gives a calculation of these invariants for standard balls.
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4.3. Coisotropic non-squeezing

Lemma 4.45. Let Br ⊆ T ∗Tn be a standard ball such that

π−1(Br) =
⋃
k∈Zn

k · B̃r

is a disjoint union. Then
cT(Br) = πr2 = γT(Br).

Proof. By monotonicity we clearly have πr2 ≤ cT(Br) so we have to prove that γT(Br) ≤ πr2.
Since π−1(Br) is unbounded, it is enough to prove the inequality for a finite union of disjoint
balls. In particular it is enough to exhibit, for every ε > 0 a compactly supported Hamiltonian
diffeomorphism ϕ of R2n which displaces the finite union and that verifies γ(ϕ) ≤ πr2 + ε. Any
of the balls k · B̃r in the disjoint union π−1(Br) can be displaced vertically using a conjugation
by k, ϕk = k ◦ ψ ◦ k−1, of the map ψ in Theorem 2.12 which is generated by a Hamiltonian that
verifies ‖H‖C0 ≤ πr2 + ε. Since all these diffeomorphisms have disjoint support, the composition
ϕk1 ◦ · · · ◦ ϕkm will displace the finite union and will be generated by Hamiltonian Hm = Hk1 +
· · ·+Hkm where each term has disjoint support from one another. In particular

‖H‖C0 = max
m
‖Hkm‖C0≤ πr2 + ε

now Proposition 3.39 implies that γ(ϕk1 ◦ · · · ◦ ϕkm) ≤ πr2 + ε giving the desired result.

Theorem 4.46. Let ψ be a compactly supported Hamiltonian diffeomorphism of T ∗Tn = T ∗Tm×
T ∗Tn−m. For any w ∈ Tn−m denote Wf = T ∗Tm × T ∗mTn−m and W0 = T ∗Tm × 0Tn−m. Let Br
denote a ball of radius r in T ∗Tm. Then

RedWf
[ψ(Br × 0Tn−m)] ⊆ BR or RedW0 [ψ(Br × T ∗wTn−m)] ⊆ BR

implies r ≤ R.

Proof. Every compactly supported Hamiltonian diffeomorphism ψt of T ∗Tn lifts to a Hamiltonian
diffeomorphism ψ̃t of R2n generated by a Hamiltonian with bounded gradient. In particular it
verifies the hypothesis of Theorem 4.39. Remark also that the ball Br lifts to an infinite disjoint
union of balls of the same radius. We take for X ⊂ R2m one of these balls B̃r which project to
T ∗Tm as the Br. The subset B̃r × Rn−m projects onto Br × 0Tn−m . We are interested in image
of this set by ψ̃t. Remark that we have

π(ψ̃t(B̃r × Rn−m) ∩ Cm × iRn−m) ⊆ ψt(Br × 0Tn−m) ∩ T ∗Tm × T ∗0 Tn−m.

In particular, if we set W̃f = Cm × iRn−m and Wf = T ∗Tm × T ∗0 Tn−m we get

π(RedW̃f
[ψ̃t(B̃r × Rn−m)]) ⊆ RedWf

[ψt(Br × 0Tn−m)],

so we have

RedW̃f
[ψ̃t(B̃r × Rn−m)] ⊆ π−1(RedWf

[ψt(Br × 0Tn−m)]) ⊆ π−1(BR).

By hypothesis π−1(BR) is the disjoint union of copies of BR so if we use Theorem 4.39 and Lemma
4.45 we get

πr2 = c(B̃r) ≤ γ(RedW̃f
[ψ̃t(B̃r × Rn−m)]) ≤ γT(RedWf

[ψt(Br × 0Tn−m)]) = γT(BR) = πR2

which gives the desired result. A similar reasoning gives the result for the second inclusion.
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In the light of this result, a very interesting question if if this type of rigidity appears on
the product of cotangent bundles of compact manifolds other that the torus. By symplectic ball
of radius r in a symplectic manifold (M,ω) we understand a ball of radius r of R2n which is
symplectically embedded in M . We may conjecture the following behavior:

Conjecture 4.47. LetN andM be two compact manifolds and consider ψ a compactly supported
Hamitltonian isotopy of T ∗N × T ∗M . For any m ∈ M denote Wf = T ∗N × T ∗mM and W0 =
T ∗N × 0M . Let Br be a symplectic ball of radius r in T ∗N . Then the inclusion

RedWf
[ψ(Br × 0M )] ⊆ BR or RedW0 [ψ(Br × T ∗mM)] ⊆ BR

imply r ≤ R.

Example 4.48. Mechanical systems in T ∗Tn. One may see that Theorem 4.46 is still true
if instead of compactly supported Hamiltonians we consider mechanical Hamiltonians H : R ×
T ∗Tn → R of the form

Ht(q, p) =
1

2
|p|2 + Ut(q),

as in Example 4.43.

4.3.3 Middle dimensional symplectic rigidity

An important consequence of Theorem 4.39 is its interpretation in the context of the middle di-
mensional rigidity problem. One of the first questions regarding this problem appeared in [Hof90b]
where Hofer asked about the generalization of capacities to middle dimensions. Remark that all
symplectic cylinders of the same radius but with a base of different dimensions have the same
symplectic capacity. In order to try and see if those cylinders are different for symplectic geom-
etry Hofer asked if there exists a k-intermediate symplectic capacity ck satisfying monotonicity,
k-conformality, symplectic invariance and

ck(B2k
1 × R2n−2k) < +∞ but ck(B2k−2

1 × R2 × R2n−2k) = +∞?

The first inequality is already verified by the standard capacities and it is the second one which
differs. One of the first results indicating that intermediate capacities do not exist appeared in
an article by Guth [Gut08]. He was interested in the question of when can we embed a polydisc
P = B2

R1
× · · · ×B2

Rn
with R1 ≤ · · ·Rn into another one P ′ = B2

R′1
× · · · ×B2

R′n
with R′1 ≤ · · ·R′n

using a symplectic map. There are two obvious obstructions to this problem, the first one comes
from Gromov’s nonsquezing which implies R1 ≤ R′1. The second one is the volume which implies
that R1 · · ·Rn ≤ R′1 · · ·R′n. Using the techniques in the article by Traynor [Tra95] one can prove
that one could embed P into P ′ if and only if R1 · · ·Rk . R′1 · · ·R′k for every k between 1 and
n. Traynor’s results could indicate the existence of middle dimensional conditions for symplectic
embeddings of polydics. It was not know whether these middle dimensional conditions where
necessary until an article of Guth where he proved that, modulo a dimensional constant, these
are the only two invariants. More precisely:

Theorem 4.49 (Guth 2008 [Gut08]). There is a dimensional constant C(n) so that the following
holds. If C(n)R1 ≤ R′1 and C(n)R1 · · ·Rn ≤ R′1 · · ·R′n then P symplectically embeds into P ′.

This theorem gave a partial answer to Hofer’s question. It implies that if 1 < k < n then
k-capacities that verify the following continuity hypothesis:

lim
R→+∞

c(B2k
1 ×B2n−2k

R ) < +∞ and lim
R→+∞

c(B2k−2
1 ×B2n−2k+2

R ) = +∞
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do not exist. His theorem was a close definitive answer but the question of less regular capacities
remained open. This was recently solved in the negative by Pelayo and Vũ Ngo.c in [PVuN15].
They applied a limit argument to the construction of Guth and Hind-Kerman [HK14] in order to
proof the unbounded version of Guths theorem:

Theorem 4.50 (Pelayo-Vũ Ngo.c 2015 [PVuN15]). If n ≥ 2 then the cylinder B2
1 ×R2n−2 can be

symplectically embedded into the product B2n−2
R × R2 for all R ≥

√
2n−1 + 2n−2 − 2.

With this theorem the question of intermediate symplectic capacities was definitely settled. It
showed that general symplectic diffeomorphisms are too flexible to capture this type of cylindrical
rigidity.

Another point of view for the middle dimensional problem comes from a reformulation of
Gromov’s non-squeezing theorem. In dimension 2 symplectomorphims are the same as area pre-
serving maps so in [EG91] Eliashberg and Gromov pointed out that (using a theorem of Moser
about the existence of area preserving diffeomorphisms) Gromov’s theorem is equivalent to

area(Π1φ(B2n
r )) ≥ πr2 for every symplectomorphism φ.

Denote by Πk the projection on the first 2k coordinates. A possible generalization of this statement
to higher dimensions is

Vol(Πkφ(B2n
r )) ≥ Vol(ΠkB

2n
r ) = Vol(B2k

r ) for every symplectomorphism φ.

This problem was studied by Abbondandolo and Matveyev in [AM13]. In their article, Abbon-
dandolo and Matveyev first proved that the inequality is true in the linear case:

Theorem 4.51 (Abbondandolo-Matveyev 2013 [AM13]). Let Φ be a linear symplectic automor-
phism of R2n, and let P : R2n → R2n be the orthogonal projector onto a complex linear subspace
V ⊆ R2n of dimension 2k, 1 ≤ k ≤ n. Then

Vol(PΦ(B2n
r )) ≥ Vol(B2k

r )

with equality if and only if the linear subspace ΦTV is complex.

As they point out in their article, unlike the projection of the ball, the intersection with the
linear subspace has small volume, in other words one always has the reverse inequality

Vol(V ∩B2n
r ) ≤ Vol(B2k

r ).

In contrast to the linear result, they moreover proved that symplectic diffeomorphisms are again
too flexible to have this kind of middle dimensional symplectic rigidity. More precisely, the show
that one can squeeze arbitrarily the symplectic projection of image of the ball by symplecto-
morhisms.

Theorem 4.52 (Abbondandolo-Matveyev 2013 [AM13]). Let P : R2n → R2n be the orthogonal
projector onto a complex linear subspace V ⊆ R2n of dimension 2k, 1 < k < n. For every ε > 0
there exists a smooth symplectic embedding φ : B2n

1 → R2n such that

Vol(Pφ(B2n
r )) < ε.

In spite of all this negative results for middle dimensional rigidity, there was a recent result
by Rigolli in [Rig15] where he proved that there is also local middle dimensional volume rigidity
if one restricts the class of symplectomorphisms to analytic ones.
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Theorem 4.53 (Rigolli 2015 [Rig15]). Let φt : B
2n
1 → R2n be an analitic path of symplectic

embeddings, with t ∈ [0, 1], such that φ0 is linear. Then the middle dimensional non-squeezing
inequality

Vol(Pφt(B
2n
1 )) ≥ Vol(B2k

r )

holds for t small enough.

This result points out in the direction that this middle dimensional rigidity might be possible
upon restriction of the class of symplectic diffeomorphisms that we consider. Moreover, this result
has another local implication:

Theorem 4.54 (Rigolli 2015 [Rig15]). For every analytic symplectic embedding of a domain D
there exists a function r0 : D → (0,+∞) such that the middle dimensional inequality

Vol(Pφt(B
2n
r (x))) ≥ Vol(B2k

r )

holds for every x ∈ D and for every r < r(x). Moreover r0 is bounded away from zero on compact
subsets K ⊆ D.

We would like to point out another possible middle dimensional generalization of the squeezing
problem. In dimension 2 the value of any normalized symplectic capacity on topological discs
coincides with the area, so one may also rewrite Gromov’s theorem as

c(Π1φ(B2n
r )) ≥ πr2 for every symplectomorphism φ,

where c is a symplectic capacity. One can then ask if this inequality is true with Π1 replaced by
Πk, and more generally look at subsets Z different from B2n

r and replace πr2 with the capacity
of ΠkZ. As we have seen in the previous results, there is little hope that one such inequality is
always true so one has to restrict the type of symplectomorphisms considered. Theorem 4.39 sheds
some light to this problem for deformations of coisotropic cylinders Z = X×Rn−m ⊆ Cm×Cn−m
provided that we restrict the class of symplectomorphisms to Hamiltonian isotopies with bounded
speed, that is, diffeomorphisms generated by functions H verifying the hypothesis of Theorem
4.39. More precisely, using the monotonicity of γ we get the following corollary:

Theorem 4.55. Let X ⊂ R2m be a compact set. Consider X × Rn−m ⊆ Cm × Cn−m and Let
H : R× R2n → R be a Hamiltonian function such that

|∇H(z)| ≤ A for every (t, z) ∈ [0, T ]× R2n

that generates the flow ψt. Then for every t ∈ [0, T ]

c(X) ≤ γ(Πmψt(X × Rn−m)).

In contrast with the volume interpretation of the middle dimensional problem (see Theorem
4.51), This theorem is not true for every linear symplectic map, only for small times of linear
Hamiltonian diffeomorphisms. Remark moreover that classical symplectic capacities do not give
any rigidity information for coisotropic cylinders since by Proposition 3.41 we have

c(X × Rn−m) = 0 = γ(X × Rn−m).

As it is usual in symplectic geometry, this rigidity result can be used to define an invariant. The
classical example of this fact is the definition of Gromov’s width after he proved the nonsqueezing
theorem. In our case Theorem 4.55 indicates that we should consider the following quantity:

γkG(U) = inf{γ(Πkφ(U)) |φ ∈ G}
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where G is a subgroup of the group of symplectic diffeomorphisms. For G = Sympl(R2n) the
permutation of coordinates shows that γkG is zero on coisotropic cylinders of dimension k. In
particular, it might be trivial for every subset of R2n. On the other hand, if the elements of G are
Hamiltonian diffeomorphisms generated by Lipschitz functions then Theorem 4.55 implies that
γkG is bounded from below on coisotropic cylinders of dimension k. As an example of G one can
take the subgroup of Hamiltonian diffeomorphisms ϕHt where H, ϕHt , and (ϕHt )−1 are Lipschitz
on the space variable over compact time intervals.

Proposition 4.56. Denote HamdL(R2n) the set of Hamiltonian diffeomorphisms ϕHt such that
Ht, ϕ

H
t and (ϕHt )−1 are all Lipschitz in space over compact time intervals. Then HamdL(R2n) is

a subgroup of Sympl(R2n). Moreover HamdL(R2n) is strictly bigger than the group of compactly
supported Hamiltonian diffeomorphisms.

Remark 4.57. The superscript dL on HamdL(R2n) stands for double Lipschitz condition.

Proof. First recall the following formulas:

ϕHt ◦ ϕKt = ϕH#K
t and (ϕHt )−1 = ϕH̄t ,

where
H#K(t, z) = H(t, z) +K(t, (ϕHt )−1(z)),

H̄(t, z) = −H(t, ϕHt (z)).

The identity is clearly in HamdL(R2n) and it is an easy exercise to use these formulas to prove that
HamdL(R2n) has a group structure. For the second statement, consider a Lipschitz autonomous
Hamiltonian H with Lipschitz gradient and use Gronwall’s lemma to prove that ϕHt (and therefore
(ϕHt )−1 = ϕH−t) is Lipschitz.

Definition 4.58. For every subset Z ⊆ R2n we define

γk(Z) = inf{γ(Πkφ(Z)) |φ ∈ HamdL(R2n)}

The properties of γk are sumarized in the following proposition:

Proposition 4.59. The map γk verifies the following properties:

• (monotonicity) If Z1 ⊆ Z2 then γk(Z1) ≤ γk(Z2).

• (conformality) γk(λZ) = λ2γk(Z) for every λ ∈ R.

• (Lipschitz invariance) If φ ∈ HamdL(R2n) we have γk(φ(Z)) = γk(Z).

• (non-triviality+normalization) γk(B2k
r × Rn−k) = πr2.

Moreover for every compact X ⊆ R2m we have

c(X) ≤ γk(X × Rn−k) ≤ γ(X).

Finally we want to point out that this invariant satisfies a 2-conformality property instead of
the k-conformality asked by Hofer for the middle dimensional symplectic capacities.
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Chapter 5

Rigidity on energy surfaces

Let (M,ω) be a symplectic manifold and consider a smooth function H : M → R. Every regular
value λ defines a smooth hypersurface Σ of M . The Hamiltonian vector field is easily seen to
be everywhere tangent to Σ, so the Hamiltonian flow preserves Σ. The properties of this flow
have historically been an important subject of research. In this chapter we are going to study
the influence that the famous symplectic camel theorem has on the dynamics on Σ. We explain
how the symplectic camel theorem can be used to create compact invariant subsets. Moreover,
we show that these invariant subsets persist under C0 perturbation of the energy surfaces of H.

5.1 C0 perturbations and compact invariant sets

Let (M,ω) be a symplectic manifold, consider a smooth function H : M → R and let λ be a
regular value of H. Then Σλ = H−1(λ) is a smooth hypersurface invariant by the flow of H. We
are interested in the existence of compact invariant subsets of Σλ and its C0 perturbations.

