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Ecole doctorale n◦580 Sciences et Technologies de l’Information et de la
Communication (STIC)
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Introduction (en français)

L’apprentissage automatique étudie la capacité des systèmes d’intelligence artificielle
(IA) à acquérir leurs propres connaissances, en extrayant des “modèles” à partir de don-
nées. L’introduction de l’apprentissage automatique permet aux ordinateurs d’appréhender
le monde réel et de prendre des décisions qui semblent (plus ou moins) subjectives. Les
algorithmes d’apprentissage automatique simples, tels que le filtrage collaboratif ou la
classification naïve bayésienne, sont utilisés en pratique pour traiter des problèmes aussi
divers que la recommandation de films ou la détection de spam dans les courriers élec-
troniques [GBC16].

La performance des algorithmes d’apprentissage automatique repose énormément
sur la représentation des données. La représentation qui (idéalement) contient les infor-
mations les plus cruciales pour effectuer la tâche s’appelle les caractéristiques (“features”
en anglais) des données et peut varier d’un cas sur l’autre en fonction du problème. Par
exemple, les caractéristiques de couleur peuvent jouer un rôle plus important dans la
classification des images de chats “noirs versus blancs” que, par exemple, les caractéris-
tiques qui capturent la “forme” des animaux dans les images.

De nombreuses tâches d’intelligence artificielle peuvent être résolues en concevant le
bon ensemble de caractéristiques, puis en les transmettant à des algorithmes d’apprentissage
simples pour la prise de décision. Cependant, cela est plus facile à dire qu’à faire et pour
la plupart des tâches, il est souvent très difficile de savoir quelles caractéristiques doivent
être utilisée pour prendre une décision éclairée. À titre d’exemple concret, il est difficile
de dire comment chaque pixel d’une image doit peser de sorte que l’image ressemble
plus à un chat qu’à un chien. Pendant assez longtemps, trouver ou concevoir les carac-
téristiques les plus pertinentes avec une expertise humaine, ou “feature engineering”, a
été considéré comme la clé pour les systèmes d’apprentissage automatique afin d’obtenir
de meilleures performances [BCV13].

Les réseaux de neurones, en particulier les réseaux de neurones profonds, tentent
d’extraire des caractéristiques de “haut niveau” (plus abstraites) en introduisant des com-
binaisons non-linéaires des représentations plus simples (de bas niveau) et ont obtenu
des résultats impressionnants au cours de la dernière décennie [Sch15]. Malgré tous les
succès remportés avec ces modèles, nous n’avons qu’une compréhension assez rudimen-
taire de pourquoi et dans quels contextes ils fonctionnent bien. De nombreuses questions
sur la conception de ces réseaux, telles que la détermination du nombre de couches et de
la taille de chaque couche, le type de fonction d’activation à utiliser, restent sans réponse.

Il a été observé empiriquement que les réseaux de neurones profonds présentent un
avantage crucial lors du traitement de données de grande dimension et nombreuses,
autrement dit, lorsque la dimension des données p et leur nombre n sont grands. Par
exemple, le jeu de données MNIST [LBBH98] contient n = 70 000 d’images de chiffres,
de dimension p = 28× 28 = 784 chacune, réparties en 10 classes (nombres 0− 9). Par
conséquent, les systèmes d’apprentissage automatique qui traitent ces grands jeux de
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données sont également de taille énorme: le nombre de paramètres du modèle N est au
moins du même ordre que la dimension p et peuvent parfois même être beaucoup plus
nombreux que n.

Plus généralement, les grands systèmes d’apprentissage qui permettent de traiter des
jeux de données de très grandes dimensions deviennent de plus en plus importants dans
l’apprentissage automatique moderne aujourd’hui. Contrairement à l’apprentissage en
petite dimension, les algorithmes d’apprentissage en grande dimension sont sujets à
divers phénomènes contre-intuitifs, qui ne se produisent jamais dans des problèmes
de petite dimension. Nous montrerons comment les méthodes d’apprentissage automa-
tique, lorsqu’elles sont appliquées à des données de grande dimension, peuvent en effet
se comporter totalement différemment des intuitions en petite dimension. Comme nous
le verrons avec les exemples de (l’estimation des) matrices de covariance et de matri-
ces de noyau, le fait que n n’est pas beaucoup plus grand que p (disons n ∼ 100p) rend
inefficace de nombreux résultats statistiques dans le régime asymptotique “standard”,
où on suppose n → ∞ avec p fixé. Ce “comportement perturbateur” est en effet l’une
des difficultés principales qui interdisent l’utilisation de nos intuitions de petite dimen-
sion (de l’expérience quotidienne) dans la compréhension et l’amélioration des systèmes
d’apprentissage automatique en grande dimension.

Néanmoins, en supposant que la dimension p et le nombre n de données sont à
la fois grands et comparables, dans le régime double asymptotique où n, p → ∞ avec
p/n → c̄ ∈ (0, ∞), la théorie des grandes matrices aléatoires (RMT) nous fournit une
approche systématique pour évaluer le comportement statistique de ces grands systèmes
d’apprentissage sur des données de grande dimension. Comme nous le verrons plus loin,
dans les deux exemples de la matrice de covariance empirique ainsi que la matrices de
noyau, RMT nous fournit un accès direct aux performances, et par conséquent une com-
préhension plus profonde de ces objets clés, ainsi que la direction pour l’amélioration de
ces grands systèmes. L’objectif principal de cette thèse est d’aller bien au-delà de ces ex-
emples simples et de proposer une méthodologie complète pour l’analyse des systèmes
d’apprentissage plus élaborés et plus pratiques: pour évaluer leurs performances, pour
mieux les comprendre et finalement pour les améliorer, afin de mieux gérer les prob-
lèmes de grandes dimensions aujourd’hui. La méthodologie proposée est suffisamment
souple pour être utilisée avec des méthodes d’apprentissage automatique aussi répan-
dues que les régressions linéaires, les SVM, mais aussi pour les réseaux de neurones
simples.



Chapter 1

Introduction

The field studying the capacity of artificial intelligence (AI) systems to acquire their own
knowledge, by extracting patterns from raw data is known as machine learning. The
introduction of machine learning enables computers to “learn” from the real world and
make decisions that appear subjective. Simple machine learning algorithms such as col-
laborative filtering or naive Bayes are being used in practice to treat as diverse problems
as movie recommendation or legitimate e-mails versus spam classification [GBC16].

The performance of machine learning algorithms relies largely on the representation
of the data they need to handle. The representation that (ideally) contains the crucial
information to perform the task is known as the data feature, and may vary from case to
case depending on the problem at hand. As an example, color features may play a more
important role in the classification between black and white cats than, for instance, the
features that capture the “look” or the “shape” of the animals.

Many AI tasks can be solved by designing the right set of features and then providing
these features to simple machine learning algorithms to make decisions. However, this
is easier said than done and for most tasks, it is unclear which feature should be used
to make a wise decision. As a concrete example, it is difficult to say how each pixel in a
picture should weigh so that the picture looks more like a cat than a dog. For quite a long
time, finding or designing the most relevant features with human expertise, or “feature
engineering”, has been considered the key for machine learning systems to achieve better
performance [BCV13].

Neural networks (NNs), in particular, deep neural networks (DNNs), try to extract
high-level features by introducing representations that are expressed in terms of other,
simpler representations and have obtained impressive achievements in the last decade
[KSH12, Sch15]. Yet for all the success won with these models, we have managed only
a rudimentary understanding of why and in what contexts they work well. Many ques-
tions on the design of these networks, such as how to decide the number of layers or
the size of each layer, what kind of activation function should be used, how to train the
network more efficiently to avoid overfitting, remain unanswered.

It has been empirically observed that deep neural network models exhibit a major
advantage (against “shallow” models) when handling large dimensional and numerous
data, i.e., when both the data dimension p and their number n are large. For example, the
popular MNIST dataset [LBBH98] contains n = 70 000 images of handwritten digits, of
dimension p = 28× 28 = 784 each, from 10 classes (numbers 0− 9). As a consequence,
the machine learning systems to “process” these large dimensional data are also huge in
their size: the number of system parameters N is at least in the same order of p (so as
to map the input data to a scalar output for example) and can sometimes be even much

1



2 CHAPTER 1. INTRODUCTION

larger than n, in the particular case of modern DNNs.1

More generally, large dimensional data and learning systems are ubiquitous in mod-
ern machine learning. As opposed to small dimensional learning, large dimensional ma-
chine learning algorithms are prone to various counterintuitive phenomena that never
occur in small dimensional problems. In the following Section 1.1, we will show how ma-
chine learning methods, when applied to large dimensional data, may indeed strikingly
differ from the low dimensional intuitions upon which they are built. As we shall see
with the examples of sample covariance matrices and kernel matrices, the fact that n is
not much larger than p (say n ≈ 100p) annihilates many results from standard asymptotic
statistics that assume n → ∞ alone with p fixed. This “disrupting behavior” is indeed one
of the main difficulties that prohibit the use of our low-dimensional intuitions (from ev-
eryday experience) in the comprehension and improvement of large-scale machine learn-
ing systems.

Nonetheless, by considering the data dimension p and their number n to be both
large and comparable and positioning ourselves in the double asymptotic regime where
n, p → ∞ with p/n → c̄ ∈ (0, ∞), random matrix theory (RMT) provides a systematic
approach to assess the (statistical) behavior of these large learning systems on large di-
mensional data. As we shall see next, in both examples of sample covariance matrices
and kernel matrices, RMT provides direct access to the performance of these objects and
thereby allows for a deeper understanding as well as further improvements of these large
systems. The major objective of this thesis is to go well beyond these toy examples and
to propose a fully-fledged RMT-based framework for more elaborate and more practical
machine learning systems: to assess their performance, to better understand their mech-
anism and to carefully refine them, so as to better handle large dimensional problems in
the big data era today. The proposed framework is flexible enough to handle as popular
machine learning methods as linear regressions, SVMs, and also to scratch the surface of
more involved neural networks.

1.1 Motivation: the Pitfalls of Large Dimensional Statistics

In many modern machine learning problems, the dimension p of the observations is as
large as – if not much larger than – their number n. For image classification tasks, it is
hardly possible to have more than 100p image samples per class: with the MNIST dataset
[LBBH98] we have approximately n = 6 000 images of size p = 784 for each class; while
the popular ImageNet dataset [RDS+15] contains typically no more than n = 500 000
image samples of dimension p = 256× 256 = 65 536 in each class.

More generally, in modern signal and data processing tasks we constantly face the
situation where n, p are both large and comparable. In genomics, the identification of
correlations among hundreds of thousands of genes based on a limited number of inde-
pendent (and expensive) samples induces an even larger ratio p/n [AGD94]. In statistical
finance, portfolio optimization relies on the opposite need to invest in a large number p of
assets to reduce volatility but at the same time to estimate the current (rather than past)
asset statistics from a relatively small number n of “short-time stationary” asset return
records [LCPB00].

As we shall demonstrate later in this section, the fact that in these problems n, p are

1Simple DNNs such as the LeNet [LBBH98] (of 5 layers only) can have N = 60 000 parameters. For more
involved structures such as the deep residual network model [HZRS16] (of more than 100 layers), N can be
as large as hundreds or thousands of millions.



1.1. MOTIVATION: THE PITFALLS OF LARGE DIMENSIONAL STATISTICS 3

both large and in particular, n is not much larger than p inhibits most of the results from
standard asymptotic statistics that assume n alone is large [VdV00]. As a rule of thumb,
by much larger we mean here that n must be at least 100 times as large as p for stan-
dard asymptotic statistics to be of practical convenience (see our argument on covariance
estimation in Section 1.1.1). Many algorithms in statistics, signal processing, and ma-
chine learning are precisely derived from this inappropriate n � p assumption. A main
primary objective of this thesis is to cast a light on the resulting biases and problems
incurred, and then to provide a systematic random matrix framework that helps better
understand and improve these algorithms.

Perhaps more importantly, we shall see that the low dimensional intuitions which
are at the core of many machine learning algorithms (starting with spectral clustering
[NJW02, VL07]) often strikingly fail when applied in a simultaneously large n, p set-
ting. A compelling key disrupting property lies in the notion of “distance” between
large dimensional data vectors. Most classification methods in machine learning are
rooted in the observation that random vectors arising from a mixture distribution (say
Gaussian) gather in “groups” of close-by vectors in Euclidean norm. When dealing with
large dimensions, concentration phenomena arise that makes Euclidean distances “non-
informative”, if not counterproductive: vectors of the same Gaussian mixture class may
be further away in Euclidean distance than vectors arising from different classes, while,
paradoxically, non-trivial classification of the whole set of n ∼ p data may still be doable.
This fundamental example of the “curse of dimensionality” phenomenon, as well as its
effect on the popular kernel methods and simple nonlinear neural networks, will be dis-
cussed at length in Section 1.1.2 and the remainder of the manuscript as well.

1.1.1 Sample covariance matrices in the large n, p regime

Covariance matrices, as a measure of the joint variability between different entries of a
random vector, play a significant role in a host of signal processing and machine learn-
ing methods. It is particularly efficient in classifying data vectors that are most distin-
guished through their second order statistics, for instance, in the case of EEG time series
[DVFRCA14] or synthetic aperture radar (SAR) images [Cha03, VOPT09].

Let us consider the following illustrating example which shows a first elementary,
yet counterintuitive, result: for simultaneously large n, p, sample covariance matrices
Ĉ ∈ Rp×p based on n samples xi ∼ N (0, C) are jointly entry-wise consistent estimators
of the population covariance C ∈ Rp×p (in particular, ‖Ĉ − C‖∞ → 0 as n, p → ∞ for
‖C‖∞ ≡ maxij |Cij|), while overall being extremely poor estimators for a majority of
covariance-based methods (i.e., ‖Ĉ − C‖ 6→ 0 with here ‖ · ‖ the operator norm). This
brings forth a first counterintuitive large dimensional observation: matrix norms are not
equivalent from a large n, p standpoint.

Let us detail this claim, in the simplest case where C = Ip. Consider a data set
X = [x1, . . . , xn] ∈ Rp×n of n independent and identically distributed (i.i.d.) observa-
tions from a p-dimensional Gaussian distribution, i.e., xi ∼ N (0, Ip) for i = 1, . . . , n. We
wish to estimate the population covariance matrix C = Ip from the n available samples.
The maximum likelihood estimator in this zero-mean Gaussian setting is the sample co-
variance matrix Ĉ defined by

Ĉ =
1
n

n

∑
i=1

xixTi =
1
n

XXT. (1.1)

By the strong law of large numbers, for fixed p, Ĉ → Ip almost surely as n → ∞, so
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that ‖Ĉ− Ip‖
a.s.−→0 holds for any standard matrix norm and in particular for the operator

norm.

One must be more careful when dealing with the regime n, p → ∞ with ratio p/n →
c ∈ (0, ∞) (or, from a practical standpoint, n is not much larger than p). First, note that
the entry-wise convergence still holds since, invoking the law of large numbers again

Ĉij =
1
n

n

∑
l=1

XilXjl
a.s.−→
{

1, i = j;
0, i 6= j.

Besides, by a concentration inequality argument, it can even be shown that

max
1≤i,j≤p

∣∣(Ĉ− Ip)ij
∣∣ a.s.−→0

which holds as long as p is no larger than a polynomial function of n, and thus

‖Ĉ− Ip‖∞
a.s.−→0.

Consider now the (very special) case of n, p both large but with p > n. Since Ĉ is
the sum of n rank one matrices (as per the form (1.1)), the rank of Ĉ is at most equal to n
and thus, being a p× p matrix with p > n, the sample covariance matrix Ĉ is a singular
matrix having at least p− n > 0 null eigenvalues. As a consequence,

‖Ĉ− Ip‖ 6→ 0

for ‖ · ‖ the matrix operator (or spectral) norm. This claim, derived from the case of
C = Ip with p > n, actually holds true in the general case where n, p → ∞ with p/n →
c > 0. As such, as claimed at the beginning of this subsection, matrix norms cannot be
considered equivalent in the regime where p is not negligible compared to n. This follows
from the fact that the equivalence factors depend on the matrix size p; here for instance,
‖A‖∞ ≤ ‖A‖ ≤ p‖A‖∞ for A ∈ Rp×p.

Unfortunately, in practice, the (non-converging) operator norm is of more practical
interest than the (converging) infinity norm.

Remark 1.1 (On the importance of operator norm). For practical purposes, this loss of norm
equivalence raises the question of the relevant matrix norm to be considered in any given appli-
cation. For many applications in machine learning, the operator (or spectral) norm turns out
to be much more relevant than the infinity norm. First, the operator norm is the matrix norm
induced by the Euclidean norm of vectors. Thus, the study of regression vectors or label/score
vectors in classification is naturally attached to the spectral study of matrices. Besides, we will
often be interested in the asymptotic equivalence of families of large dimensional matrices. If
‖Ap − Bp‖ → 0 for matrix sequences {Ap} and {Bp}, indexed by their dimension p, according
to Weyl’s inequality (e.g., Lemma 2.10 or [HJ12, Theorem 4.3.1]),

max
i

∣∣λi(Ap)− λi(Bp)
∣∣→ 0

for λ1(A) ≥ λ2(A) ≥ . . . the eigenvalues of A in a decreasing order. Besides, for ui(Ap) an
eigenvector of Ap associated with an isolated eigenvalue λi(Ap) (i.e., such that min(|λi+1(Ap)−
λi(Ap)|, |λi(Ap)− λi−1(Ap)|) > ε for some ε > 0 uniformly on p),∥∥ui(Ap)− ui(Bp)

∥∥→ 0.
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These results ensure that, as far as spectral properties are concerned, Ap can be studied equiva-
lently through Bp. We will often use this argument to examine intractable random matrices Ap
by means of a tractable ersatz Bp, which is the main approach to handle the subtle nonlinearity in
many random matrix models of interest in machine learning.

The pitfall that consists in assuming that Ĉ is a valid estimator of C since ‖Ĉ− C‖∞
a.s.−→0

may thus have deleterious practical consequences when n is not significantly larger than p.

Resuming on our norm convergence discussion, it is now natural to ask whether Ĉ,
which badly estimates C, has a controlled asymptotic behavior. There precisely lay the
first theoretical interests of random matrix theory. While Ĉ itself does not converge in any
useful way, its eigenvalue distribution does exhibit a traceable limiting behavior [MP67,
SB95, BS10]. The seminal result in this direction, due to Marc̆enko and Pastur, states that,
for C = Ip, as n, p → ∞ with p/n → c ∈ (0, ∞), with probability one, the (random)
discrete empirical spectral distribution (see also Definition 5)

µp ≡
1
p

p

∑
i=1

δλi(Ĉ)

converges in law to a non-random smooth limit, today referred to as the “Marc̆enko-Pastur
law” [MP67]

µ(dx) = (1− c−1)+δ(x) +
1

2πcx

√
(x− a)+(b− x)+dx (1.2)

where a = (1−
√

c)2, b = (1 +
√

c)2 and (x)+ ≡ max(x, 0).
Figure 1.1 compares the empirical spectral distribution of Ĉ to the limiting Marc̆enko-

Pastur law given in (1.2), for p = 500 and n = 50 000.

0.8 0.9 1 1.1 1.2
0
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2

3

4

Eigenvalues of Ĉ

D
en

si
ty

Empirical eigenvalues
Marc̆enko-Pastur law

Figure 1.1: Histogram of the empirical spectral distribution of Ĉ versus the Marc̆enko-
Pastur law, for p = 500 and n = 50 000.

The elementary Marc̆enko-Pastur result is already quite instructive and insightful.

Remark 1.2 (When is one under the random matrix regime?). Equation (1.2) reveals that
the eigenvalues of Ĉ, instead of concentrating at x = 1 as a large-n alone analysis would suggest,
spread from (1−

√
c)2 to (1 +

√
c)2. As such, the eigenvalues span on a range

(1 +
√

c)2 − (1−
√

c)2 = 4
√

c
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which is indeed a slow decaying behavior with respect to c = lim p/n. In particular, for n =
100p, where one would expect a sufficiently large number of samples for Ĉ to properly estimate
C = Ip, one has 4

√
c = 0.4 which is a large spread around the mean (and true) eigenvalue 1.

This is visually confirmed by Figure 1.1 for p = 500 and n = 50 000, where the histogram of the
eigenvalues is nowhere near concentrated at x = 1. As such, random matrix results will be largely
more accurate than classical asymptotic statistics even when n ∼ 100p. As a telling example,
estimating the covariance matrix of each digit from the popular MNIST dataset [LBBH98] using
the sample covariance, made of no more than 60 000 training samples (and thus about n = 6 000
samples per digit) of size p = 28× 28 = 784, is likely a hazardous undertaking.

Remark 1.3 (On universality). Although introduced here in the context of Gaussian distribu-
tions for xi, the Marc̆enko-Pastur law applies to much more general cases. Indeed, the result
remains valid so long that the xi’s have i.i.d. normalized entries of zero mean and unit variance
(and even beyond this setting [A+11, EK09, LC19c]). Similar to the law of large numbers in
standard statistics, this universality phenomenon commonly arises in random matrix theory and
high dimensional statistics and helps to justify the wide applicability of the presented theoretical
results, even to real datasets.

We have seen in this subsection that the sample covariance matrix Ĉ, despite being a
consistent estimator of the population covariance C ∈ Rp×p for fixed p as n→ ∞, fails to
provide a precise prediction on the eigenspectrum of C even with n ∼ 100p. The fact that
we are dealing with large dimensional data vectors has an impact not only on the (direct)
estimation of the data covariance or correlation but also on various statistics commonly
used in machine learning methods. In the following subsection, we will discuss how
popular kernel methods behave differently (from our low dimensional intuition) in large
dimensional problems, due to the “curse of dimensionality” phenomenon.

1.1.2 Kernel matrices of large dimensional data

Another less known but equally important example of the curse of dimensionality in ma-
chine learning involves the loss of relevance of the notion of Euclidean distance between
large dimensional data vectors. To be more precise, we will see in this subsection that,
under an asymptotically non-trivial classification setting (that is, ensuring that asymp-
totic classification is neither too simple nor impossible), large and numerous data vectors
x1, . . . , xn ∈ Rp extracted from a few-class mixture model tend to be asymptotically at
equal distance from one another, irrespective of their mixture class. Roughly speaking, in
this non-trivial setting and under reasonable statistical assumptions on the xi’s, we have

max
1≤i 6=j≤n

{
1
p
‖xi − xj‖2 − τ

}
→ 0 (1.3)

for some constant τ > 0 as n, p → ∞, independently of the classes (same or different) of xi
and xj (here the distance normalization by p is used for compliance with the notations in
the remainder of the manuscript but has no particular importance).

This asymptotic behavior is extremely counterintuitive and conveys the idea that clas-
sification by standard methods ought not to be doable in this large n, p regime. Indeed,
in the conventional low dimensional intuition that forged many of the leading machine
learning algorithms of everyday use (such as spectral clustering [NJW02, VL07]), two
data points belong to the same class if they are “close” in Euclidean distance. Here we
claim that, when p is large, data pairs are neither close nor far from each other, regard-
less of their belonging to the same class or not. Despite this troubling loss of individual
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discriminative power between data pairs, we subsequently show that thanks to a collec-
tive behavior of all data belonging to the same (few and thus of large size each) classes,
asymptotic data classification or clustering is still achievable. Better, we shall see that,
while many conventional methods devised from small dimensional intuitions do fail in
the large dimensional regime, some popular approaches (such as the Ng-Jordan-Weiss
spectral clustering method [NJW02] or the PageRank semi-supervised learning approach
[AMGS12]) still function. But the core reasons for their functioning are strikingly differ-
ent from the reasons for their initial designs, and they often operate far from optimally.

The non-trivial classification regime2

To get a clear picture of the source of Equation (1.3), we first need to clarify what we refer
to as the “asymptotically non-trivial” classification setting. Consider the simplest setting
of a binary Gaussian mixture classification. We give ourselves a training set x1, . . . , xn ∈
Rp of n samples independently drawn from the two-class (C1 and C2) Gaussian mixture

C1 : x ∼ N (µ1, C1)

C2 : x ∼ N (µ2, C2)

each with probability 1/2, for some deterministic µ1, µ2 ∈ Rp, positive definite C1, C2 ∈
Rp×p, and assume

Assumption 1 (Covariance scaling). As p→ ∞, we have for a ∈ {1, 2} that

max{‖Ca‖, ‖C−1
a ‖} = O(1).

In the ideal case where µ1, µ2 and C1, C2 are perfectly known, one can devise a (deci-
sion optimal) Neyman-Pearson test. For an unknown x, genuinely belonging to C1, the
Neyman-Pearson test to decide on the class of x reads

(x− µ2)
TC−1

2 (x− µ2)− (x− µ1)
TC−1

1 (x− µ1)
C1
≷
C2

log
det(C1)

det(C2)
. (1.4)

Writing x = µ1 + C
1
2
1 z for z ∼ N (0, Ip), the above test is equivalent to

T(x) ≡ 1
p

zT(C
1
2
1 C−1

2 C
1
2
1 − Ip)z +

2
p

∆µTC−1
2 C

1
2
1 z +

1
p

∆µTC−1
2 ∆µ− 1

p
log

det(C1)

det(C2)

C1
≷
C2

0.

(1.5)
where we denote ∆µ ≡ µ1 − µ2 that is then normalized by 1/p. Since z ∼ N (0, Ip), UTz

follows the same distribution as z for U ∈ Rp×p an eigenvector basis of C
1
2
1 C−1

2 C
1
2
1 − Ip.

As such, the random variable T(x) can be written as the sum of p independent random
variables. By Lyapunov’s central limit theorem (e.g., [Bil12, Theorem 27.3]), we have, as
p→ ∞,

V−
1
2

T (T(x)− T̄) d−→N (0, 1)

where

T̄ ≡ 1
p

tr(C1C−1
2 )− 1 +

1
p

∆µTC−1
2 ∆µ− 1

p
log

det(C1)

det(C2)
,

VT ≡
2
p2 ‖C

1
2
1 C−1

2 C
1
2
1 − Ip‖2

F +
4
p2 ∆µTC−1

2 C1C−1
2 ∆µ.

2This subsection is extracted from our contribution [CLM18].
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As a consequence, the classification performance of x ∈ C1 is asymptotically non-trivial
(i.e., the classification error neither goes to 0 nor 1 as p→ ∞) if and only if T̄ is of the same
order of

√
VT with respect to p. Let us focus on the difference in means ∆µ by considering

the worst case scenario where the two classes share the same covariance C1 = C2 = C.
In this setting, one has from Assumption 1 that

T̄ =
1
p

∆µTC−1∆µ = O(‖∆µ‖2 p−1),
√

VT =
2
p

√
∆µTC−1C−1

2 ∆µ = O(‖∆µ‖p−1)

so that one must have ‖∆µ‖ ≥ O(1) with respect to p (indeed, if ‖∆µ‖ = o(1), the
classification of x with C1 = C2 = C is asymptotically impossible).

Under the critical constraint ‖∆µ‖ = O(1) we move on to considering the case of
different covariances C1 6= C2 in such a way that their difference ∆C ≡ C1 − C2 satisfies
‖∆C‖ = o(1). In this situation, by a Taylor expansion of both C−1

2 and det(C2) around
C1 = C we obtain

T̄ =
1
p

∆µTC−1∆µ+
1

2p
‖C−1∆C‖2

F + o(p−1), VT =
4
p2 ∆µTC−1∆µ+

2
p2 ‖C

−1∆C‖2
F + o(p−2),

which demands ‖∆C‖ to be at least of order O(p−
1
2 ), so that ‖C−1∆C‖2

F is of order
O(1) (as ‖µ‖) and can have discriminative power, since ‖C−1∆C‖2

F ≤ p‖C−1∆C‖2 ≤
p‖∆C‖2, with equality if and only if both C and ∆C are proportional to identity, i.e.,
C = ε1Ip and ∆C = ε2Ip. Also, by the Cauchy–Schwarz inequality, we have | tr ∆C| ≤√

tr(∆C2) · tr Ip = O(
√

p), with equality (again) if and only if ∆C = εIp, and we must
therefore have | tr ∆C| ≥ O(

√
p). This allows us to conclude on the following non-trivial

classification conditions

‖∆µ‖ ≥ O(1), ‖∆C‖ ≥ O(p−1/2), | tr ∆C| ≥ O(
√

p), ‖∆C‖2
F ≥ O(1). (1.6)

These are the minimal conditions for classification in the case of perfectly known means
and covariances in the following sense: i) if none of the inequalities hold (i.e., if means
and covariances from both classes are too close), asymptotic classification must fail; and
ii) if at least one of the inequalities is not tight (say if ‖∆µ‖ ≥ O(

√
p)), asymptotic classi-

fication becomes (asymptotically) trivially easy.

We shall subsequently see that (1.6) precisely induces the asymptotic loss of distance
discrimination raised in (1.3) but that in the meantime standard spectral clustering meth-
ods based on n ∼ p data remain valid in practice.

Asymptotic loss of pairwise distance discrimination

Under the equality case for the conditions in (1.6), the (normalized) Euclidean distance
between two distinct data vectors xi ∈ Ca, xj ∈ Cb, i 6= j, is given by

1
p
‖xi − xj‖2 =

1
p
‖C

1
2
a zi − C

1
2
b zj‖2 − 2

p
(µa − µb)

T(C
1
2
a zi − C

1
2
b zj) +

1
p
‖µa − µb‖

2

=
1
p
(zTi Cazi + zTj Cbzj)−

2
p

zTi C
1
2
a C

1
2
b zj︸ ︷︷ ︸

O(p−1/2)

− 2
p
(µa − µb)

T(C
1
2
a zi − C

1
2
b zj)︸ ︷︷ ︸

O(p−1)

+
1
p
‖µa − µb‖

2︸ ︷︷ ︸
O(p−1)
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where we see again from Lyapunov’s CLT that the second and third terms are of order
O(p−1/2) and O(p−1) respectively, while the last term is of order O(p−1), following di-
rectly from the critical condition of (1.6). Denote the average covariance of the two classes
C◦ ≡ 1

2 (C1 + C2) so that ‖C◦‖ = O(1). Note that

1
p

E[zTi Cazi] =
1
p

E[tr(CazizTi )] =
1
p

tr Ca =
1
p

tr C◦ +
1
p

tr(Ca − C◦) ≡ 1
2

τ +
1
p

tr C◦a
(1.7)

where we introduce τ ≡ 2
p tr C◦ = O(1) and C◦a ≡ Ca − C◦ for a ∈ {1, 2}, the operator

norm of which is of order O(p−1/2) under the critical condition of (1.6).
As such, it is convenient to further write

1
p

zTi Cazi =
1
p

tr Ca +

(
1
p

zTi Cazi −
1
p

tr Ca

)
≡ τ

2
+

1
p

tr C◦a︸ ︷︷ ︸
O(p−1/2)

+ ψi︸︷︷︸
O(p−1/2)

with ψi ≡ 1
p zTi Cazi − 1

p tr Ca = O(p−1/2) again by the CLT and 1
p tr C◦a = O(p−1/2) under

(1.6). A similar result holds for 1
p zTj Cbzj and

1
p
‖xi − xj‖2 = τ +

1
p

tr(C◦a + C◦b) + ψi + ψj −
2
p

zTi C
1
2
a C

1
2
b zj︸ ︷︷ ︸

O(p−1/2)

− 2
p
(µa − µb)

T(C
1
2
a zi − C

1
2
b zj) +

1
p
‖µa − µb‖

2︸ ︷︷ ︸
O(p−1)

.

This holds regardless of the values taken by a, b. Indeed, one can show with some further
refinements that

max
1≤i 6=j≤n

{
1
p
‖xi − xj‖2 − τ

}
→ 0

almost surely as n, p→ ∞, as previously claimed in (1.3).

To visually confirm the joint convergence of the data distances, Figure 1.2 displays
the content of the Gaussian heat kernel matrix K with Kij = exp

(
− 1

2p‖xi − xj‖2
)

(which
is, therefore, a Euclidean distance-based similarity measure between data points) and the
associated second top eigenvector v2 for a two-class Gaussian mixture x ∼ N (±µ, Ip)
with µ = [2; 0p−1]. For a constant n = 500, we take p = 5 in Figure 1.2a and p = 250 in
Figure 1.2b.

While the “block-structure” in Figure 1.2a agrees with the low dimensional intuition
that data vectors from the same class are “closer” to one another, corresponding to di-
agonal blocks with larger values (since exp(−x/2) decreases with the distance) than in
non-diagonal blocks, this intuition collapses when large dimensional data vectors are
considered. Indeed, in the large data setting of Figure 1.2b, all entries (but obviously on
the diagonal) of K have approximately the same value, which we now know from (1.3)
is exp(−1).

This is no longer surprising to us. However, what remains surprising at this stage
of our analysis is that the eigenvector v2 of K is not affected by the asymptotic loss of
class-wise discrimination of individual distances. Thus spectral clustering seems to work
equally well for p = 5 or p = 250, despite the radical and intuitively destructive change
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K =





v2 =

 
(a) p = 5, n = 500.

K =





v2 =

 
(b) p = 250, n = 500.

Figure 1.2: Kernel matrices K and the second top eigenvectors v2 for small and large
dimensional data X = [x1, . . . , xn] ∈ Rp×n with x1, . . . , xn/2 ∈ C1 and xn/2+1, . . . , xn ∈ C2.

in the behavior of K for p = 250. An answer to this question will be given in Section 3.1.1.
We will also see that not all kernel choices can reach the same (non-trivial) classification
rates, in particular, the popular Gaussian kernel will be shown to be sub-optimal in this
respect.

1.1.3 Summary of Section 1.1

In this section, we discussed two simple, yet counterintuitive, examples of common pit-
falls in handling large dimensional data.

In the sample covariance matrix example in Section 1.1.1, we made the important
remark of the loss of equivalence between matrix norms in the random matrix regime where
the data/feature dimension p and their number n are both large and comparable, which
is at the source of many intuition errors. We in particular insist that, for matrices An, Bn ∈
Rn×n of large sizes

∀i, j, (An − Bn)ij → 0 6⇒ ‖An − Bn‖ → 0 (1.8)

in operator norm.
We also realized, from a basic reading of the Marc̆enko-Pastur theorem, that the ran-

dom matrix regime arises more often than one may think: while n/p ∼ 100 may seem
large enough a ratio for classical asymptotic statistics to be accurate, random matrix the-
ory is, in general, a far more appropriate tool (with as much as 20% gain in precision for
the estimation of the covariance eigenvalues).

In Section 1.1.2, we gave a concrete machine learning classification example of the
message in (1.8) above. We saw that, in the practically most relevant scenario of non-
trivial (not too easy, not too hard) large data classification tasks, the distance between
any two data vectors “concentrates” around a constant (1.3), regardless of their respec-
tive classes. Yet, since again (Kn)ij → τ does not imply that ‖Kn − τ1n1Tn ‖ → 0 in
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operator norm, we understood that, thanks to a collective effect of the small but similarly
“oriented” (informative) fluctuations, kernel spectral clustering remains valid for large
dimensional problems.

In a nutshell, the fundamental counterintuitive yet mathematically addressable changes
in behavior of large dimensional data have two major consequences to statistics and ma-
chine learning: i) most algorithms, originally developed under a low dimensional intu-
ition, are likely to fail or at least to perform inefficiently, yet ii) by benefiting from the
extra degrees of freedom offered by large dimensional data, random matrix theory is apt
to analyze, improve, and evoke a whole new paradigm for large dimensional learning.

In the following sections of this chapter, we introduce the basic settings under which
we work, the machine learning models that we are interested in, as well as the major
challenges that we face. In Section 1.2 we discuss three closely related topics: random
kernel matrices, random (nonlinear) feature maps, and simple random neural networks.
Under a natural and rather general mixture model, we characterize the eigenspectrum of
a large kernel matrix and predict the performance of the kernel ridge regressor (which
is an explicit function of the kernel function). Random feature maps that are designed
to approximate large kernel matrices, take exactly the same form as a single-hidden-
layer NN model with random weights. As a consequence, studying such a network is
equivalent to assess the performance of a random feature-based kernel ridge regression,
and is thus closely connected to the kernel ridge regression model.

1.2 Random Kernels, Random Neural Networks and Beyond

Randomness is intrinsic to machine learning, as the probabilistic approach is one of the
most common tools used to study the performances of machine learning methods. Many
machine learning algorithms are designed to estimate some unknown probability dis-
tribution, to separate the mixture of several different distribution classes, or to generate
new samples following some underlying distribution.

Randomness has various sources in machine learning: it may come from the basic sta-
tistical assumption that the data are (independently or not) drawn from some probability
distribution, from a possibly random search of the hyperparameters of the model (the
popular dropout technique in training DNNs [SHK+14]) or from the stochastic nature of
the optimization methods applied (e.g., stochastic gradient descent method and its vari-
ants). There are also numerous machine learning methods that are intrinsically random,
where randomness is not used to enhance a particular part of the model but is indeed the
basis of the model itself, for example in the case of random weights neural networks (as
we shall discuss later in Section 1.2.2) as well as many tree-based models such as random
forests [Bre01] and extremely randomized trees [GEW06].

Let us first focus on the randomness from data by introducing the following multi-
variate mixture modeling for the input data, which will be considered throughout this
manuscript.

Definition 1 (Multivariate mixture model). Let x1, . . . , xn ∈ Rp be n random vectors drawn
independently from a K-class mixture model C1, . . . , CK so that each class Ca has cardinality na
for a = {1, . . . , K} and ∑K

a=1 na = n. We say xi ∈ Ca if

xi = µa + C
1
2
a zi
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for some deterministic µa ∈ Rp, symmetric and positive definite Ca ∈ Rp×p and some random
vector zi with i.i.d. zero mean and unit variance entries. In particular, we say xi follows a K-class
Gaussian mixture model (GMM) if zi ∼ N (0, Ip).

The assumption that the data xi are a linear or affine transformation of i.i.d. random
vectors zi characterizes the first and second order statistics of the underlying data distri-
bution. Many RMT results such as the popular Marc̆enko-Pastur law in (1.2), as stated in
Remark 1.3, hold universally with respect to the distribution of the independent entries.
As such, it often suffices to study the (most simple) Gaussian case to reach a universal
conclusion. We will come back to this point with some fundamental RMT results in Sec-
tion 2.2 and discuss some possible limitations of this “universality” in RMT in Chapter 5.

We insist here that this multivariate mixture model setting for the input data/feature
makes the crucial difference between our works and other existing RMT-based analyses
of machine learning systems, such as those of L. Zdeborova and F. Krzakala [KMM+13,
SKZ14], or those of J. Pennington [PW17, PW17, PSG17]. In all these contributions, the
authors are routinely interested in very homogeneous problems with simple data struc-
tures, e.g., xi ∼ N (0, Ip), which makes their analyses more tractable and leads to very
simple and more straightforward intuitions or conclusions. On the opposite, we take the
more natural choice of mixture model with more involved structures, as in the case of
GMM in Definition 1. This enhances the practical applicability of our results, as shall
be demonstrated throughout this manuscript: when compared to experiments on com-
monly used datasets, our theoretical results constantly exhibit an extremely close match
to practice. This observation, together with the underlying “universality” argument from
RMT, conveys a strong applicative motivation for our works.

As we shall always work in the regime where both n, p are large and comparable, we
will, according to the discussions in Section 1.1.2, position ourselves under the following
non-trivial regime where the separation of the K-class mixture above is neither too easy
nor impossible as n, p→ ∞.

Assumption 2 (Non-trivial classification). As n→ ∞, for a ∈ {1, . . . , K}

1. p/n = c→ c̄ ∈ (0, ∞) and na/n = ca → c̄a ∈ (0, 1).

2. ‖µa‖ = O(1) and max{‖Ca‖, ‖C−1
a ‖} = O(1) with | tr C◦a | = O(

√
p), ‖C◦a‖2

F =

O(
√

p) for C◦a ≡ Ca −∑K
i=1

ni
n Ci.

Assumption 2 is a natural extension of the non-trivial classification condition in (1.6)
to the general K-class setting.

Under a GMM for the input data that satisfies Assumption 2, we aim to investigate
the (asymptotic) performance of any machine learning method of interest, in the large
dimensional regime where n, p → ∞ and p/n → c̄ ∈ (0, ∞). However, in spite of a huge
number of well-established RMT results, the “exact” performance (as a function of the
data statistics µ, C and the problem dimensionality n, p) still remains technically out of
reach, for most machine learning algorithms.

The major technical difficulty that prevents existing RMT results from being applied
directly to understand these machine learning systems is the nonlinear and sometimes
implicit nature of these models. Powerful machine learning methods are commonly built
on top of highly complex and nonlinear features, which make the evaluation of these
methods less immediate than linear and explicit methods. As a consequence, we need
a proper adaptation of the matrix-based classical RMT results to handle the entry-wise
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nonlinearity (e.g., the kernel function or the activation function in neural networks) or the
implicit solutions arising from optimization problems (of logistic regression for instance).

In this section, in pursuit of a satisfying answer to these aforementioned technical
difficulties, we review some recent advances in RMT in this vein, starting from large
kernel matrices.

1.2.1 Random matrix consideration of large kernel matrices

Large kernel matrices and their spectral properties

In a broad sense, kernel methods are at the core of many, if not most, machine learning
algorithms. For a given data set x1, . . . , xn ∈ Rp, most learning mechanisms aim to extract
the structural information of the data (to perform classification for instance) by assessing
the pairwise comparison k(xi, xj) for some affinity metric k(·, ·) to obtain the matrix

K ≡
{

k(xi, xj)
}n

i,j=1 . (1.9)

The “cumulative” effect of these comparisons for numerous (n � 1) data is at the heart
of a broad range of applications: from supervised learning methods of maximum mar-
gin classifier such as support vector machines (SVMs), kernel ridge regression or kernel
Fisher discriminant, to kernel spectral clustering and kernel PCA that work in a totally
unsupervised manner.

The choice of the affinity function k(·, ·) is central to a good performance of the learn-
ing method. A typical viewpoint is to assume that data xi and xj are not directly compa-
rable (e.g., not linearly separable) in their ambient space but that there exists a convenient
feature mapping φ : Rp → H that “projects” the data to some (much higher or even infinite
dimensional) feature space H where φ(xi) and φ(xj) are more amenable to comparison,
for example, can be linearly separable by a hyperplane inH.

While the dimension of the feature space H can be much higher than that of the data
(p), with the so-called “kernel trick” [SS02] one can avoid the evaluation of φ(·) and
instead work only with the associated kernel function k : Rp ×Rp 7→ R that is uniquely
determined by

k(xi, xj) = φ(xi)
Tφ(xj) (1.10)

via Mercer’s theorem [SS02]. Some commonly used kernel functions are the radial ba-

sis function (RBF, or Gaussian, or heat) kernel k(xi, xj) = exp
(
− ‖xi−xj‖2

2σ2

)
, the sigmoid

kernel tanh(xTi xj + c) and polynomial kernels (xTi xj + c)d. These kernel-based learning
algorithms have been extensively studied both theoretically and empirically for their fea-
ture extraction power in highly nonlinear data manifolds, before the recent “rebirth” of
neural networks.

But only very recently has the large dimensional (p ∼ n � 1) nature of the data
started to be taken into consideration for kernel methods. We have seen in Section 1.1.2
empirical evidence showing that the kernel matrix K behaves dramatically differently
from its low dimensional counterpart. In the following, we review some theoretical ex-
planations of this counterintuitive behavior provided by RMT analyses.

To assess the eigenspectrum behavior of K for n, p both large and comparable, the
author of [EK10b] considered kernel matrices K with “shift-invariant” type kernel func-
tions k(xi, xj) = f (‖xi − xj‖2/p) or “inner-product” kernel f (xTi xj/p) for some nonlinear
and locally smooth function f . It was shown that the kernel matrix K is asymptotically
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equivalent to a more tractable random matrix K̃ in the sense of operator norm, as stated
in the following theorem.

Theorem 1.1 (Theorem 2.1 in [EK10b]). For inner-product kernel f (xTi xj/p) and xi = C
1
2 zi

with positive definite C ∈ Rp×p satisfying Assumption 1 and random vector zi ∈ Rp with
i.i.d. zero mean, unit variance and finite 4+ ε (absolute) moment entries and f three-times differ-
entiable in a neighborhood of 0, we have

‖K− K̃‖ → 0

in probability as n, p→ ∞ with p/n→ c̄ ∈ (0, ∞), where

K̃ =

(
f (0) +

f ′′(0)
2p2 tr(C2)

)
1n1Tn +

f ′(0)
p

XTX +
(

f
(τ

2

)
− f (0)− τ

2
f ′(0)

)
In (1.11)

with τ ≡ 2
p tr C > 0.

We provide here only the intuition for this result in the inner-product kernel f (xTi xj/p)
case with Gaussian zi ∼ N (0, Ip). The shift-invariant case can be treated similarly. To
prove the universality with respect to the distribution of entries of zi, a more cumbersome
combinatoric approach was adopted in [EK10b], which is likely unavoidable.

Intuition of Theorem 1.1. The proof is based on an entry-wise Taylor expansion of the ker-
nel matrix K, which naturally demands the kernel function f to be locally smooth around
zero. More precisely, we obtain, using Taylor expansion of f (x) around x = 0 that, for
i 6= j,

Kij = f (xTi xj/p) = f (0) +
f ′(0)

p
xTi xj +

f ′′(0)
p2 (xTi xj)

2 + Tij

with some higher order (≥ 3) terms Tij that contain higher order derivatives of f . Note
that Tij typically contains terms of the form (xTi xj/p)κ for κ ≥ 3 so that Tij is of order
O(p−3/2), uniformly on i 6= j, as a result of xTi xj/p = O(p−1/2) by the CLT. As such, the
matrix {Tij δi 6=j}1≤i,j≤n (of size n× n and with zeros on its diagonal) can be shown to have
a vanishing operator norm as n, p→ ∞ since

‖{Tij δi 6=j}1≤i,j≤n‖ ≤ n‖{Tijδi 6=j}1≤i,j≤n‖∞ = o(1)

as n, p → ∞ with p/n → c̄ ∈ (0, ∞). We then move on to the second order term
f ′′(0)

p2 (xTi xj)
2, the expectation of which is given by

f ′′(0)
p2 E(xTi xj)

2 =
f ′′(0)

p2 Exi tr
(

xTi Exj [xjxTj ]xi

)
=

f ′′(0)
p2 tr(C2) = O(p−1)

where we use the linearity of the trace operator to push the expectation inside, together
with the fact that ‖C‖ = O(1). In matrix form this gives,

f ′′(0)
p2 E[(xTi xj)

2δi 6=j]1≤i,j≤n =
f ′′(0)

p2 tr(C2)(1n1Tn − In)

which is of operator norm of order O(1), even without the diagonal term f ′′(0)
p2 tr(C2)In

(the operator norm of which is of order O(p−1) and thus vanishing, also note that we
leave the diagonal untreated for the moment). With concentration arguments we can
show the fluctuation (around the expectation) of this second order term also has a vanish-
ing operator norm as n, p → ∞ with p/n → c̄ > 0, which, together with easy treatment
of the diagonal terms, concludes the proof.



1.2. RANDOM KERNELS, RANDOM NEURAL NETWORKS AND BEYOND 15

This operator norm consistent approximation ‖K − K̃‖ → 0, as discussed in Re-
mark 1.1, provides a direct access to the limiting spectral measure (if it exists), the isolated
eigenvalues and associated eigenvectors that are of central interest in spectral clustering
or PCA applications, as well as the regression or label/score vectors, of (functions of) the
intractable kernel matrix K, via the study of the more tractable random matrix model K̃,
according to Weyl’s inequality (see Lemma 2.10).

The asymptotic equivalent kernel matrix K̃ is the sum of three matrices: i) a rank one
matrix proportional to 1n1Tn , ii) the identity matrix that makes a constant shift of all eigen-
values and iii) a rescaled version of the standard Gram matrix 1

p XTX. The eigenvalue
distribution of the Gram matrix, or equivalently of the sample covariance matrix model
1
p XXT (via Sylvester’s identity in Lemma 2.3) has been intensively studied in the random
matrix literature [SB95], and we shall talk about this model at length in Section 2.2.3. The
low rank (rank one here) perturbation of a random matrix model, is known under the
name of “spiked model” and has received considerable research attention in the RMT
community [BAP05]; we will come back to this point in more details in Section 2.3.

On closer inspection of (1.11), we see that K̃ is in essence a local linearization of the
nonlinear K, in the sense that the nonlinear function f (x) is evaluated solely in the neigh-
borhood of x = 0. This is because by the CLT we have xTi xj/p = O(p−

1
2 ) for i 6= j, and

entry-wise speaking, all off-diagonal entries are constantly equal to f (0) to the first or-
der. As such, the nonlinear function f acts only in a “local” manner around 0: all smooth
nonlinear f with the same values of f (0), f ′(0) and f ′′(0) have the same expression of K̃,
up to a constant shift of all eigenvalue due to f (τ/2)In, and consequently have the same
(asymptotic) performance on all kernel-based spectral algorithms.

In [EK10a] the author considered an “information-plus-noise” model for the data,
where each observation consists of two parts: one from a “low dimensional” structure
yi ∈ Rp (e.g., with its `0 norm ‖yi‖0 = O(1)) that is considered the “signal” as well
as the informative part of the data and the other being high dimensional noise. This
modeling indeed assumes that data are randomly drawn from, not exactly a fixed and
low dimensional manifold, but somewhere “nearby” such that the resulting observations
are perturbed with additive high dimensional noise, more precisely

xi = yi + C
1
2 zi

where yi denotes the random “signal” part of the observation and zi the high dimension
noise part that is independent of yi. The proof techniques are basically the same as in
[EK10b]. However, by assuming that all xi’s drawn from the same distribution, this result
is not sufficient for the understanding of K in a more practical classification context.

More recently in [CBG16], the authors considered the shift-invariant kernel f (‖xi −
xj‖2/p), under a more involved K-class Gaussian mixture model (GMM, see Definition 1)
for the data, that is of more practical interest from a machine learning standpoint, and
investigated more precisely the eigenspectrum behavior for a kernel spectral clustering
purpose. Not only the kernel matrix K but also the associated (normalized) Laplacian
matrix L defined as

L ≡ nD−
1
2 KD−

1
2

are considered in [CBG16], where D ≡ diag(K1n) denotes the so-called “degree matrix”
of K. While the authors followed the same technical approach as in [EK10b], the fact
that they considered a Gaussian mixture modeling provides rich insights into the impact
of nonlinearity in kernel spectral clustering applications. For the first time, the exact
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stochastic characterization of the isolated eigenpairs are given, as a function of the data
statistics (µ, C), problem dimensionality n, p, as well as the nonlinear f in a local manner.

Built upon the investigation of K in [CBG16], we evaluate the exact performance of
the kernel ridge regression (or least squares support vector machine, LS-SVM) in classi-
fying a two-class GMM, in the following contributions.

(C1) Zhenyu Liao and Romain Couillet. Random matrices meet machine learning: a
large dimensional analysis of LS-SVM. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 2397–2401, 2017.

(J1) Zhenyu Liao and Romain Couillet. A large dimensional analysis of least squares
support vector machines. IEEE Transactions on Signal Processing, 67(4):1065–1074,
2019.

In a nutshell, we consider the following (soft) output decision function from the LS-
SVM formulation

h(x) = βTk(x) + b, β = Q(y− b1n), b =
1Tn Qy
1Tn Q1n

(1.12)

for k(x) ≡ { f (‖x− xi‖2/p)}n
i=1 ∈ Rn and Q =

(
K + n

λ In
)−1 the so-called resolvent of the

kernel matrix K (see Definition 4). By showing that h(x) can be (asymptotically) well ap-
proximated by a normally distributed random variable, we obtain the exact asymptotic
classification performance of LS-SVM. The minimum orders of magnitude distinguish-
able by an LS-SVM classifier are given by

‖∆µ‖ = O(1), | tr ∆C| = O(
√

p), ‖∆C‖2
F = O(p)

for ∆µ = µ1 − µ2 and ∆C = C1 − C2. This is very close to the theoretical optimum in the
oracle setting in (1.6) and is the best rate reported in [CLM18].

