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Chapter 1

Introduction

The title of this PhD thesis is Design and pricing of new energy services in a
competitive environment. It is the result of three years of work within the INOCS
team located at Inria Lille-Nord Europe, and the PROMES-CNRS laboratory in
Perpignan. This thesis has been supported by the FMJH "Programme Gaspard
Monge en Optimisation", and realized within a strong collaboration with EDF R&D.

The energy domain currently faces numerous changes. The growth of the global
electricity consumption combined with the future scarcity of fossil fuels induce
tremendous challenges. Many interests like ecological, economical, or political coex-
ist and often collide. Whereas the old picture of electricity networks only included
one-directional energy transports from large power plants to end consumers, the
rise of distributed generation (DG) has been a game-changer. Indeed, distributed
generation often means renewable energies that are scattered and irregular. These
irregular energy supplies, combined with an increasing demand for energy from the
customers, imply greater difficulties to ensure the supply-demand balance. Instead
of installing costly generators that are able to cover any peak demand, consumers
can help maintaining the balance by modifying their behavior. However, to know
that such behavioral modifications are beneficial, a two-way communication has to
take place between the consumers and the suppliers, leading to the birth of the
smart grid paradigm (see Section 2.1.1). According to [Dept 2009], the smart grid
is

"an automated, widely distributed energy delivery network, which will
be characterized by a two-way flow of electricity and information and
will be capable of monitoring everything from power plants to customer
preferences to individual appliances. It incorporates into the grid the
benefits of distributed computing and communications to deliver real-
time information and enable the near-instantaneous balance of supply
and demand at the device level."

Smart grids have numerous advantages: thanks to the installation of smart meters
(e.g. Linky in France), they are observable at any moment. They allow for the easy
addition or removal of distributed generation modules. They are able to detect the
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failures occurring inside of them. Finally, they are more secure and more reliable.
Smart grids are thus appropriate to minimize risks of brownouts or even blackouts
that could be caused by the unpredictable supply of renewable energy into the grid.

The ability of the actors connected to the grid to communicate is crucial, and
allows for the implementation of many interesting techniques. One of these tech-
niques is demand-side management (DSM). DSM consists in shaping the electricity
demand of end consumers to reach one or several of the next goals: to prevent
blackouts by avoiding demands that cannot be satisfied, to make the best use of
renewable energy, or, from a more economical point of view, to increase the benefits
of the electricity producers in a competitive environment. In order to achieve DSM,
there are six essential techniques, see Section 2.1. Among these, three of them con-
cern medium or long-term strategies (strategic conservation, strategic load growth,
and flexible load shape). According to [Kreith 2016], the three remaining DSM
techniques are known as the classic forms of DSM: these are peak clipping, valley
filling, and load shifting.

The concept of demand response (DR) is strongly linked to DSM. To ensure the
supply-demand balance, the real demand has to be flexible, not only to reduce the
peaks in consumption, but also to reduce the fluctuation of the demand. As defined
in [Anjos 2017], "the collection of approaches available to obtain this flexibility from
the demand side of the balance is commonly referred to as DR". Demand response
concerns short-term decisions: for example, if an event causes the shutdown of a
power plant, demand response mechanisms can be used to diminish the load and
avoid a blackout. Such mechanisms often rely on pricing, the main categories being
time-of-use (TOU) tariffs, multi-TOU tariffs, and time-and-level-of-use (TLOU)
tariffs. In TOU pricing, the electricity tariffs depend on the time of consumption.
In multi-TOU, several groups of customers get different TOU tariffs. In TLOU
pricing, the prices depend not only on the time of consumption, but also on the
energy quantities that are bought. Examples of TOU tariffs notably include critical
peak pricing (CPP) and variable peak pricing (VPP). CPP tariffs involve a critical
surcharge during time windows that can either be fixed in advance, or vary depend-
ing on the system needs. In the latter case, a notice is sent a few hours in advance
to the customers so that they can react accordingly. For VPP tariffs, time windows
are defined in advance, during which the prices may vary depending on the grid
or market conditions. This thesis focuses on TOU pricing. Such pricing strategies
already exist in France, with the heures pleines/heures creuses pricing (HPHC, in
English peak/off-peak hours). This work intends to develop even more efficient
pricing schemes, where one or several energy suppliers offer electricity prices to a
set of end consumers.
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New professions arose in the smart grid context. In particular, the so-called
aggregators play an important role: they act as intermediaries between energy sup-
pliers and consumers. On one hand, they offer financial rewards to consumers in
exchange for control over all or part of their demand. On the other hand, they
offer flexibility to the energy suppliers. The more clients are in contract with an
aggregator, the more impact this aggregator has on the overall demand to the grid.
Another feature of aggregators is their ability to act as energy suppliers, by renting
production capacities of companies that they can activate at distance during given
periods. However, this feature is not considered in this thesis.

The interaction between energy suppliers, aggregators, and end consumers is
a hierarchical one: the suppliers offer prices, to which the aggregators and con-
sumers react. Such interactions are known in economics as Stackelberg games. In
mathematics, they constitute the core of bilevel optimization. In a bilevel problem,
two actors, the leader and the follower, play a game: both actors have their own
constraints and objective function, the leader takes decisions knowing that the fol-
lower is going to react optimally to them. Extensions of bilevel optimization include
the introduction of multiple leaders and followers, which gives rise to the so-called
multi-leader-follower games (MLFG). In a MLFG, the leaders play a game among
themselves, like the followers do. Therefore, a solution to a MLFG takes the form of
two Nash equilibria: one among the leaders and another one among the followers,
the latter depending on the decisions of the leaders. For a set of leaders’ decisions,
there generally exist several possible Nash equilibria at the lower level. In a classical
single-leader single-follower bilevel problem, this issue of potential multiple lower
level solutions is usually considered through the optimistic-pessimistic dichotomy:

• In the optimistic case, the leader assumes that the follower will cooperate
and select the most favorable solution to the leader among the set of optimal
solutions.

• In the pessimistic case, the leader assumes that the follower will have an
antagonistic behavior by selecting the solution that is least favorable for the
leader. This case is often referred to as risk-averse instead of pessimistic.

In a single-leader multi-follower problem, this optimistic-pessimistic dichotomy can
still be applied: there is only one leader, it is thus possible to determine which Nash
equilibrium is favorable to him. However, in a multi-leader multi-follower setting,
it is by far more difficult to discriminate the Nash equilibria: an equilibrium that
is favorable to one leader might well be disadvantageous to another one. These
issues have to be taken into account in the research of solutions, making MLFG
intrinsically more complex than standard bilevel problems.
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Bilevel optimization has been on the rise for the last thirty years and is becoming
more and more popular for many kinds of applications, ranging from airline revenue
management to human arm movement modeling, and from road network design to
unit-commitment problems (see Section 2.2). Among these applications, pricing
problems take up much space. In particular, the INOCS team at Inria Lille-Nord
Europe gained expertise on bilevel pricing models for DSM inspired by industrial
problems: [Afşar 2016b] and [Alekseeva 2018] both consider bilinear-bilinear bilevel
pricing problems.

Building upon those two works, this thesis proposes various bilevel DSM prob-
lems in order to quantify the potential gains of one or several energy supplier in
a competitive market, when pricing incentives are used to induce load shifts from
the clients. The problems and results presented here constitute the premises of a
promising research topic for the industrial partner.

The contributions of this thesis are of three kinds: model definitions, their
theoretical analysis, and their numerical analysis. Three types of problems are
considered:

1. Single-leader single-follower bilevel problems are studied in Chapter 3. The
reference problem is an extension of the problems studied in [Afşar 2016a] and
gets investigated from several angles. In particular, the follower is assumed
to not only manage the usage schedule of his clients’ appliances, but also
a renewable energy source and storage capacities. The inherent uncertainty
in the production of renewable energy leads to the definition of a stochastic
bilevel problem based on a scenario tree method, which is solved with an
exact method. Finally, a rolling horizon approach of the problem is proposed
in order to solve larger size instances.

2. A single-leader multi-follower games with four kinds of actors is proposed in
Chapter 4. At the upper level, an energy supplier sells electricity to actors
of the lower level, who are either local agents or aggregators. A third level of
optimization arises, as the aggregators are in contract with a set of end users
who have to fulfill a demand that can be shifted. Theoretical results allow for
a reformulation of the trilevel problem into a bilevel one. A characterization of
the lower level shows that there is an optimistic response of the followers with-
out energy exchanges among the aggregators and local agents, even though
the model allows such exchanges. This result is used to drastically simplify
the optimistic formulation of the problem, which leads to much faster and
more reliable solutions (local optima of the optimization problem found by
a commercial solver). Then we propose a second new approach where Nash
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equilibria that are neither optimistic, nor pessimistic are selected, leading to
pricing schemes that are more robust to responses of the followers. These
newly defined equilibria are called semi-optimistic. Numerical tests assert the
efficiency of the two solution methods resulting from the theoretical results.

3. Finally, multi-leader multi-follower problems are studied in Chapter 5. Such
problems are by nature very difficult to handle, due to their complex struc-
ture. Building upon the results found for single-leader multi-follower games,
a characterization of the Nash equilibria of the lower level is provided and
used to make a selection among the Nash equilibria of the lower level that
simplifies the MLFG. To solve this simplified MLFG, several methods intro-
duced in [Leyffer 2010] are applied. However, they yield undesired equilibria
of the upper level, in the sense that suppliers can offer prices that are below
the costs of energy. Therefore, some conditions on the leader prices and on
the followers’ response are set to obtain a new problem that has nice proper-
ties: in particular, for any price profile of the leaders, there is a single-Nash
equilibrium at the lower level. This approach leads to interesting numerical
results.

Thesis structure

Chapter 2 is devoted to the literature review, divided into two topics: first, demand-
side management and smart grids, second, bilevel programming. This last topic
is itself divided into three parts: in a first step, the definitions and some basic
results of classical bilevel programming (single-leader single-follower) are presented.
Then, the case of multi-leader-follower games is addressed. Finally, an overview of
applications of bilevel programming is provided.

Chapter 3 investigates a single-leader single-follower bilevel pricing problem for
demand-side management. The follower has several specific features: storage capac-
ities, distributed generation, and precise scheduling (each device being individually
scheduled). A scenario tree approach as well as a rolling horizon method are pre-
sented.

In Chapter 4, a trilevel single-leader multi-follower problem is considered. The-
oretical results allow for the transformation of the trilevel model into a bilevel one,
whose optimistic version can be simplified with a characterization of the lower level.
The chapter is actually comprised of the article "A Trilevel Model for Best Response
in Energy Demand-Side Management", submitted after revision in December 2018.

Chapter 5 is devoted to a multi-leader-follower game logically following the
problem studied in Chapter 4. Two solution methods are proposed, and useful
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theoretical results are provided.
Finally, in Chapter 6, we summarize our contributions, draw conclusions and

define some research prospects.



Chapter 2

Literature review

2.1 Demand-Side Management and Demand Response

The transportation of electricity from the generation location to the place of con-
sumption has always been a challenge, starting from the very beginning. Originally,
electricity networks were conceived in a unidirectional way: the electricity was pro-
duced in large power plants (e.g. nuclear plants, which accounts for more than 70%
of the total electricity production in France) and directly brought to the customers,
in the aim to satisfy the demand at minimum cost. Such networks comprise three
main parts (see Figure 2.1):

• The transmission network, directly connected to the large power plants, is able
to transmit energy over long distances. To minimize the losses, the voltages
applied to the transmission lines reach high values, between 200 kV and 800
kV [Garcia 2008].

• The sub-transmission network dispatches the energy to big consumers, such
as heavy industries or railway companies, and to various substations that sup-
ply distribution networks. The voltages on sub-transmission networks range
between 20 kV and 275 kV [Puret 1991].

• The distribution network connects the end-users (such as residential cus-
tomers) to the aforementioned substations. In France, a single-phase connec-
tion has a voltage of 230 V, whereas a three-phase connection has a voltage
of 400 V.

However, such networks have disadvantages. With the penetration of distributed
generation (especially household photovoltaic (PV) panel installations) and their
intermittence due to the unpredictability of the exact weather conditions, power
injections into the network become more and more irregular [Barker 2000]. This can
result in several issues: power outages, short-circuit current or islanding. Ensuring
the supply-demand balance at any time is complex. To cope with the issue of supply-
demand balance, two solutions coexist. Either the production can be adapted to
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Figure 2.1: The structure of a traditional electricity network.

the demand, or the demand can be adapted to the production. This second option
is referred to as demand-side management (DSM).

DSM is defined in [Gellings 1984] as

"the planning, implementation and monitoring of those utility activities
designed to influence customer use of electricity in ways that will pro-
duce desired changes in the utility’s load shape, i.e., changes in the time
pattern and magnitude of a utility’s load. Utility programs falling under
the umbrella of demand-side management include: load management,
new uses, strategic conservation, electrification, customer generation,
and adjustments in market share."

DSM relies on six essential techniques [Kreith 2016], represented in Figure 2.2.
The three first techniques are the classic forms of DSM, applied over short terms,
whereas the latter techniques require an optimization over a longer term.

1. Peak clipping consists in a reduction of the peak loads, generally using direct
load control.

2. Valley filling consists in building off-peak loads to smooth the demand curve.
For example, energy can be stored during off-peak periods to ensure loads
traditionally served by fossil fuels during peak periods.

3. Load shifting consists in moving loads from peak to off-peak periods. This
can be achieved through rescheduling of flexible loads (delay or bring forward
the usage of appliances), among other means.



2.1. Demand-Side Management and Demand Response 19

4. Strategic conservation (also called energy efficiency, like in Figure 2.2) consists
in decreasing the general energy consumption, for example by improving the
energy efficiency of appliances.

5. Strategic load growth, at the contrary, corresponds to an increased, planned
consumption of energy. For example, electrification describes the increased use
of electricity to achieve tasks that previously required other energies. A good
example is the breakthrough of electric vehicles in the automotive industry.

6. Flexible load shape relies on contracts between companies and customers, al-
lowing customers to buy energy at a cheaper price in exchange of flexibility.

Figure 2.2: The six techniques of DSM.

One of the methods to achieve DSM is demand response (DR), which typically
consists in a system operator sending signals to customers. These signals contain
information related to load shedding (also called erasement) or shifting, and can
e.g. take the form of energy prices [Palensky 2011]. In [Han 2007], DR techniques
are separated in two categories:

• Incentive-based DR: customers get payments or preferential prices during off-
peak periods, in exchange for load reductions in peak periods. Incentive-
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based DR includes several methods, which are direct load control, interrupt-
ible/curtailable rates, emergency DR programs, capacity market programs, and
demand bidding/buyback programs.

• Time-based rates DR: customers receive price signals from the system opera-
tor, and react according to those signals. Again, time-based rates DR can be
categorized as follows:

– Time-of-use rates: the prices offered to the customers depend on the
consumption time. Typically, high prices are offered during peak periods,
whereas the energy is cheaper during off-peak periods. The prices can
also vary seasonally.

– Critical peak pricing: consists in setting very high prices during peak
periods that are defined as critical by the supplier. Since this price
raises are significant, the number of times the supplier is allowed to raise
the tariffs during peak periods is often limited by contract.

– Real-time pricing: in this case, the electricity rates may vary constantly
over the day. The rates usually follow the fluctuations of the market
prices.

Efficiently applying DR programs requires a lot of optimization. A tutorial on
such approaches is [Anjos 2017]. This thesis considers only time-of-use pricing.

In order to be able to apply DSM/DR techniques, the suppliers must be able
to communicate with the consumers. Such bidirectional information exchanges are
made possible by the smart grid.

2.1.1 Smart Grid

In the last few years, three definitions of the smart grid were given by various
authors:

• In [Singer 2010], the smart grid is

"a modern electric system. It uses sensors, monitoring, communica-
tions, automation and computers to improve the flexibility, security,
reliability, efficiency, and safety of the electricity system."

• In [Dept 2009], the US Department of Energy describes the smart grid as

"an automated, widely distributed energy delivery network, which
will be characterized by a two-way flow of electricity and information
and will be capable of monitoring everything from power plants to
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customer preferences to individual appliances. It incorporates into
the grid the benefits of distributed computing and communications
to deliver real-time information and enable the near-instantaneous
balance of supply and demand at the device level".

• Finally, in [Canadian Electricity Association 2014],

"the smart grid is a suite of information-based applications made
possible by increased automation of the electricity grid, as well as the
underlying automation itself; this suite of technologies integrates the
behavior and actions of all connected supplies and loads through dis-
persed communication capabilities to deliver sustainable, economic
and secure power supplies."

Those three definitions are summarized in [Perles 2017] as follows:

"the smart grid is a concept of an autonomous electrical network able to
adapt itself to client’s needs in a secured, ecological and economical way.
It enables bidirectional exchanges of electricity and information through
lines."

The exchange of information resulting from the implementation of the smart grid
paradigm is enabled by the installation of smart meters. In France, the smart meter
Linky [Enedis 2018] is being deployed on a large scale. Every 10 minutes, Linky
sends a data packet with relevant information about the actual energy consumption.
Reading the meter does not need any physical presence anymore. Linky also allows
the system operator to turn electricity on and off remotely. Finally, Linky is able
to receive information about the electricity prices in real time. These features allow
for the implementation of DR pricing techniques [Michiorri 2012].

The features of the smart grid gave rise to new professions. In particu-
lar, aggregators are bound to gain importance. Their role has been studied in
[Gkatzikis 2013]: they act as intermediaries between an electric utility operator and
end users. Each aggregator is in contract with his own set of end users. The oper-
ator wants to optimize the functioning of the grid by inducing load shifts. For this
purpose, he offers a fraction of his profit to the aggregators, who themselves offer
rewards to their end users. The end users finally implement the load shifts by max-
imizing their rewards and minimizing the inconvenience caused by the load shifts.
This model is very similar to the one studied in Chapter 4. Other types of aggre-
gators have been developed, especially in the aim of integrating electric vehicles
(EVs) into the smart grid. In [Han 2010], the aggregator has contracts both with
EV owners and a grid operator, which is the framework proposed in [Guille 2009].
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Through an efficient management of the EVs batteries, the aggregator contributes
to the regulation of the grid. The grid operator thus regularly sends regulation
signals for the aggregator to know its needs. Finally, the same framework is slightly
modified in [Wu 2010]: the aggregator is in charge for the intragrid management,
that is the energy exchanges among the EVs. When an EV acts as a load and
another one as a resource, the aggregator ensures a transmission from one to the
other, avoiding unnecessary communication with the smart grid operator.

2.2 Bilevel programming

A bilevel problem is a decision process involving two decision-makers with a hierar-
chical structure. The situation described by a bilevel program is as follows: at the
upper level, the leader makes decisions. Then, at the lower level, the follower reacts
optimally to the leader’s decisions. Both actors control their own decision variables
in order to maximize their own objective function. Solving a bilevel program implies
finding the optimal decisions of the leader, knowing that the follower is going to re-
act in an optimal way. Bilevel programs were first introduced in an economic setting
by von Stackelberg [von Stackelberg 1952], which explains why solutions of bilevel
programs are called Stackelberg equilibria. The literature on bilevel optimization
has expanded a lot since then, and reference monographs include [Bard 2010] and
[Dempe 2002]. More recently, the survey [Dempe 2018] provides an introduction
and an extensive list of publications in the field of bilevel optimization.

2.2.1 Definitions and theory

We choose to introduce the notations utilized in [Dempe 2018]. In a bilevel opti-
mization problem, the leader and the follower aim to optimize their own objective
function by deciding on their own set of variables. Let x ∈ X ⊆ Rm denote the
variables of the leader and y ∈ Y ⊆ Rn the variables of the follower, with X and Y
closed and nonempty. Then, for given decisions of the leader, the follower aims to
optimize an objective function

f(x, ·) : Rn → R

y 7→ f(x, y),

while satisfying a set of constraints gi(x, y) ≤ 0 for i = 1, . . . , p, where the gi’s are
functions

gi(x, ·) : Rn → R

y 7→ gi(x, y).
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The problem of the follower is then described by the parametric optimization prob-
lem

min
y
{f(x, y) | g(x, y) ≤ 0, y ∈ Y } , (2.1)

Next, define the optimal value function of Problem (2.1):

ϕ(x) := min
y
{f(x, y) | g(x, y) ≤ 0, y ∈ Y } , (2.2)

and its solution set mapping

ψ(x) := {y ∈ Y | g(x, y) ≤ 0, f(x, y) ≤ ϕ(x)} . (2.3)

The function ϕ : x 7→ ϕ(x) returns the optimal value of the follower’s objective for
the leader’s decision x, whereas ψ(x) is the set of decisions of the follower that yield
the optimal value ϕ(x). Observe in particular that ψ(x) is nonempty for any x ∈ X
such that ϕ(x) exists. Next, define the graph of ψ:

G(ψ) := {(x, y) | x ∈ X, y ∈ ψ(x)} ⊆ Rm × Rn. (2.4)

If (x, y) belongs to G(ψ), then y is an optimal response of the follower to the leader’s
decision x.

On the leader’s side, the aim is to optimize the function

F : Rm × Rn → R

(x, y) 7→ F (x, y),

under the constraints that y is an optimal response of the follower to x and that
x satisfies a set of constraints Gj : Rm → R, j = 1, . . . , q. The leader’s problem is
thus defined as

” min
x

” {F (x, y) | G(x) ≤ 0, (x, y) ∈ G(ψ), x ∈ X} . (2.5)

In other words, the leader optimizes F (x, y) by deciding x, and knowing that y is
a solution of the follower’s problem. Due to their hierarchical relation, the leader’s
problem is called the upper level and the follower’s problem the lower level of the
bilevel problem.

Bilevel problems are not well-defined if there are several optimal solutions at
the lower level for fixed leader decisions, thus the quotation marks around "min".
To bypass this ambiguity, two main strategies have been proposed in the literature
(see e.g. [Loridan 1996]):
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1. In the optimistic formulation, the leader assumes that the follower will always
select the solution in ψ(x) that is most favorable to the leader. In that case,
Problem (2.5) becomes

min
x
{ϕo(x) | G(x) ≤ 0, x ∈ X} , (2.6)

where

ϕo(x) := min
y
{F (x, y) | G(x) ≤ 0, x ∈ X, (x, y) ∈ G(ψ)} .

This problem is generally written as follows:

min
x

min
y

F (x, y)

s.t.


x ∈ X

G(x) ≤ 0

y ∈ argmin {f(x, y) | g(x, y) ≤ 0, y ∈ Y } .

(2.7)

Optimistic bilevel problems are also referred to as strong Stackelberg games.

2. At the opposite, the pessimistic formulation assumes that the follower is al-
ways going to choose the optimal reaction to x that is the least favorable to
the leader. The pessimistic formulation considering the worst-case scenario is
frequently referred to as risk-averse optimization, or weak Stackelberg game.
In mathematical terms, the pessimistic formulation of Problem (2.5) is

min
x
{ϕp(x) | G(x) ≤ 0, x ∈ X} , (2.8)

where

ϕp(x) := max
y
{F (x, y) | G(x) ≤ 0, x ∈ X, (x, y) ∈ G(ψ)} .

Pessimistic bilevel problems can also be written as

min
x

max
y

F (x, y)

s.t.


x ∈ X

G(x) ≤ 0

y ∈ argmin {f(x, y) | g(x, y) ≤ 0, y ∈ Y } .

(2.9)

When a bilevel problem is solved, a solution for both the leader and the follower
is computed, assuming that the follower is going to react in the predicted way.
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However, there is no guarantee that the follower does in reality: the only certainty
is that his answer will be optimal for himself. In [Alves 2016], the rewarding and
deceiving solutions are introduced as alternative solutions of the bilevel problem.
In the rewarding solution, the leader’s decisions are obtained with the pessimistic
formulation, but the solution chosen by the follower is the most favorable for the
leader. On the other hand, in the deceiving solution, the leader’s decisions are
obtained with the optimistic formulation, but the follower chooses the solution that
is the least favorable to the leader. The choice of the follower’s reaction influences
the leader’s objective value. For the leader, the various solutions are ordered as
follows:

deceiving ≤ pessimistic ≤ rewarding ≤ optimistic.

The existence of solutions of bilevel problems has been thoroughly studied. First
existence results are provided in [Lucchetti 1987]: sufficient and necessary condi-
tions are given in the case where the follower’s response set is a singleton for any
leader’s decision. In case of several possible responses, the pessimistic case is stud-
ied. In [Aboussoror 2002], the existence of solutions in the pessimistic case is tackled
through successive approximations of the problem. Lastly, in [Lignola 1997], the
case of optimistic bilevel problems is addressed, and conditions of minimal char-
acter are given to guarantee the lower semicontinuity of the upper level objective
function.

From a computational point of view, bilevel problems are in general hard to
solve. Even the simplest form of a bilevel problem, where all constraints and objec-
tives are linear, is NP-hard, as it is showed in [Ben-Ayed 1990] or [Labbé 1998]. In
general, the feasible region of the leader is nonconvex, and can even be disconnected
or empty [Colson 2005].

When the follower’s problem is convex for fixed decisions of the leader and a
constraint qualification is satisfied (e.g. Slater’s condition), the lower level prob-
lem can be replaced by its Karush-Kuhn-Tucker (KKT) conditions in the leader’s
problem. This gives rise to a mathematical problem with equilibrium constraints
(MPEC) that can be implemented and solved numerically: this technique is widely
used to solve bilevel problems. However, it has been shown in [Dempe 2012] that in
the optimistic case, global and local optima of the bilevel problem and of the related
MPEC do not always correspond. The conditions for global optima to correspond
are usually satisfied, but the conditions for local optima to correspond are diffi-
cult to verify. This generates troubles, as most solvers guarantee local optimality
of their solution, but not global optimality. The correspondence of optima in the
pessimistic case has been considered in [Aussel 2019].

Despite their intrinsic complexity, bilevel problems are pervasive, because they
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allow to model numerous real-life problems adequately. Bilevel programming orig-
inated from economic games [von Stackelberg 1952], but were soon used for mil-
itary applications ([Bracken 1973], where the leader aims to find a minimum-
cost weapons mix able to achieve a specified destruction of resources or weapons
owned by the follower). The term bilevel itself was first mentioned in 1977 in
an agricultural context, for the purpose of determining an optimal government
policy [Candler 1977]. Other examples of problems that are adequately modeled
with bilevel programming include e.g. facility location and production problems
[Aardal 1996, Küçükaydin 2011], scheduling problems [Karlof 1996], gas cash-out
problems [Dempe 2005, Kalashnikov 2010] or even human arm movement mod-
elizations [Ulbrich 2012]. An extensive list of applications and references is given
in [Dempe 2018].

This thesis focuses on pricing problems for demand-side management. Pricing
problems constitute a class of problems that ideally fit in a bilevel framework: a
leader aims to find an optimal pricing strategy, knowing that users/customers are
going to adapt their behavior accordingly. In [Labbé 1998], a toll-setting problem
defined on a multicommodity transportation network is studied, where the aim is
to maximize the revenue of a taxation scheme. The followers solve shortest-path
problems. Similar problems have been studied notably in [Brotcorne 2001] or in
[Heilporn 2006]. In the latter, highways are the only roads that can be taxed.

Besides road networks, tariff schemes are also developed on telecommunication
networks. In [Bouhtou 2007], the problem of determining a set of optimal tariffs on
arcs of a network is addressed. In this setting, an actor only owns a subset of the
arcs of the network. Like in road pricing problems, the followers are supposed to
solve shortest-path problems. Another application of bilevel programming applied
to telecommunication problems is considered in [Eytard 2017]: thanks to financial
incentives, the aim is to avoid data congestion in a large mobile network, so that
the quality of service is as high as possible.

In the energy domain, [Cervilla 2015] proposes a bilevel model where a regulator
aims to ensure that his costs are covered, while customers intend to optimize their
investments in DG, thus diminishing their energy costs. In [Vahid-Ghavidel 2018],
DR aggregators procur two types of DR: reward-based DR and time-of-use. The
obtained DR is sold into day-ahead and balancing markets. In [Zugno 2013], a
retailer offers a price schedule to consumers that are going to minimize the total
of their bill, and their inconvenience, which depends on the indoor temperature
of a building. Some stochasticity is considered: the consumers’ decisions depend
on the weather forecast, i.e. the colder the outside temperature, the more energy
will be bought for indoor heating. In [Alekseeva 2018], an electricity provider pro-
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duces energy and has a duty to satisfy the demands of residential customers. The
leader has some restrictions on his power generation capacities, which impact the
pricing policy: the hourly demand of the customers is indeed bounded. The cus-
tomers minimize their bill and their inconvenience, which is caused by the change of
consumption schedule. This setting is very similar to that of [Afşar 2016b], which
considers leaders and followers of the same type. The main difference between both
articles lies in the consumers determining the schedule of each of their devices sep-
arately, giving rise to a very detailed problem. The main problem of Chapter 3 is
an extension of the problem considered in [Afşar 2016b]: the follower is assumed
to manage a production of renewable energy and storage capacities, which leads to
the introduction of stochasticity into the problem.

A natural generalization of bilevel programming is multi-level programming. In
this setting, there can be more than two levels of optimization, i.e. the constraints
of the leader include solving another multi-level problem. Such problems are consid-
ered e.g. in [Migdalas 1998]. Examples of applications are scarce, but include in the
energy domain [Ambrosius 2018] and [Grimm 2019], where multilevel problems are
used to define price zones within the grid, [Kleinert 2019b] that extends the previous
problem with network design, and the already mentioned [Gkatzikis 2013], where
a system operator, aggregators and end users occupy the three levels of a trilevel
problem. The latter article is strongly related to the problem studied in Chapter
4, which involves slightly modified aggregators. In our setting however, actors of
the intermediate level have the possibility to exchange energy, which gives rise to a
single-leader multi-follower game where a followers’ response is a Nash equilibrium.
Such problems are described in next section.

2.2.2 Multi-leader-follower games

Multi-leader-follower games (MLFG) constitute another generalization of bilevel
programming. In this case, the leader and the follower are not necessarily unique.
The leaders as well as the followers are usually assumed to be in a competition
situation. Therefore, the upper and the lower level are modeled as games. The
direct consequence is that the followers react with a (generalized) Nash equilibrium
(GNE) to the leaders’ decisions, and the optimal solution of the upper level is a
GNE as well, though among the leaders. The following definition of GNE is taken
from [Aussel 2018].

Let P := {1, . . . , p} be a finite set of p players. Each player ν ∈ P controls
variables xν ∈ Rnν , also called strategy. The vector

x := (x1, . . . , xp) ∈ Rn,
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where n = n1 + · · ·+np, represents the joint strategies of all players. To denote the
strategies of all players but ν ∈ P , the notation x−ν is commonly used. By abuse
of notation, x = (xν , x−ν). In a generalized Nash equilibrium problem (GNEP),
the variable xν is constrained to belong to the domain Xν (x−ν), which is the set
of feasible strategies, given the joint strategies of the other players. Furthermore,
each player aims to minimize his objective function fν , which depends on the joint
strategies of all players x. Given x−ν , the set

Sν (x−ν) := argminxν {fν (xν , x−ν) | xν ∈ Xν (x−ν)}

is the set of best responses of player ν ∈ P to the joint strategies x−ν of his oppo-
nents.

Definition 2.2.1. A generalized Nash equilibrium problem (GNEP) consists in
finding a joint strategy x̄ such that for each player ν ∈ P , x̄ν is a best response
to x̄−ν , i.e. for all ν ∈ P , x̄ν ∈ Sν (x̄−ν). Such a joint strategy x̄ is called an
equilibrium, and by notation, x̄ ∈ GNEP .

If for all ν ∈ P , the feasible domain for xν does not depend on x−ν , then it
is only a Nash equilibrium problem. Constraints that comprise variables of several
players are called joint constraints and therefore only appear in GNEPs.

In an MLFG, the situation is more complex than in a GNEP, which is just a
specific case of MLFG. The players of an MLFG are separated in two categories:
leaders (i ∈ I), and followers (j ∈ J ). On one hand, the followers interact within
a GNEP where each follower j ∈ J aims to solve the problem (Pj (x, y−j)):

min
yj
{fj(x, y) | gj(x, y) ≤ 0, yj ∈ Yj (x, y−j)} (2.10)

where x and y represent the joint strategies of the leaders and the followers, re-
spectively. The problems of the followers naturally depend on the variables of
the leaders, thus the set of equilibria of the GNEP constituted by the problems
(Pj (x, y−j))j∈J is denoted by GNEPJ (x).

On the other hand, the leaders also interact among themselves in a GNEP. The
problem of leader i is denoted by (Pi(x−i)), and defined as

minxi Fi(x, y)

s.t.


Gi(x, y) ≤ 0

x ∈ Xi (x−i)

y ∈ GNEPJ (x).

(2.11)



2.2. Bilevel programming 29

The leaders’ GNEP consists in finding a GNE for the problems (Pi(x−i))i∈I . How-
ever, observe that this problem is ambiguous in its formulation, since GNEPJ (x)
is in general no singleton. To cope with this issue in single-leader problems, an as-
sumption is made about the followers’ response: usually either the optimistic or the
pessimistic formulation is chosen. When several leaders are involved in the problem,
each one of them has to make an assumption about the followers’ response, which
might lead to contradictions. For example, assume that a follower j has to buy
two items of a product from two leaders, i1 and i2, who offer the same price. An
optimistic solution for i1 would be that j buys the two items from him, whereas an
optimistic solution for i2 would be the exact opposite. In this case, it might make
sense to meet halfway and assume that j will opt for the last possible solution: buy
one item from i1 and one from i2.

To cope with these issues of leader assumptions, several methods have been
defined. For example, in [Aussel 2018], a multi-optimistic equilibrium is defined.
That is, each leader i ∈ I assumes a response yi from the followers to the leaders’
joint strategies x = (xi, x−i), and each couple (xi, yi) solves the problem

minxi,yi Fi(x, yi)

s.t.


Gi(x, yi) ≤ 0

x ∈ Xi (x−i)

yi ∈ GNEPJ (x).

(2.12)

This naturally defines a new GNEP among the leaders.
Several ways to solve a MLFG are suggested in [Leyffer 2010]. First, the follow-

ers’ problems are replaced by their KKT conditions (see [Boyd 2004]). This induces
the appearance of dual variables yd, which are handled as if they were unique: if
x is a joint strategy of the leaders, then (xi, y, yd) solves the problem (P ′i (x−i))
(hereafter) for each i ∈ I:

minxi Fi(x, y)

s.t.


Gi(x, y) ≤ 0

x ∈ Xi (x−i)

(y, yd) ∈ KKT (GNEPJ (x)),

(2.13)

where KKT (GNEPJ (x)) denotes the concatenation of the KKT conditions of all
followers’ problems.

