. Ncd-risc, Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128?9 million children, adolescents, and adults, Lancet, vol.390, pp.2627-2642, 10113.

A. Afshin, M. H. Forouzanfar, M. B. Reitsma, P. Sur, K. Estep et al., Health Effects of Overweight and Obesity in 195 Countries over 25 Years, GBD 2015 Obesity Collaborators, vol.377, pp.13-27, 2017.

I. Baik, G. C. Curhan, E. B. Rimm, A. Bendich, W. C. Willett et al., A prospective study of age and lifestyle factors in relation to community-acquired pneumonia in US men and women, Arch Intern Med, vol.160, pp.3082-3088, 2000.

H. Salvator, P. Devillier, E. Rivaud, E. Catherinot, P. Honderlick et al., poor prognostic factor in pandemic influenza A (H1N1) 2009: the role of adipokines in the modulation of respiratory defenses, Rev Pneumol Clin, vol.67, pp.244-249, 2011.

O. W. Morgan, A. Bramley, A. Fowlkes, D. S. Freedman, T. H. Taylor et al., Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease, PLoS ONE, vol.5, p.9694, 2010.

M. D. Van-kerkhove, K. Vandemaele, V. Shinde, G. Jaramillo-gutierrez, A. Koukounari et al., Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis, PLoS Med, vol.8, p.1001053, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01665262

E. R. Sutherland, Linking obesity and asthma, Ann N Y Acad Sci, vol.1311, pp.31-41, 2014.

N. Sharma, M. Akkoyunlu, and R. L. Rabin, Macrophages-common culprit in obesity and asthma, Allergy, vol.73, pp.1196-1205, 2018.

N. Ouchi, J. L. Parker, J. J. Lugus, and K. Walsh, Adipokines in inflammation and metabolic disease, Nat Rev Immunol, vol.11, pp.85-97, 2011.

V. De-oliveira-leal and D. Mafra, Adipokines in obesity, Clinica Chimica Acta, vol.419, p.8794, 201318.

K. Ohashi, R. Shibata, T. Murohara, and N. Ouchi, Role of anti-inflammatory adipokines in obesity related diseases, Trends Endocrinol Metab, vol.25, pp.348-355, 2014.

Y. Arita, S. Kihara, N. Ouchi, M. Takahashi, K. Maeda et al., Paradoxical decrease of an adipose specific protein, adiponectin, in obesity, Biochem Biophys Res Commun, vol.425, pp.560-564, 1999.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, p.1420, 2014.

C. Abrial, S. Grassin-delyle, H. Salvator, M. Brollo, E. Naline et al., , p.15

, Lipoxygenases regulate the production of chemokines in human lung macrophages, Br J Pharmacol, vol.172, pp.4319-4330, 2015.

A. Shapouri-moghaddam, S. Mohammadian, and H. Vazini, Macrophage plasticity, polarization, and function in health and disease, J Cell Physiol, vol.233, pp.6425-6440, 2018.

C. Van-stijn, J. Kim, A. J. Lusis, G. D. Barish, and R. K. Tangirala, Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response, FASEB J, vol.29, pp.636-649, 2015.

X. Cheng, E. J. Folco, K. Shimizu, and P. Libby, Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells, J Biol Chem, vol.287, pp.36896-36904, 2012.

T. Yokota, K. Oritani, I. Takahashi, J. Ishikawa, A. Matsuyama et al., Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages, Blood, vol.96, pp.1723-1732, 2000.

Y. Okamoto, E. J. Folco, M. Minami, A. K. Wara, M. W. Feinberg et al., Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T lymphocyte recruitment in atherogenesis, Circ Res, vol.102, pp.218-225, 2008.

M. C. Wulster-radcliffe, K. M. Ajuwon, J. Wang, J. A. Christian, and M. E. Spurlock, Adiponectin differentially regulates cytokines in porcine macrophages, Biochem Biophys Res Commun, vol.316, pp.924-929, 2004.

K. Ohashi, J. L. Parker, N. Ouchi, A. Higuchi, J. A. Vita et al., Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype, J Biol Chem, vol.285, pp.6153-6160, 2010.

R. Summer, F. F. Little, N. Ouchi, Y. Takemura, T. Aprahamian et al., Alveolar macrophage activation and an emphysema like phenotype in adiponectin-deficient mice

, Am J Physiol Lung Cell Mol Physiol, vol.294, pp.1035-1042, 2008.

M. Okada-iwabu, T. Yamauchi, M. Iwabu, T. Honma, K. Hamagami et al., A small molecule AdipoR agonist for type 2 diabetes and short life in obesity, Nature, vol.503, pp.493-499, 2013.

O. Sideleva, B. T. Suratt, K. E. Black, W. G. Tharp, R. E. Pratley et al., Obesity and asthma: an inflammatory disease of adipose tissue not the airway, Am J Respir Crit Care Med, vol.186, pp.598-605, 2012.

A. Sood, Obesity, adipokines, and lung disease, J Appl Physiol, vol.108, pp.744-753, 2010.

J. Vernooy, N. Drummen, R. J. Van-suylen, R. Cloots, G. M. Möller et al., Enhanced pulmonary leptin expression in patients with severe COPD and asymptomatic smokers, Thorax, vol.64, pp.26-32, 2009.

A. Bruno, E. Pace, P. Chanez, D. Gras, I. Vachier et al., Leptin and leptin receptor expression in asthma, J Allergy Clin Immunol, vol.124, pp.1-4, 2009.

N. Yamaguchi, J. Argueta, Y. Masuhiro, M. Kagishita, K. Nonaka et al., Adiponectin inhibits Toll-like receptor family-induced signaling, FEBS Lett, vol.579, pp.6821-6826, 2005.

A. Kollias, P. C. Tsiotra, I. Ikonomidis, E. Maratou, P. Mitrou et al., Adiponectin levels and expression of adiponectin receptors in isolated monocytes from overweight patients with coronary artery disease, Cardiovasc Diabetol, vol.10, p.14, 2011.

M. Neumeier, S. Bauer, H. Brühl, K. Eisinger, A. Kopp et al., Adiponectin stimulates release of CCL2, -3, -4 and -5 while the surface abundance of CCR2 and -5 is simultaneously reduced in primary human monocytes, Cytokine, vol.56, pp.573-580, 2011.

C. Tsatsanis, V. Zacharioudaki, A. Androulidaki, E. Dermitzaki, I. Charalampopoulos et al., Adiponectin induces TNF-alpha and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli, Biochem Biophys Res Commun, vol.335, pp.1254-1263, 2005.

M. Neumeier, J. Weigert, A. Schäffler, G. Wehrwein, U. Müller-ladner et al., Different effects of adiponectin isoforms in human monocytic cells, J Leukoc Biol, vol.79, pp.803-808, 2006.

T. Victoni, H. Salvator, C. Abrial, M. Brollo, L. Porto et al., Human lung and monocyte-derived macrophages differ with regard to the effects of ?2-adrenoceptor agonists on cytokine release, Respir Res, vol.18, p.126, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619481

E. J. Folco, V. Z. Rocha, M. López-ilasaca, and P. Libby, Adiponectin inhibits pro-inflammatory signaling in human macrophages independent of interleukin-10, J Biol Chem, vol.284, pp.25569-25575, 2009.

D. T. Umetsu, Mechanisms by which obesity impacts upon asthma, Thorax, vol.72, p.174, 2017.

A. Buenestado, S. Grassin-delyle, I. Arnould, F. Besnard, E. Naline et al., The role of adenosine receptors in regulating production of tumour necrosis factor-alpha and chemokines by human lung macrophages, Br J Pharmacol, vol.159, issue.6, pp.1304-1315, 2010.

R. Shaykhiev, A. Krause, J. Salit, Y. Strulovici-barel, B. Harvey et al., Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease, J Immunol Baltim Md, vol.183, issue.4, pp.2867-83, 1950.

A. Buenestado, M. Chaumais, S. Grassin-delyle, P. Risse, E. Naline et al., Roflumilast inhibits lipopolysaccharide-induced tumor necrosis factor-? and chemokine production by human lung parenchyma, PloS One, vol.8, issue.9, p.74640, 2013.

D. V. Pechkovsky, A. Prasse, F. Kollert, K. Engel, J. Dentler et al., Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction, Clin Immunol Orlando Fla, vol.137, issue.1, pp.89-101, 2010.

K. J. Staples, T. Hinks, J. A. Ward, V. Gunn, C. Smith et al., Phenotypic characterization of lung macrophages in asthmatic patients: overexpression of CCL17, J Allergy Clin Immunol, vol.130, issue.6, pp.1404-1416, 2012.

C. Abrial, S. Grassin-delyle, H. Salvator, M. Brollo, E. Naline et al., 15-Lipoxygenases regulate the production of chemokines in human lung macrophages, Br J Pharmacol, vol.172, issue.17, pp.4319-4349, 2015.

U. B. Pajvani, X. Du, T. P. Combs, A. H. Berg, M. W. Rajala et al., Structurefunction studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity, J Biol Chem, vol.278, issue.11, p.90, 2003.

F. Haugen and C. A. Drevon, Activation of nuclear factor-kappaB by high molecular weight and globular adiponectin, Endocrinology, vol.148, issue.11, pp.5478-86, 2007.

A. Ncd-risc-;-afshin, M. H. Forouzanfar, M. B. Reitsma, and P. Sur, Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults, WHO | 10 facts on obesity, vol.390, pp.2627-2669, 2015.

K. Estep, Health Effects of Overweight and Obesity in 195 Countries over 25 Years, N Engl J Med, vol.06, issue.1, p.27, 2017.

A. E. Dixon and U. Peters, The effect of obesity on lung function, Expert Rev Respir Med, vol.12, issue.9, pp.755-67, 2018.

L. Maccioni, S. Weber, M. Elgizouli, A. Stoehlker, I. Geist et al., Obesity and risk of respiratory tract infections: results of an infection-diary based cohort study, BMC Public Health, vol.20, issue.1, p.271, 2018.

H. Salvator, P. Devillier, E. Rivaud, E. Catherinot, P. Honderlick et al., Obesity

, Rev Pneumol Clin. sept, vol.67, issue.4, pp.244-253, 2011.

O. W. Morgan, A. Bramley, A. Fowlkes, D. S. Freedman, T. H. Taylor et al.,

, Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease, PloS One. 15 mars, vol.5, issue.3, p.9694, 2010.

M. D. Van-kerkhove, K. Vandemaele, V. Shinde, G. Jaramillo-gutierrez, A. Koukounari et al., Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis, PLoS Med. juill, vol.8, issue.7, p.1001053, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01665262

E. R. Sutherland, Linking obesity and asthma, Ann N Y Acad Sci. avr, vol.1311, pp.31-41, 2014.

L. Boulet, H. Turcotte, J. Martin, and P. Poirier, Effect of bariatric surgery on airway response and lung function in obese subjects with asthma, Respir Med. mai, vol.106, issue.5, pp.651-60, 2012.

A. E. Dixon, R. E. Pratley, P. M. Forgione, D. A. Kaminsky, L. A. Whittaker-leclair et al.,

. La, Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation, J Allergy Clin Immunol. sept, vol.128, issue.3, pp.508-515, 2011.

M. C. Peters and J. V. Fahy, Metabolic consequences of obesity as an « outside in » mechanism of disease severity in asthma, Eur Respir J, vol.48, issue.2, pp.291-294, 2016.

N. Ouchi, J. L. Parker, J. J. Lugus, and K. Walsh, Adipokines in inflammation and metabolic disease, Nat Rev Immunol. févr, vol.11, issue.2, p.97, 2011.

W. B. Lau, K. Ohashi, Y. Wang, H. Ogawa, T. Murohara et al., Role of Adipokines in Cardiovascular Disease, Circ J Off J Jpn Circ Soc. 23 juin, vol.81, issue.7, pp.920-928, 2017.

H. Zheng, X. Zhang, E. F. Castillo, Y. Luo, M. Liu et al., Leptin Enhances TH2 and ILC2 Responses in Allergic Airway Disease, J Biol Chem, vol.291, issue.42, pp.22043-52, 2016.

M. Loxham and D. E. Davies, Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients, J Allergy Clin Immunol. juin, vol.139, issue.6, pp.1736-51, 2017.

M. Vareille, E. Kieninger, M. R. Edwards, and N. Regamey, The airway epithelium: soldier in the fight against respiratory viruses, Clin Microbiol Rev. janv, vol.24, issue.1, pp.210-239, 2011.

S. Herold, C. Becker, K. M. Ridge, and G. Budinger, Influenza virus-induced lung injury: pathogenesis and implications for treatment, Eur Respir J. mai, vol.45, issue.5, pp.1463-78, 2015.

R. Veerapandian, J. D. Snyder, and A. E. Samarasinghe, Influenza in Asthmatics: For Better or for Worse? Front Immunol, vol.9, p.1843, 2018.

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal Biochem. avr, vol.162, issue.1, pp.156-165, 1987.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif, 2001.

E. Nigro, O. Scudiero, D. Sarnataro, G. Mazzarella, M. Sofia et al.,

, Adiponectin affects lung epithelial A549 cell viability counteracting TNF? and IL-1ß toxicity through AdipoR1, Int J Biochem Cell Biol. juin, vol.45, issue.6, pp.1145-53, 2013.

M. Miller, J. Y. Cho, A. Pham, J. Ramsdell, and D. H. Broide, Adiponectin and functional adiponectin receptor 1 are expressed by airway epithelial cells in chronic obstructive pulmonary disease, J Immunol Baltim Md, vol.182, issue.1, p.91, 1950.

H. Chen, C. Yang, C. Wu, C. Sia, K. Lin et al., AdipoR-increased intracellular ROS promotes cPLA2 and COX-2 expressions via activation of PKC and p300 in adiponectin-stimulated human alveolar type II cells, Am J Physiol Lung Cell Mol Physiol, vol.01, issue.2, pp.255-269, 2016.

M. Cheng, H. Liu, T. Zhang, and J. Xu, Different forms of adiponectin reduce the apoptotic and damaging effect of cigarette smoke extract on human bronchial epithelial cells, Exp Ther Med. déc, vol.12, issue.6, pp.4168-74, 2016.

