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Titre : Régulation de l’activation de lymphocyte B pendant le rejet chronique ; La rôle de SYK 
dans la modulation de Mcl-1 
 
Mots Clés : Rejet médiée par les anticorps, centres germinatifs, Signalisation du BCR, SYK, Mcl-1, 
Apoptose 
 
Résumé : L'insuffisance rénale est un problème majeur de santé publique et la transplantation rénale 
est l’option thérapeutique principale, mais elle comporte le risque de rejet d'organe. Les cellules B jouent 
un rôle important dans le rejet médié par les anticorps (AMR). Au cours de l'AMR chronique, les 
structures lymphoïdes tertiaires, semblables aux centres germinatifs (GC), apparaissent dans l'organe 
rejeté, associées à la production des plasmocytes et des lymphocytes B mémoires spécifiques du donneur. 
Ces populations de lymphocyte B sont souvent mal contrôlées par les traitements actuels. La myeloid 
cell leukemia 1 (Mcl-1), un membre anti-apoptotique de la famille de B-cell lymphoma 2 (Bcl-2), est 
essentiel pour maintenir l’organisation de GC et de la différenciation des cellules B. Nous rapportons ici 
l'infiltration de cellules B exprimant Mcl-1 dans le rein de patients atteints d'AMR chronique, comme 
cela a été observé pour les cellules (pré) GC. Suite à l’abrogation de la signalisation du récepteur des 
cellules B (BCR), par l'inhibition de la spleen tyrosine kinase (SYK) nous avons observé une diminution 
de la viabilité des cellules GC, par l'intermédiaire d'une régulation de Mcl-1. La régulation négative de 
Mcl-1 est coordonnée au niveau de la transcription, potentiellement par l'intermédiaire du transducteur 
de signal et de l'activateur de la transcription 3 (STAT3), comme cela a été observé par (1) une 
translocation altérée de STAT3 dans le noyau suivant l'inhibition de SYK, et (2) les niveaux inférieurs 
de transcription de Mcl-1. Par ailleurs, la surexpression de Mcl-1 inhibe l'apoptose après l'inhibition du 
SYK. Des études avec des cellules B primaires, issues d'amygdales, ont confirmé que l'inhibition de SYK 
a diminué la survie cellulaire. Nous avons également constaté que l'inhibition du SYK a diminué les 
niveaux de protéines Mcl-1 dans les cellules B primaire, et que l’activation de ces cellules a été inhibée, 
tel que déterminé par l'expression de CD80 et des taux inférieurs de sécrétion d'IgG dans les cellules B 
primaires activées in vitro. Nos travaux suggèrent que la voie SYK-Mcl-1 peut offrir de nouvelles 
opportunités pour le traitement et la prévention de l'AMR. 

Title: Regulating the activation of B lymphocytes during chronic antibody mediated rejection: 
The role of SYK in modulating Mcl-1 
 
Keywords: Antibody mediated rejection, Germinal Center, BCR signaling, SYK, Mcl-1, Apoptosis 
 
Abstract: Renal failure is a major public health concern and renal transplantation is the main therapeutic 
option, however it comes with the risk of organ rejection. B-cells play an important role in antibody-
mediated rejection (AMR). During chronic AMR, tertiary lymphoid germinal center (GC)-like structures 
appear in the rejected organ, associated with de novo production of donor-specific plasma and memory 
B-cells. Which are B-cell populations that are often poorly controlled by current treatments. Myeloid 
cell leukemia-1 (Mcl-1), an anti-apoptotic member of the B-cell lymphoma-2 (Bcl-2) family, is essential 
for maintaining the GC reaction and B-cell differentiation. We report here the infiltration of B-cells 
expressing Mcl-1 in the kidney of patients with chronic AMR, as observed for (pre-)GC cells. The 
impairment of B-cell receptor (BCR) signaling, by inhibition of spleen tyrosine kinase (SYK), reduced 
viability and Mcl-1 protein levels in GC like cells. This downregulation is coordinated at the 
transcriptional level, potentially via signal transducer and activator of transcription 3 (STAT3), as shown 
by (1) impaired translocation of STAT3 to the nucleus following SYK inhibition, and (2) the lower levels 
of Mcl-1 transcription upon STAT3 inhibition. Moreover, overexpression of Mcl-1 prevented cells from 
entering apoptosis after SYK inhibition. In vitro studies with primary tonsillar B-cells confirmed that 
SYK inhibition decreased cell survival. We also found that SYK inhibition decreased Mcl-1 protein levels 
in primary B-cells, and that B-cell activation was inhibited, as determined by CD80 expression and lower 
levels of IgG secretion in tonsillar B-cells activated in vitro. Overall, our data suggest that the SYK-Mcl-
1 pathway may provide new opportunities for the treatment and prevention of AMR. 
 



 

  



Synthèse en Français  

L'insuffisance rénale est un problème de santé majeur dans les pays occidentalisés. La 

transplantation rénale est la méthode thérapeutique la plus satisfaisante en cas d'insuffisance rénale 

terminale permettant une meilleure qualité de vie, une meilleure survie et à moindre cout par 

rapport à la dialyse. Cependant, la transplantation rénale est limitée par la survenue de rejet d'organe 

et en particulier au long court de rejet chronique à médiation par les anticorps (AMR). Les cellules 

B jouent un rôle important dans l’AMR via la synthèse d’anticorps alloréactifs. Les alloanticorps 

produits contre la greffe sont associés à une fréquence élevée de détérioration des organes et de 

perte de greffe malgré les traitements actuels développés dans le but de contrecarrer l’AMR. 

Cependant, ces thérapies échouent souvent à contrôler la production d'anticorps spécifiques du 

donneur (DSA) et la formation des plasmocytes et lymphocytes B mémoires spécifiques du 

donneur. Ce qui est observé par le fait que l'AMR est une cause principale d'insuffisance organique 

chronique, et il est actuellement responsable de près d'un quart des pertes de greffe totales. 

La reconnaissance de l'alloantigène par le récepteur des cellules B (BCR) joue un rôle 

important dans le déclenchement de la réponse immunitaire humorale et de la différenciation des 

lymphocytes B en cellules plasmatiques productrices d'anticorps (Ab) et en cellules B mémoires. 

Après l'activation des lymphocytes B dépendant des lymphocytes T et la formation du centre 

germinatifs (CG), les cellules B subissent une expansion clonale, une commutation isotypique, une 

hypermutation somatique, et une maturation et une sélection d'affinité. Ils quittent le GC en tant 

que cellules B mémoire hautement spécifiques et/ou les plasmocytes produisant un Ab. La 

persistance du GC et la sélection des cellules B effectrices de haute affinité sont régulées par des 

signaux pro- et anti-apoptotiques induits lors de la liaison l’antigen (Ag) et des interactions à 

médiation cellulaire. La myeloid cell leukemia 1 (Mcl-1), un membre anti-apoptotique de la famille 

des B-cell lymphoma (Bcl-2), est essentiel au maintien de la réaction GC et de la différenciation des 

lymphocytes B.  

Une inflammation persistante due à une stimulation et une réponse immunitaire continue 

peut conduire à la formation de structures lymphoïdes tertiaries (TLS), qui ressemblent à des GC. 

Le développement de TLS dans lesquels une réaction fonctionnelle de GC ectopique a été mis en 

évidence en transplantations humaines ayant développé une AMR chronique (cAMR) 

Le but de cette recherche est de caractériser davantage les cellules B infiltrant les greffes 

rénales avec cAMR chez les malades transplantés rénaux. Des cellules B infiltrantes ont été 

détectées dans des greffes rénales de cAMR, par coloration de CD19 de coupes histologiques de 



reins de patients atteints de cAMR. Un double marquage avec un anticorps contre Mcl-1 a mis en 

évidence une colocalisation de Mcl-1 avec CD19 comme observé dans les cellules GC. Nos 

résultats sont compatibles avec la notion que les cellules B infiltrant les organes greffés font partie 

du TLS et jouent un rôle dans une réponse immunitaire locale en cours et la production de cellules 

B effectrices 

Deuxièmement, nous avons cherché à développer des stratégies pour inhniber l'activation 

et la survie des cellules B activées. Nous avons donc étudié les moyens de perturber les réponses 

et la survie des cellules B des GC, dans lesquelles la Spleen tyrosine kinase SYK joue un rôle clé en 

aval du BCR. Nous avons inhibé son activité pour bloquer la signalisation du BCR. L'inhibition de 

l'activité de SYK diminue la viabilité des cellules et le niveau de la protéine anti-apoptotique Mcl-1 

dans les cellules BL41, une lignée cellulaire de lymphome de Burkitt servant de modèle de 

centroblastes GC. L'inhibition de SYK a montré une réponse dépendante de la dose concernant la 

viabilité cellulaire. Lors de l’inhibition de SYK, la diminution de Mcl-1 est caspase indépendante et 

seulement partiellement protéasome dépendant. Nous avons mis en évidence que l'inhibition de 

SYK régule l'expression de Mcl-1 au niveau transcriptionnel, comme cela a été confirmé par la PCR 

quantitative en temps réel. Le Signal transducteur et activator of transcription 3 (STAT3) a été 

identifié comme un régulateur majeur de la transcription du gène Mcl-1. L'analyse 

immunohistologique a montré que STAT3 est exprimé dans le noyau des cellules BL41 dans des 

conditions basales, où il peut médier la transcription du gène Mcl-1. L'inhibition de SYK empêche 

la translocation de STAT3 du cytoplasme vers le noyau, suggérant un rôle pour STAT3 dans la 

régulation de l'expression du gène Mcl-1 par la signalisation BCR. L'inhibition de STAT3 conduit 

à une viabilité réduite des cellules BL41 qui était associée à des niveaux réduits de transcription de 

Mcl-1. Enfin, la surexpression du gène Mcl-1 dans les cellules BL41 traitées par des inhibiteurs de 

SYK et STAT3 permet de restaurer la survie des cellules indiquant l'importance de Mcl-1 dans le 

maintien de la viabilité des cellules B G. 

Nous avons confirmé l'effet de l'inhibition de SYK sur la survie des cellules B primaires 

liée également à la diminution de la protéine Mcl-1, sur l'activation des lymphocytes B déterminée 

par l'expression de CD80 et sur la sécrétion d'IgG in vitro. 

En conclusion, nos résultats mettent en évidence que l'inhibition de SYK affecte la survie 

cellulaire médiée par la signalisation BCR par la régulation négative de la transcription du gène Mcl-

1. Dans les cellules GC « like », cette régulation de Mcl-1 semble être en partie dépendante de la 

régulation du gène médiée par STAT3. Ainsi dans le cas de l'AMR, SYK peut être une cible 

potentielle pour améliorer la survie du greffon  
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(I) Transplantation immunology 

(1) General history transplantation immunology 

Renal failure is a major public-health concern in developed countries, especially in France 

(Figure 1). Renal transplantation is the major therapeutic method in case of end-stage renal failure, 

due to the association with a better quality of life, longer survival time and the cost efficiency as 

compared to dialysis.  

 
Figure 1: The overall incidence of end-stage renal disease, dialysis and organ transplantation as well as 

mortality in France in 2015.  

Figure taken from Réseau Epidémiologie et Information en Néphrologie, rapport annual 2015. PD: peritoneal dialysis; 

pmp: per million population. 

 

Organ transplantation is the act of transferring the organ of one individual to another. In 

the beginning of the twentieth century the idea arose to replace a non-functioning organ by a 

healthy functioning organ. However following organ transplantation, the immune system, which is 

a combination of cells and molecules and is responsible for the protection of the human body from 

infectious disease, can cause severe problems. 

The reaction to foreign molecules coordinated by the immune system is called the immune 

response. According to historians the first mention of immunity came from Thucydides around 

500 BC, however the ancient Chinese had a custom of using powder from skin lesions of smallpox 

patients to protect children against the disease. The first clear example of immunity and 

immunology as an experimental discipline came from Edward Jenner. He found that milkmaids 

who recovered from cowpox never developed the more dangerous smallpox, and by injecting a 

little boy with the cowpox and later with smallpox he laid the road to vaccination. (Brunham & 

Coombs, 1998) The importance of vaccination, and the underlining role of the immune system, 



Introduction 

 4 

has been shown by the world health organization when they observed in 1980 that the smallpox 

was the first disease to be eradicated worldwide. However, the immune system does not only 

recognize infectious diseases, non-infectious molecules can also induce an immune response and 

therefore in some cases can cause harm and disease. 

In the case of organ transplantation, the immune system can cause harm leading to the 

rejection of the transplanted organ. A pioneer in the transplantation field is P.B. Medawar, who 

following his research in skin graft rejection, found that re-transplantation of skin-grafts let to a 

higher prevalence of graft rejection. (Medawar, 1944) Another pioneering research paper in 

transplant immunology using mice, showed acquired immunological tolerance to antigens (Ag; 

molecules that are recognized by immune cells and induce an immune response in humans) from 

other mice, called alloAg. (Billingham, Brent, & Medawar, 2003) The team of Joseph Murray, at 

the Peter Bent Briham hospital in Boston, performed the first successful renal transplantation in 

1954 by transferring the kidney from one identical twin to the other. (Murray, Harrison, & Merril, 

1956) The data acquired by several studies showed the importance of immune responses directed 

against the graft, and in the early 1960s by using chemical immunosuppressors the first 

transplantation between non-identical individuals was a fact. To date transplantation is a standard 

practice to treat non-functioning solid organs; such as the heart, lungs, pancreas, kidneys, intestines 

and liver. 

(2) Hyperacute, acute and chronic rejection 

There are three types of organ rejection, hyperacute, acute and chronic rejection. 

Hyperacute rejection occurs within the first few hours after the transplantation and is mainly caused 

by antibodies (Ab) recognizing foreign proteins. These are either encoded by the Human Leukocyte 

antigen (HLA) gene complex and expressed on the surface of cells on the graft or sugar molecules 

corresponding to the blood group. Proteins encoded by the HLA gene complex include major 

histocompatibility complex (MHC) molecules and components of the complement system. 

Following the recognition, Ab complexes are formed and the complement is activated leading to 

irreversible damage of the graft. Hyperacute rejection cannot be treated, however it can be 

prevented. By screening the patient for anti-blood group A, B and O (ABO) Ag and donor specific 

HLA Abs (DSA), followed by exclusion of donor organs that are recognized by these antibodies, 

as well as the removal of these HLA antibodies prior to transplantation. (Crespo et al., 2001; 

Higgins et al., 1996; Rydberg, 2001)  

Acute rejection occurs within several days to months following the transplantation and is 

caused by immune cells such as dendritic cells (DC) and cells from the adaptive immune system. 

Activated T-cells can cause direct killing of the donor cells and Abs secreted by activated B-cells 
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can cause graft injury and killing of the donor cells, inducing organ rejection. T-cells can induce an 

inflammatory state by the secretion of cytokines followed by the recruitment and activation of 

inflammatory cells, bound Abs can recruit and activate inflammatory cells as well. Acute rejection 

can be treated by the use of immunosuppressive drugs, and the faster the treatment the better 

because the physical damage to the organs is irreversible. (Alegre, Florquin, & Goldman, 2007)  

Long term graft loss can occur months, even years after the transplantation and is the main 

cause of long term graft loss is chronic rejection, which can be a combination of both humoral and 

cell mediated immune responses. Chronic rejection can occur even after the acute immune 

responses have ceased to persist. Long term graft loss can be a multifactorial process and 

combination of several factors can lead to eventual graft loss. (Libby & Pober, 2001; Massy, 

Guijarro, Wiederkehr, Ma, & Kasiske, 1996) 

(3) Innate immunity and organ rejection 

The immune response can be divided into two distinct responses based on time and 

specificity, namely innate and adaptive immunity, or the early and late response (Figure 2).  

 
Figure 2: The innate or early and the adaptive or late immune response. 

The innate immune response, which is the first defense against microbes, recognizes general molecular patterns. It 

consists of a physical epithelial barrier, a combination of immune cells, such as dendtitic cells and pahgocytes, and 

circulating proteins, such as the complement. The adaptive immune response is highly specific for antigens and can 

last for days. The main cells responsible for the adaptive immunity are cells T- and B-lymphocytes. Figure taken from 

Abbas et al. (Abbas, Lichtman, & Pillai, 2014, p. 3) NK: Natural Killer; ILC: Innate Lymphoid Cell 

 

Acute inflammation is a process that happens upon innate immune activation and its 

function is to eliminate harmful microbes, damaged cells, and initiate tissue repair. This happens 

through the recruitment of special immune cells, white blood cells also known as leukocytes, and 

the secretion of cytokines and chemokines that help enhance the inflammatory response. During 

microbial/exogenous infection the first step is recognition of microbes via a limited number of 
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pattern-recognition receptors (PRR); such as toll like receptors (TLR), NOD like receptors (NLR), 

RIG-I-like receptors (RLR) and complement receptors. These PRRs share several common 

trademarks such as the fact that they are highly conserved throughout evolution and encoded by 

the germline deoxyribonucleic acid (DNA). (Hoffmann, Kafatos, Janeway, & Ezekowitz, 1999; J. 

Liu, Qian, & Cao, 2016) PRRs are expressed extra- or intracellular by various cells or are found as 

soluble proteins in the blood and extracellular fluids. PRRs recognize structures that are non-self 

and characteristic for microbes, these structures are called pathogen-associated molecular patterns 

(PAMP). In general, these PAMPs are essential for the survival of the microbes and therefore they 

are less prone to mutations making it more difficult to evade the innate immune system. 

(Medzhitov, 2007) Several studies have indicated the role of PRRs in the recognition of 

endogenous molecules, such as heat shock protein and the content of necrotic cells. TLRs and 

non-Ag related inflammatory responses have been highlighted in organ rejection. (Gluba et al., 

2010; Goldstein, Tesar, Akira, & Lakkis, 2003; Land, 2005; Pockley, 2001) Besides to pathogen 

induced PRR activation, injured or dying cells are able to induce an inflammatory response by 

secreting danger-associated molecular patterns (DAMP). These secreted DAMPs can be 

recognized by several receptors present on immune and non-immune cells, such as TLRs and 

integrins. (Kono & Rock, 2008; Rosin & Okusa, 2011; Xiang & Fan, 2010)  

Next to the induction and augmentation of the inflammatory response, and direct effect 

on microbes and damaged cell, another important role of the innate immune cells is phagocytosis. 

A process in which leukocytes ingest and process microbes, harmful molecules or dead cells. In 

this way phagocytes neutralize the harmful molecules and process them into peptides for Ag 

presentation. (Greenberg & Grinstein, 2002) Ag presentation is accomplished by loading the 

peptides the MHC. There are three types of MHC, namely Class I, class II and class III MHC. 

MHC I and II molecules play a role in presenting processed Ag on the cell surface, while MHC III 

molecules have a physiological role, and encode molecules such as members of the complement, 

cytokines and heat shock proteins. Depending on the manner of internalization of the Ag, peptides 

are loaded into the different MHC class I or II molecules. Endosomal/lysosomal processed 

proteins are loaded into class II MHC while cytosolic processed peptides are loaded into class I 

MHC. (Ackerman & Cresswell, 2004; Bryant, Lennon-Duménil, Fiebiger, Lagaudrière-Gesbert, & 

Ploegh, 2002) All nucleated cells express Class I MHC, while class II MHC are expressed by 

specialized Ag presenting cells (APCs) such as DCs, other leukocytes and B-lymphocytes. (Abbas 

et al., 2014, pp. 107–114; Hennecke & Wiley, 2001) MHC molecules play an important role in the 

activation of the adaptive immune response. 
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Despite the fact that natural killer (NK) cells have a lot in common with the cells that 

comprise the adaptive immune system, they are generally classified as innate immune cells due to 

their lack of specific receptors. (Vivier, 2006) NKs can directly induce cell death and produce an 

array of cytokines inducing inflammation and activation of other immune cells. (Kitchens et al., 

2006; Vivier et al., 2011) It has been shown by several transplantation studies, in which the settings 

were to either prevent or provoke a NK immune response, they failed to do so, indicating no direct 

role of NK cells in solid organ transplantation. (Heidecke et al., 1985; Markus et al., 1991; Zijlstra 

et al., 1992) Therefore role of NK cells has conventionally been dismissed in solid organ rejection. 

However, more evidence arises showing that while conventionally being dismissed there might be 

an important role for NK cells during rejection, for example, they are able to reject hematopoietic 

cells. NK cells can react to allogeneic class I MHC and NK cells that infiltrate transplanted organs 

have been shown to attack donor-derived cells in vitro in rat studies. (Petersson et al., 1997) Another 

mouse study showed that by depleting NK cells the rejection of cardiac transplants was significantly 

delayed in comparison to wild-type mice. (Maier et al., 2001) Together with several other studies it 

has been also been suggested that NK cells play a facilitating role in the alloreactive T-cell response, 

connecting the innate and adaptive immune system. (Kitchens et al., 2006) This suggest that while 

acting alone NK cells might not be able to induce an allo-immune response, they are involved in 

the process of organ rejection. 

Besides the circulating cells that can recognize, kill and induce the innate immune response, 

there are soluble recognition and effector molecules such as immunoglobulins (Ig), also known as 

Abs, and members of the complement system. Even though Abs are the product of humoral 

immunity and thus are a part of the adaptive immune system, there are a set of circulating Abs, 

which are present before birth and without previous infection, vaccination or other foreign Ags, 

called natural Abs. These natural Abs are polyreactive and recognize a wide range of Ags and play 

an important role in the innate immune defense against pathogens. (Khasbiullina & Bovin, 2015) 

In organ transplantation the role of natural antibodies lays in the recognition of ABO- and HLA-

Ags (Milland & Sandrin, 2006), antibody mediated rejection (AMR) through DSA and complement 

activation will be discussed in more detail. 

(4) Adaptive immunity and organ rejection 

Adaptive immunity, also known as specific or acquired immunity, provides a highly specific 

immune response as well as immunological memory. Lymphocytes and their secretion products, 

such as Abs and cytokines, are the main components of the adaptive immune system. (Hoffmann 

et al., 1999) The adaptive immune response can be divided into two responses, the cell mediated 

(T-cell) and humoral (B-cell) immune responses (Figure 3). 
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Figure 3: Summarizing overview of T and B-cell development and function. 

Lymphocyte progenitors both come from the bone marrow, however the development of T-cells continues in the 

Thymus. After maturation, the lymphocytes migrate to the periphery where they can encounter antigens, followed by 

activation and the induction of the immune response. Figure taken from Parkin and Cohen. (Parkin & Cohen, 2001) 

MHC: Major histocompatibility complex; TI: T-cell independent; Th: T helper; CD: Cluster of Differentiation 

 

Several organs are important for the generation of immune cells (primary lymphoid organs) 

and the activation and differentiation (secondary lymphoid organs). The bone marrow and thymus, 

the primary lymphoid organs, is where lymphoid progenitors are generated and where B- and T-

lymphocytes mature. Lymph nodes, the spleen and mucosal associated-lymphoid tissue, such as 

the tonsils, are secondary lymphoid organs (SLO) and are specified organs that can efficiently 

concentrate Ags and facilitate the adaptive immune response. (Drayton, Liao, Mounzer, & Ruddle, 

2006) 

SLOs are pre-programmed and formed during embryogenesis in a process called 

organogenesis. The organogenesis of the lymph nodes has been well documented (Mebius, 2003; 

Wigle et al., 2002; Y. Yang & Oliver, 2014) and seems to be a rigid and well-defined process, 

however, following an immune response there is a plasticity within these organs inducing a flow of 

immune cells. (Goeringer & Vidić, 1987; He et al., 2002; Newberry & Lorenz, 2005) The cellular 

organization of lymphoid cells in SLOs show a similar prominently organized micro-environment 

of lymphocytes. This will be demonstrated looking at the organization of lymph nodes, within the 

lymph nodes, distinct regions can be found based on the lymphocyte content. The lymph node can 

be roughly divided into 3 different regions, macrophage rich regions, B-cell follicles which contain 

as the name states B-cells and also follicular dendritic cells (FDC), and T-cell zones. The T-cell 

zones contain sophisticated structures of vessels which constantly replenish the lymphocytes and 

a selection of APCs from and to the periphery. (Jason G. Cyster, 1999; Y. X. Fu & Chaplin, 1999) 
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Intricate studies using microscopy technologies have shown the plasticity of resting lymphocytes 

within the lymph nodes, indicating confined movement of T-cells, B-cells and FDCs within their 

assigned cellular region. (Bajénoff et al., 2006; Okada et al., 2005; Stoll, Delon, Brotz, & Germain, 

2002) Showing that within lymph nodes all is optimized to enhance the possibilities for naïve 

lymphocytes to encounter Ags and APCs.  

The adaptive immune response that occurs during solid organ transplantation is the 

recognition of donor alloAg, usually the MHC. Two mechanisms for allo-recognition have been 

proposed, the direct and indirect pathway, two independents but not mutually exclusive processes. 

The direct pathway follows recognition of intact donor MHC molecules on donor cells, which can 

be recognized by the recipient’s T-cells. The indirect pathway is the representation of processed 

donor alloAg by the recipient’s APCs followed by T-cell activation (Figure 4). (Afzali, Lombardi, 

& Lechler, 2008) While both processes of Ag representation are not mutually exclusive it seems 

that the direct pathway plays a more important role in acute rejection, while the indirect is more 

involved in chronic rejection. (Sayegh & Carpenter, 1996; Vella et al., 1997) 

 
Figure 4: Mechanisms of allorecognition. 

