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Hamamache Kheddouci Directeur de thèse
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Abstract

Recent years have witnessed a growing renewed interest in the use of graphs as

a reliable means for representing and modeling data. Thereby, graphs enable to

ensure efficiency in various fields of computer science, especially for massive data

where graphs arise as a promising alternative to relational databases for big data

modeling. In this regard, querying data graph proves to be a crucial task to explore

the knowledge in these datasets.

In this dissertation, we investigate two main problems. In the first part we address

the problem of detecting patterns in larger graphs, called the top-k graph pattern

matching problem. We introduce a new graph pattern matching model named

Relaxed Graph Simulation (RGS), to identify significant matches and to avoid the

empty-set answer problem. We formalize and study the top-k matching problem

based on two classes of functions, relevance and diversity, for ranking the matches

according to the RGS model. We also consider the diversified top-k matching

problem, and we propose a diversification function to balance relevance and diver-

sity. Moreover, we provide efficient algorithms based on optimization strategies to

compute the top-k and the diversified top-k matches according to the proposed

model. The proposed approach is optimal in terms of search time and flexible in

terms of applicability. The analyze of the time complexity of the proposed algo-

rithms and the extensive experiments on real-life datasets demonstrate both the

effectiveness and the efficiency of these approaches.

In the second part, we tackle the problem of graph querying using aggregated

search paradigm. We consider this problem for particular types of graphs that are

trees, and we deal with the query processing in XML documents. Firstly, we give

the motivation behind the use of such a paradigm, and we explain the potential

benefits compared to traditional querying approaches. Furthermore, we propose

a new method for aggregated tree search, based on approximate tree matching
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algorithm on several tree fragments, that aims to build, the extent possible, a

coherent and complete answer by combining several results. The proposed so-

lutions are shown to be efficient in terms of relevance and quality on different

real-life datasets.

Keywords: graph matching, graph pattern matching, graph simulation, re-

laxed graph simulation, top-k, diversified top-k, aggregated search, tree matching



Résumé

Ces dernières années ont connu un regain d’intérêt pour l’utilisation des graphes

comme moyen fiable de représentation et de modélisation des données, et ce, dans

divers domaines de l’informatique. En particulier, pour les grandes masses de

données, les graphes apparaissent comme une alternative prometteuse aux bases

de données relationnelles. Plus particulièrement, le recherche de sous-graphes

s’avère être une tâche cruciale pour explorer ces grands jeux de données.

Dans cette thèse, nous étudions deux problématiques principales. Dans un pre-

mier temps, nous abordons le problème de la détection de motifs dans les grands

graphes. Ce problème vise à rechercher les k-meilleures correspondances (top-k)

d’un graphe motif dans un graphe de données. Pour cette problématique, nous

introduisons un nouveau modèle de détection de motifs de graphe nommé la Sim-

ulation Relaxée de Graphe (RGS ), qui permet d’identifier des correspondances de

graphes avec un certain écart et ainsi éviter le problème de réponse vide. Ensuite,

nous formalisons et étudions le problème de la recherche des k-meilleures réponses

suivant deux critères, la pertinence (la meilleure similarité entre le motif et les

réponses) et la diversité (la dissimilarité entre les réponses). Nous considérons

également le problème des k-meilleures correspondances diversifiées et nous pro-

posons une fonction de diversification pour équilibrer la pertinence et la diver-

sité. En outre, nous développons des algorithmes efficaces basés sur des stratégies

d’optimisation en respectant le modèle proposé. Notre approche est efficiente en

terme de temps d’exécution et flexible en terme d’applicabilité. L’analyse de la

complexité des algorithmes et les expérimentations menées sur des jeux de données

réelles montrent l’efficacité des approches proposées.

Dans un second temps, nous abordons le problème de recherche agrégative dans

des documents XML. Pour un arbre requête, l’objectif est de trouver des motifs

correspondants dans un ou plusieurs documents XML et de les agréger dans un

vi



seul agrégat. Dans un premier temps nous présentons la motivation derrière ce

paradigme de recherche agrégative et nous expliquons les gains potentiels par rap-

port aux méthodes classiques de requêtage. Ensuite nous proposons une nouvelle

approche qui a pour but de construire, dans la mesure du possible, une réponse

cohérente et plus complète en agrégeant plusieurs résultats provenant de plusieurs

sources de données. Les expérimentations réalisées sur plusieurs ensembles de

données réelles montrent l’efficacité de cette approche en termes de pertinence et

de qualité de résultat.

Mots clés: appariement de graphes, recherche de motifs de graphe, simula-

tion de graphes, simulation relaxée de graphes, top-k, top-k diversifiés, recherche

agrégative dans les graphes,
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Chapter 1

Introduction

Contents

1.1 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis organization . . . . . . . . . . . . . . . . . . . . . 4

Graphs are a useful and powerful paradigm for formalizing problems and mod-

eling complex and heterogeneous data with their relationships. They consist of

a set of vertices, which represent objects, and a set of edges, which represent

relations between these objects. They have attracted the interest of the whole

scientific community, allowing their use in a wide range of problems in intelligent

information processing such as pattern recognition [1], information retrieval [2],

knowledge discovery [3], dynamic network traffic [4], social network analysis [5],

protein interactions [6] and so on.

With the advent of recent applications, data graphs are growing in size exponen-

tially, with millions of nodes and billions of edges. Graph search is a primordial

task to identify the occurrences of the information sought. In fact, graph search is

a challenging issue. It describes the act of searching for given information, usually

in the form of a query graph, in a given graph, often called the target graph. This

process can be performed by searching for subgraphs using graph matching and

more generally graph comparison. Typically, this problem is defined as the process

of finding a mapping between components of two graphs that provides the best

alignment of their (sub)structures. Graph matching solutions are classified into

two broad categories: exact approaches and inexact approaches. Exact match-

ing approaches return (sub)graphs that match exactly the given query. Inexact

1



2

matching approaches look for results even if they are structurally different, to some

extent, from the query.

1.1 Thesis scope

In this thesis, inexact graph matching and its applications for querying data graphs

are investigated. Thus, the thesis is divided into two main parts: the graph match-

ing problem in large graphs and the distributed tree querying problem, also known

as aggregated tree search.

Part I: The graph matching problem

Graphs are powerful mathematical structures constituting universal modeling and

representation tools used in a wide range of real-world applications. Actually,

the success of such graph-based applications depends on the performance of the

underlying graph query processing. In this context, finding graph matching so-

lutions that guarantee optimality in terms of accuracy and time complexity is a

challenging issue. Thus, various types of graph matching have been widely inves-

tigated. Graph pattern matching (GPM) is among the most important challenges

of graph processing and plays a central role in various emerging applications. Usu-

ally, GPM is defined in terms of subgraph isomorphism [7], which seeks subgraphs

that are exactly isomorphic to the query graph, or graph simulation [8], which has

been adopted for graph pattern matching to cope with restrictions of exact graph

matching approaches.

However, the actual sheer increase in data introduces new challenges to graph

pattern matching, from its definition to corresponding processing methods. The

main problem in nowadays real-life graphs is the volume of information to be

processed, and the vast search space in which the search process is performed. For

instance, Facebook amounts to 1.562 million daily active users [9] and Twitter

totals up to 330 million active users [10]. It is prohibitively expensive to query

such large graphs. The subgraph isomorphism is an NP-complete problem [11]

and the main issues are that the search process is too costly, too restrictive and

does not scale well [12]. Whereas graph simulation has a quadratic time, this

notion is often too restrictive to match queries in newly emerging fields such as

social network analysis [13].
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Dealing with such a massive size of data gives rise to other problems such as the

excessive number of returned results. Using the subgraph isomorphism, the set

of matches may contain exponentially many subgraphs of the target graph [14].

Besides, the size of the result set, using graph simulation, depends on the size of

the target graph and the query [8]. Inspecting all the results to find what users are

looking for is a daunting task. Thus, users are generally interested in responses

that satisfy their preferences, which are usually relevance and diversity [15].

In the first part of this work, we define and formalize the graph pattern matching

problem using a new notion of graph simulation, called Relaxed Graph Simulation

(RGS), based on query relaxation, which allows reaching more significant matches

and coping with the empty-set answer problem. We also investigate the top-k

matching problem based on two function classes, relevance and diversity, for rank-

ing the matches with respect to the proposed model. Furthermore, we study the

diversified top-k matching problem, and we propose a diversification function to

balance relevance and diversity. Nonetheless, we provide efficient algorithms based

on optimization strategies to compute the top-k and diversified top-k matches ac-

cording to the RGS model.

Part II: Aggregated tree search

Information retrieval can be defined as the process that links some information

material, from a large collection of information resources, to an information need

expressed by the user [16]. Nowadays, XML (eXtensible Markup Language) stan-

dard [17] is one of the most used formats for representing and exchanging infor-

mation. The simple nature, the self-description and the ability to describe a wide

range of data brought XML to greater importance. The sheer increase in the

generation and use of XML documents leads to the need for appropriate retrieval

approaches that can exploit the specific features of this kind of documents. Nu-

merous approaches have been proposed to deal with XML retrieval. They usually

use the tree representation of documents and queries to process them [18]. Indeed,

the retrieval process can be considered as a tree matching problem between the

query tree and the document trees.

Currently, information retrieval systems have evolved from the document-level

access to the in-depth search methods, i.e., seeking specific required document

components (i.e., documents parts) instead of entire documents. Their purpose
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is then to return a ranked list of answers that are deemed relevant to the query.

However, returning and presenting results in this way are often not appropriate to

the user’s expectations [19–21]; especially when the expected needs are scattered

across several data sources and/or several documents. Thus, there is a need for

more focus, more organization, and more diversity in the returned results. Besides,

approaches that process information with finer granularity and build a response by

combining multiple contents that may be useful to the user are needed. Aggregated

search addresses these tasks of searching and assembling results.

Several paradigms of graph querying have been proposed in the literature, but only

a few of them have tackled the problem of aggregated search. In the second part

of this thesis, we introduce and develop approaches and techniques to deal with

this problem. We consider this problem for trees, which are a particular class of

graph, and we propose a framework for XML querying based on aggregated tree

search. This problem becomes more challenging when considering the complex

representation of data in graph form. However, it is more difficult for distributed

graphs.

1.2 Thesis organization

The remaining of this thesis contains six chapters: The first part of this thesis,

Chapters 2 and 3, is devoted to the graph matching problem. While the second

part of the thesis, from Chapter 4 through 6, is about the aggregated tree search.

In Chapter 2 ’Graph search methods’, we first give some preliminaries and we

introduce some notations needed in the rest of this thesis. Then, we highlight the

most important research directions related to the graph querying problem.

In Chapter 3 ’Diversified top-k search with relaxed graph simulation’, we present

our first contribution in which we propose a new notion of graph pattern matching

and we study (diversified) top-k graph pattern matching problem.

In Chapter 4 ’Aggregated search: Definition and overview’, we give an overview of

the general aggregated search concept and its related work.

In Chapter 5 ’Tree matching and XML retrieval’, we outline and compare the most

important approaches for XML retrieval using tree matching.
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In Chapter 6 ’A new approximate XML retrieval based on aggregation search’, we

present our proposed framework for performing aggregated tree search in XML

documents.

Finally, in Chapter 7, we conclude the manuscript by summarizing the major

contributions of this thesis and raising important future work directions and per-

spectives.



Chapter 2

Graph search methods

Contents

2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Querying data graph . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Exact graph matching . . . . . . . . . . . . . . . . . . . 10

2.2.2 Inexact graph matching . . . . . . . . . . . . . . . . . . 14

2.2.3 Graph simulation . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Top-k queries . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Result diversification . . . . . . . . . . . . . . . . . . . . 20

2.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . 22

Graphs are efficient data structures that model items with their relationships. An

item, called node or vertex, represents an object (data), and a link between two

items, called edge, models a relationship between two objects (data). Graphs

represent an effective way of formalizing problems and representing objects used

to represent complex and heterogeneous data in numerous domains. The flexible

nature of graphs allows adding new relationships and even new objects without

affecting existing application functionalities and queries. This flexibility brought

graphs to greater importance, especially for massive data. They are more and more

used with the advent of modern applications ranging from scientific databases or

biological networks to connected world with social networks. In many of these

applications, graphs are huge, with millions of nodes and billions of edges, and it

is difficult to mine their data. In this context, the graph querying (or the graph

search) is usually used to identify the occurrences of a query. Thus various types

6
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of matchings have been widely investigated. In this chapter, we discuss graph

querying and survey some efficient and recent graph search methods. We first

introduce some useful definitions related to graphs and we present some common

concepts and typical classes of graphs. We also give definitions of some theoretical

terms and concepts used in the context of graph search. Then, we highlight the

most important research directions related to the graph querying problem.

2.1 Basic definitions

In this section, we introduce and define some key concepts and notations relating

to graphs.

Graph. A graph G is a four-tuple G = (V (G), E(G), l,Σ), where (1) V (G) is a

finite not empty set of nodes (also called vertices), (2) E(G) ⊆ V (G)×V (G) is the

set of edges in which (u, v) denotes an edge from u to v, (3) l : V (G)∪E(G) −→ Σ

is a labeling function on the nodes and edges, such that for each node (edge)

v ∈ V (G) (resp. e ∈ E(G)), l(v) (resp. l(e)) is a label from the finite set of

labels Σ. The cardinality of the node set V (G) is called the order of G, commonly

denoted by |V (G)|, and the cardinality of the edge set E(G), denoted |E(G)|, is
the size of G.

Graphs are used to formalize and to represent complex data where nodes and

edges represent respectively items and relations between these items. A graph is

said directed if the edges have a direction associated with the nodes, i.e., edges are

ordered pairs (u, v) connecting the source node u to the target node v, otherwise

the graph is undirected, i.e., edges are unordered pairs {u, v} and connect the two

nodes in both directions. In an undirected graph G, two distinct nodes u and v

are adjacent (or neighbors) if there exists an edge (u, v) ∈ E(G) that connects

them. An edge (u, v) is said to be incident to the nodes u and v. A graph is said

labeled if for its components there is a labeling assignment, i.e., nodes and/or edges

are labeled by assigning one or more values (symbolic or numeric); otherwise the

graph is non-labeled. However, non-labeled graphs can be considered as a special

case of labeled graphs where the labels of all nodes and edges are identical or null.

Figure 2.1 shows some graph examples.
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Figure 2.1: Example of graphs.

Degree and Neighborhood. The set of all neighbors of a node v ∈ G is

denoted N(v). The degree of a node u, denoted deg(u), is the number of its

neighbors. If deg(v) = 0 then the node v is an isolated node, i.e., v is not adjacent

to any other vertex. A node of degree one (deg(v) = 1) is called an endpoint or

pendant node. The minimum degree of a graph G is δ(G) = min{deg(v) : v ∈
V (G)} and the maximum degree of a graph G is Δ(G) = max{deg(v) : v ∈ V (G)}

Subgraphs. A graph that is contained in another graph is called a subgraph. A

graph G′ = (V (G′), E(G′), l′,Σ) is a subgraph of G = (V (G), E(G), l,Σ), denoted

by G′ ⊆ G, if V (G′) ⊆ V (G), E(G′) ⊆ E(G), l′(x) = l(x)∀x ∈ V (G), and

l′(e) = l(e)∀e ∈ E(G). A graph G′ is a spanning subgraph of G if G′ contains

all the nodes of G. For a subgraph G′, if E(G′) contains all the edges of E(G)

that have endpoints in V (G′), then G′ is an induced subgraph of G. Otherwise

G′ is a partial subgraph. Figure 2.2 illustrates the concepts of induced and partial

subgraphs.

We refer the interested reader to [22–24] and references therein for more back-

ground information on graph theory.



9

Figure 2.2: Example of induced and partial subgraphs.

2.2 Querying data graph

Graphs are a universal and flexible paradigm for representing and modeling data

and their relationships. Thus various real applications such as protein interactions

and social networks use graphs as a model of representation and searching. Usually,

the success of such an application depends mainly on the efficiency and the quality

of the underlying graph query processing. Graph querying (or graph search) is the

task of searching for given information, usually in the form of a query graph, in a

given graph, often called the target graph. Talking about graph querying problem

leads directly to one of the most prevalent problems in the field of graph theory,

which is graph matching. Typically, the problem of graph matching is defined as

the process of finding a mapping between the nodes of two graphs that provides

the best alignment of their structures.

In most real-world applications, data graphs are enormous, with millions of nodes

and billions of edges, and it is difficult to mine their data. In this context, a query

graph is usually used to identify the occurrences for the given information. Thus

various types of matchings have been widely investigated. Graph pattern matching
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is being one of the fundamental tasks on which are based the search, the querying,

and the analysis of data graph. Typically, graph pattern matching methods are

classified into two broad categories according to their results. The first category

represents exact matching approaches, which return graphs or subgraphs that

match exactly the given query. The second category concerns inexact matching

approaches, in which the returned results may be structurally different from the

query to some extent. In Section 2.2.1 and Section 2.2.2, we present respectively

exact and inexact graph pattern matching algorithms.Then, in Section 2.2.3, we

present graph simulation, which has been adopted for graph pattern matching to

cope with restrictions of existing paradigms.

2.2.1 Exact graph matching

Exact graph matching methods aim to find out an exact mapping between the

nodes and the edges of the compared graphs or at least between subparts of them.

In other words, with exact graph matching, edge-preserving must be ensured,

i.e., if two nodes in the first graph are linked by an edge, their correspondents

in the second graph are also linked by an edge. Graph isomorphism represents

the most stringent form of graph matching, in which the mapping is a bijective

correspondence and the edge-preserving is satisfied in both directions.

Definition 1. Let G = (V (G), E(G), l,Σ) and G′ = (V (G′), E(G′), l′,Σ) be two

graphs. G and G′ are isomorphic if there exists a bijective function h: V (G) −→
V (G′) such that: (1) ∀u ∈ V (G) : l(u) = l′(h(u)), (2) ∀(u, v) ∈ E(G) : (h(u), h(v)) ∈
E(G′) and l((u, v)) = l′((h(u), h(v))) and (3) ∀(h(u), h(v)) ∈ E(G′) : (u, v) ∈
E(G) and l′((h(u), h(v))) = l((u, v)).

Subgraph isomorphism [7] can be considered as a weaker form of the exact graph

matching, in which an isomorphism holds between one of the two graphs and a

subgraph of the other graph. Other forms of exact graph matching exist, in which

subgraph isomorphism is used in a slightly weaker sense as in [25]. In other words,

the constraint of edge-preserving in both directions is dropped. We give in the

following a brief description of some of these approaches.

Graph monomorphism [26] is a relaxation of subgraph isomorphism where the

mapped subgraph may have both extra nodes and extra edges. In other words,

additional edges are allowed between nodes in the larger graph. Another variant
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is graph homomorphism, in which there is a mapping f from the node set of the

first graph G to the node set of the other graph G′ such that (u, v) ∈ E(G) implies

(f(u), f(v)) ∈ E(G′) but not vice versa. Finally, the maximum common subgraph

(MCS) [27] is another interesting matching variant. MCS is defined as the problem

of mapping a subgraph of one graph to an isomorphic subgraph of the other graph.

Typically, the problem is to find the largest part of two graphs that is identical in

term of structure.

It is important to highlight that all the forms of exact graph matching, that we

cited before, belong to the NP-complete class. However, the graph isomorphism

has not yet been demonstrated if it belongs or not to NP class [1]. For some special

classes of graph, polynomial isomorphism algorithms have been developed (planar

graphs [28], trees [29]). Recently, the author of [30] shows that graph isomorphism

can be solved in quasi-polynomial time (exp((log n)O(1))). However, no polynomial

algorithms are known for the general case.

Hence, the exact graph matching has exponential time complexity in the worst

case. Consequently, using exact methods to deal with small graphs can be still

acceptable. In the following, we briefly review some typical exact graph matching

methods.

2.2.1.1 Exact subgraph matching methods

The problem of graph querying has been well studied and it has a rich history in

various scenarios, among which protein interactions, social network analysis and

graph database management play an important role. Typically, it can be handled

by exact and approximate approaches. So in this section, we describe some graph

querying approaches that are based on exact subgraph matching.

Tree search-based techniques have attracted much attention since the first proposal

of Ullmann’s algorithm [7] that addresses all forms of exact graph matching. These

techniques represent the central pillar of the most existing algorithms for exact

graph matching. Usually, they use a backtracking process in addition to some

heuristics.

Using Ullmann’s algorithm [7], the search process can be performed in two main

steps: tree-search and refinement procedure. Firstly, for each query node, the

algorithm seeks a set of candidate nodes. Then, it invokes a recursive subgraph
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search subroutine to find a potential mapping between a query node and a data

node. All mapped data nodes are stored as the output of the first step, and they

will be exploited in the refinement procedure. This latter aims to reduce the

search space in order to minimize the computation time required for the subgraph

isomorphism testing. To this end, the algorithm filters out candidate nodes that

have a smaller degree than its correspondent node in the query graph. For each

incident edge of a node kept as a candidate, the algorithm checks if there is a

corresponding edge in the data graph.

A significant number of exact graph matching improvements have been proposed

since the first proposition of Ullmann [7]. The VF algorithm [31] is designed to deal

with both isomorphism and subgraph isomorphism. This algorithm describes a fast

heuristic which analyses the nodes adjacent to the ones already added in the partial

matching. After some years, the same authors propose a new algorithm called

VF2 [32], which is an improved version of the previous one. The VF2 algorithm

reduces the space complexity from O(n2) to O(n), where n represents the number

of nodes in the graphs. This algorithm defines a new concept s, called the state

space representation, which represents a partial solutions of the correspondence

between two graphs. The transition from the state s to its successor s′ in the set

of the partial solution M corresponds to a new pair of matching nodes. By the

way, the algorithm starts with the first node, selects a connected node from the set

of matched query nodes, looks for a subgraph match and backtrack if and when

the need arises to do that. The main difference from the Ullman’s algorithm is in

the refinement step, where VF2 algorithm requires two kinds of rules: syntactic

feasibility rules and semantic feasibility rules.

