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Résumé

On étudie les propriétés de rigidité symplectique des difféomorphismes hamiltoniens en dimension
finie et en dimension infinie. En dimension finie, les outils principaux qu’on utilise sont les
fonctions génératrices et les capacités symplectiques. En dimension infinie on regarde les flots
des équations en dérivées partielles (EDPs) hamiltoniennes et, en particulier, les flots qui peuvent
étre approchés uniformément par des flots hamiltoniens de dimension finie.

Dans la premiere partie de la these on étudie les sélecteurs d’action définies a partir des
fonctions génératrices et on construit des invariants hamiltoniens pour les sous-ensembles de
R2™ x T*T*. Cela nous permet de démontrer un théoréme non-squeezing coisotrope pour les
difféomorphismes hamiltoniens & support compact de R*®. On montre & continuation que cette
propriété apparaisse dans certains cas non compacts. Finalement, on explique comment ce résultat
donne aussi 'information sur le probleme de rigidité symplectique en dimension intermédiaire.
Encore en dimension finie, on démontre qu’on peut utiliser le théoréme du chameau symplectique
pour produire des sous-ensembles invariants compacts dans des surfaces d’energie.

Dans la deuxieme partie on étudie les propriétés de rigidité symplectique des flots des EDPs
hamiltoniennes. On se place dans le contexte introduit par Kuksin et on étudie une classe parti-
culiere de EDPs semi-linéaires qui peuvent étre approchées par flots hamiltoniens de dimension
finie. D’abord on donne une nouvelle construction de capacité symplectique en dimension infinie
a partir des capacités de Viterbo. Puis on démontre ’analogue de la rigidité intermédiaire pour
certaines EDPs hamiltoniennes. Cette classe inclue ’équation d’ondes en dimension 1 avec une
nonlinéarité bornée, comme par exemple ’équation de Sine-Gordon. Dans la derniere partie de
la these on s’intéresse a un analogue de la conjecture d’Arnold pour I’équation de Schrodinguer
périodique avec une non linéarité de convolution.






Abstract

We study symplectic rigidity properties in both finite and infinite dimension. In finite dimension,
the main tools that we use are generating functions and symplectic capacities. In infinite dimen-
sion we study flows of Hamiltonian partial differential equations (PDEs) and, in particular, flows
which can be uniformly approximated by finite dimensional Hamiltonian diffeomorphisms.

In the first part of this thesis we study the action selectors defined from generating functions
and we build Hamiltonian invariants for subsets of R*™ x T*T*. This allows us to prove a
coisotropic non-squeezing theorem for compactly supported Hamiltonian diffeomorphisms of R?".
We then extend this result to some non-compact settings. Finally we explain how this result
can give information about the middle dimensional symplectic rigidity problem. Still in finite
dimensions, we show that it is possible to use the symplectic camel theorem to create energy
surfaces with compact invariant subsets.

In the second part of the thesis we study symplectic rigidity properties of flows of Hamiltonian
PDEs. We work in the context introduced by Kuksin and study a particular class of semi-linear
Hamiltonian PDEs that can be approximated by finite dimensional Hamiltonian diffeomorphisms.
We first give a new construction of an infinite dimensional capacity using Viterbo’s capacities. The
main result of this part is the proof of the analogue of the middle dimensional rigidity for certain
types of Hamiltonian PDEs. These include nonlinear string equations with bounded nonlinearity
such as the Sine-Gordon equation. In the final part of this thesis we study an analogue of Arnold’s
conjecture for the periodic Schrédinger equations with a convolution nonlinearity.
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Introduction

La géométrie symplectique trouve ses origines dans la formulation mathématique de la mécanique
classique. Au XIXeme siecle, Hamilton donne une interprétation variationnelle des équations
du mouvement. Considérons 'espace de phases R?" avec coordonnées (q,p), oul g représente la
position d'une particule et p représente le moment. L’évolution ~ : [0,1] — R?" d’une particule
dans I'espace de phases sous l'influence d'une fonction d’énergie H : [0,1] x R?® — R est un point
stationnaire de ’action

1 1
An(y) = / p(t) - 4(t) dt — / H(t, (1)) dt

Sous cette formulation, les points stationnaires sont décrits par les équations de Hamilton:

Par exemple, la fonction d’énergie d’une particule sous l'influence d’un potentiel V(gq) a une
fonction d’énergie donnée par H(q,p) = ﬁ|p|2 + V(q). Les équations de Hamilton donnent alors
I’équation de Newton classique

mg = —-VV(q).

En général, les équations de Hamilton donnent lieu a une transformation de I'espace de phases.
Lorsque 'espace de phases est de dimension deux, cette transformation préserve l'aire des sous-
ensembles de R?. Dans les dimensions supérieures, I’énoncé équivalent est le suivant: le flot
des équations de Hamilton préserve la forme différentielle wo = >, dg; A dp;. Cette forme
différentielle est ce que nous appelons la forme symplectique standard de R?”. Afin de comprendre
la dynamique de la mécanique classique, on est amené a étudier les structures symplectiques et,
en particulier, les transformations de ’espace qui préservent la forme symplectique. Le concept de
forme symplectique se généralise a des variétés lisses M: une structure symplectique w sur M est
une deux-forme fermée non dégénérée. Le fait que w soit non-dégénérée permet de généraliser les
équations de Hamilton: pour toute fonction d’énergie H, le champ vectoriel hamiltonien Xz est
défini comme l'unique champ de vecteurs qui satisfait ix,w = dH. En utilisant le fait que w est
fermée, nous obtenons que le flot généré par Xy préserve la structure symplectique. Le principal
exemple de variété symplectique avec laquelle nous allons travailler sont les espaces cotangents
T*N. Ils représentent les espaces de phase de la mécanique classique ou le mouvement est limité
a une variété N. Chaque espace cotangent est équipé d’une structure symplectique canonique
qui est donnée localement par la structure standard dans T*R"” ~ R?". Plus généralement, la
structure locale des variétés symplectiques est décrite par le théoréeme suivante:

Théoréme (Darboux). Toute variété symplectique de dimension 2n est localement symplecto-
morphe a (R?", w).

xi



Introduction

Ce théoreme implique que les variétés symplectiques n’ont pas d’invariants locaux. Les pro-
priétés symplectiques de M sont déterminées par la géométrie de (R?",wp) et par la structure
globale des objets dans M. Afin d’étudier la géométrie de ’espace, on est alors conduit a I’étude
des difféomorphismes globaux qui préservent la structure symplectique. Nous les appellerons sym-
plectomorphismes. La premiere propriété vérifiée par symplectomorphismes est le théoreme de
Liouville: chaque difféomorphisme symplectique préserve le volume des sous-ensembles. L’un des
premiers résultats qui a montré la différence entre les difféomorphismes conservant le volume et
les symplectomorphismes, est le théoreme non-squeezing de Gromov:

Théoréme (Gromov 1985, [Gro85]). Soit (R?",wq) l’espace symplectique standard. Notons B>"
une boule de rayon r dans R*™ et soit 312% x R?"=2 [e cylindre symplectique standard de rayon R.
Sip: R?" — R?™ est un difféomorphisme symplectique alors

©(B?") C B% x R*™ 2 implique <R

Capacités symplectiques

La preuve originale du théoreme non-squeezing de Gromov reposait sur la technique des courbes
pseudoholomorphes. Peu apres, plusieurs auteurs[EH90, HZ90, Vit92] ont donné des preuves
indépendantes du théoreme de Gromov en utilisant le concept de capacités symplectiques. Une
capacité symplectique est une fonction ¢ : P(R?*) — [0, +-00] qui vérifie les propriétés suivantes:

1. (croissance) Si U C V alors ¢(U) < ¢(V).

- (
2. (conformalité) c¢(A\U) = A\2¢(U) pour tout A € R.
-

3. (invariance symplectique) Si ¢ : R?” — R?" est un symplectomorphisme, alors c(¢(U)) =

c(U).
4. (non-trivialité-+normalisation) ¢(B?") = m = c(B? x R?"~2),

L’existence d’une fonction avec ces propriétés implique le théoreme de Gromov. La construction
de certaines capacités (cf. [EH90, HZ90, Vit92]) provient de I’étude des orbites périodiques des
systemes hamiltoniens. C’est ’approche qui va nous intéresser par la suite.

Le spectre d’action en tant qu’invariant symplectique

Rappelons que le principe de Hamilton affirme que les orbites périodiques d’un systéme hamil-
tonien associé & H sont les points extrémes de I'action:

1 1
Ap(y) = /0 p(t) - d(t) dt — /0 H(t.A(1)) dt.

En particulier, les points critiques de Ap contiennent des informations dynamiques tres impor-
tantes. Cette information peut étre utilisée pour construire des capacités symplectiques. Con-
sidérons un difféomorphisme hamiltonien & support compact H dans R?”. Dans ce cas, nous
pouvons intégrer les équations de Hamilton pour obtenir un flot global 1/}{1 de R?". Une orbite
périodique du systéme peut étre vue comme un point fixe zg de {7, c’est-a-dire un point vérifiant
Y (29) = 29. Notons A(zg, H) = A (1 (20)) la valeur de I'action associée au point fixe zg. A
premiere vue, cette quantité dépend de la fonction H et de tout le chemin {7, mais en fait ce
n’est pas le cas. On peut montrer que cette valeur d’action ne dépend pas du chemin hamiltonien

xii



Capacités symplectiques

utilisé pour engendrer f’. Plus précisément, si K une autre fonction hamiltonienne & support
compact tel que 1/){( = 1/}{{ , alors
A(Z07 H) = A(zov K)

Les valeurs d’action définissent donc un sous-ensemble de R qui dépend uniquement du temps un
P = w{{. On peut alors associer a tout v son spectre d’action (1)) C R défini par

o(¢) = {A(z, H) | » € Fix(¥ = v1)}.

Il s’avere que le spectre d’action est invariant par conjugaisons symplectiques: pour tout sym-
plectomorphisme ¢ de R?" on a

a(pe™t) = o ().
En particulier, le spectre d’action des difféomorphismes hamiltoniens supportés en U est exacte-
ment le méme que celui qu’on trouve pour les difféomorphismes hamiltoniens supportés dans ¢ (U).

Cette remarque importante est le point de départ de la construction des capacités symplectiques
que Viterbo a donné dans [Vit92].

Capacités de Viterbo

Pour chaque ensemble ouvert, U on note Ham®(U) l’ensemble de temps un des flots hamil-
toniens avec un support compact contenu dans U. Pour un ensemble ouvert borné U, la capacité
de Viterbo ¢(U) est définie en utilisant I'information dynamique des éléments dans Ham(U).
Plus précisément, cette information va provenir de la valeur d’action associée a certaines orbites
périodiques dynamiquement importantes. Ces valeurs d’action sont choisies par deux sélecteurs,
désignés par c(p, -) et ¢(1,-), qui prennent un élément ¥ de Ham®(R?") et donnent deux valeurs

c(p, ) = Au(a(t)) et c(1,9) = Au(B(1))

ot o(t) = YP(z) et B(t) = ¥ (y) avec x,y € Fix(). Ces valeurs vérifient c(u,) > 0 et
¢(1,7) < 0. On peut prouver que la valeur (1)) = ¢(u, 1) — ¢(1,v) est nulle si et seulement si
est 'identité. Intuitivement, cela signifie que ces valeurs d’action peuvent étre interprétées comme
un maximum et minimum dynamique de . De plus, on peut prouver que v définit une distance
sur Ham®(R?"). En utilisant 'invariance par conjugaison symplectique du spectre d’action, on
peut voir que les sélecteurs sont invariants sous la conjugaison symplectique, c’est-a-dire,

c(p, ) = c(p, o),

donc ces valeurs peuvent étre utilisées pour définir deux invariants symplectiques sur des ensembles
ouverts bornés :

c(U) = sup{c(p, ¥) | ¢ € Ham®(U)}
Y(U) = inf{y(¥) |4 € Ham®(R*") et »(U) NU = 0}

Sur les ensembles ouverts non bornés V', la capacité c(V') et y(V') est définie comme le sup sur tous
les ensembles bornés ouverts contenus dans V. Enfin, sur des sous-ensembles arbitraires X C R?"
les deux capacités sont définies comme I'infimum sur tous les ensembles ouverts V' qui contiennent
X. La valeur ¢(U) mesure la taille de ce maximum dynamique si le support est contenu dans
U. 1l a de plus la propriété que, sur un corps lisse convexe K, la valeur ¢(K) coincide avec la
quantité géométrique de I’aire minimale d’une caractéristique fermée sur la frontiere K. D’autre
part, 7 est défini en utilisant la distance de Viterbo sur Ham(R??): si nous définissons 1'énergie
d’un difféomorphisme comme la distance a l'identité, alors (U) mesure 1’énergie minimale dont
on a besoin pour déplacer U. Les deux capacités sont toujours liées par 'inégalité c(X) < v(X).
En dimension deux, si ¥ est un difféomorphisme hamiltonien a support compact qui déplace un
disque d’aire 772, alors nous avons w2 < v(v).
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Introduction

Construction des sélecteurs d’action

Afin d’extraire I'information des points fixes de 1f = ¢ nous regardons le graphe de 1), noté
'y = Id x4, dans R2" x R?" et les points d’intersection de I'y avec I'yg. Si nous munissons
R2" xR2" avec la structure symplectique wo® (—wp) alors I'y, devient une sous-variété lagrangienne.
De plus, I'y, est isotope a la diagonale et coincide avec elle en dehors d’un compact. Travailler sur
la variété linéaire de R?" a I’avantage qu’il y a un symplectomorphisme explicite

7 : (R?" x R*™, wy @ (—wp)) — (T*R?*™, —d)\)

tel que I'yq est envoyé a la section nulle. En particulier, puisque I'application est symplectique,
I'image de I'y, est une sous-variété lagrangienne qui est isotope de fagon hamiltonienne a section
nulle et coincide a l'infini avec la section nulle. Cela nous permet de considérer la compactification
en un point de R?" & S?" et de voir T*R?*" comme un sous-ensemble de T*S?". Chaque Iy est
alors contenu dans une sphere lagrangienne L, C T*S?" qui est une isotopie hamiltonienne de
la section nulle. Nous voulons extraire des informations des points d’intersection de L, avec la
section nulle.

Il y a une maniére naturelle de décrire les Lagrangiens dans ’espace contangent: toute fonction
f définit une sous-variété lagrangienne via le graphe de son différentiel df. Pour cette famille de
Lagrangiens, les points d’intersection avec la section nulle sont déterminés par les points critiques
de f. Nous allons décrire Ly en utilisant une généralisation de cette description qui sont les
fonctions génératrices. On introduit une variable auxiliaire et on considere les fonctions S :
527 x RF — R. Le graphe de la différentielle est une sous-variété lagrangienne dans 7 (S%" x RF).
Nous allons pousser en avant cette sous-variété lagrangienne de maniere symplectique pour obtenir
une lagrangienne dans T7*S%". Pour le faire, nous devons introduire le concept de réduction
symplectique.

Réduction symplectique. Soit V un espace vectoriel symplectique. On dit que W C V est
un sous-espace coisotrope si W contient son orthogonal symplectique W%, ou en autres termes,
un sous-espace W tel quel si u € V' vérifie w(u, w) = 0 pour tout w € W, alors u € W. Puisque
W« C W, on peut considérer le quotient W/W¥ qui est par construction un espace vectoriel
symplectique avec la forme symplectique induite par w. Notons 7 la projection naturelle 7 : W —
W/W*® et soit Z un sous-ensemble de V. La réduction symplectique de Z par W est

Redw (Z) :=nw(ZNW),

qui est un sous-ensemble de W/W. Une des propriétés importantes de cette opération est que si
L C V est un sous-espace vectoriel lagrangien transverse a W, alors Redyy (L) est lagrangien dans
le quotient. Cette définition s’applique au cas non linéaire, la seule difficulté qui peut survenir est
que W/W¥ ne soit pas une variété.

Fonctions génératrices quadratiques a ’infini. Soit NV une variété compacte et considérons
une fonction S : N x RF — R. Le graphe de la différentielle est une sous-variété lagrangienne dans
T*(N xR¥). Considérons le sous-espace coisotrope W := T*N x Oge C T*N x T*RF ~ T*(N xRF).
On peut voir que W/W« ~ T*N. Si dS est transverse a W alors

Ls = Redy (dS)

est une sous-variété lagrangienne immergée dans T*N. Dans ce cas, nous disons que S est une
fonction génératrice ou fg de Lg. La condition de transversalité implique que Xg := dS—1 (W)
est une sous-variété de dimension dim N. On note ig : ¥g — Lg C T*N T'application ig(q,§) =
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Capacités symplectiques

Redyw (dS(q,£)), c’est une immersion. Si de plus S(z,§) = Q(£) en dehors d’un compact avec Q
une forme quadratique non dégénérée, alors nous appellerons S une fonction génératrice quadra-
tique a 'infini ou fgqi. Il s’avere que cette description des lagrangiennes est suffisante pour décrire
tous nos L., dans T*S5%",

Théoréme (Laudenbach et Sikorav [LS85, Sik86, Sik87]). Soit T*N [’espace contangent d’une
variété compacte et considérons un difféomorphisme hamiltonien ® : T*N — T*N. Alors ®(0n)
a une fgqi S telle que ig est un difféomorphisme.

Le fait que ig soit bijective implique qu’il y a une correspondance bijective entre les points
critiques de S et les points d’intersection de L avec la section nulle. Ce théoréeme d’existence
a déja de fortes implications pour la topologie de ces sous-variétés. Il implique que ce type de
sous-variétés intersectent suffisamment la section nulle. Afin de définir les capacités de Viterbo,
nous devons pouvoir comparer les fonctions génératrices d’'une méme lagrangienne. Considérons
les opérations suivantes:

1. Addition d’une constante. Si ¢ € R, on pose 8’ =S +c: N x RF - R.

2. Composition par un difféomorphisme. Si ¢ : N x RE — N x RF est un difféomorphisme qui
satisfait ¢(x,&) = (z, p(x,&)) alors on pose S’ = S o ¢.

3. Stabilisation. Si Q' : R¥ — R est une autre forme quadratique non dégénérée, alors nous
définissons S’ = S+ Q' : N x R¥ x R¥ — R.

On dit que une fgqi S’ est équivalente a une autre fggi S si S’ peut étre obtenue a partir de
S par une succession d’opérations ci-dessus. On peut vérifier facilement que pour chacune des
opérations précédentes, nous avons

Redyy (dS') = Redy (dS),

CritVal(S’) = CritVal(S) + c.

Le théoréme suivant assure que ces trois opérations sont suffisantes pour aller d'une fggi a une
autre fgqi a condition qu’elles décrivent une isotopie lagrangienne a la section nulle.

Théoréme (Viterbo [Vit92] et Théret [Thé99a]). Soit T*N [’espace cotangent d’une variété com-
pacte et considérons un difféomorphisme hamiltonien ® : T*N — T*N. Alors toutes les fgqi S de
®(0y) telles que ig est un diffeomorphisme sont équivalentes.

Il convient de remarquer que dans 'article de Théret I’hypothese de que ig soit un difféfomorphisme
n’est pas incluse dans la définition de fonction génératrice [Thé99a, Definition 2.1] mais elle est
incluse dans la terminologie “S engendre L” [Thé99a, Definition 2.2].

Définition de c(u,-) et ¢(1,-). Puisque les fgqi sont de degré un, les points d’intersection de
L., avec la section nulle sont en correspondance bijective avec les points critiques de S. Rappelons
que ces points d’intersection sont en bijection avec les points fixes de 1. Apres avoir normalisé
la fgqi pour que la valeur critique & l'infini soit 0, on peut prouver que les valeurs critiques de S
coincident avec le spectre d’action de v

CritVal(S) = o(¢)).

Pour sélectionner une valeur d’action, il suffit alors de sélectionner une valeur critique de S.
Viterbo le fait dans [Vit92] via la théorie de Liusternik-Schilermann. Dans cette théorie, les
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valeurs critiques sont considérées comme témoins des changements topologiques des ensembles de
niveaux de S. Soit S une fggi qui coincide avec la forme quadratique @ & I'infini. Notons S*
'ensemble des points (z,£) € N x RE tels que S(z,¢) < . Le fait que S coincide avec Q &
'infini implique que pour |A| suffisamment grand les ensembles de niveau ne dépendent que de @,
en d’autres termes: S* = Q*. Pour un )¢ fixe assez grand qui vérifie cette propriété, on définit
§® = G0 e §7° = S~ Alors la topologie de la paire (S, S7>°) ne dépend que de l'indice
de la forme quadratique et nous avons

(6§%°,87°) ~ (82" x D~, 8% x 9D™)

ot D~ est le disque de dimension l'indice de Q). En particulier nous obtenons les isomorphismes
en cohomologie sur un corps

H*(8%,8%) ~ H*(N)® H(D~,0D"),

et nous pouvons définir une application T': H*(N) — H*(S°°,57°°) qui est appelé I'isomorphisme
de Thom. Afin de trouver les changements dans la topologie des ensembles de niveau, nous
déformons la paire (S°°,S~>°). Considérons l'inclusion naturelle iy : S* — S>°. Nous obtenons
une application en cohomologie

i H*(S%,87°) — H*(S*,57>).

Enfin, si on note p le générateur de H?"(S?") et par 1 le générateur de H°(S?") nous peut définir
deux valeurs:

c(p, S) =inf{\| 3T (u) #0} and ¢(1,5) =inf{\|i\T(1) # 0}

Ils détectent un ensemble de niveau qui subit un changement topologique, donc ils sont des valeurs
critiques de S. On peut alors définir ¢(u,v) = ¢(u, S) ot S est un fggi normalisé. Cette valeur
est bien définie grace au théoreme d’unicité des fgqi.

Rigidité coisotrope

Pour le premier résultat original de cette these, nous prouvons un nouveau résultat de rigidité pour
une famille large de symplectomorphismes. Au lieu d’étudier I’évolution des boules, comme dans le
non-squeezing de Gromov, nous allons étudier I’évolution des cylindres coisotropes. Pour rappel,
(cf. section précédente), tout sous-espace coisotrope W C R?" induit un espace symplectique
W/W<. On note w: W — W/W¥ la projection. La réduction de Z C R?" est définie comme

Redw (Z) =n(ZNW).
Dans le cas particulier de W = C™ x iR"™™ C C™ x C"™™, w = m,, est la projection sur les
m premieres coordonnées complexes. Un cylindre coisotrope est un sous-ensemble de la forme
X xR"™™ C C™ xC"™"™. On peut ainsi écrire X x R"™™ = X X Ogn—m et W = T*R™ x TFR"™™.
Théoréme (Non-squeezing coisotrope). Soit X C R?™ un ensemble compact, on considére
XXR"™M C CMmxC"™ et on note W = C™ xiR"™ ™. Pour chaque diffeomorphisme hamiltonien

a support compact 1 nous avons

co(X) < y(Redw[p(X x R*"™™)]).
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Rigidité coisotrope

Figure 1: Cette figure représente l'image du cylindre coisotrope par un difféomorphisme
hamiltonien a support compact 1. Le plan transverse représente le sous-espace coisotrope
complémentaire W. Le théoreme précédent donne des informations sur la capacité de la pro-
jection de l'intersection avec W.

La démonstration de ce théoréeme est contenu dans larticle [Bus17]. Explicitement, la réduction
de W est mp, (P(X x R*™™) N (C™ x {R™™™)), qui est la projection d’un ensemble borné. En par-
ticulier nous étudions des trajectoires ou la composante de T*R™™ ™ commence avec un moment
nul et arrive a un point précis TyR"™". Nous soulignons que les capacités de Viterbo ne donnent
pas a elles seules des informations de rigidité pour 'image des cylindres coisotropes puisque

(X x RF) =0 = 7(X x R¥).

Le cas X = (S1)™, et on Redy[¢)(X x R"™™)] est contenu dans un cylindre a été prouvé par
Buhovski et Opshtein en utilisant la théorie de courbes pseudo-holomorphes. La preuve de notre
théoreme est obtenue par une série d’inégalités entre les capacités de Viterbo d’ensembles et la
réduction symplectique de ces ensembles. L’avantage d’utiliser les capacités de Viterbo est qu’elles
sont construites en utilisant des fonctions génératrices, et la réduction symplectique peut étre vue
comme une opération explicite sur les fonctions génératrices. Cette opération peut étre ensuite
étudiée en détail. La preuve vient de I'extension des sélecteurs d’action & R?™ x T*Tn~™.

Sélecteurs d’action sur R?” x T*T*. La construction des sélecteurs d’action de Viterbo
s’appuie fortement sur la structure linéaire de '’espace. Nous ne pouvons pas utiliser la méme con-
struction pour généraliser ces invariants a chaque variété symplectique, néanmoins nous sommes
encore capables de le faire si nous ajoutons un espace cotangent d’un tore.

Notons 7 la projection naturelle de T*R?™ x T*R?* sur T*R?>™ x T*T?*. (’est la projection
induite par le quotient de T*R?™ x T*R?* par translation de vecteurs dans Z¥. Prenons une isotopie
hamiltonienne & support compact ¢ de R?™ x T*T* et considérons le relevé 1/; sur R?™ x T*RF.
L’application @Z commute avec l’action de ZF par translation, donc les points fixes de 1; sont
regroupés dans Z* orbites. De plus, on peut voir que ces orbites sont en bijection avec des points
fixes contractiles de . On peut définir le spectre d’action contractile de 1) comme

Uc(w) - O'("gb)

Pour chaque difféomorphisme hamiltonien de support compact ¢ de R?™ x T*T* on peut montrer
que

oo™ t) = ac(¥).
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Comme dans le cas de R?™ on considere le graphe de 1 et on peut utiliser le symplectomorphisme
T pour le voir comme une sous-variété lagrangienne de T*R?>™ x T*R2?*. Dans ce cas, les points
d’intersection avec la section nulle viennent dans des Z* orbites ol chaque point de I'orbite a la
méme valeur d’action. Afin de se débarrasser de cette redondance, nous utilisons les propriétés
périodiques du flot pour prendre le quotient par cette action et trouver une sous-variété lagrangi-
enne dans T*R?™ x T*RF x T*T*. Les points d’intersection de cette lagrangienne avec la section
nulle sont en bijection avec les points fixes contractiles de 1. Nous pouvons alors compactifier la
base pour obtenir une lagrangienne

Ly C T*S?™ x T*S* x T*T*.

Comme expliqué précédemment, cette sous-variété est isotope de facon hamiltonienne a la section
nulle donc elle a une fggi. On peut alors utiliser les classes cohomologiques a® @~ € H*(S?™)®
H*(S*) @ H*(T*) pour sélectionner les valeurs critiques de S. Aprés normalisation, nous avons
nouveau la propriété tres importante

CritVal(S) = o.(¢).

De la méme facon que dans le cadre classique, nous pouvons alors définir une notion de capacité
pour les sous-ensembles de R?™ x T*T*. Pour les ensembles ouverts bornés U dans R*™ x T*T*
on définit

(o ® B@7,U) = suple(a® B8 7,v) | € Ham(U)}.

Cette fois ces quantités ne sont pas invariantes par les difféomorphismes symplectiques généraux
de R?™ x T*T* mais seulement par les isotopies hamiltoniennes.

Sélecteurs de valeurs critiques et réduction symplectique. L’étape suivante consiste a
relier ces nouveaux invariants aux capacités classiques de Viterbo. Ceci est fait via une séquence
d’inégalités qui relient les fonctions génératrices a ’opération de réduction symplectique. La
remarque clé est que si S : N x B x Rl — R est une fonction génératrice pour Lg C T*N x T*B
et si Lg est transverse au sous-espace coisotrope W = T*N x Ty B alors S, = S(-,b,-) engendre
Redyw (Lg). En plus, les sélecteurs de valeurs critiques se comportent bien par rapport a cette
opération. Plus précisément pour o € H*(N) et u € H*(B) la classe d’orientation dans B nous
avons la chaine d’inégalités

C(Oé@ 175) < C(Oé,Sb) < C(a®ua S)

Ce résultat nous permet d’obtenir la relation désirée avec les capacités de Viterbo. Nous obtenons
d’abord la non trivialité de 'invariant via 1'inégalité suivante:

Proposition. Si X C R?™ est compacte alors ¢(X) < c(p®@p® 1, X x {0} x TF).

Dans cette proposition, il est crucial d’avoir un ensemble avec T* tout entier dans la variable
de la classe cohomologique 1 afin d’obtenir quelque chose de non trivial. La borne supérieure
provient d’une relation avec 1’énergie de déplacement de Viterbo:

Proposition. Soit Z C R?™ x RF x T* un ensemble compact. Pour w € T* on considére le
sous-espace coisotrope W = R?™ x R¥ x {w}. On a

c(p®@p®l, Z) < y(Redw(Z)).

Afin de prouver le théoreme de non-squeezing, nous étendons I’ensemble X x R¥ et le voyons
comme X x {0} x T* c R?>™ x T*T*. Nous étendons ensuite le diffSomorphisme hamiltonien &
support compact & tout espace R?™ x T*T* et appliquons les propositions précédentes.
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Rigidité coisotrope

Cas non compact

L’étape suivante consiste a étendre le théoreme de non-squeezing coisotrope a des cas ou le
difféomorphisme hamiltonien n’a pas un support compact. Puisque nous regardons ’évolution
d’un ensemble non borné X x R¥ C C™ x C* nous devons avoir un flot globalement défini. Pour
cette raison nous restreignons I’étude a la classe des difféfomorphismes hamiltoniens qui satisfont

|\VH(z)| < A+ B|z| for every (t,z)€[0,T] x R*™
pour deux constantes positives A and B. Ces difféomorphismes hamiltoniens définissent des appli-

cations globales ¥{ pour tout ¢ € [0, T]. La premiere remarque est qu’il existe un difféomorphisme
hamiltonien de ce type qui ne satisfait pas ’énoncé du théoréeme: considérons le difféomorphisme

D215y 2n) = (Zmt1s vy Zns 215+« Zm)

avec z; = ¢; + ipj. C’est un difféomorphisme hamiltonien qui est engendré par une fonction
hamiltonienne quadratique. On peut voir facilement que

H(X x RF) =RF x X CRF x C™

de fagon que I'image de m,, est également contenue dans un sous-espace linéaire propre. Puisque
Iénergie de déplacement associée & un sous-espace linéaire est nulle nous obtenons

v(Redy [p(X x RF)]) = 0.
Si I'on considére un cylindre coisotrope de la forme X x R* avec ¢(X) > 0 alors I’énoncé du
non-squeezing coisotrope n’est pas vrai pour cette application ¢. Nous prouvons qu’il existe une

classe d’applications qui vérifient I’énonce. Plus précisément, nous prouvons:

Théoréme. Considérons une fonction hamiltonienne de la forme
1
Hi(z) = i(Az,z) +U(2), avec |VU(2)|<C pour tout (t,z) € R xR

avec un C' positive. Supposons que A = A1 @ --- B A, ou Ay est une application linéaire sur

Vect{a%w%} pour tout 1 < k < n. Soit X C R2™ yn ensemble compact et considérons le

sous-espace coisotrope W := C™ x iR"™™, Alors pour tout t € R tel que
R*™ 4+ e—tJAi]Rn—m —nm
)

nous avons
c(X) < y(Redw v (X x R*™)]).

Un exemple de difféomorphisme hamiltonien qui vérifie les hypotheses est la classe des flots
définis a partir des fonctions hamiltoniennes mécaniques de la forme

1
Hi(q,p) = 5[pI* + Ui(q), avec |[VU(2)| <C.
En particulier, le théoreme est vrai si U est un potentiel périodique en gq.
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Rigidité coisotrope sur 7*T"

En utilisant cette extension non-compacte, nous pouvons regarder le véritable cas périodique
T*T". Dans ce cas, nous prouvons que nous avons toujours ce comportement dans le cas des
difféomorphismes hamiltoniens a support compact.

Théoreme. Soit ¢ un difféomorphisme hamiltonien a support compact de T*T" = T*T™ x
T*T"=™. Pour tout w € T"™™ on note Wy =T*T"™ x T3 T"™™ et Wy = T*T™ X Opn-m. Soit B,
une boule de rayon r dans T*T™. Alors l'inclusion

Redy, [(By X Opn-m)] € Br  ou  Redw, [¢(B, x T,,T""™)] C Br
entratne r < R.

Ce théoreme est également vrai pour les difféomorphismes hamiltoniens mécaniques. Il indique
également que ce type de rigidité coisotrope peut apparaitre dans le cadre des produits d’espaces
cotangent de bases compactes. Par boule symplectique de rayon r dans une variété symplectique
(M,w) on entend une boule de rayon 7 dans R?"® qui est plongée de facon symplectique dans M
En particulier, nous pouvons conjecturer le comportement suivant:

Conjecture. Soit N et M deux variétés compactes et 1) une isotopie hamiltonienne compacte
de T*N x T*M. Pour tout m € M on note Wy = T*N x Ty M et Wy =T*N x 0yps. Soit B, une
boule symplectique de rayon r dans T*N. Alors I'inclusion

Redw, [t (B, x Op)] € Br ou  Redw, [¢(B, x T;, M)] C Bg

implique r < R.

Rigidité symplectique de dimension intermédiaire

L’une des conséquences du théoréme non-squeezing coisotrope est son interprétation dans le con-
texte du probleme de rigidité de dimension intermédiaire. Une des premieres questions concernant
ce probléeme est apparue dans [Hof90b] ot Hofer s’est interrogé sur la généralisation des capacités
aux dimensions intermédiaires. Les capacités symplectiques sont une sorte de mesure bidimen-
sionnelle des ensembles car, du point de vue des capacités symplectiques, tous les cylindres d’un
méme rayon mais avec une base de dimensions différentes, sont exactement identiques. Afin
d’essayer de voir si ces cylindres sont différents pour la géométrie symplectique, Hofer a demandé
s’il existe une capacité symplectique k-intermédiaire ¢* satisfaisant la monotonie, la k-conformité,
I’invariance symplectique et telle que

ck(B%k X RQ"*%) < 400 mais ck(B%k_2 x R? x RQ”*Z’“) = 4007

La premiere inégalité est déja vérifiée par les capacités standards et c’est la deuxieme qui differe.
L’un des premiers résultats indiquant que les capacités intermédiaires n’existaient pas est apparu
dans une publication de Guth [Gut08]. Il s’est intéressé a la question des plongements des poly-
disques P = 312%1 X oo X Bl%m avec R < ... < R,, dans un autre P’ = BIQQ,1 X oo X BIQ% avec
R} < .- < R], en utilisant une application symplectique. 11 y a deux obstacles évidents a ce
probléme. Le premier provient du non-squeezing de Gromov qui implique Ry < R). Le deuxiéme
est le volume qui implique que R --- R, < R} ---R],. En utilisant les techniques de l'article de
Traynor [Tra95] on peut voir que 1'on pourrait plonger P dans P’ dés que Ry --- Ry, S R -+ R},
pour chaque k entre 1 et n. Guth a montré que, modulo une constante dimensionnelle, £ = 1 et
k = n sont les deux seules obstructions. Plus précisément:
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Rigidité coisotrope

Théoréme (Guth 2008 [Gut08]). Il existe une constante dimensionnelle C(n) telle que si
C(n)Ry < R} et C(n)Ry--- R, < R} ---R), alors P se plonge symplectiquement dans P’.

Ce théoreme a donné une réponse partielle & la question de Hofer. Cela implique que si
1 < k < n alors k-capacités qui vérifient I'hypothese de continuité suivante :

lim ¢(B¥ x B3 %) < 400 et lim ¢(B¥*72 x B2722) — 1o

R—>+oo(1 B )<+ R_>+OO(1 R )=+

n’existe pas. Son théoreme était quasiment une réponse définitive, mais la question des capacités
moins régulieres restait ouverte. Cela a été récemment résolu par la négative de Pelayo et Vii Ngoc
dans [PVuN15]. Ils ont appliqué un argument limite & la construction de Guth et Hind-Kerman
[HK14] afin de prouver la version non-bornée du théoreme de Guth.

Théoréme (Pelayo-Vii Ngoc 2015 [PVuN15]). Sin > 2 alors le cylindre B? x R*"=2 peut étre
plongé de facon simplectiquement dans le produit Bé”ﬂ x R? pour tout R > /2n—1 4 2n=2 _ 2,

Avec ce théoreme, la question des capacités symplectiques intermédiaires était définitivement
résolue. Ils ont montré que les difféomorphismes symplectiques généraux sont trop flexibles pour
capturer ce type de rigidité cylindrique. Un autre point de vue sur le probleme de la dimension
intermédiaire vient d’'une reformulation du théoréme non-squeezing de Gromov. En dimension
2 les symplectomorphismes sont les mémes que les applications préservant les aires donc Eliash-
berg et Gromov [EG91] ont souligné que (en utilisant un théoreme de Moser sur Iexistence de
difféomorphismes conservant 'aire) le théoreme de Gromov est équivalent a

area(Il; ¢(B2")) > nr?  pour tout symplectomorphisme ¢.

On note Il la projection sur les 2k premieéres coordonnées. Une généralisation possible de cet
énoncé aux dimensions supérieures est

Vol(IT,p(B?")) > Vol(II;, B**) = Vol(B?*)  pour chaque symplectomorphisme .

Ce probleme a été étudié par Abbondandolo et Matveyev dans [AM13]. Dans leur article, ils ont
d’abord prouvé que I'inégalité est vraie dans le cas linéaire:

Théoréme (Abbondandolo-Matveyev 2013 [AM13]). Soit ® automorphisme symplectique linéaire
de R?™, et soit P : R — R?" soit la projection orthogonale sur un sous-espace linéaire compleze
V C R?" de dimension 2k, 1 < k < n. Alors

Vol(P®(B2")) > Vol(B2)
avec égalité si et seulement si le sous-espace linéaire ®TV est compleze.

Contrairement au résultat linéaire, ils prouvent que les difféomorphismes symplectiques sont a
nouveau trop flexibles pour avoir cette sorte de rigidité symplectique de dimension intermédiaire.
Plus précisément, cela montre qu’on peut écraser arbitrairement la projection symplectique de
I'image de la boule par des symplectomorphismes.

Théoréme (Abbondandolo-Matveyev 2013 [AM13]). Soit P : R*® — R?" la projection orthog-
onale sur un sous-espace linéaire complexe V.C R?™ de dimension 2k, 1 < k < n. Pour chaque
€ > 0 il existe une application symplectique lisse ¢ : B — R?" telle que

Vol(P¢(B?")) < e.
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Malgré tous ces résultats négatifs, il y a eu un résultat récent de Rigolli dans [Rigl5] qui prouve
qu’il y a aussi une rigidité intermédiaire locale si I'on restreint la classe des symplectomorphismes
aux analytiques.

Théoréme (Rigolli 2015 [Rigl5]). Soit ¢, : E?n — R2™ un chemin analytique des plongements
symplectiques, avec t € [0, 1], tel que ¢g est linéaire. Alors l'inégalité de non-squeezing de dimen-
sion intermédiaire

Vol(P¢.(B3")) > Vol(B?)
est vérifiée pour tout t assez petit.

Ce résultat indique que cette rigidité intermédiaire pourrait étre possible en restreignant la
classe des difféomorphismes symplectiques que nous considérons. De plus, ce résultat a une autre
implication locale:

Théoréme (Rigolli 2015 [Rigl5]). Pour chaque inclusion analytique symplectique d’un domaine
D il existe une fonction ro : D — (0, +00) telle que l'inégalité a dimension intermédiaire

Vol(Po(BZ"(x))) > Vol(B2")

est valable pour tout x € D et pour tout r < r(x). De plus, ro est borné inférieurement par une
constante positive sur des sous-ensembles compacts K C D.

Nous aimerions souligner une autre généralisation possible du probleme de dimensions in-
termédiaires. Dans la dimension 2, la valeur des capacités symplectique des disques topologiques
coincide avec 'aire, donc on peut aussi réécrire le théoréme de Gromov comme

c(IIyp(B?™)) > 7r?  pour tout symplectomorphisme ¢,

ou ¢ est une capacité symplectique. On peut alors se demander si cette inégalité est vraie avec
I1; remplacé par I, et plus généralement, s’intéresser aux sous-ensembles Z différents de B2" et
remplacer 7r? par la capacité de I Z. Les résultats précédents montrent qu’il y a peu d’espoir
qu’'une telle inégalité soit toujours vraie, il faut donc restreindre le type de symplectomorphismes
considérés. Notre théoreme de non-squeezing coisotrope implique une rigidité de dimension in-
termédiaire pour les déformations des cylindres coisotropes Z = X x R*™™ C C™ x C"™™ a
condition de restreindre la classe de symplectomorphismes aux isotopies hamiltoniennes a vitesse
bornée.

Théoréeme. Soit X C R*™ un ensemble compact. On considére X x R*™™ C C™ x C"™™ et soit
¥ un difféomorphisme hamiltonien engendré par une fonction avec un gradient borné. Alors

o(X) < (i (X x R"™™)).

On remarque que, contrairement a ce qui se passe dans le probleme de rigidité intermédiaire
du volume, cette affirmation n’est pas vraie pour tout symplectomorphisme linéaire. Comme il
est habituel en géométrie symplectique, ce résultat de rigidité peut étre utilisé pour définir un
invariant. L’exemple classique de ce fait est la définition de la largeur de Gromov apres avoir
prouvé le théoreme non-squeezing. Dans notre cas, nous devrions considérer la quantité suivante:

16 (U) = inf{y(Iln¢(U)) | ¢ € G}

ot G est un sous-groupe du groupe des difféomorphismes symplectiques. Pour G' = Sympl(R?")
on sait que v/ est nul dans les cylindres coisotropes de dimension m. En particulier, il pourrait
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étre trivial pour chaque sous-ensemble de R?". D’autre part, si les éléments de G sont des
difféomorphismes hamiltoniens engendrés par des fonctions a gradient borné, alors le théoreme
précédent implique que v est borné inférieurement sur les cylindres coisotropes de dimension m.
A titre d’exemple de G on peut prendre le sous-groupe des difféomorphismes hamiltoniens cp{{ ou
H, T et (o)~ sont Lipschitz sur la variable d’espace sur des intervalles de temps compacts.
Pour ce sous-groupe, le théoreme précédent donne

o(X) <2E (X xR*™) < y(X).
Plus précisément 7 possede les propriétés suivantes:

1. (monotonie) Si U C V donc v (U) < v& (V).

2. (conformalité) 42 (AU) = A2 (U) pour tout A € R.

2

4. (non-trivialité+normalisation) yg}(Bfm x R"=™) = g2,

- (
- (
3. (G invariance) Si ¢ € G on a V& (¢(U)) = v&(U).
- (
Enfin, on veut souligner que cet invariant satisfait une propriété 2 -conformalité au lieu de la k
-conformalité demandée par Hofer pour les capacités symplectiques de dimension intermédiaire

Rigidité sur les surfaces d’énergie

Dans la partie suivante de cette these, nous étudions les propriétés de rigidité du flot car-
actéristique des surfaces d’énergie. Soit (M,w) une variété symplectique et soit H : M — R
une fonction hamiltonienne lisse. Chaque valeur réguliere A\ définit une hypersurface lisse 3 de
M. Les propriétés du flot 7 sur ¥ ont toujours été un sujet de recherche important (voir par
exemple [HZ94, Chapitre 4]). A titre d’exemple, nous rappelons I’étude des orbites périodiques
dans les surfaces d’énergie. Nous nous intéressons aux sous-ensembles compacts de ¥ qui sont
invariants par le flot. Ceux-ci incluent les orbites périodiques et aussi d’autres types de sous-
ensembles de dimension supérieure. Nous utilisons le théoreme du chameau symplectique pour
créer des sous-ensembles invariants compacts dans les déformations de X. Rappelons que I’énoncé
du théoreme du chameau symplectique est:

Théoréme ([Vit92] et aussi [MT93] pour dim = 4). On considére lespace E = R*"~1 x {0} \
B?™(0,7) et on suppose qu’il existe une isotopie symplectique ¢t de R®*™ a support dans R*"\ E
tel que

By C{pn <0} et @' (BE") C{pn>0}.

