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Résumé

Cette thèse est consacrée à l’étude d’une classe d’équations de réaction-diffusion avec
advection non-locale. La motivation vient du mouvement cellulaire avec le phénomène
de ségrégation observé dans des expérimentations de co-culture cellulaire. La première
partie de la thèse développe principalement le cadre théorique de notre modèle, à savoir
le caractère bien posé du problème et le comportement asymptotique des solutions dans
les cas d’une ou plusieurs espèces.

Dans le Chapitre 1, nous montrons qu’une équation scalaire avec un noyau non-local
ayant la forme d’une fonction étagée, peut induire des bifurcations de Turing et de Turing-
Hopf avec le nombre d’ondes dominant aussi grand que souhaité. Nous montrons que les
propriétés de bifurcation de l’état stable homogène sont intimement liées aux coefficients
de Fourier du noyau non-local.

Dans le Chapitre 2, nous étudions un modèle d’advection non-local à deux espèces
avec inhibition de contact lorsque la viscosité est égale à zéro. En employant la notion de
solution intégrée le long des caractéristiques, nous pouvons rigoureusement démontrer le
caractère bien posé du problème ainsi que la propriété de ségrégation d’un tel système. Par
ailleurs, dans le cadre de la théorie des mesures de Young, nous étudions le comportement
asymptotique des solutions. D’un point de vue numérique, nous constatons que sous l’effet
de la ségrégation, le modèle d’advection non-locale admet un principe d’exclusion.

Dans la deuxième partie de la thèse (Chapitre 3), nous nous intéressons à l’application
de nos modèles aux expérimentations de co-culture cellulaire. Pour cela, nous choisissons
un modèle hyperbolique de Keller-Segel sur un domaine borné. En utilisant les données
expérimentales, nous simulons un processus de croissance cellulaire durant 6 jours dans
une boîte de pétri circulaire et nous discutons de l’impact de la propriété de ségrégation
et des distributions initiales sur les proportions de la population finale.

Mots clés: Diffusion non-locale et non-linéaire, Equation hyperbolique de Keller-Segel,
Ségrégation, Bifurcation de Turing-Hopf, Co-culture cellulaire





Abstract

This thesis is devoted to the study for a class of reaction-diffusion equations with
nonlocal advection. The motivation comes from the cell movement with segregation phe-
nomenon observed in cell co-culture experiments. The first part of the thesis mainly
develops the theoretical framework of our model, namely the well-posedness and asymp-
totic behavior of solutions in both single-species and multi-species cases.

In Chapter 1, we show that a single scalar equation with a step function kernel may
display Turing and Turing-Hopf bifurcations with the dominant wavenumber as large as
we want. We find that the bifurcation properties of the homogeneous steady state are
closely related to the Fourier coefficients of the nonlocal kernel.

In Chapter 2, we study a two-species nonlocal advection model with contact inhibition
when the viscosity equals zero. By employing the notion of solution integrated along
the characteristics, we rigorously prove the well-posedness and segregation property of
such a hyperbolic nonlocal advection system. Besides, under the framework of Young
measure theory, we investigate the asymptotic behavior of solutions. From a numerical
perspective, we find that under the effect of segregation, the nonlocal advection model
admits a competitive exclusion principle.

In the second part of the thesis (Chapter 3), we are interested in applying our models
to a cell co-culturing experiment. To that aim, we choose a hyperbolic Keller-Segel model
on a bounded domain. By utilizing the experimental data, we simulate a 6-day cell growth
process in a circular petri dish and discuss the impact of both the segregation property
and initial distributions on the population proportions.

Key words: Nonlocal and nonlinear diffusion, Hyperbolic Keller-Segel equation, Seg-
regation, Turing-Hopf bifurcation, Cell co-culture
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Résumé

L’objectif principal de cette thèse est de modéliser les interactions dans la co-culture de
cellules multi-espèces. Parmi ces interactions, on peut mentionner l’attraction, la répul-
sion et la ségrégation de cellules, conduisant à la formation de motifs. Nous choisissons
une classe d’équations de réaction-diffusion avec advection non-locale. Dans la première
partie de la thèse (Chapitres 1 et 2), nous développons principalement le cadre théorique
de ces modèles, à savoir le caractère bien posé du problème dans le cas d’une ou de
plusieurs espèces. De plus, nous discutons des bifurcations de Turing et de Turing-Hopf
ainsi que du comportement asymptotique des solutions.

En ce qui concerne la seconde moitié de cette thèse (Chapitre 3), nous appliquons nos
modèles à une expérimentation de co-culture cellulaire. Nous choisissons alors un modèle
hyperbolique de Keller-Segel, qui peut être considéré comme une variation du modèle non-
local et dont nous établissons également les résultats théoriques. En utilisant les données
expérimentales, nous simulons une croissance cellulaire de 6 jours dans une boîte de pétri
et nous montrons l’impact de la propriété de ségrégation et des distributions initiales sur
les proportions des populations.

1 Aperçu de la thèse

Dans ce manuscrit, nous étudions deux types d’équation de réaction-diffusion avec advec-
tion non-linéaire et non-locale. Nous considérons d’abord l’équation mono-espèce suivante

∂tu(t, x) + div (u(t, x)v(t, x)) = D∆u(t, x) + f(u(t, x)), t > 0, x ∈ Ω ⊂ RN . (1.1)

Ici D ≥ 0 est le paramètre de viscosité. La divergence, le gradient et le laplacien sont pris
par rapport à x. Le champ de vélocité v se calcule à partir de la pression P :

v(t, x) = −∇P (t, x).

Cas 1: Nous considérons les solutions de l’équation (1.1) qui sont périodiques en

espace. Ici, une fonction u(t, x) est dite 2π -périodique dans chaque direction (ou
pour simplifier périodique) si

u(t, x+ 2kπ) = u(t, x), ∀k ∈ ZN , x ∈ RN .

Dans le cas non-local, la pression P est de la forme

P (t, x) =

∫
RN
ρ(x− y)u(t, y)dy, t > 0, x ∈ RN . (1.2)

1



1. Aperçu de la thèse

Le problème ci-dessus peut s’écrire comme l’équation suivante posée sur Ω := [0, 2π]N

avec la condition périodiques aux bords∂tu = D∆u+ div (u∇ (K ◦ u)) + f(u), t > 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

où le noyau K ∈ L1
per (Ω) est défini par

K(x) = (2π)N
∑
k∈ZN

ρ(x+ 2πk), x ∈ RN .

Ici et dans toute la suite de la thèse, le symbole ◦ représente le produit de convolution
sur le tore Ω = RN/(2πZN) ' [0, 2π]N , c’est-à-dire

(ϕ ◦ ψ) (x) = |Ω|−1

∫
Ω

ϕ(x− y)ψ(y)dy, ∀ϕ, ψ ∈ L1
per (Ω) . (1.3)

Par conséquent, nous réécrivons la pression (1.2) de la manière suivante

P (t, x) = |Ω|−1

∫
Ω

K(x− y)u(t, y)dy.

Cas 2: Lorsque Ω ⊂ RN est un ensemble borné, nous imposons la condition aux bords
de non-flux et nous définissons

P (t, x) = (I − χ∆)−1u(t, x), ∇P · ν = 0, (1.4)

où ν est le vecteur normal sortant, χ est une constante positive représentant le coefficient
de détection des cellules et (I − χ∆)−1 est la résolvante du Laplacien avec condition de
Neumann aux bords.

L’équation (1.4) peut être obtenue formellement comme limite singulière de l’équation
parabolique suivante (qui est le cas classique dans l’équation de Keller-Segel [61]) lorsque
ε tend vers 0:

ε∂tP (t, x) = χ∆P (t, x) + u(t, x)− P (t, x).

Le fait de prendre ε→ 0 correspond à l’hypothèse selon laquelle la dynamique du chimio-
repoussant est rapide par rapport à l’évolution de la densité cellulaire.

En fait, l’équation (1.4) peut également être considérée comme une advection non-
locale en utilisant la représentation

P (t, x) =

∫
Ω

κ(x, y)u(t, y)dy,

où κ est un noyau de convolution qui est obtenu par la somme des fonctions propres de
l’opérateur (I − χ∆)−1 sur L2(Ω), coefficientées par leurs valeurs propres.

2 Xiaoming Fu



Résumé

1.1 Bifurcations de Turing et de Turing-Hopf pour une équation
de réaction-diffusion avec advection non-locale

Le Chapitre 1 traite du système monospécifique en dimension N = 1 avec la condition
périodique

∂u

∂t
=

∂

∂x

[
D
∂u

∂x
+ u

∂

∂x
(ρ ∗ u)

]
+ f(u), t > 0, x ∈ R.

Nous étudions les propriétés de stabilité et de bifurcation de l’équilibre intérieur positif
pour une telle équation de réaction-diffusion avec advection non-locale. Sous certaines hy-
pothèses générales sur le noyau non-local, nous étudions d’abord le caractère bien posé du
problème dans les espaces de Sobolev d’ordre fractionnaire et nous obtenons des résultats
de stabilité pour l’état d’équilibre homogène. Comme cas particuliers, nous montrons que
les noyaux “standards” tels que le noyau de Cauchy, de Laplace, Gaussien et triangulaire
conduiront à la stabilité de l’équilibre homogène.

Ensuite, nous considérons le modèle dont le noyau est une fonction étagée et nous
examinons deux types de bifurcations, à savoir la bifurcation de Turing et de Turing-
Hopf. En général, une équation de réaction-diffusion scalaire et locale ne présente pas
de formation de motifs, à cause du principe de comparaison. Cependant, en ce qui con-
cerne les interactions non-locales, le principe de comparaison peut ne pas exister et des
comportements dynamiques plus complexe peuvent se produire. Dans le Chapitre 1, nous
prouvons qu’une équation scalaire avec un noyau non-local ayant la forme d’une fonction
étagée, peut induire des bifurcations de Turing et de Turing-Hopf avec le nombre d’ondes
dominant aussi grand que souhaité. De plus, des instabilités similaires peuvent également
être observées avec un noyau bimodal. Les dynamiques spatio-temporelles sont illustrées
par des simulations numériques.

L’opérateur non-linéaire responsable du déplacement des individus, dénoté par J(u)
et défini par

J(u) =
∂

∂x

[
D
∂u

∂x
+ u

∂

∂x
(ρ ∗ u)

]
,

a été proposé et étudié par plusieurs auteurs dans la littérature. L’opérateur non-linéaire
J(u) a également été introduit dans les dynamiques d’essaimage, nous nous référons à
l’article de Bernoff et Topaz [10] ainsi que les références qui y figurent.

Certaines propriétés de l’équation ∂tu = J(u) sans viscosité ont été étudiées par ex-
emple dans [17, 68, 91] (voir aussi les références citées). Enfin, nous nous référons à
Burger et Di Francesco [18] pour une étude d’une équation légèrement différente incluant
la diffusion non-linéaire.

Dans le Chapitre 1, dans le contexte de la dynamique de la population cellulaire, la
fonction f modélise le processus de prolifération cellulaire. Au lieu de considérer une
terme de réaction de type logistique, nous utiliserons la fonction établie par Ducrot et al.
[38]. Nous supposons alors que la fonction f a la forme suivante

f(u) =
bu

1 + γu
− µu, b > 0, µ > 0, γ > 0.

Cette forme spécifique nous permettra d’utiliser des calculs explicites lors de notre analyse
et d’utiliser le paramètre γ > 0 comme un paramètre de bifurcation. Dans le contexte de

Equations with nonlocal advection 3



1. Aperçu de la thèse

la dynamique des populations cellulaires, cette fonction non-linéaire tient compte de la
division cellulaire et du taux de sortie par les paramètres b et µ respectivement. La partie
de saturation due au paramètre γ > 0 reflète la phase de dormance cellulaire. Nous nous
référons à [38] pour plus de détails sur la modélisation.

Un exemple de noyau ayant un intérêt particulier est une fonction étagée de la forme

ρ(x) = ρη,s(x) =
1

2η
χ[−1,1]

(
x− s
η

)
, x ∈ R,

pour un paramètre d’échelle η > 0, un décalage s ∈ R et où χ[−1,1] désigne la fonction
caractéristique sur l’intervalle [−1, 1]

χ[−1,1](x) =

 1 si x ∈ [−1, 1],

0 sinon.

Comme nous le verrons au Chapitre 1, ce noyau peut déstabiliser l’état stable homogène,
produisant les instabilités de Turing et l’existence d’un état stable spatialement hétérogène.
Plus surprenant, il peut également conduire à un régime spatio-temporel via une bifurca-
tion de Turing-Hopf.

En utilisant ce noyau, on peut observer que la solution de (1.1)-(1.2) est – au moins
formellement – la solution de l’équation de Burgers non-locale suivante avec viscosité

∂u

∂t
= D

∂2u

∂x2
+

∂

∂x
Q[u] + f(u), t > 0, x ∈ R,

où Q est un opérateur non-local quadratique

Q[u(t, .)](x) = u(t, x)
u(t, x− η + s)− u(t, x+ η + s)

2η
, x ∈ R.

Comme nous l’avons mentionné, avec un choix approprié sur les paramètres du modèle
et avec un noyau approprié, les bifurcations de Turing et de Turing-Hopf peuvent se
produire. De plus, les résultats théoriques sont confirmés par des simulations numériques
au Chapitre 1. Nous présentons ici un des scénarios de bifurcation de Turing.

x
-2 -1 0 1 2

0

0.05

0.1

0.15
(a)

x
-2 -1 0 1 2

0

0.05

0.1

0.15
(c)

Figure 1: On considère b = 1.5, µ = 1.2, η = 1 et (ε, γ) = (0.0056, 3.03). La figure (a)
présente la donnée initiale asymétrique, la figure (b) présente l’évolution spatio-temporelle
de la solution et la figure (c) présente la solution à T = 200 quand elle est stabilisée
près d’un décalage approprié de l’état stationnaire symétrique. Ici le numéro d’onde est
n0 = 3.
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Résumé

Nous présentons également l’un des scénarios de bifurcation de Turing-Hopf avec le
noyau bimodal suivant

ρ(x) =
1

2

(
e−π(x+s1)2

+ e−π(x−s2)2
)
.

Re
-3 -2 -1 0 1

Im

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
(a)

Figure 2: On fixe (ε, γ) = (0.01, 0.2) , s1 = 0.4, s2 = 0.3. Dans la figure (a)
nous traçons les valeurs propres de l’équation linéaire dans le plan complexe pour n =
−10,−9, . . . , 9, 10. En choisissant les paramètres ci-dessus, il n’y a qu’une seule paire de
valeurs propres, à savoir λ±4, avec une partie réelle positive (voir les points solides). On
observe une évolution spatio-temporelle des solutions en (b). La simulation montre que le
noyau bimodal peut également conduire à l’instabilité.

1.2 Comportement asymptotique d’un système d’advection non-
local à deux populations

Le Chapitre 2 est inspiré de l’article de Ducrot et Magal [39] où les auteurs traitent
du comportement asymptotique d’une équation de réaction-diffusion à une seule espèce
avec advection non-locale. Dans le Chapitre 2, nous développons un modèle d’advection
non-locale pour deux populations avec conditions aux bords périodiques :{

∂tu1(t, x) + div
(
u1(t, x)v(t, x)

)
= u1(t, x)h1(u1(t, x), u2(t, x)),

∂tu2(t, x) + div
(
u2(t, x)v(t, x)

)
= u2(t, x)h2(u1(t, x), u2(t, x)),

t > 0, x ∈ RN , (1.5)

où le champ de vitesse v = −∇P est établi grâce à la pression

P (t, x) := (K ◦ (u1 + u2)(t, .)) (x), (1.6)

et où K ◦ u est défini dans (1.3). Nous supposons que le noyau K : RN → R est une
fonction TN–périodique de classe Cm sur RN pour un entier m ≥ N+5

2
.

Notre motivation pour ce problème vient des expérimentations biologiques pour deux
types de cellules avec co-culture monocouche. On peut trouver un exemple d’une telle
co-culture dans [88, Figure 1]. Les cellules grandissent et forment des îlots séparés après
7 jours. D’un point de vue plus générale, notre étude est reliée à la ségrégation cellulaire
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1. Aperçu de la thèse

ainsi qu’à la formation de frontières. Taylor et al. [99] ont conclu que la répulsion hétéro-
typique et la cohésion homo-typique peuvent expliquer la ségrégation cellulaire ainsi que
la formation de frontières. Nous renvoyons également les lecteurs à Dahmann et al. [34]
et aux références qui s’y trouvent pour en savoir plus sur la formation de frontières avec
son application en biologie.

La première partie du Chapitre 2 est consacrée à l’existence et l’unicité des solutions
et des propriétés de semi-flot associées. Nous utilisons ici la notion de solution intégrée
le long des caractéristiques, brièvement expliquée ci-dessous, pour prouver la propriété de
ségrégation des solutions. Afin de pallier au manque de compacité de l’orbite positive, nous
utilisons la convergence étroite dans l’espace des mesures de Young, ce qui nous permet
d’obtenir une description du comportement asymptotique des solutions. Nous présentons
également quelques simulations numériques, qui vérifient nos résultats théoriques.

Nous précisons la notion de solution. Soit Ck
per

(
RN
)
l’espace de Banach des fonctions

[0, 2π]N–periodiques de classe Ck de RN dans RN muni de la norme de la convergence
uniforme

‖ϕ‖Ck =
k∑
j=0

sup
x∈RN

∣∣Djϕ(x)
∣∣ .

Pour chaque p ∈ [1,+∞], nous notons Lpper
(
RN
)
l’espace des fonctions mesurables et

[0, 2π]N–périodiques de RN dans R telles que

‖ϕ‖Lp := ‖ϕ‖Lp((0,2π)N) < +∞.

Ainsi Lpper
(
RN
)
muni de la norme ‖ϕ‖Lp est un espace Banach. Nous définissons également

son cône positif Lpper,+
(
RN
)
qui se compose des fonctions en Lpper

(
RN
)
qui sont positives

presque partout.

Supposons que la solution

u = (u1, u2) ∈ C1
(
[0, τ ]× RN ,R

)2 ∩ C
(
[0, τ ], C0

per,+(RN)
)2

soit une solution classique de (1.5)-(1.6). Nous considérons la solution avec chaque com-
posante ui(t, ·) le long de la courbe caractéristique Πv(t, 0;x) respectivement, où les car-
actéristiques sont solutions d’EDO suivante ∂tΠv(t, s; z) = v(t,Πv(t, s; z)), pour tout t, s ∈ [0, τ ] ,

Πv(s, s; z) = z.

On en déduit que pour i = 1, 2,

d

dt

(
ui(t,Πv(t, 0; z)

)
= ∂tui(t,Πv(t, 0; z)) +∇ui(t,Πv(t, 0; z)) · v(t,Πv(t, 0; z))

= −div
(
u1(t,Πv(t, 0; z))v(t,Πv(t, 0; z))

)
+ ui(t,Πv(t, 0; z))hi(u1(t,Πv(t, 0; z)), u2(t,Πv(t, 0; z)))

+∇ui(t,Πv(t, 0; z)) · v(t,Πv(t, 0; z))

= ui(t,Πv(t, 0; z))
[
− div v(t,Πv(t, 0; z)) + hi(u(t,Πv(t, 0; z))

]
,
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Résumé

où hi(u(t,Πv(t, 0; z)) = hi(u1(t,Πv(t, 0; z), u2(t,Πv(t, 0; z)). Par conséquent, une solution
classique de (1.5)-(1.6) (i.e. de classe C1 en temps et en espace) doit satisfaire

ui(t,Πv(t, 0; z)) = exp

(∫ t

0

hi
(
u(l,Πv(l, 0; z))− div v(l,Πv(l, 0; z))dl

)
ui (0, z) , i = 1, 2,

ou de manière équivalente

ui(t, z) = exp

(∫ t

0

hi
(
u(l,Πv(l, t; z))

)
− div v(l,Πv(l, t; z))dl

)
ui (0,Πv(0, t; z)) , i = 1, 2,

(1.7)
avec

v(t, x) = − 1

|TN |

∫
TN
∇K(x− y)(u1 + u2)(t, y)dy. (1.8)

Les calculs ci-dessus nous amènent à la définition suivante d’une solution.

Définition 1.1 (Solution intégrée le long des caractéristiques). Soient u0 ∈ L∞per,+
(
RN
)2

et τ > 0. Une fonction u ∈ C
(
[0, τ ] , L1

per,+

(
RN
))2∩L∞

(
(0, τ), L∞per,+

(
RN
))2 est consid-

érée comme une solution intégrée le long des caractéristiques de (1.5)-(1.6), si ui, i = 1, 2
et v vérifient le système (1.7)-(1.8).

En résumé, nous pouvons montrer que pour chaque valeur initiale u0 périodique et
bornée, le système (1.5)-(1.6) admet une unique solution intégrée le long des caractéris-
tiques. De plus, le semiflot {U(t)}t≥0 défini par

(U(t)u0)(x) := u(t, x) = (u1(t, x), u2(t, x)), ∀t ≥ 0,

est continu sur L1
per,+ × L1

per,+ et possède les propriétés suivantes

1. toute solution partant d’une condition initiale positive reste positive ;

2. la solution est globale, i.e. supt∈[0,τ ] ‖u(t, ·)‖∞ ≤M(τ)‖u0‖∞ ;

3. si l’on part d’une condition initiale régulière, alors la solution est une solution clas-
sique ;

4. loi de conservation : pour tout A ∈ B(TN)∫
Πv(t,s;A)

ui(t, x)dx =

∫
A

exp

[∫ t

s

hi (u (l,Πv(l, s;x))) dl

]
ui(s, x)dx.

Nous pouvons également prouver que les solutions préservent la propriété de ségrégation.

Théorème 1.1. Soit u = u(t, x) la solution de (1.5)-(1.6). Pour toute condition initiale
satisfaisant u1(0, x)u2(0, x) = 0 pour tout x ∈ TN . Alors u1(t, x)u2(t, x) = 0 pour tout
t > 0 et x ∈ TN .

Nous illustrons la propriété de ségrégation et le comportement asymptotique des so-
lutions par les simulations suivantes.
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Figure 3: Les courbes vertes représentent l’espèce u1 et les courbes rouges représentent
l’espèce u2. Si les distributions initiales sont séparées pour les deux populations, nous
constatons la coexistence des deux espèces et la propriété de ségrégation. Après t = 100,
la distribution spatiale des deux espèces reste les mêmes.

1.3 Un modèle de répulsion cellulaire par une équation de Keller-
Segel hyperbolique

Dans le Chapitre 3, nous proposons un modèle de Keller-Segel hyperbolique à deux popu-
lations pour étudier le phénomène de ségrégation dans les expérimentations de co-culture
cellulaire (voir (1.9) pour le modèle).

Figure 4: Immunodétection directe des transferts P-gp dans des co-cultures de variantes
sensibles (MCF-7) et résistantes (MCF-7/Doxo) des cellules cancéreuses du sein humain.
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Résumé

La propriété de ségrégation spatiale entre deux types de cellules a été observée par
Pasquier et al. [88]. Ils ont étudié le transfert de protéines entre deux types de cellules
cancéreuses du sein humain, à savoir les cellules MCF-7 et MCF-7/Doxo. Au cours d’une
co-culture cellulaire de 7 jours, la compétition spatiale a été observée entre ces deux types
de cellules et une frontière nette a été établie entre eux (voir Figure 4). Une propriété de
ségrégation similaire a également été trouvée dans le motif en mosaïque entre les nécroses
et les cadhérines dans les expérimentations de Katsunuma et al. [64].

Nous étudions un modèle de deux espèces sur le disque ouvert unitaire Ω ⊂ R2
∂tu1(t, x)− d1 div

(
u1(t, x)∇P (t, x)

)
= u1(t, x)h1((u1, u2)(t, x)),

∂tu2(t, x)− d2 div
(
u2(t, x)∇P (t, x)

)
= u2(t, x)h2((u1, u2)(t, x)),(

I − χ∆
)
P (t, x) = u1(t, x) + u2(t, x),

(t, x) ∈ [0, T ]× Ω

∇P (t, x) · ν(x) = 0, (t, x) ∈ [0, T )× ∂Ω,

(1.9)
où ν est le vecteur normal sortant, di est le coefficient de dispersion, χ est le coefficient
de détection. La fonction hi est de forme

hi(u1, u2) = bi − δi −
2∑
j=1

aijuj, i = 1, 2,

où bi > 0, i = 1, 2 sont les taux de croissance, aij ≥ 0, i 6= j représentent la concurrence
mutuelle entre les espèces, aii est la concurrence au sein d’une même espèce et δi est le
taux de mortalité supplémentaire causé par le traitement. Le système (1.9) est complété
par la distribution initiale

u0(·) := (u1(0, ·), u2(0, ·)) ∈ C1(Ω)2.

Nous considérons un domaine borné bidimensionnel (une boîte de pétri circulaire). Avec
la notion de solutions intégrées le long des caractéristiques, nous prouvons l’existence et
l’unicité des solutions ainsi que la propriété de ségrégation des deux espèces. Grâce à la
condition aux bords appropriée pour l’équation de pression, nous en déduisons que les
caractéristiques restent dans le domaine pour tout t > 0. La positivité des solutions, la
propriété de ségrégation et la loi de conservation sont également déduites pour le modèle
(1.9).

Selon [89], les cellules MCF-7 et MCF-7/Doxo sont cultivées séparément avec un nom-
bre initiale de cellules de 105 dans la boîte de pétri de 60 × 15 mm avec ou sans le
traitement de la doxorubicine.

En utilisant le modèle homogène en espace et les données de croissance cellulaire dans
les expérimentations de [89], nous estimons les paramètres bi, µi et δi, i = 1, 2. De plus,
nous approchons notre modèle d’EDP avec la méthode des volumes finis pour estimer les
paramètres χ et les coefficients de dispersion di, i = 1, 2.

D’un point de vue numérique, on peut également observer que le modèle admet un
principe d’exclusion (les résultats sont différents du modèle d’EDO). Plus important en-
core, notre modèle montre que la complexité de la distribution cellulaire de co-culture à
court terme (6 jours) dépend de la distribution initiale de chaque espèce. Grâce à des
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simulations numériques, l’impact de la distribution initiale sur le ratio des populations
se situe dans le nombre total initial de cellules et non pas dans la loi de la distribution
initiale. Nous constatons également qu’un taux de dispersion rapide donne un avantage
à court terme tandis que la dynamique vitale contribue à un avantage à long terme pour
la population.

La Figure 5 présente une simulation numérique réalisée du jour 0 au jour 6. Nous
traçons également les proportions de chaque type de cellules (voir Figure 5 (f)). La
proportion de cellules de l’espèce i est donnée par

Ui(t)

U1(t) + U2(t)
où Ui(t) :=

∫
Ω

ui(t, x)dx, i = 1, 2.

0 2 4 6
t
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Figure 5: Évolution spatio-temporelle des deux espèces u1 et u2 et de leurs proportions
relatives. Les figures (a)-(e) correspondent à l’évolution de la croissance cellulaire du jour
0 au jour 6 et la figure (f) représente l’évolution des proportions. La distribution initiale
suit la distribution uniforme sur un disque avec 20 clusters de cellules initiaux. Le nombre
initial de cellules est U1 = U2 = 0, 01 pour chaque espèce et les cellules sont équitablement
réparties dans chaque cluster.
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Introduction

“C’est avec l’intuition qu’on trouve, c’est avec la logique qu’on prouve.” — Henri Poincaré

Henry Darcy, French engineer born in Dijon, made major contributions to open channel
flow research and developed Darcy’s Law for flow in porous media. His Law is a founda-
tion stone for several fields of study including ground-water hydrology, soil physics, and
petroleum engineering. He and his precursor Henri Navier who was also born in Dijon
became two of the founders of the science of fluid mechanics.

The idea of generalizing Darcy’s law to a nonlocal pressure is relatively recent. As
pointed out by Delgoshaie and his collaborators [36] multiscale pathways in porous media
can lead to a nonlocal flow model whereby the flow rate at a given point is related to the
integral of the pressure difference between that point and every other point in the domain
multiplied by a conductivity kernel. We cite the works [33, 34, 62, 93] for nonlocal versions
of Darcy’s law applied in hydrology. Such nonlocal interactions can also be applied in
population dynamics [3, 26, 38, 39, 42, 75]. Over the past couple of decades, a large
amount of literature has been devoted to the mathematical modeling of self-organizing
populations, based on the concepts of short-range, long-range interactions among different
individuals.

The main objective of this thesis is to study the interactions in multi-species cell
co-culture. Such interactions can include cell-cell attraction, repulsion, and segregation,
leading to pattern formation. We choose a class of reaction-diffusion equations with
nonlocal advection. In the first part of the thesis (Chapter 1 and 2), we mainly develop
the theoretical framework of these models, namely the well-posedness in both single-
species and multi-species cases. Furthermore, we discuss the Turing and Turing-Hopf
bifurcations and the asymptotic behavior of solutions.

As far as the second half of this thesis is concerned, we are interested in applying our
models to a real-life cell co-culturing experiment. Here we choose a hyperbolic Keller-
Segel model, which can be regarded as a variation of the nonlocal model. We also establish
theoretical results. Moreover, by analyzing the experimental data, we simulate a 6-day
cell growth in a petri dish and discuss the impact of both the segregation property and
initial distributions on the population proportions.
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1. Outline of the thesis

1 Outline of the thesis

The outline is followed by the modeling part of a nonlinear and nonlocal diffusion equation.
Starting from an individual-based model (IBM) with random perturbation, we illustrate
the convergence of an IBM to a nonlinear and nonlocal (continuum) equation when the
number of particles tends to infinity. After having obtained a general form of the nonlinear
and nonlocal diffusion equation, we list a few models that are intimately related to the
models studied in this thesis. Furthermore, we resume some previous related works done
by other authors. At the end of the Introduction, we present an overview of three different
problems treated in this thesis.

Chapter 1 deals with a single-species reaction-diffusion equation with nonlocal advec-
tion in the one-dimensional case. We study the well-posedness of the model and investi-
gate the stability and bifurcation properties of the positive interior equilibrium for such
an equation. We show that a single scalar equation may display Turing and Turing-Hopf
bifurcations with the dominant wavenumber as large as we want. Moreover, similar in-
stabilities exist with a bi-modal kernel. Numerical simulations also confirm the resulting
complex spatio-temporal dynamics. This work is from Ducrot, Fu and Magal [40].

In Chapter 2, we consider a nonlocal advection model without the viscosity term for
two populations. The first part of the chapter is devoted to the existence and uniqueness
of solutions and the associated semi-flow properties. Using the solution integrated along
the characteristics, we can prove the segregation property of solutions. To resolve the
lack of compactness of the positive orbit, we employ the narrow convergence in the space
of Young measures. We also present some numerical simulations, which confirm and
complement our theoretical results. This work is from Fu and Magal [48].

In Chapter 3, we propose a two-population hyperbolic Keller-Segel model to study the
segregation phenomenon in cell co-culture experiments. We first prove the well-posedness
of the model and the segregation property. From a numerical perspective, we can observe
that the model admits a competitive exclusion principle (the results are different from the
corresponding ODE model). More importantly, our model shows the complexity of the
cell distribution depending on the initial values. This work is from Fu and Magal [49].

After that, the main contributions of this thesis are presented as part of the Conclusion,
followed by a detailed list of research perspectives. Finally, the Appendix contains some
proofs and numerical methods omitted in Chapters 1–3.

2 Modeling of a nonlocal and nonlinear diffusion

A classical widespread approach of modeling population dynamics with spatial movement
is based on PDE’s [60, 75, 80, 81, 83]. The motion of individuals has been described by
relevant quantities such as scalar or vector fields. Such kind of models are often called
Eulerian models; they describe the evolution of population densities. They are typically
(deterministic) nonlinear partial differential equations of the advection-reaction-diffusion
type

∂tu(t, x) + div (u(t, x)v(t, x)) = D∆u(t, x) + f(u(t, x)), t > 0, x ∈ Ω ⊂ RN , (2.1)
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Introduction

where u is the population density, v is the velocity field and f(u) is a possible additive
reaction term which may include birth and death processes. The advection term may
describe the interaction mechanisms among individuals (via the velocity v), while the
non-advective (diffusive) flux takes into account the spatial spread of the population.

Let us omit, for the moment, the cell dynamics of the population, that is f(u) ≡ 0.
Suppose the velocity field is composed of two types of interactions in different scales,
namely the long-range attractions inmacroscale and the short-range repulsion inmesoscale
which comes from the moderate interactions of the particles.

We give a brief description of such an individual-based approximation (Lagrangian
models). Let us consider n particles interacting in RN . We denote the spatial location
of each particle as Xn

k (t) ∈ RN . We assume the position of the k–th particle, Xn
k (t), is

subject to the specific forces of interaction. Then the law of motion reads

dXn
k (t)

dt
= hnk(Xn

1 , . . . , X
n
n , t), k = 1, . . . , n, (2.2)

Assume individuals interact through a potential V n : RN → R (which may include both
the attraction and repulsion) and the potential V n is not subject to a underlying field
(i.e., independent of t), thus we can suppose that hnk follows the form

hnk(Xn
1 , . . . , X

n
n , t) =

1

n

n∑
m=1,m 6=k

∇V n(Xn
k (t)−Xn

m(t)).

If one denotes the empirical measure 1
n

∑n
k=1 δXn

k (t) as follows

µn(t) :=
1

n

n∑
k=1

δXn
k (t),

where for any measurable set B ∈M(RN), δ is the singular measure defined as follows

δXn
k (t)(B) =

{
1, if Xn

k (t) ∈ B,
0, if Xn

k (t) /∈ B.

We have

µn(t)(B) =
1

n

n∑
k=1

δXn
k (t)(B) =

# particles in B at time t
n

.

By introducing the empirical measure µn(t), we can rewrite the drift term hnk as a convo-
lution

hnk(Xn
1 , . . . , X

n
n , t) =

1

n

n∑
m=1,m6=k

∇V n(Xn
k (t)−Xn

m(t))

= [∇V n ∗ µn(t)] (Xn
k (t)).

We express our modeling assumptions by introducing in V n two additive components :
V n

1 , responsible of aggregation, and V n
2 , responsible of repulsion, such that

V n = V n
1 − V n

2 ,
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where the positive (resp. negative) sign represents a force of attraction (resp. repulsion).
Now we rewrite Equation (2.2) as

dXn
k (t)

dt
=
(

[∇V n
1 ∗ µn(t)] (Xn

k (t))− [∇V n
2 ∗ µn(t)] (Xn

k (t))
)
, k = 1, . . . , n. (2.3)

We assume that each potential V n
i , i = 1, 2 satisfies the following scaling property

V n
i (x) = nβVi

(
n
β
N x
)
, i = 1, 2,

for some β ∈ [0, 1] and where Vi is a fixed potential. Using this framework, the scaling
with β = 0 (resp. β ∈ (0, 1), resp. β = 1) corresponds to the so-called Mckean-Vlasov
(macroscale) limit (resp. mesoscale limit, resp. hydrodynamics limit) (see Oelschläger
[85]). Roughly speaking, in one space dimension N = 1, the characteristic length be-
tween particles corresponds to order O(n−1), while the characteristic length of interaction
induced by the potential Vn corresponds to order O(n−β). The Mckean-Vlasov frame-
work, namely, β = 0, corresponds to order O(1) length of interaction, that is, long range
interactions.

We assume that the aggregation and repulsion coexist but act at different scales: the
potential V1 satisfies the Vlasov framework (β = 0), implying the long-range attraction
while V2 satisfies the mesoscale framework, implying the short-range repulsion. In fact, in
order to obtain the limiting reaction-diffusion equation with nonlocal advection, we need
to assume that particles are subject to a random dispersal described by the Brownian
motion {Wk}nk=1 (a family of independent standard Wiener processes), we rewrite (2.3)
as

dXn
k (t) =

(
[∇V n

1 ∗ µn(t)] (Xn
k (t))− [∇V n

2 ∗ µn(t)] (Xn
k (t))

)
dt+ σndWk(t), k = 1, . . . , n.

(2.4)
where σn defined as the coefficients for the intrinsic stochasticity.

Using the above particle interaction modeling, the corresponding macroscopic law of
motion is obtained by investigating the convergence n → ∞ of the empirical measure
{µn(t)}t∈R+ . Suppose that indeed the empirical {µn(t)}t∈R+ converges, as n → ∞ to a
deterministic process {µ(t)}t∈R+ and furthermore it admits a density u(t, x) with respect
to the Lebesgue measure on RN , such that

lim
n→∞
〈µn(t), φ(t, ·)〉 = 〈µ(t), φ(t, ·)〉

=

∫
RN
φ(t, x)u(t, x)dx, ∀φ ∈ C1,2(R+ × RN).

Then a formal derivation (see, for example, [77]) of the continuum model from the stochas-
tic system (2.4) can be obtained, that is

∂tu(t, x) = D∆u(t, x) + div
(
u(t, x)∇u(t, x)− u(t, x)

[
∇V1 ∗ u(t, ·)

]
(x)
)

= D∆u(t, x)− div(u(t, x)v(t, x)), x ∈ RN , t ≥ 0,

u(0, x) = u0(x), x ∈ RN ,

(2.5)

where v(t, x) := −∇u(t, x) + [∇V1 ∗ u(t, ·)
]
(x) and D := limn→∞ σn/2 with σn defined as

the mean free path in (2.4). Here we assume that the mean free path of each particle may
reduce up to a limiting value that may be zero as the number of particles increases.
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Remark 2.1. Here we need to mention that the choice of kernel V2 is critical for the
convergence to the nonlinear diffusion div

(
u(t, x)∇u(t, x)

)
in the limiting equation (2.5).

To simply assume that V2 is symmetric and smooth is not sufficient (see Chapter 1, Figure
1.7 for an illustration), in fact, in order to ensure the interaction of particles is purely
repulsive, we give a sufficient condition on the sign of the Fourier coefficients of V2 which
will be detailed both analytically and numerically later in Chapter 1.

A rigorous proof of the convergence of the stochastic evolution system (2.4) for the
mean-valued empirical process {µn(t)}t∈R+ to the evolution equation (2.5) for the spatial
density of the deterministic mean-valued process {µ(t)}t∈R+ is presented in the work of
Oelschläger [84, 85], Morale, Capasso, and Oelschläger [77], Capasso and Morale [24] and
Bodnar and Velazquez [17]. For the comparison of individual-based model with continuum
model in this nonlocal diffusion context, we refer to Byrne and Drasdo [20], Motsch and
Peurichard [78].

2.1 Single species model

Below we focus on several single-species models which are closely related to the problems
discussed in this thesis. We always suppose (t, x) ∈ R+ × Ω with Ω as an open set
(bounded or unbounded) in RN .

The nonlocal model

We first give the nonlocal reaction-diffusion-advection model as follows

ut + div(u∇(ρ ∗ u)) = D∆u+ f(u), (M1)

where (ρ ∗ u)(t, x) =
∫
RN ρ(x− y)u(t, y)dy represents the long-range interactions between

individuals, D is the linear diffusion coefficient and the nonlinear function f(u) represents
the vital dynamics of the population. We emphasize the generality included in the choice
kernel. In fact, based on the choice of the kernel ρ, it can include a force of attraction/re-
pulsion with finite/infinite range of sensing radius (with compact/non-compact supported
kernels), symmetry/asymmetry, etc. Moreover, if the domain Ω ⊂ RN is bounded, for
some T > 0, one often considers the non-flux boundary condition

(−D∇u+ u∇(ρ ∗ u)) · ν = 0, (t, x) on (0, T ]× ∂Ω,

where ν is the normal outward vector.

The Keller-Segel model

Another model that has been widely studied to describe the attraction and the repulsion
of populations is known as chemotaxis (Keller-Segel model). Here we only present a
prototype of Keller-Segel model with cell dynamics represented by a function f

ut + div(uv) = D∆u+ f(u),

v = ±∇P,
ε∂tP = ∆P + u− P.

(M2)

Here the velocity field v is the proportional to the gradient of the concentration of the
chemical signal P . The positive sign in front of∇P represents chemoattractant interaction

Equations with nonlocal advection 15
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while the negative sign represents chemorepellent interaction. The scaling coefficient ε
represents the different time scale between the dynamics of the chemotaxis compared to
the evolution of the cell dynamics. When the domain Ω ⊂ RN is bounded, for some
T > 0, the non-flux boundary condition reads

(−D∇u+ uv) · ν = 0,

∇P · ν = 0,
(t, x) on (0, T ]× ∂Ω,

where ν is the normal outward vector.

The nonlinear model

As we pointed out, under the mesoscale framework, one can deduce a nonlinear diffusion
model. Here we give a more general version of the nonlinear diffusion model

ut = D∆um + f(u), (M3)

where m ≥ 1 and m − 1 is the so-called polytropic exponent following from the Darcy’s
law. This equation is known as the porous medium equation which describes the flow of
an ideal gas through a homogeneous porous medium.

The nonlinear and nonlocal model

In a complex dynamical system, a multiple scale approach is often adopted as in the
modeling of Equation (2.5). Here we study two versions of nonlinear and nonlocal models,

ut + div(u∇(ρ ∗ u)) = D∆um. (M4a)

As we have mentioned, Model (M4a) is composed of long-range interaction, as measured
by div(u∇(ρ∗u)) and short-range repulsion, as measured by D∆um. Here we set f ≡ 0, in
such scenario, the model is better studied in an analytical point of view. We also present
the following general nonlinear-nonlocal model

ut + div(g1(u)∇(ρ ∗ g2(u))) = ∆A(u) + f(u), (M4b)

where g1, g2 and A are nonlinear functions. Such a model is widely used in studying the
pattern formation arising from both attraction and repulsion.

2.2 Two species model

The self-diffusion and cross-diffusion model

It is worth mentioning a two-species version of nonlinear model (M3). The study of such
a model dates back to 1970s by Shigesada et al. [95]

∂tu1 = ∆
(
u1 (d1 + a11u1 + a12u2)

)
+ f1(u1, u2),

∂tu2 = ∆
(
u1 (d2 + a21u1 + a22u2)

)
+ f2(u1, u2).

(M5)

The nonlocal and nonlinear model
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A two-species nonlocal and nonlinear model can be written as

∂tu1 + div(g11(u1, u2)∇(ρ ∗ g12(u1, u2))) = ∆
(
u1 (d1 + a11u1 + a12u2)

)
+ f1(u1, u2),

∂tu2 + div(g21(u1, u2)∇(ρ ∗ g22(u1, u2))) = ∆
(
u1 (d2 + a21u1 + a22u2)

)
+ f2(u1, u2).

(M6)
Due to the complexity of the model, the results for such a model are mainly restricted to
the numerical analysis.

3 Summary of the models

We briefly summarize the different single-species models in the previous section in the
following form:

ut(t, x) + div(g(u(t, x))v(t, x)) = ∆A(u(t, x)) + f(u(t, x)),

v(t, x) = ±∇P (t, x),

with P satisfying one of the following forms

P (t, x) =

∫
Ω

ρ(x− y)φ(u(t, y))dy, (Nonlocal)

εPt(t, x) = ∆P (t, x) + u(t, x)− P (t, x), (Keller-Segel)

on the domain R+ × Ω with prescribed initial data.

Model A(u) v g(u) f(u) Boundary Condition Ref.