For historical context on the problem of compact invariant subsets the interested reader can
look at the book [HZ94][Chapter 4] which has an excellent chapter on the existence of closed
characteristics in Σ. The surfaces Σ that are considered in that chapter are compact and the
invariant subsets are circles. In order to gain some intuition, we present an existence result
contained in that chapter. Let (M,ω) be a symplectic manifold and denote by c0 the capacity
constructed by Hofer and Zehnder (which is a generalization of the one explained in Chapter 2,
Section 2.3). Using the definition of this special capacity c0 they are able to prove the following
result:

Theorem 5.1 (see [HZ94]). Let H be a Hamiltonian function on (M,ω) and let Σλ0 = H−1(λ0)
be a compact energy surface. Suppose that there is an open neighborhood U of Σλ0 such that U has
bounded capacity: c0(U, ω) < +∞. Then there exists an interval of regular values I containing
λ0 and a dense subset D ⊆ I such that for every λ ∈ D the energy surface Σλ has a chosed
characteristic.

As a particular example of such an energy surface, we have every compact regular Σλ in
(R2n, ω0). Indeed, by monotonicity of the capacity, every bounded set U has capacity less that
the capacity of a big ball BR, so c0(U, ω) < +∞. This result shows that, at least for compact
energy surfaces, closed characteristics are a common phenomenon that appears under perturbation
of the energy level.

In this section we explain how the symplectic camel theorem can be used to create compact
invariant subsets in arbitrary energy surfaces Σ. Recall that the statement of the theorem is:
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Theorem 5.2 ([Vit92, MT93]). Consider the space E = R2n−1×{0}\B2n(0, r) and suppose that
there is a symplectic isotopy ϕt of R2n with support in R2n \ E such that

B2n
R ⊆ {pn < 0} and ϕ1(B2n

R ) ⊆ {pn > 0}.

Then r ≥ R.

There is also an unpublished proof of this result by Gromov and Eliashberg.
Every hypersurface Σ is locally symplectomorphic to R2n−1×{0} ⊆ R2n so every point p ∈ Σ

has a small open neighborhood U symplectomorphic to a small open neighborhood V of the origin
in R2n such that

U ∩ Σ ' V ∩ R2n−1 × {0}.

Using this symplectomorphism we see that a particular class of deformations of Σ are the local
deformations given by deformations of Σ0 := R2n−1 × {0}. In light of this remark we restrict
ourselves to compactly supported deformations of the standard hypersurface Σ0. Remark that
Σ0 is the energy surface associated to the coordinate function pn. We are going to consider
Hamiltonian functions given by H = pn ◦ ϕ where ϕ : R2n → R2n is a compactly supported
diffeomorphism.

Definition 5.3. Denote (z, qn, pn) the coordinates of R2n. We say that H : R2n → R is a
(r,R)-simple function if the following properties are satisfied:

• H = pn ◦ ϕ for a compactly supported diffeomorphism ϕ.

• The support of ϕ is contained in {pn > 1} ∪ (B2n−1(z0, r)× [0, 1]) for a z0 ∈ R2n−1.

• B2n(z1, R) ⊆ {H < 1} ∩ {pn > 1} for a z1 ∈ R2n.

Figure 5.1: The energy surfaces of a (r,R)-simple function.

Remark 5.4. The choice of the interval [0, 1] is arbitrary, and is chosen for simplicity in the
notation of the proofs. The second condition implies that for every λ ∈ [0, 1] we have

{pn = λ} \B2n((z0, λ), r) ⊆ H−1(λ).

Compare with the hypothesis of Theorem 5.2.

We are moreover interested in perturbations of this type of functions. We consider perturba-
tions inside the class of (r,R)-simple functions:
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Definition 5.5. Let H be a (r,R)-simple function. We say that Hε is a ε-simple perturbation
of H if Hε = pn ◦ ϕε with dC0(ϕ,ϕε) ≤ ε and such that the support of ϕε in contained in
{pn > 1} ∪ (B2n−1(z0, r + ε)× [0, 1]).

If H = pn ◦ ϕ is a (r,R)-simple function then

Σλ = H−1(λ) = ϕ−1(p−1
n (λ)) = ϕ−1(R2n−1 × {λ}).

If we denote Σε
λ = H−1

ε (λ) then the C0 distance between Σλ and Σε
λ is bounded by the C0

distance between ϕ and ϕε. As a consequence one may see that an ε-simple perturbation of a
(r,R)-simple function is a (r + ε, R − ε)-simple function. The main result of this chapter is the
following theorem:

Theorem 5.6. Let H : R2n → R be a (r,R)-simple function with r < R. Then there exists a
λ ∈ [0, 1] such that Σλ has a compact invariant subset. As a consequence, for every ε-simple
perturbation Hε of H with ε ∈ [0, R−r2 [ there exists a λε ∈ [0, 1] such that Σε

λ = H−1
ε (λε) has a

compact invariant subset.

Figure 5.2: A representation of the energy surface Σλ where the invariant compact subset appears.
In this case there is a trajectory trapped in a bounded set and this trajectory creates a compact
invariant subset.

The idea of the proof goes as follows: if there is no compact invariant subset then every
characteristic trajectory goes from one side of the space to the other (see Figure 5.2). If this is
the case, we can build a symplectic isotopy that verifies the hypothesis of the Camel Theorem
but which contradicts the conclusion. Since this is not possible, we conclude that there must be
a trajectory trapped in a bounded set. This trajectory then creates a compact invariant subset.
Note that the compact invariant sets persist for small simple perturbations, but we have no control
on the energy level where it appears.

5.1.1 Trapping trajectories

The proof of Theorem 5.6 will be carried out in several steps, and is based on the following lemma.
For simplicity of notation we will suppose that ϕ and thus H is supported inside {0 < qn < 1}. We
know that outside this set all the characteristic trajectories are just translations in the coordinate
qn.

Lemma 5.7. Let H be a Hamiltonian function of the form H = pn ◦ ϕ where ϕ is a diffeomor-
phism supported in a compact set contained in {0 < qn < 1}. Then the following statements are
equivalent:
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1. There exists characteristic trajectory in Σλ which goes through {qn = 0} but does not inter-
sect {qn = 1}. (see Figure 5.2)

2. Σλ has a compact invariant set.

Proof. (1 =⇒ 2). Suppose that 1 is true. First note that all trajectories enter {0 < qn < 1} and
that if a trajectory intersects {qn = 1} then it goes to infinity. Thus, the hypothesis tells us that
there is a point z0 ∈ R2n such that ψt(z0) = ψHt (z0) stays in a compact set for t ∈ [0,+∞[. The
ω-limit set associated to z0 is then non-empty and generates the desired compact invariant set.
More precisely consider the set

B = {z ∈ R2n | there exists a sequence tn → +∞ such that lim
n→+∞

ψtn(z0) = z}

B is clearly nonempty, bounded and invariant by the flow. We now prove that it is closed. Take
a sequence of points {zn} in B which converges to a point z. For every m ∈ N there exists a zn
such that d(zn, z) ≤ 1

2m . Chose a sequence sk adapted to zn (cf. the definition of B) and define

tm = min{sk > tm−1 + 1 | d(ψsk(z0), zn) ≤ 1

2m
}.

By definition of the points in B, we have tm < +∞ and we clearly have tm → +∞. Finally

d(ψtm(z0), z) ≤ d(ψtm(z0), zn) + d(zn, z) ≤
1

m
,

so z ∈ B and B is closed. This proves 1 =⇒ 2.

(¬1 =⇒ ¬2). Now suppose that 1 is not true, so every characteristic trajectory in Σλ which
goes through {qn = 0} intersects {qn = 1}. Denote Cλ = R2n−2×]−∞, 0[×{λ}, we have Cλ ⊆ Σλ.
Since every trajectory in Cλ is unbounded, it is enough to show that⋃

t∈R
ψt(Cλ) = Σλ.

Remark that Σλ = ϕ−1(R2n−1 × {λ}) is connected, and that Cλ is open in Σλ and non-empty.
Since ψt restricts to a diffeomorphism of Σλ, we see that the left hand side of the inequality is a
open set. To prove the equality, it is then enough to prove that the lhs is also closed in Σλ. It is
clear that all the trajectories of Cλ intersect R2n−2 × {0} × {λ}. We claim that there exists a T
such that

ψT (R2n−2 × {0} × {λ}) ⊆ R2n−2 × [1,+∞[×{λ}.

Since ϕ has compact support, for a radius K big enough we have

ψ1((B2n−2
K )c × {0} × {λ}) = (B2n−2

K )c × {1} × {λ}.

For the points in B2n−2
K ×{0}× {λ}, one may use the compactness of the closed ball and that by

hypothesis every point arrives to the other side to find the desired T . We now use the existence
of T to prove the closedness of the union of the images of Cλ. Take a point z in the closure, and
a sequence of points {zm} which approaches it. Since {zm} converges we know that qn(zm) are
bounded. In particular, the existence of T implies that there is a t0 such that qn(ψ−t0(zm)) < −1.
By continuity of ψt we get that qn(ψ−t0(z)) ≤ −1. This implies that z ∈ ψt0(Cλ), and finishes
the proof.

One may moreover prove the following result:
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Lemma 5.8. Let H be a Hamiltonian function which coincides with the function p1 outside
{0 < qn < 1}. Then the set of unbounded trajectories that do not go through the wall {qn = 1}
has measure 0.

Proof. Let B be the set of z ∈ R2n such that ψt(z) ∈ {qn ≤ 1} for all t ∈ R and ψt(z)→∞ when
t→ −∞. Suppose that B has positive measure. Since

B =
⋃
n≥0

B ∩ {−n ≤ qn < −n+ 1}

then there is an n0 ≥ 0 such that µ(B ∩ {−n0 ≤ qn < −n0 + 1}) > 0. We prove that this is
impossible studying the cases n0 > 0 and n0 = 0. If n0 > 0 then the fact that for t < 0

ψt({−n0 ≤ qn < −n0 + 1}) = {−n0 + t ≤ qn < −n0 + 1 + t}

implies that for each C > 0 we may find an m0 > 0 such that

µ(

m0⋃
n=n0

B ∩ {−n ≤ qn < −n+ 1}) > C.

Now, ψt preserves the measure so this contradicts the fact that ψm0 sends the above union into
B ∩ {0 ≤ qn < +1} which is bounded. Suppose now that n0 = 0. Denote B0 = B ∩ {0 ≤ qn < 1}
and Bn = {z ∈ B0 |ψ−n ∈ {−n ≤ qn < −n+ 1}}. We clearly have a disjoint union B0 =

⋃
n≥1Bn

so we may find a k0 ≥ 1 such that µ(Bk0) > 0. The same argument as for the case n0 > 0 gives a
contradiction which end the proof of the lemma.

5.1.2 Construction of the symplectic isotopy

Consider a smooth Hamiltonian of the form H = pn ◦ ϕ with ϕ a diffeomeorphism supported in
{0 < qn < 1} ∩ {pn > 0}. In particular Σ0 = R2n−1 × {0}. Taking into account Lemma 5.7 we
will make the following assumption:

Definition 5.9. We say that a (r,R)-simple function is directed if every characteristic trajectory
in every Σλ which goes through {qn = 0} intersects {qn = 1}.

In other words, we say that the trajectories go from one side of the space to the other.

Lemma 5.10. Let H be a directed (r,R)-simple function at denote by ψt its flow. Then there is
a smooth function f : R2n → R such that the map

Ψt(z) := ψf(z)t(z) verifies qn(Ψ0(x, 0, λ)) = 0 and qn(Ψ1(x, 0, λ)) = 1

for every (x, 0, λ) ∈ ×R2n−2 × {0} × R.

Proof. We first define f on R2n−2 × {0} ×R. Using the same arguments as in the second part of
the proof of Lemma 5.7 we may find a T > 0 such that qn(ψT (R2n−2 ×{0}×R)) ⊆]1,∞[. Define
f to be

f(x, 0, λ) = T + 1− qn(ψT (x, 0, λ)).

Note that the definition is independent of the choice of T : take another T ′, and suppose that
T < T ′. Then

ψT ′(x, 0, λ) = ψT ′−TψT (x, 0, λ) = ψT (x, 0, λ) + (0, T − T ′, 0),
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which gives
T ′ + 1− qn(ψT ′(x, 0, λ)) = T + 1− qn(ψT (x, 0, λ)).

Extend f to the whole R2n by saying that it is constant on trajectories, that is, f ◦ ψt = f . It is
smooth since it is clearly smooth on {qn ≤ 0}, by invariance and by the existence of T . Using the
fact that ψt is the flow of an autonomous vector field one sees that

Ψ1(x, 0, λ)) = ψf(x,0,λ)(x, 0, λ)

= ψ−qn(ψT (x,0,λ))ψ1ψT (x, 0, λ).

Now remark that using the definition of T and that the support of H is contained in {0 < qn < 1}
we have

qn(ψ1ψT (x, 0, λ)) = qn(ψT (x, 0, λ)) + 1.

Using again that ψt acts by translations outside of {0 < qn < 1} we get qn(Ψ1(x, 0, λ)) = 1.

Remark 5.11. The fact that qn(Ψ1(x, 0, λ)) = 1 implies that f(z) 6= 0 for every z ∈ R2n. One
may also define f(x, 0, λ) as the unique time s such that qn(ψs(x, 0, λ)) = 1. Moreover since f is
invariant along the trajectories we have

{f,H} = 0.

Note that f constant along the trajectories implies that Ψ is an autonomous flow:

Ψt(Ψs(z)) = ψf(ψf(z)s(z))t(ψf(z)s(z)) = ψf(z)t(ψf(z)s(z)) = Ψt+s(z)

The isotopy is generated by Y = fXH since:

d

dt
Ψt(z) = f(z)XH(ψf(z)t(z)) = f(ψf(z)t(z))XH(ψf(z)t(z)) = Y (Ψt(z)).

Denote by iλ : Σλ ↪→ R2n the natural inclusion, and by ω the standard symplectic form of R2n.

Lemma 5.12. Define Sλ : Σ0 → Σλ by

Sλ(x, t, 0) = Ψt(x, 0, λ).

Then Sλ is a smooth isotopy that verifies S∗λω = i∗0ω.

Proof. It is clear that S is smooth in all the variables. To see that Sλ is onto (resp. one to one),
remark that by (the proof of) Lemma 5.7 every trajectory of Σλ intersects once (resp. only once)
the set R2n−2×{0}× {λ}. We now prove the differential equality. Remark that for Y = fXH we
have iY ω = fdH so that

d

dt
Ψ∗tω = Ψ∗tLY ω = Ψ∗tdiY ω = Ψ∗t (df ∧ dH) = df ∧ dH,

since both f and H are invariant for ψt. Denote by jλ the map jλ(x) = (x, 0, λ) and by ut the
map ut(x) = (x, t, 0). Then clearly j∗λdH = 0 which implies that for all t

j∗λΨ∗tω = j∗λΨ∗0ω = j∗λω = u∗t i
∗
0ω.

In particular using Ψt ◦ jλ = Sλ ◦ ut we get u∗tS
∗
λω = u∗t i

∗
0ω which gives the result for vectors in

R2n−2 × {0R2}. It is now enough to prove that for v ∈ {0R2n−2} ×R× {0} we have S∗λω(v, ·) = 0.
For this remark that

dS(
∂

∂qn
) =

d

dt
Ψt = Y (Ψt).
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On the other hand, XH defines the coisotropic foliation of Σλ, or in other words, i∗λω(XH , ·) = 0.
Joining these two facts, and using that Y = fX, we get

S∗λω(
∂

∂qn
, ·) = 0

which is the desired reult, and finishes the proof.

The isotopy Sλ is not compactly supported. Indeed one may see that outside a compact set
we have

Sλ(x, t, 0) = (ϕλ(x), tf(x, 0, λ), λ)

where ϕλ is a compactly supported symplectic isotopy of R2n−2 (one may see that it is symplectic
using the proof of the previous lemma). Moreover, if x is big enough, we have f(x, 0, λ) = 1 and
ϕλ(x) = x so Sλ is the identity for x big enough. Consider T−λ(x, t, s) = (x, t, s− λ) and denote
Σ0
λ = T−λ(Σλ) (see Figure 5.3). The two submanifolds Σ0 and Σ0

λ coincide at infinity. Define the
isotopy S0

λ := T−λ ◦ Sλ : Σ0 → Σ0
λ. It is easily seen to be symplectic in the sense of the previous

lemma. Outside a compact set we have

S0
λ(x, t, 0) = (ϕλ(x), tf(x, 0, λ), 0).

We now extend S0
λ to a global isotopy.

Figure 5.3: The representation of the Σ0
λ for the simple function of Figure 5.2.

Lemma 5.13. There exists a global isotopy Fλ of R2n such that

Fλ(Σ0) = Σ0
λ, i∗0F

∗
λω = i∗0ω and F ∗λω = ω outside a compact set.

Proof. Let K ⊆ R2n be a compact such that on its complement S0
λ has the simple expression

S0
λ(x, t, 0) = (ϕλ(x), tf(x, 0, λ), 0) so (S0

λ)−1(x, t, 0) = (ϕ−1
λ (x),

t

f(ϕ−1
λ (x), 0, λ)

, 0).