Perhaps more importantly, when tested on several real-world datasets such as the
MNIST [LBBH98] and Fashion MNIST [XRV17] image datasets, a surprisingly close match
is observed between theory and practice, thereby conveying a strong applicative motiva-
tion for the study of simple GMM in a high dimensional setting. We will continue this
discussion in more details and justify that this observation is in fact not that surprising in
Section 3.1.1.

All works above are essentially based on a local expansion of the kernel function f ,
which follows from the “concentration” of the similarity measure ‖xi − xj‖2/p or xTi xj/p
around a single value of the smooth domain of f . More precisely, due to the independence
between two data vectors xi, xj, the diagonal and off-diagonal entries of K behave in a
totally different manner. Consider Kij = f (xTi xj/p) with xi ∼ N (0, Ip); we have roughly
f (1) on and f (0) off the diagonal of K, so that most entries (of order O(n2)) of K evaluate
the nonlinear function f around zero. This leads to the “local linearization” of f in the
expression of K̃ in Theorem 1.1 and thereby disregards most of the domain of f .

On the other hand, since xTi xj/
√

p→ N (0, 1) in distribution as p→ ∞ (and is thus of
order O(1) with high probability), it appears that f (xTi xj/

√
p) is a more natural scaling to

avoid an asymptotic linearization of the nonlinear K. Nonetheless, in this case, all diag-
onal entries become ‖xi‖2/

√
p = O(

√
p) and thus evaluate f asymptotically at infinity,

which is again another “improper scaling”, but only on the diagonal of K.
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In the dot product model f (xTi xj/
√

p), the entries will not “concentrate” at f (0). Al-
ternative tool is thus needed in the place of the Taylor expansion, so as to handle the non-
linear function f in this case. This more naturally scaling model was studied in [CS13],
where the authors considered the dot product kernel matrix K, the (i, j) entry of which is
given by

Kij =

{
f (xTi xj/

√
p)/
√

p for i 6= j
0 for i = j

. (1.13)

The more natural
√

p normalization inside f helps, as discussed above, avoid the non-
linear K (asymptotically) acting as a linear model XTX, while the

√
p scaling outside is

simply convenient to ensure the operator norm ‖K‖ is order O(1) for n, p large. Note
that the diagonal elements are discarded since they are now “improperly scaled” for the
evaluation by f .

Again, we are interested in the spectral property of the kernel matrix K defined in
(1.13). For xi ∼ N (0, Ip), the empirical spectral measure µn = 1

n ∑n
i=1 δλi(K) (see Definition 5)

of K has an asymptotically deterministic behavior as n, p → ∞ with p/n → c ∈ (0, ∞).
This limiting spectral measure of K was first characterized in [CS13] and then generalized
in [DV13] to handle random vectors xi with i.i.d. entries of zero mean, unit variance and
finite higher order moments, as summarized in the following theorem.

Theorem 1.2 (Theorem 3.4 in [CS13], Theorem 3 in [DV13]). Under some regularity con-
dition for the kernel function f (see Assumption 3 below), the empirical spectral measure of K
converges weakly and almost surely, as n, p → ∞ with p/n → c ∈ (0, ∞), to a probabil-
ity measure µ. The latter is uniquely defined through its Stieltjes transform m : C+ → C+,
z 7→

∫
(t− z)−1µ(dt) (see also Definition 6 in Section 2.2), given as the unique solution in C+

of the cubic equation3

− 1
m(z)

= z +
a2

1m(z)
c + a1m(z)

+
ν− a2

1
c

m(z)

with a1 = E[ξ f (ξ)] and ν = Var[ f (ξ)] ≥ a2
1 for standard Gaussian ξ ∼ N (0, 1).

The technical approach to achieve Theorem 1.2 is rather different from that of Theo-
rem 1.1. Instead of performing a local Taylor expansion of f , the authors of [CS13, DV13]
rely on the theory of orthogonal polynomials, in particular, of the class of Hermite poly-
nomials defined with respect to the standard Gaussian distribution [AS65, AAR00]. This
thus allows for a polynomial approximation of the nonlinear function f as long as it is
square-integrable, and thus covers naturally non-differentiable kernel functions. Some
useful concepts from the theory of orthogonal polynomial are recalled as follows.

For a probability measure µ, we denote the set of orthogonal polynomials with respect
to the scalar product 〈 f , g〉 =

∫
f gdµ as {Pl(x), l = 0, 1, . . .}, obtained from the Gram-

Schmidt procedure on the monomials {1, x, x2, . . .} such that P0(x) = 1, Pl is of degree
l and 〈Pl1 , Pl2〉 = δl1−l2 . By the Riesz-Fischer theorem [Rud64, Theorem 11.43], for any
function f ∈ L2(µ), the set of squared integrable functions with respect to 〈·, ·〉, one can
formally expand f as

f (x) ∼
∞

∑
l=0

al Pl(x), al =
∫

f (x)Pl(x)dµ(x) (1.14)

3C+ ≡ {z ∈ C, =[z] > 0}. We also recall that, for m(z) the Stieltjes transform of a measure µ, µ can
be obtained from m(z) via µ([a, b]) = limε↓0

1
π

∫ b
a =[m(x + ıε)]dx for all a < b continuity points of µ. See

Section 2.1.2 for more details.
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where “ f ∼ ∑∞
l=0 Pl” indicates that ‖ f −∑N

l=0 Pl‖ → 0 as N → ∞ (and ‖ f ‖2 = 〈 f , f 〉).
To ensure the polynomial approximation is accurate when truncated at a large but

finite degree L, we assume the following assumption holds.

Assumption 3. For each p, let ξp = xTi xj/
√

p and let {Pl,p(x), l ≥ 0} be the set of orthonormal
polynomials with respect to the probability measure µp of ξp. For f ∈ L2(µp) for each p, i.e.,

f (x) ∼
∞

∑
l=0

al,pPl,p(x)

for al,p defined in (1.14), we demand that

1. ∑∞
l=0 al,pPl,p(x)µp(dx) converges in L2(µp) to f (x) uniformly over large p,

2. as p → ∞, ∑∞
l=1 |al,p|2 → ν ∈ [0, ∞). Moreover, for l = 0, 1, 2, al,p converges and we

denote a0, a1 and a2 their limits, respectively.

3. a0 = 0.

Since ξp → N (0, 1) as p → ∞, the limiting parameters a0, a1, a2 and ν are simply
(generalized) moments of the standard Gaussian measure involving f . Precisely,

a0 = E[ f (ξ)], a1 = E[ξ f (ξ)], a2 =
E[(ξ2 − 1) f (ξ)]√

2
=

E[ξ2 f (ξ)]− a0√
2

, ν = Var[ f (ξ)]

for ξ ∼ N (0, 1). These parameters are of crucial significance in determining the eigen-
spectrum behavior of K. For example, the limiting spectral measure is uniquely de-
termined by a1 and ν as per Theorem 1.2. The last assumption a0 = 0 is demanded
here mainly for technical convenience and will not affect the classification performance
in practice, as it adds a non-informative rank one perturbation of the form a0(1n1Tn −
In)/
√

p to the kernel matrix.
The proof of Theorem 1.2 calls for some standard algebraic and probabilistic manipu-

lations in RMT, that will be introduced in Chapter 2. For self-consistency, we include the
intuitive proof for Theorem 1.2 in Section A.1.1 of the appendix.

Theorem 1.2 only gives the (limiting) eigenvalue distribution of the kernel matrix K
in (1.13) under a null model which, from a machine learning perspective, is not sufficient
to decide for example how to choose f with respect to the data/task at hand. Compared
to [CBG16], an important piece of the mixture models is still missing, which leads to our
following investigation.

(C2) Zhenyu Liao and Romain Couillet. Inner-product kernels are asymptotically
equivalent to binary discrete kernels, 2019.

In this contribution we provide, as in Theorem 1.1, a more accessible random matrix
K̃ that is asymptotically equivalent to K, under a two-class multivariate mixture model
(as in Definition 1) for data with covariance Ca = Ip + Ea that satisfies the non-trivial
classification condition of Assumption 2.

Interestingly, K̃ is (again) nothing but the sum of two matrices: i) the null model KN
characterized in Theorem 1.2 that depends on f via the two coefficients a1 and ν and ii)
a low rank and informative matrix K̃I that only depends on a1 and a2. This means that,
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instead of a local behavior of f as in [EK10b, CBG16], the classification performance of
the properly scaled dot product kernel f (xTi xj/

√
p) is related to f in a more “global”, yet

still simple, way only via the three parameters a1, a2 and ν.
On the downside, it must be pointed out that, the studies performed in [CS13, DV13]

(as well as in [LC19a] above) only cover the case of identity covariance C = Ip. By intro-
ducing an arbitrary covariance C and considering xi = C

1
2 zi for zi having i.i.d. entries, the

limiting spectral measure of K becomes technically more challenging since it breaks most
of the orthogonality properties of the orthogonal polynomial approach in the proofs. But
it is a needed extension in pursuit of the general multivariate mixture model, and to com-
pare the performance between different scaling strategies, which is of significant interest
for future investigation.

Random feature approximation of kernels

From a practical standpoint, the computation of the kernel matrix K in (1.9) requires one
to evaluate f for all pairs of (xi, xj). As such, the computational complexity of K grows
quadratically with respect to the number of data points n and can be intense for n large.
In this regard, kernel machines are inappropriate to deal with large scale problems. Also,
they appear to be less efficient in both online applications [VVLGS12] and applications
with privacy concerns [WZWD13].

To cope with this limitation, a large scale kernel approximation technique was origi-
nally introduced in [RR08], where the authors proposed to approximate the shift-invariant
kernels of the type k(xi, xj) = f (xi − xj) with “random Fourier features”. This idea was
then extended to cover other classes of commonly used kernels such as the additive ho-
mogeneous kernels [VZ12] and dot-product kernels [KK12]. The core idea of these ran-
dom feature approximation techniques is based, in a general manner, on the following
remark

Kij = φT(xi)φ(xj) = k(xi, xj) = Ew[ϕ
T
w(xi)ϕw(xj)]

where we shall distinguish the kernel feature map φ : Rp 7→ H that determines the kernel
function k via Mercer’s theorem (and possibly maps to an infinite dimensional space)
from the random feature map ϕw : Rp 7→ Rd that often maps to low dimensional space
(with sometimes d = 1, 2) and depends on the random w. As such, by independently
drawing wi from a predefined distribution, one is able to construct an approximation K̂
of K by replacing the expectation Ew with an empirical average as

K̂ij =
1
N

N

∑
m=1

ϕwm(xi)
Tϕwm(xj). (1.15)

It is desired to have K̂ close to K in some sense, e.g., in their operator norms ‖K− K̂‖ → 0
as N → ∞ for spectrum-based methods.

In the popular example of random Fourier features, one focuses on the family of shift-
invariant kernel functions which depends solely on the difference xi− xj. In the particular
case of the Gaussian kernel, Bochner’s theorem [Rud62] guarantees that

Kij = e−
1
2 ‖xi−xj‖2

= Ew[eıwTxi e−ıwTxj ] ' 1
N

N

∑
m=1

eıwT
mxi e−ıwT

mxj ≡ K̂ij (1.16)

for the random Fourier feature ϕw(x) = eıwTx with w ∼ N (0, Ip). To avoid complex-
valued features, in practice one uses only the real part [RR08], i.e., <[K̂ij]. Also, by con-
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sidering various distributions of w, several other shift-invariant kernels can be approxi-
mated, including the Laplacian and Cauchy kernels, within the general random Fourier
feature framework.

We close this subsection with the final remark that, by cascading the Gaussian wm’s
as row vectors, we obtain a random Gaussian matrix W ∈ RN×p, the entries of which are
independent standard Gaussian random variables, i.e., Wij ∼ N (0, 1). Then, according
to (1.16) we have

<[K̂ij] =
1
N

σ1(Wxi)
Tσ1(Wxj) +

1
N

σ2(Wxi)
Tσ2(Wxj) (1.17)

for σ1(t) = cos(t) and σ2(t) = sin(t), which coincides with the Gram matrix of the single-
layer neural network model with random weights W and cosine+sine activation func-
tions, as detailed in the following subsection.

1.2.2 Random neural networks

A fundamental link exists between random feature maps (and thus random kernel ma-
trices) and neural networks with random weights. Neural networks (NNs) with random
weights have their roots in the pioneering works on the perceptron [Ros58] and have
then been successively revisited and analyzed in a number of works, both in the feed-
forward [SKD92, ASD96] and the recurrent case [Gel93]. More recently, some of these
randomized NN models (the so-called extreme learning machine [HZDZ12] as an exam-
ple for the feed-forward case and the echo state network [Jae01] for the recurrent one)
have been shown to achieve satisfactory performances in some problems (see examples
in the next paragraph), with a relatively short training time and low model complexity.
We refer the readers to [SW17] for a complete overview of randomness in NN models.

Random neural networks are more than a “cheap” way to solve less efficiently a
difficult problem, given the limited computational resources at hand. On the contrary,
they work sufficiently well in many practical scenarios [HZDZ12] and can even some-
times achieve remarkable accuracies that are comparable to deep and finely tuned struc-
tures, in a large number of applications [LML+14]. This seemingly counterintuitive
fact is perhaps the key to a deeper comprehension of the intrinsic properties of differ-
ent NN architectures. Taking the example of convolutional neural networks (CNNs),
it was observed in [JKL09] that, for small datasets, completely random filters are suffi-
cient to propagate useful information through a rectified linear (ReLU) network. This
observation was used to argue for the significance of ReLU nonlinearities and the (con-
volutional) pooling operation in image classification problems, as also pointed out in
[PDDC09, SKC+11, CP11b, GSB16], and in many other tasks such as image reconstruc-
tion [HWH16], denoising and super-resolution [UVL18].

Random NNs have the advantage of being mathematically more tractable, at the same
time preserving the “structural” properties of these elaborate learning systems, e.g., the
use of appropriate nonlinear functions in DNNs or convolutional filters in CNNs. The
study of random NNs can, therefore, shed novel light on the design of more advanced
NN models.

In the training procedure of modern NNs, optimization methods such as (stochastic)
gradient descent and its variants are always initialized randomly, with the NN weights
drawn randomly from a (properly scaled) normal distribution. In this regard, NNs with
random weights are essentially the initial states of well-trained NNs, and can provide
helpful insight into the understanding of modern DNNs, e.g., to accelerate training, at
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least at the very initial stage, by examining the eigenspectrum behavior of the input-
output Jacobian matrix [PSG17], or to gain theoretical insights into the geometric proper-
ties of DNNs [DLT+18, AZLS18]. In these works, the network weights, or training data,
or both of them, are typically assumed to be normally distributed to facilitate theoretical
assessment.

In this manuscript, we focus only on feed-forward NNs. For random recurrent NNs,
RMT-based analyses have also been established, but are mainly restricted to the linear
case [CWSA16].

Let us consider the random weights feed-forward NN with a single hidden layer as
in Figure 1.3.

X ∈ Rp×n

σ
σ
σ
σ
σ

Σ ≡ σ(WX) ∈ RN×nβTΣ

W ∈ RN×pβ ∈ RN×d

Figure 1.3: Illustration of a single-hidden-layer random NN

For a data matrix X =
[
x1, . . . , xn

]
∈ Rp×n, we denote Σ ∈ RN×n the output of

the middle layer comprising of N neurons in total (also referred to as the random feature
matrix) of X by premultiplying some random weight matrix W ∈ RN×p with i.i.d. stan-
dard Gaussian entries and then applying entry-wise some nonlinear activation function
σ : R 7→ R so that Σ ≡ σ(WX) ∈ RN×n, the column vectors σ(Wxi) of which are the asso-
ciated random feature of xi. With Σ, the weights of the second layer β ∈ RN×d are usually
“learned” to adapt the feature matrix Σ to the associated target Y = [y1, . . . , yn] ∈ Rd×n,
for example by minimizing ‖Y− βTΣ‖2

F.
In the case where β is designed to minimize the regularized mean squared error

(MSE) L(β) = 1
n ∑n

i=1 ‖yi − βTσ(Wxi)‖2 + λ‖β‖2
F, for some regularization factor λ ≥ 0,

we obtain the explicit ridge-regressor

β ≡ 1
n

Σ

(
1
n

ΣTΣ + λIn

)−1

YT (1.18)

which follows from differentiating L with respect to β to obtain 0 = λβ + 1
n Σ(ΣTβ− YT)

so that ( 1
n ΣΣT + λIN)β = 1

n ΣYT which, along with ( 1
n ΣΣT + λIN)

−1Σ = Σ( 1
n ΣTΣ +

λIn)−1, gives the result. Note that, similar to the kernel ridge regression investigated
in [LC19b], the resolvent

( 1
n ΣTΣ + λIn

)−1
also plays a central role in the performance

analysis of this network.
The single-hidden-layer random NN model presented above, with the first layer fixed

at random and the second layer performing a ridge regression, is sometimes referred to
as “extreme learning machines” in the literature [HZDZ12]. Note from (1.18) that,

1
n
[ΣTΣ]ij =

1
n

σ(Wxi)
Tσ(Wxj)

which coincides with the approximated kernel matrix from random feature-based tech-
niques in (1.17). From this perspective, the random weights NN model in Figure 1.3 is in
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essence equivalent to a random feature-based kernel ridge regression, i.e., by replacing
the kernel matrix K with its random feature approximation 1

n ΣTΣ and taking b = 0 in the
kernel ridge regression formula in (1.12).

Exploiting the close link between random feature maps (and thus random kernel ma-
trices) and random weights NN models, we evaluate the asymptotic performance of the
single-hidden-layer random NN model in Figure 1.3, in the regime where n, p, N → ∞
with p/n→ c̄1 ∈ (0, ∞) and N/n→ c̄2 ∈ (0, ∞), in the following contribution.

(J2) Cosme Louart, Zhenyu Liao, Romain Couillet. A random matrix approach to
neural networks. The Annals of Applied Probability, 28(2):1190–1248, 2018.

By focusing on the randomness of the network weights W and considering the data-
target pair (X, Y) deterministic, we show that the asymptotic training MSE defined by

Etrain =
1
n

n

∑
i=1
‖yi − βTσ(Wxi)‖2 =

1
n
‖Y− βTΣ‖2

F (1.19)

has an asymptotically deterministic behavior. A conjecture is also provided for the test
MSE on an independent test set (X̂, Ŷ) of size n̂: Etest =

1
n̂‖Ŷ− βTσ(WX̂)‖2

F, which is later
proved in [LC18b] under additional assumptions on X and X̂. Both the training and test
performances of the network depend on the dimensionality of the problem, and on the
data as well as the activation function σ(·) through the “equivalent” kernel matrix

K = Ew[σ(XTw)σ(wTX)] (1.20)

for w ∼ N (0, Ip), which can be explicitly computed via an integration trick [Wil97] for
most commonly used σ. This again confirms the strong connection between random
weights NNs/random feature models and kernel methods.

Moreover, by (additionally) leveraging the stochastic nature of the data, we are able
to dive deeper into the comprehension of (the nonlinearity for instance) in random NN
models, with the help of our previous knowledge on random kernel matrices discussed
Section 1.1.2. This consideration led to the following contribution.

(C3) Zhenyu Liao and Romain Couillet. On the spectrum of random features maps of
high dimensional data. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pages 3063–3071. PMLR, 2018.

In a nutshell, we consider data independently drawn from a GMM (see Definition 1),
and focus on the interplay between the nonlinear activation σ(·) and the data statistics
(µa, Ca). Since only the first and second order statistics are considered here, commonly
used activations σ are naturally divided into the following three classes:

1. the mean-oriented activations, for which the information in covariance Ca (asymp-
totically) does not appear in the equivalent kernel K in (1.20);

2. the covariance-oriented activations, which exploit only the information in Ca with µa
discarded;
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3. the “balanced” activations, that utilize both first and second order statistics of the
data.

A huge gain in classification performance can be observed by applying the nonlinear
activation “adapted” to the data/task. For instance, EEG time series data often contain
richer information in their covariance structures than the handwritten digits of MNIST,
for which the differences in means between classes are more dominant.

In the case of the random feature-based kernel ridge regression in (1.18), we aim to
minimize the square loss between the target and the model output. There exist many
other loss functions with solutions significantly differing from one another. The square
loss turns out to be a convenient choice since it often leads to closed-form solutions as in
(1.18). In many other cases, it is hardly possible to obtain closed-form solutions. Indeed,
most commonly used machine learning systems (as simple as logistic regression) arise
from generic optimization problems that may only take implicit forms. The performance
assessment of such implicit systems is, albeit more challenging, a necessary extension
for the proposed RMT-based analysis framework, as shall be discussed in the following
subsection.

1.2.3 Beyond the square loss: the empirical risk minimization framework

Other loss functions, rather than square loss, can also be used as optimization metrics. In
classification applications, it is commonly considered more appropriate to learn a classi-
fier β ∈ Rp using the following cross-entropy loss

L(β) = − 1
n

n

∑
i=1

[
yi log(σ(βTxi)) + (1− yi) log(1− σ(βTxi))

]
(1.21)

with σ(t) = (1 + e−t)−1 the logistic sigmoid function, for label yi ∈ {0, 1} and feature
vectors xi ∈ Rp. This leads to the logistic regression model that, unfortunately, does not
admit an explicit solution. The fact that the resulting classifier β arises from an implicit
optimization problem makes the performance evaluation technically more challenging,
mainly due to the complex dependence between the learned parameter β and the train-
ing set {xi, yi}n

i=1: it is thus less direct to assess the statistical behavior of β, and this gets
even worse with the logistic sigmoid nonlinearity σ. Despite all the technical difficul-
ties mentioned above, it is nonetheless possible to pursue a stochastic description of β
and consequently to evaluate the performance of, not only the logistic regression classi-
fier, but also of any differentiable convex loss L that falls into the general empirical risk
minimization framework, as briefly recalled below.

First note that the logistic sigmoid function is symmetric with respect to the labels
{0, 1}: σ(t) + σ(−t) = 1. Equation (1.21) can thus be rewritten as the minimization of
1
n ∑n

i=1 L(ỹiβ
Txi), for L(t) = log(1 + e−t) and ỹi = (2yi − 1) ∈ {−1, 1}. In fact, logistic

regression is a special case of the general empirical risk minimization framework formu-
lated as

min
β∈Rp

1
n

n

∑
i=1

L(ỹiβ
Txi) +

λ

2
‖β‖2 (1.22)

for some nonnegative convex loss function L : R 7→ R and regularization factor λ ≥ 0.
With the logistic loss L(t) = log(1 + e−t) one gets the logistic regression formulation as
in (1.21), while the least squares classifier (or ridge regressor) is obtained with the square
loss L(t) = (t − 1)2. Another popular choice is the exponential loss L(t) = e−t that is
widely used in boosting algorithms [FSA99].
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The empirical minimization principle was first proposed in [Vap92] based on the fol-
lowing consideration: in a binary classification problem, given a training set of n data
xi ∈ Rp with associated label ỹi ∈ {−1, 1}, i = 1, . . . , n, one wishes to to “learn” a (soft)
linear classifier β ∈ Rp from the available training set such that the thresholded output
sign(βTxi) (the “hard” classifier) matches the corresponding label ỹi, i.e., ỹi = sign(βTxi),
for all data-label pair (xi, ỹi) in the training set as well as for unseen x following the same
distribution.

In pursuit of a good classifier β, a first selection for the loss function is the classifica-
tion error (also known as the 0− 1 loss, in red below) on the given training set. Despite
being the most natural choice, the minimization of the non-convex and non-smooth 0− 1
loss is unfortunately proved to be an NP-hard combinatorial optimization problem in
the worst case [BDEL03]. In this regard, many convex surrogate losses are proposed,
such as the (non-smooth) hinge loss L(t) = max(1− t, 0) used in SVMs (in black), the
logistic loss (in green) L(t) = log(1 + e−t) used in logistic regression and the square loss
L(t) = (t− 1)2 (in blue) for linear regression. See Figure 1.4 for an illustration of these
different losses for classification.

Figure 1.4: Different loss functions for classification: 0− 1 loss (red), logistic loss (green),
exponential loss (purple), square loss (blue) and hinge loss (black).

Within the empirical risk framework, the comparison between different designs of
loss functions has been long discussed in the statistical learning literature [Vap92, RVC+04,
MSV09], mostly in the setting where the number of training data n largely exceeds their
dimension p. It was shown in [RVC+04] that, in the limit of large n with p fixed, all convex
loss functions mentioned above yield the same Bayes optimal solution β∗ that minimizes
the 0− 1 loss. Meanwhile, they differ in their rates of convergence (with respect to n) and
in this respect, the non-smooth hinge loss is as efficient as the logistic loss, which is much
better than the square loss.

The case where n is not much larger than p was not taken into consideration until
very recently, mainly due to the fact that, instead of converging to its expectation as
when n� p, the learned parameter β remains random in the (comparably) large n, p limit
and makes its statistical properties less tractable. Relying on ideas from random matrix
theory, in [EKBB+13, DM16] the authors managed to capture the stochastic behavior of
the M-estimators popularly used in robust statistics that have a similar formulation as in
(1.22), but with a loss of the type L(yi − βTxi).

In a more recent line of works [SC18, CS18], the authors considered the logistic re-
gression model for i.i.d. Gaussian feature xi ∼ N (0, Ip) and showed that, in the regime
of n, p → ∞ with p/n → c̄ ∈ (0, ∞), the learned β is not only biased, but also has a
greater variability than classically predicted [SC18]. Indeed, it was shown in [CS18] that,
without regularization (λ = 0 in (1.22)), there exists a sharp “phase transition” thresh-
old for the ratio p/n above which the logistic regression solution almost surely does not
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exist.4

The results presented above demonstrate the counterintuitive behaviors of not only
logistic regression but more generally of the family of empirical risk minimization classi-
fiers in (1.22), where n, p are both large and comparable. As such, a random matrix-based
refinement is needed, to gain a better understanding of these statistical learning methods
for large dimensional problems, to correct the “bias” induced by the fact that p ∼ n and
to determine the (problem-dependent) optimal choice of the loss function.

We go beyond the logistic regression setting and consider any twice differentiable and
convex loss function L in the following contributions.

(C4) Xiaoyi Mai, Zhenyu Liao, and Romain Couillet. A large scale analysis of logistic
regression: Asymptotic performance and new insights. In 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3357–3361.
2019.

(J3) Xiaoyi Mai and Zhenyu Liao. High dimensional classification via empirical risk
minimization: Improvements and optimality. (Submitted to) IEEE Transactions on
Signal Processing, 2019. (Collaborative work not involving the Ph.D. advisors)

Built upon a symmetric two-class GMM (i.e., −µ1 = µ2 = µ and C1 = C2 = C) for
the features, we provide, as in [EKBB+13, DM16], an asymptotic stochastic description of
the learned parameter β (that minimizes (1.22) with λ = 0)

‖β− β̃‖ → 0, β̃ ∼ N
( η

2τ
β∗,

γ

nτ
Ip

)
with β∗ = 2C−1µ the optimal Bayes solution in this setting and constant parameters
(η, γ, τ) ∈ R3 determined by the loss L and the statistics µ, C, via a system of fixed
point equations. In particular, we show that in separating two large dimensional Gaus-
sians with the same covariance C and opposite means ±µ, the optimal loss (in the for-
mulation of (1.22) with λ = 0) is the square loss, which always outperforms the maxi-
mum likelihood solution (logistic regression in this case), in the regime n, p → ∞ and
p/n→ c̄ ∈ (0, ∞). This result is achieved by combining RMT techniques with a heuristic
“leave-one-out” approach and will be discussed at length in Section 3.3.

1.2.4 Summary of Section 1.2

In this section, under the high dimensional setting n, p → ∞ with p/n → c̄ ∈ (0, ∞) and
a multivariate mixture model (Definition 1) for the input data, we discussed three closely
related objects: the kernel matrices built from pairwise comparisons of data points, the
random feature maps designed to approximate kernel matrices and the resulting ran-
dom NN models. We examined the performances of these three models in minimiz-
ing the square loss and particularly focus on the role played by the nonlinearity therein

4To make this clear, let us consider the classical example of completely separable training data (xi, ỹi) of
size n, namely, there exists a linear decision boundary b ∈ Rp such that for i = 1, . . . , n, one has ỹibTxi > 0.
In this case, taking λ = 0 and L(t) = log(1 + e−t), the minimization of (1.22) with iterative methods such as
gradient descent leads to the solution β = αb with α → ∞, for any given n, p. Hence, the logistic regressor
exists only when the data points “overlap”. In the large n, p regime, not only the overlap between data
points, but also a sufficient large n/p is indispensable for the existence of a logistic regression solution.
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(kernel and activation functions). When more general losses are considered, the (extra)
nonlinearity from the loss makes these learning systems less tractable and calls for more
advanced tools.

We reviewed some recent advances in the understanding of these large dimensional
learning systems and discussed very briefly the main technical approaches on which
these theoretical results rely. As has been discussed respectively in Section 1.1.1 and 1.1.2,
due to the high dimensional nature of the problem when n, p are comparably large, clas-
sical asymptotic statistics fail to predict the performance of neither sample covariance
matrices, nor random kernel matrices.

Since random feature maps do no more than approximating kernel matrices, and sim-
ple random NNs are indeed random feature-based ridge regressions, all these objects of
interest are not working in the expected way they were originally designed for. Conse-
quently, we need a careful refinement of these learning methods, if we are not working
with n � 100p (see again our argument in Remark 1.2), which is almost always the case
in practical machine learning applications.

In the topics addressed in this section, we hardly specified the underlying optimization
method used to obtain the desired solution. As mentioned in Section 1.2.3, with the
cross-entropy loss in (1.21), optimization methods such as gradient descent is needed to
minimize the objective function. In the following section, we consider the “optimization”
aspect of these learning systems, with a particular emphasis on NN models trained with
gradient-based methods.

1.3 Training Neural Networks with Gradient Descent

Despite their rapidly growing list of successful applications in as diverse fields as com-
puter vision [KSH12], speech recognition [MDH11] and natural language processing
[CW08], our theoretical comprehension of DNNs, is developing at a much more mod-
est pace.

Two salient features of these large neural networks are: i) despite being non-convex
optimization problems, training DNN models with simple algorithms such as (stochastic)
gradient descent seems always to be able to achieve minimal error and ii) even though
they often have far more model parameters than the number of data they are trained
on, some models still exhibit remarkably good generalization performance, while others
generalize poorly in exactly the same setting [ZBH+16]. A much-expected explanation
of these phenomena would be the key to more powerful and reliable network structures.

In this section, we examine the training of NN models with gradient descent algo-
rithms from a “dynamical” standpoint and consider the temporal evolution of both the
network weights and the resulting performance. Starting from the toy model of a single-
layer linear and convex network (with a unique minimum), in Section 1.3.1 we focus on
the gradient descent dynamics (GDDs) and provide a precise characterization of both the
training and test performances, as a function of the training time, via a random matrix-
based analysis.

When deeper networks (with the number of hidden layers H ≥ 1) are considered,
the optimization of such networks becomes non-convex and more challenging. In Sec-
tion 1.3.2 we review some basic notions of optimization (with an emphasis on non-convex
problems), and discuss some particularly interesting situations in which the underlying
non-convex optimization becomes tractable and for which one can always find an optimal
solution with simple gradient-based methods, sometimes even in linear time.



1.3. TRAINING NEURAL NETWORKS WITH GRADIENT DESCENT 27

1.3.1 A random matrix viewpoint

In [SMG13] the authors proposed to study the “dynamics” of gradient descent algorithms
in linear DNN models. Despite the linearity of their input-output map, linear networks
have highly nonlinear training error behaviors as a function of the time when trained
with gradient descent methods. This “learning dynamic” of linear NNs was shown to be
closely connected to the eigenvalues of the input-output covariance/correlation matrix.
As further justification for their study, empirical evidence was provided showing that the
learning dynamics of nonlinear NN, despite being mathematically less tractable due to
the (entry-wise) nonlinear activations, exhibit similar behavior to the linear case.

More recently in [AS17], under a teacher-student network setting where a student net-
work tries to “learn” from the noisy samples generated by a predefined teacher network,
the authors investigated both the training and test errors, as a function of the gradient
descent training time. More precisely, assume a training data matrix X =

[
x1, . . . , xn

]
∈

Rp×n with associated target/label yT =
[
y1, . . . , yn

]
∈ Rn. With the training pair (X, y),

a weight vector w ∈ Rp is learned using “full-batch” gradient descent to minimize the
regularized square loss

L(w) =
1

2n
‖y− XTw‖2 +

λ

2
‖w‖2. (1.23)

The gradient of L with respect to w is thus given by∇wL(w) = − 1
n X(y− XTw) + λw so

that with a small gradient descent step (or, learning rate) α, we obtain, by performing a
continuous-time approximation, the following differential equation

dw(t)
dt

= −α∇wL(w) =
α

n
X(y− XTw)− αλw

the solution of which is explicitly given as

w(t) = e−αt( 1
n XXT+λIp)w0 +

(
Ip − e−αt( 1

n XXT+λIp)
)

wLS (1.24)

where we denote wLS = ( 1
n XXT + λIp)−1 1

n Xy the classical ridge regression solution with
regularization parameter λ ≥ 0 and w0 = w(t = 0) the initialization of gradient descent.
We recall the definition of the exponential of a symmetric matrix A

eA =
∞

∑
k=0

1
k!

Ak = VAeΛA VT
A

with the eigendecomposition of A = VAΛAVT
A and eΛA the diagonal matrix with ele-

ments equal to the exponential of the diagonal elements of ΛA.
Equation (1.24) tells us that the temporal evolution of both the weight vector w(t)

and the network performance5 are in fact functionals of the (regularized) sample covari-
ance matrix 1

n XXT + λIp, the evaluation of which is made possible with our proposed
resolvent-based RMT techniques and led to the following contribution.

(C5) Zhenyu Liao and Romain Couillet. The dynamics of learning: a random matrix
approach. In Proceedings of the 35th International Conference on Machine Learning,
volume 80, pages 3072–3081. PMLR, 2018.

5e.g., the prediction risk Etest(t) = E(x̂,ŷ)‖ŷ−w(t)Tx̂‖2 under a regression setting on a test set (x̂, ŷ) or
the correct classification rate P(sign(x̂Tw(t)) = ŷ) for an unseen new datum x̂ (of underlying label ŷ).
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Different from all aforementioned works [SMG13, AS17] where no structure is con-
sidered within the data (i.e., data indeed come from the same distribution class), in this
contribution, we instead study the GDD of a linear regression model in separating a two-
class GMM (Definition 1) with opposite means ±µ and identity covariance C1 = C2 = Ip
that are assigned labels −1 and 1, respectively. We propose a general RMT-based frame-
work to characterize the learning dynamics of this simple model, in the regime where
n, p → ∞ with p/n → c ∈ (0, ∞) and extend the analysis in [AS17] to a classification
setting for more natural “structural” data. Similar objectives cannot be achieved within
the framework presented in [AS17], which conveys more practical interest to our results
and the proposed analysis framework.

As an important special case, by taking the training time t → ∞ and λ = 0 in (1.24),
one obtains the “over-trained” model which is the least-squares solution. In this case, the
classification error rate on a new datum x̂ can be consequently shown to be

P(sign(x̂TwLS) 6= ŷ) = Q

(
‖µ‖2

√
1−min(c, c−1)√
‖µ‖2 + c

)
with Q(x) the Gaussian tail function and admits a singularity at c = 1; see Figure 1.5 with
‖µ‖2 = 5. This sharp drop in performance around c = 1 can be alleviated, if appropriate
regularization techniques such as early stopping are adopted.
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Figure 1.5: Classification error rate as a function of c, ‖µ‖2 = 5.

The fact that the prediction risk blows up around c ≡ lim p/n = 1 in Figure 1.5 indi-
cates the existence of a surprising “double-descent” phenomenon, where one observes,
for a given dimension p that the performance of wLS first gets worse as the sample size
n grows large (when n < p), which totally collapses to random guess at the point n = p
and starts to increases rapidly when n > p. Moreover, in this simple model, the number
of model parameters N coincides with the data dimension p, so that for a fixed sample
size n, having a more complicated system (with larger N) can lead to a lower prediction
risk in the “over-parameterized” regime where N > n. This suggests that one must re-
consider the golden rule of the bias-variance tradeoff in classical statistical learning theory
[FHT01].

1.3.2 A geometric approach

From an optimization viewpoint, understanding DNN models is challenging mainly due
to the cascading layers with entry-wise nonlinearity between them. This construction
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naturally gives rise to non-convex optimization problems that are seemingly intractable.
In general, finding the global minimum of a non-convex function is, in the worst case,
an NP-complete problem [MK87] and it is unfortunately the case for NN models [BR89].
Yet, many non-convex optimization problems including tensor decomposition, matrix
completion, dictionary learning, matrix sensing, and phase retrieval are known to have
well-behaved optimization landscapes: under some technical conditions, all local min-
ima are also global [GJZ17, CLC18]. This interesting global geometric property, together
with some local considerations, e.g., any saddle point has a negative directional curvature
(i.e., has at least one strictly negative eigenvalue in its Hessian, which makes it possible
to continue to decrease the objective function locally), allows for solving efficiently these
problems with basic optimization algorithms such as (stochastic) gradient descent. We
will discuss this geometric aspect of optimizing NN models in this subsection.

More generally, consider the following minimization problem (which is a more gen-
eral form of (1.22) with the possible regularization term included in L)

min
θ∈RN

1
n

n

∑
i=1

L(h(xi, θ), yi) (1.25)

for a given training set {xi, yi}n
i=1 of size n. The loss function L is often convex (with

respect to both h(xi, θ) and yi), for example variants of those in Figure 1.4. Yet, depending
on the application of interest, the system model h(xi, θ) can be highly nonlinear, non-
convex (with respect to the model parameter θ) and even non-smooth, which is more
challenging from an optimization standpoint.

Stationary points: a local image. In the case of large-scale problems (N � n � 1),
gradient-based methods are often among the most efficient, if not the only, ways to solve
(1.25), despite the existence of more advanced optimization methods in the general dif-
ferentiable programming context. For instance, some second-order (or Hessian-based)
optimization algorithms with Hessian information (such as the Newton’s method) is ca-
pable of finding second-order stationary points (see definition below) [NP06], but they
typically require to compute at every iteration the inverse or spectral decomposition of
the full Hessian matrix of dimension N × N, which is computationally unaffordable for
N large.

Solving non-convex problems without higher order information (e.g., Hessian) is
challenging, since gradient-based methods stop moving forward as long as the gradi-
ent norm ‖∇θL(·)‖ is small, which can be far away from the desired global minimizer of
the non-convex (with respect to the model parameter θ) objective function L(·) in (1.25).
To make this more clear, let us introduce the following definitions.

Definition 2 (Stationary points). Denote ∇L(·) and ∇L2(·) respectively the gradient and the
Hessian of the twice differentiable objective function L with respect to the model parameter θ. We
say θ∗ is a first-order stationary point (or critical point) of L if

∇L(θ∗) = 0⇔ ‖∇L(θ∗)‖ = 0

In practice, the notion of first-order stationarity can be extended to include some numeric tolerance
ε: we say θ∗ is an ε-first-order stationary point if ‖∇L(θ∗)‖ ≤ ε for some ε > 0.

First-order stationary points can be divided into the following three categories (see Figure 1.6
for examples of each type), depending on the local behavior of L in the neighborhood of θ∗:

1. local minima: we say θ∗ is a local minimum if there exists ε > 0 such that for all θ in the
ε-neighborhood of θ∗ (e.g., ‖θ− θ∗‖ ≤ ε) we have L(θ∗) ≤ L(θ), as in Figure 1.6a;
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2. local maxima: we say θ∗ is a local maximum if there exists ε > 0 such that for all θ in the
ε-neighborhood of θ∗ we have L(θ∗) ≥ L(θ), as in Figure 1.6b;

3. saddle points: first-order stationary points that are neither minima nor maxima, as in
Figure 1.6c.

(a) Local minimum (b) Local maximum (c) Saddle point

Figure 1.6: Illustration of three types of stationary points in one dimension.

Whether a given first-order stationary point is a local minimum, a local maximum or a saddle
point is closely related to the associated Hessian matrix ∇L2(θ∗) ∈ RN×N , more precisely

1. If θ∗ is a local minimum, the Hessian must be positive semidefinite, i.e., λmin(∇L2(θ∗)) ≥
0. Conversely, if the Hessian is positive definite, then θ∗ must be a local minimum.

2. If θ∗ is a local maximum, the Hessian must be negative semidefinite, i.e., λmax(∇L2(θ∗)) ≤
0. Conversely, if the Hessian is negative definite, then θ∗ must be a local maximum.

3. Consequently, if the associated Hessian is neither positive nor negative semidefinite, or
equivalently, has both positive and negative eigenvalues, θ∗ must be a saddle point.

As such, by examining the smallest or largest eigenvalue of the associated Hessian matrix, one
can sometimes determine weather a first-order stationary point is a local minimum or maximum:
this is referred to as the “second partial derivative test”. It is worth pointing out that, if the
associated Hessian is degenerate, i.e., det(∇L2(θ∗)) = 0 and thus admits (at least one) zero
eigenvalue, the second partial derivative is inconclusive: in the case of the first and second item
listed above, having a zero eigenvalue rules out the possibility of both λmin(∇L2(θ∗)) > 0 and
λmax(∇L2(θ∗)) < 0, but θ∗ can still be a local extremum or a saddle point.

Aiming at minimizing the objective function L, we say a first-order stationary point θ∗ is a
second-order stationary point if

λmin(∇L2(θ∗)) ≥ 0

which is indeed a necessary but not sufficient condition for a local minimum since it does not
rule out the possibility of being a saddle point with degenerate Hessian (such that λmin(∇L2(θ∗)) =
0). For all objects defined above, their ε-tolerance versions can be similarly defined by replacing
zero with some ε > 0.

More generally, a stationary point with degenerate Hessian often demands higher
(≥ 3) order information to decide to which type it belongs. If all eigenvalues of the
Hessian has relatively small amplitude, the local “landscape” of the objective function L
is very “flat” and taking a small step in no matter which direction results in a very slight
change in the value of L. Therefore, it often takes a long time, if still possible, to escape
from this kind of regions.
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Let us consider some concrete examples in 2D, i.e., θ ∈ R2. In Figure 1.7a we plot the
function L(θ1, θ2) = (θ1 − θ2)2, the set of first-order stationary points of which is the line
θ1 = θ2, with the corresponding Hessian given by

∇2L(θ1, θ2) =

 ∂2L
∂θ2

1

∂2L
∂θ1∂θ2

∂2L
∂θ2∂θ1

∂2L
∂θ2

2

 =

[
2 −2
−2 2

]
that has eigenvalues (constantly) equal to λ1 = 0 and λ2 = 4. In this example, albeit
the degeneration of the Hessian (and thus the invariance of the objective function when
moving in the direction of the eigenvector6 associated to the zero eigenvalue), all station-
ary points are indeed local minima. To institute a comparison, we plot in Figure 1.7b a
more “classical” saddle point (at (0, 0)) of the objective L(θ1, θ2) = θ2

1 − θ2
2 , the Hessian

of which admits two eigenvalues λ1 = −2 and λ2 = 2, so that the saddle point is “insta-
ble” and there is a way “out” locally (to continue to decrease the value of L) due to the
existence of the negative eigenvalue λ1 = −2.

−2
0

2

−2

0

2
θ1

θ2

(a) L(θ1, θ2) = (θ1 − θ2)
2.

−2
0

2 −2

0

2

θ1
θ2

(b) L(θ1, θ2) = θ2
1 − θ2

2 .

0 1−1
−0.5

0

θ1
θ2

(c) L = (θ1 + θ2)(θ1θ2 + θ1θ2
2).

Figure 1.7: Examples of stationary points in two-dimensional case.

Things become more complicated in the example of Figure 1.7c with L(θ1, θ2) = (θ1 +
θ2)(θ1θ2 + θ1θ2

2) that admits the following four first-order stationary points

z1 : (0, 0); z2 : (0,−1); z3 : (1,−1); z4 : (3/8,−3/4)

with Hessian eigenvalues respectively given as

z1 : λ1 = λ2 = 0; z2 : λ1 = −1, λ2 = 1;
z3 : λ1 = −1292/305, λ2 = 305/1292; z4 : λ1 = −1743/1436, λ2 = −450/1351.

Therefore, z2 and z3 are saddle points with both positive and negative eigenvalues, z4
is a local maximum; while for z1 the second derivative test is not enough and one must
use higher order test to examine the behavior of L at this point.

To avoid the difficulty in the case of degenerate Hessians, in [GHJY15] the authors
introduced the following “strict saddle” property.

Definition 3 (Strict saddle, Definition 4 in [GHJY15]). A twice differentiable function is said
to have strict saddles, if, apart from the local minima, all its first-order stationary points have
at least one negative eigenvalue for the associated Hessian, i.e., λmin(∇2L(θ∗)) < 0. A more
numerically robust version can be similarly defined as λmin(∇2L(θ∗)) < −ε for some ε > 0.

Having “strict saddles” makes it possible to make some progress to (continue to) de-
crease the objective function, at least locally.

6Which happens to be again the line θ1 = θ2 in Figure 1.7a.
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Global min

“Bad” local min

“Good” local min

x

L(
x)

Figure 1.8: Examples of different local minima.

Global guarantee of non-convex optimization. Until now, we have been focusing on
the local image of the optimization landscape, which is unfortunately far from our initial
goal of achieving a global minimum. Indeed, if the “strict saddle” property is satisfied, it
is possible for gradient-based algorithm to (locally) escape from saddle points and con-
tinue to decrease the loss function. Nonetheless, it may still get stuck in a local minimum.
Different from the convex case in Figure 1.7a, where the convex (but not strictly convex)
objective function L(θ1, θ2) = (θ1 − θ2)2 has a connected region of local (and global) min-
ima: θ1 = θ2, a non-convex loss function L may have many “isolated” local minimum
regions that are separated by higher values of the loss L. Among these regions, some
are desired global minima that reach the smallest possible loss Lmin and some are “bad”
local minima that have much greater loss values than Lmin. There may also exist “good”
local minima with a relatively small loss but still slightly larger than Lmin and can be
considered satisfying solutions of the minimization, as illustrated in Figure 1.8.

The isolation between local minimum regions creates many “local valleys” of the loss
landscape. Very interestingly, there are both empirical evidence [DVSH18, GIP+18] and
theoretical arguments [FB16] stating that in modern DNNs, most of these “local valleys”
are essentially “connected”: i.e., it is possible to construct continuous paths that connect all
these local minimum regions, along which the loss L remains very close to Lmin, as shown
in Figure 1.9 (which could be considered a possible 2D representation of Figure 1.8).

Figure 1.9: Minimum energy path (left) and associated loss value (right) in [DVSH18,
Figure 1].

Consider now the (more ideal) case that all local minima (connected or isolated) have
exactly the same loss value. This means that for the optimization problem under study,



1.3. TRAINING NEURAL NETWORKS WITH GRADIENT DESCENT 33

all local minima are global. This rules out the presence of “bad” local minima which, to-
gether with the strict saddle points property in Definition 3, makes it possible for simple
gradient-based algorithms (such as GD or SGD) to achieve a global convergence with a
guaranteed rate.

To sum up, the key to handle many non-convex optimization problems is to have both

1. a nice local property: for example the “strict saddle” property in Definition 3;

2. some global guarantee: for instance the “all local minima are global” property.

Although seemingly restrictive, both properties are actually satisfied (under some di-
mensionality condition and at least with high probability) by many non-convex opti-
mization problems of considerable practical interest: many low rank problems includ-
ing matrix sensing, phase retrieval, matrix completion, robust PCA and many others
[GJZ17, CLC18].

In the particular case of neural networks, it was shown in [BH89] that for single-
hidden-layer linear NNs with square loss and under some dimensionality condition, all
local minima are essentially global and there is no local maximum (the rest are all sad-
dle points). This result was then extended to deep linear NNs in [Kaw16] in which the
author showed that the same conclusion holds for DNNs with arbitrary H ≥ 1 hidden
layers. Perhaps more importantly, a necessary condition (on the rank on the weight ma-
trix product) was given in [Kaw16] to ensure the associated Hessian have at least one
negative eigenvalue [Kaw16, Theorem 2.3]. This implies the existence of saddle points
with positive semidefinite Hessian, for which higher order derivatives will be indispens-
able for a thorough understanding of these (first-order) stationary points. More precisely,
single-hidden-layer (H = 1) linear NN models are proven to have strict saddles, which
is used for instance in [LSJR16] to show almost sure (with respect to the initialization in
a Lebesgue measure sense) convergence to global minima in this case; while for H ≥ 2 a
counterexample was provided in [Kaw16].

We focus in this manuscript on the gradient flow, for linear NN models in the follow-
ing contribution.

(J4) Yacine Chitour, Zhenyu Liao, and Romain Couillet. A geometric approach of
gradient descent algorithms in neural networks. (Submitted to) Journal of Differ-
ential Equations, 2019.

Based on a cornerstone “invariance” in the parameter/network weights space in-
duced by the network cascading structure, we prove the existence for all time of trajec-
tories associated with gradient descent algorithms in linear networks with an arbitrary
number of layers and the convergence of these trajectories to first order stationary points
of the loss function. We also prove the exponential/linear convergence of trajectories un-
der an extra condition on their initializations. We propose alternative proof of the “almost
sure convergence to global minima” fact in single-hidden-layer linear NN model, which
holds true without the technical and unrealistic assumptions demanded in [LSJR16].

1.3.3 Summary of Section 1.3

In this section, we discussed the optimization perspective of large dimensional machine
learning problems, and in particular, NN models trained with gradient descent meth-
ods. In Section 1.3.1, inspired by recent advances in [SMG13, AS17], we introduced a
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RMT-based analysis framework to investigate the GDDs in a linear convex NN model
under a GMM (see Definition 1) for the input feature. We found a huge gap between the
training and test performances of the least-square solution when the number of param-
eters gets close to the number of training data, that can be efficiently reduced with the
early stopping strategy. This suggests that the use of gradient descent plays an important
role in regularizing the least-square solution, and sheds new light on the training of large
dimensional learning systems.

In Section 1.3.2 we recalled the preliminary local descriptions of (first-order) station-
ary points in the general context of differentiable programming, with a particular focus
on non-convex optimization. We saw that, if both conditions of “strict saddles” and “all
local are global” are met, simple gradient-based algorithms such as GD or SGD can ben-
efit from a global convergence to global minima, from almost all initializations. It is
moreover possible to speed up the convergence, if the underlying non-convex problem is
known to have some nice (statistical) structure, by properly initializing (often with spec-
tral methods) the descent algorithm within some locally convex valley: we will come
back to this point in Chapter 5.

1.4 Outline and Contributions

As stated in the previous sections, this manuscript covers both a “structural” viewpoint
of large random kernel matrices and neural networks by considering their eigenspectrum
behavior, as well as the “dynamical” optimization aspect of learning in neural networks
by means of the corresponding gradient descent dynamics. As a first major contribution,
we study the eigenspectrum properties of these large nonlinear learning systems, under
a multivariate mixture model (see Definition 1) for the input feature, so as to examine
the subtle yet crucial interplay between the nonlinearity (of the kernel function f , the
nonlinear activation σ and the loss function L), the feature statistics (limited to first and
second here but is envisioned to go well beyond, see our arguments in Remark 1.3 and 2.5
later in Section 2.2.2) as well as the problem dimensionality. The second main contribu-
tion is the characterization of the gradient descent dynamics (GDDs) in learning both
zero- and single-hidden-layer linear NN models, which opens the door to a more general
RMT-based consideration of non-convex optimization problems.