The first solution method proposed in [Leyffer 2010] and applied in Chapter
5 consists in considering the concatenation of optimality conditions for the lead-
ers’ problems (P ′i (x−i))i∈I . To reduce the number of solutions or the number of
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complementarity constraints, appropriate objective functions can be used. Since
optimality conditions are considered, many dual variables associated to the leaders’
constraints appear. In the first method, it is assumed that each leader has a set
of dual variables. However, some of the constraints are found in the optimization
problems of all leaders: (y, yd) ∈ KKT (GNEPJ (x)). Therefore, it is sensible for
all leaders to consider a single set of dual variables for those constraints. This re-
sults in a new formulation of the GNEP as a game with three kinds of players: the
leaders i ∈ I who control their primal variables xi, the followers who control their
primal and dual variables (y, yd), and finally the markets, who control the dual
variables associated to the KKT conditions of the followers. This idea gives rise
to the price-consistent formulations. Note that equilibria for the price-consistent
formulations are also equilibria of the first defined GNEP, but the converse does
not hold.

In [Pang 2005], an example of a MLFG with no equilibrium is provided. To cope
with the possible nonexistence of solutions of an MLFG, an alternative is proposed
in [Kulkarni 2014]: the leaders share so-called all equilibrium constraints. Each
leader makes an assumption yi about the followers’ response, but instead of leader
i having to satisfy only the constraint yi ∈ GNEPJ (x), he also has to satisfy the
constraints yi′ ∈ GNEPJ (x) for all i 6= i′ ∈ I. Although the leaders’ problems
are more constrained in this new setting, new equilibria arise. Among others, it is
proved that the example presented in [Pang 2005] has an equilibrium with the all
equilibrium formulation.

On the applications’ side, many papers focus on electricity markets. In
[Aussel 2017a, Aussel 2017b], a multi-leader-common-follower problem is consid-
ered: energy producers act as leaders, whereas the system regulator is seen as
the follower in a pay-as-bid electricity market. Similar problems were studied in
[Allevi 2018, Aussel 2013, Fampa 2008] or in [Henrion 2012], where an equilibrium
problem with equilibrium constraints (EPEC) is derived from an electricity spot
market problem. In [Hesamzadeh 2014], the situation is reversed: the electricity
producers are the followers, whereas the leader’s role is fulfilled by a transmission
planner. Different kinds of equilibria exist depending on the considered pricing type,
as in [Lavigne 2000]: market equilibria obtained with an optimal pricing scheme ob-
tained with a bilevel program are compared with traditional pricing methods, i.e.
the price is either the marginal cost, or an affine function of the marginal cost.
Finally, an interesting example of MLFG is provided in [Ramos 2016]: in an eco-
industrial park, several companies aim to minimize their costs, whereas an authority
wants to minimize the consumption of freshwater. Two cases are compared: in the
first one, the authority is the leader and the companies are the follower, and in the
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second one, the situation is reversed. Although both models are sensible, it turns
out in the case study that the single-leader multi-follower model provides better
results than the multi-leader single-follower one, in the sense that the sum of the
companies’ costs and the freshwater consumption are lower.





Chapter 3

Single-Leader Single-Follower

This first research chapter focuses on a stochastic single-leader single-follower bilevel
problem called (SBPP) (for stochastic bilevel pricing problem). (SBPP) involves
two agents: at the upper level, an energy supplier aims to maximize his profit, and
at the lower level, a smart grid operator (SGO) manages the consumption schedule
of his clients’ appliances.

At the upper level, the energy costs of the supplier depend on time, thus the
supplier wants to sell more energy when the energy is cheap, and less when the
energy is expensive. To induce those consumption changes, he offers time-dependent
prices to the SGO, knowing that the SGO will shift his loads in an optimal way. It
is assumed that the supplier acts in a competitive environment: a competitor also
offers energy to the SGO, but the competitor’s prices are assumed to be known in
advance, making (SBPP) a best-response problem of the leader.

At the lower level, the SGO is related to a set of clients owning appliances
to use during given time intervals. A time window is thus associated with each
appliance. The SGO is in charge to ensure the powering of the appliances during
their associated time window. For the clients, the ideal situation occurs when each
appliance is powered at the beginning of the associated time window. If the SGO
decides to schedule the appliance at another time within the time window, the client
experiences inconvenience. The SGO aims therefore to minimize the generalized
cost of his clients, which is the sum of the billing cost and the inconvenience cost.
Furthermore, it is assumed that the SGO manages distributed generation (DG)
capacities (e.g. solar panels) and a battery. To power his clients’ appliances, the
SGO has four possibilities: purchase energy from the leader, purchase energy from
the competitor, consume energy produced by the DG, or consume energy stored in
the battery. To store energy, the SGO can either purchase energy from the leader
or the competitor, or use the energy produced by the DG.

The quantity of energy produced by solar panels (or possibly other renewable
energy sources such as wind turbines) strongly depends on the weather conditions.
As they are by nature unpredictable, a scenario tree approach is developed.

The problem (SBPP) is actually an extension of the problems proposed in
[Afşar 2016b].
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3.1 Stochastic bilevel problem

Before stating (SBPP), the scenario tree approach is introduced as a general method
to consider stochasticity in an optimization problem.

3.1.1 Scenario tree method

Scenario tree approaches constitute the simplest way to take into account the un-
certainty related to a situation in an optimization problem. Given a time horizon
H = {1, . . . ,H} divided into m time periods TP1 = {1, . . . , t2 − 1}, . . . , TPm =
{tm, . . . ,H}, a scenario tree is a set

Σ =
{(
σ1, . . . , σm

)
| σi ∈ {1, . . . , nΣ}, i = 1, . . . ,m

}
,

where nΣ is the number of base scenarios. The base scenarios are the elements
σ ∈ Σ such that σi = σj for all i, j = 1, . . . ,m, and are denoted by σi, with i =
1, . . . , nΣ. Each base scenario corresponds to a set of parameters, which correspond
to a sequence of H DG bounds in (SBPP) (denoted by λh,σmax, with h ∈ H, see
Subsection 3.1.2): σi corresponds to a base vector of bounds

(
λ1,σimax, . . . , λ

H,σimax

)
, for

i = 1, . . . , nΣ. A scenario σ ∈ Σ thus corresponds to a combination of the base
vectors of bounds: if σi = j for i ∈ {1, . . . , n} and j ∈ {1, . . . , nΣ}, the bounds
associated to σ during the ith time period are the bounds of the jth base vector of
bounds. Mathematically,

σi = j ⇒ λh,σmax = λ
h,σj
max ∀h ∈ TPi.

To avoid confusion, recall that the time horizon is divided into time periods,
and time periods are themselves divided into time slots, which are the smallest
time units.

The elements of Σ can be seen as the leaves of a tree, as depicted in Figure 3.1
for m = 3, nΣ = 2. Typically, nΣ = 2 involves the presence of two basic scenarios:
one with a large amount of sunshine and thus a large solar power production, and
another one with a small amount of sunshine and thus a much smaller solar power
production. During each of the three time periods, there can be a large or a small
amount of sunshine. To determine the occurring probability of each scenario, it is
assumed that at the end of each time period, there is a given probability to switch
from the base scenario that just occurred to another base scenario. For example, if
the probability to switch from one base scenario to the other is 0.5 at the end of
each time period, each scenario of the tree depicted in Figure 3.1 has probability
0.53 = 0.125 to occur.
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Figure 3.1: A scenario tree. Each leaf corresponds to a scenario, the branch to the
left indicates low sunshine (0), the branch to the right indicates high sunshine (1).
The sequence of the sunshine levels corresponding to a given scenario is determined
by the sequence of its ancestors (starting from the root).

Introducing stochasticity with a scenario tree approach has some consequences
on an optimization problem. First, a set of decision variables is associated to each
scenario: they represent the decisions that must be taken if the associated scenario
occurs. Then, the objective function becomes the expected value of the objective
value for each scenario. Finally, nonanticipativity constraints are introduced: they
ensure that the decisions are coherent. A stochastic model indeed represents a pro-
cess over a whole time horizon. As long as two scenarios can be confounded as they
occur, the decisions that are taken have to be the same. In the example depicted in
Figure 3.1, consider the two scenarios (0, 0, 0) and (0, 0, 1). It is impossible to know
which of the scenarios is happening during the two first time periods. Therefore,
the variables associated to both scenarios have to take the same values during these
two periods.

In the bilevel context of (SBPP), the situation is more complex. The stochas-
ticity is introduced at the lower level. Therefore, both the leader and the follower
optimize the expected value of their objective. Clearly, the SGO is directly impacted
by the occurring scenario and has to modify his consumption schedule according
to the DG. However, it is not acceptable for the leader to offer prices that differ
according to the weather, thus there is a single vector of prices, not associated to a
specific scenario, for the leader. Prices are thus here-and-now variables.

3.1.2 Notations

The parameters of the model are defined as follows:

• Time slots are denoted by h ∈ H.
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• The pair (n, a) denotes the device (also referred to as appliance) a ∈ An of
client n ∈ N .

• The devices are all preemptive, which means that their consumption can be
adjusted (like air-conditioners or heaters). The device (n, a) is defined by
three parameters: a time window containing successive time slots T(n,a) =
{T first

(n,a), . . . , T
last
(n,a)} during which the device must receive E(n,a) energy units

(kWh), with a maximum of βmax
(n,a) energy units (usually kWh) per time slot.

• For each client n and device a ∈ An, the preferred time slot in the time window
to start the corresponding device is the first one T first

(n,a). C
h
(n,a) represents the

inconvenience factor when (n, a) is not started at T first
(n,a). For the sake of

consistency, the units of Ch(n,a) are e/kWh. As large delays induce large
inconvenience, the following formula is considered:

Ch(n,a) = λ(n,a)
h− T first

(n,a)

T last
(n,a) − T

first
(n,a)

, (3.1)

where λ(n,a) represents the heterogeneity of consumers with respect to the
delay.

• There is a renewable energy production source, whose production at time
h ∈ H in scenario σ ∈ Σ is bounded by λh,σmax.

• The storage capacities managed by the SGO are defined by the following
parameters:

– Smin and Smax are the lower and upper bound for the energy that can
be stored.

– Since storing energy implies losses, there are a charging coefficient 0 ≤
ρc ≤ 1, and a discharging coefficient 0 ≤ ρd ≤ 1.

• The energy cost function is denoted byKh and depends on the time h ∈ H and
the quantity of energy that must be supplied. For each h ∈ H, Kh is a convex,
monotonically increasing function. In this thesis, the energy is assumed to be
bought in the spot market. For the sake of simplicity, we assume that Kh is a
linear function in the market price, but Kh could be extended to an increasing
piecewise linear function.

• Finally, the SGO can buy the energy from a competitor at a time-dependent
price p̄h.

The decision variables of the leader and the follower are:
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• The leader controls the energy prices ph, which are not dependent on the
scenarios.

• For time slot h ∈ H and scenario σ ∈ Σ, the follower defines the following
variables:

– xh,σ(n,a) denotes the energy bought from the leader to be consumed by
device (n, a).

– x̄h,σ(n,a) denotes the energy bought from the competitor to be consumed
by device (n, a).

– λh,σ(n,a) denotes the energy that is consumed by device (n, a) coming from
the DG.

– sh,σ(n,a) denotes the quantity of energy stored in the battery that is con-
sumed by device (n, a).

– Sh,σ denotes the quantity of energy stored in the battery at the beginning
of time slot h.

– λh,σs denotes the energy coming from the DG that is stored into the
battery.

– xh,σs denotes the energy quantity bought from the leader to be stored
into the battery.

– x̄h,σs denotes the energy quantity bought from the competitor to be stored
into the battery.

In the rest of this section, bold variables indicate the aggregation of the variables
that differ through their indices and exponents. For example, S denotes the vectors
of battery states

(
S0,σ, . . . , SH+1,σ

)
σ∈Σ

, and x is used to denote all variables of the

form xh,σ(n,a) or xh,σs .
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3.1.3 Follower’s problem

For fixed leader’s decisions, the optimization problem of the follower (Pf ) can be
formulated as:

min
x,x̄,λ,s,S

∑
σ∈Σ

P [σ] ·


∑
n∈N
a∈An
h∈T(n,a)

Ch(n,a)

(
xh,σ(n,a) + x̄h,σ(n,a) + λh,σ(n,a) + sh,σ(n,a)

)

+ phxh,σ(n,a) + p̄hx̄h,σ(n,a)

+
∑
h∈H

(
phxh,σs + p̄hx̄h,σs

)


s.t.



∑
h∈T(n,a)

(
xh,σ(n,a) + x̄h,σ(n,a) + λh,σ(n,a) + sh,σ(n,a)

)
≥ E(n,a) ∀n ∈ N, a ∈ An, σ ∈ Σ

xh,σ(n,a) + x̄h,σ(n,a) + λh,σ(n,a) + sh,σ(n,a) ≤ β
max
(n,a) ∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

λh,σs +
∑
n∈N
a∈An

λh,σ(n,a) ≤ λ
h,σ
max ∀h ∈ H, σ ∈ Σ

∑
n∈N
a∈An

sh,σ(n,a) ≤ S
h,σ ∀h ∈ H, σ ∈ Σ

S0,σ = Sstart ∀σ ∈ Σ

Sh+1,σ = ρdSh,σ −
∑
n∈N
a∈An

sh,σ(n,a)

+ρc
(
λh,σs + xh,σs + x̄h,σs

)
∀h ∈ H, σ ∈ Σ

Smin ≤ Sh,σ ≤ Smax ∀h ∈ H, σ ∈ Σ

x, x̄,λ, s ≥ 0,

xh,σ(n,a) = xh,σ
′

(n,a), x̄h,σ(n,a) = x̄h,σ
′

(n,a)

λh,σ(n,a) = λh,σ
′

(n,a), sh,σ(n,a) = sh,σ
′

(n,a)

∀h ∈ H, n ∈ N, a ∈ An, (σ, σ′) ∈ Comh

λh,σs = λh,σ
′

s , Sh,σ = Sh,σ
′ ∀h ∈ H, (σ, σ′) ∈ Comh

where

Comh =
{(
σ, σ′

)
∈ Σ2 | σ ≺ σ′, λh′,σmax = λh

′,σ′
max ∀h′ ∈ H, h′ ≤ h

}
is the set of pairs of scenarios that are similar (at least) until h ∈ H.

The follower’s problem is a stochastic multi-stage linear problem. The objective
function is the generalized cost of the consumer, composed of three parts: the
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inconvenience cost, the cost of the energy that is purchased from the suppliers
to power the devices, and the cost of the energy that is purchased to be stored.
The first constraint ensures that each device receives enough energy during its
associated time window. The second constraint ensures that the power limit of
each device is not exceeded. The upper bound on the DG consumption is set by
the third constraint. The fourth constraint asserts that the energy taken from the
storage during time slot h does not exceed the available quantity of energy stored
in the battery at the beginning of time h. The next three constraints describe the
battery: the energy level in the battery is Sstart at the beginning of the time horizon,
the energy quantity in the battery depends on the energy taken from it and the
energy stored in it, and the stored energy quantity is lower- and upper-bounded.
Finally, after the necessary nonnegativity constraints, the last six constraints are
the nonanticipativity constraints explained in Subsection 3.1.1.

To decrease the number of nonanticipativity constraints, we arbitrarily define a
complete ordering of the scenarios, denoted by ≺. Only pairs of increasing scenarios
are part of Comh, which avoids considering for example both equations λh,σs = λh,σ

′
s

and λh,σ′s = λh,σs , which are the same for given h ∈ H, (σ, σ′) ∈ Comh.

3.1.4 Leader’s problem

The objective function of the leader consists in maximizing the expectation over
all scenarios of his revenue, defined as the sum of the sales minus the energy costs.
The sales are the sum of the energy sold to the SGO to power the appliances or to
be stored, whereas the energy costs are described by the function Kh. This gives
rise to Problem (Pl):

max
p

∑
σ∈Σ

P [σ] ·


∑
n∈N
a∈An
h∈T(n,a)

phxh,σ(n,a) +
∑
h∈H

phxh,σs −
∑
h∈H

Kh

xh,σs +
∑

n∈N,a∈An
s.t. h∈T(n,a)

xh,σ(n,a)




s.t. (x, x̄,λ, s,S) ∈ argmin (Pf ) .

Note that lower and upper bounds on the prices are implicit. Negative prices
would induce losses for the leader, whereas prices higher than the competitor’s
prices imply that the follower buys from the competitor.

3.2 Simplified problems and complexity

In this section, simplified versions of the problem (Pl) are defined and studied. In
particular, they do not include DG or storage, nor do they consider multiple scenar-



40 Chapter 3. Single-Leader Single-Follower

ios. The idea is to study the theoretical computational complexity of the problem:
the problem having a specific structure, the fact that bilinear bilinear bilevel prob-
lems are in general NP-hard does not guarantee the NP-hardness of (Pl). The
complexity may arise from two different features: the energy costs and/or the in-
convenience costs. As for the rest of this chapter, the energy costs and inconvenience
costs are assumed to be linear with respect to the energy that is produced, respec-
tively consumed. However, the inconvenience factors can be arbitrarily chosen and
do not depend on the delay.

3.2.1 One device

In this subsection, we assume that the follower wants to schedule the usage of a
single device of a single client. We therefore omit the device’s name in the model:

max
p

∑
h∈H

(
phxh −Kh

(
xh
))

s.t.



min
x,x̄

∑
h∈H

(
phxh + p̄hx̄h + Ch

(
xh + x̄h

))

s.t



∑
h∈H

(
xh + x̄h

)
≥ E

xh + x̄h ≤ βmax ∀h ∈ H

xh, x̄h ≥ 0 ∀h ∈ H.

(3.2)

3.2.1.1 No energy cost - no inconvenience cost

In this first case, we do not consider energy cost and inconvenience functions. It
follows that:

• If the follower buys energy at time h, the price he pays will be equal to
min

{
xh, x̄h

}
.

• As there is no inconvenience, the incentive for the follower to consume at a
specific time slot is related to his billing cost, and thus to the price. Let
k = bE/βc. The follower will consume β energy units during the k cheapest
time slots, and E − kβ energy units during the (k + 1)th cheapest slot.

• There are no production costs for the leader, thus maximizing the leader’s
objective requires to set the prices as high as possible.

It results that an optimal solution for the leader is defined as ph = p̄h for all
h ∈ H. This is naturally only true in the assumed optimistic setting.
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3.2.1.2 Energy cost - no inconvenience cost

In this section, we assume that the cost function Kh is a linear function, with slope
kh. To get some intuition, consider the case of a device requiring three energy
units during a time window of five time slots, with a maximal consumption of one
energy unit per time slot (i.e. E = 3, βmax = 1, and T = H = {1, . . . , 5}. Let
h : R5 × {1, . . . , 5} → {1, . . . , 5} be a map such that

i < j ⇒


ph(p,i) < ph(p,j)

or

ph(p,i) = ph(p,j) and kh(p,i) ≤ kh(p,j).

For a given price profile p, the function h(p, ·) : {1, . . . , 5} → {1, . . . , 5} gives an
ordering of the time slots such that the prices are in increasing order, and in case
of equality, the time slot with the smallest energy cost has a lower order. It follows
directly that for a leader price profile p, the follower will provide one energy unit
to his appliance during time slots h(p, 1), h(p, 2), and h(p, 3). In particular, the
optimal objective value of the follower is

∑3
i=1 p

h(p,i), and the leader’s profit is∑3
i=1

(
ph(p,i) − kh(p,i)

)
, since the profit per energy unit at time h ∈ H is ph − kh.

The competitor’s prices and energy costs for each time slot are described in
Figure 3.2. Without loss of generality, the competitor’s prices are so that for i ∈
{1, . . . , 5}, h(p̄, i) = i, that is the competitor’s prices are in increasing order. If the
leader copies the prices of the competitor, the appliance is going to be used during
the three first time slots, for a total price of 7.5.

Figure 3.2: The competitor’s prices, and the leader’s energy costs.

To find the optimal price profile of the leader, we rely on inverse optimization
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based on the shape of the follower’s optimal response to the leader’s prices. Assume
first that the appliance is not necessarily powered during the first time slot. This
means that the prices at time slots 2 to 5 are lower than or equal to the price
offered at time slot 1. The optimal leader price profile p−1 to achieve this is clearly
ph−1 = p̄1 for h = 1, . . . , 5, as in Figure 3.3.

Figure 3.3: The competitor’s prices, the leader’s energy costs, and the leader’s
prices.

Since we assume an optimistic setting and the follower’s reaction set is clearly
no singleton, the follower will power his device during the time slots that are most
advantageous for the leader, i.e. the slots 1, 3 and 4, since they are associated
with the lowest energy costs. This induces a profit of 4.8 for the leader. However,
this solution is not optimal for the leader. Indeed, let us assume that energy is
necessarily consumed during the first time slot. Then, the price of the next time
slots can be raised to increase the leader’s profit. If the device is not necessarily
powered during the second time slot, following the same reasoning, it results that
the optimal leader price profile p−2 to achieve such a follower’s response is

ph−2 =

 p̄1 if h = 1

p̄2 if h = 2, . . . , 5,

as depicted in Figure 3.4. The follower will then power his device during the time
slots 1, 3 and 4, defining a profit of 5.8 for the leader.

Finally, we repeat the previous reasoning and assume that the device is powered
during the two first time slots, but not during the third. As depicted in Figure 3.5,
the corresponding price profile p−3 is:

ph−3 =


p̄1 if h = 1

p̄2 if h = 2

p̄3 if h = 3, . . . , 5.
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Figure 3.4: The competitor’s prices, the leader’s energy costs, and the leader’s
prices.

The follower’s reaction to the price profile p−3 consists in consuming the maximal
energy quantity during time slots 1, 2 and 4, leading to a leader profit equal to 5.4.

Figure 3.5: The competitor’s prices, the leader’s energy costs, and the leader’s
prices.

Observe that the three successive cases where energy is consumed or not nec-
essarily can be represented as the leaves of a rooted tree, as in Figure 3.6. The
ith level of the tree (i.e. nodes that have the distance i to the root) is associated
with the ith time slot: the leaf to the left denoted by −i represents the case where
energy is not necessarily consumed at time i, whereas the node to the right denoted
by i represents the case where energy is consumed at time i. The total number of
leaves (and thus considered cases) is therefore dE/βmaxe. These leaves define the
set of the possible candidates for optimality. In the previous example, the optimal
prices associated with each leaf −i are the prices p−i for i = 1, 2, 3, whereas leaf 3
is associated with the prices p3 = p̄. Considering these four cases allows us to find
the optimal leader price profile p∗ = p−2. By generalizing the previous reasoning,
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it results that the optimal leader price profile for the simplified problem with energy
costs belongs to the set(p1, . . . , p|H|) |

ph = p̄h ∀h ∈ {1, . . . , i}

ph = p̄i+1 ∀h ∈ {i+ 1, . . . , |H|}
i = 0, . . . , |H|

 . (3.3)

Figure 3.6: The tree of possible cases. Every leaf represents a case. The case where
energy is not necessarily consumed at time h is denoted by −h, whereas h indicates
the case where energy is necessarily consumed at time h.

In conclusion, to determine the optimal leader price profile, it is sufficient to
compute the follower’s reaction to each of the price profiles defined in (3.3), compute
the corresponding leader’s profit, and select the price profile that yields the best
profit. This process is clearly running in polynomial time with respect to the number
of time slots H.

3.2.1.3 No energy cost - inconvenience cost

In this subsection, we assume that the follower undergoes inconvenience depending
on the time of usage of his device, but that the leader does not have energy costs.
The inconvenience function Ch is linear with respect to the demand xh + x̄h, with
factor ch ≥ 0 at time h ∈ H. As in the previous subsection, an example is provided
before stating the general algorithm: the device needs three units of energy during
a time window of five time slots, with a maximal consumption of one energy unit
per time slot, as in the previous example. The parameters are given in Figure 3.7.
Without loss of generality, the time slots are ordered in increasing order of values
p̄h + ch. The generalized cost for the follower to buy an energy unit at time h ∈ H
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is equal to min{ph, p̄h} + ch. Therefore, if the leader sets the prices at the same
level as the competitor for all time slots h ∈ H, the follower will power his device
during the three first time slots, defining a leader’s profit equal to 7.5.

Figure 3.7: The competitor’s prices and the inconvenience factors.

To find the optimal leader price profile, the solution algorithm proposed here is
based on the scenario tree depicted in Figure 3.6. From the first to the kth time
slot, where k = dE/βmaxe, the follower’s device can be powered or not. The case
corresponding to leaf −1 is the case where the device is not necessarily powered
during the first time slot. As a consequence, the generalized cost for the follower
for any time slot is lower than or equal to the generalized cost of the first time slot,
p̄1 + c1. Therefore, the optimal price profile for this configuration is

ph−1 = p̄1 + c1 − ch ∀h ∈ H.

The situation is depicted in Figure 3.8. Since we assume an optimistic setting, in
case of equal generalized cost, the follower will power his device during the time
slots generating a higher profit to the leader. In this case, they are the time slots
with the smallest inconvenience factors, i.e. time slots 1, 2 and 5, yielding a profit
equal to 4.9 for the leader.

If the device is powered during the first time slot, but not necessarily during the
second one, the optimal leader price profile is given by

ph−2 =

 p̄1 if h = 1

p̄2 + c2 − ch otherwise.

This price profile encourages the follower to consume energy during time slots 1,
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Figure 3.8: The competitor’s prices plus the inconvenience factor, the inconvenience
factor, and the leader’s prices p−1 plus the inconvenience factor.

2, and 5, like in the previous case, but the leader’s profit increases to 6.9. This
situation is depicted in Figure 3.9.

Figure 3.9: The competitor’s prices plus the inconvenience factor, the inconvenience
factor, and the leader’s prices p−2 plus the inconvenience factor.

Finally, let us assume that energy is consumed during the two first time slots,
but not necessarily during the third one. The optimal price profile is then given by

ph−3 =


p̄1 if h = 1

p̄2 if h = 2

p̄3 + c3 − ch otherwise,

as represented in Figure 3.10. In this case, the follower powers his device during the
time slots 1, 2 and 5 again, resulting in a leader’s profit equal to 7.9. This situation
corresponds to an optimal solution of the problem.

By generalizing this process, it results that the optimal leader price profile be-
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Figure 3.10: The competitor’s prices plus the inconvenience factor, the inconve-
nience factor, and the leader’s prices p−3 plus the inconvenience factor.

longs to the set(p1, . . . , p|H|) |
ph = p̄h ∀h ∈ {1, . . . , i}

ph = p̄i+1 + ci+1 − ch ∀h ∈ {i+ 1, . . . , |H|}
i = 0, . . . , k

 ,
(3.4)

where k = dE/βmaxe, and the time slots are such that the values p̄h + ch are in
increasing order, as assumed without loss of generality. In conclusion, we can argue
that finding the optimal leader price profile takes polynomial time.

3.2.1.4 Energy cost - inconvenience cost

To conclude the study of problems with a single device, we consider that the leader
faces a cost kh ≥ 0 for the energy he sells for all h ∈ H, and the follower undergoes
inconvenience, thus ch ≥ 0 for all h ∈ H. Like in the two previous cases, we first
consider an example, whose parameters are given in Figure 3.11. As in the previous
case, it is assumed without loss of generality that the time slots are ordered such
that the values p̄h + ch are increasing. Furthermore, if for some h ∈ H, the equality
p̄h + ch = p̄h+1 + ch+1 holds, then kh ≤ kh+1.

First, if the leader defines his prices according to the competitor’s prices (ph = p̄h

for all h ∈ H), the follower will buy energy during the first three time slots, since
they are the ones with the smallest generalized costs. The same tree as in the
two previous cases is parsed (see Figure 3.6). Assume first that the device is not
necessarily powered during the first time slot. The optimal price profile is:

ph = p̄1 + c1 − ch ∀h ∈ H.
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Figure 3.11: The competitor’s prices, the inconvenience factor, their sum, and the
energy cost.

The follower has thus access to energy at the same generalized cost (buying cost
plus inconvenience) at all time slots. Therefore, he will power his device during
the time slots 1, 3 and 5, since those are the time slots such that ph − kh are the
smallest, thus offering the highest revenue to the leader. Naturally, this results from
the optimistic assumption. This first case is depicted in Figure 3.12, and results in
a leader’s profit equal to 3.3.

Figure 3.12: The competitor’s prices plus the inconvenience factor, the energy cost,
the leader’s prices p−1 plus the inconvenience factor, and the leader’s profit per
energy unit.

Second, let us assume that the follower does power his device during the first
time slot, but not necessarily during the second one. The optimal leader price
profile is

ph−2 =

 p̄1 if h = 1

p̄2 + c2 − ch otherwise,

as represented in Figure 3.13. In this case, the follower powers his device during
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the time slots 1, 3 and 5, which brings a profit of 5.3 to the leader.

Figure 3.13: The competitor’s prices plus the inconvenienc factore, the energy cost,
the leader’s prices p−2 plus the inconvenience factor, and the leader’s profit per
energy unit.

Finally, let us assume that the device is powered during the two first time slots,
but not necessarily during the third one. The optimal leader price (see Figure 3.14)
is

ph−3 =


p̄1 if h = 1

p̄2 if h = 2

p̄3 + c3 − ch otherwise,

which induces energy consumption by the follower at time slots 1, 2 and 3. The
corresponding revenue for the leader is equal to 5.1.

Figure 3.14: The competitor’s prices plus the inconvenience factor, the energy cost,
the leader’s prices p−3 plus the inconvenience factor and the leader’s profit per
energy unit.

As a conclusion for this example, the optimal price profile of the leader is p−2.
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Let us remark that the price profiles p−1, p−2 and p−3 are the same as in Sub-
section 3.2.1.3. However, the follower’s responses to those price profiles directly
depend on the leader’s energy costs. Hence, the optimal leader price profile belongs
to the set defined in (3.4). The brute force algorithm consisting in solving the fol-
lower’s problem for each of the potentially optimal price profiles and computing the
corresponding leader revenue runs in polynomial time, with respect to the number
of time slots.

It follows from these four studied cases that solving Problem 3.2 is easy: when
there are no inconvenience costs for the follower, nor energy costs for the leader, the
leader’s optimal price profile is given by the competitor’s prices. Otherwise, there
is a brute force algorithm that runs in polynomial time with respect to the number
of time slots.

3.2.2 Multiple devices

In this section, we consider the problem involving several devices:

max
p

∑
h∈H

ph ∑
n∈N

∑
a∈An

xh(n,a) −K
h

∑
n∈N

∑
a∈An

xh(n,a)



s.t.



min
x,x̄

∑
h∈H

∑
n∈N

∑
a∈An

(
phxh(n,a) + p̄hx̄h(n,a) + Ch(n,a)

(
xh(n,a) + x̄h(n,a)

))

s.t



∑
h∈T(n,a)

(
xh(n,a) + x̄h(n,a)

)
≥ E(n,a) ∀n ∈ N, a ∈ An

xh(n,a) + x̄h(n,a) ≤ β
max
(n,a) ∀h ∈ H, n ∈ N, a ∈ An

xh(n,a), x̄
h
(n,a) ≥ 0 ∀h ∈ H, n ∈ N, a ∈ An.

(3.5)

The inconvenience costs and the energy costs are assumed to be linear functions: for
n ∈ N and a ∈ An, Ch(n,a)

(
xh(n,a) + x̄h(n,a)

)
= ch(n,a) ·

(
xh(n,a) + x̄h(n,a)

)
, and Kh(x) =

khx.

3.2.2.1 No energy cost - no inconvenience cost

If there are no inconvenience and no energy costs, the leader has no interest in
inducing load shifts. Therefore, an optimal solution consists in mimicking the com-
petitor’s behavior and setting

ph = p̄h ∀h ∈ H.

3.2.2.2 Energy cost - no inconvenience cost

In this section, we assume that the leader faces energy costs, but that the follower
does not undergo any inconvenience. The parameters of Problem (3.5) are the com-
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petitor’s prices p̄, the energy costs factors kh for all h ∈ H, and the inconvenience
factors ch(n,a) for all n ∈ N , a ∈ An and h ∈ T(n,a), the latter being all set to zero.
Let us define

P =
{(
p1, . . . , p|H|

)
| ∀h ∈ H ∃h′ ∈ H : ph = p̄h

′}
.

It is easy to see that
|P | ≤ |H||H|.

The size of P is thus polynomial with respect to the number of devices, even though
it is superexponential with respect to the number of time slots. By proving that
an optimal leader’s price profile belongs to P , we conclude that for a fixed value
of H, solving Problem (3.5) requires polynomial time with respect to the number
of devices. The brute force algorithm consisting in testing each of the potentially
optimal solutions in P indeed requires polynomial time, since testing one potential
solution requires solving the follower’s linear optimization problem, which can be
done in polynomial time, with respect to the number of devices.

Proposition 3.2.1. Given a price profile p inducing an optimistic follower’s re-
sponse (x, x̄), there is a price profile p̂ ∈ P such that:

1. p̂h ≥ ph for all h ∈ H such that xh > 0,

2. (x, x̄) belongs to the solution set of the follower’s problem determined by p̂.

Proof. For all h ∈ H, set

p̂h =

 maxh′∈H p̄h
′ if ph > maxh′∈H p̄h

′

min{p̄h′ | h′ ∈ H, p̄h′ ≥ ph} otherwise.

First, let us observe that if ph > p̄h, the follower will not buy energy from the
competitor at time h ∈ H, therefore p̂ satisfies Condition 1.

Then, let us consider one of the devices a ∈ An, with n ∈ N . This device will
be powered during the k = dE(n,a)/β

max
(n,a)e time slots belonging to T(n,a) for which

the energy is the cheapest. This means that the follower’s response is uniquely
determined by the order of the values min{ph, p̄h}. This order is preserved with p̂,
since ph ≤ ph

′ for some h, h′ ∈ H implies that p̂h ≤ p̂h
′ . It follows directly that

(x, x̄) is an optimal follower’s response to p̂.

Proposition 3.2.1 states that every follower’s response (x, x̄) that can be induced
by a price profile p can also be induced by a price profile p̂. Since p̂ satisfies
Condition 1, the follower’s response (x, x̄) generates a higher profit for the leader
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with p̂ than with p. Furthermore, it is not guaranteed that (x, x̄) is an optimistic
response to p̂. However, an optimistic response to p̂ will yield at least the same
profit for the leader as (x, x̄). It directly follows from these remarks that for a given
price profile p, a higher profit is achieved by setting the prices to p̂. In conclusion,
an optimal price profile always belongs to P . As a conclusion, for a fixed value
of H, solving Problem (3.5) in the case where the follower does not undergo any
inconvenience takes polynomial time with respect to the number of devices. It is
not clear yet whether there exists a polynomial time algorithm with respect to the
number of time slots as well.

