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Background and motivation

In the past two decades, multi-agent systems (MASs) have attracted increasing attention from researchers in various fields, such as physics, mathematics, engineering, biology, sociology and control theory. This is partly due to its potential applications, including biological systems, vehicle formation, and group decision making problems, to name a few (see Fig. 1.1). The advancements are that a group of networked autonomous agents can perform tasks more efficiently than a single agent or can accomplish tasks not executable by a single one. Considering the advantages of the MASs, the control of the MASs has received increasing demands. Currently, two approaches are commonly used for controlling MASs: the centralized approach and the distributed coordination approach [START_REF] Cao | An overview of recent progress in the study of distributed multi-agent coordination[END_REF]. The centralized approach is based on the assumption that a central station is available and sufficiently powerful to control a whole group of vehicles which can be described as Fig. 1.2a. Essentially, the centralized approach is a direct extension of the traditional single-agent-based control philosophy and strategy. On the contrary, as shown in Fig. 1.2b, the distributed coordination approach does not require a central station for control, at the cost of becoming 2 1.1 Background and motivation far more complex in structure and organization. Although both approaches are considered to be practical depending on the situations and conditions of the real applications, the distributed coordination approach is believed more promising due to many inevitable physical constraints such as limited resources and energy, short wireless communication ranges, narrow bandwidths, and large sizes of vehicles to manage and control. Besides, the distributed coordination owns many advantages, such as low operational costs, less system requirement, high robustness, more adaptive and flexible scalability [START_REF] Cao | An overview of recent progress in the study of distributed multi-agent coordination[END_REF]. Thus, the distributed coordination of MASs has been applied to many fields in the control community, such as the rendezvous [START_REF] Lin | The multi-agent rendezvous problem. Part 2: The asynchronous case[END_REF], robot teams [START_REF] Peng | LeaderâĂŞfollower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach[END_REF][START_REF] Peng | Distributed consensusbased formation control for nonholonomic wheeled mobile robots using adaptive neural network[END_REF], flocking [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: Algorithms and theory[END_REF], formation control [START_REF] Consolini | LeaderâĂŞfollower formation control of nonholonomic mobile robots with input constraints[END_REF], consensus [START_REF] Tian | Consensus of multi-agent systems with diverse input and communication delays[END_REF]) and so on. One challenge in distributed coordination is that the collective group behaviours are achieved only through the interacting of the local information.

Robot1 Robot2

Robot3 Robot4

Decision maker In the last few decades, as a generalization of the ordinary differentiation and integration to arbitrary non-integer order, fractional calculus has attracted great attention of many scientists. In fact, the first appearance of the concept of Compared with the classical integer-order systems, fractional-order systems provide an excellent instrument for the description of memory and hereditary properties of various materials and processes. In fact, the real-world processes generally or most likely are fractional-order systems, such as phenomenological description of viscoelastic liquids, diffusion and wave propagation, electromagnetic waves, dielectric relaxation phenomena in polymeric material and so on [START_REF] Podlubny | Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[END_REF]. In other words, there are many phenomena that cannot or are hard to be interpreted accurately by integer-order dynamics. For example, the consensus motion of agents performs in viscoelastic materials such as macromolecule fluid, porous media, and complicated environments, underwater vehicles operate in lentic lakes composed of microbes and viscoelastic materials, flying vehicles operate in an environment where the influence of particles in air can not be ignored (e.g. high-speed flight in duststorm, rain or snow), and ground vehicles move on top of carpet, sand, muddy road or grass (Cao & Ren, 2010). Therefore,

Overview of distributed coordination of FOMASs

it is more interesting and significant to investigate the distributed coordination of fractional-order multi-agent systems (FOMASs).

Thus, the combination of the distributed coordination control of MASs and fractional calculus leads to a new interdisciplinary subject, namely the distributed coordination of fractional-order multi-agent systems (FOMASs).

The objective of this subject is to develop new distributed algorithms for networked FOMASs according to different situations, and improve the effectiveness of MASs from the viewpoint of performance both in accomplishing certain tasks and in the robustness and reliability of the system.

Overview of distributed coordination of FO-MASs

The recent researches on distributed coordination of FOMASs mainly focus on the consensus and formation control. The following subsections will introduce these directions in terms of definition and state of the arts.

Consensus problem

Consensus problem, one of the most important and fundamental issues in the distributed coordination for MASs, has attracted much attention from the researchers in recent years. Among the research topics in consensus of MASs, there are mainly three classes, i.e., leaderless consensus, leader-following consensus and containment consensus problem. To define these three cases clearly, we first introduce a leader (reference state).

Leader: a leader denotes a control objective or a common interest of the whole multi-agent group, a leader is also regraded as a reference state.

Leaderless consensus: if multi-agents are not required to track a leader, the consensus problem is called leaderless consensus or consensus producing (see as Fig. 1.4).

Leader-following consensus: if multi-agents are required to track a leader, the consensus problem is called leader-following consensus or consensus tracking or synchronization (see as Fig. 1.5).
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Leaderless consensus/consensus producing

For leaderless consensus of MASs, the aim is to design a network distributed control protocol by only using the neighbors' information, such that all agents achieve the desired common goal, which maybe represent attitude, position, ve- for MASs has made great achievements. For example, different kinds of control methods have been proposed to achieve the consensus problem, such as eventtriggered control [START_REF] Dimarogonas | Distributed event-triggered control for multi-agent systems[END_REF], output feedback control [START_REF] Du | Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control[END_REF] and sliding mode control [START_REF] Zhao | Adaptive backstepping sliding mode control for leaderâĂŞfollower multi-agent systems[END_REF]. Besides, different kinds of limited conditions have been considered when agents work in different environment, such as the time delay [START_REF] Tian | Consensus of multi-agent systems with diverse input and communication delays[END_REF], parameter uncertainty [START_REF] Lin | Robust HâĹđ consensus analysis of a class of secondorder multi-agent systems with uncertainty[END_REF], external disturbances [START_REF] Du | Robust consensus algorithm for second-order multi-agent systems with external disturbances[END_REF] and so on.

To the best of our knowledge, the consensus of FOMASs with single integrator was first studied in Cao & Ren (2010) under fixed directed communication topology, where it has been stated that the convergence speed can be improved by using a varying-order fractional-order strategy. Then until now, many results

have been obtained by considering different situations and using different kinds of control, which can be summarized as follows.

In many cases, time delays occur in practical systems due to the finite switching speed of amplifiers, finite signal propagation time in biological networks, finite chemical reaction times, memory effects, and so on. The existence of time delays in a dynamic system is frequently a source of instability and poor performance.

Therefore, stability testing and stabilization of time-delay systems is a problem of practical and theoretical interests. In Shen & Cao (2012), leaderless consensus of single integrator FOMASs under fixed undirected/directed communication topology was studied, where the identical/heterogeneous input delay was considered. In Shen et al. (2012), the leaderless consensus of single integrator FOMASs with nonuniform input delays and communication delays were considered separately or together over fixed undirected/directed communication topology. [START_REF] Yang | Consensus of compound-order multi-agent systems with communication delays[END_REF] studied the leaderless consensus of compound-order FOMASs with communication delays under fixed directed communication topology, where there were two groups of MASs with integer-order and fraction-order single integrator dynamics. In [START_REF] Bibliography Yang | Distributed coordination of fractional order multi-agent systems with communication delays[END_REF], leaderless consensus of single integrator FO-MASs with communication delays under fixed directed communication topology was addressed. In [START_REF] Bibliography Soorki | Asymptotic swarm stability of fractional-order swarm systems in the presence of uniform time-delays[END_REF], leaderless consensus of a generalized linear form of FOMASs with self state and communication uniform timedelays was considered under fixed undirected/directed communication topology.

In [START_REF] Liu | Consensus control of fractional-order systems based on delayed state fractional order derivative[END_REF], leaderless consensus of single integrator FOMASs under In terms of the control approach, most of the results about the time delays mentioned above are based on the frequency domain analysis and generalized Nyquist stability criterion [START_REF] Liu | Consensus of Fractional-Order Multiagent Systems with Double Integral and Time Delay[END_REF](Liu et al., ,c,d,e,f, 2017b;;Shen & Cao, 2012;Shen et al., 2012;[START_REF] Shi | Delay-dependent consensus condition for a class of fractional-order linear multi-agent systems with input time-delay[END_REF][START_REF] Bibliography Soorki | Asymptotic swarm stability of fractional-order swarm systems in the presence of uniform time-delays[END_REF][START_REF] Yang | Consensus of compound-order multi-agent systems with communication delays[END_REF][START_REF] Bibliography Yang | Distributed coordination of fractional order multi-agent systems with communication delays[END_REF]. Besides, [START_REF] Zhu | Consensus of fractional-order multiagent systems with input time delay[END_REF] studied the leaderless consensus of FOMASs with input time delays based on the properties of Mittag-Leffler function, matrix theory, stability theory of fractional-order differential equations. Liu et al. (2019e) addressed the leaderless consensus of FOMASs with time delay based on the fractional Razumikhin theorem.
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In terms of the system dynamics, most of the results are based on the single integrator dynamics [START_REF] Liu | Consensus of Fractional-Order Multiagent Systems with Double Integral and Time Delay[END_REF](Liu et al., ,c, 2017b;;Shen & Cao, 2012;Shen et al., 2012;[START_REF] Shi | Delay-dependent consensus condition for a class of fractional-order linear multi-agent systems with input time-delay[END_REF][START_REF] Bibliography Soorki | Asymptotic swarm stability of fractional-order swarm systems in the presence of uniform time-delays[END_REF][START_REF] Yang | Consensus of compound-order multi-agent systems with communication delays[END_REF][START_REF] Bibliography Yang | Distributed coordination of fractional order multi-agent systems with communication delays[END_REF].

Besides, Liu et al. (2018e,f) studied the double integrator dynamics, Liu et al.

(2018d) studied the high-order dynamics. [START_REF] Shi | Delay-dependent consensus condition for a class of fractional-order linear multi-agent systems with input time-delay[END_REF]; [START_REF] Zhu | Consensus of fractional-order multiagent systems with input time delay[END_REF] studied the FOMASs with nonlinearity.

In some real systems, parameter uncertainty is inevitable. In [START_REF] Li | Observer-type consensus protocol for a class of fractional-order uncertain multiagent systems[END_REF], an observer-type leaderless consensus protocol was proposed to deal with the uncertain FOMASs with general linear node dynamics over fixed directed communication topology. In Yin & Hu (2013), leaderless consensus of uncertain FOMASs with general linear node dynamics was investigated based on output feedback under fixed undirected communication topology. In [START_REF] Song | Robust consensus of fractional-order multi-agent systems with positive real uncertainty via second-order neighbors information[END_REF], leaderless consensus of uncertain FOMASs with general linear node dynamics was studied under fixed undirected communication topology, where the second-order neighbors information was utilised. In Chen et al. (2015a), the group leaderless consensus of uncertain FOMASs with general linear node dynamics was investigated based on output feedback under fixed directed communication topology.

In summary, all the results were based on the general linear dynamics and the uncertainties were denoted as time-invariant matrices.

External disturbances, such as stochastic noises, external interferences always impacts the system performance and causes the system instability. In [START_REF] Ren | Robust consensus of fractional multi-agent systems with external disturbances[END_REF], 2017b), robust leaderless consensus of linear /nonlinear FOMASs with external disturbances was studied based on fixed directed communication topology, where linear control protocol was utilised.

Sometimes, the unknown nonlinear term and the external disturbance term cannot usually be observed. Therefore, it is significant to design the valid control laws, which are not necessary to know the specific information, such as the Lipschitz condition of the nonlinearity and the boundedness of the external disturbances. In [START_REF] Bai | Neural Networks Based Adaptive Consensus for a Class of Fractional-Order Uncertain Nonlinear Multiagent Systems[END_REF]; [START_REF] Mo | Neuro-adaptive Leaderless Consensus of Fractional-order Multi-agent Systems[END_REF], leaderless consensus of uncertain FOMASs was studied under fixed undirected communication topology, where the radial basis function neural networks (RBFNNs) method was proposed to compensate the unknown nonlinear term and the external disturbance term, and the corresponding fractional-order/integer-order adaptation laws were designed respectively to approach the ideal neural network weight matrix of the 1. INTRODUCTION unknown nonlinear term.

In practice, the control input subjected to the bounded situation is very prevalent. In [START_REF] Soorki | Constrained swarm stabilization of fractional order linear time invariant swarm systems[END_REF], leaderless consensus of FOMASs with general linear dynamics was studied based on undirected/directed communication topology, where two constraints were considered: the input constraint and the restriction on distance of the agents from final destination which should be less than a desired value.

In Yin & Hu (2013), leaderless consensus of heterogenous FOMASs modelled by two kinds of general linear dynamics was addressed under fixed directed communication topology.

All of the aforementioned works are concerned with continuous-time FOMASs, some results have been obtained based on discrete-time systems. For example, in Yang et al. (2013a), leaderless consensus of single integrator FOMASs via sampled control and sampling delay was investigated based on fixed directed communication topology, where the FOMASs was reformulated as discrete-time dynamics by using the definition of Grünwald-Letnikov (GL) fractional derivative. In [START_REF] Malinowska | Optimal control of discretetime fractional multi-agent systems[END_REF], leaderless consensus of discrete-time FOMASs with single/double integrators was studied using optimal control strategy based on fixed undirected communication topology.

In [START_REF] Yang | Consensus of Delayed Multi-agent Systems via Intermittent Impulsive Control[END_REF], leaderless consensus of FOMAS with double-integrator dynamics was studied over fixed directed communication topology. In [START_REF] Shen | Consensus of fractional-order multiagent systems with double integrator under switching topologies[END_REF], under switching topologies, leaderless consensus of FOMAS with doubleintegrator dynamics was studied by applying Mittag-Leffler function, Laplace transform and dwell time technique.

It is known that sliding mode control is an effective way to deal with model uncertainty and disturbance in the control of fractional-order systems. In [START_REF] Soorki | Adaptive robust control of fractionalorder swarm systems in the presence of model uncertainties and external disturbances[END_REF], under fixed directed communication topology, leaderless consensus of general linear FOMAS with model uncertainties and external disturbances was investigated based on an adaptive robust sliding mode control, where a fractional-integral sliding manifold was constructed. In Liu et al. (2018a), exponential finite-time leaderless consensus of single integrator FOMASs was studied by using the fast sliding mode control over fixed strongly connected communication topology/directed communication topology containing spanning 1.2 Overview of distributed coordination of FOMASs tree. In Bai et al. (2017aBai et al. ( , 2018)), leaderless consensus of single/double integrators FOMASs without/with inherent nonlinearity was addressed based on sliding mode control under fixed directed communication topology.

In practice, continuous control may be infeasible since the controllers are subjected to enormous load of continuously updated information. Besides, in practical of digital sensors and controllers, although the system is always continuous, only the discrete sampled-data at some sampling instances can be used in the control process. Compared with the continuous-time control, continuoustime systems via sampled-data control have series of excellent properties such as robustness, flexibility and low cost. Therefore, sampled-data control is more practicable in applications. In [START_REF] Yu | Necessary and sufficient conditions for consensus of fractional-order multiagent systems via sampled-data control[END_REF], leaderless consensus of single integrator FOMASs was studied via periodic sampled-data control over fixed undirected/directed communication topology. In Liu et al. (2019a), leaderless consensus of double integrator FOMASs was investigated over fixed directed communication topology, where periodic sampled-data control was proposed for absolute and relative damping cases. However, it is pointed out that periodical sampling still leads to a large amount of energy-cost and it may reduce system lifespan consequently. Thus the event-triggered control strategy is proposed to solve this problem. In [START_REF] Liu | Consensus of Multi-Integral Fractional-Order Multiagent Systems with Nonuniform Time-Delays[END_REF], leaderless consensus of single integrator FOMASs over fixed undirected communication topology was investigated via periodic sampled-data event-triggered control. Besides, in [START_REF] Xu | Fractional-order consensus of multi-agent systems with event-triggered control[END_REF], leaderless consensus of single integrator FOMASs based on fixed undirected communication topology was studied using centralized/distributed event-triggered sampled-data control, where the exclusion of the Zeno behavior was not guaranteed. In [START_REF] Bibliography Ren | Consensus of fractional multiagent systems by distributed event-triggered strategy[END_REF], leaderless consensus of general linear FOMASs over fixed undirected communication topology was investigated through distributed event-triggered strategy, where the Zeno behavior could be precluded to ensure the feasibility of the devised eventtriggered strategy.

Most of the works on leaderless consensus of FOMASs were devoted to design the state feedback control protocol using the state information of agents directly. However, during practical implementation, under some circumstance, some agents' states can not be directly measured, while only the output information is available. Therefore, the control protocol based on output informa-1. INTRODUCTION tion is more effective. Fox example, in Yin & Hu (2013), leaderless consensus of uncertain FOMASs with general linear node dynamics was investigated based on static output feedback under fixed undirected communication topology. In Chen et al. (2015a), the group leaderless consensus of uncertain FOMASs with general linear node dynamics was investigated based on static output feedback under fixed directed communication topology.

Besides the static output feedback, in [START_REF] Li | Observer design for consensus of general fractional-order multi-agent systems[END_REF]; [START_REF] Ma | The consensus region design and analysis of fractional-order multi-agent systems[END_REF], under fixed directed topology, a fractional-order observer-type leaderless consensus protocol based on relative output measurements was proposed to achieve the leaderless consensus of general linear FOMASs. In addition, in large scale networks, the absolute output measurement of each agent is not often completely available. In [START_REF] Zhu | Consensus of fractional-order multiagent systems with input time delay[END_REF], under fixed directed commmunication topology, leaderless consensus of general linear FOMASs was studied, where a distributed observer-type protocol was proposed to utilize the estimated states by available measurements.

Leader-following consensus/consensus tracking

The consensus of a group of agents with a (virtual) leader has become a particularly interesting topic, where the leader is a special agent whose motion is independent of all the other agents and thus is followed by all the other ones.

Such a consensus problem with a dynamic (virtual) leader is commonly called leader-following consensus or consensus tracking problem (see Fig. 1.5). It was reported that the leader-following configuration was an energy saving mechanism [START_REF] Hummel | Formation flight as an energy-saving mechanism[END_REF], which was found in many biological systems, and could also enhance the communication and orientation of the flock [START_REF] Andersson | Kin selection and reciprocity in flight formation[END_REF]. So far, for the leader-following consensus of FOMASs, many results have been obtained considering different conditions with different control methods.

Based on the stability theory of fractional-order linear system [START_REF] Matignon | Stability results for fractional differential equations with applications to control processing[END_REF], [START_REF] Bai | Consensus with a reference state for fractional-order multi-agent systems[END_REF]Bai et al. ( , 2017a)); [START_REF] Bibliography Zhu | Leader-following consensus of fractional-order multi-agent systems with general linear models[END_REF] studied the leader-following consensus of single integrator/general linear FOMASs under fixed directed communication topology. By using the fractional-order Lyapunov direct method (Li et al., 2010a), [START_REF] Gong | Distributed tracking of heterogeneous nonlinear fractionalorder multi-agent systems with an unknown leader[END_REF]; [START_REF] Ren | Leader-following consensus of fractional nonlinear multiagent systems[END_REF]; Yu et al. (2015) Time delay is a universal phenomenon in real dynamical system, which has distinct effects on dynamical behavior of systems and even makes systems unstable. In [START_REF] Zhu | Consensus of fractional-order multiagent systems with input time delay[END_REF], leader-following consensus of general linear FOMASs with input delay was studied over fixed directed communication topology by evaluating error states, where the explicit solution of the tracking errors system was obtained. In [START_REF] Yang | Consensus analysis of fractional-order nonlinear multi-agent systems with distributed and input delays[END_REF], over fixed directed weighted graph, leaderfollowing consensus of nonlinear FOMASs with distributed and input delays was investigated by using the fractional-order Razumikhin approach [START_REF] Wen | Lyapunov method for nonlinear fractional differential systems with delay[END_REF] and algebraic graph theory. Similarly, by using a modified fractional-order Razumikhin approach, Liu et al. (2019e) studied the leader-following consensus of nonlinear FOMASs under fixed directed communication topology, where state time delay existed in the nonlinearity. Note that for the above results, the fractional orders between the leader and followers are all homogeneous, while in some complex environment, the fractional orders for the leader and followers may be heterogeneous, which can be more accurate and flexible in describing the dynamics of the leader-following FOMASs. Therefore, in Chapter 2 the leader-following consensus of FOMASs with heterogenous fractional orders between leader and followers under input delays is investigated.

In practical applications, the external disturbances may be inevitable which always affect the stability performance of the systems. In [START_REF] Ren | Robust consensus of fractional multi-agent systems with external disturbances[END_REF], leader-following consensus of nonlinear FOMASs with external disturbances was investigated over fixed directed communication topology, where a distributed linear control protocol was proposed and the ultimately uniformly bounded tracking errors were obtained. In [START_REF] Chen | Robust consensus of fractional-order multi-agent systems with input saturation and external disturbances[END_REF], leader-following consensus of general linear FOMASs with bounded matched disturbances was studied, where the control input was subjected to bounded saturation and the tracking errors were ultimately uniformly bounded, where the performances were not satisfying.

Therefore, in order to improve the consensus performance of the FOMASs with
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external disturbances, two more efficient nonlinear control algorithms will be designed in Chapter 3, which can speed up the convergence process and get a better convergence effect.

In many cases, it is very difficult to measure the exact values of all the agents' states due to sensor constraints, communication limits, noise perturbations or data drop-out. Therefore observer design for consensus in MASs has been widely discussed. For instance, in Yu et al. (2017a), under fixed directed communication topology, to track the states of the leader described by second-order dynamics, observers for the followers were designed by the FOMASs where the relative velocity information was unavailable. In [START_REF] Pan | Admissible leader-following consensus of fractional-order singular multi-agent system via observer-based protocol[END_REF], leader-following consensus of singular general linear FOMASs was investigated under fixed undirected communication topology, where a distributed consensus protocol was proposed based on the information of observer. In Wen et al. (2019), under fixed directed communication topology, the observer-based output consensus of leaderfollowing heterogeneous linear/nonlinear FOMASs with potentially different state dimensions and different dynamics was studied.

In some cases, the dynamics of the agent have unknown nonlinearities and disturbances. To tackle this situation, the neural networks-based (NNs-based) adaptive approach has been widely used to approximate the unknown functions. Gong & Lan (2018a,b) studied the leader-following consensus of uncertain nonlinear FOMASs with double integrators under fixed undirected/directed communication topology, where NNs were used in the designed controller to approximate the unknown nonlinearities. In Shi et al. (2019a), the distributed adaptive cooperative control algorithms for second-order agents to track a leader with unknown fractional-order dynamics were investigated, where linearly parameterized NNs were used to approximate the unknown functions.

All of the aforementioned works are concerned with continuous communication and continuous control updates which mean that the agents propagate their information all the time. However, for the networks with limited resources, it is necessary to use the intermittent communication technique to reduce the frequency of the control update and communication of agents. At present, the event-triggered sampling strategy has been displayed to be an effective way to reduce the frequency of control updates in MASs. For FOMASs, over fixed undirected communication topology, based on fractional Lyapunov approach, Shi et al. Compared with the existing continuous control method mentioned above, impulsive control is an efficient methods to deal with the dynamical systems which can be controlled by continuous control methods. In [START_REF] Wang | Leader-following exponential consensus of fractional order nonlinear multi-agents system with hybrid time-varying delay: A heterogeneous impulsive method[END_REF] 
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Containment consensus with multiple leaders

The main objective of containment control is to design appropriate protocol such that all followers can converge to the convex hull spanned by the leaders.

In Liu & Xu (2012); Liu et al. (2012), over fixed directed topology, distributed containment control of single integrator FOMASs with input delay was investigated by using the algebraic graph theory, matrix theory, Nyquist stability criterion and frequency domain method. In [START_REF] Chen | Distributed containment control of fractional-order uncertain multi-agent systems[END_REF], over fixed undirected communication topology, containment control of general linear FOMASs with parameter uncertainty was studied based on the stability theory of fractional-order systems and matrix theory. In [START_REF] Gong | Distributed tracking of heterogeneous nonlinear fractionalorder multi-agent systems with an unknown leader[END_REF], over fixed undirected communication topology, by using the fractional Lyapunov direct method, the distributed robust containment control problem for a class of FOMASs with heterogeneous unknown nonlinearities and external disturbances was studied based on the neural networks-based adaptive control. In [START_REF] Zou | Containment control of fractional-order nonlinear multi-agent systems under fixed topologies[END_REF] 

Consensus-based formation control

Consensus algorithms normally guarantee the agreement of a team of agents on some common states without taking group formation into consideration. To reflect many practical applications where a group of agents are normally required to form some preferred geometric structures, it is desirable to consider a taskoriented formation control problem for a group of mobile agents, which motivates the study of formation control presented in this subsection.

Compared with the consensus problem where the final states of all agents typically reach a singleton, the final states of all agents can be more diversified under the formation control scenario. Indeed, formation control is more desirable in many practical applications such as formation flying, cooperative transportation, sensor networks, as well as combat intelligence, surveillance, and reconnaissance.

In addition, the performance of a team of agents working cooperatively often exceeds the simple integration of the performance of all individual agents. For its broad applications and advantages, formation control has been a very active research subject in the control systems community, where a certain geometric pattern is aimed to form with or without a group reference. More precisely, the main objective of formation control is to coordinate a group of agents such that they can achieve some desired formation so that some tasks can be finished by the collaboration of the agents.

Generally speaking, formation control can be categorized according to the group reference.

Formation producing: if multi-agents are not required to track a leader, the formation problem is called formation producing (see Fig. 1.7).

Formation tracking: if multi-agents are required to track a leader, the formation problem is called formation tracking (see Fig. 1.8).

Formation control without a group reference, called formation producing, refers to the algorithm designed for a group of agents to reach some pre-desired geometric pattern in the absence of a group reference, which can also be considered as the control objective. Formation control with a group reference, called Up to now, formation control has been extensively studied by numerous researches [START_REF] Cao | An overview of recent progress in the study of distributed multi-agent coordination[END_REF], and the existing results of formation control primarily assume an integer-order dynamics, such as single integrator dynamics and double ones. However, many practical engineering systems can't be explained by integerorder systems, and some more well reflections to the systems properties can be given by fractional-order systems.

Currently, for the formation control of FOMASs, a few results have been obtained. In Cao et al. (2010), the distributed formation producing for fractionalorder multi-agent systems was firstly studied under the dynamic interaction and absolute/relative damping. In Bai et al. (2015a[START_REF] Bai | Distributed formation control of fractional-order multi-agent systems with relative damping and communication delay[END_REF], over fixed directed communication topology, the distributed formation producing for fractional-order multi-agent systems with communication delay and absolute/relative damping 1.3 Overview of parameter identification problem was investigated respectively. In [START_REF] Bai | Formation tracking of fractional-order multi-agent systems based on error predictor[END_REF], formation tracking of fractionalorder multi-agent systems was considered based on error predictor. In [START_REF] Luo | Learning formation control for fractional-order multiagent systems[END_REF], over fixed directed communication topology, two iterative learning control schemes (P-type and PI-type) were employed to fulfill the formation producing of general linear FOMASs. In Liu et al. (2019c,d) 

Overview of parameter identification problem

Most control methods mentioned in Section 1.2 are valid only for the FOMASs whose system parameters and fractional orders are known in advance. However, in some situations, the dynamics of FOMASs are usually partly known. That is, the structure of the fractional-order differential equations are known, while some or all of the fractional orders and system parameters are unknown. Therefore, in order to control the FOMASs, identifying the unknown fractional orders and system parameters are really important.

Currently, for parameter identification of nonlinear systems, there are mainly two methods. The first one is synchronization-based method, which was first put forward by Parlitz [START_REF] Parlitz | Estimating model parameters from time series by autosynchronization[END_REF]. After that this method has been sufficiently applied to the unknown parameter identification of different kinds of nonlinear systems [START_REF] Gu | Synchronization-based parameter estimation of fractional-order neural networks[END_REF][START_REF] Konnur | Synchronization-based approach for estimating all model parameters of chaotic systems[END_REF]. But it is not easy to be applied because it is sensitive to the considered systems for designing the controllers and updating laws. The second one is optimization-based method by using artificial intelligence optimization algorithms (AIOAs). In the second method, the parameter identification issue can be converted into a functional optimization problem. Contrasted with the synchronization-based method, the second method does not need the differentiable information of the considered
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systems and is more flexible to be applied. Currently, many kinds of AIOAs have been applied for the second parameter identification method, such as differential evolution (DE) [START_REF] Guedes | Parameters estimation of three-phase induction motors using differential evolution[END_REF] and Cuckoo search (CS) (Wei & Yu, 2018).

In the past few decades, AIOAs based on evolutionary and swarm principles have achieved considerable success in handling complex function optimization problems as they do not depend on the differentiability, continuity, and convexity of the objective function. For instance, most of the traditional optimization methods, such as steepest decent, conjugate gradient method and Newton method, require gradient information of the objective function which make it impossible for them to deal with the non-differentiable functions. Therefore, the AIOAs have attracted more and more attention. In the family of AIOAs, the most popular methods are genetic algorithms (GA) [START_REF] Tam | Genetic algorithms, function optimization, and facility layout design[END_REF], differential evolution (DE) [START_REF] Storn | Differential evolutionâĂŞa simple and efficient heuristic for global optimization over continuous spaces[END_REF], particle swarm optimization (PSO) [START_REF] Kennedy | Particle swarm optimization[END_REF], biogeography-based optimization (BBO) [START_REF] Simon | Biogeography-based optimization[END_REF], ant colony optimization (ACO) [START_REF] Socha | Ant colony optimization for continuous domains[END_REF], and artificial bee colony (ABC) algorithm [START_REF] Karaboga | A comprehensive survey: artificial bee colony (ABC) algorithm and applications[END_REF].