Dendritic cells originating from the donor lead to direct allorecognition while the processed alloantigens which are 

presented by the recipient APCs lead to indirect allorecognition Figure adapted from Abbas et al. (Abbas et al., 2014, 

p. 363) APC: Antigen Presenting Cell; MHC: Major Histocompatibility Complex 

 

Evidence has arisen that there is a third mechanism of allo-antigen regognition, namely the 

semi-direct pathway. It is suggested that in this pathway there is a transfer of intact MHC molecules 

between the donor cells and recipient’s APCs as well as presentation of allo-antigens through 

phagocytosis of necrotic cell material. (Smyth et al., 2006) Acquisition of intact MHCs can be by 

direct cell-to-cell contact or via release and uptake of exosomes (small vesicles secreted by the 

cells). (Herrera et al., 2004; Morelli et al., 2004) 
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Following Ag uptake by APCs, these cells migrate to secondary lymphoid tissue for Ag 

presentation and activation of recipient’s T-lymphocytes, a process is called sensitization. (Larsen, 

Morris, & Austyn, 1990) Lakkis et al. (Lakkis, Arakelov, Konieczny, & Inoue, 2000) showed that, 

in the case of cardiac transplantation in mice, migration to lymphoid tissue is necessary for the 

rejection to occur, since mice lacking secondary lymphoid organs do not show organ rejection. For 

the activation of naïve T-cells, DCs that encountered and processed Ags migrate to secondary 

lymphoid tissue where the naïve T-cells reside. T-cell subpopulations are classified based on the T-

cell receptor (TCR), their specificity for Ags and their effector function. An extent of the T-cell 

population can be divided based on their ability to bind Ags presented by either class I MHC and 

class II MHC. (Carpenter & Bosselut, 2010; Taniuchi, 2016) As well as by the expression of co-

receptors cluster of differentiation (CD) 8, which binds class I MHC, and CD4 that binds class II 

MHC, establishing distinct T-cell populations namely CD8+ effector T-cells and CD4+ T helper 

cells (Th). (Ellmeier, Sawada, & Littman, 1999; Taniuchi, 2016) Upon Ag recognition and activation 

by cytokines the naïve T-cells, both CD4+ and CD8+, undergo clonal expansion followed by 

differentiation leading to the formation of highly specific effector and memory T-cells. (Capece & 

Kim, 2016; H. Fu, Ward, & Marelli-Berg, 2016; Stein, 2015) The initiation of the immune response 

leads to infiltration of immune cells in the graft followed by immune mediated organ rejection 

(Figure 5). 

 
Figure 5: Cell mediated immune response during graft rejection.  

The first step is the sensitization step in which DCs move to secondary lymphoid tissue where they bind and activate 

recipient T-cells through antigen presentation of donor MHC. Following T-cell activation, the effector T-cells migrate 

to the graft where they induce a local immune response leading to graft rejection. Figure adapted from Abbas et al. 

(Abbas et al., 2014, p. 366) DC: dendritic cell, HMC: Major histocompatibility complex 
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As mentioned before there are two main types of T-cells, the CD4+ Th and the CD8+ 

effector T-cells, which both have different functions during the immune response. As the name 

hints on the function, Th-cells help by acting as a mediator of effector functions in the killing of 

infected cells. The Th-cells can interact with effector cells as well as secreting a specific pattern of 

proteins leading to different immune responses. Where Th1 mainly, but not only, induce a 

phagocyte dependent inflammation, Th2 induce a strong Ab response, amongst others, and can 

inhibit phagocytosis creating a phagocyte independent inflammation. (Abbas, Murphy, & Sher, 

1996; Mosmann, Cherwinski, Bond, Giedlin, & Coffman, 2005; Romagnani, 1991) Th17 cells are 

abundant in mucosal areas where they are involved in inflammatory responses through neutrophil 

and monocyte activation. (Littman & Rudensky, 2010; Weaver, Hatton, Mangan, & Harrington, 

2007) A portion of CD4+ derived T-cells, CD25+ regulatory T-cells (Treg) play an important role 

in immunological tolerance and autoimmunity. (Sakaguchi, 2005) The involvement of Treg in 

inducing immunological tolerance for transplanted organs has been shown. In transplantation 

mouse models, it was shown that Tregs stimulated with alloAg against the transplanted organ 

improved the overall graft survival. (Joffre et al., 2008; P. A. Taylor, Lees, & Blazar, 2002) CD8+ 

T effector cells differentiate into Ag specific cytotoxic T-lymphocytes (CLT) that act on the 

infected cell itself leading to its elimination. (Berke, 1995; Shresta, Pham, Thomas, Graubert, & 

Ley, 1998) One of the main interactions of CLTs lays the binding to FasReceptor (FasR), which is 

a death receptor (DR) that leads to programmed cell death when engaged, inducing apoptosis of 

the targeted cells. (Brunner et al., 2003) Another cytotoxic effect induced by CLTs is through the 

secretion of perforin, creating pores in the target cells, followed by the release of granules 

(containing for example proteases granzyme A and B) through these pores and inducing cell death. 

(Trapani & Smyth, 2002) Though CLTs can directly interact and kill infected cells they also secrete 

cytokines that can recruit activate other effector cells, such as macrophages, and induce an 

inflammatory response. (Shresta et al., 1998; Harty & Bevan, 1999)  

(II) Humoral immunology 

(1) Defining antibody mediated rejection 

Not only the cell mediated immune response, as described above, plays a role in organ 

rejection, and as mentioned before part of the adaptive immune response is due to differentiated 

B-lymphocytes and their secreted Abs. In the interest of this research the role humoral immunology 

will be discussed in more detail below. The discovery of B-cells was not due to the identification 

of a cell but more through the identification of a protein, specifically the Ab, leading to the 

discovery of the Ig producing plasma cell as early as 1948. (Sund et al., 2003)  
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During the early 1990s the first characterizations of acute AMR (aAMR) in renal 

transplantation included the infiltration of neutrophils in peritubular capillaries and de novo DSA 

directed against donor MHC class I molecules. (Halloran et al., 1990; Halloran, Schlaut, Solez, & 

Srinivasa, 1992) Another breakthrough in recognizing anti-donor humoral activity was the 

identification and the deposit of complement protein (C)4d, a member of the complement 

pathway, as a predictive marker for aAMR. (Collins et al., 1999; Feucht et al., 1993) Later 

histological studies on chronically rejected organ transplants linked DSA and C4d as features of 

chronic AMR (cAMR) as well. (Mauiyyedi et al., 2001; Regele et al., 2002) Figure 6 indicates the 

proposed stages of humoral graft rejection. The Banff Working Group classification system for 

renal allograft biopsies has been discriminating between T-cell mediated rejection and humoral 

rejection. The latest update of the Banff classification of AMR in 2013 necessitates the histological 

evidence of tissue injury, Ab interaction with vascular endothelium and the evidence of circulating 

DSA. (Haas, 2014; Racusen, Halloran, & Solez, 2004) The pivotal role of B-cells and Abs post 

transplantation becomes more and more evident. Apprehention of the underlying process of AMR 

is ongoing and pivotal in understanding organ rejection and improving long term organ survival. 

 
Figure 6: Proposed stages of antibody-mediated rejection based on time from transplantation to graft loss. 

The timespan of the several stages of antibody-mediate rejection can be days in case of acute rejection and months or 

years in the case of chronic rejection. Anti-HLA antibodies can be produced at any time after organ transplantation, 

while the following successive stages of complement detection, graft injury and eventually graft dysfunction can appear 

over different timespans. During the accommodation state antibodies are present as well as complement activation, 

however no graft injury is observed yet, meaning there is no actual organ rejection taking place but the tell-all signs are 

there. Figure adapted from Colvin and Smith and Norvell et al. (Colvin & Smith, 2005; Norvell, Mandik, & Monroe, 

1995) C4d: complement component 4d. 

 

DSA in hyperacute rejected kidneys lead to cyanosis, blue discoloration of the organ due 

to lack of blood shunting, and necrosis of the transplanted tissue. (Williams et al., 1968) Graft 

injury caused by aAMR are notably necrosis, cortical infarction, acute glomerulitis, and glomerular 

and vascular fibrin thrombi. (Magil & Tinckam, 2003; Trpkov et al., 1996) The main injuries to 

kidney grafts in case of cAMR is transplant glomerulopathy (TG), which is the formation of 
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multiple layers of the basement membrane of capillary walls in kidney glomerulus and arterial 

intimal fibrosis, which occurs due to repeated endothelial injury and healing following persistent 

inflammation (Colvin, 2009; Einecke et al., 2009)  

Endothelial graft injury, a capillary injury, and loss of function can be due to several 

processes which occur when DSA bind to the grafts endothelial cells. Bound DSA recruit several 

members of the immune system, through binding of the Fc-portion of the Abs, Fc-α, Fc-ε, Fc-γ 

or Fc-µ depending on the Abs isotype IgA, IgE, IgG or IgM resp, to the complement and the Fc 

receptors (FcR; FcαR, FcεR, FcγR and FcµR resp.), which are expressed on effector cells of both 

the innate and adaptive immune response. (Nimmerjahn & Ravetch, 2007)  

In case of organ transplantation, the damaging role of IgG DSA has been highlighted, 

bound DSA can initiate the complement cascade by forming a complex with C1, through binding 

to the Fc-y portion of the Ab, which is then activated and cleaved. (Lachmann & Hughes-Jones, 

1984) Activated C1 can bind and activate C4 and C2 to form a membrane bound complex C4bC2a. 

C4 when activated is cleaved to form a soluble C4a and membrane bound C4b. C4b is subsequently 

cleaved in a membrane bound C4d and soluble C4c, which activates and promotes C3 cleavage 

into bound CD3b and soluble C3a. The formation of a complement complex around C3b leads to 

the cleavage of C5 into bound C5b and soluble C5a, which acts as a stimulator of inflammation. 

C5b initiates a cascade complement reactions leading to the formation of a membrane pore, the 

membrane attack complex (MAC), followed by direct graft injury of the endothelial graft cells. 

(Müller-Eberhard, 1988) The underlining role of the complement system following organ 

transplantation is evident, for example it has been shown that that the production of C5b-9 by host 

macrophages promotes rejection (Z. Qian et al., 1999) and deficiencies in the complement can 

prolong graft survival (Pratt, Basheer, & Sacks, 2002) When the complement activation stops at 

C4, preventing the activation of C3 in the graft, there is a delay in graft injury and rejection. 

(Baldwin, Kasper, Zachary, Wasowska, & Rodriguez, 2004) Next to direct endothelial damage 

caused by complement activation and MAC formation, the cleavage products of several 

complement members can induce an inflammatory response through promoting the infiltration of 

inflammatory cells. (Morgan & Harris, 2015; Ricklin & Lambris, 2013) 

For a long time the disposition of C4d in transplanted organs has been the main indicator 

of AMR, however the emerging role of complement independent mechanisms in AMR have led 

to further investigation in the role of DSA in the recruitment of immune cells as well. (Sis & 

Halloran, 2010; Haas, 2014) The binding of DSA to HLA on vascular endothelial cells can lead to 

direct effects on functional changes within these cells. Several studies have shown activation of 

signaling pathways that are involved in cell survival and cell proliferation, leading to neointimal 
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formation and thickening of the vascular graft regions. (Y.-P. Jin et al., 2004; Jindra et al., 2008; 

Valenzuela & Reed, 2015) 

 
Figure 7: Multifactorial cellular and molecular effects of donor specific antibodies against the graft 

When DSA bind to the endothelium of grafted organs several mechanisms can be set in motion; (i) a direct activation 

of the endothelium leading to direct functional changes in these cells, (ii) activation of the complement by binding of 

c1 to the Ig Fc region (iii) and binding of FcR expressing cells to the Ig Fc region, inducing their activation and effector 

functions. (a) Depending on the Ig isotype several different immune effector cells can be recruited to the graft and 

activated. Once activated these cells either mature and help in antigen uptake and presentation to other immune cells 

or induce an inflammatory response and cause endothelial damage. Figure adapted from Castro-Dopico and 

Clatworthy. (Castro-Dopico & Clatworthy, 2016) ADCC: antibody-dependent cellular cytotoxicity; C: complement; 

DC: dendritic cell; DSA: donor specific antibody; FcR: Fc receptor; Mac: macrophage; Mono: monocytes; NK: natural 

killer 

 

The role of DSA mediated HLA signaling in the recruitment of monocytes, such as 

macrophages and neutrophils, through p-selectin upregulation on the surface of the endothelial 

cells has been observed as well. (Valenzuela, Mulder, & Reed, 2013; Yamakuchi et al., 2007) 

Valenzuela et al. (Valenzuela, Hong, et al., 2013) have shown that when P-selectin is selectively 

blocked there is a reduction in the infiltration of macrophages, as well as other immune cells, within 

the graft. On the other hand, the bound DSA itself can also recruit immune effector cells through 

their Fc portion which is recognized by the FcRs on these cells. For example, FcgR activated 

macrophages, monocytes and NKs induce phagocytosis and release cytokines such as tumor 

necrosis factor (TNF), interleukin-1α (IL-1α), IL-6 and neutrophil chemo-attractants. (Morimura 
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et al., 1990) FcR engagement on DCs can lead to their maturation and promotes their migration, 

increase antigen uptake efficiency and presentation though the MHC molecules, and the 

production of inflammatory cytokines. (Menna R. Clatworthy et al., 2014; Regnault et al., 1999) 

Neutrophil activation through their FcR leads to Ab-dependent cellular cytotoxicity (ADCC), as 

well as the production of reactive oxygen species and inflammatory cytokines. (Coxon et al., 2001; 

Mayadas, Tsokos, & Tsuboi, 2009) FcR crosslinking of NK cells to DSA leads to ADCC and the 

release of inflammatory cytokines. (Legris et al., 2016; Lin, Plenter, Coulombe, & Gill, 2016) 

Taken together all these effects of DSA on the transplanted organ, which are summarized 

in Figure 7, AMR is a complicated and multifactorial process that needs further attention. 

Therefore B-cell activation and differentiation leading to the formation of Ab producing plasma 

cells as well as memory B-cells will be discussed in further detail below. 

(2) T-cell dependent B-cell activation 

The humoral immune response starts with the recognition of Ag by B-cells leading to the 

differentiation of naïve mature B-cells in memory B-cells (MBC) or Ab producing plasma cells 

(PC). There are two types of humoral immune responses, the primary and secondary humoral 

immune response. The primary immune response occurs directly after Ag recognition and leads to 

activation and differentiation of naïve B-cells and the first production of Abs against the Ag. The 

late immune response occurs after successive Ag recognition in which MBCs induce a more rapid 

and specific response as well as a higher Ab titer.  

As mentioned before, there are three types of allorecognition, the direct, the indirect and 

demi-direct pathways. Regarding the direct and indirect pathway it was Conlon et al. (Conlon et al., 

2012) who gave definitive proof that the humoral immune response is mediated solely through 

indirect alloAg recognition. This was shown by transplantation experiments in T-cell deficient mice 

which where reconstituted with T-cells that either recognize only non-processed alloAg (direct) or 

processed alloAg (indirect). The mice reconstituted with the indirect-pathway T-cells following a 

heart transplantation showed alloAb production, while mice reconstituted with the direct-pathway 

T-cells did not. (Conlon et al., 2012) Therefore the focus will be on the B-cell activation in a T-cell 

dependent manner.  

As previously stated there are SLOs which are specialized in concentrating Ag and inducing 

the adaptive immune response. Within these SLOs, upon T-cell dependent B-cell activation, 

transient structures, called germinal centers (GC) are formed. The germinal center reaction can be 

divided into several stages, one being the initiation step or antigen dependent activation, followed 

by Th mediated B-cell proliferation, immunoglobulin class switch recombination (CSR) and 

subsequent fate decision to enter the GC or not. Based on the histological appearance, the GC can 
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be divided in two distinct microenvironments termed the dark zone (DZ) and light zone (LZ). 

Next to B-cells, the GC also contains a network of several other immune cells such as T follicular 

helper cells (TFH), FDCs and macrophages. (C. D. C. Allen et al., 2004; C. D. Allen, Okada, & 

Cyster, 2007; Nieuwenhuis & Opstelten, 1984; Victora et al., 2010) Within the GC the B-cells 

undergo clonal expansion, somatic hyper mutation (SHM) and affinity selection, possible CSR and 

recirculation, or differentiation and leaving the germinal center reaction as highly specific long-

lived MBCs or Ab producing PCs. This process of T-cell depended B-cell activation is summarized 

in (Figure 8) and will be discussed in more detail in the following chapters.  

Figure 8: Overview of the cellular components and B-lymphocyte fate before, during and after the germinal 

center reaction. 

Within secondary lymphoid structures, upon antigen activation of both naïve B and T-cells, either by direct binding of 

the antigen or through antigen presentation by antigen presenting cells, activated cells move to the T-cell-B-cell border. 

With the help of T-cells the B-cell activation will be “completed” and induce B-cell proliferation within the B-cell 

follicle. Following the first activation and proliferation step, these B-cells will undergo a fate decision and either leave 

the follicle to differentiate in short lived, low affinity plasma cells and germinal center independent memory B-cells or 

enter the germinal center reaction. When B-cells enter the germinal center, they expand clonally and undergo receptor 

mutations (dark zone reaction), followed by affinity selection with the help of follicular dendritic cells as well as T 

follicular helper cells (light zone reaction). The selected cells can re-enter the germinal center or leave the germinal 

center as highly specific long-lived memory B-cells and antibody producing plasma cells. Figure adapted from Parker. 

(Parker, 1993) BCR: B-cell receptor; FDC: follicular dendritic cell MHC: Major histocompatibility complex; TFH: 

follicular T helper cell. 
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(3) B-cell receptor signaling 

One of the first steps in the activation of mature B-cells in the periphery is the binding of 

Ags to the B-cell receptor (BCR), which sets in motion a cascade of signaling pathways directing 

the fate of the B-cell. Therefore, it is important to understand more about the signaling pathways 

that are set in motion upon Ag binding. The BCR consists of a membrane bound Ig and depending 

on the differentiation state of the mature B-cells, either naïve or class switched such as MBCs, they 

can be of the IgM, IgD, IgG, IgA and IgE isotype. An important step in creating a pool of 

heterogeneous individual B-lymphocytes is the formation of a diversified BCR, which is composed 

of an identical pair of Ig heavy chains and Ig light chains. Ig heavy chains and light chains both 

exist of a constant region and a variable part. The diversity of the BCR is created through receptor 

gene rearrangement and allelic exclusion of different variable (V), diversity (D) and joining (J) Ig 

gene segments during B-cell ontogeny. (Brack, Hirama, Lenhard-Schuller, & Tonegawa, 1978) The 

BCR is associated with Igα (CD79a) and Igβ (CD79b) subunits, which contain signaling motifs, 

termed immunoreceptor tyrosine-based activation motifs (ITAM). The importance of the 

association of the BCR with Igα and Igβ is observed during B-cell development in which B-cells 

where the pre-BCR molecules fail to associate with Igα and Igβ are arrested in development. 

(Papavasiliou, Misulovin, Suh, & Nussenzweig, 1995) As well as the fact that the BCRs of naïve B 

cells, of istype IgM and IgD, do not have any intrinsic signaling capacities and needs Scr tyrosine 

kinases (e.g. Lyn, Fyn, Blk) for the phosphorylation of the ITAMs. Several Scr kinases are expressed 

in B-cells however Lyn seems to play a pivotal role in the phosphorylation of the Igα and Igβ 

ITAMs, which has been shown in vitro in B-cells and in vivo in mice deficient for Lyn. (Burkhardt, 

Brunswick, Bolen, & Mond, 1991; Chan, Lowell, & DeFranco, 1998; J. Wang, Koizumi, & 

Watanabe, 1996)  

The phosphorylation of Igα and Igβ ITAMs initiates a signaling cascade downstream of the 

BCR, starting by the recruitment spleen tyrosine kinase (SYK) which has a high affinity for double 

phosphorylated ITAMs. This has been shown in SYK deficient B-cells reconstituted with SYK 

containing mutations in the ITAMs binding site leading to obrogated BCR signaling as compared 

to reconstitution with wild type SYK, underlining the importance of SYK in BCR signaling. 

(Kurosaki et al., 1995) The central role of SYK in BCR signaling has been determined both in B-

cell development as well as B-cell differentiation. (A. M. Cheng et al., 1995; Cornall, Cheng, 

Pawson, & Goodnow, 2000; Turner et al., 1995) Bound SYK to Igα and Igβ is then rapidly activated 

through phosphorylation by Lyn as well as auto-phosphorylation, which is necessary for its kinase 

activity. (Furlong et al., 1997; Keshvara et al., 1998)  
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Activation of SYK leads to the formation of a signalosome containing Cbl-interacting 

protein of 85 kDa (CIN85) and B-cell linker protein (BLNK), which is followed by the recruitment 

and phosphorylation of Bruton’s tyrosine kinase (BTK), a non-receptor tyrosine kinase. Like SYK 

the kinase activity of BTK increases through auto-phosphorylation. (Engels, Wollscheid, & 

Wienands, 2001; S. Hashimoto et al., 1999; Park et al., 1996). Additional to the activation of SYK, 

Lyn leads to the recruitment of p85, a subunit of phosphoinositide 3 kinase (PI3K) to CD19 where 

it complexes with the catalytic p110 subunit and initiates the protein kinase B (AKT) signaling 

pathway through the formation of phosphatidylinositol 3,4,5-triphosphate (PIP3). (Cambier, 

Pleiman, & Clark, 1994; Gold et al., 2000; Pleiman, Hertz, & Cambier, 1994) The role of CD19 in 

AKT signaling has been highlighted in CD19 deficient lymphoma cells as well as in CD19 deficient 

mice, showing that AKT signaling was greatly reduced (Otero, Omori, & Rickert, 2001) However 

it was observed that AKT signaling is not impaired in Lyn deficient mice, indicating another 

mechanism in BCR dependent AKT signaling in a CD19 independent manner. (H.-L. Li, Davis, 

Whiteman, Birnbaum, & Puré, 1999) It was shown that SYK able to interact with p85, and that 

p85 can act as an upstream activator of PI3K. (Beitz, Fruman, Kurosaki, Cantley, & Scharenberg, 

1999; Moon et al., 2005) It has been shown that BTK recruitment and activation partly relies on 

PI3K dependent PIP3 formation. It was demonstrated that BTK mutants failing to interact with 

PIP3 lead to defective BCR responsiveness and that direct interaction with PIP3 was enough to 

activate BTK. (K. Saito, Scharenberg, & Kinet, 2001; Takata & Kurosaki, 1996) 

Following the formation of the BCR signalosome and the distal activation of PI3K an 

intricate cascade of signaling pathways is set in motion. A central role of Phospholipase Cγ2 

(PLCg2), which is recruited and activated through the signalosome, has been elucidated. When B-

cells fail to incorporate PLCγ2 in the BCR signaling pathway, impaired calcium influx and distal 

signaling is attenuated. (Ishiai et al., 1999) Activated PLCγ2 is involved in the cleavage of 

phosphatidylinositol 4,5-bisphosphate (PIP2) in inositol trisphosphate (IP3) and diaglycerol (DAG). 

IP3 increases the calcium levels in the cell and elevated calcium levels are needed for the activation 

of transcription factors such as nuclear factor κB (NF-κB) and nuclear factor of activated T-cells 

(NFAT). (Dolmetsch, Lewis, Goodnow, & Healy, 1997; Trushin, Pennington, Algeciras-

Schimnich, & Paya, 1999) Cleavage product DAG is involved in the activation of protein kinase C 

(PKC), which is for one involved in the NF-κB pathway.  

It has been shown that mice deficient for PKCb failed to regulate the phosphorylation and 

subsequent activation of inhibitor of κB kinase (IKK), which is an inhibitory protein complex of 

NF-κB, regulating its activation and nuclear translocation. (Saijo et al., 2002; T. T. Su et al., 2002) 

IP3 and DAG/PKC dependent activation of mitogen activated protein kinases (MAPK), notably 
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extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, are 

involved in signal transduction following BCR engagement as well. (A. Hashimoto et al., 1998; 

Ishiai et al., 1999; Jiang, Craxton, Kurosaki, & Clark, 1998)  

 
Figure 9: Simplified scheme of B-cell receptor signaling upon antigen engagement. 

Antigen binding to the BCR leads to the recruitment of Scr kinase Lyn, which leads to the phosphorylation of Iga and 

Igb subunits associated with the BCR. Following the phosphorylation of the subunits, SYK is recruited to the BCR 

and activated, leading to the formation of a signalosome, distal phosphorylation of CD19 by Lyn leads to the 

recruitment of PI3K. Several signaling pathways, including Ras/Raf, NF-kB, MAPK and AKT, as well as in increase 

in calcium influx. Activation of these pathways leads to nuclear translocation of transcription factors that in turn 

promote cell migration, proliferation, differentiation and cell survival. Ag: antigen; BCR; B-cell receptor; CD: cluster 

of differentiation 
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Next to the IP3 and DAG mediated activation of ERK, another transduction signal has 

been proposed leading to BCR signalosome independent activation of ERK. The phosphorylation 

of the ITAMs in Igα and Igβ and recruitment of SYK can recruit a complex contacting SH2 

domain-containing protein (SHC), Growth factor receptor-bound protein 2 (Grb2) and 

mammalian son of sevenless (mSOS) which activates Ras. (D’Ambrosio, Hippen, & Cambier, 1996; 

Nagai, Takata, Yamamura, & Kurosaki, 1995) Activation of Ras leads to the recruitment of induces 

the Raf/MAPK/ERK signaling pathway inducing nuclear transcription. (Alessi et al., 1994; Yan, 

Roy, Apolloni, Lane, & Hancock, 1998)  

As mentioned before, BCR activation leads to distal PI3K activation and the formation of 

PIP3 that plays a role in the activation of BTK, however PIP3 is also involved in the activation of 

AKT by promoting its phosphorylation. (Franke et al., 1995) Like PCK, AKT activation influences 

the degradation of IKK and thus regulates the activation of NF-κB. (Kane, Shapiro, Stokoe, & 

Weiss, 1999) Activated AKT can also translocate to the nucleus of the cell where it can interact 

and affect several transcription factors involved in cell growth and proliferation. (K. Du & 

Montminy, 1998; Kops & Burgering, 2000; Meier, Alessi, Cron, Andjelković, & Hemmings, 1997) 

The engagement of the BCR and the signaling pathways that are activated upon Ag recognition 

(Figure 9) leads to cell migration, proliferation, differentiation and cell survival events which will 

be discussed below 

(4) Germinal center initiation  

Following Ag engagement by the TCR and the BCR, T- and B-cells undergo several 

chemostatic modifications and changes in expression of chemokine receptors. For example, C-C 

chemokine receptor type (CCR) 7 is a chemokine receptor that binds T-cell zone chemokines such 

as C-C motif chemokine ligand (CCL) 19 and CCL21, promoting migration to the T-cell zone. 

