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Résumé

Au cours de la dernière décennie, les tests unitaires rigoureux sont devenus un élément
essentiel de tout projet logiciel sérieux, qu’il soit dans l’industrie ou dans le monde univer-
sitaire. Le mouvement de développement agile a contribué à ce changement culturel avec
la diffusion mondiale des techniques de développement pilotées par les tests. Plus récem-
ment, le mouvement DevOps a encore renforcé la pratique des tests en mettant l’accent
sur les tests continus et automatisés. Cependant, les tests sont fastidieux et coûteux pour
l’industrie: il est difficile d’évaluer le retour sur investissement. Ainsi, les développeurs
sous pression, par manque de discipline ou de temps, peuvent omettre l’écriture des tests.

Pour surmonter ce problème, la recherche étudie l’automatisation de la création de
tests. Le rêve était qu’une ligne de commande vous donne une suite de tests complète, qui
vérifie l’ensemble du programme. Même si les suites de tests générées automatiquement
atteignent une couverture élevée, il existe toujours des obstacles à l’adoption de telles tech-
niques par l’industrie. Cela s’explique par les difficultés à comprendre, intégrer et gérer la
suite de tests générée. En outre, la plupart des outils reposent sur des oracles faibles ou par-
tiels, par exemple, l’absence d’erreurs à l’exécution, ce qui limite leur capacité à détecter
les bogues. Dans cette thèse, mon objectif est de remédier à l’absence d’un outil permettant
aux développeurs de réaliser des tests de régression. Pour ce faire, j’utilise l’amplification
de la suite de tests.

Je propose une nouvelle approche basée à la fois sur la transformation des entrées
de test et la génération d’assertions pour amplifier la suite de tests. Cet algorithme est
implémenté dans un outil appelé DSpot.

Deuxièmement, j’utilise DSpot pour détecter la différence de comportement entre deux
versions du même programme. En particulier, j’utilise DSpot pour détecter le changement
de comportement introduit par un commit dans les projets sur GitHub. Cela montre que
DSpot peut être utilisé dans l’intégration continue pour accomplir deux tâches cruciales: 1)
générer des méthodes de test amplifiées qui spécifient un changement de comportement; 2)
générer des méthodes de test amplifiées pour améliorer la capacité à détecter les régressions
potentielles.

Dans cette thèse, j’expose également trois contributions transversales liées à
l’exactitude du programme. Tout d’abord, j’étudie la correction des programmes sous
des perturbations à l’exécution. Deuxièmement, j’étudie la présence de méthodes pseudo-
testées qui révèlent les faiblesses de la suite de tests. Troisièmement, j’étudie le surappren-
tissage des correctifs et la génération de tests pour la réparation automatique.
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Abstract

Over the last decade, strong unit testing has become an essential component of any serious
software project, whether in industry or academia. The agile development movement has
contributed to this cultural change with the global dissemination of test-driven development
techniques. More recently, the DevOps movement has further strengthened the testing
practice with an emphasis on continuous and automated testing. However, testing is tedious
and costly for industry: it is hard to evaluate return on investment. Thus, developers under
pressure, by lack of discipline or time might skip writing the tests.

To overcome this problem, research investigates the automation of creating strong tests.
The dream was that a command-line would give you a complete test suite, that verifies the
whole program. Even if automatically generated test suites achieve high coverage, there are
still obstacles on the adoption of such techniques by the industry. This can be explained
by the difficulties to understand, integrate and maintain generated test suite. Also, most
of the tools rely on weak or partial oracles, e.g. absence of run-time errors, which limits
their ability to find bugs. In this thesis, I aim at addressing the lack of a tool that assists
developers in regression testing. To do so, I use test suite amplification.

In this thesis, I define test amplification and review research works that are using test
amplification. Test amplification consists of exploiting the knowledge of test methods,
in which developers embed input data and expected properties, in order to enhance these
manually written tests with respect to an engineering goal. In the state of the art, I reveal
main challenges of test amplification and the main lacks.

I propose a new approach based on both test inputs transformation and assertions gen-
eration to amplify the test suite. This algorithm is implemented in a tool called DSpot.

In this thesis, I evaluate DSpot on open-source projects from GitHub. First, I improve
the mutation score of test suites and propose these improvements to developers through
pull-requests. This evaluation shows that developers value the output of DSpot and thus
accepted to integrate amplified test methods into their test suite. This proves that DSpot
can improve the quality of real projects’ test suites.

Second, I use DSpot to detect the behavioral difference between two versions of the
same program particularly to detect the behavioral change introduced by a commit.This
shows that DSpot can be used in the continuous integration to achieve two crucial tasks:
1) generate amplified test methods that specify a behavioral change; 2) generate amplified
test methods to improve the ability to detect potential regressions.

In this thesis, I also expose three transversal contributions, related to the correctness of
program. First, I study the programs’ correctness under runtime perturbations. Second, I
study the presence of pseudo-tested methods that are methods revealing weaknesses of the
tests. Third, I study overfitting patches and test generation for automatic repair.
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Nowadays software is omnipresent in people’s life: banking, e-commerce, communi-
cation, etc. Critical aspects such as aeronautics, voting system or even health care rely on
software.

In one of his famous lectures [Dijkstra 1989], Dijkstra has stated that in software:

“the smallest possible perturbations - i.e. changes of a single bit - can have the most
drastic consequences.”.

Dijkstra highlights the fact that a small fault in software might affect lives. For example,
a flight crash happened in 1993 due to an error in the flight-control software of the Swedish
JAS 39 Gripen fighter aircraft1.

To avoid such situations, software engineers adopted testing philosophies: model-
checking [Abdulla 2004], proof and code verification [D’Silva 2008], automatic testing.
The two former are out of the scope of this thesis, I focus on the latter: the tester writes
code to verify that the program is doing what the developer expects. Over the last decade,
strong unit testing has become an essential component of any serious software project,
whether in industry or academia [Beller 2019, Beller 2015a, Beller 2015b]. The agile de-
velopment movement has contributed to this cultural change with the global dissemination
of test-driven development techniques [Beck 2003]. More recently, the DevOps movement
has further strengthened the testing practice with an emphasis on continuous and automated
testing [Roche 2013].

1see: https://www.flightglobal.com/FlightPDFArchive/1989/1989%20-%200734.
PDF

https://www.flightglobal.com/FlightPDFArchive/1989/1989%20-%200734.PDF
https://www.flightglobal.com/FlightPDFArchive/1989/1989%20-%200734.PDF
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However, testing is tedious and costly for industry: it is hard to evaluate the return
on investment. Thus, developers under pressure, by lack of discipline or time might skip
writing the tests.

To overcome this problem, the research investigates the automation of creating
strong tests. Automatic generation of tests has been well studied in the last past
years [Fraser 2011a, Pacheco 2005a]. The dream was that a command-line would give
you a complete test suite, that verifies the whole program.

Researchers investigated the usage of such generated test suites by the indus-
try [Fraser 2015]. Even if automatically generated test suites achieve high coverage, gener-
ated test suites do not seem to help developers. The difficulties to understand generated test
suites [Fraser 2015] can be the obstacles in the adoption of such techniques by the industry.
Also, most of the tools rely on weak or partial oracles, e.g. the absence of run-time errors,
which limits their ability to find bugs.

In this thesis, I aim at addressing the lack of a tool that assists developers in regression
testing. More precisely, the ultimate goal of this thesis is to provide a tool that supports
developers in terms of maintenance of their test suite.

To do so, I use test suite amplification. Test suite amplification consists of exploiting the
existing manually-written tests, treated as a seed, to achieve a given engineering goal. This
seed test method can be seen as a starting point for the test amplification. Test amplification
would use all the information carried by this seed test method to perform a given task. For
example, a test amplification approach would create variants of this seed test method to
execute new paths in the program, that is to say, increasing the code coverage of the test
suite. Test suite amplification includes analysis and operation on existing test suites.

In this thesis, I precisely define test suite amplification to leverage this lexical ambiguity
and I devise a technique that performs code insertions, deletions or modifications on the
seed test method. By construction, test suite amplification’s output is close to the test
methods used as a seed since they share a common part. It means that for developers that
know very-well their software and their test suite, it is easier to understand amplified test
methods than test methods that have been generated from scratch without any connection
with the human-test methods.

For example, in the context of a collaborative project such as projects on GitHub, one
developer fixes a bug. If the developer does not provide a test method that exposes the bug
fixing, i.e. that fails on the version of the program before the fix but passes on the fixed
program, the patch might be removed without noticing it. Every change should come with a
test method that characterizes and specifies the changes. For this second objective, the tool
would improve the test suite “online”, i.e. inside the continuous integration service. Each
time a developer makes changes, the tool would provide automatically a test method that
specifies these changes inside the continuous integration, without any human intervention
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but the validation of the amplified test method.

The remaining of this chapter is as follows:

I expose the global vision of this thesis in Section 1.1 and its outline in Section 1.2;
Then in Section 1.3, I present the context of the thesis, the H2020 European project STAMP;
Eventually, I list the resulting software of this thesis in Section 1.5 and my publications in
Section 1.4.

1.1 Scientific Problem

Due to the democratization of DevOps and agile development methodology, developing
teams are committing changes in parallel on the same code base. This way of development
brings the advantage to reach the market earlier and adapt the product quickly. However,
it has also a major weakness: each change is a potential threat to the correctness of the
program. When a developer modifies the program code, he might also introduce a bug
and/or break an existing feature, i.e. add a regression. This can prevent the adoption
of the product by a customer if the customer encounters the bug before any developers.
Continuous Integration (CI) mitigates these threats by testing the application often, e.g. at
each change, to prevent errors in the final product. But the effectiveness of the CI relies
on the effectiveness of other components such as test suite. If the test suite is poor quality,
e.g. it covers a small part of the program, the CI might not be able to catch errors. Since
developers may cut corners when writing test, Can we provide them a tool to carry
automatically the important responsibility that is testing the application?

First, would this tool be able to improve the test suite in an offline fashion? That is
to say, during development, the engineer could use this tool to increase the overall quality
of the test suite regarding a given test-criterion, such as mutation score. The mutation
score emulates faults that a developer is susceptible to do. In essence, it injects small
and artificial behavioral changes that aim at measuring the test suite’s capacity to detect
them. The challenge is to detect mutants that test methods written by humans do not kill.
Moreover, this must be done on an arbitrary program, using as seed arbitrary test methods.
Potentially, the remainder undetected mutants are the most difficult to detect.

Second, could this tool be a part of the continuous integration? That is to say, the tool
would automatically run each time that the CI is triggered in order to increase the overall
quality of the test suite with respect to the change. In this scenario, the behavioral changes
are real, complex and larger than a mutant in mutation score parlance. The challenge is to
detect a complex behavioral change the might required specific knowledge of the program.
Thus, the new behavior might require to set the program into a very specific and unknown
state, that even the developer is not aware of. In the context of regression testing, the
behavioral change, i.e. the hidden regression is unknown and might be very difficult to
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reach. In this thesis, I aim to complete these challenges.

1.2 Thesis Contributions

This thesis makes 5 contributions:

• The definition of “test amplification” and a survey of the literature in Chapter 2. The
challenge is that in the literature, “test amplification” is referred by a various lexicon
which makes it difficult to understand all the works that use test amplification. Note
that this chapter has been published as journal paper [Danglot 2019b].

• The definition of the test suite amplification algorithm and its implementation called
DSpot in Chapter 3. The challenge is to design a new algorithm that explores the
very large space over the variations of the original methods and to build an oracle.
Over the three years of the thesis, I have built a tool that addresses these challenges.
The tool has been constantly tested and evaluated by industry partners, which are
respectable and big companies. This continuous quality feedback has ensured the
development of a sound, efficient and useful tool for both researchers and developers.

• The evaluation of DSpot’s ability to improve the quality of test suites in Chapter 4.
The challenge is to produce amplified test methods that improve the quality of test
suites. To do this, I used as study subjects open-source projects that have high-quality
test suites.

• The evaluation of DSpot’s ability to generate amplified tests inside CI in Chapter 5.
The challenge is to produce amplified test methods that detect a behavioral difference
between two versions of the same programs. For this, I used real commits that change
the program’s behavior from open-source projects.

In Chapter 6, I expose 3 side contributions made during the thesis. These contributions
have been done thanks to the expertise that I acquired during my thesis. However, the
reader can skip this chapter because it is additional materials.

1.3 STAMP project

My thesis takes place within the STAMP project, which is has been funded by the European
Union’s H2020 research and innovation program under the grant agreement 731529.

STAMP stands for Software Testing AMPlification. STAMP leverages advanced re-
search in test generation and innovative methods of test amplification to push automation
in DevOps one step further. The main goal of STAMP techniques is to reduce the number
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and cost of regression bugs at the unit level, configuration level, and production stage, by
acting at all levels of the development cycle.

The project gathers four academic partners with strong software testing expertise, five
software companies (in e-Health, Content Management, Smart Cities and Public Adminis-
tration), and an open-source consortium.

This industry-near research addresses concrete, business-oriented objectives. Thanks
to STAMP, I met developers from the industry who are experts in their domain. Thus, it
gave me access to case studies that are representative of industrial software.

1.4 Publications

In this section, I list my publications. There are 2 lists: my main contributions and the
transversal contributions in which I participated.

These publications have been published in 2 journals:

• Empirical Software Engineering is a journal for applied software engineering re-
search articles with a strong empirical evaluation. Empirical studies in this journal
involve a large amount of data and an analysis that can be used to evaluate new
software practices and technologies.

• Journal of Systems and Software publishes papers on all software engineering
and hardware-software-systems issues. These articles must show evidence of their
claims, with validations like empirical studies, simulation, etc.

1.5 Software Developed During This Thesis

During my thesis, I developed artifacts to evaluate the approaches. These artifacts are
strong enough to be applicable to real code base such open-source projects from GitHub
or the STAMP partners’ codebases. This shows strong evidence on the applicability and
generalization of the results. Following, the list of these artifacts and a small description,
all of them are open-source and available on GitHub.

DSpot is a test suite amplifier. It takes as input a project and its test suite and will
produce test methods according to a test criterion adequacy such as branch cover-
age or mutation score. The algorithm implemented by this software is detailed in
Chapter 3. URL: https://github.com/STAMP-project/dspot.git.

DSpot-diff-test-selection is a maven plugin, based on OpenClover, that produces
the list of test classes and their test methods that execute a provided diff. This
software allows me to integrate DSpot in the CI. Its evaluation is exposed in

https://github.com/STAMP-project/dspot.git
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Chapter 5. URL: https://github.com/STAMP-project/dspot/tree/
master/dspot-diff-test-selection.

Test-runner is a library that allows developers to execute tests in a new and clean
JVM. From my experience, most of the research prototypes reinvent the wheel by
implementing such a library in their codebase. This library provides a generic API
to execute tests without any conflict of dependencies, allowing to research proto-
type to be executed on real programs. This library provides also a way to com-
pute the instruction coverage by the test suite. URL: https://github.com/
STAMP-project/test-runner.

https://github.com/STAMP-project/dspot/tree/master/dspot-diff-test-selection
https://github.com/STAMP-project/dspot/tree/master/dspot-diff-test-selection
https://github.com/STAMP-project/test-runner
https://github.com/STAMP-project/test-runner
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Software testing is the art of evaluating an attribute or capability of a program to deter-
mine that it meets its required results [Hetzel 1988].

With the advent of agile development methodologies, which advocate testing
early and often, a growing number of software projects develop and maintain a test
suite [Madeyski 2010]. Those test suites are often large and have been written thanks to
a lot of human intelligence and domain knowledge [Zaidman 2011, Zaidman 2008]. De-
velopers spend a lot of time in writing the tests [Beller 2019, Beller 2015a, Beller 2015b],
so that those tests exercise interesting cases (including corner cases), and so that an oracle
verifies as much as possible the program behavior [Hilton 2018a].

The wide presence of valuable manually written tests has triggered a new thread of
research that consists of leveraging the value of existing manually-written tests to achieve
a specific engineering goal. This has been coined “test amplification”. The term amplifi-
cation is introduced as an umbrella for the various activities that analyze and operate on
existing test suites and that are referred to as augmentation, optimization, enrichment, or
refactoring in the literature.

This chapter makes the following contributions:

• The first-ever snowballing literature review on test amplification.

• The classification of the related work into four main categories to help newcomers
in the field (students, industry practitioners) understand this body of work.

• A discussion about the outstanding research challenges of test amplification.

Note that this chapter has been published as journal paper [Danglot 2019b] and the
remainder is as follows: First, Section 2.1 exposes the methodology used to build this state
of the art. This chapter is structured according to the 4 main categories, each of them being
presented in a dedicated section. Section 2.2 presents techniques that synthesize new tests
from manually-written tests. Section 2.3 focuses on the works that synthesize new tests
dedicated to a specific change in the application code (in particular a specific commit).
Section 2.4 discusses the less-researched, yet powerful idea of modifying the execution of
manually-written tests. Section 2.5 is about the modification of existing tests to improve a
specific property. Section 2.6 sums up the analysis. Eventually, Section 2.7 concludes this
chapter.
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2.1 Approach

2.1.1 Definition

Test amplification is defined as follows:

Definition: Test amplification consists of exploiting the knowledge of a large num-
ber of test methods, in which developers embed meaningful input data and expected
properties in the form of oracles, in order to enhance these manually written tests
with respect to an engineering goal (e.g. improve coverage of changes or increase the
accuracy of fault localization).

Example: A form of test amplification is the addition of test methods automatically
generated from the existing manual test methods to increase the coverage of a test suite
over the main source code.

Relation to related work: Test amplification is complementary, yet, significantly dif-
ferent from most works on test generation. The key difference is what is given as input to
the system. Most test generation tools take as input: the program under test or a formal
specification of the testing property. In contrast, test amplification is defined as taking
as primary input test cases written by developers.

2.1.2 Methodology

Literature studies typically rigorously follow a methodology to ensure both complete-
ness and replication. Cooper’s book is taken as reference for a general method-
ological discussion on literature studies [Cooper 1998]. Specifically for the field
of software engineering, well-known methodologies are systematic literature reviews
(SLR) [Kitchenham 2004], systematic mapping studies (SMS) [Petersen 2008] and snow-
balling studies [Wohlin 2014]. For the specific area of test amplification, there is no con-
sensus on the terminology used in literature. This is an obstacle to using the SLR and SMS
methodologies, which both heavily rely on searching [Brereton 2007]. As snowballing
studies are less subject to suffering from the use of diverse terminologies, this study is
performed per Wohlin’s guidelines [Wohlin 2014, Jalali 2012].

First, I run the search engine of DBLP for all papers containing “test” and “amplifica-
tion” in their title (using stemming, which means that “amplifying” is matched as well).
This has resulted in 70 papers at the date of the search (March 27, 2018)1. Each of papers
has been reviewed one by one to see whether they fit in the scope according to the definition
of subsection 2.1.1. This has resulted in 4 articles [Hamlet 1993, Zhang 2012, Leung 2012,
Joshi 2007], which are the seed papers of this literature study. The reason behind this very

1the data is available at https://github.com/STAMP-project/docs-forum/blob/
master/scientific-data/

https://github.com/STAMP-project/docs-forum/blob/master/scientific-data/
https://github.com/STAMP-project/docs-forum/blob/master/scientific-data/
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low proportion (4/70) is that most articles in this DBLP search are in the hardware research
community, and hence do not fall in the scope.

Following a breve description of these 4 seed papers:

• [Hamlet 1993] Hamlet and Voas introduce study how different testing planning
strategies can amplify testability properties of a software system.

• [Zhang 2012] Zhang and Elbaum explore a new technique to amplify a test suite
for finding bugs in exception handling code. Amplification consists in triggering
unexpected exceptions in sequences of API calls.

• [Leung 2012] Leung et al propose to modify the test execution by using information
gathered from a first test execution. The information is used to derive a formal model
used to detect data races in later executions.

• [Joshi 2007] Joshi et al try to amplify the effectiveness of testing by executing both
concretely and symbolically the tests.

More details are given in the following sections.
From the seed papers, a backward snowballing search step [Jalali 2012] has been per-

formed, i.e., I have looked at all their references, going backward in the citation graph. 2
of the authors have reviewed the papers, independently. Then, a forward literature search
step has been performed, using the Google scholar search engine and “cited by” filter, from
the set of papers, in order to find the most recent contributions in this area. A backward
snowballing search step and a forward snowballing search step constitute what is called an
“iteration”. With each iteration, a set of papers is selected for the study, obtained through
the snowballing action. These iterations continue until this set of selected paper is empty,
i.e., when no paper can be kept, the snowballing process is stopped in both ways: backward
and forward.

Once the papers selection is done, 4 key approaches to amplification has been distin-
guish, which used to classify the literature: Amplification by Adding New Tests as Variants
of Existing Ones (Section 2.2); Amplification by Modifying Test Execution (Section 2.3);
Amplification by Synthesizing New Tests with Respect to Changes (Section 2.4); Am-
plification by Modifying Existing Test Code (Section 2.5). The missing terminological
consensus mentioned previously prevented the design of a classification according to Pe-
tersen’s guidelines [Petersen 2008]. The four categories has been incrementally refined by
analyzing the techniques and goals in each paper. The methodology is as follows: a work
is assigned to a category if the key technique of the paper corresponds to it. If no category
captures the gist of the paper, a new category is created. Two categories that are found to
be closely related are merged to create a new one. The incremental refinement of these
findings led to the definition of 4 categories to organize this literature study.
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2.2 Amplification by Adding New Tests as Variants of Existing
Ones

The most intuitive form of test amplification is to consider an existing test suite, then gen-
erate variants of the existing test cases and add those new variants into the original test
suite. This kind of test amplification is denoted as AMPadd.

Definition: A test amplification technique AMPadd consists of creating new tests
from existing ones to achieve a given engineering goal. The most commonly used
engineering goal is to improve coverage according to a coverage criterion.

The works listed in this section fall into this category and have been divided according
to their main engineering goal.

2.2.1 Coverage or Mutation Score Improvement

Baudry et al. [Baudry 2005b] [Baudry 2005a] improve the mutation score of an existing
test suite by generating variants of existing tests through the application of specific trans-
formations of the test cases. They iteratively run these transformations, and propose an
adaptation of genetic algorithms (GA), called a bacteriological algorithm (BA), to guide
the search for test cases that kill more mutants. The results demonstrate the ability of
search-based amplification to significantly increase the mutation score of a test suite. They
evaluated their approach on 2 case studies that are .NET classes. The evaluation shows
promising results, however the result have little external validity since only 2 classes are
considered.

Tillmann and Schulte [Tillmann 2006] describe a technique that can generalize existing
unit tests into parameterized unit tests. The basic idea behind this technique is to refactor
the unit test by replacing the concrete values that appear in the body of the test with pa-
rameters, which is achieved through symbolic execution. Their technique’s evaluation has
been conducted on 5 .NET classes.

The problem of generalizing unit tests into parameterized unit tests is also studied by
Thummalapenta et et al. [Marri 2010]. Their empirical study shows that unit test general-
ization can be achieved with feasible effort, and can bring the benefits of additional code
coverage. They evaluated their approach on 3 applications from 1 600 to 6 200 lines of
code. The result shows an increase of the branch coverage and a slight increase of the bug
detection capability of the test suite.

To improve the cost efficiency of the test generation process, Yoo and Harman
[Yoo 2012] propose a technique for augmenting the input space coverage of the existing
tests with new tests. The technique is based on four transformations on numerical values
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in test cases, i.e. shifting (λx.x + 1 and λx.x − 1 ) and data scaling (multiply or divide
the value by 2). In addition, they employ a hill-climbing algorithm based on the number
of fitness function evaluations, where a fitness is the computation of the euclidean distance
between two input points in a numerical space. The empirical evaluation shows that the
technique can achieve better coverage than some test generation methods which generate
tests from scratch. The approach has been evaluated on the triangle problem. They also
evaluated their approach on two specific methods from two large and complex libraries.

To maximize code coverage, Bloem et al. [Bloem 2014] propose an approach that alters
existing tests to get new tests that enter new terrain, i.e. uncovered features of the program.
The approach first analyzes the coverage of existing tests, and then selects all test cases
that pass a yet uncovered branch in the target function. Finally, the approach investigates
the path conditions of the selected test cases one by one to get a new test that covers
a previously uncovered branch. To vary path conditions of existing tests, the approach
uses symbolic execution and model checking techniques. A case study has shown that the
approach can achieve 100% branch coverage fully automatically. They first evaluate their
prototype implementation on two open source examples and then present a case study on
a real industrial program of a Java Card applet firewall. For the real program, they applied
their tool on 211 test cases, and produce 37 test cases to increase the code coverage. The
diversity of the benchmark allows to make a first generalization.

Rojas et al. [Rojas 2016] have investigated several seeding strategies for the test gener-
ation tool Evosuite. Traditionally, Evosuite generates unit test cases from scratch. In this
context, seeding consists in feeding Evosuite with initial material from which the automatic
generation process can start. The authors evaluate different sources for the seed: constants
in the program, dynamic values, concrete types and existing test cases. In the latter case,
seeding analogizes to amplification. The experiments with 28 projects from the Apache
Commons repository show a 2% improvement of code coverage, on average, compared to
a generation from scratch. The evaluation based on Apache artifacts is stronger than most
related work, because Apache artifacts are known to be complex and well tested.

Patrick and Jia [Patrick 2017] propose Kernel Density Adaptive Random Testing (KD-
ART) to improve the effectiveness of random testing. This technique takes advantage of
run-time test execution information to generate new test inputs. It first applies Adaptive
Random Testing (ART) to generate diverse values uniformly distributed over the input
space. Then, they use Kernel Density Estimation for estimating the distribution of val-
ues found to be useful; in this case, that increases the mutation score of the test suite.
KD-ART can intensify the existing values by generating inputs close to the ones observed
to be more useful or diversify the current inputs by using the ART approach. The authors
explore the trade-offs between diversification and intensification in a benchmark of eight C
programs. They achieve an 8.5% higher mutation score than ART for programs that have
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simple numeric input parameters, but their approach does not show a significant increase
for programs with composite inputs. The technique is able to detect mutants 15.4 times
faster than ART in average.

Instead of operating at the granularity of complete test cases, Yoshida et et al.
[Yoshida 2016] propose a novel technique for automated and fine-grained incremental gen-
eration of unit tests through minimal augmentation of an existing test suite. Their tool, FSX,
treats each part of existing cases, including the test driver, test input data, and oracles, as
“test intelligence", and attempts to create tests for uncovered test targets by copying and
minimally modifying existing tests wherever possible. To achieve this, the technique uses
iterative, incremental refinement of test-drivers and symbolic execution. They evaluated
FSX using four benchmarks, from 5K to 40K lines of code. This evaluation is adequate
and reveals that FSX’ result can be generalized.

2.2.2 Fault Detection Capability Improvement

Starting with the source code of test cases, Harder et et al. [Harder 2003] propose an
approach that dynamically generates new test cases with good fault detection ability. A
generated test case is kept only if it adds new information to the specification. They define
“new information” as adding new data for mining invariants with Daikon, hence producing
new or modified invariants. What is unique in the paper is the augmentation criterion:
helping an invariant inference technique. They evaluated Daikon on a benchmark of 8 C
programs. These programs vary from 200 to 10K line of code. It is left to future work to
evaluate the approach on a real and large software application.

Pezze et et al. [Pezze 2013] observe that method calls are used as the atoms to construct
test cases for both unit and integration testing, and that most of the code in integration test
cases appears in the same or similar form in unit test cases. Based on this observation, they
propose an approach which uses the information provided in unit test cases about object
creation and initialization to build composite cases that focus on testing the interactions
between objects. The evaluation results show that the approach can reveal new interaction
faults even in well tested applications.

Writing web tests manually is time consuming, but it gives the developers the advan-
tage of gaining domain knowledge. In contrast, most web test generation techniques are
automated and systematic, but lack the domain knowledge required to be as effective. In
light of this, Milani et al. [Milani Fard 2014] propose an approach which combines the
advantages of the two. The approach first extracts knowledge such as event sequences and
assertions from the human-written tests, and then combines the knowledge with the power
of automated crawling. It has been shown that the approach can effectively improve the
fault detection rate of the original test suite. They conducted an empirical evaluation on 4
open-source and large JavaScript systems.
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2.2.3 Oracle Improvement

Pacheco and Ernst implement a tool called Eclat [Pacheco 2005b], which aims to help the
tester with the difficult task of creating effective new test inputs with constructed oracles.
Eclat first uses the execution of some available correct runs to infer an operational model
of the software’s operation. By making use of the established operational model, Eclat then
employs a classification-guided technique to generate new test inputs. Next, Eclat reduces
the number of generated inputs by selecting only those that are most likely to reveal faults.
Finally, Eclat adds an oracle for each remaining test input from the operational model
automatically. They evaluated their approach on 6 small programs. They compared Eclat’s
result to the result of JCrasher, a state of the art tool that has the same goal than Eclat. In
their experimentation, they report that Eclat perform better than JCrasher: Eclat reveals 1.1
faults on average against 0.02 for JCrasher.

Given that some test generation techniques just generate sequences of method calls but
do not contain oracles for these method calls, Fraser and Zeller [Fraser 2011c] propose an
approach to generate parametrized unit tests containing symbolic pre- and post-conditions.
Taking concrete inputs and results as inputs, the technique uses test generation and muta-
tion to systematically generalize pre- and post-conditions. Evaluation results on five open
source libraries show that the approach can successfully generalize a concrete test to a
parameterized unit test, which is more general and expressive, needs fewer computation
steps, and achieves a higher code coverage than the original concrete test. They used 5
open-source and large programs to evaluate the approach. According to their observation,
this technique is more expensive than simply generating unit test cases.

2.2.4 Debugging Effectiveness Improvement

Baudry et al. [Baudry 2006] propose the test-for-diagnosis criterion (TfD) to evaluate the
fault localization power of a test suite, and identify an attribute called Dynamic Basic
Block (DBB) to characterize this criterion. A Dynamic Basic Block (DBB) contains the
set of statements that are executed by the same test cases, which implies all statements in
the same DBB are indistinguishable. Using an existing test suite as a starting point, they
apply a search-based algorithm to optimize the test suite with new tests so that the test-
for-diagnosis criterion can be satisfied. They evaluated their approach on two programs:
a toy program and a server that simulates business meetings over the network. These two
programs are less than 2K line of code long, which can be considered as small.

Röβler et al. [Röβler 2012] propose BugEx, which leverages test case generation to
systematically isolate failure causes. The approach takes a single failing test as input and
starts generating additional passing or failing tests that are similar to the failing test. Then,
the approach runs these tests and captures the differences between these runs in terms of the
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observed facts that are likely related with the pass/fail outcome. Finally, these differences
are statistically ranked and a ranked list of facts is produced. In addition, more test cases
are further generated to confirm or refute the relevance of a fact. It has been shown that
for six out of seven real-life bugs, the approach can accurately pinpoint important failure
explaining facts. To evaluate BugEx, they use 7 real-life case studies from 68 to 62K
lines of code. The small number of considered bugs, 7, calls for more research to improve
external validity.

Yu et al. [Yu 2013] aim at enhancing fault localization under the scenario where no ap-
propriate test suite is available to localize the encountered fault. They propose a mutation-
oriented test case augmentation technique that is capable of generating test suites with bet-
ter fault localization capabilities. The technique uses some mutation operators to iteratively
mutate some existing failing tests to derive new test cases potentially useful to localize the
specific encountered fault. Similarly, to increase the chance of executing the specific path
during crash reproduction, Xuan et al. [Xuan 2015] propose an approach based on test
case mutation. The approach first selects relevant test cases based on the stack trace in the
crash, followed by eliminating assertions in the selected test cases, and finally uses a set
of predefined mutation operators to produce new test cases that can help to reproduce the
crash. They evaluated MuCrash on 12 bugs for Apache Commons Collections, which is 26
KLoC of source code and 29 KLoC of test code length. The used program is quite large
and open-source which increases the confidence. but using a single subject is a threat to
generalization.

2.2.5 Summary

Main achievements: The works discussed in this section show that adding new test cases
based on existing ones can make the test generation process more targeted and cost-
effective. On the one hand, the test generation process can be geared towards achieving
a specific engineering goal better based on how existing tests perform with respect to the
goal. For instance, new tests can be intentionally generated to cover those program ele-
ments that are not covered by existing tests. Indeed, it has been shown that tests generated
in this way are effective in achieving multiple engineering goals, such as improving code
coverage, fault detection ability, and debugging effectiveness. On the other hand, new test
cases can be generated more cost-effectively by making use of the structure or components
of the existing test cases.

Main Challenges: While existing tests provide a good starting point, there are some
difficulties in how to make better use of the information they contain. First, the num-
ber of new tests synthesized from existing ones can sometimes be large and hence an
effective strategy should be used to select tests that help to achieve the specific engi-
neering goal; the concerned works are: [Baudry 2005b, Baudry 2005a, Yoshida 2016].
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Second, the synthesized tests have been applied to a specific set of programs and
the generalization of the related approaches could be limited. The concerned works
are: [Tillmann 2006, Marri 2010, Yoo 2012, Bloem 2014, Patrick 2017, Harder 2003,
Pacheco 2005b, Baudry 2006, Röβler 2012, Xuan 2015]. Third, some techniques have
known performance issues and do not scale well: [Milani Fard 2014, Fraser 2011c].

2.3 Amplification by Synthesizing New Tests with Respect to
Changes

Software applications are typically not tested at a single point in time; they are rather tested
incrementally, along with the natural evolution of the code base: new tests are typically
added together with a change or a commit [Zaidman 2011, Zaidman 2008], to verify, for
instance, that a bug has been fixed or that a new feature is correctly implemented. In the
context of test amplification, it directly translates to the idea of synthesizing new tests as a
reaction to a change. This can be seen as a specialized form AMPadd, which considers a
specific change, in addition to the existing test suite, to guide the amplification. This kind
of test amplification is denoted as AMPchange.

Definition: Test amplification technique AMPchange consists of adding new tests to
the current test suite, by creating new tests that cover and/or observe the effects of a
change in the application code.

I first present a series of works by Xu et al., who develop and compare two alterna-
tives of test suite augmentation, one based on genetic algorithms and the other on concolic
execution. A second subsection presents the work of a group of authors that center the
attention on finding testing conditions to exercise the portions of code that exhibit changes.
A third subsection exposes works that explore the adaptation and evolution of test cases to
cope with code changes. The last subsection shows other promising works in this area.

2.3.1 Search-based vs. Concolic Approaches

In their work, Xu et al. [Xu 2009] focus on the scenario where a program has evolved into
a new version through code changes in development. They consider techniques as (i) the
identification of coverage requirements for this new version, given an existing test suite;
and (ii) the creation of new test cases that exercise these requirements. Their approach first
identifies the parts of the evolved program that are not covered by the existing test suite.
In the same process they gather path conditions for every test case. Then, they exploit
these path conditions with a concolic testing method to find new test cases for uncovered
branches, analyzing one branch at a time.
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Symbolic execution is a program analysis technique to reason about the execution of
every path and to build a symbolic expression for each variable. Concolic testing also
carries a symbolic state of the program, but overcomes some limitations of a fully symbolic
execution by also considering certain concrete values. Both techniques are known to be
computationally expensive for large programs.

Xu et al. avoid a full concolic execution by only targeting paths related to uncovered
branches. This improves the performance of the augmentation process. They applied their
technique to 22 versions of a small arithmetic program from the SIR [SIR] repository and
achieved branch coverage rates between 95% and 100%. They also show that a full con-
colic testing is not able to obtain such high coverage rates and needs a significantly higher
number of constraint solver calls.

In subsequent work, Xu et al. [Xu 2010a] address the same problem with a genetic
algorithm. Each time the algorithm runs, it targets a branch of the new program that is not
yet covered. The fitness function measures how far a test case falls from the target branch
during its execution. The authors investigate if all test cases should be used as population,
or only a subset related to the target branch or, if newly generated cases should be combined
with existing ones in the population. Several variants are compared according to their
efficiency and effectiveness, that is, whether the generated test cases achieve the goal of
exercising the uncovered branches. The experimentation targets 3 versions of Nanoxml, an
XML parser implemented in Java with more than 7 KLoC and included in the SIR [SIR]
repository. The authors conclude that considering all tests achieves the best coverage, but
also requires more computational effort. They imply that the combination of new and
existing test cases is an important factor to consider in practical applications.