(M1) Du ∇ρ ∗ u u − RN [10, 12, 13, 52, 75]

(M1) − ∇ρ ∗ u u X Periodic B.C. [39, 48]

(M2)∗ Du Keller-Segel u X Non-flux B.C. [21, 57, 61, 82, 90]

(M3) Dum − − X RN [5, 35, 37, 51, 104]

(M4a) Dum ∇ρ ∗ u u − Non-flux B.C. [7, 11]

(M4b) Du ∇ρ ∗ u u(1− u) X Periodic B.C. [3, 79]

(M4b) Du ∇ρ ∗ φ(u) u X Periodic B.C. [26, 86]

Table 1: Summary of various cases for single-species model. In the table, the symbol “−”
refers to the absence of the corresponding term while “X” means that the model includes
such a term. We only choose a very limited amount of references in the Ref. column. ∗For
the Keller-Segel model, P satisfies Equation (Keller-Segel) with scaling parameter ε ≥ 0.

Kawasaki [65] in 1980s studied the Model (M1) for the stability of the homogeneous
steady state

ut + div(u∇(ρ ∗ u)) = D∆u+ f(u), (M1)
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Mogilner, Edelstein-Keshet in their work [75] used such a model to study the swarming
behavior in the case when f = 0. In fact, they used V ∗u instead of ∇(ρ ∗u) to represent
the non-local interactions. Based on the same model, Bernoff, Topaz in their review paper
[10] used the tools from the calculus of variations to study equilibria of the equation and
their stability. Bertozzi et al. [12, 13] studied the finite time blowup of solutions and the
well-posednees in Lp theory when D = 0 and f = 0 in multidimensional space. Ducrot,
Magal [39] and Fu, Magal [48] studied the asymptotic behavior of solutions in a periodic
setting with the help of Young measures. Hamel and Henderson [52] investigated the
existence of the traveling wave solution under a general assumption on the kernel with
logistic source f(u) = u(1− u).

Our second model (M2) is known as chemotaxis (Keller-Segel) model.

ut + div(uv) = D∆u+ f(u),

v = ±∇P,
ε∂tP = ∆P + u− P.

(M2)

Theoretical and mathematical modeling of chemotaxis began from the pioneering works
of Patlak [87] in the 1950s and Keller and Segel [66] in the 1970s. It has become an
important model in the description of tumor growth or embryonic development. We
refer to the review papers of Horstmann [61] and Hillen, Painter [57] and Calvez, Dolak-
Struß [21] for a detailed introduction about the Keller–Segel model. For the traveling
wave solutions of Keller-Segel model, we refer to Nadin, Perthame, Ryzhik [82] and the
references therein. For the case when the scaling parameter ε = 0 which is so-called
hyperbolic Keller–Segel equation, we refer to the work of Perthame, Dalibard [90] and
Calvez, Corrias and Ebde [22].

The monograph by Vázquez [104] is devoted to studying the nonlinear model (M3)

ut = D∆um + f(u), (M3)

Gurney and Nisbet [51] considered the model with a Malthusian instead of a Fisher-KPP
growth term, that is

f(u) = u, m = 2.

For the existence of wavefronts using phase-plane analysis, we refer readers to Atkinson
et al. [5] and de Pablo and Vázquez [35]. For more recent work, we refer to Du et al. [37].

For Model (M4a), we have

ut + div(u∇(ρ ∗ u)) = D∆um. (M4a)

The well-posedness of the model has been considered by Bertozzi and Slepcev [11] and
Bedrossian et al. [7] on a bounded domain Ω ⊂ RN with non-flux boundary condition.

The study of the two-species self/cross-diffusion model (M5) can date back to 1970s

∂tu1 = ∆
(
u1 (d1 + a11u1 + a12u2)

)
+ f1(u1, u2),

∂tu2 = ∆
(
u1 (d2 + a21u1 + a22u2)

)
+ f2(u1, u2).

(M5)

In the work of Shigesada, Kawasaki and Teramoto [95], such a nonlinear two-species model
was intended to study a segregation property of solutions which does not exist in single-
species model. They found that the spatial segregation acts to stabilize the coexistence of
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two similar species, relaxing the competition among different species. Lou and Ni [69, 70]
generalized the model and studied the steady state problem for the self/cross-diffusion
model. For the nonlinear diffusion model, Bertsch et al. [14] in their work proved the
existence of segregated solutions when the reaction term is of Lotka-Volterra type. The
same authors also studied the traveling wave solutions of this model [15].

Finally we discuss Model (M4b)

ut + div(g1(u)∇(ρ ∗ g2(u))) = ∆A(u) + f(u), (M4b)

and its two-species version (M6)

∂tu1 + div(g11(u1, u2)∇(ρ ∗ g12(u1, u2))) = ∆
(
u1 (d1 + a11u1 + a12u2)

)
+ f1(u1, u2),

∂tu2 + div(g21(u1, u2)∇(ρ ∗ g22(u1, u2))) = ∆
(
u1 (d2 + a21u1 + a22u2)

)
+ f2(u1, u2).

(M6)
Armstrong, Painter and Sherratt [3] in their early work proposed a model (APS model)
under the principle of a local diffusion plus a nonlocal attraction driven by adhesion forces
to describe the phenomenon of cell mixing, full/partial engulfment and complete sorting
in the cell sorting problem. Based on the APS model, Murakawa and Togashi [79] thought
that the population pressure should come from the cell volume size instead of the linear
diffusion. Therefore, they changed the linear diffusion term into a nonlinear diffusion in
order to capture the sharp fronts and the segregation in cell co-culture. Carrillo et al. [26]
recently proposed a new assumption on the adhesion velocity field and their model showed
a good agreement with the experiments in the work of Katsunuma et al. [64]. The idea
of long-range attraction and short-range repulsion can also be seen in the work of Lever-
entz, Topaz and Bernoff [68]. They considered a nonlocal advection model to study the
asymptotic behavior of the solution. By choosing a Morse-type kernel which follows the
attractive-repulsive interactions, they found that the solution can asymptotically spread,
contract (blow-up), or reach a steady-state. Burger, Fetecau and Huang [19] considered a
similar nonlocal adhesion model with nonlinear diffusion, they studied the well-posedness
of the model and proved the existence of a compactly supported, non-constant steady
state. Dyson et al. [42] established the local existence of a classical solution for a nonlo-
cal cell-cell adhesion model in spaces of uniformly continuous functions. We also refer the
readers to Mogliner et al. [76], Eftimie et al. [43] and Carillo et al. [25] for more topics
about nonlocal advection equations. For the derivation of such models, we refer readers
to the work of Bellomo et al. [8] and Morale, Capasso and Oelschläger [77].

We list a few models mentioned in the references above. For the sake of simplicity, we
only mention the single-species model (M4b) when A(u) = um and its two-species version
(M6) is similar. Armstrong, Painter and Sherratt [3] considered the case when

g1(u) = u, g2(u) = u(1− u), f(u) = u(1− u), m = 1,

Painter et al. [86] consider the case when

g1(u) = u(1− u), g2(u) = u, f(u) = u(1− u), m = 1

Murakawa and Togashi [79] consider the case when

g1(u) = u, g2(u) = u(1− u), f(u) = u(1− u), m = 2
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4. Overview of the thesis

Carrillo et al. [26] studied the case when

g1(u) = u(1− u), g2(u) = u, f(u) = u(1− u), m = 2

In Table 1 and the references mentioned above, we only list a limited amount of
references. For more detailed references, we refer readers to the introduction of each
Chapter and the references therein.

4 Overview of the thesis

This thesis deals with two types of reaction-diffusion equation with nonlinear and nonlocal
advection. Let us first consider the single-species equation

∂tu(t, x) + div (u(t, x)v(t, x)) = D∆u(t, x) + f(u(t, x)), t > 0, x ∈ Ω ⊂ RN . (4.1)

Here D ≥ 0 denotes the viscosity parameter. The divergence, gradient and Laplacian are
taken with respect to x. The velocity field v is derived from the pressure P , where

v(t, x) = −∇P (t, x). (4.2)

Case 1: We consider solutions of Equation (4.1) which are periodic in space. Here a

function u(t, x) is said to be 2π-periodic in each direction (or for simplicity periodic)
if

u(t, x+ 2kπ) = u(t, x), ∀k ∈ ZN , x ∈ RN .

In the nonlocal case, the pressure P reads

P (t, x) =

∫
RN
ρ(x− y)u(t, y)dy, t > 0, x ∈ RN . (4.3)

The above problem can be rewritten as the following equation posed on Ω := [0, 2π]N

with periodic boundary condition∂tu = D∆u+ div (u∇ (K ◦ u)) + f(u), t > 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,
(4.4)

where the kernel K ∈ L1
per (Ω) is defined by

K(x) = (2π)N
∑
k∈ZN

ρ(x+ 2πk), x ∈ RN .

Here and in the sequel of this thesis the symbol ◦ denotes the convolution product on the
torus Ω = RN/(2πZN) ' [0, 2π]N , i.e.,

(ϕ ◦ ψ) (x) = |Ω|−1

∫
Ω

ϕ(x− y)ψ(y)dy, ∀ϕ, ψ ∈ L1
per (Ω) . (4.5)
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Therefore, we rewrite the pressure (4.3) as

P (t, x) = |Ω|−1

∫
Ω

K(x− y)u(t, y)dy.

Case 2: When Ω ⊂ RN is a bounded set, we impose the non-flux boundary condition
and define

P (t, x) = (I − χ∆)−1u(t, x), ∇P · ν = 0, (4.6)

where ν is the normal outward vector, χ is a positive constant representing the sensing
coefficient of cells and (I−χ∆)−1 is the resolvent of the Laplacian operator with Neumann
boundary condition.

Equation (4.6) can be derived from the following parabolic equation (which is the
classical case in the Keller-Segel equation [61]) as ε goes to 0:

ε∂tP (t, x) = χ∆P (t, x) + u(t, x)− P (t, x).

The process of letting ε → 0 corresponds to the assumption that the dynamics of the
chemorepellent is fast compared to the evolution of the cell density.

In fact, Equation (4.6) can also be regarded as a nonlocal advection by using the
representation

P (t, x) =

∫
Ω

κ(x, y)u(t, y)dy,

where κ is a convolution kernel which can be represented by the sum of eigenfunctions of
the operator (I − χ∆)−1 weighted by their eigenvalues in L2(Ω).

4.1 Turing and Turing-Hopf bifurcations for a reaction diffusion
equation with nonlocal advection

Chapter 1 deals with the following single-species system in dimension N = 1 with a
periodic setting

∂u

∂t
=

∂

∂x

[
D
∂u

∂x
+ u

∂

∂x
(ρ ∗ u)

]
+ f(u), t > 0, x ∈ R.

We study the stability and the bifurcation properties of the positive interior equilibrium
for such a reaction-diffusion equation with nonlocal advection. Under some rather general
assumptions on the nonlocal kernel, we first study the local well-posedness of the problem
in suitable fractional spaces and we obtain stability results for the homogeneous steady
state. As a special case, we obtain that “standard” kernels such as Gaussian, Cauchy,
Laplace and triangle, lead to stability. Next we specify the model with a given step
function kernel and investigate two types of bifurcations, namely Turing bifurcation and
Turing-Hopf bifurcation. Roughly speaking, a scalar and local reaction-diffusion equation
typically does not exhibit pattern formation, which is the result of suitable comparison
arguments. However as far as nonlocal interactions are concerned, the application of com-
parison arguments may fail and more complex dynamical behaviors may occur. In Chapter
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1, we prove that a single scalar equation may display these two types of bifurcations with
the dominant wave number as large as we want. Moreover, similar instabilities can also
be observed with a bi-modal kernel. The resulting complex spatio-temporal dynamics are
illustrated by numerical simulations.

The nonlinear operator responsible for the motion of individuals, denoted by J(u) and
defined by

J(u) =
∂

∂x

[
D
∂u

∂x
+ u

∂

∂x
(ρ ∗ u)

]
was proposed and studied by several authors in the literature. The nonlinear operator
J(u) has also been introduced in swarming dynamics and we refer to the survey paper
of Bernoff and Topaz in [10] and the references therein. Some properties of the equation
∂tu = J(u) without viscosity term have been studied for instance in [17, 68, 91] (see
also the references cited therein). We also refer to Burger and Di Francesco [18] and the
references therein for a study of a slightly different equation including nonlinear diffusion.

In Chapter 1, in the context of cell population dynamics, the function f models the
process of cell proliferation. Instead of considering the reaction term as logistic type, we
shall make use of the function derived by Ducrot et al. in [38]. Hence we use the following
specific form for this function f

f(u) =
bu

1 + γu
− µu, b > 0, µ > 0, γ > 0.

This specific form allows us to make use of explicit computations in our analysis and to
use the parameter γ > 0 as a bifurcation parameter. In the context of cell population
dynamics, this nonlinear function takes account of the cell division and exit rate through
the parameter b and µ respectively. The saturation part due to the parameter γ > 0
reflects the cell dormant phase. We refer to [38] for more details on the modelling issues.

One type of kernel function that is of particular interest is a step function of the form

ρ(x) = ρη,s(x) =
1

2η
1[−1,1]

(
x− s
η

)
, x ∈ R,

for some scaling parameter η > 0, a shift s ∈ R and where 1[−1,1] denotes the characteristic
function of the interval [−1, 1], that is

1[−1,1](x) =

 1, if x ∈ [−1, 1],

0, otherwise.

As it will be seen in Chapter 1, this kernel may destabilize the positive homogeneous
steady state yielding Turing instabilities and the existence of a spatially heterogeneous
steady state and, more surprisingly, it may also lead to spatio-temporal heterogeneous
regime through Turing-Hopf bifurcation.

Using this kernel, one may observe that the solution of (4.1)-(4.3) is – at least formally
– solution of the following active nonlocal Burgers’ equation with viscosity

∂u

∂t
= D

∂2u

∂x2
+

∂

∂x
Q[u] + f(u), t > 0, x ∈ R,
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where Q denotes the quadratic nonlocal operator

Q[u(t, .)](x) = u(t, x)
u(t, x− η + s)− u(t, x+ η + s)

2η
, x ∈ R.

As we mentioned, with a suitable choice for the model parameters and with an appropriate
kernel function, Turing bifurcation and Turing-Hopf bifurcation can occur and in Chapter
1 we confirm our theoretical results by some numerical experiments. Here we present one
of the Turing bifurcation scenarios with one set of parameters.
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Figure 6: Choosing parameters values as b = 1.5, µ = 1.2, η = 1 and (ε, γ) =
(0.0056, 3.03) we obtain the above figures. Figure (a) presents the given non-symmetric
initial value, figure (b) presents the spatio-temporal evolution of the solution and figure
(c) presents the solution at a large time T = 200 when it is mostly stabilized close to a
suitable shift of the symmetric stationary state. Here the wave number n0 = 3.

We also present one of the Turing-Hopf bifurcation scenarios with the following bi-
modal kernel

ρ(x) =
1

2

(
e−π(x+s1)2

+ e−π(x−s2)2
)
.
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Figure 7: In this figure we fix the parameter values as in (ε, γ) = (0.01, 0.2) , s1 =
0.4, s2 = 0.3. In Figure (a) we plot the eigenvalues of the linearized equation in the
complex plane for n = −10,−9, .., 9, 10. By choosing the above parameters, there is only
one pair of eigenvalues, namely λ±4, with a positive real part (see the filled dots). We
observe a corresponding spatio-temporal evolution of the solutions in (b). The simulation
shows the bi-modal kernels can also lead to instability.
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4.2 Asymptotic behavior of a nonlocal advection system with two
populations

Chapter 2 is inspired by the work Ducrot and Magal [39] where the authors discussed
the asymptotic behavior of a single-species reaction-diffusion equation with nonlocal ad-
vection. In Chapter 2, we consider a nonlocal advection model for two populations with
periodic boundary condition.{

∂tu1(t, x) + div
(
u1(t, x)v(t, x)

)
= u1(t, x)h1(u1(t, x), u2(t, x)),

∂tu2(t, x) + div
(
u2(t, x)v(t, x)

)
= u2(t, x)h2(u1(t, x), u2(t, x)),

t > 0, x ∈ RN , (4.7)

and the velocity field v = −∇P is derived from pressure

P (t, x) := (K ◦ (u1 + u2)(t, .)) (x), (4.8)

where K ◦ u is defined in (4.5). We assume the kernel K : RN → R is a TN– periodic
function (TN ' [0, 2π]N) of the class Cm on RN for some integer m ≥ N+5

2
.

Our motivation for this problem comes from biological experiments for two types of
cells with monolayer co-culture. One can find an example of such a co-culture in [88,
Figure 1]. Cells are growing and meanwhile forming segregated islets after 7 days. For
a more general perspective, our study is connected to the cell segregation and border
formation. Taylor et al. [99] concluded that the heterotypic repulsion and homotypic
cohesion can account for cell segregation and border formation. We also refer the readers
to Dahmann et al. [34] and the references therein for more about boundary formation
with its application in biology.

The first part of Chapter 2 is devoted to the existence and uniqueness of solutions and
the associated semi-flow properties. Here we use the notion of solution integrated along
the characteristics which will be briefly explained later. Next, using the solution integrated
along the characteristics, we can prove a segregation property for solutions. In order to
resolve the lack of compactness of the positive orbit, we use the narrow convergence in the
space of Young measures and obtain a description of the asymptotic behavior of solutions.
We also present some numerical simulations, which confirm our theoretical results.

We precise the notion of solution in this work. Let Ck
per

(
RN
)
denote the Banach space

of functions of the class Ck from RN into R and [0, 2π]N–periodic endowed with the usual
supremum norm

‖ϕ‖Ck =
k∑
j=0

sup
x∈RN

∣∣Djϕ(x)
∣∣ .

For each p ∈ [1,+∞], let us denote by Lpper
(
RN
)
the space of measurable and [0, 2π]N−periodic

functions from RN to R such that

‖ϕ‖Lp := ‖ϕ‖Lp((0,2π)N) < +∞.

Then Lpper
(
RN
)
endowed with the norm ‖ϕ‖Lp is a Banach space. We also introduce its

positive cone Lpper,+
(
RN
)
consisting of function in Lpper

(
RN
)
almost everywhere positive.
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Assume the solution

u = (u1, u2) ∈ C1
(
[0, τ ]× RN ,R

)2 ∩ C
(
[0, τ ], C0

per,+(RN)
)2

is a classical solution of (4.7)-(4.8). We consider the solution with each component ui(t, ·)
along the characteristic curve Πv(t, 0;x) respectively, where the characteristics are solu-
tions of the following ODE ∂tΠv(t, s; z) = v(t,Πv(t, s; z)), for each t, s ∈ [0, τ ] ,

Πv(s, s; z) = z.

We obtain for i = 1, 2,

d

dt

(
ui(t,Πv(t, 0; z)

)
= ∂tui(t,Πv(t, 0; z)) +∇ui(t,Πv(t, 0; z)) · v(t,Πv(t, 0; z))

= −div
(
u1(t,Πv(t, 0; z))v(t,Πv(t, 0; z))

)
+ ui(t,Πv(t, 0; z))hi(u1(t,Πv(t, 0; z)), u2(t,Πv(t, 0; z)))

+∇ui(t,Πv(t, 0; z)) · v(t,Πv(t, 0; z))

= ui(t,Πv(t, 0; z))
[
− div v(t,Πv(t, 0; z)) + hi(u(t,Πv(t, 0; z))

]
,

where hi(u(t,Πv(t, 0; z)) = hi(u1(t,Πv(t, 0; z), u2(t,Πv(t, 0; z)). Hence a classical solution
of (4.7)-(4.8) (i.e. C1 in time and space) must satisfy

ui(t,Πv(t, 0; z)) = exp

(∫ t

0

hi
(
u(l,Πv(l, 0; z))− div v(l,Πv(l, 0; z))dl

)
ui (0, z) , i = 1, 2,

or equivalently

ui(t, z) = exp

(∫ t

0

hi
(
u(l,Πv(l, t; z))

)
− div v(l,Πv(l, t; z))dl

)
ui (0,Πv(0, t; z)) , i = 1, 2,

(4.9)
where

v(t, x) = − 1

|TN |

∫
TN
∇K(x− y)(u1 + u2)(t, y)dy. (4.10)

The above computations lead us to the following definition of solution.
Definition 4.1 (Solution integrated along the characteristics). Let u0 ∈ L∞per,+

(
RN
)2,

τ > 0 be given. A function u ∈ C
(
[0, τ ] , L1

per,+

(
RN
))2 ∩L∞

(
(0, τ), L∞per,+

(
RN
))2 is said

to be a solution integrated along the characteristics of (4.7)-(4.8), if ui satisfies (4.9) for
i = 1, 2, with v defined in (4.10).

Briefly speaking, we can prove that for each initial value u0 which is periodic and
bounded, system (4.7)-(4.8) has a unique solution integrated along the characteristics
and the corresponding semiflow {U(t)}t≥0 defined by

(U(t)u0)(x) := u(t, x) = (u1(t, x), u2(t, x)), ∀t ≥ 0,

is a continuous semiflow on L1
per,+ × L1

per,+ and has the following properties
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1. Any solution starting from a positive initial value remains positive;

2. The solution is globally defined, namely, supt∈[0,τ ] ‖u(t, ·)‖∞ ≤M(τ)‖u0‖∞;
3. If one starts from a smooth initial value, then the solution is a classical solution;

4. Conservation law: for any A ∈ B(TN)∫
Πv(t,s;A)

ui(t, x)dx =

∫
A

exp

[∫ t

s

hi (u (l,Πv(l, s;x))) dl

]
ui(s, x)dx.

We can also prove that solutions preserve the segregation property.

Theorem 4.2. Suppose u = u(t, x) is the solution of (4.7)-(4.8). For any initial distri-
bution with u1(0, x)u2(0, x) = 0 for all x ∈ TN . Then u1(t, x)u2(t, x) = 0 for any t > 0
and x ∈ TN .

We illustrate the segregation property and the asymptotic behavior of solutions by the
following simulations.
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Figure 8: The green curves represent species u1, the red represents species u2. Given a
segregated initial distribution for two population, we observe the coexistence of the two
species and the segregation property. After t = 100 the distributions of the two species
stay the same.

4.3 A cell-cell repulsion model on a hyperbolic Keller-Segel equa-
tion

In Chapter 3, we propose a two-population hyperbolic Keller-Segel model to study the
segregation phenomenon in cell co-culture experiments (see (4.11) for the model). Spatial
segregation property between two types of cells was observed by Pasquier et al. [88].
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Figure 9: Direct immunodetection of P-gp transfers in co-cultures of sensitive (MCF-7)
and resistant (MCF-7/Doxo) variants of the human breast cancer cell line.

They studied the protein transfer between two types of human breast cancer cell,
namely MCF-7 and MCF-7/Doxo cells. Over a 7-day cell co-culture, the spatial compe-
tition was observed between two types of cells and a clear boundary was formed between
them on day 7 (see Figure 9). A similar segregation property is also found in the mosaic
pattern between nections and cadherins in the experiments of Katsunuma et al. [64].

We study a two species population dynamics model on a unit open disk Ω ⊂ R2 given
as follows

∂tu1(t, x)− d1 div
(
u1(t, x)∇P (t, x)

)
= u1(t, x)h1((u1, u2)(t, x))

∂tu2(t, x)− d2 div
(
u2(t, x)∇P (t, x)

)
= u2(t, x)h2((u1, u2)(t, x))(

I − χ∆
)
P (t, x) = u1(t, x) + u2(t, x)

in [0, T ]× Ω

∇P (t, x) · ν(x) = 0 on [0, T )× ∂Ω,

(4.11)
where ν is the outward normal vector, di is the dispersion coefficient, χ is the sensing
coefficient. Recall the function hi is of form

hi(u1, u2) = bi − δi −
∑
j=1,2

aijuj, i = 1, 2,

where bi > 0, i = 1, 2 are the growth rates, aij ≥ 0, i 6= j represent the mutual competition
between the species, aii is the competition among the same species and δi is the additional
mortality rate caused by drug treatment. System (4.11) is supplemented with the initial
distribution

u0(·) := (u1(0, ·), u2(0, ·)) ∈ C1(Ω)2.

We consider a two-dimensional bounded domain (a flat circular petri dish). With the no-
tion of solution integrated along the characteristics, we prove the existence and uniqueness
of the solution and the segregation property of the two species. Thanks to the appropriate
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boundary condition of the pressure equation, we deduce that the characteristics stay in
the domain for any positive time. The positivity of solutions, the segregation property
and the conservation law follow for the model (4.11) as well.

From the work in [89], MCF-7 and MCF-7/Doxo cells are cultured separately at initial
cell number 105 in 60× 15 mm cell dish with or without drug (doxorubicine). Given the
cell growth data in the experiments in [89], we fit the parameters bi, µi, δi, i = 1, 2, by
using the model that is homogeneous in space. Furthermore, we use our PDE model
with finite volume method to estimate the parameters χ and the dispersion coefficients
di, i = 1, 2.

From a numerical perspective, we can also observe that the model admits a com-
petitive exclusion (the results are different from the corresponding ODE model). More
importantly, our model shows that the complexity of the short term (6 days) co-cultured
cell distribution depends on the initial distribution of each species. Through numerical
simulations, the impact of the initial distribution on the population ratio lies in the initial
total cell number and our study shows that the population ratio is not impacted by the
law of initial distribution. We also find that a fast dispersion rate gives a short-term
advantage while the vital dynamic contributes to a long-term population advantage.

We present one numerical simulation in Figure 10 from day 0 to day 6. We also plot
the relative cell numbers in Figure 10 (f) where we define the relative cell number for
species i as

Ui(t)

U1(t) + U2(t)
, where Ui(t) :=

∫
Ω

ui(t, x)dx, i = 1, 2.
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Figure 10: Spatial-temporal evolution of the two species u1 and u2 and their relative
proportions. Figures (a)-(e) correspond to the evolution of cell growth form day 0 to day
6 and Figure (f) is the relative proportion plot from day 0 to day 6. The initial distribution
follows the uniform distribution on a disk with 20 initial cell clusters. The initial total
cell number is U1 = U2 = 0.01 for each species and cells are equally distributed in each
cluster.
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Chapter 1

Turing and Turing-Hopf bifurcations
for a reaction diffusion equation with
nonlocal advection
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1. Introduction

1 Introduction

In this work we consider the following one-dimensional nonlocal reaction-diffusion-advection
equation

∂u

∂t
= ε

∂2u

∂x2
− ∂

∂x
(uv) + f(u), t > 0, x ∈ R. (1.1)

Here ε ≥ 0 denotes the viscosity parameter. The velocity field v is derived from pressure
P , where

v = −∂P
∂x

with P (t, x) = (ρ ∗ u(t, .)) (x) =

∫
R
ρ(x− y)u(t, y)dy. (1.2)

In the above equation we assume that the pressure P follows nonlocal Darcy law with
the kernel ρ ∈ L1(R) and the symbol ∗ denotes the convolution product on R. Hence
with this closure equation, (1.1) reads as a reaction-diffusion problem with a nonlocal
advection term.

In this Chapter Problem (1.1)-(1.2) is supplemented with an initial data u(0, x) =
u0(x) that is assumed to be 2L−periodic with some given and fixed value L > 0. In that
periodic setting, we rewrite the above problem as the following equation posed on (−L,L)
with periodic boundary conditions

∂u

∂t
= ε

∂2u

∂x2
+

∂

∂x

(
u
∂

∂x
(K ◦ u)

)
+ f(u), t > 0, x ∈ (−L,L),

u(0, x) = u0(x), x ∈ (−L,L),

(1.3)

wherein the kernel K ∈ L1
per (−L,L) is defined by

K(x) = 2L
∑
k∈Z

ρ(x+ 2Lk), x ∈ R. (1.4)

Here and in the sequel of this Chapter the symbol ◦ denotes the convolution product on
the torus R/(2LZ) i.e.,

(g ◦ h) (x) =
1

2L

∫ L

−L
g(x− y)h(y)dy, ∀g, h ∈ L1

per (−L,L) ,

while for any p ∈ [1,∞], we shall also make use of the notation Lpper (−L,L) to denote
the usual Lebesgue spaces of 2L−periodic functions on R.

System (1.1)-(1.2) (or the periodic equation (1.3)) appears in the mathematical mod-
eling of cell population dynamics. It allows to model the motion of cells by taking into
account interactions through cell-cell communication, but also the proliferation of cells
and cell cycle through the active part of the equation, namely the function f = f(u).

The nonlinear operator responsible for the motion of cells, denoted by M(u) and
defined by

M(u) =
∂

∂x

[
ε
∂u

∂x
+ u

∂

∂x
(ρ ∗ u)

]
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was proposed and studied by several authors in the literature. With zero viscosity term
ε = 0, this operator has been obtained by Oelschläger in [85] as a suitable limit of
interacting system of particles. We also refer to Morale, Capasso and Oelschläger [77] for
the derivation of the above operator with a viscosity term. The nonlinear operator M(u)
has also been introduced in crowd dynamics and we refer to the survey paper of Bernoff
and Topaz in [10] and the references therein.

Some properties of the equation
∂u

∂t
= M(u) without viscosity has been studied for

instance in [17, 68, 91] (see also the references cited therein). We also refer to Burger and
Di Francesco [18] and the references therein for a study of a slightly different equation
including nonlinear diffusion.

The nonlinear equation (1.1) has been considered by Ducrot and Magal in [39] with
the zero viscosity ε = 0. The authors mostly considered the case of logistic nonlinearity
function f = f(u), and most importantly, they considered a specific class of kernel function
ρ. More specifically, the aforementioned work deals with the global asymptotic behavior
of the problem for kernels with positive Fourier transform. In this work, this situation
roughly corresponds to the stability case (see Remark 2.10 below).

As already mentioned, in the context of cell population dynamics, the function f
models the process of cell proliferation. Instead of considering the reaction term as logistic
type, we shall make use of the function derived by Ducrot et al. in [38]. Hence throughout
this Chapter we use the following specific form for this function f

f(u) =
bu

1 + γu
− µu, b > 0, µ > 0, γ > 0. (1.5)

This specific form will allow us to make use of explicit computations in our analysis and
to use the parameter γ > 0 as a bifurcation parameter. In the context of cell population
dynamics, this nonlinear function takes account of the cell division and exit rate through
the parameter b and µ respectively. The saturation part due to the parameter γ > 0
reflects the cell cycle and more precisely the dormant phase. We refer to [38] for more
details on the modeling issues.

The aim of this Chapter is to study stability and pattern formation for Problem (1.1)-
(1.2) or more specifically for its 2L−periodic counterpart (1.3) through bifurcation anal-
ysis methods. Roughly speaking, a scalar and local reaction-diffusion equation typically
does not exhibit pattern formation, which is the result of suitable comparison arguments.
However as far as nonlocal interaction are concerned, the application of comparison ar-
guments may fail and more complex dynamical behaviors may occur.

Oscillations due to nonlocal interactions has already been observed and studied. We
refer for instance to Fiedler and Polácik [46] for a nice work in this direction. Here, we
shall discuss the existence of complex asymptotic behavior of the solutions of (1.1)-(1.2)
(or (1.3)) close to the positive homogeneous stationary state and, our discussion will be
strongly related with some properties (expressed in term of Fourier transform) of the
kernel function ρ arising in the nonlocal advection term.

One type of kernel function that is of particular interest is a step function of the form

ρ(x) = ρη,s(x) =
1

2η
χ[−1,1]

(
x− s
η

)
, x ∈ R, (1.6)
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2. Semiflow and stability

for some scaling parameter η > 0, a shift s ∈ R and where χ[−1,1] denotes the characteristic
function of the interval [−1, 1], that is

χ[−1,1](x) =

 1, if x ∈ [−1, 1],

0, otherwise.

As it will be seen in this Chapter, this kernel may destabilize the positive homogeneous
steady-state yielding Turing instabilities and the existence of spatially heterogeneous
steady-state and, more surprisingly, it may also lead to spatio-temporal regime through
Turing-Hopf bifurcation.

Using this kernel, one may observe that the solution of (1.1)-(1.2) is – at least formally
– solution of the following active nonlocal Burgers’ equation with viscosity

∂u

∂t
= ε

∂2u

∂x2
+

∂

∂x
Q[u] + f(u), t > 0, x ∈ R,

wherein Q denotes the quadratic nonlocal operator

Q[u(t, .)](x) = u(t, x)
u(t, x− η + s)− u(t, x+ η + s)

2η
, x ∈ R.

As already mentioned above our goal in this Chapter is to study the stability of the
positive homogeneous equilibrium for Problem (1.3) and to provide a bifurcation analysis
when it destabilizes. The stability condition is studied using a rather general and possibly
non smooth kernel function ρ. Our bifurcation analysis is performed using the more
specific kernel ρ proposed in (1.6) above involving the two parameters η > 0 and s ∈ R.
Here, this specific choice of the kernel ρ is used to compute explicitly the bifurcation
property of the system.

This work is organized as follows. In Section 2 we reformulate (1.3) as an abstract
parabolic Cauchy problem. From this we are able to study the local well posedness of
Problem (1.3) and to study the stability properties of equilibrium state through spectral
analysis. In Section 3 we study bifurcations at the positive equilibrium when it becomes
spectrally unstable. Moreover, we prove, using the kernel ρ proposed in (1.6), that Turing
and Turing-Hopf bifurcations may occur yielding complex spatio-temporal dynamics. We
conclude this Chapter by a short discussion on (1.3) without vital dynamics, namely
f(u) = 0 and its connection with the porous medium equation.

2 Semiflow and stability

2.1 Spectral analysis

In this section, we consider Problem (1.3). We assume that ε > 0, L > 0 are given and
fixed. Next recalling the definition of the function f in (1.5) we assume that

γ > 0, b > 0, µ > 0 and b− µ > 0.
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In that case Problem (1.3) has a unique positive homogeneous steady state given by

ue :=
b− µ
γµ

> 0. (2.1)

In this section we first study some spectral properties of the – formally – linearized problem
at the above positive equilibrium. Then we turn to the stability analysis. The linearized
problem in the state space L2

per(−L,L) reads
∂v

∂t
(t, x) =

∂2

∂x2
(εv + ue(K ◦ v(t, ·))(x)) + f ′(ue)v(t, x), t > 0, x ∈ (−L,L),

v(t,−L) = v(t, L), ∂xv(t,−L) = ∂xv(t, L), t > 0,

where
f ′(ue) =

µ(µ− b)
b

< 0.

To handle this problem we define the linear operator A : D(A) ⊂ L2
per(−L,L) →

L2
per(−L,L) as follows {

D(A) = H2
per(−L,L),

Aφ = εφ′′ + ue (K ◦ φ′′) . (2.2)

Here recall that the kernel K ∈ L1
per(−L,L). To analyze this operator we shall make use

of Fourier analysis. To that aim we shall also use of the notation 〈., .〉 to denote the inner
product in L2

per(−L,L;C) defined by

〈f, g〉 =
1

2L

∫ L

−L
f(x)g(x)dx, ∀f, g ∈ L2

per(−L,L).

The corresponding norm on L2
per(−L,L) is denoted by ‖ · ‖0.

We also introduce the Hilbert basis
{
en : x→ eiπ

nx
L

}
n∈Z on L2

per(−L,L) as well as, for
each function ϕ ∈ L1

per(−L,L;C), its Fourier coefficients {cn(ϕ)}n∈Z ⊂ C defined by

cn(ϕ) = 〈en, ϕ〉 =
1

2L

∫ L

−L
ϕ(x)e−iπ

nx
L dx, for any n ∈ Z.

Recall that using the above notation, the map ϕ 7→ {cn(ϕ)}n∈Z is an isometry from
L2

per(−L,L;C) – endowed with the norm ‖ · ‖0 – onto l2 (Z;C).

We now describe the spectrum of the operator A defined above.
Proposition 2.1. Recalling that K ∈ L1

per(−L,L), the spectrum of the linear operator A,
denoted by σ(A), consists in point spectrum and one has

σ(A) =

{
λn := −

(nπ
L

)2

[ε+ uecn(K)] , n ∈ Z
}
,

and the corresponding eigenvectors are given by Aen = λnen for all n ∈ Z.

In addition, for each λ ∈ ρ(A) := C \ σ(A), the resolvent set of A, and each f ∈
L2

per(−L,L), one has

(λ−A)−1f =
∑
n∈Z

cn(f)

λ− λn
en.
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Remark 2.2. The key observation in the above lemma is the fact that since K ∈ L1
per(−L,L)

we have by the Riemann-Lebesgue lemma

lim
|n|→+∞

cn(K) = 0.

Therefore the results for purely diffusive systems (i.e. whenever K = 0) can be extended
to the above class of linear operators. Recalling the definition of the kernel K in (1.4),
one may notice that the Fourier coefficients cn(K) can be expressed using the Fourier
transform of the kernel ρ in the original model (1.3). In the one dimensional setting, this
relationship reads as follows

cn(K) = ρ̂
( n

2L

)
, n ∈ Z where ρ̂(ξ) =

∫
R
ρ(x)e−2iπxξdx. (2.3)

Proof. Let us first observe that for each n ∈ Z one has:

(Aen) (x) = −
(nπ
L

)2
[
ε+

ue
2L

∫ L

−L
K(y)e−

inπ
L
ydy

]
en(x).

As a consequence one obtains Aen = λnen for all n ∈ Z, that is {λn, n ∈ Z} ⊂ σp(A), the
point spectrum of A.

Now we claim that:

Claim 2.3. Let λ ∈ C\{λn, n ∈ Z} be given. Then for each f ∈ L2
per(−L,L) there exists

a unique uf ∈ H2
per(−L,L) such that

(λ−A)uf = f,

and that the linear map f 7→ uf is continuous on L2
per(−L,L) into H2

per(−L,L) and it is
given by

uf =
∑
n∈Z

cn(f)

λ− λn
en.

Note that this claim ensures that

C \ {λn, n ∈ Z} ⊂ ρ(A),

which implies
σp(A) ⊂ σ(A) ⊂ {λn, n ∈ Z} ,

and this completes the first part of the proposition. Note also that the explicit formula
for the resolvent operator also follows from the above claim.

To prove this claim recall that the space H2
per(−L,L) can be re-written using the

Fourier coefficients as follows:

H2
per(−L,L) =

{
ϕ ∈ L2

per(−L,L) :
∑
n∈Z

(
1 + n2

)2 |cn(ϕ)|2 <∞
}
,
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and the norm ‖.‖2 on H2
per(−L,L), defined by:

‖ϕ‖2
2 =

∑
n∈Z

(
1 + n2

)2 |cn(ϕ)|2 , ∀ϕ ∈ H2
per(−L,L),

is equivalent to the usual H2
per(−L,L)−norm. Using this characterization we are now able

to complete the proof of the above claim.

Proof of Claim 2.3: Let λ ∈ C \ {λn, n ∈ Z} be given. Let f ∈ L2
per(−L,L) be given.

Assume first that there exists u = uf ∈ D(A) such that

(λ−A)u = f.

Then we get
〈en, (λ−A)u〉 = 〈en, f〉 , ∀n ∈ Z.

However, since for each n ∈ Z, one has

〈en, (λ−A)u〉 = (λ− λn) cn(u),

one obtains that
cn(u) =

cn(f)

λ− λn
, ∀n ∈ Z.

As a consequence, the solution is unique as long as it exists.

On the other hand consider the sequence
{
Fn(λ) := cn(f)

λ−λn

}
n∈Z

, that is well defined

since λ 6= λn for all n ∈ Z. Since K ∈ L1
per(−L,L), one can use the Riemann-Lebesgue

lemma to get that cn(K)→ 0 as |n| → ∞, so that

λn ∼ −ε
(nπ
L

)2

as |n| → +∞.

Hence the sequence
{

1+n2

λ−λn

}
n∈Z

is bounded. As a consequence one gets

∞∑
n=−∞

∣∣1 + n2
∣∣2 |Fn(λ)|2 ≤ sup

n∈Z

∣∣∣∣ 1 + n2

λ− λn

∣∣∣∣2 ∞∑
n=−∞

|cn(f)|2 ≤ sup
n∈Z

∣∣∣∣ 1 + n2

λ− λn

∣∣∣∣2 ‖f‖2
0. (2.4)

As a consequence the function u = uf defined by

uf =
∑
n∈Z

Fn(λ)en,

satisfies:
uf ∈ H2

per(−L,L) and (λ−A)uf = f.

Summarizing the above arguments we have obtained that for each f ∈ L2
per(−L,L)

the function uf ∈ H2
per(−L,L) is the unique solution of (λ−A)uf = f . Furthermore (2.4)

ensures that ∥∥(λ−A)−1 f
∥∥2

2
≤ sup

n∈Z

∣∣∣∣ 1 + n2

λ− λn

∣∣∣∣2 ‖f‖2
0, ∀f ∈ L2

per(−L,L),

that completes the proof of the claim.
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Remark 2.4. As a corollary of the above proposition and more precisely of the resolvent
formula, one obtains the following estimate:
For each λ ∈ ρ(A) one has:

‖(λ−A)−1‖L(L2
per(−L,L)) ≤ sup

n∈Z

1

|λ− λn|
. (2.5)

Now observe that, since cn(K)→ 0 as |n| → ∞, one has

lim
|n|→+∞

Imλn
Reλn

= lim
|n|→+∞

ueIm{cn(K)}
ε+ ueRe{cn(K)} = 0.

Hence, since |λn| is bounded from above, for each a > 0 large enough there exists φa ∈(
0, π

2

)
and 0 < ka < a large enough such that {λn}n∈Z ⊂ Σa wherein Σa ⊂ C is defined by

Σa =
{
z = a+ reiθ ∈ C : r > ka and |π − θ| < φa

}
.

One concludes from the above estimate that the linear operator A is a sectorial operator
in L2

per(−L,L).

Using the above proposition we now focus on the stability analysis of the homogeneous
steady state ue (defined in (2.1)) of Problem (1.3). To that aim we need to strengthen
our assumption for the kernel K ∈ L1

per(−L,L). More precisely we assume that
Assumption 2.5. There exists ν ∈ (0, 1] such that the convolution kernel K ∈ L1

per(−L,L)
satisfies

sup
n∈Z

(|n|ν |cn(K)|) <∞.

Using the above assumption we shall rewrite (1.3) as an abstract Cauchy problem
involving a sectorial operator and suitable fractional spaces. To reach this goal, let us
introduce the scale of Hilbert spaces Hs

per for s ∈ R by

Hs
per(−L,L) =

{
ϕ ∈ L2

per(−L,L) :
∑
n∈Z

(
1 + |n|2

)s |cn(ϕ)|2 <∞
}
.

These spaces are endowed with the inner product 〈., .〉s defined by

〈ϕ, ψ〉s =
∑
n∈Z

(
1 + |n|2

)s
cn(ϕ)cn(ψ).

We denote by ‖ϕ‖s :=
√
〈ϕ, ϕ〉s the corresponding norm. Beside, we denote that

L2
per(−L,L) = L2

per

and with norm ‖ · ‖0.

Now define the sectorial operator A : D(A) ⊂ L2
per → L2

per by

D(A) = H2
per(−L,L) and A = −I + ε

∂2

∂x2
.
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Next observe (see [55, 105]) that for all s ∈ R one has

(−A)s =
∞∑

n=−∞

[
1 + ε

(nπ
L

)2
]s
cn(.)en,

so that H2s
per = D ((−A)s) and the norm ‖.‖2s is equivalent to the graph norm ‖(−A)s.‖

on H2s
per. Moreover, noticing the norm of D((−A)s) = H2s

per is equivalent to the norm
on Hs(−L,L) (See [100, p.50]). Thus, for the simplicity of notation, we denote Hs :=
Hs

per(−L,L) for any s > 0 and we choose H2−ν as our state space, therefore H2−ν ↪→
Cper([−L,L]) is a continuous embedding if 0 < ν ≤ 1 where Cper([−L,L]) denotes the
space of the continuous 2L-periodic functions endowed with the uniform norm ‖ · ‖∞. In
the sequel we shall also use the notation H0 to denote L2

per.