Alors r > R.
Il y a aussi une démonstration non publiée de ce résultat par Gromov et Eliashberg.

Localement nous pouvons trouver un ouvert assez petit U C M, et un petit voisinage ouvert
de lorigine dans R?” tel que nous avons un symplectomorphisme

UN ~VNR7™ ! x {0}

C’est pour cela qu’on va regarder des déformations de R?"~! x {0} contenus dans V avec les
propriétés désirés. On définit d’abord le concept de fonction (r, R)-simple (voir Figure 2 (a))
pour laquelle les niveaux d’énergie sont des déformations compactes de R?"~! x {)\}. Puis on
définit les perturbations simples: perturbations C° dans la classe des fonctions simples.
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(a) Niveaux d’énergie. (b) Trajectoire coincée.

Figure 2: (a) Les niveaux d’énergie entre 0 et 1 pour une fonction (r, R)-simple avec r < R.
(b) Une représentation d’une trajectoire coincée dans un sous-ensemble borné. Cette trajectoire
produit un sous-ensemble invariant compact.

Dans cette section on montre d’abord qu’on peut déformer facilement ¥ pour produire des
sous-ensembles invariants compacts et puis on démontre en utilisant le théoreme du chameau
symplectique que ces sous-ensembles persistent sous des perturbations C° de la fonction H. Plus
précisément:

Théoréme. Soit H : R?" — R une fonction (r, R)-simple avec r < R. Alors il existe un X € [0, 1]
tel que Xy a un sous-ensemble invariant compact. En conséquence, pour toute perturbation e-
simple He of H avec € € [0, RQ_"[ il existe un A\ € [0,1] tel que 5 = H- Y () a un sous-ensemble

€
mvartant compact.

La preuve est par 'absurde. S’il n’y a pas de sous-ensemble invariant compact, alors chaque
trajectoire caractéristique va d'un c6té de l'espace a l'autre (voir Figure 2). Dans ce cas, nous
pouvons construire une isotopie symplectique qui vérifie I'hypothese du théoreme du chameau
symplectique mais qui contredit la conclusion. Puisque ce n’est pas possible, nous concluons qu’il
doit y avoir une trajectoire qui est coincée dans un ensemble borné. Cette trajectoire doit alors
étre arbitrairement proche d’un sous-ensemble invariant compact.

EDPs hamiltoniennes

Dans la deuxieme partie de ce manuscrit, nous étudions les propriétés de rigidité symplectique dans
les espaces de Hilbert de dimension infinie. De nombreuses équations en dérivées partielles (EDPs)
apparaissant en physique peuvent étre vues comme des systémes hamiltoniens de dimension infinie

i = JV Hy(u).

Ici, la fonction hamiltonienne H est définie sur un espace de Hilbert de dimension infinie. J est
un opérateur anti-symétrique non dégénéré qui définit une structure symplectique via le produit
scalaire. Les principaux exemples d’EDP hamiltoniennes sont:

1. Equation d’onde non-linéaire

Utt—AU+f(t,$,U) :07

2. Equation de Schrédinger non-linéaire

iug — Au+ f(t, z, [ul*)u =0,
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3. Equation des membranes
ug + A%u + f(t,z,u) =0,

4. Equation de Korteweg-de Vries (KdV)

Ut — Ulg + Ugrr = 0.

Contrairement a ce qui se passe dans les dimensions finies, la fonction hamiltonienne H; utilisée
pour définir le champ vectoriel n’est pas définie sur tout I’espace de phase symplectique F, mais
seulement sur un sous-espace dense de F. Cela implique également que le champ de vecteurs
ne sera défini que sur un sous-espace dense. En particulier, avant d’examiner les propriétés
symplectiques du flot, il faut d’abord se demander quelle est la définition précise du flot, et en
particulier quelle est la définition d’une solution. Une fagon de résoudre ce probleme est de
regarder des équations semi-linéaires, c’est-a-dire, des équations dont la fonction hamiltonienne
peut étre écrite comme H;(u) = %(Au,u) + he(u). Ici A est un opérateur linéaire possiblement
non borné et h; est une fonction lisse définie sur tout ’espace E. Par exemple, dans le cas de
’équation de Schrédinger, 'espace de Hilbert est E = L2(T9, C), 'opérateur est A = A et h est
défini par une intégrale en utilisant f. Pour ce type d’équations, on peut utiliser la formule de
Duhamel pour définir des solutions. Ceci donne la notion de solution généralisée, et (dans des
conditions de régularité sur la non-linéarité) les résultats d’existence et d’unicité peuvent étre
dérivés en utilisant des arguments de points fixes.

Rigidité Symplectique

Dans le cas de dimension infinie, on connait peu les propriétés de rigidité des symplectomorphismes
généraux. L’étude des propriétés de rigidité symplectique pour les EDPs a commencé avec Kuksin
en 1995 [Kuk95]. Il s’est intéressé a un type d’équations qui sont une perturbation compacte
d’une application linéaire symplectique. La propriété clé de ces applications symplectiques est
qu’ils peuvent étre approximés sur des ensembles bornés par des flots hamiltoniens de dimension
finie. Cette approximation lui a permis de construire un analogue infini de la capacité symplectique
définie par Hofer-Zehnder. Cette capacité est construite comme une sorte de limite de la dimension
finie, et hérite ainsi en grande partie les propriétés des capacités symplectiques. En particulier,
elle vérifie la propriété de normalisation, de sorte qu’on peut I'utiliser pour dériver un analogue du
théoreme de non-squeezing. Cependant, contrairement a la capacité en dimension finie, la capacité
de Kuksin n’est pas invariante par des symplectomorphismes généraux de ’espace symplectique
de Hilbert, mais seulement par ceux qui sont une perturbation compacte d’une application linéaire
symplectique, et ou I’application linéaire est bien adaptée a la base qui est utilisé pour construire
la capacité.

Peu apres ce travail, plusieurs auteurs se sont intéressés au comportement non-squeezing dans
des flots plus généraux. Bourgain a été le premier a prouver le non-squeezing pour un flot qui
n’est pas une perturbation compacte d’une application linéaire [Bou94]. Il a étudié I’équation de
Schrédinger non linéaire cubique

10 = —Au + |ulu,

sur le tore. Encore une fois, la technique consistait a approximer d’une certaine fagon le flot
de I’équation par des flots hamiltoniens en dimension finie afin d’appliquer le théoreme de Gro-
mov. Ensuite, Colliander et ses collaborateurs [CKS105] ont prouvé, en utilisant & nouveau une
approximation en dimension finie, que 1’équation KdV sur H _%(']I‘) a aussi une propriété non-
squeezing. Encore une fois, le principal défi de la preuve est de prouver I’approximation. D’autres
équations ou le non-squeezing a été prouvée sont : 1’équation de Klein-Gordon périodique, par
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Mendelson [Menl7] et I’équation de BBM périodique [Roul0]. Il est important de citer I'article
de Killip-Visan-Zhang [KVZ16] ou ils ont donné la premiére preuve du non-squeezing dans un
volume infini. Ils considérent de nouveau le NLS cubique sur R? et montrent qu’il a une bonne
approximation par des flots de dimension finie.

Toutes les démonstrations précédentes s’appuient sur la structure particuliere des équations.
Un point de vue différent est venu dans l'article [AM15] d’Abbondandolo et Majer. Ils ont étudié
la propriété de non-squeezing pour des difféomorphismes symplectiques arbitraires d’un espace
de Hilbert séparable en utilisant une approche géométrique. Ils ont prouvé que I’écrasement ne
peut pas se produire au moins pour les images convexes de la boule. Ils 'ont fait en construisant
une capacité pour les ensembles convexes en utilisant le principe d’action dual. Leur argument
est le premier & ne pas étre basé sur ’approximation par des flots de dimension finie. Nous citons
également aussi les articles de Sukhov et Tumanov [ST16a, ST16b] ou ils donnent une nouvelle
preuve du non-squeezing de Gromov et 1'utilisent ensuite pour explorer les limites de cette preuve
dans le contexte des espaces de Hilbert.

Capacités Symplectiques

Le premier résultat de cette partie de la these est une construction de capacités en dimensions
infinies, différente de celle donnée par Kuksin dans [Kuk95] mais aussi basée sur l’approximation
en dimension finie. Nous nous limitons aux EDPs semi-linéaires du type décrit dans [Kuk95]. La
structure symplectique sur F est définie en utilisant le produit scalaire et une structure presque
complexe J. Les fonctions hamiltoniennes sont de la forme

Hy(u) = %(Au, u) + he(u),

ol A est un opérateur linéaire auto-adjoint (peut étre non-borné) et h; est une fonction lisse. Le
champ de vecteurs hamiltonien est

Xu(u) = JAu+ JVhi(u)

Si et’4 est borné, les solutions peuvent étre définies & partir de la formule de Duhamel. On note
{90;-t | j > 1} une base orthonormée de E et on suppose que .J Lp;E = +pT et que A est diagonal
pour cette base. Soit FE, le sous-espace de dimensions finie engendré par {gpji |1 < j<n}et
I1,, la projection naturelle sur F,. Sous des hypotheses de compacité sur la non-linéarité, les
flots sont des symplectomorphismes qui peuvent étre approchés sur des ensembles bornés par
les flots hamiltoniens de dimension finie engendrés par la projection du champ de vecteurs sur
E,. Des exemples spécifiques de ce type d’équations sont (voir [Kuk95]): équation de cordes non
linéaire dans T avec une non linéarité qui a au plus une croissance polynomiale a I’infini, équation
d’onde non linéaire quadratique dans T?, équation des membranes non-linéare sur T? avec une
non-linéarité qui a au plus une croissance polynomiale a I'infini et ’équation de Schrodinger avec
une non-linéarité de convolution dans T".

Definition d’une capacité Comme dans le cas de dimension finie, pour calculer la capacité
d’un ensemble, on examine l'action des orbites périodiques associées aux fonctions avec support
dans cet ensemble. Dans les dimensions infinies, on se doit d’étre plus prudents car une fonction
avec un support borné peut ne pas induire un flot hamiltonien globalement défini. On considere
un sous-ensemble ouvert borné U C E. On définit ’ensemble de la facon suivante

F(U) = { fonctions lisses f : E — R telles que Supp f CU et d(Supp f,0U) > 0}.
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On considere le sélecteur d’action ¢(pu,-) défini au début de 'introduction et on écrit c(u, H) =
c(u, i), On note f, = fig, et on définit

Colp, f) = liminf e(p, f) et ¢*(u, f) = limsup c(y, fn)

On remarque que le support de f,, est contenu dans Supp f N E, qui est borné, donc f, a un
support compact. En particulier ¢(u, f,,) est bien définit. De plus, on remarque que pour chaque
n il existe une orbite périodique z, : [0,1] — E, tel que c(u, f) est 'action de z,, mais ces
orbites peuvent ne pas converger. On utilise ¢(u, f) pour définir la capacité des ensembles ouverts
bornées U comme

co(U) = sup{co(p, f) pour f e F(U)} et ”(U) = sup{c®(u, [) pour f € F(U)},

Il s’avere que cette définition est invariante par le flot des équations précédentes et possede les
propriétés des capacités symplectiques. En particulier, il profite de la normalisation et on peut
donc l'utiliser pour dériver le théoreme de non-squeezing;:

Théoréme (Kuksin [Kuk95]). Si®: E — R est le flot d’'une EDP hamiltonienne satisfaisant la
condition de compacité, alors ®(B,) C Zg implique r < R.

La construction originale d’une capacité symplectique de dimension infinie par Kuksin était
une généralisation de la capacité de Hofer-Zehnder. Il utilise la notion d’orbites périodiques
rapides des systémes hamiltoniens: orbites de période T' < 1 qui ne sont pas des points fixes. La
capacité de U est alors (grossierement) définie comme la variation maximale d’un difféomorphisme
hamiltonien qui ne produit pas de trajectoires rapides. Comme dans notre cas, la définition
implique une sorte de limite de la capacité a mesure que la dimension croit.

Ridigité en dimensions intermédiaires

Le deuxieme résultat de ce chapitre concerne I'étude de la rigidité en dimension intermédiaire
pour les équations de Kuksin. La premiere étape consiste a définir le cylindre coisotrope dans ce
contexte. Nous expliquons le résultat pour ’exemple concret de ’équation des cordes non linéaire.

ﬁ:um—f(t,x,u), u:u(t,x),

ot z € T = R/27Z. Si on note par B lopérateur B = (—02/dx> 4+ 1)%/2 alors on peut écrire
I’équation sous la forme

u = —Bw,
= (B—B Yu+ B f(t,z,u).

On définit £ = H %(']I‘) x H %(T) comme le produit des espaces de Hilbert. Maintenant, on écrit
A= (B—B7!) x B et on définit J : E — E par J(u,v) = (—v,u) on peut écrire '’équation de
cordes non-linéaire comme une EDPs semi-linéaire dans £ comme

(4,0) = JA(u,v) + JVh(u,v).

On suppose que f 1est born? et que toutes ses dérivées sont a croissance polynomiale. On note
E=E.xE_=H2(T)x H2(T). On écrit un élément de £ = E* x E~ dans la base de Fourier et
on note par Ej, le sous-espace de dimension finie de E dont les éléments (u, v) sont une combinaison
linéaire de termes de fréquences allant jusqu’a k. On note par Il : E — Ej la projection naturelle
et soit X x E_’ﬁ le sous-espace de E formé d’éléments (u,v) qui se projettent sur X sous Il et
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tels que (0,v) € Ej. Ceci est la définition naturelle d’un cylindre coisotrope en dimension infinie.
Comme dans le cas de dimension finie, les capacités précédemment construites ne donnent pas
d’information de rigidité sur ces cylindres coisotropes. On note que le sous-ensemble X x E_’f_ n’est
pas borné, donc nous ne pouvons pas déduire directement la rigidité a partir de ’approximation
en dimension finie sur les ensembles bornés. Nous avons besoin d’'une étape intermédiaire et cela
vient du théoréeme de non-squeezing coisotrope. Soit ® : E — FE le flot de ’équation de cordes
non linéaire, on le décompose en

®(u) = AV ().

L’application V! peut étre approchée sur des ensembles bornés par une application dimension finie
Vi, u™) = (¢L (un),u™) (par les hypothese sur f) ot ol vérifie la propriété du non-squeezing
coisotrope (car f est bornée). Le fait que V! soit I'identité sur les grands modes de Fourier permet
de prouver que si Vh est borné sur I’ensemble de ’espace, alors I’ensemble

VHX x E*)n {11} = 0}

n’est pas seulement borné, mais est aussi compact. Cela nous permet d’avoir un controle précis
sur cet sous-ensemble. En particulier, nous prouvons que cette intersection est symplectiquement
rigide:

Proposition. On note ®' : E — E le flot de I’équation de cordes non linéaire avec f bornée et
ses dérivées avec croissance polynomiale. Pour chaque k € N, pour chaque ensemble compact X
de Ey, et pour toutt € R on a

o(X) < y(Mp(VH(X x Ef) n{TT% = 0})).

Une fois que nous avons ceci, nous pouvons utiliser 'invariance symplectique des capacités et
le fait que e'/4 est une application symplectique qui commute avec IT; pour obtenir le résultat
suivant :

Théoréme. On note ®' : E — E le flot de I’équation de cordes non linéaire avec f bornée et
ses dérivées avec croissance polynomiale. Pour chaque k € N, pour chaque ensemble compact X
de Fy, et pour toutt € R on a

o(X) < y(I @' (X x EY)).

La démonstration de ce théoreme est contenu dans larticle [Bus17]. Un exemple particulier
d’équation qui vérifie ces I’hypothéses est I’équation de Sine-Gordon:

Uy = Ugy — SIN U, u=u(t,x),

ou z € T =R/2rZ. Pour k = 0 l'ensemble X x E¥ est constitué¢ d’éléments (u,v) ou la paire
(u0,v0) des valeurs moyennes est contenu dans X C R? et telles que (0,v) € Ep, c’est-a-dire
que, v est une constante égale a vg. Nous voyons que ce théoreme donne des informations sur
le comportement global des solutions a vitesse initiale constante et telle que la paire des valeurs
moyennes est en X. D’un autre coté, si nous échangeons les roles de E+ et £~ nous obtenons des
informations sur le comportement des solutions ou la position initiale de la corde est constante.

Conjecture d’Arnold pour EDPs hamiltoniennes

Toujours dans la recherche de la rigidité symplectique dans les EDPs hamiltoniennes, nous attirons
notre attention sur la conjecture d’Arnold. Cette conjecture affirme que les difféomorphismes
hamiltoniens ont toujours des points fixes. Plus précisément:
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Figure 3: Le graphe de la condition initiale (0, z) et & chaque point le vecteur de vitesse initiale
v(0,z). A gauche, u(0,x) est constant. A droite, v(0,z) est constant.

Conjecture. Tout difféomorphisme hamiltonien sur une variété symplectique compacte (M,w)
a au moins autant de points fixes qu’une fonction sur M a des points critiques.

La version non-dégénérée de cette conjecture a été établie sur chaque variété symplectique.
La preuve a donné lieu a ’homologie de Floer, une théorie homologique construite a partir de
points critiques de la fonctionnelle d’action. Un exemple particulier ou cette conjecture est vraie,
est 'espace projectif complexe CP" ol le nombre de points fixes est n + 1. La preuve originale
de ce cas [For85] n’utilise pas les techniques de Floer mais profite de la symétrie de CP™ pour
étudier la fonctionnelle d’action pour des difféomorphismes hamiltoniens dans R?™.

Afin de relier ce contexte compact avec le flot des EDPs hamiltoniennes sur les espaces de
Hilbert, nous devons considérer un contexte spécifique introduit par Fabert dans [Fab18]. On
considere 1’équation de Schrédinger non-linéaire sur T avec non-linéarité de convolution,

iU = Ugg + [f(lux &, 2, t)ux€] % ¢,

onu: T — C. Clest 'un des exemples donnés par Kuksin dans [Kuk95] des équations qui
peuvent étre approchées par des difféomorphismes hamiltoniens de dimension finie. De plus, cette
équation définit un flot ®' sur tout I'espace L?(T,C). Apres restriction & la sphere unité S de L2
le difféomorphisme ®! descend en une application sur l'espace projectif PL?. Cette application
est approchée par des applications de dimensions finies ¥! : CP" — CP" et chacune de ces
applications a au moins n + 1 points fixes.

Conjecture. Pour tout ¢t € R, I'application ¥; : PL? — PL? a un nombre infini de points fixes.

Nous prouvons le cas indépendant du temps. Dans ce cas, il suffit de chercher les points
critiques de H restreints a la sphere unité. Cela équivaut & chercher des ondes stationnaires,
c’est-a-dire des solutions de 1’équation de la forme

u(t,z) = e*o(zx), avec ve L2

Théoréme. On suppose que f est indépendant de t. Alors, pour tout t € R le flot W a un
nombre infini de points fizes. Plus précisément, il y a une séquence de points u, € H' et u, € R
tels que

O (up) = un(t, r) = e™ruy(z) et H(up) — +oo si n— +oo,

pour tout (t,x) € R x T.

La premiere étape de la démonstration consiste a établir une sorte de condition de Palais-Smale
pour les restrictions dimensionnelles H,,. En autres termes, nous montrons qu’une suite de points
critiques u, de H, avec une énergie bornée converge vers un point critique de H. Ensuite, il faut
appliquer des méthodes variationnelles pour trouver ces séquences & énergie bornée indépendantes
de n.
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Chapter 1

Introduction

Symplectic geometry has its origins in the mathematical formulation of classical mechanics. In
the 19th century Hamilton gave a variational interpretation of the equations of motion. Consider
the phase space R?" with coordinates (g, p), where g represents the position of a particle and p
represents the momentum. Let H : [0,1] x R?” — R be an energy function. Then the evolution
7 :[0,1] — R?" of a particle in the phase space is a stationary point of the action

1 1
An(y) = /0 p(t) - d(t) dt — /0 H(t, (1)) dt

Under this formulation the extremal points are described by Hamilton’s equations:

- OH
s OH
b= "84

For example the movement of a particle under the influence of a potential V(¢) has an energy
function given by H(q,p) = ﬁmz + V(q). Hamilton’s equations for the motion associated to
this Hamiltonian give the classical Newtonian equation

mG =—-VV(q).

In general, Hamilton’s differential equations give rise to a transformation of the phase space.
When the phase space has dimension two this transformation will preserve the area of subsets
of R?. In higher dimensions, the equivalent statement is the following: the flow of Hamilton’s
equations preserves the differential form wy = > | dg; A dp;. This differential form is what we
call the standard symplectic structure of R?". In order to understand the dynamics of classical
mechanics one is led to the study of symplectic structures and, in particular, the transformations
of the space that preserve the symplectic form.

The concept of symplectic form generalizes to arbitrary smooth manifolds M: a symplectic
structure w on M is a non-degenerate closed two form. The fact that w is non-degenerate allows
us to generalize Hamilton’s equations: for any energy function H, the Hamiltonian vector field
X is defined as the unique vector field that satisfies ¢x,w = dH. Using the fact that w is closed
we then get that the flow generated by X g preserves the symplectic structure.

The main example of symplectic manifold that we are going to work with are cotangent bundles
T*N. They represent the phase spaces of classical mechanics where the movement is confined to
a manifold N. Every cotangent bundle is equipped with a canonical symplectic structure which
is localy given by the standard structure in 7*R"™ ~ R?". This local behavior is shared by every
symplectic manifold M:
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Theorem (Darboux). Fuvery symplectic manifold of dimension 2n is locally symplectomorphic
to (R®™,wp).

This theorem implies that symplectic manifolds do not have local invariants. The symplectic
properties of M are determined by the geometry of (R?" wg) and by the global structure of
the objects in M. In order to study the geometry of the space one is then led to the study
of the global diffeomorphisms that preserve the symplectic structure. We will refer to them as
symplectomorphisms. The first property verified by symplectomorphisms is Liouville’s theorem:
every symplectic maps preserves the volume of subsets. One of the first results that pointed ot
the difference between volume preserving maps and symplectomorphisms was Gromov’s influential
non-squeezing theorem:

Theorem (Gromov 1985, [Gro85]). Let (R?" wg) be the standard symplectic space. Denote by
B2" a ball of radius v in R?*" and let B}% x R?"=2 be the standard symplectic cylinder of radius R.
If ¢ : R?" — R?" is a symplectic diffeomorphism then

©(B*") C B% x R*"™2  implies r <R

1.1 Symplectic capacities

The original proof of Gromov’s nonsqueezing theorem relied on the technique of pseudoholo-
morphic curves. Shortly after, several authors [EH90, HZ90, Vit92] gave independent proofs of
Gromov’s theorem using the concept of symplectic capacities. A symplectic capacity is a function
c: P(R*) — [0, +oc] that verifies the following properties:

1. (monotonicity) If U C V then ¢(U) < ¢(V).

2. (conformality) c(AU) = \2¢(U) for all A € R.

3. (symplectic invariance) If ¢ : R?" — R?" is a symplectomorphism then ¢(¢(U)) = ¢(U).
4. (non-triviality+normalization) ¢(B3") = m = ¢(B? x R?"72).

The existence of a function with these properties implies Gromov’s theorem. The construction
of some of the capacities (cf. [EH90, HZ90, Vit92]) comes from the study of periodic orbits of
Hamiltonian systems. This is the approach that we are interested in.

The action spectrum as a symplectic invariant

Recall that Hamilton’s principle states that the periodic orbits of a Hamiltonian system associated
to H are the extremal points of the action:

An) = [ )it — [ mea@)a

In particular, the critical points of Ay contain very important dynamical information. This
information can be used to build symplectic capacities.

Consider a compactly supported Hamiltonian H in R?". In this case we can integrate Hamil-
ton’s equations to get a global flow 1/ of R?™. A one periodic orbit of the system can be seen as
a fixed point zg of 1, that is, a point verifying 1 (29) = z9. Denote by A(zo, H) = Ax (¥} (20))
the action value associated to the fixed point zg. At first sight, this quantity depends on the
function H and on the whole path /7, but this is surprisingly not true. One can prove that this
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action value does not depend on the particular Hamiltonian path used to generate ¥{f. More
precisely, let K be another compactly supported Hamiltonian such that wf( = fl , then

A(Zo,H) = A(Zg, K)

The action values define a subset of R that depends only on the time one map 1 = /. We can
then associate to every 1) its action spectrum o(1)) C R defined by

o(¢) = {A(z, H) | » € Fix(¥ = y1) }.

It turns out that the action spectrum is invariant by symplectic conjugations: for every symplec-
tomorphisms ¢ of R?"” we have

o) = ().
In particular, the action spectrum of Hamiltonians supported in U is exactly the same as the one
found for Hamiltonians supported in ¢(U). This important remark is the starting point of the
construction of symplectic capacities that Viterbo gave in [Vit92].

Viterbo’s capacities

For every open set U we denote by Ham®(U) the set of time one maps of Hamiltonian flows with
compact support contained in U. For an open bounded set U Viterbo’s capacity ¢(U) is defined
using the dynamical information of the elements in Ham®(U). More precisely, this information is
going to come from the action value associated to certain important periodic orbits. These action
values are chosen by two selectors, denoted by c¢(u, ) and ¢(1,-), that take as an input an element
Y of Ham®(R?") and give two values

() = Au(a(t)) and  c(1,9) = Au(B(1))

where o(t) = ¢ () and B(t) = ¥ (y) with 2,y € Fix(yf1). These values verify c(u,1) > 0
and ¢(1,1) < 0 for every ¥. One can prove that the value v(v) = c(u, ) — ¢(1,1) is zero if and
only if ¢ is the identity. Intuitively, this means that these action values can be interpreted as a
dynamical maximun and minumum of ¢¥. Moreover, one can prove that + has the property of
defining a distance on Ham®(R?"). Using the invariance by symplectic conjugation of the action
spectrum one can see that the selectors are invariant under symplectic conjugation, i.e.

c(p, ) = clp, ™),

so these values can be used to define two symplectic invariants on open bounded sets:

c(U) = sup{c(p,¥) | € Ham(U)}
Y(U) = inf{y(¢) |1 € Ham¢(R*") and 4(U) N U = 0}

On open unbounded sets V, the capacity ¢(V') and (V') is defined as the sup over every open
bounded sets contained in V. Finally, on arbitrary subsets X C R2" both capacities are defined
as the infimum over all open sets V' that contain X.

The value ¢(U) measures how big this dynamical maximum can be provided that the support
is contained in U. It moreover has the property that, on a convex smooth body K, the value
¢(K) coincides with the geometric quantity of the minimal area of a closed characteristic on the
boundary K. On the other hand v is defined using Viterbo’s distance on Ham®(R?*"): if we
define the energy of a diffeomorphism as the distance to the identity, then «(U) measures the
minimal energy that one needs to displace U from itself. Both capacities are always related
by the inequality ¢(X) < v(X). In dimension two, if ¢ is a compactly supported Hamiltonian
diffeomorphism which displaces a disc of area 772, then we have 7r? < v(1).
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Construction of the action selectors

In order to extract information from the fixed points of w{{ = 1 we look at the graph of 1, denoted
by I'y = Id x ¢ in R?? x R?" and look at the intersection points of I'y with I'yq . If we endow
R?" x R?" with the symplectic structure wo & (—wp) then T'y, becomes a Lagrangian sub-manifold.
In addition I'y, is isotopic to the diagonal and coincides with it outside a compact set. Working
on the linear manifold of R?” has the advantage that there is an explicit symplectomorphism

T : (R*™ x R*™,wy @ (—wp)) — (T*R*™, —d)\)

such that I'tq is sent to the zero section. In particular, since the map is symplectic, the image
of every I'y is a Lagrangian submanifold which is Hamiltonian isotopic to the zero section and
coincides at infinity with the zero section. This allows us to consider the one point compactification
of R?" to S?" and see T*R?" as a subset of T*S%". Every 'y is contained in a Lagrangian sphere
LyCT *§2" which is Hamiltonian isotopic to the zero section. We want to extract information
from the intersection points of Ly with the zero section.

There is a natural way of describing Lagrangians in the contangent space: every function f de-
fines a Lagrangian submanifold via the graph of its differential df. For this family of Lagrangians,
the intersection points with the zero section are determined by the critical points of f. We are
going to describe Ly, using a generalization of this description called generating functions. Intro-
duce an auxiliary variable and consider functions S : S?® x R¥ — R. The graph of the differential
is a Lagrangian submanifold in 7*(S?" x R¥). We are going to push forward this Lagrangian
submanifold in a symplectic way to get a Lagrangian in 7%S5?". To do this we need to introduce
the concept of symplectic reduction.

Symplectic reduction. Let V be a symplectic vector space. We say that W C V is a
coisotropic subspace if W contains its symplectic orthogonal W*, or in other words, a subspace
W such that if u € V verifies w(u, w) = 0 for every w € W, then u € W. Since W« C W we can
consider the quotient W/W* which is by construction a symplectic vector space with symplectic
form induced by w. Denote by 7 the natural projection 7 : W — W/W*® and let Z be a subset of
V. The symplectic reduction of Z by W is

Redw (Z) :=n(ZNW),

which is a subset of W/W®. One of the important properties of this operation is that if L C V
is a Lagrangian vector subspace transverse to W, then Redy (L) is Lagrangian in the quotient.
This definition carries over to the nonlinear case at the level of tangent spaces. The only difficulty
that may arise is that W/W* may not be a manifold.

Generating functions quadratic at infinity. Let N be a compact manifold and consider a
function S : N xR¥ — R. The graph of the differential is a Lagrangian submanifold in 7" (N x R¥).
Consider the coisotropic subspace W := T*N x Ogr € T*N x T*R* ~ T*(N x R¥). One may see
that W/W% ~ T*N. If dS is transverse to W then

Lg = Redyy (dS)

is an immersed Lagrangian submanifold in 7% N. In this case we say that S is a generating function
or gf of Lg. The transversality condition implies that Yg := dS~*(W) is a sub-manifold of di-
mension dim N. We denote by ig : ¥g — Lg C T*N the induced map ig(q,&) = Redw (dS(q,§)),
it is an immersion. If moreover S(z,£) = Q() outside a compact set with @) a nondegenerate
quadratic form, then we will call S a generating function quadratic at infinity or gfgi. It turns
out that this description of Lagrangians is enough to describe all of our L, in T*S%n,
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Theorem (Laudenbach and Sikorav [LS85, Sik86, Sik87]). Let T*N be the contangent space of
a compact manifold and consider a Hamiltonian diffeomorphism ® : T*N — T*N. Then ®(0y)
has a gfqi S such that ig is a diffeomorphism.

The fact that ig is bijective implies that there is a bijective correspondence between the critical
points of S and the intersection points of L with the zero section. This existence theorem already
has strong implications for the intersection points of these Lagrangians with the zero section. It
implies that these type of submanifolds intersect the zero section enough times. In order to define
Viterbo’s capacities, we need to be able to compare generating functions of the same Lagrangian.
Consider the following operations:

1. Addition of a constant. If c € R, we set S’ =S +c¢: N x RF - R.

2. Diffeomorphism operation. If ¢ : N x RE — N x R*¥ is a diffeomorphisms that satisfies
d(z,8) = (x,p(x,£)) then we set S =S o0 ¢.

3. Stabilization. If Q' : R¥ — R is another nondegenerate quadratic form, then we set S/ =
S+Q : N xRF xRF & R,

We will say that a gfqi S’ is equivalent to another gfgi S if S’ can be obtained from S after a
succession of the above basic operations. It is an easy exercise to verify that for every operation
in the above definition we have

Redyy (dS') = Redy (dS),

CritVal(S’) = CritVal(S) + c.

The following theorem assures that these three operations are enough to go from one gfgi to
another gfqi provided that they describe a Lagrangian isotopic to the zero section.

Theorem (Viterbo [Vit92] and Théret [Thé99a]). Let T*N be the cotangent bundle of a compact
manifold and consider a Hamiltonian diffeomorphism ® : T*N — T*N. Then all gfqi S of ®(0n)
such that ig is a diffeomorphism are equivalent.

Note that in Théret’s article the hypothesis of ig diffeomorphism is not included in the defini-
tion of gf [Thé99a, Definition 2.1] but it is included in the terminology “S generates L” [Thé99a,
Definition 2.2].

Definition of c(u,-) and c(1,-). By the existence theorem, every Lagrangian L, has a gfqi
with ig bijective. Since ig is bijective, intersection points of L, with the zero section are in one to
one correspondence with critical points of S. Recall that these intersection points are in bijective
correspondence with the fixed points of ¥. After normalizing the gfgi so that the critical value at
infinity is 0, one can prove that the critical values of S coincide with the action spectrum of ¢

CritVal(S) = o(¢)).

In order to select an action value it is then enough to select a critical value of S. Viterbo does
this in [Vit92] via Liusternik-Schilermann theory. In this theory, the critical values are seen as
witnesses of the topological changes of the level sets of S. Let S be a gfgi which coincides with
the quadratic form @ at infinity. Define S* to be the level set of points (z,£) € N x RX such
that S(z,&) < A. The fact that S coincided with @ at infinity implies that for |A| large enough
the level sets only depend on @, in other words: S* = Q*. For a fixed )\ big enough that verifies
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this property we define S = §* and S~ = S~*. Then the topology of the pair (5>, S~>)
only depends on the index of the quadratic form and we have

(8§%°,87°) ~ (§?" x D™, 8% x 9D™)

where D™ is the disc of dimension the index of ). In particular we get the isomorphisms in
cohomology over a field

H*(S®,87°) ~ H*(N) ® H(D~,0D"),

and we can define a map T : H*(N) — H*(5°,57°°) which is called the Thom isomorphism.
In order to find the change in the topology of the sublevel sets we deform the pair (S°°,57>°).
Consider the natural inclusion iy : S* — . We get a map in cohomology

in: H*(S%,87°) — H*(S*,57>).

Finally, if we denote by p the generator of H?*(S52?") and by 1 the generator of H°(S5?") we may
define two values:

c(p, S) =inf{\|\T(u) #0} and ¢(1,5) =inf{A\|i T (1) # 0}

They find a level set that undergoes a topological change so they are critical values of S. We can
then define ¢(p, 1) = ¢(u, S) where S is a normalized gfgi. This value is well defined thanks to
the uniqueness theorem for gfqi.

1.2 Coisotropic rigidity

For the first original result of this thesis we use a generalization of Viterbo’s spectral invariants
in order to prove a new rigidity result for a wide family of symplectomorphisms. Instead of
studying the evolution of balls, as in Gromov’s nonsqueezing, we are going to study the evolution
of coisotropic cylinders. Recall from the previous section that every coisotropic subspace W C R
induces a symplectic space W/W¥. Denote by 7w : W — W/W* the projection. The reduction of
7 C R?" is defined as

Redw (Z) =nw(ZNnW).

In the particular case of W = C™ x iR*»™™ C C™ x C*™™, m = 7y, is the projection onto the first
m complex coordinates. A coisotropic cylinder is a subset of the form X x R*™™ C C™ x C*~ ™,
One may also write X x R"™™ = X X Ogn-m and W = T*R™ x THR"™™.

Theorem (Coisotropic non-squeezing). Let X C R?™ be a compact set, consider X x R"™™ C
C™ x C"™ and denote W = C™ x iR"™™. For every compactly supported Hamiltonian diffeo-
morphism Y we have

c(X) < y(Redw[p(X x R"™™)]).

The proof of this theorem is contained in the article [Busl7]. Explicitly, the reduction by W
is T (P(X x R*"™™) N (C™ x ¢dR™™)), which is the projection of a bounded set. In particular
we are studying trajectories where the component of T*R"™™"" starts with zero momentum and
arrives at a precise point TyR"™". We point out that Viterbo’s capacities all alone do not give
rigidity information for the image of coisotropic cylinders since

c(X x RF) = 0= ~(X x RY).



1.2. Coisotropic rigidity

Figure 1.1: This figure represents the image of the coisotropic cylinder by a compactly supported
Hamiltonian diffeomorphism . The transverse plane represents the complementary coisotropic
subspace W. The previous theorem gives information about the capacity of the projection of the
intersection with W.

The case X = (S1)™ and Redy [¢)(X xR™"™™)] contained in a cylinder was proved by Buhovski and
Opshtein using the theory of pseudo-holomorphic curves. The proof of our theorem is achieved
by a series of inequalities between Viterbo’s capacities of subsets and the symplectic reduction
of these subsets. The advantage of using Viterbo’s capacities is that they are constructed using
generating functions, and symplectic reduction can be seen as an explicit operation on generating
functions. This operation can be then studied in detail. The proof comes from the extension of
the action selectors to R?™ x T*T"~™,

Action selectors on R?™ x T*T*. The construction Viterbo’s action selectors relies heavily
on the linear structure of the space. We cannot use the same construction to generalize these
invariants to every symplectic manifold, but nevertheless we are still able to do it if we add a
contangent space of a torus.

Denote by 7 the natural projection of T*R?™ x T*R2* onto T*R?*™ x T*T?¥. It is the projection
induced by the quotient of T*R?™ x T*R?* by translation of vectors in Z¥. Take a compactly
supported Hamiltonian isotopy ¢ of R?™ x T*T* and consider the lift z; on R?™ x T*R*. The
map 1; commutes with the action of Z* by translation so the fixed points of 1/; come in Z* orbits.
Moreover one may see that these orbits are in bijective correspondence with contractible fixed
points of 1. Define the contractible action spectrum of ¢ as

oc(P) = o(¥).

For every compactly supported Hamiltonian ¢ of R?™ x T*T* one can prove that

ool ) = oc(¥).

As in the case of R?™ we consider the graph of 1/; and we can use the symplectomorphism Z to
see it as a Lagrangian submanifold of T*R?™ x T*R2*. In this case intersection points with the
zero section come in Z* orbits where every point in the orbit has the same action value. In order
to get rid of this redundancy, we use the periodic properties of the flow to quotient out by this
action and find a Lagrangian submanifold in T*R?>™ x T*R* x T*T* whose intersection points
with the zero section are in bijective correspondence with contractible fixed points of ). We may
then compactify the basis to get a Lagrangian

Ly C T*S?™ x T*S* x T*T*.
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As before, this submanifold is Hamiltonian isotopic to the zero section so it has a gfgi. We can
then use the cohomological classes a ® B ® v € H*(S*™) @ H*(S*) @ H*(T*) to select critical
values of S. After normalization, we again have the very important property

CritVal(S) = o.(¢).

We can then define a notion of capacity for subsets of R?™ x T*T* in the same way as in the
classical setting. For open bounded sets U in R*™ x T*T* we define

cla® B v,U)=sup{c(a® B ®,1) |1 € Ham“(U)}.

This time these quantities are not invariant by general symplectic diffeomorphisms of R2™ x T*T*
but only by Hamiltonian isotopies.

Critical values selectors and symplectic reduction. The next step is to relate these new
invariants to Viterbo’s classical capacities. This is done via a sequence of inequalities that relate
generating functions with the operation of symplectic reduction. The key remark is that if .S :
N x B x Rl — R is a generating function for Lg C T*N x T*B and if Lg is transverse to the
coisotropic subspace W = T*N x Ty*B then S, = S(-,b,-) generates Redy (Lg). In addition, the
critical value selectors are also well behaved by this operation. More precisely for « € H*(N) and
p € H*(B) the orientation class in B we have the chain of inequalities

cla®1,S) <cla,S) <cla®p,S).

This result allows us to get the desired relation with Viterbo’s capacities if we look at the invariants
with respect to the cohomological class p ® p ® 1. We first get the non triviality of the invariant
via the following inequality:

Proposition. If X C R?™ is compact then ¢(X) < c(p @ p® 1, X x {0} x T*).

In this proposition it is crucial that we have a set with the whole T* in the variable of the
cohomological class 1 in order to get something non-trivial. The upper bound comes from a
relation with Viterbo’s displacement energy:

Proposition. Let Z C R?™ x R*¥ x T* be a compact set. For w € T* consider the coisotropic
subspace W = R?>™ x R* x {w}. We have

c(p@p®l,Z) <y(Redw(2)).

In order to prove the coisotropic non-squeezing theorem we extend the set X x R* and see it
as X x {0} x T* c R?™ x T*T*. We then extend the compactly supported Hamiltonian to the
whole space R?™ x T*T* and apply the previous propositions.

Non-compact setting

The next step is to extend the coisotropic non-squeezing theorem to settings where the Hamil-
tonian does not have compact support. Since we look at the evolution of an unbounded set
X x RF C C™ x CF we need to have a globally defined flow. For this reason we restrict the study
to the class of Hamiltonians that satisfy

I\VH(z)| < A+ Blz| for every (t,z) € [0,T] x R*"
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for two positive constants A and B. These Hamiltonians define global maps {! for every t € [0, T7.
The first remark is that there exist a Hamiltonian diffeomorphism of this type that does not satisfy
the statement of the theorem: consider the map

D215y 2n) = (Zmt1s ey Zns 215« -+ » Zm)

with z; = ¢; +ip;. It is a Hamiltonian diffeomorphisms which is generated by a quadratic
Hamiltonian. One can easily see that

H(X x RF) =RF x X CRF x C™

so the image by m,, is also contained in a proper linear subspace. Since the displacement energy
associated to a linear subspace is zero we get

7(Redw [¢(X x R¥)]) = 0.

If we consider a coisotropic cylinder of the form X x R¥ with ¢(X) > 0 then the statement of
the coisotropic non-squeezing is not true for this map ¢. We prove that there is a class of maps
in-between that verify the coisotropic non-squeezing. More precisely we prove:

Theorem. Consider a Hamiltonian function of the form
1
Hy(z) = §<Az,z> +U(2), with |[VU(2)|<C  for every (t,z) € R x R*™

with a positive C'. Suppose that A = A1 & --- ® A, where Ay is a linear map on Vect{a%k, %}

for every 1 < k < mn. Let X C R*" be a compact set and consider the two coisotropic subspace
W .= C™ x iR" "™, Then for everyt € R such that

R?»—™ + e—tJAiRn—m —qcnm

we have

(X)) < y(Redw [t (X x R*™™))).

As an example of one such Hamiltonian, we have the class of mechanical Hamiltonians of the
form

1 .
Hy(q,p) = 5!17\2 +Ui(q), with |[VU(2)] <C.

In particular, the theorem is true if U is a periodic potential in q.

Coisotropic rigidity on 7*T"

Using this non-compact extension we are able to look at the true periodic case T*T"™. In this case
we prove that we still have this behavior for compactly supported Hamiltonians. It can be stated
as the following nonsqueezing statement.