Remark that outside K we have the extension S0
λ(x, t, s) = (ϕλ(x), tf(x, 0, λ), s) which is a dif-

feomorphism for every s. Inside of K extend the vector field

∂S0
λ

∂λ
◦ (S0

λ)−1

to a neighborhood U ελ of Σλ. We do it the same way as we did outside K, that is, a constant
extension of the vector field in the normal direction. One may chose the same ε for every λ ∈ [0, 1]
since outside K the extension is defined for every ε. We now multiply the vector field by a
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function which is zero outside a small normal neighborhood and which is one in a smaller normal
neighborhood. This gives a vector field on the whole R2n which outside K and on a neighborhood
of Σ0 is equal to

X̃λ(x, t, s) = (
∂ϕλ
∂λ

,
t

f

∂f

∂λ
, 0),

evaluated at (ϕ−1
λ (x), 0, λ). This vector is less than linear since ϕλ is compactly supported and

f and all its derivatives are bounded (because f = 1 at infinity). This means that the vector
field that we have built is integrable and generates an isotopy F̃λ such that F̃λ ◦ i0 = S0

λ. For
the moment it does not verify F̃ ∗λω = ω outside a compact set so we need to make one last
modification. Indeed outside a compact set, and for big s we know that F̃λ is the identity, the
same happens for big x since ϕλ is compactly supported, but not for big t. In order to solve this
issue, take a compactly supported function ρ(t) which is equal to one on a big interval containing
the projection of K. Then modify X̃λ for big t by considering the vector field

Xλ(x, t, s) = (
∂ϕλ
∂λ

, ρ(t)
t

f

∂f

∂λ
, 0),

Note that this defines a vector field tangent to Σ0 (which coincides with Σλ outside K). This
vector field is integrable and generates what we are going to call Fλ. Inside K we have

Fλ(Σ0 ∩K) = S0
λ(Σ0 ∩K) = Σ0

λ ∩K.

Outside K the vector field preserves Σ0 which coincides with Σ0
λ so we conclude that

Fλ(Σ0) = Σ0
λ.

Now, since inside K we have F̃λ = Fλ, we get

i∗0F
∗
λω = (Fλ ◦ i0)∗ω = (F̃λ ◦ i0)∗ω = (S0

λ)∗ω = i∗0ω.

Outside K we have Fλ(x, t, 0) = (ϕλ(x), gλ(x, t, 0), 0) with ϕλ symplectic and g = t outside
a compact set. In particular a straightforward calculation gives that outside K we also have
(Fλ ◦ i0)∗ω = i∗0ω. Moreover, if x or s are big enough we have Fλ = Id which is symplectic,
and if only t is big we have Fλ(x, t, s) = (ϕλ(x), t, s) which is also symplectic. We conclude that
F ∗λω = ω outside a compact set.

Proposition 5.14. Let H be a directed (r,R)-simple function. Then there is a symplectic isotopy
Φλ on the whole R2n such that Φλ(Σ0) = Σ0

λ.

The proof of this result is contained in the following subsection. It is based on the existence
of Fλ. For the moment we use it to prove Theorem 5.6.

Proof of Theorem 5.6. Consider a directed (R, r)-simple function, then by Proposition 5.14 there
is a symplectic isotopy Rλ = Φ1−t ◦ Φ−1

1 such that Rλ(Σ0
1) = Σ0

λ. We claim that this implies

Rλ(T−1B
2n(z1, R)) ∩ Σ0 \B(z0, r) = ∅ for every λ ∈ [0, 1].

(see Definition 5.3) Indeed, since Σ0\B(z0, r) ⊆ Σ0
λ for every λ ∈ [0, 1], the non-empty intersection

would imply that there is a point in T−1B(z1, R)∩Σ0
1 = T−1(B(z1, R)∩Σ1). But this is impossible

since by definition of H we have H(B(z1, R)) < 1. Finally we conclude by Theorem 5.2 that if
R > r then this isotopy does not exist. Our initial assumption the H is directed (Definition 5.9)
must be wrong so there must be λ ∈ [0, 1] such that Σλ has a characteristic trajectory which goes
through {qn = 0} but does not intersect {qn = 1}. By Lemma 5.7 we conclude that the energy
surface Σλ has a compact invariant set.
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5.1.3 Symplectic extension: proof of Proposition 5.14

In the previous subsection we saw that there exists a compactly supported isotopy Fλ of R2n such
that

Fλ(Σ0) = Σ0
λ, i∗0F

∗
λω = i∗0ω and F ∗λω = ω outside a compact set.

Definition 5.15. We say that a property (P ) is verified if we go far enough in the direction of Σ0

if there exists a compact set K ⊆ Σ0 such that (P ) is verified for every point in (Σ0\K)×R ⊆ R2n.

The proof of the extension is a combination of classical arguments in symplectic geometry
adapted to our particular context.

Lemma 5.16. Denote by ωλ = F ∗λω which is a symplectic form of R2n such that ωλ = ω outside
a compact set and i∗0ω1 = i∗0ω. For ε small enough there exists a compactly supported isotopy
ϕλ : U ε0 → Uλ where Uλ is a neighbourhood of Σ0 such that ϕλ|Σ0 = Id , ϕλ = Id if go far enough
in the direction of Σ0 and

ϕ∗λω1 |Σ0
= ω|Σ0

∈ Γ(Σ0,Λ
2(T ∗R2n)).

Proof. Recall that given a symplectic form and a metric on a vector space V one can recover
an almost complex structure on V which is moreover a symplectomorphism (see for example
[HZ94, p.14]). For the case V = R2n with symplectic form ω0 and the standard euclidean metric
one recovers the standard complex structure J0. Since this process depends smoothly on the
parameters we can use ωλ and the standard euclidean metric to get an almost complex structure
Jλ such that it equals the standard structure J0 at infinity and which depends smoothly on λ.
Define

ϕλ(x, t, s) = (x, t, 0) + sJλ(
∂

∂qn
)(x, t, 0)

then clearly ϕλ|Σ0 = Id , and for points in Σ0, that is, points with s = 0,

dzϕλ|TzΣ0 = Id and dzϕλ(
∂

∂pn
) = Jλ

∂

∂qn
(z).

In particular, by construction ϕλ is symplectic between ωλ and ω0 over Σ0, that is, ϕ∗λωλ |Σ0
= ω|Σ0

.
We now have to prove that ϕλ is a diffeomorphism on U ε0 for some ε. In order to see this one
may use the fact that ϕλ = Id if (x, t) is big enough, and that the domain of definition of λ is
the compact set [0, 1].

The previous lemma gives an isotopy ϕλ on a neighbourhood of Σ0 such that

Fλ ◦ ϕλ(Σ0) = Σ0
λ and (Fλ ◦ ϕλ)∗ω|Σ0 = ϕ∗λF

∗
λω|Σ0 = ω|Σ0 ,

and ϕ∗λF
∗
λω = ω if we go far enough in the direction of Σ0. We now use the following classical

Darboux lemma to construct a symplectic diffeomorphism on a neighborhood of Σ0.

Proposition 5.17 (Darboux lemma). Let ω0 and ωλ be two symplectic forms on R2n such that

ω0|Σ0 = ωλ|Σ0 ∈ Γ(Σ0,Λ
2(T ∗R2n))

and ω0 = ωλ outside a compact set. Then there is a diffeomorphism φλ : U0 → Uλ between two
neighborhoods of Σ0 such that φ|Σ0 = Id Σ0, φ∗λωλ = ω0 and φλ is the identity if we go far enough
in the direction of Σ0.
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Proof. Set ωtλ = (1 − t)ω0 + tωλ. The fact that ω0|Σ0 = ωλ|Σ0 together with ω0 = ωλ outside
a compact set implies that ωtλ is a symplectic form on some ε neighborhood of Σ0. By Moser’s
trick we need to find Xt

λ a smooth family of vector fields on a neighborhood of Σ0 such that Xt
λ

is vanishing on Σ0 and
LXt

λ
ωtλ + ωλ − ω0 = 0.

By Lemma 5.18 below we can find a βλ ∈ Ω1(R2n) such that dβλ = ωλ − ω0, βλ|Σ0 = 0 and βλ is
zero if we go far enough in the direction of Σ0. As ωtλ is non degenerate on an ε neighborhood of
Σ0, for t ∈ [0, 1] there exists a vector field Xt

λ on this neighborhood such that

iXt
λ
ωtλ + βλ = 0.

By Cartan’s formula Xt
λ will also verify the first equation. Now since βλ is zero when we go far

enough in the direction of Σ0, the same will happen to Xt
λ, so we are able to find a neighborhood

of Σ0 for which the time one flow of Xt
λ is defined. The existence of βλ is guaranteed by the

following lemma.

Lemma 5.18. Let α ∈ Ω2
c(R2n) such that i∗0α = 0 and dα = 0. Then there is a 1-form β ∈

Ω1(R2n) such that dβ = α and β|Σ0
= 0. Moreover β is zero if we go far enough in the direction

of Σ0.

Proof. Consider the isotopy φr(x, t, s) = (x, t, rs) and denote Z its infinitesimal generator. Define

K(α) =

∫ 1

0
φ∗riZαdr.

Since φr|Σ0 = Id and Z|Σ0 = 0 we get K(α)|Σ0 = 0. Moreover, i∗α = 0 implies that φ∗0α = 0 and
Cartan’s formula together with dα = 0 imply

α = φ∗1α− φ∗0α =

∫ 1

0

d

dr
φ∗rαdr = d

∫ 1

0
φ∗riZαdr = dK(α).

Finally since α is compactly supported, if z is a point far enough in the direction of Σ then
φr(z) will be outside the support of α for r ∈ [0, 1]. The integral definition of K(α) now gives
K(α)(z) = 0.

Applying the previous result, we get an isotopy φλ defined on a neighborhood U ε0 of Σ0 such
that

Fλ ◦ ϕλ ◦ φλ(Σ0) = Σ0
λ and (Fλ ◦ ϕλ ◦ φλ)∗ω = φ∗λϕ

∗
λF
∗
λω = ω

and (Fλ◦ϕλ◦φλ)∗ω = ω if we go far enough in the direction of Σ0. We finish with the construction
of the global symplectic extension. This is a version of Banyaga’s theorem [Ban78] that can be
found in [MS17][p.115].

Proposition 5.19. The isotopy Fλ ◦ϕλ ◦ φλ can be extended to a symplectic isotopy Φλ : R2n →
R2n. In particular it verifies Φλ(Σ0) = Σ0

λ.

Proof. Consider N = U ε
′

0 with ε′ < ε so that N ⊆ U ε0. Now choose any compactly supported
extension ψλ of ϕλ ◦ φλ and consider the isotopy Eλ = Fλ ◦ ψλ. Define ωλ = E∗λω and note that
ωλ agrees with ω on N and outside a compact set. Hence the forms τλ = d

dλωλ vanish on N .
Consider σλ := K(τλ) where K is defined on Lemma 5.18 as

K(τλ) =

∫ 1

0
φ∗riZτλdr.
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Since ϕr contracts N for 0 < r < 1 we see that σλ = 0 on N . Now we use Moser’s trick to find
a compactly supported diffeomorphism χλ of R2n which restrict to the identity on N and satisfy
χ∗λωλ = ω for all λ. To finish the proof have to make sure that we will end up with a globally
defined diffeomorphism. Recall that the vector field which defines χλ is given by the equation

iXλωλ = −σλ.

Since we are only interested in the behavior at infinity this equation becomes

iXλω = −σλ.

By definition φr(x, t, s) = (x, t, rs) so that Z = s ∂∂s . Now τλ has compact support independent of
λ so one may easily bound the norm and check that there is a constant C such that

‖Xλ‖ ≤ C|s|

which implies that the vector field is globally integrable. Thus Φλ := Eλ ◦ χλ is the desired
extension.

85



Chapter 5. Rigidity on energy surfaces

86



Chapter 6

Symplectic rigidity in Hamiltonian
PDEs

In this chapter we study symplectic rigidity properties of infinite dimensional Hamiltonian sys-
tems. We will replace the classical phase space R2n by an infinite dimensional separable Hilbert
space E. The symplectic forms that we consider are continuous 2-forms ω : E × E → R which
are non-degenerate in the sense that the associated linear mapping

Ω : E → E∗ defined by ξ 7→ ω(ξ, ·)

is an isomorphism. Remark that in infinite dimensions we also have the concept of weak symplectic
form if Ω is only injective. Let H : E → R be a smooth Hamiltonian function. In the same way
as we do in the finite dimensional case, one can define the vector field XH(u) = Ω−1(dH(u)) and
we can consider the ordinary differential equation

u̇ = XH(u).

If this equation defines a flow Φt, one can then investigate if the properties that we saw in R2n

appear also in this context.

As we saw in the introduction, equations of this type arise naturally as PDEs when studying
conservative physical systems, but the situation is not exactly the same as the one described. In
most cases the Hamiltonian H is not defined on the whole space E but only on a dense Hilbert
subspace DH(E) ⊆ E. As a consequence, the Hamiltonian vector field is also densely defined,
so the concept of solutions of the Hamiltonian equation on E is not entirely clear. There is no
universal way of solving this problem, and most of the times one has to examine the properties
of the particular example in order to find a ”good” definition of the generalized solutions on E.

The approach that we choose in this manuscript is to look at Hamiltonian equations of the
form

u̇ = XH(u) = JAu+ J∇ht(u).

where JA is a linear operator only defined on a dense subspace DH(E) ⊆ E and ht is a smooth
function defined on the whole space E (see Section 6.1). If the exponential etJA is bounded on E
for every t ∈ R, one can then define these ”generalized” solutions as continuous curves on E that
verify an integral equation (Duhamel’s formula) which only involves etJA and ∇h. We can then
define the flow Φt, and study the symplectic properties that may appear.

This chapter starts by recalling the proof by Kuksin [Kuk95] that under some compactness
assumptions on the nonlinearity, Φt is a symplectomorphism that can be approximated by finite
dimensional Hamiltonian flows. We then study symplectic rigidity properties of Φt. We start with
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a construction of an infinity dimensional symplectic capacity based on Viterbo’s action selectors.
This construction is similar to the one that Kuksin gave in [Kuk95] using Hofer-Zehnder’s capacity,
and can be thought of as a sort of limit of finite dimensional capacities. As in Kuksin’s classical
construction, our capacity is invariant by Φt and inherits the normalization property. In particular
it can be used to prove an analogue of Gromov’s non-squeezing in infinite dimension. We then
continue with the extension of the middle dimensional rigidity theorem (Theorem 4.55) to the
infinite dimensional case. A particular example where this theorem applies is the Sine-Gordon
equation.

6.1 Semilinear Hamiltonian equations

Denote by 〈·, ·〉 the scalar product of E. Consider an anti-self-adjoint isomorphism J̄ : E → E
and supply E with the strong symplectic structure

ω(·, ·) = 〈J̄ ·, ·〉.

Denote J = (J̄)−1 which is also an anti-self-adjoint isomorphism of E. Take a possibly un-
bounded linear operator A with dense domain such that JA generates a C0 group of (symplectic)
transformations

{etJA | t ∈ R} with ‖etJA‖E ≤MeN |t|

and consider the Hamiltonian function

Ht(u) =
1

2
〈Au, u〉+ ht(u),

where h : E × R→ R is smooth. The corresponding Hamiltonian equation has the form

u̇ = XH(u) = JAu+ J∇ht(u).

In this case the domain of definition of the Hamiltonian vector field is the same as the domain
D(A) of A which is a dense subspace of E. This implies that classical solutions can only be defined
on D(A). More precisely by a classical solution we mean a function u : [0, T [→ E continuous
on [0, T [, continuously differentiable on ]0, T [, with u(t) ∈ D(A) for 0 < t < T and such that
the equation is satisfied on [0, T [. Nevertheless, the boundedness of the exponential allows us to
define solutions in the whole space E via Duhamel’s formula:

Definition 6.1. A continuous curve u(t) ∈ C([0, T ];E) is a (mild) solution of the Hamiltonian
equation in E with initial condition u(0) = u0 if for 0 ≤ t ≤ T ,

u(t) = etJAu0 +

∫ t

0
e(t−s)JAJ∇hs(u(s))ds.

One can easily verify that if u(t) is a classical solution, then it is also a mild solution. For
semilinear equations we know (see for example [Paz83]) that if ∇h is locally Lipschitz continuous,
then for each initial condition there exists a unique solution which is defined until blow-up time.
If moreover ∇h is continuously differentiable then the mild solutions with u0 ∈ D(A) are classical
solutions of the initial value problem. Locally we get a smooth flow map Φt : O ⊆ E → E defined
on an open set O. If every solution satisfies an a priory estimate

‖u(t)‖E ≤ g(t, u(0)) <∞

where g is a continuous function on R × E, then all flow maps Φt : E → E are well defined and
smooth. This is the case for example if ‖∇ht(u)‖E ≤ C. Remark that the choice of the linear
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map A is arbitrary. Indeed if JA generates a continuous group of transformations and B is a
bounded linear operator then J(A + B) is an infinitesimal generator of a group etJ(A+B) on E
satisfying ‖etJ(A+B)‖E ≤MeN+M‖B‖|t|. One can then consider the linear part J(A+B) and set
J∇ht − JB as the nonlinear part. This indeterminacy is only apparent: classical solutions verify
Duhamel’s formula for JA and J(A + B) so both flow maps coincide over the dense subspace
D(A) which by continuity implies that the two flows are equal.