Whereas C-X-C chemokine receptor type (CXCR) 5, which binds B-cell zone chemokine C-X-C 

motif chemokine ligand (CXCL) 13, promotes migration to the B-cell zone. (Förster et al., 1999; 

Schaerli et al., 2000; Reif et al., 2002) Regulation of the expression of both CCR7 and CXCR5 by 

follicular T- and B-cells promotes migration from their respective niches to the T-B-cell border to 

facilitate their interaction (Figure 10 A) 

At the T-B-cell border B-cells form cognate interaction with T-cell by presenting the 

processed Ag via MHC class II to the TCR. In return, the B-cells receive T-cell-derived activation 

signals such as cytokines and co-stimulatory interactions necessary for the formation of the GC 

(Figure 10 B). (D. M. Mills & Cambier, 2003) The CD40-CD40L interaction needed for proper T-

cell dependent activation of B-cells, as it has been shown that mice deficient for CD40, expressed 

on B-cells, fail to form GCs as well as undergo isotype switching. (Kawabe et al., 1994) Reciprocally 
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the same results were obtained in mice deficient for CD40L, expressed by T-cells. (Xu et al., 1994) 

It has been observed in thymus less mice as well, who fail to form CGs, which are rescued by 

adoptively transferred thymocytes before immunization. (Jacobson, Caporale, & Thorbecke, 1974) 

The B7-CD28/CTLA-4 costimulatory pathway is another way the B-cell and T-cell interact. 

Members of the CD28 family expressed by the T-cells include CD28, cytotoxic T-lymphocyte-

associated protein 4 (CLTA-4), inducible T-cell co-stimulator (ICOS) and programmed cell death 

protein-1 (PD-1). Members of the B7 family expressed by the B-cells include, CD80 (B7-1), CD86 

(B7-2), ICOS ligand (ICOSL; B7-H2) and PD-ligand 1 (PD-L1; B7-H1). The B7-CD28/CTLA-4 

costimulatory pathway is essential for the activation of T-cells and thus indispensable for T-cell 

help. (Gimmi et al., 1991; June, Ledbetter, Linsley, & Thompson, 1990; Poirier, Blancho, & 

Vanhove, 2011) Without this co-stimulation pathway, activated B-cells fail to proliferate, undergo 

CSR, differentiate or form GCs. (Borriello et al., 1997; Coyle et al., 2000; Tafuri et al., 2001) 

 
Figure 10: Germinal center initiation. 

(A) Upon antigen binding by both the T-cells and B-cells, they migrate towards each other where they can form cognate 

interactions leading to B-cell activation and proliferation. Followed by either differentiation or entry into the germinal 

center. (B) Antigen presentation of the B-cell to the T-cell via the MHC and TCR induces B-cell stimulatory signals, 

such as cytokines and co-stimulation through CD40, leading to the initiation of the germinal center reaction. Figure 

adapted from Abbas et al. (Abbas et al., 2014, p. 246,248). CD: Cluster of differentiation, MHC: Major 

histocompatibility complex, TCR: T-cell receptor. 

 

Following the first interaction of the T- and B-lymphocytes, a rapid induction of B-cell 

proliferation is induced. (Coffey, Alabyev, & Manser, 2009; K. M. Toellner, Gulbranson-Judge, 

Taylor, Sze, & MacLennan, 1996) It has also been shown that these activated B-cells have 

undergone CSR during the early onset of the humoral immune response. (K. M. Toellner et al., 

1996; K.-M. Toellner et al., 1998; Pape et al., 2003) During CSR, the Ig gene is rearranged in a way 

that the heavy chain constant regions µ and δ are interchanged with constant regions γ, α, or ε to 

generate different Ig subclasses (IgG, IgA and IgE resp.). The major player during CSR is activation 

induced cytidine deaminase (AID), which is a ribonucleic acid (RNA)-editing deaminase that is 
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almost uniquely expressed in activated B-cells, and abrogation of AID obstructs CSR. (Muramatsu 

et al., 1999, 2000; Revy et al., 2000) AID induces the change of cytosine residues in single stranded 

DNA to uracil which leads to mismatches and thus mutations in the DNA strand for both the 

C/G and A/T residues. During CSR, when these mutations occur in the constant region of the Ig 

gene locus, it leads to double strand breaks followed by joining and generating class switched Igs. 

(Chaudhuri et al., 2007; Dickerson, Market, Besmer, & Papavasiliou, 2003; Noia & Neuberger, 

2007) 

Antigen binding and cellular interactions lead to the induction of several molecular factors 

that are important in the initiation and maintenance of the GC. An important transcriptional factor 

that is upregulated upon antigen binding is Myc, which is known to be involved in proliferation in 

many cell types by regulating multiple processes such as cell cycle progression, DNA replication 

and telomere maintenance (Dang, 2012; Nie et al., 2012) When Myc is abrogated shortly post 

immunization GCs are not formed. This indicates the importance of Myc in GC formation, in 

centroblasts however Myc expression is drastically downregulated. (Calado et al., 2012; 

Dominguez-Sola et al., 2012) Other transcriptional factors that are upregulated during the GC 

initiation are NF‑κB, myocyte-specific enhancer factor 2 (MEF2), interferon-regulatory factor 

(IRF) 4 and IRF8. It was recently shown that defects in the NF-κB signaling pathway in T-cell 

dependent activation of B-cells abrogated the formation of GCs. (Jacque et al., 2014) MEF2B, 

IRF4 and IRF8 are responsible for the regulation of transcriptional repressor B-cell lymphoma 6 

(BCL-6), which is a major regulator of GC initiation and maintenance. (C. H. Lee et al., 2006; 

Ochiai et al., 2013; Ying et al., 2013) BCL-6 is upregulated in GC B-cells, and mice deficient for 

BCL-6 showed defect in T-cell dependent B-cell activation due to the fact that that they failed to 

form GCs. (Fukuda et al., 1997; Ye et al., 1997) In the initiation of the GC, BCL-6 has been shown 

to be involved in cell migration into the follicle, as well as promoting T-cell B-cell interactions and 

T-cell differentiation into TFH. (Gatto, Paus, Basten, Mackay, & Brink, 2009; Kitano et al., 2011; 

Pereira, Kelly, Xu, & Cyster, 2009)  

(5) Germinal center reaction 

The GC reaction is a dynamic Darwinian survival of the fittest situation allowing only 

generated B-cell clones with the highest affinity for the Ag to survive and differentiate. One of the 

first models of the GC mechanism, for its organization and function, was proposed in 1994 by 

MacLennan established by years of research ranging from tissue analysis to in vitro studies. The 

organization of the GC was divided into a DZ and LZ based on the histological appearance of the 

cells that build up these distinct zones (Figure 11). The GC cells inhabiting the DZ were termed 
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centroblasts that were characterized by their large size, their mitotic activity and low expression of 

sIg. These cells were considered to undergo rapid proliferation and SHM within the variable region 

of the Ig genes to produce a fast variety of B-cell clones. These centroblasts were then proposed 

to exit the cell cycle, re-express the modified sIg, reduce in size and travel to the LZ, as cells termed 

centrocytes. Due to the mutations in the Ig gene these centrocytes express BCRs with a wide range 

in affinity for the Ag and it was proposed that in the LZ these centrocytes compete to bind Ag 

complexes presented by FDCs. Cells losing the competition die while the winners present Ags to 

TFH cells which assist in the proliferation and differentiation of GC cells into MBCs and PCs. 

(MacLennan, 1994)  

 
Figure 11: Histological section of a germinal center. 

Hematoxylin and eosin staining of a germinal center reveals a densely packed dark zone and a light zone containing 

fewer cells. Figure adapted from Abbas et al. (Abbas et al., 2014, p. 250). 

 

This model laid the basis for most of the understanding of the GC however, due to the 

large numbers of unknowns within the GC reaction it is an ongoing working model to elucidate 

the events happening within this complex dynamic cellular structure. These events will be discussed 

in detail below. 

The notion that cell division was restricted to the DZ came from histological observations 

of mitotic figures which were observed in higher frequency in the DZ. (Rademakers, 1992), as well 

as the observation that H3-thymidine incorporation showed that labelled cells appeared first in the 

DZ. (Hanna, 1964) However several studies have overturned the idea that cell division is restricted 

to the DZ. Staining GC cells with proliferation marker Ki67 indicated the presence of proliferating 

cells in both the DZ and the LZ, as well as results obtained with bromodeoxyuridine (BrdU) uptake 

assays in which BrdU was taken up by cells in both the zones. (C. D. C. Allen, Okada, Tang, & 

Cyster, 2007; Hauser et al., 2007) Indicating that both centroblasts and centrocytes can be in a 

proliferating state. Nonetheless cell cycle analysis showed that while in both zone there are cells in 

S phase, meaning entering the cell cycle, cells in the G2/M phase are extremely rare in the LZ and 
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more abundant in the DZ, indicating that the cell cycle is rarely completed in the LZ. These results 

were supported by the fact that G2/M cell cycle genes are upregulated in DZ cells. These results 

could suggest that cells can enter the cell cycle in the LZ, however this might be a trigger for the 

cells to leave the LZ, either for re-entry in the DZ or a post-GC fate. Supporting the notion that 

cell proliferation and thus clonal expansion occurs in the DZ. (C. D. C. Allen et al., 2007; Y. J. Liu, 

Zhang, Lane, Chan, & MacLennan, 1991; Victora et al., 2010) An important step in generating 

differentiated B-cells with high affinity for the Ag is receptor editing through SHM. It was observed 

that B-cells present in the follicle and the GC contain the same germline variable region for both 

the heavy and light chain of the Ig, however in the GC B-cells mutations were found in these gene 

segments while cells outside of the foci showed none, indicating that the GC is the site of SHM. 

(Jacob & Kelsoe, 1992; Jacob, Kelsoe, Rajewsky, & Weiss, 1991) As mentioned before an important 

enzyme for BCR editing is AID, which is an RNA editing deaminase that is involved in CSR, 

however in the germinal center reaction this enzyme is responsible for the SHM as well. SHM is a 

consequence of point mutations in the variable region of the Ig gene due to the change from 

cytosine residue into uracil. (Dickerson et al., 2003; Noia & Neuberger, 2007) It was observed that 

AID is mainly expressed in the DZ of the GC and found in only a few LZ B-cells (Figure 12), 

indicating that SHM occurs mainly in the DZ of the GC. (Carlotti et al., 2015; Moldenhauer et al., 

2006) 

 
Figure 12: Localization of AID in the Germinal Center 

Immunohistochemically staining of germinal centers reveal the localization of AID mainly in the dark zone, while only 

some cells expressing AID are found in the light zone identified based on the presence of CD23 positive follicular 

dendritic cells and CD3 positive T-cells. Figure adapted from Cattoretti et al., 2006. AID: activation induced cytidine 

deaminase, CD: Cluster of differentiation 

 

Following clonal expansion and SHM, centroblasts from the dark zone transition into 

centrocytes and enter the LZ. In the classical model of GC migration, it was suggested and 

observed that GC cells moved from the DZ to the LZ, based on the migration of labeled cells, 

prior to leaving the GC. (Hanna, 1964; Y. J. Liu et al., 1991) However, the likelihood that such a 
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striking high affinity is accumulated by one-step random mutations is very low. This lead to 

theoretical modeling, and follow up experimental results which showed that affinity maturation 

was a stepwise process, suggesting that some of the centrocytes re-entered the DZ for further 

proliferation and mutation and re-selection in the LZ. (Brown et al., 1992; Kepler & Perelson, 

1993; Oprea & Perelson, 1997) This was confirmed by real time imaging, which resulted in the 

conclusion that the GC cells moved between the DZ and LZ in both directions. (C. D. C. Allen et 

al., 2007; Hauser et al., 2007; Schwickert et al., 2007) This involved the expression of chemokine 

receptors CXCR4 and CXCR5 (C. D. C. Allen et al., 2004; C. D. Allen et al., 2007; Nieuwenhuis 

& Opstelten, 1984; Victora et al., 2010) It was shown by Allen et. al. (C. D. C. Allen et al., 2004) 

that centroblasts expressed high levels of CXCR4, and that their chemokine ligand CXCL12 was 

expressed in higher abundancy in the DZ. In immunized mice, deficient for CXCR4, they observed 

no segregation of the DZ and LZ within the GC. On the other hand, they observed that CXCL13 

was abundantly expressed in the LZ and that the expression of CXCR5 was needed to direct the 

cells towards the LZ. However, defects in either CXCR5 or CXCL13 were not necessary for the 

segregation of the GC into the DZ and LZ. (C. D. C. Allen et al., 2004) Interestingly the zonal 

segregation of the GC does not seem to be necessary for the centroblasts to transition into 

centrocytes, however CXCR4 is necessary for efficient participation in the GC. It was shown that 

CXCR4 deficient cells do not obtain a much mutations and are outcompeted by their wild type 

counterparts over time, indicating the importance of the zonal segregation and separation of SHM 

and affinity selection and maturation, as well as GC re-cycling. (Bannard et al., 2013)  

At first the idea arose that GC B-cells are selected solely based on their affinity of the BCR 

for the Ag. It was believed that the limited availability of Ag lead to competition for Ag binding 

which results in the survival of only high affinity B-cells. This coincided with the results found in 

several early studies that showed that a lower dose of Ag lead to greater affinity. (Eisen & Siskind, 

1964; Goidl, Paul, Siskind, & Benacerraf, 1968) FDCs are radioresitant cells forming a network in 

primary follicles and GCs, and they are seen as a histological marker for the LZ. (C. D. C. Allen & 

Cyster, 2008; Kosco-Vilbois & Scheidegger, 1995) FDCs were believed to be the cells driving in 

affinity selection of GC B-cells through direct competition, since they can retain intact Ag for a 

long time. The higher affinity B-cells would sequester all the antigen and the lower affinity B-cell 

would die due to lack of survival signals. (MacLennan, 1994; Mandel, Phipps, Abbot, & Tew, 1981) 

However this model fails to explain how differential BCR signaling could lead to either vigorous 

proliferation or induced cell death. And if the presence of Ag would be enough for selection, 

autoreactive GC B-cells, which can be formed by random mutations due to SHM, would flourish 

due to the fact that self-Ag are present in high numbers in the GC. However, under physical 
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conditions autoreactive cells undergo apoptosis within the GC reaction. (A Davidson, R Shefner, 

A Livneh, & Diamond, 1987; B Diamond et al., 1992) Therefore the notion of affinity selection by 

direct Ag binding via FDCs has been challenged and it has been shown that when the Ag 

presentation of the FDCs is retained, the formation of the GC is not abrogated and GC cells still 

show signs of affinity maturation. (Chen, Koralov, Gendelman, Carroll, & Kelsoe, 2000; Hannum, 

Haberman, Anderson, & Shlomchik, 2000; Mitsuru Matsumoto et al., 1996; X. Wu et al., 2000) 

However in the absence of FDCs GC fail to form. (Mitsuru Matsumoto et al., 1996) Next to the 

role of antigen presentation by FDCs, they are involved in GC localization of B and T-cells. FDCs 

produce CXCL13, which as mentioned before directs the migration of GC B-cells to the LZ. (C. 

D. C. Allen et al., 2004; J. G. Cyster et al., 2000) FDCs are also responsible for the secretion of 

cytokines such as IL-6 and B-cell activating factor (BAFF), which are involved in the GC reaction 

and B-cell differentiation. (Kopf, Herren, Wiles, Pepys, & Kosco-Vilbois, 1998; Kosco-Vilbois & 

Scheidegger, 1995; Y. Wu et al., 2009) These observations indicate that FDCs and direct antigen 

binding are indispensable in the GC reaction, however not in affinity maturation as previously 

believed. 

Therefore, another hypothesis has arisen in which competition for T-cells help is necessary 

for the selection of GC mutants with the highest affinity. It was shown that T-cells promote the 

selection of B-cells in the GC through processed Ag on MHC complexes, the higher the affinity 

the higher the density of Ag presentation on the B-cell surface and thus a greater share of T-cell 

help (Figure 13). (Depoil et al., 2005; Victora et al., 2010) The importance of T-cells within the GC 

reaction was shown by Han et al (Han, Hathcock, et al., 1995) as well, they showed that injecting 

antibodies blocking the CD40-CD40L interaction abrogates an ongoing GC reaction. A lineage of 

T-cells, TFH cells have been identified within the GC LZ. These cells were identified as CD4+ T-

cells which express chemokine receptor CXCR5, which is involved in the localization of the T-

cells in the LZ through a CXCL13 gradient. (Ansel, McHeyzer-Williams, Ngo, McHeyzer-Williams, 

& Cyster, 1999; Haynes et al., 2007) TFH cells have been identified based on their expression of 

both ICOS and PD-1, which are as mentioned before involved in the B7-CD28/CTLA-4 

costimulatory pathway. (Haynes et al., 2007; Hutloff et al., 1999) Interactions between GC B-cells 

and TFH have been shown to be promoted via ICOS-ICOSL binding, and it was observed that this 

interaction increases the expression of CD40L on T-cells. Upregulation of CD40L on T-cells 

increases the CD40 stimulation B-cells receive upon T-B-cell interactions. Increased CD40 

stimulation in B-cells is followed by the upregulation of ICOSL in the B-cells resulting in a 

feedforward loop increasing the T-cell help received by higher affinity GC B-cells as compared to 

their lower affinity counter parts. (Dan Liu et al., 2015) 
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Figure 13: Antigen presentation and T-cell interaction germinal center B-cells. 

A proposed model of antigen presentation and T-cell help in affinity selection of germinal center B-cells. Follicular 

dendritic cells present in the light zone of the germinal center reaction present antigens to the germinal center B-cells. 

Depending on the affinity of the B-cell receptor for the antigen the higher the density of antigens presented to the 

follicular T-cells and thus the greater the T-cell help. Cells that receive the most T-cell help are able to expand and 

differentiate in effector cells while lower affinity cells die by apoptosis. Figure adapted from Victora and Nussenzweig. 

(Victora & Nussenzweig, 2012) FDC: Follicular dendritic cell, GC: Germinal center, TFH: Follicular T helper cell 

 

Following the selection of GC B-cells with high affinity for the Ag, the cells will 

differentiate and will be exported from the GC as either MBCs or PCs. Plasma cells will secrete 

Abs with high affinity for the antigen and thus neutralize the threat while MBCs will be able to 

rapidly differentiate into PCs upon re-exposure to the Ag generating a pool of highly specific and 

efficient effector B-cells. Whereas the decision for GC cells to differentiate in PCs has been 

elucidated, the decision to differentiate into MBCs is still poorly understood. Blimp-1 (a.k.a. 

PRDM1: PR domain zinc finger protein 1) is seen as the master regulator of PC differentiation. It 

is expressed in a small subset of GC cells before they are exported, indicating their predisposition 

to become PCs. (Angelin-Duclos, Cattoretti, Lin, & Calame, 2000; Fooksman et al., 2010) Bone 

marrow PCs were shown to have an almost uniformly high affinity as compared to GC B-cells and 

MBCs, indicating a differential selection method for PC and MBC differentiation. (Kenneth G. C. 

Smith, Light, Nossal, & Tarlinton, 1997) Extensive research has been performed by the group of 

Brink, in which they look at Ag affinity and B-cell differentiation. They found that B-cell expressing 

high affinity BCRs are actively selected into PCs. By generating mice that transgenically express a 
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BCR specific for hen egg lysosome and subsequent challenging these B-cells with Ags of various 

affinities. They observed that lower affinity Ags lead to accumulation in total SHM in GC B-cells 

as compared to higher affinity Ag induced GCs, they observed lower levels of secreted Ag specific 

IgG as well. (Brink, Phan, Paus, & Chan, 2007; Paus et al., 2006; Phan et al., 2006) Indicating that 

differentiation of GC cells into PCs is directly related to high absolute BCR affinity. As mentioned 

before Blimp-1 is an indicator for PC differentiation, while the BCR affinity seems to the thriving 

force in PC selection, T-cell help has been shown to influence Blimp-1 expression via CD40 

mediated activation of NF- κB and subsequent induction of IRF4. (Klein et al., 2006; Sciammas et 

al., 2006) The fact that PCs and MBCs differentiate in two different ways has been highlighted by 

the fact that PCs seem to have an overall high affinity compared to MBCs. (K. G. C. Smith, Weiss, 

Rajewsky, Nossal, & Tarlinton, 1994; Kenneth G. C. Smith et al., 1997) On the other hand, 

disturbing the GC selection process is usually reflected by MBCs while having different effects on 

PCs. (Good-Jacobson & Shlomchik, 2010) The differentiation of GC cells into MBCs still remains 

unclear. A current hypothesis is, that MBCs randomly differentiate from GCs simply by being 

positively selected and surviving apoptosis. This notion is supported by the fact that when GC cells 

are prevented from entering in apoptosis the number of GC and memory B-cells increase 

disproportionally while the affinity for the Ag decreases, indicating that MBCs cell fate is directed 

more through selection and survival then Ag affinity. (K. G. C. Smith et al., 1994; Takahashi et al., 

1999; Takahashi, Ohta, & Takemori, 2001)  

(6) Germinal center independent B-cell differentiation 

As mentioned before, a part of the activated B-cells will leave the follicle without entering 

the GC and they can either differentiate in GC independent MBCs or in extra follicular PCs. Mice 

deficient for Bcl-6 maintained the possibility to have differentiated MBCs in response to T-cell 

dependent Ags, indicating the formation of GC independent MBCs. (Toyama et al., 2002). Another 

study showed that when the onset of the GC is selectively blocked by inhibiting the interaction 

with ICOS, the recruitment of high affinity MBCs is impaired while low affinity MBCs are 

generated in a GC independent manner. (Inamine et al., 2005) The influence of T-cell B-cell 

interactions in the fate decision to become GC independent MBCs has been shown to be 

dependent of CD40 (Erickson et al., 2002) GC independent MBCs can either express sIgM or 

isotype switched sIg, however they do not show signs of SHM nor, in some cases, expression of 

memory marker CD27. (Toyama et al., 2002; Inamine et al., 2005; J. J. Taylor, Pape, & Jenkins, 

2012)  

Extra follicular PCs, are differentiated low-affinity plasma cells that have a short lifespan. 

(Sze, Toellner, Vinuesa, Taylor, & MacLennan, 2000) While they have upregulated expression 
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levels of AID and they underwent isotype switching, there is no evidence of SHM or affinity 

maturation. (Jacob & Kelsoe, 1992; K.-M. Toellner et al., 2002; Marshall et al., 2011) Recent studies 

have shown the importance of Ag recognition and binding strength in the decision for the B-cell 

to differentiate in follicular plasma blasts. In which they showed that in the initial Ag recognition 

response the cells with higher affinity for the Ag are more likely to become short-lived, low-affinity 

plasma blast, as where moderate and lower affinity B-cells enter the GC to differentiate in high-

affinity selected long lived differentiated B-cells. (Dal Porto, Haberman, Kelsoe, & Shlomchik, 

2002; O’Connor et al., 2006; Paus et al., 2006)  

The fate decision to enter the GC can be regulated at molecular levels as well, the 

expression of Epstein-Barr virus-induced gene 2 (EBI2), is involved in the follicular localization of 

B-cells. (Glynne, Ghandour, Rayner, Mack, & Goodnow, 2000; Rosenkilde et al., 2006) B-cells with 

upregulated expression of EBI2 favor the outer follicular region, while B-cells with downregulated 

EBI2 favor the inner follicular region. It has been shown that transcriptional repressor Bcl-6 is 

responsible for the transcriptional regression of EBI2, (Gatto et al., 2009; Pereira et al., 2009) 

(III) Balancing B-cell survival and death 

(1) Regulating germinal center B-cell survival 

As stated previously, B-cells in the GC undergo a selection process in which their fate is 

decided, they either re-enter the GC, differentiate or are eliminated by apoptosis, creating a state 

of homeostasis for B-cells within the GC. Apoptosis is a highly regulated programmed cell death 

and is an important process for the maintenance of a cellular homeostasis without the induction 

of an inflammatory response. Apoptosis leads to the extermination and elimination of infected, 

damaged, self-reactive, non-reactive or redundant cells through phagocytosis. (Aderem & 

Underhill, 1999; Henson & Hume, 2006; Monks, Smith-Steinhart, Kruk, Fadok, & Henson, 2008)  

The default cell fate of GC B-cells is to die of apoptosis. Liu et al (Y.J. Liu et al., 1989) 

showed that GC B-cells extracted from tonsils and maintained in culture die from apoptosis within 

hours if they are not activated through the BCR. This hypothesis is supported by the fact that GC 

B-cells lose the expression of anti-apoptotic protein B-cell lymphoma-2 (Bcl-2), which is a member 

of the Bcl-2 protein family involved in the regulation of apoptosis and which will be discussed in 

further detail below. The fact that FasR is highly expressed by GC B-cells supports this hypothesis 

as well. (Yoshino et al., 1994) Master regulator of the GC reaction, Bcl-6, has been identified as a 

repressor of Bcl-2 gene transcription. (Ci et al., 2009; M. Saito et al., 2009) On the other hand it 

has been shown in that overexpressing Bcl-2 alters the differentiation of the B-cells in the GC. 

