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1
INTRODUCTION

Cloud computing is now the heart of the digital industry [6]. It cleared the need to own
and operate physical hardware by offering remote products to anyone: from web service
providers to HPC scientists, from smartphone users to video game players [53, 68, 69, 79].
This transition from a purchasing model to a rental model has been made possible largely
through the virtualization of resources.

There are many reasons leading clients to appreciate virtual resources over physical ones.
Clients can rent virtual resources on demand with or without time commitment, and they
can automatically adjust the number of virtual instances rented according to their load [78,
57]. Once bought, a virtual resource is immediately accessible and does not require ship-
ping. The deployment of common software on fresh virtual resources is optimized in the
Cloud thanks to proxy caches or pre-defined disk images. The boot time of virtual resources
is also fast because machines in production are rarely shutdown. In addition, virtual re-
sources can be migrated to remain available in the event of hardware failure or mainte-
nance, and to stay up to date when new hardware is available. Devops engineer G. Klok
modeled that renting 100 m4.2xlarge instances on Amazon Web Service is cheaper than
building an equivalent cluster in a carrier hotel [143].

Cloud providers are also far from regretting the days when “bare metal” hardware was the
only product to rent. Indeed, once a physical resource has been allocated to a client, it
is almost impossible to use that resource for another purpose. Virtual resources are more
flexible and they enable such resource multiplexing. This property led to a controversial
practice in the Cloud: the sale of more virtual resources than there are physically avail-
able. Even if overbooking is not widely advised, it has become necessary for the Cloud. In
other industries, it is a common practice used to avoid waste. When buyers are expected to
partially consume their entitled resources, overselling ensures that all available resources
will be used [76]. Cloud providers gamble on this fact. Thus, they need tools to detect and
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8 CHAPTER 1. INTRODUCTION

consolidate resources within the bounds of the guaranteed isolation level. For example,
Amazon Web Service offers spot instances while Google Cloud Platform offers preemptible
instances. These products are supposed to sell off unsold resources but nothing forbids
Cloud providers to sell off unused resources.

Traditional hypervisors-based virtualization technics are able to efficiently consolidate vC-
PUs, but they still struggle at transferring unused memory quickly between virtual ma-
chines. The heart of the matter is the absence of cooperation between the two entities.
Some techniques to consolidate memory have been proposed (Ballooning [84], PUMA [30]),
but they are hard to implement and often intrusive (modification of the guest OS), slow
(synchronization is required between virtual machines) and manual (the automation pro-
posals are still prototypes).

More recently, lightweight container-based virtualization solutions have begun to emerge
and many are now wondering if containers are replacing virtual machines [120]. Even if
virtual machines are less prone to security attacks than containers, the latter excel at pro-
viding both performance isolation and consolidation because they share the same kernel.
In short, performance isolation is what clients care about: they expect virtual resources to
perform as well as dedicated bare metal resources. Consolidation is what providers care
about: they expect virtual resources to be automatically transferred to clients who truly use
them.

My Ph.D. thesis, sponsored by Magency [73] and ANRT [56], studies the full extent of mem-
ory consolidation and performance isolation between Linux containers. Despite all the in-
novative promises of containers, Magency faced a problem when they attempted to use
containers to improve resource utilization. Their most active applications encountered
momentary slowdowns because they were running out of memory. Yet much of the mem-
ory was unused because it was allocated to other inactive applications. In short, we discov-
ered that Linux containers fail at transferring memory from where it is unused to where it is
required. Indeed, the need for isolation inside the structures of memory management has
deprived the Linux kernel of its ability to correctly identify the most unused memory on
the machine. The challenge undertaken by this Ph.D. thesis is twofold. On the first hand,
it has to make the kernel aware that there are containers where little memory is used, and
containers where more memory is required. On the other hand, it also has to give the ker-
nel the ability to correctly identify the aforementioned containers. Meeting this challenge
would allow the kernel to truly offer both consolidation and performance isolation. The
contributions of this research are:

• A simple experiment that highlights the problem with real applications used by the
Google Perfkit [66] (MySQL [75] and Cassandra [58]) that could occur in a production
environment.

• A synthesis of a careful code analysis of the Linux kernel, grasping the root of the
problem that resides inside the structures of memory management.
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• The design and implementation of two kernel-level approaches that strive to detect
which containers have too much memory and which containers have too little mem-
ory. Both approaches are aware that memory needs of containers must be ordered,
but the first approach relies on metrics to make that distinction, while the other ap-
proach relies on kernel events.

• A thorough evaluation, using two types of workload (Sysbench [144] and Memtier [74])
under two activity models, that pushes both approaches to their limits.

This document is organized as follows: Chapter 2 presents the two technologies that virtu-
alize resources, Chapter 3 presents the technical background required to understand why
Linux struggles at correctly transferring memory between containers, Chapter 4 demon-
strates this problem with a simple experiment that could occur in production, Chapter 5
studies two kernel metrics that can detect when memory is unused, Chapter 6 proposes
kernel modifications to preserve isolation during consolidation, Chapter 7 evaluates our
solutions, and Chapter 8 concludes and presents future works. In-depth, the chapters are
as follows:

Resource virtualization is the Cloud’s cornerstone but, Chapter 2 suggests that for effi-
ciency reasons, some workloads deployed in virtual machines should shift to containers.
The first part praises the properties of virtual machines that gave birth to the Cloud. How-
ever, by design, hardware-level virtualization introduced additional costs that limit the effi-
ciency of the Cloud. In the second part, Chapter 2 demystifies the container’s recipe, which
is no more than a mixture of Linux kernel features that were developed separately over time
to meet the different needs for isolation. The third part presents the literature work that
compares containers to virtual machines and concludes that the former are more efficient
than the latter. The fourth part introduces and illustrates through tangible experiments the
two core concepts of this thesis: performance isolation and consolidation. While both of
these properties can be ensured in the case of CPU and disk bandwidth, the very last part
of this chapter shows that the properties are harder to ensure in the case of memory.

To fully understand the problem addressed in this thesis, Chapter 3 dives into some basics
of memory and cgroup in the Linux kernel. The first part presents memory as a resource
that is managed in page units and that can be spatially and temporally multiplexed. The
second part details how memory is accounted for and how it is limited in the Linux Kernel.
The third part explains how Linux stores pages in pools to order their utility, and then ex-
plains why they cannot be stored in a single pool. The last part explains how the memory
pools of the same container are dynamically resized, but as the relative works concede, the
same principles cannot be applied with pools of different containers.

The aforementioned problem is hard to solve in general, but Chapter 4 suggests that some
isolation flaws at consolidation can be prevented. The first part presents a specific model
of memory activity where isolation should be sustained, and how this model was business
inspired by the applications of Magency [73]. The second part reproduces the problem en-
countered at Magency with a simple experiment. Additionally, it shows through a micro-
benchmark that workloads which do not require isolation are correctly consolidated when
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deployed without containers, but incorrectly consolidated when deployed within contain-
ers. Finally, the last part applies the knowledge acquired in Chapter 3 to explain the results
observed in these experiments.

The first step towards resolving the problem is to capture the activity shifts with memory-
related metrics. In Chapter 5, two metrics are studied: the rotate ratio and the idle ratio.
Measurements of their cost and accuracy are provided in a context where activity changes
but without the intent of consolidating memory.

Chapter 6 presents the modifications we developed in the kernel to sustain the isolation of
cgroups during consolidation. The first mechanism developed allows the user to control
the freshness of the rotate ratio. In the second part, a series of mechanisms are described.
They enable generic memory reclaim policies to be expressed and in particular, they enable
a relatively optimal solution to be expressed. In the last part, two classes of solutions are
proposed. Their goal is to guess the activity levels as accurately as the optimal solution: one
class is based on the metrics presented in Chapter 5, and the other one is based on kernel
events which are “page demands” and “page activations”.

An evaluation of these solutions is reported in Chapter 7. The first part presents the method-
ology of our experimental setup which uses two workload types with two inactivity mod-
els. These experiments are harder to consolidate than the ones presented in Chapter 4.
The remaining parts report the performance and the consolidation errors of the solutions
with respect to the least performing container. The evaluation highlights the strengths and
weaknesses of the different solutions and shows their limit compared to the optimal solu-
tion that perfectly knows the activity levels.

Chapter 8 concludes and presents future works and perspectives. It summarizes the work
done and highlights some of the experimental results that we were able to achieve. On
a short-term, we anticipate contentions with our prototypes as the number of container
increases. Then, we provide some leads on how to extend our work to the context of over-
commitment, when all containers become active. Finally, we suggest that the metrics and
events studied in this thesis should also be studied at the scale of the cluster to unlock the
challenges of node balance, boot up and shut down.
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2
RESOURCE VIRTUALIZATION

In this chapter, we present the virtualization techniques employed in the Cloud, and how
they are used to increase the yield of the machines.

Hardware-level virtualization introduced key properties that gave birth to the Cloud, but
more recently, Operating System-level virtualization has begun to emerge as a lightweight
alternative that offers similar properties.

2.1 Virtual Machines: Hardware-level virtualization

Hardware-level virtualization was essentially achieved by introducing a hypervisor: a new
software layer between a guest operating system and the hosting hardware. As A. Tanen-
baum explains it, there are two types of hypervisors [45]: type 1 hypervisors run on bare

Figure 2.1: Hypervisor types.

11



12 CHAPTER 2. RESOURCE VIRTUALIZATION

metal, and type 2 hypervisors make use of the abstractions offered by an underlying oper-
ating system (OS) (see Figure 2.1). Either way, the goal of the hypervisor is to host multiple
virtual machines (VMs) on a single computer. The VMs are accurate, isolated and efficient
duplicates of the real machine [38]. Several interesting properties emerged from the use of
VMs:

1. Emulation: Hypervisors create the illusion that the VM is in charge of the hardware.
This ability to host any OS separately leads to many applications ranging from run-
ning legacy software to running OS-exclusive software, and from debugging kernel
development to debugging multi-OS software development.

2. Safety: Hypervisors are less prone to bugs than OS since they do one thing exclu-
sively: emulate multiple copies of the bare metal. Errors and failures are not likely to
propagate from VMs to VMs or to the hypervisor.

3. Security: Hypervisors usually do not allow multiple VMs to access a given physical
resource at the same time. The VM-level attack surface is small compared to the
process level. Unfortunately, both surfaces are sensitive to hardware designs [28, 26].

4. Economy: Hypervisors save money on hardware, electricity and rack space in data
centers because fewer physical machines are needed when single machines are mul-
tiplexed into multiple VMs.

Companies specialized in data center management and staffed by experts in the area took
advantage of these properties; and gave birth to the Cloud by allowing clients to remotely
access their physical resources through virtualization. VMs in the Cloud are undeniably
appealing to clients because in contrast to physical machines, they are resizable, already
powered, cooled, maintained and upgraded by the provider. On one hand, economies of
scale are achieved by deploying multiple clients on the same machine, but on the other
hand, their privacies and the quality of their services are put at risk.

2.1.1 Cost of machine virtualization

Tremendous efforts have been made to improve as much as possible the efficiency of ma-
chine virtualization. Prior to hardware-assisted virtualization, the trap-and-emulate tech-
nique used to prevent a VM from executing sensitive instructions was not enough, and
hypervisors had to dynamically translate these instructions. Today, thanks to hardware-
assisted features (Intel VT-x, AMD-V), the cost of machine virtualization is now acceptable:
i) CPU-wise, additional instructions are incorporated to meet the formal requirements1 of
Popek and Goldberg [38]. ii) Memory-wise, additional registers are incorporated to let the
MMU access the nested page tables needed for the double address translation (Adams and
Agesen [1]). iii) IO-wise, the addition of an IOMMU can provide device isolation [9], and

1All sensitive instructions (that can affect the hypervisor) must be privileged instructions (that can be
trapped by the hypervisor).
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SR-IOV devices can now appear as multiple separate devices [15]. Unfortunately, it has
been reported that despite being small on machines with few cores, the overhead becomes
unacceptable on large NUMA machines [48]. Moreover, VMs do not maximize resource
utilization and countless dedicated schemes had to be conceived to tackle this limitation.

2.1.2 Improving utilization in a full virtualization context

Very few schemes respect the full virtualization paradigm in which VMs are non-cooperative
black boxes that cannot be modified. The most common scheme targets the duplication of
identical data caused by the deployment of multiple instances of the same guest OS. Thanks
to works such as Linux KSM [5], the hypervisor strives to de-duplicate data to save mem-
ory. VSwapper [3] is another scheme that respects full virtualization and tries to address
the double paging anomaly [20]. This anomaly occurs when both the hypervisor and the
VM are running eviction policies that end up contradicting themselves. Goldberg showed
that an increase in the size of the memory of the virtual machine without a corresponding
increase in its real memory size can lead to a significant increase in the number of page
faults. Memory hot-plug emulation by the hypervisor was also suggested as a means of
dynamically balancing memory between VMs [127].

2.1.3 Improving utilization in a paravirtualization context

The remaining majority of the schemes fall into the paravirtualization domain because the
absence of cooperation between the VM and the hypervisor creates too much complexity.
The most extreme form of paravirtualization requires the guest OS to be explicitly ported
to communicate with the hypervisor through the use of hypercalls. At the other end of
paravirtualization, some less intrusive schemes take advantage of existing interfaces in the
guest OS to insert additional communication logic. Ballooning [46, 84] uses a Linux virtio
driver [41] and allows the hypervisor to ask the guest to free its memory. PUMA [30, 29] uses
the Cleancache API of Linux [90] and allows a VM to lend its unused memory to another
remote VM.

To sum up, machine virtualization ends up increasing execution time and memory space,
and burdens software and hardware development. Fortunately, containers are less subject
to these drawbacks and open the door to a more efficient Cloud.

2.2 Containers: Operating System-level virtualization

The virtualization property the most requested by lambda users is the ability to encapsulate
and run anywhere an entire environment, including software dependencies, libraries, a
runtime code, and data. Singularity is one of the container engines that solely focus on this
idea [27], but most of the container engines take advantage of all kernel features available
to enforce isolation. There is no such thing as a container kernel object [104]. Therefore,
one can define a container as an assembly of kernel isolation features. For example, Docker
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Cgroup Resource
cpu time on CPU
cpuset CPU cores and memory nodes
memory ram usage
blkio block input output
freezer pause/unpause
devices open/mknod on device files
pids number of process
hugetlb Huge page (2 MB, 1 GB)
net_prio priorities for queuing disciplines on network packets.
net_cls filter and classify network packets.
perf_event aggregate perf utility events.

Table 2.1: Cgroup types and related resources.

sells its container engine as a solution to “Build, Ship, and Run Any App, Anywhere” [63],
but in the background, it makes use of cgroups, namespaces and security features.

2.2.1 Isolating physical resources with cgroups

Prior to cgroups, utilities such as nice, ionice, mlock, madvise, fadvise, taskset, numactl,
trickle [16] and setrlimit could be used to control a single process, but no such things ex-
isted to control a group of processes.

Cgroup stands for “control group”. It is a Linux Kernel feature that groups processes hi-
erarchically and distribute system resources along the hierarchy in a controlled and con-
figurable manner [147, 125]. Containers use cgroups to limit, account for, and isolate the
physical resource usage. As N. Brown explains [82], there have been some disagreements
on considering this grouping of processes as an organization hierarchy or as a classification
hierarchy, but both views are correct. In a classification hierarchy, all members cannot be
in internal nodes, but in an organization hierarchy, members in charge of managing oth-
ers are placed inside internal nodes. The current API version of cgroups is very messy and
inconsistent across resources, but these issues are going to be fixed in version 2 [126, 150].
The cgroup API is exposed as a virtual filesystem mounted at /sys/fs/cgroup and pro-
cesses can look up their membership at /proc/PID/cgroup.

The remaining of this subsection details the cgroup subsystems listed in Table 2.1. As
cgroups are still under development, additional cgroup subsystems will be added such as
the rdma cgroup [149] and the memory bank and CPU cache cgroup [51]. More cgroup
subsystems could be conceived; for instance, it could be wise to implement a cgroup that
controls the memory bandwidth [11].
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The cpu cgroup

The cpu cgroup has two major features. The first feature statically throttles tasks. It can be
seen as a CPU quota or a CPU bandwidth. It has two parameters: one defines how much
time tasks can run on the CPU and the other defines the period of time required to renew
the former running quota. The second feature dynamically throttles tasks when there is no
idle CPU time left. It has a sharing parameter that guarantees that the tasks will at least
be able to acquire an amount of CPU time proportional to the parameter2. Both features
complement each other. The first helps to avoid CPU shortage, while the other one dictates
guidelines to the Completely Fair Scheduler (CFS) when it has to handle CPU shortages.

The cpuset cgroup

The cpuset feature predates the generic cgroup implementation and was the first one to be
added. It restricts processes to run on a subset of CPUs and forces them to allocate memory
on a subset of memory nodes. The cpuset cgroup offers many more features [108]: cores
and nodes can become exclusive, memory pressure can be monitored, memory allocations
can be spread on all nodes instead of preferring the node where the allocations were made,
load balancing can be partitioned into domains, etc.

The memory cgroup

The memory cgroup subsystem, which is at the heart of this thesis, is thoroughly detailed in
Chapter 3. In a nutshell, it throttles tasks when they attempt to exceed the memory limit
of their cgroup. Indeed, as they reach the limit, the tasks are forced to run the Page Frame
Reclaiming Algorithm which recycles some of their existing memory. The memory cgroup
also controls the memory consumption of kernel objects, the swap and TCP buffers.

The blkio cgroup

The blkio cgroup is similar to the cpu cgroup. It can statically throttle reads and writes
per devices in terms of bytes per second or in terms of operations per second. It also has
weight parameters per devices that dynamically guide the Completely Fair Queuing (CFQ)
I/O Scheduler when the devices are saturated3.

The freezer cgroup

The freezing feature was originally developed for hibernation and is more powerful than the
SIGSTOP/SIGCONT mechanism because it cannot be caught by processes. The freezer
cgroup can be used to schedule batched jobs from userspace [109, 65, 157], but can also
be used for checkpointing and migration with CRIU [62]. As the user freezes a cgroup, a
fake signal is sent to all its processes but also to those of its children. When it receives a

2The sharing parameter is not available with the Real-Time Scheduler (R-T).
3Provided that CFQ is enabled for the device (/sys/block/device/queue/scheduler).
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signal4, a process will go to the refrigerator 5 if its cgroup status is frozen. Moreover, newly
created processes cannot escape the freezing mechanism because the freezer cgroup gets
notified when a process forks. As the user thaws the cgroup, processes are woken up and
leave the refrigerator.

The devices cgroup

The devices cgroup provides mandatory access control (MAC) to block and character de-
vice files. It takes into account the hierarchy: children do not have more permissions than
their parent. When the user updates the permissions of a cgroup6, i) new restrictions are
always propagated to its children, and ii) new authorizations are requested to its parents
who can deny them. The permission checks are therefore relatively faster than their up-
dates because the hierarchy does not have to be walked through. Read, write and create
permissions per cgroup are checked through two new kernel functions7 when a process
calls open and mknod.

The pids cgroup

The pids cgroup controls the fork system call and prevents a new process from being cre-
ated if its cgroup has more processes than its maximum limit. As the accounting is hierar-
chical, when a child cgroup or any of its parent reaches their limit, the fork system call fails
by returning the “try again” error (-EAGAIN). At first glance, processes can be seen as kernel
structures in memory and therefore, limiting the memory consumption of kernel objects
that belong to a cgroup should, in theory, prevent process identifiers (pids) from being ex-
hausted. But in practice, the total number of pids in the system is currently bounded8 to
222. Therefore, without the pids cgroup, a fork bomb can easily exhaust the pid table with-
out hitting its kernel object memory limit.

The hugetlb cgroup

Huge pages are used to minimize the entries to look up in the Page Table and therefore min-
imize TLB misses (translation look-aside buffer). Once allocated to a global pool, preferably
at boot time, huge pages cannot be reused for another purpose and cannot be swapped
out. The hugetlb cgroup controls the number of huge pages that cgroups are allowed to
allocate.