6.1.1 Examples

There are many important partial differential equation in mathematical physics that can be
written as a semilinear Hamiltonian equation. We just present two families of examples just
to give the reader an intuition and justification of why we restrict our study to this type of
equations. We present them with periodic boundary conditions but the same applies for more
general settings.

Nonlinear wave equation. Consider the periodic nonlinear string equation

ü = ∆u− f̃(t, x, u), u = u(t, x),

where x ∈ Td = Rd/2πZd and f̃ is a smooth function which has at most a polynomial growth in
u, as well as its u− and t−derivatives. Set f = f̃ −u and denote by B the operator B =

√
1−∆.

We may write the previous equation in the form

u̇ = −Bv,
v̇ = Bu+B−1f(t, x, u).

Define E = H
1
2 (Td)×H

1
2 (Td) as the product of Hilbert spaces where the scalar product of H

1
2 (Td)

is given by

〈u1, u2〉 =

∫
Td
Bu1(x)u2(x)dx.

Now put A = B×B and J : E → E by J(u, v) = (−v, u). The symplectic form that we are going
to work with is simply ω(·, ·) = 〈−J ·, ·〉. It is clearly a strong symplectic form on E. Define

ht(u, v) =

∫
Td
F (t, x, u(x))dx, F =

∫ u

0
fdu,

so that

∇ht(u, v) = (B−1f(t, x, u(x)), 0).

The Hamiltonian function

H(u, v) =
1

2
〈A(u, v), (u, v)〉+ ht(u, v),

generates the Hamiltonian vector field

XH(u, v) = JA(u, v) + J∇ht(u, v),

which defines the system associated to the nonlinear wave equation.
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Nonlinear Schrödinger equation. Consider the periodic nonlinear Schrödinger equation

iu̇ = ∆u+
∂g

∂ū
(t, x, u, ū) u = u(t, x),

where x ∈ Td = Rd/2πZd. In this case the phase space is E = L2(Td,C). The real scalar product
is

〈u, v〉 =
1

(2π)d
Re

∫
Td
u(x)v̄(x)dx,

and the complex structure is given by u 7→ Ju = iu(x). This gives the strong symplectic on E

ω(u, v) = − 1

(2π)d
Im

∫
Td
u(x)v̄(x)dx.

Set A = −∆ and

ht(u) =
1

2(2π)d

∫
Td
g(t, x, u(x), ū(x))dx.

Then

∇ht(u) =
∂g

∂ū
(t, x, u, ū)

and the Hamiltonian vector field

XH(u) = JA(u) + J∇ht(u)

defines via the Hamiltonian equation the nonlinear Schrödinger equation.

6.1.2 Hilbert scales

In the previous examples the symplectic spaces that we worked with form part of one parameter
families of Hilbert spaces Hs(Td) × Hs(Td) and Hs(Td,C), which receive the name of Hilbert
scales. In order to get the finite dimensional approximation of the flow, we need to ask for a
compacity condition which is better stated in the context of Hilbert scales. We now present the
definition and basic properties of these spaces.

Let E = F0 be a Hilbert space with scalar product 〈·, ·〉 and Hilbert basis {ϕk, k ∈ Z̃} where
Z̃ is an even subset of some Zd (so −Z̃ = Z̃). Let {νk | k ∈ Z̃} be a positive sequence such that
νk = ν−k and νk → +∞ as |k| → +∞. For any real number s we define Fs as the Hilbert space
with Hilbert basis {ϕkν−sk | k ∈ Z̃}. Denote by ‖·‖s and 〈·, ·〉s the norm and the scalar product
associated to Fs. Then

‖u‖2s =
∑
|uk|2ν2s

k if u =
∑

ukϕk.

For s = 0 we omit the index so for example we denote ‖·‖0 = ‖·‖. The totality of {Fs} is called a
Hilbert scale, and the basis {ϕk} is called a basis of the scale. A Hilbert scale may be continuous
or discrete depending on if the parameter s is real or integer. The following lemma summarizes
some of the key properties of Hilbert scales.

Lemma 6.2 (see for example [Kuk00]). Let {Fs} be a Hilbert scale. Then

• If r < s then Fs is compactly embedded into Fr.

• The spaces Fs and F−s are conjugated with respect to the scaler product 〈·, ·〉: for any
u ∈ Fs ∩ F0 we have

‖u‖s = sup{|〈u, v〉| | v ∈ F−s ∩ F0, ‖v‖−s = 1}.

In particular, for any space Fs we can identify the dual (Fs)
∗ with the space F−s.
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• For −∞ < a < b < +∞ and 0 ≤ θ ≤ 1 the space Fc with c = (1 − θ)a + θb interpolates
the spaces Fa and Fb, that is, Fc = [Fa, Fb]. In particular, for any u ∈ Fb, the following
interpolation inequality holds:

‖u‖c ≤ ‖u‖1−θa ‖u‖θb .

Example 6.3. Take for E = F0 the space of square integrable 2π periodic real functions, L2(T,R).
It has a basis given by

ϕ0 =
1√
2π
, ϕk =

1√
π

cos kx, ϕ−k =
1√
π

sin kx,

for k ∈ N \ {0}. Take νk = max(1, |k|). Then the resulting spaces Fs can be identified with the
Sobolev spaces Hs(T,R).

6.1.3 Finite dimensional approximation

In this subsection we reproduce the basic results of the finite dimensional approximation con-
tained in Kuksin’s article [Kuk95]. We include the proofs for completeness. What follows can be
explained in slightly more generality, but we choose to restrict to the particular form of the exam-
ples that we have in mind. Let {Fs} be a Hilbert scale with Hilbert basis given by {ϕ±j | j ∈ N}
with F0 = E. Denote En the vector space generated by {ϕ±j | j ≤ n}. It is a real vector space

isomorphic to R2n+2 which is contained in every Fs. Let En be the Hilbert subspace of E with
basis {ϕ±j | j > n} so that E = En ⊕ En, and write u = (un, u

n) for an element u ∈ E. Denote
by Πn : E → En be the natural projection. The idea is to approximate the flow using the flow of
the projection of the vector field on En. We are going to restrict the class of the linear operators
A so that they commute with the projection on En.

Let {λj} be a sequence of positive real numbers (with possibly λj → ∞) and consider the
linear operator A whose action on the basis is given by

Aϕ±j = λjϕ
±
j .

It is a self-adjoint operator in E with the natural domain of definition. Now consider the complex
structure J on E defined by the action on the basis

Jϕ±j = ±ϕ∓.

It is easy to see that the operator JA is anti self adjoint and generates a one parameter group
of isometries etJA such that the restriction to the plane Rϕ+

j ⊕ Rϕ−j = (R ⊕ RJ)ϕ+
j = Cϕ+

j is

just the rotation eitλj . The fact that J and A preserve En for all n will allow us to define the
finite dimensional approximations just by projecting the vector field onto En. More precisely, for
a smooth function ht on E consider the Hamiltonian function

Hn(u) =
1

2
〈Au, u〉+ hn(u) where hn(u) := ht(Πn(u)).

The Hamiltonian equation now becomes

u̇ = XHn(u) = JAu+ J∇hn(u),

where ∇hn(u) = Πn(∇ht(Πn(u))). The vector field XHn generates a local flow Φt
n. This flow can

be decomposed as

Φt
n = etJA ◦ V t

n with V t
n(u) = (φtn(un), un).
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Here φtn is a finite dimensional Hamiltonian flow on En generated by the time dependent function
hn ◦ etJA. In order to make sure that the flow of XH and XHn are going to be globally well
defined, we need to make some assumptions on the nonlinearity h. The following conditions allow
us to work as if we where on a locally compact space.

Definition 6.4. Let {Fs} be a Hilbert scale with F0 = E. We say that the Hamiltonian equation

u̇ = XHn(u) = JAu+ J∇hn(u),

with Aϕ±j = λjϕ
±
j , complex structure Jϕ±j = ±ϕ∓ and a smooth function h : R×E → R satisfies

the compactness condition 6.4 if

• h has a C2 extension to R× Fs → R for some s < 0.

• For every T > 0 there is a constant CT > 0 such that

‖∇ht(z)‖ ≤ CT for every (t, z) ∈ [−T, T ]× E.

Remark 6.5. For the results in this section the second condition can be weakened to just asking
that ∇h : R× Fs → E sends bounded sets to bounded sets (see [Kuk95]). We choose our second
condition for simplicity since these are the hypothesis needed to extend the middle dimensional
rigidity theorem (Theorem 4.55) to infinite dimensions.

The first consequence of satisfying the compactness assumption is that the Hamiltonian equa-
tion defines a global flow made up of symplectomorphisms. More precisely we have the following
lemma:

Lemma 6.6. Suppose that the Hamiltonian equation satisfies the compactness condition 6.4.
Then the gradient of h is locally Lipschitz,i.e, for every T > 0 and R > 0 there is a constant
CT (R) such that

‖∇ht(u)−∇ht(v)‖ ≤ CT (R)‖u− v‖ for every (t, z) ∈ [−T, T ]×BR.

Moreover, the Hamiltonian equation defines a globally defined flow Φt : E → E such that (Φt)∗ω =
ω.

Proof. For the first claim one has to use that h has a C2 extension to some Fs s < 0 where E is
compactly included. Then use that [−T, T ] × BE

R is precompact in R × Fs to bound d∇h on a
suitable norm. The existence of the local flow Φt follows from classical arguments of fixed point
theorems (see [Paz83] or [Kuk95]) applied to Duhamel’s formula. The second property in the
compactness assumption then guarantees that solutions do not blow up in finite time, so the flow
is globally defined. For the fact the Φt is a symplectomorphism see [Kuk00].

We continue with the finite dimensional approximation. Remark that since ‖∇ht(z)‖ is
bounded, the same will be true for hn, so the flow Φt

n is also globally defined. The key point of
the approximation is the following lemma which is a slight modification of a lemma in [Kuk95,
appendix 2]. Remark the Πn is defined on all Fs and commutes with the inclusion Fs ↪→ Fr.

Lemma 6.7. Let K be a compact subset of Fs for some s. Let g : R × Fs → E be a continuous
map and fix a T > 0. Then

sup
(t,u)∈[−T,T ]×K

‖gt(u)− gt(Πnu)‖

converges to zero as n goes to infinity. Moreover suppose that h satisfies the compactness condition
6.4. Then for every R > 0 there exists a decreasing function εR : N→ R such that εR(n)→ 0 as
n→∞ and

‖∇ht(u)−∇hn(u)‖ ≤ εR(n) for every (t, u) ∈ [−T, T ]×BR.
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Proof. By contradiction suppose that there is a sequence {(sn, zn)} ⊂ [−T, T ] × K such that
‖gsn(zn)− gsn(Πnzn)‖E ≥ δ > 0 for every n ∈ N. By compactness we may suppose that there is a
converging subsequence (snk , znk)→ (s, z). This sequence will also verify Πnkznk → z. We have

‖gsnk (znk)− gsnk (Πnkznk)‖ ≤ ‖gsnk (znk)− gs(z)‖+ ‖gs(z)− gsnk (Πnkznk)‖

and the quantity of the rhs converges to zero as nk goes to infinity by continuity of g. In particular,
for nk big enough we get ‖gsnk (znk)− gsnk (Πnkznk)‖ < δ, a contradiction.

For the second claim remark that ∇ht has an extension to Fs for some s < 0. Denote by ∇h̃t
the extension and let i : E → Fs be the compact inclusion so that ∇ht(u) = ∇h̃t(i(u)). Recall
that ∇hn(u) = Πn∇ht(Πn(u)). We have

‖∇ht(u)−∇hn(u)‖ ≤ ‖∇ht(u)−Πn∇ht(u)‖+ ‖Πn∇ht(u)−Πn∇ht(Πnu)‖

≤ ‖∇h̃t(i(u))−Πn∇h̃t(i(u))‖+ ‖∇h̃t(i(u))−∇h̃t(Πni(u))‖.

For every R > 0 the sets
⋃
|t|≤T ∇h̃t(i(BE(0, R))) and i(BE(0, R))) are precompact in E and Fs

respectively, so we may take the sup in BE(0, R) and |t| ≤ T and apply the first part of the lemma
to conclude.

Now we have all the tools we need for the finite dimensional approximation.

Proposition 6.8 (see [Kuk95]). Fix a t ∈ R. For each R > 0 and ε > 0 there exists an N such
that if n ≥ N then

‖V t(u)− V t
n(u)‖ ≤ ε

for all u ∈ BR.

Proof. Duhamel’s formula and the fact that that etJA is a bounded operator give

‖V t(u)− V t
n(u)‖ ≤ C

∫ t

0
‖∇hs(Φs(u))−∇hn(Φs

n(u))‖ds ≤

≤ C
∫ t

0
‖∇hs(Φs(u))−∇hs(Φs

n(u))‖ds+ C

∫ t

0
‖∇hs(Φs

n(u))−∇hn(Φs
n(u))‖ds.

If u ∈ BR and s ∈ [0, t] then ‖∇h‖ bounded implies that for all n ∈ N the element Φs
n(u) does not

leave a ball of radius R′(R, t). We can now use Lemma 6.7, the fact that ∇h is locally Lipschitz
(Lemma 6.6) and the decomposition Φt(u) = etJAV t(u) to get

‖V t(u)− V t
n(u)‖ ≤ C̃

∫ t

0
‖V s(u)− V s

n (u)‖ds+ Ctε(n).

By Gronwall’s lemma we conclude that

‖V t(u)− V t
n(u)‖ ≤ ε(n)C(t)

where C(t) depends continuously on t. The function ε(n) is decreasing and converges to zero so
there exists an N ∈ N such that if n ≥ N then ε(n)C(t) ≤ ε which gives the result.

93



Chapter 6. Symplectic rigidity in Hamiltonian PDEs

6.1.4 Examples

Nonlinear string equation. In order to satisfy the compactness condition of Definition 6.4 we
need to restrict the type of nonlinearity as well as the dimension of the equation. We will change
the operator A considered in the Hamiltonian formulation so that our class of PDEs include the
well known Sine-Gordon equation. Consider the one dimensional equation

ü = uxx − f(t, x, u), u = u(t, x),

where x ∈ T = R/2πZ Recall that if we denote by B the operator B = (−∂2/∂x2 + 1)1/2 then we
may write the equation in the form

u̇ = −Bv,
v̇ = (B −B−1)u+B−1f(t, x, u).

Define E = H
1
2 (T)×H

1
2 (T) as the product of Hilbert spaces where the scalar product of H

1
2 (T)

is given by

〈u1, u2〉 =
1

2π

∫ 2π

0
Bu1(x)u2(x)dx.

If we define the function

ht(u, v) = − 1

2π

∫ 2π

0
F (t, x, u(x))dx, F =

∫ u

0
fdu.

we get

∇ht(u, v) = (B−1f(t, x, u(x)), 0).

Suppose that f is a smooth function which is bounded over compact time intervals and has
at most a polynomial growth in u, as well as its u− and t−derivatives:∣∣∣ ∂a

∂ua
∂b

∂tb
f(t, x, u)

∣∣∣ ≤ Ck(1 + |u|)Mk , for for a+ b = k and all k ≥ 0,

with M0 = 0, Ck are positive constants bounded for bounded t and nonnegative Mk’s are t
independent. Then the gradient verifies ‖∇ht‖ ≤ C0 over the compact time interval associated to
C0. Moreover the polynomial growth condition on f guarantees that there exists a 0 < θ < 1/2

such that ∇h has a C1 extension to H
1
2
−θ(T)×H

1
2
−θ(T) (see [Kuk95]). A particular case where

such properties can be verified is f(t, x, u) = sinu which corresponds to the Sine-Gordon equation.
Now putting A = (B − B−1)× B and defining J : E → E by J(u, v) = (−v, u) we can write the
nonlinear string equation as the semilinear PDE:

(u̇, v̇) = JA(u, v) + J∇ht(u, v).

Consider the symplectic Hilbert basis {ϕ±j | j ∈ Z} where

ϕ+
j =

1

(j2 + 1)
1
4

(ϕj(x), 0), ϕ−j =
1

(j2 + 1)
1
4

(0,−ϕj(x)),

with

ϕj(x) =

{√
2 sin jx, j > 0,√
2 cos jx, j ≤ 0.
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In this basis we have (B ×B)ϕ±j =
√
j2 + 1ϕ±j so if we denote λj =

√
j2 + 1 we get that

Aϕ+
j = (λj −

1

λj
)ϕ+

j and Aϕ−j = λjϕ
−
j .