In the following, the problem formulation of parameter identification problem with AIOAs is introduced. Assume the original system is described as

0 D q t Y (t) = f (Y (t), Y 0 , θ), (1.1) 
where

Y (t) = [y 1 (t), y 2 (t), • • • , y n (t)] T ∈ R n denotes the state vector, Y 0 = Y (0) denotes the initial value, θ = [θ 1 , θ 2 , • • • , θ m ] T is a set of original systematic parameters, q = [q 1 , q 2 , • • • , q n ] (0 < q i < 1, i = 1, 2, • • • , n) is the fractional derivative orders, and the function f (Y (t), Y 0 , θ) = [f 1 (Y (t), Y 0 , θ), f 2 (Y (t), Y 0 , θ), • • • , f n (Y (t), Y 0 , θ)] T .
Suppose the structure of system (1.1) is known, then the corresponding identified system can be written as

0 D q t Ỹ (t) = f ( Ỹ (t), Y 0 , θ), (1.2)
where

Ỹ (t) = [ỹ 1 (t), ỹ2 (t), • • • , ỹn (t)] T ∈ R n is the state vector of the identified system, θ = [ θ1 , θ2 , • • • , θm ]
T is a set of identified system parameters and q = 20 Based on the measurable state vector

Y (t) = [y 1 (t), y 2 (t), • • • , y n (t)] T ∈ R n ,
to identify the fractional-order system (1.1), the following objective function is defined as

J(q, θ) = arg min (q, θ)∈Ω F = arg min (q, θ)∈Ω N k=1 Y k -Ỹk 2 , (1.3) 
where k = 1, 2, • • • , N is the sampling time point and N denotes the length of data used for parameter identification. Y k and Ỹk respectively denote the state vector of the original system (1.1) and the identified system (1.2) at time kh. h is the step size introduced in the predictor-corrector approach for the numerical solutions of fractional differential equations. • is Euclid norm. Ω is the searching area admitted for parameters θ, where the fractional orders q are considered as special variables. The parameter identification of system (1.1) can be achieved by searching suitable θ and q in the searching space Ω such that the objective function (1.3) is minimized. In other words, the main task is to find the best combination of the independent variables q and θ for the objective function (1.3).

The general principle of parameter identification can be illustrated as Fig. 1.9.

In this thesis, we will identify the unknown FOMASs based on AIOAs. More specifically, in Chapters 4 and 5, the ABC and DE algorithms will be employed respectively to identify the unknown nonlinear delayed FOMASs, then the identified parameters are applied to the distributed consensus tracking of the delayed
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nonlinear FOMASs. In Chapter 6, in order to improve the performance of the original ABC algorithm, a modified artificial bee colony (mABC) algorithm will be proposed to identify the unknown nonlinear FOMASs.

Preliminaries

Graph Theory

In this thesis, the fixed undirected/directed communication graph with N agents

is considered. In graph G = (V, E, A), V = {v 1 , v 2 , • • • , v N } and E ⊆ V × V de-
note nodes set and edges set respectively, and A = [a ij ] N ×N ∈ R N ×N denotes a weighted adjacency matrix where all the elements a ij ≥ 0 and a ii = 0 due to the no existence of the self-loops. e ij = (v j , v i ) denotes the edge of G, and if agent i can receive information from agent j, it can be denoted by

e ij ∈ E which is equal to a ij > 0. For undirected communication graph, if e ij ∈ E, it implies e ji = (v i , v j ) ∈ E. Denote N i = {v j |(v j , v i ) ∈ E} as the neighbour set of agent i. (v 1 , v 2 ), (v 2 , v 3 ), • • • represents a path.
For undirected communication graph, if there exists an undirected path between each pair of distinct nodes, the corresponding undirected graph is connected. For directed communication graph, if at least one node has a directed path to all other nodes, we say that the directed graph has a directed spanning tree. Define the in-degree of the ith agent as d i = N j=1 a ij and the in-degree matrix as

D = diag{d i } ∈ R N ×N which is a diagonal matrix with diagonal elements d i (i = 1, • • • , N). Defined L = D -A = [l ij ] N ×N ∈ R N ×N as the Laplace matrix, which means that l ij = -a ij (i = j) and l ii = d i = N j=1 a ij .
In this thesis, let vertex v 0 denote the leader in the communication graph and x 0 represent its state. Then, the graph Ḡ is defined, which includes the graph G and leader v 0 . For distributed coordination, the leader is independent, which means it doesn't obtain the information from its neighbors. The diagonal matrix B ∈ R N ×N denotes the leader's adjacency matrix and when the leader is a neighbor of agent i, the diagonal elements b i = a i0 > 0 and b i = 0, otherwise.

Similarly, in graph Ḡ, the in-degree of the ith agent can be defined as

d i = N j=0 a ij (i = 1, • • • , N).
In order to utilize the communication topology, the following lemmas are guaranteed.
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Lemma 1.1 [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF] Suppose the undirected communication topology Ḡ which contains N followers and one leader is connected, then M = L + B is symmetric and positive definite.

Lemma 1.2 [START_REF] Li | Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs[END_REF] Suppose the directed communication topology Ḡ among the followers and leader has a directed spanning tree with the leader as the root node, then all the eigenvalues of matrix M = L + B own positive real parts. Let

g = [g 1 , g 2 , • • • , g N ] T = M -T 1 N , G = diag{g 1 , g 2 , • • • , g N }, Q = GM + M T G, then G > 0 and Q > 0.
Remark 1.3 In this thesis, we assume that the fixed undirected/directed communication topologies have 0-1 weight.

In the following, two examples with fixed undirected/directed communication topologies will be given to show the definitions of adjacency matrixes A and B, in-degree matrix D, and Laplace matrix L.

Example 1.4 Consider the fixed undirected communication topology as Fig. 1.10, its adjacency matrixes A and B, in-degree matrix D, and Laplace matrix L can be given as follows: 

A =      0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0      , D =      2 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1      , B =      1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      , L = D -A =      2 -1 -1 0 -1 2 0 -1 -1 0 1 0 0 -1 0 1      . 1. INTRODUCTION 0 v 1 v 3 v 4 v 2 v
A =      0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0      , D =      0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1      , B =      1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      , L = D -A =      0 0 0 0 -1 1 0 0 -1 0 1 0 0 -1 0 1      . 1.4 Preliminaries

Caputo fractional-order derivative

In general, three best-known definitions of fractional-order derivatives are widely used: Grunwald-Letnikov, Riemann-Liouville and Caputo definitions [START_REF] Podlubny | Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[END_REF]. In particular, the main advantage of Caputo fractional-order derivative is that it owns same initial conditions with integer-order derivatives, which has well-understood features of physical situations and more applicable to real world problems.Thus, the Caputo fractional-order derivative is employed in this thesis.

Definition 1.6 (Caputo fractional-order derivative) The Caputo fractional-order derivative of order α for a function f (t) is defined as

t 0 D α t f (t) = 1 Γ(n -α) t t 0 f (n) (τ ) (t -τ ) α+1-n dτ, (1.4)
where α > 0 and α ∈ (n -1, n), Γ(•) represents the gamma function. When

α = n, it holds that t 0 D α t f (t) = f (n) (t).
Particularly, when α ∈ (0, 1), it holds that

t 0 D α t f (t) = 1 Γ(1 -α) t t 0 f ′ (τ ) (t -τ ) α dτ.
The corresponding Laplace transform is

L{ t 0 D α t f (t); s} = s α F (s) - n-1 k=0 s α-k-1 f (k) (t 0 ), (1.5) 
where α ∈ (n -1, n), L{•} is the Laplace transform, s is the variable in Laplace domain and F (s) is the Laplace transform of f (t), and F (s) = L{f (t); s} = +∞ 0 e -st f (t)dt. In this thesis, we assume that α ∈ (0, 1], so the Laplace transform of Caputo fractional derivative can be written as follows:

L{ t 0 D α t x(t); s} = s α X(s) -s α-1 x(0), Property 1.7 If C is a constant, then t 0 D α t C = 0.
Property 1.8 The linearity of Caputo fractional-order derivative can be depicted as
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where µ and ν are arbitrary constants.

Analogous to the exponential function appearing in the solution of integerorder differential equations, the Mittag-Leffler function is used frequently in the solutions of fractional-order differential equations.

Definition 1.9 The Mittag-Leffler function with two parameters is

E α,β (z) = ∞ k=0 z k Γ(kα + β)
.

(1.6)

Where α, β ∈ C. As a special case, if β = 1, and α > 0, then (1.6) can be rewritten as

E α (z) = ∞ k=0 z k Γ(kα+1) . Especially, E 1,1 (z) = e z . The corresponding Laplace transform is L{t β-1 E α,β (-λt α ); s} = s α-β s α + λ , (t ≥ 0, Re(s) > |λ| 1 α ),
where λ ∈ R, and Re(s) is the real part of the variable s.

Consider the following n-dimensional Caputo fractional-order system

t 0 D α t x(t) = f (t, x(t)), x(t 0 ) = x t 0 , (1.7) 
where α ∈ (0, 1),

x = (x 1 , x 2 , • • • , x n ) ∈ R n , t 0 ≥ 0, f : [0, +∞) × R n → R n is
piecewise continuous on t and satisfies locally Lipschitz conditions on x.

Definition 1. 10 (Li et al., 2010a) The constant x is an equilibrium point of Caputo fractional dynamic system (1.7) if and only if f (t, x) = 0.

Remark 1.11 According to Properties (1.7) and (1.8), any equilibrium point can be converted to the origin through change of variables. When the equilibrium point in (1.7) is x = 0, by using the change of variable y(t) = x(t) -x, system (1.7) can be rewritten as

t 0 D α t y(t) = t 0 D α t (x(t) -x) = f (t, x(t)), = f (t, y(t) + x) = g(t, y(t)),
where g(t, 0) and ȳ = 0 is the equilibrium of the new system for variable y. Therefore, without loss of generality, the only case that the equilibrium point is the origin is considered in Definition 1.10.
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Lemma 1.12 (Existence and uniqueness theorem (Li et al., 2010a)) There exists a unique solution of system (1.7) for any initial value, if f (t, x) satisfies locally Lipschitz condition on x. Definition 1.13 (Mittag-Leffler stability (Li et al., 2010a)) If x = 0 is an equilibrium point of Caputo fractional dynamic system (1.7), the solution of system (1.7) is said to be Mittag-Leffler stable if

x(t) ≤ [m(x t 0 )E α (-λ(t -t 0 ) α )] b (1.8)
where λ > 0, b > 0, m(0) = 0, • denotes an arbitrary norm and m(x) ≥ 0 satisfies locally Lipschitz condition on x ∈ R n with Lipschitz constant m 0 .

Remark 1.14 Mittag-Leffler stability implies asymptotic stability for fractionalorder systems, i.e., x(t) → 0 with t → +∞.

To judge the system stability, the following lemmas are introduced.

Lemma 1.15 (Stability theory for fractional-order linear system [START_REF] Matignon | Stability results for fractional differential equations with applications to control processing[END_REF]))

The following autonomous system

t 0 D α t x(t) = Ax(t), α ∈ (0, 1], (1.9)
is asymptotically stable if and only if |arg(ρ(A))| > απ/2, where ρ(A) denotes the eigenvalue of matrix A, arg(•) denotes the argument principle value of a complex number.

Lemma 1.16 (Fractional-order Lyapunov direct method (Li et al., 2010a)) The equilibrium point x = 0 of fractional-order system is Mittag-Leffler stable if there exist positive constants α 1 , α 2 , α 3 , a, b and a continuously differentiable function (1.11) where t ≥ 0, β ∈ (0, 1), and V (t, x(t)) : [t 0 , ∞) × D → R satisfies the local Lipschitz condition on x, and D ∈ R n is a domain including the origin. If the assumptions are satisfied globally on R n , then x = 0 is globally Mittag-Leffler stable.

V (t, x(t)) satisfying α 1 x(t) a ≤ V (t, x(t)) ≤ α 2 x(t) ab , (1.10) t 0 D β t V (t, x(t)) ≤ -α 3 x(t) ab ,
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Lemma 1.17 (Comparison principle of linear fractional equation with delay [START_REF] Wang | Global stability analysis of fractional-order Hopfield neural networks with time delay[END_REF]) Consider the following delayed fractional-order differential inequality

t 0 D α t x(t) ≤ -λx(t) + δx(t -τ ), α ∈ (0, 1], x(t) = φ(t), t ∈ [-τ, 0],
(1.12)

and the following linear delayed fractional-order differential system

t 0 D α t z(t) = -λz(t) + δz(t -τ ), α ∈ (0, 1], z(t) = φ(t), t ∈ [-τ, 0],
(1. 13) where x(t) and z(t) are continuous and nonnegative in (0, +∞), and φ(t

) ≥ 0, t ∈ [-τ, 0]. If λ > 0 and δ > 0, then x(t) ≤ z(t), t ∈ [0, +∞).
Lemma 1.18 (Stability theory of linear fractional equation with delay (Chen et al., 2015b)) For system (1.13), the Lyapunov globally asymptotically stable can be achieved for the zero solution of system (1.13), if λ > δ and there has no purely imaginary root for the characteristic equation s α + λ -δe -sτ = 0 of system (1.13).

Lemma 1.19 (Fractional derivative inequality (Duarte-Mermoud et al., 2015)) Denote x(t) ∈ R n as a vector of differentiable functions. Then

1 2 t 0 D α t (x T (t)P x(t)) ≤ x T (t)P t 0 D α t x(t), ∀ α ∈ (0, 1], ∀ t ≥ t 0 , (1.14) 
where the constant square matrix P ∈ R n×n is symmetric and positive definite.

Remark 1.20 In the following Chapters, in order to study simply, t 0 D α t x(t) is replaced by x (α) (t).

Mathematical knowledge

If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗ B is an mp × nq block matrix as follows:

A ⊗ B =    a 11 B • • • a 1n B . . . . . . . . . a m1 B • • • a mn B    .
The properties of Kronecker product are:

1.5 Contributions and outline of dissertation

• A ⊗ (B + C) = A ⊗ B + A ⊗ C; • (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD); • (A + B) T = A T + B T ; • (A + B) -1 = A -1 + B -1 ; • λ max (A ⊗ B) = λ max (A)λ max (B).
Lemma 1.21 (Schur complement [START_REF] Crabtree | An identity for the Schur complement of a matrix[END_REF])) For given matrices A, B, C, the following holds:

D = A B B T C < 0 ⇐⇒ C < 0 & A -BC -1 B T < 0, ⇐⇒ A < 0 & C -B T A -1 B < 0.
(1.15)

Lemma 1.22 [START_REF] Cao | Synchronization criteria of LurâĂŹe systems with time-delay feedback control[END_REF] For any real matrixes X, Y , Ξ = Ξ T > 0 and scalar ξ > 0, it holds

X T Y + Y T X ≤ ξX T ΞX + ξ -1 Y T Ξ -1 Y.
(1.16)

Lemma 1.23 (Gerschgorin's disc theory [START_REF] Horn | Matrix analysis[END_REF])) For any matrix M = [m ij ] ∈ R N ×N , all the eigenvalue of M are located in the union of N Gerschgorin's disc as

Ger(M) = N ∪ i=1 z ∈ C, |z -m ii | ≤ Σ j =i |m ij | .
(1.17)

Contributions and outline of dissertation

This dissertation presents parameter identification based on artificial intelligent optimization and distributed tracking control of fractional-order multi-agent systems (FOMASs) under fixed communication topology. The main contributions are summarized as follows.

Chapter 2: In many physical systems, the time delays universally exist because the signal propagation speed is limited, the sensor needs extra time to obtain the measurement information, the controller needs additional computation
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and execution time to produce and implement the control inputs. The undesirable instability and poor performance can easily happen due to the existence of time delays. Secondly, note that for most existing results about the leaderfollowing consensus of fractional-order multi-agent systems (FOMASs), the fractional orders between the leader and followers are all homogeneous, while in some complex environment, the fractional orders for the leader and followers may be heterogeneous, which can be more accurate and flexible in describing the dynamics of the leader-following FOMASs. Therefore, it is interesting and significant to learn the leader-following consensus of FOMASs with heterogenous fractional orders between leader and followers, which can be viewed as HFOMASs.

Therefore, in this Chapter, over fixed directed communication graph, the leader-following consensus of heterogenous HFOMASs is investigated with respect to input delays, where the fractional orders between leader and followers are heterogenous, which is more general. Firstly, a control algorithm with a fractional-order estimator is proposed to guarantee the leader-following consensus of the HFOMASs. Then, the identical input delays are taken into account in the above control algorithm, and the leader-following consensus of the HFOMASs can be achieved under the derived sufficient and necessary condition. Thirdly, the diverse input delays are further considered in the HFOMASs, and a sufficient condition is put forward under the designed control algorithm. Finally, simulations are conducted to make the results be convinced.

The main contributions are as follows: firstly, different from the leaderless consensus of FOMASs and leader-following consensus of FOMASs with homogeneous orders between leader and followers, the leader-following consensus of FOMASs with heterogenous orders between leader and followers is investigated and a novel control algorithm with a fractional-order estimator is designed. Secondly, in contrast with leaderless consensus of delayed FOMASs and leader-following consensus of FOMASs without time delays, the leader-following consensus of HFOMASs under input delays is considered based on the proposed control algorithm.

Chapter 3: Note that the results studied in Chapter 2 are based on single integrator systems. In practice, more complex intrinsic nonlinear dynamics may exist in mobile agents. However, due to the complexity of the FOMASs, stability of the nonlinear FOMASs is difficult to be verified. Besides, in real applications, unknown external disturbances arising from environment and Fourthly, different from most results using a linear control protocol, we propose two effective nonlinear control algorithms.

Chapter 4: As mentioned in Chapter 2, time delays are unavoidable in many applications. In Chapter 2, several results with time delays have been achieved based on linear case. However, in practice, more complex intrinsic nonlinear dynamics may exist in mobile agents. Unfortunately, the consensus control algorithms and conditions designed for linear delayed FOMASs are not applicable to the nonlinear case. Thus, it is significant to investigate the distributed consensus tracking of nonlinear FOMASs with state time delays, which is full of challenges and not well investigated. In addition, as mentioned in Chapter 3, the effects of unknown external disturbances arising from environment and communication are usually unavoidable in practice. Undesirable instability or bad performance can easily happen because of the external disturbances. Thus, for the study of MASs, taking the effects of the external disturbances into account is essential and reasonable. On the other hand, note that most existing results
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are under the assumption that the fractional orders and system parameters of the FOMASs are known beforehand. However in the real applications, the fractional orders and system parameters are usually partly or all unknown, which need to be identified in advance.

Therefore, in this Chapter, over fixed undirected communication topology, the distributed consensus tracking of unknown nonlinear delayed FOMASs with external disturbances is investigated, where the fractional orders and system parameters are unknown. Firstly, in order to identify the unknown parameters of the delayed nonlinear FOMASs, an efficient artificial bee colony algorithm (ABC)-based parameter identification approach is put forward. Secondly, based on the identified parameters, by using fractional derivative inequality and comparison principle of linear fractional equation with delay, a discontinuous distributed control protocol is proposed to make the tracking errors converge to zero asymptotically. Thirdly, to overcome the undesirable chattering phenomenon caused by the discontinuous controller, a continuous distributed control algorithm is further designed and uniformly ultimately bounded (UUB) tracking errors can be obtained and reduced as small as desired. Finally, numerical simulations are given to test the effectiveness of the proposed parameter identification scheme and the deigned control algorithms.

Compared with the existing works, the contributions are as follows. Firstly, compared with most results concerning the integer-order MASs, the delayed MASs with fractional-order dynamics, external disturbances are considered. Secondly, different from the results about the time delays with linear case, the time delay under nonlinear case is further investigated. Thirdly, most results about the FOMASs only considered the external disturbances, but have not taken the time delays into account at the same time. Fourthly, most existing results are supposed that the fractional orders and system parameters of the nonlinear FOMASs are known beforehand, while in this Chapter, the parameters are considered to be unknown, and the ABC algorithm is employed to identify the unknown parameters of the unknown delayed FOMASs. Furthermore, it should be pointed out that this Chapter provides a promising link between the artificial intelligent technique and distributed cooperative control of FOMASs or other control fields.

Chapter 5: The results obtained in above Chapters 2, 3 and 4 assume that the control input of a leader is either equal to zero or available to all the follow-1.5 Contributions and outline of dissertation ers, which has some limitations and lacks flexibility. More specifically, for the purpose of leading the followers to achieve special tasks, the leader's input need to be nonzero or time-varying. Furthermore, it is impossible for all the followers to know the leader's control input, when they are in an uncooperative scenario. Therefore, it is significant and essential to consider the leader with nonzero input, although it is difficult to address because of the limited information accessibility. In addition, recently, the investigation of heterogeneous MASs has become a hot topic in distributed cooperative control. Heterogeneity may occur because of the diverse designs and operating factors. For example, some results considered heterogeneous input disturbances in the rendezvous problem. Some researchers studied the formation control of multi-vehicles with heterogenous control gains. In addition, MASs with heterogenous dynamics were also investigated.

However, most results about the heterogeneous MASs were based on the integerorder models, a few results have been obtained based on the fractional-order models. Therefore, in this Chapter, we consider the delayed nonlinear FOMASs with heterogenous control gains, which is more reasonable and practical. Besides, as mentioned in Chapters 2 and 4, time delays are unavoidable in many applications. What's more, as mentioned in Chapter 4, in some situations, the structure of the MASs may be known and the differential orders and system parameters are unknown, which need to be identified beforehand.

Therefore, in this Chapter, under a fixed directed graph, the distributed cooperative synchronization of heterogenous uncertain nonlinear delayed FOMASs with a leader of bounded unknown input is investigated, where the fractional orders and system parameters are uncertain and the controller gains are heterogenous due to imperfect implementation. It should be noted that the study is more general by considering the FOMASs with time delays, unknown leader, heterogeneity and unknown nonlinear dynamics. Firstly, a differential evolution (DE)-based parameter identification method is proposed to identify the uncertain parameters. Then based on the identified parameters, by using the matrix theory, graph theory, fractional derivative inequality and comparison principle of linear fractional equation with delay, a heterogenous discontinuous controller is designed to achieve the distributed cooperative synchronization asymptotically. Thirdly, a heterogenous continuous controller is further constructed to suppress the undesirable chattering behaviour, where uniformly ultimately bounded (UUB) synchro-
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nization tracking errors can be achieved and tuned as small as desired. Finally, numerical simulations are provided to validate the effectiveness of the proposed parameter identification scheme and the designed control algorithms.

Compared with the existing works, our contribution are as follows. Firstly, compared with most results concerning the integer-order MASs, the delayed MASs with fractional-order dynamics, unknown leaders and parameters, and heterogenous control gains are involved. Secondly, different from some results studied the time delays with linear FOMASs, the time delay with nonlinear dynamics is further studied; Thirdly, different from most results without considering the leader's control input, we assume that the leader owns bounded unknown input, which could be more flexible and general in the distributed cooperative synchronization. Fourthly, different from most results, where the differential orders are assumed to be known, while in this Chapter, differential orders and system parameters are both considered to be unknown, and a DE-based parameter estimation method is proposed to identity the unknown parameters of the delayed heterogenous nonlinear FOMASs.

Chapter 6: As mentioned in Chapters 4 and 5, most consensus control algorithms are valid only for the FOMASs whose system parameters and fractional orders are known in advance. However, in practice, the FOMASs are usually partly known. That is, the form of the fractional-order differential equations are known, while some or all the fractional orders and system parameters are unknown. Therefore, in order to control and utilize the FOMASs, identifying the unknown fractional orders and system parameters is really important. In Chapter 4, an efficient artificial bee colony algorithm (ABC) is used to identify the unknown FOMASs. In Chapter 5, the differential evolution (DE) is selected to identify the unknown FOMASs. However, although the AIOAs, such as ABC and DE, have demonstrated superior features compared to other traditional methods, there is no specific algorithm that can achieve the best solution for all optimization problems. Namely, as far as most algorithms are concerned, it is difficult to simultaneously manage the tradeoff between exploration and exploitation successfully for all the optimization problems. Similarly, there are no exceptions for ABC and DE. Therefore, in this Chapter, to enhance the exploration and the exploitation abilities, a modified artificial bee colony algorithm, named as mABC algo-1.5 Contributions and outline of dissertation rithm, is put forward. In mABC algorithm, the opposite population is generated using opposite numbers based on perturbation rate to jump out from the local optima. Secondly, two new searching equations are proposed and self-adaptive component is added to explore all the promising search regions. Thirdly, the random numbers in the searching equations are generated based on a chaotic map. Then, the proposed mABC algorithm is applied to the parameter identification of nonlinear FOMASs. Simulation results demonstrate that the proposed hybrid algorithm is effective and comparative to identify the unknown parameters when compared with some other typical population-based evolutionary algorithms.

Compared with the existing works, our contributions are as follows. Firstly, a new modified ABC algorithm is proposed. Secondly, a novel parameter identification scheme based on the modified ABC algorithm is put forward. Thirdly, non-parametric statistic tests are employed to demonstrate the performance of the proposed algorithm.

Conclusions and perspectives:

In this chapter, the results are summarized and several possible directions for our future research are shared.
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Introduction

As mentioned in Chapter 1, the consensus of MASs with a (virtual) leader has become a particularly interesting topic, which is commonly named as leaderfollowing consensus or consensus tracking. So far, for the leader-following consensus of FOMASs, some results have been obtained. For example, in Yu et al.

(2015), leader-following consensus of FOMASs has been studied with algebraic
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graph theory and Lyapunov method. In [START_REF] Gong | Distributed tracking of heterogeneous nonlinear fractionalorder multi-agent systems with an unknown leader[END_REF], the nonlinear FOMASs with an unknown leader and heterogenous control gains were studied and consensus tracking was guaranteed. [START_REF] Bibliography Bai | Distributed consensus tracking for the fractional-order multi-agent systems based on the sliding mode control method[END_REF] proposed a sliding mode control method to fulfill the leader-following consensus of FOMASs. Ma et al. (2018) applied an impulsive controller to achieve the consensus tracking of nonlinear FOMASs. Note that for all the above results, the fractional orders between the leader and followers are all homogeneous, while in some complex environment, the fractional orders for the leader and followers may be heterogeneous, which can be more accurate and flexible in describing the dynamics of the leader-following

MASs. Therefore, it is interesting and significant to learn the leader-following consensus of FOMASs with heterogenous fractional orders between leader and followers, which can be viewed as HFOMASs.

In many physical systems, the time delays universally exist because the signal propagation speed is limited, the sensor needs extra time to obtain the measurement information, the controller needs additional computation and execution time to produce and implement the control inputs. The undesirable instability and poor performance can easily happen due to the existence of time delays.

Nowadays, many results about the leader-following consensus of integer-order de- Given above discussion, in this Chapter, the HFOMASs without delays are considered firstly, where a control algorithm with a fractional-order estimator is proposed. Then, the identical input delays are considered in the above proposed control algorithm and the leader-following consensus of HFOMASs can be also achieved under the given condition. Thirdly, the control algorithm with diverse input delays is further studied, leader-following consensus of the HFOMASs can be guaranteed under the derived condition. Finally, the obtained results are verified with some simulations.

The main contributions are as following: firstly, different from the leaderless consensus of FOMASs (Bai et al., 2018;Cao & Ren, 2010;Liu et al., 2018a;Ren & Yu, 2017a;[START_REF] Song | Robust consensus of fractional-order multi-agent systems with positive real uncertainty via second-order neighbors information[END_REF][START_REF] Yin | Consensus of Fractional-Order Uncertain Multi-Agent Systems Based on Output Feedback[END_REF] and leader-following consensus of FOMASs with homogeneous orders between leader and followers [START_REF] Bibliography Bai | Distributed consensus tracking for the fractional-order multi-agent systems based on the sliding mode control method[END_REF][START_REF] Gong | Distributed tracking of heterogeneous nonlinear fractionalorder multi-agent systems with an unknown leader[END_REF]Ma et al., 2018;Yu et al., 2015), the leader-following consensus of FOMASs with heterogenous orders between leader and followers is investigated and a novel control algorithm with a fractional-order estimator is designed. Secondly, in contrast with leaderless consensus of delayed FOMASs (Shen & Cao, 2012;Yang et al., 2014a;[START_REF] Zhu | Consensus of fractional-order multiagent systems with input time delay[END_REF] and leader-following consensus of FOMASs without time delays [START_REF] Bibliography Bai | Distributed consensus tracking for the fractional-order multi-agent systems based on the sliding mode control method[END_REF][START_REF] Gong | Distributed tracking of heterogeneous nonlinear fractionalorder multi-agent systems with an unknown leader[END_REF]Ma et al., 2018;Yu et al., 2015), the leader-following consensus of HFOMASs under input delays is considered based on the proposed control algorithm.

The rest parts of this chapter is organized as follows. Section 2.2 introduces the problem formulation. In Section 2.3, main results are introduced. In Section 2.4, the obtained results are convinced by some simulations. Section 2.5 is the conclusions.