M. A. Hardyman, E. Wilkinson, E. Martin, N. P. Jayasekera, C. Blume et al.,

, TNF-?-mediated bronchial barrier disruption and regulation by src-family kinase activation, J Allergy Clin Immunol. sept, vol.132, issue.3, pp.665-675, 2013.

P. Royer, K. Henrio, M. Pain, J. Loy, A. Roux et al., TLR3 promotes MMP-9 production in primary human airway epithelial cells through Wnt/?-catenin signaling, Respir Res, vol.13, issue.1, p.208, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01963027

X. L. Zhu, X. Q. Qin, Y. Xiang, Y. R. Tan, X. P. Qu et al., Adipokine adiponectin is a potential protector to human bronchial epithelial cell for regulating proliferation, wound repair and apoptosis: comparison with leptin and resistin, Peptides. févr, vol.40, issue.1, p.32, 2009.

A. Bruno, E. Pace, P. Chanez, D. Gras, I. Vachier et al., Leptin and leptin receptor expression in asthma, J Allergy Clin Immunol. août, vol.124, issue.2, pp.230-237, 2009.

S. Luangsay, V. Wittamer, B. Bondue, D. Henau, O. Rouger et al., Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an antiinflammatory activity of chemerin in a lung disease model, J Immunol Baltim Md, vol.183, issue.10, pp.6489-99, 1950.

C. Travelli, G. Colombo, S. Mola, A. A. Genazzani, and C. Porta, NAMPT: A pleiotropic modulator of monocytes and macrophages, Pharmacol Res. 18 juill, vol.135, pp.25-36, 2018.

P. Liu, H. Li, J. Cepeda, Y. Xia, J. A. Kempf et al., Regulation of inflammatory cytokine expression in pulmonary epithelial cells by pre-B-cell colony-enhancing factor via a nonenzymatic and AP-1-dependent mechanism, J Biol Chem, vol.284, issue.40, pp.27344-51, 2009.

P. Liu, H. Li, J. Cepeda, L. Q. Zhang, X. Cui et al., Critical role of PBEF expression in pulmonary cell inflammation and permeability, Cell Biol Int. janv, vol.33, issue.1, p.30, 2009.

H. Li, P. Liu, J. Cepeda, D. Fang, R. B. Easley et al., Augmentation of Pulmonary Epithelial Cell IL-8 Expression and Permeability by Pre-B-cell Colony Enhancing Factor, J Inflamm Lond Engl. 22 sept, vol.5, p.15, 2008.

G. Wu, W. Liao, S. Wu, H. Pao, S. Tang et al., Targeting of nicotinamide phosphoribosyltransferase enzymatic activity ameliorates lung damage induced by ischemia/reperfusion in rats, Respir Res, vol.24, issue.1, p.71, 2017.

T. Demoor, K. R. Bracke, L. L. Dupont, M. Plantinga, B. Bondue et al., The role of ChemR23 in the induction and resolution of cigarette smoke-induced inflammation, J Immunol Baltim Md, vol.186, issue.9, pp.5457-67, 1950.

B. Bondue, O. Vosters, P. De-nadai, S. Glineur, D. Henau et al., ChemR23 dampens lung inflammation and enhances anti-viral immunity in a mouse model of acute viral pneumonia, PLoS Pathog, vol.7, issue.11, p.1002358, 2011.

K. Shirato, M. Ujike, M. Kawase, and S. Matsuyama, Identification of CCL2, RARRES2 and EFNB2 as host cell factors that influence the multistep replication of respiratory syncytial virus, Virus Res, vol.2, 2015.

D. A. Deshpande, W. C. Wang, E. L. Mcilmoyle, K. S. Robinett, R. M. Schillinger et al., Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction, Nat Med, vol.16, pp.1299-1304, 2010.

S. Grassin-delyle, C. Abrial, S. Fayad-kobeissi, M. Brollo, C. Faisy et al., The expression and relaxant effect of bitter taste receptors in human bronchi, Respir Res, vol.14, p.134, 2013.

A. Jaggupilli, N. Singh, J. Upadhyaya, A. S. Sikarwar, M. Arakawa et al., Analysis of the expression of human bitter taste receptors in extraoral tissues, Mol Cell Biochem, vol.426, pp.137-147, 2017.

A. S. Shah, Y. Ben-shahar, T. O. Moninger, J. N. Kline, and M. J. Welsh, Motile cilia of human airway epithelia are chemosensory, Science, vol.325, pp.1131-1134, 2009.

M. Ekoff, J. H. Choi, A. James, B. Dahlen, G. Nilsson et al., Bitter taste receptor (TAS2R) agonists inhibit IgE-dependent mast cell activation, J Allergy Clin Immunol, vol.134, pp.475-478, 2014.

A. Malki, J. Fiedler, K. Fricke, I. Ballweg, and M. W. Pfaffl, Krautwurst D: Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes, J Leukoc Biol, vol.97, pp.533-545, 2015.

C. Orsmark-pietras, J. A. Konradsen, J. R. Nordlund, B. Soderhall, C. Pulkkinen et al., Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics, Eur Respir J, vol.42, pp.65-78, 2013.

R. J. Lee, G. Xiong, J. M. Kofonow, B. Chen, A. Lysenko et al., T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection, J Clin Invest, vol.122, pp.4145-4159, 2012.

N. A. Cohen, The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis, Laryngoscope, vol.127, pp.44-51, 2017.

J. Balhara and A. S. Gounni, The alveolar macrophages in asthma: a double-edged sword, Mucosal Immunol, vol.5, pp.605-609, 2012.

P. J. Barnes, Inflammatory mechanisms in patients with chronic obstructive pulmonary disease, J Allergy Clin Immunol, vol.138, pp.16-27, 2016.

M. Yang, R. K. Kumar, P. M. Hansbro, and P. S. Foster, Emerging roles of pulmonary macrophages in driving the development of severe asthma, J Leukoc Biol, vol.91, pp.557-569, 2012.

H. Ogino, M. Fujii, M. Ono, K. Maezawa, S. Hori et al., In vivo and in vitro effects of fluoroquinolones on lipopolysaccharide-induced pro-inflammatory cytokine production, J Infect Chemother, vol.15, pp.168-173, 2009.

A. Ianaro, A. Ialenti, P. Maffia, L. Sautebin, L. Rombola et al., Anti-inflammatory activity of macrolide antibiotics, J Pharmacol Exp Ther, vol.292, pp.156-163, 2000.

C. H. Jang, J. H. Choi, M. S. Byun, and D. M. Jue, Chloroquine inhibits production of TNFalpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes, Rheumatology (Oxford), vol.45, pp.703-710, 2006.

J. Y. Jeong and D. M. Jue, Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages, J Immunol, vol.158, pp.4901-4907, 1997.

H. Schierbeck, H. Wahamaa, U. Andersson, and H. E. Harris, Immunomodulatory drugs regulate HMGB1 release from activated human monocytes, Mol Med, vol.16, pp.343-351, 2010.

M. Vrancic, M. Banjanac, K. Nujic, M. Bosnar, T. Murati et al., Erakovic Haber V: Azithromycin distinctively modulates classical activation of human monocytes in vitro, Br J Pharmacol, vol.165, pp.1348-1360, 2012.

M. Yasutomi, Y. Ohshima, N. Omata, A. Yamada, H. Iwasaki et al., Erythromycin differentially inhibits lipopolysaccharide-or poly(I:C)-induced but not peptidoglycan-induced activation of human monocyte-derived dendritic cells

, J Immunol, vol.175, pp.8069-8076, 2005.

P. J. Groot-kormelink, L. Fawcett, P. D. Wright, M. Gosling, and T. C. Kent, Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates, BMC Immunol, vol.13, p.57, 2012.

S. Jeyaseelan, R. Manzer, S. K. Young, M. Yamamoto, S. Akira et al., Toll-IL-1 receptor domain-containing adaptor protein is critical for early lung beta(2)-adrenergic receptor tachyphylaxis, Am J Physiol Lung Cell Mol Physiol, vol.303, pp.304-311, 2012.

S. Alexander, A. Mathie, and J. A. Peters, G Protein-Coupled Receptors, Br J Pharmacol, vol.164, pp.5-113, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02388696

P. J. Andres-barquin and C. Conte, Molecular basis of bitter taste: the T2R family of G protein-coupled receptors, Cell Biochem Biophys, vol.41, pp.99-112, 2004.

C. D. Dotson, L. Zhang, H. Xu, Y. K. Shin, S. Vigues et al., Bitter taste receptors influence glucose homeostasis, PLoS One, vol.3, p.3974, 2008.

E. Sainz, M. M. Cavenagh, J. Gutierrez, J. F. Battey, J. K. Northup et al., Functional characterization of human bitter taste receptors, Biochem J, vol.403, pp.537-543, 2007.

S. Soares, S. Kohl, S. Thalmann, N. Mateus, W. Meyerhof et al., Different phenolic compounds activate distinct human bitter taste receptors, J Agric Food Chem, vol.61, pp.1525-1533, 2013.

M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz et al., Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study, OMS | 10 faits sur l'obésité, vol.384, pp.766-81, 2013.

. Ncd-risc, Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults, Lancet Lond Engl, vol.390, pp.2627-2669, 2017.

C. L. Ogden, M. D. Carroll, B. K. Kit, and K. M. Flegal, Prevalence of childhood and adult obesity in the United States, JAMA, vol.311, issue.8, p.806, 2011.

D. Sur,

D. Sur, Promouvoir une alimentation saine et l'activité physique: une dimension européenne pour la prévention des surcharges pondérales, de l'obésité et des maladies chroniques

C. Emery, J. Dinet, A. Lafuma, C. Sermet, B. Khoshnood et al.,

. France,

Y. Zheng, J. E. Manson, C. Yuan, M. H. Liang, F. Grodstein et al., Arrêté du 18 janvier 2017 relatif à l'interdiction de la mise à disposition de boissons à volonté, gratuites ou pour un prix forfaitaire, avec ajout de sucres ou d'édulcorants de synthèse, vol.36, pp.832-872, 1983.

, Associations of Weight Gain From Early to Middle Adulthood With Major Health Outcomes Later in Life, JAMA, vol.318, issue.3, p.69, 2017.

T. A. Hillier, K. L. Pedula, S. Yusuf, S. Hawken, S. Ounpuu et al., Characteristics of an adult population with newly diagnosed type 2 diabetes: the relation of obesity and age of onset, Diabetes Care, vol.24, issue.9, pp.1522-1529, 2001.

, Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a casecontrol study, Lancet Lond Engl, vol.366, issue.9497, pp.1640-1649, 2005.

G. Bedogni, L. Miglioli, F. Masutti, A. Castiglione, L. S. Crocè et al.,

, Incidence and natural course of fatty liver in the general population: the Dionysos study

M. Hepatol-baltim, , vol.46, pp.1387-91, 2007.

S. Bellentani, The epidemiology of non-alcoholic fatty liver disease, Liver Int Off J Int Assoc Study Liver, vol.37, 2017.

T. Kanda, S. Matsuoka, M. Yamazaki, T. Shibata, K. Nirei et al., Overview of Epidemiology and Contribution of Obesity and Body Fat Distribution to Cardiovascular Disease: An Update, World J Gastroenterol, vol.24, issue.25, pp.2661-72, 2018.

D. Sur,

J. Liu, C. S. Fox, D. A. Hickson, W. D. May, K. G. Hairston et al., Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study, J Clin Endocrinol Metab, vol.95, issue.12, pp.5419-5445, 2010.

C. S. Kwok, A. Pradhan, M. A. Khan, S. G. Anderson, B. D. Keavney et al.,

, Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis, Int J Cardiol, vol.173, issue.1, pp.20-28, 2014.

P. Wilson, D. 'agostino, R. B. Sullivan, L. Parise, H. Kannel et al., Overweight and obesity as determinants of cardiovascular risk: the Framingham experience, Arch Intern Med, vol.162, issue.16, pp.1867-72, 2002.

J. E. Manson, G. A. Colditz, M. J. Stampfer, W. C. Willett, B. Rosner et al., A prospective study of obesity and risk of coronary heart disease in women, N Engl J Med, vol.322, issue.13, pp.882-891, 1990.

S. W. Rabkin, F. A. Mathewson, and P. H. Hsu, Relation of body weight to development of ischemic heart disease in a cohort of young North American men after a 26 year observation period: the Manitoba Study, Am J Cardiol, vol.39, issue.3, pp.452-460, 1977.

M. L. Kortelainen and T. Särkioja, Visceral fat and coronary pathology in male adolescents

, Int J Obes Relat Metab Disord J Int Assoc Study Obes, vol.25, issue.2, p.32, 2001.

H. C. Mcgill, C. A. Mcmahan, E. E. Herderick, A. W. Zieske, G. T. Malcom et al.,

, Obesity accelerates the progression of coronary atherosclerosis in young men, Circulation, vol.105, issue.23, pp.2712-2720, 2002.

J. He, L. G. Ogden, L. A. Bazzano, S. Vupputuri, C. Loria et al., Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study, Arch Intern Med, vol.161, issue.7, pp.996-1002, 2001.

S. Kenchaiah, J. C. Evans, D. Levy, P. Wilson, E. J. Benjamin et al.,

, Obesity and the risk of heart failure, N Engl J Med, vol.347, issue.5, pp.305-318, 2002.

J. Zhang, A. Begley, R. Jackson, M. Harrison, P. Pellicori et al., Body mass index and all-cause mortality in heart failure patients with normal and reduced ventricular ejection fraction: a dose-response meta-analysis, Clin Res Cardiol, 2018.

D. D. Sin, R. L. Jones, and S. Man, Obesity is a risk factor for dyspnea but not for airflow obstruction, Arch Intern Med, vol.162, issue.13, pp.1477-81, 2002.

H. Sahebjami, Dyspnea in obese healthy men. Chest, vol.114, pp.1373-1380, 1998.

M. S. Biring, M. I. Lewis, J. T. Liu, and Z. Mohsenifar, Pulmonary physiologic changes of morbid obesity, Am J Med Sci, vol.318, issue.5, pp.293-300, 1999.

T. G. Babb, Mechanical ventilatory constraints in aging, lung disease, and obesity: perspectives and brief review, Med Sci Sports Exerc. janv, vol.31, issue.1, pp.12-22, 1999.

D. S. Delorey, B. L. Wyrick, and T. G. Babb, Mild-to-moderate obesity: implications for respiratory mechanics at rest and during exercise in young men, Int J Obes, vol.29, issue.9, pp.1039-1086, 2005.

