
HAL Id: tel-02398765
https://theses.hal.science/tel-02398765

Submitted on 8 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A vision system based real-time SLAM applications
Dai-Duong Nguyen

To cite this version:
Dai-Duong Nguyen. A vision system based real-time SLAM applications. Hardware Architecture
[cs.AR]. Université Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS518�. �tel-02398765�

https://theses.hal.science/tel-02398765
https://hal.archives-ouvertes.fr

Composition du jury:

M. Roland CHAPUIS
Professeur, Institut Pascal - Université Clermont Auvergne Président du jury

M. Michel DEVY
Directeur de recherche, LAAS-CNRS Toulouse Rapporteur

M. Jean-François NEZAN
Professeur, INSA de Rennes Rapporteur

Mme Anne VERROUST-BLONDET
Chargée de recherche, INRIA Paris Examinatrice

M. Samir BOUAZIZ
Professeur, SATIE - Université Paris-Sud Examinateur

M. Sergio RODRIGUEZ
Maître de conférences, SATIE - Université Paris-Sud Examinateur

M. Abdelhafid ELOUARDI
Maître de conférences - HDR, SATIE - Université Paris-Sud Directeur de thèse

Thèse de doctorat de l’Université Paris-Saclay

préparée à l’Université Paris-Sud

Laboratoire des Systèmes et Applications des Technologies de
l’Information et de l’Energie

Specialité de doctorat : Robotique

Thèse présentée et soutenue à Gif-sur-Yvette
le 07/12/2018, par

M. Dai-Duong NGUYEN

A VISION SYSTEM
BASED REAL-TIME SLAM APPLICATIONS

NNT: 2018SACLS518

École doctorale no580
Sciences et Technologies de l'Information et de la Communication (STIC)

A Vision System based real-time SLAM applications

December 2018

Abstract

SLAM (Simultaneous Localization And Mapping) has an important role in several ap-

plications such as autonomous robots, smart vehicles, unmanned aerial vehicles (UAVs)

and others. Nowadays, real-time vision based SLAM applications becomes a subject of

widespread interests in many researches. One of the solutions to solve the computational

complexity of image processing algorithms, dedicated to SLAM applications, is to per-

form high or/and low level processing on co-processors in order to build a System on

Chip. Heterogeneous architectures have demonstrated their ability to become potential

candidates for a system on chip in a hardware software co-design approach. The aim of

this thesis is to propose a vision system implementing a SLAM algorithm on a hetero-

geneous architecture (CPU-GPU or CPU-FPGA). The study will allow verifying if these

types of heterogeneous architectures are advantageous, what elementary functions and/or

operators should be added on chip and how to integrate image-processing and the SLAM

Kernel on a heterogeneous architecture (i. e. How to map the vision SLAM on a System

on Chip).

There are two parts in a visual SLAM system: Front-end (feature extraction, image

processing) and Back-end (SLAM kernel). During this thesis, we studied several features

detection and description algorithms for the Front-end part. We have developed our own

algorithm denoted as HOOFR (Hessian ORB Overlapped FREAK) extractor which has

a better compromise between precision and processing times compared to those of the

state of the art. This algorithm is based on the modification of the ORB (Oriented FAST

and rotated BRIEF) detector and the bio-inspired descriptor: FREAK (Fast Retina Key-

point). The improvements were validated using well-known real datasets. Consequently,

we propose the HOOFR-SLAM Stereo algorithm for the Back-end part. This algorithm

ii

uses images acquired by a stereo camera to perform simultaneous localization and map-

ping. The HOOFR SLAM performances were evaluated on different datasets (KITTI,

New-College , Malaga, MRT, St-Lucia, ...).

Afterward, to reach a real-time system, we studied the algorithmic complexity of

HOOFR SLAM as well as the current hardware architectures dedicated for embedded

systems. We used a methodology based on the algorithm complexity and functional

blocks partitioning. The processing time of each block is analyzed taking into account

the constraints of the targeted architectures. We achieved an implementation of HOOFR

SLAM on a massively parallel architecture based on CPU-GPU. The performances were

evaluated on a powerful workstation and on architectures based embedded systems. In

this study, we propose a system-level architecture and a design methodology to integrate

a vision SLAM algorithm on a SoC. This system will highlight a compromise between

versatility, parallelism, processing speed and localization results. A comparison related

to conventional systems will be performed to evaluate the defined system architecture.

In order to reduce the energy consumption, we have studied the implementation of the

Front-end part (image processing) on an FPGA based SoC system. The SLAM kernel is

intended to run on a CPU processor. We proposed a parallelized architecture using HLS

(High-level synthesis) method and OpenCL language programming. We validated our

architecture for an Altera Arria 10 SoC. A comparison with systems in the state-of-the-

art showed that the designed architecture presents better performances and a compromise

between power consumption and processing times.

iii

Résumé

SLAM (localisation et cartographie simultanées) joue un rôle important dans plusieurs ap-

plications telles que les robots autonomes, les véhicules intelligents, les véhicules aériens

sans pilote (UAV) et autres. De nos jours, les applications SLAM basées sur la vi-

sion en temps réel deviennent un sujet d’intérêt général dans de nombreuses recherches.

L’une des solutions pour résoudre la complexité de calcul des algorithmes de traitement

d’image, dédiés aux applications SLAM, consiste à effectuer un traitement de haut ou

de bas niveau sur les coprocesseurs afin de créer un système sur puce. Les architectures

hétérogènes ont démontré leur capacité à devenir des candidats potentiels pour un sys-

tème sur puce dans une approche de co-conception de logiciels matériels. L’objectif de

cette thèse est de proposer un système de vision implémentant un algorithme SLAM sur

une architecture hétérogène (CPU-GPU ou CPU-FPGA). L’étude permettra d’évaluer ce

type d’architectures et contribuer à répondre aux questions relatives à la définition des

fonctions et/ou opérateurs élémentaires qui devraient être implantés et comment intégrer

des algorithmes de traitement de données tout en prenant en considération l’architecture

cible (dans un contexte d’adéquation algorithme architecture).

Il y a deux parties dans un système SLAM visuel : Front-end (extraction des points

d’intéret) et Back-end (coeur de SLAM). Au cours de la thèse, concernant la partie Front-

end, nous avons étudié plusieurs algorithmes de détection et description des primitives

dans l’image. Nous avons développé notre propre algorithme intitulé HOOFR (Hessian

ORB Overlapped FREAK) qui possède une meilleure performance par rapport à ceux de

l’état de l’art. Cet algorithme est basé sur la modification du détecteur ORB et du descrip-

teur bio-inspiré FREAK. Les résultats de l’amélioration ont été validés en utilisant des

jeux de données réel connus. Ensuite, nous avons proposé l’algorithme HOOFR-SLAM

Stereo pour la partie Back-end. Cette algorithme utilise les images acquises par une paire

iv

de caméras pour réaliser la localisation et cartographie simultanées. La validation a été

faite sur plusieurs jeux de données (KITTI, New_College, Malaga, MRT, St_lucia, . . .).

Par la suite, pour atteindre un système temps réel, nous avons étudié la complexité

algorithmique de HOOFR SLAM ainsi que les architectures matérielles actuelles dédiées

aux systèmes embarqués. Nous avons utilisé une méthodologie basée sur la complexité

de l’algorithme et le partitionnement des blocs fonctionnels. Le temps de traitement de

chaque bloc est analysé en tenant compte des contraintes des architectures ciblées. Nous

avons réalisé une implémentation de HOOFR SLAM sur une architecture massivement

parallèle basée sur CPU-GPU. Les performances ont été évaluées sur un poste de tra-

vail puissant et sur des systèmes embarqués basés sur des architectures. Dans cette étude,

nous proposons une architecture au niveau du système et une méthodologie de conception

pour intégrer un algorithme de vision SLAM sur un SoC. Ce système mettra en évidence

un compromis entre polyvalence, parallélisme, vitesse de traitement et résultats de local-

isation. Une comparaison avec les systèmes conventionnels sera effectuée pour évaluer

l’architecture du système définie.

Vue de la consommation d’énergie, nous avons étudié l’implémentation la partie

Front-end sur l’architecture configurable type soc-FPGA. Le SLAM kernel est destiné à

être exécuté sur un processeur. Nous avons proposé une architecture par la méthode HLS

(High-level synthesis) en utilisant langage OpenCL. Nous avons validé notre architecture

sur la carte Altera Arria 10 soc. Une comparaison avec les systèmes les plus récents mon-

tre que l’architecture conçue présente de meilleures performances et un compromis entre

la consommation d’énergie et les temps de traitement.

v

Publications

• Journal:

1. Dai Duong NGUYEN, Abdelhafid ELOUARDI, Sergio RODRIGUEZ and Samir

BOUAZIZ, “HOOFR SLAM System: an Embedded Vision SLAM Algorithm and

its Hardware-Software Mapping Based Intelligent Vehicles Applications”. IEEE

Transaction on Intelligent Transportation Systems (IEEE ITS), 2018.

• Conferences:

1. Dai-Duong Nguyen, Abdelhafid Elouardi, Emanuel Aldea, Samir Bouaziz,

"HOOFR: An Enhanced Bio-Inspired Feature Extractor". The 23rd International

Conference on Pattern Recognition, ICPR 2016.

2. Dai Duong Nguyen, Abdelhafid Elouardi and Samir Bouaziz, "Enhanced Bio-

Inspired Feature Extraction for Embedded Application". The 14th IEEE Interna-

tional Conference on Control, Automation, Robotics and Vision, ICARCV 2016.

3. Dai Duong Nguyen, Mohamed Abouzahir, Abdelhafid Elouardi, Bruno Larnaudie

and Samir Bouaziz, "GPU Accelerated Robust-Laser based Fast Simultaneous Lo-

calization and Mapping". The 16th IEEE International Conference on Scalable

Computing and Communications, SCALCOM 2016.

vi

Acknowledgement

First and foremost, I would like to thank Pr. Roland CHAPUIS for being the chairman

of my thesis jury and for his role as an examiner. I also want to thank Pr. Michel DEVY

and Pr. Jean-François NEZAN for their work as reviewers, and Mrs Anne VERROUST-

BLONDET for her role as an examier in the jury.

I want to thank especially my PhD supervisor Mr. Abdelhafid ELOUARDI who fol-

lowed me throughout these three years and to have framed, guided, directed, helped and

supported me during the whole of my thesis. I thank the MOSS Digiteo Labs group of

the SATIE laboratory, with the leader Mr. Roger Reynaud, for allowing me to to carry out

my PhD work within the group and for the pleasant work environment that they offered

me throughout these three years. My sincere thanks go to the entire embedded systems

team of MOSS Digiteo Labs for the warm welcome that I received and to all the people

with whom I shared my knowledge and my passion for robotics.

I would also like to thank Mr Samir BOUAZIZ, Mr Emanuel ALDEA and Mr Ser-

gio RODRGUEZ for their useful advices and discussions. I’m grateful to the Paris Sud

University, Paris Saclay, to have me granted funding during these three years of thesis. I

will be particularly grateful for this generous contribution that has given me a breath to

continue my thesis work.

Finally, I want to thank my lovely wife and my lovely son who have always supported

and encouraged me throughout these years of schooling and my parents without whom I

will not have realized my education. I will be eternally grateful to you for encouraging

me in difficult times.

vii

Contents

Abstract ii

Résumé iv

Publications vi

Acknowledgement vii

Introduction 1

1 Visual SLAM Systems 7

1.1 Visual SLAM . 7

1.2 Visual SLAM system formalization . 9

1.2.1 Image-Processing (front-end task) 10

1.2.2 SLAM-core (back-end task) . 10

1.3 Hardware systems based SLAM applications 12

1.3.1 Speeding up processing with CPU-GPU architectures 12

1.3.2 CPU-FPGA architectures based systems design 14

1.4 Conclusion . 15

2 Evaluation Methodology 16

2.1 Methodology . 16

2.1.1 Algorithm criteria . 16

2.1.2 Algorithm-Architecture mapping 16

2.1.3 Programming techniques . 18

2.1.3.1 CUDA programming 18

viii

2.1.3.2 OpenCL programming 18

2.2 Evaluation tools . 19

2.2.1 Datasets based algorithm evaluation 19

2.2.1.1 KITTI dataset . 19

2.2.1.2 Oxford RobotCar dataset 20

2.2.1.3 Malaga dataset . 21

2.2.1.4 MRT dataset . 22

2.2.1.5 St Lucia dataset . 22

2.2.1.6 New College dataset 23

2.2.2 Platforms based algorithm implementation 23

2.2.2.1 Work station PC . 23

2.2.2.2 Nvidia Jetson Tegra X1 24

2.2.2.3 Altera Arria 10 SoC 25

2.3 Conclusion . 26

3 HOOFR: a bio-inspired feature extractor 27

3.1 Overview . 27

3.2 FAST-9 detection . 29

3.3 Hessian filtering . 30

3.4 Overlapped FREAK bio-inspired description 31

3.4.1 Description sampling pattern . 32

3.4.2 Keypoint orientation in HOOFR 33

3.4.3 HOOFR Descriptor . 34

3.5 HOOFR performance evaluation . 35

3.5.1 HOOFR detector repeatability 37

3.5.2 HOOFR binary descriptor comparison 38

3.5.3 Overall evaluation of HOOFR extraction 39

3.5.4 Timings . 41

3.5.5 HOOFR features validation in object tracking application 42

3.5.5.1 Multi-objects tracking 43

3.5.5.2 Embedded objects tracking in video 44

ix

3.6 Conclusion . 45

4 HOOFR Stereo SLAM 46

4.1 Related Works . 46

4.2 Algorithm description . 48

4.3 HOOFR features . 50

4.3.1 Bucketing feature detection . 50

4.3.2 Binary descriptor for place recognition 51

4.4 Mapping . 52

4.4.1 Features matching . 52

4.4.2 Relative Pose Computation . 53

4.4.3 Optimized pose extraction . 57

4.5 Loop detection . 57

4.5.1 Place recognition using FABMAP 2.0 and binary word 57

4.5.2 Map and Key-frame set . 58

4.5.3 Frame Checking . 59

4.5.4 Features matching . 60

4.5.5 Relative pose estimation . 61

4.6 Map Processing . 61

4.7 Evaluation results with experiment datasets 63

4.7.1 Stereo image rectification . 63

4.7.2 Parameters . 64

4.7.3 Evaluation with KITTI dataset 65

4.7.4 Evaluation with Oxford dataset 67

4.7.5 Evaluation with MALAGA dataset 68

4.7.6 Evaluation with MRT and St-Lucia datasets 69

4.7.7 Evaluation with NewCollege dataset 70

4.8 Conclusion . 71

5 Embedding HOOFR SLAM on a CPU-GPU architecture 73

5.1 Overview . 74

5.2 GPU programming . 75

x

5.2.1 GPU thread organization . 75

5.2.2 GPU memory hierarchy . 76

5.3 HOOFR SLAM mapping on a CPU-GPU architecture 78

5.3.1 OpenMP Implementation of HOOFR Extraction 79

5.3.2 GPU implementation of Features Matching 82

5.4 Performances evaluation . 86

5.4.1 Timing evaluation . 87

5.5 Conclusion . 91

6 Towards FPGA based embedded SoC architectures 92

6.1 Motivation . 92

6.2 Related works and contribution . 94

6.3 OpenCL programming advantages on FPGA 95

6.4 HOOFR extractor partitioning an a CPU-FPGA architecture 98

6.5 HOOFR architecture design . 101

6.5.1 FAST kernel . 101

6.5.2 HESSIAN_COMPUTE kernel 102

6.5.3 Module duplication . 104

6.5.4 FILTERING kernel . 105

6.5.5 DESCRIPTION kernel . 107

6.6 Implementation and Evaluation . 108

6.6.1 Resource Usage . 108

6.6.2 Timings . 109

6.6.3 Perforances comparison: FPGA vs GPU implementations 111

6.7 Conclusion . 112

Conclusion and Future Works 113

Appendix 116

Bibliography 121

xi

List of Tables

3.1 Detection time (milliseconds) of different detectors (1000 relevant key-

points returned) . 41

3.2 Description time (milliseconds) of different descriptors for 1000 key-

points . 41

3.3 Extraction time (milliseconds) of different algorithms (detection + des-

cription) for 1000 relevant keypoints returned 42

3.4 Tracking time (ms) on ODROID-XU4 for 200 frames 45

4.1 Possibilities and decision of “Map Processing” block 62

4.2 Algorithm parameters . 64

4.3 Root Mean Square Error (RMSE) in KITTI dataset of stereo HOOFR

SLAM calculated for X and Z axis . 67

5.1 OpenCL vs CUDA Terminology . 78

5.2 Architecture specifications (JETSON Tegra X1 embedded system vs

Powerful Intel PC) . 86

5.3 Mean of execution time (milliseconds) using KITTI dataset for each func-

tional block in HOOFR SLAM on the Intel powerful PC and the TX1 . . 87

5.5 KITTI-07 processing time on Intel PC and Nvidia TX1 with different

values of n f rames . 88

5.4 Mean per-frame execution time comparison on KITTI 88

6.1 FPGA resource usage . 108

6.2 Timimg performance (FAST_threshold = 12, POINTS_PER_CELL = 15) 110

6.3 FPGA - GPU comparison . 111

xii

List of Figures

1 SLAM application in different areas . 2

1.1 Visual SLAM system . 10

2.1 Algorithm-Architecture research methodology 17

2.2 Experimental Platforms . 20

2.3 KITTI scenes . 21

2.4 Oxford scenes . 21

2.5 Malaga scenes . 22

2.6 MRT scenes . 22

2.7 St_Lucia scenes . 23

2.8 New College scenes . 23

2.9 Jetson TX1 platform . 24

2.10 Arria 10 SoC . 25

3.1 FAST Bresenham circle . 29

3.2 Square filters for calculating the Hessian matrix in HOOFR 31

3.3 Distribution of ganglion cells over the retina. There are four areas of the

density: (a) foveal, (b) fovea, (c) parafoveal and (d) perifoveal 32

3.4 Sampling pattern in FREAK (a) and in HOOFR(b) 32

3.5 Illustration of selected pairs to estimate the orientation in FREAK (a) and

HOOFR(b) . 33

3.6 Illustration of 256 selected pairs used to construct the descriptor in

HOOFR . 35

3.7 Image sequences used for evaluation . 36

xiii

3.8 Repeatability of detectors evaluated in image datasets. 37

3.9 Recall-precision for the evaluation of binary descriptors 38

3.10 Evaluation of matching rate in image datasets 40

3.11 Multi-objects tracking . 43

3.12 Multi-objects tracking . 43

3.13 Tracking results of the postcard in a video sequence 44

4.1 Visual SLAM overview . 47

4.2 Frame-to-frame estimation . 49

4.3 Optimized current pose estimation . 49

4.4 Functional blocks of the algorithm flow at each input stereo frame 50

4.5 Loop correction . 62

4.6 General(left) and Simple(right) stereo configuration 64

4.7 High way environment . 66

4.8 Localization results of ORB SLAM and HOOFR SLAM evaluated with

KITTI dataset . 66

4.9 Localization results of HOOFR SLAM on static (left) and dynamic (right)

sequences of Oxford dataset. 68

4.10 Localization result using Malaga sequences: GPS (blue), ORB-SLAM

(red) and HOOFR-SLAM (green) . 68

4.11 HOOFR SLAM reconstruction using St-Lucia dataset 69

4.12 HOOFR SLAM reconstruction using MRT dataset 70

4.13 Reconstruction on NewCollege dataset 71

5.1 CPU-GPU embedded platforms . 74

5.2 GPU memory model. Registers and private memory are unique to a work-

item, local memory is unique to a work-group. Global, constant, and

texture memories exist across all work-groups 77

5.3 HOOFR algorithm flow . 79

5.4 Matching strategy . 81

5.5 CPU-GPU Mapping . 86

xiv

5.6 KITTI-07 per-frame processing time on Intel PC using different values of

n f rames . 89

5.7 KITTI-07 per-frame processing time on TX1 (GPU implementation) us-

ing different values of n f rames . 90

5.8 KITTI-07 localization results using different values of n f rames 90

6.1 OpenCL based FPGA channel benefits 97

6.2 Design flow . 98

6.3 HOOFR extractor architecture . 99

6.4 CPU-FPGA execution planning . 100

6.5 Pipeline kernel processing . 101

6.6 Kernels duplication schema . 105

6.7 Acceleration factor evaluated for an Arria 10 SoC (Right axis: execution

time in ms, Left axis: acceleration factor) 110

6.8 Instrumented vehicle of SATIE laboratory 115

6.9 FPGA/GPU-CPU architecture . 115

xv

Introduction

Simultaneous Localization and Mapping

There are three main areas in the issue of autonomous navigation of mobile robots: lo-

calization, reconstruction and path planning [1]. Localization is the determination of the

current robot pose in an environment. Reconstruction integrates the partial observations

of surrounding objects into a single consistent model and path planning determines an

appropriate path in the map to navigate through the environment. In the literature, re-

construction is also called as mapping. At the beginning, localization and mapping were

studied independently, however researchers recognized then that they are dependent. It

means that, having a good localization in an environment requires a correct map, but in

order to construct a correct map it is necessary to be properly localized when elements

are added to the map. This problem is currently known as Simultaneous Localization and

Mapping (SLAM).

To build a map from the environment, the entity must be equipped by sensors that

allow it to perceive, observe and achieve the measurements of the elements from the

surrounding scenes. These sensors are classified into two kinds: exteroceptive and pro-

prioceptive. Exteroceptive sensors are the sensors which allow the entity to obtain the in-

formation from environment such as: range lasers [2, 3, 4], sonar [5], cameras [6, 7, 8, 9]

or global positioning systems (GPS) [10]. Each of these sensors has its own advantages

and draw-backs. For the first three aforementioned sensors, only local views of the envi-

ronment can be observed. Laser and sonar allow precise and very dense information of

the environment structure. Nevertheless, the problem is that they are not useful in highly

cluttered environments or for recognizing objects. They are also expensive, heavy and

consist of large pieces of equipment, making their use difficult for humanoids or airborne

1

Figure 1: SLAM application in different areas

robots. Cameras are easy for installation and offer a flexibility to switch between differ-

ent applications but they are noisy and require a careful calibration. For a GPS sensor,

it does not work well in narrow streets, under water and occasionally is not available for

indoor environments. On the other hand, a proprioceptive sensor allows the entity to ob-

tain measurements of itself like velocity, position change and acceleration. Some widely

used proprioceptive sensors are: encoders, accelerometers and gyroscopes. These allow

computing an incremental estimate of the entity’s movements based on means of a dead-

reckoning navigation method (deduced-reckoning). They are however not sufficient to

have an accurate estimation of the entity’s position all the time due to their inherent noise

and errors are cumulative.

SLAM systems are employed in several applications such as: innovation in unmanned

ground vehicles navigation [10], underwater exploration [11, 12], high risk or difficult

navigation environments [13], visual surveillance systems [14], unmanned aerial vehicles

(UAVs) [15], planets exploration [16] as shown in figure 1. Besides, terrestrial map con-

struction [17], augmented reality applications [18, 19] or medicine [20] can also be named

as examples.

Motivation

Our work is related to autonomous vehicles which is a current trend in many researches.

An autonomous vehicle (also known as a driverless car and a self-driving car) is a vehicle

that is capable of sensing its environment and navigating without human input. In a

general manner, localizing a vehicle is an essential functionality to perform any other

perception or planification task. Predicting the evolution of others obstacles on the road

2

and choosing which maneuver is the most appropriate require to know exactly where the

ego-vehicle is located and how the surrounding environment look like. The map offers a

first level of perception that is needed in order to make an appropriate decision.

The SLAM framework provides an answer to this problematic. It is considered as

one of the primaries towards a truly autonomous robot, and as such is an essential aspect

of self-driving cars. However, many issues are still preventing the use of SLAM algo-

rithms with vehicles that should be able to drive for hundreds of kilometers in different

conditions. In recent years, visual SLAM has reached a significant level of maturity with

a number of robust solutions being reported in the literature. Although these techniques

permit the construction of an accurate map of an environment and are argued as a real-

time performance, the fact that they are real-time in a small scale. When the environment

is larger, their execution time becomes a severe problem. This issue has motivated the

development of a lighter algorithm which could keep a low complexity over time.

There are many kinds of sensors which could be integrated in vehicles for solving

SLAM problem. The usually used tool for localization is a GPS. However, a GPS cannot

be used indoors. There are many indoor localization tools including Lidar, UWB, WiFi

AP , among which using cameras to localization is the most flexible and low cost one.

Moreover, cameras are ubiquitous on mobile phones that people carry with every day.

Due to this reason, SLAM based camera (visual slam) provides a great motivation for

researchers.

Furthermore, with heterogeneous architecture becoming more and more common

place in consumer electronic devices, initially only in desktop PCs but more recently

in embedded platforms such as phones and tablets, we can expect in the coming years

that sufficient highly parallel processing power will be available in all kinds of platforms.

There is a well matched coupling between data processing needs of visual SLAM and

device processing capabilities. However, a heterogeneous architecture brings with it a

need to adapt and study the algorithm partitioning that can specifically exploit parallel

processing methods.

3

Objectives and Contribution

The main objective of this thesis is to propose of a visual SLAM algorithm and the study

of the portability of this algorithm on heterogeneous architectures. The system design

requires phases of proposing and validating the functionality of the vSLAM algorithm

while the study of the portability includes the analysis of the algorithm complexity and

the architecture constraints in a software-hardware mapping approach. This mapping is

aimed to reduce the execution time and hence to have real-time performances.

The first contribution consists in proposing an algorithm called HOOFR extractor

which aims to address the front-end part of a visual SLAM system for detecting, de-

scribing and matching image features. Our detector is the combination of ORB with a

Hessian score, while our descriptor employs a human retina based descriptor consisting

of a FREAK detector version with an enhanced overlapping. Based on experiments, our

proposal offers a better compromise between speed and matching quality against others

state of the art algorithms.

The second contribution is a new method for back-end part of a stereo visual SLAM

system. The proposed algorithm uses key-points detected by HOOFR extractor so that it is

denoted as HOOFR SLAM. Our novel approach employs a "Weighted Mean" of multiple

neighbor poses. It provides a localization estimation after computing the camera poses

(6-DOF rigid transformation) from the current image frame to previous neighbor frames.

Taking advantage of camera motion, we conjointly incorporate two types of stereo modes:

"Static Stereo" mode (SS) through the fixed-baseline of left-right cameras setup along

with the "Temporal Multi-view Stereo" mode (TMS). Moreover, instead of computing

beforehand the disparity of SS mode for all key-points set, the disparity map in scale

estimation step is limited to the inliers of TMS mode so as to reduce the computational

cost.

The third contribution of our work is presenting a capability of implementing HOOFR

SLAM on CPU-GPU heterogeneous architectures where a powerful PC and an embedded

platforms (Nvidia Tegra X1) are considered. Moreover, we also present our researches on

emdedding the front-end part on a CPU-FPGA embedded SoC architecture. Our motiva-

tion is that FPGA devices can provide a better compromise between processing speed and

4

energy consumption. Moreover, there is a continuously widening performance gap favor-

ing FPGAs from one generation to the next, especially with regards to high performance

computing or data center applications. The enhanced performance combined with a supe-

rior power efficiency results in an increased performance-to-power-efficiency of FPGAs

in comparison to both GPUs and CPUs.

Thesis Organization

The thesis is organized into several chapters as following:

• Chapter 1 provides an overview of the visual SLAM problem and an introduction

to the formalization of visual SLAM system. A section will provide a discussion

on heterogeneous architectures used to implement SLAM applications.

• Chapter 2 presents our methodology to implement and evaluate a vision SLAM

system. We presents several real datasets and different heterogeneous architectures

used in this thesis for performances evaluation.

• Chapter 3 presents our proposed method named Hessian ORB - Overlapped

FREAK (HOOFR) for detecting, describing and matching image features. In prac-

tice, feature extractor is the very first part in a visual SLAM system. A suitable

feature extractor is indispensable to provide a high localization precision. This

chapter will introduce some well-known algorithms compared to our proposal with

an enhanced matching quality.

• Chapter 4 presents the HOOFR SLAM algorithm and the validation of its function-

ality on several well-known datasets. This method is denoted as HOOFR SLAM

since it uses features detected by HOOFR extractor for both tracking and loop clos-

ing. HOOFR SLAM takes images from a stereo camera for each input frame. Com-

pared to other SLAM algorithms in the literature, HOOFR SLAM is proposed with

an intention to have a lower complexity, lower resources requirement and suitable

to be implemented on embedded architectures.