Xu et al. then dedicate a paper to the comparison of concolic execution and genetic
algorithms for test suite amplification [Xu 2010b]. The comparison is carried out over four
small (between 138 and 516 LoC) C programs from the SIR [SIR] repository. They con-
clude that both techniques benefit from reusing existing test cases at a cost in efficiency.
The authors also state that the concolic approach can generate test cases effectively in the
absence of complex symbolic expressions. Nevertheless, the genetic algorithm is more
effective in the general case, but could be more costly in test case generation. Also, the ge-
netic approach is more flexible in terms of scenarios where it can be used, but the quality of
the obtained results is heavily influenced by the definition of the fitness function, mutation
test and crossover strategy.

The same authors propose a hybrid approach [Xu 2011]. This new approach incremen-
tally runs both the concolic and genetic methods. Each round applies first the concolic
testing and the output is passed to the genetic algorithm as initial population. Their origi-
nal intention was to get a more cost-effective approach. The evaluation is done over three
of the C programs from their previous study. The authors conclude that this new proposal
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outperforms the other two in terms of branch coverage, but in the end is not more efficient.
They also speculate about possible strategies for combining both individual approaches
to overcome their respective weaknesses and exploit their best features. A revised and
extended version of this work is given in [Xu 2015].

2.3.2 Finding Test Conditions in the Presence of Changes

Another group of authors has worked under the premise that achieving only coverage may
not be sufficient to adequately exercise changes in code. Sometimes these changes manifest
themselves only when particular conditions are met by the input. The following papers
address the problem of finding concrete input conditions that not only can execute the
changed code, but also propagate the effects of this change to an observable point that could
be the output of the involved test cases. However, their work does not create concrete new
test cases. Their goal is to provide guidance, in the form of conditions that can be leveraged
to create new tests with any generation method.

It is important to notice that they do not achieve test generation. Their goal is to provide
guidance to generate new test cases independently of the selected generation method.

Apiwattanapong et al. [Apiwattanapong 2006] target the problem of finding test con-
ditions that could propagate the effects of a change in a program to a certain execution
point. Their method takes as input two versions of the same program. First, an alignment
of the statements in both versions is performed. Then, starting from the originally changed
statement and its counterpart in the new version, all statements whose execution is affected
by the change are gathered up to a certain distance. The distance is computed over the
control and data dependency graph. A partial symbolic execution is performed over the
affected instructions to retrieve the states of both program versions, which are in turn used
to compute testing requirements that can propagate the effects of the original change to the
given distance. As said before, the method does not deal with test case creation, it only
finds new testing conditions that could be used in a separate generation process and is not
able to handle changes to several statements unless the changed statements are unrelated.
The approach is evaluated on Java translations of two small C programs (102 Loc and 268
LoC) originally included in the Siemens program dataset [Hutchins 1994]. The authors
conclude that, although limited to one change at a time, the technique can be leveraged to
generate new test cases during regular development.

Santelices et al. [Santelices 2008] continue and extend the previous work by addressing
changes to multiple statements and considering the effects they could have on each other.
In order to achieve this they do not compute state requirements for changes affected by
others. This time, the evaluation is done in one of the study subjects form their previous
study and two versions of Nanoxml from SIR.

In another paper [Santelices 2011] the same authors address the problems in terms of
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efficiency of applying symbolic execution. They state that limiting the analysis of affected
statements up to a certain distance from changes reduces the computational cost, but scal-
ability issues still exist. They also explain that their previous approach often produces test
conditions which are unfeasible or difficult to satisfy within a reasonable resource budget.
To overcome this, they perform a dynamic inspection of the program during test case ex-
ecution over statically computed slices around changes. The technique is evaluated over
five small Java programs, comprising Nanoxml with 3 KLoC and translations of C pro-
grams from SIR having between 283 LoC and 478 LoC. This approach also considers
multiple program changes. Removing the need of symbolic execution leads to a less ex-
pensive method. The authors claim that propagation-based testing strategies are superior
to coverage-based in the presence of evolving software.

2.3.3 Other Approaches

Other authors have also explored test suite augmentation for evolving programs with
propagation-based approaches. Qui et al. [Qi 2010] propose a method to add new test
cases to an existing test suite ensuring that the effects of changes in the new program
version are observed in the test output. The technique consists of a two step symbolic ex-
ecution. First, they explore the paths towards a change in the program guided by a notion
of distance over the control dependency graph. This exploration produces an input able
to reach the change. In a second moment they analyze the conditions under which this
input may affect the output and make changes to the input accordingly. The technique is
evaluated using 41 versions of the tcas program from the SIR repository (179 LoC) with
only one change between versions. The approach was able to generate tests reaching the
changes and affected the program output for 39 of the cases. Another evaluation was also
included for two consecutive versions of the libPNG library (28 KLoC) with a total of 10
independent changes between them. The proposed technique was able to generate tests that
reached the changes in all cases and the output was affected in nine of the changes. The
authors conclude that the technique is effective in the generation of test inputs to reach a
change in the code and expose the change in the program output.

Wang et al. [Wang 2014] exploit existing test cases to generate new ones that execute
the change in the program. These new test cases should produce a new program state, in
terms of variable values, that can be propagated to the test output. An existing test case is
analyzed to check if it can reach the change in an evolved program. The test is also checked
to see if it produces a different program state at some point and if the test output is affected
by the change. If some of these premises do not hold then the path condition of the test is
used to generate a new path condition to achieve the three goals. Further path exploration
is guided and narrowed using a notion of the probability for the path condition to reach
the change. This probability is computed using the distance between statements over the
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control dependency graph. Practical results of test cases generation in three small Java
programs (from 231 LoC to 375 LoC) are exhibited. The method is compared to eXpress
and JPF-SE two state of the art tools and is shown to reduce the number of symbolic
executions by 45.6% and 60.1% respectively. As drawback, the technique is not able to
deal with changes on more than one statement.

Mirzaaghaei et al. [Mirzaaghaei 2012, Mirzaaghaei 2014] introduce an approach that
leverages information from existing test cases and automatically adapts test suites to code
changes. Their technique can repair, or evolve test cases in front of signature changes
(i.e. changing the declaration of method parameters or return values), the addition of new
classes to the hierarchy, addition of new interface implementations, new method overloads
and new method overrides. Their effective implementation TestCareAssitance (TCA) first
diffs the original program with its modified version to detect changes and searches in the
test code similar patterns that could be used to complete the missing information or change
the existing code. They evaluate TCA for signature changes in 9 Java projects of the
Apache foundation and repair in average 45% of modifications that lead to compilation
errors. The authors further use five additional open source projects to evaluate their ap-
proach when adding new classes to the hierarchy. TCA is able to generate test cases for
60% of the newly added classes. This proposal could also fall in the category of test repair-
ing techniques. Section 2.4 will explore alternatives in a similar direction that produce test
changes instead of creating completely new test cases.

In a different direction, Böhme et al. [Böhme 2013] explain that changes in a program
should not be treated in isolation. Their proposal focuses on potential interaction errors
between software changes. They propose to build a graph containing the relationship be-
tween changed statements in two different versions of a program and potential interaction
locations according to data and control dependency. This graph is used to guide a sym-
bolic execution method and find path conditions for exercising changes and their potential
interactions and use a Satisfiability Modulo Solver to generate a concrete test input. They
provide practical results on six versions the GNU Coreutils toolset that introduce 11 known
errors. They were able to find 5 unknown errors in addition to previously reported issues.

Marinescu and Cadar [Marinescu 2013] present a system, called Katch, that aims at
covering the code included in a patch. Instead of dealing with one change to one statement,
as most of the previous works, this approach first determines the differences of a program
and its previous version after a commit, in the form of a code patch. Lines included in
the patch are filtered by removing those that contain non-executable code (i.e. comments,
declarations). If several lines belong to the same basic program block, only one of them is
kept as they will all be executed together. From the filtered set of lines, those not covered by
the existing test suite are considered as targets. The approach then selects the closest input
to each target from existing tests using the static minimum distance over the control flow
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graph. Edges on this graph that render the target unreachable are removed by inspecting
the data flow and gathering preconditions to the execution of basic blocks. To generate
new test inputs, they combine symbolic execution with heuristics that select branches by
their distance to the target, regenerate a path by going back to the point where the condition
became unfeasible or changing the definition of variables involved in the condition. The
proposal is evaluated using the GNU findutils, diffutils and binutils which are distributed
with most Unix-based distributions.
They examine patches from a period of 3 years. In average, they automatically increase
coverage from 35% to 52% with respect to the manually written test suite.

A posterior work of the same group [Palikareva 2016] also targets patches of code,
focusing on finding test inputs that execute different behavior between two program ver-
sions. They consider two versions of the same program, or the old version with the patch
of changed code, and a test suite. The code should be annotated in places where changes
occur in order to unify both versions of the program for the next steps. Then they select
from the test suite those test cases that cover the changed code. If there is no such test
case, it can be generated using Katch. The unified program is used in a two stage dynamic
symbolic execution guided by the selected test cases: look for branch points where two se-
mantically different conditions are evaluated in both program versions; bounded symbolic
execution for each point previously detected. At those points all possible alternatives in
which program versions execute the same or different branch blocks are considered and
used to make the constraint solver generate new test inputs for divergent scenarios. The
program versions are then normally executed with the generated inputs and the result is
validated to check the presence of a bug or an intended difference. In their experiments
this validation is mostly automatic but in general should be performed by developers. The
evaluation of the proposed method is based on the CoREBench [Böhme 2014] data set that
contains documented bugs and patches of the GNU Coreutils program suite. The authors
discuss successful and unsuccessful results but in general the tool is able to produce test
inputs that reveal changes in program behaviour.

2.3.4 Summary

Main achievements: AMPchange techniques often rely on symbolic and concolic exe-
cution. Both have been successfully combined with other techniques in order to gen-
erate test cases that reach changed or evolved parts of a program [Xu 2011, Xu 2015,
Marinescu 2013]. Those hybrid approaches produce new test inputs that increase the
coverage of the new program version. Data and control dependency has been used
in several approaches to guide symbolic execution and reduce its computational cost
[Böhme 2013, Marinescu 2013, Wang 2014]. The notion of distance from statements to ob-
served changes has been also used for this matter [Marinescu 2013, Apiwattanapong 2006].
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Main challenges: Despite the progress made in the area, a number of challenges re-
main open. The main challenge relates to the size of the changes considered for test
amplification: many of the works in this area consider a single change in a single state-
ment [Apiwattanapong 2006, Qi 2010, Wang 2014]. While this is relevant and important
to establish the foundations for AMPchange, this cannot fit current development prac-
tices where a change, usually a commit, modifies the code at multiple places at once. A
few papers have started investigating multi-statement changes for test suite amplification
[Santelices 2008, Marinescu 2013, Palikareva 2016]. Now, AMPchange techniques should
fit into the revision process and be able to consider a commit as the unit of change.

Another challenge relates to scalability. The use of symbolic and concolic exe-
cution has proven to be effective in test input generation targeting program changes.
Yet, these two techniques are computationally expensive [Xu 2009, Xu 2011, Xu 2015,
Apiwattanapong 2006, Santelices 2008, Palikareva 2016]. Future works shall consider
more efficient ways for exploring input requirements that exercise program changes or new
uncovered parts. Santelices and Harrold [Santelices 2011] propose to get rid of symbolic
execution by observing the program behavior during test execution. However, they do not
generate test cases.

Practical experimentation and evaluation remains confined to a very small number of
programs, in most cases less than five study subjects, and even small programs in terms of
effective lines of code. A large scale study on the subject is still missing.

2.4 Amplification by Modifying Test Execution

In order to explore new program states and behavior, it is possible to interfere with the
execution at runtime so as to modify the execution of the program under test.

Definition: Test amplification technique AMPexec consists of modifying the test exe-
cution process or the test harness in order to maximize the knowledge gained from the
testing process.

One of the drawbacks of automated tests is the hidden dependencies that may exist
between different unit test cases. In fact, the order in which the test cases are executed
may affect the state of the program under test. A good and strong test suite should have no
implicit dependencies between test cases.

The majority of test frameworks are deterministic, i.e. between two runs the order of
execution of test is the same [Palomba 2017, Palomb].

An AMPexec technique would randomize the order in which the tests are executed to
reveal hidden dependencies between unit tests and potential bugs derived from this situa-
tion.
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2.4.1 Exception Handling Validation

Zhang and Elbaum [Zhang 2012, Zhang 2014] describe a technique to validate exception
handling in programs making use of APIs to access external resources such as databases,
GPS or bluetooth. The method mocks the accessed resources and amplifies the test suite
by triggering unexpected exceptions in sequences of API calls. Issues are detected during
testing by observing abnormal terminations of the program or abnormal execution times.
They evaluated their approach on 5 Android artifacts. Their sizes vary from 6k to 18k line
of codes, with 39 to 117 unit tests in the test suite. The size of the benchmark seems quite
reasonable. The approach is shown to be cost-effective and able to detect real-life problems
in 5 Android applications.

Cornu et al. [Cornu 2015] work in the same line of exception handling evaluation.
They propose a method to complement a test suite in order to check the behaviour of a
program in the presence of unanticipated scenarios. The original code of the program is
modified with the insertion of throw instructions inside try blocks. The test suite is
considered as an executable specification of the program and therefore used as an oracle in
order to compare the program execution before and after the modification. Under certain
conditions, issues can be automatically repaired by catch-stretching. The authors used 9
Java open-source projects to create a benchmark and evaluate their approach. This bench-
mark is big enough to conclude the generalization of the results. The selected artifacts
are well-known, modern and large: Apache artifacts, joda-time and so on. Their empirical
evaluation shows that the short-circuit testing approach of exception contracts increases the
knowledge of software.

2.4.2 Other Approaches

Leung et al. [Leung 2012] are interested in finding data races and non-determinism in
GPU code written in the CUDA programming language. In their context, test amplification
consists of generalizing the information learned from a single dynamic run. The main con-
tribution is to formalize the relationship between the trace of the dynamic run and statically
collected information flow. The authors leverage this formal model to define the conditions
under which they can generalize the absence of race conditions for a set of input values,
starting from a run of the program with a single input. They evaluated their approach using
28 benchmarks in the NVIDIA CUDA SDK Version 3.0. They removed trivial ones and
some of them that they cannot handle. The set of benchmarks is big enough and contains a
diversity of applications to be convinced that the approach can be generalized.

Fang et al. [Fang 2015] develop a performance testing system named Perfblower,
which is able to detect and diagnose memory issues by observing the execution of a set
of test methods. The system includes a domain-specific language designed to describe
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memory usage symptoms. Based on the provided descriptions, the tool evaluates the pres-
ence of memory problems. The approach is evaluated on 13 Java real-life projects. The
tool is able to find real memory issues and reduce the number of false positives reported by
similar tools. They used the small workload of the DaCapo [Blackburn 2006] benchmark.
They argue that developers will not use large workloads and it is much more difficult to
reveal performance bugs under small workloads. These two claims are legit, however the
authors do not provide any evidence of the scalability of the approach.

Zhang et al. [Zhang 2016] devise a methodology to improve the capacity of the test
suite to detect regression faults. Their approach is able to exercise uncovered branches
without generating new test cases. They first look for identical code fragments between
a program and its previous version. Then, new variants of both versions are generated by
negating branch conditions that force the test suite to execute originally uncovered parts.
The behavior of version variants are compared through test outputs. An observed differ-
ence in the output could reveal an undetected fault. An implementation of the approach is
compared with EvoSuite [Fraser 2011b] on 10 real-life Java projects. In the experiments,
known faults are seeded by mutating the original program code. The results show that
EvoSuite obtains better branch coverage, while the proposed method is able to detect more
faults. The implementation is available in the form of a tool named Ison.

2.4.3 Summary

Main achievements: AMPexec proposals provide cost-effective approaches to observe and
modify a program execution to detect possible faults. This is done by instrumenting the
original program code to place observations at certain points or mocking resources to moni-
tor API calls and explore unexpected scenarios. It adds no prohibitive overheads to regular
test execution and provides means to gather useful runtime information. Techniques in
this section were used to analyze real-life projects of different sizes and they are shown to
match other tools that pursue the same goal and obtain better results in some cases.

Main challenges: As shown by the relatively small number of papers discussed in
this section, techniques for test execution modification have not been widely explored.
The main challenge is to get this concept known so as to enlarge the research community
working on this topic. The concerned works are: [Zhang 2012, Zhang 2014, Cornu 2015,
Leung 2012, Fang 2015, Zhang 2016].

2.5 Amplification by Modifying Existing Test Code

In testing, it is up to the developer to design integration (large) or unit (small) tests. The
main testing infrastructure such as JUnit in Java does not impose anything on the tests, such
as the number of statements in a test, the cohesion of test assertions or the meaningfulness
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of test methods grouped in a test class. In literature, there are works on modifying existing
tests with respect to a certain engineering goal.

Definition: Test amplification technique AMPmod refers to modifying the body of
existing test methods. The goal here is to make the scope of each test methods more
precise or to improve the ability of test cases at assessing correctness (with better
oracles). Differently from AMPadd, it is not about adding new test methods or new
tests classes.

2.5.1 Input Space Exploration

Dallmeier et al. [Dallmeier 2010] automatically amplify test suites by adding and removing
method calls in JUnit test cases. Their objective is to produce test methods that cover a
wider set of executions than the original test suite in order to improve the quality of models
reverse engineered from the code. They evaluate TAUTOKO on 7 Java classes and show
that it is able to produce richer typestates (a typestate is a finite state automaton which
encodes legal usages of a class under test).

Hamlet and Voas [Hamlet 1993] introduce the notion of “reliability amplification” to
establish a better statistical confidence that a given software is correct. Program reliability
is measured as the mean time to failure of the system under test. The core contribution
relates reliability to testability assessment, that is, a measure of the probability that a fault
in the program will propagate to an observable state. The authors discuss how different
systematic test planning strategies, e.g. partition-based test selection [Ostrand 1988], can
complement profile-based test cases, in order to obtain a better measurement of testability
and therefore better bounds to estimate the reliability of the program being tested.

2.5.2 Oracle Improvement

Xie [Xie 2006] amplifies object-oriented unit tests with a technique that consists of adding
assertions on the state of the receiver object, the returned value by the tested method (if it is
a non-void return value method) and the state of parameters (if they are not primitive val-
ues). Those values depend on the behavior of the given method, which in turn depends on
the state of the receiver and of arguments at the beginning of the invocation. The approach,
named Orstra, consists of instrumenting the code and running the test suite to collect state
of objects. Then, assertions are generated, which call observer methods (methods with a
non-void return type, e.g. toString()). To evaluate Orstra, the author uses 11 Java classes
from a variety of sources. Theses classes are different in the number of methods and lines
of code, and the author also uses two different third-party test generation tools to generate
the initial test suite to be amplified. The results show that Orstra can effectively improve
the fault-detection capability of the original automatically generated test suite.
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Carzaniga et al. [Carzaniga 2014] reason about generic oracles and propose a generic
procedure to assert the behavior of a system under test. To do so, they exploit the re-
dundancy of software. Redundancy of software happens when the system can perform
the same action through different executions, either with different code or with the same
code but with different input parameters or in different contexts. They devise the notion
of “cross-checking oracles”, which compare the outcome of the execution of an original
method to the outcome of an equivalent method. Such oracle uses a generic equivalence
check on the returned values and the state of the target object. If there is an inconsis-
tency, the oracle reports it, otherwise, the checking continue. These oracles are added to
an existing test suite with aspect-oriented programming. For the evaluation, they use 18
classes from three non-trivial open-source Java libraries, including Guava, Joda-Time, and
GraphStream. The subject classes are selected based on whether a set of equivalences have
already been established or could be identified. For each subject class, two kinds of test
suites have been used, including hand-written test suites and automatically generated test
suites by Randoop. The experimental results show that the approach can slightly increase
(+6% overall) the mutation score of a manual test suite.

Joshi et al. [Joshi 2007] try to amplify the effectiveness of testing by executing both
concretely and symbolically the tests. Along this double execution, for every conditional
statement executed by the concrete execution, the symbolic execution generates symbolic
constraints over the input variables. At the execution of an assertion, the symbolic execu-
tion engine invokes a theorem prover to check that the assertion is verified, according to
the constraints encountered. If the assertion is not guaranteed, a violation of the behavior is
reported. To evaluate their approach, the authors use 5 small and medium sized programs
from SIR, including gzip, bc, hoc, space, and printtokens. The results show that they are
able to detect buffer overflows but it needs optimization because of the huge overhead that
the instrumentation add.

Mouelhi et al. [Mouelhi 2009] enhance tests oracles for access control logic, also
called Policy Decision Point (PDP). This is done in 3 steps: select test cases that execute
PDPs, map each of the test cases to specific PDPs and oracle enhancement. They add
to the existing oracle checks that the access is granted or denied with respect to the rule
and checks that the PDP is correctly called. To do so, they force the Policy Enforcement
Point, i.e. the point where the policy decision is setting in the system functionality, to
raise an exception when the access is denied and they compare the produced logs with
expected log. To evaluate, they conduct case studies on three Java applications developed
by students during group projects. For these three subjects, the number of classes ranges
form 62 to 122, the number of methods ranges from 335 to 797, and the number of lines of
code ranges from 3204 to 10703. The experimental results show that compared to manual
testing, automated oracle generation saves a lot of time (from 32 hours to 5 minutes).
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Daniel et al. [Daniel 2009b] devise ReAssert to automatically repair test cases, i.e. to
modify test cases that fail due to a change. ReAssert follows five steps: record the values
of failing assertions, re-executes the test and catch the failure exception, i.e. the exception
thrown by the failing assertion. From the exception, it extracts the stack trace to find the
code to repair. Then, it selects the repair strategy depending on the structure of the code
and on the recorded value. Finally, ReAssert re-compiles the code changes and repeats
all steps until no more assertions fail. The tool was evaluated on six real and well known
open source Java projects, namely PMD, JFreeChart, Lucene, Checkstyle, JDepend and
XStream. The authors created a collection of manually written and generated tests methods
by targeting previous versions of these programs. ReAssert was able to produce fixes from
25% to 100% of failing tests for all study subjects. An usability study was also carried out
with two teams of 18 researchers working on three research prototypes. The participants
were asked to accomplish a number of tasks to write failing tests for new requirements and
code changes and were also asked to manually fix the failures. ReAssert could repair 98%
of failures created by the participants’ code changes. In 90 % of cases the repairs suggested
by the tool matched the patches created by the participants. The authors explain that the
success rate of the tool depends more on the structure of the code of the test than the test
failure itself.

2.5.3 Purification

Xuan et al. [Xuan 2016a] propose a technique to split existing tests into smaller parts in
order to “purify” test methods. Here, purification can be seen as a form of test refactor-
ing. A pure test executes one, and only one, branch of an if/then/else statement. On the
contrary, an impure test executes both branches then and else of the same if/then/else state-
ment in code. The authors evaluate their technique on 5 widely used open-source projects
from code organizations such as Apache. The experimental results show that the technique
increases the purity of test cases by up to 66% for if statements and 11% for try statement.
In addition, the result also shows that the technique improves the effectiveness of program
repair of Nopol [Xuan 2017].

Xuan et al. [Xuan 2014] aim at improving the fault localization capabilities by purify-
ing test cases. By purifying, they mean to modify existing failing test methods into single
assertion test cases and remove all statements that are not related to the assertion. They
evaluated the test purification on 6 open-source java project, over 1800 bugs generated by
typical mutation tool PIT and compare their results with 6 mature fault localization tech-
niques. They show that they improve the fault localization effectiveness on 18 to 43% of
all the faults, as measured per improved wasted effort.
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2.5.4 Summary

Main achievements: What is remarkable in AMPmod is the diversity of engineering
goals considered. Input space exploration provides better state coverage [Dallmeier 2010]
and reliability assessment [Hamlet 1993], oracle improvement allows to increase the ef-
ficiency and effectiveness of tests [Xie 2006, Carzaniga 2014, Joshi 2007, Mouelhi 2009,
Daniel 2009b], test purification of test cases facilitate program repair [Xuan 2016a] and
fault localization [Xuan 2014].

Main challenges: Although impressive results have been obtained, no experiments
have been carried out to study the acceptability and maintainability of amplified tests
[Dallmeier 2010, Xie 2006, Hamlet 1993, Carzaniga 2014, Joshi 2007, Mouelhi 2009,
Daniel 2009b, Xuan 2016a, Xuan 2014]. In this context, acceptability means that human
developers are ready to commit the amplified tests to the version control system (e.g. in the
Git repository). The maintainability challenge is whether the machine-generated tests can
be later understood and modified by developers.

2.6 Analysis

2.6.1 Aggregated View

Table 2.1 shows all the articles considered in this snowballing survey per the inclusion
criteria. The first column of the table shows the citation information, as given in the “Ref-
erences” section. The second column shows the term that the authors use to designate the
form of amplification that they investigate. Columns 3 to 18 are divided in three groups.
The first group corresponds to the section in which the paper has been included. The second
group corresponds to the different identified engineering goals . The third group captures
the different techniques used for amplification in each work. The final columns in the table
contain the target programming language, the year and venue in which the paper has been
published, the last name of the first author and the iteration of the snowballing process in
which the paper was included in the study.

Each row in the table corresponds to a specific contribution. The rows are sorted first
by the section in which the papers are included in the study, then by year and then by the
last name of the first author. In total, the table contains 49 rows.

One can see that “augmentation” (15 contributions), “generation” (9 contributions) and
“amplification” (7 contributions) are the terms that appear most frequently to describe the
approaches reported here. Other similar terms such as “enrichment”, “adaptation” and
“regeneration” are used less frequently. Most proposals (19 contributions) focus on adding
new test cases to the existing test suite. Test amplification in the context of a change
or the modification of existing test cases have received comparable attention (16 and 14
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Table 2.1: List of papers included in this snowballing survey.
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[Harder 2003] augmentation • • • C ICSE 2003 Harder 2
[Baudry 2002] optimization • • • • .NET ASE 2002 Baudry 2
[Baudry 2005b] optimization • • • • Eiffel, C# STVR 2005 Baudry 3
[Baudry 2005a] optimization • • • • C# IEEE Software 2005 Baudry 3
[Pacheco 2005b] generation • • • Java ECOOP 2005 Pacheco 1
[Baudry 2006] optimization • • • Java ICSE 2006 Baudry 4
[Tillmann 2006] generation • • • • • Spec# IEEE Software 2006 Tillmann 5
[Marri 2010] generalization • • • • • C# FASE 2011 Thummalapenta 5
[Fraser 2011c] generation • • • • Java ISSTA 2011 Fraser 6
[Röβler 2012] generation • • • Java ISSTA 2012 Ropler 5
[Yoo 2012] regeneration • • • • Java STVR 2012 Yoo 4
[Pezze 2013] generation • • • Java ICST 2013 Pezze 5
[Yu 2013] augmentation • • • Java IST 2013 Yu 5
[Bloem 2014] augmentation • • • • C QSIC 2014 Bloem 3
[Milani Fard 2014] generation • • • JavaScript ASE 2014 Fard 3
[Xuan 2015] mutation • • • Java ESEC/FSE 2015 Xuan 3
[Rojas 2016] generation • • • • Java STVR 2016 Rojas 5
[Yoshida 2016] augmentation • • • • • C, C++ ISSTA 2016 Yoshida 3
[Patrick 2017] generation • • • C IST 2017 Patrick 4
[Apiwattanapong 2006] augmentation • • • • • Java TAIC PART 2006 Apiwattanapong 3
[Santelices 2008] augmentation • • • • • Java ASE 2008 Santelices 3
[Daniel 2009b] repairing

refactoring
• • • • Java ASE 2009 Daniel 4

[Xu 2009] augmentation • • • Java APSEC 2009 Xu 3
[Qi 2010] • • • • C ASE 2010 Qi 4
[Xu 2010a] augmentation • • • • Java GECCO 2010 Xu 3
[Xu 2010b] augmentation • • • • • C FSE 2010 Xu 2
[Santelices 2011] augmentation • • • • Java ICST 2011 Santelices 3
[Xu 2011] augmentation • • • • • C ISSRE 2011 Xu 3
[Mirzaaghaei 2012] repairing

adaptation
• • • • • • Java ICST 2012 Mirzaaghaei 3

[Mirzaaghaei 2014] repairing
adaptation

• • • • • • Java SVTR 2014 Mirzaaghaei 3

[Böhme 2013] • • • • • • C ESEC/FSE 2013 Böhme 3
[Marinescu 2013] • • • • • C ESEC/FSE 2013 Marinescu 5
[Wang 2014] augmentation • • • • • Java CSTVA 2014 Wang 3
[Xu 2015] augmentation • • • • • C STVR 2015 Xu 3
[Palikareva 2016] • • • • • C ICSE 2016 Palikareva 4
[Zhang 2012] amplification • • • • Java ICSE 2012 Zhang S
[Zhang 2014] amplification • • • • Java TOSEM 2014 Zhang
[Leung 2012] amplification • • • CUDA PLDI 2012 Leung S
[Cornu 2015] amplification • • • • • Java IST 2015 Cornu 1
[Fang 2015] amplification • • • Java ECOOP 2015 Fang 1
[Zhang 2016] augmentation • • • • • • Java FSE 2016 Zhang 3
[Hamlet 1993] amplification • • ISSTA 1993 Hamlet S
[Xie 2006] augmentation • • • Java ECOOP 2006 Xie 5
[Joshi 2007] amplification • • • C ESEC/FSE 2007 Joshi S
[Mouelhi 2009] • • • Java ICST 2009 Mouelhi 4
[Dallmeier 2010] enrichment • • • Java ISSTA 2010 Dallmeier 4
[Carzaniga 2014] cross-checking • • • Java ICSE 2014 Carzaniga 6
[Xuan 2014] purification • • • Java FSE 2014 Xuan 5
[Xuan 2016a] purification

refactoring
• • • Java IST 2016 Xuan 1
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contributions respectively). Some techniques that modify existing test cases also target the
addition of new test cases (3 contributions) and amplify the test suite with respect to a
change (3 contributions). Amplification by runtime modification is the least explored area.

Most works aim at improving the code coverage of the test suite (25 contributions).
After that, the main goals are the detection of new faults and the improvement of observ-
ability (13 and 12 contributions respectively). Fault localization, repair improvement and
crash reproduction receive less attention (4, 4 and 1 contributions respectively).

47 papers included in the table have been published between 2003 and 2017. One paper
was published back in 1993. Between years 2009 and 2016 the number of papers has been
stable (mostly four or five per year). In 2014 two extensions to previous works have been
published in addition to five original works, making it the year with most publications on
the subject.

Figure 2.1 visualizes the snowballing process. Every node of the graph corresponds to
a reviewed paper. Seed papers are represented as filled rectangles to distinguish them from
the rest. All nodes incorporated in the same iteration are clustered together. The edges
shown in the graph correspond to the references followed to include the paper. Backward
references are marked in green and labelled “B”. For these edges, the origin node cites the
target node. Forward references are marked in blue and labelled “F”. For these edges, the
origin node is cited by the target node.

2.6.2 Technical Aspects

Most works include some form of test or application code analysis (26 and 21 contributions
respectively). Notably, the majority of works that add new test methods also include a
test code analysis phase. All papers that amplify the test suite with respect to a change
also include an application analysis stage. Search-based heuristics and symbolic execution
are used to a large extent (12 contributions each), while concolic execution and execution
modification are the least used techniques (5 contributions each).

Java programs are the most targeted systems (30 contributions), followed by C pro-
grams (12 contributions). JavaScript applications have received very little attention in the
area (only one row).

2.6.3 Tools for Test Amplification

Most test case amplification papers discussed in this paper are experimental in nature, and
are based on a prototype tool. For the field to mature, it is good if researchers can reproduce
past results, and compare their new techniques against existing ones. To this extent, it feels
that open-science in the form of publicly-available and usable research prototypes is of
utmost importance.
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Figure 2.1: Visualization of the snowballing process. Each node corresponds to a paper
included in the study. Seed papers are differentiated form the rest. Papers added in the same
iteration are clustered together. F blue edges represent forward references. B represent
backward references.
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Table 2.2: List of surveyed papers in which a URL related to a tool has been found.
Reference URL Observations

[SIR] http://sir.unl.edu This is a software repository. It is
not a tool for amplification but it
is a resource that could be used for
amplification.

[Baudry 2006] http://www.irisa.
fr/triskell/results/
Diagnosis/index.htm

The URL points only to results.

[Böhme 2014] http://www.comp.
nus.edu.sg/~release/
corebench/

The website also contains empirical
results.

[Carzaniga 2014] http://www.inf.
usi.ch/phd/goffi/
crosscheckingoracles/

[Dallmeier 2010] https://www.st.cs.
uni-saarland.de/models/
tautoko/index.html

[Daniel 2009b] http://mir.cs.illinois.
edu/reassert/

[Fang 2015] https://bitbucket.
org/fanglu/
perfblower-public

There is no explicit url in the paper
but a sentence saying that the tool
is available in Bitbucket. With this
information it was easy to find the
URL.

[Fraser 2011b] http://www.evosuite.
org/

Additional materials included.

[Marri 2010] https://sites.google.
com/site/asergrp/
projects/putstudy

The website also contains empirical
results.

[Milani Fard 2014] https://github.com/
saltlab/Testilizer

[Pacheco 2005b] http://groups.csail.
mit.edu/pag/eclat/

The website provides basic usage
example.

[Palikareva 2016] https://srg.doc.ic.ac.
uk/projects/shadow/

The website also contains empirical
results.

[Pezze 2013] http://puremvc.org/ The paper has been turned into a
company. The provided url is the
url of this company.

[Röβler 2012] https://www.st.cs.
uni-saarland.de/bugex/

The url lives, but there is no way to
download and try the tools.

[Xuan 2016a] https://github.
com/Spirals-Team/
banana-refactoring

[Xuan 2017] https://github.com/
SpoonLabs/nopol

Still active.

[Zhang 2016] https://github.com/
sei-pku/Ison
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http://www.irisa.fr/triskell/results/Diagnosis/index.htm
http://www.irisa.fr/triskell/results/Diagnosis/index.htm
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http://www.comp.nus.edu.sg/~release/corebench/
http://www.comp.nus.edu.sg/~release/corebench/
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https://srg.doc.ic.ac.uk/projects/shadow/
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https://www.st.cs.uni-saarland.de/bugex/
https://github.com/Spirals-Team/banana-refactoring
https://github.com/Spirals-Team/banana-refactoring
https://github.com/Spirals-Team/banana-refactoring
https://github.com/SpoonLabs/nopol
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https://github.com/sei-pku/Ison
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With this in mind, the mentioned tools have been surveyed, if any. The protocol was
as follows. First, looks for a URL in the paper, pointing to a web page containing the code
of the tool or experimental data. For each URL, opens it in a browser between March 1st
and March 31st 2018, to check that the page still exists and indeed contains experimental
material.

Table 2.2 contains all valid URLs found. Overall, 17 valid open-science URLs have
been identified. It may be considered as a low ratio, and thus calls for more open-science
and reproducible research in the field of test amplification.

2.7 Conclusion

Test suites are now a mandatory component of serious software development. Develop-
ers spend time and effort developing these test suites, incorporating precious and unique
knowledge inside it. These test suites are available to innovate new approaches and in the
last decades, the research has been prolific.

In this state of the art, I showed that researchers have been inspired by these available
test suites These research works achieve different goals such as improving the coverage of
the test suite, faults detection, purification, etc. In one hand, I also showed that test am-
plification takes different form such as the generation of new test methods as variant of an
existing test method or even the modification of the test execution. In the other hand, there
are still challenges to be tackled as highlighted by this survey. For example, test amplifica-
tion according to multiples changes or for several works. Also, I observed that among all
of the reviewed works, only 17 out of 49 provides a link to tool or/and experimental data.
This is a big issue for reproducibility and prevent the research community to build upon
existing works.

Most important gaps are no experimentation has been conducted while including real
developers in the loop and the lack of evidence that results can be generalized. Test ampli-
fication seems never been used to enhance regression testing capability of the test suite. In
my opinion, test amplification is a good candidate to improve the ability of the test suite to
detect regressions, or more generally detect a behavioral difference between two versions
of the same program.

In this thesis, I aim at addressing these problems by providing a test suite amplification
tool. The goal of this tool is to provide test methods that detect a behavioral change,
introduced by a developer for example. In addition to this, the outcome of this tool must
be generalizable to any software. This is why I conduct two kinds of experimentation:
executing the tool on a large benchmark of real programs from open-source community.
And obtain the assessment of real developers on the quality of this tool’s output. This
tool, called DSpot, is presented in the next chapter. DSpot has the ambition to be strong
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enough to be applied on an arbitrary program, to bring together approaches that have never
be gathered before. All the data produced for empirical evaluation are also open-source
in order to promote open-science and let the research community relies on open-data to
pursue the effort in this emerging field that is test amplification.
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As mentioned in the introduction of the previous chapter (see Chapter 2), developers
are mandated to build strong test suites in parallel to their application. This reinforces the
confidence that they have in the correctness of their application.