Theorem. Let ¢ be a compactly supported Hamiltonian isotopy of T*T™ = T*T™ x T*T""™,
For any w € T"™™ denote Wy = T*T™ x T;T"™™ and Wy = T*T™ X Opn-m. Let B, denote a
ball of radius v in T*T™. Then the inclusion

Rede [w(BT‘ X O’H‘nfm)] g BR or RedWO [w(B’f' X T:}Tn_m)] g BR

imply r < R.
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This theorem is also true for mechanical Hamiltonians. It also indicates that this type of
coisotropic rigidity may also appear in the setting of product contangent spaces of compact mani-
folds. By symplectic ball of radius r in a symplectic manifold (M, w) we understand a ball of radius
r of R?"™ which is symplectically embedded in M. We may conjecture the following behavior:

Conjecture. Let N and M be two compact manifolds and consider 1 a compactly supported
Hamiltonian isotopy of T*N x T*M. For any m € M denote Wy = T*N x Ty M and Wy =
T*N x 0pr. Let B, denote a symplectic ball of radius r in T*N. Then the inclusion

Redw, [¢(B, x Op)] € Br  or  Redw,[¢(B, x T, M)| C Bg

imply r < R.

Middle dimensional symplectic rigidity

One of the consequences of the coisotropic non-squeezing theorem is its interpretation in the
context of the middle dimensional rigidity problem. Omne of the first questions regarding this
problem appeared in [Hof90b] where Hofer asked about the generalization of capacities to middle
dimensions. Symplectic capacities are a sort of two dimensional way of measuring sets since
from the point of view of symplectic capacities all cylinders of the same radius but with a base
of different dimensions look exactly the same. In order to try and see if those cylinders are
different for symplectic geometry Hofer asked if there exists a k-intermediate symplectic capacity
c* satisfying monotonicity, k-conformality, symplectic invariance and such that

ck(B%k X ]RQ"_%) < 400 but ck(B%k*2 x R2 x ]RQ”_%) = 4007

The first inequality is already verified by the standard capacities and it is the second one which
differs. One of the first results indicating that intermediate capacities do not exist appeared
in an article by Guth [Gut08]. He was interested in the question of embeddings of polydiscs
P = Bl%h X oo X sz%n with Ry < --- < R, into another one P’ = B?z,l X e X BIQ% with
R} < --- < R} using a symplectic map. There are two obvious obstructions to this problem.
The first one comes from Gromov’s nonsquezing which implies B; < R}. The second one is the
volume which implies that R; --- R, < R} --- R),. Using the techniques in the article by Traynor
[Tra95] one can see that one could embed P into P’ roughly if and only if Ry --- Ry S R} --- R},
for every k between 1 and n. Guth proved that, modulo a dimensional constant, kK =1 and k =n
are the only two obstructions. More precisely:

Theorem (Guth 2008 [Gut08]). There is a dimensional constant C'(n) such that if C(n)Ry < R}
and C(n)Ry -+ R, < R} --- R} then P symplectically embeds into P'.

This theorem gave a partial answer to Hofer’s question. It implies that if 1 < & < n then
k-capacities that verify the following continuity hypothesis:

1' BQkJ X B2n_2k < d 1 B2k—2 X BQTL—Q}C—&-Q —

i (Y % BT <cboo and i (B BT = o

do not exist. His theorem was a close definitive answer but the question of less regular capacities
remained open. This was recently solved in the negative by Pelayo and Vi Ngoc in [PVuN15].
They applied a limit argument to the construction of Guth and Hind-Kerman [HK14] in order to
prove the unbounded version of Guth’s theorem:

Theorem (Pelayo-Vii Ngoc 2015 [PVuN15]). If n > 2 then the cylinder B x R*"=2 can be
symplectically embedded into the product B?{”_Z x R? for all R > /27—1 4 2n=2 _ 2,
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With this theorem the question of intermediate symplectic capacities was definitely settled. It
showed that general symplectic diffeomorphisms are too flexible to capture this type of cylindrical
rigidity.

Another point of view for the middle dimensional problem comes from a reformulation of
Gromov’s non-squeezing theorem. In dimension 2 symplectomorphims are the same as area pre-
serving maps so in [EG91] Eliashberg and Gromov pointed out that (using a theorem of Moser
about the existence of area preserving diffeomorphisms) Gromov’s theorem is equivalent to

area(Il;¢(B?™)) > nr?  for every symplectomorphism .

Denote by 11 the projection on the first 2k coordinates. A possible generalization of this statement
to higher dimensions is

Vol(ITp(B2")) > Vol(II, B**) = Vol(B?*)  for every symplectomorphism ¢.
This problem was studied by Abbondandolo and Matveyev in [AM13]. In their article they first
proved that the inequality is true in the linear case:

Theorem (Abbondandolo-Matveyev 2013 [AM13]). Let ® be a linear symplectic automorphism
of R?™, and let P : R?™ — R?" be the orthogonal projector onto a complex linear subspace V- C R2™
of dimension 2k, 1 <k <n. Then

Vol(P®(B>")) > Vol(B?)
with equality if and only if the linear subspace ®TV is complex.

In contrast with the linear result, they prove that symplectic diffeomorphisms are again too
flexible to have this kind of middle dimensional symplectic rigidity. More precisely, this shows that
one can squeeze arbitrarily the symplectic projection of image of the ball by symplectomorhisms.

Theorem (Abbondandolo-Matveyev 2013 [AM13]). Let P : R?*™ — R?" be the orthogonal pro-
jector onto a complex linear subspace V.C R?" of dimension 2k, 1 < k < n. For every e > 0 there
exists a smooth symplectic embedding ¢ : B — R*™ such that

Vol(P$(B*™)) < e.

In spite of all this negative results, there was a recent result by Rigolli in [Rigl5] where he
proved that there is also local middle dimensional volume rigidity if one restricts the class of
symplectomorphisms to analytic ones.

Theorem (Rigolli 2015 [Rigl5]). Let ¢ : E?n — R?" be an analitic path of symplectic embed-
dings, with t € [0, 1], such that ¢q is linear. Then the middle dimensional non-squeezing inequality

Vol(P¢,(Bi")) > Vol(B2*)
holds for t small enough.

This result points out in the direction that this middle dimensional rigidity might be possible
upon restriction of the class of symplectic diffeomorphisms that we consider. Moreover, this result
has another local implication:

Theorem (Rigolli 2015 [Rigl5]). For every analytic symplectic embedding of a domain D there
exists a function ro : D — (0,4+00) such that the middle dimensional inequality

Vol(Po(B"(x))) > Vol(B2)

holds for every x € D and for every r < r(x). Moreover ry is bounded away from zero on compact
subsets K C D.

11
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We would like to point out another possible middle dimensional generalization of the squeezing
problem. In dimension 2 the value of any normalized symplectic capacity on topological discs
coincides with the area, so one may also rewrite Gromov’s theorem as

c(Il1p(B?")) > 7r?  for every symplectomorphism ¢,

where c¢ is a symplectic capacity. One can then ask if this inequality is true with II; replaced by
II, and more generally look at subsets Z different from B2?" and replace 7r? with the capacity
of Il Z. The previous results show that there is little hope that one such inequality is always
true so one has to restrict the type of symplectomorphisms considered. Our coisotropic non-
squeezing theorem implies middle dimensional rigidity for deformations of coisotropic cylinders
Z = X xR"™™ C C™ x C™ ™ provided that we restrict the class of symplectomorphisms to
Hamiltonian isotopies with bounded speed.

Theorem. Let X C R?>™ be a compact set. Consider X x R"™™ C C™ x C"™™ and let ¢ be a
Hamiltonian diffeomorphism generated by a function with bounded gradient. Then

o(X) < (i (X x R"™™)).

Remark that, in contrast to what happens in the middle volume rigidity problem, this state-
ment is not true for every linear symplectomorphism. As it is usual in symplectic geometry, this
rigidity result can be used to define an invariant. The classical example of this fact is the definition
of Gromov’s width after he proved the nonsqueezing theorem. In our case we should consider the
following quantity:

16 (U) = inf{y(Iln¢(U)) | ¢ € G}

where G is a subgroup of the group of symplectic diffeomorphisms. For G = Sympl(R?") we know
that /% is zero on coisotropic cylinders of dimension m. In particular, it might be trivial for every
subset of R?”. On the other hand, if the elements of G are Hamiltonian diffeomorphisms generated
by functions with bounded gradient then the previous theorem implies that v/ is bounded from
below on coisotropic cylinders of dimension m. As an example of G one can take the subgroup of
Hamiltonian diffeomorphisms ¢} where H, o, and (off)~! are Lipschitz on the space variable
over compact time intervals. For this subgroup the previous theorem gives

o(X) <G (X X R"™) < (X).
More precisely v/ has the following properties:

1. (monotonicity) If U C V' then 77(U) < & (V).
2. (conformality) 724 (AU) = N2y (U) for all A € R.
3. (G invariance) If ¢ € G we have v (¢(U)) =& (U).

4. (non-triviality-+normalization) 7% (B2™ x R"™™) = 7r2.

Finally we want to point out that this invariant satisfies a 2-conformality property instead of the
k-conformality asked by Hofer for the middle dimensional symplectic capacities.

12



1.3. Rigidity on energy surfaces

1.3 Rigidity on energy surfaces

In the next part of this thesis we study rigidity properties of the characteristic flow of energy
surfaces. Let (M,w) be a symplectic manifold and let H : M — R be a smooth Hamiltonian
function. Every regular value A defines a smooth hypersurface X of M. The properties of the flow
¥ on ¥ have historically been an important subject of research (see for example [HZ94, Chapter
4]). As an example we recall the study of periodic orbits in energy surfaces. We are interested
in the compact subsets of ¥ which are invariant by the flow. These include the periodic orbits
and also other types subsets of higher dimension. We use the symplectic camel theorem to create
compact invariant subsets in deformations of 3. Recall that the statement of the symplectic camel
theorem is:

Theorem ([Vit92] and [MT93] in dimension 4). Consider the space E = R*"~1 x {0}\ B®"(0,r)
and suppose that there is a symplectic isotopy @' of R*™ with support in R*™\ E such that

BE C{p, <0} and ' (BE") C{p.>0}.
Then r > R.

There is also an unpublished proof of this result by Gromov and Eliashberg.
Recall that locally we may find a small enough open set U C M, and a small enough open
neighbourhood of the origin in R?" such that we have a symplectomorphism

UNny ~VnR"™ ! x{0}.

Taking this into account we look at deformations of R?*~1 x {0} contained in V with the desired
properties. We first define the concept of (r, R)-simple function (see Figure 1.2 (a)) whose energy
levels are compact deformations of R??~! x {0}. We then define simple perturbations: these are
C? perturbations inside our class of simple functions.

AL B 2

2o

—
2n—1
B?

(a) Energy levels. (b) Trapped trajectory.

Figure 1.2: (a) The energy levels between 0 and 1 of a (r, R)-simple function with » < R. (b)
A representation of a trajectory that is trapped in a bounded set. The closure of the trajectory
creates a compact invariant subset.

In this section we first show that one can easily deform ¥ to produce compact invariant subsets
and then we prove using the symplectic camel theorem that these subsets are going to persist
under C° perturbations of the energy function H. More precisely:

Theorem. Let H : R?" — R be a (r, R)-simple function with r < R. Then there exists a
A € [0,1] such that ¥y has a compact invariant subset. As a consequence, for every e-simple
perturbation H. of H with € € [0, £57[ there exists a A € [0,1] such that 5 = H7Y(\) has a
compact invariant subset.

13
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The proof is by contradiction. If there is no compact invariant subset, then every characteristic
trajectory goes from one side of the space to the other (see Figure 1.2). If this is the case, we can
build a symplectic isotopy that verifies the hypothesis of the symplectic camel theorem but which
contradicts the conclusion. Since this is not possible, we conclude that there must be a trajectory
that gets trapped in a bounded set. This trajectory then has to be arbitrarily close to a compact
invariant subset.

1.4 Hamiltonian PDEs

In the second part of this manuscript we study symplectic rigidity properties in infinite dimensional
Hilbert spaces. Many partial differential equations (PDESs) arising in physics can be seen as infinite
dimensional Hamiltonian systems

= JVH(u).

Here the Hamiltonian function H is defined on some infinite dimensional Hilbert space and J is a
nondegenerate anti-symmetric operator that defines a symplectic structure via the scalar product.
The main examples of Hamiltonian PDEs are:

1. the nonlinear wave equation
Utt — Au + f(t7$7u) = 07

2. the nonlinear Schrédinger equation

iug — Au+ f(t, z, [ul*)u =0,

3. the membrane equation
ug + A%u+ f(t,z,u) =0,

4. The Korteweg-de Vries (KdV) equation

U — Uy + Upgy = 0.

In contrast to what happens in finite dimensions, the Hamiltonian function H; that is used
to define the vector field is not defined on the whole symplectic phase space E, but only on a
dense subspace of E. This also implies that the vector field is going to be defined only on a dense
subspace. In particular, before looking at the symplectic properties of the flow, one has to first
ask what is the precise definition of the flow, and in particular what is the definition of a solution.

One way of solving this issue is to look at semilinear equations, that is, equations whose
Hamiltonian can be written as Hy(u) = (Au,u) 4+ hy(u). Here A is a possibly unbounded linear
operator and h; is a smooth function defined on the whole space E. For example, in the case of the
Schrédinger equation, the Hilbert space is E = L%(T¢, C), the operator is A = A and h is defined
via an integral using f. For these type of equations one can use Duhamel’s formula to define
solutions. This gives the notion of generalized solution, and (under smoothness conditions on the
nonlinearity) the existence and uniqueness results can be derived using fixed point arguments.

Symplectic rigidity: prior work

In the infinite dimensional case little is known about the rigidity properties of general symplecto-
morphisms. The investigation of symplectic rigidity properties for PDEs started with Kuksin in
1995 [Kuk95]. He studied a type of equations which are a compact perturbation of a symplectic
linear flow. The key property of these symplectic mappings is that they can be approximated

14
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on bounded sets by finite dimensional Hamiltonian flows. This approximation allowed him to
construct an infinite dimensional analogue of the symplectic capacity defined by Hofer-Zehnder.
This capacity is built as a sort of limit of the finite dimensional one, and as such inherits much
of the properties of symplectic capacitites. In particular it verifies the normalization property so
one can use it to derive an analogue of the nonsqueezing theorem. However, in contrast to the
finite dimensional capacity, Kuksin’s capacity is not invariant by general symplectomorphism of
the symplectic Hilbert space, but only by those which are a compact perturbation of a symplectic
linear map, and where the linear map is well adapted to the basis which is used to construct the
capacity.

Shortly after Kuksin’s work, several authors took the task of investigating if one could expect
nonsqueezing behavior in more general flows. Bourgain was the first to prove nonsqueezing for a
flow which is not a compact perturbation of a linear map [Bou94]. He studied the cubic nonlinear
Schrodinger equation

10 = —Au + |ul?u,

on the torus. Again, the technique was to approximate in a certain way the flow of the equation
by finite dimensional Hamiltonian flows in order to apply Gromov’s theorem. The fact of looking
at periodic solutions allows to apply a Fourier cutoff to the nonlinearity. Next, Colliander et
al. [CKST05] proved, using again a finite dimensional approximation that the KdV equation on
H _%(’]I‘) also has the nonsqueezing property. Again, the main challenge in the proof is to prove
the approximation. Other equations where nonsqueezing has been proven are the periodic Klein-
Gordon, by Mendelson [Menl7] or the periodic BBM [Roul0]. It is worth mentioning the article
of Killip-Visan-Zhang [KVZ16] where they gave the first proof of non-squeezing in infinite volume.
They consider again the cubic NLS on R? and show again that it has a good approximation by
finite dimensional flows.

All the previous proofs rely on the particular structure of the equations. A different point of
view came in the article [AM15] of Abbondandolo and Majer. They studied the non-squeezing
property for arbitrary symplectic diffeomorphisms of a separable Hilbert space using a geometric
approach. They proved that squeezing cannot happen at least for convex images of the ball. They
did this by constructing a capacity for convex sets profiting from the dual action principle. Their
argument is the first one which is not based on the approximation by finite dimensional flows. We
also mention the articles by Sukhov and Tumanov [ST16a, ST16b] where they give a new proof
of Gromov’s non-squeezing and then use it to explore the limits of this proof in the context of
Hilbert spaces.

Symplectic capacities

The first result of this part of the thesis is a construction of infinite dimensional capacities different
from the one that Kuksin gave in [Kuk95] but also based in the finite dimensional approxima-
tion. We restrict ourselves to semilinear PDEs of the type described in [Kuk95]. The symplectic
structure on F is defined using the scalar product and an almost complex structure J. The
Hamiltonian functions are of the form

Hi(u) = %(Au,u) + ho(u),

where A is a (possibly unbounded) self-adjoint linear operator and h; is a smooth function. The
Hamiltonian vector field is
Xu(u) = JAu~+ JVhi(u)

If e'’4 is bounded, then solutions can be defined via Duhamel’s formula. Denote by {gaji |j>1}
a Hilbert orthonormal basis of E' and suppose that J goét = +¢T and that A is diagonal for this
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basis. Let E, be the finite dimensional subspace generated by {goét |1 < j < n} and II,, the
natural projection on FE,. Under compactness assumptions on the nonlinearity, flow-maps are
symplectomorphisms which can be approximated on bounded sets by finite dimensional Hamilto-
nian flows by projection of the vector field on E,. Specific examples of this type of equations are
(see [Kuk95]): nonlinear string equation in T with a nonlinearity which has at most polynomial
growth at infinity, quadratic nonlinear wave equation in T?, nonlinear membrane equation on T?
with a nonlinearity which has at most polynomial growth at infinity and Schrédinger equation
with a convolution nonlinearity in T™.

Definition of the capacity As in the finite dimensional case, in order to calculate the capacity
of a set we are going to look at the action of periodic orbits associated to functions with support
in that set. In infite dimensions we have to be more careful since a function with bounded support
may not induce a globally defined Hamiltonian flow. Consider a bounded open subset & C FE.
We define the set

F(U) = {smooth functions f : E'— R such that Supp f CU And d(Supp f,oU) > 0}.

Consider the action selector ¢(u, -) defined at the beginning of the introduction and write ¢(u, H) =
c(p, ). Denote f, = fi, and define

Colp, f) = liminf e(p, fn) and  c*(p, f) = limsup c(u, fr)

Remark that the support of f;, is contained in Supp f N E,, which is bounded, so f, has compact
support. In particular ¢(u, f,) is well defined. Remark moreover that for every n there is a
periodic orbit z, : [0,1] — E,, such that ¢(u, f) is the action of z,, but these orbits may not
converge in any way. We now use c(u, f) to define the capacity of open bounded sets U as

co(U) = sup{co(ps, f) for f € FU)} and (U) = sup{c®(, f) for f € F(U)},

It turns out that this definition has the properties of symplectic capacities and in particular it
benefits from normalization property. Moreover under compactness assumptions on the flow ®
we have c,(U) < co(P(U)) and c®(U) < °(P(U)) so one may use it to derive the nonsqueezing
theorem:

Theorem (Kuksin [Kuk95]). If ® : E — R is the flow of a Hamiltonian PDEs satisfying the
compactness condition, then ®(B,) C Zg implies r < R.

The original construction of an infinite dimensional symplectic capacity by Kuksin was a
generalization of Hofer-Zehnder’s capacity. It uses the notion of fast periodic orbits of Hamiltonian
systems: orbits with period T' < 1 which are not fixed points. The capacity of U is then (roughly)
defined as the maximal variation of a Hamiltonian which does not produce a fast trajectory. As
in our case, the definition involves some sort of limit of the capacity as the dimension grows.

Middle dimensional rigidity

The second result of this chapter concerns the study of middle dimensional rigidity for Kuksin’s
equations. The first step is to define the coisotropic cylinder in this context. We explain the
result for the concrete example of the nonlinear string equation.

ﬂ:um—f(t,:v,u), u:u(t,x),
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where # € T = R/27Z Recall that if we denote by B the operator B = (—9%/9z% +1)/2 then we
may write the equation in the form

1 = —Bwv,
= (B - B Yu+ B f(t,z,u).

Suppose th%t f is bounded and that all its derivatives have polynomial growth. Define F =
H2(T) x Hz(T) as the product of Hilbert spaces. Now putting A = (B — B~!) x B and defining
J:E — E by J(u,v) = (—v,u) we can write the nonlinear string equation as the semilinear PDE
on E as

(4,0) = JA(u,v) + JVh(u,v).

Denote E = Ey x E_ = H2 (T) x H? (T). Write an element of E = ET x E~ in Fourier basis and
denote by Ej the finite dimensional subspace of E whose elements (u,v) are a linear combination
of terms of frequencies up to k. Denote by 1l : £ — E} be the natural projection and let X x Ei
be the subset of E that consists of elements (u,v) that project onto X under II; and such that
(0,v) € E). This is the natural definition of an infinite dimensional coisotropic cylinder.

As in the finite dimensional case, the capacities previously constructed do not give rigidity
information about these coisotropic cylinders. Note that the subset X x E_]ﬁ is not bounded so we
cannot deduce directly middle dimensional rigidity for these Hamiltonian PDEs from the finite
dimensional approximation on bounded sets. We need an intermediate step and this will come
from the coisotropic non-squeezing theorem. Let ® : E — F be the flow of the nonlinear string
equation and decompose it as

Dt (u) = AV (u).

The map V! can be approximated on bounded sets by a finite dimensional map V,!(u,,u") =
(oL (un),u™) (by the hypothesis on f) where ¢!, verifies the coisotropic non-squeezing (since f is
bounded). The fact that V! acts as the identity on big Fourier modes allows us to prove that if
Vh is bounded on the whole space, then the set

ViX x EX)n {11k =0}
is not only bounded, but compact. This allows us to have a precise control of the subset. In
particular we prove that this intersection is symplectically rigid:

Proposition. Denote by ®' : E — E the flow of the nonlinear string equation with f bounded
and such that all its derivatives have polynomial growth. For every k € N, every compact subset
X of By and every t € R we have

o(X) < (VX x BS) n {ITE = 0}).

Once we have this, we can use the symplectic invariance of the capacities together with the
fact that /4 is a symplectic map which commutes with II;, to get the middle dimensional rigidity
for the actual flow of the equation:

Theorem. Denote by ®' : E — E the flow of the nonlinear string equation with f bounded and
such that all its derivatives have polynomial growth. For every k € N, every compact subset X of
E and every t € R we have

o(X) <y @ (X x EY)).

The proof of this theorem is contained in the article [Bus17]. A particular example of equation
which verifies all the hypothesis is the Sine-Gordon equation:

Ut = Ugy — SIDU, u=u(t,x),
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where z € T = R/2nZ. For k = 0 the set X x E¥ consists of elements (u, v) where the pair (ug, vo)
of the mean values is in X C R? and such that (0,v) € Ey, that is, v is constant equal to vg. We
see that these theorem gives information on the global behavior of solutions with constant initial
velocity such that the pair of the mean values is in X. On the other hand, if we interchange the
roles of E* and E~ we get information on the behavior of solutions where the initial position of
the string is constant.

A A

> >

Figure 1.3: The representation the graph of the initial condition u(0,z) and at each point the
vector of the initial speed v(0, z). On the left, u(0, x) is constant. On the right, v(0, z) is constant.

Arnold conjecture for Hamiltonian PDEs

Still in the search of symplectic rigidity in Hamiltonian PDEs, we point our attention to Arnold’s
conjecture. This conjecture asserts that Hamiltonian diffeomorphisms always have fixed points.
More precisely:

Conjecture. On every compact symplectic manifold (M,w) a Hamiltonian diffeomorphism has
at least as many fixed points as a function on M has critical points.

The non-degenerate version of this conjecture has been established on every symplectic man-
ifold. The proof gave rise to Floer’s homology, a homological theory built from critical points of
the action functional. As a particular example where this conjecture is true we have the complex
projective space CP™ where the number of fixed points is n + 1. The original proof of this case
[For85] did not use Floer’s techniques but profited from the symmetry of CP™ to study the action
functional for Hamiltonians in R?".

In order to relate this compact setting with the flow of Hamiltonian PDEs on Hilbert spaces
we need to consider a specific setting introduced by Fabert in [Fab18]. Consider the nonlinear
Schrédinger equation on T with convolution nonlinearity,

Wy = Ugg + [f(‘u * §|27:U7t)u * f] * &,

where u : T — C. This is one of the examples given by Kuksin in [Kuk95] of equations that
can be approximated by finite dimensional Hamiltonian diffeomorphisms. Moreover this equation
defines a flow ®' on the whole space L%(T,C). After restriction to the unit sphere S of L? the
diffeomorphism ®¢ descends to a map on the projective space PL?. This map is approximated by
finite dimensional maps Wl : CP™ — CP™ and each of this maps has at least n + 1 fixed points.

Conjecture. For every t € R, the map ¥; : PL? — PL? has infinitely many fixed points.

We prove the time-independent case. In this case it is enough to look for critical points of H
restricted to the unit sphere. This is equivalent to looking for standing waves, that is, solutions
of the equation of the form

u(t, ) = eo(z), with v e L2

18



1.4. Hamiltonian PDEs

Theorem. Suppose that f is independent of t. Then for every t € R the flow W' has infinitely
many fized points. More precisely, there is a sequence of points u, € H' and p, € R such that

O (uy) = up(t,r) = ™ u,(z) and H(u,) = 400 as n — +oo,

for every (t,z) € R x T.

The first step in the proof is establishing a kind of Palais-Smale condition for the finite
dimensional reductions H,, of the Hamiltonian. In other words, we show that a sequence of
critical points u, of H, with bounded energy converges to a critical point of H. Then one has to
apply variational methods to find those sequences with bounded energy independent of n.
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Chapter 2

The action spectrum as a symplectic
invariant

In the variational approach of symplectic geometry Hamiltonian trajectories can be identified with
critical values of the action functional. In this setting, looking for periodic orbits of Hamiltonian
systems amounts to finding critical values of a functional on an infinite dimensional space. In this
chapter we recall the basic properties of the set of critical values of this functional and explain
how it can be used to define symplectic invariants. A more detailed exposition of these results
can be found in Hofer and Zehnder’s book [HZ94].

2.1 The action functional.

Consider R?" with coordinates z = (q1,p1, - -, Gn, Pn). We endow R?" with the standard symplec-
tic structure

n
wo = Zd% A dp;.
i=1
It is a non-degenerate, closed two form. For any function H : [0,1] x R?" — R there exists a
unique time-dependent vector field Xz on R?™ such that
wo(Xa,-) = dHy(:).

We call X the Hamiltonian vector field generated by H. Using the isomorphism R?" ~ C" we
have

Xp(z) = —iVH(z) = JVH(z),
where J is the multiplication by —i. Denote by H the set of smooth functions H : [0,1] x R?" — R
such that Supp H is contained in a compact set. Here, by support of H we mean

Supp H = U Supp H; with Supp Hy = {z € R?" | H(z) # 0}.
t€[0,1]

Every element of H generates a compactly supported vector field, which in turn, generates a
globally defined flow 11 = 1y on R?". We denote by Ham®(R?") the set of time one maps
1/}{1 = o of the flows generated by functions on H. By Cartan’s formula these flows preserve the
symplectic structure:

d . ) .
%WO = Lx,wo = dix, wo +ix,dwy = ddH; = 0,

We are interested in the dynamical information coming from periodic orbits, that is, fixed points
of 1f. More precisely, this information is going to come from the action value of the orbits.
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2.1.1 Periodic orbits as critical points.

Let z : [0,1] — R?" be a closed loop, i.e. a smooth curve such that z(0) = z(1). For every smooth
fuction H : [0,1] x R?® — R we consider the value

1 1
An(e0) = [ o0t at = [ m(=o)

Using integration by parts and the fact that z(t) is periodic we get the equivalent expression

1 1
Anlet) = = [ 572020 at= [ mw)a

where the dot represents the real scalar product. Suppose that z € L?(S!,R?"), then we may
decompose it as a sum of Fourier modes

Z(t) — Z EQiWktZk,
keZ

with z;, € R?". With this decomposition the first part of the action becomes

1
/0 %J?L(t) () dt =73 Kl

keZ

which defines a continuous quadratic form on the dense subspace H %(S’ L R?) C L2(SY,R?).

We want to see Ay as a function defined on H 2. The functions in H2 may not be continuous so
one has to impose some condition on H in order to, for example, have the second term bounded.
In what follows we suppose that H is compactly supported although one may make the weaker
assumption that H and all its derivatives have polynomial growth (see [HZ94] appendix A.3).

Lemma 2.1. If H is compactly supported the functional A : H%(Sl,Rzn) — R is smooth and
its critical points are exactly the smooth closed loops that solve

2(t) = Xu(2(t)).

Proof. The smoothness follows from the fact that H and all its derivatives have polynomial
growth. For a proof see [HZ94] appendix A.3. For the second claim, a straightforward calculation
yields

1
dAy (2)(w) = /0 [—J2(t) — VH(2(t))]w(t) dt.

A point z verifies dAp(2)(w) = 0 for every w € H%(Sl,]RQ") if and only if
2(t) = JVH(2(t)) = Xu(=(t)).

It remains to show that z(¢) is actually in C*°([0,1],R??). First, dAg(z)(1) = 0 implies that
V Hy(z(t)) has vanishing mean. Moreover, since H is compactly supported we have VH(z(t)) €
L?(S',R?"). These two facts imply that there exists a & € H'(S*, R?") such that

§(t) = JVH(2(t)),

soz =¢ € HY(SY, R?™). In particular z is a continuous weak solution of the Hamiltonian equation.
This implies that

2(t) = 2(0) +/O JV H(z(t))

must be C'. The right hand side is then C? so z is C2. By recursion we get the z is in fact
smooth. n
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2.1.2 The action spectrum.
For H € H we denote the set of fixed points of the Hamiltonian map ¢ = o by
Fix(e) = {= € R2 [y (2) = 2}.
If 29 € Fix(yp) then the curve z = (g, p) : [0, 1] — R?" defined by t + 1/ (20) satisfies 2(0) = z(1)

and hence is a loop in R?™. Its action is the real number

1 1
Alzo, H) = Agr(=(1)) = /0 p(t) - 4(t) dt — /0 H,(=(1)) dt.

Note that if t — z(t) is a constant curve, then the first term is zero. If in addition the Hamiltonian
function H is time-independent then the action is just

A(zo, H) = A (2(t)) = —H(2).

It turns out that the A(zg, H) depends only on the fixed point 2y and on the map Y and not on
the particular H that generates ¢f. This observation is contained in the following lemma:

Lemma 2.2 (see [HZ94] p. 151). If H and K in H generate the same time one map i = &,
then
A(zp, H) = A(z0, K)

for every zy € Fix(y) = Fix(yF).
We can then associate to every fixed point zg of a map ¥ € Ham®(R?"?) the action
Alz0,9) = Alzo, H) if ¥ =i,
and we may consider the set of all such actions.

Definition 2.3. The action spectrum of ¢ € Ham®(R?") is the set o (1)) C R defined by

o(¢) = {A(z,9) | z € Fix(¢) }.

Note that 0 € o(¢) for every 1 € Ham®(R?") since the Hamiltonians functions have compact
support. The following lemma allows us to use the action spectrum to extract symplectic informa-
tion. Denote by G the group of conformally symplectic diffeomorphisms, that is, diffeomorphisms
¢ which satisfy

o*wy = awyg

for some a = a(¢) €]0, ool.

Lemma 2.4 (see [HZ94] p.152). If 1 € Ham®(R?") and ¢ € G with ¢*wy = awq then

A(D(2), 96 ™") = aA(z,9)).

In particular

o(pvo™") = ao(¥).

The last property that we need from the action spectrum is the following lemma. A possible
proof can be given using generating functions as in Chapter 3. It is the key property that allows
us to prove the symplectic invariance for continuous action selectors.

Lemma 2.5 (see [HZ94] p.152). The action spectrum o (1) is compact and nowhere dense.
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2.2 Action value selectors

In view of Lemma 2.4 we may use the action spectrum to define symplectic invariants. For
example, since the spectrum is compact by Lemma 2.5 we can define the quantity

s(¢) = supo(¢) = sup{A(z,¢) | z € Fix(¥)}.
Then, for every open set U C R?" we may consider
s(U) = sup{c(w) | € Ham®(R2")}.

If ¢ is a symplectic diffeomorphism then by symplectic invariance of the spectrum s(¢) =
s(¢prpp~1) so as a consequence s(p(U)) = s(U). Unfortunately this invariant is trivial. Indeed,
for every open set one may construct an autonomous Hamiltonian with a minimum as small as
we want, and this minimum generates a fixed point with action value equal to the value of —H at
this point. Since this minimum is arbitrary, we conclude ¢(U) = +oo for every open set. In order
to construct a nontrivial capacity from an action selector we have to make a less obvious choice.
In particular this choice has to be of a dynamical nature, so that it has useful information.
Over the group Ham®(R?") we can define the action spectrum ”bundle”

A= |J  {@rxo).

eHam(R2")

Every fiber is a compact nowhere dense set. Since 0 € o(v) for every 1) there is a trivial section
of A. In the following chapter we give constructions of nontrivial sections

¢ : Ham®(R?") — A

i.e. maps that verify c(¢) € o(¢)). We use these sections to define a symplectic capacity. The
following lemma assures that this can be done under some continuity hypothesis on c.

Lemma 2.6. Let ¢ : Ham®(R?") — A be a section of the action bundle such that for any symplectic
isotopy Yy the map

t— (i)

s continuous. Then for every conformaly symplectic isotopy ¢; starting at the identity and every
Y € Ham®(R?") we have

c(de)(dr) ™) = a(t)e(vp)  for every t € [0,1].

Proof. Every ¢ € Ham®(R?") and every conformally symplectic map defines a path of compactly
supported symplectic maps (which is in fact a path in Ham¢(R?")) given by t + ¢u(¢) " for
t € [0,1]. For a(t) = a(¢:) > 0 the map
Es ——c(oub(60) )
——c
is continuous and by Lemma 2.4 takes values in o(7). By Lemma 2.5 the subset (1)) is nowhere
dense so this map must be constant equal to ¢(po1) ¢y Dy = ¢(y). O

In particular, we see that a section satisfying this continuity hypothesis is invariant by sym-
plectic conjugation. We can use it to define a symplectic invariant for open bounded sets of R?"
by

c(U) = sup{c(y) [ ¢ € Ham®(U)},
where the notation Ham®(U) stands for the set of compactly supported Hamiltonian diffeomor-
phisms with support contained in U. Recall that the definition of a symplectic capacity is:
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2.2. Action value selectors

Figure 2.1: The shaded region represents the support of a Hamiltonian diffeomorphism . The
curve represents the periodic orbit v such that c¢(¢v) = Ag(y).

Definition 2.7. Denote by P(R?") the power set of R*". A symplectic capacity on R?" is a
function ¢ : P(R?") — [0, +o0] that verifies the following properties:

1. (monotonicity) If U C V then ¢(U) < ¢(V).

- (
2. (conformality) c(AU) = A2¢(U) for all A € R.
3. (

symplectic invariance) If ¢ : R?® — R?" is a symplectomorphism then c(¢(U)) = ¢(U).

4. (non-triviality+normalization) ¢(B?") = m = ¢(B? x R?"2).

The invariant ¢ defined using a section satisfying the hypothesis of Lemma 2.6 verifies the
three first properties of symplectic capacities. Let us explain a classical way of obtaining the
normalization property:

For every small € find a smooth compactly supported decreasing function i : R — R such that
h(t)=1—¢efort <0, h(t)=0for t > 14 ¢, and 0 < |A/(t)] < (1 —€). We can use it to defined

an autonomous Hamiltonian H : R?" — R by H(z) = —7h(||z||?). The gradient for this function
is VH(z) = —2mh/(||2]|?)# so the Hamiltonian equation is

5= JVH(z) = 2mib/(||z]*)=.
In order to understand its flow, note that if z : R — R?” is a Hamiltonian trajectory then

d d . / ,
ZlEOIF= 2 (2(1), 2(0)) = 2(2(1), 2()) = 27B/ (|| 2(1) ") (3= (1), (1)) = 0,

so the norm is an invariant of the flow. In particular we can now write the explicit form of the

flow as
Yi(z) = e2mith (||21%)

We conclude using the bound for A’ that the only 1-periodic orbits are the ones with A’ = 0. The
orbits are the trivial ones with h(z) = 0 and the ones with h(z) = —1 + €. In particular

o(Yu) ={0,m — e}

If the selector ¢ is nontrivial on this map we have ¢(1)) = m — emr. Since € can be chosen arbitrarily
close to zero, we may prove the following lemma.

Lemma 2.8. Suppose that c is an action selector verifying the assumptions of Lemma 2.6 and
non-zero on functions h as above. Then the invariant defined by c verifies E(B%”)) > .
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Chapter 2. The action spectrum as a symplectic invariant

2.2.1 Energy-capacity inequality

The classical way of obtaining the reverse inequality for ¢(B3"), of more precisely, of obtaining
E(B% x R?"=2) < 7 comes from the concept of displacement energy: for an open bounded subset
U C R?" we say that a Hamiltonian diffeomorphisms 1 displaces U if

VEUYNU = 0.

Figure 2.2: An open set U displaced by .

One way of measuring the energy of a diffeomorphism 1 is via the following quantity:

Definition 2.9 (see [HZ94] p.146 or [Hof90a] ). For every H € H define

1 1
|H| = / sup H (t, z) dt —/ inf H(t,z)dt,
0 z 0 z
and for every 1 € Ham®(R?") define

E(y) = inf{|H| |y ={'}.

This measures the minimal variation of H that we need in order to generate the Hamiltonian
diffeomorphisms 1. A priori it is not clear if E (1) > 0 for a non-identity element. It is possible
to prove (for example using the tools of the following chapter) the following important result:

Theorem 2.10 (see [HZ94] p.146 or [Hof90a]). Let 1 be an element of Ham®(R?*"). Then E(3)) =
0 if and only if v =1d .

For every compactly supported diffeomorphisms v, ¢ € Ham®(R?>") Hofer defines

d(¥, ) = E(pe™).

The previous result implies that d(,¢) = 0 is and only if ¢y = ¢. Using the definition for E
one can moreover prove that d is bi-invariant by symplectic diffeomorphisms and that it moreover
verifies the triangle inequality. In particular, it is a bi-invariand distance on the group of compactly
supported Hamiltonian diffeomorphisms called the Hofer distance on Ham®(R?") (see [HZ94] for
more details). We will not explicitly use this distance on this manuscript, but we present it to give
an intuition for the closely related Viterbo displacement energy. Note that with this vocabulary,
the energy E(1) is the distance of 1 to the identity. Hofer uses E to define a new symplectic
capacity:
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2.2. Action value selectors

Definition 2.11 (see [HZ94]). For every bounded open set U C R*" we define the displacement
energy of U as

EWU)=mf{E®)|yU)NU = 0}.

For every open subset V' € R?" we define E(V) as the supremum of E(U) for every open bounded
set U € V. For every set X C R?" we define F(X) as the infumun of E(V) for every open set V
that contains X.

This time, the inequality that one may easily prove goes in the opposite direction.
Theorem 2.12 ([HZ94] p. 171). Let Z*>" = {2 € R*" | ¢} +p? < r?} be a standard cylinder. Then
E(Z>™) < 2.

Proof. Fix r = 1. Every bounded open subset of Z?" is contained in B} x B?%”_Q for some R > 0,
so it is enough to prove that

E(B? x B %) <

for every R > 0. We start by constructing a Hamiltonian in R? that displaces B?. For this we
first use an area- and orientation- preserving diffeomorphism ¢ of R? to send the ball inside C,
the square of sides /7 + € on the positive quadrant with a vertex on (0,0). Remark that the
Hamiltonian H(z,y) = (/7 + 2¢)x displaces C vertically for ¢ = 1. In order to make it compactly
supported we may multiply H by a function & which is equal to one on a neighborhood of the
trajectory of C. In particular we can choose xy = 0 outside —e < x < /7 +2¢. Then K = xH has
norm || K| = 7 + o(€). Moreover ¢~ 01 o ¢ displaces the ball from itself and it is generated by
K o ¢ (see appendix A). In order to get the diffeomorphism on R?" we can just multiply K o ¢
by another compactly supported function of R?" with values on [0, 1] and equal to one on the
trajectory of B? x BIQ%"_Q. O

In order to prove that both ¢ and E are normalized one usually proves an energy-capacity
inequality: suppose that for every ¢ Hamiltonian diffeomorphisms supported on a bounded open
set U, and every ¢ € Ham®(R?") such that it displaces U from itself, i.e. p(U)NU = 0, we have

c(y) < E(p).

Then the definition of the invariants imply that
c(U) < EU).

Taking into account Lemma 2.8 and Theorem 2.12 we conclude that both ¢ and F are normalized.
The energy-capacity inequality is always a consequence of the following very important property
of the action spectrum (see Definition 2.3).

Lemma 2.13 (see [HZ94] p.166). Let 1 be a Hamiltonian flow supported on a bounded open set
U, and let ¢ € Ham®(R?") be such that it displaces U from itself, i.e. p(U)NU = (0. Then for
every t we have

o(ro @) = o(p) = o o).
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Chapter 2. The action spectrum as a symplectic invariant

2.3 Other symplectic capacities

We end this chapter with a short description of another type of symplectic capacity which is
not defined via a section of the action spectrum. This capacity also verifies an energy-capacity
inequality. We introduce it since it was used by Kuksin in [Kuk95] to define an infinite dimensional
capacity for Hamiltonian PDEs so it will appear again in Chapter 6.

We say that an autonomous Hamiltonian (i.e. a time independent Hamiltonian function) is
slow if it does not have any periodic orbit of period smaller 1 other than its critical points. In
[HZ90] they define the following capacity:

Definition 2.14. For every open set U of R?" we define
crz(U) = sup{max H | H is slow and compactly supported in U}.

Using a function as in Lemma 2.8 one may prove that cyz(B$") > 7. The nontrivial inequality
is again the opposite one, which can be recovered with an energy-capacity inequality.

Theorem 2.15 (see [HZ94] p.166). For every open bounded set U we have
cuz(U) < EU).

This was one of the first capacities that was discovered.
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Chapter 3

Generating functions and spectral
invariants

In the previous section we saw that the action spectrum depends only on the time one map of the
Hamiltonian diffeomorphism, an not on the precise Hamiltonian function that generates it. In
particular all the symplectic information of the action is contained on the fixed points of ¢ = .
A classical way of studying the fixed points of diffeomorphisms is to consider its graph

Py ={(2,9(2)) |z € R*"}

and look at the intersection points with the diagonal, i.e., the graph of the identity. Remark
that v is compactly supported so both graphs coincide outside a compact set. One may use the
symplectic structure of R?" to see I'y as a Lagrangian submanifold of the symplectic manifold
(R?" x R?™, wy @ (—wp)) = R?™ x R2n. Working with linear manifolds has the advantage that there
exists an explicit global symplectomorphism Z : R?" x R2" — T*R?" such that Z(T'1q) = Ogen.
This symplectomorphism is given by
I((Lp:QvP) - (#7¥7P_P7Q - Q)'

Since Z is a symplectomorphism, Z(I'y,) continues to be a Lagrangian submanifold which is Hamil-
tonian isotopic to the zero section. We will see that after compactification of the base manifold
of T*R?" to T*S?", these Lagrangian submanifolds can be described by the symplectic reduction
of differential of functions S : S?" x R™ — R called generating functions. The critical points of
S are in one to one correspondence with the intersection points of Z(I'y,) with the zero section
Z(I'tq ). We show that after normalization of S the set of critical values of S is exactly the action
spectrum of ). We then review how to use minmax selectors of critical values to build a contin-
uous sections of the action spectrum bundle verifying Lemma 2.8. These invariants are used to
define a symplectic capacity and a displacement energy. Most of the results of this section can be
found in Viterbo’s original article [Vit92].