3.2.2.3 No energy cost - inconvenience

In this section, we propose a conjecture, based on the same reasoning as in Section
3.2.2.2.

Definition 3.2.2. For all h ∈ H, we define the set

P hopt = {p̄h′ + Ch
′

(n,a) − C
h
(n,a) | h

′ ∈ H, n ∈ N, a ∈ An}.

The product of these sets is

Popt =
∏
h∈H

P hopt.

Observe that for h ∈ H, the size of P hopt is at most H ·
∑
n∈N |An|. Therefore,

the size of Popt is at most equal to (H ·
∑
n∈N |An|)

H , and thus of polynomial size
with respect to the number of devices for a fixed value of H.

Conjecture 3.2.3. For any leader price profile p inducing a follower’s response(
x(n,a), x̄(n,a)

)
n∈N,a∈An

, there exists a price profile p̂ ∈ Popt such that:

1. p̂h ≥ ph for all h ∈ H such that there are n ∈ N , a ∈ An, with xh(n,a) > 0,

2.
(
x(n,a), x̄(n,a)

)
n∈N,a∈An

belongs to the solution set of the follower.

Conjecture 3.2.3 implies that for every price profile inducing a given followers’
response, there is another price profile belonging to a finite set that brings a higher
profit with the same followers’ response, because the prices of the other price profile
are higher than the ones in the initial price profile. Therefore, if Conjecture 3.2.3
is verified, then the brute force algorithm consisting in trying all the potentially
optimal solutions in Popt takes polynomial time with respect to the number of
devices and yields an optimal solution for the leader, for the same reasons as in
Subsection 3.2.2.2.
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3.2.2.4 Energy cost - inconvenience

If Conjecture 3.2.3 holds, then the same conclusions can be derived if the en-
ergy costs are nonzero. That is, for a price profile p inducing a follower’s
response

(
x(n,a), x̄(n,a)

)
n∈N,a∈An

, there is a price profile p̂ ∈ Popt such that(
x(n,a), x̄(n,a)

)
n∈N,a∈An

belongs to the set of solutions of the follower’s problem,
and such that for all h ∈ H, ph ≤ p̂h if the demand is nonzero at this time. Thus,
the leader price profile p̂ would generate a higher profit for the leader than p, there-
fore there is an optimal price profile in Popt, whose size is polynomial in the number
of devices.

In conclusion, Problem 3.5 can possibly be solved in polynomial time with re-
spect to the number of devices for a given number of time slots H. However, even
if Conjecture 3.2.3 holds, the size of Popt increases rapidly with H. The brute force
algorithm requires solving |Popt| linear programs, which would require a long time.
Thus for solving Problem 3.5, with multiple devices and inconvenience and/or en-
ergy costs, we surely need to design exact algorithms or heuristics based on the
structure of the problem.

3.3 Numerical resolution of (SBPP)

In this section, we give a single-level mixed-integer formulation of (SBPP), and pro-
vide numerical results obtained through the resolution of the one-level reformulation
using CPLEX [CPL 2014].

3.3.1 One-level formulation of (SBPP)

For fixed decisions of the leader, the follower’s problem is linear. Therefore, it
can be replaced by its optimality conditions (primal constraints, dual constraints,
and the complementarity slackness constraints) in the leader’s problem, giving rise
to a mathematical program with complementarity constraints (MPCC), which can
be linearized through the big M method, yielding a MIP. This method consists in
replacing constraints of the following form

a · b = 0

a, b ≥ 0
by the constraints

a ≤Mϑ

b ≤M(1− ϑ)

a, b ≥ 0

ϑ ∈ {0, 1},
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which are equivalent for M sufficiently large. However, as shown in [Pineda 2018]
and [Kleinert 2019a], determining the best value forM is hard. Despite this, the big
M method is widely used in bilevel programming (as for instance in [Casorrán 2019]
or [Garces 2009]), since MIPs can be solved efficiently using commercial solvers. For
the numerical results, we proceed in an empirical way, systematically testing values
for M until the solver is able to provide satisfactory results from the points of view
of the computation time and the solution quality.

Let us denote a tuple of primal variables by

ϕp = (x, x̄,λ, s,xs, x̄s,λs,S) .

This tuple belongs to Primal if it satisfies the primal constraints of (Pf ):

∑
h∈T(n,a)

(
xh,σ(n,a) + x̄h,σ(n,a) + λh,σ(n,a) + sh,σ(n,a)

)
≥ E(n,a)

(
dEσ(n,a)

)
∀n ∈ N, a ∈ An, σ ∈ Σ

xh,σ(n,a) + x̄h,σ(n,a) + λh,σ(n,a) + sh,σ(n,a) ≤ β
max
(n,a)

(
dβmax,σ

(n,a)

)
∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

λh,σs +
∑
n∈N
a∈An

λh,σ(n,a) ≤ λ
h,σ
max

(
dλh,σmax

)
∀h ∈ H, σ ∈ Σ

S0,σ = Sstart (dSσ0 ) ∀σ ∈ Σ

Sh+1,σ = ρdSh,σ −
∑

n∈N
a∈An

sh,σ(n,a)

+ρc
(
λh,σs + xh,σs + x̄h,σs

) (
dSh,σ

)
∀h ∈ H, σ ∈ Σ∑

n∈N
a∈An

sh,σ(n,a) ≤ S
h,σ

(
dsh,σmax

)
∀h ∈ H, σ ∈ Σ

Smin ≤ Sh,σ ≤ Smax (
dSh,σmin, dS

h,σ
max
)
∀h ∈ H, σ ∈ Σ

xh,σ(n,a) = xh,σ
′

(n,a)

(
dxσ,σ

′,h
(n,a)

)
∀h ∈ H, n ∈ N, a ∈ An, (σ, σ′) ∈ Comh

x̄h,σ(n,a) = x̄h,σ
′

(n,a)

(
dx̄σ,σ

′,h
(n,a)

)
∀h ∈ H, n ∈ N, a ∈ An, (σ, σ′) ∈ Comh

λh,σ(n,a) = λh,σ
′

(n,a)

(
dλσ,σ

′,h
(n,a)

)
∀h ∈ H, n ∈ N, a ∈ An, (σ, σ′) ∈ Comh

sh,σ(n,a) = sh,σ
′

(n,a)

(
dsσ,σ

′,h
(n,a)

)
∀h ∈ H, n ∈ N, a ∈ An, (σ, σ′) ∈ Comh

λh,σs = λh,σ
′

s

(
dλσ,σ

′,h
s

)
∀h ∈ H, (σ, σ′) ∈ Comh

xh,σs = xh,σ
′

s

(
dxσ,σ

′,h
s

)
∀h ∈ H, (σ, σ′) ∈ Comh

x̄h,σs = x̄h,σ
′

s

(
dEσ(n,a)

)
∀h ∈ H, (σ, σ′) ∈ Comh

Sh,σ = Sh,σ
′

(
dSσ,σ

′,h
)

∀h ∈ H, (σ, σ′) ∈ Comh

x, x̄,λ, s ≥ 0
(
dxh,σ(n,a), dx̄

h,σ
(n,a), dx

h,σ
s , dx̄h,σs , dλh,σ(n,a), dλ

h,σ
s , dsh,σ(n,a)

)
The variables between parentheses are the dual variables associated to each of the
constraints. Let us denote a tuple of dual variables by

ϕd =
(
dE,dβ,dλmax,dS,ds,dSmin,dSmax,dx,dx̄,dλ

)
.
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This tuple belongs to Dual if it satisfies the following constraints:

dEσ(n,a) − dβmax,σ
(n,a) +

∑
σ′∈Comh(σ)

sgn
(
σ, σ′

)
dxσ,σ

′,h
(n,a) ≤ P [σ]

(
ph + Ch(n,a)

)
∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

dEσ(n,a) − dβmax,σ
(n,a) +

∑
σ′∈Comh(σ)

sgn
(
σ, σ′

)
dx̄σ,σ

′,h
(n,a) ≤ P [σ]

(
p̄h + Ch(n,a)

)
∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

dEσ(n,a) − dβmax,σ
(n,a) − dλ

h,σ
max +

∑
σ′∈Comh(σ)

sgn
(
σ, σ′

)
dλσ,σ

′,h
(n,a) ≤ P [σ]Ch(n,a) ∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

dEσ(n,a) − dβmax,σ
(n,a) + dS − dsh,σ(n,a)

+
∑

σ′∈Comh(σ)

sgn
(
σ, σ′

)
dsσ,σ

′,h
(n,a) ≤ P [σ]Ch(n,a) ∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

− ρcdSh,σ +
∑

σ′∈Comh(σ)

sgn
(
σ, σ′

)
dxσ,σ

′,h
s ≤ P [σ]ph ∀h ∈ H, σ ∈ Σ

− ρcdSh,σ +
∑

σ′∈Comh(σ)

sgn
(
σ, σ′

)
dx̄σ,σ

′,h
s ≤ P [σ]p̄h ∀h ∈ H, σ ∈ Σ

− dλh,σmax − ρcdSh,σ +
∑

σ′∈Comh(σ)

sgn
(
σ, σ′

)
dλσ,σ

′,h
s ≤ 0 ∀h ∈ H, σ ∈ Σ

dSσ0 − ρddSh,σ + dsh,σ(n,a) +
∑

σ′∈Comh(σ)

sgn
(
σ, σ′

)
dSσ,σ

′,h ≤ 0 ∀σ ∈ Σ, h = 0

dSh−1,σ − ρddSh,σ + dsh,σ(n,a) + dSh,σmin − dS
h,σ
max

+
∑

σ′∈Comh(σ)

sgn
(
σ, σ′

)
dSσ,σ

′,h ≤ 0 ∀h ∈ H \ {0}, σ ∈ Σ

dSh−1,σ + dSh,σmin − dS
h,σ
max ≤ 0 ∀σ ∈ Σ, h = |H|+ 1

dEσ(n,a), dβ
max,σ
(n,a) , dλ

h,σ
max, ds

h,σ
(n,a), dS

h,σ
min, dS

h,σ
max ≥ 0 ∀σ ∈ Σ, h ∈ H, n ∈ N, a ∈ An,

where

Comh (σ) =
{
σ′ ∈ Σ |

(
σ, σ′

)
∈ Comh or

(
σ′, σ

)
∈ Comh

}
,

and the sign function is defined as follows:

sgn
(
σ, σ′

)
=


1 if σ ≺ σ′

0 if σ = σ′

−1 if σ � σ′.

Finally, let us denote by ϕ a pair
(
ϕp, ϕd

)
consisting of a tuple of primal variables

ϕp and a tuple of dual variables ϕd. This tuple ϕ belongs to Comp if it satisfies the
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following complementarity constraints:

xh(n,a)

(
dEσ(n,a) − dβmax,σ

(n,a) − P [σ]
(
ph + Ch(n,a)

))
= 0 ∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

x̄h(n,a)

(
dEσ(n,a) − dβmax,σ

(n,a) − P [σ]
(
p̄h + Ch(n,a)

))
= 0 ∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

λh(n,a)

(
dEσ(n,a) − dβmax,σ

(n,a) − dλ
h,σ
max − P [σ]Ch(n,a)

)
= 0 ∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

sh(n,a)

(
dEσ(n,a) − dβmax,σ

(n,a) + dS − dsh,σmax − P [σ]Ch(n,a)

)
= 0 ∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

xhs
(
−ρcdSh,σ − P [σ]ph

)
= 0 ∀h ∈ H, σ ∈ Σ

x̄hs
(
−ρcdSh,σ − P [σ]p̄h

)
= 0 ∀h ∈ H, σ ∈ Σ

λhs
(
−dλh,σmax − ρcdSh,σ

)
= 0 ∀h ∈ H, σ ∈ Σ

Sh
(
dSσ0 − ρddSh,σ + dsh,σmax

)
= 0 ∀σ ∈ Σ, h = 0

Sh
(
dSh−1,σ − ρddSh,σ + dsh,σmax + dSh,σmin − dS

h,σ
max
)

= 0 ∀h ∈ H \ {0}, σ ∈ Σ

Sh
(
dSh−1,σ + dSh,σmin − dS

h,σ
max
)

= 0 ∀σ ∈ Σ, h = |H|+ 1

dEσ(n,a)

 ∑
h∈T(n,a)

(
xh,σ(n,a) + x̄h,σ(n,a) + λh,σ(n,a) + sh,σ(n,a)

)
− E(n,a)

 = 0 ∀n ∈ N, a ∈ An, σ ∈ Σ

dβmax,σ
(n,a)

(
xh,σ(n,a) + x̄h,σ(n,a) + λh,σ(n,a) + sh,σ(n,a) − β

max
(n,a)

)
= 0 ∀n ∈ N, a ∈ An, h ∈ T(n,a), σ ∈ Σ

dλh,σmax

(
λh,σs +

∑
n∈N

∑
a∈An

λh,σ(n,a) − λ
h,σ
max

)
= 0 ∀h ∈ H, σ ∈ Σ

dsh,σmax

(∑
n∈N

∑
a∈An

sh,σ(n,a) − S
h,σ

)
= 0 ∀h ∈ H, σ ∈ Σ

dSh,σmin
(
Smin − Sh,σ

)
= 0 ∀h ∈ H, σ ∈ Σ

dSh,σmax
(
Sh,σ − Smax) = 0 ∀h ∈ H, σ ∈ Σ.

If ϕ =
(
ϕp, ϕd

)
belongs to (Primal ×Dual)∩Comp, then ϕp is primal optimal

and ϕd is dual optimal. Therefore, the leader’s problem is replaced by the single-
level program

(
PMPCC
l

)

max
p,ϕ

∑
σ∈Σ

P [σ] ·


∑
n∈N
a∈An
h∈T(n,a)

phxh,σ(n,a) +
∑
h∈H

phxh,σs −
∑
h∈H

Kh

xh,σs +
∑

n∈N,a∈An
s.t. h∈T(n,a)

xh,σ(n,a)




s.t. ϕ ∈ (Primal ×Dual) ∩ Comp.

Problem
(
PMPCC
l

)
is nonlinear due to the products of variables in the comple-

mentarity constraints and in the objective function. To get a mixed integer linear
problem (MILP), we linearize those products. First, observe that the problem

a · b = 0

a, b ≥ 0
(3.6)
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can be replaced by the problem

a ≤M · ε

b ≤M · (1− ε)

a, b ≥ 0,

ε ∈ {0, 1}

(3.7)

with M ∈ R sufficiently large. The same process is applied to the complementarity
constraints problem, and a binary variable as well as a big M are associated to each
of the complementarity constraints. For example, we replace the complementarity
constraint

dSh,σmin

(
Smin − Sh,σ

)
= 0

for some h ∈ H and some σ ∈ Σ by the constraints

dSh,σmin ≤M · ε

Sh,σ − Smin ≤M · (1− ε)

dSh,σmin, S
h,σ − Smin ≥ 0

ε ∈ {0, 1}.

If ϕ ∈ Φ satisfies the modified version of the complementarity constraints, then
ϕ =

(
ϕp, ϕd

)
belongs to the set Comp′. Observe that

(Primal ×Dual) ∩ Comp = (Primal ×Dual) ∩ Comp′.

The leader’s objective function is linearized with a strong duality result. If
ϕ =

(
ϕp, ϕd

)
∈ Φ belongs to (Primal ×Dual) ∩ Comp, then ϕp is primal optimal

and ϕd is dual optimal. By strong duality, the primal and dual objective functions
take the same value, therefore

∑
σ∈Σ

P [σ] ·


∑
n∈N
a∈An
h∈T(n,a)

Ch(n,a)

(
xh,σ(n,a) + x̄h,σ(n,a) + λh,σ(n,a) + sh,σ(n,a)

)

+phxh,σ(n,a) + p̄hx̄h,σ(n,a)

+
∑
h∈H

(
phxh,σs + p̄hx̄h,σs

)

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is equal to

∑
σ∈Σ

 ∑
n∈N
a∈An

E(n,a)dE
σ
(n,a) −

∑
h∈T(n,a)

βmax
(n,a)dβ

max,σ
(n,a)



+
∑
h∈H

(
−λhmaxdλ

h,σ
max + SmindSh,σmin − S

maxdSh,σmax

) .
It follows from the equality that the leader’s objective function can be rewritten as

F (ϕ) =


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Finally, the reformulation of (SBPP) as a MIP is
(
PMIP
l

)
max
ϕ

F (ϕ)

s.t. ϕ ∈ (Primal ×Dual) ∩ Comp′.

Problem (SBPP) can thus be solved to optimality by solving
(
PMIP
l

)
.

3.3.2 A single scenario case

The numerical results for (SBPP) comprise two parts. In the first part, we perform
sensitivity analyses for various parameters on large test instances considering a
single scenario. In the next part, multiple scenarios are addressed.

All the numerical results presented in this chapter are obtained through the
resolution of

(
PMIP
l

)
with CPLEX 12.6 on a Linux virtual machine with 10GB

RAM working on a computer equipped with an Intel i7-4600u processor at 2.10GHz.
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3.3.2.1 Test instances

Numerical results with a single scenario are discussed on instances based on data
retrieved from the industrial partner. The main characteristics of the base instance
are as follows:

• Each time slot represents 30 minutes.

• The time horizon is composed of 336 time slots corresponding to half hours
(thus a full week).

• The energy costs are based on the prices of electricity on the spot market
during a fall week (see Figure 3.16)

• The consumption of the 120 devices approximates the electricity consumption
due to the heating of a dozen households during a fall week (see Figure 3.15).

• The distributed generation scenario is based on the load factor profile for a
fall week, with a generation capacity large enough to cover the electricity
consumption during off-peak periods (see Figure 3.17).

Figure 3.15: The energy consumption retrieved from industrial data, and implied
by the devices if they are used during the first time slots of their associated time
window.

The sensitivity analysis is based on the perturbation of the following parameters:

• DG scenarios: we consider instances with respectively 0, 0.5 and 1.5 times the
generation considered in the base instance (see Figure 3.17).
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Figure 3.16: The spot prices retrieved from industrial data, and the spot prices for
the instance comprising high peak prices.

Figure 3.17: The distributed generations scenarios, with factors 0.5, 1 and 1.5.

• Inconvenience coefficients: three different instances where the devices have
associated inconvenience factors equal to respectively 0, 0.5 and 1.5 times the
inconvenience factor in the base instance.

• Energy costs: one instance where the energy costs are higher during peak
periods (see Figure 3.16), compared to the base instance,

• Battery sizes: three instances with respectively a small, a large, and no storage
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capacity.

• Time window sizes: one instance with larger time windows, one instance with
narrower time windows.

This yields in total thirteen instances of (SBPP) to solve.
Note that only the instance with zero inconvenience is solved to optimality

within the time limit of 1200 seconds. For the other ones, the optimality gaps
range from 0.3% (instance with low inconvenience cost) to 1.9% (instance with
larger time windows). The behavior of the solver CPLEX is illustrated in Figure
3.18 for the base instance. The solver is able to find a relatively good solution early
in the process, but fails to close the optimality gap subsequently.

Figure 3.18: The solver’s behavior on the base instance.

The numbers of variables and constraints of the MIP do not only depend on the
number of time slots and the number of devices, but also on the length of the time
windows and their position in the time horizon. A time window located in the first
time period will generate more nonanticipativity constraints than a time window
located near the end of the time horizon. As an indication, the base instance involves
35530 constraints, 33745 continuous variables and 1157 binary variables, which are
reduced to respectively 3356, 2290 and 1061 with CPLEX’ presolve process.

3.3.2.2 Sensitivity results with respect to the DG scenarios

The first parameter to be analyzed is the DG scenario. Four such scenarios are
considered: 0, 0.5, 1, and 1.5 times the base DG scenario, as represented in Figure
3.17. All the energy coming from DG is either stored or directly consumed, as
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can be seen in Figure 3.19 for the base scenario. This behavior results from the
fact that DG is considered as free for the follower. It follows directly that if the
distributed generation increases, the amount of energy bought from the grid will
decrease accordingly. This affects the leader’s profits (see Figure 3.20). As expected,
the highest profit for the leader occurs when there is no distributed generation.

Figure 3.19: The DG consumption for the base instance.

Figure 3.20: The leader’s objective values for the instances with various DG sce-
narios.

As for the demand, the fact that the follower’s problem is linear induces an "all
or nothing" situation: if for time slots h1 < h2, the generalized cost of powering
a device (n, a) during h2 is smaller than during h1 (i.e. min{ph1 , p̄h1} + Ch1

(n,a) >

min{ph2 , p̄h2} + Ch2
(n,a)), then all the energy that would be consumed during h1 in

the reference case will be shifted to h2. This explains the huge variations in the
follower’s demand (e.g. from 0 during time slot 23 to 30 during the next time slot)
for the whole horizon represented in the top graph of Figure 3.21. The bottom
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graph of Figure 3.21 illustrates that power coming from the DG is totally used:
smooth curves following the DG curve can be observed between time 16 and 29,
especially on the curve illustrating the demand with a high DG scenario.

Figure 3.21: The follower’s demands for the instances with extreme DG scenarios
for the whole time horizon (top) and with all various DG scenarios for the time
slots 15 to 40 (bottom).

3.3.2.3 Sensitivity results with respect to the inconvenience coefficients

Next, the influence of the inconvenience coefficients is studied. For each device,
these coefficients increase linearly with the time. In this case study, the difference
between the coefficients of two consecutive time slots is assumed to be the same for
all devices. Four different values are tested for the difference: 0, meaning that the
customers do not undergo inconvenience due to a potential load shift, 0.03125 (low
inconvenience), 0.0625 (normal inconvenience), and 0.09375 (high inconvenience).
Unsurprisingly, the leader’s profit decreases as the inconvenience coefficients grow
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(see Figure 3.22): if the consumers are more willing to shift their loads, less incentive
is necessary to induce the same shift, and thus more profit is achievable for the
leader.

Figure 3.22: The leader’s objective values for the instances with various inconve-
nience coefficients.

The latter fact can be easily observed in Figure 3.23. The optimal leader price
profile when there is no inconvenience is constant at the level of the competitor’s
prices, because no incentive is required to induce a load shift. At the contrary,
inducing load shifts for high inconvenience values is difficult. Prices resulting in
a load shift despite a high inconvenience are clearly lower than prices achieving a
similar load shift with a low inconvenience. This is conspicuous for example on time
slots 33 or 273. For other time slots, the inconvenience is too high to induce shift:
around time slot 8 or 249 for instance. The producer lowers his prices during these
periods only for the instances with low inconvenience values.

Finally, let us observe that the prices tend to decrease linearly as the supplier
induces delays. This can clearly be observed in the bottom graph of Figure 3.23:
for example, the optimal prices for the instance with high inconvenience linearly
decrease between time slots 11 and 19, with the noticeable exceptions constituted
by time slots 13 and 18. The explanation lies in the optimistic assumption of the
problem: when the follower gets his energy at the same generalized cost at two
different time slots, he consumes during the time slot that is most advantageous for
the leader. When the prices decrease linearly over a given period, they compensate
the inconvenience costs that grow linearly with the delay, so that the generalized
cost remains the same over the period.
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Figure 3.23: The leader price profiles for the instances with various inconvenience
coefficients on the whole time horizon (top) and for the period between time slots
15 and 40 (bottom).

3.3.2.4 Sensitivity results with respect to the market prices

The spot market prices have a strong influence on the model. Indeed, they de-
termine which time slots are the most profitable for the leader, or at the contrary
which time slots are the least valuable. To study their influence, we consider an
instance where the spot market prices (energy costs) are 20% higher during peak
periods (e.g. periods where the market prices are the highest, see Figure 3.16). The
incentive for the leader to induce a load shift from peak to off-peak periods is thus
more substantial.

Like in the two previous examples, it is not surprising that the leader’s optimal
value is lower when the spot prices are higher, as it can be observed in Figure
3.24. Observe however that the difference is not as significant as when the DG
scenario varies: whereas differences in the leader’s optimal value can reach several
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Figure 3.24: The leader’s objective values for the instances with various spot market
prices.

thousands, it is limited to 353 in the case of higher market prices. This value is in
the same order of magnitude as the differences between the instance with various
inconvenience coefficients (939 between the instance with low inconvenience and the
instance with high inconvenience).

In Figure 3.25, observe that the demand curve differ for the high market prices
instance and the base instance: the differences occur almost always during the peak
periods, i.e. when the market prices in both considered instances are different. The
higher need to shift load from peak to off-peak periods becomes clear while having
a look at the optimal price profiles. The optimal prices for the high market prices
instance are indeed in general lower than the optimal prices of the base instance,
e.g. during time slots 25 and 170.

3.3.2.5 Sensitivity results with respect to the battery size

The size of the storage capacity owned by the follower has some influence as well.
Clearly, storage capacities are filled when electricity prices are low, and the stored
energy is consumed when prices are higher. One might think that a greater storage
capacity represents an advantage for the follower. However, it turns out that a
greater capacity is especially advantageous for the leader, as the leader’s objective
values indicate in Figure 3.26.

To illustrate this counter-intuitive fact, let us consider an example with a single
device with E = 2, βmax = 1, and associated time window T = {1, 2}. Moreover,
let the renewable energy production be λ1

max = 1 and λ2
max = 0. The prices offered

by the competitor for an energy unit is the same for both time slots: p̄1 = p̄2 = 1,
whereas the energy costs differ: c1 = 0.6 and c2 = 0.4. The optimal price profile
for the leader obviously consists in setting p1 = p2 = 1. The whole situation is
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Figure 3.25: The follower’s demands and the leader price profiles for the instances
with various spot market prices.

Figure 3.26: The leader’s objective values for the instances with various storage
sizes.

summarized in Figure 3.27.
Let us consider two cases: in the first one, the capacity of the battery is equal
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Figure 3.27: The set up of the example.

to zero, whereas in the second one, the battery can store one energy unit, with
ρc = 1. It turns out that in the first case, all the renewable energy is consumed
during the first time slot. The follower buys one energy unit from the leader during
the second time slot at a price equal to 1, which generates a profit equal to 0.4
for the leader. In the second case, the renewable energy produced during the first
time slot is stored into the battery and consumed during the second time slot. The
follower then buys energy from the leader during the first time slot, when energy
is cheaper on the market (remember that we are in an optimistic approach). The
profit of the leader in the second case is 0.6. In conclusion, a larger storage capacity
implying more freedom for the follower can imply a higher profit for the leader.

In Figure 3.28, the battery states are shown for the four considered storage sizes.
The origin of the stored energy is indicated for the instance with the largest storage
capacity. Observe that most of the stored energy is actually bought from the grid,
instead of being taken from the DG. As for the demand curves, the "all or nothing"
nature of linear programming is clearly visible, since the battery often oscillates
between being full and being empty. These oscillations are particularly visible for
the small battery instance during time slots 97 to 109 (Figure 3.28, bottom graph).

3.3.2.6 Sensitivity results with respect to the time windows sizes

Finally, the last parameters that have to be considered are the sizes of the time
windows. Whereas the length of the time windows varies between 1.8 and 2.5 times
the number of time slots needed to power each appliance in the base instance, these
factors are in a range from 1.4 to 2 in the instance with narrower time windows,
and between 2.14 and 3 in the instance with longer time windows. Figure 3.29
indicates that the normal instance brings the best results from the leader’s point
of view. However, the difference of profit for the leader is rather small (34677 with
normal time windows, 34668 with narrow time windows and 34532 for longer time
windows).
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Figure 3.28: The battery states for the instances with various storage sizes and the
origin of the stored energy for the large storage instance, for time slots 97 to 149.

Figure 3.29: The leader’s objective values for the instances with various time win-
dows sizes.
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3.3.2.7 Impact of the bilevel pricing model on the objective values

In this part, we consider the objective values of the leader and the follower. In order
to quantify the impact of the bilevel model, we compare the so-called reference case,
in opposition with the optimized case, which consists in the optimal solution of
(SBPP) (found by the commercial solver). The reference case is defined as follows:
first, the leader sets his prices at the same level as the competitor. Then the
follower determines the schedule of the devices in the most convenient way: each
device (n, a) is powered at its maximum power βmax

(n,a) during the first hours of the
related time slots until E(n,a) is reached, then the device is stopped. To power the
device, the follower makes DG his first choice, then energy from the battery, and
finally energy from the leader. If at a given time slot, the DG exceeds the demand,
the remaining energy is stored in the battery, unless the battery is full. The energy
demand of the follower in the reference case is depicted in Figure 3.15.

The solutions of (SBPP) and the reference case are compared on the thirteen
instances defined in Section 3.3.2.1. The objective values of the leader are given in
Table 3.1. With the exception of the instance with high DG, the leader’s profit is
always higher in the optimized case than in the reference case. Even though the
difference in profit is rather small (between 0.33% and 4.63%), it is not negligible.
Unsurprisingly, the largest difference between the profits in the reference case and
in the optimized case lies in the instance where the follower does not face inconve-
nience. As argued in Section 3.3.2.3, no incentive is required to make the follower
react in the most favorable way for the leader. Therefore, 4.63% is the best possible
increase for the leader’s profit, in the case where the inconvenience factors vary.
Concerning the instance with higher peak energy costs, the difference in profit is
significant as well, with a difference equal to 3.26%. The energy cost differences
indeed make load shifts more advantageous for the leader than in the instance with
normal inconvenience. Finally, for the example with high DG resulting in a lower
leader profit, the commercial solver has most probably found a local optimum that
was not global: CPLEX indeed does not guarantee the global optimality of the
solutions it returns, it might thus keep stuck on local optima.

On the follower’s side, even though (SBPP) is not a zero-sum game, there is a
clear relation between the follower’s and the leader’s objectives. The billing cost
of the follower constitutes the revenues of the leader. Therefore, intuitively, the
leader’s optimized prices are going to induce a follower’s reaction that will bring
approximately the same objective value as in the reference case. Of course, the
follower’s optimal objective value in the reference case constitutes an upper bound
for the follower’s optimal value associated with any leader price profile, since the
consumption schedule of the reference case is always feasible. The results for the
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Instance Ref. obj. Opt. obj. % diff.

Base 34172.68 34676.53 1.47

Zero bat. 34261.4 34372.9 0.33

Small bat. 34201.32 34521.54 0.94

Large bat. 34182.14 34714.16 1.56

Zero inc. 34172.68 35753.54 4.63

Low inc. 34172.68 35385.64 3.55

High inc. 34172.68 34389.21 0.63

Zero DG 46597.9 47101.38 1.08

Low DG 40390.54 40721.06 0.82

High DG 29084.13 28611.95 −1.62

Spot 33240.14 34323.98 3.26

Small TW 34172.68 34668.36 1.45

Large TW 34172.68 34531.8 1.05

Table 3.1: The leader’s objective values in the reference case, in the optimized case,
and the difference in percentage.

follower’s optimal value are illustrated in Table 3.2. In the table, "bat." stands
for battery, "inc." for inconvenience, "Spot" for the instance with higher market
prices and "TW" for the instances where the sizes of the time windows vary. "BC
ref" represents the billing cost of the follower in the reference case, "IC ref" the
inconvenience cost in the reference case, "BC opt" the billing cost when the prices
of the leader are optimized, and "IC opt" the inconvenience cost when the prices of
the leader are optimized. Finally, % BC, % IC and % GC show the difference (in
percentage) between the reference case and the optimized case of the billing cost,
the inconvenience cost and the generalized cost respectively (e.g. % BC = 100·BC
opt/BC ref).

All follower’s generalized costs are smaller in the optimized case than in the
reference case, except for the low inconvenience instance, which is probably due to
the commercial solver finding a local optimum instead of a global one. Moreover,
the percentages are all very close to 100%, the furthest being the instance with large
time windows (98.89%), which confirms the above-mentioned intuition. Addition-
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Instance BC ref IC ref BC opt IC opt % BC % IC % GC

Base 46573.2 525.13 46025.7 877.31 98.82 167.07 99.59

Zero bat. 46659.2 525.13 45964.7 856.52 98.51 163.11 99.23

Small bat. 46589.2 525.13 46246.8 737.52 99.27 140.45 99.72

Large bat. 46573.2 525.13 46379.4 646.92 99.58 123.19 99.84

Zero inc. 46573.2 0 46573.2 0 100 − 100

Low inc. 46573.2 262.56 46343.7 540.29 99.51 205.77 100.1

High inc. 46573.2 787.69 46052.1 1047.97 98.88 133.04 99.45

Zero DG 63882 525.13 63737.8 655.5 99.77 124.83 99.98

Low DG 55227.6 525.13 54784.7 712.29 99.2 135.64 99.54

High DG 39317.2 525.13 37755.5 786.96 96.03 149.86 96.74

Spot 46573.2 525.13 46002.4 905.36 98.77 172.41 99.6

Small TW 46573.2 525.13 46383.4 681.32 99.59 129.75 99.93

Large TW 46573.2 525.13 45543.8 1031.83 97.79 196.49 98.89

Table 3.2: The follower’s objectives.

ally, the billing cost is always smaller in the optimized case, but the inconvenience
cost increases. This is due to the fact that in the reference case, the follower ac-
tually aims to minimize his inconvenience, since the leader’s prices in the reference
case are the same for all time slots.

Note that in the reference case, the parameters influencing the billing cost are
the size of the battery and the DG, whereas only the inconvenience coefficients
induce a change in the inconvenience cost.

3.3.3 Several scenarios

For multiple scenarios, the instance of Section 3.3.2.1 is too large to be consid-
ered. Even with a small number of base scenarios (e.g. 3) and a small number
of time periods (e.g. 7, one per day), the number of potential scenarios is signifi-
cant: 37 = 2187. As (SBPP) involves a set of variables per scenario and a lot of
nonanticipativity constraints, the single-level formulation of (SBPP) leads to a large
MIP that cannot be solved efficiently to optimality. Therefore, smaller instances
are generated in Section 3.3.3.1, and the associated linear MIPs are solved using
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CPLEX.

3.3.3.1 Instance generation

The test instances are created by a random instance generator. The input param-
eters of the generator are:

• The number of time slots H: either H = 6 or 12,

• The number of clients N : N = 1,

• The total number of appliances |An|: 5, 10 or 20,

• The number of time periods (thus the number of scenarios), H being uni-
formly distributed among the time periods: 1, 2, 3 or 4 periods, which induce
respectively 2, 4, 8 and 16 scenarios.

