
HAL Id: tel-02398814
https://theses.hal.science/tel-02398814v2

Submitted on 5 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural Networks for Natural Language Processing
Mohamed Morchid

To cite this version:
Mohamed Morchid. Neural Networks for Natural Language Processing. Artificial Intelligence [cs.AI].
Avignon Université, 2019. �tel-02398814v2�

https://theses.hal.science/tel-02398814v2
https://hal.archives-ouvertes.fr

ACADÉMIE D’AIX-MARSEILLE
AVIGNON UNIVERSITÉ

HDR

Defended at Avignon University
to obtain the Habilitation À Diriger des Recherches diploma

DOMAIN: Computer Science

Laboratoire Informatique d’Avignon (EA 4128)

Neural Networks
for

Natural Language Processing

by

Mohamed Morchid

Publicly defended the November 26th 2019 front of the jury composed with:

Mrs. Dilek Z. HAKKANI-TÜR Senior Principal Scientist, Alexa AI, USA Reviewer
Mr. Patrice BELLOT Full Professor, AMU Polytech’, LIS, Marseille Reviewer
Mr. Frédéric ALEXANDRE First class Research Director, INRIA, Bordeaux Reviewer
Mr. Yannick ESTÈVE Full Professor, AU, LIA, Avignon Examiner
Mr. Frédéric BÉCHET Full Professor, AMU, LIS, Marseille Examiner

Laboratoire Informatique d’Avignon

2

ACADÉMIE D’AIX-MARSEILLE
AVIGNON UNIVERSITÉ

HABILITATION À DIRIGER DES
RECHERCHES

présentée à l’Avignon Université
pour obtenir le diplôme d’Habilitation À Diriger des Recherches

SPÉCIALITÉ : Informatique

Laboratoire Informatique d’Avignon (EA 4128)

Réseaux de Neurones
pour le

Traitement Automatique du Langage

par

Mohamed Morchid

Soutenue publiquement le 26 Novembre 2019 devant un jury composé de :

Mme Dilek Z. HAKKANI-TÜR Senior Principal Scientist, Alexa AI, USA Rapporteur
M. Patrice BELLOT Professeur, AMU Polytech’, LIS, Marseille Rapporteur
M. Frédéric ALEXANDRE Directeur de Recherche INRIA, Bordeaux Rapporteur
M. Yannick ESTÈVE Professeur, AU, LIA, Avignon Examinateur
M. Frédéric BÉCHET Professeur, AMU, LIS, Marseille Examinateur

Laboratoire Informatique d’Avignon

3

4

To my family and Claire
and in memory of my beloved father,

Belfakih Morchid . . .

. . . you will be eternally present
here and everywhere, now and always . . .

5

6

Summary

This dissertation presents my recents efforts on both neural networks based methods
and algorithms, and their applications on real-world tasks for Natural Language Pro-
cessing (NLP). This document is organized following my different points of interest
from hitherto proposed real-valued neural networks applied to challenging NLP re-
lated tasks, to novel complex-valued neural based architectures that seek to address the
recent issues related to the learning process. The document presents my main achieve-
ments and is organized as follow:
Real-valued Neural Networks. Nowadays, NLP tasks employ massively Neural Net-
works (NN) based algorithms to solve challenging real-world tasks and the document:
• introduces novel NNs for considering multiple input streams of information during
the learning process to better predict the desired output,
• studies the impact of noisy documents from an Automatic Speech Recognition (ASR)
system on an encoder-decoder that extracts robust features from spoken documents.
Quaternion-valued Neural Networks. Real-valued NN hardly handle inter- and
intra-dependencies between input features during the learning. We propose novel
Quaternion-valued neural networks (QNN) that consider inter-dependencies between
the input features as well as the dependencies between basic elements composing a
given feature. In this document we:
• present a Quaternion-valued Convolutional Neural Network (QCNN) that consider
alongside the convolution process (inter-dependencies) and the latent relations be-
tween basic elements of each feature (inter-dependencies),
• introduce the Quaternion-valued Recurrent Neural Network (QRNN) to encode
multi-dimensional input sequences from speech signal.
Ongoing works and futur directions. Real-valued and Quaternion-valued neural net-
works are difficult to learn since the amount of data required for learning is potentially
large, even huge; moreover, these models are also employed to generate unseen in-
formation such as images or documents. Among these models, generative adversarial
networks (GAN) have encountered a large success in different natural language pro-
cessing (NLP) related tasks. Nonetheless, these models are unstable during the learn-
ing process. This part:
• introduces novel parsimonious neural networks that better handle large corpora and
consider the long-term dependencies,
• stuies the impact of manual transcripts on automatically transcripts of spoken docu-
ments during a NLP task with GAN mapping approach.

7

8

Contents

Introduction 11

I Real-valued Neural Networks for Natural Language Processing 25

1 Parallel Recurrent Neural Networks 27
1.1 Introduction . 28
1.2 Parallel Long Short-Term Memory (PLSTM) 29
1.3 Experiments . 32
1.4 Results and Discussion . 33

2 Encoder-Decoder Neural Networks 37
2.1 Introduction . 38
2.2 Autoencoder neural networks based systems 39
2.3 Experiments . 46

2.3.1 DECODA framework . 46
2.3.2 Automatic Speech Recognition System 47

2.4 Results and Discussion . 48

II Quaternion Neural Networks for Natural Language Processing 51

3 Quaternion Convolutional Neural Networks 53
3.1 Introduction . 54
3.2 Motivations . 55
3.3 Quaternion algebra . 57
3.4 Quaternion Convolutional Neural Networks 57
3.5 Experiments . 58
3.6 Results and Discussion . 60

4 Quaternion Recurrent Neural Networks 63
4.1 Introduction . 64
4.2 Quaternion Recurrent Neural Networks 64
4.3 Experiments . 64
4.4 Results and Discussion . 65

9

III Ongoing Research, Future Directions & General Perspectives 69

5 Parsimonious Neural Networks 71
5.1 Introduction . 72
5.2 Parsimonious Memory Unit (PMU) . 72
5.3 Experiments . 76
5.4 Results and Discussion . 76

5.4.1 Gates activity of GRU and PMU 76
5.4.2 Short-term dependencies from spoken dialogues 79
5.4.3 Long-term dependencies from 20-Newsgroups documents 80

6 Generative Adversarial Networks 83
6.1 Introduction . 84
6.2 Generative neural models . 84
6.3 Experiments . 86
6.4 Results and Discussion . 88

7 General Perspectives 91

IV Appendix 93

List of illustrations 103

List of tables 105

Bibliography 107

10

Introduction

Context

Few words on my research interests

My initial researches have been mostly based on topic models (Blei et al., 2003) applied
to Natural Language Processing (NLP) tasks. Among these high-level representations,
the latent Dirichlet allocation (LDA) (Blei et al., 2003) based model allows NLP sys-
tems to represent relevant content of documents in a abstract latent topics model. We
have employed LDA representations to extract robust features from noisy spoken dia-
logues. After my Ph.D. thesis, we have been interested to evaluate the benefit of neural
networks initialization with latent based features from an LDA model (Morchid et al.,
2015b). It was my first investigation of neural networks for real-world NLP applica-
tions. Since 2015, my efforts have been focused on applications of hitherto proposed
neural networks for real-life problems such as theme identification of spoken dialogues
and on complex-valued neural networks for different pattern recognition related tasks.
These interests are at the edge of the Natural Language Processing (NLP) and machine
learning (ML) domains composing an important part of the Artificial Intelligence (AI)
broad spectrum. Indeed, AI covers a large area of NLP throughout different real-world
applications. Among AI based paradigms, connectionist models or Parallel Distributed
Processing (PDP) (McClelland et al., 1986; Rumelhart et al., 1986) have been introduced
in a large number of domains, ranging from different aspects of language processing
to cognitive control from perception to memory. Connectionist models take inspiration
from the manner in which information processing occurs in the brain. Processing in-
volves the propagation of activation among simple units (artificial neurons) organized
in networks, that is, linked to each other through weighted connections representing
synapses or groups thereof. Each unit then transmits its activation level to other units
in the network by means of its connections to those units. The activation function de-
scribes how each unit computes its activation based on its inputs, may be a simple linear
function, but is more typically non-linear (for instance, a sigmoid function). These neu-
ral networks have encountered a wide success due to their capabilities to code complex
abstract structures and patterns in latent sub-spaces. In the context of NLP applications,
these neural networks models such as the Multi Layer Perceptron (MLP) have to pro-
cess large even huge amount of data due to the rapid growing of sharing platforms on
Internet as well as the number of available data-sets. Moreover, the datas available are

11

even more composed with different signals (speech segments) or dimensions (images
or multi-channels sequences). Therefore, the models and paradigms proposed to pro-
cess large amount of multidimensional data have to both be efficient to process quickly
this large amount of information and consider multiple dimensions of the document
content. Since our work are mostly focused on neural networks based models with
applications on NLP, in the last years, we have been interested on other specific appli-
cations such as image processing (Parcollet et al., 2019). Nonetheless the last results are
still too recent to be mentioned in this document. This thesis reports part of the work
done in collaboration with Ph.D. students and colleagues on field of deep learning. In
regards to the large number of neural based models and paradigms this chapter focuses
on related works and the reader can refer to papers from main AI related conferences
and journals for further details.