Problem formulation

The leader is modeled as

x (α) 0 (t) = u 0 (t), (2.1) 
where α ∈ (0, 1], x 0 (t) ∈ R n is the leader's state and u 0 (t) ∈ R n is the leader's control input.

The followers are formulated as

x (β) i (t) = u i (t) + u i (t), i ∈ N = {1, 2, • • • , N}, (2.2)
where β ∈ (0, 1], x i (t) ∈ R n is the ith follower's state vector. The ith follower's control input consists of u i (t) and u i (t), and u i (t) is related to u 0 (t) which can be viewed as an estimator of u 0 (t).

Remark 2.1 Without loss of generality, a one-dimensional space is considered for all agents in this chapter, which can be easily extended to n-dimensional (n > 1) case with Kronecker product.
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Assumption 2.2 The fixed communication graph Ḡ contains a directed spanning tree with leader as the root node.

Assumption 2.3 For each follower i ∈ N, if u 0 (t) is given, there has u i (t) such that s -α L{u 0 (t); s} = s -β L{u i (t); s}, where u 0 (t) and u i (t) are defined in (2.1) and (2.2).

Remark 2.4 If u 0 (t) is set, u i (t) can be calculated by the inverse Laplace transform such that s -α L{u 0 (t); s} = s -β L{u i (t); s}. Thus, the Assumption 2.3 is reasonable.

Definition 2.5 For any initial conditions, the MASs (2.1) and (2.2) are said to achieve leader-following consensus if

lim t→∞ x i (t) -x 0 (t) = 0, ∀ i ∈ N.

Main results

Case without input delays

In this subsection, the leader-follower consensus of HFOMASs (2.1) and (2.2) without input delays is investigated.

The ith follower's control input u i (t) in (2.2) is designed as

u i (t) = -γΣ N j=0 a ij x i (t) -x j (t) , (2.3) 
where γ is a positive constant.

Theorem 2.6 (Hu et al., 2019a) Given Assumptions 2.2 and 2.3, the HFOMASs (2.1) and (2.2) can achieve leader-following consensus.

Proof: Performing Laplace transform of (2.1), it can be given as:

s α X 0 (s) - s α-1 x 0 (0) = L{u 0 (t); s}, where X 0 (s) = L{x 0 (t); s}, it is easy to see that X 0 (s) = s -1 x 0 (0) + s -α L{u 0 (t); s}. (2.4)
Similarly, with the Laplace transform of (2.2), one has

s β X i (s) -s β-1 x i (0) = -γΣ N j=0 a ij X i (s) -X j (s) + L{u i (t); s},
where X i (s) = L{x i (t); s}, i ∈ N. Then we can obtain

X i (s) = s -1 x i (0) -s -β γΣ N j=0 a ij X i (s) -X j (s) + s -β L{u i (t); s}.
(2.5)

Denote error vector as e

i (t) = x i (t) -x 0 (t). The Laplace transform of e i (t) is E i (s) = L{e i (t); s} = X i (s) -X 0 (s).
Subtracting (2.4) from (2.5) gets the error system:

E i (s) = s -1 e i (0) -s -β γΣ N j=0 a ij E i (s) -E j (s) ,
which can be rewritten as

E(s) = s -1 e(0) -s -β γME(s), (2.6) 
where E(s) and e(0) denote the column vectors of E i (s) and e i (0) respectively.

From (2.6), it can be calculated that

E(s) = (s β I N + γM) -1 s β-1 e(0) . (2.7)
The characteristic equation of (2.7) is

det(s β I N + γM) = 0, (2.8)
which can be viewed as the characteristic equation of the following system e β (t) = -γMe(t).

(2.9)

Therefore, the achievement of leader-following consensus of HFOMASs (2.1) and (2.2) is equivalent to the asymptotically stable problem of system (2.9).

Based on Assumption 2.2 and Lemma 1.1, one has

min i∈N |arg λ i (-γM) | > π/2 > βπ/2, β ∈ (0, 1].
According to Lemma 1.15, system (2.9) is asymptotically stable. This completes the proof.

Based on Lemma 1.15, a more general condition for the leader-following consensus of HFOMASs (2.1) and (2.2) can be easily obtained as following:

LEADER-FOLLOWING CONSENSUS OF HETEROGENOUS FOMASS UNDER INPUT DELAYS

Corollary 2.7 (Hu et al., 2019a) Given Assumptions 2.2 and 2.3, the HFO-MASs (2.1) and (2.2) can achieve leader-following consensus if and only if

min i∈N |arg λ i (-γM) | > βπ/2, β ∈ (0, 1],
where λ i (-γM) represent the eigenvalues of -γM.

Proof: Based on system (2.9) and Lemma 1.15, the above Corollary 2.7 can be easily derived.

Case with identical input delays

In this subsection, a control algorithm with identical input delays is proposed to achieve the leader-following consensus of HFOMASs, and a necessary and sufficient condition is obtained, which has closed relationship with the eigenvalue of the directed graph Ḡ and the followers' fractional order β.

The dynamics of the followers with identical input delays are described as

x (β) i (t) = u i (t -τ ) + u i (t), i ∈ N = {1, • • • , N}, (2.10) 
where

u i (t -τ ) = -γΣ N j=0 a ij x i (t -τ ) -x j (t -τ )
, τ is the input delay with identical value for each follower, the definitions of other parameters and variables in (2.10) are the same as those of (2.2) and (2.3).

Theorem 2.8 (Hu et al., 2019a) Given Assumptions 2.2 and 2.3, the leaderfollowing consensus of HFOMASs (2.1) and (2.10) can be achieved if and only if

τ < min i∈N π -πβ/2 + arg(µ i ) (γ|µ i |) 1/β , (2.11)
where µ i is the eigenvalue of M.

Proof: Conducting Laplace transform of (2.10) yields

s β X i (s) -s β-1 x i (0) = -γΣ N j=0 a ij e -τ s X i (s) -X j (s) + L{u i (t); s}, (2.12)
where X i (s) = L{x i (t); s}, i ∈ N. Then, through simple calculation, the following formula can be obtained as:

X i (s) = -s -β γe -τ s Σ N j=0 a ij X i (s) -X j (s) + s -1 x i (0) + s -β L{u i (t); s}.
(2.13)

Let e i (t) = x i (t) -x 0 (t) be the error vector, the corresponding Laplace trans-

form is E i (s) = L{e i (t); s} = X i (s) -X 0 (s). Subtracting (2.4) from (2.13
), the error system can be obtained as

E i (s) = s -1 e i (0) -s -β γe -τ s Σ N j=0 a ij E i (s) -E j (s) ,
which can be rewritten as

E(s) = s -1 e(0) -s -β γe -τ s ME(s), (2.14) 
where E(s) and e(0) are the column vectors of E i (s) and e i (0) respectively. E(s) can be obtained as

E(s) = (s β I N + γe -τ s M) -1 s β-1 e(0) . (2.15)
The characteristic equation of (2.15) is

det(s β I N + γe -τ s M) = 0. (2.16) Since det(s β I N +γe -τ s M) = N i=1 (s β +γe -τ s µ i )
and the real part of the eigenvalue µ i of M are positive based on Lemma 1.1, therefore all the characteristic roots of (2.16) are nonzero. With generalized Nyquist stability criterion [START_REF] Desoer | On the generalized Nyquist stability criterion[END_REF], all of the roots of s β + γe -τ s µ i = 0 are on the open left half plane if and only if the Nyquist plot of G i (ω) = γe -jωτ µ i /(jω) β neither encircle nor touches the point (-1, jω) for all ω ∈ (-∞, +∞). Because the Nyquist plot is symmetric, the case of ω ∈ (0, +∞) is only considered. In the following, the bound of the
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input delays is derived. By some calculation of G i (ω), we can obtain that:

G i (ω) = γe -jωτ |µ i |e jarg(µ i ) ω β e jπβ/2 = γ|µ i | ω β e j arg(µ i )-ωτ -πβ/2 = γ|µ i | ω β cos ωτ + πβ/2 -arg(µ i ) -j sin ωτ + πβ/2 -arg(µ i ) .
Fig. 2.1 shows the Nyquist plot of G i (ω), which does not enclose (-1, j0) if and only if the intersection point, where the real axis is intersected with G i (ω) for the first time as ω varies from 0 to +∞, is on the right side of (-1, j0). This means

ωτ + πβ/2 -arg(µ i ) = π, and γ|µ i |/ω β < 1, which implies τ < min i∈N π -πβ/2 + arg(µ i ) (γ|µ i |) 1/β .
Therefore, under condition (2.11), error system (2.15) is asymptotically stable.

This completes the proof.

Re

-1 0 1 2 3 4 5 6 7 Im -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 Fig. 2.1. Nyquist plot of G i (ω) for µ i = 1 + 2i, β = 0.9, τ = 0.6
Remark 2.9 Theorem 2.8 demonstrates that the followers' fractional order β, the control gain γ and the eigenvalues µ i of matrix M paly important roles in the threshold of the input delay τ .

Case with diverse input delays

In this subsection, a control algorithm with diverse input delays is considered and leader-following consensus of HFOMASs can be achieved under the proposed sufficient condition.

The dynamics of the followers with diverse input delays are described as

x (β) i (t) = u i (t -τ i ) + u i (t), i ∈ N = {1, • • • , N}, (2.17)
where

u i (t -τ i ) = -γΣ N j=0 a ij x i (t -τ i ) -x j (t -τ i )
, τ i is the ith follower's input delay which is different from each follower, the definitions of other parameters and variables are the same as those of (2.2) and (2.3).

Theorem 2.10 (Hu et al., 2019a) Given Assumptions 2.2 and 2.3, the leaderfollowing consensus of HFOMASs (2.1) and (2.17) can be achieved if

τ i < (2 -β)π 2(2γd i ) 1/β , i ∈ N, (2.18) 
where d i = N k=0 a ik , which is the in-degree of the ith follower in graph Ḡ.

Proof: Performing Laplace transform of system (2.17), one has

s β X i (s) -s β-1 x i (0) = -γΣ N j=0 a ij e -τ i s X i (s) -X j (s) + L{u i (t); s}, (2.19) 
where X i (s) = L{x i (t); s}, i ∈ N. Then, after simple calculation, (2.19) can be written as

X i (s) = -s -β γΣ N j=0 a ij e -τ i s X i (s) -X j (s) + s -1 x i (0) + s -β L{u i (t); s}.
(2.20)

Let e i (t) = x i (t) -x 0 (t) be the error vector, then the corresponding Laplace

transform is E i (s) = L{e i (t); s} = X i (s) -X 0 (s). Subtracting (2.4) from (2.20),
the error system can be obtained as

E i (s) = s -1 e i (0) -s -β γΣ N j=0 a ij e -τ i s E i (s) -E j (s) ,
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which can be rewritten as

E(s) = s -1 e(0) -s -β γΛ(s)ME(s), (2.21)
where E(s) and e(0) are the column vectors of E i (s) and e i (0) respectively,

Λ(s) = diag{e -τ 1 s , e -τ 2 s , • • • , e -τ N s }. From (2.21
), it can be obtained as

E(s) = s β I N + γΛ(s)M -1 s β-1 e(0) . (2.22)
Then the characteristic equations is Let G(s) = s -β γΛ(s)M, s = jω with j denoting complex number unit.

det s β I + γΛ(s)M = 0. (2.23) Due to det s β I N + γΛ(s)M = N i=1 (s β + γe -τ i s µ i )
With generalized Nyquist stability criterion [START_REF] Desoer | On the generalized Nyquist stability criterion[END_REF], the zeros of the F (s) are all on the left half plane if the eigenvalue of the G(jω), i.e., λ (jω) -β γΛ(jω)M , neither enclose nor touch the point (-1, j0) for ω ∈ (-∞, +∞). After simple calculation, one obtains G(jω) = γω -β diag{e -j(ωτ 1 +βπ/2) , e -j(ωτ 2 +βπ/2) , • • • , e -j(ωτ N +βπ/2) }M.

(2.24)

Here, to estimate the eigenvalue of the matrix G(jω) denoted as λ(G(jω)), the Gerschgorin's disc theory introduced in Lemma 1.23 is used, and one has

λ G(jω) ∈ ∪ i∈N G i , (2.25)
where for i ∈ N,

G i = {δ ∈ C, |δ -γω -β d i e -j(ωτ i +βπ/2) | ≤ γω -β N k=1 |a ik e -j(ωτ i +βπ/2) | ≤ γω -β N k=0
|a ik e -j(ωτ i +βπ/2) |},

(2.26)

with d i = N k=0 a ik . After sorting, one has

G i = {δ ∈ C, |δ -γω -β d i e -j(ωτ i +βπ/2) | ≤ γω -β d i }.
(2.27)

From (2.27), it is clearly seen that G i is a disc, and the origin of the disc G i is γω -β d i e -j(ωτ i +βπ/2) and the radius of the disc G i is γω -β d i . Then, we will proof that arbitrary point (-a, j0)(a ≥ 1) is not in the disc G i (i ∈ N), i.e., the distance between the point (-a, j0)(a ≥ 1) and the origin of the disc G i is larger than the radius of the disc G i . Thus, let

△ = |(-a + j0) -γω -β d i e -j(ωτ i +βπ/2) | 2 -(γω -β d i ) 2 .
After simple calculation, it can be obtained as

△ = a a + 2γω -β d i cos(ωτ i + βπ/2) .
Let

ω c τ i + βπ/2 = π, then cos(ω c τ i + βπ/2) = -1. Thus we can get △ ≥ a(a -2γω -β c d i ), where ω c = (2 -β)π/(2τ i ).
According to the condition (2.18) in Theorem 2.10, we can get that 2γω -β

c d i = 2γ (2 -β)π/(2τ i ) -β d i < 1. Based on the hypothesis a ≥ 1, we can get △ ≥ a(a -2γω -β c d i ) > 0. Then we have |(-a + j0) -γω -β d i e -j(ωτ i +βπ/2) | > γω -β d i ,
which means that the point (-a, j0)(a ≥ 1) is not in the disc G i . Thus the point (-1, j0) is neither enclosed nor touched by the curves of eigenvalue λ(G(jω)) of matrix G(jω). Therefore, all zero points of F (s) have negative real parts. This completes the proof. bound of the input delay τ i for follower i is related with the followers' fractional order β, control gain γ and in-degree of follower i. More specially, if the fractional order β and control gain γ are fixed for all the followers, the higher in-degree the agent i has, the less tolerance for the input delay the follower i has.

Simulations

Here we give three examples to verify Theorems 2.6-2.10. The directed graph with 0-1 weights is used.

1) Case without input delays:

To verify Theorem 2.6, graph Ḡ in Fig. 2.2 is employed. We randomly assume the order of the leader α = 0.8 and the order of the followers β = 0.9, the dynamic of leader is x 10, -8, 5, 7, 3]. Choose γ = 1, 2, 3, the state trajectories of leader-follower consensus with one leader and five followers under different control gains γ are displayed in Fig. 2.3, which can verify Theorem 2.6. In addition, as the value γ increases, the convergence speed of achieving consensus becomes faster.

(α) 0 (t) = -0.01t 2 , the initial values are [x 1 (0), x 2 (0), x 3 (0), x 4 (0), x 5 (0), x 0 (0)] = [2, -
2) Case with identical input delays: Here, the MASs with one leader x 0 and four followers x i (i = 1, 2, 3, 4) is considered. Graph Ḡ in Fig. 2.4 is used.

Based on condition (2.11) in Theorem 2.8, the relationship between the upper bound of input delays and the control gains γ under different derivative orders β is illustrated in Fig. 2.5. Fig. 2.5 shows that the smaller the value of the derivative order β is, the faster the upper bound of the input delays change.

Besides, based on condition (2.11) x 1 (t)

x 2 (t)

x 3 (t)

x 4 (t)

x 0 (t) x 1 (t)

x 2 (t)

x 3 (t)

x 4 (t)

x 0 (t) (b) Input delay=0.5s x 1 (t)

x 2 (t)

x 3 (t)

x 4 (t)

x 0 (t)

(c) Input delay=0.59s t/s 0 5 10 15 20 25 30 x i (t) ×10 4 -5 -4 -3 -2 -1 0 1 2 3 x 1 (t) x 2 (t) x 3 (t)
x 4 (t)

x 0 (t) control gains, the agents with fractional orders have more tolerance than those with integer orders, while under high control gains, the agents with integer orders have more tolerance than those with fractional orders.

(d) Input delay=0.8s
In this example, the leader's order is assumed as α = 0.85, the order of the followers is assumed as β = 0.95, the control gain is chosen as γ = 1, the dynamic of leader is x [3, -6, 2, 8, -4, 5]. Based on Theorem 2.10, it can be obtained that the consensus conditions requires τ 1 < 0.7951, τ 2 < 0.7951, τ 3 < 0.7951, τ 4 < 0.3833, τ 5 < 0.3833. It should be noted that due to agents 1-3 have the same in-degrees which can be observed in Fig. 2.8, therefore based on condition (2.18), they have the same upper limit of input delays. With the same reason, agents 4 and 5 also own the same upper limits of the input delays. We randomly choose τ 1 = 0.79, τ 2 = 0.79, τ 3 = 0.79, τ 4 = 0.38, τ 5 = 0.38. The state trajectories of the leader and followers are described in Fig. 2.11, which proves our theoretical results in Theorem 2.10.

(α) 0 (t) = -0.03t 2 +0.5t, the initial values are [x 1 (0), x 2 (0), x 3 (0), x 4 (0), x 5 (0), x 0 (0)] =

Conclusion

This chapter addresses the leader-following consensus of HFOMASs with input delays, where the fractional orders between leader and followers are heterogenous and a control algorithm with a fractional-order estimator is designed. Firstly, the leader-following consensus of HFOMASs without input delays is studied, and a sufficient condition is obtained based on fractional-order stability theory. Secondly, the proposed control algorithm with the identical input delays is consid- 
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Problem formulation

Consider the nonlinear FOMASs with N followers described as

x (α) i (t) = Ax i (t) + f (x i (t)) + u i (t) + w i (t), i ∈ N = {1, 2, • • • , N}, (3.1)
where α ∈ (0, 1], x i (t) ∈ R n and u i (t) ∈ R n are the state and control input of the ith follower respectively. f (x i (t)) ∈ R n is the corresponding intrinsic nonlinear dynamics, and w i (t) ∈ R n denotes the external disturbances.

The leader's dynamic is

x (α) 0 (t) = Ax 0 (t) + f (x 0 (t)), (3.2) 
where α ∈ (0, 1], x 0 (t) ∈ R n and f (x 0 (t)) ∈ R n represent the state vector and the intrinsic nonlinear dynamics for the leader respectively. It can be treated as an exosystem or a command generator, which produces the desired target trajectory. 3.2) are said to be achieved if for any initial conditions, the following condition is satisfied

lim t→∞ x i (t) -x 0 (t) = 0, ∀ i ∈ N.
Before moving forward, the following assumptions are needed. 

f (x(t)) -f (y(t)) ≤ l x(t) -y(t) , ∀ x(t), y(t) ∈ R n , (3.3) 
where l > 0 is the Lipschitz constant.

Assumption 3.4 The external disturbances w i (t) satisfy w i (t) ≤ ρ < +∞, ∀ i ∈ N.
For the sake of convenience, denote that e

x i = x i -x 0 , e f i = f (x i (t)) - f (x 0 (t))
. Let e x , e f , u(t) and w(t) be the column vector of e x i , e f i , u i (t) and w i (t) respectively. Subtracting system (3.2) from system (3.1), the tracking errors e x can be obtained as

e (α) x (t) = (I N ⊗ A)e x + e f + u(t) + w(t). (3.4) Based on Assumption 3.2, v 0 is a global reachable node. Let M = L + B = [m ij ] N ×N ,
then M is a symmetric positive definite matrix based on Lemma 1.1.

Main results

Nonlinear discontinuous tracking control algorithm

In this subsection, a nonlinear discontinuous control algorithm is proposed to tackle the problem of consensus tracking of nonlinear FOMASs considering external disturbances.

Main results

The following nonlinear discontinuous control protocol is designed for each follower:

u i (t) = -ay i -βh(y i ), i ∈ N = {1, 2, • • • , N}, (3.5) 
where y i = N j=0 a i,j (x i -x j ), and a, β are positive constant coupling gains, h(y i ) is a nonlinear discontinuous function defined as

h(y i ) = y i y i , y i = 0, 0 n , y i = 0. (3.6)
Based on the graph theory introduced in Subsection 1.4.1, we can obtain that

y i = N j=0 a i,j (e x i -e x j ) = N j=1 m ij e x j , which means y = (M ⊗ I n )e x = Me
x , where y is the column vector of y i . and β ≥ ρ, then the distributed consensus tracking of nonlinear FO-MASs (3.1) and (3.2) can be achieved under the nonlinear discontinuous control algorithm (3.5).

Proof: Substituting the protocol (3.5) into tracking errors system (3.4) as e (α) x (t) = (I N ⊗ A)e x + e f -ay -βH(y) + w(t),

where H(y) is the column vector of h(y i ).

Construct the following Lyapunov function as

V (t) = e T x (M ⊗ I n )e x = e T x Me x . (3.8)
Then based on Lemma 1.19, the fractional-order derivative of (3.8) with respect to time t along the trajectories of system (3.7) is

V (α) (t) ≤ 2e T x M e (α) x = 2e T x M (I N ⊗ A)e x + e f -ay -βH(y) + w(t) = 2e T x M (I N ⊗ A)e x + 2e T x M e f -2ae T x M y -2βe T x M H(y) + 2e T x Mw(t).
(3.9)

Based on the properties of Kronecker product introduced in Subsection 1.4.3 , we
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have 2e T x M (I N ⊗ A)e x = 2e T x (M ⊗ A)e x = e T x (M ⊗ A)e x + e T x (M ⊗ A) T e x = e T x M ⊗ (A + A T ) e x ≤ λ max (A + A T )e T
x M e x .

(3.10)

Based on Assumption 3.3, we have .11) Due to y = M e x , we have

2e T x M e f ≤ 2le T x MT e x . ( 3 
-2ae T x M y = -2ae T x M M e x ≤ -2aλ min ( M)e T x M e x . (3.12) 
Due to y = M e x and y T i h(y i ) = y i , we have .13) Due to y = Me x and y T i w i (t) ≤ y i w i (t) , combining with Assumption 3.4, we have

-2βe T x M H(y) = -2βy T H(y) = -2β N i=1 y i . ( 3 
2e T x Mw(t) = 2 N i=1 y T i w i (t) ≤ 2 N i=1 y i w i (t) ≤ 2ρ N i=1 y i . (3.14) 
Thus, based on (3.10)- (3.14) and β > ρ, we have 

V (α) (t) ≤ -2aλ min ( M ) -λ max (A + A T ) -2l e T x M e x + 2(ρ -β) N i=1 y i < -2aλ min ( M ) -λ max (A + A T ) -2l V (t).

Main results

Nonlinear continuous tracking control algorithm

In the last subsection, the h(•) in protocol (3.5) is discontinuous, which may generate the undesirable chattering behavior and restrict its application. Therefore, it is significant and interesting to design a continuous distributed protocol without undesirable chattering problem to solve the distributed consensus tracking.

In order to overcoming the chattering problem, by using the boundary layer technique [START_REF] Slotine | Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators[END_REF], the following nonlinear continuous control protocol is proposed as

u i (t) = -ay i -β hi (y i ), i ∈ N = {1, 2, • • • , N}, (3.16) 
where hi (y i ) = and β ≥ ρ. Moreover, e x asymptotically converges to the following bounded set

y i y i , y i > d i , y i d i , y i ≤ d i , (3.17 
D = e x : e x 2 ≤ 2(β + ρ) N i=1 d i λ min ( M ) 2aλ min ( M ) -λ max (A + A T ) -2l . (3.

18)

Proof: Substituting the protocol (3.16) into tracking errors system (3.4), we can obtain that

e (α) x (t) = (I N ⊗ A)e x + e f -ay -β H(y) + w(t), (3.19) 
where H(y) is the column vector of hi (y).

Consider the Lyapunov function candidate as (3.8), based on Lemma 1.19, its
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fractional-order derivative satisfies the following inequality

V (α) (t) ≤ e T x M e (α) x = 2e T x M (I N ⊗ A)e x + e f -ay -β H(y) + w(t) . (3.20)
Due to the virtue of (3.17), the following three cases are discussed.

(i)

y i > d i , i = 1, 2, • • • , N.
In this case, based on (3.13) and (3.14), one can obtained that 

2e T x M -β H(y) + w(t) = 2(-β + ρ) N i=1 y i < 0. ( 3 
V (ᾱ) (t) < -2aλ min ( M) -λ max (A + A T ) -2l V (t). (3.22) (ii) y i ≤ d i , i = 1, 2, • • • , N.
In this case, due to

y T i hi (y i ) = y i 2 /d i ≤ d i , one has 2e T x M -β H(y) = -2β N i=1 y T i hi (y i ) = -2β N i=1 y i 2 /d i ≤ 2β N i=1 d i . (3.23) Due to y T i w i (t) ≤ y i w i (t) ≤ ρ y i ≤ ρd i , one has 2e T x M w(t) = 2 N i=1 y T i w i (t) ≤ 2 N i=1 y i w i (t) ≤ 2ρ N i=1 y i ≤ 2ρ N i=1 d i . (3.24)
Therefore, one can deduce that 

2e T x M -β H(y) + w(t) ≤ 2(β + ρ) N i=1 d i . ( 3 
V (ᾱ) (t) < -2aλ min ( M ) -λ max (A + A T ) -2l V (t) + 2(β + ρ) N i=1 d i .
(3.26)

Main results

(iii) y satisfies neither Case (i) nor Case (ii).

Without loss of generality, suppose that

y i > d i , i = 1, 2, • • • , k, and y i ≤ d i , i = k + 1, k + 2, • • • , N
, where 1 < k < N. In this case, from (3.22) and ( 3.26), one can get that

V (ᾱ) (t) < -2aλ min ( M ) -λ max (A + A T ) -2l V (t) + 2(β + ρ) N i=k+1 d i . (3.27)
Therefore, by analyzing the above three cases, it can be easily deduced that

V (ᾱ) (t) < -2aλ min ( M ) -λ max (A + A T ) -2l V (t) + 2(β + ρ) N i=1 d i . (3.28) Denote η = 2aλ min ( M) -λ max (A + A T ) -2l, let z(t) = V (t) - 2(β+ρ) N i=1 d i η
, this together with (3.28) implies that z (α) (t) ≤ -ηz(t).

(3.29)

Then, there exists a nonnegative function m(t) satisfying

z (α) (t) + m(t) = -ηz(t). (3.30)
Taking the Laplace transform of (3.30) gives

s α Z(s) -z(0)s α-1 + M(s) = -ηZ(s), (3.31) 
where Z(s) = L{z(t); s} and M(s) = L{m(t); s}. Thus, we have .32) For (3.30), there exists a unique solution. By the inverse Laplace transform, we can achieve that

Z(s) = z(0)s α-1 -M(s) s α + η . ( 3 
z(t) = z(0)E α (-ηt α ) -m(t) * t α-1 E α,α (-ηt α ) , (3.33) 
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where * is a convolution operator. Because t α-1 and E α,α (-ηt α ) are nonnegative functions, thus the above Eq. ( 3.33) becomes

z(t) = V (t, e x ) - 2(β + ρ) N i=1 d i η ≤ z(0)E α (-ηt α ) -→ 0, (3.34) 
when t → +∞. Note that V (t) ≥ λ min ( M ) e x 2 and let t converge to infinity, then one has 3.36), the upper bound of the tracking errors e x asymptotically converges to a bounded set which depends on the width d i of the boundary layers. Thus, a sufficiently small acceptable tracking errors e x with the nonlinear continuous algorithm (3.16) can be obtained asymptotically if a small enough d i is chosen.

lim t→+∞ e x 2 ≤ 2(β + ρ) N i=1 d i λ min ( M ) 2aλ min ( M) -λ max (A + A T ) -2l . ( 3 

Simulations

In the following simulation, we assume that the undirected graph has 0-1 weights for simplicity. Consider the FOMASs consisting of one leader and five followers.

The communication topology is displayed in Fig. 3.1. Assume the FOMASs are modeled by fractional-order neural network with three neurons as

x (α) i (t) = Ax i (t) + f (x i (t)), i = 0, 1, • • • , 5, (3.37) 

Simulations

where Then, for the nonlinear continuous control protocol (3.16), two cases are considered in terms of boundary layers widths d i given in Eq. (3.17) as: 

A = diag{a 1 , a 2 , a 3 }, f (x i (t)) = Btanh(x i (t)). When α = 0.98, A = -I 3 , B = [b ij ] 3×3 =   2 -1.
d i = 0.2, (i = 1, 2, • • • , 5) and d i = 2, (i = 1, 2, • • • , 5).
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Introduction

As mentioned in Chapter 2, time delays are unavoidable in many applications.

Thus in Chapter 2, several results with time delays have been achieved based on linear case. However, in practice, more complex intrinsic nonlinear dynamics may exist in mobile agents. Unfortunately, the consensus control algorithms and conditions designed for linear delayed FOMASs are not be extended to the nonlinear case. Currently, a few results have been obtained for the consensus of nonlinear delayed FOMASs [START_REF] Zhu | Consensus of fractional-order multiagent systems with input time delay[END_REF]. Thus, it is significant to investigate the distributed consensus tracking of nonlinear FOMASs with time delays, which is full of challenges and not well investigated.