2.2 Existence of the semiflow in a fractional space

In this section we shall rewrite Problem (1.3) as an abstract Cauchy problem involving
a sectorial linear operator and prove that it generates a maximal semiflow in a suitable
fractional space, namely H2−ν where the parameter ν ∈ (0, 1] is defined in Assumption
2.5. To that aim we first need to prove the following lemma.
Lemma 2.6. Let Assumption 2.5 be satisfied. Then the bilinear map

B : (ϕ, ψ) 7→ d

dx

(
ϕ
d

dx
K ◦ ψ

)
,

is continuous from H1 ×H2−ν to L2
per.

Proof. Let ϕ and ψ be two 2L−periodic smooth functions. Then one has

B(ϕ, ψ) = ϕ′ (K ◦ ψ′) + ϕ (K ◦ ψ′′) .
Hence we get

‖B(ϕ, ψ)‖0 ≤ ‖ϕ′‖0‖K ◦ ψ′‖0 + ‖ϕ‖L∞‖K ◦ ψ′′‖0

≤ ‖ϕ′‖0‖K‖L1‖ψ′‖0 + ‖ϕ‖L∞‖K ◦ ψ′′‖0.

Recalling that N = 1, due to Sobolev embedding one has H1 ↪→ L∞ and, there exists
some constant C1 > 0 (that does not depend on ϕ and ψ) such that

‖B(ϕ, ψ)‖0 ≤ ‖ϕ‖1‖K‖L1‖ψ‖1 + C1‖ϕ‖1‖K ◦ ψ′′‖0.

It remains to estimate the last term. To that aim note that

‖K ◦ ψ′′‖2
0 =

∞∑
n=−∞

(nπ
L

)4

|cn(K)|2|cn(ψ)|2

=
(π
L

)4
∞∑

n=−∞

|n|2ν |cn(K)|2
(
|n|2−ν

)2 |cn(ψ)|2

≤
(π
L

)4
(

sup
n∈Z
|n|ν |cn(K)|

)2 ∞∑
n=−∞

(
1 + |n|2−ν

)2 |cn(ψ)|2

≤ C2
2‖ψ‖2

2−ν with C2 =
(π
L

)2
(

sup
n∈Z
|n|ν |cn(K)|

)
.
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As a consequence of the above estimates and since ν ∈ (0, 1], so that H2−ν ⊂ H1, one
obtains that for any smooth periodic functions

‖B(ϕ, ψ)‖0 ≤ [‖K‖L1 + C1C2] ‖ϕ‖1‖ψ‖2−ν .

This completes the proof of the lemma using a usual density argument.

Using the above lemma we can rewrite (1.3) as an abstract Cauchy problem. Recall
thatH2−ν ⊂ H1 ⊂ Cper([−L,L]) with continuous embedding. We also modify the reaction
term f on the negative real line. We consider f̃(u) that coincide with the formula (1.5)
when u ≥ 0 and f̃ is C∞ on R. Hence the map F : H2−ν → L2

per defined by

F (ϕ)(x) = B(ϕ, ϕ)(x) + f̃(ϕ(x)) + ϕ(x), ∀x ∈ (−L,L),

is smooth. We rewrite Problem (1.3) in the space H2−ν as the following abstract Cauchy
problem: 

du(t)

dt
= Au(t) + F (u(t)), for t ≥ 0,

u(0) = u0 ∈ H2−ν .
(2.6)

A function u ∈ C([0, τ ], H2−ν) is called a mild solution of the equation (2.6) on [0, τ ], if

u(t) = eAtu(0) +

∫ t

0

eA(t−s)F (u(s))ds,∀t ∈ [0, τ ].

Before going further, let us recall the following definition.
Definition 2.7. Let τ (maximal time of existence) be a map from a Banach space X into
(0,+∞] and let U be a map from Dτ := {(t, u) ∈ [0,+∞)×X : 0 ≤ t < τ(u)} into X.
Set U(t)u := U(t, u), ∀(t, u) ∈ Dτ . We say that (U, τ) is a maximal semiflow on X if the
following properties are satisfied:

(i) U(t)U(s)u = U(t+ s)u,∀t, s ∈ [0, τ(u)) with t+ s < τ(u) and u ∈ X ;

(ii) U(0)u = u for all u ∈ X;

(iii) τ(U(s)u) = s+ τ(u) for any u ∈ X and s ∈ [0, τ(u));

(iv) if τ(u) <∞ then
lim

t↗τ(u)
‖U(t)u)‖X =∞.

The existence of a maximal semiflow for (2.6) is based on the fact that the map
F : H2−ν → L2

per is smooth enough and Lipschitz continuous on bounded sets and the
following estimate

sup
t∈[0,T ]

‖
∫ t

0

eA(t−s)ϕ(s)ds‖2−ν ≤ CT ν/2 sup
t∈[0,T ]

‖ϕ(t)‖L2
per
,

for any ϕ ∈ C([0, T ], L2
per) where C is some constant.

By using the above estimation we follow the same idea as in Cazenave and Haraux
[28, Chapter 5], Lunardi [71, Theorem 7.1.3 (i) p.260 and Proposition 7.1.9 (i) p.267] and
Magal and Ruan [72, 73] to derive the following theorem.
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Theorem 2.8 (Existence of the unique maximal semiflow). The abstract Cauchy
problem (2.6) generates a unique maximal semiflow on H2−ν. This means for each u0 ∈
H2−ν, we can find a map τ : H2−ν → (0,+∞] (maximal time of existence) and a map
U : Dτ → H2−ν where

Dτ := {(t, u0) ∈ [0,+∞)×H2−ν : 0 ≤ t < τ(u0)}.

such that there exists a unique mild solution U(·)u0 ∈ C([0, τ(u0)), H2−ν). Moreover, for
every τ̂ < τ(u0), there exist two constants r > 0 and K > 0 such that if ‖u0− û0‖2−ν ≤ r,
then τ (û0) > τ̂ and

‖U(t)u0 − U(t)û0‖2−ν ≤ K‖u0 − û0‖2−ν ,∀t ∈ [0, τ̂ ].

2.3 Stability and instability of the equilibria

In this section we discuss the linear stability and instability of the stationary state ue
by using the abstract Cauchy problem formulation described in the previous section.
Towards that purpose, we shall make use of Theorem 5.1.2 and 5.1.3 in the monograph
of Henry [55] to deal with the stability and instability of the stationary state ue. Within
this framework the – local – stability and instability of ue relies on the spectrum of the
linear operator A+F ′(ue) that reads as A+ f ′(ue). The spectrum of this linear operator
has been fully described in Section 2 and one has:

σ (A+ F ′(ue)) =

{
−
(nπ
L

)2

[ε+ uecn(K)]− µ(b− µ)

b
, n ∈ Z

}
. (2.7)

As a consequence one obtains the following result:
Theorem 2.9. Suppose Assumption 2.5 is satisfied. Then the following statements hold
true:

(i) If

−
(nπ
L

)2

[ε+ ue Re(cn(K))]− µ(b− µ)

b
< 0, ∀n ∈ Z,

then ue is a locally – exponentially – stable homogeneous steady state of (2.6) in a
neighbourhood of ue in H2−ν. Here cn(K) is the Fourier coefficient defined by (2.3).

(ii) If there exists n ∈ Z such that

−
(nπ
L

)2

[ε+ ue Re(cn(K))]− µ(b− µ)

b
> 0,

then ue is an unstable stationary state of (2.6) in H2−ν.
Remark 2.10. Using the first statement (i) in the above result, note that if Re (cn(K)) ≥
0 for all n ∈ Z \ {0}, then the spectrum is contained in the left complex half plane and ue
is locally stable.

Due to the above remark and by using the explicit computations of the Fourier trans-
form coupled with Remark 2.2, one obtains the following corollary showing that "stan-
dard" kernels lead to stability.
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Corollary 2.11 (Local stability for “standard" kernels). Standard kernel functions,
ρ, such as Gaussian, Cauchy, Laplace and triangle law respectively defined by the following
forms

x 7→ e−πx
2

, x 7→ 2

1 + 4π2x2
, x 7→ πe−2π|x| and x 7→ ρtriangle(x),

lead to the local stability of the interior equilibrium ue. Here the function ρtriangle is defined
by

ρtriangle(x) =


1 + x, x ∈ [−1, 0),

1− x, x ∈ [0, 1],

0 otherwise.

The next lemma shows that the positive equilibrium is locally exponentially stable
whenever the parameter γ > 0 is large enough.
Theorem 2.12 (Local stability for γ � 1). Let Assumption 2.5 be satisfied. Let
ε > 0, with b > µ ≥ 0. Then there exists γ0 = γ0(ε, b, µ) > 0 such that when γ ≥ γ0 the
homogeneous steady state ue = (b− µ)/(γµ) of the equation (2.6) is locally exponentially
stable. i.e.,

Re(λn + f ′(ue)) = −
(nπ
L

)2

[ε+ ue Re(cn(K))]− µ(b− µ)

b
< 0, ∀n ∈ Z.

Proof. We denote ue as ue(γ) indicating ue is dependent on the parameter γ. For the
moment, we choose γ ≥ γ̄ for a fixed γ̄ > 0, therefore ue(γ) is bounded above. For any
K satisfy the Assumption 2.5, we have cn(K)→ 0 as |n| → ∞. Therefore, for any ε > 0
fixed, there exists a n0 such that

inf
n≥n0

{ε+ ue(γ) Re(cn(K))} ≥ 0. (2.8)

Notice if we increase γ, the equation (2.8) still holds. Thus for the finite set {0, 1, . . . , n0}
one can easily deduce

lim
γ→∞

max
n∈{0,1,...,n0}

{
−
(nπ
L

)2

[ε+ ue(γ) Re(cn(K))]

}
< 0.

The result follows.

3 Bifurcation analysis

In this section we investigate pattern formation for Problem (1.3). Our study is based on
bifurcation analysis and we will show that with a suitable choice for the model parameters
and with an appropriate kernel function, Turing bifurcation and Turing-Hopf bifurcation
can occur.

In this section, we always fix a specific kernel function ρ = ρη,s as in (1.6). The
corresponding 2L−periodic kernel (see (1.4)) is denoted by K = Kη,s. This choice of the

40 Xiaoming Fu



1. Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal
advection

above kernel function is motivated by Remark 2.10. Indeed the Fourier coefficients of Kη,s

can be explicitly computed and they read as follows (see Remark 2.2):

cn (Kη,s) = ρ̂η,s

( n
2L

)
=

sin (nηπ/L)

nηπ/L
e−i

nπs
L , ∀n ∈ Z. (3.1)

As we can see, the real part of the Fourier coefficients that changes signs will lead to the
instability of the system. Note also that, with such kernel, namely (1.6), Assumption 2.5
is satisfied so that the results of the previous section holds true with such a choice.

3.1 Turing bifurcation

Throughout this subsection we consider Problem (1.3) with the kernel ρη,0 defined above
in (1.6) with s = 0. We shall focus on the existence of Turing bifurcation for this problem.

We denote by Aη the linear operator defined in (2.2) with the kernel K = Kη,0 associ-
ated to the step function ρη,0 (see definition (1.4)). Next lemma describes that a proper
choice of parameters can lead to spectral Turing bifurcation singularities.
Lemma 3.1. Let k0 ∈ N\{0} and η0 > 0 such that L/(2η0) ∈ N. Then there exists a pair
of parameters ε0 > 0 and γ0 > 0, such that the eigenvalues λn + f ′(ue) =: λ̂n of the linear
operator Aη0 + f ′(ue) satisfy

λ̂±n0 = 0, λ̂n < 0, for any n ∈ Z\{±n0},

with n0 = L
2η0

(−1 + 4k0) ∈ N \ {0}. In other words one can choose k0 as large as we
want, and set

ε0 =
4µ(b− µ)

b

(
η0

−π + 4k0π

)2

, γ0 =
b

4(µη0)2
(−π + 4k0π)

such that λ̂n0(= λ̂−n0) is the only zero eigenvalue of multiplicity two while the other
eigenvalues are negative.
Remark 3.2. Note that since the kernel ρη,0 is symmetric (hence is Kη,0) then cn(Kη,0) =

c−n(Kη,0) for all n ∈ Z. As a consequence λ̂n = λ̂−n for all n ∈ Z and, with the notations
of the above lemma one has

ker
(
λ̂n0 −Aη0

)
= span

(
x 7→ cos

(n0πx

L

)
, x 7→ sin

(n0πx

L

))
.

Proof. Our proof is divided in two steps. We first provide parameter conditions that
ensure the existence of a unique pair (due to symmetry) of dominant eigenvalues and
then we describe conditions for the dominant eigenvalue to be zero.

First step: Existence and uniqueness of a pair of dominant eigenvalues:

Set ue(γ) = b−µ
γµ

. Then the eigenvalues of Aη + f ′(ue(γ)) reads as follows (recall here
that s = 0 in this subsection)

λ̂n = −
(nπ
L

)2
[
ε+ ue(γ)

sin(nηπ/L)

nηπ/L

]
− µ(b− µ)

b
,∀n ∈ Z,
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Due to symmetry we only consider n ∈ N and we set α = ε/η2, β = (b− µ)/(γµη2) and

φ(x) := −αx2 − βx sinx.

By using the above notations, we can rewrite the eigenvalues λ̂n as

λ̂n = φ(
nηπ

L
)− µ(b− µ)

b
. (3.2)

The function φ is of transcendental type and it is not easy to consider the maximum
directly. Thus we rewrite φ(x) as follows

φ(x) = −α
(
x+

β sinx

2α

)2

+
β2 sin2 x

4α
≤ β2

4α
,

and φ reaches its maximum β2

4α
if and only if

x = − β

2α
sinx, sin2 x = 1. (3.3)

If we assume x > 0, the above equation has an unique solution which satisfies

x =
β

2α
, sinx = −1.

Therefore, fix k0 ∈ N\{0} arbitrarily large and we choose γ and ε such that the product
γε satisfies

β

2α
≡ b− µ

2µ(γε)
= −π

2
+ 2k0π. (3.4)

With such a choice, (3.3) is satisfied and thus φ( b−µ
2γµε

) = supx≥0 φ(x). Next note that

nηπ

L
= −π

2
+ 2k0π ⇐⇒ n = L/(2η)(−1 + 4k0).

Hence choosing n0 = L/(2η0)(−1 + 4k0) ∈ N \ {0} one has

n0η0π

L
=
b− µ
2γµε

= −π
2

+ 2k0π ⇐⇒ n0 =
L

2η0

(−1 + 4k0). (3.5)

By (3.2) and (3.5) one deduces

λ̂n0 = φ(
n0η0π

L
)− µ(b− µ)

b
and λ̂n0 > max

n∈N\{n0}
λ̂n.

Second step: The dominant eigenvalue is zero.

To complete the proof of the lemma we have to fix ε and γ such λ̂n0 = 0 keeping in
mind that the product εγ is already fixed by (3.4).

In order to ensure that λ̂n0 = 0 is the unique zero eigenvalue we fix γ0 > 0 such that

b− µ
2γ0µη2

0

(
−π

2
+ 2k0π

)
≡ φ(

n0ηπ

L
) =

µ(b− µ)

b
.

Hence ε0 > 0 is fixed by (3.4) and we obtain that λ̂n0 = 0 and λ̂n < 0, for any n ∈ N\{n0}.
This completes the proof of the lemma.
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Now we will show the configuration of the parameters described above induces a Turing
bifurcation using γ as a bifurcation parameter, that will lead to the existence of a spatially
heterogeneous stationary state. To that aim we fix k0 ∈ N\{0}, η0 > 0, ε0 > 0 and γ0 > 0
as in Lemma 3.1 as such that n0 ∈ N \ {0}. Next we rewrite the stationary equation
associated to (2.6) by shifting the positive homogeneous steady state to 0. By setting
w := u− ue(γ) we obtain the following stationary equation

0 = H(w, γ) := Aw + F̃ (w, γ), w ∈ H2, (3.6)

where A : D(A)→ L2
per is the sectorial operator defined by

Aw = −w + ε0w
′′, (3.7)

while F̃ : H2−ν × (0,+∞)→ L2
per is defined by

F̃ (w, γ) =
b− µ
γµ

(Kη0 ◦ w)′′ +B(w,w) +

(
µ2

b+ γµw
− µ

)
w + w. (3.8)

Therefore F̃ (0, γ) = 0 for any γ ∈ (0,+∞) and

∂wF̃ (0, γ) · w̃ =
b− µ
γµ

(Kη0 ◦ w̃)′′ − µ(b− µ)

b
w̃ + w̃.

Next the linear operator ∂wH(0, γ) = Aη0 + f ′(ue(γ)) and its spectrum is given by

σ (∂wH(0, γ)) =

{
λ̂n(γ) = −

(nπ
L

)2
[
ε0 +

b− µ
γµ

cn (Kη0)

]
− µ(b− µ)

b
, n ∈ Z

}
.

Due to Lemma 3.1 and the choice of the parameters we know that

λ̂±n0(γ0) = 0 and λ̂n(γ0) < 0, ∀n 6= ±n0. (3.9)

Furthermore by the continuity of the eigenvalues with respect to the parameter γ, there
exists δ0 > 0 small enough such that

λ̂n(γ) < −δ0 < 0 : n 6= ±n0, ∀γ ∈ (γ0 − δ0, γ0 + δ0), (3.10)

together with
dλ̂n0(γ0)

dγ
=
(n0π

L

)2 b− µ
γ2

0µ
cn0(Kη0) < 0. (3.11)

Now in order to investigate the existence of non trivial branch of solutions for (3.6) and
provide a simple proof, we shall overcome the difficulty coming from the zero eigenvalue
of multiplicity two (see Remark 3.2) by working on the close subspace of symmetric
functions. To that aim let us consider for s ∈ R, the closed subspace Hs

] defined by

Hs
] = {ϕ ∈ Hs : ϕ(−x) = ϕ(x), a.e. x ∈ (−L,L)} .

Note that the above spaces can also be characterized using the symmetry of the Fourier
coefficients as follows:

Hs
] = {ϕ ∈ Hs : cn(ϕ) = c−n(ϕ), ∀n ∈ Z} .

Using the above set of notations, we now state our Turing bifurcation result.
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Theorem 3.3 (Turing bifurcation). Suppose η0, ε0, γ0 and n0 ∈ N are given as in
Lemma 3.1 such that (3.9), (3.10) and (3.11) are satisfied. Then (0, γ0) is a bifurcation
point for the stationary equation H(w, γ) = 0 with w ∈ H2

] in the sense that there exist
σ0 > 0 and a unique C1−curve (γ, ψ) : (−σ0, σ0)→ R× Z] such that{

H
(
σ cos

(
n0π·
L

)
+ ψ(σ), γ(σ)

)
= 0,

γ(0) = γ0, ψ(0) = ψ′(0) = 0,
∀σ ∈ (−σ0, σ0).

Herein Z] ⊂ H2
] denotes the closed subspace defined by

Z] = {ϕ ∈ H2
] :

∫ L

−L
ϕ(x) cos

(n0πx

L

)
dx = 0}.

Furthermore, there is a neighbourhood V of (0, γ0) in H2
] × (0,∞) such that

H−1(0) ∩ V = {(0, γ) : γ ∈ (µ,∞)} ∪ {(sen0 + ψ(s), γ(s)) : |s| < δ0}.

The proof of this theorem given below is based on the implicit function theorem. The
idea of the proof goes back to Crandall and Rabinowitz [29]. Here we closely follow the
proof of Theorem 13.4 of the monograph of Smoller [96].
Remark 3.4. One can observe that, due to the translation invariance of (1.3), the above
result allows us to obtain a non-symmetric family of heterogeneous stationary states for
the equation H(w, γ) = 0 in a neighbourhood of (0, γ0). Indeed, with the notations of the
above theorem, for each σ ∈ (−σ0, σ0) and each τ ∈ R one has

H (wσ(·+ τ, γ(σ)) = 0,

wherein we have set wσ(x) = cos
(
n0π
L
x
)

+ ψ(σ)(x), x ∈ [−L,L]. Furthermore from the
numerical experiments provided in Figure 1.3, for each σ, the family {wσ(·+τ)}τ∈R seems
to be orbitally stable.

Proof. To prove this result, we shall apply the implicit function theorem on a space of
symmetric function such that the eigenspace associated to the zero eigenvalue is one
dimensional. To that aim we consider the map

G(σ, z, γ) := H
(
σ cos

(n0π·
L

)
+ σz, γ

)
= A

(
σ cos

(n0π·
L

)
+ σz

)
+ F̃

(
σ cos

(n0π·
L

)
+ σz, γ

)
,

that is of class C2 and is defined on a small neighbourhood of (0, 0, γ0) ∈ R×Z×(0,+∞).
Here Z := {ϕ ∈ H2 :

∫ L
−L ϕ(x) cos

(
n0πx
L

)
dx = 0}. As a consequence we fix r > 0 small

enough and we consider the map G as defined from (−r, r)×BZ(0, r)×(γ0−r, γ0 +r) with
value in H0. Here BZ(0, r) ⊂ H2 denotes the open ball in the Banach space Z with center
0 and radius r small enough. Now observe that, since the kernel Kη0,0, is symmetric with
respect to 0, the nonlinear operator G satisfies

G(σ, ϕ, γ) ∈ H0
] , for all |σ| < r, ϕ ∈ BZ(0, r) ∩H2

] and |γ0 − γ| < r.
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As a consequence we consider the map G](σ, z, γ) = G(σ, z, γ) defined from (−r, r) ×
BZ](0, r)× (γ0 − r, γ0 + r) with values in H0

] with BZ](0, r) = BZ(0, r) ∩H2
] . As already

mentioned it is a smooth map, namely of class C2, on this open set and it furthermore
satisfies

G](0, z, γ) = 0, ∀(γ, z) ∈ (γ0 − r, γ0 + r)×BZ](0, r).

Now to prove our result we consider the C1 map F] defined from (−r, r) × BZ](0, r) ×
(γ0 − r, γ0 + r) into H0

] by

F(σ, z, γ) =


1
σ
G] (σ, z, γ) if σ 6= 0

∂σG] (0, z, γ) if σ = 0.

Let us observe that one has

F(0, 0, γ0) = ∂σG](0, 0, γ0) = ∂wH(0, γ0) · Re (en0) = Re
(
λ̂n0(γ0)en0

)
= 0.

Hence to prove our result we shall apply the implicit function theorem for the C1−function
F in the neighbourhood of the point (σ, z, γ) = (0, 0, γ0). Thus to complete the proof of
the theorem, it is sufficient to prove that the partial derivative operator ∂(z,γ)F(0, 0, γ0) is
a linear isomorphism from Z] × R onto H0

] . To check the invertibility of ∂(z,γ)F(0, 0, γ0)
first note that one has

∂(z,γ)F(0, 0, γ0) · (z, γ) = ∂wH(0, γ0) · z + γλ̂′n0
(γ0)Re (en0) .

Let h ∈ H0
] be given and let us solve the equation

Find (z, γ) ∈ Z] × R such that ∂(z,γ)F(0, 0, γ0) · (z, γ) = h.

However writing h =
∑

n∈Z hnen with (hn) ∈ l2(Z;C) and hn = h−n for all n ∈ Z and
projecting the above equation on the Hilbert basis (en) the above equation reads as follows:{

λ̂n(γ0)zn = hn ∀n ∈ Z \ {±n0},
γλ̂′±n0

(γ0) = h±n0 .

Herein zn ∈ C denotes the projection of z on en. Since λ̂′n0
(γ0) 6= 0, λ̂n(γ) = λ̂−n(γ) and

hn = h−n this yields

zn = z−n, ∀n ∈ Z\{±n0},

zn =
hn

λ̂n(γ0)
∀n ∈ N \ {n0} and γ =

hn0

λ̂′n0
(γ0)

.

Hence the above equation has at most one solution in Z]×R. Furthermore since λ̂n(γ0) ∼
−n2 π2ε0

L2 as |n| → ∞, the vector (z, γ) defined by

z =
∑

n∈Z\{±n0}

hn

λ̂n(γ0)
en, γ =

hn0

λ̂′n0
(γ0)

,
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satisfies z ∈ Z] and γ ∈ R as well as ∂(z,γ)F(0, 0, γ0) · (z, γ) = h. Hence ∂(z,γ)F(0, 0, γ0) is
invertible from Z] × R into H0

] . As a consequence, the implicit function theorem ensures
the existence of a C1−map σ 7→ (φ(σ), γ(σ)) ∈ Z] ×R defined in some neighbourhood of
σ = 0, denoted by (−σ0, σ0) for some σ0 > 0, such that

γ(0) = γ0 and φ(0) = 0,

and for all σ ∈ (−σ0, σ0),{
z ∈ Z], ‖z‖H2 ≤ r, |γ − γ0| ≤ r,

G(σ, z, γ) = 0
⇔ z = φ(σ) and γ = γ(σ).

This completes the proof of the theorem by setting ψ(σ) = σφ(σ) ∈ Z].

We complete this section by the following stability result for the symmetric and spa-
tially heterogeneous bifurcation branch. Let us notice that since the kernel Kη0,0 is sym-
metric, the nonlinear maximal semiflow provided in Theorem 2.8 leaves the space H2−ν

]

invariant. We denote the semiflow restricted on H2−ν
] by U](t)(·). Next by using the

results in [55, Theorem 6.3.2 p.178] and incorporating (3.9), (3.10) and (3.11), we obtain
the following stability results of the bifurcated solution.
Theorem 3.5. Let η0, ε0, γ0 and n0 be parameters as in Lemma 3.1 such that (3.9),
(3.10) and (3.11) are satisfied. Then there exists r > 0 small enough and a nontrivial
equilibrium uγ = uγ(x) ∈ H2

] for γ ∈ (γ0 − r, γ0 + r) such that it is unstable with respect
to U] (in H2−ν

] ) if γ > γ0 but asymptotically stable for γ < γ0.
Remark 3.6. As the Lemma 3.1 shows, φ(x)− µ(b−µ)

b
= 0 will be the curve above which

the bifurcation occurs. Re-writing it explicitly reads as follows

− ε

η2
x2 − b− µ

γµη2
x sinx =

µ(b− µ)

b
.

Therefore, for any fixed b, µ, η0 and L with L
2η0
∈ N. For n ≥ 0, regarding ε as a function

of γ−1, the curves

ε = −b− µ
µ

sin(nηπ/L)

nηπ/L
γ−1 −

(nπ
L

)−2 µ(b− µ)

b
=: Hn(γ−1),

determines the stability region of the system. In fact, the spatially homogeneous steady
state ue = ue(γ) is locally stable in the region above all the curves Hn(γ−1) for n =
L

2η0
(−1 + 4k) with k ∈ N \ {0}.
We continue this section with numerical experiments of (1.3) with the kernel ρη0,0 (as

defined in (1.6)). To that aim we fix the parameter values

L = 2, b = 1.5, µ = 1.2 and η = 1. (3.12)

Note that L
2η

= 1 so that the condition L
2η
∈ N is satisfied.

Figure 1.1 depicts the stability region and the different bifurcation curves correspond-
ing to different k = 1, 2, ..., 10.
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Figure 1.1: Plots of the curves ε = Hn(γ−1) with n = −1 + 4k and k = 1, 2, . . . , 10. They
are straight lines and their slopes is decreasing with respect to n, hence to k. The stability
region of the homogeneous steady state is above all these curves.

Our numerical experiments are concerned with the behaviour of the nonlinear system
(1.3) with the parameter (3.12). The choice of the parameter ε and γ are given in Table
3.14. These choices of parameters are presented in Figure 1.1 by the circle and square
dots respectively. Both situations correspond to the instability of the homogeneous steady
state and more deeply, both of these situations correspond to a unique pair of unstable
eigenvalues λ̂±n0 for n0 = 3 and 7 respectively. The results of the simulations are presented
in Figure 1.2. Here we use the following Gaussian type function

u0(x) =
0.05√
2πσ2

e
− x2

(2σ2) , x ∈ [−2, 2], (3.13)

with σ = 0.2 as initial distribution. The simulations show that the instability of the
homogeneous stationary state will give rise to a stable symmetric stationary pattern so-
lutions. As we can observe from Figure 1.2, the dominant wave number of the solutions
of the nonlinear equation (1.3) is exactly in accordance with the index n0 where λ̂±n0 is
the unique pair positive eigenvalues of the linear operator A+ f ′(ue).

First configuration: (ε, γ) = (0.0056, 3.03) ,

Second configuration: (ε, γ) = (0.0023, 4.80) .
(3.14)

As we have mentioned in Remark 3.4, the symmetric heterogeneous steady state is trans-
lation invariant. Therefore, given a non-symmetric initial profile, we present the spatio-
temporal evolution of the solution as in Figure 1.3 and the simulation indicates the solu-
tion will converge to a non-symmetric heterogeneous steady state. Therefore the family
of steady states {wσ(·+ τ)}τ∈R should be orbitally stable.
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Figure 1.2: Simulations (1.3) with parameters values (3.12) and (3.14). The upper row
corresponds to (ε, γ) = (0.0056, 3.03) while the bottom row to (ε, γ) = (0.0023, 4.80).
Figure (a), (d) describe the spectrum of the linearized equation at the homogeneous steady
state; (b), (e) present the spatial distributions of the solution at a given large time T = 300;
and, (c), (f) present the spatio-temporal evolution of the solutions. The initial distribution
is given in (3.13) with σ = 0.2.
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Figure 1.3: Choosing parameters values as in (3.12) and the first configuration in (3.14)
we obtain the above figures. Figure (a) presents the given non-symmetric initial value,
figure (b) presents the spatio-temporal evolution of the solution and figure (c) presents the
solution at a large time T = 200 when it is mostly stabilized close to a suitable shift of the
symmetric stationary state. The other parameters are the same as in Figure 1.2 for the
wave number n0 = 3.

3.2 Turing-Hopf bifurcation

In this section we continue the bifurcation analysis of Problem (1.3) by using the kernel
function ρη,s defined in (1.6). Here we shall vary the shift parameter s ∈ R which will lead
us to what we call Turing-Hopf bifurcation and the existence of spatially heterogeneous
time periodic solutions.
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The reason that we call it Turing-Hopf bifurcation is based on the fact that by choosing
the parameters of the system properly, it admits a Hopf bifurcation such that:
(i). We can find some mode n0, as large as we want, such that the periodic orbit is tangent
to the eigenfunction en0 ;
(ii). It consists in the first Hopf bifurcation, which means that the equilibrium is passing
from a stable to an unstable situation, by playing on the Hopf bifurcation parameter.

Let us mention that the first bifurcation is of particular interest in practice since this
is the bifurcation that can be observed numerically.

As already mentioned that we will work on Problem (1.3) with the kernel Kη,s, the
corresponding 2L−periodic kernel associated to ρη,s in (1.6), for some well chosen pa-
rameter η > 0 and s ∈ (0, L]. The corresponding linearized operator at the equilibrium
ue = ue(γ) is denoted by Aη,s + f ′ (ue(γ)).

Note that introducing the shift parameter s implies that the step function is no longer
symmetric so that the eigenvalues of Aη,s+f ′(ue(γ)) can take complex – non real – values.
In the next lemma we shall prove a result rather similar to the one stated in Lemma 3.1
with complex ’dominant’ eigenvalues. More precisely, choosing the shifting parameter
s = η, we shall prove that one can choose a mode n0 ≥ 1 such that the eigenvalues λ̂n0

and λ̂−n0 are a unique pair of purely imaginary eigenvalues satisfying the transversality
condition with respect to the bifurcation parameter γ while the other eigenvalues have
negative real part.
Lemma 3.7. Let k0 ∈ N\{0} be given and fix s = η0 with L/(4η0) ∈ N. Let us denote
by λ̂n(γ) the sequence of eigenvalues of Aη0,η0 + f ′(ue(γ)). Then there exist ε0 > 0 and
γ0 > 0 such that

λ̂n0(γ0) = λ̂−n0(γ0),

Re(λ̂±n0(γ0)) = 0, Im(λ̂n0(γ0)) > 0,
dRe(λ̂n0)(γ0)

dγ
6= 0,

and
σ (Aη0,η0 + f ′(ue(γ0))) ∩ iR =

{
λ̂n0(γ0), λ̂−n0(γ0)

}
,

with n0 = L
4η0

(−1 + 4k0) ∈ N\{0}. Moreover, we have

Re(λ̂n(γ0)) < 0, for any n ∈ Z\{±n0}.

Proof. As mentioned above we set s = η. Hence recalling (3.1), the eigenvalues of Aη,η +
f ′(ue(γ)) take the following form, for any n ∈ Z,

Re(λ̂n(γ)) = −
(nπ
L

)2
(
ε+ ue(γ)

sin(2nηπ/L)

2nηπ/L

)
− µ(b− µ)

b
,

Im(λ̂n(γ)) =
(nπ
L

)2 sin2(nηπ/L)

nηπ/L
ue(γ).

Note that one has
λ̂n(γ) = λ̂−n(γ), ∀n ∈ Z, γ > 0.
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Let k0 ≥ 1 and η0 > 0 such that L(4η0)−1 ∈ N be given. Then using the same arguments
as the ones in the proof of Lemma 3.1 one can find ε0 > 0 and γ0 > 0 such that

Re(λ̂±n0(γ0)) = 0,
dRe(λ̂n0)(γ0)

dγ
6= 0,

Re(λ̂n(γ0)) < 0, for any n ∈ Z\{±n0},

with n0 = L
4η0

(−1 + 4k0), that is

2n0η0π

L
≡ b− µ

2µγ0ε0

= −π
2

+ 2k0π.

To complete the proof of the lemma, it remains to check that Im(λ̂n0(γ0)) > 0. However
simple computations yield

Im(λ̂n0(γ0)) =
(n0π

L

)2 sin2(−π
4

+ k0π)

n0η0π/L
ue(γ0) =

(n0π

L

) 1

2η0

ue(γ0) > 0.

And, this complete the proof of the lemma.

The spectral configuration discussed in the above lemma will allow us to state the
following Hopf bifurcation result for the evolution problem

dw(t)

dt
= Aw(t) + F̃ (w(t), γ),

wherein we have set, as in the previous subsection, w(t) = u(t)−ue(γ), the linear operator
A and the function F̃ are defined in (3.7) and (3.8) respectively.

In order to discuss our Hopf bifurcation theorem we first discuss the existence of a
center manifold reduction for the above problem. To that aim, we fix k0 ≥ 1 and η0 > 0
as in the previous lemma and let ε0 > 0, γ0 > 0 and n0 ≥ 1 be the parameter provided
by this lemma. Next we include the parameter γ into the state space and we consider the
the following problem

d

dt

w(t)

γ(t)

 = L

w(t)

γ(t)

+R

w(t)

γ(t)

 ,

wherein we have set

L =

(A+ ∂wF̃ (0, γ0)
)

0

0 0

 ∈ L (H2 × R, H0 × R
)
,

and

R

w
γ

 =

F̃ (w, γ)− ∂wF̃ (0, γ0)w

0

 .
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The function R is defined and of class C∞ from a neighbourhood V ⊂ H2×R of (w, γ) =

(0, γ0) into H0 × R. Note also that R satisfies R

 0

γ0

 = 0 and DR

 0

γ0

 = 0.

Next, the spectral configuration described in Lemma 3.7 ensures that

σ(L) ∩ iR =
{

0, λ̂n0(γ0), λ̂n0(γ0)
}
,

while σ(L) ∩ {z ∈ C : Re z > 0} = ∅.
Note that the center space Ec is generated by (en0 , 0), (e−n0 , 0) and (0, 1).
Moreover because of the resolvent estimate (2.5) and due to the spectral configuration
described in Lemma 3.7, there exist ω0 > 0 and M > 0 such that

∥∥(iω − L)−1
∥∥
L(H0×R)

≤ M

|ω| , for all ω ∈ R such that |ω| > ω0,

Now since H2×R and H0×R are both Hilbert spaces, Theorem 2.20 in [53] applies and
ensures the existence of smooth center manifold. Applying Hopf bifurcation theorem (see
for instance [54]), this center manifold reduction allows us to obtain the Hopf bifurcation
result.
Theorem 3.8 (Hopf Bifurcation). Let k0 ≥ 1 and η0 > 0 be given such that L/(4η0) ∈
N. Let ε0 > 0 and γ0 > 0 be the parameters provided by Lemma 3.7. There exist
σ∗ > 0, two smooth functions σ 7→ γ(σ) and σ 7→ ω(σ) defined on (0, σ∗) such that for all
σ ∈ (0, σ∗) the equation

dw(t)

dt
= Aw(t) + F̃ (w(t), γ(σ)) , t ∈ R,

has a non trivial ω(σ)−time periodic solution w(t). Furthermore one has

γ(σ) = γ0 +O(σ2), ω(σ) =
2π

Im λ̂n0(γ0)
+O(σ2) as σ → 0.

Remark 3.9. The stability of the bifurcated periodic solution is studied in Appendix A
by using the center manifold reduction and the study of the normal form. The stability of
the Turing bifurcation presented in the previous section can also be investigated by using
similar computations.
Remark 3.10. Another proof for the existence of the Hopf Bifurcation in our case
can be found in the work by Crandall and Rabinowitz [30] by using the implicit func-
tion theorem. In fact, in our case the sectorial operator Aη0,η0 + ∂wF̃ (0, γ0) satisfies
σ
(
Aη0,η0 + ∂wF̃ (0, γ0)

)
∩iR =

{
λ̂n0(γ0), λ̂−n0(γ0)

}
and the eigenvalues are simple. More-

over, the operator
(λ− (Aη0,η0 + ∂wF̃ (0, γ0)))−1 : H0 → H0

is compact for any λ in the resolvent set. Therefore, the hypothesis (HL), (Hf) and (Hβ)
in [30] are satisfied and Theorem 1.11 in this aforementioned work ensures the existence
and uniqueness of the Hopf bifurcation in a small neighbourhood of (0, γ0) ∈ H2−ν × R+.
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We continue this section by numerical experiments for System (1.3) with the kernel
(1.6). To that aim, we fix the following parameter sets

b = 1.5, µ = 1.2, L = 2, η = η0 = s = 0.5. (3.15)

Note that one has L/(4η0) = 1 ∈ N.

We consider two situations, close to the Turing-Hopf bifurcation point described above,
that correspond to the parameters

First configuration: (ε, γ) = (0.0023, 4.8) ,

Second configuration: (ε, γ) = (0.00084, 8.4) .
(3.16)

With such choices the spectrum configuration reads as follows: λ̂±n0 are the only eigenval-
ues with positive real part and all the other eigenvalues have negative real parts. Moreover
Re (λ̂±n0) is close to zero and Im(λ̂±n0) 6= 0. This holds true for n0 = 7 and n0 = 11
respectively for the two parameter sets (ε, γ) mentioned above.

With the parameters described above and equipped with the same initial data as the
one use in Figure 1.2 (see (3.13)), the spatio-temporal evolution for the solutions of (1.3)
is presented in Figure 1.4 for the two parameter configurations in (3.16).

Figure 1.4: In this figure we fix the parameter values as in (3.15) and (3.16). We observe
a spatio-temporal evolution of the solutions corresponding in (a) (respectively in (b)) to
the first configuration (respectively the second configuration) of the parameters in (3.16).

These simulations show that the solutions takes the form of a periodic wave train
solution. Heuristically the first order approximation of the bifurcated solutions take the
form

u(t, x) ≈ ue + Re
(
a(γ)eiωten0(x)

)
+ h.o.t, for some constant a(γ) ∈ C \ {0}

= ue + |a(γ)| cos
(
ωt+

n0π

L
x+ ϕ

)
+ h.o.t, (3.17)

where ω ≈ Im(λ̂n0) and ϕ ∈ R is a phase number while the amplitude |a(γ)| of the
oscillating solution depends on the bifurcation parameter γ. Moreover from the normal
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form reduction provided in Appendix 5.1 we have |a(γ)| ∼ a∗
√
|γ − γ0| for some constant

a∗ when 0 < γ − γ0 � 1 or 0 < γ0 − γ � 1 depending on the nature (supercritical or
subcritical) of the Hopf bifurcation. Therefore, the expression in (3.17) roughly explains
the spatio-temporal pattern observed in Figure 1.4. Moreover the numerical comparison of
the wave lengths of the solutions in Figure 1.4 and the above expression are in accordance.

We continue this section by exploring an other type of kernel function ρ. And we show
that instabilities, and more precisely Turing-Hopf bifurcation, may also occur for some
bi-modal kernel. Here as an example, we consider two identical Gaussian functions, one
shifted to the left and one shifted to the right, namely

ρ2(x) =
1

2
(G(x+ s1) +G(x− s2)) , with G(x) := e−πx

2

,

and wherein s1 and s2 are two positive parameters. Here we restrict ourselves to a
numerical exploration of Problem (1.1)-(1.2) with such a kernel function. However similar
analytical results as the ones presented above can be obtained for this bi-modal example
(see Remark 3.11 below). Note also that such a choice of multi-modal kernel is biologically
relevant when we consider the preferred sensing radius of a certain type of cell.
When kernel ρ2 is considered, the Fourier transform of this kernel can be calculated
explicitly and we have

ρ̂2(ξ) =
1

2
e−πξ

2 [
e2iπs1ξ + e−2iπs2ξ

]
. (3.18)

Therefore, according to (2.7), the real part and imaginary part of the eigenvalues for the
system (1.3) are given as follows

Re(λn) = −
(nπ
L

)2 [
ε+ ueRe

(
ρ̂2

( n
2L

))]
− µ(b− µ)

b
,

Im(λn) = −
(nπ
L

)2

ue Im
(
ρ̂2

( n
2L

))
, n ∈ Z.

(3.19)

In the following simulation, we fix parameters b, µ and L as in (3.15) while we take

(ε, γ) = (0.01, 0.2) , s1 = 0.4, s2 = 0.3. (3.20)

By choosing the above parameters one can check that when n = ±4, λn is the only pair
of eigenvalues which has positive real part and we plot the distribution of the eigenvalues
on the complex plane in Figure 1.5 (a). Using the same initial distribution in Figure 1.2,
the numerical simulation of (1.3) with kernel ρ2 is presented in Figure 1.5 (b).
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Figure 1.5: In this figure we fix the parameter values as in (3.16) and (3.20). In Figure
(a) we plot the eigenvalues of the linearized equation by (3.19) in the complex plane for
n = −10,−9, .., 9, 10. By choosing the parameters in configuration (3.20), there is only
one pair of eigenvalues, namely λ±4, with a positive real part (see the solid points). We
observe a corresponding spatio-temporal evolution of the solutions in (b). The simulation
shows the bi-modal kernels can also lead to instability.

Remark 3.11. If we take γ as a bifurcation parameter and choose appropriate parameters
ε, s1 and s2, a similar spectral analysis as in Lemma 3.7 for the linearized equation with
kernel ρ2 can be performed by using the explicit formula in (3.18) and (3.19). And one
may use similar arguments as the ones developed for the proof of Theorem 3.8 to prove
the existence of a Hopf bifurcation for the bi-modal case.