The net_cls and net_prio cgroups

The network cgroups (net_cls and net_prio) provide means to identify packet ownership
and means to override packet priorities, but they do not take advantage of the hierarchy

4The function get_signal calls try_to_freeze before handling pending signals.
5The __refrigerator is a loop on schedule.
6The function devcgroup_update_access modifies the MAC.
7The functions devcgroup_inode_permission and devcgroup_inode_mknod are called to enforce MAC.
8See /proc/sys/kernel/pid_max.
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Namespace Isolates Hierarchical
User User and group IDs Yes
PID Process IDs Yes
Mount File system mount points Propagation rules
Network Network sockets, devices, tables, etc. No
IPC System V IPC, POSIX message queues No
Cgroup Cgroup path names, root cgroup No
UTS Hostname and NIS domain name No

Table 2.2: Namespace types and isolated resources.

and do not directly provide limitation, accounting and isolation features yet [102]. The
network cgroups extend the following kernel objects: i) the network device object has now
a priority for each cgroup9, and ii) the socket object has now two extra fields called classid
and prioidx. When a process creates a new socket, the classid and prioidx fields are
initialized with the values of the cgroup from whom it belongs. prioidx corresponds to the
cgroup index in the priority arrays, while classid is set from userspace. classid can then
be used with iptables to selectively filter packets (firewall rules), but can also be used with
tc (traffic control) to classify packets during network scheduling. Meanwhile, the priority
values can be used to override the SO_PRIORITY option used by the queuing discipline on
packet delivery and delay [61, 60].

The perf_event cgroup

The perf_event cgroup is the most rudimentary cgroup. It allows perf [122], the perfor-
mance analyzing tool of Linux, to collect and aggregate performance data of processes that
belongs to a cgroup. The perf_event cgroup uses the hierarchy, therefore metrics from
processes that belong to the children of the monitored cgroup are also collected10.

Conclusion

Cgroups are a well-integrated, stand-alone feature of the Linux kernel. By default, there is
a single root cgroup in which processes spawn, but container engines and even common
Linux distributions create additional cgroups to isolate resource utilization. However, as
we will see in Chapter 4, most users are unaware that creating multiple cgroups can lead to
undesired pitfalls [52].

2.2.2 Isolating resource visibility with namespaces

Prior to namespaces, utilities such as chroot or pivot_root could be used to locally reshape
the view of the filesystem, but there were no generic API to instantiate a concurrent view of
any given resource.

9Priorities are stored in the netprio_map array and can be configured from userspace.
10perf’s event_filter_match if the CPU context cgroup_is_descendant of the event cgroup.
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As M. Kerrisk explains [135], namespaces are a Linux kernel feature that creates private lo-
cal views of system resources for processes and gives them the illusion that they are the
sole set of processes controlling the resources. Containers use namespaces to forbid un-
desired OS-level interactions between processes. Contrary to cgroups, only two types of
namespaces are purely hierarchical: User and PID. Nevertheless, since parent processes
have access to the /proc/PID/ns/ files of their children, the remaining namespace types
can still be configured in a hierarchical fashion.

Namespaces can only be created through system calls; they are destroyed if there is no
process remaining in the namespace and if there are no more references11to their proc file.
Given the appropriate options, four system calls manipulate namespaces [136, 70]:

• clone will create its new process into newly created namespaces.

• setns allows processes to join other namespaces previously created.

• unshare creates new namespaces and makes the calling process join them.

• ioctl_ns exposes the namespace membership and hierarchical relationship through
the /proc/PID/ns/ files.

E. Biederman initially identified ten namespaces [10] and the remaining of this subsection
details the most mature namespaces among them (listed in Table 2.2). There are many
more namespaces to implement (such as syslog [132], device [112, 4, 146, 59], sysfs [88],
security modules [148, 85, 128], keyrings [121], and time [121]), but they must not introduce
new vulnerabilities (such as the ones previously reported [100, 97, 96, 134]). Moreover,
there are still some unresolved issues with the current namespaces such as unprivileged
filesystem mounts [98], file capabilities [105], and uid stored in filesystems [117, 119].

The User namespace

The User namespace [139, 140, 133] remaps the real user (UID) and group (GUID) iden-
tifiers to any custom virtual numbers. As these identifiers can be remapped to those of
the superuser, the user namespace also provides the illusion that processes acquire full
privileged capabilities. But in reality, there is no privilege escalation because these capa-
bilities are only valid for operations on objects created inside the user namespace. Regard-
ing the objects created outside, the capabilities are restricted to the ones that were already
granted. Unprivileged processes are allowed to create user namespaces and the other types
of namespaces (PID, Mount, Network, IPC, UTS, Cgroup) are said to be owned by the user
namespace from which they were created. As a result, operations such as changing the root
of the filesystem12, setting the hostname, mounting virtual filesystems13 and binding re-
served socket ports are authorized only if the process has the right capabilities14 in the user

11The proc file is nor opened neither mount bound.
12chroot
13/proc, /sys, tmpfs...
14CAP_SYS_CHROOT, CAP_SYS_ADMIN, CAP_NET_BIND_SERVICE.
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namespace which owns the corresponding non-user namespaces. As User namespaces are
nested, processes in a parent namespace can still control resources in the children user
namespaces.

The PID namespaces

The PID namespaces [137, 138] are nested and processes have a different identifier (PID) at
each level of the hierarchy. From one namespace perspective, a process has a given PID, but
from a higher namespace perspective, its PID is different. Due to the hierarchical nature
of the PID namespaces, a process only has access—and thus, for instance, can only send
signals—to other processes that belong to its namespace, or that belong to a descendant of
its namespace. The PID namespace eases migration because processes can keep their PID
on the new host even if they are already attributed to some other processes in an ancestor
or sibling namespace. The first process to populate a namespace (init) is as critical as the
first process spawned at boot time (the real machine-wide init). In its namespace, init
has PID 1. As the “ancestor of all processes”, init is in charge of initialization, reaping of
terminated orphaned processes, and graceful termination of the whole namespace15. Init
is so important that at its death, the kernel sends SIGKILL to the remaining processes and
rejects16 the creation of new processes, making the namespace unusable17. Therefore, sig-
nals sent to init are ignored if no corresponding handler has been declared; but processes
from a parent namespace can still send SIGKILL or SIGSTOP signals.

The Mount namespace

The Mount namespace [141, 142] provides a private view of the filesystem trees and allows
processes to independently reshape their view. When a new mount namespace is created,
it duplicates the current view of the filesystem. Afterwards, as each namespace has its own
list of mount points, the results of mount and umount operations in a namespace are not
visible to other namespaces. Additional options are also available to cherry-pick mount
point modifications and propagate them from namespace to namespace.

The Network namespace

The Network namespace [114, 87] can be used to configure, on one machine, any intricate
virtual networks. These networks can allow or deny incoming or outgoing connections
between namespaces or with the Internet. Each namespace has its own network-related
resources such as sockets, addresses, interfaces, routing tables, firewall rules, etc. When a
new network namespace is created, it only has a loopback device. As network interfaces
can only belong to one namespace, the system will run out of physical interfaces. There-
fore, pairs of virtual interfaces can be created and moved between namespaces and with

15docker stop sends SIGTERM before SIGKILL to the init process of the container.
16fork, called after some setns or the unshare that created the namespace, returns ENOMEM.
17Processes cannot join another PID namespace, their membership is defined at creation.
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the addition of some network configurations, the newly created namespace can, for exam-
ple, have access to the Internet.

The IPC namespace

Processes belonging to different IPC namespaces [145] cannot share interprocess com-
munication objects such as System V IPC and POSIX message queues because each IPC
namespace has its own System V IPC identifiers18 and its own POSIX message queue filesys-
tem19. The IPC namespaces are not hierarchical.

The Cgroup namespace

The cgroup namespace [113] hides the full cgroup path from the global cgroup hierarchy
and gives the illusion that contained processes are at the root cgroup. The cgroup names-
pace eases process migration and allows container-management tools to be nested.

The UTS namespace

The UTS namespace [136, 124] hides the hostname and the NIS domain name, and pro-
vides private system identifiers to the contained processes. By default, Docker labels the
hostname with the container identifier.

Conclusion

Namespaces are, just as cgroups, a well-integrated feature of the Linux kernel. By default,
there is a single root namespace in which process spawn, but container engines and even
web browsers create additional namespaces to isolate the visibility of resources. However
the visibility of resources is not the subject of this thesis and, as such, when we refer to
isolation in the rest of this manuscript, we will not consider its visibility aspect.

2.2.3 Restraining attack surface with security features

The principle of least privilege requires that an application must not be able to access infor-
mation and resources other than the ones that are necessary for its legitimate purpose [42].
In addition to cgroups and namespaces, container engines rely on Linux security features
to apply this principle. Moreover, they also rely on security features to deny access to re-
sources that have not yet been fully isolated with cgroups or namespaces.

The remaining of this subsection details Linux Capabilities, Secure Computing and Security
Modules, but in general, any systemwide hardening technic such as applying patches [67]
is compatible with containers.

18ipcs will not list identifiers from another IPC namespace.
19mount -t mqueue none /dir will not contain message queues from another IPC namespace.
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Linux Capabilities

Linux Capabilities is a security feature that divided all the privilege of root into smaller
distinct privileges called capabilities [21]. Prior to capabilities, the setuid permission, on
an executable file of root, allowed normal users to run the program with all the privileges
of root. Today, if a privileged program is compromised, the damage that it can do is limited
by its capabilities. Unfortunately, a lot of privileges fall into the cap_sys_admin capability
which tends to become the new full-privileged mode [129].

By default, Docker runs containers with a restricted set of 14 capabilities over the 38 avail-
able. cap_net_bind_service is for instance granted to allow processes like web servers to
bind on a port below 1024; cap_sys_module is for instance denied because it would allow
corrupted containers to insert a rootkit module. Docker users can adjust this profile to suit
their security needs 20.

Secure Computing or seccomp

seccomp is a security feature that prevents processes from interacting with the kernel. In
its most restricted form, seccomp will kill a process if it attempts to execute any system call
other than exit, sigreturn, read and write to file descriptors opened beforehand. It was
originally designed by A. Arcangeli to securely rent out CPUs with Linux [86], but Google
hijacked the idea to securely run plugins in its Chrome browser, even if at the time, four
system calls were too restrictive [89]. Later on, W. Drewry borrowed a network filtering fea-
ture to enhance the flexibility of seccomp [94]. As J. Edge explains [116], sandbox developers
can now write complex filters on system calls and their arguments, using a mini-program
in the Berkeley Packet Filter language (BPF [35, 95]) which is verified and compiled by the
kernel. Moreover, with seccomp-bpf, when a process violates the policy, several outcomes
are available:

• Killing the process.

• Sending the process a SIGSYS signal.

• Failing the system call and returning a (filter-provided) errno value.

• Notifying an attached process tracer (provided that one is attached with ptrace21).

• Allowing the system call.

All container engines and sandboxing software now use seccomp. Docker, for instance,
disables around 44 system calls out of 300+, including mount, reboot and setns.

20The --cap-add and --cap-drop options adjust the Linux capabilities of a Docker container.
21The process tracer can skip or change the system call.
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Linux Security Modules (LSM)

Prior to LSM [49], the mainstream Linux kernel provided discretionary access controls (DAC)
that only check if the identity or group of the subject matches those of the object. Unfor-
tunately, DAC blurs the difference between users and applications because users have to
pass their permissions to applications. As a result, LSM was developed as a lightweight,
general-purpose framework that enables many access control models22 to be implemented
as loadable kernel modules.

Most of the kernel hooks provided by LSM are restrictive; they allow security modules to
overload the DAC checks. In other words, these hooks are not triggered if the DAC pol-
icy already denied the access. However, there are some exceptional permissive hooks that
override the DAC checks, but these were only added to support the logic of Linux Capabil-
ities. Moreover, LSM inserts a pointer in kernel objects that allows security models to bind
attributes to the objects. Modules that use these blobs are called major modules and the
others are called minor. At this point, stacking of minor modules is supported, but there
can only be one major module at a time since there is only one security-blob pointer per
object [103].

Major stacking is still under development [115, 111, 39] and other works are trying to make
LSM namespaced-aware [148, 85, 128]. By default, templates for Docker are provided for
the most popular LSMs which are SELinux [31, 110] and AppArmor [13, 55].

Conclusion

Security features are more or less integrated by default into the Linux kernel. Containers
engines and even web browsers take advantage of these features to harden the sandboxes in
which distrusted programs are executed. However security is not the subject of this thesis
and as such, when we refer to isolation in the rest of this manuscript, we will not consider
its security aspect.

Now that we have demystified the major internal components of containers, we will com-
pare them to VMs in the next section.

2.3 Containers and VMs comparison

G. Costa once “heard that hypervisors are the living proof of operating system’s incom-
petence” [131]. Indeed, operating systems were originally designed to greedily exploit ev-
ery ounce of resources physically available, in the hope of improving the overall perfor-
mance (blocked tasks are rescheduled, free memory caches disk pages, unaccessed pages
are swapped out of memory...). In this model, the machine is assumed to be dedicated to
a single application, and fairness is enforced between its tasks to ensure that they make
progress (CFS, CFQ, Swap Token...). Unfortunately, at the time, we did not envision that
machines would be powerful enough to host multiple applications at once. As a result,

22Such as mandatory access control (MAC).
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services that in theory could hold on the same machine were deployed into separate physi-
cal machines because Operating Systems did not provide isolation at the application level.
Eventually, this practice lead to the fragmentation of idle resources which in turn became
one of the incentives to develop hypervisors. The bottom-up approach of VMs was the
easiest and fastest way to provide isolation, but today, this habit of sharing almost nothing
between virtual instances comes at a burdening price, easily outmatched by the top-down
approach of containers.

2.3.1 Comparing stand-alone overheads

There are many works in the literature that compare the stand-alone virtualization over-
head of VMs and Containers [37, 44, 40, 50], but since this technology evolves fast, we will
focus on the recent work done in 2015 by W. Felter et al. in which they concluded that
containers result in equal or better performance than VMs in almost all cases [17].

One property of hypervisors is to abstract and hide the underlying physical resources, but
W. Felter et al. showed that it also eliminates some opportunities for optimization. As a
result, their Linpack benchmark was only able to execute 125 GFLOPS in KVM compared
to 275 GFLOPS when running in Docker.

Hypervisors require an extra hardware page table walk to handle TLB misses, but W. Fel-
ter et al. showed that it can become a bottleneck on a single CPU socket. As a result, their
random memory access benchmark was only able to execute 0.04G updates/s in KVM com-
pared to 0.045G updates/s when running in Docker.

Paravirtualization technics such as virtio are often employed to minimize virtualization
overhead, but W. Felter et al. showed that KVM delivers only half as many IOPS as Docker.
Moreover, KVM’s read latency is two to three times higher than Docker’s.

To test the network overhead, W. Felter et al. used Redis. Surprisingly, KVM was able to
outcompete Docker when the number of clients is greater than 30. It appears that when
Docker uses NAT, it introduces latencies that grow with concurrent connections. On the
other hand, KVM initially has more latency than Docker, but as concurrency increases, it is
able to fully utilize the system.

As a final evaluation, W. Felter et al. used MySQL and Sysbench. They showed that Docker
had similar performance to an unvirtualized environment, within a difference of 2% at
higher concurrency. On the other hand, KVM had higher overhead, higher than 40% in
all measured cases.

2.3.2 Comparing performance isolation and overcommitment

In 2016, P. Sharma et al. observed the same results obtained by W. Felter et al., but they
also conducted experiments to evaluate the performance isolation of VMs and Containers
when a “noisy neighbor” is executing beside them [43].
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They first compared LXC to KVM in terms of CPU confinement: with their competing sce-
nario23, LXC and VM obtain the same results. With their orthogonal scenario24, they ob-
served that cpushares on its own results in a greater amount of interference, up to 60%
higher compared to the baseline case of stand-alone no-interference performance. We be-
lieve that this might be due to load balancing bugs in the Linux scheduler [32]. Finally,
their fork-bomb adversarial scenario is outdated, because the cgroup pid was introduced
in 2016.

They claimed that memory isolation provided by containers and VMs are sufficient for most
uses but they suggest that containers could suffer more from a malloc-bomb adversarial
scenario. We believe that this case might be wise to investigate since kernel structures, in
charge of free memory, are indeed not isolated.

In terms of disk confinement, they observed a reduction of 8x in the case of containers with
their competing scenario, but they did not provide any explanations. For instance, was
the competing workload consuming more bandwidth than monitored workload? Was the
Completely Fair Queuing I/O Scheduler enabled on the device 25? Since rotating disks do
not serve concurrent requests as well as solid-state disks (SSDs), we ask ourselves if data
were correctly placed on disk. Moreover, they only tested the weight cgroup feature and
did not test the fixed bandwidth or IOPS quota feature.

P. Sharma et al. also compared the overcommitment potential of VMs and Containers. They
showed that VM performance is within 1% of LXC performance when the CPU is oversub-
scribed by a factor of 1.5. On the other hand, when memory is oversubscribed by a factor of
1.5, the VM performed about 10% worse than LXC. Finally, by using memory soft_limit,
they showed that the VM performed about 40% worse than LXC with an oversubscribed
factor of 2.

2.3.3 Should VMs mimic Containers?

Aside from wondering if containers are replacing VMs, some works are now pursuing the
goal of making VMs as efficient as containers.

The major argument in favor of VM has always been security [118]. Indeed, the Linux
syscall API is growing and is more difficult to secure than the static x86 ABI with its CPU
protection rings. Lightweight VMs have been suggested as an efficient alternative to classic
VMs and as a safer alternative to classic containers. In 2017, F. Manco et al. were able to
achieve container-like properties with LightVM [34]: i) Fast instantiation, ii) High Instance
Density and iii) Pause/unpause.

They observed that the size of the guest VM is one of the biggest limiting factors, and there-
fore suggested two approaches to minimize the VM footprint: the most compact approach

23The noisy neighbor is CPU intensive.
24The noisy neighbor is CPU and memory intensive.
25The default scheduler could be deadline which does not enforce fairness between cgroups.
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is to make use of unikernels which unifies the kernel and the user application into a sin-
gle binary. However, they conceded that linking existing applications that rely on syscalls
to an unikernel such as Mini-OS requires a lot of expert time. Therefore, they suggested a
less compact approach called Tinyx which automates the creation of minimalist Linux VM
images.

In addition to shrinking down the size of the VM, F. Manco et al. also needed to re-engineer
an existing hypervisor to achieve boot times comparable to fork/exec on Linux. They
picked Xen, replaced the message passing protocol of xenstore with shared memory, sped
up the creation of VMs with templates, and named the result LightVM. Their boot time
evaluation shows that unikernel over LightVM is in the order of 10 ms whereas Docker and
Tinyx over LightVM are in the order of 100 ms. In terms of CPU usage and memory foot-
print, unikernel over LightVM achieves similar consumption than Docker, and Tinyx has
an overhead negligible compared to classic Debian VM.

However, containers possess another very useful property, more important than the afore-
mentioned ones, that this work did not try to achieve with VMs. For example, stateful ser-
vices such as databases do not need fast instantiation because when their load increases,
it is wiser to scale up their current capacity rather than booting up new instances on the
same machine. Unlike containers, VMs cannot provide such flexibility because underlying
physical resources were never meant to change at runtime. In terms of security, instead of
adapting applications to unikernels, expert time can be spent to narrow down the attack
surface of the syscall API with seccomp. Moreover, this procedure can be sped up thanks to
automated systems that audit and profile application interactions with the kernel.

To conclude, VMs were developed because there were use cases that OS could not handle
due to their lack of isolation features. Today, most of these use cases can be handled by
containers, the sole exception being running another kernel. In the future, the security of
containers will mature, but if VMs are to shrink down to the size of processes and start to
strongly cooperate with their hypervisor to extend their flexibility, it would be like reinvent-
ing the wheel.

2.4 Consolidation and Isolation, the best of both worlds

Many aspects of virtualization have been discussed so far, but in the remainder of this the-
sis, we will focus on virtualization as a means of providing more virtual resources than there
are physically available. Aspects such as encapsulation or security will be put aside; and
since VMs are less efficient in terms of resource yield, we will only focus on containers.

Consolidation and isolation are key concepts to study when resources are multiplexed. In
short, performance isolation is what Cloud clients care about; whereas resource consolida-
tion is what Cloud providers care about.
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2.4.1 Resource Consolidation

Opportunities to multiplex resources exist in the Cloud. Indeed, R. Ghosh observed in an
internal private Cloud that: i) 84% of the running VMs have a CPU utilization peak less
than 20% and ii) only 0.7% of VMs have a maximum CPU utilization close to 100% [19].
Moreover, these opportunities are not only spatial (because multiple small utilization peaks
can be packed together), but there are also temporal because utilization peaks do not occur
at the same time.