5

• Chapter 5 discusses a hardware software mapping of the HOOFR SLAM. To this

end, a heterogeneous CPU-GPU architecture based vision system is considered. A

thorough and extensive experimental evaluation of our algorithm implemented on

an automotive architecture (the NVIDIA Tegra TX1 system) is studied and ana-

lyzed.

• Chapter 6 discusses the design of front-end part (HOOFR extractor) on a FPGA-

based heterogeneous architecture using High Level Synthesis method. It is the first

step of embedding the whole SLAM system on a SoC architecture based on FPGA.

The motivation of this approach is to have a system with higher efficiency in terms

of power consumption.

Finally, we summarize the work done in this thesis and we give comments on possible

avenues for future researches.

6

Chapter 1

Visual SLAM Systems

1.1 Visual SLAM

In recent years, people focus on the tendency of using camera as the external perception

sensor to solve the problem of SLAM [21, 22, 19, 23, 24, 25, 26, 27]. The main reason

for this trend is related to the capability for a system based on cameras to obtain range in-

formation, and also retrieving the environment’s appearance, color and texture, providing

the possibility of integrating other high-level tasks like people detection or object recog-

nition. Furthermore, cameras are becoming cheaper and consuming less energy. When

a SLAM application employed a camera as the only exteroceptive sensor, it is called a

visual SLAM application. The terms vision-based SLAM [6, 7] or vSLAM [28] are also

used.

However, people can integrate information from proprioceptive sensors into visual

SLAM systems in order to increase accuracy and robustness. This approach could be

found in Visual-Inertial SLAM proposed by Jones [29] or Visual-Odometer SLAM used

in FAST-SLAM algorithm [30]. In fact, when camera is used as the only system of per-

ception (without making use of information extracted from the robot odometry or inertial

sensors), it can be denoted as vision-only SLAM [22, 21] or camera-only SLAM [31].

There are many challenges for a visual SLAM system working in a real-world condition

such as: dynamic environments, environments with too many or very few salient features,

large scale environments, erratic movements of the camera and partial or total occlusions

7

CHAPTER 1. VISUAL SLAM SYSTEMS

of the sensor. An essential purpose of a successful visual SLAM system is the ability to

operate correctly despite these difficulties.

Considering the way of using camera, we have two approaches: multi-camera and

mono-camera:

• Multi-camera consists in using binocular, trinocular or multiple cameras with their

fields of vision partially overlapped. It offers the advantage of being able to eas-

ily and accurately calculate the real 3D positions of the landmarks contained in

the scene, by means of triangulation [32]. This information is of great utility in

the visual SLAM problem. The first works on visual navigation were based on a

binocular stereo configuration [33, 34]. The works of Konolige and Agrawal [35],

Konolige et al. [36], Mei et al. [37] represent also the most current and effective

binocular stereo SLAM systems. However, in many cases it is difficult to have a

device with binocular or trinocular stereo cameras due to their high costs. An alter-

native is to use a pair of monocular cameras (for example webcams), which leads

to consider different aspects such as: the camera synchronization through the use

of hardware or software, the different responses of each CCD sensor to color and

luminance, and the mechanical alignment according to the geometry scheme cho-

sen (parallel or convergent axes). Some works also make use of multi-camera rigs

with or without overlapping between the views [38, 39] and cameras with special

lens such as wide-angle [40] or omnidirectional [41] with the goal of increasing

visual range and thus decrease, to some extent, the cumulative error of pose esti-

mation. Recently, RGB-D (color images and depth maps) sensors have been used

to map indoor environments [42], proving to be a promising alternative for SLAM

applications.

• While multi-camera approach is the traditional method, the idea of utilizing mono-

camera [8, 25] recently has become popular due to the less calibration complexity.

This is probably also because it is now easier to access a single camera than a

stereo pair, through cell phones, personal digital assistants or personal computers.

This monocular approach offers a very simple, flexible and economic solution in

terms of hardware and processing times. However, when localization and mapping

8

CHAPTER 1. VISUAL SLAM SYSTEMS

is being done with a single camera, the map will suffer from a scale ambiguity

problem [43, 44]. To obtain 3D information from a single camera, two cases exist

depending on the a priori knowledge of the camera. The first is with the knowledge

of the intrinsic parameters. The environment structure and the extrinsic parameters

in this alternative are recovered with an undetermined scale-factor. Scale is only

determined if the real distance between two points in space is known. The second

is where only correspondences are known. In this latter case, the reconstruction is

made up to a projective transformation (4 ambiguous cases).

Independently of the configuration used, cameras have to be calibrated offline or online,

manually or automatically. Calibration estimates intrinsic and extrinsic parameters of the

camera, the firsts depend on the camera’s geometry (focal length and principal point),

while the others depend on the camera’s position in world-space (rotation and translation

with respect to a coordinate system). These parameters are normally estimated from a

set of images that contain multiple views of a checkerboard calibration pattern, to relate

the image’s coordinates with the real-world coordinates [45]. Many tools exist to exe-

cute the process of calibration, some of them are: the calibration functions of OpenCV

(2009) (based on the Zhang algorithm [46]), Camera Calibration Toolbox for Matlab [47],

Tsai Camera Calibration Software [48], OCamCalib Toolbox for omnidirectional cameras

[49], and Multi-Camera Self-Calibration to calibrate several cameras (at least 3) [50]. If

the camera calibration is performed off-line, then it is assumed that the intrinsic properties

of the camera will not change during the entire period of the application. This is the most

popular option, since it reduces the number of parameters calculated online. Neverthe-

less, the intrinsic camera information may change due to some environmental factors of

the environment, such as humidity or temperature. Furthermore, a robot that works in real

world conditions can be hit or damaged, which could invalidate the previously acquired

calibration [51].

1.2 Visual SLAM system formalization

A vSLAM system consists of 2 principal components as shown in the figure 1.1: Image-

processing part (front-end) and SLAM-core part (back-end).

9

CHAPTER 1. VISUAL SLAM SYSTEMS

Figure 1.1: Visual SLAM system

1.2.1 Image-Processing (front-end task)

The content of image-processing (IP) task depends on the method of the SLAM-core al-

gorithm. The actual vSLAM algorithms could be categorized into 3 approaches: feature-

based, direct, and RGB-D camera-based approach. In feature-based and RGB-D camera-

based approaches, IP is composed of detecting points of interest (features) in the input

frame, computing the descriptions and finding the correspondence between new features

and old features in the map. In contrast, the direct approach directly uses an input image

without any abstraction using handcrafted feature detectors and descriptors. In that case,

IP is the work of comparing the whole input image with synthetic view images generated

from the reconstructed map as can be seen in DTAM [52], or computing firstly the ar-

eas which have intensity gradient and then comparing with synthetic view images as in

LSD-SLAM [53].

1.2.2 SLAM-core (back-end task)

In a SLAM-core, we have 3 basic modules: Initialization, Tracking and Mapping. To

launch a vSLAM, it is necessary to define the coordinate system for camera pose estima-

tion and 3D reconstruction in an unknown environment. Hence, in the initialization phase,

the global coordinate system should first be determined, and a part of the environment is

reconstructed as an initial map in the global coordinate system. After the initialization,

tracking and mapping are performed to continuously estimate camera poses. In the track-

ing phase, the reconstructed map is tracked in the image to estimate the camera pose with

10

CHAPTER 1. VISUAL SLAM SYSTEMS

respect to the map. It should be noted that most of vSLAM algorithms assume that in-

trinsic camera parameters are calibrated beforehand so that they are known. Therefore,

a camera pose is normally equivalent to extrinsic camera parameters with translation and

rotation of the camera in the global coordinate system. In the mapping phase, the map is

expanded by computing the 3D structure of the environment where the camera observes.

Moreover, the following two additional modules are also included in SLAM-core al-

gorithms according to the purposes of applications: Relocalization and Global map op-

timization. The relocalization is required when the tracking is failed due to fast camera

motion or some kidnapped robot problems. In this case, it is necessary to find out the cam-

era pose with respect to the map again. Therefore, this process is called relocalization. If

the relocalization module is not incorporated into vSLAM systems, the systems will not

work anymore after the tracking lost and such systems are not useful in practice. There-

fore, a fast and efficient method for the relocalization have been an attractive discussion

in the literature. The other module is the global map optimization. The map generally

includes accumulative estimation error according to the distance of camera movement. In

order to have a converged map, the global map optimization is necessarily performed. In

this process, the map is refined by considering the consistency of whole map informa-

tion. When a map is revisited such that an old region is captured again after some camera

movement, reference information that represents the accumulative error from the old po-

sition to the actual position can be computed. Then, a loop constraint from the reference

information is used as a constraint to optimize the global map.

Loop closing is an indispensable technique to obtain the reference information. In the

loop closing phase, a closed loop is first searched by matching the current frame with the

previously acquired frames. If the loop is validated, it means that the camera revisited

one of previously observed scenes. In this case, the accumulative error at the loop point

occurred during camera movement can be estimated. We can note that the closed-loop

detection phase can be done by using the similar techniques as in relocalization module.

Basically, relocalization is done for recovering only a camera pose in the map while loop

detection is done for obtaining geometrically consistent map.

11

CHAPTER 1. VISUAL SLAM SYSTEMS

1.3 Hardware systems based SLAM applications

As CPU, GPU and FPGA become employed in a wide range of applications, it has been

admitted that each of these processing units (PUs) has its own features and strengths.

Modern multicore CPUs use up to a few tens of cores, which are typically out-of-order,

multi-instruction programming and support dynamic memory allocation. Moreover, CPU

cores can operate at high frequency (up to 3-4 GHz) and use large sized caches to mini-

mize the latency of memory access. In contrast, GPUs use much larger number of cores (a

dozen or hundred cores), which are in-order and share their control unit. GPU cores run

at lower frequency and smaller sized caches [54]. Thus, GPUs are suited for computing-

critical applications but not for memory-critical applications. On the other hand, a FPGA

serves to a hardware implementation of an application. A FPGA is a programmable ded-

icated processor, which is composed of programmable logic blocks and interconnect net-

work with strong parallel processing ability. Multiple threads can be executed in a differ-

ent logic and pipelined parallel processing. The most advantages of a FPGA are the very

low power consumption and the data flow pipelining, so that it is suitable for streaming

applications.

Due to the different characteristics of PUs, performing processing jointly between

CPU, GPU or FPGA is recently a popular trend to achieve high performances. The plat-

forms using this co-processors are referred as heterogeneous computing systems (HCSs).

These HCSs can provide high computing for a much wider variety of applications and

usage scenarios than using one kind of processing unit alone. Nowadays in HCSs , a

CPU is indispensable and it is used as a host while GPU and FPGA are confined to act as

accelerators.

1.3.1 Speeding up processing with CPU-GPU architectures

GPUs have been widely used in robotics applications, especially in computer vision. The

scientific community has also exploited GPUs to speed up environment reconstruction

or SLAM reconstruction algorithms in general. The proposed solutions are often het-

erogeneous where the CPU and the GPU cooperate together to execute the tasks of the

12

CHAPTER 1. VISUAL SLAM SYSTEMS

algorithm to accelerate. Michel [55] used a GPU to accelerate the tracking of 3D ob-

jects using cameras to achieve real-time performance when controlling a humanoid robot.

Zhang et al. [56] proposed a method for accelerating the particle filter (FastSLAM) on

a Nvidia GPU. The authors deported the calculation of particle weights on the GPU. Ma

et al.[57] proposed a visual-inertial SLAM system able to operate in wide environments.

They implemented the resulting algorithm on a high-end NVIDIA GPU, TITAN NVidia,

and an Intel i7 quad-CPU desktop. Persson [58] presented a stereo visual odometry sys-

tem implemented on CPU-GPU architecture. The localization accuracy was validated on

KITTI dataset. However, although high-end GPU was employed for features matching,

execution time reaches 145 ms/image which is not real-time performance for KITTI frame

rate (100 ms/image).

As for the SLAM algorithms based on graph optimization, some researches has fo-

cused on the acceleration of bundle adjustment tasks on GPU. Bundle Adjustment is

well-known in the field of vision. It consists to minimize the error between the actual

observation and the predicted measurements (reprojection) of landmarks observed by one

or more sensors. Solving this problem leads to a graph optimization problem. The bundle

adjustment is often characterized by a very large number of landmarks in order to recon-

struct mainly the map of the explored environment . To accelerate this reconstruction,

Choudhary et al. [59] proposed a heterogeneous approach to distribute the calculations

on CPU-GPU where the Hessian (information matrix) and the Schur complement are built

on the GPU. Wu et al. [60] also presented a CPU-GPU partitioning for bundle adjustment.

The authors used an iterative approach to solve the problem of least squares, namely the

PCG (Preconditioned Conjugate Gradients). Rodriguez-Losada et al. [61] have paral-

lelized an algorithm for building GPU occupation grids. The resolution of the system

is ensured by an external library. Ratter et al [62] presented a GraphSLAM algorithm

coupled to a busy grid. The authors refine the environmental map using a GPU.

Besides the classic calculators, in the last decade, the performances of GPU-based em-

bedded architectures for mobile has grown very fast. This promotes their use in computer

vision systems. Recently, researchers have focused on the optimization and performance

evaluation of vision applications on mobile architectures. Nardi et al [63] proposed the

SLAMBench. This is a framework that validates and evaluates the new implementations

13

CHAPTER 1. VISUAL SLAM SYSTEMS

of the KinectFusion (KF) algorithm [64]. KF makes it possible to reconstruct 3D scenes

by means of a camera with depth such as Microsoft’s Kinect. The SLAMBench aims to

investigate compromises in time performance, accuracy and energy consumption. Archi-

tectures used by the authors include ODROID (XU3), Arndale and Tegra K1. The authors

point out that the TK1 has achieved real-time performance with 22 frames/s. Zia et al [65]

have extended the SLAMBench by adding an LSD-SLAM (Large-Scale Direct Monocu-

lar SLAM) algorithm [53]. In the same context, Backes et al [66] presented several op-

timizations concerning the implementation of KinectFusion on embedded architectures.

Evaluations were done on ODROID (XU3) and Arndale.

1.3.2 CPU-FPGA architectures based systems design

The CPU-FPGA architecture has also drawn the attention of the scientific community to

accelerate and design embedded SLAM systems. In most cases, the FPGA is used to

speed up detection, features matching or matrix calculations. Bonato et al [67] designed a

SLAM system based on EKF-SLAM using a Stratix (EP1S10F780C6) FPGA. The SLAM

algorithm is run on a NIOS II instantiated on the FPGA. The authors announce a system

capable of processing 30 frames/s in color and 60 frames/s in grayscale. Mingas et al [68]

introduced the SMG-SLAM (Scan-Matching Genetic SLAM). The matching between the

beams laser provided by a laser sensor (Laser Range Finder) is performed using a genetic

algorithm. It was implanted on an FPGA. Cruz et al [69] implemented the update phase

of EKF-SLAM on an FPGA. Tertei et al [70] presented a 3D visual SLAM system based

on EKF-SLAM. The algorithm is fully implemented on a Zynq-7020 (ARM + FPGA)

platform. To accelerate the processing, the authors deport the matrix calculation on the

FPGA. The authors claim that their system is able to maintain and correct, at 30Hz, a

map of 20 landmarks with an AHP (Anchored Homogeneous Point) parameterization.

Gu et al [71] proposed a stereo camera based visual odometry system. The algorithm is

implemented on a Stratix III EP3SL340 FPGA using a NIOS II as the master processor.

The FPGA is primarily responsible for matrix calculation. The processing frequency

of the system reaches 31 frames/s with a map of 30.000 landmarks. Nikolic et al [72]

have proposed a visual odometry system for MAVs (Micro Air Vehicle). The system

embeds an inertial unit with four cameras interfaced to a Zynq-7020 (ARM + FPGA)

14

CHAPTER 1. VISUAL SLAM SYSTEMS

platform. To improve the temporal performance, the image processing (e.g., the detection

of points of interest) is provided by the FPGA. On the other hand, Sileshi et al. [73]

have performed work to accelerate the particle filter SLAM (FastSLAM) based on FPGA.

In a software/hardware approach, the authors distribute the tasks of the algorithm on an

embedded processor (Microblaze) and an FPGA accelerator.

1.4 Conclusion

Visual SLAM have been widely studied in recent years thanks to many advantages of

cameras. This chapter started with an overview of different sensor systems used in visual

SLAM. Visual-only SLAM used only camera sensors for perception with two approaches:

mono-camera and multi-camera. Mono-camera approach is easy for setup and calibration

but has the issue of scale drift. Multi-camera approach can solve scale problem but has

issues of calibration and sensors synchronization. In contrast, visual-Inertial or visual-

Odometer approach employ the combination of camera with an other proprioceptive sen-

sor in order to have more information to increase accuracy and robustness. Afterwards,

a formalization of visual SLAM system was presented with two main parts: front-end

(image processing) and SLAM kernel (back-end). Finally, we presented a bibliography

on hardware architectures based SLAM applications. These heterogeneous architectures

have become nowadays a basic design of embedded platforms. Hence, the implementa-

tion study using these architectures allows to attack not only real-time constraints but also

the embeddability of SLAM algorithms on mobile applications. This thesis will focus on

a proposal of a vision system based SLAM using heterogeneous architectures. The fol-

lowing chapter will present evaluation methodology including programming techniques,

datasets and material platforms used to validate our proposed system.

15

Chapter 2

Evaluation Methodology

2.1 Methodology

2.1.1 Algorithm criteria

The work of this thesis focuses on a real-time SLAM system. The software (algorithm)

and the hardware (architecture) are analyzed at the same time in order to have an accurate

and real-time system. The criteria below are respected during the development of the

SLAM algorithm:

• The SLAM algorithm must have a high localization precision.

• The memory requirement should be low so that the system could work with long

trajectories.

• The algorithm must be suitable to be parallelized on heterogeneous architectures

based embedded platforms.

• Despite the intention of working on a stereo camera sensor, the algorithm must be

easily applicable to an other sensor-combination of visual SLAM.

2.1.2 Algorithm-Architecture mapping

Despite of the fact that heterogeneous platforms have the potential to offer better compro-

mise between performance and energy, it is rather challenging to achieve this efficiency.

16

CHAPTER 2. EVALUATION METHODOLOGY

The main difficulty is the distinct characteristics of different types of hardware. In prac-

tice, a single application is often composed of widely differing computational tasks, which

can be efficiently implemented on different types of processing units. Therefore, an effec-

tive use of the heterogeneous platform is a good mapping for each part of the application

on the corresponding suitable hardware in order to minimize execution time, to maximize

the system throughput and to make use of all computing resources.

For heterogeneous computing, the principal technique is to decompose an application

into several functional blocks and match each block to the processing unit where the

execution is optimal. In this manner, scheduling and mapping are two important factors

to be considered in a heterogeneous system. The scheduling problem depends heavily

on the topology of the task and the data dependency, representing the relations among

the functional blocks. Otherwise, the mapping problem depends on the topology of the

hardware system and the chosen performance criteria.

Figure 2.1: Algorithm-Architecture research methodology

This thesis employs the research methodology shown in figure 2.1. In the first step, we

analyze the complexity, the data flow, the parallelization of the whole algorithm. Then,

the algorithm is split into forms of functional blocks. We study data dependency and

workload for each block in the second step. In the third step, we study data transfer

and memory usage to determine which blocks are suitable for CPUs and which blocks

are suitable for GPUs. Based on this study, we make a partitioning of the blocks on the

architecture. Partitioning is followed in the last step by evaluation of execution time and

17

CHAPTER 2. EVALUATION METHODOLOGY

also the consistency of the algorithm. If the performance is not good, we return to the first

step to re-study.

2.1.3 Programming techniques

2.1.3.1 CUDA programming

CUDA stands for "Compute Unified Device Architecture." It is a parallel computing plat-

form developed by NVIDIA and introduced in 2006. It enables software programs to

perform calculations using CPU-GPU heterogeneous architectures. By sharing the pro-

cessing load with the GPU (instead of only using the CPU), CUDA-enabled programs can

achieve significant increases in performance.

CUDA is one of the most widely used GPGPU (General-Purpose computation on

Graphics Processing Units) platforms. It is proprietary and only runs on NVIDIA graphics

hardware. CUDA can be used with several different programming languages. NVIDIA

provides APIs and compilers for C and C++, Fortran, and Python. The CUDA Toolkit, a

development environment for C/C++ developers, is available for many operating systems.

A CUDA program consists of a mixture of the following two parts: “the host code”

runs on CPU and “the device code” runs on GPU. NVIDIA’s CUDA nvcc compiler sep-

arates the device code from the host code during the compilation process. In this thesis,

the CUDA toolkit with C/C++ is used for GPU programming. The host code is standard

C++ code and is further compiled with C++ compilers. The device code is written using

CUDA C extended with keywords for labeling data-parallel functions, called kernels. The

device code is further compiled by nvcc.

2.1.3.2 OpenCL programming

OpenCL (Open Computing Language) is a framework for writing programs that execute

across heterogeneous platforms consisting of central processing units (CPUs) and several

types of accelerators such as: graphics processing units (GPUs), digital signal proces-

sors (DSPs), field-programmable gate arrays (FPGAs) and other processors. OpenCL is

developed by Khronos group with the motivation of offloading parallel computation to

18

CHAPTER 2. EVALUATION METHODOLOGY

accelerators in a common way, regardless of their underlying architecture (not restricted

to GPUs as in CUDA).

Similar to CUDA, an OpenCL program also consists of the host code and device code.

The programming language is based on the C99, using the Single Program Multiple Data

(SPMD) model for parallel programming. Task parallelism is supported by launching

multiple tasks as single-threaded kernels, performs parallelism on data vectors. How-

ever, there are slightly differences in memory notations and function interfaces between

OpenCL and CUDA.

Although OpenCL programs can be compiled and linked into binary objects using

conventional off-line compilation methodology, OpenCL on GPU also supports run-time

compilation enabling OpenCL programs to run natively on the GPU hardware. It allows

developers to implement rapidly OpenCL applications on various GPU hardwares without

any need for recompilation of kernel codes.

In this thesis, OpenCL is employed for GPU programming on CPU-GPU architectures

and also for FPGA high level synthesis on CPU-FPGA architectures.

2.2 Evaluation tools

2.2.1 Datasets based algorithm evaluation

We use six well-known datasets containing data from stereo camera. Among them, only

New-College dataset is recorded by a robot, other datasets are from vehicle navigation as

shown in figure 2.2.

2.2.1.1 KITTI dataset

KITTI dataset [74] was developed using the Annieway vehicle of Karlsruhe institute of

technology. The main objective is to have novel challenging real-world computer vision

benchmarks. The tasks of interest are: stereo vision, optical flow, visual odometry, 3D

objects detection and 3D tracking. For this purpose, a standard station wagon is equipped

with two high-resolution color and gray-scale video cameras. Data are captured by driving

the vehicle around the mid-size city of Karlsruhe, in rural areas and on highways. The car

19

CHAPTER 2. EVALUATION METHODOLOGY

(a) KITTI and MRT (b) Oxford (c) Malaga

(d) St_Lucia (e) New College

Figure 2.2: Experimental Platforms

speed is up to 90 km/h. Up to 15 cars and 30 pedestrians are visible per image. The KITTI

dataset for Odometry and SLAM applications consists of 22 sequences containing many

moving objects existing in the scenes. Accurate ground truth is provided by a Velodyne

laser scanner and a GPS localization system.

The cameras are mounted approximately at the level with the ground plane. The

camera images are stored to a size of 1382x512 pixels using libdc’s format 7 mode. Af-

ter rectification, the images get slightly smaller with a resolution of 1234x376 pixels as

shown in figure 2.3. The cameras are triggered at 10 frames per second by the laser scan-

ner (when facing forward) with a shutter time adjusted dynamically (maximum shutter

time: 2 ms).

2.2.1.2 Oxford RobotCar dataset

This dataset was achieved by the Oxford RobotCar platform, an autonomous Nissan

LEAF, over the period of May 2014 to December 2015 [75]. The car traversed a route

through central Oxford twice a week. This resulted in over 1000km of recorded driving

20

CHAPTER 2. EVALUATION METHODOLOGY

Figure 2.3: KITTI scenes

Figure 2.4: Oxford scenes

with almost 20 million images collected from cameras mounted onboard (1 Point Grey

Bumblebee XB3, a trinocular stereo camera and 3 Point Grey Grasshopper2 (GS2-FW-

14S5C-C) monocular camera). The car was also equipped with a NovAtel SPAN-CPT

ALIGN inertial and GPS navigation system, providing the ground truth for trajectories.

Besides the dynamic urban environments, one of the most challenges of Oxford

dataset is the presence of blur images in the scenes illustrated in figure 2.4.

2.2.1.3 Malaga dataset

Malaga dataset [76] was gathered entirely in Malaga urban scenarios with a car equipped

with several sensors, including one stereo camera (Bumblebee2) and five laser scanners.

One distinctive feature of this dataset is the existence of high-resolution stereo images

grabbed at high rate (20fps). The challenge is that images are captured with many sky

region which provides unreliable features. Moreover, there is a huge variation of image

brightness during experiments as shown in figure 2.5.

21

CHAPTER 2. EVALUATION METHODOLOGY

Figure 2.5: Malaga scenes

Figure 2.6: MRT scenes

2.2.1.4 MRT dataset

MRT [77] is also a dataset recorded by Karlsruhe institute. It preceded the KITTI dataset.

This dataset contains data of 3 sensors (3D Lidar Scanner, a calibrated Stereo Camera and

a GPS/IMU). The trajectory consists of driving a loop, the car passes both below and over

a bridge. Unlike KITTI, MRT provides only distorted images so that the rectification is

done by user. The image quality of MRT (shown in figure 2.6) is also lower than that of

KITTI.

2.2.1.5 St Lucia dataset

The UQ St Lucia Dataset [78] is a vision dataset gathered by a car driven in a 9.5km circuit

around the University of Queensland’s St Lucia campus. The data consists of visual data

(figure 2.7) of a calibrated stereo pair camera, translation and orientation information as

a ground truth from an XSens Mti-g INS/GPS and additional information from a USB

NMEA GPS. The car traverses local roads and encounters a number of varying scenarios

22

CHAPTER 2. EVALUATION METHODOLOGY

Figure 2.7: St_Lucia scenes

Figure 2.8: New College scenes

including roadworks, speed bumps, bright scenes, dark scenes, reverse traverses, a number

of loop closure events, multi-lane roads and roundabouts with speeds of up to 60 km/h.

St Lucia contains a very large loop closure which allows us to verify the functionality

of loop detection after a long-term tracking and many new places added to the map.

2.2.1.6 New College dataset

The NewCollege dataset [79] is recorded by a stereo camera at 20 fps and a resolution

of 512x382 pixels from a robot traversing 2.2 km through a campus and adjacent parks.

Stereo images (figure 2.8) are captured at 20Hz. Images need to be rectified by a tool

provided in the project before launching a SLAM algorithm. The trajectory includes

several loops and fast rotations.

2.2.2 Platforms based algorithm implementation

2.2.2.1 Work station PC

A work station PC acts as a representation of “discrete CPU-GPU system”. The platform

used in this thesis provides a mighty CPU integrating 8 cores i7 running at 3.4 GHz. The

23

CHAPTER 2. EVALUATION METHODOLOGY

CPU architecture optimizes memory access by offering 8MB smart cache that allows all

cores to dynamically share access to the last level cache. The main memory (RAM) is 16

GB. This platform also integrates an NVIDIA GT-740 GPU as an accelerator with 384

Shader cores, 2GB global memory and 28.8 GB/s memory interface bandwidth. The GPU

programming supports CUDA and OpenCL. Average power consumption is about 84W

for CPU and 64W for GPU.

2.2.2.2 Nvidia Jetson Tegra X1

For embedded applications in visual computing, NVIDIA introduced Jetson Tegra X1

(TX1), a small form-factor Linux system-on-module shown in Figure 2.9. This module

is based on system-on-chip processor TX1 using ARM’s Cortex with a cluster of 4 high

performance A57 big cores and a cluster of 4 high efficiency A53 little cores. However,

only one cluster could be activated at a time. The A57 CPU cluster operates at 1.9 GHz,

has 2MB of L2 cache shared by the four cores with 48KB L1 instruction cache and 32KB

L1 data cache per core. The A53 CPU cluster operates at 1.3 GHz, with 512KB of L2

cache shared by four cores, 32KB instruction and also 32 KB data L1 cache per core.