4 Conclusion and discussion

In this Chapter we discussed some dynamical properties of Problem (1.3). Depending
on the kernel function ρ, we are able first to discuss the stability and instability of the
unique homogeneous positive steady state. A bifurcation analysis has been performed to
understand emerging complex patterns when the positive homogeneous steady state be-
comes unstable. With a symmetric step function kernel, Turing bifurcation of equilibrium
may occur. As a result we obtain the existence of a stable branch of spatially heteroge-
neous steady states. More surprisingly when this symmetry is broken by shifting the step
function, the homogeneous steady state may undergo what we have called Turing-Hopf
bifurcation yielding the existence of a branch of spatially heterogeneous and time periodic
solutions.

It is also interesting to recognize the complexity raised by the nonlinear and nonlocal
diffusion compare to nonlinear but local diffusion equation. As we can see from our
bifurcation analysis, when ε goes to 0, rich dynamical behaviors emerge from the model
(1.3). This is also true without vital dynamic term, i.e. whenever f = 0.

The case of zero viscosity, i.e., ε = 0, is also of particular interest. From the spectral
analysis of the operatorA with kernel ρη,s, we can expect that the frequencies of oscillating
solutions will become higher if the viscosity coefficient becomes small. This may be due
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to the increasing number of positive eigenvalues in such case. Moreover, we point out
other kernels with their Fourier transform changing signs will present the similar complex
dynamics as the one observed for the step function kernel when ε � 1 is small enough.
To illustrate this issue we consider the C∞ kernel

ρ](x) = c0e
1

x2−1χ(−1,1)(x), (4.1)

where the constant c0 is defined by c0 := 1/
∫ 1

−1
ρ](x)dx. We furthermore denote by

ρη,](x) := 1
η
ρ](

x
η
) the function ρ] with scaling parameter η > 0. However, unlike the step

kernel, the Fourier coefficient of ρη,] does not have an explicit form, here we give in Figure
1.6 a numerical illustration of the following map

n 7−→ −
(nπ
L

)2

ρ̂
( n

2L

)
, n ∈ Z

for step function kernel ρ = ρη,0 and ρ = ρη,]. Note that ρ̂η
(
n

2L

)
= ρ̂

(
nη
2L

)
. These

numerical illustrations are performed with the fixed values L = 4 and η = 0.8. By the
symmetry of Fourier coefficients, here we plot these maps for n = 0, 1, 2, . . . , 50.

n
0 10 20 30 40 50
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0

0.1

0.2
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n
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Figure 1.6: In this figure we plot of n 7→ −
(
nπ
L

)2
ρ̂ (nη

2L
) (with n = 0, 1, . . . , 50). The

Figure (a) and (b) correspond respectively to the smooth function ρ = ρη,] defined in (4.1)
and to the step function ρ = ρη,0 defined in (1.6). In both cases we fix L = 4 and η = 0.8.
The blue dots corresponds to the eigenvalues of the linear operator A whenever ε = 0.

As we can see in Figure 1.6 (a) a smooth kernel can also leads to an infinite number
of positive eigenvalues. Also the Figure (b) should be compared to the Figure 1.3 (a) and
(d) in which ε > 0 plays an crucial role to get only one positive eigenvalue. The existence
of positive Fourier coefficients will result in the essential difference between nonlinear
diffusion and nonlocal diffusion. Notice when η is small, we have , at least formally,
∂x(ρη ∗ u(t, ·)) ≈ ∂xu(t, ·) so that (1.3) with f(u) = 0, with ε� 1 and η � 1 should be a
good approximation of porous medium equation

∂tu(t, x) = ∂x (u∂xu(t, x)) , x ∈ R, t > 0. (4.2)

To explore numerically the connection between (1.3) with f(u) = 0 and (4.2) we consider
the so-called Barenblatt solution to equation (4.2) that is defined as

uB(t, x, C) = t−1/3 max(C − k|x|2t−2/3, 0),
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4. Conclusion and discussion

where C > 0 denotes any positive constant (see for instance [104]). In the numerical
experiments below we fix C = 0.1 and we fix the scaling parameter for the kernel function
η = 0.8. In the sequel we shall make use of the notation ρ0 and ρ] to denote ρη,0 and
ρη,] respectively. To go further we also introduce the viscosity threshold associated to the
kernel ρ

ε0 := −u∗min
n∈N

{
ρ̂(
nη

2L
)
}
,

wherein we have set u∗ = 1
2L

∫ L
−L u0(x)dx, the total mass of u0 in [−L,L].

Next we select the initial distribution u0(x) := uB(T1, x, 0.1) for T1 = 3 and x ∈ [−4, 4].
The simulation starts from time T1 to time T2 = 5, 10 and 50 respectively. With such an
initial data one has u∗ = 0.0258 while, we can obtain the threshold values for two kernels

ε0 =

{
0.0025 for ρ = ρ0,

0.0056 for ρ = ρ].
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Figure 1.7: Numerical simulations of (1.3) for the two kernels ρ] and ρ0 with initial data
u0(x) := uB(3, x, 0.1) and without reaction term (i.e. f = 0). We plot the solutions at
time T2 = 5, 10, 50 in each sub-figure and we compare the simulation at the final time
T = 50 with Barenblatt solution uB(50, x, 0.1) (red curves). Figures (a)-(c) on the top
correspond to the solutions with kernel ρ] and viscosity coefficient ε = 0.0015, 0.0025 and
0.0035 respectively; while figures (d)-(f) in the bottom correspond to the kernel ρ0 and the
viscosity ε = 0.0046, 0.0056 and 0.0066 respectively.

Remark 4.1. The numerical experiments in Figure 1.7 are performed so that the space
step ∆x is chosen rather small in order to overcome some difficulties linked with the high
concentration of the kernel (due to the scaling parameter η). We choose ∆x ≤ 0.1η so that
we set a mesh with more than 20 points in the interval [−η, η]. The numerical method is
discussed in the appendix.
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1. Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal
advection

As we can see from Figure 1.7, when η and ε are small, the nonlocal model (1.3)
with the above two kernels does not provide a good approximation of the solution of the
nonlinear diffusion (4.2). As we can see from the Figure 1.7, when ε = ε0 − 10−3, the
solutions with both kernels ρ] and ρ0 in Figure (a) and (d) differ remarkably from the
Barenblatt solution of the porous medium equation. While when we set ε = ε0 + 10−3,
the simulations (c) and (f) at time t = 50 are relatively good approximation of Barenblatt
solution.

Equations with nonlocal advection 57





Chapter 2

Asymptotic behavior of a nonlocal
advection system with two populations
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1 Introduction

In this work, we study a two-species model with nonlocal advection{
∂tu1(t, x) + div

(
u1(t, x)v(t, x)

)
= u1(t, x)h1(u1(t, x), u2(t, x)),

∂tu2(t, x) + div
(
u2(t, x)v(t, x)

)
= u2(t, x)h2(u1(t, x), u2(t, x)),

t > 0, x ∈ RN ,

(1.1)
and the velocity field v = −∇P is derived from pressure P

P (t, x) := (ρ ∗ (u1 + u2)(t, ·)) (x),

where ∗ is the convolution in RN . Suppose system (1.1) is supplemented with a periodic
initial distribution

u0(x) :=

u1(0, x)

u2(0, x)

 ∈ R2
+ where u0 is a 2π–periodic function in each direction. (1.2)

We consider the solutions of system (1.1) which are periodic in space. Here a function
u(x) is said to be 2π-periodic in each direction (or for simplicity periodic) if

u(x+ 2kπ) = u(x), ∀k ∈ ZN , x ∈ RN .

When u(x) is periodic, we can reduce the convolution to the N–dimensional torus TN :=
RN/2πZN by the following observations

(ρ ∗ u) (x) =

∫
RN
ρ(x− y)u(y)dy

=
∑
k∈ZN

∫
[0,2π]N

ρ(x− (y + 2kπ))u(y + 2kπ)dy

=
∑
k∈ZN

∫
[0,2π]N

ρ(x− y − 2kπ)u(y)dy.

Hence we can reformulate as

(ρ ∗ u) (x) =
1

(2π)N

∫
[0,2π]N

K(x− y)u(y)dy,

where K is again 2π–periodic in each direction and defined by

K(x) = (2π)N
∑
k∈ZN

ρ(x+ 2πk), x ∈ RN .

The fast decay of ρ is necessary to ensure the convergence of the above series (see Remark
1.3 for details). Now we can rewrite the velocity field v as follows:

v(t, x) = −∇ [K ◦ (u1 + u2)(t, ·)] (x), (1.3)

where ◦ denotes the convolution operator on the N–dimensional torus TN := RN/2πZN '
[0, 2π]N defined for each 2π-periodic in each direction and measurable functions ϕ and ψ
by

(ϕ ◦ ψ) (x) = |TN |−1

∫
TN
ϕ(x− y)ψ(y)dy.
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2. Asymptotic behavior

Our motivation for this problem comes from a cell monolayer co-culture experiment
in the study of human breast cancer cells. In [88, Figure 1], two types of cells grow
meanwhile form segregated islets over 7 days and the growth stops when they are locally
saturated.

In this work, we model this mechanism by using a nonlocal advection system with
contact inhibition. As we will see, our model captures the finite propagating speed in cell
co-culture. In the context of cell sorting, the impact of cell adhesion and repulsion on the
cell movement and pattern formation has been studied by many authors. We refer to the
work of Armstrong, Painter and Sherratt [3] and Painter et al. [86]. From a more general
perspective, our study is connected to cell segregation and border formation. Taylor et
al. [99] concluded the heterotypic repulsion and homotypic cohesion can account for cell
segregation and border formation. We also refer the readers to Dahmann et al. [34] and
the references therein for more about boundary formation with its application in biology.
These observations and results in biological experiments lead us to consider a nonlocal
advection system which is able to explain the phenomena such as cell finite propagation
speed and segregation. The segregation property was brought up in the 80’s by using
cross diffusion by Shigesada, Kawasaki and Teramoto [95] and Mimura and Kawasaki
[74]. Since then, the cross diffusion has been widely studied and we refer to Lou and Ni
[69, 70] for more results about this subject.

The well-posedness of the nonlocal advection model with nonlinear diffusion has been
considered by Bertozzi and Slepcev [11] and Bedrossian et al. [7] on a bounded domain
Ω ⊂ RN with non-flux boundary condition. Bertozzi et al. [12, 13] studied the finite
time blowup of solutions and the well-posednees in Lp theory of such nonlocal advection
equations in multidimensional space. For the studies of the long-time asymptotics of
nonlocal equations, we refer to Bodnar and Velazquez [17] and Raoul [91]. The traveling
wave solution of such nonlocal equations with or without linear diffusion were considered
by many authors, we refer the readers to [9, 68, 75] for a connection with swarming models.
Hamel and Henderson [52] investigated the existence of the traveling wave solution under
a general assumption on the kernel with logistic source f(u) = u(1−u). We also mention
that system (1.1) is also related to hyperbolic Keller-Segel equation (see Perthame and
Dalibard [90]).

The single species model of equation (1.1) has been studied by Ducrot and Magal in
[39] (see the derivation of the model therein). Compared to the work in [39], one of the
technical difficulties in this work is that we do not have the L2 uniform boundedness of
the solution a priori. This is because we allow nonlinear function h to be more general
(see Assumption 1.1 and 4.1). This difficulty obliges us to find another method to prove
the L∞ uniform boundedness of solutions (see Lemma 4.9, Remark 4.11 and Theorem
4.10). Moreover, we prove the segregation property for two species by using the notion of
solution integrated along the characteristics. Assumption 4.4 on the positivity of Fourier
coefficients enables to construct a decreasing energy functional, this condition has also
been considered in [9] and [39]. Using this important property, we can prove the L∞
convergence of the sum of the two species when the initial distribution is strictly positive
(see Corollary 4.12). Furthermore, the segregation property preserves when t tends to
infinity in the sense of narrow convergence (see Lemma 5.15). In Section 7, by using
numerical simulations, we obtain some results which are not proved theoretically.

Equations with nonlocal advection 61



1. Introduction

Assumption 1.1. For i = 1, 2, suppose hi : R2
+ → R are of class C1 satisfying

sup
u1,u2≥0

hi(u1, u2) <∞, sup
u1,u2≥0

∂ujhi(u1, u2) <∞, j = 1, 2.

An example of function hi is the following function

hi(u1, u2) = λi(1− (u1 + u2)).

Therefore, the reaction term ui hi(u1, u2) is of Lotka-Volterra type.

Motivated by the model derived from Ducrot et al. in [38] which describes the contact
inhibition (i.e. cells stop growing when they are locally saturated), we would like to use
the following non-linear function.

hi(u1, u2) =
bi

1 + γi (u1 + u2)
− µi,

where bi > 0 is the division rate, µi > 0 is the mortality rate and γi > 0 is the coefficient
representing the dormant phase of cells (see [38] for details). In such a case the map hi is
bounded from below therefore we can not apply the same arguments as in [39] to obtain
an L∞ bound for the solution. This shows that our results can be applied to a larger class
of nonlinearity than [39].

Assumption 1.2. The kernel K : RN → R is a TN− periodic function of class Cm on
RN for some integer m ≥ N+5

2
.

Remark 1.3. The above regularity Assumption 1.2 can be reduced to m ≥ 3 in proving
the existence and uniqueness of solutions. The higher regularity is crucial for Lemma 4.9.
For the dimension N ≤ 3, the regularity condition in Assumption 1.2 is always satisfied
whenever K ∈ C4. For the choice of ρ in (1.1), it suffice to choose ρ ∈ Cm(RN) satisfying
for any ε > 0 and multi-index α with |α| ≤ m, there exists M > 0 such that for any
|x| ≥M

|Dαρ(x)| ≤ C/|x|N+ε,

where C is a positive constant. For each multi-index α with |α| ≤ m, the series

x 7−→
∑
k∈ZN

Dαρ(x+ 2πk)

is uniformly converging on TN . Hence, K satisfies Assumption 1.2.

The plan of this work is the following. In Section 2, we investigate the existence and
uniqueness of solutions integrated along the characteristics. In Section 3, we study the
segregation property. In Sections 4 and 5, the asymptotic behavior of segregated solutions
is studied by Young measures (a generalization of L∞ weak ∗–convergence). Section 6
is devoted to numerical simulations where we explore some further results that are not
proved analytically, these numerical simulations complement our theoretical part.
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2. Asymptotic behavior

2 Solution integrated along the characteristics

In this section we study the existence and uniqueness of solution for (1.1)-(1.3) with initial
data u0 ∈ L∞per

(
RN
)2.

Before going further, let us introduce some notations that will be used in the following.
For each k ∈ N, let us denote by Ck

per

(
RN
)
the Banach space of functions of class Ck

from RN into R and [0, 2π]N–periodic endowed with the usual supremum norm

‖ϕ‖Ck =
k∑
p=0

sup
x∈RN

|Dpϕ(x)| .

For each p ∈ [1,+∞], let us denote by Lpper
(
RN
)
the space of measurable and [0, 2π]N–

periodic functions from RN to R such that

‖ϕ‖Lp := ‖ϕ‖Lp((0,2π)N) < +∞.

Then Lpper
(
RN
)
endowed with the norm ‖ϕ‖Lp is a Banach space. We also introduce

its positive cone Lpper,+
(
RN
)
consisting of all the functions in Lpper

(
RN
)
that are almost

everywhere positive.
Remark 2.1. When we study the product space Ck

per

(
RN
)n
, Lpper

(
RN
)n when n ∈ N, for

simplicity, we use the same notation ‖ · ‖Ck and ‖ · ‖Lp for the norm in product space.

We first investigate the characteristic curves of the problem.
Lemma 2.2. Let Assumption 1.2 be satisfied. Let ui ∈ C

(
[0, τ ] , L1

per

(
RN
))
, i = 1, 2 be

given. Then by setting v(t, x) = −∇ [K ◦ (u1 + u2)(t, ·)] (x), the following non-autonomous
system for each s ∈ [0, τ ] and each z ∈ RN : ∂tΠv(t, s; z) = v(t,Πv(t, s; z)), for each t ∈ [0, τ ] ,

Πv(s, s; z) = z,

generates a unique non-autonomous continuous flow {Πv(t, s)}t,s∈[0,τ ], that is to say,

Πv(t, r; Πv(r, s; z)) = Πv(t, s; z),∀t, s, r ∈ [0, τ ] , and Πv(s, s; .) = I

and the map (t, s, z)→ Πv(t, s; z) is continuous. Moreover for each t, s ∈ [0, τ ] , we have

Πv(t, s; z + 2πk) = Πv(t, s; z) + 2πk, ∀z ∈ RN, k ∈ ZN ,

the map z → Πv(t, s; z) is continuously differentiable and one has the determinant of
Jacobi matrix:

det(∂zΠv(t, s; z)) = exp

(∫ t

s

divv(l,Πv(l, s; z))dl

)
. (2.1)

Proof. By the assumption, we have

v(t, x) ∈ C
(

[0, τ ] , C1
per

(
RN
)N)

,
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2. Solution integrated along the characteristics

and we have the following estimations

‖v(t, ·)‖C0 ≤ ‖∇K‖C0 ‖(u1 + u2)(t, ·)‖L1 ,

‖div v(t, ·)‖C0 ≤ ‖∆K‖C0 ‖(u1 + u2)(t, ·)‖L1 .

Therefore, the first part of the results follows by using classical arguments on ordinary
differential equations. For the proof of (2.1), note that ∂t∂zΠv(t, s; z) = ∂xv(t,Πv(t, s; z))∂zΠv(t, s; z), t ∈ [0, τ ] ,

∂zΠv(s, s; z) = I.

For any matrix-valued C1 function A : t 7→ A(t), the Jacobi’s formula reads as follows

d

dt
detA(t) = detA(t)tr

(
A−1(t)

d

dt
A(t)

)
.

Hence we obtain

d

dt
det ∂zΠv(t, s; z) = det ∂zΠv(t, s; z)× tr (∂xv(t,Πv(t, s; z)))

and since tr (∂xv(t,Πv(t, s; z))) = div v(t,Πv(t, s; z)) therefore the result follows.

In order to precise the notion of solution in this work, assume first that

u = (u1, u2) ∈ C1
(
[0, τ ]× RN ,R

)2 ∩ C
(
[0, τ ], C0

per,+(RN)
)2

is a classical solution of (1.1)-(1.3). We consider the solution with each component ui(t, ·)
along the characteristic curve Πv(t, 0;x) respectively, we obtain for i = 1, 2,

d

dt

(
ui(t,Πv(t, 0; z)

)
= ∂tui(t,Πv(t, 0; z)) +∇ui(t,Πv(t, 0; z)) · v(t,Πv(t, 0; z))

= ui(t,Πv(t, 0; z))
[
− div v(t,Πv(t, 0; z)) + hi(u(t,Πv(t, 0; z))

]
,

where hi(u(t,Πv(t, 0; z)) = hi(u1(t,Πv(t, 0; z), u2(t,Πv(t, 0; z)). Hence a classical solution
of (1.1)-(1.3) (i.e. C1 in time and space) must satisfy

ui(t,Πv(t, 0; z)) = exp

(∫ t

0

hi
(
u(l,Πv(l, 0; z))− div v(l,Πv(l, 0; z))dl

)
ui (0, z) , i = 1, 2,

(2.2)
or equivalently

ui(t, z) = exp

(∫ t

0

hi
(
u(l,Πv(l, t; z))

)
− div v(l,Πv(l, t; z))dl

)
ui (0,Πv(0, t; z)) , i = 1, 2,

(2.3)
where

v(t, x) = − 1

|TN |

∫
TN
∇K(x− y)(u1 + u2)(t, y)dy. (2.4)

The above computations lead us to the following definition of solution.
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2. Asymptotic behavior

Definition 2.3 (Solution along the characteristics). Let u0 ∈ L∞per,+
(
RN
)2, τ > 0 be

given. A function u ∈ C
(
[0, τ ] , L1

per,+

(
RN
))2 ∩ L∞

(
(0, τ), L∞per,+

(
RN
))2 is said to be a

solution integrated along the characteristics of (1.1)-(1.3), if ui satisfies (2.3) for i = 1, 2,
with v defined in (2.4).

We will use a fixed point theorem to prove the existence and uniqueness of the solutions
integrated along the characteristics. Consider

w = (w1, w2), wi(t, x) := ui(t,Πv(t, 0;x)), i = 1, 2, (2.5)

and we will construct a fixed point problem for the pair (w,v).

If there exists a solution integrated along the characteristics, then by (2.2) we have

wi(t, x) = exp

(∫ t

0

hi
(
w(l, x)

)
− div v(l,Πv(l, 0;x))dl

)
ui(0, x), i = 1, 2, (2.6)

where hi(w(t, x)) = hi(w1(t, x), w2(t, x)) for i = 1, 2. By the definition of v we obtain

v(t, x) = − 1

|TN |

∫
TN
∇K(x− y)(u1 + u2)(t, y)dy

= −
∫
RN
∇ρ(x− y)(u1 + u2)(t, y)dy

= −
∫
RN
∇ρ (x− Πv(t, 0; z))

∑
i=1,2

ui(t,Πv(t, 0; z)) det ∂z(Πv(t, 0; z))dz

= −
∫
RN
∇ρ (x− Πv(t, 0; z))

∑
i=1,2

wi(t, z) det ∂z(Πv(t, 0; z))dz,

(2.7)

where we have used the change of variable y = Πv(t, 0; z). By using the determinant of
Jacobi matrix in (2.1) and (2.6) we deduce that

wi(t, z) det ∂z(Πv(t, 0; z)) = e
∫ t
0 hi(w(l,z))dlui (0, z) , i = 1, 2,

thus equation (2.7) becomes

v(t, x) = −
∫
RN
∇ρ (x− Πv(t, 0; z))

∑
i=1,2

e
∫ t
0 hi(w(l,z))dlui (0, z) dz

= − 1

|TN |

∫
TN
∇K(x− Πv(t, 0; z))

∑
i=1,2

e
∫ t
0 hi(w(l,z))dlui (0, z) dz.

(2.8)

Therefore incorporating equations (2.6) and (2.8) leads us to find the solution of the
following problem

wi(t, x) = exp

(∫ t

0

hi
(
w(l, x))− div v(l,Πv(l, 0;x))dl

)
ui (0, x) , i = 1, 2,

v(t, x) = − 1

|TN |

∫
TN
∇K(x− Πv(t, 0; z))

∑
i=1,2

e
∫ t
0 hi

(
w(l,z))

)
dlui (0, z) dz.

(2.9)
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2. Solution integrated along the characteristics

In order to choose a proper space for (w,v), we observe the following estimation∥∥∥∥∫ t

0

hi
(
w(l, x))− div v(l,Πv(l, 0;x))dl

∥∥∥∥
L∞
≤ t
(
h̄+ ‖v‖C1

)
, i = 1, 2,

where h̄ := supu1,u2≥0

∑
i=1,2 hi(u1, u2). Hence we can choose the following spaces

w = (w1, w2) ∈ C
(
[0, τ ] , L∞per,+

(
RN
))2

, v ∈ C([0, τ ], C1
per(RN)N).

We write our fixed point problem as followsw
v

 ∈
C ([0, τ ] , L∞per,+

(
RN
))2

C([0, τ ], C1
per(RN)N)

 and T

w
v

 =

w1

v1

 ,

wherein w1 and v1 are defined by

w1(t, x) =

exp
(∫ t

0
h1

(
w(l, x)

)
− div v1(l,Πv(l, 0;x))dl

)
u1 (0, x)

exp
(∫ t

0
h2

(
w(l, x)

)
− div v1(l,Πv(l, 0;x))dl

)
u2 (0, x)

 ,

v1(t, x) = − 1

|TN |

∫
TN
∇K(x− Πv(t, 0; z))

∑
i=1,2

e
∫ t
0 hi

(
w(l,z))

)
dlui (0, z) dz.

(2.10)

Theorem 2.4. Let Assumption 1.1 and Assumption 1.2 be satisfied. For each u0 ∈
L∞per,+

(
RN
)2
, system (1.1)-(1.2) has a unique solution integrated along the characteristics

t 7→ U(t)u0 in C
(
[0,+∞) , L1

per,+

(
RN
))2 ∩ L∞loc

(
[0,∞), L∞per,+

(
RN
))2

.

Moreover {U(t)}t≥0 is a continuous semiflow on L1
per,+

(
RN
)2
, that is to say

(i) U(t)U(s) = U(t+ s),∀t, s ≥ 0 and U(0) = I;

(ii) The map (t,u0)→ U(t)u0 maps every bounded set of [0,+∞)×L∞per,+
(
RN
)2 into a

bounded set of L∞per,+
(
RN
)2;

(iii) If {tn}n∈N (⊂ [0,+∞))→ t < +∞ and {un0}n∈N is bounded sequence in L∞per,+
(
RN
)2

such that ‖un0 − u0‖L1 → 0 as n→ +∞, then

‖U(tn)un0 − U(t)u0‖L1 → 0 as n→ +∞,

where the norm is the product norm of L1
per,+

(
RN
)2 (see Remark 2.1). The semiflow U

also satisfies the two following properties

U(t)u0 ≥ 0,∀u0 ≥ 0, ∀t ≥ 0, (2.11)

‖U(t)u0‖L1 ≤ eth̄ ‖u0‖L1 , ∀t ≥ 0, (2.12)

where we define
h̄ := sup

u1,u2≥0

∑
i=1,2

hi(u1, u2). (2.13)
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We need the following lemma before we prove Theorem 2.4.
Lemma 2.5. Suppose v, ṽ ∈ C([0, τ ], C1

per(RN)N). Then for any τ > 0, we have

sup
t∈[0,τ ]

‖Πv(t, 0; ·)− Πṽ(t, 0; ·)‖L∞ ≤ τ sup
t∈[0,τ ]

‖v(t, ·)− ṽ(t, ·)‖L∞eτ supt∈[0,τ ] ‖v(t,·)‖C1 .

Proof. For any fixed t ∈ [0, τ ],

∂t (Πv(t, 0;x)− Πṽ(t, 0;x)) = v(t,Πv(t, 0;x))− ṽ(t,Πṽ(t, 0;x)).

Hence we have
‖Πv(t, 0; ·)− Πṽ(t, 0; ·)‖L∞

=

∥∥∥∥∫ t

0

v(t,Πṽ(l, 0; ·))− ṽ(t,Πṽ(l, 0; ·)) + v(l,Πv(l, 0; ·))− v(t,Πṽ(l, 0; ·))dl
∥∥∥∥
L∞

≤ t‖v(t, ·)− ṽ(t, ·)‖L∞ +

∫ t

0

‖v(t, ·)‖C1‖Πv(l, 0; ·)− Πṽ(l, 0; ·)‖L∞dl.

By Gronwall inequality, we obtain

sup
t∈[0,τ ]

‖Πv(t, 0; ·)− Πṽ(t, 0; ·)‖L∞ ≤ τ sup
t∈[0,τ ]

‖v(t, ·)− ṽ(t, ·)‖L∞eτ supt∈[0,τ ] ‖v(t,·)‖C1 .

The result follows.

Proof of Theorem 2.4. We prove this theorem by showing that the contraction mapping
theorem applies for T as long as τ > 0 is small enough. This ensures the local existence
and uniqueness of solutions. To that aim, we fix τ > 0 which will be chosen later and we
define Banach space Z by Z := X × Y where

X := C
(
[0, τ ] , L∞per

(
RN
))2

, Y := C([0, τ ], C1
per(RN)N)

endowed with the norm: ∥∥∥∥∥∥
w
v

∥∥∥∥∥∥
Z

= ‖w‖X + ‖v‖Y ,

where
‖w‖X = ‖w1‖C([0,τ ],L∞per(RN )) + ‖w2‖C([0,τ ],L∞per(RN )).

We also introduce the closed subset X+ ⊂ X defined by:

X+ = C
(
[0, τ ] , L∞per,+

(
RN
))2

,

and define Z+ = X+ × Y . Note that due to (2.10) one has

T (Z+) ⊂ Z+. (2.14)

For each given

w
v

 ∈ X and κ > 0, let BZ

w
v

 , κ

 be the closed ball in Z of centerw
v

 and radius κ. Now for any κ > 0 and any initial distribution

u0 = (u1(0, ·), u2(0, ·)) ∈ X+ and v0 = −∇K ◦ ((u1 + u2)(0, ·)).
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We claim that there exists τ̂ > 0 such that for each τ ∈ (0, τ̂):

T

Z+ ∩BZ

u0

v0

 , κ

 ⊂ Z+ ∩BZ

u0

v0

 , κ

 . (2.15)

To prove this claim, for any

w

v

 ∈ Z+∩BZ

u0

v0

 , κ

, we estimate component w,v

separately. Recalling the definition of w in (2.10), one obtains

‖w1(t, ·)− u0(·)‖L∞

=

∥∥∥∥exp

(∫ t

0

h1

(
w(l, ·)

)
− div v1(l,Πv(l, 0; ·))dl

)
u1 (0, ·)− u1 (0, ·)

∥∥∥∥
L∞

+

∥∥∥∥exp

(∫ t

0

h2

(
w(l, ·)

)
− div v1(l,Πv(l, 0; ·))dl

)
u2 (0, ·)− u2 (0, ·)

∥∥∥∥
L∞

≤ ‖u0‖L∞
∑
i=1,2

∥∥∥∥exp

(∫ t

0

hi
(
w(l, ·)

)
− div v1(l,Πv(l, 0; ·))dl

)
− 1

∥∥∥∥
L∞

.

Note that by the classic inequality |ex − 1| ≤ |x|e|x| for any x ∈ R, we can deduce

sup
t∈[0,τ ]

‖w1(t, ·)− u0(·)‖L∞ ≤ ‖u0‖L∞θ(τ)eθ(τ), (2.16)

here θ(τ) is defined by

θ(τ) =
2∑
i=1

∫ τ

0

‖hi
(
w(l, x)

)
− div v(l,Πv(l, 0; ·))‖L∞dl

≤ τ (hκ + ‖v‖Y )

≤ τ(hκ + κ+ ‖v0‖Y ),

where we set
hκ := sup

0≤u1,u2≤κ+‖u0‖L∞

∑
i=1,2

|hi(u1, u2)|. (2.17)

On the other hand,

sup
t∈[0,τ ]

‖v1(t, ·)− v0(·)‖C1

≤ ‖u0‖L∞
1

|TN | sup
t∈[0,τ ]

∥∥∥∥∥
∫
TN
∇K(· − Πv(t, 0; z))

∑
i=1,2

e
∫ t
0 hi(w(l,z))dl −∇K(· − z)dz

∥∥∥∥∥
C1

≤ ‖u0‖L∞
1

|TN | sup
t∈[0,τ ]

∥∥∥∫
TN
∇K(· − Πv(t, 0; z))

∑
i=1,2

e
∫ t
0 hi(w(l,z))dl −∇K(· − Πv(t, 0; z))

+∇K(· − Πv(t, 0; z))−∇K(· − z)dz
∥∥∥
C1

≤ ‖u0‖L∞
{

(‖K‖C1 + ‖K‖C2) |eτhκ − 1|+ (‖K‖C2 + ‖K‖C3) sup
t∈[0,τ ]

‖Πv(t, 0; ·)− ·‖L∞
}
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≤ 2‖u0‖L∞‖K‖C3

{
|eτhκ − 1|+ sup

t∈[0,τ ]

‖Πv(t, 0; ·)− Πv0(t, 0; ·)‖L∞

+ sup
t∈[0,τ ]

‖Πv0(t, 0; ·)− ·‖L∞
}
. (2.18)

Recalling Lemma 2.5, we have

sup
t∈[0,τ ]

‖Πv(t, 0; ·)− Πv0(t, 0; ·)‖L∞ ≤ τ sup
t∈[0,τ ]

‖v(t, ·)− v0(t, ·)‖L∞eτ supt∈[0,τ ] ‖v(t,·)‖C1

≤ τκeτ(κ+‖v0‖Y ).

Therefore, equation (2.18) becomes

sup
t∈[0,τ ]

‖v1(t, ·)− v0(·)‖C1

≤ 2‖u0‖L∞‖K‖C3

{
|eτhκ − 1|+ τκeτ(κ+‖v0‖Y ) + sup

t∈[0,τ ]

‖Πv0(t, 0; ·)− ·‖L∞
}
.

Since we have

sup
t∈[0,τ ]

‖Πv0(t, 0; ·)− ·‖L∞ ≤
∫ τ

0

‖v0(l,Πv0(l, 0; ·))‖L∞dl→ 0, as τ → 0.

Incorporating (2.16), (2.18) and (2.14), then the above estimations complete the proof of
(2.15) by choosing a τ̂ small enough.

We now claim that for anyw

v

 ,

w̃

ṽ

 ∈ Z+ ∩BZ

u0

v0

 , κ

 ,

where
w(t, x) = u(t,Πv(t, 0;x)), w̃(t, x) = ũ(t,Πṽ(t, 0;x)),

there exists τ ∗ ∈ (0, τ̂) such that for each τ ∈ (0, τ ∗) we can find a L(τ) ∈ (0, 1) such that∥∥∥∥∥∥T
w
v

− T
w̃
ṽ

∥∥∥∥∥∥
Z

≤ L(τ)

∥∥∥∥∥∥
w
v

−
w̃
ṽ

∥∥∥∥∥∥
Z

. (2.19)

To prove this claim, as before we estimate each component separately. For any given
τ ∈ (0, τ ∗)

sup
t∈[0,τ ]

∥∥w1(t, ·)− w̃1(t, ·)
∥∥
L∞

=
2∑
i=1

‖u0‖L∞ sup
t∈[0,τ ]

‖e
∫ t
0 hi(w(l,·))−divv(l,Πv(l,0;·))dl − e

∫ t
0 hi(w̃(l,·))−div ṽ(l,Πṽ(l,0;·))dl‖L∞
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≤ ‖u0‖L∞
(
eτ(κ+‖v0‖Y )

2∑
i=1

sup
t∈[0,τ ]

‖e
∫ t
0 hi(w(l,·))dl − e

∫ t
0 hi(w̃(l,·))dl‖L∞︸ ︷︷ ︸

I

+ eτhκ sup
t∈[0,τ ]

‖e−
∫ t
0 divv(l,Πv(l,0;·))dl − e−

∫ t
0 div ṽ(l,Πṽ(l,0;·))dl‖L∞︸ ︷︷ ︸

II

)
.

Estimation for I: We estimate the first term. Since for any x, y ∈ R, we have |ex − ey| ≤
emax{|x|,|y|}|x− y|. Thus

2∑
i=1

sup
t∈[0,τ ]

∥∥∥e∫ t0 hi(w(l,·))dl − e
∫ t
0 hi(w̃(l,·))dl

∥∥∥
L∞

≤ eτhκ
2∑
i=1

∥∥∥∥∫ t

0

hi
(
w(l, ·)

)
− hi

(
w̃(l, ·)

)
dl

∥∥∥∥
L∞

≤ τeτhκ|∇hκ|‖w− w̃‖X ,

(2.20)

where |∇hκ| =
∑2

i=1 supu1,u2∈[0,‖u0‖L∞+κ] |∇hi(u1, u2)| and hκ is defined in (2.17).

Estimation for II: For the second term, we obtain

sup
t∈[0,τ ]

‖e−
∫ t
0 divv(l,Πv(l,0;·))dl − e−

∫ t
0 div ṽ(l,Πṽ(l,0;·))dl‖L∞

≤ τeτ(κ+‖v0‖Y ) sup
t∈[0,τ ]

‖div v(t,Πv(t, 0; ·))− div ṽ(t,Πṽ(t, 0; ·))‖L∞ ,

while due to (2.8) we can estimate the last term as follows

sup
t∈[0,τ ]

‖div v(t,Πv(t, 0; ·))− div ṽ(t,Πṽ(t, 0; ·))‖L∞

≤ 1

|TN |
2∑
i=1

sup
t∈[0,τ ]

∥∥∥∫
TN

∆K(Πv(t, 0; ·)− Πv(t, 0; z))e
∫ t
0 hi(w(l,z))dl

−∆K(Πṽ(t, 0; ·)− Πṽ(t, 0; z))e
∫ t
0 hi(w̃(l,z))dldz

∥∥∥
L∞
‖u0‖L∞

≤ ‖u0‖L∞
{
‖K‖C2

2∑
i=1

sup
t∈[0,τ ]

∥∥∥e∫ t0 hi(w(l,·))dl − e
∫ t
0 hi(w̃(l,·))dl

∥∥∥
L∞

+ 2eτhκ‖K‖C3 sup
t∈[0,τ ]

‖Πv(t, 0; ·)− Πṽ(t, 0; ·)‖L∞
}
,

where the first part can be estimated by (2.20). Recalling Lemma 2.5 and since v, ṽ ∈
BY (v0, κ) we have

sup
t∈[0,τ ]

‖Πv(t, 0; ·)− Πṽ(t, 0; ·)‖L∞ ≤ τ sup
t∈[0,τ ]

‖v(t, ·)− ṽ(t, ·)‖L∞eτ(κ+‖v0‖Y ). (2.21)

Incorporating the estimation in (2.20) leads us to the following estimation∥∥w1 − w̃1
∥∥
X
≤ L1(τ)

(
‖w− w̃‖X + ‖v − ṽ‖Y

)
(2.22)
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with L1(τ)→ 0 as τ → 0.

To complete the proof of (2.19), let us notice∥∥v1 − ṽ1
∥∥
Y

= sup
t∈[0,τ ]

∥∥v1(t, ·)− ṽ1(t, ·)
∥∥
C1

=
1

|TN | sup
t∈[0,τ ]

‖
∫
TN
∇K(· − Πv(t, 0; z))

∑
i=1,2

e
∫ t
0 hi(w(l,z))dlui(0, z)dz

−
∫
TN
∇K(· − Πṽ(t, 0; z))

∑
i=1,2

e
∫ t
0 hi(w̃(l,z))dlui(0, z)dz‖C1

≤ ‖u0‖L∞
{

2eτhκ (‖K‖C2 + ‖K‖C3) sup
t∈[0,τ ]

‖Πv(t, 0; ·)− Πṽ(t, 0; ·)‖L∞

+ (‖K‖C1 + ‖K‖C2)
2∑
i=1

sup
t∈[0,τ ]

‖e
∫ t
0 hi(w(l,·))dl − e

∫ t
0 hi(w̃(l,·))dl‖L∞

}
≤ L2(τ)

(
‖w− w̃‖X + ‖v − ṽ‖Y

)
, (2.23)

and by using (2.20) and (2.21) we have L2(τ) satisfying

lim
τ→0

L2(τ) = 0.

Let L(τ) := L1(τ) + L2(τ) and together with (2.22) and (2.23) we complete the proof of
(2.19).

Finally one concludes from (2.15) and (2.19) that for τ small enough, the contraction
mapping theorem applies to operator T . Hence the operator T has a unique fixed point

in Z+∩BZ

u0

v0

 , κ

. Recalling (2.5), this ensures the existence and uniqueness of the

local solution integrated along the characteristic of (1.1). The positivity property (2.11)
follows from the same arguments. The semiflow property in Theorem 2.4-(i) follows by a
standard uniqueness argument. Next we show that the semiflow is globally defined and
the properties (ii) and (iii) of the semiflow. In fact, one can see that

ui(t, x) = exp

(∫ t

0

hi
(
u(l,Πv(l, t;x)))− div v(l,Πv(l, t;x))dl

)
ui (0,Πv(0, t;x)) . (2.24)

Therefore, one has

ui(t, x) ≤ exp
(
th̄
)

exp

(∫ t

0

−div v(l,Πv(l, t;x))dl

)
ui (0,Πv(0, t;x)) , i = 1, 2,

then we integrate over TN , using the change of variable x = Πv(t, 0, z) to right hand side,
which completes the estimation of u in L1 norm (2.12), i.e.,

‖ui(t, ·)‖L1 ≤ eth̄‖ui(0, ·)‖L1 , i = 1, 2,∀t ≥ 0. (2.25)

Moreover, recall the definition h̄ in (2.13) we have

sup
t∈[0,τ ]

‖u(t, ·)‖L∞ ≤ eτ
(
h̄+‖∆K‖L∞eτh̄‖u0‖L∞

)
‖u0‖∞, ∀τ ≥ 0. (2.26)
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The result (ii) follows. In the last part of the proof we study the L1 continuity of the
semiflow. For any 0 ≤ s ≤ t,

‖U(t)u0 − U(s)u0‖L1 ≤ esh̄‖U(t− s)u0 − u0‖L1

= esh̄
2∑
i=1

‖e
∫ t−s
0 hi(u(l,Πv(l,t−s;·)))−divv(l,Πv(l,t−s;·))dlui(0,Πv(0, t− s; ·))− ui(0, ·)‖L1 ,

(2.27)

since
2∑
i=1

‖
∫ t−s

0

hi(u(l,Πv(l, t− s; ·)))− div v(l,Πv(l, t− s; ·))dl‖L∞ ≤ J(t− s),

where
J(τ) := τ

(
h̄+ ‖∆K‖C0eτh̄‖u0‖L∞

)
.

Then from (2.27) we have

‖U(t)u0 − U(s)u0‖L1

≤ esh̄‖u0(Πv(0, t− s; ·))− u0‖L1eJ(t−s) + esh̄‖u0‖L1

∣∣eJ(t−s) − 1
∣∣→ 0, s→ t.

(2.28)

If {un0}n∈N is bounded sequence in L∞per,+
(
RN
)
such that ‖un0 − u0‖1 → 0 as n → +∞,

then by (2.25), we have

‖U(t)un0 − U(t)u0‖L1 → 0, n→ +∞,
together with (2.28), we have proved the continuity of the semiflow in (iii).

Theorem 2.6. Let Assumption 1.1 and Assumption 1.2 be satisfied. In addition, u0 ∈
W 1
per

(
RN
)2, then U(·)u0 ∈ C1

(
[0,+∞) , L1

per

(
RN
))2. Moreover, if u0 ∈ C1

per

(
RN
)2 then

u(t, x) = U(t)u0(x) belongs to C1
(
[0,+∞)× RN

)2 and u(t, x) is a classical solution of
system (1.1)-(1.3).

Sketch of the proof. If u0 ∈ W 1
per(RN)2, we claim U(·)u0 ∈ C1([0,∞), L1

per(RN))2. In fact,
we define for i = 1, 2,

wi(t, x) = e
∫ t
0 hi(w(l,x))−divv(l,Πv(l,0;x))dlui(0, x) =: e

∫ t
0 hi(w(l,x))dlBi(t, x), (2.29)

where Bi(t, x) := e
∫ t
0 −divv(l,Πv(l,0;x))dlui(0, x) is C([0, τ ],W 1

per(RN)) by our assumption.
Define the formal derivative w̃i(t, ·) = ∇xwi(t, ·), solving the following fixed point problem

T


w̃1(t, x)

w̃2(t, x)

v

 =


(∫ t

0

∑2
j=1 ∂ujh1(w(l, x))w̃j(l, x)dl B1(t, x) +∇xB1(t, x)

)
e
∫ t
0 h1(w(l,x))dl(∫ t

0

∑2
j=1 ∂ujh2(w(l, x))w̃j(l, x)dl B2(t, x) +∇xB2(t, x)

)
e
∫ t
0 h2(w(l,x))dl

− 1
|TN |

∫
TN ∇K(x− Πv(t, 0; z))

∑
i=1,2 e

∫ t
0 hi

(
w(l,z))

)
dlui (0, z) dz

 ,

on space C([0, τ ], L∞per(RN)N)2 × C([0, τ ], C1
per(RN)N) where ∂ujhi(u1, u2) is the partial

derivative of hi. Similarly, one can show the mapping T is from C([0, τ ], L∞per(RN)N)2 ×
C([0, τ ], C1

per(RN)N) to itself and is a contraction if τ is small. Therefore,

w̃i(t, x) =

(∫ t

0

2∑
j=1

∂ujhi(w(l, x))w̃j(l, x)dl Bi(t, x) +∇xBi(t, x)

)
e
∫ t
0 hi(w(l,x))dl, i = 1, 2,
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on [0, τ ], since by our assumption

sup
u1,u2≥0

∂ujhi(u1, u2) <∞, i = 1, 2, j = 1, 2,

applying Gronwall inequality we have w̃ ∈ C([0,∞), L1
per(RN)N)2 for any positive time.