Now remark that JA has eigenvalues {±i
√
λ2
j − 1 = ±ij}. If we calculate etJA we get that its

action on each symplectic plane ϕ+
j R⊕ ϕ

−
j R is given by the matrix cos tj −

√
j2+1
j sin tj

j√
j2+1

sin tj cos tj


which gets closer and closer to a rotation as j goes to infinity. In particular we get a bounded
group of symplectic linear maps. In this case the exponential does not define an isometry, but
one may see that the results of the previous sections still apply. In particular we have the finite
dimensional approximation.

For higher dimensions, it is known (see [Kuk95]) that the weak compactness assumption is
verified for d = 2 if f is a polynomial of degree less than or equal to 4, and for d = 3 if f is a
polynomial of at most degree 2.

Nonlinear Schrödinger equation. In this case it is unlikely that the equation satisfies the
compactness assumption under conditions on the nonlinearity. In order to guarantee the com-
pactness condition we smooth out the Hamiltonian and consider

ht(u) =
1

2(2π)d

∫
Td
g(t, x, U(x), Ū(x))dx, with U = u ∗ ξ,

and ξ ∈ C∞(Td,R). The corresponding Hamiltonian equation is

iu̇ = ∆u+
∂g

∂ū
(t, x, U, Ū) ∗ ξ U = u ∗ ξ.

In this case it is enough to ask that g is a smooth function such that ∂g
∂ū is bounded.

6.2 Infinite dimensional symplectic rigidity

In this section we will explore the rigidity properties of the flow of semilinear Hamiltonian PDEs
where the nonlinearity satisfies the compactness assumption. As in the finite dimensional case,
symplectic rigidity starts with Gromov’s nonsqueezing. The first proof of the analogue of Gromov’s
theorem for infinite dimensional Hamiltonian systems appeared in Kuksin’s article [Kuk95] in the
setting that we are working with. We want to point out that other authors followed him giving
proofs for the theorem in different contexts for equations which are not compact perturbations of
linear flows. For more details we refer the reader to the Introduction of this manuscript.

6.2.1 Non-squeezing theorem

Once we have the finite dimensional approximation, the non-squeezing theorem comes as a direct
corollary. This is a consequence of the fact that the hypothesis of the theorem are open in the
C0 topology. More precisely let ϕ be a diffeomorphism of R2n and suppose that for every ε > 0
there exists a symplectomorphism ψ such that

dC0(ϕ,ψ) ≤ ε,
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then one can prove that ϕ satisfies the statement of Gromov’s non-squeezing. The proof goes
along the same lines as the one we explain in Theorem 6.11. In fact, in finite dimensions we have
the following stronger and surprising result:

Theorem 6.9 (Eliashberg [Eli87] and Gromov [Gro85]). The group of symplectomorphism is C0

closed in the group of diffeomorphisms.

This fact came as a surprise in the field. In spite of the fact that being a symplectomorphism
is a C1 condition, the property is stable by C0 approximations. This theorem is the starting
point of a rapidly growing field called C0 symplectic geometry. The interested reader may look
at Humilière’s HDR [Hum18] for an introduction to the main concepts and results.

We now continue with the proof of the theorem for our class of PDEs. As before, we are
working on a Hilbert space E with Hilbert basis given by {ϕ±j | j ∈ N}. Denote

u =
∑
j

(u+
j ϕ

+
j + u−j ϕ

−
j ) =

∑
j

(u+
j + u−j J)ϕ+

j

and consider the ball Br of radius r centered at the origin and and the cylinder

CkR = {u ∈ E | |u+
k |

2 + |u−k |
2 < R2}.

Denote Πk−1
k the projection on the symplectic plane generated by {ϕ+

k , ϕ
−
k }.

Remark 6.10. Throughout this section having k as an exponent means that we take the elements
of the basis with |j| > k, and having k as an index means that we take the elements with |j| ≤ k.

Theorem 6.11. (see [Kuk95]) Let Φ = Φt : E → E be the flow of a Hamiltonian satisfying the
compactness condition 6.4. Then Φ(Br) ⊆ CkR implies r ≤ R.

Proof. For each ε > 0 and for the radius r of the ball use Lemma 6.7 to find the N ∈ N such that
VN is ε close to V over Br. Suppose that for every u ∈ Br we have

‖Πk−1
k (Φ(u))‖ ≤ R.

The map etJA is an isometry on every symplectic plane {ϕ+
k , ϕ

−
k } and commutes with Πk−1

k so for
every u ∈ Br

‖Πk−1
k (VN (u))‖ ≤ ‖Πk−1

k (V (u)− VN (u))‖+ ‖Πk−1
k (V (u))‖ ≤ ε+ ‖Πk−1

k (Φ(u))‖ ≤ ε+R.

Since BEn(0, r) ⊂ Br we deduce that for every u ∈ BEn(0, r)

‖Πk−1
k (φtN (u))‖ = ‖Πk−1

k (VN (u))‖ ≤ ε+R

where φtN is a finite dimensional Hamiltonian flow in R2N+2. By Gromov’s non-squeezing we
conclude that r ≤ R+ ε. Since ε was arbitrary we get r ≤ R.

What type of information does this theorem give about the behavior of solutions of the Hamil-
tonian equation? We now give an interpretation in terms of the problem of energy transition to
high frequencies. This behavior can also be seen as a kind of instability in the Fourier coefficients
(see Corollary 6.14 or [Tao06]). We start with the remark that the Hamiltonian equation of Def-
inition 6.4 preserves the subset D(A) (see [Paz83]), and since H is defined on this subspace one
can prove that

H(Φt(u)) = H(u) for every u ∈ D(A).
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Figure 6.1: The representation of the projection on each Ek−1
k for a ball and a cylinder in sym-

plectic space E = H
1
2 ×H

1
2 with coefficients in the L2×L2 basis. To understand the figure recall

that if ϕ+
k is an orthonormal element of the basis in H

1
2 (see Subsection 6.1.4) then the coefficient

of this element ϕ+
k on the L2 basis is (1 + k2)−

1
4 which goes to zero when k goes to infinity.

Now recall that the Hamiltonian can be written as

H(u) =
1

2
〈Au, u〉+ ht(u) =

∑
j∈N

λj(|u+
j |

2 + |u−j |
2) + ht(u).

In particular, by the conservation of energy, if one of the coefficients |u±k (t)|2 with big k decreases
with time then there has to be an growth of energy coming from another place. By the compactness
assumption ht is bounded over bounded sets and Φt sends bounded sets to bounded sets. This
implies that ht cannot compensate a big decrease of one coefficient, so the growth of energy has to
come from the growth of another coefficient |u±l |

2. This phenomenon is called transfer of energy
between the frequencies. In light of this behavior, the following question arises: Can this transfer
of energy between the coefficients happen in a uniform way for a fixed set U? The nonsqueezing
statement can be interpreted as:

Corollary 6.12. The energy contained in a given frequency cannot be transfered to other fre-
quencies in a locally uniform way (see Figure 6.1).

The problem of the transfer of energy has been studied for several other Hamiltonian PDEs.
We shortly explain the example of the Szegö equation where one can explicitly describe the
transfer of energy for particular solutions, instead of uniform groups of solutions as in the previous
corollary. For more details we refer to [GG16, GG17]. Consider on L2(T,C) the projector

Π(
∑
k∈Z

f̂(k)eikx) =

+∞∑
k=0

f̂(k)eikx.

For initial conditions in C∞(T,C) ∩ Ran(Π) the cubic Szegö equation is defined as

iu̇ = Π(|u|2u).

One can prove that the L2 norm of the solution is a constant of motion, so again a decrease of one
of the coefficients has to be compensated with the growth of another one. The following theorem
studies the transfer of energy to higher frequencies by studying the Hs norm for high values of s.

Theorem 6.13 (see [GG16]). For any solution u to the Szegö equation, we have, for all s > 1
2

‖u(t)‖Hs ≤ CseC
′
st.
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where Cs and C ′s are positive constant which depend only on s and ‖u0‖Hs. Moreover there exists
a dense Gδ subset of Π(C∞(T,C)) denoted by G such that for every solution with u0 ∈ G, for all
s > 1

2 and all M ≥ 1 we have

lim sup
t→∞

‖u(t)‖Hs

|t|M
= +∞

and on the other hand

lim inf
t→∞

‖u(t)‖Hs = ‖u0‖Hs .

The fact that the L2 norm is constant together with an Hs norm which goes to infinity
implies that there is a transfer of energy to high frequencies. The result for the growth of the
Hs norm implies that the coefficients for the higher frequencies become bigger, so the wave has
more oscillation. This is why this phenomenon is sometimes called wave turbulence. For this
equation this transfer of energy is less than exponential, but on a dense subspace it is faster that
any polynomial growth. The last equality also indicates that the trajectories are always coming
back to the Hs norm of t = 0, that is, the movement has a certain recurrent aspect. Remark that
there is no locally uniform control on this transfer of energy.

The second interpretation of the non-squeezing behavior is the following corollary of Gromov’s
non-squeezing which exhibits the result as a instability for solutions (see [Tao06]). A solution u
can loose the energy of a certain frequency k at some point, but this cannot happen to all the
solutions with initial condition near u at the same time. If we look at the evolution of a given ball
BR centered at u(0), for every ε > 0 and every t there is at least one solution whose frequency is
outside the disc of radius R− ε centered at u(t).

Corollary 6.14. Let u be a global classical solution of the Hamiltonian equation satisfying the
compactness condition. Denote uk = u+

k + iu−k ∈ C. Then for any R > r > 0, any times t0, t1 ∈ R
and any k ∈ N there exists another classical solution ũ such that

‖u(t0)− ũ(t0)‖E ≤ R but |uk(t1)− ũk(t1)| > r.

6.2.2 Symplectic capacities

In this subsection we define a type of infinite dimensional symplectic capacities. These capacities
are constructed as a kind of limit of the classical ones, so they are going to inherit the basic
properties. In particular, they verify the normalization property. Moreover, using the finite di-
mensional approximation we are able to prove that these capacities are invariant by our privileged
class of Hamiltonian flows. The first construction of such a capacity appeared in [Kuk95] where
Kuksin defined them via Hofer-Zehnder’s capacity. In this manuscript we give a new costruction
using action selectors for compactly supported Hamiltonians. In particular one may use Viterbo’s
action selector.

Definition of the capacity. We start with the definition of admissible functions that will be
used to select the limit action values. For any open subset U ⊆ E we define

F(U) = {smooth fuctions f : E → R such that Supp f ⊆ U and d(Supp f, ∂U) > 0}

Consider the action selector c(µ, ·) defined in Chapter 3. For any Hamiltonian H we define
c(µ,H) = c(µ, ψH1 ). Denote fn = f|En and define

co(µ, f) = lim inf
n

c(µ, fn) and co(µ, f) = lim sup
n

c(µ, fn)
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Note that the support of fn is contained in Supp f ∩ En which is bounded, so fn has compact
support. In particular c(µ, fn) is well defined. Moreover, since U is bounded, there exists an
R > 0 such that 0 ≤ c(µ, fn) ≤ πR2 for every n and both limits are well defined finite numbers.
Remark moreover that for every n there is a periodic orbit zn : [0, 1] → En for the Hamiltonian
vector field Xfn such that

c(µ, fn) = A(zn(0), fn).

One could hope that the orbits zn converge for example uniformly to a periodic orbit z(t) asso-
ciated to f . There is little hope for such a result: even though we control the action, there is a
priori no C0 control on the orbits zn so they might be jumping from one place of the phase space
to another. We now use c(µ, f) to define the capacity of open bounded sets U as

co(U) = sup{co(µ, f) for f ∈ F(U)} and co(U) = sup{co(µ, f) for f ∈ F(U)}.

The definition for open unbounded sets V is the sup over the open bounded sets U contained in
V. For arbitrary sets X , the capacity is defined as the inf over the open sets that contain X . We
clearly have co(X ) ≤ co(X ).

Properties of the capacity. We now follow the structure of Kuksin’s article [Kuk95] and prove
the analogues of the results of his article for our new capacity. We denote by c Viterbo’s capacity
without specifying the dimension of the phase space. We start relating the new capacity to the
classical one:

Proposition 6.15. For any open subset V ⊆ E we have

co(V) ≤ lim inf
n

c(V ∩ En) and co(V) ≤ lim sup
n

c(V ∩ En)

Proof. Let U ⊂ E be an open set. Then U ∩ En is open (indeed, for zn ∈ En, and an open ball
BE(zn, ε) ⊆ U , we have the equality BEn(zn, ε) = BE(zn, ε) ∩ En). Now if f ∈ F(U), then fn is
compactly supported in U ∩ En so by definition of the capacity c we get c(µ, fn) ≤ c(U ∩ En). If
we now take the limits we get

co(f) ≤ lim inf
n

c(U ∩ En) and co(f) ≤ lim sup
n

c(U ∩ En).

Finally, taking the sup of f ∈ U we get the desired inequality. Now consider an unbounded open
set V. Every bounded open set U contained in V defines bounded open sets U ∩En ⊆ V ∩En. By
monotonicity c(U ∩ En) ⊆ c(V ∩ En) so for every such set U we have

co(U) ≤ lim inf
n

c(U ∩ En) ≤ lim inf
n

c(V ∩ En)

and the analogue for co(U). Now just take the sup over U to get the result.

The problem for arbitrary sets X is that, for an open set V that contains X , we get by
monotonicity c(X ∩ En) ≤ c(V ∩ En). Here the inequality goes in the same direction that the
one we have for co(V) and c(V ∩En). Nevertheless, it is possible to get some information for sets
which are particularly stable by intersection with En (see Lemma 6.23).

Corollary 6.16. For the standard cylinder we have

co(C
k
r ) ≤ co(Ckr ) ≤ πr2.

Proof. Just remark that for n ≥ k we have c(Ckr ∩En) = πr2 and use the previous proposition.
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Proposition 6.17. For subsets X1,X2,X ⊆ E and λ 6= 0 we have

• If X1 ⊆ X2 then co(X1) ≤ co(X2) and co(X1) ≤ co(X2).

• co(λX ) = λ2co(X ) and co(λX ) = λ2co(X ).

Proof. To prove the first claim just observe that for open bounded sets U1 ⊆ U2 we have F(U1) ⊆
F(U2), which implies the inequality for open bounded subsets. To prove the second claim observe
that multiplication by λ denoted by mλ : E → E is smooth, bounded and d(mλ(x),mλ(y)) =
λd(x, y). This shows that λ∗ : F(τO) → F(O) given by f 7→ f ◦ mλ is a bijection. By the
properties of the finite dimensional capacity we get c(µ, fn ◦mλ) = λ2c(µ, fn) and this implies the
result.

Proposition 6.18. For the ball Br and the standard cylinder Ckr we have

co(C
k
r ) = co(Br) = πr2 = co(Br) = co(Ckr ).

Proof. By the previous proposition and Corollary 6.16 it is enough to show that co(B1) ≥ π.
Consider our now classical (see Lemma 2.8) smooth function h : [0, 1]→ R such that h(0) = 1− ε,
h(t) = 0 near 1 and 0 ≤ |h′(t)| ≤ 1 − ε. Consider the Hamiltonian f : E → R defined by
f(z) = −πh(‖z‖2), it is easy to see that f ∈ F(Br). As in Remark 2.8 we see that for every n the
spectrum associated to fn is {0, π−πε}. We conclude that c(µ, fn) = π−πε, then c(µ, f) = π−πε
and finally that co(B1) ≥ π.

We end this subsection with the proof of the fact that these capacities are indeed invariant by
Hamiltonian flows satisfying compactness assumption 6.4.

Proposition 6.19. Let Φ = Φt be the flow of the Hamiltonian equation satisfying the compactness
assumption 6.4. Then for every X ⊆ E we have

co(X ) ≤ co(Φ(X )) and co(X ) ≤ co(Φ(X )).

If moreover Φ−1 is bounded, then we have equality.

Proof. Remark that the nonlinearity h has bounded gradient so V sends bounded open sets to
bounded open sets and V (U) is open and bounded. In particular c(V (U)) is defined directly
using F(U). It is enough to prove the result for open bounded sets. Recall that we have the
decomposition Φt = etJAV t and that etJA is a symplectic isometry which commutes with every
projection Πn. For every smooth function f , we have

(f ◦ etJA)n = fn ◦ etJA and c(µ, (f ◦ etJA)n) = c(µ, fn).

This implies co(µ, f ◦ etJA) = co(µ, f) and co(µ, f ◦ etJA) = co(µ, f). In addition, the fact that
etJA is an isometry implies that the map (etJA)∗ : F(etJAU) → F(U) given by f 7→ f ◦ etJA is a
bijection. Using these two facts together we get

co(U) = co(e
tJAU) and co(U) = co(etJAU).