In addition, as mentioned in Chapter 3, the effects of unknown external disturbances arising from environment and communication are usually unavoidable in the real world. Undesirable instability or bad performance can easily happen because of the external disturbances. Thus, for the study of MASs, taking the effects of the external disturbances into account is essential and reasonable.

On the other hand, note that most of the existing results about the distributed coordination of the FOMASs are under the assumption that the fractional orders and system parameters of the FOMASs are known beforehand. However in the real applications, the fractional orders and system parameters are usually partly or all unknown, which need to be identified in advance. Currently, for parameter identification of nonlinear systems, there are mainly two methods. The first one is synchronization-based method, which was first put forward by Parlitz [START_REF] Parlitz | Estimating model parameters from time series by autosynchronization[END_REF]. This method has been sufficiently applied to the unknown parameters identification of different kinds of nonlinear systems [START_REF] Gu | Synchronization-based parameter estimation of fractional-order neural networks[END_REF][START_REF] Konnur | Synchronization-based approach for estimating all model parameters of chaotic systems[END_REF].

But it is not easy to be applied because it is sensitive to the considered systems for designing the controllers and updating laws. The second one is optimizationbased method by using artificial intelligence optimization algorithms (AIOAs).

In the second method, the parameter identification issue can be converted into
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a functional optimization problem. Contrasted with the synchronization-based method, the second method does not need the differentiable information of the considered systems and is more flexible to be applied. Currently, many kinds of AIOAs have been applied for the second parameter identification method, such as differential evolution (DE) [START_REF] Guedes | Parameters estimation of three-phase induction motors using differential evolution[END_REF] and Cuckoo search (CS) (Wei & Yu, 2018).

Artificial bee colony (ABC) algorithm, as an efficient AIOAs, was proposed by Karaboga in 2005 and the idea comes from the foraging behavior of honeybee swarm. Lots of studies have revealed that ABC algorithm can successfully solve different kinds of optimization problems appeared in many fields, such as image segmentation, vehicle routing problem and control engineering [START_REF] Karaboga | A comprehensive survey: artificial bee colony (ABC) algorithm and applications[END_REF]. Therefore, considering its wonderful performance, the ABC algorithm is chosen to identify the unknown fractional orders and system parameters of the unknown nonlinear delayed FOMASs in this chapter, which can extend the application fields of the ABC algorithm, and can provide a promising parameter identify method for the FOMASs as well.

Given the above discussion, in this chapter, distributed consensus tracking of unknown nonlinear delayed FOMASs with external disturbances is addressed.

More specifically, FOMASs with time delays, external disturbances and unknown nonlinear dynamics are considered, which are more general than the existing results about consensus of FOMASs. Firstly, the efficient ABC algorithm-based parameter identify scheme is proposed to identify the unknown nonlinear delayed

FOMASs. Secondly, based on the identified fractional orders and system parameters, we design a discontinuous distributed control protocol to achieve the consensus tracking by using the fractional-order comparison principle. Thirdly, for the purpose of suppressing the chattering phenomenon occurring in the discontinuous controller, a continuous control protocol is further proposed, with which the UUB tracking errors can be obtained and regulated small enough with proper parameters.

Compared with the existing works, our contribution are as follows. 

Problem description for consensus tracking of FOMASs

Consider dynamics of the followers as

x (α) i (t) = -Cx i (t) + Af (x i (t)) + Bf (x i (t -τ )) + u i (t) + w i (t), i = 1, 2, • • • , N, (4.1) 
where α ∈ (0, 1],

x i (t) = [x i1 (t), • • • , x in (t)] T ∈ R n denotes state vector of the ith follower. The nonlinear vector function f (x i (t)) = [f 1 (x i1 (t)), • • • , f n (x in (t))] T ∈ R n and constant time delay τ > 0. C = [c ij ] n×n , A = [â ij ] n×n and B = [ bij ]
n×n denote the corresponding weight matrices. u i (t) ∈ R n is the control input vector for follower i. w i (t) ∈ R n is external disturbance of follower i.

The dynamic of the leader is described as 

x (α) 0 (t) = -Cx 0 (t) + Af (x 0 (t)) + Bf (x 0 (t -τ )), ( 
x i (t) -x 0 (t) = 0, ∀ i = 1, 2, • • • , N.
To achieve the distributed consensus tracking, the following assumptions are needed.

Assumption 4.3 The nonlinear functions f i are Lipschitz continuous with Lipschitz constants θ i > 0 , such that 4.3 ABC algorithm-based parameter identification scheme for FOMASs

|f i (µ) -f i (ν)| < θ i |µ -ν|, ∀µ, ν ∈ R, i = 1, 2, • • • , n. (4.3) Assumption 4.4 The external disturbances w i (t) satisfy w i (t) ≤ ρ < +∞, ∀ i = 1, 2, • • • , N.

Problem formulation for parameter identification

For the purpose of identifying the unknown fractional orders and systematic parameters of nonlinear FOMASs (4.1) and (4.2), we consider the following original and identified systems with same initial conditions. The original systems are described as

x (α) i (t) = -Cx i (t) + Af (x i (t)) + Bf (x i (t -τ )), i = 0, 1, • • • , N, (4.4) 
where the definition of the corresponding parameters and variables in (4.4) are the same as those of (4.1) and (4.2).

The corresponding identified systems are

x(α) i (t) = -C xi (t) + Ãf (x i (t)) + Bf (x i (t -τ )), i = 0, 1, • • • , N, (4.5) 
where α is the identified fractional order, To identify the unknown nonlinear FOMASs (4.4), we convert them into the following functional optimization model as

xi (t) = [x i1 (t), • • • , xin (t)] T ∈ R n repre
J i ( α, C, Ã, B) = arg min (α, C, Ã, B)∈Ω F i = arg min (α, C, Ã, B)∈Ω K k=1 x ik -xik , i = 0, 1, • • • , N, (4.6) 
where sampling time point k = 1, 2, • • • , K and K is data length. x ik and xik denote respectively the state vectors of original system (4.4) and identified system (4.5) at time kh for agent i, where h is the step size between two sampling time point [START_REF] Bhalekar | A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order[END_REF]. Ω represents searching area 

The standard ABC algorithm

In 2005, Karaboga proposed the artificial bee colony (ABC) algorithm, which is a competitive population-based AIOAs. The idea comes from the foraging behavior of honeybee swarm [START_REF] Karaboga | A comprehensive survey: artificial bee colony (ABC) algorithm and applications[END_REF]. There are three kinds of bees in the standard ABC algorithm, which are employed bees, onlooker bees and scout bees.

In fact, half of them are employed bees, others are onlooker bees, which is also equal with the size of food sources or candidate solutions. The standard ABC algorithm can be described as the following phases.

In population initialization phase, several basic parameters are initialized. D

and SN represent the dimension and sizes of the solutions (food sources), and

X i = (x i1 , x i,2 , • • • , x i,D
) denotes the ith food source generated by

x i,j = x min,j + rand(0, 1)(x max,j -x min,j ), (4.7)

where i = 1, • • • , SN/2, j = 1, • • • , D, x min,j and x max,j are the lower and upper bounds for the jth dimension in respect. Then the corresponding fitness is calculated as

f it i = 1 1+f (X i ) , if f (X i ) ≥ 0, 1 + |f (X i )|, if f (X i ) < 0,
where f (X i ) represents the objective function value with respect to X i .

In employed bee phase, in order to find a better food source, the employed bee generates a new food source position V i around the current position X i with v i,j = x i,j + φ i,j (x i,j -x k,j ), (4.8)

where

k = 1, • • • , SN/2(k = i), j = 1, 2, • • • , D, φ i,j
denotes a real number randomly selected in [-1,1]. Then if V i has better fitness than that of X i , X i will be replaced by V i , otherwise X i is retained.

In onlooker bee phase, the employed bees will share information about amounts and positions of their food sources with onlooker bees. Then the onlooker bees
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will choose a food source to further search new food sources based on probability value p i formulated as

p i = f it i / SN j=1 f it j . (4.9)
After that, a modification is made around the chosen food source using (4.8).

In scout bee phase, if the new position in corresponding to X i is not improved continuously within certain time (limit), then the corresponding food source will be abandoned by the employed bee, which will become a scout bee. Then a new food source will be generated by the scout bee using (4.7).

The main flowchart of the ABC algorithm is described in Algorithm 1.

The proposed ABC algorithm-based parameter identification scheme

Based on the above efficient ABC algorithm, the following parameter identification scheme for FOMASs is proposed as Algorithm 2 [START_REF] Hu | Distributed consensus tracking of unknown nonlinear chaotic delayed fractional-order multi-agent systems with external disturbances based on ABC algorithm[END_REF].

Remark 4.6 In this chapter, the ABC algorithm is specially applied to the parameter identification of unknown nonlinear delayed FOMASs, which can enlarge the applications of the ABC algorithm and can offer a promising method for identifying the unknown nonlinear delayed FOMASs.

Remark 4.7 Compared with the synchronized-based parameter identification method studied in [START_REF] Gu | Synchronization-based parameter estimation of fractional-order neural networks[END_REF], the proposed ABC algorithm-based parameter identification method in this chapter does not need design the parameter updating laws which are sensitive to the considered systems. Besides, the fractional orders are also considered as unknown parameters, which need to be identified.

Distributed consensus tracking of FOMASs based on ABC algorithm

After applying Algorithm 1, assume that fractional order α and system param- Step 0) Predefine some parameters: SN (population size number), D (searching dimension), LOW ER (lower bound), UP P ER (upper bound), limit (control parameter), MCN (maximum cycle number), trail = 0.

2:

Step 1) The population initialization phase:

3:

Step 1.1) Randomly generate 0.5 * SN points in the search space to form an initial population via Eq. (4.7).

4:

Step 1.2) Evaluate the objective function values of population.

5:

Step 1.3) cycle=1;

6:

Step 2) The employed bees phase:

7:

For i = 1 to 0.5 * SN do 8:

Step 2.1) 9:

Step 2.1.1) Generate a candidate solution V i by Eq. (4.8).

10:

Step 2.1.2) Evaluate f (V i ).

11:

Step 2.2) If f (V i ) < f (X i ), set X i = V i , otherwise, set trial i = trial i +1.

12:

End For

13:

Step 3) Calculating the probability values p i by Eq. (4.9), set t = 0, i = 1.

14:

Step 4) The onlooker bees phase:

15:

While t ≤ 0.5 * SN, do 16:

Step 4.1)

17:

If rand(0, 1) < p i 18:

Step 4.1.1) Searching the candidate solution V i via Eq. (4.8).

19:

Step 4.1.4) Set t = t + 1.

20:

End If

21:

Step 4.2) Set i = i + 1, if i = 0.5 * SN, set i = 1.

22:

End While

23:

Step 5) The scout bees phase:

24:

If max(trial i ) > limit, replace X i with a new candidate solution generated via Eq. (4.7).

25:

Step 6) Set cycle = cycle + 1, and if cycle > MCN, then stop and output the best solution achieved so far, otherwise, go to Step 2. 

x (ᾱ) i (t) = -Cx i (t) + Āf (x i (t)) + Bf (x i (t -τ )) + u i (t) + w i (t), i = 1, 2, • • • , N. (4.10)
The dynamic of the leader can be described as Denote the tracking errors as e x i = x i (t) -x 0 (t), and

e f i = f (x i (t)) -f (x 0 (t)), e x iτ = x i (t-τ )-x 0 (t-τ ), e f iτ = f (x i (t-τ ))-f (x 0 (t-τ ))
. Let e x , e f , e xτ , e fτ , u(t) and w(t) be the column vector of e x i , e f i , e x iτ , e f iτ , u i (t) and w i (t), respectively.

Subtracting system (4.11) from system (4.10), the tracking errors e x can be ob- 

Discontinuous distributed control algorithm

To guarantee the distributed consensus tracking, a nonlinear discontinuous tracking protocol is designed as following for each follower:

u i (t) = -ay i -βh(y i ), i = 1, 2, • • • , N, (4.13) 
where y i = N j=0 a i,j (x i -x j ) and a, β > 0 are constant coupling gains. h(y i ) is a nonlinear discontinuous function defined as

h(y i ) = y i y i , y i = 0, 0 n , y i = 0. (4.14)
Based on the graph theory introduced in Chapter 1, it can be easily verified that

y i = N j=0 a i,j (e x i -e x j ) = N j=1 m ij e x j , which means y = (M ⊗ I n )e x = Me
x , where y is the column vector of y i .

Theorem 4.8 [START_REF] Hu | Distributed consensus tracking of unknown nonlinear chaotic delayed fractional-order multi-agent systems with external disturbances based on ABC algorithm[END_REF] Suppose that Assumptions 4.3-4.5 hold, with the nonlinear discontinuous control algorithm (4.13), the distributed consensus tracking of nonlinear delayed FOMASs (4.10) and (4.11) can be achieved, if β ≥ ρ, and there exist some constants λ > δ > 0, a > 0 and positive definite matrixes Ξ 1 and Ξ 2 such the following LMIs hold:

Φ = Φ 1 I N ⊗ Θ * -Ξ 1 < 0, (4.15) Ψ = -λ min ( M )δI N n I N ⊗ Θ * -Ξ 2 < 0, (4.16) 
where

Φ 1 = -2M ⊗ ( C + CT ) + (M ⊗ Ā)Ξ 1 (M ⊗ Ā) T + (M ⊗ B)Ξ 2 (M ⊗ B) T - 2a(M 2 ⊗ I n ) + λ max ( M )λI N n , M = M ⊗ I n . Θ = diag{θ 1 , • • • , θ n } with θ i defined in Assumption 4.3.
Proof: Substitute the protocol (4.13) into tracking errors system (4.12) as e (ᾱ) x (t) = -(I N ⊗ C)e x + (I N ⊗ Ā)e f + (I N ⊗ B)e fτ -ay -βH(y) + w(t), (4.17)
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where

H(y) = h T (y 1 ), • • • , h T (y N ) T ∈ R N n .
To verify the stability of the errors system (4.17), construct the Lyapunov function as

V (t) = e T x Me x . (4.18)
Then based on Lemma 1.19, we have

V (ᾱ) (t) ≤ 2e T x M e (ᾱ) x = 2e T x M -(I N ⊗ C)e x + (I N ⊗ Ā)e f + (I N ⊗ B)e fτ -ay -βH(y) + w(t) . (4.19)
According to the properties of Kronecker product, one can obtain

2e T x M -(I N ⊗ C)e x = -2e T x (M ⊗ I n )(I N ⊗ C)e x = -2e T x (M ⊗ C)e x = -e T x (M ⊗ C)e x -e T x (M ⊗ C) T e x = -e T x M ⊗ ( C + CT ) e x .
(4.20)

According to Lemma 1.22, denoting Ξ = Ξ 1 , ξ = 1, it yields

2e T x M (I N ⊗ Ā)e f ≤ e T x M (I N ⊗ Ā)Ξ 1 (I N ⊗ Ā) T M e x + e T f Ξ -1 1 e f ≤ e T x (M ⊗ Ā)Ξ 1 (M ⊗ Ā) T + (I N ⊗ Θ)Ξ -1 1 (I N ⊗ Θ) e x .
(4.21)

According to Lemma 1.22, denoting Ξ = Ξ 2 , ξ = 1, it yields

2e T x M(I N ⊗ B)e fτ ≤ e T x M (I N ⊗ B)Ξ 2 (I N ⊗ B) T M e x + e T fτ Ξ -1 2 e fτ ≤ e T x (M ⊗ B)Ξ 2 (M ⊗ B) T e x + e T xτ (I N ⊗ Θ)Ξ -1 2 (I N ⊗ Θ) e xτ .
(4.22)

Note that y T i h(y i ) = y i , one has

2e T x M -βH(y) = -2β N i=1 y T i h(y i ) = -2β N i=1 y i . (4.23)
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Note that y T i w i (t) ≤ y i w i (t) ≤ ρ y i , one has

2e T x Mw(t) = 2 N i=1 y T i w i (t) ≤ 2 N i=1 y i w i (t) ≤ 2ρ N i=1 y i . (4.24)
Thus based on β > ρ, (4.15),(4. 16), and (4.20)-( 4.24), one can obtain that 

V (ᾱ) (t) ≤ e T x -2(M ⊗ C) + (M ⊗ Ā)Ξ 1 (M ⊗ Ā) T + (I N ⊗ Θ)Ξ -1 1 (I N ⊗ Θ) + (M ⊗ B)Ξ 2 (M ⊗ B) T -2a(M 2 ⊗ I n ) e x + e T xτ (I N ⊗ Θ)Ξ -1 2 (I N ⊗ Θ) e xτ -2β N i=1 y i + 2ρ N i=1 y i ≤ e T x -2(M ⊗ C) + (M ⊗ Ā)Ξ 1 (M ⊗ Ā) T + (I N ⊗ Θ)Ξ -1 1 (I N ⊗ Θ) + (M ⊗ B)Ξ 2 (M ⊗ B) T -2a(M 2 ⊗ I n ) + λI N n e x + e T xτ (I N ⊗ Θ)Ξ -1 2 (I N ⊗ Θ) -δI N n e xτ -
where λ = λ max ( M )λ, δ = λ min ( M)δ. Now, consider the following fractional-order linear delayed system

Z (ᾱ) (t) = -λZ(t) + δZ(t -τ ), ᾱ ∈ (0, 1], Z(t) = φ(t), t ∈ [-τ, 0], (4.26)
where the initial condition is same as that of system (4.25). Based on Lemma 1.18, if λ > δ and there has no purely imaginary root for the following characteristic equation of system (4.26) 

s ᾱ + λ -δe -sτ = 0, ( 4 
|η| ᾱ cos ᾱπ 2 + λ = δ cos(ητ ), |η| ᾱ sin(± ᾱπ 2 ) = -δ sin(ητ ).
(4.29)

From Eq. (4.29), it can be deduced as

|η| 2 ᾱ + 2λ|η| ᾱ cos ᾱπ 2 + λ 2 -δ 2 = 0. (4.30)
Since |η| ᾱ > 0, cos ᾱπ 2 > 0, λ 2 > δ 2 , so Eq. (4.30) cannot hold. Therefore, the pure imaginary root does not exist in characteristic Eq. (4.27). According to Lamma 1.18, Z(t) is Lyapunov globally asymptotically stable. With Lamma 1.17, one can obtained that λ min ( M ) e x 2 ≤ V (t) ≤ Z(t) → 0, t → +∞, which implies that e x 2 → 0, t → +∞. Therefore, the proof is completed.

Remark 4.9 Theorem 4.8 shows us how to select the coupling gain a > 0 in the control protocol (4.13). From the definition of Φ 1 in Theorem 4.8, it can be found that the coupling gain a > 0 should be selected large in order to make the LMI (4.15) hold.

Remark 4.10 In Theorem 4.8, the coupling gain β > 0 in the control protocol (4.13) is related to the bound of the external disturbances. The value of the coupling gain β > 0 must be larger than the bound of the external disturbances. In special, if there are no external disturbances, the value of the coupling gain β can be set as zero.

Remark 4.11 Compared with the synchronization of delayed fractional-order neural networks where there are only a single master and a single slave system [START_REF] Bao | Adaptive synchronization of fractionalorder memristor-based neural networks with time delay[END_REF][START_REF] Chen | Stability and synchronization of memristor-based fractional-order delayed neural networks[END_REF][START_REF] Lakshmanan | Synchronization of an inertial neural network with time-varying delays and its application to secure communication[END_REF][START_REF] Vaseghi | Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control[END_REF]Zhang et al., 2018a), in this chapter, the synchronization for a single mater and multiple slaves delayed fractional-order neural networks is considered, where the multiple salves systems are coupled with a connected graph communication topology. Different from Bao et al. 

Continuous distributed control algorithm

In subsection 4.4.1, the discontinuous control protocol (4.13) can cause the negative chattering effect in applications. Thus, to overcome this drawback, a continuous distributed control protocol is further designed to deal with the consensus tracking. Based on the boundary layer technique [START_REF] Young | A control engineer's guide to sliding mode control[END_REF], we propose the following continuous control protocol as

u i (t) = -ay i -β hi (y i ), i = 1, 2, • • • , N, (4.31) 
where y i = N j=0 a i,j (x i -x j ) and a, β > 0 are constant coupling gains. hi (y i ) is a nonlinear continuous function defined as hi (y i ) = (4.32) where d i > 0 represents the width of the boundary layers.

y i y i , y i > d i , y i d i , y i ≤ d i ,
Theorem 4.12 [START_REF] Hu | Distributed consensus tracking of unknown nonlinear chaotic delayed fractional-order multi-agent systems with external disturbances based on ABC algorithm[END_REF] Suppose that Assumptions 4.3-4.5 hold, the tracking errors of FOMASs (4.10) and (4.11) are UUB with the continuous control algorithm (4.31), if β ≥ ρ, and there exist some constants λ > δ > 0, a > 0 and positive definite matrixes Ξ 1 and Ξ 2 such the following LMIs hold:

Φ = Φ 1 I N ⊗ Θ * -Ξ 1 < 0, (4.33) Ψ = -λ min ( M )δI N n I N ⊗ Θ * -Ξ 2 < 0, (4.34)
where Φ 1 and M are defined as Theorem 4.8, Θ = diag{θ 1 , • • • , θ n } with θ i defined as Assumption 4.3. Moreover, the tracking errors e x asymptotically converge to
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the following bounded region

D = e x : e x 2 ≤ 2(β + ρ) N i=1 d i λ min ( M )(λ -δ) . ( 4 

.35)

Proof: Substitute the protocol (4.31) into the tracking errors system (4.12), it can be obtained as (4.36) where

e (ᾱ) x (t) = -(I N ⊗ C)e x + (I N ⊗ Ā)e f + (I N ⊗ B)e fτ -ay -β H(y) + w(t),
H(y) = [ hT 1 (y 1 ), • • • , hT N (y N )] T ∈ R N n
. The ᾱ-order derivative of Lyapunov function candidate (4.18) with errors system (4.36) is (4.37)

V (ᾱ) (t) ≤ 2e T x M e (ᾱ)
According to the property of Eq. (4.31), the following three cases are discussed.

(i)

y i > d i , i = 1, 2, • • • , N.
For this case, based on Eqs. (4.23) and ( 4.24), one can obtained 

2e T x M -β H(y) + w(t) = 2(-β + ρ) N i=1 y i < 0. ( 4 
V (ᾱ) (t) < -λV (t) + δV (t -τ ). (4.39) (ii) y i ≤ d i , i = 1, 2, • • • , N.
In this case, note that

y T i hi (y i ) = y i 2 /d i ≤ d i , one has 2e T x M -β H(y) = -2β N i=1 y T i hi (y i ) = -2β N i=1 y i 2 /d i ≤ 2β N i=1 d i . (4.40)
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Note that y T i w i (t) ≤ y i w i (t) ≤ ρ y i ≤ ρd i , one has

2e T x Mw(t) = 2 N i=1 y T i w i (t) ≤ 2 N i=1 y i w i (t) ≤ 2ρ N i=1 y i ≤ 2ρ N i=1 d i . (4.41)
Therefore, one can deduce that 

2e T x M -β H(y) + w(t) ≤ 2(β + ρ) N i=1 d i . ( 4 
V (ᾱ) (t) < -λV (t) + δV (t -τ ) + 2(β + ρ) N i=1 d i . (4.43) (iii) y satisfies neither Case (i) nor Case (ii).
Without loss of generality, we suppose 

|y i | > d i , i = 1, 2, • • • , κ, and |y i | ≤ d i , i = κ + 1, κ + 2, • • • , N, (1 < κ < N).
V (ᾱ) (t) < -λV (t) + δV (t -τ ) + 2(β + ρ) N i=κ+1 d i . (4.45)
Therefore, based on the above three discussed cases, for all y ∈ R N n , we have (4.46) where d = 2(β + ρ) N i=1 d i . Consider the following system:

V (ᾱ) (t) < -λV (t) + δV (t -τ ) + d,
Z (ᾱ) (t) = -λZ(t) + δZ(t -τ ) + d, (4.47)
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where Z(t) ≥ 0(Z(t) ∈ R), and has the same initial conditions with V (t). Based on Lemma 1.17, one can obtain that 0 < V (t) < Z(t). With Properties 1.7 and 1.8, we have (4.48) where d = d/(λ -δ). Taking Z(t) = Z(t) -d, then system (4.48) can be trans-

Z(t) -d (ᾱ) (t) = -λ Z(t) -d + δ Z(t -τ ) -d ,
formed into Z(ᾱ) (t) = -λ Z(t) + δ Z(t -τ ). (4.49)
Applying the similar proof procedure in Theorem 4.8, we can obtain that Z(t) = Z(t) -d → 0, as t → +∞, which implies that λ min ( M ) e x 2 ≤ V (t) ≤ Z(t) → d, as t → +∞. Therefore, the tracking errors can asymptotically converge to the following bounded region Remark 4.15 When the number of the followers is chosen as N = 1, the consensus tracking methods studied in this chapter will degenerate into the case of single 4.5 Simulations mater-single slave synchronization between two delayed fractional-order neural networks [START_REF] Bao | Adaptive synchronization of fractionalorder memristor-based neural networks with time delay[END_REF][START_REF] Chen | Stability and synchronization of memristor-based fractional-order delayed neural networks[END_REF]Zhang et al., 2018a). That is to say, this chapter is an extension of the traditional master-slave synchronization to more general case of FOMASs.

e x 2 ≤ d λ min ( M ) = 2(β + ρ) N i=1 d i λ min ( M )(λ -δ) , (t → +∞), ( 
0 (t) = f (x 0 (t), x 0 (t -τ )), leader, x (α) i (t) = f (x i (t), x i (t -τ )) + u i (t) + w i (t), f
Remark 4.16 When the fractional order ᾱ = 1, the consensus tracking problem studied in this chapter will reduce to the case of integer-order MASs [START_REF] Bibliography Cui | Leaderless and leader-following consensus of multi-agent chaotic systems with unknown time delays and switching topologies[END_REF][START_REF] Ma | Synchronization of multi-agent stochastic impulsive perturbed chaotic delayed neural networks with switching topology[END_REF][START_REF] Ma | Exponential synchronization of nonlinear multi-agent systems with time delays and impulsive disturbances[END_REF] as

ẋ0 (t) = -Cx 0 (t) + Af (x 0 (t)) + Bf (x 0 (t -τ )), leader, ẋi (t) = -Cx i (t) + Af (x i (t)) + Bf (x i (t -τ )) + u i (t) + w i (t), f ollowers,
which is a special case of this chapter.

Remark 4.17 For the master-slave chaos synchronization, one of the important applications is in terms of the secure communication [START_REF] Lakshmanan | Synchronization of an inertial neural network with time-varying delays and its application to secure communication[END_REF][START_REF] Vaseghi | Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control[END_REF]. In this chapter, the extension provides some interesting viewpoints in the real applications. More specifically, it is the security transmission that plays an important role in the application of chaos synchronization.

For single master-multiple slaves case studied in this chapter, the single master system (leader) can avoid sending information directly to all the slave systems (followers), and the single master system (leader) just needs transmit its information to a part of informed followers, and other followers can obtain the leader's information indirectly by interacting with their neighborhoods. Finally, the single master-multiple slaves chaos synchronization can be achieved.

Simulations

ABC algorithm-based parameter identification results

For the initialization of Algorithm 2, the number of sample points is chosen as 200 and the step size is 0.01. For ABC algorithm, SN = 100, maximum iterations is 200, the control parameter limit = 15.

• 

i (t) = -Cx i (t) + Af (x i (t)) + Bf (x i (t -τ )), i = 0, 1, • • • , 6, (4.52)
where

x i (t) = [x i1 (t), x i2 (t)] T , α = 0.97, C = I 2 , τ = 1, f (x i (t)) = tanh(x i (t)).
Obviously, from Assumption 4.3, it is easily obtained that Θ = I 2 . The feedback matrix A and the delay feedback matrix B are respectively given as

A = [â ij ] 2×2 = 2.0 -0.1 -5.0 2.0 , B = [ bij ] 2×2 = -1.5 -0.1 -0.2 -1.5 .
Under the above parameters, each agent has a chaotic attractor (Zhang et al., 2018a), which is shown in Fig. 4.2.

Since the nonlinear dynamics of all the agents are homogenous, we just need identify one agent. Without loss of generality, we select agent 1 as the identified object. For the purpose of showing the performance of Algorithm 2 more clearly in terms of tables and figures, we randomly choose the fractional order α = 0.97, system parameters â11 = 2.0, b22 = -1.5 as unknown parameters which need to be identified. Then the corresponding identified system is 

x(α) 1 (t) = -C x1 (t) + Ãf (x 1 (t)) + Bf (x 1 (t -τ )), ( 
à = [ã ij ] 2×2 = ã11 -0.1 -5.0 2.0 , B = [ bij ] 2×2 = -1.5 -0.1 -0.2 b22 ,
other definitions in (4.53) are the same as those of (4.52). We set the searching space Ω as ( α, ã11 , b22 )

∈ [0.01, 1] × [1, 3] × [-2, -1].
The corresponding objective function is

F 1 ( α, ã11 , b22 ) = K k=0 x 1k -x1k . (4.54)
Thus, the parameter identification problem of system (4.52) becomes a functional optimization problem where the objective function is Eq. (4.54). Obviously, the smaller the objective function value F 1 is, the better combination of parameters

( α, ã11 , b22 ) is.
Firstly, the statistical results in terms of the best, the mean and the worst identified parameters obtained by ABC algorithm are given in Table 4.1, where 30 independent runs are operated. Estimated value b22 In order to test the efficiency of the ABC algorithm in identifying different fractional derivative order, in this case we assume that the real fractional order α in system (4.52) is 0.65, which need to be identified. The other experimental setup is the same with that in Case 1.