The output of the instance generator consists in the following data:

• For each scenario, the occurring probability P [σ] is a random number between
1 and 100 that is normalized, so that the occurring probabilities of all scenarios
sum up to 1,

• The competitor’s prices p̄h are randomly chosen between 0.1 and 0.2 e/kWh,

• The energy costs kh are randomly chosen between 40 and 70 e/MWh, which
are typical values for electricity prices on the SPOT market,

• The first time slot of each time window T first
(n,a) is randomly chosen among H,

and T last
(n,a) is randomly chosen between H − T first

(n,a) and H,

• The rated power of each appliance βmax
(n,a) is randomly chosen between 500W

and 3000W, covering a broad range of electrical devices, from air conditioning
to washing machines,

• The amount of required energy ranges between βmax
(n,a) and

(
T last

(n,a) − T
first
(n,a)

)
·

βmax
(n,a), in order to ensure that the problem is feasible,

• The two base DG scenarios are generated as follows: the production in the
high scenario at each time slot is chosen between 0 and 2.31 kWh, whereas
the production in the low scenario at each time slot is set between 0.2 and 1
time the production in the high scenario. The maximum energy production
is based on the specifications of a typical photovoltaic panel, with a nominal
capacity of 2.31 kWp (kiloWatt-peak),
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• The storage capacity is not randomly determined. When all the other parame-
ters have been fixed, nine instances are created with various storage capacities
and starting states: the storage capacity Smax can take the values 2.3, 4.6 or
9.2 kWh, and Sstart can be (k/2)Smax, with k = 0, 1, 2.

The randomly generated variables all follow a uniform distribution.
There are 3 possible numbers of appliances, 2 time horizon sizes, and 4 numbers

of time periods, yielding 24 combinations. For each of those combinations, five
instances are created. In conclusion, 1080 instances are created.

3.3.3.2 Bounds

In a stochastic optimization problem, the aim is to optimize the expected value over
all scenarios of the objective function for a single scenario. This guarantees that
the solution obtained with the stochastic optimization problem performs well in
average, but not necessarily in all cases. Several values were developed to evaluate
the quality of a solution obtained through a stochastic optimization process. The
two most common values are the value of the stochastic solution (VSS) and the
expected value of perfect information (EVPI). For formal definitions of these values,
see [Birge 2011].

In single-level optimization, the EVPI measures the maximum amount a decision
maker would be ready to pay in return for complete (and accurate) information
about the future. It corresponds to the difference between two values, the so-called
wait-and-see (WS) and here-and-now (STO) solutions. The here-and-now solution
is the objective value of the considered stochastic problem (the Recourse Problem in
[Birge 2011]), whereas the wait-and-see solution is the expected value of the optimal
solution, namely the weighted sum of the optimal solution for each of the scenarios.

The VSS measures the performance of the stochastic approach compared to
first-stage decisions made according to an average scenario. First, the average
scenario, which is composed of the expected values of each of the random variables,
is computed. Then, first stage decision variables are made in accordance with the
average scenario: this gives the expected value solution. The second stage variables
are then optimized for each scenario, and the expected value of their corresponding
objective function yields the expected result of using the expected value solution
(EEV ). The difference between the here-and-now solution and the expected result
of using the expected value solution is the VSS.

For a single-level convex maximization program, we have

EEV ≤ STO ≤WS.
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Bilevel optimization has a lot in common with stochastic optimization, more
particularly with multi-stage decision processes. For (SBPP), the leader price profile
can be seen as the first stage decision, whereas the second stage decision is the
follower’s response. The EVPI and the VSS are thus adapted to the bilevel context
of (SBPP) as follows:

• To compute the EVPI, the wait-and-see solution must be determined. There
are two ways to achieve this. The first one consists in solving |Σ| versions
of (SBPP) where the scenario tree is composed of a single scenario. This
gives the optimal solution for each scenario, and it is enough to take the
expected value of the objectives to find WS. In the other one, it is enough to
solve (SBPP) with two modifications: first, one price profile is associated to
each scenario, and second, all nonanticipativity constraints are removed: this
directly yields WS. The difference between STO and WS is the EVPI.

• Four steps are necessary to compute the VSS:

1. Compute the average scenario of DG production λ̄max: for each time
slot h ∈ H,

λ̄hmax = 1
|Σ|

∑
σ∈Σ

P [σ] · λh,σmax.

2. Solve (SBPP) considering λ̄max as the only possible scenario. The price
profile pavg determined in this process is the expected value solution.

3. Solve (SBPP) on the full scenario tree, with the prices fixed to pavg. The
optimal value of this problem is EEV .

The VSS is the difference between STO and EEV .

Observe that the VSS is not absolutely well-defined here: the expected value
problem could have several (first stage) optimal solutions, for which EEV could
vary. As an example, consider a simplified instance of (SBPP), where there is no
battery and no energy costs, a single device with βmax = 1 has to be powered
with one energy unit during the unique time slot of the horizon. Two scenarios are
possible: either the sun is shining, which allows a high solar power production of two
energy units, or it rains and no solar power can be produced. Both scenarios have
one chance out of two to happen. The average scenario in this case is a production of
one energy unit. Thus, the follower can power his device with renewable energy only,
and the price offered by the leader does not matter, as long as it is positive. Assume
that the competitor’s price is 1e per energy unit, which acts as an upper bound
to the leader’s price. Every p ∈ [0, 1] is an acceptable expected value solutions.
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However, it is clear that the VSS will vary depending on the chosen value for p. In
the sunny scenario, the follower will always power his device with solar power, but
in the rainy scenario, he has no choice but to buy energy from the leader (when
p ≤ 1) or from the competitor (when p > 1). Therefore, the expected value of using
the expected value solution is clearly P [sunny] · 0 + P [rainy] · p = 0.5 · p. It is also
clear that in this example, the stochastic problem yields an optimal leader price of
1, and an objective value of 0.5. Therefore, the value of the stochastic solution can
take any value in [0, 0.5] depending on the choice of p.

The consequence of the reasoning above is that the concept of VSS is not
uniquely defined, and depends on the choice of the first stage decisions on the aver-
age scenario. A better definition would imply taking the supremum of all possible
values for the VSS, but computing such a bound might be annoyingly difficult.

3.3.3.3 Numerical results

Out of the 1080 considered instances, 911 are solved to optimality by CPLEX within
the time limit of 1000 seconds. For the remaining 169 instances, the solver is able
to find a feasible solution, but a gap is always remaining. The values for the gap
range from 0% to 23% for all instances but three. For these three instances, the
solver is unable to find a solution close to the optimum, as the leader’s objective
is negative at the end of the computation. The gap to optimality in those cases is
about 238%.

Among the 169 instances that are not solved to optimality,

• 60 have a time horizon of 6 time slots, 109 of 12 time slots,

• 18 instances have 5 devices, 25 have 10 devices, and 126 have 20 devices,

• 35 instances have a scenario tree with two time periods, 49 with three, and
86 with four time periods.

Furthermore, among the 26 instances with a gap to optimality larger than 2%, only
2 involve a time horizon of 6 time slots, and both of them involve 20 devices and 4
time periods. There is therefore a clear and unsurprising tendency: the bigger the
problem, the more difficulties the solver encounters. Note that the three instances
for which the solver cannot find any good solution are the largest considered in-
stances (12 time slots, 20 devices and 4 time periods in the scenario tree). Figure
3.30 shows clearly that a large number of instances need few time to be solved to
optimality.

Concerning the VSS and the EVPI, let us first observe that for one time period
and thus one scenario, the VSS and the EVPI are both equal to 0, since the wait-
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Figure 3.30: The number of solved instances per time.

and-see solution, the here-and-now solution and the expected value solution are
identical. Therefore, we focus on the instances with several time periods, and thus
several scenarios.

The values for the VSS range from 0 to 6.48. Considering the proportional
difference in percent between the EEV and the here-and-now solution is more re-
vealing: the improvement obtained by solving (SBPP) instead of considering the
average scenario ranges from 0% to 1161%, which means that the expected benefit
can be multiplied by 12 just by optimizing the leader’s prices in a sensible way.

Finally, we expect the EVPI to be positive: being aware of the perfect infor-
mation should allow the leader to optimize his prices in a better way. However,
the values of the EVPI range from −0.35 to 0.81. These values represent between
−39.23% and 14.05% of the wait-and-see solution. Actually, in 596 out of the 810
instances with several scenarios, the EVPI is negative. It is positive for 93 instances,
and equal to 0 for the 121 remaining instances. Three explanations are likely. First,
bilevel problems are generally nonconvex, and thus do not necessarily meet the re-
quirements for the EVPI to be positive. Then, the sometimes large MIP gaps can
be a reasonable explanation. Finally, more intuitively, the perfect information is
known not only by the leader, but also by the follower. This information can thus
benefit the follower more than the leader.

In conclusion, the mixed performance of the commercial solver on relatively
small instances is a strong argument for the further development of solution methods
(exact algorithms or heuristics) based on the structure of the problem. Besides
those computational considerations, the positive values of the VSS indicate that
considering multiple scenarios is profitable for the leader and justify our bilevel
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approach.

3.4 Rolling horizons

The previous section (in particular Subsection 3.3.3) outlines one particular draw-
back of the scenario tree-based approach: solving the MILP corresponding to an
instance of (SBPP) is difficult and can be time-consuming. To avoid this difficulty,
a rolling horizon method is applied. This method has been thoroughly studied in
the field of stochastic optimization, see for example [Pironet 2014]. The idea behind
rolling horizon methods is to solve many problems on short time periods in order to
build a solution over the whole time horizon. The information obtained by solving
the problem for a given time period is used in the definition of the problems for the
subsequent time periods.

We first define the main parameters:

• The time horizon is the set H = {0, 1, . . . ,H}, where H can be infinite.

• The length of the rolling horizon lRH is the number of time slots that will be
considered for every computation of the rolling horizon method. Obviously,
lRH ≤ H.

• The rolling horizon step sRH . Every sRH time slots, the data are actualized
and the rolling horizon program is solved with respect to the new data set.
There must be sRH ≤ lRH .

• The length of the frozen horizon lFH . In classical rolling horizon methods,
this corresponds to the period of time for which decisions have already been
made. More precisely, if a step of the computation is made at time t ∈ H, then
all the decisions for the time steps t, . . . , t+ lFH are already fixed, since they
were determined during the previous computations. In bilevel programming,
the situation is slightly different: the decisions of the follower can be seen as
recourses. In this case the leader has to fix its decisions in advance, whereas
the follower chooses a schedule for its device but can adapt it at every step
of the algorithm. So here, lFH denotes the number of time periods for which
the leader’s prices are fixed. Therefore, the computation at time t consists in
determining the leader’s prices for the time slots t+ lFH + 1, . . . , t+ lRH . Of
course, there must be lRH − lFH ≤ sRH .

See Figure 3.31 for a schematic view of the situation.
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Figure 3.31: The time horizon with the various parameters of a rolling horizon
method.

The instance comprising all the devices and all possible scenarios on the full time
horizon H is denoted by PH. The rolling horizon algorithm is given in Algorithm
1.

Algorithm 1 Rolling horizon algorithm
1: procedure RH(PH, lRH , lFH , sRH)
2: t← 0
3: repeat
4: Generate P tsRH
5: Solve P tsRH
6: Select a scenario σ
7: Actualize data
8: t← t+ sRH

9: until t+ lRH ≥ H
10: return data
11: end procedure

In step 4, the subinstance P tsRH is generated. The time period considered in
P tsRH is the time period {t, . . . , t + lRH}. Therefore, the only devices in P tsRH are
the devices (n, a) such that T(n,a) ∩ {t, . . . , t+ lRH} 6= ∅. Two cases may arise for a
given device (n, a):

• If T first
(n,a) < t, then the device was already considered in the previous iter-

ations of the algorithm. Hence it might have received some energy during
the previous time slots: it results that the required energy has to be up-
dated: the energy demand of (n, a) in P tsRH is denoted by Et(n,a) and is worth
E(n,a) −

∑
h<t

(
xh,σ(n,a) + x̄h,σ(n,a) + sh,σ(n,a) + λh,σ(n,a)

)
, with σ the scenario that has

been selected at step 6.

• If T last
(n,a) > t + lRH , then T(n,a) partly belongs to the time period con-

sidered in P tsRH . Several options are possible. Here, we choose to set
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Et(n,a) = min
{
E(n,a),

(
t+ lRH − T first

(n,a)

)
βmax

(n,a)

}
, meaning that the device (n, a)

should consume as much energy as possible during the time periodHt. Indeed,
delaying the demand leads to inconvenience for the follower, thus powering
the device as early as possible minimizes the inconvenience.

The instances PH and P tsRH for all t ∈ H all involve a scenario tree. Here, we
assume that the scenario tree of PH is a complete tree with time periods of length
sRH . Therefore, one of the base scenarios is selected at every iteration of step 6:
the scenario selected at time t is the scenario that comes to reality for the time
slots t, . . . , t+sRH−1. However, considering a complete tree on Ht can be difficult,
even if Ht is small, as shown in Section 3.3.3. Therefore, the scenario tree of P tsRH
is assumed to only comprise the base scenarios. Furthermore, we assume that the
probability to choose one of the scenarios only depends on the scenario that was
selected at the previous iteration, as in a Markov process.

In step 5, the problem solved is the MIP defined in Section 3.3, to which we add
constraints ensuring that the prices belonging to the frozen horizon are indeed the
prices that have been determined in the previous iterations.

In step 7, the added information consist in the choice made for the scenario in
step 6, the follower’s decisions associated to the chosen scenario for the time slots
t to t + sRH − 1 and the leader’s decision for the frozen horizon (except for the
last iteration of the algorithm, where the leader’s and follower’s decisions are saved
until the end of the horizon). At the end of the rolling horizon method, the data
thus contains one scenario and the associated decisions for the whole time horizon
H.

To evaluate the quality of the results defined by the rolling horizon approach,
we consider two cases that are obtained a posteriori: the reference case for the
realized scenario (see Subsection 3.3.2.7) and the wait-and-see solution (see Subsec-
tion 3.3.3.2), which corresponds to the optimized case. The difference between the
leader’s performance with the rolling horizon and the leader’s performance in the
wait-and-see solution yields the value of perfect information (VPI) on this partic-
ular instance. Of course, the VPI can only be computed if the general instance is
not too large. Indeed, even if there is only a single scenario, the number of devices
and/or hours can cause many computational troubles. Computing the expected
value of the VPI over all scenarios is intractable because of the number of scenarios
in the scenario tree of PH.
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3.4.1 Toy examples

Before considering numerical results over large instances, two toy examples are
presented to illustrate the impact of the choice of some parameters.

• In the first example, a single device needs to be powered with one energy unit
at time t (i.e. E = 1, βmax = 1 and TW = {t}), with t ≥ 2. There is a unique
distributed generation scenario: one energy unit is produced at time 1, no
energy is produced later on. Finally, there is a loss-less battery with capacity
1. The optimal solution for the follower consists in storing the energy that is
produced during the first hour and to power his device with the stored energy,
resulting in no energy sales of the leader. However, two cases are possible,
depending on the chosen parameters:

– In the first case, let us assume that lRH is large enough, that is lRH ≥
t−1. The device is thus part of the first subinstance P 1

sRH
considered by

the rolling horizon method, which means that the follower knows that
he will have to power a device in the future. Therefore, he stores the
renewable energy produced during the first time slot, and the leader does
not sell energy.

– In the second case, let us consider that lRH is too narrow, that is lRH <

t − 1. The follower does not know that he will have to power a device,
since the device is not in the first subinstance considered by the rolling
horizon method. Therefore, the follower has no incentive to store the
renewable energy produced during the first time slot. As a result, the
follower has to buy energy from either the leader or the competitor at
time t (or possibly before to store it, as soon as the device enters the
rolling horizon).

As a conclusion, it follows that the length of the rolling horizon plays a crucial
role, not only for the leader but also for the follower, who could end up acting
in a suboptimal way. It can furthermore be argued that the follower would
automatically store as much of the produced renewable energy as possible: in
that case, the rolling horizon method fails to adequately model the behavior
of the follower.

• The second example considers again a single device, with E = 1, βmax = 1,
and TW = {1, . . . , 10}. There are no DG and no storage capacities. The
energy costs and inconvenience coefficients, as well as the competitor’s prices
are illustrated in Figure 3.32. Clearly, the follower’s answer consists in con-
suming one energy unit during a single time slot. Depending on the time
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slot chosen by the follower, the leader’s possible profit rank from 0.05 to 0.06
(with ph = p̄h − ch, so that all time slots have the same cost (energy price
plus inconvenience) for the follower).

Figure 3.32: The energy costs, the inconvenience coefficients and the competitor’s
prices for the second toy example.

Here, the choices for lFH , sRH and lRH are crucial. There are four possibilities:

– The reference case explained in Section 3.3.2.7 implies a consumption of
one energy unit during the first time slot, with leader prices equal to the
competitor’s prices, which leads to a profit equal to 0.05 for the leader.
The particular DG scenario allows the rolling horizon method to achieve
this situation by setting sRH = 1, lFH = 0 and lRH = 1.

– In the optimal case, the follower consumes one energy unit during time
slot 10. The price paid for this energy unit is p10 = 0.06. This situation
can be obtained with several "good" parameter sets (sRH , lFH , lRH), such
as (11, 0, 11), (3, 2, 6), (1, 1, 4), or (1, 2, 4).

– Some parameter sets can be degenerate. For example, the parameter set
(3, 0, 3) leads the follower to consume one energy unit at time slot 2 at
price p2 = 0.131, which implies a profit equal to 0.051 for the leader.
This case is degenerate, because each time slot is taken into account by
a single iteration of the rolling horizon method.

– Finally, the last case occurs with the parameter set (2, 0, 4) for example.
The rolling horizon method with those parameters yields a consumption
of one energy unit by the follower at time 10 at price p10 = 0.104. The
induced profit for the leader amounts to 0.104, which is higher than the
optimal case. This is due to the choice of the length of the frozen horizon:
the leader announces prices to the follower at one iteration, but increases
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them at the next iteration, since they are not part of the frozen horizon.
Therefore, such cases should be avoided, since they put the leader in a
position that is too favorable, and thus not acceptable for the follower.

It follows from this example that lFH , sRH and lRH have to be chosen carefully.
Typically, lRH should be large enough to include as much information for the
leader and for the follower as possible, but small enough for the subinstances
to remain computationally tractable. The frozen horizon length lFH has to
be large enough: the follower has to know that the prices offered by the leader
are trustworthy and are going to remain the same. Finally, a typical choice
for sRH is 1: new information is taken into account as soon as possible, which
is supposed to improve the quality of the solution.

3.4.2 Tests on large instances

In this section, we conduct tests on the base instance presented in Section 3.3.2.1,
and compare the results with the reference case and the optimized case. The rolling
horizon step is set to sRH = 1, the length of the frozen horizon to lFH = 6, and
the length of the rolling horizon to lRH = 12. The scenario tree is a complete tree
whose base scenarios are the three scenarios presented in Figure 3.17. In step 6 of
Algorithm 1, the probability that the chosen scenario is the scenario selected at the
previous iteration is 0.4. For either of the other scenarios, the probability is 0.3.
For each iteration, the time limit of the solver is fixed to 150 seconds. The instance
PH comprising 336 time slots, the computation time required by CPLEX to get the
result is large: between 23594 and 35511 seconds.

With these parameters, the rolling horizon method has been run five times. The
results for the leader’s objective value are given in Table 3.3, as well as the leader’s
objective values in the reference case and in the optimized case.

Considering the prices and demands obtained with the rolling horizon method
compared with the prices and demands obtained with the a posteriori optimization,
see Figure 3.33. The prices above 14 correspond to time slots where no energy is
bought from the leader.

Except for the second run, the rolling horizon method always brings more profit
to the leader than the optimal value that is computed a posteriori, even though the
differences are small. This could be attractive for an energy supplier, but questions
arise about the choice of the parameters. If the leader gets a profit higher than what
is theoretically possible, it means that the follower buys energy at the wrong time
and/or at the wrong price. This is probably due to the length of the frozen horizon
lFH = 6, which is small compared to the length of the rolling horizon lRH = 12. At
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Run RH method VPI Ref case Comp. time (s)

1 35092 34848 34348 35511

2 34452 34467 33918 23594

3 34048 34034 33603 23652

4 35207 35111 34750 24251

5 34530 34528 34053 24773

Table 3.3: The leader’s objective values obtained with the rolling horizon method,
with the optimized version on the realized scenario, and with the reference case
method.

Figure 3.33: The prices and demands obtained with the first run of the rolling
horizon method and with the VPI and reference case computations.

time t, the leader gives information about his prices for the next 12 time slots, for
the last 5 time slots the leader can modify his prices later on. Whereas this is an
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advantageous situation for the leader, the follower might not agree with the terms of
the leader’s pricing scheme. Nevertheless, the rolling horizon method yields results
that are close to the optimal solution, which is a strong argument for the further
development of such methods.

3.5 Conclusion

In this chapter, we define a single-leader single-follower bilevel model (SBPP) for
a DSM pricing problem. At the lower level, the smart grid operator manages
distributed generation capacities, e.g. solar panels. The production of solar energy
depends on the weather and is therefore unpredictable. To handle this uncertainty,
(SBPP) involves stochasticity in the form of a scenario tree.

To solve (SBPP), the follower’s problem is replaced by its linearized KKT condi-
tions in the leader’s problem, giving rise to a MIP that can be solved with commer-
cial solvers. However, numerical experiments show that even with a small scenario
tree, the number of variables and constraints is large, making any resolution time-
consuming. To bypass this issue, a rolling horizon method is applied to (SBPP).
The method does not solve the problem (SBPP), but allows the supplier to deter-
mine his prices in real time, as one of the scenarios becomes real. In particular, we
show that the parameters of the rolling horizon method have a large influence on
the leader’s result. Those parameters should therefore be chosen carefully.

Finally, simplified cases of (SBPP) are studied from a complexity point of view.
We show that the case of a single device is easy to handle, but that several devices
might make the problem complex. In particular, we prove that the optimal price
profile in the case where the follower does not undergo inconvenience belongs to a
discrete set of polynomial size with respect to the number of devices, but superex-
ponential with respect to the number of time slots.





Chapter 4

Single-Leader Multi-Follower

This chapter corresponds to the article "A Trilevel Model for Best Response in
Energy Demand-Side Management", submitted in revised form on December 23rd,
2018, whose co-authors are Didier Aussel, Luce Brotcorne, and Sébastien Lepaul.

4.1 Introduction

Electricity production and consumption are one of the major challenges of today’s
society. Economical, ecological and political concerns are all at stake. In order
to optimize the efficiency of the electricity distribution system, many approaches
arose. One of them is demand-side management (DSM). The idea behind DSM is
that instead of fitting the production to the demand, the demand can be adapted
to the production. DSM has been an important topic for the last thirty years,
see [Kreith 2016], and became more relevant with the introduction of the smart
grid paradigm, see [Farhangi 2010, Fang 2012]. The ever growing communication
among the actors of the grid indeed allows for a better management of the energy
consumption.

Works on DSM include for example [Zhu 2012]: households possess appliances
that need to receive energy with time and quantity constraints. The usage of the
appliance is scheduled so as to minimize the load peak. A distributed DSM model
is considered in [Ramchurn 2011]: a case study of the UK shows that efficient DSM
could lead to smaller load peaks (−17%) and less carbon gas emissions (−6%). In
[Arteconi 2012], the use of thermal energy storage for DSM is reviewed, whereas the
integration of wind power generation is the object of [Moura 2010]. DSM can be
achieved through many means, but the most used one consists in pricing policies.
From a general point of view, [Murphy 2018] aims to quantify the effects of price
regulation policies. In [Gottwalt 2011], the reaction of a household to time-based
pricing is considered. Recent works include [Devine 2018], where a mixed comple-
mentarity problem is used to model electricity consumers offering load shedding on
the market. In [Laur 2018], a three-stage stochastic flexibility problem is studied:
in a market framework, a company wishes to purchase reserve capacities. From
the point of view of the market, [Le Cadre 2018] is concerned with the DSO-TSO
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interaction (respectively distribution and transmission system operator). Finally,
[Tsitsiklis 2015] proposes a new pricing system, which is not based on the marginal
cost, but aims to cover ancillary costs due to fluctuations in the demand.

In this work, we focus on load shifting, a technique of DSM that features a
fixed overall demand. To achieve it, price incentives are determined. We thus
model and solve the problem of an electricity supplier competing against other
suppliers on the market to sell energy to various actors, in a context of demand-side
management. More precisely, the energy supplier defines time-dependent prices
for his energy, knowing that his clients will adapt by shifting their loads, either
directly (local agents) or indirectly (aggregators). This sequential and hierarchical
decision-making process can be adequately modeled as a trilevel problem, that is
an extension of a bilevel problem.

Bilevel problems formalize the concept of Stackelberg games, and have received
a great interest in the past thirty years, see e.g. [Dempe 2002, Bard 2010]. Let
us recall that a bilevel problem is an optimization problem (called the leader’s
problem) in which at least one of the variables is constrained to be solution of an-
other optimization problem (called the follower’s problem). Applications of bilevel
programming are numerous: toll pricing, network design problems, flight tickets
pricing, see e.g. [Brotcorne 2008]. Bilevel programming is in general NP-hard,
even in its simplest form where both objectives and all constraints are linear, see
[Ben-Ayed 1990, Labbé 1998]. Multilevel optimization problems correspond to the
more general case where more than two levels of optimization problems interlock.
When there is more than one optimization problem at the leader level, the ter-
minology used in the literature is Multi-Leader-Follower-Game (MLFG) if two ad-
ditional conditions are met. First, the various leaders play in a noncooperation
competition context, and second, each of the leaders’ problems is a multilevel prob-
lem (see e.g. [Leyffer 2010]). The model considered in this work is a MLFG in
which the leaders’ problems are trilevel. Note that this structure of model has
been rarely considered in the literature, due to its complexity - see for example
[Migdalas 1998, Gkatzikis 2013].

Multilevel and MLFG are increasingly used in the energy domain, more precisely
on pricing matters. For example, [Afşar 2016b] presents a bilevel energy pricing
model in order to decrease the amplitude of the peak loads, whereas [Cervilla 2015]
considers a longer time horizon and aims to make the energy system sustainable in a
situation where the consumers optimize their investments in distributed generation.
In [van Ackooij 2018], generation companies aiming to find the cheapest possible
production schedule make contracts with micro-grids that can generate or store
energy, and can thus help the generation companies to cope with production surplus
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or lack of generation. In [Ambrosius 2018], multilevel problems are used to define
price zones within the grid.

In [Gkatzikis 2013], the role of aggregators in the energy market is studied, and
a trilevel model is proposed. In this model, a system operator aims to optimize
his operating costs thanks to load shifts executed by end customers. Aggregators
play an intermediary role between the system operator and the end customers.
More precisely, the system operator offers a percentage of his benefit to each of the
aggregators, and the aggregators offer pecuniary rewards to the end customers they
are in contract with to induce a load shift. A heuristic to solve the trilevel model
is defined. One limitation of the proposed model is that the cost function of the
leader appears in the objective function of the aggregator, a situation that is not
realistic for many trading situations since no aggregator is supposed to know the
cost function of the supplier.

In this paper, we consider a similar interaction model, but first the cost function
of the supplier only appears in his own problem, and second the actors of the
intermediary level (ILAs) have the possibility to trade energy among themselves.
Moreover we do not use heuristic techniques and our reformulation and resolution
of the problem are theoretically thoroughly justified (see propositions 4.3.1, 4.4.1
and 4.4.3).

An important contribution of the paper is the definition of two new solution
concepts that are adapted to this context of price management. Indeed, breaking
with the classical optimistic approach usually made in case of nonuniqueness of the
followers equilibrium solution, we define the so-called revisited optimistic approach
and semi-optimistic approach that are based on some smart selection among the
followers’ equilibria, sharply taking into account the structure of the problem.

The paper is structured as follows: first, we present a Trilevel Demand-Side
Management model (denoted by (TDSM)) and define the actors involved in the
model in Section 4.2. Second, in Section 4.3, we formulate (TDSM) as a bilevel
problem, thanks to an explicit resolution of the lowest level problems. In Section
4.4, we propose three different approaches to solve the bilevel version of (TDSM).
First a classical method, consisting in replacing the lower level problems by their
KKT conditions in the leader’s problem leads in Subsection 4.4.1 to the so-called
Classical optimistic approach. Second, in Subsection 4.4.2, we simplified the bilevel
reformulation of the game by selecting a specific class of Generalized Nash equilibria
(GNE) among the followers, providing thus the revisited optimistic approach. Third,
in Subsection 4.4.3, we define a new class of GNE, called semi-optimistic, that
simplifies a lot the formulation of the game and therefore its numerical treatment.
Finally, in Section 4.5, we compare and comment the solutions computed by the
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three approaches.

4.2 Problem formulation

Four kinds of actors are involved in the (TDSM) problem: electricity suppliers
s ∈ S, local agents ` ∈ L, aggregators a ∈ A, and end users i ∈ I. Interactions
among actors of (TDSM) are described in Figure 4.1 and are of the following nature:

• being into a "best response approach", we assume that S is composed of two
suppliers, that is S = {ŝ, s̄} where s̄ (the competitor) is a supplier with a
fixed price strategy known by ŝ (the leader) that aims to determine his best
strategy;

• for each period of time the suppliers propose electricity prices to the interme-
diate actors (aggregators and local agents);

• the intermediate actors can buy electricity from the suppliers or from other
intermediate actors;

• each end user is in contract with only one aggregator and he can shift a part
of his load in order to get some rewards from the aggregator.

ŝ s̄

A A LA LA

EU EU EU EU

Figure 4.1: Structure of the model
Blue forms represent the various (dynamic) actors (the leader, the aggregators and
the local agents), the grey supplier represents the static competitor, red links show
unidirectional energy trades, green links designate bidirectional energy exchanges,
and pink links indicate rewards for load shifting. Each aggregator is related to his
own set of end users.
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The variables and notations of the model are as follows:

• The set of the considered time slots is denoted by H.

• Bold variables indicate vectors.

• dx =
(
d1
x, . . . , d

|H|
x

)
denotes the demand variables of x ∈ I ∪ L.

• Variables phxy denote the prices of an energy unit sold by x to y at time h ∈ H.

• Variables ehxy represent the energy flow from y to x (bought by x from y) at
time h.

• Variables rhai denote the rewards given to the end user i by the aggregator a
for an energy unit consumed at time h ∈ H. The set of end users that are in
contract with the aggregator a is denoted by Ia.

• Wx indicates the overall demand that needs to be satisfied for x ∈ I ∪ L.

In this paper we denote by Intermediate Level Actors (ILAs) the players of the
second level (Aggregators and Local agents) in the trilevel structure.

4.2.1 Local agents

Local agents can buy energy from the suppliers or trade energy with the other ILAs.
Each local agent ` ∈ L has a fixed overall demandW` for the horizon and an a priori
demand vector

(
dh,0`

)
h∈H

. This demand can be shifted, resulting in the real demand

splitting/vector
(
dh`

)
h∈H

. The energy bought can be used to satisfy the electricity
demand or sold to the other ILAs. In case of shifting of their consumption, the
local agents undergo an inconvenience cost that increases with the extent of the
load shift. Local agents aim to minimize the sum of their electricity bill and the
inconvenience due to the load shift. Formally, the local agent ` ∈ L aims to solve
the following problem:

(P`) min
e`·,p`·,α`·

∑
h∈H

(∑
s∈S

phs`e
h
`s +

∑
a∈A

(
pha`e

h
`a − ph`aeha`

)
+
∑
`′ 6=`

(
ph`′`e

h
``′ − ph``′eh`′`

)
+ V h

`

(
dh`

)

s.t.



∑
h∈H

dh` = W`

eh`x ≥ 0 ∀h ∈ H, x ∈ L ∪ A ∪ S,

ph`x ≤ αh`xphsx +
(
1− αh`x

)
phs` ∀h ∈ H, x ∈ L ∪ A, s ∈ S

αh`x ∈ [0, 1] ∀h ∈ H, x ∈ L ∪ A, s ∈ S,
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where V h
`

(
dh`

)
= vh`

(
dh` − d

h,0
`

)2
is the inconvenience caused by the load shifting

and vh` > 0 is a fixed inconvenience coefficient. Note that, for any h, the notation
dh` stands for the demand value and thus dh`

not.=
∑
s∈S e

h
`s +

∑
a∈A

(
eh`a − eha`

)
+∑

`′ 6=`

(
eh``′ − eh`′`

)
since no storage is considered in this model. The inconvenience

function V h
` is the same as defined in [Gkatzikis 2013]. This function has nice math-

ematical properties, like convexity and differentiability, and it adequately models
the real inconvenience that the consumers are undergoing. A small shift of the
consumption will not represent a significant inconvenience, whereas an important
shift will have strong repercussions on the consumer’s comfort thanks to the square
power.

The first constraint in problem (P`) ensures that `’s cumulated demand remains
constant, whereas the second constraint avoids negative energy exchanges. The
third and fourth constraints result from a deeper observation. The second (inter-
mediate) level of (TDSM) actually constitutes a noncooperative Nash game, where
the players are the ILAs. Therefore, an optimal ILA’s response to the leader’s de-
cisions is a Nash equilibrium. Since the decision variables of the ILA influence the
feasible domains of the other ILAs, it is precisely a Generalized Nash Equilibrium
(GNE). Let us recall that a GNE is reached whenever no player can unilaterally
improve his situation by modifying his decision variables (see e.g. [Facchinei 2007]).
Assume that an ILA x buys energy from another ILA y: the quantity is determined
by x while the price is determined by y. Thus y can improve his revenue by unilat-
erally increasing the price, hence showing that without upper bounds on the prices,
there cannot be energy exchanges among the ILAs in a GNE. But of course, if there
is an upper bound to the prices, this upper bound is reached in any GNE, provided
that there is a nonzero exchange between the affected ILAs.

For any s ∈ S, a first obvious bound for phyx (the price offered by y to x at time
h ∈ H) is phsx, the price offered to x by s. Indeed, x would never buy energy from
y if he can buy energy from s at a lower price. However, this bound can lead to
undesired GNE. Indeed, let us assume that x buys energy from y: y has to furnish
this energy, and thus can buy it from s and if phsx is smaller than phsy, then y ends
up paying for the energy that x needs, even though this situation is a GNE.

As a result from the previous paragraph, if y sells energy to another ILA, he
must sell it at least for phsy to avoid losses. Therefore, we must have phyx ≥ phsy. Since
in a GNE, the upper bound to phyx is reached, setting phyx ≤ phsy could make sense.
However in this case, all the ILAs have access to energy at the lowest possible price,
minx∈L∪A phsx. It is thus useless for the leader to offer different prices to different
actors.

Under some competition assumptions on the market (further called competitive
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case and nondiscriminant exogenous pricing), the forthcoming Proposition 4.4.1
shows that thanks to the third and fourth constraints of problem (P`), if there is
a nonzero exchange between two ILA x and y in a GNE of the intermediate level
(ehyx > 0), then

phxy = max
{

min
{
phŝx, p

h
s̄x

}
,min

{
phŝy, p

h
s̄y

}}
.