More recent interesting algorithms have been proposed. The Spath algorithm [33]

uses paths as patterns of comparison. It looks for matching paths instead of sin-

gle nodes. It uses a path-signature function to minimize the search space. For

each graph node and query node, Spath computes a neighborhood signature which

makes it possible to decide if a given candidate node must be pruned or not. The

authors introduce in [34] an algorithm, called GADDI, which firstly computes a

neighborhood discriminating structure distance between pairs of adjacent nodes of

the data graph. After that, the algorithm invokes a subgraph matching subroutine,

which performs a two-way pruning, based on the above distance, and incorporates

a dynamic matching schema. Ullmann in his new proposal [35] presents an im-

portant enhancement of his isomorphism algorithm [7]. The main idea of this new
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algorithm is based on the Binary Constraint Satisfaction Problem. Turbo-iso [36]

is one of the most efficient algorithms that deal with the subgraph isomorphism

problem. It focuses on solving the matching order selection problem. Proposers

of Turbo-iso algorithm introduce two novel concepts, candidate region exploration

and the combine and permute strategy. The candidate region exploration identi-

fies candidate regions, which are subgraphs of the data graph where there is more

chance to find embeddings for the query graph. Next, it computes a matching

order for each candidate region explored. The combine and permute strategy ex-

ploits the novel concept of the neighborhood equivalence class (NEC). Each query

node in the same NEC has identically matching data nodes. Finally, according

to the obtained matching order and using the candidate data nodes of the NEC

nodes, a recursive subroutine is processed for the subgraph search. In [37], the

authors propose the CFL-match algorithm by postponing the Cartesian products

based on the structure of a query to minimize the redundant Cartesian products.

Based on the spanning tree of the query graph, the latter is decomposed into sub-

structures by a Core-forest Decomposition method. Then, the subgraph matching

is performed on each of these substructures. Briefly, the algorithm uses first the

neighborhood label frequency filter to ensure that a data node is a deemed candi-

date. Then, it applies a second filter based on the maximum Neighbor-Degree to

reduce the time processing of the first filter.

2.2.1.2 Other methods and techniques

Other methods addressing the problem of subgraph isomorphism search have been

proposed in the literature. In the following, we give an overview of some of them.

Nauty’s algorithm [38] is one of the most efficient approaches, which is not based

on tree search techniques. Nauty’s algorithm constructs an automorphism group

of each graph. Using transformation rules, it reduces graphs to canonical forms

that may be checked relatively quickly for isomorphism. Two graphs are said

isomorphic if their canonical forms are equal. The authors propose in [39] an

isomorphism approach based on Random Walks. In [40], the authors propose

algorithms to deal with graph isomorphism and subgraph isomorphism for graphs

having unique node labels. TMODS [41] algorithm uses a set of genetic algorithms

to find exact and inexact pattern matches in directed attributed graph. The study

given in [42] presents a technique for speeding up the subgraph isomorphism on

large graphs.
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2.2.2 Inexact graph matching

The stringent conditions imposed by the exact graph matching paradigm and the

high computational complexity make it too restrictive for graph querying. In many

real-world applications, graphs are subject to deformations due to several causes,

such as the noise in the acquisition process, the missing or incomplete information,

or the errors introduced by the modeling processes. So, the obtained result graphs

(subgraphs) are likely different from the query graph and its expected answers.

So, the matching process should be able to consider correspondences that do not

satisfy, to some extent, all the requirements imposed by the query graph. Besides,

the matching process must be able to reach a good approximate solution in an

acceptable time, even without a guarantee to give the best solution. These reasons

highlight the need for approximate (inexact) graph matching algorithms [43], also

known as error-correcting matching [44] or error-tolerant matching [45]. Contrary

to the exact graph matching approaches, the aim for inexact graph matching

approaches is not to make a strict interpretation of structural constraints, but to

select and rank subgraphs according to their probability to match the query graph.

In other words, algorithms of this category aim to find a matching that minimizes

the dissimilarity between the query graph and the subgraphs of the data graph.

Inexact graph matching algorithms can be classified into optimal and approximate

algorithms. Optimal inexact matching algorithms can be considered as a gener-

alization of the exact graph matching algorithms. They seek an exact solution

achieving the global minimum of the matching cost if it exists. Generally, the al-

gorithms of this class are not suitable for most applications due to their excessive

processing costs. Approximate or suboptimal matching algorithms seek for a local

minimum of the matching cost, which is not far from the global one. In such a

class, there are no guarantees to reach the exact solution even if it exists. However,

the main advantage of these algorithms is their shorter matching time, which is

usually polynomial. In the following, we present and overview some important

inexact graph matching approaches.

2.2.2.1 Graph edit distance based techniques

There are numerous approaches for inexact graph matching in the literature of

querying data graphs. As we said above, the aim of these approaches is not to
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make a strict interpretation of structural constraints, i.e., they do not impose the

edge-preservation constraint used on exact matching. Typically, the inexact graph

matching problem can be formulated as the problem of calculating the dissimilarity

between two graphs. This problem can be reduced to the Graph Edit Distance

(GED) problem [46, 47], where the matching cost is defined as a set of graph edit

operations (node/edge insertion, node/edge deletion, etc.) between two graphs.

Each edit operation has a predefined cost that contributes to the calculation of

the edit distance between the two compared graphs. The edit distance is defined

by the minimum cost sequence of edit operations that transform a graph into

another [48].

Seeking the exact value of editing distance is not easy and can usually be expensive.

This problem is NP-Complete [48] for general graphs and induces exponential

computation time complexity [49]. Recently, several approximate methods have

been proposed to deal with this issue [50]. They approach the exact value of GED

in polynomial time, using different techniques, such as dynamic programming and

bipartite assignment. In the following, we give an overview of two approximate

formulations: bipartite assignment [51, 52] and quadratic assignment formulation

[53, 54].

Bipartite based GED approaches have shown their efficiencies to solve error-

tolerant matching [49, 51, 55, 56]. Mainly, they partition the compared graphs into

smaller substructures and approximate the GED by a linear assignment problem.

The latter can be solved efficiently via for instance the Hungarian algorithm [57]

or the Jonker-Volgenant algorithm [58].

The quadratic-assignment-formulation [59] based GED methods show a significant

improvement over the bipartite based GED methods. Using the definition of fuzzy

paths, the authors show in [53] that the formulation based on the quadratic as-

signment programming problem (QAP) is suitable for the approximation of GED.

In [54], the authors argue that this problem is mainly related to weighted graph

matching problem [60], and they give a further formal and more general analysis

on the transformation rules of GED to QAP form.

Further details about the problem could be found in [50] as well as references

therein.
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2.2.2.2 Tree search-based techniques

Inspired by the exact graph matching approaches, some works in the literature

propose tree search-based techniques with backtracking to deal with the inexact

graph matching. The search process is mainly based on heuristics that use the cost

of the current partial matching and the estimated cost of the rest of the nodes.

Thus, the resulting cost is used to prune unfruitful paths or to specify the traversal

order in the search tree, as in the A* algorithm [61]. Several works based on tree

search have been proposed, for example, but not limited to [26, 62, 63]. In this

research area, the A* algorithm has shown its effectiveness, as presented in some

works such as [64–66].

2.2.2.3 Other techniques

Given the importance of the graph matching problem and its involvement in a wide

range of real-world applications, a significant number of inexact graph matching

improvements have been proposed. Continuous optimization algorithms [1] is one

of the most studied approaches in this field. Typically, methods based on contin-

uous optimization problems are performed in three main steps: (1) transforming

the graph matching problem to a continuous problem, (2) using an optimization

algorithm to solve the resulting problem and (3) recasting the continuous solution

to the initial discrete domain. These approaches can be classified into two broad

categories: probabilistic relaxation labeling [67–70] and weighted graph matching

problem [71–74].

2.2.3 Graph simulation

Graph pattern matching has been widely used in a broad spectrum of real appli-

cations. This problem has been studied with respect to subgraph isomorphism for

several applications, such as pattern recognition, dynamic network traffic, knowl-

edge discovery, intelligence analysis, etc [1, 75, 76]. In recent years, several studies

have been done to cope with the limitations of the traditional matching paradigm

and to catch sensible matches in large graphs. Graph simulation provides an effi-

cient alternative to subgraph isomorphism matching by relaxing some restrictions

on matches. The first proposal of graph simulation is in [8], where authors give a
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quadratic time algorithm for the refinement and verification of reactive systems.

Graph pattern matching with graph simulation becomes widely needed in actual

applications, such as web site classification, social position detection, plagiarism

detection, process calculus, drug trafficking and so on [77–80].

We say that a data graph G matches a pattern graph Q(Vq, Eq), via graph sim-

ulation denoted by Q �sim G, if there exists a binary relation R ⊆ Vq × V (G)

which verifies (1) for each (u, v) ∈ R, u and v have the same label, (2) for each

query node u, there exists a graph node v such that (u, v) ∈ R, and (3) for each

(u, v) ∈ R and for each edge (u, u′) in Q, there is an edge (v, v′) in G such that

(u′, v′) ∈ R.

Several studies, such as [81–84], revise the notion of graph simulation and its

computation methods for graph pattern matching. In the following, we give an

overview of recent studies in revising graph pattern matching.

Authors introduce in [81] bounded simulation model, which extends graph simu-

lation by allowing bounds on the number of hops. In other words, it imposes a

weaker structural constraint: (1) it tolerates edge-to-path mapping, i.e., a query

edge may be mapped to paths of various bounds in a data graph, and (2) as in

graph simulation and in contrast to bijective functions in subgraph isomorphism,

bounded simulation seeks a binary relation defined on the nodes ofQ and the nodes

of G. A variant of the previous proposal, which incorporates regular expressions

as edge constraints, is proposed in [82].

In [83], authors present strong simulation model that extends simulation by im-

posing two additional conditions. The first one is the duality that aims to preserve

upward mappings, and the second one is the locality, which helps to eliminate ex-

cessive matches.

Dual simulation. We say that a data graph G matches a pattern graph Q, via

dual simulation denoted by Q �D G, if there exists Q �sim G with a binary match

relation R ⊆ Vq × V (G), and for each pair (u, v) ∈ R and each (u2, u) in Q, there

exists an edge (v2, v) in G such that (u2, v2) ∈ R. One can see that dual simulation

extends graph simulation by preserving both child and parent relationships.

Locality. Authors argue in [85] that the closeness of relationships decreases and the

relationships may become irrelevant with the increase of social distance. Keeping

potential candidate matches that are in a well-chosen perimeter, bounded by the

diameter of the query, can help maintain the meaning of their relationships. Thus,
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it often suffices, to some extent, to consider only those matches that fall in a small

subgraph.

Both of bounded simulation and strong simulation approaches have a cubic-time

complexity, which makes the graph pattern matching process infeasible, especially

with massive graphs. Authors highlight in [12] three main approaches to cope

with this issue without compromising the accuracy of matches: (1) incremental

graph pattern matching approaches, (2) query preserving graph compression and

(3) distributed graph pattern matching.

Other approaches addressing the problem of graph pattern matching, based on

graph simulation, have been proposed. Based on strong simulation, authors in [86,

87] use graph compression to improve the time of graph querying. These previous

works have a cubic complexity in terms of search time. A recent study, given

in [84], extends graph simulation by allowing the absence of nodes with one hop.

However, it is not a straightforward task to search matches for approximate queries

which allow missing nodes and edges. This proposal loses the notion of simulation

and loses the quality of matches for queries with leaf nodes. Another recent study

is given in [88], which combines a label taxonomy with graph simulation.

2.3 Top-k queries

The top-k query answering problem has drawn a great deal of attention for all

data representations, such as relational data, XML and graph. We give in the

following a brief overview of the top-k search methods in the literature. We first

present some important approaches in the context of relational search. Then we

highlight and give a taxonomy of the most important works and methods related

to the top-k graph search.

Top-k Relational Queries. In [89], authors give a survey about the top-

k query answering in relational database systems. This problem is to find the

top-k tuples ranked by a scoring function [89]. The most popular algorithm for

top-k querying is the Threshold Algorithm (TA) [90, 91]. Given a monotonic

scoring function and lists of data item sorted by their local scores, the authors of

[92] introduce an optimal algorithm with a high probability for some monotonic

scoring function. This algorithm reads the item value from the lists and builds
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complete tuples until k complete tuples are found from the top-ranked attributes

that have been seen. Then, it conducts random access to find missing scores. In

[90], authors improve the previous algorithm by the early termination property

and supporting all monotonic scoring function. The main difference is that the

access to find missing scores, in the improved algorithm, is guided by predicting

the maximum possible score in the unseen ones.

Other algorithms addressing the top-k query answering problem in relational

database systems have been proposed. Among them we can cite, ranked join

queries over relation data [93–95], ranked join queries over NoSQL databases [96],

distance join index [79] and hybrid indexing method [97]. We refer the readers to

[89, 98], in which the authors present a survey of top-k query answering problem

in database systems.

Top-k graph search. The problem of top-k ranking has also been studied for

keyword queries [99, 100], twig queries [14, 101] and subgraph isomorphism [13,

102–105]. It this latter, the problem is about finding the top-k ranking subgraphs

that match a query graph, according to given criteria.

The problem of top-k search has attracted much interest on relation data, XML

documents and RDF graphs [99, 100, 106–108]. Looking closely, one can find that

most of the existing approaches, based on keyword search, use simple ranking

functions such as TF/IDF and do not consider the topologies of the returned

answers. As against these approaches, the authors of [107] consider, to some

extent, the structure of responses. They introduce the XFinder system which

aims to find the top-k approximate matches of small queries in large documents.

This system uses a revised Prufer sequences [109] to transform the query and

document into strings and the tree edit distance is approximated by the longest

subsequence distance between the resulting strings.

Answering top-k queries over XML document is an active research area. The

work given in [99] aims to find the top-k subtrees induced from a set of keywords.

Authors propose in [110] a top-k approximate subtree matching algorithm based

on tree edit distance. We will consider this research field in Section 5.4.2.1 of

Chapter 5.

For data graphs, the top-k queries problem is to identify the k subgraphs, that

match the query graph, ranked by a score function [14, 104, 111], e.g., the total
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node similarity scores [104]. Generally, the common practice of most of top-k graph

query approaches is the early termination property using a Threshold Algorithm

style test. Authors address in [112] the problem of finding best-effort subgraph

patterns in attributed graphs. In this study, the algorithm seeks for exact, as well

as approximate matches, and it returns them in a defined order. However, this

algorithm does not guarantee the k answers with the smallest/largest scores over

all answers are returned.

Authors introduce in [113] a neighborhood-based similarity search in graphs, which

combines the topological structure and content information together during the

search process. This latter is based on a set of rules to identify approximate

matches based on their neighborhood structure and labels, where a query graph

is also used. Moreover, a similarity function such as graph edit distance is used

to measure the similarity of the answer and the query. Another interesting work

[114] studies the problem of top-k graph pattern matching with on-the-fly ranked

lists based on spanning trees of the cyclic graph query. In this work, the authors

propose a multidimensional representation for using multiple ranked lists to answer

a given query. Under this representation, they propose a cost model to estimate

the least number of tree answers to be consumed in each ranked list. Based on

graph simulation, the authors of [115] investigate top–k graph pattern matching.

The study presented in [116] deals with the top-k knowledge graph search. In

this study, the authors present first a top-k algorithm for start queries. Then

they present an assembling algorithm for general graph queries. The assembling

algorithm uses start query as a building block and iteratively sweeps the star

match lists with dynamically adjusted bound. Recently, authors address in [117]

the top-k querying on dynamic graphs.

2.4 Result diversification

Result diversification, which aims to compute the top-k relevant results by con-

sidering the diversity [118–121], has been widely studied in a large variety of

spectrum, such as diversified keyword search in documents [122] and structured

databases [123]. Diversity is a general term used to catch the quality of a collec-

tion of items with regards to the variety of its constituent elements [121]. Query

result diversification can be classified into three main categories [124]. The first



21

category is content-based diversification, also known as similarity-based diversi-

fication [15, 125]. Approaches of this category aim to present the dissimilarity

between each pair of items. The second category is intent-based diversification,

also known as coverage-based diversification [124, 126, 127]. It addresses the user’s

ambiguous queries where a set of responses covering likely all the different interpre-

tations should be returned. The third category is novelty-based diversification. In

this category, objects that contain new information different from ones previously

retrieved are privileged in order to improve user’s query satisfaction [128, 129].

We encourage readers interested in more details about this classification and the

methods within to consult [120] as well as references therein.

In [130], the authors formalize the problem of diversified top-k search. They

extend two known algorithms, the incremental top-k algorithm and the bounded

top-k algorithm, to solve the diversified top-k search problem by applying three

functions, namely, a sufficient stop condition denoted as sufficient(), a necessary

stop condition denoted as necessary(), and a diversity search function denoted as

div-search-current(). Then, they prove that the div-search-current() is an NP-

hard problem and it is hard to be approximated. Thus, they propose three new

algorithms, div-astar, div-dp, div-cut, to find the optimal solution for div-search-

current().

The study given in [131] focuses on diversification in Keyword search over rela-

tional databases. In this study, a formal model is first provided to integrate user

preferences into the final ranking. Then, four properties, which are the relevance,

the degree of preference of each result, the user interest coverage and the con-

tent diversity, are combined to evaluate the quality of returned results. Based on

this combined criterion, authors provide efficient algorithms that compute top-k

representative results.

The result diversification is a crucial problem in graph querying. In [115], the

authors focus on the graph pattern matching using graph simulation by supporting

a designated output node. They revise graph pattern matching and then they

introduce two functions (relevance and distance functions) to rank matches based

on their structure and diversity. In this study, authors provide two algorithms

with early termination property, i.e., finding the top-k matches without computing

all matches. This latter improves the search time and performs better than the

traditional algorithms.
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In [132], the authors tackle the problem of extracting redundancy-aware top-k

patterns. They first examine two problem formulations: Maximal Average Signif-

icance (MAS ) and Maximal Marginal Significance (MMS ). Then, they present a

greedy algorithm that approximates the optimal solution with performance bound

O(log(k)) for MMS.

Authors study in [133] the problem of top-k diversified subgraph isomorphism that

asks for a set of up to k subgraphs isomorphic to a given query, and that covers

the largest number of nodes. The authors propose a level-based algorithm for this

problem with early termination and an approximation guarantee. A recent study

[134] formalizes the top-k shortest paths with the diversity problem.

Other methods for result diversification have been proposed. Among them we can

cite, graph feature selection in graph classification [135], node ranking in large

graphs [136, 137], diversification in search over unstructured data [127, 138, 139],

diversification in querying streaming data [140–143].

2.5 Chapter summary

In this chapter, we tackled the problem of graph querying or graph search. We

presented and discussed the state of the art related to graph matching problem and

we described the different classes of graph matching algorithms. We focused on the

more recent and interesting methods but we also reviewed general approaches. We

also presented and discussed the top-k querying and result diversification problems.

In the next chapter, we introduce and present our model for graph pattern match-

ing called relaxed graph simulation, and our algorithms for computing top-k and

diversified top-k matches with respect to the proposed model.
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Graph pattern matching is being one of the fundamental tasks on which are based

the search, the querying, and the analysis of data graphs. This problem has been

widely used in a broad spectrum of real-world applications and it has been the
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subject of several investigations, mainly of its importance and use. In this con-

text, different models along with their appropriate algorithms have been proposed.

However, in addition to the excessive processing costs, most of the existing models

suffer from the failing query problem due to their limitations on finding meaning-

ful matches. Also, in some scenarios, the number of matches may be enormous,

making the inspection a daunting task. In this chapter, we introduce a new model

for graph pattern matching, called Relaxed Graph Simulation (RGS), allowing the

relaxation of queries to identify more significant matches and to avoid the empty-

set answer problem. We then formalize and study the top-k matching problem

based on two function classes, relevance and diversity, for ranking the matches

with respect to the proposed model. We also formalize and investigate the diversi-

fied top-k matching problem, and we propose a diversification function to balance

relevance and diversity. Nonetheless, we provide efficient algorithms based on

optimization strategies to compute the top-k and the diversified top-k matches

according to the RGS model. Our experimental results, on four real datasets,

demonstrate both the effectiveness and the efficiency of the proposed approaches.

3.1 Introduction

Graphs are a very useful paradigm for representing and modeling data and their

relationships. They consist of a set of nodes representing objects and a set of edges

representing relations between these objects. Thus, various real applications, such

as protein interactions [6, 144] and social networks [5, 145], use graphs as a model

of representation and searching. The flexible nature of graphs allows adding new

relationships and even new objects without affecting existing application func-

tionalities and queries. This flexibility brought graphs to greater importance,

especially for massive data [146].

In many of these applications, graphs are enormous, with millions of nodes and

billions of edges, and it becomes extremely challenging to mine their data. In

this context, graph search (or graph querying) is usually used to identify occur-

rences for a given query. Thus, various types of graph matching have been widely

investigated. Graph pattern matching (GPM) is being one of the most widely

used operations for a variety of emerging applications. Typically, it can be defined

in terms of subgraph isomorphism [7] or graph simulation [8]. Subgraph isomor-

phism search is the problem of finding all the exact occurrences of a query in the
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graph. Graph simulation has been adopted for graph pattern matching to cope

with restrictions of exact graph matching.

As data graphs are growing in size, the number of matches can be excessively

large. Inspecting all the results is a daunting task. Thus, the users are generally

interested in responses that satisfy their preferences, which are usually relevance

and diversity [15]. In many real-world applications, such as social networks, the

matching algorithms use query focus, which aims to find matches of a desired node

(output node) instead of the entire match [147]. Furthermore, graphs are subject

to deformations due to several causes, such as the noise in the acquisition process,

the missing or incomplete information and the errors introduced by the modeling

processes. So, the obtained results (subgraphs) are likely different from the query

graph and its expected answers. That is why the matching process should be able

to consider correspondences that do not satisfy, to some extent, all the require-

ments imposed by the query graph. Besides, the matching process must be able to

reach a good approximate solution in an acceptable time, even without a guarantee

to give the best solution. These reasons highlight the need for approximate graph

matching algorithms. Thus, several approaches have been proposed by extending

the traditional graph simulation in order to reach more meaningful matches (see,

eg., [12] for a survey). Despite conditions and structural relaxations given by graph

simulation and its variants, and since it is almost impossible to know the graph

structure, we find that these approaches are restrictive since they do not accept

matches with content relaxations, i.e., matches with missing nodes and without

affecting the quality of results. In real applications, this kind of relaxation is very

useful.

These highlight the need to find the top-k matches of a desired node by allowing

relaxation in terms of content (or missing nodes). Let G be a data graph and Q

be a pattern graph with the desired node u∗. The top-k graph matching aims to

find the k best matches of the desired node u∗ in G according to given criteria.

Example 1. A fraction of a collaboration network is shown as G in Figure 3.1b. In

this graph, a vertex vi represents a person with his/her job (label of vertex) and

an edge (vi, vj) indicates a supervision relationship; e.g., (v3, v12) indicates that

the node v3 with job A supervises the node v12 with job D. A company issues a

query to find potential matches and the requirements are given by the query graph

Q in Figure 3.1a. Here, u0 labeled with A and indicated with ” ∗ ” is the desired

node of the query Q. It means that only the matches of this node are asked for.
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Figure 3.1: A data graph and a query graph

In this example, subgraph isomorphism fails to identify matches for the query Q.