Resource multiplexing opportunities are sometimes hard to exploit, but there are ways
to unveil them by reshaping the workloads. For instance, P. Lu et al. designed a Hadoop
scheduler that colocates MapReduce tasks to maximize resource utilization and minimize
resource contention [33]. They were able to improve the CPU utilization by 10%, halve the
I/O wait time and reduce the job execution time by 10%.

To conclude, consolidation is about taking advantage of unused resources to increase the
yield of machines in the Cloud or to reduce the job execution time.

2.4.2 Performance Isolation

The need for performance isolation emerged and grew when systems started to handle
multiple tasks and users [47]. Ideally, tasks running on the same machine should behave
as if they were running alone on separate machines. In theory, performance isolation is
achievable given enough resources on a single machine. Moreover, even if there are not
enough resources for all the tasks, a subset of tasks should be able to behave as if they were
running alone. For instance, highly interactive user-end tasks26 usually do not consume
many resources; and as a result, their performances are easier to preserve even if the ma-
chine is under heavy loads. But heavy applications tend to compete for resources and do
not take into account possible impacts on other applications in the system when they ask
for resources. Instead, the resource management logic is decoupled from the application
to ease software development and delegated to the kernel to provide flexibility at runtime.

To conclude, isolation is about providing virtual resources that perform as well as dedicated
bare metal resources.

2.4.3 Illustrating Consolidation and Isolation with the CPU cgroups

To illustrate the concepts of consolidation and isolation, we crafted an experiment involv-
ing two MySQL servers (called A and B) receiving requests from Sysbench [144] clients. The
CPU usage percentage is collected over time as a consolidation metric while the transac-
tion rate and the latencies are collected as performance metrics. The results are reported in
Figure 2.2 and the remaining of this subsection details each of its rows, one at a time. There
are five rows that correspond to five different cgroup configurations.

26Tasks that only display information on the screen or that collect user inputs.



2.4. CONSOLIDATION AND ISOLATION, THE BEST OF BOTH WORLDS 27

During most of the experiment, both A and B receive a load of 250 requests per second,
which consumes about 40% of CPU time, but there are three differences between the load
given to A and B:

1. B has 8 concurrent client threads whereas A only has 2.

2. A has a lower load of 50 requests per second between times 50 and 70.

3. B has two extreme peak loads where it receives 1200 requests over a second. The first
peak occurs at times 20 when A needs the CPU, and the second peak occurs at time
60 when A has a lower need.

The goal of this setup is to observe if isolation is enforced at time 20 and if consolidation is
allowed at time 60.

Baseline (1st row)

In the baseline configuration, A and B are only allowed to use one CPU core. They are exe-
cuted alone and sequentially on the same machine to simulate physical hardware isolation
and to avoid hardware differences. In other words, the trace collected from the execution
of B is time-shifted to overlap the trace collected from the execution of A. As shown in Fig-
ure 2.2a, with only one CPU core, B is limited to 600 requests per second and is not able to
handle its two instantaneous peak loads of 1200 requests. As a result, the requests of B are
delayed and their response time increases (see Figure 2.2b).

This configuration shows the ideal performances of A and B at the cost of wasting more
than 100% of the CPU time(see the idle percentage in Figure 2.2c).

Two CPU sets (2nd row)

Before trying to consolidate idle CPU time, we first want to evaluate the performance iso-
lation when running A and B together on the same machine at the same time. In this con-
figuration, A and B are deployed on distinct cores with the cpuset cgroup, but the results
show that the isolation is not as perfect as the theoretical baseline. Indeed, A and B have to
share some CPU caches, access to memory banks and to the SSD.

Compared to the baseline results, Figure 2.2d shows a decent decrease in the transaction
throughput of B during its first peak load. Moreover, there is a light overhead perceptible in
terms of latency for both A and B (see Figure 2.2e). Overall, the total time spent on the CPU
slightly increased (see Figure 2.2f).

Single CPU set (3rd row)

This configuration is the first step towards consolidation. To save the idle CPU time (see
Figure 2.2i ), both servers are deployed in the same CPU cgroup which is allowed to run on
a single core.
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Figure 2.2: CPU Isolation and Consolidation.
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Unfortunately, with this configuration, nothing prevents B from disturbing the performance
of A. During its first peak load, B is able to lower the transaction rate of A (see Figure 2.2g ).
Consequently, the transactions of A are delayed (see Figure 2.2h ), and A eventually catches
up this delay by the time B stopped monopolizing the CPU. Moreover, we can notice that
during the steady phases, the latency of B is better than that of A.

Despite its good consolidation, this configuration shows poor isolation.

CPU Quota (4th row)

To tackle the lack of isolation observed in the previous configuration, the MySQL servers
are deployed into separate cgroups configured with strict CPU quota bandwidth. When
B is only allowed to consume half of the available CPU time, it cannot disturb the perfor-
mance of A. Figure 2.2j shows that A has transaction rate similar to that of the baseline, but
B can only increase its rate up to 300 per second to absorb the incoming 1200 transactions.
Consequently, the period of time upon which its latency is degraded is extended from a few
seconds to tens of seconds compared to the baseline (see Figure 2.2k ). Moreover, during
the steady phases, the latencies of A and B are fairly equal compared to the single cpuset
configuration, but there still is an overhead compared to the two cpusets configuration.

Note that A has the same quota restriction as B, but in practice, it never needs to reach that
limit. Unfortunately, B is not able to consume the idle time left over by A, especially when
A experiences its lower load period (see Figure 2.2l). Therefore, despite its good isolation,
this configuration is not ideal in terms of consolidation, as observed at time 60.

CPU Shares (5th row)

To address the lack of consolidation observed in the previous configuration, the MySQL
servers are deployed into separate cgroups configured with equal cpushares and without
CPU quota bandwidth. As A consumes less CPU time than B, it is always prioritized over B
when it is ready to execute.

Consequently, when cpushares are applied, the performance of A is still protected (see
Figure 2.2m). But since B is allowed to overconsume the idle time left over by A (see Fig-
ure 2.2o), the period of time upon which its latency is degraded is shortened compared to
the CPU quota configuration, as observed at time 60 (Figure 2.2n ).

To summarize, these experiments suggest that “cpushares” is the most appropriate config-
uration to offer the best of both worlds: isolation and consolidation.

2.4.4 Block I/O, a time-based resource similar to CPU

As mentioned earlier, Input/Output accesses to block devices like SSDs are controlled with
a scheduler. There are multiple I/O schedulers available in Linux, but the Completely Fair
Queuing scheduler is currently the only one that can provide isolation and consolidation.
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Figure 2.3: Block I/O Isolation and Consolidation.

To illustrate this property, we suggest the following experiment with two Filebench work-
loads (A and B) that bypass the page cache and sequentially read their own file of 1 GB on
disk by blocks of 1 MB at a rate of 100 IOPS27. There are three differences between A and B:

1. B has 100 concurrent processes whereas A only has 2.

2. A has a slower pace of 50 IOPS per second between time 50 and 70.

3. B has two extreme peak paces where it attempts to do 500 IOPS over 3 seconds. The
first peak occurs at time 20 when A needs bandwidth to the disk, and the second peak
occurs at time 60 when A has a lower need.

The goal of this setup is to observe if isolation is enforced at time 20 and if consolidation is
allowed at time 60.

Baseline (see Figure 2.3a)

In the baseline configuration, A and B are executed alone and sequentially to measure their
throughput given a dedicated disk. Similarly to Section 2.4.3, the trace collected from the
execution of B is time-shifted to overlap the trace collected from the execution of A. As
shown in Figure 2.3a, it takes a few seconds to absorb the IO peaks of B because of the
limited bandwidth capacity of the dedicated disk.

This configuration shows the ideal bandwidth isolation between A and B.

Single Blkio cgroup (see Figure 2.3b)

In this configuration, A and B are executed together inside the same cgroup and at the same
time. As expected, the configuration offers no isolation because CFQ imposes fairness be-
tween processes. Thus, since B has more processes than A, it is able to disturb A whose
bandwidth consumption drops to 0 MB/s at time 20.

27Input/Output operations per second.
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Figure 2.4: Memory is harder to isolate and consolidate.

Two Blkio cgroups (see Figure 2.3c)

In the final configuration, A and B are executed together in separate cgroups. We can ob-
serve that B does not disturb the bandwidth consumption of A at time 20, as it did in Fig-
ure 2.3b. Moreover thanks to consolidation, the second peak of B, at time 60, is shorter than
its first peak at time 20.

Thus, this configuration offers both isolation and consolidation between A and B.

2.5 Memory, a spatial but not time-based resource

So far, we have seen that the consumption of time-based resource such as CPU and disk
bandwidth can be easily controlled to provide isolation and consolidation. Even if mem-
ory could be considered as time-based resource, because of the bus bandwidth between
the CPU and the RAM, it is mainly a spatial resource. In short, CPU and disk schedulers
only have to decide which process should be using free resources. Unfortunately, there is
no such thing as a memory scheduler, because the cost of systematically freeing memory is
extremely high, especially compared to that of freeing CPU or disk bandwidth. Indeed, free-
ing CPU only requires a context switch and freeing disk bandwidth only requires a queue
switch. On the other hand, freeing memory requires data to be swapped in and swapped
out of memory to disk. Therefore, freeing memory is only done on demand, when a process
attempts to access data that is not present in memory.

To illustrate that memory is harder to isolate and consolidate, we conducted the following
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experiment with two Filebench workloads (A and B) that compete for memory to cache
data. Both applications require at least 409 MB from a file called “utile”, to process their load
in time. In addition to their minimum memory requirement, the applications will waste
memory by loading data from a file called “waste”, that will never be reused. To measure
the memory composition, we used the mmap and mincore syscalls to count how many
pages of the files are in memory28. A and B have a few differences:

1. A does not need its memory between time 500 and 800.

2. B has two extreme peak where it needs 818 MB to process its load. The first peak
occurs at time 200 when A needs its memory, and the second peak occurs at time 600
when A does not need its memory.

The goal of this setup is to show that memory is harder to isolate and consolidate.

Baseline (1st row)

In the baseline configuration, A and B are allowed to consume up to 2118 MB of memory
(see Figure 2.4b). We can observe on Figure 2.4a that B correctly responds to its two peak
loads at time 200 and 600. Indeed, on Figure 2.4c, we can observe that B recycled some of
its wasted memory to store useful data.

This configuration shows the ideal performances of A and B at the cost of wasting more
than 1 GB of memory.

Two Cgroups (2nd row)

In this configuration, A and B are not allowed to consume more than 1059 MB (see Fig-
ure 2.4e). This constraint is necessary to avoid the waste of memory (see Figure 2.4f). How-
ever, we can observe on Figure 2.4d that A does perform as expected at the beginning of the
experiment, and that the performance of B is poor as soon as it hits its first peak load.

This configuration shows that Linux cannot isolate and consolidate memory.

Optimal (3rd row)

In this configuration we used the mmap and mlock syscalls to manually schedule the mem-
ory placement and consumption. The schedule can be observed on Figure 2.4i:

• A locks its 409 MB of useful memory between time 0 and 500, unlocks it between time
500 and 800, and locks it again between time 800 and 1100.

• B locks its first 409 MB of useful memory during the whole experiment and only locks
its second 409 MB between time 600 and 700.

28We reused the linux-ftools project [72].
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Thanks to the schedule, B is able to process its peak load at time 600 without disturbing A
during the whole experiment (see Figure 2.4g).

This configuration shows that 1059 MB is enough to run both A and B.

2.5.1 Conclusion

In contrast to VMs, containers are more resource efficient because they share the same ker-
nel. Linux containers are built on top of key features such as namespaces, seccomp and
cgroups. They able to consolidate CPU time and disk bandwidth while preserving perfor-
mance isolation. However memory remains harder to consolidate without compromising
isolation. The next chapter will explain why memory consolidation is still hard, and then
Chapter 4 will demonstrate that even on the most simple scenario, Linux will fail to ensure
isolation during consolidation.
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MEMORY AND CGROUP

This chapter introduces memory as a resource and explains how the Linux Kernel accounts
for, limits and isolates memory through its cgroup feature. The related works presented
at the end of this chapter concede that dynamically resizing the memory of cgroups is an
unresolved problem.

3.1 Storing data in main memory

Main memory management is the topic of this thesis, but it is worth recalling that main
memory is one level of the memory hierarchy. Main memory is spatially multiplexed through
virtual addressing to enable concurrent usage and temporally multiplexed through virtual
memory to extend its utilization.

3.1.1 Memory Hierarchy

Many components of a computer are dedicated to the storage of information. They are
classified in the memory hierarchy based on response time and capacity. At the top of the
hierarchy, registers provide the fastest access possible but they are very expensive and thus
limited in size. At the bottom of the hierarchy, external memory—usually disks—can store
data in massive quantities at an affordable price, but they are very slow and not directly
accessible to the CPU. To mitigate that gap, each intermediate level is typically smaller and
faster than the next level; programs have to take into account the data transfers—which are
sometimes implicit—between levels.

Main memory is usually made of dynamic RAM (DRAM); a semiconductor storage that can
handle read/write random accesses by storing each bit of data in a capacitor that requires

35
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a periodic recharge. The CPU directly accesses main memory through an address bus and
a data bus (hardware dedicated to communication).

The management of main memory is a critical duty undertaken by the kernel of the oper-
ating system. It allows programs to run concurrently without corrupting or stealing each
other data. It provides ways to dynamically allocate, relocate and share portions of mem-
ory, and also to free it for reuse when it is no longer needed.

3.1.2 Spatial multiplexing

Thanks to the memory management, programs can have their own private view of memory
called virtual address space. Indeed, it allows programs to use the same virtual address to
store different objects because each program has its virtual address mapped to a different
physical address. Virtual addressing is achieved through the segmentation unit and the
paging unit of the memory management unit (MMU). The MMU is a hardware that trans-
lates virtual addresses into physical addresses. Segmentation is barely used in today’s sys-
tems and most of address space virtualization is done through paging. The address space
is partitioned into page frames (typically 4 KiB in length) and a set of page tables is intro-
duced to specify how virtual addresses correspond to physical addresses. The page tables
are stored in memory and are maintained by the kernel. When a new virtual address has to
be translated, the MMU accesses the page tables to compute the corresponding physical
address.

3.1.3 Temporal multiplexing

When a virtual address is translated into a physical address, a specific bit in the page table
entry—a.k.a. the accessed bit—is set by the MMU. The accessed bit plays an important role
in virtual memory: it notifies the kernel that the page is still in use and therefore should not
be evicted out of memory.

Virtual memory is a feature of memory management that virtually extends the amount of
available memory by performing implicit transfers of pages from memory to disk. As long
as the set of pages immediately needed—a.k.a. the workingset [14, 123]—can fit in memory,
the kernel can run programs whose total set of pages—a.k.a. the dataset—is larger than the
available physical set of pages, by implicitly transferring pages in and out of memory as the
workingset changes.

On the other hand, some programs have a very small memory footprint but tend to explic-
itly access data on disk. These programs can implicitly use more memory to store a copy
of the data on disk in the hope that it will be re-accessed in the near future. Many applica-
tions, such as databases, rely on this caching technique provided by the kernel, to improve
their performance.
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Figure 3.1: Illustrating the need for Memory Isolation.

3.1.4 The need for memory cgroup

In both cases, with virtual memory or disk access caching, isolation is required to control
the amount of memory used to store the workingset or the cacheset. Indeed, it is very easy
to accidentally collocate applications that interfere with one another. To illustrate these in-
terferences, we suggest the following experiment with two Filebench workloads (A and B)
that compete for memory to cache data. The application B often changes its small work-
ingset, i.e., its set of most recently used data, but application A has a big static workingset.
After running A for more than a minute, we start B and observe their performance. In the
absence of cgroups, the dynamics of these workingsets cannot be detected and isolation
cannot be guaranteed (see Figure 3.1). Indeed, when A is not isolated from B, B is able to
flush the data of A out of memory. A only recovers its performance once B shutdowns at
8 minutes. But B does not really benefit from the extra memory stolen from A; indeed, its
performance is the same in both cases.

In the absence of cgroups, the eviction policy of Linux can not detect the dynamics of these
workingsets. We can deduce on the upper plot of Figure 3.1 that the data of A was evicted
by the data of B.

3.2 Accounting and limiting memory with cgroup

As introduced in Chapter 2, cgroup stands for “control group”. It is a Linux Kernel feature
that groups processes together to account for, limit and isolate their resource consumption.
This section introduces the accounting and limiting feature of the memory cgroup1.

1See mm/memcontrol.c.
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3.2.1 Event, Stat and Page counters

Each memory cgroup has its set of counters that can be categorized into three types: Event,
Stat and Page. Listing these counters gives an overview of the memory management con-
cepts. Moreover, as we will introduce a new pair of event counters in Section 4.2.3, it is
interesting to understand the differences with the current counters.

Event counters

An event counter counts the number of times something happened in a cgroup since its
creation. It is a reliable counter to read since it is always incremented and never decre-
mented; all modifications are recorded.

The reader might be familiar to the Linux vmstat counters which accounts for memory-
related events at the scale of the whole machine2. Four of the same page events are pro-
vided per cgroup through the sysfs:

• pgfault and pgmajfault are exactly like the ones provided by vmstat. They count
the total number of pages faulted by a cgroup. A page fault occurs when a virtual page
has not yet been mapped to a physical page. The fault is said to be major if its content
has been offloaded out of memory.

• pgpgin and pgpgout are different from the ones provided by vmstat. pgpgin (resp.
pgpgout) counts the total number of pages charged (resp. uncharged) to a cgroup.
Vmstatmakes additional distinctions according to the origin of the page, pswpin and
pswpout count transfers to and from the swap, pgpgin and pgpgout count transfers
to and from the regular filesystem, and pgalloc and pgfree count allocations and
freeing of pages.

The /proc/vmstat file also provides event counters related to the Page Frame Reclaiming
Algorithm, but there are irrelevant to how memory is reclaimed with cgroup.

Dedicate limit events are available for cgroup:

• low counts the number of times a cgroup was shrunk despite being below its min_limit3.

• high counts the number of times a cgroup was shrunk because it was over its max_limit3.

• max counts the number of times a cgroup was shrunk because it hit its hard_limit.

• oom counts the number of times a cgroup had to trigger the out of memory function
to kill a process to free memory.

2The Linux vmstat counters are exposed in the /proc/vmstat file.
3Exposed in version 2 of the cgroup interface.
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Stat counters

Stat counters are less precise than event counters and should be considered as samples, be-
cause updates can cancel each other out and make monitoring tools believe that nothing
has changed while increments and decrements are occurring at the same time. Neverthe-
less, they provide good hints on the workload needs in terms of memory.

• cache counts non-swap-backed pages and shmem/tmpfs pages.

• rss counts mapped swap backed pages and pages of the swap cache.

• rss_huge counts huge pages.

• mapped_file counts pages of files in memory accessible in the address space (no I/O
syscalls).

• dirty counts pages not synced with their image on disk.

• writeback counts pages currently being synced with their image on disk.

• swap counts pages that should be in memory but are instead in the swap.

Additional stat counters also count the number of active and inactive pages per memory
pools.

Page counters

Page counters are the backbone of memory isolation. They precisely count memory pages
charged to a cgroup according to their type of use. Moreover, they raise exceptions when
their limit has been reached4.

• mem: counts pages that store user data/objects. It is the major page counter, the fol-
lowing counters are off topic.

• kmem: counts pages that store kernel data/objects.

• tcpmem: counts pages that store networking data/objects.

• swap: counts swap entries5.

• memsw: counts the sum of mem and pages out of memory in the swap6.

4failcnt counts the number of times the page counter reached its limit.
5All swap entries are taken into account even if there are clean copies in memory.
6swap entries of pages in memory are not taken into account.
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3.2.2 min, max, soft and hard limits

A common misunderstanding about cgroup limit is that free pages are reserved or pre-
allocated to a cgroup. Limits are just a set of policies which guides the memory reclaims.
The major limitation feature is the hard_limit.

hard_limit

By default, when a cgroup is created, its resource consumptions are unlimited. The hard_limits
of its page counters are initially set to +∞7. Setting the limit of a cgroup does not reserve
nor pre-allocate free pages, it only sets the hard_limit value of the page counter8. Free
pages are managed by a binary buddy allocator and they do not belong to any cgroup9. As
soon as they are allocated and contain valuable data, they are charged to the cgroup that
issued the request.

As the hard_limit must never be breached, the cgroups are first shrunk, if needed, before
charging a new page. During this process, the cgroup may be led to kill some of its tasks to
free memory because it is Out Of Memory (OOM).