It is now enough to prove that the capacity is invariant by V t. The subset U is bounded so we
may apply the approximation lemma, and for every ε > 0 there exists an n such that for every
u ∈ U we have ‖Vn(u) − V (u)‖ ≤ ε. We claim that for every f ∈ F(U) there exists an n such
that f ◦V −1

n ∈ F(V (U)). Once this is established, if we use that Vn is finite dimensional, we have
co(f) = co(f ◦ V −1

n ) and co(f) = co(f ◦ V −1
n ). In particular we get

co(U) ≤ co(V (U)) = co(Φ(U)) and co(U) ≤ co(V (U)) = co(Φ(U)).
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In order to prove that there exists an n such that f ◦ V −1
n ∈ F(V (U)) we need to show that

d(Supp (f ◦ V −1
n ), ∂V (U)) > 0.

For any f we have the equality Supp (f ◦V −1
n ) = Vn(Supp f), and since Vn is a diffeomorphism in

finite dimensions we have d(Supp (f ◦ V −1
n ), ∂Vn(U)) = δ > 0. Now for every ε we may find and

n such that d(∂V (U), ∂Vn(U)) ≤ ε. To conclude choose an n for an ε that verifies ε < δ and use
the previous inequalities.

In order to prove the reverse inequality one has to apply the same arguments to Φ−1. To do
this, one has to make sure that it is also approximated by finite dimensional flows. We leave this
as en exercise or see [Kuk95, Lemma 6].

Remark 6.20. As an example of Φ with Φ−1 satisfying compactness assumption 6.4 we have the
autonomous Hamiltonian PDEs that satisfy the assumption 6.4.

Remark 6.21. In Kuksin’s article [Kuk95] the capacities are defined using the Hofer-Zehnder
capacity described in Subsection 2.3. An autonomous function f ∈ F(U) is called fast, if fn is fast
for n ≥ n0 for some n0. One then defines the capacity as the infimum of the maximal variation
of fast solutions.

Corollary 6.22. For any domain O ⊆ E and ξ ∈ E we have

co(X ) = co(X + ξ) and co(X ) = co(X + ξ).

Proof. It is clear that the addition Aξ : E → E is a symplectomorphism. Moreover for each N we
can write ξ = ξN+ξN andAξN is a finite dimensional symplectomorphism such that d(AξN (z), z) =
‖ξN‖ → 0. We may then apply the same arguments used in the previous proposition to prove
one of the inequalities. The same argument also applies to A−ξ which gives the reverse inequality
and the desired result.

6.2.3 Coisotropic Camel

We now move towards the extension of Theorem 4.55 to the context of Hamiltonian PDEs.
Recall that to state the theorem we had to divide the symplectic phase space into two transverse
coisotropic subspaces. In the infinite dimensional case we will denote E = E+ ⊕ E− where
E+ (resp. E−) is generated by {ϕ+

j | j ∈ Z} (resp. {ϕ−j | j ∈ Z}). Moreover denote Ek (resp.

Ek+ and Ek−) the Hilbert subspace generated by {ϕ±j | |j| ≤ k} (resp. {ϕ+
j | |j| ≥ k + 1} and

{ϕ−j | |j| ≥ k + 1}) and Πk : E → Ek (resp. Πk
+ and Πk

−) the corresponding projection. Fix a
k ≥ 1 and let X be a compact set contained in Ek. we are going to be interested in the image of
sets of the form

C = {u ∈ E |Πku ∈ X and Πk
−u = 0}.

As in the finite-dimensional case, we first verify that the capacities constructed in the previous
subsection do not give rigidity information for the image of these sets. Remark that we cannot
use directly the inequality given in Proposition 6.15 since C is not an open set.

Lemma 6.23. We have the following equalities

co(Ek × Ek+) = 0 = co(Ek × Ek+).

Proof. By homogeneity the value of these capacities is either 0 or +∞. By definition of the
capacities it is then enough to exhibit an open set V containing Ek ×Ek+ with bounded capacity.
By Proposition 6.15 it is enough to find an open set V such that c(V ∩ En) is bounded by a
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constant independent of n for every n big enough. We use the same argument that we used in
Proposition 3.41. Find a smooth bounded function f : R→ R with values on ]0, 1[ and f ′(s) > 0
for every s ∈ R (every strictly positive integrable function f ′ works). Define

V = {u ∈ E such that |u−k | < f ′(u+
k )}.

By hypothesis if u ∈ Ek × Ek+ then u−k = 0, so Ek × Ek+ ⊆ V. Now using the arguments in
Proposition 3.41 we see that for n > k the capacity c(V ∩En) is bounded by a constant that only
depends on f .

To begin our study of the evolution of C we start with the study of the camel trajectories (see
Definition 4.37). In the infinite dimensional context, the camel points associated to V t are not
only bounded, but also compact. This will allow us to have a precise control of the trajectories.

Lemma 6.24. 1. Fix a k ≥ 1 and let X be a compact set contained in Ek. Then for every
t ∈ R and n > k we have c(X) ≤ γ(Πk(V

t
n(C) ∩ {Πk

+ = 0})).

2. The set ∪n{u ∈ C |Πk
+V

t
nu = 0} ⊆ E is bounded by a constant R(t).

3. The set {u ∈ C |Πk
+V

tu = 0} is compact and so is V t(C) ∩ {Πk
+ = 0}.

Proof. Recall that V t
nu = (φtn(un), un) where φtn is a finite dimensional flow generated by a

Hamiltonian function with bounded gradient so it verifies Theorem 4.39. An easy computation
shows that V t

n verifies the statement if and only if φtn verifies Theorem 4.39 on En.
For the second claim let u ∈ E and decompose its norm as ‖u‖ ≤ ‖Πku‖+ ‖Πk

+u‖+ ‖Πk
−u‖.

If u ∈ C then by definition Πku belongs to X which is compact contained in a ball of a certain
radius r and Πk

−u = 0 so ‖u‖ ≤ r + ‖Πk
+u‖. We now show that Πk

+V
t
nu = 0 implies ‖Πk

+u‖ ≤
c(t). Duhamel’s formula and the fact that sup(t,u)∈[0,t]×E‖∇hn(u)‖ ≤ sup(t,u)∈[0,t]×E‖∇h(u)‖ is

bounded imply that ‖V t
nu − u‖ ≤ c(t) where c(t) does not depend on n. We get that ‖Πk

+u‖ =
‖Πk

+V
t
nu−Πk

+u‖ ≤ ‖V t
nu− u‖ ≤ c(t) and the result follows with R(t) = r + c(t).

For the third claim we start by using the same argument as before to prove that {u ∈
C |Πk

+V
tu = 0} is bounded. Now let {zn} ⊂ E be a sequence such that

Πkzn ∈ X, Πk
−zn = 0, and Πk

+V
tzn = 0 for all n ∈ N.

We claim that {zn} has a convergent subsequence. First remark that, by the decomposition of
VN in EN ⊕EN , for every u ∈ E and N ∈ N we have ΠNV t

Nu = ΠNu. Moreover, by definition of
zn, if N ≥ k then ΠN

−zn = 0 and ΠN
+V

tzn = 0. For N ≥ k we have

‖ΠNzn‖ = ‖ΠN
+zn‖ = ‖ΠN

+V
t
Nzn‖ = ‖ΠN

+V
t
Nzn −ΠN

+V
tzn‖ ≤ ‖V t

Nzn − V tzn‖.

Now {zn}n is a bounded sequence so we can apply Proposition 6.8 and for every ε > 0 there
exists a N0(ε) ∈ N such that if N ≥ N0 then ‖V t

Nzn − V tzn‖ ≤ ε. By the previous inequalities
this implies that for N ≥ N0 we have ‖ΠNzn‖ ≤ ε. On the other hand, {zn}n bounded implies
that it has a weakly converging subsequence (still denoted by {zn} for simplicity) that converges
when projected onto any finite dimensional subspace EN . We conclude that for any δ > 0, with
ε = δ/3 and N ≥ N0(ε), if p, q ∈ N are big enough we have

‖zp − zq‖ ≤ ‖ΠNzp −ΠNzq‖+ ‖ΠNzp‖+ ‖ΠNzq‖ < δ

which implies that zn is a Cauchy sequence.
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We may now prove the infinite dimensional version of Theorem 4.39 for the map V t. The proof
of the following proposition relies on the finite dimensional result and it is the finite dimensional
approximation of the flow that allows us to go from finite to infinite dimensions.

Proposition 6.25. Fix a k ≥ 1 and let X be a compact set contained in Ek. Define

C = {u ∈ E |Πku ∈ X and Πk
−u = 0}.

Then for every t ∈ R we have

c(X) ≤ γ(Πk(V
t(C) ∩ {Πk

+ = 0})).

Proof. Let Vε be the open ε neighbourhood of Πk(V
t(C) ∩ {Πk

+ = 0}). We will show that for
each ε > 0 there exists an n ∈ N such that Πk(V

t
n(C) ∩ {Πk

+ = 0}) ⊆ Vε. Once this is proven,
Lemma 6.24 part 1 and monotonicity of the capacity γ imply that c(X) ≤ γ(Vε) for every ε > 0
so c(X) ≤ limε→0 γ(Vε). We then use that Πk(V

t(C) ∩ {Πk
+ = 0}) is compact by Lemma 6.24

part 3 to conclude that limε→0 γ(Vε) = γ(Πk(V
t(C) ∩ {Πk

+ = 0})) which is the desired result.
The proof is by contradiction. Suppose that there exist an ε0 > 0 and a sequence {zn} ⊂ E

such that for all n ∈ N

Πkzn ∈ X, Πk
−zn = 0, Πk

+V
t
nzn = 0 and d(ΠkV

t
nzn,V0) ≥ ε0.

We claim that {zn} has a convergent subsequence. We use the same argument as in Lemma 6.24
part 3. For N ≥ k we have

‖ΠNzn‖ = ‖ΠN
+zn‖ = ‖ΠN

+V
t
Nzn‖ = ‖ΠN

+V
t
Nzn −ΠN

+V
t
nzn‖ ≤ ‖V t

Nzn − V t
nzn‖.

By Lemma 6.24 part 2 we know that zn is a bounded sequence so we can apply Proposition 6.8
and for every δ > 0 there exists a N0(δ) ∈ N such that if n,N ≥ N0 then ‖V t

Nzn − V t
nzn‖ ≤ δ.

By the previous inequalities this implies that for n,N ≥ N0 we have ‖ΠNzn‖ ≤ δ. On the other
hand, {zn} bounded implies that it has a weakly converging subsequence (still denoted by {zn} for
simplicity) that converges when projected onto any finite dimensional subspace EN . We conclude
that for any δ > 0, with ε = δ/3 and N ≥ N0(ε), if p, q ≥ N0 are big enough we have

‖zp − zq‖ ≤ ‖ΠNzp −ΠNzq‖+ ‖ΠNzp‖+ ‖ΠNzq‖ < δ

which implies that zn is a Cauchy sequence. Denote z its limit in E. The set X is closed so
Πkz ∈ X and Πk

− is continuous so Πk
−z = 0. This means that z is an element of C. Moreover

remark that
‖V tz − V t

nzn‖ ≤ ‖V tz − V tzn‖+ ‖V tzn − V t
nzn‖.

so by continuity of V t and again by Proposition 6.8 we get that V t
nzn converges to V tz in E. Using

the hypothesis Πk
+V

t
nzn = 0 we find that Πk

+V
tz = 0 which allows us to conclude that ΠkV

tz
belongs to V0. This contradicts the fact that d(ΠkV

t
nzn,V0) ≥ ε0 > 0 for all n ∈ N achieving the

proof of the theorem.

This is not a statement about the actual flow of our Hamiltonian equation. Nevertheless using
the fact that etJA restricts to a symplectic isomorphism on each En we get the following middle
dimensional nonsqueezing:

Theorem 6.26. Denote by Φt : E → E the flow of a Hamiltonian equation satisfying the com-
pactness condition 6.4. For every k ∈ N, every compact subset X of Ek and every t ∈ R we
have

c(X) ≤ γ(ΠkΦ
t(X × Ek+)).
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Proof. We always have the inclusion Πk(V
t(C) ∩ {Πk

+ = 0}) ⊆ ΠkV
t(C) so by Proposition 6.25

and monotonicity of the symplectic capacity γ we have

c(X) ≤ γ(Πk(V
t(C) ∩ {Πk

+ = 0})) ≤ γ(ΠkV
t(C)).

The linear operator etJA restricts to a symplectic isomorphism on each En which commutes with
Πk and the capacity γ is invariant under symplectic transformations so

γ(ΠkV
t(C)) = γ(e−tJAΠke

tJAV t(C)) = γ(ΠkΦ
t(C)).

which gives the desired result.

Figure 6.2: The representation of coisotropic cylinder and a standard cylinder in E.

Taking into account the discussion in Subsection 6.2.1, we can also interpret this result as
a statement that talks about the energy transition between frequencies. This time, instead of
having an negative result for the transfer of energy between frequencies in a locally uniform way,
we have a negative result on unbounded sets. These sets are the coisotropic cylinders X × Ek+,
which are better understood on particular examples. Consider the nonlinear string equation

ü = uxx − f(t, x, u), u = u(t, x),

where x ∈ T = R/2πZ Recall that in this case E = H
1
2 (T) × H

1
2 (T) and a solution U(t) =

(u(t), v(t)) verifies u̇(t) = −Bv(t) where B is the operator B = (−∂2/∂x2 + 1)1/2. In this case
the symplectic Hilbert basis {ϕ±j | j ∈ Z} is given by

ϕ+
j =

1

(j2 + 1)
1
4

(ϕj(x), 0), ϕ−j =
1

(j2 + 1)
1
4

(0,−ϕj(x)),

with

ϕj(x) =

{√
2 sin jx, j > 0,√
2 cos jx, j ≤ 0.

The graph of u(t, ·) represents the position of a string on a plane, and the vector (0, u̇(t, x)) ∈ R2

represents the speed of the point u(t, x). For this equation, initial conditions in the space E+

represents solutions with zero initial speed, and initial conditions on E− represent solution where
the graph of the string starts at x = 0. In light of this, coisotropic cylinders represent solutions
where we allow initial conditions with one particular frequency (or k chosen frequencies) nonzero.
As an example denote Ek the space generated by ϕ±j for |j| ≤ k and consider E0 ' R2 which
consists of constant functions.
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6.2. Infinite dimensional symplectic rigidity

Figure 6.3: The representation the graph of the initial condition u(0, x) and at each point the
vector of the initial speed v(0, x). On the left, u(0, x) is constant. On the right, v(0, x) is constant.

Corollary 6.27. Let Φt be the flow of the Sine-Gordon equation. Let BR be the ball of radius R
in E0. Then if for a t ∈ R we have

Π0Φt(Br × E0
+) ⊆ BR or Π0Φt(Br × E0

−) ⊆ BR.

then r ≤ R. In particular for every R > r > 0 and every t0 ∈ R there is a solution (u(t), v(t)) =
U(t) = Φt(U0) with constant initial position (or constant initial speed) such that∣∣ ∫

T
U(0, x) dx

∣∣ ≤ R but
∣∣ ∫

T
U(t0, x) dx

∣∣ > r.

If we compare this result with the analogue of Gromov’s non-squeezing described in Subsection
6.2.1 we see two main differences. The first one is that instead of looking at the evolution of an
open set (the ball), we look at the evolution of a subset which is contained in a vector subspace of
infinite codimension (Ek ×Ek+ ⊆ E). In this sense the coisotropic cylinder can be thought of as a
”thinner” subset. The second difference is that instead of looking at a bounded set we now look
at the evolution of an unbounded set. In this sense the coisotropic cylinder can be thought of as
a ”bigger” subset. One way of understanding these differences is that if we want to have more
control over one aspect of the set of initial conditions (for example, we only consider solutions
where the initial velocity has non-zero Fourier coefficients only of frequency less than k) we need
to lose control over some other property of the initial conditions (in this case the norm).
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Chapter 7

Exploring the Arnold conjecture for
Hamiltonian PDEs

Let (M,ω) be a closed symplectic manifold. Every smooth function H : R×M → R defines via
ω a vector field XH on M . This vector field can be then integrated and the time t map of the
flow generates a diffeomorphism ψt : M →M which is called Hamiltonian diffeomorphism.

Conjecture 7.1 (Arnold). Let M be a closed symplectic manifold and ψt a Hamiltonian dif-
feomorphism. Then the number of fixed points of ψt is at least the number of critical points of
functions on M . Moreover, if all the fixed points are non-degenerate, i.e. 1 is not an eigenvalue
of dψt at any of its fixed points, then the number is at least the number of critical points of a
Morse function on M .