However, test suites are not unfortunately the first objective and thus pass to the back-
ground for developers. Their development is focused on regular cases on the way that the
program should behave. In addition to this, developers may cut corners because of lack of
time, expertise or discipline.

In the literature, one can find a lot of work trying to solve this issue, such as test
suite generation or test suite evolution [McMinn 2004, Edvardsson 2002]. Test amplifica-
tion [Yoo 2012, Danglot 2019b] is one of them. However, the surveyed works present prob-
lems (see subsection 2.2.5, subsection 2.3.4, subsection 2.4.3, subsection 2.5.4), in partic-
ular generalization of results, test amplification according to multiple changes, scaling-up
and assessment of the result by external real developers.
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In this chapter, I expose the major output of this thesis: DSpot. DSpot is a test amplifi-
cation tool that has the ambition to improve the test suite of real projects. DSpot achieves
this by providing a set of automated procedures done in three majors steps:

1. It modifies the test inputs in order to trigger new behaviors.

2. It generates assertions to verify the new behavior of the program.

3. It selects amplified test methods according to a specific test-criterion such as branch
coverage.

DSpot’s output is a set of amplified test methods that improve the original test suite
according to the specified test-criterion. The goal is to suggest these amplified test methods
to the developers as possible improvements of the test suite. For example, I could use the
pull-request mechanisms to seamlessly suggest these improvements to developers, as part
of their regular development activities.

In this chapter, I first define key concepts in Section 3.1. Then, I expose an overview
of DSpot with its principle, input & output, and its workflow in Section 3.2. Followed by
the explanation of DSpot’s algorithm in Section 3.3. Then, I detail the implementation and
the ecosystem of DSpot in Section 3.4. Eventually, I conclude this chapter in Section 3.5.

3.1 Definitions

I first define the core terminology of DSpot in the context of object-oriented Java programs.

Test suite is a set of test classes.

Test class is a class that contains test methods. A test class is neither deployed nor
executed in production.

Test method or test case is a method that sets up the system under test into a specific
state and checks that the actual state at the end of the method execution is the expected
state.

Unit test is a test method that specifies a targeted behavior of a program. Unit tests are
usually independent from each other and execute a small portion of the code, i.e. a single
unit or a single component of the whole system.

System test or Integration test is a test method that specifies a large and complex
behavior of a program. System tests are usually large and use a lot of different components
of the program.

Test-criterion is a measure of the quality of the test suite according to an engineering
goal. For instance, one can measure the execution speed of its test suite, and consider that
the faster it is executed the better it is. The most popular is probably the execution coverage,
which can be measured at different level: branches, statements, instructions. It measures
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the proportion of the program that the test suite executes. The larger is this proportion, the
better is considered the test suite since it is likely to verify more behavior.

Test inputs are the first key component of test methods. The input setup part is respon-
sible for driving the program into a specific state. For instance, one creates objects and
invokes methods on them to produce a specific state.

Assertions are the second key component of test methods. The assertion part is re-
sponsible for assessing that the actual behavior of the program corresponds to the expected
behavior, the latter being called the oracle. To do so, the assertion uses the state of the
program, i.e. all the observable values of the program, and compare it to expected val-
ues, usually hard-coded by developers. If the actual observed values of the program state
and the oracle are different (or if an exception is thrown), the test fails and the program is
considered as incorrect.

Amplified test suite is an existing test suite to which amplified test methods has been
added.

Amplified test method is a test method that has been amplified, i.e. it has been ob-
tained using an test amplification process and an existing test method.

3.2 Overview

3.2.1 Principle

Figure 3.1: DSpot’s principle: DSpot takes as input a program, an existing test suite, and
a test-criterion. DSpot outputs a set of amplified test methods. When added to the existing
test suite, these amplified test methods increase the test-criterion, i.e. the amplified test
suite is better than the original one.

DSpot

Program

Test suite Test criterion

Amplified 
test suite

DSpot is a test amplification tool. Its goal is to improve an existing test suite according
to a specific test-criterion. DSpot takes as input the program, an existing test suite, and
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Listing 3.1: Example of what DSpot produces: a diff to improve an existing test case.
1 @@ −144 ,7 +144 ,8 @@ p u b l i c v o i d t e s t E m p t y L i s t ( ) t h r ows E x c e p t i o n
2 A r r a y L i s t <Foo> f o o s = new A r r a y L i s t <Foo > ( ) ;
3

4 B y te A r r a yO u t p u tS t r e am o u t = new B y t eA r r a y Ou t p u t S t r e a m ( ) ;
5 − w r i t e L i s t T o ( out , foos , S e r i a l i z a b l e O b j e c t s . foo . cachedSchema ( ) ) ;
6 + f i n a l i n t b y t e s W r i t t e n =
7 + w r i t e L i s t T o ( out , foos , S e r i a l i z a b l e O b j e c t s . foo . cachedSchema ( )
8 + ) ;
9 + a s s e r t E q u a l s ( 0 , b y t e s W r i t t e n ) ;

10 b y t e [ ] d a t a = o u t . t o B y t e A r r a y ( ) ;

a test-criterion. The output of DSpot is a set of amplified test methods that are variants
of existing test methods. When added to the existing test suite, it create an amplified
test suite. This amplified test suite is better than the original test suite according to the
test-criterion used during the amplification. For instance, one amplifies its test suite using
branch coverage as test-criterion. This amplified test suite will execute more branches than
the exiting test suite, i.e. the one without amplified test methods. In DSpot there are for
now 3 test-criterion available: 1) keeping amplified test methods that increase the mutation
score; 2) keeping amplified test methods that increase the instruction coverage; 3) keeping
amplified test methods that detect the behavioral difference between two versions of the
same program.

Figure 3.1 shows graphically the principle of DSpot.

3.2.2 Input & Output

DSpot’s inputs are a program, a set of existing test methods and a test-criterion. The
program is used as ground truth: in DSpot we consider the program used during the ampli-
fication correct. The existing test methods are used as a seed for the amplification. DSpot
applies transformation individually to these test methods in order to improve the overall
quality of the test suite with respect to the specified test-criterion.

DSpot produces variants of the test methods provided as input. These variants are
called amplified test methods, since there are test methods that has been obtained using an
amplification process. These amplified test methods are meant to be added to the test suite.
By adding amplified test methods to the existing test suite, it creates an amplified test suite
that improves the overall test suite quality. By construction, the amplified test suite is better
than the original one with respect to the specified criterion.

An amplified test method’s integration can be done in two way: 1) the developer inte-
grates as it is the amplified test method into the test suite; 2) the developer integrate only
the changes between the original test method and the amplified test method. This enrich
directly an existing test method.

Listing 3.1 shows an example of changes’ set obtained using DSpot.
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By construction, all DSpot’s amplification can be represented as a diff on an existing
test method since amplified test methods are variants of existing ones.

3.2.3 Workflow

Figure 3.2: DSpot’s workflow in three main steps: 1) the modification of test code’s in-
puts, called “input space exploration”; 2) the addition of new assertions called “assertion
improvement”; 3) the amplified test methods selection according to a test-criterion.
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The main workflow of DSpot is composed of 3 main phases: 1) the modification of
test code’s inputs inspired by Tonella’s technique [Tonella 2004], called “input space ex-
ploration”; this phase consists in modifying test values (e.g. literals), objects and methods
calls, the underlying details will be explained in subsection 3.3.1; 2) the addition of new
assertions per Xie’s technique [Xie 2006], this phase is called “assertion improvement”
The behavior of the system under test is considered as the oracle of the assertion, see sub-
section 3.3.2. In DSpot, the combination of both techniques, i.e. the combination of input
space exploration and assertion improvement is called “test amplification”; 3) the amplified
test methods selection according to a given test-criterion, e.g. branch coverage. Eventually,
DSpot either stops or continues to apply test amplification, according to a pre-defined stop-
criterion. By doing this, DSpot stacks the transformation of test methods. In other words,
DSpot amplifies already amplified test methods, which is possible because DSpot’s output
are real test methods.

In DSpot, the used stop-criterion is a number of iteration. However, one can imagine
others kinds of stop-criterion such as a time budget, a test-criterion goal(e.g. reach 50% of
mutation score) or a finite number of amplified test methods.
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Listing 3.2: An example of an object-oriented test case (inspired from Apache Commons
Collections)

1 testIterationOrder() {
2 // contract: the iteration order is the same as the insertion

order
3

4 TreeList tl=new TreeList();
5 tl.add(1);
6 tl.add(2);
7

8 ListIterator it = tl.listIterator();
9

10 // assertions
11 assertEquals(1, it.next().intValue());
12 assertEquals(2, it.next().intValue());
13 }

3.2.4 Test Method Example

DSpot amplifies Java program’s test methods, which are typically composed of two parts:
test inputs and assertions, see Section 3.1.

Listing 3.2 illustrates an archetypal example of such a test case: first, from line 4 to line
6, the test input is created through a sequence of object creations and method calls; then,
at line 8, the tested behavior is actually triggered; the last part of the test case at 11 and 12,
the assertion part, specifies and checks the conformance of the observed behavior with the
expected one. Note that this notion of call sequence and complex objects is different from
test inputs consisting only of primitive values.

3.2.4.1 Best target test

By the algorithm’s nature, unit tests (vs integration test) are the best target for DSpot. The
reasons are behind the very nature of unit tests: First, they have a small scope, which allow
DSpot to intensify its search while an integration test, that contains a lot of code, would
make DSpot explore the neighborhood in different ways. Second, that is a consequence of
the first, the unit tests are fast to be executed against integration test. Since DSpot needs to
execute multiple times the tests under amplification, it means that DSpot would be executed
faster when it amplifies unit tests than when it amplified integration tests.
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Table 3.1: Literal test transformations in DSpot

Types Operators

Number

add 1 to an integer
minus 1 to an integer
replace an integer by zero
replace an integer by the maximum value (Integer.MAX_VALUE in Java)
replace an integer by the minimum value (Integer.MIN_VALUE in Java).

Boolean negate the value.

String

replace a string with another existing string.
replace a string with white space, or a system path separator, or a system
file separator.
add 1 random character to the string.
remove 1 random character from the string.
replace 1 random character in the string by another random character.
replace the string with a random string of the same size.
replace the string with the null value.

3.3 Algorithm

3.3.1 Input Space Exploration Algorithm

DSpot aims at exploring the input space so as to set the program in new, never explored
states. To do so, DSpot applies code transformations to the original manually-written test
methods. I-Amplification for Input Amplification, is the process of automatically creat-
ing new test input points from existing test input points. DSpot uses three kinds of I-
Amplification:

1) Amplification of literals: the new input point is obtained by changing a literal used
in the test (numeric, boolean, string). These transformations are summarized in subsec-
tion 3.3.1.

2) Amplification of method calls: DSpot manipulates method calls as follows: DSpot
duplicates an existing method call; removes a method call; or adds a new invocation to an
accessible method with an existing variable as target.

3) Test objects: if a new object is needed as a parameter while amplifying method calls,
DSpot creates an object of the correct type. In the same way, when a new method call
needs primitive value parameters, DSpot generates a random value.

For example, if an I-Amplification is applied on the example presented in Listing 3.2, it
may generate a new method call on tl. In Listing 3.3, the added method call is “removeAll”.
During this process, DSpot removes existing assertions since they might fail because it
changes the state of the program.

At each iteration, DSpot applies all kinds of I-Amplification, resulting in a set of input-
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Listing 3.3: An example of an I-Amplification: the amplification added a method call to
removeAll() on tl.

1 testIterationOrder() {
2 TreeList tl=new TreeList();
3 tl.add(1);
4 tl.add(2);
5 tl.removeAll(); // method call added
6

7 // removed assertions
8 }

amplified test methods. From one iteration to another, DSpot reuses the previously am-
plified tests, and further applies I-Amplification. By doing this, DSpot explore more the
input space. The more iteration DSpot does, the more it explores, the more it takes time to
complete.

3.3.2 Assertion Improvement Algorithm

A-Amplification: for Assertion Amplification, is the process of automatically creating new
assertions. In DSpot, assertions are added on objects from the original test case, as follows:
1) it instruments the test methods to collect the state of a program after execution (but be-
fore the assertions), i.e. it creates observation points. The state is defined by all values
returned by getter methods. 2) it runs the instrumented test to collect the values. This exe-
cution result in a map per test method, that gives the values from all getters. 3) it generates
new assertions in place of the observation points, using the collected values as oracle. In
addition, when a new test input sets the program in a state that throws an exception, DSpot
produces a test asserting that the program throws a specific exception.

Listing 3.4: In A-Amplification, the second step is to instrument and run the test to collect
runtime values.

1 testIterationOrder() {

2 TreeList tl=new TreeList();

3 tl.add(1);

4 tl.add(2);aampl

5 tl.removeAll();

6

7 Observations.observe(tl.size()); // logging current behavior

8 Observations.observe(tl.isEmpty());

9 }

For example, let consider A-Amplification on the test method of the example above.
First, in Listing 3.4 DSpot instruments the test method to collect values, by adding method
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calls to the objects involved in the test case. Second, the test with the added observation
points is executed, and subsequently, DSpot generates new assertions based on the collected
values. In Listing 3.5, DSpot has generated two new assertions.

Listing 3.5: In A-Amplification, the last step is to generate the assertions based on the
collected values.

1 testIterationOrder() {

2 TreeList tl=new TreeList();

3 tl.add(1);

4 tl.add(2);

5 tl.removeAll();

6

7 // generated assertions

8 assertEquals(0, tl.size()); // generated assertions

9 assertTrue(tl.isEmpty()); // generated assertions

10 }

3.3.3 Pseudo-algorithm

Algorithm 1 Main amplification loop of DSpot.
Require: Program P
Require: Test suite TS
Require: Test criterion TC
Require: Input-amplifiers amps to generate new test data input
Require: n number of iterations of DSpot’s main loop
Ensure: An amplified test suite ATS

1: ATS ← ∅
2: for t in TS do
3: U ← generateAssertions (t)
4: ATS ← {x ∈ U |x improves TC}
5: TMP ← ATS
6: for i = 0 to n do
7: V ← []
8: for amp in amps do
9: V ← V ∪ amp.apply (TMP )

10: end for
11: V ← generateAssertions (V )
12: ATS ← ATS ∪ {x ∈ V |x improves TC}
13: TMP ← V
14: end for
15: end forreturn ATS

Algorithm 1 shows the main loop of DSpot. DSpot takes as input a program P , its test
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suite TS and a test-criterion TC. DSpot also uses an integer n that defines the number of
iterations and a set of input-amplifiers amp. DSpot produces an amplified test suite ATS,
i.e. a better version of the input test suite TS according to the specified test criterion TC.
First, DSpot initializes an empty set of amplified test methods ATS that will be outputted
(Line 1). For each test case t in the test suite TS (Line 2), DSpot first tries to add asser-
tions without generating any new test input (Line 3), method generateAssertions (t) is
explained in subsection 3.3.2. It adds to ATS the tests that improve the test-criterion(Line
4).

Note that adding missing assertions is the elementary way to improve existing tests.
Consequently, in DSpot there are two modes, depending on the configuration:

1) DSpot executes only assertion amplification, if n = 0 or amp = ∅:
2) DSpot executes both input space exploration and assertion amplification, if n > 0

and amp 6= ∅
In the former mode, there is no exploration of the input space, resulting in a quick

execution but less potential to improve the test-criterion. In the latter mode, the exploration,
depending on n, takes times but have more potential to improve the test-criterion.

DSpot initializes a temporary list of tests TMP with elements from ATS, if any (Line
5). Then it applies n times the following steps (Line 6): 1) it applies each amplifier amp
on each tests of TMP to build V (Line 8-9 see subsection 3.3.1 i.e. I-Amplification);
2) it generates assertions on generated tests in V (Line 11 see subsection 3.3.2, i.e. A-
Amplification); 3) it keeps the tests that improve the test-criterion(Line 12). 4) it assigns V
to TMP for the next iteration. This is done because even if some amplified test methods
in V have not been selected, it can contain amplified test methods that will eventually be
better in subsequent iterations.

3.3.4 Flaky tests elimination

The input space exploration (see subsection 3.3.1) may produce test inputs that results in
non-deterministic executions. This means that, between two independent executions, the
state of the program is not the same. Since DSpot generates assertions where the expected
value is a hard coded value from a specific run (see subsection 3.3.2), the generated test
case may become flaky: it passes or fails depending on the execution and whether the
expected value is obtained or not.

To avoid such flaky tests, DSpot run f times each new test case resulting from amplifi-
cation (f = 3 in the default configuration). If a test fails at least once, DSpot throws it away.
This procedure does not guarantee the absence of flakiness. However, it gives incremental
confidence: if the user wants more confidence, she can tell DSpot to run the amplified tests
more times.
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3.4 Implementation

DSpot is implemented in Java. It consists of 19295+ logical lines of code (as measured by
cloc). DSpot uses Spoon[Pawlak 2015] to analyze and transform the tests of the software
application under amplification.

For the sake of open-science, DSpot is made publicly available on GitHub1. This repos-
itory is animated by the community around DSpot. It uses a pull-request based develop-
ment to promote open-source contributions.

Since DSpot has been developed with the ultimate goal to serve developers in their task
of testing their programs, I participated to the development of a rich ecosystem.

First, DSpot-maven is a maven plugin that allows developers to execute DSpot on their
maven project without downloading anything. This plugin allows also developers to con-
figure DSpot inside their own pom with specific setup in order to automate the application
of DSpot.

Second, STAMP’s partners developed an Eclipse plugin and Jenkins plugin. The for-
mer allows developers to run DSpot inside Eclipse, with a friendly UI to configure it. The
latter allows developers to run DSpot as a Jenkins jobs in order to integrate DSpot in their
continuous integration service.

3.5 Conclusion

This chapter presented technical details about DSpot. DSpot is a test amplification tool that
improves the test suite. DSpot is the implementation of the first algorithm that combines 2
approaches from the state of the art: the input modification by Tonella et al. [Tonella 2004]
and the assertions generation by Xie[Xie 2006]. DSpot provides a new tool to improve-
ment test methods automatically. It has the potential to assist developers in the extremely
important task that is testing the application. DSpot’s output is a set of amplified test meth-
ods that improve the original test suite according to the specified test-criterion. DSpot’s
algorithm is done in 3 main steps:

1. It transforms the input of tests using static analysis and code transformation to create
a new state of the program.

2. it observes the new state of the program and generate assertions in order to obtain
complete test methods.

3. it uses a test-criterion to keep only amplified test methods that improve the test suite
with respect to this same criterion, e.g. branch coverage.

1https://github.com/STAMP-project/dspot

https://github.com/STAMP-project/dspot


46 Chapter 3. DSpot: A Test Amplification Technique

In the two following chapters, I evaluate the performance of DSpot to improve existing
test suite in two scenarios: A first scenario where DSpot improves existing test suites of
open-source projects from GitHub. DSpot’s output is evaluated by external developers and
the test-criterion to improve is the mutation score. A second scenario where DSpot is en-
hanced to be executed inside the continuous integration. The goal is to detect a behavioral
changes introduced by commits done by developers on a version control platform such as
GitHub.
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This thesis aims at supporting developers in their developing tasks. One of them is to
evolve the test suite, i.e. modify or add test methods, to strengthen their confidence in the
program’s correctness. In Chapter 3, I introduced DSpot which is a test suite amplification
tool. In this chapter, I evaluate the effectiveness of DSpot to improve the quality of a test
suite and the acceptability of the resulting amplified test methods.

This evaluation is based on the mutation score as test-criterion. I confronted DSpot’s
output to real projects from GitHub. To do so, I proposed to developers to integrate directly
the amplified test methods into their test suite. Developers showed their interest in ampli-
fied test methods by permanently accepting some DSpot’s amplified test methods into their
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test suite. I also performed an evaluation on 40 test classes from 10 projects from GitHub
and showed that DSpot improves 26 of them.

To sum up, the contributions of this chapter are:

• The design and execution of an experiment to assess the relevance of DSpot, based
on feedback from the developers of mature and active projects.

• The design and execution of a large scale quantitative study of the improvement of
40 real-world test classes taken from 10 mature open-source Java projects.

• Fully open-science data: the experimental data are made publicly available for future
research1.

Note that this chapter has been published [Danglot 2019c] in the Springer journal Empiri-
cal Software Engineering and the remainder is as follows: Section 4.1 introduces mutation
score as a test-criterion. Section 4.2 presents the experimental protocol of our study. Sec-
tion 4.3 analyses our empirical results.. Section 4.4 discusses the threats to validity. and
Section 4.5 concludes this chapter.

4.1 Mutation score as test-criterion

Mutation score measures the test suite’s ability to detect artificial behavioral changes.
Briefly, it is measured as follows:

1) It injects a fault, or an artificial behavioral change, in the source code, e.g. changes a
≥ into a >. This modified program is called “mutants”. It generates different mutants with
different artificial behavioral change.

2) It executes the test suite on the mutant.
3) It collects the result of the test suite execution. If at least on test method fails, it

means that the test suite is able to detect the fault. It is said that the test suite kills the
mutant. If no test methods failed, it means that the test suite is not able to detect the fault.
It is said that the mutant remains alive.

4) To compute the mutation score, one must compute the percentage of mutants killed
over the mutants generated. The more mutants the test suite kills, the better is considered
the test suite.

Mutation score aims at emulating faults that a developer could integrate in his code. If
the test suite has a high mutation score, the probability that it detects such fault increase.

DSpot uses Pitest [Coles 2016] 2 because:
1) It targets Java programs.

1https://github.com/STAMP-project/dspot-experiments/
2latest version released at the time of the experimentation: 1.2.0.https://github.com/hcoles/

pitest/releases/tag/1.2.0

https://github.com/STAMP-project/dspot-experiments/
https://github.com/hcoles/pitest/releases/tag/1.2.0
https://github.com/hcoles/pitest/releases/tag/1.2.0
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2) It is mature and well-regarded.

3) It has an active community.

The most important feature of Pitest is that if the application code remains unchanged,
the generated mutants are always the same. This property is very interesting for test am-
plification. Since DSpot only modifies test code, this feature allows us to compare the
mutation score of the original test method against the mutation score of the amplified ver-
sion and even compare the absolute number of mutants killed by two test method variants.
DSpot exploits this feature to use mutation score as a reliable test-criterion: since DSpot
never modifies the application code, the set of mutants is the same between runs and thus
allow DSpot to a concrete and stable baseline for the baseline. DSpot can compare mu-
tants killed before and mutants killed after the amplification in order to select amplified test
methods that kill mutants that were not killed by the original test suite.

By default, DSpot uses all the mutation operators available in Pitest: conditionals
boundary mutator; increments mutator; invert negatives mutator; math mutator; negate con-
ditionals mutator; return values mutator; void method calls mutator. For more information,
see the dedicated section of Pitest’s website: http://pitest.org/quickstart/
mutators/.

In this experimentation, mutation score has been choose over coverage because muta-
tion score is consider stronger than coverage. The purpose of test suites is to check the
program’s behavior. In one hand, coverage is only based on the execution of the program
and do not require any oracles. Coverage does not measure the proportion of the behavior
tested but only the proportion of code executed. In the other hand, mutation score requires
oracles and thus to have a high mutation score, the test suite must contains oracles.

4.2 Experimental Protocol

Recalling that DSpot is a automatic test improvement process. Such processes have
been evaluated with respect to evolutionary test inputs [Tonella 2004] and new assertions
[Xie 2006]. However:

1) The two topics have never been studied in conjunction.

2) They have never been studied on large modern Java programs.

3) Most importantly, the quality of improved tests has never been assessed by develop-
ers.

I set up a novel experimental protocol that addresses those three points. First, the exper-
iment is based on DSpot, which combines test input exploration and assertion generation.
Second, the experiment is made on 10 active GitHub projects. Third, I have proposed
improved tests to developers under the form of pull-requests.

The evaluation aims at answering the following research questions:

http://pitest.org/quickstart/mutators/
http://pitest.org/quickstart/mutators/
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4.2.1 Research Questions

RQ1: Are the improved test cases produced by DSpot relevant for developers? Are the
developers ready to permanently accept the improved test cases into the test repository?
RQ2: To what extent are improved test methods considered as focused?
RQ3: To what extent do the improved test classes increase the mutation score of the
original, manually-written, test classes?
RQ4: What is the relative contribution of I-Amplification and A-Amplification to the
effectiveness of automatic test improvement?

4.2.2 Dataset

DSpot has been evaluated by amplifying test classes of large-scale, notable, open-source
projects. The dataset includes projects that fulfil the following criteria:

1) The project must be written in Java.

2) The project must have a test suite based on JUnit.

3) The project must be compiled and tested with Maven.

4) The project must have an active community as defined by the presence of pull re-
quests on GitHub, see subsection 4.3.1.

Table 4.1: Dataset of 10 active GitHub projects considered for experiments.
Project Description # LOC # PR Considered test classes

javapoet Java source file generator 3150 93 TypeNameTesth NameAllocatorTesth
FieldSpecTestl ParameterSpecTestl

mybatis-3 Object-relational mapping framework 20683 288 MetaClassTesth ParameterExpressionTesth
WrongNamespacesTestl WrongMapperTestl

traccar Server for GPS tracking devices 32648 373 GeolocationProviderTesth MiscFormatterTesth
ObdDecoderTestl At2000ProtocolDecoderTestl

stream-lib Library for summarizing data in streams 4767 21 TestLookup3Hashh TestDoublyLinkedListh
TestICardinalityl TestMurmurHashl

mustache.java Web application templating system 3166 11 ArraysIndexesTesth ClasspathResolverTesth
ConcurrencyTestl AbstractClassTestl

twilio-java Library for communicating REST API 54423 87 RequestTesth PrefixedCollapsibleMapTesth
AllTimeTestl DailyTestl

jsoup HTML parser 10925 72 TokenQueueTesth CharacterReaderTesth
AttributeTestl AttributesTesth

protostuff Data serialization library 4700 35 TailDelimiterTesth LinkBufferTesth
CodedDataInputTestl CodedInputTesth

logback Logging framework 15490 104 FileNamePatternTesth SyslogAppenderBaseTesth
FileAppenderResilience_AS_ROOT_Testl Basicl

retrofit HTTP client for Android. 2743 249 RequestBuilderAndroidTesth CallAdapterTesth
ExecutorCallAdapterFactoryTesth CallTesth

Those criteria have been implemented as a query on top of TravisTorrent [Beller 2017].
10 projects has been selected from the result of the query which composed the dataset
presented in Table 4.1. This table gives the project name, a short description, the number
of pull-requests on GitHub (#PR), and the considered test classes. For instance, javapoet is
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a strongly-tested and active project, which implements a Java file generator, it has had 93
pull-requests in 2016.

4.2.3 Test Case Selection Process

For each project, 4 test classes have been select to be amplified. Those test classes are
chosen as follows.

First, the test class must be a unit-test classes only, because DSpot focuses on unit test
amplification. I use the following heuristic to discriminate unit test cases from others: test
classes kept are test classes which executes less than an arbitrary threshold of S statements,
i.e. if it covers a small portion of the code. In this experiment, S = 1500.

Among the unit-tests, 4 classes has been selected as follows. Since I want to analyze
the performance of DSpot when it is provided with both good and bad tests, selected test
classes has been split into two groups: one group with strong tests, one other group with
low quality tests. mutation score has been used to distinguish between good and bad test
classes. Accordingly, the selection process has five steps:

1) Compute the original mutation score of each class with Pitest (see Section 4.1.

2) Discard test classes that have 100% mutation score, because they can already be
considered as perfect tests (this is the case for eleven classes, showing that the considered
projects in the dataset are really well-tested projects).

3) Sort the classes by mutation score ( see subsection 4.2.4), in ascending order.

4) Split the set of test classes into two groups: high mutation score ( > 50%) and low
mutation score (< 50%).

5) Randomly select 2 test classes in each group.

This selection results with 40 test classes: 24 in high mutation group score and 16 in
low mutation score group. The imbalance is due to the fact that there are three projects
really well tested for which there are none or a single test class with a low mutation score
(projects protostuff, jsoup, retrofit). Consequently, those three projects are represented with
3 or 4 well-tested classes (and 1 or 0 poorly-tested class). In Table 4.1, the last column
contains the name of the selected test classes. Each test class name is indexed by a “h” or
a “l” which means respectively that the class have a high mutation score or a low mutation
score.

4.2.4 Metrics

Number of Killed Mutants (#Killed.Mutants): is the absolute number of mutants
killed by a test class. It used to compare the fault detection power of an original test
class and the one of its amplified version.
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Mutation Score: is the percentage of killed mutants over the number of executed
mutants. Mathematically, it is computed as follows:

#Killed.Mutants

#Exec.Mutants

.
Increase Killed: is the relative increase of the number of killed mutants by an original

test class T and the number of killed mutants by its amplified version Ta. It is computed as
follows:

#Killed.MutantsTa −#Killed.MutantsT
#Killed.MutantsT

The goal of DSpot is to improve tests such that the number of killed mutants increases.

4.2.5 Methodology

This experimental protocol has been designed to study to what extent DSpot and its result
are valuable for the developer.

• RQ1 To answer to RQ1, pull-requests have been created on notable open-source
projects. DSpot amplifies 19 test classes of selected projects and I propose amplified
test methods to the main developers of each project under consideration in the form
of pull requests (PR) on GitHub. A PR is composed of a title, a short text that
describes the purpose of changes and a set of code change (aka a patch). The main
developers review, discuss and decide to merge or not each pull request. I base
the answer on the subjective and expert assessment from projects’ developers. If a
developer merges an improvement synthesized by DSpot, it validates the relevance
of DSpot. The more developers accept and merge test improvements produced by
DSpot into their test suite, the more the amplification is considered successful.

• RQ2 To answer RQ2, the number of suggested improvements is computed, to ver-
ify that the developer is not overwhelmed with suggestions. The number of focused
amplified test methods is computed following the technique described in subsubsec-
tion 4.3.1.2, for each project in the benchmark. I present and discuss the proportion
of focused tests out of all proposed amplified tests.

• RQ3 To answer RQ3, I see whether the value that is taken as proxy to the developer
value – the mutation score– is appropriately improved. For 40 real-world classes,
first Pitest (see Section 4.1) is ran the mutation testing tool on the test class. This
gives the number of killed mutants for this original class. Then, the test class under
consideration is amplified and the new number of killed mutants after amplification
is computed. Finally, the result are compared and analyzed.
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• RQ4 To answer RQ4, the number of A-Amplification and I-Amplification amplifi-
cations are computed. The former means that the suggested improvement is very
short hence easy to be accepted by the developer while the latter means that more
time would be required to understand the improvement. First, I collect three series
of metrics:

1) I compute number of killed mutants for the original test class.

2) I improve the test class under consideration using only A-Amplification and com-
pute the new number of killed mutants after amplification.

3) I improve the test class under consideration using I-Amplification as well as A-
Amplification (the standard complete DSpot workflow) and compute the number of
killed mutants after amplification.

Then, I compare the increase of mutation score obtained by using A-Amplification
only and A-Amplification + I-Amplification3.

Research questions 3 and 4 focus on the mutation score to assess the value of ampli-
fied test methods. This experimental design choice is guided by the approach to select
“focused” test methods, which are likely to be selected by the developers (described in
subsubsection 4.3.1.2). Recall that the number of killed mutants by the amplified test is
the key focus indicator. Hence, the more DSpot is able to improve the mutation score, the
more likely there are good candidates for the developers.

4.3 Experimental Results

4.3.1 Answer to RQ1

RQ1: Would developers be ready to permanently accept automatically improved test
cases into the test repository?

4.3.1.1 Process

In this research question, the goal is to propose a new test to the lead developers of the
open-source projects under consideration. The improved test is proposed through a “pull-
request”, which is a way to reach developers with patches on collaborative development
platforms such as GitHub.

In practice, short pull requests (i.e. with small test modifications) with clear purpose,
i.e. what for it has been opened, have much more chance of being reviewed, discussed and

3Note that the relative contribution of I-Amplification cannot be evaluated alone, because as soon as DSpot
modifies the inputs in a test case, it is also necessary to change and improve the oracle (which is the role of
A-Amplification).
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eventually merged. So the goal is to provide improved tests which are easy to review. As
shown in subsection 3.3.1, DSpot generates several amplified test cases, and all of them
cannot be proposed to the developers. To select the new test case to be proposed as a pull
request, I look for an amplified test that kills mutants located in the same method. From
the developer’s viewpoint, it means that the intention of the test is clear: it specifies the
behavior provided by a given method or block.

4.3.1.2 Selection Of Amplified Method For Pull Requests

DSpot sometimes produces many tests, from one initial test. Due to limited time, the
developer needs to focus on the most interesting ones. To select the test methods that are
the most likely to be merged in the code base, the following heuristic is implemented: First,
the amplified test methods are sorted according to the ratio of newly killed mutants and the
total number of test modifications. Then, in case of equality, the methods are further sorted
according to the maximum numbers of mutants killed in the same method.

The first criterion means that short modifications have more valuable than large ones.
The second criterion means that the amplified test method is focused and tries to specify
one specific method inside the code.

If an amplified test method is merged in the code base, the corresponding method is
considered as specified. In that case, other amplified test methods that specify the same
method are no longer taken into account.

Finally, in this ordered list, the developer is recommended the amplified tests that are
focused, where focus is defined as where at least 50% of the newly killed mutants are
located in a single method. The goal is to select amplified tests which intent can be easily
grasped by the developer: the new test specifies the method.

For each selected method, I compute and minimize the diff between the original method
and the amplified one and then the diff as a pull request is submitted. A second point in the
preparation of the pull request relates to the length of the amplified test: once a test method
has been selected as a candidate pull request, the diff is made as concise as possible for the
review to be fast and easy.

4.3.1.3 Overview

In total, 19 pull requests has been created, as shown in subsubsection 4.3.1.3. In this table,
the first column is the name of the project, the second is number of opened pull requests,
i.e. the number of amplified test methods proposed to developers. The third column is the
number of amplified test methods accepted by the developers and permanently integrated in
their test suite. The fourth column is the number of amplified test methods rejected by the
developers. The fifth column is the number of pull requests that are still being discussed,
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Table 4.2: Overall result of the opened pull request built from result of DSpot.

Project # opened # merged # closed
# under

discussion

javapoet 4 4 0 0
mybatis-3 2 2 0 0
traccar 2 1 0 1
stream-lib 1 1 0 0
mustache 2 2 0 0
twilio 2 1 0 1
jsoup 2 1 1 0
prostostuff 2 2 0 0
logback 2 0 0 2
retrofit 0 0 0 0

total 19 14 1 4

i.e. nor merged nor closed. Note that these numbers might change over time if pull-requests
are merged or closed.

Overall 14 over 19 have been merged. Only 1 has been rejected by developers. There
are 4 under discussion. Table 4.3.1.3 contains the URLs of pull requests proposed in this
experimentation.

In the following, one pull-request per project is analyzed.

4.3.1.4 javapoet

DSpot has been applied to amplify TypeNameTest. DSpot synthesizes a single assertion
that kills 3 more mutants, all of them at line 197 of the equals method. A manual analysis
reveals that this new assertion specifies a contract for the method equals() of objects of
type TypeName: the method must return false when the input is null. This contract was
not tested.

Consequently, I have proposed to the Javapoet developers one liner pull request 4

showed in Listing 4.1.

Listing 4.1: Test-improvement proposed to Javapoet developers.
1 @@ −178 ,5 +179 ,6 @@ p r i v a t e v o i d a s s e r t E q u a l s H a s h C o d e A n d T o S t r i n g ( TypeName a ,

TypeName b ) {
2 a s s e r t E q u a l s ( a . t o S t r i n g ( ) , b . t o S t r i n g ( ) ) ;
3 a s s e r t T h a t ( a . e q u a l s ( b ) ) . i s T r u e ( ) ;
4 a s s e r t T h a t ( a . hashCode ( ) ) . i s E q u a l T o ( b . hashCode ( ) ) ;
5 + a s s e r t F a l s e ( a . e q u a l s ( n u l l ) ) ;

4https://github.com/square/javapoet/pull/544

https://github.com/square/javapoet/pull/544
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Table 4.3: List of URLs to the pull-requests created in this experiment.