Brief history of neural networks with some key dates

Figure 1 presents some main steps throughout the last decades of the neural networks
history. The contemporary period started with the advent of GPU cards at 1999 from
Nvidea and the CUDA librairies in 2007 to develop the algorithms. These cards allows
neural networks based models to drastically reduce the processing time required for
learning by 70 (Raina et al., 2009). With the large number of academics and industrials
that then employ CUDA to develop machine learning systems, NVidea have released a
dedicated set of librairies called cuDNN in 2014.

Deep learning is originated from the availability of large-scale training data-sets
and the increased computation power from GPU cards and groups feature learning
techniques exploiting artificial neural networks (LeCun et al., 2015) among other algo-
rithms. Human being also conducts learning via neural networks based on biological
neural networks inside the brain. Neuroscientists have studied how information is
processed in human being brain in order to understand it capability of processing in-
formation effectively. Neural networks based models and paradigms are able to process
data and natural information much better than human being. Deep learning becomes
an international strategic issue due to their impressive performances on different do-
mains such as human communications, medicine, law, political analytics or military 1 2

with unlimited uses. France will be part of these general leaders with recent political
efforts 3 4. Among AI models, neural networks have encountered a wide success in
different real-world applications. These neural networks are composed with basic arti-
ficial neurones. This document is focusing on neural networks and their application on
different NLP related tasks.

1https://www.forbes.com/sites/stratfor/2018/02/07/the-coming-tech-war-with-
china/#3a1b6a641cd4

2Russia’s leader, Vladimir Poutine, have claimed that the nations that will develop effective AI mod-
els and applications will lead the world: https://www.cnbc.com/2017/09/04/putin-leader-in-artificial-
intelligence-will-rule-world.html

3https://www.economie.gouv.fr/France-IA-intelligence-artificielle
4https://www.forbes.com/sites/forbestechcouncil/2017/12/05/these-seven-countries-are-in-a-race-

to-rule-the-world-with-ai/

12

1943
Neurophysiologist

Warren
McCulloch and
mathematician

Walter Pitts wrote
a paper on how
neurons might

work.

1959
Bernard Widrow and

Marcian Hoff of
Stanford developed

"ADALINE" and
"MADALINE." (Multiple

ADAptive LINear
Elements). ADALINE
for recognize binary

patterns.

1982
John Hopfield
presented his

paper on
what came to
be known as
Hopfield Net

at the
National

Academy of
Sciences

1969
 Minsky and

Papert’s book
Perceptrons

demonstrated
the limitation
of single layer
perceptrons

1986
“Learning

representations by
back-propagating
errors” by David

Rumelhart,
Geoffrey Hinton,

and Ronald
Williams .

1989
Convolutional

Neural
Networks by
Yann Lecun,

‘’Back-
propagation
applied to

handwritten
zip code

recognition’’.

1999
Nvidia

invented
the GPU in

2007
Nvidia

released the
CUDA

programming
platform

2009
Rajat Raina et al.

‘’Large-scale
Deep

Unsupervised
Learning using

Graphics
Processors’’.

2014
Nvidia released

an efficient
implementations
for deep neural

network
primitives,
cuDNN.

Figure 1: Neural Networks in some of the main dates.

Neural Networks

The first definition of artificial neurons or formal neurons has been introduced in (Mc-
Culloch et Pitts, 1943). In this definition a neuron has a variable number of weighted
inputs simulating the dendrites of biological neurons. All inputs are summed and an
activation function is applied to this sum to produce an output value. The first appli-
cation of the formal neuron is the perceptron (Rosenblatt, 1958) composed of a single
neuron and a heavy-side activation function and allows a binary classification. In addi-
tion to the neuron a supervised learning method of perceptron is introduced to estimate
its weight representing an hyperplane by an iterative process. This hyperplane is op-
timized to separate two classes. On the other hand, a perceptron is unable to solve a
problem that is not linearly separable. This weakness was highlighted by the problem
of “Xor”: Perceptron cannot model the “exclusive or” function. This limitation has
slowed down the development of artificial neural networks for several decades. (Wer-
bos, 1974) propose the gradient backpropagation method for learning artificial neural
networks. Since 1982, artificial neural networks are able to extract descriptors through
unsupervised learning (Kohonen, 1982). In these networks, the neurons are arranged in
a grid. Each area of this neural grid learns to respond to a particular type of data. Once
trained, an adaptive map can be used to either discretize or perform a vector quantiza-
tion or to reduce the dimensionality of input data (Chihi, 1998; Nasrabadi et Feng, 1988).
Artificial neural networks whose interneuronal connections form an acyclic graph are

13

called “feedforward neural networks”. The perceptron is an example of a feedforward
neural network.
Multilayer Perceptrons (MLPs) (Rumelhart et al., 1985) are supervised networks that
can be used for classification, regression or dimensionality reduction. In this architec-
ture the neurons are grouped in layers. There are an input layer that receives the infor-
mation that the network have to process and an output layer that provides the neural
network output prediction. The activation function of the output layer can be chosen
according to the task that the network has to perform: the linear activation function
is used to learn linear regression models; the sigmoid activation function is employed
for logistic regressions or binary classifications; the softmax activation function (Bishop
et al., 1995) performs multiclass classifications. A cost function calculates the error be-
tween the predicted output and the expected output. A variable number (greater than
or equal to 1) of hidden layers with a nonlinear activation function is inserted between
input and output layers. Each neuron in a layer is connected to all the neurons of
the previous and next layers. On the other hand, there are no connections between
neurons from the same layer. The weights of these connections between two succes-
sive layers are learned by backpropagating the gradient between the predicted and the
expected output. More details on different neural networks throughout the next ded-
icated chapters to improve the readability and the understanding of each model in a
suitable context.

Research directions

We relate in this section different research directions based on ongoing works on dif-
ferent neural networks related models for real world NLP applications. Each of the
following sections describes the paradigms and the perspectives of each directions. All
these researches are different and close in some regards. Indeed, these directions have
a common ground composed of both theoretical (neural networks) and practical (NLP
real life applications) components.

Multidimensional models

Available multidimensional data from different mediums are even more large and, in
the last decades, scientists from different AI related fields such as language processing
or machine learning have given an important efforts to propose efficient algorithms and
paradigms to handle large amount of information. Indeed most of the documents avail-
able nowadays are composed with different information from different mediums or
streams. This is particularly the case for videos that are composed with images, audio
and potentially textual content. Sharing platforms such as Youtube 5 collect large even
huge amount of videos per days. Indeed this year statistics on Youtube show that 400
hours of video are uploaded to every minute 6 and the number of available videos ex-

5www.youtube.com
6https://www.brandwatch.com/blog/youtube-stats/

14

ceed 7 billion. Different approaches have been studied to process such as multi-streams
data (Dai et al., 2004; Babcock et al., 2002) such as the Clustering on Demand (CoD)
framework (Dai et al., 2004) or the Data Stream Management System (DSMS) (Babcock
et al., 2002). These models reach good results but are mostly based on optimization
problems that not retain an internal state to memorize sequences. Artificial Intelligence
based algorithms are efficient to learn from seqeunce’s basic element states such as neu-
ral networks.
Deep Neural Networks (DNN) allow systems to efficiently process these big data in
terms of systems performances and processing time required during the learning pro-
cess. Nonetheless, spoken and textual documents processed in Natural Language Pro-
cessing (NLP) systems have to take into account sequences made of the words com-
posing a sentence or a paragraph. The Recurrent Neural Networks (RNN) (Rumelhart
et MacClelland, 1986; Pearlmutter, 1989) is a DNN and is well adapted to sequence
data for spoken or textual documents processing in NLP-based systems such as statis-
tical parametric speech synthesis (Fernandez et al., 2014; Fan et al., 2014), speech emo-
tion recognition (Chao et al., 2015; Chen et Jin, 2015), facial landmark detection (Chen
et al., 2017) and speech recognition (Gajecki, 2014; Graves, 2012; Siniscalchi et al., 2013).
RNNs can be applied to almost any problem with sequential structure. Nevertheless
RNNs fail to learn long-term dependencies due to the vanishing gradient problem (Ben-
gio et al., 1994) and gates based units have been introduced to address this drawback
like Long Short-Term Memory (Hochreiter et Schmidhuber, 1997) or Gated Recurrent
units (Chung et al., 2014). These RNN-based models learn the internal state from a se-
quence of basic elements and process only uni-dimentionnal data.
Convolutional Neural Networks (CNN) (LeCun et al., 1989) can process multi-
dimensional data, such as images (Red, Green and Blue (RGB) pixels) or documents
(word/sentence matrix) (Zhang et al., 2015). Nonetheless CNN are limited to 2- or 3-D
dimensional feature spaces and the number of available streams for a given information
may be larger than 2 or 3. Another drawback of both CNN- and RNN-based models
is the manner to compute latent states of multiple parallel inputs during the learning.
Indeed recent researches have proposed to learn the latent states in all gates forming
the gated RNN (Graves et al., 2007; Graves et Schmidhuber, 2009; Stollenga et al., 2015)
and applications such as pixel-wise brain image segmentation (Stollenga et al., 2015).
The different inputs corresponding to different streams are added within each gate to
code latent dependencies of these streams during the learning process of gates as well
as the exposed outputs.
Nonetheless all parts of the model (gates for LSTM/GRU) process all streams to bet-
ter predict the optimal output while each stream has a particular content. In the case of
label prediction of a given stream s, all parallel streams do not contain enough informa-
tion on s to propose an efficient candidat as an output of s. We have proposed during
the Ph.D. thesis of Mohamed Bouaziz to learn from individual streams an efficient pro-
cess called Parallel Long Short-Term Memory (see chapter 1) to predict the next label of
a given stream knowing the other ones with LSTM-RNN models (Bouaziz et al., 2016).
This model allows the system to take into account different streams during the learning
process. The experiments show that the proposed RNN-based model reach better per-
formances than n-gram models. Nonetheless, all streams are taken into account in the