Using graph simulation, one can verify that the matchingM(Q,G) contains {(u0,v4),

(u1,v10), (u2,v13), (u3,v7), (u3,v12), (u4,v5), (u4,v9), (u4,v19), (u5,v6), (u5,v11), (u5,v14),

(u5,v15), (u5,v16), (u5,v18), (u6,v8), (u6,v17)}. The result of this matching includes

most of the graph nodes. However, if one looks for matches of the desired node,

the result is only the node v4. Furthermore, one can verify that in such a case, the

nodes v1 and v3 can be evaluated as deemed matches since it is possible that the

supervisor of a person with job C can also be a supervisor of persons supervised by

C, i.e., {E,F,D}. However, traditional graph simulation is often too restrictive

to identify this kind of relationship.

Since the user does not have an idea about the content and the structure of the

graph, graph search defined in term of graph simulation (including extended graph

simulation approaches) may be failing, e.g., the previous case where the relation-

ship (A, C) is missing in the subgraphs induced by v1 or v3. In practice, extending

graph simulation, by supporting both structural relaxation and content relaxation,

provides a good alternative to cope with the drawbacks of traditional matching

paradigms. In such a situation, the matching algorithm may benefit from a more

general notion of graph simulation, but it may throw away its search efficiency.

Thus, the main contributions in this part of thesis are summarized as follows:

We propose a new notion of graph simulation, called Relaxed Graph Simu-

lation (RGS), in order to avoid the failing query problem and to reach more

significant results.

We define the graph pattern matching in terms of RGS, and we revise this

notion to support the query focus by designating a desired node u∗.
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� We introduce two classes of functions to rank matches of the desired node

u∗. The first one is relevance function Ω(), which measures the relevance of

a given match. The second one is distance function Θ(), which measures the

dissimilarity of two given matches. Based on both, we define diversification

function F (), which aims to return diversified answers while maintaining

high relevance as much as possible.

� We develop algorithms that calculate the top-k matches and the diversified

top-k matches and provide a fast search time. For this, all information

around a node are distilled in a probabilistic data structure that makes the

search efficient.

� Using real-life data, we conduct extensive experiments to attest the effec-

tiveness and efficiency of the proposed approaches.

The remainder of this chapter is organized as follows. In Section 3.2, we give

some definitions that are used throughout this chapter. Section 3.3 is devoted to

the description of the relaxed graph simulation. Section 3.4 describes the ranking

functions. After that, the search processes are presented in Section 3.5, which are

evaluated in Section 3.6. Finally, Section 3.7 concludes this chapter.

3.2 Preliminaries

We investigate the graph pattern matching for directed and unweighted labeled

graphs. Without loss of generality, our method could be extended to weighted

labeled graphs. In this section, we present some general definitions.

Data graph. Data graphs are used to represent objects and their relationships

using nodes and edges. A data graph (or simply a graph) is a directed graph

G = (V (G), E(G), l,Σ), where (1) V (G) is the set of nodes (also called vertices),

(2) E(G) ⊆ V (G)× V (G) is the set of edges in which (v, v′) denotes an edge from

v to v′, (3) l is a labeling function such that for each node v ∈ V (G), l(v) is a

label from the finite set of labels Σ. We use |V | and |E| to denote the number of

nodes and the number of edges in the graph G, respectively. A node v′ is a child

of a node v if (v, v′) ∈ E(G). We use deg(v) to denote the degree of the node v,

i.e., the number of children of the node v.
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Pattern graph. A pattern graph is a directed vertex-labeled graphQ = (Vq, Eq, fv),

where (1) Vq is the set of query nodes, (2) Eq is the set of query edges, and (3) fv

is a labeling function such that for each node u ∈ Vq, fv(u) is a label from the set

of labels Σ.

Graph pattern matching can be defined in terms of subgraph isomorphism or graph

simulation. In this thesis, we focus on graph simulation, which is defined as follows:

Definition 2. let G = (V (G), E(G), l,Σ) be a data graph and Q = (Vq, Eq, fv) be a

pattern graph. The graph G matches the pattern Q via graph simulation, denoted

by the matching set M(Q,G), if there exists a binary relation R ⊆ Vq×V (G) that

verifies (1) for each (u, v) ∈ R, l(u) = fv(v), (2) for each query node u ∈ Vq there

exists a graph node v ∈ V (G) such that (u, v) ∈ R, and (3) for each (u, v) ∈ R and

for each edge (u, u′) ∈ Eq, there is an edge (v, v′) ∈ E(G) such that (u′, v′) ∈ R.

The authors in [115] give an overview of pattern graphs extended by desired nodes.

Based on the study given in [147], they focus on a single desired node. Let Q∗ =

(Vq, Eq, fv, u∗) be a pattern graph with the desired node u∗ ∈ Vq. The matches of

Q∗ in G are given by M(Q∗, G, u∗) = {v|(u∗, v) ∈ M(Q,G)}.

3.3 Relaxed Graph Simulation

In this section, we introduce and we describe the Relaxed Graph Simulation (RGS )

model. We first define the notion of satisfaction set, which should be satisfied if

two nodes match to each other. A satisfaction set of a query node u, denoted by

Satu, is a set of label sets that allows checking if a graph node v matches the node

u. According to the need in the RGS model (defined after), the satisfaction set

for a node u can be computed as follows: (1) the first set in Satu contains labels of

u’s children nodes, (2) for each element in the first set, we replace it by the labels

of the corresponding node’s children, if they exist, and we produce all possible

combinations.

Figure 3.1 shows an example of a part of a data graph (Figure 3.1b) and a

pattern graph (Figure 3.1a). One can quickly check the satisfaction set Satu0

of the desired node u0. In this example, the first set in Satu0 contains the

children’s labels of the node u0, i.e., {B,C,D}. According to the above de-

scription, the label of the node u1 will be present in all combinations, since it
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does not have children. The label C will be replaced by {E,F,D} and the la-

bel D will be replaced by {F,G}. The final satisfaction set of the node u0 is

Satu0 = {{B,C,D}, {B,E, F,D}, {B,C, F,G}, {B,E, F,D,G}}.

Next, we formally define the relaxed graph simulation model.

Definition 3. Let G = (V (G), E(G), l,Σ) and Q = (Vq, Eq, fv) be a data graph

and a pattern graph, respectively. The graph G matches the pattern Q via RGS

if there exists a binary relation R ⊆ Vq ×V (G) that verifies: if (u, v) ∈ R then (1)

l(u) = fv(v), and (2) ∃Sui
⊆ Satu such that Sui

⊆ Lv, with Lv is the list of labels

of v’s children.

From the above definitions, the relation between graph simulation and relaxed

graph simulation can be drawn as follows:

Theorem 1. For a given pattern graph and a data graph, we denote the matching

set of graph simulation as RGS and that of relaxed graph simulation as RRGS, then

RGS ⊆ RRGS.

3.4 Ranking Pattern Matches

In general, data graphs are enormous, which makes the result set M(Q,G) exces-

sively large. However, the user’s interests can be expressed by the top-k answers of

the desired node u∗ [89]. This highlights the need for ranking functions to compute

the top-k answers for a given query Q.

In this section, we first define the top-k ranking problem and the result-diversity

problem. We consider specific functions to measure the relevance and the diversity,

respectively. Then, we formalize the diversification problem and we introduce a

diversification function, which is a trade-off between the two previous ones.

3.4.1 Top-k ranking for RGS problem

We first define the top-k ranking problem, then we present the scoring function

that measures the relevance of the desired node’s matches.

Definition 4. Let G = (V (G), E(G), l,Σ) be a data graph, Q∗ = (Vq, Eq, fv, u∗)

be a pattern graph with the desired node u∗, k be an integer and Ω() be a score
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function. A sequence of nodes, R = (vi1 , vi2 , ..., vik), is a top-k ranking of the nodes

of the graph with respect to the pattern Q∗ iff

1. the ranking contains the k matches that are closest to the desired node u∗:

∀vj /∈ R : Ω(vik) ≥ Ω(vj), and

2. the nodes in the ranking are sorted by their scores to the desired node:

Ω(vij) ≥ Ω(vij+1
), with 1 ≤ j < k.

The top-k ranking problem is the problem of computing top-k matches of a query

Q∗ in a graph G. In the rest of this chapter, we use the notation Q to refer to a

pattern with a desired node and M(Q,G) to refer to its match set in G.

Using the RGS model, the quality of results depends mainly on the number of

reached nodes and the number of substitutions during the matching process.

Reached nodes. Given a graph node v ∈ G that matches a query node u ∈ Q.

Let U = {u1, u2, . . . , un} be the set of descendants of u in Q. Let V = {vi} be

the set of matches in G of every ui ∈ U . The set of reached nodes R(u, v) is the

subset of V containing each vertex vi such that each vertex of the path u to ui

is in U and each vertex of the path v to vi is in V . That is, R(u, v) includes all

matches vi reachable by v via a path of matches.

As aforementioned, the RGS model is based on the satisfaction set of each node

in Q, which is the key to our ranking function. The relation (u, v) ∈ R means

that the v’s children set covers at least one set from the u’s satisfaction set Satu.

Each member in Satu contains either the labels of the u’s children or another list

with the substitution of elements in the first list by the labels of the corresponding

node’s children (as it is described above). This substitution gives the intuition that

the importance of a matched node v is according to the corresponding covered

set in Satu. It is clear that the best match for a node u ∈ Q is the one that

satisfies the first list in Satu, i.e., the node that matches the set of direct children.

Each substitution affects the importance of the corresponding match and the best

quality is the one that corresponds to fewer substitutions.

Let α ∈ [0, 1] be a penalty factor for each substitution and bi be the number of

substitutions in Sui
⊆ Satu with 0 ≤ bi ≤ deg(u). We define the score γ(Sui

) as
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follows:

γ(Sui
) = deg(u)− α · bi. (3.1)

Thus, Equation 3.1 gives an overview of the quality of the matched node through

the covered satisfaction set. The impact of substitution on the match quality is

controlled by α, which is a user-defined parameter. In other words, the penalty

factor expresses the influence of the missing nodes on the quality of results. For

example, we can define α = 0 if we consider that the missing nodes have no impact

on the expected results, which is uncommon. As against, if the missing nodes are

crucial, then the value of α must be increased, α = 1 for example.

We present now the score function (Equation 3.2) for evaluating deemed matches

of the desired node. Let the node v∗ ∈ V (G) be a deemed match of the desired

node u∗ ∈ Vq. Let v ∈ V (G) be a match of u ∈ Vq such that v is reached via

a path from v∗ and u is reached via a path from u∗. The node v covers at least

one set from the satisfaction set Satu. So for each matched node u, we choose

the set S ⊆ Satu, covered by v, with the best score γ(). Let Sbest be the set of

the best-covered sets for the matched nodes of the pattern Q, the score δ() of the

node v∗ is defined by:

δ(v∗) =

∑
Si⊆Sbest

γ(Si)

|Eq| . (3.2)

Then, we present the relevance function.

Relevance function. On a match node v ∈ G of the desired node u∗ ∈ Q, the

relevance function Ω() is defined as

Ω(v) = δ(v) · |R(u∗, v)|. (3.3)

Using the relevance function (Equation 3.3), the problem of top-k ranking can be

defined as the problem of finding the subset R, of size k, from the set of matches

M(Q,G) with the highest similarity among all subsets of size k in M .

R = argmax
S⊆M,|S|=k

sim(Q,S), (3.4)

where

sim(Q,S) =
k∑

vi∈S,i=1

Ω(vi). (3.5)
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Table 3.1: Covered satisfaction sets in G (G given in Figure 3.1)

Match Covered satisfaction sets

v1
γ(Satu0 = {B,D,E, F}) = 2.5, γ(Satu3 = {F,G}) = 2,

γ(Satu4 = {F}) = 1, γ(Satui
(i ∈ [1, 2, 5, 6]) = ∅) = 0

v3
γ(Satu0 = {B,D,E, F}) = 2.5, γ(Satu3 = {F,G}) = 2,

γ(Satu4 = {F}) = 1, γ(Satui
(i ∈ [1, 2, 5, 6]) = ∅) = 0

v4

γ(Satu0 = {B,C,D}) = 3, γ(Satu2 = {E,F,D}) = 3,

γ(Satu3 = {F,G}) = 2, γ(Satu4 = {F}) = 1,
γ(Satui

(i ∈ [1, 5, 6]) = ∅) = 0

Table 3.2: Reached nodes in G (G given in Figure 3.1)

Match Reached nodes

v1 R(u0, v1) = {v5, v6, v7, v8, v10, v14, v15}
v3 R(u0, v3) = {v9, v10, v11, v12, v16, v17, v18}
v4 R(u0, v4) = {v10, v12, v13, v17, v18, v19}

Hence, the more matches v can be reached, the more significant impact it may

have, as observed in [148].

Example 2. Consider G and Q shown in Figure 3.1. One can verify that the nodes

of subgraphs induced by the nodes v1, v3 and v4 are mappings for the Q’s nodes via

RGS. Table 3.1 shows the corresponding covered satisfaction sets of the matched

nodes in G and Table 3.2 illustrates the corresponding sets of reached nodes. One

can verify that M = {v4, v3} or M = {v4, v1} is a top-2 ranking according to the

RGS model. The relevance of the node v4 is 6, since each node in Q is mapped to

at least one node in G, as shown in Figure 3.1. The relevance of the nodes v3 and

v1 is 4.27 each (with α = 0.5). This is due to the fact that the label of the node

u2 is substituted by the labels of its children in Satu0 .

3.4.2 Match diversity

We next formalize the diversity problem and we introduce a simple metric for

result diversity.

Definition 5. Let G be a data graph, Q be a pattern graph, M(Q,G) be the

set of matches of the desired node u∗ ∈ Q in G, k be an integer and div() be

a dissimilarity function. A sequence of nodes, R = {vi1 , vi2 , ..., vik} is a set of
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k-diverse graph nodes with respect to the pattern Q such that

R = argmax
S⊆M,|S|=k

div(S), (3.6)

where

div(S) =
k−1∑
i=1

k∑
j=i+1

Θ(vi, vj). (3.7)

The distance function Θ(., .) is an essential component of diversification that com-

putes the dissimilarity between the returned matches. In the following, we define

a simple distance function based on Jaccard Coefficient [149]. Let vi ∈ G and

vj ∈ G be two matches of the desired node u∗, the dissimilarity between vi and vj

is defined as

Θ(vi, vj) = 1− |R(u∗, vi)| ∩ |R(u∗, vj)|
|R(u∗, vi)| ∪ |R(u∗, vj)| . (3.8)

The problem of match diversity is to select a subsetR ⊆ M of size k that maximizes

the sum of inter-element distances amongst elements of R. The above definition

is a minor revision of the Max-Sum Dispersion Problem introduced by [150].

Example 3. GivenG andQ in Figure 3.1, we observe the following: (1) div(v3, v4) =
5
9
; this means that v3 and v4 have impact on more than half of the same group of

people in G, and (2) div(v1, v3) =
12
13
, div(v1, v4) =

11
12
. Thus, v1 and v3 are most

dissimilar to each other.

Next, we formally define the diversified top-k problem.

3.4.3 Diversified top-k matches

Given a list of results R = {vi1 , vi2 , ..., vik} of size k from the set of matches

M(Q,G), the diversified top-k matches, denoted as D(R), is a list of results that

satisfy the following conditions:

� D(R) ⊆ M and |D(R)| ≤ k,

� for any two results vi ∈ R and vj ∈ R and i 
= j, if vi is similar to vj, then

{vi, vj} � D(R), and

� the relevance of D(R) is maximized.
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The diversified top-k matches are the set of k results, such that the similarity

between results is minimized and the sum of relevance is maximized [119]. Based

on the above functions, we define the diversification function as follows

D(R) = argmax
R⊆M,|R|=k

F (R), (3.9)

where

F (R) = (k − 1)(1− λ) · sim(Q,R) + 2λ · div(R). (3.10)

Value λ, with 0 ≤ λ ≤ 1, is a user-defined parameter that represents the trade-off

between similarity and diversity, i.e., it balances between relevance and diversity

of matches. The diversity function is scaled up since there are k numbers for the

relevance sum and k(k−1)
2

for the diversity sum. This function is a minor revision

of Max-Sum Diversification introduced by [119].

Example 4. Given G and Q in Figure 3.1, one can verify that {v4, v1} is a top-

2 diversified match set since their diversification value is maximum among all

2-matches of M(Q,G).

3.5 Top-k graph pattern matching algorithms

In this work, we first introduced a new notion of graph pattern matching, called

Relaxed Graph Simulation, to cope with restrictions of previous approaches and

to avoid the empty-set answer problem. Next, we develop algorithms that aim to

solve the top-k answering problem and to reduce the cost of the search.

In the following, we proceed with the presentation of two new approaches for the

top-k matching problem and the diversified top-k matching problem using the

RGS model.

3.5.1 Finding top-k matches

The matching process in our approach consists of two main steps. The first step

aims to encode the information of each graph node using the cuckoo filter [151].

The second step aims to compute the top-k matches of a query Q according to

the RGS model. The efficiency of the proposed approaches relies on the node
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Figure 3.2: Illustration of the insertion process in cuckoo filter

encoding, where the cuckoo filter is used to distill the neighborhood information

into an array of bits. Unlike many existing methods, our encoding can be used for

dynamic graphs without additional data structures.

In the following, we first describe the cuckoo filter, and then we detail the matching

process.

3.5.1.1 Cuckoo filter

The cuckoo filter [151] is a variant of the cuckoo hash table [152] that stores a bit

string, known as fingerprint, obtained by hashing an item instead of a dictionary

data structure, i.e., key-value pairs. In this data structure, the basic unit that

stores one fingerprint is called entry and the hash table is an array of m buckets

that can have b entries. Two hash functions, h1() and h2(), are used to identify

the buckets for insertion or the lookup.

Cuckoo filter is an efficient probabilistic data structure that supports set mem-

bership testing. The authors in [151] show that cuckoo filter is better than bloom

filter [153]: (a) in terms of lookup performance (runtime performance), (b) it han-

dles deletion, which is not supporting in bloom filter, and (c) it is a space efficiency

data structure with low false positive rates ε.

In the following, we describe the processes of insertion and lookup in the cuckoo

filter.

Insertion. When inserting an item e in the cuckoo filter, one can confront

several cases. The first one is when the two buckets in positions h1(e) and h2(e)

are not allocated, the insertion bucket is chosen arbitrarily. Figure 3.2a shows the

insertion of the element x in the bucket 3. The second case is when one bucket is

allocated, the insertion is performed in the empty bucket. The last case is when
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both buckets are allocated. Figure 3.2b illustrates this case. In such a case, the

item e can be inserted in one bucket (bucket 7 in this example), and the item that

occupies the current bucket will be reinserted in another bucket with reallocation.

Figure 3.2c illustrates this case where the item z is inserted in bucket 3 and the

occupant of bucket 3 (i.e.,, the element x) is inserted in bucket 5.

Inserting a new item in an allocated bucket requires a reallocation for the oc-

cupying item. This reallocation requires access to the original items in order to

determine their new corresponding buckets. As mentioned before, the cuckoo fil-

ter does not store the item itself but it stores its fingerprint θ(). Therefore, it is

challenging to find the new bucket of a moved item. To overcome this limitation,

the two hash functions are dependent so that they can determine the position of

an element based on its fingerprint.

h1(x) =hash(x), (3.11)

h2(x) =h1(x)⊕ hash(θ(x)). (3.12)

Hence, the only need for the reallocation is the information in the table, i.e., there

is no need for original items.

Lookup. The lookup using the cuckoo filter is a simple process. Let x be a

searched item, the fingerprint θ(x) is first calculated, then the two bucket positions

h1(x) and h2(x) are checked. If θ(x) exists, then the cuckoo filter returns true;

otherwise, it returns false.

False Positive Probability. The analyzes of the false positive for the cuckoo

filter is detailed in [151]. Let b be the bucket size and |θ| be the fingerprint

size. The false positive rate ε depends on b and |θ|, thus the minimal size of the

fingerprint is |θ| ≥ log2(2b/ε) bits.

3.5.1.2 Finding top-k Matches with cuckoo filter

To achieve a fast search time, we need to design powerful algorithms that can

benefit from the idea of using the cuckoo filter. Recall that our aim is to find the

top-k matches of the desired node u∗ according to the RGS model. Let G be a

data graph and Q be a pattern graph. We must first identify the set cand(u∗) of
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candidates of the desired node u∗. From each candidate node, we then check the

matching based on the notion of satisfaction set. Using the RGS model, we have

the following lemmas.

Lemma 1. Given a data graph G and a pattern graph Q, the top-k matches of the

desired node u∗ can only come from the set of candidates, cand(u∗), of u∗.

Proof. From Definition 4, it is easy to verify that the result of the matching process

contains only candidates of the desired node u∗.

Lemma 2. Given a data graph G and a pattern graph Q, a graph node v ∈ V (G)

is not a candidate of a query node u ∈ Vq if fv(v) 
= l(u).

Proof. From Definition 3, the correspondence of labels is required for a graph node

to be a candidate of a query node.

Lemma 3. Given a data graph G and a pattern graph Q, a graph node v ∈ V (G)

is not a candidate of a query node u ∈ Vq if deg(v) < deg(u).

Proof. In Definition 3, the second condition for a graph node v that matches a

query node u via the RGS model is that one set Su of u’s satisfaction set (Satu)

is included in the list of labels of the v’s children Lv, so |Su| ≤ |Lv|. Since

|Su| ≥ deg(u) and |Lv| = deg(v), we have deg(u) ≤ deg(v).

Lemma 4. Given a data graph G, a pattern graph Q and a graph node v ∈ V (G)

that verifies Lemma 2 and Lemma 3 for a query node u ∈ Vq. Let vcuckoo be

the cuckoo filter representation of Lv. If �Sui
⊆ Satu that verifies ∀e ∈ Sui

,

θ(e) ∈ vcuckoo, then v is not a candidate of u.

Proof. Assume that v ∈ V (G) is a candidate of u ∈ Vq with Su ⊆ Satu is the

corresponding satisfaction set, and assume that there is an element e ∈ Su such

that θ(e) /∈ vcuckoo. This means that the element e /∈ Lv and therefore Su � Lv,

which contradicts Definition 3 (condition 2).