Since we have for i = 1, 2, wi(t,Πv(0, t;x)) = ui(t, x), and

∂tui(t, x) = ∂twi(t,Πv(0, t;x)) + w̃i(t, x) · ∂tΠv(0, t;x) ∈ C([0,∞);L1
per(RN)).

If u0 ∈ C1(RN)2, then Bi(t, x) ∈ C1
(
[0,+∞)× RN

)
and by (2.29), we have w ∈

C1([0,∞)× RN)2 therefore u is a classical solution.

Remark 2.7 (Conservation law). The above computations lead us to the following con-
servation law: for each Borel set A ⊂ TN and each 0 ≤ s ≤ t:∫

Πv(t,s;A)

ui(t, x)dx =

∫
A

exp

[∫ t

s

hi (u (l,Πv(l, s; z))) dl

]
ui(s, z)dz, i = 1, 2.

3 Segregation property

From the mono-layer cell populations co-culture experiments, we can see that the spread-
ing speed of cell propagation is finite. Moreover, once the two cell populations confront
each other, they stop growing and form segregated islets. Our next theorem will show
that the solution along the characteristics can easily explain the segregation property.
Theorem 3.1. Suppose u = u(t, x) is the solution of (1.1)-(1.3) provided by Theo-
rem 2.4. For any initial distribution with u1(0, x)u2(0, x) = 0 for all x ∈ TN . Then
u1(t, x)u2(t, x) = 0 for any t > 0 and x ∈ TN .

Proof. We argue by contradiction, assume there exist t1 > 0, x1 ∈ TN such that

u1(t1, x1)u2(t1, x1) > 0.

Since z → Πv(t, s; z) is invertible from RN → RN , then there exists some x0 ∈ RN such
that Πv(t1, 0;x0) = x1. Denote x0 = x̃0 + 2πk0 for some x̃0 ∈ TN and k0 ∈ ZN , thus by
Lemma 2.2 we have

0 < ui(t1,Πv(t1, 0;x0)) = ui(t1,Πv(t1, 0; x̃0) + 2πk0) = ui(t1,Πv(t1, 0; x̃0)).

Thus, for any i = 1, 2,

ui(t1,Πv(t1, 0; x̃0)) = exp
(∫ t1

0
hi
(
u(l,Πv(l, 0; x̃0))− div v(l,Πv(l, 0; x̃0))dl

)
ui (0, x̃0) > 0,

which implies
ui (0, x̃0) > 0, ∀i = 1, 2.

This is a contradiction.
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4. Asymptotic behavior

Remark 3.2. Suppose the dimension N = 1 and u1, u2 are classical solutions, we give
an illustration (see Figure 2.1) of the segregation for the solutions integrated along the
characteristics ui(t,Πv(t, 0;x)) for i = 1, 2. In fact, if there exists for some x0 such that
ui(0, x0) = 0 for i = 1, 2. Then from equation (2.2) we obtain

u1(t,Πv(t, 0;x0)) = 0 = u2(t,Πv(t, 0;x0)), ∀t > 0.

Therefore, the characteristics t 7→ Πv(t, 0;x0) forms a segregation barrier for the two cell
populations.

t0

t

Πv(t0, 0; x0)0 2π

t1

Πv(t, 0; x0)

Figure 2.1: The shaded areas represent the supports of two populations (red and green)
evolving along the time. Notice that if one starts with two separated supports and choose
x0 where ui(0, x0) = 0 for i = 1, 2, then the characteristics t 7→ Πv(t, 0;x0) forms a
segregation “wall” between the two cell populations, which indicates no matter how close
they are, they will keep separated.

4 Asymptotic behavior

In the rest of the work, we always assume the initial distributions for the two populations
are separated.
Assumption 4.1. For initial value u0 ∈ L∞per,+

(
RN
)2, we assume

u1(0, x)u2(0, x) = 0,∀x ∈ TN .

Furthermore, we suppose hi in equation (1.1) has the following form

hi(u1, u2) = hi(u1 + u2), i = 1, 2,

with hi(ri) = 0 for some ri > 0, i = 1, 2, and

hi(u) > 0, ∀u ∈ [0, ri), hi(u) < 0, ∀u > ri, lim sup
u→∞

hi(u) < 0, i = 1, 2.

Moreover, u 7−→ uhi(u) is a concave function for i = 1, 2.
Remark 4.2. Notice that segregation property in Theorem 3.1 implies the following equal-
ity:

ui(t, x)hi(u1(t, x) + u2(t, x)) = ui(t, x)hi(ui(t, x)), i = 1, 2, ∀(t, x) ∈ [0,∞)× TN . (4.1)
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Lemma 4.3. Let Assumptions 1.1, 1.2 and 4.1 be satisfied. Suppose u = u(t, x) is the
solution of (1.1)-(1.3). Then we have

(i) supt≥0 ‖ui(t, ·)‖L1 ≤ max{‖ui(0, ·)‖L1 , |TN |}, i = 1, 2.

(ii) v(t, x) := (∇K ◦ (u1 + u2)(t, ·))(x) satisfies v ∈ L∞((0,∞),W 1,∞
per (RN))N and

‖v(t, ·)‖C1 ≤ 2‖K‖C2 max{‖u1(0, ·)‖L1 , ‖u2(0, ·)‖L1 , |TN |}.

Proof. To prove the above estimate, we first deal with classical solution. By the equation
(4.1) due to segregation, the equation (1.1) can be rewritten as

∂tui + div
(
uiv
)

= uihi(ui), i = 1, 2. (4.2)

By Assumption 4.1 the function fi(u) = uhi(u) is concave for each i, integrating (4.2)
over TN and using Jensen’s inequality, we have for classical solution

d

dt
‖ui(t, ·)‖1 = ‖f(ui(t, ·))‖1 ≤ f (‖ui(t, ·)‖L1) .

Then the results follows using the usual ordinary differential arguments with Assumption
4.1, where we can prove

sup
t≥0
‖ui(t, ·)‖L1 ≤ max{‖ui(0, ·)‖L1 , |TN |}, i = 1, 2.

Let u0 ∈ L∞per,+
(
RN
)2 be given and u be the corresponding solution integrated along the

characteristics. Consider a sequence {un0}n≥0 in C1
per,+(RN)2 such that ‖un0−u0‖L1 → 0 as

n→ +∞. Then denote un the solutions corresponding to un0 , from Theorem 2.4 we have
‖un(t, ·) − u(t, ·)‖L1 → 0 and u(t, ·) ∈ L∞per,+

(
RN
)2. Therefore, by using the Lebesgue

convergence theorem, the result (i) follows. Then result (ii) is a direct consequence of
(i).

4.1 Energy functional

In order to prove that our energy functional is decreasing, we make the following assump-
tion on kernel K.
Assumption 4.4. The Fourier’s coefficients of function K on TN denoted by {cn[K]}n∈ZN
satisfy cn[K] > 0, ∀n ∈ ZN \ {0}. Here the Fourier coefficients are defined by

cn[K] = |TN |−1

∫
TN
e−in·xK(x)dx, ∀n ∈ ZN .

Remark 4.5. If ρ in system (1.1) satisfies that the Fourier transformation ρ̂(ξ) > 0 for
all ξ ∈ RN , then for the kernel K, we have cn[K] > 0 for all n ∈ ZN . This implies that
Assumption 4.4 is satisfied.

We construct the functional for ui, i = 1, 2, as

Ei[ui(t, ·)] =
1

|TN |

∫
TN
Gi(ui(t, x))dx,

Equations with nonlocal advection 75



4. Asymptotic behavior

where Gi : [0,∞)→ [0,∞) is defined by

Gi(u) := u ln

(
u

ri

)
− u+ ri. (4.3)

Notice that G′i(u) = ln(u/ri) for u > 0 and we define the energy functional as

E[(u1, u2)(t, ·)] :=
∑
i=1,2

Ei[ui(t, ·)]. (4.4)

Theorem 4.6. Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x) is
the solution of (1.1)-(1.3). Then for any t, τ > 0 set u := u1 + u2 we have

E[(u1, u2)(t+ τ, ·)]− E[(u1, u2)(t, ·)]

= −
∫ t+τ

t

∑
k∈ZN

|k|2ck[K] |ck[u(s, ·)]|2 ds− 1

|TN |

∫ t+τ

t

∫
TN

∑
i=1,2

ui

∣∣∣∣hi(ui) ln

(
ui
ri

)∣∣∣∣ dxds.

(4.5)

Proof. For any δ > 0, as before we first suppose u = (u1, u2) to be the classical solution.
Setting u = u1 + u2 ≥ 0, recall the property in (4.1) we have

d

dt
Ei[(ui + δ)(t, ·)] =

1

|TN |

∫
TN

ln

(
ui + δ

ri

)
∂tuidx

=
1

|TN |

∫
TN

ln

(
ui + δ

ri

)[
div [ui∇(K ◦ u)] + uihi(ui)

]
dx

=
1

|TN |

∫
TN

u2
i

ui + δ
∆(K ◦ u) + ui∇K ◦ u · ∇

(
ui

ui + δ

)
dx

+
1

|TN |

∫
TN
uihi(ui) ln

(
ui + δ

ri

)
dx.

Therefore, for any t, τ > 0 we obtain

Ei[(ui + δ)(t+ τ, ·)]− Ei[(ui + δ)(t, ·)]

=
1

|TN |

∫ t+τ

t

∫
TN

u2
i

ui + δ
∆(K ◦ u) + ui∇K ◦ u · ∇

(
ui

ui + δ

)
dxds

+
1

|TN |

∫ t+τ

t

∫
TN
uihi(ui) ln

(
ui + δ

ri

)
dxds.

Now by letting δ → 0 we can see that

Ei[ui(t+ τ, ·)]− Ei[ui(t, ·)]

=
1

|TN |

∫ t+τ

t

∫
TN
ui∆(K ◦ u)dxds+

1

|TN |

∫ t+τ

t

∫
TN
uihi(ui) ln

(
ui
ri

)
dxds.

By summing the two functional Ei, i = 1, 2, we obtain

E[(u1, u2)(t+ τ, ·)]− E[(u1, u2)(t, ·)]

=
1

|TN |

∫ t+τ

t

∫
TN
u∆(K ◦ u)dxds+

1

|TN |

∫ t+τ

t

∫
TN

∑
i=1,2

uihi(ui) ln

(
ui
ri

)
dxds.
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On the other hand, for each φ ∈ L2
per(RN), one has φ(x) =

∑
k∈ZN ck[φ]ein·x almost

everywhere, thus

1

|TN |

∫
TN
φ∆(K ◦ φ)dx =

∑
k∈ZN

1

|TN |

∫
TN
ck[φ]ein·x∆(K ◦ φ)dx

=
∑
k∈ZN

ck[φ]ck[∆K ◦ φ]

= −
∑
k∈ZN

|k|2ck[K]ck[φ]2.

Therefore, by the above calculation and by the fact that hi(u) ln(u/ri) < 0, i = 1, 2, we
have

E[u(t+ τ, ·)]− E[u(t, ·)]

= −
∫ t+τ

t

∑
k∈ZN

|k|2ck[K] |ck[u(s, ·)]|2 ds− 1

|TN |

∫ t+τ

t

∫
TN

∑
i=1,2

ui

∣∣∣∣hi(ui) ln

(
ui
ri

)∣∣∣∣ dxds.

The usual limiting procedure as in Lemma 4.3 allows us to extend the estimation to
solutions integrated along the characteristics.

Remark 4.7. By the above theorem, we can see the energy functional E is non-negative
and is decreasing along the trajectories of (1.1), by letting t→ +∞ we deduce from (4.5)
that

lim
t→+∞

∫ t+τ

t

∑
k∈ZN

|k|2ck[K] |ck[u(s, ·)]|2 ds = 0, (4.6)

and

lim
t→+∞

∫ t+τ

t

∫
TN
ui

∣∣∣∣hi(ui) ln

(
ui
ri

)∣∣∣∣ dxds = 0, i = 1, 2. (4.7)

Before we prove the L∞ boundedness of the solution for all t ≥ 0, i.e.,

sup
t≥0
‖ui(t, ·)‖L∞ <∞

for i = 1, 2, we need following lemmas.
Lemma 4.8. Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x) is
the solution of (1.1)-(1.3). Then for any k ∈ ZN and for each i = 1, 2, the mapping

t 7−→ ck[ui(t, ·)]

is a C1 function. Here ck[ui(t, ·)], k ∈ ZN are the Fourier coefficients. Moreover,

sup
t≥0

∣∣∣∣ d

dt
ck[ui(t, ·)]

∣∣∣∣ <∞.
Proof. For any k ∈ ZN , suppose u = (u1, u2) is the classical solution then we have

d

dt
ck[ui(t, ·)] =

1

|TN |

∫
TN
e−ik·x [−div (uiv) + uihi(ui)] dx
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=
1

|TN |

∫
TN
ui∇

(
e−ik·x

)
· v + e−ik·xuihi(ui)dx.

Therefore, by using the Jensen’s inequality for fi(u) = uhi(u) again, we derive∣∣∣∣ d

dt
ck[ui(t, ·)]

∣∣∣∣ ≤ |k|‖ui(t, ·)‖1‖v(t, ·)‖C0 + f(‖ui(t, ·)‖L1),

the result follows by Lemma 4.3. The case of the solution integrated along the character-
istics can be proved by applying a classical regularization procedure.

The regularity condition for kernel K defined in Assumption 1.2 serves mainly for the
following result.
Lemma 4.9. Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x) is
the solution of (1.1)-(1.3) and define u := u1 + u2. Then for v(t, x) = (∇K ◦ u(t, ·)) (x)
we have

lim
t→+∞

‖div v(t, ·)‖C0 = 0.

Proof. By Assumption 1.2 K ∈ Cm
per(RN) with m ≥ N+5

2
, therefore by Temam [100, page.

50] ∑
k∈ZN

(1 + |k|2)
N+5

2 ck[K]2 <∞. (4.8)

Moreover, we can deduce from (4.6) that for each k ∈ ZN\{0}

lim
t→+∞

∫ t+τ

t

|ck[u(s, ·)]|2 ds = lim
t→+∞

∫ τ

0

|ck[u(s+ t, ·)]|2ds = 0.

The last equality together with the results in Lemma 4.8, we can deduce

lim
t→+∞

ck[u(t, ·)] = 0, k ∈ ZN\{0}. (4.9)

We can compute that

div v(t, x) = − 1

|TN |

∫
TN

∆K(x− y)u(t, y)dy

= − 1

|TN |

∫
TN

∆K(x− y)
∑
k∈ZN

e−ik·yck[u(t, ·)]dy

= − 1

|TN |

∫
TN

∑
k∈ZN

∆K(z)eik·(z−x)ck[u(t, ·)]dz

=
∑
k∈ZN

|k|2ck[K]ck[u(t, ·)]e−ik·x,

where the last series converges due to (4.8). In fact, by Lemma 4.3, we can find a constant
M > 0 such that for each k ∈ ZN we have

|ck[u(t, ·)]| < ‖u(t, ·)‖L1 ≤M, ∀t ≥ 0.
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Therefore,

‖div v(t, x)‖C0 =

∥∥∥∥∥∑
k∈ZN

|k|2ck[K]ck[u(t, ·)]e−ik·x
∥∥∥∥∥
C0

≤M
∑
k∈ZN

|k|2ck[K] = M
∑

k∈ZN\{0}

|k|−N+1
2 |k|2+N+1

2 ck[K]

≤M

 ∑
k∈ZN\{0}

1

|k|N+1

 1
2
 ∑
k∈ZN\{0}

|k|N+5ck[K]2

 1
2

,

and due to (4.8), this last series converges. Therefore, by Lebesgue dominated convergence
theorem and (4.9) we have

lim sup
t→+∞

‖div v(t, x)‖C0 ≤ lim sup
t→+∞

∑
k∈ZN

|k|2ck[K]|ck[u(t, ·)]| = 0.

The result follows.

As a consequence of Lemma 4.9, we obtain Theorem 4.10 and Corollary 4.12 which
are the main results of this section.
Theorem 4.10. Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x)
is the solution of (1.1)-(1.3). Then we have for each i = 1, 2,

sup
t≥0
‖ui(t, ·)‖L∞ < +∞,

and more precisely we have
lim sup
t→+∞

‖ui(t, ·)‖L∞ ≤ ri.

Moreover, for any x ∈ RN such that ui(0, x) > 0. Then the solution integrated along the
characteristics converges point-wisely to the positive equilibrium ri for i = 1, 2. That is,
for any x ∈ Ui where Ui = {x ∈ RN : ui(0, x) > 0}

lim
t→∞

ui(t,Πv(t, 0;x)) = ri.

Or equivalently, for any x ∈ RN we have

ui(t,Πv(t, 0;x))
p.w.−−→ ri1Ui(x), as t→∞.

Remark 4.11. Notice from the above theorem, we obtain the following L2 uniform bound-
edness of the solution u = u1 + u2, that is

sup
t≥0
‖u(t, ·)‖L2 <∞.

Moreover for any sequence {tn}n≥0 which tends to infinity, since for Fourier coefficients,
one has

lim
n→∞

ck[u(tn, ·)] = 0, ∀k ∈ ZN\{0},
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therefore by Banach-Alaoglu-Bourbaki theorem, we deduce that there exists a subsequence
{tnl}l≥0 such that

u(tnl , ·) ⇀ c in L2,

where c is a constant which depends on the choice of the subsequence. With the above
argument we can deduce

lim
t→∞
‖v(t, ·)‖C0 = 0. (4.10)

In fact, for any sequence {tn}n≥0 with tn →∞ as n→∞, we can find a subsequence such
that

v(tnl , x) =

∫
TN
∇K(x− y)u(tnl , y)dy → c

∫
TN
∇K(x− y)dy = 0,

where the last equation is follows since K is periodic. Thus, equation (4.10) follows.

Proof. Suppose u = (u1, u2) the classical solution. The usual limiting procedure allows
us to extend the estimation to solutions integrated along the characteristics. We recall
the notation in (2.5) where wi(t, x) := ui(t,Πv(t, 0;x)), i = 1, 2, and for any x ∈ RN we
have

dwi(t, x)

dt
= wi(t, x) [−div v(t,Πv(t, 0;x)) + hi((w1 + w2)(t, x))]

= wi(t, x) [−div v(t,Πv(t, 0;x)) + hi(wi(t, x))] ,

where the second equation is due to segregation. Now we compare the solution along the
characteristics with the solution of the following ordinary differential equation. For any
τ > 0, let wi(t) to be the solution of the following Cauchy problem

dwi(t)

dt
= wi(t)

[
sup
t≥τ
‖div v(t, ·)‖C0 + hi(wi(t))

]
t > τ,

wi(τ) = ‖wi(τ, ·)‖L∞ .

Then we note that

lim sup
t→+∞

wi(t) ≤ Φi(τ) := inf{z > ri : sup
t≥τ
‖div v(t, ·)‖C0 + hi(y) ≤ 0, ∀y ≥ z}.

If the set is empty, then Φi(τ) = +∞. By comparison principle, for any τ > 0 we have

lim sup
t→+∞

‖wi(t, ·)‖L∞ ≤ lim sup
t→+∞

wi(t) ≤ Φi(τ),

while due to Assumption 4.1 where hi(u) < 0 for any u > ri and lim supu→∞ hi(u) < 0
and Lemma 4.9, we have limτ→+∞Φi(τ) = ri thus we have

lim sup
t→+∞

‖ui(t,Πv(t, 0; ·))‖L∞ ≤ ri. (4.11)

Since x 7→ Πv(t, 0;x) is invertible on RN , we have

lim sup
t→+∞

‖ui(t, ·)‖L∞ ≤ ri.

Together with the L∞ estimation of u in finite time in (2.26) , we can see that

sup
t≥0
‖ui(t, ·)‖L∞ <∞.
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Now we prove the second part of the theorem. For any fixed x ∈ RN with ui(0, x) > 0, we
can see from the definition of the solution integrated along the characteristics (2.9) that

wi(t, x) = ui(t,Πv(t, 0;x)) > 0, ∀t > 0.

For any τ > 0, define the solution wi(t) to be the solution of the following Cauchy problem
dwi(t)

dt
= wi(t)

[
− sup

t≥τ
‖div v(t, ·)‖C0 + hi(wi(t))

]
,

wi(τ) = wi(τ, x) > 0.

Then we note that

lim inf
t→+∞

wi(t) ≥ Φi(τ) := sup{z > 0 : − sup
t≥τ
‖div v(t, ·)‖C0 + hi(y) ≥ 0,∀y ≤ z}.

If the set is empty, then Φi(τ) = −∞. As before we use the comparison principle, for any
τ > 0 and any x ∈ {x ∈ RN : ui(0, x) > 0} we have

lim inf
t→+∞

wi(t, x) ≥ lim inf
t→+∞

wi(t) ≥ Φi(τ).

Due to Assumption 4.1 where hi(u) > 0 for any u ∈ [0, ri), we have limτ→+∞Φi(τ) = ri
thus we have for any x ∈ {x ∈ RN : ui(0, x) > 0},

lim inf
t→+∞

ui(t,Πv(t, 0;x)) ≥ ri,

together with (4.11) the result follows.

Next corollary is a consequence of Theorem 4.10.
Corollary 4.12. Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x)
is the solution of (1.1)-(1.3). If for some constant δ > 0 and u(0, x) =

∑
i=1,2 ui(0, x) ≥

δ > 0 for a.e. x ∈ TN . Moreover, we assume r1 = r2 =: r in Assumption 4.1. Then

lim
t→∞
‖u(t, ·)− r‖L∞ = 0.

Proof. Here again we only prove the convergence when u = (u1, u2) is the classical solu-
tion. We use the same notations as in Theorem 4.10 and define

w(t, x) := w1(t, x) + w2(t, x).

Due to estimation (4.11) in Theorem 4.10 and segregation property, we have

lim sup
t→+∞

sup
x∈RN

w(t, x) ≤ r. (4.12)

Moreover, we can obtain

dw(t, x)

dt
= −w(t, x)div v(t,Πv(t, 0;x)) +

2∑
i=1

wihi(wi).
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In order to use comparison principle, we set h(u) = minu≥0{h1(u), h2(u)} and by the
separation property in Theorem 3.1 we have

w1h1(w1) + w2h(w2) ≥ w1h(w1) + w2h(w2) = (w1 + w2)h(w1 + w2).

Hence,
dw(t, x)

dt
≥ w(t, x)

[
− sup

t≥τ
‖div v(t, ·)‖C0 + h(w(t, x))

]
, t ≥ τ.

For any τ > 0, we have infx∈RN w(τ, x) > 0. In fact, by our assumption, u(0, x) ≥ δ > 0
on TN , thus u(0, x) ≥ δ > 0 on RN and by equation (2.9) we have w(τ, x) > 0 for any
x ∈ RN and since w(t, x+ 2π) = w(t, x) for any x ∈ RN , we have infx∈RN w(τ, x) ≥ δ̃ > 0
for some positive δ̃. Thus, for any τ > 0, we define w(t) to be the solution of the following
ordinary differential equation

dw(t)

dt
= w(t)

[
− sup

t≥τ
‖div v(t, ·)‖C0 + h(w(t))

]
,

w(τ) = infx∈RN w(τ, x) > 0.

By the similar argument as in Theorem 4.10, we can see that

lim inf
t→+∞

inf
x∈RN

w(t, x) ≥ lim inf
t→+∞

w(t) ≥ r.

Together with (4.12), we have

lim
t→∞
‖w(t, ·)− r‖L∞ = 0.

Since for any t > 0, the mapping t 7→ Πv(t, 0; ·) is a bijection, we have

‖w(t, ·)− r‖L∞ = ‖u(t,Πv(t, 0; ·))− r‖L∞ = ‖u(t, ·)− r‖L∞ .
Thus, we obtain

lim
t→∞
‖u(t, ·)− r‖L∞ = 0.

The result follows.

Remark 4.13. Note that the result in the corollary, we only assume the roots of two
different reaction functions h1, h2 to be the same to obtain the convergence in L∞.

5 Young measure

We first introduce the notion of Young measures. The basic idea of Young measure is to
replace the map (t, x)→ u(t, x) = u1(t, x) + u2(t, x) by the map

(t, x)→ δu(t,x)

from [0,∞)×TN into a probability space. Namely, for fixed t and x, the Dirac mass δu(t,x)

is regarded as an element of the dual space the continuous functions C([0, γ],R) (where
γ := ‖u‖L∞([0,∞)×TN )) by using the following mapping

f 7−→
∫

[0,γ]

f(λ)δu(t,x)(dλ) = f(u(t, x)).
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This means that the map (t, x)→ δu(t,x) is identified to an element of

L∞
(
[0,∞)× TN , C([0, γ],R)?

)
.

The goal of this procedure is to use the weak star topology to regard Young measure as
an element the dual space of

L1
(
[0,∞)× TN , C([0, γ],R)

)
.

The space of Young measures in our specific context is nothing but L∞
(
[0,∞)× TN ,P ([0, γ])

)
(where P ([0, γ]) is the space of probabilities on [0, γ]) endowed with the weak star topol-
ogy.

In Corollary 4.12, we have the L∞ convergence of the solution u(= u1 + u2) when the
initial distribution is strictly positive. Then one would like to know about the convergence
of the solution when the initial distribution admits zero values. To answer this question,
we prove the following result.
Theorem 5.1. Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x)
is the solution of (1.1)-(1.3) provided by Theorem 2.4. Let us denote by γ as in (5.1).
Furthermore, suppose we have

r1 = r2 = r,

in Assumption 4.1 and define

E∞ := lim
t→∞

E[(u1, u2)(t, ·)],

where E[(u1, u2)(t, ·)] is the energy functional defined in (4.4).

Then for each i = 1, 2 and each t ≥ 0 the Dirac measure δ(u1+u2)(t,x) belongs to the space
of Young measures Y

(
TN ; [0, γ]

)
which means

(u1 + u2)(t, x) ∈ [0, γ], ∀t ≥ 0 and almost every x ∈ RN ,∫
A×[0,γ]

η(λ)δ(u1+u2)(t,x)(dλ)dx =

∫
A

η((u1 + u2)(t, x))dx, ∀A ∈ B(TN), ∀η ∈ C([0, γ],R).

Moreover, we obtain
r ≤ E∞ ≤ 2r

and
lim
t→∞

δ(u1+u2)(t,x) = (E∞/r − 1)δ0 + (2− E∞/r)δr,

in the sense of the narrow convergence topology of Y (TN ; [0, γ]). This means that for each
continuous function η : [0, γ]→ R and for any A ∈ B(TN)

lim
t→∞

∫
A

η((u1 + u2)(t, x))dx =

∫
A

(E∞/r − 1)η(0) + (2− E∞/r)η(r)dx.

Remark 5.2. Under the same assumptions as in Theorem 5.1, let {tn}n≥0 be any sequence
tending to ∞ as n→∞. Then the sequence {(u1 + u2)(tn, ·)}n≥0 ⊂ L∞per(RN) is relatively
compact in L1

per(RN) if and only if

E∞ = r or E∞ = 2r.
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The above result is a direct consequence of Young measure properties (see [27, Corollary
3.1.5]), which says if the sequence of Young measures {δ(u1+u2)(tn,x)}n≥0 converges in the
narrow sense to a Young measure ν(x, ·) and ν(x, ·) is a single Dirac measure δφ(x)(·) for
almost all x ∈ TN . Then we have

(u1 + u2)(tn, x)
L1

−→ φ(x), n→∞.

In our case, when E∞ = r (resp. = 2r), then

(u1 + u2)(tn, x)
L1

−→ r (resp. 0), n→∞.

Remark 5.3. When E∞ lies strictly in the interval (r, 2r), then δ(u1+u2)(t,x) converges to
two Dirac measures as t → ∞. To illustrate the notion of narrow convergence to two
Dirac measures, one may consider the following example. For each n ∈ N,

un(x) =

{
1, x ∈ ∆x [j, j + p),

0, x ∈ ∆x [j + p, j + 1).
, j = 0, 1, . . . , n, p ∈ (0, 1), ∆x =

2π

n+ 1
.

Then one can prove that
lim
n→∞

δun(x) = pδ1 + (1− p)δ0

in the sense of narrow convergence. Indeed, for any η ∈ Cb([0, 1]) and ϕ ∈ L1(0, 2π) one
has ∫

[0,2π]

ϕ(x)

∫
[0,1]

η(λ)δun(x)(dλ)dx =

∫
[0,2π]

ϕ(x)η(un(x))dx

=
n∑
j=0

∫
∆x[j,j+p)

ϕ(x)η(1)dx+

∫
∆x[j+p,j+1)

ϕ(x)η(0)dx,

and the result follows when n→∞.

Next, we introduce the notion of Young measure and the notion of narrow convergence
topology in a general case.

Definition 5.4 (Young measure). Let (S, d) be a separable metric space and let P(S) be
the set of probability measures on (S, d). Let (Ω,A, µ) be a finite measure space endowed
with σ−algebra A (in practice µ will be a Lebesgue measure in our case). A map ν : Ω→
P(S) (i.e. the map ν maps each x ∈ Ω to a probability B → ν(x,B) on S) is said to be a
Young measure if for each Borel set B ∈ B(S) the function x 7→ ν(x,B) is measurable
from (Ω,A) into [0, 1]. The set of all Young measures from (Ω,A) into S is denoted by
Y (Ω,A;S).

Definition 5.5 (Narrow convergence topology). The set Y (Ω,A;S) is endowed with nar-
row convergence topology which is the weakest topology on Y (Ω,A;S) such that all the
functionals from Y (Ω,A;S) into R defined by

ν 7−→
∫
A

∫
S
η(λ)ν(x, dλ)µ(dx)

is continuous whenever A ∈ A and η ∈ Cb(S;R).
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Remark 5.6. Note that a sequence {νn}n∈N ⊂ Y (Ω,A;S) narrowly converges to ν ∈
Y (Ω,A;S) if and only if for any η ∈ Cb(S;R) and A ∈ A

lim
n→∞

∫
A

∫
S
η(λ)νn(x, dλ)µ(dx) =

∫
A

∫
S
η(λ)ν(x, dλ)µ(dx).

For the sake of simplicity, we use Y (Ω;S) to denote Y (Ω,A;S) if A = B(Ω).

Since the time variable t is in a unbounded domain, we introduce the local narrow
convergence topology.

Definition 5.7 (Local narrow convergence topology). Let (S, d) be a separable met-
ric space and let (Ω,A, µ) be a finite measure space (in practice µ will be a Lebesgue
measure in our case). The set Y (R× Ω,B(R)⊗A;S) is endowed with the local nar-
row convergence topology denoted by Tloc which is defined as the weakest topology on
Y (R× Ω,B(R)⊗A;S) such that all the functionals from Y (Ω,A;S) into R defined by

ν 7−→
∫
I×A

(∫
S
η(λ)ν(t, x, dλ)

)
(dt⊗ µ(dx)) ,

is continuous for each bounded interval I ⊂ R, A ∈ A and η ∈ Cb(S;R).

For our case, we consider Ω = TN , A = B
(
TN
)
is the Borel σ– algebra and µ is the

Lebegues measure. By setting

γ := sup
t≥0

∑
i=1,2

‖ui(t, ·)‖L∞ <∞, (5.1)

the set S = [0, γ] (γ here corresponds to the L∞ bound of u1+u2) endowed with Euclidean
norm. To simplify the notations, we set

Y (TN ; [0, γ]) := Y (TN ,B(TN); [0, γ]).

We define Yloc
(
R× TN ; [0, γ]

)
to be the topological space Y

(
R× TN ; [0, γ]

)
endowed

with the local narrow convergence topology Tloc.
Furthermore, let us consider the probability space P

(
TN × [0, γ]

)
and let us recall

that the usual weak ∗−topology on P
(
TN × [0, γ]

)
is metrizable by using the so-called

bounded dual Lipschitz metric (Wasserstein metric Wp when p = 1) defined for each
µ, ν ∈ P

(
TN × [0, γ]

)
by

Θ (µ, ν) = sup

{∣∣∣∣∫
TN×[0,γ]

f(x, λ) (µ− ν)(dx, dλ)

∣∣∣∣ f ∈ Lip
(
TN × [0, γ]

)
, ‖f‖Lip ≤ 1

}
.

Recall that the Lipschitz norm for metric space (X, d) is defined as follows

‖f‖Lip = sup
x∈X
|f(x)|+ sup

(x,y)∈X2, x 6=y

|f(x)− f(y)|
d(x, y)

, ∀f ∈ Lip(X).

We refer to Dudley [41, Theorem 18] for the equivalence between the weak ∗−topology on
P
(
TN × [0, γ]

)
and the topology induced by Θ (·, ·). In the sequel the probability space

P
(
TN × [0, γ]

)
is always endowed with the metric topology induced by Θ without further

precision.
Let {tn}n≥0 be a given increasing sequence tending to ∞ as n → ∞. Using the above
definition, we can prove the following lemma.

Equations with nonlocal advection 85



5. Young measure

Lemma 5.8. Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Let T > 0 and i = 1, 2
be given. The sequence of maps

{
t 7−→ µni,t

}
n∈N from [−T, T ] to P

(
TN × [0, γ]

)
(endowed

with the above metric Θ) and defined by∫
TN×[0,γ]

g(x, y)µni,t(dx, dy) = |TN |−1

∫
TN
g (x, ui(t+ tn, x)) dx,∀g ∈ C

(
TN × [0, γ];R

)
,

is relatively compact in C
(
[−T, T ];P

(
TN × [0, γ]

))
.

Remark 5.9. In the following, we will use the notation

µni,t(dx, dy) = |TN |−1dx⊗ δui(t+tn,x)(dy).

Proof. Let us first consider the classical solution. For each g ∈ C1(TN × R)∫
TN
g(x, ui(t, x))dx−

∫
TN
g(x, ui(s, x))dx =

∫ t

s

d

dl

∫
TN
g(x, ui(l, x))dxdl.

Since ui is bounded, we have

d

dt

∫
TN
g(x, ui(t, x))dx =

∫
TN
∂ug(x, ui(t, x))∂tui(t, x)dx

=

∫
TN
∂ug(x, ui(t, x)) (−div(uiv) + uihi(ui)) dx

=

∫
TN
ui∇x [∂ug(x, ui(t, x))] · v + ∂ug(x, ui(t, x))uihi(ui)dx,

(5.2)

where the last equality is obtained by applying the Green’s formula together with periodic
boundary condition. We can see that

ui(t, x)∇x [∂ug(x, ui(t, x))] = ∇x [ui(t, x)∂ug(x, ui(t, x))− g(x, ui(t, x))] + p(x, ui(t, x)),

where p(x, u) = ∇xg(x, u).

By substituting the last formula into (5.2) and by using again the periodicity we derive
that

d

dt

∫
TN
g(x, ui(t, x))dx = −

∫
TN

[ui(t, x)∂ug(x, ui(t, x))− g(x, ui(t, x))] div v(t, x)dx

+

∫
TN

p(x, ui(t, x)) · v(t, x)dx

+

∫
TN
∂ug(x, ui(t, x))ui(t, x)hi(ui(t, x))dx.

(5.3)
The formula (5.2) extends to the solution integrated along the characteristics by usual
density arguments. Incorporating the estimation of supt≥0 ‖u(t, ·)‖L∞ in Theorem 4.10,
the estimation of v in Lemma 4.3, and the above equality (5.3), we deduce that there
exists a constant M > 0 such that∣∣∣∣∫

RN
g(x, ui(t, x))dx−

∫
RN
g(x, ui(s, x))dx

∣∣∣∣ ≤M‖g‖Lip(TN×[0,γ])|t− s|.
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From the definition of the metric on Θ (µ, ν), we can see that

Θ
(
µni,t, µ

n
i,s

)
≤M |t− s|.

From this we observe that each map t→ µni,t is continuous from [−T, T ] to P
(
TN × [0, γ]

)
.

By Prohorov’s compactness theorem [16, Theorem 5.1], the space P
(
TN × [0, γ]

)
endowed

with the metric Θ is a compact metric space. Therefore we can apply Arzela-Ascoli
theorem and the result follows.

Since u is uniformly bounded, one can deduce the following compact result for Young
measures (see [94, Theorem 9.15]).
Lemma 5.10. The sequence

{
δui(t+tn,x)

}
n≥0

is relatively compact for the local narrow
convergence topology of Yloc

(
R× TN ; [0, γ]

)
.

Using the above Lemma 5.8 and Lemma 5.10, up to a subsequence, one can assume
that there exists a Young measure ν ≡ νi,t(x, ·) ∈ Y

(
R× TN ; [0, γ]

)
such that

lim
n→∞

δui(t+tn,x) = νi,t(x, ·) in the topology of Yloc
(
R× TN ; [0, γ]

)
. (5.4)

and
lim
n→∞

µni,t = µ∞i,t (5.5)

where the limit holds to the locally uniform continuous topology of C
(
R;P

(
TN × [0, γ]

))
.

Here we would like to recall that the limits µ∞i,t and νi,t(x, ·) depend on the choice of
subsequence.
Next, by definition one has for each continuous function f ∈ C

(
TN × [0, γ];R

)
and each

n ≥ 0: ∫
TN×[0,γ]

f(x, y)µni,t(dx, dy) = |TN |−1

∫
TN

∫
[0,γ]

f (x, y) δui(t+tn,x)(dy) dx.

From (5.4) and (5.5), passing to the limit n→∞ yields to∫
TN×[0,γ]

f(x, y)µ∞i,t(dx, dy) = |TN |−1

∫
TN

∫
[0,γ]

f (x, y) νi,t(x, dy) dx.

Thus, we can rewrite µ∞i,t as

µ∞i,t(dx, dy) = |TN |−1dx⊗ νi,t(x, dy).

The aim of the following lemmas is to identify the family of measures νi,t(x, ·). Our
next result describes the support of νi,t(x, ·).
Lemma 5.11. Under the same assumptions of Lemma 5.8, for i = 1, 2, there exist mea-
surable maps ai : R× TN → R such that 0 ≤ ai(t, x) ≤ 1 a.e. (t, x) ∈ R× TN and

νi,t(x, ·) = (1− ai(t, x)) δ0(.) + ai(t, x)δri(.), a.e. (t, x) ∈ R× TN .
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Proof. Let us reconsider Fi(u) := u |hi(u) ln(u/ri)| for u ∈ [0,∞) and recall that from
equation (4.7) we have for any τ > 0

lim
t→+∞

∫ t+τ

t

∫
TN
Fi(ui(s, x))dxds = 0, i = 1, 2.

Therefore, for i = 1, 2 and from equation (5.5)

0 = lim
n→∞

∫ τ

0

∫
TN
Fi(ui(t+ tn, x))dxdt

= lim
n→∞

|TN |
∫ τ

0

∫
TN×[0,γ]

Fi(λ)µni,t(dx, dλ)dt

=

∫ τ

0

∫
TN×[0,γ]

Fi(λ)νi,t(x, dλ)dxdt.

Since the map u 7→ Fi(u) is non-negative and only vanishes at u = 0 and u = ri one
obtains that

supp νi,t(x, ·) ⊂ {0} ∪ {ri}, a.e. (t, x) ∈ R× TN .

The above characterization of the support allows us to rewrite

νi,t(x, ·) = νi,t (x, {0}) δ0(.) + νi,t (x, {ri}) δri(.), a.e. (t, x) ∈ R× TN .

Finally set ai(t, x) ≡ νi,t(x, {ri}). Recalling that (t, x) 7→ νi,t(x, ·) is measurable with
value as a probability measure, thus νi,t (x, {0}) = 1− νi,t (x, {ri}) and (t, x) 7→ a(t, x) is
measurable, the result follows.

Our next result shows the measurable function ai(t, x) is independent of the time
variable t.
Lemma 5.12. Under the same assumptions of Lemma 5.8, there exists a measurable map
ci : TN → TN such that ai ≡ ai(t, x) provided by Lemma 5.11 is independent of t and
satisfies for any t ∈ R,

ai(t, x) ≡ ci(x), a.e. x ∈ TN , i = 1, 2.

Moreover, for any t ∈ R,

νi,t(x, ·) = (1− ci(x))δ0(.) + ci(x)δri(.), a.e. x ∈ TN , i = 1, 2,

for some measurable functions ci : TN → TN , i = 1, 2.

Furthermore, we have

lim
n→∞

δui(t+tn,x) = (1− ci(x))δ0 + ci(x)δri , (5.6)

in the sense of the narrow convergence and where the limit depends on the choice of
subsequence.
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Proof. Suppose u = (u1, u2) the classical solution. For any {tn}n≥0 with tn →∞ as n→ 0
and any φ ∈ C1

c (TN),∫
TN
φ(x)∂tui(t+ tn, x)dx+

∫
TN
φ(x)div(u(t+ tn, x)v(t+ tn, x))dx

=

∫
TN
φ(x)ui(t+ tn, x)hi(ui(t+ tn, x))dx.

Since φ has compact support, we have∫
TN
φ(x)∂tui(t+ tn, x)dx

=

∫
TN
∇φ(x) · v(t+ tn, x)u(t+ tn, x)dx+

∫
TN
φ(x)ui(t+ tn, x)hi(ui(t+ tn, x))dx.

Let T ∈ R and δ > 0 be given. Integrating the both sides over (T, T + δ) leads to∫
TN
φ(x)

(
ui(T + δ + tn, x)− ui(T + tn, x)

)
dx

=

∫ T+δ

T

∫
TN
∇φ(x) · v(t+ tn, x)u(t+ tn, x)dxdt

+

∫ T+δ

T

∫
TN
φ(x)ui(t+ tn, x)hi(ui(t+ tn, x))dxdt.

(5.7)

Now equation (5.7) is also true for the solution integrated along the characteristics. In fact,
we can apply Theorem 2.4 (iii), by choosing a sequence of initial distribution {ϕni }n≥0 ⊂
C1(TN) with

ϕni
L1(TN )−−−−→ ϕi ∈ L∞(TN),

since the semiflow is continuous in L1 norm, that is, for any t ∈ [T, T + δ],

‖ui(t, x;ϕni )− ui(t, x;ϕi)‖L1 → 0, as n→∞,

we can pass the limit to both sides of (5.7). For the right-hand-side of (5.7), by (4.10) in
Remark 4.11 that limt→∞ ‖v(t, ·)‖C0 = 0 we have for the first term

lim
n→∞

∣∣∣∣∫ T+δ

T

∫
TN
∇φ(x) · v(t+ tn, x)u(t+ tn, x)dxdt

∣∣∣∣
≤ lim

n→∞
δ|TN |‖φ‖C1 sup

t≥0
‖ui(t, ·)‖L∞‖v(t+ tn, ·)‖C0 = 0.