Project Pull request URLs

javapoet

https://github.com/square/javapoet/pull/669
https://github.com/square/javapoet/pull/668
https://github.com/square/javapoet/pull/667
https://github.com/square/javapoet/pull/544

mybatis-3
https://github.com/mybatis/mybatis-3/pull/1331
https://github.com/mybatis/mybatis-3/pull/912

traccar
https://github.com/traccar/traccar/pull/2897
https://github.com/traccar/traccar/pull/4012

stream-lib https://github.com/addthis/stream-lib/pull/128

mustache
https://github.com/spullara/mustache.java/pull/210
https://github.com/spullara/mustache.java/pull/186

twilio
https://github.com/twilio/twilio-java/pull/437
https://github.com/twilio/twilio-java/pull/334

jsoup
https://github.com/jhy/jsoup/pull/1110
https://github.com/jhy/jsoup/pull/840

protostuff
https://github.com/protostuff/protostuff/pull/250
https://github.com/protostuff/protostuff/pull/212

logback
https://github.com/qos-ch/logback/pull/424
https://github.com/qos-ch/logback/pull/365

The title of the pull resuest is: “Improve test on TypeName” with the following short
text: “Hello, I open this pull request to specify the line 197 in the equals() method of
com.squareup.javapoet.TypeName. if (o == null) return false;” This test improvement
synthesized by DSpot has been merged by of the lead developer of javapoet one hour after
its proposal.

4.3.1.5 mybatis-3

In project mybatis-3, DSpot has been applied to amplify a test for MetaClass. DSpot
synthesizes a single assertion that kills 8 more mutants. All new mutants killed are lo-
cated between lines 174 and 179, i.e. the then branch of an if-statement in method
buildProperty(String property, StringBuilder sb) of MetaClass.
This method builds a String that represents the property given as input. The then branch
is responsible to build the String in case the property has a child, e.g. the input is
“richType.richProperty”. This behavior is not specified at all in the original test class.

I proposed to the developers the pull request, showed in Listing 4.2 entitled “Improve
test on MetaClass” with the following short text: “Hello, I open this pull request to specify
the lines 174-179 in the buildProperty(String, StringBuilder) method of MetaClass.”, 5

5https://github.com/mybatis/mybatis-3/pull/912/files

https://github.com/square/javapoet/pull/669
https://github.com/square/javapoet/pull/668
https://github.com/square/javapoet/pull/667
https://github.com/square/javapoet/pull/544
https://github.com/mybatis/mybatis-3/pull/1331
https://github.com/mybatis/mybatis-3/pull/912
https://github.com/traccar/traccar/pull/2897
https://github.com/traccar/traccar/pull/4012
https://github.com/addthis/stream-lib/pull/128
https://github.com/spullara/mustache.java/pull/210
https://github.com/spullara/mustache.java/pull/186
https://github.com/twilio/twilio-java/pull/437
https://github.com/twilio/twilio-java/pull/334
https://github.com/jhy/jsoup/pull/1110
https://github.com/jhy/jsoup/pull/840
https://github.com/protostuff/protostuff/pull/250
https://github.com/protostuff/protostuff/pull/212
https://github.com/qos-ch/logback/pull/424
https://github.com/qos-ch/logback/pull/365
https://github.com/mybatis/mybatis-3/pull/912/files
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Listing 4.2: Test-improvement proposed to MyBatis-3 developers.
1 @@ −65,6 +65 ,8 @@ p u b l i c v o i d s h o u l d C h e c k G e t t e r E x i s t a n c e ( ) {
2 a s s e r t T r u e ( meta . h a s G e t t e r ( " r i c h T y p e . r ichMap " ) ) ;
3 a s s e r t T r u e ( meta . h a s G e t t e r ( " r i c h T y p e . r i c h L i s t [ 0 ] " ) ) ;
4

5 + a s s e r t E q u a l s (
6 + r i c h T y p e . r i c h P r o p e r t y " ,
7 + meta . f i n d P r o p e r t y ( " r i c h T y p e . r i c h P r o p e r t y " , f a l s e )
8 + ) ;

The developer accepted the test improvement and merged the pull request the same day
without a single objection.

4.3.1.6 traccar

DSpot has been applied to amplify ObdDecoderTest. It identifies a single assertion
that kills 14 more mutants. All newly killed mutants are located between lines 60 to 80,
i.e. in the method decodesCodes() of ObdDecoder, which is responsible to decode
a String. In this case, the pull request consists of a new test method because the new
assertions do not fit with the intent of existing tests. This new test method is proposed into
ObdDecoderTest, which is the class under amplification. The PR was entitled “Improve
test cases on ObdDecoder” with the following description: “Hello, I open this pull request
to specify the method decodeCodes of the ObdDecoder”. 6 The PR is shown in Listing 4.3.

Listing 4.3: Test-improvement proposed to traccar developers.
1 @@ −16,4 +16 ,10 @@ p u b l i c v o i d t e s t D e c o d e ( ) {
2

3 }
4

5 + @Test
6 + p u b l i c vo id t e s t D e c o d e C o d e s ( ) t h ro ws E x c e p t i o n {
7 + A s s e r t . a s s e r t E q u a l s ( " P0D14 " , ObdDecoder . decodeCodes ( " 0 D14 " ) . g e t V a l u e ( ) ) ;
8 + A s s e r t . a s s e r t E q u a l s ( " d t c s " , ObdDecoder . decodeCodes ( " 0 D14 " ) . getKey ( ) ) ;
9 + }

The developer of traccar thanked us for the proposed changes and merged it the same
day.

4.3.1.7 stream-lib

DSpot has been applied to amplify TestMurmurHash. It identifies a new test input that
kills 15 more mutants. All newly killed mutants are located in method hash64() of
MurmurHash from lines 158 to 216. This method computes a hash for a given array of
byte. The PR, shown in Listing 4.4, was entitled “Test: Specify hash64” with the following

6https://github.com/tananaev/traccar/pull/2897

https://github.com/tananaev/traccar/pull/2897
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description: “The proposed change specifies what the good hash code must be. With the
current test, any change in "hash" would still make the test pass, incl. the changes that
would result in an inefficient hash.”. 7

Listing 4.4: Test-improvement proposed to stream-lib developers.
1 @@ −44,7 +44 ,7 @@ p u b l i c v o i d t e s t H a s h 6 4 B y t e A r r a y O v e r l o a d ( ) {
2 S t r i n g i n p u t = " h a s h t h i s " ;
3 b y t e [ ] i n p u t B y t e s = i n p u t . g e t B y t e s ( ) ;
4

5 − l ong h a s h O f S t r i n g = MurmurHash . hash64 ( i n p u t ) ;
6 + long h a s h O f S t r i n g = −8896273065425798843L ;
7 a s s e r t E q u a l s ( " MurmurHash . hash64 ( b y t e [ ] ) d i d n o t match MurmurHash . hash64 ( S t r i n g )

" ,
8 h a s h O f S t r i n g , MurmurHash . hash64 ( i n p u t B y t e s ) ) ;

Two days later, one developer mentioned the fact that the test is verifying the overload
of the method and is not specifying the method hash itself. He closed the PR because it
was not relevant to put changes there. He suggested to open an new pull request with a
new test method instead of changing the existing test method. I proposed, 6 days later, a
second pull request entitled “add test for hash() and hash64() against hard coded values”
with no description, since I estimated that the developer was aware of the test intention.8.
This second pull request is shown in Listing 4.5.

The pull request has been merged by the same developer 20 days later.

4.3.1.8 mustache.java

DSpot has been applied to amplify AbstractClassTest. It identifies a try/catch/fail
block that kills 2 more mutants. This is an interesting new case, compared to the ones
previously discussed, because it is about the specification of exceptions, i.e. of behavior
under erroneous inputs. All newly killed mutants are located in method compile() on
line 194. The test specifies that if a variable is improperly closed, the program must throw a
MustacheException. In the Mustache template language, an improperly closed vari-
able occurs when an opening brace “{” does not have its matching closing brace such as
in the input of the proposed changes. I propose the pull request, shown Listing 4.6, to the
developers, entitled “Add Test: improperly closed variable” with the following description:
“Hello, I proposed this change to improve the test on MustacheParser. When a variable is
improperly closed, a MustacheException is thrown.”.9

12 days later, a developer accepted the change, but noted that the test should be in
another class. He closed the pull request and added the changes himself into the desired

7https://github.com/addthis/stream-lib/pull/127/files
8https://github.com/addthis/stream-lib/pull/128/files
9https://github.com/spullara/mustache.java/pull/186/files

https://github.com/addthis/stream-lib/pull/127/files
https://github.com/addthis/stream-lib/pull/128/files
https://github.com/spullara/mustache.java/pull/186/files
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Listing 4.5: Test-improvement proposed to stream-lib developers with developers’ sugges-
tions.

1 @@ −52,4 +52 ,22 @@ p u b l i c v o i d t e s t H a s h 6 4 B y t e A r r a y O v e r l o a d ( ) {
2 a s s e r t E q u a l s ( " MurmurHash . hash64 ( O b j e c t ) g i v e n a b y t e [ ] d i d n o t match MurmurHash .

hash64 ( S t r i n g ) " ,
3 h a s h O f S t r i n g , MurmurHash . hash64 ( b y t e s A s O b j e c t ) ) ;
4 }
5

6 + / / t e s t t h e r e t u r n e d v a l u e d of hash f u n c t i o n s a g a i n s t
7 + / / t h e r e f e r e n c e i m p l e m e n t a t i o n : h t t p s : / / g i t h u b . com / a a p p l e b y / smhasher . g i t
8

9 + @Test
10 + p u b l i c vo id t e s t H a s h 6 4 ( ) t h ro ws E x c e p t i o n {
11 + f i n a l l ong a c t u a l H a s h = MurmurHash . hash64 ( " h a s h t h i s " ) ;
12 + f i n a l l ong expec t edHash = −8896273065425798843L ;
13 +
14 + a s s e r t E q u a l s (
15 + " MurmurHash . hash64 ( S t r i n g ) r e t u r n s wrong hash v a l u e " ,
16 + expec tedHash ,
17 + a c t u a l H a s h
18 + ) ;
19 + }
20

21 + @Test
22 + p u b l i c vo id t e s t H a s h ( ) t h ro ws E x c e p t i o n {
23 + f i n a l l ong a c t u a l H a s h = MurmurHash . hash ( " h a s h t h i s " ) ;
24 + f i n a l l ong expec t edHash = −1974946086L ;
25 +
26 + a s s e r t E q u a l s (
27 + " MurmurHash . hash64 ( S t r i n g ) r e t u r n s wrong hash v a l u e " ,
28 + expec tedHash ,
29 + a c t u a l H a s h
30 + ) ;
31 + }

Listing 4.6: Test-improvement proposed to mustache.java developers.
1 @@ −63,4 +66 ,15 @@ p u b l i c v o i d t e s t A b s t r a c t C l a s s N o D o t s ( ) t h ro ws I O E x c e p t i o n {
2 mustache . e x e c u t e ( w r i t e r , s c o p e s ) ;
3 w r i t e r . f l u s h ( ) ;
4 }
5

6 + @Test
7 + p u b l i c vo id t e s t I m p r o p e r l y C l o s e d V a r i a b l e ( ) t h ro ws IOExcep t i on {
8 + t r y {
9 + new D e f a u l t M u s t a c h e F a c t o r y ( )

10 + . compi l e ( new S t r i n g R e a d e r ( " { { { # c o n t a i n e r s }} { { / c o n t a i n e r s } } " ) , " example " ) ;
11 + f a i l ( " Should have throw Mu s t ach eE xce p t i on " ) ;
12 + } c a t c h ( Mu s t ach eE xce p t i on a c t u a l ) {
13 + a s s e r t E q u a l s (
14 + " I m p r o p e r l y c l o s e d v a r i a b l e i n example : 1 @[ example : 1 ] " ,
15 + a c t u a l . ge tMessage ( )
16 + ) ;
17 + }
18 + }
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class.10.

4.3.1.9 twilio-java

DSpot has been applied to amplify RequestTest. It identifies two new assertions that
kill 4 more mutants. All killed mutants are between lines 260 and 265 in the method
equals() of Request. The change specifies that an object Request is not equal to
null nor an object of different type, i.e. Object here. The pull request was entitled “add
test equals() on request”, accompanied with the short description “Hi, I propose this change
to specify the equals() method of com.twilio.http.Request, against object and null value”.
11 Listing 4.7 shows this pull request.

Listing 4.7: Test-improvement proposed to twilio-java developers.
1 @@ −166 ,5 +166 ,13 @@ p u b l i c v o i d t e s t R e q u i r e s A u t h e n t i c a t i o n ( ) {
2 + a s s e r t T r u e ( r e q u e s t . r e q u i r e s A u t h e n t i c a t i o n ( ) ) ;
3 + }
4

5 + @Test
6 + p u b l i c vo id t e s t E q u a l s ( ) {
7 + Reques t r e q u e s t = new Reques t ( HttpMethod . DELETE , " / u r i " ) ;
8 + r e q u e s t . s e t A u t h ( " username " , " password " ) ;
9 + a s s e r t F a l s e ( r e q u e s t . e q u a l s ( new O b j e c t ( ) ) ) ;

10 + a s s e r t F a l s e ( r e q u e s t . e q u a l s ( n u l l ) ) ;
11 + }

A developer merged the change 4 days later.

4.3.1.10 jsoup

DSpot has been applied to amplify AttributeTest. It identifies one assertion that
kills 13 more mutants. All mutants are in the method hashcode of Attribute. The pull
request, shown in Listing 4.8, was entitled “add test case for hashcode in attribute” with
the following short description “Hello, I propose this change to specify the hashCode of
the object org.jsoup.nodes.Attribute.”12:

One developer highlighted the point that the hashCode method is an implementation
detail, and it is not a relevant element of the API. Consequently, he did not accept our test
improvement.

At this point, I have made two pull requests targeting hashCode methods. One ac-
cepted and one rejected. hashCode methods could require a different testing approach to
validate the number of potential collisions in a collection of objects rather than checking

10the diff is same:https://github.com/spullara/mustache.java/commit/
9efa19d595f893527ff218683e70db2ae4d8fb2d

11https://github.com/twilio/twilio-java/pull/334/files
12https://github.com/jhy/jsoup/pull/840

https://github.com/spullara/mustache.java/commit/9efa19d595f893527ff218683e70db2ae4d8fb2d
https://github.com/spullara/mustache.java/commit/9efa19d595f893527ff218683e70db2ae4d8fb2d
https://github.com/twilio/twilio-java/pull/334/files
https://github.com/jhy/jsoup/pull/840
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Listing 4.8: Test-improvement proposed to jsoup developers.
1 @@ −17,4 +17 ,11 @@
2 a s s e r t E q u a l s ( s + " = \ "A" + s + "B \ " " , a t t r . h tml ( ) ) ;
3 a s s e r t E q u a l s ( a t t r . h tml ( ) , a t t r . t o S t r i n g ( ) ) ;
4 + }
5

6 + @Test
7 + p u b l i c vo id t e s t H a s h C o d e ( ) {
8 + S t r i n g s = new S t r i n g ( C h a r a c t e r . t o C h a r s ( 1 3 5 3 6 1 ) ) ;
9 + A t t r i b u t e a t t r = new A t t r i b u t e ( s , ( ( "A" + s ) + "B" ) ) ;

10 + a s s e r t E q u a l s (111849895 , a t t r . hashCode ( ) ) ;
11 + }

or comparing the values of a few objects created for one explicit test case. The different
responses obtained reflect the fact that developer teams and policies ultimately decide how
to test the hash code protocol and the outcome could be different from different projects.

4.3.1.11 protostuff

DSpot has been applied to amplify TailDelimiterTest. It identifies a single asser-
tion that kills 3 more mutants. All new mutants killed are in the method writeTo of
ProtostuffIOUtil on lines 285 and 286, which is responsible to write a buffer into a
given scheme. I proposed a pull request entitled “assert the returned value of writeList”,
with the following short description “Hi, I propose the following changes to specify the line
285-286 of io.protostuff.ProtostuffIOUtil.”13, shown in Listing 4.9.

Listing 4.9: Test-improvement proposed to protostuff developers.
1 @@ −144 ,7 +144 ,8 @@ p u b l i c v o i d t e s t E m p t y L i s t ( ) t h r ows E x c e p t i o n
2 A r r a y L i s t <Foo> f o o s = new A r r a y L i s t <Foo > ( ) ;
3

4 B y t eA r r a yO u t p u tS t r e a m o u t = new B y t e Ar r a y O u t p u t S t r e a m ( ) ;
5 − w r i t e L i s t T o ( out , foos , S e r i a l i z a b l e O b j e c t s . foo . cachedSchema ( ) ) ;
6 + f i n a l i n t b y t e s W r i t t e n =
7 + w r i t e L i s t T o ( out , foos , S e r i a l i z a b l e O b j e c t s . foo . cachedSchema ( )
8 + ) ;
9 + a s s e r t E q u a l s ( 0 , b y t e s W r i t t e n ) ;

10 b y t e [ ] d a t a = o u t . t o B y t e A r r a y ( ) ;

A developer accepted the proposed changes the same day.

4.3.1.12 logback

DSpot has been applied to amplify FileNamePattern. It identifies a single assertion
that kills 5 more mutant. Newly killed mutants were located at lines 94, 96 and 97 of the
equals method of the FileNamePattern class. The proposed pull request was entitle

13https://github.com/protostuff/protostuff/pull/212/files

https://github.com/protostuff/protostuff/pull/212/files
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“test: add test on equals of FileNamePattern against null value” with the following short
description: “Hello, I propose this change to specify the equals() method ofFileNamePat-
tern against null value”.14:

Listing 4.10: Test-improvement proposed to logback developers.
1 @@ −189 ,4 +190 ,11 @@ p u b l i c v o i d s e t t i n g T i m e Z o n e O p t i o n H a s A n E f f e c t ( ) {
2 F i l e N a m e P a t t e r n fnp = new F i l e N a m e P a t t e r n ("%d{hh , " + t z . ge t ID ( ) + " } " ,

c o n t e x t ) ;
3 a s s e r t E q u a l s ( t z , fnp . g e t P r i m a r y D a t e T o k e n C o n v e r t e r ( ) . getTimeZone ( ) ) ;
4 }
5

6 + @Test
7 + p u b l i c vo id t e s t N o t E q u a l s N u l l ( ) {
8 + F i l e N a m e P a t t e r n pp = new F i l e N a m e P a t t e r n ( " t " , c o n t e x t ) ;
9 + a s s e r t F a l s e ( pp . e q u a l s ( n u l l ) ) ;

10 ++ }

Even if the test asserts the contract that the FileNamePattern is not equals to null,
and kills 5 more mutants, the lead developer does not get the point to test this behavior.
The pull request has not been accepted.

4.3.1.13 retrofit

I did not manage to create a pull request based on the amplification of the test suite of
retrofit. According to the result, the newly killed mutants are spread over all the code, and
thus the amplified methods did not identify a missing contract specification. This could be
explained by two facts: 1) the original test suite of retrofit is strong: there is no test class
with low mutation score and a lot of them are very high mutation score, i.e. 90% and more;
2) the original test suite of retrofit uses complex test mechanism such as mock and fluent
assertions of the form the assertThat().isSomething(). For the former point, it
means that DSpot has been able to improve, even a bit, the mutation score of a very strong
test suite, but not in targeted way that makes sense in a pull request. For the latter point,
this puts in evidence the technical challenge of amplifying fluent assertions and mocking
mechanisms.

4.3.1.14 Contributions of A-Amplification and I-Amplification to the Pull-requests

Table 4.4 summarizes the contribution of A-Amplification and I-Amplification, where a con-
tribution means an source code modification added during the main amplification loop. In
8 cases over the 9 pull-requests, both A-Amplification and I-Amplification were necessary.
Only the pull request on jsoup was found using only A-Amplification. This means that for

14https://github.com/qos-ch/logback/pull/365/files

https://github.com/qos-ch/logback/pull/365/files
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Table 4.4: Contributions of A-Amplification and I-Amplification on the amplified test
method used to create a pull request.

Project #A-Amplification #I-Amplification

javapoet 2 2
mybatis-3 3 3
traccar 10 7
stream-lib 2 2
mustache 4 3
twilio 3 4
jsoup 34 0
protostuff 1 1
logback 2 2

all the other pull-requests, the new inputs were required to be able: 1) to kill new mutants
and 2) to obtain amplified test methods that have values for the developers.

Note that this does not contradict with the fact that the pull requests are one-liners.
Most one-liner pull requests contain both a new assertion and a new input. Consider the
following Javapoet’s one liner assertFalse(x.equals(null)) (javapoet). In this
example, although there is a single line starting with “assert”, there is indeed a new input,
the value “null”.

In the area of automatic test improvement, this experiment is the first to put real devel-
opers in the loop, by asking them about the quality of automatically improved test cases.
To the best of my knowledge, this is the first public report of automatically improved tests
accepted by unbiased developers and merged in the master branch of open-source reposi-
tories.

RQ1: Would developers be ready to permanently accept improved test cases into the
test repository?
Answer: 19 test improvements have been proposed to developers of notable open-
source projects. 13/19 have been considered valuable and have been merged into the
main test suite. The developers’ feedback has confirmed the relevance, and also the
challenges of automated test improvement.

4.3.2 Answer to RQ2

RQ2 To what extent are improved test methods considered as focused?
Table 4.5 presents the results for RQ2, RQ3 and RQ4.It is structured as follows. The

first column is a numeric identifier that eases reference from the text. The second column
is the name of test class to be amplified. The third column is the number of test methods
in the original test class. The fourth column is the mutation score of the original test class.
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Table 4.5: The effectiveness of test amplification with DSpot on 40 test classes: 22 well-
tested (upper part) and 18 average-tested (lower part) real test classes from notable open-
source Java projects.
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High mutation score

1 TypeNameTest 12 50% 19 8 599 715 19%↗ 599 0.0%→ 11.11
2 NameAllocatorTest 11 87% 0 0 79 79 0.0%→ 79 0.0%→ 4.76
3 MetaClassTest 7 58% 108 10 455 534 17%↗ 455 0.0%→ 235.71
4 ParameterExpressionTest 14 91% 2 2 162 164 1%↗ 162 0.0%→ 25.93
5 ObdDecoderTest 1 80% 9 2 51 54 5%↗ 51 0.0%→ 2.20
6 MiscFormatterTest 1 72% 5 5 42 47 11%↗ 42 0.0%→ 1.21
7 TestLookup3Hash 2 95% 0 0 464 464 0.0%→ 464 0.0%→ 6.76
8 TestDoublyLinkedList 7 92% 1 1 104 105 0.97%↗ 104 0.0%→ 3.03
9 ArraysIndexesTest 1 53% 15 4 576 647 12%↗ 586 1%↗ 10.58
10 ClasspathResolverTest 10 67% 0 0 50 50 0.0%→ 50 0.0%→ 4.18
11 RequestTest 17 81% 4 3 141 156 10%↗ 141 0.0%→ 60.55
12 PrefixedCollapsibleMapTest 4 96% 0 0 54 54 0.0%→ 54 0.0%→ 13.28
13 TokenQueueTest 6 69% 18 6 152 165 8%↗ 152 0.0%→ 15.61
14 CharacterReaderTest 19 79% 71 9 309 336 8%↗ 309 0.0%→ 57.06
15 TailDelimiterTest 10 71% 1 1 381 384 0.79%↗ 381 0.0%→ 12.90
16 LinkBufferTest 3 48% 12 7 66 90 36%↗ 66 0.0%→ 3.24
17 FileNamePatternTest 12 58% 27 9 573 686 19%↗ 573 0.0%→ 25.08
18 SyslogAppenderBaseTest 1 95% 1 1 143 148 3%↗ 143 0.0%→ 7.88
19 RequestBuilderAndroidTest 2 99% 0 0 513 513 0.0%→ 513 0.0%→ 0.04
20 CallAdapterTest 4 94% 0 0 55 55 0.0%→ 55 0.0%→ 7.30
39 ExecutorCallAdapterFactoryTest 7 62% 0 0 119 119 0.0%→ 119 0.0%→ 0.09
40 CallTest 35 69% 3 1 642 644 0.32%↗ 642 0.0%→ 52.84

Low mutation score

21 FieldSpecTest 2 31% 12 4 223 316 41%↗ 223 0.0%→ 4.44
22 ParameterSpecTest 2 32% 11 5 214 293 36%↗ 214 0.0%→ 3.66
23 WrongNamespacesTest 2 8% 6 1 78 249 219%↗ 249 219%↗ 29.70
24 WrongMapperTest 1 8% 3 1 97 325 235%↗ 325 235%↗ 7.13
25 ProgressProtocolDecoderTest 1 16% 2 1 18 27 50%↗ 23 27%↗ 1.30
26 IgnitionEventHandlerTest 1 22% 0 0 13 13 0.0%→ 13 0.0%→ 0.77
27 TestICardinality 2 7% 0 0 19 19 0.0%→ 19 0.0%→ 2.13
28 TestMurmurHash 2 17% 40 2 52 275 428%↗ 174 234%↗ 2.18
29 ConcurrencyTest 2 28% 2 0 210 342 62%↗ 210 0.0%→ 315.56
30 AbstractClassTest 2 34% 28 4 383 475 24%↗ 405 5%↗ 12.67
31 AllTimeTest 3 42% 0 0 163 163 0.0%→ 163 0.0%→ 0.02
32 DailyTest 3 42% 0 0 163 163 0.0%→ 163 0.0%→ 0.02
33 AttributeTest 2 36% 33 11 178 225 26%↗ 180 1%↗ 10.76
34 AttributesTest 5 52% 9 6 316 322 1%↗ 316 0.0%→ 6.21
35 CodedDataInputTest 1 1% 0 0 5 5 0.0%→ 5 0.0%→ 3.58
36 CodedInputTest 1 27% 29 28 108 166 53%↗ 108 0.0%→ 0.88
37 FileAppenderResilience_AS_ROOT_Test 1 4% 0 0 4 4 0.0%→ 4 0.0%→ 0.65
38 Basic 1 10% 0 0 6 6 0.0%→ 6 0.0%→ 0.89
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The fifth is the number of test methods generated by DSpot. The sixth is the number of
amplified test methods that met the criteria explained in subsection 4.2.3. The seventh,
eight and ninth are respectively the number of killed mutants of the original test class, the
number of killed mutants of its amplified version and the absolute increase obtained with
amplification, which is represented with a pictogram indicating the presence of improve-
ment. The tenth and eleventh columns concern the number of killed mutants when only
A-amplification is used. The twelfth is the time consumed by DSpot to amplify the con-
sidered test class. The upper part of the table is dedicated to test classes that have a high
mutation score and the lower for the test classes that have low mutation score.

For RQ2, the considered results are in the sixth column of Table 4.5. The selection
technique produces candidates that are focused in 25/26 test classes for which there are im-
proved tests. For instance, considering test class TypeNameTest (#8), there are 19 improved
test methods, and among them, 8 are focused per the definition and are worth considering
to be integrated in the codebase. On the contrary, for test class ConcurrencyTest (#29), the
technique cannot find any improved test method that matches the focus criteria presented
in subsubsection 4.3.1.2. In this case, that improved test methods kill additional mutants
in 27 different locations. Consequently, the intent of the new amplified tests can hardly be
considered as clear.

Interestingly, for 4 test classes, even if there are more than one improved test methods,
the selection technique only returns one focus candidate (#23, #24, #25, #40). In those
cases, there are two possible different reasons: 1) there are several focused improved tests,
yet they all specify the same application method (this is the case for #40) 2) there is only
one improved test method that is focused (this is the case for #23, #24, and #25)

To conclude, according to this benchmark, DSpot proposes at least one and focused
improved test in all but one cases. From the developer viewpoint, DSpot is not overwhelm-
ing it proposes a small set of suggested test changes, which are ordered, so that even with
a small time budget to improve the tests, the developer is pointed to the most interesting
case.

RQ2: To what extent are improved test methods considered as focused?
Answer: In 25/26 cases, the improvement is successful at producing at least one fo-
cused test method, which is important to save valuable developer time in analyzing the
suggested test improvements.
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4.3.3 Answer to RQ3

RQ3: To what extent do improved test classed kill more mutants than developer-
written test classes?

In 26 out of 40 cases, DSpot is able to amplify existing test cases and improves the
mutation score (MS) of the original test class.

For example, let us consider the first row, corresponding to TypeNameTest. This
test class originally includes 12 test methods that kill 599 mutants. The improved, am-
plified version of this test class kills 715 mutants, i.e. 116 new mutants are killed. This
corresponds to an increase of 19% in the number of killed mutants.

First, let’s discuss the amplification of the test classes that can be considered as being
already good tests since they originally have a high mutation score: those good test classes
are the 24 tests in Table 4.5. There is a positive increase of killed mutants for 17 cases. This
means that even when human developers write good test cases, DSpot is able to improve
the quality of these test cases by increasing the number of mutants killed. In addition, in
15 cases, when the amplified tests kill more mutants, this goes along with an increase of
the number of expressions covered with respect to the original test class.

For those 24 good test classes, the increase in killed mutants varies from 0,3%, up to
53%. A remarkable aspect of these results is that DSpot is able to improve test classes that
are initially extremely strong, with an original mutation score of 92% (ID:8) or even 99%
(ID:20 and ID:21). The improvements in these cases clearly come from the double capacity
of DSpot at exploring more behaviors than the original test classes and at synthesizing new
assertions.

Still looking to the upper part of Table 4.5 (the good test classes), focus now on the
relative increase in killed mutants (column “Increase killed”). The two extreme cases are
CallTest (ID:24) with a small increase of 0.3% and CodeInputTest (ID:18) with an
increase of 53%. CallTest (ID:24) initially includes 35 test methods that kill 69% of
920 covered mutants. Here, DSpot runs for 53 minutes and succeeds in generating only 3
new test cases that kill 2 more mutants than the original test class, and the increase in muta-
tion score is only minimal. The reason is that input amplification does not trigger any new
behavior and assertion amplification fails to observe new parts of the program state. Mean-
while, DSpot succeeds in increasing the number of mutants killed by CodeInputTest
(ID:18) by 53%. Considering that the original test class is very strong, with an initial mu-
tation score of 60%, this is a very good achievement for test amplification. In this case, the
I-Amplification applied easily finds new behaviors based on the original test code. It is also
important to notice that the amplification and the improvement of the test class goes very
fast here (only 52 seconds).

One can notice 4 cases (IDs:3, 13, 15, 24) where the number of new test cases is greater
than the number of newly killed mutants. This happens because DSpot amplifies test cases
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with different operators in parallel. While DSpot keeps only amplified test methods that
kill new mutants, it happens that the same mutant is newly killed by two different amplified
tests generated in parallel threads.
In this case, DSpot keeps both amplified test methods.

There are 7 cases with high mutation score for which DSpot does not improve the
number of killed mutants. In 5 of these cases, the original mutation score is greater than
87% (IDs: 2, 7, 12, 21, 22), and DSpot does not manage to synthesize improved inputs to
cover new mutants and eventually kill them. In some cases DSpot cannot improve the test
class because they rely on an external resource (a jar file), or use utility methods that are
not considered as test methods by DSpot and hence are not modified by our tool.

Now consider the tests in the lower part of Table 4.5. Those tests are weaker because
they have a lower mutation score. When amplifying weak test classes, DSpot improves
the number of killed mutants in 9 out of 16 cases. On a per test class basis, this does
not differ much from the good test classes. However, there is a major difference when
one considers the increase itself: the increases in number of killed mutants range from
24% to 428%. Also, one can observe a very strong distinction between test classes that
are greatly improved and test classes that are not improved at all (9 test classes are much
improved, 7 test classes cannot be improved at all, the increase is 0%). In the former case,
test classes provide a good seed for amplification. In the latter case, there are test classes
that are designed in a way that prevents amplification because they use external processes,
or depend on administration permission, shell commands and external data sources; or
extensively use mocks or factories; or simply very small test methods that do not provide a
good potential to DSpot to perform effective amplification.

RQ3: To what extent do improved test classes kill more mutants than manual test
classes?
Answer: In this quantitative experiment on automatic test improvement, DSpot sig-
nificantly improves the capacity of test classes at killing mutants in 26 out 40 of test
classes, even in cases where the original test class is already very strong. Automatic
test improvement works particularly well for weakly tested classes (lower part of Ta-
ble 4.5): the mutation score of three classes is increased by more than 200%.

The most notable point of this experiment is that there are considered tests that are already
really strong (Table 4.5), with mutation score in average of 78%, with the surprising case
of a test class with 99% mutation score that DSpot is able to improve.
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4.3.4 Answer to RQ4

What is the contribution of I-Amplification and A-Amplification to the effectiveness of
automated test improvement?

The relevant results are reported in the tenth and eleventh column of Table 4.5. They
give the number of killed mutants and the relative increase of the number of killed mutants
when only using A-Amplification.

For instance, for TypeNameTest (first row, id #1), using only A-Amplification kills
599 mutants, which is exactly the same number of the original test class. In this case, both
the absolute and relative increase are obviously zero. On the contrary, for WrongNames-
pacesTest (id #27), using only A-Amplification is very effective, it enables DSpot to kill
249 mutants, which, compared to the 78 originally killed mutants, represents an improve-
ment of 219%.

Now, when aggregating over all test classes, the results indicate that A-Amplification
only is able to increase the number of mutants killed in 7 / 40 test classes. Increments
range from 0.31% to 13%. Recall that when DSpot runs both I-Amplification and A-
Amplification, it increases the number of mutants killed in 26 / 40 test classes, which shows
that it is indeed the combination of A-Amplification and I-Amplification which is effective.

Note that A-Amplification performs as well as I-Amplification + A-Amplification in only
2/40 cases (ID:27 and ID:28). In this case, all the improvement comes from the addition of
new assertions, and this improvement is dramatic (relative increase of 219% and 235%).

The limited impact of A-Amplification alone has several causes. First, many assertions
in the original test cases are already good and precisely specify the expected behavior for
the test case. Second, it might be due to the limited observability of the program under
test (i.e., there is a limited number of points where assertions over the program state can
be expressed). Third, it happens when one test case covers global properties across many
methods: test #28 WrongMapperTest specifies global properties, but is not well suited
to observe fine grained behavior with additional assertions. This latter case is common
among the weak test classes of the lower part of Table 4.5.

RQ4: What is the contribution of I-Amplification and
A-Amplification to the effectiveness of test amplification?
Answer: The conjunct run of I-Amplification and A-Amplification is the best strategy
for DSpot to improve manually-written test classes. This experiment has shown that
A-Amplification is ineffective, in particular on tests that are already strong.
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To the best of my knowledge, this experiment is the first to evaluate the relative con-
tribution of I-Amplification and A-Amplification to the effectiveness of automatic test im-
provement.

4.4 Threats to Validity

RQ1 The major threat to RQ1 is that there is a potential bias in the acceptance of the
proposed pull requests. For instance, if I propose pull requests to colleagues, they are
more likely to merge them. However, this is not the case here. In this evaluation, I am
unknown to all considered projects. The developers who study the DSpot pull requests are
independent from our group and social network. Since I was unknown for the pull request
reviewer, this is not a specific bias towards acceptance or rejection of the pull request.

RQ2 The technique used to select focused candidates is based on the proportion of
mutant killed and the absolute number of modification done by the amplification. However,
it may happen that some improvements that are not focused per our definition would still
be considered as valuable by developers. Having such false negative is a potential threat to
validity.

RQ3 A threat to RQ3 relates to external validity: if the considered projects and tests are
written by amateurs, the findings would not hold for serious software projects. However,
the experimentation only considers real-world applications, maintained by professional and
esteemed open-source developers. This means that considered tests are arguably among the
best of the open-source world, aiming at as strong construct validity as possible.

RQ4. The main threat to RQ4 relates to internal validity: since the results are of com-
putational nature, a bug in the implementation or experimental scripts may threaten the
findings. All the code is publicly-available for other researchers to reproduce the experi-
ment and spot the bugs, if any.

Oracle. DSpot generates new assertions based on the current behavior of the program.
If the program contains a bug, the resulting amplified test methods would enforce this
bug. This is an inherent threat, inherited from [Xie 2006], which is unavoidable when no
additional oracle is available, but only the current version of the program. To that extent,
the best usage of DSpot is to improve the test suite of a supposedly almost correct version
of the program.