The GPU of TX1 is designed using Maxwell architecture, includes 256 Shader cores

and clocks at up to 1GHz. GPU memory interface offers a maximum bandwidth of 25.6

GB/s with the capacity of 2GB global memory. Jetson TX1 draws around 8-10 watts

under typical CUDA load, and up to 15 watts when the module is fully utilized. GPU

programming supports only CUDA (no OpenCL).

Figure 2.9: Jetson TX1 platform

24

CHAPTER 2. EVALUATION METHODOLOGY

Figure 2.10: Arria 10 SoC

TX1 is particularly aimed for developers working in computer vision, deep learning,

robotics and related fields. In this thesis, it is used for evaluating the performance of the

proposed SLAM algorithm on an embedded system.

2.2.2.3 Altera Arria 10 SoC

Recently, Altera presented Arria 10 SoC which has been designed to meet the perfor-

mance and power requirements for mid-range embedded applications. As shown in figure

2.10, the Arria 10 SoC features an ARM dual-core Cortex-A9 MPCore (1.5 GHz), up to

660 KLEs of advanced low-power FPGA logic elements, 1GB DDR4 HILO memory card

for CPU and also 1 GB DDR4 HILO memory card for FPGA. It combines the flexibil-

ity and ease of programming of a CPU with the configurability and parallel processing

power of an FPGA. This system corresponds to the highest coupled in CPU-FPGA het-

erogeneous when CPU and FPGA are integrated on chip.

In this thesis, the implementation of feature extraction on Arria 10 SoC is studied. It is

the first step in embedding the visual SLAM algorithm on a reconfigurable architecture.

Unlike CPU or GPU, power consumption of FPGA depends heavily on resources used

in the design. The more computing resources are used, the higher processing speed is

achieved but the more power is consumed. Hence, the challenge of designing using a

FPGA is to achieve a compromise between computation speed and power consumption.

25

CHAPTER 2. EVALUATION METHODOLOGY

2.3 Conclusion

This chapter presented the methodology and the evaluation tools used in this thesis for

system development and validation. We will follow a hardware software co-design ap-

proach to develop different systems. In terms of programming techniques, since CUDA

is supported by only NVIDIA GPUs, that has been integrated in several devices from

high-end computing to embedded platforms, we chose OpenCL that allows implementing

systems on GPUs from other companies or on other kind of heterogeneous architectures

(CPU-FPGA).

Six datasets (KITTI, Oxford, Malaga, MRT, St Lucia, New College) with many chal-

lenging scenes will allow an extensive evaluation about accuracy and robustness of our

proposal. Besides, timing performance will be analyzed on three different heterogeneous

architectures (high-end CPU-GPU, embedded device Nvidia Tegra X1 and CPU-FPGA

Altera Arria 10 SoC).

We will start our study on the front-end task of the visual SLAM algorithm. Our work

is based on feature based approach so the front-end task will allow detecting and match-

ing correspondences between images. Our objective is to propose a feature extraction

algorithm to achieve a robust matching result. It will be discussed in the next chapter.

26

Chapter 3

HOOFR: a bio-inspired feature

extractor

Feature matching is the task of establishing the correspondences between two images of

the same scene. In SLAM application, the stability of the matching result is very im-

portant to obtain a good localization result. To realize the matching, features need to be

firstly detected and described. The detection algorithm must have a high repeatability

in order that many same points can be found in both two images. Besides, the descrip-

tion algorithm must contain distinctive information among features to ensure an accurate

matching. This chapter introduces the study on feature matching and the proposed algo-

rithm denoted as Hessian ORB and Overlapped FREAK (HOOFR).

3.1 Overview

Through over a decade old, the most popular feature extraction algorithm was Scale In-

variance Feature Transform (SIFT) proposed by Lowe[80]. SIFT identifies keypoints

based on the local extremum of Different of Gaussian (DoG) over scale space and de-

scribes them by a 3D spectral histogram of the image gradients. SIFT is remarkably

successful in object recognition [80], visual mapping [33], etc. However, it is affected

by high computation requirements, which prohibit its implementation in real-time ap-

plications such as visual odometry, or on low-power embedded devices such as mobile

phones. An alternative named Speed Up Robust Feature (SURF) was proposed in [81].

27

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

This method relies on the determinant of the Hessian matrix for keypoint detection and on

the responses of Haar-like filters for the description. SURF has a comparable performance

to SIFT but it exhibits a significant improvement in computation speed. The reason is that

while SIFT approximates Laplacian of Gaussian (LoG) by DoG, SURF goes further and

approximates LoG by box filters. By relying on an integral image, the box filter convo-

lution may be performed efficiently. Then, two sets of SIFT or SURF keypoints may be

matched by employing Euclidean floating distances among descriptors.

On the other end of the spectrum, to address real-time applications, ORB[82] uses a

binary representation in order to simplify the calculation. ORB is inspired by the FAST

[83] keypoint detector and by the BRIEF [84] descriptor. In fact, FAST does not provide

neither multi-scale features nor orientation measurement. Therefore, in ORB the authors

employs a scale pyramid representation and detect FAST features at each level; addition-

ally, the keypoint orientation is estimated using the local intensity centroid. The ORB

descriptor is then constructed based on rotated BRIEF which uses simple binary tests

between pixels in a smoothed image patch. ORB algorithm offers a high efficiency to

be implemented in patch-tracking application on smart phone [82] or SLAM application

[85], etc.

Similar to BRIEF, there are several other variants of binary descriptors, among which

BRISK[86] and FREAK [87] could be named as candidates. A clear advantage of bi-

nary descriptors is that the Hamming binary distance may replace the Euclidean floating

distance for matching, by using bit-wise XOR followed by a bit count on specific archi-

tectures, which is significantly faster. The key concept of the BRISK descriptor is the

use of a symmetrical pattern. Instead of random points as in BRIEF, sampling points of

BRISK are located on circles concentric to the keypoint. Furthermore, BRISK divides

sampling-point pairs into two subsets: long-distance pairs reserved to compute keypoint

orientation and short-distance pairs reserved to build keypoint descriptor. Following this

idea, FREAK is an optimized version of BRISK with two main modifications. Firstly,

it uses a sampling pattern inspired from the human retina where the smoothing kernels

are overlapping and their size exhibit exponential change. Secondly, it uses 45 symmet-

rical pairs with respect to the center to estimate keypoint orientation rather than using the

long-distance pairs subset as in BRISK.

28

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.1: FAST Bresenham circle

3.2 FAST-9 detection

FAST (Features from Accelerated Segment Test) is an algorithm proposed originally by

Rosten and Drummond [83] for extracting interest points, keypoints or features (all three

are interchangeably used in literature) in an image. FAST is aimed to use in real-time

frame rate application so that it is designed to have a low computational cost. It consider

the points on a circular ring around one pixel. In case of enough consecutive pixels on

the ring which are brighter or darker than the central pixel with a threshold t, this central

pixel is recognized as an interest point. The algorithm is explained in detail below:

• Considering a pixel P in the image. The intensity of this pixel is defined as IP.

• Set a threshold t.

• Select a circle of 16 pixels surrounding the pixel P (Rosten proposed to used Bre-

senham circle of radius 3 as shown in figure 3.1).

• P is an interest point if N contiguous pixels out of 16 are either above or below Ip

by the value t.

The value of N is generally set between 9 and 12 depending on the application where, as in

SLAM algorithms ([85] or [88]), the value of 9 (FAST-9) presented a good performance.

The reason behind the high speed of FAST is the segment test. Firstly, the comparison

is made for the pixels 1, 5, 9, 13 of the circle with P. As evident, at least 3 contiguous

pixels (N = 12) or 2 contiguous pixels (N < 12) should satisfy the threshold criterion so

that the interest point will exist. In contrast, the pixel P is not a possible interest point and

the process is terminated immediately. The test could be repeated on the sets of pixels

29

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

(2,6,10,14), (3,7,11,15) and (4,8,12,16) for a rapid rejection. The majority of pixels in

image are rejected during segment tests. In the case that all the sets pass the segment test,

the final examination is performed to determine whether if P is really an interest point.

3.3 Hessian filtering

Despite of the high speed detection, FAST provides a significant number of features.

In SLAM application, it becomes a disadvantage. A huge number of features could not

increase the precision but makes algorithm more computational cost. Hence, an additional

criterion is taken into account to filter the FAST features. In ORB[82], the author used

score extracted from Harris matrix as feature score. He computed Harris score for all

features returned by FAST. Then, the relevant points having the highest Harris response

are maintained. In our work, we were inspired by the overall results of Mikolajczyk et al.

[89] who evaluated different detection methods. We were interested in their conclusion

that in general, the Hessian based detection overcomes that based on Harris. Therefore,

we propose to employ Hessian score in the detection to keep the relevant features.

H =

 ∂ 2I
∂x2

∂ 2I
∂x∂y

∂ 2I
∂x∂y

∂ 2I
∂y2

 (3.1)

Hessian matrix (as shown in equation 3.1) consists of the second order partial deriva-

tives of the image. The eigenvectors of this matrix form an orthogonal basis highlighting

the local direction of the gradient. If the product of eigenvalues of the Hessian matrix is

positive, a local extremum is present. We note that for any square matrix, the product of

eigenvalues is the determinant of the matrix. Another detector relying on this determinant

with remarkable results is SURF [81]; therefore, we use the determinant of the Hessian

matrix as the score of features.

In practice, in order to find the derivative, the image is first smoothed and then the

numerical approximations are applied as this operation is sensitive to noise. Nevertheless,

instead of employing a filter to smooth the image and then finding its derivative, the

derivative can be directly applied to the smoothing function which can then be used to

filter the image. In our work, we smooth image by Gaussian function (equation 3.2)

30

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.2: Square filters for calculating the Hessian matrix in HOOFR

where its derivatives are shown in equations 3.3-3.5. For each candidate point returned

by FAST, we calculate its Hessian matrix. Each element of this matrix is generated by

applying a square filter with the dimension of 7x7 shown in figure 3.2. corresponding

to the second order derivative of the smoothing function. Then, the determinant of this

matrix is considered as the score of the point. If there are more than K points detected by

FAST, we only maintain the K points exhibiting the highest score.

G(x,y,σ) =
1

2πσ2 exp(−(x2 + y2)

2σ2) (3.2)

∂ 2G
∂x2 = (−1+

x2

σ2)
exp(− (x2+y2)

2σ2)

2πσ4 (3.3)

∂ 2G
∂y2 = (−1+

y2

σ2)
exp(− (x2+y2)

2σ2)

2πσ4 (3.4)

∂ 2G
∂x∂y

=
xy

2πσ6 exp(−(x2 + y2)

2σ2) (3.5)

3.4 Overlapped FREAK bio-inspired description

FREAK was proposed in [87] by considering human retina topology and neuroscience

observations. It is believed that human retina extracts information from the visual field by

using the Gaussian comparison (Difference of Gaussian) of various sizes and by encoding

these differences in binary mode as a neural network.

31

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.3: Distribution of ganglion cells over the retina. There are four areas of the
density: (a) foveal, (b) fovea, (c) parafoveal and (d) perifoveal

Figure 3.4: Sampling pattern in FREAK (a) and in HOOFR(b)

3.4.1 Description sampling pattern

The topology and spatial encoding of the retina is interesting. First, a ganglion cell in-

cludes several photoreceptors. The region where light influences the response of a gan-

glion cell is the receptive field. Figure 3.3 shows that the spatial distribution of ganglion

cells reduces exponentially with the distance to the foveal. They are segmented into four

areas: foveal, fovea, parafoveal, and perifoveal. Furthermore, the sizes of the receptive

field and dendritic field increase with the radial distance to the foveal.

Inspired by this idea, the authors of [87] proposed a sampling pattern as showed in

Figure 3.4a. The pattern is composed of 7 concentric circles with exponentially decreas-

ing radius. Each circle contains 6 points considered as 6 receptive fields, and the receptive

field at the center, so that the overall pattern is formed by 43 receptive fields. The dis-

tribution of the points on the concentric circles is similar to the method of 6-segments

presented in DAISY [90].

32

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.5: Illustration of selected pairs to estimate the orientation in FREAK (a) and
HOOFR(b)

With HOOFR, we propose a different sampling pattern illustrated in figure 3.4b. Our

sampling pattern contains only 6 concentric circles. However, each circle has 8 recep-

tive fields distributed as the 8-segment method in DAISY. Therefore, including the point

at the center, this pattern contains 49 receptive fields in total. The justification for our

proposed configuration is that for complex image processing tasks, various descriptors

exploit, either in the image space [91] or in the frequency domain[92], a certain degree of

overlapping in order to be able to grasp more effectively complex correlations. With re-

spect to FREAK, our configuration increases, in addition to the radial overlap, the amount

of circumferential overlap among the fields.

Due to the fact that FREAK uses the comparison between these receptive fields to

build the descriptor, with 49 fields, we have more pairs (1176 pairs) to choose than that of

[87] (903 pairs). Moreover, in our sampling pattern, we have the overlap not only between

the receptive fields of different concentric circles but also circumferentially.

3.4.2 Keypoint orientation in HOOFR

In order to estimate the keypoint orientation, we use the same method proposed in FREAK

by summing the local gradients over selected pairs. However, our sampling pattern has

more overlapping leading to more information being integrated in the receptive field.

Hence, we can use fewer pairs than FREAK for orientation estimation. The latter is using

45 pairs with symmetric receptive fields with respect to the center as shown in figure 3.5a,

whereas, in HOOFR, we select only 40 pairs as shown in figure 3.5b. By decreasing the

number of pairs, we can improve the execution time when computing the orientation.

33

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

The orientation is then obtained by the equation 3 where S is the set of all 40 pairs

used to compute local gradients, N is the number of pairs in S and Pr1
0 is the 2D vector

of coordinates of the receptive field center. The space of orientation in HOOFR is also

discretized by the same steps proposed in FREAK.

O =
1
N ∑

P0εS
(I(Pr1

0)− I(Pr2
0))

Pr1
0 −Pr2

0∥∥Pr1
0 −Pr2

0

∥∥ (3.6)

3.4.3 HOOFR Descriptor

The binary descriptor F is constructed by the comparison between receptive fields with

their corresponding Gaussian kernel.

F = ∑
0≤n<N

2nT (Pn) (3.7)

T (Pn) = {
1 i f (I(Pr1

n)− I(Pr2
n))> 0

0 otherwise
(3.8)

where Pn is the pair of receptive fields, N the size of the binary descriptor, I(Pr1
n) and I(Pr2

n)

are respectively the Gaussian smoothed intensities of the first and the second receptive

field of the pair n.

Here, we experience a second advantage of the increase in overlap, the fact that it

contributes to reduce the descriptor size. In HOOFR, we build a descriptor of size 256

bits which is half the size of the FREAK descriptor (512 bits). This reduction is aimed

not only at memory-saving, but also at accelerating the matching process where the 256-

bits comparison is two times faster than 512-bits comparison. In fact, following testing,

we found that a 256-bits descriptor is high enough to ensure a good performance for our

sampling pattern. This boils down to selecte the 256 most relevant pairs among the total

of 1176 pairs. These pairs are also chosen experimentally by running an algorithm similar

to the ORB selection. This algorithm has 3 main steps:

34

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.6: Illustration of 256 selected pairs used to construct the descriptor in HOOFR

• The first step extracts keypoints from training data. We take all the possible pairs

(1176 pairs) to build the description and each keypoint has its own descriptor. A ma-

trix M is created where the number of rows corresponds to the number of keypoints

and the number of columns corresponds to the size of descriptor (1176 columns).

• For each column, we calculate the average which is situated between 0 and 1. This

value represents the variance of the binary distribution. The high variance is desired

to have a discriminant feature and the mean of 0.5 leads to the highest variance.

• All the columns are ordered and we keep the 256 columns which have the highest

variances.

Figure 3.6 shows the 256 relevant selected pairs used in HOOFR.

3.5 HOOFR performance evaluation

Our proposed algorithm has been tested using the well-known evaluation method and

datasets published by Mikolajczyk and Schmid[93]. We take eight image sequences as

shown in figure 3.7, corresponding to viewpoint change (Graffiti, Wall), zoom and rotation

(Bark, Boat), blur (Bikes, Trees), brightness change (Cars) and JPEG compression (Ubc)

to evaluate the performances.

35

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.7: Image sequences used for evaluation

Each sequence contains 6 images ordered by the increasing amount of transformation

from image 1 to image 6. All transformations are planar, so ground truth is determined

based on the homography matrix. Furthermore, matching is performed between each

image and the first image of the same sequence because homography matrices for these

pairs of images are carefully defined in the datasets. We consider that a point pa in one

image is a correspondence of a point pb in other image when they satisfy two conditions:

• The error in relative location of ||pa−H · pb|| < 1.5 pixel, where H is the homog-

raphy matrix between the two images.

• The overlap area of the keypoint region in one image and the projection of the

keypoint region from the other image is high enough. In our test, if the intersection

is larger than 50% of the union of the two region, it is considered a correspondence.

We note that this correspondence is called point-to-point correspondence as defined in

[93]. It is different from region-to region correspondence as defined in [89] which con-

siders only the second condition above. We take other widely used algorithms such as

SIFT, SURF, ORB, BRISK and FREAK to make the comparison. All matching tests em-

ploy brute-force algorithm using floating distance for SIFT, SURF and Hamming distance

for binary descriptors. For the sake of fairness, we set the same value for the number of

relevant keypoints returned by detectors. This value is set to be 1000 keypoints in this

test. As a reminder, the SIFT detector selects the relevant keypoints based on contrast

thresholds and edge filter thresholds[80], whereas SURF uses Hessian response, ORB

36

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.8: Repeatability of detectors evaluated in image datasets.

uses FAST score then Harris score. On the other hand, our algorithm uses FAST score

then Hessian score to refine keypoints for the detection.

3.5.1 HOOFR detector repeatability

The desirable property for a feature detector is the repeatability. It represents the ability

of a detector to find the same feature in two or more different images of the same scene.

It is defined in [93] as the ratio between the number of corresponding keypoints and the

minimum number of points detected in the two images. We note that the number of points

here is fixed to be 1000 for all detectors.

Figure 3.8 shows the repeatability evaluation on five transformations with independent

characteristics. HOOFR exhibits a remarkable performance, and outperforms ORB on

most of image sequences. This result underlines the conclusion of [89] that in general,

Hessian matrix based detection outperforms detection based on the Harris matrix. The

37

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

occasional low performance of SIFT is due in part to its sensitivity to rotation change and

to blur (Boat, Bark and Bikes sequences); SURF exhibits competitive performance with

respect to ORB and our algorithm HOOFR. Nevertheless, SURF is also time-consuming

which limits its ability to be applied in real-time applications.

3.5.2 HOOFR binary descriptor comparison

Figure 3.9: Recall-precision for the evaluation of binary descriptors

Since we use the binary method to build the description, we compare HOOFR descriptor

with other binary descriptor in the literature such as BRISK, ORB and FREAK. Recall

38

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

vs 1-precision curve is used as proposed in FREAK [87] and BRISK [86] to judge the

performances. Recall is defined as the ratio of number of correct matches/number of

correspondences, while 1-precision is the ratio of number of false matches/number of

matches. In fact, the result of matching largely depends on the combination detector-

descriptor. Nevertheless, the global ranking of matching performance of the descriptors

remains the same regardless of the selected detector. Therefore, to ensure a fair compar-

ison, we evaluate all descriptors by using the same detector. In this test, we chose ORB

detector and the number of relevant keypoints returned is also 1000.

Figure 3.9 shows the recall-precision curves using thresholds based similarity match-

ing of Hamming distance for a collection of images pairs from datasets. As confirmed

in figure 3.9, HOOFR is generally more robust than FREAK. On the other hand, it over-

comes ORB for all the tested image transformations. Moreover, despite the fluctuation in

some cases, HOOFR has better performance than BRISK.

3.5.3 Overall evaluation of HOOFR extraction

Our work proposes modifications in terms of detection and description at the same time,

so we also evaluate the joint performance of both propositions compared to the well-

known algorithms which have their own detector and descriptor such as SIFT, SURF or

ORB. Due to the fact that SIFT and SURF use the floating descriptor while ORB and

our work use binary descriptor, it does not make sense to use a similarity based method

in matching. The reason is that similarity method highly depend on the threshold and

it is difficult to determine equivalent value for each type of the descriptor. Therefore,

in order to match two set of keypoints extracted from two images, for each keypoint in

the first set, we simply select the keypoint in the second set which is the nearest neigh-

bor (smallest matching distance). We present a factor called “Matching rate”(number of

correspondences / number of matches) to compare the performances in this case.

In order to have a high matching score, an algorithm must exhibit a high detector re-

peatability and must concurrently have a high discrimination for the keypoint descriptor.

As illustrated in figure 3.10, HOOFR performs competitively with SURF. It outperforms

SURF for the viewpoint change (Wall, Graffiti) or JPEG compression (Ubc), has a fluc-

tuation for zoom-rotation (Bark, Boat) or blur (Bikes, Trees) and slightly falls behind

39

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.10: Evaluation of matching rate in image datasets

40

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Table 3.1: Detection time (milliseconds) of different detectors (1000 relevant keypoints
returned)

Bark_1 Graffiti_1 Boat_1 Wall_1
(512x765) (640x800) (680x850) (700x1000)

SIFT 860 919 1554 1722
SURF 129 137 169 202
ORB 34 44 79 107

HOOFR 33 42 76 105

Table 3.2: Description time (milliseconds) of different descriptors for 1000 keypoints

Bark_1 Graffiti_1 Boat_1 Wall_1
(512x765) (640x800) (680x850) (700x1000)

SIFT 3611 3873 4024 4093
SURF 479 488 492 501
ORB 16 18 18 20

BRISK 23 24 24 24
FREAK 20 21 21 21
HOOFR 18 20 20 20

SURF for brightness change (Cars). In contrast, HOOFR normally has overall better

performance than SIFT and ORB.

3.5.4 Timings

Execution times have been recorded using a single core on a PC with Intel Core i7 3.4

GHz processor and 16GB RAM. Operating system is Window 8.1. Table 3.1 presents

the results corresponding to detection of the first image in 4 selected sequences, while

table 3.2 presents the description time for the same images. Moreover, table 3.3 shows

the extraction time (detection+description) of the algorithms having its own detector and

descriptor. The values are averaged over 50 runs.

Regarding the detector, the timings show an advantage of HOOFR. Its computation is

even faster than ORB detector although the latter is the fastest detector currently available.

The reason is that the Hessian response is time-saving to compute against Harris response.

In terms of description, we also clearly highlight the advantage of binary descriptors,

with an order of magnitude faster than SURF and two order of magnitude faster than

SIFT. Among the binary descriptors, FREAK is inspired by BRISK and it is more efficient

41

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

than BRISK. Following the optimization trend, HOOFR is inspired by FREAK, and it is

more robust, memory-saving and slightly faster than the original. We note that although

the descriptor size and the number of pairs for orientation estimation were reduced in

HOOFR in comparison to FREAK, we can not gain a significant acceleration due to more

receptive fields being sampled (49 points) than in the case of FREAK (43 points). Hence,

for each keypoint description, HOOFR takes more time to compute the Gaussian filter for

all receptive fields. However, even though ORB is the fastest descriptor, in general, the

extraction time (detection + description) of ORB is similar to that of HOOFR while our

proposal maintains the better matching results.

Table 3.3: Extraction time (milliseconds) of different algorithms (detection + description)
for 1000 relevant keypoints returned

Bark_1 Gratifi_1 Boat_1 Wall_1
(512x765) (640x800) (680x850) (700x1000)

SIFT 4471 4792 5578 5815
SURF 608 625 661 703
ORB 50 62 97 127

HOOFR 51 62 96 125

3.5.5 HOOFR features validation in object tracking application

In this part, HOOFR is integrated in object-tracking application. We apply the method

based Homography matrix as used in many researches in literature. Two experiments

were conducted to evaluate tracking performance: one is multi-objects tracking in the

same image, the second is object-tracking in video frame. The latter is implemented on

embedded system to evaluate the time constraint. Our conventional pipeline to track an

object in an image is:

• We firstly detect and describe HOOFR features points of the reference object image.

• For each image frame, we also detect and describe HOOFR features points in the

image and match them to the features points of reference object image by brute-

force matching.

• Homography matrix (H-matrix) is then estimated based on the matching result us-

ing RANSAC algorithm [94].

42

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.11: Multi-objects tracking

Figure 3.12: Multi-objects tracking

3.5.5.1 Multi-objects tracking

Figure 3.11 shows the result of multi-objects tracking. We consider three objects: a stu-

dent card, a postcard and a magazine which are the three reference images presented on

the left side. The picture on the right side is an experimental scene where these objects are

situated together with other items. We extract 1000 keypoints for each reference image

while 9000 keypoints are extracted on the image scene. Due to that image scene is in high

resolution (1296x968 pixels), a large number of keypoints is necessary for this image in

order to have enough matching for all objects. As the result, even though the magazine

is covered partially by the student card and the postcard, the three articles are recognized

perfectly in the scene.

Figure 3.12 is the comparison between ORB based tracking based and HOOFR based

tracking. We employ the same conventional pipeline, the same number of relevant key-

points and all the other parameters in homography estimation. The student card can be

localized by the 2 extractors but the FPGA card is found only by HOOFR. This demon-

strates that HOOFR provides more relevant keypoints than ORB for objects tracking.

43

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Figure 3.13: Tracking results of the postcard in a video sequence

3.5.5.2 Embedded objects tracking in video

We take into account a video recorded by a smart-phone giving a sequence of images

(568x320 pixels). The postcard is presented in the video and its position is aimed to

be tracked. We apply the same conventional pipeline as described above for postcard-

tracking in each video frame. This experimental test is realized on the ODROID-XU4

card which contains 8 cores ARM processor (4 cores A15-2.0 GHz and 4 cores A7-1.4

GHz) and 2GB LPDDR3 RAM. This application is optimized using OpenMP to profit the

advantages of the multi-cores processor.

The result of the postcard tracking is given in Figure 3.13 with the high precision

of the position estimation. The number of extracted keypoints is fixed to be 800 for the

reference image and also for each video frame. Besides, table 3.4 shows the tracking

time on ODROID-XU4 for 200 frames. We can note that in HOOFR detection, keypoints

must be classified based on their Hessian score in order to select the most relevant ones.

Therefore, the execution time of HOOFR detection is high variant due to the classification

time. On the other hand, RANSAC algorithm is used to estimate Homography matrix.

This algorithm builds a sub-set of matchings by choosing randomly the elements. Hence,

its execution time depends on the ratio of the good matchings in the matching set. In

our experimental test, in the worst case (all steps take the maximum time), the execution

time for one frame is 76.5 ms corresponding to the frequency of 13 Hz (13 fps). On the

average, after 200 frames, the execution time is 56.4 ms for each frame corresponding to

17 fps.

44

CHAPTER 3. HOOFR: A BIO-INSPIRED FEATURE EXTRACTOR

Table 3.4: Tracking time (ms) on ODROID-XU4 for 200 frames

HOOFR
Matching H-matrix Total

Detection Description
The best case 15.7 9.1 27.2 1.3 53.3

The worst case 35.1 9.8 29.5 2.1 76.5
Average 17.2 9.7 28.0 1.5 56.4

3.6 Conclusion

This chapter has presented the HOOFR extractor which aims to address the front-end part

of visual SLAM system on detecting, describing and matching image keypoints. The

detector is the combination of ORB with a Hessian score, while the descriptor employs

a human retina based description consisting of a FREAK version with enhanced over-

lapping. The proposal offers a better compromise between speed and matching quality

compared to others state of the art algorithms. The experimental tests show that HOOFR

exhibits competitive performance but much faster than SURF, SIFT. Besides, HOOFR ex-

hibits comparably low computational cost as ORB but has better performance. HOOFR

extractor was also proved to be implemented efficiently on an embedded platform such

as ODROID-XU4 with a low processing time [95]. After having an enhanced extractor,

in next chapter, we will present our proposed SLAM algorithm using features extracted

from HOOFR.

45

Chapter 4

HOOFR Stereo SLAM

Following the presented HOOFR extractor, this chapter introduces a proposed SLAM

algorithm based on HOOFR features.