15

same level for all gates and all streams. The streams can be split throughout the gates
based on the goal off each gate 7. Therefore, an interesting perspective for this work is
to find paradigms to better split the information from different streams between gates
of RNN based models in regards to the application. In the case of label prediction of
a given stream s the forget and output gates have to process all streams but the input
gate have to be considered only with the stream s. Indeed, in this particular case, only
the stream s can predict an efficient candidat for the next label.

Autoencoder neural networks

Encoder-decoder neural networks or Autoencoders are a special architecture of MLP.
In regards to the large, even huge, bibliography on neural networks, this section
focuses only on autoencoders and their sub models. One can refer to (LeCun et al.,
2015; Goodfellow et al., 2016) for more information. The term feedforward refers to
a set of neural networks with connections between neurons form an acyclic graph.
MLP (Rumelhart et al., 1985) are supervised neural networks that can be used for
classification, regression or dimensionality reduction. In this architecture the neurons
are grouped in layers with an input layer that receives the information as a set of
features that the network process; an hidden layer that represents the input vector in a
hidden space; and an output layer that contains the network prediction. The activation
function of the output layer can be chosen according to the task that the network has to
perform. The linear activation function is used to learn linear regression models. The
sigmoid activation function is used for logistic regressions or binary classifications.
The Softmax activation function (Bishop et al., 1995) is employed for multi-labels
classification related tasks. A cost function computes the error between the output
produced by the MLP and the expected output. Each neuron contained in a layer is
connected to all the neurons of the next layer with no connections between this neuron
and the neurons from the same layer. The weights of these connections are learned
by back-propagating the gradient of the error between the predicted output and the
expected one throughout the layers. An autoencoder is a MLP with the same features
for the input layer and the expected output.

The work presented in Chapter 2 describes the first efforts to process documents
on autoencoders to learn the mapping from automatically transcribed spoken docu-
ments from an Automatic Speech Recognition (ASR) system to manually transcribed
documents. The aim of these studies is to evaluated the potential to neural based
systems to learn efficient latent relations between “noisy” documents (from ASR) and
“clean” ones (from human transcriptions). These approaches are based on autoen-
coders neural networks on either the generative, discriminative or both sub-processes.
Our work depicted in Chapter 2, reflect my strong interest on latent variables from
autoencoders and we plan to follow the study during the next years in regards to the

7the input gate of the LSTM evaluate how much from the hidden state candidate or memory has to be
considered; the forget gate retain or forget part of the previous hidden state and the output gate decides
the proportion of the new hidden state that has to be exposed to the output

16

promising results obtained by the proposed autoencoders approaches alongside with
the enthusiasm generated by GANs. Chapter 6 reports our first effort on GAN for NLP.
One can refer to (Creswell et al., 2018) for more information on autoencoders.

Quaternion-valued neural networks

During my Ph.D. thesis, my work has been focused on the extraction process of robust
features from latent spaces such as Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), from i-vectors (Morchid et al., 2015a) or from hyper-complex numbers called
Quaternions (Morchid et al., 2013). Quaternions are an extension of complex-numbers
and are defined as hypercomplex numbers that contain a real and three separate
imaginary components perfectly fitting to three and four dimensional feature vectors
such as for image processing, robot kinematics or computer graphics (Sangwine,
1996; Pei et Cheng, 1999; Aspragathos et Dimitros, 1998). Contrary to traditional
homogeneous representations, quaternion networks bundle sets of features together.
Thereby quaternion numbers allow neural network based models to code latent
inter-dependencies between groups of input features during the learning process
with fewer parameters than real-valued neural networks by taking advantage of the
Hamilton product as the equivalent of the ordinary product but between quaternions.
Early applications of quaternion-valued back-propagation algorithms (Arena et al.,
1994, 1997) have efficiently solved quaternion functions approximation tasks. More
recently neural networks of complex and hypercomplex numbers have received an
increasing attention (Hirose et Yoshida, 2012; Tygert et al., 2016; Danihelka et al., 2016;
Wisdom et al., 2016) and some efforts have shown promising results in different appli-
cations. In particular a deep quaternion network (Parcollet et al., 2016; Titouan et al.,
2017; Parcollet et al., 2017), a deep quaternion convolutional network (Chase Gaudet,
2017; Titouan et al., 2018) and a quaternion recurrent neural network (Parcollet et al.,
2018c) have been developed and employed by out team from the LIA for different
challenging tasks such as images classification, compression and reconstruction or
speech recognition.

Motivations to use quaternion neural networks over real-valued ones for quaternion-
valued tasks are numerous and well documented (Parcollet et al., 2018c; Isokawa et al.,
2009). The major advantage of any QNN is the more efficient and natural represen-
tation of the input information compared to traditional real-valued NNs. Indeed a
good neural network model has to represent, encode and learn the nature of the input
data. Many realistic tasks involve multi-dimensional features with input elements
composed with multiple internally related components. These applications are image
processing with three channels describing a single pixel or speech recognition with
three values (Mel filter banks and deltas) for a unique time frequency, or human
motion recognition with outputs and inputs to be represented in the 3D space with
3D coordinates. To succeed in such multidimensional tasks the employed model
needs a specific representation and processing of the features. Indeed traditional
real-valued NNs consider internal relations at the same level than contextual and
global dependencies. As an example, relations between different pixels are considered

17

equivalently to the relation that links the three channels composing each pixel, and
it is not clear if both relations are well learned. More precisely, composed entities
are processed by traditional real-valued NNs as a bag of independent and smaller
components, while a natural solution is to process such entities as multidimensional
and internally related elements, such as with quaternion neural networks (QNNs).
Consequently QNNs have been shown to suit particularly well to these representations
and it has been demonstrated that they are perfectly able to learn internal relations
describing the multidimensional features, with way less neural parameters (Matsui
et al., 2004; Parcollet et al., 2018d). Indeed a 4-number quaternion weight linking two
4-number quaternion units only has 4 degrees of freedom, whereas a standard neural
net parametrization has 4× 4 = 16, i.e., a 4-fold saving in memory.

Parsimonious neural networks

Neural architectures are huge and Quaternions allow the models to require less
parameters to learn intra- and inter-dependencies between input features but require
a 4-dimensional representation to process Hamilton dot product. Most of the NLP
related tasks are based on bag-of-words representations, even the use of embeddings
are nowadays the usual input representation. Therefore, real-valued neural networks
are well suited to process basic document features such as words occurrences or word
embeddings. Moreover, real-valued neural networks require a large amount of data
to learn latent dependencies in the features space to represent effectively these basic
elements throughout enough related contexts. Therefore, the processing time as well
as the large number of documents required for learning efficient document represen-
tations is closely related too the network architecture; moreover, these representations
have to be robust enough to be effective since unseen documents are processed by
the NLP systems by learning different hidden states for different related contexts of
sequences for both short- and long-term dependencies. Recurrent Neural Networks
(RNN) are a powerful set of architectures that code and store internal hidden states of
sequences to learn basic element latent dependencies.

Nonetheless, RNN-based models (Zaremba, 2015) require a large set of patterns
to code most of the possible contexts of a given event and are time consuming. It is
mostly the case since the task is to reveal latent dependencies between documents
event (word occurrences) during a natural language processing (NLP) task. Indeed, a
given word has to be encountered in different sentences (contexts) to better understand
the latent relations between these basic elements. Nevertheless RNNs fail to learn
long-term dependencies due to the vanishing gradient problem (Hochreiter, 1998).
RNNs with gates such as Long Short-Term Memory (Wu et al., 2017b; Sundermeyer
et al., 2012; Greff et al., 2017) (LSTM) avoid the vanishing gradient problem of the
RNN (Hochreiter, 1998) along by taking into account both short- and long-term
dependencies of the word properly in different contexts but need to process the
information in different memory blocks composed with a set of cell-related gates. Even
if the results of LSTM-RNNs are promising the processing time required to treat large
documents data sets is quite huge due to the different gates activation sub-processes.