3.1 Definition

Let N be a compact smooth manifold and let L be a Lagrangian submanifold of T*N which is
Hamiltonian isotopic to the zero section. In light of the previous discussion we want to give a
description of this submanifold which allows us to extract information from the intersection points
with the zero section. Recall that the standard symplectic structure of T*N is given by w = —dA
where A is the unique one form that verifies a*A\ = « for every section of the contangent space.
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Chapter 3. Generating functions and spectral invariants

This characterization already yields a description of a big family of Lagrangian submanifolds:
the graph of every closed one form of T*N. In particular, the differential of a function gives
a description of Lagrangian submanifolds but this description is not enough for Hamiltonian
deformations of the zero section. These type of deformations are too flexible and they need not
project one-to-one onto the zero section (see Figure 3.1), so we need a more general description.

Figure 3.1: A possible Hamiltonian deformation of the zero section in T*T.

Introduce an auxiliary variable and consider functions S : N x R™ — R. The graph of the
differential dS is a Lagrangian submanifold (still denoted dS) of the cotangent space T (N xR™) =
T*N x T*R™. We will push forward the Lagrangian in a symplectic way by the projection onto
the first coordinate to get a Lagrangian in T*N. This operation is called symplectic reduction
and is based on the following lemma:

Lemma 3.1. Let V be a symplectic vector space, let W C V a coisotropic subspace and let L CV
be a Lagrangian subspace. Denote by w : W — W/W¥ the natural projection. If L is transverse
to W then n(LNW) C W/W*® is a Lagrangian subspace.

Proof. First note that L is isotropic so L N W is also isotropic and this implies that =#(L N W) is
also isotropic. In order to prove that w(L NW) is Lagrangian it remains to prove that it has half
of the dimension of W/W®. Now remark that L + W = V implies L N W* = V* and using that
L is Lagrangian we get LNW* = {0}. This means that 7 is injective on LN W so w(L N W) has
the same dimension as L N W. Using dim W + dim W% = 2n we get

dim W/W¥ = 2n — 2dim W*.
On the other hand we have
dmZLNW =dimL+dimW —2n=dimW —n = (2n —dimW¥) —n =n — dim W%,
and using the previous two equalities we get
dimLNW = %dimW/W‘”,

which finishes the proof. O

We are going to apply this lemma to L = dS and W = T*N X Ogm. We are no longer in the
linear case so we have to make sure that the result carries over. A coisotropic submanifold is a
submanifold with coisotropic tangent spaces (see Appendix A). The symplectic orthogonal will
define an integrable distrubution and a foliation called characteristic foliation (see Lemma A.7).
In order to consider subsets on the quotient, one first needs to be sure that the quotient by the
characteristic foliation is a well defined manifold. This is not always be the case.
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3.1. Definition

Example 3.2. Consider the cotangent space T*N x T*M for two smooth manifolds N and M.
Then

T*N x0p and T*N xTp, M with me M

are coisotropic submanifolds. The symplectic reduction W/W*® is in both cases naturally isomor-
phic to T*N.

Definition 3.3 (Symplectic reduction). Let M be a symplectic manifold and let W C M be a
coisotropic submanifold. Consider a subset Z C M, then we will denote

Redw (Z) :=n(ZNW) CW/W*.

Together Lemma 3.1 and Example 3.2 imply that if dS is transverse to T*N x Ogm then the
projection 7 restricted to dS gives a Lagrangian immersion into T*N. This is the definition of a
generating function. We will moreover ask for a condition at infinity. This condition will allow us
to have a better control of the function and in particular guarantees that .S has enough critical
points.

Definition 3.4. We say that a function S : N x R™ — R is a generating function or gf for an
immersed Lagrangian submanifold L C T*N if

e (S is transverse to W = T*N x Ogm.
e [ = Redw (dS).

Moreover we say that S is quadratic at infinity or gfgi if S coincides with a nondegenerate
quadratic form @ outside a compact set.

Explicitly, the first condition amounts to asking that the map

oS

has zero as a regular value. The transversality condition implies that

0s~1!
Y :=dSTHdSNW) == (0)
23
is a submanifold contained in N x R™ of the same dimension of N. We will denote by ig : ¥g —
T*N the immersion

(0.6) — (@, g;j@,g».

By definition of .S the image of this map is L. The condition of being exactly quadratic at infinity
may seem a little strong. An important remark is that it can be relaxed to a condition on the
fiber derivative. This is the content of the following proposition which is taken from Théret’s
thesis.

Proposition 3.5 (see [Thé95]). Let N be a compact manifold and let S : N x R¥ — R be
a gf for an immersed Lagrangian L. Suppose that there exists a nondegenerate quadratic form
Q of R' for which 0¢(S — Q) is bounded. Then there exists a fiber preserving diffeomorphism
©: N xRF - N x RF such that S’ = S o ¢ is a gfgi for L with quadratic form Q.
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Chapter 3. Generating functions and spectral invariants

Proof. Denote R = S — Q and Sy = Q +tR = (1 —t)Q + tS. We look for a fiber isotopy
vi(q,€) = (q,04(q,§)) such that S; o p; = @ outside a compact set. Differentiating with respect
to t, and denoting by (0, X;) the infinitesimal generator of ¢; we want X; to verify

0¢Sy(X¢) + 0,5 = 0 outside a compact set.
We may write the condition as

—R.

(VQ +t0:(S — Q) (Xy)

Note that @ is a non-degenerate quadratic form so |VQ(&)| goes to infinity with £. Note moreover
that by hypothesis t0:(S — Q) is bounded. Using these two facts we see that outside a big enough
compact set, J¢S; is non zero so we may define

-

X = ———
ENENAE

O¢ St

which verifies the desired equality outside a compact set. Now make this vector field global with
the help of a step function which is zero on a big enough compact set, and equal to one at infinity.
In order to finish the proof we just need to check that this vector field is globally integrable. We
have

R 1
X1 < oy < alRla. O] < olR(@.0)+ [ ocRla.te)- e <+
0
where we used that IV is compact and that 0¢R is bounded. We may now use Gronwall’s Lemma
to prove that trajectories do not explode in finite time, so the flow is globally defined. O

In the case where L is not only immersed but also embedded, one can characterize the map
ig. This is important since we want to have a bijective correspondence between critical points of
S and intersection points with the zero section.

Lemma 3.6. Let N be a connected compact manifold and let S be a gfqi for a Hamiltonian isotopy
of the zero section in T*N. Then Xg is a covering space of L and ig is a covering map of finite
degree.

Proof. By definition Xg is a closed set. Moreover, the quadratic at infinity condition implies that
Y5 is contained in a compact set so we conclude that it is a compact submanifold. The map ig is
an immersion and both ¥g and L have the same dimension so ig is in fact a local diffeomorphism.
Note that g is compact and L connected so a standard argument shows that the fibers are finite
with the same cardinal, which gives the result. O

Example 3.7. Let N be a compact manifold, we are going to build a gfgi for the zero section
where ig is not a diffeomorphism. We look for gf S : N x R — R of the form

5(q,8) = F(8),

with F' : R — R. Once the transversality condition is verified, it is clear that S will generate
the zero section. Denote by f the derivative of F. In this case the transversality condition of
Definition 3.4 amounts to asking that the map

(0.6) — Z?(m) — £(©)

has zero as a regular value. In other words, we want that for every ¢ € f~1(0) we have f/(£) # 0.
In order to address the quadratic at infinity condition we first recall that quadratic forms of R
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are of the form Q(¢) = a&?. If we want an S quadratic at infinity, using Proposition 3.5 we see
that it is enough to find a function f and a constat C' such that |f(£) — 2a&| < C for every & € R.
Fix 2a = 1 and consider the function
E—1 if 1<¢
fl&)={ % if -1<¢<1

™

E4+1  if £<-1

We have f(§) = 0 if and only if £ € {—1,0,1}. Moreover f'(—=1) =1, f/(0) = —1 and f'(1) =1

Y

Figure 3.2: A representation of the graph of f.

so the transversality condition is verified. We may now use Proposition 3.5 in order to find a fiber
preserving diffeomorphism ¢ : R — R such that S o ¢ = F o ¢ is exactly quadratic at infinity.
Moreover we may chose ¢ to be the identity on a neighbourhood of [—1, 1]. In particular we have

Sg =N x {1} JN x {0} | N x {1}

and g : Xg — Oy CT*N is a 3-to-1 covering map. We see that in this case the critical points of
S are not in one to one correspondence with the intersection points with the zero section.

3.2 Existence

In this section we prove the existence of generating functions quadratic at infinity S where the map
ig is a diffeomorphism for compactly supported Hamiltonian deformations of the zero section in
T*R™. The proof that we present is based on the one that appears in [Vit06]. The proof for general
compact manifolds N follows using the argument in Brunella’s article [Bru91]. Let ¢ = /T be a
compactly supported Hamiltonian diffeomorphisms in T*R"™. The key observation is that for small
t, the generating function of (L) can be explicitly described using the concept of generating
functions for symplectic diffeomorphisms and the gf for L.

Consider the graph of a symplectomorphism ¢ as a Lagrangian submanifold in T*R"™ x T*R".
Then using the involution (q,p) — (g, —p) for the second coordinate we may send it in a sim-
plectic way into T*(R™ x R™) to get another Lagrangian submanifold. We want to identify the
diffeomorphisms ¢ whose image in 7*(R™ x R™) can be described by the differential of a function
h.

Definition 3.8. Let ¢ be a symplectic diffeomorphisms of T*R". We say that a function h :
Ry X R} — R is a generating function for ¢ if

. . oh oh
©(q1,p1) = (g2, p2) if and only if p; = %((thh) and pg = —871(%,(12)-

In that case we write ¢ = ¢y,.
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Chapter 3. Generating functions and spectral invariants

Example 3.9. Consider the function ho(z,y) = 1|z — y|?. In this case we want

— ) —a @ and pr = —o(q1,) = a1 -
pl—&E q1,92) = q1 — 42 b2 = ay q1,92) = q1 — 42,

so hg generates the diffeomorphism

©(q1, 1) = (q1 — p1,p1).

1

Moreover, the same easy calculation tells us that ¢ =" is generated by —hg.

Lemma 3.10. Every compactly supported Hamiltonian diffeomorphism 1 = wf{ can be written
as a composition

7/1:‘70hm0"‘080h1,

where h; is equal to hg or —hg outside a compact set.

Proof. Write 1y = 1 o op, 0 9o_p,. The map 1, o pp, is symplectic and coincides with ¢, outside
a compact set. Its image in T*(R™ x R"™) is Lagrangian and coincides with dhg outside a compact
set. For t small enough it is also the graph of a closed one form, which is exact since we are in
R™ x R™. It is then the graph of dh and coincides with dhg outside a compact set. We conclude
that 9; o ¢y, = @p. For bigger t we just need to decompose 1); in small pieces. The map v is
compactly supported so for every € we may find a decomposition such that each piece is at least
€ close to the identity. O

We now give the stability of the property of having gf by symplectic maps of the form ¢,.

Proposition 3.11 (Chekanov’s composition formula). Let L C T*R"™ be a Lagrangian submani-
fold generated by a generating function S : R xR™ — R. Let ¢ be a symplectomorphisms of T*R"™
that has a generating function h. If h is sufficiently C? close to hg then o(L) has a generating
function given by

K R*xR™xR* =R
Proof. We have that (¢,&,n) € Xk if and only if

BrS oh oS
M8 =0 and Z7(0.0) =5 (1.9).

Moreover, using the fact that ¢ is generated by h (see Definition 3.8) we get

(6.7 = (@ G (0 6m) = (0, 5 00.0) = 900 5 (,0) = (0. 5 (0.)

which implies Lx = ¢(L). To end the proof we need to see that K verifies the transversality
condition. Denote by F' the function

0K 0K oS 0SS 0h

F(q,&,n) = (875’8717) = (875’87(1_%)

By hypothesis S satisfies the transversality condition. If we denote II,,, the projection on the first
m coordinates, then for x € Y,

IL,,D.F({0} x R™") = R™ x {0}.
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To end the proof it is enough to show that
D,F(R"™ x {0}) = {0} x R".

This means that we have to show that ¢ — %(77, q) is a submersion. To conclude, recall that

T > %(m, y) = = — y is a submersion for every y, so the same property will be true for every h
sufficiently C? close to hg. O

Definition 3.12. We say that a generating function S : R™ x R™ — R satisfies property (P) if

e there exists a non-degenerate quadratic form @ : R™ — R such that for every C' > 0

Supp (§ — Q) N{(g,§) € R* x R™[[¢] < C}
is compact.
e S — @ has bounded C* norm for every k.

We will say that a Lagrangian submanifold L satisfies property (P) if it is generated by a gf which
satisfies property (P).

Remark 3.13. The importance of property (P) is that it guarantees that S has a smooth exten-
sion to S™ x R™ by S(N, &) = Q(§).

Lemma 3.14. Let L C T*R"™ be a Lagrangian submanifold that satisfies property (P). Then if
is h sufficiently close to hy (or —hg) and coincides with it outside a compact set, the Lagrangian
on(L) C T*R™ satisfies property (P).

Proof. Let S be a gf satisfying property (P) and let K be the gf obtained using Proposition 3.11.
Define f(q,&,m) = (¢,&,q —n). We claim that K o f satisfies property (P). The map f is a fiber
preserving diffeomorphism so K o f generates the same Lagrangian. Note that ho(q—7,q) = %\77|2
is a non-degenerate quadratic form and denote it by Qo(n). By definition of K we have

We know that h = hg outside a compact set and that S satisfies property (P) so for any C > 0,
if [(&,m)] < C then for ¢ big enough we will have K o f(q,&,1n) = —Qo(n) + Q(&). Finally, using
again these same properties one can see that K o f + Qo — @ has bounded C* norm for every

k. O

Corollary 3.15. Let L C T*R"™ be a Lagrangian submanifold that satisfies property (P) and let
Y be a compactly supported hamiltonian isotopy of T*R™. Then for sufficiently small to, there

is a continuous path t — Sy of gf satisfying property (P) for the same Q such that S; generates
(L) for 0 <t <ty.

Proof. We just need to check at every step that if we introduce the parameter ¢t nothing changes.
First one checks that dh; depends continuously on ¢, so h; too. And then that we can choose
ht = hg outside a compact set independent of ¢, this is the case since the support of 1/, is contained
in a compact set independent of ¢t. The result follows from the previous lemma since for small
enough ¢ we have ¢y = 1); 0 Pp, © P_py = Ph 0 P_py- [

Corollary 3.16. Let L C T*R"™ be a Lagrangian submanifold that satisfies property (P) and let 1)y
be a compactly supported hamiltonian isotopy of T*R™. Then for t € [0, 1], there is a continuous
path Sy of gf satisfying property (P) for the same Q such that Sy generates 1 (L) for 0 <t < 1.
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Proof. Since 1, is compactly supported, we can divide the time interval in a fixed number of
pieces as we did in Lemma 3.10, such that on each piece we have a small enough diffeomorphisms
which will verify Corollary 3.15. O

Theorem 3.17 (Laudenbach and Sikorav [LS85, Sik86, Sik87]). Let 1y be a compactly supported
Hamiltonian isotopy of R*™ and for every t consider the image of its graph Z(Ty,) in T*R?*" (see
the beginning of the chapter). Let L; be the one point compactification of the Lagrangians I(T'y,)
in T*S?™. Then for t € [0,1], there exists a continuous path t — Sy of gfqi for the same Q such
that Sy generates Ly and ig, is a diffeomorphism.

Proof. Denote by 7 : R?" x R2" — R2” the pro jection. The Hamiltonian isotopy ¢ = th induces
a Hamiltonian isotopy in R2" x R2" via the Hamiltonian function H o 7 which is not compactly
supported. We are interested in the deformation of the zero section given by Z(I'y:) in T*R?".
This deformation is induced by the Hamiltonian K = H o7 oZ~!'. An explicit calculation yields
that Z~1 : T*R?" — R?" x R27 is given by

20 —-Y 2y+ X 22+4Y 2y—X

I_l('r? y7X7 Y) = ( 2 ) 2 Y 2 Y 2

).

Note that 1 is compactly supported so the deformation of the diagonal in R?" x R2” happens
in a compact set. As a consequence for ¢ € [0,1] the deformation Z(I'y:) will not leave the disc
bundle Dr C T*R?" for some R where Dg denotes the subset of points (x,y,X,Y) € T*R*"
with |(X,Y)| < R. Consider now a smooth function p equal to one on D and equal to zero
on the complement of Dg: for some R’ > R. The Hamiltonian pK is compactly supported (use
the expression of Z~! and the fact that H is compactly supported) and it generates a compactly
supported Hamiltonian isotopy of T*R?" whose deformation of the zero section coincides with
Z(I'yt). Since the zero section has the zero function as a gfgi that satisfies property (P), we may
use Corollary 3.16 to get a continuous deformation of gf S; satisfying property (P). Property
(P) now guarantees that we can extend the functions S; smoothly to S*". In order to make them
exactly quadratic at infinity we use Proposition 3.5.

To see that the map ig, for the gfgi S; is a diffeomorphism, note that by Lemma 3.6 we know
that ig is a covering map with finite fiber. By definition of the extension to S?" of S we have
S(N, &) = Q(&) and this implies that igl(N, 0) = (IV,0) is the only preimage. O

3.3 Uniqueness

We now explain the uniqueness theorem for gfgi. There are three ways of obtaining a new gf from
an existing one. These basic operations are the following:

Definition 3.18. Let S : N x R™ — R be a generating function.
e (Addition of a constant) If ¢ € R, we set S’ := S +¢: N x R™ — R.

¢ (Diffeomorphisms operation) Let ® be a fiber preserving diffeomorphisms of N x R™, i.e.
D(q,€) = (¢,0(q,§)). Weset S":=S0®: N xR™ - R.

e (Stabilization) Let Q' : R™ — R be a non-degenerate quadratic form. We set S := S+ Q' :
N xR™ x R™ — R.

Remark 3.19. If we start with a g¢fgi then the addition of a constant or stabilization do not
give a gfqi. Nevertheless, using Proposition 3.5 one may compose by a fiber preserving diffeomor-
phism which makes the gf exactly quadratic at infinity. The diffeomorphism operation does not
always preserve the quadratic at infinity property, but it will be the case if the diffeomorphism is
compactly supported.
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Definition 3.20. Two generating functions are equivalent if they can be made equal by a suc-
cession of basic operations.

Remark 3.21. The set of critical values of two equivalent generating functions differ only by a
constant.

It was Viterbo’s idea to use the set of critical values of gfgi to define symplectic invariants.
The following theorem is the starting point of the construction.

Theorem 3.22 (Viterbo [Vit92] and Théret [Thé99al). Let N be a compact manifold and let
Y : T*N — T*N be a Hamiltonian diffeomorphism. Then the gfqi S of ¥(0n) such that is is a
diffeomorphism are all equivalent.

Outline of the proof. The proof is carried out in two steps:

(1) The set of closed Lagrangian submanifolds whose gfqi of degree one are all equivalent is
stable under Hamiltonian isotopies. To see this, let Ly and Ly = 1(Lg) be two Lagrangian
sumbanifolds. Suppose that the gfgi of Lo are all equivalent and let S and S’ be two gfqi for L;.
Using Sikorav’s existence theorem (a generalization of Theorem 3.17) one may build two paths of
gfqi of degree one S; and S) that generate 1;(Lo) for all ¢ € [0, 1]. Now since Ly has the uniqueness
property, we may build a loop of gfgi which starts and ends at L;. One now proves that since
this loop is contractible at the level of Lagrangians it will also be contractible at the level of gfgi
(more precisely that the map that send S to Lg is a Serre fibration). This reduces the case to
proving that a smooth path of gfgi which generate the same L are all equivalent. To prove this
one may use Moser’s trick and look for a fiber preserving isotopy ®; such that Sy o &; = 5.

(2) The gfqi S of the zero section such that ig is a diffeomorphism are all equivalent. This is
a purely differential problem. Let S : N x R™ — R be one such gfgi. We are going to consider
the family S, = S(q,-) : R™ — R. Since S generates the zero section and ig is a diffeomorphism,
each S, has only one critical point which is non-degenerate and we may suppose that it is located
at the origin. Then one proves that S is equivalent to

Qa8 = 3@5,0)(€,6).

Sy is a Morse function so locally we always have S; >~ Q(g, -). The difficulty arises when we try to
find a global equality which depends smoothly on the variable q. Remark that @ is not constant
on the base variable, but one may easily construct a fiber preserving diffeomorphism which makes
it constant. 0

Remark 3.23. In Théret’s article the hypothesis of ig diffeomorphism is not included in the
definition of gf [Thé99a, Definition 2.1] but it is included in the terminology “S generates L”
[Thé99a, Definition 2.2].

3.4 Critical value selectors

In this section we will exploit the quadratic at infinity condition in order to find critical values
for gfqi. We are going to use the minmax principle on the sublevel sets of a gfgi. Denote

S = {(4.6) € N x R™| 5(¢,€) < e}.

Let [a,b] be an interval of regular values of S. The classical argument of deformation of sublevel
sets in Morse theory tells us that S¢ is diffeomorphic to S°. Now remark that since S is quadratic
at infinity, all the critical values of S are contained in a compact set. In particular for ¢ € R big
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enough all the pairs of sublevel sets (S¢, S™¢) are diffeomorphic. We will fix one such ¢ and denote
(8§10, §7%°) = (S§%, §~). We use the topology of the sublevel set to find critical values of the
generating function using minmax arguments. More precisely, we look for the sub-levels where
particular cohomological classes disappear. This indicates that there is a topological change of
the sub-level, so there has to be a critical point.

It turns out that for gfgi there is a way of choosing the cohomological class « that depends
only on N. To see this, note that for ¢ € R big enough

(§F%°,87%) = (N x QTN x Q™).

Now @ is a Morse function with only one critical point at the origin of index Ind(Q) = k. A
standard argument in Morse theory now tells us that Q> is a deformation retract of Q> with
one k cell attached. Going to cohomology over al field, one finds that

H*(87%°,87%) = H*(N x (Q",Q™%)) =~ H*(N) ® H*(Q"*, Q™) =~ H*(N) ® H"(D*,8D").

where H™(D¥,0D¥) is non-zero if and only if n = k. In that case H¥(D¥, dD¥) is a vector space
of dimension one. Using the previous chain of isomorphisms, we get an isomorphism

T:H*(N) — H*F(§T 57
that we will call the Thom isomorphism.
Definition 3.24. For every a € H*(N) we define
c(a, S) = inf{c|i;Ta # 0}.

It is a critical value of S (see Appendix C or for example [Nicll, section 2.7]).

3.4.1 Properties

The advantage of this critical value selector is that one may exploit the algebraic properties of
the cohomology groups. The following theorem tells us that these selectors are continuous with
respect to the C° norm on gfgi, that we have a triangular inequality and a kind of nondegeneracy.
The interested reader can look at the original reference [Vit92] for a proof using algebraic topology
or the article [Mil99] for a proof using Morse theory.

Theorem 3.25 ([Vit92]). Let N be a compact connected and oriented manifold of dimension n
and consider a gfqi S : N x R™ — R which generates a Lagrangian submanifold L C T*N.

o For every o € H*(N), the map c(a,-) : S+ c(a, S) is C° continuous. Moreover, it has the
following behavior with respect to the basic operations on gfqi (cf. Definition 3.18):

cla, S+¢)=c(a,S) + ¢
cla, S o @) = ¢(a, S)
c(a, S @ Q) =c(a,S)
o Ifpc HY(N) and 1 € HO(N) are the generators of H"(N) and H°(N), then
C(lv _S) = _C(M7 S)
Moreover, we have the inequality
(1,8) < e(p, S)

with ¢(u, S) = ¢(1,S) if and only if S generates the zero section.
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3.5. Viterbo’s capacities

o Let S1: N xR™ - R and So : N x R™ — R be two generating functions, and consider

51#82(6175’ 77) = Sl(Qag) =+ 52((]777)

It is a function which can be made quadratic at infinity via a fiber preserving diffeomorphism
(Proposition 3.5) so we can use the minmax selector of critical values. For every u,v €
H*(N) we have

c(uUwv, S1#S2) > c(u, S1) + ¢(v, S2).

The function S1#S> is not always a ¢fqi since the transversality condition may not be verified.
Nevertheless, in some cases we can prove that the critical value that we select for this function
coincides with the critical value that we select for a true gfgi. Let v, ¢ € Ham®(R?") and consider
Ly and L, be the two lagrangian submnifolds in T*S?" induced by them. They coincide with
the zero section on a neighborhood of the north pole. If we normalize the gfgi of degree one
asking that S(ig"(N,0)) = 0 then the previous theorem implies that the critical value of S is
independent of the gfgi used to calculate it. We denote by Sy a normalized gfgi for L.

Proposition 3.26 (see [Vit92] proposition 3.5). Using the notation of the previous paragraph for
every u € H*(S?") we have

e(ut, Sypoy) = c(ut, Sy (S 1)).

3.5 Viterbo’s capacities

We now use the previous results to study the properties of compactly supported Hamiltonian
diffeomorphisms of R?". Recall (Lemma 2.2) that the action spectrum depends only on the time
one map of the Hamiltonian diffeomorphism, an not on the precise Hamiltonian function that
generates it. For this reason we will just study the fixed points of ¢ = ¢{! instead of the whole
path. Consider the graph of ¢

Ty = {(2,9(2)) |z e R*"}
and look at the intersection points with the diagonal, i.e., the graph of the identity. I'y is a

Lagrangian submanifold of R2" x R2" and we can see it as a Lagrangian inside T*R?" using the
explicit global symplectomorphism 7 : R?" x R2n — T*R?" given by

P
I(qvpanP) = (#7%51)_P5Q_q)

Since Z is a symplectomorphism, Z(I'y,) continues to be a Lagrangian submanifold which is Hamil-
tonian isotopic to the zero section. The fixed points of ) are then sent to intersection points with
the zero section. The manifold Z(I'y) is still Hamiltonian isotopic to the zero section and coincides
with it at infinity. Now note that the diffeomorphism R?" ~ $2"\ {N} induces a diffeomorphism
T*R?" ~ T*(S?"\ {N}) and that by definition of the symplectic structure on cotangent bundles,
it is a symplectomorphism. Using this symplectomorphism we see that the one point compactifi-
cation of Z(I'y,) in TS 2 which we denote by Ly, is also Hamiltonian isotopic to the zero section.
Theorem 3.17 tells us that this Lagrangian submanifold has a generating function quadratic at
infinity S such that ig is a diffeomorphism. Intersection points with the zero section are then
in one to one correspondence with the critical points of S. We want to extract symplectic in-
formation from these intersection points. This information is going to come from the critical
values. The key remark is that if S is suitably normalized, then its critical values are exactly
the action spectrum associated to . In the following we will suppose that generating functions
are normalized by having the critical value associated to points close to infinity to be zero, i.e.
S(ig'(N,0)) = 0. Remark that we also have S(ig'(g,0)) = 0 if |g| > R for a certain radius R
that verifies ®(I'y) N {|¢| > R} = {(¢,0) | |¢| > R}.
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The action spectrum as the set of critical values of a generating function. Let A= pdq
be the Liouville form of T*R?", an easy calculation yields ZES\ = dS|s4- A simple calculation shows
that one can recover the critical values of S integrating paths: let 4 be a path on Lg = Z(I'y)
with endpoints on the zero section. Then i;l(’y(O)) and z'gl(’y(l)) are critical values of S and,
if 4(0) is close to infinity, we have by normalization S(igl(:y(O))) = 0. Integration of A along ¥

yields
Jr= [ @=L as = 865 Ga)
ts ts

Lemma 3.27. Let ¢ = i’ be a compactly supported Hamiltonian of R*™. Consider the image of
the graph Z(I'y) in T*R?™ and its one point compactification Ly C T*S?". Let S be a normalized
gfqi for Ly. Then

CritVal(S) = o(v).

Proof. Choose a critical value of S and find it as integration over a path 7 as before. Let A be
the Liouville form on T*R?". We have 7 = Z(7y,v(7)). Using the fact that d(Z*\A —A@® (=))) =0
and that 7 is a closed path we get

/X:/ I*X:/ A® (—A).
¥ (7% (7)) (v¥()

S(i51(3(1) = / A- /w R

If ¥ :[0,1]> — R?" is the mapping ¥(t,s) = ¢(y(s)) then one may see that on the extended

phase space we have
/ d(\ — Hdt) = 0.
w[0,1)2

so in particular

Now by Stokes theorem we have

/A+/ ()\—Hdt)—/ )\—/ (A — Hdt) = 0.
Y ((4(0)) () ((1(1)

We now use the fact that «(0) is outside the support of H to conclude that
SGE G = [ (A= Hat) = Al (1), H).
¢(v(1))

O

This Lemma tells us that the critical values of the generating function carry indeed symplectic
information in the form of the action spectrum. The next step is to build a section of the action
spectrum bundle using the minmax critical value selectors that we saw in Section 3.4.

Consider the one point smooth compactification L, C T*S?" of Z(I'y,). We know by Theorem
3.17 that this submanifold is generated by a gfgi S. By Section 3.4 we may use the two coho-
mological classes u € H**(S?") and 1 € H°(S?") so select two critical values c(u, S) and ¢(1,.5).
Then by Section 3.3 together with Theorem 3.25 we know that if we normalize the gfgi then the
indeterminacy of the addition by a constant is removed. In particular, these values do not depend
on the gfgi used to select it. In our case we are going to suppose that de gfqi are normalized
at infinity, that is, we require that S(iz'(N,0)) = 0. With this normalization the critical value
selection depends only on . and not on the particular gfgi that we use. We will denote the
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selectors by ¢(u, ) and ¢(1,4). By Lemma 3.27 we know that they take values in the spectrum
of ¢: we have constructed two sections of the action spectrum bundle A. We now give proofs of
the properties that we saw in Chapter 2 that guarantee that we can build a symplectic capacity
with these invariants.

Proposition 3.28. The functions c(u,-) : Ham®(R?") — A are sections of the action bundle such
that for any compactly supported symplectic isotopy ¢ the map

t— C(:ua sz)t)

is continuous. Moreover c¢(u,-) is nontrivial over the maps defined by h as in Lemma 2.8.

Proof. Using the existence theorem (Theorem 3.17) we see that for every compactly supported
symplectic isotopy 1; there is a continuous path of normalized gfgi S; generating L., that coincide
with the same quadratic form @ outside a compact set. We now use that the critical value selectors
are continuous with respect to the C° norm (see Theorem 3.25) to conclude that

t = c(p, ) = e(p, St)

is continuous with respect to t.

For the second claim, recall that by Theorem 3.25 for every ¢ different from the identity we
have ¢(1,v) < ¢(u,1). Since for the map 1 defined by h as in Lemma 2.8 we have o(¢) =
{0, 7 — em} we conclude that ¢(1,v) =0 and ¢(u,p) =7 — em. O

Definition 3.29 (see [Vit92]). For every open bounded subset U € R?" the Viterbo capacity is
defined as

c(U) = sup{c(p, ¢) | ¢ € Ham®(U)}.

For every general open subset V € R?" we define ¢(V) as the supremum of ¢(U) for every open
bounded set U € V. For every set X C R?" we define ¢(X) as the infumun of ¢(V) for every open
set V' that contains X.

Remark 3.30. In the article [Vit92] Viterbo defines the capacities using c4(¢) = —c(1,¢) =
c(p,1~1). He does this in order to have cy (1) > 0 if ¢ is generated by a non-negative Hamiltonian.
An easy exercise shows that the capacity defined this way is the same.

Proposition 3.28 together with Lemma 2.8 tell us that ¢(B2") > mr?. In the following subsec-
tion we are going to deduce the reverse inequality using an energy-capacity inequality, as we did in
Chapter 2. Before that, we explain that there is another geometric way to prove the normalization
of Viterbo’s capacity.

Representation theorem. Let C' be a smooth convex body with smooth boundary 0C. It
is a hypersurface so it is a coisotropic submanifold of R?". Its symplectic orthogonal defines a
foliation called the characteristic foliation, which in the case of hypersurfaces is a line bundle.
Since it is one dimensional it is integrable so we may talk about the trajectory of a point, and
in particular we may talk about closed trajectories. We define the symplectic action of a closed
characteristic v in OC' as the integral along the Liouville form A of R?":

A(7)=AA

The action is clearly a symplectic invariant.
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Example 3.31. Consider the ball B2" in R?". The boundary is the energy surface of the function
H(z) = ||z||? at level 2. The characteristic foliation in this case is defined by the Hamiltonian
vector field of H,

Xu(2)=JVH(z) = —2iz

which generates the Hamiltonian flow
Ul (z) = e 2z,

In this case every trajectory is periodic. Denoting z(t) = 1} we get

A(’y):/v)\:—;/;Jé:(t)-z(t)dt:/oﬁvgdt:ﬁrz.

Theorem 3.32 (Representation theorem). Let C' C R?" be a convex body with smooth boundary
0C'. Then the Viterbo capacity equals the action of some closed characteristic on 0C.

In this sense we say that the capacity of C' can be represented by a closed characteristic on
the boundary. A proof of this theorem for starshaped domains can be found in [Sanl4]. Note
that the action and the capacity are invariant by symplectomorphisms but the property of being
convex is not. In fact, the previous theorem is also true if C' verifies the symplectic property of
having a boundary of restricted contact type. We can then use this theorem together with the
previous example to get following corollary:

Corollary 3.33. The Viterbo capacity of the ball B>" is mr2.

If we look at the ellipsoid
E?™(r1,...,m) = {z € R?"| Z (¢ +p?) < 1}

with 71 < --- < 1y, then the set of actions of closed characteristics is {n72,...,7r2}. In order to
identify which of these actions define the capacity we have to understand what type of orbit is
going to be selected by the action selector ¢(u, -). One may see that there is a relation between the
index of the critical point associated to the orbit, and the index of the characteristic trajectory
(see [Sanl4] for details). This explicit relation allows us to get the following result

Proposition 3.34. The Viterbo capacity of the ellipsoid E**(rq,...,ry) with ry < - < 1, is
2

equal to mry.

For every open bounded subset U C C?" of the standard symplectic cylinder one may find an
R > 0 and an ellipsoid E(r, R, ..., R) containing U. By monotonicity of the invariants and by
Proposition 3.34 we see that c¢(U) < ¢(E(r, R, ..., R)) = 7r?. As a corollary we get that Viterbo’s
invariant ¢ is normalized, so it is indeed a symplectic capacity.

3.5.1 Energy-capacity inequality

The action selectors that Viterbo defined can be used to define a displacement energy for subsets
of R?". This time (compare with Definition 2.9), the maximum and minimum of a Hamiltonian
function that displaces a bounded open set are going to be a ”dynamical” maximum and minimun.
More precisely, we consider the quantity
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One may prove (for example using Proposition 4.8) that ¢(1,v) < 0 < ¢(u,v) so y(1p) > 0.
Moreover Theorem 3.25 implies that v(1) = 0 if and only if ¢ = Id. This is one of the reasons
why we say that c¢(u, ) is a ”dynamical maximum” and ¢(1,%) is a ”dynamical minimum”. The
following proposition gives an interpretation of the triangular inequality for generating functions
that we saw in Theorem 3.25 in terms of spectral invariants for compactly supported Hamiltonian
diffeomorphisms.

Proposition 3.35 (see [Vit92]). For every two compactly supported Hamiltonian diffeomorphisms
¥ and ¢ we have

(s o) < c(p,¥) + c(i, )
(1,9 0¢) > c(1,9) +c(1,9)
Y@ o) <y(¥) +(p)

These properties together with Lemma 2.13 are used to prove an energy-capacity inequality:

Proposition 3.36. Let ¢ be a Hamiltonian diffeomorphisms supported on a bounded open set U,
and let ¢ € Ham®(R?™) be such that it displaces U from itself, i.e. o(U)NU = ). Then

c(p,v) < (p).

Proof. By Proposition 3.28 the map ¢ — ¢(u, ¢4 o ) is continuous. By Lemma 3.27 this function
takes values on o(¢; o ¢) and by Lemma 2.13 we know that o(¢: o ¢) = o(p). The set o(p) is
totally discontinuous so we conclude that the function is constant and

c(p, ) = c(p, o o ) = c(p, b1 0 ) = c(p, P o p).

To conclude use the previous proposition to get

clp, ) < et o @) +c(p, 07"
together with c(u, p=1) = —c(1, p). O

Definition 3.37 (see [Vit92]). For every bounded open set U C R?" we define Viterbo’s displace-
ment energy of U as

V(U) = inf{y(4) [$(U) N U = 0}.

For every open subset V € R?" we define v(V) as the supremum of +(U) for every open bounded
set U € V. For every set X C R?" we define v(X) as the infumun of v(V') for every open set V
that contains X.

Proposition 3.36 gives the classical energy-capacity inequality:

Theorem 3.38. For every subset X C R?™ we have
(X)) <~(X).

In order to prove that v is also a symplectic capacity, we have to prove the normalization
property. Taking into account the fact that ¢(X) < v(X), it is enough to show that the capacity
of the standard cylinder is less or equal than 7r2. We are going to use the same map as in
Theorem 2.12. Remark that we have no control on the periodic orbits of this map. In order to
solve this problem, we use that the selector v is continuous with respect to the C° topology in H.
More precisely we have the following proposition:
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Proposition 3.39 (see [Vit92]). Let Hy, Hy be two compactly supported Hamiltonians. Let 1,12
be the associated time one flows. If |Hy — Ha| < € then we have |y(¢1) —v(12)| < €. In particular

V() < [[H][co-

This proposition allows us to reason as in Chapter 2 and use the same Hamiltonian diffeomor-
phisms as in Theorem 2.12 to get the following result.

Corollary 3.40. Let Z>" C R?" be the standard symplectic cylinder. Then v(Z*") = mr?.

This is an example of the utility of the energy capacity inequality. Another example which is
going to be useful is the calculation of the displacement energy of a vector subspace of R?".

Proposition 3.41. Consider the coisotropic subspace R?* x R"™% C CF x C* % with 0 < k < n.
We have
c(R* x R"*) = 0 = y(R* x R"%).

Proof. For every A # 0 we have X - (R?* x R"F) = R?* x R"¥ 50 by homogeneity of symplectic
capacities we deduce that the capacity is either 0 or 4+00. Since we have the inequality c(R?* x
R"F) < 4(R?* x R"*) it is enough to show that v(R%* x R"*) < +o0. By definition

(R x R*™*) = inf{(V)|V is open and R* x R"* C V},

so we have to find an open set V containing R?* x R"~* with finite ~ value. We will use Proposition
3.39. Find a smooth bounded function f : R — R with values on ]0,1[ and f’(s) > 0 for every
s € R (every strictly positive integrable function f” works).

| >
Figure 3.3: A possible graph of f’.

Define the open set

V={(q1,p1,---,qn,on) € R?”  such that Ipnl < f(qn)}-

By hypothesis k& < n so R?* x R"™% C V. We claim that (V) < 4o00. To see this consider the
bounded Hamiltonian H(q,p) = —2f(gy) which generates the flow

Ui(q,p) = (@101, - - -+ G, Pn + 12 (g0)).

If (¢,p) € V then
P+ 21 (gn)| = 2f'(an) — |Pul > f'(qn)

which implies that ¢1(V) NV = 0. Let U be an open bounded set contained in V, we have
Y1 (U)NU = (. Find a compactly supported smooth function y : R*® — R with values on [0, 1]
and constant equal to 1 on a neighbourhood of U,¢(g 17 ¥+(U). Then xH verifies |[xH||co < |[H ||co
and by construction its flow still displaces the open set U. We conclude by Proposition 3.39 that
v(U) < ||H||co. Since the bound does not depend on U this implies that (V) < ||H||co which
finally gives

V(R x RTF) < [|Hlgo < +o0

concluding the proof. O

44



3.5. Viterbo’s capacities

Lagrangian non-triviality. The previous proof was possible because a vector subspace is
invariant by multiplication by constants. One may think that the property of having zero capacity
is shared by the subsets with empty interior. This is clearly not true for the displacement energy
since the boundary of a connected open set has at least the displacement energy of the set that
it bounds. This is not clear for the capacity c¢. The following theorem contained in the article of
Théret [Thé99b] tells us that there are Lagrangian submanifolds of R?” with nontrivial ¢ capacity.

Theorem 3.42 (see [Thé99b]). Let L = S(r1) x S(rq) x -+ x S(ry) be a split torus in C" =
CxCx---xC, each S(ri) being the euclidean circle of radius ry. Then

¢(L) = m(minry)?.
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Chapter 4

Generating functions and symplectic
reduction

In this chapter we extend Viterbo’s construction to build capacities of subsets of R?™ x T*T*. This
type of extension was already pointed out in [Vit92, Section 5] in order to prove the symplectic
camel theorem, but we will consider a slightly different setting. It is in this chapter that the true
advantage of using generating functions is going to appear.

In the previous chapter we saw that generating functions are by definition a symplectic re-
duction of the graph of the differential of functions. The key observation of this chapter is that
under some transversality condition the restriction of the domain gives a new gfgi from a known
one. Moreover, the spectral invariants associated to this two generating functions are related by
an explicit inequality. This observation is used to relate Viterbo’s capacities to the new capacities
defined on R?™ x T*T*,

Using these relations we prove a coisotropic non-squeezing theorem: a new rigidity theorem
for compactly supported Hamiltonian diffeomorphisms. We then extend this result to some non-
compact settings. As a corollary we get a type of middle dimensional rigidity for Hamiltonian
flows under some growth condition on the Hamiltonian function.

4.1 Restriction as a symplectic reduction

Recall that any function S : N x R¥ — R defines a Lagrangian submanifold of T%(N x R¥) via
the graph of dS. We say that S is a generating function if dS is transverse to 7*/N x Opx. In this
case we may apply symplectic reduction by the coisotropic submanifold W = T*N X Ok to get a
Lagrangian submanifold

Ls = Redy (dS).

Consider a submanifold V' of N and look at the restriction Sy : V' x R* — R. The graph of dSyy

defines a Lagrangian submanifold in 7%*(V x R¥). We want to understand the cases in which this
function is going to be a generating function. The first remark is that dS)y, is in fact a symplectic
reduction.

Lemma 4.1. Let N be a smooth manifold and let V. C N be a smooth submanifold. Denote by i
the natural inclusion. Let f : N — R be a smooth function and consider the restriction fjy = foi.
Then i*T*N =T*Ny CT*N s a coisotropic submanifold and

dfiy = Redr+n, (df).
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Proof. We start by proving that TN}y is a coisotropic submanifold. Recall that for every (¢,p) €
T*N we have
TigpT"N =T;NOT,N.