4.5 Conclusion

This first evaluation of DSpot gave 2 main results:

1) 19 amplified test methods have been proposed to be integrated in test suites from
open-source projects. The developers of these projects reviewed amplified test methods,
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proposed in the form of pull requests. 14 of them have been merged permanently in the
test suite of projects. It means that developers value amplified test methods produced by
DSpot. It also means that amplified test methods, obtained using DSpot, are increasing the
developers’ confidence in the correctness of their program;

2) 40 test classes have been amplified to improve their mutation score. 26 of them
result with an actual improvement of the mutation score. This shows that DSpot is able to
improve existing test suites.

In this chapter, the mutation score has been used to amplified test methods. The mu-
tation score is a measure of the test suites quality to detect small behavioral changes, as
mutants emulate them. However, the behavioral changes introduces by mutants may be
different from those in real commits. That is to say, it does not show any evidence that
DSpot would be able to detect behavioral change introduced by commits, which are typi-
cally larger, more complex and significant.

In the next chapter, I investigate the capacity of DSpot to improve existing test meth-
ods in order to detect real behavioral changes, introduced by commits. To do so, I confront
DSpot to real modifications done by developers on their code base from GitHub. In addi-
tion to this, the next chapter exposes an enhancement of DSpot’s usage and puts it in the
continuous integration.
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In collaborative software projects, developers work in parallel on the same code base.
Every time a developer integrates her changes, she submits them in the form of a commit
to a version control system. The Continuous Integration (CI) server [Fowler 2006] merges
the commit with the master branch, compiles and automatically runs the test suite to check
that the commit behaves as expected. Its ability to detect bugs early makes CI an essential
contribution to quality assurance [Hilton 2016, Duvall 2007]. However, the effectiveness
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of Continuous Integration depends on one key property: each commit should include at
least one test case tnew that specifies the intended change.

For instance, assume one wants to integrate a bug fix. In this case, the developer is
expected to include a new test method, tnew, that specifies the program’s desired behavior
after the bug fix is applied. This can be mechanically verified: tnew should fail on the
version of the code that does not include the fix (the pre-commit version), and pass on the
version that includes the fix (the post-commit version). However, many commits either
do not include a tnew or tnew does not meet this fail/pass criterion. The reason is that
developers sometimes cut corners because of lack of time, expertise or discipline. This is
the problem addressed in this chapter.

In this chapter, I detail an extension of DSpot, called DCI (DSpot-CI), and its evalua-
tion. The goal is to automatically generate test methods for each commit that is submitted
to the CI. In particular, to generate a test method tgen that specifies the behavioral change
of each commit.

DCI works in two steps: First, it analyzes the test methods of the pre-commit version
and selects the ones that exercise the parts of the code modified by the commit. Second, it
applies DSpot on this subset of test methods. The test selection is done only on amplified
test methods that are relevant, i.e. tgen passes on the pre-commit version and fails on the
post-commit version.

This evaluation has been performed on 60 commits from 6 open-source projects on
GitHub. The result is that DCI has been able to obtain amplified test methods detecting 25
behavioral changes.

To sum up, the contributions of this chapter are:

• DCI (Dspot-CI), a complete approach to obtain automatically test methods that de-
tect behavioral changes.

• An open-source implementation of DCI for Java.

• A curated benchmark of 60 commits that introduce a behavioral change and include
a test case to detect it, selected from 6 notable open source Java projects1.

• A comprehensive evaluation based on 4 research questions that combines quantita-
tive and qualitative analysis with manual assessment.

Note that this chapter is a to be published article [Danglot 2019a]. The remainder of
this chapter is as follows: Section 5.1 motivates this chapter and gives the background.
Section 5.2 exposes the technical extension of DSpot: an approach for commit-based test
selection. Section 5.3 introduces our benchmark of commits, the evaluation protocol and

1https://github.com/STAMP-project/dspot-experiments.git

https://github.com/STAMP-project/dspot-experiments.git
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the results of our experiments on 50 real commits. Section 5.5 relates the threats validity
and actions that have been taken to overcome them. and Section 5.6 concludes this chapter.

5.1 Motivation & Background

In this section, I introduce an example to motivate the need to generate new tests that
specifically target the behavioral change introduced by a commit. Then I introduce the
key concepts on which the solution has been elaborated to address this challenging test
generation task.

5.1.1 Motivating Example

On August 10, a developer pushed a commit to the master branch of the XWiki-commons
project. The change2, displayed in Figure 5.1, adds a comparison to ensure the equality of
the objects returned by getVersion(). The developer did not write a test method nor
modify an existing one.

Figure 5.1: Commit 7e79f77 on XWiki-Commons that changes the behavior without a test.

XCOMMONS-1455: FilterStreamType#equals does not take the version into…
… account

 master  xwiki-commons-10.8 …  xwiki-commons-10.7-rc-1
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 @@ -260,7 +260,8 @@ public boolean equals(Object object)

          } else {

              if (object instanceof FilterStreamType) {

                  result = Objects.equals(getType(), ((FilterStreamType) object).getType())

-                     && Objects.equals(getDataFormat(), ((FilterStreamType) object).getDataFormat());

+                     && Objects.equals(getDataFormat(), ((FilterStreamType) object).getDataFormat())

+                     && Objects.equals(getVersion(), ((FilterStreamType) object).getVersion());

              } else {

                  result = false;

              }

© 2018 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training Blog About
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Features Business Explore Marketplace Pricing Sign in or Sign upSearch

In this commit, the intent is to take into account the version (from method getVer-
sion) in the equals method. This change impacts the behavior of all methods that use
it, the method equals being a highly used. Such a central behavioral change may impact
the whole program, and the lack of a test method for this new behavior may have dramatic
consequences in the future. Without a test method, this change could be reverted and go
undetected by the test suite and the Continuous Integration server, i.e. the build would
still pass. Yet, a user of this program would encounter new errors, because of the changed
behavior. The developer took a risk when committing this change without a test case.

DCI aims at mitigating such risk: ensuring that every commit include a new test method
or a modification of an existing test method. In this chapter, I study DSpot’s ability to
automatically obtain a test method that highlights the behavioral change introduced by a
commit. This test method allows to identify the behavioral difference between the two
versions of the program. The goal is to use this new test method to ensure that any changed
behavior can be caught in the future.

Following, the vision of DCI’s usage: when Continuous Integration is triggered, rather
than just executing the test suite to find regressions, it could also run an analysis of the

2https://github.com/xwiki/xwiki-commons/commit/7e79f77

https://github.com/xwiki/xwiki-commons/commit/7e79f77
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commit to know if it contains a behavioral change, in the form of a new method or the
modification of an existing one. If there is no appropriate test method to detect a behavioral
change, the approach would provide one. DCI would take as input the commit and a test
suite, and generate a new test method that detects the behavioral change.

5.1.2 Applicability

Following, the vision of an integration scenario of DCI:
A developer commits a change into the program. The Continuous Integration service is

triggered; the CI analyzes the commit. There are two potential outcomes: 1) the developer
provided a new test method or a modification to an existing one. In this case, the CI
runs as usual, e.g. it executes the test suite; 2) the developer did not provide a new test
nor the modification of an existing one, the CI runs DCI on the commit to obtain a test
method that detects the behavioral change and present it to the developer. The developer
can then validate the new test method that detects the behavioral change. Following the
test selection, the new test method passes on the pre-commit version but fails on the post-
commit version. The current amplified test method cannot be added to the test suite, since
it fails. However, this test method is still useful, since one has only to negate the failing
assertions, e.g. change an assertTrue into an assertFalse, to obtain a valid and
passing test method that explicitly executes the new behavior. This can be done manually
or automatically with approaches such as ReAssert[Daniel 2009a].

DCI has been designed to be easy to use. The only cost of DCI is the time to set it
up: in the ideal, happy-path case, it is meant to be a single command line through Maven
goals. Once DCI is set up in continuous integration, it automatically runs at each commit
and developers directly benefit from amplified test methods that strengthen the existing test
suite.

5.1.3 Behavioral Change

A behavioral change is a source-code modification that triggers a new state for some inputs
[Saff 2004]. Considering the pre-commit version P and the post-commit version P ′ of a
program, the commit introduces a behavioral change if it is possible to implement a test
method that can trigger and observe the change, i.e., it passes on P and fails on P ′, or the
opposite. In short, the behavioral change must have an impact on the observable behavior
of the program.

5.1.4 Behavioral Change Detection

Behavioral change detection is the task of identifying a behavioral change between two
versions of the same program. In this chapter, I propose a novel approach to detect behav-
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Figure 5.2: Overview of the approach to detect behavioral changes in commits.
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ioral changes based on test amplification.

5.2 Behavioral Change Detection Approach

5.2.1 Overview of DCI

DCI takes as input a program, its test suite, and a commit modifying the program. The
commit, as done in version control systems, is basically the diff between two consecutive
versions of the program.

DCI outputs new test methods that detect the behavioral difference between the pre-
and post-commit versions of the program. The new tests pass on a given version, but fail
on the other, demonstrating the presence of a behavioral change captured.

DCI computes the code coverage of the diff and selects test methods accordingly. Then
it applies DSpot to amplify selected test methods. The resulting amplified test methods
detect the behavioral change.

Figure 5.2 sums up the different phases of the approach: 1) Compute the diff coverage
and select the tests to be amplified; 2) Amplify the selected tests based on the pre-commit
version; 3) Execute amplified test methods against the post-commit version, and keep the
failing test methods. This process produces test methods that pass on the pre-commit ver-
sion, fail on the post-commit version, hence they detect at least one behavioral change
introduced by a given commit.
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5.2.2 Test Selection and Diff Coverage

DCI implements a feature that: 1. reports the diff coverage of a commit, and 2. selects the
set of unit tests that execute the diff. To do so, DCI first computes the code coverage for the
whole test suite. Second, it identifies the test methods that hit the statements modified by
the diff. Third, it produces the two outcomes elicited earlier: the diff coverage, computed
as the ratio of statements in the diff covered by the test suite over the total number of
statements in the diff and the list of test methods that cover the diff. Then, it selects only
test methods that are present in pre-commit version (i.e., it ignores the test methods added
in the commit, if any). The final list of test methods that cover the diff is then used to seed
the amplification process.

5.2.3 Test Amplification

Once DCI have the initial tests that cover the diff, DCI amplifies them using DSpot.
Since DCI uses DSpot, DCI have also two mode: 1)DCI-A-Amplification that uses
only A-Amplification and 2)DCI-I-Amplification that uses both A-Amplification and I-
Amplification.

5.2.4 Execution and Change Detection

The final step performed by DCI consists in checking whether that the amplified test meth-
ods detect behavioral changes. Because DCI amplifies test methods using the pre-commit
version, all amplified test methods pass on this version, by construction. Consequently, for
the last step, DCI runs the amplified test methods only on the post-commit version. Every
test that fails is in fact detecting a behavioral change introduced by the commit, and is a
success. DCI keeps the tests that successfully detect behavioral changes. Note that if the
amplified test method is not executable on the post-commit version, e.g. the API has been
modified, the amplified test method is discarded.

5.2.5 Implementation

DCI is implemented in Java and is built on top of the OpenClover and
Gumtree [Falleri 2014] libraries. It computes the global coverage of the test suite with
OpenClover, which instruments and executes the test suite. Then, it uses Gumtree to have
an AST representation of the diff. DCI matches the diff with the test that executes those
lines. Through its Maven plugin, DCI can be seamlessly implemented into continuous
integration. DCI is publicly available on GitHub.3

3https://github.com/STAMP-project/dspot/tree/master/
dspot-diff-test-selection

https://github.com/STAMP-project/dspot/tree/master/dspot-diff-test-selection
https://github.com/STAMP-project/dspot/tree/master/dspot-diff-test-selection
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5.3 Evaluation

The evaluation of DCI relies on 4 research questions:

5.3.1 Research Questions

RQ1: To what extent are DCI-A-Amplification and DCI-I-Amplification able to produce
amplified test methods that detect the behavioral changes?
RQ2: What is the impact of the number of iteration performed by DCI-I-Amplification ?
RQ3: What is the effectiveness of our test selection method?
RQ4: How do human and generated tests that detect behavioral changes differ?

5.3.2 Benchmark

To the best of my knowledge, there is no benchmark of commits in Java with behavioral
changes in the literature. Consequently, I devise a project and commit selection procedure
in order to construct a benchmark for the evaluation.

Project selection The evaluation needs software projects that are
1) Publicly-available.
2) Written in Java.
3) Use continuous integration.
The projects has been selected from the dataset in [Vera-Pérez 2018b] and

[Danglot 2019c], which is composed of mature Java projects from GitHub.

Commit selection I take commits in inverse chronological order, from newest to oldest.
On September 10 2018, I selected the first 10 commits that match the following criteria:

- The commit modifies Java files (most behavioral changes are source code changes.4).
- The changes of the commit must be covered by the pre-commit test suite. To do so, we

compute the diff coverage. If the coverage is 0%, we discard the commit. I do this because
if the change is not covered, I cannot select any test methods to be amplified, which is what
I want to evaluate.

- The commit provides or modifies a manually written test that detects a behavioral
change. To verify this property, I execute the test on the pre-commit version. If it fails, it
means that the test detects at least 1 behavioral change. I will use this test as a ground-truth
test in RQ4.

Together, these criteria ensure that all selected commits:

4I am aware that behavioral changes can be introduced in other ways, such as modifying dependencies or
configuration files [Hilton 2018b].
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1) Modify java files.

2) That there is at least 1 test in the pre-commit version of the program that executes
the diff and can be used to seed the amplification process.

3) Provide or modify a manually written test case that detects a behavioral change
(which will be used as ground-truth for comparing generated tests).

4) There is no structural change in the commit between both versions, e.g. no change
in method signature and deletion of classes (this is ensured since the pre-commit test suite
compiles and runs against the post-commit version of the program and vice-versa).

Table 5.1: Considered Period for Selecting Commits.

project LOC
start
date

end
date

#total
commits

#matching
commits

#selected
commits

commons-io 59607 9/10/2015 9/29/2018 385 49 / 12.73% 10
commons-lang 77410 11/22/2017 10/9/2018 227 40 / 17.62% 10
gson 49766 6/14/2016 10/9/2018 159 56 / 35.22% 10
jsoup 20088 12/21/2017 10/10/2018 50 42 / 84.00% 10
mustache.java 10289 7/6/2016 04/18/2019 68 28 / 41.18% 10
xwiki-commons 87289 10/31/2017 9/29/2018 687 26 / 3.78% 10
summary 304449 9/10/2015 04/18/2019 avg(262.67) avg(40.17 / 15.29%) 60

Final benchmark Table 5.1 shows the main descriptive statistics of the benchmark
dataset. The project column is the name of the project. The LOC column is the num-
ber of lines of code computed with cloc. The start date column is the date of the project’s
oldest commit. The end date column is the date of the project’s newest commit. The #total
commit column is the total number of commits we analyzed. #Matching commits is the
number of commits that match our first two criteria to run DCI but might not provide a test
in the post-commit version that fails on the pre-commit version of the program. DCI could
be potentially applied on all #matching commits, I cannot validate DCI with them because
they might not provide a ground-truth test. The #selected commits column shows the num-
ber of commits I select for evaluation. It is a subset of #matching commits from which we
searched for the first 10 commits per project that match all criteria, including a ground-
truth test to evaluate DCI. The bottom row reports a summary of the benchmark dataset
with the total number of lines of code, the oldest and the newest commit dates, the average
number of commits analyzed, the average number of commits matching all the criteria but
the third: there is a test in the post-commit version of the program that detect the behavioral
change, and the total number of selected commits. The percentage in parenthesis next to
the averages are percentage of averages, e.g. #matching

#total . We note that our benchmark is
only composed of recent commits from notable open-source projects and is available on
GitHub at https://github.com/STAMP-project/dspot-experiments.

https://github.com/STAMP-project/dspot-experiments
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5.3.3 Protocol

To answer RQ1, DCI-A-Amplification and DCI-I-Amplification is executed on the bench-
mark projects. The total number of behavioral changes successfully detected by DCI is
reported. That is to say the number of commits for which DCI generates at least 1 test
method that passes on the pre-commit version but fails on the post-commit version. Also,
1 case study of a successful behavioral change detection is discussed.

To answer RQ2, we run DCI-I-Amplification for 1, 2 and 3 iterations on the benchmark
projects. The number of behavioral changes successfully detected for each number of
iterations in the main loop is reported. I analyze the number of amplified test methods
that detect the behavioral changes for each commit for 10 different seeds in addition to the
reference run with default seed, totalling 11 runs. The objective here is to study the impact
of the randomness on the output of DCI-I-Amplification using 1 iteration. Since each
experiment takes very long to run, I choose to use only 1 iteration for each seed. Doing
these 10 different executions using 3 iterations would result with an execution that would
last almost 1000 hours of cpu-time, which is infeasible. I compute the confidence interval
on the number of successes, i.e. the number of time DCI generates at least one amplified
test method that detects the behavioral change, in order to measure the uncertainty of the
result. To do this, I use Python libraries scipy and numpy, and consider a confidence level
of 95%. Per this open-science approach, the interested reader has access to both the raw
data and the script computing the confidence interval. 5

For RQ3, the test selection method is considered effective if the tests selected to be
amplified semantically relate to the code changed by the commit. To assess this, 1 commit
per project in the benchmark is selected. Then the automatically selected tests for this
commit is manually analyzed to tell whether there are semantically related to the behavioral
changes in the commit.

To answer RQ4, the ground-truth tests written or modified by developers in the selected
commits is used. This ground-truth test method is compared to the amplified test methods
that detect behavioral changes, for 1 commit per project.

5.3.4 Results

The overall results are reported in Table 5.2. This table can be read as follows: the first
column is the name of the project; the second column is the shortened commit id; the
third column is the commit date; the fourth column column is the total number of test
methods executed when building that version of the project; the fifth and sixth columns are
respectively the number of tests modified or added by the commit, and the size of the diff

5https://github.com/STAMP-project/dspot-experiments/tree/master/src/
main/python/april-2019

https://github.com/STAMP-project/dspot-experiments/tree/master/src/main/python/april-2019
https://github.com/STAMP-project/dspot-experiments/tree/master/src/main/python/april-2019
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Table 5.2: Evaluation of DCI on 60 commits from 6 large open-source projects.

id date#Test#Modified
Tests + / - Cov #Selected

Tests
#AAMPL

Tests Time #SBAMPL
Tests Time

co
m

m
on

s-
io

c6b8a38 6/12/18 1348 2 104 / 3 100.0 3 0 10.0s 0 98.0s
2736b6f 12/21/17 1343 2 164 / 1 1.79 8 0 19.0s 3 (12) 76.3m
a4705cc 4/29/18 1328 1 37 / 0 100.0 2 0 10.0s 0 38.1m
f00d97a 5/2/17 1316 10 244 / 25 100.0 2 3 (1) 10.0s 3 (39) 27.0s
3378280 4/25/17 1309 2 5 / 5 100.0 1 3 (1) 9.0s 3 (11) 24.0s
703228a 12/2/16 1309 1 6 / 0 50.0 8 0 19.0s 0 71.0m
a7bd568 9/24/16 1163 1 91 / 83 50.0 8 0 20.0s 0 65.2m
81210eb 6/2/16 1160 1 10 / 2 100.0 1 0 8.0s 3 (8) 23.0s
57f493a 11/19/15 1153 1 15 / 1 100.0 8 0 7.0s 0 54.0s
5d072ef 9/10/15 1125 12 74 / 34 68.42 25 3 (6) 29.0s 3 (1538) 2.2h
total 66 8 2.4m 1608 6.5h
average 6.60 0.80 14.5s 160.80 38.8m

co
m

m
on

s-
la

ng

f56931c 7/2/18 4105 1 30 / 4 25.0 42 0 2.4m 0 8.5m
87937b2 5/22/18 4101 1 114 / 0 77.78 16 0 35.0s 0 18.1m
09ef69c 5/18/18 4100 1 10 / 1 100.0 4 0 16.0s 0 98.8m
3fadfdd 5/10/18 4089 1 7 / 1 100.0 9 0 17.0s 3 (4) 17.2m
e7d16c2 5/9/18 4088 1 13 / 1 33.33 7 0 16.0s 3 (2) 15.1m
50ce8c4 3/8/18 4084 4 40 / 1 90.91 2 3 (1) 28.0s 3 (135) 2.0m
2e9f3a8 2/11/18 4084 2 79 / 4 30.0 47 0 79.0s 0 66.5m
c8e61af 2/10/18 4082 1 8 / 1 100.0 10 0 17.0s 0 16.0s
d8ec011 11/12/17 4074 1 11 / 1 100.0 5 0 31.0s 0 2.3m
7d061e3 11/22/17 4073 1 16 / 1 100.0 8 0 17.0s 0 11.4m
total 150 1 6.7m 141 4.0h
average 15.00 0.10 40.5s 14.10 24.0m

gs
on

b1fb9ca 9/22/17 1035 1 23 / 0 50.0 166 0 4.2m 0 92.5m
7a9fd59 9/18/17 1033 2 21 / 2 83.33 14 0 15.0s 3 (108) 2.1m
03a72e7 8/1/17 1031 2 43 / 11 68.75 371 0 7.7m 0 3.2h
74e3711 6/20/17 1029 1 68 / 5 8.0 1 0 4.0s 0 16.0s
ada597e 5/31/17 1029 2 28 / 3 100.0 5 0 8.0s 0 8.7m
a300148 5/31/17 1027 7 103 / 2 18.18 665 0 9.2m 3 (6) 4.9h
9a24219 4/19/17 1019 1 13 / 1 100.0 36 0 2.2m 0 48.9m
9e6f2ba 2/16/17 1018 2 56 / 2 50.0 9 0 32.0s 3 (2) 8.5m
44cad04 11/26/16 1015 1 6 / 0 100.0 2 0 15.0s 3 (37) 40.0s
b2c00a3 6/14/16 1012 4 242 / 29 60.71 383 0 7.9m 0 3.6h
total 1652 0 32.4m 153 14.4h
average 165.20 0.00 3.2m 15.30 86.5m

js
ou

p 426ffe7 5/11/18 668 4 27 / 46 64.71 27 3 (2) 42.0s 3 (198) 33.6m
a810d2e 4/29/18 666 1 27 / 1 80.0 5 0 10.0s 0 26.6m
6be19a6 4/29/18 664 1 23 / 1 50.0 50 0 69.0s 0 67.7m
e38dfd4 4/28/18 659 1 66 / 15 90.0 18 0 35.0s 0 12.5m
e9feec9 4/15/18 654 1 15 / 3 100.0 4 0 9.0s 0 95.0s
0f7e0cc 4/14/18 653 2 56 / 15 84.62 330 0 6.5m 3 (36) 11.8h
2c4e79b 4/14/18 650 2 82 / 2 50.0 44 0 67.0s 0 4.7h
e5210d1 12/22/17 647 1 3 / 3 100.0 14 0 9.0s 0 4.9m
df272b7 12/22/17 647 2 17 / 1 100.0 13 0 9.0s 0 4.6m
3676b13 12/21/17 648 6 104 / 12 38.46 239 0 6.2m 3 (52) 6.8h
total 744 2 16.8m 286 25.8h
average 74.40 0.20 101.0s 28.60 2.6h

m
us

ta
ch

e.
ja

va

a1197f7 1/25/18 228 1 43 / 57 77.78 131 0 11.8m 3 (204) 10.1h
8877027 11/19/17 227 1 22 / 2 33.33 47 0 7.3m 0 100.2m
d8936b4 2/1/17 219 2 46 / 6 60.0 168 0 12.7m 0 84.2m
88718bc 1/25/17 216 2 29 / 1 100.0 1 3 (1) 7.0s 3 (149) 3.7m
339161f 9/23/16 214 2 32 / 10 77.78 123 0 8.6m 3 (1312) 5.8h
774ae7a 8/10/16 214 2 17 / 2 100.0 11 0 66.0s 3 (124) 6.8m
94847cc 7/29/16 214 2 17 / 2 100.0 95 0 11.5m 3 (2509) 21.4h
eca08ca 7/14/16 212 4 47 / 10 80.0 18 0 87.0s 0 41.8m
6d7225c 7/7/16 212 2 42 / 4 80.0 18 0 87.0s 0 40.1m
8ac71b7 7/6/16 210 10 167 / 31 40.0 20 0 2.1m 3 (124) 5.6m
total 632 1 58.1m 4422 42.0h
average 63.20 0.10 5.8m 442.20 4.2h

xw
ik

i-
co

m
m

on
s ffc3997 7/27/18 1081 0 125 / 18 21.05 1 0 29.0s 0 18.0s

ced2635 8/13/18 1081 1 21 / 14 60.0 5 0 93.0s 0 2.5h
10841b1 8/1/18 1061 1 107 / 19 30.0 51 0 5.7m 0 3.4h
848c984 7/6/18 1074 1 154 / 111 17.65 1 0 28.0s 0 18.0s
adfefec 6/27/18 1073 1 17 / 14 40.0 22 3 (1) 76.0s 3 (3) 14.9m
d3101ae 1/18/18 1062 2 71 / 9 20.0 4 3 (1) 72.0s 3 (31) 41.4m
a0e8b77 1/18/18 1062 2 51 / 8 42.86 4 3 (1) 72.0s 3 (60) 42.1m
78ff099 12/19/17 1061 1 16 / 0 33.33 2 0 68.0s 3 (4) 6.6m
1b79714 11/13/17 1060 1 20 / 5 60.0 22 0 78.0s 0 17.9m
6dc9059 10/31/17 1060 1 4 / 14 88.89 22 0 79.0s 0 20.5m
total 134 3 15.7m 98 8.2h
average 13.40 0.30 94.3s 9.80 49.5m

total 3378 9(15) 2.2h 25(6708) 100.9h
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in terms of line additions (in green) and deletions (in red); the seventh and eighth columns
are respectively the diff coverage and the number of tests DCI selected; the ninth column
provides the amplification results for DCI-A-Amplification , and it is either a 3 with the
number of amplified tests that detect a behavioral change or a - if DCI did not succeed
in generating a test that detects a change; the tenth column displays the time spent on the
amplification phase; The eleventh and the twelfth are respectively a 3 with the number of
amplified tests for DCI-I-Amplification (or - if a change is not detected) for 3 iterations.
The last row reports the total over the 6 projects. For the tenth and the twelfth columns
of the last row, the first number is the number of successes, i.e. the number of times DCI
produced at least one amplified test method that detects the behavioral change, for DCI-
A-Amplification and DCI-I-Amplification respectively. The numbers between brackets
correspond to the total number of amplified test methods that DCI produces in each mode.

5.3.4.1 Characteristics of commits with behavioral changes in the context of contin-
uous integration

This section describes the characteristics of commits introducing behavioral changes in the
context of continuous integration. The number of test methods at the time of the commit
shows two aspects of our benchmark: 1) there are only strongly tested projects; 2) the
number of tests evolve over time due to test evolution. Every commit in the benchmark
comes with test modifications (new tests or updated tests), and commit sizes are quite di-
verse. The three smallest commits are COMMONS-IO#703228A, GSON#44CAD04 and
JSOUP#E5210D1 with 6 modifications, and the largest is GSON#45511FD with 334 mod-
ifications. Finally, on average, commits have 66.11% coverage. The distribution of diff
coverage is reported graphically by Figure 5.3: in commons-io all selected commits have
more than 75% coverage. In XWiki-Commons, only 50% of commits have more than 75%
coverage. Overall, 31 / 60 commits have at least 75% of the changed lines covered. This
validates the correct implementation of the selection criteria that ensures the presence of a
test specifying the behavioral change.

Thanks to the selection criteria, a curated benchmark of 50 commits with a behavioral
change is available for the evaluation. This benchmark comes from notable open-source
projects, and covers a diversity of commit sizes. The benchmark is publicly available and
documented for future research on this topic.

5.3.4.2 RQ1: To what extent are DCI-A-Amplification and DCI-I-Amplification able
to produce amplified test methods that detect the behavioral changes?

The last 4 columns of Table 5.2 are dedicated to RQ1. For example, DCI-A-Amplification
and DCI-I-Amplification generated respectively 1 and 39 amplified test methods that de-
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Figure 5.3: Distribution of diff coverage per project of our benchmark.

tect the behavioral change for COMMONS-IO#F00D97A (4th row). In the other hands,
only DCI-I-Amplification has been able to obtain amplified test methods for COMMONS-
IO#81210EB (8th row).

Overall, DCI-A-Amplification generates amplified tests that detect 9 out of 60 behav-
ioral changes. Meanwhile, DCI-I-Amplification generates amplified tests that detect 25
out of 60 behavioral changes.

Regarding the number of generated tests. DCI-I-Amplification generates a large num-
ber of test methods, compared to DCI-A-Amplification only (15 versus 6708, see column
“total” at the bottom of the table). Both DCI-A-Amplification and DCI-I-Amplification
can generate amplified tests, however since DCI-A-Amplification does not produce a large
amount of test methods the developers do not have to triage a large set of test cases. Also,
since DCI-A-Amplification only adds assertions, the amplified tests are easier to understand
than the ones generated by DCI-I-Amplification .

DCI-I-Amplification takes more time than DCI-A-Amplification (for successful cases
38.7 seconds versus 3.3 hours on average). The difference comes from the time consumed
during the exploration of the input space in the case of DCI-I-Amplification , while DCI-
A-Amplification focuses on the amplification of assertions only, which represents a much
smaller space of solutions.
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Listing 5.2: Selected test method as a seed to be amplified for commit 3FADFDD from
commons-lang.

1 @Test
2 public void testPerson() {
3 final Person p = new Person();
4 p.name = "Jane Doe";
5 p.age = 25;
6 p.smoker = true;
7

8 assertEquals(
9 "{\"name\":\"Jane Doe\",\"age\":25,\"smoker\":true}",

10 new ToStringBuilder(p).append("name", p.name)
11 .append("age", p.age).append("smoker", p.smoker)
12 .toString()
13 );
14 }

Overall, DCI successfully generates amplified tests that detect a behavioral change in
46% of the commits in our benchmark(25 out of 60). Recall that the 60 commits analyzed
are real changes in complex code bases. They represent modifications, sometimes deep in
the code, that are challenges with respect to testability [Voas 1995]. Consequently, the fact
DCI generates test cases that detect behavioral changes, is considered an achievement. The
commits for which DCI fails to detect the change can be considered as a target for future
research on this topic.

A successful detection by an amplified test method is analyzed. Commit 3FADFDD6

from commons-lang has been selected because it is succinct enough to be discussed. The
diff is shown in Listing 5.1.

Listing 5.1: Diff of commit 3FADFDD from commons-lang.
1 @@ −2619 ,7 +2619 ,7 @@ p r o t e c t e d v o i d a p p e n d F i e l d S t a r t ( f i n a l S t r i n g B u f f e r b u f f e r ,

f i n a l S t r i n g f i e l d N a m
2

3 − s u p e r . a p p e n d F i e l d S t a r t ( b u f f e r , FIELD_NAME_QUOTE + f ie ldName
4 + s u p e r . a p p e n d F i e l d S t a r t ( b u f f e r , FIELD_NAME_QUOTE +
5 + S t r i n g E s c a p e U t i l s . e s c a p e J s o n ( f i e ldName ) + FIELD_NAME_QUOTE) ;
6 }

The developer added a method call to a method that escapes specials characters in a
string. The changes come with a new test method that specifies the new behavior.

DCI starts the amplification from the testNestingPerson test method defined in
JsonToStringStyleTest showed in Listing 5.2.

The test is selected for amplification because it triggers the execution of the changed
line.

6https://github.com/apache/commons-lang/commit/3fadfdd

https://github.com/apache/commons-lang/commit/3fadfdd
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Listing 5.3: Test generated by DCI that detects the behavioral change of 3FADFDD from
commons-lang.

1 @Test(timeout = 10000)
2 public void testPerson_literalMutationString85602() throws

Exception {
3 final ToStringStyleTest.Person p = new ToStringStyleTest.Person

();
4 p.name = "Jane Doe";
5 Assert.assertEquals("Jane Doe", p.name);
6 p.age = 25;
7 p.smoker = true;
8 String o_testPerson_literalMutationString85602__6 =
9 new ToStringBuilder(p)

10 .append("n/me", p.name)
11 .append("age", p.age)
12 .append("smoker", p.smoker)
13 .toString();
14 Assert.assertEquals(
15 "{\"n/me\":\"Jane Doe\",\"age\":25,\"smoker\":true}",
16 o_testPerson_literalMutationString85602__6
17 );
18 Assert.assertEquals("Jane Doe", p.name);
19 }

The resulting amplified test method is shown in Listing 5.3. From this test method, DCI
generates an amplified test method shown in Listing 5.3. In this generated test, SBAMPL
applies 2 input transformations: 1 duplication of method call and 1 character replacement in
an existing String literal. The latter transformation is the key transformation: DCI replaced
an ’s’ inside "person" by ’/’ resulting in "per/on" where "/" is a special character that must
be escaped (Line 2). Then, DCI generated 11 assertions, based on the modified inputs. The
amplified test the behavioral change: in the pre-commit version, the expected value is: "{
... per/on":{"name":"Jane Doe" ...}" while in the post-commit version
it is "{ ... per\/on":{"name":"Jane Doe" ...}" (Line 3).

RQ1: Overall, DCI detects the behavioral changes in a total of 25/60 commits. Indi-
vidually, DCI-I-Amplification finds changes in 25/60, while DCI-A-Amplification in
9/60 commits. Since DCI-I-Amplification also uses AAMPL to generate assertions,
all DCI-A-Amplification ’s commits are contained in DCI-I-Amplification ’s. However,
the search-based algorithm, through exploration, finds many more behavioral changes,
making it more effective albeit at the cost of execution time.
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5.3.4.3 RQ2: What is the impact of the number of iteration performed by DCI-I-
Amplification ?

The results are reported in Table 5.3 This table can be read as follows: the first column
is the name of the project; the second column is the commit identifier; then, the third,
fourth, fifth, sixth, seventh and eighth provide the amplification results and execution time
for each number of iteration 1, 2, and 3. A 3 indicates with the number of amplified tests
that detect a behavioral change and a - denotes that DCI did not succeed in generating a test
that detects a change. The last row reports the total over the 6 projects. For the third, fifth
and the seventh columns of the last row, the first number is the number of successes, i.e.
the number of times that DCI produced at least one amplified test method that detect the
behavioral change, for respectivelyiteration = 1, iteration = 2 and iteration = 3. The
numbers in parentheses are the total number of amplified test methods that DCI produces
with each number of iteration.

Overall, DCI-I-Amplification generates amplified tests that detect 23, 24, and 25 out of
60 behavioral changes for respectively iteration = 1, iteration = 2 and iteration = 3.
The more iteration DCI-I-Amplification does, the more it explores, the more it generates
amplified tests that detect the behavioral changes but the more it takes time also. When
DCI-I-Amplification is used with iteration = 3, it generates amplified test methods that
detect 2 more behavioral changes than when it is used with iteration = 1 and 1 more than
when it is used with iteration = 2.

In average, DCI-I-Amplification generates 18, 53, and 116 amplified tests for respec-
tively iteration = 1, iteration = 2 and iteration = 3. This number increases by
544% from iteration = 1 to iteration = 3. This increase is explained by the fact that
DCI-I-Amplification explores more with more iteration and thus is able to generate more
amplified test methods that detect the behavioral changes.

In average DCI-I-Amplification takes 23, 64, and 105 minutes to perform the ampli-
fication for respectively iteration = 1, iteration = 2 and iteration = 3. This number
increases by 356% from iteration = 1 to iteration = 3.

Impact of the randomness The number of amplified test methods obtained by the dif-
ferent seeds are reported in Table 5.4.

This table can be read as follows: the first column is the id of the commit. the second
column is the result obtained with the default seed, used during the evaluation for RQ1. the
ten following columns are the results obtained for the 10 different seeds.