We outline Algorithm 1, called cMatch(). Typically, the algorithm verifies the last

three lemmas to identify deemed matches of the query nodes. (1) It initializes a

boolean variable Match for the candidacy condition and a set Sat to maintain the

corresponding satisfaction set if a node v is evaluated as a match of a node u. (2)

The algorithm checks if both nodes have the same label (line 3), (3) if so, it checks
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Algorithm 1 Cuckoo filter matching cMatch(u,v)

Input: A graph node v and a query node u
Output: Return the satisfaction set Su ⊆ Satu covered by v if v is a candidate for u

according to lemmas 2, 3 and 4
1: Match := false;
2: Sat := ∅;
3: if (fv(v) = l(u)) then
4: if (deg(u) ≤ deg(v)) then
5: while (Match = false and ∃ unvisited Sui in Satu) do
6: if (∀e ∈ Sui : θ(e) ∈ vcuckoo) ) then
7: Match := true;
8: Sat := Sui ;
9: end if
10: end while
11: end if
12: end if
13: return Sat;

whether the node v has a sufficient number of children to be a candidate for the

node u (line 4). These two investigations reveal if a node satisfies Lemma 2 and

Lemma 3. After that, (4) for a node v that satisfies both conditions, the algorithm

checks if the list of labels of v’s children Lv covers one set of the satisfaction set

Satu. For each Sui
∈ Satu and while the match is not yet found, the algorithm

checks if Lv covers Sui
. Thus, Algorithm 1 uses the cuckoo filter representation

vcuckoo of Lv. For each element e ∈ Sui
it verifies if the fingerprint θ(e) belongs to

vcuckoo.

Let m be the size of Sui
and n be the size of Lv. In general, the inclusion of Sui

in

Lv is checked in O(n×m) time. Using cuckoo filter, the membership of an element

e in Lv is checked in constant time and the inclusion of Sui
in Lv is checked in

O(m) time, which provides a significant gain for finding matches. (5) Algorithm 1

returns a covered set from Satu if it exists; otherwise, it returns an empty set.

Algorithm 2 details the search process. It uses the cMatch() subroutine, which

verifies Lemma [2-4], and checks whether a graph node is a candidate for a given

query node. The Top-kCuckoo matching algorithm first initializes termination,

which is a boolean variable for the termination condition, and a set R to maintain

matches of the desired node u∗ ranked by their relevances Ω() (lines 1-2). The

algorithm selects, from the candidate set cand(u∗) of u∗, an unvisited node and

invokes CheckMatch() subroutine to check whether this node is a veritable match

(lines 4-14). If a candidate of u∗ is evaluated as a veritable match, Algorithm 2

invokes CheckAdd(), which evaluates the score of the node Ω() and performs the
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Algorithm 2 Top-kCuckoo matching

Input: A graph G, a pattern Q∗ and a positive integer k.
Output: R: a top-k match set of the desired node u∗.
1: termination := false;
2: R := ∅;
3: cand(u∗) := {non matched v ∈ V (G) such that |cMatch(v, u∗)| 
= 0};
4: while (termination = false and |cand(u∗)| > 0) do
5: Choose a node w ∈ cand(u∗);
6: if (w 
= ∅) then
7: if (CheckMatch(Q,w) = true) then
8: CheckAdd(w,R);
9: check and update the termination condition;
10: end if
11: else
12: termination := false;
13: end if
14: end while
15: return R;

insertion in the list of answers R. If this node has a score Ω() better than the

score of the last element in R, then it must be inserted in R (line 8). Algorithm 2

checks the termination condition: if R has k elements with the highest score, the

variable termination will be updated with false (line 9). If this last holds or the

set of candidates is empty, Algorithm 2 returns R as a response to the query.

Subroutine CheckMatch(). The starting point in CheckMatch() is the satisfaction

set covered by the list of children of the current candidate node. CheckMatch()

looks for mapping each element in the current satisfaction set against the children

of the corresponding graph node. If at least one element is not mapped (according

to the RGS model), the corresponding candidate of u∗ is evaluated as a non-match,

and the process tackles the next candidate. Otherwise, each mapped query node

can have one of the two following states: (a) the mapped query node has no

satisfaction set or (b) the mapped query node has a satisfaction set. The first

state is simple; no further processing is required for this node. For the second

state, CheckMatch() looks for mapping the elements of the children list of this

node, i.e., the elements of the corresponding satisfaction set, and it performs the

same previous evaluation for each generated satisfaction set until all investigations

for the mapping are performed.

Example 5. Consider data graph G and query graph Q given in Figure 3.1. When

Q is issued on G, top-kCuckoo matching identifies the top-2 matches as follows:

Firstly, v1, v3 and v4 are selected as candidate matches of the query node u0.

Suppose that the node v1 is evaluated first, the corresponding satisfaction set
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covered by v1 is {B,D,E, F} with γ = 2.5. Algorithm 2 looks for mapping each

corresponding node with a label in the satisfaction set to a graph node, the node

u1 is mapped to v10 with γ = 0, the node u3 is mapped to v7 with γ = 2 since

the list of v7’s children covers the u3’s satisfaction set {F,G}. The node u4 is

mapped to v5 with γ = 1 and the u4’s covered satisfaction set is {F}. The last

corresponding node in the u0’s satisfaction set u5 is mapped to v6 with γ = 0. After

this first evaluation of elements of the first satisfaction set, Algorithm 2 evaluates

elements of the resulting satisfaction sets in the same manner. The corresponding

nodes of F,G are mapped to v15 (or v6), v8 respectively, the node u5 (from the

u4’s satisfaction set) is mapped to v15 or v6. At this end, all the evaluations are

performed and the node v2 must be added to R with the score Ω(v1) = 4.27.

Similarly, the nodes v3 and v4 are evaluated and their final scores are Ω(v3) = 4.27

and Ω(v4) = 6. Hence, Top-kCuckoo matching returns R = {v4, v1}.

Complexity. We give an analysis of the running time of the proposed approach.

Let D and d be the average degrees of the graphs G and Q respectively. The

satisfaction set Satu of a node u contains 2du sets Sui
each of size at most du

2, with

du = deg(u). For a given node v with a degree dv, the cuckoo filter construction

takes O(dv.h.m.b), where h represents the number of the used hash functions, m is

the number of buckets and b is the number of entries for one bucket. Since h = 2

and m.b ≡ O(D), the construction of this filter takes O(|V |.D) time for the entire

graph G. In the cuckoo filter, each element of Sui
can be checked in O(1), so the

checking process of Sui
takes O(d2) time. As all Sui

⊆ Satu should be checked,

the total time of cMatch() for a given node u is O(2d.d2) ≡ O(2d). CheckMatch()

subroutine uses cMatch() to check whether a node v ∈ G is a candidate for the

desired node u0 (in time O(2d)). This verification for all the nodes of Q is then

done in O(|Vq|.2d) time. Thus, to check all nodes of G we need O(|V |.|Vq|.2d) time.

Finally, the CheckAdd() uses a min-heap to maintains the results in O(|V |.log k).
Thus, the top-kCuckoo is done in O(|V |.D + |V ||Vq|.2d + |V |.log k) ≡ O(|V |.D +

|V ||Vq|.2d) time.

In graph pattern matching the size of a pattern Q is typically small and the

maximum degree in this pattern is often small too [12]. Thus, since the time

complexity of our approach depends on the average degree d of the query Q and

d is generally small (related to the query size), we have |Vq|.2d << |V | + |E| and
the complexity of top-kCuckoo becomes O(|V |.D + |V |.(|V | + |E|)), which gives
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Algorithm 3 Top-kDiv

Input: A data graph G, a pattern Q∗, a positive integer k and λ ∈ [0− 1].
Output: R: a diversified match set R of the desired node u∗, |R| = k.
1: R := ∅;
2: Compute M(Q,G, u∗);
3: while (|R| < k) do
4: x := argmaxx∈M F (x,R);
5: R := R ∪ {x};
6: M := M − {x};
7: end while
8: return R;

a better time complexity than top-kGS (given by O((|Vq| + |Eq|)(|V | + |E|) +

|V |.(|V |+ |E|)) [115]).

3.5.2 Finding diversified top-k matches

In the following, we proceed with the presentation of the diversified top-k matching

problem. In contrast to the top-k matching problem, which is based only on the

sim(), the diversified top-k problem is intractable.

Theorem 2. The diversified top-k problem is NP-complete (decision problem).

Proof. Given a graph G, a pattern Q, an integer k, λ ∈ [0 − 1] and a bound B,

the decision problem of Top-kDiv (Algorithm 3) is to decide whether a k-element

set R ⊆ M(Q,G) with F (R) ≥ B exists. In the following, we show the proof

given in [115]. Since we can guess a k-element set R and then check whether

R ⊆ M(Q,G) and F (R) ≥ B in PTIME, so the decision problem of diversified

top-k is in NP. Furthermore, the diversified top-k problem is NP-hard since it is

a general case of the k-diverse set problem [154], which is known to be NP-hard.

Thus, the diversified top-k problem is NP-complete.

Despite the hardness, we provide an approximation algorithm for the diversi-

fied top-k problem. Intuitively, this problem can be decomposed into two pro-

cesses. The first one is the graph pattern matching, which computes the match

set M(Q,G), and the second one is the result diversification.

Algorithm. Given a graph G, a pattern Q, an integer k and λ ∈ [0 − 1],

Algorithm 3, denoted as Top-kDiv, identifies a set of k matches of the desired
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node u∗ that maximize F (). (1) It initializes a set R to maintain the matches of

the desired node u∗. (2) It computes M(Q,G) with the same strategy used in

Algorithm 2 with respect to the RGS model. (3) Top-kDiv incrementally builds

the result set R by selecting a pair of matches that maximizes the diversification

value F (). It then performs the insertion of elements in R and removes them from

M(Q,G). Finally, Algorithm 3 returns R as a response to the pattern Q.

Example 6. Consider data graph G and pattern graph Q given in Figure 3.1, and

assume that λ = 0.5 and k = 2. When Q is issued on G, Top-kDiv identifies

the top-2 diversified matches of the query Q as follows: Firstly, {v1, v3, v4} are

selected as matches of the desired node u∗, w.r.t. RGS. Then a pair of matches

that maximizes F () is selected. Hence the pair {v4, v1} is selected and returned

as the final result, since the diversification value F (v4, v1) = 6.05 is maximized.

3.6 Experiments

In this section, we describe and discuss experimental results to evaluate our meth-

ods. We evaluate the performances of the proposed approaches over various types

of real graphs, number of labels and sizes of queries.

3.6.1 Experimental setting

All experiments are conducted on a machine with 3.19 Ghz Intel Core i7 CPU and

with 16 GB of RAM running Windows 7. All algorithms are implemented in Java.

In the following, we present the test collections and the evaluation method then

we present our results.

3.6.1.1 Datasets

For the experiments, we use four datasets of real-world graphs from the Stanford

Large Network Dataset Collection 1.

� Epinions. This dataset consists of a graph representing who-trust-whom on-

line social network. This graph contains 75, 879 nodes, 508, 837 edges and

50 synthetic labels with a uniform random distribution on the nodes.

1http://snap.stanford.edu/
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Table 3.3: Graph dataset characteristics

Dataset |V | |E| Number of labels

Epinions 75, 879 508, 837 50

Amazon 400, 727 3, 200, 440 100

Google 875, 712 5, 105, 039 200

LiveJournal 4, 847, 571 68, 993, 773 500

� Amazon. This is a real co-purchasing network with 400, 727 nodes, 3, 200, 440

edges and 100 synthetic labels with a uniform random distribution on the

nodes.

� Google. In this graph, nodes represent web pages and directed edges rep-

resent hyper-links between them. This dataset contains 875, 713 nodes,

5, 105, 039 edges and 200 synthetic labels with a uniform random distribution

on the nodes.

� LiveJournal. This dataset is a graph representing an on-line social net-

work with almost 5 million members (4, 847, 571) and over 68 million edges

(68, 993, 773), which represent friendship relations. We use 500 distinct la-

bels with a uniform random distribution on the nodes.

The characteristics of the datasets are summarized in Table 3.3. For each graph,

we report the number of nodes, the number of edges and the number of unique

labels.

3.6.1.2 Pattern generating

For the experiments, we generate several queries with different sizes, controlled by

three parameters: number of nodes, number of edges and labels from the list of

graph labels Σ. We use (|Vq|, |Eq|) to denote the query size, and for each size, we

generate 20 different query graphs.

3.6.1.3 Evaluation method

We use two criteria to evaluate the experiment results. The first one is the failure

rate, which represents the ratio between the number of failing queries, i.e., for

which the algorithm cannot find a response, and the number of queries used.



44

(a) Epinions (b) Amazon

(c) Google (d) LiveJournal

Figure 3.3: Failure rate of Relaxed Graph Simulation and Graph Simulation

(a) Epinions (b) Amazon

(c) Google (d) LiveJournal

Figure 3.4: Search time for the top-k search problem (Varying |Q|)
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(a) Epinions (b) Amazon

(c) Google (d) LiveJournal

Figure 3.5: Search time for the top-k search problem (Varying k)

(a) Epinions (b) Amazon

(c) Google (d) LiveJournal

Figure 3.6: Search time for the diversified top-k search problem (Varying |Q|)
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This criterion evaluates the effectiveness of algorithms. The second criterion is

efficiency in terms of search time. In the following, we demonstrate the usefulness

of our propositions by conducting three sets of experiments.

The first experiment, called failure rate, analyzes the effectiveness of the RGS

model against the GS model using the four datasets.

The second experiment, called top-k search, analyzes the efficiency of the proposed

algorithms for the top-k matching problem. Three sets of algorithms are investi-

gated: (1) Top-kGS is the implementation of the top-k search algorithm using the

GS model and the early termination property [115]. This algorithm is well evalu-

ated in the literature. It takes on average only 60% of the time of the same process

without the early termination property. (2) Top-kRGS is the implementation of

the top-k search algorithm using the RGS model. (3) Top-kCuckoo is the imple-

mentation of the top-k search algorithm using the RGS model and the cuckoo

filter as an optimization strategy (Algorithm 2). Although the RGS and the GS

models are different, we compare the RGS-based algorithm with the GS-based one

to prove the effectiveness and the efficiency of the proposed approach.

The last experiment, called Diversified top-k search, evaluates the efficiency of the

proposed diversified top-k search algorithm. We compare our algorithm (called

DivCuckoo), which is the implementation of the diversified top-k algorithm using

the RGS model and the cuckoo filter, with the diversified top-k algorithm (called

DivGS ), which is the implementation of the diversified top-k search algorithm

using the GS model and the early termination property [115].

3.6.2 Results

In the following, we report and discuss the obtained results.

3.6.2.1 Failure rate

We first evaluate the effectiveness of the RGS model compared to the GS model.

Figures 3.3a, 3.3b, 3.3c and 3.3d report the results of the failure rate of the two

searching models on Epinions, Amazon, Google and LiveJournal datasets, respec-

tively. In this experiment, we set k = 10 and we varied the query size from (5, 6) to

(20, 60). We observe that the RGS model effectively reduces the failure rate in all
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experiments. For instance, the RGS ’s failure rate using Q(5, 6) is 20%, 35%, 30%

and 25% less than the GS ’s failure rate on Epinions, Amazon, Google and Live-

Journal, respectively. We observe almost the same results for all other queries on

all datasets.

Case study. The results presented in the figures of failure rate show whether

the algorithm returns at least one response. Nevertheless, this does not help to

know if the algorithm has identified enough results, i.e., whether the number of

returned results is close to the desired k. For all datasets, the result lists of both

models are inspected, and we observe that (1) the returned results correspond to

the desired queries and (2) the RGS model surpasses the GS model. For instance,

we kept k = 10 and we consider queries of size Q(8, 12) on the Amazon dataset.

These queries correspond to the minimum difference between the failure rates of

the two models (the GS ’s failure rate is 65% and the RGS ’s failure rate is 45%).

For the queries that have been answered by the GS -based algorithm, this latter

returned 1, 3, 3 and 5 answers for 4 different queries. However, the RGS -based

algorithm was able to find 7, 10, 9 and 10 answers for the same queries. These

observations are for small queries and the problem persists for larger ones.

3.6.2.2 Top-k search

The search time criterion shows the efficiency of the proposed approach. In what

follows, we report the search time of the three algorithms. We first start with the

search time by varying the query size, then we present the search time by varying

the number of desired answers k.

Varying query size. Figures 3.4a, 3.4b, 3.4c and 3.4d show the average search

time per query size (20 queries per size) after running 30 times in the same setting

as the Failure rate experiment. The results show that top-kGS and top-kCuckoo

always outperform top-kRGS. On Epinions dataset, top-kCuckoo takes less search

time than top-kGS for small queries, but it takes more search time for large queries,

which is entirely reasonable since top-kCuckoo identifies more matches. Generally,

top-kGS and top-kCuckoo have the same time on average. top-kCuckoo takes only

61% of the time of top-kRGS on average. On Amazon dataset, top-kGS takes 78%

of the time of top-kCuckoo, which outperforms top-kRGS by 49% on average. On
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Google dataset, top-kGS takes 82% of the time of top-kCuckoo on average. On the

other hand, top-kCuckoo improves top-kRGS by 48%. On LiveJournal dataset,

top-kGS takes 89% of the time of top-kCukcoo, which improves top-kRGS by 36%

on average.

Varying k. For this experiment, we have varied k from 5 to 40 with an incre-

mentation of 5, and we have chosen the query size Q(7, 9) since it has the minimum

difference between the failure rate of the two models. Figures 3.5a, 3.5b, 3.5c and

3.5d report the search time by varying k. The three algorithms are sensitive to

k. The search times of top-kGS and top-kCuckoo are close, and both of them

outperform top-kRGS.

In terms of scalability, both models scale well with the graph size, which is ap-

proved by the experiments on Google and LiveJournal datasets. The search times

of top-kCuckoo and top-kGS are less sensitive to the variation of k than those of

top-kRGS.

3.6.2.3 Diversified top-k search

Finally, we evaluate the efficiency of DivCuckoo against the DivGS. In this exper-

iment, we do not report the results of the diversified top-k search without using

the Cuckoo filter optimization since it has a longer search time compared to the

two other algorithms (as shown in the previous experiments). We keep the same

setting as the Varying query size experiments (Section 3.6.2.2) and we set λ = 0.5.

Figures 3.6a, 3.6b, 3.6c and 3.6d show the average search time per query size (20

queries per size) after running 30 times. These results are consistent with the

previous experiments. On Epinions dataset, DivCuckoo outperforms DivGS for

small queries, which is unexpected since it performs more test and it identifies

more matches. Furthermore, DivGS takes less search time for large queries, which

is quite reasonable according to the principle of each model (GS and RGS ). On

the other datasets, we observe that DivGS and DivCuckoo have an almost similar

search time on average for almost small queries. We also observe the same results

as those on Epinions dataset for large queries.



49

Both algorithms are sensitive to the query size (|Vq|, |Eq|). However, DivCuckoo

is more sensitive due to the extra time incurred by larger queries to compute the

matching using the RGS model.

Case study. To evaluate the quality of our algorithm, we manually inspected

the top-3 diversified matches. We observed that the returned results correspond

to the queries and the DivCuckoo substituted at least one intermediate result by

another one to diversify the final results.

These experiments show the performance of the proposed approaches, using the

RGS model, in terms of quality and with an almost similar search time to those

using the traditional GS model.

3.7 Chapter summary

In this chapter, we have addressed the (diversified) top-k graph pattern match-

ing problem. We have introduced and studied a new model of graph pattern

matching called Relaxed Graph Simulation (RGS ). Based on the RGS model, the

search process can achieve more meaningful matches and avoid the empty-set an-

swer problem by considering matches with missing nodes and without affecting the

quality of results. It provides good flexibility for several applications, such as social

networks. We have also defined functions to measure the relevance and diversity

of the returned matches. Based on both of them, we have proposed a diversifica-

tion function that balances the two criteria. Besides, we have developed efficient

algorithms using the cuckoo filter for computing the (diversified) top-k matches.

Therefore, our approach is very suitable for large graphs due to its scalability. The

experiments validate the effectiveness and efficiency of this approach.
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Information Retrieval (IR) encounters a migration from the traditional paradigm,

which aims to return a list of ranked responses, to the aggregated search paradigm,

which aims to provide integrated search services that bring the most focus and

relevant answers to the user’s queries. In other words, in response to a user’s

query, traditional information retrieval systems back a ranked list of links that

50
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reference potential answers examined by the user to find those that likely fulfill

his/her need. For some queries, the user could find the link that satisfies his/her

need (e.g. the date of the second world war). However, for other kinds of queries

(e.g. the second world war), one link (or document) is not enough since the

relevant information may be scattered across several documents. In such a case,

the user should collect and aggregate all relevant and non-redundant information,

from different data sources, which can respond to his/her expectations. Querying

all these data sources and combining the returned results in the same aggregate

to achieve better relevance and better organization is the scope of the aggregated

search.

In this chapter, we firstly present the aggregated search paradigm in the field of

Information Retrieval (IR), which is one of the most exciting problems in IR. We

also survey and discuss related IR disciplines and tools.

4.1 Aggregated search

Recently, information retrieval systems have been expanding to address more range

of information-seeking tasks. Examples include search according to the type of

information (e.g., image, document, video...) or according to the domain of search

(e.g., shopping, travel, news ...). Each information-seeking task requires, in most

cases, a customized solution. In other words, different tasks may require different

representations of information, different retrieval algorithms and different ways

of returned-results representation. For examples, (1) images and books require

two different representations, e.g., images can be represented by text from the

surrounding context in the originating page [155] and books can be represented

by text from an external summary page [156]. (2) Geographic-based search and

news search require two different retrieval algorithms, e.g., local business search

may require favoring businesses that are geographically close [157], news search

may require favoring recently published articles [158]. (3) A video search and

web-page search require two different representations, e.g., videos are displayed

using a still-frame of video, a description and a duration while web-page results

are displayed using the title and a summary showing the context where the query

terms appear [159].
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The diversity of user needs makes information retrieval engines more and more

specialized. Typically, an engine that supports multiple search tasks uses a spe-

cialized system for each supported task. How can such an approach be achieved

by integrating search across these widely different systems? This is the goal of

the aggregated search. Aggregated search addresses the task of searching and as-

sembling information from a variety of data sources and placing them in a unified

interface or document. Using this search paradigm makes it possible to exploit a

wide range of functionalities and advantages in order to obtain better results, in

terms of precision and quality, to a user query.

4.1.1 Motivation

Typically, Information Retrieval (IR) engines return, in response to a user query,

a list of ranked documents or links that are evaluated as deemed matches. These

returned documents are ranked by criteria functions that deal with features of

documents and queries. The user should go through this response list to examine

each returned document, by starting with the top one, in order to find relevant

answers to his/her query. As a result of current information features, the returned

list may become huge, and the relevant information may not be a single adjoining

document which makes these systems outdated concerning the satisfaction of the

user needs.

Most of the used matching processes in these engines focus on relevant information

at the document level. Each of them is based on a theoretical model such that the

probabilistic model [160], vector space model [161] and language model [162].