T. G. Babb, K. G. Ranasinghe, L. A. Comeau, T. L. Semon, and B. Schwartz, Dyspnea on exertion in obese women: association with an increased oxygen cost of breathing, Am J Respir Crit Care Med, vol.178, issue.2, p.23, 2008.

E. R. Sutherland, Linking obesity and asthma, Ann N Y Acad Sci, vol.1311, pp.31-41, 2014.

U. Peters, A. E. Dixon, and E. Forno, Obesity and asthma, J Allergy Clin Immunol, vol.141, issue.4, pp.1169-79, 2018.

D. A. Beuther and E. R. Sutherland, Overweight, obesity, and incident asthma: a metaanalysis of prospective epidemiologic studies, Am J Respir Crit Care Med, vol.175, issue.7, pp.661-667, 2007.

E. Huovinen, J. Kaprio, and M. Koskenvuo, Factors associated to lifestyle and risk of adult onset asthma, Respir Med, vol.97, issue.3, p.80, 2003.

B. Brumpton, A. Langhammer, P. Romundstad, Y. Chen, and X. Mai, General and abdominal obesity and incident asthma in adults: the HUNT study, Eur Respir J

B. Taylor, D. Mannino, C. Brown, D. Crocker, N. Twum-baah et al., Body mass index and asthma severity in the National Asthma Survey, Thorax, vol.63, issue.1, p.20, 2008.

J. I. Peters, J. M. Mckinney, B. Smith, P. Wood, E. Forkner et al., Impact of obesity in asthma: evidence from a large prospective disease management study, Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol, vol.106, issue.1, p.5, 2011.

P. Haldar, I. D. Pavord, D. E. Shaw, M. A. Berry, M. Thomas et al., Cluster analysis and clinical asthma phenotypes, Am J Respir Crit Care Med, vol.178, issue.3, p.24, 2008.

W. C. Moore, D. A. Meyers, S. E. Wenzel, W. G. Teague, H. Li et al., Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program, Am J Respir Crit Care Med, vol.181, issue.4, pp.315-338, 2010.

V. S. Sukhan, Cluster analysis of the phenotype of asthma and obesity. Wiadomosci Lek Wars Pol, vol.71, pp.319-340, 1960.

S. Guerra, D. L. Sherrill, A. Bobadilla, F. D. Martinez, R. A. Barbee et al., COPD as a multicomponent disease: inventory of dyspnoea, underweight, obesity and fat free mass depletion in primary care, Prim Care Respir J J Gen Pract Airw Group, vol.122, issue.4, p.91, 2002.

C. Cao, R. Wang, J. Wang, H. Bunjhoo, Y. Xu et al., Body mass index and mortality in chronic obstructive pulmonary disease: a meta-analysis, Schols AMWJ. Obesity and the lung: 5. Obesity and COPD, vol.7, pp.1110-1117, 2008.

F. Crummy, A. J. Piper, and M. T. Naughton, Obesity and the lung: 2. Obesity and sleepdisordered breathing, Thorax, vol.63, issue.8, p.46, 2008.

P. E. Peppard, T. Young, M. Palta, J. Dempsey, and J. Skatrud, Longitudinal study of moderate weight change and sleep-disordered breathing, JAMA, vol.284, issue.23, pp.3015-3036, 2000.

J. Laaban and E. Chailleux, Daytime hypercapnia in adult patients with obstructive sleep

S. Nowbar, K. M. Burkart, R. Gonzales, A. Fedorowicz, W. S. Gozansky et al.,

, Obesity-associated hypoventilation in hospitalized patients: prevalence, effects, and outcome

, Am J Med, vol.116, issue.1, pp.1-7, 2004.

R. Huttunen and J. Syrjänen, Obesity and the risk and outcome of infection, Int J Obes, vol.37, issue.3, p.40, 2013.

I. Baik, G. C. Curhan, E. B. Rimm, A. Bendich, W. C. Willett et al., A prospective study of age and lifestyle factors in relation to community-acquired pneumonia in US men and women, Arch Intern Med, vol.160, issue.20, pp.3082-3090, 2000.

W. Jedrychowski, U. Maugeri, E. Flak, E. Mroz, and I. Bianchi, Cohort study on low physical activity level and recurrent acute respiratory infections in schoolchildren, Cent Eur J Public Health, vol.9, issue.3, pp.126-135, 2001.

L. Fezeu, C. Julia, A. Henegar, J. Bitu, F. B. Hu et al., Obesity is associated with higher risk of intensive care unit admission and death in influenza A (H1N1) patients: a systematic review and meta-analysis, Obes Rev Off J Int Assoc Study Obes

G. Domínguez-cherit, S. E. Lapinsky, A. E. Macias, R. Pinto, L. Espinosa-perez et al.,

A. Torre, Critically Ill patients with 2009 influenza A(H1N1) in Mexico, JAMA, vol.302, issue.17, pp.1880-1887, 2009.

E. H. Lee, C. Wu, E. U. Lee, A. Stoute, H. Hanson et al., Fatalities associated with the 2009 H1N1 influenza A virus in New York city, 504. 59. van 't Klooster TM, vol.50, p.1498, 2010.

. Netherlands, Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull, vol.15, issue.2, 2009.

C. Fuhrman, I. Bonmarin, A. C. Paty, N. Duport, E. Chiron et al., Severe hospitalised 2009 pandemic influenza A(H1N1) cases in France, 2009.

, Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull, vol.15, issue.2, 2010.

D. Sur,

X. Fang, J. Wei, X. He, J. Lian, D. Han et al., Quantitative association between body mass index and the risk of cancer: A global Meta-analysis of prospective cohort studies

, Int J Cancer, 2018.

E. E. Calle, C. Rodriguez, K. Walker-thurmond, and M. J. Thun, Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults, N Engl J Med, vol.348, issue.17, pp.1625-1663, 2003.

L. Sjöström, K. Narbro, C. D. Sjöström, K. Karason, B. Larsson et al., Effects of bariatric surgery on mortality in Swedish obese subjects, N Engl J Med, vol.357, issue.8, pp.741-52, 2007.

N. A. Berger, Obesity and cancer pathogenesis, Ann N Y Acad Sci, vol.1311, pp.57-76, 2014.

N. Ouchi, J. L. Parker, J. J. Lugus, and K. Walsh, Adipokines in inflammation and metabolic disease, Nat Rev Immunol, vol.11, issue.2, p.97, 2011.

K. L. Spalding, E. Arner, P. O. Westermark, S. Bernard, B. A. Buchholz et al., Dynamics of fat cell turnover in humans, Nature, vol.453, issue.7196, pp.783-790, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00372715

K. M. Gavin, J. A. Gutman, W. M. Kohrt, Q. Wei, K. L. Shea et al., De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue

, FASEB J Off Publ Fed Am Soc Exp Biol, vol.30, issue.3, pp.1096-108, 2016.

M. S. Rodeheffer, K. Birsoy, and J. M. Friedman, Identification of white adipocyte progenitor cells in vivo, Cell, vol.17, issue.2, pp.240-249, 2008.

K. M. Kras, D. B. Hausman, G. J. Hausman, and R. J. Martin, Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes, Obes Res

E. D. Rosen and O. A. Macdougald, Adipocyte differentiation from the inside out, Nat Rev Mol Cell Biol, vol.7, issue.12, pp.885-96, 2006.

M. I. Lefterova, A. K. Haakonsson, M. A. Lazar, and S. Mandrup, PPAR? and the global map of adipogenesis and beyond, Trends Endocrinol Metab TEM, vol.25, issue.6, pp.293-302, 2014.

S. L. Gray, D. Nora, E. Vidal-puig, and A. J. , Mouse models of PPAR-gamma deficiency: dissecting PPAR-gamma's role in metabolic homoeostasis, Biochem Soc Trans, vol.33, pp.1053-1061, 2005.

R. A. Hegele, H. Cao, C. Frankowski, S. T. Mathews, and T. Leff, PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy, Diabetes, vol.51, issue.12, p.90, 2002.

E. D. Rosen, C. Hsu, X. Wang, S. Sakai, M. W. Freeman et al., C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway, Genes Dev, vol.16, issue.1, pp.22-28, 2002.

P. Trayhurn, B. Wang, and I. S. Wood, Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?, Br J Nutr, vol.100, issue.2, p.35, 2008.

M. Pasarica, O. R. Sereda, L. M. Redman, D. C. Albarado, D. T. Hymel et al.,

, Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response, Diabetes, vol.58, issue.3, p.25, 2009.

J. Ye, Z. Gao, J. Yin, and Q. He, Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice, Am J Physiol Endocrinol Metab, vol.293, issue.4, pp.1118-1128, 2007.

S. P. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. L. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue, J Clin Invest, vol.112, issue.12, pp.1796-808, 2003.

C. A. Curat, V. Wegner, C. Sengenès, A. Miranville, C. Tonus et al.,

, Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin, Diabetologia, vol.49, issue.4, pp.744-751, 2006.

R. Cancello, C. Henegar, N. Viguerie, S. Taleb, C. Poitou et al., Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss, Diabetes, vol.54, issue.8, pp.2277-86, 2005.

S. Boulenouar, X. Michelet, D. Duquette, D. Alvarez, A. E. Hogan et al., Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity, Immunity, vol.46, issue.2, pp.273-86, 2017.

S. Cinti, G. Mitchell, G. Barbatelli, I. Murano, E. Ceresi et al., Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans, J Lipid Res, vol.46, issue.11, pp.2347-55, 2005.

C. Kim, H. Park, T. Kawada, J. Kim, D. Lim et al., Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesityrelated parameters, Int J Obes, vol.30, issue.9, pp.1347-55, 2005.

S. E. Kahn, B. Zinman, S. M. Haffner, M. C. O'neill, B. G. Kravitz et al., Obesity is a major determinant of the association of C-reactive protein levels and the metabolic syndrome in type 2 diabetes, Diabetes, vol.55, issue.8, pp.2357-64, 2006.

C. Herder, B. Haastert, S. Müller-scholze, W. Koenig, B. Thorand et al.,

, Association of systemic chemokine concentrations with impaired glucose tolerance and type 2 diabetes: results from the Cooperative Health Research in the Region of Augsburg Survey S4 (KORA S4), Diabetes, vol.54, issue.2, pp.11-17, 2005.

Y. Matsuzawa, Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease, Nat Clin Pract Cardiovasc Med, vol.3, issue.1, p.42, 2006.

J. Park, T. S. Morley, M. Kim, D. J. Clegg, and P. E. Scherer, Obesity and cancer--mechanisms underlying tumour progression and recurrence, Nat Rev Endocrinol, vol.10, issue.8, p.65, 2014.

K. S. Cook, H. Y. Min, D. Johnson, R. J. Chaplinsky, J. S. Flier et al., Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve, Science, vol.237, issue.4813, pp.402-407, 1987.

P. Trayhurn and I. S. Wood, Adipokines: inflammation and the pleiotropic role of white adipose tissue, Br J Nutr, vol.92, issue.3, p.55, 2004.

R. S. Ahima, J. S. Flier, and . Leptin, Annu Rev Physiol, vol.62, issue.1, pp.413-450, 2000.

M. B. Allison and M. G. Myers, 20 years of leptin: connecting leptin signaling to biological function, J Endocrinol, vol.223, issue.1, pp.25-35, 2014.

E. C. Villanueva and M. G. Myers, Leptin receptor signaling and the regulation of mammalian physiology, Int J Obes, vol.32, issue.7, pp.8-12, 2008.

N. Wada, S. Hirako, F. Takenoya, H. Kageyama, M. Okabe et al., Leptin and its receptors, J Chem Neuroanat, vol.61, p.9, 2014.

P. Bendinelli, P. Maroni, P. Giraldi, F. Piccoletti, and R. , Leptin activates Stat3, Stat1 and AP-1 in mouse adipose tissue, Mol Cell Endocrinol, vol.168, issue.1, p.20, 2000.

E. N. Gurzov, W. J. Stanley, E. G. Pappas, H. E. Thomas, and D. J. Gough, The JAK/STAT pathway in obesity and diabetes, FEBS J, vol.283, issue.16, p.15, 2016.

C. Kloek, A. K. Haq, S. L. Dunn, H. J. Lavery, A. S. Banks et al., Regulation of Jak kinases by intracellular leptin receptor sequences, J Biol Chem, vol.277, issue.44, pp.41547-55, 2002.

C. Bjørbaek, S. Uotani, B. Da-silva, and J. S. Flier, Divergent signaling capacities of the long and short isoforms of the leptin receptor, J Biol Chem, vol.272, issue.51, pp.32686-95, 1997.

K. D. Niswender and M. W. Schwartz, Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities, Front Neuroendocrinol, vol.24, issue.1, p.10, 2003.

S. L. Dunn, M. Björnholm, S. H. Bates, Z. Chen, M. Seifert et al., Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3, Mol Endocrinol Baltim Md, vol.19, issue.4, pp.925-963, 2005.

J. K. Howard, B. J. Cave, L. J. Oksanen, I. Tzameli, C. Bjørbaek et al., Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3

, Nat Med, vol.10, issue.7, pp.734-742, 2004.

A. Sahu, Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance, Front Neuroendocrinol, vol.24, issue.4, pp.225-53, 2003.

K. D. Niswender, G. J. Morton, W. H. Stearns, C. J. Rhodes, M. G. Myers et al.,

M. A. Pelleymounter, M. J. Cullen, M. B. Baker, R. Hecht, D. Winters et al.,

C. T. Montague, I. S. Farooqi, J. P. Whitehead, M. A. Soos, H. Rau et al.,

, Congenital leptin deficiency is associated with severe early-onset obesity in humans, Nature, vol.387, issue.6636, pp.903-911, 1997.

N. Sáinz, J. Barrenetxe, M. J. Moreno-aliaga, and J. A. Martínez, Leptin resistance and dietinduced obesity: central and peripheral actions of leptin, Metabolism, vol.64, issue.1, pp.35-46, 2015.

J. F. Caro, J. W. Kolaczynski, M. R. Nyce, J. P. Ohannesian, I. Opentanova et al., Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance, Lancet Lond Engl, vol.348, issue.9021, p.61, 1996.