Remark that the number of critical points of functions can be bounded from below using
topological invariants (cup-length, Betti numbers...). The Arnold conjecture has historically been
one of the major forces driving the development of symplectic topology. We briefly recall some
of the results. It was proven in [Wei78] and [Arn65] that every exact diffeomorphism which is
C1-close to the identity has at least as many fixed points as a smooth function on M has critical
points. In 1983, Conley and Zehnder [CZ83] proved the conjecture for the torus T2n. In 1985
Fortune [For85] proved the case M = CPn. The revolution came with the powerful theory of
Floer Homology [Flo89a, Flo89b] which was developed as a tool to prove this conjecture. Further
generalizations of his ideas followed shortly after and now the non-degenerate case has been
established for every compact symplectic manifold. In this section we are interested in the case
of CPn. In this case we have

Theorem 7.2 (Fortune 1985 [For85]). Every Hamiltonian diffeomorphism of CPn has at least
n+ 1 fixed points.

We are interested in generalizations of this statement to infinite dimension. More precisely
we look at the Schrödinger equation where the nonlinearity depends only on |u|2, In this case the
L2 norm of functions is constant along solutions. If the flow is well defined, then it descends to
a map on the projective Hilbert space. The aim of this section is to explore if the analogue of
Theorem 7.2 is true in this context. We assume a compactness property for the nonlinearity (see
Definition 6.4) and give a proof for the autonomous case.

7.1 Schrödinger equation with convolution nonlinearity

Consider the Hilbert space of periodic square integrable functions L2(T,C) where T = R/2πZ. The
operator A = −∂2

x has a complete system of complex eigenfunctions given by {exp(ikx) | k ∈ Z}.
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Chapter 7. Exploring the Arnold conjecture for Hamiltonian PDEs

The real eigenfunctions are the real and imaginary part, which give a real Hilbert basis of L2(T,C)
for the real scalar product. More precisely define ϕ0 = 1, ϕ2j−1 = sin jx and ϕ2j = cos jx for
j ≥ 1. We define the real Hilbert basis by ϕ+

j = ϕj and ϕ−j = iϕj . Now let f : R → R and
ξ : T → R be two smooth functions. We are going to consider the Hamiltonian functions of the
form explained in Subsection 6.1.4 with

ht(u) =
1

2(2π)

∫
T
f(|u ∗ ξ|2, x, t)dx

The Hamiltonian equation in this case is

iu̇ = −∆u+ ∂1f(|u ∗ ξ|2, x, t)(u ∗ ξ) ∗ ξ

where ∂1f means derivative with respect to the first coordinate. We know (see Lemma 6.6 and
Proposition 6.8) that the flow of this equation is globally well defined and is approximated by
finite dimensional Hamiltonian diffeomorphisms. We denote the flow by Φt : L2(T,C)→ L2(T,C).
A straightforward calculation shows that the flow preserves the L2 norm. In particular, this
symmetry gives that Φt commutes with complex numbers of norm 1, i.e.

Φt(eiµu) = eiµΦt(u).

If we restrict the flow to the unit sphere S in L2(T) we can deduce a map Ψt : PL2 → PL2 where
PL2 := S/S1. We are interested in fixed points of Ψt, that is, points u ∈ S such that there exists
a µ ∈ R with

Φt(u) = eiµu.

The analogue of the statement of Theorem 7.2 in this setting is:

Conjecture 7.3. The map Ψt has infinitely many fixed points.

Remark 7.4. One is tempted to state the conjecture for every Hamiltonian diffeomorphism which
preserves the L2 norm. The following example shows that this completely general generalization
is false (see [Fab18]). Consider the function G : L2(C,R)→ R given by

G(u) =
1

2

∫
T
V (x)|u(x)|2

where V is a smooth periodic real function. The flow is given by Φt
G(u) = eitV (x)u which clearly

descends to PL2. In this case we see that for a u ∈ S we have Φ1
G(u) = eiµu if and only if

V (x)−µ ∈ 2πZ for every almost every x. In particular, a generic choice of V yields a Hamiltonian
map with no fixed points.

In this section we explore the validity of Conjecture 7.3 and we prove that it is true in the
autonomous case. Remark that in this case it is enough to study the critical points of the
Hamiltonian, so the problem is purely topological in nature, and not symplectic. What makes
this possible is the quadratic term in the Hamiltonian given by the Laplacian which guarantees
enough critical points.

Theorem 7.5. Suppose that f is independent of t. Then for every t ∈ R the map Ψt has infinitely
many fixed points. More precisely, there is a sequence of points un ∈ H1 and µn ∈ R such that

Φt(un) = un(t, x) = eitµnun(x) for every (t, x) ∈ R× T

and
H(un)→ +∞ as n→ +∞,
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This type of solutions receive the name of standing waves. We want to point out that standing
waves are a natural type of solution which arise even if the nonlinearity is not of convolution type.
For example, the nonlinear cubic Schrödinger equation

iu̇ = −uxx + c|u|2u

has infinitely many standing waves given by the plane waves

uk(t, x) = eikxe−iξt

with ξ = k2 + c. Moreover in this case the energy of the waves also goes to infinity. In particular,
for c = 0, the linear equation has infinitely many fixed points. Our case is a compact perturbation
of this linear equation.

This theorem is to be compared with the one in [Fab18]. In this article Fabert gives a proof of
the conjecture for non-autonomous Hamiltonians under some conditions on the nonlinearity. More
precisely on the Hofer norm of the nonlinear term and on the function ξ. His proof uses symplectic
topology for the existence of a particular type of Floer strips together with nonstandard analysis.

7.1.1 Converging sequences of fixed points

The first step is to use the fact that Φt can be approximated by finite dimensional Hamiltonian
flows Φt

n in order to reduce the proof to a statement about converging sequences of standing waves
for Φt

n.

Lemma 7.6. Let un ∈ S ∩ En and µn ∈ [0, 2π] be such that

Φt
n(un) = eiµntun

for every n ∈ N and t ∈ R. Suppose that both un and µn converge in L2 and [0, 2π] respectively.
Then the limits u and µ verify

Φt(u) = eiµtu

for every t ∈ R.

Proof. Fix t ∈ R. Use the triangular inequality and the fact that Φt
n(un) = eiµntun to get

‖Φt(u)− eiµtu‖ ≤ ‖Φt(u)−Φt(un)‖+ ‖Φt(un)−Φt
n(un)‖+ ‖eiµntun − eiµntu‖+ ‖eiµntu− eiµtu‖.

The right hand side converges to zero when n goes to infinity by (in order) contnuity of Φt, by
Proposition 6.8 and the fact that the un are bounded and by convergence of un and µn.

Now the problem reduces to the existence of these converging sequences. Recall that since the
nonlinearity is of convolution type, the function h can be extended as a C2 function on the whole
space H−1(T,C). In particular, since the inclusion L2(T,C) ↪→ H−1(T,C) is compact and that S
is bounded we can find a constant c > 0 such that

sup
u∈S
|hn(u)| ≤ sup

u∈S
|h(u)| ≤ c and sup

u∈S
‖∇hn(u)‖ ≤ sup

u∈S
‖∇h(u)‖ ≤ c.

The following lemma shows that H verifies a kind of Palais-Smale condition by approximation.
More precisely:

Lemma 7.7. Suppose that there is a constant C > 0, and two sequences un ∈ S∩En and µn ∈ R
such that

Hn(un) ≤ C and ∇Hn(un) + µnun = 0

for every n ∈ N. Then {un} is compact in H2(T,C).
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Proof. We may write H as

H(u) =
1

2
(‖u‖2H1 − ‖u‖2L2) + h(u)

so that
‖un‖2H1 ≤ ‖un‖2L2 + 2|h(un)|+ 2|H(un)| ≤ 1 + 2c+ 2C

and un are bounded in H1(T,C). The second hypothesis can be written as

Aun +∇hn(un) + µnun = 0

where ∇hn(un) = Πn∇h(un). We first prove that µn is bounded. Taking the L2 product with un
the previous equality implies that

〈Aun, un〉+ 〈∇hn(un), un〉+ 〈µnun, un〉 = 0.

This can be written as

1

2
(‖un‖2H1 − ‖un‖2L2) + 〈∇hn(un), un〉+ µn‖un‖2L2 = 0

We conclude using the fact that un has L2 norm equal to one, that the sequence is also bounded
in H1, and that the gradient of h is bounded in S. Now we continue with the proof that {un}
has a converging subsequence in H2. Let Π0 : E → E0 be the natural projection. It is easy to
see that it commutes with A. The hypothesis of equality for the gradient gives

AΠ0un = −Π0(Πn∇h(un) + µnun),

and since A is invertible over E0 we have

Π0un = −A−1Π0(Πn∇h(un) + µnun).

First, {µnun} is bounded in H1(T,C) so it has a convergent subsequence in L2. Moreover, ∇h is
continuous on L2 and un is bounded in H1(T,C). This implies that {∇h(un)} is compact in L2 so
it also has a convergent subsequence. Now since A−1 : Π0L2(T,C) → Π0H2(T,C) is continuous
we conclude that Π0un has a convergent subsequence in H2(T,C). On the other hand, Π0un is
bounded contained in E0 ' R2 so it also has a convergent subsequence in H2(T,C). We conclude
that un = Π0un+Π0un has a convergent subsequence in H2(T,C) which is the desired result.

Remark 7.8. The hypothesis on un of the theorem are equivalent to the existence of a critical
point [un] for the function that Hn induces on CPN satisfying Hn(un) ≤ C. In particular, taking
into account Lemmas 7.6 and 7.7, the proof of Theorem 7.5 reduces to proving, for each n ∈ N,
the existence of critical points [un] of the reduction of Hn to CPN such that H(un) ≤ C for each
n.

7.1.2 Finding critical points

Let M be a closed oriented manifold and f ∈ C∞(M). Denote by f c = {x ∈ M | f(x) ≤ c} and
denote by ic the natural map ic : H∗(M)→ H∗(f c). Let ω ∈ H∗(M)\{0}. We may select critical
values (see Appendix C or for example [Nic11, section 2.7]) by the formula

c(ω, f) = inf{c | ic(ω) 6= 0}.

We recall that if two functions satisfy f ≤ g then

c(ω, f) ≤ c(ω, g),
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and that for any a ∈ R we have

c(ω, f + a) = c(ω, f) + a.

We will use the following classical result:

Theorem 7.9 (Lusternik-Schnirelmann, see for example [Vit97]). If α, ω ∈ H∗(M) such that
α ∪ ω 6= 0 then

c(α, f) ≤ c(α ∪ ω, f).

Moreover, suppose that we have an equality and denote Kc the set of critical points at level
c = c(α, f) = c(α ∪ ω, f). Then ω is nonzero on H∗(Kc). As a result dimKc ≥ degω and in
particular, if degω 6= 0, Kc is uncountable.

Consider M = CPn. In this case

H2k(CPn) = Z if 0 ≤ k ≤ n

and the other homology groups are zero. Moreover, if we denote by α the generator of H2(CPn)
we know that H2k(CPn) is generated by α∪k. Consider the restriction of 1

2〈Au, u〉 to En ' C2n+1

which we denote by Qn. On complex coordinates we have the explicit expression (see the definition
of ϕ± at the beginning of this section)

Qn(z0, z1, . . . , z2n) =
1

2

n∑
k=1

k2
(
|z2k−1|2 + |z2k|2

)
.

Denote by Qn the induced function on CP 2n. The following lemma explains that we are able to
find every critical value of Qn using the minmax selector.

Lemma 7.10. The function Qn : CP 2n → R has n + 1 critical values {k2/2 | 0 ≤ k ≤ n}. The
set of critical points of critical value k2/2 is a point for k = 0 and a projective space CP 1 in the
coordinates z2k−1, z2k for k ≥ 1. Moreover, if α is the generator of H2(CP 2n) then

c(α∪2k,Qn) =
k2

2
.

Proof. The first claim is a straightforward. For the second part remark that for every critical
value c we have dimKc ≤ 2 < 4 = degα ∪ α. We may use Theorem 7.9 to get

c(1,Qn) < c(α∪2,Qn) < c(α4,Qn) < · · · < c(α∪2n,Qn)

so the selector spans the n+ 1 critical values of Qn.

7.1.3 Proof of Theorem 7.5

Denote by Hn and hn the functions that Hn and hn induce on CP 2n. We have

Hn = Qn + hn.

Denote again by c a positive constant such that

sup
u∈S
|hn(u)| ≤ sup

u∈S
|h(u)| ≤ c.
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By the properties of the minimax selector that we saw in the previous section, and by Lemma
7.10 we have that

|c(α∪2k,Hn)− c(α∪2k,Qn)| = |c(α∪2k,Hn)− k2

2
| ≤ c.

Let kn be a sequence of natural numbers such that

[
k2
n

2
− c, k

2
n

2
+ c] ∩ [

k2
m

2
− c, k

2
m

2
+ c] = ∅

for every n,m ∈ N. Then
c(α∪2km ,Hn)

defines a critical value of Hn which belongs to [k
2
m
2 − c,

k2m
2 + c]. This gives us a sequence un of

points in S that verify

Hn(un) ∈ [
k2
m

2
− c, k

2
m

2
+ c] and ∇Hn(un) + µnun = 0

We now use Lemma 7.7 to conclude that {un} converges in H2, and since H is continuous in H1

we conclude that the limit u verifies

H(u) ∈ [−c+
k2
m

2
,
k2
m

2
+ c].

Finally we use Lemma 7.6 to conclude that u ∈ S generates a standing wave for our equation.
We may now do this for every km to find standing wave with different energy levels and whose
energy tends to infinity.
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Appendix A

Basic symplectic geometry

The aim of this appendix is to introduce the basic concepts and definitions of symplectic geometry
that we use in this thesis.

A.1 Symplectic vector spaces

Definition A.1. A symplectic vector space is a pair (V, ω) where V is a real vector space and ω
is a non-degenerate skew-symmetric bilinear form.

Let g be a scalar product on V . Then there exists a unique linear map A : V → V such that

ω(u, v) = g(Au, v) for every u, v ∈ V

The fact that ω is skew symmetric implies At = −A. This gives detA = detAt = (−1)dimV detA
so ω non-degenerate implies that the dimension of V is even.

Example A.2. For any a real vector space E, the direct sum V = E ⊕ E∗ has a canonical
symplectic structure determined by the formula

ω0(u⊕ α, v ⊕ β) = β(u)− α(v).

If e1, . . . , en is a basis of E and f1, . . . , fn is the dual basis, then e1⊕0, . . . en⊕0, 0⊕f1, . . . , 0⊕fn
is a symplectic basis for V .

Given a linear subspace W of a symplectic vector space (V, ω), its symplectic orthogonal is
the subspace

Wω := {v ∈ V |ω(v, u) = 0 for every u ∈W}.
By non-degeneracy we have

dimW + dimWω = dimV

and (Wω)ω = W . Moreover for subspaces W and Y we have (W ∩ Y )ω = Wω + Y ω. There are
special types of linear subspaces of a symplectic vector space (V, ω).

Definition A.3. Let (V, ω) be a symplectic space and let W ⊂ V be a linear subspace. We say
that W is:

• Symplectic, if W ∩Wω = {0}.

• Isotropic, if W ⊆Wω.

• Coisotropic, if Wω ⊆W .

• Lagrangian, if W = Wω.

A Lagrangian subspace verifies dimW = 1
2 dimV .
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A.2 Symplectic manifolds

Definition A.4. A symplectic manifold is a pair (M,ω) where M is a manifold and ω is a closed
two form on M such that ωp is symplectic for every p ∈M .

Example A.5. Let N be a manifold and consider its cotangent space T ∗N . Let (U, q1, . . . , qn)
be a coordinate chart for N , with associated coordinates (T ∗U, q1, . . . , qn, p1, . . . , pn). Define a
symplectic form on T ∗U by

ω =

n∑
i=1

dqi ∧ dpi.

This ω is defined by considering the one form on T ∗U

λ =

n∑
i=1

pidqi

which satisfies ω = −dλ. One can check that λ is coordinate independent: in terms of the natural
projection π : T ∗N → N given by (q, p) 7→ q, the form λ may be equivalently defined pointwise
without coordinates by

λ(q,p) = (d(q,p)π)∗p ∈ T(q,p)(T
∗N)

where (d(q,p)π)∗ : T ∗qN → T ∗(q,p)(T
∗N) is the transpose of d(q,p)π, that is,

λ(q,p)(v) = p(d(q,p)π(v)).

The form λ is uniquely characterized by the property thet α∗λ = α for every one form α : N →
T ∗N .

Symplectic manifolds are even dimensional. Moreover the nth exterior product ωn is a volume
form. When (M,ω) is compact, the cohomology class [ωn] is non-zero by Stokes theorem. Therefor
[ω] and all its powers [ωk] are non-zero. In particular exact symplectic forms can only exist on
non-compact manifolds.

Definition A.6. Let (M,ω) be a symplectic manifold and let W ⊂ M be a submanifold. Then
we say that W is symplectic (resp. isotropic, coisotropic or Lagrangian) if TwW is symplectic
(resp. isotropic, coisotropic or Lagrangian) for every w ∈W .