Since cgroups can be nested to form a hierarchical tree, their page counters are also nested.
When a page is charged to a leaf cgroup, the internal cgroup nodes on the path to root
cgroup are also charged10. Multiple cgroups can be shrunk at once to respect the hard_limit
of an internal node11. Memory pool shrinking is discussed in Section 3.3.1.

min, max and soft_limit

Three additional limits have been added for fine-tuning:

The min_limit feature gives some protection to the cgroups whose current usage is be-
low their minimum threshold. Memory is first reclaimed in cgroups whose current usage
is above their minimum threshold, but if memory is still scarce, this protection is not guar-
anteed. By default, the min_limit is initialized to zero.

The max_limit feature is not as strict as the hard_limit. Cgroups can exceed their max_limit
without triggering the OOM killer. But when they do exceed it, they are immediately and
periodically forced to run additional attempts to shrink their memory pools. This extra
work ensures that the data of the cgroup are still worth keeping in memory despite the
max_limit being exceeded because the data are still being accessed. But the max_limit
is not a silver bullet because its periodic memory reclaims consume extra CPU time and
most importantly, it does not work with applications that store their data in the type of
pages which are easy to reclaim. Indeed, these kinds of applications might never be able to
exceed their max_limit if they have to.

7The maximum value of an unsigned long integer.
8Setting the hard_limit too low may fail if the size of the cgroup cannot be shrunk.
9See mm/page_alloc.c file.

10If the use_hierarchy parameter is false, the hierarchy is flat under the root cgroup.
11The root cgroup is always unlimited.
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Figure 3.2: Linux Memory Pool: lru.

The soft_limit feature allows system administrators to define a desired or preferred cgroup
size. If memory is available, the cgroup can grow beyond the soft_limit without breach-
ing the hard_limit. But as soon as memory gets scarce, the cgroup whose soft_limit is
the most exceeded will be shrunk in priority. By default, the max_limit and the soft_limit
are initialized to +∞.

3.3 Isolating cgroup memory reclaims

Cgroup isolation goes beyond the quantitative counters and limits presented in the pre-
vious section. Cgroup also provides a qualitative isolation because each cgroup has its
own set of memory pools. This section is important because it introduces memory track-
ing technics used in Chapter 6 and explains why we cannot revert to a centralized pool of
memory.

3.3.1 Linux memory pool

The goal of a memory pool is to measure the utility of the pages it contains. When memory
is running low, it has to guess the page whose next use will occur the farthest in the future,
and evict the page out of memory to free space [7]. The algorithm is known as the Page
Frame Reclaiming Algorithm or Page Frame Replacement Algorithm (PFRA)12. The PFRA
of the Linux kernel is quite unique but does borrow some idea from the literature: like
2Q [25] it uses two queues, like LIRS [23] it uses a refault distance, and like Clock-Pro [22] it
keeps in memory information about recently evicted pages.

The memory pool of Linux is called the lru, but it does not strictly follow the Least Re-
cently Used (LRU) order. The lru is composed of two double linked lists of pages called the
active_list and the inactive_list (see Figure 3.2). Both lists are mostly manipulated
to respect the First In First Out (FIFO) order. The former list tends to include pages that
have been accessed recently and therefore require more protection. The latter list tends
to include pages that have not been accessed for some time and therefore are good can-
didates for eviction. When the inactive_list is big enough, the active_list is never
shrunk. This rule protects active pages from access patterns such as scanning through a
whole database. But when the size of the inactive_list is detected as low during the
PFRA, some pages from the active_list are moved to refill the inactive_list.

12See mm/vmscan.c.
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Figure 3.3: Page state automata in Linux memory pool.

Newly allocated pages can be inserted in either list according to heuristics. For example,
a page from a file that was recently seen in memory will be inserted in the active_list.
On the other hand, since page faults severely delay programs, the page is placed in the
active_list to avoid other faults on the same page in the near future. In Section 6.3.2, we
used these page demand events to track the activity of cgroups.

As monitoring memory accesses is very expensive, the page activity is mainly tracked through
two light mechanisms. These mechanisms are almost the same as the ones used by the idle
page tracking tool in userspace that we are going to cover in Section 5.2. The monitoring
is mostly focused on pages in the inactive_list because they need to be promoted to
the active_list as soon as possible for protection. On the other hand, it is pointless to
monitor active pages since they are already protected and the likelihood of seeing another
access on them is pretty high.

The first monitoring mechanism is directly catchable by the kernel: When a page is ac-
cessed in kernel mode—for e.g., during a read syscall on a file—a specific kernel function13

is called to remember that the page was accessed. In addition to the bit PG_active used
to remember on which list the page is stored, a second bit, the bit PG_referenced, is used
to remember that the page was recently referenced. The PFRA also manipulates these bits
and the automata in Figure 3.3 provides a glance at how pages transition from one list to
the other. In Section 6.3.2, we used the page activation events, i.e., when pages are inserted
in the active_list, to track the activity of cgroups.

The second monitoring mechanism used to track memory accesses is the bit accessed of
the page table entry. As mentioned before, this bit is set by the MMU to notify the kernel
that the page was accessed in user mode. But the kernel consults and resets this bit only
when it has to shrink the lru, because it is expensive to reverse map a physical address to
all its virtual addresses.

3.3.2 Splitting memory pools

Memory pools are extensively used in the kernel. There are memory pools for each NUMA
node, for each address zone, for each cgroup and for each usage type of page. By splitting
memory pools, Linux improves its ability to manage memory. For instance, NUMA nodes

13mark_page_accessed() is shortened as mpa in Figure 3.3.
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Figure 3.4: Duplicated local cgroup lists were “bolted” on the global ones.

and address zones are statically sized physical constraints that need to be balanced from
a hardware point of view. On the other hand, the cgroup and usage dimensions are not
bounded by hardware characteristics and are therefore extremely dynamic.

Page type lru splitting

Pages can store any kind of data, they are tagged according to their type of use. We don’t
have to discuss every usage types here, but it is worth mentioning that Linux manages each
type slightly differently during the memory reclaim. For example, unevictable pages14

store data pinned in memory by users and slab pages store kernel objects. But this thesis
will only focus on the following two types: pages that store persistent data and those that
store non-persistent data. The former are called file pages15 because they have an image
in a file on disk, and the latter are called anon pages16 because they are anonymous, i.e.,
they do not have a dedicated location on disk. When file pages are evicted out of mem-
ory, their data are synced back on disk through a regular filesystem. When anon pages are
evicted out of memory their data are backed up in an area called the swap.

In 2008, R. van Riel introduced the anon and file lrus [151]. Linux stores file and anon
pages in separate typed pools because it needs to (i) measure and compare the utility of a
specific type of page, (ii) efficiently reclaim pages of a specific type and (iii) take advantage
of the different transfer rates of the swap device and the file device. If both types used the
same pool, the PFRA could waste time on filtering pages according to their type or could
move them around and disturb their recency order.

14Unevictable pages have their PG_unevictable flag set.
15File pages have their PG_swapbacked flag cleared.
16Anon pages have their PG_swapbacked flag set.
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Figure 3.5: J. Weiner removed the global set of lists and split it into local sets of lists per
cgroups.

Cgroup lru splitting

Before J. Weiner’s work of 2011 [153], cgroups were implemented with local lists “bolted”
on the global ones (see Figure 3.4). These additional lists allowed the kernel to quickly it-
erate through pages belonging to a specific cgroup by skipping pages from other cgroups,
but J. Corbet reported that this design had at least three disadvantages [91]. First, the global
reclaim did not take into account the cgroup limit policy. Second, to keep duplicated struc-
tures synchronized, only one cgroup could be reclaimed at a time, but this created interfer-
ence between cgroups. Third, duplicated structures not only added complexity in the code
but also increased the memory footprint. As a result, J. Weiner removed the global set of
lists and split it into local sets of lists per cgroups (see Figure 3.5).

3.4 Resizing dynamic memory pools

Unfortunately, splitting memory pools comes with the unresolved problem of dynamically
resizing the pools. A resizing heuristic for the anon and file lru was introduced at their
birth at later refined. But resizing lrus of different cgroups is harder because they must
remain isolated from each other.

3.4.1 Resizing anon and file memory pools

Resizing dynamic pools is hard, but Linux has come up with three cases to balance the ratio
of anon and file pages according to their utility. When file pages are more accessed than
anon pages, Linux will prefer to reclaim anon pages and vice versa. This property is later
illustrated in Section 5.1.2. Moreover, Linux also adjusts the intensity at which pages are
reclaimed. Indeed, as killing a process is worse than slowing all the processes, the PFRA
will do its best to avoid triggering the Out Of Memory killer (OOM). On the other hand,
every time a page has to be reclaimed, the PFRA should not hog the CPU for too long.
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The amount of work done by the PFRA is tailored to fit the current situation, whether to
answer the balance need between anon and file pages, or to answer the balance need be-
tween the throughput and the latency of the PFRA’s execution. This logic is described in the
get_scan_count function: it computes WX , the amount of work done by the PFRA, i.e., the
number of pages to scan in the lruX (X ∈ {file,anon}). The function get_scan_counthas
three different strategies which are “shrink both equally”, “shrink one only” and “balanced
shrinking”.

Shrink both equally

The PFRA proceeds by waves with increasing intensity. If there are NX pages in the lru X,
the first wave will work on NX

2p pages, where p is the scan priority and is set to 12 at the first
wave. If the first wave fails to reclaim enough pages, the PFRA will try again but the next
wave will work on twice as many pages, i.e.,p is decremented after each wave. On the final
wave, where p is set to 0, the PFRA will not try to apply any balancing cleverness between
the anon and file lrus. Both lrus will be fully scanned. Therefore, in this case, WX = NX .

Shrink one only

Obviously, if swapping is not allowed, the anon lru will not be shrunk. There are many
cases where this can occur: when the page counter memsw has reached its limit, when the
swap device is full, or when the user set swapiness to zero.

When swapping is allowed, programs usually expect that anon pages are more likely to be
in memory than file pages. Therefore, the PFRA will choose to shrink only the file lru if
both of the following conditions are met on Ninactive_file, the size of its inactive_list:

• Ninactive_file >= Nactive_file

•
Ninactive_file

2p > 0, i.e., not during the first waves unless Ninactive_file > 212.

In the two aforementioned cases, Wanon = 0 and Wfile = Nfile

2p .

The PFRA will almost never choose to shrink the anon lru only. There is a very rare case,
called “cache trap”, where a “feedback loop” will tend to wrongly prefer to evict file pages.
In that case, a heuristic will try to detect this “feedback loop” and ask to shrink the anon lru
only (Wfile = 0 and Wanon = Nanon

2p ).

Balanced shrinking

In 2008, R. van Riel also introduced a method to choose between the anon and file lrus [151].
The balanced shrinking is guided by a user-defined parameter called swapiness and by
two counters per lru called recent_scanned and recent_rotated. The swapiness is a
positive integer smaller than 100 and set to 60 by default. The recent_scanned counts the
number of pages recently scanned, i.e., the pages on which the PFRA has been working on.
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Figure 3.6: Example of cgroup hierarchy with hard_limit configuration.

The recent_rotated counts the number of pages recently scanned but not reclaimed and
kept in memory because they were recently accessed. The counters are called “recent”
because they are halved periodically when scanned reaches the quarter of the size of the
lru.

The counters are used to measure the effectiveness of memory reclaims. We decided to
refer to this metric as the “rotate ratio”. It is computed for the anon and the file lrus as
follows:

RX = recent_scannedX

recent_rotatedX
X ∈ {anon,file} (3.1)

Then, to obtain the values of WX , the following formula is applied:

WX = NX

2p
× QX ×RX

Qanon×Ranon+Qfile×Rfile
X ∈ {anon,file} (3.2)

where QX
17 is the swapiness.

3.4.2 Resizing cgroup memory pools

Resizing cgroup memory pools is still an unresolved problem. Suppose a machine has 8 GB
of memory; it can divide it between two classes of application. The first class is applications
that can overcommit and share their memory because they do not need it at the same time
(A, B and C). But the second class are high priority applications that cannot share resources
(E and D). A cgroup hierarchy configuration corresponding to that example is given in Fig-
ure 3.6. Which cgroup—between A, B and C—should be shrunk when the parent reaches
its 2 GB limit? In 2002 Michael Kerrisk [130] said that “there is no real agreement on the
semantics of how the hierarchy should be walked and pages reclaimed”. The current im-

17Qanon = swapiness, and Qfile = 200−swapiness
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plementation has no specification and will try to reclaim memory from any of them pro-
portionally to their current size.

The formulas 3.1 and 3.2 could be generalized for multiple cgroups (see formulas 3.3 and
3.4 where RX is the rotate ratio of the cgroup X and QX is a new user-defined priority value).
But WX is a number of pages to scan, not to reclaim. This method would, therefore, require
all cgroups to be scanned whenever one cgroup reaches its local limit. Unlike the anon
and file lrus of the same cgroup, the lrus of different cgroups cannot be synchronously
scanned because it would break the isolation between the cgroups. Nevertheless, in Sec-
tion 6.3.1, we use the rotate ratio in one of our approach, defined as follows:

RX = recent_scannedX
anon+recent_scannedX

file

recent_rotatedX
anon+recent_rotatedX

file

X ∈ {A,B,C...} (3.3)

WX = NX

2p
× QX ×RX∑

Qi ×Ri
X ∈ {A,B,C...} (3.4)

In 2016, V. Davydov [101] highlighted the same problem. When all containers are actively
demanding pages, the greediest container whose demand rate is the highest can outrun
the others, and hog most of the memory. He stated that this behavior was unfair, especially
in the case where the former container reclaims useful pages from others in favor of useless
pages, i.e., pages that are used once and never used again.

We believe that greedy containers should not be systematically throttled by the kernel. On
the contrary, greed is good because it enables the demand-as-you-go resource model. Un-
less there were a way to predict that the demanded pages are going to be useless, greed
should prevail.

Five ideas were suggested during V. Davydov’s talk to address this issue: a “dedicated sys-
tem daemon”, a “timestamp on each page”, the “refault distance”, the “vmpressure” and
“memdelay”.

Dedicated System Daemon

The min, max and soft limits were some first steps to solve the problem at a low cost, but
users generally don’t know how to set these limits and even the hard limit is not obvious to
determine [52]. Besides, the min and max are absolute limits which do not compare cgroups
together. The soft limit policy selects the cgroup whose limit is the most exceeded, but this
cgroup could be the one the most in need.

J. Weiner recalled that soft and hard limits can and should be dynamically adjusted to
avoid the problem by “manually” routing memory pressure from userspace decisions [101].
A system daemon would measure how much memory pressure is created by each cgroup
and make its limiting decisions accordingly. But it is not clear how that pressure would
be detected and quantified. In Section 6.3.1, we present a similar metric-driven approach
that takes decisions in userspace; but our implementations never modify the hard_limits
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because we want the transfers to occur at the very last moment, i.e., when a growing cgroup
asks for more pages.

Timestamp each page

V. Davydov suggested tracking the oldest page on each list by storing the time at which
each page was added to the lru [101]. The proposed solution could then try to achieve an
approximate balance of ages. As J. Weiner abolished the global LRU order [153] in the in-
terest of isolation, the best approximation can only be achieved by reconstructing a global
FIFO order. But since FIFO policy has too many flaws compared to LRU, such as Belady’s
anomaly [8]18, the global order would be restricted to the active_list only. As no im-
plementation of this solution is available, we do not know if the balance of ages can pre-
serve the isolation between cgroups. For instance, a small cgroup can quickly churn its
active pages in and out of the active_list and indirectly force the balancing mechanism
to shrink the active_list of other cgroups. Besides, the most reluctant aspect of this ap-
proach is its memory cost: It simply duplicates information because timestamps and lists
both encode the same ordering information. While the former is absolute, the latter is rel-
ative. Nevertheless, in Section 6.3.2, we show that storing a single timestamp per cgroup is
enough to improve the current strategy of Linux.

Refault Distance

In 2012, J. Weiner introduced the refault distance which measures how long evicted pages
stay out of memory before being faulted back in [92, 154]. In short, a clock is incremented
every time a page is removed from the inactive_list, either to evict it or to activate it.
When a page is evicted, the kernel recycles a “pointer to that page” in memory to store the
age of its eviction. Afterwards, when the page is faulted back in, the kernel compares the age
of its eviction to the current value of the clock. This difference, called the “refault distance”,
is used to detect if a page was recently seen in memory. A heuristic decides that the page
has to be promoted to the active_list if its refault distance is smaller than the current
size of the active_list because it assumes that the page should not have been evicted.
Otherwise, if the refault distance is greater than the size of the active_list, the page is
simply placed in the inactive_list. This metric was suggested to solve the resizing of
cgroup because it can be used to know when to grow a cgroup. Unfortunately, it cannot be
used to know when to shrink a cgroup. Another inconvenient of the refault distance is that
it does not work on the anon lru because it requires to recycle an unused field in a data
structure that is not available for anon pages.

vmpressure

In 2012, A. Vorontsov introduced vmpressure notifications to userspace [152, 93]. Four
types of events are sent to applications that wish to voluntarily reduce their memory foot-
print when virtual memory is under pressure.

18Belady discovered that an increase of memory can result in an increase of page faults with FIFO.
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• VMPRESSURE_LOW: The system is out of free memory and has to reclaim pages to sat-
isfy new allocations. However, there is no particular trouble in performing that recla-
mation, so the memory pressure, while non-zero, is low.

• VMPRESSURE_MEDIUM: A medium level of memory pressure is being experienced; enough,
perhaps, to cause some swapping to occur.

• VMPRESSURE_CRITICAL: Almost no page in memory is a suitable candidate for evic-
tion.

• VMPRESSURE_OOM: Memory pressure is at desperate levels, and the system may be
about to fall prey to the depredations of the out-of-memory killer.

The averaged vmpressure in a cgroup is computed over a window periodically, when the to-
tal number of pages scanned in both lrus of a cgroup reaches a threshold (see formula 3.5).
The LOW event is always triggered at the end of the window, the MEDIUM event is triggered if
the vmpressure is above 60, and the CRITICAL event is triggered if the vmpressure is above
95. On the other hand, the OOM event is not related to vmpressure formula, but instead, it is
triggered when the scan priority drops below 3.

vmpr essur e = 100×
(
1− r ecl ai med

scanned

)
(3.5)

In essence, the vmpressure measures how hard/easy it is to reclaim memory which does
not really reflect the need for memory. Moreover, according to peers, it does not look like
a reliable metric. M. Hocko said that vmpressure only works well on small systems but on
larger systems, pressure tends to look high even when the situation is not that severe [101].
We believe that he experienced false positive notifications because the measurement win-
dow is not suited for large systems19. Adjusting the window at runtime could resolve this
issue. Surprisingly, J. Weiner experienced the exact opposite problem [155]. On machines
where memory is in the hundreds of gigabytes and SSDs reduce the speed gap between
memory and disks, the rate at which memory can be reclaimed is as fast as the rate at
which memory can be scanned. In this condition, notifications are triggered at the very
last moment, just before the OOM event. We believe that the real ratio value should also be
exposed to monitoring applications since the 60 and 95 thresholds may be obsolete.

memdelay

In 2017, while we were working on this problem, J. Weiner submitted a patch that measures
the time spent “waiting for memory”, i.e., memdelay [155, 156]. He observed that the exe-
cution of the PFRA can overwhelm an already overloaded CPU. As mentioned before, when
the speed gap between memory and disks is reduced, the bottleneck of memory-intensive
applications can shift towards CPU time. Historically, these workloads would tend to block

19The vmpressure_win is statically set to 512 pages.
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on IO completion, but they would be easily identified because of their idle CPU time. To-
day, the paradox is that by increasing memory capacity, one can free up unproductive CPU
time spent in the PFRA to boost application throughput and latency. J. Weiner aims at re-
sizing cgroups according to the measured memdelay. If the delay is above a threshold, the
cgroup should be grown and if the delay is below another threshold, the cgroup should be
shrunk. According to J. Weiner, the memdelay is more user-friendly than other memory
pressure metrics because it does not rely on hardware aspects to be meaningful. For in-
stance, if 2000 pages are refaulting per seconds from an SSD, the situation is not as bad as
if they were refaulting from a rotating disk.

Unfortunately, P. Zijlstra was skeptical about this first prototype since i) it can slow down
critical paths in the scheduler code, and ii) it does not reuse some of the existing scheduler
counters. In some cases, the execution of the PFRA could simply be sped up by further
dividing the big cgroups into smaller cgroups to shorten the length of the page lists.