Similarly, 30 independent runs are performed. The statistical results in terms of the best, the mean and the worst identified parameters obtained by ABC algorithm are given in Table 4.2, which demonstrates that the unknown parameters of system (4.52) can be well identified by ABC algorithm. 

Simulation results on distributed consensus tracking

In this subsection, we will achieve the distributed consensus tracking based on the identified parameters. We assume that the real FOMASs are modeled as Case 1. Based on the identified values obtained in Table 4.1, the identified value can be approximated as α = 0.97, ã11 = 2.0, b22 = -1. Estimated value b22 followers can be modeled as

x (ᾱ) i (t) = -Cx i (t) + Āf (x i (t)) + Bf (x i (t -τ )) + u i (t) + w i (t), i = 1, 2, • • • , 6, (4.55)
and the dynamic of the leader can be written as

x (ᾱ) 0 (t) = -Cx 0 (t) + Āf (x 0 (t)) + Bf (x 0 (t -τ )), (4.56) where ᾱ = 0.97, C = I 2 , Ā = [ā ij ] 2×2 = 2.0 -0.1 -5.0 2.0 , B = [ bij ] 2×2 = -1.5 -0.1 -0.2 -1.5 ,
other definitions in (4.55) and (4.56) are the same as those of (4.52).

The initial conditions are selected as

x 0 = [2, 1.5] T , x 1 = [4, -2.5] T , x 2 = [1, -1.2] T , x 3 = [3, -3.4] T , x 4 = [2.5, -3.7] T , x 5 = [1.5, 4] T , x 6 = [2, 3] T .
The external disturbances are given as: w 1j (t) = 0.3 cos(t + 2), w 2j (t) = 0.6 sin(t -2), w 3j (t) = 0.25 cos(3t -5), w 4j (t) = 0.55 sin(4t + 4), w 5j (t) = 0.5 sin(-3t -1), w 6j (t) = 0.7 cos(6t -3), for j = 1, 2. Based on Theorems 4.8 and 4.12, we choose a = 21, β = 2, λ = 0.3, δ = 0.28, then the LMIs (4.15),(4. 16) and (4.33), (4.34) hold.
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Conclusion

In this chapter, the distributed consensus tracking of unknown nonlinear delayed

FOMASs with external disturbances is investigated. Firstly, the parameter identification of the unknown nonlinear delayed FOMASs is converted into a functional optimization problem by treating the unknown fractional orders as additional decision variables. Then ABC algorithm-based parameter identification method is

Conclusion

proposed to solve the functional optimization problem. Secondly, based on the identified parameters, a discontinuous control protocol is put forward to solve the consensus tracking problem by applying the inequalities of the fractional derivative and the comparison principle of the linear fractional equation with delay, and a new sufficient condition is established. Thirdly, in order to eliminate the chattering behavior caused by the above discontinuous control protocol, a continuous control protocol is further designed, and the UUB tracking errors can be obtained which can be tuned as small as enough by selecting proper parameters. Simulations are provided to show the efficiencies of the proposed parameter identification scheme and the two control protocols.
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Introduction

Note that the results obtained in Chapters 2, 3 and 4 assume that the control input of a leader is either equal to zero or available to all the followers, which has some limitations and lacks flexibility. More specifically, for the purpose of leading the followers to achieve special tasks, the leader's input need to be nonzero or time-varying. Furthermore, it is impossible for all the followers to know the leader's control input, when they are in an uncooperative scenario. Therefore, it is significant and essential to consider the leader with nonzero input, although it is difficult to address because of the limited information accessibility. Recently, some works have been done to overcome this difficulty in different distributed cooperative control problems. For example, in [START_REF] Yuan | Cooperative output regulation of heterogeneous multi-agent systems with a leader of bounded inputs[END_REF], a leader of bounded input was considered in the cooperative output regulation of MASs. In studied the formation control of multi-vehicles with heterogenous control gains.

In addition, MASs with heterogenous dynamics were also investigated in Devasia (2017); [START_REF] Guo | Mean-square consensus of heterogeneous multi-agent systems with communication noises[END_REF]; [START_REF] Meng | Event-Triggered Output Regulation of Heterogeneous Multiagent Networks[END_REF]. However, most results about the heterogeneous MASs are based on the integer-order models, a few results have been obtained based on the fractional-order models [START_REF] Gong | Distributed tracking of heterogeneous nonlinear fractionalorder multi-agent systems with an unknown leader[END_REF]. Therefore, in this chapter, we consider the delayed nonlinear FOMASs with heterogenous control gains, which is more reasonable and practical. on the known differential orders, while in some situations, the structure of the MASs may be known and the differential orders and system parameters are unknown, which need to be identified beforehand. Thus, based on a similar spirit, the unknown fractional orders and system parameters are further considered in the distributed cooperative synchronization of heterogenous nonlinear delayed FOMASs with unknown leader.

Differential evolution (DE), as an efficient AIOAs, was proposed in 1995 [START_REF] Storn | Differential evolutionâĂŞa simple and efficient heuristic for global optimization over continuous spaces[END_REF]. Many researches have demonstrated that DE can successfully tackle various optimization problems appeared in different fields, such as economic dispatch, controller design and tuning, and data clustering [START_REF] Das | Differential evolution: a survey of the state-of-the-art[END_REF]. Compared to other AIOAs, the concept of DE is simple enough to be implemented easily, and it owns quick convergence. Therefore, in this chapter, the DE is employed to identify the unknown fractional orders and system parameters of the nonlinear delayed FOMASs, which not only can broad the application fields of the DE, but also can offer a promising parameter identification method for the FOMASs at the same time.

Under the above discussions, in this chapter, distributed cooperative synchronization of uncertain nonlinear delayed FOMASs with unknown leader and heterogenous control gains is addressed. Firstly, an efficient DE-based parameter identification scheme is put forward to identify the unknown nonlinear delayed

FOMASs. Then based on the identified fractional orders and system parameters, a discontinuous distributed control protocol is designed to achieve the distributed cooperative synchronization by using the fractional-order derivative inequality and comparison principle of the linear fractional equation with delay. Thirdly,

DISTRIBUTED COOPERATIVE SYNCHRONIZATION OF HETEROGENOUS UNCERTAIN NONLINEAR DELAYED FOMASS WITH UNKNOWN LEADER BASED ON DE ALGORITHM

for the purpose of overcoming the chattering phenomenon resulting from the discontinuous controller, a continuous control protocol is further put forward, where the UUB tracking errors can be obtained and tuned small enough with appropriate parameters.

Compared with the existing works, our contribution are as follows. 

Problem description for synchronization of FO-MASs

Given FOMASs with one leader labeled as 0 and N followers labeled as 1 to N, the dynamics of FOMASs are described as

x (α) i (t) = -Cx i (t) + Af (x i (t)) + Bf (x i (t -τ )) + u i (t), i = 0, 1, • • • , N, (5.1) 
where α ∈ (0, 1],

x i (t) = [x i1 (t), • • • , x in (t)] T ∈ R n denotes state vector of the ith agent. The nonlinear vector function f (x i (t)) = [f 1 (x i1 (t)), • • • , f n (x in (t))] T ∈ R n and constant time delay τ > 0. C = [c ij ] n×n , A = [â ij ] n×n and B = [ bij ] n×n
denote the corresponding weight matrices. u i (t) ∈ R n is the control input vector for agent i.

Definition 5.1 Considered any initial conditions of FOMASs (5.1), the distributed cooperative synchronization is obtained, if

lim t→∞ x i (t) -x 0 (t) = 0, ∀ i = 1, 2, • • • , N.
To achieve the distributed cooperative synchronization, the following Assumptions and Lemmas are needed.

Assumption 5.2 The nonlinear functions f i are Lipschitz continuous with Lipschitz constants θ i > 0 , such that

|f i (µ) -f i (ν)| < θ i |µ -ν|, ∀ µ, ν ∈ R, i = 1, • • • , n.
Assumption 5.3 The leader's control input u 0 (t) satisfies u 0 (t) ≤ ρ < +∞, where ρ ≥ 0.

Assumption 5.4 The communication topology Ḡ among the followers and leader has a directed spanning tree with the leader as the root node. Mutation operator: A mutated individual V i is produced as

V i = X r1 + F (X r2 -X r3 ), (5.2) 
where r1, r2, r3 are three different integers randomly chosen from 1 to SN (the size of the population), F > 0 denotes the scale factor.

Crossover operator: A trial vector T i is generated by recombination of X i and V i as

t i,j = ν i,j , if r ≤ CR or j = j rand , x i,j , otherwise, (5.3) 
where i = 1, 2, • • • , SN, j = 1, 2, • • • , D, t i,j
denotes the jth element of the trial vector T i , r is a uniformly random value between 0 and 1, CR ∈ [0, 1] is to control the ratio of selection between the parent and mutated vectors, and j rand is a random integer from 1 to D to guarantee that at least one element of V i will be inherited.

Selection operator: Comparison between the trail vector T i and X i is conducted and the superior one will be kept to the next generation, namely

X i =    T i , if f (X i ) > f (T i ) (f or minimization problem, vice versa), X i , otherwise.
(5.4) Call the mutation operator based on (5.2)

5:

Call the crossover operator based on (5.3) 6:

Call the selection operator based on (4.6) and ( 5.4)

7: until Maximum iteration is met 8: Return the best parameter identification values Remark 5.5 In this chapter, DE is specially applied to the parameter identification of unknown nonlinear delayed FOMASs, which both can expand the applications of DE and can provide a meaningful approach for identifying the unknown nonlinear delayed FOMASs.
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MASs based on DE

By applying Algorithm 3, we assume that system parameters C, A, B and fractional order α of the unknown FOMASs (5.1) are identified as

ᾱ, C = [c ij ] n×n , Ā = [ā ij ] n×n and B = [ bij ] n×n .
Then the dynamics of FOMASs can be reformulated as

x (ᾱ) i (t) = -Cx i (t) + Āf (x i (t)) + Bf (x i (t -τ )) + u i (t), i = 0, 1, • • • , N, (5.5) 
where ᾱ, C = [c ij ] n×n , Ā = [ā ij ] n×n and B = [ bij ] n×n are the corresponding estimated values. Other definitions in (5.5) are the same as those of (5.1).
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Denote the synchronization errors as e x i = x i (t) -x 0 (t), and

e f i = f (x i (t)) - f (x 0 (t)), e x iτ = x i (t -τ ) -x 0 (t -τ ), e f iτ = f (x i (t -τ )) -f (x 0 (t -τ ))
. Let e x , e f , e xτ , e fτ and u(t) be the column vectors of e x i , e f i , e x iτ , e f iτ and u i (t), respectively. Based on (5.5), the synchronization errors e x can be obtained as:

e (ᾱ) x (t) = -(I N ⊗ C)e x + (I N ⊗ Ā)e f + (I N ⊗ B)e fτ -1 N ⊗ u 0 (t) + u(t). (5.6) According to Assumption 5.4, v 0 is a global reachable node. Let M = L+B = [m ij ] N ×N , then matrix M is positive definite based on Lemma 1.2.
In the following, based on the identified FOMASs (5.5), two kinds of distributed controllers are designed to tackle the distributed cooperative synchronization under the directed communication topology.

Discontinuous distributed control algorithm

To achieve the distributed cooperative synchronization, a nonlinear discontinuous control protocol is designed for each follower as

u i (t) = -ay i -βh(y i ), i = 1, 2, • • • , N, (5.7) 
where y i = γ i N j=0 a i,j (x i -x j ), and a, β, γ i > 0 are constant coupling gains. h(y i ) is a nonlinear discontinuous function defined as

h(y i ) = y i y i , y i = 0, 0 n , y i = 0. (5.8)
Based on the graph theory introduced in Chapter 1, it can be easily verified that

y i = γ i N j=0 a i,j (e x i -e x j ) = γ i N j=1 m ij e x j , which means y = (ΛM ⊗ I n )e x , where Λ = diag{γ 1 , γ 2 , • • • , γ N }, M = M ⊗ I n
and y is the column vector of y i .

Theorem 5.6 [START_REF] Hu | Differential evolutionbased parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader[END_REF] Given Assumptions 5.2-5.4, with the nonlinear discontinuous control algorithm (5.7), the distributed cooperative synchronization of delayed nonlinear FOMASs (5.5) can be reached, if β ≥ ρ, and there exist some constants λ > δ > 0, a > 0 and positive definite matrixes Ξ 1 and Ξ 2 such the following LMIs hold:
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Φ = Φ 1 Λ -1 ⊗ Θ * -Ξ 1 < 0, (5.9) 
Ψ = -λ min ( G)δI N n Λ -1 ⊗ Θ * -Ξ 2 < 0, (5.10) 
where

Φ 1 = -GΛ -1 ⊗ ( C + CT ) + (G ⊗ Ā)Ξ 1 (G ⊗ Ā) T + (G ⊗ B)Ξ 2 (G ⊗ B) T - a(Q ⊗ I n ) + λ max ( G)λI N n , G = GΛ -1 ⊗ I n . Θ = diag{θ 1 , • • • , θ n } with θ i defined in Assumption 5.2.
Proof: Substitute the protocol (5.7) into synchronization errors system (5.6) as

e (ᾱ) x (t) = -(I N ⊗ C)e x + (I N ⊗ Ā)e f + (I N ⊗ B)e fτ -1 N ⊗ u 0 (t) -ay -βH(y), (5.11) 
where

H(y) = [h T (y 1 ), • • • , h T (y N )] T ∈ R N n .
In order to verify the stability of the errors system (5.6), construct the Lyapunov function as

V (t) = y T (GΛ -1 ⊗ I n )y = y T Gy. (5.12) 
Then based on Lemma 1.19, we have

V (ᾱ) (t) ≤ 2y T Gy (ᾱ) = 2y T (GΛ -1 ⊗ I n )(ΛM ⊗ I n )e (ᾱ) x = 2y T (GM ⊗ I n )e (ᾱ) x = 2y T (GM ⊗ I n ) -(I N ⊗ C)e x + (I N ⊗ Ā)e f + (I N ⊗ B)e fτ -1 N ⊗ u 0 (t) -ay -βH(y) .
( 5.13) With the properties of Kronecker product, one has

2y T (GM ⊗ I n ) -(I N ⊗ C)e x = -2y T (GM ⊗ C)(ΛM ⊗ I n ) -1 y = -2y T (GΛ -1 ⊗ C)y = -y T GΛ -1 ⊗ ( C + CT ) y.
(5.14)
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Based on Lemma 1.22, let Ξ = Ξ 1 , ξ = 1, it yields

2y T (GM ⊗ I n )(I N ⊗ Ā)e f = 2y T (GM ⊗ Ā)e f = 2y T (G ⊗ Ā)(M ⊗ I n )e f ≤ y T (G ⊗ Ā)Ξ 1 (G ⊗ Ā) T y + e T f (M ⊗ I n ) T Ξ -1 1 (M ⊗ I n )e f ≤ y T (G ⊗ Ā)Ξ 1 (G ⊗ Ā) T y + e T x (I N ⊗ Θ)(M ⊗ I n ) T Ξ -1 1 (M ⊗ I n )(I N ⊗ Θ)e x = y T (G ⊗ Ā)Ξ 1 (G ⊗ Ā) T y + y T (ΛM ⊗ I n ) -T (I N ⊗ Θ)(M ⊗ I n ) T Ξ -1 1 (M ⊗ I n ) × (I N ⊗ Θ)(ΛM ⊗ I n ) -1 y = y T (G ⊗ Ā)Ξ 1 (G ⊗ Ā) T y + y T (Λ -1 ⊗ Θ)Ξ -1 1 (Λ -1 ⊗ Θ)y. (5.15) Based on Lemma 1.22, let Ξ = Ξ 2 , ξ = 1, it yields 2y T (GM ⊗ I n )(I N ⊗ B)e fτ = 2y T (GM ⊗ B)e fτ = 2y T (G ⊗ B)(M ⊗ I n )e fτ ≤ y T (G ⊗ B)Ξ 2 (G ⊗ B) T y + e T fτ (M ⊗ I n ) T Ξ -1 2 (M ⊗ I n )e fτ ≤ y T (G ⊗ B)Ξ 2 (G ⊗ B) T y + e T xτ (I N ⊗ Θ)(M ⊗ I n ) T Ξ -1 2 (M ⊗ I n )(I N ⊗ Θ)e xτ = y T (G ⊗ B)Ξ 2 (G ⊗ B) T y + y T τ (ΛM ⊗ I n ) -T (I N ⊗ Θ)(M ⊗ I n ) T Ξ -1 2 (M ⊗ I n ) × (I N ⊗ Θ)(ΛM ⊗ I n ) -1 y τ = y T (G ⊗ B)Ξ 2 (G ⊗ B) T y + y T τ (Λ -1 ⊗ Θ)Ξ -1 2 (Λ -1 ⊗ Θ)y τ . (5.16) Due to M1 N = (L + B)1 N = [a 10 , a 20 , • • • , a N 0 ] T , one has 2y T (GM ⊗ I n )(-1 N ⊗ u 0 ) = -2y T (GM1 N ⊗ u 0 ) = -2 N i=1 g i a i0 y T i u 0 ≤ 2 N i=1 g i a i0 y i u 0 ≤ 2ρ N i=1 g i a i0 y i .
(5.17)
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According to Lemma 1.2, one obtains

2y T (GM ⊗ I n )(-ay) = -2ay T (GM ⊗ I n )y = -a y T (GM ⊗ I n )y + y T (GM ⊗ I n ) T y = -ay T GM + (GM) T ⊗ I n y = -ay T (Q ⊗ I n )y.
( 5.18) Due to y T i h(y i ) = y i and y T i h(y j ) ≤ y i h(y j ) = y i , one has

2y T (GM ⊗ I n )(-βH(y)) = -2β N i=1 g i y T i a i0 h(y i ) + N j=1 a ij h(y i ) -h(y j ) ≤ -2β N i=1 g i a i0 y i . (5.19) 
Then according to β > ρ, (5.9),(5.10), and (5.14)- (5.19), it yields

V (ᾱ) (t) ≤ y T -GΛ -1 ⊗ ( C + CT ) + (G ⊗ Ā)Ξ 1 (G ⊗ Ā) T + (Λ -1 ⊗ Θ)Ξ -1 1 (Λ -1 ⊗ Θ) + (G ⊗ B)Ξ 2 (G ⊗ B) T -a(Q ⊗ I n ) y + y T τ (Λ -1 ⊗ Θ)Ξ -1 2 (Λ -1 ⊗ Θ)y τ -2β N i=1 g i a i0 y i + 2ρ N i=1 g i a i0 y i ≤ y T -GΛ -1 ⊗ ( C + CT ) + (G ⊗ Ā)Ξ 1 (G ⊗ Ā) T + (Λ -1 ⊗ Θ)Ξ -1 1 (Λ -1 ⊗ Θ) + (G ⊗ B)Ξ 2 (G ⊗ B) T -a(Q ⊗ I n ) + λI N n y + y T τ (Λ -1 ⊗ Θ)Ξ -1 2 (Λ -1 ⊗ Θ) -δI N n y τ -λy T y + δy T τ y τ = y T Φy + y T τ Ψy τ -λy T y + δy T τ y τ ≤ -λy T y + δy T τ y τ ≤ - λ λ max ( G) y T Gy + δ λ min ( G) y T τ Gy τ = -λV (t) + δV (t -τ ), (5.20) 
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where λ = λ max ( G)λ, δ = λ min ( G)δ.

Now, consider the fractional-order linear delayed system as

Z (ᾱ) (t) = -λZ(t) + δZ(t -τ ), ᾱ ∈ (0, 1], Z(t) = φ(t), t ∈ [-τ, 0], (5.21) 
which has the same initial condition with system (5.20). According to Lemma 1.18, if λ > δ and there exists no purely imaginary root for the following characteristic equation of system (5.21)

s ᾱ + λ -δe -sτ = 0, (5.22) 
then, the zero solution of system (5.21) is Lyapunov globally asymptotically stable, which implies that Z(t) → 0 as t → +∞. For (5.22), suppose there exists a

pure imaginary root s = ηi, η ∈ R. If η > 0, s = ηi = |η|(cos π 2 + i sin π 2 ), and if η < 0, s = ηi = |η|(cos π 2 -i sin π 2 ). Then substituting s = ηi = |η|(cos π 2 ± i sin π 2 ) into (5.22) generates |η| ᾱ cos ᾱπ 2 + i sin(± ᾱπ 2 ) + λ -δ(cos ητ -i sin ητ ) = 0. (5.23) 
Separate (5.23) into real and imaginary parts as

|η| ᾱ cos ᾱπ 2 + λ = δ cos ητ, |η| ᾱ sin(± ᾱπ 2 ) = -δ sin ητ.
(5.24)

From ( 5.24), it can be conducted as

|η| 2 ᾱ + 2λ|η| ᾱ cos ᾱπ 2 + λ 2 -δ 2 = 0.
(5.25)

Since |η| ᾱ > 0, cos ᾱπ 2 > 0, λ 2 > δ 2 , so (5.25) cannot hold. Therefore, the pure imaginary root does not exist in characteristic equation (5.22). According to Lemma 1.18, Z(t) is Lyapunov globally asymptotically stable. With Lemmas 1.2 and 1.17, we have λ min ( G) y 2 ≤ V (t) ≤ Z(t) → 0, t → +∞, which means that e x 2 → 0, t → +∞. Therefore, the proof is completed.
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where d = 2 N i=1 d i g i (ρa i0 + βl ii ). Consider the following system:

Z (ᾱ) (t) = -λZ(t) + δZ(t -τ ) + d, (5.40) 
where Z(t) ≥ 0(Z(t) ∈ R), and has the same initial conditions with V (t). Based on Lemma 1.17, one can obtain that 0 < V (t) < Z(t). With Properties 1.7 and 1.8, we have

(Z(t) -d) (ᾱ) (t) = -λ(Z(t) -d) + δ(Z(t -τ ) -d), (5.41) 
where d = d/(λ -δ). Taking Z(t) = Z(t) -d, then system (5.41) can be transformed into

Z(ᾱ) (t) = -λ Z(t) + δ Z(t -τ ). (5.42) 
Applying the similar proof procedure in Theorem 5.6, we can obtain that Z(t) = Z(t) -d → 0, as t → +∞, which implies that

λ min ( G) y 2 ≤ V (t) ≤ Z(t) → d, t → +∞.
(5.43)

Due to y = (ΛM ⊗ I n )e x , one has

y 2 = y T y = e T x (M T Λ 2 M ⊗ I n )e x ≥ λ min (M T Λ 2 M) e x 2 .
(5.44) Therefore, according to (5.43) and ( 5.44), the synchronization errors can asymptotically converge to the following bounded region

e x 2 ≤ d λ min (M T Λ 2 M)λ min ( G) = 2 N i=1 d i g i (ρa i0 + βl ii ) λ min (M T Λ 2 M)λ min ( G)(λ -δ)
, (t → +∞), (5.45) which can be made small enough by choosing proper parameter d i . 

D = e x : e x 2 ≤ 2d N i=1 g i (ρa i0 + βl ii ) λ min (M T Λ 2 M)λ min ( G)(λ -δ)
.

(5.46)

Remark 5.9 Compared with the synchronization of delayed fractional-order coupled systems where there are only a single master and a single slave system [START_REF] Bao | Adaptive synchronization of fractionalorder memristor-based neural networks with time delay[END_REF]Chen et al., 2018a[START_REF] Chen | Stability and synchronization of memristor-based fractional-order delayed neural networks[END_REF][START_REF] Zhang | Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch[END_REF], this chapter studies synchronization for a single mater and multiple slaves delayed FOMASs, where the multiple salves systems are coupled with a connected directed communication topology. Different from the single master and a single slave system [START_REF] Bao | Adaptive synchronization of fractionalorder memristor-based neural networks with time delay[END_REF]Chen et al., 2018a[START_REF] Chen | Stability and synchronization of memristor-based fractional-order delayed neural networks[END_REF][START_REF] Zhang | Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch[END_REF], in this chapter, to verify the effectiveness of the proposed synchronization controller in theory, the design of the Lyapunov function should depend on the graph communication topology and heterogenous control gains, which are full of challenge due to the structure of the graph and the heterogeneities.

Remark 5.10 In this chapter, the distributed cooperative synchronization of nonlinear delayed FOMASs with unknown leader is investigated based on directed communication topology. In fact, the results are also effective for distributed cooperative synchronization of FOMASs with any nonlinear dynamics as

x (α) 0 (t) = f (x 0 (t), x 0 (t -τ )) + u 0 (t), leader, x (α) i (t) = f (x i (t), x i (t -τ )) + u i (t), f ollowers,
where nonlinear function f (•) satisfies Assumption 5.2, and leader's control input u 0 (t) satisfies Assumption 5.3.

Remark 5.11 When the number of the followers is assumed as N = 1, the synchronization methods studied in this chapter will degenerate into the case of single mater-single slave synchronization between two delayed fractional-order nonlinear systems [START_REF] Bao | Adaptive synchronization of fractionalorder memristor-based neural networks with time delay[END_REF]Chen et al., 2018a[START_REF] Chen | Stability and synchronization of memristor-based fractional-order delayed neural networks[END_REF][START_REF] Zhang | Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch[END_REF]. That is to say, this chapter is an extension of the classical master-slave synchronization to the more general case of FOMASs.

Remark 5.12 When the fractional order ᾱ = 1, the distributed cooperative synchronization studied in this chapter will reduce to the case of integer-order MASs [START_REF] Bibliography Cui | Leaderless and leader-following consensus of multi-agent chaotic systems with unknown time delays and switching topologies[END_REF][START_REF] Ma | Exponential synchronization of nonlinear multi-agent systems with time delays and impulsive disturbances[END_REF] as

ẋ0 (t) = -Cx 0 (t) + Af (x 0 (t)) + Bf (x 0 (t -τ )) + u 0 (t), leader, ẋi (t) = -Cx i (t) + Af (x i (t)) + Bf (x i (t -τ )) + u i (t), f ollowers,
which is a special case of this chapter. • Case 1: α = 0.98 Consider FOMASs with one leader and six followers. The communication topology is given as Fig. 5.1. Assume that the leader and followers have homogenous nonlinear dynamics with two-dimensional fractional-order delayed neural networks as
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x (α) i (t) = -Cx i (t) + Af (x i (t)) + Bf (x i (t -τ )), i = 0, 1, • • • , 6, (5.47) 
where

x i (t) = [x i1 (t), x i2 (t)] T , α = 0.98, C = I 2 , τ = 0.9, f (x i (t)) = [f 1 (x i1 (t)), f 2 (x i2 (t))] T , and f j (x ij (t)) = 1 2 (|x ij + 1| -|x ij -1|), j = 1, 2.
Obviously, from Assumption 5.2, it is easily obtained that Θ = I 2 . The feedback matrixes A and B are respectively given as

A = [â ij ] 2×2 = 1 + π 4 20 0.1 1 + π 4 , B = [ bij ] 2×2 = -1.3 √ 2 4 π 0.1 0.1 -1.3 √ 2 4 π .
With the above parameters, each agent has a chaotic attractor, which is shown in Fig. 5.2. Since the nonlinear dynamics of all the agents are homogenous, we just need identify one agent. Without loss of generality, we select agent 1 as the identified object. In order to reflect the performance of Algorithm 3 more clearly in terms of tables and figures, we randomly assume the fractional order α = 0.98, system parameters â12 = 20, b21 = 0.1 as unknown parameters which need to be identified. Then the corresponding identified system is 5.48) with C = I 2 , and

x(α) 1 (t) = -C x1 (t) + Ãf (x 1 (t)) + Bf (x 1 (t -τ )), ( 
à = [ã ij ] 2×2 = 1 + π 4 ã12 0.1 1 + π 4 , B = [ bij ] 2×2 = -1.3 √ 2 4 π 0.1 b21 -1.3 √ 2 4 π .
Other definitions in (5.48) are the same as those of (5.47) 

F 1 ( α, ã12 , b21 ) = K k=0
x 1k -x1k .

(5.49) Thus, the parameter identification problem of systems (5.47) can be converted into a functional optimization problem where the objective function is (5.49).

Obviously, the smaller the objective function value F 1 is, the better combination of parameters ( α, ã12 , b21 ) is.

The Algorithm 3 is operated with 30 independent runs. Firstly, the statistical results in terms of the best, the mean and the worst identified parameters obtained by DE algorithm are given in Table 5.1. Table 5.1 demonstrates that the unknown fractional order and system parameters of system (5.47) • Case 2: α = 0.6 To test the performance of the DE algorithm in identifying different fractional derivative order, in this case the real fractional order α in system (5.47) is assumed as 0.6, which needs to be identified. The other experimental setup is the same with that in Case 1.

Similarly, 30 independent runs are executed. The statistical results in terms of
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No. of Iterations the original system (5.47) and the identified system (5.48). Besides, the signal-tonoise ratio (SNR) probably the most common and well understood performance measure used in science and engineering that compares the level of a desired signal to the level of background noise. It is a term for the power ratio between a signal and the background noise: SNR = P s /P n , where P s is the average signal power and P n is average noise power [START_REF] Yuan | Parameter identification of fractional-order chaotic systems without or with noise: Reply to comments[END_REF]. Here the SNR is set as 50.