The computed confidence interval is [20.34, 17.66] It means that, from our samples,
with probability 0.95, the real value of the number of successes lies in this interval.
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Table 5.3: Evaluation of the impact of the number of iteration done by DCI-I-Amplification
on 60 commits from 6 open-source projects.

id it = 1 Time it = 2 Time it = 3 Time

co
m

m
on

s-
io

c6b8a38 0 25.0s 0 62.0s 0 98.0s
2736b6f 3 (1) 26.1m 3 (2) 44.2m 3 (12) 76.3m
a4705cc 0 4.1m 0 21.1m 0 38.1m
f00d97a 3 (7) 13.0s 3 (28) 19.0s 3 (39) 27.0s
3378280 3 (6) 15.0s 3 (10) 20.0s 3 (11) 24.0s
703228a 0 30.3m 0 55.1m 0 71.0m
a7bd568 0 28.6m 0 52.0m 0 65.2m
81210eb 3 (2) 14.0s 3 (4) 18.0s 3 (8) 23.0s
57f493a 0 20.0s 0 32.0s 0 54.0s
5d072ef 3 (461) 32.2m 3 (1014) 65.5m 3 (1538) 2.2h

total 477 2.0h 1058 4.0h 1608 6.5h
average 47.70 12.3m 105.80 24.0m 160.80 38.8m

co
m

m
on

s-
la

ng

f56931c 0 0.0s 0 3.7m 0 8.5m
87937b2 0 3.5m 0 10.5m 0 18.1m
09ef69c 0 97.0s 0 21.0m 0 98.8m
3fadfdd 3 (1) 2.0m 3 (1) 9.3m 3 (4) 17.2m
e7d16c2 3 (3) 111.0s 3 (2) 8.4m 3 (2) 15.1m
50ce8c4 3 (61) 38.0s 3 (97) 78.0s 3 (135) 2.0m
2e9f3a8 0 11.4m 0 35.0m 0 66.5m
c8e61af 0 16.0s 0 16.0s 0 16.0s
d8ec011 0 36.0s 0 68.0s 0 2.3m
7d061e3 0 79.0s 0 5.8m 0 11.4m

total 65 23.3m 100 96.4m 141 4.0h
average 6.50 2.3m 10.00 9.6m 14.10 24.0m

gs
on

b1fb9ca 0 14.6m 0 51.0m 0 92.5m
7a9fd59 3 (7) 33.0s 3 (48) 73.0s 3 (108) 2.1m
03a72e7 0 30.2m 0 102.3m 0 3.2h
74e3711 0 6.0s 0 11.0s 0 16.0s
ada597e 0 61.0s 0 4.9m 0 8.7m
a300148 0 45.2m 3 (4) 2.6h 3 (6) 4.9h
9a24219 0 10.8m 0 28.4m 0 48.9m
9e6f2ba 0 79.0s 0 4.5m 3 (2) 8.5m
44cad04 3 (4) 21.0s 3 (21) 30.0s 3 (37) 40.0s
b2c00a3 0 31.5m 0 111.8m 0 3.6h

total 11 2.3h 73 7.7h 153 14.4h
average 1.10 13.6m 7.30 46.0m 15.30 86.5m

js
ou

p 426ffe7 3 (126) 5.4m 3 (172) 19.2m 3 (198) 33.6m
a810d2e 0 90.0s 0 13.9m 0 26.6m
6be19a6 0 8.1m 0 39.7m 0 67.7m
e38dfd4 0 117.0s 0 6.3m 0 12.5m
e9feec9 0 20.0s 0 50.0s 0 95.0s
0f7e0cc 3 (1) 2.4h 3 (7) 6.8h 3 (36) 11.8h
2c4e79b 0 7.1m 0 34.1m 0 4.7h
e5210d1 0 45.0s 0 2.3m 0 4.9m
df272b7 0 43.0s 0 2.2m 0 4.6m
3676b13 3 (6) 21.4m 3 (35) 2.9h 3 (52) 6.8h

total 133 3.2h 214 11.6h 286 25.8h
average 13.30 19.4m 21.40 69.8m 28.60 2.6h

m
us

ta
ch

e.
ja

va

a1197f7 3 (28) 5.9h 3 (124) 8.4h 3 (204) 10.1h
8877027 0 30.5m 0 58.4m 0 100.2m
d8936b4 0 3.2m 0 4.8m 0 84.2m
88718bc 3 (13) 78.0s 3 (85) 2.5m 3 (149) 3.7m
339161f 3 (143) 115.9m 3 (699) 4.1h 3 (1312) 5.8h
774ae7a 3 (18) 2.7m 3 (65) 4.7m 3 (124) 6.8m
94847cc 3 (122) 5.3h 3 (580) 10.4h 3 (2509) 21.4h
eca08ca 0 8.1m 0 24.3m 0 41.8m
6d7225c 0 7.9m 0 26.8m 0 40.1m
8ac71b7 3 (2) 2.7m 3 (48) 3.8m 3 (124) 5.6m

total 326 14.0h 1601 25.0h 4422 42.0h
average 32.60 84.3m 160.10 2.5h 442.20 4.2h

xw
ik

i-
co

m
m

on
s ffc3997 0 19.0s 0 18.0s 0 18.0s

ced2635 0 8.0m 0 31.8m 0 2.5h
10841b1 0 56.2m 0 2.9h 0 3.4h
848c984 0 18.0s 0 17.0s 0 18.0s
adfefec 3 (22) 3.5m 3 (57) 9.9m 3 (3) 14.9m
d3101ae 3 (9) 11.6m 3 (12) 28.2m 3 (31) 41.4m
a0e8b77 3 (10) 12.0m 3 (17) 28.2m 3 (60) 42.1m
78ff099 3 (4) 2.6m 3 (4) 4.6m 3 (4) 6.6m
1b79714 0 4.0m 0 10.7m 0 17.9m
6dc9059 0 4.0m 0 10.8m 0 20.5m

total 45 102.8m 90 4.9h 98 8.2h
average 4.50 10.3m 9.00 29.7m 9.80 49.5m

total 22(1057) 23.7h 23(3136) 54.9h 24(6708) 100.9h



5.3. Evaluation 87

Table 5.4: Number of successes, i.e. DCI produced at least one amplified test method that
detects the behavioral changes, for 11 different seeds.

Seed ref 1 2 3 4 5 6 7 8 9

#Success 23 18 17 17 17 19 21 18 21 18

Answer to RQ2: DCI-I-Amplification detects 23, 24, and 25 behavioral changes out
of 60 for respectively iteration = 1, iteration = 2 and iteration = 3. The number
of iteration done by DCI-I-Amplification impacts the number of behavioral changes
detected, the number of amplified test methods obtained and the execution time.

5.3.4.4 RQ3: What is the effectiveness of our test selection method?

To answer RQ3, there is no quantitative approach to take, because there is no ground-truth
data or metrics to optimize. Per the protocol described in subsection 5.3.3, the answer to
this question is based on manual analysis: 1 commit per project is randomly selected. Then
the relevance of the selected tests for amplification is analyzed.

Following an example, in order to give an intuition of what are the characteristics of
the test selection for amplification to be relevant. The selection is considered relevant If
TestX is selected for amplification, following a change to method X. The key is that DCI
will generate an amplified test TestX’ that is a variant of TestX, and, consequently,
the developer will directly get the intention of the new test TestX’ and what behavioral
change it detects.

COMMONS-IO#C6B8A387: the test selection returns 3 test methods: testCon-

tentEquals, testCopyURLToFileWithTimeout and testCopyURLToFile

from the same test class: FileUtilsTestCase. The considered commit modifies the
method copyToFile from FileUtils. There is a link between the changed file and
the intention of 2 out 3 tests to be amplified. The selection is thus considered relevant.

COMMONS-LANG#F56931C8: the test selection returns 39 test methods from 5 test
classes: FastDateFormat_ParserTest, FastDateParserTest, DateUtil-
sTest, FastDateParser_TimeZoneStrategyTest and FastDateParser_-
MoreOrLessTest. This commit modifies the behavior of two methods: simple-

Quote and setCalendar of class FastDateParser. When manually analyzed, it
reveals two intentions: 1) test behaviors related to parsing; 1) test behaviors related to
dates. While this is meaningful, a set of 39 methods is clearly not a focused selection, not
as focused as for the previous example. The selection can be considered relevant, but not
focused.

7https://github.com/apache/commons-io/commit/c6b8a38
8https://github.com/apache/commons-lang/commit/f56931c

https://github.com/apache/commons-io/commit/c6b8a38
https://github.com/apache/commons-lang/commit/f56931c
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GSON#9E6F2BA9: the test selection returns 9 test methods from 5 different test classes.
3 out of those 5 classes JsonElementReaderTest, JsonReaderPathTest and
JsonParserTest relate to the class modified in the commit(JsonTreeReader). The
selection is thus considered relevant but unfocused.

JSOUP#E9FEEC910, the test selection returns the 4 test methods defined in the Xml-
TreeBuilderTest class caseSensitiveDeclaration, handlesXmlDecla-
rationAsDeclaration, testDetectCharsetEncodingDeclaration and
testParseDeclarationAttributes. The commit modifies the behavior of the
class XmlTreeBuilder. Here, the test selection is relevant. Actually, the ground-truth
manual test added in the commit is also in the XmlTreeBuilderTest class. If DCI
proposes a new test there to capture the behavioral change, the developer will understand
its relevance and its relation to the change.

MUSTACHE.JAVA#88718BC11, the test selection returns
the testInvalidDelimiters test method defined in the
com.github.mustachejava.InterpreterTest test class. The commit
improves an error message when an invalid delimiter is used. Here, the test selection is
relevant since it selected testInvalidDelimiters which is the dedicated test to the
usage of the test invalid delimiters. This ground-truth test method is also in the test class
com.github.mustachejava.InterpreterTest.

XWIKI-COMMONS#848C98412 the test selection returns a single test method cre-

ateReference from test class XWikiDocumentTest. The main modification of this
commit is on class XWikiDocument. Since XWikiDocumentTest is the test class
dedicated to XWikiDocument, the selection is considered relevant.

Answer to RQ3: In 4 out of 6 of the manually analyzed cases, the tests selected to
be amplified relate, semantically, to the modified application code. In the 2 remaining
cases, it selected over and above the tests to be amplified. That is, it selects tests whose
intention is semantically pertinent to the change, but it also includes tests that are not.
However, even in this case, DCI’s test selection provides developers with important
and targeted context to better understand the behavioral change at hand.

5.3.4.5 RQ4: How do human and generated tests that detect behavioral changes
differ?

When DCI generates an amplified test method that detects the behavioral change, it can
be compared to the ground truth version (the test added in the commit) to see whether it

9https://github.com/google/gson/commit/9e6f2ba
10https://github.com/jhy/jsoup/commit/e9feec9
11https://github.com/spullara/mustache.java/commit/88718bc
12https://github.com/xwiki/xwiki-commons/commit/848c984

https://github.com/google/gson/commit/9e6f2ba
https://github.com/jhy/jsoup/commit/e9feec9
https://github.com/spullara/mustache.java/commit/88718bc
https://github.com/xwiki/xwiki-commons/commit/848c984
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Listing 5.4: Test generated by DCI-I-Amplification that detects the behavioral change
introduced by commit 81210EB in commons-io.

1 @Test(timeout = 10000)
2 public void readMulti_literalMutationNumber3() {
3 BoundedReader mr = new BoundedReader(sr, 0);
4 char[] cbuf = new char[4];
5 for (int i = 0; i < (cbuf.length); i++) {
6 cbuf[i] = ’X’;
7 }
8 final int read = mr.read(cbuf, 0, 4);
9 Assert.assertEquals(0, ((int) (read)));

10 }

captures the same behavioral change. For each project, I select 1 successful application of
DCI, and compare the DCI test against the human test. If they capture the same behavioral
change, it means they have the same intention and the amplification is considered as a
success.

COMMONS-IO#81210EB13: This commit modifies the behavior of the read()

method in BoundedReader. Listing 5.4 shows the test generated by DCI-I-Amplification
. This test is amplified from the existing readMulti test, which indicates that the inten-
tion is to test the read functionality. The first line of the test is the construction of a Bound-
edReader object which is also the class modified by the commit. DCI-I-Amplification
modified the second parameter of the constructor call (transformed 3 into a 0) and gen-
erated two assertions (only 1 is shown). The first assertion, associated to the new test
input, captures the behavioral difference. Overall, this can be considered as a successful
amplification.

Now, look at the human test contained in the commit, shown in Listing 5.5. It captures
the behavioral change with the timeout (the test timeouts on the pre-commit version and
goes fast enough on the post-commit version). Furthermore, it only indirectly calls the
changed method through a call to readLine.

In this case, the DCI test can be considered better than the developer test because 1) it
relies on assertions and not on timeouts, and 2) it directly calls the changed method (read)
instead of indirectly.

COMMONS-LANG#E7D16C214: this commit escapes special characters before adding
them to a StringBuffer. Listing 5.6 shows the amplified test method obtained by
DCI-I-Amplification . The assertion at the bottom of the excerpt is the one that detects the
behavioral change. This assertion compares the content of the StringBuilder against
an expected string. In the pre-commit version, no special character is escaped, e.g.’\n’.

13https://github.com/apache/commons-io/commit/81210eb
14https://github.com/apache/commons-lang/commit/e7d16c2

https://github.com/apache/commons-io/commit/81210eb
https://github.com/apache/commons-lang/commit/e7d16c2
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Listing 5.5: Developer test for commit 81210EB of commons-io.
1 @Test(timeout = 5000)
2 public void testReadBytesEOF() {
3 BoundedReader mr = new BoundedReader( sr, 3 );
4 BufferedReader br = new BufferedReader( mr );
5 br.readLine();
6 br.readLine();
7 }

Listing 5.6: Test generated by DCI-I-Amplification that detects the behavioral change of
E7D16C2 in commons-lang.

1 @Test(timeout = 10000)
2 public void testAppendSuper_literalMutationString64() {
3 String o_testAppendSuper_literalMutationString64__15 =
4 new ToStringBuilder(base)
5 .appendSuper((((("Integer@8888[" + (System.lineSeparator()))

+ " null")
6 + (System.lineSeparator())) + "]"))
7 .append("a", "b0/|]")
8 .toString();
9 Assert.assertEquals("{\"a\":\"b0/|]\"}",

o_testAppendSuper_literalMutationString64__15);
10 }

In the post-commit version, the amplified test fails since the code now escapes the special
character \.

Let’s have a look to the human test method shown in Listing 5.7. Here, the developer
specified the new escaping mechanism with 5 different inputs.

The main difference between the human test and the amplified test is that the human
test is more readable and uses 5 different inputs. However, the amplified test generated by
DCI is valid since it detects the behavioral change correctly.

GSON#44CAD0415: This commit allows Gson to deserialize a number represented as
a string. Listing 5.8 shows the relevant part of the test generated by DCI-I-Amplification ,
based on testNumberDeserialization of PrimitiveTest as a seed. The DCI
test detects the behavioral changes at lines 3 and 4. On the pre-commit version, line 3
throws a JsonSyntaxException. On the post-commit version, line 4 throws a Num-
berFormatException. In other words, the behavioral change is detected by a different
exception (different type and not thrown at the same line). 16.

The amplified test methods is now compared against the developer-written ground-truth

15https://github.com/google/gson/commit/44cad04
16Interestingly, the number is parsed lazily, only when needed. Consequently, the exception is thrown when

invoking the longValue() method and not when invoking parse()

https://github.com/google/gson/commit/44cad04
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Listing 5.7: Developer test for E7D16C2 of commons-lang.
1 @Test
2 public void testLANG1395() {
3 assertEquals("{\"name\":\"value\"}",
4 new ToStringBuilder(base).append("name","value").toString());
5 assertEquals("{\"name\":\"\"}",
6 new ToStringBuilder(base).append("name","").toString());
7 assertEquals("{\"name\":\"\\\"\"}",
8 new ToStringBuilder(base).append("name",’"’).toString());
9 assertEquals("{\"name\":\"\\\\\"}",

10 new ToStringBuilder(base).append("name",’\\’).toString());
11 assertEquals("{\"name\":\"Let’s \\\"quote\\\" this\"}",
12 new ToStringBuilder(base).append("name","Let’s \"quote\" this")

.toString());
13 }

Listing 5.8: Test generated by DCI that detects the behavioral change of commit 44CAD04
in Gson.

1 public void
testNumberDeserialization_literalMutationString8_failAssert0()
throws Exception {

2 try {
3 String json = "dhs";
4 actual = gson.fromJson(json, Number.class);
5 actual.longValue();
6 junit.framework.TestCase.fail(
7 "testNumberDeserialization_literalMutationString8 should have

thrown JsonSyntaxException");
8 } catch (JsonSyntaxException expected) {
9 TestCase.assertEquals("Expecting number, got: STRING", expected

.getMessage());
10 }
11 }
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Listing 5.9: Provided test by the developer for 44CAD04 of Gson.
1 public void testNumberAsStringDeserialization() {
2 Number value = gson.fromJson("\"18\"", Number.class);
3 assertEquals(18, value.intValue());
4 }

Listing 5.10: Test generated by DCI-I-Amplification that detects the behavioral change of
3676B13 of Jsoup.

1 @Test(timeout = 10000)
2 public void parsesBooleanAttributes_add4942() {
3 String html = "<a normal=\"123\" boolean empty=\"\"></a>";
4 Element el = Jsoup.parse(html).select("a").first();
5 List<Attribute> attributes = el.attributes().asList();
6 Attribute o_parsesBooleanAttributes_add4942__15 =
7 attributes.get(1);
8 Assert.assertEquals("boolean=\"\"",
9 ((BooleanAttribute) (o_parsesBooleanAttributes_add4942__15)).

toString());
10 }

method, shown in Listing 5.9. This short test verifies that the program handles a number-
as-string correctly. For this example, the DCI test does indeed detect the behavioral change,
but in an indirect way. On the contrary, the developer test is shorter and directly targets the
changed behavior, which is better.

JSOUP#3676B1317: This change is a pull request (i.e. a set of commits) and introduces
5 new behavioral changes. There are two improvements: skip the first new lines in pre tags
and support deflate encoding, and three bug fixes: throw exception when parsing some
URLs, add spacing when output text, and no collapsing of attribute with empty values.
Listing 5.10 shows an amplified test obtained using DCI-I-Amplification . This amplified
test has 15 assertions and a duplication of method call. Thanks to this duplication and
these generated assertions on the toString() method, this test is able to capture the
behavioral change introduced by the commit.

As before, the amplified test method is compared to the developer’s test. The
developer uses the Element and outerHtml() methods rather than Attribute

and toString(). However, the method outerHtml() in Element will call the
toString() method of Attribute. For this behavioral change, it concerns the At-
tribute and not the Element. So, the amplified test is arguably better, since it is closer
to the change than the developer’s test. But, DCI-I-Amplification generates amplified tests
that detect 2 of 5 behavioral changes: adding spacing when output text and no collapsing

17https://github.com/jhy/jsoup/commit/3676b13

https://github.com/jhy/jsoup/commit/3676b13
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Listing 5.11: Provided test by the developer for 3676B13 of Jsoup.
1 @Test
2 public void booleanAttributeOutput() {
3 Document doc = Jsoup.parse("<img src=foo noshade=’’ nohref async

=async autofocus=false>");
4 Element img = doc.selectFirst("img");
5

6 assertEquals("<img src=\"foo\" noshade nohref async autofocus=\"
false\">", img.outerHtml());

7 }

Listing 5.12: Test generated by DCI-I-Amplification that detects the behavioral change of
774AE7A of Mustache.java.

1 @Test(timeout = 10000)
2 public void

getReaderNullRootDoesNotFindFileWithAbsolutePath_litStr4() {
3 ClasspathResolver underTest = new ClasspathResolver();
4 Reader reader = underTest.getReader(" does not exist");
5 Assert.assertNull(reader);
6 Matcher<Object>
7 o_getReaderNullRootDoesNotFindFileWithAbsolutePath_litStr4__5 =
8 Is.is(CoreMatchers.nullValue());
9 Assert.assertEquals("is null",

10 ((Is) (
o_getReaderNullRootDoesNotFindFileWithAbsolutePath_litStr4__5
))

11 .toString()
12 );
13 Assert.assertNull(reader);
14 }

of attribute with empty values only, so regarding the quantity of changes, the human tests
are more complete.

MUSTACHE.JAVA#774AE7A18: This commit fixes an issue with the usage of a dot in a
relative path on Window in the method getReader of class ClasspathResolver.
The test method getReaderNullRootDoesNotFindFileWithAbsolutePath

has been used as seed by DCI. It modifies the existing string literal with another string used
somewhere else in the test class and generates 3 new assertions. The behavioral change is
detected thanks to the modified strings: it produces the right test case containing a space.

The developer proposed two tests that verify that the object reader is not null when
getting it with dots in the path. There are shown in Listing 5.13. These tests invoke the
method getReader which is the modified method in the commit. The difference is that

18https://github.com/spullara/mustache.java/commit/774ae7a

https://github.com/spullara/mustache.java/commit/774ae7a
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Listing 5.13: Developer test for 774AE7A of Mustache.java.
1 @Test
2 public void getReaderWithRootAndResourceHasDoubleDotRelativePath

() throws Exception {
3 ClasspathResolver underTest = new ClasspathResolver("templates")

;
4 Reader reader = underTest.getReader("absolute/../

absolute_partials_template.html");
5 assertThat(reader, is(notNullValue()));
6 }
7

8 @Test
9 public void getReaderWithRootAndResourceHasDotRelativePath()

throws Exception {
10 ClasspathResolver underTest = new ClasspathResolver("templates")

;
11 Reader reader = underTest.getReader("absolute/./

nested_partials_sub.html");
12 assertThat(reader, is(notNullValue()));
13 }

the DCI-I-Amplification ’s amplified test method provides a non longer valid input for
the method getReader. However, providing such inputs produce errors afterward which
signal the behavioral change. In this case, the amplified test is complementary to the human
test since it verifies that the wrong inputs are no longer supported and that the system
immediately throws an error.

XWIKI-COMMONS#D3101AE19: This commit fixes a bug in the merge method of
class DefaultDiffManager. Listing 5.14 shows the amplified test method obtained
by DCI-A-Amplification . DCI used testMergeCharList as a seed for the ampli-
fication process, and generates 549 new assertions. Among them, 1 assertion captures
the behavioral change between the two versions of the program: “assertEquals(0, re-
sult.getLog().getLogs(LogLevel.ERROR).size());”. The behavioral change that is detected
is the presence of a new logging statement in the diff. After verification, there is indeed
such a behavioral change in the diff, with the addition of a call to “logConflict” in the newly
handled case.

The developer’s test is shown in Listing 5.15. This test method directly calls method
merge, which is the method that has been changed. What is striking in this test is the
level of clarity: the variable names, the explanatory comments and even the vertical space
formatting are impossible to achieve with DCI-A-Amplification and makes the human test
clearly of better quality but also longer to write.

Yet, DCI-A-Amplification ’s amplified tests capture a behavioral change that was not

19https://github.com/xwiki/xwiki-commons/commit/d3101ae

https://github.com/xwiki/xwiki-commons/commit/d3101ae
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Listing 5.14: Test generated by DCI-A-Amplification that detects the behavioral change of
D3101AE of XWiki.

1 @Test(timeout = 10000)
2 public void testMergeCharList() throws Exception {
3 MergeResult<Character> result;
4 result = this.mocker.getComponentUnderTest()
5 .merge(AmplDefaultDiffManagerTest.toCharacters("a"),
6 AmplDefaultDiffManagerTest.toCharacters(""),
7 AmplDefaultDiffManagerTest.toCharacters("b"),
8 null
9 );

10 int o_testMergeCharList__9 = result.getLog().getLogs(LogLevel.
ERROR).size();

11 Assert.assertEquals(1, ((int) (o_testMergeCharList__9)));
12 List<Character> o_testMergeCharList__12 =

AmplDefaultDiffManagerTest.toCharacters("b");
13 Assert.assertTrue(o_testMergeCharList__12.contains(’b’));
14 result.getMerged();
15 result = this.mocker.getComponentUnderTest()
16 .merge(AmplDefaultDiffManagerTest.toCharacters("bc"),
17 AmplDefaultDiffManagerTest.toCharacters("abc"),
18 AmplDefaultDiffManagerTest.toCharacters("bc"),
19 null
20 );
21 int o_testMergeCharList__21 = result.getLog().getLogs(LogLevel.

ERROR).size();
22 Assert.assertEquals(0, ((int) (o_testMergeCharList__21)));
23 }



96 Chapter 5. Test Amplification For Behavioral Changes Detection Of Commits

Listing 5.15: Developer test for D3101AE of XWiki.
1 @Test
2 public void testMergeWhenUserHasChangedAllContent() throws

Exception
3 {
4 MergeResult<String> result;
5

6 // Test 1: All content has changed between previous and current
7 result = mocker.getComponentUnderTest().merge(Arrays.asList("

Line 1", "Line 2", "Line 3"),
8 Arrays.asList("Line 1", "Line 2 modified", "Line 3", "Line 4

Added"),
9 Arrays.asList("New content", "That is completely different"),

null);
10

11 Assert.assertEquals(Arrays.asList("New content", "That is
completely different"), result.getMerged());

12

13 // Test 2: All content has been deleted
14 // between previous and current
15 result = mocker.getComponentUnderTest().merge(Arrays.asList("

Line 1", "Line 2", "Line 3"),
16 Arrays.asList("Line 1", "Line 2 modified", "Line 3", "Line 4

Added"),
17 Collections.emptyList(), null);
18

19 Assert.assertEquals(Collections.emptyList(), result.getMerged())
;

20 }

specified in the human test. In this case, amplified tests can be complementary.

Answer to RQ4: In 3 of 6 cases, the DCI test is complementary to the human test. In 1
case, the DCI test can be considered better than the human test. In 2 cases, the human
test is better than the DCI test. Even though human tests can be better, DCI can be
complementary and catch missed cases, or can provide added-value when developers
do not have the time to add a test.

5.4 Discussion about the scope of DCI

In this section, we overview the current scope of DCI and the key challenges that limit
DCI.

Focused applicability From the benchmark, DCI is applicable to limited proportion of
commits: 9.93% of the commits analyzed on average. This low proportion is the first limit
of DCI usage. However, Once DCI is setup, there is no manual overhead. Even if DCI is
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not used at each commit, it costs nothing more.

Adoption The evaluation showed that DCI is able to obtain amplified test methods that
detect a behavioral change. But, it does not provide any evidence on the fact that developers
would exploit such test method. However, from the previous chapter Chapter 4, software
developers value the amplified test methods. This provides strong evidence on the potential
adoption of DCI.

Performance From our experiments, we see that the time to complete the amplification
is the main limitation of DCI. For example DCI took almost 5 hours on JSOUP#2C4E79B,
with no result. For the sake of our experimentation, we choose to use a pre-defined number
of iteration to bound the exploration. In practice, we recommend to set a time budget (e.g.
at most one hour per pull-request).

Importance of test seeds By construction, DCI’s effectiveness is correlated to the
test methods used as seed. For example, see the row of commons-lang#c8e61af in
Table 5.3, where one can observe that whatever the number of iteration, DCI takes the same
time to complete the amplification. The reason is that the seed tests are only composed of
assertions statements. Such tests are bad seeds for DCI, and they prevent any good input
amplification. Also, DCI requires to have at least one test method that executes the code
changes. If the project is poorly tested and does not have any test method that execute the
code changes, DCI cannot be applied.

False positives The risk of false positives is a potential limitation of our approach.
A false positive would be an amplified test method that passes or fails on both versions,
which means that the amplified test method does not detect the behavioral difference be-
tween both versions. I manually analyzed 6 commits and none of them are false positives.
This increases our confidence that DCI produces a limited number of such confusing test
methods.

5.5 Threats to validity

An internal threat is the potential bugs in the implementation of DCI. However, it is heavily
tested, with JUnit test suite to mitigate this threat.

In the benchmark, there are 60 commits. The result may be not be generalizable to
all programs. But real and diverse applications from GitHub have been carefully selected,
all having a strong test suite. The benchmark reflects real programs, and provides an high
confidence in the result.

The experiments are stochastic, and randomness is a threat accordingly. To mitigate
this threat, I have computed a confidence interval that estimates the number of successes
that DCI would obtain.
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5.6 Conclusion

This chapter presented the evaluation of DCI, which aim at setting up DSpot inside the CI.
The goal of DCI is to produce automatically test methods that detect a behavioral change,
i.e. a behavioral difference between two versions of the same program. This is done by
selecting test methods that execute the changes, then amplify them with DSpot. In addition
to this, DSpot keeps amplified test methods that detect the behavioral change, approximate
by the fact that the amplified test methods pass on the pre-changes version but fail on the
post-change version of the program.

DCI can be integrated to the continuous integration to achieve two major tasks:

1) DCI can improve the regression detection ability of the test suite with respect to a
changes. When the behavioral changes highlighted by the test suite is not desired, it means
that the developers introduced a regression or a new bug inside the program. Using these
amplified test methods, the developers can identify and fix the problem faster than without
it. Thus it prevents the merge of hidden bug that could cost a lot of money if users face it
when using the application.

2) DCI can help the developers to make evolve the test suite by providing amplified
test methods that detect the behavioral change. When this behavioral change is the one
desired, the developers just need to negate, manually or using automatic approach such as
ReAssert [Daniel 2009a], the assertions. The developer will obtain amplified test methods
that strengthen the test suite according to her change.

To evaluate DCI, I selected 60 commits that introduce behavioral changes from 6 open-
source projects, from past-evaluation [Vera-Pérez 2018b, Danglot 2018]. Then, I executed
DCI on these 60 commits and observe whether or not DCI can generate amplified test
methods that detect the behavioral changes. For these 60 commits, DCI has been able to
detect 25 behavioral change. To the best of my knowledge, this is the first benchmark of real
behavioral changes from open-source projects. This evaluation showed that DCI is able to
generate amplified test methods to detect real behavioral changes, introduced by commits.
This means that DCI can be used in an industrial context since the selected changes are
complex and required deep knowledge of the application, and the selected application are
wide-spread and used programs across the open-source community.

In the next chapter, I expose 3 transverval contributions of this thesis:

First, the study of the correctness of program under runtime perturbation: In the previ-
ous chapter Chapter 3 and this chapter, I evaluated DSpot in two different contexts: offline
amplification and amplification in the CI. DSpot generates amplified test methods, using
the state of the program as oracle to build assertions. It means that the current behavior of
the program is considered correct by DSpot. What does correct mean? In the first transver-
sal contribution, I studied the correctness program. In particular, how do programs behave
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under run-time perturbation?
Second, the study of pseudo-tested methods; Pseudo-tested methods are source meth-

ods that when the body is removed, the whole test suite pass, while some test methods are
executing this methods. In Chapter 4, I use mutation score to measure test suite’s qual-
ity. The detection of pseudo-tested methods can be done using mutation score and more
particularly specifically designed mutants.

And Third, the study of test generation for automatic repair. Automatic repair aims
at fixing automatically bugs. One family of automatic repair is the test suite based. This
family uses the test suite as oracle to know whether or not the bug have been fix. One can
use test generation techniques to enhances these automatic repair techniques and see it as
a test amplification process.
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In this chapter, I expose 3 transversal contributions that I made during my thesis.
Thanks to the expertise that I developed during my thesis, I worked with my researchers
colleagues on side topics yet linked to this thesis.

• The first transversal contribution studies the correctness of program under runtime
perturbations in Section 6.1. This work has been done during my master degree.

• The second transversal contribution studies the pseudo-tested methods Section 6.2.

• The third transversal contribution studies patches’ overfitting in test-based repair
techniques in Section 6.3.
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These 3 transversal contributions are supported by published articles [Danglot 2018,
Vera-Pérez 2018b, Yu 2019] in Empirical Software Engineering. However, the reader can
skip this chapter since it is additional materials and this chapter does not expose core con-
tributions.

6.1 Study of Program Correctness

In this thesis, I study the correctness of programs through test methods. DSpot, that has
been presented in Chapter 3, is a test suite amplification tool that generates new test meth-
ods using the current behavior of the program as oracle to build assertions. In other words,
DSpot considers considers the current values that compose the state of the program as
correct. But, what does correct mean? In this first transversal contribution, I study the
correctness program under run-time perturbations.

6.1.1 Problem Statement

Recalling that in Chapter 1, I mentioned a quote of Dijkstra:

“the smallest possible perturbations - i.e. changes of a single bit - can have the most
drastic consequences.”.

This first study aims at verifying this statement is true or not. Dijkstra considers soft-
ware as a system that is in an unstable equilibrium, or to put it more precisely, that the
correctness of a program output is unstable with respect to perturbations. However, previ-
ous works, e.g. [Rinard 2005, Li 2007]) suggest the opposite, i.e. suggest that programs
can accommodate perturbations.

In the context of my thesis, the correctness of programs relies on test suite. However,
the incompleteness of test suites make them poor oracles to verify the truthfulness of the
Dijkstra’s hypothesis.

This is why I devise ATTRACT, an experimental protocol to study the stability of pro-
gram correctness under execution perturbation. It consists in perturbing the execution of
programs according to a perturbation model and observing whether this has an impact on
the correctness of the output. The two observable different outcomes are: the perturbation
breaks the computation and results in an incorrect output (unstable under perturbation),
or the correctness of the output is stable despite the perturbation. This protocol has two
key-attributes:

1) It is based on perfect oracle, i.e. it verifies the output of the perturbed program is
completly correct, i.e. bit-wise equals to the output of the unpertubed, or original, program.

2) It explores exhaustively in time and space the perturbation envelop of software.
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The remaining of this section is organized as follows: first, I present ATTRACT protocol
in subsection 6.1.2. second, I present the experimentation that has been carried out in
subsection 6.1.3; and eventually, subsection 6.1.4 conclude this section.

6.1.2 ATTRACT Protocol

To actually perform perturbations, ATTRACT adds perturbation points to the program
under study where a perturbation point (denoted pp) is an expression of a given data
type. For instance, if one perturbs integer values, the perturbation points will be all
integer expressions (literals as well as compound expressions). In Listing 6.11, there are 3
potential integer perturbation points in a single statement, indicated with braces.

Listing 6.1: Three integer perturbation points in a single statement.

1 acc | = i︸︷︷︸ >> mask︸ ︷︷ ︸ ;

2 pp1 pp2

3 acc | = i >> mask︸ ︷︷ ︸ ;

4 pp3

ATTRACT statically locates perturbation points and automatically adds perturbation
code around them using a code transformation. The transformation consists of wrapping
all compatible expressions into a function call p (for “perturb”)2.

Listing 6.2: The same statement with perturbation code injected.

1 acc | = p ( 3 , p ( 1 , i ) >> p ( 2 , mask ) ) ;

In Listing 6.2, each integer expression of Listing 6.1 is wrapped into a call to function p.
Function p takes two parameters: a unique index to identify the perturbation point and the
expression being perturbed. If p returns the second parameter, the transformed program is
semantically equivalent to the original program. The identifier argument enables ATTRACT

to perturb only one location at a time. In this example, this identifier ranges from 1 to 3
corresponding to the index given in Listing 6.1 under perturbation point pp.

6.1.2.1 Core Algorithm

The goal of this algorithm is to systematically explore the perturbation space. rst records
the number of executions of each perturbation point for each input in a matrix Rref (for
reference run) without injecting any perturbation. Rref [pp, i] refers to the number of ex-
ecutions of perturbation point pp for a given input i. Then, it re-executes the program for

1| is the bitwise or operator. >> is the binary right shift operator. The assignment | = is the bitwise or
operator between the left operand and the right operand, then the result is affected to the left operand.

2In the experimentation, it is implemented on Java programs using the Spoon transformation library
[Pawlak 2015].

alg:systexplor#f.i
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each input, with one perturbation for each point so that each point is perturbed at least
and at most once per input. The oracle asserts the correctness of the perturbed execu-
tion (output o) for the given input (i). A perturbed execution can have three outcomes: a
success, meaning that the correctness oracle validates the output; a failure meaning that
the correctness oracle is violated (also called an oracle-broken execution); a runtime error
(an exception in Java) meaning that the perturbation has produced a state for which the
computation becomes impossible at some point (e.g. a division-by-zero).

This algorithm performs a systematic exploration of the perturbation space for a given
program and a set of inputs according to a perturbation model.

Algorithm 2 Core Algorithm of ATTRACT.
Require:
prog: program,
model: perturbation model,
I: set of inputs for program prog,
oracle: a perfect oracle for program prog
Ensure:
exc: counters of execution per perturbation point,
s: counters of success per perturbation point,
ob: counters of oracle broken per perturbation point

instrument(prog)
for each input i in I do

for perturbation point pp in prog do
Rref [, i]← runWithoutPerturbation(prog, i)
for j = 0, to Rref [pp, i] do

o← runWithPerturbationAt(prog,model, i, pp, j)
if exception is thrown then

exc[pp]← exc[pp] + 1
else if oracle.assert(i, o) then

s[pp]← s[pp] + 1
else

ob[pp]← ob[pp] + 1
end if

end for
end for

end for

In Algorithm 2, Rref [, i] denotes column i of matrix Rref . The statement runWith-
outPerturbation(prog, i) returns a column vector which is assigned to the ith column of
matrix Rref ; each element is one perturbation point: it contains the number of times each
perturbation point is executed in the program prog for each input i. On the other hand, the
statement runWithPerturbationAt(prog, model, i, pp, j) runs the program prog while using
the perturbation model model, the perturbation point pp at its jth execution for the given
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input i.