3.5 Conclusion

We have introduced memory as a resource managed in units of pages. The utility of each
page is tracked by a special data structure called lru. Kernel developers have weighed the
pros and cons of partitioning the global lru into multiple lrus. In the process, they intro-
duced the problem of dynamically resizing the lrus. A heuristic is provided to solve this
problem for the lrus of the same memory cgroup, but there is no real agreement on how
the lrus of different cgroups should be resized. In the next chapter, we will present a case
where there is no ambiguity about which cgroup should be shrunk.
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ISOLATION FLAWS AT CONSOLIDATION

In the previous chapter, we introduced the general problem of dynamically resizing the
memory pools of cgroups. In this chapter, we are going to narrow down the problem and
restrain it to our activity model and hypothesis. We claim that the performance of active
containers should not be disturbed if there is unused memory in inactive containers. We
demonstrate that during consolidation, Linux cannot sustain the performance isolation of
the most active containers, and thus, even in the simplest of cases, i.e., when a single con-
tainer is obviously the sole active container. Our first contribution highlights that the need
for isolation has incapacitated the Linux kernel to consolidate a class of memory activity
pattern that used to be easy to consolidate without isolation. The goal of this thesis is to
preserve isolation during consolidation. Afterwards, in Chapter 7, we will demonstrate
that our solutions reach this goal on less obvious cases where there is still some activity
remaining in the inactive containers.

4.1 Modeling Consolidation

As mentioned before, consolidation is about taking advantage of temporal multiplexing
opportunities. But mitigation mechanisms are required to handle all the possible behaviors
of real-life applications. As simple as it might be, our model is based on a real case study,
business-inspired by Magency’s applications1.

4.1.1 Model assumptions

We will not discuss finding the temporal multiplexing opportunities in real workloads, as it
is off topic. On the one hand, this information can be finely detailed so that the memory

1We recall that this thesis has been sponsored by Magency.
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Figure 4.1: An example of multiplexing opportunity.

requirements of each workload are known at any time. On the other hand, the information
can be almost vague so that the aggregated memory requirements of all the workloads are
known to be always lower than the sum of their hard_limit. As the latter assumptions are
easier to provide than the former at the level of the cluster orchestrator, we decided to make
the following model assumptions:

1. In our model, applications are classified into two classes. They are either active,
meaning that they need all the memory they asked for to ensure the isolation of their
performance, or inactive, meaning that with less memory, they could perform as well
as they are performing with their current consumption.

2. At any time, applications can switch from one state to the other, but the orchestrator
does not have to guess the exact moments.

3. The aggregate memory needs of active users do not exceed the physical capacity, i.e.,
when an application becomes active there is always another application that recently
became inactive (provided that the applications have the same memory footprint,
but this one-to-one ratio is only for convenience. In practice, any ratio could hold).

Figure 4.1 depicts a consolidation scenario example, where three applications A, B, and C
are hosted on the same machine. A is always active but B and C are never active simulta-
neously. As B deactivates, its memory becomes useless. But when C activates in the middle
of the scenario, we would like the Linux kernel to automatically transfer memory from B
to C to avoid waste. Afterwards, when B activates again, we would like to transfer back the
memory of C to B. This scenario is also very likely to occur on a personal workstation: A
could be an application live streaming your screen, B could be your IDE that builds your
application and C could be a virtual machine that tests your application.

Obviously, if the scenario was known in advance, the user could schedule the memory
transfers before the activations by using specific system calls such as madvise, fadvise or
mlock. Another way of scheduling memory transfers beforehand is to use cgroup soft_limit.
When a cgroup deactivates, the orchestrator can set its soft_limit to the minimum (for
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e.g., 0) and when it activates, its soft_limit can be set to the maximum, i.e., to the hard_limit;
but as we will see in Section 6.2, soft_limits are not ideal for the task.

Out of the lab, these consolidation events should be considered as random and unpre-
dictable. Instead of trying to avoid consolidation by adjusting hard_limits, the goal of the
thesis is to provide mechanisms to plan the reaction of the kernel in the event of consoli-
dation. The decisions are based on activity predictions and can be taken from userspace or
kernelspace. On the one hand, userspace predictions are built on metrics, see Section 6.3.1,
but the decision tends to lag because they are not close to the memory management mech-
anisms and events available in the kernel (recall Section 3.3.1). On the other hand, ker-
nelspace predictions are built on kernel events, see Section 6.3.2, but the decision must
remain agnostic about application feedback. As the current strategy of Linux does not take
into account the activity of cgroups, we will see in Section 4.2.1 that the kernel does not
preserve the isolation of the most active containers.

4.1.2 Countermeasures

In the previous subsection, we introduced assumptions that does not always hold for ev-
ery applications. In this subsection, we suggest countermeasures to mitigate these corner
cases:

1. The memory activity of some applications might be impossible to track or compare
with generic methods. These applications will therefore be harder to automatically
consolidate. We recommend to treat them separately by falling back to methods that
dynamically readjust their hard_limit.

2. There is a limit to how fast applications can switch from one state to the other. The
minimum context switch time is mainly constrained by the amount of data used by
the application and by how fast these data can be reloaded from disk. Increasing the
disk bandwidth can provide quicker context switch time, but at some point, it might
be better to consider the application as being active over the period of time where its
inactivity time is less than twice the context switch time.

3. If all applications are active and their aggregate memory needs exceeds the physi-
cal capacity, then three solutions are available: (i) they could all be thrashing, (ii) by
defining static or dynamic priorities, only the least important ones could be thrash-
ing, and (iii) some applications could be migrated to a newly booted machine.

We did not explore these overcommitted scenarios, as designing mitigation mechanisms
was not our goal. Our aim was to study consolidation when there should be enough mem-
ory, i.e., when there are enough inactive containers. The case where all containers are active
is discussed in Chapter 8.
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4.1.3 Industrial Application at Magency

The activity model exposed in the previous subsection was inspired by a business pat-
tern observed at Magency [73]. This company sells collaborative applications which tar-
get meetings, trainings, and corporate events. The workload in this environment is very
heterogeneous: during an event, the application is always active, but before and after the
event, the application often changes its activity status because it is sporadically accessed
to upload or download content. Magency wanted to use containers as a means to consoli-
date the resources of applications when they often change their activity. But during events,
the applications encountered momentary slowdowns because they were running out of
memory. Yet much of the memory was unused because it was allocated to other inactive
applications.

Their first fix was to boot containers on demand. A front-end container receives all the in-
coming traffic and redirects the requests to individual containers according to the client’s
identity. If no requests were seen for an amount of time on a specific container, the front-
end container would simply shut it down. Upon receiving a request routed to a container
stopped, the front-end container would delay the request while booting its container. Un-
fortunately, despite saving most of the resources, this solution had major disadvantages:

• The front-end container became a scaling bottleneck.

• As containers were stateful applications, their boot time was not negligible.

• As the front-end container could control the life-cycle of other containers, it became
a security vulnerability that increased the attack surface.

Magency, therefore, decided to invest in research to improve the memory consolidation of
the Linux kernel.

4.2 Consolidation: once a solution, now a problem

Consolidation used to be a solution but it has now become a problem2. Indeed, booting
a container to reuse the memory of sleeping containers can degrade the QoS of running
containers. Today, users first have to manually free the memory of sleeping containers
before booting a new one; but in the past, this simple scenario used to be consolidated
without errors when containers were not required.

4.2.1 Consolidation with containers

We have reproduced in the laboratory the consolidation problem encountered at Magency
with real applications that are MySQL [75] (App A and B) and Cassandra [58] (App C) by
using the following scenario. A, B, and C are deployed on a physical machine with enough

2A smart man once said: “In life, you would rather be the problem than the solution.”
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Figure 4.2: The quality of service of A is degraded when C boots.
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Figure 4.3: As C boots, memory is taken from the wrong container—i.e., A, the active
container—when it should have been taken from B only.

memory so that only two of them can be active at the same time. A models an application
during an event. It is active throughout the experiment [0s,840s] but takes 100s to warm up.
B and C model applications that change their activity status, their resources are temporally
multiplexed. B is active at the beginning [0s,240s] and becomes inactive in the middle
[240s,600s], then it becomes active again until the end [600s,840s]; C activates itself at the
middle of the experiment [360s,480s], in the time frame in which B is inactive. When A and
B are active, the benchmark is configured to generate as many requests as possible. When B
deactivates and C activates, the benchmark is configured to send requests to neither B nor
C, but it still generates requests to A. Given such conditions, we believe that A is obviously
the most active candidate whose performance must be isolated during consolidation.

All the experiments in this thesis were done on an Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz
with 2 memory banks HMT351U6EFR8C-PB of 4 GB and a Samsung SSD 840 of 128 GB. The
version of Linux kernel was 4.6.0 compiled with gcc 4.8.4. A and B were given 2 cores, 1 GB
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of memory and 12 MB/sec of bandwidth to the SSD. C was allowed to execute on B’s cores
and had to reuse about 512 MB of B’s memory. The queries to MySQL were generated us-
ing Sysbench [144] and we set the Service-level Agreement (SLA) such that: i) 95% of the
requests had to be executed in less than 20 ms, and ii) the transaction rate had to be at
least 1000 transactions per second. This QoS is fairly achievable on our machine and better
results have been obtained by Felter et al. when they compared VMs to containers on a 16
cores machine with 256 GB of RAM [17].

When the Cassandra application (App C) starts at time 360s, the QoS of A is degraded by
a factor of 4 during one minute. The 95%tile response time of the queries of A does not
respect the expected level of 20 ms and the transaction rate drops below 1000/sec (see Fig-
ure 4.2). Indeed, the memory of B is reclaimed and transferred to C, but despite being
active, A loses about 256 MB of memory (see Figure 4.3). A is then forced to reload its data
which causes more memory to be reclaimed; some from B and some from C. All these extra
transfers explain the QoS loss in A during consolidation. The next section investigates why
memory is erratically transferred during consolidation.

4.2.2 Consolidation without containers

We wanted to validate the hypothesis that the problem, i.e., the erratic transfers of mem-
ory during consolidation, was solely due to the fact that the applications were deployed in
containers. Consequently, we crafted a micro-benchmark to model A, B, and C such that
they could be easy to study out of containers. We replaced A and B with Filebench [81] pro-
cesses that did not need isolation because we throttled them using Filebench’s workload
model language [64]. C was replaced with a simple program written in C which allocates
memory through a single malloc call, accesses it in a loop and finally calls free at the end.

We repeated the scenario described in the previous section twice: first by deploying the
applications in containers and then by deploying them without containers. The results are
reported in Figure 4.4. With containers, we observed a QoS loss in A because its memory
was collected along with B’s when C booted. The disturbance lasted for 40 seconds, and
the reading throughput dropped from 700 MB/sec to 160 MB/sec. When deployed out of
containers, the QoS of A was not impacted by the start-up of C because the only memory
reclaimed was that of B3.

4.2.3 Measuring consolidation errors

We believe that the problem of memory consolidation is not specific to Magency and that
others may struggle with the same problem without noticing it. Actually, the first symptom
of this problem is not a tangible degradation of performance, but instead, it is an over-
consumption of disk bandwidth. Indeed, as long as A has enough disk bandwidth to cover
up the errors of consolidation, it can quickly reload its data to compensate the mistakes

3The memory of A and B was measured with the cache counter and the memory of C with the anon.
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Figure 4.5: As the disk bandwidth increases, the performance drop disappears.

and prevent consequent performance degradations. Nevertheless, disk bandwidth over-
consumption is a problem.

To show that higher disk bandwidths can prevent someone from discerning the problem
of memory consolidation, we repeated the experiment in Section 4.2.14 and varied the disk
bandwidth capacity of A from 12 MB/sec to 27 MB/sec. As shown in Figure 4.5, when the
disk bandwidth increases, the performance drop disappears.

However, extra disk bandwidth should not be wasted during consolidation because it should
be dedicated to waking up containers that wish to reload their data or to active containers
with tremendous datasets that need to be streamed. Moreover, disks can sometimes be
slow because they can be on a remote storage or because they can be spinning disks. Even
if SSDs were used, the consolidation errors would severely impact their writing endurance.

We came to the conclusion that performance metrics or resource consumption metrics
were not good enough to measure the consolidation errors. Therefore, we introduced two
new page event counters per cgroup: pglost and pgstolen. These counters can capture
consolidation errors independently of the disk bandwidth and therefore of the application
performance.

• pglost is an estimation of pages lost, it counts the number of pages reclaimed in a
cgroup because another cgroup has reached their common parent limit.

• pgstolen is an estimation of pages stolen, it counts the number of pages reclaimed
by this cgroup in other cgroups because this cgroup has reached their common par-
ent limit.

Thereby, if the pgstolen counter of a cgroup quickly follows its pglost counter, we can
then consider that this cgroup incorrectly lost its memory because it quickly wanted to

4For practical reasons, we shorten the total time of the scenario.
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Figure 4.6: pgstolen and pglost in A.
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Figure 4.7: pgstolen and pglost in B.

recover it back by stealing pages to other cgroups. This behavior can, for instance, be ob-
served in the previous experiment: despite the fact that A was given 27 MB/sec of disk
bandwidth and that very little disturbance was observed in its transaction rate (recall Fig-
ure 4.5), we can observe in Figure 4.6 that its counters were very close to each other. On
the other hand, as B was inactive, it did not try to steal back the pages taken from it (see
Figure 4.7).

4.3 Lesson learned

We have defined a modeling framework in which we could study consolidation events. But
we have discovered that during consolidation, Linux made errors that lead to QoS dis-
turbance. These errors did not occur when we carefully removed the need for isolation.
Thanks to what we learned in Chapter 3, we can provide an explanation:

When applications are deployed without isolation, they share the same cgroup, i.e., the
same memory pools. These memory pools are complex (recall Figure 3.5) but they can be
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(a) Shared lru before C boots. (b) Shared lru after C boots.

(c) Local lrus before C boots. (d) Local lrus after C boots.
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Figure 4.8: Evictions in lrus.

interpreted as simple page lists like the one in Figure 4.8a. This particular page list repre-
sents the state of the lru shared between A and B just before the boot of C. The pages of
A are colored in blue, those of B are yellow and the red ones belong to C. Since A is more
active than B, most of its pages will be more recently used than the pages of B. This is the
reason why we represented the pages of A on the left and the pages of B on the right. Conse-
quently, when C asks for memory and inserts its pages in the list, the PFRA correctly evicts
the pages of B and keeps the pages of A (see Figure 4.8b).

Unfortunately, when isolation is required between applications, their pages are segregated
in local lists (see Figure 4.8c). In a nutshell, the kernel traded the global recency order to
provide good isolation between cgroups. But when pages are stored in different lists, their
recency order can no longer be compared. As a result, the PFRA does not know that the
pages of B are less recently used than those of A and when C boots, it chooses to evict pages
from both B and A (see Figure 4.8d).

Based on this observation, we concluded that a preference order between the local lists of
A, B, and C was necessary. In other words, the kernel has to know that the pages of C are
more important than the pages of A which are more important than the pages of B. Thus,
Chapter 5 will study if it is possible to distinguish an active container such as A from an
inactive container such as B. Then, Chapter 6 will describe our kernel mechanisms that
protects A from B when C asks for memory. Finally, the evaluation of Chapter 7 will use
experimental setups slightly harder to consolidate than the one presented in this Chapter.
Indeed, the inactive server will still receive requests, but they will either income at a slower
rate or be configured to access only a small subset of the data.
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5
CAPTURING ACTIVITY SHIFTS

Before diving into the heat of the battle, it would be wise to study if it is possible to capture
the activity shifts, and at what cost. Thus, in this chapter, we evaluate, independently of
memory consolidation, if the rotate ratio and the idle ratio are metrics accurate enough to
capture the shifts in activity.

5.1 Rotate ratio: a lru dependent metric

In the case of out of memory workloads, the lrus are extensively used to track the page
workingset. But if no such set is detected, the workload is assumed to be wasting memory
because it is asking for pages that are used once and never used again (recall Figure 3.3).
The rotate ratio (RR) measures this efficiency: in essence, it goes to one when the work-
ingset of an application fits in memory and grows bigger when an application starts to
waste memory. As explained in Chapter 3, when pages are accessed, they carry out a rota-
tion to the head of the lru (from the inactive_list, into the active_list). The number
of rotations is then compared to the number of pages scanned, i.e., the number of pages
processed by the PFRA. Therefore, even if the RR is “freely” computed by the kernel, it can
produce false negatives, especially when the PFRA is not triggered anymore.

In this section, we first show that RR detects obvious I/O patterns that waste memory; then
we show how RR is used to balance the size of the anon and file lrus; and finally we show
that RR can produce false negatives. To counteract these errors, we developed force_scan,
a mechanism that refreshes the state of the lrus. This mechanism is later described in
Section 6.1.
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Figure 5.1: Rotate ratio detects I/O patterns that waste memory.

5.1.1 Detecting I/O patterns that waste memory with RR

To show that RR detects obvious I/O patterns that waste memory, we crafted a workload
with Filebench [81, 64] that changes its behavior over time. The experiment span over four
minutes and at each minute, the workload alternates its behavior: during the first and third
minutes, memory is wasted; and during the second and fourth minutes, memory is re-
accessed. To achieve this dual behavior, two types of threads are used. The first type loops
without limitation and sequentially reads a file of 2 GB. As the cgroup is limited to 1 GB,
the first type causes the workload to waste memory. On the other hand, the second type of
threads is only activated during the second and fourth minutes. These threads randomly
access the first GB of the file and therefore cause the workload to re-access its memory.
Both access pattern throughputs are reported in Figure 5.1a.

Figure 5.1b reports the amounts of active and inactive memory of the anon and file
lrus. The amount anon memory is very low because it is only used to buffer I/O by chunks
of 1 MB. When the random threads wake up at time 60 and 180 seconds, they activate a lot
of pages. Then, the small following spikes of activation are made by the single thread that
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(b) RR of the anon lru increases when anon memory becomes useless.

Figure 5.2: The RR allows the PFRA to balance the size of the anon and file lrus.

sequentially reads the file. However, during the phase where memory is wasted, the PFRA
does not deactivate all the pages. This strategy allows the workingset of the random threads
to persist in memory even if it is not accessed anymore. Therefore, in this case, the ratio of
active/inactive memory cannot detect the waste of memory. However, we can observe that
the RR of the file lru is close to one (below 10) when the memory is re-accessed and
quickly grows to the hundreds in a few seconds when memory starts to be wasted at time
120. Moreover, at times 60 and 180, the RR immediately falls back to one as soon as memory
becomes useful again.

In this experiment, the sequential thread keeps the lru alive when the random threads go
to sleep. As a result, the RR is also kept up to date. But in Subsection 5.1.3, we show what
happens if there is no more activity in the lru.
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5.1.2 Balancing anon and file memory with RR

As explained in Chapter 3, the rotate ratio was introduced to balance the amounts of anon
and file memory. To illustrate this mechanism, we crafted an experiment slightly differ-
ent from the one presented the previous subsection. The workload is still composed of
two types of threads, but the first type randomly accesses 1 GB of pages in a file without
limitation while the second typed threads are only activated during the second and fourth
minutes. The second type accesses 512 MB of mapped anonymous memory. Both access
pattern throughputs are reported in Figure 5.2a.

Figure 5.2b reports the amounts of active and inactive memory of the anon and file
lrus. At time 120s, the anon memory stops being accessed. A few seconds later, the rotate
ratio of the anon lru increases. At this moment, the PFRA knows that the file memory
is more useful than the anon memory and consequently begins to quickly swap out anon
pages in favor of file pages. Then, as the size of the anon lru reaches the number of pages
really in use, its rotate ratio falls back to one. Latter at time 180s, as they wake up, the
threads are slowed down a little because they have to reload the page from the swap but
they quickly recover the memory lend to the file lru.

We would like to achieve similar balancing property between cgroups, but as they do not
scan their pages at the same rate, their rotate ratio might not be comparable, especially in
the case described in the next subsection.

5.1.3 RR can produce false negatives

In the first subsection, we have shown that RR can detect obvious I/O patterns that waste
memory. However, in this subsection, we show that once a workload stops paging in, the
RR metric is not updated and becomes unreliable. To that end, the sequential thread is re-
moved from the workload presented in Figure 5.1a to produce a new workload summarized
in Figure 5.3a.