R. L. Martin, E. Perez, Y. J. He, R. Dawson, and W. J. Millard, Leptin resistance is associated with hypothalamic leptin receptor mRNA and protein downregulation, Metabolism, vol.49, issue.11, pp.1479-84, 2000.

S. Leon-cabrera, L. Solís-lozano, K. Suárez-Álvarez, A. González-chávez, Y. L. Béjar et al., Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings, Front Integr Neurosci, vol.7, p.62, 2013.

H. Hsuchou, A. J. Kastin, P. K. Mishra, and W. Pan, C-reactive protein increases BBB permeability: implications for obesity and neuroinflammation, Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol, vol.30, issue.5, pp.1109-1128, 2012.

L. E. Olofsson, E. K. Unger, C. C. Cheung, and A. W. Xu, Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance, Proc Natl Acad Sci, vol.110, issue.8, pp.697-706, 2013.

E. Schéle, L. Grahnemo, F. Anesten, A. Hallén, F. Bäckhed et al., The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system, Endocrinology, vol.154, issue.10, p.51, 2013.

C. Buettner, E. D. Muse, A. Cheng, L. Chen, T. Scherer et al., Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms, Nat Med, vol.14, issue.6, p.75, 2008.

Y. Minokoshi, Y. Kim, O. D. Peroni, L. Fryer, C. Müller et al., Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase, Nature, vol.415, issue.6869, p.43, 2002.

T. Tanaka, S. Hidaka, H. Masuzaki, S. Yasue, Y. Minokoshi et al., Skeletal muscle AMP-activated protein kinase phosphorylation parallels metabolic phenotype in leptin transgenic mice under dietary modification, Diabetes, vol.54, issue.8, pp.2365-74, 2005.

N. Sáinz, A. Rodríguez, V. Catalán, S. Becerril, B. Ramírez et al., Leptin reduces the expression and increases the phosphorylation of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4 in muscle of ob/ob mice, PloS One, vol.7, issue.1, p.29389, 2012.

E. Roman, D. Reis, T. Romanatto, D. Maimoni, E. A. Ferreira et al.,

, Central leptin action improves skeletal muscle AKT, AMPK, and PGC1 alpha activation by hypothalamic PI3K-dependent mechanism, Mol Cell Endocrinol. 15 janv, vol.314, issue.1, pp.62-71, 2010.

L. Cava, A. Matarese, and G. , The weight of leptin in immunity, Nat Rev Immunol

V. Francisco, J. Pino, V. Campos-cabaleiro, C. Ruiz-fernández, A. Mera et al., Fat Mass and Immune System: Role for Leptin, vol.9, p.640, 2018.

A. Hsu, D. M. Aronoff, J. Phipps, D. Goel, and P. Mancuso, Leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia, Clin Exp Immunol, vol.150, issue.2, p.9, 2007.

P. Mancuso, A. Gottschalk, S. M. Phare, M. Peters-golden, N. W. Lukacs et al.,

, Leptin-deficient mice exhibit impaired host defense in Gram-negative pneumonia, J Immunol Baltim Md, vol.168, issue.8, p.24, 1950.

P. C. Tsiotra, V. Pappa, S. A. Raptis, and C. Tsigos, Expression of the long and short leptin receptor isoforms in peripheral blood mononuclear cells: implications for leptin's actions, Metabolism, vol.49, issue.12, pp.1537-1578, 2000.

A. Bruno, S. Conus, I. Schmid, and H. Simon, Apoptotic pathways are inhibited by leptin receptor activation in neutrophils, J Immunol Baltim Md, vol.174, issue.12, pp.8090-8096, 1950.

S. Conus, A. Bruno, and H. Simon, Leptin is an eosinophil survival factor, J Allergy Clin Immunol, vol.116, issue.6, pp.1228-1262, 2005.

Q. Lam, S. Liu, X. Cao, and L. Lu, Involvement of leptin signaling in the survival and maturation of bone marrow-derived dendritic cells, Eur J Immunol, vol.36, issue.12, p.30, 2006.

G. Amarilyo, N. Iikuni, A. Liu, G. Matarese, L. Cava et al., Leptin enhances availability of apoptotic cell-derived self-antigen in systemic lupus erythematosus, PloS One, vol.9, issue.11, p.112826, 2014.

C. Sánchez-pozo, J. Rodriguez-baño, A. Domínguez-castellano, M. A. Muniain, R. Goberna et al., Leptin stimulates the oxidative burst in control monocytes but attenuates the oxidative burst in monocytes from HIV-infected patients, Clin Exp Immunol, vol.134, issue.3, pp.464-473, 2003.

F. Maingrette and G. Renier, Leptin increases lipoprotein lipase secretion by macrophages: involvement of oxidative stress and protein kinase C, Diabetes, vol.52, issue.8, pp.2121-2129, 2003.

P. Mancuso, C. Canetti, A. Gottschalk, P. K. Tithof, and M. Peters-golden, Leptin augments alveolar macrophage leukotriene synthesis by increasing phospholipase activity and enhancing group IVC iPLA2 (cPLA2gamma) protein expression, Am J Physiol Lung Cell Mol Physiol, vol.287, issue.3, pp.497-502, 2004.

C. Martín-romero and V. Sánchez-margalet, Human leptin activates PI3K and MAPK pathways in human peripheral blood mononuclear cells: possible role of Sam68, Cell Immunol, vol.212, issue.2, p.91, 2001.

G. M. Lord, G. Matarese, J. K. Howard, R. J. Baker, S. R. Bloom et al., Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression, Nature, vol.394, issue.6696, p.901, 1998.

Y. Fujita, M. Murakami, Y. Ogawa, H. Masuzaki, M. Tanaka et al., Leptin inhibits stress-induced apoptosis of T lymphocytes, Clin Exp Immunol, vol.128, issue.1, p.6, 2002.

M. Scotece, J. Conde, V. López, F. Lago, J. Pino et al., Adiponectin and leptin: new targets in inflammation, Basic Clin Pharmacol Toxicol, vol.114, issue.1, pp.97-102, 2014.

M. J. Vázquez, A. Romero-ruiz, and M. Tena-sempere, Roles of leptin in reproduction, pregnancy and polycystic ovary syndrome: consensus knowledge and recent developments, Metabolism, vol.64, issue.1, pp.79-91, 2015.

R. Adya, B. K. Tan, and H. S. Randeva, Differential effects of leptin and adiponectin in endothelial angiogenesis, J Diabetes Res, p.648239, 2015.

P. E. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish, A novel serum protein similar to C1q, produced exclusively in adipocytes, J Biol Chem, vol.270, issue.45, pp.26746-26755, 1995.

Y. Nakano, T. Tobe, N. H. Choi-miura, T. Mazda, and M. Tomita, Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma, J Biochem (Tokyo), vol.120, issue.4, pp.803-815, 1996.

M. Takahashi, Y. Arita, K. Yamagata, Y. Matsukawa, K. Okutomi et al.,

, Genomic structure and mutations in adipose-specific gene, adiponectin, Int J Obes Relat Metab Disord J Int Assoc Study Obes, vol.24, issue.7, pp.861-869, 2000.

N. Frizzell, M. Rajesh, M. J. Jepson, R. Nagai, J. A. Carson et al., Succination of thiol groups in adipose tissue proteins in diabetes: succination inhibits polymerization and secretion of adiponectin, J Biol Chem, vol.284, issue.38, pp.25772-81, 2009.

H. Fang and R. L. Judd, Adiponectin Regulation and Function, Compr Physiol, vol.8, issue.3, pp.1031-63, 2018.

U. B. Pajvani, X. Du, T. P. Combs, A. H. Berg, M. W. Rajala et al., Structurefunction studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity, J Biol Chem, vol.278, issue.11, p.85, 2003.

A. Gavrila, C. Peng, J. L. Chan, J. E. Mietus, A. L. Goldberger et al., Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns, J Clin Endocrinol Metab, vol.88, issue.6, pp.2838-2881, 2003.

E. Hu, P. Liang, and B. M. Spiegelman, AdipoQ is a novel adipose-specific gene dysregulated in obesity, J Biol Chem, vol.271, issue.18, pp.10697-703, 1996.

Y. Arita, Reprint of "Paradoxical Decrease of an Adipose-Specific Protein, Adiponectin, in Obesity, Biochem Biophys Res Commun, vol.425, issue.3, p.4, 2012.

M. M. Swarbrick and P. J. Havel, Physiological, pharmacological, and nutritional regulation of circulating adiponectin concentrations in humans, Metab Syndr Relat Disord

J. M. Bruun, A. S. Lihn, C. Verdich, S. B. Pedersen, S. Toubro et al., Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans

, Am J Physiol Endocrinol Metab, vol.285, issue.3, pp.527-533, 2003.

Y. Wang, K. Lam, M. Yau, and A. Xu, Post-translational modifications of adiponectin: mechanisms and functional implications, Biochem J, vol.409, issue.3, p.33, 2008.

L. Xie, D. Boyle, D. Sanford, P. E. Scherer, J. E. Pessin et al., Intracellular trafficking and secretion of adiponectin is dependent on GGA-coated vesicles, J Biol Chem, vol.281, issue.11, p.9, 2006.

Y. Wang, K. Lam, L. Chan, K. W. Chan, J. Lam et al., Post-translational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex, J Biol Chem, vol.281, issue.24, pp.16391-400, 2006.

M. Liu and F. Liu, Transcriptional and post-translational regulation of adiponectin

, Biochem J, vol.425, issue.1, pp.41-52, 2009.

Z. V. Wang and P. E. Scherer, DsbA-L is a versatile player in adiponectin secretion, Proc Natl Acad Sci U S A, vol.105, issue.47, pp.18077-18085, 2008.

M. Liu, L. Zhou, A. Xu, K. Lam, M. D. Wetzel et al., A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization, Proc Natl Acad Sci, vol.105, issue.47, pp.18302-18309, 2008.

L. Zhou and F. Liu, Autophagy: roles in obesity-induced ER stress and adiponectin downregulation in adipocytes, Autophagy, vol.6, issue.8, pp.1196-1203, 2010.

T. Tsao, H. E. Murrey, C. Hug, D. H. Lee, and H. F. Lodish, Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30), J Biol Chem, vol.277, issue.33, pp.29359-62, 2002.

T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo et al., Cloning of adiponectin receptors that mediate antidiabetic metabolic effects, Nature, vol.423, issue.6941, pp.762-771, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00094061

H. Tanabe, Y. Fujii, M. Okada-iwabu, M. Iwabu, Y. Nakamura et al., Crystal structures of the human adiponectin receptors, Nature, vol.520, issue.7547, pp.312-318, 2015.

C. Hug, J. Wang, N. S. Ahmad, J. S. Bogan, T. Tsao et al., T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin, Proc Natl Acad Sci U S A, vol.101, issue.28, pp.10308-10321, 2004.

J. L. Parker-duffen, K. Nakamura, M. Silver, R. Kikuchi, U. Tigges et al., Tcadherin is essential for adiponectin-mediated revascularization, J Biol Chem, vol.288, issue.34, pp.24886-97, 2013.

X. Mao, C. K. Kikani, R. A. Riojas, P. Langlais, L. Wang et al., APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function, Nat Cell Biol

S. S. Deepa, L. Zhou, J. Ryu, C. Wang, X. Mao et al., APPL1 mediates adiponectininduced LKB1 cytosolic localization through the PP2A-PKCzeta signaling pathway, Mol Endocrinol Baltim Md, vol.25, issue.10, pp.1773-85, 2011.

J. Ryu, A. K. Galan, X. Xin, F. Dong, M. A. Abdul-ghani et al., APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor, Cell Rep, vol.7, issue.4, pp.1227-1265, 2014.

L. Zhou, S. S. Deepa, J. C. Etzler, J. Ryu, X. Mao et al., Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways, J Biol Chem, vol.284, issue.33, pp.22426-22461, 2009.

I. Vasiliauskaité-brooks, R. Sounier, P. Rochaix, G. Bellot, M. Fortier et al., Structural insights into adiponectin receptors suggest ceramidase activity, Nature, vol.544, issue.7648, p.3, 2017.

W. L. Holland and S. A. Summers, Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism, Endocr Rev, vol.29, issue.4, pp.381-402, 2008.

W. L. Holland, R. A. Miller, Z. V. Wang, K. Sun, B. M. Barth et al., Receptormediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin, Nat Med, vol.17, issue.1, p.63, 2011.

M. Ryo, T. Nakamura, S. Kihara, M. Kumada, S. Shibazaki et al.,

, Adiponectin as a biomarker of the metabolic syndrome, Circ J Off J Jpn Circ Soc, vol.68, issue.11, pp.975-81, 2004.

S. Li, H. J. Shin, E. L. Ding, and R. M. Van-dam, Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis, JAMA, vol.302, issue.2, pp.179-88, 2009.

T. Yamauchi, J. Kamon, H. Waki, Y. Terauchi, N. Kubota et al., The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
URL : https://hal.archives-ouvertes.fr/hal-00174777

, Nat Med, vol.7, issue.8, pp.941-947, 2001.

J. Fruebis, T. S. Tsao, S. Javorschi, D. Ebbets-reed, M. R. Erickson et al.,

, Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice, Proc Natl Acad Sci U S A, vol.98, issue.4, p.10, 2001.

A. H. Berg, T. P. Combs, X. Du, M. Brownlee, and P. E. Scherer, The adipocyte-secreted protein Acrp30 enhances hepatic insulin action, Nat Med, vol.7, issue.8, pp.947-53, 2001.

T. P. Combs, A. H. Berg, S. Obici, P. E. Scherer, and L. Rossetti, Endogenous glucose production is inhibited by the adipose-derived protein Acrp30, J Clin Invest, vol.108, issue.12, pp.1875-81, 2001.

T. P. Combs, A. H. Berg, S. Obici, P. E. Scherer, and L. Rossetti, Endogenous glucose production is inhibited by the adipose-derived protein Acrp30, J Clin Invest, vol.108, issue.12, pp.1875-81, 2001.

C. Wang, X. Mao, L. Wang, M. Liu, M. D. Wetzel et al., Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1, J Biol Chem, vol.282, issue.11, pp.7991-7997, 2007.

K. Cheng, K. Lam, D. Wu, Y. Wang, G. Sweeney et al.,

, potentiates insulin secretion in pancreatic ? cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice, Proc Natl Acad Sci U S A, vol.109, issue.23, p.24, 2012.