4.1 Related Works

In the literature of VSLAM, existing approaches are based in two predominant perception

strategies: monocular and stereo. Stereo VSLAM is generally transposable to RGBD

systems [96, 97]. The most versatile of VSLAM approaches is the monocular VSLAM

[98, 25, 99] since its hardware requirement is only one camera to observe the environment.

However, "scale drift" remains an open problem of this approach. This is due to the fact

that frame-to-frame motion estimates are integrated over time up to an absolute global

scale. On the other hand, stereo VSLAM uses two calibrated cameras to capture the

scenes so the depth from camera to points can be computed for each frame using the

disparity.

Over almost two decades, there have been many successful stereo VSLAM method-

ologies. Hereafter, existing VSLAM frameworks are surveyed with a particular focus on

their core methodology (i.e. filter or keyframe based methods) and data representation

(i.e. feature or dense image based methods) as shown in figure 4.1.

Early stereo VSLAM frameworks were based on classical EKF approach enclosing a

large Extended Kalman Filter for managing all landmarks [100, 101, 102]. This approach

suffers from two main problems: firstly, the quadratic complexity of the EKF limits the

46

CHAPTER 4. HOOFR STEREO SLAM

Figure 4.1: Visual SLAM overview

number of processed landmarks; and secondly, the consistency of EKF is known to be

poor causing the impossibility of re-linearizing the cost function. In order to tackle such

drawbacks, authors in [103] proposed to split a large EKF filter into sub-maps. However,

this variant limits the application to environments with an area of 100m². An alternative

variant is FastSLAM [104] which represents trajectories by means of a set of particles and

small EKF filters are assigned to each landmark. FastSLAM framework is also afflicted

by its complexity when the number of particles is not bounded for a given environment.

It also suffers to achieve loop-closures due to the 6-DOF nature of visual SLAM, making

this approach not well-suited for large-scale scenarios.

Since EKF and FastSLAM are filter-based frameworks, they marginalize all past poses

and summarize the information gained over time with a probability distribution. In con-

trast, keyframe-based VSLAM performs a windowed optimization (e.g. bundle adjust-

ment) on a small set of past frames to optimize current pose. Then, the global optimiza-

tion in case of loop closure could be done using a Graph-based SLAM method [105, 106].

Strasdat et al. [107] compared filter and keyframe based VSLAM demonstrating that the

latter achieves a better balance between computational cost and precision.

Inside keyframe-based VSLAM methodologies, the use of two different data repre-

sentations can be highlighted: feature and image based. Feature-based strategy comes

out earlier and was inspired on several researches. For instance, a scalable stereo visual

SLAM have been introduced in frameSLAM [35] and RSLAM [108]. The contribution

of frameSLAM consists in reducing the complexity of large loop-closures by construct-

ing sub-maps and simplifying feature constraints into frames constraints. In this way, the

47

CHAPTER 4. HOOFR STEREO SLAM

mapping task was optimized so as to maintain a subset of frames (skeleton). RSLAM

implements a local bundle adjustment with a bounded complexity in order to provide

an accurate map and trajectory. Even if RSLAM achieves constant time complexity, the

global consistency is not warranted. S-PTAM proposed by Pire et al. [88] exploits, in

parallel, the tracking and mapping in order to achieve real-time performances. However,

it lacks large loop closing which is indispensable in an accurate SLAM system. Recently,

ORB-SLAM appears to be one of the most actively developed VSLAM framework. After

the monocular version, Mur-Artal et al. contributes with a stereo version of ORB-SLAM

in [96] to handle the problem of scale drift. They inherit the main spirit of S-PTAM and

complement it with a loop closing procedure. A first dense image-based approach is lat-

terly presented in which LSD-SLAM [109] can be named as candidate. This approach

provides depth estimation and mapping by direct image alignment with affine lighting

correction on a rich set of pixels having a high intensity gradient. LSD-SLAM provides

good results under low image resolution and small camera motions. The use of high

resolution images or video sequences with an important inter-frame camera motion with

LSD-SLAM provides poor localization results and its computational cost becomes a se-

vere issue.

4.2 Algorithm description

The transformation (translation and rotation) of a stereo camera can be computed in ho-

mogeneous coordinates (up to scale) by one image chain (left or right). Therefore, in

our system, we employ only the left image for relative motion estimation between two

camera positions. The right image is used in further step to calculate the real scale. For

each input stereo frame, HOOFR features are extracted in the left image and HOOFR

description is then computed for both motion estimation and loop detection. HOOFR

features are matched with those of previous left image in order to estimate relative trans-

formations between the current frame and the previous frame. We define the "previous

neighbor frame" (PNF) as the frame that we can estimate the camera transformation from

it to current frame through the essential matrix.

48

CHAPTER 4. HOOFR STEREO SLAM

Figure 4.2: Frame-to-frame estimation

Figure 4.3: Optimized current pose estimation

The frame-to-frame estimation is shown in figure 4.2. The Essential matrix (E) [45]

corresponds to one relative transformation and can be computed from the matching sets

using RANSAC [110]. The camera translation, camera rotation and landmarks positions

are extracted from E by triangulation but they are in homogeneous coordinates (up to

scale). In order to have a real scale, we use stereo matching to match the position of tri-

angulated landmarks in the left image to those corresponding in the right image. The real

landmark-camera distance is computed based on this stereo matching and the distribution

of the left and right cameras. Scale factor is the ratio of real distance on the triangulated

distance. Finally, the camera motion is estimated as the product of the homogeneous

motion and the scale factor.

To achieve the optimized camera pose, the main idea of our design is that we do not

employ bundle adjustment which presents a high processing cost. Instead, we propose

another method denoted as "windowed filtering" illustrated in figure 4.3 which estimates

camera pose of current frame from a set of previous neighbor frames. For each previous

neighbor frame, we apply the entire motion estimation to achieve one prediction of current

pose. Each predicted pose is associated with a weight corresponding to its confidence in

comparison to others predictions. The optimized current pose is then the mean of all

predictions by their weights respectively.

In parallel with current-to-neighbors motion estimation (mapping), we perform a loop

detection test for left image as shown in figure 4.4. HOOFR binary feature description

is used once again to extract image description. The current left image is queried in

key-frame set to find the max-likelihood. In the case of low matching score, current

49

CHAPTER 4. HOOFR STEREO SLAM

Figure 4.4: Functional blocks of the algorithm flow at each input stereo frame

image is considered as a new key-frame, we add current position attached with its image

description to pose graph. In contrast, potential loop closing is considered when high

matching score is presented and the max-likelihood key-frame is far from current frame

in pose graph. The motion estimation between current frame and max-likelihood key-

frame is then computed to validate the loop closure. A real loop is taken into account

only if motion estimation is successful.

4.3 HOOFR features

4.3.1 Bucketing feature detection

HOOFR [111] extracts key-points that are used for motion estimation. To ensure a precise

estimation, many correspondences are required so that many points should be detected

and described in an image. Due to this reason, we need a high speed extractor. HOOFR

detector is the combination of ORB detector with Hessian score and provide better com-

promise between execution time and matching precision [95]. The main idea of HOOFR

detector is that it detects features in an image by applying FAST detector over multiple

50

CHAPTER 4. HOOFR STEREO SLAM

scales of an image pyramid. Then, the detected features are filtered to keep the most

relevant key-points based on their Hessian score (instead of Harris score in ORB). This

filtering provides a good repeatability. It is eliminated in the processing flow of some

works such as LSD-SLAM [53]. However, in our system, we maintain this filtering step

to improve the matching result for an enhanced pose estimation.

In order to warrant a homogeneous distribution of features, we employ bucketing

technique as used in all others systems. The input frame is divided into a grid where

the number of cells depend on the image resolution. HOOFR features are then de-

tected with adapting threshold trying best to extract enough points. We fix the maxi-

mum number of points retained in one cell to PT S_PER_CELL. In each cell, at the first

detection, FAST threshold is set to a high value FAST _T HRES. Unless the number of

key-points is higher than PT S_PER_CELL, the second detection is operated with lower

FAST threshold value (FAST _T HRES/2). After detection, if the number of points is

higher than PT S_PER_CELL, we compute Hessian score for each point and maintain

only PT S_PER_CELL points having the highest score. The orientation and description

are computed by HOOFR descriptor for the most relevant points retained by each cell.

HOOFR descriptor (256 bits) is an enhanced version of FREAK (512 bits). It has a low

sensitive to viewpoint and is fast to compute and match.

4.3.2 Binary descriptor for place recognition

Scene recognition is the fundamental step for loop closure. Typically, this step uses SIFT

or SURF full-featured descriptors due to their high matching score among the existing

approaches. Nevertheless, their computational cost has degraded performances of SLAM

systems. Recently, binary bag of words [112] is proposed with a competitive performance

by an order of magnitude faster than floating approaches. this approach is widely used

and has remarkable results in visual SLAM systems such as [25] and [27]. Thus, in our

system, we integrate the idea of binary word so as to keep place recognition process light.

Among the relevant key-points provided by HOOFR detector in the whole image, we

select K points (K = 150 in our implementation) having the highest Hessian score to get

corresponding words based on their HOOFR description. Image description is built from

these binary words.

51

CHAPTER 4. HOOFR STEREO SLAM

4.4 Mapping

4.4.1 Features matching

In mapping thread, features matching is carried out between the current frame and the

previous neighbor frames. We note that the camera frequency is high (10-50 fps) leading

to a little change between consecutive images. For this reason, the correspondence in

neighbor frame is located not too far from key-point position in current frame, so we can

limit the searching region instead of the whole image. Figure 5.4 illustrates our searching

strategy. For each key-point I in PNF, we perform "Brute-Force" matching with all key-

points locating in the same cell or the “neighbor cell” in the current frame. We find the

most and the second correspondences (J and J
′
) by the smallest and the second smallest

Hamming distance respectively. The result of feature matching has an important role in

the precision of pose estimation so that it should be done carefully. Hence, we apply

further three following conditions to select pairs among the most matching pairs I− J

(smallest Hamming distance):

Firstly, the matching pair must have a high distinction in comparison to its second

matching. It means that the ratio of HdI−J to HdI−J′ must be lower than a threshold ϕ

where HdI−J represents the Hamming distance of the pair I− J. The value of ϕ is 0.85

giving a good exhibition in our experiments.

Secondly, if the positions of I and J have a small difference in the images (‖pI− pJ‖<

2), it means probably that the point is too far from camera or the camera does not move

significantly compared to the previous pose. Such two cases do not provide a good esti-

mation so that these matches should be also rejected. Furthermore, if too many matches

have a small position change, the camera can be considered staying nearby the previous

pose.

Thirdly, in contrary to the second condition, if I and J have too big differences in

positions (‖pI− pJ‖> 120), it could be a false matching and also must be eliminated.

In some other researches like ORB-SLAM or LSD SLAM, people use guiding search

to find correspondences. They rely on the last transformation of camera and point position

in the previous frame to predict the point position in the current frame. This method

has a good performance when the transformation is small and stable but it is easy to

52

CHAPTER 4. HOOFR STEREO SLAM

loose the tracking when the transformation becomes more critical. In our algorithm, we

apply Brute-Force to find the best candidate in a large set of local features. After 3 test

conditions above, we can get a reliable matching set for the following step.

4.4.2 Relative Pose Computation

The goal of Relative Pose Computation (RPC) block is to compute the relative pose be-

tween two frames (always from left images of a stereo camera) and to triangulate a set of

map points. There are many RPC blocks executed in parallel. We defined these execution

as sub-threads inside mapping thread. Each of them estimates one relative motion from

current frame to one previous neighbor frame. RPC block consists of 3 principal steps:

rotation and translation extraction from essential matrix, solution determination and scale

estimation. We assume the image domain to be given in stereo-rectified coordinates, the

intrinsic (focal length, center points) and extrinsic (baseline, relative angle) camera pa-

rameters are calibrated a-priori.

- Rotation (R) and translation (t) extraction from essential matrix (E)

Essential matrix is estimated from HOOFR matching set returned by the previous step.

The epipolar geometry is described by equation (4.1):

[pI;1]T KT EK[pJ;1] = 0 (4.1)

where K is the intrinsic camera matrix, pI (xI,yI) and pJ(xJ,yJ) are respectively po-

sitions in PNF and current frame of a correspondence I− J . Each matching pair gives

a constraint to solve E. In others works such as ORB-SLAM, people use 5-point algo-

rithms [43] inside a RANSAC scheme to extract an optimized model Eop from matching

set. They assume a standard deviation of one pixel in the measurement error. Then, they

consider R and t extracted from Eop as the initial state for the optimization of bundle

adjustment (BA).

In our proposal, we intend to avoid BA which has a high computational cost. Hence,

we focus on the method to improve the precision of estimating E, which makes the most

difference of our system with others in state of art. Before computing E, number of

53

CHAPTER 4. HOOFR STEREO SLAM

matching pairs (np) in each RPC block is checked. If np is under a threshold λ , the

corresponding RPC block is considered as an invalid estimation and its sub-thread will be

stopped immediately. In contrariwise, E estimation is processed when np is bigger than

λ . Through experiments, we found that a high precise localization is presented when the

measurement error (me) of inlier in RANSAC scheme is smaller than 0.4. However, when

we apply RANSAC with me = 0.4 to the initial matching set, the execution time severely

increases. The reason is that the number of iterations in RANSAC is updated during the

estimating process. After each iteration, the remaining number of iterations is computed

by equation (4.2):

Ni
I = max(Ni−1

I −1, log
1− c

1− (ne/Ne)5) (4.2)

where Ni
I is the remaining number of iterations at time i, c is the parameter of confi-

dence (normally between 0.95 and 0.99), neis the number of inliers in the best model at

time t and Ne is the total number of elements in the whole set. When the measurement

error is smaller than 0.4, it is obvious that ne decreases leading to the increase of remain-

ing number of iterations. Therefore, in order to accelerate the processing, we propose the

Algorithm 4.1 for estimating Eop :

Algorithm 4.1 Essential matrix estimation from matching set

1. Apply 5-points algorithm inside RANSAC scheme to the initial matching set with
the measurement error equal to 1.0.

2. Select the inliers corresponding to the optimal model of step 1 to form another set
(refined matching set).

3. Apply 5-points algorithm inside RANSAC scheme to the refined matching set with
the measurement error equal to 0.4 to get a final optimal model (Eop).

4. Test the final optimal model of step 3 on the whole initial matching set to select the
inliers (measurement error reclaims the value of 1.0).

5. Compute the mean of measurement errors returned by inliers from step 4. The
inverse of this value represents the score of the estimated model.

We mark the inliers of Eop, while outliers are rejected. Given that Eop has been de-

termined; our method for estimating rotation R, translation t and 3D points triangulation

54

CHAPTER 4. HOOFR STEREO SLAM

is based on performing single value decomposition (SVD) of E (mentioned in Hartley &

Zisserman’s book [45]). Due to the fact that E is “up to scale” so that SVD provides the

solution of [t]m in homogeneous coordinates (scale is not defined). Furthermore, we have

2 opposite directions which are possible for translation (t) and two different rotations (R)

which are compatible with an essential matrix. This gives four classes of solutions in total

for the relation between two camera coordinates. However, there is only one correction

solution where the triangulated point is in front of camera at both positions (current and

reference positions).

- Solution determination

In order to select the correct solution among the four possibilities, for each inlier match-

ing pair, we compute 3D triangulated position in the 4 solutions. The point is arranged

to the solution in which it is in front of camera at both reference and current positions.

The chosen solution is the one containing the most points seen in comparison to others.

In theory, if the estimation of E is noiseless, one solution will contain all triangulated

points. In that case, we can check only one matching pair to find the valid solution. How-

ever, matching is affected by noise in practice, so checking all matching pairs provides a

more robust method. In particular, if image is too degraded by noise leading to no clear

winner solution, the relative pose estimation of the corresponding sub-thread is stopped

immediately and will be marked to be invalid.

- Scale estimation

As the essential matrix is “up to scale”, the translation and 3-D triangulated points com-

puted above are in unit coordinates. Therefore, the residual problem after selecting the

valid solution is determining the “real scale” of map and camera motion.

The most advantage of a stereo camera is providing two images from different phys-

ical cameras, taken at the same time. Hence, the depth from 3D point to camera can be

estimated without scale ambiguity using stereo-disparity (static stereo). Assuming that

we have a point in the left image, the correspondence of this point can be searched along

epipolar line in the right image. In our case of rectified-stereo, this search can be per-

formed along the horizontal lines.

55

CHAPTER 4. HOOFR STEREO SLAM

As stereo correspondence measure, we use 5 pixels-SSD method [113] along the scan-

line. In our system, we obtain a-priori a point in the left image. Hence, if we consider

the same position in the right image, the correspondence is located undoubtedly on the

left side of this position. In practice, the disparity range in the right image is constrained

to [(xJ−σ ,yJ),(xJ,yJ)] where σ is the limited search region (σ=30 in our experiment).

Once the correspondence is defined, the real 3D point P̄J(X̄J ,ȲJ ,Z̄J) with reference to cam-

era will be extracted by well-known static-stereo triangulation (using disparity, baseline

and camera focal length) as mentioned in [45].

Algorithm 4.2 RANSAC scheme for scale estimation

1. Take the value (kav) of one element in the factors set.

2. Find the number of inliers in the entire set. A factor kJ will be classified as an inlier
if the difference is small enough (|kJ− kav|/min(kJ,kav)< ε). ε is set to 0.1 in our
test. Mark the scale value if it is the best model (contain the most inliers).

3. Repeat the processing for all other elements in factors set. The value of the best
model is considered as the estimated scale.

We compute the real distance for all triangulated points arranged to the selected solu-

tion. Scale factor (kJ) is the ratio of the real distance of static stereo on the triangulated

distance of temporal stereo. In fact, this factor is simply computed by the ratio of (Z̄J/ZJ).

In the case of noise absence, all points have the same scale factor. However, it is never the

case in practice. To have an appropriate value, we consequently employ 1-point scheme

on the scale factor set as in Algorithm [4.2].

In order to have reliable scale estimation, after doing 1-point scheme, we additionally

evaluate the best model if the number of iterations reaches to the bound. The model is

invalid when the number of inliers could not attain an acceptable value (Ninliers < γ). In

this case, we also reject the current process, the sub-thread returns invalid estimation.

Otherwise, camera translation and 3-D point position are multiplied with the scale to get

the non-scale value and only 3-D points computed from inliers are maintained. Through

experiments, we found that the value of γ is set to 10 giving a good performance.

56

CHAPTER 4. HOOFR STEREO SLAM

4.4.3 Optimized pose extraction

This block is the summary step in mapping thread and takes into account all predictions

from sub-threads to calculate the optimal camera pose. In practice, for each sub-thread,

we notice that relative pose is extracted from Essential matrix which is obtained before-

hand from features matching set. Therefore, we propose to use inverse of mean error

retained by inliers after essential matrix estimation as a weight factor of predicted pose.

Equation (4.3) shows the computation of optimal current left camera pose Cl (also defined

as [R|t] in some references) from all predictions:

Cl = Σ
N
n=1

σn

Ω
Ĉl

n (4.3)

where Ĉl
n is the predicted position of the sub-thread T hn, σn is the inverse of mean

error of inliers and Ω = ΣN
n=1σn. Besides, N represents the number of valid sub-threads

which compute a prediction with positive weight. Contrariwise, when a sub-thread is

marked to be invalid, its weight takes the value of 0 and it will be ignored in optimal pose

extraction. When all prediction are invalid, current frame would not be tracked. In this

case, map could not be updated and we proceed directly to the next frame.

4.5 Loop detection

Loop detection processes the current frame and tries to detect a loop closure.

4.5.1 Place recognition using FABMAP 2.0 and binary word

For loop detection and re-localization, our system implements place recognition method

based on FAB-MAP 2.0 module exhibiting a robust performance as shown in [114]. It is

tested on 1000 km dataset proving an ability to work on a very large scale environment.

FAB-MAP employs a Bag of Words (BoW) to describe images. To train the BoW vo-

cabulary, the original proposal extract SURF or SIFT feature descriptors from a training

dataset. These descriptors are then clustered and the BoW vocabulary is achieved from

these cluster centers. From there, an image can be described using this vocabulary by

quantizing its SURF or SIFT, and listing which words were seen. An image descriptor

57

CHAPTER 4. HOOFR STEREO SLAM

(BoW descriptor) can be performed as binary of word presence, or as a list of which words

were observed. In order to learn a factorized probability prior distribution over image de-

scriptors set, FAB-MAP trains a Chow-Liu tree using the BoW descriptors generated from

training dataset. A place is represented as a vector of Bernoulli variables indicating the

existence of the generator for each word in the vocabulary. There are two different version

of FAB-MAP. In FAB-MAP 1.0, the measurement model is given by the trained Chow-

Liu tree and full Bayesian inference determines the posterior generator probabilities. This

approach work at the scale of a few kilometers (or extended to few tens kilometers thanks

to an approximate inference techniques) due to its computation cost and memory require-

ment. Otherwise, FAB-MAP 2.0 speeds up the inference using an inverted index for each

word in the vocabulary with slightly modified computing method.

In HOOFR SLAM, we reuse feature descriptor extracted from HOOFR extractor for

both motion estimation and place recognition. In contrast to floating descriptor of SIFT

or SURF in the original FAB-MAP, our feature descriptor is binary so that we replace

floating distance by hamming distance in the word clustering. The bag of words generated

from training data is also in type of binary words.

In fact, we use the HOOFR extractor to build the bag of words in a large training

images set. A 256-bit binary descriptor contains in total 2256 different words. However, a

huge vocabulary not only takes much time to build image description but also has a poor

efficiency in loop detection. The issue is that we have a low tolerance when too many

words are maintained in the vocabulary. In such case, a 3D point will be assigned eas-

ily to two different words when camera has little position change. Consequently, a low

similarity between 2 images is presented through these images of the same scene. In ex-

periments, we found that a vocabulary of 10000 words provides a favorable compromise

between precision and execution time. The vocabulary is created offline one time from a

large set of random images and is used for all test sequences.

4.5.2 Map and Key-frame set

In our system, map is represented as a set of Mi =Cl
i ,T

l
i ,Li. Each Mi contains position of

left camera Cl
i in global coordinates, relative transition T l

i to previous left camera position

and all 3-D landmarks positions Li in camera coordinates. Our developed system is similar

58

CHAPTER 4. HOOFR STEREO SLAM

to recent SLAM systems that do not consider all processed frames as key-frames due to 2

main reasons:

• For each input frame, each element in key-frames set will be queried to compute

the likelihood percentage. The frame sampling is aimed to reduce the size of key-

frames set. Hence, the computation will be light. This strategy is suitable for

implementing the application on an embedded system where memory resources are

limited.

• There exists always an overlap between consecutive frames. It means that when

images are taken from close times, they contain many common words. In many

cases, two images take exactly the same words from environment. The overlap will

cause problem in computing likelihood percentage when these two images attain the

same value. In this case, all percentages have small values causing the ambiguity

in loop detection.

Therefore, we consider a frame as a new key-frame when there is no likelihood percentage

value bigger than η (0.99 in our experiments). Each key-frame is then updated into key-

frame set KEi = idi,Vi,Diwhere idi is the index of the key-frame position in the map, Vi

and Di are respectively features and their HOOFR description extracted from the key-

frame.

4.5.3 Frame Checking

First of all, in “Frame Checking” block, K binary words retrieved from the most K rel-

evant features in HOOFR extraction are employed as well as vocabulary to build image

description. Specifically, each of K binary words will be queried in vocabulary to find the

best matching word (lowest Hamming distance). Image descriptor is formed by taking

into account which words that image takes from the vocabulary. Likelihood percentage

is then computed for all elements in key-frames set based on their image descriptor. If

the maximum likelihood is less than η , “Frame Checking” decides that current frame is a

new key-frame and we will update it to the key-frame set in “Map Processing” block.

When maximum likelihood is bigger than η , the frame is not a new key-frame. How-

ever, we fall into two possibilities: the overlap with previous images or potential loop

59

CHAPTER 4. HOOFR STEREO SLAM

detection. In practice, to manage key-frame set, a variable called “historical time” (ht) is

additionally attached to each element in the set. Once key-frame is added to the set, this

value is initialized as the size of the set at that moment. Besides, when loop closing is

successfully processed at this key-frame, ht is updated by the size of the set at the update

moment. A “new-comer” (newly added or processed) is identified when ht is closely to

actual size of key-frame set. Moreover, after a loop closing, it is probably that we have

many loop points nearby. In order to avoid too many loops processing, we count the num-

ber of new key-frames added from a loop point. “Frame Checking” recognizes a potential

loop when two conditions below are satisfied:

• Historical time of maximum likelihood key-frame htm is smaller than the size of

actual key-frame set by t (htm < key f rameset.size()− t).

• Ne new key-frames have been already added from the last loop point.

where t, Ne are respectively set to 5 and 10 in our experiments. Otherwise, it is recognized

as an overlapping frame.

The features matching and relative pose estimation between current frame and maxi-

mum likelihood frame are performed only in the case of potential loop. We use the word

“potential” because the current frame must finally be validated by pose estimation. In our

experiments, most of the frames are recognized as a new key-frame or overlap with the

previous frame. Features matching and Pose estimation tasks are processed only when

a loop point is closely attained. Nevertheless, we found that some particular frames are

potential loops but they are not the real loops. This is inevitable and it occurs when two

images of different places take too many common points in the vocabulary. However,

these frames are rapidly rejected after features matching due to the lack of valid cor-

respondences or rejected in pose estimation based RANSAC since there is not enough

inliers.

4.5.4 Features matching

In loop detection thread, features matching block uses current frame and its max-

likelihood frame when a potential loop is detected. As a precise loop requires severe

checking conditions, we propose to use “cross Brute-Force” matching instead of the high

60

CHAPTER 4. HOOFR STEREO SLAM

distinction checking. The idea is that we keep the second and the third checking condi-

tions as in features matching of mapping thread. However, we change the first condition

as following:

• Two feature sets are matched using local Brute-Force matching in two direction. For

each point I in the max-likelihood frame, we find the best local match J (smallest

Hamming distance) in the current frame and vice-versa.

• The matches verify the first condition if they have the same matching results in two

direction (I→ J and J→ I).

This stricter condition allows us to detect the “false positive” of potential loop (a high

similarity but not the same scene) where few matching pairs retained after checking.

4.5.5 Relative pose estimation

RPC block in loop detection is similar to that in mapping thread except the change of the

threshold λ . We also increase the value of λ to insure that only “true positive” of potential

loop is handled. The reason is that after a tightening matching, we require more number

of matching pairs retained to compute essential matrix. In experiments, we found that this

combination exhibited a tremendous performance with no “false positive” loop passing.

4.6 Map Processing

Map Processing block considers results returned from mapping and loop detection threads

to make the decision. Table 4.1 resumes all possibilities that the system can meet. If the

mapping consecutively fails after a fixed number of frames due to some reasons such as

abrupt movement or occlusion, our system turns into tracking-lost state (tracking lost =

true). In this state, each frame is processed only by loop detection thread. Mapping thread

is disabled. Once the camera is relocated in the map, we return to tracking-active state.

However, map optimization will be neglected as the lack of previous poses. Moreover,

map will be discrete at the relocated point and the incoming optimization is limited to this

point. In a normal situation when tracking-lost is false, if mapping is invalid for current

frame while loop detection provides a legal result, we to store the loop information. In

61

CHAPTER 4. HOOFR STEREO SLAM

Table 4.1: Possibilities and decision of “Map Processing” block

Blocks

Tracking lost TRUE FALSE

Mapping - Valid Invalid

Loop detection Key-frame Neutral Loop Key-frame Neutral Loop Key-frame Neutral Loop

Decision

Update pose graph - - + + + + - - -

Add key-frame - - - + - - - - -

Activate Map Correction - - - - - + - - -

Re-localization - - + - - - - - -

the limited following frames, in the case that mapping revives, the loop closing will be

performed.

Figure 4.5: Loop correction

"Map correction" is called only if both loop and mapping threads return valid estima-

tions. Once it is activated, the trajectory is optimized by distributing loop closing error

along pose graph. The propagation starts from loop point, follows the trajectory back to

the point to which loop point is attached. Figure 4.5 shows the correction applied for

each position in the map. Assuming that position (i+ 1) is optimized, we can compute

the transformation Ťi+1 between the optimized pose Cop
i+1 and the non-optimized pose Ci,

while Ti+1 is the transformation between two non-optimized poses already maintained in

the node (i+1). T op
i+1 is then estimated by equation (4.4) where µ represents the “propaga-

tion coefficient”. In our experiments, we propose to compute µ depending on the number

of optimized positions (Np) in total by equation (4.5). The optimized pose of node i (Cop
i)

is finally computed by equation (4.6).