As shown in Figure 5.3b, without the sequential thread, the lru are not updated and the
value of its RR does not increase during the third minute. As a result, we cannot deduce
that the workload is wasting memory. Removing the sequential thread is an obvious means
of showing the problem of using RR to balance memory between cgroups. More generally,
the same problem can appear when cgroups scan their lru at different rates.

To solve this problem, the rate at which the lru is updated can be artificially increased with
force_scan, a mechanism that we developed. As explained later in Section 6.1, this new
mechanism allows programs from userspace to scan extra pages in a cgroup without free-
ing them. For instance, on this particular workload, we are able to detect that the memory
is unused by simply scanning an extra MB of pages per seconds (see Figure 5.3c).

5.1.4 Additional force_scans cost CPU time and impact isolation

Ideally, if cgroups were to scan their pages at the same rate, just as the anon and file
lrus of the same cgroup do, their RR would be comparable. Unfortunately, additional
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Figure 5.3: Extra page scans are sometimes necessary to confirm the RR values.
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force_scans cost CPU time and impact isolation.

To measure the CPU time of the force_scans, we used ftrace and repeated the experiment
with different scan rates (1, 4, 8, 16 and 32 MB/s). The time spent in microseconds during
every scan is reported in Figure 5.4a. We can observe that the cost is high during the second
and fourth minutes because the scan has to acquire locks on the lru while it is already
being updated by the workload.

With higher scan rates, the RR grows faster when memory is wasted, which leads to ear-
lier detections (see Figure 5.4b). But scan rates higher than 16 MB/s start to influence the
workload’s ability to activate its pages (see Figure 5.4c).

5.1.5 Conclusion

To conclude, we recommend the use of this metric to balance memory between cgroups
since it is already present in the kernel for a similar purpose. Even if the cgroups do not
scan their lru at the same rate, these rates could be readjusted with force_scans. To restrain
the impact of force_scans on the quality memory isolation, they could be triggered in a best
effort fashion only when an internal cgroup reaches its limit. This technic is used in one of
our solutions (see Section 6.3.2).

5.2 Idle ratio: a lru independent metric

In the case of in-memory workloads, the lrus are almost useless because there is no need
to track the page workingset since everything fits in memory. However, once in a while,
these workloads can stop accessing part of their memory. Thereby, if a page has not been
accessed for a given amount of time, it should be tagged as idle and reused for another
purpose in another cgroup for instance.

The idle ratio (IR) detects this behavior: in essence, given a scan period, it goes to one
if all pages have been accessed in the scan period or goes to zero if no pages have been
accessed during the period. IR requires a specific kernel compile configuration [107, 99]
that adds two extra bits per page (the idle and the young bits) and an API to interact with
them. In contrast to RR, IR is not “freely” computed by the kernel and has to be computed
by a dedicated monitoring application in userspace with a two-step procedure. First, the
monitor has to mark the desired pages to track as idle, but since the API is lru independent,
there is little incentive to monitor a subset of cgroups in particular. Then, every time the
kernel sees an access to the page, it clears the idle bit (recall mpa in Figure 3.3). Finally, after
a period of time, the monitor can come back to see if the page is still marked as idle. The
idle page tracking mechanism also interacts with the accessed bit of the PTE. Therefore, to
avoid interferences with the PFRA, a second bit—the young bit—is used to remember the
value of the accessed bit if the monitor wants to clear it.

In this section, we provide an in-memory workload example that shows that IR can accu-
rately monitor the set of idle pages; and finally we show the trade-offs between CPU time
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(b) The amount of active/inactive memory is static, but IR detects memory waste.

Figure 5.5: Idle ratio tracks down unused pages of in-memory workloads.

cost and accuracy. IR can also be applied in the case of out of memory workloads, but
in-memory workloads are harder to monitor because they usually involve direct memory
accesses to mapped pages which are not caught by the kernel for performance reasons.

5.2.1 IR accurately monitors the set of idle pages

To show that IR can accurately monitor the set of idle pages, we crafted a workload similar
to the ones presented previously with Filebench1. We used two types of threads: one which
always accesses its 200 MB of memory and the other which accesses its 800 MB only during
the second and fourth minutes. Both threads never access data on disk and are therefore
in-memory workloads. Their throughputs are reported in Figure 5.5a.

Figure 5.5b reports the amounts of active and inactive memory of the anon and file
lrus and their IR. There is very little memory in the file lru and as most of it is unused,
the file IR is close to one. Most of the memory is used to store anon pages and since this

1We modified the hog flowop to access all the memory allocated by a thread.
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Figure 5.6: Evaluation of the trade-offs between CPU time and IR’s accuracy.

workload fits in-memory, there is almost no movement of pages between the active and
inactive lists of the anon lru. However, the IR of the anon lru is able to measure that
during the first and third minutes, 80% of the pages are idle.

5.2.2 Trade-offs between CPU time cost and IR’s accuracy

V. Davydov built a smart tool in userspace—i.e., idlememstat—to take advantage of the idle
page tracking kernel compile configuration [106]. By default, the tool checks then marks
pages by chunks of 32k pages; and spreads the total scan over a period of 300 seconds. The
reason behind this default behavior is to avoid CPU bursts. But in practice, the values will
depend on the total amount of memory available on the machine, how that memory is used
by the workloads and the speed at which the user wishes to detect idle memory.

We evaluated the speed at which memory can be scanned on the same experiment pre-
sented in the previous subsection. Idlememstat was tweaked to ignore its scan throttling
option and to report the time it takes to complete a single scan. Then, we repeated the
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RR IR
Can be freely computed Yes No
Does not interfere with the lru No Yes
Does not have a memory footprint Yes No
Can monitor specific containers Yes No
Can estimate workingset size No Yes

Table 5.1: Comparing the Rotate ratio to the Idle ratio.

experiment and throttle its CPU time consumption using the cpu cgroup. The scan times
are reported in Figure 5.6a. Given a full CPU core (100%), the scans take on average 2.9
seconds, and given 10% of CPU time, they take on average 34.9 seconds.

Figure 5.6b reports the values output by idlememstat for some CPU time limits. When the
scan time increases, there are fewer sample points collected but most importantly, the IR
begins to lag behind the real workload activity. For instance, at time 66s, with 10% of CPU
time, the monitor detects that 60% of memory is idle when actually, 0% is idle. Moreover,
since it takes on average 34.9 seconds to sample another point, it only discovers it later, at
time 104s.

5.2.3 Conclusion

Despite its CPU cost and its two extra bits per page, the idle page tracking is very useful
especially in the case of in-memory workloads. As it does not interact with the lru, this
mechanism preserves the quality of the memory isolation as opposed to the force_scan
mechanism. But on the downside, it cannot be used to monitor a single cgroup in partic-
ular, the whole machine has to be monitored. Overall, we recommend this metric over the
RR because it can also be used to size the hard memory limit of containers.

5.3 Conclusion

We have shown that the Rotate ratio and the Idle ratio can capture memory activity shifts. A
summary of their properties is provided in Table 5.1. In the next chapter, we will use the Ro-
tate ratio and the Idle ratio to build a reclaim_order between containers. However, these
metrics are not the only one able to track activity; kernel events such as page demands and
activations can also do the trick. Unfortunately, due to lack of time, we did not showcase
the evolution of these event counters over time under workloads that change their activity.



C
H

A
P

T
E

R

6
SUSTAINING ISOLATION OF CGROUPS

In the previous chapter, we acknowledged that capturing the shifts in memory activity lev-
els is possible. In this chapter, we assume that cgroups can be ordered according to their
activity level and we describe the kernel modifications required to build an optimal solu-
tion, based on this assumption, that would consolidate memory without errors. Unfortu-
nately, the optimal solution is infeasible in practice because to design such a solution, one
would have to be able to predict the future. The aim of this chapter is to propose solutions
that can guess the activity levels. The solutions that we devised can be classified into two
general approaches: the metric-driven one and the event-driven one. But before getting to
the heart of the matter, we first introduce our force_scan mechanism.

6.1 Refreshing the lrus with force_scan

The lru data structure in the Linux kernel has a specific design which reduces unnecessary
page movements in it. As a result, when applications can fit their data in memory, the state
of the lru does not change and all the metrics natively computed by the kernel are not
updated. This is the case for the ratio of active pages, the vmpressure but also for the rotate
ratio (as shown in Section 5.1.3). Once they stop being updated, if the applications stop
using part of their memory, the metrics will not detect it (recall Figure 5.3b).

To solve this problem, we implemented force_scan, a mechanism that allows monitoring
programs in userspace to artificially increase the rate at which pages move in the lrus.
We provide a new force_scan file per cgroup in the sysfs API: when a number of bytes
is written to the file, the kernel will try to scan the corresponding number of pages in the
lrus of the cgroup. The force_scan file is different from the existing force_empty file
which tries to free all the pages of the cgroup.

71
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1 Function PFRA(nr_to_reclaim, root)

2 repeat /* 2664 */

3 foreach zone do /* 2614 */

4 foreach cgroup ∈ root do /* 2423 */

5 w = get_scan_count() /* 2209 */

6 foreach lru do /* 2241 */

7 if inactive_list_is_low(lru) then /* 1944 */

8 pages = isolate_lru_pages(w,lru.active) /* 1795 */

9 foreach p ∈ pages do

10 page_referenced(p) /* 1825 */

11 end

12 move_active_pages_to_lru(pages) /* 1859 */

13 end

14 pages = isolate_lru_pages(w,lru.inactive) /* 1602 */

15 tokeep = list(), tofree = list()

16 foreach p ∈ pages do

17 if page_referenced(p) then /* 798 */

18 tokeep.add(p) /* 1224 */

19 else
20 /* unmap(p) writeback(p) swap(p)... */

21 tofree.add(p) /* 1204 */

22 nr_reclaimed++ /* 1198 */

23 end

24 end

25 mem_cgroup_uncharge_list(tofree) /* 1228 */

26 free_hot_cold_page_list(tofree) /* 1230 */

27 putback_inactive_pages(tokeep) /* 1638 */

28 end

29 if nr_r ecl ai med >= nr_to_r ecl ai m then

30 mem_cgroup_iter_break() /* 2448 */

31 end

32 end

33 end

34 until (nr_reclaimed < nr_to_reclaim) && (priority-- > 0)

35 return nr_reclaimed

Figure 6.1: Function do_try_to_free_pages of the PFRA.
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By now, we’ve done our best to avoid presenting code in this document. But some pseu-
docode would be more than welcome to abstract the complexity that we had to face to
develop code in the kernel. Figure 6.1 presents a simplified version of PFRA that the reader
is already familiar with.

To implement force_scan, we decided to run a modified version of the PFRA that never
triggers the functions (at Lines 25 and 26) that uncharge and free pages but instead, always
triggers the function (at Line 27) that keeps the pages. To reach that end, we modified
the outcome of the function (at Line 17) that tests if a page was recently accessed. If this
function decides that the page can be reclaimed, we override its return value with the value
which asks to keep the page.

force_scan also modifies the function (at Line 5) that computes the number of pages to
scan in the anon and file lrus so that they are both scanned (recall Section 3.4.1). In
our case, we did not need the ratio of active pages to fall to 0, but if it were necessary,
force_scan could also override the return of the function (at Line 7) to remove the protec-
tion of the active_list.

force_scan keeps the lru metrics up to date but it has many disadvantages: it takes locks
(at Lines 8 and 14), displaces the page position (at Lines 12 and 27), modifies the access bit
in the PTEs (at Lines 10 and 17) and has a CPU cost (recall Section 5.1.4).

6.1.1 Conclusion

The rotate ratio needed a mechanism to keep synchronized the lrus of different cgroup. The
development of force_scan fulfilled this requirement by faithfully emulating the behavior
of the PFRA but without actually freeing the memory. Unfortunately, this mechanism has a
heavy cost and interferes with the PFRA. To mitigate these disadvantages, we incorporated
force_scan in another solution, on demand, i.e. only when an internal cgroup reaches its
limit (see Section 6.3.2).

6.2 Building opt: a relaxed optimal solution

In this section, we will define opt as the goal that we will try to reach in the next sections
with our metric and event-based solutions. But first, let’s define inf as the case where
we have an infinite amount of memory at our disposal. At any time, inf delivers the best
performance possible because there is no need to transfer memory to avoid waste. If opt
were to provide similar performance to inf, it would have to transfer pages before they
were requested to hide the delay of the transfers. Indeed, transferring a page takes time
because data has to be swapped in and swapped out of memory to disk. But this definition
of opt is almost impossible to achieve because it would have to remember and prefetch all
evicted pages.

A realistic alternative can be achieved if we relax our expectations in terms of performance
isolation. We define opt as the solution that i) only steals pages from the most inactive
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1 Function ReclaimPolicy(nr_to_reclaim, root)

2 /* decisions[i] = (cgroup[i],to_reclaim[i]) */

3 decisions = kmalloc(root.nr_children)

4 init_and_sort(decisions, mem_excess, cmp_excess, root)

5 foreach d ∈ decisions do

6 if nr_reclaimed < nr_to_reclaim then

7 nr = nr_to_reclaim - nr_reclaimed

8 nr = min(nr, d->to_reclaim)

9 nr_reclaimed += PFRA(nr, d->cgroup) /* Reclaim one cg */

10 else

11 break

12 end

13 end

14 kfree(decisions)

15 if nr_reclaimed < nr_to_reclaim then

16 nr = nr_to_reclaim - nr_reclaimed

17 nr_reclaimed += PFRA(nr, root) /* Do classic reclaim */

18 end

19 return nr_reclaimed

Figure 6.2: A reclaim policy that always obey to the soft_limits.

containers, and ii) establishes transfers at the very last moment, i.e., only when the active
containers request pages. The performance delivered with this definition of opt is not as
good as inf because there will always be a warm-up phase when a server wakes up, but
the assumption of consolidation is that the time spent reloading data is worth the cost
of having extra memory. In Chapter 7, we show that inf is able to do 7% to 36% more
transactions than opt because it does not have to reload data during the warm-up phases,
but in order to do so, inf has to consume 50% more memory than opt.

6.2.1 Applying soft_limits at all levels of the hierarchy

As explained in Section 4.1.1, we implemented optby dynamically readjusting the soft_limits
when the activity shifts: when a container deactivates, a dedicated system daemon (as sug-
gested in Section 3.4.2) sets its soft_limit to zero; and when a container reactivates its
soft_limit is set back to the maximum. However, the current implementation of Linux does
not apply soft_limits at all levels of the hierarchy; they are enforced only at the top of the
hierarchy, i.e., when the whole machine is running out of memory. The cgroups are period-
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ically ordered in a single red-black tree according to their memory excess. As introduced in
Section 3.2.2, the memory excess is the difference between the current consumption and
the soft_limit.

To apply soft_limits at all levels of the hierarchy, we did not use a red-black tree for every
internal node; we chose a simpler approach. In the logic of the memory cgroup controller1,
when an internal cgroup2 reaches its limit, we reroute the call, to the PFRA, to our new
function ReclaimPolicy depicted in Figure 6.2. In ReclaimPolicy, we allocate an array of
decisions (at Line 3). Each decision contains a pointer to a cgroup child of root and also
contains the maximum amount of page to reclaim in the cgroup (in this case, this amount
is computed by mem_excess). At Line 4, the array is initialized and sorted according to
a compare function (in this case, the first cgroups are the ones the most exceeding their
soft_limit). Then, the PFRA is carefully triggered on one cgroup at a time until enough
pages have been reclaimed. Finally, the array is freed and the classic call to the PFRA is
triggered if we did not reclaim enough pages. This final call to the PFRA reclaims pages in
any child cgroup because the “for each” loop at Line 4 of Figure 6.1 has no preference order
and breaks at Line 30 when enough pages have been reclaimed.

However, soft_limits are not ideal to implement opt because if there are multiple inactive
containers, it would be better to steal pages from the container which will ask them back
at the latest. Even if soft_limits can order containers by memory excess, it would be far-
fetched to use this mechanism to emulate a temporal order between containers.

6.2.2 Order cgroups by activity levels with reclaim_order

In Section 4.3, we learned that the key to successfully preserve QoS during consolidation
phases is to correctly identify and reclaim unaccessed pages first, before considering useful
pages. Thus, inside a single list, LRU attempts to approximate Belady’s optimal algorithm
which evicts the page whose next access will occur the farthest in the future [7]. Unfor-
tunately, the temporal order between pages is lost when they are stored in different lrus
(recall Figure 4.8). However, previous work has shown that the lrus have to be strictly dis-
jointed to preserve an isolated behavior during the steady phases (recall Section 3.3.2 and
Figure 3.1).

Fortunately, all is not lost, because in our model we know that the unaccessed pages are
in the inactive containers and that the useful pages are in the active containers (recall Sec-
tion 4.1.1); but there is no way to express the activity order with the current implementation
of the kernel. If there were a way to express it, the PFRA could then reclaim the least recently
used pages in the hierarchy because they are the least recently used pages of the least active
cgroup.

Our proposal is reclaim_order, a reclaim policy that allows any kind of total order be-
tween containers. Given such a policy, opt can express a temporal order between con-
tainers: the container the less likely to ask back its pages in the nearest future must lend

1Described in try_charge @ mm/memcontrol.c.
2In Figure 6.2, the internal cgroup is referred to as root.
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its memory to the container which would ask back its page the earliest. In this thesis, we
have only considered the case of ordering containers according to this definition of “activ-
ity level”, but we could also consider any kinds of fixed or dynamic priorities. For instance,
fixed priorities could be used as a fail-safe to protect the most important containers when
all containers are asking for memory. On the other hand, dynamic priorities could be used
to enforce fairness. For instance, the swap token algorithm [24] gives swap immunity to a
single process to ensure that it had the chance to load all its pages. This algorithm could be
generalized to cgroups by periodically changing the priority order and thus giving immu-
nity to one cgroup at a time.

6.2.3 Stacking generic policies

Reclaim_orders and soft_limits are two of many possible policies that could guide the
kernel during memory consolidation. To allow all of these policies to express themselves
at the same time, we implemented a stack of generic policies: when the current policy fails
at reclaiming enough pages, the next policy, which has to be stricter than the current one,
is applied to reclaim more pages. As shown at Lines 5 and 20 of Figure 6.3, this scheme is
repeated until enough pages have been reclaimed. We also incorporated the force_scan
mechanism in the design at Line 16: when enough pages have been reclaimed, the policy
can choose to force_scan some amount of page in the remaining cgroups that did not lose
pages (recall Section 5.1.4). A policy is characterized by three functions which are used to
initialize the decisions at Line 6:

• reclaim computes the maximum number of pages to reclaim in a cgroup,

• cmp compares two cgroups to build the decision order, and

• scan computes the maximum number of pages to force_scan in a protected cgroup.

Thus, reclaim_orders can simply be expressed as follows:

• reclaim returns the current consumption of the cgroup unless the user did not spec-
ify its reclaim_order.

• cmp compares a new reclaim_order field attached to the cgroup structure. This field
is accessible from userspace through the sysfs API.

• scan returns 0.

As reclaim_order is more restrictive in terms of pages to reclaim than soft_limit, the
former can only be stacked after the latter.

At this point, our prototype only supports the modification of some parameters of the poli-
cies at runtime (e.g., the reclaim_order field). The policies described in the next sections
are statically stacked at compilation. For now, the prototype does not support the creation,
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1 Function ReclaimPolicy(nr_to_reclaim, root)

2 /* policies[i] = (reclaim[i], cmp[i], scan[i]) are functions */

3 /* decisions[i] = (cg[i],to_reclaim[i],to_scan[i]) */

4 decisions = kmalloc(root.nr_children)

5 foreach policy ∈ root.policies do

6 decisions = init_and_sort(decisions, policy, root)

7 foreach d ∈ decisions do

8 if nr_reclaimed < nr_to_reclaim then

9 nr = nr_to_reclaim - nr_reclaimed

10 nr = min(nr, d->to_reclaim)

11 nr_reclaimed += PFRA(nr, d->cgroup)

12 else if d->scan then

13 /* Policy wants to scan the protected cgroups */

14 nr = nr_to_reclaim

15 nr = min(nr, d->to_scan)

16 FORCE_SCAN(nr, d->cgroup)

17 end

18 end

19 if nr_reclaimed >= nr_to_reclaim then

20 break

21 end

22 end

23 if nr_reclaimed < nr_to_reclaim then

24 nr = nr_to_reclaim - nr_reclaimed

25 nr_reclaimed += PFRA(nr, root) /* Do classic reclaim */

26 end

27 return nr_reclaimed

Figure 6.3: Stacking generic policies.
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insertion, and removal of policies in the stack at runtime. But in future works, these features
could be achieved at runtime with BPF and by attaching extra data to cgroup structures.
Users could then describe custom policies such as incremental soft_limits, i.e., a list of
decreasing limits for each cgroups. Moreover, each internal node of the cgroup hierarchy
could have its own private stack of policies as suggested at Line 5 of Figure 6.3.