P. Ferré, The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity, Diabetes, vol.53, issue.1, pp.43-50, 2004.

H. Kobayashi, N. Ouchi, S. Kihara, K. Walsh, M. Kumada et al., Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin

, Circ Res, vol.94, issue.4, pp.27-31, 2004.

H. Chen, M. Montagnani, T. Funahashi, I. Shimomura, and M. J. Quon, Adiponectin stimulates production of nitric oxide in vascular endothelial cells, J Biol Chem, vol.278, issue.45, pp.45021-45027, 2003.

N. Ouchi, H. Kobayashi, S. Kihara, M. Kumada, K. Sato et al., Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells, J Biol Chem, vol.279, issue.2, pp.1304-1313, 2004.

G. Chinetti, C. Zawadski, J. C. Fruchart, and B. Staels, Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR, Biochem Biophys Res Commun, vol.314, issue.1, pp.151-159, 2004.

M. Okada-iwabu, T. Yamauchi, M. Iwabu, T. Honma, K. Hamagami et al., A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity, Nature, vol.503, issue.7477, pp.493-502, 2013.

M. Okada-iwabu, M. Iwabu, K. Ueki, T. Yamauchi, and T. Kadowaki,

, Molecule AdipoR Agonist for Type 2 Diabetes and Short Life in Obesity, Diabetes Metab J, vol.39, issue.5, pp.363-72, 2015.

M. Esfahani, N. Shabab, and M. Saidijam, AdipoRon may be benefit for atherosclerosis prevention, Iran J Basic Med Sci, vol.20, issue.2, p.9, 2017.

S. R. Choi, J. H. Lim, M. Y. Kim, E. N. Kim, Y. Kim et al., Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy, Metabolism, vol.85, pp.348-60, 2018.

Y. Zhang, J. Zhao, R. Li, W. B. Lau, Y. Yuan et al., AdipoRon, the first orally active adiponectin receptor activator, attenuates postischemic myocardial apoptosis through both AMPK-mediated and AMPK-independent signalings, Am J Physiol Endocrinol Metab, vol.1, issue.3, pp.275-282, 2015.

Y. Wang, Y. Wan, G. Ye, P. Wang, X. Xue et al., Hepatoprotective effects of AdipoRon against d-galactosamine-induced liver injury in mice, Eur J Pharm Sci Off J Eur Fed Pharm Sci, vol.93, pp.123-154, 2016.

A. Garten, S. Schuster, M. Penke, T. Gorski, T. De-giorgis et al., Physiological and pathophysiological roles of NAMPT and NAD metabolism, Nat Rev Endocrinol, vol.11, issue.9, pp.535-581, 2015.

E. S. Burgos, M. J. Vetticatt, and V. L. Schramm, Recycling nicotinamide. The transition-state structure of human nicotinamide phosphoribosyltransferase, J Am Chem Soc, vol.135, issue.9, pp.3485-93, 2013.

B. Samal, Y. Sun, G. Stearns, C. Xie, S. Suggs et al., Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor, Mol Cell Biol, vol.14, issue.2, pp.1431-1438, 1994.

M. J. Yoon, M. Yoshida, S. Johnson, A. Takikawa, I. Usui et al., SIRT1-Mediated eNAMPT Secretion from Adipose Tissue Regulates Hypothalamic NAD+ and Function in Mice, Cell Metab, vol.21, issue.5, pp.706-723, 2015.

D. G. Haider, K. Schindler, G. Schaller, G. Prager, M. Wolzt et al., Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding, J Clin Endocrinol Metab, vol.91, issue.4, pp.1578-81, 2006.

. El-mesallamy, . Ho, D. H. Kassem, E. El-demerdash, and A. I. Amin, Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus, Metabolism, vol.60, issue.1, p.70, 2011.

Y. Chang, C. Lin, K. Shin, S. Lee, and Y. , Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review, Diabetes Metab Res Rev, vol.27, issue.6, pp.515-542, 2011.

A. Fukuhara, M. Matsuda, M. Nishizawa, K. Segawa, M. Tanaka et al.,

, Retraction. Science, vol.318, issue.5850, p.565, 2007.

S. M. Camp, E. Ceco, C. L. Evenoski, S. M. Danilov, T. Zhou et al., Unique Toll-Like Receptor 4 Activation by NAMPT/PBEF Induces NF?B Signaling and Inflammatory Lung Injury, Sci Rep, vol.5, p.13135, 2015.

R. Van-den-bergh, S. Morin, H. J. Sass, S. Grzesiek, M. Vekemans et al.,

, Monocytes contribute to differential immune pressure on R5 versus X4 HIV through the adipocytokine visfatin/NAMPT, PloS One, vol.7, issue.4, p.35074, 2012.

J. R. Revollo, A. Körner, K. F. Mills, A. Satoh, T. Wang et al.,

/. Nampt and . Pbef/, Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme, Cell Metab, vol.6, issue.5, p.75, 2007.

D. G. Haider, G. Schaller, S. Kapiotis, C. Maier, A. Luger et al., The release of the adipocytokine visfatin is regulated by glucose and insulin, Diabetologia, vol.49, issue.8, p.14, 1909.

Y. Chen, M. Chen, Z. Wu, and S. Zhao, Ox-LDL induces ER stress and promotes the adipokines secretion in 3T3-L1 adipocytes, PloS One, vol.8, issue.10, p.81379, 2013.

S. Kralisch, J. Klein, U. Lossner, M. Bluher, R. Paschke et al., Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes, J Endocrinol, vol.185, issue.3, pp.1-8, 2005.

H. Kim, S. Han, H. Sung, S. Park, M. Kang et al., Blockade of visfatin induction by oleanolic acid via disturbing IL-6-TRAF6-NF-?B signaling of adipocytes, Exp Biol Med Maywood NJ, vol.239, issue.3, p.92, 2014.

S. Kim, S. Bae, K. Choi, S. Park, J. Ho et al., Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2, Biochem Biophys Res Commun, vol.357, issue.1, pp.150-156, 2007.

A. R. Moschen, R. R. Gerner, and H. Tilg, Pre-B cell colony enhancing factor/NAMPT/visfatin in inflammation and obesity-related disorders, Curr Pharm Des, vol.16, issue.17, 2010.

T. Romacho, V. Azcutia, M. Vázquez-bella, N. Matesanz, E. Cercas et al.,

P. Extracellular, NAMPT/visfatin activates pro-inflammatory signalling in human vascular smooth muscle cells through nicotinamide phosphoribosyltransferase activity, Diabetologia, vol.52, issue.11, pp.2455-63, 2009.

G. Sommer, S. Kralisch, N. Kloting, M. Kamprad, K. Schrock et al., Visfatin is a positive regulator of MCP-1 in human adipocytes in vitro and in mice in vivo, Obes Silver Spring Md, vol.18, issue.8, pp.1486-92, 2010.

A. Chiarugi, C. Dölle, R. Felici, and M. Ziegler, The NAD metabolome--a key determinant of cancer cell biology, Nat Rev Cancer, vol.12, issue.11, pp.741-52, 2012.

U. Galli, C. Travelli, A. Massarotti, G. Fakhfouri, R. Rahimian et al., Medicinal chemistry of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors, J Med Chem, vol.56, issue.16, pp.6279-96, 2013.

T. Wang, C. Gross, A. A. Desai, E. Zemskov, X. Wu et al., Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets, Am J Physiol Lung Cell Mol Physiol, vol.312, issue.4, pp.452-76, 2017.

X. Sun, V. R. Elangovan, B. Mapes, S. M. Camp, S. Sammani et al., The NAMPT promoter is regulated by mechanical stress, signal transducer and activator of transcription 5, and acute respiratory distress syndrome-associated genetic variants, Am J Respir Cell Mol Biol, vol.51, issue.5, pp.660-667, 2014.

S. Q. Ye, B. A. Simon, J. P. Maloney, A. Zambelli-weiner, L. Gao et al., Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury, Am J Respir Crit Care Med, vol.171, issue.4, pp.361-70, 2005.

H. Li, P. Liu, J. Cepeda, D. Fang, R. B. Easley et al., Augmentation of Pulmonary Epithelial Cell IL-8 Expression and Permeability by Pre-B-cell Colony Enhancing Factor, J Inflamm Lond Engl, vol.5, p.15, 2008.

P. Liu, H. Li, J. Cepeda, L. Q. Zhang, X. Cui et al., Critical role of PBEF expression in pulmonary cell inflammation and permeability, Cell Biol Int, vol.33, issue.1, p.30, 2009.

C. Travelli, G. Colombo, S. Mola, A. A. Genazzani, and C. Porta, NAMPT: A pleiotropic modulator of monocytes and macrophages, Pharmacol Res, vol.135, pp.25-36, 2018.

V. Wittamer, J. Franssen, M. Vulcano, J. Mirjolet, L. Poul et al., Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids, J Exp Med, vol.198, issue.7, p.85, 2003.

D. Stejskal, M. Karpisek, Z. Hanulova, and M. Svestak, Chemerin is an independent marker of the metabolic syndrome in a Caucasian population--a pilot study, Biomed Pap Med Fac Univ Palacky Olomouc Czechoslov, vol.152, issue.2, pp.217-238, 2008.

B. A. Zabel, S. J. Allen, P. Kulig, J. A. Allen, J. Cichy et al., Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades, J Biol Chem, vol.280, issue.41, pp.34661-34667, 2005.

S. D. Parlee, M. C. Ernst, S. Muruganandan, C. J. Sinal, and K. B. Goralski, Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}, Endocrinology, vol.151, issue.6, pp.2590-602, 2010.

Y. Ha, E. Kang, J. Song, Y. Park, S. Lee et al., Plasma chemerin levels in rheumatoid arthritis are correlated with disease activity rather than obesity, Jt Bone Spine Rev Rhum, vol.81, issue.2, p.90, 2014.

J. Weigert, M. Neumeier, J. Wanninger, M. Filarsky, S. Bauer et al., Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes, Clin Endocrinol (Oxf), vol.72, issue.3, pp.342-350, 2010.

K. Bozaoglu, K. Bolton, J. Mcmillan, P. Zimmet, J. Jowett et al., Chemerin is a novel adipokine associated with obesity and metabolic syndrome, Endocrinology, vol.148, issue.10, pp.4687-94, 2007.

M. C. Ernst and C. J. Sinal, Chemerin: at the crossroads of inflammation and obesity, Trends Endocrinol Metab TEM, vol.21, issue.11, pp.660-667, 2010.

A. Mattern, T. Zellmann, and A. G. Beck-sickinger, Processing, signaling, and physiological function of chemerin, IUBMB Life, vol.66, issue.1, pp.19-26, 2014.

K. B. Goralski, T. C. Mccarthy, E. A. Hanniman, B. A. Zabel, E. C. Butcher et al.,

, Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism, J Biol Chem, vol.282, issue.38, pp.28175-88, 2007.

H. Sell, J. Laurencikiene, A. Taube, K. Eckardt, A. Cramer et al., Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells, Diabetes, vol.58, issue.12, pp.2731-2771, 2009.

J. Kaur, R. Adya, B. K. Tan, J. Chen, and H. S. Randeva, Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis, Biochem Biophys Res Commun, vol.391, issue.4, pp.1762-1770, 2010.

N. Shimizu, Y. Soda, K. Kanbe, H. Y. Liu, A. Jinno et al., An orphan G protein-coupled receptor, GPR1, acts as a coreceptor to allow replication of human immunodeficiency virus types 1 and 2 in brain-derived cells, J Virol, vol.73, issue.6, pp.5231-5240, 1999.

J. Monnier, S. Lewén, E. O'hara, K. Huang, H. Tu et al., Expression, regulation, and function of atypical chemerin receptor CCRL2 on endothelial cells, J Immunol Baltim Md, vol.189, issue.2, pp.956-67, 1950.

M. C. Ernst, I. D. Haidl, L. A. Zúñiga, H. J. Dranse, J. L. Rourke et al., Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance, Endocrinology, vol.153, issue.2, pp.672-82, 2012.

S. Muruganandan, S. D. Parlee, J. L. Rourke, M. C. Ernst, K. B. Goralski et al., Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis, J Biol Chem, vol.286, issue.27, pp.23982-95, 2011.

S. Muruganandan, A. A. Roman, and C. J. Sinal, Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells, J Bone Miner Res Off J Am Soc Bone Miner Res. févr, vol.25, issue.2, p.34, 2010.

J. Vernooy, N. Drummen, R. J. Van-suylen, R. Cloots, G. M. Möller et al., Enhanced pulmonary leptin expression in patients with severe COPD and asymptomatic smokers, Thorax, vol.64, issue.1, p.32, 2009.

F. Holguin, M. Rojas, L. A. Brown, and A. M. Fitzpatrick, Airway and plasma leptin and adiponectin in lean and obese asthmatics and controls, J Asthma Off J Assoc Care Asthma, vol.48, issue.3, pp.217-240, 2011.

J. S. Torday, H. Sun, L. Wang, E. Torres, M. E. Sunday et al., Leptin mediates the parathyroid hormone-related protein paracrine stimulation of fetal lung maturation, Am J Physiol Lung Cell Mol Physiol, vol.282, issue.3, pp.405-410, 2002.

H. T. Bergen, T. C. Cherlet, P. Manuel, and J. E. Scott, Identification of leptin receptors in lung and isolated fetal type II cells, Am J Respir Cell Mol Biol, vol.27, issue.1, pp.71-78, 2002.

K. Huang, R. Rabold, E. Abston, B. Schofield, V. Misra et al., Effects of leptin deficiency on postnatal lung development in mice, J Appl Physiol Bethesda Md, vol.105, issue.1, pp.249-59, 1985.

H. Chen, J. Zhang, H. Huang, Z. Wang, R. Cheng et al., Leptin promotes fetal lung maturity and upregulates SP-A expression in pulmonary alveoli type-II epithelial cells involving TTF-1 activation, PloS One, vol.8, issue.7, p.69297, 2013.

A. Bruno, M. Alessi, S. Soresi, A. Bonanno, L. Riccobono et al.,

, Increased leptin/leptin receptor pathway affects systemic and airway inflammation in COPD former smokers, J Inflamm Res, vol.4, pp.51-60, 2011.