18

Indeed, LSTM has to decide from a previous state and a candidat state to process
dedicated decision processes via gates to update the memory cell. A recent addition
to the RNN set of models called the Gated Recurrent Unit (GRU) has been proposed
by (Bahdanau et al., 2014; Wu et al., 2017b) to address this issue and has shown
good performances in several tasks such as speech recognition (Graves et al., 2013b),
machine translation (Sutskever et al., 2014; Cho et al., 2014). Deep internal structures
have been proposed to introduce a depth gate (Yao et al., 2015) to better expose internal
hidden relations between memories. GRU is very similar to LSTM in that it uses
a combination of gates to adjust exposure from input to the hidden states. It does
however not use a memory cell instead opting to fully expose its state to the output
thereby also doing away with the output gate. Switching between full retention, mixed
and forget mode is implemented using a reset gate r and an update gate z. This is the
main drawback of the GRU-RNN model in that the role and the management of the
GRU gates is not based on the relation between short- and long-term dependencies.
For example, the reset of the hidden state is provided by both update and reset gates
of the GRU. Moreover, the role of the reset gate of the GRU is to avoid the hidden state
candidate but the update gate z can remove this part of the hidden state information
without the reset gate r. The minimal gated unit (MGU) (Zhou et al., 2016) is composed
with a unique gate to update and reset the cell state. They adapt a GRU with a gate that
merges r and z gate of the GRU (r = z) onto a unique gate called f . The authors “prefer
an RNN architecture that has the smallest number of gates without losing LSTM’s accuracy
benefits” and “propose the Minimal Gated Unit (MGU), which has the smallest possible
number of gates in any gated unit. MGU only has 1 gate, which is the forget gate. MGU is
based on GRU, and it further couples the input (reset) gate to the forget (update) gate”. The
motivation to merge the update and reset gates is not based on an theoretical study of
term dependencies. A unique gate f will both reduce the importance of the candidate
hidden state and the memory of long-terms dependencies during the processing of
the hidden state candidate. This behaviour is close to the leaky unit (Bengio et al.,
2013a) that reduces the hidden state candidate influence when the previous hidden
states are considered with a single gate u. The LU is equivalent to the GRU with a
single gate and requires less processing time for learning than the GRU and the LSTM.
Nonetheless, the LU codes mostly long-term dependencies but reveals little in the way
of short-term dependencies. Other papers have studied single gate units such as the
MinimalRNN (Chen, 2017). The MinimalRNN is a GRU with a single gate and differs
from LU by processing the candidate hidden state with the input vector shjm only
(rj(t) = 0 in the case of the GRU). Therefore, the authors reduce the number of gate but
do not study the behaviour of the gate during the learning process.

These efforts to propose efficient neural based architectures requiring even less
processing time is crucial. Indeed, since the large number of documents are available
with the grow of Internet and the number of applications are mostly employed on
mobile devices such as telephones or tablets, the needs on parsimonious models to
process this large amount of information are important with less parameters (for
mobile devices for example). Therefore, the neural based models have to process these
documents effectively with a small number of parameters and with less processing

19

time than hitherto proposed neural networks.

Our work started with quaternion neural networks (see chapter 3 and 4) allow
NLP systems to require less neural parameters to process effectively big corpus. We
have also proposed (see chapter 5) the “Parsimonious Memory Units” (PMU) for
RNN that differs from GRU with a reduced number of gates by considering first the
behaviour of the gates and the role of the activity of the gates in the learning process
of the term dependencies in the hidden state. Moreover, the PMU architecture is
based on the assumption that short- and long-term dependencies are related. (Yao
et al., 2015) present the depth GRU that allows the internal state to consider latent
relations between the memories from different layers and differs from our work which
is interested in the best way to manage both short- and long-term dependencies during
the learning process. We plan to continue the study of memory behaviour within
neural process and provide novel neural based architectures to process large data-sets
with less parameters alongside with efficient performances during the AISSPER
project (ANR 2019) for wich I am the coordinator that will start on January 2020
in collaboration with LIUM and Orkis. The aim of AISSPER is to provide efficient
end-to-end neural based models for Spoken Language Understanding (SLU).

Generative adversarial networks

The obtained results with QNN and autoencoders are promising and generative mod-
els will be a main research topic for my future directions. Recently, two promising
architectures have been introduced to provide powerful generative models: variational
autoencoders (VAE) and Generative Adversarial Networks (GAN). Variational autoen-
coders are introduced as a link between variational inference (Fox et Roberts, 2012)
and deep neural networks (Kingma et Welling, 2013; Gal et Ghahramani, 2015). They
consider a set of latent random variables z, to capture the variations of the observed
variables x. Their joined distribution are defined by:

p(x, z) = p(x|z)p(z) (1)

Where the distribution of prior probabilities of p(z) follows a normal distribution and
p(x|z) is an observed model whose parameters are calculated by the neural network
as a function of z. The non-linear projection of z to x makes it impossible to infer the
posterior distribution of p(z|x). For this purpose the VAE uses a variational approxi-
mation q(z|x) whose distribution follows a normal distribution. The parameters of this
normal distribution (mean and variance) are the output of a non-linear function also
learned by the neural network. The generative model p(x|z) and the inference model
q(z|x) are learned by backpropagation in order to maximize the lower bound of the
likelihood of p(x). They have been used successfully to generate sentences (Bowman
et al., 2015), images (Gregor et al., 2015) or to apply rotations on 3D images (Kulkarni
et al., 2015).

Generative adversarial networks (Goodfellow et al., 2014) (GAN) combine two

20

neural networks. The first network G is a generative network that generates a vector
x from a latent representation from documents of the training corpus. The second
network D is a discriminant network that predicts the probability that the input sample
is generated by G instead of coming from the training corpus. Both networks optimize
their weight to find a balance. They have been used mainly to generate images, from
constraints of shapes or colors (Zhu et al., 2016) or from textual descriptions (Reed
et al., 2016).

Nowadays Generative Adversarial Networks (GAN) became one of the domi-
nant approaches for learning latent features from generative models in recent machine
learning researches. These models provide a flexible algorithm for learning latent
variables describing the data generating processes in which noise is transformed into
“clean” data samples on large datasets. A large set of GAN variants are based on
autoencoder GANs (AE-GANs). The autoencoders improve GAN training (Nguyen
et al., 2017) by combining an autoencoder loss, a GAN loss, and a classification loss
defined using a pre-trained classifier. AE-GANs can be broadly classified into three
approaches:

• those using an autoencoder as the discriminator, such as energy-based GANs and
boundary-equilibrium GANs (Berthelot et al., 2017),

• those using a denoising autoencoder to derive an auxiliary loss for the generator,
such as denoising feature matching GANs (Warde-Farley et Bengio, 2016),

• and those combining ideas from VAEs and GANs such as the variational au-
toencoder GAN (VAE-GAN) (Larsen et al., 2015) that adds an adversarial loss
to the variational evidence lower bound objective, the more recent mode-
regularized GANs (MRGAN) (Che et al., 2016) or the adversarial generator en-
coders (AGE) (Ulyanov et al., 2018).

Recently, these generative adversarial networks (GANs) (Goodfellow et al., 2014)
received an astonishing interest due to the remarkable results obtained in computer
vision (Zhu et al., 2017; Radford et al., 2015; Kim et al., 2017; Berthelot et al., 2017). The
ability of GANs to generate samples that are closely-related to targets ones has also
been extended to natural language processing (NLP) tasks, such as text and dialogue
generation (Rajeswar et al., 2017; Donahue et Rumshisky, 2018; Li et al., 2017), or
neural machine translation (Yang et al., 2017; Wu et al., 2017a). To the best of our
knowledge, (Wu et al., 2017a) is the most related work to the problem addressed in
this paper. Indeed, (Wu et al., 2017a) proposed a model aiming to generate sentences
which are hard to be discriminated from human-translated sentences. Consequently,
the GAN model is expected to learn a mapping from one language to another one
based on human manual translations. GANs became a specific domain in AI and
researchers produce a broad spectrum of related models. an conditional version
of the GAN has been proposed in (Mirza et Osindero, 2014) to generate unseen
elements (not included in the data set) from unlabeled data. (Makhzani et al., 2015)
propose a general approach, called an adversarial autoencoder (AAE) that employ
hidden states of an autoencoder and random distributions into a generative model

21

for different tasks. The autoencoder is trained with dual objectives: a traditional
reconstruction error criterion, and an adversarial training criterion (Goodfellow et al.,
2014) that matches the aggregated posterior distribution of the latent representation
of the autoencoder to an arbitrary prior distribution. This model is close to the
CycleGan (Zhu et al., 2017) that also employ an intermediate representation from an
autoencoder to learn a GAN model. In regards to rapid grow of this sub-domain of
GAN and the large number of papers related to GAN, one can easily find out more
details and models in the main conferences and journals related to AI 8. Nonethe-
less, GAN does not take into consideration the target classes when generating the
samples, since golden-targets (i.e manual transcriptions) are not available at testing time.