62

CHAPTER 4. HOOFR STEREO SLAM

T op
i+1 = µŤi+1 +(1−µ)Ti+1 (4.4)

µ = π/Np (4.5)

Cop
i =Cop

i+1 ∗T op−1

i+1 (4.6)

The execution time of map correction depends on the map size. Following time, this

step becomes costly with a large loop closure. To warrant frame-rate processing, "map

correction" can be launched as a thread in parallel and continue to process next frame.

However, the key-frames set is blocked in order to avoid memory accessing dump during

map correction. As a consequence, any new key-frame is added and we just update pose

graph until the current correction thread is finished.

4.7 Evaluation results with experiment datasets

We evaluate our proposed algorithm on different well-known datasets: KITTI [74], Ox-

ford [75], Malaga [76], MRT [77], St_Lucia [78] and New-College [79] with full image

resolution.

4.7.1 Stereo image rectification

In HOOFR SLAM algorithm, we search the stereo correspondences for a feature along

the x-axis. It means that the cameras are supposed to be a stereo system of horizontal

epipolar lines (simple stereo configuration). In practice, we cannot physically place the

two cameras to have the such system due to their different focal length, different center

points or distortion. However, we use an algorithm to change a general configuration

(figure 4.6 on the left side) to a simple configuration(figure 4.6 on the right side), this

is known as the stereo rectification in the state-of-the-art. It also compensates image

distortion. This algorithm is considered as a pre-processing step before images are used

in SLAM algorithm.

63

CHAPTER 4. HOOFR STEREO SLAM

Figure 4.6: General(left) and Simple(right) stereo configuration

Among six datasets, only KITTI provides images already rectified. New-College and

Oxford present source code to generate rectified images from the raw images. The others

present only raw images with calibrated camera matrices. The pre-processing is hence

required for these datasets and is realized using our source code (written in C++ base on

OpenCV 3.0). Moreover, similarly to other SLAM based feature, our algorithm work on

grayscale image so that all color input frames are converted to monochrome during the

frame reading.

4.7.2 Parameters

Parameter name Value
Number of features 1500-2500

FAST threshold (FAST _T HRES) 12

Difference threshold in feature matching (ϕ) 0.85

Low threshold of pixel position change 2

High threshold of pixel position change 120

RANSAC threshold in E estimation 1.0-0.4

Inliers scale threshold (ε) 0.1

Number of binary words for loop detection (K) 150

Maximum neighbor frames (n f rames) 4

Table 4.2: Algorithm parameters

64

CHAPTER 4. HOOFR STEREO SLAM

Table 4.2 regroups the main parameters of our algorithm used in the experiments. The

parameters were chosen through the experiments on different sequences to have the op-

timized value. In order to warrant the precision, we detect 2000 features per image in

KITTI, MRT, St-Lucia sequences; 2500 features in Oxford and 1500 features in Malaga

sequences. Corresponding to these number of features, the number of binary words for

loop detection (K) was set to 150 where FAB-MAP 2.0 offers a high likelihood percentage

when two images are taken from the same scene.

4.7.3 Evaluation with KITTI dataset

In KITTI dataset, ground truth is provided in the 11 sequences (00-10) by an accurate

GPS and a Velodyne laser scanner. Some sequences contain a significant loop-closure, i.e

00, 02, 05, and 07. We compare the performances with stereo ORB SLAM: one of the

most robust algorithms which uses high cost bundle adjustment and contains loop closure

in the state-of-the-art. We apply the algorithm on 11 first sequences, blue curves represent

the ground truth provided by a precise RTK-GPS.

The entire localization of the 11 sequences are shown in figure 4.8 observed in 2D

of X-Z axis. We present camera postion on the 3 axis seperately for all frames of each

sequence in the appendix - section 6.7. By reference to camera, X is the horizontal line

pointing to the right side, Y is the vertical line pointing to ground and Z is the line pointing

forward. Regarding the figure, our proposal have a competitive performance with respect

to ORB SLAM except the sequence 01. The reason is that this sequence is captured

by a car traveling on a high way with very high velocity. As shown in figure 4.7, on

the high way enviroment, half of image is sky which do not provide relevant keypoints.

Furthermore, on the road, there are also many low texture regions which do not contain

keypoints. In this case, ORB SLAM obtains a precise localization by saving the map-

points history and using the high cost bundle adjustment optimization. In contrast, our

algorithm is aimed to get high speed processing and reduce memory resources usage, so

that the precision is sacrificed in this case.

65

CHAPTER 4. HOOFR STEREO SLAM

Figure 4.7: High way environment

Figure 4.8: Localization results of ORB SLAM and HOOFR SLAM evaluated with
KITTI dataset

66

CHAPTER 4. HOOFR STEREO SLAM

Table 4.3 shows the Root Mean Square Error (RMSE) of trajectory for each sequence

computed only for X and Z axis due to the fact that although GPS is corrected by RTK

signal, ground-truth in Y axis is still not reliable. The results indicate that our system has

a considerable accuracy with a trajectory error around 1% of its dimension (except 2% for

sequence 01). The percentage is computed by the ratio of RMSE over the maximum value

of 2 dimensions. Despite of the less complexity, our proposal even surpasses ORB-SLAM

in some sequences such as 00, 02, 04 or 06.

Table 4.3: Root Mean Square Error (RMSE) in KITTI dataset of stereo HOOFR SLAM
calculated for X and Z axis

Seq Dimension(mxm) Frames ORB RMSE(m) HOOFR RMSE (m)
00 564 x 496 4541 4.7612 3.2306
01 1840 x 1140 1101 17.7170 50.2589
02 599 x 946 4661 6.6243 4.7042
03 471 x 199 801 1.2390 1.2609
04 0.5 x 394 271 0.3677 0.3225
05 479 x 426 2761 1.1884 1.3507
06 23 x 457 1101 1.6343 0.8061
07 191 x 209 1101 0.9304 0.9199
08 808 x 391 4071 4.8629 6.4138
09 465 x 568 1591 4.2835 6.7374
10 671 x 177 1201 2.7623 3.7944

4.7.4 Evaluation with Oxford dataset

Oxford dataset is recorded by 6 cameras mounted onboard a vehicle traversing a route

through central Oxford. The ground truth is provided by the fused GPS+Inertial solution.

In order to evaluate HOOFR SLAM, we choose two sequences: the “static sequence”

(recorded on 2014/05/06 at 12:54:54 GMT) contains very few moving objects and the

“dynamic sequence” (recorded on 2014/06/24 at 14:47:45 GMT) is a challenging by a

longer trajectory and in presence of many moving objects in the scene. Figure 4.9 shows

the performances of HOOFR SLAM on these two sequences.

On static environment, HOOFR SLAM and ORB SLAM present a very robust perfor-

mance where RMSEs are respectively 2.24m and 2.22m. However, the localization error

is increased on “dynamic sequence” where the RMSE is 40m for HOOFR SLAM and

70m for ORB SLAM. One of the most challenge of the dynamic sequence is that there

67

CHAPTER 4. HOOFR STEREO SLAM

Figure 4.9: Localization results of HOOFR SLAM on static (left) and dynamic (right)
sequences of Oxford dataset.

are some blurry images caused by sunlight. Hence, the degraded result can be explained

due to two factors: the moving objects and the poor image quality.

4.7.5 Evaluation with MALAGA dataset

Figure 4.10: Localization result using Malaga sequences: GPS (blue), ORB-SLAM (red)
and HOOFR-SLAM (green)

Malaga stereo dataset was gathered entirely in urban scenarios with a car equipped with

a Bumblebee2 stereo camera running at a high rate (20fps). We chose the 10th sequence

68

CHAPTER 4. HOOFR STEREO SLAM

of dataset because it contains a very long trajectory, several loop closing and a huge vari-

ation of image brightness during the experiment. We also test localization performances

of stereo HOOFR-SLAM in comparison to stereo ORB-SLAM and the result is shown

in figure 4.10. To the best of our attempts, ORB-SLAM could not exhibit a converg-

ing trajectory. At some points when the image brightness is low, ORB-SLAM provides

a poor localization or even lost tracking. Otherwise, our algorithm shows a remarkable

localization result with n f rames = 2 and the number of keypoints set to 1500. The argu-

ment explaining this situation is that ORB-SLAM uses ORB detector while our proposal

uses HOOFR detector. Following our previous publication [111], HOOFR detector has

better repeatability than ORB detector in case of brightness change. By reference to GPS

result, the reconstructed trajectory of our proposal is more reliable than that of stereo

ORB-SLAM.

4.7.6 Evaluation with MRT and St-Lucia datasets

Figure 4.11: HOOFR SLAM reconstruction using St-Lucia dataset

In our experiments, we also validate HOOFR SLAM performances on two old datasets:

MRT [77] and St-Lucia [78]. MRT is realized in 2010 using 20Hz calibrated stereo cam-

eras. The stereo images are recorded from the AnnieWAY vehicle driven in a loop at

69

CHAPTER 4. HOOFR STEREO SLAM

a bridge in the city of Karlsruhe. Besides, St-Lucia dataset is gathered from 30 Hz

calibrated stereo cameras embedded on a car driven on 9.5 km around the University

of Queensland’s St Lucia campus. The reconstruction results of HOOFR for these two

datasets are shown in figure 4.11 and figure 4.12 including trajectory generated by GPS

(no RTK correction). Comparing to GPS data, HOOFR exhibits a considerable localiza-

tion result. Noting that although GPS devices used in the two datasets are not very precise,

it allows us to recognize the general shape of the trajectories.

Figure 4.12: HOOFR SLAM reconstruction using MRT dataset

4.7.7 Evaluation with NewCollege dataset

Ground truth is not presented in this dataset, so that we cannot calculate RMSE on this

dataset. Figure 4.13 shows the reconstruction for the full sequence with a view in details

of a large loop closing. We note that by using a stereo camera, the scale can be computed

independently for each frame, so we do not face the problem of scale drift as in ORB

monocular SLAM [25]. Combing with strict conditions in selecting the correspondences,

we achieve small localization deviation after a long trajectory.

70

CHAPTER 4. HOOFR STEREO SLAM

Figure 4.13: Reconstruction on NewCollege dataset

4.8 Conclusion

In this chapter, a novel estimation algorithm for feature-based stereo VSLAM has been

presented. This approach is referred as HOOFR SLAM since it integrates HOOFR fea-

tures extractor [111]. The binary descriptor is employed for both motion estimation and

loop closure detection. Motion estimates are integrated over time following a hybrid

filtering/key frame strategy. That is, position is estimated using a windowed weighted

mean using previous neighbor frames. Weights are computed from inter-frame robust

feature matching. A thorough experimental evaluation was carried out on six well-known

datasets (KITTI, Oxford, Malaga, MRT, St-Lucia and New College). The evaluation on

KITTI (reliable ground truth is presented) provides considerable localization results in

terms of RMSE (around 1% of sequence dimension).

HOOFR SLAM satisfies the requirements described in the section 2.1.1 where:

• HOOFR SLAM has a high localization precision.

71

CHAPTER 4. HOOFR STEREO SLAM

• HOOFR SLAM resources requirement are low, the computational complexity of

mapping is constant overtime. Loop detection is detected rapidly without false

positive results.

• HOOFR SLAM is suitable to be parallelized on heterogeneous architectures con-

taining a massive parallel devices such as CPU multi-core or GPU.

• HOOFR SLAM is also easy to work on others sensor-combined systems such as:

mono camera - IMU or mono camera - Odometers systems. The reason is that the

most functional blocks of HOOFR SLAM algorithm use only monocular camera

images. The second camera is used only for estimating scale. If a system contain

one camera and other sensors allowing to know real scale, HOOFR SLAM will

work without a doubt with a minor change in scale estimation block.

After the functional validation, in next chapter, we will present the implementation of

HOOFR SLAM on CPU-GPU heterogeneous architecture and discuss about the timing

performance.

72

Chapter 5

Embedding HOOFR SLAM on a

CPU-GPU architecture

The HOOFR SLAM functionality was tested on several real datasets. To reach a high

speed performance, this chapter introduces the study of implementing HOOFR on het-

erogeneous CPU-GPU architecture. This type of architecture is considered due to its

popularity in current embedded computing platforms, particularly on devices of Nvidia

coporation shown in figure 5.1. The algorithm data flow was analyzed related to each

functional block. The evaluation methodology consists on the identification of blocks

consuming significant processing time or having a low data dependency. During the ex-

periments, we found that Features Matching block has a high computational cost but could

be parallelized thanks to its independence in data flow. In this functional block, each point

correspondence in an image will be found by comparing the HOOFR 256-bits descriptor

of this point to that of each point in the other image. For a high localization precision,

a large number of points detected is required, leading consequently to a high matching

cost. However, processing of each point is not related to others, so a parallelization can

be performed. Otherwise, HOOFR features extraction is also accelerated using OpenMP

to exploit all the computing cores of the CPU.

73

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

Figure 5.1: CPU-GPU embedded platforms

5.1 Overview

The requirement of SLAM algorithms in terms of calculation, accuracy and embeddabil-

ity is a critical factor limiting the use of existing approaches in embedded applications.

Meanwhile, trends towards low cost implementations and low power processing require

massive parallelism and implementation on heterogeneous architectures. The implemen-

tation of SLAM algorithms in this case is often preceded by an algorithm-architecture-

mapping study, which allows formal verification as soon as possible to warrant the feasi-

bility of the design and to reformulate optimization problems so as to exploit at the best

the target architecture. Author of [61] analyzed the acceleration of a laser SLAM on two

desktop GPUs: GF8400M and GTX280. The speed-up factors achieved are respectively

8 and 57 in comparison to the execution on a T7250 CPU (@2GHz). More recently,

Whealan et al. [115] evaluated their approach for a dense visual SLAM based RGB-D

camera on a powerful system consisting of an Intel CPU (i7 - 3.4GHz) and an Nvidia

GeForce GTX 780 GPU. A fast execution is achieved where the average time ranges

from 31ms to 45ms per frame. Heterogeneous architectures (CPU-GPU, CPU-DSP or

CPU-FPGA) are a common trend nowadays on computing platforms, specially for em-

bedded systems. Therefore, many researchers took advantage of these architectures to

accelerate SLAM applications. B. Vincke et al. [116] proposed an efficient EKF-SLAM

system based on a low-cost and heterogeneous architecture. The hardware contains an

ARM processor, an SIMD coprocessor (NEON) and a DSP core. The system implements

low-cost sensors: a camera and odometers. Abouzahir et al. [117] also provided a case

74

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

study of the FastSLAM 2.0 algorithm on different embedded architectures. However, al-

though the real-time performance is announced, the consistence of the algorithm need to

be verified on more datasets. Some other works have been presented in section 1.3.1. The

emergence of embedded systems has lead to several works addressing the embeddability

issue of SLAM algorithms. However, few works deal with hardware-software mapping

of visual SLAM algorithms on embedded architectures. The appearance of the recent het-

erogeneous architectures should lead to a great improvement in designing visual SLAM

systems.

5.2 GPU programming

This work presents the system developement on a CPU-GPU architecture. CUDA and

OpenCL are two well-known languages for GPU programming. OpenCL is supported by

several high-end GPUs (NVIDA, AMD, Intel, etc..). It is also a framework for program-

ming across various heterogeneous platforms such as: CPU-GPU, CPU-DSP or CPU-

FPGA. Otherwise, CUDA is less flexible when it is only supported by NVIDIA hard-

ware. In some powerful embedded platforms (Tegra K1, X1, X2), NVIDIA supports only

CUDA programming.

5.2.1 GPU thread organization

The paradigm of OpenCL processing contains a notion of “kernel”. A kernel is a subrou-

tine or mini-program. Kernels are the parallel programs to be run on the device (the GPU

inside the host system). A number of primitive “work-items” will simultaneously execute

a kernel program. The number of all the work-items is equal to the global work size which

is conceptually organized into 1D, 2D or 3D arrays of work-items for convenience. The

global memory and the constant memory are shared across all the work-items. Batches of

these primitive work-items can also be organized into “work-groups” for each dimension

respectively, which forms the local-work-size. Users should define the specific local-

work-size of a work-group based on the amount of available local memory, as well as the

memory access latency, depending on the architecture constraints. Each work-item within

a work-group can communicate efficiently using the local memory scoped to others in the

75

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

same work-group. Using this local memory, all work-items within a work-group can also

be synchronized.

The paradigm of CUDA processing has a similar characteristic to that of OpenCL with

a little changes in the naming. Work-items and work-groups are replaced respectively by

threads and thread-blocks. Moreover, while OpenCL defines directly the global-work-

sizes which must be multiple by local-work-size, CUDA does the opposite by defining

the number of local works (number of thread-blocks).

5.2.2 GPU memory hierarchy

There are several levels of memory on the GPU device as shown in figure 5.2, each with

distinct read and write characteristics. Memory model seen by OpenCL and CUDA is

divided into two parts:

• Host Memory: a memory directly available to the host. Memory objects move

between the Host and the devices through functions within the API or through a

shared virtual memory interface.

• Device Memory: a memory directly available to kernels executing on devices.

For device memory, OpenCL and CUDA have equivalent models with a little bit changes

in terminology presented in table 5.1. The following description is intended for OpenCL,

the notion of CUDA can be inferred easily. In fact, device memory consists of four named

address spaces or memory regions:

1. Global Memory: this memory is located off-chip on the main GDDR memory mod-

ule which therefore has the largest capacity but is the most costly to interact with.

It permits read/write access to all work-items in all work-groups running on any

device within a context. Work-items can read from or write to any element of a

memory object. Reads and writes to global memory may be cached depending on

the capabilities of the device.

2. Constant Memory: a region of global memory that remains constant during the

execution of a kernel-instance. The host allocates and initializes memory objects

placed into constant memory.

76

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

3. Local Memory: a local region of memory related to a work-group. Every work-

item in a work-group also has access to a unified local memory, shared among all

work-items for the life of that work-group. This memory region can be used to

allocate variables that are shared by all work-items in that work-group.

4. Private Memory: a private region of memory related to a work-item. Every primi-

tive work-item has access to private memory as well as registers. This memory is

really a misnomer meaning that the memory is private to the work-item, it is not

stored in the work-item’s registers but rather off-chip in the global GDDR mem-

ory available on the graphics card. Variables defined in one work-item’s private

memory are not visible to another work-item.

Figure 5.2: GPU memory model. Registers and private memory are unique to a work-
item, local memory is unique to a work-group. Global, constant, and texture memories
exist across all work-groups

The global, constant and texture memory are optimized for different memory usage mod-

els. Global memory is not cached, though memory transactions may be coalesced to hide

the high memory access latency. These coalescence rules and behaviors are dependent on

the particular device used. The read-only constant memory resides in the same location as

global memory, but this memory may be cached. On a cache hit, regardless of the number

of threads reading, the access time is that of a register access for each address being read.

The read-only texture memory also resides in the same location as global memory, and

is also cached. Texture memory differs from constant memory in that its caching policy

specifically exploits 2D spatial locality.

77

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

OpenCL CUDA
Work-Item Thread

Work-Group Thread Block
Multi-dimension Range (NDRange) Grid

Global / Constant Memory Global / Constant Memory
Local Memory Shared Memory

Private Memory Local Memory

Table 5.1: OpenCL vs CUDA Terminology

5.3 HOOFR SLAM mapping on a CPU-GPU architec-

ture

Our algorithm pipeline is recalled in detail in figure 5.3. After HOOFR features extrac-

tion, we launch at one time the Loop detection and Mapping threads. Inside Mapping

thread, Features Matching block finds the correspondences for each key-point of the cur-

rent frame in each PNF. We offload this block to GPU due to its computational cost. Then,

a number of Relative Pose Computation tasks are executed, each of them computes one

predicted camera pose from one PNF. The number of PNFs (n f rames) hugely depends

on the camera movement speed. However, in practice, due to the architecture constraints,

n f rames is fixed to 3 or 4 for the maximum number of neighbor frames. The “Optimal

Pose Extraction” block evaluates the predictions to get an optimal current pose. Other-

wise, inside Loop detection thread, Image Description block describes the current frame

by comparing the descriptions of relevant key-points to a bag of words (BoW). The im-

age description is then passed to Frame Checking block to find the max-likelihood in

key-frames set. We define an overlapped frame as a frame having a max-likelihood near

to it in pose graph with high matching score. Normally, when we have a new key-frame,

some of the following frames could be overlapped frames. Features Matching and Rel-

ative Pose Computation between current frame to max-likelihood key-frame in case of

potential loop are processed by stricter condition than that of Mapping thread to warrant

an accurate loop closure. “Map Processing” block gathers the result of two main threads

(Loop detection and Mapping). It always updates current pose and points to the map if

mapping is successful, updates the key-frame set if loop detection determines that current

78

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

Figure 5.3: HOOFR algorithm flow

frame is a new key-frame or corrects the map by distributing error along the pose graph

when a real loop is presented.

5.3.1 OpenMP Implementation of HOOFR Extraction

The HOOFR detection is more suitable to implement on CPU than GPU architecture

due to 2 main reasons. Firstly, HOOFR is based on FAST detection which employs a

segmentation test to accelerate feature extraction processing. In the segmentation test, a

pixel can be rejected after one or two pixel tests. Such a strategy makes the difference in

processing cost for each pixel (some pixels require much more time to be processed than

others). Hence, it is not suitable to be implemented on a GPU architecture where each

work-item requires the same complexity to make use of computation resources. Secondly,

the next step after FAST detection is Hessian filtering. Hessian score is computed for all

the features returned by FAST detector and then only some relevant features with the

highest Hessian score are kept. This filtering is much more rapid on CPU thanks to the

binary classification (used in std::nth_element function of C++ stdio.h library). However,

79

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

binary classification needs a dynamic memory allocation which is not supported on GPU.

Hence, in our system, we employed OpenMP to implement HOOFR feature extraction.

There are two parts in the images: passive zone and active zone. As we select a pattern

of surrounding points to make its description, passive zone is a part of image where the

pixels are close to the border so that the description pattern is out of image. Passive

zone is determined by edge_threshold in HOOFR descriptor and it is useless to detect

key-point inside this part. Otherwise, active zone is the part where key-points could be

described without doubt by HOOFR descriptor. Active zone is divided into grid. The

number of cells in X and Y axes are set based on the image resolution in such a way that

each dimension of one cell is about 80 – 150 pixels. The detection performing on one cell

is independent from others cells.

Algorithm 5.1 OpenMP implementation of HOOFR extraction
//////******Detection******//////
#pragma omp parallel for num_threads(NUM_THREADS)
For each image cell do

keypoints_cell← FAST _Detection(FAST _T HRES);
///***adapting detection***///
if (keypoints_cell.size() < PTS_PER_CELL)

keypoints_cell← FAST _Detection(FAST _T HRES/2);
end if
if (keypoints_cell.size() > PTS_PER_CELL)

Compute_Hessian_score;
keypoints_cell← Retain_relevant_points;

end if
end for
//////******Key-points Regrouping******//////

[Points_Distribution, keypoints_set]← Regroup_keypoints;
//////******Description******//////
#pragma omp parallel for num_threads(NUM_THREADS)
For each keypoint in keypoints_set do

Compute_keypoint_descriptor;
end for

HOOFR detection is demonstrated on the first part of algorithm 5.1. Each OpenMP

thread processes an image cell and individual key-point sets are created for each cell to

assure data independence. NUM_T HREADS represents the number of cells handled in

parallel. We assign a value to NUM_T HREADS by the total number of cores inside the

processors to make use of computing resources. A great value of NUM_T HREADS is

meaningless in practice since a maximum parallelism was employed. In each cell, FAST

detection is performed with adapting threshold. Then we extract the relevant key-points

80

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

Figure 5.4: Matching strategy

corresponding to the highest HESSIAN scores. At the end of detection phase, all key-

points are regrouped in one global set to which a structure defined as Points_Distribution

is attached. This structure represents the distribution of key-points in the image and is later

required in Matching block to specify the searching regions. We chose the static mode

for OpenMP scheduling instead of the dynamic mode. The reason is that computational

complexity in each thread is comparable to that in another thread. Static mode is hence

more suitable in which the chunks can be scheduled to threads during compilation while

dynamic mode is not efficient due to the more locking.

Similar to the detection phase, features description is also parallelized using OpenMP

but the strategy is modified. We note that the number of key-points detected in each image

cell is not constant. Specially, when non-texture parts appear in the scene, some image

cells contain very few key-points in comparison to other cells. If we keep the parallelism

on image cell level, the threads handling many key-points will be extremely more costly

than the threads with few key-points. In such case, some computing units finish the work

too fast and have wasting time to wait the others. To avoid this issue, we propose to use

OpenMP at key-point level as shown on the second part of algorithm 5.1. Orientation

and description of each key-point are extracted without dependence on any another key-

point. The same complexities are presented for all threads leading to an efficiency in work

distribution among computing units.

81

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

5.3.2 GPU implementation of Features Matching

In features matching of HOOFR SLAM, we benefit from all kinds of GPU memory to

have an optimized implementation. In order to make HOOFR SLAM works on sev-

eral architectures, we developed Features Matching block in three versions: OpenCL and

CUDA versions running on a GPU and a standard C++ version running on a CPU. CUDA

uses the same manner to observe GPU memory but with a little change in naming: global

memory, shared memory (corresponding to local memory in opencl) and local memory

(corresponding to private memory in opencl). The CUDA programming is also similar to

that of OpenCL. Hence, in the following, we only detail the implementation in OpenCL

while the others could be deduced easily.

To implement features matching on GPU, key-point information must be transferred

to the GPU global memory. As shown in figure 5.4, two parameters (cel, des) are required

for each key-point in PNFs. cel is in the form of integer number corresponding to the cell

where the key-point is located. It takes the values from 0 to (n-1). Besides, des is 256-

bit HOOFR description of the key-point. In practice, des is performed using a matrix

having 1 row and 32 columns with 32 elements of type “unsigned char”. To regroup all

parameters for PNFs, we create two matrices as in equations (5.1, 5.2) where Pn f _Cels

and Pn f _Dess are respectively in dimension of (pn f _np x 1) and (pn f _np x 32), pn f _np

is the total number of key-points in PNFs.

Pn f _Cels = [cel11 cel12 ... cel1m celi1 celi2 ... celil]T (5.1)

Pn f _Dess = [des11 des12 ... des1m desi1 desi2 ... desil]
T (5.2)

For the current frame, two parameters are also taken into account. Firstly, we create

the Cur_Dess matrix having the dimension of (cur_np x 32) for key-point description.

cur_np is the number of key-points in current frame. Similar to Pn f _Dess, each row of

Cur_Dess serves as one 256-bit description based on 32 unsigned char numbers. Sec-

ondly, key-points set of current frame is organized by the order of image cell so that a

structure denoted as Points_Distribution is employed. This structure is transformed into

an integer matrix with the dimension of (N_CELLS x 2) while N_CELLS is the number

82

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

of image cells. In Points_Distribution matrix, each row corresponds to the distribution of

one cell in the whole key-points set: the first element re f is the position where the first

key-point of the cell is located in the whole set, the second element nb is the number of

key-points of the cell.

In practice, Pn f _Dess, Pn f _Cels, Cur_Dess and Points_Distribution matri-

ces are transferred to GPU_Pn f _Dess, GPU_Pn f _Cels, GPU_Cur_Dess and

GPU_Points_Distribution respectively on GPU global memory. These memory parts are

set to “read-only” to don’t be changed by any work-item. Moreover, we also allocate

on GPU global memory a “write-only” integer matrix referred as GPU_Correspondence

(pn f _np x 3) on which matching result is returned. We note that all input matrices

are aligned to 1-D array on the GPU memory since GPU programming do not support

pointer-to-pointer variable.

A natural implementation at our first try is that we process the whole matching of

one key-point on one work-item. However, by this naive approach, we encountered the

“overhead computation” problem. In fact, when the kernel has too high computational

cost, the kernel execution takes too much time to complete one work-item. At this time,

the “watch-dog” in GPU driver considers that GPU is idle since there is no feedback from

kernel during an amount of time. This confusion leads to the GPU frequency reduction

which severely decreases GPU timing performance. Therefore, in order to avoid such

issue, we keep the kernel light by splitting the matching of one key-point into several

work-items. In practice, we search the correspondence in the current frame at the same

cell and neighbor cells as mentioned in figure 5.4. The searching on one cell is rapid due

to a small number of key-points so that it is suitable to be operated on one work-item.