The remainder of the manuscript is organized as follows. In Chapter 2 we intro-
duce the mathematical framework of random matrix theory, with helpful preliminaries
on linear algebra, probability theory, and complex analysis. In Chapter 3, we start the
discussion of large random kernel matrices with the concrete example of kernel ridge re-
gression, or equivalently least squares support vector machines (LS-SVMs), which serves
as the cornerstone of subsequent models such as random feature-based methods and
random NNs. We will also briefly mention the additional tool needed in handling im-
plicit (convex) optimization problems (e.g., logistic regression) that are technically more
involved. Then in Chapter 4, random matrix techniques are combined with ideas from
dynamical systems to study the gradient descent dynamics in training simple NNs, first
from a statistical standpoint without hidden layer (i.e., linear regression model) and then
with a “geometric” approach to deal with the extra hidden layers in linear networks. In
Chapter 5 we provide a quick summary of this manuscript, and perhaps more impor-
tantly, discuss some possible limitations of the presented results and eventually some
future perspectives within the general context of large dimensional machine learning.

We start with the analysis of the classification performance of kernel ridge regression



1.4. OUTLINE AND CONTRIBUTIONS 35

(or LS-SVM) in Section 3.1.1, which helps understand the counterintuitive behavior of
kernel matrices for large dimensional data discussed in Section 1.1.2. Based on a GMM
for the input data (see again Definition 1), we show that, for any locally twice differen-
tiable function f , the soft decision function of the kernel ridge regression is asymptoti-
cally normally distributed, the mean and variance of which depend on the statistics of
mixture model (µa, Ca), the dimensionality and the function f in a local manner. This
theoretical result leads to a novel understanding of the negative impact of imbalanced
data in LS-SVM classification and shows an unexpectedly close match when applied on
popular image classification datasets. This finding was first reported in

(C1) Zhenyu Liao and Romain Couillet. Random matrices meet machine learning: a
large dimensional analysis of LS-SVM. In 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 2397–2401. 2017.

and then with more discussions and detailed proofs in

(J1) Zhenyu Liao and Romain Couillet. A large dimensional analysis of least squares
support vector machines. IEEE Transactions on Signal Processing, 67(4):1065–1074,
2019.

The theoretical analysis of LS-SVM presented above are essentially built upon a lo-
cal expansion of the nonlinearity, which is only possible when the similarity measures
under study (‖xi − xj‖2/p or xTi xj/p) establish a “concentration” around a single point
of the nonlinear function f . With a more natural

√
p scaling, one results in the inner-

product kernel that takes the form Kij = f (xTi xj/
√

p)/
√

p. Very interestingly, the eigen-
spectrum of K is shown to only depend on three scalar parameters of the possibly non-
differentiable f . This finding is discussed at length in Section 3.1.2 and reported in

(C2) Zhenyu Liao and Romain Couillet. Inner-product kernels are asymptotically equiv-
alent to binary discrete kernels, 2019.

Section 3.2 begins with the discussion on single-hidden-layer random weights NN,
or equivalently the random feature-based ridge regression in Figure 1.3. For compara-
bly large n, p, N, we show that for all dimension-free Lipschitz nonlinear activation σ(·),
the random Gram matrix G ≡ 1

n ΣTΣ has an asymptotically tractable behavior, that de-
pends solely on σ via the associated underlying kernel K ≡ Ew[σ(XTw)σ(wTX)] for w ∼
N (0, Ip). As a consequence, the training MSE can be shown to have an asymptotically
(data-dependent) deterministic behavior, with a conjecture provided for the test MSE
(and confirmed later in [LC18b]). This work, discussed in more detail in Section 3.2.1, led
to the following publication.

(J2) Cosme Louart, Zhenyu Liao, Romain Couillet. A random matrix approach to neu-
ral networks. The Annals of Applied Probability, 28(2):1190–1248, 2018.

In pursuit of a more explicit recognition of the mechanism of different nonlinear ac-
tivations, we examine the eigenspectrum of the underlying kernel K, by additionally
leveraging the stochastic nature of the data (that are assumed to follow a GMM). We
show that, depending on whether the first order (µa), or second order (Ca) information
or both, are conserved after the application of both the random weights W and the entry-
wise nonlinearity σ(·). As briefly discussed in Section 1.2.2, commonly used activations
are divided into three categories of mean-oriented, covariance-oriented and balanced.
This result, discussed in Section 3.2.2, led to the following contribution.
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(C3) Zhenyu Liao and Romain Couillet. On the spectrum of random features maps of
high dimensional data. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pages 3063–3071. PMLR, 2018.

In Section 3.3 we consider the more generic (and more involved) convex losses (rather
than the squares loss treated in Section 3.2.1 that conducts to explicit solutions) in a mix-
ture classification context and focus mainly on the technical ingredients needed to handle
implicit and highly dependent learning systems. This work was reported in ICASSP 2019
with a journal version recently submitted to IEEE Transactions on Signal Processing.

(C4) Xiaoyi Mai, Zhenyu Liao, and Romain Couillet. A large scale analysis of logistic re-
gression: Asymptotic performance and new insights. In 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3357–3361.
IEEE, 2019.

(J3) Xiaoyi Mai and Zhenyu Liao. High dimensional classification via empirical risk
minimization: Improvements and optimality. 2019.

As regards gradient decent dynamics (GDDs) in NN models, we begin in Section 4.1
with the discussion on a statistical approach of evaluating the GDD in simple neural
networks. Based on a toy mixture model for the input feature, we retrieve, in the high
dimensional regime, the (asymptotic) training and test risks of a linear regression model,
as a function of the GD training time. From a methodological standpoint, we introduce
a RMT-based framework (Cauchy’s integral formula + deterministic equivalent) to ex-
amine GDDs of simple NN models, which can be reexpressed as some functional of the
feature sample covariance matrix. As a byproduct, we prove for the first time the exis-
tence of a “phase-transition” singularity in Figure 1.5, in a high dimensional classification
context. This result was first announced in

(C5) Zhenyu Liao and Romain Couillet. The dynamics of learning: a random matrix
approach. In Proceedings of the 35th International Conference on Machine Learning,
volume 80, pages 3072–3081. PMLR, 2018.

In Section 4.2 we consider a geometric aspect of GDDs in single-hidden-layer linear
NN models. By precisely evaluating the (union of) basin of attraction of all saddle points,
we show that almost all initializations lead to an (equivalent) global minimum for the
simplest gradient descent algorithm. Most importantly, this is true without additional
assumptions on these stationary points (e.g., on the gradient norms during descent or
their Hessians). Indeed, this “global convergence to global minima” conclusion essen-
tially holds due to a key invariant structure (in the network weight space) during the
gradient descent procedure imposed by the network cascading structure. As a practi-
cal outcome, we also derive critical initialization schemes with exponential convergence
rate. These results are summarized in

(J4) Yacine Chitour, Zhenyu Liao, and Romain Couillet. A geometric approach of gra-
dient descent algorithms in neural networks. 2019.

now under review for Journal of Differentiable Equation, which concludes the Chapter 4.

In Chapter 5 we draw a speedy conclusion of the manuscript and mention some pos-
sible limitations of the presented theoretical results, which are admittedly below the per-
formance of state-of-the-art models in modern machine learning problems today. We will
also discuss some possible future research directions, in the continuation of our prelimi-
nary findings presented here.

https://2019.ieeeicassp.org/
https://www.journals.elsevier.com/journal-of-differential-equations


Chapter 2

Mathematical Background: Random
Matrix Theory

Random matrix theory, at its inception, primarily dealt with the eigenvalue distribution
(also referred to as spectral measure) of large random matrices. One of the key technical
tools to study these measures is the Stieltjes transform, often presented as the central
object of the theory [BS10].

But signal processing and machine learning alike are more fundamentally interested
in subspaces and eigenvectors (which often carry the structural data information) than in
eigenvalues of random matrices. Subspace or spectral methods, such as principal com-
ponent analysis (PCA) [WEG87], spectral clustering [NJW02] and some semi-supervised
learning techniques [Zhu05] are built directly upon the eigenspace spanned by the sev-
eral top eigenvectors.

Consequently, beyond the Stieltjes transform, a more general object, the resolvent of
large random matrices will constitute the cornerstone of this manuscript. The resolvent of
a matrix gives access to its spectral measure, to the location of its isolated eigenvalues, to
the statistical behavior of their associated eigenvectors when random, and consequently
provides an entry-door to the performance analysis of numerous learning methods.

2.1 Fundamental Objects

2.1.1 The resolvent

We first introduce the resolvent of a matrix.

Definition 4 (Resolvent). For a symmetric matrix M ∈ Rn×n, the resolvent QM(z) of M is
defined, for z ∈ C not an eigenvalue of M, as

QM(z) ≡ (M− zIn)
−1 (2.1)

which is also denoted Q when there is not ambiguity.

Although our focus here will exclusively be on resolvents of (random) matrices, it
must be noted that the resolvent operator is in fact a very classical tool in the analysis of
linear operators in general Hilbert spaces [AG13] as well as in monotone operator theory
of importance to modern convex optimization theory [BC11].

37
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2.1.2 Spectral measure and the Stieltjes transform

The first use of the resolvent QM is in its relation to the empirical spectral measure µM of a
square matrix M, through the Stieltjes transform mµM , which we all define next.

Definition 5 (Empirical spectral measure). For a symmetric matrix M ∈ Rn×n, the spectral
measure or empirical spectral measure or empirical spectral distribution µM of M is defined
as the normalized counting measure of the eigenvalues λ1(M), . . . , λn(M) of M,

µM(x) ≡ 1
n

n

∑
i=1

δλi(M)(x). (2.2)

Since µM(x) ≥ 0 for all x ∈ R and
∫

R
µM(x)dx = 1, the spectral measure µM of a

matrix M ∈ Rn×n (random or not) is a probability measure. For (probability) measures,
we can define their associated Stieltjes transforms as follows.

Definition 6 (Stieltjes transform). For a real probability measure µ with support supp(µ), the
Stieltjes transform mµ(z) is defined, for all z ∈ C \ supp(µ), as

mµ(z) ≡
∫

R

1
t− z

dµ(t). (2.3)

The Stieltjes transform mµ has numerous interesting properties: it is complex analytic
on its domain of definition C \ supp(µ), it is bounded by |mµ(z)|dist(z, supp(µ)) ≤ 1,
it satisfies =[z] > 0 ⇒ =[m(z)] > 0, and it is an increasing function on all connected
components of its restriction to R \ supp(µ) (since m′µ(x) =

∫
R
(t − x)−2dt > 0) with

limx→±∞ mµ(x) = 0 if supp(µ) is bounded.
As a transform, mµ admits an inverse formula to recover µ, as per the following result.

Theorem 2.1 (Inverse Stieltjes transform). For a, b continuity points of the probability measure
µ, we have

µ([a, b]) =
1
π

lim
y↓0

∫ b

a
=
[
mµ(x + ıy)

]
dx. (2.4)

Besides, if µ admits a density f at x, i.e., µ(x) is differentiable in a neighborhood of x and

lim
ε→0

(2ε)−1µ([x− ε, x + ε]) = f (x)

then
f (x) =

1
π

lim
y↓0
=
[
mµ(x + ıy)

]
. (2.5)

Finally, if µ has an isolated mass at x, then

µ({x}) = − 1
π

lim
y↓0

ıymµ(x + ıy). (2.6)

Proof. Since | y
(t−x)2+y2 | ≤ 1

y for y > 0, by Fubini’s theorem,

1
π

∫ b

a
=
[
mµ(x + ıy)

]
dx =

1
π

∫ b

a

[∫
R

y
(t− x)2 + y2 dµ(t)

]
dx

=
1
π

∫
R

[∫ b

a

y
(t− x)2 + y2 dx

]
dµ(t)

=
1
π

∫
R

[
arctan

(
b− t

y

)
− arctan

(
a− t

y

)]
dµ(t).



2.1. FUNDAMENTAL OBJECTS 39

As y ↓ 0, the difference in brackets converges either to ±π or 0 depending on the relative
position of a, b, t. By the dominated convergence theorem, limits and integrals can be
exchanged, and the limit, as y ↓ 0, is

∫
R

1[a,b]dµ(t) = µ([a, b]).

The important relation between the spectral measure of M ∈ Rn×n, the Stieltjes trans-
form mµM(z) and the resolvent QM lies in the fact that

mµM(z) =
1
n

n

∑
i=1

∫
R

δλi(M)(t)
t− z

=
1
n

n

∑
i=1

1
λi(M)− z

=
1
n

tr(QM). (2.7)

Combining inverse Stieltjes transform and the relation above thus provides a link
between QM and the eigenvalue distribution of M. While seemingly contorted, this link
is in general the only efficient way to study the spectral measure of large dimensional
random matrices M.

Remark 2.1 (Resolvent as a matrix-valued Stieltjes transform). As proposed in [HLN07],
it can be convenient to extrapolate Definition 6 of Stieltjes transforms to n × n matrix-valued
positive measures M(dt),1 in which case Equation (2.7) can be generalized as

QM(z) =
∫

R

M(dt)
t− z

= U diag
{

1
λi(M)− z

}n

i=1
UT

where we used the spectral decomposition M = U diag{λi(M)}n
i=1UT. In particular, QM(z) en-

joys similar properties as Stieltjes transforms of real-valued measures: ‖QM(z)‖ ≤ dist(z, supp(µM))−1,
and x 7→ QM(x) for x ∈ R \ supp(µ) is an increasing matrix-valued function with respect to
symmetric matrix partial ordering (i.e., A � B whenever zT(A− B)z ≥ 0 for all z).

2.1.3 Cauchy’s integral, linear eigenvalue functionals, and eigenspaces

Being complex analytic, the resolvent QM can be manipulated using advanced tools from
complex analysis. Of particular interest to spectrum-based machine learning methods is
the relation between the resolvent and Cauchy’s integral theorem.

Theorem 2.2 (Cauchy’s integral formula). For Γ ∈ C a positively (i.e., counterclockwise)
oriented simple closed curve and a complex function f (z) analytic in a region containing Γ and
its interior, then

1) if z0 ∈ C is enclosed by Γ, f (z0) = − 1
2πı

∮
Γ

f (z)
z0−z dz;

2) if not, 1
2πı

∮
Γ

f (z)
z−z0

dz = 0.

This result provides an immediate link between the linear functionals of the eigenvalues
of M and the Stieltjes transform through

1
n

n

∑
i=1

f (λi(M)) = − 1
2πın

∮
Γ

f (z) tr(QM(z))dz = − 1
2πı

∮
Γ

f (z)mµM(z)dz

for all f complex analytic in a compact neighborhood of supp(µM), by choosing the con-
tour Γ to enclose supp(µM) (i.e., all the λi(M)’s). More generally,

1
n ∑

λi(M)∈Γ◦
f (λi(M)) = − 1

2πı

∮
Γ

f (z)mµM(z)dz

1Defined by the fact that µ(dt; z) = zTM(dt)z = ∑ij zizjMij(dt) is a positive real-valued measure for all
z. See [RRR67] for an introduction.
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for Γ◦ the interior of contour Γ.

Another quantity of interest relates to eigenvectors and eigenspaces. Decomposing
the symmetric matrix M = UΛUT in its spectral decomposition with U = [u1, . . . , un] ∈
Rn×n and Λ = diag(λ1(M), . . . , λn(M)), we have

QM(z) =
n

∑
i=1

uiuT
i

λi(M)− z

and thus the direct access to the i-th eigenvector of M through

uiuT
i = − 1

2πı

∮
Γλi(M)

QM(z)dz

for Γλi(M) a contour circling around λi(M) only (if λi(M) is of unit multiplicity). More
generally,

U f (Λ; Γ)UT = − 1
2πı

∮
Γ

f (z)QM(z)dz

for f analytic in a neighborhood of Γ and its interior and f (Λ; Γ) = diag({ f (λi(M))1λi(M)∈Γ◦}n
i=1).

Of interest in this manuscript will be the projection of the individual eigenvectors ui
of M onto a deterministic eigenvector v. In particular, from the above,

|vTui|2 = − 1
2πı

∮
Γλi(M)

vTQM(z)vdz.

It is important to note that the resolvent provides access to scalar observations of the
eigenstructure of M through linear functionals of the resolvent M, i.e., the scalar observa-
tions 1

n ∑i f (λi(M)) and |vTui| accessible from tr QM and vTQMv, respectively.

2.1.4 Deterministic and random equivalents

This manuscript is concerned with the situation where M is a large dimensional random
matrix, the eigenvalues and eigenvectors of which need be related to the statistical nature
of the model design of M.

In the early days of random matrix theory, the main focus was on the limiting spectral
measure of M, that is the characterization of a certain “limit” to the spectral measure
µM of M as the size of M increases. To this purpose, the natural approach is to study
the random Stieltjes transform mµM(z) and to show that is admits a deterministic limit
(in probability or almost surely) m(z). However, this method shows strong limitations
today: i) it supposes that such a limit does exist, therefore restricting the study to very
isotropic models for M and ii) it only quantifies tr QM (through the Stieltjes transform),
thereby discarding all subspace information about M carried in QM (as a consequence, a
further study of the eigenvectors of M requires a complete rework).

To avoid these limitations, modern random matrix theory uses the notion of determin-
istic equivalents which are non-asymptotic deterministic matrices having (in probability or
almost surely) asymptotically the same scalar observations as the random ones.

Definition 7 (Deterministic Equivalent). We say that Q̄ ∈ Rn×n is a deterministic equivalent
for the symmetric random matrix Q ∈ Rn×n if, for (sequences of) deterministic matrix A ∈ Rn×n

and vectors a, b ∈ Rn of unit norms (operator and Euclidean, respectively), we have, as n→ ∞,

1
n

tr A(Q− Q̄)→ 0, aT(Q− Q̄)b→ 0

where the convergence is either in probability or almost surely.
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This definition has the advantage to bring forth the two key elements giving access to
spectral information about a random matrix M: traces and bilinear forms (of its resolvent
QM(z) for some z). Deterministic equivalents of resolvents QM then encode most of the
information necessary to statistically quantify a random matrix M.

A practical use of deterministic equivalents is to establish that, for a random matrix
M, 1

n tr(QM(z)− Q̄(z)) → 0, say almost surely, for all z ∈ C with C ⊂ C some region of
C. Denoting m̄n(z) = 1

n tr Q̄(z), this convergence implies that the Stieltjes transform of
µM “converges” in the sense that mµM(z)− m̄n(z) → 0. As we will see, this will indicate
that µM gets increasingly well approximated by a probability measure µ̄n having Stieltjes
transform m̄n(z). Identifying m̄n(z), which uniquely defines µ̄n, will often be as far as the
Stieltjes transform method will lead us. But in some rare cases (such as with the Marc̆enko-
Pastur and the semi-circle laws), µ̄n will be explicitly identifiable.

In the remainder of the manuscript, we will often characterize the large dimensional
behavior of random matrix models M through an approximation by deterministic equiv-
alents Q̄(z) of their associated resolvents QM(z), as this offers access not only to their
asymptotic spectral measure but also to their eigenspaces. We shall therefore often ex-
trapolate some of the traditional results, such as the Marc̆enko–Pastur law [MP67], the
sample covariance matrix model [SB95], etc., under this more general form.

Remark 2.2 (Q̄ versus EQ). For Q̄ a deterministic equivalent for Q, the probabilistic conver-
gences 1

n tr A(Q− Q̄)→ 0 and aT(Q− Q̄)b→ 0 will in general unfold from the fact that

‖EQ− Q̄‖ → 0

and from a control of the variance of 1
n tr(AQ) and aTQb; this will often be the strategy fol-

lowed in our proofs. But note importantly that, if the above relation is met, then EQ itself is a
deterministic equivalent for Q by Definition 7. However, EQ is often not convenient to work
with and a “truly” deterministic matrix Q̄ involving no integration over probability spaces will
be systematically preferred.

In some situations, deterministic equivalents may either not exist or, as will often be
the case, will only be reachable through the access to an intermediary random matrix. To
simplify the readability of the main results and proofs in the remainder of the manuscript,
which involve both deterministic and random equivalents, we introduce the following
shortcut notation.

Notation 1 (Deterministic and Random Equivalents). For X, Y ∈ Rn×n two random or
deterministic matrices, we write

X↔ Y

if, for all A ∈ Rn×n and a, b ∈ Rn of unit norms (respectively, operator and Euclidean), we have
the simultaneous results

1
n

tr A(X− Y) a.s.−→0, aT(X− Y)b a.s.−→0, ‖E[X− Y]‖ → 0.

2.2 Foundational Random Matrix Results

In this section we introduce the main historical results of random matrix theory (appro-
priately updated under a deterministic equivalent form), which will serve as supporting
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models to most applications to machine learning. For readability and accessibility to the
readers new to random matrix theory, we mostly stick to intuitive and short sketches of
proofs. Yet, for the readers to have a glimpse on the technical details and modern tools of
the field, some of the proof sketches will be appended by a complete exhaustive proof.

Both sketches and detailed proofs rely on a set of elementary lemmas and identities
will be introduced below in Section 2.2.1. The main difference between sketches and
detailed proofs then relies on additional technical probability theory arguments to prove
various convergence results. These arguments strongly depend on the underlying ran-
dom matrix model hypotheses (Gaussian independent, i.i.d., concentrated random vec-
tors, etc.); for readability, we will focus in our proofs on one specific line of proof (that
we claim to be the “historical” one) and will introduce some side remarks concerning
alternative approaches.

2.2.1 Key lemmas and identities

Resolvent identities

Most results discussed in this section consist in approximating random resolvents Q(z)
via deterministic resolvents Q̄(z), which are both inverse of matrices. The following first
identity provides a comparison of inverse matrices.

Lemma 2.1 (Resolvent identity). For invertible matrices A and B, we have

A−1 − B−1 = A−1(B−A)B−1.

Proof. This can be easily checked by multiplying both sides on the left by A and on the
right by B.

Another useful lemma that helps directly connect the resolvent of BA to that of AB,
is given as follows.

Lemma 2.2. For A ∈ Rp×n and B ∈ Rn×p , we have

A(BA− zIn)
−1 = (AB− zIp)

−1A

for z ∈ C distinct from 0 and from the eigenvalues of AB.

For AB and BA symmetric, Lemma 2.2 is a special case of the more general rela-
tion A f (BA) = f (AB)A, with f (M) ≡ U f (Λ)UT under the spectral decomposition
M = UΛUT and f complex analytic. Since f is analytic, f (BA) = ∑∞

i=0 ci(BA)i for some
sequence {ci}∞

i=0 and thus A f (BA) = ∑∞
i=0 ci(AB)iA = f (AB)A.

The next lemma, known as Sylvester’s identity, similarly relates the resolvents of AB
and BA through their determinant.

Lemma 2.3 (Sylvester’s identity). For A ∈ Rp×n, B ∈ Rn×p and z ∈ C,

det
(
AB− zIp

)
= det (BA− zIn) (−z)p−n.

An immediate consequence of Sylvester’s identity is that AB and BA have the same
non-zero eigenvalues (those non-zero z’s for which both left- and right-hand sides vanish).
Thus, say n ≥ p, AB ∈ Rp×p and BA ∈ Rn×n have the same spectrum, except for the
additional n− p zero eigenvalues of AB. This remark implies the next identity.
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Lemma 2.4 (Trace of resolvent and co-resolvent). Let A ∈ Rp×n, B ∈ Rn×p, and z ∈ C not
an eigenvalue of AB nor zero. Then

tr QAB(z) = tr QBA(z) +
n− p

z
.

In particular, if AB and BA are symmetric,

mµAB(z) =
n
p

mµBA(z) +
n− p

pz
.

Perturbation identities

Quantifying the asymptotic global (e.g., spectral distribution) or local (e.g., isolated eigen-
values or projection on eigenvector) behavior of random matrices M will systematically
involve a perturbation approach. The idea often lies in comparing the behavior of the resol-
vent Q = QM to the resolvent Q−i of M−i, with M−i defined as M with either row and
column i, or some i-th contribution (e.g., M−i = ∑j 6=i xjxTj if M = ∑j xjxTj ), discarded. A
number of so-called perturbation identities are then needed.

The first one involves the segmentation of M under the form of sub-blocks, in gen-
eral consisting of one large block and three small sub-matrices. The resolvent QM can
correspondingly be segmented in sub-blocks according to the following block inversion
lemma.

Lemma 2.5 (Block matrix inversion). For A ∈ Rp×p, B ∈ Rp×n, C ∈ Rn×p and D ∈ Rn×n

with D invertible, we have(
A B
C D

)−1

=

(
S−1 −S−1BD−1

−D−1CS−1 D−1 + D−1CS−1BD−1

)
where S ≡ A− BD−1C is the Schur complement (for the block D) of

(
A B
C D

)
.2

As a consequence of Lemma 2.5, we have the following explicit form for all diagonal
entries of an invertible matrix A.

Lemma 2.6 (Diagonal entries of matrix inverse). For invertible A ∈ Rp×p and A−i ∈
R(p−1)×(p−1), the matrix obtained by removing the i-th row and column from A, i = 1, . . . , p,
we have

(A−1)ii =
1

Aii − αT
i (A−i)−1βi

for αT
i , βi ∈ Rp−1 the i-th row and column of A with i-th entries removed, respectively.

The result is a direct consequence of the fact that A−1 = adj(A)
det(A)

, with adj(A) the adju-
gate matrix of A, together with the block determinant formula in Lemma 2.5.

Perturbations by addition or subtraction of low-rank matrices to M induce modifica-
tions in the resolvent QM that involve Woodbury’s identity as follows.

Lemma 2.7 (Woodbury). For A ∈ Rp×p, U, V ∈ Rp×n, such that both A and A + UVT are
invertible, we have

(A + UVT)−1 = A−1 −A−1U(In + VTAU)−1VTA−1.
2The Schur complement S = A− BD−1C is particularly known for its providing the block determinant

formula det
( A B

C D
)
= det(D)det(S).
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Note importantly that, while (A + UVT)−1 is of size p× p, (In + VAU)−1 is of size
n × n. This will turn out useful to relate resolvents of large dimensional matrices to
resolvents of more elementary fixed small size matrices. In particular, for n = 1, i.e.,
UVT = uvT for U = u ∈ Rp and V = v ∈ Rp, Woodbury’s identity specializes to the
Sherman–Morrison formula.

Lemma 2.8 (Sherman–Morrison). For A ∈ Rp×p invertible and u, v ∈ Rp, A + uvT is
invertible if and only if 1 + vTA−1u 6= 0 and

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Besides,

(A + uvT)−1u =
A−1u

1 + vTA−1u
.

Letting A = M− zIp, z ∈ C, and v = τu for τ ∈ R in the previous lemma leads to
the following rank-1 perturbation lemma for the resolvent of M.

Lemma 2.9 (From Lemma 2.6 in [SB95]). For A, M ∈ Rp×p symmetric, u ∈ Rp, τ ∈ R and
z ∈ C \R, ∣∣∣tr A(M + τuuT − zIp)

−1 − tr A(M− zIp)
−1
∣∣∣ ≤ ‖A‖
|=(z)| .

Also, for A, M ∈ Rp×p symmetric and nonnegative definite, u ∈ Rp, τ > 0 and z < 0,∣∣∣tr A(M + τuuT − zIp)
−1 − tr A(M− zIp)

−1
∣∣∣ ≤ ‖A‖|z| .

It is interesting (and possibly counterintuitive at first) to note that ‖u‖ does not inter-
vene in this inequality. In particular, irrespective of the amplitude of the rank-1 pertur-
bation, under the conditions of the lemma

mµM+τuuT
(z) = mµM(z) + O(p−1)

and thus, by the link between spectrum and Stieltjes transform, the spectral measure
of M is asymptotically close to that of M + τuuT for any u, in the large p limit. This
result can be understood through the following two arguments: i) for large p, the spec-
trum of M (say ‖M‖ = O(1) without generality restriction) is only non-trivial if the
vast majority of the p eigenvalues of M are of order O(1): thus, as p eigenvalues use a
space of size O(1), they tend to aggregate; ii) by Weyl’s interlacing lemma presented next
(Lemma 2.10) for symmetric matrices, the eigenvalues of M and of M + τuuT are inter-
laced. Both arguments thus indicate that, in the large p limit, the spectral measures are
indeed asymptotically the same.

Unlike non-symmetric matrices, symmetric matrices indeed enjoy the nice property
of having stable spectra with respect to rank-1 perturbations. For λ ∈ R an eigenvalue of
M + τuuT but not of M with, say τ > 0, we indeed have

0 = det(M + τuuT − λIp) = det(QM(λ))det(Ip + τQM(λ)uuT)

= det(QM(λ))
(

1 + τuTQM(λ)u
)
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where the second equality unfolds from factoring out M− λIp (which is not singular as
λ is not an eigenvalue of M) and the third from Sylverster’s identity (Lemma 2.3). As a
consequence, λ is one of the solutions to

−1 = τuTQM(λ)u = τ
p

∑
i=1

|vT
i u|2

λi(M)− λ
,

(
M =

p

∑
i=1

λi(M)vivT
i

)

which, seen as a function of λ, has asymptotes at each λi(M) and is increasing (from
−∞ to ∞) on the segments (λi(M), λi+1(M)) (eigenvalues being sorted in increasing or-
der). The eigenvalues of M + τuuT are therefore interlaced with those of M. This idea
generalizes to finite rank perturbation as follows.

Lemma 2.10 (Weyl, Theorem 4.3.1 in [HJ12]). Let A, B ∈ Rp×p be symmetric matrices and let
the respective eigenvalues of A, B and A + B arranged in nondecreasing order, i.e., λ1 ≤ λ2 ≤
. . . λp−1 ≤ λp. Then, for all i ∈ {1, . . . , p},

λi(A + B) ≤ λi+j(A) + λp−j(B), j = 0, 1, . . . , p− i,

λi−j+1(A) + λj(B) ≤ λi(A + B), j = 1, . . . , i,

In particular, taking i = 1 in the first equation and i = p in the second inequation, together with
the fact λj(B) = −λp+1−j(−B) for j = 1, . . . , p, implies

max
1≤j≤p

|λj(A)− λj(B)| ≤ ‖A− B‖.

Probability identities

The results of the previous sections are algebraic identities allowing for handling the
resolvent QM of the deterministic matrix M. The second ingredient of random matrix
analysis lies in asymptotic probability approximations as the dimensions of M increase.
Quite surprisingly, most results essentially revolve around the convergence of a certain
quadratic form, which is often nothing more than a mere extension of the law of large
numbers.

Those quadratic form convergence results come under multiple forms. The historical
form, due to Bai and Silverstein, sometimes referred to as the “trace lemma”, is as follows.

Lemma 2.11 (Quadratic-form-close-to-the-trace, Lemma B.26 in [BS10]). Let x ∈ Rp have
i.i.d. entries of zero mean, unit variance and E[|xi|L] ≤ νL for some L ≥ 1. Then for A ∈ Rp×p

and l ≥ 1

E

[∣∣∣xTAx− tr A
∣∣∣l] ≤ Kl

[(
ν4 tr(AAT)

)l/2
+ ν2l tr(AAT)l/2

]
for some constant Kl > 0 independent of p. In particular, if ‖A‖ ≤ 1 and the entries of x have
bounded eighth-order moment,

E

[(
xTAx− tr A

)4
]
≤ Kp2

for some K independent of p, and consequently, as p→ ∞,

1
p

xTAx− 1
p

tr A a.s.−→0.
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This last result is rather intuitive. For A = Ip, this is simply an instance of the law
of large numbers. For generic A, first note that, by the independence of the entries of
x, E[xTAx] = E[tr(AxxT)] = tr A. Exploiting the fact that Var

[
1
p xTAx

]
= O(p−1) then

ensures that 1
p xTAx − 1

p tr A → 0, but only in probability; since the variance calculus
involves exponentiating the entries xi of x to power 4, they need to be of finite fourth
power. The almost sure convergence is achieved by showing the faster moment conver-
gence E[( 1

p xTAx− 1
p tr A)4] = O(p−2) which is the second statement of the lemma and

requires 8-th order exponentiation of the xi’s. The request for A to be of bounded norm
with respect to p in this case “stabilizes” the quadratic form xTAx by maintaining its
random concentration properties.

Recalling that ‖QM(z)‖ ≤ (dist(z, supp(µM)))−1, Lemma 2.11 can be exploited for
A = QM(z) for all z away from the support of µM and all x independent of QM(z). The
core of the proofs of the main random matrix results is uniquely based on this last remark.

These identities constitute the main technical ingredients needed to understand the
proofs of both historical and recent random matrix results. The next section introduces
the most fundamental of those which will be called after over and over in the remainder
of the manuscript.

2.2.2 The Marc̆enko-Pastur law

We start by illustrating how the aforementioned tools are used to prove one of the most
popular results in random matrix theory: the Marc̆enko-Pastur law. Another important
result is the Wigner semi-circle law, which, despite being popular in many graph-based
problems, is less covered in the works addressed in this manuscript and thus omitted.

To simplify the exposition of the results, we will use the notation for deterministic
equivalents introduced in Notation 1. That is, for X, Y ∈ Rn×n, we will denote X ↔ Y
if, for all unit norm A ∈ Rn×n and a, b ∈ Rn, 1

n tr A(X − Y) a.s.−→0, aT(X − Y)b a.s.−→0 and
‖E[X− Y]‖ → 0.

Most of the results involve Stieltjes transforms mµ(z) of probability measures with
support supp(µ). Since Stieltjes transforms are such that mµ(z) > 0 for z < inf supp(µ),
mµ(z) < 0 for z > sup supp(µ) and =[z]=[mµ(z)] > 0 if z ∈ C \R, it will be convenient
in the following to consider the set

Z(A) =
{
(z, m) ∈ A2, (=[z]=[m] > 0 if =[z] 6= 0) or (zm < 0 if =[z] = 0)

}
.

We present the Marc̆enko-Pastur law under the slightly modified form of a determin-
istic equivalent for the resolvent Q(z).

Theorem 2.3 (From [MP67]). Consider the resolvent Q(z) = ( 1
n XXT − zIp)−1, for X ∈ Rp×n

having i.i.d. zero mean and unit variance entries. Then, as n, p → ∞ with p/n → c ∈ (0, ∞),
we have

Q(z)↔ Q̄(z), Q̄(z) = m(z)Ip (2.8)

with (z, m(z)) the unique solution in Z(C \ [(1−
√

c)2, (1 +
√

c)2]) of

zcm2(z)− (1− c− z)m(z) + 1 = 0. (2.9)

The function m(z) is the Stieltjes transform of the probability measure µ given explicitly by

µ(dx) = (1− c−1)+δ(x) +
1

2πcx

√
(x− a)+(b− x)+dx (2.10)
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where a = (1−
√

c)2, b = (1+
√

c)2 and (x)+ = max(0, x), which is known as the Marc̆enko-
Pastur distribution. In particular, with probability one, the empirical spectral measure µ 1

n XXT

converges weakly to µ.

Figure 2.1 depicts the density of the Marc̆enko-Pastur distribution for different values
of c. For a fixed dimension p, the ratio c decreases as the number of samples n grows large,
so that the eigenvalues of the sample covariance matrix become more “concentrated”
(their spread is given by the length of the support [(1 −

√
c)2, (1 +

√
c)2]) around the

unique population covariance matrix eigenvalue equal to 1.
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Figure 2.1: Marc̆enko-Pastur distribution for different c

Proof. Before going into the details of the proof, we first give a few intuitive arguments.

Intuitive idea. A first heuristic derivation consists in iteratively “guessing” the form of
Q̄(z) = F(z)−1 for some matrix F(z)−1. To this end, from Lemma 2.1, it first appears that

Q(z)− Q̄(z) = Q(z)
(

F(z) + zIp −
1
n

XXT

)
Q̄(z)

= Q(z)

(
F(z) + zIp −

1
n

n

∑
i=1

xixTi

)
Q̄(z)

For Q̄(z) to be a deterministic equivalent for Q(z), we wish in particular that 1
p tr A(Q(z)−

Q̄(z)) a.s.−→0, for A deterministic with ‖A‖ = 1. That is

1
p

tr(F(z) + zIp)Q̄(z)AQ(z)− 1
n

n

∑
i=1

1
p

xTi Q̄(z)AQ(z)xi
a.s.−→0. (2.11)

We recognize in 1
p xTi Q̄(z)AQ(z)xi a quadratic form on which we would like to use Lemma 2.11

to turn it into a trace term independent of xi. Yet, Lemma 2.11 cannot be used as Q(z)
depends on xi. To counter the difficulty, we then use Lemma 2.8 to write

Q(z)xi =
Q−i(z)xi

1 + 1
n xTi Q−i(z)xi
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where Q−i(z) = ( 1
n ∑j 6=i xjxTj − zIp)−1 is independent of xi. Now legitimately applying

Lemma 2.11, we find that

1
p

xTi Q̄(z)AQ(z)xi =

1
p xTi Q̄(z)AQ−i(z)xi

1 + 1
n xTi Q−i(z)xi

'
1
p tr Q̄(z)AQ−i(z)

1 + 1
n tr Q−i(z)

. (2.12)

From Lemma 2.9, normalized traces involving Q−i(z) or Q(z) are asymptotically identi-
cal and thus this further reads

1
p

xTi Q̄(z)AQ(z)xi '
1
p tr Q̄(z)AQ(z)

1 + 1
n tr Q(z)

.

Getting back to (2.11), we thus end up with the approximation

1
p

tr(F(z) + zIp)Q̄(z)AQ(z) '
1
p tr Q̄(z)AQ(z)

1 + 1
n tr Q(z)

.

As a consequence, we can now “guess” the form of F(z). Indeed, if it is to exist, F(z)
must be of the type

F(z) '
(
−z +

1
1 + 1

n tr Q(z)

)
Ip

for the approximation above to hold. To close the loop, taking A = Ip, 1
n tr Q(z) appear-

ing in this display must be well approximated by m(z) ≡ 1
p tr Q̄(z) so that

1
p

tr Q(z) ' m(z) =
1

−z + 1
1+ p

n
1
p tr Q(z)

' 1
−z + 1

1+ p
n m(z)

(2.13)

and we thus have finally

Q̄(z) = F(z)−1 = m(z)Ip

where, in the large n, p limit, m(z) is solution to

m(z) =
1

−z + 1
1+cm(z)

or equivalently

zcm2(z)− (1− c− z)m(z) + 1 = 0.

This equation has two solutions defined by the two roots of the complex square root
function

m(z) =
1− c− z

2cz
+

√
((1 +

√
c)2 − z)((1−

√
c)2 − z)

2cz

only one of which is such that =[z]=[m(z)] > 0 as imposed by the definition of Stieltjes
transforms. Now, from the inverse Stieltjes transform theorem, Theorem 2.1, we find that
m(z) is the Stieltjes transform of the measure µ with

µ([a, b]) =
1
π

lim
ε↓0

∫ b

a
=[m(x + ıε)]dx
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for all continuity points a, b ∈ R of µ. The term under the square root in m(z) being nega-
tive only in the set [(1−

√
c)2, (1+

√
c)2], the latter defines the support of the continuous

part of the measure µ with density
√

((1+
√

c)2−x)(x−(1−
√

c)2)
2cπx at point x in the set. The case

x = 0 brings a discontinuity in µ with weight equal to

µ({0}) = − lim
y↓0

ıym(ıy) =
c− 1

2c
± c− 1

2c

where the sign is established by a second order development of zm(z) in the neighbor-
hood of zero.

Detailed proof. Having heuristically identified Q̄(z), we shall now use sound math-
ematical tools to prove that, indeed, Q̄(z) is a deterministic equivalent for Q(z) in the
sense of the theorem statement. Let us first show that E[Q(z)] = Q̄(z) + o‖·‖(1), where
o‖·‖(1) denotes a matrix term of vanishing operator norm as n, p→ ∞.

Convergence in mean. For mathematical convenience, we will take z < 0 in what follows.
Since Q(z) and Q̄(z) from the theorem statement are complex analytic functions for z /∈
R+ (matrix-valued Stieltjes transforms are analytic), obtaining the convergence results
on R− is equivalent to obtaining the result on all of C \R+.

We proceed in two steps by first introducing the intermediate deterministic quantities
α(z) ≡ 1

n tr E[Q(z)] and ¯̄Q(z) ≡ (−z + 1
1+α(z) )

−1Ip. From Lemma 2.1, we have (the

argument z in α(z), Q(z) and ¯̄Q(z) is dropped when confusion is not possible)

E[Q− ¯̄Q] = EQ
(

Ip

1 + α
− 1

n
XXT

)
¯̄Q =

E[Q]

1 + α
¯̄Q− 1

n
E[QXXT] ¯̄Q

=
E[Q]

1 + α
¯̄Q−

n

∑
i=1

1
n

E[QxixTi ]
¯̄Q =

E[Q]

1 + α
¯̄Q−

n

∑
i=1

E

[
Q−i

1
n xixTi

1 + 1
n xTi Q−ixi

]
¯̄Q

where we applied Lemma 2.8 to obtain the last equality and denoted Q−i ≡ (∑j 6=i
1
n xjxTj −

zIp)−1 as previously.
Since we expect 1

n xTi Q−ixi to be close to α (as a consequence of Lemma 2.11), we
rewrite

Q−i
1
n xixTi

1 + 1
n xTi Q−ixi

=
Q−i

1
n xixTi

1 + α
−

Q−i
1
n xixTi (

1
n xTi Q−ixi − α)

(1 + α)(1 + 1
n xTi Q−ixi)

so that

E[Q− ¯̄Q] =
E[Q]

1 + α
¯̄Q−

n

∑
i=1

E
[
Q−i

1
n xixTi

] ¯̄Q
1 + α

+
n

∑
i=1

E
[
Q 1

n xixTi di
] ¯̄Q

1 + α

=
E[Q]

1 + α
¯̄Q−

n

∑
i=1

E
[
Q−i

1
n xixTi

] ¯̄Q
1 + α

+
E
[
Q 1

n XDXT
] ¯̄Q

1 + α

where we introduced D = diag{di}n
i=1 for di =

1
n xTi Q−ixi− α, and used again Lemma 2.8

to write Q−i
1
n xixTi

1+ 1
n xTi Q−ixi

= Q 1
n xixTi in the first equality. Since E[Q−ixixTi ] = E[Q−i], this

further reads

E[Q− ¯̄Q] =
1
n

n

∑
i=1

(E[Q]−E[Q−i])
¯̄Q

1 + α
+

E
[ 1

n QXDXT
] ¯̄Q

1 + α
.
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Again from Lemma 2.1 and 2.8,

1
n

n

∑
i=1

E[Q−Q−i] = −
1
n

n

∑
i=1

E

[
Q

1
n

xixTi Q−i

]
= − 1

n

n

∑
i=1

E

[
Q

1
n

xixTi Q
(

1 +
1
n

xTi Q−ixi

)]
= − 1

n
E

[
Q

1
n

XD2XTQ
]

where D2 = diag
{

1 + 1
n xTi Q−ixi

}n
i=1 and thus

E[Q− ¯̄Q] = − 1
n

E

[
Q

1
n

XD2XTQ
] ¯̄Q

1 + α
+

E
[ 1

n QXDXT
] ¯̄Q

1 + α
. (2.14)

It remains to show that the right-hand side terms vanish in the large p, n limit.
For the first term, note that

0 � Q
1
n

XD2XTQ � Q
1
n

XXTQ max
1≤i≤n

[D2]ii

in the order of symmetric matrices. Since Q 1
n XXT = Ip + zQ which is of bounded op-

erator norm, controlling ‖E[Q 1
n XD2XTQ]‖ boils down to controlling E[maxi[D2]ii]. This

can be established in various ways. From the union bound and the i.i.d. nature of the xi’s,

P
(

max
i

[D2]ii > t
)
≤ nP ([D2]11 > t) .

Now, by Markov’s inequality P(X > a) ≤ E[Xk]/ak for every k (for X, a > 0) and the
moment inequality in Lemma 2.11 for, say l = 4, P(maxi[D2]ii > t) may be bounded
by a function decreasing as t−2, for all t > 1 + α(z), and of order n−1. Since E[X] =∫

X>0 P(X > t)dt, we then find that E[maxi[D2]ii] is bounded. Alternatively, one may
have used a concentration inequality argument to show the same. Consequently, due to
the leading 1/n factor in front of the first right-hand side term of (2.14), this term vanishes
as n, p→ ∞.

To handle the second right-hand side term in (2.14), one needs to control the norm
of 1

n QXDXT ¯̄Q. This is not a symmetric matrix, but E[Q − ¯̄Q] is. We may thus rewrite
(2.14) as the half-sum of itself and its transpose and we are thus left to controlling the
operator norm of 1

n QXDXT ¯̄Q+ 1
n

¯̄QXDXTQ. Using the matrix inequalities ABT+BAT �
AAT + BBT (from (A− B)(A− B)T � 0) and ABT + BAT � −AAT − BBT (from (A +
B)(A + B)T � 0), we are left to bounding the norm of

E

[
1

n
√

n
QXXTQ

]
+ E

[
1√
n

¯̄QXD2XT ¯̄Q
]

where the division of the 1/n2 term into 1/(n
√

n) and 1/
√

n is essential. The first term
above is easily seen to be of order 1/

√
n. As for the second, using as above the moment

inequality in Lemma 2.11 along with Markov’s inequality, it appears to be also of order
1/
√

n. This can be anticipated by noticing that di =
1
n xTi Q−ixi − α fluctuates as 1/

√
n (by

a central limit theorem argument) and thus d2
i is essentially of order 1/n.

Gathering the pieces together, we thus conclude that

‖E[Q]− ¯̄Q‖ → 0, with ¯̄Q =

(
1

1 + α(z)
− z
)−1

Ip.
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Since

α(z) =
1
n

tr E[Q(z)] =
1
n

tr ¯̄Q(z) + o(1) =
c

1
1+α(z) − z

+ o(1)

by defining m(z) as the unique Stieltjes transform solution with =(z)=[m(z)] > 0 of

1
m(z)

=
1

1 + cm(z)
− z⇔ zcm2(z)− (1− c− z)m(z) + 1 = 0

(the uniqueness is easily shown by solving the quadratic equation), we finally have
cm(z)− α(z)→ 0, which concludes the proof of (2.8).

Almost sure convergence. To now prove the almost sure convergence 1
p tr A(Q− Q̄)

a.s.−→0

and aT(Q− Q̄)b a.s.−→0, it suffices to show

1
p

tr A(Q−EQ)
a.s.−→0, aT(Q−EQ)b a.s.−→0.

We will only show here the leftmost convergence. This follows from either a moment or
a concentration argument. The historical approach, due to Bai and Silverstein (see e.g., in
[BS10]), exploits the following martingale difference inequality.

Lemma 2.12 (Burkholder inequality, Lemma 2.1 in [BS10]). Let {Xi}∞
i=1 be a martingale

difference for the increasing σ-field {Fi} and denote Ek the expectation with respect to Fk. Then,
for k ≥ 2,

E

∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣
k
 ≤ Ck

E

[
n

∑
i=1

Ek−1[|Xi|2]
]k/2

+
n

∑
i=1

E[|Xi|k]

 .

Remarking that

1
p

tr A(Q−EQ) =
n

∑
i=1

Ei

[
1
p

tr AQ
]
−Ei−1

[
1
p

tr AQ
]

=
1
p

n

∑
i=1

(Ei −Ei−1) [tr A(Q−Q−i)]

(since Ei[tr AQ−i] = Ei−1[tr AQ−i]) for Fi the σ-field generating the columns xi+1, . . . , xn
of X and with the convention E0[ f (X)] = f (X), which forms a martingale difference
sequence, we fall under the scope of Burkholder’s lemma. Now, from the identity Q =

Q−i − 1
n

Q−ixixTi Q−i

1+ 1
n xTi Q−ixi

(Lemma 2.8),

(Ei −Ei−1)

[
1
p

tr A(Q−Q−i)

]
= −(Ei −Ei−1)

1
pn xTi Q−iAQ−ixi

1 + 1
n xTi Q−ixi

which is bounded by 1/p. As a consequence, from Lemma 2.12,

E

[∣∣∣∣ 1p tr A(Q−EQ)

∣∣∣∣4
]
= O(n−2).
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From Markov’s inequality (i.e., P(|X| > t) ≤ E[|X|k]/tk) and Borel-Cantelli’s lemma (i.e.,
P(|Xn| > t) = O(n−`) for some ` > 1 for all t > 0 implies Xn

a.s.−→0), we then conclude
that

1
p

tr A(Q−EQ)
a.s.−→0

as requested.

Remark 2.3 (Proof by Stein’s lemma and Nash–Poincaré inequality). In [PS11], Pastur
and Scherbina propose an alternative proof to Theorem 2.3, based on a two-fold method:
i) a proof for Gaussian X and ii) an interpolation method to non-Gaussian X. The Gaus-
sian case is handled through the powerful Stein’s lemma.

Convergence in mean by Stein’s lemma.

Lemma 2.13 ([Ste81]). Let x ∼ N (0, 1) and f : R 7→ R a continuously differentiable function
such that E[ f ′(x)] < ∞. Then,

E[x f (x)] = E[ f ′(x)]. (2.15)

In particular, for x ∼ N (0, C) with C ∈ Rp×p and f : Rp 7→ R a continuously differentiable
function with derivatives having at most polynomial growth with respect to p,

E[xi f (x)] =
p

∑
j=1

CijE

[
∂ f (x)

∂xj

]
(2.16)

where ∂/∂xi indicates differentiation with respect to the i-th entry of x.

The lemma, sometimes referred to as the integration-by-parts formula for Gaussian
variables, simply follows from

E[x f (x)] =
∫

x f (x)e−
1
2 x2

dx = [− f (x)e−
1
2 x2

]∞−∞ +
∫

f ′(x)e−
1
2 x2

dx = E[ f ′(x)]

by integration by parts
∫

u′v = [uv]−
∫

uv′ for u(x) = −e−
1
2 x2

and v(x) = f (x).
To exploit Lemma 2.13, let us thus assume X Gaussian, i.e., Xij ∼ N (0, 1). Observe

that Q = 1
z

1
n XXTQ− 1

z Ip, so that

E[Qij] =
1

zn

n

∑
k=1

E[Xik[XTQ]kj]−
1
z

δij

in which E[Xik[XTQ]kj] = E[x f (x)] for x = Xik and f (x) = [XTQ]kj. Therefore, from the
lemma and the fact that ∂Q = − 1

n Q∂(XXT)Q,

E[Xik[XTQ]kj] = E

[
∂[XTQ]kj

∂Xik

]
= E[Qij]−E

[
1
n
[XTQX]kkQij

]
−E

[
1
n
[XTQ]ki[XTQ]kj

]
.

so that, summing over k,

1
z

1
n

n

∑
k=1

E[Xik[XTQ]kj] =
1
z

E[Qij]−
1
z

1
n2 E[Qij tr(QXXT)]− 1

z
1
n2 E[QXXTQ]ij.
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It is not too difficult to see that the rightmost term has vanishing operator norm (of
order O(1/n)) as n, p → ∞. Also recall that tr(QXXT) = np + zn tr Q. As a result,
matrix-wise, we obtain

E[Q] +
1
z

Ip = E[X·k[XTQ]k·] =
1
z

E[Q]− 1
z

1
n

E[Q(p + z tr Q)] + o‖·‖(1).

As 1
n tr Q is expected to converge to some m(z), it can be taken out of the expectation in

the limit so that, gathering all terms proportional to E[Q] on the left-hand side, we finally
have

E[Q](1− p/n− z− p/nzm(z)) = Ip + o‖·‖(1)

which, taking the trace to identify m(z), concludes the proof for the Gaussian case.

Almost sure convergence by Nash–Poicaré inequality. To prove the almost sure convergence
of traces and bilinear forms of the resolvent in the case of Gaussian X, one may then use
the powerful Nash–Poincaré inequality proposed by Pastur.

Lemma 2.14 (Nash–Poincaré inequality from [Pas05]). For x ∼ N (0, C) with C ∈ Rp×p

and f : Rp 7→ R continuously differentiable with derivatives having at most polynomial growth
with respect to p,

Var[ f (x)] ≤ 2 ∑
1≤i,j≤n

CijE

[
∂ f (x)

∂xi

∂ f (x)
∂xj

]
.