• Case 1: α = 0.98

The other experimental setup is the same with the Case 1 in Subsection 5.5.1.1.

The Algorithm 3 is executed with 30 independent runs. Firstly, the statistical results in terms of the best, the mean and the worst identified parameters obtained by DE algorithm are given in Table 5.3, which illustrates that the unknown fractional order and system parameters of system (5.47) can still be well identified by Algorithm 3 under the measurement noise. Secondly, Fig. 5.7 shows the convergence processes of the identified values in a single run, which further verifies the effectiveness of the proposed DE-based parameter identification method.

• Case 2: α = 0.6 To test the performance of the DE algorithm in identifying different fractional derivative order, in this case the real fractional order α in system (5.47) is assumed as 0.6, which needs to be identified. The other experimental setup is the same with the Case 1 in Subsection 5.5.1.1. 30 independent runs are executed. The statistical results in terms of the best, the mean and the worst identified parameters obtained by DE algorithm are showed in Table 5.4, which demonstrates that the unknown parameters of system (5.47) can be well identified by DE algorithm under the measurement noise. Secondly, Fig. 5.8 shows the convergence processes of the identified values in a single run, which further verifies the effectiveness of the proposed DE-based parameter identification method.

Simulations

Simulation results on distributed cooperative synchronization

In this subsection, we will achieve the distributed consensus tracking based on the identified parameters. We assume that the real FOMASs are modeled as Case 1. Based on the identified values obtained by Algorithm 3, which are given in Subsection 5.5.1, the identified parameters values are approximated as: ᾱ = 0.98, ā12 = 20, and b21 = 0.1, thus the dynamics of FOMASs can be reformulated as

x (ᾱ) i (t) = -Cx i (t) + Āf (x i (t)) + Bf (x i (t -τ )) + u i (t), i = 0, 1, • • • , 6, (5.50) 
where ᾱ = 0.98, C = I 2 ,

Ā = [ā ij ] 2×2 = 1 + π 4 20 0.1 1 + π 4 , B = [ bij ] 2×2 = -1.3 √ 2 4 π 0.1 0.1 -1.3 √ 2 4 π .
Other definitions in (5.50) are the same as those of (5.47).
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No. of Iterations x 11 (t)

x 21 (t)

x 31 (t)

x 41 (t)

x 51 (t)

x 61 (t)

x 01 (t) x 22 (t)

x 32 (t)

x 42 (t)

x 52 (t)

x 62 (t)

x 02 (t) Firstly, the state trajectories of distributed cooperative synchronization by nonlinear discontinuous control protocol (5.7) are displayed in Fig. 5.9, which shows that the six followers can track the leader's states quickly which can verify Theorem 5.6. The corresponding control inputs are also given in Fig. 5.10.

Then, for boundary layers widths d i in Eq. (5.27), in order to study the influence of the parameters d i , two cases are considered as:

d i = 2, (i = 1, 2, • • • , 6) and d i = 0.2, (i = 1, 2, • • • , 6).
The evolutionary trajectories of distributed cooperative synchronization by nonlinear continuous control protocol (5.26) are given in Figs. 5.11 and 5.13. From Figs. 5.11 and 5.13, it can be found that the synchronization errors will be smaller if the value of the boundary layers widths d i are smaller. Furthermore, the chattering behavior can be avoided which can be verified in Figs. 5.12 and 5.14. Therefore, Theorem 5.7 is validated. x 22 (t)
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Conclusion

In this chapter, the distributed cooperative synchronization of uncertain nonlinear delayed FOMASs with unknown leader and heterogeneous control gains is investigated. Firstly, a DE-based parameter identification method is proposed to identify the unknown nonlinear delayed FOMASs by transforming it into a functional optimization problem. Secondly, under the identified parameters, a discontinuous control protocol is designed to solve the distributed cooperative synchronization by employing the inequalities of the fractional derivative and the comparison principle of the linear fractional equation with delay, and a new sufficient conditions is obtained. Thirdly, for the purpose of eliminating the chattering behavior originated from the discontinuous control protocol, a continuous control protocol is further proposed, and the UUB synchronization errors can be obtained which can be adjusted small enough by choosing proper parameters. Finally, simulations are given to demonstrate the efficiencies of the proposed parameter identification scheme and the two control protocols.

Introduction

As mentioned in Chapters 4 and 5, most consensus control algorithms are valid only for the FOMASs whose system parameters and fractional orders are known in advance. However, in practice, the FOMASs are usually partly known. That is, the form of the fractional-order differential equations are known, while some or all of the fractional orders and system parameters are unknown. Therefore, in order to control and utilize the FOMASs, identifying the unknown fractional orders and system parameters are really important. In Chapter 4, an efficient artificial bee colony algorithm (ABC) is used to identify the unknown FOMASs. In Chapter 5, the differential evolution (DE) is selected to identify the unknown FOMASs.

However, although the AIOAs, such as ABC and DE, have demonstrated superior features compared to other traditional methods, there is no specific algorithm that can achieve the best solution for all optimization problems. Namely, as far as most algorithms are concerned, it is difficult to simultaneously manage the tradeoff between exploration and exploitation successfully for all the optimization problems. Similarly, there are no exceptions for ABC and DE.

As introduced in Chapter 4, artificial bee colony (ABC) algorithm, which is belong to the family of the population-based AIOAs, was put forward by Karaboga motivated by the foraging behavior of honeybees [START_REF] Karaboga | A comprehensive survey: artificial bee colony (ABC) algorithm and applications[END_REF]. Due to its nice properties, it has been widely utilised in diverse real-world optimization problems [START_REF] Karaboga | A comprehensive survey: artificial bee colony (ABC) algorithm and applications[END_REF] and a lot of ABC variants have been put forwards [START_REF] Gao | An Improved Artificial Bee Colony Algorithm with its Application[END_REF][START_REF] Gao | Artificial bee colony algorithm based on Parzen window method[END_REF][START_REF] Ji | An artificial bee colony algorithm search guided by scale-free networks[END_REF][START_REF] Yurtkuran | A novel artificial bee colony algorithm for the workforce scheduling and balancing problem in subassembly lines with limited buffers[END_REF]. Although it was reported that ABC algorithm owns wonderful performance, the randomness of the searching equation brings about the strong exploration and weak exploitation. Thus it's necessary to find a balance between the two contradictory aspects for the original ABC algorithm.

To improve the exploitation performance of ABC algorithm, many researchers have concentrated on the study of searching strategies as they can control the balance between exploration and exploitation. Nowadays, there are two approaches mostly preferred by the researchers to improve the existing ABC algorithm, known as hybridization and modification.

Introduction

The In this chapter, to enhance the exploration and the exploitation abilities, the above mentioned two approaches (hybridization and modification) are both considered together. As a result, a modified artificial bee colony algorithm, called mABC algorithm, is put forward. Namely, in terms of modification, two new searching equations based on the chaotic map, adaptive parameter updating law and elite learning strategy are proposed respectively. In terms of hybridization, the opposite-based learning mechanism is added to be hybridized with the modified ABC algorithm. Then, the proposed mABC algorithm is applied to the
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parameter identification of nonlinear FOMASs.

The rest of this chapter is organised as follows. In Section 6.2, the proposed mABC algorithm is introduced. In Section 6.3, the problem formulation for parameters identification is described based on mABC algorithm. In Section 6.4, experiment results are provided. Finally, conclusions are given.

The proposed mABC algorithm

Based on the original ABC algorithm introduced in Subsection 4.3.2 in Chapter 4, in order to make well balance between exploration and exploitation abilities, in this section, the mABC algorithm is put forward. In the mABC algorithm, two novel searching equations are designed based on the chaotic map, adaptive parameter updating law and elite learning strategy. Then to further avoid premature, the opposite-based learning is utilised based on a perturbation rate.

Chaos map-based random parameter generator

Most of the random parameters appeared in AIOAs are generated by uniform or Gaussian distribution. Currently, due to the pseudo-randomness of the chaotic maps, the random parameters can be replaced with chaotic maps for the purpose of utilizing their nice statistical performance [START_REF] Yousri | Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in Permanent Magnet Synchronous Motor[END_REF]. In this chapter, the Logistic map is used, which is described as 6.2 The proposed mABC algorithm

z k+1 = az k (1 -z k ), a = 4. ( 6 

Opposition-based generation jumping

Opposition-based learning (OBL), as a new scheme for machine intelligence, has been widely applied to AIOAs to improve their performance [START_REF] Tizhoosh | Opposition-based learning: a new scheme for machine intelligence[END_REF], the consideration of the opposite point of the current point is the core of OBL.

Denote a current point as

X = (x 1 , x 2 , • • • , x D ), where x j ∈ R and x j ∈ [a j , b j ]. The opposite point V = (v 1 , v 2 , • • • , v D ) is defined by v j = a j + b j -x j .
Different from OBL, the opposition-based generation jumping (OGJ) generates the opposite point dynamically along with searching process. The opposite value of each variable will be generated as ox i,j = x P min (j) + x P max (j) -x i,j , (6.2) where x P min (j) and x P max (j) are the minimum and maximum values of the jth variable in the current population P respectively.

Two new searching equations

New searching equation for employed bees: Inspired by the mutation operator of DE, a modified searching equation is proposed as

V i = X r1 + ch(X r2 -X r3 ), (6.3) 
where r1, r2, r3 (r1 = r2 = r3 = i) are three different indexes chosen randomly from {1, 2, • • • , SN/2}, ch is a random value generated based on Eq. (6.1).

Then the OGJ is conducted under the perturbation or jumping rate (J r ) which is described in Subsection 6.2.2. Thus, the combinatorial searching strategy in the employed bees phase can be given as (6.4) where X P min = (x P min (1), x P min (2), • • • , x P min (D)) and X P max = (x P max (1), x P max (2), • • • , x P max (D)). New searching equation for onlooker bees: Since Eq. ( 6.3) pays more emphasis on the exploration, to enhance the exploitation performance, the following searching equation based on adaptive elite learning strategy is proposed

V i = X r1 + ch(X r2 -X r3 ), if rand > Jr, X P min + X P max -X i , otherwise , 
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as

V i = X r1 + η(t)(X best -X r2 ), (6.5) η(t) = (ξ max -ξ min ) • 1 - t T + ξ min , (6.6)
where X best represents the best solution obtained so far, r1 and r2 denote two different indexes chosen randomly from {1, 2, • • • , SN/2}. t and T represent the current and total iterations in respect. In Eq. (6.5), with the help of the best-sofar solution X best , Eq. ( 6.5) focuses more on the exploitation ability, which can compensate the disadvantage of Eq. (6.3). In addition, the adaptive parameter adjusting law in Eq. (6.6) is employed. From Eq. ( 6.6), it can be found that at the early iteration process, the value of η(t) is large, so the searching direction is more toward the best-so-far solution, which can enhance the searching speed.

As the iteration increases, the value η(t) decreases gradually, the influence of the best-so-far solution weakens at the same time, which can avoid premature.

Then the OGJ is also considered under the perturbation or jumping rate (J r ).

The combinatorial searching strategy in the onlooker bees phase can be written as

V i = X r1 + η(t)(X best -X r2 ), if rand > Jr, X P min + X P max -X i , otherwise . 
(6.7)

The proposed mABC algorithm

Under above discussion, the mABC algorithm is put forward. In mABC algorithm, two novel searching equations are put forward based on the chaotic maps, adaptive parameter adjusting law and elite learning strategy. Then the oppositebased learning is utilised based on a perturbation rate. The main process of the mABC algorithm is given as follows. After initialization, the following searching process is repeated. Firstly, the employed bees use the new combinatorial searching strategy (6.4) to produce the novel candidate solutions. Then greedy selection is employed. When all the employed bees finish the tasks, the probability p i (i = 1, 2, • • • , SN/2) are calculated using (4.9). Then, each onlooker bee selects a food position with p i , the new combinatorial searching strategy (6.7) is employed to produce the new candidate solutions. Then the greedy selection is 6.3 The proposed mABC algorithm-based parameter identification approach conducted again. Finally, the scout process is called. Then, the algorithm goes back to the employed bee phase and repeat the loop until stop condition is met.

The main flowchart of the mABC algorithm is shown in Algorithm 4.

6.3

The proposed mABC algorithm-based parameter identification approach

Problem formulation for the parameter identification

In order to identify the parameters of unknown FOMASs, consider the original systems as

x (α) i (t) = f (x i (t), θ), i ∈ N ∪ {0}, (6.8) 
where the fractional order α ∈ (0, 1], θ = (θ 1 , θ 2 , • • • , θ m ) are the system parameters; x i (t) ∈ R n are the ith agent's state; f (x i (t), θ) ∈ R n is the intrinsic nonlinearity.

Consider the identified systems as

x(α) i (t) = f (x i (t), θ), i ∈ N ∪ {0}, (6.9) 
where α is the identified fractional order, θ = ( θ1 , θ2 , • • • , θm ) T denotes the identified system parameters, xi (t) ∈ R n denotes the state of systems (6.9). Besides, systems (6.8) and (6.9) have the same initial conditions.

To identify FOMASs (6.8), it is converted into the following functional optimization model as (6.10) where K is the size of the sampling data. x ik and xik represent respectively the ith agent's state of systems (6.8) and (6.9) at time kh, where h is the step size [START_REF] Diethelm | A predictor-corrector approach for the numerical solution of fractional differential equations[END_REF]. Ω denotes the searching space for α, Ã and θ. Therefore,

J i ( αθ ) = arg min (α, θ)∈Ω F i = arg min (α, θ)∈Ω K k=1 x ik -xik , i ∈ N ∪ {0},
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Algorithm 4 Framework of the mABC algorithm [START_REF] Hu | Parameters estimation using mABC algorithm applied to distributed tracking control of unknown nonlinear fractional-order multi-agent systems[END_REF] 1:

Step 0) Predefine some parameters: SN (population size number), D (searching dimension), LOW ER (lower bound), UP P ER (upper bound), limit (control parameter), MCN (maximum cycle number), trail = 0.

2:

Step 1) The population initialization phase:

3:

Step 1.1) Randomly generate 0.5 * SN points in the search space to form an initial population via Eq. (4.7).

4:

Step 1.2) Evaluate the objective function values of population.

5:

Step 1.3) cycle=1;

6:

Step 2) The employed bees phase:

7:

For i = 1 to 0.5 * SN do 8:

Step 2.1) 9:

Step 2.1.1) Generate a candidate solution V i by Eq. (6.4).

10:

Step 2.1.2) Evaluate f (V i ).

11:

Step

2.2) If f (V i ) < f (X i ), set X i = V i , otherwise, set trial i = trial i +1.
12:

End For

13:

Step 3) Calculating the probability values p i by Eq. (4.9), set t = 0, i = 1.

14:

Step 4) The onlooker bees phase: Step 4.1)

17:

If rand(0, 1) < p i 18:

Step 4.1.1) Searching the candidate solution V i via Eq. (6.7).

19:

Step 4.1.4) Set t = t + 1.

20:

End If

21:

Step 4.2) Set i = i + 1, if i = 0.5 * SN, set i = 1.

22:

End While

23:

Step 5) The scout bees phase:

24:

If max(trial i ) > limit, replace X i with a new candidate solution generated via Eq. (4.7).

25:

Step 6) Set cycle = cycle + 1, and if cycle > MCN, then stop and output the best solution achieved so far, otherwise, go to Step 2.

Experimental setup and results

FOMASs (6.8) can be identified by searching suitable α, Ã and θ in the region Ω by minimizing function (6.10).

The mABC algorithm-based parameter identification approach

Using the proposed mABC algorithm introduced in Section 6.2, and the function optimization model (6.10), the following mABC algorithm-based parameter identification approach is presented as Algorithm 5.

Algorithm 5 mABC algorithm-based parameter identification scheme 1: Initialize parameters for Algorithm 4 and FOMASs (6.9)

2: Produce the initial population in the feasible region Ω defined in Subsection 6.3.1

3: repeat 4:

Optimize the function (6.10) with employed bees based on (6.4)

5:

Optimize the function (6.10) with onlooker bees based on (6.7)

6:

Optimize the function (6.10) with scout bees based on (4.7)

7: until Maximum iteration is met 8: Return the best parameter identification values 6.4 Experimental setup and results

Experimental setup

To test the efficiency of the proposed scheme, the FOMASs modeled with five typical fractional-order chaotic systems are treated as the standard benchmarks which are described in (6.11)-(6.15). Nowadays, these nonlinear systems have been widely utilized as benchmarks for investigations of parameter identification with different algorithms by lots of researchers [START_REF] Ahandani | Parameter identification of chaotic systems using a shuffled backtracking search optimization algorithm[END_REF][START_REF] Lin | Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm[END_REF][START_REF] Sheng | Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm[END_REF]Wei et al., 2018).
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Example 6.1 The FOMASs are modeled with fractional-order Chua's circuit as

     x (α) i1 (t) = p 1 (x i2 (t) -g(x i1 (t))), x (α) i2 (t) = x i1 (t) -x i2 (t) + x i3 (t), x (α) i3 (t) = -p 2 x i2 (t), (6.11 
)

where i = 0, 1 • • • , N, g(x i1 (t)) = m 1 x i1 (t) + 1 2 (m 0 -m 1 )(|x i1 (t) + 1| -|x i1 (t) -1|), α = 0.97, p 1 = 10, p 2 = 14.7, m 0 = -0.144, m 1 = 0.256.
Example 6.2 The FOMASs are modeled with fractional-order Rössler system as

     x (α) i1 (t) = -(x i2 (t) + x i3 (t)), x (α) i2 (t) = x i1 (t) + ax i2 (t), x (α) i3 (t) = b + x i3 (t)(x i1 (t) -c), (6.12) where i = 0, 1 • • • , N, α = 0.90, a = 0.4, b = 0.2, c = 10.
Example 6.3 The FOMASs are modeled with fractional-order financial system as (6.13) where

     x (α) i1 (t) = x i3 (t) + x i1 (t)(x i2 (t) -a), x (α) i2 (t) = 1 -bx i2 (t) -x 2 i1 (t), x (α) i3 (t) = -x i1 (t) -cx i3 (t),
i = 0, 1 • • • , N, α = 0.95, a = 3, b = 0.1, c = 1.
Example 6.4 The FOMASs are modeled with fractional-order Lorenz system as (6.14) where i = 0, 1 • • • , N, α = 0.99, a = 10, b = 8/3, c = 28. Example 6.5 The FOMASs are modeled with fractional-order neural networks as

     x (α) i1 (t) = a(x i2 (t) -x i1 (t)), x (α) i2 (t) = cx i1 (t) -x i2 (t) -x i1 (t)x i3 (t), x (α) i3 (t) = -bx i3 (t) + x i1 (t)x i2 (t),
     x (α) i1 (t) = a 1 x i1 (t) + b 11 tanh(x i1 (t)) + b 12 tanh(x i2 (t)) + b 13 tanh(x i3 (t)), x (α) i2 (t) = a 2 x i2 (t) + b 21 tanh(x i1 (t)) + b 22 tanh(x i2 (t)) + b 23 tanh(x i3 (t)), x (α) i3 (t) = a 3 x i3 (t) + b 31 tanh(x i1 (t)) + b 32 tanh(x i2 (t)) + b 33 tanh(x i3 (t)),
(6.15)

Experimental setup and results

where

i = 0, 1 • • • , N, A = diag{a 1 , a 2 , a 3 } = -I 3 , B = [b ij ] 3×3 =    2 -1.2 0 1.8 1.71 1.15 -4.75 0 1.1    .
In the following experiments, to show convinced results, the mABC algorithm is compared with the standard ABC and some other typical AIOAs, such as DE [START_REF] Storn | Differential evolutionâĂŞa simple and efficient heuristic for global optimization over continuous spaces[END_REF], PSO [START_REF] Eberhart | Comparing inertia weights and constriction factors in particle swarm optimization[END_REF] and CS [START_REF] Yang | Cuckoo search via LÃľvy flights[END_REF].

In order to execute the same function evaluation numbers, the population size are all set as SN = 100, To calculate the objective function, the K = 100 and h = 0.01. 30 runs are conducted for each algorithm in each example, and all runs are stopped when the predefined iteration T is met. Some other special parameters of the compared algorithms and identified FOMASs are set as Tables 6.1 and 6.2 respectively. Here, the homogeneous FOMASs are considered, therefore we just need to randomly choose one agent to identify. 

Parameter identification results

To illustrate the superiority of the proposed mABC algorithm, firstly the mean value of the identified parameters with 30 times and the corresponding relative errors are given, and the mean objective function values and the standard derivation are also provided, which can be found in Tables 6.3-6.7. Tables 6.3-6.7

show the identified parameter values obtained by the proposed mABC algorithm are more accurate, the relative errors obtained with mABC algorithm are much smaller than those obtained by other algorithms, and the standard derivation of the mABC algorithm is much smaller than others, which shows that the mABC algorithm is more robust than others. Secondly, Fig. Objective function values To further evaluate the performance of mABC algorithm, Wilcoxon signed 6.4 Experimental setup and results 

Conclusion

In this chapter, the parameter identification of unknown nonlinear FOMASs is addressed based a modified ABC algorithm. Firstly, the mABC algorithm is put forward. Then it is applied to identify the unknown parameters of the nonlinear FOMASs, where the parameter identification is converted into a functional optimization issue. Finally, experimental results demonstrate that the proposed mABC-based parameters identification approach owns higher accuracy, stronger robustness and faster searching speed than other compared algorithms. Fourthly, the results obtained above assume that the control input of a leader is either equal to zero or available to all the followers, which has some limitations and lacks flexibility. More specifically, for the purpose of leading the followers to achieve special tasks, the leader's input need to be nonzero or time-varying. Besides, the controller gains may be heterogenous due to imperfect implementation. Fourthly, different from most results, where the differential orders are assumed to be known, while in this Chapter, differential orders and system parameters are both considered to be unknown, and a DE-based parameter estimation method is proposed to identify the unknown parameters of the delayed heterogenous nonlinear FOMASs.

Fifthly, in Chapter 4, an efficient ABC algorithm is used to identify the unknown FOMASs. In Chapter 5, the DE algorithm is selected to identify the unknown FOMASs. However, although the AIOAs, such as ABC and DE, have demonstrated superior features compared to other traditional methods, there is no specific algorithm that can achieve the best solution for all optimization problems. Namely, as far as most algorithms are concerned, it is difficult to simultaneously manage the tradeoff between exploration and exploitation successfully for all the optimization problems. Similarly, there are no exceptions for ABC and DE. Therefore, in Chapter 6, to enhance the exploration and the exploitation abilities, a hybrid adaptive artificial bee colony algorithm, named as mABC, is put forward. Then, the proposed mABC algorithm is applied to the parameters identification of nonlinear FOMASs, experiment results demonstrate that the proposed mABC algorithm can identify the unknown parameters more accurately, efficiently and robustly. Compared with the existing works, our contribution are as follows. Firstly, a novel modified ABC algorithm is proposed.

Secondly, a novel parameter identification scheme based on the modified ABC algorithm is put forward. Thirdly, non-parametric statistic tests are employed to demonstrate the performance of the proposed algorithm.

Future works

The following directions will be explored in the future

• This thesis mainly investigates the continuous-time fractional-order multiagent systems (FOMASs) by using the Caputo fractional-order derivative

CONCLUSIONS AND PERSPECTIVES

as the initial conditions of the Caputo fractional-order differential equations are the same with those of the integer-order one, which is more reasonable in practice. To the best of authors' knowledge, for the study of the discretetime FOMASs, few results have been reported where only the Grünwald-Letnikov fractional-order derivative has been used because of definition of fractional order derivative [START_REF] Shahamatkhah | Leader-following consensus of discrete-time fractional-order multi-agent systems[END_REF][START_REF] Wyrwas | Fractional discretetime consensus models for single-and double-summator dynamics[END_REF]. In the authors' future works, the authors will try to extend their results to the discrete-time versions.

• The proportional-integral-derivative (PID) controller is perhaps the most widely used controller in the world, it is easy to design and implement and has been applied well in most control systems. While control theory has been developed significantly, the PID controllers are used in a wide range of process control, motor drives, magnetic and optic memories, automotive control, flight control, instrumentation, and so on. In industrial applications, more than 90% of all control loops are PID type. Besides, Podlubny proposed a generalization of the PID controller, namely the fractional-order PID controller (FOPID or PI λ D δ ), where λ and δ are integers. However, it is difficult and complicated to design the FOPID controller by analytical method because of using fraction calculus. In the future, we plan to use the AIOAs for tuning of FOPID controller in the distributed coordination of FOMASs.

• As we have mentioned before, there is no specific AIOAs that can achieve the best solution for all optimization problems. Therefore, we will continue to improve the existing AIOAs to manage the tradeoff between exploration and exploitation.

• Note that most existing results are focus on the fixed communication topology, constant time delays. In the future, we will try to extend our results to switched communication topology, and time-varying time delays.

• Our obtained results mainly focus on the the theoretical aspects. Only the numerical simulations have been conducted to test the effectiveness of our results. In the future, we plan to verify our results using a practical experimental platform. Abstract: This thesis deals with the parameter identification from the viewpoint of optimization and distributed tracking control of fractional-order multi-agent systems (FOMASss) considering time delays, external disturbances, inherent nonlinearity, parameters uncertainties, and heterogeneity under fixed undirected/directed communication topology. Several efficient controllers are designed to achieve the distributed tracking control of FOMASss successfully under different conditions. Several kinds of artificial intelligence optimization algorithms and their modified versions are applied to identify the unknown parameters of the FOMASss with high accuracy, fast convergence and strong robustness. It should be noted that this thesis provides a promising link between the artificial intelligence technique and distributed control.

Keywords: Parameter identification, artificial intelligence optimization, distributed consensus tracking/leader-following consensus/synchronization, time delays, external disturbances, nonlinear dynamics, unknown parameters, heterogeneity.
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  Fig. 1.1. Examples of multi-agent systems in practice applications

  Fig. 1.2. Two approaches for controlling MASs.

  was found in a letter by the famous mathematician Leibniz in 1695 to Guillaume de l'Hôpital. As far as the existence of such a theory was concerned, the foundation of the subject was laid by Liouville in a paper from 1832.
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 3 Fig. 1.3. The important scientists in the history of fractional calculus.
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 14 Fig. 1.4. Leaderless consensus problem

Follower

  Fig. 1.6. Containment consensus problem

  topology was studied, where the state fractionalorder derivative was introduced into the existing traditional leaderless consensus protocol and the communication channels with time delay and without time delay cases were considered. In Zhu et al. (2017), under fixed directed communication topology, the leaderless consensus of FOMASs with general linear and nonlinear dynamics under input delay was investigated by evaluating the error states. In Liu et al. (2018b,d,e), leaderless consensus of single/double/high-order integrator FOMASs with nonuniform input delays was investigated respectively, where the FOMASs with symmetric time delays under fixed undirected communication topology and FOMASs with asymmetric time delays under fixed directed communication topology were considered. In Liu et al. (2018c), a state derivative feedback was added into the designed control protocol and the leaderless consensus of FOMASs with symmetric time delays under fixed undirected communication topology and FOMASs with asymmetric time delays under fixed directed communication topology was studied. In Liu et al. (2018f), leaderless consensus of a double integrator FOMASs containing two state variables with different fractional orders was researched under symmetric time delays with fixed undirected communication topology and asymmetric time delays with fixed directed communication topology. In Liu et al. (2019e), leaderless consensus of nonlinear FOMASs with self state time delay was investigated under fixed directed communication topology by employing the fractional Razumikhin theorem and linear matrix inequalities. In Shi et al. (2019b), leaderless consensus of a class of linear FOMASs with input time delay was studied under fixed directed communication topology.

  investigated the leader-following consensus of single/double integrators FOMASs with inherent nonlinearities under fixed undirected/directed communication topology, where 1.2 Overview of distributed coordination of FOMASs different kinds of Lyapunov functions were constructed. Based on the Lyapunov indirect method, Ye & Su (2019) studied the leader-following consensus of general linear FOMASs with inherent nonlinearities under fixed directed communication topology, where the explicit solution of the tracking errors system was solved and evaluated by utilizing the Mittag-Leffler function, the Laplace transform, and the inequality technique.

(

  2018); Wang & Yang (2017a) studied the leader-following consensus of FOMASs via centralized/distributed event-triggered control respectively, where the agents were modeled as single integrator dynamics with nonlinearities or general linear system. Based on evaluating the explicit solution of the errors systems, Ye & Su (2018); Ye et al. (2018) investigated the leader-following consensus of general linear FOMASs without/with input delay via distributed event-triggered control over fixed undirected/directed communication topologies. By using the generalized Nyquist stability criterion, over fixed directed communication topology, a necessary and sufficient condition for the observer tracking consensus of the second-order leader systems via periodic sampled-based event-triggered control was derived in Wang et al. (2018a).