Algorithms 5.2 and 5.3 show the calling function on CPU and the kernel running on

GPU for feature matching in mapping thread. The main idea is to use 9 work-items in a

work-group to find correspondence in 9 neighbor cells of current frame. In kernel, cell_id

variable is the index of image cell where the work-item performs the searching. cell_id is

one neighbor cell so that it is determined by local_id kc of the work-item and image cell

GPU_Pn f _Cels[i] of the PNF key-point. Keypoints locating in the image cell cell_id

of current frame are classified from position re f _l to position re f _h in the key-points

83

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

set. Besides, dist_min and trainIdx correspond respectively to the distance and the in-

dex in key-points set of the first matching, while dist_min2 is the distance of the second

matching. Opencl local memories are allocated to save 9 local results and are synchro-

nized by barrier function. After the synchronization, only one of these 9 work-items

(kc = 0) continues handling the local results to extract the final matching. It specifies

final dist_min and dist_min2 from local results and validates the matching if the ratio

dist_min/dist_min2 is lower than 0.85. BLOCK_SIZE represents the number of PNF

key-points processed also in the same work-group. Thus, local_work_size is assigned to

{BLOCK_SIZE, 9}. The value of BLOCK_SIZE depends on many factors defined in

GPU architecture such as the maximum local_work_size in each dimension or the local

memory capacity. In our implementation, BLOCK_SIZE is set to 16 which provides a

good performance. OpenCL programming claims that global_work_size must be a multi-

ple of local_work_size in all dimension. Hence, the first dimension of global_work_size

must be the nearest multiple of BLOCK_SIZE that is greater or equal to pn f _np. The

work-items having the global identification bigger than pn f _np will be stopped rapidly

after the test at the first line in kernel. The second dimension of global_work_size takes

the value of 9 similarly to the second dimension of local_work_size.

Algorithm 5.2 Calling function on host (CPU)
function Matching
............................
workitems =

(pnf_np+BLOCK_SIZE-1)/BLOCK_SIZE*BLOCK_SIZE;
global_work_size[] = {workitems,9};
local_work_size[] = {BLOCK_SIZE,9};
clEnqueueNDRangeKernel(cmd_queue, matching_kernel,
2, NULL, global_work_size, local_work_size,
0, NULL, NULL);
clFinish(cmd_queue);
............................
end function

GPU programming is also employed for features matching in loop detection thread

and we use the same approach as in mapping thread to find correspondence. However,

matching conditions have a little changes leading to some modifications in matching ker-

nel. Firstly, due to the fact that "cross BruteForce" is used, only the last matching will be

84

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

searched in each matching direction. dist_min2 will not be considered so that we do not

need to allocate GPU memory to save it. After barrier function, the process is also sim-

pler when only the last matching is extracted from 9 local ones. Secondly, in CPU calling

function, two kernel calls (clEnqueueNDRangeKernel) are required: one for “current

frame to max_lilkelihood frame” key-points matching and the second is for the opposite

direction “max_lilkelihood frame to current frame”. On the other hand, BLOCK_SIZE

still keeps the value of 16. local_work_size and global_work_size in each kernel call are

computed by the same manner as used in mapping thread CPU call.

Figure 5.5 presents the CPU-GPU mapping of the algorithm. In order to avoid mem-

ory access conflict, mapping and loop detection thread work on separate zones of CPU

memory. Each zone is pinned respectively to that of GPU global memory where the

corresponding matching kernel is performed. Memory pin also allows to active DMA

high-bandwidth data transfer between CPU and GPU.

Algorithm 5.3 OpenCL matching kernel on device
declare global arrays: GPU_Pnf_Dess, GPU_Pnf_Cels, GPU_Cur_Dess, GPU_Points_Distribution,
GPU_Correspondence;
function KERNEL: MATCHING
declare 3 local arrays: DIS_min[9*BLOCK_SIZE elements], DIS_min2[9*BLOCK_SIZE elements],
MatchingId_min[9*BLOCK_SIZE elements];
i← get_global_id(0);
ki← get_local_id(0); ////from 0 to BLOCK_SIZE-1
kc← get_local_id(1); ////from 0 to 8
////identify neighbor cell
cell_id←Get_Neighbor_Cell_ID(GPU_Pnf_Cels[i],kc);
//// Get keypoint descriptor
point_pnf_des←Get_Keypoint_Descriptor(GPU_Pnf_Dess[32∗i]);
////Get local matches to from the neighbor cell
{DIS_min[9*ki+kc], TRAINIdx_min[9*ki+kc], DIS_min2[9*ki+kc]}
← Find_Local_Best_And_Second_Matches(point_pn f _des,
GPU_Cur_Dess, GPU_Points_Distribution);
barrier(CLK_LOCAL_MEM_FENCE);

///**At this point, local matching result of 9 neighbor
cells are saved at the positions from 9*ki to 9*ki+8 **///

if (kc==0)
GPU_Correspondence←
Find_Global_Matches(DIS_min, TRAINIdx_min, DIS_min2);

end if
end function

85

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

Figure 5.5: CPU-GPU Mapping

Table 5.2: Architecture specifications (JETSON Tegra X1 embedded system vs Powerful
Intel PC)

TX1 Intel PC

CPU
4-cores ARM A57

8 intel cores i7
4-cores ARM A53

CPU clock rate 1.3-1.9 GHz 3.40 GHz
Cache 2 MB 8 MB
RAM 4 GB LPDDR4 16 GB
GPU 256-core Maxwell 384-core Geforce GT 740

GPU clock rate 1 GHz 1.07 GHz
Operating System Ubuntu 14.04 Ubuntu 14.04

CUDA version 7.0 7.5
OpenCL version - 1.2

5.4 Performances evaluation

In experiments, we have implemented HOOFR SLAM on two CPU-GPU platforms: a

powerful Intel PC and an NVIDIA JETSON Tegra TX1 development system. Table 5.2

shows their specifications as a recap. Due to the fact that NVIDIA supports only CUDA

for GPU programming on TX1 (not OpenCL), so that we use CUDA version of HOOFR

SLAM matching block during the experiments on this board.

86

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

Table 5.3: Mean of execution time (milliseconds) using KITTI dataset for each functional
block in HOOFR SLAM on the Intel powerful PC and the TX1

n f rames = 2
Intel Tegra TX1

CPU CPU-GPU CPU CPU-GPU
(8 cores) (4 cores)

HOOFR Extraction 8.536 8.555 16.783 16.731
Mapping 52.126 27.332 119.937 99.185

Loop detection average 15.001 7.881 21.916 16.466
Loop detection cost-time 36.553 15.253 95.248 80.223

Map Processing 0.349 0.137 0.584 0.403

5.4.1 Timing evaluation

We evaluate the mean processing times of the proposed algorithm on 11-first sequences

of KITTI dataset. All timings are given in milliseconds. The values are the mean of

11 sequences where timing on each sequence is also the mean of 5 launches. Table 5.3

represents the timing of each functional block in our proposal pipeline. The number of

neighbor frames is 2. In the table 5.3, Loop detection average is the sum of execution

time divided by the total number of frames. However, this value can not be a good rep-

resentation because execution time of Loop detection thread is not constant. In fact, with

an overlapped frame or in case of not enough inliers, loop detection thread is terminated

rapidly. Otherwise, when loop closure is reached, this thread becomes time-consuming

because the relative movement is estimated. To have a better representation, we presents

“Loop detection cost-time” which is the mean time of loop detection thread when the

movement estimation is performed.

We notice that Mapping thread and Loop detection thread are launched in parallel.

Hence, the per-frame time is only the sum of HOOFR extraction and Mapping (the most

consuming thread). Moreover, when loop closure is valid, map correction inside Map

Processing is launched in an other thread so that it does not slow down the new frame

acquisition. On PC Intel, without GPU implementation, the algorithm runs at ~62 ms per

frame. By offloading processing to GPU, we have a better performance when the mean

of execution time of the whole algorithm is decreased to 36 ms per frame.

For Tegra TX1 embedded system, it is obvious that the processing task is much slower

than that of the Intel PC because of many reasons: lower frequency of CPU and GPU,

87

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

n f rames 1 2 3 4

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

Intel (CPU) 33.646 58.254 78.156 36.512 65.689 82.241 38.989 76.263 96.358 43.989 81.124 98.416

Intel (CPU-GPU) 18.154 36.487 50.164 19.498 39.456 57.129 20.846 41.354 61.487 22.498 50.462 64.624

TX1 40.268 101.265 130.748 46.894 130.128 170.854 48.657 152.238 201.418 50.658 162.624 240.859

Table 5.5: KITTI-07 processing time on Intel PC and Nvidia TX1 with different values
of n f rames

smaller cache memory resources and low number of CPU and GPU cores. On this plat-

form, our partitioning exhibits a considerable performance where the algorithm takes in

average ~116 ms per frame.

Table 5.4: Mean per-frame execution time comparison on KITTI

Algorithm
Execution time (ms)

Intel PC Tegra TX1
Stereo ORB SLAM 69.924 190.710

CPU - HOOFR SLAM 62.235 137.235
GPU - HOOFR SLAM 36.154 116.552

We also evaluated the timing performance of ORB-SLAM and table 5.4 shows the

mean per-frame timing comparison between our proposal (HOOFR SLAM) and ORB

SLAM on two platforms using KITTI dataset. With Intel PC, the ORB execution time is

approximately 69ms per frame (7 ms costly than CPU-only version or 32ms costly than

CPU-GPU version of our algorithm). On TX1 embedded platform, ORB-SLAM takes

190 ms per frame (53 ms costly than CPU version or 74 ms costly than GPU version of

our proposal).

To evaluate the timing in more details, we studied the timing and localization precision

in terms of the number of neighbor frames (n f rames). Figure 5.6 and figure5.7 present

the per-frame processing time on KITTI-07 when the n f rames parameter changes from

1 to 4, while table 5.5 presents the minimum, the maximum and the mean values of

these figures. For the powerful Intel PC, we still have a frame-rate running at less than

100ms when the n f rames increases to 4 for both GPU and without GPU version. For TX1

embedded system, due to limited resources, processing time could not meet the frame-rate

88

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

a) Intel PC - with GPU

b) Intel PC - without GPU

Figure 5.6: KITTI-07 per-frame processing time on Intel PC using different values of
n f rames

(10 Hz) performances. The variation of time in each frame is primarily as a consequence

of the motion estimation step. In fact, in order to compute essential matrix from matching

set, this step uses RANSAC scheme which selects the subset by random choices and the

proportion of inliers is not identical for different matching sets. Some of high proportion

of inliers normally take less time to compute than that of low proportion.

We also notice that around the 700th frame, processing times are much smaller than

others. This situation occurs at the point that has the coordinates (-150,-75) in KITTI-07

trajectory. This step corresponds to a situation where the vehicle stops temporarily. In

this case, the camera does not move and takes always images of the same scene. After

features matching, our system found that there are so many points having the similar

positions in two consecutive images so the motion estimation task is ignored and the

camera is considered to keep the old position.

89

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

Figure 5.7: KITTI-07 per-frame processing time on TX1 (GPU implementation) using
different values of n f rames

Figure 5.8: KITTI-07 localization results using different values of n f rames

Besides, Figure 5.8 shows the effect of n f rames on the localization result. Ground-

truth is always presented by the blue curve. We can notice that more we take into account

the number of neighbor frames, more we get a higher localization precision. The expla-

nation for this exhibition could be found at the features detection level. In fact, at some

points in the trajectory, especially in turning scenarios, current frame contains less com-

mon points with nearest neighbor frame than with a further neighbor frame. Therefore,

the motion estimation with further neighbor frame provides more confidence and has a

higher weight. By integrating a more precise prediction in optimal pose extraction, the

localization error would decrease.

90

CHAPTER 5. EMBEDDING HOOFR SLAM ON A CPU-GPU ARCHITECTURE

5.5 Conclusion

The implementation of HOOFR SLAM on CPU-GPU architecture was obtained as a re-

sult of a hardware-software mapping study addressing feature extraction, data processing,

hardware building implementation and benchmarking. The real-time algorithm imple-

mentation on high performance Intel-based PC architecture processes frames at more than

20 Hz using KITTI dataset. On the Tegra TX1 embedded system, the processing time is

close to real-time performances with 6 fps running rate. In the near future, besides the al-

gorithm optimization, the emergence of new heterogeneous CPU-GPU architectures such

as Xavier Nvidia (8 Core ARM64 CPU, 512 Core Volta GPU) provides a high potential

to embed the HOOFR SLAM algorithm with better timing constraints.

91

Chapter 6

Towards FPGA based embedded SoC

architectures

6.1 Motivation

Field-programmable gate arrays (FPGAs) are attractive due to the high performance with

power efficiency and low latency. These benefits are given through their massive parallel

processing coupled with reconfigurability. An FPGA presents a reconfigurable set of gates

on which developers can design a custom hardware accelerator, deploy it for a particular

application, or reconfigure the device as a new accelerator for others applications.

On GPUs, kernels are compiled to a sequence of instructions to execute. The hardware

processors are fixed and consists of cores that are specialized for common uses. Hence,

with one specific kernel instruction requirements, some parts of the hardware may be

unused. In contrast, on FPGAs, kernels are compiled to custom processing pipelines

built on from the programmable resources such as ALMS, DSP or memory blocks. By

focusing hardware resources only on the algorithm to be executed, FPGAs can offer a

better performance per watt than GPUs for many specific applications.

However, one of the main challenge in FPGAs utilization is their complexity of pro-

gramming. FPGAs are generally programmed using one of the hardware description lan-

guages (HDL) such as Verilog or VHDL used by hardware designers. In practice, these

programming language are complex, hard to analyze and debug so that designers usu-

ally spend much time to develop an application. However, this limitation can be tackled

92

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

by a technique called high-level synthesis (HLS). HLS enables designers to program an

FPGA using high-level languages (C, C++, SystemC or OpenCL). This in turn reduces

both verification and design time in comparison to HDL.

FPGAs are inherently parallel, so they are naturally suitable for OpenCL’s parallel

computing capabilities. FPGAs offer a pipeline parallelism where tasks can be spawned

in a push-pull configuration with others tasks using different data from the previous task

with or without host interaction. OpenCL allows to develop the code in the familiar C pro-

gramming language with the additional capabilities provided by OpenCL. The developers

can send kernels to FPGAs without having to learn the low-level HDL coding. Generally,

there are several benefits for software developers and system designers to use OpenCL to

develop code for FPGAs:

• Ease of development: OpenCL keeps us at a higher level of programming, making

our system open to more software developers because most of them are familiar

only with the C programming language, but not low-level HDL languages.

• Code profiling: using OpenCL, we can profile our code and determine the

performance-sensitive parts that could be hardware accelerated as kernels in an

FPGA.

• Efficiency: the FPGA has a fine-grain parallelism architecture, by using OpenCL

we can generate only the logic needed to deliver one fifth of the power of the hard-

ware alternatives.

• Flexibility: with OpenCL, we can develop kernels that can switch simply between

different types of target (FPGAs, CPUs, GPUs, and DSPs). It seamlessly give us a

truly heterogeneous system design.

• Extended code life: code reuse is often an ambitious goal for software and sys-

tem designers. OpenCL kernels allow us to carry the developed code on different

families and generations of FPGAs from one project to the next.

93

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

These reasons above encourage us to study the use of OpenCL based FPGA-soc archi-

tectures in embedding SLAM applications. In this chapter, we present our work on im-

plementing the front-end part (feature extraction) of HOOFR SLAM system on a FPGA

based SoC architecture.

6.2 Related works and contribution

In the state of the art, several researches have previously investigated the acceleration

of feature extraction using FPGA. In 2009, Yao et al [118] proposed an optimized ar-

chitecture for SIFT feature detection running at 31ms per frame (640x480) on Xilinx

ML507 FPGA. In 2010, Bouris et al [119] implemented SURF detector on Xilinx Vir-

tex 5 XC5VFX130T FPGA that processed at 56 fps (~18 ms per frame) with the same

resolution. The limitation of these work is that they studied only the detection task on

hardware while the description task was out of the scope. In 2013, Chiu et al [120] de-

signed a parallel hardware for the whole SIFT extraction. The algorithm is modified to

reduce computational amount by 90% and memory usage by 95%, running at 30 frames

per second with VGA resolution.

Due to the fact that SIFT and SURF are floating computation, the hardware design

of these algorithm performs a slower speed than binary algorithm such as FAST, ORB,

... Lee [121] presented an ORB extraction system in 2014 that operated at 108 fps for

640x480 images. This system however did not consider the whole ORB algorithm when

missing Harris filtering step. An other ORB system is proposed by Weberruss et al [122]

in 2017, running on an Altera Arria V with throughput equivalent to 72 fps at 1920x1080

or 488 fps at 640x480. Despite mentioning ORB, they employed Harris algorithm for

detecting keypoints. It is not a raw idea of ORB which uses Harris score to filter key-

points only after FAST detection. An alternative of ORB implementation on FPGA was

presented by Sun [123] where the performance is 42 fps with 1000 features with full-HD

images. The proposed architecture is tested on a Zynq-family FPGA.

For OpenCL programming, there are many researches investigating the FPGA accel-

eration by OpenCL on various algorithms. As an example, Pu et al [124] experiments

KNN algorithm on FPGA-based heterogeneous architecture. OpenCL is used to program

94

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Stratix IV 4SGX530 FPGA from Altera. The performance was compared to Intel Core

i7-3770 processor and an AMD Radeon HD7950 graphics card where the authors found

that FPGA-based implementation was more power efficient. In 2017, Muslin [125] eval-

uated the OpenCL implementation on Xilinx Virtex-7-series FPGA of three well-known

algorithms: KNN, Monte Carlo for financial models and Bitonic sorting. A comparison

in terms of execution time, energy and power consumption with some high-end GPUs is

done as well. The author also concluded that FPGAs are much more energy-efficient in

all the test cases and can sometimes be faster than GPUs.

Nevertheless, to the best of our knowledge, there is not a whole system of feature

extraction implemented on a FPGA using OpenCL programming until the present. More-

over, all designed systems above are developed for naive implementations. For a SLAM

application, it is not enough to have a high precision. In practice, almost SLAM sys-

tems used bucketing method to extract keypoints from image [88, 26, 35]. None of the

researches above however considered this method into an optical flow approach. Due to

these reason, in this chapter, our contribution can be stated as following:

• Design a feature extraction system dedicated for SLAM application taking into ac-

count the bucketing method.

• Use OpenCL programming to implement the system on FPGA-based heteroge-

neous architecture.

• Our system use HOOFR extractor, our previous proposal published in [111] due to

its robust performance.

6.3 OpenCL programming advantages on FPGA

The main difference between launching kernels on GPUs and on FPGAs is how the par-

allelism is handled. GPUs are known as single-instruction, multiple-data (SIMD) devices

where a set of processing elements perform the same operation on their own individual

work-items. On the other hand, FPGAs exploit pipeline parallelism when different stages

of the instructions are applied concurrently to different work-items.

95

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

A question arises as a result of this difference in parallelization methods: how branch-

ing is managed. When branching occurs on a GPU, it is still necessary for all work-items

within the same SIMD unit to correctly execute the various branches. However, because

the SIMD unit as a whole operates on a single instruction at a time, all code-paths taken

by the individual work-items must be executed one after one, with individual work-items

disabled or enabled based on how they evaluated the branching condition. As a result,

encountering a branching condition with N options could potentially result in execution

time equal to the sum of execution times for all N options (for N up to the SIMD width).

On the other hand, branching is less of an issue on FPGAs because all code-paths are

already established in hardware. All branch options can be executed concurrently or even

computed speculatively to allow overlap with branch condition computation.

OpenCL on FPGAs presents the advantage of I/O channels and kernel channels

(OpenCL 2.0 pipes): an optimization that is not currently implemented on GPUs. Kernel

channels allow kernels to transfer data via a first-in-first-out (FIFO) buffer and without

the host interaction. Traditionally, when a GPU wants to transfer data from one kernel

to another, it must reads and writes to global memory combined with some synchroniza-

tion methods. The removal of these intermediate reads and writes on FPGA allows us

to achieve performance and power efficiency gains. Moreover, Altera FPGAs also ex-

tend the idea of kernel channels even further to allow I/O interfaces (I/O pipes) allowing

kernels to access directly from a streaming interface without host interactions. It is also

known as IO channels. In practice, the host can effectively configure the data pipeline

and then steps out of the data path. Figure 6.1 illustrates a kernel being executed on three

sets of data coming from an I/O source. Significant time savings are possible because the

FPGA communicates directly with the I/O source, and no longer needs the host to serve

as a middle-operator as in GPU.

SIMD-based parallel processing is suitable for dealing with loops when there are no

dependencies across iterations of the loop. In that case, parallelization can occur by sim-

ply mapping work-items to individual loop iterations. However, in most real applications,

data-dependencies are unavoidable to the structure of the algorithm, and cannot be re-

moved easily. In order to ensure correct computations, GPU programmers must rely on

relatively complicated constructs involving resources shared by work-items in a work

96

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Figure 6.1: OpenCL based FPGA channel benefits

group along with synchronization primitives. GPU programmers could alternatively han-

dle the data-dependency section of work by the method of only a single work-item (also

called an OpenCL task) but it will hamper parallelization and overall performance due

to the idleness of other processing cores. In contrast, pipeline-parallel devices such as

FPGAs have less of issue dealing with single work-items because single work-items are

actually the unit of work in the pipeline anyways. In fact, FPGA can achieve additional

performance by pipelining iterations of a loop which contains loop carried dependen-

cies. It means that the next iteration will be launched as soon as loop dependencies are

completed. This scheduling is built primarily by the compiler. Besides, loop pipelining

performance can also be improved by software developer in a number of ways such as

removing some dependencies, simplifying dependence complexity or relaxing dependen-

cies. Removing dependencies can be realized by using simple access patterns results in

faster launch times for the next iteration. Similar results occur when avoiding expensive

operations when computing loop-carried values. Relaxing dependence increases the num-

ber of iterations between generation and use of a value, which means that the immediate

next iteration can be launched sooner. In Altera OpenCL tool, setting the kernel attribute

“task” informs the compiler that the kernel will run with a single work item.

OpenCL program is implemented on ALTERA FPGA using AOCL tool and our de-

sign flow is shown in figure 6.2. In the first step, host and kernel codes are developed

in parallel to warrant the conjunction between kernel interface and kernel calling of the

host. Then, the functional verification is done using FPGA SDK for OpenCL emulator.

97

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Figure 6.2: Design flow

This feature allows us to test the functionality and iterate on the design without executing

it on FPGA material each time. The emulation of our design is run on x86-64 ubuntu

14.04. Once the functionality is verified, the hardware resource usage for all kernels are

estimated. This step requires a specific FPGA architecture to be defined. After the esti-

mation, in the case that kernels take too much resources or the design is not suitable to be

implemented on a target platform, we return to the first step to modify and optimize the

design. Finally, hardware implementation is generated and is loaded to the target board to

validate performances.

6.4 HOOFR extractor partitioning an a CPU-FPGA ar-

chitecture

HOOFR extractor is divided into 4 functional blocks (FAST, HESSIAN_COMPUTE,

FILTERING and DESCRIPTION) with respect to the algorithm process. This decom-

position is based on an analysis of the data flow to achieve a compromise between con-

suming resources (memory, logic elements) and processing speed. For details, FAST

block is to detect FAST features in the images. HESSIAN_COMPUTE is to compute

hessian score for all keypoints returned by FAST detector. Keypoints are then filtered in

the FILTERING block to keep the relevant ones based on their hessian scores. Finally,

98

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Figure 6.3: HOOFR extractor architecture

DESCRIPTION block builds 256-bit HOOFR descriptor for all relevant keypoints after

the filtering.

CPU-FPGA system for HOOFR extractor is shown in the figure 6.3. Four blocks are

implemented on FPGA for the pipelining. Each functional block is programmed as one

kernel and all kernels are lauched concurrently. CPU plays a role of a controller and

computes integral image required in description block. Noting that the computation of

integral image is irrelevant to be executed on FPGA device in OpenCL design as it could

be realized rapidly by one query pixel-to-pixel. Otherwise, this operation is suitable on

CPU side. Hence, a partitioning is proposed as demonstrated in figure 6.4 in order to

make use of the computing resources. As we can see, for each input image, CPU firstly

transfers the image to FPGA global memory. Then, CPU launches consecutively the three

detection kernels. The DESCRIPTION kernel will be launched only when integral image

has already been computed and transfered to FPGA from CPU. This partitioning allows

us to employ CPU and FPGA resources in parallel. There is no interruption on CPU

after lauching kernel. A synchronization occurs only when all kernels are active and CPU

awaits until FPGA finished the extraction. This synchronization is present to ensure that

valid results are ready to be reloaded to CPU from FPGA.

To have a high precision in SLAM applications, bucketing detection is always em-

ployed to warrant the homogeneous keypoints distribution. It means that image is divided

99

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Figure 6.4: CPU-FPGA execution planning

into grid and a specific number of keypoints is aimed to be extracted for each image cell.

Hence, the pipeline is realized at the level of image cells. When a kernel finishes its work

for one image cell, the next kernel starts to work immediately on this image cell as shown

in figure 6.5. The communication control between kernels is done using altera channel

extension for passing data and for synchronizing kernels with low latency. The imple-

mentation of channel allows kernels to communicate directly with each other via FIFO

buffers. Unlike the typical OpenCL model, data movement across kernels is coordinated

without host intervention.

OpenCL does not warrant the execution order of work-items. Therefore, the execution

order of image cells is undefined. In figure 6.5, three cells a, b, c do not correspond to

cells 0, 1, 2 in the image. In practice, when FAST kernel is finished on cell “a”, it writes

the identification of cell “a” to FAST_ready channel. HESSIAN_COMPUTE kernel reads

this identification and launches the processing for cell “a”. The procedure continues by

a similar way for other kernels. We denote this design as “pipeline of pipeline” due to

100

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Figure 6.5: Pipeline kernel processing

the fact that inside each kernel, work-items are also parallelized following the pipeline

natural characteristic of FPGA.

6.5 HOOFR architecture design

6.5.1 FAST kernel

The intensity of these 16 pixels are compared to the intensity of reference pixel. Each

comparison takes one of three states: darker, brighter, not darker, not brighter. In prac-

tice, the smallest data type supported in OpenCL programming is 8-bits (char or un-

signed char). Hence, we put the comparison result of 16 pixels into 4 elements (fast8_d1,

fast8_d2, fast8_b1, fast8_b2) of the 8-bits type. Each bit of fast8_d1 and fast8_d2 per-

forms that the pixels are darker (value = 1) or not (value = 0) while each bit of fast8_b1

and fast8_b2 shows that the pixels are brighter (value = 1) or not (value = 0).

The advantage of FAST detection is that the segmentation test could be employed to

accelerate the processing. It means that the feature verification could proceed to some

tests to ignore rapidly a pixel. HOOFR extraction used FAST-9 where a central pixel is

considered as a feature when it is darker (dark feature) or brighter (bright feature) than at

least 9 consecutive points in Bresenham circle. The segmentation test can be done with

8 symmetric pairs. In fact, if a central pixel is a dark feature in FAST-9 , the central

point must be darker than at least one of two pixels in a symmetric pair. It is applied for

all 8 symmetric pairs in Bresenham circle. The condition is similar to the case of bright

feature.

101

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

OpenCL implementation of FAST detection on FPGA is shown in algorithm 6.1. Af-

ter the segmentation test, central pixel is ignored in case of negative sign (dark = 0 and

bright = 0). Otherwise, when positive sign is found (dark = 1 or bright = 1), two 8-bit vari-

ables will be concatenated to form a 16-bit variable. The function Verify_FAST_corner

takes this 16-bit variable to check the feature condition. The central pixel is added to

features_list if the presence of 9 consecutive darker or brighter pixels is valid.

The number of work-items launched for the kernel is equal to the number of cells

in the image. Each work-item works on one image cell where the coordinate is deter-

mined by one top-left (tl) pixel and one bottom-right (br) pixel. The boundaries for

image cells are fixed. They are pre-computed and are saved to grid_coors array in the

initialization step. At the end of kernel, the work-item writes the identification of grid to

FAST_ready_channel. From that, the next step knows which cell is ready for processing.