In the present case, for Gaussian X with Xij ∼ N (0, 1),

Var
[

1
p

tr AQ
]
≤ 2

p2 ∑
1≤i,j≤n

E

[∣∣∣∣∂ tr AQ
∂Xij

∣∣∣∣2
]

.

Again using ∂Q = − 1
n Q∂(XXT)Q, we find

∂ tr AQ
∂Xij

= − 1
n
[QAQX + QATQX]ij

so that, from (a + b)2 ≤ 2(a2 + b2) and ‖A‖ = 1,

2
p2 ∑

1≤i,j≤n
E

[∣∣∣∣∂ tr AQ
∂Xij

∣∣∣∣2
]
≤ 4

p2n2

(
tr(QAQXXTQATQ)+ tr(QATQXXTQAQ)

)
= O(n−2).

By Markov’s inequality and the Borel Cantelli lemma, we thus have that 1
p tr A(Q −

EQ)
a.s.−→0.

When it comes to evaluating the fluctuations of aT(Q − EQ)b with the same ap-
proach, it appears that Var[aT(Q−EQ)b] = O(n−1) which is enough to ensure conver-
gence in probability (by Markov’s inequality) but not almost surely (as the Borel Cantelli
lemma cannot be applied). Thus one needs to resort to evaluating a higher moment
bound, such as E[|aT(Q−EQ)b|4]. To this end, we may use the fact that

E[|aT(Q−EQ)b|4] = Var[|aT(Q−EQ)b|2] + E
[
|aT(Q−EQ)b|2

]2

= Var[|aT(Q−EQ)b|2] + Var[|aT(Q−EQ)b|]2.

Since we know that the rightmost term is of order O(n−2), it remains to show, again
through Nash–Poincaré inequality, that Var[|aT(Q−EQ)b|2] = O(n−2) which is a cum-
bersome but easily obtained result as well.
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Interpolation trick to non-Gaussian X. To “interpolate” these results from Gaussian X to
non-Gaussian X, one may then use a generalized version of Stein’s lemma to non-Gaussian
distributions, for which we have:

Lemma 2.15 (Interpolation trick, Corollary 3.1 in [LP09]). For x ∈ R a random variable with
zero mean and unit variance, y ∼ N (0, 1), and f a k + 2-differentiable function with bounded
derivatives,

E[ f (x)]−E[ f (y)] =
k

∑
l=2

κl+1

2l!

∫ 1

0
E[ f (l+1)x(t)]t(l−1)/2dt + εk

where κl is the lth cumulant of x, x(t) =
√

tx+(1−
√

t)y, and |εk| ≤ CkE[|x|k+2] supt | f (k+2)(t)|
for some constant Ck only dependent on k.

All Gaussian expectations (means and variance) in the proof above can then be ex-
pressed as their non-Gaussian form up to a sum of moment control on the derivatives of
f .

Remark 2.4 (On the convergence rates). In the course of the proofs above, we saw examples
of a general concentration trend for linear statistics and quadratic forms of random matrices. We
shall indeed typically have for most of the models of random matrices X ∈ Rn×n under study that

• linear statistics 1
n ∑n

i=1 f (λi(X)) for sufficiently well-behaved f (so for instance 1
n tr QX(z) =

1
n ∑i(λi(X)− z)−1) converge at a speed O(1/n) (their variance scales as O(1/n2). From
a central-limit theorem viewpoint, this is as fast as it can get. Indeed, X is maximally
composed of p× n = O(n2) “degrees of freedom” and thus, by the central limit theorem,
fluctuations are at most at speed O(1/

√
n2) = O(1/n).

• quadratic forms aT f (X)b where f (X) = U diag( f (λi(X))UT (in the spectral decomposi-
tion of X) typically converge at a slower O(1/

√
n) speed.

This remark is particularly interesting as it indicates, from a statistics viewpoint that, for X ∈
Rp×n, asymptotic approximations may gain accuracy by doubly exploiting the degrees of freedom
in both the sample (n) and feature (p) direction.

Remark 2.5 (On the assumptions on X). The Marc̆enko–Pastur law has been widely general-
ized and several times proved using different techniques. For instance [A+11, O’R12] assume the
Xij are “weakly” dependent in the sense that their correlation or higher order cross-moments van-
ish at a certain speed as n, p → ∞. Alternatively, the works of Bai and Silverstein (see [BS06])
tend to assume that the entries of X are not necessarily identically distributed; in this case, an
additional condition on the tails P(|Xij| > t) of the probability measures of the entries (for in-
stance a uniform bound on some moment higher than 2) is needed. In [EK09], El Karoui provides
a first result which assumes the columns xi of X = [x1, . . . , xn] are independent concentrated
random vectors. (Very) roughly speaking, concentrated random vectors x ∈ Rp can be written as
x = ϕ(x̃) where x̃ has standard i.i.d. entries with either a Gaussian law or a bounded support, and
ϕ : Rp → Rp is any 1-Lipschitz function: this assumption maintains the p degrees of freedom in
x (arising from x̃) while allowing for strong nonlinear correlation between the entries of x. In this
case, the Marc̆enko–Pastur law is indeed still valid if ϕ(x) has zero mean and identity covariance.

2.2.3 Large dimensional sample covariance matrices

The Marc̆enko–Pastur and semi-circle theorems have long been the gold-standard in both
theoretical and applied random matrix theory, in the sense that most mathematical stud-
ies and practical results concerned the Wishart and Wigner random matrix models. But
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the assumption of data X with i.i.d., let alone standard Gaussian, entries is often limit-
ing. In statistics where one is interested in the correlation XXT, it is expected that the
columns xi ∈ Rp of X exhibit a correlation structure and be non-necessarily independent
(in particular when they are samples from a time series).

This section introduces generalizations of these results, to a level that is convenient
to machine learning applications. In particular, in order to model the existence of classes
within the data, X will often be subdivided into subblocks that can be identified with
each class.

Our first result generalizes the Marc̆enko–Pastur law to sample covariance matrices
and is originally due to a long line of works by Bai and Silverstein [SB95].

Theorem 2.4 (Sample covariance matrix, from [SB95]). Let X = C
1
2 Z ∈ Rp×n with C ∈

Rp×p, Z ∈ Rp×n having i.i.d. zero mean and unit variance entries. Then, as n, p → ∞ with
p/n→ c > 0, letting Q(z) = ( 1

n XXT − zIp)−1 and Q̃(z) = ( 1
n XTX− zIn)−1, we have

Q(z)↔ Q̄(z) = −1
z
(
Ip + m̃p(z)C

)−1

Q̃(z)↔ ¯̃Q(z) = m̃p(z)In

where (z, m̃p(z)) is the unique solution in Z(C \R+) of

m̃p(z) =
(
−z +

1
n

tr C
(
Ip + m̃p(z)C

)−1
)−1

.

In particular, if µC → ν as p → ∞, then µ 1
n XXT

a.s.−→µ and µ 1
n XTX

a.s.−→µ̃ as p, n → ∞ where µ, µ̃

are the unique measures having Stieltjes transforms m(z) and m̃(z) with

m(z) =
1
c

m̃(z) +
1− c

cz
, m̃(z) =

(
−z + c

∫ tν(dt)
1 + m̃(z)t

)−1

.

A few remarks are in order to better understand the statement of the theorem.

Remark 2.6 (On the implicit statement). As opposed to Theorem 2.3, the statement of the
theorem is here implicit in the sense that µ is only defined through mµ(z), itself implicitly defined
as the solution of an implicit equation. The main reason for the explicit nature of Theorem 2.3
is that Equation (2.13), that through a perturbation approach provides the connection between
m(z) and a function of itself, boils down to a quadratic equation in m(z) which can be solved
and from which Theorem 2.1 can be applied. Due to the presence of C, in the present situation,
the equivalent to (2.13) will here maintain an implicit form. This will hold true for almost all
generalizations of the Marc̆enko–Pastur theorem to be introduced in this manuscript.

Remark 2.7 (Numerical evaluation of mµ(z)). Due to its implicit nature, determining m(z)
for z ∈ C \R+ requires to solve an implicit equation. Using contraction and analyticity argu-
ments, it can be shown that the standard fixed-point algorithm converges, i.e.,

m(z) = lim
`→∞

m(`)(z)

for m̃(0)(z) = 0 (say) and, for ` ≥ 0, m(`)(z) = 1
c m̃(`)(z) + 1−c

cz , m̃(`+1)(z) = (−z +

c
∫ tν(dt)

1+m̃(`)(z)t
)−1.

One must be careful here that, since m(z) is not formally defined for z ∈ supp(µ), the above
argument does not hold in this set. In practice, trying to solve for m(z) with z ∈ supp(µ)
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numerically leads to a non-converging m(`)(z) sequence. This, in passing, can be used to actually
determine the support supp(µ) as the set of z’s for which the above algorithm does not converge.

Numerically, when evaluating m(z) close to the real axis (say for z = x + ıε, |ε| � 1),
the convergence can appear to be quite slow for x ∈ supp(µ). A convenient workaround is
to sequentially evaluate m(z) for all z’s of the form x + ıε, starting from some z0 = x0 + ıε
with x0 /∈ supp(µ) until reaching the desired value while systematically starting the fixed-point
iterations from the value m(z) obtained for the previous z.

Remark 2.8 (Drawing µ). As shown in [SC95], the limiting measure µ in Theorem 2.4 admits a
density. From the inverse Stieltjes transform formula of Theorem 2.1 and Remark 2.7 above, this
can be approximated by solving m(z) for z ∈ ıε + R for some ε > 0 small (say ε = 10−6) and
retrieving the density at x as 1

π=[m(x + ıε)].
This procedure however only allows for a numerical (rather than theoretical) evaluation of µ

and of its support (the latter being approximately the set of x’s such that | 1
π=[m(x + ıε)]| ∼ ε).

Figure 2.2 depicts the empirical versus limiting measure of µ 1
n XXT for C having three

distinct and evenly numerous eigenvalues. In this particular setting, the limiting spec-
trum is akin to Marc̆enko–Pastur shaped connected components. For sufficiently distinct
eigenvalues of C, these components are disjoint while for close eigenvalues they tend to
merge.

Remark 2.9 (Deterministic equivalent for µ 1
n XXT). The convergence result µ 1

n XXT

a.s.−→µ in The-
orem 2.4 imposes that there exists a limit ν to µC, which may not be practically meaningful. In
generalized versions of Theorem 2.4 (see e.g., Theorem 2.5 below), even if the spectral measure of
the covariance matrices are to converge, µ 1

n XXT may not even have a limit.
One may instead consider the deterministic equivalent µp for µ 1

n XXT which is a sequence

of probability measures, such that dist(µ 1
n XXT , µp)

a.s.−→0 for some distance between distributions

(for instance, such that µ 1
n XXT − µp

a.s.−→0 vaguely).
Practically speaking, since the data dimension p is in general a fixed quantity and C a given

covariance matrix (rather than specific values in a growing sequence of p’s and C’s), one will
always consider that the “effective” limiting measure ν coincides with µC = 1

p ∑
p
i=1 δλi(C). So for

instance, if p = q for some fixed q in the data at hand, one may still theoretically consider that
n, p → ∞ and apply Theorem 2.4 with ν = µC for C ∈ Rq×q, the actual data covariance matrix
of the finite-dimensional model.

Sketch of Proof of Theorem 2.4. The proof of Theorem 2.4 generally follows the same line of
arguments as that of Theorem 2.3. The main difference is that (2.12) here becomes

1
n

xTi Q̄AQxi =
1
n xTi Q̄AQ−ixi

1 + 1
n xTi Q−ixi

'
1
n tr Q̄AQ−iC
1 + 1

n tr Q−iC

where we used the fact that, denoting xi = C
1
2 zi for zi the i-th column of Z having i.i.d.

zero mean and unit variance entries, by Lemma 2.11,

1
n

xTi Q−ixi =
1
n

zTi C
1
2 Q−iC

1
2 zi '

1
n

tr Q−iC.

Again with Lemma 2.9 and the fact that 1
n tr Q−iC ≤ ‖C‖ 1

n tr Q−i, we obtain the ap-
proximation

1
n

tr(F + zIp)Q̄AQ '
1
n tr CQ̄AQ
1 + 1

n tr QC
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Figure 2.2: Histogram of the eigenvalues of 1
n XXT, p = 300, n = 3000, for C having

spectral measure µC = 1
3 (δ1 + δ3 + δ7) (top) and µC = 1

3 (δ1 + δ3 + δ4) (bottom).
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with F(z) = Q̄−1(z) the sought-for deterministic equivalent, which then must admit the
form

F(z) ' C
1 + 1

n tr QC
− zIp

for the previous approximation to hold. Ultimately, taking A = C in 1
n tr A(Q− Q̄)

a.s.−→0
we deduce

1
n

tr CQ ' 1
n

tr CQ̄ ' 1
n

tr C

(
−zIp +

C
1 + 1

n tr CQ̄

)−1

(2.17)

or equivalently

m̃p(z) =
(
−z +

1
n

tr C
(
Ip + m̃p(z)C

)−1
)−1

if we denote m̃p(z) = − 1
z

(
1 + 1

n tr CQ̄(z)
)−1

, as requested. Note that we implicitly used
here the fact that ‖C‖ is bounded.

With the deterministic equivalent for Q in hand, the deterministic equivalent for Q̃
follows from the direct observation that Q̃ = 1

z
1
n XTQX− 1

z In so that

E[Q̃]ij =
1
z

1
n

E[xTi Qxj]−
1
z

δij =
1
z

E

[
1
n xTi Q−ixj

1 + 1
n xTi Q−ixi

]
− 1

z
δij

' −1
z

(
1 +

1
n

tr CQ̄
)−1

δij = m̃p(z)δij.

Kernel methods naturally involve matrices of the type K = { 1
p xTi xj}n

i,j=1 = 1
p XTX

(inner product kernels) or K = { 1
p‖xi − xj‖2}n

i,j=1 (distance kernels), where the prefactor
1/p is necessary under our notation framework to ensure that the spectrum of K remains
of order O(1) as p, n increase. Assuming the vectors xi arise from a mixture model, the
following generalization of Theorem 2.4 will be of practical relevance.

Theorem 2.5 (Sample covariance of mixture models, from [BGC16]). Let X = [X1, . . . , Xk] ∈
Rp×n with Xa = [xa1, . . . , xana ] ∈ Rp×na and xai = C

1
2
a zai for zai a vector with i.i.d. zero mean

and unit variance entries. Then, as n1, . . . , nk, p→ ∞ in such a way that k is fixed and na/n→
ca > 0, p/n → c0 > 0, letting Q(z) = ( 1

p XTX− zIn)−1 and Q̃(z) = ( 1
p XXT − zIp)−1, we

have

Q(z)↔ Q̄(z) = diag{ga(z)1na}k
a=1

Q̃(z)↔ ¯̃Q(z) = −1
z

(
Ip +

k

∑
a=1

ca

c0
ga(z)Ca

)−1

with (z, ga(z)) the unique solutions in Z(C \R+) of

ga(z) = −
1
z
(1 + g̃a(z))−1, g̃a(z) = −

1
z

1
p

tr Ca

(
Ip +

k

∑
b=1

cb

c0
gb(z)Cb

)−1

.
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Sketch of proof of Theorem 2.5. Let us begin with the initial guess ¯̃Q = F−1. By Lemma 2.1,

Q̃− ¯̃Q = Q̃

(
F + zIp −

1
p

k

∑
b=1

nb

∑
i=1

xbixTbi

)
¯̃Q

so that, with 1
p tr A(Q̃− ¯̃Q)

a.s.−→0, it follows

1
p

tr(F + zIp)
¯̃QAQ̃− 1

p

k

∑
b=1

nb

∑
i=1

1
p

xTbi
¯̃QAQ̃xbi

a.s.−→0.

Applying Lemma 2.8 to remove the dependence in Q̃ of xbi, together with Lemma 2.9,
we deduce

1
p

k

∑
b=1

nb

∑
i=1

1
p

xTbi
¯̃QAQ̃xbi '

k

∑
b=1

nb

p

1
p tr Cb

¯̃QAQ̃

1 + 1
p tr Q̃Cb

so that F must be written as the following sum over b

F '
k

∑
b=1

cb

c0

Cb

1 + 1
p tr Q̃Cb

− zIp.

To eventually close the loop, we take A = Ca for a = 1, . . . , k to establish

1
p

tr C̃aQ ' 1
p

tr Ca
¯̃Q ≡ g̃a(z) '

1
p

tr Ca

−zIp +
k

∑
b=1

cb

c0

Cb

1 + 1
p tr ¯̃QCb

−1

≡ −1
z

1
p

tr Ca

(
Ip +

k

∑
b=1

cb

c0
gb(z)Cb

)

where we denote ga(z) ≡ − 1
z

(
1 + 1

p tr Ca
¯̃Q
)−1

= − 1
z (1 + g̃a(z))−1, as desired.

To derive the deterministic equivalent for Q from that for Q̃, we use again the fact that
Q = 1

z
1
p XTQ̃X− 1

z In and therefore, indexing the set {1, . . . , n} as {11, . . . , 1n1, . . . , 1k, . . . , knk},

E[Q]ai,bj =
1
z

1
p

E[xTaiQ̃xbj]−
1
z

δai,bj ' −
1
z

(
1 +

1
p

tr Ca
¯̃Q
)−1

δai,bj = ga(z)δai,bj.

2.3 Spiked Models

In the last section we discussed the popular sample covariance model, by providing a de-
terministic equivalent for the associated resolvent, and consequently the associated Stielt-
jes transform that describes the limiting spectral measure as well as a thorough charac-
terization of linear statistics, quadratic forms and the subspaces of interest. Nonetheless,
due to the implicit nature of Theorem 2.4, the aforementioned understanding has only a
rather limited practical impact.

In this section, we consider a very special, yet practically far reaching, case of sam-
ple covariance matrix models for which the limiting spectral measure coincides with
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the Marc̆enko–Pastur law. Since the Marc̆enko–Pastur law assumes an explicit well-
understood expression (recall Theorem 2.3), the various estimates of interest will be ex-
plicit, thus intuitions on their behavior are easily derived.

These special models fundamentally rely on letting the covariance matrix C be a low
rank perturbation of the identity matrix Ip, i.e., C = Ip +L for L ∈ Rp×p with rank(L) = k
fixed with respect to p, n. Such statistical models corresponding to a low rank update of
a classical random matrix model with well-known behavior are generically called spiked
models.

2.3.1 Isolated eigenvalues

Let us then consider again the statistical model X = [x1, . . . , xn] ∈ Rp×n with xi = C
1
2 zi,

zi ∈ Rp with standard i.i.d. entries and where

C = Ip + L, L =
k

∑
i=1

`iuiuT
i

with k and `1 ≥ . . . ≥ `k > 0 fixed with respect to n, p and ‖ui‖ = 1 for all i.

According to Theorem 2.4, µ 1
n XXT has a limiting measure µ defined through the limit-

ing measure ν of µC. But obviously ν = δ1 here since

µC =
p− k

p
δ1 +

1
p

k

∑
i=1

δ1+`i → δ1.

As a consequence, while C is not the identity matrix, the limiting measure µ is the
Marc̆enko–Pastur law introduced in Theorem 2.3. In this case, it is natural to ask, if it
is possible to (constantly) observe eigenvalues of 1

n XXT “jumping out” the support of ν,
and if yes, can we further “localize” these isolated eigenvalues.

We will precisely show here that, depending on the values of `i and c = lim p/n, the
i-th largest eigenvalue of 1

n XXT may indeed isolate from supp(µ). As such, since most of
the eigenvalues of 1

n XXT congregate but possibly for a few ones (up to k of them), the
latter isolated eigenvalues are seen as “spikes” in the histogram of eigenvalues.

The specific result, here due to Baik (not Bai) and Silverstein, is as follows

Theorem 2.6 (Spiked models, from [BS06]). Under the setting of Theorem 2.4 with E[Z4
i,j] <

∞, let C = Ip + L with L = ∑k
i=1 `iuiuT

i in its spectral decomposition, where k and `1 ≥ . . . ≥
`k > 0 are fixed with respect to p, n. Then, denoting λ1 ≥ . . . ≥ λp the eigenvalues of 1

n XXT, as
p, n→ ∞,

λi
a.s.−→
{

ρi = 1 + `i + c 1+`i
`i

> (1 +
√

c)2 , `i >
√

c
(1 +

√
c)2 , `i ≤

√
c.

The theorem thus identifies an abrupt change in the behavior of the i-th dominant
eigenvalue λi of 1

n XXT: if `i ≤
√

c, λi converges to the right-edge (1+
√

c)2 of the support
of µ and thus does not isolate. However, as soon as `i >

√
c, λi converges to a limit beyond

the right-edge of µ and thus does isolate, from the Marc̆enko–Pastur support.
With a statistical physics interpretation, this phenomenon is often referred to as the

phase transition of the spiked models.
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From a statistical viewpoint, the fact that the i-th eigenvalue λi of the sample covari-
ance matrix “macroscopically” exceeds or not the other eigenvalues according to whether
`i >

√
c or `i ≤

√
c can be interpreted as the fact that the “signal strength” `i of the

structured data exceeds the minimal detectability threshold
√

c: this is achieved if the sig-
nal strength `i is strong enough, or alternatively if the number of observed independent
data n is large enough (so that c = lim p/n is small), as the intuition would suggest.
Indeed, if `1 <

√
c, the eigenvalues of 1

n XXT are all asymptotically compacted in the sup-
port [(1−

√
c)2, (1 +

√
c)2] and thus it is theoretically (asymptotically) impossible to tell

whether C = Ip or C is more structured (e.g., C = Ip + L) from the observation of the
spectral measure.

Proof of Theorem 2.6. When it comes to assessing the eigenvalues of a given matrix A, it
first comes to mind to solve the determinant equation det(A− λI) = 0. This approach is
not convenient for X of increasing dimensions and we have seen that the Stieltjes trans-
form method is an appropriate substitute in this case. Here, since the low rank ma-
trix L only induces a low rank perturbation of 1

n XXT, the use of Sylverster’s identity
(Lemma 2.3) will turn the large dimensional determinant equation into a small (fixed)
dimensional one, and the method is now valid. This is the approach we pursue here.

Specifically, let us seek for the presence of an eigenvalue λ of 1
n XXT which is asymp-

totically greater than (1 +
√

c)2. Our approach is to “isolate” the low rank contribution
due to L from the “whitened” sample covariance matrix model with identity covariance.
To this end, we use the following sequence of equivalences

0 = det
(

1
n

XXT − λIp

)
= det

(
1
n
(Ip + L)

1
2 ZZT(Ip + L)

1
2 − λIp

)
= det

(
Ip + L

)
det

(
1
n

ZZT − λ(Ip + L)−1
)

where we recall X = C
1
2 Z. Obviously, det(Ip + L) 6= 0 so that the first determinant can be

discarded. For the second term, first recall from the resolvent identity (Lemma 2.1) that

(Ip + L)−1 = Ip − (Ip + L)−1L

so that we can isolate the (now well-understood) resolvent of the “whitened” model.
That is, letting Q(z) = ( 1

n ZZT − λIp)−1, we write

0 = det
(

1
n

ZZT − λIp + λ(Ip + L)−1L
)

= det Q−1(λ)det
(

Ip + λQ(λ)(Ip + L)−1L
)

.

Inverting the matrix 1
n ZZT − λIp is (almost surely) licit for all large n, p as we demanded

λ > (1+
√

c)2. Now, denoting L = UDUT with L = diag(`1, . . . , `k) and U = [u1, . . . , uk] ∈
Rp×k, we further have

(Ip + L)−1L = (Ip + UDUT)−1UDUT = U(Ik + D)−1DUT.

Plugging this expansion into the above equation, this is

0 = det Q−1(λ)det
(

Ip + λQ(λ)U(Ik + D)−1DUT
)

= det Q−1(λ)det
(

Ik + λUTQ(λ)U(Ik + D)−1D
)
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where in the last equality we applied Sylvester’s identity. Since the first determinant does
not cancel with λ > (1 +

√
c)2, we finally have for all large n, p,

0 = det
(

Ik + λUTQ(λ)U(Ik + D)−1D
)

.

From Theorem 2.3, we now know that

UTQ(λ)U = m(λ)Ik + o‖·‖(1)

almost surely, for m(z) the Stieltjes transform of the Marc̆enko–Pastur law µ (the term Ik
arises from the fact that UTU = Ik). Consequently, by continuity of the determinant (as a
polynomial of its entries), we have

0 = det
(

Ik + λm(λ)(Ik + D)−1D
)
+ o(1)

and thus, if such a λ exists, it must satisfy

λm(λ) = −1 + `i

`i
+ o(1).

for some i ∈ {1, . . . , k}. We thus need to understand when this equation has a solution.
To this end, observe that the function R \ supp(µ) → R, x 7→ xm(x) =

∫ x
t−x µ(dt)

is increasing on its domain of definition and that m(x) → 0 as x → ∞. Solving the
expression of m(z) in Theorem 2.3, i.e.,

zcm(z)2 − (1− c− z)m(z) + 1 = 0 (2.18)

we further find that

lim
x↓(1+

√
c)2

xm(x) = −1 +
√

c√
c

.

Thus, m(x) increases from − 1+
√

c√
c to 0 on the interval ((1 +

√
c)2, ∞). The equation

λm(λ) = − 1+`i
`i

thus only has a solution if and only if

−1 + `i

`i
> −1 +

√
c√

c

that is, whenever `i >
√

c. Assuming this holds, we may then use again (2.18) to obtain,
after multiplication by λ, that

c(λm(λ))2 − (1− c− λ)(λm(λ)) + λ = 0

which, after replacement of λm(λ) by − 1+`i
`i

finally gives, as expected, that

λ→ 1 + `i + c
1 + `i

`i

concluding the proof.

Figure 2.3 depicts the eigenvalues of 1
n XXT versus the Marc̆enko–Pastur law, in the

scenario where C = Ip + L with L of rank four, for various ratios p/n. As predicted by
Theorem 2.6, the number of visible “spikes” outside the limiting support of 1

n XXT varies
with p/n: as the ratio decreases, less spikes are visible.
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Figure 2.3: Eigenvalues of 1
n XXT (BLUE crosses) and the Marc̆enko–Pastur law (red line)

for X = C
1
2 X̃, C = Ip +L with µL = p−4

p δ0 +
1
p (δ1 + δ2 + δ3 + δ4), for p = 500 and different

values of n.

2.3.2 Isolated eigenvectors

From a practical standpoint, we have seen that the presence of isolated eigenvalues in the
spectrum of the sample covariance 1

n XXT reveals the presence of some “structure” in the
population covariance C in the sense that C 6= Ip. We have however also seen that the
converse is not true: assuming a spiked model for C, the absence of isolated eigenvalue
does not imply C = Ip.

More interestingly, whether this “structure” is detected or not, one may wonder whether
it can be estimated at all. More specifically, if C = Ip + L with L = ∑k

i=1 `iuiuT
i , are the

eigenvectors û1, . . . , ûk of 1
n XXT associated to the k largest eigenvalues λ1, . . . , λk good

estimators for u1, . . . , uk?
Not surprisingly, the answer is here again twofold: i) if `i ≤

√
c then ûi tends to be

orthogonal to ui, while ii) if `i >
√

c, ûi is to some extent aligned to ui. The following
theorem, originally due to Paul, quantifies this “to some extent”.

Theorem 2.7 (Eigenvector alignment, from [Pau07]). Under the setting of Theorem 2.6, let
û1, . . . , ûk be the eigenvectors associated with the largest k eigenvalues λ1 > . . . > λk of 1

n XXT.
Further assume that `1 > . . . > `k > 0 are all distinct. Then, for a, b ∈ Rk unit norm
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deterministic vectors

aTûiûT
i b− aTuiuT

i b
1− c`−2

i

1 + c`−1
i

1`i>
√

c
a.s.−→0.

In particular,

|uT
i ûi|2

a.s.−→
1− c`−2

i

1 + c`−1
i

1`i>
√

c.

Proof. We may first write that, for all large n, p almost surely,

aTûiûT
i b = − 1

2πı

∮
Γρi

aT
(

1
n

XXT − zIp

)−1

bdz

for Γρi a small contour enclosing the almost sure limit ρi of the eigenvalue λi of 1
n XXT

only.
Isolating 1

n ZZT from 1
n XXT as in the previous proof, we have from Woodbury’s iden-

tity, Lemma 2.7,

aT
(

1
n

XXT − zIp

)−1

b = aT
(

1
n
(Ip + L)

1
2 ZZT(Ip + L)

1
2 − zIp

)−1

b

= aT(Ip + L)−
1
2

(
1
n

ZZT − zIp − zL
)−1

(Ip + L)−
1
2 b

= aT(Ip + L)−
1
2 Q(z)(Ip + L)−

1
2 b + zaT(Ip + L)−

1
2 Q(z)UL(Ik − zUTQ(z)UL)−1UTQ(z)(Ip + L)−

1
2 b

= aT(Ip + L)−
1
2 Q(z)(Ip + L)−

1
2 b + zm(z)2aT(Ip + L)−

1
2 L(Ik − zm(z)L)−1(Ip + L)−

1
2 b + o(1)

where Q(z) = ( 1
n ZZT − zIp)−1 and for the last equality we used UTQ(z)U = m(z)Ik +

o(1) as per Theorem 2.3. The complex integration of Q(z) on the contour Γρi only brings a
positive residue for the second right-hand side term owing to the inverse (Ik− zm(z)L)−1

which is singular for z = ρi. We thus finally have

aTûiûT
i b = − 1

2πı

∮
Γρi

zm(z)2aT(Ip + L)−
1
2 L(Ik − zm(z)L)−1(Ip + L)−

1
2 bdz + o(1).

Since limz→ρi(z − ρi)(Ik − zm(z)L)−1 = −(ρim′(ρi) + m(ρi))
−1`−1

i uiuT
i with m(ρi) =

−1/(c + `i) and m′(ρi) = `2
i (c + `i)

−2(−c + `i)
−1 (these are obtained from the elements

of proof of Theorem 2.6 and from (2.13)), we get that the residue associated to (Ik −
zm(z)L)−1 is

(−ρim′(ρi)−m(ρi))
−1`−1

i uiuT
i = (`2

i − c)`−1
i uiuT

i .

Thus, we finally get after elementary algebra,

aTûiûT
i b = −aTuiuT

i b
ρim2(ρi)`i

1 + `i
(`2

i − c)`−1
i = aTuiuT

i b
1− c`−2

i

1 + c`−1
i

.

Figure 2.4 compares, in a single-spike scenario, the theoretical limit of |ûT
1 u1|2 versus

its empirical value for different `1 and different p, n with constant ratio p/n. It is im-
portant to note that the theoretical asymptotic phase transition phenomenon at `1 =

√
c

corresponds to a sharp non-differentiable change in the function `1 7→ |ûT
1 u1|2; on real

data, this sharp transition is only observed for extremely large values of n, p. This in par-
ticular means that, in practice, residual information is present below the phase transition.
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Figure 2.4: Simulated versus limiting |ûT
1 u1|2 for X = C

1
2 Z, C = Ip + `1u1uT

1 , p/n = 1/3,
for varying `1.

2.3.3 Further discussions and other spiked models

As briefly discussed above, the “spiked model” terminology goes beyond sample co-
variance matrix models with C = Ip + L, and L a low rank matrix. In the literature,
spiked models loosely are referred to as “low rank perturbative” models in the following
sense: there exists an underlying random matrix model X, the spectral measure of which
converges to a well-defined measure with compact support and having eigenvalues con-
verging to the support (i.e., no single eigenvalue isolates) which is modified in some way
by a low rank matrix L; the resulting matrix has the same limiting spectral measure as
that of X but with possibly some spurious eigenvalues.

Baik and Silverstein in [BS06] were the first to study spiked models, but their ap-
proach relied on applying the results on sample covariance matrix models (Theorem 2.4)
to the specific case where C = Ip +L. This approach requires to have a full understanding
of a “more complex” statistical model before particularizing it to a low rank perturbation.
The proof of Theorem 2.6 that we proposed follows a second wave of advances in spiked
models, mostly triggered by the work of Benaych and Rao [BGN12] (with a free proba-
bility approach), which is rather based on relating the perturbation matrix model to the
underlying simple (non perturbed) matrix.

Among the popular spiked models, we have the following cases:

• the information-plus-noise model of the type

1
n
(X + L)(X + L)T

with X ∈ Rp×n having i.i.d. standard entries (zero mean, unit variance and finite
fourth order moment) and L ∈ Rp×n deterministic (or at least independent of X) of
fixed rank k.

• the additive model of the type

Y + L
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where Y ∈ Rn×n is either of the type Y = 1
n XTX, X ∈ Rp×n with standard i.i.d. en-

tries, of Y = 1√
n X with X symmetric with standard i.i.d. entries above and on the

diagonal and L ∈ Rn×n deterministic.

Each of these models has its own phase transition threshold (i.e., the value that eigen-
values of L must exceed for a spike to be observed), dominant eigenvalue limits, and
eigenvector projections. These can all be determined with the aforementioned proof ap-
proach.

However, we will see later that, in practice, we will be confronted with more general
forms of low rank perturbation models that do not fit this conventional “random matrix
X and deterministic perturbation L” assumption.

In particular, L will often be a (possibly elaborate) function of X. Also, X itself, which
will often stand for the “noisy” part of the data model (while L will in general comprises
both the relevant information and some extra noise), may induce its own isolated eigen-
values. For instance, we shall see in Remark 3.7 in Section 3.1.2 that, depending on the
ratios p/n and tr C4/(tr C2)2, the random matrix {[XXT]2ij}

p
i 6=j where X = C

1
2 Z and Z with

i.i.d. standard entries, may have two isolated eigenvalues although all the eigenvalues of
C remain in their limiting support.

Yet, despite these technical differences, the proof approaches of Theorem 2.6 and
Theorem 2.7 remain essentially valid. We thus propose here to generalize the notion
of “spiked models” to models of the type X + L where X is some reference, well un-
derstood, random matrix model (possibly inducing its own spikes) and L is a low rank
matrix, possibly depending on X.

With this definition, the aforementioned sample covariance, information-plus-noise and
additive models are in fact all equivalent to an additive model. Indeed, we may write

1
n
(X + L)(X + L)T = Y + L′

Y =
1
n

XXT, L′ =
1
n

XLT +
1
n

LXT +
1
n

LLT

and

1
n
(Ip + L)

1
2 XXT(Ip + L)

1
2 = Y + L′

Y =
1
n

XXT, L′ =
1
n

XL′′T +
1
n

L′′X +
1
n

L′′L′′T

where in the second equation, letting L = UDUT, we denoted L′′ = U((Ik + D)
1
2 −

Ik)UT. In the remainder of the manuscript, we shall systematically exploit this generic
modeling approach to spiked models.



Chapter 3

Spectral Behavior of Large Kernels
Matrices and Neural Nets

3.1 Random Kernel Matrices

3.1.1 Kernel ridge regression

Kernel ridge regression, or least squares support vector machine (LS-SVM), as mentioned
in Section 1.2.1, is a modification of the standard SVM [SV99] to overcome the drawbacks
of SVM related to computational efficiency. In this subsection, we will focus on a two-
class GMM (see Definition 1) classification using LS-SVM as described below.

Given a training set {xi, yi}n
i=1 of size n, where data xi ∈ Rp and labels yi ∈ {−1, 1},

the objective of LS-SVM is to devise a decision function h(x) that ideally maps all xi in
the training set to yi and subsequently all unknown data x to their corresponding y value.
Here we denote xi ∈ C1 if yi = −1 and xi ∈ C2 if yi = 1 and shall say that xi belongs to
class C1 or class C2, respectively. Due to the often nonlinear separability of the data in
their input space Rp, in most cases, one associates the training data xi to some feature
space H through a nonlinear mapping φ : xi 7→ φ(xi) ∈ H. Optimization methods are
then used to define a separating hyperplane in H with direction vector α and a function
h(x) = αTφ(x) + b that minimizes the training errors ei = yi − (αTφ(xi) + b) that yields
good generalization performance by minimizing the norm of α [SS04]. More specifically,
the LS-SVM approach consists in minimizing the squared errors e2

i , thus resulting in

min
α,b

L(α, e) = ‖α‖2 +
λ

n

n

∑
i=1

e2
i (3.1)

s.t. yi = αTφ(xi) + b + ei, i = 1, . . . , n

where λ > 0 is a penalty factor that weights the structural risk ‖α‖2 against the empirical
one 1

n ∑n
i=1 e2

i .
The problem can be solved by introducing Lagrange multipliers βi, i = 1, . . . , n with

solution α = ∑n
i=1 βiφ(xi), where, letting y = [y1, . . . , yn]T, β = [β1, . . . , βn]T, we obtainβ = Q

(
In − 1n1Tn Q

1Tn Q1n

)
y = Q (y− b1n)

b = 1Tn Qy
1Tn Q1n

(3.2)

with Q =
(
K + n

λ In
)−1 and K ≡

{
φ(xi)

Tφ(xj)
}n

i,j=1 referred to as the kernel matrix
[SV99].
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Given α and b, a new datum x is then classified into class C1 or C2 depending on the
value of the decision function

g(x) = βTk(x) + b (3.3)

where k(x) =
{

φ(x)Tφ(xj)
}n

j=1 ∈ Rn. More precisely, x is associated to class C1 if g(x)

takes a small value (below a certain threshold ξ) and to class C2 otherwise.1

With the “kernel trick” [SS02], as shown in (3.2) and (3.3), both in the training and
testing steps, one only needs to evaluate the inner product φ(xi)

Tφ(xj) or φ(x)Tφ(xj),
and never needs to know explicitly the mapping φ(·). We assume that the kernel is shift-
invariant and focus on kernel functions f : R → R that satisfy φ(xi)

Tφ(xj) = f (‖xi −
xj‖2/p) and shall redefine K and k(x) for data point x as

K =
{

f
(
‖xi − xj‖2/p

)}n
i,j=1 , k(x) =

{
f
(
‖x− xj‖2/p

)}n
j=1 (3.4)

We will focus on the performance of LS-SVM, in the large n, p regime, by studying
the asymptotic behavior of the decision function g(x) defined in (3.3). We assume that all
xi’s are extracted from a two-class GMM (as in Definition 1), which allows for a thorough
theoretical analysis. For notational convenience, we rewrite the GMM in Definition 1 as
follows:

xi ∼ N (µa, Ca)⇔ xi = µa +
√

pωi (3.5)

such that ωi ∼ N (0, Ca/p) for a ∈ {1, 2}. In particular, the non-trivial classification
condition in Assumption 2 can be adapted to the binary classification setting as follows.

Assumption 4 (Non-trivial binary classification). As n→ ∞, we have for a ∈ {1, 2} that

1. p/n = c→ c̄ ∈ (0, ∞) and na/n = ca → c̄a ∈ (0, 1);

2. ‖µ1 − µ2‖ = O(1) and max{‖Ca‖, ‖C−1
a ‖} = O(1) with | tr(C1 − C2)| = O(

√
p),

‖C1 − C2‖2
F = O(p);

3. for C◦ = ni
n Ci, 2

p tr C◦ → τ > 0 as n, p→ ∞.

A key observation, also made in [CBG16], is that, as a consequence of Assumption 4,
for all pairs i 6= j,

1
p
‖xi − xj‖2 → τ (3.6)

almost surely as n, p → ∞ and the convergence is even uniform across all i 6= j. This
remark is the crux of all subsequent results and can be seen as a manifestation of the
“curse of dimensionality” with respect to the Euclidean distance in high-dimensional
space, as discussed in Section 1.1.2.

Our objective here is to assess the performance of LS-SVM, for all kernel function f
that is three-times differentiable in a neighborhood of τ, under the setting of Assump-
tions 4, by studying the asymptotic behavior of the decision function g(x) defined in
(3.3). Following [EK10b, CBG16] and our introductory demonstrations performed in Sec-
tion 1.1.2, under our basic settings, the convergence in (3.6) makes it possible to linearize
the kernel matrix K around the matrix f (τ)1n1Tn , and thus the intractable nonlinear ker-
nel matrix K can be asymptotically linearized in the large n, p regime. As such, since the
decision function g(x) is explicitly defined as a function of K (through α and b as defined
in (3.2)), one can work out an asymptotic linearization of g(x) as a function of the kernel

1Since data from C1 are labeled −1 while data from C2 are labeled 1.
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function f and the statistics of the data. This analysis, presented in detail in Section A.1.2
of the Appendix, allows one to reveal the relationship between the performance of LS-
SVM and the kernel function f as well as the given learning task, for Gaussian input data
as n, p→ ∞.

Mains results. Before going into our main results, a few notations need to be intro-
duced. In the remainder of this section, we shall use the following deterministic and
random elements notations:

P = In −
1
n

1n1Tn ∈ Rn×n, Ω ≡ [ω1, . . . , ωn] ∈ Rp×n

ψ ≡
{
‖ωi‖2 −E

[
‖ωi‖2]}n

i=1 ∈ Rn.

Under Assumptions 4, following up [CBG16] and Section 1.1.2, for three-times differ-
entiable f , one can approximate the kernel matrix K by K̃ in such a way that

‖K− K̃‖ a.s.−→0, K̃ = −2 f ′(τ)(PΩTΩP + A) +
(

f (0)− f (τ) + τ f ′(τ)
)

In

where K̃ follows a spiked model and consists of i) PΩTΩP, a standard Gram/covariance-
like random matrix model (of operator norm O(1)) and ii) A a small rank (at most eight
here) matrix that is of operator norm O(n), which depends both on P, Ω, ψ and on the
class statistics µ1, µ2 and C1, C2. The same analysis is applied to the vector k(x) by simi-
larly defining the following random variables for a new datum x ∈ Ca, a ∈ {1, 2}:

ωx ≡ (x− µa)/
√

p ∈ Rp, ψx ≡ ‖ωx‖2 −E
[
‖ωx‖2] ∈ R.

Based on the (operator norm) approximation ‖K − K̃‖ → 0, a Taylor expansion is
then performed on Q = (K + n

λ I)−1 to obtain an asymptotic approximation of Q, and
subsequently on β and b which depend explicitly on Q. At last, plugging these results
into (3.3), one obtains the following theorem that characterizes the asymptotic behavior
of the decision function g(x).

Theorem 3.1 (Asymptotic behavior of g(x)). Let Assumption 4 hold and g(x) be defined by
(3.3). Then, for a kernel function f that is three-times differentiable in a neighborhood of τ, we
have, as n, p→ ∞,

n (g(x)− g̃(x)) a.s.−→0

where

g̃(x) =

{
c2 − c1 + λ

(
R− 2c1c2

2D
)

, if x ∈ C1

c2 − c1 + λ
(
R+ 2c2

1c2D
)

, if x ∈ C2
(3.7)

with

R = −2 f ′(τ)
n

yTPΩTωx −
4c1c2 f ′(τ)
√

p
(µ2 − µ1)

T ωx + 2c1c2 f ′′(τ)
1
p

tr(C2 − C1)ψx (3.8)

D = −2 f ′(τ)
p
‖µ2 − µ1‖

2 +
f ′′(τ)

p2 tr2 (C2 − C1) +
2 f ′′(τ)

p2 ‖C2 − C1‖2
F. (3.9)

Leaving the proof to Section A.1.2 in the Appendix, Theorem 3.1 tells us that the
decision function g(x) has an asymptotic equivalent g̃(x) that consists of three parts:

1. the deterministic term c2− c1 of order O(1) that depends on the number of instances
in each class of the training set, which essentially comes from the term 1Tn y/n in b;
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2. the “noisy” term R of order O(p−1) which is a function of the zero mean random
variables Ω, ωx and ψx, thus in particular E[R] = 0;

3. the “informative” term containing D, also of order O(p−1), which features the de-
terministic differences between the two classes.

From Theorem 3.1, under the settings of Assumption 4, for Gaussian data x ∈ Ca,
a ∈ {1, 2}, we can show that g̃(x) (and therefore g(x)) converges to a random Gaussian
variable the mean and variance of which are given in the following theorem. The proof
is deferred to Section A.1.3 in the Appendix.

Theorem 3.2 (Asymptotic Gaussian behavior). Under the setting of Theorem 3.1, we have, as
n, p→ ∞,

n(g(x)− Ga)→ 0

in distribution, where
Ga ∼ N (Ḡa, VGa)

with

Ḡa =

{
c2 − c1 − 2c2 · c1c2λD, a = 1
c2 − c1 + 2c1 · c1c2λD, a = 2

VGa = 8λ2c2
1c2

2 (V a
1 + V a

2 + V a
3 )

and

V a
1 =

( f ′′(τ))2

p4 tr2(C2 − C1)‖Ca‖2
F

V a
2 =

2 ( f ′(τ))2

p2 (µ2 − µ1)
T Ca (µ2 − µ1)

V a
3 =

2 ( f ′(τ))2

np2

(
tr C1Ca

c1
+

tr C2Ca

c2

)
.

Theorem 3.2 is our main practical result as it allows one to evaluate the large n, p
performance of LS-SVM for Gaussian data. Focusing on the implications of Theorem 3.1–
3.2, several remarks and discussions are in order.

Remark 3.1 (Dominant bias). From Theorem 3.1, under the key Assumption 4, both the ran-
dom noise R and the deterministic “informative” term D are of order O(n−1), which means that
g(x) = c2 − c1 + O(n−1). This result somehow contradicts the classical decision criterion pro-
posed in [SV99], based on the sign of g(x), i.e., x is associated to class C1 if g(x) < 0 and to class
C2 otherwise. When c1 6= c2, this would lead to an asymptotic classification of all new data x’s in
the same class as n→ ∞. Practically speaking, this means for n, p large that the decision function
g(x) of a new datum x lies (sufficiently) away from 0 (0 being the classically considered threshold),
so that the sign of g(x) is constantly positive (in the case of c̄2 > c̄1) or negative (in the case of
c̄2 < c̄1). As such, all new data will be trivially classified into the same class. Instead, a first result
of Theorem 3.1 is that the decision threshold ξ should be taken as ξ = ξn = c2− c1 +O(n−1) for
imbalanced classification problems.

The conclusion of Remark 3.1 was in fact already known since the work of [GSL+02]
who reached the same conclusion through a Bayesian inference analysis, for all finite n, p.
From their Bayesian perspective, the term c2 − c1 appears in the “bias term” b under the
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form of prior class probabilities P(y = −1), P(y = 1) and allows for adjusting clas-
sification problems with different prior class probabilities in the training and test sets.
This idea of a (static) bias term correction has also been applied in [EPPP00] in order
to improve the validation set performance. We visually confirm the problem of imbal-
anced datasets in Remark 3.1 by Figure 3.1 with c1 = 1/4 and c2 = 3/4, where the
histograms of g(x) for x ∈ C1 and C2 center somewhere close to c2− c1 = 0.5, thus result-
ing in a trivial classification by assigning all new data to C2 if one takes ξ = 0 because
P(g(x) < ξ | x ∈ C1) → 0 and P(g(x) > ξ | x ∈ C2) → 1 as n, p → ∞ (the convergence
being in fact an equality for finite n, p in this particular figure).

0.49 0.5 0.51

g(x)x∈C1

g(x)x∈C2

G1
G2

Figure 3.1: Gaussian approximation of g(x) n = 256, p = 512, c1 = 1/4, c2 = 3/4, λ = 1,
Gaussian kernel with σ2 = 1, x ∼ N (µa, Ca) with µa = [0a−1; 3; 0p−a], C1 = Ip and
{C2}i,j = 0.4|i−j|(1 + 5/

√
p).

An alternative to alleviate this imbalance issue is to normalize the label vector y. From
the proof of Theorem 3.1 in Section A.1.2 we see the term c2 − c1 is due to the fact that in
b one has 1Tn y/n = c2 − c1 6= 0. Thus, one may normalize the labels yi as y∗i = −1/c1 if
xi ∈ C1 and y∗i = 1/c2 if xi ∈ C2, so that 1Tn y∗ = 0. This formulation is also referred to as
the Fisher’s targets: {−n/n1, n/n2} in the context of kernel Fisher discriminant analysis
[BA00, MRW+99]. With these normalized labels y∗, we have the following lemma that
reveals the connection between the corresponding decision function g∗(x) and g(x).

Lemma 3.1. Let g(x) be defined by (3.3) and g∗(x) be defined as g∗(x) = (β∗)Tk(x) + b∗, with
(β∗, b∗) given by (3.2) for y∗ in the place of y, where y∗i = −1/c1 if xi ∈ C1 and y∗i = 1/c2 if
xi ∈ C2. Then,

g(x)− (c2 − c1) = 2c1c2g∗(x).

Proof. From (3.2) and (3.3) we get

g(x) = yT

(
Q− Q1n1Tn Q

1Tn Q1n

)
k(x) +

yTQ1n

1Tn Q1n
= yTv

with v =
(

Q− Q1n1Tn Q
1Tn Q1n

)
k(x) + Q1n

1Tn Q1n
. Besides, note that 1Tn v = 1. We thus have

g(x)− (c2 − c1) = yTv− (c2 − c1)1Tn v

= 2c1c2

(
y− (c2 − c1)1n

2c1c2

)T

v

= 2c1c2(y∗)Tv = 2c1c2g∗(x)
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which concludes the proof.

As a consequence of Lemma 3.1, instead of Theorem 3.2 for standard labels yi ∈
{−1, 1}, one would have the following corollary for the corresponding Gaussian approx-
imation of g∗(x) when normalized labels y∗i ∈ {−c−1

1 , c−1
2 } are used.

Corollary 3.1 (Gaussian approximation of g∗(x)). Under the setting of Theorem 3.1, and with
g∗(x) defined in Lemma 3.1, n(g∗(x)− G∗a )→ 0 in distribution as n, p→ ∞, where

G∗a ∼ N (Ḡ∗a , VG∗a )

with

Ḡ∗a =

{
−c2λD, a = 1
+c1λD, a = 2

VG∗a = 2λ2 (V a
1 + V a

2 + V a
3 )

and D is defined by (3.9), V a
1 ,V a

2 and V a
3 as in Theorem 3.2.

Figure 3.2 illustrates this result in the same settings as Figure 3.1. Compared to Fig-
ure 3.1, one can observe that both histograms are now centered close to 0 (at distance
O(n−1) from zero) instead of c2− c1 = 1/2. Still, even in the case where normalized labels
y∗ are used as observed in Figure 3.2 (where the histograms cross at about−0.004 ≈ 1/n),
taking ξ = 0 as a decision threshold may not be an appropriate choice, as Ḡ∗1 6= −Ḡ∗2 .

−2 0 2

·10−2

g∗(x)x∈C1

g∗(x)x∈C2

G∗1
G∗2

Figure 3.2: Gaussian approximation of g∗(x), under the same setting as Figure 3.1.

Remark 3.2 (Insignificance of λ). As a direct result of Theorem 3.1 and Remark 3.1, note in
(3.7) that g̃(x)− (c2 − c1) is proportional to the hyperparameter λ, which indicates that, rather
surprisingly, the tuning of λ is (asymptotically) of no importance when n, p → ∞ since it does
not alter the classification statistics when one uses the sign of g(x)− (c2 − c1) for the decision.

Remark 3.2 is only valid under Assumption 4 and λ = O(1), i.e., λ is considered to
remain constant as n, p → ∞. Recall that this is in sharp contrast with [CDV07] where
λ = O(

√
n) (or O(n), depending on the problem) is claimed optimal in the large n only

regime. From (1.6), we see here that λ = O(1) is rate-optimal under the present large n, p
setting; yet we believe that more elaborate kernels (such as those explored in [CS13] and
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Section 3.1.2) may allow for improved performances (not in the rate but in the constants),
possibly for different scales of λ.

Denote Q(x) = 1√
2π

∫ ∞
x exp

(
−t2/2

)
dt the Q-function with respect to the standard

Gaussian distribution. From Theorem 3.2 and Corollary 3.1, we now have the following
immediate corollary for the (asymptotic) classification error rate.