We are interested in such as models since they allow NLP based systems to both
generate unseen representations and extract robust features from the document con-
tent. We have starting to follow this way and propose novel architectures to process
noisy spoken documents (Titouan et al., 2019a). The task considered in this thesis (see
chapter 6) replaces the initial language by an automatic transcription of a conversation,
and the target language by its manual transcription. Furthermore, we propose to
perform classification on top of the generation, as driven by the semi-supervised GAN
(SGAN) approach (Odena, 2016).

Structure of the thesis

The document relates different research directions followed since my Ph.D. thesis
defended at 2014 November. The different chapters thereafter are initiated with Ph.D.
students that I have supervised from 2015 to 2019. The first direction followed was
related to my interest on machine learning methods for NLP real-world applications.
We have started by evaluating hitherto proposed neural networks based models for
Natural Language Processing (NLP) tasks. These models have then been extended with
original algorithms to improve the efficiency during the NLP related tasks. Then, we
have proposed novel neural networks architectures based on hyper-complex algebra
to better handle multidimensional information. These approaches have encountered a
wide success and interest from different institute and researchers from heterogeneous
AI related fields. Alongside to these works, I have started new directions to allow
neural network algorithms to process large amount of documents with less processing
time and better performances than mere ones. All these research directions will be
followed throughout the ANR AISSPER project that will start at January 2020 in collab-
oration with the LIUM (Le Mans University) and Orkis (Aix-en-Provence company).
Indeed, AISSPER will first employ already proposed neural based architectures and
then novel ones for end-to-end SLU tasks.

Part I of the document describes the first works on machine learning for NLP.
The aim of this period was to evaluate hitherto proposed neural networks based

8For example, this website gives both papers and codes for a large number of GAN models:
https://github.com/eriklindernoren/PyTorch-GAN

22

algorithms for real-world NLP applications. We present a research done during the
Mohamed Bouaziz’s Ph.D. thesis, in CIFRE convention with the company EDD and
co-supervised by Georges Linarès (LIA), Richard Dufour (LIA) and myself between
September 2013 and December 2017. Therefore, chapter 1 presents an original Long
Short-Term Memory-based (LSTM) architecture, called Parallel LSTM (PLSTM), that
carries out multiple parallel synchronized input sequences in order to predict an
output. The proposed PLSTM could be used for parallel sequence classification
purposes. The PLSTM approach is evaluated during an automatic telecast genre
sequences classification task. The results show that the proposed PLSTM method
outperforms the baseline and the LSTM model. This work correspond to the first
step and direction on machine learning for NLP. This effort is followed by a study of
encoder-decoder neural networks for NLP tasks. Chapter 2 corresponds to part of
the work done during the Killian Janod’s Ph.D. thesis in CIFRE convention with the
company Orkis and co-supervised with Georges Lianrès (LIA), Richard Dufour (LIA)
from September 2013 to December 2017. This chapter studies different set of features
from encoder-decoder neural networks based architectures for the Spoken Language
Understanding (SLU) task of DECODA theme identification task of spoken dialogues.
These dialogues are transcribed from an Automatic Speech Recognition (ASR) system.
These automatic transcripts are affected by errors from automatic transcription process
that are especially frequent since speech signal in recorded in noisy conditions. An
ASR system induces linguistic errors in features employed for different NLP related
applications. This chapter deals with the recovery of corrupted linguistic features
in spoken documents by introducing robust features from encoder-decoder neural
networks based models evaluated in the real-world application of the DECODA
spoken conversation analysis task.

Part II details novel neural networks based architectures partially realized in col-
laboration with Montréal Institute of Learning Algorithme (MILA) researchers.
Among them, Y. Bengio, M. Ravanelli and others have collaborated on Quaternion
valued neural networks for speech processing. We have proposed novel research
directions to introduce complex-valued neural networks to better manage internal
dependencies between features of a basic element. Therefore, chapter 3 presents these
promising models based on convolutional neural networks and the Quaternion hyper-
complex numbers called “Quaternion Convolutional Neural Network” (QCNN). We
report in this thesis the QCNN evaluated on an NLP related task (Theme identification
task of spoken dialogues). Chapter 4 introduces the Quaternion Recurrent Neural
Networks (QRNN) and an extension of the LSTM to Quaternion algebra called
QLSTM. These models are evaluated during the speech recognition task of TIMIT. This
work have been realized during the Ph.D. thesis of Titouan Parcollet co-supervised
with Georges Linarès (LIA) and during the internship of Titouan Parcollet at the MILA
(Canada) under the co-supervision of Yoshua Bengio.

Part III of the thesis corresponds to the ongoing and futur research directions.
We first present an ongoing research that will lead to part of my futur research. The
previous chapters chart the path of my research throughout different neural networks

23

based topics and language processing applications. These models compose the first
step of my research in the area of machine learning for NLP and require a large
even huge processing time during the learning process. Chapter 5 introduces novel
promising research perspectives for faster and more efficient neural networks based
models and exposes a research direction based on a ongoing work for parsimonious
recurrent neural network. Nowadays even more real-life NLP related applications are
based on deep learning algorithms. These models require a long processing time for
the learning phase. The proposed model allow NLP based systems to achieve better
results than other RNN architectures with less processing time. The work started
on studying encoder-decoder neural networks is extended in chapter 6 with the first
efforts on proposing novel generative models to extract from noisy spoken documents
robust features for SLU. Finally chapter 7 presents future short-term directions on
both real and quaternion-valued neural networks, and long-term perspectives on
parsimonious neural networks and GAN. Overall, this thesis is an overview of my
futur directions in terms of neural based architectures (RNN, GAN, . . .) and real-world
applications (find out more efficient algorithms for NLP tasks) in collaboration with
different Ph.D. students, interns and colleagues.

24

Part I

Real-valued Neural Networks for
Natural Language Processing

25

Chapter 1

Parallel Recurrent Neural Networks

Contents
1.1 Introduction . 28
1.2 Parallel Long Short-Term Memory (PLSTM) 29
1.3 Experiments . 32
1.4 Results and Discussion . 33

Abstract

We present in this chapter an original LSTM-based architecture, named Parallel LSTM
(PLSTM), that carries out multiple parallel synchronized input sequences in order to
predict a common output. The proposed PLSTM could be used for parallel sequence clas-
sification purposes. The PLSTM approach is evaluated on the automatic telecast genre
sequences classification task. Results show that the proposed PLSTM method outper-
forms the baseline n-gram models as well as the state-of-the-art LSTM approach. This
chapter corresponds to part of the work done during Mohamed Bouaziz’s Ph.D. thesis,
in CIFRE convention with the company EDD and co-supervised by Georges Lianrès
(LIA), Richard Dufour (LIA) and myself between September 2013 and December 2017.

27

Chapter 1. Parallel Recurrent Neural Networks

1.1 Introduction

The work presented in this chapter is from the collaboration with Mohamed Bouaziz
during his Ph.D. thesis in CIFRE1 with the EDD (L’Europèenne de Donnèes) com-
pany from Paris (France). EDD processes large amount of multimedia documents and
streams to provide for the customers a set of speech and natural language related ser-
vices such as documents retrieval and indexation. In this context, the Ph.D. thesis has
focused on the prediction of the genre label of telecasts on Electronic Program Guide
(EPG) multi-streams of different channels. Nonetheless, the proposed architecture can
easily process different multidimensional data or streams. The context of the Ph.D the-
sis of EPG prediction, has many concerns related to the difficulty to express an event
(telecast genre) given a sequence of previous telecasts that are not taking place at the
same time each day. Therefore, the use of different parallel channels gives a more ro-
bust context to predict the genre label for a given channel. Moreover, one can find,
on the internet, an impressive list of programs available on demand at any time of
the day. This forces the original TV channels to diversify their offers and to propose
programs that best meet the expectations of viewers regarding the period of the day.
However, this large amount of streams needs to be analyzed and organized to allow
the consumers and industries to process effectively the mass media content. Scien-
tists have been given a certain level of interest to automatic sequence classification of
TV channels’ speech in a multi-channel context (Bredin et al., 2014; Bouchekif et al.,
2013). Indeed, recently, automatic sequence classification became an ubiquitous prob-
lem, having then encountered a high research interest (Gers et al., 2001; Severyn et
Moschitti, 2015; Huang et al., 2016). This is due to the need to structure knowledge as
a set of dependent localized information alongside with the new computer capabilities
to efficiently process large amount of data. Among the recent methods employed to
structure these sequences, the machine learning domain provides a set of high-level
representations well adapted to automatic sequence classification based on Deep Neu-
ral Networks (DNN) such as Convolutional Neural Networks (CNN) (LeCun et al.,
1998) or Recurrent Neural Networks (RNN) (Elman, 1990). RNN architectures such as
Long Short-Term Memory (LSTM) (Hochreiter et Schmidhuber, 1997) and Bidirectional
LSTM (BLSTM) (Graves et Schmidhuber, 2005) have gained a particular attention in
different domains and tasks including sentence (Sundermeyer et al., 2012) or succes-
sive images (Vinyals et al., 2015) processing. Nonetheless, RNNs or RNN-HMM could
not be directly employed for sequence classification using multiple inputs from syn-
chronous streams such as TV shows coming from different channels. Indeed, RNNs
can only be trained to make a set of elements labeled in a single stream of input infor-
mation.
We have introduced an original multi-stream neural network architecture, called Par-
allel LSTM (PLSTM), that simultaneously takes into account different synchronous
streams in order to automatically classify this multi-stream sequence. To evaluate the
effectiveness of the proposed PLSTM multi-stream neural network architecture, exper-

1The CIFRE convention (Conventions Industrielles de Formation par la REcherche) is a partnership
between academics and industrials for granting a Ph.D. thesis with mainly an real world application pur-
pose. More information on the CIFRE convention are available at http://www.anrt.asso.fr/fr/cifre-7843

28

1.2. Parallel Long Short-Term Memory (PLSTM)

iments are carried out on the LIA’s Electronic Program Guide (EPG) dataset containing
3 years of TV programs from 4 different channels. The PLSTM performance is com-
pared with the LSTM as well as a classic n-gram models considered as the baseline.
Our PLSTM approach is an important step further for sequence classification since it
can be applied to any set of synchronous sequences. The annexe proposes an overview
of a couple of RNN architectures.