This vision of the document-level ranking is limited and may not be appropriate

to meet user expectations [19–21] for several reasons. In the following we cite

some limitations: (1) a relevant information may not be an entire document,

it may be contiguous or scattered sections (information) in the same document

as it may be scattered across several documents, (2) the way in which returned

results are represented, often as a ranked list, is not always appropriate to the

user’s expectations above all when the answer is just a part of document, (3) the

interpretation of queries differs from one context to another, which makes them

ambiguous in term of information need. The example in such a case is when a term

refers to several things at once, especially when different sources of information

are used to construct the answer.
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These mentioned limitations are just some of many other limitations of tradi-

tional information retrieval systems. Thus, there is a need for more focus, more

organization, and more diversity in the returned results. Besides, more in-depth

search methods, which process information with finer granularity and build a re-

sponse by combining multiple contents that may be useful to the user, are needed.

Aggregated search addresses these tasks of searching and assembling results.

4.1.2 Definition

Google1 was the first who explicitly introduced the idea of aggregated search as

universal search:

”Google’s vision for universal search is to ultimately search across all its content

sources, compare and rank all the information in real time, and deliver a single,

integrated set of search results that offers users precisely what they are looking for.

Beginning today, the company will incorporate information from a variety of previ-

ously separate sources – including videos, images, news, maps, books, and websites

– into a single set of results. At first, universal search results may be subtle. Over

time users will recognize additional types of content integrated into their search

results as the company advances toward delivering a truly comprehensive search

experience.”

Moreover, the first definition of the aggregated search was given at the ACM SIGIR

2008 Workshop on Aggregate Research [20]:

Definition 6. Aggregated search is the task of searching and assembling informa-

tion from a variety of sources, placing it into a single interface.

In other words, the goal of the aggregated search is to provide integrated search

across multiple heterogeneous sources and construct an aggregate answer, that

contains the most relevant, exhaustive and non-redundant information, to be re-

turned in a unified interface (document) and a common presentation of results.

For instance, the provided results for the query “Stephen Hawking” in Google

search engine2 (see Figure 4.1), in the red rectangle that represents the aggregated

search result, contain a short biography, images, associated books, and movies.

1http://googlepress.blogspot.com/2007/05/google-begins-move-to-universal-search 16.html
2March 2019
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Figure 4.1: Aggregated search result in Google web search engine

This is why this kind of search engine uses several techniques that aim to search

and provide results from various sources. Then it integrates diverse contents,

provides pertinent answers and assemble related contents in the same frame.

Based on the above, aggregated search can be seen as a mature subfield of previous

works in the information retrieval fields such as federated search, metasearch, se-

mantic search, natural language generation and so on, which will be discussed later

from the perspective of aggregated search. Typically, most aggregated search sys-

tems follow an architecture with three main sub-tasks [21]: (1) Query dispatching,

concerned with how to analysis the used query and how to select the information

sources, (2) fragment retrieval, concerned how to select fragments that contain per-

tinent information, from which relevant documents can be retrieved, and (3) result

aggregation, concerned with how to assemble results from the retrieved fragments

so as to best represent the final result with the most relevant information. Figure

4.2 shows a general aggregated search framework that uses the three sub-tasks. In

the following, we will discuss them in more detail.

In the query dispatching step, we include the actions that precede query matching,

that is, initial interpretation of the query (query analysis) and other actions that

depend mainly on the query and knowledge about the collections. We can also

see this step as deciding which solutions should be triggered for a given query.

We distinguish between the approaches that aim at selecting the right sources to

be used, the approaches that try to understand more about the query, and the
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Figure 4.2: Aggregated search framework

approaches that try to extend the query to have more chances to find suitable

search results. We will list here briefly well-known problems in this context:

Query dispatching: the first sub-task deals with two operands before pro-

cessing the query matching. The first operand is the query where each

submitted one undergoes an analysis operation that aims to interpret and

reformulate the query. The second operand is the information sources.

– Query analysis: this action aims to interpret and reformulate the query

in order to decide which solutions should be triggered. We distinguish

two main operations: (1) Query interpretation that aims to discover

the intent of the question, to find what type of question is being asked

(e.g. wh-questions, yes/no questions, ...) and to identify semantic

relations between the query and the answers [163]. In this respect,

several solutions are envisaged, such as query decomposition in order

to make the retrieval process easier [164, 165]. (2) Query reformulation

aims to add some features, to adapt and to personalize the query. These

operations are mainly based on the interpretation of the query and the

sources to be interrogated. To illustrate this concept, one can consider a

search engine that interrogates XML collections. Usually, the query is in

a textual format which should be translated to an appropriate format

(e.g., XML fragment) that allows considering content and structure

using the same query [166].
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– Source selection: is to predict which sources (if any) seem relevant to the

query. One can view this task as that of deciding which sources should

be interrogated and which type of information should be displayed on

the aggregated search results regardless of their position. Furthermore,

it is impractical to issue the query to every source of information [159].

For this reason, most approaches use pre-retrieval evidence that is based

on particular keywords; for example, the query is related to a specific

domain such as health domain, contains the term “news” or the query

contains the name of a location, etc.

� Fragment retrieval: is the sub-task that follows the query dispatching

and precedes the result aggregation. That is, it aims to extract information

fragments, that seem relevant to the query, and return them to construct

the final answer that will be sent to the next sub-task. Typically, on the

one hand, this sub-task depends on the nature and the type of interrogated

sources, and on the other hand, the type of expected results. To this end,

there are many types of fragment retrieval approaches that can be used in

the aggregated search process. This includes textual retrieval, image re-

trieval, heterogeneous retrieval, and so on. Also, we can distinguish between

approaches of document retrieval, that seek to return the entire document,

and approaches of fragment/focused retrieval, that seek to return relevant in-

formation units instead of returning the entire document. These approaches

are not exclusive; we can also mention others such as database retrieval,

knowledge graphs and so on.

� Result aggregation: previous sub-task results are used as input for this

last sub-task. The purpose of result aggregation is to build the final result,

which will be returned to the user by putting these results together in the

best and coherent way. In the following, we mention and describe some

generic ways of content aggregation:

– Sorting: is the most used method of representation in the field of in-

formation retrieval. It is used to process the list of returned fragments

and return a new sorted list with respect to some defined features/func-

tions, e.g., relevance function, location, time etc. This vision is limited

since the aggregated search aims to go beyond the ranking.

– Grouping: based on common features of the returned results, the group-

ing action tends to create groups of results that share at least some
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features or similar content, such as an event in the same time, same

information format, same kind of object, same location, etc.

– Merging: we can present this process as the action that brings several

fragments/results into one aggregate result. This last can be a new

document, a summary off all relevant results or any other representa-

tion/format allowing the merging of results.

– Splitting: unlike the merging process, the splitting process decomposes

fragments/results into other smaller ones. Typically, this process is

used when the returned fragments are relatively huge and is usually

augmented by another process, like the sorting or the grouping, that

better represents the final results. The output of this process can be

an ordered list of even more smaller fragments.

– Extracting: The main purpose of this process is to extract and iden-

tify one or more semantic information from the returned fragments.

These semantic information can be entities describing places, pronouns

identifying interlocutors, images or video, and so on.

4.2 Aggregated search: related research and IR

disciplines

Aggregated search can be seen as a mature subfield of previous works in the

Information Retrieval fields such as federated search, metasearch, semantic search,

natural language generation, and so on. In the following, we discuss these different

disciplines from the perspective of the aggregated search.

4.2.1 Federated Search

Federated search or distributed information retrieval is a multiple distributed data

sources paradigm used in the IR field [167–169]. One can identify three tasks, as

for the aggregated search, in this paradigm. Each submitted query undergoes the

dispatching task that aims to select some sources, which seem relevant to the query,

to search. These sources are indexed and characterized by a local representation

that is used to identify them better. After that, the system sends the query to these
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selected sources, for which it may have specific matching algorithms, which return

results for the query to the system. Finally, the obtained results are presented to

the user. Typically, the final answer is a ranked list.

Using the concept of federated search in the web gives birth to two paradigms:

meta-search [170] and aggregated search [171]. A metasearch engine queries several

search engines, as an intermediary to query different sources, and combines results

from them or display them separately [20]. Unlike aggregated search approaches,

federated search approaches use assumptions that are not worth in the aggregated

search environment. However, they are similar in the way of querying distributed

sources and assembling the final returned results.

4.2.2 Cross-Vertical Aggregated search

At the onset of the Cross-vertical aggregated search (cvAS ), studies have seen it as

an instance of both federated search [169] and meta-search [170]. However, since

the introduction of the concept of aggregated search, most studies, such as [172–

175], classified the cvAS within the aggregated search direction. Cross-vertical

Aggregated Search is defined as the task of searching and assembling information

from different vertical search engines in response to a user query [21, 175, 176].

Usually, this paradigm is related to the web search where each vertical represents

a specific collection, such as videos, images, news and so on [158, 177]. Using cvAS

provides more visibility to vertical search engines [176] where the final results are

more than a list of fragments.

4.2.3 Natural Language Generation

From the perspectives of the expected results, Natural Language Generation (NLG)

approaches and Aggregated Search approaches are similar since they both use in-

formation fragments across several documents/sources rather than a list of ranked

documents. The purpose of the Natural Language Generation is to organize tex-

tual information using predefined ways to generate answers in an appropriate

linguistic form [178]. Here we show the analyses of NLG given in [21]. Approaches

using NLG paradigm care less about the query dispatching and fragments retriev-

ing as the information given beforehand from databases or search engines [179],

that is, some NLG approaches start from a known context of use which means that
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the need is considered implicit. Based on the information fragments, NLG aggre-

gates these fragments using different prototypical ways of information organization

known as discourse strategies. These strategies can be either static, using cause-

effect relation or chronological form, or dynamic that depend on the information

need and the information availability also. To this end, the dynamic strategies,

also known as learned strategies, use learning models on examples databases or

documents that serve as a training set. Thus, each learning strategy is specific to

one known domain [180]. Interested readers are referred to [178] for an interesting

study of NLG.

4.2.4 Question answering

Unlike traditional information retrieval engines, that return a ranked list of doc-

uments, Question Answering (QA) paradigm provides a set of multiple responses

[181]. One can see this paradigm like a case study for aggregated search since the

answers are produced through information extraction and assembling. Similar to

the aggregated search, we also find the three main sub-tasks of the defined frame-

work (Figure 4.2) in the QA paradigm. In the query dispatching sub-task, several

approaches are used to understand the query, identify named entities and other

helpful facts within the query, which are useful for selecting potential sources. The

fragment retrieval sub-task in QA aims to extract information, in the form of text,

and assemble answers. Although this sub-tasks does not amount to the impor-

tance of the other two sub-tasks, it is worth mentioning that it is usually a critical

and error-prone process, which is usually not easy. Finally, as a third sub-task,

QA engines return a list of potential answers which juxtaposed with supporting

text passages extracted from the matching documents. Further information about

QA could be found in this interesting study [165].

4.2.5 Composite retrieval

Composite retrieval paradigm is an interesting new search paradigm that seems

similar to the aggregated search paradigm. Its main purpose is to build a coherent

set of item bundles, associated with different aspects or sub-topics of the query,

rather than return a list of ranked documents. This paradigm was first introduced
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in [182]. In this study, the composite retrieval aims to return the k-diverse bun-

dles of complementary items. For example, planning a trip requires a query that

expects as answer bundles associated with travel options such as transportation,

hotels, restaurants, the weather, points of interest, and so on. Each returned bun-

dle should be valid within the constraints of the query, such as the time of the

trip and the maximum budget to spend. This problem is NP-hard as showing in

[182]. Several other works, such as [183, 184], process composite retrieval within

the aggregated search context.

4.3 Aggregation search in graphs

Recently, several approaches, such as [7, 36, 185, 186], have been proposed to deal

with the problem of graph query processing. Their main purpose is to find the

information/subgraph that seems relevant to the query graph. In this respect, the

main challenge is how to ensure the efficiency of the graph comparison process in

terms of search time and search space?

In a scenario, like previous ones of aggregated search, where the answer is scat-

tered across several fragments/subgraphs, most of the existing approaches do not

attempt to assemble subgraphs in a sensed way to provide the final answer for a

given query. In view of this context, several works seem to have a similar inten-

tion as the problem of aggregated search. This concept differs from one context to

another, where the keyword graph aggregation has a different meaning. Usually,

most of the proposed approaches aim at performing a certain level of summariza-

tion or compressing using merging techniques based on shared common features

[187–191].

In [187, 188] authors propose a model that allows merging XML data (trees)

streams. It is based on a merge template that defines the result document’s struc-

ture, and a set of functions to be applied to the XML data streams. Similarly,

the work involved in [189] performs aggregation in two steps. First, all nodes that

share some common features are grouped within the same super-node. Next, if all

the nodes within two super-nodes are related then a relation/link between these

super-nodes must be created. Authors in [192, 193] present an XML keyword

search model based on possibilistic and bayesian networks respectively, which al-

lows returning, in the same unit, the answer with its complementary elements. The
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study given in [191] introduces a set of formalizing rules, called graph aggregation,

to perform summarization preferences within a group of users. The main idea

of this study is to build a final graph, which represents users with their common

preferences, from a set of oriented graphs, where each graph represents preferences

of a single user. Similarly, aggregating and merging found a way in the ontology

field. The study presented in [194] performs some level of aggregating and merging

in order to summarize a global choice of a group using opinions, preferences, and

judgments available.

4.4 Relational aggregated search

Relational Aggregated Search (RAS ) groups the approaches that involve retrieving

and aggregating information fragments using their relations [173]. Combining both

paradigms, entity-oriented search [195] and relational search [196, 197], gives rise

to an interesting alternative that seeks not only entities of information, but also the

relationships between these entities, which makes this new paradigm more efficient.

In this respect, the relation between RAS paradigm and the graph search (graphs,

knowledge graphs, graph databases etc.) cannot be overlooked by the fact that

both seek information surrounded by structural requirements.

In the following, we present the main concepts used in RAS as well as an according

framework of relational aggregated search.

4.4.1 Relational aggregated search framework

Relational aggregated search paradigm may improve many search directions, such

as semantic search, entity-oriented search, database information retrieval, ... , by

considering the relation between information fragments. The use of these relations

can help, in most scenarios, to find more structured results by considering more

attributes related to the query, e.g., a query that seeks a person may have, as a

result, not only a name but also any other type of information that seems useful

and relevant to the query such as date and place of birth/death, news and so on.

By analyzing the needs and the requirements of this paradigm, we find that the

aggregated search framework, depicted in Figure 4.2, can be generalized for the
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relational aggregated search paradigm as long as it takes into account the relation

aspect within the three sub-tasks (query dispatching, fragment retrieval, and result

aggregation).

4.4.1.1 Query Dispatching

The query dispatching sub-task maintains the same principle and the same main

goal as described in Section 4.1. It aims to interpret and reformulate the used query

before processing the query-sources matching to select sources deemed relevant.

Inspired by the work in [196], authors in [173] propose a taxonomy that identifies

three types of queries where benefits from relational aggregated search are obvious.

In the following, we describe these relational query types.

� Attribute query: This type of query looks for units of information that

can directly meet the desired need, for example ”Game Of Thrones filming

locations”.

� Instance query: This type of query looks for a known instance of a class/

category. The returned result should contain this instance with all its related

attributes, for example ”Game Of Thrones” is an instance of the class Tv

Series.

� Class query: This type of query is a generalization of the previous type.

A class query could be as ”French writer”, ”movies”, ”animals” and so on.

Using this kind of query requires more voluminous answers, i.e., the returned

answers contain all class instances with their attributes.

The query dispatching is an important task since the query type determines which

search approach should be triggered and which solution of result aggregated should

be investigated.

4.4.1.2 Relation search

The second sub-task in relational aggregated search is called relational retrieval/

search (instead of fragment retrieval). In this sub-task, RAS uses approaches that

focus on the relation between the information units. For this reason, interrogated
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sources are usually structured as entities with specific inter-relations. This kind of

sources is known as knowledge bases. Another interesting information search field

that uses relation-based search is known as Information Extraction (IE ) [198].

IE is common to extract and relate information from structured sources. Existing

approaches can extract not only information entities, such as names, location, etc.,

but also their relations such as ”George R. R. Martin” author of ”A Song of Ice

and Fire”. However, further information about this search field could be founded

in these interesting studies [21, 199].

4.4.1.3 Result Aggregation

The use of relations allows considering new ways to ensure the result aggregation.

In RAS, the aggregation of results depends mainly on the type of the query. In

the following, we discuss them briefly.

� Result aggregation of the attribute query : The best choice in answering to an

attribute query is to return the exact answer, i.e., the correct value of the

attribute being requested. For this type of query, choosing the most relevant

answer is a delicate decision. That is why returning a list of candidate

answers can be considered the best choice.

� Result aggregation of the instance query : When the query is an instance, the

answer can be the values of all the attributes of the instance. In such a case,

the best choice can be the summarization of these attributes.

� Result aggregation of the class query : As described above, queries of type

class could be answered by a list of instances that describe this class. This

list could be presented in tables with rows representing the instances and

columns representing their attributes.

4.5 Chapter summary

In this chapter, we presented the aggregated search starting from motivation and

a general definition in its original context, i.e., Information Retrieval. We have

shown that the use of the aggregated search provides a rewarding experience for

users. We presented and discussed a general framework where the aggregated
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search process is decomposed into three main sub-tasks (query dispatching, frag-

ment retrieval, and result aggregation). Further, we presented some important

and related works that go beyond information retrieval (query matching) with an

additional effort on result aggregation. We have started with aggregated search

in the IR field, such as federated search, and we have presented and analyzed a

spectrum of approaches, from multiple research fields, in the context of aggre-

gated search. Among these approaches, we can briefly mention federated search,

cross-vertical aggregated search, question answering, natural language generation,

composite retrieval and so on.

Furthermore, we introduced and discussed the concept of graph aggregation from

the point of view of literature work. The interpretation of ”aggregation” in these

works is different from that in the information retrieval field. However, in the

graph context, the aggregation can be achieved by graph operators, such as graph

compression or graph summarization, which aim to merge entities (nodes) and

relations (edges) that share some features.

At the end of this chapter, we presented the relational aggregated search, which

is related to the graph search given that both look for information surrounded

by relations. We highlighted and focused on RAS as an intersection between the

graph search and the aggregated search, which represents the scope of our next

contribution.
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5.1 Introduction

Nowadays, the XML (eXtensible Markup Language) is among the most used for-

mat for representing and exchanging information given its simple nature and self-

description. The advent of applications related to the emergence of the internet,

ranging from intelligence web searching to e-commerce has brought this standard
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to greater prominence. The strength of XML lies in its ability to describe any data

domain through its extensibility. XML tags describe the hierarchical structure of

the content. An XML element is delimited by an opening and a closing tag, and

it describes a semantic unit or a hierarchy of the document.

Victim of its success and intensive use, XML has shown the need for appropriate re-

trieval methods that can exploit huge documents. Using this standard, structured

documents focus on relevant information. They contain heterogeneous contents

organized with structural information. The structure of a document can be used

to process textual information with more granularity than the entire document.

In this context, many approaches have been proposed to deal with XML retrieval.

However, most of them have not exploited the benefits of this standard, although

the use of graph theory may be of interest. In this respect, the XML data model

allows considering documents as trees [200], which represent a particular kind of

graph. In such a representation, nodes represent XML elements (i.e., text) and

edges represent relations between these elements. The same representation can be

used to formulate the queries. On top of that, the retrieval process can be ensured

by a matching process between the tree query and the tree documents.

In [18], the authors highlight three main challenges to deal with structured queries

and the tree matching problem. The first issue is how to ensure efficiency in terms

of returned results, especially when the interrogated documents are enormous.

The second issue is how to interpret structural constraints when the structure of

the query does not match the structure of the document; nevertheless, elements

describing the information match even approximately the need in the query. At

last, how to combine the content requirements of the queries, if they exist, with

the structural one.

5.2 Querying XML data

XML documents can be considered as trees, which allows applying algorithms pro-

posed for tree matching. This section is devoted to this topic. In the following, we

will first recall some backgrounds and present some issues behind XML retrieval.
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Figure 5.1: An example of XML document

5.2.1 Backgrounds on XML documents

As mentioned earlier, the data model of XML documents gives them a tree repre-

sentation. In such a representation, the root node represents the whole document,

internal nodes (i.e., non terminal nodes) represent elements and leaf nodes (i.e.,

terminal nodes) represent the contents. These nodes are linked with edges that

represent their hierarchical relations. For more visibility, we give an XML docu-

ment in Figure 5.1 and its corresponding tree representation in Figure 5.2. By the

way, XML documents can be categorized into two main classes. The first class,

called ”data-oriented documents”, is characterized by a determined structure and

homogeneous contents. Documents within this category can be considered as a

database where each element represents a database record (i.e., like a couple of key-

value). Unlike the first class, documents in the second class, called ”text-oriented

documents”, have irregular structure and may contain mixed contents.

Generally, the success of an information search application depends directly on

the data representation and the efficiency of the search process. Talking about

XML retrieval leads to two most problems in XML access approaches: exact and

inexact matching according to their results. In other words, exact approaches

return results that satisfy all the requirements of the query. Such approaches focus

on efficiency problems, and they are more concerned with searching than ranking
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Figure 5.2: XML tree associated with the document of Figure 5.1

(e.g., database search). However, inexact approaches aim at ranking components,

that deemed similar to the query, according to their relevance (e.g., information

retrieval approaches).

The XML retrieval problem is to match a document tree with a query tree. In the

following, we will first present some query languages, and then we will describe

some approaches from the information retrieval and the database communities.

5.2.2 Query languages

The user’s need can be formulated through one of two types of queries, content-

only or content-and-structure queries. Usually, content-only queries are used in

traditional information retrieval, where simple keywords terms express the desired

information. Such queries are suitable for XML retrieval, especially when users

do not look or know the structure. In our work, we are not interested in this

kind of queries, since they do not have structural hints. In content and structure

queries, the content conditions are surrounded by structure requirements. These

reduce the size of returned results by favoring those that respect, in addition to

the content, the structural constraints. In [201], the authors classified the content-

and-structure query languages in three main categories:

tag-based queries is used to express simple conditions concerning the tag of

the information sought, i.e., ”title: game of thrones” which means that the

user looks for a title element about ”game of thrones”.
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article

section

nonmonotonic reasoning

year

1999-2000

Figure 5.3: INEX topic expressed as an XML fragment.

� path-based queries use the XPath syntax [202] to describe the contents.

Among the query languages that use this syntax, we can cite FuzzyXpath

[203] and NEXI language [204].

� clause-based queries express the user needs via clauses that have structure

similar to the SQL one. We can mention, as examples, XQuery [205] and

XQuery full-text [206].