Corollary 3.2 (Asymptotic error rate). Under the setting of Theorem 3.1, for a threshold ξn
possibly depending on n, as n, p→ ∞,

P(g(x) > ξn | x ∈ C1)−Q

(
ξn − Ḡ1√

VG1

)
→ 0 (3.10)

P(g(x) < ξn | x ∈ C2)−Q

(
Ḡ2 − ξn√

VG2

)
→ 0 (3.11)

with Ḡa and VGa given in Theorem 3.2.

Obviously, Corollary 3.2 is only meaningful when ξn = c2 − c1 + O(n−1) as recalled
earlier. Besides, it is clear from Lemma 3.1 and Corollary 3.1 that P(g(x) > ξn | x ∈ Ca) =
P(2c1c2g∗(x) > ξn − (c2 − c1) | x ∈ Ca), so that Corollary 3.2 extends naturally to g∗(x)
when normalized labels y∗ are applied.

Corollary 3.2 allows one to compute the asymptotic misclassification rate as a function
of Ḡa and VGa and the threshold ξn. Combined with Theorem 3.1, one may note the
significance of a proper choice of the kernel function f . For instance, if f ′(τ) = 0, the term
µ2− µ1 vanishes from the mean and variance of Ga, meaning that the classification of LS-
SVM will not rely (at least asymptotically and under Assumption 4) on the differences in
means of the two classes. Figure 3.3 corroborates this finding with the same theoretical
Gaussian approximations G1 and G2 in subfigures (a) and (b). When ‖µ2 − µ1‖2 varies
from 0 in (a) to 18 in (b), the distribution of g(x), and in particular, the overlap between
two classes, remain almost the same.

−5 0 5

·10−2

(a) ∆µ = 0

−5 0 5

·10−2

(b) ∆µ = 3

Figure 3.3: Gaussian approximation of g(x), n = 256, p = 512, c1 = c2 = 1/2, λ = 1,
polynomial kernel with f (τ) = 4, f ′(τ) = 0, and f ′′(τ) = 2. x ∼ N (µa, Ca), with
µa =

[
0a−1; ∆µ; 0p−a

]
, C1 = Ip and {C2}i,j = .4|i−j|(1 + 5/

√
p).

In terms of the kernel function f , if f ′(τ) = 0, the information about the statistical
means of the two different classes is lost and will not help perform the classification.
Nonetheless, we find that, rather surprisingly, if one further assumes tr C1 = tr C2 +
o(
√

p) (which is beyond the minimum “distance” rate in Assumption 4), using a kernel
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f that satisfies f ′(τ) = 0 results in VGa = 0 while Ḡa may remain non-zero, thereby
ensuring a vanishing misclassification rate (as long as f ′′(τ) 6= 0). Intuitively speaking,
the kernels with f ′(τ) = 0 play an important role in extracting the covariance “shape”
information of both classes, making the classification extremely accurate even in cases
that are deemed impossible to classify according to (1.6). This phenomenon was also
remarked in [CBG16] and deeply investigated in [CK16]. Figure 3.4 substantiates this
finding for µ1 = µ2, C1 = Ip and {C2}i,j = .4|i−j|, for which tr C1 = tr C2 = p. We
observe a rapid drop of the classification error as f ′(τ) gets close to 0.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

f ′(τ)
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Empirical error for p = 512
Empirical error for p = 1024
Theoretical error

Figure 3.4: Performance of LS-SVM, c0 = 1/4, c1 = c2 = 1/2, λ = 1, polynomial kernel
with f (τ) = 4, f ′′(τ) = 2. x ∼ N (µa, Ca), with µ1 = µ2 = 0p, C1 = Ip and {C2}i,j =

.4|i−j|.

Remark 3.3 (Conditions on the kernel function f ). From Theorem 3.2 and Corollary 3.1, one
observes that |Ḡ1 − Ḡ2| is always proportional to the “informative” term D and should, for fixed
VGa , be made as large as possible to avoid the overlap of g(x) for x from different classes. Since
VGa does not depend on the signs of f ′(τ) and f ′′(τ), it is easily deduced that, to achieve optimal
classification performance, one needs to choose the kernel function f such that f (τ) > 0, f ′(τ) <
0 and f ′′(τ) > 0.

Incidentally, the condition in Remark 3.3 is naturally satisfied for the Gaussian kernel
f (x) = exp

(
−x/(2σ2)

)
for any σ, meaning that, even without specific tuning of the

kernel parameter σ through cross validation or other techniques, LS-SVM is expected to
perform rather well with a Gaussian kernel, which is not always the case for polynomial
kernels. This especially entails, for a second-order polynomial kernel given by f (x) =
a2x2 + a1x + a0, that attention should be paid to meeting the aforementioned condition
when tuning the kernel parameters a2, a1 and a0. Figure 3.5 attests of this remark with
Gaussian input data. A rapid increase in classification error rate can be observed both in
theory and in practice as soon as the condition f ′(τ) < 0, f ′′(τ) > 0 is no longer satisfied.

In Figure 3.6 we provide a direct visualization of (the “local” behavior of) different
kernel functions f with the same or opposite f (τ), f ′(τ), f ′′(τ). The Gaussian kernel
f (x) = exp(−x/2) (in red) and the quadratic kernel (in BLUE) having the same values
of f (τ), f ′(τ) and f ′′(τ) both yield satisfying performance, while by inverting the sign of
either f ′(τ) or f ′′(τ), the misclassification rate increases rapidly.

Clearly, for practical use, one needs to know in advance the value of τ before training
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Figure 3.5: Performance of LS-SVM, n = 256, p = 512, c1 = c2 = 1/2, λ = 1, polynomial
kernel. x ∈ N (µa, Ca), with µa = [0a−1; 2; 0p−a], C1 = Ip and {C2}i,j = .4|i−j|(1 + 4/

√
p).

so that the kernel f can be properly chosen during the training step. The estimation of τ
is possible, in the large n, p regime, with the following lemma.

Lemma 3.2. Under Assumption 4, as n→ ∞,

2
n

n

∑
i=1

1
p

∥∥∥∥∥xi −
1
n

n

∑
i=1

xi

∥∥∥∥∥
2

a.s.−→τ. (3.12)

Proof. First observe that

2
n

n

∑
i=1

1
p

∥∥∥∥∥xi −
1
n

n

∑
i=1

xi

∥∥∥∥∥
2

=
2c1c2‖µ2 − µ1‖2

p
+

2
n

n

∑
i=1
‖ωi − ω̄‖2 + κ

with κ = 4
n
√

p (µ2 − µ1)
T
(
−c2 ∑xi∈C1

ωi + c1 ∑xj∈C2
ωj

)
and ω̄ = 1

n ∑n
i=1 ωi.

According to Assumption 4 we have 2c1c2
p ‖µ2 − µ1‖2 = O(n−1). The term κ is a linear

combination of independent zero-mean Gaussian variables and thus κ ∼ N (0, Var[κ])
with Var[κ] = 16c1c2

np2 (µ2 − µ1)
T (c2C1 + c1C2) (µ2 − µ1) = O(n−3). We thus deduce from

Chebyshev’s inequality and the Borel-Cantelli lemma that κ
a.s.−→0.

We then work on the last term 2
n ∑n

i=1 ‖ωi − ω̄‖2 as

2
n

n

∑
i=1
‖ωi − ω̄‖2 =

2
n

n

∑
i=1
‖ωi‖2 − 2‖ω̄‖2.

Since ω̄ ∼ N (0, C◦/np), we deduce that ‖ω̄‖2 a.s.−→0. Ultimately by the strong law of large
numbers, we have 2

n ∑n
i=1 ‖ωi‖2 a.s.−→τ, which concludes the proof.

Remark 3.4 (Special case: means-dominant). When the difference in means ‖µ2 − µ1‖2 is
largely dominant over (tr(C2 − C1)/p)2 and ‖C2 − C1‖2

F/p, from Theorem 3.2, both Ḡa −
(c2− c1) and

√
VGa are (approximately) proportional to f ′(τ), which eventually makes the choice

of the kernel irrelevant (as long as f ′(τ) 6= 0). This result also holds true for G∗a and
√

VG∗a when
normalized labels y∗ are applied, as a result of Lemma 3.1.
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Gaussian kernel f (x) = exp(−x/2) 8.6%
quadratic kernel with same f (τ), f ′(τ) and f ′′(τ) 8.8%
quadratic kernel with same f (τ), f ′′(τ), while f ′(τ) of opposite sign 66.4%
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Figure 3.6: Classification error rate for different kernel functions f , n = 256, p = 512, c1 =
c2 = 1/2 and λ = 1, with µa = [0a−1; 2; 0p−a], C1 = Ip and {C2}i,j = .4|i−j|(1 + 4/

√
p).

Practical consequences.2 When the classification performance of real-world datasets is
concerned, our theory may be limited by: i) the fact that it is based on an asymptotic
results and allows for an estimation error only of order O(p−1/2) between theory and
practice and ii) the strong Gaussian assumption for the input data.

However, when applied to real-world datasets, here to the popular MNIST [LBBH98]
and Fashion-MNIST [XRV17] datasets, our asymptotic results, theoretically only applica-
ble for Gaussian data, show an unexpectedly good predictive behavior. Here we consider
a two-class classification problem with a training set of n = 256 vectorized images of size
p = 784 randomly selected from the MNIST and Fashion-MNIST datasets (numbers 8
and 9 in both cases as an example). Then a test set of ntest = 256 is used to evaluate the
classification performance. Means and covariances are empirically obtained from the full
set of 11 800 MNIST images (5 851 images of number 8 and 5 949 of number 9) and of
11 800 Fashion-MNIST images (5 851 images of number 8 and 5 949 of number 9), respec-
tively. Despite the obvious non-Gaussianity as well as the clearly different nature of the
input data (from the two datasets), the distribution of g(x) is still surprisingly close to its
Gaussian approximation computed from Theorem 3.2, as shown in Figure 3.7 for MNIST
(left) and Fashion-MNIST (right), respectively.

In Figure 3.8 we plot the misclassification rate as a function of the decision threshold
ξ for MNIST and Fashion-MNIST data (number 8 and 9). We observe that the conclu-
sion from Remark 3.1, Lemma 3.1 and Corollary 3.1 that the decision threshold should
approximately be c2 − c1 rather than 0 approximately holds true in both cases.

In Figure 3.9 we evaluate the performance of LS-SVM on the MNIST and Fashion-
MNIST datasets as a function of the kernel parameter σ of Gaussian kernel f (x) =

2Reproducibility: visit https://github.com/Zhenyu-LIAO/RMT4LSSVM for the Python 3 codes to repro-
duce the results in this subsection.

https://github.com/Zhenyu-LIAO/RMT4LSSVM


3.1. RANDOM KERNEL MATRICES 77

−0.05 0 0.05

MNIST

−0.1 0 0.1

Fashion-MNIST

Figure 3.7: Gaussian approximation of g(x), n = 256, p = 784, c1 = c2 = 1/2, λ = 1,
Gaussian kernel with σ = 1, with MNIST (left) and Fashion-MNIST data (right), numbers
8 and 9.
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Figure 3.8: LS-SVM classification error rate for n = 512, p = 784, c2 − c1 = 0.125, λ = 1,
Gaussian kernel with σ = 1 for MNIST (left) and Fashion-MNIST data (right). With
optimal decision threshold ξopt = 0.12 (left) and 0.11 (right) in red.

exp(−x/2σ2). Surprisingly, we face here the situation where there is little difference
in the performance of LS-SVM as soon as σ2 is away from 0, which likely comes from the
fact that the difference in means ‖µ2 − µ1‖ is so large that it becomes predominant over
the influence of covariances as mentioned in Remark 3.4. This argument is numerically
sustained by Table 3.1. The gap between theory and practice observed as σ2 → 0 is likely
a result of the finite n, p rather than of the Gaussian assumption of the input data, since
we continue to observe a similar behavior when one artificiality adds Gaussian white
noise to the image data.

Table 3.1: Empirical estimation of differences in means and covariances of MNIST and
Fashion-MNIST data (numbers 8 and 9)

MNIST data Fashion-MNIST data
‖µ2 − µ2‖2 251 483

tr2(C2 − C1)/p 19 89
‖C2 − C1)

2‖2
F/p 30 86

Conclusion. In this section, we investigated the asymptotic performance of kernel ridge
regression (or LS-SVM) in separating a two-class Gaussian mixture. We saw that, due to
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Figure 3.9: Classification performance of LS-SVM, n = 256, p = 784, c1 = c2 = 1/2, λ =
1, Gaussian kernel, MNIST and Fashion-MNIST data (numbers 8 and 9).

a “concentration” phenomenon of the normalized Euclidean distance ‖xi − xj‖2/p, the
classification performance depends on a local behavior of the kernel function f and the
nonlinear kernel matrix K is asymptotically close to the linear Gram/covariance matrix
model with several additive spikes. Although derived from an unrealistic GMM, our
theoretical results showed an unexpected close match to simulations on popular real-
world datasets.

3.1.2 Inner-product kernels

The results from the previous section are in essence built upon a local expansion of the
nonlinear function f , which we recall follows from the “concentration” of the similarity
measures ‖xi − xj‖2/p or xTi xj/p around a single value of the smooth domain of f , there-
fore disregarding most of the domain of f . In this section, following [CS13, DV13], we
study the inner product kernel f (xTi xj/

√
p)/
√

p which avoids the concentration effects
with the more natural

√
p normalization. With the flexible tool of orthogonal polyno-

mials, we are able to prove universal results which solely depend on the first two order
moments of the data distribution and allow for nonlinear functions f that need not even
be differentiable. As a practical outcome of our theoretical results, we propose an ex-
tremely simple piecewise constant function which is spectrally equivalent and thus per-
forms equally well as arbitrarily complex functions f , while inducing enormous gains in
both storage and computational complexity.

Let x1, . . . , xn ∈ Rp be n feature vectors drawn independently from the following
two-class (C1 and C2) mixture model, which is a special case of the general multivariate
mixture model in Definition 1 with Ca = Ip + Ea, a = 1, 2.{

C1 : x = µ1 + (Ip + E1)
1
2 z

C2 : x = µ2 + (Ip + E2)
1
2 z

(3.13)

each having cardinality n/2 (see for more discussions in Remark 3.6 below), for some
deterministic µa ∈ Rp, Ea ∈ Rp×p, a = 1, 2 and random vector z ∈ Rp having i.i.d. entries
of zero mean, unit variance and bounded moments. As has been discussed at length in
Section 1.1.2, to ensure that the information of µa, Ea is neither (asymptotically) too simple
nor impossible to be extracted from the noisy features, we adapt the two-class non-trivial
classification condition in Assumption 4 to the covariance setting Ca = Ip +Ea as follows.

Assumption 5 (Non-trivial classification). As n→ ∞, we have for a ∈ {1, 2}
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1. p/n = c→ c̄ ∈ (0, ∞),

2. ‖µa‖ = O(1), ‖Ea‖ = O(p−1/4), | tr(Ea)| = O(
√

p) and ‖Ea‖2
F = O(

√
p).

Remark 3.5 (On the advantage of proper scaling). It is worth noting that, compared to As-
sumption 4 where ‖C1 − C2‖2

F = O(p), here with Assumption 5 the mixture separation is
performed with a higher precision with ‖E1 − E2‖2

F = O(
√

p). In this respect, the “properly
scaled” inner-product kernels investigated here is more powerful than the “improperly scaled”
ones of form f (xTi xi/p), in separating the covariance “shapes” of Gaussian mixtures.

Following [EK10a, CS13] we consider the following random inner-product kernel ma-
trix

K =
{

δi 6=j f (xTi xj/
√

p)/
√

p
}n

i,j=1
(3.14)

for f : R 7→ R satisfying Assumption 3. As in [EK10a, CS13], the diagonal elements
f (xTi xi/

√
p) have been discarded. Indeed, under Assumption 7, xTi xi/

√
p = O(

√
p)

which is an “improper scaling” for the evaluation by f (unlike xTi xj/
√

p which properly
scales as O(1) for all i 6= j).

In the absence of discriminative information (null model), i.e., if µa = 0 and Ea = 0
for a = 1, 2, we write K = KN with

[KN ]ij = δi 6=j f (zTi zj/
√

p)/
√

p. (3.15)

Letting ξp ≡ zTi zj/
√

p, by the central limit theorem, ξp
d−→N (0, 1) as p → ∞. As such,

the [KN ]ij, 1 ≤ i 6= j ≤ n, asymptotically behave like a family of dependent standard
Gaussian variables to which f is applied. In order to analyze the joint behavior of this
family, we exploit some useful concepts of the theory of orthogonal polynomials and,
in particular, of the class of Hermite polynomials defined with respect to the standard
Gaussian distribution [AS65, AAR00].

For a real probability measure µ, we denote the set of orthogonal polynomials with
respect to the scalar product 〈 f , g〉 =

∫
f gdµ as {Pl(x), l = 0, 1, . . .}, obtained from the

Gram-Schmidt procedure on the monomials {1, x, x2, . . .} such that P0(x) = 1, Pl is of
degree l and 〈Pl1 , Pl2〉 = δl1−l2 . By the Riesz-Fischer theorem [Rud64, Theorem 11.43], for
any function f ∈ L2(µ), the set of squared integrable functions with respect to 〈·, ·〉, one
can formally expand f as

f (x) ∼
∞

∑
l=0

al Pl(x), al =
∫

R
f (x)Pl(x)dµ(x) (3.16)

where “ f ∼ ∑∞
l=0 Pl” indicates that ‖ f −∑N

l=0 Pl‖ → 0 as N → ∞ (and ‖ f ‖2 = 〈 f , f 〉).
To investigate the asymptotic behavior of K and KN as n, p → ∞, we position our-

selves, as [CS13, DV13] under Assumption 3, which roughly says that the polynomial
approximation of the kernel function f is accurate, for p large, when we truncate the
above expansion at a large but finite degree L.

The limiting parameters a0, a1, a2 and ν appearing in Assumption 3 are simply (gen-
eralized) moments of the standard Gaussian measure involving f . Precisely,

a0 = E[ f (ξ)], a1 = E[ξ f (ξ)],
√

2a2 = E[(ξ2− 1) f (ξ)] = E[ξ2 f (ξ)], ν = Var[ f (ξ)] ≥ a2
1 + a2

2

for ξ ∼ N (0, 1). These parameters are of crucial significance in determining the eigen-
spectrum behavior of K. Note that a0 will not affect the classification performance, as
described below.
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Remark 3.6 (On a0). In the present case of balanced mixtures (equal cardinalities for C1 and C2),
a0 contributes to the polynomial expansion of KN (and K) as a non-informative perturbation of the
form a0(1n1Tn − In)/

√
p. Since 1n is orthogonal to the “class-information vector” [1n/2,−1n/2],

its presence does not impact the classification performance. If mixtures are unbalanced, the vector
1n may tend to “pull” eigenvectors aligned to [1n1 ,−1n2 ], with ni the cardinality in Ci, so away
from purely noisy eigenvectors and thereby impacting the classification performance. See [CBG16]
for similar considerations.

It was shown in [CS13, DV13] that, for independent zi’s with independent entries, the
empirical spectral measure (see Definition 5) of the null model KN has an asymptotically
deterministic behavior as n, p → ∞ with p/n → c̄ ∈ (0, ∞), which depends on the
nonlinear f solely via the two parameters (a1, ν), as recalled below.

Theorem 3.3 (Theorem 3.4 in [CS13], Theorem 3 in [DV13]). Under some regularity con-
dition for the kernel function f (see Assumption 3 below), the empirical spectral measure of K
converges weakly and almost surely, as n, p → ∞ with p/n → c̄ ∈ (0, ∞), to a probabil-
ity measure µ. The latter is uniquely defined through its Stieltjes transform m : C+ → C+,
z 7→

∫
(t− z)−1µ(dt) (see also Definition 6 in Section 2.2), given as the unique solution in C+

of the (cubic) equation3

− 1
m(z)

= z +
a2

1m(z)
c + a1m(z)

+
ν− a2

1
c

m(z)

with a1 = E[ξ f (ξ)] and ν = Var[ f (ξ)] ≥ a2
1 for standard Gaussian ξ ∼ N (0, 1).

Moreover, Theorem 3.3 is “universal” with respect to the law of the (independent)
entries of zi. While universality is classical in random matrix results, with mostly first and
second order statistics involved, the present universality result is much less obvious since
i) the nonlinear application f (xTi xj/

√
p) depends in an intricate manner on all moments

of xTi xj and ii) the entries of KN are strongly dependent. In essence, universality still
holds here because the convergence speed to Gaussian of xTi xj/

√
p is sufficiently fast to

compensate the residual impact of higher order moments in the spectrum of KN .

Remark 3.7 (Non-informative spikes). Despite its “universality”, Theorem 3.3 only charac-
terizes the limiting spectral measure µ of the kernel matrix K, and thus allows for a “limited”
number of isolated eigenvalues to escape from the support of µ. Indeed, as discussed at the end of
Section 2.3, depending on the value of p/n, it was shown in [KC17, FM19] that, for continuously
differentiable kernel function f , if a2 6= 0, then K has at most two spikes outside supp(µ), while
for a2 = 0 all eigenvalues of K lie in supp(µ) almost surely.

As an illustration, Figure 3.10a compares the empirical spectral measure of KN to the
limiting measure obtained from Theorem 3.3.

From a technical viewpoint, our objective here is to go beyond the null model de-
scribed in Theorem 3.3 by providing a tractable random matrix equivalent K̃ for the kernel
matrix K, in the sense that ‖K− K̃‖ → 0 almost surely in operator norm, as n, p → ∞.
This convergence allows one to identify the eigenvalues and isolated eigenvectors (that
can be used for spectral clustering purpose) of K by means of those of K̃ via, for instance
Lemma 2.10. More importantly, while not visible from the expression of K, the impact of

3C+ ≡ {z ∈ C, =[z] > 0}. We also recall that, for m(z) the Stieltjes transform of a measure µ, µ can
be obtained from m(z) via µ([a, b]) = limε↓0

1
π

∫ b
a =[m(x + ıε)]dx for all a < b continuity points of µ. See

Section 2.1.2 for more details.
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Figure 3.10: Eigenvalue distribution and top eigenvector of KN and K, together with
the limiting spectral measure from Theorem 3.3 (in red); f (x) = sign(x), Gaussian zi,
n = 2 048, p = 512, µ1 = −[3/2; 0p−1] = −µ2 and E1 = E2 = 0. X = [x1, . . . , xn] ∈ Rp×n

with x1, . . . , xn/2 ∈ C1 and xn/2+1, . . . , xn ∈ C2.

the mixture model (µ1, µ2, E1, E2) on K is readily accessed from K̃ and easily related to the
Hermite coefficients ( a1, a2, ν ) of f . This allows us to further investigate how the choice
of f impacts the asymptotic feasibility and efficiency of spectral clustering from the top
eigenvectors of K.

Main results. The main idea for the asymptotic analysis of K comes in two steps: first,
by an expansion of xTi xj as a function of zi, zj and the statistical mixture model param-
eters µ, E, we decompose xTi xj (under Assumption 7) into successive orders of magni-
tudes with respect to p; this, as we will show, further allows for a Taylor expansion
of f (xTi xj/

√
p) for at least twice differentiable functions f around its dominant term

f (zTi zj/
√

p). Then, we rely on the orthogonal polynomial approach of [CS13] to “lin-
earize” the resulting matrix terms { f (xTi xj/

√
p)}, { f ′(xTi xj/

√
p)} and { f ′′(xTi xj/

√
p)}

(all terms corresponding to higher order derivatives asymptotically vanish) and use As-
sumption 3 to extend the result to arbitrary square-summable f .

Our main conclusion is that K asymptotically behaves like a matrix K̃ following a
so-called “spiked random matrix model” in the sense that K̃ = KN + K̃I is the sum
of the full-rank “noise” matrix KN having compact limiting spectrum and a low-rank
“information” matrix K̃I [BAP05, BGN11].

We first show that K can be asymptotically approximated as KN + KI with KN de-
fined in (3.15) and KI an additional (so far full-rank) term containing the statistical infor-
mation of the mixture model.

As announced, we start by decomposing xTi xj into a sequence of terms of successive
orders of magnitude using Assumption 7 and xi = µa + (Ip + Ea)

1
2 zi, xj = µb + (Ip +

Eb)
1
2 zj for xi ∈ Ca and xj ∈ Cb. We have precisely, for i 6= j,

xTi xj√
p

=
µT

a µb√
p

+
1
√

p
(µT

a (Ip + Eb)
1
2 zj + µT

b (Ip + Ea)
1
2 zi) +

1
√

p
zTi (Ip + Ea)

1
2 (Ip + Eb)

1
2 zj

=
zTi zj√

p︸ ︷︷ ︸
O(1)

+
zTi (Ea + Eb)zj

2
√

p︸ ︷︷ ︸
≡Aij=O(p−1/4)

+
µT

a µb + µT
a zj + µT

b zi√
p

−
zTi (Ea − Eb)

2zj

8
√

p︸ ︷︷ ︸
≡Bij=O(p−1/2)

+o(p−1/2) (3.17)
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where in particular we performed a Taylor expansion of (Ip +Ea)
1
2 (since ‖Ea‖ = O(p−

1
4 ))

around Ip, and used the fact that with high probability zTi Eazj = O(p1/4) and zTi (Ea −
Eb)

2zj = O(1).

As a consequence of this expansion, for at least twice differentiable f ∈ L2(µp), we
have

Kij =
f (xTi xj/

√
p)

√
p

=
f (zTi zj/

√
p)

√
p

+
f ′(zTi zj/

√
p)

√
p

(Aij +Bij)+
f ′′(zTi zj/

√
p)

2
√

p
A2

ij + o(p−1)

where o(p−1) is understood with high probability and uniformly over i, j ∈ {1, . . . , n}.
Recall that, this entry-wise expansion up to order o(p−1) is sufficient since, matrix-wise, if
Aij = o(p−1) uniformly on i, j, from ‖A‖ ≤ p‖A‖∞ = p maxi,j |Aij|, we have ‖A‖ = o(1)
as n, p→ ∞.

In the particular case where f is a monomial of degree k ≥ 2, this implies the follow-
ing result.

Proposition 3.1 (Monomial f ). Under Assumptions 3 and 5, let f (x) = xk, k ≥ 2. Then, as
n, p→ ∞,

‖K− (KN + KI)‖ → 0 (3.18)

almost surely, with KN defined in (3.15) and

KI =
k
√

p
(ZTZ/

√
p)◦(k−1) ◦ (A + B) +

k(k− 1)
2
√

p
(ZTZ/

√
p)◦(k−2) ◦ (A)◦2 (3.19)

for Z = [z1, . . . , zn] ∈ Rp×n and A, B ∈ Rn×n defined in (3.17) with Aii = Bii = 0. Here X ◦Y
denotes the Hadamard product between X, Y and X◦k the k-th Hadamard power, i.e., [X◦k]ij =
(Xij)

k.

Since f ∈ L2(µ) can be decomposed into its Hermite polynomials, Proposition 3.1
along with Theorem 3.3 allows for an asymptotic quantification of K. However, the ex-
pression of KI in (3.19) does not so far allow for a thorough understanding of the spec-
trum of K, due to 2) the delicate Hadamard products between purely random (ZTZ) and
informative matrices (A, B) and ii) the fact that KI is full rank (so that the resulting spec-
tral properties of KN + KI remains intractable). We next show that, as n, p → ∞, KI
admits a tractable low-rank approximation K̃I , thereby leading to a spiked-model ap-
proximation for K.

Let us consider KI defined in (3.19), the (i, j) entry of which can be written as the sum
of terms containing µa, µb (treated separately) and random variables of the type

φ =
C
√

p
(xTy/

√
p)α(xTFy)β

for independent random vectors x, y ∈ Rp with i.i.d. zero mean, unit variance and finite
moments (uniformly on p) entries, deterministic F ∈ Rp×p, C ∈ R, α ∈N and β ∈ {1, 2}.

For Gaussian x, y, the expectation of φ can be explicitly computed via an integral trick
[Wil97, LLC18]. For more generic x, y with i.i.d. bounded moment entries, a combinato-
rial argument controls the higher order moments of the expansion which asymptotically
result in (matrix-wise) vanishing terms. See Sections A.1.4 in the appendix. This leads to
the following result.
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Proposition 3.2 (Low rank asymptotics of KI). Under Assumptions 3 and 5, for f (x) = xk,
k ≥ 2,

‖KI − K̃I‖ → 0

almost surely as n, p→ ∞, for KI defined in (3.19) and

K̃I =

{
k!!
p (JMTMJT + JMTZ + ZTMJT), for k odd

k(k−1)!!
2p J (T + S) JT, for k even

(3.20)

where4

M = [µ1, µ2] ∈ Rp×2, T = {tr(Ea + Eb)/
√

p}2
a,b=1, S = {tr(EaEb)/

√
p}2

a,b=1 ∈ R2×2

and J = [j1, j2] ∈ Rn×2 with ja ∈ Rn the canonical vector of class Ca, i.e., [ja]i = δxi∈Ca .

We refer the readers to Section A.1.4 of the Appendix for a detailed exposition of the
proof.

Proposition 3.2 states that KI is asymptotically equivalent to K̃I that is of rank at most
two.5 Note that the eigenvectors of K̃I are linear combinations of the vectors j1, j2 and
thus provide the data classes.

From the expression of K̃I , quite surprisingly, it appears that for f (x) = xk, depend-
ing on whether k is odd or even, either only the information in means (M) or only in
covariance (T and S) can be (asymptotically) preserved.

By merely combining the results of Propositions 3.1–3.2, the latter can be easily ex-
tended to polynomial f . Then, by considering f (x) = Pκ(x), the Hermite polynomial of
degree κ, it can be shown that, quite surprisingly, one has K̃I = 0 if κ > 2. As such,
using the Hermite polynomial expansion P0, P1, . . . of an arbitrary f ∈ L2(µ) satisfying
Assumption 3 leads to a very simple expression of our main result.

Theorem 3.4 (Spiked-model approximation of K). For an arbitrary f ∈ L2(µ) with f ∼
∑∞

l=0 al Pl(x), under Assumptions3 and 5,

‖K− K̃‖ → 0, K̃ = KN + K̃I

with KN defined in (3.15) and

K̃I =
a1

p
(JMTMJT + JMTZ + ZTMJT) +

a2

p
J(T + S)JT. (3.21)

Proof. The proof of Theorem 3.4 follows from the fact that the individual coefficients
of the Hermite polynomials Pκ(x) = ∑κ

l=0 cκ,lxl satisfy the following recurrent relation
[AS65]

cκ+1,l =

{
−κcκ−1,l l = 0;
cκ,l−1 − κcκ−1,l l ≥ 1;

(3.22)

4For mental reminder, M stands for means, T accounts for the difference in traces of covariance matrices
and S for the “shapes” of the covariances.

5Note that, as defined, K̃I has non-zero diagonal elements, while [KI ]ii = 0. This is not contradictory as
the diagonal matrix diag(K̃I) has vanishing norm and can thus be added without altering the approximation
‖KI − K̃I‖ → 0; it however appears convenient as it ensures that K̃I is low rank (while without its diagonal,
K̃I is full rank).
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with c0,0 = 1, c1,0 = 0 and c1,1 = 1. As a consequence, by indexing the informative matrix
in Proposition 3.2 of the monomial f (x) = xl as K̃I,l , we have for odd κ ≥ 3,

K̃I =
κ

∑
l=1,3,...

cκ,lK̃I,l =
κ

∑
l=1,3,...

cκ,l l!!(JMTMJT + JMTZ + ZTMJT)/p− diag(·) = 0

with [X − diag(·)]ij = Xijδi 6=j. This follows from the fact that, for κ ≥ 3, we have both
∑κ

l=1,3,... cκ,l l!! = 0 and ∑κ+1
l=0,2,... cκ+1,l(l + 1)!! = 0. The latter is proved by induction on κ:

first, for κ = 3, we have c3,1 + 3c3,3 = c4,0 + 3c4,2 + 15c4,4 = 0; then, assuming κ odd, we
have ∑κ

l=1,3,... cκ,l l!! = ∑κ+1
l=0,2,... cκ+1,l(l + 1)!! = 0 so that, together with (3.22)

κ+2

∑
l=1,3,...

cκ+2,l l!! =
κ+2

∑
l=1,...

(cκ+1,l−1− (κ+ 1)cκ,l)l!! =
κ+2

∑
l=1,...

cκ+1,l−1l!! =
κ+1

∑
l=0,2,...

cκ+1,l(l + 1)!! = 0

as well as
κ+3

∑
l=0,2,...

cκ+3,l(l + 1)!! = −(κ + 2)cκ+1,0 +
κ+3

∑
l=2,4,...

(cκ+2,l−1 − (κ + 2)cκ+1,l)(l + 1)!! = 0

where we used cκ,l = 0 for l ≥ κ + 1. Similar arguments hold for the case of κ even, which
concludes the proof.

−1 0 1 1.5−1 0 1 1.5
(a) N : eigs of K for P1

−1 0 1 1.5−1 0 1 1.5
(b) N : eigs of K̃ for P1

−2 −1 0 1 2−2 −1 0 1 2−2 −1 0 1 2
(c) N : eigs of K for P2

−2 −1 0 1 2−2 −1 0 1 2−2 −1 0 1 2
(d) N : eigs of K̃ for P2

−1 0 1 1.5−1 0 1 1.5
(e) Stud: eigs of K for P1

−1 0 1 1.5−1 0 1 1.5
(f) Stud: eigs of K̃ for P1

−2 −1 0 1 2

(g) Stud: eigs of K for P3

−2 −1 0 1 2

(h) Stud: eigs of K̃ for P3

Figure 3.11: Eigenvalue distributions of K and K̃ from Theorem 3.4 (blue) and L from
Theorem 3.3 (red), for zi with Gaussian (top) or Student-t with degree of freedom 7 (bot-
tom) entries; functions f (x) = P1(x) = x, f (x) = P2(x) = (x2 − 1)

√
2, f (x) = P3(x) =

(x3 − 3x)/
√

6; n = 2 048, p = 8 192, µ1 = −[2; 0p−1] = −µ2 and E1 = −10Ip/
√

p = −E2.

Figure 3.11 compares the spectra of K and K̃ for random vectors with independent
Gaussian or Student-t entries, for the first three (normalized) Hermite polynomials P1(x),
P2(x) and P3(x). These numerical evidences validate Theorem 3.4: only for P1(x) and
P2(x) is an isolated eigenvalue observed. Besides, as shown in the bottom display of Fig-
ure 3.10c, the corresponding eigenvector is, as expected, a noisy version of linear combi-
nations of j1, j2.



3.1. RANDOM KERNEL MATRICES 85

Table 3.2: Storage size and top eigenvector
running time of K for piecewise constant
and cubic f , in the setting of Figure 3.11
and 3.13.

f Size (Mb) Running time (s)
Piecewise 4.15 0.2390
Cubic 16.75 0.4244

Figure 3.12: Piecewise constant (green)
versus cubic (BLUE) function with equal
(a1, a2, ν).

Remark 3.8 (Even and odd f ). While rank(K̃I) ≤ 4 (as the sum of two rank-two terms), in
Figure 3.11 no more than two isolated eigenvalues are observed (for f = P1 only one on the
right side, for f = P2 one on each side). This follows from a2 = 0 when f = P1 and a1 = 0 for
f = P2. More generally, for f odd ( f (−x) = − f (x) ), a2 = 0 and the statistical information
on covariances (through E) asymptotically vanishes in K; for f even ( f (−x) = f (x)), a1 = 0
and the information about the means µ1, µ2 vanishes. Thus, only f neither odd nor even can
preserve both first and second order discriminating statistics (e.g., the popular ReLU function
f (x) = max(0, x)). This was previously remarked in [LC18a] based on a local expansion of
smooth f in a similar setting.

Practical consequences. As a direct consequence of Theorem 3.4, the performance of
spectral clustering for large dimensional mixture models of the type (3.13) only depends
on the three parameters of the nonlinear function f : a1 = E[ξ f (ξ)], a2 = E[ξ2 f (ξ)]/

√
2

and ν = E[ f 2(ξ)]. The parameters a1, ν determine the limiting spectral measure L of K
(since K and KN asymptotically differ by a rank-4 matrix, they share the same limiting
spectral measure) while a2, a2 determine the low rank structure within K̃I .

As an immediate consequence, arbitrary (square-summable) kernel functions f (with
a0 = 0) are asymptotically equivalent to the simple cubic function f̃ (x) = c3x3 + c2x2 +
c1x − c2 having the same Hermite polynomial coefficients a1, a2, ν, due to the following
relation

a1 = 3c3 + c1, a2 =
√

2c2, ν = (3c3 + c1)
2 + 6c2

3 + 2c2
2.

The idea here to design a prototypical family F of functions f having i) universal
properties with respect to (a1, a2, ν), i.e., for each (a1, a2, ν) there exists f ∈ F with these
Hermite coefficients and ii) having numerically advantageous properties. Thus, any ar-
bitrary kernel function f can be mapped, through (a1, a2, ν), to a function in F with good
numerical properties.

One such prototypical family F can be the set of f , parametrized by (t, s−, s+), and
defined as

f (x) =


−rt x ≤

√
2s−

0
√

2s− < x ≤
√

2s+
t x >

√
2s+

with


a1 = t√

2π
(e−s2

+ + re−s2
−)

a2 = t√
2π
(s+e−s2

+ + rs−e−s2
−)

ν = t2

2 (1− erf(s+)) (1 + r)

(3.23)

where r ≡ 1−erf(s+)
1+erf(s−)

. Figure 3.12 displays f given in (3.23) together with the cubic function
c3x3 + c2(x2 − 1) + c1x sharing the same Hermite coefficients (a1, a2, ν).

The class of equivalence of kernel functions induced by this mapping is quite unlike
that raised in [EK10b] or [CBG16] in the “improper” scaling f (xTi xj/p) regime. While in
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the latter, functions f (x) of the same class of equivalence are those having common f ′(0)
and f ′′(0) values, in the present case, these functions may have no similar local behavior
(as shown in the example of Figure 3.12).

For the piecewise constant function defined in (3.23) and the associated cubic func-
tion having the same (a1, a2, ν), a close match is observed for both eigenvalues and top
eigenvectors of K in Figure 3.13, with gains in both storage size and computational time
displayed in Table 3.2.

−0.5 0 0.5 1−0.5 0 0.5 1(a) Piecewise constant

−0.5 0 0.5 1−0.5 0 0.5 1(b) Cubic polynomial

−5

0

·10−2

(c) Cubic (blue) versus piecewise (green) func-
tion

Figure 3.13: Eigenvalue distribution and top eigenvectors of K for the piecewise constant
function (in green) and the associated cubic function (in blue) with the same (a1, a2, ν),
performed on Bernoulli distribution with zero mean and unit variance, in the setting of
Figure 3.11.

Conclusion. In this last section, we evaluated the eigenspectrum of the “properly-scaled”
inner-product kernel matrix K = f (XTX/

√
p)/
√

p. Built upon the flexible tool of orthog-
onal polynomials, we showed that the spectrum of K depends on the kernel function f
via three “global” key parameters (a1, a2, ν), and this holds true for a large range of non-
linear functions f , including even some non-smooth functions. In this vein, all kernel
functions under study are equivalent, in an eigenspectrum sense, to a cubic function, as
well as to a piecewise function that takes only three values, as long as they share the same
(a1, a2, ν).

To close this section on random kernel matrices, according to the discussion in Re-
mark 3.5, it is of future interest to extend the current analyses on f (XTX/

√
p)/
√

p to
cover data with an arbitrary covariance matrix C (that is not limited to C = I + E with
‖E‖ = o(1)). However, this is technically more involved, since it breaks most of the
orthogonality properties of the orthogonal polynomial approach of the proofs, but is a
needed extension of the result.

It would also be of interest to properly scale not only the inner-product kernels, but
also other popular choice of kernels such as the shift-invariant kernels studied in Sec-
tion 3.1.1. From this perspective, the kernel matrices of the type f (‖xi‖2/p− 2xTi xi/

√
p+

‖xj‖2/p) could be a good starting point.

3.2 Random Neural Networks

As discussed in Section 1.2.2, the fundamental connection between random kernel matri-
ces and random weights NN models can be built upon random feature maps. In this sub-
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section, we demonstrate how random kernel matrices appear in the performance analysis
of single-hidden-layer random NN models, and how this analysis allows us to evaluate
the impact on performance of the activation function.

3.2.1 Large neural networks with random weights

X ∈ Rp×n

σ
σ
σ
σ
σ

Σ ≡ σ(WX) ∈ RN×nβTΣ

W ∈ RN×pβ ∈ RN×d

Figure 3.14: Illustration of a single-hidden-layer random NN

In this section, we consider the single-hidden-layer random NN model (or, random
feature-based kernel ridge regression) illustrated above (same as Figure 1.3).

For a data matrix X =
[
x1, . . . , xn

]
∈ Rp×n with associated targets Y =

[
y1, . . . , yn

]
∈

Rd×n, we denote Σ ∈ RN×n the output of the middle layer comprising in total N neurons
of X by premultiplying some (random) weight matrix W ∈ RN×p with i.i.d. standard
Gaussian entries and then passing through some nonlinear activation function σ : R 7→ R

to obtain Σ ≡ σ(WX) ∈ RN×n. In particular, we focus on the case where the second
layer weight matrix β ∈ RN×d is designed to minimize the regularized MSE: L(β) =
1
n ∑n

i=1 ‖yi− βTσ(Wxi)‖2 + λ‖β‖2
F on the given deterministic training set (X, Y), for some

regularization factor λ > 0. This givens the following explicit form (as in (1.18)) for β:

β ≡ 1
n

Σ

(
1
n

ΣTΣ + λIn

)−1

YT. (3.24)

We are interested in the asymptotic behavior of the training and test MSE of the net-
work (as in (1.19)) defined by

Etrain =
1
n

n

∑
i=1
‖yi − βTσ(Wxi)‖2 =

1
n
‖Y− βTΣ‖2

F, Etest =
1
n̂
‖Ŷ− βTΣ̂‖2

F (3.25)

on a (deterministic) test set (X̂, Ŷ) of size n̂, i.e., X̂ ∈ Rp×n̂, Ŷ ∈ Rd×n̂, where we similarly
denote Σ̂ ≡ σ(WX̂) ∈ RN×n̂.

Let us start with the training error Etrain. Note that, by defining the resolvent (see
Definition 4) of the Gram matrix 1

n ΣTΣ as

Q(z = −λ) = Q ≡
(

1
n

ΣTΣ + λIn

)−1

∈ Rn×n

the training MSE of interest can be rewritten as

Etrain =
1
n
‖Y− βTΣ‖2

F =
λ2

n
tr(YQ2YT) = −λ2

n
∂ tr(YQYT)

∂λ
(3.26)

and is therefore wished to establish an asymptotically deterministic behavior as the sum
of aTQb for deterministic vector a, b ∈ Rn of bounded Euclidean norm (with the nor-
malization n−1). if we could find a deterministic equivalent (see Definition 7) for Q.

To properly state our main results, the following assumptions are needed.
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Assumption 6 (Lipschitz σ). The function σ is Lipschitz continuous with parameter indepen-
dent of n, p.

Assumption 7 (Growth rate in random NN). As n→ ∞,

1. p/n→ c̄1 ∈ (0, ∞) and N/n→ c̄2 ∈ (0, ∞);

2. X has a bounded operator norm, i.e., ‖X‖ = O(1);

3. Y has bounded entries, i.e., ‖Y‖∞ = O(1).

Note that, for the nonlinear Gram matrix 1
n ΣTΣ, with σ(t) = t one merely gets the

sample covariance/Gram matrix 1
n XTWTWX, the spectrum of which is known to have

an asymptotic deterministic behavior (recall Section 2.2.3) with ‖X‖ = O(1). Intuitively
speaking, Assumption 6 ensures that the nonlinear activation σ “varies” in a “controlled”
manner.

Also, by demanding Y to have bounded entries as n, p, N → ∞, we indeed ask the
rows of Y, together with the n−1/2 normalization, to have bounded Euclidean norm, so
as to apply our deterministic equivalent approach.

Under Assumptions 6 and 7, with a we are now ready to prove the concentration of
the resolvent Q (in the sense that ‖Q−EW[Q]‖ → 0) as n, p, N → ∞, and consequently
we can provide an exact characterization of the training and test MSE in (1.19).

Main results. Before going into our main results, let us first re-introduce the following
“equivalent” kernel matrix (as in (1.20))

K = Ew[σ(XTw)σ(wTX)] (3.27)

for w ∼ N (0, Ip). Again, the appearance of kernel matrix K here is rather natural since
the Gram matrix 1

n ΣTΣ at the heart of our analysis is indeed an approximation of K under
the random feature framework, for instance with ψw(x) = σ(wTx) in (1.15).

To show the concentration of the resolvent Q (as well as the eigenspectrum) of a
Gram/sample covariance-like random matrix ZTZ, a concentration of quadratic forms
based on the row vectors of Z is necessary. For instance, recall from Section 2.2.2 that,
to show the (almost sure) convergence of 1

n tr A
( 1

n ZTZ− zIn
)−1

for Z ∈ Rp×n having
i.i.d. standard Gaussian entries, we exploited the concentration of quadratic form result
1
n zTi Azi − 1

n tr A a.s.−→0 in Lemma 2.11, to bound the difference between
( 1

n ZTZ− zIn
)−1

and
( 1

n ZTZ− 1
n zizTi − zIn

)−1
, for z ∈ Rn the i-th row of Z so that zi ∼ N (0, In). In gen-

eral, such concentration of quadratic form results are obtained by exploiting the indepen-
dence (or linear dependence) in the vector entries (e.g., zi ∼ N (0, In) in the Marc̆enko-
Pastur case in Section 2.2.2). For the nonlinear model under consideration

1
n

ΣTΣ =
1
n

σ(WX)Tσ(WX)

the desired independence unfortunately does not hold, since the entries of the vector
σ(XTw) are in general not independent. To overcome this technical difficulty, we resort
to a concentration of measure approach, as advocated in [Kar09]. The following lemma
provides this concentration result.
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Lemma 3.3 (Concentration of quadratic forms). Let Assumptions 6 and 7 hold and A ∈ Rn×n

such that ‖A‖ ≤ 1. For w ∼ N (0, Ip), denote the random vector σ ≡ σ(XTw) ∈ Rn. Then,

P
(∣∣∣∣ 1n σTAσ − 1

n
tr(KA)

∣∣∣∣ > t
)
≤ Ce−cn min(t,t2)

for some C, c > 0 and K defined in (3.27).

Lemma 3.3 states that, with exponentially high probability, the quadratic form 1
n σTAσ

is asymptotically close to its expectation (with respect to the random w)

1
n

Ew[σ
TAσ] =

1
n

tr(Ew[σσT]A) =
1
n

tr
(

Ew

[
σ(XTw)σ(wTX)

]
A
)
=

1
n

tr(KA).

This can be seen as an extension of the crucial Lemma 2.11 for random vectors of linearly
correlated entries to the nonlinear setting under investigation. Roughly speaking, with
w ∼ N (0, Ip) we have the following normal concentration [Led05, Proposition 1.10] result
for all Lipschitz applications,

E

[∣∣∣∣ f − ∫ f dµ

∣∣∣∣k
]
≤ (Cλ f )

k

holds for some C > 0 and all k ≥ 1, f : Rp 7→ R a λ f -Lipschitz function and dµ(z) =

(2π)−
p
2 e−

1
2 ‖z‖2

the standard Gaussian measure on Rp. Since σ : R 7→ R is Lipschitz (As-
sumption 6), the normal concentration of w transfers to σ and Σ, which further implying
that all Lipschitz functionals of σ or Σ are also concentrated. Nonetheless, note that the
quadratic form 1

n σTAσ is “quadratic” with respect to w and thus not Lipschitz. AS such,
to prove Lemma 3.3 we choose to first provide an exponentially high probability O(1)
bound on n−1/2‖σ‖ such that, conditioned on this event, the mapping w 7→ 1

n σTAσ can
be shown to be O(1)-Lipschitz.

With the above result in place, we can follow the same idea as in Section 2.2.2 and
apply Lemma 3.3 instead of Lemma 2.11, to show subsequently the concentrations of
1
n σTAQ−iBσ as well as aTQb for independent A, B ∈ Rn×n and a, b ∈ Rn of bounded
norm. This eventually leads to the following result on the deterministic equivalent (see
Definition 7) for the resolvent Q of interest, the proof of which is deferred to Section A.1.5
of the Appendix.

Theorem 3.5 (Asymptotic equivalent for E[Q]). Let Assumptions 6 and 7 hold and define Q̄
as

Q̄ ≡
(
Ǩ− zIn

)−1 , Ǩ ≡ N
n

K
1 + δ

where δ is implicitly defined as the unique solution of δ = 1
n tr(KQ̄). Then, as n, p, N → ∞ one

has
‖E[Q]− Q̄‖ → 0.

With Theorem 3.5 at hand, we now present the following corollary on the training
and test MSE, which follows directly from our observation in (3.26).

Theorem 3.6 (Asymptotic training and test MSE). Let Assumptions 6 and 7 hold. For
Etrain, Etest given by (3.25), Q̄ defined as in Theorem 3.5, denote

Ētrain =
λ2

n
tr YQ̄

[
1
N tr

(
Q̄ǨQ̄

)
1− 1

N tr
(
ǨQ̄ǨQ̄

) Ǩ + In

]
Q̄YT

Ētest =
1
n̂
‖Ŷ− ŶQ̄ǨXX̂‖

2
F +

1
N tr YQ̄ǨQ̄YT

1− 1
N tr

(
ǨQ̄ǨQ̄

) [ 1
n̂

tr ǨX̂X̂ −
1
n̂

tr
(

In +
N
n

λQ̄
)

ǨXX̂ǨX̂XQ̄
]

.
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Then, as n, p, N → ∞
Etrain − Ētrain → 0, Etest − Ētest → 0

almost surely, with

KAB ≡ Ew

[
σ(wTA)Tσ(wTB)

]
, ǨAB ≡

N
n

KAB

1 + δ
, K ≡ KXX, Ǩ ≡ ǨXX.

We also mention here that, while the above finding on the (asymptotic) training MSE
always holds true under Assumptions 6 and 7, the test MSE presented is only a conjec-
ture which not be proved under a general situation, for example with only ‖X̂‖ = O(1)
and ‖Ŷ‖∞ = O(1). Under some statistical assumptions for (X̂, Ŷ) (e.g., GMM as in Defini-
tion 1) the conjecture is valid [LC18b]. Further empirical evidences on real-world datasets
also show an extremely close match. This leads to the fundamental question on the min-
imal (statistical) assumption on the data to establish an asymptotically deterministic be-
havior for neural networks performances. A first promising answer is given in [LC18b]
by assuming the data to be concentrated random vectors, e.g., Lipschitz maps of standard
Gaussian random vector or of vectors with i.i.d. entries. Intuitively speaking, this means
that the high dimensional data are random, but in a “concentrated” manner such that, in-
stead of “spreading” all over their large ambient space, the data live within a rather low
dimensional layer. As a consequence, each scalar observation of these data, even with
complicated function such as regressor or classifier, tends to have an almost determinis-
tic and predictable behavior, that depends only on the first several order of statistics of
the data.

Practical consequences. Theorem 3.6 allows to assess the training and test performance
of the network, via the equivalent kernel matrix K (and K̂) built from the (determin-
istic) data. It thus remains to compute this kernel matrix K, which is given under the
form of an expectation/integral with respect to the standard Gaussian distribution (of
dimension p). For most commonly used nonlinear activations σ(·), the generic form
K(a, b) = Ew[σ(wTa)σ(wTb)] can be computed explicitly via an integral trick [Wil97],
for arbitrary vector a, b ∈ Rp. We list the results for commonly used functions in Ta-
ble 3.3, with computational details provided in Section A.1.6 of the Appendix.

Table 3.3: K(a, b) for different σ(·), ∠(a, b) ≡ aTb
‖a‖‖b‖ .