Lemma A.7. Let (M,ω) be a symplectic manifold and let W ⊆M be a coisotropic submanifold.
Then TWω defines an integrable distrubution.

Proof. (from [MS17]) Let X and Y be vector fields in W with values in TWω and fix a point
w ∈ W . Given a tangent vector v ∈ TwW choose any vector field Z : W → TW such that
Z(w) = v. Since ω is closed we have

0 = dω(X,Y, Z)

= LX(ω(Z, Y )) + LY (ω(X,Z)) + LZ(ω(Y,X))

+ ω([Y,Z], X) + ω([Z,X], Y ) + ω([X,Y ], Z)

= ω([X,Y ], Z)

In the last equality we have used that ω(X,Z) = ω(Y, Z) = 0 for every vector field Z in W . In
follows that [X,Y ](w) ∈ TwWω.
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A.3 Hamiltonian diffeomorphisms

Let (M,ω) be a symplectic manifold. For every function H : R×M → R we can define a vector
field XH given by the relation

ω(XH , ·) = dHt(·).

If the manifold is compact, or H is compactly supported, then XH defines a flow ψHt on M .

Definition A.8. The set of compactly supported Hamiltonian diffeomorphisms Hamc(M) is de-
fined as the set which contains all time one maps ψH1 of Hamiltonian flows generated by compactly
supported functions H.

Let H and K be two Hamiltonian functions on M . In order to study the properties of
Hamc(M) we introduce the following definitions.

H̄(t, z) =−H(t, ψHt (z))

(H#K)(t, z) =H(t, z) +K(t, (ψHt )−1(z))

(H̄#K)(t, z) =(K −H)(t, ψHt (z))

Hϕ(t, z) =H(t, ϕ−1(z))

Hρ(t, z) =ρ′(t)H(ρ(t), z)

Lemma A.9 (see for example [HZ94] p.144). Let H and K be two Hamiltonian functions on M ,
let ϕ be a symplectomorphism of M and let ρ be a non-decresing function. The following formulae
hold true

ψH̄t =(ψHt )−1

ψH#K
t =ψHt ◦ ψKt
ψH̄#K
t =(ψHt )−1 ◦ ψKt
ψ
Hϕ
t =ϕ ◦ ψHt ◦ ϕ−1

ψH
ρ

t =ψHρ(t)

Using these properties it is straightforward to prove that Hamc(M) is a normal subgroup of
the group of symplectomorphisms which contains every time t map of the flow.
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The action functional as a generating
function

This section is based on [ABK+94] which is itself based on [Vit87, Vit90]. We give a variational
intuition for the definition of generating functions. Consider a compactly supported Hamiltonian
H = H(t, q, p) which generates the flow ψt on R2n = T ∗Rn. Set L0 = Rn × {0} = 0Rn the zero
section, and consider the Hamiltonian deformation L1 = ψt(L0) ⊆ R2n. Denote by γ : [0, 1]→ R2n

paths on R2n. We will work with paths in the Sobolev space H1 = H1([0, 1],R2n). Recall that
the paths in this space can be represented by continuous functions. Consider the space of paths
that start on the zero section:

P = {γ ∈ H1 | p(0) = 0}.

Note that one can recover γ as

γ = (q(1)−
∫ 1

t
q̇(s) ds,

∫ t

0
ṗ(s) ds),

so we will use the notation γ = (q(1), γ̇). This shows that P ' Rn ×L2([0, 1],R2n). Remark that
we have a fibration π : P → Rn defined by π(γ) = q(1). The vector space structure on Pq(1) is the

one induced by the derivative γ̇. We denote by S̃ : P → R the action functional on this space:

S̃(γ) =

∫ 1

0
−1

2
Jγ̇(t) · γ(t) dt−

∫ 1

0
Ht(γ(t)) dt.

A straightforward calculation gives that the differential of S̃ on γ = (q(1), γ̇) applied to δγ =
(δq(1), δγ̇) is

dS̃(γ)(δγ) =

∫ 1

0
−1

2
Jγ̇ · δγ dt−

∫ 1

0
−1

2
Jδγ̇ · γ dt−

∫ 1

0
∇Ht(γ) · δγ dt

= −1

2
[Jγ · δγ]10 −

∫ 1

0
[Jγ̇ +∇H] · δγ dt

= p(1)δq(1)−
∫ 1

0
[Jγ̇ +∇H] · δγ dt

Suppose that γ = (q(1), γ̇) is a critical value of S̃. Then the previous calculation yields

p(1) = 0,

Jγ̇ +∇H = 0.
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so γ is a Hamiltonian trajectory that verifies p(0) = 0 = p(1). In particular, we see that critical
points are in one to one correspondence with points in L1∩L0. In order to study these intersection
points one may then study the critical values. Instead of doing it directly on S̃, we are going
to find a finite dimensional subspace E ⊆ L2 and a function F : Rn × E → Rn × L2 such that
S = S̃ ◦ F has the same critical values as S̃.

Finite dimensional reduction Every element z(t) ∈ L2([0, 1],R2n) can be represented by
their Fourier series

z(t) =
∑
k∈Z

e2πktJzk, zk ∈ R2n

Denote de projection operators P = PN and Q = QN by

Pz =
∑
|k|≤N

e2πktJzk,

Qz =
∑
|k|>N

e2πktJzk.

If we denote by ∇QS̃ the L2-gradient of S̃ in the direction of the Q component of the fiber, we
get

∇QS̃(γ) = −QJγ̇ −Q∇H(t, γ).

Using the implicit function theorem (see for example [ABK+94]) one can prove the existence of
a C1 map f : Rn × PL2 → QL2 which assigns to every (q(1), ξ) ∈ Rn × PL2 the unique value
f(q(1), ξ) ∈ QL2 such that

∇QS̃(q(1), ξ + f(q(1), ξ)) = 0.

Lemma B.1. Denote by F the function F (q(1), ξ) = (q(1), ξ+f(q(1), ξ)). Vertical critical points
of S = S̃ ◦ F are in one to one correspondence with vertical critical points of S̃. In particular,
both functions have the same critical points and critical values.

Proof. We need to show that

∇L2S̃(γ) = ∇P S̃ +∇QS̃ = 0 if and only if ∇PS(q, ξ) = 0 with γ = F (q, ξ)

By definition of f we have ∇QS̃(γ) = 0 if and only if γ = F (q(1), ξ). We conclude using this, the
chain rule and the explicit expression of ∇PF .

The function S generates ψ1(L0) = ψ1(0Rn) via its differential. More precisely:

Lemma B.2. Let S = S̃ ◦ F be the function previously constructed. Then

ψ1(L0) =

{
(q,

∂S

∂q
(q, ξ)) | (q, ξ) ∈ Rn × Rm such that

∂S

∂ξ
(q, ξ) = 0

}
Proof. By Lemma B.1, the points satisfying ∇PS(q, ξ) = 0 are in one to one correspondence
with Hamiltonian trajectories γ = F (q, ξ) that start on the zero section which satisfy q(1) = q.
Moreover, using the formula for dS̃ one may see that ∂S

∂q (q, ξ) = p(1). This shows that (q, ξ) is a
critical point if and only if γ starts and ends in the zero section, and this proves the claim.

In order to study the critical points of this modified action, one can look at the critical points
of this finite dimensional reduction. This way of generating Hamiltonian isotpies of the zero
section gives a variational interpretation of the definition of generating functions (see Definition
3.4).
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Critical value selectors

We give the basic properties of the critical value selectors that appeared in Chapters 3 and 6. For
simplicity we will consider compact manifolds M . The same results apply for generating functions
quadratic at infinity S since in that case the gradient ∇S is linear at infinity, so it induces a global
flow. Let f : M → R be a smooth function and consider the level sets

fλ := {x ∈M | f(x) ≤ λ}.

Denote by iλ : fλ →M the natural inclusion. It induces two maps

(ic)∗ : H∗(f
λ)→ H∗(M) and i∗c : H∗(M)→ H∗(fλ).

Definition C.1. For every non-zero class α ∈ H∗(M) define

c(α, f) = inf{λ |α ∈ Im ((iλ)∗)}.

For every non-zero class β ∈ H∗(M) define

c(ω, f) = inf{λ | i∗λ(ω) 6= 0}.

An easy verification yields min f ≤ c(·, f) ≤ max f . In the case of generating functions
quadratic at infinity one needs to consider (co)homology classes for the pair (S−∞, S+∞). In the
homological case c(α, f) has the simple equivalent minmax definition

c(α, f) = min
[γ]=α

max f(γ)

where [γ] = α means that the simplex γ represents the class α.

Lemma C.2. The values c(α, f) and c(ω, f) are critical values of f .

Proof. Suppose that c = c(α, f) is a regular value. Then there is an ε > 0 such that Iε = [c−ε, c+ε]
is an interval of regular values. Chose a metric g on M and consider the gradient ∇f . Find a
compactly supported function ρ in Iε which is equal to one on Iδ for a 0 < δ < ε. Consider the
vector field

X(x) = −ρ(f(x))
∇f(x)

|∇f(x)|2
.

Using the fact that ρ is non-zero only on resular values we see that X is well defined. Moreover
it has bounded speed so it induces a global flow ϕt. We claim that ϕ2δ(f

c+δ) = f c−δ. To see this
take an x ∈ f c+δ, then

d

dt
f(ϕt(x)) = dϕt(x)f(X(ϕt(x))) = −ρ(f(ϕt(x))) ≤ 0.
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This implies that for every t ≥ 0 we have f(ϕt(x)) ≤ f(x) so ϕt(f
c−δ) ⊆ f c−δ. Now if x ∈

f c+δ − f c−δ then one of the following two things happen: either ϕt(x) ∈ f c−δ for some t ∈ [0, 2δ[,
and in that case ϕ2δ = ϕ2δ−t ◦ ϕt implies that ϕ2δ(x) ⊆ f c−δ. Or ϕt(x) stays in f c+δ − f c−δ for
t ∈ [0, 2δ[, and in that case for those t

d

dt
f(ϕt(x)) = −ρ(f(ϕt(x))) = −1,

so f(ϕ2δ(x)) = f(x) − 2δ ≤ c − δ. This proves ϕ2δ(f
c+δ) ⊆ f c−δ The same argument for ϕ−2δ

shows that ϕ−2δ(f
c−δ) ⊆ f c+δ which gives the reverse inclusion.

We have the following commutative diagram

f c+δ
ic+δ

//

ϕ2δ

��

M

ϕ2δ

��

f c−δ
ic−δ

//M

Since c(α, f) = c we have α = (ic+δ)
∗ϕ∗2δ(γ) for some γ ∈ H∗(f

c+δ). Using the commutative
diagram we get

α = (ic+δ)
∗ϕ∗2δ(γ) = (ic−δ)

∗ϕ∗2δ(γ)

so α ∈ Im (ic−δ)
∗ which implies c(α, f) ≤ c − δ, a contradiction. So we conclude that c(α, f) is

a critical value. A similar argument using the commutative diagram also gives that c(ω, f) is a
critical value.

Lemma C.3. Let f, g : M → R be two smooth functions and consider a nonzero cohomological
class ω ∈ H∗(M). If f ≤ g then

c(ω, f) ≤ c(ω, g).

Moreover, for every c ∈ R we have c(ω, f + a) = c(ω, f) + a.

Proof. The hypothesis f ≤ g implies that gc ⊆ f c so we have a commutative diagram

gc
igc //

igf

��

M

Id

��

f c
ifc //M

If c(ω, g) ≤ c then (igc)∗(ω) 6= 0 and using that igc = ifc ◦ igf we get (igc)∗(ω) 6= 0. This implies

c(ω, f) ≤ c so we conclude that c(f, ω) ≤ c(g, ω). If now g = f + a we have gc+a = f c. This gives

(igc+a)
∗(ω) 6= 0 if and only if (ifc )∗(ω) 6= 0 so we get c(ω, g) = c(ω, f) + a.

Corollary C.4. Let f, g : M → R be two smooth functions and consider a nonzero cohomological
class ω ∈ H∗(M). Then

|c(ω, g)− c(ω, f)| ≤ ‖g − f‖C0 .

Proof. Just remark that
g − ‖g − f‖C0 ≤ f ≤ g + ‖g − f‖C0

and apply the previous lemma.
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[Hum18] Vincent Humilière. Géométrie symplectique C0 et selecteurs d’action. Habilitation à
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[Mil99] Darko Milinković. Morse homology for generating functions of Lagrangian submani-
folds. Trans. Amer. Math. Soc., 351(10):3953–3974, 1999.

[MS17] Dusa McDuff and Dietmar Salamon. Introduction to symplectic topology. Oxford
Graduate Texts in Mathematics. Oxford University Press, Oxford, third edition, 2017.

[MT93] Dusa McDuff and Lisa Traynor. The 4-dimensional symplectic camel and related
results. In Symplectic geometry, volume 192 of London Math. Soc. Lecture Note Ser.,
pages 169–182. Cambridge Univ. Press, Cambridge, 1993.

[Nic11] Liviu Nicolaescu. An invitation to Morse theory. Universitext. Springer, New York,
second edition, 2011.

[Paz83] A. Pazy. Semigroups of linear operators and applications to partial differential equa-
tions, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983.
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Résumé

On étudie les propriétés de rigidité symplectique des
difféomorphismes hamiltoniens en dimension finie et en
dimension infinie. En dimension finie, les outils princi-
paux qu’on utilise sont les fonctions génératrices et les ca-
pacités symplectiques. En dimension infinie on regarde les
flots des équations en dérivées partielles (EDPs) hamil-
toniennes et, en particulier, les flots qui peuvent être ap-
prochés uniformément par des flots hamiltoniens de di-
mension finie.
Dans la première partie de la thèse on étudie les
sélecteurs d’action définies à partir des fonctions
génératrices et on construit des invariants hamiltoniens
pour les sous-ensembles de R2m×T∗Tk. Cela nous per-
met de démontrer un théorème non-squeezing coisotrope
pour les difféomorphismes hamiltoniens à support com-
pact de R2n. On montre à continuation que cette propriété
apparaisse dans certains cas non compacts. Finalement,
on explique comment ce résultat donne aussi l’information
sur le problème de rigidité symplectique en dimension
intermédiaire. Encore en dimension finie, on démontre
qu’on peut utiliser le théorème du chameau symplectique
pour produire des sous-ensembles invariants compacts
dans des surfaces d’energie.
Dans la deuxième partie on étudie les propriétés de rigidité
symplectique des flots des EDPs hamiltoniennes. On se
place dans le contexte introduit par Kuksin et on étudie
une classe particulierère de EDPs semi-linéaires qui peu-
vent être approchées par flots hamiltoniens de dimension
finie. D’abord on donne une nouvelle construction de ca-
pacité symplectique en dimension infinie à partir des ca-
pacités de Viterbo. Puis on demontre l’analogue de la
rigidité intermédiaire pour certaines EDPs hamiltoniennes.
Cette classe inclue l’équation d’ondes en dimension 1 avec
une nonlinéarité bornée, comme par exemple l’équation
de Sine-Gordon. Dans la dernière partie de la thèse
on s’intéresse à un analogue de la conjecture d’Arnold
pour l’équation de Schrödinguer périodique avec une non
linéarité de convolution.

Mots Clés

Géometrie symplectique, fonctions génératrices, ca-
pacités symplectiques, EDPs hamiltoniennes.

Abstract

We study symplectic rigidity properties in both finite and
infinite dimension. In finite dimension, the main tools that
we use are generating functions and symplectic capacities.
In infinite dimension we study flows of Hamiltonian par-
tial differential equations (PDEs) and, in particular, flows
which can be uniformly approximated by finite dimensional
Hamiltonian diffeomorphisms.
In the first part of this thesis we study the action selectors
defined from generating functions and we build Hamilto-
nian invariants for subsets of R2m × T∗Tk. This allows
us to prove a coisotropic non-squeezing theorem for com-
pactly supported Hamiltonian diffeomorphisms of R2n. We
then extend this result to some non-compact settings. Fi-
nally we explain how this result can give information about
the middle dimensional symplectic rigidity problem. Still in
finite dimensions, we show that it is possible to use the
symplectic camel theorem to create energy surfaces with
compact invariant subsets.
In the second part of the thesis we study symplectic rigid-
ity properties of flows of Hamiltonian PDEs. We work in
the context introduced by Kuksin and study a particular
class of semi-linear Hamiltonian PDEs that can be approx-
imated by finite dimensional Hamiltonian diffeomorphisms.
We first give a new construction of an infinite dimensional
capacity using Viterbo’s capacities. The main result of this
part is the proof of the analogue of the middle dimensional
rigidity for certain types of Hamiltonian PDEs. These in-
clude nonlinear string equations with bounded nonlinearity
such as the Sine-Gordon equation. In the final part of this
thesis we study an analogue of Arnold’s conjecture for the
periodic Schrödinger equations with a convolution nonlin-
earity.

Keywords

Symplectic geometry, generating functions, symplectic ca-
pacities, Hamiltonian PDEs.