(5.8)

and the second term ∫ T+δ

T

∫
TN
φ(x)ui(t+ tn, x)hi(ui(t+ tn, x))dxdt

=

∫ T+δ

T

∫
TN
φ(x)

[∫
[0,γ]

λhi (λ) δui(t+tn,x)(dλ)

]
dxdt.
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Letting n→∞, we have

lim
n→∞

∫ T+δ

T

∫
TN
φ(x)ui(t+ tn, x)hi(ui(t+ tn, x))dxdt

=

∫ T+δ

T

∫
TN
φ(x)

[∫
[0,γ]

λhi (λ) [(1− ai(t, x)) δ0 + ai(t, x)δri ] (dλ)

]
dxdt = 0.

(5.9)

Therefore, by (5.8) and (5.9) we deduce the left-hand-side of (5.7)

lim
n→∞

∫
TN
φ(x)

(
ui(T + δ + tn, x)− ui(T + tn, x)

)
dx

= ri

∫
TN
φ(x)

(
ai(T + δ, x)− ai(T, x)

)
dx = 0.

Hence we have ∫
TN
φ(x)

(
ai(T + δ, x)− ai(T, x)

)
dx = 0, ∀φ(x) ∈ C1

c (TN).

Since T ∈ R and δ > 0 is arbitrary, we deduce for any t ∈ R

ai(t, x) = ci(x), a.e. x ∈ TN , (5.10)

where ci : TN → TN is a measurable function. The last part of the lemma now follows by
the above equation (5.10), (5.4) and Lemma 5.12.

Next, we study the narrow convergence of the measure δ(u1+u2)(t+tn,x) as n→∞.
Corollary 5.13. Let {tn}n≥0 be a given increasing sequence tending to ∞ as n → ∞.
Then, up to a subsequence, we have two measurable functions ci(x) ∈ [0, 1] for i = 1, 2,
such that for any t ≥ 0,

lim
n→∞

δ(u1+u2)(t+tn,x) =

(
1−

∑
i=1,2

ci(x)

)
δ0 +

∑
i=1,2

ci(x)δri

in the sense of narrow convergence.

Proof. From segregation property in Theorem 3.1, we have for any η ∈ C([0, γ]) that

η (u1(t, x) + u2(t, x)) + η(0) = η(u1(t, x)) + η(u2(t, x)), ∀(t, x) ∈ R+ × TN ,

which is equivalent to say that

δ0 + δ(u1+u2)(t,x) = δu1(t,x) + δu2(t,x).

Therefore, for any ϕ ∈ L1(TN), we have

lim
n→∞

∫
TN
ϕ(x)

∫
[0,γ]

η(λ)
(
δ0 + δ(u1+u2)(t+tn,x)

)
(dλ)dx

= lim
n→∞

∫
TN
ϕ(x)

∫
[0,γ]

η(λ)
(
δu1(t+tn,x) + δu2(t+tn,x)

)
(dλ)dx

=

∫
TN
ϕ(x)

∫
[0,γ]

η(λ)

((
2−

∑
i=1,2

ci(x)

)
δ0 +

∑
i=1,2

ci(x)δri

)
(dλ)dx.
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By subtracting the term δ0 from each side, we deduce that

lim
n→∞

δ(u1+u2)(t+tn,x) =

(
1−

∑
i=1,2

ci(x)

)
δ0 +

∑
i=1,2

ci(x)δri (5.11)

in the sense of the narrow convergence topology of Y (TN ; [0, γ]). Here we recall that the
limit depends on the choice of subsequence.

Lemma 5.14. Under the same assumptions as in Lemma 5.8, the following equality holds
true:

r1c1(x) + r2c2(x) ≡ r1 + r2 − E∞, a.e. x ∈ TN ,
where E∞ := limt→∞E [(u1, u2)(t, ·)] in (4.4).

Proof. Recall equation (4.3) where we have Gi(0) = ri, G(ri) = 0, we can see that

lim
n→∞

Ei [ui(t+ tn, ·)] = lim
n→∞

1

|TN |

∫
TN
Gi(ui(t+ tn, x))dx

= lim
n→∞

1

|TN |

∫
TN×[0,γ]

Gi(λ)δui(t+tn,x)(dλ)dx

= lim
n→∞

1

|TN |

∫
TN×[0,γ]

Gi(0)(1− ci(x)) +Gi(ri)ci(x)dx

= ri −
1

|TN |

∫
TN
rici(x)dx.

(5.12)

Meanwhile, from (4.9) the Fourier coefficients satisfy

lim
t→∞

ck [(u1 + u2)(t, ·)] = 0, ∀k ∈ ZN\{0}.

On the other hand, we have for all k ∈ ZN\{0}

lim
n→∞

ck [(u1 + u2)(t+ tn, ·)] = lim
n→∞

1

|TN |

∫
TN
e−ikx(u1 + u2)(t+ tn, x)dx

= lim
n→∞

1

|TN |

∫
TN×[0×γ]

e−ikxλ
(
δu1(t+tn,x) + δu1(t+tn,x)

)
(dλ)dx

=
1

|TN |

∫
TN
e−ikx(r1c1(x) + r2c2(x))dx.

Since c1, c2 ∈ L∞(TN) ⊂ L2(TN) and {e−ikx}k∈Z is a basis of L2(TN). This implies that
r1c1(x) + r2c2(x) is a constant function. Recall that

E∞ = lim
n→∞

∑
i=1,2

Ei [ui(t+ tn, ·)] = r1 + r2 −
1

|TN |

∫
TN

∑
i=1,2

rici(x)dx,

thus the result follows.

Lemma 5.15 (Segregation at t = ∞). Under the same assumptions as in Lemma 5.8,
the following equation holds

c1(x)c2(x) = 0, a.e., x ∈ TN .

Moreover when r1 = r2 = r, then
r ≤ E∞ ≤ 2r.
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5. Young measure

Proof. By using the segregation property in Theorem 3.1, we can see that, for any η ∈
Cb([0, γ]),

η
(

(u1(t, x) + u2(t, x))2 ) = η
(
u2

1(t, x) + u2
2(t, x)

)
, ∀ t ∈ R+, a.e. x ∈ TN .

Therefore, for any Borel set A ∈ B(TN), we deduce the following equation∫
A×[0,γ]

η(λ2)δ(u1+u2)(t+tn,x)(dλ)dx

=

∫
A×[0,γ]2

η(λ2
1 + λ2

2)δu1(t+tn,x)(dλ1)δu2(t+tn,x)(dλ2)dx.

(5.13)

By equation (5.6) and (5.11), we let n → ∞, then for the left-hand-side (L.H.S.) of
equation (5.13)

lim
n→∞

L.H.S. =

∫
A×[0,γ]

η(λ2)

[(
1−

∑
i=1,2

ci(x)

)
δ0(dλ) +

∑
i=1,2

ci(x)δri(dλ)

]

=

∫
A

η(0)

(
1−

∑
i=1,2

ci(x)

)
+
∑
i=1,2

η(r2
i )ci(x)dx.

Then for the right-hand-side (R.H.S.) of equation (5.13)

lim
n→∞

R.H.S. =

∫
A×[0,γ]2

η(λ2
1 + λ2

2)
∏
i=1,2

[(1− ci(x)) δ0(dλi) + ci(x)δri(dλi)] dx

=

∫
A

(
η(0)

∏
i=1,2

(1− ci(x)) + η(r2
1)c1(x)(1− c2(x))

+ η(r2
2)c2(x)(1− c1(x)) + η(r2

1 + r2
2)c1(x)c2(x)

)
dx.

Comparing the two limits and noticing that A ∈ B(TN) is arbitrary, we conclude that

c1(x)c2(x)

[
η(0) + η(r2

1 + r2
2)− η(r2

1)− η(r2
2)

]
= 0, for a.e. x ∈ TN .

Furthermore, since η ∈ Cb([0, γ]) is any given function, we can choose an η such that

η(0) + η(r2
1 + r2

2)− η(r2
1)− η(r2

2) 6= 0,

thus
c1(x)c2(x) = 0, a.e., x ∈ TN . (5.14)

Since by Lemma 5.11 and 5.12, one has 0 ≤ ci(x) ≤ 1 for any x ∈ TN . Hence, one can
deduce from Lemma 5.14

0 ≤ E∞ ≤ r1 + r2.

Moreover, one can deduce from (5.14) that

min{r1, r2} ≤ E∞ ≤ r1 + r2.

If we assume r1 = r2 = r, then
r ≤ E∞ ≤ 2r.
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2. Asymptotic behavior

Proof of Theorem 5.1. By Lemma 5.10, the sequence {δui(t+tn,x)}n≥0 is relatively compact
in Yloc

(
R× TN ; [0, γ]

)
with locally narrow topology, thus, up to a sequence, we have

lim
n→∞

δui(t+tn,x) = νi,t(x, ·) in the topology of Yloc
(
R× TN ; [0, γ]

)
.

The key arguments of the proof lies in the two consequences of the decreasing energy
functional, namely, equation (4.6) and equation (4.7). Lemma 5.11 is a consequence of
the first equation (4.6) by which we can determine the support of νi,t(x, ·), i.e., there exists
measurable functions ai(t, x) such that

νi,t(x, ·) = (1− ai(t, x))δ0(.) + ai(t, x)δri(.), a.e. x ∈ TN , i = 1, 2.

Moreover, Lemma 5.8 and Lemma 5.12 enable us to write ai(t, x) ≡ ci(x), i = 1, 2. Thus,
we have

lim
n→∞

δui(t+tn,x) = (1− ci(x))δ0 + ci(x)δri in the topology of Yloc
(
R× TN ; [0, γ]

)
Applying the segregation property, we have

δ0 + δ(u1+u2)(t,x) = δu1(t,x) + δu2(t,x),

hence by Corollary 4.12,

lim
n→∞

δ(u1+u2)(t+tn,x) =

(
1−

∑
i=1,2

ci(x)

)
δ0 +

∑
i=1,2

ci(x)δri (5.15)

If in addition, we assume that r1 = r2 = r, we apply Lemma 5.14 where we used the
decaying of Fourier coefficients in equation (4.7), which yields

2∑
i=1

ci(x) = 2− E∞
r
.

together with equation (5.15) we obtain

lim
n→∞

δ(u1+u2)(t+tn,x) = (E∞/r − 1)δ0 + (2− E∞/r)δr,

in the sense of the narrow convergence topology of Y (TN ; [0, γ]) and by Lemma 5.15 we
have E∞ ∈ [r, 2r]. Now the limit does not depend on t and the choice of the subsequence.
Since {tn}n≥0 is any given sequence that tends to infinity and

(
TN ,B(TN)

)
is a countably

generated σ−algebra then the topology Y (TN ; [0, γ]) is metrizable (see for instance [102,
Theorem 1] or the monograph [27]), therefore we can conclude that

lim
t→∞

δ(u1+u2)(t,x) = (E∞/r − 1)δ0 + (2− E∞/r)δr.

Thus, Theorem 5.1 follows.
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6. Discussion and numerical simulations

6 Discussion and numerical simulations

In this section we will study the system (1.1) numerically for the one dimensional case.
Our original motivation is coming from two species of cell growing in a petri dish. The
two dimensional case will be considered in some future work.

Here we will focus on the coexistence and the exclusion principle for two species. From
Theorem 5.1, we deduce

lim
t→∞

δ(u1+u2)(t,x) = (E∞/r − 1)δ0 + (2− E∞/r)δr, in the sense of narrow convergence.

Therefore the limit E∞ := limt→∞E[(u1, u2)(t, ·)] is an important index to determine
whether solution u1 +u2 converges to a Young measure in the sense of narrow convergence
or to a constant in L1 norm (see Remark 5.2). To that aim, we trace the curve t 7−→
E[(u1, u2)(t, ·)] in numerical simulations, which has been analytically proved decreasing
in Theorem 4.6. Moreover, we also plot the curve t 7−→ Ei[ui(t, ·)], i = 1, 2, respectively.
This will help us to understand the limit for each species ui.

In the numerical simulations, we focus on the convergence of the energy functional
which implies the convergence of the total number for each species. In fact, by using (5.6)
we obtain

lim
t→∞

1

|T|

∫
T
ui(t, x)dx = lim

t→∞

1

|T|

∫
T

∫
[0,γ]

λδui(t,x)(dλ)dx =
ri
|T|

∫
T

∫
[0,γ]

ci(x)dx.

Hence by using (5.12) one has

lim
t→∞

Ei[ui(t, ·)] = ri

(
1− 1

|T|

∫
T
ci(x)dx

)
= ri − lim

t→∞

1

|T|

∫
T
ui(t, x)dx. (6.1)

That is to say that the energy functional inform us about the asymptotic number of
individuals for each species.

In this section, we will investigate numerically the following properties.

Coexistence: If r1 = r2 = r, then c1(x), c2(x) ∈ (0, 1), a.e., x ∈ TN . For each species,
the following limits exist

lim
t→∞
‖ui(t, ·)‖L1 = r

∫
TN
ci(x)dx ∈ (0, r), i = 1, 2.

We will see that the relative location of each species influences the asymptotic number in
each species. Moreover, we have

(u1 + u2)(t, x)
L1

−→ r, t→∞.

Exclusion Principle: If r1 > r2 (resp. r1 < r2) then c1(x) = 1, c2(x) = 0 (resp.
c1(x) = 0, c2(x) = 1) a.e., x ∈ TN , which implies

u1(t, x)
L1

−→ r1, u2(t, x)
L1

−→ 0, (resp. u1(t, x)
L1

−→ 0, u2(t, x)
L1

−→ r2),

and
(u1 + u2)(t, x)

L1

−→ max{r1, r2}, t→∞.
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2. Asymptotic behavior

6.1 The case r1 = r2 implies the coexistence

Our first scenario is to present the results in Theorem 5.1. It is interesting to notice that
in Theorem 5.1, we only assume the equilibrium of the corresponding ODE system for
each species to be the same without imposing any other condition on h, which means that
the dynamics for these two species can be different. Hence, we will use the following two
different reaction functions for different species

u1h1(u1 + u2) = u1

(
b1

1 + γ(u1 + u2)
− µ

)
, u2h2(u1 + u2) = b2u2

(
1− u1 + u2

K

)
. (6.2)

One can verify that hi satisfies Assumption 1.1 and Assumption 4.1 with their roots
(i.e., hi(ri) = 0, i = 1, 2) as

r1 :=
b1 − µ
γµ

, r2 = K.

Our kernel ρ in the simulation is chosen as

ρ(x) = e−π|x|
2

, x ∈ RN , (6.3)

which is the Gaussian kernel and we consider the dimension N = 1 in this section.
Therefore, due to Remark 1.3 and Remark 4.5, Assumption 1.2 and Assumption 4.4 are
satisfied.

We set the initial distribution for two species to be of compact supports and separated.
From Theorem 3.1, we shall observe the segregation property of two species as time
evolves. Our parameters in system (1.1) are given as

b1 = b2 = 1.2, µ = 1, γ = 1, K = 0.2, (6.4)

therefore one can calculate

r1 = r2 = 0.2.

Now we trace the curve t 7−→ E[(u1, u2)(t, ·)] in numerical simulation, which has been an-
alytically proved decreasing in Theorem 5.1. We also plot the curve t 7−→ Ei[ui(t, ·)], i =
1, 2, respectively. Moreover, we plot the variation of the mean value of the total number
of individuals for each species, that is

t 7−→ 1

2π

∫ 2π

0

ui(t, x)dx, i = 1, 2.
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6. Discussion and numerical simulations
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Figure 2.2: Figure (a) is the plot of the curves t 7−→ Ei[ui(t, ·)], i = 1, 2, (green and
red curves respectively) and t 7−→ E[u1, u2)(t, ·)] (blue curve) under system (1.1) with
reaction functions as (6.2) and kernel ρ as Gaussian in (6.3). We set our parameters as
in (6.4). Thus, one has r1 = r2 = 0.2. We trace the curve t 7−→ E[(u1, u2)(t, ·)] which is
decreasing. We can see that the curve t 7−→ E1[u1(t, ·)] is not monotone decreasing while
t 7−→ E2[u2(t, ·)] is monotone decreasing and they converge when t → ∞. Figure (b) is
the plot of total number of individuals for each species.

From Figure 2.2, we can see that the limit E∞ exists and equals to r = 0.2. From
Theorem 5.1 and Remark 5.2, the limit E∞ = r implies

(u1 + u2)(t, x)
L1

−→ r, t→∞.

Moreover, from the simulation we note that each limit Ei,∞ := limt→∞Ei[ui(t, ·)] exists
for i = 1, 2. From (6.1) we have

Ei,∞ = r

(
1− 1

|T|

∫
T
ci(x)dx

)
, i = 1, 2. (6.5)

By our simulation, we can see that E1,∞, E2,∞ ∈ (0, r) while E1,∞ + E2,∞ = r, together
with equation (6.5) we can deduce c1(x), c2(x) ∈ (0, 1), c1(x) + c2(x) = 1. Notice that
c1(x), c2(x) ∈ (0, 1) implies the limits

lim
n→∞

δui(tn,x) = (1− ci(x))δ0 + ci(x)δr, i = 1, 2,

is not a single Dirac measure. Therefore, using Young measure and the weak compactness
in Y (T; [0, γ]) helps us to understand the limit of the solution.

Now we plot the evolution of the two populations under system (1.1) in Figure 2.3.
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2. Asymptotic behavior
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Figure 2.3: The simulation of system (1.1) with reaction functions as (6.2) and kernel ρ
as Gaussian in (6.3). The green curves represent species u1, the red represents species u2.
We set our parameters as in (6.4). Thus, one has r1 = r2 = 0.2. As we have r1 = r2, we
observe the coexistence of the two species and the segregation property and after t = 100
the distributions of the two species stay the same.

For the asymptotic behavior of the population, we can see from Figure 2.3 that the
sum of two species u1 + u2 reaches a steady state at t = 100. From the pattern at each
moment t, we can see two species keep segregated in stead of being mixed (in the case
with linear diffusion). This result is due to our nonlocal advection term which ensures
that the propagation speed is finite, which captures the "islets" phenomenon in the real
biological experiments in dimension two (see Figure 1. in [88]).

6.2 Initial location matters

Consider two different initial distributions u0 = (u1(0, x), u2(0, x)) and ũ0 = (ũ1(0, x), ũ2(0, x))
and assume their L1 norms are the same, that is∫

T
ui(0, x)dx =

∫
T
ũi(0, x)dx, i = 1, 2.
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6. Discussion and numerical simulations

Under the same set of parameters, one may ask whether the limits

Ui,∞ := lim
t→∞

1

|T|

∫
T
ui(t, x)dx, Ũi,∞ := lim

t→∞

1

|T|

∫
T
ũi(t, x)dx, i = 1, 2. (6.6)

for each species i = 1, 2 will be the same or not.

In the real biological experiments, this situation corresponds to the case where the
researchers use the same quantity of cells for each species for two separate petri dishes.
Supposing the intrinsic mechanisms of cell population for these two groups are the same,
the only difference is the initial cell distributions in two petri dishes. We are interested
in whether the final total mass for each population are the same. Before our simulation,
we give two different initial distributions as in Figure 2.4.
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Figure 2.4: Figures (a) and (b) correspond respectively to the initial distributions u0 and
ũ0. In Figure (a), we shift the population of u2 (red curve) at position in between 3/2π
and 2π to position in between π/2 to π. Therefore, the number individuals for each species
is conserved.

0 20 40 60 80 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2
(a)

0 20 40 60 80 100
0.04

0.06

0.08

0.1

0.12
(b)

Figure 2.5: In this figure we plot the energy functional (see Figure (a)) and the mean value
of individuals (see Figure (b)) corresponding to two sets of different initial distributions
in Figure 2.4. The dashed lines correspond to the simulation with initial distribution as
in Figure 2.4 (a) and solid lines correspond to initial distribution as in Figure 2.4 (b).
The parameters are the same as in (6.4).
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2. Asymptotic behavior

In Figure 2.5, we plot the energy functional and the number of individuals corre-
sponding to each initial distribution in Figure 2.4. Since the limits Ui,∞ and Ũi,∞ have a
significant difference from Figure 2.5 (b), thus we conclude the final total mass depends
on the position of the initial value.
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Figure 2.6: The simulation of system (1.1) with reaction functions as (6.2) and kernel ρ
as Gaussian in (6.3). The green curves represent species u1, the red represents species
u2. We set our parameters as in (6.4). Thus, one has r1 = r2 = 0.2 which implies the
coexistence of the two species and after t = 100 the distributions of the two species stay
the same.

Now we give the evolution of the two populations under system (1.1). As for the
simulation in Figure 2.6, we can see the same coexistence as in Figure 2.3 and the sum of
the two populations

(u1 + u2)(t, x)
L1

−→ r, t→∞.
However, the final patterns of two species at t = 100 in Figure 2.6. (i) and Figure 2.3. (i)
are evidently different.

6.3 The case r1 6= r2 implies the competitive exclusion

Our second scenario complements the results in Theorem 5.1, without loss of generality
we allow r1 > r2. This means species u1 is favored in the environment. We call this
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6. Discussion and numerical simulations

scenario the exclusion principle. Our parameters for the reaction functions (6.2) are given
as

b1 = 1.5, b2 = 1.2, µ = 1, γ = 1, K = 0.2. (6.7)

therefore we can calculate
r1 = 0.5 > r2 = 0.2.

As before, we trace the curve t 7−→ E[(u1, u2)(t, ·)] in numerical simulation and we also
plot the curve t 7−→ Ei[ui(t, ·)], i = 1, 2, respectively. Moreover, we plot the variation of
the mean value of the total number of individuals for each species.
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Figure 2.7: Figure (a) is the plot of the curves t 7−→ Ei[ui(t, ·)], i = 1, 2, (green and red
curves respectively) and t 7−→ E[u1, u2)(t, ·)] (blue curve) under system (1.1) with reaction
functions as (6.2) and kernel ρ as Gaussian in (6.3). We set our parameters as in (6.7).
Thus, one has r1 = 0.5 > r2 = 0.2. We trace the curve t 7−→ E[(u1, u2)(t, ·)] which is
decreasing. We can also see the curve t 7−→ E1[u1(t, ·)] is decreasing while t 7−→ E2[u2(t, ·)]
is not monotone decreasing and their limits exist. Figure (b) is the plot of mean value of
individuals for each species.

By tracing the curve t 7−→ E[(u1, u2)(t, ·)], we can see from Figure 2.7 that it is strictly
decreasing and it confirms again the result which has been proved in Theorem 4.6. We
can also see that the curve t 7−→ E1[u1(t, ·)] is decreasing while t 7−→ E2[u2(t, ·)] is not
monotone decreasing and their limits are

lim
t→∞

E1[u1(t, ·)] = 0, lim
t→∞

E2[u1(t, ·)] = r2.

If we have E1,∞ = 0, E2,∞ = r2, since ci(x) ∈ [0, 1], a.e. x ∈ T for i = 1, 2 and by equation
(6.5) one obtains c1(x) = 1, c2(x) = 0. Therefore, we have c1(x) + c2(x) = 1, a.e. x ∈ T
and the convergence in Theorem 5.1 is in the sense of L1 (see Remark 5.2)

u1(t, x)
L1

−→ r1, u2(t, x)
L1

−→ 0, t→∞,

and
(u1 + u2)(t, x)

L1

−→ r1, t→∞.
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2. Asymptotic behavior

This means if r1 > r2 (resp. r2 > r1), the species u1 will exclude u2 (resp. u2 will exclude
u1) when t tends to infinity. Therefore, we can conclude the exclusion principle as in the
beginning of this section. We plot the evolution of the solution as follows.
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Figure 2.8: The simulation of system (1.1) with kernel ρ as in (6.3). The green curves
represent species u1, the red represents species u2. We set our parameters as in (6.7).
Thus, one has r1 = 0.5 > r2 = 0.2. As we have r1 > r2, we observe the principle of
exclusion of the two species and the populations maintain the segregation property as time
evolves and after t = 100 the distributions of the two species stay the same.

In the simulation of Figure 2.8, species u1 shows its dominance over u2 when t = 5.
As for asymptotic behavior, in the last figure when t = 100, we can see species u1 crowd
out species u2 completely.
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Chapter 3

A cell-cell repulsion model on a
hyperbolic Keller-Segel equation
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1. Introduction

1 Introduction

In many recent biological experiments, the co-culture of multiple types of cells has been
used for a better understanding of cell-cell interactions. This is a typical case in the
context of studying cancer cells where the interaction between cancer cells and normal
cells plays a crucial role in tumor development as well as in the resistance of cells to
chemotherapeutic drugs. The goal of this work is to introduce a mathematical model
taking care of the cell growth together with the spatial segregation property between
two types of cells. Such a phenomenon was observed by Pasquier et al. [88]. They
studied the protein transfer between two types of human breast cancer cell. Over a 7-
day cell co-culture, the spatial competition was observed between these two types of cells
and a clear boundary was formed between them on day 7 (see Figure 3.1). Segregation
property in cell co-culture was also studied recently by Taylor et al. [99]. They compared
the experimental results with an individual-based model. They found the heterotypic
repulsion and homotypic cohesion can account for the cell segregation and the border
formation. A similar segregation property is also found in the mosaic pattern between
nections and cadherins in the experiments of Katsunuma et al. [64].

The early attempts to explain the segregation property by continuum equations date
back to 1970s. Shigesada, Kawasaki and Teramoto [95] studied segregation with a nonlin-
ear diffusion model and they found the spatial segregation acts to stabilize the coexistence
of two similar species, relaxing the competition among different species. Lou and Ni [69]
generalized the model and studied the steady state problem for the self/cross-diffusion
model. For the nonlinear diffusion model, Bertsch et al. [14] in their work proved the
existence of segregated solutions when the reaction term is of Lotka-Volterra type.

Figure 3.1: Direct immunodetection of P-gp transfers in co-cultures of sensitive (MCF-7)
and resistant (MCF-7/Doxo) variants of the human breast cancer cell line.

Here instead of using nonlinear diffusion models, we will focus on a (hyperbolic) Keller-
Segel model. Such models have been used to describe the attraction and the repulsion of
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3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation

cell populations known as chemotaxis models. Theoretical and mathematical modeling
of chemotaxis can date to the pioneering works of Patlak [87] in the 1950s and Keller
and Segel [66] in the 1970s. It has become an important model in the description of
tumor growth or embryonic development. We refer to the review papers of Horstmann
[61] and Hillen and Painter [57] for a detailed introduction about the Keller–Segel model.
To our best knowledge a model taking care of segregation property and cell-cell repulsion
of Keller-Segel type has not been studied.

As we will explain in this work, our model can also be regarded as a nonlocal advec-
tion model. Recently, implementing nonlocal advection models for the study of cell-cell
adhesion and repulsion has attracted a lot of attention. As pointed out by many biolo-
gists, cell-cell interactions do not only exist in a local scope, but a long-range interaction
should be taken into account to guide the mathematical modeling. Armstrong, Painter
and Sherratt [3] in their early work purposed a model (APS model) under the principle of
the local diffusion plus the nonlocal attraction driven by the adhesion forces to describe
the phenomenon of cell mixing, full/partial engulfment and complete sorting in the cell
sorting problem. Based on the APS model, Murakawa and Togashi [79] thought that the
population pressure should come from the cell volume size instead of the linear diffusion.
Therefore, they changed the linear diffusion term into a nonlinear diffusion in order to
capture the sharp fronts and the segregation in cell co-culture. Carrillo et al. [26] re-
cently purposed a new assumption on the adhesion velocity field and their model showed
a good agreement in the experiments in the work of Katsunuma et al. [64]. The idea
of the long-range attraction and short-range repulsion can also be seen in the work of
Leverentz, Topaz and Bernoff [68]. They considered a nonlocal advection model to study
the asymptotic behavior of the solution. By choosing a Morse-type kernel which follows
the attractive-repulsive interactions, they found the solution can asymptotically spread,
contract (blow-up), or reach a steady-state. Burger, Fetecau and Huang [19] considered a
similar nonlocal adhesion model with nonlinear diffusion, they studied the well-posedness
of the model and proved the existence of a compact supported, non-constant steady state.
Dyson et al. [42] established the local existence of a classical solution for a nonlocal cell-cell
adhesion model in spaces of uniformly continuous functions. For Turing and Turing-Hopf
bifurcation due to the nonlocal effect, we refer to Ducrot et al. [40] and Song et al. [97].
We also refer the readers to Mogliner et al. [76], Eftimie et al. [43], Ducrot and Magal [39],
Fu and Magal [48] for more topics about nonlocal advection equations. For the derivation
of such models, readers can refer to the work of Bellomo et al. [8] and Morale, Capasso
and Oelschläger [77].

In this work, we consider a two-dimensional bounded domain (a flat circular petri
dish). We use the notion of solution integrated along the characteristics. Thanks to
the appropriate boundary condition of the pressure equation (see Equation (2.2)), we
deduce that the characteristics stay in the domain for any positive time. The positivity
of solutions, the segregation property and a conservation law follow from the notion of
solutions as well. The main goal in this work is to investigate the complexity of the
short-term (6 days) co-cultured cell distribution depending on the initial distribution of
each species. Through the numerical simulations, we investigate the impact of the initial
population number (as well as the law of initial distributions) on the population ratio. In
the above mentioned literature, the numerical simulation are restricted to a rectangular
domain with periodic boundary conditions. It is worth mentioning that here the domain
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2. Mathematical modeling

is circular with no flux boundary condition for the pressure which requires a finite volume
method (see Appendix B).

The plan of the work is the following. In Section 2, we present the model for the
single-species case and we prove the local existence and uniqueness of solutions as well
as the conservation law by considering the solution integrated along the characteristics.
Section 3 is devoted to the numerical analysis of the model. In Section 3.1, we consider
the model homogeneous in space which corresponds to an ODE model that has been
previously studied by Zeeman [106]. In Section 3.2, we investigated the competitive
exclusion principle and the impact of the initial distribution on population ratio. The
spatial competition due to the dispersion coefficients and cell kinetics is considered in
Section 3.3. Section 4 is devoted to discussion and conclusion and further theoretical
analysis are presented in the Appendix.

2 Mathematical modeling

2.1 Single species model

Let us consider the following one-species model{
∂tu(t, x)− d div

(
u(t, x)∇P (t, x)

)
= u(t, x)h(u(t, x)) in (0, T ]× Ω

u(0, x) = u0(x) on Ω,
(2.1)

where P satisfies the following elliptic equation{(
I − χ∆

)
P (t, x) = u(t, x) in (0, T ]× Ω

∇P (t, x) · ν(x) = 0 on [0, T ]× ∂Ω,
(2.2)

We denote Ω ⊂ R2 to be the unit open disk centered at 0 = (0, 0) with radius r = 1,
i.e., Ω = BR2(0, 1). Here ν is the outward normal vector, d is the dispersion coefficient, χ
is the sensing coefficient. The divergence, gradient and Laplacian are taken with respect
to x. System (2.1)-(2.2) can be regarded as a hyperbolic Keller-Segel equation (with
chemotactic repulsion) on a bounded domain.
Remark 2.1. Equation (2.2) can be derived from the following parabolic equation (which
is the classical case in the Keller-Segel equation [61]) as ε goes to 0:

ε∂tP (t, x) = χ∆P (t, x) + u(t, x)− P (t, x). (2.3)

The process of letting ε → 0 corresponds to the assumption that the dynamics of the
chemorepellent is fast compared to the evolution of the cell density. In the case of chemoat-
tractant a variant of such a model was considered by Perthame and Dalibard [90], Calvez
and Dolak-Struß [21].
Remark 2.2. As we mentioned in the introduction, Equation (2.2) can be regarded as a
nonlocal integral equation by using the following representation

P (t, x) =

∫
Ω

κ(x, y)u(t, y)dy,

where κ is a convolution kernel which can be represented by the sum of eigenfunctions of
the operator (I − χ∆)−1 in L2(Ω).
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3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation

The invariance of domain Ω and the well-posedness of the model

Note that in System (2.1)-(2.2) we do not impose any boundary condition directly on
u. Instead, the boundary condition here is induced by ∇P · ν = 0. If we consider the
associated characteristics flow of (2.1)-(2.2){

∂
∂t

Π(t, s;x) = −d∇P (t,Π(t, s;x))

Π(s, s;x) = x ∈ Ω.
(2.4)

We can prove (see Appendix C) the characteristics can not leave the domain Ω (see Figure
3.2 for an illustration). In fact, we can prove for any t > 0, the mapping x 7→ Π(t, 0;x)
is a bijection from Ω to itself (see Lemma 2.10). We consider the solution along the
characteristics

w(t, x) := u(t,Π(t, 0;x)) x ∈ Ω, t > 0.

Taking any x ∈ Ω, there exists y ∈ Ω such that x = Π(t, 0; y), and since

w(t, y) = w(t,Π(0, t;x)) = u(t, x),

we can reconstruct the solution u(t, ·) from w(t, ·) and {Π(t, s, ·)}t,s∈[0,T ] on Ω.

x0

Π(t, 0; x0)

ν(x)

∇P (t, x)

Figure 3.2: An illustration for the invariance of domain Ω. The green curve represents a
trajectory of the characteristics.

Assumption 2.3. Assume the vector field (t, x) 7→ ∇P (t, x) is continuous in [0, T ] × Ω
and lipschitzian with respect to x in [0, T ]× Ω.
Remark 2.4. Assumption 2.3 is a sufficient condition for the existence and uniqueness
of the characteristic flow {Π(t, s; ·)}t,s∈[0,T ] in (2.4).
Definition 2.5. For any bounded open domain Ω. If u : Ω→ R is bounded and continu-
ous, we write

‖u‖C(Ω) := sup
x∈Ω
|u(x)|.

For any α ∈ (0, 1], the αth–Hölder norm of u : Ω→ R is

‖u‖C0,α(Ω) := ‖u‖C(Ω) + [u]C0,α(Ω),
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2. Mathematical modeling

where
[u]C0,α(Ω) := sup

x,y∈Ω
x 6=y

{ |u(x)− u(y)|
|x− y|α

}
.

The Hölder space Ck,α(Ω) consists of all functions u ∈ Ck(Ω) for which the norm

‖u‖Ck,α(Ω) :=
∑
|α|≤k

‖Dαu‖C(Ω) +
∑
|α|=k

[Dαu]C0,α(Ω)

is finite.
Lemma 2.6. [50, Theorem 6.30 and 6.31] Let Ω ⊂ R2 to be a unit open disk. Consider
the following elliptic equation{

(I − χ∆)P (x) = u(x) x ∈ Ω

∇P (x) · ν(x) = 0 x ∈ ∂Ω,
(2.5)

where ν is the outward unit normal vector on ∂Ω. Then for all u ∈ C0,α(Ω), the elliptic
problem (2.5) has a unique solution P ∈ C2,α(Ω). Moreover,

‖P‖C2,α(Ω) ≤ C‖u‖C0,α(Ω),

where C = C(α, χ,Ω).

The following theorem tells us if we choose our initial value u0 to be smooth enough,
then Assumption 2.3 can be satisfied and the existence and uniqueness of solutions follow.

Theorem 2.7 (Existence and uniqueness of solutions). Let u0 ∈ W 1,∞(Ω)∩C0
+(Ω).

Then for some T > 0 there exists a unique non-negative solution u ∈ C
(
[0, T ];C0

+(Ω)
)

to (2.1)-(2.2) which satisfies u(t = 0, x) = u0(x). Moreover for any t ∈ [0, T ], we have
u(t, ·) ∈ W 1,∞(Ω) and supt∈[0,T ] ‖u(t, ·)‖W 1,∞(Ω) <∞.

The proof the above theorem will be detailed in Appendix D.

Remark 2.8. Since for any t ∈ [0, T ] and for any α ∈ (0, 1), we have u(t, ·) ∈ W 1,∞(Ω) ↪→
C0,α(Ω), we deduce from Lemma 2.6 that P (t, ·) ∈ C2,α(Ω). Therefore, (t, x)→ ∇P (t, x)
is continuous (since P ∈ C([0, T ];C1(Ω))) and lipchitzian with respect to x which implies
Assumption 2.3.

Conservation law on a volume

If the reaction term h ≡ 0 in System (2.1)-(2.2), the boundary condition implies the
conservation law for u. This can be seen through the solution along the characteristics.
In fact, we have the following conservation law.
Theorem 2.9. For each volume A ⊂ Ω and each 0 ≤ s ≤ t we have∫

Π(t,s;A)

u(t, x)dx =

∫
A

exp

(∫ t

s

h (u (l,Π(l, s; z))) dl

)
u(s, z)dz.

In particular, if we have h = 0, then for any 0 ≤ s ≤ t∫
Π(t,s;A)

u(t, x)dx =

∫
A

u(s, z)dz.
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3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation

This means the total number of cell in the volume A is constant along the volumes
Π(t, s;A).

Before proving Theorem 2.9, we need the following lemma.
Lemma 2.10. Let T > 0 and {Π(t, s;x)}t,s∈[0,T ] to be the characteristic flow generated
by (2.4). Then the map x 7→ Π(t, s;x) is continuously differentiable and one has the
determinant of Jacobi matrix:

det JΠ(t, s;x) = exp

(∫ t

s

d

χ
(u(l,Π(l, s;x))− P (l,Π(l, s;x))) dl

)
. (2.6)

where JΠ(t, s;x) is the Jacobian matrix of Π(t, s;x) with respect to x at point (t, s;x).

Proof. From Theorem 2.7 and Remark 2.8, the mapping (t, x)→ P (t, x) is C([0, T ];C1(Ω))
and P (t, ·) ∈ C2,α(Ω) for any α ∈ (0, 1) if u0 ∈ W 1,∞(Ω). This ensures the characteristics
x → Π(t, s;x) is continuously differentiable. Taking the partial derivative of Equation
(2.4) with respect to x yields{

∂tJΠ(t, s;x) = −d J∇P (t,Π(t, s;x))JΠ(t, s;x)

JΠ(s, s;x) = Id,

where J∇P (t,Π(t, s;x)) is the Jacobian matrix of ∇P (t, x) with respect to x at point
(t,Π(t, s;x)). For any matrix-valued C1 function A : t 7→ A(t), the Jacobian formula
reads as follows

d

dt
detA(t) = detA(t)× Trace

(
A−1(t)

d

dt
A(t)

)
.

Hence, we obtain

d

dt
det JΠ(t, s;x) = det JΠ(t, s;x)× Trace

(
JΠ(t, s;x)−1J∇P (t,Π(t, s;x))JΠ(t, s;x)

)
= det JΠ(t, s;x)× Trace (J∇P (t,Π(t, s;x)))

and since Trace (J∇P (t,Π(t, s;x))) = (∆P )(t,Π(t, s;x)) = − 1
χ

(u(t,Π(t, s;x))− P (t,Π(t, s;x))).
Therefore, we have

d

dt
det JΠ(t, s;x) = det JΠ(t, s;x)× d

χ

[
u(t,Π(t, s;x))− P (t,Π(t, s;x))

]
det JΠ(s, s;x) = 1.

Therefore the result follows.

Proof of Theorem 2.9. Let {Π(t, s;x)}t,s∈[0,T ] to be the characteristic flow generated by
(2.4). Given any measurable set A ⊂ Ω and any 0 ≤ s ≤ t, we integrate u(t, x) over the
volume Π(t, s;A) with respect to x∫

Ω

1Π(t,s;A)(x)u(t, x)dx =

∫
Ω

1A(z)u(t,Π(t, s; z)) det JΠ(t, s; z)dz, (2.7)

where we changed the variable x to Π(t, s; z) on the right-hand-side.
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For the right-hand-side, we will prove in (D.1) Appendix D that

u(t,Π(t, s; z)) = u(s, z) exp

(∫ t

s

h(u(l,Π(l, s; z))) +
d

χ
(P (l,Π(l, s; z))− u(l,Π(l, s; z))) dl

)
.

Combining with (2.6) we obtain that

u(t,Π(t, s; z)) det JΠ(t, s; z) = u(s, z) exp

(∫ t

s

h(u(l,Π(l, s; z)))dl

)
.

Substituting the above equation into (2.7) gives us∫
Ω

1Π(t,s;A)(x)u(t, x)dx =

∫
Ω

1A(z)u(s, z) exp

(∫ t

s

h(u(l,Π(l, s; z)))dl

)
dz,

which is equivalent to∫
Π(t,s;A)

u(t, x)dx =

∫
A

exp

(∫ t

s

h (u (l,Π(l, s; z))) dl

)
u(s, z)dz.

The result follows.

2.2 Multi-species model

Multi-species ODE model

Let us consider the corresponding two species model without the spatial variable x that
is ui = ui(t) for i = 1, 2. 

dui
dt

= uihi(u1, u2) i = 1, 2,

ui(0) = ui,0 ∈ R+.
(2.8)

We adopt the Lotka-Volterra model by letting

hi(u1, u2) = bi − δi −
2∑
j=1

aijuj, i = 1, 2. (2.9)

where bi > 0, i = 1, 2 are the growth rates, aij ≥ 0, i 6= j represent the mutual competition
between the species, aii is the competition among the same species and δi is the additional
mortality rate caused by drug treatment. In Section 2.2.1 we will always assume δi = 0
for i = 1, 2 (when δi > 0, one can regard bi − δi as a whole). If we consider (2.8) in the
absence of the other species, we can rewrite (2.9) as

hi(u1, u2) = bi − aiiui, i = 1, 2.

We always assume that for each i, aii > 0 meaning that each species alone exhibits logistic
growth. This model has been considered by many authors (for example, see [80, 106]).
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3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation

Here we give a short summary of some qualitative properties of the solution to (2.8) in
order to compare with the PDE model.

Equilibrium and stability for (2.8)-(2.9)

One can easily compute the system has the following equilibrium

E0 = (0, 0), E1 = (P1, 0) , E2 = (0, P2) , E∗ = (u∗1, u
∗
2)

where

P1 :=
b1

a11

, P2 :=
b2

a22

, E∗ =

(
a22b1 − a12b2

a11a22 − a12a21

,
a21b1 − a11b2

a12a21 − a11a22

)
(2.10)

The solution E∗ is only of relevance when a12a21 6= a11a22 and (u∗1, u
∗
2) is strictly positive,

which is equivalent to say 
a12

a11

>
P1

P2
a21

a22

>
P2

P1

or


a12

a11

<
P1

P2
a21

a22

<
P2

P1

.

We adapt the main stability results from Zeeman [106] where the author considered
a general n–species extinction case, Murray [80, Chapter 3.5] and Hirsch [59, Chapter
11] to system (2.8)-(2.9) for the following fours cases (i)-(iv) and discuss their biological
implications.
Proposition 2.11. For system (2.8)-(2.9), suppose for each i = 1, 2, bi > 0, aii > 0
and aij ≥ 0 for any i 6= j. Let P1 = a11/b1, P2 = a22/b2 be the equilibrium for each
species alone and assume the initial value (u1,0, u2,0) lies strictly in the first quadrant that
is u1,0 > 0 and u2,0 > 0. Then for the following four cases we have

(i). a12/a11 < P1/P2, a21/a22 < P2/P1. This case corresponds to Figure 3.3 (a). The
system (2.8) has four positive equilibrium, namely E0, E1, E2 and E∗. In such case,
only E∗ is global globally asymptotic stable in the region {(u1, u2) ∈ R2 |u1 > 0, u2 >
0}.

(ii). a12/a11 > P1/P2, a21/a22 < P2/P1. This case corresponds to Figure 3.3 (b). The
system (2.8) has three positive equilibrium, namely E0, E1 and E2. Only E2 is
globally stable in the positive quadrant excepted for the axis u1 = 0.