1.2 Parallel Long Short-Term Memory (PLSTM)

Sequence models, such as LSTM based RNNs, are well known for their capability to
classify sequential data. On the other hand, these models can only take into account
homogeneous sequential data from a single stream. In the case of additional sources,
these models can not be employed. In order to take into account parallel sequences, a
solution is to combine these streams viewed as a single sequence. This combination is
carried out by two models with a certain number of limits.

(a) Asynchronous input sequences

(b) Alignment of sequences (fusion of events of the same order).

(c) Sequences merging.

Figure 1.1: Combination of parallel sequences: an illustrative example with 3 streams on the last 3
events : Et coressponds to the tth event.

Multi-streams input features of the PLSTM
The first method of combining the parallel sequences consists of a kind of alignment
between the different sequences in order to merge the events of the same order
within a single event (see Figure 1.1-b). It is a question of combining the event terms

29

Chapter 1. Parallel Recurrent Neural Networks

(1 ≤ t ≤ T) of each of the N sequences to form the compound tth event. The sequence
of T compound events is then used as a conventional sequence where each event t is
represented by a vector of N events. The limitations of this method ere related to, for
example, an LSTM layer will consider a recurrent link between the tth and the (t + 1)th

composed event. As a consequence, a dependence between the streams will be learned,
wrongly, between the tth basic event of the stream n′ and the (t + 1)th basic event of
another stream n′′ (n′ 6= n′′, 1 ≤ n′ ≤ N and 1 ≤ n′′ ≤ N). In Figure 1.1-b, an example
of this potentially wrong dependency is between the basic event at t = 1 of stream
2 and the elementary event at t = 2 of stream 1. The first event appends after the
second one The second method concatenates the N parallel sequences, each containing
T events, to obtain a single unidimensional "super-vector" of length T × N (see
Figure 1.1-c). the drawback of this method of concatenation is that the vector produced
does not represent a sequence but rather a sequence of sequences. Models adapted to
sequential data consider any input data as a homogeneous sequence of events. The
combination of multi-stream sequential data and their inclusion in sequence models is,
in most of the cases, irrelevant. We nevertheless retain the use of the first method of
combining the parallel sequences since the latter is more prone to practical order issues.

PLSTM model
The Bidirectionnal-RNN (BRNN) neural architecture, presented in the annexe, uses
the same sequence x as an input for both forward and backward directions, which is
useful for information from a single stream. We propose in this chapter an original
neural recurrent neural network, called Parallel RNN (PRNN) presented in Figure 1.2,
that takes advantage from the BRNN structure in a multistream context. The original
PLSTM architecture corresponds to the PRNN description by replacing the H function
with the LSTM composite function. PLSTM differs from the classical BLSTM by feed-
ing forward, not a shared sequence, but different input vectors through a dedicated
hidden layer hn for each input vector xn. Moreover, BLSTM employs only 2 hidden
layers due to its bidirectional architecture while PLSTM is potentially composed with
multiple hidden layers. The input sequences are considered independent and require
to be mapped in homogeneous separate subspaces (W matrix from input x to hidden h
spaces). Therefore, a single LSTM containing concatenated inputs from different inde-
pendent sequences is not theoretically suitable for finding out a common homogeneous
subspace to map heterogeneous input representation of parallel sequences. Thus, for
each nth stream (1 ≤ n ≤ N), the PLSTM takes the input sequence xn = (xn

1 , xn
2 , . . . , xN

T)
and computes the hidden sequence hn = (hn

1 , hn
2 , . . . , hN

T) and the output vector y by
iterating from t = 1 to T.

hN
t = H(WxN hN xN

t + WhN hN hN
t−1 + bN

h) (1.1)
. (1.2)

h2
t = H(Wx2h2 x2

t + Wh2h2 h2
t−1 + b2

h) (1.3)

h1
t = H(Wx1h1 x1

t + Wh1h1 h1
t−1 + b1

h) (1.4)

yt =
N

∑
n=1

Whnyhn
t + by (1.5)

30

1.2. Parallel Long Short-Term Memory (PLSTM)

Outputs yt−1 yt yt+1

Nth hidden layer hN
t−1 hN

t hN
t+1

.

Second hidden layer h2
t−1 h2

t h2
t+1

First hidden layer h1
t−1 h1

t h1
t+1

First inputs x1
t−1 x1

t x1
t+1

Scond inputs x2
t−1 x2

t x2
t+1

.

Nth inputs xN
t−1 xN

t xN
t+1

Figure 1.2: Parallel Long Short-Term (PLSTM) neural network.

where N is the number of streams. In our experiments, the output vector y takes
advantage of the N channels to predict the telecast’s genre for one given channel n
(1 ≤ n ≤ N).

Therefore, PLSTM feeds forward separate sequences in order to predict a label and
codes internal hidden structures between the parallel hidden sequences. (Graves et
Schmidhuber, 2005) introduces the BLSTM with Back Propagation Trough Time (BPTT)
algorithm (Schuster, 1999) for training. For our proposed PLSTM architecture, the train-
ing takes place over N input sequences:
Forward Pass: feeds all input data for the sequences into the PLSTM and determines
the predicted outputs.

• For 1 to T: Forward pass for each of the N hidden layers.

• For all t ∈ [1 . . . T]: perform the forward pass for the output layer using the acti-
vation state of the N hidden layers.

Backward Pass: processes the error function derivative for the sequences used in the
forward pass.

• For all t ∈ [1 . . . T]: perform the backward pass for the output neurons.

• For t from T to 1: perform the backward pass for each hidden layers using the
error observed on the output layer.

Updating Weights The update weight for all matrices from each hidden state related to
each stream is computed in the same manner than for the mere LSTM (Hochreiter et

31

Chapter 1. Parallel Recurrent Neural Networks

Schmidhuber, 1997).

1.3 Experiments

Multistream sequence classification is evaluated with the proposed PLSTM architecture
(2 and 4 parallel sequences) as well as the classic LSTM network on an automatic TV
show genre labeling task. Two n-gram based models (baseline) are also considered for
fair comparison. Next sections describe the dataset, the genre sequence classification
as well as the neural networks settings.

Multichannel EPG dataset
The Electronic Program Guide (EPG) dataset is extracted from 4 French TV channels
(M6, TF1, France 5 and TV5 Monde) for 3 years, from January 2013 to December 2015.
M6 channel is used in our experiments as the output stream. Data from 2013 and
2014 are merged and split into the training (70%) and validation (30%) datasets using a
stratified shuffle split (Pedregosa et al., 2011) in order to preserve the same percentage
of samples of each class in the output of both folds, while the 2015 dataset is kept for
testing. In order to guarantee a clean experimental environment, labels (i.e. genres)
that are absent at least in one of the three folds were removed. Doing so allows us
to have equivalent datasets in terms of labels vocabulary. Table 1.1 shows the genres
distribution for M6, the chosen output channel.

Genres Training Validation Test
Weather 2,691 1,153 1,712
Fiction 1,890 810 1,478
News 913 392 679

Other magazine 981 421 466
Music 461 197 340

Teleshopping 421 180 308
TV game show 476 204 287

Cartoon 361 155 205
Other 277 119 133

Reality TV 83 36 76
Documentary 29 13 14

Total 8,107 3,680 5,698

Table 1.1: Genres Distribution for train, validation and test sets in M6 channel output.

Genre Prediction Experiments
For a given input history sequence (composed of the n previous telecast genres),
a genre label representing the next M6’s telecast is output. The size of the genre
sequences (n) varies from 1 to 4. Then, three input configurations are employed.

32

1.4. Results and Discussion

Mono-channel input: only M6 history sequences for a baseline n-gram experiment
(with a statistical language model from the SRILM toolkit (Stolcke et al., 2002)) and a
straightforward LSTM model. Bi-channel input: both M6 and TF1 channel histories
are employed as input for P2LSTM (PLSTM with two parallel streams as a BLSTM
with forward-forward directions and separate inputs). The aim of this experiment is to
move up the context’s information using a similar and rival channel, the two being gen-
eralist channels. Multichannel input: History of each of the 4 streams (i.e. channels)
is used as input for 4n-gram and P4LSTM experiments (PLSTM with 4 parallel streams).