After FAST kernel, FAST features are added to features_list. However, the fea-

tures_list is a global array used for all image cells and the issue is that number of fea-

tures in each cell is different from other cells. To avoid a memory conflict, seperate zones

are created for each image cell in features_list. Noting that the maximum number of

features in one cell is equal to the number of pixels, features_list array is hence created

with N_CELLS x RES elements where N_CELLS is the number of image cells and RES is

the number of pixels (resolution) in the biggest cell. Each element is composed of three

factors (x, y, score) corresponding to 2-D coordinates of the feature in the image and its

hessian score. The Hessian score will be computed in the next kernel. Each image cell

with an identification id will work on the memory zone from the position at id x RES to

the position at (id+1)*RES in features_list.

6.5.2 HESSIAN_COMPUTE kernel

As shown in algorithm 6.2, before computing the hessian score, a work-item of

HESSIAN_COMPUTE kernel must call read_channel_intel function to get from

FAST_ready_channel an identification (ptidx) of an image cell and its number of FAST

features (num_ktps). The oldest identification in the channel will be returned since AOCL

channel is in type of FIFO array. The implementation of read_channel_intel function is

102

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Algorithm 6.1 FAST kernel
declare global arrays: img, features_list, grid_coors;
function KERNEL: FAST

declare 8-bit private variables : fast8_d1, fast8_d2,fast8_b1, fast8_b2;
declare 16-bit private variables : fast16;
ptidx� get_global_id(0);
image_cell� get_Image_Cell(grid_coors, ptidx);
num_ktps� 0;
For each pixel in image_cell do

/////segmentation test for each symmetric pair of pixels////////////
p� Get_intensity(pixel);
dark� 1;
bright� 1;
For i from 0 to 7 do // for each pair of 8 symmetric pairs

p1� Get_intensity(bresenham_circle[i]);
p2� Get_intensity(bresenham_circle[i+8]);
if(dark ==1)

fast8_d1� set_bit(p,p1,i);
fast8_d2� set_bit(p,p2,i+8);
dark� Segmentation_test(fast8_d1,fast8_d2);

end if
if(bright==1)

fast8_b1� set_bit(p,p1,i);
fast8_b2� set_bit(p,p2,i+8);
bright� segmentation_test(fast8_b1,fast8_b2);

end if
if ((dark ==0) && (bright==0)) break; end if

end for
if((dark ==0) && (bright==0)) go_to_next_pixel; end if
//
/////////////////////verify corner/////////
if(dark || bright)

if(dark)
fast16� Concatenation (fast8_d1, fast8_d2);

else
fast16� Concatenation (fast8_b1, fast8_b2);

end if
test_corner� Verify_FAST_corner(fast16);
if(test_corner)

features_list� Add_to_list (pixel_coordinates);
num_ktps++;

end if
end if
//

end for
write_channel_intel(FAST_ready_channel,{ ptidx, num_ktps}); end function

103

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Algorithm 6.2 HESSIAN_COMPUTE kernel
declare global arrays: img, features_list;
function KERNEL: Hessian_Compute

{ptidx, num_ktps}� read_channel_intel(FAST_ready_channel);
For i from 0 to num_ktps do

feature� Get_pixel_from_list(features_list, i);
hessian_score� Compute_Hessian_score(feature); features_list�

Update_features_list(hessian_score);
end for
write_channel_intel (HC_ready_channel, {ptidx, num_ktps}); end function

blocking so that the processing will wait until an identification is succesfully read. Fol-

lowing HOOFR algorithm, hessian computation is simply applying three 7x7 gaussian

square filters on the feature and it is realized for all FAST features in the image cell. The

features_list will be updated with the computed Hessian score.

Similarly to FAST kernel, the work-item writes the identification of image cell to

HC_ready_channel at the end of function to communicate with FILTERING kernel.

6.5.3 Module duplication

During experiments, we found that FAST kernel and HESSIAN_COMPUTE kernel are

bottle-necks of the algorithm flow. These two kernels do not consum much logic resources

but take much time to compute. Despite of the advantage of the FAST segmentation test

allowing to reject rapidly the non-valid features, the test of the whole image (for example:

453620 pixels with the dimension of 1226x370) makes FAST kernel become costly. HES-

SIAN_COMPUTE kernel works only on pixels considered as FAST keypoints. However,

FAST detection returns many keypoints and Hessian score computation for each keypoint

is costly so that HESSIAN_COMPUTE kernel is also time consuming. To accelerate the

processing, we duplicate these two blocks.

There are two ways for the duplication: using num_compute_units attribute or phys-

ical duplication. For the first method, the value of num_compute_units is set to 2 in the

declaration of the kernel function. The work-items are scheduled automatically to exe-

cute on 2 compute_units with uncontrolled ordering. However, AOCL tools only support

the channel implementation with single compute_unit kernel. Hence, physical method is

used in our design.

104

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Figure 6.6: Kernels duplication schema

As shown in figure 6.6, two identical kernel functions are created for each duplicated

block with exactly the same interface except the function name. To avoid the memory

conflict, each function is called from the host to work on seperate image zone: one for

the first half and one for second half. Following the instruction of AOCL tool consisting

that one kernel can read and write to multiple chanels but one channel can be read and

writen from only one kernel, the FAST_ready_channel and HC_ready_channel are also

duplicated for kernel communication on each image zone.

6.5.4 FILTERING kernel

This kernel is the last step of detection phase, it uses FILTERING_ready_channel to com-

municate with DESCRIPTION kernel. To read from HC_ready_channel, due to the fact

that this channel is duplicated, we must use nonblocking channel reads as shown in algo-

rithm 6.3 to get one image cell identification from two seperate FIFO chains.

This kernel is aimed to keep a limited relevant features in one image cell. The maxi-

mum number of keypoints is defined by POINTS_PER_CELL. With the same objective of

avoiding the memory accessing conflict, we declare an array called filtered_features_list.

105

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Algorithm 6.3 FILTERING kernel
declare global arrays: features_list, filtered_features_list;
function KERNEL: Filtering

declare private variables : hessian_min, filtered_num_elements;
valid� false;
while(!valid) do

{ptidx, num_ktps}� read_channel_nb_intel(HC_ready_channel, &valid);
if(!valid) {ptidx, num_ktps} � read_channel_nb_intel(HC_ready_channel_2,

&valid); end if;
end while
filtered_num_elements� 0;
For i from 0 to num_ktps do

hess_score� get_score(features_list, i);
if ((filtered_num_elements < POINTS_PER_CELL) || (hess_score > hessian_min)

)
{filtered_features_list, hessian_min, filtered_num_elements} � Up-

date_filtered_list (features_list, i);
end if

end for
write_channel_intel (FILTERING_ready_channel, {ptidx, filtered_num_elements});

end function

An image cell occupies POINTS_PER_CELL individual positions in this array. In to-

tal, filtered_features_list is the size of POINTS_PER_CELL*N_CELLS. Each element

is in the same form with the elements of features_list containing information about the

coordinates (x,y) and hessian score of a feature. The number of relevant keypoints (fil-

tered_num_elements) is initialized to zero. For every FAST feature detected in the image

cell, the filtering procedure in Update_filtered_list function is described as follows:

• If filtered_num_elements is smaller than POINTS_PER_CELL, feature is added to

filtered_features_list and filtered_num_elements increments by one.

• When filtered_num_elements attains the value of POINTS_PER_CELL, fil-

tered_features_list is queried to find the position which contains keypoint having

the smallest hessian score (hess_min).

• Then, for each new feature, its hessian score is first compared to hessian_min. if

its score is smaller than hessian_min, it is discarded rapidly without changing the

filtered_features_list. In contrast, when its score is bigger, it is added to the list and

a new hessian_min is determined by query filtered_features_list once again.

106

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Algorithm 6.4 DESCRIPTION kernel
declare global arrays: imgintegral, filtered_features_list, descriptors, num_kpts_list;
function KERNEL: Description

declare private variables: keypoint, keypoint_angle, pattern_points,
keypoint_descriptor;

{ptidx, num_ktps}� read_channel_intel(FILTERING_ready_channel);
For i from 0 to num_ktps do

keypoint� Get_keypoint(filtered_features_list, i)
/////// compute orientation ////////////////////
pattern_points� Gaussian_smooth(imgintegral, keypoint, 0);
keypoint_angle� Compute_keypoint_angle(pattern_points);
//
///////compute descriptor/////////
pattern_points� Update_Gaussian_smooth(imgintegral, keypoint,

keypoint_angle); keypoint_descriptor�Make_description(pattern_points);
descriptors� Add_to_descriptors_list(keypoint_descriptor);
//

end for
num_kpts_list� Add_to_num_ktps_list(num_ktps); end function

6.5.5 DESCRIPTION kernel

The DESCRIPTION kernel is shown in algorithm 6.4. The processing task of each fea-

ture consists of two parts: orientation estimation and binary descriptor construction. The

variable pattern_points is an array which contains the intensity of surrounding pixels used

to describe the central pixel. In each part, the intensities of surrounding points are firstly

smoothed by gaussian. In HOOFR, to have a high efficiency between precision and tim-

ing, this smoothing is approximated by mean intensity requiring integral image of the

original input image. This integral image is computed by CPU and is loaded to global

array imgintegral before this kernel is launched.

Features description is saved to a global array denoted as descriptors . The structure

of descriptors is an 2-D array of 32-bit elements where the number of rows is equal to

the number of elements in filtered_features_list and the number of columns is 8. In prac-

tice, each row is a 256-bit descriptor of one feature. Each image cell will describe its

own features and save result to the rows from the position ptidx*POINTS_PER_CELL

to the position (ptidx+1)*POINTS_PER_CELL. Due to the fact that the number of fea-

tures in each image cell could be varied (from 0 to POINTS_PER_CELL), some unused

107

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Kernel Name ALUTs FFs RAMs DSPs
FAST 21021 29762 242 4

Hessian_Compute 11736 18193 122 9
Filtering 11485 24003 180 1

Description 59820 73948 376 40
Channel resources 230 1094 5 0

Total (no duplication) 104292 147000 925 54
(23%) (17%) (51%) (3%)

FAST_2 21021 29762 242 4
Hessian_Compute_2 11736 18193 122 9

Total (duplication) 137049 194955 1289 67
(31%) (22%) (71%) (4%)

Available 448160 896320 1805 1633

Table 6.1: FPGA resource usage

rows could exist. Hence, the quantity of features must be saved to a global array called

num_kpts_list to determine the useful rows in each memory zone.

After DESCRIPTION kernel, three global arrays (filtered_features_list, descriptors

and num_kpts_list) are uploaded back to CPU to regroup the information.

6.6 Implementation and Evaluation

6.6.1 Resource Usage

Our design was synthesized for an Arria 10 SoC SX660 architecture including a dual-

core ARM Cortex-A9 processor (1.5 GHz) and a FPGA with 660K LEs. The version

of AOCL tool is 17.0. As shown in table 6.1, availability of the resources in Arria 10

SX660 does not constrain any design model (with duplication or without duplication).

Our description kernel consumes the most resources and it is much more costly comparing

to the description module in [126] or [122]. The reason is that processing complexity of

the HOOFR algorithm was respected in our design where the keypoint orientation and

keypoint descriptor are generated in description module. Moreover, noting that instead

of using raw value as in BRIEF, pixel intensity in HOOFR flow is filtered to be robust to

image noise. As a result, description kernel takes more resources to handle its operation.

108

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

6.6.2 Timings

We tested our design on images of the 16th sequence of KITTI dataset. The image size

is of 1226 x 370 pixels. However, to evaluate the effect of image resolution to processing

time, we rescale the original images to the different resolution. The scaling was done

using resize function in OpenCV. Then, for each resolution, measuring time was achieved

by a mean value after 100 launches. As shown in table 6.2, our design reaches a frequency

of 54 frame per second (fps) at the original scale (1226 x 370), generating on average of

1750 keypoints per image. At full-HD scale (1920 x 1080), we obtain a frequency of 14

fps with 6929 keypoints per frame.

In the reference [123], the author demonstrated that his design achieves 42 fps with

ORB extractor. However, he deal with only 1000 keypoints and the algorithm was ex-

tremely simplified by changing Harris score to SAD score or changing Gaussian smooth

to Binominal smooth. Besides, he used score only for 3x3 Non-maximal suppression,

which is not the original idea of ORB developers. Indeed, in the original version, Harris

score is aimed to filter keypoints in an image zone. If the number of features returned

after FAST detection is more than a value K in a zone, only K relevant ones having the

highest Harris score are maintained as done in our design.

Another advantage of our system is that the performance is stable across the frames

when the maximum number of keypoints in each image zone is limited. In contrast, for

other systems in the state of the art, the only way to manage the number of keypoints

is changing FAST threshold. Given an random image, if the FAST threshold is not de-

termined so the number of keypoints is unbounded. Otherwise, if FAST processing is

stopped when N keypoints are found, we could not warrant the homogeneous keypoint

distribution which is very important in SLAM application. Figure 6.7 demonstrates the

acceleration on Arria 10 board of our design in comparison to the C++ version running

completely on the embedded ARM CPU. It is obviously that the higher image resolution

is,the higher computation cost is. By offloading the processing to FPGA, we could obtain

a speed from 7x to 9x times faster.

109

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Resolution N keypoints NX x NY Time (ms) fps
352x240 360 6x4 4.031 248
350x480 682 6x8 8.210 121
580x480 1074 10x8 11.993 83
720x480 1462 14x8 15.362 65
720x576 1780 14x10 18.590 53

1226x370 1750 24x6 18.247 54
1280x720 3661 24x14 38.262 26

1920x1080 6929 38x20 68.684 14

Table 6.2: Timimg performance (FAST_threshold = 12, POINTS_PER_CELL = 15)

Figure 6.7: Acceleration factor evaluated for an Arria 10 SoC (Right axis: execution time
in ms, Left axis: acceleration factor)

110

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Resolution GPU time GPU FPGA time FPGA FPGA Power
(ms) power (ms) power efficiency

352x240 15.362

64 (W)

4.031

21 (W)

11.612

350x480 19.779 8.210 7.341

580x480 20.075 11.993 5.608

720x480 20.191 15.362 4.005

720x576 21.195 18.590 3.474

1226x370 23.441 18.247 3.914

1280x720 27.127 38.262 2.160

1920x1080 49.023 68.684 2.175

Table 6.3: FPGA - GPU comparison

6.6.3 Perforances comparison: FPGA vs GPU implementations

Our design is realized using OpenCL which gives us a capability of implementing not

only on FPGAs but also on various alternative hardware such as GPUs. Here, to compare

benchmarks, we used a powerful GPU Nvidia Geforce GT 740 containing 384 CUDA

cores clocked at 1.0 GHz. The essential difference is that GPUs do not support channel

communication so that kernel blocks must be launched sequentially. Table 6.7 shows

timing and power efficiency comparison between the FPGA and the GPU. As can be seen,

FPGA is faster than GPU at low resolution but at higher resolution, GPU becomes faster.

The reason is that a GT 740 GPU includes a huge number of CUDA cores. At the low

resolutions, the number of thread is small so that it did not make use of all computation

resources. Otherwise, when the resolution increase, the number of thread increase. All

GPU resources are hence employed in processing and the GPU becomes faster in our

benchmark.

The Power efficiency factor is defined as the processing speed given a power energy

supply. As we can see, up to full-HD resolution (1920 x 1080), Arria 10 FPGA still

overcomes Nvidia GT 740 GPU in terms of power efficiency.

111

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

6.7 Conclusion

To reach a low energy consumption, an OpenCL-based FPGA SoC architecture for

HOOFR feature extraction has been designed. The complexity of HOOFR algorithm was

respected to ensure the robustness. Each block was designed so that the detection result

on hardware is similar to that proceeded in software. This feature extraction system on

FPGA respects bucketing method to warrant the homogeneous distribution of keypoints

because it is aimed to use in SLAM applications. The design was evaluated for on Arria

10 SoC FPGA where the OpenCL design is 7x to 9x faster than the C++ implementation

running completely on the on-chip ARM CPU. The throughput was 54 fps at 1226x370

or 14 fps at 1920x1080. Moreover, through the experiments, FPGA offers a better power

efficiency comparing to a GPU implementation.

In our SLAM system, HOOFR feature extraction is the front-end part. Noting that the

back-end part (SLAM kernel) has a high processing complexity and it is not suitable to

be implemented on current FPGA due to the lack of logic elements. Therefore, we intend

to propose a heterogeneous architecture based FPGA for SLAM applications where the

font-end part runs on FPGA and the SLAM kernel runs on multi-core CPU. This kind

of architecture will be dedicated to embed SLAM algorithm on mobile devices such as

autonomous robots or intelligent vehicles.

112

Conclusion and Future Works

Conclusion

In this thesis, we have studied a visual SLAM system for large-scale autonomous vehicle

applications. The visual SLAM system were considered as the combination of 2 principal

parts: the image-processing (front-end task) and the SLAM-core (back-end task). With

in-depth investigation and comparative analysis, corresponding proposals were presented

for the two tasks to meet the requirement in this field:

For the front-end task, we have presented a method named HOOFR detector, which

aims to address the problem of detecting, describing and matching image keypoints. Our

detector is the combination of a modified ORB detector with a Hessian score, while our

descriptor employs a human retina based descriptor consisting of a FREAK version with

enhanced overlapping. Our proposal offers a better compromise between processing times

and matching quality compared to others algorithms in the state-of-the-art such as SIFT,

SURF and ORB. The experimental test shows that HOOFR is much faster than SURF,

SIFT with competitive matching results. Besides, HOOFR exhibits comparably low com-

putation cost as ORB and outperforms ORB matching performance in most real scenes.

HOOFR extractor were also proved to be implemented efficiently on embedded platform

such as ODROID-XU4 for computer vision applications.

For the back-end task, a novel estimation algorithm for feature-based stereo VSLAM

has been presented. It integrates HOOFR features so that it is referred as HOOFR SLAM.

The binary descriptor is employed for motion estimation and loop closure detection. Mo-

tion estimates are integrated over time following a hybrid filtering/key frame strategy.

Position is estimated using a widowed weighted mean using previous neighbor frames.

113

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Weights are computed from inter-frame robust feature matching. The localization accu-

racy was validated on six well-known datasets (KITTI, Oxford, Malaga, MRT, St-Lucia

and New College).

Afterwards, the parallelized lightweight VSLAM framework on CPU-GPU architec-

ture was then obtained as a result of a hardware-software mapping study addressing

feature extraction, data processing, hardware implementation and benchmarking. The

real-time algorithm implementation on high performance Intel-based PC architecture pro-

cesses real-time frame rate at more than 20 Hz using sequences of KITTI dataset. On the

Tegra TX1 embedded system, the processing time is 6 fps running rate which can be

potentially improved with the emergence of embedded architectures with high perfor-

mances.

Finally, to take advantage of FPGA architectures, especially in terms of energy con-

sumption, an OpenCL-based FPGA SoC architecture for HOOFR feature extraction has

been designed. The complexity of HOOFR algorithm was respected to ensure the robust-

ness. This feature extraction system on FPGA respects bucketing method to warrant the

homogeneous distribution of keypoints because it is aimed to use in SLAM applications.

The FPGA implementation shows that the OpenCL design is 7x to 9x faster than the C++

implementation running on the on-chip ARM CPU. The obtained throughput is 54 fps at

1226x370 pixels or 14 fps at 1920x1080 pixels. Moreover, through the experiments, the

FPGA offers a better power efficiency compared to a GPU implementation. This makes

FPGAs potential candidates for designing a dedicated system based SLAM applications.

Future works

Despite of a fast running on a powerful Intel-based PC, real-time performance of the

whole HOOFR SLAM algorithm on an embedded system that consumes few watts re-

mains a perspective of this work. Moreover, the improvement of HOOFR localization in

high-way environments will also be taken into account. In the near future, we would like

to further improve the performance of HOOFR SLAM on both localization and speed and

evaluate it using datasets of an instrumented vehicle (figure 6.8) of our SATIE laboratory.

The emergence of new heterogeneous CPU-GPU architectures such as Xavier Nvidia (8

114

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Figure 6.8: Instrumented vehicle of SATIE laboratory

Figure 6.9: FPGA/GPU-CPU architecture

Core ARM64 CPU, 512 Core Volta GPU) should help to embed the HOOFR SLAM algo-

rithm with real-time constraints. Furthermore, HOOFR SLAM is evaluated in this thesis

using the HIL (Hardware In the Loop) approach and datasets. In the future, we also intend

to test HOOFR SLAM with an online dataflow provided by a stereo camera.

For HOOFR extractor FPGA implementation, we would like to continue optimizing

our design to reduce resource usage and execution times. Then, we intend to integrate

in our system an interface to camera to complete the SLAM processing from raw sensor

data. Furthermore, we would like to investigate the embeddability of the whole SLAM

application on a combination of FPGA/GPU-CPU system as shown in figure 6.9 for au-

tonomous vehicles, in particular, on the instrumented vehicle of the SATIE laboratory.

The FPGA is aimed to be interfaced with sensor to process image from sensor data to

HOOFR extraction. Otherwise, the SLAM kernel will be implemented on CPU-GPU

heterogeneous architecture.

115

Appendix

Root Mean Square Error (RMSE)

The Root Mean Square Error (also called the root mean square deviation, RMSD) is a

frequently used measure of the difference between values predicted by a model and the

values actually observed from the environment that is being modeled. These individual

differences are also called residuals, and the RMSE serves to aggregate them into a sin-

gle measure of predictive power. The RMSE of a model prediction with respect to the

estimated variable Xmodel is defined as the square root of the mean squared error:

RMSE =

√
∑

n
i=1(Xobs,i−Xmodel,i)2

n

where Xobs is observed values andXmodel is modeled values at time/place i. The calcu-

lated RMSE values is measured on the same scale, with the same units as Xobs and Xmodel .

It expresses average model prediction error, can range from 0 to ∞ and are indifferent

to the direction of errors. It is negatively-oriented scores, which means lower values are

better.

We use RMSE to evaluate the performance of SLAM system, Xmodel is assigned to

ground-truth provided by GPS-RTK while Xobs is camera position estimated from SLAM

algorithms.

116

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

Essential matrix

Image points are represented by homogeneous 3-vectors q and q
′

in the first and second

view, respectively. World points are represented by homogeneous 4-vectors Q .A per-

spective view is represented by a 3x4 camera matrix P indicating the image projection q

~PQ , where ~ denotes equality up to scale. A view with a finite projection center can be

factored into P = K[R|t] , where K is a 3x3 upper triangular calibration matrix holding the

intrinsic parameters and R is a rotation matrix. Let the camera matrices for the two views

be K1[I|0] and P = K2[R|t] . Let [t]x denotes the skew symmetric matrix.

[t]x =


0 −t3 t2

t3 0 −t1

−t2 t1 0

 (6.1)

Then, the fundamental matrix is

F = KT
2 [t]xRK−1

1 (6.2)

The fundamental matrix encodes the well-known coplanarity or epipolar constraint

q
′T Fq = 0. The fundamental matrix can be considered without knowledge of the calibra-

tion matrices. Moreover, it continues to exist when the projection centers are not finite.

If K1and K2are known, the cameras are said to be calibrated. In this case, we can al-

ways assume that the image points qand q
′

have been pre-multiplied by K−1
1 and K−1

2 ,

respectively, so that the epipolar constraint simplifies to

q
′T Eq = 0 (6.3)

where the matrix E = [t]xR is called the essential matrix.

Theorem 1. A real nonzero 3x3 matrix, F , is a fundamental matrix if and only if it

satisfies the equation:

det(F) = 0 (6.4)

117

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

An essential matrix has the additional property that the two nonzero singular values

are equal. This leads to the following cubic constraints on the essential matrix:

Theorem 2. A real nonzero 3x3 matrix, E , is an essential matrix if and only if it

satisfies the equation:

EET E− 1
2

trace(EET)E = 0 (6.5)

SLAM Error in KITTI dataset

This section shows the performance comparison of HOOFR SLAM and ORB SLAM with

respect to ground-truth provided by GPS-RTK for the 11 first sequences of KITTI dataset.

The camera position is presented on 3 axis separately, for all frames in each sequence.

118

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

119

CHAPTER 6. TOWARDS FPGA BASED EMBEDDED SOC ARCHITECTURES

120

Bibliography

[1] Cyrill Stachniss. Robotic mapping and exploration, volume 55. Springer, 2009.

[2] Andreas Nüchter, Kai Lingemann, Joachim Hertzberg, and Hartmut Surmann. 6d

slamâ3d mapping outdoor environments. Journal of Field Robotics, 24(8-9):699–

722, 2007.

[3] Sebastian Thrun, Michael Montemerlo, and Andrei Aron. Probabilistic terrain

analysis for high-speed desert driving. In Robotics: Science and Systems, pages

16–19, 2006.

[4] Paul Newman, John Leonard, Juan D Tardós, and José Neira. Explore and re-

turn: Experimental validation of real-time concurrent mapping and localization. In

Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Con-

ference on, volume 2, pages 1802–1809. IEEE, 2002.

[5] Jan Steckel and Herbert Peremans. Batslam: Simultaneous localization and map-

ping using biomimetic sonar. PloS one, 8(1):e54076, 2013.

[6] Stephen Se, David G Lowe, and James J Little. Vision-based global localization

and mapping for mobile robots. IEEE Transactions on robotics, 21(3):364–375,

2005.

[7] Thomas Lemaire, Cyrille Berger, Il-Kyun Jung, and Simon Lacroix. Vision-based

slam: Stereo and monocular approaches. International Journal of Computer Vision,

74(3):343–364, 2007.

[8] Andrew J Davison. Real-time simultaneous localisation and mapping with a single

camera. In null, page 1403. IEEE, 2003.

121

BIBLIOGRAPHY

[9] Radu Bogdan Rusu, Aravind Sundaresan, Benoit Morisset, Kris Hauser, Motilal

Agrawal, Jean-Claude Latombe, and Michael Beetz. Leaving flatland: Efficient

real-time three-dimensional perception and motion planning. Journal of Field

Robotics, 26(10):841–862, 2009.

[10] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei

Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann,

et al. Stanley: The robot that won the darpa grand challenge. Journal of field

Robotics, 23(9):661–692, 2006.

[11] Matthew Johnson-Roberson, Oscar Pizarro, Stefan B Williams, and Ian Mahon.

Generation and visualization of large-scale three-dimensional reconstructions from

underwater robotic surveys. Journal of Field Robotics, 27(1):21–51, 2010.

[12] David Ribas, Pere Ridao, Juan Domingo Tardós, and José Neira. Underwater slam

in man-made structured environments. Journal of Field Robotics, 25(11-12):898–

921, 2008.

[13] Pedro Piniés, Juan D Tardós, and José Neira. Localization of avalanche victims

using robocentric slam. In Intelligent Robots and Systems, 2006 IEEE/RSJ Inter-

national Conference on, pages 3074–3079. IEEE, 2006.

[14] Christopher Mei, Eric Sommerlade, Gabe Sibley, Paul Newman, and Ian Reid. Hid-

den view synthesis using real-time visual slam for simplifying video surveillance

analysis. In Robotics and Automation (ICRA), 2011 IEEE International Conference

on, pages 4240–4245. IEEE, 2011.

[15] Jorge Artieda, José M Sebastian, Pascual Campoy, Juan F Correa, Iván F Mon-

dragón, Carol Martínez, and Miguel Olivares. Visual 3-d slam from uavs. Journal

of Intelligent and Robotic Systems, 55(4-5):299, 2009.

[16] Clark F Olson, Larry H Matthies, John R Wright, Rongxing Li, and Kaichang

Di. Visual terrain mapping for mars exploration. Computer Vision and Image

Understanding, 105(1):73–85, 2007.

122

BIBLIOGRAPHY

[17] Bastian Steder, Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Visual

slam for flying vehicles. IEEE Transactions on Robotics, 24(5):1088–1093, 2008.

[18] Denis Chekhlov, Andrew P Gee, Andrew Calway, and Walterio Mayol-Cuevas.

Ninja on a plane: Automatic discovery of physical planes for augmented reality

using visual slam. In Proceedings of the 2007 6th IEEE and ACM International

Symposium on Mixed and Augmented Reality, pages 1–4. IEEE Computer Society,

2007.

[19] Georg Klein and David Murray. Parallel tracking and mapping for small ar

workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and

ACM International Symposium on, pages 225–234. IEEE, 2007.

[20] Oscar G Grasa, Javier Civera, and JMM Montiel. Ekf monocular slam with relo-

calization for laparoscopic sequences. In Robotics and Automation (ICRA), 2011

IEEE International Conference on, pages 4816–4821. IEEE, 2011.