One can thus wonder why to use the artificial αhxys and third and fourth constraints
instead of simply using the above formula for phxy. The answer comes from the
nonsmoothness of this formula and thus the computational difficulties that it could
generate. This is why the approach based on the third and fourth constraints has
been preferred.

4.2.2 Aggregators

Aggregators can buy energy from the suppliers, and trade energy with the other
ILAs, in order to satisfy the demand of the end users they are in contract with.
They offer rewards to their end users as incentives to shift their consumption. The
aggregators aim to minimize the sum of the rewards offered to their end users
and the cost of the electricity bought from the suppliers and the other ILAs. The
optimization problem of the aggregator a ∈ A can be formally expressed as:

(Pa) min
ea·,ra,pa·,αa·

min
da

∑
h∈H

∑
s∈S

phsae
h
as +

∑
`∈L

(
ph`ae

h
a` − pha`eh`a

)

+
∑
a′ 6=a

(
pha′ae

h
aa′ − phaa′eha′a

)
+
∑
i∈Ia

rhaid
h
i



s.t.



∑
s∈S

ehas +
∑
`∈L

(
eha` − eh`a

)
+
∑
a′ 6=a

(
ehaa′ − eha′a

)
=
∑
i∈Ia

dhi ∀h ∈ H

dai ∈ argmax (Pi) ∀i ∈ Ia

phax ≤ αhaxphsx +
(
1− αhax

)
phsa ∀h ∈ H, x ∈ L ∪ A, s ∈ S

rhai, e
h
ax ≥ 0 ∀h ∈ H, x ∈ L ∪ A, i ∈ Ia

αhax ∈ [0, 1] ∀h ∈ H, x ∈ L ∪ A, s ∈ S

where da stands for the vector da = (dai )i∈Ia , with dai =
(
dhi

)
h∈H

, (Pi) is the
end user i’s problem and Ia denotes the set of end users who are in contract with
aggregator a. It is here assumed that each end user is in contract with only one
aggregator.

The first constraint ensures that the outcome of the energy exchanges equals
the overall demand of the end users. The second constraint makes sure that the
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demand of the end users is optimal. The utility of the third and last constraints
has been discussed in Subsection 4.2.1.

4.2.3 End users

The end users are in contract with one of the aggregators that provides energy to
them. They need to receive a given amount Wi of energy during the time horizon,
and they receive rewards from the aggregator as an incentive to shift their energy
consumption. However, shifting their consumption induces an inconvenience, which
is similar to the inconvenience for the local agents. Therefore, the problem (Pi) of
the end user i ∈ I can be expressed as:

(Pi) max
di

∑
h∈H

rhaid
h
i − V h

i

(
dhi

)

s.t.


∑
h∈H

dhi = Wi

dhi ≥ 0 ∀h ∈ H,

where dhi denotes i’s demand at time h,Wi denotes i’s overall need in electricity and
V h
i

(
dhi

)
= vhi

(
dhi − d

h,0
i

)2
is the inconvenience caused by the load shifting (vhi > 0

is fixed). As for the local agents,
(
dh,0i

)
h
stands for the a priori demand vector of

end user i. Observe that (Pi) is convex.

4.2.4 Electricity supplier

The electricity supplier ŝ sells energy to aggregators and to local agents. Knowing
the fixed price strategy ps̄ of supplier s̄, supplier ŝ aims to maximize his profit, which
is the difference between the revenues resulting from sales and his production costs,
described by the function chŝ (·). The electricity supplier influences the demand
of the customers by setting hourly prices phŝx, knowing that the clients will react
optimally to these prices. Therefore, the problem of the supplier ŝ can be expressed
as:

(Pŝ) max
pŝ·

max
e,r,px·,α

∑
h∈H

∑
a∈A

phŝae
h
aŝ +

∑
`∈L

phŝ`e
h
`ŝ − chŝ

∑
a∈A

ehaŝ +
∑
`∈L

eh`ŝ



s.t.


phŝx ≥ 0 ∀h ∈ H, x ∈ L ∪ A

{e`·,p`·,α`·} ∈ argmax (P`) ∀` ∈ L

{ea·,pa·,αa·, ra·} ∈ argmax (Pa) ∀a ∈ A,

We assume here that the function chŝ : t 7→ chŝ (t) is increasing and convex for all
h ∈ H. According to the previous notations, (Pa) and (P`) respectively denote the
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optimization problems of the aggregator a ∈ A and the local agent ` ∈ L.

In this paper, we will mainly consider the following two cases:

• competitive case: in this case, we assume that the leader is competitive com-
pared to the competitor, which means that the leader can take over the whole
demand and make profit with lower prices than the competitor. That is, for
any h ∈ H, the function

(
dhx

)
x∈L∪A

7→
∑
x∈L∪A p

h
s̄xd

h
x − chŝ

(∑
x∈L∪A d

h
x

)
is

increasing with relation to each variable. Observe in particular that when the
cost function of the leader is linear with factor khŝ , the condition is fulfilled if
for all x ∈ L ∪ A, phs̄x ≥ khŝ .

• nondiscriminant exogenous pricing: in this case, the competitor does not
discriminate between the various consumers, thus for all h ∈ H and all x, y ∈
L ∪ A, phs̄x = phs̄y.

Assuming that at least one of these cases is verified allows us to prove some
interesting results (see propositions 4.4.1 and 4.4.3), which lead to efficient ways of
solving the leader’s problem (Pŝ).

4.3 From a trilevel model to a bilevel model

Being a trilevel problem, (TDSM) is challenging to solve. Our goal is, deeply taking
advantage of the special structure of the model, to rewrite this trilevel problem
as a single-level optimization problem with complementarity constraints (MPCC).
First, we give explicit formulas for the end users’ problems and plug them into
the aggregators’ problems to obtain a bilevel reformulation (Subsection 4.3). To
solve this bilevel problem, we then apply the classical method consisting in the
replacement of the followers’ problems by their KKT conditions in the leader’s
problem.

We next build an alternative bilevel formulation (P ′ŝ) of the leader’s problem
and prove that any solution of the bilevel problem (P ′ŝ) provides a solution of the
initially considered trilevel problem (Pŝ). For a given a ∈ A, let us first rewrite the
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aggregator a’s minimization problem (Pa) as

min
ea·,pa·,αa·

min
ra,da

ϕa (ea,pa, αa) +
∑
h∈H

∑
i∈Ia

rhaid
h
i

s.t.



∑
s∈S

ehas +
∑
`∈L

(
eha` − eh`a

)
+
∑
a′ 6=a

(
ehaa′ − eha′a

)
=
∑
i∈Ia

dhi ∀h ∈ H

dai ∈ argmax (Pi) ∀i ∈ Ia

phax ≤ αhaxphsx +
(
1− αhax

)
phsa ∀h ∈ H, x ∈ L ∪ A, s ∈ S

rhai, e
h
ax ≥ 0 ∀h ∈ H, x ∈ L ∪ A, i ∈ Ia

αhax ∈ [0, 1] ∀h ∈ H, x ∈ L ∪ A, s ∈ S,

setting

ϕa (ea,pa, αa) =
∑
h∈H

∑
s∈S

phsae
h
as +

∑
`∈L

(
ph`ae

h
a` − pha`eh`a

)
+
∑
a′ 6=a

(
pha′ae

h
aa′ − phaa′eha′a

)
and let us define the associated problem (P ′a)

(P ′a) min
ea·,pa·,αa·

min
da,λa

ϕa (ea,pa, αa) +
∑
h∈H

∑
i∈Ia

2vhi dhi
(
dhi − d

h,0
i

)
+
∑
i∈Ia

Wiλ̂i

s.t.



∑
s∈S

ehas +
∑
`∈L

(
eha` − eh`a

)
+
∑
a′ 6=a

(
ehaa′ − eha′a

)
=
∑
i∈Ia

dhi ∀h ∈ H

∑
h∈H

dhi = Wi ∀i ∈ Ia

2vhi
(
dhi − d

h,0
i

)
+ λi ≥ 0 ∀h ∈ H, ∀i ∈ Ia

phax ≤ αhaxphsx +
(
1− αhax

)
phsa ∀h ∈ H, x ∈ L ∪ A, s ∈ S

dhi , e
h
ax ≥ 0 ∀h ∈ H, x ∈ L ∪ A, i ∈ Ia

αhax ∈ [0, 1] ∀h ∈ H, x ∈ L ∪ A, s ∈ S.

Proposition 4.3.1. Let a belong to A, and assume that for any i ∈ Ia and any
h ∈ H, the inconvenience coefficient vhi is positive. If

(
ea·,pa·,αa·,da, λ̂

a) is an
optimal solution for (P ′a) then (ea·,pa·,αa·,da, ra) is an optimal solution for (Pa),
with rhai = 2vhi

(
dhi − d

h,0
i

)
+ λ̂i, for any i ∈ Ia and any h ∈ H.

Proof. Observe that for all i ∈ Ia, the domain of (Pi) is nonempty, compact,
and convex, and the objective function of (Pi) is strictly convex. Therefore, it
has a unique solution dai . Furthermore, observe that Slater’s condition is verified
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for any rai, since Wi > 0. It follows from Theorem 2.3 of [Dempe 2012] that if(
ea·,pa·,αa·, ra,da, λ̂

a
,µa

)
is a global solution of

(
PMPCC
a

)
:

min
ea·,pa·,αa·,ra,da,µa,λ̂

a
ϕa (ea,pa,αa) +

∑
h∈H

∑
i∈Ia

rhaid
h
i

s.t.



∑
s∈S

ehas +
∑
`∈L

(
eha` − eh`a

)
+
∑
a′ 6=a

(
ehaa′ − eha′a

)
=
∑
i∈Ia

dhi ∀h ∈ H

∑
h∈H

dhi = Wi ∀i ∈ Ia

µhi d
h
i = 0 ∀h ∈ H

−rhi + 2vhi
(
dhi − d

h,0
i

)
+ λ̂i − µhi = 0 ∀h ∈ H

phax ≤ αhaxphsx +
(
1− αhax

)
phsa ∀h ∈ H, x ∈ L ∪ A, s ∈ S

dhi , e
h
ax, r

h
ai, µ

h
i ≥ 0 ∀h ∈ H, x ∈ S ∪ L ∪ A, i ∈ Ia

αhax ∈ [0, 1] ∀h ∈ H, x ∈ L ∪ A, s ∈ S,

then (ea·,pa·,αa·, ra,da) is a global solution of (Pa).
We immediately deduce that, for all h ∈ H and all i ∈ Ia,

rhai = 2vhi
(
dhi − d

h,0
i

)
+ λ̂i − µhi ,

and thus replacing rai in
(
PMPCC
a

)
yields

(
PMPCC−r
a

)
:

min
ea·,pa·,αa·da,µa,λ̂

a
ϕa (ea,pa,αa) +

∑
h∈H

∑
i∈Ia

(
2vhi

(
dhi − d

h,0
i

)
+ λ̂i − µhi

)
dhi

s.t.



∑
s∈S

ehas +
∑
`∈L

(
eha` − eh`a

)
+
∑
a′ 6=a

(
ehaa′ − eha′a

)
=
∑
i∈Ia

dhi ∀h ∈ H

∑
h∈H

dhi = Wi ∀i ∈ Ia

µhi d
h
i = 0 ∀h ∈ H

2vhi
(
dhi − d

h,0
i

)
+ λ̂i − µhi ≥ 0 ∀h ∈ H

phax ≤ αhaxphsx +
(
1− αhax

)
phsa ∀h ∈ H, x ∈ L ∪ A, s ∈ S

dhi , e
h
ax, µ

h
i ≥ 0 ∀h ∈ H, x ∈ S ∪ L ∪ A, i ∈ Ia

αhax ∈ [0, 1] ∀h ∈ H, x ∈ L ∪ A, s ∈ S.

Now, assume that we have an optimal solution
(
ea·,pa·,αa·,da,µa, λ̂

a) of the

problem
(
PMPCC−r
a

)
. Consider

(
e∗a· = ea·,p∗a· = pa·,α∗a· = αa·,d∗a = da,µ∗a = 0, λ̂∗a = λ̂

a)
.
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Obviously,
(
e∗a·,p∗a·,α∗a·,d∗a,µ∗a, λ̂

∗a) satisfies all the constraints of
(
PMPCC−r
a

)
.

Furthermore, observe that

∑
h∈H

(
2vhi

(
dhi − d

h,0
i

)
+ λ̂i − µhi

)
dhi =

∑
h∈H:dhi 6=0

(
2vhi

(
dhi − d

h,0
i

)
+ λ̂i − µhi

)
dhi

=
∑

h∈H:dhi 6=0

(
2vhi

(
dhi − d

h,0
i

)
+ λ̂∗i

)
dhi

=
∑
h∈H

(
2vhi

(
dhi − d

h,0
i

)
+ λ̂∗i

)
dhi

=
∑
h∈H

2vhi dhi
(
dhi − d

h,0
i

)
+ λ̂∗iWi,

since µhi > 0 implies that dhi = 0, and
∑
h∈H d

h
i = Wi. Therefore,(

e∗a·,p∗a·,α∗a·, µ∗a, λ̂∗a
)
is an optimal solution of

(
PMPCC−r
a

)
too, and we can re-

strain the search of optimal solutions to the sets of
(
ea·,pa·,αa·, µa, λ̂a

)
with µa = 0,

which gives rise to (P ′a). This concludes our proof.

Note also from the proof that the optimal reward (for a) to obtain a demand
dai from the end user i at time h is

rhai = 2vhi
(
dhi − d

h,0
i

)
+ λ̂i ∀i ∈ I, h ∈ H,

with λ̂i such that minh∈H rhai = 0.
Taking into account the formulation (P ′a) of the aggregators, we will now con-

sider the following modified version problem of the leader, which is a bilevel problem,
denoted by (P ′ŝ):

(P ′ŝ) max
pŝ·

max
e,px·,α,d,λ̂

∑
h∈H

∑
a∈A

phŝae
h
aŝ +

∑
`∈L

phŝ`e
h
`ŝ − chŝ

∑
a∈A

ehaŝ +
∑
`∈L

eh`ŝ



s.t.


phŝx ≥ 0 ∀h ∈ H, x ∈ L ∪ A

{e`·,p`·,α`·} ∈ argmax (P`) ∀` ∈ L

{ea·,pa·,αa·,di, λ̂} ∈ argmax (P ′a) ∀a ∈ A,

and thus according to Proposition 4.3.1 from any solution
(
pŝ·, e,px·,α,d, λ̂

)
of

(P ′ŝ) one obtains the solution (pŝ·, e,px·,α,d, r) of (Pŝ) with rhai = 2vhi
(
dhi − d

h,0
i

)
+

λ̂i, for any i ∈ Ia and any h ∈ H.
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4.4 Reformulations of the bilevel program and alterna-
tive solution concepts

As mentioned in Section 4.3, the resolution of the trilevel best response problem (Pŝ)
can be reduced to the computation of solutions of the single-leader multi-follower
problem (P ′ŝ). Nevertheless, even if more simple from a structural point of view,
single-leader multi-follower games are known to be very difficult to handle.

In this section, we present three different ways to transform/simplify (P ′ŝ) in
order to be able to solve it. First, a somehow classical transformation of (P ′ŝ) into a
mathematical program with complementarity constraints (MPCC) is developed in
Subsection 4.4.1. Second, in subsections 4.4.2 and 4.4.3, two new approaches based
on a technique of selection of the GNE at the ILAs’ level are proposed to simplify
(P ′ŝ).

4.4.1 First order formulation of the bilevel model

The classical method to solve a bilevel problem consists in replacing the followers’
problems by their KKT conditions in the leader’s problem, thus yielding an MPCC.
Therefore, the bilevel reformulation of (TDSM) (P ′ŝ) becomes the single level MPCC(
P clŝ

)
:

(
P clŝ

)
max
pŝ·

max
e,px·,α,d,λ̂

∑
h∈H

∑
a∈A

phŝae
h
aŝ +

∑
`∈L

phŝ`e
h
`ŝe

h
`ŝ − chŝ

∑
a∈A

ehaŝ +
∑
`∈L

eh`ŝ



s.t.


phŝx ≥ 0 ∀h ∈ H, x ∈ L ∪ A

{e`·,p`·,α`·} ∈ KKT (P`) ∀` ∈ L

{ea·,pa·,αa·,da, λ̂
a} ∈ KKT (P ′a) ∀a ∈ A,

where KKT (P`) and KKT (P ′a) denote the solution sets of the KKT conditions.
More precisely, KKT (P`) is the set of tuples (e,p,α,µ,λ) satisfying the primal
feasibility, dual feasibility, stationarity and complementary slackness constraints
related to (P`). KKT (P ′a) is the set of tuples (e,d,p,α,µ,λ) satisfying the KKT
conditions of (P ′a). All these constraints can be found in A.1.

It is now well known that, even if the lower level problems of (P`) and (P ′a) of
the leader problems (P ′ŝ) are convex, a solution of the multi-leader-follower game
composed of the problems

(
P clŝ

)
need not be a solution of the game composed with

problems (P ′ŝ). Indeed as proved in [Dempe 2012, Aussel 2019] some qualification
conditions are required but it is beyond the scope of this work to discuss such
qualification conditions.
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4.4.2 Revisited optimistic approach

We consider here the classical optimistic approach that was considered above in its
bilevel expression (P ′ŝ) but we show, using the specific characteristics of the (TDSM)
problem, that at optimality (Nash equilibrium) we can actually select some special
GNE at the intermediary level while maintaining the optimal values of the supplier.
These special GNE get rid of the energy exchanges at the intermediary level.

Proposition 4.4.1. Consider a leader price profile pŝ = {pŝx | x ∈ L ∪ A}, and

S (p) =
{(

exy, exs,pxy,αxy,da, λ̂
a) |x, y ∈ L ∪ A, s ∈ S, a ∈ A, i ∈ Ia}

a GNE associated to p. Assume that, for all h ∈ H, at least one of the two following
conditions holds:

(H1) For all x ∈ L ∪ A, phŝx ≤ phs̄x;

(H2) For all x, y ∈ L ∪ A, phs̄x = phs̄y.

Then for any x, y ∈ L ∪ A such that ehyx > 0 one has

phxy = max
{

min
{
phŝx, p

h
s̄x

}
,min

{
phŝy, p

h
s̄y

}}
.

Let us first state the following technical lemma that will be useful to clarify the
proof of Proposition 4.4.1.

Lemma 4.4.2. Let a, b, c, d be real numbers, and define the two conditions

1. a ≤ b and c ≤ d;

2. b = d.

If at least one of these conditions is verified, then

max {min{a, b},min{c, d}} = min {max{a, c},max{b, d}} .

Proof of Lemma 4.4.2. Let us first assume that condition 1 holds true. In that case,

max {min{a, b},min{c, d}} = max {a, c} = min {max{a, c},max{b, d}} ,

since by the hypothesis, max{a, c} ≤ max{b, d}. Now, assume that condition 2 is
verified, hence b = d. If a ≤ b and c ≤ d, then condition 1 is verified as well, and
the lemma is verified. If condition 1 is not verified, then a > b or c > d. Since both
cases are symmetric, assume without loss of generality that a > b. In this case,

max {min{a, b},min{c, d}} = max {min{a, b},min{c, b}} = max {b,min{c, b}} = b.

On the other hand, min {max{a, c},max{b, d}} = min {max{a, c}, b} = b, since it
directly follows from the hypothesis that max{a, c} > b.
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Proof of Proposition 4.4.1. Take h ∈ H, and x, y ∈ L ∪ A such that ehyx > 0.
First, observe that since S(p) is a GNE, and since the energy bought from x by
y is a decision of the ILA y, the price phxy takes the highest possible value. This
price is upper-bounded at the same time by αhxyŝphŝx+

(
1− αhxyŝ

)
phŝy and αhxys̄phs̄x+(

1− αhxys̄
)
phs̄y. Observe that a judicious (i.e. 0 or 1) choice of αhxyŝ and αhxys̄

yields that those two upper bounds become max
{
phŝx, p

h
ŝy

}
and max

{
phs̄x, p

h
s̄y

}
,

respectively. Therefore, if ehyx > 0, then

phxy = min
{

max
{
phŝx, p

h
ŝy

}
,max

{
phs̄x, p

h
s̄y

}}
.

Now, combining Lemma 4.4.2 with either hypothesis (H1) or (H2) directly
implies that phxy = max

{
min

{
phŝx, p

h
s̄x

}
,min

{
phŝy, p

h
s̄y

}}
.

Observe that the proof of Proposition 4.4.1 actually holds under the following
hypothesis:

(H3) if ehxy > 0 for h ∈ H and x, y ∈ L ∪A, then at least one of the two conditions
holds:

– phŝx ≤ phfx and phŝy ≤ phsy for all s 6= ŝ;

– phsx = phfy for all s 6= ŝ.

The hypothesis (H3) is clearly weaker than the hypothesis that for all h ∈ H,
(H1) or (H2) holds. However, its meaning is more difficult to interpret. If (H1)
holds for h ∈ H, then the leader ŝ is competitive at this time slot and offer cheaper
prices than his competitors. If (H2) holds, then the competitors offer prices that
are not buyer-dependent, and thus do not discriminate among the ILAs.

Let us recall from Subsection 4.2.4 that we defined two situations: the com-
petitive case, and nondiscriminant exogenous pricing. Clearly, if any of these two
situations is true, then the assumptions of Proposition 4.4.1 are fulfilled.

Proposition 4.4.1 is crucial in our characterization of GNEs at the intermediary
level. The following proposition ensures that we can restrain the search of an
optimal GNE in the set GNEo(p), which is the set of GNEs at the intermediary
level where all energy exchanges among ILAs are equal to zero.

Proposition 4.4.3. In a best response, optimistic context, we assume that:

• p = {pŝx | x ∈ L ∪ A} is an optimal leader price profile;

• S(p) =
{(

exy, exs,pxy,da, λ̂
a) |x, y ∈ L ∪ A, s ∈ S, a ∈ A} is a GNE among

the ILAs with relation to p that is optimal for the leader;

• for all h ∈ H, (H1) or (H2) of Proposition 4.4.1 holds;
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• for each h ∈ H, the function
(
ehxŝ
)
x∈L∪A

7→
∑
x∈L∪A p

h
ŝxe

h
xŝ−chŝ

(∑
x∈L∪A e

h
xŝ

)
is increasing with relation to each variable;

then one can construct a leader price profile p∗ and a GNE S∗ (p∗) such that e∗xy = 0
for all x, y ∈ L ∪ A, and z (S(p)) = z (S∗ (p∗)), where z denotes the objective
function of ŝ. That is, p∗ is an optimal price profile for the leader too.

Proof. Let h belong to H, and for all x ∈ L ∪A, denote by phx,min = min
{
phŝx, p

h
s̄x

}
the lowest price offered to x by the suppliers.

Recall that from Proposition 4.4.1, if ehxy > 0, then phyx = max
{
phx,min, p

h
y,min

}
.

Furthermore, if ehxy = 0, then phyx ≥ phx,min, otherwise we would have a contradiction
with S(p) being a GNE, since x would be able to purchase cheaper energy from y

than from the suppliers and thus unilaterally improve his situation by changing his
energy source. Therefore, every actor x ∈ L ∪ A buys his energy at price phx,min,
either from the supplier(s) offering this price, or from the other ILAs.
Claim:

For x, y ∈ L ∪ A, if phx,min < phy,min, then ehxy = 0.
Proof:

Assume that ehxy > 0. It follows from Proposition 4.4.1 that phyx = phy,min >

phx,min, hence x has access to cheaper energy from at least one supplier than from
y. It is therefore no optimal solution for x to buy energy from y and there is a
contradiction with S(p) being a GNE. Hence ehxy = 0 for all x, y ∈ L∪A such that
phx,min < phy,min. Thus the claim is proved.

�

Claim:
If S′(p) is a feasible solution for the followers satisfying

1. for all x, y ∈ L∪A, if phx,min ≤ phy,min, then p′hxy = phy,min, and if phx,min < phy,min,
then p′hyx > phx,min,

2. for all x ∈ L ∪ A, if e′hxy > 0 for y ∈ S ∪ L ∪ A, then p′hyx = phx,min,

3. for all ` ∈ L,

d′h` =
∑
s∈S

e′h`s +
∑

x∈L∪A

(
e′h`x − e′hx`

)
=
∑
s∈S

eh`s +
∑

x∈L∪A

(
eh`x − ehx`

)
= dh` ,

4. for all i ∈ I, d′hi = dhi and λ̂′i = λ̂i,

i.e. every local agent and every end user has the same demand in S′(p) and in
S(p), then it is a GNE.
Proof:
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By definition, S′(p) is a GNE if no ILA x ∈ L∪A can unilaterally improve the
value of his objective function.

The first condition ensures that x ∈ L ∪ A cannot buy cheaper energy from an
ILA than from the cheapest supplier, and that y does not sell energy at a price too
low to be profitable: otherwise, one has a contradiction with the fact that S′(p) is a
GNE. The second condition makes sure that x indeed buys the energy he needs at
the lowest possible price. It is therefore not possible for x to improve his objective
value by modifying his energy purchases while keeping the same consumption dx.
On the other hand, the second condition makes sure that if x sells energy, he sells
it at the maximum possible price. Hence x cannot improve his objective value by
increasing his prices.

We thus deduce that the only way for x to strictly improve his objective value
would imply a modification of his energy consumption dx. Let us assume that it is
possible, with demand d′′x. Since the energy sales of x are decision variables of the
other ILAs and x buys all his energy at price phx,min, the difference in the revenue
function of x is as follows:

• if x is a local agent,∑
h∈H

(
phx,min

(
d′′hx − d′hx

)
+ V h

x

(
d′′hx

)
− V h

x

(
d′hx

))
< 0,

• if x is an aggregator,

∑
h∈H

phx,min

(
d′′hx − d′hx

)
+
∑
i∈Ix

(
r′′hxi d

′′h
i − r′hjid′hi

) < 0,

with r′′hxi = 2vhi
(
d′′hi − d

h,0
i

)
+ λ̂′′i and r′hxi = 2vhi

(
d′hi − d

h,0
i

)
+ λ̂′i.

However in this case, x could also unilaterally strictly improve the value of
his objective function in S(p). If x is a local agent, it would be enough to set
dx = d′′x and increase, respectively decrease, his energy purchases at time h ∈ H
by (d′′x − dx). The difference in the revenue function of x is the same as with S′(p),
since dx = d′x. If x is an aggregator, observe from the proof of Proposition 4.3.1
that for a given demand of an end user dxi , there is a unique optimal corresponding
λ̂i. It follows that replacing dxi and λ̂x by d′′xi and λ̂′′x, and increasing/decreasing
the energy purchases at time h ∈ H correspondingly finally yields the same revenue
difference as previously, since dx = d′x and thus λ̂i = λ̂′i. It follows from this that
if x could unilaterally strictly improve the value of his objective function in S′(p),
so could he in S(p), which is a contradiction with S(p) being a GNE. Therefore,
S′(p) is a GNE and Claim 2 is proved.



104 Chapter 4. Single-Leader Multi-Follower

�

Observe now that without loss of generality, S(p) satisfies the conditions of
Claim 4.4.2. Whereas conditions 3 and 4 are obviously verified, conditions 1 and
2 need not be valid. However, assume that condition 1 is not verified. Then there
exist x, y ∈ L∪A with phx,min ≤ phy,min such that one of the two following cases holds
true:

• phxy 6= phy,min: it follows from the proof of Lemma 3 that phxy ≤ phy,min, thus here
the inequality is strict. If dhy +

∑
x′ 6=y e

h
x′y > 0, then ehx′y > 0 for x′ offering

the cheapest price to y, which is smaller than phy,min by the assumption. This
constitutes a contradiction with Lemma 3.

Now, if dhy +
∑
x′ 6=y e

h
x′y = 0, then ehyx = 0, thus the value of phxy can be

increased up to phy,min without modifying the value of the objective function
of x. The value of the objective function of y is not modified either, and y does
not get cheaper energy with the increased phxy. Hence y cannot unilaterally
strictly improve the value of his objective function with phxy = phy,min, and
S(p) with phxy = phy,min is a GNE as well.

• phyx < phx,min: this case is similar as the previous one, considering the two cases
where dhx+

∑
x′ 6=x e

h
x′x > 0 and dhx+

∑
x′ 6=x e

h
x′x > 0. The same reasoning leads

to the same conclusions.

As a result of this reasoning, we conclude that without loss of generality, S(p)
satisfies the conditions of Claim 4.4.2.

We say that there is a cycle in a followers’ GNE S(p) if there are ILA x1, . . . , xn

such that ehxixi+1 > 0 for i = 1, . . . , n, with xn+1 = x1.
Claim:

There exists a GNE S′(p) such that there is no cycle.
Proof:

Assume there is a cycle (x1, . . . , xn), and define e = mini=1,...,n e
h
xixi+1 . Observe

that the first Claim implies that for any i, j = 1, . . . , n, phxi,min = phxj ,min. Set
e′hxixi+1 = ehxixi+1 − e for i = 1, . . . , n. The followers’ answer that results S′(p)
clearly satisfies the conditions of Claim 2, therefore it is a GNE, concluding the
proof of Claim 3.

�

Notice that, in the proof of Claim 4.4.2, no variable of the form ehxs with x ∈
L ∪ A, s ∈ {ŝ, s̄} is different in S′(p) and S(p); therefore the leader’s profit is
constant and S′(p) is a followers’ answer that is optimal for the leader.

Claim 4.4.2 allows us to assume that S(p) = S (p∗) has no cycle. Therefore,
either there is at least one ILA x ∈ L∪A such that 0 <

∑
y∈L∪A e

h
yx ≤ ehxŝ + ehxs̄, or
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there are no energy exchanges among the ILAs in S (p∗). In the first case, choose
y such that ehyx > 0. It follows from Claim 4.4.2 that phy,min ≥ phx,min. Therefore,
setting e′hyŝ = ehyŝ + ehyx and e′hxŝ and e′hxs̄ such that e′hxŝ + e′hxs̄ = ehxŝ + ehxs̄ − ehyx and
e′hxŝ ≥ ehxŝ − ehyx will yield a new followers’ answer with ehyx = 0. Thanks to Claim
4.4.2, it is a GNE. Furthermore, the leader’s profit cannot decrease in the process,
because whenever an ILA buys less energy from ŝ, another ILA buys more energy
(in greater or equal quantities) to a greater or equal price. Iterating this process
will finally yield a GNE S∗ (p∗) where ehxy = 0 for all x, y ∈ L∪A, which concludes
our proof.

It follows from Proposition 4.4.3 that a solution of (TDSM) can be obtained by
simply solving the following revisited optimistic single-leader multi-follower problem
(P oŝ ):

(P oŝ ) max
pŝx

max
ex,da,λ̂

a

∑
h∈H

( ∑
x∈L∪A

phŝxe
h
xŝ − chŝ

( ∑
x∈L∪A

ehxŝ

))

s.t.


phŝx ≥ 0 ∀h ∈ H, x ∈ L ∪ A

(e`ŝ, e`s̄) ∈ argmax
(
P el`

)
∀` ∈ L(

eaŝ, eas̄,da, λ̂
a) ∈ argmax

(
P ela

)
∀a ∈ A,

where
(
P elx

)
denotes the optimization problem of x ∈ L ∪ A without energy ex-

changes (el stands for exchangeless), that is for x ∈ L:(
P elx

)
min
ex·

∑
h∈H

(
phŝxe

h
xŝ + phs̄xe

h
xs̄ + V h

k

(
ehxŝ + ehxs̄

))

s.t.


∑
h∈H

ehxŝ + ehxs̄ = Wx

ehxŝ, e
h
xs̄ ≥ 0 ∀h ∈ H,

and for x ∈ A,
(
P elx

)
is as follows:

(
P elx

)
min

ex·,di,λ̂i

∑
h∈H

phŝxehxŝ + phs̄xe
h
xs̄ +

∑
i∈Ix

2dhi vhi
(
dhi − d

h,0
i

)+
∑
i∈Ix

Wiλ̂i

s.t.



∑
i∈Ix

dhi = ehxŝ + ehxs̄ ∀h ∈ H

∑
h∈H

dhi = Wi ∀i ∈ Ix

dhi , e
h
xŝ, e

h
xs̄ ≥ 0 ∀h ∈ H, i ∈ Ix

2vhi
(
dhi − d

h,0
i

)
+ λ̂i ≥ 0 ∀h ∈ H, i ∈ Ix.
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4.4.3 Semi-optimistic approach

The developments of Section 4.3 and Subsection 4.4.2 show that the optimistic case
of (TDSM) can be reformulated as a lighter bilevel problem, which can be efficiently
solved by commercial solvers after a transformation into a MPCC. However, the
optimistic approach is aptly named: if the follower has multiple solutions for a given
decision of the leader, his decisions are assumed to be favorable to the leader, which
might be too optimistic. At the other extreme, a possible pessimistic approach
might be too pessimistic: if the follower has multiple solutions for a given decision
of the leader, he will choose the least favorable for the leader. This is why we now
consider a third case in between, which we call semi-optimistic. For the rest of this
section, we will assume that we are in the competitive case, that is the leader can
take over the whole electricity demand for cheaper prices than the competitor.

In the semi-optimistic case, we assume that the GNE among the ILAs will be
of a specific type: at time h ∈ H, the only ILA that buys energy from the leader ŝ
is the ILA x that enjoys the lowest price, minx′∈A∪L phŝx′

not.= phmin. The ILA y then
buys the energy he needs from x at price phŝy (instead of ŝ, who offers the same
price, in the optimistic case). Let us call this class of GNE GNEso(p). To motivate
this choice, consider a simple case with a single time slot h and two local agents, x
and y. Furthermore, assume that phŝx < phŝy, Wx = 0, Wy = 1. From the constraints
of x, phxy ∈ [phŝx, phŝy]. Observe that if phxy < phŝy, the optimal solution for y consists
in setting ehyx = 1 and ehyŝ = 0. However, if phxy = phŝy, the set of possible solutions
for y is the set {(

ehyŝ = α, ehyx = 1− α
)
| α ∈ [0, 1]

}
.

With the classical optimistic approach, the decision taken by y would be ehyŝ = 1
and ehyx = 0. The semi-optimistic approach implies that the function ehyx

(
phxy

)
that

determines the optimal value of ehyx in (Py) in function of phxy is left-continuous in
phxy = phŝy.

Another important notion to justify the semi-optimistic approach is the order
in which the decisions are taken. Usually, bilevel models are used to model the
response of a follower to decisions of a leader, which implies that the decisions of
the leader are taken before the decisions of the follower. Consider the example given
in the previous paragraph: if x sets his price phxy to any value in ]phŝx, phŝy[, he will
get a strictly larger objective than with phxy = phŝy in the optimistic approach. The
semi-optimistic approach proposes a way to avoid this.