Overexpression of Bcl-2 leads to the survival of self-reactive B-cells, which would normally be 
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cleared through apoptosis. Overexpression of Bcl-2 also increases the number of isotype switched 

GC and memory B-cells, however it deceases the efficiency of affinity selection. (Notidis, 

Heltemes, & Manser, 2002; K. G. C. Smith et al., 1994) 

The survival of GC cell depends on the reception of survival signals, which can induce the 

expression of anti-apoptotic proteins preventing apoptotic cell death. Vikstrom et al (Vikstrom et 

al., 2010) showed that myeloid cell leukemia-1 (Mcl-1; BCL2L3), another Bcl-2 family member, is 

the main anti-apoptotic regulator of the GC reaction. They confirmed by immunoblotting that 

Mcl-1 and Bcl-xl were upregulated in GC B-cells, therefore they created conditional Cre-Lox mice 

models for both Mcl-1 and Bcl-xl. In this model, they observed that while deletion of Bcl-xl did 

not alter the GC response upon antigen activation (Figure 14A), deletion of Mcl-1 abrogated the 

formation of both GC B-cells and MBCs (Figure 14 B). 

 
Figure 14: Effect of Bcl-xl and Mcl-1 deletion GC and Memory B-cell formation. 

While conditional depletion of Bcl-xl does not alter the formation of GC as well as memory cells upon activation (A), 

depletion of Mcl-1 abrogates bot GC and memory formation. Figure adapted from Vikstrom et al. (Vikstrom et al., 

2010) Bcl-2: B-cell lymphoma-2; Ig: immunoglobulin, GC: germinal center, NP: 4-hydroxy-3-nitrophenyl 

 

In our group (Clybouw et al., 2011), we showed that another regulator of the GC reaction 

is Bcl-2 homology (BH)3-only protein p53 up-regulated mediator of apoptosis (Puma). Deletion 

of Puma in vitro prolonged the survival of mitogen activated B-cells, additionally in vivo studies 

showed an accumulation of antigen specific B-cells in Puma deficient mice as compared to wild 

type mice. In this same study, a co-localization between Mcl-1 and Puma was observed within GCs 

(Figure 15).  
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Figure 15: The localization of pro-apoptotic Bcl-2 family members in relation to Puma and germinal center 

structures found in human lymph nodes.  

Anti-apoptotic protein Mcl-1 is mainly expressed germinal center cells, where BH3-only activator Puma is located too. 

Whereas both Bcl-2 and Bcl-xl are mainly expressed by cells around the germinal centers, though Bcl-xl can be found 

within the germinal center as well. The identified proteins are indicated by the white arrows. Figure adapted from 

Clybouw et al. (Clybouw et al., 2011)  

 

These studies indicate the importance of the Bcl-2 family in regulating the GC reaction, 

both in an anti- and pro-apoptotic manner, regulating B-cell survival and death and thus ensuring 

BCR specificity. 

(2) The Bcl-2 family 

The protein laying the foundation for the Bcl-2 family was, as the name suggest, Bcl-2 and 

was first identified in human B-cell follicular lymphoma. A chromosomal translocation t(14;18) in 

this lymphoma caused deregulation in the Bcl-2 gene and inducing its overexpression. (Tsujimoto, 

Cossman, Jaffe, & Croce, 1985) Following the discovery of Bcl-2, it was shown that when 

overexpressed in hematopoietic cells apoptosis was prevented leading to an accumulation of 

lymphocytes in mice models. (McDonnell et al., 1989; Vaux, Cory, & Adams, 1988). Antonsson et 

al. (Antonsson et al., 1997) found that Bcl-2 is capable to prevent the induction of mitochondrial 

membrane permeability, known as mitochondrial outer membrane permeabilization (MOMP), and 

thus prevent the release of mitochondrial proteins, such as cytochrome c, involved in apoptosis. 

The release of pro-apoptotic proteins following MOMP is a main biochemical event observed 

during the intrinsic apoptotic pathway, an apoptotic pathway that will be discussed in more detail 

below. Bcl-2 has been shown to oppose apoptosis downstream of MOMP as well by demonstrating 
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that Bcl-2 is able to partially inhibit caspase activation, even in the presence of cytochrome c. 

(Cosulich, Savory, & Clarke, 1999) Shortly after, other family members were identified based on 

similar function, structural similarities and conserved a-helical BH domains. The Bcl-2 family 

members share up to four BH domains, termed BH1-4, of which BH3 is found in almost all family 

members and is necessary for their interaction. (Youle & Strasser, 2008; Zha et al., 1997) The 

interactions between the family members determine the integrity of the mitochondrial outer 

membrane (MOM). In mammals, there are around 20 family members identified which can be 

divided into two groups based on their function during apoptosis, namely pro-apoptotic and anti-

apoptotic (Figure 16).  

 
Figure 16: The Bcl-2 family of proteins. 

The presence of up to 4 homologous BH domains define the Bcl-2 family members. Functionally these proteins can 

be subdivided in anti-and pro-apoptotic proteins of which the pro-apoptotic proteins can be further sub-divided into 

multidomain executioner proteins and BH3-only protein. Figure adapted from Rodriquez et al. (Rodriguez, Rojas-

Rivera, & Hetz, 2011) BH3: Bcl-2 homology, TM: Transmembrane. 

 

The anti-apoptotic family members identified up to date are Bcl-2, Bcl-xL (BCL2L1 long 

isoform), Bcl-w (BCL2L2), Mcl-1 and A1 (BCL2L5; Bfl-1). All anti-apoptotic Bcl-2 family 

members share a structural fold forming a hydrophobic pocket that stretches over the BH1-BH3 

or BH1-BH4 domains. This conformation is essential for the interaction between the anti-

apoptotic and pro-apoptotic Bcl-2 family members. Overexpression of the anti-apoptotic proteins 

blocks apoptosis by sequestering the pro-apoptotic effector proteins (Certo et al., 2006; E. H. Y. 

A. Cheng et al., 2001) 

The pro-apoptotic Bcl-2 family members comprise two groups related to their structure 

and correlated functions, namely the effector proteins and BH-3 only proteins. The effector 

proteins BCL-2 Associated X protein (Bax) and BCL-2 Antagonist Killer 1 (Bak) are responsible 

for MOMP and subsequent release pro-apoptotic molecules from the mitochondria. Bax and Bak 

both share BH1-BH3, and like the anti-apoptotic members, they display structural conformations 
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necessary for protein-protein interaction. (Moldoveanu et al., 2006; Suzuki, Youle, & Tjandra, 

2000) Once activated Bax and Bak undergo conformational changes and are able to oligomerize 

followed by pore formation in the mitochondrial membrane. (Antonsson, Montessuit, Sanchez, & 

Martinou, 2001; Griffiths et al., 1999; Nechushtan, Smith, Lamensdorf, Yoon, & Youle, 2001) The 

BH3 domain of Bax is necessary for protein-protein interactions, either with itself or other family 

members, as well as for its apoptotic activity. (Simonen, Keller, & Heim, 1997) The BH3 domain 

of Bak is involved in the interaction with anti-apoptotic family members as well. (Sattler et al., 

1997) Both Bax and Bak are necessary for an optimal induction of apoptosis upon stress signals. 

(Kepp, Rajalingam, Kimmig, & Rudel, 2007) 

The second group of pro-apoptotic proteins, the BH3-only proteins is the largest group of 

Bcl-2 proteins and comprise of e.g. BCL-2 antagonist of cell death (Bad), BH3 interacting-domain 

death agonist (Bid), BCL-2 interacting killer (Bik), BCL-2 interacting mediator of cell death (Bim), 

BCL-2 modifying factor (Bmf) Harakiri (Hrk), Noxa, and Puma. In the absence of Bax and Bak 

the BH3-only proteins alone are unable to induce apoptosis. (Zong, Lindsten, Ross, MacGregor, 

& Thompson, 2001) BH3-only proteins are sensors of intracellular stress and their role in apoptosis 

depends on their interaction with specific Bcl-2 family members. The expression of the BH3-only 

proteins varies depending on the cell type and they can be restrained in different ways. They can 

either be regulated at transcriptional level, proteins like Bim, Puma, Noxa and Hrk are upregulated 

following cellular stress, or they can be present in the cell in a non-active state followed by their 

activation upon post-translational changes. For example, Bad is sequestered by 14-3-3 proteins, 

while Bid is produced as a large non-active protein which can be activated through cleavage by 

caspase-8 and granzyme B. (Puthalakath & Strasser, 2002) Phosphorylation of BH3-only proteins, 

such as Bim, Bad, Bmf and Bik may play a role in their activation state as well, however the 

mechanism is still poorly understood. For Bim it has been found that phosphorylation at specific 

serine residues following survival signals leads to its proteasome depended degradation, while 

phosphorylation following growth factor withdrawal can enhance apoptosis. (Harada, Quearry, 

Ruiz-Vela, & Korsmeyer, 2004; Putcha et al., 2003) 

In a healthy cell, anti-apoptotic family members are able to repress the activity of the pro-

apoptotic effector proteins, and following an apoptotic signal the balance is tipped and apoptosis 

is induced. This happens predominantly by an increased expression of the pro-apoptotic (mainly 

BH3-only) and/or inactivation and degradation of the anti-apoptotic members. This tip of the 

balance leads to the activation of Bax and Bak followed by MOMP.  

Interactions between the family members have been extensively researched (Table 1), 

giving rise to several proposed models of activation of the intrinsic apoptotic pathway. 
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Table 1: Interactions between Bcl-2 family members 

Interactions between the Bcl-2 family members that are necessary either to prevent the cell from dying by apoptosis 

or induce apoptosis upon the signals received by the cell. Table adapted from Shamas-Din, Kale, Leber, & Andrews, 

2013  

 
One model is called the displacement or derepressor model (Figure 17, left), in which the 

effector proteins Bak and Bax are constitutively expressed by the cell. However, they are rendered 

inactive trough interactions with anti-apoptotic family members. The activation of Bak and Bax in 

this model depends on competitive binding of the BH3-only members to the anti-apoptotic family 

members, leading to the release oligomerization of Bak and Bax. (E. H. Y. A. Cheng et al., 2001; 

Willis et al., 2005)  

A second model proposed is the direct activator model (Figure 17, middle), in which the 

BH3 only proteins are divided into two groups. One group are called the activators, namely Bid, 

Bim and Puma, and the rest of the BH3-only proteins are called sensitizers. In this model, the anti-

apoptotic proteins sequester the BH3-only activators and prevent them from binding and activating 

Bax and Bak. Following an apoptotic signal, the sensitizers can bind to the anti-apoptotic family 

members leading to the release of the activator BH3-only proteins. The activators can then bind 

and activate the executioners Bax and Bak. (Certo et al., 2006; H. Kim et al., 2006; Letai et al., 2002) 

Proof for this model came from the fact that the activation of Bax and Bak was impaired in triple 

knockout cells for BH3-only activators Bid/Bim/Puma. (Ren et al., 2010)  

The third model, the unified model (Figure 17, right), depends on the anti-apoptotic 

proteins that on one hand sequester the direct BH-3 activators (Mode1) and on the other hand 

sequester Bax and Bak directly (Mode 2). The activation of this model depends on the binding of 

BH-3 only sensitizers to the anti-apoptotic proteins, followed by the activation of both modes, due 

to the dual effect of the anti-apoptotic proteins on both the effector and BH3-only activators. Even 

though both inhibitions of apoptosis take place simultaneously, mode 1 is easier to bypass by BH3-

only sensitizers and induce MOMP then mode 2. (Llambi et al., 2011) 
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Figure 17: Proposed models of activation of mitochondrial intrinsic apoptotic pathway by the Bcl-2 family. 

A graphical summary of proposed models of activation of apoptosis through interactions between Bcl-2 family 

members. The anti-apoptotic proteins (green) sequester and inhibit either directly the pro-apoptotic effectors (red) or 

the BH3-only activators (brown). Upon apoptotic signals BH3-only can interact with the anti-apoptotic proteins, 

leading the release of Bax and Bak directly or they release BH3-only activators that in turn activate Bax and Bak leading 

to their activation, oligomerization and pore formation in the mitochondrial membranes. Figure adapted from Bender 

and Martinou. (Bender & Martinou, 2013) Act: activator, sens: sensitizer 

(3) Induction and execution of apoptosis 

The apoptotic pathway consists of initiation pathways and an execution pathway. The 

initiation pathways lead to the activation of the so-called executioners of apoptosis, namely 

caspases. The human caspase protein family consists of cysteine proteases that can be divided into 

3 groups based on structural similarity and their function. Group I consist of pro-inflammatory 

caspases -1, -4 and -5. The pro-apoptotic caspases can be divided in two groups: (I) group II, the 

apoptotic effector caspases, namely caspase-3, -6 and -7, and (II) group III, the initiation caspases-

2, -8, -9 and -10. (Julien & Wells, 2017) Under physiological conditions the pro-apoptotic caspases 

are expressed as inactive procaspases, which are processed into their active from following 

apoptotic signals. The activation of initiator caspases can activate effector caspases amplifying the 

apoptotic signaling pathway. The activation of for example caspases-8, -9 and -10 comes from the 

dimerization of their monomeric procaspases following the recruitment into a protein scaffold 

and/or proteolytic cleavage. Other caspases, such as caspases-3, -6 and -7, which are constitutive 

dimers even in their procaspase form, are activated following cleavage by either initiation caspases 

or auto-proteolysis. (Riedl & Shi, 2004; Salvesen & Ashkenazi, 2011; Stennicke & Salvesen, 2000) 
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Once the executioners of apoptosis are the activated there is no turning back and the cell will die 

a programmed cell death. (G. M. Cohen, 1997) Up to date more than 400 substrates have been 

mentioned in literature to be cleaved by caspases. (Lüthi & Martin, 2007) The events leading to the 

activation and subsequent apoptotic events related to activated caspases will be discussed below. 

The two main apoptotic initiation pathways, leading to the activation of caspase-3, -6 and 

-7, are the extrinsic pathway, that is activated upon extracellular signals, and the intrinsic pathway, 

that is activated by signals coming from within the cell. However, a third initiation pathway has 

been described to be able to induce apoptosis as well, namely the perforin/granzyme pathway. 

 
Figure 18: Initiation pathways of apoptosis 

Graphic representation of the apoptotic pathways, the extrinsic pathway (i) activated upon extracellular signals, the 

granzyme/perforin pathway (ii) following cytotoxic T-lymphocyte signals and the intrinsic pathway (iii) activated upon 

signals from within the cells. The pathways lead to the activation of effector caspases 3, 6 and 7. The extrinsic pathway 

directly activates caspase-8 which in turn activated the effectors and granzyme B interacts directly with the effectors, 

the intrinsic pathway is dependent on the diminished integrity of the mitochondrial membrane regulated by the Bcl-2 

family and the release of cytochrome C and other apoptotic proteins, followed by the formation of the apoptosome 

involving caspase-9, which activates the effectors. Inter pathway communication leads to increased apoptotic signaling. 

Figure taken from (Renault & Chipuk, 2013) APAF-1: apoptotic protease activating factor 1 ; CAD: Caspase activated 

DNase FADD: Fas-associated protein with death domain; IAPs: Inhibitors of apoptosis; MOMP: Mitochondrial outer 

membrane permeabilization. 

 

The extrinsic pathway (Figure 18i) is activated upon binding of specific ligands to 

transmembrane DR present on the cell surface. DR are members of the TNF super family of 

proteins, of which the best-characterized are FasR (aka APO-1), Tumor necrosis factor receptor 1 
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(TNFR1), DR3 (aka APO-3), DR4 (aka TRAILR1, APO-2) and DR5 (aka TRAILR2). These 

receptors have in common a cytoplasmic domain called the death domain (DD), which plays an 

essential role in signal transduction following the engagement of a ligand to the receptor. 

(Ashkenazi & Dixit, 1998; Peter & Krammer, 1998; Suliman, Lam, Datta, & Srivastava, 2001) 

Activation of the DR leads the recruitment of adaptor protein Fas-associated protein with death 

domain (FADD) directly or with the aid of a second adaptor protein TNFR1 associated DD 

protein (TRADD). FADD associates with the non-active procaspase-8 and -10 forming the death 

inducing signaling complex (DISC) leading to the activation and release of initiators caspase-8 and 

-10. (Kischkel et al., 1995; Sprick et al., 2002) 

The perforin/granzyme pathway (Figure 18ii) plays a role in CTL cytotoxicity through the 

release of granzyme B into the target cell. Granzyme B is a proteasome that can cleave proteins, 

and it has been shown that granzyme B can induce apoptosis in several ways. For one direct targets 

of granzyme B are the caspases, notably caspase-10 and caspase-3. On the other hand, Granzyme 

B induces the activation of caspase activated DNase (CAD), an apoptotic nuclease, through 

interaction with inhibitor of caspase activated DNase (ICAD). (Talanian et al., 1997; Thomas, Du, 

Xu, Wang, & Ley, 2000)  

The intrinsic pathway, or mitochondrial pathway (Figure 18iii), is activated upon signals 

coming from within the cell, which implicates non-receptor mediated signals. The intracellular 

signals that initiates the intrinsic pathway can come from either positive or negative modus 

operandi. The negative signals can come from the withdrawal of stimulating factors leading to the 

loss of apoptotic suppression and activation of the intrinsic pathway. (Elmore, 2007) The positive 

factors can come from stress applied to the cells, e.g. radiation, viral infection, the presence of 

toxins, and free radicals. These signals trigger the dis-balance between the Bcl-2 family members 

and initiate, leading to the release of pro-apoptotic proteins into the cytoplasm. The release of pro-

apoptotic Cytochrome c from the mitochondria is the point of no return in the intrinsic pathway, 

followed by the activation of apoptotic protease activating factor 1 (APAF-1). Pro-caspase-9 is 

recruited to the Cytochrome c-APAF-1 complex leading to the formation of a complex called the 

apoptosome and subsequent activation of caspase-9. (Hill, Adrain, Duriez, Creagh, & Martin, 2004; 

J. Yang et al., 1997) The release of Smac/DIABLO and omi/Htra from the mitochondria promote 

apoptosis through the inhibition of inhibitors of apoptosis (IAPs) (C. Du, Fang, Li, Li, & Wang, 

2000; van Loo et al., 2002) A third group of pro-apoptotic proteins released from the mitochondria 

are involved in chromatin condensation and nucleotide fragmentation, either in a caspase in-

dependent or dependent manner. (Enari et al., 1998; Joza et al., 2001; L. Y. Li, Luo, & Wang, 2001) 

The apoptotic initiation pathways are intertwined, and the activation of one can induce the 
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activation of the other to amplify apoptotic signaling. For one, activated caspase-8 can cleave and 

activate Bid, a member of the Bcl-2 family, and establish intrinsic apoptotic signaling and thus 

promote cytochrome c release and activation of caspase-3. (H. Li, Zhu, Xu, & Yuan, 1998) It has 

been shown in some cell types that the activation of the mitochondrial pathway following FasR 

mediated apoptosis, through the activation of caspase-8 followed by the cleavage of Bid, is 

necessary to release of cytochrome C and the activation of caspase-9 to induce apoptosis (Scaffidi 

et al., 1998; Yin et al., 1999) For Granzyme B it has also been shown to establish intrinsic apoptotic 

signaling by interacting with Bid. (Sutton et al., 2000) 

 
Figure 19: Identification of apoptotic cells based on morphological changes observed by electron microscopy 

and flow cytometry. 

A) comparison of a healthy cell (left pane) to an apoptotic cell (right pane), the apoptotic cell shows condensed 

chromatin (arrow head) and nuclear fragmentation, as well as blebbing of the membrane and the formation of 

apoptotic bodies. (B) Flow cytometry can identify apoptotic cells based on the size and granulocity of the cell. 

Apoptotic cells decrease in size while they become more granular hence the spreading of the dots. (C) Flow cytrometry 

can identify apoptotic cells based on the permeabilization of the cells membrane, PI uptake, and flip-flop of 

phosphatidylserine, by binding of AnnexinV, as well. Early apoptotic cells are identified as AnnexinV positive and PI 

negative while late apoptotic cells are identified as AnnexinV and PI positive. Figure adapted from Krysko, Vanden 

Berghe, D’Herde, & Vandenabeele, 2008b. PI: propidium iodide 

 

The final results of the induction pathways, is the activation on activator caspases-3, -6 and 

7 which induces the execution phase of apoptosis. Caspases, once activated, are able to induce 

morphological and biochemical changes that have been well documented. Morphologically the cell 
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will become smaller due to shrinking of the cytoplasm which is followed by bulging, of the cell 

membrane, also known as blebbing. Given that if the apoptotic cell is not immediately removed 

through phagocytoses it will be broken down in smaller vesicles, containing cellular components 

such organelles, called apoptotic bodies that are prone to phagocytoses. (Figure 19) (Kerr, Wyllie, 

& Currie, 1972; Krysko, Vanden Berghe, D’Herde, & Vandenabeele, 2008)  

The blebbing is partly explained by a weakened cytoskeleton, due the fact that many 

cytoskeletal components can be cleaved by caspases, and the flow of the cytosol against 

unsupported parts of the plasma membrane. (R. C. Taylor, Cullen, & Martin, 2008) Some intact 

contracted actin seems to be necessary for the membrane blebbing and contraction of actin 

filaments depends on the capspase dependend activation of ROCK1. (Coleman et al., 2001; 

Sebbagh et al., 2001) 

Biochemically, during apoptosis the nucleus is affected as observed by condensation of the 

chromatin, DNA fragmentation, shrinking of the nucleus and finally nuclear defragmentation 

(caryorrhexie). (Toné et al., 2007) The protein CAD has been found as the main player in DNA 

fragmentation during apoptosis. It was observed in CAD deficient cells undergoing apoptosis do 

not show DNA fragmentation as well as chromatin condensation. Non-active CAD is present in 

the cell in association with ICAD, cleavage of ICAD by caspases leads to its release and active 

CAD can then translocate to the nucleus to perform its role. (Enari et al., 1998; Napirei et al., 2000; 

Samejima, Tone, & Earnshaw, 2001) Interestingly mice deficient for CAD leading to the 

impairment of DNA fragmentation provoked an immune response normally absent during 

apoptosis, underlining the importance of CAD in efficiently clearing apoptotic cells by 

phagocytosis. However early chromatin condensation is not blocked in CAD deficient mice, 

indicating a secondary signal involved in chromatin condensation. (Samejima et al., 2001) It has 

been suggested that histone phosphorylation plays a role in apoptosis dependent chromatin 

condensation and indeed a caspase dependent activation for mammalian sterile-20, a kinase 

responsible for histone phosphorylation, was observed. Mutations in the caspase binding site of 

this kinase strongly reduced chromatin condensation observed during apoptosis. Next to the effect 

on nuclear contents, apoptosis leads to caryorrhexie, which is in part, like the cell membrane, due 

to ROCK1 dependent actin contraction. Besides being responsible for actin contraction, caspases 

can cleave nuclear lamins wakening the nuclear envelope, causing nuclear fragmentation. (Croft et 

al., 2005; Rao, Perez, & White, 1996) Caspases are able to target many proteins involved in the 

regulation of transcription, they able to cleave transcription and translation, shutting down the 

entire housekeeping of the cell. (Cheung et al., 2003; Lüthi & Martin, 2007; Ura, Masuyama, Graves, 

& Gotoh, 2001)  
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Activated caspases are also involved in changes in the outer cell membrane, particularly the 

flip-flop of phosphatidylserine leading to its expression on the cell surface, causing the apoptotic 

cell to be recognizable by phagocytes through specific receptors. (Fadok et al., 1992, 2000) Nuclear 

fragmentation is involved in the recruitment of phagocytes as well, since it has been shown that 

nucleotides, especially adenosine triphosphate and uridine triphosphate, are potent 

chemoattractants. (Elliott et al., 2009) It is important for the apoptotic cell to be cleared by 

phagocytosis, since defects in the clearance of apoptotic cells leads to a stage called late apoptosis 

(secondary necrosis). During late apoptosis, the cell membrane will become more permeable and 

release their content to induce an inflammatory response. (Krysko, D’Herde, & Vandenabeele, 

2006) The central role of caspases is summarized in Figure 20 

 
Figure 20: Effector pathway of apoptosis, the central role of caspases. 

Effector caspases play a central role in the execution of apoptosis, by cleaving many proteins they can regulate their 

activity. By activating ROCK1, caspases lead to blebbing of the membrane observed for apoptotic cells. They can 

activate kinases and DNases involved in chromatin condensation and DNA fragmentation. Caspases can alter the cells 

housekeeping by shutting down translational activity as well as organelle fragmentation. Finally, an important role of 

caspases is in regulating signals to induce phagocytosis and minimize an inflammatory response. Figure taken from (R. 