Neural Networks Setup
The mere LSTM, and the proposed P2LSTM and P4LSTM, are composed with 3 layers:
input layer x of size varying from 1 to 4, a hidden layer h of size 80 for all LSTM-based
models and an output layer y with a size equals to the number of different possible TV
genres (11). The Keras library (Chollet, 2015), based on Theano (Bastien et al., 2012)
for fast tensor manipulation and CUDA-based GPU acceleration, has been employed
to train neural networks on an Nvidia GeForce GTX TITAN X GPU card. The training
times, detailed in Table 1.2 for all models, match with the sequence size of all models.
Indeed, even with the most time-consuming configuration, namely P4LSTM with 4
elements history, the training does not last more than 25 minutes.

Sequence size 1 2 3 4
n-gram 1 1 1 1
4n-gram 2 5 17 51
LSTM 51 146 319 362
P2LSTM 259 473 485 439
P4LSTM 536 923 844 1,386

Table 1.2: Training times (in seconds) of models employed during the experiments for different
telecast genres sequence sizes.

1.4 Results and Discussion

Table 1.3 shows the overall results, in terms of the standard F1 metric related to the
genre prediction task outputs, using each method and for different stream sequence
sizes from 1 to 4.

Seq. size n-gram 4n-gram LSTM P2LSTM P4LSTM
1 19.07 59.39 11.60 47.46 47.24
2 51.38 58.35 34.64 54.17 59.54
3 57.41 57.10 50.74 58.69 59.92
4 56.87 57.26 56.47 58.67 60.81

Table 1.3: F1-score (%) of each n-gram and LSTM models.

33

Chapter 1. Parallel Recurrent Neural Networks

N-gram based models
The multi-channel 4n-gram model outperforms the simple n-gram one for each of
the different 4 genre sequence configurations except for 3 sized history. 4n-gram
method reaches around 59% of F-score using 1 sized sequences against near 57%
for mono-channel n-gram using its best history configuration. The observed results
confirm the interest of using multiple streams to predict the next telecast’s genre for a
specified channel.

LSTM and PLSTM
One can figure out from Table 1.3 that mono-channel LSTM does not even outperform
the mono-channel n-gram experiment. P4LSTM obtains the best result with an F1 score
close to 61% using a sequence of size 4. In order to analyze these results, the Error
Rates (ER) are also presented in Table 1.4. The overall F1 scores are different from those
related to the ER. For example, at its best configuration of a 4 sized sequence, P4LSTM
error rate reaches about 23.5%, which corresponds to a correct rate of 76.5% against an
F1-measure of only 61%. Moreover, although the range between the lowest and the
highest values is almost 12 points for ER, it is only near 4 points for F1-measure. The
reason of this is that the F1-metric may be not suitable for the task due to the labels
imbalance with different numbers of genre occurrences varying from 14 to 1,712 in the
test set.

Seq. size n-gram 4n-gram LSTM P2LSTM P4LSTM
1 51.36 30.29 60.13 36.68 34.35
2 39.06 28.99 48.99 29.38 25.08
3 31.71 29.64 35.73 28.85 24.76
4 35.43 30.5 29.59 28.27 23.52

Table 1.4: Error rates (ER) observed for each n-gram and LSTM models for different sequence sizes.

Discussion
Confusion matrices of 4n-gram and P4LSTM methods are shown in Tables 1.5 and 1.6
to point out benefits of the proposed PLSTM model.

It is worth emphasizing that most of the missed instances in all systems are wrongly
labelled as one of the two most frequent classes, Weather and Fiction, as well as the Other
Magazine genre (some examples are in green cells). False positives are more recurrent in
some small classes such as Other Magazine than in the relatively more frequent class
News. The reason is that News is a well defined genre occurring mostly at the same time
each day unlike Other Magazine genre that encompasses various telecasts that are broad-
cast at several and irregular daytimes. Teleshopping shows are often broadcast at more
nearly the same time of morning than Cartoons and affect dramatically the performance
of the 4n-gram model in this context (cf. underlined italic cell in Table 1.5). Finally,
the confusion matrix of P4LSTM experiment shows also that this system fails to predict
the least frequent genres Others, Reality TV, and Documentary. For example, for the two
least frequent genres, Reality TV and Documentary, respectively none of the 76 and the

34

1.4. Results and Discussion

1282 65 0 323 11 4 17 0 5 2 3
292 904 0 177 35 9 15 26 16 0 4
2 12 636 1 27 0 0 0 1 0 0
69 40 3 296 10 2 6 0 29 6 5
16 35 17 5 219 0 3 2 43 0 0
45 1 0 1 0 246 0 0 15 0 0
2 7 0 19 0 0 245 0 6 8 0
0 32 6 0 9 102 0 56 0 0 0
10 10 0 25 1 2 15 0 66 2 2
20 14 0 9 0 0 4 0 19 9 1
4 3 0 4 0 0 0 0 2 0 1

Table 1.5: Confusion matrix for the 4n-gram output: labels are shown according to their decreasing
frequency as in Table 1.1.

1624 38 0 46 0 2 0 0 2 0 0
375 861 0 188 18 0 18 16 2 0 0
4 0 669 1 5 0 0 0 0 0 0
114 34 0 306 6 0 3 0 3 0 0
15 18 0 1 297 0 7 2 0 0 0
49 15 0 0 0 244 0 0 0 0 0
49 14 0 14 11 0 199 0 0 0 0
25 28 1 0 0 4 0 147 0 0 0
70 3 0 48 0 1 0 0 11 0 0
35 0 0 23 0 0 14 0 4 0 0
8 0 0 5 0 0 1 0 0 0 0

Table 1.6: Confusion matrix for the P4LSTM output: labels are shown according to their decreasing
frequency as in Table 1.1.

14 instances were correctly found. This leads to a precision of 0 which penalizes the
average precision and then the overall F-score. In order to evaluate the impact of the

Seq. size n-gram 4n-gram LSTM P2LSTM P4LSTM
1 23.30 70.32 14.18 58.00 57.74
2 59.47 68.04 42.34 66.21 72.77
3 66.71 66.55 62.01 71.74 73.23
4 65.67 66.77 69.01 71.71 74.32

Table 1.7: F1 score (%) of n-gram and LSTM models, the two least frequent genres Reality TV and
Documentary not being included.

least frequent genres on the F1 measure, especially on the three LSTM based systems,
we also reported on Table 1.7 the F1 results on the same outputs of the experiments
of Table 1.3 by excluding the two least frequent genres from the averages of precision
and recall (Reality TV and Documentary). The state-of-the-art mono-channel LSTM per-

35

Chapter 1. Parallel Recurrent Neural Networks

1 2 3 4
10

20

30

40

50

60

70

80

Max = 74.32

Min = 14.18

Sequence size

n-gram 4n-gram LSTM
P2LSTM P4LSTM

Figure 1.3: F1 score for n-gram and LSTM models, the two least frequent genres Reality TV and
Documentary not being included.

formances gradually become closer and closer to the multichannel n-gram model ones
(cf. Figure 1.3) when the size of sequences moves up with an F1 score of 69%. There-
fore, LSTM-based models require longer sequences to learn long term dependencies
than the 4n-gram methods. Overall, the results of the PLSTM detailed in Table 1.4
and Figure 1.3, demonstrate the benefits obtained at least for history sequences longer
than 2 genres with an F1 score greater than 71%. Regarding multichannel P4LSTM
approach, the highest performance reaches an F1-measure of about 74% using 4 sized
sequences with a gain of about 3 and 4 points compared respectively to P2LSTM and
4n-gram model best performances. With the rapid grow of multimedia documents such
as videos, the results observed with the PLSTM are promising and will allow NLP sys-
tems to process multidimensional data. Indeed, researchers across pattern recognition
domains propose more and more neural networks based systems to process effectively
multi streams for image processing (Singh et al., 2016), video classification (Wu et al.,
2016) or speech processing (Ma et al., 2019). This work will be followed to propose
novel neural based architectures to better consider each stream in an appropriate con-
dition. For example, LSTM cells are composed with gates that manage in different level
the knowledge stream. Indeed, some gates are devoted to expose the output or forget
the hidden state. Nonetheless, the input gate has to propose a suitable hidden state
candidate for a given stream but all streams have not enough information on this given
stream to effectively provide part of the hidden state candidate.

36

Chapter 2

Encoder-Decoder Neural Networks

Contents
2.1 Introduction . 38
2.2 Autoencoder neural networks based systems 39
2.3 Experiments . 46

2.3.1 DECODA framework . 46
2.3.2 Automatic Speech Recognition System 47

2.4 Results and Discussion . 48

Abstract

This chapter corresponds to part of the work done during the Killian Janod’s Ph.D. thesis,
in CIFRE (Orkis) where we study different set of features from different encoder-decoder
neural networks for the DECODA theme identification task of spoken dialogues. These
dialogues are transcribed with an Automatic Speech Recognition (ASR) system and are affected
by errors that are especially frequent when speech signal is recorded in noisy conditions.