Restriction on the base variable gives
TgpT" Ny =T,VOT,N=T,V&T,;V&N,V,

where NV is the conormal of T;'V in T/ N. Denote by w the standard symplectic form in 7*N.
Using normal coordinates for V' C N we get the identification

(T T Nw)* = NgV,

so W = T*N}y is a coisotopic submaifold and the coisotropic leaves are given by the conormal
subspaces. In particular there is a canonical identification between W/W* and T*V. It is now
clear that Redp« N‘V(df) are the differential of f on points of V', where we forget the conormal
direction, and this is exactly df}y. O

Remark 4.2. The transversality condition between L and W is naturally verified in this case, so
we get a Lagrangian submanifold in the reduction.

Example 4.3. Consider a function f : R? — R%. Then

f(w.) = 52 )i+ 5L o)y

Tts intersection with W = T*R2

Rx{o} 18 df (z,0) and the reduction is just

of

Redw (df) = o

(z,0)dx

which is precisely d(f o).

The following proposition gives a sufficient condition for Sy to be a generating function, and
moreover describes the relation between the Lagrangian submanifolds generated by S and Sy.

Proposition 4.4. Let V' be a submanifold of N and let L C T*N be a Lagrangian submanifold
generated by a gf S : N x R¥ — R such that ig is a diffeomorphism. If L is transverse to T* Ny
then the restriction Sy is a generating function of

Lv = RedT*NW(L)
Remark 4.5. Let ¢ : V < N be the inclusion. One may also write the last equality as
RedT*VXORk (Redi*T*(Nka) (dS)) = Redi*T*NXORk (dS) = Redi*T*N(RedT*NXORk (dS)),

which means the natural fact that the reduction by the zero section commutes with the reduction
by restriction.

Proof of Proposition 4.4. Taking into account Lemma 4.1 we just need to verify the transversality
condition. Denote by 7, the projection 7 : T*N x T*RF — R¥ given by 71 (q, p, €, 1) = 1. Define
F =1m,0dS : N x R¥ — R*. By definition of gf zero is a regular value of F. Remark that the
restriction of F' to V, denoted by Fjy is equal to m o d(S)y). In particular we have

25, = FH(0) = FH0) N (V x RF) = Zg N (V x RF)
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We need to show that 0 is a regular value of Fjy, or in other words, that for (q,€) e X Sy we have
the following equality:

dige)F(Tiqe)(V x RF)) = R,

The transversality condition for S tells us that for (¢,&) € ¥g we have
k k
dige)F (T(g.) (N x RY)) = R".
If we use that T, ¢)Xs = ker d(4 ¢ F' we see that it is enough to show that
T6)5s + Tige)(V x RF) = T, (N x RF).

Note that we already have {0} x RF C T, (q,6)(V X R*), in order to prove the previous equality it
is enough to prove that the first projection is onto T, N. More precisely, for 7y : N x RF — N,
we need to show that

d(g.eyN(Tg.)Ss + Tige)(V x RF)) = TyN.

Denote by 7 the bundle projection associated to T*N. Since ig is a diffeomorphism we have

Tiswol = deis(Tyo>s).
The transversality condition on L implies
IgN = dig(g6m(Tis(q0)L) + TV
We have my = 7 o 4g so using the two previous equalities we get
TyN = dig 0™ (Tisqo L) + 1oV = dgemn (T Ts + Tag (V X RY),

which gives the desired result.
O

The example that we are going to use is the case of the cotangent bundle of a product manifold.
This is contained in the following corollary.

Corollary 4.6. Let N and B be to smooth manifolds, and consider a gfgi S : N x B x RF - R
for an embedded submanifold L C T*(N x B) = T*N x T*B such that ig is a diffeomorphism.
For any b € B, if L is transverse to W = T*N x T} B then S, = S(-,b,-) : N x R¥ — R is a gfqi
for the immersed Lagrangian submanifold Ly, = Redy (L) C T*N.

Remark 4.7. If L = ¥(0yxp) is Hamiltonian isotopic to the zero section in T*(N x B), then
there is a smooth path S; of gfgi that generate L, = ¥,(0) for every ¢ € [0,1]. If L = L; verifies
the transversality condition of the previous corollary, then (S7), = S1(+,b,-) is a gfgi, but this may
not be the case for every t € [0, 1]. Nevertheless one can still find the critical values using minmax
selectors ¢((S¢)p, ). In particular this quantity is continuous with respect to ¢t. Finally, the path
of Lagrangians L; = ¥;(0) may not descend to a path of immersed Lagrangian submanifolds, and
Ly may not be Hamiltonian isotopic to the zero section. This means in particular that L; may
not verify the uniqueness property. All these remarks will be usefull in the following sections.
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4.1.1 Relation with the critical value selectors

In this subsection we present the behavior of the minmax selectors under restriction of the domain.
Critical values are selected using cohomology classes of the base manifold, so we first need a
relation between the cohomology of N and the cohomology of the submanifold V. Consider the
cohomology with coefficients on a field, then Kunneth’s formula gives

H*(N x B) ~ H*(N) @ H*(B).

The first part of the following proposition comes from proposition 5.1 in [Vit92]. We also give a
proof for a sufficient condition that guarantees the equality of the minmax critical values. This
property will be very useful in the sequel.

Proposition 4.8. Let N and B be two connected compact oriented manifolds, S a gfqi for a
Lagrangian submanifold in T*(N x B), b a point in B and Sy := S(-,b,-). Let « € H*(N) and
pp € HYB(B) the orientation class of B, and 1 € H°(B). Then,

c(a®1,8) < c(a, Sp) < c(a® pg,S).
Moreover, if K(x,b,&) = K(x,€) for all (2,b,6) € N x B x RN then
c(a®1,K) = c(a, K) = ¢(a ® up, K).

Proof. Let as before E* := {S < A}, and Ej := {S, < A}. Consider the commutative diagram

H*(N x B) —L H*(E®, E~®) -2 H*(E*, E—%)

| Lo

H*(N) —L HY(E®, B, ) —— H*(E}, B, ™)

where the map H*(N x B) — H*(N) is induced by the injection N — N x {b} — N x B, and
coincides with the composition of the projection on H*(N)® H°(B) and the obvious identification
H*(N)®H°(B) — H*(N). Since the diagram is commutative, i3T () # 0 implies i}T(a®1) # 0,
so cla®1,85) < c(a, Sp). To get the second inequality, we need to introduce spectral invariants
defined via homology. The Thom isomorphism is now T : H,(S*") = H.(ET>°, E~>°), and

c(A, ) = inf{\ | TA € Im (ix,)}.

The homological and cohomological invariants are related by the following equality c(a, S) =
—c(PD(a), —S) [Vit92, Proposition 2.7]. In the homology setting, the commutative diagram
becomes

H.(N x B)—Ls H(E>, B~®) < H, (B} E~).

T ]

H(N) —— HJ(E®, By ™) >~ H(E}, B, ™)

As before, if A € H,(N) verifies T(A) € Im (iy«), then T(A ® [b]) € Im (ixs), so c(AR [b],5) <
c(A, Sp) for all A € H.(N) (and all S). Thus,
c(a, Sp) = —c(PD(ar), —Sp) < —¢(PD(a) ® [b], —5) = —c(PD(a ® pup), —S)

and —c¢(PD(a® up), —S) = c(a® up, S) so we get c(a, Sp) < c(a@ pp, S). Finally, if K (z,b,£) =
K (z,¢) for all (z,b,§) € N x B x RY then E* = E} x B so i}(a® ) = (ija) ® 8. This gives

cla®1,K)=cla® up, K) =c(a, K). O
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To understand how this proposition may be useful and the subtleties involved, consider the
following setting: suppose that we are interested in Lagrangian submanifolds of 7*(N x B) =
T*N x T*B which are isotopic to the zero section. Suppose moreover that we are only looking at
Lagrangian submanifolds which intersect the zero section at a particular point (¢,b) € N x B. We
may then suppose that all gfgi of degree one are normalized such that the critical value associated
to this point is 0. Then for every ¥(0) C T*(N x B) and a®1 € H*(N)® H°(B) we may consider
the value

cla®1,¥(0)) =cla®1,S),

which does not depend on the normalized generating function quadratic at infinity .S. Of course,
we may do the same for Lagrangian submanifolds ¢(0) C T*N and consider

(@, 9(0)) = (e, K),

for a gfqi K normalized at ¢ € N. Suppose moreover that ¥(0) intersects transversely TN xT;B.
Then Proposition 4.8 gives

cla®1,7(0)) < c(a, Sp).

Note that this last quantity is not always equal to ¢(«, ¥(0),) since this is only meaningful if ¥(0),
is Hamiltonian isotopic to the zero section (so it has the uniqueness property). Even if this is the
case, Sy, which is a gfgi, may not verify the fact that ig, is a diffeomorphism, so the uniqueness
theorem may not apply, and the equality

c(a, ¥(0)p) = c(a, Sp)

may not be true. To sum up, in order for the previous proposition to be useful, one has to verify
that

e U(0) is transverse to T*N x T B.
e U(0), is Hamiltonian isotopic to the zero section.

e ig, is a diffeomorphism.

4.2 Spectral invariants on R*" x T*T*

We now move on to extend the definition of Viterbo’s spectral invariants to the periodic case
R2™ x T*T*. Recall that the general idea of this invariants is to use generating functions to build
a section of the action spectrum bundle associated to a Hamiltonian diffeomorphism. The facts
that made this possible are that the spectrum does not depend on the Hamiltonian function, that
it is invariant by symplectic conjugation, and finally, that the action spectrum coincides with the
critical values of a normalized gfgi. The following subsection contains the justification of these
facts in the periodic case.

4.2.1 Preliminary results

Consider the space T*R™ x T*R¥ with coordinates (z,§,p). Then R?™ x T*Tk = T*R™ x T*T*
is defined as the quotient by the Z*-action given by k- (z,q,p) = (2,§+ k,p). We will denote the
coordinates of R?™ x T*T* by (z,q,p) and the projection by

7 T*R™ x T*RF — T*R™ x T*T*.
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Chapter 4. Generating functions and symplectic reduction

Remark that

T'p =p,
and that, even if ¢ is only defined up to a constant, dq is globally well defined and
m*dq = dq.

In particular, the Liouville form A on T*R™ x T*RF is ZF-invariant and induces in the quotient
a form A\ which coincides with the Liouville form in T*R™ x T*T* and verifies

A= A
Let H, : R x T*T* — R be a compactly supported Hamiltonian and denote its flow by P =
Yy = (¥2,14q,1p). Consider moreover the new Hamiltonian function H; = Hyom. It will also define

a new global Hamiltonian flow wtf{ =iy = (zﬁz,zﬁq,d}p). Note that Hy(k - (2,4,p)) = Hi(z,q,p),
and since dk is the identity we get
In particular this implies that wt( ( )) =k- @t(z, d,p), or in coordinates

%z(zvq—i_l@q) :1/32(2:767]?)
Q%f]'(zvq—i_ kap) = ’(%ti(z) Cj’p) + k
Tr[)p(zaq+k7p) :¢p(2’67p)

The flow zﬁt being equivariant, it induces a diffeomorphism in the quotient, which is precisely .
In other words, we have the following commutative diagram:

T*R™ x T*RF 4 T*R™ x T*RF
| I
T*R™ x T*TF 2y TR 5 7T
We start with the following key remark:

Lemma 4.9. The natural projection w sends periodic orbits of zﬁt to contractible periodic orbits
of Y. Moreover the set of fized points of 1y is invariant by the ZF action.

Proof. If 5(t) := 1(20) is a periodic orbit then the equality 7 o ¢, = 1)y o 7 implies that (t) :=
m o y(t) = ¢ o m(2) is also a periodic orbit. The second claim is a consequence of the zk
equivariance of vy: if zg is a fixed point of ¢t then @ZJt(k: 20) =k - Y/Jt(Zo) =k- 2. O

Remark 4.10. Choose a fixed point of zy = (2, §, p) of ¢ and denote z(t) = (z0). The action
of this point is given by

- 11
A(ZO,H):/ 2( JE(t )) dt — /Ht
0

For every k € Z’f the path associated to k - 29 is given by k - z(¢) which has derivative equal to
2(t). Moreover Hy(k - z(t)) = Hy(2(t)). In particular the action of k - zg is equal to

1 1
A(k-zo,ﬁ):/o ;(Jz(t),k-z(t))dt/ Ay (=(1))dt

= A( zo, / k) dt
— Az, ) +% (—J2(1), k) — %<—Jz(0),k>
= A(Zo,H>
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We see that the whole ZF orbit of a fixed point of ) shares the same dynamical information.

Definition 4.11. The contractible action spectrum oc(¥) of ¥ = 1 is defined as the action
spectrum o (1)) associated to 1) = 1)y.

We start with the verification that the previous definition makes sense, and then we show that
the contractible action spectrum is invariant by conjugation by compactly supported Hamiltonian
diffeomorphisms. This time the contractible action spectrum is not invariant by general symplectic
diffeomorphisms. This is a consequence of the fact that in R?*™ x T*T* there are symplectic
diffeomorphisms which are not Hamiltonian, in contrast to R?".

Lemma 4.12. The contractible action spectrum is well defined for compactly supported Hamilto-
nian diffeomorphisms.

Proof. We have to show that the contractible action spectrum does not depend on the particular
path chosen to generate the Hamiltonian map. Let wfl and wtK be two paths such that wf{ =

P = wff . Then 7/’? and Qﬁ{{ are two maps that lift ¢ which coincide outside a compact set, so

they must be equal on the whole space. Lemma 2.2 now gives a(w{f ) = a(w{( ) and this finishes
the proof. ]

Lemma 4.13. For every compactly supported Hamiltonian isotopy ¢ of R*™ x T*T* we have

oo(ppe) = oc(¥).

Proof. By Lemma 2.4 it is enough to check that the lift of et is gy, Recall that if ¢ is
generated by Hy, then ¢y ~! and g1 are generated by

-Hap(ta 2 Q7p) = H(t7 9071(27 Q7p)) and ﬁ@(ta Z7Q7p) = H(t7 9571(27(]7]7))'

Now we use that H = H o 7 and that p o = 7 0 @ to get

Hy(t, 2,G.p) = H(t, ¢~ (n(2,4.p))) = H(t, (57 (2,¢.p))) = H(t, 37" (,4,p)),

and this implies that the lift of w1 is Gp@ 1, finishing the proof. O

4.2.2 Definition of the invariants

As in the case of the classical Viterbo capacities, we want to associate to each ¢ a Lagrangian
submanifold Hamiltonian isotopic to the zero section whose intersection points with the zero
section capture the information about the contractible action spectrum. As before, we work on
R2™ x T*T* which we will reorder as R?™ x R¥ x T* endowed with coordinates (z,p,q). Let
Y € Ham®(R?™ x T*T*) be a compactly supported Hamiltonian diffeomorphism with coordinates
(Y2, 1p, ¥q) generated by Hi. The Hamiltonian ]}Tt = H, o generates a lift ¢ € Ham(R?™ x R¥ x
R¥) with coordinates with coordinates (1., ,,5) such that

@(z,p, G+1)= @?2(27107 Q) = ¢=(z,p,q) (with (z,p,q) = 7(2,p,q))
%p(z,p,(ﬂ 1) = %p(z,p, q) = (2,0, q)
Yg(2,0, G+ 1) = ¥4(2,p,q) + 1

Again, the graph of ¢ is a Lagrangian submanifold Iﬂ) C R?™ x R?* x R2m x R2*k. Recall that
for every n there is a symplectomorphism Z : R?" x R2" — T*R?" such that Z(I'rq ) = Ogzn. This
symplectomorphism is given by

P
I(qapanP) = (#7%5297P5Q7q)
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Under Z, the graph F(zﬁ) becomes a Lagrangian submanifold of T*R?™ x T*R?* whose points are
denoted by Fd;(z,p, d) equal to

)LD THGERD Gy 3).0y(2pea) - p).

(Z(z,9:(2,p,q

As usual, the intersection points of this Lagrangian submanifold are in bijective correspondence
with the fixed points of 1. Moreover, it is Hamiltonian isotopic to the zero section. Remark that
this Lagrangian submanifold does not coincide at infinity with the zero section since 1/; is periodic
in q. In order to get this property we have to take the quotient.

Taking the quotient. As we saw in Remark 4.10, the whole Z* orbit of a fixed point of 1
shares the same action value. In particular, the repetition of these intersection points with the
zero section will not give any new dynamical information. We are now going to quotient out
by this action in order to get a Lagrangian which coincides outside a compact set with the zero
section and such that it only has one intersection point with the zero section for each ZF orbit.
First remark that the fact that zﬁq(z,p,cj +1) = @q(z,p, d) + 1 implies that I'; descends to an

embedding Ty, : R?™ x RF x TF — T*R?™ x T*R* x T*T*, given by

4'271) _wq’Q+wq

= p
Fl/)(zvp7q) = (I(Z?wz)v ’wp _p)

Lemma 4.14. The image of f‘w 1s a Lagrangian submanifold Hamiltonian isotopic to the zero
section, which coincides with the zero section outside a compact set. Moreover, the intersection
points of I'y, with the zero section are in one to one correspondence with ZF orbits of fized points

of Y.

Proof. Everything is a consequence of the natural construction of the Lagrangian. The manifold
F?/) is the quotlent of T'(4) in T*R®*™ x T*R?** which is Hamiltonian to the zero section via

K = Ho7moZ ! where @ : R x R2" — R2" is the projection (here n = m + k). An explicit
calculation yields that Z=! : T*R?* — R2?" x R2" is given by

=Y 2y+X 2z+Y 2y—X)
2 7 2 7 2 2 '

2
I_l(x7y7X7Y) = (

In particular,
I w+k,y, X,Y) =T (2,9, X,Y) + (k,0,k,0).

Remark that H o 7 does not take into account the fist pair of variables, so if H is periodic on the
base variable, it will also be the case for K, so it induces a Hamiltonian K on the quotient such
that K = K on. Denoting by U; and ¥, the Hamiltonian diffeomorphisms associated to K and
K, the same discussion as the one in Subsection 4.2.1 shows that we have a commutative diagram

T*R2™ x T*RF x T*RF —L e T*R2™ x T*RF x T*RF

I I

T*R2m x T*RF x T*TF —Yty T*R2m  T*RF x T*T*

By construction ¥(0) = I'(¢)) and ¥(0) = Ty, which proves the first claim. In order to see that
it coincides with the zero section at infinity, first recall that H is compactly supported. This
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means that if (z,p) is outside a fixed bounded set, then ﬁ(z,dlp) =0 and (2,4, p) = (2,G,p).
Moreover, we may see that for every (z,,p) in the support of H, the base points

(Z+/IJZ)Z p‘i‘wp
2 72

) € R?™ x R¥

are contained in a bounded set. In particular, outside this bounded set, we only find points
coming from outside the support, so they are in the zero section.

Finally, to justify the last claim, remark that every point of ¥(0) N0 is a projection of points
in ¥(0) N0, and that these points are divided into Z* orbits in T*R?™ x T*R¥ x T*RF. It is then
enough to prove that the Z* orbits of points in \TJ(O) N 0 are in one to one correspondence with
ZF orbits of fixed points of 1/; But this is trivial by construction. O

Remark 4.15. We point out again that the intersection points of fw with the zero section are
not in one to one correspondence with the fixed points of ¢. Indeed if ¢(z,q,p) = (z,q,p) and
~v(t) = (2, p, q) is not contractible, it lifts to a point that verifies 1/;(2, 4,p) = k- (2,q,p) for some
k € ZF\ {0}, and then

G—i=k#0.

As in the classical setting, using Lemma 4.14, the Lagrangian image of fw can be compactified
to a Lagrangian submanifold
Ly C T*(S?™ x §% x T"),

which is Hamiltonian isotopic to the zero-section, and coincides with the zero-section on a neigh-
bourhood of {N} x S* x T* and of $?™ x {N} x T*. By Sikorav’s Theorem for arbitrary compact
base manifolds [LS85, Sik86, Sik87] (or Subsection 4.2.3 for this particular case), Ly is generated
by a gfqi of degree one, which is moreover unique up to the three classical operations. After
normalization at infinity by S (igl(N ,N,0,0)) = 0, we may select critical values of S by minmax
over cohomological classes. These values do not depend on the gfgi used for L, so we get spectral
values c(a ® B ®v,1) for a € H*(S*™), p € H*(S*) and v € H*(T*).

Definition 4.16. For every open bounded subset U € R*™ x T*T* and every a € H*(5%™),
B € H*(S*) and v € H*(T*) we define

cla®@B®7,U)=sup{cla® B®7,9)|¢ € Ham(U)}.

For every general open subset V' € R?™ x T*T* we define ¢c(a ® f ® v,V) as the supremum of
c(a® B ®v,U) for every open bounded set U € V. For every set Z C R?*™ x T*T* we define
cla® B ®7v,7) as the infimun of c(a ® f ® v, V) for every open set V' that contains Z.

Remark 4.17. Remark that we have chosen the compactification by S2™ x S*¥ x T* instead of
S2mtk 5 Tk as in [Vit92]. The reason for this is that the first one allows us to prove Proposition
4.25 which relates this new invariants with Viterbo’s capacity.

As in the classical case, the important property of these values is that they are contained in
the action spectrum. This is the content of the following proposition:

Proposition 4.18. Let ¢ be a compactly supported Hamiltonian of R?™ x T*Tk. Consider the
image of the graph Iy in T*R*™ x T*RF x T*T*. It is a Lagrangian submanifold Hamiltonian
isotopic to the zero section. Let S be a normalized gfqi of degree one for the compactification L..
Then

CritVal(S) = o.(¢).
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Proof. As in Lemma 3.27 we know that any critical value of S can be written as
(i (1) = [ A
v

where 7 is a path on L, between an intersection point at infinity and an intersection point
associated to the desired critical value. Here X is the Liouville form of T*R?*™ x T*RF x T*T*.
On the other hand, the same argument as in Lemma 3.27 tells us that we may find the action of
a point zy € R2™ x T*T* associated to H by

Az, ) = / A

where 4 is a path on F(zﬁ) C T*R?>™ x T*R* x T*RF between an intersection point at infinity and
an intersection point associated to the desired fixed point. Now remark that for every critical
point one may find a  of the form v = m o 4, and viceversa, every ¥ gives rise to one such . In
conclusion, it is enough to prove that for v = 7 o 4 we have the equality

(LW*AZ) AX:LA (:/MA>,

and this can be easily verified. O

Corollary 4.19. For every compactly supported Hamiltonian diffeomorphism ¢ of R*™ x T*T*
and every subset Z € R>™ x T*T* we have

c(la®BRv,¢(Z)=cla® fR7,Z).

Proof. By definition of the invariants it is enough to prove that for every compactly supported
Hamiltonian isotopy ¢ of R?™ x T*T* we have

(a®B&Y, e ") =cla®B®7,1).

By Proposition 4.18 we know that c(a ® & v, pipp, 1) takes values on the contractible action
spectrum of gotd)go;l. By Lemma 4.13 we know that the spectrum is independent of t. Let S; be
a path of gfqi of degree one for L<,0t v Then

t c(a® By, pbp; ) =cla®B®7,5)

is continuous with respect to ¢, so using Lemma 2.5 we conclude that it must be constant. ]

4.2.3 The diffeomorphism property of gfg: in the reduction

We now give a proof of the existence of gfgi for Lagrangian submanifolds L of T*R?™ x T*RF x T*T*
which are isotopic to the zero section by a compactly supported Hamiltonian diffeomorphism. The
main reason for giving the explicit construction is to be able to build concrete examples where
the reduction Sy, of gfgi seen in Section 4.1.1 still verifies the fact that ig, is a diffeomorphism.

Consider a compactly supported Hamiltonian H defined on T*R2?™ x T*R* x T*T*. Let
j : TF < C* be the standard embedding and consider the standard projection given by 7 -
(e, ..., e s (e, ..., e®) with 7 = (r1,...,7}), which is defined on an open set W of C*
that contains T*. This projection induces a map 7 : T*W C T*CF — T*T*  which consists of
forgetting  and dr. Using m we can extend H to the whole T*R?™ x T*R* x T*R?* as a function
H which verifies

H=Honr if |r—1|<

Wl
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and which is zero if |r — 1| > % Remark that H is not compactly supported but the support of
the image of the zero section is contained in a compact set, so we may turn H into a compactly
supported Hamiltonian without changing the image of the zero section. Denote by Yy the flow
associated to H and by 1 the flow associated to H.

Lemma 4.20. The Lagrangian submanifold 12%(0) is transverse to the restriction of T*R?*™ x
T*RF x T*R?* to R?™ x RF x T*.

The proof is left as an exercise (or see [Bru91] or [Vit06]). This transversality condition allows
us to reduce the Lagrangian submanifold @Bt(()), to get a Lagrangian in T*R?*™ x T*R* x T*T*,
The reduced Lagrangian is precisely 1;(0). Moreover, using Proposition 4.4 we see that any gf of
¥:(0) descends to a gf of 1;(0) by restriction of the domain.

Proposition 4.21. The Lagrangian 1(0) seen as a submanifold of T*S*™ x T*S* x T*T* has a
generating function quadratic a infinity S : S*™ x S* x TF x Rl — R such that S(N, p,q,&) = Q(€)
and S(z, N, q,€) = Q(€). In particular for any x in S*™, S* or T, if S, is a gfqi for an embedded
Lagrangian then ig, is a diffeomorphism.

Proof. By Theorem 3.17, we know that zﬂt(O) admits a gf which extends smoothly at infinity by @,
and this property is preserved by restriction. Since S(N,p,q,&) = Q(§) and S(z, N, q,&) = Q(&)
we see that there is just one critical point at infinity, so by Lemma 3.6 ig is a diffeomorphism.
Moreover, since we have two infinities, the same will be true for S,. O

4.2.4 First calculations

In this subsection we use the inequalities in Section 4.1.1 to get our first understanding of the
new invariants that we have built. We start with the following basic properties:

Proposition 4.22. Let ¢ be a compactly supported Hamiltonian diffeomorphism of R2™ x T*TF.
Denote by p and 1 the top and bottom cohomology classes of S*™ and S*. Then for every
o € H*(S?™), B € H*(S*) and v € H*(T*),

o« (p@B©Y,Y) >0 and o(1® B ©7,1) <0.
e c(a®@u®vy,%) >0 and c(a®1®vy,9) <0.
As a consequence we have c(p® 1 ®~,1) =0 and ¢(1 ® p®~,1) = 0.

Proof. By Proposition 4.8 we know that for every gfgi S associated to 1) and every z € S?™ we
have
(l®f®7,5) <c(B®7,5:) <c(p®B®Y,S).

Moreover we know by Proposition 4.21 that there exists a gfgi S for ¢ such that S(N,p,q,§&) =

Q&) so we get
«(B®@7,5n) =c(B®7,Q) =0,

which gives the desired result. O

Remark 4.23. At first sight, the previous proposition may indicate that we do not gain any
new information by compactifying to S?™ x S* x T* instead of S?™*+* x T* since every mixed
cohomology class (1®1®~y and 1® p®-y) finds trivial critical values. This question will be settled
in the next proposition. In contrast to this, if in the classical setting of T*R?" we compactify to
T*S2k % T*5?7=2F the same arguments give that we still only get two non-trivial action selectors,
so in that case there is no gain of information.
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The following lemma shows that this trivial critical value selectors may be used to normalize
a continuous path of gfgi. We will not use it, but it may be useful in some situations.

Lemma 4.24. Let 1) be a compactly supported Hamiltonian diffeomorphism of R*™ x T*T* and let
WU, (0) be the associated Lagrangian path in T*S?™ x T*S* x T*Tk. Suppose that Sy is a continuous
path of gfqi of degree one that generate W, (0). Then there exists a continuous family of normalized
generating functions for U.(0).

Proof. To start with, we know that both functions S (p,q,&) = S'(N,p,¢,&) and S4(2,q,¢) =
St(z, N, q,&) generate the zero sections so they have just one critical value. Moreover we see that
St( L(N,N,q,0)) is a common critical value so they are both the same. Using Proposition 4.8
we get c(1®7,8%) <c(p®@1®v,S5") <c(p®r,S%) so c(p®l1l®y,S" = St(igtl(N, N,q,0))
determines continuously the critical value at infinity. Now define ¢; := c(u®1®+, S*) and consider
Sy — ¢;. It is a normalized continuous path of gf which can be modified into a path of gfgi using
Proposition 3.5. ]

We continue with the first nontrivial calculation associated to our new generalized capacities
in R?™ x T*T*. The following proposition relates the classical Viterbo capacity ¢ with our new
invariant for the particular open bounded subsets containing compact subsets of the form X x
{0} x T*.

Proposition 4.25. Take 7 equal to p € H*(T®) or 1 € HO(T¥). For any open bounded subset
UxV xTFCR?™ x RF x TF we have
c(U) <e(p@p®y,UxV xTH.

Proof. Suppose for simplicity that 0 € V. Let ¢ € Ham®(U). It is enough to find a ¥ €
Ham®(U x V x T*) such that c(u, ¢) < c(p®@ p® 1,¥). Let H : R x R?” — R be a generator
of ¢, and x € C°(V) with x(p) = 1 on a neighborhood of 0 (so 679( ) = 0 on a neighborhood

of 0). The Hamiltonian xyH of R?™ x R*¥ x T* generates a compactly supported Hamiltonian
diffeomorphism that we will denote W = (1., 1y, 1q). It is easy to see that

V(z,p,q) = (¥s(2,p),p,q4 + C(2,p))
with C(z,p) fol g;f H(t,z)dt, and that C(z,0) = 0 and 9,(z,0) = ¢(z). The embedding
Iy : R?™ x RF x TF — T*R?™ x T*R* x T*T* it thus given by
5 1
Lo (2:p.q) = (Z(2,9:(2,p)), p, =C(2.p), 4+ 5C(2,p), 0).

By definition, when we compactify Im Ty we get Ly which, by the previous expression, is easily
seen to be transverse to T*S?™ x TpS* x T*T*. Now

Lu(2,0,9) = (Z(2,6(2)), 0, 0, 4, 0).
so Ly NT*S*™ x TSk x T*Tk = Ly x {(0,0)} x Opx and the reduction is L x Opx which is also
Hamiltonian isotopic to the zero-section. Therefore, by Proposition 4.21, there exists a gfqi S for
Ly with ig diffeomorphism such that Sp is a gfgi for Ly X Opx with ig, diffeomorphism. On the
other hand, if K is a gfgi for Ly then K(z,q,§) = K(2,§) is also a gfqi for Ly x Opx. Moreover,
both Sy and K have 0 as the critical value associated to {N} x {g}, so by uniqueness of gfgi
c(p®vy,K)=c(p®7,Sy). By Proposition 4.8,
(1K) =c(p®v, K) =c(n®7,8) < c(p®pe7y,S),

which precisely means that ¢(u, @) < c(p®@ p® v, ¥). O

Remark 4.26. One may also prove that for the previous maps ¢ anf ¥ we have

V() <cp@p®y, V) —c(l®1®y,¥).
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4.2.5 Reduction energy-capacity inequality

The next proposition is a modified version of [Vit92, proposition 5.2] in order to adapt it to our
setting. For a subset U C R?™ x R¥ x T* and a point w € T* we denote by U, the reduction of
U by the coisotropic subspace W = R?™ x R¥ x {w} = R?>™ x T*T*, that is, U, = Redy (U) (cf.
Definition 3.3). We will also explicitly write U, := (U N {¢ = w})/R¥ which indicates that we
quotient out U N {q = w} by the characteristic foliation R*.

Proposition 4.27. Consider an open bounded subset U C R*™ x RF x T*, a point w € T* and
the reduction U, := (U N {q=w})/R*. Then

c(p@pel,U) <y(Uy).

Proof. Note that if U is open and bounded, then U, is also open and bounded. Notice moreover
that any Hamiltonian diffeomorphism of R2™ that displaces U,, also displaces its filling U, :=
R2™\ F>°, where F2° is the unbounded connected component of R*™\U,,. Thus v(Uy,) = v(Uy).
Replacing U by the bigger open subset

(R¥™ x R¥ x T*\ {w}) U (U, x R* x Tk).

we may as well assume that R?™\U,, is connected and unbounded, which we do henceforth. Let
1 € Ham®(U) and ¢ € Ham®(C™) be such that o(Uy,) N U, = 0. By definition of the capacities
on open bounded subsets we need to prove that

c(p®p®1,9) <v(p).

We know that the Lagrangian submanifold L, in T*S?™ is isotopic to the zero section by a
Hamiltonian diffeomorphism ® and has a gfgi K : S*™ x R! — R. This diffeomorphism ® induces
a Hamiltonian diffeomorphism ® := & x Id on T*S*™ x T*S* that verifies ®(0) = L, x Ogx
and f((z,p, €) := K(p,&) (defined on S?™ x S* x RY) is a gfgi for this submanifold. Now for a
normalized gfgi S of Ly, we have

c(p@p@1l,v)=cp@p®1,5) < c(p® pu,Sw) < c(p® p, Su#(—K)) —c(1®1,-K).

The first inequality above follows from Proposition 4.4, while the second one is the triangle
inequality for spectral invariants in Theorem 3.25 (because (p ® pu) U (1 ® 1) = p® p). The
following Lemma 4.28 ensures that c(p ® p, Sp#(—K)) = ¢(u ® pu, —K), so applying Proposition
4.4 and Theorem 3.25:

c(p@pely) <cpep,—K)—clel,-K)=cu-K)—cl,-K)=v(p),

where we used that for any gfgi we have c¢(u, —5) = —¢(1, 5).

Consider a Hamiltonian path ¢! from the identity to ¢ in Ham®(U) and a Hamiltonian path
Wt of T*5%™ x T*S* x T*T* such that ¥!(0) = Lyt This path gives rise to a family of gfgi S,
continuous in ¢, that generate L for all £ and that coincide with a fixed quadratic form @ outside
a compact set independent of ¢ (see Subsection 4.2.3). Moreover the path S? is normalized (see
Subsection 4.2.3 or Lemma 4.24).

Lemma 4.28. Let St be a continuous family of normalized gfqi for the Lagrangian Ly,. Then
c(p @ p, SL#(—K)) is a critical value of —K and as a consequence

(@ p, St (—K)) = c(p @ p, —K).
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Proof. Recall that points in L, are of the form

P+
2

q+
2 )

Cye(z,p,q) = (Z(z,4L), ,q— Uk, Y — p)
plus other points on the zero section that come from compactifying. Moreover, the functions S,
formally generate the sets of points

P+
2

+ t
,q — ¢2) for points (z,p, q) that verify qzwq = w,

(Z(z,92),

plus other points in the zero section. This set is denoted henceforth L! . Recall that the notation
S, #(—K) stands for the function (z,p,§,1) — S'(z,p,w,§) — K(z,7). It is enough to prove
that all critical points (z,p,&,n) of SL #(—K) are such that (z,n) is a critical point of —K, while

(2,p,€) is a critical point of S, with critical value 0. A critical point of St #(—K) verifies

05, ok osl oK _
9z 0z’ Op  Ip

a8t 0K
0 and 875 = 8777 = 0,

so it is associated to an intersection point of Lf, and L, X 0gx in the fiber of (z,p). This intersection
point therefore verifies:

t
8;)w:q—w220 and

q+

_ — ot —
7 =w 80q=1,=w,

or will be on the zero section coming from critical points of S at infinity.

We first claim that such a point of intersection must lie on Z(U,, x U, )¢ x T*S*: Indeed, if
Z(Uy x Uyp) x T*S¥ N (Ly x 0gr) # 0, then @~ HZ(Uyy x Uy)) N0g2m # 0. But @~ 1(Z(Uy, x Uy)) =
Z(Uy x ¢ 1 (Uy)) does not intersect the zero section because ¢ displaces U,. We now claim
that this implies that the intersection point is on the zero section: if a point of Lf, is in Z(U,, x
Uw)¢ x T*S*, (2,4%) € (Uy x Uy)€ s0 z & Uy, or ¥t ¢ U,. In both cases, ¥!(z,p,w) = (z,p,w)
because ¢ = 9, = w, and " has support in U, whose intersection with {¢ = w} is contained in
Uy x RF x {w}. Thus, the point fwt(z,p, w) is on the zero section, (z,p,w,§) is indeed a critical
point of S; and as a consequence (z,7) is a critical point of —K. In addition (z,p,w) is in U*
because z ¢ U,,.

Now we prove that all the points in U¢ have critical value 0. Since Suppvyy € U and U¢
is connected, there is an open connected set W that contains U¢ and that does not intersect
Supp ¢y (for all t). Then Oy C L; so if j : W < L; is the inclusion on the zero section,
f = igtl oj: W — X is an embedding into the set of critical points. The open set W is
connected so S! o f is constant and all the points in W have the same critical value. The fact
that S? is normalized now implies that this value is zero.

Finally, Sard’s theorem ensures that the set of critical values of —K has measure zero, so it is
totally disconnected. By continuity of the invariants, c(u ® p, S, #(—K)) is therefore constant,
SO

c(p & p, —K) = c(p @ p, So #(—K)) = c(u ® p, Sy#(—K)).
O

O]

Corollary 4.29. We have the following inequalities for the generalized capacities on R*™ x T*T*.
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e For every open bounded subsets U C R*™ and V C RF we have
cU)<clp@pl,UxV x Tk <~(U),

and

(p@pe1,UxV x (T {w})) =0.

Let B>™ C R?™ be the open ball or radius r, then
2m kN 2
c(p@pu®l, B x {0} x T%) = 7r*,

and
c(p®p®1, B2 x T*TF) = nr?,

e For every compact subset X C R*™,

o(X) <c(popel, X x {0} x TF) < y(X).

Let Z C R>™ x R¥ x T* be a compact set and consider a point w € T*. Denote by Z,, =
(ZN{q=w})/R* the reduction. Then

c(p@pel,2) <y(Zp).

Proof. The only one that requires some justification is the last one. Let Z C R?™ x R¥ x T* and
Zy = (ZN{q = w})/R*. We need to show that c(p ® p® 1,2) < v(Zy). Let V.C R*™ be an
arbitrary neighbourhood of Z,,, and

U= (R x R¥ x TF\ {w}) U (V x R* x T*).

Obviously, Z C U and U,, = V, so by monotonicity of ¢, it is enough to prove that c(p@u®1,U) <
v(Uy). And this is justified in Proposition 4.27. O

4.3 Coisotropic non-squeezing

Corollary 4.29 can be used to prove a new non-squeezing statement for compactly supported
Hamiltonian diffeomorphisms of R?" = R?™ x R2*. The first step is to place ourselves in the
previous setting of R?™ x T*T*. Denote by N the north pole of S' = T. The diffeomorphism
R ~ T\ {N} induces a diffeomorphism T*R ~ T*(T \ {N}) and by definition of the symplectic
structure on cotangent bundles, it is a symplectomorphism. This symplectomorphism gives a
symplectomorphism R?™ x R?* ~ R?™ x T*(T \ {N}) x --- x T*(T \ {N}). Remark now that if
Yy € Ham®(R?"), then it is the identity outside a compact set so we may extend it as the identity
at infinity to get a diffeomorphism of R?™ x T*T*. Using the previous symplectomorphism we
conclude that the extension is also Hamiltonian. Now recall that if Z C M with M a symplectic
manifold, and W is a coisotropic submanifold of M, then the symplectic reduction of Z is defined
by Redw (Z) = mw (Z NW) where my : W — W/W*® is the natural projection by the coisotropic
foliation (see Lemma 3.1 and Definition 3.3).

Example 4.30. Consider a subset Z C C* = C™ x C™ ™ and the coisotropic subspace W =
C™ x iR™™ "™, Then my = m, : C* — C™ is the projection onto the first m coordinates, and

Redy (Z) = mn(Z NC™ x iR™™™).
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Theorem 4.31. Let X C R?™ be a compact set and consider X x R*™™ C C™ x C*™ and
denote by W := C™ x {R"™"™. For every compactly supported Hamiltonian diffeomorphism i of
C™ we have

(X)) <y(Redw (¥(X x R"™™))).
Proof. Since 1 has compact support, we can view it as a symplectomorphism of C™ x T*T"™™ ~
R?™ x R™™™ x T"~™. In this setting X x R" ™™ is seen as X x {0} x T"~™ and (X x {0} x T*),
coincides with Redy (¢(X x R"™™)). Here 0 € T* is the image of 0 € R* by the symplecto-

morphism described in the beginning of Section 4.3. Now applying Corollary 4.29, invariance
(Corollary 4.19) and again Corollary 4.29 we get the chain of inequalities:

(X)<elp@pu@l, X x {0} x TF) = c(p @ p @ 1,(X x {0} x TF))
< A((X x {0} x T")o) = v(Redw (¥(X x R"™™))).

Figure 4.1: This figure represents the image of the coisotropic cylinder by a compactly supported
Hamiltonian diffeomorphism . The transverse plane represents the complementary coisotropic
subspace. Theorem 1.2 gives information about the capacity of the projection of the intersection
with W.

Remark 4.32. Recall that we saw in Proposition 3.41 that for the coisotropic subspace R?* x
R % C Ck x C"* with 0 < k < n we have

c(R% x R"™F) = 0 = y(R?* x R"7F).

In particular classical capacities do not give rigidity information on the image of coisotropic
cylinders by arbitrary symplectic maps.

Remark 4.33. The subset X x R"™" C C™ x C™" can also be seen as X X Ogn-m C T*R™ X
T*R*™™ and W := C™ x i{R"™™ can be seen as T*R™ x TyR"™™. With this notation we see
that Theorem 4.31 talks about the trajectories that start with zero momentum in the last n —m
coordinates and get to a particular point 0 € R™*~"™.

As a particular example we get the folowing rigidity theorem for Lagrangian tubes. There is
also an unpublished proof of the following corollary by Buhovsky and Opshtein using the theory
of pseudo-holomorphic curves.
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Corollary 4.34 (Buhovsky and Opshtein). Let L := S'(r)™ x R*~™ C C™ x C"™™ be a standard
Lagrangian tube. Assume that there is a compactly supported Hamiltonian diffeomorphism i of
C™ such that (L) N (C™ x iR™*™™) C Z(R) x iR™™"™ where Z(R) is a symplectic cylinder of
capacity R. Then r < R.

Proof. Theorem 4.31 gives ¢(S'(r)™) < v(Z(R)) = 7wR? and ¢(S'(r)™) = mr? by Theorem
3.42. O

It will be useful to note that Theorem 4.31 is also true for two complementary Lagrangian
subspaces of C"~"" different from R and iR"™~"". The proof follows from a simple argument
of symplectic linear algebra.

Lemma 4.35. Let R?" be the standard symplectic vector space and let Ly, L1 be two Lagrangian
subspaces such that R*™ = Lo @ L1. Then there exists a linear symplectic isomorphism A : R*" —
R2" such that A(R") = Lo and A(iR™) = L.