C. Taylor et al., 2008) eIFs: eukaryotic translation initiation factors; ER: Endoplasmatic reticulum; MSTI: Mammalian 

sterile-20 PS: phosphatidylserine 
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(IV) B-cell persistence in organ transplantation 

In recent years the development of new therapeutic strategies, based on the use of 

immunosuppressive drugs, such as calcineurin inhibitors has led to a significant improvement in 

the prevention and treatment of acute rejection. (D. J. Cohen, 1984; Meier-Kriesche, Schold, 

Srinivas, & Kaplan, 2004) However, the side effects such as increased cardiovascular risk, diabetes 

and induced nephrotoxicity related to the treatment have been assigned to calcineurin inhibitors. 

(Cosio et al., 2005; Palestine et al., 1986; Sander, Lyson, Thomas, & Victor, 1996) Leading to 

necessity of developing new immunotherapies to prevent acute and chronic organ rejection.  

Treatments to reduce (pre-)existing HLA-Ab have been developed, for example 

plasmapheresis (Bonomini, Vangelista, Frascà, Di Felice, & Liviano D’Arcangelo, 1985; Slatinska, 

Honsova, Burgelova, Slavcev, & Viklicky, 2009) and high dose of intravenous immunoglobulin 

(IV-IG) (Jordan, Vo, Tyan, & Toyota, 2006; Waiser et al., 2016) to de-sensitize highly sensitized 

patients, however with poor efficiency since these methods do not prevent de novo DSA synthesis. 

As mentioned before DSA are involved in the activation of the complement which play a role in 

AMR and related graft damage. Promising effects have observed when using complement 

inhibitors in treating AMR, and the results suggest that that treatment with complement inhibitors 

might serve in severe early AMR (Orandi et al., 2014; Yelken et al., 2015). However, complement 

inhibitors do not prevent early AMR in all patients and they do not modulate the B-cell response 

that causes the AMR. (Bentall et al., 2014; Cornell, Schinstock, Gandhi, Kremers, & Stegall, 2015) 

Other treatments which are directed against the B-cells themselves in order to block DSA synthesis, 

such as monoclonal anti-CD20 antibodies and proteasome inhibitors, have been developed. CD20 

is a membrane protein expressed on the cell surface of many B-cell populations. The treatment of 

B-cell malignancies with rituximab have been investigated and it was shown that by blocking CD20 

the survival of malignant cells was reduced. This occurred via inhibition of intracellular signaling 

involving p38, NF-κB, ERK and AKT anti-apoptotic signaling, depending on the type of 

malignancy, inducing B-cell apoptosis. (Bonavida, 2007; Jazirehi, Gan, Vos, Emmanouilides, & 

Bonavida, 2003; Shan, Ledbetter, & Press, 2000) In organ transplantation promising results have 

been observed in increasing graft survival and reducing aAMR. (Faguer et al., 2007; Kaposztas et 

al., 2009; Mulley et al., 2009) However, CD20 is not expressed on pro-B-cells and notably PCs, 

leading to rituximab’s inadequacy to completely deplete the PC lineage which is responsible for the 

production of circulating IgG. (M. R. Clatworthy, 2011; Valeriya Zarkhin, Chalasani, & Sarwal, 

2010) The effect of rituximab on the levels of DSA has been disputed as well, some studies have 

shown a reducing effect of rituximab on DSA levels in some particular patients, whereas others 

did not observe this effect. (Faguer et al., 2007; Fehr et al., 2009; Tanriover et al., 2008; V. Zarkhin 
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et al., 2008) Another treatment that has emerged in preventing AMR are proteasome inhibitors, 

which is commonly used in plasma cell disorders. Bortezomib was shown to selectively induce 

apoptosis in activated PCs. (Diwan et al., 2011) Recent studies have shown promising results with 

Bortezomib alone or in combination with plasmapheresis, IV-IG, steroids and/or rituximab, 

increasing graft survival. (Aubert et al., 2014; Kizilbash et al., 2017; Waiser et al., 2016; Woodle, 

Walsh, Alloway, Girnita, & Brailey, 2011) However Waiser et al. (Waiser et al., 2016) observed 

increased side effects in patients treated with Bortezomib in combination with plasmapheresis, IV-

IG and rituximab.  

Nevertheless, the outcome of renal transplantation in cases of aAMR and cAMR is still 

poor. This is due to the inefficiency of current drugs to completely control the humoral immune 

response since AMR is a main cause of chronic organ failure, and it is currently responsible for 

nearly one fourth of total graft losses. (Durrbach, Francois, Beaudreuil, Jacquet, & Charpentier, 

2010; Lodhi, Lamb, & Meier-Kriesche, 2011; Loupy, Hill, & Jordan, 2012) It is apparent that these 

therapies often fail to target and destroy MBCs and/or PCs responsible for both aAMR and cAMR. 

(Jackson et al., 2015; Leandro, 2013; Perry et al., 2008; Ramos et al., 2007). 

It is known that the main source of MBCs and PCs is the GC reaction, however tertiary 

lymphoid structures (TLS) have been identified which show apparent similarity to GCs found in 

secondary lymphoid organs. Indicating that these TLS are responsible for local lymphoid-

neogenesis. TLS generally arise from chronic inflammation, viral infections and cancers 

(GeurtsvanKessel et al., 2009; Goc et al., 2014; Kratz, Campos-Neto, Hanson, & Ruddle, 1996; 

Takemura, Klimiuk, Braun, Goronzy, & Weyand, 2001) The development of TLS supporting 

functional ectopic germinal center reaction has been evidenced within human transplants as 

identified by infiltrating B-cells, T-cells and follicular dendritic cells following a histological study 

(Figure 21). (Koenig & Thaunat, 2016; Thaunat et al., 2005) GC B-cell functionalities, such as 

clonality, high proliferation, and upregulation of GC related genes, have been observed in these 

infiltrations. (J. Cheng et al., 2011; Kerjaschki et al., 2004; Thaunat et al., 2005) The presence of 

TLS within rejected organs indicate that local de novo synthesis of effector B-cells can occur within 

the rejected organ.  
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Figure 21: Histological analysis of chronically rejected kidney graft indicates the presence of tertiary 

lymphoid structures.  

Hematoxylin and eosin staining show the presence of germinal center like structures, indicated by the arrow (A). Using 

specific markers such as anti-Ki-67, indicating proliferation (C), anti-CD20, a B-cell marker (D), anti-CD23, a dendritic 

cell marker (E) and anti-CD3, a T-cell marker (F) Thaunat et al. showed the presence of cells found in the classical 

germinal center, highlighting the presence of tertiary lymphoid structures. Figure adapted Thaunat et al (Thaunat et al., 

2005) 

(I) Objectives 

Due to the high prevalence and difficulty to control B-cell lineages during (c)AMR we for 

this project we aim to: (1) further characterize the B-cells infiltrating cAMR kidney transplants as 

B-cells resembling GCs and (2) develop strategies to impair the activation and survival of GC B-

cells while further elucidating the pathways activated upon BCR mediated Ag recognition in GC 

B-cells. Understanding the GC B-cell activation and survival will help us to prevent the 

differentiation into MBCs and PCs and thus the production anti-HLA antibodies to prevent and/or 

treat acute and chronic humoral rejection. 
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(I) Article 

SYK inhibition induces apoptosis in germinal center-like B-cells by 

modulating anti-apoptotic protein Mcl-1, affecting B-cell activation and 

antibody production. 
Nathalie Roders, Florence Herr, Gorbatchev Ambroise, Olivier Thaunat, Aimé Vazquez and 

Antoine Durrbach 

 
Renal failure is a major health concern in westernized countries, and renal transplantation 

is the main therapeutic method in case of end-stage renal failure. This is due to the association with 

a better quality of life, longer survival time and the cost efficiency compared to dialysis. However, 

a risk associated with renal transplantation is organ rejection due to alloimmune responses directed 

against the grafted organs, a process called antibody mediated rejection (AMR). Alloantibodies 

produced against the graft are associated with a high frequency of organ deterioration and graft 

loss despite current treatments that are developed with the aim to counteract AMR. However, these 

therapies frequently fail to control donor-specific antibody (DSA) production and plasma and 

memory B-cell formation. Which is observed by the fact that AMR is a main cause of chronic 

organ failure, and it is currently responsible for nearly one fourth of total graft losses. 

Alloantigen recognition by the B-cell receptor plays an important role in the initiation of 

the humoral immune response and B-cell differentiation into Ab producing plasma cells and 

memory B-cells. Following T-cell dependent B-cell activation and the formation of the germinal 

center (GC), the B-cells undergo clonal expansion, isotype class switching, somatic hypermutation 

and affinity maturation and selection. They leave the GC as highly specific long-lived memory B-

cells and Ab-producing plasma cells. The persistence of the GC and the selection of high-affinity 

effector B-cells are regulated through pro- and anti-apoptotic signals induced upon Ag binding and 

cell-mediated interactions. Myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic member of the B-cell 

lymphoma-2 (Bcl-2) family, is essential for maintaining the GC reaction and B-cell differentiation. 

Persistent inflammation due to an ongoing immune response can lead to the formation of tertiary 

lymphoid structured that resemble GCs. The development of tertiary lymphoid structures (TLS) 

supporting functional ectopic germinal center reaction has been evidenced within human 

transplants undergoing chronic AMR (cAMR)  

The aim of this research is for one to further characterize the B-cells infiltrating cAMR 

kidney transplants by using histological sections of kidneys from patients with cAMR. Secondly, 

we aimed to develop strategies to impair the activation and survival of B-cells while further 

elucidating the pathways activated B-cell activation. For this we used Burkitt’s lymphoma cell line 
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BL41 as a model for GC centroblasts and aimed to abrogated BCR signaling by inhibiting spleen 

tyrosine kinase (SYK) which acts very early in the signaling chain. We assessed the effect of SYK 

inhibition on BL41 cell viability by flow cytometry and determined the effect on anti-apoptotic 

protein Mcl-1, member of the B-cell lymphoma-2 (Bcl-2) protein family, by western blot and real-

time quantitative PCR. We aimed to elucidate the signaling pathway involved in the regulation of 

Mcl-1 and determine the indispensability of Mcl-1 in maintaining cell viability in BL41 cells by 

retroviral transduction of these cells. We determined the effect of SYK inhibition on primary B-

cells, extracted from human tonsils, by looking at cell viability, the expression of Mcl-1 and the 

activation state determined by CD80 expression. We also aimed to determine the effect of SYK 

inhibition in antibody secretion using a total IgG ELISA 
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SYK inhibition induces apoptosis in 
germinal center-like B-cells by modulating 

anti-apoptotic protein Mcl-1, affecting B-cell 
activation and antibody production 

Nathalie Roders, Florence Herr, Gorbatchev Ambroise, 

Olivier Thaunat, Aimé Vazquez and Antoine Durrbach 
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SYK Inhibition Induces Apoptosis in Germinal Center-like B-cells by 

Modulating Anti-Apoptotic Protein Mcl-1, Affecting B-cell Activation and 

Antibody Production 

 

Roders N1,2,3^, Herr F 1,2,3^, Amboise G 2,3, Thaunat O4, Poitier, A2,3, Vazquez A2,3+ and 

Durrbach A1,2,3+* 

1IFRNT, service de Néphrologie Hôpital Bicêtre, Le Kremlin Bicêtre, Paris, France  
2INSERM UMRS-MD 1197, Villejuif, France  
3Université Paris Sud, Orsay, France 
4Université de Lyon, Lyon, France 

 
^Co-First author 
+Co-Last author 

*Correspondence:  

Antoine Durrbach 

a.durrbach@gmail.com 

Keywords: Antibody Mediated Rejection, Germinal Center B-cells, SYK inhibition, 
Mcl-1, Apoptosis.  

 

ABSTRACT 

B-cells play a major role in antibody-mediated rejection (AMR) of solid organ transplants, 

a major public health concern. During chronic AMR, tertiary lymphoid germinal center (GC)-like 

structures appear in the rejected organ, leading to the generation of donor-specific plasma and 

memory B-cells, which are often poorly controlled by current treatments. Myeloid cell leukemia-1 

(Mcl-1), an anti-apoptotic member of the B-cell lymphoma-2 family, is essential for maintaining 

the GC reaction and B-cell differentiation. We report here the infiltration of B-cells expressing 

Mcl-1 in the kidney of patients with chronic AMR, as observed for (pre-)GC cells. The impairment 

of B-cell receptor (BCR) signaling, by inhibition of spleen tyrosine kinase (SYK), reduced viability 

and Mcl-1 protein levels in a Burkitt’s lymphoma cell line. This downregulation is coordinated at 

the transcriptional level, potentially via signal transducer and activator of transcription 3 (STAT3), 

as shown by (1) impaired translocation of STAT3 to the nucleus following SYK inhibition, and (2) 

the lower levels of Mcl-1 transcription upon STAT3 inhibition. Moreover, overexpression of Mcl-

1 prevented cells from entering apoptosis after SYK inhibition. In vitro studies with primary 

tonsillar B-cells confirmed that SYK inhibition decreased cell survival. We also found that SYK 
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inhibition decreased Mcl-1 protein levels in total as well as GC B-cells and that B-cell activation 

was inhibited, as determined by CD80 expression. We observed lower levels of IgG secretion in 

tonsillar B-cells activated in vitro following SYK inhibition. Overall, our data suggest that the SYK-

Mcl-1 pathway may provide new opportunities for the treatment and prevention of AMR. 

 

INTRODUCTION  

B-cells play a major role in acute and chronic antibody-mediated rejection (AMR) and 

allograft survival. AMR following solid organ transplantation is associated with a high frequency 

of organ deterioration and graft loss despite treatment. Current treatments include plasmapheresis 

(Bonomini et al., 1985; Slatinska et al., 2009), high dose intravenous immunoglobulin (IV-IG) 

(Jordan et al., 2006; Waiser et al., 2016), monoclonal anti-CD20 antibodies (Faguer et al., 2007; 

Mulley et al., 2009), proteasome inhibitors (Waiser et al., 2016; Kizilbash et al., 2017) and 

complement inhibitors (Orandi et al., 2014; Yelken et al., 2015), which frequently fail to control 

AMR, donor-specific antibody (DSA) production and memory B-cell formation. Germinal centers 

(GC) drive B-cell differentiation into DSA-producing plasma and memory B-cells. (Jacob et al., 

1991b) The development of tertiary lymphoid structures (TLS) supporting functional ectopic 

germinal center reaction has been evidenced within human transplants undergoing chronic AMR 

(cAMR). (Thaunat et al., 2005; Koenig and Thaunat, 2016)  

B-cell activation through B-cell receptor (BCR) signaling drives B-cell survival, 

differentiation, anergy, or apoptosis, depending on co-signals received by the cell. Antigen (Ag)-

dependent BCR activation leads to the recruitment and activation of spleen tyrosine kinase (SYK). 

(Cornall et al., 2000; Tsang et al., 2008) Active SYK induces the formation of a signalosome, 

containing kinases and adaptor proteins, which sets in motion signaling cascades such as those 

involving AKT, mitogen-activated protein kinases (MAPK), nuclear factor of activated T-cells 

(NFAT), and nuclear factor-κB (NFκB), resulting in translational modifications. (Dal Porto et al., 

2004) Following T-cell dependent B-cell activation and the formation of the GC, the B-cells 

undergo clonal expansion, isotype class switching, somatic hypermutation (Berek et al., 1991; Jacob 

et al., 1991a; Muramatsu et al., 2000), and affinity maturation and selection (Liu et al., 1989; 

Tarlinton and Smith, 2000; Meyer-Hermann et al., 2006). They leave the GC as highly specific long-

lived memory B-cells and antibody (Ab)-producing plasma cells. The persistence of the GC and 

the selection of high-affinity effector B-cells are regulated through pro- and anti-apoptotic signals 

induced upon Ag binding and cell-mediated interactions. (Billian et al., 1997; Tarlinton and Smith, 

2000; Fischer et al., 2007) 
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The B-cell lymphoma-2 (Bcl-2) protein family maintains a delicate balance between cell 

survival and apoptotic death. Members belonging to this family can be subdivided into three 

groups: (i) anti-apoptotic proteins, including myeloid cell leukemia-1 (Mcl-1), Bcl-2 and Bcl-xs/l, 

which play an essential role in cell survival; (ii) pro-apoptotic proteins BAX and BAK, which are 

required to trigger downstream apoptotic processes, such as the release of cytochrome C from the 

mitochondria, and the subsequent activation of caspases; (iii) the so-called “BH-3-only” proteins, 

including Puma, Noxa, Bad, Bid and Bim, which interact with the other members of the family to 

control their activity. (Youle and Strasser, 2008; Shamas-Din et al., 2013; Siddiqui et al., 2015) 

Vikstrom et al. (Vikstrom et al., 2010) showed that no GCs or memory B-cells form in the absence 

of Mcl-1, highlighting the importance of Mcl-1 for GC maintenance and B-cell differentiation. In 

a previous study performed by our team, involving the role of PUMA in regulating mitogen-

activated B-cells and memory B-cells, we observed that PUMA and noticeably Mcl-1 are expressed 

in GCs in vivo. (Clybouw et al., 2011) 

In this study, we observed B-cells expressing Mcl-1, as reported for (pre-)CG B-cells, 

infiltrating kidneys displaying cAMR. We investigated the relationship between BCR signaling and 

the survival and differentiation of B-cells, by inhibiting SYK. Using Burkitt’s lymphoma derived 

cells as a model for GC centroblasts, we showed that SYK inhibition led to the downregulation of 

Mcl-1 gene expression via signal transducer and activator of transcription 3 (STAT3), and a 

decrease in cell viability. The synthesis of immunoglobulins was impaired by SYK inhibition in 

primary B-cells in vitro; these cells also displayed lower viability and Mcl-1 protein levels, and weaker 

B-cell activation following SYK inhibition. 

 

MATERIALS AND METHODS 

Reagents and Antibodies 

The following reagents were used: BAY61-3606 Merck Millipore), Stattic (Torcis), Q-VD-

Oph (Sigma), MG-132 (Calbiochem) and cycloheximide (Sigma). 

We used the following primary Abs: hCD19-APD-Cy-7 (SJ25C1; BD Biosciences Cat# 

557791 RRID: AB_396873), hCD38-BV421 (HIT2; BD Biosciences Cat# 562445 

RRID:AB_11153870) hsIgD-Pe-Cy7 (IA6-2; BD Biosciences Cat# 561314 RRID:AB_10642457), 

hCD80-BV605 (L307.4; BD Biosciences Cat# 563315), hPhospho-SYK-AF488 (C87C1; Cell 

Signaling Technology Cat# 4349) and hMcl-1-FITC (Biorbyt Cat# orb15956 

RRID:AB_10747574) for flow cytometry. Anti-Mcl-1 (S-19; Santa Cruz Biotechnology Cat# sc-

819 RRID:AB_2144105), anti-Bcl-2 (C-2; Santa Cruz Biotechnology Cat# sc-819 

RRID:AB_2144105), anti-Bcl-xS/L (S-18; Santa Cruz Biotechnology Cat# sc-819 
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RRID:AB_2144105), anti-GAPDH (Sigma-Aldrich Cat# G9545 RRID:AB_796208) and anti-

PARP (Cell Signaling Technology Cat# 9542 also 9542S, 9542L, 9542P RRID:AB_2160739) 

antibodies were used for immunoblotting and anti-hCD19 (HIB19; BD Biosciences Cat# 555409 

RRID:AB_395809), anti-hMcl-1 (Sigma-Aldrich Cat# HPA008455 RRID:AB_1079334) and anti-

STAT3 (K-15; Santa Cruz Biotechnology Cat# sc-483 RRID:AB_632441) Abs were used for 

immunohistology. 

Retroviral particles were generated with the following plasmids: expression plasmid pBabe-

Flag-hMcl-1, a gift from Roger Davis (Morel et al., 2009) (Addgene plasmid # 25371), empty vector 

control plasmid pBabe-puro-IRES-EGFP, a gift from L. Miguel Martins (Addgene plasmid # 

14430), envelope-expressing plasmid pCMV-VSV-G, a gift from Bob Weinberg (Addgene plasmid 

# 8454), and packaging plasmid pCL-Eco (Novus Biologicals). 

 

Cell Culture 

BL41 Burkitt’s lymphoma cells were cultured in complete RMPI medium: RPMI-1640 

(Sigma) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Dominique Dutscher), 

100 U/ml penicillin and 100 µg/ml streptomycin (Sigma).  

HEK 293T and CD40 ligand/CD32 ligand-expressing murine fibroblasts were cultured in 

complete DMEM: Dulbecco’s modified Eagle medium (Sigma) supplemented with 10% FBS, 100 

U/ml penicillin, 100 µg/ml streptomycin and 0.1 mg/ml Normocinä (InvivoGen). 

Primary cells were isolated from tonsillar tissue removed from patients during 

tonsillectomy. The tonsils were dissected and pushed through a stainless-steel strainer with a glass 

grinder. Cells were collected and washed with complete RPMI, then homogenized by passage 

through a nylon cell strainer with 100 µm pores (BD Bioscience). 

Tonsillar cells were cocultured in complete RPMI, with CD40 ligand/CD32 ligand-

expressing fibroblasts, in the presence of anti-µ Abs (Jackson Immunoresearch), LPS (Sigma) and 

BAY61-3606. Fibroblast growth was blocked by incubation with mitomycin C (10 µg/ml, Roche) 

for thirty minutes at 37°C with 5% CO2 before the addition of tonsillar cells.  

 

Retrovirus Production and Cell Transduction 

Retroviruses were generated by the transient co-transfection of HEK 293T with a three-

plasmid combination, by the calcium phosphate coprecipitation method, as previously described 

(Gavrilescu and Van Etten, 2007). Following culture for three days, the retroviral particles were 

collected and concentrated with 5x PEG ITTM viral precipitation solution (System Biosciences).  
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For retroviral transduction, 2 x 106 BL41 cells were collected and suspended in a suspension 

of retroviral particles in the presence of polybrene (Santa Cruz Biotechnology). The resulting 

suspension was then centrifuged at 300 x g for ninety minutes. Cells were incubated at 37°C with 

5% CO2 for two hours, and fresh complete RPMI was then added. Transduced cells were selected 

by a series of puromycin (1 µg/ml; InvivoGen) treatments. 

 

Western Blotting 

Whole-cell lysates were prepared in lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 

2 mM EDTA (ethylenediaminetetraacetic acid), 1% Triton X-100 and 1% Igepal/NP-40), 

supplemented with Haltä Protease inhibitor cocktail (Thermo Scientific). For phosphorylation 

analysis, the phosphatase inhibitors ß-glycerophosphate (12.5 nM), sodium orthovanadate (10 µM), 

sodium fluoride (0.1 mM) and N-ethylmaleimide (30 µM) were added before cell lysis. Protein 

determinations were performed with the micro-BCA protein assay kit (Thermo Scientific). Protein 

samples (equal mass) were heated for five minutes at 99°C after the addition of Tris-glycine SDS 

sample buffer (Life Technologies) containing 10% ß-mercaptoethanol (Sigma). They were 

subjected to polyacrylamide gel electrophoresis and proteins were transferred onto nitrocellulose 

membranes (Santa Cruz). The membranes were incubated with primary Abs, and Ab binding was 

visualized by chemiluminescence with HRP-conjugated secondary Abs (Jackson Immunoresearch), 

the Immobilon western chemiluminescent HRP substrate (Millipore) and a DDC camera (LAS-

4000 mini, Fujifilm). 

 

Flow Cytometry 

BL41 cell viability was assessed by flow cytometry, with a BD Accuri C6 flow cytometer 

(BD Biosciences). Viability was assessed by expressing the proportion of viable cells (excluding 

granular and shrunken cells) as a percentage of the total cell population, based on forward and side 

scattering profiles. 

Apoptotic cells were identified with the Pacific Blue Annexin V Apoptosis detection kit 

and 7-AAD (Biolegend), according to the manufacturer’s protocol. Cells were analyzed in a BD 

LSRFortessa flow cytometer (BD Biosciences). 

For extracellular staining, cells were incubated with fvs620 (1:1000 dilution; BD 

Biosciences) in 1 x PBS for fifteen minutes at room temperature. Non-specific binding was blocked 

with human BD FC block (2.5 µg/1 x 106 cells; BD Biosciences) in 1 x PBS supplemented with 

2.5% FCS and 0.1% sodium azide, and cells were then incubated with fluorescent Abs. Intracellular 

staining for Abs against non-phosphorylated proteins was performed as follows: cells were fixed 
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in 4% paraformaldehyde (PFA, Alfa Aesar), then quenched with NH4Cl (100 mM), permeabilized 

with 0.15% saponin (VWR), and incubated with conjugated Abs in the presence of saponin. 

For intracellular staining for phosphorylation analysis, saponin was replaced with 0.1% 

Triton X-100 (Sigma) and additional 50% methanol on ice for permeabilization. Cells were then 

incubated with fluorochrome-conjugated Abs and analyzed on a BD LSRFortessa flow cytometer 

(BD Biosciences). All flow cytometry data were analyzed with FlowJotm (FlowJo Treestar, 

RRID:SCR_008520). 

 

Enzyme-linked Immunosorbent Assay 

Total Immunoglobulin G (IgG) secretion by tonsillar B-cells was assessed with the Human 

IgG Total ELISA Ready-SET-Go!® kit (Affymetrix, eBioscience) according to the manufacturer’s 

protocol, with undiluted supernatant. Absorbance was read at 450 nm and 570 nm, with the 

FLUOstar Omega microplate reader (BMG Labtech). Secreted IgG was quantified with a linear 

regression line fitted to the standard curve. 