To solve (TDSM) with the semi-optimistic approach, remember that at time
h ∈ H, the leader ŝ sells energy at price phmin, whereas each ILA x buys his energy
at price phfx. Thus we can determine an optimal profile of prices of the leader with
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the following reformulation (P soŝ ):

(P soŝ ) max
pmin,pŝx

max
ex,da,λ̂

a

∑
h∈H

phmin

( ∑
x∈A∪L

ehxŝ

)
− chŝ

( ∑
x∈A∪L

ehxŝ

)

s.t.



phmin ≤ phŝx ∀h inH, x ∈ L ∪ A

phŝx ≤ phs̄x ∀h ∈ H, x ∈ L ∪ A

(e`ŝ, e`s̄) ∈ argmax
(
P el`

)
∀` ∈ L(

eaŝ, eas̄,da, λ̂
a) ∈ argmax

(
P ela

)
∀a ∈ A,

where P elx is the same as in the previous subsection.

4.5 Numerical results

Based on the three different formulations of the best response problem of (TDSM)
(the MPCC, the revisited optimistic and the semi-optimistic formulations), we pro-
vide in this section some numerical experiments to compare these approaches. The
competitive case and the noncompetitive case are considered separately. The opti-
mization problems resulting of the three reformulations lead to nonconvex problems
with complementarity constraints and thus only local solutions will be obtained.

4.5.1 Competitive case

Spot market prices usually range in Europe from 0.01 to 0.08e per kWh, whereas
typical prices offered by a supplier to consumers start at 0.1e per kWh. To get a
more precise idea of what happens when this is not the case, see Subsection 4.5.2.
This assumption allows us to get rid of the variables related to the competitors by
setting the competitor’s prices as upper bounds for the leader’s prices. Therefore,
we actually solve the following problems:

• With the classical approach, we solve
(
P c,KKTŝ

)
(c stands for competitive):

(
P c,KKTŝ

)
max
pŝ·

max
e,px·,α,d,λ̂

∑
h∈H

( ∑
x∈L∪A

phŝxe
h
xŝ − chŝ

( ∑
x∈L∪A

ehxŝ

))

s.t.


0 ≤ phŝx ≤ phs̄x ∀h ∈ H, x ∈ L ∪ A

{e`·,p`·,α`·} ∈ KKT (P c` ) ∀` ∈ L

{ea·,pa·,αa·,da, λ̂
a} ∈ KKT (P ca) ∀a ∈ A,

where KKT (P c` ) and KKT (P ca) denote the solution sets of the KKT condi-
tions respectively associated to local agents and aggregators. More precisely,
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KKT (P c` ) is the set of tuples (e,p,α,µ,λ) satisfying the primal feasibility,
dual feasibility, stationarity and complementary slackness constraints related
to problem (P c` ), which is similar to (P`), but with S = {ŝ}. KKT (P ca) is the
set of tuples (e,d,p,α,µ,λ) satisfying the KKT conditions of (P ca), which is
(P ′a) with S = {ŝ}. The KKT conditions of (P`) and (P ′a) in the general case
(S = {ŝ, s̄}) can be found in Subsection 4.3.

• With the optimistic reformulation, we solve
(
P o,KKTŝ

)
:

(
P o,KKTŝ

)
max
pŝx

max
ex,da,λ̂

a
,µ,λ

∑
h∈H

( ∑
x∈L∪A

phŝxe
h
xŝ − chŝ

( ∑
x∈L∪A

ehxŝ

))

s.t.


0 ≤ phŝx ≤ phs̄x ∀h ∈ H, x ∈ L ∪ A

(e`·,µ`,λ`) ∈ KKT
(
P el`

)
∀` ∈ L(

ea·,da, λ̂
a
,µa,λa

)
∈ KKT

(
P ela

)
∀a ∈ A,

where KKT
(
P elx

)
denotes the KKT conditions of the optimization program

of x ∈ L∪A without energy exchanges. These KKT conditions can be found
in A.1.

• For the semi-optimistic reformulation, we search solutions of
(
P so,KKTŝ

)
:

(
P so,KKTŝ

)
max

pmin,pŝx
max

ex,da,λ̂
a
,µ,λ

∑
h∈H

(
phmin − khf

)( ∑
x∈A∪L

dhx

)

s.t.



0 ≤ phŝx ≤ phs̄x ∀h ∈ H, x ∈ L ∪ A, s 6= s′ ∈ S

phmin ≤ phŝx ∀x ∈ L ∪ A

(e`·,µ`,λ`) ∈ KKT
(
P el`

)
∀` ∈ L(

ea·,da, λ̂
a
,µa,λa

)
∈ KKT

(
P ela

)
∀a ∈ A,

where KKT
(
P elx

)
represents the ILA x’s program without exchanges. Ob-

serve that actually, the only differences between the optimistic and the semi-
optimistic reformulations lie in the presence of phmin and the adaptation of the
leader’s objective function.

We solved these MPCCs with the Knitro solver [Byrd 2006] included in the
demo version of GAMS 24.9.2 [Gen 2017].

4.5.1.1 Classical optimistic versus revisited optimistic

The main interest of the revisited optimistic formulation lies in its low number of
variables and constraints, compared to the classical optimistic formulation. Fur-
thermore, the classical optimistic formulation allows degenerate cases: given tuples
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(
ex·,px·,α,

(
d, λ̂,

)
µ,λ

)
∈ KKT

(
P clx

)
for all ILAs, it is possible to build in-

finitely many tuples satisfying the same KKT conditions by setting e′hxy = ehxy + c,
e′hyx = ehyx + c, µ′hpxy = µhpxy + c and µ′hpyx = µhpyx + c for every pair of ILAs (x, y) such
that phsx = phsy, with c > 0. Observe that such new tuples

(
e′x·,px·,α,

(
d, λ̂,

)
µ′,λ

)
imply the same energy consumption for the local agents and the end users, and the
same energy sales for the suppliers. With the revisited optimistic formulation of
the problem, there are no exchanges among the ILAs. Therefore, such degenerate
cases are avoided. Note that it would be possible to allow unidirectional exchanges
only by adding the following constraints:

ehxy · ehyx = 0 ∀x, y ∈ L ∪ A.

However, this method not only increases the number of constraints, but also in-
creases the number of necessary dual variables and complementarity constraints.

As proved in Subsection 4.4.2, the classical optimistic and the revisited opti-
mistic formulations should yield the same optimal value for the objective function
of the leader. Concerning the number of variables and constraints, a quick analysis
of the resulting MPCCs gives, for the classical approach:

#{variables} = 2I + L+H
(
3I + 4A+ 5L+ 8A2 + 16AL+ 8L2)

= Θ
(
H
(
I +A2 + L2))

#{constraints} = 2I + L+H
(
4I + 4A+ 5L+ 10A2 + 20AL+ 10L2)

= Θ
(
H
(
I +A2 + L2)) ,

where H = |H|, I = |I|, A = |A|, and L = |L|. For the revisited optimistic
formulation, these numbers reduce to:

#{variables} = 2I + L+H (3I +A+ 3L) = Θ (H (I +A+ L))

#{constraints} = 2I + L+H (4I +A+ 3L) = Θ (H (I +A+ L)) .

Whereas for small instances (3 time slots, 2 local agents, 1 aggregator in contract
with 2 end users), the difference between both methods might not be significant (282
variables, 342 constraints for the classical method versus 45 variables, 51 constraints
for the revisited optimistic formulation), the classical method becomes intractable
as soon as instances grow larger (24 time slots, 10 aggregators with 1 end user each,
10 local agents give 79710 variables and 99150 constraints, whereas the revisited
optimistic formulation only needs 1710 variables and 1950 constraints).

These differences in terms of number of variables and constraints are experi-
mentally confirmed in Table 4.1 summarizing some instances that have been tested.
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This table also highlights the computational improvement (number of iterations
and time) associated to the revisited formulation. The numerical experiments have
been conducted on a laptop equipped with a processor Intel i7-4600u at 2.1 GHz
and 16 GB of RAM.

Instance #LA Problem #var #cons #iterations time (s)

1 2 opt-classic 282 342 failed

1 2 opt-revis. 45 51 17048 3,789

2 1 opt-classic 146 176 31769 46,039

2 1 opt-revis. 35 41 23165 6,928

3 1 opt-classic 146 176 56357 61,371

3 1 opt-revis. 35 41 29487 5,164

Table 4.1: All the tests reported here involve three hours, one aggregator, and two
end users. All the tests but one end up with a local optimum with a null gap. Each
instance corresponds to a given set of parameters (production cost, competitor’s
price, base demand, inconvenience coefficients). The parameters of the instances
can be found in A.2.

The first tests below aim to study the sensitivity of the profit to the inconve-
nience coefficient. More precisely, we study the cases of one single local agent, and
of one aggregator with a single end user. Since in both cases, there is only one
actor, both approaches prove to be efficient and yield the same results, up to minor
differences that can be explained by the margin of error of the commercial solver.
The results of the computations can be found in Figures 4.2 and 4.3.

In both cases, we consider three time slots with base demand (4, 14, 14) kWh,
which correspond to the demand of approximately ten households over one day
(divided in three periods of 8 hours). The costs of energy for the leader were
(0.02, 0.06, 0.05) e per kWh, and the competitor’s prices were assumed to be con-
stant at 0.14 e per kWh. The inconvenience coefficients are supposed to be the
same for the three time periods and vary between 10−6 and 0.1.

Several comments need to be highlighted. First, the energy consumption varies
from the base demand to a complete shift of the whole demand on one time slot.
The larger the inconvenience, the lesser the shift. When the price incentive is
enough to result in a complete shift, the price curve rises towards the competitor’s
price: when the inconvenience coefficient decreases, a smaller incentive is needed to
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Figure 4.2: Situation with one aggregator
At left, the shift induced by the leader’s prices. At right, the price offered by the
leader during the first time period and the leader’s profit.

Figure 4.3: Situation with one local agent
At left, the shift induced by the leader’s prices. At right, the price offered by the
leader during the first time period and the leader’s profit.

cause a similar shift. Then, the leader’s profit increases as the inconvenience coeffi-
cients decrease. However, there is a noticeable difference between aggregators and
local agents. In the aggregator case, there is a threshold: when the inconvenience
coefficient reaches a certain value (around 0.0005 in this experiment), it becomes
worth to incentivize load shifting with a large price difference, whereas the optimal
price curve for local agents is smoother. Finally, observe that the actual interesting
inconvenience coefficients are located in a narrow interval: between 10−4 and 10−2.
An inconvenience coefficient smaller than 10−4 will lead to higher billing costs for
the consumer, whereas a coefficient larger than 10−2 will lead to an inability of the
leader to imply load shifting with price incentives only.
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Figure 4.4: Situation with various actors, one local agent and one aggregator in
contract with two end users
At left, the relative load shifting implied by the leader’s prices for the various
actors with the classical approach (c) and with the optimistic reformulation (o).
At right, the profit obtained with the classical approach and with the optimistic
reformulation.

After basic examples with only one ILA, we consider the case with one local
agent and one aggregator, the latter in contract with two end users. The numerical
results can be found in Figure 4.4. On the right hand side, the objective function
of the leader is represented as a function of the inconvenience coefficients, assumed
to be the same for all the actors. On the left hand side, the curves indicate the
relative shift in percents, according to the following formula:

rsx (vx) =

∑
h∈H

∣∣∣dhx − dh,0x ∣∣∣
2Wx

,

where x stands for the local agent and the two end users. This value represents
the percentage of energy that is consumed at another time slot than with the base
demand.

These results were obtained with the multi-start option of Knitro. For each set
of parameters, hundred starting points were automatically generated by the solver,
and the best solution was returned. In all cases, the commercial solver returned
a locally optimal solution. However, it is clear from Figure 4.4 that the local
optima found with the classical method correspond to lower values of the objective
function of the leader than the ones obtained with the local optima of the revisited
optimistic formulation, and thus from the global optima of the problem. Hence
the local optima found with the revisited optimistic reformulation are much better
candidates for global optimality. This can be observed on the leader’s profit graph:
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in most cases, the leader’s profit obtained with the classical method is far from the
leader’s profit obtained with the revisited optimistic formulation. The relative shifts
obtained with the classical method give interesting informations as well. Whereas
in this setting, the shift should be monotonously decreasing as the inconvenience
coefficient increases, it is clearly not the case. Quite the opposite, the relative shift
curves obtained with the classical method are chaotic compared to the relative shift
curves obtained with the revisited optimistic formulation.

Finally note that the local optima of the MPCC obtained with the revisited
optimistic formulation should have equivalent local optima (in the sense of same
leader prices and consumers’ demands) of the MPCC obtained with the classical
method. However, the solver is unable to find these equivalent local optima. All
in all, the formulation of the revisited optimistic case presented in Subsection 4.4.2
proves to be much more efficient: the MPCC have by far less variables and con-
straints, and the solver is able to find much better local optima. The difficulties to
obtain meaningful results with the classical method build a strong argument for a
thorough analysis of the lower level.

4.5.1.2 Revisited optimistic versus semi-optimistic

As observed in the previous subsection, the revisited optimistic formulation is com-
putationally much better than the classical approach. Focusing on a subset of
possible GNE at the lower level allows a great decrease in the number of necessary
variables and constraints, which leads to better performances of the commercial
solver, in terms of solving time and of quality of the local optima. We next dis-
cuss the advantages of the semi-optimistic formulation compared to the revisited
optimistic one.

First, observe that the leader’s objective value is always lower with the semi-
optimistic approach than with the revisited optimistic one. Indeed, for any given
price profile p of the leader, the corresponding GNE in GNEo(p) yields a larger
objective for the leader than the GNE in GNEso(p), since in the semi-optimistic
case, at time h ∈ H, all the energy is sold at the lowest offered price phmin. This is
not the case in the revisited optimistic setting, where the energy bought by each
client x ∈ L ∪ A is sold by the leader at price phŝx ≥ phmin. Thus the interest
of the semi-optimistic approach does not lie in its rough performance, but in its
relative robustness towards the followers’ reaction. The prices obtained with the
semi-optimistic reformulation indeed ensure a lower bound for the leader’s revenue
under the mild assumption that the followers will buy energy from the leader instead
of the competitors in the case of equal prices, whereas the prices obtained with the
optimistic formulation only consider the leader’s revenue in the most favorable case.
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To have a meaningful comparison between the revisited optimistic and the semi-
optimistic formulations, we need to compute the leader’s revenue in the following
configurations:

1. optimistic prices with the followers’ response in GNEo(p), which yields a
revenue zoo for the leader,

2. optimistic prices with the followers’ response in GNEso(p), with revenue zoso
for the leader,

3. semi-optimistic prices with the followers’ response in GNEso(p), with revenue
zsoso for the leader.

The way zoo and zsoso are computed is clear: it is enough to solve
(
P o,KKTŝ

)
and(

P so,KKTŝ

)
, respectively. For zoso however, there is more to do than just solve

a MPCC. The prices and the energy consumption of the ILAs are the same as
in the (revisited) optimistic case and are thus determined by solving

(
P o,KKTŝ

)
.

Nevertheless, if we assume that the followers’ GNE belongs to GNEso(p), then the
ILA that gets the cheapest price at time h ∈ H from ŝ buys all the energy that is
consumed at time h. Therefore, to compute zoso, we compute the following formula:

∑
x∈L∪A

phmind
h
x − chŝ

( ∑
x∈L∪A

dhx

)
,

where phmin = minx∈L∪A phŝx is the minimum price offered to the ILAs at time h by
the leader, and for all x ∈ L∪A, pŝx and dx are determined by solving

(
P o,KKTŝ

)
.

This represents the revenue of the leader if the followers, as an answer to the prices
pŝx, choose the GNE defined as follows: if x̂ is (one of) the ILA getting his electricity
at price phmin, then ehx̂ŝ =

∑
x∈L∪A d

h
x, ehxŝ = 0 for x 6= x̂, for x, y 6= x̂, ehxx̂ = dhx and

ehxy = 0, and finally, phxy = max
{
phŝx, p

h
ŝy

}
. This is actually a worst-case scenario for

the leader, under the assumption that no electricity is bought from the competitor.
Nevertheless, it is a possible answer of the followers, since it is a GNE. Therefore,
still under the assumption that no energy is bought from the competitor, GNE that
are answers to the prices pŝ computed with

(
P o,KKTŝ

)
can possibly take all values

between zoso and zoo , whereas an answer to prices pŝ computed with
(
P so,KKTŝ

)
will

yield a revenue that is at least zsoso . These values share a common ground idea with
the rewarding and deceiving solutions defined in [Alves 2016].

Clearly,
zoo ≥ zsoso ≥ zoso.

The question here is: how bad can the optimistic prices perform when the followers
choose a GNE in GNEso(p), compared to the semi-optimistic prices ? To prove the
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interest of the semi-optimistic approach, we study a very simple case: three time
slots and two local agents x and y with respective demands (0, 10, 0) and (0, 0, 10).
Their inconvenience coefficients are as follows: vx = (v, v, v) and vy = (100, v, v),
with v varying between 10−6 and 0.1. Setting v1

y = 100 means that no energy should
be consumed by y at the first time slot. The spot market prices are supposed to be
(0.01, 0.05, 0.08), so that the leader should incentivize its clients to consume energy
as early as possible. This means that for the leader, an ideal consumption of x
and y would be (10, 0, 0) and (0, 10, 0), respectively, considering that y should not
consume during the first time slot. The competitor’s prices are assumed to remain
constant at (0.14, 0.14, 0.14) as in the previous examples.

Figure 4.5: Comparison optimistic vs semi-optimistic reformulations
At left, the different profits: zoo , zsoso and zoso. At right, the prices p1

x and p2
y with the

optimistic (o) and with the semi-optimistic (so) reformulations.

It follows from the design of our example that we will have

p1
ŝy = p2

ŝx = p3
ŝx = p3

ŝy = 0.14.

Indeed, the leader does not want x or y to consume energy during these periods,
therefore his price will take the highest possible value, that is phs̄x = phs̄y = 0.14 for all
h ∈ H. The prices that will directly influence the electricity consumption of x and
y are thus the prices p1

ŝx and p2
ŝy. In the revisited optimistic case, x and y buy their

energy directly from the leader. In the semi-optimistic case, x will buy his energy
from y during the second time slot, thus during this time slot, all the energy will be
bought by y from the leader at price p2

ŝy. The results are presented in Figure 4.5.
To the left, the leader’s profit is represented in three cases: the blue curve depicts
the result of the revisited optimistic formulation, the green curve the result of the
semi-optimistic formulation, and finally the red curve illustrates the leader’s profit
when the leader’s prices are computed with the optimistic reformulation, but the
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GNE of the followers is in GNEso(p). The semi-optimistic formulation yields prices
that are by far more robust, in the sense that for these prices, any followers’ answer
will yield at least the computed profit (provided that the followers favour the leader
over the competitor in case of equal prices). By contrast, the prices computed
with the (revisited) optimistic approach will yield the computed profit only if the
followers’ answer is the computed one (except for degenerate cases). An other
possible followers’ answer (in particular a semi-optimistic GNE) might provide less
profit. Therefore, the prices computed with this formulation ensure a certain profit
in a worst-case scenario. Furthermore, the difference between the profits obtained
with the revisited optimistic zoo or the semi-optimistic formulations zsoso are not very
large, as it can be seen in Figure 4.5. Therefore, computing robust prices implies
lower revenues in an optimal case (i.e. the followers’ GNE is in GNEo(p)), but
ensures much better results in worst cases.

Let us end this subsection with a table summarizing some instances that have
been tested. Note that in the tests presented above, the number of iterations and

Instance #hours #EU #LA Problem #var #cons #iterations time (s)

4 3 2 2 opt-revis. 45 51 17048 3,789

4 3 2 2 semi-opt. 48 60 22045 5,745

5 3 3 3 opt-revis. 66 75 29895 13,341

5 3 3 3 semi-opt. 69 87 48095 13,696

6 4 3 3 opt-revis. 85 97 17176 8,146

6 4 3 3 semi-opt. 89 113 14630 6,698

7 4 6 6 opt-revis. 166 190 20140 14,613

7 4 6 6 semi-opt. 170 218 28499 23,421

8 4 8 8 opt-revis. 220 252 31846 39,883

8 4 8 8 semi-opt. 224 288 41156 42,437

Table 4.2: All the tests reported here involve one aggregator. All the tests end
up at a local optimum with a null gap. Each instance corresponds to a given set
of parameters (production cost, competitor’s price, base demand, inconvenience
coefficients). The parameters of the instances can be found in A.2.

the computational time are always higher for the semi-optimistic approach than
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for the revisited optimistic approach, except for instance 6. The behavior on this
particular instance might be due to an usual structure of the instance, or more
probably to the solving procedure used by Knitro.

4.5.2 Noncompetitive case

In the previous subsection, we assumed that the leader is competitive at any time,
that is the competitor’s price is larger than the production costs for any time slot.
However, this highly depends on the studied data. In order to enlighten the shifting
effect of the leader’s pricing policy, we present a last example in which the leader
is not always competitive. The data and results of the example are presented in
Figure 4.6: we consider two time slots, and a single local agent with demand (5, 5).
Furthermore, the inconvenience coefficients v1 = v2 take three different values:
0.001, 0.002 and 0.003. These three values cause three very different situations:
with 0.003, the inconvenience is too large to allow any shift and the optimal prices
of the leader are similar to the competitor’s prices. With 0.001, the inconvenience
is small enough to cause, combined with the values of the optimal leader prices, a
shift of the whole demand on the first time slot. The last case is intermediate: only
a portion of the demand is shifted with the optimal leader prices.

First, observe that we are in an optimistic setting. The results presented here
are therefore obtained with the revisited optimistic formulation. It is impossible for
the leader to make any profit during the second time slot, because during this time
slot, the leader’s energy cost (factor of the linear cost function) is higher than the
competitor’s price (see top of Figure 4.6). Therefore, the optimal leader prices are
greater than the competitor’s prices during the second time slot, thus the energy
that is consumed by the client at this time slot is bought from the competitor. The
concern for the leader is to give an incentive to the client to shift his demand to
the first time slot, where the leader can make some profit. In the base case, the
profit achieved is (0.07− 0.01) ∗ 5 = 3: no optimization is done at all, the leader’s
prices are equal to the competitor’s prices and thus the optimal follower’s demand
is the base demand. If the leader’s price is too high, the follower will not shift his
demand. If the leader’s price is too low, the follower will shift his demand to a great
extend, but the demand increase will not compensate the price decrease. The cases
vh = 0.001 and vh = 0.003 are extreme: either the client is very shifting-averse,
which leads to an optimal leader’s price equal to the competitor’s price and no shift,
or the client undergoes a very low inconvenience with any shift, which leads to the
leader offering a price small enough to induce a shift of the whole follower’s demand
to the first time slot. Finally, the case vh = 0.002 is probably the most interesting:
the client agrees to shift some of his demand, but not everything: exactly 12.5% of
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Figure 4.6: Noncompetitive case
On top left, the data for the example where the leader is not always competitive:
the production cost and the competitor’s prices. On top right, the resulting profit of
the leader for the four various cases: no optimization (i.e. copying the competitor’s
prices), and optimization for the three possible values of vh.
At bottom left, the optimal prices of the leader for the example where the leader is
not always competitive. At bottom right, the follower’s demand resulting of these
prices.

his demand is shifted from the second to the first time slot. In this case, the leader’s
profit rises to 3.125, which represents an improvement of 4.16% of the leader’s profit.
This case can be considered as realistic. A shift of 12.5% of the demand does not
seem too difficult to achieve for the client, and the leader’s profit increases enough
to be worth the effort of computing the optimal prices.

4.6 Conclusion

In this paper, we have defined a trilevel energy pricing model for Demand-Side
Management. First, by explicit resolution of the lowest level, we reduced it to a
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new bilevel problem. Besides the classical optimistic approach consisting in using
first order reformulation of the lower level of this bilevel problem (the classical
optimistic approach), we defined two new concepts of solutions of the problem.
Both of those new approaches are based on a selection of special GNE of the lower
level of the new model. The first one, called revisited optimistic, selects special GNE
of the lower level of the new model while, theoretically, maintaining the optimal
value of the leader. Actually our numerical experiments enlighten the fact that
the revisited optimistic approach is clearly more stable than the classical approach,
the latter providing often a lower optimal value of the supplier. Moreover the
revisited formulation proved to be much more efficient than the classical method
in computational terms (number of variables, constraints and thus solving time).
Further analysis of the exchanges among the ILA allowed us to define the second
new concept of solution, called semi-optimistic. The special kind of GNE considered
at the lower level of the new bilevel model corresponds to an intermediate between
optimistic and pessimistic concepts for the leader’s problem. The numerical results
obtained with the semi-optimistic approach have shown its robustness towards the
followers’ response to the leader’s decisions while the optimal value for the supplier
is only slightly impacted, thus furnishing a good compromise concept of solution.
Note that the reformulations of the initial single-leader multi-follower game lead
to nonconvex optimization problems with quite complex constraints. Thus the
optimization tools that are used here can only reach local solutions (at best). The
development of specific and adapted optimization techniques would be needed to
go further and it is out of the scope of this work.

As a conclusion, this work provides strong arguments for a careful theoretical
analysis of multilevel models for DSM pricing as well as numerical experiments.

Further works might imply various notions of equilibria at the lower level. Here,
we chose to consider Nash equilibria. However, a more realistic approach might
be to consider market equilibria in which an energy transaction is the result of a
bargaining between the buyer and the seller, and not the sole fact that the buyer
decides the quantity and the seller the price.





Chapter 5

Multi-Leader Multi-Follower

In this chapter, the (TDSM) problem considered in Chapter 4 is reconsidered as a
multi-leader multi-follower game. Instead of aiming to find the best response of an
energy supplier to the decisions of other suppliers, we investigate here the situation
in which all the suppliers are competing in a noncooperative way. Considering
such a competition at the upper level makes the problem structure more complex.
Therefore, to make the problem tractable, both from a theoretical and numerical
point of view, the aggregators (and thus also their end users) are not considered
here. This leads to a bilevel structure, with Nash-type competitions at the upper
level among the suppliers and at the lower level among the local agents who also
interact in a noncooperative way. Furthermore, the model of the local agents is
slightly modified in order to be adapted to a situation of dynamic competition.
This gives rise to a bilevel demand-side management problem denoted by (BDSM).

5.1 Definition of the model

Two kinds of actors are involved in the (BDSM) problem: electricity suppliers
s ∈ S and local agents ` ∈ L. Interactions among actors of (BDSM) are described
in Figure 5.1 and are of the following nature:

• For each period of time the suppliers propose electricity prices to the local
agents,

• The local agents can buy electricity from the suppliers or from the other local
agents.

Let us now define the variables and notations of the model:

• The set of the considered time slots is denoted by H = {1, . . . ,H}.

• Bold variables indicate vectors.

• d` =
(
d1
` , . . . , d

|H|
`

)
denotes the demand variables of the local agent ` ∈ L.

• Variables phxy denote the prices of an energy unit sold by x to y at time h ∈ H,
the agent x being in S ∪ L while y is a local agent.



122 Chapter 5. Multi-Leader Multi-Follower

S S

LA LA

Figure 5.1: Blue forms represent the various actors (the suppliers and the local
agents), red links show unidirectional energy trades, and green links designate bidi-
rectional energy exchanges.

• Variables ehxy represent the energy flow from y to x (bought by x from y) at
time h, the agent y being an element of S ∪ L and x belonging to L.

• W` indicates the overall demand that needs to be satisfied for ` ∈ L.

5.1.1 Local agents

Local agents can not only buy energy from the suppliers, but also trade energy with
the other local agents. Each local agent ` ∈ L has a fixed overall demand W` for
the horizon and an a priori demand splitting/vector

(
dh,0`

)
h
. But this demand can

be shifted, resulting in the real demand splitting/vector
(
dh`

)
h
. The bought energy

is used either to satisfy the electricity demand or to sell a part to their peers. In
case of shifting of their consumption, the local agents undergo an inconvenience
increasing with the extent of the load shift. They aim to minimize the sum of their
electricity bill and the inconvenience due to the load shift. Formally, the local agent
` ∈ L aims to solve the following problem (P`):

(P`) min
e`·,p`·,α`·

∑
h∈H

∑
s∈S

phs`e
h
`s +

∑
`′ 6=`

(
ph`′`e

h
``′ − ph``′eh`′`

)
+ V h

`

(
dh`

)

s.t.



∑
h∈H

dh` = W`

eh`x ≥ 0 ∀h ∈ H, x ∈ L ∪ S,

ph``′ ≤ αh``′ss′phs` +
(
1− αh``′ss′

)
phs′`′ ∀` 6= `′ ∈ L, s, s′ ∈ S

αh``′ss′ ∈ [0, 1] ∀h ∈ H, ` 6= `′ ∈ L, s, s′ ∈ S,

where V h
`

(
dh`

)
= vh`

(
dh` − d

h,0
`

)2
is the inconvenience caused by the load shifting

and vh` > 0 is a fixed inconvenience coefficient. Note that, for any h, the notation
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dh` stands for the demand value and thus dh`
not.=

∑
s∈S e

h
`s +

∑
`′ 6=`

(
eh``′ − eh`′`

)
.

The inconvenience function V h
` is the same as defined in [Gkatzikis 2013]. This

function has nice mathematical properties, like convexity and differentiability, and
it adequately models the real inconvenience that the consumers are undergoing: a
small shift of the consumption will not represent a significant inconvenience, whereas
an important shift will have strong repercussions on the consumer’s comfort thanks
to the square power.

The first constraint in problem (P`) ensures that `’s cumulated demand still
cover, after shifting, the overall demand, whereas the second constraint avoids neg-
ative energy exchanges. The two other constraints result from a deeper observation
for which explanations have been given in Chapter 4. The second level of (BDSM)
actually constitutes a noncooperative Nash game, where the players are the local
agents. Therefore, an optimal local agents’ response to the leaders’ decisions is a
Nash equilibrium. Since the decision variables of the local agents influence the fea-
sible domains of the other local agents, it is precisely a generalized Nash equilibrium
(GNE). Let us recall that a GNE is reached whenever no player can unilaterally
improve his situation by modifying his decision variables (see e.g. [Facchinei 2007]).
The following proposition (analogous to Lemma 4.4.1) allows a proper characteri-
zation of the lower-level problem.

Proposition 5.1.1. Given a leader price profile p = (ps)s∈S , where ps denotes the
price vector ps = (phs`)h∈H

`∈L
), and a lower-level GNE

S(p) =
{
eh`x, p

h
``′ , α

h
``′ss′ | h ∈ H, `, `′ ∈ L, s, s′ ∈ S, x ∈ S ∪ L \ {`}

}
.

If eh`′` > 0 for h ∈ H, `, `′ ∈ L, then

ph``′ = max
{

min
s∈S

phs`,min
s∈S

phs`′

}
.

Furthermore, if eh`′` = 0 for h ∈ H and
∑
x∈S∪L\{`} e

h
`x > 0, `, `′ ∈ L, then

ph``′ ≥ min
s∈S

phs`′ .

Actually, the constraints on the prices are designed so that this proposition
holds. What is the highest price that ` can offer to `′, so that `′ buys from ` and
not from one of the suppliers? Clearly, it is mins∈S phs`′ . However, setting constraints

ph``′ ≤ phs`′ ∀s ∈ S

is not sufficient: if mins∈S phs` > mins∈S phs`′ , ` would be forced to sell energy at a
price that would be too low for him to make profits, as discussed in Section 4.2.1.



124 Chapter 5. Multi-Leader Multi-Follower

Therefore, one would like

ph``′ = max
{

min
s∈S

phs`,min
s∈S

phs`′

}
to hold for all `, `′ ∈ L, h ∈ H. To obtain this, the constraints

ph``′ ≤ αh``′phs`′ +
(
1− αh``′

)
phs` ∀h ∈ H, `′ ∈ L, s ∈ S

αh``′ ∈ [0, 1] ∀h ∈ H, ` 6= `′ ∈ L
(5.1)

of local agent ` from Section 4.2.1 are replaced by the more numerous

ph``′ ≤ αh``′ss′phs` +
(
1− αh``′ss′

)
phs′`′ ∀` 6= `′ ∈ L, s, s′ ∈ S

αh``′ss′ ∈ [0, 1] ∀h ∈ H, ` 6= `′ ∈ L, s, s′ ∈ S.
(5.2)

The reason for this is that the hypotheses (H1) or (H2) used in Chapter 4 are not
necessary for Lemma 5.1.1 to hold with the new constraints. These two hypotheses
indeed only make sense in a best response context, with only two suppliers: they
are assumptions on the competitor’s prices, and can therefore not be assumed in a
dynamic competition context. Therefore, the new constraints on the prices have to
be introduced.

Proof. First, assume that there are h ∈ H and `, `′ ∈ L such that eh`′` > 0. The
only constraints on this price are

ph``′ ≤ αh``′ss′phs` +
(
1− αh``′ss′

)
phs′`′ ∀` 6= `′ ∈ L, s, s′ ∈ S.

Denote by smin, s
′
min ∈ S the suppliers such that phsmin`

= mins∈S phs` and phs′min`
=

mins∈S phs`′ . As an immediate consequence, one has

ph``′ ≤ αh``′smins′min
phsmin` +

(
1− αh``′smins′min

)
phs′min`

′ ≤ p̄

where p̄ = max
{
phsmin`

, phs′min`
′

}
. Moreover, since S(p) is a GNE and eh`′` > 0, the

local agent ` chooses the highest possible price for ph``′ and therefore the above
inequality is an equality.

It directly follows from this observation that suitable values for the αh``′ss′ yield
the highest possible value for ph``′ of max

{
phsmin`

, phs′min`
′

}
. In that case, ph``′ has to

take the highest possible value.
For the second part of the proof, assume by contradiction that there are h ∈ H

and `, `′ ∈ L such that eh`′` = 0,
∑
x∈S∪L\{`′} e

h
`′x > 0 and ph``′ < mins∈S phs`′ . Observe

that the first part of this proposition implies that the energy that `′ buys is sold at
price mins∈S phs`′ . There is a contradiction with S(p) being a GNE, since `′ could
unilaterally modify his energy purchases, and buy from ` at price ph``′ < mins∈S phs`′ ,
which would induce an improvement of the objective value of `′.
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5.1.2 Electricity suppliers

The electricity suppliers s ∈ S sell energy to the local agents. They aim to maximize
their profit, which is the difference between the revenues resulting from sales and
their production costs, described by the function chs (·). The electricity supplier
influences the demand of the customers by setting hourly prices phsx, knowing that
the clients will react optimally to these prices. Therefore, the problem of the supplier
s ∈ S can be expressed as:

(Ps) max
ps·

max
e,px·,α

∑
h∈H

∑
`∈L

phs`e
h
`s − chs

∑
`∈L

eh`s


s.t.

 phs` ≥ 0 ∀h ∈ H, ` ∈ L

{e`·,p`·,α`·} ∈ argmax (P`) ∀` ∈ L

All along the paper we assume that the energy cost functions of the various
suppliers are all linear, with coefficient chs for the cost function of supplier s ∈ S at
time h ∈ H.