Proof. Define the map p: L1 — Lg by

p(v) = w(v, )L,

It is an isomorphism since p(v) = 0 implies v € Lg* = Ly and thus v = 0 since R?" = Ly @ L.
Let (b;)™; be a basis of Lg, then (b4, := —p~1(b}))"; is a basis of L. We claim that (b;)?", is
a symplectic basis of R?". Indeed

w(bi, bjin) = —w(bjyn, bi) = —p(bj1n)(bi) = bj(bi) = di;
Define A : R*™ — R?*" by A(e;) = bj and A(iej) = bj1,, which is symplectic. O

Theorem 4.36. Let C"™™ be the standard symplectic vector space and let Ly, L1 be two La-
grangian subspaces such that C"~™ = Ly @ Ly. Let X be a compact set of R™ and consider
X XLy CcC™ x C" ™ and denote by W = C™ x Ly. For every compactly supported Hamiltonian
diffeomorphism ¢ of C"™ we have

o(X) < y(Redw (¥(X x Lo)))-

Proof. Use Proposition 4.35 and consider the compactly supported Hamiltonian diffeomorphism
(I x A~Y)opo (I x A). Then apply Theorem 4.31. O

4.3.1 Non-compact setting

In this subsection we explore the limits of Theorem 4.31 as we look into the flow of Hamiltonians
without compact support. The first remark is that there are Hamiltonian diffeomorphisms of R?”
that do not verify the statement of Theorem 4.31. In particular the statement is not verified by
the linear Hamiltonian diffeomorphism

¢(217-~-72n):(Zm+17~~-7znyzl7--~7zm)

with z; = ¢; +ip;. It is a rotation, and a Hamiltonian map which is generated by a quadratic
function. For this map one can easily see that

¢(R2m > Rn—m) — R R2m'
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If m # n then the projection by 7, is contained in a coisotropic subspace of R?™ so by Proposition
3.41 and by monotonicity we get for every subset X C R?™

Y(Redw (9(X x R"™™))) = 0.
In particular if ¢(X) > 0 this gives an example of Hamiltonian diffeomorphism for which
c(X) > y(Redw (9(X x R*™™))).
In order to explain where the statement starts to fail, we need some vocabulary:

Definition 4.37. Let 1, be a Hamiltonian diffeomorphism of R?"” = C". We will say that
v 1 [0,1] — R2™ given by v(s) = 1s(2) is a camel trajectory if

v(0)=2€ X xR"™™ and (1) =1¢1(z) € C"™ xiR"™™.

For a camel trajectory v we call 7(0) = z a camel point. The set of camel points of ¢ is then
equal to
Cpt(¥1) = X x RN () "HC™ x iR™™™),

and the set of camel trajectories is equal to

Ctr(r) = | ws(Cpt(¥r)).

s€[0,1]

In order to extend Theorem 4.31 to the case without compact support we need to have some
control over the set of Camel points. More precisely we will need that this set is bounded. Remark
that an easy calculation yields that Cpt(¢) is unbounded where ¢ is the map of the beginning
of the subsection ¢(z1,...,2n) = (Zm41s--y2ns 21, ---,2m). Moreover, since the statement of
Theorem 4.31 deals with unbounded sets, we need to consider flows that are globally defined.
The following results are based on the previous two remarks. We start with the following classical
lemma:

Lemma 4.38. Let H : R x R?™ — R be a Hamiltonian function such that
\VHy(2)| < A+ B|z| for every (t,z) € [0,T] x R*",

for two positive constants A and B # 0. Then for every (t,z) € [0,T] x R?"

[9e(2)] < ePJz] + %(eBt =1) and |¥i(z) — 2| < (2] + %)(eBt —-1).

In particular, solutions do not blow up and the flow is globally defined. If B = 0 then
| (2)] < |z| +tA and |YP(z) — 2| < tA.
Proof. By the hypothesis on the gradient we have
t t
(@) < a1+ [ (At Blon()ds = 1o+ At + B [ fun(a)lds = R()

Then
R'(t) = A+ BlYw(2)| < A+ BR(t) and R(0) = |z|.
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We may now use Gronwall’s lemma to get

t
A
Rt < <l + A/ ePds = eP|z| + (e - 1),
0

For the second inequality write

t t
n(z) — 2] < /0 (A+ Blyu(2)|)ds = At + B /0 [6a(2)lds = R(t) - |2

and use the previous inequality. O

Now consider R?” = C" = C™ x C"™. We denote by m,, the projection on the first m
coordinates, by 7™ the projection on the second n — m coordinates, by 7" the projection on the

real parts, and by 7™ the projection on the imaginary parts. In particular, we may describe the
set X x R"™™ e C™ x C"™™ by

XxR"™={2e€C"|mp(z) € X and 7"(z)=0}.
Theorem 4.39. Let H : R x R>® — R be a Hamiltonian function such that
|\VH(z)| < A+ B|z| for every (t,z) € [0,T] x R*"

for two positive constants A and B, and denote by 1; the Hamiltonian flow generated by H. Let
X C R? be a compact set and consider the coisotropic subspace W := C™ x iR™™™. Then we
have

o(X) < y(Redw[¢ (X x R"™™)])
for every |t| < min(gl—g,T) if B# 0 and for every t € [0,T] if B =0.

Proof. We start with the case B # 0. By considering the Hamiltonian %H + We may suppose
B = 1. We start by bounding the camel points and camel trajectories for small times. Suppose
that z is a camel point at time ¢, then since X is compact, there exists an r such that

2| < |mm(2)] + [0} (2) + [77 (2)| < 7 + |7 (2)].
Moreover, since z is a camel point at time ¢ we have
77 ((2)) = 0.

By Lemma 4.38 we have
[¥(2) — 2| < (e = 1)(|2] + 4)

so we conclude that
(2] < 7 () = 7 I W(E) — )] < 7 (e — 1) (1] + A).
In particular we see that if e! < 2, so if t+ < In2, the camel points verify

r+ A

o< 25,

and using Lemma 4.38 again we see that the set of camel trajectories Ctr(vy) is also bounded.
The idea now is to build from ; a compactly supported Hamiltonian diffeomorphism ¢; such
that

Ctr(pt) = Ctr(yy),
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for |t| < to for some ty > 0. The we can apply Theorem 4.31 to get

which is the desired result. Let p : R — R be a smooth function with values on [0, 1] that equals
1 over the interval [0, R], vanishes over [2R,4oo[ and such that |p'| < 2/R. Note that on the
support of p’ we have |z| < 2R so

2 4

R 2|

Define G¢(z) = p(|2|)H¢(z) (the value of R will be chosen later). It is a compactly supported
function that generates a Hamiltonian diffeomorphism ¢;. It is easy to see that if H(0) = 0 then
(since B = 1)

p'(|2])] <

K&

()| < Ale] + 5.
We have
z
IVGs(2)] = Ip'(IZI)mHs(Z) + p(|2[)VHs(2)] < 44+ 2[z]| + A+ [2] < 5A + 3|z

(Remark that since G is compactly supported, the gradient is bounded by a constant. But the
key of the bound that we have is that it does not depend on R.) In particular, if |t| < 1%2 we
know that the camel trajectories of ¢; are bounded by a constant independent of R. If we chose
R big enough then Ctr(¢;) and Ctr(y;) are contained in a bounded set where both flows coincide,
so a fortiori Ctr(¢) = Ctr(p;) which gives the desired result.

We now prove the case B = 0. The only change with respect to the previous reasoning is that
this time we have

I ((2) — 2)] = [ /0 Xz (s(2)) ds| < [t].

so if z € Cpt(¢;) then |z| < r+ |t|A and the camel points are bounded for every ¢t € R (see Figure
4.2). Moreover, the camel trajectories are also bounded by a constant that depends on ¢ and
A. This time |H(z)| < Alz| so if we consider the same G as in the previous paragraph we have
|IVGs(z)| < 5A. In particular the camel trajectories of ¢; are bounded for all ¢ by a constant that
depends only on ¢ and A and not on R. For R big enough we will have Ctr(¢;) = Ctr(¢;) which
gives the desired result.

O

Remark 4.40. The time bound for B # 0 in the previous theorem is not optimal and one may
get a better one modifying the bound for |p’|. This bound cannot be extended much more since
the statement fails for bigger ¢ as we saw with ¢ at the beginning of this subsection.

Remark 4.41. The general version with two Lagrangian subspaces Lo & L1 = C"™™ as in
Theorem 4.36 is also true. Indeed if H verifies the bound on the gradient, then the Hamiltonian
associated to (I x A=) oo (I x A) will also verify a similar bound. Note that the bound on the
time for the case B # 0 might change.

Corollary 4.42. Consider a Hamiltonian function of the form
1
Hi(z) = 5(Az,2) + Ui(2),

Where U has bounded gradient. Suppose that A = Ay @ --- © A, where Ag is a linear map on

Vect{%, %k} for every 1 < k <n. Let X C R*™ be a compact set and consider the coisotropic

subspace W := C™ x i{R™"™™. Then for every t € R such that

R + e—tJAiRn—m —Cnm
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\/1/11, 2)

£

C™ xR"™™

Y

Figure 4.2: The light shaded balls represents the maximum length of a trajectory in [0,¢]. The
dark shaded region represents the bounded sets that contains Cpt ().

we have

co(X) < v(Redw ¢ (X x R*™™)]).
Proof. Write Hy(z) = Q(z) + U(z). Then using Lemma A.9 in the Appendix we see that
G =0 0wl with Gi(2) = (-Q + H)(t, w7 (2) = Ui(¥ (2)).
We have the equality th (z) = e’ 2 so that
VGi(z) = eA'TU(e74).

In particular we see that
IVGy(2)| < 4l

where C' > 0 is a constant that bounds the gradient of U. This implies that 90? verifies the
hypothesis of the previous theorem. In particular (using Remark 4.41) we may take the two
transverse coisotropic subspaces

C"xR*™™ and W, =C" x ¢ /A4R™

and we conclude that
o(X) < y(Redw, [Yf (X x R*™™))).

Now recall that
Redw, [ (X x R"™™)] = mp (Y (X x R"™™) N W)

and that by hypothesis e!/4m,, = mnet’4 so

e Redw, [¢/ (X x R"™™)] = Redw [4(X x R"™™)].
Finally e*/4 restricts to a symplectomorphism of C™ so we conclude using the invariance of v. [

Example 4.43. Mechanical systems in 7T*R". Consider a smooth Hamiltonian function
H :R x R?™ — R of the form

1
Hi(q,p) = 5IpI* + Ui(g), with |[VU(2)| <C for (t,2) € [-T,T] xR,
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Then H is of the form of Corollary 4.42. Remark that in this case A is zero on R™ C C" and the

identity on ¢{R™ C C". In particular A clearly preserves every subspace of the form Vect{ R 62k

Now, the system #(t) = JAz(t) is a decoupled system on every subspace Vect{-2- Do 8p }. In those

planes we have
0 0 . 01
A—<01> and ZA—<00>.

We see that JA is nilpotent so the exponential map is just

A (1t
v (1)

The transversality condition
R*™™ 4+ e—tJAiRn—m —Cnm

is verified for every m and every t € R. We now give a possible interpretation of Corollary 4.42
in the context of mechanical systems. Consider N particles moving in R3 under the influence of
a smooth potential U : R3¥ — R which moreover has bounded gradient. Suppose that we have
the following information at t = 0:

e The first particle has initial position and momentum on an e neighborhood of (z1,y;) € RS.
e The rest of the N — 1 particles start at fixed positions xo,...,TnN.

In other words, if we denote by B, the ball of center (1, y1) and radius € in R®, we know that
the initial state of our system is contained in the coisotropic cylinder

_BE X T;2R3 X .- 'T;NRB) C (C3 % (C3(N71)'

Suppose moreover that we are interested in the solutions such that at time ¢ the N — 1 particles
have stopped, so solutions that get to the subspace W = C? x Ops(v-1). Then we will never know
the state of the first particle with more precision that the one we had at ¢t = 0, i.e. if the set of
states of the first particle are contained in Bs then

me? < y(Redw [f! (Be x T, R? x -+ T R*)]) < v(Bs) = 162,

so € < 9.

4.3.2 Coisotropic rigidity in 7*T".

We now apply the previous results in the periodic setting. Denote by 7 : R?* — T*T™ the
standard projection. We start with a definition for a displacement energy in this context.

Definition 4.44. For every subset Z € T*T"™ we set
cr(Z) = c(n=H(Z)) and A7(Z) =y(x7'(2)).

Both quantities are invariant by Hamiltonian diffeomorphisms ¢ of T*T". Indeed, any 1 lifts
to a Hamiltonian symplectomorphism 1/1 of R?" such that 7 o w 1 om. In particular

7 (W(2) = (W om)TH(2) = (mod™H)TH(Z) = d(x 1 (2)).
Using this chain of inequalities and the symplectic invariance of v we find
yr((2)) =17 ($(2)) =1(@(x(2))) = v(x 1 (2)) = 1(2).

Remark ~r is not a true displacement energy on 7*T" since yr(0Ot,) = 0 even though one cannot
displace the zero section from itself using a Hamiltonian isotopy in T*T". The following lemma
gives a calculation of these invariants for standard balls.
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Lemma 4.45. Let B, C T*T" be a standard ball such that
(B =] kB
kezn

is a disjoint union. Then
cr(Br) = mr? = Yr(Br).

Proof. By monotonicity we clearly have mr? < er(B,) so we have to prove that yp(B,) < 7r?.
Since 77!(B,) is unbounded, it is enough to prove the inequality for a finite union of disjoint
balls. In particular it is enough to exhibit, for every € > 0 a compactly supported Hamiltonian
diffeomorphism ¢ of R?" which displaces the finite union and that verifies y(p) < 7r% +¢. Any
of the balls k - B, in the disjoint union 7~ 1(B,) can be displaced vertically using a conjugation
by k, ¢ = kot o k™!, of the map v in Theorem 2.12 which is generated by a Hamiltonian that
verifies ||H||co < 72 + €. Since all these diffeomorphisms have disjoint support, the composition
©k, © -0 g, will displace the finite union and will be generated by Hamiltonian H,, = Hy, +
.-+ + Hy, where each term has disjoint support from one another. In particular

|H | o = max||Hy,,||co< 7% + €
m
now Proposition 3.39 implies that «y(pg, o -+ 0 ¢, ) < 7r? + € giving the desired result. O
Theorem 4.46. Let i be a compactly supported Hamiltonian diffeomorphism of T*T™ = T*T™ x
T*T"=™. For any w € T"™ ™ denote Wy = T*T™ x T»T"™™ and Wy = T*T™ X Opn-m. Let B,
denote a ball of radius r in T*T™. Then
Redw, [¢)(B; X Opn-m)] € Br or  Redw, [¢(Br x T,,T""™)] C Bg

implies r < R.

Proof. Every compactly supported Hamiltonian diffeomorphism 1, of T*T" lifts to a Hamiltonian
diffeomorphism t; of R2" generated by a Hamiltonian with bounded gradient. In particular it
verifies the hypothesis of Theorem 4.39. Remark also that the ball B, lifts to an infinite disjoint
union of balls of the same radius. We take for X C R2™ one of these balls B, which project to
T*T™ as the B,. The subset B, x R"™ projects onto B, X Opn—m. We are interested in image
of this set by ;. Remark that we have

7(1hs(By x R*™™) N C™ x iR™™™) C 9)y(By X Opn—m ) NT*T™ x TET™™,
In particular, if we set Wf =C" xiR"™™ and Wy = T*T™ x TyT"™™ we get
(Redyy, [$¢(B; x R"™™)]) € Redw, [¢(By X Opn-m)],
so we have
Redj, [We(B, x R"™™)] € 7! (Redw, [t¢(Br X Opn-m)]) € 7~ (Bg).

By hypothesis 771 (Bg) is the disjoint union of copies of Bp so if we use Theorem 4.39 and Lemma
4.45 we get

mr? = ¢(Br) < v(Redyy, [y(Br x R"™™)]) < yr(Redw, [¢4(By X Opn-m)]) = 7r(Bg) = 7R?

which gives the desired result. A similar reasoning gives the result for the second inclusion. [
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Chapter 4. Generating functions and symplectic reduction

In the light of this result, a very interesting question if if this type of rigidity appears on
the product of cotangent bundles of compact manifolds other that the torus. By symplectic ball
of radius r in a symplectic manifold (M,w) we understand a ball of radius r of R?" which is
symplectically embedded in M. We may conjecture the following behavior:

Conjecture 4.47. Let N and M be two compact manifolds and consider ¥ a compactly supported
Hamitltonian isotopy of T*N x T*M. For any m € M denote Wy = T*N x T M and Wy =
T*N x 0pr. Let B, be a symplectic ball of radius r in T*N. Then the inclusion

Redw, [¢(B, x Op)] € Br  or  Redw,[¢(B, x T, M)| C Bg
imply » < R.

Example 4.48. Mechanical systems in 7*T". One may see that Theorem 4.46 is still true
if instead of compactly supported Hamiltonians we consider mechanical Hamiltonians H : R x
T*T™ — R of the form

1
Hi(q.p) = 3 1pl* + Usla).

as in Example 4.43.

4.3.3 Middle dimensional symplectic rigidity

An important consequence of Theorem 4.39 is its interpretation in the context of the middle di-
mensional rigidity problem. One of the first questions regarding this problem appeared in [Hof90b]
where Hofer asked about the generalization of capacities to middle dimensions. Remark that all
symplectic cylinders of the same radius but with a base of different dimensions have the same
symplectic capacity. In order to try and see if those cylinders are different for symplectic geom-
etry Hofer asked if there exists a k-intermediate symplectic capacity ¢* satisfying monotonicity,
k-conformality, symplectic invariance and

F(BH xR™ ) < yoo  but  F(BFExR? x R™H) = 1007

The first inequality is already verified by the standard capacities and it is the second one which
differs. One of the first results indicating that intermediate capacities do not exist appeared in
an article by Guth [Gut08]. He was interested in the question of when can we embed a polydisc
P:qu1 X oo X BIQ%n with R; < --- R,, into another one P’:B}%i,1 NEEE ><B12% with R} <--- R},
using a symplectic map. There are two obvious obstructions to this problem, the first one comes
from Gromov’s nonsquezing which implies Ry < R). The second one is the volume which implies
that Ry --- R, < R} --- R],. Using the techniques in the article by Traynor [Tra95] one can prove
that one could embed P into P’ if and only if Ry --- Ry < R} --- R}, for every k between 1 and
n. Traynor’s results could indicate the existence of middle dimensional conditions for symplectic
embeddings of polydics. It was not know whether these middle dimensional conditions where
necessary until an article of Guth where he proved that, modulo a dimensional constant, these
are the only two invariants. More precisely:

Theorem 4.49 (Guth 2008 [Gut08]). There is a dimensional constant C(n) so that the following
holds. If C(n)Ry < R} and C(n)Ry--- R, < R} --- R], then P symplectically embeds into P’.

This theorem gave a partial answer to Hofer’s question. It implies that if 1 < & < n then
k-capacities that verify the following continuity hypothesis:

lim c(Bf* x BE ") < 400 and  lim co(BY* % x B3 #4%) = o0
R—+o00 R—+o00
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do not exist. His theorem was a close definitive answer but the question of less regular capacities
remained open. This was recently solved in the negative by Pelayo and Vi Ngoc in [PVuN15].
They applied a limit argument to the construction of Guth and Hind-Kerman [HK14] in order to
proof the unbounded version of Guths theorem:

Theorem 4.50 (Pelayo-Vii Ngoc 2015 [PVuN15)). If n > 2 then the cylinder B x R?"=2 can be
symplectically embedded into the product BIQ%"_2 x R? for all R > /271 4 2n—2 _ 2,

With this theorem the question of intermediate symplectic capacities was definitely settled. It
showed that general symplectic diffeomorphisms are too flexible to capture this type of cylindrical
rigidity.

Another point of view for the middle dimensional problem comes from a reformulation of
Gromov’s non-squeezing theorem. In dimension 2 symplectomorphims are the same as area pre-
serving maps so in [EG91] Eliashberg and Gromov pointed out that (using a theorem of Moser
about the existence of area preserving diffeomorphisms) Gromov’s theorem is equivalent to

area(Il; ¢(B?™)) > nr?  for every symplectomorphism .

Denote by Il the projection on the first 2k coordinates. A possible generalization of this statement
to higher dimensions is

Vol(IT,p(B2")) > Vol(II, B>") = Vol(B?*) for every symplectomorphism ¢.

This problem was studied by Abbondandolo and Matveyev in [AM13]. In their article, Abbon-
dandolo and Matveyev first proved that the inequality is true in the linear case:

Theorem 4.51 (Abbondandolo-Matveyev 2013 [AM13]). Let ® be a linear symplectic automor-
phism of R?", and let P : R*™ — R2™ be the orthogonal projector onto a complex linear subspace
V C R?™ of dimension 2k, 1 < k <n. Then

Vol(P®(B2")) > Vol(B)
with equality if and only if the linear subspace ®TV is complex.

As they point out in their article, unlike the projection of the ball, the intersection with the
linear subspace has small volume, in other words one always has the reverse inequality

Vol(V N B*) < Vol(B?¥).

In contrast to the linear result, they moreover proved that symplectic diffeomorphisms are again
too flexible to have this kind of middle dimensional symplectic rigidity. More precisely, the show
that one can squeeze arbitrarily the symplectic projection of image of the ball by symplecto-
morhisms.

Theorem 4.52 (Abbondandolo-Matveyev 2013 [AM13]). Let P : R*™ — R2" be the orthogonal
projector onto a complex linear subspace V. C R?®™ of dimension 2k, 1 < k < n. For every ¢ > 0
there exists a smooth symplectic embedding ¢ : Bi™ — R*" such that

Vol(P$(B*)) < e.

In spite of all this negative results for middle dimensional rigidity, there was a recent result
by Rigolli in [Rigl5] where he proved that there is also local middle dimensional volume rigidity
if one restricts the class of symplectomorphisms to analytic ones.
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Theorem 4.53 (Rigolli 2015 [Rigl5]). Let ¢ : Ein — R?™ be an analitic path of symplectic
embeddings, with t € [0,1], such that ¢g is linear. Then the middle dimensional non-squeezing
nequality

Vol(P¢y(Bi™)) > Vol(B2)
holds for t small enough.

This result points out in the direction that this middle dimensional rigidity might be possible
upon restriction of the class of symplectic diffeomorphisms that we consider. Moreover, this result
has another local implication:

Theorem 4.54 (Rigolli 2015 [Rigl5]). For every analytic symplectic embedding of a domain D
there exists a function ro : D — (0,+00) such that the middle dimensional inequality

Vol(Pgy(B2"(x))) > Vol(B2*)

holds for every x € D and for every r < r(x). Moreover ry is bounded away from zero on compact
subsets K C D.

We would like to point out another possible middle dimensional generalization of the squeezing
problem. In dimension 2 the value of any normalized symplectic capacity on topological discs
coincides with the area, so one may also rewrite Gromov’s theorem as

c(Tlyp(B?")) > 7r?  for every symplectomorphism ¢,

where c¢ is a symplectic capacity. One can then ask if this inequality is true with II; replaced by
II, and more generally look at subsets Z different from B2?" and replace 7r? with the capacity
of II,Z. As we have seen in the previous results, there is little hope that one such inequality is
always true so one has to restrict the type of symplectomorphisms considered. Theorem 4.39 sheds
some light to this problem for deformations of coisotropic cylinders Z = X xR*™™ C C™ x C*~™
provided that we restrict the class of symplectomorphisms to Hamiltonian isotopies with bounded
speed, that is, diffeomorphisms generated by functions H verifying the hypothesis of Theorem
4.39. More precisely, using the monotonicity of v we get the following corollary:

Theorem 4.55. Let X C R?>™ be a compact set. Consider X x R"™™ C C™ x C*™™ and Let
H :R xR*™ = R be a Hamiltonian function such that

\VH(z)| < A for every (t,z) € [0,T] x R*"
that generates the flow ;. Then for every t € [0,T)
¢(X) < Y(Tpipu(X x RP™)).

In contrast with the volume interpretation of the middle dimensional problem (see Theorem
4.51), This theorem is not true for every linear symplectic map, only for small times of linear
Hamiltonian diffeomorphisms. Remark moreover that classical symplectic capacities do not give
any rigidity information for coisotropic cylinders since by Proposition 3.41 we have

(X X R"™™) =0 =y(X x R"™™).

As it is usual in symplectic geometry, this rigidity result can be used to define an invariant. The
classical example of this fact is the definition of Gromov’s width after he proved the nonsqueezing
theorem. In our case Theorem 4.55 indicates that we should consider the following quantity:

16(U) = inf{y(Ikp(V)) |¢ € G}
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where G is a subgroup of the group of symplectic diffeomorphisms. For G = Sympl(R?*") the
permutation of coordinates shows that 7]5;‘ is zero on coisotropic cylinders of dimension k. In
particular, it might be trivial for every subset of R?”. On the other hand, if the elements of G are
Hamiltonian diffeomorphisms generated by Lipschitz functions then Theorem 4.55 implies that
7’& is bounded from below on coisotropic cylinders of dimension k. As an example of G one can
take the subgroup of Hamiltonian diffeomorphisms o}’ where H, ¢}, and (¢f)~! are Lipschitz
on the space variable over compact time intervals.

Proposition 4.56. Denote Ham(R?") the set of Hamiltonian diffeomorphisms @f such that
Hy, ol and (of')~" are all Lipschitz in space over compact time intervals. Then Ham?(R?") is
a subgroup of Sympl(R®™). Moreover Ham"(R?") is strictly bigger than the group of compactly
supported Hamiltonian diffeomorphisms.

Remark 4.57. The superscript dL on Ham(R?") stands for double Lipschitz condition.

Proof. First recall the following formulas:

H#K — A
ofl ool =[5 and  (pf) = f,

where

H#K(t,2) = H(t,2) + K(t, (o) 7'(2)),
H(t,z) = —H(t,of ().

The identity is clearly in Ham"(R?") and it is an easy exercise to use these formulas to prove that
Ham® (R?") has a group structure. For the second statement, consider a Lipschitz autonomous
Hamiltonian H with Lipschitz gradient and use Gronwall’s lemma to prove that ¢! (and therefore
(p)=1 = pH,) is Lipschitz. O

Definition 4.58. For every subset Z C R?"” we define
15(2) = inf{(T1x$(2)) | 6 € Ham™ (R*")}

The properties of v are sumarized in the following proposition:
Proposition 4.59. The map v* verifies the following properties:

o (monotonicity) If Zy C Zy then v*(Z1) < v*(Z3).

o (conformality) v*(\Z) = N2+*(Z) for every X € R.

e (Lipschitz invariance) If ¢ € Ham®™ (R*™) we have v*(¢(Z)) = v*(2).

o (non-triviality+normalization) v* (B2 x R* %) = 72,
Moreover for every compact X C R?>™ we have

o(X) < AF(X x R"F) < 4(X).

Finally we want to point out that this invariant satisfies a 2-conformality property instead of
the k-conformality asked by Hofer for the middle dimensional symplectic capacities.
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Chapter 5

Rigidity on energy surfaces

Let (M,w) be a symplectic manifold and consider a smooth function H : M — R. Every regular
value A defines a smooth hypersurface ¥ of M. The Hamiltonian vector field is easily seen to
be everywhere tangent to X, so the Hamiltonian flow preserves . The properties of this flow
have historically been an important subject of research. In this chapter we are going to study
the influence that the famous symplectic camel theorem has on the dynamics on . We explain
how the symplectic camel theorem can be used to create compact invariant subsets. Moreover,
we show that these invariant subsets persist under C° perturbation of the energy surfaces of H.

5.1 (" perturbations and compact invariant sets

Let (M,w) be a symplectic manifold, consider a smooth function H : M — R and let A be a
regular value of H. Then ¥y = H~!()\) is a smooth hypersurface invariant by the flow of H. We
are interested in the existence of compact invariant subsets of ¥y and its C° perturbations.

For historical context on the problem of compact invariant subsets the interested reader can
look at the book [HZ94|[Chapter 4] which has an excellent chapter on the existence of closed
characteristics in ¥. The surfaces ¥ that are considered in that chapter are compact and the
invariant subsets are circles. In order to gain some intuition, we present an existence result
contained in that chapter. Let (M,w) be a symplectic manifold and denote by ¢y the capacity
constructed by Hofer and Zehnder (which is a generalization of the one explained in Chapter 2,
Section 2.3). Using the definition of this special capacity ¢y they are able to prove the following
result:

Theorem 5.1 (see [HZ94]). Let H be a Hamiltonian function on (M,w) and let Xy, = H1()\o)
be a compact energy surface. Suppose that there is an open neighborhood U of ¥y, such that U has
bounded capacity: co(U,w) < 4+00. Then there exists an interval of reqular values I containing
Ao and a dense subset D C I such that for every A € D the energy surface Xy has a chosed
characteristic.

As a particular example of such an energy surface, we have every compact regular Xy in
(R?" wg). Indeed, by monotonicity of the capacity, every bounded set U has capacity less that
the capacity of a big ball Bg, so c¢y(U,w) < +oo. This result shows that, at least for compact
energy surfaces, closed characteristics are a common phenomenon that appears under perturbation
of the energy level.

In this section we explain how the symplectic camel theorem can be used to create compact
invariant subsets in arbitrary energy surfaces . Recall that the statement of the theorem is:
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Theorem 5.2 ([Vit92, MT93]). Consider the space E = R?"~1 x {0} \ B®**(0,r) and suppose that
there is a symplectic isotopy ¢ of R*™ with support in R** \ E such that

By C{pn <0} and ¢'(BF") C {pn >0}
Then r > R.

There is also an unpublished proof of this result by Gromov and Eliashberg.

Every hypersurface ¥ is locally symplectomorphic to R2*~! x {0} C R?" so every point p € X
has a small open neighborhood U symplectomorphic to a small open neighborhood V' of the origin
in R?” such that

UNY ~VNR™ ! x {0}

Using this symplectomorphism we see that a particular class of deformations of 3 are the local
deformations given by deformations of ¥y := R?"~! x {0}. In light of this remark we restrict
ourselves to compactly supported deformations of the standard hypersurface ¥g. Remark that
Yo is the energy surface associated to the coordinate function p,. We are going to consider
Hamiltonian functions given by H = p, o ¢ where ¢ : R — R?" is a compactly supported
diffeomorphism.

Definition 5.3. Denote (2,qn,pn) the coordinates of R?". We say that H : R** — R is a
(r, R)-simple function if the following properties are satisfied:

e H = p, oy for a compactly supported diffeomorphism ¢.
e The support of ¢ is contained in {p, > 1} U (B** (20, 7) x [0,1]) for a z € R*"~L.

e B (2, R) C{H <1} N {p, > 1} for a z; € R?".

A\ g

Yo

—
2n—1
Br

Figure 5.1: The energy surfaces of a (r, R)-simple function.
Remark 5.4. The choice of the interval [0, 1] is arbitrary, and is chosen for simplicity in the
notation of the proofs. The second condition implies that for every A\ € [0,1] we have
{pn =AY\ B ((20,1),7) C H™'(N).
Compare with the hypothesis of Theorem 5.2.

We are moreover interested in perturbations of this type of functions. We consider perturba-
tions inside the class of (r, R)-simple functions:
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Definition 5.5. Let H be a (r, R)-simple function. We say that H. is a e-simple perturbation
of H if He = p, o ¢ with deo(p, pe) < € and such that the support of ¢, in contained in
{pn > 1} U (B?>"Yzg,7 4+ ¢€) x [0,1]).

If H=p,opisa (r, R)-simple function then
Sa=H '(N) =9, (V) = ¢ TR X {A}).

If we denote X5 = H_!()\) then the CY distance between ¥ and X is bounded by the C°
distance between ¢ and .. As a consequence one may see that an e-simple perturbation of a
(r, R)-simple function is a (r + €, R — €)-simple function. The main result of this chapter is the
following theorem:

Theorem 5.6. Let H : R*™ — R be a (r, R)-simple function with r < R. Then there exists a
A € [0,1] such that ¥\ has a compact invariant subset. As a consequence, for every e-simple
perturbation He of H with € € [0, E5[ there exists a Ac € [0,1] such that £5 = H7*(\c) has a
compact invariant subset.

Figure 5.2: A representation of the energy surface ¥y where the invariant compact subset appears.
In this case there is a trajectory trapped in a bounded set and this trajectory creates a compact
invariant subset.

The idea of the proof goes as follows: if there is no compact invariant subset then every
characteristic trajectory goes from one side of the space to the other (see Figure 5.2). If this is
the case, we can build a symplectic isotopy that verifies the hypothesis of the Camel Theorem
but which contradicts the conclusion. Since this is not possible, we conclude that there must be
a trajectory trapped in a bounded set. This trajectory then creates a compact invariant subset.
Note that the compact invariant sets persist for small simple perturbations, but we have no control
on the energy level where it appears.

5.1.1 Trapping trajectories

The proof of Theorem 5.6 will be carried out in several steps, and is based on the following lemma.
For simplicity of notation we will suppose that ¢ and thus H is supported inside {0 < ¢, < 1}. We
know that outside this set all the characteristic trajectories are just translations in the coordinate

dn-

Lemma 5.7. Let H be a Hamiltonian function of the form H = p, o ¢ where ¢ is a diffeomor-
phism supported in a compact set contained in {0 < g, < 1}. Then the following statements are
equivalent:

77



Chapter 5. Rigidity on energy surfaces

1. There exists characteristic trajectory in Xy which goes through {q, = 0} but does not inter-
sect {qn, = 1}. (see Figure 5.2)

2. X has a compact invariant set.

Proof. (1 = 2). Suppose that 1 is true. First note that all trajectories enter {0 < ¢, < 1} and
that if a trajectory intersects {g, = 1} then it goes to infinity. Thus, the hypothesis tells us that
there is a point zp € R?" such that v;(z9) = ¥{(20) stays in a compact set for ¢ € [0, +-oc[. The
w-limit set associated to zp is then non-empty and generates the desired compact invariant set.
More precisely consider the set

B = {z € R®| there exists a sequence t, — 400 such that lirf P, (20) = 2}
n——+0o0

B is clearly nonempty, bounded and invariant by the flow. We now prove that it is closed. Take
a sequence of points {z,} in B which converges to a point z. For every m € N there exists a z,
such that d(z,, 2) < 5--. Chose a sequence s adapted to z, (cf. the definition of B) and define

tm = min{sy > tm-1 + 1] d(vs,(20), 2n) < 5}

By definition of the points in B, we have t,, < +00 and we clearly have t,, — +00. Finally

d(¢t7rL (20)7 2:) < d<7/}t7n (20)7 Zn) + d(znv Z) <

1
E)
so z € B and B is closed. This proves 1 — 2.

(-1 = —2). Now suppose that 1 is not true, so every characteristic trajectory in 3, which
goes through {g, = 0} intersects {g, = 1}. Denote C) = R?"~2x]—o00,0[x{\}, we have Cy C X.
Since every trajectory in C is unbounded, it is enough to show that

U wu(cy) =3

teR

Remark that ¥y = ¢ 1(R?"~! x {)\}) is connected, and that C) is open in X\ and non-empty.
Since 1y restricts to a diffeomorphism of 3y, we see that the left hand side of the inequality is a
open set. To prove the equality, it is then enough to prove that the lhs is also closed in Xy. It is
clear that all the trajectories of Cy intersect R?"~2 x {0} x {\}. We claim that there exists a T
such that

Pr(R?72 % {0} x {A}) C R*™72 x [1, +00[x{\}.

Since ¢ has compact support, for a radius K big enough we have

Y((BRE )¢ x {0} x {A}) = (BF™*)° x {1} x {A}.

For the points in Bf("*Q x {0} x {\}, one may use the compactness of the closed ball and that by
hypothesis every point arrives to the other side to find the desired 7. We now use the existence
of T to prove the closedness of the union of the images of C'\. Take a point z in the closure, and
a sequence of points {z,,} which approaches it. Since {z,,} converges we know that ¢,(z,,) are
bounded. In particular, the existence of T implies that there is a ¢y such that g, (¥—¢,(zm)) < —1.
By continuity of v, we get that ¢,(¥—¢(2)) < —1. This implies that z € 14,(C)), and finishes
the proof. O

One may moreover prove the following result:
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5.1. C° perturbations and compact invariant sets

Lemma 5.8. Let H be a Hamiltonian function which coincides with the function p; outside
{0 < gn < 1}. Then the set of unbounded trajectories that do not go through the wall {q, = 1}
has measure 0.

Proof. Let B be the set of z € R?™ such that v;(2) € {g, < 1} for all t € R and v4(z) — oo when
t — —o0. Suppose that B has positive measure. Since

B = UBﬂ{—ngqn<—n+1}
n>0

then there is an ng > 0 such that u(B N {—ny < ¢, < —no + 1}) > 0. We prove that this is
impossible studying the cases ng > 0 and ng = 0. If ng > 0 then the fact that for ¢ < 0

Di({—no<qgn<-no+1}) ={-no+t<gqg, < -—-ng+1+t}

implies that for each C' > 0 we may find an mg > 0 such that

mo
,u(U BNn{-—n<g¢g,<-n+1})>C.

n=ng

Now, 14 preserves the measure so this contradicts the fact that v,,, sends the above union into
BN {0 < ¢, < +1} which is bounded. Suppose now that ng = 0. Denote By = BN {0 < g, < 1}
and B, = {z € By|¢_n € {—n < ¢, < —n+1}}. We clearly have a disjoint union By = J,,~; Bn
so we may find a ko > 1 such that u(By,) > 0. The same argument as for the case ng > 0 gives a
contradiction which end the proof of the lemma. O

5.1.2 Construction of the symplectic isotopy

Consider a smooth Hamiltonian of the form H = p, o ¢ with ¢ a diffeomeorphism supported in
{0 < qn < 1} N {p, > 0}. In particular Xy = R?"~! x {0}. Taking into account Lemma 5.7 we
will make the following assumption:

Definition 5.9. We say that a (r, R)-simple function is directed if every characteristic trajectory
in every X, which goes through {¢, = 0} intersects {¢, = 1}.

In other words, we say that the trajectories go from one side of the space to the other.

Lemma 5.10. Let H be a directed (r, R)-simple function at denote by 1y its flow. Then there is
a smooth function f :R* — R such that the map

\Ilt(z) = wf(z)t(z) verifies Qn(\PO(x7O? )‘)) =0 and qn(\Ifl(.iL‘,O,)\)) =1
for every (x,0,\) € xR?""2 x {0} x R.

Proof. We first define f on R?"~2 x {0} x R. Using the same arguments as in the second part of
the proof of Lemma 5.7 we may find a T > 0 such that g, (¢7(R?"~2 x {0} x R)) C]1, co[. Define
f to be

f(.%', 0, )‘) =T+1- Qn(wT(xv()’ A))

Note that the definition is independent of the choice of T: take another 7", and suppose that
T <T'. Then

1/1T'(9070a )‘) = ¢T'7T¢T($, Oa )‘) = wT(l‘v 07 )‘> + (Oa T — T/70)7
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which gives
T/ +1- QH(wT’(xa 07 )‘)) =T+1- Qn(le(% 07 A))

Extend f to the whole R?” by saying that it is constant on trajectories, that is, f o, = f. It is
smooth since it is clearly smooth on {¢, < 0}, by invariance and by the existence of T'. Using the
fact that 1, is the flow of an autonomous vector field one sees that

V1 (2,0,A)) = Yy (2,0,)
=Yg (o (w00 V1T (2,0, ).

Now remark that using the definition of 7" and that the support of H is contained in {0 < ¢, < 1}
we have

Qn(¢1¢T($a 07 )‘)) = Qn(wT(x> Oa A)) +1.
Using again that 1, acts by translations outside of {0 < ¢, < 1} we get ¢,(¥1(z,0,)\)) =1. O
Remark 5.11. The fact that g,(¥1(x,0,))) = 1 implies that f(z) # 0 for every z € R?*. One

may also define f(x,0,\) as the unique time s such that g, (¢s(z,0,)) = 1. Moreover since f is
invariant along the trajectories we have

{f,H}=0.

Note that f constant along the trajectories implies that W is an autonomous flow:

Ui (Vs(2) = Vpie (et (Wr(2)s(2) = V() (Vr(2)s(2) = Pigs(2)
The isotopy is generated by Y = f X since:

d

&‘I’t(z) = f(2)Xa(Wp)(2) = FWrep() X (Wrep(2) = Y(Vi(2)).

Denote by iy : £\ — R?" the natural inclusion, and by w the standard symplectic form of R?".
Lemma 5.12. Define Sy : g — 3y by

Sx(z,t,0) = Wy(x,0,N).
Then Sy is a smooth isotopy that verifies Siw = igw.

Proof. Tt is clear that S is smooth in all the variables. To see that Sy is onto (resp. one to one),
remark that by (the proof of) Lemma 5.7 every trajectory of Xy intersects once (resp. only once)
the set R?"72 x {0} x {\}. We now prove the differential equality. Remark that for Y = f Xy we
have iyw = fdH so that

d
a‘lit*w =V Lyw =V diyw =V, (df NdH) =df NdH,
since both f and H are invariant for ¢);. Denote by j) the map jx(z) = (2,0,\) and by u; the
map u¢(x) = (x,t,0). Then clearly jidH = 0 which implies that for all ¢

WPiw = jx¥Pow = Jiw = ugigw.

In particular using W o jy = S) o uy we get uySiw = u;jigw which gives the result for vectors in
R?7=2 x {Og2}. It is now enough to prove that for v € {Ogzn—2} x R x {0} we have Sjw(v,-) = 0.

For this remark that 5 p
— )= —U, =Y ().
3 Qn) t (W)

ds( 7
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On the other hand, X defines the coisotropic foliation of ¥y, or in other words, isw(X H .y =0.
Joining these two facts, and using that Y = fX, we get
0

S/*\w(gv ) =0

which is the desired reult, and finishes the proof. O

The isotopy Sy is not compactly supported. Indeed one may see that outside a compact set
we have

S)\(:B,t, 0) = (Sok(x)?tf(x? 0, /\)7 )‘)

where ¢, is a compactly supported symplectic isotopy of R?"~2 (one may see that it is symplectic
using the proof of the previous lemma). Moreover, if x is big enough, we have f(xz,0,\) = 1 and
ox(r) = x so Sy is the identity for z big enough. Consider T_)(x,t,s) = (z,t,s — A\) and denote
38 =T_5(Z)) (see Figure 5.3). The two submanifolds 3y and X9 coincide at infinity. Define the
isotopy Sg =T _yo0S):%X— Eg. It is easily seen to be symplectic in the sense of the previous
lemma. Outside a compact set we have

Sg(x7t70) = (90)\($)7 tf(x7 0, )‘)7 0)

We now extend Sg to a global isotopy.

2n—1
Br

Figure 5.3: The representation of the 29\ for the simple function of Figure 5.2.

Lemma 5.13. There exists a global isotopy Fy of R®*" such that
Fr\(Z) =%, #dFfw=ijw and Fiw=w outside a compact set.
Proof. Let K C R?" be a compact such that on its complement Sg has the simple expression

t
Flox M (2),0,0)

Remark that outside K we have the extension S%(z,t,s) = (pa(x),tf(x,0,)),s) which is a dif-
feomorphism for every s. Inside of K extend the vector field

Sg(x7t’0) = (@A(l‘)vtf(x’()v)‘%O) S0 (Sg)_1($,t,0) = (90;1(1:)’ O)'

L

2N 6 (89

A\ ( )\)
to a neighborhood U§ of ¥). We do it the same way as we did outside K, that is, a constant
extension of the vector field in the normal direction. One may chose the same € for every A € [0, 1]

since outside K the extension is defined for every e. We now multiply the vector field by a
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function which is zero outside a small normal neighborhood and which is one in a smaller normal
neighborhood. This gives a vector field on the whole R?" which outside K and on a neighborhood

of ¥ is equal to

5 Opy tOof

X a:,t,s = 7777707
evaluated at (go;\l(x), 0,A). This vector is less than linear since @) is compactly supported and
f and all its derivatives are bounded (because f = 1 at infinity). This means that the vector
field that we have built is integrable and generates an isotopy Fy such that F) oip = SS. For
the moment it does not verify Fiw = w outside a compact set so we need to make one last
modification. Indeed outside a compact set, and for big s we know that F) is the identity, the
same happens for big x since @) is compactly supported, but not for big ¢. In order to solve this
issue, take a compactly supported ﬁinction p(t) which is equal to one on a big interval containing

the projection of K. Then modify X for big ¢ by considering the vector field

o tof
o Wran O

Note that this defines a vector field tangent to ¥y (which coincides with X outside K). This
vector field is integrable and generates what we are going to call F. Inside K we have

Xa(z,t,s) = (

F\(ZoNK)=8(ZnK)=%NK.
Outside K the vector field preserves ¥y which coincides with Eg so we conclude that
F\(Zo) = 23,
Now, since inside K we have F\ = F\, we get
igFrw = (F)0idp)*w = (F) 0ip)*w = (SV)*w = igw.