 

Immunofluorescence 

Paraffin was removed from paraffin-embedded sections by three sequential washes in 

xylene (Sigma). The sections were then rehydrated by passage through a series of ethanol solutions 

in water (100%, 90% and 70% ethanol in distilled water). Ags were retrieved by boiling samples 

twice, for five minutes each, in citrate buffer (pH 6) supplemented with 0.05% Tween-20 (Sigma) 

in a microwave oven and allowing the sample to cool to room temperature. Non-specific binding 

to FC receptors was blocked by incubating slides for one hour at room temperature in blocking 

buffer (1 x PBS, 1% FBS, 1% BSA, 1% human AB serum) supplemented with 0.1% Triton X-100, 

and then incubating them with primary Abs followed by AF488- or AF594-conjugated secondary 

Abs (Life Technologies).  

BL41 cells were attached to poly-L-lysine slides (Thermo Scientific), fixed in 4% PFA and 

permeabilized with 0.15% Triton X-100. Samples were blocked with 10% FBS in 1 x PBS, 

incubated with primary Abs and then with AF488-conjugated secondary Abs (Life Technologies).  

Nuclei were stained with DAPI (4,6 diamidino-2-phenylindole, 1:10,000; Life 

Technologies) and the sections were mounted on slides in Fluoromount-Gä slide mounting 

medium (Beckman Coulter) and covered with a coverslip. 

Images were acquired with a Leica SP5 confocal microscope (Leica Microsystems) 

equipped with an x63 oil immersion fluorescence objective. 
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Gene Expression Analysis 

RNA was extracted from BL41 cells with the RNeasy plus mini kit (Qiagen), according to 

the manufacturer’s protocol, including lysate homogenization with QIAshredder spin columns 

(Qiagen). cDNA was then generated from 1 µg of RNA, with the RevertAid H Minus First Strand 

cDNA Synthesis Kit (Thermo Scientific), according to the manufacturer’s protocol.  

Real-time quantitative PCR was carried out with cDNA diluted 1:10, primers (0.75 µM final 

concentration) and the QuantiNova SYBR Green PCR Kit (Qiagen). The following primers were 

used: Mcl-1 (forward (fw) 5’-ATGCTTCGGAAACTGGACAT-3’; reverse (rv) 5’-

TCCTGATGCCACCTTCTAGG-3’) as the target gene and GAPDH (fw 5’-

AATCCCATCACCATCTTCCA-3’; rv 5’-TGGACTCCACGACGTACTCA-3’), 18s (fw 5'-

AGAAACGGCTACCACATCCA-3'; rv: 5'-CACCAGACTTGCCCTCCA-'3) and RPS13 (5'-

CGAAAGCATCTTGAGAGGAACA-3'; rv: 5'-TCGAGCCAAACGGTGAATC-3') as 

housekeeping (HK) genes (Sigma). PCR was performed with the Mx3005P qPCR System (Agilent 

Technologies) 

PCR efficiency was determined with 10-fold dilutions, according to the following equation: 

efficiency 𝐸 = 10 %& '()*+ . Cq values were determined with the following equation: 𝐶𝑞 =

𝐶𝑡×𝑙𝑜𝑔3 𝐸 . The Mcl-1 expression ratio was determined as follows: 𝑅𝑎𝑡𝑖𝑜 =

2 89:	<=(%& 2 89:	>? , where ∆𝐶𝑞 = 𝐶𝑞ABCD+EC+F − 𝐶𝑞CD+EC+F	. 

 

Statistical Analysis 

We analyzed the data for BL41 cells with multiple t-tests, corrected for multiple 

comparisons according to the Holm-Sidak method, in Prism (Graphpad Prism, 

RRID:SCR_002798). Data for tonsillar B-cells were analyzed with paired t-test/within-subject 

analysis, in InVivoStat 

 

RESULTS 

Infiltrating B-cells Expressing Mcl-1 are Observed in Kidney Grafts Displaying Chronic 

Antibody-mediated Rejection 

The importance of Mcl-1 in GC maintenance and B-cell differentiation has been shown. 

(Vikstrom et al., 2010) By analyzing non-stimulated tonsillar B-cells by flow cytometry, according 

to the mature B-cell (BM)1-BM5 classification, we determined Mcl-1 expression profiles of 

different B-cell populations. (Pascual et al., 1994) Looking at the expression of surface IgD (sIgD) 

and CD38. sIgD+CD38-/low cells are naïve B-cells that are undifferentiated or in the early stages of 

differentiation (BM1-BM2), sIgD+CD38high cells are pre-GC cells (BM2’), sIgD-CD38high cells are 
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GC cells (BM3+BM4), and sIgD-CD38-/low cells are terminally differentiated B-cells (early BM5-

BM5). We determined the population distribution of tonsillar B-cells and our findings confirm that 

Mcl-1 levels are high in in the early GC and GC populations (Figure 1A). 

Infiltrating B-cells were detected in cAMR kidney grafts, by the staining for CD19 of 

histological sections of kidneys from patients with cAMR. Counterstaining for Mcl-1 revealed that 

this protein was colocalized with CD19. Histological sections of non-rejected human kidneys were 

stained in the same way, and no infiltrating B-cells were observed on sections of these kidneys; 

however, Mcl-1 is not exclusive to B-cells and was observed in tubular structures (Figure 1B). 

These results indicate that cAMR is associated with an infiltration of the kidney graft by 

Mcl-1-expressing B-cells  

 

Inhibiting SYK Activity Decreases Viability and Mcl-1 Protein Levels in Germinal Center-

like Cells 

We then investigated ways of disrupting GC B-cell responses. As SYK plays a key role 

downstream from the BCR, we treated BL41 cells, a Burkitt’s lymphoma cell line serving as a model 

of GC centroblasts (Küppers et al., 1999), with the SYK inhibitor BAY61-3606 (Yamamoto et al., 

2003), to inhibit BCR signaling. We assessed the effect of SYK inhibition on cell viability. Shrinkage 

and blebbing are two characteristic features of apoptotic cells (Krysko et al., 2008), we therefore 

identified dead cells on the basis of their small size and high granularity. Cell viability was weakened 

in a dose dependent manner following BAY61-3606 treatment, being reduced by 70% in the 

presence of 5µM BAY61-3606 (Figure 2A). We confirmed that BAY61-3606 reduced the level of 

SYK phosphorylation, at TYR525/526 in the activation loop of the kinase (Tsang et al., 2008), in 

non-stimulated BL41 cells (Figure 2B).  

We then analyzed the expression of the anti-apoptotic proteins Mcl-1, Bcl-2 and Bcl-xs/l. 

SYK inhibition resulted in lower levels of Mcl-1 protein, whereas the levels of the Bcl-2 and Bcl-

xs/l proteins remained stable. Mcl-1 may be either cleaved by activated caspases (Michels et al., 

2004) or degraded by the proteasome (Nencioni et al., 2005). We assessed the possible caspase-

dependent degradation of Mcl-1, by treating cells with caspase inhibitor Q-VD-Oph and BAY61-

3606. It resulted in only a partial rescue of Mcl-1 levels while successfully inhibiting caspase 

activation and the induction of cell death, as shown by FACS analysis and the cleavage pattern of 

PARP, a known substrate of caspase-3 (Figure 2C). 

The inhibition of proteasome activity with MG132 led to an increase in Mcl-1 protein levels 

in control cells, however Mcl-1 levels remained similar in cells treated with BAY61-3606 and 



Results 

 59 

MG132 as compared to those in control cells (Figure 2D). This suggests that SYK inhibition does 

not modify the rate of Mcl-1 protein degradation.  

 

SYK Inhibition Modulates Mcl-1 Gene Expression and Alters the Cellular Distribution of 

STAT3 

Since SYK inhibition did not accelerate Mcl-1 protein degradation, we hypothesized that 

the reduced-level of Mcl-1 protein observed in BL41 cells exposed to BAY61-3606 could be the 

result of reduced de novo protein synthesis. To test this theory, we assessed Mcl-1 mRNA levels 

by RT-qPCR. BAY61-3606 treatment substantially decreased Mcl-1 gene expression in BL41 cells 

up to four hours after treatment. The short turnover of Mcl-1 protein was confirmed by blocking 

protein synthesis with cycloheximide, which led to lower Mcl-1 protein levels after two hours, 

supporting the hypothesis that SYK inhibition affects de novo protein synthesis. (Figure 3A). 

Signal transducer and activator of transcription 3 (STAT3) has been identified as a major 

regulator of Mcl-1 gene transcription. (Bhattacharya et al., 2005; Thomas et al., 2010) 

Immunohistological analysis showed STAT3 to be expressed in the nucleus of BL41 cells under 

basal conditions, where it can mediate Mcl-1 gene transcription. BAY61-3606 inhibits the 

translocation of STAT3 from the cytoplasm to the nucleus (Figure 3B), suggesting a role for 

STAT3 in the regulation of Mcl-1 gene expression by BCR signaling. Incubation with STAT3 

inhibitor Stattic showed cell viability had decreased by 70% associated with decreased Mcl-1 protein 

expression. Inhibition of caspases by Q-VD-Oph rescued the cells from cell death induced by 

Stattic, whereas the protein levels of Mcl-1 were only partially rescued, suggesting that STAT3 

inhibition does not result in caspase dependent cleavage of Mcl-1 as observed with BAY61-3606. 

The lack of PARP cleavage confirmed the effectiveness of Q-VD-Oph as shown in Figure 2C. We 

assessed Mcl-1 gene expression by RT-qPCR. We found that four hours of treatment with Stattic 

decreased the level of Mcl-1 gene expression (Figure 3B). Taken together, these results indicate 

that STAT3 is involved in regulating Mcl-1 gene expression in BL41 cells.  

 

Overexpression of the Mcl-1 gene Counteracts the Inhibition of Both SYK and STAT3  

We investigated whether overexpression of Mcl-1 could rescue BL41 cells from apoptotic 

cell death. Cells were transduced with retroviral particles containing (or not, control) a Mcl-1 

construct. As expected the overexpression of Mcl-1, induced by retroviral particles, was not 

influenced neither by BAY61-3606 nor Stattic in transduced BL41 cells. (Figure 4A). The same 

effect was observed for gene expression levels of Mcl-1 (Figure 4B). The effect of BAY61-3606 

and Stattic on apoptosis was then assessed on both types of BL41 cells using a flow cytometry 
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assay based on the extracellular expression of phosphatidylserine and the uptake of 7-AAD. The 

proportion of apoptotic cells increased for cells transduced with the empty vector, whereas no such 

increase upon SYK or STAT3 inhibition was observed in cells overexpressing Mcl-1 (Figure 4C). 

We conclude that the downregulation of Mcl-1 in BL41 cells following SYK inhibition is necessary 

to induce apoptotic cell death. 

 

SYK Inhibition in Tonsillar B-cells Decreases Viability, Activation and Mcl-1 Expression 

Resulting in Lower Levels of Immunoglobulin Secretion 

We then sought to confirm the general effect of SYK inhibition on primary B-cells 

activated in vitro. Analysis of SYK phosphorylation revealed that BAY61-3606 reduced the 

phosphorylation state of SYK in activated B-cells. (Figure 5A). 

After three days in culture, Tonsilar B-cells (CD19+) were analyzed by flow cytometry. 

Activated B-cells with impaired BCR signaling had a viability 60% lower than that of control cells. 

(Figure 5B). 

Lower B-cell viability was associated with a decrease in Mcl-1 protein as well as reduced B-

cell activation as determined by CD80 expression. This effect was observed in total B-cells as well 

as in the pre-GC and GC (BM2’ and BM3+BM4) populations determined by the BM1-BM5 

classification. (Figure 5C) 

We then investigated the effects of SYK inhibition on immunoglobulin (Ig) production, by 

assessing IgG secretion after three days in culture. Activated cells secreted about 150 ng of IgG 

per ml, whereas less IgG was secreted by activated cells treated with BAY61-3606 (Figure 5D). 

These results suggest that SYK inhibition reduces cell viability associated with lower Mcl-

1 protein levels as well as impaired B-cell activation and IgG secretion. 

 

DISUCUSSION 

The GC reaction is important for the generation of effector B-cells with a high Ag affinity. 

During the GC reaction, apoptosis is required to eliminate B-cells with low Ag affinity and self-

reactive B-cells. (Liu et al., 1989; Han et al., 1995; Shokat and Goodnow, 1995) Conversely, the 

positive selection of high-Ag affinity GC B-cells and the promotion of their survival are essential 

for the generation of effector B-cells. (Liu et al., 1989; Tarlinton and Smith, 2000) The role of anti-

apoptotic Bcl-2 family members, including Bcl-2, Mcl-1 and Bcl-xl, during the GC reaction has 

been investigated. Yoshino et al. (Yoshino et al., 1994) observed that resting and mantle-zone B-

cells expressed Bcl-2, whereas GC B-cells did not. This finding was confirmed by the identification 

of Bcl-6 as a repressor of Bcl-2 transcription. (Ci et al., 2009; Saito et al., 2009) We confirmed in a 
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previous study by in situ staining of human lymphocytes, that GC cells do not express Bcl-2, 

whereas Mcl-1 is co-expressed with PUMA and Bcl-xl in these cells. (Clybouw et al., 2011) There 

is growing evidence to suggest that Mcl-1 is a key player in the survival of activated B-cells. 

Vikstrom et al. (Vikstrom et al., 2010) showed, with a conditional Mcl-1 knockout model in mice, 

that the absence of Mcl-1 resulted in defective GC and memory cell formation and impaired Ig 

secretion. In the same study, no effect on the GC reaction of memory B-cell formation was 

observed in Bcl-xl knockout mice. We confirm here that Mcl-1 is strongly expressed in the 

BM3+BM4 population of tonsillar B-cells, corresponding to GC B-cells (Pascual et al., 1994).  
A recent study demonstrated that GCs may develop outside secondary lymphoid organs 

and form TLS which generate effector and memory B-cells; such TLS have been reported in cases 

of persistent inflammation. (Kratz et al., 1996; Takemura et al., 2001) Thaunat et al. (Thaunat et 

al., 2005) detected TLS in the kidney allografts in case of cAMR, with the identification of 

infiltrating B-cells, T-cells and follicular dendritic cells. GC B-cell characteristics, such as clonality, 

high proliferation, and the upregulation of GC related genes, have been observed in these 

infiltrations. (Kerjaschki et al., 2004; Thaunat et al., 2005; Thaunat et al., 2010; Cheng et al., 2011) 

We found that the B-cells infiltrating cAMR kidney expressed Mcl-1, consistent with the notion 

that the B-cells infiltrating grafted organs are part of TLS and play a role in an ongoing local 

immune response and effector B-cell production. Despite various immunosuppressive treatments 

have been developed to prevent and treat acute cellular rejection, these treatments are clearly 

ineffective at controlling cAMR, which remains a leading cause of chronic organ failure. (Durrbach 

et al., 2010; Lodhi et al., 2011; Loupy et al., 2012) Therefore there is an urgent need to develop new 

treatments that effectively alter GC-like cell viability and differentiation to reduce the prevalence 

of cAMR. 

BCR signaling during B-cell development leads to the elimination of self-reactive B-cells 

by programmed cell death (Yurasov and Nussenzweig, 2007; Yarkoni et al., 2010), whereas, later 

in the GC reaction, Ag affinity-linked BCR engagement leads to the apoptosis of cells with a low 

Ag affinity and the differentiation of cells with a high Ag affinity into B-effector cells (Liu et al., 

1989; Tarlinton and Smith, 2000; Meyer-Hermann et al., 2006) SYK acts very early in the signaling 

chain, and is therefore an attractive candidate regulator of BCR signaling. In this study, we aimed 

to impair BCR signaling, by inhibiting the kinase activity of SYK, to decrease GC B-cell viability. 

In the BL41 GC centroblast cell line, inhibition of the constitutively active SYK kinase resulted in 

a downregulation of Mcl-1 and decreased cell viability. We show that preventing Mcl-1 protein 

degradation in experiments with caspase or proteasome inhibitors only partially rescues Mcl-1 
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protein levels, and we confirmed by qPCR that Mcl-1 downregulation was controlled at the 

transcriptional level.  

Akgul et al. (Akgul et al., 2000) identified several binding sites for transcription factors, 

including STAT3, within the promotor region of the Mcl-1 gene. The role of STAT3 in the GC 

response remains unclear, but this transcription factor has been shown to influence the T-cell-

dependent IgG response, and STAT3 deficiencies impair the generation of human memory B-cells. 

(Fornek et al., 2006; Avery et al., 2010) Ding et al. (Ding et al., 2016) recently showed, with a 

STAT3 knockout mouse model, that STAT3 is dispensable for GC initiation but essential for 

maintenance of the GC reaction. The number of apoptotic GC B-cells was higher in immunized 

STAT3 knockout mice than in normal mice, and this higher level of apoptosis was associated with 

lower levels of Mcl-1 gene expression. (Ding et al., 2016) STAT3 has already been reported to be 

involved in Mcl-1 regulation, but most of these observations were based on experiments in which 

the JAK/STAT pathway was activated by cytokine- and growth factor-induced signaling. (Puthier 

et al., 1999; Epling-Burnette et al., 2001; Mott et al., 2007) We show here, in BL41 cells, that SYK 

inhibition leads to impaired translocation of STAT3 to the nucleus, preventing its binding to the 

promoter of Mcl-1, whereas this transcription factor remains constitutively nuclear in the absence 

of treatment. STAT3 inhibition mimicked the effects of SYK inhibition in terms of Mcl-1 

expression and cell death. We show here that BCR signaling is associated with the STAT3-

modulated regulation of Mcl-1 protein levels. The BCR-mediated modulation of STAT3 levels is 

supported by data from studies reporting a JAK-independent link between BCR signaling and 

STAT3. (Wang et al., 2006; Uckun et al., 2010) We also show that overexpression of Mcl-1 prevents 

cells from entering apoptosis in the presence of both SYK and STAT3 inhibitors. These results 

suggest that the downregulation of Mcl-1 is necessary to induce apoptosis., confirming the key role 

of Mcl-1 in maintaining the GC reaction, as reported in previous studies. (Vikstrom et al., 2010; 

Clybouw et al., 2011; Vikstrom et al., 2016) 

The damaging role of DSAs produced following organ transplantation has been studied in 

detail. Preexisting and de novo IgG DSAs are associated with acute and chronic solid graft injury 

(Lee et al., 2002; Loupy et al., 2012; Kaneku et al., 2013), whereas DSAs of the IgM and IgA types 

have no such effects on their own (Arnold et al., 2013; Everly et al., 2014). We show here that SYK 

inhibition in activated B-cells reduces cell viability in vitro. Our results are in agreement with the 

findings of Flynn et al (Flynn et al., 2015), they observed that PBMC extracted B-cells from patients 

with active graft versus host disease were more susceptible to apoptotic cell death as compared to 

B-cells extracted from patients with inactive or no graft versus host disease. We observed that, in 

BL41 cells this lower viability is associated with the downregulation of Mcl-1, which we confirmed 
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by experiments with primary tonsillar B-cells. We also show that the SYK inhibition is associated 

with a state of lower activation, as shown by the level of CD80 expression. SYK inhibition thus 

affects the GC reaction and B-cell differentiation as well as antibody production as shown in 

primary cells activated in vitro, where BAY61-3606 completely inhibits total IgG secretion. These 

results also suggest that SYK inhibition influences the GC reaction and B-cell differentiation. 

In conclusion, our data show that SYK inhibition affects BCR signaling-mediated cell 

survival through the downregulation of Mcl-1 gene transcription. We demonstrate that SYK 

inhibition impairs B-cell responses by altering B-cell reactivity to Ags and decreasing Ab 

production. These results suggest that, in case of cAMR, SYK could be targeted in new therapeutic 

tools for improving graft survival by manipulating the humoral immune response. 
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FIGURE LEGENDS 

Figure 1: Mcl-1-expressing B-cells are found in kidney grafts in chronic antibody-mediated 

rejection.  

(A) Non-stimulated tonsilar cells were stained with CD19, sIgD, CD38 and Mcl-1 and 

analyzed by flow cytometry. B-cell populations were identified according to the BM1-BM5 

classification based on the expression of CD19, sIgD and CD38 and an additional staining with 

Mcl-1 was performed. The boxplot represents the distribution between donors and the quadrant 

indicates the values between the 5th and 95th percentiles, n=7. (B) Immunofluorescence staining of 

paraffin-embedded chronically rejected kidney using anti-CD19 and anti-Mcl-1. Images were 

obtained with a Leica confocal microscope fitted with a 63x objective. sIgD: surface 

immunoglobulin D, CD: cluster of differentiation, BM: mature B-cell.  

 

Figure 2: SYK inhibition in BL41 cells (Burkitt’s lymphoma cells) reduces viability and 

decreases levels of the anti-apoptotic protein Mcl-1 

(A) Cell viability was determined by flow cytometry analyses of cell morphology (forward 

and side scatter) following a dose gradient treatment with BAY61-3606 for 16 hours. Data 

represent mean (±SEM, n=3). (B) The phosphorylation status of SYK was determined by flow 

cytometry following SYK inhibition with BAY61-3606 (5 µM; 20 min). (C) BL41 cells were treated 

with BAY61-3606 (5µM; 4 hours) and Q-VD-Oph (10µM; 4 hours). Protein levels of anti-apoptotic 

proteins, Mcl-1, Bcl-2 and Bcl-xs/l, were determined by western blot, and quantified by protein 

densitometry and adjusted for GAPDH. Data represent mean (±SEM, n=3). Q-VD-Oph 

efficiency was determined by western blot analysis of PARP cleavage (4 hours) and inhibition of 

cell death (16 hours), data represent mean (±SEM, n=5) (D) BL41 cells were treated with BAY61-

3606 (5µM; 4 hours) and MG-132 (10 µM; 4hours) and Mcl-1 protein levels were determined by 

western blot and quantified by protein densitometry and adjusted for GAPDH. Data represent 

mean (±SEM, n=5). Bay: BAY61-3606, N-I: non-inhibited, I-C: isotype control, QVD: Q-VD-

Oph, ns: not significant, MG: MG132. 
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Figure 3: STAT3 as a potential regulator of Mcl-1 gene transcription in BL41 cells (Burkitt’s 

lymphoma cells) upon SYK inhibition 

(A) BL41 cells were treated with BAY61-3606 (5µM) for 1, 2 and 4 hours and Mcl-1 gene 

expression levels were determined by RT-qPCR. Data represent mean (±SEM, n=5), the P-value 

indicates the significance for comparisons with cells in the absence of BAY61-3606. BL41 cells 

were treated with cycloheximide (10 µM) for 1, 2 and 4 hours and Mcl-1 protein levels were 

determined by western blot and quantified by protein densitometry and adjusted for GAPDH. 

Data represent mean (±SEM, n=3), the P-value indicates the significance for comparisons with 

cells in the absence of BAY61-3606 (B) BL41 cells were treated with BAY61-3606 (5µM; 60 

minutes) the cellular location of STAT-3 was determined by immunofluorescence. Images were 

obtained with a Leica confocal microscope equipped with a 63x objective. (C) The viability of BL41 

cells was determined by flow cytometry treatment with the STAT3 inhibitor Stattic (5 µM; 16 

hours) in the presence or not of Q-VD-Oph (10µM) and apoptotic cells were identified based on 

their size and granularity, according to forward and side scatter data. Data represent mean (±SEM, 

n=6). Mcl-1 protein levels were assessed by western blot following treatment with Stattic (5 µM; 4 

hours) and Q-VD-Oph (10µM); Mcl-1 levels were quantified by protein densitometry and adjusted 

for GAPDH. Data represent mean (±SEM, n=3). Q-VD-Oph efficiency was determined by 

western blot analysis of PARP cleavage (4 hours) and inhibition of cell death (16 hours), data 

represent mean (±SEM, n=6). Mcl-1 gene expression levels were determined by RT-qPCR. Data 

represent mean (±SEM, n=4), the P-value indicates the significance for comparisons with cells 

without BAY61-3606. CHX: cycloheximide, N-I: non-inhibited, Bay: BAY61-3606, QVD: Q-VD-

Oph, ns: not significant, MG: MG132. 

 

Figure 4: Overexpression of Mcl-1 protects BL41 cells from BAY61-3606 induced apoptosis  

BL41 cells were transduced with retroviral particles containing a Mcl-1 construct (pMcl-1), 

or an empty vector (pIRES) as a control. (A) Cells transduced with Mcl-1 or the empty vector were 

treated with BAY61-3606 or Stattic (5 µM; 4 hours). Mcl-1 protein levels were determined by 

western blot and quantified by protein densitometry and adjusted for GAPDH. Data represent 

mean (±SEM, n=3) (B) RT-qPCR showed that Mcl-1 gene expression was determined by RT-

qPCR following treatment with BAY61-3606 (5µM; 4hours or Stattic (5µM; 4 hours). Data 

represent mean (±SEM, n=4), the P-value indicates the significance for comparisons with cells 

without inhibitor. (C) Apoptotic cells were identified on the basis of their extracellular expression 

of phosphatidylserine, detected by Annexin V staining, and plasma membrane permeability with 

their uptake of 7-AAD after treatment with BAY61-3606 (5µM; 8 hours) or Stattic (5 µM; 8 hours). 
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Data represent mean (±SEM, n=4). Bay: BAY61-3606, N-I: Non-inhibited; ns: not significant; 

Stat: Stattic. 