5.2 Solution methods

In this section, several methods to solve the problem presented in Section 5.1 are pre-
sented. First, we show that the lower-level GNEP possibly admits several equilibria,
and that a selection among those can be made. This is the object of Proposition
5.2.1.

Proposition 5.2.1. Assume that p =
{(
phs`

)
h∈H,`∈L

| s ∈ S
}

is a price profile for
the upper level, that

S′(p) =
{
e′h`x, p

′h
``′ , α

′h
``′ss′ | h ∈ H, `, `′ ∈ L, s, s′ ∈ S, x ∈ S ∪ L \ {`}

}
(5.3)

is a GNE of the lowel level associated to p and that

S(p) =
{
eh`x, p

h
``′ , α

h
``′ss′ | h ∈ H, `, `′ ∈ L, s, s′ ∈ S, x ∈ S ∪ L \ {`}

}
(5.4)

is a feasible solution for the followers (associated to p) that satisfies

1. for all `, `′ ∈ L, if mins∈S phs` ≤ mins∈S phs`′, then ph``′ = mins∈S phs`′ and if
mins∈S phs` < mins∈S phs`′, then ph``′ > mins∈S phs`,

2. for all ` ∈ L, if eh`x > 0 for x ∈ S ∪ L \ {`}, then phx` = mins∈S phs`,
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3. for all ` ∈ L,∑
s∈S

eh`s +
∑
`′ 6=`

(
eh``′ − eh`′`

)
=
∑
s∈S

e′h`s +
∑
`′ 6=`

(
e′h``′ − e′h`′`

)
,

Then, S(p) is a lower-level GNE associated to p.

The proof of this proposition follows the same lines as the proof of Claim 2 in
Lemma 4.4.3, with Proposition 5.1.1 replacing 4.4.1, and without aggregators. It is
thus not repeated here.

Observe that in the above proposition, condition 3) simply expresses that dh` =
d′h` , for any ` ∈ L. It follows that, as soon as conditions 1) and 2) are satified,
the fact that the feasible solution S(p) is actually a GNE does not depend on
the values of the exchange vectors e, but on the demand values dh` =

∑
s∈S e

h
`s +∑

`′ 6=`

(
eh``′ − eh`′`

)
. As a consequence, given a GNE of the lowel level problem

associated to a price profile p, one can thus construct another GNE for the follower’s
level in which there are no exchanges between local agents. Indeed, starting from a
GNE S′(p) as defined in 5.3, for all ` ∈ L, h ∈ H set e′h`s such that∑

s∈S
eh`s =

∑
s∈S

e′h`s +
∑
`′ 6=`

(
e′h``′ − e′h`′`

)
,

with eh`s > 0 only if phs` = mins′∈S phs′`, and

eh``′ = 0 ∀h ∈ H, ` 6= `′ ∈ L.

Furthermore, set the variables αh``′ss′ and ph``′ for all h ∈ H, ` 6= `′ ∈ L, so that
condition 1) is satisfied. Then according to Proposition 5.2.1, S(p) as defined in 5.4
is a GNE. Therefore, it is possible to make a selection among the lower level GNEs
and assume that the followers’ response does not include any exchange among local
agents, as in the revisited optimistic approach of Chapter 5.

This gives rise to simpler followers’ problems where problem (P`) of local agent
` ∈ L is replaced by

(
P el`

)
min
e`·

∑
h∈H

(∑
s∈S

phs`e
h
`s + V h

`

(∑
s∈S

eh`s

))

s.t.


∑
h∈H

∑
s∈S

eh`s = W` (z`)

eh`s ≥ 0
(
zh`s

)
∀h ∈ H, s ∈ S.

Here, the exponent "el" stands for "exchangeless". The variables between parenthe-
ses are the dual variables associated to each constraint.
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The KKT conditions of this simpler problem are as follows:

phs` + 2vh`

∑
s′∈S

eh`s′ − d
h,0
`

− z` − zh`s = 0 ∀h ∈ H, s ∈ S

∑
h∈H

∑
s∈S

eh`s = W`

eh`s ≥ 0 ∀h ∈ H, s ∈ S

zh`s ≥ 0 ∀h ∈ H, s ∈ S

eh`s · zh`s = 0 ∀h ∈ H, s ∈ S.

The two next subsections aim to solve the MLFG implied by the leaders’ prob-
lems and the followers’ simplified problems.

5.2.1 The method of Leyffer and Munson

In order to solve the above problems, we will first consider the now classical method
described by Leyffer and Musson in [Leyffer 2010].

Following the description of the KKT conditions of the simplified followers’
problems, each leader’s problem (P ) can be rewritten as:

max
p,e,z

∑
h∈H

∑
`∈L

(
phs`e

h
`s

)
− chs

∑
`∈L

eh`s



s.t.



phs′` + 2vh`

∑
s′′∈S

eh`s′′ − d
h,0
`


−z` − zh`s′ = 0

(
µh`s′

)
∀h ∈ H, s′ ∈ S, ` ∈ L∑

h∈H

∑
s′∈S

eh`s′ = W` (µ`) ∀` ∈ L

eh`s′ ≥ 0
(
λh`s′

)
∀h ∈ H, s′ ∈ S, ` ∈ L

zh`s′ ≥ 0
(
ψh`s′

)
∀h ∈ H, s′ ∈ S, ` ∈ L

eh`s′ · zh`s′ = 0
(
σh`s′

)
∀h ∈ H, s′ ∈ S, ` ∈ L

phs` ≥ 0
(
χhs`

)
∀h ∈ H, ` ∈ L

The dual variables associated to each constraint are written between paren-
theses. Note that here, the optimistic formulation of the MPEC is used (see
[Dempe 2002] for further informations on the optimistic approach).

An MPEC (P ) is said to satisfy the MPEC-LICQ if (P ) without the complemen-
tarity constraints satisfies the LICQ. Such a constraint qualification for the previous
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problem is necessary for the resolution method to be theoretically justified. How-
ever, it is not clear whether the problem indeed satisfies the MPEC-LICQ, thus in
the remaining of the section, we only assume it does.

The next step consists in computing the KKT conditions for each leader s ∈ S,
and then concatenate the KKT conditions of all leaders. The KKT conditions of
s ∈ S are as follows:

phs′` + 2vh`

∑
s′′∈S

eh`s′′ − d
h,0
`

− z` − zh`s′ = 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

∑
h∈H

∑
s′∈S

eh`s′ = W` ∀` ∈ L

eh`s′ ≥ 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

zh`s′ ≥ 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

eh`s′ · zh`s′ = 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

phs` ≥ 0 ∀h ∈ H, ` ∈ L

eh`s + χhs` − µh`s = 0 ∀h ∈ H, ` ∈ L

δs
′
s

(
phs′` − chs′

)
− 2vh`

∑
s′′∈S

µh`s′′

−µ` + λh`s′ − σh`s′ · zh`s′ = 0 ∀h ∈ H, s′ ∈ S, ` ∈ L∑
h∈H

∑
s′∈S

µh`s′ = 0 ∀` ∈ L

µh`s′ + ψh`s′ − σh`s′ · eh`s′ = 0 ∀h ∈ H, ` ∈ L, s′ ∈ S

χhs` ≥ 0 ∀h ∈ H, ` ∈ L

λh`s′ ≥ 0 ∀h ∈ H, ` ∈ L, s′ ∈ S

ψh`s′ ≥ 0 ∀h ∈ H, ` ∈ L, s′ ∈ S

χhs` · phs` = 0 ∀h ∈ H, ` ∈ L

λh`s′ · eh`s′ = 0 ∀h ∈ H, ` ∈ L, s′ ∈ S

ψh`s′ · zh`s′ = 0 ∀h ∈ H, ` ∈ L, s′ ∈ S,

with

δs
′
s =

 1 if s = s′

0 otherwise.

The above system corresponds to problem (7) in [Leyffer 2010].
Following Leyffer and Munson’s method, the primal and dual variables of the

follower (that are respectively e and z) are the same for all leaders. However, in
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their first formulation of the MLMF game, they assume that the dual variables
corresponding to the constraints of the follower are specific to each leader. This
means that each leader has a set of variables µ, λ, σ associated to him. Therefore,
the concatenation of all KKT conditions of the leaders yields the following NCP
(equivalent to (11) or (15) in [Leyffer 2010]):



phs′` + 2vh`

∑
s′′∈S

eh`s′′ − d
h,0
`

− z` − zh`s′ = 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

∑
h∈H

∑
s∈S

eh`s = W` ∀` ∈ L

eh`s′ ≥ 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

zh`s′ ≥ 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

eh`s′ · zh`s′ = 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

phs` ≥ 0 ∀h ∈ H, s ∈ S, ` ∈ L

eh`s + χhs` − µhs`s = 0 ∀h ∈ H, s ∈ S, ` ∈ L

δs
′
s

(
phs′` − chs′

)
− 2vh`

∑
s′′∈S

µhs`s′′

−µs` + λhs`s′ − σhs`s′ · zh`s′ = 0 ∀h ∈ H, s, s′ ∈ S, ` ∈ L∑
h∈H

∑
s′∈S

µhs`s′ = 0 ∀s ∈ S, ` ∈ L

µhs`s′ + ψhs`s′ − σhs`s′ · eh`s′ = 0 ∀h ∈ H, ` ∈ L, s, s′ ∈ S

χhs` ≥ 0 ∀h ∈ H, s ∈ S, ` ∈ L

λhs`s′ ≥ 0 ∀h ∈ H, s, s′ ∈ S, ` ∈ L

ψhs`s′ ≥ 0 ∀h ∈ H, s, s′ ∈ S, ` ∈ L

χhs` · phs` = 0 ∀h ∈ H, s ∈ S, ` ∈ L

λhs`s′ · eh`s′ = 0 ∀h ∈ H, ` ∈ L, s, s′ ∈ S

ψhs`s′ · zh`s′ = 0 ∀h ∈ H, ` ∈ L, s, s′ ∈ S.

The set of multipliers in this case is not unique though. Therefore, the problem
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can be rewritten as:

min
p,e,z,λ,ψ,σ,χ,µ

∑
s∈S

∑
`∈L

∑
s′∈S

∑
h∈H

σhs`s′

s.t.



phs′` + 2vh`

∑
s′′∈S

eh`s′′ − d
h,0
`

− z` − zh`s′ = 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

∑
h∈H

∑
s∈S

eh`s = W` ∀` ∈ L

eh`s′ ≥ 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

zh`s′ ≥ 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

eh`s′ · zh`s′ = 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

phs` ≥ 0 ∀h ∈ H, s ∈ S, ` ∈ L

eh`s + χhs` − µhs`s = 0 ∀h ∈ H, s ∈ S, ` ∈ L

δs
′
s

(
phs′` − chs′

)
− 2vh`

∑
s′′∈S

µhs`s′′

−µs` + λhs`s′ − σhs`s′ · zh`s′ = 0 ∀h ∈ H, s, s′ ∈ S, ` ∈ L∑
h∈H

∑
s′∈S

µhs`s′ = 0 ∀s ∈ S, ` ∈ L

µhs`s′ + ψhs`s′ − σhs`s′ · eh`s′ = 0 ∀h ∈ H, ` ∈ L, s, s′ ∈ S

χhs` ≥ 0 ∀h ∈ H, s ∈ S, ` ∈ L

λhs`s′ ≥ 0 ∀h ∈ H, s, s′ ∈ S, ` ∈ L

ψhs`s′ ≥ 0 ∀h ∈ H, s, s′ ∈ S, ` ∈ L

χhs` · phs` = 0 ∀h ∈ H, s ∈ S, ` ∈ L

λhs`s′ · eh`s′ = 0 ∀h ∈ H, ` ∈ L, s, s′ ∈ S

ψhs`s′ · zh`s′ = 0 ∀h ∈ H, ` ∈ L, s, s′ ∈ S

σhs`s′ ≥ 0 ∀h ∈ H, ` ∈ L, s, s′ ∈ S.

This formulation correponds to problem (16) in [Leyffer 2010]. Observe that σ is
assumed to be nonnegative, because the associated equality

eh`s′ · zh`s′ = 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

can actually be rewritten as the inequality

eh`s′ · zh`s′ ≤ 0 ∀h ∈ H, s′ ∈ S, ` ∈ L,

because eh`s′ and zh`s′ are both positive for all h ∈ H, s′ ∈ S and ` ∈ L.
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Finally, the last reformulation is equivalent to Problem (17) in Leyffer and Mun-
son, where all complementarity constraints are included in the objective function:

min
p,e,z,λ,ψ,σ,χ,µ

∑
s∈S

∑
`∈L

∑
h∈H

eh`s · zh`s + χhs` · phs` +
∑
s′∈S

(
σhs`s′ + λhs`s′ · eh`s′ + ψhs`s′ · zh`s′

)

s.t.



phs′` + 2vh`

∑
s′′∈S

eh`s′′ − d
h,0
`

− z` − zh`s′ = 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

∑
h∈H

∑
s∈S

eh`s = W` ∀` ∈ L

eh`s′ ≥ 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

zh`s′ ≥ 0 ∀h ∈ H, s′ ∈ S, ` ∈ L

phs` ≥ 0 ∀h ∈ H, s ∈ S, ` ∈ L

eh`s + χhs` − µhs`s = 0 ∀h ∈ H, s ∈ S, ` ∈ L

δs
′
s

(
phs′` − chs′

)
− 2vh`

∑
s′′∈S

µhs`s′′

−µs` + λhs`s′ − σhs`s′ · zh`s′ = 0 ∀h ∈ H, s, s′ ∈ S, ` ∈ L∑
h∈H

∑
s′∈S

µhs`s′ = 0 ∀s ∈ S, ` ∈ L

µhs`s′ + ψhs`s′ − σhs`s′ · eh`s′ = 0 ∀h ∈ H, ` ∈ L, s, s′ ∈ S

χhs` ≥ 0 ∀h ∈ H, s ∈ S, ` ∈ L

λhs`s′ ≥ 0 ∀h ∈ H, s, s′ ∈ S, ` ∈ L

ψhs`s′ ≥ 0 ∀h ∈ H, s, s′ ∈ S, ` ∈ L

σhs`s′ ≥ 0 ∀h ∈ H, ` ∈ L, s, s′ ∈ S.

This method (and variants) has been implemented in GAMS [Gen 2017], and
solved with Artelys Knitro 10.3.0 [Byrd 2006]. However, it yields unexpected re-
sults, even for tiny instances. For example, consider a problem setting with a single
time slot, a single follower and two suppliers s1 and s2. The single follower has a
demand of one unit, that he has to buy from either s1 or s2. The energy costs are
assumed to be linear with coefficient 0 for s1 and 1 for s2.

In this example, the expected results are as follows:

ps1 = ps2 = 1 and es1 = 1, es2 = 0. (5.5)

It seems unnatural that s2 could offer prices lower than 1, because he would sell
with a loss, making 1 a lower bound for both ps1 and ps2 . However, if the prices
are greater than 1, the suppliers selling less energy can lower his price by ε > 0 in
order to tap the follower’s consumption.
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On this example, all variants of Leyffer and Munson’s method were tested: in
all cases, Knitro yielded ps1 = ps2 and es1 = 1, es2 = 0. However, the values for the
prices ranged from 0.5057 to 0.6814. It turns out that all of them are equilibria:
neither s1 nor s2 can unilaterally improve his objective function. On one hand, if
s1 lowers his price, he obviously diminishes his profit. If he increases his price, the
follower buys his energy from s2, canceling s1’s profit. On the other hand, if s2

increases his price, nothing changes for him, but if he lowers it, the follower will
purchase his energy from s2 at a price that is lower than s2’s production costs,
leading to a deadweight loss.

Although mathematically correct, such equilibria are economically unrealistic,
which is why other solution methods are looked for. The observations made on this
tiny example motivate the rest of this chapter.

5.2.2 Formulation as a GNEP

Since the solving method presented in the previous subsection does not yield the
anticipated results, other possibilities have to be investigated. Fortunately, the local
agents are very similar to the end users of Chapter 4. Therefore, it is possible to
find explicit formulas for their optimal demand. This leads to a natural attempt
to get rid of the lower level and transform the problem (BDSM) into a single level
GNEP (see 2.2.2). Although GNEPs are difficult to handle, they are less complex
than MLFGs.

5.2.2.1 Theoretical preliminaries

In order to reformulate the problem (BDSM) as a GNEP, some assumptions are
made:

A1) First, the problem is going to be handled as in [Gkatzikis 2013], that is the
demands of the followers are assumed to be strictly positive at every time slot.
This assumption allows to get rid of some dual variables.

A2) For each time slot, define the sets

Πh =
{
s ∈ S | chs ≤ chs′ ∀s′ ∈ S

}
and Πs = {h ∈ H | s ∈ Πh} .

At each time slot h ∈ H, it is assumed that |Πh| = 1 and its single element is
denoted by sh. Furthermore, it is assumed that only sh sells energy at time
h, and that his prices are in the interval

[
chs ,mins′ 6=s chs′

]
.

This second assumption is based on the observations made on the tiny example
at the end of Section 5.2.1. On one time slot, this assumption leads to the expected
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Nash equilibrium described in Formula 5.5. Whether making this assumption is a
good idea for larger problems is debatable. However, it leads to interesting devel-
opments and allows for a resolution of the problem.

With assumption A1), the follower’s problem becomes

(
P>`
)

min
d`·

∑
h∈H

(
phsh`d

h
` + V h

`

(
dh`

))

s.t.


∑
h∈H

dh` = W`

dh` > 0 ∀h ∈ H.

It follows from the KKT conditions that

dh` = dh,0` −
phsh` + λ

2vh`
, (5.6)

where

λ= −
∑
h′∈H

ph
′
sh′`

αvh
′
`

and α =
∑
h′∈H

1
vh
′
`

.

After taking in account assumption A2) and replacing the demands in the fol-
lowers’ problems by their explicit formulas, the problem of leader s ∈ S becomes

(
P ′s
)

max
ph
s`

:h∈Πs

∑
h∈Πs


∑
`∈L

(
phs` − chs

)
dh,0` −

phs` −
∑
h′∈H

ph
′
sh′`

αvh
′
`

2vh`





s.t.


phs` ∈

[
chs ,mins′ 6=s chs′

]
∀h ∈ Πs, ` ∈ L

dh,0` −
phsh`
−
∑
h′∈H

ph
′
sh′`

αvh
′
`

2vh
`

> 0 ∀h ∈ H, ` ∈ L.

In general, this can only be done under given conditions, as discussed in
[Dempe 2012]. To have a correspondence between the global solutions of (P ′s) and
(P>s ) (i.e. (Ps) with the lower level problems replaced by

(
P>`
)
) is tricky due to the

strict inequalities. However, with loose inequalities, Theorem 2.3 of [Dempe 2012]
only requires the lower level problem to be convex and to satisfy Slater’s CQ for
any leader’s decision. In particular, it is easy to see that

(
P el`

)
does satisfy those

conditions. Therefore, replacing
(
P el`

)
by its KKT conditions in

(
P els

)
(i.e. (Ps)

with
(
P el`

)
at the lower level) is legitimate for the search of global optima of the

supplier’s problem.
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The dual variables associated to the constraints are respectively µ≥,h` , µ≤,h` , and
µh` = 0 (since the constraint is strict). The KKT conditions for supplier s ∈ S are
thus as follows:

phs` ∈
[
chs ,mins′ 6=s chs′

]
∀h ∈ Πs, ` ∈ L

dh,0` −
phsh`

+λ
2vh
`

> 0 ∀h ∈ H, ` ∈ L

µ≥,h` , µ≤,h` ≥ 0 ∀h ∈ Πs, ` ∈ L

µ≥,h`

(
phs` − chs

)
= 0 ∀h ∈ Πs, ` ∈ L

µ≤,h`

(
mins′ 6=s chs′ − phs`

)
= 0 ∀h ∈ Πs, ` ∈ L

dh,0` + 1
2αvh`

∑
h′∈H

ph
′
sh′`

vh
′
`

+
∑
h′∈Πs

ph
′
s`

vh
′
`

−
∑
h′∈Πs

ch
′
s

vh
′
`


−phs`
vh
`

+ chs
2vh
`

+ µ≥,h` − µ≤,h` = 0 ∀h ∈ Πs, ` ∈ L

Observe that, due to assumption A2), the dual variables µ≥,h` , µ≤,h` can be
assembled in a single free variable µh`= µ≥,h` − µ≤,h` . Furthermore, many terms of
the stationarity constraint are constant and can be gathered in a single constant
term Ch` . The KKT conditions then become



phs` ∈
[
chs ,mins′ 6=s chs′

]
∀h ∈ Πs, ` ∈ L

dh,0` −
phsh`

+λ
2vh
`

> 0 ∀h ∈ H, ` ∈ L

µh`

(
phs` − chs

)
≤ 0 ∀h ∈ Πs, ` ∈ L

µh`

(
mins′ 6=s chs′ − phs`

)
≥ 0 ∀h ∈ Πs, ` ∈ L

Ch` −
phs`
vh`

+ 1
2αvh`

∑
h′∈H

ph
′
sh′`

vh
′
`

+
∑
h′∈Πs

ph
′
s`

vh
′
`

+ µh` = 0 ∀h ∈ Πs, ` ∈ L

Naturally, these replacements can only be made under certain conditions. In
particular, if the parameters of the problem (that is, the inconvenience coefficient,
the energy costs and the base demands) satisfy given constraints, then any possible
price scheme of the leaders yields a strictly positive optimal demand of the followers.

Proposition 5.2.2. Assume that for all ` ∈ L, the constant coefficients of the
problem are linked by the following inequality

max
h∈H

(
1− 1

αvh`

)(
min
s′ 6=sh

chs′

)
−
∑
h′ 6=h

ch
′
sh′`

αvh
′
`

2vh`
< dh,0` . (5.7)
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Then for all p =
(
phsl

)
h∈H,s∈S,`∈L

such that

phsh` ∈
[
chsh , min

s′ 6=sh
chs′

]
∀h ∈ H, ` ∈ L, (5.8)

the optimal demand of each local agent is strictly positive:

dh` > 0 ∀h ∈ H, ` ∈ L.

It follows directly from this proposition that if the parameters of the problems
(P`) satisfy Condition 5.7), the problems (Ps) and (P ′s) are equivalent. Actually,
the constraints of (P ′s) forcing the demand to be strictly positive can even be left
out.

Proof. Since, for any ` ∈ L, d` =
(
dh`

)
h∈H

is an optimal demand, for any h ∈ H,
the demand dh` is given by Formula 5.6, and thus, combining with the fact that
ph ∈

[
chsh ,mins′ 6=sh chs′

]
and Assumption 5.7, one immediately has

dh` = dh,0` −
ph −

∑
h′∈H

ph
′

αvh
′
`

2vh`

≥ dh,0` −

(
1− 1

αvh`

)(
ph
)
−
∑
h′ 6=h

ph
′

αvh
′
`

2vh`

> dh,0` −

(
1− 1

αvh`

)(
min
s′ 6=sh

chs′

)
−
∑
h′ 6=h

ch
′
sh′`

αvh
′
`

2vh`
> 0

thus leading to the desired conclusion.

Denote by (P ′s`) the problem of the supplier s ∈ S with the single follower ` ∈ L:

(
P ′s`
)

max
ph
s`

:h∈Πs

∑
h∈Πs

(
phs` − chs

)
dh,0` −

phs` −
∑
h′∈H

ph
′
sh′`

αvh
′
`

2vh`



s.t.


phs` ∈

[
chs ,mins′ 6=s chs′

]
∀h ∈ Πs

dh,0` −
phsh`
−
∑
h′∈H

ph
′
sh′`

αvh
′
`

2vh
`

> 0 ∀h ∈ H.
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0 The following proposition shows that in the specific case considered in this section,
it is enough to consider the behavior of a single follower, since the optimization
problem (P ′s) is separable.

Proposition 5.2.3. For each ` ∈ L, let p∗` =
(
p∗,hs`

)
h∈Πs

be an optimal solution of

(P ′s`). Then the concatenation p∗ =
(
p∗,hs`

)
h∈Πs,`∈L

of these solutions is an optimal
solution of (P ′s).

Proof. Observe first that the constraints of (P ′s) are composed of the concatenation
of the constraints of all (P ′s`). Therefore, p∗ satisfies the constraints of (P ′s), since
for each ` ∈ L, p∗` satisfies the constraints of (P ′s`).

Now, consider the objective function of (P ′s), and observe that the sums over
h ∈ H and ` ∈ L can be permuted:

∑
h∈Πs

∑
`∈L

(
p∗,hs` − c

h
s

)
dh` (p∗` )

 =
∑
`∈L

∑
h∈Πs

(
p∗,hs` − c

h
s

)
dh` (p∗` )

 ,
where dh` (p∗` ) is defined by formula (5.6), and only depends on the prices offered to
`. By contradiction, assume that there is an optimal solution p of (P ′s) such that

∑
`∈L

∑
h∈Πs

(
phs` − chs

)
dh` (p`)

 >
∑
`∈L

∑
h∈Πs

(
p∗,hs` − c

h
s

)
dh` (p∗` )

 .
Then in particular, since phs` − chs ≥ 0, there exists an ` ∈ L such that

∑
h∈Πs

(
phs` − chs

)
dh` (p`) >

∑
h∈Πs

(
p∗,hs` − c

h
s

)
dh` (p∗` ) ,

which is clearly a contradiction with the optimality of p∗` in (P ′s`).

Observe that this proof relies in particular on the three assumptions made in
this section:

1. The energy costs of the suppliers are linear;

2. No exchanges happen among the followers;

3. The leaders have the possibility to offer consumer-dependent prices.

Should any of these assumptions not be fulfilled, would Proposition 5.2.3 not hold.
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5.2.2.2 Numerical results

To illustrate the effects of the GNEP reformulation of (BDSM), two examples are
provided, each of them illustrating a peculiar behavior induced by the problem.
The two examples share some common characteristics:

• There is only one local agent (denoted by `): this follows directly from
Proposition 5.2.3 that indicates that solving a problem with n followers is
the same as solving n problems with one follower.

• The base demand is 1 at each hour:

dh,0` = 1 ∀h ∈ H.

• The sensitivity analysis is done on the inconvenience coefficients. In both
cases, the inconvenience coefficients are the same at each time slot:

vh` = vh
′
` ∀h, h′ ∈ H.

The sensitivity on the inconvenience coefficients is evaluated on 250 values:
they range from 0.035 to 1.28 and are uniformly distributed.

• The parameters of the instances do not satisfy the condition stated in Propo-
sition 5.2.2 for the smallest values of the inconvenience coefficients. However,
for many of these values, the demands are positive at the optimum; thus
those results are also presented here. For those to be theoretically valid, a
uniqueness proof would be necessary, but this is a conjecture we make.

• Several cases with various numbers of suppliers are considered: one, two or
three suppliers.

To solve the problem, the demo version of GAMS is used, with Artelys Knitro 10.3.0
as a solver. The computer on which computations have been done was equipped
with a 2.10 GHz processor and 16 GB RAM. Solving times are not presented here,
first because the separability of the problem means that the solving time increases
linearly with the number of followers and second because each of the single follower
problems gets solved in a really short time (less than one second).

In the first example, the time horizon is composed of three time slots: H =
{1, 2, 3}. The constraints on the prices are as follows:

p1
s1 ∈ [1, 2], p2

s2 ∈ [1.5, 2.5] and p3
s3 ∈ [1, 2.5],

where sh ∈ Πh. These parameters satisfy the conditions of Proposition 5.2.2 when
the inconvenience coefficients are larger than 0.875. However, the computations
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yield that the optimal demands are strictly positive when those coefficients are in
fact larger than 0.1. Four cases are studied: in the first one (case 1), a single
supplier provides all the energy to the follower. In the second and third ones, there
are two suppliers s1 and s2, with Πs1 = {1, 2} and Πs2 = {3} in the case 2_1 and
Πs1 = {1} and Πs2 = {2, 3} in the case 2_2. In the last case (case 3) there are three
suppliers, each of them providing energy during a single time slot (Πsh = {h}).

Figure 5.2: Example 1: the case of a single supplier. The x-axes represent the
inconvenience coefficients, the y-axes either the profit (e), the price (e/kWh) or
the demand (kWh). The curves 1, 2, and 3 designate the corresponding time slot.

In Figure 5.2, the case of a single supplier is presented, with the results obtained
for the total profit, the hourly prices and the corresponding optimal demands.
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This case should yield similar results as the ones obtained in the previous chapter
(Section 4.5) for a single local agent. However, there are several notable differences.
First, the competitor’s prices of the preceding chapter are here replaced by formal
upper bounds on prices, and these bounds are not constant over the time horizon.
This leads to an increasing profit as the inconvenience coefficients increase: as
the coefficients increase, the follower’s demand becomes closer to his base demand
(1, 1, 1) as soon as the prices reach their upper bound. The demand decreases at
the first time slot (the cheapest one) and increases at both other time slots. The
profit per energy unit being larger at slot 3 than slot 1 and equal at slots 1 and 2,
the profit logically increases.

A second difference lies in the computation process: since it is only assumed that
the demand is positive at each time slot but not put into constraints, the prices
are monotonously increasing: there is no decrease of the prices on the smallest
inconvenience coefficients, as observed in Section 4.5.

Finally, observe that in this example, at equal price, the third slot is more
advantageous than the second time slot for the supplier. Therefore, for the lowest
inconvenience coefficients, the price offered by the supplier on the third time slot
is smaller than the price offered on the second time slot, so that more energy is
consumed during the third time slot. However, as soon as the price on p3 is reached,
the demand curves on slots 2 and 3 are the same, since the offered price is the same.

The results in cases 2_1 and 2_2 are shown in Figure 5.3. The "bumps" in
the demand curves are caused by the prices reaching their upper bounds. As in
case 1, the prices are all monotonously increasing, even though they are decided
by different suppliers. The interesting fact here is that the difference between both
cases is caused only by the allocation of the time slots to the suppliers. In case
2_1, s2 can only make profit on the third time slot, thus he will offer prices that
induce a large consumption during this time slot, whereas in case 2_2, s2 can also
make profit on the second time slot. At the contrary, s1 can only make profit
during the first time slot, which is why the demand during the first time slot is
the highest in case 2_2 even for low values of the inconvenience coefficient. An
expected consequence of this setting is that the supplier that sells energy during
two time slots makes a higher profit than the other one.

Finally, the case 3 is perfect to observe what causes the "bumps" in the demand
curves of each hour. The situation is represented in Figure 5.4. Since each supplier
sells energy during a single time slot, they will all try to attract as much demand
as possible on their slot. Since s2 has to pay more for his electricity, he will be less
eager to offer low prices to attract demand, thus his price is higher than the prices of
s1 and s3 at times 1 and 3 respectively. Since s1 and s3 have the same production
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Figure 5.3: Example 1: the cases with two suppliers. The x-axes represent the
inconvenience coefficients, the y-axes either the profit (e) or the demand (kWh).
The curves 1, 2, and 3 correspond to the different time slots in the demand graphs,
and the blue and orange curves represent the profits of s1 and s2 respectively in the
profit charts.

cost, they do offer the same price, until p1
s1 reaches its upper bound around an

inconvenience coefficient of 3. This causes a first "bump" in the demand curves.
In particular, since the prices offered by s2 and s3 continue to increase with the
inconvenience coefficient, the demand curve at time 1 increases suddenly. Then, p2

s2

reaches its upper bound around an inconvenience coefficient of 0.46, which causes
a second obvious change in the slopes of the curves. Finally, p3

s3 reaches its upper
bound as well. Since it is the same upper bound for p2

s2 and p3
s3 , the demand curves

for time 2 and 3 become the same.
In the second example, six time slots constitute the time horizon: H =

{1, . . . , 6}. The constraints on the prices are as follows:

p1
s1 ∈ [1, 2], p2

s2 ∈ [1.5, 2.5] p3
s3 ∈ [1, 2.5]

p4
s4 ∈ [0.5, 1.5], p5

s5 ∈ [0.25, 2] p6
s6 ∈ [0.75, 3]

In this case, the conditions of Proposition 5.2.2 are met for inconvenience coefficients
larger than 0.896, but the demands returned by the solver are strictly positive for
inconvenience coefficients larger than 0.2 (and less depending on the number of
suppliers). Again, four cases are studied: the case of a single supplier, two cases
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Figure 5.4: Example 1: the case of three suppliers. The x-axes represent the
inconvenience coefficients, the y-axes either the profit (e), the price (e/kWh) or
the demand (kWh). The curves 1, 2, and 3 designate the corresponding time slot.

with two and one case with three. The time slots are distributed as follows:

Case Πs1 Πs2 Πs3

1 {1, . . . , 6}

2_1 {1, 2, 3} {4, 5, 6}

2_2 {1, 3, 5} {2, 4, 6}

3 {1, 4} {2, 5} {3, 6}

In case 1, the same behaviors than in the first example can be observed again. In
cases 2_1 and 2_2, there is not much to add, compared to what has been observed
in the first example. Since there are more time slots and different bounds, more
"bumps" can be observed, but they have the same causes than in case 3 of example
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Figure 5.5: Example 2: the cases with two suppliers. The x-axes represent the
inconvenience coefficients, the y-axes either the demand (kWh). The curves 1, 2,
and 3 designate the corresponding time slot.

1. See Figure 5.5.
In case 3 however, there is a very interesting phenomenon, which is best seen

in the lowest graph of Figure 5.6. Depending on the inconvenience coefficient,
each of the suppliers can be the supplier making the most profit. For the lowest
inconvenience coefficients, the suppliers having the lowest energy costs play their
cards right: they can offer the cheapest prices and tap most of the demand, as can
be seen in the price and demand charts. Then, p4

s1 reaches its upper bound, which
turns out to be an advantage for inconvenience coefficients between 0.25 and 0.57.
However, when p1

s1 reaches its upper bound too and the inconvenience coefficient
continue to increase, these bounds are strong disadvantages, and s1 becomes the
supplier with the lowest profit, whereas s2 has a period of grace for coefficients
ranging from 0.57 to 1.05. Then, s3 take the lead, as he can offer the highest prices
and thus make the most profit per unit, while keeping a demand close to the base
demand thanks to the unwillingness of the clients to shift their demand.