A. Bruno, P. Chanez, G. Chiappara, L. Siena, S. Giammanco et al., Does leptin play a cytokine-like role within the airways of COPD patients?, Eur Respir J, vol.26, issue.3, p.405, 2005.

S. A. Shore, I. N. Schwartzman, M. S. Mellema, L. Flynt, A. Imrich et al., Effect of leptin on allergic airway responses in mice, J Allergy Clin Immunol, vol.115, issue.1, pp.103-112, 2005.

S. A. Shore, Y. M. Rivera-sanchez, I. N. Schwartzman, and R. A. Johnston, Responses to ozone are increased in obese mice, J Appl Physiol Bethesda Md, vol.95, issue.3, p.45, 1985.

L. Zhang, Y. Yin, H. Zhang, W. Zhong, and J. Zhang, Association of asthma diagnosis with leptin and adiponectin: a systematic review and meta-analysis, J Investig Med Off Publ Am Fed Clin Res, vol.65, issue.1, p.64, 2017.

A. Sood, E. S. Ford, and C. A. Camargo, Association between leptin and asthma in adults, Thorax, vol.61, issue.4, p.5, 2006.

A. Bruno, E. Pace, P. Chanez, D. Gras, I. Vachier et al., Leptin and leptin receptor expression in asthma, J Allergy Clin Immunol. août, vol.124, issue.2, pp.230-237, 2009.

L. L. Kordonowy, E. Burg, C. C. Lenox, L. M. Gauthier, J. M. Petty et al.,

, Obesity is associated with neutrophil dysfunction and attenuation of murine acute lung injury

, Am J Respir Cell Mol Biol, 2012.

M. Miller, J. Y. Cho, A. Pham, J. Ramsdell, and D. H. Broide, Adiponectin and functional

M. Immunol-baltim, , vol.182, p.91, 1950.

O. Sideleva, B. T. Suratt, K. E. Black, W. G. Tharp, R. E. Pratley et al., Obesity and asthma: an inflammatory disease of adipose tissue not the airway, Am J Respir Crit Care Med, vol.186, issue.7, p.605, 2012.

M. Miller, J. Y. Cho, A. Pham, J. Ramsdell, and D. H. Broide, Adiponectin and functional

M. Immunol-baltim, , vol.182, p.91, 1950.

J. H. Shin, J. H. Kim, W. Y. Lee, and J. Y. Shim, The expression of adiponectin receptors and the effects of adiponectin and leptin on airway smooth muscle cells, Yonsei Med J, vol.49, issue.5, p.10, 2008.

K. Nakanishi, Y. Takeda, S. Tetsumoto, T. Iwasaki, K. Tsujino et al., Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice: implications for therapy, Am J Respir Crit Care Med, vol.183, issue.9, pp.1164-75, 2011.

R. Summer, F. F. Little, N. Ouchi, Y. Takemura, T. Aprahamian et al., Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice, Am J Physiol Lung Cell Mol Physiol, vol.294, issue.6, pp.1035-1042, 2008.

R. Summer, C. A. Fiack, Y. Ikeda, K. Sato, D. Dwyer et al., Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease

, Am J Physiol Lung Cell Mol Physiol, vol.297, issue.3, pp.432-438, 2009.

M. Miller, A. Pham, J. Y. Cho, P. Rosenthal, and D. H. Broide, Adiponectin-deficient mice are protected against tobacco-induced inflammation and increased emphysema, Am J Physiol Lung Cell Mol Physiol, vol.299, issue.6, pp.834-842, 2010.

A. Sood and S. A. Shore, Adiponectin, Leptin, and Resistin in Asthma: Basic Mechanisms through Population Studies, J Allergy, p.785835, 2013.

S. A. Shore, R. D. Terry, L. Flynt, A. Xu, and C. Hug, Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice, J Allergy Clin Immunol, vol.118, issue.2, p.95, 2006.

A. J. Walkey, T. W. Rice, J. Konter, N. Ouchi, R. Shibata et al., Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure, Crit Care Med, vol.38, issue.12, pp.2329-2363, 2010.

M. Zhu, C. Hug, D. I. Kasahara, R. A. Johnston, A. S. Williams et al., Impact of adiponectin deficiency on pulmonary responses to acute ozone exposure in mice, Am J Respir Cell Mol Biol, vol.43, issue.4, pp.487-97, 2010.

F. Holguin, M. Rojas, L. A. Brown, and A. M. Fitzpatrick, Airway and plasma leptin and adiponectin in lean and obese asthmatics and controls, J Asthma Off J Assoc Care Asthma, vol.48, issue.3, pp.217-240, 2011.

A. I. Tauber, Metchnikoff and the phagocytosis theory, Nat Rev Mol Cell Biol, vol.4, issue.11, p.901, 2003.

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat Rev Immunol, vol.11, issue.11, p.37, 2011.

A. Kaufmann, R. Salentin, D. Gemsa, and H. Sprenger, Increase of CCR1 and CCR5 expression and enhanced functional response to MIP-1 alpha during differentiation of human monocytes to macrophages, J Leukoc Biol, vol.69, issue.2, pp.248-52, 2001.

E. L. Gautier, T. Shay, J. Miller, M. Greter, C. Jakubzick et al., Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages, Nat Immunol, vol.13, issue.11, pp.1118-1146, 2012.

D. Hashimoto, A. Chow, C. Noizat, P. Teo, M. B. Beasley et al., Tissueresident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes, Immunity, vol.38, issue.4, pp.792-804, 2013.

S. Yona, K. Kim, Y. Wolf, A. Mildner, D. Varol et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, Immunity, vol.38, issue.1, pp.79-91, 2013.

M. H. Sieweke and J. E. Allen, Beyond stem cells: self-renewal of differentiated macrophages, Science, vol.342, issue.6161, p.1242974, 2013.

A. Aziz, E. Soucie, S. Sarrazin, and M. H. Sieweke, MafB/c-Maf deficiency enables selfrenewal of differentiated functional macrophages, Science, vol.326, issue.5954, p.71, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00430871

L. C. Davies and P. R. Taylor, Tissue-resident macrophages: then and now, Immunology, vol.144, issue.4, pp.541-549, 2015.

S. Gordon, Pattern recognition receptors: doubling up for the innate immune response, Cell, vol.111, issue.7, p.30, 2002.

W. Strober, P. J. Murray, A. Kitani, and T. Watanabe, Signalling pathways and molecular interactions of NOD1 and NOD2, Nat Rev Immunol, vol.6, issue.1, p.20, 2006.

M. H. Shaw, T. Reimer, Y. Kim, and G. Nuñez, NOD-like receptors (NLRs): bona fide intracellular microbial sensors, Curr Opin Immunol, vol.20, issue.4, pp.377-82, 2008.

S. Gordon and A. Plüddemann, Macrophage Clearance of Apoptotic Cells: A Critical Assessment, Front Immunol, vol.9, p.127, 2018.

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat Rev Immunol, vol.11, issue.11, p.37, 2011.

C. Jakubzick, E. L. Gautier, S. L. Gibbings, D. K. Sojka, A. Schlitzer et al., Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes, Immunity, vol.39, issue.3, p.610, 2013.

C. V. Jakubzick, G. J. Randolph, and P. M. Henson, Monocyte differentiation and antigenpresenting functions, Nat Rev Immunol. juin, vol.17, issue.6, pp.349-62, 2017.

B. Rada and T. L. Leto, Oxidative innate immune defenses by Nox/Duox family NADPH oxidases, Contrib Microbiol, vol.15, pp.164-87, 2008.

F. Meissner, R. A. Seger, D. Moshous, A. Fischer, J. Reichenbach et al., Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease, Blood, vol.116, issue.9, pp.1570-1573, 2010.

R. Fernandez-boyanapalli, S. C. Frasch, D. Riches, R. W. Vandivier, and P. M. Henson,

D. L. Bratton, PPAR? activation normalizes resolution of acute sterile inflammation in murine chronic granulomatous disease, Blood, vol.116, issue.22, pp.4512-4534, 2010.

L. Landsman and S. Jung, Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages, J Immunol Baltim Md, vol.179, issue.6, p.94, 1950.

P. B. Bitterman, L. E. Saltzman, S. Adelberg, V. J. Ferrans, and R. G. Crystal, Alveolar macrophage replication. One mechanism for the expansion of the mononuclear phagocyte population in the chronically inflamed lung, J Clin Invest, vol.74, issue.2, pp.460-469, 1984.

M. L. Lohmann-matthes, C. Steinmüller, and G. Franke-ullmann,

, Eur Respir J, vol.7, issue.9, pp.1678-89, 1994.

L. Kobzik, J. J. Godleski, B. E. Barry, and J. D. Brain, Isolation and antigenic identification of hamster lung interstitial macrophages, Am Rev Respir Dis, vol.138, issue.4, pp.908-922, 1988.

M. J. Evans, S. G. Shami, and L. A. Martinez, Enhanced proliferation of pulmonary alveolar macrophages after carbon instillation in mice depleted of blood monocytes by strontium-89

, Lab Investig J Tech Methods Pathol, vol.54, issue.2, p.9, 1986.

S. Tan and M. A. Krasnow, Developmental origin of lung macrophage diversity, Dev Camb Engl, vol.1, issue.8, pp.1318-1345, 2016.

M. Guilliams, D. Kleer, I. , H. S. Post, S. Vanhoutte et al., Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF, J Exp Med, vol.210, issue.10, p.92, 1977.

D. Hashimoto, A. Chow, C. Noizat, P. Teo, M. B. Beasley et al., Tissueresident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes, Immunity, vol.38, issue.4, pp.792-804, 2013.

J. Schyns, F. Bureau, and T. Marichal, Lung Interstitial Macrophages: Past, Present, and Future, J Immunol Res, p.5160794, 2018.

N. Garbi and B. N. Lambrecht, Location, function, and ontogeny of pulmonary macrophages during the steady state, Pflugers Arch, 2017.

D. Bedoret, H. Wallemacq, T. Marichal, C. Desmet, Q. Calvo et al.,

, Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice

, J Clin Invest, vol.119, issue.12, p.38, 2009.

C. Mesnil, S. Raulier, G. Paulissen, X. Xiao, M. A. Birrell et al., Lung-resident eosinophils represent a distinct regulatory eosinophil subset, J Clin Invest, vol.126, issue.9, p.95, 2016.

J. L. Gong, K. M. Mccarthy, R. A. Rogers, and E. E. Schneeberger, Interstitial lung macrophages interact with dendritic cells to present antigenic peptides derived from particulate antigens to T cells, Immunology, vol.81, issue.3, p.51, 1994.

T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins, J Immunol Baltim Md, vol.136, issue.7, pp.2348-57, 1950.

E. A. Wierenga, M. Snoek, C. De-groot, I. Chrétien, J. D. Bos et al., Evidence for compartmentalization of functional subsets of CD2+ T lymphocytes in atopic patients, J Immunol Baltim Md, vol.144, issue.12, pp.4651-4657, 1950.

T. R. Mosmann and R. L. Coffman, TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties, Annu Rev Immunol, vol.7, pp.145-73, 1989.

F. Y. Liew, T(H)1 and T(H)2 cells: a historical perspective, Nat Rev Immunol

M. Stein, S. Keshav, N. Harris, and S. Gordon, Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation, J Exp Med, vol.176, issue.1, pp.287-92, 1992.

C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill,

, Macrophages and the Th1/Th2 Paradigm, J Immunol Baltim Md, vol.164, issue.7, pp.6166-6173, 1950.

D. M. Mosser, The many faces of macrophage activation, J Leukoc Biol, vol.73, issue.2, p.12, 2003.

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, issue.12, pp.677-86, 2004.

F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization, Front Biosci J Virtual Libr, vol.13, pp.453-61, 2008.

F. O. Martinez and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment, Rep, vol.6, p.13, 2014.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, issue.1, p.20, 2014.

M. Benoit, B. Desnues, and J. L. Mege, Macrophage polarization in bacterial infections, J Immunol, vol.15, issue.6, pp.3733-3742, 2008.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, vol.8, issue.12, pp.958-69, 2008.

D. Tugal, X. Liao, and M. K. Jain, Transcriptional control of macrophage polarization

, Arterioscler Thromb Vasc Biol, vol.33, issue.6, pp.1135-1179, 2013.

Y. Liu, K. N. Stewart, E. Bishop, C. J. Marek, D. C. Kluth et al., Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo, J Immunol Baltim Md, vol.180, issue.9, pp.6270-6278, 1950.

T. Krausgruber, K. Blazek, T. Smallie, S. Alzabin, H. Lockstone et al., IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses, Nat Immunol

M. J. Fenton, M. W. Vermeulen, S. Kim, M. Burdick, R. M. Strieter et al., Induction of gamma interferon production in human alveolar macrophages by Mycobacterium tuberculosis, Infect Immun, vol.65, issue.12, pp.5149-56, 1997.

H. A. Young and K. J. Hardy, Role of interferon-gamma in immune cell regulation, J Leukoc Biol, vol.58, issue.4, p.81, 1995.

L. C. Platanias, Mechanisms of type-I-and type-II-interferon-mediated signalling, Nat Rev Immunol, vol.5, issue.5, pp.375-86, 2005.

K. Schroder, M. J. Sweet, and D. A. Hume, Signal integration between IFNgamma and TLR signalling pathways in macrophages, Immunobiology, vol.211, issue.6, p.24, 2006.

M. J. Sweet, K. J. Stacey, D. K. Kakuda, D. Markovich, and D. A. Hume, IFN-gamma primes macrophage responses to bacterial DNA, J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res, vol.18, issue.4, p.71, 1998.

S. J. Van-dyken and R. M. Locksley, Interleukin-4-and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease, Annu Rev Immunol, vol.31, pp.317-360, 2013.

S. M. Mccormick and N. M. Heller, Commentary: IL-4 and IL-13 receptors and signaling

, Cytokine, vol.75, issue.1, p.50, 2015.

A. Bhattacharjee, M. Shukla, V. P. Yakubenko, A. Mulya, S. Kundu et al.,

, IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages, Free Radic Biol Med, vol.54, pp.1-16, 2013.

F. O. Martinez, L. Helming, R. Milde, A. Varin, B. N. Melgert et al., Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences, Blood, vol.121, issue.9, pp.57-69, 2013.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J Clin Invest, vol.122, issue.3, p.95, 2012.