 

Figure 5: Syk Inhibition in tonsillar B-cells decreases viability, activation and effector 

functions 

Tonsillar cells activated in vitro by incubation with CD40L fibroblasts (1:10 ratio, fibroblasts: 

tonsillar cells), anti-µ antibody (10 µg/ml) and LPS (1 µg/ml) (A) Following activation (20 minutes) 

in the presence or not of BAY61-3606 (5µM), B-cells were identified based on the expression of 

CD19 and the phosphorylation status of SYK was determined by flow cytometry (B) Following 

three days of culture, cells were stained with fixable viability stain and CD19 identified by flow 

cytometry. Dead B-cells were discriminated by flow cytometry using fixable viability stain. The 

boxplot represents the distribution between donors and the quadrant indicates the values between 

the 5th and 95th percentiles, n=7. (C) Following three days of culture, cells were stained with fixable 

viability stain, CD19, sIgD, CD38, CD80 and Mcl-1, and analyzed by flow cytometry. Viable cells 

were identified as fixable viability stain negative. Mcl-1 levels were determined in CD19-positive 

cells as well as pre-GC (BM2’) and GC B-cells (BM3+BM4) based on the expression of sIgD and 

CD38. The activation state was determined by the expression of CD80 in CD19-positive cells as 

well as pre-GC (BM2’) and GC B-cells (BM3+BM4). The boxplot represents the distribution 

between donors and the quadrant indicates the values between the 5th and 95th percentiles; the P 

values shown on the graphs indicate the significance for comparisons between all stimulated cells 

and those treated with BAY61-3606 n=7. (D) The total IgG secreted by the cells following three 

days of culture was analyzed by ELISA. The boxplot represents the distribution between donors 

and the quadrant indicates the values between the 5th and 95th percentiles, n=9. Stim: stimulated, 

Bay: BAY61-3606, N-A: Non-activated, CD: cluster of differentiation 
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(II) Supplemental results 

 
Figure SR 1: Mcl-1 expression is higher in (pre-)germinal center cells while Bcl-2 expression is higher in 

naïve mature and differentiated B-cells. 

Mature B-cell populations (CD19pos) were identified by flow cytometry according to the BM1-BM5 classification based 

on the expression of sIgD and CD38. sIgDposCD38-/low represent naïve non-differentiated and early differentiating B-

cells (BM1-BM2), sIgDposCD38high represent pre-GC cells (BM2’), sIgDnegCD38high represent CG cells (BM3+BM4), 

while terminally differentiated B-cells are sIgDnegCD38-/low (earlyBM5-BM5). Mcl-1 is strongly expressed by activated 

follicular B-cells, while Bcl-2 expression is higher in in naïve and early activated and differentiated B-cells. The boxplot 

represents the distribution between donors and the quadrant indicates the values between the 5-95 percentile, n=5. 

Bcl-2: B-cell lmphoma-2; BM: Mature B-cell, CD: cluster of differentiation; GC: germinal center; Mcl-1: multiple 

myeloma-1; sIgD: surface immunoglobulin 
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Figure SR 2: SYK inhibition in BL41 cells does not increase Mcl-1 ubiquitination to promote proteasome 

dependent degradation. 

Ubiquitination of Mcl-1 in BL41 cells was determined following a 2-hour incubation with SYK inhibitor BAY61-3606, 

in the presence or not of proteasome inhibitor MG132. Cells were lysed to obtain the protein content followed by an 

immunoprecipitation of Mcl-1 (using Protein G-separose beads from SIGMA in the presence of 2g of Mcl-1 antibody). 

Sample were boiled in the presence of 10% ß-mercaptoethanol, separated on polyacrylamide gels and transferred to 

nitrocellulose membranes. The membranes were incubated with primary Abs (Ub (P4D1): sc-8017; Mcl-1 (S-19): sc-

819), and bound Abs was visualized by chemiluminescence using HRP-conjugated secondary Abs. While Mcl-1 is 

degraded in cells treated with BAY61-3606, there is no apparent increase in Mcl-1 ubiquitination. To confirm that 

there is no increase in ubiquitination the cells were treated with proteasome inhibitor MG132 to prevent the 

degradation of Mcl-1. Under these conditions Mcl-1 does not show increased ubiquitination as in cells treated with 

Bay61-3606 alone. Bay: BAY61-3606; IP: immunoprecipitation; Ub: Ubiquitin 
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Figure SR 3: Inhibition of AKT does not affect Mcl-1 expression or induce PARP cleavage in BL41 cells as 

compared to SYK inhibition. 

(A) Mcl-1 expression was determined in BL41 cells treated with either SYK inhibitor BAY61-3606 or Pi3K inhibitor 

LY294002 for 4-hours. While treatment with SYK reduces the expression of Mcl-1, inhibition of Pi3K does not alter 

the expression of Mcl-1. Caspase activity assessed by PARP cleavage shows that SYK inhibition leads to the activation 

of caspase-3 and thus the cleavage of PARP, while Pi3K inhibition does induce PARP cleavage, indicating no activation 

of caspase-3. (B) To determine the effect of the inhibition on AKT, phosphorylation of AKT was assessed by western 

blot. While BL41 cells under basal conditions show a slight phosphorylation of AKT, activation of the BCR with anti-

µ increase AKT phosphorylation. Both BAY61-3606 and LY294003 reduce the phosphorylation of AKT, indicating 

both inhibitors are able to regulate the activity of AKT. (C) Real time qPCR results of Mcl-1 gene expression following 

inhibition, while SYK inhibition reduces the gene levels of Mcl-1, the inhibition of Pi3K does not seem to affect Mcl-

1 gene expression. Note: n=1, experiments need to be repeated to confirm results. Bay: BAY61-3606; Ly:LY294002 
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(1) Identifying infiltrating B-cells; Mcl-1 expression in GCs and TLS 
infiltrating cAMR kidney 

In cAMR, tertiary structures mimicking GCs in which B-cells play an important role, have 

been observed. Therefore, we wanted to further investigate properties of B-cells infiltrating and 

participating in a local immune response in cAMR kidney grafts focusing on the presence of anti-

apoptotic protein Mcl-1. 

The GC reaction is important for the generation of effector B-cells with a high Ag affinity. 

During the GC reaction apoptosis is necessary for eliminating low Ag affinity and self-reactive B-

cells (Han, Zheng, Porto, & Kelsoe, 1995; Y.-J. Liu et al., 1989; Shokat & Goodnow, 1995) while 

on the other hand positive selection of high Ag affinity GC B-cells, and promoting their survival, 

is essential for effector B-cell generation (Y.-J. Liu et al., 1989; Tarlinton & Smith, 2000). The role 

of anti-apoptotic Bcl-2 family members, including Bcl-2, Mcl-1 and Bcl-xl during the GC reaction 

have been under investigation. It was observed by Yoshino et al. (Yoshino et al., 1994) that while 

resting B-cells as well as mantle zone B-cells express Bcl-2, GC B-cells do not. This was confirmed 

when Bcl-6, the master regulator of the GC reaction was identified as a repressor of Bcl-2 

transcription. (Ci et al., 2009; M. Saito et al., 2009) In this work, we confirmed the expression 

profile of Bcl-2 in tonsillar B-cells and observed that Bcl-2 is absent from the GC population while 

it is expressed both in naïve mature and differentiated MBCs (supplemental results S1). In a 

previous study performed by our lab we observed an association of pro-apoptotic protein Puma 

and GC like B-cells, and that Puma plays a role in the regulation of the memory B-cell population. 

In that study, we confirmed with in situ staining of human lymph nodes that Puma is co-expressed 

with Mcl-1 and Bcl-xl within the GCs, while Bcl-2 is absent. (Clybouw et al., 2011) More evidence 

is arising that Mcl-1 is a key player in the survival of activated B-cells. As mentioned before 

Vikstrom et al. (Vikstrom et al., 2010) showed with a conditional knock-out mice model for Mcl-

1, that the absence of Mcl-1 resulted in defects in GC formation, defects in the generation of MBCs 

and reduced Ig secretion. In the same study Bcl-xl knockout mice did not abrogate the GC reaction 

nor the formation of memory B-cells. Thus, even though anti-apoptotic family member Bcl-xl is 

present within the GC it is not essential in maintaining the GC reaction, suggesting the prominent 

role of Mcl-1 in GC survival. Vikstrom observed in a follow up study that Mcl-1 is required for 

survival throughout B-cell development, while Bcl-xl promotes survival of immature B-cells. 

(Vikstrom et al., 2016) In this study, we confirmed using B-cells extracted from human tonsils that 

Mcl-1 expression is elevated in the mature B-cells (BM)2´ corresponding to pre-GC B-cells and 

BM3+BM4 population, corresponding to GC B-cells. 
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Recent studies demonstrated that GCs can develop outside of SLOs allowing the 

generation of effector and memory B-cells, these TLS have been reported in persistent 

inflammation. (Kratz et al., 1996; Takemura et al., 2001) In solid allograft rejection, Thaunat et al. 

(Thaunat et al., 2005), found infiltrating B-cells, T-cells and FDCs within the rejected organ, 

indicating the presence of possible TLS and thus suggesting a possible local lymphoid neogenesis. 

Several groups observed that infiltrating lymphoid cells in the rejected organs were highly 

proliferative by looking at the expression of proliferation marker Ki-67. (Kerjaschki et al., 2004; 

Thaunat et al., 2005) In a follow up study Thaunat et al. (Thaunat et al., 2010) further analyzed the 

cellular and molecular phenotype of these infiltrating B-cells. They observed CD20pos cells lacking 

the expression of sIgD and Bcl-2 but expressing Bcl-6 and AID, like GC B-cells. They also 

identified the expression of GC genes, by RT-qPCR, such as CXCL13, CXCR5, CCL19, CCL21 

and CCR7, proteins involved in the localization of lymphoid cells in GCs. Cheng et al. (J. Cheng 

et al., 2011) observed that B-cells infiltrating kidney grafts express the genes necessary for SHM as 

found in GC cells, as well as a clonality of B-cells originating from these infiltrating lymphoid 

clusters. These observations show that a local humoral response similar to the GC reaction is 

occurring in chronically rejected organs. Our results show that B-cells infiltrating cAMR kidney 

express Mcl-1, which is a mentioned before essential for GC formation and B-cell differentiation, 

thus strengthening the notion that B-cell infiltrating grafted organs are part of TLS and play a role 

in a local humoral immune response, lymphoid neogenesis and differentiation into effector B-cells.  

(2) Targeting BCR signaling; SYK inhibition induced GC like cell 
death associated with Mcl-1 gene regulation 

BCR signaling during B-cell development leads to the elimination of self-reactive B-cells 

by programmed cell death. (Yarkoni, Getahun, & Cambier, 2010; Yurasov & Nussenzweig, 2007) 

While later in the GC reaction, Ag affinity-linked BCR engagement mediates the apoptosis of cells 

with a low Ag affinity and the differentiation of cells with a high Ag affinity into B-effector cells. 

(Y.-J. Liu et al., 1989; Meyer-Hermann, Maini, & Iber, 2006; Tarlinton & Smith, 2000) We 

hypotized that the decrease in BCR signaling leads to reduced B-cell viability. Therefore, we aimed 

to abrogate BCR signaling to influence GC B-cell viability by inhibiting the kinase activity of SYK. 

Since SYK acts very early in the signaling chain making it an attractive candidate regulator of BCR 

signaling.  

Significant clinical activity of SYK inhibition has been observed for non-Hodgkin and B-

cell chronic lymphocytic leukemia (B-CLL). (Friedberg et al., 2010; Delong Liu & Mamorska-Dyga, 

2017; Sharman et al., 2015). Fostamatinib disodium, the pro-drug version of SYK inhibitor R406, 
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was used in a Phase 1/2 trial (n=68). The outcome of this trial showed that treatment induced 

tumor cell death and significant clinical responses. Common toxicities included neutropenia, 

thrombocytopenia, diarrhea, fatigue, cytopenias, hypertension, and nausea, however they seemed 

to be reversible. (Friedberg et al., 2010) Another phase 2 clinical trial using SYK inhibitor 

entospletinib (n=186), which showed a greater selectivity as compared to R406 (Currie et al., 2014), 

showed a median progression free survival of 13.8 months. Patients who achieved a partial 

response remained free from progression at 6.5 months. The toxicities observed during this trial 

were similar to those observed in the fostamatinib trial (Sharman et al., 2015) 

For our experimental settings, we use SYK inhibitor BAY-613606 (BAY) whose 

pharmalogical profile was tested in vitro and in vivo by N. Yamamoto et al. (Yamamoto et al., 2003) 

They showed that BAY selectively blocks SYK activity, which was associated with reduced BCR 

and FcR signaling mediated cell functions in vitro. In vivo associated effects were observed in 

cutaneous allergies and bronchitis in rat models, in which allergic effects were reduced in animals 

treated with BAY. (Yamamoto et al., 2003) We observe a constitutively active SYK in Burkitt’s 

lymphoma (BL) cell line BL41, as a model for GC centroblasts, BAY effectively reduces SYK 

phosphorylation in these cells. We demonstrate that inhibiting the kinase activity of SYK induces 

cell death in BL41 cells under basal conditions. Our results are in agreement with the results found 

by Schmitz et al (Schmitz et al., 2012), who observed reduced viability of cells when shRNA against 

CD79a and SYK were used to abrogate BCR signaling in several Burkitt’s lymphoma cell lines, 

including BL41. We observe a reduction of Mcl-1 associated with SYK inhibition in BL41 cells 

under basal conditions while the expression anti-apoptotic proteins Bcl-2 and Bcl-xl are not 

affected. Constitutive activation of SYK was observed B-CLL as well, SYK inhibition in these cells 

leads to reduced viability and reduced expression of Mcl-1, similarly as to what we observe in BL41 

cells. (Baudot et al., 2009; Gobessi et al., 2009) Gobessi et al., (Gobessi et al., 2009) observed that 

while Mcl-1 was reduced following SYK inhibition, Bcl-2 expression was not modified as we 

observed in BL41 cells, suggesting that in these models SYK seems to be involved in the regulation 

of anti-apoptotic Mcl-1 alone. 

It is known that Mcl-1 is a substrate of apoptotic effector caspases-and that activation of 

caspase-3 can induce Mcl-1 degradation. (Michels et al., 2004) We observe that inhibiting caspase 

activity only partially restored Mcl-1 protein expression, suggesting that Mcl-1 degradation occurs 

before the activation of caspases and is thus caspase-independent following SYK inhibition. 

Baudot et al., (Baudot et al., 2009) observed the same effect in B-CLL, SYK inhibition in the 

presence of Q-VD-Oph did not restore Mcl-1 expression. These findings supporting the notion 
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that SYK inhibition reduces Mcl-1 protein expression levels, independent of caspase activation, 

leading to apoptotic cell death. 

In the same study, it was observed that inhibiting the activity of the proteasome, which is 

responsible for Mcl-1 protein degradation (Nencioni et al., 2005), restored Mcl-1 expression 

following SYK inhibition. (Baudot et al., 2009) The stability of Mcl-1 can be regulated via 

phosphorylation followed by ubiquitination and proteasome dependent degradation. This was 

shown by the generation of a Mcl-1 mutant for the phosphorylation site S159. Phosphorylation of 

Mcl-1 at S195 has been shown to be induced by Glycogen Synthase Kinase-3 (GSK3) and 

inhibition of GSK3 prevents cells from entering in apoptosis. It was shown that AKT, which is 

one of the kinases activated downstream of the BCR, can inhibit the activity of GSK3 and thus 

regulate Mcl-1 stability. (Q. Ding et al., 2007; Maurer, Charvet, Wagman, Dejardin, & Green, 2006) 

Baudot et al. (Baudot et al., 2009) suggested that SYK inhibition in B-CLL leads to proteasome 

dependent degradation of Mcl-1 which related to increased GSK3 activation due to decreased AKT 

activity. We show that when preventing proteasome dependent Mcl-1 protein degradation by 

proteasome inhibitor MG132 protein levels of Mcl-1 are restored following SYK inhibition, 

suggesting that SYK inhibition induces proteasome dependent degradation of Mcl-1. However, we 

observe that while there is no degradation of Mcl-1 in SYK inhibited cells with impaired 

proteasome activity, there is no accumulation of newly synthesized Mcl-1 either. If SYK inhibition 

would directly impair Mcl-1 protein stability by probing it for the proteasome one would expect an 

accumulation of Mcl-1 in SYK inhibited cells, as observed in cells with functional SYK, under 

proteasome impaired conditions. To confirm this hypothesis, we also look at the ubiquitination 

levels of Mcl-1 in BL41 cells treated with SYK, with functional or impaired proteasome activity. 

We observe no increase in the ubiquitination levels of Mcl-1 in the presence of BAY, supporting 

the notion that SYK inhibition does not actively induce Mcl-1 protein degradation in our model 

(supplemental results S2). These results suggest that SYK inhibition impairs de novo synthesis of 

Mcl-1 in BL41 cells, which we confirm by RT-qPCR, showing reduced Mcl-1 gene expression 

levels following SYK inhibition. To confirm that SYK inhibition regulates Mcl-1 gene expression 

and that SYK induced down regulation of Mcl-1 gene expression is necessary to induce apoptosis, 

we overexpressed Mcl-1 in BL41 cells. While apoptosis was induced upon SYK inhibition in wild 

type cells this effect was counteracted in cells overexpressing Mcl-1 by retroviral transduction, and 

Mcl-1 expression, both at protein and genomic levels, was not reduced.  

Taken together, our results suggest that SYK inhibition in BL41 cells leads to reduced 

down-regulation of anti-apoptotic protein Mcl-1 at transcriptional levels which is associated with 

apoptotic cell death.  
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Figure 22: Potential role of SYK in regulating Mcl-1. 

BCR signaling can regulate Mcl-1 gene transcription and Mcl-1 protein stability. Downstream of the BCR, active SYK 

induces the activation of AKT through PI3K. Degradation of Mcl-1 by the proteasome is regulated though 

ubiquitination of Mcl-1. Phosphorylation of Mcl-1, which precedes its ubiquitination, can be regulated by GSK3 whose 

activity is suppressed by active AKT. Inhibiting AKT activation by abrogating SYK activity can lead to activation of 

GSK3, followed by phosphorylation of Mcl-1 probing it for proteasome mediated degradation. However, in our model, 

SYK inhibition using BAY61-3606 does not increase Mcl-1 ubiquitination suggesting SYK inhibition does not alter 

Mcl-1 protein stability. We observed that SYK inhibition in BL41 cells leads to decreased levels of Mcl-1 mRNA.  

 

(3) Regulating Mcl-1 in GCs; The role of SYK in STAT3 mediated 
Mcl-1 gene transcription 

Since our results suggest that SYK inhibition regulates Mcl-1 at transcriptional levels we 

aimed to further understand the signaling pathways involved in Mcl-1 transcription. As mentioned 

before, the binding of Ag leads to the activation and differentiation of mature B-cells, this type of 

signaling is called active signaling. Another type of BCR signaling has emerged, which is important 
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for maintaining mature B-cells in the absence of antigen, this signaling is called tonic signaling. The 

first evidence of tonic BCR signaling arose from the research of Lam et al. (Lam, Kühn, & 

Rajewsky, 1997), using a conditional Cre-Lox mouse model in which the BCR on mature B-cells 

can be removed. They showed that conditional removal of the BCR reduces the number of mature 

B-cells and induces apoptotic cell death of these cells. (Lam et al., 1997) The same group confirmed 

in a follow up study that the BCR subunits CD79a/b, necessary for the recruitment and 

phosphorylation of SYK to the BCR, are essential for this tonic BCR signaling and survival of 

mature B-cells in the periphery. (Kraus, Alimzhanov, Rajewsky, & Rajewsky, 2004) Active BCR 

signaling regulates the activation of several signaling pathways, such as NF-κB, ERK, NFAT and 

AKT. The group of Rajewski found in their conditional mouse model that constitutively active 

Pi3K rescues mature BCR negative B-cells. In the same conditional model for BCR ablation, they 

showed that constitutive activation of the NF-κB nor the ERK pathways were able to rescue 

mature B-cells from cell death induced by BCR depletion in mature B-cells, suggesting that Pi3K 

signaling downstream of the BCR is essential for tonic BCR mediated cell survival. (Srinivasan et 

al., 2009) Schmitz and all. (Schmitz et al., 2012) suggested that the BCR signaling in Burkitt’s 

lymphoma stems from chronic tonic signal transduction involving active SYK and AKT mediated 

signaling.  

The activation of AKT can, as mentioned before, inhibit the activation of GSK3 and 

increase Mcl-1 protein stability. The Pi3K/AKT pathway can also regulate the expression of Mcl-

1 at transcriptional and post transcriptional levels as well. Longo et al (Longo et al., 2008) showed, 

by transfection of constitutive active AKT in B-CLL cells and subsequent quantification of Mcl-1 

gene expression, an increase in the fold change of Mcl-1. While Mills et al (J. R. Mills et al., 2008) 

showed in Eµ-myc mouse model, which are mice transgenic for a c-myc gene driven by the IgH 

enhancer, with constitutively active mechanistic target of rapamycin Complex 1 (mTORC1), that 

the AKT pathway can regulate Mcl-1 translation via mTORC1. In our experimental model, we did 

not observe an effect of AKT inhibition on Mcl-1 protein expression as compared with SYK 

inhibition. While the results we found with real time qPCR seems to confirm that Pi3K inhibition 

does not affect Mcl-1 expression. These results need to duplicated to be confirmed (supplemental 

results S3). Taken together, these results suggest that there is another mechanism involved in Mcl-

1 gene regulation following SYK inhibition in our model which is partly Pi3K/AKT independent. 

Akgul et al (Akgul, Turner, White, & Edwards, 2000) identified several transcription-factor 

binding sites within the promotor region of Mcl-1 including signal transducer and activator of 

transcription 3 (STAT3). In the current study, we observe that STAT3, under basal circumstances, 

is expressed in the nucleus of BL41 cells where it can therefore actively transcribe the Mcl-1 gene. 
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We observe that, under basal condition, SYK inhibition leads to impaired translocation of STAT3 

to the nucleus. While the involvement of STAT3 in the regulation of Mcl-1 has been preciously 

observed, these observations were made mainly through the activation of the JAK/STAT pathway 

regarding cytokine and growth factor induced signaling. (Epling-Burnette et al., 2001; Mott, 

Kobayashi, Bronk, & Gores, 2007; Puthier, Bataille, & Amiot, 1999) An interaction between 

Pi3K/AKT signaling and STAT3 activation has been reported by Han et al (Han 2010) in iMycEµ 

B-cell lymphomas, and the inhibition of Pi3K with the inhibitor Ly290042 reduced the 

phosphorylation state of STAT3. Transformation of murine fibroblastic cells with a catalytically 

active p110 subunit of pI3K unveiled an upregulation of genes that are under STAT-mediated 

transcription. (Jonathan Ross Hart, Liao, Ueno, III, & Vogt, 2011) In a follow up study Hart et al 

(Jonathan R. Hart, Liao, Yates, & Vogt, 2011) observed that Pi3K inhibition in these transformed 

cells showed reduced STAT3 phosphorylation. They observed that reducing STAT3 

phosphorylation prevented oncogenic transformation of these cells, indicating the important role 

of STAT3 downstream of Pi3K induced oncogenesis. Interestingly inhibition of JAK under these 

conditions did not reduce STAT3 phosphorylation. However as mentioned before inhibition of 

Pi3K in our model does not regulate Mcl-1 expression suggesting Pi3K independent regulation of 

STAT3. 

BCR mediated modulation of STAT3 has been observed in several studies, and stimulation 

of the BCR leads to an increase in STAT3 phosphorylation (L. Su, Rickert, & David, 1999; L. 

Wang, Kurosaki, & Corey, 2006) as well as STAT3 DNA binding activity (Fan & Rothstein, 2001). 

Buchner et al (Buchner et al., 2009) showed that in B-CLL have constitutively active STAT3 due 

to constitutive BCR signaling. B-CLL cells treated with SYK inhibitors showed reduced levels of 

STAT3 phosphorylation. As mentioned before Mcl-1 gene regulation was observed in JAK/STAT 

dependent signaling, however there is no apparent evidence that the BCR provides a docking place 

for JAK. It was shown by Uckun et al (Uckun, Qazi, Ma, Tuel-Ahlgren, & Ozer, 2010) that STAT3 

can be a substrate for SYK, and that JAK inhibition, under oxidative stress circumstances, does 

not abrogate STAT3 phosphorylation. Wang et al (L. Wang et al., 2006) showed that BCR mediated 

STAT3 signaling is JAK independent as well, since BCR stimulation in the presence of JAK 

inhibitors did not reduce STAT3 phosphorylation. We show that inhibiting STAT3 in BL41 cells 

mimicked the effects observed with SYK inhibition regarding Mcl-1 expression as well as cell death, 

suggesting that BCR signaling is associated with STAT3 modulated regulation of Mcl-1. We 

showed that by overexpressing Mcl-1 the effects induced by both SYK and STAT3 inhibition were 

abrogated. suggesting that BCR mediated STAT3 signaling is involved in Mcl-1 gene transcription 

STAT3 (Figure 23).  
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Figure 23: Proposed model for regulating Mcl-1 following SYK inhibition in BL41 cells. 

Toni chronic BCR signaling in Burkitt’s lymphomas leads the to the activation of the Pi3K/AKT pathway, which has 

been linked to Mcl-1 gene transcription. In our model of BL41 and abrogation of the BCR signal following SYK 

inhibition we observed reduced cell viability and Mcl-1 gene transcription. However, abrogation of the Pi3K signaling 

pathway does not alter Mcl-1 expression, suggesting a partly pi3K/AKT independent regulation of Mcl-1. We observed 

that STAT3 is constitutively expressed in the nucleus of BL41 cells and that SYK inhibition induces a translocation 

from the nucleus, suggesting a role for STAT3 in the regulation of Mcl-1. The Pi3k/AKT pathway has been implied 

to regulate STAT3 activation and SYK has been shown to be able to regulate STAT3 activity as well. We propose that 

in our experimental model that SYK mediated activation of STAT3 is involved in the regulation of Mcl-1, possibly in 

a Pi3K dependent and independent manner.  