6.3 Guessing the activity levels

By now, we have provided new core kernel features: force_scan, reclaim_order and pol-
icy stacking. These features will allow us to implement multiple solutions. In Section 6.3.1,
we describe solutions that guess activity levels from userspace and then communicate the
information to the kernel through the reclaim_order API. Then, in Section 6.3.2, we de-
scribe solutions that guess the activity levels directly in kernelspace.

6.3.1 A Metric-driven approach to predict activities

The first approach attempts to predict the activities based on any previously observed met-
rics. Using this approach, a dedicated daemon in userspace collects metrics on a time win-
dow and communicates the resulting activity order to the kernel through the reclaim_order
API. The assumption is that the activity order induced from the metrics will remain the
same during the next collection interval.

Which metrics detect activity levels?

The metric-driven approach is very flexible because any kind of metric can be used to guess
the activity levels. In Section 4.1.3, we first suggested using the time interval between two
requests as an activity metric. However, application metrics such as throughput and re-
sponse time are not always available to Cloud providers. Moreover, resource metrics such
as CPU time and network bandwidth do not always correlate with memory needs. AI al-
gorithms could be used to predict memory activity based on external metrics such as the
ones aforementioned; but we did not have datasets from production to learn from.

We decided to only study the two major memory-related metrics presented in Chapter 5:
the rotate ratio, and the idle ratio. Other memory-related metrics exist, but we did not study
them: memdelay because it is not yet in the mainline, vmpressure because it is not reliable
according to peers, TLB miss rate [18] because it does not account unmapped accesses,
/proc/[pid]/clear_refs [77] because it is less powerful than the idle ratio, PAPI [36]
since performance hardware counters have to be multiplexed.

The dilemma of delaying the metric or interfering with the workload

Despite its flexibility, the metric-driven approach has the complexity of having to size the
time window. On the one hand, if the time window is too large, the daemon might miss
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consolidation events. On the other hand, if the time window is too small, the metric com-
putation might interfere with the workload. Moreover, independently of workload inter-
ferences and consolidation events, if the time window is too short, then all cgroups might
appear inactive. Likewise, if the time window is too long then all cgroups might appear
active. The ideal time window has to detect some as active and others as inactive.

Instead of sizing the time window, we chose to size CPU time consumption of the solution
with CPU cgroup quotas and cpushares. As the rotate ratio and the idle ratio do not have
the same update mechanisms, sizing the CPU consumption provides a fair comparison
method for both metrics. In Chapter 7, we explored several ways of spending the extra CPU
time required by metric based solutions. First, we tried to spend the least amount of CPU
time (see rr1%). Then we assumed that all idle CPU time should be invested into updating
the metric more frequently in the hope of improving the solution’s reactivity (see rrs and
ir). Finally, we decided to spend a fixed amount of 10% of CPU but due to lack of time, we
did not test other values (see rrs10% and ir10%).

The following subsections describe our five metric-based solutions: rr1%, rrs, rrs10%,
ir, and ir10%. To control the cost and interferences of these solutions, we studied them
without memory consolidation and compared them to inf (see irrs, irrs10%, iir, and
iir10%).

Solutions based on the Rotate Ratio

The acronym rr1% stands for “rotate ratio”. It uses a daemon in userland, throttled to con-
sume 1% CPU, to order the activity of cgroups according to the rotate ratio metric. This
configuration does not trigger additional scans even if the rotate ratio value might be out-
dated.

The acronym rrs stands for “rotate ratio and scan”. It uses a daemon in userland, throttled
only by its cpushares, to scan the lru of cgroups and order their activity according to the
rotate ratio metric.

rrs10% is similar to rrs but in addition to cpushares throttling, its daemon cannot use
more than 10% of CPU.

Solutions based on the Idle Ratio

The acronym ir stands for “idle ratio”. It uses a daemon3 in userland, throttled only by its
cpushares, to mark pages idle, check if they are still idle and order the activity of cgroups
according to the idle ratio metric.

ir10% is similar to ir but in addition to cpushares throttling, its daemon cannot use more
than 10% of CPU.

3Idlememstat [106] was modified to accurately count pages that are not idle.
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6.3.2 An Event-driven approach to react to activity changes

The second approach attempts to react as soon as possible to any instantaneous kernel
event that suggests that the cgroup is active. In contrast to the monitoring of metric-based
solutions which basically spin and wait for a change to occur in the activity order, this ap-
proach avoids the busy wait by hooking light operations to kernel functions. To reach that
end, the approach uses a single global clock and operates on last event timestamps to track
the most recently active cgroup. This method guarantees to produce a coherent total or-
der on cgroups regardless of the rate at which the consolidation events occur. Therefore,
even if all cgroups are active at a macroscopic level, there will always be a least recently
active cgroup at the microscopic level. Moreover, even if the order produced is wrong, the
solution will quickly learn from its mistake and promptly provide a correction thanks to its
reactivity.

Which events should be considered?

There are many event types that could reveal the activity of a cgroup. Obviously, “page
accessed” is the first type of event that comes to mind, but we did not use these events
because they have two major disadvantages. First, they are too frequent and would cause
the overhead of the hooks to become significant. Moreover, these events do not reflect the
distribution of the accesses, i.e., if a cgroup does a lot of “page accessed” it does not mean
that all its pages are accessed because the event does not account for distinct accesses.

The first type of events that we decided to track are “page demands” [12]. When a cgroup
asks for more memory4, the hard_limit page counters have to be hierarchically incre-
mented. Therefore, we considered that adding another atomic operation to manipulate
the clock and the timestamp should not hurt the performance. “Page demands” are not as
frequent as “page accessed” but more importantly they reveal i) a change in the distribution
of accesses because they are misses and ii) an intention to consume more memory.

The second type of events that we decided to track are “page activations”. When accesses
to a page in the inactive_list are detected5,6, the page is “activated” and rotated in the
active_list. These rotations are batched because they are expensive. Therefore, the
atomic operations that manipulate the clock and the timestamp could have an impact here.
We did batch the operations but we did not measure their impact. “Page activations” can
occur at a faster pace than “page demands”, especially when the workload fits in memory;
but most importantly, “page activations” reveal that memory is being reused, i.e., that dis-
tinct accesses are occurring multiple times.

On the slowest time scale, we could also consider the event “hierarchically limited”. When
an internal cgroup reaches its limit, memory consolidation begins. But the full transfer is
cut up in multiple rounds. The first round of page transfers could be wrong but given the
“page demands” and “page activations” in between two “hierarchically limited” events, one

4The try_charge function captures page demands.
5The __activate_page function captures page activations.
6The shrink_page_list capture page activations in some cases.
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could detect and correct the reclaim decisions. We did not use these events in our solution
because we wanted to avoid the error of the first round.

The following subsections describe our event-based solutions: dc, acdc, and sacdc (later
evaluated in Chapter 7).

dc: A solution based on “page demands” only

The acronym dc stands for “demand clock”. This solution was published in NCA2017 [12]
under the name of ACDC. But in this document, we decided to reuse the acronym ACDC to
refer to another solution described below. dc defines the most recently active container as
the one which has demanded a page the most recently.

To implement dc, we added i) a global_clock which is atomically incremented every time
a cgroup demands a new page4 and ii) a demand_clock per cgroup, i.e., a timestamp that
stores the last time the cgroup demanded a page. dc’s policy is characterized by the follow-
ing functions:

• reclaim returns the current consumption of the cgroup.

• cmp compares the demand_clocks of the cgroups.

• scan returns 0.

However, page demands are not enough, because containers that recently demanded a
page might possess unused pages worth evicting. Moreover, if an active cgroup fits its data
in memory and stops asking for memory, it would then be falsely detected as inactive. Nev-
ertheless, dc provides a good reactivity because if pages are mistakenly taken from this
cgroup, as soon as it asks them back it will be protected.

acdc: adding “page activations” to the scheme

The acronym acdc stands for “activation clock and demand clock” and attempts to incor-
porate “page activations” in the decisions of dc.

To implement acdc, we added a activate_clock per cgroup which is updated every time
the cgroup activates N pages according to the formula that follows:

activate_clockn+1 = max(activate_clockn ,global_clock)+N (6.1)

Thus, when a cgroup activates N pages, its activate_clock is at most N times further
in the future (given that the present is the global_clock). Then, we characterized acdc’s
policy by the following functions:

• reclaim returns the current consumption of the cgroup.
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• cmp compares the max(activate_clock,demand_clock) of the cgroups.

• scan returns 0.

In short, if we define max(activate_clock,demand_clock) as the age of a container, then
acdc considers that the most recently active container is the youngest container. Thus, if
containers never activate their pages, their age is equal to their demand_clock and acdc
behaves exactly like dc. But most importantly, when containers do activate their pages,
acdc offers them an extra window of protection against containers that never activate their
pages.

sacdc: triggering “page activations” with extra force_scans

The acronym sacdc stands for “scan protected, activation clock and demand clock” and at-
tempts to keep the age of the youngest containers synchronized. dc and acdc do not touch
the lru of the youngest containers when memory is reclaimed in the oldest containers.
Thus, if an active cgroup fits its data in memory, its activate_clock and demand_clock
will lag behind the global_clock when an inactive cgroup activates itself and reclaims
memory in the oldest containers.

To implement sacdc, we characterized its policy by the following functions:

• reclaim returns the current consumption of the cgroup.

• cmp compares the age of the cgroups.

• scan returns the current consumption of the cgroup.

In short, sacdc refreshes the lru of the youngest containers and gives them the opportunity
to stay young by triggering more activation after memory has been reclaimed in the oldest
containers.

6.4 Conclusion

This chapter summarized our modifications to the Linux kernel. We first developed force_scan,
a mechanism that executes the PFRA without reclaiming the pages. In a second step, we re-
ordered the loop of the PFRA over cgroups to the outmost position. This reordering allowed
us to enforce soft_limits at any level of the hierarchy. In a third part, we added an extra
loop on top of the PFRA to stack generic policies which are applied from the least strict to
the strictest. Finally, we implement new policies such as dc, acdc, and sacdc which take
decisions based on kernel events, but also reclaim_order that lets userspace take the de-
cisions from metrics or perfect knowledge of the workloads.



C
H

A
P

T
E

R

7
EVALUATION OF THE METRIC AND THE

EVENT-DRIVEN APPROACHES

This chapter presents the evaluation of the different solutions presented in Chapter 6. The
methodology used in this evaluation is more complex than the one used in the experiments
of Chapter 4. The solutions are compared against each other in terms of performance and
consolidation errors, with respect to the least performing server. Moreover, these results
are also put into perspective with baseline and control experiments.

7.1 Experimental setup

We first wanted to directly evaluate the solutions using the workload in production at Ma-
gency [73]. The plan was to use goreplay [83], a man-in-the-middle utility, to record and
redirect the traffic in production to a duplicate machine where our kernel would be de-
ployed. But this plan was abandoned because it would have required the development of a
middleware to rewrite tokens on the fly [80]. Consequently, we developed another method-
ology by modeling the activity shifts of workloads in production which we deployed at the
scale of the machine depicted in Section 4.2.1.

7.1.1 Workload’s types and inactivity models

The inactivity model introduced in the experiment of Section 4.2.1 is not enough to com-
pare the solutions because i) the inactive container is comparable to a frozen container
(recall cgroup freezer in Section 2.2.1), and ii) the delay between the deactivation and the
activation of containers is not as short as possible. We need some activity in the inactive
container to justify not having to freeze it and we need the aforementioned delay to be as

83
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(b) Infinite amount of memory (inf).
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(c) Without consolidation errors (opt).
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(d) With consolidation errors (nop).
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(e) Without fairness (unf).

Figure 7.1: Transaction rate of active Redis servers under the low request rate inactivity
model.
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short as to possible to highlight the most reactive solutions. Moreover, the experiment of
Section 4.2.1 only uses “out of memory” workloads but we also need to study “in memory”
workloads1 because their inactivities are harder to detect (recall Chapter 5).

A total of 4 cases are used to evaluate the metric-based solutions and the event-based solu-
tions. These cases are built from two types of workloads with two types of inactivity model.
The “out of memory” workload type is represented by MySQL servers that receive requests
from Sysbench clients [144] and the “in memory” workload type is represented by Redis
servers that receive requests from Memtier clients [74]. To simulate low phases of activity
in the first model, 10% of the network packets of the inactive client are dropped to decrease
the incoming request rate. In contrast, the second model does not throttle the request rate
but configures them to hit only 1% of the whole dataset to decrease the server’s workingset
size.

7.1.2 Schedule of activity shifts and configuration of resources

The machine used for the evaluation is the same as the one depicted in Section 4.2.1 but
the scenario of the experiment is different. All three servers are homogeneous in size and
type, i.e., there are either three MySQL servers or three Redis servers. The experiments last
about 6 minutes and during that time frame, every server becomes inactive 4 times out of
12, i.e., every 30 seconds the single inactive server becomes active and the server that was
active for the longest time becomes inactive (see Figure 7.1a). Therefore, there are always
only two servers active simultaneously. The servers are deployed on three isolated cores
using the cgroup cpuset and the fourth core of the machine is shared by the client request
generators. Additional monitoring tools required by the metric-based solution are allowed
to consume CPU cycles anywhere but their cgroup cpushares are set to the minimum.

7.1.3 Throttling issues with Blkio cgroup

In Section 2.4.4, we showed that CFQ can provide isolation and consolidation of disk band-
width at the root of the cgroup hierarchy, but in the evaluation we faced the need to ensure
this property at the level of internal nodes. Indeed, the SSD at disposal is too fast to unveil
consolidation errors. As explained in Section 4.2.3, if the active server has enough band-
width to the disk, its performance will not be impacted by the pages lost due to consolida-
tion errors. Ideally, we would like to dedicate most of the disk bandwidth to the activating
server2 and keep the consumption of the other servers relatively low because i) they are
either inactive and therefore do not have to reload the page they are losing, or ii) they are
either active and therefore should not lose any pages during consolidation. Unfortunately,
the blkio cgroup does not support hierarchical throttling, i.e., child cgroups do not respect
the limit of their parents. We, therefore, decided to deploy the servers in the same blkio
cgroup to limit their total disk bandwidth. As the servers are homogeneous, we can toler-
ate some competition on the disk bandwidth between the processes of the servers.

1Workloads which fit entirely in memory.
2The activating server is the one which is waking up.
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Configuration Total
Memory

Transfers
Memory

Updates
lru/metric

Comment

B
as

el
in

e nop 2 Yes No ≈ Linux 4.6.0
opt 2 Yes No Best
unf 2 No No Worst

E
ve

n
t dc 2 Yes No demands

acdc 2 Yes No +activations
sacdc 2 Yes Lazily +force_scans

M
et

ri
c

rr1% 2 Yes No CPU usage < 1%
rrs 2 Yes Yes cpushare = 2
rrs10% 2 Yes Yes CPU usage < 10%
ir 2 Yes Yes cpushare = 2
ir10% 2 Yes Yes CPU usage < 10%

C
o

n
tr

o
l

inf 3 No No Wastes memory
irrs 3 No Yes cpushare = 2
irrs10% 3 No Yes CPU usage < 10%
iir 3 No Yes cpushare = 2
iir10% 3 No Yes CPU usage < 10%

Table 7.1: Experimental configurations.

7.1.4 Experimental configurations

Before interpreting the data of the evaluation, we first have to introduce the different con-
figurations and show some experiment examples that have not been aggregated over time
(see Figure 7.1). Table 7.1 summarizes the experimental configurations described in the fol-
lowing subsections. The Table also includes the metric and the event-based configurations
that have been described in Chapter 6.

Control configurations

The acronym inf stands for “infinite amount of memory”. In this configuration, memory is
not consolidated, i.e., A, B and C have enough memory to run simultaneously but since they
do not, memory is wasted. Figure 7.1b shows that once data has been loaded in memory,
there is no warming up phase when a server awakes.

The acronym iir* (resp. irrs*) does not consolidate memory but unlike inf, it addition-
ally tries to update the idle ratio (resp. the rotate ratio) metric by using the same throttling
option as ir* (resp. rrs*). The goal is to show interferences on workloads due to metric
computation (recall Section 6.3.1).

Baseline configurations

The acronym nop stands for “no operation” and is the closest configuration to Vanilla Linux
4.6.0. As rebooting to switch kernel between experiments takes time, we decided to merge
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inf irrs10% irrs iir10% iir opt dc acdc sacdc rr1% rrs10% rrs ir10% ir nop
171939 165707 160143 171526 163502 160148 159842 158260 156217 121017 133114 133933 156280 150782 121667
107.4% 103.5% 100.0% 107.1% 102.1% 100.0% 99.8% 98.8% 97.5% 75.6% 83.1% 83.6% 97.6% 94.2% 76.0%

(a) MySQL under the low request rate model.
inf irrs10% irrs iir10% iir opt dc acdc sacdc rr1% rrs10% rrs ir10% ir nop
145259 136876 131190 138565 133562 136989 121702 122892 115320 117780 107947 101406 134240 122575 115532
106.0% 99.9% 95.8% 101.1% 97.5% 100.0% 88.8% 89.7% 84.2% 86.0% 78.8% 74.0% 98.0% 89.5% 84.3%

(b) MySQL under the small workingset size model.
inf irrs10% irrs iir10% iir opt dc acdc sacdc rr1% rrs10% rrs ir10% ir nop
13539348 13448924 12865025 13494763 13002547 10108396 5341220 4944667 5546386 249276 201459 1007273 5357629 3690111 1146460
133.9% 133.0% 127.3% 133.5% 128.6% 100.0% 52.8% 48.9% 54.9% 2.5% 2.0% 10.0% 53.0% 36.5% 11.3%

(c) Redis under the low request rate model.
inf irrs10% irrs iir10% iir opt dc acdc sacdc rr1% rrs10% rrs ir10% ir nop
11121394 10677308 9634332 10788554 9874143 8174636 5666684 5629504 6417177 252993 207185 227143 3532927 1927761 329864
136.0% 130.6% 117.9% 132.0% 120.8% 100.0% 69.3% 68.9% 78.5% 3.1% 2.5% 2.8% 43.2% 23.6% 4.0%

(d) Redis under the small workingset size model.

Table 7.2: Medians of values presented in Figure 7.2 relative to opt.

all mechanisms into one kernel and enable or disable them when needed. Therefore, nop
does update the event clocks3 but do not use their values because it does not order con-
tainers during memory reclaims. Figure 7.1d shows the consolidation errors of nop. For
example, B is active at time 386 seconds, but its transaction rate drops when C wakes up.
Moreover, waking up containers do not always reach the maximum transaction rate (for
examples: A at time 98 or C at time 171).

The acronym opt stands for “optimal” and is the closest configurations to the ideal so-
lution, the one that perfectly guesses which containers are active and which are inactive
(recall Section 6.2). As there is always only one server inactive in the schedule, we de-
cided to keep the scheduling script simple and use the implementation of opt based on
soft_limits, but if more than one server was inactive, we would have to use an imple-
mentation based on reclaim_orders (recall Section 6.2.1). Figure 7.1c shows that consoli-
dation errors can be avoided if the user can correctly provide soft limits that match activity
shifts.

The acronym unf stands for “unfairness”. In this configuration, memory is unfairly always
reclaimed to C to protect the memory of A and B. To implement unf, we simply set the
soft_limit of C to 0 and those of A and B to the maximum. unf could outperform opt, but
in our experiments, it does not because the time required to swap the data of a container
in and out of memory is short enough compared to the time containers stay inactive. Fig-
ure 7.1e shows that A and B do not have to reload their data from disk at the cost of wasting
memory and providing a highly degraded service in C.



88 CHAPTER 7. EVALUATION OF THE METRIC AND THE EVENT-DRIVEN APPROACHES

inf irrs10% irrs iir10% iir opt dc acdc sacdc rr1% rrs10% rrs ir10% ir nop
0.0

0.5

1.0

1.5
To

ta
l t

ra
ns

ac
tio

n

1e5

(a) MySQL under the low request rate model.
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(b) MySQL under the small workingset size model.
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(c) Redis under the low request rate model.
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(d) Redis under the small workingset size model.