6.1.3 Evaluation

The experimentation with a dataset of 10 programs. This dataset has been created following
this methodology: first and foremost, the programs can be specified with a perfect oracle;
second, they are written in Java; third, they come from diverse application domains in order
to maximize external validity.

6.1.3.1 The PONE Experiment

I now present the PONE experiment. Its goal is to explore correctness attraction according
to increments (+1) of integer values at runtime.

Point that a single perturbation always breaks the output correctness are qualified as
fragile because a single perturbation at runtime breaks the whole computation. Other
points that can be systematically perturbed without any consequence on the correctness
of the final output of the program are qualified as antifragile (in opposition to fragile).
The remainder are in between; those with a correctness ratio larger or equal than 75% are
qualified as robust.

In the PONE experiment, integer expressions are perturbed. The PONE perturbation
model is a small perturbation on an integer expression: a single increment of an integer
value only once during an execution. An equivalently small perturbation model is MONE
consisting of decrementing integers. An experimentation as been also performed using
MONE, however, the results are not reported in this thesis. For more information, see the
dedicated article.[Danglot 2018]

Table 6.1: PONE Results. The correctness ratio may not correspond directly to the number
of Antifragile and Robust expressions because it is computed over all executions.

Subject N int
pp |Search space|# Fragile exp.#Robust exp.# Antifragile exp.Correctness ratio

quicksort41 151444 6 10 19 ––––––– 77 %
zip 19 38840 5 2 5 ––––––– 76 %
sudoku 89 98211 12 27 8 –––––– 68 %
md5 164 237680 102 24 7 –– 29 %
rsa 117 2576 55 8 32 ––––– 54 %
rc4 115 165140 60 7 12 ––– 38 %
canny 450 616161 58 129 133 ––––––––– 94 %
lcs 79 231786 10 47 13 –––––––– 89 %
laguerre 72 423454 15 24 15 ––––––––– 90 %
linreg 75 543720 43 18 11 –––– 47 %
total 12212509012 366 296 255 –––––– 66 %

Table 6.1 gives the results of the systematic exploration of the PONE perturbation
space. For each subject, this table gives: the number of integer perturbation points N int

pp ;
the number of perturbed executions (equal to the size of the PONE perturbation space);
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the number of fragile integer expressions; the number of robust integer expressions; the
number of antifragile integer expressions; the correctness ratio (percentage of correct
outputs) over all perturbed executions.

To sum up, the main conclusions of the PONE experiment are:

• The considered programs are perturbable according to the PONE perturbation
model.

• There are very few fully fragile integer expressions in the considered programs.

• There is a majority of highly perturbable integer expressions which results in a
high level of correctness attraction.

• Dijkstra’s view that software is fragile is not always true, correctness is rather a
stable equilibrium than an unstable one.

6.1.4 Discussion

I have devised a protocol called ATTRACT to study the stability of programs under pertur-
bation. ATTRACT exhaustively explores the perturbation space of a given program for a set
of inputs according to a perturbation model. An experimentation have been conducted on
10 subjects using the PONE perturbation model. In total, 2509012 perturbed executions
have been performed and studied, which makes it one of the largest perturbation experi-
ments ever made. From this experimentation, the presence of “correctness attraction” has
been observed. Over all perturbed execution, 66% of them do not break the correctness of
the output.

Studying correctness attraction can have divers applicability. One of them is to identify
points that can be randomized and protect the software from external and malicious attacks.
Also, if one could engineer techniques to automatically improve correctness attraction, in
order to obtain zones that accommodate more perturbations of the runtime state, and those
zones could be deemed “bug absorbing zones”.

To conclude, I imagine two ways to combine both DSpot and ATTRACT: First, using
ATTRACT as a test-criterion to amplify test suites, i.e. DSpot would keep amplified test
methods that detect more perturbations than the original test suite. Second, in ATTRACT,
I used perfect oracles. The problem they have been manually devised, and this could be
approximated using the test suite. To strengthen it, one could amplifies its test suite with
DSpot to have a better approximation of the perfect oracle and thus study deeper the cor-
rectness of its program.
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6.2 Study of Pseudo-tested Methods

Pseudo-tested methods are source methods that when the body is removed, the whole test
suite passes, while some test methods are executing this methods. In Chapter 4, I use muta-
tion score to measure the quality of a test suite. The detection of pseudo-tested methods can
be done using mutation score and specifically designed mutants. In this second transversal
contributions, we study the presence of pseudo-tested methods and the developers assess-
ment if it is worthy or not to fix them. In DSpot, the default test-criterion used is the
pseudo-tested methods, i.e. DSpot keeps amplified test methods that specify pseudo-tested
methods.

6.2.1 Problem Statement

Niedermayr and colleagues [Niedermayr 2016] recently introduced the concept of pseudo-
tested methods. These methods are covered by the test suite, but no test case fails even if all
behaviors of the method are removed at once, i.e. when the body is completely stripped off.
This work is novel and intriguing: such pseudo-tested methods are present in all projects,
even those with test suites that have high coverage ratio.

If those results hold, it calls for more research on this topic. This is the motivation of
this paper: first, we challenge the external validity of Niedermayr et al.’s experiment with
new study subjects, second we perform an in-depth qualitative empirical study of pseudo-
tested methods. In particular, we want to determine if pseudo-tested methods are indicators
of badly tested code. While this seems to be intuitively true, we aim at quantifying this phe-
nomenon. Second, we want to know whether pseudo-tested methods are relevant indicators
for developers who wish to improve their test suite. In fact, these methods may encapsulate
behaviors that are poorly specified by the test suite, but are not relevant functionalities for
the project.

6.2.2 Definition and Implementation

Let P be a program and m be a method; S = ∪m∈P effects(m) the set of effects of
all methods in P ; effects(m) a function effects : P → S that returns all the effects of a
methodm; detect, a predicate TS×S → {>,⊥} that determines if an effect is detected by
TS. Here, we consider the following possible effects that a method can produce: change
the state of the object on which it is called, change the state of other objects (by calling
other methods), return a value as a result of its computation.

Definition 1 A method is said to be pseudo-tested with respect to a test suite, if the test
suite covers the method and does not assess any of its effects.
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A “pseudo-tested” method, as defined previously, is an idealized concept. We now
describe an algorithm that implements a practical way of collecting a set of pseudo-tested
methods in a program P , in the context of the test suite TS, based on the original proposal
of Niedermayr et al. [Niedermayr 2016]. It relies on the idea of “extreme code transforma-
tions”, which consists in completely stripping out the body of a method.

Algorithm Algorithm 3 starts by analyzing all methods of P that are covered by the
test suite and fulfill a predefined selection criterion (predicate ofInterest in line 1). This
critetion is based on the structure of the method and aims at reducing the number of false
positives detected by the procedure. It eliminates uninteresing methods such as trivial setter
and getters or empty void methods. If the method returns a value, the body of the method
is stripped out and we generate a few variants that simply return predefined values (line
3).3 If the method is void, we strip the body without further action (line 7). Once we have
a set of variants, we run the test suite on each of them, if no test case fails on any of the
variants of a given method, we consider the method as pseudo-tested (line 15). One can
notice in line 13 that all extreme transformations are applied to the original program and
are analyzed separately.

To conduct our study, we have implemented Algorithm 3 in an open source tool called
Descartes4. The tool can detect pseudo-tested methods in Java programs tested with a JU-
nit test suite. Descartes is developed as an extension of Pitest [Coles 2016], and ”extreme
transformation“ can be seen as extreme mutations, in Pitest parlance. It leverages the ma-
turity of Pitest and handles the discovery of points where extreme transformations can
be applied and the creation of the new program variants [Vera-Pérez 2018a]. Being open-
source, we hope that Descartes will be used by future research on the topic of pseudo-tested
methods .

6.2.3 Evaluation

We selected 21 open source projects in a systematic manner to conduct our experiments.
We considered active projects written in Java, that use maven as main build system, JUnit as
the main testing framework and their code is available in a version control hosting service,
mostly GitHub.

6.2.3.1 Frequency of pseudo-testedMethods

With this evaluation, we aim at characterizing the prevalence of pseudo-tested methods. It
is a conceptual replication of the work by Niedermayr et al. [Niedermayr 2016], with a

3Compared to Niedermayr et al. [Niedermayr 2016], we add two new transformations, one to return null
and another to return an empty array. These additions allow to expand the scope of methods to be analyzed.

4https://github.com/STAMP-project/pitest-descartes

https://github.com/STAMP-project/pitest-descartes
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Algorithm 3 Procedure to detect pseudo-tested methods
Require: Program P
Require: Test suite TS
Require: Test criterion TC
Ensure: pseudo: {pseudo-tested methods in P}

1: for m ∈ Pincovered(m,TS ) ∧ ofInterest(m) do
2: variants : {extreme variants of m}
3: if returnsValue(m) then
4: stripBody(m)
5: checkReturnType(m)
6: variants← fixReturnValues(m)
7: else
8: variants← stripBody(m)
9: end if

10: end for
11: failure← false
12: for v ∈ variants do
13: P ′ ← replace(m, v, P )
14: failure← failure ∨ run(TS , P ′)
15: if ¬failure then
16: pseudo← pseudo ∪m
17: end if
18: end forreturn pseudo

larger set of study objects and a different tool support for the detection of pseudo-tested
methods.

We analyzed each study subject following the procedure described in Section 6.2.2.
The results are summarized in Table 6.2. The second column shows the total number of
methods excluding constructors. The third, lists the methods covered by the test suite.
The following column shows the ratio of covered methods. The #MUA column shows the
number of methods under analysis. The last two columns give the number of pseudo-tested
methods (#PSEUDO) and their ratio to the methods under analysis (PS_RATE).

We have made the first independent replication of Niedermayr et al.
[Niedermayr 2016]’s study. Our replication confirms that all Java projects contain
pseudo-tested methods, even the very well tested ones. This improves the external validity
of this empirical fact. The ratio of pseudo-tested methods with respect to analyzed methods
ranged from 1% to 46% in our dataset.

6.2.3.2 Developer’s Assessment

Also, we want to know which pseudo-tested methods do developers consider worth an
additional testing action. Following our exchange with the developers, we expand the
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Table 6.2: Number of methods in each project, number of methods under analysis and
number of pseudo-tested methods

Project #Methods #Covered C_RATE #MUA #PSEUDO PS_RATE

authzforce 697 325 47% 291 13 4%
aws-sdk-java 177449 2314 1% 1800 224 12%
commons-cli 237 181 76% 141 2 1%
commons-codec 536 449 84% 426 12 3%
commons-collections 2729 1270 47% 1232 40 3%
commons-io 875 664 76% 641 29 5%
commons-lang 2421 1939 80% 1889 47 2%
flink-core 4133 1886 46% 1814 100 6%
gson 624 499 80% 477 10 2%
jaxen 958 616 64% 569 11 2%
jfreechart 7289 3639 50% 3496 476 14%
jgit 6137 3702 60% 2539 296 12%
joda-time 3374 2783 82% 2526 82 3%
jopt-simple 298 265 89% 256 2 1%
jsoup 1110 844 76% 751 28 4%
sat4j-core 2218 613 28% 585 143 24%
pdfbox 8164 2418 30% 2241 473 21%
scifio 3269 895 27% 158 72 46%
spoon 4470 2976 67% 2938 213 7%
urbanairship 2933 2140 73% 1989 28 1%
xwiki-rendering 5002 2232 45% 2049 239 12%

Total 234923 32650 14% 28808 2540 9%
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Table 6.3: The pseudo-tested methods systematically analyzed by the lead developers,
through a video call.

Project Sample size Worth Percentage Time spent (HH:MM)

authzforce5 13 (100%) 6 46% 29 min
sat4j-core6 35 (25%) 8 23% 1 hr 38 min
spoon7 53 (25%) 16 23% 1 hr 14 min

Total 101 30 30% 3 hr 21 min

qualitative analysis to a sample of 101 pseudo-tested methods distributed across three of
our study subjects. We consulted developers to characterize the pseudo-tested methods that
are worth an additional testing action and the ones that are not worth it.

We contact the development teams directly. We select three projects for which the
developers have accepted to discuss with us: authzforce, sat4j-core and spoon.
We set up a video call with the head of each development team. The goal of the call is
to present and discuss a selection of pseudo-tested methods in approximately 90 minutes.
With this discussion, we seek to know which pseudo-tested methods developers consider
relevant enough to trigger additional work on the test suite and approximate their ratio on
each project.

Table 6.3 shows the projects involved, footnotes with links to the online summary of
the interviews, the number of pseudo-tested methods included in the random sample, the
number of methods worth an additional testing action and the percentage they represent
with respect to the sample. We also show how much time we spent in the discussion.

In a sample of 101 pseudo-tested methods, systematically analyzed by the lead devel-
opers of 3 mature projects, 30 methods (30%) were considered worth of additional testing
actions. The developer decisions are based on a deep understanding of the application do-
main and design of the application. This means that it is not reasonable to prescribe the
absolute absence (zero) of pseudo-tested methods.

6.2.4 Discussion

To conclude, our replication confirms that all Java projects contain pseudo-tested methods,
even the very well tested ones, ranging from 1% to 46% in our dataset. Developers of 3
projects consider that 30% methods were considered worth of additional testing actions.

In the light of these conclusions, the immediate next step in our research agenda is to
investigate an automatic test improvement technique targeted towards pseudo-tested meth-
ods. This technique shall kill two birds with one stone: improve the adequacy of the test
suite for pseudo-tested methods; let the developers focus their efforts on core features and
relieve them from the test improvement task.
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Descartes has been integrated as default test-criterion in DSpot. It means that, DSpot
amplifies the test suite in order to detect more extreme mutant and thus reduce the number
of pseudo-testedmethods.

6.3 Study of Test Generation for Repair

Automatic repair aims at fixing bugs automatically. One family of automatic repair is the
test suite based. This family uses the test suite as an oracle to know whether or not the bug
has been fix. In this transversal contribution, we use test generation process to enhance
automatic repair process and one can see it as a test amplification process. As a perspective
of this work, we could use DSpot and a specifically designed test-criterion to improve the
outcome of test suite based repair techniques.

6.3.1 Problem Statement

The first role of test suites is to verify that the program behaves as expected. However,
this was without reckoning with daring researchers, test suites have been used for others
purpose such as automated program repair.

Automated program repair holds out the promise of saving debugging costs and patch-
ing buggy programs more quickly than humans. Given this great potential, there has
been a surge of research on automated program repair in recent years and several differ-
ent techniques have been proposed ([Goues 2012, Nguyen 2013, Xuan 2016b, Pei 2014,
Long 2017]).

Test suite based repair is a widely studied family of techniques among many different
techniques proposed. Test suite based repair uses the test suite as oracle to verify whether a
patch, obtained using the automated program repair technique, fix the bug or not. To do so,
the test suite has at least one test method that fail and others that pass. The goal of test suite
based repair is to make all the test methods pass, i.e. fixes the bug by making the failing test
method pass, and does not break others component by keeping other test methods passing
(avoiding regression).

However, test suites are in essence input-output specifications and are therefore typ-
ically inadequate for completely specifying the expected behavior. That is to say, that a
patch that makes all test methods pass can be still incorrect according to the expected be-
havior of the program. The patches that are overly specific to the used test suite and fail to
generalize to other tests are called overfitting patches ([Smith 2015]).

This study is focused on synthesis-based, a category of test suite based repair technique.
Synthesis-based techniques first use test execution information to build a repair constraint,
and then use a constraint solver to synthesize a patch. Typical examples in this category
include SemFix ([Nguyen 2013]), Nopol ([Xuan 2016b]), and Angelix ([Mechtaev 2016]).
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Thus, an approach is proposed that try to alleviate overfitting problem for synthesis-based
techniques called UnsatGuided. It makes use of automatic test case generation technique
to obtain additional tests and try to solve the overfitting problem.

The remainder of this section is organized as follows:

6.3.2 UnsatGuided Technique

6.3.2.1 Definitions

Let us consider the input domain I of a program P . In a typical repair scenario, the program
is almost correct. There is a bug that only affects a portion of the input domain, called
the “buggy input domain” Ibug. We call the rest of the input domain, considered correct,
Icorrect. By definition, a patch changes the behaviors of a portion of the input domain. This
portion is called Ipatch.

6.3.2.2 Algorithm

The overfitting problem for synthesis-based repair techniques arises because the repair con-
straint established using an incomplete test suite is not strong enough to fully express the
intended semantics of a program. The idea is to strengthen the initial repair constraint by
augmenting the initial test suite with additional automatically generated tests. A stronger
repair constraint would guide synthesis-based repair techniques towards better patches, i.e.
patches that are correct or at least suffer less from overfitting.

UnsatGuided is proposed to overcome this problem, which gradually makes use of the
new information provided by each automatically generated test to build a possibly stronger
final repair constraint. The key underlying idea is that if the additional repair constraint
enforced by an automatically generated test has logical contradictions with the repair con-
straint established so far, then the generated test is likely to have its input points lying in
Ibug Such tests are called “bug-exposing test” and are discarded, the others are used to
strengthen the repair constraints.

Algorithm 4 describes the approach in detail. It takes as input a buggy program P to be
repaired, a manually written test suite TS which contains some passing tests and at least one
failing test, a synthesis-based repair technique Tsynthesis, a time budget TB allocated for
the execution of Tsynthesis, and finally an automatic test case generation tool Tauto which
uses a certain kind of automatic test case generation technique Treg. The output of the
algorithm is a patch pt to the buggy program P.

The algorithm directly returns an empty patch if Tsynthesis generates no patches within
the time budget (lines 2-3). In case Tsynthesis generates an initial patch ptinitial, the algo-
rithm first conducts a set of initialization steps as follows: it sets the automatically gen-
erated test suite AGTS to be an empty set (line 5), sets the returned patch pt to be the
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Algorithm 4 : Algorithm for the Proposed Approach UnsatGuided
Require: A buggy program P and its manually written test suite TS
Require: A synthesis-based repair technique Tsynthesis and the time budget TB
Require: An automatic test case generation tool Tauto
Ensure: A patch pt to the buggy program P

1: ptinitial ← Tsynthesis(P, TS, TB)
2: if ptinitial = null then
3: pt← null
4: else
5: AGTS ← ∅
6: pt← ptinitial
7: TSaug ← TS
8: tinitial ← getPatchGenT ime(Tsynthesis(P, TS, TB))
9: {filei}(i = 1, 2, ..., n)← getInvolvedF iles(ptinitial)

10: for i = 1 to n do
11: AGTS ← AGTS ∪ Tauto(P, filei)
12: end for
13: for j = 1 to |AGTS| do
14: tj ← AGTS(j)
15: TSaug ← TSaug ∪ {tj}
16: ptintern ← Tsynthesis(P, TSaug, tinitial × 2)
17: if ptintern 6= null then
18: pt← ptintern
19: else
20: TSaug ← TSaug − {tj}
21: end if
22: end for
23: end ifreturn pt

initial patch ptinitial (line 6), sets the augmented test suite TSaug to be the manually writ-
ten test suite TS (line 7), and gets the time used by Tsynthesis to generate the initial patch
ptinitial and sets tinitial to be the value (line 8). Algorithm 4 then identifies the set of files
{filei}(i=1, 2,..., n) involved in the initial patch ptinitial (line 9) and for each identified
file, it uses the automatic test case generation tool Tauto to generate a set of tests that target
behaviors related with the file and adds the generated tests to the automatically generated
test suite AGTS (lines 10-12).

Next, the algorithm will use the test suite AGTS to refine the initial patch ptinitial. For
each test tj in the test suite AGTS (line 14), the algorithm first adds it to the augmented
test suite TSaug (line 15) and runs technique Tsynthesis with test suite TSaug and new time
budget tinitial × 2 against program P (line 16). The new time budget is used to quickly
identify tests that can potentially contribute to strengthening the repair constraint, and thus
improve the scalability of the approach. Then, if the generated patch ptintern is not an



6.3. Study of Test Generation for Repair 115

empty patch, the algorithm updates the returned patch pt with ptintern (lines 17-18). In
other words, the algorithm deems test tj as a good test that can help improve the repair
constraint. Otherwise, test tj is removed from the augmented test suite TSaug (lines 19-
20) as tj is either a bug-exposing test or it slows down the repair process too much. After
the above process has been completed for each test in the test suite AGTS, the algorithm
finally returns patch pt as the desirable patch (line 24).

6.3.3 Evaluation

Defects4J ([Just 2014]) has been selected, a known database of real faults from real-
world Java programs, as the experimental benchmark. For the approach UnsatGuided
to be implemented, Nopol [Xuan 2016b] has been chosen to represent synthesis-based
repair techniques. The automatic test case generation tool used in this study is Evo-
Suite [Fraser 2011a].

We evaluate the effectiveness of UnsatGuided from two points: its impact on the over-
fitting issue and correctness of the original patch generated by Nopol.

Table 6.4 displays the experimental results on combining Nopol with UnsatGuided
(hereafter referred to as Nopol+UnsatGuided). This table only shows the Defects4J bugs
that can be originally repaired by Nopol, and their identifiers are listed in column Bug ID.

The test generation results by running EvoSuite are shown in the two columns under
the column Tests, among which the #EvoTests column shows the total number of tests
generated by EvoSuite for all seeds and the #Bug-expo column shows the number of bug-
exposing tests among all of the generated tests.

The results obtained by running just Nopol are shown in the columns under the column
Nopol. The Time column shows the time used by Nopol to generate the initial patch. The
incomplete fix (#failing) column shows what is the overfitting issue of incomplete fixing
for the original Nopol patch. Each cell in this column is of the form X (Y), where X can
be “Yes” or “No” and Y is a digit number. The “Yes” and “No” mean that the original
Nopol patch has and does not have overfitting issue of incomplete fixing respectively. The
digit number in parentheses shows the number of bug-exposing tests on which the original
Nopol patch fails. Similarly, the regression (#failing) column tells what is the overfitting
issue of regression introduction for the original Nopol patch, and each cell in this column
is of the same form with the column incomplete fix (#failing). The “Yes” and “No” for
this column mean that the original Nopol patch has and does not have overfitting issue of
regression introduction respectively. The digit number in parentheses shows the number
of normal tests on which the original Nopol patch fails. Finally, the column correctness
shows whether the original Nopol patch is correct, with “Yes” representing correct and
“No” representing incorrect.

This study aims to assess the effectiveness of UnsatGuided. It can be seen from the
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Table 6.4: Experimental results with Nopol+UnsatGuided on the Defects4j Repository,
only show bugs with test-suite adequate patches by plain Nopol.
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Chart_1 3012 0 00:02 No (0) No (0) NO 0 0 03:00 0/30 (1) same (0) same (0) NO
Chart_5 2931 3 00:01 No (0) Yes (10) NO 104 3 01:18 27/30 (27) same (0) improve (2.9) NO
Chart_9 3165 0 00:01 No (0) No (0) NO 0 0 01:00 0/30 (1) same (0) same (0) NO
Chart_13 852 0 00:02 No (0) No (0) NO 0 0 00:24 30/30 (2) same (0) same (0) NO
Chart_15 3711 0 00:04 No (0) Yes (4) NO 5 0 06:48 27/30 (23) same (0) improve (2.0) NO
Chart_17 3246 10 00:01 Yes (10) No (0) NO 27 0 00:48 0/30 (1) same (0) same (0) NO
Chart_21 1584 0 00:01 No (0) Yes (6) NO 0 0 00:48 30/30 (30) same (0) improve (6.0)? NO
Chart_25 441 0 00:01 No (0) Yes (8) NO 0 0 00:12 8/30 (6) same (0) improve (8.0)? NO
Chart_26 2432 0 00:03 No (0) Yes (6) NO 6 0 13:36 10/10 (5) same (0) improve (6.0)? NO
Lang_44 3039 13 00:01 No (0) No (0) YES 13 13 00:48 3/30 (2) same (0) same (0) YES
Lang_51 3720 1 00:01 No (0) No (0) NO 15 1 01:00 29/30 (2) same (0) same (0) NO
Lang_53 2931 0 00:01 No (0) No (0) NO 0 0 00:06 26/30 (18) same (0) same (0) NO
Lang_55 606 0 00:01 No (0) No (0) YES 1 0 00:12 30/30 (1) same (0) same (0) YES
Lang_58 6471 0 00:01 No (0) Yes (5) NO 5 0 01:42 0/30 (1) same (0) same (0) NO
Lang_63 1383 1 00:01 No (0) No (0) NO 33 1 00:36 27/30 (5) same (0) same (0) NO
Math_7 876 2 00:16 Yes (2) No (0) NO 0 0 05:00 2/30 (3) same (0) same (0) NO
Math_24 1327 0 00:15 No (0) No (0) NO 25 0 24:06 10/10 (10) same (0) same (0) NO
Math_28 219 0 00:17 No (0) No (0) NO 0 0 00:30 0/30 (1) same (0) same (0) NO
Math_33 1749 1 00:13 Yes (1) No (0) NO 19 0 10:30 28/30 (8) same (0) worse (-2.0) NO
Math_40 831 71 00:16 Yes (71) Yes (21) NO 392 0 07:00 7/30 (8) same (0) same (0) NO
Math_41 1224 0 00:06 No (0) Yes (41) NO 35 0 02:00 27/30 (27) same (0) improve (35.1) NO
Math_42 1770 19 00:04 Yes (19) No (0) NO 2 0 03:54 24/30 (22) same (0) same (0) NO
Math_50 1107 26 00:11 Yes (21) Yes (45) NO 23 1 04:36 28/30 (27) improve (1.1) improve (41.0) NO
Math_57 651 0 00:03 No (0) No (0) NO 0 0 00:48 15/30 (4) same (0) same (0) NO
Math_58 228 0 00:06 No (0) No (0) NO 7 0 00:20 2/30 (2) same (0) same (0) NO
Math_69 897 0 00:01 No (0) No (0) NO 30 0 00:12 30/30 (21) same (0) same (0) NO
Math_71 951 0 00:01 No (0) Yes (56) NO 17 0 00:24 25/30 (11) same (0) improve (53.0) NO
Math_73 1035 0 00:01 No (0) Yes (1) NO 10 0 00:18 25/30 (24) same (0) improve (1)? NO
Math_78 1014 0 00:01 No (0) Yes (44) NO 49 0 00:24 28/30 (16) same (0) improve (34.9) NO
Math_80 1356 67 00:01 Yes (49) No (0) NO 29 1 00:54 29/30 (27) worse (-17.9) same (0) NO
Math_81 1320 4 00:01 Yes (4) Yes (35) NO 30 0 00:24 23/30 (22) same (0) improve (35.0)? NO
Math_82 510 0 00:01 No (0) No (0) NO 0 0 00:08 0/30 (1) same (0) same (0) NO
Math_84 165 0 00:01 No (0) No (0) NO 0 0 00:06 0/30 (1) same (0) same (0) NO
Math_85 798 0 00:01 No (0) No (0) NO 32 0 00:12 28/30 (11) same (0) same (0) YES
Math_87 1866 14 00:01 Yes (13) Yes (8) NO 0 0 00:54 29/30 (29) worse (-1) improve (8.0)? NO
Math_88 1890 11 00:01 Yes (11) No (0) NO 0 0 00:30 06/30 (7) same (0) same (0) NO
Math_105 1353 7 00:09 Yes (7) Yes (6) NO 6 0 04:20 29/30 (30) same (0) improve (2.9) NO
Time_4 2778 5 00:01 Yes (5) Yes (6) NO 0 0 00:54 23/30 (23) improve (0.8) improve (5.7) NO
Time_7 1491 0 00:01 No (0) Yes (11) NO 12 0 00:54 12/30 (13) same (0) worse (-1) NO
Time_11 1497 5 00:04 Yes (5) No (0) NO 7 0 01:36 0/30 (1) same (0) same (0) NO
Time_14 687 0 00:01 No (0) Yes (3) NO 1 0 00:18 24/30 (23) same (0) improve (2.0) NO
Time_16 1476 0 00:01 No (0) Yes (6) NO 5 0 00:24 1/30 (2) same (0) improve (1) NO
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column Change ratio (#unique) of Table 6.4 that for the 42 buggy versions that can be
initially repaired by Nopol, the patches generated for 34 buggy versions have been changed
at least for one seed after running Nopol+UnsatGuided. If we consider all executions (one
per seed per buggy version), we obtain a total of 1220 patches with Nopol+UnsatGuided.
Among the 1220 patches, 702 patches are different from the original patches generated
by running Nopol only. Thus, UnsatGuided can significantly impact the output of the
Nopol repair process. We will further investigate the quality difference between the new
Nopol+UnsatGuided patches and the original Nopol patches.

The results for alleviating the two kinds of overfitting issues by running
Nopol+UnsatGuided are displayed in the columns fix completeness change (Avg #Re-
movedinc) and regression change (Avg#Removedreg) of Table 6.4.

With regard to alleviating the overfitting issue of incomplete fixing, we can see from
the column fix completeness change (Avg#Removedinc) that UnsatGuided has an effect on
4 buggy program versions (Math_50, Math_80, Math_87 and Time_4). For all those 4
buggy versions, the original Nopol patch already has the overfitting issue of incomplete
fixing. With UnsatGuided, the overfitting issue of incomplete fixing has been alleviated
in 2 cases (Math_50, Time_4) and worsened for 2 other cases (Math_80, Math_87). This
means UnsatGuided is likely to have a minimal positive impact on alleviating overfitting
issue of incomplete fixing and can possibly have a negative impact on it.

In terms of alleviating overfitting issue of regression introduction, we can see from the
column regression change (Avg#Removedreg) that UnsatGuided has an effect on 18 buggy
program versions. Among the 18 original Nopol patches for these 18 buggy program ver-
sions, UnsatGuided has alleviated the overfitting issue of regression introduction for 16
patches. In addition, for 6 buggy program versions, the overfitting issue of regression in-
troduction of the original Nopol patch has been completely removed. These 6 cases are
indicated with (?) in Table 6.4. Meanwhile, UnsatGuided worsens the overfitting issue of
regression introduction for two other original Nopol patches (Math_33 and Time_7). It
can possibly happen as even though the repair constraint for input points within Icorrect
has been somewhat strengthened (but not completely correct), yet the solution of the con-
straint happens to be more convoluted. Overall, with 16 positive versus 2 negative cases,
UnsatGuided can be considered as effective in alleviating overfitting issue of regression
introduction.

6.3.4 Discussion

To sum up, UnsatGuided can effectively alleviate the overfitting issue of regression intro-
duction (16/19 cases), but has minimal positive impact on reducing the overfitting issue of
incomplete fixing.

In this study, we used Evosuite, a state-of-the-art test generation tool. An alternative
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would be to use a test amplification tool, such as DSpot in order to overcome the overfitting
problems.

DSpot could amplify the test suite, while discarded bug-exposing amplified test meth-
ods, and improve the constraint around the program repair problem. This can be imple-
mented as a specific test-criterion. Thus, some input-amplification operators are well suited
to this task such as literals modifications.

6.4 Conclusion

In this chapter, I exposed 3 transversal contributions that I made thanks to the skills that I
developed during my thesis. I worked with my researchers colleagues on side topics yet
linked to this thesis.

First, the study of program correctness under runtime perturbation. It highlighted the
existence of the correctness attraction phenomenon. This first work could be used jointly
with DSpot, by integrating the correctness ratio as a test-criterion in order to strengthen the
ability of the test suite to detect more runtime perturbation.

Second, the study of pseudo-tested methods and extreme mutations. It showed the
prevalence of pseudo-tested methods, all the tests pass even if the whole behavior, i.e. body,
of such methods is removed. This extreme mutations have been already implemented in
DSpot as a test-criterion in order to reduce the number of pseudo-tested methods.

Third, the study of patch overfitting in test-based repair techniques and an approach to
overcome it. In this study, we used a test generation tool but using DSpot with a dedicated
and specifically designed test-criterion could give a different outcome.

The next chapter gives the short- and long-term perspectives and concludes this thesis.
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7.1 Contribution Summary

7.1.1 DSpot

The major technical contribution of this thesis is a unit test amplification algorithm, imple-
mented in a mature tool called DSpot. DSpot aims at improving existing test methods with
respect to a given test-criterion such as branch coverage. It does this in 3 main steps.

1) It amplifies the input of the original test method by applying specific code transfor-
mation on the input part of the test method;

2) It removes existing assertions and generates new ones, based on observations done
during execution on the state of the programs. It uses common getters in Java to do so.

3) It uses a test-criterion to select amplified test methods to keep. For instance, one
wants to improve the branch coverage of the test suite. DSpot will keep only amplified test
methods that cover branches that were not covered before.

DSpot has been developed in Java, for Java programs. However, the whole technique
remains applicable for all programming languages.

All the code of DSpot is available on GitHub: https://github.com/

STAMP-project/dspot.git. I personally enliven its community by answering ques-
tions on the bug tracker, guiding new contributors and setting up methodologies, such as

https://github.com/STAMP-project/dspot.git
https://github.com/STAMP-project/dspot.git
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Table 7.1: Development statistics

Number of tests 190
Number of commits 682
Number of contributors 18
Number of pull requests 566
Number of releases (Github) 19
Number of releases (Maven Central) 12
Number of LoC (Java) 11524

pull-request based development or continuous integration, to keep DSpot as clean as pos-
sible.

Following this technical contribution, this thesis presented two large-scale evaluations
of DSpot’s effectiveness.

7.1.1.1 Development Statistics

Table 7.1 presents some statistics from DSpot’s project and development. These statistics
have been retrieved on November 19, 2019.

7.1.2 Automatic Test Amplification For Mutation Score

For a first evaluation, I used mutation score as test-criterion. DSpot has automatically
amplified test suites from open-source projects from GitHub and improved the mutation
score.

The generated amplified test methods of DSpot have been proposed to external devel-
opers of the projects from GitHub through pull-requests. This has been done in order to
have the developers assessing the result of DSpot. Over 19 opened pull-requests, 14 of
them have been permanently added to the test suites of these projects. It means DSpot
generated amplified test methods that are valuable for external developers.

Also, I evaluated DSpot by amplifying 40 test classes of heavily tested projects from
GitHub, using also the mutation score as test-criterion. This evaluation shows that DSpot
is able to generate amplified test methods that increase the mutation score.

7.1.3 Automatic Test Amplification For Behavioral Changes Detection

In a second evaluation, I used DSpot in the context of continuous integration. The goal was
to generate amplified test methods that detect behavioral changes.

I took open-source projects from GitHub and a selection of commits. This evaluation
showed that DSpot is able to generate amplified test methods that detect 25 behavioral
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changes over 60, which is an achievement. It also highlights the fact that DSpot can be
easily implemented in the life cycle of software, like continuous integration.

This evaluation brings evidence that DSpot has to potential to be a concrete part of
continuous integration by improving the process of program evolution with amplified test
methods that are able to distinguish between versions of the same program.

7.1.4 Transversal Contributions

During this thesis, I developed a wide range of knowledge and skills that allowed me to
participate to diversified and transversal contributions.

7.1.4.1 Study of Program Correctness

I devised a protocol, named ATTRACT, to study the programs’ correctness under runtime
perturbation. Ten subjects have been studied using the PONE perturbations model, i.e. the
model adds 1 to integer expressions at runtime. It results in 2,509,012 perturbed executions,
which makes it one of the largest perturbation experiments ever made. This large number
comes from the fact that the protocol explores exhaustively the perturbation space. It allows
to generalize the result over integer expressions. From this experimentation, the presence
of correctness attraction has been observed. Over all perturbed execution, 66% of them
do not break the correctness of the output, which is a important proportion. It means
that software are quite reliable according to the PONE perturbations model. For a large
proportion, programs are able to recover from small perturbations and produce the correct
output, assessed by perfect oracle.

7.1.4.2 Study of Pseudo-tested Methods

We replicated the study of Niedermayr et al. [Niedermayr 2016] and confirmed that all
Java projects contain pseudo-tested methods, even the very well tested ones, ranging from
1% to 46% in our dataset. From 3 projects, developers considered that 30% methods were
worthy of additional testing actions. Pseudo-tested methods are important issues since the
coverage of the test suite ensures that the code is covered while it is not properly tested.
This is misleading and developers might think that the program is well tested while it is
not. Using test amplification to resolve this issue and test properly pseudo-tested methods
is feasible.