Authors in [166] argue that whatever the query language used, content-and-structure

queries, can be represented as XML fragments, in other words, as labeled trees.

Using this representation of queries offers more flexibility in terms of representa-

tion and approximation of information needs. For instance, consider the following

need from the INEX topic: ”Retrieve all articles from the years 1999-2000 that

deal with works on nonmonotonic reasoning.”. This query can be translated into

the fragment shown in Figure 5.3.

The retrieval process can be considered as a tree matching process. In the next

section, we describe some works from the literature on exact and approximate tree

matching.

5.3 Algorithms for tree matching

The tree matching problem is defined as the process of finding a mapping between

the nodes and the edges of two trees that satisfy some (more or less stringent)

constraints, ensuring that substructures in the one tree correspond to similar sub-

structures in the other tree. This problem is crucial in many applications where

the information are represented and structured by trees. In order to state the

problem, the terminology of trees and their components has to be defined first.



70

Definition 7. In graph theory, a tree T = (V,E) is a connected graph without

cycles where any two nodes are connected by exactly one path. If you suspend

a tree by a node r ∈ V (T ), you obtain a rooted tree on r. In a rooted tree, a

hierarchical relationship exists between any node and its neighbors. Then each

node x (except the root r) has exactly one parent in the tree (i.e. its predecessor

in the path from r to x), denoted parent(x), and the remaining of its neighbors

are its children. If a node x 
= r has no child, it is called a leaf. Thus sibling nodes

x, y satisfy parent(x) = parent(y) and an ancestor of a node x is a node in the

path from r to x (except x). Note that an independent ancestor of v is an ancestor

that conveys only the v’s information. Moreover a tree is said labeled if each node

is given a label. A tree is said ordered if the order between siblings is important,

otherwise the tree is unordered.

Tree matching approaches are classified into two main categories. The first one

represents exact tree matching, which requires a strict and exact correspondence

among the two trees, or their sub-trees, to be compared. The second one concerns

inexact tree matching or approximate tree matching. In this category, two sub-

trees can be matched even if they are structurally different to some extent. In

the following, we present the tree matching problem, which is one of the most

interesting problems in graph theory. We also survey and discuss the exact and

approximate tree matching algorithms proposed to solve this problem.

5.3.1 Exact tree matching

Exact tree matching approaches aim to find out if a mapping is edge preserving

for each mapping for each node of the two trees. In other words, it requires a

strict correspondence between the two trees being matched, or at least between

sub-trees of them.

We give below the formal definition of the exact tree matching problem.

Definition 8. Let target T = (V,E) and pattern Q = (Vq, Eq) be two ordered

labeled trees. The pattern tree Q matches the target tree T at node r if there

exists a one-to-one injective function from the nodes of Q into the nodes of T such

that:

� the root of Q maps to r,
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Figure 5.4: An example of exact tree pattern matching.

� if u ∈ Vq maps to v ∈ V , then u and v have the same label,

� if u ∈ Vq maps to v ∈ V and v is not a leaf node, then each child of u maps

to some children of v.

A fraction of a target tree is shown as T in Figure 5.4, and the requirement of the

pattern tree is shown as Q in Figure 5.4. Dotted lines represent the one-to-one

mappings between T and Q.

Tree matching process takes, in the worst case, O(nm) time where n is the size

of the target tree and m is the size of the pattern tree. This process is based

on a naive idea that consists of visiting all the nodes in a pre-order walk. For

each visited node v, the algorithm seeks recursively for a possible occurrence of

the pattern at the node v and the process will be terminated if a mismatched is

detected.

Several works have been done to improve the naive tree matching algorithm. These

works fall into one of these two categories: traversal approaches or decomposition

approaches. For example, but not limited, we mention some approaches. In the

traversal approaches, authors proposed in [207] bottom-up and top-down matching

algorithms. The top-down algorithm encodes all the root-to-leaf paths as strings

and seeks for occurrences of the pattern string in the target-tree string using a

string pattern matching algorithm. The bottom-up algorithm aims to find, for

each node in the target tree, all patterns and all parts of patterns that match this

node. However, the main idea of the decomposition approaches is divide and rule.

Approaches that follow this mechanism try to decompose the target tree in small

pieces in order to make the matching process easier. Authors proposed in [208] a

two-phase algorithm for tree pattern matching. The first step aims to construct
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a matching automaton from a given pattern set. In this respect, it generalizes

the string matching algorithm of [209] using the position ordering relation for

the decomposition of patterns. After that, these patterns are merged into an

automaton. Next, in the second step, target trees are fed into the automaton, by

traversing through the automaton according to the target trees.

We will not focus here on the exact tree matching problem. However, we di-

rect the interested reader to [18] and references therein for additional information

about this research field. In the following, we review approximate tree matching

algorithms.

5.3.2 Approximate tree matching algorithms

Approximate tree matching, or inexact tree matching, can be defined as the process

of finding the most similar matches of one tree/subtree against another one. This

process can be interpreted as the task of measuring the dissimilarity between

trees. One of the most used metrics for approximate tree matching is the tree edit

distance. In [210], the authors generalized the edit distance between strings used in

[211] for trees. The edit distance between two trees is defined as the minimal cost

of edit operations that transform a tree into another tree. There are three basic

edit operations: node insertion, node deletion and node relabeling. We describe

each of these operations in detail below.

Let T, q be two labeled trees. The tree edit distance between T and q is defined

as:

δ(T, q) = min
e1,...,en∈γ(T,q)

n∑
i=1

cst(ei),

where γ(T, q) is the set of edit operations, and cst() represents the edit operation

cost. The edit operations are:

� Insertion: insert a node v as a child of w in T , w’s children become v’s

children.

� Deletion: delete a node v in T , v’s children become children of v’s parent.

� Relabeling: replace the label of a node by another label.
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Figure 5.5: Tree edit distance operations

Figure 5.5 represents an example of the three edit operations, where the transition

(A) −→ (B) represents the relabeling of the label a by r, (B) −→ (C) represents

the deletion of the node labeled by c and (C) −→ (D) shows the insertion of node

labeled by f .

Approximate approaches of tree matching can be classified, based on the concept

of editing distance, into three classes [212]: tree edit distance approaches, tree

inclusion approaches, and tree alignment distance approaches.

Tree edit distance approaches. As mentioned earlier, the tree edit distance,

δ(F,G), is defined as the minimum-cost sequence of node edit operations that turns

F into G. The recursive approach for this problem was first proposed in [210],

and the solution takes O(|F | · d2F · |G| · d2G) time and space. Authors had improved

in [213] the previous algorithm and the resulting algorithm has a complexity of

O(|F |·|G|·min{lF , dF}·min{lG, dG}) time and O(|F |·|G|) space. In this approach,

the distance between two trees F and G is computed from the solutions of following

smaller sub-problems: (1) δ(F − v,G), (2) δ(F,G− w), (3) δ(Fv, Gw), (4) δ(F −
Fv, G − Gw), and (5) δ(F − v,G − w). Figure 5.6 is an illustration of the this

recursive solution.

Given the importance of the problem and its presence in many emerging ap-

plications, researchers are constantly coming up with remarkable improvements.

Author in [214] proposed a faster algorithm, for un-rooted ordered trees, with

O(|F |2 · |G| · log|G|) time complexity and O(|F | · |G|) space complexity.

The dynamic programming implementations of the recursive solution show their

effectiveness as the fastest algorithms. Given that each sub-problem is computed,

from other sub-problems, in constant time, the complexity of these algorithms is

equal to the number of different relevant sub-problems they produce [215]. Au-

thors showed in [216] that algorithms proposed in [213, 214] could be described
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Figure 5.6: Recursive formula for Tree Edit Distance.
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Figure 5.7: An example of tree inclusion matching.

as decomposition strategies. They proposed a novel algorithm that minimizes the

number of distinct recursive calls and runs at most in O(|F | · |G| · log|G| · log|G|)
time in the worst case, and (|F ||G|) on average.

Tree inclusion. The tree inclusion is a particular case of the tree edit distance.

Let F and G be two labeled rooted trees. The tree inclusion aims to locate sub-

trees of G that are instances of F . This problem can be reduced on tree edit

distance since one can only use sequences of delete operations to obtain F from G.

Depending on the order between siblings of the pattern nodes, this problem has

two versions: the ordered tree inclusion problem, where the order is important,

and the unordered tree inclusion, where the order is not important. The study in

[217] focused on these two versions and showed that the problem for unordered

trees is NP-complete. Figure 5.7 shows an example of tree inclusion.

Let F and G be two labeled rooted trees. The inclusion of F in G is defined as the
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Figure 5.8: Tree Alignment Distance: (A) tree F, (B) tree G, (C) an alignment
of F and G.

embedding relation of F into G, i.e., there is an injective function h : F �−→ G

that preserves labels and ancestor-ship. For each u ∈ F and v ∈ F , the following

requirements are preserved:

� h(u) = h(v) if and only if u = v,

� the labels of the nodes u and f(u) are identical,

� v has an ancestor u in F if and only if f(v) has an ancestor f(u) in G

Tree alignment distance. The tree alignment problem is another particular case

of the tree edit distance problem. The principal requirement of this concept is that

all sequences of insertion operations must be done before any delete operation. An

alignment of two labeled trees, F and G, consists first in making them isomorphic

by the insertion of nodes, on both of them, labeled with the null label λ, and

then overlaying the first augmented tree on the second. The cost of the alignment

can be defined as the sum of costs of all opposing labels in the alignment and the

purpose in such a problem is to minimize the final cost. Figure 5.8 illustrates an

example of an ordered alignment [218].

We encourage readers interested in more details to consult [18, 212] for surveys as

well as references therein.
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5.4 Tree matching for XML retrieval

As a data structure, XML is increasingly used to model data and complex objects.

Tree representation of XML documents allows conveying as much information as

possible to ensure an efficient representation of complex objects and also a relevant

comparison between objects. Thus various real applications use XML as a model

of representation. In many cases, the success of an application based on a tree

representation of data is mainly dependent on the efficiency of the underlying

tree query processing. Talking about tree query matching leads directly to one of

the most popular problems in graph theory, which is the tree matching problem.

Tree matching consists of finding the correspondences between the nodes of two

trees that provide the best alignment of their structures. Generally, tree matching

methods can be divided into two main categories. The first category covers the

exact algorithms that consist, in the field of XML retrieval, of finding all twig

patterns in XML document. The second category covers the inexact algorithms

that return a ranked list of the most similar matches.

In this section, we present and discuss state of the art related to the tree matching

algorithms in the field of XML retrieval. Since this part of this thesis is situated

initially in the graph theory and aggregated search fields, we highlight and focus on

inexact tree matching algorithms as a preliminary step for the aggregated search

in XML documents.

5.4.1 Exact tree-matching algorithms for XML retrieval

As we have seen previously, the underlying data model of XML is a labeled tree,

and twig patterns are used for expressing queries. Recently, the problem of finding

all occurrences of such a twig pattern in an XML database has been a great deal of

interest. According to the study given in [219], most of the proposed approaches

can be classified into four groups:

� structural join approaches,

� holistic twig join approaches,

� sequence matching approaches,

� other important exact tree algorithms.
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In the following, we cite some of the well-known algorithms and discuss their

results.

5.4.1.1 Structural join approaches

Structural join approaches are based on a fundamental idea, which usually requires

three steps: (1) decomposition step, (2) matching step and (3) merging step. In

the decomposition step, a twig pattern is decomposed into a set of basic parent-

child and ancestor-descendant relationships between pairs of nodes. Then, in

the matching step, each relationship is separately executed using structural join

techniques and the results of this process are stored for further processing. In the

final step, the intermediate results are merged in order to produce the final result.

Multi-predicate merge join (MPMGJN) [220] is the first structural join algorithm

that aims to find all occurrences of the basic structural relationships. This al-

gorithm takes advantage of the containment labeling scheme [220] (called region

encoding) that encodes each element in an XML database by its positional informa-

tion. The main purpose of this labeling scheme is that the structural relationship

(ancestor–descendant and parent–child relationships) between two elements can be

determined easily without knowledge of the path information between these two

elements. It uses a region code (start, end, level) to represent the position of an

XML element in the data tree where start and end are generated by performing a

pre-order traversal procedure of the data tree, and level is the nesting depth of the

element in the data tree. The result of this algorithm showed that for many XML

queries, MPMGJN is more than an order-of-magnitude faster than the standard

Relational Database Management System join implementation.

Using the same containment labeling scheme of XML elements, authors developed

in [221] two algorithms, Tree-Merge and Tree-Stack, for matching parent-child

and ancestor-descendant structural relationships, which decrease the time of join

processing.

5.4.1.2 Holistic twig join approaches

The main problem of approaches based on decomposing twig queries into multiple

binary relationships is that they produce large and possible unnecessary interme-

diate query results even when the input and output size are more manageable. In
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order to avoid this problem, authors in [222] proposed the first holistic XML twig

pattern matching algorithm, wherein, no large intermediate results are generated.

The main purpose of this approach is avoiding storing intermediate results unless

they contribute to the final results. To this end, authors in [222] use a chain

of linked stacks to compactly represent intermediate results of individual query

root-to-leaf paths, which are then composed to produce the final results. The ex-

perimental results have shown that TwigStack is more efficient than all sequential

algorithms that need the entire tree.

Several works, such as [223–230], have adopted the idea of holistic twig join in

order to provide more efficient algorithms.

5.4.1.3 Sequence matching approaches

Using an indexing method, the sequence matching approaches transform both

queries and XML documents into sequences, and the matching process is reduced

to subsequence matching problem. In [231, 232], the authors use the pre-order and

post-order ranks to transform the tree structures and use the sequence inclusion

algorithms for strings. The whole process consists of three main steps. The first

step is to decompose the query into a set of root-to-leaf paths so that the tree

inclusion can be safely applied. The second step is to evaluate the set of paths

against the data signature. The third step is to generate the final results by

joining compatible intermediate solutions. Experiments in [231] demonstrate the

efficiency of the decomposition approach.

Several improvements, such as [233–235], have been proposed to avoid expensive

join operations using the tree structures as the basic unit of the query.

5.4.1.4 Other important exact tree algorithms

Several other works have been proposed to handle the tree matching over XML

documents. Authors proposed in [236] a novel method, called S3, which can se-

lectively process the document nodes. In this approach and unlike all previous

methods, path expressions are not directly executed on the XML document, but

they are first evaluated against a guidance structure, called QueryGuide. The gen-

erated information represent an abstraction of the XML document that describes
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the structure of the document by its paths, e.g., the nodes of XML data are la-

beled by Dewy labeling scheme. The experimental results of S3 and its optimized

version outperform previous tree pattern processing method in term of response

time, I/O overhead and memory consumption-critical parameters.

In [237], the authors propose a version-labeling scheme and TwigVersion algorithm

to deal with the problem of processing huge documents. The main idea is to encode

all repetitive structures in XML documents, which allows avoiding a large number

of unnecessary computations. Both theoretical proof and experimental results

reported in this study demonstrate the effectiveness of the proposed method in

terms of response time and memory consumption.

With the advent of the XML standard, XML query processing has attracted the

interest of many researchers, and a rich literature has arisen throughout the years.

In this section, we presented and discussed some well-known tree pattern pro-

cessing algorithms. As mentioned before, an enormous volume of algorithms was

proposed, and it seems nearly impossible to consider all related works. We encour-

age readers interested in more details to consult [18, 238–240] as well as references

therein.

5.4.2 Approximate tree matching algorithms for XML re-

trieval

The stringent conditions imposed in the exact tree matching are too strict to

find occurrences of queries in the target documents. Looking at data sources

nowadays, like XML documents for example, one can argue that these sources

can undergo brutal changes or deformations due to several reasons, such as noises

in the data acquisition process, incomplete or missing information and so on. In

such a situation, the matching process should be able to identify relevant answers,

despite the existence of some differences between the query and its ideal answers,

by relaxing the constraints imposed by exact matching algorithms.

Approximate matching algorithms may consider correspondences that do not sat-

isfy, to some extent, the edge-preservation and/or label-preservation. In such a

scenario, results are evaluated by a cost function, and the used algorithm must

find a mapping that minimizes the matching cost.
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In the literature, one can distinguish two principal classes of XML retrieval. Ap-

proaches of the first class can be considered as adaptations of traditional informa-

tion retrieval to structured retrieval. Looking closely at these approaches, most

of them use the tree representation of documents and queries but do not use al-

gorithms for tree matching [18]. For example, the XFIRM system presented in

[241] is based on a relevance propagation method for both keywords and keywords-

and-structural constraints queries. In XFIRM, the scores are propagated from the

leaf nodes to the inner nodes. We encourage readers interested in this kind of

approaches to consult [242–246] as well as references therein.

Approaches of the second class make explicit use of graph matching algorithms.

Most of them provide a two-step matching search process. The first step is the

preprocessing of the query and/or the document. The second step aims to identify

potential matches. In addition to reducing the time and space complexity of

existing algorithms, preprocessing allows reaching more results by widening the

search space, which is ensured by relaxing content and/or structural constraints.

When considering structure, one can identify three types of relaxation: (1) order

relaxation that consists in ignoring the order constraints between sibling nodes,

(2) nodes relaxation that regroups the delete and the relabeling nodes operations

and (3) edges relaxation, which is equivalent to add edges between nodes.

In the following, we list and review some leading and well-known approaches of

XML retrieval that make explicit use of graph matching algorithms.

5.4.2.1 Approaches based on graph matching algorithms

In order to answer queries against XML documents, authors present in [247] a

structural-pattern matching language that returns approximate answers. In this

study, the matching process is seen as an unordered tree inclusion problem that

uses a cost model to rank matches that seems relevant according to their similarity

to the query. Contrary to the tree inclusion problem, which is not well suited to the

XML retrieval, the tree edit distance is the most adapted for approximate XML

retrieval [18]. As we mentioned above, the tree edit distance is one of the most

used metrics for approximate tree matching. This problem [210] is an extension

of the edit distance between string defined in [211].
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In [107], the authors introduced the XFinder system which aims to find the top-k

approximate matches of small queries in large documents. This system uses a

revised Prufer sequences [109] to transform the query and document to strings

and the tree edit distance is approximated by the longest subsequence distance

between the resulting strings.

As against to this adaptation and based on Levenshtein editing distance [211],

the authors introduce in [248] a weighted editing distance and reduce the XML-

path matching process to a string edit distance scoring process in order to ensure

approximate structure matching. Conjointly, the content matching is ensured by

a strict and fuzzy searching based on the IDF of the researched terms. Then, the

final score is obtained using a weighted linear aggregation function that combines

the two previous scores.

Answering top-k queries is an active research area. The purpose of studies like

[99, 249–251] is to find answers (subtrees) in a document (or collection) that seem

relevant to the query. In [99, 249, 250], queries are in the form of keywords while

the answers are subtrees that contain at least one used keyword. In such a case,

two or more keywords may appear in different subtrees of the XML tree, and the

results are ranked based on a content score and a structure score. Authors study in

[249] the threshold algorithms [90] to combine the content and structure ranking.

Authors defined in [251] a model that combines a structural score, using the tree

edit distance and a classical content similarity, obtained by the propagation of

the scores of the leaf nodes to their ancestors, in order to evaluate the similarity

between queries and documents.

In search of answering approximate queries over XML data, authors in [252, 253]

applied the tree edit distance conjointly with a certain level of relaxation in order

to query a set of heterogeneous data sources with incomplete or missing data. In

these studies, authors defined the Minimum Spanning Trees [254] as the tree that

contains query elements and a minimum number of nodes/arcs. This adaptation

requires a nodes scoring step and tree matching process. The node scoring depends

on the type of nodes. In the case of non-leaf nodes, authors use Levenshtein

distance [211] between query and document node name, and in the case of leaf

nodes, authors use the fuzzy set theory to evaluate the membership degrees of

nodes to the content conditions of the query. Then, a structural validation of the

result is ensured by keeping nodes that build a Minimum Spanning Tree.
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In [255], the authors propose a query relaxation method incorporating structures

and contents over XML data. In this study, the similarity relation assessment has

done by analyzing the inherent semantics. Instead of giving equal importance to

each node to be relaxed, a relaxation ordering is maintained. In particular, the

first relaxed structure to be considered is the one that has the highest similarity

coefficient with the original query, and the first node to be relaxed is the least

important. Authors designed a clue-based directed acyclic graph (CDAG) to gen-

erate and organize structure relaxation, and they defined a ranking factor to find

out approximate and relevant queries.

ArHeX [256] addresses the problem of identifying the portions of documents that

are similar to a given structural pattern. The pattern is mainly represented by

a labeled tree where labels represent information that should be retrieved, and

the relationships are imposed by the hierarchical structure. Firstly, pattern labels

are used to identify the portions of documents in which the nodes of the pattern

appear. Then, the extraction of subtrees (called fragments) is carried out by the

exploitation of the ancestor/descendant relationships existing among nodes in the

target which have labels similar to those in the pattern. The structural similarity

between the pattern and the fragments is then evaluated for ranking the identified

fragments and producing the results.

TASM [110], Top-k Approximate Subtree Matching, is one of the most effective

approaches for identifying the k best approximate matches of query tree in docu-

ment trees. For a given query tree, TASM returns the k subtrees of the documents

tree (consisting nodes of the documents with their descendants) that are closest

to the query tree according to canonical tree edit distance. Given the hypothesis,

the most crucial issue is to be able to have a runtime cost linear in the size of the

document and space complexity that does not depend on the document size.

5.5 Chapter summary

In this chapter, we tackled the problem of tree matching algorithms related to

XML retrieval. We first presented important concepts and background concerning

the querying of XML data. We then gave a structured overview of the most

known algorithms for exact and approximate tree matching. We also presented and

discussed the most important approaches for XML retrieval using tree matching.
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In the next chapter, we will introduce and discuss a new approach to deal with

the aggregated search in XML documents.
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data domain through its extensibility. Querying XML data sources proves to

be an important task. Moreover, the noisy nature of those sources makes the

approximate tree matching tools highly required in order to alleviate restrictive

query answering. Several paradigms along with their appropriate algorithms have

been proposed, but only a few of them try to aggregate a set of XML fragments

in order to provide more significant and coherent answers. In this chapter, we

introduce and propose a new framework for XML querying based on aggregated

search. We start by giving the motivation behind the use of the aggregated search

paradigm in querying XML data sources. We explain the benefits of using such

a paradigm compared to traditional XML querying settings. Then, we present

our proposed aggregated search XML querying framework. We first introduce

and define the theoretical terms and concepts used in the framework. Then, we

present the retrieval and aggregation processes and explain all the underlying

routines and steps. After that, we analyze our proposed approach and conduct

extensive experiments on real datasets, with different sizes, to attest the efficiency

and quality of the proposed approach. Finally, in the last section, we give a chapter

summary and outline several perspectives and future work directions.