[21] Lina M Paz, Pedro Piniés, Juan D Tardós, and José Neira. Large-scale 6-dof slam

with stereo-in-hand. IEEE transactions on robotics, 24(5):946–957, 2008.

[22] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam:

Real-time single camera slam. IEEE Transactions on Pattern Analysis & Machine

Intelligence, (6):1052–1067, 2007.

[23] Juan Manuel Sáez and Francisco Escolano. 6dof entropy minimization slam. In

Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International

Conference on, pages 1548–1555. IEEE, 2006.

[24] Pedro Piniés and Juan D Tardós. Large-scale slam building conditionally indepen-

dent local maps: Application to monocular vision. IEEE Transactions on Robotics,

24(5):1094–1106, 2008.

[25] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a

versatile and accurate monocular slam system. IEEE Transactions on Robotics,

31(5):1147–1163, 2015.

123

BIBLIOGRAPHY

[26] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source SLAM sys-

tem for monocular, stereo and RGB-D cameras. arXiv preprint arXiv:1610.06475,

2016.

[27] Hyon Lim, Jongwoo Lim, and H Jin Kim. Real-time 6-dof monocular visual slam

in a large-scale environment. In Robotics and Automation (ICRA), 2014 IEEE

International Conference on, pages 1532–1539. IEEE, 2014.

[28] Joan Sola. Multi-camera vslam: from former information losses to self-calibration.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), San Diego, CA, USA, 2007.

[29] Eagle S Jones and Stefano Soatto. Visual-inertial navigation, mapping and localiza-

tion: A scalable real-time causal approach. The International Journal of Robotics

Research, 30(4):407–430, 2011.

[30] Michael Montemerlo and Sebastian Thrun. Fastslam 2.0. FastSLAM: A scalable

method for the simultaneous localization and mapping problem in robotics, pages

63–90, 2007.

[31] Michael J Milford and Gordon F Wyeth. Mapping a suburb with a single cam-

era using a biologically inspired slam system. IEEE Transactions on Robotics,

24(5):1038–1053, 2008.

[32] Richard I Hartley and Peter Sturm. Triangulation. Computer vision and image

understanding, 68(2):146–157, 1997.

[33] Stephen Se, David Lowe, and Jim Little. Mobile robot localization and mapping

with uncertainty using scale-invariant visual landmarks. The international Journal

of robotics Research, 21(8):735–758, 2002.

[34] Clark F Olson, Larry H Matthies, Marcel Schoppers, and Mark W Maimone.

Rover navigation using stereo ego-motion. Robotics and Autonomous Systems,

43(4):215–229, 2003.

[35] Kurt Konolige and Motilal Agrawal. Frameslam: From bundle adjustment to real-

time visual mapping. IEEE Transactions on Robotics, 24(5):1066–1077, 2008.

124

BIBLIOGRAPHY

[36] Kurt Konolige, James Bowman, JD Chen, Patrick Mihelich, Michael Calonder,

Vincent Lepetit, and Pascal Fua. View-based maps. The International Journal of

Robotics Research, 29(8):941–957, 2010.

[37] Christopher Mei, Gabe Sibley, Mark Cummins, Paul M Newman, and Ian D Reid.

A constant-time efficient stereo slam system. In BMVC, pages 1–11, 2009.

[38] Michael Kaess and Frank Dellaert. Probabilistic structure matching for visual slam

with a multi-camera rig. Computer Vision and Image Understanding, 114(2):286–

296, 2010.

[39] Gerardo Carrera, Adrien Angeli, and Andrew J Davison. Slam-based automatic

extrinsic calibration of a multi-camera rig. In Robotics and Automation (ICRA),

2011 IEEE International Conference on, pages 2652–2659. IEEE, 2011.

[40] Andrew J Davison, Yolanda Gonzalez Cid, and Nobuyuki Kita. Real-time 3d slam

with wide-angle vision. IFAC Proceedings Volumes, 37(8):868–873, 2004.

[41] Davide Scaramuzza and Roland Siegwart. Appearance-guided monocular omni-

directional visual odometry for outdoor ground vehicles. IEEE transactions on

robotics, 24(5):1015–1026, 2008.

[42] Albert S Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Matu-

rana, Dieter Fox, and Nicholas Roy. Visual odometry and mapping for autonomous

flight using an rgb-d camera. In Robotics Research, pages 235–252. Springer, 2017.

[43] David Nistér. An efficient solution to the five-point relative pose problem. IEEE

transactions on pattern analysis and machine intelligence, 26(6):756–770, 2004.

[44] Hauke Strasdat, J Montiel, and Andrew J Davison. Scale drift-aware large scale

monocular slam. Robotics: Science and Systems VI, 2, 2010.

[45] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vi-

sion. Cambridge university press, 2003.

[46] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transac-

tions on pattern analysis and machine intelligence, 22, 2000.

125

BIBLIOGRAPHY

[47] Azra Fetić, Davor Jurić, and Dinko Osmanković. The procedure of a camera cali-

bration using camera calibration toolbox for matlab. In MIPRO, 2012 Proceedings

of the 35th International Convention, pages 1752–1757. IEEE, 2012.

[48] Reg Willson. Tsai camera calibration software. C code for Tsai cali-

bration available online at< URL: http://www-2. cs. cmu. edu/afs/cs. cmu.

edu/user/rgw/www/TsaiCode. html, 1995.

[49] D Scaramuzza and R Siegwart. Ocamcalib toolbox: Omnidirectional camera cali-

bration toolbox for matlab. Google for âocamcalibâ., 2006.

[50] Tomas Svoboda, Daniel Martinec, Tomas Pajdla, Jean-Yves Bouguet, Tomas

Werner, and Ondrej Chum. Multi-camera self-calibration. Czech Technical Univer-

sity, Prague, Czech Republic.\tt http://cmp. felk. cvut. cz/˜ svoboda/SelfCal, 2003.

[51] Olivier Koch, Matthew R Walter, Albert S Huang, and Seth Teller. Ground robot

navigation using uncalibrated cameras. In Robotics and Automation (ICRA), 2010

IEEE International Conference on, pages 2423–2430. IEEE, 2010.

[52] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam: Dense

tracking and mapping in real-time. In Computer Vision (ICCV), 2011 IEEE Inter-

national Conference on, pages 2320–2327. IEEE, 2011.

[53] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct

monocular slam. In European Conference on Computer Vision, pages 834–849.

Springer, 2014.

[54] Sparsh Mittal. A survey of techniques for managing and leveraging caches in gpus.

Journal of Circuits, Systems, and Computers, 23(08):1430002, 2014.

[55] Philipp Michel, Joel Chestnutt, Satoshi Kagami, Koichi Nishiwaki, James Kuffner,

and Takeo Kanade. Gpu-accelerated real-time 3d tracking for humanoid loco-

motion and stair climbing. In Intelligent Robots and Systems, 2007. IROS 2007.

IEEE/RSJ International Conference on, pages 463–469. IEEE, 2007.

126

BIBLIOGRAPHY

[56] Haiyang Zhang and Fred Martin. Cuda accelerated robot localization and map-

ping. In Technologies for Practical Robot Applications (TePRA), 2013 IEEE Inter-

national Conference on, pages 1–6. IEEE, 2013.

[57] Lu Ma, Juan M Falquez, Steve McGuire, and Gabe Sibley. Large scale dense visual

inertial slam. In Field and Service Robotics, pages 141–155. Springer, 2016.

[58] Mikael Persson, Tommaso Piccini, Michael Felsberg, and Rudolf Mester. Robust

stereo visual odometry from monocular techniques. In Intelligent Vehicles Sympo-

sium (IV), 2015 IEEE, pages 686–691. IEEE, 2015.

[59] Siddharth Choudhary, Shubham Gupta, and PJ Narayanan. Practical time bundle

adjustment for 3d reconstruction on the gpu. In European Conference on Computer

Vision, pages 423–435. Springer, 2010.

[60] Changchang Wu, Sameer Agarwal, Brian Curless, and Steven M Seitz. Multicore

bundle adjustment. In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 3057–3064. IEEE, 2011.

[61] Diego Rodriguez-Losada, Pablo San Segundo, Miguel Hernando, Paloma de la

Puente, and Alberto Valero-Gomez. Gpu-mapping: Robotic map building with

graphical multiprocessors. IEEE Robotics & Automation Magazine, 20(2):40–51,

2013.

[62] Adrian Ratter, Claude Sammut, and Matthew McGill. Gpu accelerated graph slam

and occupancy voxel based icp for encoder-free mobile robots. In Intelligent

Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages

540–547. IEEE, 2013.

[63] Luigi Nardi, Bruno Bodin, M Zeeshan Zia, John Mawer, Andy Nisbet, Paul HJ

Kelly, Andrew J Davison, Mikel Luján, Michael FP O’Boyle, Graham Riley, et al.

Introducing slambench, a performance and accuracy benchmarking methodology

for slam. In Robotics and Automation (ICRA), 2015 IEEE International Conference

on, pages 5783–5790. IEEE, 2015.

127

BIBLIOGRAPHY

[64] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David

Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and An-

drew Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In

Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium

on, pages 127–136. IEEE, 2011.

[65] M Zeeshan Zia, Luigi Nardi, Andrew Jack, Emanuele Vespa, Bruno Bodin, Paul HJ

Kelly, and Andrew J Davison. Comparative design space exploration of dense and

semi-dense slam. In Robotics and Automation (ICRA), 2016 IEEE International

Conference on, pages 1292–1299. IEEE, 2016.

[66] Luna Backes, Alejandro Rico, and Björn Franke. Experiences in speeding up com-

puter vision applications on mobile computing platforms. In Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS), 2015 International

Conference on, pages 1–8. IEEE, 2015.

[67] Vanderlei Bonato, José A de Holanda, and Eduardo Marques. An embedded multi-

camera system for simultaneous localization and mapping. In International Work-

shop on Applied Reconfigurable Computing, pages 109–114. Springer, 2006.

[68] Grigorios Mingas, Emmanouil Tsardoulias, and Loukas Petrou. An fpga im-

plementation of the smg-slam algorithm. Microprocessors and Microsystems,

36(3):190–204, 2012.

[69] Sérgio Cruz, Daniel M Muñoz, Milton Conde, Carlos H Llanos, and Geovany A

Borges. Fpga implementation of a sequential extended kalman filter algorithm ap-

plied to mobile robotics localization problem. In Circuits and Systems (LASCAS),

2013 IEEE Fourth Latin American Symposium on, pages 1–4. IEEE, 2013.

[70] Daniel Törtei Tertei, Jonathan Piat, and Michel Devy. Fpga design of ekf block

accelerator for 3d visual slam. Computers & Electrical Engineering, 55:123–137,

2016.

[71] Mengyuan Gu, Kaiyuan Guo, Wenqiang Wang, Yu Wang, and Huazhong Yang.

An fpga-based real-time simultaneous localization and mapping system. In Field

128

BIBLIOGRAPHY

Programmable Technology (FPT), 2015 International Conference on, pages 200–

203. IEEE, 2015.

[72] Janosch Nikolic, Joern Rehder, Michael Burri, Pascal Gohl, Stefan Leutenegger,

Paul T Furgale, and Roland Siegwart. A synchronized visual-inertial sensor system

with fpga pre-processing for accurate real-time slam. In Robotics and Automation

(ICRA), 2014 IEEE International Conference on, pages 431–437. IEEE, 2014.

[73] Biruk G Sileshi, Juan Oliver, Ricardo Toledo, Jose Gonçalves, and Pedro Costa.

Particle filter slam on fpga: A case study on robot@ factory competition. In Robot

2015: Second Iberian Robotics Conference, pages 411–423. Springer, 2016.

[74] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets

robotics: The kitti dataset. The International Journal of Robotics Research,

32(11):1231–1237, 2013.

[75] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1 Year, 1000km:

The Oxford RobotCar Dataset. The International Journal of Robotics Research

(IJRR), 36(1):3–15, 2017.

[76] Jose-Luis Blanco, Francisco-Angel Moreno, and Javier Gonzalez-Jimenez. The

malaga urban dataset: High-rate stereo and lidars in a realistic urban scenario.

International Journal of Robotics Research, 33(2):207–214, 2014.

[77] Frank Moosmann and Christoph Stiller. Velodyne SLAM. In Proceedings of the

IEEE Intelligent Vehicles Symposium, pages 393–398, Baden-Baden, Germany,

June 2011.

[78] Michael Warren, D. McKinnon, H. He, and Ben Upcroft. Unaided stereo vision

based pose estimation. In Gordon Wyeth and Ben Upcroft, editors, Australasian

Conference on Robotics and Automation, Brisbane, 2010. Australian Robotics and

Automation Association.

[79] Mike Smith, Ian Baldwin, Winston Churchill, Rohan Paul, and Paul Newman. The

new college vision and laser data set. The International Journal of Robotics Re-

search, 28(5):595–599, 2009.

129

BIBLIOGRAPHY

[80] David G Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national journal of computer vision, 60(2):91–110, 2004.

[81] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust fea-

tures. In Computer vision–ECCV 2006, pages 404–417. Springer, 2006.

[82] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient

alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 2564–2571. IEEE, 2011.

[83] Edward Rosten and Tom Drummond. Machine learning for high-speed corner

detection. In Computer Vision–ECCV 2006, pages 430–443. Springer, 2006.

[84] Michael Calonder, Vincent Lepetit, Mustafa Ozuysal, Tomasz Trzcinski, Christoph

Strecha, and Pascal Fua. Brief: Computing a local binary descriptor very fast.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(7):1281–

1298, 2012.

[85] J. M. M. Mur-Artal Raul, Montiel and Juan D. Tardos. Orb-slam: a versatile and

accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–

1163, 2015.

[86] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk: Binary robust

invariant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 2548–2555. IEEE, 2011.

[87] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast retina

keypoint. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Con-

ference on, pages 510–517. Ieee, 2012.

[88] Taihú Pire, Thomas Fischer, Javier Civera, Pablo De Cristóforis, and Julio Jacobo

Berlles. Stereo parallel tracking and mapping for robot localization. In Intelligent

Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages

1373–1378. IEEE, 2015.

130

BIBLIOGRAPHY

[89] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jiri

Matas, Frederik Schaffalitzky, Timor Kadir, and Luc Van Gool. A comparison of

affine region detectors. International journal of computer vision, 65(1-2):43–72,

2005.

[90] Engin Tola, Vincent Lepetit, and Pascal Fua. Daisy: An efficient dense descriptor

applied to wide-baseline stereo. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 32(5):815–830, 2010.

[91] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-

tection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[92] Francesco Bianconi and Antonio Fernández. Evaluation of the effects of gabor

filter parameters on texture classification. Pattern Recognition, 40(12):3325–3335,

2007.

[93] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point

detectors. International journal of computer vision, 60(1):63–86, 2004.

[94] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

[95] Dai-Duong Nguyen, Abdelhafid El Ouardi, and Samir Bouaziz. Enhanced bio-

inspired feature extraction for embedded application. In Control, Automation,

Robotics and Vision (ICARCV), 2016 14th International Conference on, pages 1–6.

IEEE, 2016.

[96] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam sys-

tem for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics,

33(5):1255–1262, 2017.

[97] Luis Riazuelo, Javier Civera, and JMM Montiel. C 2 tam: A cloud framework for

cooperative tracking and mapping. Robotics and Autonomous Systems, 62(4):401–

413, 2014.

131

BIBLIOGRAPHY

[98] Guillaume Bresson, Thomas Féraud, Romuald Aufrère, Paul Checchin, and Roland

Chapuis. Real-time monocular slam with low memory requirements. IEEE Trans-

actions on Intelligent Transportation Systems, 16(4):1827–1839, 2015.

[99] Geoffrey Pascoe, Will Maddern, Michael Tanner, Pedro Piniés, and Paul Newman.

Nid-slam: Robust monocular slam using normalised information distance. In Con-

ference on Computer Vision and Pattern Recognition, 2017.

[100] Andrew J Davison and David W Murray. Mobile robot localisation using active

vision. In European Conference on Computer Vision, pages 809–825. Springer,

1998.

[101] Andrew J Davison and David W Murray. Simultaneous localization and map-

building using active vision. IEEE transactions on pattern analysis and machine

intelligence, 24(7):865–880, 2002.

[102] Andrew J Davison and Nobuyuki Kita. 3d simultaneous localisation and map-

building using active vision for a robot moving on undulating terrain. In Computer

Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE

Computer Society Conference on, volume 1, pages I–I. IEEE, 2001.

[103] Lina María Paz, Patric Jensfelt, Juan D Tardos, and José Neira. Ekf slam updates

in o (n) with divide and conquer slam. In Robotics and Automation, 2007 IEEE

International Conference on, pages 1657–1663. IEEE, 2007.

[104] Sebastian Thrun, Michael Montemerlo, Daphne Koller, Ben Wegbreit, Juan Nieto,

and Eduardo Nebot. Fastslam: An efficient solution to the simultaneous localiza-

tion and mapping problem with unknown data association. Journal of Machine

Learning Research, 4(3):380–407, 2004.

[105] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Nonlinear constraint net-

work optimization for efficient map learning. IEEE Transactions on Intelligent

Transportation Systems, 10(3):428–439, 2009.

132

BIBLIOGRAPHY

[106] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Burgard. A

tutorial on graph-based slam. IEEE Intelligent Transportation Systems Magazine,

2(4):31–43, 2010.

[107] Hauke Strasdat, José MM Montiel, and Andrew J Davison. Visual slam: why filter?

Image and Vision Computing, 30(2):65–77, 2012.

[108] Christopher Mei, Gabe Sibley, Mark Cummins, Paul Newman, and Ian Reid.

Rslam: A system for large-scale mapping in constant-time using stereo. Inter-

national journal of computer vision, 94(2):198–214, 2011.

[109] Jakob Engel, Jörg Stückler, and Daniel Cremers. Large-scale direct slam with

stereo cameras. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ Inter-

national Conference on, pages 1935–1942. IEEE, 2015.

[110] Eckart Michaelsen, Wolfgang von Hansen, Michael Kirchhof, Jochen Meidow, and

Uwe Stilla. Estimating the essential matrix: Goodsac versus ransac. Photogram-

metric Computer Vision, pages 1–6, 2006.

[111] Dai-Duong Nguyen, Abdelhafid El Ouardi, Emanuel Aldea, and Samir Bouaziz.

Hoofr: An enhanced bio-inspired feature extractor. In Pattern Recognition (ICPR),

2016 23rd International Conference on, pages 2977–2982. IEEE, 2016.

[112] Dorian Gálvez-López and Juan D Tardos. Bags of binary words for fast place

recognition in image sequences. IEEE Transactions on Robotics, 28(5):1188–

1197, 2012.

[113] Takeo Kanade and Masatoshi Okutomi. A stereo matching algorithm with an adap-

tive window: Theory and experiment. IEEE transactions on pattern analysis and

machine intelligence, 16(9):920–932, 1994.

[114] Mark Cummins and Paul Newman. Highly scalable appearance-only slam-fab-map

2.0. In Robotics: Science and Systems, volume 5, page 17. Seattle, USA, 2009.

[115] Thomas Whelan, Stefan Leutenegger, R Salas-Moreno, Ben Glocker, and Andrew

Davison. Elasticfusion: Dense slam without a pose graph. Robotics: Science and

Systems, 2015.

133

BIBLIOGRAPHY

[116] Bastien Vincke, Abdelhafid Elouardi, and Alain Lambert. Real time simultaneous

localization and mapping: towards low-cost multiprocessor embedded systems.

EURASIP Journal on Embedded Systems, 2012(1):1–14, 2012.

[117] Mohamed Abouzahir, Abdelhafid Elouardi, Rachid Latif, Samir Bouaziz, and Ab-

delouahed Tajer. Embedding slam algorithms: Has it come of age? Robotics and

Autonomous Systems, 2017.

[118] Lifan Yao, Hao Feng, Yiqun Zhu, Zhiguo Jiang, Danpei Zhao, and Wenquan Feng.

An architecture of optimised sift feature detection for an fpga implementation of

an image matcher. In Field-Programmable Technology, 2009. FPT 2009. Interna-

tional Conference on, pages 30–37. IEEE, 2009.

[119] Dimitris Bouris, Antonis Nikitakis, and Ioannis Papaefstathiou. Fast and efficient

fpga-based feature detection employing the surf algorithm. In Field-Programmable

Custom Computing Machines (FCCM), 2010 18th IEEE Annual International Sym-

posium on, pages 3–10. IEEE, 2010.

[120] Liang-Chi Chiu, Tian-Sheuan Chang, Jiun-Yen Chen, and Nelson Yen-Chung

Chang. Fast sift design for real-time visual feature extraction. IEEE Transactions

on Image Processing, 22(8):3158–3167, 2013.

[121] KY Lee. A design of an optimized orb accelerator for real-time feature detection.

International Journal of Control & Automation, 7(3), 2014.

[122] Josh Weberruss, Lindsay Kleeman, David Boland, and Tom Drummond. Fpga

acceleration of multilevel orb feature extraction for computer vision. In Field Pro-

grammable Logic and Applications (FPL), 2017 27th International Conference on,

pages 1–8. IEEE, 2017.

[123] Rongdi Sun, Peilin Liu, Jun Wang, Cecil Accetti, and Abid A Naqvi. A 42fps full-

hd orb feature extraction accelerator with reduced memory overhead. In Field Pro-

grammable Technology (ICFPT), 2017 International Conference on, pages 183–

190. IEEE, 2017.

134

BIBLIOGRAPHY

[124] Yuliang Pu, Jun Peng, Letian Huang, and John Chen. An efficient knn algorithm

implemented on fpga based heterogeneous computing system using opencl. In

Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd An-

nual International Symposium on, pages 167–170. IEEE, 2015.

[125] Fahad Bin Muslim, Liang Ma, Mehdi Roozmeh, and Luciano Lavagno. Efficient

fpga implementation of opencl high-performance computing applications via high-

level synthesis. IEEE Access, 5:2747–2762, 2017.

[126] Michał Fularz, Marek Kraft, Adam Schmidt, and Andrzej Kasiński. A high-

performance fpga-based image feature detector and matcher based on the fast and

brief algorithms. International Journal of Advanced Robotic Systems, 12(10):141,

2015.

135

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Un système de vision pour la localisation et cartographie temps réel

Mots clés : Conception conjointe matérielle/logicielle, traitement d'image, systèmes embarqués,
SLAM, GPU, FPGA.

Résumé : L'objectif principal de cette thèse est
de proposer un algorithme visuel SLAM et
l'étude de la portabilité de cet algorithme sur des
architectures hétérogènes. La conception du
système nécessite des phases de proposition et
de validation de la fonctionnalité de l'algorithme
vSLAM, tandis que l'étude de la portabilité
inclut l'analyse de la complexité de l'algorithme
et des contraintes d'architecture dans une
approche de adéquation algorithm
architecture. Cette adéquation vise à réduire le
temps d'exécution et donc à obtenir des
performances en temps réel.
 La première contribution consiste à proposer
un algorithme intitulé "extracteur HOOFR" qui
vise à adresser la partie frontale d’un système
visuel SLAM pour la détection, la description et
la mise en correspondance des primitives dans
l'image. Sur la base d'expériences, notre
proposition offre un meilleur compromis entre

vitesse et qualité correspondante par rapport à
d'autres algorithmes dans l'état de l'art. La
deuxième contribution est une nouvelle
méthode pour la partie dorsale d’un système
SLAM visuel stéréo. L'algorithme proposé
utilise des points d'intérêt détectés par
l'extracteur HOOFR de sorte qu'il soit désigné
par HOOFR SLAM. La complexité de
traitement est réduite afin de convenir au
système embarqué tout en maintenant une
précision de localisation élevée. La troisième
contribution de notre travail est la possibilité de
mettre en œuvre HOOFR SLAM sur des
architectures hétérogènes CPU-GPU où un PC
puissant et un système embarqué sont pris en
compte. De plus, nous présentons également
nos recherches sur l’intégration de la partie
frontale sur une architecture SoC embarquée
CPU-FPGA.

Title : A vision system based real-time SLAM applications

Keywords :Hardware-Sofware mapping, image processing, embedded systems, SLAM, GPU,
FPGA.

Abstract : The main objective of this thesis is
to propose of a visual SLAM algorithm and the
study of the portability of this algorithm on
heterogeneous architectures. The system design
requires phases of proposing and validating the
functionality of the vSLAM algorithm while
the study of the portability includes the analysis
of the algorithm complexity and the
architecture constraints in a software-hardware
mapping approach. This mapping is aimed to
reduce the execution time and hence to have
real-time performances.
 The first contribution consists in proposing
an algorithm called "HOOFR extractor" which
aims to address the front-end part of a visual
SLAM system for detecting, describing and
matching image features. Based on
experiments, our proposal offers a better

compromise between speed and matching
quality against others algorithms in state-of-
the-art. The second contribution is a new
method for back-end part of a stereo visual
SLAM system. The proposed algorithm uses
key-points detected by HOOFR extractor so
that it is denoted as HOOFR SLAM. The
processing complexity is reduced so as to be
suitable to embedded system while maintaining
a high localization accuracy. The third
contribution of our work is presenting a
capability of implementing HOOFR SLAM on
CPU-GPU heterogeneous architectures where a
powerful PC and an embedded platforms are
considered. Moreover, we also present our
researches on emdedding the front-end part on
a CPU-FPGA embedded SoC architecture.

	Abstract
	Résumé
	Publications
	Acknowledgement
	Introduction
	Visual SLAM Systems
	Visual SLAM
	Visual SLAM system formalization
	Image-Processing (front-end task)
	SLAM-core (back-end task)

	Hardware systems based SLAM applications
	Speeding up processing with CPU-GPU architectures
	CPU-FPGA architectures based systems design

	Conclusion

	Evaluation Methodology
	Methodology
	Algorithm criteria
	Algorithm-Architecture mapping
	Programming techniques
	CUDA programming
	OpenCL programming

	Evaluation tools
	Datasets based algorithm evaluation
	KITTI dataset
	Oxford RobotCar dataset
	Malaga dataset
	MRT dataset
	St Lucia dataset
	New College dataset

	Platforms based algorithm implementation
	Work station PC
	Nvidia Jetson Tegra X1
	Altera Arria 10 SoC

	Conclusion

	HOOFR: a bio-inspired feature extractor
	Overview
	FAST-9 detection
	Hessian filtering
	Overlapped FREAK bio-inspired description
	Description sampling pattern
	Keypoint orientation in HOOFR
	HOOFR Descriptor

	HOOFR performance evaluation
	HOOFR detector repeatability
	HOOFR binary descriptor comparison
	Overall evaluation of HOOFR extraction
	Timings
	HOOFR features validation in object tracking application
	Multi-objects tracking
	Embedded objects tracking in video

	Conclusion

	HOOFR Stereo SLAM
	Related Works
	Algorithm description
	HOOFR features
	Bucketing feature detection
	Binary descriptor for place recognition

	Mapping
	Features matching
	Relative Pose Computation
	Optimized pose extraction

	Loop detection
	Place recognition using FABMAP 2.0 and binary word
	Map and Key-frame set
	Frame Checking
	Features matching
	Relative pose estimation

	Map Processing
	Evaluation results with experiment datasets
	Stereo image rectification
	Parameters
	Evaluation with KITTI dataset
	Evaluation with Oxford dataset
	Evaluation with MALAGA dataset
	Evaluation with MRT and St-Lucia datasets
	Evaluation with NewCollege dataset

	Conclusion

	Embedding HOOFR SLAM on a CPU-GPU architecture
	Overview
	GPU programming
	GPU thread organization
	GPU memory hierarchy

	HOOFR SLAM mapping on a CPU-GPU architecture
	OpenMP Implementation of HOOFR Extraction
	GPU implementation of Features Matching

	Performances evaluation
	Timing evaluation

	Conclusion

	Towards FPGA based embedded SoC architectures
	Motivation
	Related works and contribution
	OpenCL programming advantages on FPGA
	HOOFR extractor partitioning an a CPU-FPGA architecture
	HOOFR architecture design
	FAST kernel
	HESSIAN_COMPUTE kernel
	Module duplication
	FILTERING kernel
	DESCRIPTION kernel

	Implementation and Evaluation
	Resource Usage
	Timings
	Perforances comparison: FPGA vs GPU implementations

	Conclusion

	Conclusion and Future Works
	Appendix
	Bibliography