σ(t) K(a, b)
t aTb
max(t, 0) 1

2π‖a‖‖b‖
(
∠(a, b) arccos (−∠(a, b)) +

√
1−∠(a, b)2

)
|t| 2

π‖a‖‖b‖
(
∠(a, b) arcsin (∠(a, b)) +

√
1−∠(a, b)2

)
1t>0

1
2 −

1
2π arccos (∠(a, b))

sign(t) 2
π arcsin (∠(a, b))

ς2t2 + ς1t + ς0 ς2
2

(
2
(
aTb

)2
+ ‖a‖2‖b‖2

)
+ ς2

1aTb + ς2ς0
(
‖a‖2 + ‖b‖2)+ ς2

0

cos(t) exp
(
− 1

2

(
‖a‖2 + ‖b‖2)) cosh(aTb)

sin(t) exp
(
− 1

2

(
‖a‖2 + ‖b‖2)) sinh(aTb)

erf(t) 2
π arcsin

(
2aTb√

(1+2‖a‖2)(1+2‖b‖2)

)
exp(−t2/2) 1√

(1+‖a‖2)(1+‖b‖2)−(aTb)2
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To corroborate the findings in Theorem 3.6 we consider the task of classifying the
MNIST database [LBBH98] with a single-hidden-layer random weight neural network
composed of N = 512 hidden-units. Similar to Section 3.1.1 we represent each image as
a p = 784-size vector; 1 024 images of sevens and 1 024 images of nines were extracted
from the database and were evenly split in 512 training and test images, respectively, so
that n = n̂ = 1 024. The database images were jointly centered and scaled so to fall close
to the setting of Assumption 7 on X and X̂. The columns of the output values Y and Ŷ
were taken as unidimensional (d = 1) with Yi, Ŷi ∈ {−1, 1} depending on the image
class. Figure 3.15 displays the simulated (averaged over 100 realizations of W) versus
theoretical values of Etrain and Etest for three choices of Lipschitz continuous functions
σ(·), as a function of the regularization factor λ. We observe an almost perfect match
between the simulations and our theoretical results from Theorem 3.6 for not so large
n, p, N.

10−4 10−3 10−2 10−1 100 101 102

10−1

100

σ(t) = max(t, 0)

σ(t) = erf(t)

σ(t) = t

λ

M
SE

Etrain (Theory)
Etest (Theory)

Etrain (Simulation)
Etest (Simulation)

Figure 3.15: Performance of the network for Lipschitz σ, as a function of λ, for MNIST
data (number 7 and 9), N = 512, n = n̂ = 1024, p = 784.

Conclusion. In this section, we characterized the resolvent Q of 1
n ΣTΣ with Σ = σ(WX)

the output of a random NN with input X and showed it establishes an asymptotically
deterministic behavior for Lipschitz activations σ(·). As a direct consequence, we gave
the training and test MSE of the random NN model in Figure 1.3 that depends on the data
and the activation function σ(·) via the key “equivalent” kernel matrix K ≡ Ew[σ(XTw)σ(wTX)].
For most commonly used σ, the expression of K is given in Table 3.3.

Nonetheless, the expressions of K in Table 3.3 are still in very barely interpretable and
provide little understanding of the role played by the nonlinear activations. For instance,
we are not able to say which σ(·) should be used for a given task. To further exploit
the interplay between the data and the activation function, we next investigate in the
following section the eigenspectrum of K by (additionally) considering a GMM for the
input data.
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3.2.2 Random feature maps and the equivalent kernels

We saw in the previous section that the single-layer random NN performance depends on
the deterministic data X and the nonlinear activation σ(·) via the following “equivalent”
kernel matrix (as in (1.20))

K ≡ Ew[σ(XTw)σ(wTX)]

the expression of which is explicitly given in Table 3.3 for most commonly used σ with
w ∼ N (0, Ip). In this section we develop a deeper understanding of, the eigenspectrum
of this kernel matrix K, for structural statistical models for X. In particular, we focus
on the interplay between σ and the data statistics µ, C of X under a GMM as detailed in
Definition 1.

In the context of random feature maps, 1
n ΣTΣ is indeed the Gram matrix of the ran-

dom features σ(Wxi), that approximates an underlying kernel matrix as discussed at the
end of Section 1.2.1. From Theorem 3.5, we know that the resolvent of 1

n ΣTΣ and thus its
limiting spectral measure, if exists, are both closely related to K. In this vein, the kernel
matrix K above is again at the heart of all random feature-based spectral algorithms.

Consider x1, . . . , xn ∈ Rp independent data vectors, each belonging to one of K dis-
tribution classes C1, . . . , CK. Class Ca has cardinality na, for all a ∈ {1, . . . , K}. The data
vector xi that belongs to Ca is assumed to be drawn from the following GMM

xi =
1
√

p
µa + ωi

with ωi ∼ N (0, Ca/p) for some mean µa ∈ Rp and covariance Ca ∈ Rp×p that satisfy
the non-trivial classification in Assumption 2. Note that we normalize the data by 1/

√
p,

together with Assumption 2 to ensure ‖xi‖ = O(1) with high probability, which is in
consistent with Assumption 7 in the presented random NN model.

Taking a = xi and b = xj, we see that the expressions of K in Table 3.3 are indeed
nonlinear functions of the “concentrated” measures of the data, e.g., ‖xi‖ or xTi xj, as
investigated in Section 3.1.1 under the binary setting K = 2. Therefore, the spectral
analysis of K for GMM under Assumption 2 follows exactly the same line of arguments
as in [CBG16] and discussed at length in Section 3.1.1, that we briefly recall next.

From a random feature map standpoint, the Gram matrix 1
n ΣTΣ describes the corre-

lation of data in the feature space. It is thus natural to recenter 1
n ΣTΣ, hence K, by pre- and

post-multiplying with the projection matrix P ≡ In − 1
n 1n1Tn . In the case of K, we get

Kc ≡ PKP.

This centering operation technically eliminates, from a technical standpoint, the non-
informative isolated eigenvalues that may go to infinity as n, p→ ∞, with corresponding
non-informative eigen-direction 1n.

Main results. Let us now introduce the key steps of our present analysis. Under As-
sumption 2, observe that for xi ∈ Ca and xj ∈ Cb, i 6= j,

xTi xj = ωT
i ωj︸ ︷︷ ︸

O(p−1/2)

+ µT
a µb/p + µT

a ωj/
√

p + µT
b ωi/

√
p︸ ︷︷ ︸

O(p−1)
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which allows one to perform a Taylor expansion around 0 as p, T → ∞, to give a rea-
sonable approximation of nonlinear functions of xTi xj, such as those appearing in Kij (see
again Table 3.3). For i = j, one has instead

‖xi‖2 = ‖ωi‖2︸ ︷︷ ︸
O(1)

+ ‖µa‖
2/p + 2µT

a ωi/
√

p︸ ︷︷ ︸
O(p−1)

.

From Eωi [‖ωi‖2] = tr(Ca)/p it is convenient to further write

‖ωi‖2 = tr(Ca)/p +
(
‖ωi‖2 − tr(Ca)/p

)
where tr(Ca)/p = O(1) and ‖ωi‖2 − tr(Ca)/p = O(n−1/2). By definition6 τ ≡ tr(C◦)/p
that is assumed to converge in (0, ∞) as in the two-class case in Assumption 4. Exploiting
again Assumption 2, one results in,

‖xi‖2 = τ︸︷︷︸
O(1)

+ tr(C◦a)/p + ‖ωi‖2 − tr(Ca)/p︸ ︷︷ ︸
O(p−1/2)

+ ‖µa‖
2/p + 2µT

a ωi/
√

p︸ ︷︷ ︸
O(p−1)

which allows for a Taylor expansion of nonlinear functions of ‖xi‖2 around τ, as done for
xTi xj.

From Table 3.3, it appears that, for every listed σ(·), K(xi, xj) is a smooth function of
xTi xj and ‖xi‖, ‖xj‖, despite their possible discontinuities (for example, the ReLU function
and σ(t) = |t|). The above results therefore allow for an entry-wise Taylor expansion of
the matrix K in the large n, p limit.

A critical aspect of the analysis where random matrix theory comes into play now
consists in developing K as a sum of matrices arising from the Taylor expansion and
ignoring terms that give rise to a vanishing operator norm, so as to find an asymptotic
equivalent matrix K̃ such that ‖K− K̃‖ → 0 as n, p → ∞, as described in detail below.
This analysis provides a simplified asymptotically equivalent expression for K with all
nonlinearities removed.

To present our main theoretical result, we define, similarly to Section 3.1.1 and 3.1.2
the following notations for random elements

Ω ≡
[
ω1, . . . , ωn

]
∈ Rp×n, φ ≡

{
‖ωi‖2 −E

[
‖ωi‖2]}n

i=1 ∈ Rn

as well as for deterministic elements7,

M ≡
[
µ1, . . . , µK

]
∈ Rp×K, J ≡

[
j1, . . . , jK

]
∈ Rn×K

t ≡
{

1
√

p
tr C◦a

}K

a=1
∈ RK, S ≡

{
1
p

tr(CaCb)

}K

a,b=1
∈ RK×K

where ja ∈ Rn denotes, as usual, the canonical vector of class Ca such that (ja)i = δxi∈Ca .

Theorem 3.7 (Asymptotic equivalent of Kc). Let Assumption 2 hold and Kc be defined as
Kc ≡ PKP for K given in (1.20). Then, as n→ ∞, for all σ(·) given in Table 3.3,

‖Kc − K̃c‖ → 0

6Note that the notation τ defined here differs from that in Section 1.1.2 and 3.1.1 by a factor 2.
7Similarly to Section 3.1.2, M stands for means, t accounts for (difference in) traces while S for the “shapes”

of covariances. Note in particular that the definition of S is different from that in Section 3.1.2, since only the
special case Ca = Ip + Ea is considered in Section 3.1.2.
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almost surely, with K̃c = PK̃P and

K̃ ≡ d1

(
Ω + M

JT
√

p

)T (
Ω + M

JT
√

p

)
+ d2UBUT + d0In ≡ KN + K̃I + d0In

where we recall that P ≡ In − 1
n 1n1Tn and

U ≡
[

J√
p , φ

]
, B ≡

[
ttT + 2S t

tT 1

]
, KN ≡ d1ΩTΩ + d2φφT

K̃I ≡
d1

p
(JMTMJT +

√
pΩTMJT +

√
pJMTΩ) +

d2

p

(
J(ttT + 2S)JT +

√
pφtTJT +

√
pJtφT

)
with the coefficients d0, d1, d2 given in Table 3.4.

Table 3.4: Coefficients di in K̃c for different σ(·).

σ(t) d0 d1 d2

t 0 1 0

ReLU(t) ≡ max(t, 0)
( 1

4 −
1

2π

)
τ 1

4
1

8πτ

|t|
(
1− 2

π

)
τ 0 1

2πτ

ς+ max(t, 0) + ς−max(−t, 0)
≡ LReLU(t)

π−2
4π (ς+ + ς−)2τ 1

4 (ς+ − ς−)2 1
8τπ (ς+ + ς−)2

1t>0
1
4 −

1
2π

1
2πτ 0

sign(t) 1− 2
π

2
πτ 0

ς2t2 + ς1t + ς0 2τ2ς2
2 ς2

1 ς2
2

cos(t) 1
2 +

e−2τ

2 − e−τ 0 e−τ

4

sin(t) 1
2 −

e−2τ

2 − τe−τ e−τ 0

erf(t) 2
π

(
arccos

( 2τ
2τ+1

)
− 2τ

2τ+1

) 4
π

1
2τ+1 0

exp(−t2/2) 1√
2τ+1
− 1

τ+1 0 1
4(τ+1)3

Theorem 3.7 tells us as a corollary (from for example Lemma 2.10) that the maxi-
mal difference between the eigenvalues of Kc and K̃c vanishes asymptotically as n, p →
∞. Similarly the distance between the “isolated eigenvectors” also vanishes. This is of
tremendous importance as the determination of the leading eigenvalues and eigenvectors
of Kc (that contain crucial information for clustering, for example) can be studied from
the equivalent problem performed on K̃c and becomes mathematically more tractable.

It is also of interest to remark from Theorem 3.7 that, albeit derived from different
data models and kernel types, Theorem 3.7 provides the same intuition as Theorem 3.4:
the first order information (M) always goes with one coefficient (d1 and a1, respectively),
while the second order information (t, S or T, S, respectively) is always multiplied by
another coefficient (d2 and a2, respectively).

To make this clear, the major differences between these two results are summarized
as follows:

1. Theorem 3.4 characterizes the spectrum of the “properly scaled” inner-product ker-
nel matrix model f (xTi xj/

√
p), with zero on its diagonal, regardless of the underly-

ing distribution; it holds for any square-summable kernel function f (that satisfies
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Assumption 3); the coefficients a1, a2 and ν are known to be the (generalized) mo-
ments of f (with respect to standard Gaussian measure). Nonetheless, due to the
lack of more advanced technical tools, only the special case Ca = Ip + Ea is covered
in Theorem 3.4.

2. On the other hand, Theorem 3.7 treats the kernel matrices arising from random
feature maps (or random NNs), in the Gaussian case (i.e., for GMM data); these
kernels are “improperly scaled” (as those studied in Section 3.1.1) with the form
f (xTi xj/p) in Table 3.3, and the analysis is based on a local expansion of f , which
imperatively demands f to be locally (at least three-times) differentiable near 0 and
τ. Also, Theorem 3.7 holds only for the nonlinear activation listed in Table 3.3
for which we are capable of explicitly computing the expression of K. However,
Theorem 3.7 holds for arbitrary covariance Ca.

Practical consequences. On closer inspection of Theorem 3.7, the matrix K̃ is expressed
as the sum of three terms, weighted respectively by the three coefficients d0, d1 and d2,
that depend on the nonlinear function σ(·) via Table 3.4. Note that the statistical structure
of the data {xi}n

i=1 (namely the means in M and the covariances in t and S) is perturbed
by random fluctuations (Ω and φ). In this perspective, we see that d1 and d2 (asymp-
totically) control the “expression” of the first (M) and second order (t and S) statistical
information in K, respectively. In particular, there exists a balance between the means
and covariances, that provides some instructions in the appropriate choice of the nonlin-
earity. From Table 3.4, the functions σ(·) can be divided into the following three groups:

• mean-oriented, where d1 6= 0 while d2 = 0: this is the case of the functions t, 1t>0,
sign(t), sin(t) and erf(t), which asymptotically track only the difference in means
(i.e., t and S disappear from the expression of K̃c);

• covariance-oriented, where d1 = 0 while d2 6= 0: this concerns the functions |t|, cos(t)
and exp(−t2/2), which asymptotically track only the difference in covariances;

• balanced, where both d1, d2 6= 0: here for the ReLU function max(t, 0) and the
quadratic function ς2t2 + ς1t + ς0.

To corroborate the above classification of different nonlinearity, we perform kernel
spectral clustering in Figure 3.16 on four classes of Gaussian data: N (µ1, C1), N (µ1, C2),
N (µ2, C1) and N (µ2, C2) with the LReLU function that takes different values for ς+ and
ς−. For a = 1, 2, µa =

[
0a−1; 5; 0p−a

]
and Ca = (1 + 15(a − 1)/

√
p)Ip. By choosing

ς+ = −ς− = 1 (equivalent to σ(t) = |t|) and ς+ = ς− = 1 (equivalent to the linear
map σ(t) = t), with the leading two eigenvectors we always recover two classes instead
of four, as each setting of parameters only allows for a part of the statistical information
of the data to be used for clustering. However, by taking ς+ = 1, ς− = 0 (the ReLU
function) we distinguish all four classes in the leading two eigenvectors, to which the
k-means method can then be applied for final classification, as shown in Figure 3.17.

We complete this section by showing that our theoretical results in Theorem 3.7, de-
rived from GMMs, show an unexpected close match in practice when applied to real-
world datasets. We consider two different types of classification tasks: one on the MNIST
[LBBH98] database (number 6 and 8), and the other on epileptic EEG time series data
[ALM+01] (set B and E). These two datasets are typical examples of means-dominant
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C1 C2 C3 C4

(a) σ(t) = |t|: eigenvector 1

C1 C2 C3 C4

(b) σ(t) = |t|: eigenvector 2

C1 C2 C3 C4

(c) σ(t) = t: eigenvector 1

C1 C2 C3 C4

(d) σ(t) = t: eigenvector 2

Figure 3.16: Leading two eigenvectors of Kc for the LReLU function with ς+ = −ς− = 1
(top) and ς+ = ς− = 1 (bottom), performed on four classes Gaussian mixture data with
p = 512, n = 256, ca = 1/4 and ja = [0na−1 ; 1na ; 0n−na ], for a = 1, 2, 3, 4. Expectation
estimated by averaging over 500 realizations of W.

Table 3.5: Empirical estimation of (normalized) differences in means and covariances of
the MNIST (Figure 3.18) and epileptic EEG (Figure 3.19) datasets.

‖MTM‖ ‖ttT + 2S‖
MNIST data 172.4 86.0
EEG data 1.2 182.7

(handwritten digits recognition) and covariances-dominant (EEG times series classifi-
cation) tasks. This is numerically confirmed in Table 3.5 (see also Table 3.1 from Sec-
tion 3.1.1).

We perform random feature-based spectral clustering on data matrices that consist
of n = 32, 64 and 128 randomly selected vectorized images of size p = 784 from the
MNIST dataset. Means and covariances are empirically obtained from the full set of
11 769 MNIST images (5 918 images of number 6 and 5 851 of number 8). Comparing
the matrix Kc built from the data and the theoretically equivalent K̃c obtained as if the
data were Gaussian with the (empirically) computed means and covariances, we observe
an extremely close fit in the behavior of the eigenvalues and the leading eigenvector in
Figure 3.18. The k-means method is then applied to the leading two eigenvectors of the
Gram matrix 1

n ΣTΣ that consists of N = 32 random features to perform unsupervised
classification, with resulting accuracies (averaged over 50 runs) reported in Table 3.6.
As seen from Table 3.5, the mean-oriented σ(t) functions are expected to outperform the
covariance-oriented functions in this task, which is consistent with the results in Table 3.6.
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Figure 3.17: Leading two eigenvectors of Kc (top) for the LReLU function with ς+ = 1,
ς− = 0 (equivalent to ReLU(t)) and two dimensional representation of these eigenvectors
(bottom), in the same setting as in Figure 3.16.

Table 3.6: Classification accuracies for random feature-based spectral clustering with dif-
ferent σ(t) on the MNIST dataset.

σ(t) n = 32 n = 64 n = 128

mean-
oriented

t 85.31% 88.94% 87.30%
1t>0 86.00% 82.94% 85.56%

sign(t) 81.94% 83.34% 85.22%
sin(t) 85.31% 87.81% 87.50%
erf(t) 86.50% 87.28% 86.59%

cov-
oriented

|t| 62.81% 60.41% 57.81%
cos(t) 62.50% 59.56% 57.72%

exp(−t2/2) 64.00% 60.44% 58.67%
balanced ReLU(t) 82.87% 85.72% 82.27%

The epileptic EEG dataset8, developed by the University of Bonn, Germany, is de-
scribed in [ALM+01]. The dataset consists of five subsets (denoted A-E), each containing
100 single-channel EEG segments of 23.6-sec duration. Sets A and B were collected from
surface EEG recordings of five healthy volunteers, while sets C, D and E were collected
from the EEG records of the pre-surgical diagnosis of five epileptic patients. Here we per-
form random feature-based spectral clustering on n = 32, 64 and 128 randomly picked
EEG segments of length p = 100 from the dataset. Means and covariances are empir-

8http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html.

http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
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Figure 3.18: Eigenvalue distribution of Kc and K̃c for the MNIST data (left) and leading
eigenvector of Kc for the MNIST and Gaussian mixture data (right) with a width of ±1
standard deviations (generated from 500 trials). With the ReLU function, p = 784, n =
128 and c1 = c2 = 1/2, j1 = [1n1 ; 0n2 ] and j2 = [0n1 ; 1n2 ].

ically estimated from the full set (4 097 segments of set B and 4 097 segments of set E).
Similar behavior of eigenpairs as for Gaussian mixture models is once more observed
in Figure 3.19. After k-means classification on the leading two eigenvectors of the (cen-
tered) Gram matrix composed of N = 32 random features, the accuracies (averaged over
50 runs) are reported in Table 3.7.

As opposed to the MNIST image recognition task, from Table 3.7 it is easy to check
that the covariance-oriented functions (i.e., σ(t) = |t|, cos(t) and exp(−t2/2)) far outper-
form any other with almost perfect classification accuracies. It is particularly interesting
to note that the popular ReLU function is suboptimal in both tasks, but never performs
very badly, thereby offering a good risk-performance tradeoff.

2 4 6 8
0

0.1

0.2

0.3
Eigenvalues of Kc

Eigenvalues of K̃c

Leading eigenvector for EEG data
Simulation: mean/std for EEG data
Theory: mean/std for Gaussian data

C1 C2

Figure 3.19: Eigenvalue distribution of Kc and K̃c for the epileptic EEG data (left) and
leading eigenvector of Kc for the EEG and Gaussian mixture data (right) with a width of
±1 standard deviations (generated from 500 trials). With the ReLU function, p = 100, n =
128 and c1 = c2 = 1/2, j1 = [1n1 ; 0n2 ] and j2 = [0n1 ; 1n2 ].

Conclusion. In this section, by leveraging the randomness of the data, we dived deep
into the comprehension of the equivalent kernel matrix K = Ew[σ(XTw)σ(wX)] that ap-
pears in the random NN context (in Section 3.2.1) as well as in random feature-based
techniques. The same technical approach as in Section 3.1.1 was applied to handle the
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Table 3.7: Classification accuracies for random feature-based spectral clustering with dif-
ferent σ(t) on the epileptic EEG dataset.

σ(t) n = 32 n = 64 n = 128

mean-
oriented

t 71.81% 70.31% 69.58%
1t>0 65.19% 65.87% 63.47%

sign(t) 67.13% 64.63% 63.03%
sin(t) 71.94% 70.34% 68.22%
erf(t) 69.44% 70.59% 67.70%

cov-
oriented

|t| 99.69% 99.69% 99.50%
cos(t) 99.00% 99.38% 99.36%

exp(−t2/2) 99.81% 99.81% 99.77%
balanced ReLU(t) 84.50% 87.91% 90.97%

nonlinearity arising from the activation function σ(·). Despite the difference in data
models and technical approaches, we reached a similar conclusion on the classification of
different σ as in Section 3.1.2, i.e., two key parameters (d1, d2) control separately the sta-
tistical information in means and covariance. Experiments on typical real-world datasets
were performed to validate our theoretical arguments.

3.3 Empirical Risk Minimization of Convex Loss

In Section 3.1 and 3.2 we discussed both large random kernel matrices (and kernel ridge
regression build on top of it) as well as random NN/feature-based models that are closely
connected to one another. However, all aforementioned objects of interest are in these
machine learning methods assume closed forms, as they come in essence from the min-
imization of (regularized) square losses. More generally, almost all machine learning al-
gorithms are given in form of (solutions of) optimization problems, with most of them ex-
pressed only in an implicit manner. An important example is the popular logistic regres-
sion, where one aims to find an optimal decision vector β ∈ Rp by minimizing the logistic
loss 1

n ∑n
i=1 log(1 + e−ỹi β

Txi) over the training set {(xi, ỹi)}n
i=1 with labels ỹi ∈ {−1,+1}.

Different from the linear regression solution that arises from the minimization of square
loss, the logistic regression solution β takes an implicit form and it is less direct to un-
derstand how β depends on the data X so as to investigate its statistical behavior. The
technical challenge from implicit optimization problems appears not only in the analysis
of logistic regression, but also in many other machine learning algorithms in daily use.

In this regard, it is of crucial importance to adapt the proposed random matrix-based
analysis framework to assess the performance of optimization-based learning methods,
we evaluate here the classifier obtained by minimizing an arbitrary convex and differen-
tiable loss, with a major emphasis on the “leave-one-out” technical approach to “decou-
ple” the learning system that contains complicated dependences.

In this section, we consider the following (regularized) empirical risk minimization
problem (as in (1.22))

min
β∈Rp

1
n

n

∑
i=1

L(ỹiβ
Txi) +

λ

2
‖β‖2 (3.28)
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under a binary symmetric GMM for the input data, i.e.,{
C1 : xi = −µ + C

1
2 zi, yi = −1

C2 : xi = +µ + C
1
2 zi, yi = +1

(3.29)

each with a class prior of 1/2, for z ∼ N (0, Ip), µ ∈ Rp and positive definite C ∈ Rp×p.
Let us first consider the case where λ > 0 and the existence of the minimizer β is

guaranteed. Similar to the non-trivial classification condition in Assumption 2, we shall
position ourselves under the following assumption.

Assumption 8 (Non-trivial classification). As n → ∞, we have p/n → c̄ ∈ (0, ∞), ‖µ‖ =
O(1) and max{‖C‖, ‖C−1‖} = O(1) with respect to p.

Note that the GMM in (3.29) satisfies the logistic regression model in the sense that
the conditional class probability is given by

P(yi = 1 | xi ∈ C2) =
1

1 + exp(−2µTC−1xi)
≡ σ(βT

∗ xi)

with σ(t) = (1 + e−t)−1 the logistic sigmoid function and the optimal Bayes solution β∗ =
2C−1µ. With the GMM in (3.29) and labels yi ∈ {−1,+1}, it is convenient to denote the
shortcut x̃i ≡ ỹixi so that

x̃i ∼ N (µ, C)

regardless of the class to which xi belongs.

To investigate the asymptotic performance of the empirical risk-based classifier in
(3.28), it is of crucial importance to understand the statistical properties of β that mini-
mizes (3.28). The main technical difficulty of this analysis lies in the fact that β, as the
solution of a convex optimization problem, does not have an explicit form. Nonethe-
less, by canceling the loss function derivative with respect to β we obtain the following
implicit relation

λβ =
1
n

n

∑
i=1
−L′(βTx̃i)x̃i (3.30)

where we assume the loss function L is convex and at least three-times differentiable. In
this section, in addition to RMT techniques, in order to handle the implicit nature of β, we
mainly focus on the additional “leave-one-out” tool to handle the complex dependences
in the optimization problem.

Main results. From (3.30), β can be seen as a linear combination of all x̃i’s, weighted
by the coefficient −L′(βTx̃i). The idea is to understand how x̃i (and its statistical prop-
erties) affects the corresponding coefficient −L′(βTx̃i). However, as a solution of (3.30),
β depends on all x̃i’s in an intricate manner. We handle this correlation by establishing
a “leave-one-out” version of β, denoted β−i, that is asymptotically close to β and inde-
pendent of x̃i, by solving (3.28) for all data x̃j different from x̃i, i.e., for j = 1, . . . , i− 1, i +
1, . . . , n.

In details, since by definition λβ−i = − 1
n ∑j 6=i L′(βT

−ix̃j)x̃j, the difference λ(β− β−i)
is given by

λ(β− β−i) =
1
n ∑

j 6=i

(
L′(βT

−ix̃j)− L′(βTx̃j)
)

x̃j −
1
n

L′(βTx̃i)x̃i (3.31)
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Intuitively speaking, under Assumption 8, the difference ‖β− β−i‖ should be small,
in the sense that it goes to 0 as n, p→ ∞. As such, by a Taylor expansion of L′(x) around
x = βT

−ix̃j, j 6= i, we obtain

L′(βTx̃j) = L′(βT
−ix̃j) + L′′(βTx̃j)(β− β−i)

Tx̃j + O(‖β− β−i‖
2).

This approximation, together with (3.31), leads to the following relation on β− β−i

λ(β− β−i) ' −
1
n ∑

j 6=i
L′′(βT

−ix̃j)x̃jx̃Tj (β− β−i)−
1
n

L′(βTx̃i)x̃i

or in matrix form (
1
n

X̃−iD−iX̃T
−i + λIp

)
(β− β−i) ' −

1
n

L′(βTx̃i)x̃i

with D−i ≡ diag{L′′(βT
−ix̃j)}n

j 6=i ∈ R(n−1)×(n−1) and X−i ∈ Rp×(n−1) the data matrix
without xi.

Note here that by convexity of L, L′′(t) ≥ 0 for all t, so that with λ > 0, the matrix( 1
n X̃−iDX̃T

−i + λIp
)

is invertible and we get

β− β−i ' −
1
n

L′(βTx̃i)

(
1
n

X̃−iD−iX̃T
−i + λIp

)−1

x̃i

so that its projection on x̃i gives

(β− β−i)
Tx̃i ' −

1
n

L′(βTx̃i)x̃Ti

(
1
n

X̃−iD−iX̃T
−i + λIp

)−1

x̃i.

Note that
( 1

n X̃−iDX̃T
−i + λIp

)−1
is of bounded operator norm and independent of x̃i.

Following the idea of Lemma 2.11 we deduce the following approximation.

Lemma 3.4 (Asymptotic approximation of quadratic forms). Let Assumption 8 holds. Then
as n, p→ ∞,

1
n

x̃Ti

(
1
n

X̃−iD−iX̃T
−i + λIp

)−1

x̃i − κ
a.s.−→0

where κ is the unique positive solution of κ = 1
n tr(Q̄C) with

Q̄ ≡
(

E

[
L′′(βTx̃)

1 + κL′′(βTx̃)

]
C + λIp

)−1

.

As a consequence of Lemma 3.4, one has immediately

(β− β−i)
Tx̃i ' −L′(βTx̃i)κ

and therefore
βTx̃i = βT

−ix̃i + (β− β−i)
Tx̃i ' βT

−ix̃i − L′(βTx̃i)κ

where we observe the quantity βTx̃i on both sides, which is given by the explicit equation

βTx̃i ' proxκL(βT
−ix̃i)



102CHAPTER 3. SPECTRAL BEHAVIOR OF LARGE KERNELS MATRICES AND NEURAL NETS

with proxκL(t) the proximal operator [BC11] defined as the unique solution of the following
minimization problem

min
x∈R

κL(x) +
1
2
(βT
−ix̃i − x)2.

The uniqueness of the minimization problem above is guaranteed by the convexity of
the loss L. Moreover, the proximal operator can be defined for all lower semi-continuous
convex functions, and thus covers non-smooth loss L(t) such as the hinge losses L(t) =
max(1 − t, 0). In this vein, our results are envisioned to extend to non-smooth losses,
for which more refinements (to replace the gradient with the subgradient in the sense of
Clarke [Cla90] and to rework on Lemma 3.4) are needed.

Since β−i is independent of x̃i, we have βT
−ix̃i ∼ N (m, σ2) in the large p limit for some

unknown deterministic m and σ2, as summarized in the following lemma.

Lemma 3.5. Under Assumption 8, there exist two positive constants m, σ2 such that, as n, p→
∞,

βT
−ix̃i − r d−→0, r ∼ N (m, σ2)

and

L′(βTx̃i)− f (r) d−→0, f (r) ≡ L′(proxκL(r)) =
r− proxκL(r)

κ

with the proximal operator proxκL(r) defined as the unique solution of the following minimiza-
tion problem

min
x∈R

κL(x) +
1
2
(x− r)2

for some κ > 0 determined by the fixed point equation in Lemma 3.4.

With Lemma 3.5, to characterize the stochastic behavior of βT
−ix̃i and βTx̃i (and sub-

sequently β), it remains to determine the unknown constants m and σ2. This can be done
by taking the expectation on both sides of (3.30) as

λE[β] =
1
n

n

∑
i=1
−E

[
f (βT
−ix̃i)x̃i

]
which helps connect the statistics of β to m and σ2. Nonetheless, the right-hand-side
expectation in the above equation is non-trivial, due to the dependence between the ran-
dom vector x̃i and its projection x̃Ti β−i onto the independent β−i.

Fortunately, in the case of Gaussian x̃i ∼ N (µ, C), this dependence can be separated
and treated explicitly. By writing x̃i = µ +

√
pωi with ωi ∼ N (0, C/p) we can decom-

pose ωi as the following sum

ωi =
βT
−iωi

βT
−iCβ−i

Cβ−i + ω⊥i '
βT
−iωi

tr CE[β−iβ
T
−i]

Cβ−i + ω⊥i '
βT
−iωi

σ2 Cβ−i + ω⊥i

for σ2 defined in Lemma 3.4 and such that ωT
i β−i is independent of ω⊥i , i.e.,

Eωi

[
ω⊥i ωT

i β−i

]
= Eωi

[(
ωi −

βT
−iωi

βT
−iCβ−i

Cβ−i

)
ωT

i β−i

]
= 0

and in particular βT
−iω

⊥
i = 0. As a consequence, (3.30) can be reduced to

λβ ' 1
n

n

∑
i=1
− f (βT

−ix̃i)

(
µ +

√
pβT
−iωi

σ2 Cβ−i +
√

pω⊥i

)
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which, since β−i ' β, further leads to(
1
n

n

∑
i=1

f (βT
−ix̃i)(x̃i − µ)

σ2 C + λIp

)
β '

(
1
n

n

∑
i=1
− f (βT

−ix̃i)

)
µ + u

for the random vector u ≡ 1
n ∑n

i=1− f (βT
−ix̃i)

√
pω⊥i such that

E[u] = 0, E[uuT] =
E[ f 2(βT

−ix̃i)]

n

(
C− 1

σ2 CE[ββT]C
)

.

This allows us to conclude that(
E[ f (r)(r−m)]

σ2 C + λIp

)
β ' E[− f (r)]µ + u

or
β ' (τC + λIp)

−1µ + (τC + λIp)
−1u

where we denote η ≡ E[− f (r)], γ ≡ E[ f 2(r)] and τ ≡ E[ f (r)(r − m)/σ2] for r ∼
N (m, σ2) as defined in Lemma 3.4.

Lastly, with

E[ββT] ' η2(τC + λIp)
−1µµT(τC + λIp)

−1 + (τC + λIp)
−1E[uuT](τC + λIp)

−1

we deduce

σ2 = tr CE[ββT] ' η2µT(τC + λIp)
−1C(τC + λIp)

−1µ +
γ

n
‖(τC + λIp)

−1C‖2
F

and finally reach the following theorem.

Theorem 3.8 (Asymptotic behavior of β). Let Assumption 8 hold. Then, under the notations
of Lemma 3.4, we have, as n, p→ ∞

‖β− β̃‖ → 0, (τC + λIp)
−1β̃ ∼ N (ηµ, γC/n)

with (η, γ, τ) ∈ R3 the unique solution of

η ≡ E[− f (r)], γ ≡ E[ f 2(r)], τ ≡ E[ f (r)(r−m)/σ2] = E[− f ′(r)]

for f (r) ≡ L′(proxκL(r)) defined in Lemma 3.5, r ∼ N (m, σ2) with

m = ηµT(τC+λIp)
−1µ, σ2 = η2µT(τC+λIp)

−1C(τC+λIp)
−1µ+

γ

n
‖(τC+λIp)

−1C‖2
F.

As a direct consequence of Theorem 3.8 and Lemma 3.5, we obtain the following
corollary on the (asymptotic) training and test performance.

Corollary 3.3. Under the conditions and notations of Theorem 3.8, the asymptotic test classifi-
cation error rate is given by

P(βT
−ix̃i < 0)−Q

(m
σ

)
→ 0

where we recall that Q(t) ≡ 1√
2π

∫ ∞
t e−u2/2du. Similarly, the training classification error is

given by
P(βTx̃i < 0)− P (proxκL(r) < 0)→ 0

for r ∼ N (m, σ2) as in Lemma 3.5.
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Figure 3.20: Comparison between the histogram of βT
−ix̃i and the Gaussian distribution

N (m, σ2) defined in Theorem 3.8 with µ = [2, 0p−1], Cp = Ip, for λ = 1, p = 256 and
n = 512.

Practical consequences. To validate Theorem 3.8 and Lemma 3.5 for n, p of reasonable
sizes, we compare in Figure 3.20 the empirical distribution of βT

−ix̃i and the Gaussian
distribution N (m, σ2) from the system of fixed point equations in Theorem 3.8. Our
theoretical results fit the simulation almost perfectly, already for p = 256 and n = 512.

To interpret Theorem 3.8 we first restrict ourselves to the unregularized case where
λ = 0 and assume the minimization problem (3.28) admits a solution β such that ‖β‖ =
O(1), at least with high probability. Note that depending on the problem (µ, C and the
loss L) and the dimensionality (n, p), such a solution may not exist with λ = 0 (for in-
stance as pointed out in [CS18] for the logistic regression L(t) = log(1 + e−t)).

With λ = 0, the notations in Theorem 3.8 are reduced to

β̃ ∼ N
(η

τ
C−1µ,

γ

nτ
Ip

)
with m = η

τ µTC−1µ and σ2 = η2

τ2 µTC−1µ + γ
τ2

p
n . Several remarks are in order:

1. E[β̃] is aligned to the optimal Bayes solution β∗ = 2C−1µ. However, unlike in the
regime where n → ∞ and p fixed, β̃ contains an additional zero mean Gaussian
noise of covariance γ

nτ Ip, which results in a larger variability of the soft output βTx
than classical asymptotics predict.

2. The scaling of β̃ depends on the interplay between the data statistics (µ, C), the
problem dimensionality (n, p) and the loss function L. In general, E[β̃] differs from
the optimal Bayes solution β∗ by a multiplicative (constant) factor, i.e., E[β̃] = η

2τ β∗.
In Figure 3.21 we examine the empirical mean (so as to estimate the expectation)
of β, the rescaled version 2τ

η β and the optimal Bayes solution β∗. We see that by
rescaling the obtained β by the factor 2τ/η, one gets (in expectation) the optimal
β∗. Nonetheless, note that for classification applications, one has sign(βTx) =

sign(aβTx) for a > 0, meaning that a positive rescaling of β does not affect the
classification performance.

3. As a consequence of Corollary 3.3, in pursuit of an optimal design of the loss func-
tion L, one must find (η, γ, τ) that maximizes the ratio m2/σ2, or equivalently

arg max
(η,γ,τ)∈R3

m2

σ2 = arg max
(η,γ,τ)∈R3

(µTC−1µ)2

µTC−1µ + γ
η2

p
n
= arg max

(η,γ,τ)∈R3

η2

γ
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where we recall η = E[− f (r)] and γ = E[ f 2(r)], so that by Cauchy–Schwarz in-
equality

η2 ≤ γ

with equality if and only if f (r) is a constant function. The minimal misclassifica-

tion error rate is therefore given by Q(m
σ ) = Q

(
µTC−1µ√

µTC−1µ+p/n

)
for the model under

consideration. On the other hand, it is of interest to note that, by the law of large
numbers, the empirical average 1

n ∑n
i=1−L′(βTx̃i) converges to its expectation η as

n → ∞, and similarly for γ. As such, one may alternatively wish to maximize the
following empirical version

max
(η,γ,τ)∈R3

L′(βTX̃)1n√
L′(βTX̃)L′(X̃Tβ)

where the function L′ is applied entry-wise on the vector βTX̃ ∈ Rn. Under the
above form, note from (3.30) that in the unregularized case with λ = 0 one must
has

X̃L′(X̃Tβ) = 0

so that by considering a singular value decomposition of X̃ = UΣVT = U
[
S 0

] [VT
1

VT
2

]
for X̃ ∈ Rp×n with n > p such that S ∈ Rp×p, V1 ∈ Rn×p and V2 ∈ Rn×(n−p), one
must have VT

1 L′(X̃Tβ) = 0, or equivalently, L′(X̃Tβ) lies on the subspace spanned
by the columns vectors of V2 such that there exists a ∈ Rn−p for which

L′(X̃Tβ) = V2a.

With the formulation, one aims to find

arg max
(η,γ,τ)∈R3

aTVT
2 1n

‖a‖

which attains the maximum if and only if a is aligned to VT
2 1n a = aVT

2 1n for
some a > 0. This optimality condition is met for instance with the square loss
L(t) = (t− 1)2.

Conclusion. In this section, we considered the separation of a symmetric binary GMM
with opposite means±µ and identical covariance C, by minimizing the empirical convex
and differentiable risk L on a given training set. In this scenario, the statistical of the
resulting classifier β depends on the chosen loss metric via the generalized moment of a
nonlinear function f (x) ≡ L′(proxκL(x)) with respect to the standard Gaussian measure,
in an implicit manner via the proximal operator and the constant κ > 0. As a consequence
of the analysis, we saw that the in the regime n, p → ∞ with p/n → c̄ ∈ (0, ∞), β
is the sum of a rescaled of β∗, the optimal Bayes solution, together with an additional
homogeneous Gaussian noise.
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Figure 3.21: Comparison of the empirical mean of β (denoted β̄) the solution of (1.22) for
logistic loss L(t) = log(1 + e−t), the optimal Bayes solution β∗ and the rescaled solution
2τ
η β̄ for (η, τ) derived from Theorem 3.8 with µ = [1p/3,−1p/3, 3

4 1p/3]/
√

p, C = 2Ip, for
p = 60, n = 300. Empirical means obtained by averaging over 500 realizations.

3.4 Summary of Chapter 3

In this chapter, we focused on the eigenspectrum of large dimensional random kernel
matrices and neural networks. Built upon a simple Gaussian mixture modeling of the
input data, we provided a tractable characterization of the spectral behavior of kernel
matrices and nonlinear Gram matrices, from which we further deduced the (asymptotic)
performance of various machine learning methods, as a function of the data statistics,
the dimensionality, and the hyperparameters of the algorithm. The presented theoreti-
cal findings shed novel light on the understanding, as well as a better designing of the
aforementioned machine learning methods.

To further address more involved learning algorithms, for example, those (implic-
itly) defined by convex optimization problems (e.g., logistic regression), we resort to a
“leave-one-out” approach and assume that the optimality conditions are met. By work-
ing on these conditions, we deduced the (asymptotic) performance reached by the opti-
mal points of the these optimization problems.

In practice, optimization methods such a gradient descent are regularly used to reach
these optimal points. The solution of the optimization problem, and therefore its per-
formance, naturally depends on the optimization method applied. The impact of the
optimization method is more significant in non-convex problems, where depending on
the initialization, totally different solutions can be reached. In the following chapter, we
focus precisely on the gradient descent algorithm and study its behavior in convex and
non-convex machine learning problems.



Chapter 4

Gradient Descent Dynamics in
Neural Networks

In Chapter 3 we discussed either kernel-based methods that are of explicit forms (in Sec-
tion 3.1.1–3.2.2), or the statistical behavior of the unique minimum from a convex opti-
mization problem (in Section 3.3), without considering by which means can we reach this
optimum. In this chapter, we discuss the possibly most widely used gradient descent
method, and in particular, the temporal evolution of (the performance of) the learning
system when trained with gradient descent, starting from the simple and convex linear
regression model in the section below.

4.1 A Random Matrix Approach to GDD

In the section we consider the gradient descent dynamics (GDDs) for the training of a
ridge regression, under a binary symmetric GMM (see Definition 1) with identity covari-
ance for the input pattern, i.e.,{

C1 : xi = −µ + zi, yi = −1
C2 : xi = +µ + zi, yi = +1

for zi ∼ N (0, Ip) and ‖µ‖ = O(1) as n, p→ ∞ with p/n = c→ c̄ ∈ (0, ∞).
Let us detail our basic settings: for a given training data matrix X =

[
x1, . . . , xn

]
∈

Rp×n with associated labels y =
[
y1, . . . , yn

]
∈ Rn, a weight vector w ∈ Rp is learned

using gradient descent to minimize the square loss

L(w) =
1

2n
‖y− XTw‖2.

The gradient of L with respect to w is thus given by ∇wL(w) = − 1
n X(y − XTw) so

that with small gradient descent step (or, learning rate) α, we obtain, by performing a
continuous-time approximation, the following differential equation

dw(t)
dt

= −α∇wL(w) =
α

n
X(y− XTw)

the solution of which is given explicitly by (as in (1.24))

w(t) = e−
αt
n XXT

w0 +
(

Ip − e−
αt
n XXT

)
wLS

107
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where we denote wLS = ( 1
n XXT)−1 1

n Xy ∈ Rp the classical ridge regression solution with
regularization parameter λ ≥ 0 and w0 = w(t = 0) the initialization of gradient descent.
We recall that the exponential of a symmetric matrix A is given by eA = ∑∞

k=0
1
k! A

k =
VAeΛA VT

A, with A = VAΛAVT
A the spectral decomposition of A. We apply, as proposed

in [GB10], the following random initialization for gradient descent.

Assumption 9 (Random initialization). Let w0 ≡ w(t = 0) be a random vector with i.i.d. en-
tries of zero mean, variance σ2/p for some σ > 0 and finite fourth moment.

Given the expression of w(t) above, we are interested in the training and test misclas-
sification error rate, i.e.,

P(xTi w(t) > 0 | yi = −1), P(x̂Tw(t) > 0 | ŷ = −1).

Due to the symmetry of the GMM under consideration, we denote, similar to Section 3.3,
x̃i ≡ yixi so that x̃i ∼ N (µ, C) and use, with a slight abuse of notations for test data x̂ = ˜̂x.
As such, we further write

Xy = X̃1n, XXT = X̃X̃T

so that the classification error rates become

P(x̃Ti w(t) < 0), P(x̂Tw(t) < 0)

where x̂ ∼ N (−µ, Ip) is a new (test) datum independent of X.
From a random matrix perspective, all aforementioned objects are functionals of the

eigenvalues of the sample covariance matrix 1
n X̃X̃T and can thus be evaluated with the

resolvent-based technique discussed in Chapter 2.

Main results. Let us start with the test misclassification error rate. Since the new datum
x̂ is independent of w(t), conditioned on w(t), w(t)Tx̂ is a Gaussian random variable of
mean w(t)Tµ and variance ‖w(t)‖2. The above probabilities can therefore be given via
the Q-function of Gaussian distribution. We thus resort to the computation of w(t)Tµ as
well as w(t)Tw(t) to evaluate the aforementioned classification error.

For µTw(t), with Cauchy’s integral formula we have

µTw(t) = µTe−αt( 1
n X̃X̃T)w0 + µT

(
Ip − e−αt( 1

n X̃X̃T)
)

wLS

= − 1
2πi

∮
γ

ft(z)µT

(
1
n

X̃X̃T − zIp

)−1

w0 dz− 1
2πi

∮
γ

1− ft(z)
z + λ

µT

(
1
n

X̃X̃T − zIp

)−1 1
n

X̃1n dz

with ft(z) ≡ exp(−αtz) and γ a positive closed path circling around all eigenvalues of
1
n X̃X̃T. Note that the (unified) data matrix X̃ can be rewritten as

X̃ = µ1Tn + Z

with Z ≡
[
z1, . . . , zn

]
∈ Rp×n of i.i.d. N (0, 1) entries. To isolate the deterministic vectors

µ from the random Z in the expression of µTw(t), we exploit Woodbury’s identity to
obtain(

1
n

X̃X̃T − zIp

)−1

= Q(z)

−Q(z)
[
µ 1

n Z1n
] [µTQ(z)µ 1 + 1

n µTQ(z)Z1n
∗ −1 + 1

n 1Tn ZTQ(z) 1
n Z1n

]−1 [
µT

1
n 1Tn ZT

]
Q(z).
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where we denote the resolvent Q(z) ≡
( 1

n ZZT − zIp
)−1

of 1
n ZZT, a deterministic equiv-

alent of which is given by
Q(z)↔ Q̄(z) ≡ m(z)Ip

with m(z) determined by the popular Marčenko–Pastur equation [MP67]

m(z) =
1− c− z

2cz
+

√
(1− c− z)2 − 4cz

2cz
(4.1)

where the branch of the square root is selected in such a way that =(z) · =m(z) > 0, i.e.,
for a given z there exists a unique corresponding m(z).

Substituting Q(z) by the simple form deterministic equivalent m(z)Ip, we are able
to estimate the random variable µTw(t) with a contour integral of some deterministic
quantities as n, p → ∞. Similar arguments also hold for w(t)Tw(t), together leading to
the following theorem, the proof of which is deferred to Section A.2.1 in the Appendix.

Theorem 4.1 (Test performance). Let Assumptions 9 hold. As n, p → ∞ with p/n → c ∈
(0, ∞), with probability one

P(w(t)Tx̂ < 0)−Q
(

E√
V

)
→ 0

where

E ≡ − 1
2πi

∮
γ

1− ft(z)
z

‖µ‖2m(z) dz
(‖µ‖2 + c)m(z) + 1

V ≡ 1
2πi

∮
γ

[
1
z2 (1− ft(z))

2

(‖µ‖2 + c)m(z) + 1
− σ2 f 2

t (z)m(z)

]
dz

with γ a closed positively oriented contour that surrounds the support of Marčenko–Pastur law,
the origin (0, 0) and the point (λs, 0) with λs = c + 1 + ‖µ‖2 + c

‖µ‖2 , ft(z) ≡ exp(−αtz) and
m(z) given by Equation (4.1).

To compare test versus training performances, we now evaluate the training error by
considering

1
n

1Tn X̃Tw(t) = − 1
2πi

∮
γ

ft(z, t)
1
n

1Tn X̃T

(
1
n

X̃X̃T − zIp

)−1

w0 dz

− 1
2πi

∮
γ

1− ft(z)
z

1
n

1Tn X̃T

(
1
n

X̃X̃T − zIp

)−1 1
n

X̃1n dz

which yields the following results.

Theorem 4.2 (Training performance). Under the assumptions and notations of Theorem 4.1,
as n, p→ ∞ with p/n→ c ∈ (0, ∞),

P(w(t)Tx̃i < 0)−Q
(

E∗√
V∗

)
→ 0

almost surely, with

E∗ ≡
1

2πi

∮
γ

1− ft(z)
z

dz
(‖µ‖2 + c)m(z) + 1

V∗ ≡
1

2πi

∮
γ

[
1
z (1− ft(z))

2

(‖µ‖2 + c)m(z) + 1
− σ2 f 2

t (z)zm(z)

]
dz.
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Figure 4.1: Training and test performance for µ = [2; 0p−1], p = 256, n = 512, σ2 = 0.1,
α = 0.01 and c1 = c2 = 1/2. Results obtained by averaging over 50 runs.

The proofs of Theorem 4.1 and 4.2 are provided in Section A.2.1 of the Appendix.
In Figure 4.1 we compare finite dimensional simulations with theoretical results ob-

tained from Theorem 4.1 and 4.2 and observe a very close match, already for not too
large n, p. As t grows large, the test error first drops rapidly with the training error,
then increases, although slightly, while the training error continues to decrease to zero.
This is because the classifier eventually over-fits the training data X and performs badly
on unseen data. To avoid over-fitting, one effectual approach is to apply regularization
strategies [Bis07]; for example, to “early stop” (at t = 100 for instance in the setting of
Figure 4.1) in the training process. This introduces new hyperparameters such as the op-
timal stopping time topt that is of crucial importance for the network performance and
is often tuned through cross-validation in practice. Theorem 4.1 and 4.2 tell us that the
training and test performances, although random themselves, have asymptotically de-
terministic behaviors described by (E∗, V∗) and (E, V), respectively, which allows for
a deeper understanding on the choice of topt, since E, V are in fact functions of t via
ft(z) ≡ exp(−αt(z + λ)).

Nonetheless, the expressions in Theorem 4.1 and 4.2 of contour integrations are not
easily analyzable nor interpretable. To gain more insight, we shall rewrite (E, V) and
(E∗, V∗) in a more readable way. First, note from Figure 4.2 that the matrix 1

n XXT has
(possibly) two types of eigenvalues: those inside the main bulk (between λ− ≡ (1−

√
c)2

and λ+ ≡ (1 +
√

c)2) of the Marčenko–Pastur distribution

ν(dx) =
√
(x− λ−)+(λ+ − x)+

2πcx
dx + (1− c−1)+δ(x) (4.2)

and a (possibly) isolated one lying away from [λ−, λ+], that will be treated separately.
We rewrite the path γ (that contains all eigenvalues of 1

n XXT) as the sum of two paths
γb and γs, that circle around the main bulk and the isolated eigenvalue (if any), respec-
tively. To handle the first integral of γb, we use the fact that for any nonzero λ ∈ R, the
limit limz∈C→λ m(z) ≡ m̌(λ) exists [SC95] and follow the idea in [BS08] by choosing the
contour γb to be a rectangle with sides parallel to the axes, intersecting the real axis at 0
and λ+ and the horizontal sides being at a distance ε → 0 from the real axis, to split the
contour integral into four real line integrals. The second integral circling around γs can
be computed by residue calculus. This together leads to the expressions of (E, V) and
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(E∗, V∗) as follows.