6.1 Querying XML data using aggregated search

With the increasing popularity of XML for data representations, there is much

interest in searching XML data. Usually, querying XML data sources can be eas-

ily achieved by using powerful database-style query languages, which consider the

exact matching of documents and queries. However, searching XML data becomes

intractable in practical applications since the hierarchical structure may be hetero-

geneous and data sources are usually noisy. Besides, any slight misunderstanding

of the document’s structure can easily lead to unsatisfactory queries and it can

result an empty-set answer problem. Moreover, this problem requires to have

complete knowledge of the data structure, which is not always the case. To deal

with these restrictions, approximate matching approaches, which aim at ranking

document components according to their relevance to the query, are widely used

in a broad spectrum of real-world applications.

The vision of classical XML retrieval approaches is limited. Relevant information

may not be contiguous in the same list of results, as it may be scattered across

several data sources and/ or several documents. In such a case, the returned
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answer is just a group of elements that may not meet user expectations. By the

way, few works on XML querying have addressed the XML retrieval (tree matching

problem) by building an answer to a given query based on the aggregation of

several results. The idea is to build, as far as possible, a more complete and richer

answer by combining several results (subtrees). This search paradigm is known as

aggregated search in XML retrieval (querying data in tree form) [257].

In the following, we first define the aggregated search in the context of querying

data in tree form, like XML documents, then we give the key motivation behind

the aggregated search paradigm in XML retrieval.

6.1.1 Definition

Aggregated search is a recent search paradigm where the information is not only

retrieved but also assembled [21]. In other words, the goal of the aggregated search

is to provide an integrated search across multiple data sources and build an aggre-

gate response that contains shards of relevant answers and their complementary

information to be returned in a unified document and a common presentation of

results. Google1 was the first who explicitly introduced the idea of aggregated

search as universal search. Moreover, the first definition of the aggregated search

was given in [20].

In the context of XML documents, the aggregated search problem seems to have

similar intentions as that of the relational aggregated search. In a nutshell, ag-

gregated search in XML documents refers to the process of retrieving information

with more granularity and aggregate them to build the final result.

Typically, the process of querying XML documents uses the tree representation of

documents and queries, whether implicitly or explicitly. With such a context and

such a representation of data, Aggregated Tree Search can be defined as follows:

Let q be a query tree, and F be a set of fragments (subtrees) that approximately

match the query q. Aggregated tree search aims to build, from the set F , a

result tree called the aggregate A that contains the most relevant elements and

their complementary information so as to cover the expectations of the query.

The aggregated tree search process will be further detailed and explained in the

following sections, even so, we give an illustration of this process in Figure 6.1.

1http://googlepress.blogspot.com/2007/05/google-begins-move-to-universal-search 16.html
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Figure 6.1: Aggregated tree search

From Figure 6.1, one can clearly see the difference between aggregated tree search

and traditional tree search paradigms, e.g., exact tree matching. Using aggre-

gated search, one can still find matches with complementary information to a

given query, whereas with traditional paradigms no result or only a part of results

could be found since traditional tree search approaches are query wise, i.e., each

returned fragment is said to contain the query/part of the query or not, while in

aggregated tree search, each fragment is to contain the query/ part of the query

with complementary information, if any, to cover the expectations of the query.

6.1.2 Motivation

The strength of XML lies in its ability to describe any data domain through its

extensibility and its appropriate tree representation. It becomes among the most

used format for representing and exchanging information given its simple nature

and self-description. Thus, methods for querying XML documents in order to

explore knowledge within and make processing over these data are required. In this

context, many approaches, varying from exact algorithms to heuristics, have been

proposed. Usually, the success of an application based on a tree representation of

data is mainly dependent on the context and the efficiency of the underlying tree
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query processing. Talking about querying data in tree form leads directly to one

of the most widespread problems in graph theory, which is tree matching. Tree

matching consists of finding the correspondences between the nodes of two trees,

which provides the best alignment of their structures. Generally, tree matching

methods can be divided into exact and inexact/ approximate algorithms. However,

few works have tackled the problem of aggregated search in the XML context. One

can see the problem of aggregated search in the context of XML documents as a

tree matching task, in the way that it takes a content-and-structure query and

try to find potential intermediate matches (called fragments), augmented by the

process of building an aggregate, that contains the most relevant shards and their

complementary information, as a final result.

We can summarize the motivation behind the aggregated search in the field of XML

retrieval in two key points. First, using the aggregated search principle provides

a significant benefit by producing more results that can match parts of queries

when it is not obvious to find full matches. Secondly, with large-scale networks

and massive data size, aggregated search becomes indispensable for discovering

and exploiting information, especially when this information is distributed across

several sites and scattered over multiple documents.

6.2 Preliminaries

In this section, we present some notions used in our approach. We first recall the

description of an XML document. Then we give the formal definitions of the data

structures used in the rest of the chapter: the query, the target trees, and the

answer set.

In XML documents, tags describe the hierarchical structure of the content. An

XML element is delimited by an opening and a closing tag, and it describes a

semantic unit or a hierarchy of the document. An XML document can be repre-

sented as a labeled tree [17] (Definition 7). This last contains a root node that

represents the entire document, internal nodes that organize the structure and leaf

nodes describing the information conveyed by paths.
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Query. The query q is a rooted labeled tree q = (Vq, Eq, lv), where (1) Vq and

Eq are the sets of query nodes and edges, respectively, (2) lv is a labeling function

such that for each node u ∈ Vq, lv(u) is a label from the set of labels Σ.

Target trees. Target trees are represented by the set L = {fi1 , ..., fij} of p

trees (documents) which are referred as fragments fij , i ∈ [p] and fij is a fragment

from the tree pi. Each fragment fij = (Vij , Eij , lv) is a rooted labeled tree.

Aggregate. The expected answer is a tree (document) A = (Va, Ea, lv) where

Va ⊆
i≤p,j≤k⋃
i,j=1

Vij and Ea ⊆
i≤p,j≤k⋃
i,j=1

Eij is a set of nodes and a set of edges from the

target trees, respectively, and lv is a labeling function such that for each node

u ∈ Va, lv(u) is a label from the finite set of labels Σ.

Postorder Queues. A postorder queue [110] is defined as a sequence of

(label, size) pairs of the tree nodes in postorder. Let T be a tree of size n,

the postorder queue, denoted post(T ), of the tree T is the sequence of pairs

((l1, s1), (l2, s2), ..., (ln, sn)), where li is the label of the node ti and si is the size of

the subtree originated from ti, with ti being the i− th node of T in postorder. The

only operation allowed is dequeue, which removes and returns the first element of

the sequence.

6.3 Approximate query processing based on ag-

gregated search

In this section, we introduce and present our proposed approach to solve the

problem of aggregated search in XML documents. Recall that our aim is to

construct a final aggregate from the results of a query q sent to a collection

C = {D1, D2, . . . , Dp} of documents. This process is performed in two main

phases. The first one is the retrieval process. For each document Di ∈ C, this

phase gives a list L of target trees (each element from this list is called a frag-

ment). The second phase is the aggregation process, where fragments from a list

L are selected to be aggregated in the final document.
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6.3.1 Retrieval process

Dealing with XML documents may highlight some challenges, especially with mas-

sive data. As data are growing in size, the number of matches can be excessively

large. Inspecting all the results is a daunting task. Thus the users generally have

an interest in the best-returned responses. Furthermore, the desired answer for a

given query may be dispersed in the same document. These highlight the need to

find, from each document, several fragments ranked by given criteria.

The top-k query answering problem has drawn a great deal of attention for all data

representations. In the field of XML documents, TASM [110], Top-k Approximate

Subtree Matching, is one of the most effective approaches for identifying the k best

approximate matches of query tree in document trees. For a given query tree,

TASM returns the k subtrees of the documents tree (consisting on nodes of the

documents with their descendants) that are closest to the query tree according to

canonical tree edit distance, and without any predefined rules for relaxation on

subtrees that are more likely to respond to the query, i.e. all document subtrees

are considered as a candidate answer. Given the hypothesis, the most crucial

issue is to be able to have a runtime cost linear in the size of the document and

space complexity that does not depend on the document size. In the following, we

present and discuss the TASM algorithm.

Definition 9 ([110] Top-k Approximate Subtree Matching problem). Let q (query)

and T (document) be ordered labeled trees, n = |T | be the size of T , Ti be the

subtree of T originated from ti, δ(q, Tij) be a distance function between ordered la-

beled trees, and k ≤ n be an integer. A sequence of subtrees, R = (Ti1 , Ti2 , ..., Tik),

is a top-k ranking of the subtrees of the document T with respect to the query q iff

1. the ranking contains the k subtrees that are closest to the query: ∀Tj /∈ R :

δ(q, Tik) ≤ δ(q, Tj), and

2. the subtrees in the ranking are sorted by their distance to the query: ∀1 ≤
j < k : δ(q, Tj) ≤ δ(q, Tij+1

).

The top-k approximate subtree matching (TASM ) problem is the problem of com-

puting a top-k ranking of the subtrees of a document T with respect to a query q.

Most solutions that tackle the problem of approximate tree matching are based

on exploiting a search space in the form of a recursion tree that maps the query



91

nodes to the data tree nodes. They never construct the recursion tree entirely and

use pruning methods to reduce the search space. However, the main challenge is

to be able to prune large subtrees and perform the expensive tree edit distance

computation on small subtrees only.

The high-level idea is to consider only independent subtrees, called candidate trees,

that are within a given size threshold τ , i.e., these candidate trees are not within

other candidate trees. The key challenge is to keep in the memory buffer only

nodes with their subtrees that are likely to be matches. One can distinguish two

types of nodes: candidate nodes belonging to candidate subtrees and must be kept;

and non-candidate nodes that are roots of subtrees but they are too large for the

candidate set.

Given the growing size of documents, an effective filtering solution in terms of

memory is not obvious. In the following, we discuss the prefix ring buffer that

allows to prune all subtrees above a threshold in a single postorder scan of the

document and use a look-ahead of only O(τ) nodes. To this end, the ring buffer,

used by TASM, is characterized by its size, b = τ + 1, the start pointer s, that

points to the first position in the buffer, and the end pointer e, that points to the

last position in the buffer. These two pointers allow checking the state of the ring

buffer. It is empty iff s = e, and it is full iff s = (e + 1)%b (% is the modulo

operator). In this structure, two operations are defined: (1) append a new node

and (2) remove the leftmost subtree/node.

The ring buffer pruning of a postorder queue of a document T and an empty ring

buffer of size τ + 1 is as follows:

1. Dequeue nodes from the postorder queue and append them to a ring buffer

until the ring buffer is full or the postorder queue is empty.

2. If the leftmost node of the ring buffer is a non-leaf, then remove it from

the buffer, otherwise add the leftmost valid subtree to the candidate set and

remove it from the buffer.

3. Go to 1) if the postorder queue is not empty; go to 2) if the postorder queue

is empty but the ring buffer is not; otherwise terminate.

The strong point of the proposed algorithm is that there is an effective bound on

the largest subtrees of a document that can be deemed matches to a given query.
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Using the prefix ring buffer and computing tree edit distance on small subtrees

only give rise to an efficient solution to the problem. The space complexity of

this solution is independent of the document size and thus, scales well to XML

documents that do not fit into memory. This solution requires O(m2n) time, and

O(m2 +mk) space, with m is the size of the query, n is the size of the document,

and k is the desired number of answers.

In TASM, the tree edit distance is used as a similarity metric, in which the cost

model for the edit operations is defined as follows: an insertion (deletion) operation

has a cost equal to the cost of an inserted (deleted) node. The cost of a relabeling

operation is defined as the average between deletion and insertion operations.

However, the use of this cost model is too restrictive since it does not differentiate

between the cost of two main kinds of similarities, i.e., structural and content

similarities. In most cases of real-world applications, these kinds of similarity have

not the same importance. Moreover, such a solution may be able to differentiate

between the matching information from those which enrich the answers.

In the following, we introduce a new cost model in which the relabeling operation

is considered as the succession of two operations, a deletion operation followed

by an insertion operation. Moreover, delete leaf nodes, and their independent

ancestors have no cost since they are considered as enrichment for the answer.

Definition 10. Let T and q be two ordered labeled trees, ti ∈ VT be a tree node,

qj ∈ Vq be a query node, and cst be the cost assigned to a given node. An

insertion operation of a node ti is denoted (ε → ti), a deletion operation of a node

ti is denoted (ti → ε), and a relabeling operation of a node qj by the label of

a node ti is denoted (qj → ti). We denote by leaf a leaf node and IndAnc an

independent ancestor of a deleted leaf node. The edit operation costs are defined

by

δ(qj, ti) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 · cst if (qj −→ ti),

cst if (ε −→ ti),

cst if (ti −→ ε) ∧ (ti 
= leaf ∧ ti 
= IndAnc),

0 if (ti −→ ε) ∧ (ti = leaf ∨ ti = IndAnc).

(6.1)
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The tree edit distance between T and q is defined as the sum of the costs of all

performed edit operations:

δ(T, q) = min
e1,...,en∈γ(T,q)

n∑
i=1

cst(ei), (6.2)

where γ(T, q) is the set of edit operations, and cst represents the edit operation

cost.

Now, we define the similarity function.

Definition 11. Let T be a document tree, q be a query tree, and Tv ∈ T be a

subtree in T rooted on v. The similarity function θ(Tv, q) is defined by

θ(Tv, q) =
1

δ(Tv, q) ·
(
1 + |Rell|+|Insl|

|leafq |

) , (6.3)

where |Rell| is the number of relabeled leaves, |Insl| is the number of inserted

leaves and |leafq| represents the number of leaves in q.

The similarity function considers subtrees (fragments) as content entities (infor-

mation) delimited by hierarchical structures. Thus, the fragment with the highest

similarity is evaluated as the most relevant. The relevance of a fragment is af-

fected when a leaf node is relabeled or inserted. In other words, if an information

change occurs or missing information is detected, the current fragment will be

penalized. The corresponding fragment loses the relevance obtained by the tree

edit distance δ and its accuracy becomes less important. Example 7 shows the

difference between our similarity function and that used in TASM.

Example 7. We consider the example of Figure 6.2, the subtrees T1, T2, T3, T4 are

the results of the query q for k = 4. Using the TASM ’s similarity, the subtree T1

is on top of the list, since it corresponds to the minimum number of edit operations

δ(T1, q), while T4 is the last in the list (δ(T1, q) = 3, δ(T2, q) = 4, δ(T3, q) = 5,

and δ(T4, q) = 7). One can check that this ranking is correct if only the structural

similarity is considered. However, this ranking is not suitable when both structural

and contents similarities are considered. Using the similarity function θ, the final

ranking is {T4, T3, T1, T2} , where θ(T4, q) = 1, θ(T3, q) = 0.15, θ(T1, q) = 0.12 and

θ(T2, q) = 0.086).

Actually, with the growing size of data, information become scattered over multiple

documents. Thus, the retrieval process will be applied to all documents Di of the
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Figure 6.2: Example of query and its relevant subtrees returned by top-k
approximate subtree matching algorithm, with k = 4.

collection C, and the result will be an ordered list L of target trees (fragments) of

at most k items, for each document being queried.

It is clear that these fragments are heterogeneous, each having a different gran-

ularity. Filtering these lists to eliminate the irrelevant fragments is a necessary

task. The filtering aims at evaluating each candidate fragment separately with

structural and semantical (content) criteria. Let q be a query and fi be a candi-

date fragment. The fragment fi will be evaluated as irrelevant, and it will not be

considered as a deemed response if it verifies the following condition:

(δ(fi, q) ≥ (2 · |q|)) ∨
( |Rell|+ |Insl|

|leafq| ≥ μ

)
. (6.4)

The left side of the condition is used to structurally distinguish q and fi (indeed

2 · |q| is reached if all the elements of q are relabeled). On the right side of the

condition, (0 ≤ μ ≤ 1) is a user-defined parameter that presents an evaluation

threshold for the fragment’s content. If the number of inserted and relabeled

leaves is close to the number of leaves in the query, then the fragment is considered

irrelevant.
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6.3.2 Aggregation process

Recall that the previous step generates, for each document in the collection, a list

of fragments answering to the query q, ordered by the similarity function given

above. In this section, we introduce and describe the aggregation process in order

to construct one final result. The resulting document, called aggregate, should

be as exhaustive and relevant as possible. It must be semantically correct with

respect to the returned responses and should not contain redundancy either. This

aggregation process is decomposed into different steps:

1. Selection of the fragments to be aggregated. At the first iteration, a base

fragment fbase is selected. Then for each iteration, we identify, from the

response lists, a fragment f to be aggregated to fbase. This identification is

made among the lists not yet used.

2. Construction of the primary aggregate. We introduce the composition oper-

ators to aggregate f with fbase.

3. If the final aggregate is not yet obtained, the primary aggregate is considered

as the new base fragment, and the process is repeated from step 1.

6.3.2.1 Step 1: Selection.

The selection process aims at selecting the fragments to be aggregated. In the

first iteration, it also identifies the base fragment. For each iteration, it selects

a fragment, from the list of answers L, that has the most additional relevant

information to fbase. Since the most interesting fragment in L is already considered,

we assume that no further fragment from L has relevant information and we remove

L from the remaining of the process.

Base fragment: Among all the fragments of the optimized lists, which contain

only relevant fragments, a fragment is chosen to be the aggregation base. This

should be as relevant as possible to give a partial view of the aggregated result

structure. Thus, the base fragment fbase is the fragment with the highest similarity

among the best fragments of all the response lists.
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Fragment selection: The selection of a fragment f is based on the comparison

between fbase and all the fragments of response lists using a path decomposition

of each tree (fragment). A path decomposition of a tree T is the set of paths from

the root to each of its leaves (note that we keep the notations root and leaf for

the first and last nodes of each path). Then, for each fragment f we construct

a similarity matrix between fbase and f . We denote by M(fbase, f) the similarity

matrix of size n = max{|fbase|, |f |}, where the rows of M(fbase, f) represent the

paths pi of fbase and the columns represent the paths fj of f . The matrix elements

are computed as follows:

M(pi, fj) =

{
lcs(pi, fj) if leaf(pi) = leaf(fj),

0 otherwise.
(6.5)

The longest common subsequence between two paths, denoted lcs(p, p′), is com-

puted by the algorithm given in [258] which has O(ND) time and space complexity,

where N is the sum of the lengths of p and p′ and D is the size of the minimum

edit operations for p and p′. After constructing the similarity matrix, we use the

Hungarian algorithm [57] to compute the matching on it. The Hungarian algo-

rithm is considered as one of the most efficient matrix-matching algorithms with

an O(n3) time complexity. The fragment for which the matching is maximized is

selected for the next step.

6.3.2.2 Step 2: Construction of the aggregate.

The Hungarian algorithm gives the set of matchings between the path decomposi-

tions of fbase and f . Note that the information given by the paths (on their leaves)

intersect, i.e. they are similar. Let R = {(pi, fj)} be the set of these matchings

where pi ∈ fbase, fj ∈ f and lcs(pi, fj) ≥ 1. We consider each pair (pi, fj) inde-

pendently, and for each pair (pi, fj) we define a subtree of f to be aggregated to

fbase. Thus for each pair (pi, fj):

� The inclusion subtree t(fj) of f is the subtree of f rooted on the first ancestor

that does not carry two intersection information. To do that we identify

each node of f in a post-order. Thus lcs(pi, fj) can be represented by the

identifiers of its nodes. Let L be the list of identifiers of the lcs(pi, fj) nodes.

We also define R as the list of identifiers of all the leaves in R\{(pi, fj)}.
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The root’s identifier of the inclusion subtree is then given by id = max{l ∈
L|∀r ∈ R, r > l}.

� The composition of this inclusion subtree with fbase is done by merging the

common nodes and by adding the new nodes of t(fj) in fbase (connected as

in t(fj)).

� We do f = f\{t(fj)}. We remove the subtree t(fj) from the fragment f

before the new pair (pi, fj) (to avoid duplication of information in the next

iterations). Note that f stays a connected tree after the deletion.

Finally if the fragment f still contains information (after considering all pairs of

R), the remaining tree f is added to fbase by adding a fictive node as root between

fbase and f .

6.3.3 Complexity

In this section we analyze the running time of our method. Let q be a query

of size |q| = m. A document D, of size |D| = n, is splitted into p documents

D1, D2, . . . , Dp. The computation of the time complexity can be divided into two

parts. The first one is the complexity of the retrieval process and the second

one is the complexity of the aggregation phase. The retrieval process is based on

the TASM algorithm on p documents. Authors prove in [110] that the runtime

complexity of TASM is O(m2n) for a document. Thus for the entire part, the

complexity of the retrieval process is O(pm2n). In the other part, it is important

to note that the number of the returned fragments for each Di is k (with k ≤ n)

and the size of a returned fragment is bounded by (2m + k) (by [110]). Since

the computation of the similarity function is done in the process of retrieving, the

filtering step is done in O(pk) time. Moreover, the base fragment fbase is chosen in a

constant time. Then for all the remainingDi, all their fragments are considered. In

the fragment selection, the cost to construct the similarity matrix is O(m2) and the

cost of the Hungarian matching is O(m3). For each selected fragment, the inclusion

subtree is computed in O(m2) and the composition (insertion, union, deletion) in

O(n). Thus for all the fragments of all documents, the aggregation phase is done

in O(p2km3) time. We can remark that the complexity is independent of the size

of documents. It depends on the number of partitions p and the size of the query
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m. Note that typically m is small and the size of documents is much larger than

the size of query (n >> m).

6.4 Experiments

The evaluation of the aggregated search is a difficult challenge; it can be considered

as an issue that is so far from being solved [21]. It may be related to several

criteria like the complementarity of the returned elements that constitute the final

aggregate, the non-redundancy of information and completeness.

In this section, we describe and discuss the experimental results to evaluate our

proposed method. However, to our knowledge, there is no other method for ag-

gregation based on structural and semantical constraints. Thus we compare our

method with the TASM algorithm.

6.4.1 Test collection

Our evaluation is based on a test collection decomposed into three parts: a set

of documents to be interrogated, a set of queries to be searched in the document

collection and associated relevance judgments for each query. In our study, we

construct the collections of documents from two real-world datasets (with XML

format): the DBLP2 dataset, which is an XML representation of bibliographic

information on major computer science journals and proceedings; and the IMDb3

dataset, which gives a representation of Internet Movie Database in an XML doc-

ument. For each dataset, the whole document (i.e., global document) Db is parti-

tioned into p partitions that verify:
⋃p

i=1 Pi = Db and
⋂p

i=1 Pi 
= ∅. Each partition

is considered as an independent document. In this work, queries are also given

with an XML format, and for each dataset we construct a set of queries from

the global document. Each set contains 20 queries with different sizes, structures

and contents. Each of them is evaluated by a set of experts (researchers) to con-

struct the relevant judgment sets that gather all relevant answers from the global

document to a given query.