  , over fixed undirected communication topology, leader-following exponential consensus of nonlinear FOMASs with hybrid time-varying delay was investigated by a heterogenous impulsive control. In Ma et al. (2018), over fixed directed communication topology, leader-following consensus of nonlinear FOMASs was investigated through distributed impulsive control. All the above works are concerned with the continuous-time FOMASs, while some results about the discrete-time FOMASs have been obtained using the Grünwald-Letnikov fractional derivative definition. For example, Shi & Zhang (2015) studied the leader-following consensus of discrete-time FOMASs with sampling delay by using Hermite-Biehler theorem and the change of bilinearity under symmetrical and directly weighted networks. Girejko et al. (2018); Shahamatkhah & Tabatabaei (2018); Wyrwas et al. (2018) addressed the leader-following consensus of single/double summator FOMASs over fixed communication topology. Adaptive strategies are also utilised in the leader-following consensus of FOMASs. For examples, in Gong (2016), leader-following consensus of nonlinear FOMASs with adaptive feedback control protocols was studied over fixed directed communication topology. Soorki & Tavazoei (2014) presented an adaptive controller to achieve consensus tracking of general linear FOMASs over fixed directed communication topology. Yu et al. (2015) studied the leader-following consensus of general linear FOAMSs without/with nonlinearities via adaptive pinning 1. INTRODUCTION control over fixed directed communication topology. Zhang et al. (2018b) addressed the group multiple lag consensus of leader-following nonlinear FOMASs via adaptive control over fixed directed communication topology. In addition, Bai et al. (2017c) investigated the distributed consensus tracking of linear/nonlinear FOMASs based on the sliding mode control method over fixed undirected communication topology.

  , over fixed directed communication topology, the containment control problem of nonlinear FOMASs was addressed by using the fractional-order Lyapunov function method. In Yang et al. (2018), containment control of single integrator FOMASs without/with time delays was analyzed in a directed/undirected communication topology by using Laplace transform and frequency domain theorem. In Liu et al. (2019b), over fixed directed communication topology, periodic sampling-data control was applied to the containment control of FOMASs, where single integrator FOMAS without/with time delays and double integrator FOMASs were considered. In Yang et al. (2019a), containment control of FOMAS without/with input delays under fixed directed weighted communication topology was studied by applying frequency domain analysis theory, where the FOMASs were formulated with diverse dynamical equations. In Yuan et al. (2019), observer-based quasi-containment 1.2 Overview of distributed coordination of FOMASs of general linear FOMASs was investigated via event-triggered control strategy based on fixed directed communication topology.
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 7 Fig. 1.7. Formation producing problem

  , formation producing of single integrator or double integrators FOMASs in the case of relative damping and nonuniform time-delays was studied respectively, where symmetric time-delays and relative damping were studied under an undirected network topology, and asymmetric time-delays and relative damping were studied under a directed network topology. Besides, different from the above mentioned literatures considering the time-invariant formation control, in Gong et al. (2019), observer-based time-varying formation producing of general linear FOMASs was investigated over fixed and switching directed communication topologies.

9 .

 9 Fig. 1.9. The general principle of parameter identification by AIOAs

Fig. 1 .

 1 Fig. 1.10. A fixed undirected communication topology with one leader v 0 and four followers v i (i = 1, • • • , 4)

1. 5

 5 Contributions and outline of dissertation communication are usually unavoidable. External disturbances can easily lead to instability or bad performance. Therefore, in this Chapter, over fixed undirected communication topology and based on the fractional Lyapunov direct method, the distributed consensus tracking of nonlinear FOMASs with external disturbances is addressed. Firstly, a nonlinear discontinuous distributed control protocol is put forward to solve the distributed consensus tracking when some conditions are satisfied. Secondly, a nonlinear continuous distributed control algorithm is further proposed to suppress the chattering behavior of the discontinuous controller, where the upper bound of the tracking error is uniformly ultimately bounded and can be made small enough by choosing the parameters properly. Finally, some simulations are provided to validate the advantages of the obtained results. Compared with the existing results, There are four main differences. Firstly, different from the most results studying the integer-order models, the MASs with fractional dynamics are studied. Secondly, in contrast with most results about the consensus tracking of FOMASs without considering the external disturbances, the external disturbances are considered into the FOMASs in this Chapter. Thirdly, different from most results where the style of the external disturbances are known, in this Chapter we do not known the style of the external disturbances beforehand.

layed

  MASs have been obtained, which can be referred to[START_REF] Ni | Fixed-Time Leader-Following Consensus for Second-Order Multiagent Systems With Input Delay[END_REF];[START_REF] Shariati | A descriptor approach to robust leaderfollowing output consensus of uncertain multi-agent systems with delay[END_REF];[START_REF] Wang | Self-Triggered Leader-Following Consensus of Multi-Agent Systems with Input Time Delay[END_REF];[START_REF] Wang | Exponential Consensus for Nonlinear Multi-Agent Systems with Communication and Input Delays via Hybrid Control[END_REF]. Some results about the consensus of delayed FOMASs have been obtained(Shen & Cao, 2012; Yang et al., 2014a;[START_REF] Zhu | Consensus of fractional-order multiagent systems with input time delay[END_REF]. However, most of the works inShen & Cao (2012); Yang et al. (2014a); Zhu et al. (2017) mainly deal with the leaderless consensus of delayed FOMASs. For leader-following consensus of delayed FOMASs with heterogenous fractional orders between leader and followers, little research has been done.

  and all the eigenvalue µ i of M have positive real part based on Lemma 1.1, therefore all the characteristic roots of the characteristic equation (2.23) are nonzero. Then let F (s) = det(I N + s -β γΛ(s)M), in the next step, we will proof all the zeros of F (s) = 0 are on the left half plane.

  Fig. 2.2. Graph Ḡ for case 1

  Fig. 2.6. Relationship between the upper bound of the input delay and the followers' derivative order

Fig. 2 . 7 .

 27 Fig. 2.7. State trajectories of leader-follower consensus for case 2 under identical input delays

  Fig. 2.9. Relationship between the upper bound of the input delay and the control gain

3 .

 3 DISTRIBUTED CONSENSUS TRACKING OF NONLINEAR FOMASS WITH EXTERNAL DISTURBANCES BASED ON NONLINEAR ALGORITHMSperformance. Thus, for the study of MASs, taking the external disturbances into account is much more important and significant. In recent years, many results about the mentioned topics have been developed. For instance, in[START_REF] Yu | Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode[END_REF], consensus of second-order MASs with disturbances was studied based on integral sliding mode. InLiu et al. (2017a), a discontinuous observer was proposed to solve the consensus of MASs with external disturbances. InDong & Wang (2018), a distributed observer was designed for the consensus of nonlinear MASs with unknown external disturbance. However, most existing results are only based on the integer-order MASs, few results have been obtained by considering the external disturbances into the FOMASs. InYang et al. (2014a), consensus of FOMASs with external disturbance was studied, where the external disturbance was generated with a fractional linear systems. In[START_REF] Ren | Robust consensus of fractional multi-agent systems with external disturbances[END_REF], 2017b), consensus problem for linear and nonlinear FOMASs with external disturbances was investigated based on linear control protocol, where the control performances were not satisfying. Therefore, in order to improve the consensus performance of the FOMASs with external disturbances, it is very significant and promising to investigate the consensus problem of FOMASs with nonlinear control algorithms, which can accelerate the convergence speed and achieve a better convergence effect[START_REF] Bibliography Bai | Distributed consensus tracking for the fractional-order multi-agent systems based on the sliding mode control method[END_REF].Note that most of the results for the consensus of FOMASs mentioned above are mainly based on single or double integrator systems. In practice, more complicated intrinsic dynamics may exist in mobile agents. However, due to the complexity of the FOMASs, stability of the nonlinear FOMASs is difficult to be verified. InLi et al. (2010a) and Duarte-Mermoud et al. (2015), the Lyapunov direct method for fractional-order systems has been investigated, where an efficient tool was proposed to verify the stability problem. But it is still difficult to design an ideal Lyapunov candidate function for the FOMAs due to the existence of the communication topology. Based on the above discussions, the distributed consensus tracking of nonlinear FOMASs with external disturbances is investigated based on nonlinear algorithms. Firstly, a nonlinear discontinuous control protocol is put forward to deal with the distributed consensus tracking problem. Then, in order to eliminate the chattering phenomenon resulting from the discontinuity, a nonlinear continuous distributed algorithm is further designed to make the tracking error 3.2 Problem formulation asymptotically converge to a bounded set which is given clearly and can be made small enough through selecting the parameters appropriately. Compared with the existed results, There are four main differences. Firstly, different from Dong & Wang (2018); Liu et al. (2017a); Sun et al. (2016); Yu & Long (2015), the MASs with fractional dynamics are studied. Secondly, in contrast with Bai et al. (2017b); Cao & Ren (2010); Gong (2017); Sun et al. (2011); Yu et al. (2017b); Zhu et al. (2017), the external disturbances are considered into the FOMASs. Thirdly, different from Yang et al. (2014a), in this chapter we do not known the style of the external disturbances beforehand. What is more, different from Ren & Yu (2016, 2017b) where a linear control protocol was used, we propose two effective nonlinear control algorithms.The rest of this chapter is organised as follows. In Section 3.2, the problem formulation is introduced. In Sections 3.3, to deal with the distributed consensus tracking of nonlinear FOMASs with external disturbances, a nonlinear discontinuous and continuous control algorithms are given respectively. In Section 3.4, several simulation results are performed to validate the proposed controllers. Finally, a short conclusion is drawn in Section 3.5.
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 3 DISTRIBUTED CONSENSUS TRACKING OF NONLINEAR FOMASS WITH EXTERNAL DISTURBANCES BASED ON NONLINEAR ALGORITHMS Definition 3.1 The distributed consensus tracking for MASs (3.1) and (

Assumption 3 . 2

 32 The communication topology Ḡ among the followers and leader is undirected and connected. Assumption 3.3 The nonlinear function f is continuous and satisfies the following local Lipschitz condition

Theorem 3 . 5 (

 35 [START_REF] Hu | Parameters estimation using mABC algorithm applied to distributed tracking control of unknown nonlinear fractional-order multi-agent systems[END_REF] Suppose that Assumptions 3.2-3.4 hold, if a > λmax(A+A T )+2l 2λ min ( M )

( 3 . 15 )

 315 Because a > λmax(A+A T )+2l 2λ min ( M ) , i.e. 2aλ min ( M ) -λ max (A + A T ) -2l > 0, thus based on Lemma 1.16, the tracking error dynamics (3.7) is asymptotically stable.Therefore, the distributed consensus tracking problem is achieved in systems(3.1) and (3.2) with the control protocol(3.5).

  ) and d i > 0 (i = 1, 2, • • • , N) are small constants, denoting the widths of the boundary layers. y i = N j=0 a i,j (x i -x j ), a, β are positive constant coupling gains. Theorem 3.6 (Hu et al., 2019e) Suppose that Assumptions 3.2-3.4 hold, the tracking errors of nonlinear FOMASs (3.1) and (3.2) are uniformly ultimately bounded (UUB) under the nonlinear continuous control algorithm (3.16), if a > λmax(A+A T )+2l 2λ min ( M )

Corollary 3 . 7

 37 .35) Thus, one can obtain from Eq. (3.35) that tracking error e x asymptotically converges to the bounded set D in Eq. (3.14). If the widths d i of the boundary layers are the same, i.e., d 1 = d 2 = • • • = d N = d, the bounded set can be simplified as D = e x : e x 2 ≤ 2(β + ρ)Nd λ min ( M ) 2aλ min ( M ) -λ max (A + A T ) -2l . (3.36) Remark 3.8 In virtue of Eqs. (3.14) and (
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 5 Fig. 3.1. The communication topology with one leader and five followers

Fig. 3 . 3 .

 33 Fig. 3.2. State trajectories of FOMASs (3.1) and (3.2) by control algorithm(3.5) 

Fig. 3 . 5 .

 35 Fig. 3.5. State trajectories of FOMASs (3.1) and (3.2) by control algorithm (3.16) with d i = 0.2

( d )Fig. 3 . 7 .

 d37 Fig. 3.6. Phase portraits for all agents (i = 0, 1, • • • , 5) by control algorithm (3.16) with d i = 0.2

  State trajectories of x i1 (i = 0, 1, • • • , 5)

Fig. 3 . 8 .3

 38 Fig. 3.8. State trajectories of FOMASs (3.1) and (3.2) by control algorithm (3.16) with d i = 2

Fig. 3 . 10 .3. 5 Conclusion

 3105 Fig. 3.10. Control inputs for control algorithm (3.16) with d i = 2

  Firstly, compared with Cui et al. (2017);[START_REF] Li | Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint[END_REF];[START_REF] Ma | Synchronization of multi-agent stochastic impulsive perturbed chaotic delayed neural networks with switching topology[END_REF];[START_REF] Ma | Exponential synchronization of nonlinear multi-agent systems with time delays and impulsive disturbances[END_REF] concerning the integer-order MASs, the delayed MASs with fractional-order dynamics, external disturbances are considered. Secondly, different fromShen & Cao (2012);Yang et al. (2014a) with linear case, the time delay under nonlinear4. DISTRIBUTED CONSENSUS TRACKING OF UNKNOWN NONLINEAR DELAYED FOMASS WITH EXTERNAL DISTURBANCES BASED ON ABC ALGORITHMcase is further investigated. Thirdly, in[START_REF] Ren | Robust consensus of fractional multi-agent systems with external disturbances[END_REF];Yang et al. (2014a), the authors only considered the external disturbances, but have not taken the time delays into account. Fourthly, all the results mentioned above are supposed that the fractional orders and system parameters of the nonlinear FOMASs are known beforehand, while in this chapter the parameters are considered to be unknown, and the ABC algorithm is employed to identify the unknown parameters of the unknown delayed FOMASs. Furthermore, it should be pointed out that this chapter provides a promising link between the AI technique and distributed cooperative control of FOMASs.The rest of this chapter is arranged as below. In Section 4.2, the description of consensus tracking problem is given. In Section 4.3, an ABC algorithm-based parameter identification scheme for unknown nonlinear delayed FOMASs is proposed. In Section 4.4, based on the identified parameters, two efficient nonlinear control protocols are put forward to solve the consensus tracking problem. Finally, the efficiencies of the proposed ABC algorithm-based parameter identification method and the designed control algorithms are both verified based on the simulation experiments.

5

 5 The communication topology Ḡ among the followers and leader is undirected and connected.

  sents the state vector for identified systems (4.5), C = [c ij ] n×n , Ã = [ã ij ] n×n and B = [ bij ] n×n are the corresponding matrices of identified system.

4. 3

 3 ABC algorithm-based parameter identification scheme for FOMASs predesigned for parameters α, C, Ã and B. Thus, the unknown parameters of FOMASs (4.4) can be identified through finding suitable α, C, Ã and B in the searching space Ω along with the minimization of objective function (4.6).

  eters C, A, B of the unknown FOMASs (4.4) are identified as ᾱ, C = [ Cij ] n×n , 4.4 Distributed consensus tracking of FOMASs based on ABC algorithm Algorithm 1 Framework of the standard ABC algorithm 1:

7 :

 7 4. DISTRIBUTED CONSENSUS TRACKING OF UNKNOWN NONLINEAR DELAYED FOMASS WITH EXTERNAL DISTURBANCES BASED ON ABC ALGORITHM Algorithm 2 ABC algorithm-based parameter identification scheme 1: Initialize the parameters for Algorithm 1 and FOMASs (4.5) 2: Generate the initial population in the feasible domain Ω defined in subsection 4until Maximum iteration is met 8: Return the best parameter identification values Ā = [ā ij ] n×n and B = [ bij ] n×n , then the dynamics of N ≥ 1 followers can be modeled as

  x

  = -Cx 0 (t) + Āf (x 0 (t)) + Bf (x 0 (t -τ )), (4.11) where ᾱ, C = [ā ij ] n×n , Ā = [ā ij ] n×n and B = [ bij ] n×n are the corresponding estimated values. Other definitions in (4.10) and (4.11) are the same as those of (4.1) and (4.2).

  = -(I N ⊗ C)e x + (I N ⊗ Ā)e f + (I N ⊗ B)e fτ + u(t) + w(t). (4.12) According to Assumption 4.5, v 0 is a global reachable node. Let M = L+B = [m ij ] N ×N , then matrix M is positive definite based on Lemma 1.1. Given the identified FOMASs (4.10) and (4.11), two kinds of distributed con-4.4 Distributed consensus tracking of FOMASs based on ABC algorithm trollers are designed to deal with the consensus tracking issue.

  (2015); Chen et al. (2015b); Lakshmanan et al. 4.4 Distributed consensus tracking of FOMASs based on ABC algorithm (2018); Vaseghi et al. (2017); Zhang et al. (2018a), in this chapter, to prove the efficiency of the proposed synchronization controller in theory, the design of the Lyapunov function should depend on the graph communication topology, which is full of challenge due to the structure of the graph.

M

  -(I N ⊗ C)e x + (I N ⊗ Ā)e f + (I N ⊗ B)e fτ -ay -β H(y) + w(t) .

  4.50) which can be made small enough by choosing proper parameter d i . Corollary 4.13 If all the widths d i of the boundary layers are equal in controller (4.31), i.e., d 1 = d 2 = • • • = d N = d, the bounded region in Theorem 4.12 can be simplified as D = e x : e x 2 ≤ 2(β + ρ)Nd λ min ( M )(λ -δ) . (4.51) Remark 4.14 In this chapter, the distributed consensus tracking of nonlinear delayed FOMASs with external disturbances is investigated. In fact, the results are also effective for consensus tracking of FOMASs with any nonlinear dynamics as x (α)

  ollowers, where nonlinear function f (•) satisfies Assumption 4.3, and external disturbance w i (t) satisfies Assumption 4.4.

  Fig. 4.1. The communication topology with one leader and six followers

  Fig. 4.2. Chaotic behavior of agent i with initial value [2, 1.5] T

4•

  Fig. 4.3. Evolutionary curve of the identified parameters values with ABC on system (4.52) in a single run in Case 1

  Figs. 4.5 and 4.6 display the convergence profile of the evolutionary processes in terms of identified values, the corresponding relative error values and the fitness values in a single run, which further illustrate the effectiveness of the proposed ABC algorithm-based parameter identification method.

4

  Fig. 4.5. Evolutionary curve of the identified parameters values with ABC on system (4.52) in a single run in Case 2

  Fig. 4.7. State trajectories of FOMASs (4.55) and (4.56) by control protocol (4.13)

Fig. 4

 4 Fig. 4.8. Phase portraits for all agents (i = 0, 1, • • • , 6) by control protocol (4.13)

  Fig. 4.11. Phase portraits for all agents (i = 0, 1, • • • , 6) by control protocol (4.31) with d i = 0.6(i = 1, 2, • • • , 6)

Fig. 4 . 14 .Fig. 4 . 15 .

 414415 Fig. 4.14. Phase portraits for all agents(i = 0, 1, • • • , 6) by control protocol (4.31) with d i = 0.1(i = 1, 2, • • • , 6)

Yu

  et al. (2018), a leader with bounded input was taken into account for the timevarying formation tracking. However, for distributed cooperative synchronization of FOMASs, a few researchers have considered the leader with bounded input.[START_REF] Gong | Distributed tracking of heterogeneous nonlinear fractionalorder multi-agent systems with an unknown leader[END_REF] studied the distributed synchronization of FOMAS with a leader of bounded input, while the time delay was not considered which is unavoidable in practice as mentioned Chapters 2 and 4. Therefore, in this chapter, it is full of challenge and meaningful to consider the leader's bounded input and the time delay simultaneously.Recently, the investigation of heterogeneous MASs has become a hot topic in distributed cooperative control. Heterogeneity may occur because of the diverse designs and operating factors. For example,[START_REF] Li | A connectivity preserving rendezvous for unicycle agents with heterogenous input disturbances[END_REF] considered heterogeneous input disturbances in the rendezvous problem.Jain & Ghose (2017a,b) 

5. 1

 1 Introduction As mentioned in Chapter 4, there may exist different kinds of uncertainties and nonlinearities in practical MASs, distributed cooperative control of uncertain nonlinear MASs has attracted much attentions. For instance, the MASs with uncertain parameters were considered in Yazdani & Haeri (2017). Khalili et al. (2018) studied the MASs with modelling uncertainty and known nonlinearity. In Chen et al. (2017), unknown control directions were taken into account in the consensus of nonlinear MASs. In addition, Gong & Lan (2018a,b) investigated the unknown nonlinear FOMASs using neural network-based robust adaptive control algorithm. However, all the results mentioned above are based

  Firstly, different with Cui et al. (2017); Ma et al. (2016); Wen et al. (2013) which considered the integer-order MASs, this chapter considers the delayed MASs with fractional-order dynamics, moreover the unknown leaders, uncertain parameters, and the heterogenous control gains are also considered. Secondly, different from Chen et al. (2018c); Gong et al. (2019); Shen & Cao (2012); Yang et al. (2014a); Yu et al. (2017b) which considered linear FOMASs without/with time delay, due to the nonlinear dynamics is inevitable in practice, this chapter considers nonlinear FOMASs with time delay. Thirdly, different from Chen et al. (2018c); Cui et al. (2017); Hu et al. (2019c); Ma et al. (2016); Shen & Cao (2012); Wen et al. (2013); Yang et al. (2014a); Yu et al. (2017b); Zhu et al. (2017) which have not considered the leader's control input, in this chapter we consider the situation that the leader owns unknown bounded input, which could be more flexible and general in the distributed cooperative synchronization. Fourthly, different from Chen et al. (2017); Gong & Lan (2018a,b); Khalili et al. (2018); Yazdani & Haeri (2017) where the differential orders were assumed to be known, while in this chapter differential orders and system parameters are both considered to be unknown, then a DE-based parameter identification method is proposed to identity the unknown parameters of the delayed heterogenous nonlinear FOMASs. Fifthly, different from Ahandani et al. (2018); Panahi et al. (2016), which only considered the parameter identification problem, this chapter also applies it to the distributed cooperative synchronization. Furthermore, it is worth noting that this chapter makes a promising link between the artificial intelligent technique and distributed cooperative synchronization of FOMASs or other control fields. The rest of this chapter is organized as following. In Section 5.2, the description of distributed cooperative synchronization is given. In Section 5.3, a DE-based parameter identification scheme for unknown nonlinear delayed FO-MASs is put forward. In Section 5.4, based on the identified parameters, two powerful nonlinear control protocols are proposed to deal with the distributed cooperative synchronization. Finally, the efficiencies of the proposed DE-based 5.2 Problem description for synchronization of FOMASs parameter identification method and the designed control algorithms are both verified based on the simulation experiments.

  Differential evolution (DE), belonging to AIOAs, was reported by[START_REF] Storn | Differential evolutionâĂŞa simple and efficient heuristic for global optimization over continuous spaces[END_REF] Price in 1995 (Das &[START_REF] Das | Differential evolution: a survey of the state-of-the-art[END_REF][START_REF] Storn | Differential evolutionâĂŞa simple and efficient heuristic for global optimization over continuous spaces[END_REF]. Contrasted with other AIOAs, DE has the nice properties with simple idea, easy fulfillment and fast searching speed. Therefore, DE has wide applications in complex continuous optimization problems appeared in various fields[START_REF] Das | Differential evolution: a survey of the state-of-the-art[END_REF]. In addition, diverse searching equations of DE have been designed. In this chapter, DE/rand/1/bin version is used. The detailed information of DE can be referred to[START_REF] Das | Differential evolution: a survey of the state-of-the-art[END_REF];[START_REF] Storn | Differential evolutionâĂŞa simple and efficient heuristic for global optimization over continuous spaces[END_REF]. The main operators are as following:

5. 4

 4 Distributed cooperative synchronization of FOMASs based on DE 5.3.2 The proposed DE-based parameter identification scheme Based on the above efficient DE and the parameter identification model introduced in Subsection 4.3.1, the following parameter identification scheme for FO-MASs is proposed as Algorithm 3 (Hu et al., 2019b). Algorithm 3 DE-based parameter identification scheme 1: Initialize the parameters for DE and FOMASs (5.1) 2: Create the initial population based on the feasible domain Ω defined in subsection 4

Corollary 5 . 8

 58 If the widths d i of the boundary layers are the same in controller (5.26), i.e., d 1 = d 2 = • • • = d N = d, the bounded region in Theorem 5.7 can be 5.4 Distributed cooperative synchronization of FOMASs based on DE simplified as

5. 5

 5 .1 DE-based parameter identification results5.5.1.1 Parameter identification without noiseFor the initialization of Algorithm 3, the number of sample points is chosen as K = 100 and the step size is h = 0.01. For DE algorithm, SN = 100, maximum iteration is 200, F = 0.5, CR = 0.7.

Fig. 5 . 2 .

 52 Fig. 5.1. The communication topology with one leader and six followers

  can be well identified by Algorithm 3, even though the worst identified values can also have a high accuracy. Secondly, Figs. 5.3 and 5.4 show the convergence processes in terms of identified parameters, their relative errors values and the objective function values in a single run, which further verifies the effectiveness of the proposed DE-based parameter identification method.
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 53 Fig. 5.3. Evolutionary curve of the identified parameters values with DE on system (5.47) in a single run without noise in Case 1

Fig. 5 . 5 .5

 55 Fig. 5.5. Evolutionary curve of the identified parameters values with DE on system (5.47) in a single run without noise in Case 2

Fig. 5 . 8 .

 58 Fig. 5.8. Evolutionary curve of the identified parameters values with DE on system (5.47) in a single run with noise in Case 2.

  State trajectories of x i1 (i = 0, 1, • • • , 6)

Fig. 5 . 9 .

 59 Fig. 5.9. State trajectories of FOMASs (5.50) by control protocol(5.7) 

5. 5 Fig. 5 . 10 .

 5510 Fig. 5.10. Control inputs for control protocol (5.7)

Fig. 5 . 11 .

 511 Fig. 5.11. State trajectories of FOMAS (5.50) by control protocol (5.26) with d i = 2(i = 1, 2, • • • , 6)

Fig. 5 . 12 .

 512 Fig.5.12. Control inputs for control protocol(5.26) with d i = 2(i = 1, 2, • • • , 6)

  State trajectories of x i1 (i = 0, 1, • • • , 6)

Fig. 5 . 13 .

 513 Fig. 5.13. State trajectories of FOMAS (5.50) by control protocol (5.26) with d i = 0.2(i = 1, 2, • • • , 6)

Fig. 6

 6 Fig. 6.1. The distributed values of the Logistic map.

15 :

 15 While t ≤ 0.5 * SN, do 16:

  , ξ max = 0.5, ξ min = 0.005, J r = 0.1ABC limit = 15 DE F = 0.5, CR = 0.7 PSO vmax = 1, vmin = -1, w = 0.7298, c1 = c2 = 1.49618 CS pa = 0.25

  6.2 displays the evolutionary curves of the objective function values in a single run, which further shows that the searching speed of the mABC algorithm is faster than others. Besides, the box plots of the experimental results in terms of the best objective function values in 30 runs are given in Fig. 6.3. In Fig. 6.3, the box plots, which are also called as box and whisker plots, display five-number summary of a set of data. The five-number summary includes the minimum, first quartile, median, third quartile, and maximum. In a box plot, a box is drawn from the first quartile to the third quartile. A vertical line goes through the box at the median. The whiskers go from each quartile to the minimum or maximum. In fact, the fivenumber summary divides the data into sections that each contain approximately 25% of the data in that set. Besides, the box plot can display the outliers and what their values are, which are marked with +. It can also reflect if the data is symmetrical, how tightly the data is grouped, and if and how the data is skewed. Therefore, based on the characteristics of Fig. 6.3, it can be found that the performance of the mABC algorithm are the best among all the compared algorithms for all the systems.

Fig. 6 . 3 .

 63 Fig. 6.2. Searching processes of the objective function values for different FO-MASs with the compared AIOAs in a single run.

  Fig. 6.4. The Friedman test among the compared algorithms

  considering the external disturbances, the external disturbances are considered into the FOMASs in this Chapter. Thirdly, different from most results where the style of the external disturbances are known, in this Chapter we do not known the style of the external disturbances beforehand. Fourthly, different from most results using a linear control protocol, we propose two effective nonlinear control algorithms. Thirdly, in Chapter 4, the unknown parameters are further considered, the distributed consensus tracking of unknown nonlinear delayed FOMASs with external disturbances is addressed based on ABC algorithm, where the parameter identification problem is tackled from the viewpoint of optimization. Compared with the existing works, the contribution are as follows. Firstly, compared with most results concerning the integer-order MASs, the delayed MASs with fractional-order dynamics, external disturbances are considered. Secondly, different from the results about the time delays with linear case, the time delay under nonlinear case is further investigated. Thirdly, most results about the FOMASs only considered the external disturbances, but have not taken the time delays into account at the same time. Fourthly, most existing results are supposed that the fractional orders and system parameters of the nonlinear FOMASs are known beforehand, while in this Chapter, the parameters are considered to be unknown, and the ABC algorithm is employed to identify the unknown parameters of the unknown delayed FOMASs. Furthermore, it should be pointed out that this Chapter provides a promising link between the artificial intelligent technique and distributed cooperative control of FOMASs or other control fields.