E =
∫ 1− ft(x)

x
µ(dx) (4.3)

V =
‖µ‖2 + c
‖µ‖2

∫
(1− ft(x))2µ(dx)

x2 + σ2
∫

f 2
t (x)ν(dx) (4.4)

E∗ =
‖µ‖2 + c
‖µ‖2

∫ 1− ft(x)
x

µ(dx) (4.5)

V∗ =
‖µ‖2 + c
‖µ‖2

∫
(1− ft(x))2µ(dx)

x
+ σ2

∫
x f 2

t (x)ν(dx) (4.6)

where we recall ft(x) = exp(−αtx), ν(x) given by (4.2) and denote the measure

µ(dx) ≡
√
(x− λ−)+(λ+ − x)+

2π(λs − x)
dx +

(‖µ‖4 − c)+

‖µ‖2 δλs(x) (4.7)

as well as
λs = c + 1 + ‖µ‖2 +

c
‖µ‖2 ≥ (

√
c + 1)2 (4.8)

with equality if and only if ‖µ‖2 =
√

c.
A first remark on the expressions of (4.3)-(4.6) is that E∗ differs from E only by a factor

‖µ‖2+c
‖µ‖2 . Also, both V and V∗ are the sum of two parts: the first part that strongly depends

on µ and the second one that is independent of µ. One thus deduces for ‖µ‖ → 0 that
E→ 0 and

V →
∫

(1− ft(x))2

x2 ρ(dx) + σ2
∫

f 2
t (x)ν(dx) > 0

with ρ(dx) ≡
√

(x−λ−)+(λ+−x)+

2π(c+1) dx. Therefore the test performance goes to Q(0) = 0.5. On

the other hand, for ‖µ‖ → ∞, one has E√
V
→ ∞ and hence the classifier makes perfect

predictions.
In a more general context (i.e., for Gaussian mixture models with generic means and

covariances as investigated in [BGC16], and obviously for practical datasets), there may
be more than one eigenvalue of 1

n XXT lying outside the main bulk, which may not be
limited to the interval [λ−, λ+]. In this case, the expression of m(z), instead of being
explicitly given by (4.1), may be determined through more elaborate formulations as in
the sample covariance model in Section 2.2.3. While handling more generic models is
technically reachable within the present analysis scheme, the results are much less intu-
itive. Similar objectives cannot be achieved within the framework presented in [AS17];
this conveys more practical interest to our results and the proposed analysis framework.

Practical consequences. With a careful inspection of (4.3) and (4.4), we now discuss
several different aspects of their practical implications.

• On the test performance. First of all, recall that the test performance is simply given
by Q

(
µTw(t)
‖w(t)‖

)
, with the term µTw(t)

‖w(t)‖ describing the alignment between w(t) and µ.
Therefore the best possible test performance is simply Q(‖µ‖). Nonetheless, this
“best” performance can never be achieved as long as p/n → c > 0, as described in
the following remark.
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Figure 4.2: Eigenvalue distribution of 1
n XXT for µ = [3/2; 0p−1], p = 512, n = 1 024 and

c1 = c2 = 1/2.

Remark 4.1 (Optimal test performance). Note that, with Cauchy–Schwarz inequality
and the fact that

∫
µ(dx) = ‖µ‖2 from (4.7), one has

E2 ≤
∫

(1− ft(x))2

x2 dµ(x) ·
∫

dµ(x) ≤ ‖µ‖4

‖µ‖2 + c
V

with equality in the right-most inequality if and only if the variance σ2 = 0. One thus
concludes that E/

√
V ≤ ‖µ‖2/

√
‖µ‖2 + c and the best test performance (lowest misclas-

sification rate) is Q(‖µ‖2/
√
‖µ‖2 + c) which can be reached only when σ2 = 0. Note

in particular that the optimal (test) classification performance agrees with the theoretical
optimum derived under the empirical risk minimization framework in Section 3.3.

This remark is of particular interest because, for a given task (thus for p, µ fixed) it
gives access to the minimum number of training data number n needed to fulfill a
certain classification accuracy.

As a side remark, note that in the expression of E/
√

V the initialization variance σ2

only appears in V, meaning that random initializations impair the test performance
of the network. As such, one should initialize with σ2 very close, but not equal, to
zero, to obtain symmetry breaking between hidden units [GBC16] as well as to
mitigate the drop of performance due to large σ2. In Figure 4.3 we plot the optimal
test performance with the corresponding optimal stopping time as a function of
σ2, showing that small initializations help training both in terms of accuracy and
efficiency.

• Approximation for t close to 0. Although the integrals in (4.3) and (4.4) do not have
nice closed forms, note that, for t close to 0, with a Taylor expansion of ft(x) ≡
exp(−αtx) around αtx = 0, one gets more interpretable forms of E and V without
integrals, as presented next.

Taking t = 0, one has ft(x) = 1 and therefore E = 0, V = σ2
∫

ν(dx) = σ2, with
ν(dx) the Marčenko–Pastur distribution given in (4.2). As a consequence, at the
beginning stage of training, the test performance is Q(0) = 0.5 for σ2 6= 0 and the
classifier makes random guesses.

For t not equal but close to 0, the Taylor expansion of ft(x) ≡ exp(−αtx) around
αtx = 0 gives

ft(x) ≡ exp(−αtx) ≈ 1− αtx + O(α2t2x2).
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Making the substitution x = 1+ c− 2
√

c cos θ and with the fact that
∫ π

0
sin2 θ

p+q cos θ dθ =
pπ
q2

(
1−

√
1− q2/p2

)
(see for example 3.644-5 in [GR14]), one gets E = Ẽ+O(α2t2)

and V = Ṽ + O(α2t2), where

Ẽ ≡ αt
2

g(µ, c) +
(‖µ‖4 − c)+

‖µ‖2 αt = ‖µ‖2αt

Ṽ ≡ ‖µ‖
2 + c
‖µ‖2

(‖µ‖4 − c)+

‖µ‖2 α2t2 +
‖µ‖2 + c
‖µ‖2

α2t2

2
g(µ, c)

+ σ2(1 + c)α2t2 − 2σ2αt +
(

1− 1
c

)+

σ2 +
σ2

2c
(
1 + c− (1 +

√
c)|1−

√
c|
)

= (‖µ‖2 + c + cσ2)α2t2 + σ2(αt− 1)2

with g(µ, c) ≡ ‖µ‖2 + c
‖µ‖2 −

(
‖µ‖+

√
c

‖µ‖

) ∣∣∣‖µ‖ − √
c

‖µ‖

∣∣∣ and consequently 1
2 g(µ, c) +

(‖µ‖4−c)+

‖µ‖2 = ‖µ‖2. It is interesting to note from the above calculation that, although

E and V seem to have different behaviors for ‖µ‖2 >
√

c or c > 1, it is in fact not
the case as the extra term involving ‖µ‖2 >

√
c (or c > 1) exactly compensates

the singularity of the integral. As such, the test performance of the classifier is a
smooth function of both ‖µ‖2 and c, and there is indeed no “phase transition” as
far as performance is concerned.

Taking the derivative of Ẽ√
Ṽ

with respect to t, one has

∂

∂t
Ẽ√
Ṽ

=
α(1− αt)σ2

Ṽ3/2

which implies that the maximum of Ẽ√
Ṽ

is ‖µ‖2√
‖µ‖2+c+cσ2

and can be attained with

t = 1/α. Moreover, taking t = 0 in the above equation one gets ∂
∂t

Ẽ√
Ṽ

∣∣
t=0 = α

σ .
Therefore, large σ is harmful to the training efficiency, which coincides with the
conclusion from Remark 4.1.

Yet, the approximation error arising from Taylor expansion can be large for t away
from 0, e.g., at t = 1/α the difference E − Ẽ is of order O(1) and thus cannot be
neglected.

• As t → ∞: the least-squares solution. As t → ∞, one has ft(x) → 0 which results in
the least-square solution wLS = (XXT)−1Xy and consequently

µTwLS

‖wLS‖
=

‖µ‖2√
‖µ‖2 + c

√
1−min

(
c,

1
c

)
. (4.9)

Comparing (4.9) with the expression in Remark 4.1, one observes that when t →
∞ the network becomes “over-trained” and the performance drops by a factor√

1−min(c, c−1). This becomes worse when c gets close to 1, which is consistent
with the empirical findings in [AS17]. However, the point c = 1 is a singularity for
(4.9), but not for E√

V
as in (4.3) and (4.4). One may thus expect to have a smooth

and reliable behavior of the well-trained network for c close to 1, which is a no-
ticeable advantage of gradient-based training compared to the simple least-squares
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method. This coincides with the conclusion of [YRC07] in which the asymptotic
behavior in the limit n→ ∞ with p fixed is considered.

In Figure 4.4 we plot the test performance from simulation (blue line), the approx-
imation from Taylor expansion of ft(x) as described above (red dashed line), to-
gether with the performance of wLS (cyan dashed line). One observes a close match
between the result from Taylor expansion and the true performance for t small,
with the former being optimal at t = 100 and the latter slowly approaching the
performance of wLS as t goes to infinity.

In Figure 4.5 we underline the case c = 1 by taking p = n = 512 with all other
parameters unchanged from Figure 4.4. One observes that the simulation curve
(blue line) increases much faster compared to Figure 4.4 and is supposed to end up
at 0.5, which is the performance of wLS (cyan dashed line). This confirms a serious
degradation of performance for c close to 1 of the classical least-squares solution.
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Figure 4.3: Optimal performance and corresponding stopping time as functions of σ2,
with c = 1/2, ‖µ‖2 = 4 and α = 0.01.
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Figure 4.4: Generalization performance for µ = [2; 0p−1], p = 256, n = 512, c1 = c2 =
1/2, σ2 = 0.1 and α = 0.01. Simulation results obtained by averaging over 50 runs.

Conclusion. In this section we discussed the learning dynamic of a single-layer NN
model when trained with gradient descent, under a two-class GMM of opposite means
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Figure 4.5: Generalization performance for µ = [2; 0p−1], p = 512, n = 512, c1 = c2 =
1/2, σ2 = 0.1 and α = 0.01. Simulation results obtained by averaging over 50 runs.

±µ and identity covariance C = Ip. Based on the random matrix-based analysis, both
the training and test performance of the network establish asymptotically tractable be-
haviors as n, p → ∞ with p/n → c > 0. These performances can be expressed generally
in the form of contour integrations, which can further be reduced to real integrals for the
simple model here with C = Ip. We obtain several interesting yet counterintuitive con-
clusions: one should prohibit the use of large random initialization, as it not only harms
the network performance but also slows down the convergence rate (i.e., having a larger
optimal stopping time); also, different from the initial stage of training, when the net-
work is over-trained as t goes large, the performance drops by a factor

√
1−min(c, c−1),

and the misclassification error rate blows up when n ≈ p, i.e., the number of training
sample approximates the number of network parameters (and also the data dimension
in this case).

4.2 A Geometric Approach to GDD of Linear NNs

In this section, we move forward to consider linear DNN models with H ≥ 1 hidden lay-
ers as in [SMG13, Kaw16] and to evaluate the dynamics of the associated gradient system
in a “continuous” manner. We prove that, in the case H = 1, for almost every choice of
training data-target pair (X, Y) and almost every initialization for the weight matrices
W1, W2 (see network configuration in Figure 4.6 below), the corresponding trajectory of
the gradient system exists for all t ≥ 0 and converges to a global minimizer of the square
loss function. Based on a key “invariant” structure in the network weight space induced
by the network cascading structure, we further propose a generic framework for the ge-
ometric understanding of linear deep neural networks, including a critical initialization
scheme that ensures exponential convergence rate, a detailed description of the (first-
order) stationary points, as well as the associated Hessians and basins of attraction of
these stationary points.

For a deep linear neural network with H hidden layers as illustrated in Figure 4.6, we
introduce the following notations and basic settings.

Denote (X, Y) the training data and associated targets, with X ≡
[
x1, . . . , xn

]
∈ Rdx×n

and Y ≡ [y1, . . . , yn] ∈ Rdy×n, where n denotes the number of instances in the training set
and dx, dy the dimensions of data and targets, respectively. We denote the weight matrix
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x ∈ Rdxh1 ≡ W1x ∈ Rd1hH ≡ WHhH−1ŷ ≡ WH+1hH

W1 ∈ Rd1×dx. . .WH+1 ∈ Rdy×dH

Figure 4.6: Illustration of the H-hidden-layer linear neural network

Wi ∈ Rdi×di−1 that connects hi−1 to hi for i = 1, . . . H + 1 and set h0 = x, hH+1 = ŷ as in
Figure 4.6. The network output is thus given by Ŷ = WH+1 . . . W1X. We denote W the
(H + 1)-tuple of (W1, . . . , WH+1) for simplicity and work on the square loss L(W) given
by the Frobenius norm below,

L(W) =
1
2
‖Y− Ŷ‖2

F =
1
2
‖Y−WH+1 . . . W1X‖2

F . (4.10)

We position ourselves under the following assumptions:

Assumption 10 (Dimension condition). n ≥ dx ≥ max(d1, . . . , dH) ≥ min(d1, . . . , dH) >
dy. In particular in the case H = 1 this condition yields n ≥ dx ≥ d1 > dy.

Assumption 11 (Full rank data and targets). The matrices X and Y are of full (row) rank, i.e.,
of rank dx and dy, respectively, accordingly with Assumption 10.

Assumption 10 and 11 on the dimension and rank of the training data are realistic
and practically easy to satisfy, as discussed in previous works [BH89, Kaw16]. Indeed,
Assumption 10 is demanded here for convenience and our results can be extended to
handle more elaborate dimension settings. Similarly, when the training data is rank de-
ficient, the learning problem can be reduced to a lower-dimensional one by removing
these non-informative data in such a way that Assumption 11 holds.

Under Assumptions 10 and 11, with the singular value decomposition on X = UXΣXVT
X

with VX =
[

V1
X V2

X
]
, V1

X ∈ Rn×dx and then on YV1
X ≡ Ȳ = UYΣYVT

Y , together with a
change of variable, we get L(W) = L(W) + 1

2‖YV2
X‖2

F with

L(W) ≡ 1
2
‖ΣY −WH+1WH . . . W2W1‖2

F (4.11)

where ΣX ≡
[

SX 0
]
∈ Rdx×n, ΣY ∈ Rdy×dx and we denote, with a slight abuse of

notations that WH+1 ≡ UT
YWH+1 ∈ Rdy×dH and W1 ≡ W1UXSXVY ∈ Rd1×dx . Therefore

the state space1 of W ≡ (WH+1, . . . , W1) is equal to X = Rdy×dH × . . . × Rd1×dx . In
particular, for H = 1 we have dH = d1 and X has dimension d1(dx + dy).

With the above notations, we demand also the following assumption on the target Y.

Assumption 12 (Distinct singular values). The target Y has dy distinct singular values.

The objective of this section is to study the gradient descent [BV04] dynamics (GDD)
defined as follows.

1The network (weight) parameters W evolve through time and are considered to be state variables of the
dynamical system, while the pair (X, Y) is fixed and thus referred as the “parameters” of the given system.
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Definition 8 (GDD). The gradient descent dynamic of L is the dynamical system defined on X
by

dW
dt

= −∇WL(W) (4.12)

where ∇WL(W) denotes the gradient of the loss function L with respect to W. A point W ∈ X
is a (first-order) stationary point of L if and only if ∇WL(W) = 0 and we denote S(L) the set of
(first-order) stationary points.

In the following, we work directly on the equivalent equation (4.11) and start by eval-
uating the gradient of L. With the previous notations, for w ≡ (wH+1, . . . , w1), we ex-
pand the variation of L(W + w) as

L(W + w) = L(W) + DW(w) + O
(
‖w‖2)

with M ≡ ΣY −WH+1 . . . W1 so that L(W) = 1
2‖M‖2

F and the differential term given
by DW(w) ≡ −∑H+1

j=1 tr
(
MTWH+1 . . . Wj+1wjWj−1 . . . W1

)
. We thus derive from Defini-

tion 8 the dynamics of L, for j = 1, . . . , H + 1, as

dWj

dt
≡ −∇Wj L(W) =

(
WH+1 . . . Wj+1

)T M
(
Wj−1 . . . W1

)T . (4.13)

Main results. We start with the global convergence to stationary points of all gradi-
ent descent trajectories. While one expects the gradient descent algorithm to converge
to stationary points, this may not always be the case. Two possible (undesirable) situa-
tions are i) a trajectory is unbounded or ii) it oscillates “around” several stationary points
without convergence, i.e., along an ω-limit set made of a continuum of stationary points.
The property of an iterative algorithm (like gradient descent) to converge to a stationary
point for any initialization is referred to as “global convergence” [Zan69]. However, it is
very important to stress the fact that it does not imply (contrary to what the name might
suggest) convergence to a global (or good) minimum for all initializations.

To answer the convergence question, we resort to Lojasiewicz’s theorem for the con-
vergence of a gradient descent flow as (4.13) with real analytic loss L, as recalled below.

Theorem 4.3 (Lojasiewicz, from [Loj82]). Let L be a real analytic function and W(·) be a
solution trajectory of the gradient system given by Definition 8 such that W(t) remains bounded
for all t ≥ 0. Then W(·) converges to a stationary point of L as t → ∞, with the convergence
rate determined by the associated Lojasiewicz component [DK05].

Since the loss function L(W) is a polynomial of degree (H + 1)2 in the component
of W, Lojasiewicz’s theorem ensures that a bounded trajectory of the gradient descent
flow must converge to a stationary point with a guaranteed rate of convergence. In par-
ticular, the aforementioned phenomenon of “oscillation” cannot occur and we are left to
ensure the absence of unbounded trajectories. The following lemma characterizes the
“invariants” along trajectories of GDD, inspired by [SMG13] which essentially consid-
ered the case where all dimensions are equal to one. These invariants will be used at
several stages: to prove convergence to stationary points, to ensure an exponential con-
vergence rate, as well as to help understand the basin of attractions of the (undesired)
saddle points.

Lemma 4.1 (Invariant in GDD). Consider any trajectory of the gradient system given by (4.13).
Then, for j = 1, . . . , H, the value of WT

j+1Wj+1 −WjWT
j remains constant, i.e.,

WT
j+1(t)Wj+1(t)−Wj(t)WT

j (t) = C0
j ≡ Wj+1(0)TWj+1(0)−Wj(0)Wj(0)T, ∀t ≥ 0.
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In particular, in the case of H = 1 we get WT
2 W2 −W1WT

1 = C0 ≡ (WT
2 W2 −W1WT

1 )
∣∣
t=0.

Proof. Simply check that d
dt

(
WT

j+1Wj+1 −WjWT
j

)
= 0.

Note in particular that, as a result of Lemma 4.1, there exists constant cj, 1 ≤ j ≤ H
such that for all t ≥ 0,

‖Wj+1(t)‖2
F − ‖Wj(t)‖2

F = cj (4.14)

i.e., the difference between the (Frobenius) norms of successive weight matrices Wj are
preserved along with the gradient descent process.

With the key Lemma 4.1 and the remark above, to prove the boundedness of Wj(t)
for all j = 1, . . . , H + 1, it suffices to bound any single one of them, say for j = H + 1. To
this end, first note that

‖WH+1 . . . W1‖2
F = tr(WT

H+1WH+1 . . . W2W1WT
1 WT

2 . . . WT
H)

= tr(WT
H+1WH+1 . . . (W2WT

2 )
2 . . . WT

H)− tr(WT
H+1WH+1 . . . W2C0

1WT
2 . . . WT

H)

together with the fact that for symmetric positive semi-definite A we have λmin(B) tr(A) ≤
tr(AB) ≤ λmax(B) tr(A) so that

| tr(WT
H+1WH+1 . . . W2C0

1WT
2 . . . WT

H)| ≤ ‖C0
1‖‖WH+1 . . . W2‖2

F

so that by successively applying Lemma 4.1 one deduces the following bound

Pl(WH+1) ≤ ‖WH+1 . . . W1‖2
F ≤ ‖Pu(WH+1)

for some polynomial Pl and Pu of degree H + 1 with positive leading coefficients. As a
consequence, by considering the time derivative of ‖WH+1‖2

F, one can similarly get

d‖WH+1‖2
F

dt
≤ −2C0‖WH+1‖2(H+1)

F + C1(1 + ‖WH+1‖2H
F )

for some positive constants C0 and C1, so that d‖WH+1‖2
F

dt < 0 for some ‖WH+1‖2
F large

enough and WH+1 remains bounded for t ≥ 0 and this holds for all Wj, j = 1, . . . , H + 1
via (4.14). As such, by Lojasiewicz’s theorem one achieves the global convergence to
stationary points, stated as below.

Proposition 4.1 (Global convergence to stationary points). Let (X, Y) be a data-target pair
satisfying Assumptions 10 and 11. Then, every GDD trajectory defined in Definition 8 converges
to a (first-order) stationary point as t → ∞, at rate at least t−α, for some fixed α > 0 only
depending on the problem.

As another important byproduct of Lemma 4.1, we have the following corollary that
ensures an exponential convergence with a critical initialization scheme, and perhaps
more importantly, to convergence to the global minima with L = 0.

Corollary 4.1 (Exponential convergence with critical initialization). Let Assumptions 10 and 11
hold. If we have in addition that d1 ≥ d2 ≥ . . . ≥ dH and the initialization

C0
j ≡ Wj+1(0)TWj+1(0)−Wj(0)Wj(0)T ∈ Rdj×dj

has at least dj+1 positive eigenvalues, i.e., λdj+1(C
0
j ) > 0 for j = 1, . . . , H. Then, every trajectory

of the GDD converges to a global minimum at least at the rate of exp(−2αt), for some α > 0.



4.2. A GEOMETRIC APPROACH TO GDD OF LINEAR NNS 119

Proof. Recall the definition M = ΣY −WH+1 . . . W1 and consider its time derivative as

dM
dt

= −
H+1

∑
j=1

WH+1 . . . Wj+1
dWj

dt
Wj−1 . . . W1

= −
H+1

∑
j=1

WH+1 . . . Wj+1WT
j+1 . . . WT

H+1MWT
1 . . . WT

j−1Wj−1 . . . W1

so that

dL
dt

=
d‖M‖2

F
dt

= −2
H+1

∑
j=1

tr
(

MTWH+1 . . . Wj+1WT
j+1 . . . WT

H+1MWT
1 . . . WT

j−1Wj−1 . . . W1

)
≤ −2

H+1

∑
j=1

j−1

∏
k=1

λmin(WT
k Wk) tr

(
MTWH+1 . . . Wj+1WT

j+1 . . . WT
H+1M

)
≤ −2

H+1

∑
j=1

j−1

∏
k=1

λmin(WT
k Wk)

H+1

∏
l=j+1

λmin(WlWT
l )‖M‖2

F

where we constantly use the fact that for symmetric and positive semi-definite A we have
| tr(AB)| ≥ λmin(B) tr(A). Therefore, if there exists at least 1 ≤ j ≤ H + 1 such that

H+1

∏
l=j+1

λmin(WlWT
l )

j−1

∏
k=1

λmin(WT
k Wk) > 0 (4.15)

then we obtain d‖M‖2
F

dt ≤ −C‖M‖2
F for some C > 0 and thus the conclusion. To this end,

we derive, from Lemma 4.1 and Weyl’s inequality (see Lemma 2.10) that, for j = 1, . . . , H

λi(WT
j+1Wj+1) ≥ λi(C0

j ) + λmin(WjWT
j ) ≥ λi(C0

j ), i = 1, . . . , dj

with λi(C0
j ) the i-th eigenvalue of C0

j arranged in nondecreasing order so that λ1(C0
j ) =

λmin(C0
j ). Then since d1 ≥ . . . ≥ dj ≥ dj+1 ≥ . . . ≥ dH, the matrix WT

j+1Wj+1 ∈ Rdj×dj is
of rank maximum dj+1 and thus admits at least dj − dj+1 zero eigenvalues so that

λi(WT
j+1Wj+1) = 0, λi(C0

j ) ≤ 0

for i = 1, . . . , dj − dj+1. Moreover, since for i = 1, . . . , dj+1 we also have,

λi+dj−dj+1(W
T
j+1Wj+1) = λi(Wj+1WT

j+1)

we further deduce that for i = 1, . . . , dj+1,

λi(Wj+1WT
j+1) = λi+dj−dj+1(W

T
j+1Wj+1) ≥ λi+dj−dj+1(C

0
j )

so that by taking j = 1 in (4.15) we result in

H

∏
l=1

λmin(Wl+1WT
l+1) ≥

H

∏
l=1

λdl−dl+1+1(C0
l ) ≡ α > 0

which concludes the proof.
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Remark 4.1 entails that, for a linear network, although in general only polynomial
convergence rate can be established, it is possible to wisely initialize the gradient descent
algorithm to achieve exponential convergence.

Apart from the critical initialization scheme proposed in Corollary 4.1 that leads to a
global convergence to global minima, Proposition 4.1 itself does not guarantee the “qual-
ity” of stationary point to which the trajectory converges.

In the following, we move on to consider the general situation that we initialize the
gradient descent algorithm from a arbitrary point in the network weight space X and
focus on the set of the first-order stationary points S . We consider for simplicity the case
H = 1 and comment on H > 1.

Proposition 4.1 ensures, for all initializations, the convergence of the gradient de-
scent to a stationary point, i.e., a point W in the state space X verifying ∇WL(W) = 0.
Nonetheless, the information on the “quality” (e.g., the loss value L) of the solution
achieved is still unknown. To obtain a clearer picture, we now consider the case H = 1
and focus on the set of all stationary points by further decomposing the loss L with
ΣY ≡

[
SY 0

]
for diagonal SY ∈ Rdy×dy with [SY]ii > 0 as

L(W1, W2) =
1
2
‖ΣY −W2W1‖2

F =
1
2
‖SY − CA‖2

F +
1
2
‖CB‖2

F (4.16)

with C ≡ W2 ∈ Rdy×d1 , A ∈ Rd1×dy and B ∈ Rd1×(dx−dy) such that
[

A B
]
≡ W1.

Under the notations above, we further expand L(W + w) to obtain its higher order
variation as

L(A + a, B + b, C + c) ≡ L(W + w) = L(W) + DW(w) + HW(w) + O
(
‖w‖3)

with M ≡ SY − CA, L(W) = 1
2‖M‖2

F +
1
2‖CB‖2

F and

DW(w) ≡ − tr
(

MT(Ca + cA)
)
+ tr

(
BTCT(Cb + cB)

)
= O(‖w‖)

HW(w) ≡ − tr(MTca) +
1
2
‖Ca + cA‖2

F + tr(BTCTcb) +
1
2
‖Cb + cB‖2

F = O(‖w‖2)

that give the differential and the Hessian of L, respectively. Recall that S(L) ≡ {W | DW(w) =
0} and denote M ≡ SY − CA, so that, by Definition 8,

dA
dt = CTM = 0
dB
dt = −CTCB = 0
dC
dt = MAT − CBBT = 0

⇔


CTSY = CTCA
CB = 0
ASY = AATCT.

(4.17)

Observing the symmetric structure of A, C in (4.17) we have the following lemma.

Lemma 4.2 (Same kernel for A and CT). Let Assumptions 10 and 11 hold. Then for all
W ∈ S(L),

ker A = ker CT, with ker A ≡ {x, Ax = 0}.
Moreover, denote r the common rank of A and C with 0 ≤ r ≤ dy. Then there exists some
orthogonal matrix U ∈ Rdy×dy such that

AU =
[

Ā 0d1×(dy−r)

]
CTU =

[
C̄T 0d1×(dy−r)

]
U−1SYU = SY

(4.18)



4.2. A GEOMETRIC APPROACH TO GDD OF LINEAR NNS 121

with Ā, C̄T ∈ Rd1×r. Moreover, if SY has distinct eigenvalues (i.e., Y has dy distinct singular
values, as demanded in Assumption 12), then U is a diagonal matrix made of 1 and −1.

Sketch of proof of Lemma 4.2. It can be shown with basic algebraic manipulations that the
eigenvectors of S2

Y (thus of SY) form a basis of both ker A and ker CT. Therefore ker A =
ker CT and in particular dim ker A = dim ker CT. We denote this dimension dy − r and
A, C are thus both of rank r. Choose U2 from ker A and U1 ⊥ ker A; we deduce U =[

U1 U2
]

so that (4.18) holds.

In the general case H ≥ 1, similar conclusion as in Lemma 4.2 holds for the matrix
product (WH+1 . . . W2)T and WH+1 . . . W2A for W1 ≡

[
A B

]
.

Remark from (4.18) in Lemma 4.2 that, for arbitrary SY, there are infinitely many
possibilities on the choice of U with the risk of occupying too much of the state space X ,
since, with the change of variable in Lemma 4.2 the state variable now becomes the tuple
(A, B, C, U). Using Assumption 12, U only takes a finite number of values for a given
W ∈ Sr(L), hence the state variable essentially becomes the tuple (A, B, C).

For W ∈ S(L) with A, C of rank r with 0 ≤ r ≤ dy, rewriting SY in two blocks

SY =

[
DY 0
0 EY

]
, with DY ∈ Rr×r and EY ∈ R(dy−r)×(dy−r). With Lemma 4.2, we then

simplify (4.17) as {
C A = DY

CB = 0
, UTMU =

[
0 0
0 EY

]
(4.19)

with the fact that CT, A are both of full rank (equal to r). The loss L(W) (at stationary
points) can thus be simplified as L(W) = 1

2‖EY‖2
F where EY measures the “quality” of

each stationary points.
For any W ∈ S(L), with Lemma 4.2 we are allowed to “extract” the full rank (sub-

)structures of A, C with SY unchanged, via a simple change of basis. For 0 ≤ r ≤ dy, let
Sr(L) be the subset of S(L) such that the rank of A and of C is equal to r. Then, one has
the following disjoint union

S(L) = ∪dy
r=0Sr(L).

Proposition 4.2 (Landscape of single-hidden-layer linear NN model). Under Assump-
tions 10–12, the loss function L(W) has the following properties:

1. The set of possible limits of L along the GDD given by (4.12) is equal to the finite
set made of the sum of the squares of any subset of the singular values of Ȳ.

2. The set Sdy(L) is in fact the set of local (and global) minima, with L = 0 and M = 0.

3. Every first-order stationary point W ∈ Sr(L) with 0 ≤ r ≤ dy − 1 is a saddle point
such that the Hessian has at least one negative eigenvalue. In particular, the set
of saddle points is an algebraic variety of positive dimension, i.e., (up to a unitary
matrix) the zero set of the polynomial functions given in (4.19), with EY 6= 0.

For more general DNNs with H > 1, similar conclusion holds, except from the neg-
ative eigenvalue of the Hessian for all saddle points. As a matter of fact, for H > 1,
there exists saddle points with positive semidefinite Hessian and we show that a suffi-
cient condition to ensure at least one negative eigenvalue is to have rank(WH . . . W2) >
rank(WH+1 . . . W2).

The fact that all local minima are equivalently global minima and all critical points
that are not global minima are saddle points with at least one negative eigenvalue for the
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Hessian is in fact already known for single-hidden-layer linear networks [BH89, Kaw16].
Here, we improve the condition given in [Kaw16], with an alternative and shorter proof
based only on the quadratic form involving the Hessian, for deep linear networks.

With Proposition 4.2, and assume in addition that the loss function L admits two by
two distinct values over two by two distinct subsets made of (the sum of the squares of)
the singular values of the target Ȳ, one is able to provide a precise “local” description
of all saddle points. Based on this description, one is able to further construct the lo-
cal stable and unstable manifolds, with the help of the notation of normally hyperbolic
[HPS06, Theorem 3.5]. Ultimately, with the fact that the loss value L is decreasing along
the gradient descent trajectory and by contradiction, one reaches the convergence of the
GDD trajectory to a global minima, from almost all initialization (in the sense of Lebesgue
measure).

Conclusion. The essential difference between the case H = 1 and deeper NN with
H > 1 is the existence of saddle points with positive semidefinite Hessian matrices. In
this case, one has to evaluate higher order information (≥ 3) to understand more pre-
cisely the basins of attraction of these undesired stationary points, or otherwise establish
tighter bounds for the dimension of the parameter space X that is occupied by these bad
saddle points and their basins of attraction. Alternatively, one may also wish to provide
initialization scheme, in this H > 1 case, that can avoid, at least with high probability say,
these bad saddle points, so that we can again apply the arguments as in the case H = 1.



Chapter 5

Conclusions and Perspectives

5.1 Conclusions

Under a simple GMM for the input data model, we investigated, in Section 3.1.1-3.2.2
the performance of three closely connected objects: large random kernel matrices, large
dimensional random feature maps, and large simple neural networks random weights.
In the setting where the number of data n and their dimension p are both large and com-
parable, the MSE of random neural networks, the misclassification error rate of kernel
ridge regression, as well as the performance of kernel/random feature-based spectral
clustering techniques, all depend heavily on the eigenspectrum or on a functional of a
particular random kernel/nonlinear Gram matrix. The major technical challenge to the-
oretically grasp these kernel matrices, so as to assess the performance of the aforemen-
tioned algorithms, lies in the presence of nonlinearities, e.g., the kernel function f and
the neural network activation function σ. To handle this difficulty, we placed ourselves
under the critical regime of asymptotically non-trivial classification (namely, Assump-
tion 2 in Section 1.2). In this regime, a “concentration” phenomenon emerges, for the
similarly measures ‖xi− xj‖2/p or xTi xj/p, which then helps (asymptotically) “linearize”
(or Taylor-expand to first orders) the nonlinear objects of interest. The associated eigen-
spectrum, therefore, behaves like (a scaled and shifted version of) the classical sample
covariance/Gram matrix, perturbed by low rank matrices, and only depends on the lo-
cal behavior of the nonlinear function at the “concentration” point.

This “concentration” effect, if theoretically convenient, however, hinders the full dis-
criminative power of kernels (such as the discrimination of covariance matrices in differ-
ent classes). To work this limitation around, a proper scaling as xTi xj/

√
p is necessary,

which we studied in the second part of the thesis. In this situation, a “concentration”
cannot be established so that, in place of Taylor expansion arguments, we exploited the
method of orthogonal polynomials to decompose the nonlinear f into the sum of a lin-
ear and a purely nonlinear parts, that both contribute to the kernel eigenspectrum, but
in a very different way. A surprising outcome is that the kernel matrix eigenspectrum
depends on f solely via its first three Hermite coefficients, suggesting that, even with-
out concentration, the space of kernel functions can be mapped to a low dimensional
subspace. Similar behavior is also observed for the empirical risk-based classifier in Sec-
tion 3.3, where the performance only depends on the loss function L through the same
three coefficients of the implicit proximal function. However, the performance descrip-
tion in Section 3.3 is more complicated and can only be expressed as the fixed point of a
system of nonlinear equations. RMT analyses allow for direct access to the (asymptotic)
performance of the aforementioned machine learning methods, so long as their solutions

123
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are explicit or implicitly determined by (convex) optimization problems.

Aiming to study the impact of optimization algorithm in convex or non-convex prob-
lems, we considered in Section 4.1 the temporal evolution of a single-layer linear neural
network, learned by the gradient descent method, still under a GMM for the input data.
Despite being a linear classifier, the training and test performance of this linear regres-
sion model is a highly nonlinear function of the training time and involves the sum of
a nonlinear function of all the eigenvalues of the input covariance matrix. Based on the
proposed RMT analysis, both the training and test performance of the model can be fully
characterized in the large n, p limit. This result provides a first precise description of large
network performances when trained with gradient descent and sheds new light on many
common questions in neural networks, such as overfitting, early stopping and the initial-
ization of training, in the large dimensional regime where n, p→ ∞ with p/n→ c > 0.

When the number of hidden layers is more than one, the underlying optimization
problem to train the neural network becomes non-convex and less tractable. In Section 4.2
we took a geometric and, so far, only deterministic approach to understand the conver-
gence properties of simple gradient descent algorithms in this problem. We improved the
existing analysis of the gradient descent dynamics in single-hidden-layer linear neural
networks by considering the corresponding dynamical system. Based on a cornerstone
“invariance” structure in the network weight space, we provided alternative and sim-
pler proofs and removed some unnecessary assumptions from previous contributions to
achieve the “almost sure” convergence to global minima.

5.2 Limitations and Perspectives

Yet, these findings are limited to the simple but seemingly restrictive Gaussian mixture
modeling of the data. In the following, we discuss some possible future research direc-
tions, in the continuation of our preliminary findings.

Universality of RMT results in machine learning applications. As discussed in the
proof of the Marc̆enko-Pastur law in Section 2.2.2, as well as in the “properly scaled”
inner product kernel matrix in Section 3.1.2, by positioning ourselves under the large di-
mensional setting where n, p are both large and comparable, many random matrix-based
analyses, for linear or nonlinear models, lead to universal results, in the sense that they
hold as long as the (original) random matrix Z ∈ Rp×n has i.i.d. zero mean and unit
variance entries, and are independent of the higher order statistics. Since real data gener-
ally do not comply with this stringent i.i.d. assumption, it is of interest to investigate the
limitation of this universality phenomenon in machine learning applications. It is worth
pointing out that the universality has already been observed to collapse in many nonlin-
ear models, for instance in the “improperly scaled” shift-invariant kernel f (‖xi− xj‖2/p)
investigated in [CBG16] where, by considering non-Gaussian Z with a non-zero excess
kurtosis κ = E[Z4

ij]− 3 6= 0, the random variable ψi ≡ ‖ωi‖2 −E[‖ωi‖2] yields a differ-
ent (statistical) behavior, which nonetheless only moderately impacts the performances of
kernel spectral clustering and kernel ridge regression methods. In [LLC18, BP19] where
one considers the Gram matrix σ(WX)Tσ(WX) in a random neural network context, it
has been observed that the higher order moments of the distribution of (the i.i.d. entries
of) the weight matrix W has an important impact on the eigenspectrum of the Gram ma-
trix and consequently on the performance of the resulting neural network model. In this
respect, one may wonder on the possibility to identify machine learning methods that
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are “universal” and depend only on the first several moments of the data distribution
from those that depend on the higher order moments of the data modeling. From a prac-
tical standpoint, it is perhaps of more importance to empirically investigate which tasks
can be sufficiently well fulfilled by only considering the first and second order informa-
tion from the data. For non-universal models, a possible idea is to perform preliminary
studies on the influence of higher order information, starting from a qualitative study,
so as to understand the (systematic) advantage of certain machine learning methods in
some specific (e.g., kurtosis-sensitive) applications to provide theoretical guarantees of
the existing algorithms as well as new insights in designing more efficient techniques.

RMT-based analyses of optimization problems. The random matrix analyses of opti-
mization problems developed in this thesis are twofold:

1. As in Section 3.3, by considering the optimality condition of convex or non-convex
optimization problems (e.g., first- or second-order stationary points condition), RMT
analyses provide statistical descriptions of the local or global optima, which further
lead to a theoretical understanding of the algorithm performance as well as a bet-
ter hyperparameter tuning or “unbiasing” for these methods, as discussed at the
end of Section 3.3. This scheme mainly works for convex (or strongly convex) opti-
mization problems as in Section 3.3, where the uniqueness of the optimal solution
is naturally guaranteed.

2. For non-convex optimization problems as the single-hidden-layer neural networks
studied in Section 4.2, there may exist in general a large or even infinite number of
first or higher order stationary points. In this case, even if one manages to establish
an almost sure global convergence to global minima, the rate of convergence can be
extremely slow due to the presence of (possibly numerous) saddle points [DJL+17].
A wisely chosen initialization (as proposed in Corollary 4.1) within a locally convex
structure helps accelerate the convergence rate, up to linear/exponential. This is
where a RMT analysis may serve practical purposes: by leveraging the random na-
ture of many non-convex optimization problems (e.g., with sensing matrices having
i.i.d. standard Gaussian entries [CP11a] or with random measurement of random
signals in phase retrieval [CC15]), it is possible to propose the following two-step
algorithms:

• initialization, that makes a RMT-based initial guess so as to start the gradient
descent away from any saddle points and within the “local valleys” of local
(and global) minima;

• iterative refinement based on the gradient method, without leaving the initial
valley.

In this case, the convergence rate relies heavily on a proper initialization, that can
be achieved by means of spectral methods, e.g., to initialize with the top eigen-
vectors of a carefully designed matrix, as in the case of phase retrieval, matrix
sensing/completion and many others [CLC18]. In many cases, by considering a
statistical modeling of the problem with repeated and informative patterns, it is
possible to construct a data-dependent (random) matrix M that follows a spiked
model as discussed at length in Section 2.3. The RMT analysis can then be applied
to capture the statistical behavior of the top eigenvectors (that correspond to the
isolated eigenvalues) of M, so as to measure the “distance” between the proposed
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(spectral-based) initialization and the desired global minima. In this regard, RMT
offers not only a powerful initialization scheme by proposing an optimal design for
M, but also a precise description of the conditions under which the proposed ini-
tialization works, by establishing “phase transition” conditions as discussed at the
end of Section 2.3.

As a closing remark, in the regime where n, p, N are all large and comparable, with
N the number of model parameters, many counterintuitive phenomena arise (recall from
Figure 1.5 that for N > n the test error decreases as the ratio N/n increases), for which we
need a deeper theoretical understanding. Indeed, modern machine learning systems are
often highly over-parameterized and it is an everyday occurrence in modern DNNs to have
N > max(n, p). As a consequence, random matrix-based approaches are a promising
tool to investigate these modern over-parameterized learning systems that are of greater
importance today.



Appendix A

Mathematical Proofs

A.1 Proofs in Chapter 3

A.1.1 Intuitive calculus for Theorem 1.2

In this section we consider the empirical spectral measure of the following inner-product
kernel matrix as in (1.13)

Kij =

{
f (xTi xj/

√
p)/
√

p for i 6= j
0 for i = j

for independent random vector xi ∼ N (0, Ip) and in particular, the associated Stieltjes
transform (see Definition 6) given by

m(z) ≡ 1
n

tr Q(z), Q(z) ≡ (K− zIn)
−1 .

Our objective here is to prove that m(z) is the (unique) solution of the following cubic
equation

− 1
m(z)

= z +
a2

1m(z)
c + a1m(z)

+
ν− a2

1
c

m(z)

with a1 = E[ξ f (ξ)] and ν = Var[ f (ξ)] ≥ a2
1 for standard Gaussian ξ ∼ N (0, 1).

Basic settings and notations. Following the ideas of the sample covariance model in
Section 2.2.3, we remove the i-th row and the i-th column of the symmetric matrix K
such that

K =

[
K−i f (XT

−ixi/
√

p)/
√

p
f (xTi X−i/

√
p)/
√

p 0

]
, K−i = f (XT

−iX−i/
√

p)/
√

p ∈ R(n−1)×(n−1)

with zero on the diagonal of K−i and X−i ∈ Rp×(n−1) the data matrix without xi. As such,
we have that K−i is independent of xi. We similarly define the resolvent Q−i of K−i as

Q−i = (K−i − zIn−1)
−1

so that under the above notations, the (i, i)-th (diagonal) entry of Q is given by

Qii =
1

−z− 1
p f (xTi X−i/

√
p)Q−i f (XT

−1xi/
√

p)
(A.1)
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where we recall that the diagonal of both K and K−i contain only zero entries. Since
we are interested in the Stieltjes transform m(z) = 1

n ∑n
i=1 Qii(z), the key object is the

(nonlinear) quadratic form 1
p f (xTi X−i/

√
p)Q−i f (XT

−1xi/
√

p).
To handle the nonlinear random vector f (XT

−ixi/
√

p), we follow [CS13] and perform
the following orthogonal decomposition of xj: for all j 6= i,

xj = αj
xi

‖xi‖
+ x⊥j (A.2)

where xi
‖xi‖ is the unit vector in the direction of xi and x⊥j lies in the (p− 1)-dimensional

subspace orthogonal to xi. By orthogonality between x⊥j and xi we have

xTi xj/
√

p = αj‖xi‖/
√

p⇔ αj =
xTi xj

‖xi‖

for j 6= i. Since xi and xj are independent standard Gaussian vectors, we have, in the large
p limit that xTj xi/

√
p ∼ N (0, 1) and ‖xi‖ '

√
p. Moreover, αj ∼ N (0, 1), x⊥j ∼ N (0, Ip−1)

and both are decorrelated thus independent.
Indeed,

Exj [αix⊥j ] = Exj

[
xTi xj

‖xi‖

(
xj −

xixTi xj

‖xi‖2

)]
= Exj

[
xjxTj xi

‖xi‖

]
−Exj

[
xixTi xjxTj xi

‖xi‖3

]
= 0.

As such, we have for k 6= j, k 6= i that

xTj xk = αjαk + (x⊥j )
Tx⊥k ≡ αjαk + Φ⊥jk (A.3)

where the cross terms disappear again by orthogonality. Note from (A.2) that with high
probability, both xj and x⊥j are of (Euclidean) norm O(

√
p) while αj = O(1), Similarly,

in (A.3), both xTj xk and Φ⊥jk are of order O(
√

p), while αjαk = O(1). In this sense, Φ⊥jk
is asymptotically close to the inner product xTj xk, with only the contribution from xi ex-
cluded and explicitly given by αjαk.

We further denote α−i =
[
α1, . . . , αi−1, αi+1, . . . , αn

]T ∈ Rn−1 and K⊥−i ∈ R(n−1)×(n−1)

with (j, k) entry given by

[K⊥−i]jk ≡ δj 6=k f
(
(x⊥j )

Tx⊥k /
√

p
)

/
√

p = δj 6=k f (Φ⊥jk/
√

p)/
√

p (A.4)

so that f (XT
−ixi/

√
p) ' f (α−i) in the sense that ‖ f (XT

−ixi/
√

p) − f (α−i)‖/
√

p → 0 as
p→ ∞.

It is worth remarking here that, intuitively speaking, the random vector α−i is merely
a standard Gaussian random vector α−i ∼ N (0, In−1) in the large n, p limit in the sense
that its each entry is “asymptotically” Gaussian and uncorrelated with each other.

The advantage of introducing Φ⊥ (as well as K⊥−i) is that α−i is “essentially” asymp-
totically independent of Φ⊥ in the sense that the expectation E[Φ⊥α−i] asymptotically
vanishes. Note that this is in particular not the case for E[K−iα−i] as an instance.

Since the study of K−i boils down to that of K⊥−i, we will need in the remainder its
resolvent

Q⊥−i ≡
(

K⊥−i − zIn−1

)−1

the resolvent of K⊥−i that is therefore also independent of α−i.
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Nonlinear quadratic forms. We first focus on K−i ∈ R(n−1)×(n−1). By (A.3), the (k, l)-
entry of K−i ≡ f (XT

−iX−i/
√

p)/
√

p is given by

[K−i]jk =
1
√

p
f
(

1
√

p
αjαk +

1
√

p
Φ⊥jk

)
where we recall that Φ⊥jk/

√
p = O(1), αjαk/

√
p = O(p−1/2) and they are independent.

As a consequence, with a Taylor expansion of f
(

1√
p αjαk +

1√
p Φ⊥jk

)
around the dominant

Φ⊥jk/
√

p we obtain1

f
(

1
√

p
αjαk +

1
√

p
Φ⊥jk

)
= f

(
1
√

p
Φ⊥jk

)
+ f ′

(
1
√

p
Φ⊥jk

)
1
√

p
αjαk + O(p−1)

so that in matrix form

[K−i]jk =
1
√

p
f
(

1
√

p
αjαk +

1
√

p
Φ⊥jk

)
=

1
√

p
f
(

1
√

p
Φ⊥jk

)
+

1
p

a1αjαk +
1
p

g
(

1
√

p
Φ⊥jk

)
αjαk + O(p−3/2)

= [K⊥−i]jk +
1
p

a1

(
α−iα

T
−i − diag(α2

−i)
)

jk
+

1
p
(diag(α−i)G diag(α−i))jk + O(p−3/2)

where we denote the shortcut g(x) = f ′(x)− a1, for K⊥−i given by (A.4), [α2
−i]j = α2

j and

G ≡ g(Φ⊥/
√

p) ∈ R(n−1)×(n−1).
The linear part a1x of the nonlinear function f (x) is treated separately since, intu-

itively speaking, taking the derivative of f (x) with a0 = 0 (see the last item of Assump-
tion 3), results in E[ f ′(x)] = a1 6= 0. The fact that f ′(x) is not centered (with respect
to the Gaussian measure), together with ‖α−i‖ = O(

√
p), implies that a1

p α−iα
T
−i that has

non-vanishing operator norm as n, p→ ∞. By subtracting a1 from f ′(x), one obtains

[G/
√

p]jk = δj 6=kg
(
(x⊥j )

Tx⊥k /
√

p
)

/
√

p.

Since the (original) kernel matrix K is of bounded operator norm for all f with a0 =
E[ f (ξ)] = 0 and ξ ∼ N (0, 1) (see for a proof in [FM19, Theorem 1.7]), G/

√
p, which

can be seen as another inner-product kernel matrix with centered kernel function g (with
E[g(ξ)] = 0), has asymptotically bounded operator norm.

Further noting that diag(α−i) = O‖·‖(1), diag(α−i) = O‖·‖(1), we conclude that

K−i = K⊥−i +
a1

p
α−iα

T
−i + o‖·‖(1) (A.5)

where o‖·‖(1) denotes a matrix with vanishing operator norm as n, p → ∞. Here we use
the fact that for A, B ∈ Rn×n, we have ‖AB‖ ≤ ‖A‖‖B‖ and ‖A‖ ≤ n‖A‖∞.

We now move on to the quadratic form 1
p f (xTi X−i/

√
p)Q−i f (XT

−1xi/
√

p), for Q−i ≡
(K−i − zIn−1)

−1. As a consequence of (A.5) we deduce

Q−i '
(

K⊥−i +
1
p

a1α−iα
T
−i − zIn−1

)−1

= Q⊥−i −
a1Q⊥−i

1
p α−iα

T
−iQ

⊥
−i

1 + a1
p αT
−iQ

⊥
−iα−i

' Q⊥−i −
a1Q⊥−i

1
p α−iα

T
−iQ

⊥
−i

1 + a1
p tr Q⊥−i

' Q⊥−i −
a1Q⊥−i

1
p α−iα

T
−iQ

⊥
−i

1 + a− 1 n
p m(z)

1Here we consider for the moment f to be a Hermite polynomial, and then extend to square-summable
f with Assumption 3.
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where we recall Q⊥−i ≡
(
K⊥−i − zIn−1

)−1 the resolvent of K⊥−i that is independent of α−i.
Here we use Lemma 2.8 for the equality and Lemma 2.11 for the approximation in the
second line.

With the approximation above and (A.2), the quadratic form of crucial interest can be
expanded as

1
p

f (xTi X−i/
√

p)Q−i f (XT
−1xi/

√
p) ' 1

p
f (α−i)

TQ⊥−i f (α−i)− a1

(
1
p αT
−iQ

⊥
−i f (α−i)

)2

1 + a1
n
p m(z)

' a2
1

p
αT
−iQ

⊥
−iα−i +

1
p

f>1(α−i)Q⊥−i f>1(α−i)− a1

(
a1
p αT
−iQ

⊥
−iα−i

)2

1 + a1
n
p m(z)

where we write the Hermite polynomial f (x) as the sum of its linear part a1x and the
purely nonlinear part f>1(x) = f (x)− a1x that is orthogonal to x in the sense that Eξ [ξ f>1(ξ)] =
0 for ξ ∼ N (0, 1). Again by orthogonality, the cross terms of α−i and f>1(α−i) vanish.
Also, since

1
p

f>1(α−i)Q⊥−i f>1(α−i) ' (ν− a2
1)

n
p

m(z)

one obtains the following approximation for the nonlinear quadratic form of interest

1
p

f (xTi X−i/
√

p)Q−i f (XT
−1xi/

√
p) '

a2
1

n
p m(z)

1 + a1
n
p m(z)

+ (ν− a2
1)

n
p

m(z).