Outside K we have F)(z,t,0) = (¢ox(z),gxr(x,t,0),0) with ¢, symplectic and g = t outside
a compact set. In particular a straightforward calculation gives that outside K we also have
(F 0ip)*w = ifw. Moreover, if z or s are big enough we have F\ = Id which is symplectic,
and if only ¢ is big we have F\(z,t,s) = (¢x(x),t, s) which is also symplectic. We conclude that
F{w = w outside a compact set. O

Proposition 5.14. Let H be a directed (r, R)-simple function. Then there is a symplectic isotopy
@, on the whole R?"™ such that ®,(Xg) = Eg.

The proof of this result is contained in the following subsection. It is based on the existence
of F\. For the moment we use it to prove Theorem 5.6.

Proof of Theorem 5.6. Consider a directed (R, r)-simple function, then by Proposition 5.14 there
is a symplectic isotopy Ry = ®1_; 0 ®; ' such that Ry(2}) = BY. We claim that this implies

RA\(T_1B*"(21,R)) N %\ B(z0,7) =0 for every X € [0,1].

(see Definition 5.3) Indeed, since o\ B(20,7) C X3 for every A € [0, 1], the non-empty intersection
would imply that there is a point in 71 B(z1, R)NX{ = T_1(B(z1, R)N¥1). But this is impossible
since by definition of H we have H(B(z1, R)) < 1. Finally we conclude by Theorem 5.2 that if
R > r then this isotopy does not exist. Our initial assumption the H is directed (Definition 5.9)
must be wrong so there must be A € [0, 1] such that ¥ has a characteristic trajectory which goes
through {g, = 0} but does not intersect {g, = 1}. By Lemma 5.7 we conclude that the energy
surface Xy has a compact invariant set. ]
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5.1.3 Symplectic extension: proof of Proposition 5.14

In the previous subsection we saw that there exists a compactly supported isotopy F) of R?” such
that

F\(Z0) =%%, itFiw=ijw and Fjw=w outside a compact set.

Definition 5.15. We say that a property (P) is verified if we go far enough in the direction of X
if there exists a compact set K C Y such that (P) is verified for every point in (Xg\ K) xR C R?",

The proof of the extension is a combination of classical arguments in symplectic geometry
adapted to our particular context.

Lemma 5.16. Denote by wy = FYw which is a symplectic form of R?" such that wy = w outside
a compact set and ijw; = ijw. For e small enough there exists a compactly supported isotopy
@y 1 U5 — Uy where Uy, is a neighbourhood of ¥ such that ox|Xo =1d, ¢y =Id if go far enough
in the direction of o and

QWi |z, = Wiz, € ['(Zo, A*(T*R?™)).

Proof. Recall that given a symplectic form and a metric on a vector space V' one can recover
an almost complex structure on V' which is moreover a symplectomorphism (see for example
[HZ94, p.14]). For the case V = R?" with symplectic form wy and the standard euclidean metric
one recovers the standard complex structure Jy. Since this process depends smoothly on the
parameters we can use wy and the standard euclidean metric to get an almost complex structure
J* such that it equals the standard structure Jy at infinity and which depends smoothly on .
Define

w@@@z@mm+wwi>mum

then clearly ¢, |s, = Id, and for points in X, that is, points with s =0,

0 o
depalrs, =14 and dopa(z ) =I5 -

pn (2).

In particular, by construction ¢, is symplectic between wy and wp over o, that is, pwx |5, = wix,-
We now have to prove that ¢, is a diffeomorphism on U§ for some €. In order to see this one
may use the fact that ¢y = Id if (x,t) is big enough, and that the domain of definition of A is
the compact set [0, 1]. O

The previous lemma gives an isotopy ¢ on a neighbourhood of ¥y such that
Fyopa(20) =33 and (F)owy)'wls, = piFwls, = wlsy,

and oy Fyw = w if we go far enough in the direction of ¥5. We now use the following classical
Darboux lemma to construct a symplectic diffeomorphism on a neighborhood of Y.

Proposition 5.17 (Darboux lemma). Let wg and wy be two symplectic forms on R*™ such that
wolsy = wals, € T'(Zo, A2(T*R?*™))

and wy = w)y outside a compact set. Then there is a diffeomorphism ¢y : Uy — Uy between two
neighborhoods of o such that ¢|s, = Idx,, ¢wr = wo and ¢y is the identity if we go far enough
in the direction of 3.
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Proof. Set w§ = (1 — t)wp + twy. The fact that wy|y, = wy|y, together with wy = wy outside
a compact set implies that wﬁ\ is a symplectic form on some € neighborhood of 3. By Moser’s
trick we need to find X} a smooth family of vector fields on a neighborhood of ¥ such that X}
is vanishing on ¥y and

EXiwf\ + wy —wg = 0.

By Lemma 5.18 below we can find a 3y € Q'(R?") such that dB) = wy — wo, Brlg, = 0 and By is
zero if we go far enough in the direction of ¥g. As w} is non degenerate on an e neighborhood of
Yo, for ¢t € [0,1] there exists a vector field Xﬁ\ on this neighborhood such that

ixtwi + B = 0.

By Cartan’s formula X} will also verify the first equation. Now since 8 is zero when we go far
enough in the direction of ¥, the same will happen to Xf\, so we are able to find a neighborhood
of Xy for which the time one flow of X} is defined. The existence of ) is guaranteed by the
following lemma.

Lemma 5.18. Let a € Q2(R?") such that ia = 0 and da = 0. Then there is a 1-form 8 €
QYR?™) such that dB = a and Bis, = 0. Moreover B is zero if we go far enough in the direction
Of 20.

Proof. Consider the isotopy ¢,(z,t,s) = (z,t,rs) and denote Z its infinitesimal generator. Define

/ origadr.

Since ¢,|x, = Id and Z|x, = 0 we get K ()]s, = 0. Moreover, i*a = 0 implies that ¢ja = 0 and
Cartan’s formula together with da = 0 imply

1 1
a=¢ia — gy = / igb:adr =d origadr = dK(a).
0 d?" 0

Finally since « is compactly supported, if z is a point far enough in the direction of ¥ then
¢r(z) will be outside the support of a for r € [0,1]. The integral definition of K («) now gives
K(a)(z) =0. O

O]

Applying the previous result, we get an isotopy ¢, defined on a neighborhood U§ of ¥y such
that
Fyopro (Do) =53 and (Fyoprody)'w =g fw=w
and (F\opy)o0))*w = w if we go far enough in the direction of ¥. We finish with the construction

of the global symplectic extension. This is a version of Banyaga’s theorem [Ban78| that can be
found in [MS17][p.115].

Proposition 5.19. The isotopy Fy o @y o ¢y can be extended to a symplectic isotopy ®y : R?" —
R2". In particular it verifies ®(Xg) = Y.

Proof. Consider N' = USI with € < e so that N/ C U§. Now choose any compactly supported
extension vy of ¢y o ¢ and consider the isotopy E) = F) o 1y. Define w) = Ejw and note that
wy agrees with w on N and outside a compact set. Hence the forms 7, = %w)\ vanish on N.
Consider oy := K(71)) where K is defined on Lemma 5.18 as

1
K(T)\):/ OrigTadr.
0
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Since ¢, contracts N for 0 < r < 1 we see that 0y = 0 on . Now we use Moser’s trick to find
a compactly supported diffeomorphism yy of R?® which restrict to the identity on A and satisfy
X wx = w for all A. To finish the proof have to make sure that we will end up with a globally
defined diffeomorphism. Recall that the vector field which defines y) is given by the equation

X, Wy = —0).
Since we are only interested in the behavior at infinity this equation becomes
X, W= —0).

By definition ¢,(z,t,s) = (x,t,rs) so that Z = s%. Now 7y has compact support independent of
A so one may easily bound the norm and check that there is a constant C' such that

XAl < O]

which implies that the vector field is globally integrable. Thus ®) := FE) o x) is the desired
extension. 0
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Chapter 6

Symplectic rigidity in Hamiltonian
PDEs

In this chapter we study symplectic rigidity properties of infinite dimensional Hamiltonian sys-
tems. We will replace the classical phase space R?" by an infinite dimensional separable Hilbert
space E. The symplectic forms that we consider are continuous 2-forms w : F x £ — R which
are non-degenerate in the sense that the associated linear mapping

Q:FE— E* defined by & w(,-)

is an isomorphism. Remark that in infinite dimensions we also have the concept of weak symplectic
form if € is only injective. Let H : E — R be a smooth Hamiltonian function. In the same way
as we do in the finite dimensional case, one can define the vector field Xz (u) = Q' (dH (u)) and
we can consider the ordinary differential equation

= Xpg(u).

If this equation defines a flow ®;, one can then investigate if the properties that we saw in R?"
appear also in this context.

As we saw in the introduction, equations of this type arise naturally as PDEs when studying
conservative physical systems, but the situation is not exactly the same as the one described. In
most cases the Hamiltonian H is not defined on the whole space E but only on a dense Hilbert
subspace Dy (E) C E. As a consequence, the Hamiltonian vector field is also densely defined,
so the concept of solutions of the Hamiltonian equation on FE is not entirely clear. There is no
universal way of solving this problem, and most of the times one has to examine the properties
of the particular example in order to find a "good” definition of the generalized solutions on E.

The approach that we choose in this manuscript is to look at Hamiltonian equations of the
form

= Xpg(u) =JAu+ JVh(u).

where JA is a linear operator only defined on a dense subspace Dy (E) C E and h; is a smooth
function defined on the whole space E (see Section 6.1). If the exponential e*/4 is bounded on E
for every t € R, one can then define these ”generalized” solutions as continuous curves on F that
verify an integral equation (Duhamel’s formula) which only involves e!/4 and Vh. We can then
define the flow ®;, and study the symplectic properties that may appear.

This chapter starts by recalling the proof by Kuksin [Kuk95] that under some compactness
assumptions on the nonlinearity, ®; is a symplectomorphism that can be approximated by finite
dimensional Hamiltonian flows. We then study symplectic rigidity properties of ®;. We start with
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a construction of an infinity dimensional symplectic capacity based on Viterbo’s action selectors.
This construction is similar to the one that Kuksin gave in [Kuk95] using Hofer-Zehnder’s capacity,
and can be thought of as a sort of limit of finite dimensional capacities. As in Kuksin’s classical
construction, our capacity is invariant by ®; and inherits the normalization property. In particular
it can be used to prove an analogue of Gromov’s non-squeezing in infinite dimension. We then
continue with the extension of the middle dimensional rigidity theorem (Theorem 4.55) to the
infinite dimensional case. A particular example where this theorem applies is the Sine-Gordon
equation.

6.1 Semilinear Hamiltonian equations

Denote by (-,-) the scalar product of E. Consider an anti-self-adjoint isomorphism J : E — E
and supply E with the strong symplectic structure

U.)(-, ) = <j7 >

Denote J = (J)~! which is also an anti-self-adjoint isomorphism of E. Take a possibly un-
bounded linear operator A with dense domain such that JA generates a C° group of (symplectic)
transformations

{e’AteR} with e g < MM

and consider the Hamiltonian function
Hulu) = 5 {Au,u) + (o),
where h : E X R — R is smooth. The corresponding Hamiltonian equation has the form
= Xpg(u) = JAu+ JVh(u).

In this case the domain of definition of the Hamiltonian vector field is the same as the domain
D(A) of A which is a dense subspace of E. This implies that classical solutions can only be defined
on D(A). More precisely by a classical solution we mean a function u : [0,7[— E continuous
on [0,T[, continuously differentiable on ]0,T[, with u(t) € D(A) for 0 < t < T and such that
the equation is satisfied on [0, 7. Nevertheless, the boundedness of the exponential allows us to
define solutions in the whole space FE via Duhamel’s formula:

Definition 6.1. A continuous curve u(t) € C([0,T]; E) is a (mild) solution of the Hamiltonian
equation in E with initial condition «(0) = ug if for 0 < ¢ < T,

t
u(t) = e’ ug + / eU=)IA T h(u(s))ds.
0

One can easily verify that if u(t) is a classical solution, then it is also a mild solution. For
semilinear equations we know (see for example [Paz83|) that if VA is locally Lipschitz continuous,
then for each initial condition there exists a unique solution which is defined until blow-up time.
If moreover Vh is continuously differentiable then the mild solutions with ug € D(A) are classical
solutions of the initial value problem. Locally we get a smooth flow map ®; : O C F — E defined
on an open set O. If every solution satisfies an a priory estimate

lu(®)le < g(t,u(0)) < oo

where ¢ is a continuous function on R x E, then all low maps ®; : E — E are well defined and
smooth. This is the case for example if |Vhi(u)||g < C. Remark that the choice of the linear
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map A is arbitrary. Indeed if JA generates a continuous group of transformations and B is a
bounded linear operator then J(A + B) is an infinitesimal generator of a group e*/(4+5) on E
satisfying [|e!/(ATB) || p < MeN+MIBII  One can then consider the linear part J(A + B) and set
JVh; — JB as the nonlinear part. This indeterminacy is only apparent: classical solutions verify
Duhamel’s formula for JA and J(A + B) so both flow maps coincide over the dense subspace
D(A) which by continuity implies that the two flows are equal.

6.1.1 Examples

There are many important partial differential equation in mathematical physics that can be
written as a semilinear Hamiltonian equation. We just present two families of examples just
to give the reader an intuition and justification of why we restrict our study to this type of
equations. We present them with periodic boundary conditions but the same applies for more
general settings.

Nonlinear wave equation. Consider the periodic nonlinear string equation

ﬁ:Au—f(t,a;,u), U,:'U/(t,ﬂ?),

where z € T? = R?/277Z% and f is a smooth function which has at most a polynomial growth in
u, as well as its u— and t—derivatives. Set f = f —u and denote by B the operator B = v/1 — A.
We may write the previous equation in the form

1 = — B,
v = Bu+ B f(t,x,u).

Define E = H?2 (T x H 2 (T?) as the product of Hilbert spaces where the scalar product of H 2 (T%)
is given by

(uy,ug) = Buy (z)ug(x)dx.
Td

Now put A=BxBand J: E — E by J(u,v) = (—v,u). The symplectic form that we are going
to work with is simply w(+,-) = (=J-,-). It is clearly a strong symplectic form on E. Define

ht(u,v):/w F(t, z,u(z))dz, F:/Oufdu,

so that
Vhi(u,v) = (B~ f(t,z,u(x)),0).

The Hamiltonian function
1
H(U, U) = §<A(u7 U)a (’LL, U)> + h’t(u7 U),
generates the Hamiltonian vector field

XH (u,v) = JA(u,v) + JVhs(u,v),

which defines the system associated to the nonlinear wave equation.

89



Chapter 6. Symplectic rigidity in Hamiltonian PDEs

Nonlinear Schrodinger equation. Consider the periodic nonlinear Schrodinger equation
0
iu:Au+8—€](t,x,u,a) u=u(t,x),
U

where 2 € T? = R%/277Z¢. In this case the phase space is E = L?(T%, C). The real scalar product
is

1 _
(u,v) = WRe /’Jl“i u(z)v(z)dz,

and the complex structure is given by u +— Ju = iu(x). This gives the strong symplectic on F

1 _
w(u,v) = fwlm » u(z)ov(x)dz.

Set A =—A and

hi(u) = 2(217r)d /’[rd g(t,z,u(x),u(z))dx
Then 9
Vh(u) = a—g(t,x,u,ﬂ)

and the Hamiltonian vector field
XH(u) = JA(u) + JVhi(u)

defines via the Hamiltonian equation the nonlinear Schrédinger equation.

6.1.2 Hilbert scales

In the previous examples the symplectic spaces that we worked with form part of one parameter
families of Hilbert spaces H*(T¢) x H*(T¢) and H*(T% C), which receive the name of Hilbert
scales. In order to get the finite dimensional approximation of the flow, we need to ask for a
compacity condition which is better stated in the context of Hilbert scales. We now present the
definition and basic properties of these spaces.

Let E = Fy be a Hilbert space with scalar product (-,-) and Hilbert basis {¢, k € Z} where
Z is an even subset of some Z% (so —Z = 7). Let {v} |k € Z} be a positive sequence such that
vp = v_j and vy — +00o as |k| — 4o00. For any real number s we define Fy as the Hilbert space
with Hilbert basis {¢yv; *|k € Z}. Denote by [|||s and (,-)s the norm and the scalar product

associated to F. Then
lull2 =" luelv?® i w=>)" upes.

For s = 0 we omit the index so for example we denote ||| = ||-||. The totality of {Fs} is called a
Hilbert scale, and the basis {¢} is called a basis of the scale. A Hilbert scale may be continuous
or discrete depending on if the parameter s is real or integer. The following lemma summarizes
some of the key properties of Hilbert scales.

Lemma 6.2 (see for example [Kuk00]). Let {Fs} be a Hilbert scale. Then
o [fr < s then Fs is compactly embedded into F.

e The spaces Fs and F_g are conjugated with respect to the scaler product (-,-): for any
u € Fy N Fy we have

[ulls = sup{[{w, v)| [v € F_s N Fy, [[o]-s = 1}

In particular, for any space Fs we can identify the dual (Fs)* with the space F_g.
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e For —oo < a <b< 400 and 0 < 6§ < 1 the space F. with ¢ = (1 — §)a + 6b interpolates
the spaces F, and Fy, that is, F. = [F,, Fp]. In particular, for any uw € F, the following
interpolation inequality holds:

lulle < Ml lull.
Example 6.3. Take for E = F| the space of square integrable 27 periodic real functions, L? (T, R).
It has a basis given by

1
= —, = — cos kx, _ = —=sinkx,
for k € N\ {0}. Take v, = max(1,|k|). Then the resulting spaces Fs can be identified with the
Sobolev spaces H*(T,R).

6.1.3 Finite dimensional approximation

In this subsection we reproduce the basic results of the finite dimensional approximation con-
tained in Kuksin’s article [Kuk95]. We include the proofs for completeness. What follows can be
explained in slightly more generality, but we choose to restrict to the particular form of the exam-
ples that we have in mind. Let {F,} be a Hilbert scale with Hilbert basis given by {go?E |j € N}
with Fy = E. Denote E, the vector space generated by {goji |7 < n}. It is a real vector space
isomorphic to R?"*2 which is contained in every Fy. Let E™ be the Hilbert subspace of E with
basis {goji |j > n} so that E = E,, ® E", and write u = (uy,,u") for an element u € E. Denote
by II,, : E — E, be the natural projection. The idea is to approximate the flow using the flow of
the projection of the vector field on E,. We are going to restrict the class of the linear operators
A so that they commute with the projection on E,.
Let {\;} be a sequence of positive real numbers (with possibly A; — oo) and consider the
linear operator A whose action on the basis is given by
A(,oji = /\jgo;-—L.
It is a self-adjoint operator in F with the natural domain of definition. Now consider the complex
structure J on E defined by the action on the basis

Jgo;.—L =dpT.

It is easy to see that the operator JA is anti self adjoint and generates a one parameter group
of isometries e/4 such that the restriction to the plane Rapj ®Re; = (ReRJ )gpj‘ = (C(,o;F is

just the rotation e . The fact that J and A preserve E, for all n will allow us to define the
finite dimensional approximations just by projecting the vector field onto E,,. More precisely, for
a smooth function h; on E consider the Hamiltonian function

1
H,(u) = 5(Au,u> + hp(u) where hy(u) := he(I1,(u)).
The Hamiltonian equation now becomes
= Xg, (u) = JAu+ JVhy(u),

where Vh,(u) = I1,(Vht (I, (u))). The vector field X, generates a local flow ®,. This flow can
be decomposed as
ot =eo vVl with Vi) = (ol (un),u™).
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Here ¢!, is a finite dimensional Hamiltonian flow on E,, generated by the time dependent function
hy, o €74, In order to make sure that the flow of X and X" are going to be globally well
defined, we need to make some assumptions on the nonlinearity h. The following conditions allow
us to work as if we where on a locally compact space.

Definition 6.4. Let {F;} be a Hilbert scale with Fy = E. We say that the Hamiltonian equation
U= Xpg,(u) = JAu+ JVhy(u),

with Agojc = )\jcp;-t, complex structure J go;.—L = +¢T and a smooth function h : R x E — R satisfies
the compactness condition 6.4 if

e h has a C? extension to R x F; — R for some s < 0.

e For every T > 0 there is a constant Cr > 0 such that
|Vhi(2)|| < Cp for every (t,2) € [-T,T] x E.

Remark 6.5. For the results in this section the second condition can be weakened to just asking
that Vh : R x Fy — E sends bounded sets to bounded sets (see [Kuk95]). We choose our second
condition for simplicity since these are the hypothesis needed to extend the middle dimensional
rigidity theorem (Theorem 4.55) to infinite dimensions.

The first consequence of satisfying the compactness assumption is that the Hamiltonian equa-
tion defines a global flow made up of symplectomorphisms. More precisely we have the following
lemma:

Lemma 6.6. Suppose that the Hamiltonian equation satisfies the compactness condition 6.4.
Then the gradient of h is locally Lipschitzi.e, for every T > 0 and R > 0 there is a constant
Cr(R) such that

|Vhi(u) — Vh(0)|| < Cr(R)||u —v|| for every (t,z) € [-T,T] x Bg.

Moreover, the Hamiltonian equation defines a globally defined flow ®' : E — E such that (®')*w =
w.

Proof. For the first claim one has to use that h has a C? extension to some F; s < 0 where E is
compactly included. Then use that [T, 7] x BE is precompact in R x Fs to bound dVh on a
suitable norm. The existence of the local flow ®* follows from classical arguments of fixed point
theorems (see [Paz83] or [Kuk95]) applied to Duhamel’s formula. The second property in the
compactness assumption then guarantees that solutions do not blow up in finite time, so the flow
is globally defined. For the fact the ®! is a symplectomorphism see [Kuk00]. O

We continue with the finite dimensional approximation. Remark that since ||Vh(2)] is
bounded, the same will be true for h,, so the flow ®! is also globally defined. The key point of
the approximation is the following lemma which is a slight modification of a lemma in [Kuk95,
appendix 2]. Remark the II,, is defined on all Fy and commutes with the inclusion Fs < F.

Lemma 6.7. Let K be a compact subset of Fs for some s. Let g : R x Fy — E be a continuous
map and fix a T > 0. Then

sup  [lge(u) — ge(Hnu)||
(tw)E[-T,T|xK

converges to zero as n goes to infinity. Moreover suppose that h satisfies the compactness condition
6.4. Then for every R > 0 there exists a decreasing function eg : N — R such that eg(n) — 0 as

n — oo and
IVhi(u) — Vhy(u)|| < er(n) for every (t,u) € [-T,T) x Bg.
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Proof. By contradiction suppose that there is a sequence {(sy,z,)} C [-T,T] x K such that
lgs,, (zn) — gs,, (I, 20)||E = § > 0 for every n € N. By compactness we may suppose that there is a
converging subsequence (S, , zn, ) — (s, 2). This sequence will also verify II,,, z,, — z. We have

Hgsnk (2ny) — Ysn,, (I 2n, ) || < Hgsnk (zn),) — 9s(2)[| + llgs(2) — Gsn,, (T2, |

and the quantity of the rhs converges to zero as ny goes to infinity by continuity of ¢g. In particular,
for ny, big enough we get ||gs,, (2n,,) — gs,, (In, 20, )|l < J, a contradiction.

For the second claim remark that Vh; has an extension to F for some s < 0. ~Deno‘ce by Vﬁt
the extension and let ¢ : E — Fs be the compact inclusion so that VA (u) = Vh(i(u)). Recall
that Vh,(u) = 11, Vhe(I1,,(u)). We have

[V he() = Vhn(@)] < [[Vhe(u) = T Fhau) | + [T,V hy () — T V(T
< (| Vhe(i(w)) = I Vhe(i(w) | + | Vhe(i(u) = Vhe(ai(w))])-
For every R > 0 the sets (J<r Vh(i(Bg(0,R))) and i(Bg(0, R))) are precompact in F and F,

respectively, so we may take the sup in Bg(0, R) and |t| < T" and apply the first part of the lemma
to conclude. 0

Now we have all the tools we need for the finite dimensional approximation.

Proposition 6.8 (see [Kuk95]). Fix at € R. For each R > 0 and € > 0 there exists an N such
that if n > N then

IV (w) = Vo) < e
for all u € Bpg.

Proof. Duhamel’s formula and the fact that that e*/4 is a bounded operator give

IV (w) = V() < C/OtIIVhs(@S(U)) = Vhn (@7 (u))||ds <

<c / [V ha(@° () — Ty (35,(u))]ds + C / VA (85 (0)) — Vo (25, (u)) .
0 0

If u € Br and s € [0,¢] then ||VA|| bounded implies that for all n € N the element @£ (u) does not
leave a ball of radius R'(R,t). We can now use Lemma 6.7, the fact that VA is locally Lipschitz
(Lemma 6.6) and the decomposition ®*(u) = e/AV(u) to get

t
IV (u) = Va(u)]| < C/ 1V?(u) = V7 (u)|ds + Cte(n).
0
By Gronwall’s lemma we conclude that

IV (u) = Va(w)]| < e(n)C (1)

where C(t) depends continuously on ¢. The function €(n) is decreasing and converges to zero so
there exists an N € N such that if n > N then €(n)C(t) < e which gives the result. O

93



Chapter 6. Symplectic rigidity in Hamiltonian PDEs

6.1.4 Examples

Nonlinear string equation. In order to satisfy the compactness condition of Definition 6.4 we
need to restrict the type of nonlinearity as well as the dimension of the equation. We will change
the operator A considered in the Hamiltonian formulation so that our class of PDEs include the
well known Sine-Gordon equation. Consider the one dimensional equation

U= Ugy — f(t,z,u), u = u(t,x),

where x € T = R/27Z Recall that if we denote by B the operator B = (—%/0z% + 1)'/2 then we
may write the equation in the form

1 = —Buw,
= (B - B Yu+ B f(t,z,u).

Define E = H%(T) X H%(']I‘) as the product of Hilbert spaces where the scalar product of H%(T)
is given by
1

<U1, U2> — %

27
/ Buy (z)ug(x)dx.
0

If we define the function

hi(u,v) = L " F(t,z,u(x))dz, F = /u fdu.
T Jo 0
we get
Vht(uﬂj) = (B_lf(t7x>u($))70)

Suppose that f is a smooth function which is bounded over compact time intervals and has
at most a polynomial growth in u, as well as its u— and t—derivatives:

o* o

Sz ppd B < Crp(1+ [u)Me, for for a+b=Fk andall k>0,

with My = 0, C% are positive constants bounded for bounded ¢ and nonnegative My’s are t
independent. Then the gradient verifies || V|| < Cy over the compact time interval associated to
Cp. Moreover the polynomial growth condition on f guarantees that there exists a 0 < 6 < 1/2

such that Vh has a C! extension to H%_G(T) X H%_Q(T) (see [Kuk95]). A particular case where
such properties can be verified is f(¢,z,u) = sinu which corresponds to the Sine-Gordon equation.
Now putting A = (B — B~1) x B and defining J : E — E by J(u,v) = (—v,u) we can write the
nonlinear string equation as the semilinear PDE:

(w,v) = JA(u,v) + JVhi(u,v).
Consider the symplectic Hilbert basis {c,oji | j € Z} where

1 _ 1
SOj = —(p;(2),0), Y = m

o (0, ~¢5(a).

with
(2) V2sinjz, j >0,
() =
vi V2cosjz, j<O0.
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In this basis we have (B x B)(p;E =72+ 1g03t so if we denote A\; = /52 + 1 we get that

1 _ _
A‘Pj =(\ — /\—)gpj and  Ap; = Ajp; .
J

Now remark that JA has eigenvalues {=i, /)\f — 1 = 4ij}. If we calculate e'’/4 we get that its

action on each symplectic plane QO;F]R ® ¢; R is given by the matrix

/i2
costj — JjH sintj

J
21

sintj costj

which gets closer and closer to a rotation as j goes to infinity. In particular we get a bounded
group of symplectic linear maps. In this case the exponential does not define an isometry, but
one may see that the results of the previous sections still apply. In particular we have the finite
dimensional approximation.

For higher dimensions, it is known (see [Kuk95]) that the weak compactness assumption is
verified for d = 2 if f is a polynomial of degree less than or equal to 4, and for d = 3 if f is a
polynomial of at most degree 2.

Nonlinear Schrédinger equation. In this case it is unlikely that the equation satisfies the
compactness assumption under conditions on the nonlinearity. In order to guarantee the com-
pactness condition we smooth out the Hamiltonian and consider

hi(u) = 2(217r>al/ng,z(t,ac,U(ac),U(ac))dac, with U =ux*¢&,

and ¢ € C*®(T% R). The corresponding Hamiltonian equation is

9 _
iu:Au—i—a—g(t,x,U,U)*f U=uxt.

In this case it is enough to ask that g is a smooth function such that g—g is bounded.

6.2 Infinite dimensional symplectic rigidity

In this section we will explore the rigidity properties of the flow of semilinear Hamiltonian PDEs
where the nonlinearity satisfies the compactness assumption. As in the finite dimensional case,
symplectic rigidity starts with Gromov’s nonsqueezing. The first proof of the analogue of Gromov’s
theorem for infinite dimensional Hamiltonian systems appeared in Kuksin’s article [Kuk95] in the
setting that we are working with. We want to point out that other authors followed him giving
proofs for the theorem in different contexts for equations which are not compact perturbations of
linear flows. For more details we refer the reader to the Introduction of this manuscript.

6.2.1 Non-squeezing theorem

Once we have the finite dimensional approximation, the non-squeezing theorem comes as a direct
corollary. This is a consequence of the fact that the hypothesis of the theorem are open in the
C° topology. More precisely let ¢ be a diffeomorphism of R?" and suppose that for every ¢ > 0
there exists a symplectomorphism ¢ such that

dCO ((pv ¢) < ¢,
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then one can prove that ¢ satisfies the statement of Gromov’s non-squeezing. The proof goes
along the same lines as the one we explain in Theorem 6.11. In fact, in finite dimensions we have
the following stronger and surprising result:

Theorem 6.9 (Eliashberg [Eli87] and Gromov [Gro85]). The group of symplectomorphism is C°
closed in the group of diffeomorphisms.

This fact came as a surprise in the field. In spite of the fact that being a symplectomorphism
is a C! condition, the property is stable by C° approximations. This theorem is the starting
point of a rapidly growing field called C° symplectic geometry. The interested reader may look
at Humiliere’s HDR [Hum18] for an introduction to the main concepts and results.

We now continue with the proof of the theorem for our class of PDEs. As before, we are
working on a Hilbert space F with Hilbert basis given by {go?E | 7 € N}. Denote

w=D (wfe] tuje;) =) (uf +ui D)o}

J J
and consider the ball B, of radius r centered at the origin and and the cylinder
Ch={uec E||luf)®+ |u; |* < R*}.
Denote Hgfl the projection on the symplectic plane generated by {(,pz, o }-

Remark 6.10. Throughout this section having k as an exponent means that we take the elements
of the basis with |j| > k, and having k as an index means that we take the elements with |j| < k.

Theorem 6.11. (see [Kuk95]) Let ® = &, : E — E be the flow of a Hamiltonian satisfying the
compactness condition 6.4. Then ®(B,) C Ck implies r < R.

Proof. For each € > 0 and for the radius r of the ball use Lemma 6.7 to find the N € N such that
Vi is € close to V over B,. Suppose that for every u € B, we have

I~ (@ ()| < R.

The map e*/4 is an isometry on every symplectic plane {cp;, ¢ } and commutes with Hﬁfl so for
every u € B,

T (Vi () || < [TV () = Viv(@)) |+ T (V (@) ]] < e+ [T (@(w)]| < e+ R.
Since Bg, (0,7) C B, we deduce that for every u € Bg, (0,r)
T~ (S ()| = I (Vv ()| < e+ R

where ¢ is a finite dimensional Hamiltonian flow in R2VN+2 By Gromov’s non-squeezing we
conclude that r < R + €. Since € was arbitrary we get r < R. 0

What type of information does this theorem give about the behavior of solutions of the Hamil-
tonian equation? We now give an interpretation in terms of the problem of energy transition to
high frequencies. This behavior can also be seen as a kind of instability in the Fourier coefficients
(see Corollary 6.14 or [Tao06]). We start with the remark that the Hamiltonian equation of Def-
inition 6.4 preserves the subset D(A) (see [Paz83]), and since H is defined on this subspace one

can prove that
H(®y(u)) = H(u) for every wu € D(A).
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J J
> >

Figure 6.1: The representation of the projection on each E,’j_l for a ball and a cylinder in sym-
plectic space E = H 3 x H? with coefficients in the L2 X L? basis. To understand the figure recall
that if gog is an orthonormal element of the basis in H2 (see Subsection 6.1.4) then the coefficient

of this element cp;{f on the L? basis is (1 + k2)_i which goes to zero when k goes to infinity.

Now recall that the Hamiltonian can be written as

H(u) = %(Au, a) + o) = SN (a2 + s ) + he(u).
jeN

In particular, by the conservation of energy, if one of the coefficients |uf (t)|? with big k decreases
with time then there has to be an growth of energy coming from another place. By the compactness
assumption h; is bounded over bounded sets and ®; sends bounded sets to bounded sets. This
implies that h; cannot compensate a big decrease of one coefficient, so the growth of energy has to
come from the growth of another coefficient \uli]Q This phenomenon is called transfer of energy
between the frequencies. In light of this behavior, the following question arises: Can this transfer
of energy between the coefficients happen in a uniform way for a fixed set 4?7 The nonsqueezing
statement can be interpreted as:

Corollary 6.12. The energy contained in a given frequency cannot be transfered to other fre-
quencies in a locally uniform way (see Figure 6.1).

The problem of the transfer of energy has been studied for several other Hamiltonian PDEs.
We shortly explain the example of the Szegd equation where one can explicitly describe the
transfer of energy for particular solutions, instead of uniform groups of solutions as in the previous
corollary. For more details we refer to [GG16, GG17]. Consider on L?(T,C) the projector

+o00
MY fk)e™) = flk)e™.
kEZ k=0

For initial conditions in C*°(T,C) N Ran(II) the cubic Szegd equation is defined as

it = T (|ul?u).

One can prove that the L? norm of the solution is a constant of motion, so again a decrease of one
of the coefficients has to be compensated with the growth of another one. The following theorem
studies the transfer of energy to higher frequencies by studying the H® norm for high values of s.

Theorem 6.13 (see [GG16]). For any solution u to the Szegi equation, we have, for all s > 1
u(t)[| s < CoeCst
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where Cy and C’, are positive constant which depend only on s and ||ug||gs. Moreover there exists
a dense Gy subset of II(C*°(T, C)) denoted by G such that for every solution with uy € G, for all
s>% and all M > 1 we have

t s
lim sup W = 400
t—00 ‘t‘
and on the other hand
lm inf||u(t) || gs = ||uol -
t—o00

The fact that the L? norm is constant together with an H® norm which goes to infinity
implies that there is a transfer of energy to high frequencies. The result for the growth of the
H? norm implies that the coefficients for the higher frequencies become bigger, so the wave has
more oscillation. This is why this phenomenon is sometimes called wave turbulence. For this
equation this transfer of energy is less than exponential, but on a dense subspace it is faster that
any polynomial growth. The last equality also indicates that the trajectories are always coming
back to the H® norm of ¢ = 0, that is, the movement has a certain recurrent aspect. Remark that
there is no locally uniform control on this transfer of energy.

The second interpretation of the non-squeezing behavior is the following corollary of Gromov’s
non-squeezing which exhibits the result as a instability for solutions (see [Tao06]). A solution u
can loose the energy of a certain frequency k at some point, but this cannot happen to all the
solutions with initial condition near u at the same time. If we look at the evolution of a given ball
Bpr centered at u(0), for every € > 0 and every ¢ there is at least one solution whose frequency is
outside the disc of radius R — € centered at u(t).

Corollary 6.14. Let u be a global classical solution of the Hamiltonian equation satisfying the
compactness condition. Denote up = u; +iu,, € C. Then for any R > r > 0, any times to,t1 € R
and any k € N there exists another classical solution u such that

lu(to) — alto)le < B but  Jug(ts) — ig(tr)] > 7.

6.2.2 Symplectic capacities

In this subsection we define a type of infinite dimensional symplectic capacities. These capacities
are constructed as a kind of limit of the classical ones, so they are going to inherit the basic
properties. In particular, they verify the normalization property. Moreover, using the finite di-
mensional approximation we are able to prove that these capacities are invariant by our privileged
class of Hamiltonian flows. The first construction of such a capacity appeared in [Kuk95] where
Kuksin defined them via Hofer-Zehnder’s capacity. In this manuscript we give a new costruction
using action selectors for compactly supported Hamiltonians. In particular one may use Viterbo’s
action selector.

Definition of the capacity. We start with the definition of admissible functions that will be
used to select the limit action values. For any open subset & C E we define

F(U) = {smooth fuctions f : E — R such that Supp f C U and d(Supp f,0U) > 0}

Consider the action selector c¢(pu,-) defined in Chapter 3. For any Hamiltonian H we define
c(u, H) = c(p,9i7). Denote f, = [, and define

Co(pt, ) = liminf e(p, fn) and  (u, f) = lin sup (tts fn)
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Note that the support of f, is contained in Supp f N E, which is bounded, so f, has compact
support. In particular ¢(u, f,,) is well defined. Moreover, since U is bounded, there exists an
R > 0 such that 0 < ¢(u, f,) < 7R? for every n and both limits are well defined finite numbers.
Remark moreover that for every n there is a periodic orbit z, : [0,1] — E,, for the Hamiltonian
vector field X/» such that

C(N? fn) - A(Zn(o)’ fn)

One could hope that the orbits z, converge for example uniformly to a periodic orbit z(¢) asso-
ciated to f. There is little hope for such a result: even though we control the action, there is a
priori no C° control on the orbits 2, so they might be jumping from one place of the phase space
to another. We now use c¢(, f) to define the capacity of open bounded sets U as

co(U) = sup{co(p, f) for f € FU)} and  (U) = sup{c’(p, ) for f € F(U)}.

The definition for open unbounded sets V is the sup over the open bounded sets U contained in
V. For arbitrary sets X, the capacity is defined as the inf over the open sets that contain X. We
clearly have ¢,(X) < ¢°(X).

Properties of the capacity. We now follow the structure of Kuksin’s article [Kuk95] and prove
the analogues of the results of his article for our new capacity. We denote by ¢ Viterbo’s capacity
without specifying the dimension of the phase space. We start relating the new capacity to the
classical one:

Proposition 6.15. For any open subset ¥V C E we have

(V) <liminfc¢(VNE,) and (V) <limsupc(V N E,)

Proof. Let U C E be an open set. Then U N E,, is open (indeed, for z, € E,, and an open ball
Bg(2zn,€) C U, we have the equality Bg, (2,,€) = Bg(zn,€) N Ey,). Now if f € F(U), then f, is
compactly supported in U N E,, so by definition of the capacity ¢ we get c(u, fr) < c(U N Ey). If
we now take the limits we get

co(f) <liminfe( N E,) and °(f) <limsupclUd N E,).

Finally, taking the sup of f € U we get the desired inequality. Now consider an unbounded open
set V. Every bounded open set I/ contained in V defines bounded open sets UN E, C VN E,. By
monotonicity ¢(U N Ey) C ¢(V N E,) so for every such set U we have

o) < liminfe(Ud N E,) <liminfc(V N E,)

and the analogue for ¢°(U). Now just take the sup over U to get the result. O

The problem for arbitrary sets X is that, for an open set V that contains X, we get by
monotonicity ¢(X N E,) < ¢(V N E,). Here the inequality goes in the same direction that the
one we have for ¢°(V) and ¢(V N E,,). Nevertheless, it is possible to get some information for sets
which are particularly stable by intersection with E,, (see Lemma 6.23).

Corollary 6.16. For the standard cylinder we have
co(CF) < ?(CF) < 7r2.

Proof. Just remark that for n > k we have ¢(C*NE,) = nr? and use the previous proposition. [
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Proposition 6.17. For subsets X1, X5, X C E and X # 0 we have
o If X] C Xy then co(X1) < co(Xa) and (X)) < ?(Xo).
o co(AX) = N2¢(X) and c°(AX) = \2c°(X).

Proof. To prove the first claim just observe that for open bounded sets U; C Us we have F(U;) C
F(Us), which implies the inequality for open bounded subsets. To prove the second claim observe
that multiplication by A denoted by my : E — E is smooth, bounded and d(my(z), mx(y)) =
Ad(x,y). This shows that \* : F(7O) — F(O) given by f — f omy is a bijection. By the
properties of the finite dimensional capacity we get c(u, fnomy) = A2c(u, f») and this implies the
result. O

Proposition 6.18. For the ball B, and the standard cylinder C* we have
co(CF) = co(B,) = mr? = °(B,) = °(CF).

Proof. By the previous proposition and Corollary 6.16 it is enough to show that c¢,(By) > .
Consider our now classical (see Lemma 2.8) smooth function A : [0, 1] — R such that A(0) = 1—e¢,
h(t) = 0 near 1 and 0 < |W/(t)] < 1 —e. Consider the Hamiltonian f : E — R defined by
f(z) = —mh(||z]|?), it is easy to see that f € F(B,). As in Remark 2.8 we see that for every n the
spectrum associated to f, is {0, 7 —me}. We conclude that c(p, fr,) = m—me, then c(u, f) = 7 —me
and finally that c,(B1) > 7. O

We end this subsection with the proof of the fact that these capacities are indeed invariant by
Hamiltonian flows satisfying compactness assumption 6.4.

Proposition 6.19. Let ® = ®; be the flow of the Hamiltonian equation satisfying the compactness
assumption 6.4. Then for every X C E we have

Co(X) < co(P(X)) and °(X) < ?(P(X)).
If moreover ®~1 is bounded, then we have equality.

Proof. Remark that the nonlinearity h has bounded gradient so V' sends bounded open sets to
bounded open sets and V(i) is open and bounded. In particular ¢(V(U)) is defined directly
using F(U). It is enough to prove the result for open bounded sets. Recall that we have the
decomposition ®; = e/4V* and that '’/ is a symplectic isometry which commutes with every
projection IL,. For every smooth function f, we have

(foe M)y = faoe” and c(u, (foe”)n) = c(u, f)-

This implies ¢, (u, f o e4) = ¢co(p, f) and ®(u, f o et?4) = °(u, f). In addition, the fact that
et/4 is an isometry implies that the map (e/4)* : F(e!AU) — F(U) given by f + foet/4is a
bijection. Using these two facts together we get

co(U) = co(e4U) and  ©(U) = (e U).