Thus in Chapter 5 ,

 5 under a fixed directed graph, the distributed cooperative synchronization of heterogenous uncertain nonlinear delayed FOMASs with a leader of bounded unknown input is further investigated based on DE algorithm. Compared with the existing works, our contribution are as follows. Firstly, compared with most results concerning the integer-order MASs, the delayed MASs with fractional-order dynamics, unknown leaders and parameters, and heterogenousCONCLUSIONS AND PERSPECTIVEScontrol gains are involved. Secondly, different from some results studied the time delays with linear FOMASs, the time delay with nonlinear dynamics is further studied; Thirdly, different from most results without considering the leader's control input, we assume that the leader owns bounded unknown input, which could be more flexible and general in the distributed cooperative synchronization.
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* * Fig. 2.11. State trajectories of leader-follower consensus for case 3 under diverse input delays ered, with the generalized Nyquist stability theory, the HFOMASs can achieve leader-following consensus within a certain bound of input delays. Furthermore, the diverse input delays are further taken into account in the proposed control algorithm, leader-following consensus of the HFOMASs can be guaranteed under the derived sufficient condition. Finally, simulations are given to validate our results. Contents 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Problem formulation . . . . . . . . . . . . . . . . . . . 59 3.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 Nonlinear discontinuous tracking control algorithm . . 60 3.3.2 Nonlinear continuous tracking control algorithm . . . . 63 3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.1 Introduction Note that the results studied in Chapter 2 are based on single integrator systems without considering the external disturbances. However, in real applications, unknown external disturbances arising from environment and communication are usually unavoidable. External disturbances can easily lead to instability or bad

  The state trajectories of consensus tracking are displayed in Figs.3.5 and 3.8 respectively, where it can be concluded that the consensus tracking errors can asymptotically converge a sufficiently small neighborhood of zero if one can choose a sufficient small d State trajectories of x i1 (i = 0, 1, • • • , 5)

																		3.4 Simulations
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i . The phase portraits are also given in Figs.

3.6 and 3.9

. Besides, chattering behavior can be avoided by the control protocol

(3.16)

, which can be verified in Figs.

3.7 and 3.10

. Therefore, the feasibility of Theorem 3.6 is proved as well.

  Control inputs of u i1 (i = 1, • • • , 5)

	3. DISTRIBUTED CONSENSUS TRACKING OF NONLINEAR
	FOMASS WITH EXTERNAL DISTURBANCES BASED ON		
	NONLINEAR ALGORITHMS										
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		(3.16) with d i = 2															

  In this chapter, the authors considered a representative model[START_REF] Bao | Adaptive synchronization of fractionalorder memristor-based neural networks with time delay[END_REF] Chen et al., 2018a[START_REF] Chen | Stability and synchronization of memristor-based fractional-order delayed neural networks[END_REF][START_REF] Fan | Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function[END_REF][START_REF] Huang | Chaos and hyperchaos in fractional-order cellular neural networks[END_REF][START_REF] Kaslik | Nonlinear dynamics and chaos in fractional-order neural networks[END_REF][START_REF] Lakshmanan | Synchronization of an inertial neural network with time-varying delays and its application to secure communication[END_REF] Liu et al., 2018g;[START_REF] Rakkiyappan | Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays[END_REF][START_REF] Wang | Global stability analysis of fractional-order Hopfield neural networks with time delay[END_REF][START_REF] Zhang | Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch[END_REF][START_REF] Zhou | A chaotic secure communication scheme based on synchronization of double-layered and multiple complex networks[END_REF], which can represent a general class of fractional-order nonlinear systems including delayed fractional-order nonlinear systems, such as the fractional-order Hopfield delayed neural networks, fractional-order cellular delayed neural networks, and fractional-order BAM neural networks with or without delays. Some unpredictable behaviours of the model considered in this chapter, such as periodic oscillations,

	4.2 Problem description for consensus tracking of FOMASs
	where x 0 (t) = [x 01 , • • • , x 0n (t)] T ∈ R n represents the state vector of the leader,
	the other definitions are the same as those of systems (4.1).
	Remark 4.1 Definition 4.2 For any initial conditions of FOMASs (4.1) and (4.2), the dis-
	tributed consensus tracking is achieved, if
	lim t→∞
	4.2)

bifurcation and chaotic attractors, and master-slave synchronization have been widely investigated which can be referred to Bao et al. (2015); Chen et al. (2018a, 2015b); Fan et al. (2018); Huang et al. (2012); Kaslik & Sivasundaram (2012); Lakshmanan et al. (2018); Liu et al. (2018g); Rakkiyappan et al. (2015); Wang et al. (2015); Zhang & Yang (2018); Zhou & Tan (2019). Besides, special setting of matrices A,B,C of the model considered in this chapter can include other simpler models. In addition, when the delayed nonlinearity in the considered model (5.1) does not exist, the dynamics will degrade to a class of general nonlinear systems.

Table 4
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	.1 demonstrates that the unknown

the corresponding relative error values and the fitness values in a single run, which further demonstrate the effectiveness of the proposed ABC algorithm-based parameter identification method.

  5, thus the dynamics of the six

	4. DISTRIBUTED CONSENSUS TRACKING OF UNKNOWN
	NONLINEAR DELAYED FOMASS WITH EXTERNAL	
	DISTURBANCES BASED ON ABC ALGORITHM			
	Table 4.2: Statistical results for system (4.52) over 30 independent runs in Case
	2																					
								Best						Mean						Worst
		α				0.649999999996805		0.649999999279857		0.650000009077807
		| α-0.65 0.65 | ã11			4.92E-12 1.999999999967040		4.57E-09 2.000000003700050		1.40E-08 2.000000030544100
		| ã11-2 2 | b22			1.65E-11 -1.500000002447100		3.12E-09 -1.500000001810420		1.53E-08 -1.500000492509220
	| b22-(-1.5) -1.5	|			1.63E-09					3.07E-08					3.28E-07
		F 1					2.62E-08					3.04E-07					2.76E-06
		0.685													2.03							
		0.68													2.025							
		0.675													2.02							
	Estimated value α	0.655 0.66 0.665 0.67												Estimated value ã11	2 2.005 2.01 2.015							
		0.65													1.995							
		0.645													1.99							
		0.64													1.985							
		0	20	40	60	80	100	120	140	160	180	200			0	20	40	60	80	100	120	140	160	180	200
						No. of Iterations											No. of Iterations	
		(a) Identified parameter value α				(b) Identified parameter value a 11
								0	20	40	60	80	100	120	140	160	180	200				
												No. of Iterations								

  . The searching space Ω

	5. DISTRIBUTED COOPERATIVE SYNCHRONIZATION OF
	HETEROGENOUS UNCERTAIN NONLINEAR DELAYED
	FOMASS WITH UNKNOWN LEADER BASED ON DE
	ALGORITHM		
	Table 5.1: Statistical results for system (5.47) over 30 independent runs without
	noise in Case 1		
		Best	Mean	Worst
	α	0.98000000000000	0.980000000000000	0.980000000000000
	| α-0.98 0.98 | ã12	0.00E+00 20.00000000000000 20.000000000000000 19.999999999999900 0.00E+00 0.00E+00
	| ã12 -20 20 | b21	0.00E+00 0.10000000000000	6.28E-16 0.100000000000000	2.84E-15 0.100000000000037
	| b21 -0.1 0.1 | F 1	1.72E-14 1.98E-14	1.36E-13 8.69E-14	3.69E-13 2.54E-13
	function is			
	is set as ( α, ã12 , b21 ) ∈ [0.01, 1] × [19, 21] × [0.01, 2]. The corresponding objective

Table 5 .

 5 2: Statistical results for system (5.47) over 30 independent runs without noise in Case 2

		Best	Mean	Worst
	α	0.600000000000000	0.600000000000005	0.600000000000011
	| α-0.6 0.6 | ã11	0.00E+00 20.000000000000000	8.70E-15 20.000000000000300	1.91E-14 20.000000000000500
	| ã11-20 20 | b22	1.07E-15 0.100000000000004	1.24E-14 0.100000000000003	2.65E-14 0.100000000000084
	| b22-0.1 0.1 | F 1	3.84E-14 1.57E-13	2.72E-14 6.56E-13	8.36E-13 7.87E-13
	the best, the mean and the worst identified parameters obtained by DE algorithm
	are showed in Table 4.2, which demonstrates that the unknown parameters of
	system (5.47) can be well identified by DE algorithm. Figs. 5.5 and 5.6 display
	the convergence profile of the evolutionary processes in terms of identified values,
	the corresponding relative error values and the fitness values in a single run, which
	further illustrate the effectiveness of the proposed DE algorithm-based parameter
	identification method.		
	5.5.1.2 Parameter identification with noise	
	In real situations, the measured real data usually contains certain noise. Thus, in
	this subsection, we add the additive white Gaussian noise (AW GN) to orbits in

Table 5 .

 5 

			3: Statistical results for system (5.47) over 30 independent runs with
	noise in Case 1																	
							Best						Mean						Worst
		α			0.980000946887114 0.980094598025661 0.980236062265603
		| α-0.98 0.98 | ã12		9.66E-07 20.000337557599700 20.001390039300400 20.002943132678700 9.65E-05 2.41E-04
		| ã12 -20 20 | b21		1.69E-05 0.100171306525072 0.100425767521111 0.098146838686302 6.95E-05 1.47E-04
		| b21 -0.1 0.1 | F 1				1.71E-03 4.04E-02				4.26E-03 4.22E-02				1.85E-02 4.31E-02
		1													20.2							
		0.99																				
															20							
		0.98																				
	Estimated value α	0.94 0.95 0.96 0.97												Estimated value ã12	19.4 19.6 19.8							
		0.93																				
															19.2							
		0.92																				
		0.91													19							
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	Fig. 5.7. Evolutionary curve of the identified parameters values with DE on
	system (5.47) in a single run with noise in Case 1.						

  former (hybridization) is the process of mixing with other AIOAs-based methods or traditional algorithms. For instance, in[START_REF] Kang | Structural inverse analysis by hybrid simplex artificial bee colony algorithms[END_REF], a hybrid simplex ABC was proposed by combining the Nelder-Mead simplex method.In[START_REF] Hsieh | Mining financial distress trend data using penalty guided support vector machines based on hybrid of particle swarm optimization and artificial bee colony algorithm[END_REF], a new hybrid algorithm was put forward by combining the ABC with PSO. In[START_REF] Ozturk | A novel binary artificial bee colony algorithm based on genetic operators[END_REF], a novel ABC algorithm was proposed based on genetic operator. In[START_REF] Kefayat | A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources[END_REF], a hybrid of ant colony algorithm and ABC algorithm was proposed. In[START_REF] Zhou | A hybrid approach combining modified artificial bee colony and cuckoo search algorithms for multi-objective cloud manufacturing service composition[END_REF], a hybrid approach combining ABC algorithm and cuckoo search algorithm was put forwards.In[START_REF] Jadon | Hybrid artificial bee colony algorithm with differential evolution[END_REF], a hybrid ABC algorithm with DE was designed. In[START_REF] Gao | Artificial bee colony algorithm based on Parzen window method[END_REF], parzen window method and two different neighborhood mechanisms were applied to the ABC algorithm.In[START_REF] Xue | A self-adaptive artificial bee colony algorithm based on global best for global optimization[END_REF], a self-adaptive ABC algorithm based on the global best candidate was proposed. However, the studies, are not restricted to the above mentioned two aspects, for an extensive literature review of the ABC, it can be referred to[START_REF] Karaboga | A comprehensive survey: artificial bee colony (ABC) algorithm and applications[END_REF].

The latter (modification) is the process of integrating an operator of an existing algorithm into the ABC. For example, in

[START_REF] Zhu | Gbest-guided artificial bee colony algorithm for numerical function optimization[END_REF]

, a global-best guided ABC was introduced, which used the global best individual's information within the searching rule similar to PSO. In

[START_REF] Gao | Enhancing artificial bee colony algorithm using more information-based search equations[END_REF]

, two new searching equations were presented to generate candidate solutions in the employed bees phase and onlooker bees phase in respect. In

[START_REF] Imanian | Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems[END_REF]

, inspired by PSO, a modified ABC algorithm is proposed by applying a new searching equation in the onlooker bees phase, which used the PSO searching strategy to guide the search for candidate solutions. In

[START_REF] Kiran | Artificial bee colony algorithm with variable search strategy for continuous optimization[END_REF]

, variable search strategies were used in the proposed ABC algorithm. In

[START_REF] Sharma | LÃľvy flight artificial bee colony algorithm[END_REF]

, a Lévy flight inspired search strategy was proposed and integrated with ABC algorithm.

Table 6 .
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1: Parameters setting for the compared algorithms

Table 6 .

 6 2: Parameters setting for the considered FOMASs

	FOMASs	Unknown parameters Lower bound	Upper bound Initial condition T
	System (6.11) (α, p 1 , p 2 , m 0 , m 1 )	(0.01,9,13,-1,0.01) (1,11,16,0,1)	(-2,0.5,3)
	System (6.12) (α, a, b, c)	(0.01,0.01,0.01,9) (1,1,1,11)	(3,2,5)
	System (6.13) (α, a, b, c)	(0.01,2,0.01,0.5)	(1,4,1,1.5)	(2,3,2)
	System (6.14) (α, a, b, c)	(0.01,9,2,27)	(1,11,4,29)	(12,-5,-13)
	System (6.15) (α, b 11 , b 22 , b 33 )	(0.01,1,1,0.5)	(1,3,3,2)	(1,2,0.5)

Table 6 .

 6 3: Statistical results in terms of mean values for parameter identification ofFOMASs (6.11) 

		mABC	ABC	DE	PSO	CS
	α	0.969999999963962	0.969108668929158	0.970011498248518	0.971399332871050	0.970859819985801
	| α-0.97 0.97 |	3.72E-11	9.19E-04	1.19E-05	1.44E-03	8.86E-04
	p 1	9.999999999601490	9.979946641501790	9.999507186165270	9.867773856560690	9.969646494300770
	| p1-10 10 |	3.99E-11	2.01E-03	4.93E-05	1.32E-02	3.04E-03
	p 2	14.699999999162200 14.672235192216800 14.699954465408900 14.535336437671600 14.673050072167500
	| p2-14.7 14.7 |	5.70E-11	1.89E-03	3.10E-06	1.12E-02	1.83E-03
	m 0	-0.144000000236786 -0.141631851239487 -0.144028449128557 -0.097038353733713 -0.154428547836811
	| m0-(-0.144) -0.144	| 1.64E-09	1.64E-02	1.98E-04	3.26E-01	7.24E-02
	m 1	0.256000000745335	0.256293252258667	0.256197124637012	0.152550078593795	0.296178225732747
	| m1-0.256 0.256 |	2.91E-09	1.15E-03	7.70E-04	4.04E-01	1.57E-01
	J 1	1.29E-09	2.11E-01	2.75E-03	4.97E-01	1.69E-01
	Std	7.04E-09	6.02E-02	9.06E-04	4.48E-01	4.00E-02

Table 6 .

 6 4: Statistical results in terms of mean values for parameter identification of FOMASs (6.12) Table6.5: Statistical results in terms of mean values for parameter identification ofFOMASs (6.13) 

		mABC	ABC	DE	PSO	CS
	α	0.900000000000007	0.900000934702510	0.899999992812217	0.900476029743134	0.899325519605760
	| α-0.9 0.9 | 7.52E-15	1.04E-06	7.99E-09	5.29E-04	7.49E-04
	a	0.399999999999985	0.399998667169488	0.399999978894998	0.400022388034355	0.399631561857637
	| a-0.4 0.4 | 3.76E-14	3.33E-06	5.28E-08	5.60E-05	9.21E-04
	b	0.200000000000662	0.200199173089204	0.199998917658505	0.226667228634665	0.192492576454752
	| b-0.2 0.2 | 3.31E-12	9.96E-04	5.41E-06	1.33E-01	3.75E-02
	c	10.000000000000400 10.000112683062500 10.000000357589200 10.020928948380600 10.004189705708300
	| c-10 10 |	4.23E-14	1.13E-05	3.58E-08	2.09E-03	4.19E-04
	J 1	6.61E-13	0.002569746	6.60E-06	0.014593375	0.060988296
	Std	1.89E-13	1.31E-03	3.60E-06	7.99E-02	2.47E-02

Table 6 .

 6 6: Statistical results in terms of mean values for parameter identification ofFOMASs (6.14) 

		mABC	ABC	DE	PSO	CS
	α	0.990000000000001	0.989883631443830	0.990000024541688	0.990333336667774	0.990180502717956
	| α-0.99 0.99 | 5.61E-16	1.18E-04	2.48E-08	3.37E-04	1.82E-04
	a	10.000000000000100 9.990975625810070	10.000000746310500 10.017643275039700 10.003000177964100
	| a-10 10 |	1.24E-14	9.02E-04	7.46E-08	1.76E-03	3.00E-04
	b	2.666666666666730	2.664549397031520	2.666667555596440	2.675131218483940	2.669360589181400
	| b-8/3 8/3 |	2.31E-14	7.94E-04	3.33E-07	3.17E-03	1.01E-03
	c	27.999999999999900 27.998858480608700 27.999999923100800 28.005999451836900 28.007120911522200
	| c-28 28 |	4.82E-15	4.08E-05	2.75E-09	2.14E-04	2.54E-04
	J 1	7.80E-12	7.14E-01	2.76E-04	3.93E-01	2.62E+00
	Std	1.09E-11	5.34E-01	1.35E-04	2.15E+00	1.07E+00

Table 6 .

 6 7: Statistical results in terms of mean values for parameter identification ofFOMASs (6.15) 

		mABC	ABC	DE	PSO	CS
	α	0.980000000000000 0.980023386901886 0.980000061882073 0.991333360939757 0.979963140355235
	| α-0.98 0.98 |	3.40E-16	2.39E-05	6.31E-08	1.16E-02	3.76E-05
	b 11	2.000000000000000 2.000026001223250 1.999999983660480 1.994394995097900 1.999952086912340
	| b11-2 2 |	5.55E-16	1.30E-05	8.17E-09	2.80E-03	2.40E-05
	b 22	1.710000000000000 1.710061372444070 1.709999966869790 1.702292760073590 1.710333544567430
	| b22-1.71 1.71 | 0.00E+00	3.59E-05	1.94E-08	4.51E-03	1.95E-04
	b 33	1.100000000000000 1.099763987541540 1.099999738101140 1.109231196578470 1.100505113623240
	| b33-1.1 1.1 |	8.07E-16	2.15E-04	2.38E-07	8.39E-03	4.59E-04
	J 1	6.48E-14	8.40E-03	9.94E-06	1.17E-01	1.49E-02
	Std	3.84E-14	4.06E-03	3.89E-06	1.04E-01	5.62E-03

Table 6 .

 6 10: Wilcoxon signed ranks test results for FOMASs (6.13) Table 6.11: Wilcoxon signed ranks test results for FOMASs (6.14) Table 6.12: Wilcoxon signed ranks test results for FOMASs (6.15)

	Algorithms	R+ R-	p-value	h Algorithms	R+ R-	p-value	h
	mABC vs ABC 0	465 1.73E-06 1 DE vs PSO	378 87	2.77E-03 1
	mABC vs DE	0	465 1.73E-06 1 DE vs CS	0	465 1.73E-06 1
	mABC vs PSO 0	465 1.73E-06 1 PSO vs ABC 59	406 3.59E-04 1
	mABC vs CS	0	465 1.73E-06 1 PSO vs CS	59	406 3.59E-04 1
	DE vs ABC	0	465 1.73E-06 1 CS vs ABC	417 48	1.48E-04 1
	Algorithms	R+ R-	p-value	h Algorithms	R+ R-	p-value	h
	mABC vs ABC 0	465 1.73E-06 1 DE vs PSO	435 30	3.11E-05 1
	mABC vs DE	0	465 1.73E-06 1 DE vs CS	0	465 1.73E-06 1
	mABC vs PSO 0	465 1.73E-06 1 PSO vs ABC 30	435 3.11E-05 1
	mABC vs CS	0	465 1.73E-06 1 PSO vs CS	30	435 3.11E-05 1
	DE vs ABC	0	465 1.73E-06 1 CS vs ABC	459 6	3.18E-06 1
	Algorithms	R+ R-	p-value	h Algorithms	R+ R-	p-value	h
	mABC vs ABC 0	465 1.73E-06 1 DE vs PSO	72	393 9.63E-04 1
	mABC vs DE	0	465 1.73E-06 1 DE vs CS	0	465 1.73E-06 1
	mABC vs PSO 0	465 1.73E-06 1 PSO vs ABC 374 91	3.61E-03 1
	mABC vs CS	0	465 1.73E-06 1 PSO vs CS	374 91	3.61E-03 1
	DE vs ABC	0	465 1.73E-06 1 CS vs ABC	415 50	1.74E-04 1

  Résumé Etendu les suiveurs à accomplir des tâches spéciales, la contribution du responsable doit être non nulle ou variable dans le temps. En outre, les gains du contrôleur peuvent être hétérogènes en raison d'une mise en oeuvre imparfaite. Ainsi, au chapitre 5, sous un graphe dirigé fixe, la synchronisation coopérative distribuée de FOMASs hétérogènes incertains, à retard retardé non linéaire, avec un chef de file d'entrée inconnue liée est approfondie sur la base de l'algorithme DE. Par rapport aux travaux existants, notre contribution est la suivante. Premièrement, comparés à la plupart des résultats concernant les MASs d'ordre entier, les MASs retardés avec une dynamique d'ordre fractionnaire, des leaders et paramètres inconnus et des gains de contrôle hétérogènes entrent en jeu. Deuxièmement, les résultats différés avec les FOMASs linéaires sont différents de certains résultats. Le retard temporel avec la dynamique non linéaire est ensuite étudié; Troisièmement, différent de la plupart des résultats sans tenir compte de l'entrée de contrôle du leader, nous supposons que le leader possède une entrée inconnue limitée, ce qui pourrait être plus flexible et plus général dans la synchronisation coopérative distribuée. Quatrièmement, il est différent de la plupart des résultats, où les ordres différentiels sont supposés connus, tandis que dans ce chapitre, les ordres différentiels et les paramètres système sont tous deux considérés comme inconnus, et une méthode d'estimation des paramètres basée sur l'algorithme DE est proposée pour identifier les paramètres inconnus de les FOMASs non linéaires hétérogènes retardés. Cinquièmement, au chapitre 4, un algorithme ABC efficace est utilisé pour identifier les FOMASs inconnus. Au chapitre 5, l'algorithme DE est sélectionné pour identifier les FOMASs inconnus. Cependant, bien que les AIOAs, telles que ABC et DE, aient démontré des fonctionnalités supérieures à celles des autres méthodes traditionnelles, il n'existe aucun algorithme spécifique permettant d'obtenir la meilleure solution pour tous les problèmes d'optimisation. À savoir, autant que la plupart En ce qui concerne les algorithmes, il est difficile de gérer simultanément le compromis entre exploration et exploitation pour tous les problèmes d'optimisation. De même, il n'y a pas d'exception pour ABC et DE. Par conséquent, au chapitre 6, pour améliorer les capacités d'exploration et d'exploitation, un algorithme hybride adaptatif de colonies d'abeilles artificielles, appelé mABC, est proposé. Ensuite, l'algorithme mABC proposé est appliqué à l'identification des paramètres de FOMASs non linéaires. Les résultats Titre: Identification de Paramètre basée sur l'Optimisation de l'Intelligence Artificielle et le Contrôle de Suivi Distribué des Systèmes Multi-agents d'Ordre Fractionnaire Résumé: Cette thèse traite de l'identification des paramètres du point de vue de l'optimisation et du contrôle de suivi distribué des systèmes multi-agents d'ordre fractionnaire (FOMASss) en tenant compte des délais, des perturbations externes, de la non-linéarité inhérente, des incertitudes des paramètres et de l'hétérogénéité sous une topologie de communication fixée non dirigée/dirigée. Plusieurs contrôleurs efficaces sont con?us pour permettre le contrôle de suivi distribué de FOMASss avec succès dans différentes conditions. Plusieurs types d'algorithmes d'optimisation de l'intelligence artificielle et leurs versions modifiées sont appliqués pour identifier les paramètres inconnus du FOMAS avec une précision élevée, une convergence rapide et une grande robustesse. Il est ĺď noter que cette thèse fournit un lien prometteur entre la technique d'intelligence artificielle et le contrôle distribué. Mots-clés: Identification des paramètres, optimisation de l'intelligence artificielle, suivi du consensus distribué/suivi du leader/synchronisation, retard, perturbations externes, dynamique non linéaire, paramètres inconnus, hétérogénéité. Title: Parameter Identification based on Artificial Intelligence Optimization and Distributed Tracking Control of Fractional-order Multi-agent Systems
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LEADER-FOLLOWING CONSENSUS OF HETEROGENOUS FOMASS UNDER INPUT DELAYS

Fig. 2.4. Graph Ḡ for case 2 upper bound of input delays and derivative orders β under different control gains is given in Fig. 2.6. Fig. 2.6 shows that under lower control gains, the agents with fractional orders are more tolerant than those with integer orders, while under high control gains, the agents with integer orders are more tolerant than those with fractional orders.

Here, the order of the leader is assumed as α = 0.8, the order of the follower is assumed as β = 0.9, the control gain is chosen as γ = 1, the dynamic of leader is x (α) 0 (t) = 0.01t, the initial values are [x 1 (0), x 2 (0), x 3 (0), x 4 (0), x 0 (0)] = [2, -10, -8, 5, 3]. Based on condition (2.11) in Theorem 2.8, the leader-following consensus of HFOMASs (2.1) and (2.10) can be guaranteed if and only if τ < 0.59. In the following, the different values of the input delays are choose as τ = 0.2, 0.5, 0.59, 0.8 in respect. Fig. 2.7 depicts the states trajectories of the HFOMASs (2.1) and (2.10), which can verify the correctness of Theorem 2.8. Besides,Fig. 2.7 shows that if the input delay increases, the time to fulfill leaderfollowing consensus of the HFOMASs (2.1) and (2.10) will increase. When τ = 0.59, as the critical case, an oscillatory behavior happens. When τ = 0.8, the leader-following consensus of the HFOMASs (2.1) and (2.10) can not be achieved which can confirm our derived results.

3) Case with diverse input delays: Consider MASs with one leader x 0 and five followers x i (i = 1, 2, • • • , 5). Graph Ḡ in Fig. 2.8 is considered. According to condition (2.18) in Theorem 2.10, the relationship between the upper bound of input delays and control gain γ for each agent with various derivative orders β can be obtained and illustrated as Fig. 2.9, where agent 1 is randomly selected as an example to show the corresponding relationship. Similarly, the relationship between the upper bound of input delays and derivative orders under different control gains for agent 1 is shown in Fig. 2 Then, for boundary layers widths d i in Eq. (4.32), in order to study the influence of the parameters d i , two cases are considered as:

and [START_REF] Young | A control engineer's guide to sliding mode control[END_REF], the continuous control protocol is designed as

where

, and a, β, γ i > 0 are constant coupling gains. hi (y i ) is a nonlinear continuous function defined as (5.27) where d i > 0 denotes the width of the boundary layers.

Theorem 5.7 [START_REF] Hu | Differential evolutionbased parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader[END_REF] Given Assumptions 5.2-5.4, the synchronization errors of FOMASs (5.5) are UUB with the continuous control algorithm (5.26), if β ≥ ρ, and there exist some constants λ > δ > 0, a > 0 and positive definite matrixes Ξ 1 and Ξ 2 such the LMIs (5.9) and (5.10) hold. Moreover, the tracking error e x asymptotically converges to the following bounded region

(5.28)

Proof: Substituting the protocol (5.26) into the synchronization errors system (5.6), one obtains that

where
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DISTRIBUTED COOPERATIVE SYNCHRONIZATION OF HETEROGENOUS UNCERTAIN NONLINEAR DELAYED FOMASS WITH UNKNOWN LEADER BASED ON DE ALGORITHM

The ᾱ-order derivative of Lyapunov function candidate (5.12) with errors system (5.29) is

(5.30)

Based on the property of (5.27), the following three cases are discussed.

(i)

In this case, based on (5.17) and (5.19), one has

(5.31) Substituting (5.14)-(5.16), (5.18) and ( 5.31) into (5.30) yields

Based on (5.17), one has

Distributed cooperative synchronization of FOMASs based on DE

one has

(5.34)

Therefore, it can be obtained that

(5.35) Substituting (5.14)-( 5.16) and ( 5.35) into (5.30) yields

(5.36) (iii) y satisfies neither Case (i) nor Case (ii).

Without loss of generality, we suppose

For this case, according to (5.31) and

(5.35), one derive that

(5.37) Thus, from (5.14)- (5.16) and ( 5.37), one has .38) Therefore, based on the above three discussed cases, for all y ∈ R N n , we have 

PARAMETER IDENTIFICATION OF UNKNOWN NONLINEAR FOMASS BY A MODIFIED ARTIFICIAL BEE COLONY ALGORITHM

rank test with respect to the best objective function values in 30 runs is used between the compared algorithms as showed in Tables 6.8-6.12. In Tables 6.8-6.12, R + denotes the sum of ranks for runs where the right algorithm outperform the left one, R -denotes the sum of ranks for runs where the left algorithm outperform the right one; p -value reflects the significance of the results in a statistical hypothesis test, where the smaller the p -value, the stronger evidences against the null hypothesis. If h = 1, this means the null hypothesis is rejected with 100 * 0.05% significance level, If h = 0, this means the null hypothesis is failed to be rejected with 100 * 0.05% significance level. Therefore, from Tables 6.8-6.12, it can be found that the proposed mABC algorithm significantly outperforms other algorithms. Furthermore, the Friedman test is also carried out on the relative errors in Tables 6.3-6.7 among the compared algorithms. The p-value is 3.9447e-16, which further confirms that there exists significant difference among the compared algorithms. Meanwhile, the mABC algorithm obtains the highest rank, which can be clearly seen in Fig. 6.4. 

Conclusions and Perspectives

Summary of main results

This thesis deals with the parameter identification from the viewpoint of optimization and distributed tracking control of fractional-order multi-agent systems