J. I. Odegaard, R. R. Ricardo-gonzalez, M. H. Goforth, C. R. Morel, and V. Subramanian,

L. Mukundan, Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance, Nature, vol.447, issue.7148, 2007.

S. Fernandez, P. Jose, M. G. Avdiushko, A. M. Kaplan, and D. A. Cohen, Inhibition of IL-10 receptor function in alveolar macrophages by Toll-like receptor agonists, J Immunol Baltim Md, vol.172, issue.4, 1950.

R. Lang, D. Patel, J. J. Morris, R. L. Rutschman, and P. J. Murray, Shaping gene expression in activated and resting primary macrophages by IL-10, J Immunol Baltim Md, vol.169, issue.5, pp.2253-63, 1950.

G. Curtale, M. Mirolo, T. A. Renzi, M. Rossato, F. Bazzoni et al., Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b, Proc Natl Acad Sci, vol.110, issue.28, pp.11499-504, 2013.

R. A. Flavell, S. Sanjabi, S. H. Wrzesinski, and P. Licona-limón, The polarization of immune cells in the tumour environment by TGFbeta, Nat Rev Immunol, vol.010, issue.8, p.67

F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression, J Immunol Baltim Md, vol.177, issue.10, pp.7303-7314, 1950.

J. Xue, S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs et al., Transcriptomebased network analysis reveals a spectrum model of human macrophage activation, Immunity, vol.40, issue.2, p.88, 2014.

P. Italiani, E. Mazza, D. Lucchesi, I. Cifola, C. Gemelli et al.,

J. Li, D. K. Pritchard, X. Wang, D. R. Park, R. E. Bumgarner et al., cDNA microarray analysis reveals fundamental differences in the expression profiles of primary human monocytes, monocyte-derived macrophages, and alveolar macrophages, J Leukoc Biol, vol.81, issue.1, p.35, 2007.

T. Victoni, H. Salvator, C. Abrial, M. Brollo, L. Porto et al., Human lung and monocyte-derived macrophages differ with regard to the effects of ?2-adrenoceptor agonists on cytokine release, Respir Res, vol.21, issue.1, p.126, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619481

U. M. Gundra, N. M. Girgis, D. Ruckerl, S. Jenkins, L. N. Ward et al.,

, Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct, Blood, vol.123, issue.20, pp.110-122, 2014.

M. Benoit, B. Desnues, and J. Mege, Macrophage polarization in bacterial infections, J Immunol Baltim Md, 1950.

M. Sironi, F. O. Martinez, D. 'ambrosio, D. Gattorno, M. Polentarutti et al., Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation

, J Leukoc Biol, vol.80, issue.2, p.9, 2006.

M. Jaguin, N. Houlbert, O. Fardel, and V. Lecureur, Polarization profiles of human M-CSFgenerated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin, vol.281, p.61, 2013.

M. L. Novak and T. J. Koh, Macrophage phenotypes during tissue repair, J Leukoc Biol, vol.93, issue.6, p.81, 2013.

J. S. Gerber and D. M. Mosser, Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors, J Immunol Baltim Md, vol.166, issue.11, pp.6861-6869, 1950.

C. Bogdan, J. Paik, Y. Vodovotz, and C. Nathan, Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10, J Biol Chem, vol.267, issue.32, pp.23301-23309, 1992.

L. Peiser, S. Mukhopadhyay, and S. Gordon, Scavenger receptors in innate immunity, Curr Opin Immunol, vol.14, issue.1, pp.123-131, 2002.

C. A. Ambarus, S. Krausz, M. Van-eijk, J. Hamann, T. Radstake et al., Systematic validation of specific phenotypic markers for in vitro polarized human macrophages, J Immunol Methods, vol.375, issue.1, p.206, 0196.

S. Huang, B. Everts, Y. Ivanova, D. O'sullivan, M. Nascimento et al.,

, Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages, Nat Immunol, vol.15, issue.9, p.55, 2014.

N. Koning, M. Van-eijk, W. Pouwels, M. Brouwer, D. Voehringer et al.,

T. Endo, F. Ogushi, T. Kawano, and S. Sone, Comparison of the regulations by Th2-type cytokines of the arachidonic-acid metabolic pathway in human alveolar macrophages and monocytes, Am J Respir Cell Mol Biol, vol.19, issue.2, pp.300-307, 1998.

A. Buenestado, S. Grassin-delyle, F. Guitard, E. Naline, C. Faisy et al., Roflumilast inhibits the release of chemokines and TNF-? from human lung macrophages stimulated with lipopolysaccharide, Br J Pharmacol, vol.165, issue.6, pp.1877-90, 2012.

K. Takayama, G. García-cardena, G. K. Sukhova, J. Comander, M. A. Gimbrone et al.,

, Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor, J Biol Chem, vol.277, issue.46, pp.44147-54, 2002.

C. H. Serezani, J. Chung, M. N. Ballinger, B. B. Moore, D. M. Aronoff et al.,

, Prostaglandin E2 suppresses bacterial killing in alveolar macrophages by inhibiting NADPH oxidase, Am J Respir Cell Mol Biol, vol.37, issue.5, p.70, 2007.

J. Dalli and C. N. Serhan, Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators, Blood. t, vol.120, issue.15, pp.60-72, 2012.

C. Abrial, S. Grassin-delyle, H. Salvator, M. Brollo, E. Naline et al., 15-Lipoxygenases regulate the production of chemokines in human lung macrophages, Br J Pharmacol, vol.172, issue.17, p.30, 2015.

B. D. Levy, C. B. Clish, B. Schmidt, K. Gronert, and C. N. Serhan, Lipid mediator class switching during acute inflammation: signals in resolution, Nat Immunol, vol.2, issue.7, pp.612-621, 2001.

A. Mantovani, S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati, Macrophage plasticity and polarization in tissue repair and remodelling, J Pathol, vol.229, issue.2, p.85, 2013.

A. Das, M. Sinha, S. Datta, M. Abas, S. Chaffee et al., Monocyte and macrophage plasticity in tissue repair and regeneration, Am J Pathol, vol.185, issue.10, pp.2596-606, 2015.

F. Porcheray, S. Viaud, A. Rimaniol, C. Léone, B. Samah et al.,

, Macrophage activation switching: an asset for the resolution of inflammation, Clin Exp Immunol, vol.142, issue.3, pp.481-490, 2005.

W. Xu, X. Zhao, M. R. Daha, and C. Van-kooten, Reversible differentiation of pro-and antiinflammatory macrophages, Mol Immunol, vol.53, issue.3, pp.179-86, 2013.

A. Das, K. Ganesh, S. Khanna, C. K. Sen, and S. Roy, Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation, J Immunol Baltim Md, vol.192, issue.3, pp.1120-1129, 1950.

S. Khanna, S. Biswas, Y. Shang, E. Collard, A. Azad et al., Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice, PloS One, vol.5, issue.3, p.9539, 2010.

J. Mège, V. Mehraj, and C. Capo, Macrophage polarization and bacterial infections, Curr Opin Infect Dis, vol.24, issue.3, p.4, 2011.

U. Patel, S. Rajasingh, S. Samanta, T. Cao, B. Dawn et al., Macrophage polarization in response to epigenetic modifiers during infection and inflammation, Drug Discov Today, vol.22, issue.1, pp.186-93, 2017.

S. Marino, N. A. Cilfone, J. T. Mattila, J. J. Linderman, J. L. Flynn et al.,

, Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection, Infect Immun, vol.83, issue.1, p.38, 2015.

Z. Huang, Q. Luo, Y. Guo, J. Chen, G. Xiong et al., Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro, PloS One, vol.10, issue.6, p.129744, 2015.

T. H. Burdo, J. Walker, and K. C. Williams, Macrophage Polarization in AIDS: Dynamic Interface between Anti-Viral and Anti-Inflammatory Macrophages during Acute and Chronic Infection, J Clin Cell Immunol, vol.6, issue.3, 2015.

E. Cassol, L. Cassetta, M. Alfano, and G. Poli, Macrophage polarization and HIV-1 infection, J Leukoc Biol. avr, vol.87, issue.4, p.608, 2010.

F. O. Martinez, L. Helming, and S. Gordon, Alternative activation of macrophages: an immunologic functional perspective, Annu Rev Immunol, vol.27, pp.451-83, 2009.

M. G. Nair and D. R. Herbert, Immune polarization by hookworms: taking cues from T helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages, Immunology, vol.148, issue.2, p.24, 2016.

K. J. Moore and I. Tabas, Macrophages in the pathogenesis of atherosclerosis, Cell, vol.145, issue.3, p.55, 2011.

A. Kadl, A. K. Meher, P. R. Sharma, M. Y. Lee, A. C. Doran et al.,

I. Tabas and K. E. Bornfeldt, Macrophage Phenotype and Function in Different Stages of Atherosclerosis, Circ Res, vol.118, issue.4, pp.653-67, 2016.

G. Chinetti-gbaguidi, C. S. Staels, and B. , Macrophage subsets in atherosclerosis, Nat Rev Cardiol, vol.12, issue.1, pp.10-17, 2015.

C. Belgiovine, D. 'incalci, M. Allavena, P. Frapolli, and R. , Tumor-associated macrophages and anti-tumor therapies: complex links, Cell Mol Life Sci CMLS, vol.73, issue.13, pp.2411-2435, 2016.

M. Chittezhath, M. K. Dhillon, J. Y. Lim, D. Laoui, I. N. Shalova et al., Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression, Immunity, vol.41, issue.5, p.29, 2014.

B. Ruffell, N. I. Affara, and L. M. Coussens, Differential macrophage programming in the tumor microenvironment, Trends Immunol, vol.33, issue.3, pp.119-145, 2012.

M. Wenes, M. Shang, D. Matteo, M. Goveia, J. Martín-pérez et al.,

, Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis, Cell Metab, vol.24, issue.5, p.15, 2016.

P. Chen and P. Bonaldo, Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies, Int Rev Cell Mol Biol, vol.301, pp.1-35, 2013.

M. L. Squadrito, D. Palma, and M. , Macrophage regulation of tumor angiogenesis: implications for cancer therapy, Mol Aspects Med, vol.32, issue.2, p.45, 2011.

E. Giroux-leprieur, C. Dumenil, J. C. , G. V. Dumoulin, J. Labrune et al.,

, Immunotherapy revolutionises non-small-cell lung cancer therapy: Results, perspectives and new challenges, Eur J Cancer Oxf Engl, vol.78, pp.16-23, 1990.

J. B. Mitchem, D. J. Brennan, B. L. Knolhoff, B. A. Belt, Y. Zhu et al., Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses, Cancer Res, vol.73, issue.3, pp.1128-1169, 2013.

R. Z. Panni, D. C. Linehan, and D. G. Denardo, Targeting tumor-infiltrating macrophages to combat cancer, Immunotherapy, vol.5, issue.10, pp.1075-87, 2013.

C. N. Lumeng, J. B. Delproposto, D. J. Westcott, and A. R. Saltiel, Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes, Diabetes, vol.57, issue.12, pp.3239-3285, 2008.

M. A. Bouhlel, B. Derudas, E. Rigamonti, R. Dièvart, J. Brozek et al.,

, PPARgamma activation primes human monocytes into alternative M2 macrophages with antiinflammatory properties, Cell Metab, vol.6, issue.2, p.43, 2007.

M. Feuerer, L. Herrero, D. Cipolletta, A. Naaz, J. Wong et al., but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters, Nat Med, 2009.

D. Wu, A. B. Molofsky, H. Liang, R. -. Gonzalez, R. R. Jouihan et al.,

A. B. Molofsky, J. C. Nussbaum, H. Liang, S. J. Van-dyken, L. E. Cheng et al., Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages, J Exp Med, vol.210, issue.3, p.49, 2013.

A. Vasanthakumar, K. Moro, A. Xin, Y. Liao, R. Gloury et al., The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells, Nat Immunol, vol.16, issue.3, p.85, 2015.

A. M. Miller, D. L. Asquith, A. J. Hueber, L. A. Anderson, W. M. Holmes et al., Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice, Circ Res, vol.107, issue.5, pp.650-658, 2010.

S. P. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. L. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue, J Clin Invest, vol.112, issue.12, pp.1796-808, 2003.

M. Nguyen, S. Favelyukis, A. Nguyen, D. Reichart, P. A. Scott et al., A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways, J Biol Chem, vol.282, issue.48, p.92, 2007.

M. Zeyda, K. Gollinger, E. Kriehuber, F. W. Kiefer, A. Neuhofer et al., Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression, Int J Obes, vol.34, issue.12, pp.1684-94, 2005.

H. Xu, G. T. Barnes, Q. Yang, G. Tan, D. Yang et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, J Clin Invest, vol.112, issue.12, p.30, 2003.

D. L. Morris, K. Singer, and C. N. Lumeng, Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states, Curr Opin Clin Nutr Metab Care, vol.14, issue.4, pp.341-347, 2011.

C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization, J Clin Invest, vol.117, issue.1, p.84, 2007.

K. Clément, N. Viguerie, C. Poitou, C. Carette, V. Pelloux et al., Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects, FASEB J Off Publ Fed Am Soc Exp Biol, vol.18, issue.14, pp.1657-69, 2004.

N. Viguerie, C. Poitou, R. Cancello, V. Stich, K. Clément et al., Transcriptomics applied to obesity and caloric restriction, Biochimie, vol.87, issue.1, p.23, 2005.

J. P. Bastard, C. Jardel, J. Delattre, B. Hainque, E. Bruckert et al., Evidence for a link between adipose tissue interleukin-6 content and serum C-reactive protein concentrations in obese subjects, Circulation, vol.99, issue.16, pp.2221-2223, 1999.

J. Choi, L. Joseph, and L. Pilote, Obesity and C-reactive protein in various populations: a systematic review and meta-analysis, Obes Rev Off J Int Assoc Study Obes, vol.14, issue.3, p.44, 2013.

H. S. Park, J. Y. Park, and R. Yu, Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6, Diabetes Res Clin Pract. juill, vol.69, issue.1, p.35, 2005.

J. M. Han and M. K. Levings, Immune regulation in obesity-associated adipose inflammation

, J Immunol Baltim Md, vol.191, issue.2, p.32, 1950.