It is now enough to prove that the capacity is invariant by V!. The subset U is bounded so we
may apply the approximation lemma, and for every € > 0 there exists an n such that for every
u € U we have ||V, (u) — V(u)|| < e. We claim that for every f € F(U) there exists an n such
that foV, ' € F(V(U)). Once this is established, if we use that V;, is finite dimensional, we have
co(f) = co(foV, h) and ¢°(f) = c®(f oV, ). In particular we get

Co(U) < co(V(U)) = co(@U)) and  (U) < (V(U)) = (@U)).
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In order to prove that there exists an n such that fo V-t € F(V(U)) we need to show that
d(Supp (f oV, 1), 0V (U)) > 0.

For any f we have the equality Supp (f oV, ') = V,,(Supp f), and since V;, is a diffeomorphism in
finite dimensions we have d(Supp (f o V,; 1), 0V, (U)) = § > 0. Now for every e we may find and
n such that d(0V (U), 0V, (U)) < e. To conclude choose an n for an € that verifies € < 0 and use
the previous inequalities.

In order to prove the reverse inequality one has to apply the same arguments to ®~!. To do
this, one has to make sure that it is also approximated by finite dimensional flows. We leave this
as en exercise or see [Kuk95, Lemma 6]. O

Remark 6.20. As an example of ® with ®~! satisfying compactness assumption 6.4 we have the
autonomous Hamiltonian PDEs that satisfy the assumption 6.4.

Remark 6.21. In Kuksin’s article [Kuk95] the capacities are defined using the Hofer-Zehnder
capacity described in Subsection 2.3. An autonomous function f € F(U) is called fast, if f,, is fast
for n > ng for some ng. One then defines the capacity as the infimum of the maximal variation
of fast solutions.

Corollary 6.22. For any domain O C E and & € E we have
o(X)=co(X+€&) and (X)) =c(X+E).

Proof. 1t is clear that the addition A¢ : E — E is a symplectomorphism. Moreover for each NV we
can write £ = ¢V &y and Agn is a finite dimensional symplectomorphism such that d(Ag (2), z) =
lén]] — 0. We may then apply the same arguments used in the previous proposition to prove
one of the inequalities. The same argument also applies to A_¢ which gives the reverse inequality
and the desired result. ]

6.2.3 Coisotropic Camel

We now move towards the extension of Theorem 4.55 to the context of Hamiltonian PDEs.
Recall that to state the theorem we had to divide the symplectic phase space into two transverse
coisotropic subspaces. In the infinite dimensional case we will denote ¥ = E, & E_ where
E. (resp. E_) is generated by {gpj |j € Z} (vesp. {p; |j € Z}). Moreover denote Ej, (resp.
E* and E*) the Hilbert subspace generated by {gD;t || < k} (resp. {gpj |l7] > k4 1} and
{e; [lil = k+1}) and Iy : E — Ej (resp. I1% and II*) the corresponding projection. Fix a
k > 1 and let X be a compact set contained in Ej. we are going to be interested in the image of
sets of the form
C ={ue E|ue X and II* u = 0}.

As in the finite-dimensional case, we first verify that the capacities constructed in the previous
subsection do not give rigidity information for the image of these sets. Remark that we cannot
use directly the inequality given in Proposition 6.15 since C' is not an open set.

Lemma 6.23. We have the following equalities
co(EBx x EX) =0 = (B, x EY).

Proof. By homogeneity the value of these capacities is either 0 or +00. By definition of the
capacities it is then enough to exhibit an open set V containing Ej X E_k; with bounded capacity.
By Proposition 6.15 it is enough to find an open set V such that ¢(V N E,,) is bounded by a
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constant independent of n for every n big enough. We use the same argument that we used in
Proposition 3.41. Find a smooth bounded function f : R — R with values on |0,1[ and f(s) >0
for every s € R (every strictly positive integrable function f’ works). Define

V={u€eE suchthat [u;|< f'(u})}

By hypothesis if u € Ej X E_’ﬁ then u, = 0, so Ej X E_’i C V. Now using the arguments in
Proposition 3.41 we see that for n > k the capacity ¢(V N E,,) is bounded by a constant that only
depends on f. O

To begin our study of the evolution of C' we start with the study of the camel trajectories (see
Definition 4.37). In the infinite dimensional context, the camel points associated to V! are not
only bounded, but also compact. This will allow us to have a precise control of the trajectories.

Lemma 6.24. 1. Fix a k > 1 and let X be a compact set contained in Fy. Then for every
t€R and n > k we have ¢(X) < v(IL(VH(C) N {1k = 0})).

2. The set Up{u € C|TIE Viu = 0} C E is bounded by a constant R(t).
3. The set {u € C'|IIk Vtu = 0} is compact and so is VI(C) N {II%X = 0}.

Proof. Recall that Viu = (¢! (u,),u™) where ¢! is a finite dimensional flow generated by a
Hamiltonian function with bounded gradient so it verifies Theorem 4.39. An easy computation
shows that V! verifies the statement if and only if ¢! verifies Theorem 4.39 on E,,.

For the second claim let v € E and decompose its norm as ||u|| < ||[TLxul| + [T ul| + ||TIF ul).
If uw € C then by definition IIzu belongs to X which is compact contained in a ball of a certain
radius 7 and [I*u = 0 so ||lu|| < 7 + |[IT% u|. We now show that IT¥ Vlu = 0 implies ||II¥u|| <
c(t). Duhamel’s formula and the fact that sup( ,)cjo.qx gl Vin(W)]l < sup u)eiogxelVh(uw)| is
bounded imply that ||Viu — u|| < ¢(t) where c(t) does not depend on n. We get that ||II¥ u|| =
TR Viiu — TR ul] < ||Viiu — u|| < c(t) and the result follows with R(t) = r + c(t).

For the third claim we start by using the same argument as before to prove that {u €
C |1 V'u = 0} is bounded. Now let {2,,} C E be a sequence such that

Mz, €X, Tz, =0, and TEV'2, =0 forallneN.

We claim that {z,} has a convergent subsequence. First remark that, by the decomposition of
Vy in Exy @ EN, for every u € E and N € N we have 1TV Viu= TN w. Moreover, by definition of
Zn, if N > k then 1INz, = 0 and HﬂYVtzn = 0. For N > k we have

Y 2| = [T 2| = (T VA zall = T Vizn — IV 20| < (V2 — VEaal).

Now {z,}, is a bounded sequence so we can apply Proposition 6.8 and for every e > 0 there
exists a No(e) € N such that if N > Ny then |V}z, — V2| < e. By the previous inequalities
this implies that for N > Ny we have ||[ITVz,| < e. On the other hand, {z,}, bounded implies
that it has a weakly converging subsequence (still denoted by {z,} for simplicity) that converges
when projected onto any finite dimensional subspace Ex. We conclude that for any 6 > 0, with
e=0/3 and N > Ny(e), if p,q € N are big enough we have

2p — 2|l < [Mnzp — TNzl + HHszH + HHquH <4

which implies that z, is a Cauchy sequence.

102



6.2. Infinite dimensional symplectic rigidity

We may now prove the infinite dimensional version of Theorem 4.39 for the map V*. The proof
of the following proposition relies on the finite dimensional result and it is the finite dimensional
approximation of the flow that allows us to go from finite to infinite dimensions.

Proposition 6.25. Fix a k > 1 and let X be a compact set contained in Ey. Define
C={uecE|uecX and II* u = 0}.
Then for every t € R we have
c(X) < 4(IE(VH(C) N {TT§ = 0})).

Proof. Let V. be the open € neighbourhood of I, (V!(C) N {II¥ = 0}). We will show that for
each € > 0 there exists an n € N such that I (V,/(C) N {II¥ = 0}) C V.. Once this is proven,
Lemma 6.24 part 1 and monotonicity of the capacity v imply that ¢(X) < (V) for every € > 0
so ¢(X) < lime,v(Ve). We then use that II,(V(C) N {IIX = 0}) is compact by Lemma 6.24
part 3 to conclude that lim. o y(V.) = v(IIx(V1(C) N {IIX = 0})) which is the desired result.

The proof is by contradiction. Suppose that there exist an ¢y > 0 and a sequence {z,} C E
such that for all n € N

Mz, € X, TFz, =0, TEViz, =0 and d(IViz,, Vo) > €.

We claim that {z,} has a convergent subsequence. We use the same argument as in Lemma 6.24
part 3. For N > k we have

T 2 | = T | = [T Vi znl| = T VR 20 — TV 20| < [Vizn = Vil

By Lemma 6.24 part 2 we know that z, is a bounded sequence so we can apply Proposition 6.8
and for every § > 0 there exists a Ny(d) € N such that if n, N > Ny then ||V} z, — Viz,| < 6.
By the previous inequalities this implies that for n, N > Ny we have ||IIVz,|| < §. On the other
hand, {z,} bounded implies that it has a weakly converging subsequence (still denoted by {z,} for
simplicity) that converges when projected onto any finite dimensional subspace En. We conclude
that for any § > 0, with e = 6/3 and N > Ny(e), if p,q > Ny are big enough we have

|2p — 2qll < IMnzp — Uvzgll + HHszH + ||HNZq|| <9

which implies that z, is a Cauchy sequence. Denote z its limit in E. The set X is closed so
Iz € X and ¥ is continuous so IT¥ z = 0. This means that z is an element of C'. Moreover

remark that
HVtz - ngn” < ”Vtz - Vtzn” + HVtzn - V;an

so by continuity of V! and again by Proposition 6.8 we get that 'z, converges to V'z in E. Using
the hypothesis II% V/z, = 0 we find that II¥ V!z = 0 which allows us to conclude that IT,V?z
belongs to Vy. This contradicts the fact that d(IIx V! z,, Vo) > €9 > 0 for all n € N achieving the
proof of the theorem. O

This is not a statement about the actual flow of our Hamiltonian equation. Nevertheless using
the fact that e'’/4 restricts to a symplectic isomorphism on each E,, we get the following middle
dimensional nonsqueezing;:

Theorem 6.26. Denote by ®' : E — E the flow of a Hamiltonian equation satisfying the com-
pactness condition 6.4. For every k € N, every compact subset X of Ey and every t € R we

have
o(X) < (I @ (X x EY)).
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Proof. We always have the inclusion I, (VY(C) N {II* = 0}) C I V¥(C) so by Proposition 6.25
and monotonicity of the symplectic capacity v we have

o(X) < y(I(VH(C) N{IT} = 0})) < +(ILVY(C)).

The linear operator e'’/4 restricts to a symplectic isomorphism on each E,, which commutes with

[T and the capacity ~ is invariant under symplectic transformations so
YILVHO)) = v(e™ e AVH(C)) = 4(11,8(C)).

which gives the desired result. O
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Figure 6.2: The representation of coisotropic cylinder and a standard cylinder in E.

Taking into account the discussion in Subsection 6.2.1, we can also interpret this result as
a statement that talks about the energy transition between frequencies. This time, instead of
having an negative result for the transfer of energy between frequencies in a locally uniform way,
we have a negative result on unbounded sets. These sets are the coisotropic cylinders X x E¥
which are better understood on particular examples. Consider the nonlinear string equation

U= Ugy — f(t,x,u), u=u(t,x),

where © € T = R/27Z Recall that in this case F = H%('JI‘) X H%(T) and a solution U(t) =
(u(t), v(t)) verifies @(t) = —Buv(t) where B is the operator B = (—8%/dz? 4+ 1)/2. In this case
the symplectic Hilbert basis {apji |j € Z} is given by

1 1
+ —
o] = ———7(pi(@),0), ¢; =—7(0,—p;()),
SRR Loy
with
() V2sinjz, >0,
() =
vi V2cosjz, j<O0.

The graph of u(t, ) represents the position of a string on a plane, and the vector (0,7(t,z)) € R?
represents the speed of the point u(¢,z). For this equation, initial conditions in the space Fj
represents solutions with zero initial speed, and initial conditions on E_ represent solution where
the graph of the string starts at « = 0. In light of this, coisotropic cylinders represent solutions
where we allow initial conditions with one particular frequency (or k chosen frequencies) nonzero.
As an example denote Ej, the space generated by gpj[ for |j| < k and consider Ey ~ R? which
consists of constant functions.
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> >

Figure 6.3: The representation the graph of the initial condition u(0,z) and at each point the
vector of the initial speed v(0, ). On the left, (0, x) is constant. On the right, v(0, z) is constant.

Corollary 6.27. Let ®; be the flow of the Sine-Gordon equation. Let Bgr be the ball of radius R
in Ey. Then if for a t € R we have

o®¢(B, x EY) C Bg  or Ty®(B, x E°) C Bp.

then v < R. In particular for every R > r > 0 and every ty € R there is a solution (u(t),v(t)) =
U(t) = @+(Uy) with constant initial position (or constant initial speed) such that

‘/U(O,:c)dx| <R but |/U(t0,x)dx‘ > 7.
T T

If we compare this result with the analogue of Gromov’s non-squeezing described in Subsection
6.2.1 we see two main differences. The first one is that instead of looking at the evolution of an
open set (the ball), we look at the evolution of a subset which is contained in a vector subspace of
infinite codimension (Ej X Eﬁ C FE). In this sense the coisotropic cylinder can be thought of as a
”thinner” subset. The second difference is that instead of looking at a bounded set we now look
at the evolution of an unbounded set. In this sense the coisotropic cylinder can be thought of as
a "bigger” subset. One way of understanding these differences is that if we want to have more
control over one aspect of the set of initial conditions (for example, we only consider solutions
where the initial velocity has non-zero Fourier coefficients only of frequency less than k) we need
to lose control over some other property of the initial conditions (in this case the norm).
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Chapter 7

Exploring the Arnold conjecture for
Hamiltonian PDEs

Let (M,w) be a closed symplectic manifold. Every smooth function H : R x M — R defines via
w a vector field X# on M. This vector field can be then integrated and the time ¢ map of the
flow generates a diffeomorphism ; : M — M which is called Hamiltonian diffeomorphism.

Conjecture 7.1 (Arnold). Let M be a closed symplectic manifold and v, a Hamiltonian dif-
feomorphism. Then the number of fixed points of 1, is at least the number of critical points of
functions on M. Moreover, if all the fixed points are non-degenerate, i.e. 1 is not an eigenvalue
of di, at any of its fixed points, then the number is at least the number of critical points of a
Morse function on M.

Remark that the number of critical points of functions can be bounded from below using
topological invariants (cup-length, Betti numbers...). The Arnold conjecture has historically been
one of the major forces driving the development of symplectic topology. We briefly recall some
of the results. It was proven in [Wei78] and [Arn65] that every exact diffeomorphism which is
C'-close to the identity has at least as many fixed points as a smooth function on M has critical
points. In 1983, Conley and Zehnder [CZ83] proved the conjecture for the torus T?". In 1985
Fortune [For85] proved the case M = CP". The revolution came with the powerful theory of
Floer Homology [Flo89a, Flo89b] which was developed as a tool to prove this conjecture. Further
generalizations of his ideas followed shortly after and now the non-degenerate case has been
established for every compact symplectic manifold. In this section we are interested in the case
of CP™. In this case we have

Theorem 7.2 (Fortune 1985 [For85]). Every Hamiltonian diffeomorphism of CP™ has at least
n+ 1 fized points.

We are interested in generalizations of this statement to infinite dimension. More precisely
we look at the Schrédinger equation where the nonlinearity depends only on |u|?, In this case the
L? norm of functions is constant along solutions. If the flow is well defined, then it descends to
a map on the projective Hilbert space. The aim of this section is to explore if the analogue of
Theorem 7.2 is true in this context. We assume a compactness property for the nonlinearity (see
Definition 6.4) and give a proof for the autonomous case.

7.1 Schrodinger equation with convolution nonlinearity

Consider the Hilbert space of periodic square integrable functions L?(T, C) where T = R/27Z. The
operator A = —02 has a complete system of complex eigenfunctions given by {exp(ikz) |k € Z}.
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The real eigenfunctions are the real and imaginary part, which give a real Hilbert basis of L?(T, C)
for the real scalar product. More precisely define ¢g = 1, p2;_1 = sinjz and y2; = cosjx for
j > 1. We define the real Hilbert basis by gpj = ¢; and ¢; = ip;. Now let f: R — R and
£ : T — R be two smooth functions. We are going to consider the Hamiltonian functions of the
form explained in Subsection 6.1.4 with

1 2
() = 55 [ F(s Pty
The Hamiltonian equation in this case is
it = —Au+ O f(Jux €% 2, ) (u* &) x &

where 01 f means derivative with respect to the first coordinate. We know (see Lemma 6.6 and
Proposition 6.8) that the flow of this equation is globally well defined and is approximated by
finite dimensional Hamiltonian diffeomorphisms. We denote the flow by ®* : L?(T,C) — L?(T, C).
A straightforward calculation shows that the flow preserves the L? norm. In particular, this
symmetry gives that ®; commutes with complex numbers of norm 1, i.e.

D () = "D (u).

If we restrict the flow to the unit sphere S in L?(T) we can deduce a map ¥' : PL? — PL? where
PL? :=S/S'. We are interested in fixed points of U, that is, points u € S such that there exists
a u € R with

' (u) = eu.

The analogue of the statement of Theorem 7.2 in this setting is:
Conjecture 7.3. The map ¥! has infinitely many fixed points.

Remark 7.4. One is tempted to state the conjecture for every Hamiltonian diffeomorphism which
preserves the L? norm. The following example shows that this completely general generalization
is false (see [Fab18]). Consider the function G : L?*(C,R) — R given by

Glu) = 5 [ Viau()?

where V' is a smooth periodic real function. The flow is given by @}, (u) = e™ @)y which clearly
descends to PL?. In this case we see that for a u € S we have ®}(u) = e u if and only if
V(x)—p € 27Z for every almost every z. In particular, a generic choice of V' yields a Hamiltonian
map with no fixed points.

In this section we explore the validity of Conjecture 7.3 and we prove that it is true in the
autonomous case. Remark that in this case it is enough to study the critical points of the
Hamiltonian, so the problem is purely topological in nature, and not symplectic. What makes
this possible is the quadratic term in the Hamiltonian given by the Laplacian which guarantees
enough critical points.

Theorem 7.5. Suppose that f is independent of t. Then for everyt € R the map W' has infinitely
many fized points. More precisely, there is a sequence of points u, € H' and p, € R such that

O (up) = un(t, x) = e™ruy,(x)  for every (t,z) ERx T

and
H(up) — +00 as n — 400,
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This type of solutions receive the name of standing waves. We want to point out that standing
waves are a natural type of solution which arise even if the nonlinearity is not of convolution type.
For example, the nonlinear cubic Schrédinger equation

i = —Ugy + c|u*u
has infinitely many standing waves given by the plane waves

up(t, r) = ekeit

with & = k? + c. Moreover in this case the energy of the waves also goes to infinity. In particular,
for ¢ = 0, the linear equation has infinitely many fixed points. Our case is a compact perturbation
of this linear equation.

This theorem is to be compared with the one in [Fab18]. In this article Fabert gives a proof of
the conjecture for non-autonomous Hamiltonians under some conditions on the nonlinearity. More
precisely on the Hofer norm of the nonlinear term and on the function £. His proof uses symplectic
topology for the existence of a particular type of Floer strips together with nonstandard analysis.

7.1.1 Converging sequences of fixed points

The first step is to use the fact that ® can be approximated by finite dimensional Hamiltonian
flows ®! in order to reduce the proof to a statement about converging sequences of standing waves
for ®¢.

Lemma 7.6. Let u, € SN E, and u, € [0,27] be such that
! (uy,) = ety

for every n € N and t € R. Suppose that both u,, and u, converge in L? and [0, 27] respectively.
Then the limits u and p verify '
' (u) = ey

for every t € R.

Proof. Fix t € R. Use the triangular inequality and the fact that ® (u,) = e*tu, to get
19 (u) — e ul| < (@ (u) — @ (un) || + [V (wn) — @, (wn) || + € — a4 [ty — eHhull.

The right hand side converges to zero when n goes to infinity by (in order) contnuity of ®!, by
Proposition 6.8 and the fact that the u, are bounded and by convergence of w, and . O

Now the problem reduces to the existence of these converging sequences. Recall that since the
nonlinearity is of convolution type, the function h can be extended as a C? function on the whole
space H~1(T,C). In particular, since the inclusion L?(T,C) < H~(T, C) is compact and that S
is bounded we can find a constant ¢ > 0 such that

sup |hp(u)| <sup |h(u)] < c and sup||Vh,(u)|| < sup||[Vh(u)| < ec.
u€eS ueS ueS u€eS

The following lemma shows that H verifies a kind of Palais-Smale condition by approximation.
More precisely:

Lemma 7.7. Suppose that there is a constant C > 0, and two sequences u, € SN E, and u, € R
such that
H,(uy,) <C and VHpy(up)~+ ppun =0

for every n € N. Then {u,} is compact in H*(T,C).
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Proof. We may write H as
1
H(u) = S (lullfp = l[ulZ2) + h(w)
so that
lunllFn < llunllfz + 2|h(un)| +2|H (un)| < 1+ 2¢ +2C

and u,, are bounded in H!(T,C). The second hypothesis can be written as
Aty + Vhy(up) + iy =0

where Vhy,(u,) = 11, Vh(u,). We first prove that ju, is bounded. Taking the L? product with u,
the previous equality implies that

<Aun7un> + <th(un)7un> + <Mnun7un> =0.

This can be written as

1
§W%ﬁp—MM%%HVMWMwm+MMwﬁ;=0

We conclude using the fact that u, has L? norm equal to one, that the sequence is also bounded
in H', and that the gradient of h is bounded in S. Now we continue with the proof that {u,}
has a converging subsequence in H2. Let II° : E — E° be the natural projection. It is easy to
see that it commutes with A. The hypothesis of equality for the gradient gives

A, = —HO(Hth(un) + tny),
and since A is invertible over E° we have
M%u,, = —A" T, VA(un) + pintin).

First, {yt,uy,} is bounded in H(T, C) so it has a convergent subsequence in L?. Moreover, Vh is
continuous on L? and u, is bounded in H!(T,C). This implies that {Vh(u,)} is compact in L? so
it also has a convergent subsequence. Now since A~1 : TI’L*(T,C) — II°H%(T, C) is continuous
we conclude that I1°u, has a convergent subsequence in H?(T,C). On the other hand, Ilgu, is
bounded contained in Eg ~ R? so it also has a convergent subsequence in H?(T, C). We conclude
that u, = Hou, + %, has a convergent subsequence in H?(T, C) which is the desired result. [

Remark 7.8. The hypothesis on u,, of the theorem are equivalent to the existence of a critical
point [u,] for the function that H, induces on CPY satisfying H,(u,) < C. In particular, taking
into account Lemmas 7.6 and 7.7, the proof of Theorem 7.5 reduces to proving, for each n € N|
the existence of critical points [u,] of the reduction of H, to CPY such that H(u,) < C for each
n.

7.1.2 Finding critical points

Let M be a closed oriented manifold and f € C*°(M). Denote by f¢ = {z € M| f(z) < ¢} and
denote by i. the natural map i. : H*(M) — H*(f¢). Let w € H*(M)\ {0}. We may select critical
values (see Appendix C or for example [Nicll, section 2.7]) by the formula

c(w, f) = inf{c|i.(w) # 0}.

We recall that if two functions satisfy f < g then

c(w, f) < c(w, 9),
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and that for any a € R we have
c(w, f+a)=clw, f)+a.
We will use the following classical result:

Theorem 7.9 (Lusternik-Schnirelmann, see for example [Vit97]). If c,w € H*(M) such that
aUw # 0 then

cla, f) <claUw, f).

Moreover, suppose that we have an equality and denote K. the set of critical points at level
c=cla,f) = claUw,f). Then w is nonzero on H*(K.). As a result dim K. > degw and in
particular, if degw # 0, K. is uncountable.

Consider M = CP™. In this case
H*(CPY =27 if 0<k<n

and the other homology groups are zero. Moreover, if we denote by a the generator of H?(CP")
we know that H?*(CP™) is generated by a“*. Consider the restriction of % (Au, u) to E,, ~ C*"*1
which we denote by @,,. On complex coordinates we have the explicit expression (see the definition
of ¢ at the beginning of this section)

n

1 2 2 2
Qn(z0, 21, ..., 22n) = Q;k (lz2k—1]" + |22x]%).

Denote by Q,, the induced function on CP?". The following lemma explains that we are able to
find every critical value of Q,, using the minmax selector.

Lemma 7.10. The function Q, : CP?® — R has n + 1 critical values {k*/2]0 < k < n}. The
set of critical points of critical value k*/2 is a point for k = 0 and a projective space CP' in the
coordinates zop_1, zok for k > 1. Moreover, if a is the generator of H2(CP2”) then

ok oy K
(™", Q,) = 5

Proof. The first claim is a straightforward. For the second part remark that for every critical
value ¢ we have dim K. < 2 < 4 = dega U a. We may use Theorem 7.9 to get

6(17Q~JL) < C(aU2qun) < C(a4,9un) << C(aU2n7Qn)

so the selector spans the n + 1 critical values of Q,,. O

7.1.3 Proof of Theorem 7.5

Denote by H,, and h,, the functions that H,, and h,, induce on CP?". We have
Denote again by c a positive constant such that

sup |h,(u)| < sup|h(u)] < c.
u€eS u€eS
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By the properties of the minimax selector that we saw in the previous section, and by Lemma
7.10 we have that

le(@*" H,) — ¢(a?*,Q,,)| = [e(a*" H,,) — 5 l=se

Let k, be a sequence of natural numbers such that

k2 k2 k2 k2
[?_Cv?+c]ﬂ[7_c7?+c]:@

for every n,m € N. Then
C(aUka ’ Hn)

2 2
defines a critical value of H,, which belongs to [ké” —c, kﬁ” + ¢|. This gives us a sequence u, of

points in S that verify

k2 k2
H,(uy) € [7’” —c, 7’” +¢] and VH,(up)+ ppu, =0
We now use Lemma 7.7 to conclude that {u,} converges in H?, and since H is continuous in H*

we conclude that the limit u verifies

k2 k2
H g m Pm
(u) € [—c+ 5 5 + ]

Finally we use Lemma 7.6 to conclude that u € S generates a standing wave for our equation.
We may now do this for every k,, to find standing wave with different energy levels and whose
energy tends to infinity.
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Appendix A

Basic symplectic geometry

The aim of this appendix is to introduce the basic concepts and definitions of symplectic geometry
that we use in this thesis.

A.1 Symplectic vector spaces

Definition A.1. A symplectic vector space is a pair (V,w) where V is a real vector space and w
is a non-degenerate skew-symmetric bilinear form.

Let g be a scalar product on V. Then there exists a unique linear map A : V' — V such that
w(u,v) = g(Au,v) for every wu,v €V

The fact that w is skew symmetric implies A = —A. This gives det A = det A* = (—1)4™V det A
so w non-degenerate implies that the dimension of V' is even.

Example A.2. For any a real vector space E, the direct sum V = E @ E* has a canonical
symplectic structure determined by the formula

wo(u ® a,v® B) = p(u) — a(v).

Ifey,...,e, is a basis of E and fi, ..., f, is the dual basis, then e; ®0,...¢,®0,0® f1,...,0D f,
is a symplectic basis for V.

Given a linear subspace W of a symplectic vector space (V,w), its symplectic orthogonal is

the subspace
W« :={veV|wu) =0 forevery uec W}

By non-degeneracy we have
dim W + dim W = dim V

and (W<)¥ = W. Moreover for subspaces W and Y we have (W NY)* = W« 4+ Y*“. There are
special types of linear subspaces of a symplectic vector space (V,w).

Definition A.3. Let (V,w) be a symplectic space and let W C V be a linear subspace. We say
that W is:

e Symplectic, if W N W« = {0}.
e Isotropic, if W C W«.

e Coisotropic, if W« C W.

e Lagrangian, if W = W¥.

A Lagrangian subspace verifies dim W = %dim V.
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A.2 Symplectic manifolds

Definition A.4. A symplectic manifold is a pair (M,w) where M is a manifold and w is a closed
two form on M such that w, is symplectic for every p € M.

Example A.5. Let N be a manifold and consider its cotangent space T*N. Let (U,q1,...,qn)
be a coordinate chart for N, with associated coordinates (T*U, q1,...,qn,P1,---,Pn). Define a
symplectic form on T*U by

n
w = Z dg; N dp;.
i=1

This w is defined by considering the one form on T*U

A= pidg;
i=1

which satisfies w = —dA. One can check that A is coordinate independent: in terms of the natural
projection m : T*N — N given by (q,p) — ¢, the form A\ may be equivalently defined pointwise
without coordinates by

Map) = ([digpm™)P € Tigp)(T"N)
where (d(g )" : Ty N — Tim (T™N) is the transpose of d(, )7, that is,

Mg (V) = Pld(gp) (V).

The form A is uniquely characterized by the property thet a*\ = « for every one form o : N —
T*N.

Symplectic manifolds are even dimensional. Moreover the nth exterior product w” is a volume
form. When (M, w) is compact, the cohomology class [w™] is non-zero by Stokes theorem. Therefor
[w] and all its powers [w"]
non-compact manifolds.

are non-zero. In particular exact symplectic forms can only exist on

Definition A.6. Let (M,w) be a symplectic manifold and let W C M be a submanifold. Then
we say that W is symplectic (resp. isotropic, coisotropic or Lagrangian) if T,,W is symplectic
(resp. isotropic, coisotropic or Lagrangian) for every w € W.

Lemma A.7. Let (M,w) be a symplectic manifold and let W C M be a coisotropic submanifold.
Then TW*® defines an integrable distrubution.

Proof. (from [MS17]) Let X and Y be vector fields in W with values in TW* and fix a point
w € W. Given a tangent vector v € T,W choose any vector field Z : W — TW such that
Z(w) = v. Since w is closed we have

0=dw(X,Y,Z2)
=Lx(w(Z,Y)) + Ly(w(X, 2)) + Lz(w(Y, X))
w([Y,Z], X)) +w([Z,X],Y) +w([X,Y],2)
=w([X,Y],2)

In the last equality we have used that w(X,Z) = w(Y, Z) = 0 for every vector field Z in W. In
follows that [X,Y](w) € T,,W*. O
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A.3 Hamiltonian diffeomorphisms

Let (M,w) be a symplectic manifold. For every function H : R x M — R we can define a vector
field X given by the relation
w(X,.) = dH, ().

If the manifold is compact, or H is compactly supported, then X7 defines a flow 1 on M.

Definition A.8. The set of compactly supported Hamiltonian diffeomorphisms Ham®(M) is de-
fined as the set which contains all time one maps 11’ of Hamiltonian flows generated by compactly
supported functions H.

Let H and K be two Hamiltonian functions on M. In order to study the properties of
Ham®(M) we introduce the following definitions.

H(t,z) = — H(t, ¢ ()
(H#EK)(t,2) =H(t,2) + K(t, (%) 7 (2))
(H#EK)(t,2) =(K — H)(t, 4/ (2))

Hy(t,2) =H(t, ¢~ (2))
HP(t, z) =p' () H (p(t), 2)

Lemma A.9 (see for example [HZ94] p.144). Let H and K be two Hamiltonian functions on M,
let @ be a symplectomorphism of M and let p be a non-decresing function. The following formulae
hold true

ol =(pih)~
[ =gl o gt
K _(pH) 1 o
b =popll 0p!

flp :T/Jﬂt)

Using these properties it is straightforward to prove that Ham®(M) is a normal subgroup of
the group of symplectomorphisms which contains every time ¢t map of the flow.
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Appendix B

The action functional as a generating
function

This section is based on [ABK*94] which is itself based on [Vit87, Vit90]. We give a variational
intuition for the definition of generating functions. Consider a compactly supported Hamiltonian
H = H(t,q,p) which generates the flow ¥ on R?" = T*R". Set Ly = R™ x {0} = Ogn the zero
section, and consider the Hamiltonian deformation Ly = (L) € R?". Denote by 7 : [0,1] — R?"?
paths on R?". We will work with paths in the Sobolev space H' = H'([0, 1], R?"). Recall that
the paths in this space can be represented by continuous functions. Consider the space of paths
that start on the zero section:

P = {yc H'|p(0) = 0},

Note that one can recover v as

1 t
v=(a) - [ dts)ds, [ p(s)ds),
t 0
so we will use the notation v = (¢(1),%). This shows that P ~ R" x L?([0, 1], R?"). Remark that

we have a fibration 7 : P — R" defined by m(v) = ¢(1). The vector space structure on Py is the
one induced by the derivative 4. We denote by S : P — R the action functional on this space:

1 1
5(y) = /0 5T A0 dt /0 Hy () dt.

A straightforward calculation gives that the differential of S on v = (q(1),7) applied to dy =
(0g(1),57) is

. 1 1 1 1 1
A3)0) = [ ~3aieovdi— [ —5asi - [ VHG)- sy
0 0 0

1 1
=—2U7~57]é—/0 [J4Y 4+ VH] - 6ydt
1
—p()3a(1) ~ [ 175+ VH] -6yt
0

Suppose that v = (¢(1),7) is a critical value of S. Then the previous calculation yields

p(1) =0,
J¥+VH =0.
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so v is a Hamiltonian trajectory that verifies p(0) = 0 = p(1). In particular, we see that critical
points are in one to one correspondence with points in L1 N Lg. In order to study these intersection
points one may then study the critical values. Instead of doing it directly on 5* we are going
to find a finite dimensional subspace E C L? and a function F : R” x E — R" x L? such that
S = S o F has the same critical values as S.

Finite dimensional reduction Every element z(t) € L?([0,1],R?") can be represented by

their Fourier series
t) _ Z 627rktJZk, 2k € R?n

kEZ
Denote de projection operators P = Py and QQ = Qn by

Py — Z 2kt

k|<N

0z — Z 2kt

|k|>N

If we denote by VQS' the L?-gradient of S in the direction of the @ component of the fiber, we
get ~

VoS(y) = —QJy — QVH(t,7).
Using the implicit function theorem (see for example [ABK"94]) one can prove the existence of
a C! map f: R® x PL? — QL? which assigns to every (q(1),£¢) € R® x PL? the unique value
f(q(1),€) € QL? such that )

V@S(q(1),€+ f(q(1),8)) = 0.

Lemma B.1. Denote by F the function F(q(1),&) = (q(1),&+ f(q(1),£)). Vertical critical points
of S = S o F are in one to one correspondence with vertical critical points of S. In particular,
both functions have the same critical points and critical values.

Proof. We need to show that
V525(7) = VpS + VQS' =0 ifand onlyif VpS(q,§) =0 with ~=F(q,¢)

By definition of f we have VQS'(’y) = 0 if and only if v = F(q(1),£). We conclude using this, the
chain rule and the explicit expression of VpF. O

The function S generates 91 (Lg) = 11 (0grn) via its differential. More precisely:

Lemma B.2. Let S = S o F be the function previously constructed. Then

i) = {0 B0 ew ot 20,90}

Proof. By Lemma B.1, the points satisfying VpS(q,£) = 0 are in one to one correspondence
with Hamiltonian trajectories v = F'(q,§) that start on the zero section which satisfy ¢(1) = q.
Moreover, using the formula for dS one may see that 2 (q €) = p(1). This shows that (g,¢) is a
critical point if and only if v starts and ends in the zero section, and this proves the claim. [

In order to study the critical points of this modified action, one can look at the critical points
of this finite dimensional reduction. This way of generating Hamiltonian isotpies of the zero
section gives a variational interpretation of the definition of generating functions (see Definition
3.4).

118



Appendix C

Critical value selectors

We give the basic properties of the critical value selectors that appeared in Chapters 3 and 6. For
simplicity we will consider compact manifolds M. The same results apply for generating functions
quadratic at infinity S since in that case the gradient V.S is linear at infinity, so it induces a global
flow. Let f: M — R be a smooth function and consider the level sets

o=z e M| f(z) < A},
Denote by iy : f* — M the natural inclusion. It induces two maps
(ic)s : Ho(f) — H*(M) and i : H*(M) — H*(f).
Definition C.1. For every non-zero class a € H,(M) define
c(a, f) =inf{\|a € Im ((i5)")}.
For every non-zero class 5 € H*(M) define

e(w, f) = mf{A] i3 (w) # O},

An easy verification yields min f < ¢(, f) < maxf. In the case of generating functions
quadratic at infinity one needs to consider (co)homology classes for the pair (S~°°,S1°°). In the
homological case ¢(a, f) has the simple equivalent minmax definition

c(a, f) = [g]li:r; max ()

where [y] = o means that the simplex v represents the class a.
Lemma C.2. The values c¢(a, f) and c(w, f) are critical values of f.

Proof. Suppose that ¢ = c(a, f) is a regular value. Then there is an € > 0 such that I, = [c—¢, c+¢]
is an interval of regular values. Chose a metric ¢ on M and consider the gradient Vf. Find a
compactly supported function p in I, which is equal to one on I5 for a 0 < § < €. Consider the
vector field

Vf(z)

X(z) = —P(f(l’))W-

Using the fact that p is non-zero only on resular values we see that X is well defined. Moreover
it has bounded speed so it induces a global flow ¢;. We claim that (pas( fc+5) = f¢9. To see this
take an z € 9, then

%f(%(iﬂ)) = dy, (o) [ (X (01(2))) = —p(f(:(x))) < 0.
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This implies that for every ¢t > 0 we have f(pi(z)) < f(z) so pi(f¢°) C f°9. Now if z €
fet9 — f¢=9 then one of the following two things happen: either ¢;(z) € f¢~° for some t € [0, 24],
and in that case o5 = @os5_; 0 oy implies that po5(z) C fe70. Or ¢4(x) stays in for9 — f¢=0 for
t € [0,24[, and in that case for those ¢

%f (@i()) = —p(f(pe(x)) = —1,

so f(pas(x)) = f(z) — 28 < ¢ — 6. This proves @o5(fe+%) C f¢~° The same argument for p_os
shows that ¢_o5(f¢7%) C £t which gives the reverse inclusion.
We have the following commutative diagram

lets
fere =2 M

‘8025 25

fcfé te—s M

Since c(a, f) = ¢ we have a = (ic14)*pss5(7y) for some v € H.(f°*?). Using the commutative
diagram we get

a = (icts)"¢a5(7) = (ic—5)"¢25(7)
so a € Im (i.—5)* which implies ¢(o, f) < ¢ — ¢, a contradiction. So we conclude that c(a, f) is

a critical value. A similar argument using the commutative diagram also gives that c¢(w, f) is a
critical value. O

Lemma C.3. Let f,g: M — R be two smooth functions and consider a nonzero cohomological
class w € H*(M). If f < g then

c(w, f) < c(w, g).
Moreover, for every ¢ € R we have c(w, f + a) = c¢(w, f) + a.

Proof. The hypothesis f < g implies that g¢ C f¢ so we have a commutative diagram

-9

il
g¢—M
i% Jld

. i
fe—M

If ¢(w,g) < ¢ then (i)*(w) # 0 and using that i = i o i? we get (i?)*(w) # 0. This implies
c(w, f) < ¢ so we conclude that ¢(f,w) < ¢(g,w). If now g = f + a we have g°t% = f¢. This gives
(47,4)*(w) # 0 if and only if (il)*(w) # 0 so we get c(w, g) = c(w, f) + a. O

Corollary C.4. Let f,g: M — R be two smooth functions and consider a nonzero cohomological
class w € H*(M). Then

le(w, 9) = c(w, Fl < lg = fllco-

Proof. Just remark that
g—lg—flleo < fF<g+llg—flco

and apply the previous lemma. ]
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Résumé

On étudie les propriétés de rigidité symplectique des
difféomorphismes hamiltoniens en dimension finie et en
dimension infinie. En dimension finie, les outils princi-
paux qu’on utilise sont les fonctions génératrices et les ca-
pacités symplectiques. En dimension infinie on regarde les
flots des équations en dérivées partielles (EDPs) hamil-
toniennes et, en particulier, les flots qui peuvent étre ap-
prochés uniformément par des flots hamiltoniens de di-
mension finie.

Dans la premiére partie de la thése on étudie les
sélecteurs d'action définies a partir des fonctions
génératrices et on construit des invariants hamiltoniens
pour les sous-ensembles de R?™ x T*T*. Cela nous per-
met de démontrer un théoréme non-squeezing coisotrope
pour les difféfomorphismes hamiltoniens a support com-
pact de R?™. On montre & continuation que cette propriété
apparaisse dans certains cas non compacts. Finalement,
on expligue comment ce résultat donne aussi I'information
sur le probleme de rigidit¢é symplectique en dimension
intermédiaire. Encore en dimension finie, on démontre
qu’on peut utiliser le théoreme du chameau symplectique
pour produire des sous-ensembles invariants compacts
dans des surfaces d’energie.

Dans la deuxieme partie on étudie les propriétés de rigidité
symplectique des flots des EDPs hamiltoniennes. On se
place dans le contexte introduit par Kuksin et on étudie
une classe particulierere de EDPs semi-linéaires qui peu-
vent étre approchées par flots hamiltoniens de dimension
finie. D’abord on donne une nouvelle construction de ca-
pacité symplectique en dimension infinie a partir des ca-
pacités de Viterbo. Puis on demontre I'analogue de la
rigidité intermédiaire pour certaines EDPs hamiltoniennes.
Cette classe inclue I'équation d’ondes en dimension 1 avec
une nonlinéarité bornée, comme par exemple I'équation
de Sine-Gordon. Dans la derniére partie de la thése
on s’intéresse a un analogue de la conjecture d’Arnold
pour I'équation de Schrédinguer périodique avec une non
linéarité de convolution.

Mots Clés

Géometrie symplectique, fonctions génératrices, ca-
pacités symplectiques, EDPs hamiltoniennes.

Abstract

We study symplectic rigidity properties in both finite and
infinite dimension. In finite dimension, the main tools that
we use are generating functions and symplectic capacities.
In infinite dimension we study flows of Hamiltonian par-
tial differential equations (PDEs) and, in particular, flows
which can be uniformly approximated by finite dimensional
Hamiltonian diffeomorphisms.

In the first part of this thesis we study the action selectors
defined from generating functions and we build Hamilto-
nian invariants for subsets of R?™ x T*T*. This allows
us to prove a coisotropic non-squeezing theorem for com-
pactly supported Hamiltonian diffeomorphisms of R?™. We
then extend this result to some non-compact settings. Fi-
nally we explain how this result can give information about
the middle dimensional symplectic rigidity problem. Still in
finite dimensions, we show that it is possible to use the
symplectic camel theorem to create energy surfaces with
compact invariant subsets.

In the second part of the thesis we study symplectic rigid-
ity properties of flows of Hamiltonian PDEs. We work in
the context introduced by Kuksin and study a particular
class of semi-linear Hamiltonian PDEs that can be approx-
imated by finite dimensional Hamiltonian diffeomorphisms.
We first give a new construction of an infinite dimensional
capacity using Viterbo’s capacities. The main result of this
part is the proof of the analogue of the middle dimensional
rigidity for certain types of Hamiltonian PDEs. These in-
clude nonlinear string equations with bounded nonlinearity
such as the Sine-Gordon equation. In the final part of this
thesis we study an analogue of Arnold’s conjecture for the
periodic Schrédinger equations with a convolution nonlin-
earity.

Keywords

Symplectic geometry, generating functions, symplectic ca-
pacities, Hamiltonian PDEs.