2http://dblp.uni-trier.de/xml/
3https://www.imdb.com/interfaces/
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Figure 6.3: Recall for the three algorithms on IMDb dataset.

Figure 6.4: Recall for the three algorithms on DBLP dataset.

6.4.2 Evaluation method

We conduct three sets of experiments. The first one, called Global TASM, is an

implementation of TASM with its cost model on the global documents Db. The

TASM algorithm returns for each document a list of k fragments that are deemed

relevant by the tree edit distance function. The second one, called Global TASM

Aggregation, is an implementation of the TASM algorithm with our cost model

on the global documents Db, augmented by the proposed aggregation approach

applied on the list of fragments sorted by the similarity function θ(). The last one

called, Partition TASM Aggregation, is an implementation of our algorithm on the

p partitions. In our experiments, we fix μ = 0.7 and we evaluate our approach

with several values of k varying from 1 to 15.
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Figure 6.5: Precision for the three algorithms on IMDb dataset.

Figure 6.6: Precision for the three algorithms on DBLP dataset.

6.4.3 Result discussions

To evaluate the results of each experiment, we use two criteria. The first one

is the recall, which represents the ratio between the number of relevant returned

elements and the number of relevant elements of the response in the judgment set.

The second one is the precision, which represents the ratio between the relevant

returned elements and the number of returned elements.

Figures 6.3-6.4 show the recall of responses for the three algorithms on IMDb

and DBLP datasets, respectively. They report the overall performance of our

method in terms of relevant responses. In the IMDb dataset, Partition TASM

Aggregation carries 30% (for Q20) to 90% (for Q9) more relevant information

than both Global TASM and Global TASM Aggregation. In contrast, there is no

gain in terms of response enrichment for Global TASM Aggregation. This is due

to the fact that all the returned fragments (using Global TASM and Global TASM
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Aggregation) are small since they are related to the query size and the value k,

while the subtrees in the global document are large. We can consider the queries

used to interrogate this dataset as aggregative queries, especially when the result

is obtained by interrogating a set of documents to assemble relevant fragments.

Each fragment contributes partially to the response, but all together constitute a

complete response. The same results appear on the DBLP dataset for aggregative

queries (Q1, Q2, Q6, Q9, Q11−Q15). However, the experiments show less efficiency

compared to IMDb for the other queries. This is due to the nature of the queries

that do not have a response carrying a gain in terms of information enrichment.

Such queries are very generic and their judgment response sets are huge, which

leads to considering all responses of Global TASM and Global TASM Aggregation

as relevant. On the other hand, the results of these queries in Partition TASM

Aggregation are the construction and enrichment of one fragment, which makes

the corresponding recall small compared to the size of the judgment responses.

These results are evaluated without considering whether a response contains ir-

relevant and/or redundant elements. The redundancy of elements in the same

response is considered as irrelevant information. For each query’s answer, we

consider the precision of returned elements to evaluate their qualities. Figures

6.5-6.6 show the precision of returned elements of the three algorithms on IMDb

and DBLP datasets, respectively. In both IMDb and DBLP, Partition TASM Ag-

gregation shows a high precision of results for the majority of queries. It returns

only the relevant elements and eliminates redundancies. On the other hand, Global

TASM Aggregation shows an improvement in terms of precision compared to global

TASM. This is due to the elimination of redundancies of fragments returned.

6.5 Conclusion

In this chapter, we discussed a novel framework for approximate XML retrieval

based on aggregated search. Firstly, we presented the aggregated tree search start-

ing from motivation and general definition in the context of XML search. Then, we

introduced a search model based on an approximate tree matching algorithm, the

Top-k Approximate Subtree Matching, which was adapted to distinguish between

structural and content similarities. This search model provides a set of fragments

that candidate to answer a query. After that, we introduced an aggregation model

that generates a single result document containing the most relevant elements and
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their complementary information. Our method showed its performance in terms of

relevance and quality for the XML fragment search where the information are dis-

tributed over several documents. Our method can be readily extended to support

any data format having a tree representation.
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Conclusion and Perspectives
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In this chapter, we first conclude this thesis with a summary of our contributions,

in Section 7.1. We then describe several directions for future work, in Section 7.2.

7.1 Conclusion

It has been recognized that graphs gain popularity constituting an integral part

of many real-world applications. Due to the importance of graphs, many studies

have invested heavily in data graph exploitation technologies. These efforts have

resulted in an increasing number of graph querying approaches. Therefore, im-

proving the capabilities of these approaches with effective and efficient techniques

for graph search and selection becomes an important issue.

In this thesis, we addressed two important problems arising in the graph theory

field. First, we tackled the problem of graph pattern matching, specifically for

massive data. Second, we investigated the aggregated tree search problem, which

consists in retrieving information from several data sources and aggregating them

to provide a more complete and significant answer.

103
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In the first part of this thesis, we addressed the (diversified) top-k graph pattern

matching problem. Basically, this problem consists of determining equality be-

tween two (sub)graphs in terms of structure and labels. It also finds top-ranked

answers that are close to the query graph based on given criteria. This problem is

essential for a wide range of emerging applications and has been a research focus

in industrial and academic fields. For example, it is usually used in community

discovery, social network analysis, biological data analysis, web site classification,

among other things. In this context, we realized mainly two major contributions.

The first one is the introducing of a new graph pattern matching model, called

Relaxed Graph Simulation (RGS), allowing the relaxation of queries to identify

meaningful matches and to avoid the empty-set answer problem. The second

contribution in this part addresses the top-k and diversified top-k problems. We

studied two classes of functions for ranking matches, relevance and diversity. Based

on both of them, we proposed a diversification function to balance relevance and

diversity. Furthermore, we provided efficient algorithms based on optimization

strategies to compute the top-k and the diversified top-k matches according to the

RGS model. We analyzed the time complexity of the proposed algorithms and

conducted extensive experiments on real-life datasets, which attested the effective-

ness of the proposed approach.

In the second part of this thesis, we addressed the aggregated search problem,

more precisely the aggregated tree search problem. This problem aims to answer

queries on several documents and provides a coherent final answer that contains

the most relevant elements and their complementary information so as to cover the

expectations of the query. We introduced and developed a new approach for aggre-

gated tree search and we analyzed the theoretical and experimental performances

on different real datasets.

7.2 Further works

This thesis leads to many fertile grounds for future research. We identify the

following main directions for future work:

� The actual sheer increase in data has led to a plethora of graph datasets.

For example, Facebook amounts to 1.562 million daily active users [9] and

Twitter totals up to 330 million active users [10]. Moreover, these data are
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often partitioned and distributed, which has attracted the interest in creat-

ing new frameworks to query big graphs, e.g., Graphlab [259], Pregel [260]

and its open-source version Giraph [261]. Currently, we are engaged in data

distribution and parallel execution across a cluster of machines in order to

manage and exploit big data graph that do not fit into main memory. Our

proposals are being extended to support the searching in distributed graphs.

Our aim is to design algorithms that are parallel scalable in response time

and data shipment. In other words, an algorithm is said to be parallel scal-

able in response time if the computational cost is determined only by the

size of the query and the largest fragment(partition) of the graph; and in

data shipment if the total amount shipped is decided by the size of the

query and the number of fragments (partitions). For this purpose, we use

the notion of distributed data graphs, which is defined as a fragmentation

F = {F1, ..., Fn} of G = (V,E, l,Σ), where each fragment Fi is character-

ized by (Vi ∪ Fi.O,Ei, l,Σ) such that (1) Vi is a partition of V , (2) Fi.O

is the set of nodes v such that there exists a crossing edge e = (u, v) ∈ E,

u ∈ Vi is a local node and v ∈ Fj, with i 
= j, is a virtual node; and (3)

(Vi ∪ Fi.O,Ei, l,Σ) is subgraph of G induced by Vi ∪ Fi.O. Using the no-

tion of distributed data graphs, we investigate the distributed graph pattern

matching based on graph simulation and relaxed graph simulation. Further-

more, we are developing algorithms that combine both partial evaluations in

each fragment and message passing. Besides, we study the combination of

distributed processing with graph compression and (diversified) top-k query

answering.

� In the aggregated tree search approach, the retrieval process is based on a

top-k approximate subtree matching algorithm. The returned results are

ranked by a relevance function that distinguishes between structural and

content similarities. An interesting future direction is to develop algorithms

and techniques that can benefit both from the relaxation principle proposed

in the first part of the thesis and from a ranking function that can com-

bine relevance, diversity and novelty of results, i.e., the returned results are

similar to the query, dissimilar to each other and contain new information

different from the ones previously retrieved in order to improve the user’s

query satisfaction. In addition, this problem becomes more challenging when

considering the complex representation of data in graph form. However, it

is more difficult for distributed graphs.
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influence through a social network. In Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data

mining, pages 137–146. ACM, 2003.

[149] Mark EJ Newman. Clustering and preferential attachment in growing

networks. Physical review E, 64(2):025102, 2001.

[150] Michael J Kuby. Programming models for facility dispersion: The

p-dispersion and maxisum dispersion problems. Geographical Analysis, 19

(4):315–329, 1987.

[151] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D

Mitzenmacher. Cuckoo filter: Practically better than bloom. In

Proceedings of the 10th ACM International on Conference on emerging

Networking Experiments and Technologies, pages 75–88. ACM, 2014.

[152] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of

Algorithms, 51(2):122–144, 2004.

[153] Burton H Bloom. Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7):422–426, 1970.

[154] Marcos R Vieira, Humberto L Razente, Maria CN Barioni, Marios

Hadjieleftheriou, Divesh Srivastava, Caetano Traina, and Vassilis J

Tsotras. On query result diversification. In 2011 IEEE 27th International

Conference on Data Engineering, pages 1163–1174. IEEE, 2011.

[155] Yansong Feng and Mirella Lapata. Topic models for image annotation and

text illustration. In Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the Association for



Bibliography 122

Computational Linguistics, pages 831–839. Association for Computational

Linguistics, 2010.

[156] Marijn Koolen, Gabriella Kazai, and Nick Craswell. Wikipedia pages as

entry points for book search. In Proceedings of the Second ACM

International Conference on Web Search and Data Mining, pages 44–53.

ACM, 2009.

[157] Yen-Yu Chen, Torsten Suel, and Alexander Markowetz. Efficient query

processing in geographic web search engines. In Proceedings of the 2006

ACM SIGMOD international conference on Management of data, pages

277–288. ACM, 2006.

[158] Fernando Diaz. Integration of news content into web results. In

Proceedings of the Second ACM International Conference on Web Search

and Data Mining, pages 182–191. ACM, 2009.

[159] Jaime Arguello et al. Aggregated search. Foundations and Trends� in

Information Retrieval, 10(5):365–502, 2017.

[160] Stephen E Robertson and Steve Walker. Some simple effective

approximations to the 2-poisson model for probabilistic weighted retrieval.

In SIGIR’94, pages 232–241. Springer, 1994.

[161] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model

for automatic indexing. Communications of the ACM, 18(11):613–620,

1975.

[162] Jay Michael Ponte and W Bruce Croft. A language modeling approach to

information retrieval. PhD thesis, University of Massachusetts at Amherst,

1998.

[163] Lynette Hirschman and Robert Gaizauskas. Natural language question

answering: the view from here. natural language engineering, 7(4):275–300,

2001.

[164] Boris Katz, Gary Borchardt, and Sue Felshin. Syntactic and semantic

decomposition strategies for question answering from multiple resources. In

Proceedings of the AAAI 2005 workshop on inference for textual question

answering, pages 35–41. AAAI Press Menlo Park, CA, 2005.



Bibliography 123

[165] Véronique Moriceau and Xavier Tannier. Fidji: using syntax for validating

answers in multiple documents. Information retrieval, 13(5):507–533, 2010.

[166] David Carmel, Yoelle S Maarek, Matan Mandelbrod, Yosi Mass, and Aya

Soffer. Searching xml documents via xml fragments. In Proceedings of the

26th annual international ACM SIGIR conference on Research and

development in informaion retrieval, pages 151–158. ACM, 2003.

[167] Jamie Callan. Distributed information retrieval. In Advances in

information retrieval, pages 127–150. Springer, 2002.

[168] Thi Truong Avrahami, Lawrence Yau, Luo Si, and Jamie Callan. The

fedlemur project: Federated search in the real world. Journal of the

American Society for Information Science and Technology, 57(3):347–358,

2006.

[169] Aditya Pal and Jaya Kawale. Leveraging query associations in federated

search. In Proceedings of the SIGIR 2008 Workshop on Aggregated Search,

volume 3. Citeseer, 2008.

[170] Antonio Gulli and Alessio Signorini. Building an open source meta-search

engine. In Special interest tracks and posters of the 14th international

conference on World Wide Web, pages 1004–1005. ACM, 2005.

[171] M Shokouhi and L Si. Federated information retrieval. Foundations and

Trends in Information Retrieval, Upcoming Issue, 2011.

[172] Shanu Sushmita, Hideo Joho, and Mounia Lalmas. A task-based evaluation

of an aggregated search interface. In International Symposium on String

Processing and Information Retrieval, pages 322–333. Springer, 2009.

[173] Arlind Kopliku. Approaches to implement and evaluate aggregated search.
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PhD thesis, Université Claude Bernard-Lyon I, 2012.

[220] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy

Lohman. On supporting containment queries in relational database

management systems. In ACM Sigmod Record, volume 30, pages 425–436.

ACM, 2001.

[221] Shurug Al-Khalifa, Hosagrahar V Jagadish, Nick Koudas, Jignesh M Patel,

Divesh Srivastava, and Yuqing Wu. Structural joins: A primitive for

efficient xml query pattern matching. In Proceedings 18th International

Conference on Data Engineering, pages 141–152. IEEE, 2002.

[222] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins:

optimal xml pattern matching. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, pages 310–321. ACM,

2002.

[223] Jiaheng Lu, Ting Chen, and Tok Wang Ling. Efficient processing of xml

twig patterns with parent child edges: a look-ahead approach. In

Proceedings of the thirteenth ACM international conference on Information

and knowledge management, pages 533–542. ACM, 2004.

[224] Ting Chen, Jiaheng Lu, and Tok Wang Ling. On boosting holism in xml

twig pattern matching using structural indexing techniques. In Proceedings



Bibliography 129

of the 2005 ACM SIGMOD international conference on Management of

data, pages 455–466. ACM, 2005.

[225] Guoliang Li, Jianhua Feng, Yong Zhang, and Lizhu Zhou. Efficient holistic

twig joins in leaf-to-root combining with root-to-leaf way. In International

Conference on Database Systems for Advanced Applications, pages

834–849. Springer, 2007.

[226] Junfeng Zhou, Min Xie, and Xiaofeng Meng. Twigstack+: Holistic twig

join pruning using extended solution extension. Wuhan University Journal

of Natural Sciences, 12(5):855–860, 2007.

[227] Zhewei Jiang, Cheng Luo, Wen-Chi Hou, Qiang Zhu, and Dunren Che.

Efficient processing of xml twig pattern: A novel one-phase holistic

solution. In International Conference on Database and Expert Systems

Applications, pages 87–97. Springer, 2007.

[228] Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pin Hsiung,

Divyakant Agrawal, and K Selçuk Candan. Twig 2 stack: bottom-up

processing of generalized-tree-pattern queries over xml documents. In

Proceedings of the 32nd international conference on Very large data bases,

pages 283–294. VLDB Endowment, 2006.

[229] Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan, and Ting Chen. From

region encoding to extended dewey: On efficient processing of xml twig

pattern matching. In Proceedings of the 31st international conference on

Very large data bases, pages 193–204. VLDB Endowment, 2005.

[230] Jiaheng Lu, Xiaofeng Meng, and Tok Wang Ling. Indexing and querying

xml using extended dewey labeling scheme. Data & Knowledge

Engineering, 70(1):35–59, 2011.

[231] Pavel Zezula, Giuseppe Amato, Franca Debole, and Fausto Rabitti. Tree

signatures for xml querying and navigation. In International XML

Database Symposium, pages 149–163. Springer, 2003.

[232] Pavel Zezula, Federica Mandreoli, and Riccardo Martoglia. Tree signatures

and unordered xml pattern matching. In International Conference on

Current Trends in Theory and Practice of Computer Science, pages

122–139. Springer, 2004.



Bibliography 130

[233] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S Yu. Vist: a dynamic

index method for querying xml data by tree structures. In Proceedings of

the 2003 ACM SIGMOD international conference on Management of data,

pages 110–121. ACM, 2003.

[234] Praveen Rao and Bongki Moon. Prix: Indexing and querying xml using

prufer sequences. In Proceedings. 20th International Conference on Data

Engineering, pages 288–299. IEEE, 2004.

[235] Haixun Wang and Xiaofeng Meng. On the sequencing of tree structures for

xml indexing. In 21st International Conference on Data Engineering

(ICDE’05), pages 372–383. IEEE, 2005.

[236] Sayyed Kamyar Izadi, Theo Härder, and Mostafa S Haghjoo. S3:

Evaluation of tree-pattern xml queries supported by structural summaries.

Data & Knowledge Engineering, 68(1):126–145, 2009.

[237] Xin Wu and Guiquan Liu. Xml twig pattern matching using version tree.

Data & Knowledge Engineering, 64(3):580–599, 2008.

[238] Gang Gou and Rada Chirkova. Efficiently querying large xml data

repositories: A survey. IEEE Transactions on Knowledge and Data

Engineering, 19(10):1381–1403, 2007.

[239] Marouane Hachicha and Jerome Darmont. A survey of xml tree patterns.

IEEE Transactions on Knowledge and Data Engineering, 25(1):29–46,

2011.

[240] Shtwai Alsubai. Child Prime Label Approaches to Evaluate XML

Structured Queries. PhD thesis, University of Sheffield, 2018.

[241] Karen Sauvagnat, Lobna Hlaoua, and Mohand Boughanem. Xfirm at inex

2005: ad-hoc and relevance feedback tracks. In International Workshop of

the Initiative for the Evaluation of XML Retrieval, pages 88–103. Springer,

2005.

[242] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Gabriella Kazai.

Advances in XML Information Retrieval and Evaluation: 4th International

Workshop of the Initiative for the Evaluation of XML Retrieval, INEX

2005, Dagstuhl Castle, Germany, November 28-30, 2005. Revised and

Selected Papers, volume 3977. Springer, 2006.



Bibliography 131

[243] Norbert Fuhr, Mounia Lalmas, and Andrew Trotman. Comparative

Evaluation of XML Information Retrieval Systems: 5th International

Workshop of the Initiative for the Evaluation of XML Retrieval, INEX

2006 Dagstuhl Castle, Germany, December 17-20, 2006 Revised and

Selected Papers, volume 4518. Springer, 2007.

[244] Shlomo Geva, Jaap Kamps, and Andrew Trotman. Advances in Focused

Retrieval: 7th International Workshop of the Initiative for the Evaluation

of XML Retrieval, INEX 2008, Dagstuhl Castle, Germany, December

15-18, 2009. Revised and Selected Papers, volume 5631. Springer, 2009.

[245] Shlomo Geva, Jaap Kamps, and Andrew Trotman. Comparative

Evaluation of Focused Retrieval: 9th International Workshop of the

Inititative for the Evaluation of XML Retrieval, INEX 2010, Vught, The

Netherlands, December 13-15, 2010, The Netherlands, Revised Selected

Papers, volume 6932. Springer Science & Business Media, 2011.

[246] Giovanna Guerrini. Approximate xml query processing. In Advanced

Query Processing, pages 129–155. Springer, 2013.

[247] Torsten Schlieder and Felix Naumann. Approximate tree embedding for

querying xml data. 2000.

[248] Eugen Popovici, Gildas Ménier, and Pierre-François Marteau. Sirius: a

lightweight xml indexing and approximate search system at inex 2005. In

International Workshop of the Initiative for the Evaluation of XML

Retrieval, pages 321–335. Springer, 2005.

[249] Raghav Kaushik, Rajasekar Krishnamurthy, Jeffrey F Naughton, and

Raghu Ramakrishnan. On the integration of structure indexes and inverted

lists. In Proceedings of the 2004 ACM SIGMOD international conference

on Management of data, pages 779–790. ACM, 2004.

[250] Mir Sadek Ali, Mariano Consens, Xin Gu, Yaron Kanza, Flavio Rizzolo,

and Raquel Stasiu. Efficient, effective and flexible xml retrieval using

summaries. In International Workshop of the Initiative for the Evaluation

of XML Retrieval, pages 89–103. Springer, 2006.

[251] Mai Dong Le and KP Sauvagnat. Utilisation de la distance d’édition pour

l’appariement sémantique de documents xml. In Proceedings of GAOC,

Workshop, 2010.



Bibliography 132

[252] Abdeslame ALILAOUAR and Florence SEDES. Fuzzy querying of xm l

documents the minimum spanning tree. OSWIR 2005, page 11, 2005.

[253] A Alilaouar. Interrogation flexible de documents semi-structurés, 2007.

[254] Ronald L Graham and Pavol Hell. On the history of the minimum spanning

tree problem. Annals of the History of Computing, 7(1):43–57, 1985.

[255] Jian Liu and DL Yan. Answering approximate queries over xml data.

IEEE Transactions on Fuzzy Systems, 24(2):288–305, 2015.

[256] Ismael Sanz, Marco Mesiti, Giovanna Guerrini, and Rafael Berlanga.

Fragment-based approximate retrieval in highly heterogeneous xml

collections. Data & Knowledge Engineering, 64(1):266–293, 2008.

[257] Abdelmalek Habi, Brice Effantin, and Hamamache Kheddouci. Search and

aggregation in xml documents. In International Conference on Database

and Expert Systems Applications, pages 290–304. Springer, 2017.

[258] Eugene W. Myers. Ano(nd) difference algorithm and its variations.

Algorithmica, 1(1):251–266, 1986. ISSN 1432-0541. doi:

10.1007/BF01840446. URL http://dx.doi.org/10.1007/BF01840446.

[259] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo

Kyrola, and Joseph M Hellerstein. Distributed graphlab: a framework for

machine learning and data mining in the cloud. Proceedings of the VLDB

Endowment, 5(8):716–727, 2012.

[260] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,

Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for

large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, pages 135–146. ACM,

2010.

[261] Ching Avery. Giraph: Large-scale graph processing infrastructure on

hadoop. Proceedings of the Hadoop Summit. Santa Clara, 11(3):5–9, 2011.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