Ultimately with (A.1) one has

m(z) =
1
n

n

∑
i=1

1
−z− 1

p f (xTi X−i/
√

p)Q−i f (XT
−1xi/

√
p)
' 1

−z−
a2
1
c m(z)

1+ a1
c m(z)

− ν−a2
1

c m(z).

which concludes the proof of Theorem 1.2.

A.1.2 Proof of Theorem 3.1

Our interest here is on the decision function of LS-SVM: g(x) = βTk(x) + b with (β, b)
given by β = Q

(
I− 1n1Tn Q

1Tn Q1n

)
y

b = 1Tn Qy
1Tn Q1n

and Q =
(

K + n
γ I
)−1

.
Before going into the detailed proof, as we will frequently deal with random variables

evolving as n, p grow large, we will use the extension of the O(·) notation introduced
in [CBG16]: for a random variable x ≡ xn and un ≥ 0, we write x = O(un) if for any
η > 0 and D > 0, we have nDP(x ≥ nηun) → 0. Note that under Assumption 4 it is
equivalent to use either O(un) or O(up) since n, p scale linearly. In the following we shall
use constantly O(un) for simplicity.

When multidimensional objects are concerned, v = O(un) means the maximum entry
of a vector (or a diagonal matrix) v in absolute value is of order O(un) and M = O(un)
means that the operator norm of M is of order O(un). We refer the reader to [CBG16] for
more discussions on these practical definitions.
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Under the growth rate settings of Assumption 4, from [CBG16], the approximation of
the kernel matrix K is given by

K = −2 f ′(τ)
(

PΩTΩP + A
)
+ βI + O(n−

1
2 )

with β = f (0)− f (τ) + τ f ′(τ) and A = An + A√n + A1, An = − f (τ)
2 f ′(τ)1n1Tn and A√n, A1

given by (A.6) and (A.7) at the top of next page, where we denote

ta ≡
tr(Ca − C◦)
√

p
= O(1), (ψ)2 ≡ [(ψ1)

2, . . . , (ψn)
2]T.

A√n = −1
2

ψ1Tn + 1nψT +

{
ta

1na√
p

}2

a=1
1Tn + 1n

{
tb

1Tnb√
p

}2

b=1

 (A.6)

A1 = −1
2

{
‖µa − µb‖

2 1na 1Tnb

p

}2

a,b=1

−
{
(ΩP)Ta (µb − µa)1

T
nb√

p

}2

a,b=1

+

{
1na(µb − µa)

T(ΩP)b√
p

}2

a,b=1

− f ′′(τ)
4 f ′(τ)

(ψ)21Tn + 1n[(ψ)2]T +

{
t2

a
1na

p

}2

a=1
1Tn + 1n

{
t2
b

1Tnb

p

}2

b=1

+ 2

{
tatb

1na 1Tnb

p

}2

a,b=1

+ 2 diag{taIna}2
a=1ψ

1Tn√
p
+ 2ψ

{
tb

1Tnb√
p

}2

b=1

+ 2
1n√

p
(ψ)T diag{ta1na}2

a=1

+ 2
{

ta
1na√

p

}2

a=1
(ψ)T + 4

{
tr(CaCb)

1na 1Tnb

p2

}2

a,b=1

+ 2ψ(ψ)T

 (A.7)

We start with the resolvent Q. The terms of leading order in K, i.e.,−2 f ′(τ)An and n
γ I

are both of operator norm O(n). Therefore a Taylor expansion can be performed as

Q =

(
K +

n
γ

I
)−1

=
1
n

[
L−1 − 2 f ′(τ)

n

(
A√n + A1 + PΩTΩP

)
+

βI
n

+ O(n−
3
2 )

]−1

=
L
n
+

2 f ′(τ)
n2 LA√nL + L

(
B− β

n2 I
)

L + O(n−
5
2 )

with L =
(

f (τ) 1
n 1n1Tn + I

γ

)−1
of order O(1) and B = 2 f ′(τ)

n2

(
A1 + PΩTΩP + 2 f ′(τ)

n A√nLA√n

)
.

With the Sherman-Morrison formula we are able to compute explicitly L as

L =

(
f (τ)

1
n

1n1Tn +
I
γ

)−1

= γ

(
I− γ f (τ)

1 + γ f (τ)
1
n

1n1Tn

)
=

γ

1 + γ f (τ)
I +

γ2 f (τ)
1 + γ f (τ)

P = O(1). (A.8)

Writing L as a linear combination of I and P is useful when computing L1n or 1Tn L,
because by the definition of P = I− 1

n 1n1Tn , we have 1Tn P = P1n = 0.
We shall start with the term 1Tn Q, since it is the basis of several other terms appearing

in β and b,

1Tn Q =
γ1Tn

1 + γ f (τ)

[
I
n
+

2 f ′(τ)
n2 A√nL +

(
B− β

n2 I
)

L
]
+ O(n−

3
2 )
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since 1Tn L = γ
1+γ f (τ)1Tn .

With 1Tn Q at hand, we next obtain,

1n1Tn Q =
γ

1 + γ f (τ)

[
1n1Tn

n︸ ︷︷ ︸
O(1)

+
2 f ′(τ)

n2 1n1Tn A√nL︸ ︷︷ ︸
O(n−1/2)

+ 1n1Tn

(
B− β

n2 I
)

L︸ ︷︷ ︸
O(n−1)

]
+ O(n−

3
2 ) (A.9)

1Tn Qy =
γ

1 + γ f (τ)

[
c2 − c1︸ ︷︷ ︸

O(1)

+
2 f ′(τ)

n2 1Tn A√nLy︸ ︷︷ ︸
O(n−1/2)

+ 1Tn

(
B− β

n2 I
)

Ly︸ ︷︷ ︸
O(n−1)

]
+ O(n−

3
2 ) (A.10)

1Tn Q1n =
γ

1 + γ f (τ)

[
1︸︷︷︸

O(1)

+
2 f ′(τ)

n2

γ1Tn A√n1n

1 + γ f (τ)︸ ︷︷ ︸
O(n−1/2)

+
γ

1 + γ f (τ)
1Tn

(
B− β

n2 I
)

1n︸ ︷︷ ︸
O(n−1)

]
+O(n−

3
2 ).

(A.11)
The inverse of 1Tn Q1n can consequently be computed using a Taylor expansion around

its leading order, allowing an error term of O(n−
3
2 ) as

1
1Tn Q1n

=
1 + γ f (τ)

γ

[
1︸︷︷︸

O(1)

− 2 f ′(τ)
n2

γ1Tn A√n1n

1 + γ f (τ)︸ ︷︷ ︸
O(n−1/2)

− γ

1 + γ f (τ)
1Tn

(
B− β

n2 I
)

1n︸ ︷︷ ︸
O(n−1)

]
+O(n−

3
2 ).

(A.12)
Combing (A.9) with (A.12) we deduce

1n1Tn Q
1Tn Q1n

=
1
n

1n1Tn︸ ︷︷ ︸
O(1)

+
2 f ′(τ)

n2 1n1Tn A√n

[
L−

γ 1
n 1n1Tn

1 + γ f (τ)

]
︸ ︷︷ ︸

O(n−1/2)

+ 1n1Tn

(
B− β

n2 I
) [

L−
γ 1

n 1n1Tn
1 + γ f (τ)

]
︸ ︷︷ ︸

O(n−1)

+O(n−
3
2 ) (A.13)

and similarly the following approximation of b as

b = c2 − c1︸ ︷︷ ︸
O(1)

− 2γ
√

p
c1c2 f ′(τ)(t2 − t1)︸ ︷︷ ︸

O(n−1/2)

− γ f ′(τ)
n

yTPψ︸ ︷︷ ︸
O(n−1)

−γ f ′′(τ)
2n

yTP(ψ)2 +
4γc1c2

p
[c1T1 + (c2 − c1)D− c2T2]︸ ︷︷ ︸

O(n−1)

+O(n−
3
2 ) (A.14)

where

D =
f ′(τ)

2
‖µ2 − µ1‖

2 +
f ′′(τ)

4
(t1 + t2)

2 + f ′′(τ)
tr C1C2

p

Ta = f ′′(τ)t2
a + f ′′(τ)

tr C1C2

p

which gives the asymptotic approximation of b.
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Moving to β, note from (A.8) that L− γ
1+γ f (τ)

1
n 1n1Tn = γP, and we can thus rewrite:

1n1Tn Q
1Tn Q1n

=
1
n

1n1Tn +
2γ f ′(τ)

n2 1n1Tn A√nP + γ1n1Tn

(
B− β

n2 I
)

P + O(n−
3
2 ).

At this point, for β = Q
(

I− 1n1Tn Q
1Tn Q1n

)
y, we have

β = Q
[

I− 2γ f ′(τ)
n2 1n1Tn A√n − γ1n1Tn

(
B− β

n2 I
) ]

Py + O(n−
5
2 ).

Here again, we use 1Tn L = γ
1+γ f (τ)1Tn and L− γ

1+γ f (τ)
1
n 1n1Tn = γP, to eventually get

β =
γ

n
Py︸︷︷︸

O(n−1)

+ γ2P
(

B− β

n2 I
)

Py︸ ︷︷ ︸
O(n−2)

− γ2

1 + γ f (τ)

(
2 f ′(τ)

n2

)2

LA√n1n1Tn A√nPy︸ ︷︷ ︸
O(n−2)

+O(n−
5
2 ).

(A.15)
Note here the absence of a term of order O(n−3/2) in the expression of β since PA√nP = 0
from (A.6).

We now work on the vector k(x) for a new datum x, following the same analysis as in
[CBG16] for the kernel matrix K, assuming that x ∼ N (µa, Ca) and recalling the random
variables definitions,

ωx ≡ (x− µa)/
√

p

ψx ≡ ‖ωx‖2 −E‖ωx‖2.

We show that the j-th entry of k(x) can be written as

[k(x)]j = f (τ)︸︷︷︸
O(1)

+ f ′(τ)
[

ta + tb√
p

+ ψx + ψj − 2(ωx)
Tωj︸ ︷︷ ︸

O(n−1/2)

+
‖µb − µa‖2

p
+

2
√

p
(µb − µa)

T(ωj −ωx)︸ ︷︷ ︸
O(n−1)

]

+
f ′′(τ)

2

[ (
ta + tb√

p
+ ψj + ψx

)2

+
4
p2 tr CaCb︸ ︷︷ ︸

O(n−1)

]
+ O(n−

3
2 ). (A.16)

Combining (A.15) and (A.16), we deduce

βTk(x) =
2γ
√

p
c1c2 f ′(τ)(t2 − t1)︸ ︷︷ ︸

O(n−1/2)

+
γ

n
yTPk̃(x)︸ ︷︷ ︸
O(n−1)

+
γ f ′(τ)

n
yTP(ψ− 2PΩTωx)︸ ︷︷ ︸

O(n−1)

+O(n−
3
2 )

(A.17)
with k̃(x) given as follows.
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k̃(x) = f ′(τ)
{‖µb − µa‖2

p
1nb

}2

b=1
− 2 f ′(τ)
√

p

{
1nb(µb − µa)

T
}2

b=1
ωx

+
2 f ′(τ)
√

p
diag

({
1nb(µb − µa)

T
}2

b=1
Ω

)
+

f ′′(τ)
2

{
(ta + tb)

2

p
1nb

}2

b=1

+
f ′′(τ)

2

[
2 diag

({
ta + tb√

p
1nb

}2

b=1

)
ψ + 2

{
ta + tb√

p
1nb

}2

b=1
ψx + (ψ)2 + 2ψxψ + ψ2

x1n

+

{
4
p2 tr(CaCb)1nb

}2

b=1

]
(A.18)

At this point, note that the term of order O(n−
1
2 ) in the final object g(x) = βTk(x) + b

disappears because in both (A.14) and (A.17) the term of order O(n−1/2) is 2γ√
p c1c2 f ′(τ)(t2−

t1) but of opposite signs. Also, we see that the leading term c2 − c1 in b will remain in
g(x) as stated in Remark 3.1.

The development of yTPk̃(x) induces many simplifications, since i) P1n = 0 and ii)
random variables as ωx and ψ in k̃(x), once multiplied by yTP, thanks to probabilistic
averaging of independent zero-mean terms, are of smaller order and thus become negli-
gible. We thus get

γ

n
yTPk̃(x) = 2γc1c2 f ′(τ)

[‖µ2 − µa‖2 − ‖µ1 − µa‖2

p
− 2(ωx)

T µ2 − µ1√
p

]
+

γ f ′′(τ)
2n

yTP(ψ)2

+ γc1c2 f ′′(τ)
[

2
(

ta√
p
+ ψx

)
t2 − t1√

p
+

t2
2 − t2

1
p

+
4
p2 tr Ca(C2 − C1)

]
+ O(n−

3
2 ). (A.19)

This result, together with (A.17), completes the analysis of the term βTk(x). Combin-
ing (A.17)-(A.19) with (A.14) we conclude the proof of Theorem 3.1.

A.1.3 Proof of Theorem 3.2

This section is dedicated to the proof of the central limit theorem for

g̃(x) = c2 − c1 + γ (R+ cxD)

with the shortcut cx = −2c1c2
2 for x ∈ C1 and cx = 2c2

1c2 for x ∈ C2, and R,D as defined
in (3.8) and (3.9).

Our objective is to show that, for a ∈ {1, 2}, n(g̃(x)− Ga)→ 0 in distribution with

Ga ∼ N (Ḡa, VGa)

where Ḡa and VGa are given in Theorem 3.2. We recall that x = µa +
√

pωx with ωx ∼
N (0, Ca/p).

Letting zx such that ωx = C1/2
a zx/

√
p, we have zx ∼ N (0, I) and we can rewrite g̃(x)

in the following quadratic form (of zx) as

g̃(x) = zTx Azx + zTx b + c
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with

A = 2γc1c2 f ′′(τ)
tr(C2 − C1)

p
Ca

p

b = −2γ f ′(τ)
n

(Ca)
1
2

√
p

ΩPy− 4c1c2γ f ′(τ)
√

p
(Ca)

1
2

√
p

(µ2 − µ1)

c = c2 − c1 + γcxD− 2γc1c2 f ′′(τ)
tr(C2 − C1)

p
tr Ca

p
.

Since zx is standard Gaussian and has the same distribution as Uzx for any orthogonal
matrix U (i.e., such that UTU = UUT = I), we choose U that diagonalizes A such that
A = UΛUT, with Λ diagonal so that g̃(x) and g̃(x) have the same distribution where

g̃(x) = zTx Λzx + zTx b̃ + c =
n

∑
i=1

(
z2

i λi + zi b̃i +
c
n

)
and b̃ = UTb, λi the diagonal elements of Λ and zi the elements of zx.

Conditioning on Ω, this results in the sum of independent but not identically dis-
tributed random variables ri = z2

i λi + zi b̃i +
c
n . We then resort to the Lyapunov CLT

[Bil12, Theorem 27.3].
We begin by estimating the expectation and the variance

E[ri|Ω] = λi +
c
n

Var[ri|Ω] = σ2
i = 2λ2

i + b̃2
i

of ri, so that
n

∑
i=1

E[ri|Ω] = c2 − c1 + γcxD = Ḡa

s2
n =

n

∑
i=1

σ2
i = 2 tr(A2) + bTb

= 8γ2c2
1c2

2
(

f ′′(τ)
)2 (tr (C2 − C1))

2

p2
tr C2

a
p2

+ 4γ2
(

f ′(τ)
n

)2

yTPΩT Ca

p
ΩPy +

16γ2c2
1c2

2( f ′(τ))2

p
(µ2 − µ1)

T Ca

p
(µ2 − µ1) + O(n−

5
2 ).

We shall rewrite Ω into two blocks as:

Ω =

[
(C1)

1
2√

p Z1, (C2)
1
2√

p Z2

]
where Z1 ∈ Rp×n1 and Z2 ∈ Rp×n2 with i.i.d. Gaussian entries with zero mean and unit
variance. Then

ΩT Ca

p
Ω =

1
p2

[
ZT

1 (C1)
1
2 Ca(C1)

1
2 Z1 ZT

1 (C1)
1
2 Ca(C2)

1
2 Z2

ZT
2 (C2)

1
2 Ca(C1)

1
2 Z1 ZT

2 (C2)
1
2 Ca(C2)

1
2 Z2

]
and with Py = y− (c2 − c1)1n, we deduce

yTPΩT Ca

p
ΩPy =

4
p2

(
c2

21Tn1
ZT

1 (C1)
1
2 Ca(C1)

1
2 bZ11n1

−2c1c21Tn1
ZT

1 (C1)
1
2 Ca(C2)

1
2 Z21n2 + c2

21Tn1
ZT

2 (C2)
1
2 Ca(C2)

1
2 Z21n2

)
.
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Since Zi1ni ∼ N (0, niIni), by applying the trace lemma (Lemma 2.11), we get

yTPΩT Ca

p
ΩPy− 4nc2

1c2
2

p2

(
tr C1Ca

c1
+

tr C2Ca

c2

)
a.s.−→0. (A.20)

Consider now the events

E =

{∣∣∣∣yTPΩT Ca

p
ΩPy− ρ

∣∣∣∣ < ε

}
Ē =

{∣∣∣∣yTPΩT Ca

p
ΩPy− ρ

∣∣∣∣ > ε

}

for any fixed ε with ρ =
4nc2

1c2
2

p2

(
tr C1Ca

c1
+ tr C2Ca

c2

)
and write

E

[
exp

(
iun

g̃(x)− Ḡa

sn

)]
= E

[
exp

(
iun

g̃(x)− Ḡa

sn

) ∣∣∣∣E] P(E)

+ E

[
exp

(
iun

g̃(x)− Ḡa

sn

) ∣∣∣∣Ē] P(Ē) (A.21)

We start with the variable g̃(x)|E and check that Lyapunov’s condition for r̄i = ri −
E[ri],

lim
n→∞

1
s4

n

n

∑
i=1

E[|r̄i|4] = lim
n→∞

n

∑
i=1

60λ4
i + 12λ2

i b̃i
2
+ 3b̃i

4

s4
n

= 0

since both λi and b̃i are of order O(n−3/2).
As a consequence, we have the CLT for the random variable g̃(x)|E. Thus

E

[
exp

(
iun

g̃(x)− Ḡa

sn

) ∣∣∣∣E]→ exp(−u2/2).

Next, we see that the second term in (A.21) goes to zero because
∣∣E[ exp

(
iun g̃(x)−Ḡa

sn

) ∣∣Ē]∣∣ ≤
1 and P(Ē)→ 0 from (A.20). We eventually deduce

E

[
exp

(
iun

g̃(x)− Ḡa

sn

)]
→ exp(−u2/2).

With the help of Lévy’s continuity theorem, we thus prove the CLT of the variable
n g̃(x)−Ḡa

sn
. Since s2

n → VGa , with Slutsky’s theorem, we have the CLT for n g̃(x)−Ḡa√
VGa

and

eventually for n g(x)−Ḡa√
VGa

by Theorem 3.1 which completes the proof.

A.1.4 Proof of Proposition 3.2

We aim to prove, for f (x) = xk with k ≥ 2, the informative kernel matrix KI in Proposi-
tion 3.2 defined as

KI =
k
√

p
(ZTZ/

√
p)◦(k−1) ◦ (A + B) +

k(k− 1)
2
√

p
(ZTZ/

√
p)◦(k−2) ◦ (A)◦2 (A.22)
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for Aij ≡ δi 6=j
zTi (Ea+Eb)zj

2
√

p and Bij ≡ δi 6=j
µT

a µb+µT
a zj+µT

b zi√
p − zTi (Ea−Eb)

2zj
8
√

p , has a tractable low-

rank approximation K̃ given by

K̃I =

{
k!!
p (JMTMJT + JMTZ + ZTMJT), for k odd;

k(k−1)!!
2p J (T + S) JT, for k even.

(A.23)

Define by L the matrix with Lij ≡ [ 1
p (JMTMJT + JMTZ + ZTMJT)]ij for i 6= j and

Lii = 0. Then KI can be written as

KI = k(ZTZ/
√

p)◦(k−1) ◦ L + Φ,

Φij ≡
k
p
(zTi zj/

√
p)k−1zTi

(
1
2
(Ea + Eb)−

1
8
(Ea − Eb)

2
)

zj

+
k(k− 1)

8p
(zTi zj/

√
p)k−2 1

√
p
(zTi (Ea + Eb)zj)

2

for i 6= j and Φii = 0. With this expression, the proof of Proposition 3.2 can be divided
into three steps.

I. Concentration of Φ. We first show that ‖Φ−E[Φ]‖ → 0 almost surely, as n, p → ∞.
This follows from the observation that Φ is a p−1/4 rescaling (since ‖Ea‖ = O(p−1/4)) of
the null model KN , which concentrates around its expectation in the sense that ‖KN −
E[KN ]‖ = O(1) for E[KN ] = O(

√
p) if a0 6= 0 (see Remark 3.6). Indeed, it is shown

in [FM19, Theorem 1.7] that, the leading eigenvalue of order O(
√

p) discarded (arising
from E[KN ]), KN is of bounded operator norm for all large n, p with probability one;
this, together with the fact that ‖E[Φ]‖ = O(1) that will be shown subsequently (and
independently), allows us to conclude that ‖Φ−E[Φ]‖ → 0 as n, p→ ∞.

II.I Computation of E[Φ]: Gaussian case. Recall that the entries of Φ are the sum of
random variables of the type

φ =
C
√

p
(xTy/

√
p)α(xTFy)β

for independent random vectors x, y ∼ N (0, Ip) in the Gaussian case. As such, we resort
to computing, as in [Wil97, LLC18] (or Section A.1.6), the integral

Ez[(zTa)k1(zTb)k2 ] = (2π)−p/2
∫

Rp
(zTa)k1(zTb)k2 e−‖z‖

2/2dz

=
1

2π

∫
R2
(z̃1 ã1)

k1(z̃1b̃1 + z̃2b̃2)
k2 e−(z̃

2
1+z̃2

2)/2dz̃1dz̃2 =
1

2π

∫
R2
(z̃Tã)k1(z̃Tb̃)k2 e−‖z̃‖

2/2dz̃

where we apply the Gram-Schmidt procedure to project z onto the two-dimensional

space2 spanned by a, b with ã1 = ‖a‖, b̃1 = aTb
‖a‖ , b̃2 =

√
‖b‖2 − (aTb)2

‖a‖2 and denote

2By assuming first that a, b are linearly independent before extending by continuity to a, b proportional.
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z̃ = [z̃1; z̃2], ã = [ã1; 0] and b̃ = [b̃1; b̃2]. As a consequence, we obtain, for k even,

E
[
(zTi zj/

√
p)k
]
= E[ξk] = (k− 1)!!;

Ezi

[
(zTi zj/

√
p)k(zTi b)

]
= Ezi

[
(zTi zj/

√
p)k−1(zTi b)2

]
= 0;

Ezi

[
(zTi zj/

√
p)k−1(zTi b)

]
= (k− 1)!!(‖zj‖/

√
p)k−2(zTj b)/

√
p;

Ezi

[
(zTi zj/

√
p)k(zTi b)2

]
= (k− 1)!!

(
k(‖zj‖/

√
p)k−2(zTj b/

√
p)2 + (‖zj‖/

√
p)k‖b‖2

)
;

where k!! is the double factorial of an integral k defined by k!! = k(k− 2)(k− 4) · · ·. This
further leads, in the Gaussian case, to the expression of K̃I in Proposition 3.2.

II.II Computation of E[Φ]: beyond the Gaussian case. We then show that, for random
vectors z with zero mean, unit variance and bounded moments entries, the expression
of E[Φ] coincides with the Gaussian case. To this end, recall that the entries of Φ are the
sum of random variables of the type

φ =
C
√

p
(xTy/

√
p)α(xTFy)β

for independent random vectors x, y ∈ Rp with i.i.d. zero mean, unit variance and finite
moments (uniformly on p) entries, deterministic F ∈ Rp×p, C ∈ R, α ∈N and β ∈ {1, 2}.
Let us start with the case β = 1 and expand φ as

φ =
C
√

p

(
1
√

p

p

∑
i1=1

xi1 yi1

)
. . .

(
1
√

p

p

∑
iα=1

xiα
yiα

)(
p

∑
j1,j2=1

Fj1,j2 xj1 yj2

)
(A.24)

with xi and yi the i-th entry of x and y, respectively, so that i) xi is independent of yj for
all i, j and ii) xi is independent of xj for i 6= j with E[xi] = 0, E[x2

i ] = 1 and E[|xi|k] ≤ Ck
for some Ck independent of p (and similarly for y).

At this point, note that to ensure E[KI ] has non-vanishing operator norm as n, p→ ∞,
we need E[φ] ≥ O(p−1) since ‖A‖ ≤ p‖A‖∞ for A ∈ Rp×p. Also, note that (as β = 1),
all terms in the sum ∑

p
j1,j2=1 Fj1,j2 xj1 yj2 with j1 6= j2 must be zero since in other terms

xi always appears together with yi, so that all terms with j1 6= j2 give rise to zero in
expectation. Hence, the p2 terms of the sum only contain p nonzero terms in expectation
(those with j1 = j2). The arbitrary (absolute) moments of x and y being finite, the first
αp terms must be divided into dαe/2 groups of size two (containing O(p) terms) so that,
with the normalization by p−1 for each group of size two, the associated expectation does
not vanish. We thus discuss the following two cases:

1. α even: the α terms in the sum form α/2 groups with different indices each and also
different from j1 = j2. Therefore we have Exj [φ] = 0.

2. α odd: the α terms in the sum form (α − 1)/2 groups with indices different from
each other and the remaining one goes with the last term containing F and one has
E[φ] = Cα!!

p tr(F) by a combinatorial argument.

The case β = 2 follows exactly the same line of arguments except that j1 may not equal j2
to give rise to non-vanishing terms.
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III. Concentration of Hadamard product. It now remains to treat k(ZTZ/
√

p)◦(k−1) ◦ L
and show it also has an asymptotically deterministic behavior (as Φ). It can be shown
that

‖N ◦ L‖ → 0, n, p→ ∞

with N = (ZTZ/
√

p)�(k−1) − (k − 2)!!1n1Tn for k odd and N = (ZTZ/
√

p)�(k−1) for k
even.

To prove this, note that, depending on the parameter a0 = E[ f (ξ)], the operator norm
of f (ZTZ/

√
p)/
√

p is either of order O(
√

p) for a0 6= 0 or O(1) for a0 = 0. In particular,
for monomials f (x) = xk under study here, we have a0 = E[ξk] = 0 for k odd and
a0 = E[ξk] = (k− 1)!! 6= 0 for k even, ξ ∼ N (0, 1). To control the operator norm of the
Hadamard product between matrices, we introduce the following lemma.

Lemma A.1. For A, B ∈ Rp×p, we have ‖A ◦ B‖ ≤ √p‖A‖∞‖B‖.

Proof of Lemma A.1. Let e1, . . . , ep be the canonical basis vectors of Rp, then for all 1 ≤ i ≤
p,

‖(A ◦ B)ei‖ ≤ max
i,j
|Aij|‖Bei‖ = ‖A‖∞‖Bei‖ ≤ ‖A‖∞‖B‖.

As a consequence, for any v = ∑
p
i=1 viei, we obtain

‖(A ◦ B)v‖ ≤
p

∑
i=1
|vi|‖(A ◦ B)ei‖ ≤

p

∑
i=1
|vi|‖A‖∞‖B‖

which, by Cauchy-Schwarz inequality further yields ∑
p
i=1 |vi| ≤

√
p‖v‖. This concludes

the proof of Lemma A.1.

Lemma A.1 tells us that the Hadamard product between a matrix with o(p−1/2) entry
and a matrix with bounded operator norm is of vanishing operator norm, as p → ∞. As
such, since ‖N‖ = O(1) and L has O(p−1) entries, we have ‖N ◦ L‖ → 0. This concludes
the proof of Proposition 3.2.

A.1.5 Proof of Theorem 3.5

We aim to prove Theorem 3.5, which states that the resolvent Q(z) ≡
( 1

n σ(WX)Tσ(WX)− zIn
)−1

admits the following deterministic equivalent (see Definition 7)

Q̄(z) ≡ (Ǩ− zIn)
−1, Ǩ ≡ N

n
K

1 + δ
, K ≡ Ew[σ(XTw)σ(wTX)]

with δ the unique solution of δ = 1
n tr(KQ̄).

The proof of Theorem 3.5 generally follows that of the Marc̆enko-Pastur law in Sec-
tion 2.2.2. We provide only the main steps as follows.

Denote the random (column) vector σi ≡ σ(XTwi) ∈ Rn for ‖X‖ = O(1) and w the
i-th row of W such that w ∼ N (0, Ip). By rewriting 1

n ΣTΣ as

ΣT =
[
σ1, . . . , σN

]
,

1
n

ΣTΣ =
1
n

N

∑
i=1

σiσ
T
i

we obtain, from the resolvent identity (Lemma 2.1) that

E[Q]− Q̄ = E

[
Q
(

N
n

K
1 + δ

− 1
n

ΣTΣ

)]
Q̄ = E[Q]

N
n

K
1 + δ

Q̄−E

[
Q

1
n

N

∑
i=1

σiσ
T
i

]
Q̄.
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Working on the expectation inside the second term, we further get, with Sherman-
Morrison identity (Lemma 2.8), that

N

∑
i=1

E

[
Q

1
n

σiσ
T
i

]
=

N

∑
i=1

E

[
Q−i

1
n σiσ

T
i

1 + 1
n σT

i Q−iσi

]

=
N

∑
i=1

E

[
Q−i

1
n σiσ

T
i

1 + 1
n tr(KQ−i)

]
+

N

∑
i=1

E

[
Q−i

1
n σiσ

T
i
( 1

n tr(KQ−i)− 1
n σT

i Q−iσi
)(

1 + 1
n tr(KQ−i)

) (
1 + 1

n σT
i Q−iσi

) ]

where we denote Q−i ≡
(

1
n ∑j 6=i σ jσ

T
j + λIn

)−1
the resolvent of 1

n ΣTΣ − 1
n σiσ

T
i . Intu-

itively, the second expectation above should asymptotically vanish, as a result of Lemma 3.3.
To show this, let us rewrite again with Sherman-Morrison identity (Lemma 2.8)

N

∑
i=1

Q−i
1
n σiσ

T
i
( 1

n tr(KQ−i)− 1
n σT

i Q−iσi
)(

1 + 1
n tr(KQ−i)

) (
1 + 1

n σT
i Q−iσi

) =
N

∑
i=1

Q 1
n σiσ

T
i
( 1

n tr(KQ−i)− 1
n σT

i Q−iσi
)

1 + 1
n tr(KQ−i)

=
N

∑
i=1

Q 1
n ΣTDΣ

1 + 1
n tr(KQ−i)

where we denote D the diagonal matrix with its i-th entry equal to 1
n tr(KQ−i)− 1

n σT
i Q−iσi.

Then with the bounds ‖QΣTΣ/n‖ = O(1), ‖Q−i‖ = O(1) and ‖D‖ = O(n−1/2) from
Lemma 3.3, imply that the matrix has asymptotically vanishing operator norm. This
gives

E[Q]− Q̄ = E[Q]
N
n

K
1 + δ

Q̄−
N

∑
i=1

E

[
Q−i

1
n σiσ

T
i

1 + 1
n tr(KQ−i)

]
Q̄ + o(1)

= E[Q]
N
n

K
1 + δ

Q̄− 1
n

N

∑
i=1

E

[
Q−i

1 + 1
n tr(KQ−i)

]
KQ̄ + o(1).

Following similar arguments as above, we have, from the rank one update Q−Q−i =
− 1

n Qσiσ
T
i Q−i and ‖KQ̄‖ = O(1) that

‖E[Q]− Q̄‖ → 0

as n, p, N → ∞.

A.1.6 Computation details for Table 3.3

Here we only provide the case of the popular ReLU nonlinearity σ(t) = ReLU(t) ≡
max(t, 0). Other functions σ(·) in Table 3.3 can be treated similarly.

We first write the expectation as an integral on Rp, which is then reduced to an inte-
gral on R2 with the classical Gram-Schmidt process:

K(a, b) = Ew[σ(wTa)σ(wTb)] = (2π)−
p
2

∫
Rp

σ(wTa)σ(wTb)e−
1
2 ‖w‖2

d w

=
1

2π

∫
R

∫
R

σ(w̃1 ã1)σ(w̃1b̃1 + w̃2b̃2)e−
1
2 (w̃

2
1+w̃2

2)d w̃1d w̃2

=
1

2π

∫
R2

σ(w̃Tã)σ(w̃Tb̃)e−
1
2 ‖w̃‖2

d w̃

=
1

2π

∫
min(w̃T ã,w̃Tb̃)≥0

w̃Tã · w̃Tb̃ · e− 1
2 ‖w̃‖2

d w̃
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where ã1 = ‖a‖, b̃1 = aTb
‖a‖ , b̃2 = ‖b‖

√
1− (aTb)2

‖a‖2‖b‖2 and we denote w̃ = [w̃1, w̃2]T, ã =

[ã1, 0]T and b̃ = [b̃1, b̃2]T.
With a simple geometric representation we observe

{w̃ | min(w̃Tã, w̃Tb̃) ≥ 0} =
{

r cos(θ) + r sin(θ) | r ≥ 0, θ ∈
[
θ0 −

π

2
,

π

2

]}
with θ0 ≡ arccos

(
b̃1
‖b‖

)
= π

2 − arcsin
(

b̃1
‖b‖

)
. Therefore with a polar coordinate change of

variable we deduce, for σ(t) = ReLU(t), that

K(a, b) = ã1
1

2π

∫ π
2

θ0− π
2

cos(θ)
(
b̃1 cos(θ) + b̃2 sin(θ)

)
d θ

∫
R+

r3e−
1
2 r2

d r

=
1

2π
‖a‖‖b‖

(√
1−∠(a, b)2 +∠(a, b) arccos (−∠(a, b))

)
with ∠(a, b) ≡ aTb

‖a‖‖b‖ as Table 3.3.

A.2 Proofs in Chapter 4

A.2.1 Proofs of Theorem 4.1 and 4.2

We start with the proof of Theorem 4.1 which characterizes the (asymptotic) test perfor-
mance of the classifier w(t) given by

w(t) = e−
αt
n XXT

w0 +
(

Ip − e−
αt
n XXT

)
wLS

on an unseen test datum x̂ ∼ N (µ, Ip). To this end, we shall evaluate subsequently the
random variable w(t)Tµ and ‖w(t)‖2 as below.

Since

µTw(t) = µTe−
αt
n X̃X̃T

w0 + µT
(

Ip − e−
αt
n X̃X̃T

)
wLS

= − 1
2πi

∮
γ

ft(z)µT

(
1
n

X̃X̃T − zIp

)−1

w0 dz− 1
2πi

∮
γ

1− ft(z)
z

µT

(
1
n

X̃X̃T − zIp

)−1 1
n

X̃1n dz

with 1
n X̃X̃T = 1

n ZZT +
[
µ 1

n Z1n
] [1 1

1 0

] [
µT

1
n 1Tn ZT

]
, we have

(
1
n

X̃X̃T − zIp

)−1

= Q(z)

−Q(z)
[
µ 1

n Z1n
] [µTQ(z)µ 1 + 1

n µTQ(z)Z1n
∗ −1 + 1

n 1Tn ZTQ(z) 1
n Z1n

]−1 [
µT

1
n 1Tn ZT

]
Q(z).

We thus resort to the computation of the bilinear form aTQ(z)b. By plugging in the
deterministic equivalent of Q(z)↔ Q̄(z) = m(z)Ip we obtain the following estimations

µTQ(z)µ ' ‖µ‖2m(z)
1
n

µTQ(z)Z1n ' 0

1
n2 1Tn ZTQ(z)Z1n '

1
n2 1Tn Q̃(z)ZTZ1n =

1
n

1Tn Q̃(z)
(

1
n

ZTZ− zIn + zIn

)
1n

= 1 + z
1
n

1Tn Q̃(z)1n = 1 + z
1
n

tr Q̃(z) ' 1 + zm̃(z)
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with the co-resolvent Q̃(z) =
( 1

n ZTZ− zIn
)−1

such that Q̃(z) ↔ m̃(z)In with m̃(z) given
by

cm(z) = m̃(z) +
1
z
(1− c)

for m(z) the unique solution of the Marčenko–Pastur equation (4.1). The above relation is
a direct consequence of the fact that ZTZ and ZZT have the same eigenvalues, except for
the additional zeros eigenvalues for the larger matrix.

We thus get(
1
n

X̃X̃T − zIp

)−1

' Q(z)−Q(z)
[
µ 1

n Z1n
] [‖µ‖2m(z) 1

1 zm̃(z)

]−1 [
µT

1
n 1Tn ZT

]
Q(z)

' Q(z)− Q(z)
z‖µ‖2m(z)m̃(z)− 1

[
µ 1

n Z1n
] [zm̃(z) −1
−1 ‖µ‖2m(z)

] [
µT

1
n 1Tn ZT

]
Q(z)

and the term µT
( 1

n X̃X̃T − zIp
)−1 1

n X̃1n is consequently given by

µT

(
1
n

X̃X̃T − zIp

)−1 1
n

X̃1n ' ‖µ‖2m(z)−
[
‖µ‖2m(z) 0

]
z‖µ‖2m(z)m̃(z)− 1

[
zm̃(z) −1
−1 ‖µ‖2m(z)

] [
‖µ‖2m(z)
1 + zm̃(z)

]
' ‖µ‖2m(z)zm̃(z)
‖µ‖2m(z)zm̃(z)− 1

' ‖µ‖2(zm(z) + 1)
1 + ‖µ‖2(zm(z) + 1)

' ‖µ‖2m(z)
(‖µ‖2 + c)m(z) + 1

where we use the relations m̃(z) = cm(z)− 1
z (1− c) and (zm(z) + 1)(cm(z) + 1) = m(z)

from (4.1), while the term µT
( 1

n X̃X̃T − zIp
)−1

w0 = O(n−1/2) due to the independence of
w0 with respect to Z.

Following the same arguments, we have

‖w(t)‖2 = − 1
2πi

∮
γ

f 2
t (z)w0

(
1
n

X̃X̃T − zIp

)−1

w0 dz

− 1
πi

∮
γ

ft(z)(1− ft(z))
z

w0

(
1
n

X̃X̃T − zIp

)−1 1
n

X̃1n dz

− 1
2πi

∮
γ

(1− ft(z))2

z2
1
n

1Tn X̃T

(
1
n

X̃X̃T − zIp

)−1 1
n

X̃1n dz

together with

w0

(
1
n

X̃X̃T − zIp

)−1

w0 ' σ2m(z)

w0

(
1
n

X̃X̃T − zIp

)−1 1
n

X̃yT ' 0

1
n

1Tn X̃T

(
1
n

X̃X̃T − zIp

)−1 1
n

X̃1n ' 1− 1
(‖µ‖2 + c)m(z) + 1

.

We now wish to replace the terms in µTw(t) and w(t)Tw(t) by their asymptotic ap-
proximations to reach an almost sure convergence of the right-hand side contour integra-
tion. Note that, both µTw(t) and w(t)Tw(t) are functionals of the resolvent

( 1
n XXT − zIp

)−1

that is only well defined for z not an eigenvalue of 1
n XXT. More generally, the aforemen-

tioned approximations can be summarized by the fact that, for a generic analytic h(z),
we have, as n→ ∞,

h(z)− h̄(z)→ 0
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almost surely for all z not an eigenvalue of 1
n XXT. To reach a convergence result for∮

γ h(z)dz −
∮

γ h̄(z)dz → 0, we first show that there exists a probability one set Ωz on
which h(z) is uniformly bounded for all large n, with a bound independent of z. Then by
the “no eigenvalues outside the support” theorem (see for example [PS09]) we know that,
with probability one, for all n, p large, no eigenvalue of 1

n ZZT appears outside the interval
[(1−

√
c)2, (1 +

√
c)2]. As such, the intersection set Ω = ∩zi Ωzi for a finitely many zi, is

still a probability one set. Finally by Lebesgue’s dominant convergence theorem [Bil12],
together with the analyticity of the function under consideration, we conclude the proof
of Theorem 4.1. The proof of Theorem 4.2 follows exactly the same line of arguments and
is thus omitted here.

A.2.2 Detailed Derivation of (4.3)-(4.6)

Our objective here is to further simplify the contour integrations obtained above, by care-
fully choosing the path γ. First note that, 1

n X̃X̃T, as a low rank perturbation of 1
n ZZT such

that

1
n

X̃X̃T =
1
n

ZZT +
[
µ 1

n Z1n
] [1 1

1 0

] [
µT

1
n 1Tn ZT

]

may have (asymptotically) one isolated eigenvalue that jumps out the support of the
(limiting) Marčenko–Pastur distribution.

γb γs

ε

ε ε

<(z)

=(z) Eigenvalues of 1
n XXT

Integration path γ

Figure A.1: Eigenvalue distribution of 1
n XXT for µ = [1.5; 0p−1], p = 512, n = 1 024 and

c1 = c2 = 1/2.

We first determine the location of the isolated eigenvalue λ. More concretely, we wish
to find λ an eigenvalue of 1

n XXT that lies outside the support of the Marčenko–Pastur
distribution (more precisely, not an eigenvalue of 1

n ZZT). Solving the following equation
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for λ ∈ R,

det
(

1
n

XXT − λIp

)
= 0

⇔ det
(

1
n

ZZT − λIp +
[
µ 1

n Z1n
] [1 1

1 0

] [
µT

1
n 1Tn ZT

])
= 0

⇔ det
(

1
n

ZZT − λIp

)
det

(
Ip + Q(λ)

[
µ 1

n Z1n
] [1 1

1 0

] [
µT

1
n 1Tn ZT

])
= 0

⇔ det
(

I2 +

[
1 1
1 0

] [
µT

1
n 1Tn ZT

]
Q(λ)

[
µ 1

n Z1n
])
' 0

⇔ det
[
‖µ‖2m(λ) + 1 1 + zm̃(λ)
‖µ‖2m(λ) 1

]
' 0

⇔ 1 + (‖µ‖2 + c)m(λ) ' 0

where we recall that Q(λ) ≡
( 1

n ZZT − λIp
)−1

and we used the fact that det(AB) =
det(A)det(B) as well as the Sylvester’s determinant identity det(Ip + AB) = det(In +
BA) for A, B of appropriate dimensions (Lemma 2.3). Together with (4.1) we deduce the
(empirical) isolated eigenvalue λ = λs + o(1) with

λs = c + 1 + ‖µ‖2 +
c
‖µ‖2

which gives the asymptotic location of the isolated eigenvalue as n → ∞. In the fol-
lowing, we may thus use λs instead of λ throughout the computation. By splitting
the path γ into γb + γs that circles respectively around the main bulk between [λ− ≡
(1−

√
c)2, λ+ ≡ (1 +

√
c)2] and the isolated eigenvalue λs, we deduce, with the residual

theorem that E = Eγb + Eγs where

Eγs = −
1

2πi

∮
γs

1− ft(z)
z

‖µ‖2m(z)
1 + (‖µ‖2 + c)m(z)

dz = −Res
1− ft(z)

z
‖µ‖2m(z)

1 + (‖µ‖2 + c)m(z)

= − lim
z→λs

(z− λs)
1− ft(z)

z
‖µ‖2m(z)

1 + (‖µ‖2 + c)m(z)
= −1− ft(λs)

λs

‖µ‖2m(λs)

(‖µ‖2 + c)m′(λs)

= − ‖µ‖2

‖µ‖2 + c
1− ft(λs)

λs

1− c− λs − 2cλsm(λs)

cm(λs) + 1
=

(
‖µ‖2 − c

‖µ‖2

)
1− ft(λs)

λs
(A.25)

with m′(z) the derivative of m(z) with respect to z and is obtained by taking the deriva-
tive of (4.1).

We now move on to the contour integration γb in the computation of Eγb . We fol-
low the idea in [BS08] and choose γb to be a rectangle with sides parallel to the axes,
intersecting the real axis at 0 and λ+ (in fact at −ε and λ+ + ε so that the functions under
consideration remain analytic) and the horizontal sides being a distance ε→ 0 away from
the real axis. Since for nonzero x ∈ R, the limit limz∈Z→x m(z) ≡ m̌(x) exists [SC95] and
is given by

m̌(x) =
1− c− x

2cx
± i

2cx

√
4cx− (1− c− x)2 =

1− c− x
2cx

± i
2cx

√
(x− λ−)(λ+ − x)

with the branch of± is determined by the imaginary part of z such that=(z) · =m(z) > 0.
For simplicity we denote

<m̌ =
1− c− x

2cx
, =m̌ =

1
2cx

√
(x− λ−)(λ+ − x)
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and therefore

Eγb = −
1

2πi

∮
γb

1− ft(z)
z

‖µ‖2m(z)
1 + (‖µ‖2 + c)m(z)

dz

= −‖µ‖
2

πi

∫ λ+

λ−

1− ft(x)
x

=
[

<m̌− i=m̌
1 + (‖µ‖2 + c)(<m̌− i=m̌)

]
dx

= −‖µ‖
2

πi

∫ λ+

λ−

1− ft(x)
x

=
[

<m̌ + ‖µ‖2+c
cx − i=m̌

1 + 2(‖µ‖2 + c)<m̌ + (‖µ‖2+c)2

cx

]
dx

with z = x ± iε and in the limit ε → 0 (on different sides of the real axis) and with
(<m̌)2 + (=m̌)2 = 1

cx . We then take the imaginary part in the right-hand side, which
results in

Eγb =
‖µ‖2

π

∫ λ+

λ−

1− ft(x)
x

=m̌

1 + 2(‖µ‖2 + c)<m̌ + (‖µ‖2+c)2

cx

dx

=
1

2π

∫ λ+

λ−

1− ft(x)
x

√
4cx− (1− c− x)2

λs − x
dx (A.26)

where we recall the definition λs ≡ c + 1 + ‖µ‖2 + c
‖µ‖2 . Ultimately we assemble (A.25)

and (A.26) to get the expression in (4.3). The derivations of (4.4)-(4.6) follow the same
arguments and are thus omitted.
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Titre : Théorie des matrices aléatoires pour l’apprentissage automatique en grande dimension et les réseaux
de neurones

Mots clés : Apprentissage automatique, théorie des matrices aléatoires, réseaux de neurones

Résumé : Le “Big Data” et les grands systèmes d’ap-
prentissage sont omniprésents dans les problèmes
d’apprentissage automatique aujourd’hui. Contraire-
ment à l’apprentissage de petite dimension, les al-
gorithmes d’apprentissage en grande dimension sont
sujets à divers phénomènes contre-intuitifs et se com-
portent de manière très différente des intuitions de
petite dimension sur lesquelles ils sont construits. Ce-
pendant, en supposant que la dimension et le nombre
des données sont à la fois grands et comparables, la
théorie des matrices aléatoires (RMT) fournit une ap-
proche systématique pour évaluer le comportement
statistique de ces grands systèmes d’apprentissage,
lorsqu’ils sont appliqués à des données de grande
dimension. L’objectif principal de cette thèse est de
proposer un schéma d’analyse basé sur la RMT, pour
une grande famille de systèmes d’apprentissage au-
tomatique: d’évaluer leurs performances, de mieux
les comprendre et finalement les améliorer, afin de
mieux gérer les problèmes de grandes dimensions
aujourd’hui.
Précisément, nous commençons par exploiter la
connexion entre les grandes matrices à noyau, les
projection aléatoires non-linéaires et les réseaux
de neurones aléatoires simples. En considérant
que les données sont tirées indépendamment d’un
modèle de mélange gaussien, nous fournissons une
caractérisation précise des performances de ces
systèmes d’apprentissage en grande dimension, ex-
primée en fonction des statistiques de données, de la
dimensionnalité et, surtout, des hyper-paramètres du

problème. Lorsque des algorithmes d’apprentissage
plus complexes sont considérés, ce schéma d’ana-
lyse peut être étendu pour accéder à de systèmes
d’apprentissage qui sont définis (implicitement) par
des problèmes d’optimisation convexes, lorsque des
points optimaux sont atteints. Pour trouver ces points,
des méthodes d’optimisation telles que la descente
de gradient sont régulièrement utilisées. À cet égard,
dans le but d’avoir une meilleur compréhension
théorique des mécanismes internes de ces méthodes
d’optimisation et, en particulier, leur impact sur le
modèle d’apprentissage, nous évaluons aussi la dy-
namique de descente de gradient dans les problèmes
d’optimisation convexes et non convexes.
Ces études préliminaires fournissent une première
compréhension quantitative des algorithmes d’ap-
prentissage pour le traitement de données en grandes
dimensions, ce qui permet de proposer de meilleurs
critères de conception pour les grands systèmes
d’apprentissage et, par conséquent, d’avoir un gain
de performance remarquable lorsqu’il est appliqué
à des jeux de données réels. Profondément ancré
dans l’idée d’exploiter des données de grandes di-
mensions avec des informations répétées à un ni-
veau “global” plutôt qu’à un niveau “local”, ce schéma
d’analyse RMT permet une compréhension renou-
velée et la possibilité de contrôler et d’améliorer une
famille beaucoup plus large de méthodes d’appren-
tissage automatique, ouvrant ainsi la porte à un nou-
veau schéma d’apprentissage automatique pour l’in-
telligence artificielle.



Title : A random matrix framework for large dimensional machine learning and neural networks

Keywords : Machine learning, random matrix theory, neural networks

Abstract : Large dimensional data and learning sys-
tems are ubiquitous in modern machine learning. As
opposed to small dimensional learning, large dimen-
sional machine learning algorithms are prone to va-
rious counterintuitive phenomena and behave strikin-
gly differently from the low dimensional intuitions upon
which they are built. Nonetheless, by assuming the
data dimension and their number to be both large and
comparable, random matrix theory (RMT) provides a
systematic approach to assess the (statistical) beha-
vior of these large learning systems, when applied on
large dimensional data. The major objective of this
thesis is to propose a full-fledged RMT-based frame-
work for various machine learning systems: to assess
their performance, to properly understand and to ca-
refully refine them, so as to better handle large dimen-
sional problems that are increasingly needed in artifi-
cial intelligence applications.
Precisely, we exploit the close connection between
kernel matrices, random feature maps, and single-
hidden-layer random neural networks. Under a simple
Gaussian mixture modeling for the input data, we pro-
vide a precise characterization of the performance of
these large dimensional learning systems as a func-
tion of the data statistics, the dimensionality, and most
importantly the hyperparameters (e.g., the choice of
the kernel function or activation function) of the pro-

blem. Further addressing more involved learning al-
gorithms, we extend the present RMT analysis frame-
work to access large learning systems that are im-
plicitly defined by convex optimization problems (e.g.,
logistic regression), when optimal points are assumed
reachable. To find these optimal points, optimization
methods such as gradient descent are regularly used.
Aiming to have a better theoretical grasp of the inner
mechanism of optimization methods and their impact
on the resulting learning model, we further evaluate
the gradient descent dynamics in training convex and
non-convex objects.

These preliminary studies provide a first quantitative
understanding of the aforementioned learning algo-
rithms when large dimensional data are processed,
which further helps propose better design criteria for
large learning systems that result in remarkable gains
in performance when applied on real-world datasets.
Deeply rooted in the idea of mining large dimensional
data with repeated patterns at a global rather than a
local level, the proposed RMT analysis framework al-
lows for a renewed understanding and the possibility
to control and improve a much larger range of ma-
chine learning approaches, and thereby opening the
door to a renewed machine learning framework for ar-
tificial intelligence.
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