(iii). a12/a11 < P1/P2, a21/a22 > P2/P1. This case corresponds to Figure 3.3 (c). The
analysis of the stability is similar to the case (ii). Only E1 is globally stable in the
positive quadrant excepted for the axis u2 = 0.

(iv). a12/a11 > P1/P2, a21/a22 > P2/P1. This case corresponds to Figure 3.3 (d). In this
case, system (2.8) has four equilibrium, where E1 and E2 are stable while E∗ is a
saddle point. The steady states E1 and E2 have two non-overlapping domains of
attraction, separated by the stable manifold S of equilibria E∗.

Remark 2.12. Although among the four cases, (ii) and (iii) always lead to the principle of
exclusion and so do (iv) due to the natural perturbation in population levels, we still have
the case (i) where the two species can coexist in the long term. As we further develop our
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PDE model for (2.8), we can show numerically that the principle of exclusion dominates
even when case (i) is satisfied and this is a evident difference compared to ODE model
(2.8).

A scheme of the qualitative behavior of the phase trajectory is given in Figure 3.3 by
numerical simulations.
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Figure 3.3: A scheme of the qualitative behavior of the phase trajectory for various cases.
(a) a12/a11 < P1/P2, a21/a22 < P2/P1. Only the positive steady state E∗ is stable and
all trajectories tend to it. (b) a12/a11 > P1/P2, a21/a22 < P2/P1. Only one stable steady
state E2 exists with the whole positive quadrant its domain of attraction. (c) a12/a11 <
P1/P2, a21/a22 > P2/P1. Only one stable steady state E1 exists with the whole positive
quadrant its domain of attraction. (d) a12/a11 > P1/P2, a21/a22 > P2/P1. E1 and E2 are
stable steady states, each of which has a domain of attraction namely I and II, separated
by a separatrix S which is the stable manifold of equilibria E∗.
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Multi-species PDE model

We study a two species population dynamic model on a unit open disk Ω ⊂ R2 given as
follows

∂tu1(t, x)− d1 div
(
u1(t, x)∇P (t, x)

)
= u1(t, x)h1((u1, u2)(t, x))

∂tu2(t, x)− d2 div
(
u2(t, x)∇P (t, x)

)
= u2(t, x)h2((u1, u2)(t, x))(

I − χ∆
)
P (t, x) = u1(t, x) + u2(t, x)

in [0, T ]× Ω

∇P (t, x) · ν(x) = 0 on [0, T )× ∂Ω,

(2.11)
where ν is the outward normal vector, di is the dispersion coefficient, χ is the sensing
coefficient. Recall the function hi is of form

hi(u1, u2) = bi − δi −
2∑
j=1

aijuj, i = 1, 2.

System (2.11) is supplemented with initial distribution

u0(·) := (u1(0, ·), u2(0, ·)) ∈ C1(Ω)2. (2.12)

Segregation property

From the mono-layer cell populations co-culture experiments, we can see that once the two
cell populations confront each other, they will stop growing, thus, forming the separated
islets. We can prove that our model (2.11) preserves such segregation property.
Theorem 2.13. Suppose u = (u1, u2)(t, x) is the solution of (2.11)-(2.12) and assume
d1 = d2 = d in (2.11). Then for any initial distribution with u1(0, x)u2(0, x) = 0 for all
x ∈ Ω, we have u1(t, x)u2(t, x) = 0 for any t > 0 and x ∈ Ω.

Proof. We argue by contradiction, assume there exist t∗ > 0, x∗ ∈ Ω such that

u1(t∗, x∗)u2(t∗, x∗) > 0.

Suppose the characteristic flow satisfies the following equation{
∂
∂t

Π(t, s;x) = −d∇P (t,Π(t, s;x))

Π(s, s;x) = x ∈ Ω.

Since x → Π(t, s;x) is invertible from Ω to itself, there exists some x0 ∈ Ω such that
Π(t∗, 0;x0) = x∗. Then for any i = 1, 2, we have

ui(t
∗,Π(t∗, 0;x0)) = ui (0, x0) e

∫ t∗
0 hi((u1,u2)(l,Π(l,0;x0)))+ d

χ
(P (l,Π(l,0;x0))−(u1+u2)(l,Π(l,0;x0)))dl > 0,

(2.13)
which implies

ui (0, x0) > 0, i = 1, 2.

This is a contradiction.

Equations with nonlocal advection 113



3. Numerical simulations

For the one dimensional case N = 1, suppose u1, u2 are solutions to (2.11)-(2.12), we
give an illustration (see Figure 3.4) of the segregation for the solutions integrated along
the characteristics ui(t,Π(t, 0;x)) for i = 1, 2. In fact, if there exists for some x0 such that
ui(0, x0) = 0 for i = 1, 2. Then from Equation (2.13) we obtain

u1(t,Π(t, 0;x0)) = u2(t,Π(t, 0;x0)) = 0, ∀t > 0.

Therefore, the characteristics t 7→ Π(t, 0;x0) forms a segregation barrier for the two cell
populations.

t0

t

Π(t0, 0; x0)−L L

t1

Π(t, 0; x0)

Figure 3.4: In this figure we illustrate the notion of segregation with a one dimensional
bounded domain. Figure (a) shows the characteristic t 7→ Π(t, 0;x0) forms a segregation
“wall". Figure (b) shows the temporal-spatial evolution of the two species.

Conservation law on a volume

If we assume that d1 = d2 = d in system (2.11), we have the following similar conservation
law for two species case. Suppose volume A ⊂ Ω and each 0 ≤ s ≤ t:∫

Π(t,s;A)

ui(t, x)dx =

∫
A

exp

[∫ t

s

hi ((u1, u2) (l,Π(l, s; z))) dl

]
ui(s, z)dz, i = 1, 2.

Therefore, if we have hi = 0 for any 0 ≤ s ≤ t∫
Π(t,s;A)

ui(t, x)dx =

∫
A

ui(s, z)dz, i = 1, 2.

This means the total cell number of the species ui is constant along the characteristics
starting from the volume A.

3 Numerical simulations

3.1 Impact of the segregation on the competitive exclusion

We set Ui to be the total number at time t = 0

Ui =

∫
Ω

ui(0, x)dx, i = 1, 2. (3.1)
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3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation

We give the parameter values used in the simulations and their interpretations in Table
3.1. The parameter fitting for the growth rate bi and the intraspecific coefficients aii are
detailed in Appendix E.

Symbol Interpretation Value Unit Method Dimensionless value

t time 1 day - 1

r inner radius of the dish 2.62 cm [89] 1

Ui cell total number at t = 0 105 − [89] 0.01

b1 growth rate of cell u1 0.6420 day−1 fitted 0.6420

b2 growth rate of cell u2 0.6359 day−1 fitted 0.6359

a11 intraspecific competition of u1 1.07× 10−6 cm2/day fitted 1.5588

a22 intraspecific competition of u2 1.06× 10−6 cm2/day fitted 1.5415

d1 dispersion coefficient of u1 13.73 cm4/day fitted 2

d2 dispersion coefficient of u2 13.73 cm4/day fitted 2

χ sensing coefficient 6.86× 10−2 cm2 fitted 0.01

Table 3.1: List of the model parameters, their interpretations, values and symbols. Here u1

represents MCF-7 (sensitive cell) and u2 represents MCF-7/Doxo (resistant cell). From
[89], the surface of the dish is 21.5 cm2. Thus the inner radius of the dish r is calculated
by r2π = 21.5 cm2.

The goal of our simulations is to compare the various cases discussed in Proposition
2.11 (ODE case) with our PDE model with segregation. As we will see in the numerical
simulations, the model with spatial structure can present totally different results compared
to the previous ODE model. To that aim, we firstly consider the case where the drug
(doxorubicine) concentration is low in the cell co-culture for MCF-7 and MCF-7/Doxo.
The drug treatment causes an additional mortality to the sensitive population MCF-
7 represented by u1 while no extra mortality to the resistant population MCF-7/Doxo
represented by u2 (MCF-7/Doxo is resistant to a small quantity of drug treatment see
Table E.1 in Appendix E).

Now since we consider the presence of the drug, the equilibrium (2.10) in the ODE
case should be rewritten as

P̄1 =
b1 − δ1

a11

, P̄2 =
b2 − δ2

a22

. (3.2)

Moreover we assume the drug concentration is low such that b1 − δ1 > 0 and δ2 = 0,
therefore we have

P̄1 < P̄2.

The case when P̄1 > P̄2 is similar and will be discussed in the end of this section.

Case (i): a12/a11 < P̄1/P̄2, a21/a22 < P̄2/P̄1. By using (3.2), the condition in Case (i) can
be interpreted by

a12

a22

<
b1 − δ1

b2 − δ2

,
a21

a11

<
b2 − δ2

b1 − δ1

.
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3. Numerical simulations

Since we have b1 − δ1 > 0 and δ2 = 0, if the coefficients a12 and a21 are small, then Case
(i) holds. We give a possible set of parameters satisfying Case (i) :

δ1 = 0.4, δ2 = 0, a12 = 0.2, a21 = 1. (3.3)

We assume that for each species ui, the initial distribution follows the uniform distribution
on a disk with 20 initial cell clusters (represented by the red/green dots in Figure 3.5 (a)).
The initial total cell number is Ui = 0.01 in (3.1) for each species and we assume each
cluster contains the same quantity of cells. We present its numerical simulation in Figure
3.5 from day 0 to day 6. We also plot the relative cell numbers in Figure 3.5 (f) where we
define the relative cell number for species i as

Ui(t)

U1(t) + U2(t)
, where Ui(t) :=

∫
Ω

ui(t, x)dx, i = 1, 2.
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Figure 3.5: Spatial-temporal evolution of the two species u1 and u2 and its relative pro-
portion. Figures (a)-(e) correspond to the evolution of cell growth form day 0 to day 6
and Figure (f) is the relative proportion plot from day 0 to day 6. We fix the parame-
ters δ1 = 0.4, δ2 = 0, a12 = 0.2, a21 = 1 in (3.3). The initial distribution follows the
uniform distribution on a disk with 20 initial cell clusters. The initial total cell number
is U1 = U2 = 0.01 for each species and cells are equally distributed in each cluster. The
other parameters are given in Table 3.1.

In Case (i) of the ODE system (2.8), Proposition 2.11 shows that the two species can
coexist with the equilibrium

Ē∗ :=

(
a22(b1 − δ1)− a12(b2 − δ2)

a11a22 − a12a21

,
a21(b1 − δ1)− a11(b2 − δ2)

a12a21 − a11a22

)
≈ (0.11, 0.34).

However, as shown in Figure 3.5, we can see the population density u1 tends to 0 and
u2 tends to 1. Next, we consider the Cases (ii)-(iv) in Proposition 2.11 by choosing the
parameters in each case as follows.
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3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation

Parameters δ1 δ2 a12 a21 Relations

Case (ii) 0.4 0 1 1 a12/a11 > P̄1/P̄2, a21/a22 < P̄2/P̄1.

Case (iii) 0.4 0 0.2 5 a12/a11 < P̄1/P̄2, a21/a22 > P̄2/P̄1.

Case (iv) 0.4 0 1 5 a12/a11 > P̄1/P̄2, a21/a22 > P̄2/P̄1.

Table 3.2: List of the parameters used in the simulations for Cases (ii)-(iv). Other pa-
rameters are given in Table 3.1.
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Figure 3.6: Evolution of the relative cell numbers for two species u1 and u2. Figure (a)-(c)
correspond to the parameter values chosen as in Table 3.2 for Cases (ii)-(iv) and other
parameters are given in Table 3.1.

With the simulations in Figure 3.5, Figure 3.6 and the results in Proposition 2.11, by
setting

Ē1 = (P̄1, 0) Ē2 = (0, P̄2) Ē∗ =

(
a22(b1 − δ1)− a12(b2 − δ2)

a11a22 − a12a21

,
a21(b1 − δ1)− a11(b2 − δ2)

a12a21 − a11a22

)
,

we can compare the stability between ODE model (2.8) and PDE model (2.11) under four
different cases.

P̄1 < P̄2 Case (i) Case (ii) Case (iii) Case (iv)

Global attractor in ODE Coexistence Ē∗ Ē2 Ē1 Region dependent

Stable steady state in PDE Ē2 Ē2 Ē2 Ē2

Table 3.3: A summary for the stability to four cases (i)-(iv) under ODE model and PDE
model with segregation.

The numerical simulation strongly indicates that the stable steady states only depend
on the relation between P̄1 and P̄2. If P̄1 < P̄2 (resp. P̄1 > P̄2), the population u2 (resp.
u1) will dominate and the other species will die out. We also did the four cases when
P̄1 > P̄2, the results showed that Ē1 is the only stable steady state, which verifies our
conjecture. Since the results are similar we omit the numerical simulations.
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3. Numerical simulations

One can notice that unlike the ODE system (2.8), the segregation property for the
PDE model implies that it is impossible for the two species to coexist at a same position
x ∈ Ω. Moreover, through the numerical simulations we observed that the PDE model
(2.11) always undergoes a competitive exclusion principle, unless the equilibrium P̄1 = P̄2

in (3.2).

3.2 Impact of the initial distribution on the population ratio

In the previous section, we considered the competitive exclusion principle for the two
species. By studying the relative proportions of u1 and u2, we presented the relation of
the interspecific competition in our numerical simulation. Moreover, we can discover in
Figure 3.5 (f) and in Figure 3.6 (a)-(c) that the increase of the proportion of the dominant
population u2 (red curve) is varying with time. It is evident to see from day 0 to day 2 the
increase of the dominant population u2 is faster than the increase from day 4 to day 6. If
we further study the spatial-temporal evolution of the cell co-culture presented in Figure
3.5 (a)-(e), we can observe that from day 0 to day 2 the competition between the two
groups is mainly expressed in the competition for space resources. However, from day 4
to day 6, when the surface of the dish is almost fully occupied by cells, the reaction term
uihi(u1, u2) in the equation begins to play a major role in influencing the change of the
number of cells. In order to explore the major factors in cell competition, we consider the
impact on the initial distribution. We will mainly focus on two factors, namely the initial
cell total number and the law of initial distribution, which might influence the proportions
for u1 and u2. To that aim, we set the following parameters

δ1 = 0.15, δ2 = 0, a12 = 0, a21 = 0. (3.4)

and the other parameters are given in Table 3.1.

Dependency on the initial total cell number

In cell culture, the initial number of cell cluster is an important factor. Bailey et al. [6]
study the sphere-forming efficiency of MCF-7 human breast cancer cell by comparing the
cell culture with different initial numbers of cell cluster. Here we consider the impact
of initial cluster number on the final proportion of species. To that aim, we assume the
initial distribution follows the uniform distribution on a disk. We consider two sets of
initial condition, that is

U1 = U2 = 0.005, Nu1 = Nu2 = 10,

U1 = U2 = 0.1, Nu1 = Nu2 = 200,
(3.5)

where U1 and U2 are defined in (3.1) and Nu1 (respectively Nu2) is the initial number of
cell clusters of species u1 (respectively species u2).

The above initial conditions correspond to different types of seeding in the experiment,
namely cells are sparsely seeded or densely seeded. We assume the total cell number is
proportional to the initial number of cell cluster, meaning the dilution procedure adopted
in the experiment is the same, thus the number of cells in each cell cluster is a constant.

118 Xiaoming Fu



3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation

In Figure 3.7, we first give a numerical simulation for the cell growth with sparse
seeding. In Figure 3.8, we present the simulation under the dense seeding condition,
tracking from day 0 to day 6.

Figure 3.7: Cell co-culture for species u1 and u2 over 6 days. We plot the case where cells
are sparsely seeded, i.e., U1 = U2 = 0.005, Nu1 = Nu2 = 10 for day 0, 2 and day 6. We set
parameters as δ1 = 0.15, δ2 = 0, a12 = 0, a21 = 0 in (3.4). Other parameters are given in
Table 3.1.

Figure 3.8: Cell co-culture for species u1 and u2 over 6 days. We plot the case where
where cells are densely seeded, i.e., U1 = U2 = 0.1, Nu1 = Nu2 = 200 for day 0, 2 and day
6. We set parameters as δ1 = 0.15, δ2 = 0, a12 = 0, a21 = 0 in (3.4). Other parameters
are given in Table 3.1.

In Figure 3.9 we plot the evolution of the total number and its proportion for species
u1 and u2 over 6 days of the simulation.
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3. Numerical simulations
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Figure 3.9: Evolution of the total number (in log scale) and its proportion for species u1

and u2 over 6 days. Figure (a) is the total number plot corresponding to the simulations
in Figure 3.7 while Figure (b) corresponds to the simulations in Figure 3.8. In Figure
(c), the solid lines represents the proportion when the number of initial cell cluster equals
Nu1 = Nu2 = 10 and the dash lines represents the proportion when Nu1 = Nu2 = 200.
Parameters are given in Table 3.1 and δ1 = 0.15, δ2 = 0, a12 = 0, a21 = 0 in (3.4).

From Figure 3.9 (a)-(b), since u2 is resistant to the drug, the number of population
u2 is much greater than u1. However, we can also observe a difference in their cell growth
curves. In Figure (a) we can see that both cells are in the period of exponential growth
from day 0 to day 6 (a base-10 log scale is used for the y-axis). Conversely, in Figure (b)
the growth curves for both cells are converging to a constant from day 4 to day 6, implying
that the cell co-culture is reaching a saturation stage. More importantly, in Figure (c),
we observe a significant difference in the development of population ratios. In fact, since
the spatial competition is still the dominant factor in the first two days, we can hardly see
any difference between the dashed lines and solid lines. The proportion of the dominant
population grows almost linearly. However, the proportion of the densely seeded group
changed much slower after day 4, while the sparsely seeded group still grows linearly. This
shows that although the growth rate of u1 is at a competitive disadvantage, due to the
sufficient number of cluster in the initial stage, and due to the segregation principle, u1

does not die out in a short time in the competition. Although the competitive exclusion
applies in this case, the time for the extinction of u1 will be very long.

Dependency on the law of the initial distribution

In the experiment, the size of the cell dish can be a factor to determine the law of the
initial distribution for the cell. In general, under the same total cell number, a small size
cell dish will lead to a biased initial distribution and cells are more likely to aggregate at
the border. While a big size cell dish will make the cell distribution more homogeneous,
thus the initial distribution follows a uniform distribution. Therefore, in this section, we
study whether the population ratio can be affected by the law of initial distribution. We
will choose the beta distribution for the choice of the radius r and the angle θ follows the
uniform distribution on [0, 2π], that is

{rn}n=1,...,N ∼ Beta(α, β), {θn}n=1,...,N ∼ U(0, 2π).
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3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation

The coordinate transformation of the initial distribution to a unit disk is as follows{
xn =

√
rn cos(θn)

yn =
√
rn sin(θn)

n = 1, 2, . . . , N. (3.6)

In Figure 3.10, we plot the density function of the beta distribution for different α, β

fα,β(x) = 1/B(α, β)xα−1(1− x)β−1,

where B(α, β) is a normalization constant to ensure that the total integral is 1.
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Figure 3.10: Density function of the initial distribution fα,β(x) = 1/B(α, β)xα−1(1−x)β−1

for different α and β, where B(α, β) is a normalization constant to ensure that the total
integral is 1.

Our simulation will mainly compare the following two cases

(α1, β1) = (1, 1), (α2, β2) = (3, 2).

We plot the initial distributions of the two different cases in Figure 3.11 where we choose
40 cell clusters (i.e., Nu1 = 40 and Nu2 = 40 in (3.6)) for species u1 and species u2.
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Figure 3.11: Spatial distribution of the initial values when (α, β) = (1, 1) (Figure (a)) and
(α, β) = (3, 2) (Figure (b)). Here red dots and green dots in Figure 3.11 represent cell
clusters. We take the cell cluster number Nu1 = 40 and Nu2 = 40 for both cases.
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3. Numerical simulations

Suppose the initial cell clusters Nu1 = Nu2 = 40 and cell total number U1 = U2 = 0.02,
which is equally distributed in each cell cluster. Typical numerical solutions are shown in
Figure 3.12 when (α1, β1) = (1, 1) and in Figure 3.13 when (α2, β2) = (3, 2).

Figure 3.12: Cell co-culture for species u1 and u2 over 6 days. We plot the case where
the initial distribution follows beta function with parameters (α, β) = (1, 1), namely the
uniform distribution, for day 1, 3 and day 6. Parameters are given in Table 3.1 and
δ1 = 0.15, δ2 = 0, a12 = 0, a21 = 0 in (3.4).

Figure 3.13: Cell co-culture for species u1 and u2 over 6 days. We plot the case where the
initial distribution follows beta function with parameters (α, β) = (3, 2), namely a biased
distribution, for day 1, 3 and day 6. Parameters are given in Table 3.1 and δ1 = 0.15, δ2 =
0, a12 = 0, a21 = 0 in (3.4).

Now we plot the evolution of the total number for species u1 and u2 over 6 days.
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3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation
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Figure 3.14: Evolution of the total number (in log scale) and its proportion for species u1

and u2 over 6 days. Figure (a) is the total number plot corresponding to the simulation
with an uniform initial distribution in Figure 3.12 while Figure (b) corresponds to the
simulation with a biased initial distribution in Figure 3.13. In Figure (c), the solid lines
represents the proportion when the initial distribution follows uniform distribution, i.e.,
(α, β) = (1, 1) and the dash lines represents the proportion to the case (α, β) = (3, 2).
From Figure (c), we can see that they are overlapped. Parameters are given in Table 3.1
and δ1 = 0.15, δ2 = 0, a12 = 0, a21 = 0 in (3.4).

From Figure 3.14 we can see that the law of initial distribution has almost no influence
on the final proportion of species. We also tried different scenarios when the cell total
numbers are 20, 50 and 100 or with different extra mortality rate δ1 = 0, 0.2 and 0.5, the
results are similar. Thus we can deduce that the final relative proportion is stable under
the variation of the law of the initial distribution.

Combining the above numerical experiments in Section 3.2.1 and Section 3.2.2, we
can see that under the competitive principle, the difference in the spatial resources can
change the competition induced by the cell dynamics. To be more precise, under the
case of sufficient spatial resources, the competitive mechanism can be more sufficiently
expressed than in the case of less spatial resources. In Section 3.2.2, although we changed
the law of the initial distribution of the cell seeding, as for the overall spatial resources, it
is the same for both species. Therefore, the result of the competitive principle is almost
the same in terms of the total number and the population ratio of the two populations.

3.3 Impact of the dispersion coefficient on the population ratio

In Section 3.2, when the parameters of the model are the same, the competition induced
by the cell dynamics can be reflected by the difference in the spatial resource. Now we
assume the spatial resource is the same and we investigate the role of the dispersion
coefficient in the evolution of the species.

To that aim, we let the initial distribution of the two species follow the same uniform
distribution and they are sparsely seeded on the dish. Furthermore, we let the cell dynam-
ics for the two population to be almost the same, the only variable we control here is the
dispersion coefficient for the population. We take the same uniform initial distribution at
day 0, with the same number of initial cluster and the same amount of cell total number,
i.e.,

U1 = U2 = 0.005, Nu1 = Nu2 = 10, a12 = a21 = 0. (3.7)
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3. Numerical simulations

We compare the following two scenarios in Table 3.4 where the only difference is the
dispersion parameters.

Parameters d1 d2 δ1 δ2

scenario 1: 2 2 0 0

scenario 2: 2 0.2 0 0

Table 3.4: Two sets of dispersion coefficients for u1 and u2.

In scenario 1, the dispersion coefficients of the two species are the same, while in
scenario 2 we suppose the species u1 has an advantage in the spatial competition over its
competitor u2.

Figure 3.15: Cell co-culture for species u1 and u2 over 6 days. Figure (a)-(c) corresponds
to scenario 1 (i.e. with the parameters d1 = 2, d2 = 2, δ1 = δ2 = 0) while Figure (d)-(f)
corresponds to scenario 2 (i.e. with d1 = 2, d2 = 0.2, δ1 = δ2 = 0). In both scenarios,
the number of initial cluster and the cell total number are the same and follow (3.7) and
the same uniform distribution. We plot the simulations for day 1, 3 and day 6. Other
parameters are given in Table 3.1.

Now we plot the evolution of the total number and the population ratios for species
u1 and u2 over 6 days.
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Figure 3.16: Evolution of the total number (in log scale) and its proportion for species u1

and u2 over 6 days. In Figure (a) we plot the total number of cells corresponding to the
scenario 1. In Figure (b) we plot the total number of cells corresponding to the scenario
2. In Figure (c) we plot the population ratios and the dashed lines corresponds to scenario
1 while the solid lines corresponds to scenario 2 in 3.4. Other parameters are given in
Table 3.1 and (3.7).

The main result from Figure 3.16 is that the dispersion coefficient can have a great
impact on the population ratio after 6 days. Next, we consider the following scenario
where u1 has the advantage in dispersion coefficient but is at a disadvantage induced by
drug treatment. Therefore

Parameters d1 d2 δ1 δ2

scenario 3: 2 0.2 0.1 0

Table 3.5: This scenario corresponds to the case where the species u1 spreads faster than
the species u2. Moreover, due to a drug treatment, the mortality of the species u1 is
strictly positive while the mortality of the species u2 is zero (i.e. the drug treatment does
not affect the second species). In the context of cancer cell, the species u1 would correspond
to the sensitive cells to the drug while u2 would correspond to the cell resistant to the drug
treatment.

Figure 3.17: Cell co-culture for species u1 and u2 over 6 days. Figure (a)-(c) corresponds
to the scenario 3 with d1 = 2, d2 = 0.2, δ1 = 0.1, δ2 = 0 in Table 3.5. The number of initial
cluster and cell total number follow (3.7). Other parameters are given in Table 3.1.
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4. Conclusion and discussion
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Figure 3.18: Evolution of the total number (in log scale) and its proportion for species
u1 and u2 over 6 days. Figure (a) is the total number plot corresponding to the scenario
3 in Figure 3.17. In Figure (b), the dashed lines corresponds to the population ratios of
scenario 2 with d1 = 2, d2 = 0.2, δ1 = 0, δ2 = 0 in Table 3.4 and while the solid lines
corresponds to scenario 3 with d1 = 2, d2 = 0.2, δ1 = 0.1, δ2 = 0 in Table 3.5. Other
parameters are given in Table 3.1 and (3.7).

By including now a drug treatment, we can see from Figure 3.17 and Figure 3.18
that between day 0 and day 2, the population u1 dominates over u2 thanks to a larger
dispersion rate. After day 2, since the drug is killing the cell for species u1 while the drug
has no effect on the species u2, the species u2 finally takes over the species u1. It leads to
a gradual increase in its proportion of the population ratio.

In the numerical simulations for the scenarios 1 and 2 in Table 3.4, we let the cell
dynamics of the two species be almost equal. Thus the competition due to the cell
dynamics is almost negligible. We have shown the dispersion coefficient of populations
can have a great impact on the population ratio after 6 days.

In the simulation for scenario 3 in Table 3.5, we can observe that despite the compet-
itive exclusion, a larger dispersion coefficient can lead to a short-term advantage in the
population. In the long term, the competitive exclusion principle still dominates.

4 Conclusion and discussion

From the experimental data in the work of Pasquier et al. [89], we modeled the mono-
layer cell co-culture by a hyperbolic Keller-Segel equation (2.11). We proved the local
existence and uniqueness of solutions by using the notion of the solution integrated along
the characteristics in Theorem 2.7 and proved the conservation law in Theorem 2.9. For
the asymptotic behavior, we analyzed the problem numerically in Section 3.

In Section 3.1 we discussed the competitive exclusion principle, indicating that the
asymptotic behavior of the population depends only on the relationship between the
steady states P̄1 and P̄2 (see (3.2) for definition) which is different from the ODE case.
We found that except for the case P1 = P2, the model with spatial segregation always
exhibits an exclusion principle.
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3. A cell-cell repulsion model on a hyperbolic Keller-Segel equation

Even though the long term dynamics of cell density is decided by the relative values
of the equilibrium, the short term behavior need a more delicate description. We studied
two factors which may influence the population ratios. The first factor is the initial cell
distribution, as measured by the initial total cell number and the law of initial distribution.
We found that the impact of the initial distribution on the population ratio lies in the
initial total cell number but not in the law of initial distribution.

The second factor influencing the population ratio is the cell movement in space, as
measured by the dispersion coefficient di. In the transient stage (i.e. before the dish is
saturated), the dispersion rate di are the dominant factor. Once the surface of the dish
is saturated by cells, cell dynamics ui h(u1, u2) becomes the key factor. Note that the
coefficients a12, a21 do not play any role in the competition because of the segregation
principle.

We can briefly summarize the following main factors that can influence the population
ratio in cell culture for model (2.11):

(a). The difference of cell dynamics in the two species (internal factor): if the equilibrium
P̄1 > P̄2 (see (3.2) for definition), then u1 will dominate, u2 will die out (and vice-
versa when P̄1 < P̄2) (see Figures 3.5-3.6 and Table 3.3);

(b). If cells are densely seeded at the beginning, despite of competitive advantage, the
dominant species can not take out its competitor in a short time (see Figures 3.7-
3.8). We also concluded that the law of initial distribution has almost no influence
on the population ratio (see Figures 3.12-3.13);

(c). If cells are sparsely seeded at the beginning, we need to distinguish the period of
time needed for the cell to occupy the surface of the dish and the time needed for
each species to reach a saturation stage (see Figure 3.16 and Figure 3.18).
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Conclusion

1 Contributions of the thesis

The motivation of this thesis is to study the cell movement with separation phenomenon
found in cell co-culture experiments through a mathematical model. In the 1970s, Shige-
sada et al. [95] proposed a self-diffusion and cross-diffusion model to study the effects
of separation between two competing species. They found the segregation can allow the
populations to maintain their respective living areas, thus leading to the coexistence of
two populations. This result provides a different perspective on the exclusion principle
of the classic Lotka-Volterra ODE model. Although the separation of solutions can be
rigorously proved in nonlinear diffusion equations, one of the mathematical drawbacks
of such models is that it is difficult to obtain the uniqueness of solutions. Therefore,
based on the work of other researchers, we proposed an alternative model – a reaction-
diffusion equation with nonlocal advection term. We rigorously proved the existence and
uniqueness of solutions. Particularly, when the viscosity equals 0, we can also prove the
segregation property of solutions.

1.1 A reaction-diffusion equation with nonlocal advection

In Chapter 1 and 2, we mainly dealt with a class of reaction-diffusion equation with
nonlocal advection term.

In Chapter 1 we mainly discussed the case when the viscosity coefficient ε > 0. Under
rather general assumption on the nonlocal kernel, we studied the local well-posedness of
the problem in suitable fractional spaces by using the semigroup theory. We obtained
stability results for the homogeneous steady state. A bifurcation analysis was performed
to understand the emerging complex patterns when the positive homogeneous steady
state becomes unstable. With a symmetric step function kernel, Turing bifurcation of
equilibrium may occur. As a result, we obtained the existence of a stable branch of
spatially heterogeneous steady states. More surprisingly, when this symmetry is broken
by shifting the step function, the homogeneous steady state may undergo what we called
Turing-Hopf bifurcation yielding the existence of a branch of spatially heterogeneous and
time periodic solutions.

Lastly, by letting the kernel function converge to a Dirac measure, we can see whether
the solution will converge formally to the solution of porous medium equation (Barenblatt
solution) depends highly on the sign of the Fourier coefficients of the kernel. To be more
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precise, if the kernel has only positive Fourier coefficients, then we observed that the
solution does converge to Baranblatt solution while if the kernel possesses a negative
Fourier coefficient, it may lead to spatially heterogeneous solution.

In Chapter 2 we studied the case when the viscosity equals 0, our equation becomes
a hyperbolic nonlocal advection equation. In such case, the classical semigroup theory
is not enough to prove the well-posedness of the equation. To that aim, inspired by the
work of Ducrot and Magal [39], we considered the notion of solutions integrated along the
characteristics. In Chapter 2, we generalized the single-species equation in [39] and we
investigated the competition between two species. Moreover, by using the solution inte-
grated along the characteristics, we proved that the solutions admit segregation property.
Besides, under the framework of Young measure theory, we extended the results on the
asymptotic behavior of solutions in [39] to two-species case. From a numerical perspec-
tive, we found that under the effect of segregation, the PDE model admits a competitive
exclusion principle and the finial proportion of populations is also affected by the initial
distributions.

1.2 An application to cell co-culture

From the experimental data in the work of Pasquier et al. [89], we modeled the mono-
layer cell co-culture by a hyperbolic Keller-Segel equation. We proved the competitive
exclusion principle, indicating that the asymptotic behavior of populations only depends
on the relationship between the steady states for two species. We found that except for
the case when the two steady states are equal, the model with spatial segregation always
exhibits an exclusion principle. This result is different from the ODE case.

Even though the long term dynamics of cell density is decided by the relative values of
the steady states, the short term behavior need a more delicate description. We studied
two factors which may influence the population ratios. The first factor is the initial cell
distribution, as measured by the initial total cell number and the law of initial distribution.
We found that the impact of the initial distribution on the population ratio lies in the
initial total cell number but not in the law of initial distribution.

The second factor having an impact on the population ratio is the cell movement in
space, as measured by the dispersion coefficients. In the transient stage (i.e., before the
dish is saturated), the dispersion rates are the dominant factor. Once the surface of the
dish is saturated by cells, cell dynamics becomes the key factor. Our numerical results
also confirm the work in [95], the segregation property can suppress the competition in
the sense that each species can live on its separated domain (depending on the initial
distribution), thus the dominant species needs an extremely long time to take out its
competitor.

2 Research perspectives

One of the important problems that we are interested in is the traveling wave solution for
such a nonlocal advection equation. Aronson [4] and Atikinson [5], using the phase-plane
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analysis, studied the porous medium equation with logistic source

ut = (um)xx + u(1− u), with m > 1,

and confirmed the existence of the sharp-type traveling wave with the critical wave speed
c∗.

From the case when m = 1 which corresponds to the Fisher-KPP equation, to some
recent work dealing with the large time behavior of solutions and stability of the wavefronts
for m > 1 in higher dimension, the traveling wave solutions for classic porous medium
equation still attracts many mathematicians. We refer to the references [4, 5, 35, 37, 63]
in the topic of traveling wave solutions for porous medium equations.

As for the reaction-diffusion equation with nonlocal advection, we refer to the recent
work by Hamel and Henderson [52]. They considered the following model

ut + ∂x(u (K ∗ u)) = uxx + u(1− u),

where the bounded odd kernel function K ∈ Lp(R) for p ∈ [1,∞]. They obtained the
explicit upper and lower bounds on the propagation speed which are asymptotically sharp
in the above cases.

In fact, our on-going work will focus on the existence of the traveling wave solution of
the following problem defined on R

ut − (u(ρ ∗ u)x)x = u(1− u),

where kernel ρ(x) = 1
2
e−|x| corresponds to the Keller-Segel model with negative chemo-

taxis.

Contrast to the porous medium case where the sharp-type traveling wave solutions
are continuous, in the case of nonlocal advection with logistic source we can show the
traveling wave solution (if exists) is necessarily discontinuous. This is also observed by
our numerical simulations. Our numerical simulation is under the following regime :

• Given a bounded interval [−L,L] and an initial distribution of φ ∈ C([−L,L])
satisfying φ(−L) = 1 and for some z∗ ∈ [−L,L],

φ(z) = 0, for any z ≥ z∗.

• Extend the initial profile by letting φ(z) ≡ 1 for any z < −L and φ(z) ≡ 0 for any
z > L;

• Solve numerically the following PDE using upwind scheme
∂tu(t, x)− ∂x

(
u(t, x)∂xp(t, x)

)
= u(t, x)(1− u(t, x)),

u(t, x) = 1, x ≤ −L, u(t, x) = 0, x ≥ L,

u(0, x) = φ(x),

t > 0, x ∈ [−L,L].

(2.1)
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with the convolution term defined as

p(t, x) =

∫
R
ρ(x− y)u(t, y)dy

=

∫ L

−∞
ρ(x− y)dy +

∫ L

−L
ρ(x− y)u(t, y)dy

where ρ(x) = 1
2
e−|x|.

Our initial value φ is chosen as

φ(x) =
(x− x0)2

(L+ x0)2
1[−L,x0](x) ∈ C1([−L,L]). (2.2)

In the following numerical simulations, we always set

L = 20, x0 = −15.

Figure 3.1 is the propagation of the profile.

-20 -10 0 10 20
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0.6

0.8

1

Figure 3.1: We plot the propagation of the front under system (2.1). Our initial distribu-
tion is taken as (2.2). We plot the propagation profile at t = 20, 40 and 60 (reps. dashed
lines, dotted-dashed lines and solid lines).

The above simulation shows that even though the initial profile is C1 smooth, there is
the formation of discontinuity in large time behavior.

We also plot the propagation speeds at different u values, namely, when u = 0, 0.2, 0.5, 0.8
and 0.9 (here u = 0 means the position of the largest point which is nonzero), this will
help us to identify if the above profile is a traveling wave or not.

132 Xiaoming Fu



Conclusion

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

di
st

an
ce

Figure 3.2: We plot the propagating speed of the front under system (5.1). Our initial
distribution is taken as (5.2). We trace the propagating speeds of the profile at u =
0, 0.2, 0.5, 0.8 and 0.9. The x-axis represents the time and the y-axis is the relative moving
distance at different u values.

Since the dynamics of cell growth can either be described through individual-based
models as well as continuum models, for the extension of our work in the modeling aspect
we can consider the comparison of these two different approaches. We refer to Byrne and
Drasdo [20], Motsch and Peurichard [78] for the comparison of individual-based models
with the limiting continuum models. In fact, in order to formally derive a continuous
model from the microscopic model with non-overlapping constraint and cell division,
Motsch and Peurichard [78] obtained a nonlocal advection equation with a threshold
constraint for the density function. In the aforementioned papers, the microscopic and
macroscopic models showed numerically a good agreement in their large time dynam-
ics. Therefore, the continuum model solves the large computational time raised by the
individual-based model but stays closely linked to the microscopic dynamics.

Comparing the individual-based models with the limiting continuum models can also
be a guiding direction for the future work of this thesis. In the introduction part, we
mentioned if the interactions between the particles follow the potential V n satisfying

V n(x) = nβV
(
n
β
N x
)
,

and the following convergence
lim
n→∞

V n(x) = δ0(x),

where δ0 is the Dirac measure at 0. Then as the number of the particles goes to infinity,
we can obtain a nonlocal advection model when β = 0 (Mckean-Vlasov limit). Here it
is interesting to consider the influence of the choice of the potential V . One may ask
whether there are some restrictions on the Fourier coefficients of V as mentioned in the
work [48, 58]. Whether the continuous model requires some modifications after considering
the volume of cells and the non-overlapping limitation? Under what conditions can we
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say the individual-based model is a good approximation? Finally, when we have the
simulations for the individual-based model, we can gain a better understanding of the co-
culture, separation, boundary formation, and competing relationships of cell co-culturing.
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Appendix A

Reduced system for Theorem 3.8

In this subsection, we give a brief calculation of the center manifold reduction as a sup-
plement of Theorem 3.8. Recall our equation reads as follows

d

dt

w(t)

γ(t)

 = L

w(t)

γ(t)

+R

w(t)

γ(t)

 ,

wherein we have set

L =

(A+ ∂wF̃ (0, γ0)
)

0

0 0

 ∈ L (H2 × R, H0 × R
)
,

and

R

w
γ

 =

F̃ (w, γ)− ∂wF̃ (0, γ0)w

0

 .

Recall also that F̃ and B are defined by

F̃ (w, γ) =
b− µ
γµ

(K ◦ w)′′ +B(w,w) +

(
µ2

b+ γµw
− µ

)
w + w,

B(w,w) =
d

dx

(
w
d

dx
K ◦ w

)
,

and we define
G(w, γ) = F̃ (w, γ)− ∂wF̃ (0, γ0)w.

Moreover, we also define Â = A+ ∂wF̃ (0, γ0) and let us observe that Âen = λn(γ0)en for
all n ∈ Z. Recall that the framework of 3.8 implies that we have, for some n0 ≥ 1,

λ±n0(γ0) ∈ iR, Re(λn(γ0)) < 0, ∀n 6= ±n0.

To perform our center manifold reduction we will need the following computations:

• K ◦ en = cn(K)en for all n ∈ Z
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• B(en, em) = −
(π
L

)2

cm(K)m(m+ n)em+n for all (n,m) ∈ Z2.

Define the center space Ec = span (e±n0)×R and the stable space Es = span (e±n0)⊥×
{0} where span (e±n0) denotes the vector space spanned by eigenfunctions e±n0 while
span (e±n0)⊥ denotes its orthogonal space for the L2(−L,L)−inner product. We denote
by Ψ̃ : Ec → Es the local center manifold and in the sequel we will make use of the
following notation

Ψ̃(xc, γ) = (Ψ(xc, γ), 0) ∈ Es, for (xc, γ) ∈ Ec close to (0, γ0),

and xc = x−e−n0 + x+en0 . Since the center manifold is smooth (here C∞) we rewrite it
as follows:

Ψ(xc, γ) =
∑
n6=±n0

Ψn(xc, γ)en =
∑
n6=±n0

Pn(xc, γ)en +O
(
((‖xc‖+ |γ − γ0|)3) in H2,

where, for each n ∈ Z \ {±n0}, Pn(xc, γ) is homogeneous polynomial of degree 2 for the
variables x−, x+ and (γ−γ0). For notational simplicity we also denote by P±n0(xc, γ) the
first order polynomials

P−n0(xc, γ) = x− and Pn0(xc, γ) = x+.

Note that since the center manifold is real valued, one has

x+ = x− and Ψ−n(xc, γ) = Ψn(xc, γ), ∀n 6= ±n0.

To compute the – center manifold – reduced system, let us introduce the center and stable
projectors Πc and Πs as follows:

Πcϕ =
∑
n=±n0

cn(ϕ)en and Πsϕ =
∑
n6=±n0

cn(ϕ)en,

as well as the center and stable part of the linear operator Â, respectively denoted by Âc
and Âs and defined by

Âcϕ =
∑
n=±n0

cn(ϕ)λn(γ0)en and Âsϕ =
∑
n6=±n0

λn(γ0)cn(ϕ)en.

Next the reduced system reads as
dxc(t)

dt
= Âcxc(t) + ΠcG (xc(t) + Ψ (xc(t), γ(t)) , γ(t)) ,

dγ(t)

dt
= 0,

(A.1)

and the center manifold satisfies the following equation in the neighbourhood of (xc, γ) =
(0, , γ0):

∂xcΨ(xc, γ) [Acxc + ΠcG(xc + Ψ(xc, γ), γ)] = AsΨ(xc, γ) + ΠsG(xc + Ψ(xc, γ), γ). (A.2)

Our goal is to obtain a Taylor expansion up to order 3 of the above reduced system.
To that aim we shall first compute a Taylor expansion of ΠcG(xc + Ψ(xc, γ), γ) and
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ΠsG(xc + Ψ(xc, γ), γ) respectively up to order 3 and 2. To do so, first note that for ‖w‖
small enough and γ close to γ0 one has the series expansion

F̃ (w, γ) =
b− µ
γµ

(K ◦ w)′′ +B(w,w) + w(1− µ) +
µ2

b

∞∑
p=0

γpµpwp+1

bp
,

and

∂wF̃ (0, γ0)w =
b− µ
γ0µ

(K ◦ w)′′ + w(1− µ) +
µ2

b
w.