H. Shi, M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin et al., TLR4 links innate immunity and fatty acid-induced insulin resistance, J Clin Invest, vol.116, issue.11, p.25, 2006.

J. Y. Lee, L. Zhao, H. S. Youn, A. R. Weatherill, R. Tapping et al., Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Tolllike receptor 6 or 1, J Biol Chem, vol.279, issue.17, pp.16971-16980, 2004.

H. Wen, D. Gris, Y. Lei, S. Jha, L. Zhang et al., Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling, Nat Immunol, vol.12, issue.5, p.15, 2011.

S. Cinti, G. Mitchell, G. Barbatelli, I. Murano, E. Ceresi et al., Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans, J Lipid Res, vol.46, issue.11, pp.2347-55, 2005.

Y. S. Lee, J. Kim, O. Osborne, D. Y. Oh, R. Sasik et al., Increased adipocyte O2 consumption triggers HIF-1?, causing inflammation and insulin resistance in obesity, Cell, vol.157, issue.6, pp.1339-52, 2014.

K. Sun, C. M. Kusminski, and P. E. Scherer, Adipose tissue remodeling and obesity, J Clin Invest, vol.121, issue.6, pp.2094-101, 2011.

K. W. Cho, D. L. Morris, J. L. Delproposto, L. Geletka, B. Zamarron et al., An MHC II-dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesity-induced inflammation, Cell Rep, vol.9, issue.2, pp.605-622, 2014.

D. L. Morris, K. W. Cho, J. L. Delproposto, K. E. Oatmen, L. M. Geletka et al.,

G. , Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice, Diabetes, vol.62, issue.8, pp.2762-72, 2013.

P. D. Cani, J. Amar, M. A. Iglesias, M. Poggi, C. Knauf et al., Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes, vol.56, issue.7, pp.1761-72, 2007.

H. Ghanim, S. Abuaysheh, C. L. Sia, K. Korzeniewski, A. Chaudhuri et al., Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, highcarbohydrate meal: implications for insulin resistance, Diabetes Care, vol.32, issue.12, pp.2281-2288, 2009.

J. Amar, C. Chabo, A. Waget, P. Klopp, C. Vachoux et al., Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment, EMBO Mol Med
URL : https://hal.archives-ouvertes.fr/inserm-00801348

B. W. Parks, N. E. Org, E. Kostem, E. Norheim, F. Hui et al., Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice, Cell Metab, vol.17, issue.1, pp.141-52, 2013.

C. L. Maynard, C. O. Elson, R. D. Hatton, and C. T. Weaver, Reciprocal interactions of the intestinal microbiota and immune system, Nature, vol.489, issue.7415, p.41, 2012.

N. Kiguchi, T. Maeda, Y. Kobayashi, Y. Fukazawa, and S. Kishioka, Leptin enhances CCchemokine ligand expression in cultured murine macrophage, Biochem Biophys Res Commun, vol.384, issue.3, pp.311-316, 2009.

G. M. Raso, M. Pacilio, E. Esposito, A. Coppola, D. Carlo et al., Leptin potentiates IFN-gamma-induced expression of nitric oxide synthase and cyclo-oxygenase-2 in murine macrophage J774A.1, Br J Pharmacol, vol.137, issue.6, pp.799-804, 2002.

H. Zarkesh-esfahani, G. Pockley, R. A. Metcalfe, M. Bidlingmaier, Z. Wu et al.,

, High-dose leptin activates human leukocytes via receptor expression on monocytes, J Immunol Baltim Md, 1950.

T. Vaughan and L. Li, Molecular mechanism underlying the inflammatory complication of leptin in macrophages, Mol Immunol, vol.47, issue.15, pp.2515-2523, 2010.

S. C. Acedo, S. Gambero, F. Cunha, I. Lorand-metze, and A. Gambero, Participation of leptin in the determination of the macrophage phenotype: an additional role in adipocyte and macrophage crosstalk, In Vitro Cell Dev Biol Anim, vol.49, issue.6, pp.473-481, 2013.

K. Ohashi, J. L. Parker, N. Ouchi, A. Higuchi, J. A. Vita et al., Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype, J Biol Chem, vol.285, issue.9, pp.6153-60, 2010.

M. C. Wulster-radcliffe, K. M. Ajuwon, J. Wang, J. A. Christian, and M. E. Spurlock,

, Adiponectin differentially regulates cytokines in porcine macrophages, Biochem Biophys Res Commun, vol.316, issue.3, pp.924-933, 2004.

F. Lovren, Y. Pan, A. Quan, P. E. Szmitko, K. K. Singh et al., Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages, Am J Physiol Heart Circ Physiol, vol.299, issue.3, pp.656-663, 2010.

T. Yokota, K. Oritani, I. Takahashi, J. Ishikawa, A. Matsuyama et al.,

, Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages, Blood, vol.96, issue.5, pp.1723-1755, 2000.

Y. Okamoto, E. J. Folco, M. Minami, A. K. Wara, M. W. Feinberg et al.,

, Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis, Circ Res, vol.102, issue.2, p.25, 2008.

X. Cheng, E. J. Folco, K. Shimizu, and P. Libby, Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells, J Biol Chem, vol.287, issue.44, pp.36896-904, 2012.

C. Van-stijn, J. Kim, A. J. Lusis, G. D. Barish, and R. K. Tangirala, Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response, FASEB J Off Publ Fed Am Soc Exp Biol, vol.29, issue.2, p.49, 2015.

A. R. Moschen, A. Kaser, B. Enrich, B. Mosheimer, M. Theurl et al.,

, Visfatin, an adipocytokine with proinflammatory and immunomodulating properties, J Immunol Baltim Md, vol.178, issue.3, pp.1748-58, 1950.

V. Audrito, S. Serra, D. Brusa, F. Mazzola, F. Arruga et al., Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia, Blood, vol.125, issue.1, pp.111-134, 2015.

X. Wu, Y. Z. Ansari, A. R. , X. K. Pang, X. Luo et al., Visfatin regulates the production of lipopolysaccharide-induced inflammatory cytokines through p38 signaling in murine macrophages, Microb Pathog, vol.117, pp.55-64, 2018.

J. L. Cash, R. Hart, A. Russ, J. Dixon, W. H. Colledge et al., Synthetic chemerin-derived peptides suppress inflammation through ChemR23, J Exp Med, vol.205, issue.4, pp.767-75, 2008.

B. Bondue, O. Vosters, P. De-nadai, S. Glineur, D. Henau et al., PLoS Pathog, vol.7, issue.11, p.1002358, 2011.

S. Luangsay, V. Wittamer, B. Bondue, D. Henau, O. Rouger et al., Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an antiinflammatory activity of chemerin in a lung disease model, J Immunol Baltim Md, vol.183, issue.10, pp.6489-99, 1950.

B. Bondue, D. Henau, O. Luangsay, S. Devosse, T. De-nadaï et al., The chemerin/ChemR23 system does not affect the pro-inflammatory response of mouse and human macrophages ex vivo, PloS One, vol.7, issue.6, p.40043, 2012.

A. Buenestado, M. Chaumais, S. Grassin-delyle, P. Risse, E. Naline et al., Roflumilast inhibits lipopolysaccharide-induced tumor necrosis factor-? and chemokine production by human lung parenchyma, PloS One, vol.8, issue.9, p.74640, 2013.

S. Jeyaseelan, R. Manzer, S. K. Young, M. Yamamoto, S. Akira et al., Toll-IL-1 receptor domain-containing adaptor protein is critical for early lung immune responses against Escherichia coli lipopolysaccharide and viable Escherichia coli, J Immunol Baltim Md, vol.175, issue.11, p.95, 1950.

A. Buenestado, S. Grassin-delyle, F. Guitard, E. Naline, C. Faisy et al., Roflumilast inhibits the release of chemokines and TNF-? from human lung macrophages stimulated with lipopolysaccharide, Br J Pharmacol, vol.165, issue.6, pp.1877-90, 2012.

A. Buenestado, S. Grassin-delyle, I. Arnould, F. Besnard, E. Naline et al., The role of adenosine receptors in regulating production of tumour necrosis factor-alpha and chemokines by human lung macrophages, Br J Pharmacol. mars, vol.159, issue.6, pp.1304-1315, 2010.

J. C. Kwong, M. A. Campitelli, and L. C. Rosella, Obesity and respiratory hospitalizations during influenza seasons in Ontario, Canada: a cohort study, Clin Infect Dis Off Publ Infect Dis Soc Am, vol.53, issue.5, pp.413-434, 2011.

O. W. Morgan, A. Bramley, A. Fowlkes, D. S. Freedman, T. H. Taylor et al.,

, Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease, PloS One, vol.5, issue.3, p.9694, 2010.

V. Martín, J. Castilla, P. Godoy, M. Delgado-rodríguez, N. Soldevila et al., High Body Mass Index as a Risk Factor for Hospitalization Due to Influenza: A Case-Control Study, Arch Bronconeumol, vol.52, issue.6, pp.299-307, 2016.

Y. Sun, Q. Wang, G. Yang, C. Lin, Y. Zhang et al., Weight and prognosis for influenza A(H1N1)pdm09 infection during the pandemic period between 2009 and 2011: a systematic review of observational studies with meta-analysis, Infect Dis Lond Engl, vol.48, issue.11, p.22, 2016.

E. S. Braun, F. W. Crawford, M. M. Desai, J. Meek, P. D. Kirley et al., Obesity not associated with severity among hospitalized adults with seasonal influenza virus infection, Infection, vol.43, issue.5, p.75, 2015.

H. E. Segaloff, R. Evans, S. Arshad, M. J. Zervos, C. Archer et al., The impact of obesity and timely antiviral administration on severe influenza outcomes among hospitalized adults, J Med Virol, vol.90, issue.2, pp.212-220, 2018.

, Vaccination antigrippale chez les femmes enceintes et les personnes très obèses : pas systématique, 2018.

D. Sur,

S. D. Neidich, W. D. Green, J. Rebeles, E. A. Karlsson, S. Schultz-cherry et al., Increased risk of influenza among vaccinated adults who are obese, Int J Obes, vol.41, issue.9, p.30, 2005.

E. A. Karlsson, T. Hertz, C. Johnson, A. Mehle, F. Krammer et al., Obesity Outweighs Protection Conferred by Adjuvanted Influenza Vaccination, vol.7, 2016.

W. D. Green and M. A. Beck, Obesity Impairs the Adaptive Immune Response to Influenza Virus, Ann Am Thorac Soc, vol.14, issue.Supplement_5, pp.406-415, 2017.

D. Frasca, F. Ferracci, A. Diaz, M. Romero, S. Lechner et al., Obesity decreases B cell responses in young and elderly individuals, Obes Silver Spring Md, vol.24, issue.3, pp.615-640, 2016.

Y. Luo and M. Liu, Adiponectin: a versatile player of innate immunity, J Mol Cell Biol

S. Vangeti, M. Yu, and A. Smed-sörensen, Respiratory Mononuclear Phagocytes in Human Influenza A Virus Infection: Their Role in Immune Protection and As Targets of the Virus, Front Immunol, vol.9, p.1521, 2018.

E. Travanty, B. Zhou, H. Zhang, Y. P. Di, J. F. Alcorn et al., Differential Susceptibilities of Human Lung Primary Cells to H1N1 Influenza Viruses, J Virol, vol.89, issue.23, pp.11935-11979, 2015.

L. Maccioni, S. Weber, M. Elgizouli, A. Stoehlker, I. Geist et al., Obesity and risk of respiratory tract infections: results of an infection-diary based cohort study, BMC Public Health, vol.18, issue.1, p.271, 2018.

M. C. Harpsøe, N. M. Nielsen, N. Friis-møller, M. Andersson, J. Wohlfahrt et al., Body Mass Index and Risk of Infections Among Women in the Danish National Birth Cohort, Am J Epidemiol, vol.183, issue.11, pp.1008-1025, 2016.

M. Miller, J. Y. Cho, A. Pham, J. Ramsdell, and D. H. Broide, Adiponectin and functional

M. Immunol-baltim, , vol.182, p.91, 1950.

P. Liu, H. Li, J. Cepeda, L. Q. Zhang, X. Cui et al., Critical role of PBEF expression in pulmonary cell inflammation and permeability, Cell Biol Int, vol.33, issue.1, p.30, 2009.

K. Nakanishi, Y. Takeda, S. Tetsumoto, T. Iwasaki, K. Tsujino et al., Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice: implications for therapy, Am J Respir Crit Care Med, vol.183, issue.9, pp.1164-75, 2011.

K. Huang, R. Rabold, E. Abston, B. Schofield, V. Misra et al., Effects of leptin deficiency on postnatal lung development in mice, J Appl Physiol Bethesda Md, vol.105, issue.1, pp.249-59, 1985.

C. Van-stijn, J. Kim, A. J. Lusis, G. D. Barish, and R. K. Tangirala, Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response, FASEB J Off Publ Fed Am Soc Exp Biol, vol.29, issue.2, p.49, 2015.

P. W. Peake, A. D. Kriketos, L. V. Campbell, Y. Shen, and J. A. Charlesworth, The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals, Eur J Endocrinol, vol.153, issue.3, pp.409-426, 2005.

U. B. Pajvani, X. Du, T. P. Combs, A. H. Berg, M. W. Rajala et al., Structurefunction studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity, J Biol Chem, vol.278, issue.11, p.85, 2003.

H. Waki, T. Yamauchi, J. Kamon, Y. Ito, S. Uchida et al., Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin, J Biol Chem, vol.278, issue.41, pp.40352-63, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00174569

B. M. Hariri and N. A. Cohen, New insights into upper airway innate immunity, Am J Rhinol Allergy, vol.30, issue.5, pp.319-342, 2016.

S. M. Travis, B. A. Conway, J. Zabner, J. J. Smith, N. N. Anderson et al., Activity of abundant antimicrobials of the human airway, Am J Respir Cell Mol Biol

M. Ritter, D. Mennerich, A. Weith, and P. Seither, Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response, J Inflamm Lond Engl, vol.2, p.16, 2005.

P. Royer, K. Henrio, M. Pain, J. Loy, A. Roux et al.,

, production in primary human airway epithelial cells through Wnt/?-catenin signaling, Respir Res, vol.18, issue.1, p.208, 2017.