7.1.4.3 Study of Test Generation for Repair

To sum up, UnsatGuided can effectively alleviate the overfitting issue of regression intro-
duction (16/19 cases), but has minimal positive impact on reducing the overfitting issue of
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incomplete fixing. In this study, we used Evosuite, a state-of-the-art test generation tool.
An alternative would be to use a test amplification tool, such as DSpot in order to overcome
the overfitting problems.

7.2 Short-term Perspectives

In this section, I introduce short-term perspectives for DSpot.

1) Amplified test methods are based on existing ones. The intuition would be that
amplified test methods are easy to read as the seed test method. However, since it is still an
automatic process, the amplification can result in difficult to read test methods. A lacking
key-feature is to make them prettier, and subsection 7.2.1 introduces a way to do it.

2) An obstacle of test amplification’s tool adoption might be the way it must be used.
For example, DSpot is usable from command line with an executable jar or with a maven
command. Even if we put efforts to make this usage easier, developers might not want to
type a command line, that can appear complex. In subsection 7.2.2, I introduce the idea of
a web interface for test amplification tools. This web interface would allow users to try test
amplification tools, like DSpot, remotely using a graphic interface. The ambition of this is
to spread test amplification approaches over open-source communities. This would have
2 benefits: 1) Users would be welcomed with a friendly interface, and could discover test
amplification step-by-step without modifying anything on their own computer. 2) It would
collect data on the usage of test amplification and make a large experimentation thanks to
users that would use the amplification tool on their own.

7.2.1 Prettifying Amplified Test Methods

This section presents an algorithm that would make prettier amplified test methods. Here
prettier means that the amplified test method would have less noise, i.e. would be easier
to read for the developer. In this context, I qualify as noise extra statements that are not
required, redundant method calls or meaningless names from the generation process. After
applying this approach, the labels, i.e. variables names and the test method name, would be
clear and carry the intent of the variable or of the test method and all extra statement would
be removed. This algorithm will take as input a set of amplified test methods, generated
by a test amplification tool such as DSpot, and a test-criterion to output a set of prettier
amplified test methods. It will ensure that the prettified amplified test methods have the
same quality as the input amplified test methods, with respect to the given test-criterion,
e.g. the mutation score.

This algorithm would work in 3 main steps:

1) it would minimize the number of statements (subsubsection 7.2.1.1);
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Figure 7.1: Overview of DSpot-prettifier’s approach.

2) it would rename all the local variables with a name according to the context (sub-
subsection 7.2.1.2);

3) it would rename the amplified test methods according to their body (subsubsec-
tion 7.2.1.3).

This workflow is summarized in subsection 7.2.1.
Such algorithm could be evaluated by comparing how the algorithm would minimize

an amplified test method and a minimization done manually by a developer. Would the
algorithm be faster than the human? Would the algorithm obtain a better, a worse or a
similar minimization compared to the human?

7.2.1.1 Minimization

The minimization step would aim at reducing the size of the statement and the number
statement to the minimal. This would be done in 2 majors steps:

1) modifying the code using static analysis to avoid redundancy or useless local variable
declaration; The algorithm will replace multiple method calls, e.g. the getters, that are the
same by a local variable. In the other way, it will replace local variables that are used only
one time.

2) applying a search-based algorithm to remove the maximum number of statements,
w.r.t. to the specified test-criterion. The intuition is as follows: the algorithm would remove
one statement; it tries to compile the new test method; if it fails, it means that this statement
is needed to compile the test method and it must keep it; otherwise, it measures the quality
of the new test method according to the test criterion; if it remains the same, it can remove
the statement definitively, otherwise it cannot remove it; The algorithm will repeat this
process for all the statements inside the test method, starting by the end of the body.

7.2.1.2 Rename Local Variables

After that the algorithm would have minimize the statements, the next step would be to
rename all the local variables. The objectives would be to have variables with clear names,
that give hints about the role and the intention of the variables.

To do this, I could use Context2Name1[Bavishi 2018] which is a deep learning-based

1https://github.com/rbavishi/Context2Name

https://github.com/rbavishi/Context2Name
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approach to infer natural variable names. The idea behind Context2Name is to exploit the
usage context, i.e. the surrounding lexical tokens, of the variable to infer a proper name
in natural languages. For each local variable, the algorithm would use Context2Name to
generate a new name for the local variable.

7.2.1.3 Rename Amplified Test Method

The final step would be renaming the amplified test method. This could be done in a
similar way to renaming local variables (subsubsection 7.2.1.2) but at the method level.
The goal would be to have a clear name for the amplified test methods that gives directly
the intention of the test method. In this way, developers would understand quicker what is
the purpose of this test method. The major stake would be that developers become more
likely to integrate amplified test methods into their test suite.

To do this, I could use Code2Vec2[Alon 2018] which is a neural network for learning
distributed representations of code. However, since Code2Vec would use the whole body
the test method, it would be mandatory that the algorithm renames the local variables before
the amplified test methods.

7.2.2 Collecting Developer Feedback

The idea would be to provide users a web interface, on which the user would have to
simply put the URL of its GitHub repository. Then, we would retrieve the project and run
DSpot on it. This idea is largely inspired by CommitGuru3[Rosen 2015]. CommitGuru is
a tool that identifies and predicts risky software commits. The user gives the URL of its
git repository, e.g. on GitHub, and CommitGuru analyzes the project and its commits to
highlight potential threats.

The goal of this web interface would be to allow new users discover test amplification
tools. The users could consult the result of the amplification from the web interface, or by
receiving an email. All the data could be accessed from the web interface in order to allow
the reproduction of test amplifications.

A UI mockup of the web interface is shown in Figure 7.2. On this picture, one can see
that the user would have only to put the url of their repository and their email, in order to
receive the result for example. At the bottom, on can see a list of projects that used recently
the test amplification tool.

2https://github.com/tech-srl/code2vec
3http://commit.guru/

https://github.com/tech-srl/code2vec
http://commit.guru/
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Figure 7.2: Screenshot of the web interface for DSpot.
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7.3 Long-term Perspectives

In my vision, there are 2 long-term perspectives for DSpot:
1) Sometimes, test improvement resulting from a given test class should not be in the

same class, e.g. subsubsection 4.3.1.8. This might be a limitation on the adoption of
test amplification tools by practitioners since they might be confused by the fact that the
component tested is not any more related to the original test class. Would we be able to
find the best location for a given amplified test method? This new location would take
into account 2 aspects: 1) objects used in the test and the methods called on then, i.e. the
input part. 2) the values that are asserted, i.e. the oracle part.

2) Inspired by Repairnator [Urli 2018], which is bot that automatically executes test-
based repair programs to fix CI build failures. Repairnator crawls builds status on Travis,
a continuous integration service on GitHub. Then, Repairnator launches automatic repair
tools to failing builds and then, it is able to propose the patch through a pull-request on
the GitHub repository. Would we be able to automatically amplify test suite from the
CI and provide a test method that a developer did not provide? In the same way, we
could imagine a bot that uses test amplification tools. For example, the bot would launch
DSpot on a passing build, in contrast to Repairnator that is executed on a failing build, to
amplify the test suite. The goal of this amplification would be even to make evolve the test
suite using the mutation score as test-criterion such as shown in Section 4.1, or to detect a
regression such as shown in subsection 5.1.4.
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Drunen, Daniel von Dincklage and Ben Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In Proceedings of the 21st An-
nual ACM SIGPLAN Conference on Object-oriented Programming Systems, Lan-
guages, and Applications, OOPSLA ’06, pages 169–190, New York, NY, USA,
2006. ACM. (Cited on page 24.)

[Bloem 2014] Roderick Bloem, Robert Koenighofer, Franz Röck and Michael Tautschnig.
Automating test-suite augmentation. In Quality Software (QSIC), 2014 14th Inter-
national Conference on, pages 67–72. IEEE, 2014. (Cited on pages 12, 16 and 29.)

[Böhme 2013] Marcel Böhme, Bruno C d S Oliveira and Abhik Roychoudhury. Regres-
sion tests to expose change interaction errors. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pages 334–344. ACM, 2013.
(Cited on pages 20, 21 and 29.)



Bibliography 129

[Böhme 2014] Marcel Böhme and Abhik Roychoudhury. Corebench: Studying complex-
ity of regression errors. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis, pages 105–115. ACM, 2014. (Cited on pages 21
and 32.)

[Brereton 2007] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner and
Mohamed Khalil. Lessons from applying the systematic literature review process
within the software engineering domain. Journal of Systems and Software, vol. 80,
no. 4, pages 571–583, 2007. (Cited on page 9.)

[Carzaniga 2014] Antonio Carzaniga, Alberto Goffi, Alessandra Gorla, Andrea Mattavelli
and Mauro Pezzè. Cross-checking Oracles from Intrinsic Software Redundancy. In
Proceedings of the 36th International Conference on Software Engineering, ICSE
2014, pages 931–942, 2014. (Cited on pages 26, 28, 29 and 32.)

[Coles 2016] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis and
Anthony Ventresque. PIT: A Practical Mutation Testing Tool for Java (Demo). In
Proceedings of the 25th International Symposium on Software Testing and Anal-
ysis, ISSTA 2016, pages 449–452, New York, NY, USA, 2016. ACM. (Cited on
pages 48 and 108.)

[Cooper 1998] Harris M Cooper. Synthesizing research: A guide for literature reviews,
volume 2. Sage, 1998. (Cited on page 9.)

[Cornu 2015] Benoit Cornu, Lionel Seinturier and Martin Monperrus. Exception handling
analysis and transformation using fault injection: Study of resilience against unan-
ticipated exceptions. Information and Software Technology, vol. 57, pages 66–76,
2015. (Cited on pages 23, 24 and 29.)

[Dallmeier 2010] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack
and Andreas Zeller. Generating Test Cases for Specification Mining. In Proceed-
ings of the 19th International Symposium on Software Testing and Analysis, ISSTA
’10, pages 85–96, New York, NY, USA, 2010. ACM. (Cited on pages 25, 28, 29
and 32.)

[Danglot 2018] Benjamin Danglot, Philippe Preux, Benoit Baudry and Martin Monperrus.
Correctness attraction: a study of stability of software behavior under runtime
perturbation. Empirical Software Engineering, vol. 23, no. 4, pages 2086–2119,
Aug 2018. (Cited on pages 98, 102 and 105.)

[Danglot 2019a] Benjamin Danglot, Martin Monperrus, Walter Rudametkin and Benoit
Baudry. An Approach and Benchmark to Detect Behavioral Changes of Commits
in Continuous Integration. CoRR, vol. abs/1902.08482, 2019. (Cited on page 72.)



130 Bibliography

[Danglot 2019b] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman,
Martin Monperrus and Benoit Baudry. A Snowballing Literature Study on Test
Amplification. Journal of Systems and Software, page 110398, 2019. (Cited on
pages 4, 8 and 35.)

[Danglot 2019c] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry and Martin
Monperrus. Automatic test improvement with DSpot: a study with ten mature open-
source projects. Empirical Software Engineering, Apr 2019. (Cited on pages 48
and 77.)

[Daniel 2009a] B. Daniel, V. Jagannath, D. Dig and D. Marinov. ReAssert: Suggesting
Repairs for Broken Unit Tests. In 2009 IEEE/ACM International Conference on
Automated Software Engineering, pages 433–444, Nov 2009. (Cited on pages 74
and 98.)

[Daniel 2009b] Brett Daniel, Vilas Jagannath, Danny Dig and Darko Marinov. ReAssert:
Suggesting Repairs for Broken Unit Tests. In 2009 IEEE/ACM International Con-
ference on Automated Software Engineering, pages 433–444, 2009. (Cited on
pages 27, 28, 29 and 32.)

[Dijkstra 1989] Edsger Dijkstra. On the cruelty of really teaching computing science.
Communications of The ACM - CACM, vol. 32, 01 1989. (Cited on page 1.)

[D’Silva 2008] V. D’Silva, D. Kroening and G. Weissenbacher. A Survey of Automated
Techniques for Formal Software Verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, pages 1165–1178,
July 2008. (Cited on page 1.)

[Duvall 2007] Paul M Duvall, Steve Matyas and Andrew Glover. Continuous integration:
improving software quality and reducing risk. Pearson Education, 2007. (Cited on
page 71.)

[Edvardsson 2002] Jon Edvardsson. A Survey on Automatic Test Data Generation. 03
2002. (Cited on page 35.)

[Falleri 2014] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez and
Martin Monperrus. Fine-grained and Accurate Source Code Differencing. In
Proceedings of the International Conference on Automated Software Engineering,
pages 313–324, 2014. (Cited on page 76.)

[Fang 2015] Lu Fang, Liang Dou and Guoqing Xu. PERFBLOWER: Quickly Detect-
ing Memory-Related Performance Problems via Amplification. In LIPIcs-Leibniz



Bibliography 131

International Proceedings in Informatics, volume 37. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2015. (Cited on pages 23, 24, 29 and 32.)

[Fowler 2006] Martin Fowler and Matthew Foemmel. Continuous integration. Thought-
Works https://www.thoughtworks.com/continuous-integration, vol. 122, page 14,
2006. (Cited on page 71.)

[Fraser 2011a] Gordon Fraser and Andrea Arcuri. EvoSuite: automatic test suite gener-
ation for object-oriented software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering, ESEC/FSE ’11, pages 416–419, New York, NY, USA, 2011. ACM. (Cited
on pages 2 and 115.)

[Fraser 2011b] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite gener-
ation for object-oriented software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering, pages 416–419. ACM, 2011. (Cited on pages 24 and 32.)

[Fraser 2011c] Gordon Fraser and Andreas Zeller. Generating parameterized unit tests. In
Proceedings of the 2011 International Symposium on Software Testing and Anal-
ysis, pages 364–374. ACM, 2011. (Cited on pages 14, 16 and 29.)

[Fraser 2015] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri and Frank Pad-
berg. Does Automated Unit Test Generation Really Help Software Testers? A Con-
trolled Empirical Study. ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 24, no. 4, page 23, 2015. (Cited on page 2.)

[Goues 2012] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest and Westley Weimer.
GenProg: A Generic Method for Automatic Software Repair. IEEE Trans. Software
Eng., vol. 38, no. 1, pages 54–72, 2012. (Cited on page 112.)

[Hamlet 1993] Dick Hamlet and Jeff Voas. Faults on its sleeve: amplifying software reli-
ability testing. ACM SIGSOFT Software Engineeri ng Notes, vol. 18, no. 3, pages
89–98, 1993. (Cited on pages 9, 10, 25, 28 and 29.)

[Harder 2003] Michael Harder, Jeff Mellen and Michael D. Ernst. Improving Test Suites
via Operational Abstraction. In Proc. of the Int. Conf. on Software Engineering
(ICSE), pages 60–71, 2003. (Cited on pages 13, 16 and 29.)

[Hetzel 1988] William C Hetzel. The complete guide to software testing. QED Informa-
tion Sciences, Inc., Wellesley, MA, USA, 2nd édition, 1988. (Cited on page 8.)



132 Bibliography

[Hilton 2016] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov and Danny
Dig. Usage, Costs, and Benefits of Continuous Integration in Open-source Projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, pages 426–437, New York, NY, USA, 2016.
ACM. (Cited on page 71.)

[Hilton 2018a] Michael Hilton, Jonathan Bell and Darko Marinov. A large-scale study
of test coverage evolution. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE), pages 53–63. ACM, 2018.
(Cited on page 8.)

[Hilton 2018b] Michael Hilton, Jonathan Bell and Darko Marinov. A Large-scale Study
of Test Coverage Evolution. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, pages 53–63, New
York, NY, USA, 2018. ACM. (Cited on page 77.)

[Hutchins 1994] Monica Hutchins, Herb Foster, Tarak Goradia and Thomas Ostrand. Ex-
periments of the Effectiveness of Dataflow- and Controlflow-based Test Adequacy
Criteria. In Proceedings of the 16th International Conference on Software Engi-
neering, ICSE ’94, pages 191–200, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press. (Cited on page 18.)

[Jalali 2012] Samireh Jalali and Claes Wohlin. Systematic literature studies: database
searches vs. backward snowballing. In Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement, pages 29–38.
ACM, 2012. (Cited on pages 9 and 10.)

[Joshi 2007] Pallavi Joshi, Koushik Sen and Mark Shlimovich. Predictive Testing: Ampli-
fying the Effectiveness of Software Testing. In Proc. of the ESEC/FSE: Companion
Papers, ESEC-FSE companion ’07, pages 561–564, New York, NY, USA, 2007.
ACM. (Cited on pages 9, 10, 26, 28 and 29.)

[Just 2014] René Just, Darioush Jalali and Michael D. Ernst. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA), pages
437–440, San Jose, CA, USA, July 23–25 2014. (Cited on page 115.)

[Kitchenham 2004] Barbara Kitchenham. Procedures for performing systematic reviews.
Technical report, Keele University, 2004. (Cited on page 9.)

[Leung 2012] Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala
and Sorin Lerner. Verifying GPU kernels by test amplification. ACM SIGPLAN
Notices, vol. 47, no. 6, pages 383–394, 2012. (Cited on pages 9, 10, 23, 24 and 29.)



Bibliography 133

[Li 2007] X. Li and D. Yeung. Application-Level Correctness and its Impact on Fault
Tolerance. In 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pages 181–192, Feb 2007. (Cited on page 102.)

[Long 2017] Fan Long, Peter Amidon and Martin Rinard. Automatic inference of code
transforms for patch generation. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 727–739. ACM, 2017. (Cited on
page 112.)

[Madeyski 2010] Lech Madeyski. Test-driven development: An empirical evaluation of
agile practice. Springer, 2010. (Cited on page 8.)

[Marinescu 2013] Paul Dan Marinescu and Cristian Cadar. KATCH: high-coverage testing
of software patches. page 235. ACM Press, 2013. (Cited on pages 20, 21, 22
and 29.)

[Marri 2010] Madhuri R Marri, Suresh Thummalapenta, Tao Xie, Nikolai Tillmann and
Jonathan de Halleux. Retrofitting unit tests for parameterized unit testing. Tech-
nical report, North Carolina State University, 2010. (Cited on pages 11, 16, 29
and 32.)

[McMinn 2004] Phil McMinn. Search-based software test data generation: a survey.
Software Testing, Verification and Reliability, vol. 14, no. 2, pages 105–156, 2004.
(Cited on page 35.)

[Mechtaev 2016] Sergey Mechtaev, Jooyong Yi and Abhik Roychoudhury. Angelix: Scal-
able Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings
of the 38th International Conference on Software Engineering, ICSE ’16, pages
691–701, New York, NY, USA, 2016. ACM. (Cited on page 112.)

[Milani Fard 2014] Amin Milani Fard, Mehdi Mirzaaghaei and Ali Mesbah. Leveraging
existing tests in automated test generation for web applications. In Proceedings of
the 29th ACM/IEEE international conference on Automated software engineering,
pages 67–78. ACM, 2014. (Cited on pages 13, 16, 29 and 32.)

[Mirzaaghaei 2012] Mehdi Mirzaaghaei, Fabrizio Pastore and Mauro Pezze. Supporting
test suite evolution through test case adaptation. In Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference on, pages 231–
240. IEEE, 2012. (Cited on pages 20 and 29.)

[Mirzaaghaei 2014] Mehdi Mirzaaghaei, Fabrizio Pastore and Mauro Pezzè. Automatic
test case evolution. Software Testing, Verification and Reliability, vol. 24, no. 5,
pages 386–411, 2014. (Cited on pages 20 and 29.)



134 Bibliography

[Mouelhi 2009] Tejeddine Mouelhi, Yves Le Traon and Benoit Baudry. Transforming
and selecting functional test cases for security policy testing. In Software Testing
Verification and Validation, 2009. ICST’09. International Conference on, pages
171–180. IEEE, 2009. (Cited on pages 26, 28 and 29.)

[Nguyen 2013] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury and Satish
Chandra. SemFix: Program Repair via Semantic Analysis. In Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, pages 772–
781, Piscataway, NJ, USA, 2013. IEEE Press. (Cited on page 112.)

[Niedermayr 2016] Rainer Niedermayr, Elmar Juergens and Stefan Wagner. Will my tests
tell me if I break this code? In Proceedings of the International Workshop on
Continuous Software Evolution and Delivery, pages 23–29, New York, NY, USA,
2016. ACM Press. (Cited on pages 107, 108, 109 and 121.)

[Ostrand 1988] Thomas J. Ostrand and Marc J. Balcer. The category-partition method for
specifying and generating fuctional tests. Communications of the ACM, vol. 31,
no. 6, pages 676–686, 1988. (Cited on page 25.)

[Pacheco 2005a] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and
classification of test inputs. In ECOOP 2005 — Object-Oriented Programming,
19th European Conference, pages 504–527, Glasgow, Scotland, July 2005. (Cited
on page 2.)

[Pacheco 2005b] Carlos Pacheco and Michael D Ernst. Eclat: Automatic generation
and classification of test inputs. In Proceedings of the 19th European confer-
ence on Object-Oriented Programming, pages 504–527, Berlin, Heidelberg, 2005.
Springer-Verlag, Springer Berlin Heidelberg. (Cited on pages 14, 16, 29 and 32.)

[Palikareva 2016] Hristina Palikareva, Tomasz Kuchta and Cristian Cadar. Shadow of a
doubt: testing for divergences between software versions. In Proceedings of the
38th International Conference on Software Engineering, pages 1181–1192. ACM,
2016. (Cited on pages 21, 22, 29 and 32.)

[Palomb] Fabio Palomb and Andy Zaidman. The Smell of Fear: On the Relation between
Test Smells and Flaky Tests. Empirical Software Engineering (EMSE). To Appear.
(Cited on page 22.)

[Palomba 2017] Fabio Palomba and Andy Zaidman. Does Refactoring of Test Smells In-
duce Fixing Flaky Tests? In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 1–12. IEEE Computer Society, 2017.
(Cited on page 22.)



Bibliography 135

[Patrick 2017] Matthew Patrick and Yue Jia. KD-ART: Should we intensify or diversify
tests to kill mutants? Information and Software Technology, vol. 81, pages 36–51,
2017. (Cited on pages 12, 16 and 29.)

[Pawlak 2015] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera and
Lionel Seinturier. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Experience, vol. 46, pages
1155–1179, 2015. (Cited on pages 45 and 103.)

[Pei 2014] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer and A. Zeller. Automated
Fixing of Programs with Contracts. IEEE Transactions on Software Engineering,
vol. 40, no. 5, pages 427–449, May 2014. (Cited on page 112.)

[Petersen 2008] Kai Petersen, Robert Feldt, Shahid Mujtaba and Michael Mattsson. Sys-
tematic Mapping Studies in Software Engineering. In EASE, volume 8, pages
68–77, 2008. (Cited on pages 9 and 10.)

[Pezze 2013] Mauro Pezze, Konstantin Rubinov and Jochen Wuttke. Generating effective
integration test cases from unit ones. In Software Testing, Verification and Vali-
dation (ICST), 2013 IEEE Sixth International Conference on, pages 11–20. IEEE,
2013. (Cited on pages 13, 29 and 32.)

[Qi 2010] Dawei Qi, Abhik Roychoudhury and Zhenkai Liang. Test generation to expose
changes in evolving programs. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages 397–406, 2010. (Cited on
pages 19, 22 and 29.)

[Rinard 2005] Martin Rinard, Cristian Cadar and Huu Hai Nguyen. Exploring the Accept-
ability Envelope. In Companion to the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications, OOP-
SLA ’05, pages 21–30, New York, NY, USA, 2005. ACM. (Cited on page 102.)

[Röβler 2012] Jeremias Röβler, Gordon Fraser, Andreas Zeller and Alessandro Orso. Iso-
lating failure causes through test case generation. In Proceedings of the 2012 In-
ternational Symposium on Software Testing and Analysis, pages 309–319. ACM,
2012. (Cited on pages 14, 16, 29 and 32.)

[Roche 2013] James Roche. Adopting DevOps Practices in Quality Assurance. Commun.
ACM, vol. 56, 2013. (Cited on page 1.)

[Rojas 2016] José Miguel Rojas, Gordon Fraser and Andrea Arcuri. Seeding strategies in
search-based unit test generation. Software Testing, Verification and Reliability,
vol. 26, no. 5, pages 366–401, 2016. (Cited on pages 12 and 29.)



136 Bibliography

[Rosen 2015] Christoffer Rosen, Ben Grawi and Emad Shihab. Commit Guru: Analytics
and Risk Prediction of Software Commits. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 966–
969, New York, NY, USA, 2015. ACM. (Cited on page 124.)

[Saff 2004] David Saff and Michael D Ernst. An experimental evaluation of continuous
testing during development. In ACM SIGSOFT Software Engineering Notes, vol-
ume 29, pages 76–85. ACM, 2004. (Cited on page 74.)

[Santelices 2008] Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong,
Alessandro Orso and Mary Jean Harrold. Test-suite augmentation for evolving
software. In 23rd IEEE/ACM International Conference on, pages 218–227. IEEE,
2008. (Cited on pages 18, 22 and 29.)

[Santelices 2011] Raul Santelices and Mary Jean Harrold. Applying aggressive
propagation-based strategies for testing changes. In IEEE Fourth International
Conference on Software Testing, Verification and Validation, pages 11–20. IEEE,
2011. (Cited on pages 18, 22 and 29.)

[SIR] Software-artifact Infrastructure Repository. http://sir.unl.edu. Accessed:
2017-05-17. (Cited on pages 17 and 32.)

[Smith 2015] Edward K Smith, Earl T Barr, Claire Le Goues and Yuriy Brun. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages
532–543. ACM, 2015. (Cited on page 112.)

[Tillmann 2006] Nikolai Tillmann and Wolfram Schulte. Unit tests reloaded: Parame-
terized unit testing with symbolic execution. IEEE software, vol. 23, no. 4, pages
38–47, 2006. (Cited on pages 11, 16 and 29.)

[Tonella 2004] Paolo Tonella. Evolutionary Testing of Classes. In Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA ’04, pages 119–128, New York, NY, USA, 2004. ACM. (Cited on pages 39,
45 and 49.)

[Urli 2018] Simon Urli, Zhongxing Yu, Lionel Seinturier and Martin Monperrus. How
to Design a Program Repair Bot? Insights from the Repairnator Project. In 40th
International Conference on Software Engineering, Track Software Engineering in
Practice, pages 95–104, 2018. (Cited on page 126.)

[Vera-Pérez 2018a] Oscar L. Vera-Pérez, Martin Monperrus and Benoit Baudry.
Descartes: A PITest Engine to Detect Pseudo-Tested Methods. In Proceedings

http://sir.unl.edu


Bibliography 137

of the 2018 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE ’18), pages 908–911, 2018. (Cited on page 108.)

[Vera-Pérez 2018b] Oscar Luis Vera-Pérez, Benjamin Danglot, Martin Monperrus and
Benoit Baudry. A comprehensive study of pseudo-tested methods. Empirical Soft-
ware Engineering, Sep 2018. (Cited on pages 77, 98 and 102.)

[Voas 1995] Jeffrey M. Voas and Keith W Miller. Software testability: The new verifica-
tion. IEEE software, vol. 12, no. 3, pages 17–28, 1995. (Cited on page 83.)

[Wang 2014] Haijun Wang, Xiaohong Guan, Qinghua Zheng, Ting Liu, Chao Shen and Zi-
jiang Yang. Directed test suite augmentation via exploiting program dependency.
In Proceedings of the 6th International Workshop on Constraints in Software Test-
ing, Verification, and Analysis, pages 1–6. ACM, 2014. (Cited on pages 19, 21, 22
and 29.)

[Wohlin 2014] Claes Wohlin. Guidelines for Snowballing in Systematic Literature Stud-
ies and a Replication in Software Engineering. In Proceedings of the 18th In-
ternational Conference on Evaluation and Assessment in Software Engineering,
page 38. ACM, 2014. (Cited on page 9.)

[Xie 2006] Tao Xie. Augmenting Automatically Generated Unit-test Suites with Regres-
sion Oracle Checking. In Proceedings of the 20th European Conference on Object-
Oriented Programming, pages 380–403, 2006. (Cited on pages 25, 28, 29, 39, 45,
49 and 69.)

[Xu 2009] Zhihong Xu and Gregg Rothermel. Directed test suite augmentation. In Soft-
ware Engineering Conference, 2009. APSEC’09. Asia-Pacific, pages 406–413.
IEEE, 2009. (Cited on pages 16, 22 and 29.)

[Xu 2010a] Zhihong Xu, Myra B Cohen and Gregg Rothermel. Factors affecting the use
of genetic algorithms in test suite augmentation. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation, pages 1365–1372. ACM,
2010. (Cited on pages 17 and 29.)

[Xu 2010b] Zhihong Xu, Yunho Kim, Moonzoo Kim, Gregg Rothermel and Myra B Co-
hen. Directed test suite augmentation: techniques and tradeoffs. In Proceedings of
the eighteenth ACM SIGSOFT international symposium on Foundations of soft-
ware engineering, pages 257–266. ACM, 2010. (Cited on pages 17 and 29.)

[Xu 2011] Zhihong Xu, Yunho Kim, Moonzoo Kim and Gregg Rothermel. A hybrid di-
rected test suite augmentation technique. In Software Reliability Engineering (IS-



138 Bibliography

SRE), 2011 IEEE 22nd International Symposium on, pages 150–159. IEEE, 2011.
(Cited on pages 17, 21, 22 and 29.)

[Xu 2015] Zhihong Xu, Yunho Kim, Moonzoo Kim, Myra B Cohen and Gregg Rothermel.
Directed test suite augmentation: an empirical investigation. Software Testing,
Verification and Reliability, vol. 25, no. 2, pages 77–114, 2015. (Cited on pages 18,
21, 22 and 29.)

[Xuan 2014] Jifeng Xuan and Martin Monperrus. Test case purification for improving fault
localization. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 52–63. ACM, 2014. (Cited on
pages 27, 28 and 29.)

[Xuan 2015] Jifeng Xuan, Xiaoyuan Xie and Martin Monperrus. Crash Reproduction via
Test Case Mutation: Let Existing Test Cases Help. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages
910–913, New York, NY, USA, 2015. ACM. (Cited on pages 15, 16 and 29.)

[Xuan 2016a] Jifeng Xuan, Benoit Cornu, Matias Martinez, Benoit Baudry, Lionel Sein-
turier and Martin Monperrus. B-Refactoring: Automatic Test Code Refactoring to
Improve Dynamic Analysis. Information and Software Technology, vol. 76, pages
65–80, 2016. (Cited on pages 27, 28, 29 and 32.)

[Xuan 2016b] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian
Lamelas, Thomas Durieux, Daniel Le Berre and Martin Monperrus. Nopol: Auto-
matic Repair of Conditional Statement Bugs in Java Programs. IEEE Transactions
on Software Engineering, 2016. (Cited on pages 112 and 115.)

[Xuan 2017] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clement, Sebas-
tian Lamelas Marcote, Thomas Durieux, Daniel Le Berre and Martin Monperrus.
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering, vol. 43, no. 1, pages 34–55, 2017. (Cited
on pages 27 and 32.)

[Yoo 2012] Shin Yoo and Mark Harman. Test data regeneration: generating new test data
from existing test data. Software Testing, Verification and Reliability, vol. 22, no. 3,
pages 171–201, 2012. (Cited on pages 11, 16, 29 and 35.)

[Yoshida 2016] Hiroaki Yoshida, Susumu Tokumoto, Mukul R Prasad, Indradeep Ghosh
and Tadahiro Uehara. FSX: Fine-grained Incremental Unit Test Generation for
C/C++ Programs. In Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, ISSTA 2016, 2016. (Cited on pages 13, 15 and 29.)



Bibliography 139

[Yu 2013] Zhongxing Yu, Chenggang Bai and Kai-Yuan Cai. Mutation-oriented Test Data
Augmentation for GUI Software Fault Localization. Inf. Softw. Technol., vol. 55,
no. 12, pages 2076–2098, December 2013. (Cited on pages 15 and 29.)

[Yu 2019] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux and Mar-
tin Monperrus. Alleviating patch overfitting with automatic test generation: a study
of feasibility and effectiveness for the Nopol repair system. Empirical Software En-
gineering, vol. 24, no. 1, pages 33–67, Feb 2019. (Cited on page 102.)

[Zaidman 2008] Andy Zaidman, Bart Van Rompaey, Serge Demeyer and Arie van
Deursen. Mining Software Repositories to Study Co-Evolution of Production &
Test Code. In First International Conference on Software Testing, Verification,
and Validation (ICST), pages 220–229. IEEE Computer Society, 2008. (Cited on
pages 8 and 16.)

[Zaidman 2011] Andy Zaidman, Bart Van Rompaey, Arie van Deursen and Serge De-
meyer. Studying the co-evolution of production and test code in open source and
industrial developer test processes through repository mining. Empirical Software
Engineering, vol. 16, no. 3, pages 325–364, 2011. (Cited on pages 8 and 16.)

[Zhang 2012] Pingyu Zhang and Sebastian Elbaum. Amplifying tests to validate exception
handling code. In Proc. of Int. Conf. on Software Engineering (ICSE), pages 595–
605. IEEE Press, 2012. (Cited on pages 9, 10, 23, 24 and 29.)

[Zhang 2014] Pingyu Zhang and Sebastian G. Elbaum. Amplifying Tests to Validate Ex-
ception Handling Code: An Extended Study in the Mobile Application Domain.
ACM Trans. Softw. Eng. Methodol., vol. 23, no. 4, pages 32:1–32:28, 2014. (Cited
on pages 23, 24 and 29.)

[Zhang 2016] Jie Zhang, Yiling Lou, Lingming Zhang, Dan Hao, Lu Zhang and Hong
Mei. Isomorphic Regression Testing: Executing Uncovered Branches Without Test
Augmentation. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE 2016, pages 883–894, New
York, NY, USA, 2016. ACM. (Cited on pages 24, 29 and 32.)


	List of Figures
	List of Tables
	Introduction
	Scientific Problem
	Thesis Contributions
	STAMP project
	Publications
	Software Developed During This Thesis

	State of the Art
	Approach
	Definition
	Methodology

	Amplification by Adding New Tests as Variants of Existing Ones
	Coverage or Mutation Score Improvement
	Fault Detection Capability Improvement
	Oracle Improvement
	Debugging Effectiveness Improvement
	Summary

	Amplification by Synthesizing New Tests with Respect to Changes
	Search-based vs. Concolic Approaches
	Finding Test Conditions in the Presence of Changes
	Other Approaches
	Summary

	Amplification by Modifying Test Execution
	Exception Handling Validation
	Other Approaches
	Summary

	Amplification by Modifying Existing Test Code
	Input Space Exploration
	Oracle Improvement
	Purification
	Summary

	Analysis
	Aggregated View
	Technical Aspects
	Tools for Test Amplification

	Conclusion

	DSpot: A Test Amplification Technique
	Definitions
	Overview
	Principle
	Input & Output
	Workflow
	Test Method Example

	Algorithm
	Input Space Exploration Algorithm
	Assertion Improvement Algorithm
	Pseudo-algorithm
	Flaky tests elimination

	Implementation
	Conclusion

	Test Amplification For Artificial Behavioral Changes Detection Improvement
	Mutation score as test-criterion
	Experimental Protocol
	Research Questions
	Dataset
	Test Case Selection Process
	Metrics
	Methodology

	Experimental Results
	Answer to RQ1
	Answer to RQ2
	Answer to RQ3
	Answer to RQ4

	Threats to Validity
	Conclusion

	Test Amplification For Behavioral Changes Detection Of Commits
	Motivation & Background
	Motivating Example
	Applicability
	Behavioral Change
	Behavioral Change Detection

	Behavioral Change Detection Approach
	Overview of DCI
	Test Selection and Diff Coverage
	Test Amplification
	Execution and Change Detection
	Implementation

	Evaluation
	Research Questions
	Benchmark
	Protocol
	Results

	Discussion about the scope of DCI
	Threats to validity
	Conclusion

	Transversal Contributions
	Study of Program Correctness
	Problem Statement
	Attract Protocol
	Evaluation
	Discussion

	Study of Pseudo-tested Methods
	Problem Statement
	Definition and Implementation
	Evaluation
	Discussion

	Study of Test Generation for Repair
	Problem Statement
	UnsatGuided Technique
	Evaluation
	Discussion

	Conclusion

	Conclusion
	Contribution Summary
	DSpot
	Automatic Test Amplification For Mutation Score
	Automatic Test Amplification For Behavioral Changes Detection
	Transversal Contributions

	Short-term Perspectives
	Prettifying Amplified Test Methods
	Collecting Developer Feedback

	Long-term Perspectives

	Bibliography