All the graphs (including cumulated demand) are found in Annex B.1.

5.3 Conclusion

In this chapter, we extended the problem of Chapter 4 to a MLFG, applied the
resolution method of Leyffer and Munson, and finally developed a GNEP that is
strongly linked to the original problem. The difficulties of handling a MLFG became
apparent, notably with the unexpected (and undesired) equilibria found with the
method of Leyffer and Munson. However, the problem (BDSM) is offering a wealth
of development opportunities, due in particular to the nice structure of its lower
problems.

Many prospects can be considered. First, the considered GNEP could be natu-
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Figure 5.6: Example 2: the case of three suppliers. The x-axes represent the
inconvenience coefficients, the y-axes either the profit (e), the price (e/kWh) or
the demand (kWh). The curves 1, 2, and 3 designate the corresponding time slot
in the demand and price charts, and the respective profit of s1, s2 and s3 in the
profit chart.

rally extended: if n suppliers are competitive at time h ∈ H (i.e. the energy price
offered by these n suppliers is greater than or equal to their respective production
cost), the demand should be equally split among them. A natural extension of
(BDSM) consists in considering nonlinear production costs, in order to capture a
more realistic situation. As an alternative to the method developed by Leyffer and
Munson, equilibria defined in [Kulkarni 2014] could be considered. However, the
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problem we faced with Leyffer and Munson’s method is rather that the obtained
equilibria were undesired ones, not that they were nonexistent or impossible to
obtain.

Another interesting prospect consists in trying to define semi-optimistic equi-
libria at the lower level (as they were defined in Chapter 4), and adapt the problem
consequently to enable its resolution.



Chapter 6

Conclusion

As the demand for energy grows and distributed generation (DG) expands, the
energy domain has to face tremendous challenges. To be able to ensure the supply-
demand balance at all time, several options are available. One of them consists in
installing costly generators to cover peak demands, while another lies in controlling
the demand: the latter being the aim of demand-side management (DSM).

This thesis focuses on one of the techniques to implement DSM, time-of-use
pricing. Mathematically, bilevel optimization provides the perfect tools to model
such situations. The problems considered throughout the thesis have the following
characteristics in common:

• The considered DSM technique is load shifting: whereas the overall demand
is constant, the consumption schedule can be modified.

• At the upper level, one or several energy suppliers sell energy at time-
dependent prices, aiming to maximize their profit.

• At the lower level, one or several energy consumers adapt their schedule in
an optimal way, minimizing their electricity bill and the inconvenience due to
the load shifting.

Chapter 3 considers a single-leader single-follower problem. At the lower level,
a smart grid operator (SGO) act as an intermediary agent between the supplier and
the energy consumers. Each consumer transmits relevant information (power limit,
needed energy, time window) about his appliances, whose usage get scheduled by
the SGO. The overall energy demand thus results from the usage schedule of the
customers’ appliances. Furthermore, the SGO manages a DG source and storage
capacities.

The production of renewable energy is unpredictable by nature, especially wind
or solar power generation (as considered in the numerical results). Therefore, a
stochastic model is developed, based on a scenario trees method. However, solving
such problems is intractable, mainly because of their large size. Finally, a rolling
horizon method is proposed to solve problems with long time horizons.



146 Chapter 6. Conclusion

In the second research chapter, a trilevel single-leader multi-follower problem is
studied. More precisely, an energy market model is presented where the lower level
is constituted by so-called local agents and aggregators. Whereas the local agents
consume directly the energy they buy, the aggregators transmit that energy to end
users with whom they are in contract, giving rise to a third level of optimization.
Furthermore, it is assumed that the aggregators and local agents can trade energy
among themselves, the price being decided by the seller and the quantity by the
buyer.

The particular energy exchange scheme of the intermediate level allows for many
developments. First, an optimal reaction to the leader’s prices consists in a Gen-
eralized Nash Equilibrium (GNE): a characterization of those GNE shows that in
the optimistic case, one GNE does not include exchanges among the aggregators
and local agents. A simplification of the problem directly follows from this result:
the revisited optimistic approach proves to be much more efficient upon use of a
commercial solver, both in terms of attained local optima and of solving times.
However, energy exchanges can also be profitable to some followers. In particu-
lar, an interesting class of GNE of the intermediate level is the ground brick of the
semi-optimistic approach, which provides results that are more robust for the leader
in terms of followers’ response. All these statements are supported by numerical
experiments.

Finally, the last chapter of research focuses on a multi-leader multi-follower
problem (multi-leader-follower game, MLFG). Knowing that single-leader single-
follower problems are already difficult to solve, handling a MLFG requires even
more care. Since more than one player compete at the upper level, an optimal
solution of the upper level consists in a GNE. However, the assumptions that the
leaders make about the followers’ response might be conflicting. Besides applying
without much success a resolution method developed by Leyffer and Munson, we
take advantage of theoretical results to make strong assumptions and propose a
new, simpler MLFG that can be efficiently solved. Numerical results on this new
version of the problem show nice behaviors concerning the profits of the leaders or
the load shifting induced by the prices offered by the leaders.

Prospects

The energy domain provides many great challenges, and will provide even more in
the near future. In this thesis, our aim is to propose and solve new demand-side
management problems. These models and solution methods can be extended as
follows.
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First, concerning the models, the energy costs of the leaders are supposed to
be linear throughout the entire thesis. This is realistic when small amounts of en-
ergy are bought on the spot market, but not when the energy is directly produced
by the energy suppliers. Using quadratic functions to represent the energy costs
would be a first sensible improvement. On the other side of the problems, followers
undergo inconvenience. In Chapter 3, the inconvenience functions are all linear,
proportionally to the delay. This means that if the generalized cost (energy price
+ inconvenience coefficient) is lower for a time slot h1 than for another time slot
h2, the demand that would have been consumed during h2 is shifted as much as
possible to h1, potentially leaving h1 without any demand. Introducing quadratic
inconvenience functions could smooth the shifts: in the same situation as above,
only a fraction of the demand would be shifted from h2 to h1. Such inconvenience
functions are considered in Chapters 4 and 5. They have very nice mathematical
properties (strict convexity, differentiability), but are not related to the delays in-
duced by the shifts: there is no difference if a load is shifted from the first time
slot to the second one or to the last one. Designing an inconvenience function that
combines both advantages is a challenge.

In Chapters 4 and 5, the exchanges among actors of the intermediate/lower
level (ILA) are particular: it is assumed that the seller single-handedly decides
the price and the buyer single-handedly decides the quantity, both decisions being
taken at the same time. In reality, these exchanges result from negotiations among
the concerned actors. An interesting modification of our problem thus consists in
modeling such interactions.

Besides, none of the energy exchanges are bounded. However, the suppliers’
capacities are not infinite, thus only a given amount of energy could be sold at each
time slot. To model this, upper bounds can be set on exchanges, either at the upper
or at the lower level.

Finally, it is assumed that ILAs can only sell the energy they buy from other
actors. A possible extension of the model consists in assuming that the ILAs dispose
of generation capacities and are thus able to sell the energy they produce to the
other actors of the grid.

Another potential improvement lies in the introduction of other types of uncer-
tainty into the models. Indeed, neither the energy costs, nor the competitor’s prices,
nor even the electricity demand are known in advance. Therefore, a broad range
of new problems can be studied, as any of those parameters can be stochastically
considered.

From a more theoretical point of view, it is still unsure whether the problems
studied in Chapter 3 are NP-hard. Proving that they are or not would motivate the
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search for heuristics or exact algorithms, respectively. The heuristic proposed in
this work, i.e. the rolling horizon method, proves to be efficient to compute optimal
prices for a realization of a scenario, but is not adapted to the resolution of the
whole stochastic problem (SBPP).

To the best of our knowledge, stochastic bilevel optimization remains a rather
open field. To design efficient solution methods remains a challenge. Furthermore,
asserting the quality of a solution method is difficult, since classical bounds of
stochastic programming as the EVPI or the VSS cannot be easily applied in a
bilevel setting, as shown in Section 3.3.3.

In Chapter 5, MLFG are considered. Even though such games have been thor-
oughly studied, their complexity still makes them interesting. In particular, the
classical optimistic/pessimistic dichotomy does not make sense in a multi-leader
context. In this work, we suggest approaches that rely on GNE selections at the
lower level, both in Chapters 4 and 5: smart selections can strongly simplify the
resolution of MLFG. Such selection approaches should therefore be more thoroughly
studied.

To conclude, this thesis answers a few questions, but opens many more.
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A.1 KKT conditions

The KKT conditions of (P`) mentioned in Subsection 4.4.1 are as follows:


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The variables between parentheses denote the dual variables associated to the
primal constraints.
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Next, the KKT conditions of (P ′a), also mentioned in Subsection 4.4.1:
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and for x = a ∈ A:
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A.2 Instances parameters

This section of the appendix gathers the parameters of the instances used for the
computing times in the subsections 4.5.1.1 and 4.5.1.2. First, the competitor’s
prices are all set to 0.14, and the inconvenience coefficients are assumed to be the
same for all ILAs and all time slots: the chosen value is 0.0004.

Concerning the energy costs of the suppliers and the base demands of the local
agents and end users, they are presented in the following table.

The instances are built by successive addition of local agents and end users. For
example, Instance 4 involves the two first local agents `1 and `2, and the two end
users i1 and i2, whereas the three local agents of Instance 5 are `1, `2 and `3, and
its three end users are i1, i2, i3. Since these two instances only involve three hours,
the parameters for h = 4 are ignored.
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Parameter h = 1 h = 2 h = 3 h = 4

chŝ 0.02 0.06 0.06 0.03

dh`1 4 14 14 9

dh`2 4 14 14 8

dh`3 5 12 13 5

dh`4 9 11 15 3

dh`5 3 8 7 9

dh`6 2 20 19 5

dh`7 4 14 14 8

dh`8 5 12 13 5

dh`9 9 11 15 3

dhi1 0.4 1.4 1.4 0.9

dhi2 0.4 1.4 1.4 0.55

dhi3 0.4 1.4 1.2 0.8

dhi4 0.3 1.5 1.6 0.5

dhi5 0.7 2 1.5 1

dhi6 0.2 0.9 0.8 0.3

dhi7 0.4 1.4 1.2 0.8

dhi8 0.3 1.5 1.6 0.5

dhi9 0.7 2 1.5 1

Table A.1: The parameters of the test instances.
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B.1 Price, profit and demand graphs

In this appendix, all graphs for the presented examples of Section 5.2.2.2 are shown.
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Figure B.1: Example 1: cases 1 and 3. The x-axes represent the inconvenience
coefficients, the y-axes either the profit (e), the price (e/kWh) or the demand
(kWh).
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Figure B.2: Example 1: cases 2_1 and 2_2. The x-axes represent the inconvenience
coefficients, the y-axes either the profit (e), the price (e/kWh) or the demand
(kWh).



156 Appendix B. Appendix to Chapter 5

Figure B.3: Example 2: cases 1 and 3. The x-axes represent the inconvenience
coefficients, the y-axes either the profit (e), the price (e/kWh) or the demand
(kWh).
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Figure B.4: Example 2: cases 2_1 and 2_2. The x-axes represent the inconvenience
coefficients, the y-axes either the profit (e), the price (e/kWh) or the demand
(kWh).





Résumé de la thèse

Cette thèse, intitulée "Conception et tarification de nouveaux services en énergie
dans un environnement compétitif" est le fruit de trois années de travail au sein de
l’équipe INOCS à Inria Lille-Nord Europe et du laboratoire PROMES-CNRS situé
à Perpignan. Ce travail a été financé majoritairement par le Programme Gaspard
Monge en Optimisation de la FMJH, et réalisé en collaboration avec EDF R&D.

Le domaine de l’énergie est actuellement confronté à de nombreux défis.
L’augmentation de la consommation globale d’électricité, combinée à la future
diminution des ressources en énergies fossiles, représente un énorme challenge.
De plus, de multiples enjeux coexistent et se contredisent souvent, qu’ils soient
économiques, politiques ou écologiques. Alors qu’historiquement, les réseaux élec-
triques n’envisageait les transferts d’énergie que de manière mono-directionnelle,
depuis de grandes centrales jusqu’aux consommateurs finaux, la démocratisation
de la production décentralisée (distributed generation) a changé les règles du jeu.
En effet, la production décentralisée repose principalement sur les énergies renou-
velables telles que le solaire ou l’éolien, qui sont par nature irrégulières et imprévisi-
bles. Cette production d’électricité irrégulière, en sus d’une demande croissante des
consommateurs, induit de grandes difficultés à assurer l’équilibre offre-demande du
réseau. Au lieu d’installer de coûteux moyens de production capables de couvrir
n’importe quelle demande de pointe, les consommateurs peuvent aider à maintenir
l’équilibre en modifiant leur comportement. En revanche, pour que de telles modifi-
cations de comportement soient efficaces, une communication bidirectionnelle entre
consommateurs et producteurs doit êre mise en place, ce qui a conduit à la naissance
du paradigme du smart grid. Selon [Dept 2009], le smart grid se définit comme

"an automated, widely distributed energy delivery network, which will
be characterized by a two-way flow of electricity and information and
will be capable of monitoring everything from power plants to customer
preferences to individual appliances. It incorporates into the grid the
benefits of distributed computing and communications to deliver real-
time information and enable the near-instantaneous balance of supply
and demand at the device level." 1

1Un réseau de distribution de l’énergie automatisé et largement distribué, qui sera caractérisé
par un flux bidirectionnel d’électricité et d’informations, et qui sera capable de tout contrôler, des
centrales de productions aux préférences des consommateurs et aux appareils seuls. Il incorpore
au réseau les bénéfices des communications et du calcul distribué afin de livrer de l’information
en temps réel, et il permet l’équilibre quasi-instantané de l’offre et de la demande au niveau des
appareils électriques.



160 Appendix B. Appendix to Chapter 5

Les smart grids possèdent de nombreux avantages : grâce à l’installation de comp-
teurs intelligents (tels Linky en France), ils sont observables à tout instant. Ils
permettent l’intégration ou la suppression de modules de production décentralisée.
Ils sont capables de détecter leurs pannes internes. Enfin, ils sont plus sûrs et plus
fiables. Ainsi, les smart grids sont idoines pour minimiser les risques de baisses de
tensions ou de black-outs pouvant être causés par l’injection imprévisible d’énergie
renouvelable dans le réseau.

La capacité des acteurs du réseau à communiquer est cruciale et permet la mise
en oeuvre de nombreuses techniques intéressantes. Une de ces techniques est la
gestion active de la demande (demand-side management). La gestion active de la
demande consiste à modeler la demande des consommateurs finaux, ce qui peut
avoir plusieurs objectifs : empêcher des black-outs en évitant des demandes qui ne
peuvent être satisfaites, optimiser l’usage des énergies renouvelables, ou, d’un point
de vue plus économiques, augmenter les bénéfices d’un producteur d’électricité dans
un environnement compétitif. Si certaines techniques de gestion de la demande
s’utilisent à un niveau stratégique, et donc à long terme, d’autres peuvent être
employées sur de courtes échelles de temps: il s’agit des techniques dites de peak
clipping (réduction de la pointe), valley filling ("remplissage" des heures creuses) et
de load shifting (déplacement de charge).

Le concept de réponse de la demande (demand response) est intimement lié
à la gestion de la demande. Afin d’assurer l’équilibre offre-demande, la demande
réelle doit être flexible, non seulement pour diminuer les pics de consommation,
mais égalemet pour réduire les fluctuations de la demande. Telle que définie dans
[Anjos 2017], "the collection of approaches available to obtain this flexibility from
the demand side of the balance is commonly referred to as demand response."2 La
réponse de la demande concerne les décisions à court terme : par exemple, si un
événement imprévu cause l’arrêt d’une centrale de production, des méchanismes
de réponse de la demande peuvent être mis en oeuvre pour diminuer la demande
totale et ainsi éviter un black-out. De tels méchanismes reposent généralement
sur la tarification, dont les principales catégories sont les tarifs time-of-use (TOU),
multi-TOU et time-and-level-of-use (TLOU). Les tarifs TOU dépendent de l’heure
à laquelle l’électricité est consommée, les tarifs multi-TOU consistent à offrir des
tarifs TOU différents selon les consommateurs, ceux-ci étant répartis en segments, et
finalement, les tarifs TLOU dépendent non seulement de l’heure de consommation,
mais également de la quantité d’énergie consommée. Parmi les tarifs TOU, plusieurs
exemples peuvent être mentionnés, notamment le critical peak pricing (CPP) ou le

2L’ensemble des approches disponibles pour obtenir cette flexibilité de la demande s’appelle la
réponse de la demande.
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variable peak pricing (VPP). Dans le cas du CPP, les prix augmentent fortement lors
de périodes de pointes, déterminées à l’avance ou en temps réel selon les besoins
du système. Dans ce dernier cas, une alerte est envoyée quelques heures avant
une augmentation significative du tarif pendant une période de pointe, afin que
les consommateurs puissent réagir en conséquence. Les tarifs VPP quant à eux
diffèrent du prix de base lors de certaines fenêtres de temps fixées à l’avance. Le
niveau du tarif modifié dépend alors des conditions du système ou du marché.

Cette thèse vise à déterminer des tarifs TOU optimaux dans un modèle général
où un ensemble de fournisseurs d’électricité proposent des tarifs à un ensemble de
consommateurs, le tout étant considéré dans un contexte de load shifting, c’est-à-
dire que la demande totale de chaque client reste constante sur l’horizon de temps
considéré.

Différentes nouvelles professions sont apparues dans le contexte du smart grid.
En particulier, les agrégateurs jouent un rôle important en tant qu’intermédiaires
entre fournisseurs et consommateurs finaux. D’une part, ils offrent des avantages
pécuniaires aux consommaters en échange du contrôle de tout ou partie de leur
demande. D’autre part, ils offrent de la flexibilité aux fournisseurs. Plus un agréga-
teurs a de clients, plus l’impact potentiel dudit agrégateur sur la courbe de demande
générale est important. De tels agrégateurs sont considérés dans le cadre de cette
thèse.

L’interaction entre fournisseurs d’électricité, agrégateurs et consommateurs fin-
aux est de nature hiérarchique : les fournisseurs proposent des prix auxquels les
agrégateurs et consommateurs réagissent. De telles interactions sont connues dans
le domaine de l’économie sous le nom de jeux de Stackelberg. En mathématiques,
ceux-ci sont l’objet de l’optimisation bi-niveau. Dans un problème bi-niveau, deux
acteurs, le meneur et le suiveur, jouent un jeu : chaque acteur subit ses propres
contraintes et possède son propre objectif; le leader prend ses décisions en sachant
que le suiveur va y réagir de manière optimale. Parmi les extensions possibles de
l’optimisation bi-niveau, on retrouve des problèmes à plusieurs meneurs et/ou à
plusieurs suiveurs, les multi-leader-follower games (MLFG). Dans un MLFG, les
suiveurs jouent un jeu entre eux, tout comme les meneurs entre eux. Ainsi, une
solution d’un MLFG prend la forme de deux équilibres de Nash : un équilibre parmi
les meneurs, et un autre parmi les suiveurs qui dépend des décisions des meneurs.
Pour un ensemble de décisions des meneurs, il existe généralement plusieurs équili-
bres potentiels au niveau inférieur. Dans un problème classique comprenant un seul
meneur et un seul suiveur, le problème lié à de potentielles multiples solutions du
niveau inférieur est traditionnellement considéré à travers le prisme de la dichotomie
optimiste-pessimiste :
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• Dans le cas optimiste, le meneur suppose que le suiveur va coopérer et choisir
la solution la plus favorable au meneur parmi toutes les solutions (optimales)
possibles.

• Dans le cas pessimiste, le meneur suppose que le suiveur va adopter un com-
portement antagoniste en choisissant la solution (optimale) la moins favorable
au meneur. Cette approche est fortement liée à la notion d’aversion au risque.

Dans un problème à plusieurs suiveurs, mais un seul meneur, cette dichotomie reste
sensée : puisqu’il n’y a qu’un seul meneur, il est possible de déterminer quel équili-
bre de Nash lui est le plus favorable. En revanche, dans un problème à plusieurs
meneurs, il est bien plus compliqué de choisir parmi les équilibres possibles : un
équilibre favorable à un meneur peut tout à fait être désavantageux pour un autre
meneur. De tels considérations doivent être prises en compte lors de l’étude d’un
MLFG, ce qui rend ces problèmes intrinsèquement plus compliqués que des prob-
lèmes bi-niveaux classiques.

L’optimisation bi-niveau a connu des avancées significatives lors des trente
dernières années, et gagne continuellement en popularité grâce à sa faculté à mod-
éliser de nombreuses situations de manière pertinente. Les applications potentielles
vont des problèmes de gestion des recettes de lignes aériennes à la modélisation des
mouvements du bras humain, et de problèmes de conception de réseaux autoroutiers
à des problèmes de répartition des sources de production (unit commitment), par
exemple. Parmi ces applications, les problèmes de tarification occupent une place
importante. En particulier, l’équipe INOCS à Inria Lille-Nord Europe s’est forgé
une expertise en problèmes de tarification bi-niveaux pour la gestion de la de-
mande : de tels problèmes (bilinéaires-bilinéaires) sont étudiés dans [Afşar 2016b]
et [Alekseeva 2018].

En se basant sur les deux travaux susnommés, cette thèse propose différents
problèmes bi-niveaux de gestion de la demande visant à quantifier et optimiser les
gains d’un fournisseur d’électricité dans un marché compétitif, où des incitations
pécuniaires sont utilisées pour induire des déplacements de charges. Ces prob-
lèmes et les résultats relatifs constituent ainsi les prémices d’un champ de recherche
prometteur pour le partenaire industriel.

Les contributions de la thèse sont de trois natures différentes : définition des
modèles, leur analyse théorique et leur analyse numérique. Trois types de problèmes
sont étudiés :

• Simple meneur, simple suiveur (Chapitre 3). Le problème de base de
ce chapitre est une extension des problèmes étudiés dans [Afşar 2016b].
Le meneur est un fournisseur d’électricité visant à maximiser son profit,
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i.e. la différence entre les revenus liés à la vente d’électricité et les coûts
d’approvisionnements relatifs, qu’ils soient de production ou d’achat sur le
marché spot. Le suiveur quant à lui est un opérateur de smart grid qui gère
la consommation des appareils électriques de ses clients. Chaque appareil
doit recevoir une quantité donnée d’énergie pendant une fenêtre temporelle
d’utilisation, avec comme limite à la consommation la puissance nominale
de chaque appareil. La première heure de la fenêtre de chaque appareil est
supposée être l’heure préférée pour utiliser l’appareil en question, et tout re-
tard cause un désagrément au client concerné. Ainsi, l’opérateur cherchera
non seulement à minimiser les coûts d’achat de l’électricité au fournisseur,
mais également à minimiser le désagrément subi par ses clients. En plus de
la responsabilité de la programmation de l’usage des appareils de ses clients,
l’opérateur de smart grid gère une production d’énergie renouvelable ainsi
qu’une batterie, desquelles il peut puiser de l’énergie à fournir à ses clients.

Le problème est tout d’abord étudié d’un point de vue déterministe, où la
quantité d’énergie renouvelable produite est supposée connue à l’avance, et
une analyse de sensibilité est conduite sur différents paramètres du prob-
lème. Ensuite, de la stochasticité est introduite dans le problème, afin de
tenir compte de l’imprévisibilité liée à l’énergie renouvelable: une approche
par arbres de scénarios est proposée. En revanche, la taille par nature expo-
nentielle des arbres de scénarios empêche toute résolution rapide et efficace du
problème dès qu’un certain nombres d’heures est considéré, ainsi une méthode
basée sur des horizons glissants est développée. Une telle méthode ne permet
certes pas de résoudre le problème entier (en considérant tous les scénarios
possibles), mais peut être appliquée dans un contexte réaliste où l’on observe
quel scénario se réalise et recalcule une solution à intervalles réguliers. Enfin,
une analyse de problèmes simplifiés donne quelques pistes quant à la com-
plexité algorithmique du problème de base. En l’occurrence, une probable
NP-complexité proviendrait essentiellement du nombre d’heures considérées,
ainsi que du désagrément subi par les consommateurs.

• Simple meneur, multiples suiveurs (Chapitre 4). Dans ce chapitre, un modèle
comprenant quatre types d’acteurs est proposé. Au niveau supérieur, un
fournisseur vend de l’énergie aux acteurs du niveau inférieur qui peuvent être
soit des agrégateurs, soit des agents locaux. Un troisième niveau d’optimisation
apparaît, puisque les agrégateurs sont reliés, via contrats, à un ensemble de
consommateurs finaux. Les rôles des différents acteurs se répartissent comme
suit :
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– Le fournisseur d’énergie offre des tarifs différenciés (selon le client et
l’heure) aux agrégateurs et agents locaux. Son but est de maximiser son
profit.

– Les agents locaux doivent satisfaire une demande qu’ils peuvent
éventuellement déplacer. Chaque déplacement de charge occasionne du
désagrément, ainsi les agents locaux cherchent à minimiser le coût de
leurs achats en électricité plus le désagrément lié aux déplacements de
charges.

– Les agrégateurs n’ont eux pas de contrôle direct sur une quelconque
charge. En revanche, ils peuvent offrir des récompenses aux consomma-
teurs finaux avec qui ils ont un contrat pour que ceux-ci déplacent leur
charge. Ainsi, chaque agrégateur cherchera à minimiser le coût de ses
achats, plus les récompenses offertes aux consommateurs finaux.

– Enfin, les consommateurs finaux minimisent leur désagrément tout en
maximisant les récompenses offertes par leur agrégateur. Il est à noter
toutefois qu’il ne s’agit pas ici d’optimisation multi-objectif : seule la
différence du désagrément et des récompenses est optimisée.

En outre, les agrégateurs et agents locaux peuvent échanger de l’électricité
entre eux. Dans ce cas, le vendeur décidera le prix, et l’acheteur décidera la
quantité. De plus, ces acteurs peuvent se fournir en électricité auprès d’un
fournisseur alternatif (le "compétiteur") au lieu de tout acheter au meneur.
Par conséquent, le meneur cherche en fait une meilleure réponse aux prix du
compétiteur, qui sont supposés connus à l’avance.

Afin de résoudre un tel modèle à trois niveaux d’optimisation, plusieurs ré-
sultats théoriques sont nécessaires. Tout d’abord, il s’agit de réduire le tout à
un problème bi-niveau. Pour ceci, une méthode inspirée de [Gkatzikis 2013]
est utilisée : les conditions d’optimalité des problèmes des consommateurs
finaux permettent d’obtenir une formule explicite pour les demandes des con-
sommateurs finaux en fonction des récompenses offertes, et inversément. En
utilisant cette formule explicite, le problème tri-niveau est reformulé comme
un problème bi-niveau.

A ce point, la méthode traditionnelle consistant à remplacer les problèmes
des suiveurs par leurs conditions d’optimalité dans le problème du meneur est
utilisée, mais s’avère peu efficace. La résolution par solveur commercial du
problème d’optimisation avec contraintes d’équilibre (MPEC) ne retourne en
effet que des points stationnaires du problème dont l’étude permet d’affirmer
qu’ils ne sont en aucun cas des optimums globaux. Pour résoudre ce problème,
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un premier résultat permet de déterminer le prix exact que chaque agrégateur
ou agent local va payer pour son électricité, qu’il se fournisse chez le leader
ou chez l’un de ses pairs. En se basant sur ce résultat, nous démontrons
qu’il existe un équilibre de Nash optimiste au niveau inférieur dans lequel
il n’y a aucun échange, ce qui permet, via une sélection des équilibres de
Nash, de simplifier le problème de manière significative et d’enfin le résoudre
efficacement à l’aide de solveurs commerciaux.

Finalement, une nouvelle sélection d’équilibres de Nash, dits semi-optimistes,
permet de trouver des profils de prix du meneur plus robustes à la réponse des
suiveurs que les profils trouvés grâce à la méthode optimiste. En effet, un prob-
lème intrinsèque à la méthode optimiste est qu’il n’y a aucun moyen de garan-
tir que les suiveurs choisissent un équilibre "optimiste". Un équilibre optimiste
est un équilibre réalisable, ni plus ni moins. En l’occurrence, les équilibres
pessimistes peuvent s’avérer extrêmement mauvais pour le meneur et n’ont
que peu de sens dans un contexte de meilleure réponse où les prix offerts
par le compétiteur sont statiques, ce qui motive la définition des équilibres
semi-optimistes susnommés. Ainsi, des prix trouvés grâce à la méthode semi-
optimiste garantiront un certain profit pour une gamme entière d’équilibres
réalisables.

Au cours du chapitre, des résultats numériques étayent nos résultats
théoriques et prouvent donc la validité de nos approches originales.

• Multiples meneurs, multiples suiveurs (Chapitre 5). Dans ce dernier cas
étudié, plusieurs fournisseurs d’électricité sont en concurrence. De tels prob-
lèmes sont par nature extrêmement difficiles à traiter, à cause de leur struc-
ture complexe. Le problème traité dans ce cas est inspiré du modèle tri-niveau
étudié au chapitre précédent : au niveau supérieur, plusieurs fournisseurs ri-
valisent pour vendre de l’électricité à un ensemble d’agents locaux. La struc-
ture des agrégateurs étant plus complexe, ceux-ci sont abandonnés.

La première étape dans l’étude du problème concerné se base sur les résultats
obtenus au chapitre précédent. En particulier, il existe un équilibre de Nash
au niveau inférieur sans échanges entre les agents locaux. Ainsi, une première
simplification du problème consiste à supposer que la réponse des suiveurs
ne comportera en effet pas d’échanges, donnant lieu à un MLFG simplifié.
Pour résoudre ce MLFG, plusieurs méthodes proposées dans [Leyffer 2010]
sont utilisées. Malheureusement, les équilibres du niveau inférieur obtenus
avec ces méthodes (grâce à un solveur commercial) ne sont pas les équilibres
attendus: en particulier, certains fournisseurs peuvent proposer des prix qui
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les feraient vendre à perte.

Afin de contourner cette difficulté, un problème d’équilibre de Nash généralisé
(GNEP) est déterminé suite à quelques hypothèses relatives au problème bi-
niveau. Grâce à ces hypothèses, la réponse des suiveurs aux prix des meneurs
est unique. Bien qu’une solution du GNEP ne constitue pas forcément une
solution du problème bi-niveau originellement considéré, il faut noter qu’une
telle solution est réalisable, qu’il s’agisse des prix des meneurs ou de la réaction
des suiveurs, qui est optimale. Cette approche permet de plus d’obtenir des
résultats numériques très intéressants.

Pour résumer, cette thèse est consacrée à l’étude de trois problèmes bi-niveaux
de gestion de la demande qui s’avèrent certes compliqués à traiter, mais modélisent
de manière pertinente certaines situations. Les conclusions à tirer sont multiples.
D’un point de vue pratique, les résultats numériques prouvent le bien-fondé de nos
approches. Pour un fournisseur d’électricité, inciter ses clients à déplacer leur de-
mande via des incitations pécuniaires permet une augmentation du profit, alors
que les clients compensent les désagréments subis par des économies financières.
D’un point de vue théorique, les résultats proposés ne peuvent en grande majorité
qu’être appliqués aux problèmes étudiés ici, mais le fait qu’ils aident grandement
à leur résolution constitue un argument fort pour une étude théorique approfondie
d’un problème avant son éventuelle résolution. De plus, l’idée consistant à sélection-
ner une réponse particulière des suiveurs n’a été à notre connaissance que très peu
étudiée, les approches optimiste et pessimiste se taillant la part du lion jusqu’ici.
Or, ce travail prouve que de telles méthodes ont du sens, qu’il s’agisse d’efficacité
computationnelle ou de robustesse des solutions vis-à-vis de la réponse des suiveurs.

Finalement, cette thèse clôt quelques questions, mais en ouvre beaucoup
d’autres.
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Conception et tarification de nouveaux services en énergie dans un
environnement compétitif

Abstract: L’objectif de cette thèse est de développer et étudier des modèles mathématiques
d’échanges économiques, basés sur la flexibilité de la demande, entre fournisseurs et consommateurs
d’électricité. D’une part, des fournisseurs d’électricité offrent des prix dépendant de l’heure de
consommation. D’autre part, des consommateurs adaptent leur usage, minimisant leur facture
et le désagrément lié aux changements de consommation induits. La structure de ces problèmes
correspond à des problèmes d’optimisation bi-niveau.
Trois types de modèles sont étudiés. Tout d’abord, l’interaction entre un fournisseur et un opérateur
de smart grid est modélisée par un problème à un seul meneur et un seul suiveur. Pour cette
première approche, le niveau de détails du suiveur est particulièremet élevé, et inclut notamment
une gestion stochastique de la production distribuée. La meilleure réponse d’un fournisseur dans un
modèle à plusieurs meneurs et plusieurs suiveurs fait l’objet de la seconde partie de la thèse. Celle-
ci intègre aussi la possibilité d’avoir des aggrégateurs comme suiveurs. Deux nouvelles méthodes
de résolution reposant sur la sélection d’équilibres de Nash entre suiveurs sont proposées. Enfin,
dans une troisième et dernière partie, on se focalise sur la recherche d’équilibres non coopératifs
pour ce modèle à plusieurs meneurs et plusieurs suiveurs.
Tous les problèmes abordés dans cette thèse le sont non seulement d’un point de vue théorique,
mais également d’un point de vue numérique.
Mots-clefs: Gestion de la demande, tarification de l’électricité, optimisation bi-niveau, jeux à
plusieurs meneurs/suiveurs

Design and pricing of new energy services in a competitive
environment

Abstract: The objective of this thesis is to develop and study mathematical models of eco-
nomical exchanges between energy suppliers and consumers, using demand-side management. On
one hand, the suppliers offer time-of-use electricity prices. On the other hand, energy consumers
decide on their energy demand schedule, minimizing their electricity bill and the inconvenience due
to schedule changes. This problem structure gives rise to bilevel optimization problems.
Three kinds of models are studied. First, single-leader single-follower problems modeling the in-
teraction between an energy supplier and a smart grid operator. In this first approach, the level
of details is very high on the follower’s side, and notably includes a stochastic treatment of dis-
tributed generation. Second, a multi-leader multi-follower problem is studied from the point of
view of the best response of one of the suppliers. Aggregators are included in the lower level. Two
new resolution methods based on a selection of Nash equilibriums at the lower level are proposed.
In the third and final part, the focus is on the evaluation of noncooperative equilibriums for this
multi-leader multi-follower problem.
All the problems have been studied both from a theoretical and numerical point of view.
Keywords: Demand-side management, electricity pricing, bilevel programming, multi-leader-
follower games
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