 

While the role of STAT3 in the GC response remains controversial, it was shown that 

STAT3 is involved in B-cell differentiation. Fornek et al. (Fornek et al., 2006) showed in conditional 

STAT3 knock out mice model that STAT3 is essential for a T-cell dependent terminal IgG B-cell 

responses. Avery et al. (Avery et al., 2010) showed that B-cells from patients with autosomal 

dominant hyper IgE syndrome, which have a mutated STAT3, are unable to produce a high titer 
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of high affinity Ig as compared to healthy controls. While fewer MBCs were generated in in vitro 

experiments with STAT3 deficient cells, STAT3 mutation did not affect isotype switching nor 

SHM in this experimental model. However, IL-21 induced STAT3 activation is essential for naïve 

B-cells to differentiate in PCs and STAT3 deficiency lead to reduced Ig secretion as compared to 

healthy controls. A recent study performed by Ding et al (C. Ding et al., 2016) underlined the 

importance of STAT3 in the GC. They found using a STAT3 knockout mice model, that while 

STAT3 might not be essential for GC initiation it is essential for maintaining the GC reaction. The 

number of apoptotic GC B-cells were higher in immunized mice knock out for STAT3, as 

compared to normal mice, which was associated with lower gene expression levels of Mcl-1.  

Taken together, our results suggest that in BL41 cells abrogating SYK kinase activity 

reduces STAT3 dependent Mcl-1 transcription and supports the results that STAT3 might play an 

important role in the GC reaction by promoting Mcl-1 mediated cell survival.  

It should be stated that the results found in BL41 cells are based on basal tonic BCR 

activation. SYK inhibition following BCR activation with anti-µ in BL41 cells, lead to abrogated 

ERK and NF-κB phosphorylation as well (data not shown), showing that other pathways are 

influenced by SYK inhibition. Indicating the broad effect of SYK inhibition on BCR signaling, 

under both tonic as well as active BCR signaling conditions. In a tonsillar B-cell model, with T-cell 

dependent B-cell activation conditions in vitro, we observed that SYK inhibition, under active BCR 

signaling, induced with anti-µ and co-stimulation with CD40-Ligand and LPS, lead to B-cell death 

and reduced Mcl-1 protein expression. 

(4) The effect of SYK inhibition in altering B-cell responses; SYK as 
a potential target in organ transplantation 

The damaging role of DSA during organ transplantation have been extensively studied and 

preexisting as well as de novo DSA correlates with acute and chronic solid graft injury. (Drachenberg 

& Papadimitriou, 2013; Kaneku et al., 2013; P. Lee et al., 2002; Loupy et al., 2012) DSAs of the 

IgM and IgA isotypes have been observed in patient showing signs of AMR, however as compared 

to IgG DSA they are not as frequent and do not seem to have extreme deteriorating effects on 

their own as compared to IgG. (Arnold et al., 2013; Everly et al., 2014; Warner et al., 2015) As 

mentioned before, IgG DSA can activate the complement and cause graft deterioration. Several 

studies using complement inhibitors have shown promising results regarding severe early acute 

rejection (Orandi et al., 2014; Yelken et al., 2015), however this treatment does not solve the 

problem of de novo DSA production and tackles the problem at the end of the road, not the 

beginning. The studies in which rituximab is used to treat AMR, the effect on the production of 
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DSA have been debated. (Faguer et al., 2007; Fehr et al., 2009; Tanriover et al., 2008; V. Zarkhin 

et al., 2008) This could be partly explained by the fact that CD20, the target of rituximab, is not 

expressed on all B-cell populations, and in particular not on plasma cells which are responsible for 

the production of DSA. (M. R. Clatworthy, 2011; Valeriya Zarkhin et al., 2010) It is apparent that 

these therapies often fail to target and destroy MBCs and/or PCs responsible for both aAMR and 

cAMR. (Jackson et al., 2015; Leandro, 2013; Perry et al., 2008; Ramos et al., 2007). PCs secrete Abs 

and that one of the main DSA isotypes involved in AMR is IgG (Castro-Dopico & Clatworthy, 

2016). MBCs influence the outcome of organ transplantation as well. For example, preformed anti-

HLA MBCs predict a poor outcome in kidney organ transplantation, increasing the risk for 

sensitized patients. (Lúcia et al., 2015) These findings underline the importance of the GC reaction 

leading to the formation of differentiated B-cells and de novo DSA production. Therefore, it is 

important to find new therapeutic methods that effectively block B-cell viability, differentiation 

and DSA production. 

In this study, we show that SYK inhibition in in vitro activated B-cells reduces cell viability.  

Our results support the findings of Flynn et al (Flynn et al., 2015) observed that PBMC extracted 

B cells from patients with active graft versus host disease were more susceptible to apoptotic cell 

death as B-cells extracted from patients with inactive or no graft versus host disease. We show that 

the reduced viability of primary tonsilar B-cells is associated with the down-regulation of anti-

apoptotic protein Mcl-1. Abrogating BCR signaling leads to reduced expression of Mcl-1 in total 

B-cells as well as in the BM3+BM4 population as compared to stimulated B-cells. The inhibition 

of SYK is associated with a reduced activation state, as assessed by CD80 expression, in total B-

cells as well. We observe a similar expression profile for CD80 in BM3+BM4 cells. We show that 

abrogating BCR signaling following SYK inhibition of in vitro activated primary B-cells inhibits total 

IgG secretion, thus suggesting that SYK is a potential therapeutic target for reducing the 

production of IgG DSA.  

Taken together our data showed that SYK inhibition in in vitro activated B-cells affects BCR 

signaling-mediated cell survival through the downregulation of Mcl-1 gene transcription. We also 

demonstrate that SYK inhibition impairs B-cell responses by altering B-cell reactivity to Ags and 

decreasing Ab production. 

It has to be noted, that blocking BCR signaling for longer times can possibly lead to the 

development of B-cell immunodeficiency’s. For example, Bruton’s disease, which is caused by a 

mutation in the BTK gene leading to reduced or no PCs and thus reduced 

(hypogammaglobulinemia) or no (agammaglobulinemia) Igs. BTK plays a role in the maturation 

from pro-B-cells to pre-B-cells, and individuals having Bruton’s disease have failures in B-cell 
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development. (Ochs & Edvard Smith, 1996; Tao, Boyd, Gonye, Malone, & Schwaber, 2000) These 

individuals have higher risks in contracting infections however, studies have shown that treatment 

with IV-IG in these patients reduced infections and related mortality. (Quartier et al., 1999) It has 

been observed that immunotherapies targeting B-cells can be linked to the onset of 

hypogammaglobulinemia (HGG), characterized by a reduction in all types of gamma globulins. A 

retrospective review made by Makatsori et al. (Makatsori et al., 2014) revealed several patients that 

were treated with rituximab for autoimmune diseases and hematopoietic malignancies developed 

HGG. Casulo et al. (Casulo, Maragulia, & Zelenetz, 2013) investigated the incidence of HGG in 

patients with B-cell non-Hodgkin lymphoma treated with Rituximab. They observed that 

maintenance rituximab treatment increased the incidence of HGG as compared to 

chemoimmunotherapy and immunotherapy. However, the occurrence of HGG (38% de novo HGG 

and 72% progressive HGG) was higher than the incidence of symptomatic hypogammaglobinemia 

(approximatively 14% for both de novo and progressive HGG). They also observed an increased 

incidence in patients treated with higher doses of Rituximab. (Casulo et al., 2013) Since SYK 

inhibition induces apoptosis in B-cells and reduces the levels of secreted IgG therefore prolonged 

use of SYK inhibitors might interfere with normal B-cell function and lead to HGG. Hence, it is 

important to determine the length of the treatment. Since SYK inhibition induces the cell death of 

the B-cells short treatment could be sufficient, and once the B-cells responsible for AMR are 

eliminated the treatment could be stopped or receive less intense immunesupressive therapies. 

However, the treatment time needs to be determined and the effect on the development of HGG 

needs to be further explored.  

 

In conclusion, taken together all our data on SYK inhibition, we show that SYK inhibition 

affects BCR signaling mediated cell survival through the downregulation of Mcl-1 gene 

transcription. In GC like cells this regulation of Mcl-1 seems to be in part dependent on STAT3 

mediated gene regulation of Mcl-1. By showing that SYK inhibition can modify B-cell viability, 

altering B-cell reactivity to antigens and antibody production we demonstrate that in case of AMR 

SYK can be a potential target to improve graft survival due to the humoral immune response. 

(5) Perspectives 

There are still aspects of SYK inhibition on the effect on different B-cell lineages, other 

immune cells and graft cells that need to be investigated further. 

(I) One population of B-cells have not been discussed until here, which are de regulatory 

B-cells (Breg). Bregs, like Tregs, play a role in the regulation of the inflammatory response to 

prevent excessive inflammation. Following an immune response, which leads to the clearance of 
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the pathogen, the inflammatory response is abrogated by the production of anti-inflammatory 

mediators and cytokines. Cells producing these anti-inflammatory mediators are called regulatory, 

hence Treg and Breg. (Nathan & Ding, 2010) The regulatory effect of Bregs is complex, for 

example they are able to bias T-cell differentiation to favor the production of T-cells with a 

regulatory phenotype or can directly produce anti-inflammatory cytokines, events observed both 

in mice and human. (Carter et al., 2011; Flores-Borja et al., 2013) Part of the effect of Bregs on the 

regulation of T-cell differentiation is related to the IL-10 producing capacity of Bregs (Carter et al., 

2011; Carter, Rosser, & Mauri, 2012; Flores-Borja et al., 2013), however direct cognate interactions 

between Breg and T-cells have been suggested to play a role too. (Mann, Maresz, Shriver, Tan, & 

Dittel, 2007; Yoshizaki et al., 2012) Next to the expression of IL-10 Bregs have been shown to 

express other regulatory-cytokines such as transforming growth factor b (TGF-b), which is able to 

induce apoptosis in CD4+ T-cells and anergy in CD8+ T-cells. (Parekh et al., 2003; Tian et al., 

2001) Bregs are able to reduce the pro-inflammatory response of DCs. (Masanori Matsumoto et 

al., 2014; Sun, Deriaud, Leclerc, & Lo-Man, 2005)  

While most of the research on Bregs focusses on autoimmune disease, there have been 

some studies that focuss on the role of Breg in the context of transplantation. An evident role for 

Bregs was observed both in mice and human studies showing that B cell depletion, using anti-

CD20 antibodies, lead to increased cellular rejection. (Menna R. Clatworthy et al., 2009; Marino et 

al., 2016) Interestingly, patients showing tolerance post transplantation had higher numbers of B-

cells as compared to patients showing chronic rejection or patients that received 

immunosuppression. (Chesneau et al., 2014; Newell et al., 2010; Pallier et al., 2010) The same 

observation was made in an established rat kidney transplant model of tolerance. Animals showing 

tolerance had increased B-cell numbers. While there were B-cell infiltrating the graft, these B-cells 

were of the unswitched IgM isotype, which was associated with decreased complement activation. 

In the same study, it was observed that transferring B-cell from tolerant animals induced tolerance 

in new hosts. (Le Texier et al., 2011) These studies show that specific B-cell populations in the 

context of transplantation can be beneficial. 

Several different Breg population have been described, and it seems that any B-cell e.g 

transitional B-cells, marginal zone B-cells, plasma blast, has the potential to differentiate in to Breg. 

(Rosser & Mauri, 2015; Wortel & Heidt, 2017) It is suggested that Bregs are activated in the same 

inflammatory responses that give rise to autoimmune diseases. (Evans et al., 2007; Mizoguchi, 

Mizoguchi, Takedatsu, Blumberg, & Bhan, 2002) It was demonstrated that Bregs emerge in the 

presence of pro-inflammatory cytokines such as IL-1b, IL-6 and IL-21. (Rosser et al., 2014; 

Yoshizaki et al., 2012) Next to the non-cognate inflammatory stimuli cognate interaction seem to 
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influence Breg formation as well. For example, CD40-CD40L interactions between B-cells and T-

cells or regulatory DCs have shown to induce Breg differentiation, increase the number of Bregs 

and anti-inflammatory cytokine production. (Blair et al., 2009, 2010; L. Qian et al., 2012) There is 

evidence for a pool of Ag-specific Bregs as well, which is suggested by the fact that Ag primed 

Bregs were able to reduce symptoms of experimental autoimmune encephalitis whereas naïve B-

cell were not. (Matsushita, Horikawa, Iwata, & Tedder, 2010) And inhibiting BCR signaling by 

knocking down CD19 or Stromal interaction molecule 1 and 2 either reduced the prevalence of 

B10 cells or reduced the production of IL-10.(Masanori Matsumoto et al., 2011; Yanaba, Bouaziz, 

Matsushita, Tsubata, & Tedder, 2009) The role of SYK has been touched upon by Jin et al. (G. Jin 

et al., 2013) who observed that SYK inhibition lead to a partial but not complete reduction in the 

expression of IL-10 by splenic B-cells. Interestingly Barr et al. (Barr et al., 2012) observed, using 

PBMCs from patients from a clinical trial with SYK inhibitor fostamatinib, no deteriorating effect 

on the number of IL-10+ B-cells however this study was performed shortly after the introduction 

of the SYK inhibitor, long term effects have not been determined.  

As mentioned before there are several different populations of Bregs spanning different 

developmental stages observed in B-cells and there seems to be a partial effect of SYK inhibition 

on Breg development. Therefore, it would be interesting to determine the effect of SYK inhibition 

on the specific Breg populations, determine the effect of SYK inhibition on the production of anti-

inflammatory cytokines and if SYK inhibition can influence Breg mediated tolerance. 

(II) For this research project, the effect of SYK inhibition is mainly focused around the 

BCR mediated signaling, however SYK is involved in other ITAM based immune receptor 

signaling involving the TCR, FcRs, integrins and PRR as well.  

Regarding T-cells and TCR signaling, mature-T immunoreceptor possess ITAMS, however 

the dogma seems to be that in these cells the ITAM based signaling is dependent SYK related 

protein ζ‑chain‑associated protein kinase of 70kDa (ZAP70) and not SYK. (Au-Yeung et al., 2009, 

2014) though it has to be mentioned that for example in lupus patients it has been found that they 

lack the ζ‑chains and that SYK seems to take over the role of ZAP-70 in mature T-cells in these 

patients. (Moulton & Tsokos, 2011) Therefore, the role of SYK in TCR signaling should not be 

readily dismissed in all cases.  

Regarding FcRs, as mentioned before, they are involved in Ab mediated signaling, 

following the binding of Ag-Ab complexes. Bound DSA recruit several members of the immune 

system, through binding of the Fc-portion of the Abs, which are expressed on effector cells of 

both the innate and adaptive immune response. (Nimmerjahn & Ravetch, 2007) It has been shown 

that IgG mediated signaling plays a role in hypersensitivity reactions through binding of IgG-
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antigen complexes FcγRs on cells of the innate immune system. Three of these, FcγRI, FcγRIIA 

and FcγRIIIA, are coupled to the activation of Syk through ITAMs. (Sánchez-Mejorada & Rosales, 

1998) Bound IgG can trigger phagocytosis and the generation of reactive oxygen species. If this 

processed is triggered by non-self-molecules which are of no danger for the individual it can cause 

unnecessary tissue damage. And it was shown in SYK deficient macrophages fail to phagocytose 

IgG coated particles, while SYK deficient neutrophils fail to undergo oxidative burst. (Kiefer et al., 

1998; Ziffle & Lowell, 2009) Recognition of IgG to self-Ag contribute to inflammatory diseases 

such as rheumatoid arthritis. Phase I/II trials using fostamatinib in patients with rheumatoid 

arthritis promising results were obtained regarding decreased joint inflammation. (Genovese et al., 

2011; Weinblatt et al., 2008) There have also been studies that showed a role of SYK in ischemia 

reperfusion and SYK inhibition in amice model reduced tissue damage after ischemia reperfusion, 

whit was associated with reduced IgM and C3 deposition and reduced infiltration of neutrophils. 

(Ishizuka et al., 2013; Pamuk et al., 2010)  

Therefore, one can speculate that SYK inhibition cannot only affect AMR by regulating 

the B-cell response but also affect the DSA mediated graft deterioration due to DSA mediated 

recruitment and activation of inflammatory cell 

(III) Co-stimulation blockade to prevent T-cell activation has shown promising results 

organ transplantation. It has been that shown that by selectively blocking the interaction between 

CD28 family members and their B7 family ligands, greatly enhances both short term and long-term 

graft survival. (Lenschow et al., 1992; Turka et al., 1992; Ogawa et al., 2001) The new molecule 

Belatacept, a CTLA-4 blocking fusion protein has shown promising results following a long-term 

trial. It improved renal function, and reduced risk of mortality and graft loss in patients treated 

with Belatacept as compared to calcineurin inhibitors. In the same long-term study, it was observed 

that Belatacept treatment lead to reduced DSA levels as compared to patients treated with 

Cyclosporine. (Durrbach et al., 2016; Rostaing et al., 2013; Flavio Vincenti et al., 2016)  

The mechanism of how Belatacept affects DSA production have yet be elucidated and are 

under investigation. Leibler et al (Leibler et al., 2014) have investigated the effect of Belatacept on 

peripheral blood B-cell populations, and they observed that patients treated with Belatacept higher 

levels of B-cells having a naïve transitional phenotype and hence lower levels of differentiated 

MBCs as compared to calcineurin treated patients. Interestingly, in a follow up study, it was 

observed that these transitional B-cells were enriched in immunoregulatory phenotype. (Bigot et 

al., 2016) Kim et al. (E. J. Kim et al., 2014) have observed in a rhesus macaquese an obstruction in 

GC formation and B-cell differentiation following Belatacept treatment. However, it needs to be 

noted that these results were obtained under T-cell depleted experimental settings, when treated 
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with Belatacept alone, without T-cell depletion, this effect on GC formation was not observed. 

(Haggerty & Proctor, 2012; E. J. Kim et al., 2014) And concerns have been raised during the 

Belatacept trials. For one a higher rate of acute rejection was observed, which were increased 2-

fold as compared to cyclosporine treated patients, and the severeness of the acute rejection seemed 

to be increased as well. (F Vincenti et al., 2005; F. Vincenti et al., 2010) A second concern that has 

been raised was the increase in post-transplant lymphoproliferative disorder (PTLD), caused by B-

cell proliferation which can give rise to Epstein-Barr virus (EBV)-associated lymphomas, in 

patients treated with Belatacept as compared to cyclosporine treated patients. The development of 

PTLD seemed to occur mainly in EBV seronegative patients. (F. Vincenti et al., 2012)  

Since the humoral and cellular immune response are not mutually exclusive, and as 

observed with Belatacept, targeting the cellular arm can result in effects on the humoral arm. 

Therefore, one might speculate that blocking the humoral arm of the immune response could affect 

the cellular immune cells as well. Activation of naïve B-cells leads to the upregulation of 

costimulatory molecules involved in T-cell interactions, rendering Ag activated B-cells better at 

interacting with Th-cells. (Depoil et al., 2005; Victora et al., 2010) We show that the inhibition of 

SYK activation is associated with a reduced CD80 expression, which is a member of the B7 family, 

however we did not look at other co-stimulatory molecules expressed by the B-cells. B-cells act as 

APCs as well. Ag binding to the BCR induces internalization of the Ag-BCR complex followed by 

Ag processing and Ag presentation to T-cells via MHC class II. (Lankar et al., 1998; Ma et al., 2001)  

Therefore, it would be interesting to investigate the effect of SYK inhibition on T-cell. For 

example, by investigating the expression profile of other B7-CD28/CTLA-4 family members by 

B-cells, determine the effect on Ag presentation and T-cell proliferation and differentiation 

following SYK inhibition. 

Therefore, it would be interesting to investigate the effect of SYK inhibition on the Ag 

presenting capacities of these cells and their ability to activate T-cells in the context of organ 

transplantation and whether SYK inhibition can influence this process. 

(IV) It is necessary to perform transplant mouse experiments to determine the effect of 

SYK inhibition on B-cells in vivo. Regarding the effect of SYK inhibition on GC formation and B-

cell differentiation in context of organ transplantation as well as the effect on Ig secretion and the 

formation of TLS. On the other hand, it is also important to determine the effect of SYK inhibition 

during an ongoing rejection and determine the effect on ongoing GC/TLS reaction and B-cell 

differentiation as well as the effect on Ig mediated inflammatory response and tissue damage.  
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(I) Annex 1 
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activity in Burkitt’s lymphoma B cells 
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(II) Annex 2 

Co-stimulation Blockade Plus T-cell 
Depletion in Transplant Patients: 

Towards a Steroid- and Calcineurin 
Inhibitor-Free Future? 

Florence Herr, Melanie Brunel, Nathalie Roders, Antoine 

Durrbach 

Drugs. 2016 Nov;76(17):1589-1600. 
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Title: Regulating the activation of B lymphocytes during chronic antibody mediated rejection: 
The role of SYK in modulating Mcl-1 
 
Keywords: Antibody mediated rejection, Germinal Center, BCR signaling, SYK, Mcl-1, Apoptosis 
 
Abstract: Renal failure is a major public health concern and renal transplantation is the main therapeutic 
option, however it comes with the risk of organ rejection. B-cells play an important role in antibody-
mediated rejection (AMR). During chronic AMR, tertiary lymphoid germinal center (GC)-like structures 
appear in the rejected organ, associated with de novo production of donor-specific plasma and memory 
B-cells. Which are B-cell populations that are often poorly controlled by current treatments. Myeloid 
cell leukemia-1 (Mcl-1), an anti-apoptotic member of the B-cell lymphoma-2 (Bcl-2) family, is essential 
for maintaining the GC reaction and B-cell differentiation. We report here the infiltration of B-cells 
expressing Mcl-1 in the kidney of patients with chronic AMR, as observed for (pre-)GC cells. The 
impairment of B-cell receptor (BCR) signaling, by inhibition of spleen tyrosine kinase (SYK), reduced 
viability and Mcl-1 protein levels in GC like cells. This downregulation is coordinated at the 
transcriptional level, potentially via signal transducer and activator of transcription 3 (STAT3), as shown 
by (1) impaired translocation of STAT3 to the nucleus following SYK inhibition, and (2) the lower levels 
of Mcl-1 transcription upon STAT3 inhibition. Moreover, overexpression of Mcl-1 prevented cells from 
entering apoptosis after SYK inhibition. In vitro studies with primary tonsillar B-cells confirmed that 
SYK inhibition decreased cell survival. We also found that SYK inhibition decreased Mcl-1 protein levels 
in primary B-cells, and that B-cell activation was inhibited, as determined by CD80 expression and lower 
levels of IgG secretion in tonsillar B-cells activated in vitro. Overall, our data suggest that the SYK-Mcl-
1 pathway may provide new opportunities for the treatment and prevention of AMR. 
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Résumé : L'insuffisance rénale est un problème majeur de santé publique et la transplantation rénale 
est l’option thérapeutique principale, mais elle comporte le risque de rejet d'organe. Les cellules B jouent 
un rôle important dans le rejet médié par les anticorps (AMR). Au cours de l'AMR chronique, les 
structures lymphoïdes tertiaires, semblables aux centres germinatifs (GC), apparaissent dans l'organe 
rejeté, associées à la production des plasmocytes et des lymphocytes B mémoires spécifiques du donneur. 
Ces populations de lymphocyte B sont souvent mal contrôlées par les traitements actuels. La myeloid 
cell leukemia 1 (Mcl-1), un membre anti-apoptotique de la famille de B-cell lymphoma 2 (Bcl-2), est 
essentiel pour maintenir l’organisation de GC et de la différenciation des cellules B. Nous rapportons ici 
l'infiltration de cellules B exprimant Mcl-1 dans le rein de patients atteints d'AMR chronique, comme 
cela a été observé pour les cellules (pré) GC. Suite à l’abrogation de la signalisation du récepteur des 
cellules B (BCR), par l'inhibition de la spleen tyrosine kinase (SYK) nous avons observé une diminution 
de la viabilité des cellules GC, par l'intermédiaire d'une régulation de Mcl-1. La régulation négative de 
Mcl-1 est coordonnée au niveau de la transcription, potentiellement par l'intermédiaire du transducteur 
de signal et de l'activateur de la transcription 3 (STAT3), comme cela a été observé par (1) une 
translocation altérée de STAT3 dans le noyau suivant l'inhibition de SYK, et (2) les niveaux inférieurs 
de transcription de Mcl-1. Par ailleurs, la surexpression de Mcl-1 inhibe l'apoptose après l'inhibition du 
SYK. Des études avec des cellules B primaires, issues d'amygdales, ont confirmé que l'inhibition de SYK 
a diminué la survie cellulaire. Nous avons également constaté que l'inhibition du SYK a diminué les 
niveaux de protéines Mcl-1 dans les cellules B primaire, et que l’activation de ces cellules a été inhibée, 
tel que déterminé par l'expression de CD80 et des taux inférieurs de sécrétion d'IgG dans les cellules B 
primaires activées in vitro. Nos travaux suggèrent que la voie SYK-Mcl-1 peut offrir de nouvelles 
opportunités pour le traitement et la prévention de l'AMR. 