As a consequence one has, for all w and |γ − γ0| small enough,

G(w, γ) =
b− µ
µ

γ0 − γ
γ0γ

(K ◦ w)′′ +B(w,w) +
µ2

b

∞∑
p=1

γpµpwp+1

bp
.

Hence this leads us to the following order 3 Taylor expansion

G(w, γ) =
b− µ
γ0µ

(2γ0 − γ)(γ0 − γ)

γ2
0

(K ◦ w)′′ +B(w,w) +
µ3γ0

b2
w2

+
µ3(γ − γ0)

b2
w2 +

µ4γ2
0

b3
w3 +O((|w|+ |γ − γ0|)4).

Now choosing the following form for w

w = xc + Ψ(xc, γ) = x−e−n0 + x+en0 +
∑
n6=±n0

Pn(xc, γ) +O
(
(‖xc‖+ |γ − γ0|)3) in H2,

yields

(K ◦ w)′′ =−
((n0π

L

)2

c−n0(K)x−e−n0 +
(n0π

L

)2

cn0(K)x+en0

)
−
∑
n6=±n0

(nπ
L

)2

cn(K)Pn(xc, γ)en +O
(
(‖xc‖+ |γ − γ0|)3) in H0,

and

B(w,w) =
∑

m,n∈Z2

Pn(xc, γ)Pm(xc, γ)B(en, em)

= −
∑
m,n

Pn(xc, γ)Pm(xc, γ)
(π
L

)2

cm(K)m(m+ n)em+n

+O
(
(‖xc‖+ |γ − γ0|)4) in H0,

Now, we calculate those terms of B(w,w) up to order 2, which are given by

order 2


−x2

+

(π
L

)2

cn0(K)2n2
0e2n0 , n = m = n0;

−x2
−

(π
L

)2

c−n0(K)2n2
0e−2n0 , n = m = −n0;

0, n = n0,m = −n0; or n = −n0,m = n0.
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For further normal form computation, we list all possible situations of order 3 of ΠcB(w,w),
that the components along the vectors en0 and e−n0 . They reads as follows

order 3



0, n = n0, m = 0;

−x+P−2n0(xc, γ)
(π
L

)2

c−2n0(K)2n2
0e−n0 , n = n0, m = −2n0;

0, n = −n0, m = 0;

−x−P2n0(xc, γ)
(π
L

)2

c2n0(K)2n2
0en0 , n = −n0, m = 2n0;

−x+P0(xc, γ)
(π
L

)2

cn0(K)n2
0en0 , n = 0, m = n0;

x+P−2n0(xc, γ)
(π
L

)2

cn0(K)n2
0e−n0 , n = −2n0, m = n0;

−x−P0(xc, γ)
(π
L

)2

c−n0(K)n2
0e−n0 , n = 0, m = −n0;

x−P2n0(xc, γ)
(π
L

)2

c−n0(K)n2
0en0 , n = 2n0, m = −n0;

Finally, we compute the term Πcw2 and Πcw3. To that aim, note that one has

w2 =

(
x−e−n0 + x+en0 +

∑
n6=±n0

Pn(xc, γ)en

)2

= x2
+e2n0 + 2x+x−e0 + x2

−e−2n0 + (x−e−n0 + x+en0)
∑
n6=±n0

Pn(xc, γ)en

+O((‖xc‖+ |γ − γ0|)4).

Therefore

Πcw2 = (x+P0(xc, γ) + x−P2n0(xc, γ)) en0 + (x+P−2n0(xc, γ) + x−P0(xc, γ)) e−n0

+O((‖xc‖+ |γ − γ0|)4).

Next, one has
w3 = (x−e−n0 + x+en0)3 +O((‖xc‖+ |γ − γ0|)4),

so that we get

Πcw3 = 3x2
+x−en0 + 3x+x

2
−e−n0 +O((‖xc‖+ |γ − γ0|)4).

Coupling the above computations allows us to compute a Taylor expansion up to order 3
for the quantity ΠcG(xc + Ψ(xc, γ), γ) and more precisely we get

ΠcG(xc + Ψ(xc, γ), γ)

=
b− µ
γ0µ

(2γ0 − γ)(γ − γ0)

γ2
0

(n0π

L

)2

(c−n0(K)x−e−n0 + cn0(K)x+en0)

+
(n0π

L

)2

(x−P2n0(xc, γ)c−n0(K)− 2x−P2n0(xc, γ)c2n0(K)− x+P0(xc, γ)cn0(K)) en0

+
(n0π

L

)2

(x+P−2n0(xc, γ)cn0(K)− 2x+P−2n0(xc, γ)c−2n0(K)− x−P0(xc, γ)c−n0(K)) e−n0
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+
µ3γ0

b2
(x+P0(xc, γ) + x−P2n0(xc, γ))en0 +

µ3γ0

b2
(x+P−2n0(xc, γ) + x−P0(xc, γ))e−n0

+
µ4γ2

0

b3

(
3x2

+x−en0 + 3x+x
2
−e−n0

)
+O((‖xc‖+ |γ − γ0|)4) in H0. (A.3)

Similarly, we also obtain a Taylor expansion for the quantity ΠsG(xc + Ψ(xc, γ), γ) up
to order 2 as follows,

ΠsG(xc + Ψ(xc, γ), γ) =2
(n0π

L

)2 (
cn0(K)x2

+e2n0 + c−n0(K)x2
−e−2n0

)
+
µ3γ0

b2

(
x2

+e2n0 + 2x+x−e0 + x2
−e−2n0

)
+O((‖xc‖+ |γ − γ0|)3).

We now plug the above Taylor expansion into (A.4) to identify the polynomials Pn needed
to obtain a Taylor expansion up to order 3 of the reduced system.

First note that the left-hand side of (A.2) can be rewritten as

∂xcΨ(xc, γ) [Acxc + ΠcG(xc + Ψ(xc, γ), γ)]

=∂xcΨ(xc, γ) [λn0(γ0)x+en0 + λ−n0(γ0)x−e−n0 + h.o.t. ≥ 2]

=λn0(γ0)x+∂xcΨ(xc, γ)en0 + λ−n0(γ0)x−∂xcΨ(xc, γ)e−n0 + h.o.t. ≥ 3 (A.4)

where h.o.t. ≥ 2 (resp. 3) means those terms with order greater than 2 (resp. 3). And
similarly, the right-hand side of (A.2) can be re-written as

AsΨ(xc, γ) + ΠsG(xc + Ψ(xc, γ), γ)

=
∑
n6=±n0

λn(γ0)Pn(xc, γ)en − 2
(n0π

L

)2 (
cn0(K)x2

+e2n0 + c−n0(K)x2
−e−2n0

)
+
µ3γ0

b2

(
x2

+e2n0 + 2x+x−e0 + x2
−e−2n0

)
+ h.o.t. ≥ 3

=
∑
n6=±n0

λn(γ0)Pn(xc, γ)en + C0x+x−e0 + C2n0x
2
+e2n0 + C−2n0x

2
−e−2n0 + h.o.t. ≥ 3, (A.5)

wherein we have set
C0 = 2

µ3γ0

b2
,

C2n0 = −2
(n0π

L

)2

cn0(K) +
µ3γ0

b2
,

C−2n0 = −2
(n0π

L

)2

c−n0(K) +
µ3γ0

b2
.

(A.6)

According to (A.3) we only need to compute those terms when n = 0,±2n0. Next since
(A.4) and (A.5) are equal, identifying the terms of order 2 yields

λn0(γ0)x+
∂

∂x+

Pn(xc, γ) + λ−n0(γ0)x−
∂

∂x−
Pn(xc, γ) = λn(γ0)Pn(xc, γ) +Qn(xc)

for n = 0,±2n0, where we have defined

Q0(xc) = C0x+x−, Q2n0(xc) = C2n0x
2
+, Q−2n0(xc) = C−2n0x

2
−.
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Recalling that Pn are homogeneous polynomials of degree 2 with respect to the three
variables x−, x+ and (γ − γ0), obtains that

P0(xc, γ) = − C0

λ0(γ0)
x+x−,

P2n0(xc, γ) = − C2n0

λ2n0(γ0)
x2

+,

P−2n0(xc, γ) = − C−2n0

λ−2n0(γ0)
x2
−,

where the constants C0, C±2m0 are defined in (A.6). Finally substituting the above ex-
pression into the Taylor expansion of ΠcG(xc + Ψ(xc, γ), γ) yields the following reduced
system up to order 3,

dx+(t)

dt
= [iω + a(γ)]x+ + x−x

2
+β + h.o.t ≥ 4,

x−(t) = x+(t),
dγ(t)

dt
= 0.

Here we have set λn0(γ0) = iω,

a(γ) =
(n0π

L

)2 b− µ
γ0µ

cn0(K)
(2γ0 − γ)(γ − γ0)

γ2
0

,

and

β =
3γ2

0µ
4

b3
+

2γ0µ
3 (π2b2n2

0cn0(K)− γ0µ
3L2)

b4L2λ0 (γ0)

+
(2π2b2n2

0cn0(K)− γ0µ
3L2) (π2b2n2

0 (c−n0(K)− 2c2n0(K)) + γ0µ
3L2)

b4L4λ2n0 (γ0)
.

The first equation in the above system turns out to be the Poincaré normal form. It
allows us to study the stability of the bifurcated periodic solution. To that aim observe
that

Re(a(γ)) =
(n0π

L

)2

ε0
(2γ0 − γ)(γ − γ0)

γ2
0

,

so that Re(a(γ)) > 0 for γ > γ0 and negative for γ < γ0 but close to γ0. The stability
of the bifurcating period orbit is fully determined by the sign of the real part of the β.
However we are not able to conclude about this sign. To summarize the Hopf bifurcation
at γ0 is:

1. supercritical if Re β < 0, namely the origin is stable for γ < γ0 and unstable for
γ > γ0. Moreover when γ > γ0 the system has a stable limit cycle. Here the circular
limit cycle has a radius proportional to

√
γ − γ0.

2. subcritical if Re β > 0, namely the origin is stable for γ < γ0 and unstable when
γ > γ0. Moreover when γ < γ0 the system has an unstable limit cycle, with a radius
proportional to

√
γ0 − γ.
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Appendix B

Numerical scheme

1 Numerical scheme for the hyperbolic Keller-Segel equa-
tion

For simplicity, we give the numerical scheme for the following one species and one dimen-
sional model 

∂tu+ d ∂x (uv) = f(u)

v(t, x) = −∂xP (t, x)

(I − χ∆)P (t, x) = u(t, x)

in (0, T ]× [−L,L]

∂xP (t,±L) = 0 on [0, T ].

(B.1)

The numerical method used is based on finite volume method. We refer to [67, 101] for
more results about this subject. Our numerical scheme reads as follows

un+1
i = uni − d

∆t

∆x

(
φ(uni+1, u

n
i )− φ(uni , u

n
i−1)

)
+ ∆t f(uni ),

i = 1, 2, . . . ,M, n = 0, 1, 2, . . . , N,

(B.2)

with φ(uni+1, u
n
i ) defined as

φ(uni+1, u
n
i ) = (vn

i+ 1
2
)+uni − (vn

i+ 1
2
)−uni+1 =

v
n
i+ 1

2

uni , vn
i+ 1

2

≥ 0,

vn
i+ 1

2

uni+1, vn
i+ 1

2

< 0.

and
vn
i+ 1

2
= −p

n
i+1 − pni

∆x
, i = 0, 1, 2, · · · ,M,

where we define

P n := (I − χA)−1Un, n = 0, 1, 2, . . . , N, P n =
(
pni
)
M×1

Un =
(
uni
)
M×1

.

where χ is a constant and A = (ai,j)M×M is the usual linear diffusion matrix with Neumann
boundary condition. Therefore, since by Neumann boundary condition p0 = p1 and
pM+1 = pM , for Equation (B.2) when i = 1,M we have

φ(un1 , u
n
0 ) = 0,

φ(unM+1, u
n
M) = 0.
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2. Numerical Scheme for a nonlocal advection equation

which gives

un+1
1 = un1 − d

∆t

∆x
φ(un2 , u

n
1 ) + ∆t f(un1 ),

un+1
M = unM + d

∆t

∆x
φ(unM , u

n
M−1) + ∆t f(unM).

By this boundary condition, we have the conservation of mass for Equation (B.1) when
the reaction term f ≡ 0.

2 Numerical Scheme for a nonlocal advection equation

For simplicity, we give the numerical scheme for the following one species and one dimen-
sional model with periodic boundary condition

∂tu+ ∂x (u v) = ε∂2
xu+ uh(u), t > 0, x ∈ T,

v(t, x) = −∂x(K ◦ u(t, ·))(x),

u(0, x) = u0(x) ∈ L1
per(T).

The numerical method is based on finite volume scheme. We briefly illustrate our numer-
ical scheme in this section: the approximation of the convolution term is as follows

(K ◦ u(t, ·))(x) =

∫
T
u(t, y)K(x− y)dy ≈

∑
j

K(x− xj)u(t, xj)∆x.

In addition, we define

pni :=
M∑
j=1

K(xi − xj)u(tn, xj)∆x,

for i = 1, 2, . . . ,M, n = 0, 1, 2, . . . , N . We use the numerical scheme as illustrated in [101]
to deal with the nonlocal convection term and the scheme reads as follows

un+1
i = uni + ε

∆t

∆x2

(
un+1
i+1 − 2un+1

i + un+1
i−1

)
− ∆t

∆x

(
φ(un,−i+1, u

n,+
i )− φ(un,−i , un,+i−1)

)
+ ∆t uni h(uni ),

i = 1, 2, . . . ,M, n = 0, 1, 2, . . . , N,

with φ(uni+1, u
n
i ) defined as

φ(un,−i+1, u
n,+
i ) = (vn

i+ 1
2
)+un,+i − (vn

i+ 1
2
)−un,−i+1 =

v
n
i+ 1

2

un,+i , vn
i+ 1

2

≥ 0,

vn
i+ 1

2

un,−i+1, vn
i+ 1

2

< 0.

where
vn
i+ 1

2
= −p

n
i+1 − pni

∆x
, i = 1, 2, · · · ,M − 1,
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B. Numerical scheme

and
un,−i = uni −

1

2
minmod(uni+1 − uni , uni − uni−1),

un,+i = uni +
1

2
minmod(uni+1 − uni , uni − uni−1),

i = 1, 2, · · · ,M − 1,

where the function minmod(a, b) is defined as

minmod(a, b) =

{
sign(a) min{a, b}, sign(a) = sign(b),

0, otherwise.

By the periodic boundary condition, let vn1
2

= vn
M+ 1

2

and un0 = unM , u
n
1 = unM+1. Thus,

un,±0 = un,±M , un,±1 = un,±M+1,

the conservation law holds when the reaction term equals zero.
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2. Numerical Scheme for a nonlocal advection equation
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Appendix C

Invariance of the domain Ω

In this section, we prove the invariance of domain Ω for the characteristic equation.
Assumption 0.1. Let Ω ⊂ R2 be an open bounded subset with ∂Ω of class C2.

Since Ω is a bounded domain of class C2, there exists U a neighborhood of the boundary
∂Ω such that the distance function x→ dist(x, ∂Ω) := infy∈∂Ω ‖x− y‖ restricted to U has
the regularity C2 (see Foote [47, Theorem 1]). Furthermore, by Foote [47, Theorem 1]
and Ambrosio [2, Theorem 1 p.11], we have the following properties for Ω.
Lemma 0.2. Let Assumption 0.1 be satisfied. Then

(i). There exists a small neighborhood U of ∂Ω with U ⊂ Ω such that, for every x ∈ U
there is a unique projection P (x) ∈ ∂Ω satisfying dist(x, P (x)) = dist(x, ∂Ω).

(ii). The distance function x 7→ δ(x) := dist(x, ∂Ω) is C2 on U\∂Ω.

(iii). For any x ∈ U , ∇δ(x) = −ν(P (x)) where ν(x) is the outward normal vector.

We consider the following non-autonomous differential equation on Ω{
x′(t) = f(t, x(t)) t > 0

x(0) = x0 ∈ Ω.
(C.1)

Assumption 0.3. The vector field f : [0,∞)× Ω→ R2 is continuous and satisfies

ν(x) · f(t, x) ≤ 0, ∀t > 0, ∀x ∈ ∂Ω. (C.2)

Moreover, for any T > 0, there exists a constant K = K(T ) such that vector field f
satisfies

|f(t, x)− f(t, y)| ≤ K|x− y|, ∀x, y ∈ Ω, t ∈ [0, T ]. (C.3)

By (C.3), we have the existence and uniqueness of the solutions of (C.1) and the
solutions may eventually reach the boundary ∂Ω in finite time. We will prove that (C.2)
implies that the solutions of (C.1) actually stay in Ω and can not attain boundary ∂Ω in
finite time under Assumption 0.1.
Theorem 0.4. Let Assumption 0.1 and 0.3 be satisfied. For any T > 0, let x(t) be the
solution of (C.1) on [0, T ]. Then x(t) ∈ Ω for any t ∈ [0, T ].
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Proof. We prove this theorem by contradiction. Let t∗ ∈ (0, T ] be the first time when
x(t) reaches boundary ∂Ω, i.e.,

t∗ = inf{0 < t ≤ T : δ(x(t)) = 0}.

We can find a θ > 0 such that, x(t) ∈ U ∩ Ω for any t ∈ [t∗ − θ, t∗]. Since t→ x(t) is C1,
the mapping t 7→ δ(x(t)) is C1 on [t∗ − θ, t∗]. By Lemma 0.2 (iii), we have

d

dt
δ(x(t)) = x′(t) · ∇δ(x(t)) = −f(t, x(t)) · ν(y(t)), (C.4)

where ν is the outward normal vector and y(t) := P∂Ω(x(t)) is the unique projection of
x(t) onto ∂Ω. By assumption (C.2), we have

−f(t, x(t))·ν(y(t)) =
(
f(t, y(t))−f(t, x(t))

)
·ν(y(t))−f(t, y(t))·ν(y(t)) ≥

(
f(t, y(t))−f(t, x(t))

)
·ν(y(t)).

Hence (C.4) becomes

d

dt
δ(x(t)) =− f(t, x(t)) · ν(y(t))

≥
(
f(t, y(t))− f(t, x(t))

)
· ν(y(t))

≥− |f(t, y(t))− f(t, x(t))| |ν(y(t))|
≥ −K|y(t)− x(t)| = −Kδ(x(t)), t ∈ [t∗ − θ, t∗],

which yields
δ(x(t)) ≥ δ(x(t∗ − θ))e−K(t−t∗+θ), ∀t ∈ [t∗ − θ, t∗],

and δ(x(t∗ − θ)) > 0 implies δ(x(t∗)) > 0 which contradicts our assumption δ(x(t∗)) =
0.
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Appendix D

Proof of Theorem 2.7

Solution integrated along the characteristics. Let us temporarily suppose u ∈
C1 ([0, T ]× Ω) where Ω is the two dimensional open unit disk, we can rewrite the first
equation in (2.1) as

∂tu(t, x)− d∇u(t, x) · ∇P (t, x) = u(t, x)h(u(t, x)) + d u(t, x)∆P (t, x)

= u(t, x)

(
h(u(t, x)) +

d

χ
(P (t, x)− u(t, x))

)
.

Moreover, if we differentiate the solution along the characteristic with respect to t then

d

dt
u(t,Π(t, 0;x))

= ∂tu(t,Π(t, 0;x)) +∇u(t,Π(t, 0;x)) · ∂tΠ(t, 0;x)

= ∂tu(t,Π(t, 0;x))− d∇u(t,Π(t, 0;x)) · ∇P (t,Π(t, 0;x))

= u(t,Π(t, 0;x))

(
h(u(t,Π(t, 0;x))) +

d

χ
(P (t,Π(t, 0;x))− u(t,Π(t, 0;x)))

)
.

The solution along the characteristics can be written as

u(t,Π(t, 0;x))

= u0(x) exp

(∫ t

0

h(u(l,Π(l, 0;x))) +
d

χ

(
P (l,Π(l, 0;x))− u(l,Π(l, 0;x))

)
dl

)
.

Similarly, we can deduce for any 0 ≤ s ≤ t

u(t,Π(t, s;x))

= u(s, x) exp

(∫ t

s

h(u(l,Π(l, s;x))) +
d

χ

(
P (l,Π(l, s;x))− u(l,Π(l, s;x))

)
dl

)
. (D.1)

For the simplicity of notation, we let d = χ = 1 in our following discussion and define
w(t, x) := u(t,Π(t, 0;x)). We construct the following Banach fixed point problem for the
pair (w,P ). For each (w,P ), we let

w1(t, x) = u0(x) exp
(∫ t

0

F (w(l, x)) + P (l,Π(l, 0;x))dl
)
. (D.2)
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where we set F (u) = h(u)− u for any u ≥ 0 and we define

T

w(t, x)

P (t, x)

 :=

 w1(t, x)

(I −∆)−1w1(t,Π(0, t; ·))(x)

 =

w1(t, x)

P 1(t, x)

 , (D.3)

where (I − ∆)−1 is the resolvent of the Laplacian operator with Neumann boundary
condition.

We define

Xτ := C0
(
[0, τ ], C0(Ω)

)
, Y τ := C0

(
[0, τ ], C1(Ω)

)
,

X̃τ :=

{
w ∈ C0

(
[0, τ ], C0(Ω)

) ∣∣∣w ≥ 0, sup
t∈[0,τ ]

‖w(t, ·)‖W 1,∞(Ω) ≤ C1

}
,

Ỹ τ :=

{
P ∈ C0

(
[0, τ ], C1(Ω)

) ∣∣∣ sup
t∈[0,τ ]

∥∥P (t, ·)
∥∥
W 2,∞(Ω)

≤ C2

}
,

(D.4)

where Ci, i = 1, 2 are two constants to be fixed later. Recall W 1,∞(Ω) is equivalent to
Lipschitz continuous function on Ω [45, Chapter 5. Theorem 4. p.279]. We also set

Zτ := Xτ × Y τ , Z̃τ := X̃τ × Ỹ τ .

Notice Z̃τ is a complete metric space for the distance induced by the norm (‖ · ‖Xτ , ‖ · ‖Y τ ).
For simplicity, we denote ‖·‖Cα,k := ‖·‖Cα,k(Ω) and ‖·‖Wk,∞ := ‖·‖Wk,∞(Ω) for α ∈ (0, 1], k ∈
N+.
Theorem 0.1 (Existence and uniqueness of solutions). For any initial value u0 ∈ W 1,∞(Ω)
and u0 ≥ 0, for any C1, C2 large enough in (D.4), there exists τ = τ(C1, C2) > 0 such
that the mapping T has a unique fixed point in Z̃τ .

Proof. For any positive initial value u0 ∈ W 1,∞(Ω) and r > 0, we fix C1 to be a constant
such that 4‖u0‖W 1,∞ ≤ C1 and C2 is a constant defined in (D.15) later in the proof.

We also denote w0

P 0

 =

 u0

(I −∆)−1
N u0


and let BZ̃τ

w0

P 0

 , r

 be the closed ball centered at

w0

P 0

 with radius r in Z̃τ =

X̃τ × Ỹ τ with usual product norm∥∥∥∥∥∥
w
P

∥∥∥∥∥∥
Z̃τ

:= ‖w‖Xτ + ‖P‖Y τ

and we set

κ :=

∥∥∥∥∥∥
w0

P 0

∥∥∥∥∥∥
Z̃τ

+ r.
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D. Proof of Theorem 2.7

Suppose

w
P

 ∈ BZτ

w0

P 0

 , r

, we need to prove that there exits a τ small enough

such that the following properties hold

(a). For any t ∈ [0, τ ], (w1(t, ·), P 1(t, ·)) in (D.2) and (D.3) belong toW 1,∞(Ω)×W 2,∞(Ω)
and their norms satisfy

sup
t∈[0,τ ]

‖w1(t, ·)‖W 1,∞ ≤ C1, (D.5)

sup
t∈[0,τ ]

‖P 1(t, ·)‖W 2,∞ ≤ C2. (D.6)

(b). Moreover, we have

‖w1 − w0‖Xτ ≤ r

2
, (D.7)

‖P 1 − P 0‖Y τ ≤
r

2
. (D.8)

Moreover, we plan to show that the mapping is a contraction: there exists a θ ∈ (0, 1)

such that for any

w̃
P̃

 ,

w
P

 ∈ BZ̃τ

(w0

P 0

 , r

)
we have

∥∥∥∥∥∥T
w̃
P̃

− T
w
P

∥∥∥∥∥∥
Z̃τ

≤ θ

∥∥∥∥∥∥
w̃
P̃

−
w
P

∥∥∥∥∥∥
Z̃τ

. (D.9)

Step 1. We show that there exists a τ small enough such that for any (w,P ) ∈ X̃τ × Ỹ τ

then
sup
t∈[0,τ ]

‖w1(t, ·)‖W 1,∞ ≤ C1,

where w1 is defined in (D.2).

Indeed, since ∇P (t, ·) is Lipschitz continuous, then x → Π(t, 0, x) is also Lipschitz con-
tinuous. Since Π(t, 0; ·) maps Ω into Ω, we have

‖P (t,Π(t, 0; ·))‖W 1,∞ ≤ ‖P (t,Π(t, 0; ·))‖L∞ + ‖∇P (t, ·)‖L∞‖Π(t, 0; ·)‖W 1,∞

≤ ‖P (t, ·)‖W 1,∞ max{‖Π(t, 0; ·)‖W 1,∞ , 1}.

For any t ∈ [0, τ ], we let F̃ := supu∈[0,κ] {|F (u)|+ |F ′(u)|}. By the definition of w1 in
(D.2), we have

‖w1(t, ·)‖W 1,∞

≤ ‖u0‖W 1,∞

∥∥∥∥exp

{∫ t

0

F (w(l, ·)) + P (l,Π(l, 0, ·))dl
}∥∥∥∥

W 1,∞

≤ ‖u0‖W 1,∞

∥∥∥∥exp

{∫ t

0

F (w(l, ·)) + P (l,Π(l, 0, ·))dl
}∥∥∥∥

L∞
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×
(

1 +

∫ t

0

‖F (w(l, ·))‖W 1,∞ + ‖P (l,Π(l, 0, ·))‖W 1,∞dl

)
≤ ‖u0‖W 1,∞ exp

{∫ t

0

‖F (w(l, ·))‖L∞ + ‖P (l,Π(l, 0, ·))‖L∞dl

}
×
(

1 + τ F̃ max{ sup
l∈[0,τ ]

‖w(l, ·)‖W 1,∞ , 1}+ τ‖P (l, ·)‖W 1,∞ max{‖Π(l, 0, ·)‖W 1,∞ , 1}
)

≤ ‖u0‖W 1,∞eτ(F̃+κ)
(

1 + τ F̃ max{C1, 1}+ τκmax{‖Π(l, 0, ·)‖W 1,∞ , 1}
)
. (D.10)

Next we estimate max
{

supl∈[0,τ ] ‖Π(l, 0, ·)‖W 1,∞ , 1
}
. We have for any t, s ∈ [0, τ ]

Π(t, s;x) = x−
∫ t

s

∇P (l,Π(l, s;x))dl.

Since Ω is the unit open disk, ‖x‖W 1,∞(Ω) = 2. We can obtain the following estimate

‖Π(t, s; ·)‖W 1,∞ ≤ 2 +

∫ t

s

‖∇P (l,Π(l, s; ·))‖W 1,∞dl

≤ 2 + sup
l∈[s,t]

‖∇P (l, ·)‖W 1,∞

∫ t

s

max {‖Π(l, s; ·)‖W 1,∞ , 1} dl

≤ 2 + C2

∫ t

s

max{‖Π(l, s; ·)‖W 1,∞ , 1}dl.

Thanks to Grönwall’s inequality, we have

sup
t,s∈[0,τ ]

‖Π(t, s; ·)‖W 1,∞ ≤ 2eτC2 . (D.11)

Substituting the (D.11) into (D.10) yields

‖w1(t, ·)‖W 1,∞ ≤ ‖u0‖W 1,∞eτ(F̃+κ)
(

1 + τ F̃ max{C1, 1}+ 2τκeτC2

)
.

Since C1 ≥ 4‖u0‖W 1,∞ , we can choose τ ≤ min
{

ln 2
F̃+κ

, 1
F̃ max{C1,1}+2κeC2

, 1
}

and we obtain

sup
t∈[0,τ ]

‖w1(t, ·)‖W 1,∞ ≤ C1. (D.12)

Thus, Equation (D.5) holds.

Let us now check that w1 satisfies (D.7). Let χ[u] := ueu, we remark that |eu − 1| ≤
ueu = χ[u] for all u ≥ 0. We have

|w1(t, x)− u0(x)| ≤ |u0(x)|
∣∣∣∣exp

{∫ t

0

F (w(l, x)) + P (l,Π(l, 0, x))dl

}
− 1

∣∣∣∣
≤ ‖u0‖C0χ

[∫ t

0

‖F (w(l, ·))‖C0 + ‖P (l,Π(l, 0, ·))‖C0dl

]
≤ ‖u0‖C0χ

[
τ F̃ + τ sup

l∈[0,τ ]

‖P (l, ·)‖C0

]
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≤ ‖u0‖C0χ
[
τ F̃ + τκ

]
, (D.13)

where F̃ = supu∈[0,κ] {|F (u)|+ |F ′(u)|}. From (D.13) we have

sup
t∈[0,τ ]

‖w1(t, ·)− u0(·)‖C0 ≤ ‖u0‖C0χ
[
τ F̃ + τκ

]
. (D.14)

Since limu→0 χ[u] = 0, it suffice to take τ small enough to ensure (D.7).

Step 2. Next we verify (D.6) and (D.8) for P 1 where P 1 is defined as the second
component of (D.3). We show that there exists τ small enough such that for any
(w,P ) ∈ X̃τ × Ỹ τ

sup
t∈[0,τ ]

‖P 1(t, ·)‖W 2,∞ ≤ C2.

Thanks to the Schauder estimate [50, Theorem 6.30], there exists a constant C depending
only on Ω such that

‖P 1(t, ·)‖
C2, 12
≤ C‖w1(t,Π(0, t; ·))‖

C0, 12
.

Recalling supt∈[0,τ ] ‖Π(0, t; ·)‖W 1,∞ ≤ 2eτC2 as a consequence of (D.11), we have

‖P 1(t, ·)‖W 2,∞ ≤ ‖P 1(t, ·)‖
C2, 12

≤ C‖w1(t,Π(0, t; ·))‖
C0, 12

≤ C‖w1(t,Π(0, t; ·))‖W 1,∞

≤ C‖w1(t, ·)‖W 1,∞ max{‖Π(0, t; ·)‖W 1,∞ , 1}
≤ 2C C1e

τC2 .

We can now define
C2 = 4C C1, (D.15)

which only depends on Ω and ‖u0‖W 1,∞ . Finally, we let τ ≤ (ln 2)/C2 and we have

‖P 1(t, ·)‖W 2,∞ ≤ 4C C1 = C2.

In particular, we have shown (D.6).

Next we prove (D.8). Since Ω is a two-dimensional unit disk, using Morrey’s inequality
[45, Chapter 5. Theorem 6], we have

‖P 1(t, ·)− P0(·)‖
C1, 12
≤ C‖P 1(t, ·)− P0(·)‖W 2,4 , (D.16)

where C is a constant depending only on Ω. For the sake of simplicity, we use the
same notation C for a universal constant depending only on Ω in the following estimates.
Moreover, by the classical elliptic estimates (Agmon–Douglis–Nirenberg [1]) we have

‖P 1(t, ·)− P0(·)‖W 2,4 ≤ C‖w1(t,Π(0, t; ·))− u0(·)‖L4 . (D.17)

Equations (D.16) and (D.17) imply that

‖P 1(t, ·)− P0(·)‖C1 ≤ ‖P 1(t, ·)− P0(·)‖
C1, 12
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≤ C‖w1(t,Π(0, t; ·))− u0(·)‖L4

≤ C‖w1(t,Π(0, t; ·))− u0(·)‖C0

≤ C‖w1(t,Π(0, t; ·))− w1(t, ·)‖C0 + C‖w1(t, ·)− u0(·)‖C0

≤ C‖w1‖W 1,∞‖Π(0, t; ·)− ·‖C0 + C‖w1(t, ·)− u0(·)‖C0

≤ C C1‖Π(0, t; ·)− ·‖C0 + C‖w1(t, ·)− u0(·)‖C0

≤ C C1 τ sup
t∈[0,τ ]

‖∇P (t, ·)‖C0 + C‖w1(t, ·)− u0(·)‖C0

≤ C C1 τ κ+ C‖w1(t, ·)− u0(·)‖C0

≤ C C1 τ κ+ C‖u0‖C0χ
[
τ F̃ + τκ

]
,

where we have used (D.14) for the last inequality . We can conclude

sup
t∈[0,τ ]

‖P 1(t, ·)− P0(·)‖C1 → 0, τ → 0.

Thus, it suffice to take τ small enough to ensure the neighborhood condition (D.8).

Step 3. Contraction mapping In order to verify (D.9), we let

w̃
P̃

 ,

w
P

 ∈

BZ̃τ

w0

P 0

 , r

. We observe that

∣∣w̃1(t, x)− w1(t, x)
∣∣ =

∣∣∣∣u0(x) exp
(∫ t

0

F (w(l, x)) + P (l,Π(l, 0;x))dl
)

− u0(x) exp
(∫ t

0

F (w̃(l, x)) + P̃ (l, Π̃(l, 0;x))dl
)∣∣∣∣.

Due to the classical inequality |ex − ey| ≤ ex+y|x − y| which holds for any x, y ∈ R, we
deduce∣∣w̃1(t, x)− w1(t, x)

∣∣
≤ ‖u0‖C0e2τ(F̃+κ)

[ ∫ t

0

‖F (w̃(l, ·))− F (w(l, ·))‖C0dl

+

∫ t

0

‖P̃ (l, Π̃(l, 0; ·))− P (l,Π(l, 0; ·))‖C0dl

]
≤ ‖u0‖C0e2τ(F̃+κ)

[
τ F̃ sup

l∈[0,τ ]

‖w̃(l, ·)− w(l, ·)‖C0

+ τ sup
l∈[0,τ ]

‖P̃ (l, Π̃(l, 0; ·))− P (l, Π̃(l, 0; ·))‖C0

+ τ sup
l∈[0,τ ]

‖P (l, Π̃(l, 0; ·))− P (l,Π(l, 0; ·))‖C0

]
≤ ‖u0‖C0e2τ(F̃+κ)

[
τ F̃ sup

l∈[0,τ ]

‖w̃(l, ·)− w(l, ·)‖C0 + τ sup
l∈[0,τ ]

‖P̃ (l, ·)− P (l, ·)‖C0
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+ τ sup
l∈[0,τ ]

‖P (l, ·)‖W 1,∞ sup
l∈[0,τ ]

‖Π̃(l, 0; ·)− Π(l, 0; ·)‖C0

]
≤ τ‖u0‖C0e2τ(F̃+κ)

[
F̃‖w̃ − w‖Xτ + ‖P̃ − P ‖Y τ

+ C2 sup
l∈[0,τ ]

‖Π̃(l, 0; ·)− Π(l, 0; ·)‖C0

]
. (D.18)

To estimate supl∈[0,τ ] ‖Π̃(l, 0; ·)− Π(l, 0; ·)‖C0 in (D.18), we claim that

sup
t,s∈[0,τ ]

‖Π̃(t, s; ·)− Π(t, s; ·)‖C0 ≤ τeτC2 sup
t∈[0,τ ]

‖P̃ (l, ·)− P (l, ·)‖C1 . (D.19)

Indeed, we can obtain that∣∣∣Π̃(t, s;x)− Π(t, s;x)
∣∣∣ =

∣∣∣∣∫ t

s

∇P̃ (l, Π̃(l, s;x))−∇P (l,Π(l, s;x))dl

∣∣∣∣
≤
∫ t

s

‖∇P̃ (l, Π̃(l, s; ·))−∇P (l, Π̃(l, s; ·))‖C0dl

+

∫ t

s

‖∇P (l, Π̃(l, s; ·))−∇P (l,Π(l, s; ·))‖C0dl

≤ τ sup
l∈[0,τ ]

‖∇P̃ (l, Π̃(l, s; ·))−∇P (l, Π̃(l, s; ·))‖C0

+ sup
l∈[0,τ ]

‖∇P (l, ·)‖W 1,∞

∫ t

s

‖Π̃(l, s; ·)− Π(l, s; ·)‖C0dl.

This leads to

sup
t,s∈[0,τ ]

‖Π̃(t, s; ·)− Π(t, s; ·)‖C0 ≤ τ sup
l∈[0,τ ]

‖P̃ (l, ·)− P (l, ·)‖C1

+ C2

∫ t

s

‖Π̃(l, s; ·)− Π(l, s; ·)‖C0dl.

Again due to Grönwall’s inequality, we conclude that (D.19) holds.

Inserting (D.19) into (D.18) we have

sup
t∈[0,τ ]

∥∥w̃1(t, ·)− w1(t, ·)
∥∥
C0

≤ ‖u0‖C0e2τ(F̃+κ)
[
τ F̃‖w̃ − w‖Xτ + τ‖P̃ − P ‖Y τ + τ 2C2 e

τC2‖P̃ − P ‖Y τ
]

≤ τ‖u0‖C0e2τ(F̃+κ)
[
F̃‖w̃ − w‖Xτ +

(
1 + τ C2 e

τC2
)
‖P̃ − P ‖Y τ

]
≤ L1(τ)

[
‖w̃ − w‖Xτ + ‖P̃ − P ‖Y τ

]
, (D.20)

where we set
L1(τ) := τ‖u0‖C0e2τ(F̃+κ)

(
F̃ +

(
1 + τ C2 e

τC2
))

and L1(τ)→ 0 as τ → 0.
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Next we prove the contraction property for ‖P̃ 1 − P 1‖Y τ . As before, applying the
same argument of Morrey’s inequality (D.16) and classical elliptic estimates (D.17), we
can deduce

‖P̃ 1(t, ·)− P 1(t, ·)‖C1 ≤ C‖w̃1(t, Π̃(0, t; ·))− w1(t,Π(0, t; ·))‖L4

≤ C‖w̃1(t, Π̃(0, t; ·))− w1(t,Π(0, t; ·))‖C0

≤ C‖w̃1(t, Π̃(0, t; ·))− w1(t, Π̃(0, t; ·))‖C0

+ C‖w1(t, Π̃(0, t; ·))− w1(t,Π(0, t; ·))‖C0

≤ C‖w̃1(t, ·)− w1(t, ·)‖C0 + C‖w1‖W 1,∞‖Π̃(0, t; ·)− Π(0, t; ·)‖C0

≤ C‖w̃1(t, ·)− w1(t, ·)‖C0 + C C1‖Π̃(0, t; ·)− Π(0, t; ·)‖C0

≤ C‖w̃1(t, ·)− w1(t, ·)‖C0 + C C1 τ e
τC2 sup

t∈[0,τ ]

‖P̃ (t, ·)− P (t, ·)‖C1 ,

where we used (D.19) in the last inequality and C is a constant depending only on Ω.
Defining L2(τ) := C C1 τ e

τC2 and together with (D.20) we obtain

sup
t∈[0,τ ]

‖P̃ 1(t, ·)− P 1(t, ·)‖C1 ≤ C L1(τ)
[
‖w̃ − w‖Xτ + ‖P̃ − P ‖Y τ

]
+ L2(τ)‖P̃ − P ‖Y τ .

(D.21)
Combing with (D.20) and (D.21) we deduce

‖w̃1 − w1‖Xτ + ‖P̃ 1 − P 1‖Y τ ≤
(
C L1(τ) + L2(τ)

)[
‖w̃ − w‖Xτ + ‖P̃ − P ‖Y τ

]
, (D.22)

where Li(τ) → 0, i = 1, 2 as τ → 0. If τ is small enough, this implies (D.9) for some
θ ∈ (0, 1). Since Z̃τ is complete metric space for the distance induced by the norm
(‖ · ‖Xτ , ‖ · ‖Y τ ) in Zτ , the result follows by the classical Banach fixed point theorem.
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Appendix E

Parameter fitting

From the work in [89], MCF-7 and MCF-7/Doxo cells are cultured at 105 initial cell
number separately in 60 × 15 mm cell dish with or without doxorubicine. We use the
cell proliferation data followed every 12 hours during six days to fit the parameters of the
following ordinary differential equation

dui
dt

= ui(bi − aiiui)− δiui i = 1, 2.

ui(0) = ui,0.
(E.1)

Here we use u1 to represent the MCF-7 (sensitive to drug) and u2 to represent the MCF-
7/Doxo (resistant to drug) and bi > 0 is the growth rate δi is the extra mortality rate
caused by drug (doxorubicine) treatment and aii > 0 is a coefficient which controls the
number of saturation.

In the work [98] cell proliferation kinetics for MCF-7 is studied over 11 days in 150
cm2 flask. Following an inoculation of 3× 105 cells at day 0, a maximum cell density of 8
to 9× 107 cells/flask was reached at day 11. Therefore, we assume the saturation number
for each species in 60× 15 mm (surface of 21.5 cm2) dish satisfies

bi
aii
≈ 9× 107 × 21.5 cm2

150 cm2
= 1.29× 107, i = 1, 2.

By fixing the saturation number, we first estimate the growth rate bi of each species
under zero drug concentration, namely δi = 0. We divide the cell number by ui,0 = 105

(the initial cell number) and rescale the parameters as follows

ũi =
ui
105

, ãi = aii × 105, b̃i = bi. (E.2)

As seen in Figure E.1, without treatment, MCF-7 and MCF-7/Doxo displayed very
similar growth rates, 0.6420 and 0.6359 per day, respectively.
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Figure E.1: Fitting for the parameters (under rescaling (E.2)) in model (E.1). We plot
the experimental data (dots in (a)) of MCF-7 (sensitive to drug) and (dots in (b)) MCF-
7/Doxo (resistant to drug) with no drug concentration over 6 days. We obtain an estima-
tion of the growth rates b1 = 0.6420, b2 = 0.6359 and a11 = 0.0050, a22 = 0.0049.

By fixing the parameters

b1 = 0.6420, a11 = 0.0050, b2 = 0.6359, a22 = 0.0049, (E.3)

we consider different scenarios with the drug concentration varies from 0.1µM to 10µM
(see Figure E.2) and we estimate the extra mortality rate δi for each population due to
doxorubicine (see Table E.1).
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Figure E.2: Fitting for the growth curves of MCF-7 (a) and MCF-7/Doxo (b) under
different drug concentrations in model (E.1) over 6 days. Cells were grown in the absence
or presence of doxorubicine (0.1 to 10 µM , corresponding symbols given in the legend in
(b)) and counted every 12 hours in a Malassez chamber. Cell counts are expressed as the
logarithm of the cell numbers (ui) divided by the cell number at day 0 (ui,0). We fix the
growth rate bi and aii, i = 1, 2 as in (E.3).
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E. Parameter fitting

Drug concentration (µM) 0 0.1 0.3 1 3 10

Extra mortality δ1 (day−1) 0 0.6619 0.8109 1.0118 1.5585 1.9545

Extra mortality δ2 (day−1) 0 0 0 0.0246 0.0569 0.2192

Table E.1: List of the estimation of extra mortality rate δ1 for the sensitive cell and δ2

for the resistant cell under different concentrations of doxorubicine.
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