Figure 7.2: Transactions of the least performing active server.
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7.2 Performance analysis

We first chose to compare the different configurations with respect to the total number
of transactions carried out by all the servers over the time that they were active. Indeed,
we chose to ignore the requests issued during the low phases of activity because they are
either very scarce under the low request rate model or too easy to serve under the small
workingset size model. Unfortunately, despite working properly with MySQL servers, this
first comparing method did not provide clear insights in the case of Redis servers. Indeed,
in that case, it turns out that unf outperforms all solutions (except opt) in terms of total
transaction carried out by active servers. Consequently, with this comparing method, a
solution can “cheat” and outperform other solutions by simply behaving like unf instead
of trying to behave like opt (see Figures 7.1d and 7.1e: nop behaves like unf between time
258 and 333 seconds). Therefore, to reject this behavior, we decided to compare solutions
with respect to the total number of transactions carried out by the least performing server4

over the time that it was active. Fortunately, the results obtained with MySQL servers are
very similar with both methods.

The experiments have been repeated at least 20 times and the results have been reported
in Figure 7.2 which plots their median, quartiles, and distributions. The medians and their
value relative to opt are reported in Table 7.2.

7.2.1 Control Experiments

The control experiments show that the metric computation has an impact on the work-
load (inf outperforms all configurations). As expected, this effect grows when the met-
ric is updated more frequently (iir10% outperforms iir and irrs10% outperforms irrs),
but to the point where it can outweigh the benefit of correctly consolidating memory (opt
outperforms iir and irrs in Figure 7.2b). The control experiments also reveal that given
the same CPU restrictions, the rotate ratio metric computation has a higher impact on the
workload than the idle ratio computation (iir outperforms irrs and iir10% outperforms
irrs10%).

7.2.2 Event-based solutions

The event-based solutions are quite good complements to each other. In the case of MySQL
under the low request rate model (see Figure 7.2a) dc outperforms all the other solutions
(including the metric-based). acdc results are very close to dc: slightly worst in two cases
(see Figures 7.2a and 7.2c), almost identical in one case (see Figure 7.2d) but slightly better
in one case (see Figure 7.2b). However, sacdc is a good improvement over dc and acdc in
the case of Redis servers (see Figures 7.2c and 7.2d). Unfortunately, it is less efficient in the
case of MySQL servers (see Figure 7.2a) and it could even be considered as a regression to

3All configurations update the clocks but the overhead is too small to compromise the results.
4The least performing server is the server that carried out the least number of transactions.
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nop (see Figure 7.2b). Even if there is no best solution across all workloads, dc seems to
always be a good improvement over nop.

7.2.3 Metric-based solutions

The rotate ratio was the very first metric we studied to guide our solution. Unfortunately,
as the evaluation suggests, the rotate ratio is not a good candidate. Even if rrs10% and rrs
are improvements in the case of MySQL under the low request rate model (see Figure 7.2a),
they can neither handle it under the small workingset model (see Figure 7.2b) nor can they
handle Redis cases (see Figures 7.2c and 7.2d). Surprisingly, rr1% did not perform poorly
everywhere; in the case of MySQL under small workingset model (see Figure 7.2b), it was
able to do slightly better than nop; we will try to explain this exceptional result in the next
section.

The idle ratio metric is a very good candidate. It almost performs as well as dc in the case of
MySQL under the low request rate model (see Figure 7.2a) and provides outstanding results
under the small workingset model (see Figure 7.2b). Unfortunately, in the case of Redis, the
results of the idle ratio metric are too spread apart for it to be considered better than the
event-based solutions. Moreover, the assumption that all idle CPU should be invested into
updating the metric more frequently does not hold in the case of the idle ratio because
ir10% always outperforms ir.

7.3 Page transfer analysis

The problem at its core is not about performance but about correctly transferring memory
from inactive containers to active containers. Logging every page transfer would have been
an overkill process to measure the correctness of a solution. Therefore, in Chapter 4, we
introduced the pgstolen and pglost counters to measure the memory transfers. Even if
these counters neither keep the identity of the cgroup from which memory was stolen nor
the identity of the cgroup to which memory was lost; they provide enough information to
highlight the strengths and weaknesses of the different solutions.

We decided to study the total page transferred in (pgstolen) and out (pglost) of the least
performing server over the time that it was active (see Figure 7.3). Other kinds of visual-
izations are possible but we decided to stay coherent with the view chosen in the previous
section on performance analysis.

Since the server is considered to be active, it should not lose any pages. As expected, in
all Figures, pglost values are almost always equal to zero with opt. Moreover, the active
server should be able to grow to its full capacity by stealing pages. A theoretical amount of
total page stolen could be deduced from the memory limit and the number of active phases
but in practice, inactive cgroups are not shrunk down to zero pages and active cgroups end
up recycling some of their own pages. Thus, we can interpret that the server should at least
be able to steal just as many pages than it would have been able to steal under the opt
solution.
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(a) MySQL under the low request rate model.
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(b) MySQL under the small workingset size model.
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(c) Redis under the low request rate model.
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(d) Redis under the small workingset size model.

Figure 7.3: Page transferred in and out of the least performing active server.
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7.3.1 Rotate ratio solutions

Given the aforementioned guidelines, we can deduce that the major flaw of the rotate ra-
tio solutions is that they do not allow the server to grow to its full capacity. Indeed, the
pgstolen values of rr1%, rrs10%, and rrs are significantly lower than opt compared to
that of the other solutions (see Figures 7.3b, 7.3c and 7.3d).

The assumption that all idle CPU should be invested into updating the metric more fre-
quently does hold for the rotate ratio in Figure 7.3a. Indeed, even if there is no difference
in the number of pages stolen between rrs10% and rrs, rrs does reduce the number of
pages lost. But this improvement is not significant enough compared the cost of updating
frequently the metric because rrs does not outperform rrs10% (recall Figure 7.2a).

Surprisingly, in Figure 7.3b, we can observe that the server loses more pages than it steals,
especially in the case of rr1%. The explanation behind these results is that under this par-
ticular workload, the metric wrongly evaluates the inactive server as being active. Thus,
when the server really becomes active, it is allowed to grow until its rotate ratio slowly grows
back to the point where it becomes detected as inactive, despite being still active under our
definition. This small window of memory protection at the beginning of the active phase
is enough to give the server the opportunity to outperform the results of nop (recall Fig-
ure 7.2b).

7.3.2 Idle ratio solutions

Compared to all the other solutions, we can observe in Figures 7.3a to 7.3d that ir10% is the
solution which has the closest values to that of opt, both in terms of pglost and pgstolen.
However, the tight spread of ir10%, observed in Figures 7.3c and 7.3d does not explain its
wide dispersion in the performance results observed in Figures 7.2c and 7.2d. This differ-
ence suggests that ir10% is taking the same decisions than opt but that there is a random
delay between the activity shift and the detection of that shift by the metric.

Case-by-case analysis revealed that the idle ratio of the least performing server sometimes
struggles to cross over the idle ratio of the recently inactive server. It sometimes takes a
long time to cross over and sometimes does not cross at all. Therefore, ir10% sometimes
behaves, in the best cases, like opt; sometimes behaves, in the worst cases, like unf; and
sometimes behaves like an opt with delayed decisions. Nevertheless, our data show that
these errors are not due to an insufficient amount of CPU dedicated to the computation
of the metric. Indeed, ir deteriorates the quality of the decisions taken by ir10%: with
MySQL, there are more pglost (see Figures 7.3a and 7.3b) and with Redis, there are more
pglost and pgstolen (see Figures 7.3c and 7.3d). The idle ratio metric might just have hit
the limitation of the accessed bit as described by N. Agarwal [2].

7.3.3 Event-based solutions

In Chapter 5, we have shown the CPU cost of metric-based solutions but nothing related to
event-based solutions. However, just like ir10%, event-based solutions are not free. They
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introduced another kind of cost, distinguishable from the CPU cost of metric computation,
that can be measured against opt. In Figures 7.3a to 7.3d, we can observe that dc, acdc,
and sacdc have significantly higher values than opt and ir10%, both in terms of pglost
and pgstolen. Indeed, event-based solutions learn from their mistakes. They do a lot of
pglost, which are still consolidation errors, but they compensate these errors by letting the
server steal more pages. In other words, even if dc, acdc, and sacdc are huge improvements
over nop, they do not eradicate the extra amount of pglost and thus, still exploit extra disk
bandwidth to reload data.

In Figures 7.3c and 7.3d, we can observe that even if sacdc significantly reduces the pglost
of dc and acdc, sacdc fails to reach the values of opt, unlike dc in Figure 7.3a. Moreover,
there is a lot of room for improvement in Figure 7.3b. Indeed, acdc barely reduces the
pglost of dc. However, the fact that ir10% is able to consistently handle this case suggests
that it would not be hard to devise a new event-based mechanism to handle MySQL under
the small workingset inactivity model.

7.4 Conclusion

The scenario designed in Section 4.2.1 was not intensive enough to challenge our solutions.
In this chapter, we design four scenarios to highlight the best solutions. Even if there is no
best solution across all scenarios, dc seems to always be a good improvement over Linux
4.6.0. The control experiments show that the cost of CPU time dedicated to monitoring the
metrics can outweigh the benefit of correctly consolidating memory. In terms of pglost
and pgstolen, ir10% has the closest values to that of opt, but its decisions still lag behind
that of opt. Even if the event-based solutions are more reactive, they do some consolidation
errors (pglost) which they have to compensate (with more pgstolen). The rotate ratio
solutions performed poorly but it should not be discarded because the evaluation did not
consider workloads where they could shine. The rotate ratio solutions could outperform
the others on a very specific type of workloads consuming a lot of pages that are used once
and never used again: these include database scans, dumps or bulky insertions.
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The Cloud has made computing infrastructures accessible to everyone by relieving the bur-
den of building and maintaining data centers. Cloud providers have realized economies of
scale by pooling our resource needs under one roof, but the next step towards a Cloud
without waste is to oversell virtual resources. In contrast to other resources such as CPU
time or disk bandwidth, memory is harder to consolidate and it has been shown that vir-
tual machines are not flexible enough to tackle this challenge. Containers, on the other
hand, are a promising technology that could minimize the waste of resources. However,
this thesis shows that Linux containers cannot consolidate memory without disturbing the
performance of the most active containers. Indeed, consolidation must not reclaim useful
pages of the most active containers if there are unused pages in the most inactive contain-
ers. An analysis of the kernel code reveals that isolation has to split the memory pools, but
without a global pool, the least recently used page of the machine cannot be tracked. Our
solutions propose that consolidation must target inactive containers first to protect active
containers. Two approaches are suggested to build a relative order of the memory needs
between containers. The first idea considers existing memory-related metrics such as the
rotate ratio and the idle ratio to rate containers, while the second idea considers existing
memory-related events such as page demands and page activations.

The goal of this thesis is to preserve isolation during resource consolidation. This resource
property should hold for memory as it is already the case for other resources. Indeed, in
Chapter 2, we illustrate that containers are able to consolidate CPU time and disk band-
width while preserving performance isolation. However, Chapter 3 explains that the prop-
erty cannot hold for memory because pages are reclaimed from any cgroups. Thus, in
Chapter 4, we demonstrate that when Linux has to reclaim memory for a booting Cassandra
server, it does not make the distinction between a MySQL server that receives a thousand
requests per second from another MySQL server that did not receive any requests. In Chap-
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ter 5, we evaluate the relevance of the metrics selected to detect activity patterns. We show
that the rotate ratio takes a few seconds to detect that anon pages are less useful than file
pages. But in most cases, this metric requires additional scans to stay up to date. We show
for example that it takes on average 409 microseconds to scan 256 pages per second. The
evaluation of the idle ratio shows that the memory needs of containers can be correctly
estimated. However, the metric output is not continuous and has to be computed for all
containers on the machine. Given 10% of CPU time, it takes 35 seconds to detect if 800 MB
out of 1 GB was accessed or not.

Chapter 6 presents our solutions that are classified into two approaches. On the one hand,
the metric-driven approach: ir which uses the idle ratio, rr which uses the rotate ratio and
rrs which uses force_scan. On the other hand, the event-driven approach: dc which uses
“page demands”, acdc which uses “page activations” and sacdc which uses force_scan.
In Chapter 7, we show, in the case of MySQL workloads, that it is possible to achieve perfor-
mance results close to an optimal solution that perfectly adjusts the memory needs order
when the activity shifts. The median value of dc reaches 99.8% of the median value of opt
under the low request rate model. The median value of ir10% reaches 98.0% of the median
value of optunder the small workingset size model. However, the results are less impressive
in the case of Redis workloads: the median value of sacdc reaches only 54.9% of the me-
dian value of opt under the low request rate model, and 78.5% of the median value of opt
under the small workingset size model. The metric-based solutions produced results that
are too scattered compared to the event-based ones. The page transfer analysis suggests
that ir10% transfers memory like opt but with a slight delay. It also suggests that event-
based solutions make more transfers than necessary, but overall the active server performs
well because it is allowed to steal more pages than the amount it lost.

Our final recommendation is dc, because it is always a good improvement over Linux 4.6.0,
even if there is no best solution across all scenarios. Nevertheless, dc has room for en-
hancement: compared to all the other solutions, dc never considers secondary accesses
to data. Indeed, our attempts to incorporate this information in dc were not always fruit-
ful. It would therefore be wise to suggest dc to the Linux kernel community for help and
feedback.

8.1 Short-term challenges

Our prototypes show that it is feasible to consolidate memory without stealing pages to
active containers when there are reclaimable pages in an inactive container. But they are
two concerns to address before deploying them in production. First, the solutions could
introduce contention on the most inactive containers; and second, the solutions make no
improvement when all containers are active.
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8.1.1 Spreading contention on the most inactive containers

Our global selective policy might introduce latencies during global memory reclaims be-
cause it creates contention on the most inactive containers. Contentions will occur if the
number of pages reclaimed in the most inactive container is too small compared to the
time spent waiting for acquiring the locks of the memory pools. This situation could be
worst for example with write-intensive workloads because their pages would first have to
be written back to disk before eviction. Moreover, as the most inactive container shrinks
down, there is less job to parallelize because there are fewer pages to scan. Our solution
could be relaxed to consider these contentions: if it detects contention on the most inac-
tive container, the next memory reclaim could skip it and directly start on the second most
inactive container.

8.1.2 Ensuring properties when all containers are active

By now, our solutions offer no improvement when all containers are active because we first
had to deal with the case where there is always a most inactive container to take memory
from. Thus, the experiments presented in Section 2.4 still cannot be reproduced for the
case of memory (recall that in these experiments, all containers are active at time 20 and
that consolidation is required at time 60). Indeed, before this thesis, there were two options
available. On the one hand, Linux could always ensure isolation but without consolidation,
i.e., by setting the sum of the hard_limit of the children to a value lesser than or equal
to that of their parent. On the other hand, Linux could try to consolidate memory (with
mechanisms such as soft, min and max limits) but without isolation guarantees, as we
have shown in this thesis. Today, thanks to our work, the second option was enhanced.
Linux can consolidate memory with isolation guarantees for active containers when some
of them are inactive. However, if the hard_limits are set up to consolidate memory, Linux
will still be unable to ensure isolation properties when all containers are active. Thus, in
this particular case, the state of the art remains unchanged: all or any containers could be
thrashing and this undefined behavior has to be specified.

One way to improve our solutions would be to provide heuristics which detect when a con-
tainer is active or inactive on an absolute basis, i.e., independently of the current memory
consumption of the container and independently of the workloads running in the other
containers. Such heuristics could be devised by comparing a user-defined threshold to the
speed of distinct memory accesses normalized with respect to the current memory con-
sumption. Memory would first be reclaimed to the class of inactive containers using one
of the approaches proposed in this thesis. Then, if the class of inactive containers was not
able to satisfy the memory shortage, the solution would be able to notify the event “All con-
tainers are active” and trigger the desired policy in that case.

Many policies could be conceived when all containers are active. First, we could decide
to freeze the current partitioning state by forbidding containers to steal memory to their
active siblings. This policy would force containers to reclaim their own memory and upon
failure, trigger the OOM killer on themselves. Second, we could add priorities and decide



98 CHAPTER 8. CONCLUSION AND FUTURE WORKS

that some active containers are more important than others. For instance, interactive con-
tainers which respond to external requests could be allowed to steal memory from active
containers processing batched jobs that can be delayed. An interactive container would
only give back the memory when its heuristic detects it as inactive. Third, we could decide
to enforce fairness between active containers by generalizing the swap token algorithm at
the scale of containers. Just like a scheduler, its goal would be to fairly elect a single active
container that would be the only one able to steal memory from its active siblings during a
given time window of protection.

Thus, by introducing the “All containers are active” event in the scheme, memory could
achieve the properties illustrated in Section 2.4 for CPU and disk bandwidth. But it is un-
clear if it is always possible to detect such an event because containers with little memory
will struggle to appear as active as containers with more memory. Ideally, it would be wise
to prove that it is impossible to always ensure both isolation and consolidation without
detecting the “All containers are active” event.

8.2 Long-term perspectives

Once Linux is able to protect active containers from inactive ones, Cloud providers will be
able to stack inactive containers on a single machine until they reach the point where the
amount of resources needed by active containers overwhelms the capacity of the machine.
Beyond that point, two options prevail. On the one hand, multiple machines can be used
to increase the capacity and meet the need of active containers. This option will have to ex-
tend the isolation and consolidation properties to the scale of a cluster. On the other hand,
as a single machine cannot meet the need of all active containers, a Pareto optimum can
be used to maximize global performance. This option will have to study how performance
relates to resource allocation.

8.2.1 Ensuring isolation and consolidation at the scale of a cluster

Our work can be part of a broader perspective. We consider integrating these mecha-
nisms at the level of a cluster of machines through orchestrators such as Kubernetes [71] or
Mesos [54]. In this environment, in addition to the problem of resizing containers, the or-
chestrator can also migrate containers between nodes, boot up or shut down machines to
save energy or money. We believe that combining our metric and event-driven approaches
could help unlock some of these challenges. On the one hand, at the scale of the single
node, the event base solutions are well suited to consolidate containers that quickly shift
their activity pattern. On the other hand, absolute metrics such as the idle ratio are well
suited to compare containers across multiple nodes. As machine boots and shutdowns
take time, orchestrators must accurately predict activity patterns at this scale. These kinds
of patterns are generally steady and therefore do not need metrics to be collected at a fast
pace. Moreover, to further reduce the metric computation cost, the orchestrator could only
monitor certain containers: those suspected of becoming active and those suspected of be-
coming inactive. Finally, if we are able to notify that all containers are active, these events
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could serve as an incentive not only for booting or shutting down nodes when they are oc-
curring at an extremely high or low pace; but also for migration when there is an imbalance
in the rate at which they are occurring between nodes.

8.2.2 Maximizing global performance with limited memory

Applications use memory in various fashions, which makes it hard to guess their perfor-
mance when some of their data are not present in memory. The most predictable appli-
cations will store their data on disk in the order of the access pattern. These applications
will lightly suffer from missing data because when the very first accesses are issued, the
prefetching will also bring the following data in memory. In contrast, applications that
randomly access data on disk cannot take advantage of the sequential prefetching. Never-
theless, if they can predict their accesses at runtime, they can asynchronously request data
missing in memory to avoid being blocked in the future.

In the literature, the Miss Ratio Curve (MRC) has been used to predict how memory con-
sumption and application performance are related. Thus, in parallel of the thesis, I have
collaborated with an intern, I. Toumlilt, and later on with an engineer, M. Bittan, to work on
Linux refault distance. M. Bittan improved the precision of the refault distance. His work
allows the kernel to estimate the MRC for memory values greater than the current con-
sumption. However, estimating the MRC for values lower than the current consumption
is challenging because the online measurement must not alter the workload performance.
We suggested the use of Cleancache API to build an additional “dead pool” of pages that
would grow and equally shrink the lru. Thus, accesses to pages in the “dead pool” would
be monitored as misses, but the accesses would not be as expensive as real misses because
the pages are not out of memory. This scheme faithfully emulates the exact behavior of
pages in a smaller lru. However, it is unclear if the combination of a smaller lru with a
“dead pool” would be equally able to emulate the exact evictions of the original lru.

Given the MRCs of the active containers, one could then decide performance trade-offs
between containers. For instance, if containers have huge datasets of similar size which
are randomly accessed with a uniform distribution, the Pareto front will simply be linear.
However, for highly specified applications that require all their data to fit in memory, some
of the active containers will have to be suspended. This case falls within the combinatorial
optimization problem of knapsack.
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