37

Chapter 2. Encoder-Decoder Neural Networks

2.1 Introduction

The other research direction related to hitherto proposed real-valued neural networks
for language processing is presented in this chapter. This work has been made during
the Ph.D. thesis of Killian Janod. The aim of this work is to find robust representa-
tions of spoken documents automatically transcribed by an Automatic Speech Recog-
nition System (ASR). These transcripts are error prone and NLP applications require
robust features representing the document content to process effectively these docu-
ments. These features for characterizing a document or a conversation can be words,
their relations in sentences or discourse structures. Selecting and extracting relevant
features of these types depend on the analysis task and is, in general, a very difficult
and not completely solved research problem. The problem is even more complex for
spoken conversations since words are hypothesized by an ASR component with tran-
scription errors partly due to speech signal variability caused by speaker characteristics,
environment and channel noises, or acquisition devices, as well as a highly conversa-
tional language register (hesitations, repetitions, grammatical errors, disfluencies. . .).
Nevertheless, important and applicable results have been obtained on specific tasks
as speech analytics (Melamed et Gilbert, 2011), topic identification (Lagus et Kuusisto,
2002; Hazen, 2011) and segmentation (Eisenstein et Barzilay, 2008; Purver, 2011), and
other spoken conversation analysis tasks reviewed in (Tur et De Mori, 2011). We have
proposed a set of neural networks based models to reduce the impact of ASR errors
on the identification of a predetermined set of topics assuming that a spoken docu-
ment can be classified as belonging to one and only one topic as discussed in (Hazen,
2011). This assumption is acceptable if the task is to classify a single topic correspond-
ing to the theme of a conversation. An example of conversation theme is the type of
customer concern/request/complaint expressed during a customer care service (CCS)
conversation. A fragment of a conversation of this type in the application domain is
shown in Figure 2.1. The basic problem is to reduce the effect of ASR errors. For this
purpose, two different objectives have been identified, inspired by two deep learning
approaches: to consider ASR errors as noise to be reduced with denoising autoencoders
(DAE); to make abstractions of ASR features with stacked autoencoders to obtain dis-
tributed representations that tend to capture features of semantic contents character-
izing conversation themes. These features are expected to produce an effective gener-
alization useful for training classifiers in specific domains (Hinton et Salakhutdinov,
2006; Bengio et al., 2007). The conversation is represented (input features) by a prod-
uct of word term frequency (TF), inverse document frequency (IDF) as suggested in
(Hazen, 2011), and posterior probabilities of a theme given a term. The input is then
processed by a stack of autoencoders and a DAE to obtain robust latent features sets
to be used for hypothesizing conversation themes with a multi-layer perceptron (MLP)
classifier. When DAEs are used, the input variability caused by ASR errors is consid-
ered and reduced in the attempt to recover the same type of features obtained with
manual transcripts. When stacked autoencoders (SAE) are used the objective is to re-
duce variability of ASR features without imposing the reconstruction of clean features.
The performances obtained with DAEs and SAEs features are compared in a theme
identification task. Moreover, effective encoder/decoder architectures are proposed for

38

2.2. Autoencoder neural networks based systems

Agent : Bonjour
Client : Bonjour
Agent : Je vous écoute...
Client : J’appelle car j’ai reçu
une amende aujourd’hui, mais
ma carte Imagine est toujours
valable pour la zone 1 [...] J’ai
oublié d’utiliser ma carte Navigo
pour la zone 2
Agent : Vous n’avez pas utilisé
votre carte Navigo, ce qui
explique le fait que vous ayez
reçu une amende [...]
Client : Merci au revoir
Agent : Au revoir

Agent

Client

Cartes de
transport

Agent: Hello
Customer: Hello
Agent: Speaking...
Customer: I call you because
I was fined today, but I still
have an Imagine card
suitable for zone 1 [...] I forgot
to use my Navigo card for
zone 2
Agent: You did not use
your Navigo card, that is
why they give you a fine not
for a zone issue [...]
Customer: Thanks, bye
Agent: Bye

Agent

Customer

Transportation
cards

(a) Original dialogue (in French) (b) Translated dialogue (in English)Figure 2.1: Example of a dialogue from the DECODA corpus labelled by the agent as a transporta-
tion card issue but also containing the infraction theme.

reconstructing bottleneck features obtained with manual transcripts using bottleneck
features obtained from ASR transcripts. These architectures are inspired by the consid-
eration that bottleneck features can be further processed to encode a level of abstraction
eliciting relevant semantic contents encoded in the input features. A further investiga-
tion is proposed for adapting the reconstruction process to a specific task. Experimen-
tal results confirm that the proposed novel autoencoders that integrate corrupted and
clean feature abstractions provide better evidence of semantic contents relevant for a
topic identification task.

2.2 Autoencoder neural networks based systems

We have proposed to consider ASR transcripts as noisy data and regards transcription
correcting as denoising. A discussion in (Turian et al., 2010) suggests that neural word
representations may capture word semantic information. These representations can
be obtained with unsupervised learning of autoencoder parameters. As a first step,
the possibility is investigated that hidden features obtained with simple and stacked
autoencoders embed sufficient semantic information for characterizing themes of noisy
conversations. As a second step, hidden features obtained with denoising autoecoders
are considered to evaluate the impact of training for reconstructing an input artificially
perturbed with a noise model. As manual transcriptions are available for a train set,
in a third step, features are extracted with semi-supervised reconstruction of manual
transcription features from ASR noisy transcription features. Notice that manual
transcriptions features can be perturbed by a variability induced by the fact that CCS
users may mix information relevant for a theme with personal or factual irrelevant
information. As a fourth step, the possibility of stacking hidden layers of features
estimated with the previously mentioned autoencoders is considered with or without

39

Chapter 2. Encoder-Decoder Neural Networks

global fine-tuning.

Document representation
The task considered in this chapter is the reconstruction of a feature distribution cor-
rupted by the imprecision of the feature extraction component. Features are obtained
from a set of content words exhibiting high mutual information with the application
domain themes. Given a document of a corpus D, an input feature xd ∈ Rn called
TF-IDF-Gini is defined with its i-th element computed as follows:

xi = t f (i)× d f D(i)× G(i) (2.1)

where t f (i) the number of occurrences of terms i in the document, d fD(i) is the inverse
document frequency (IDF) and G(i) the word purity. The purity of a feature f is scored
with the Gini criterion defined as follows:

G(f) = ∑
t∈T

P2(t| f) = ∑
t∈T

(
d f t(f)
d fD(f)

)2

(2.2)

where d f t(f) is the number of document containing the term f annotated with label t.

Figure 2.2: Autoencoder model. Biases are omitted for the sake of simplicity.

Basic Autoencoder Concepts
An Autoencoder (AE) is a three-layer feed-forward neural network made of an encoder
and a decoder as shown in Figure 2.2. The encoder computes a hidden representation
of x made of a vector h of size m (number of hidden units) as follows:

h = σ(W(1)x + b(1)) , (2.3)

where W1 is a m × n weight matrix and b(1) is a m-dimensional bias vector. σ(.) is a
non-linear activation function. In the approach proposed in this chapter the function is

40

2.2. Autoencoder neural networks based systems

the hyperbolic tangent defined as follows:

σ(y) =
ey − e−y

ey + e−y (2.4)

The decoder attempts to reconstruct the input vector x from the hidden vector h to
obtain the output vector x̃:

x̃ = σ(W(2)h + b(2)) , (2.5)

where the reconstructed vector x̃ is a n-dimensional vector, W(2) is a n × m weight
matrix and b(2) is a n-dimensional bias vector. AE parameter estimation is performed by
minimizing the following reconstruction Mean Square Error (MSE) LMSE with respect
to the set of parameters θ = {W(1), b(1), W(2), b(2)} using the MSE (Bengio, 2009) :

LMSE(θ) =
1
d ∑

x∈D
lMSE(x, x̃) =

1
d ∑

x∈D
||x− x̃||2 (2.6)

Two AEs are trained for the task considered in this chapter: one for reconstructing
features (x(ASR)) of automatic transcriptions from an ASR system, and the other one
to recount features (x(TRS)) of manually transcribed documents. The parameters
estimated for these autoencoders (W(ASR) and W(TRS)) are pre-trained for further use to
estimate the bottleneck features (hidden layer) of the Supervised deep autoencoder.

Figure 2.3: Stacked autoencoder (SAE) architecture (Janod et al., 2016). The parameters of each
layer are estimated as for a shallow autoencoder (left). After a pre-training step, the hidden layers
are stacked to form a denoising autoencoder (right) whose parameters are further fine-tuned by
global error back propagation.

41

Chapter 2. Encoder-Decoder Neural Networks

Stacked Autoencoders (SAE)
It has been argued in (Bengio et al., 2007; Hinton et al., 2006) that DNNs may encode
input data at progressively deeper levels of abstraction in successive hidden layers
of stacked autoencoders (SAE). In this type of DNN with k hidden layers, the latent
features at the i-th intermediate hidden layer, for an input vector x, are computed as
with equation 2.3 by setting h(0) = x , and h(i) = σ(W(i)h(i−1) + b(i))∀i ∈ {1, 2, . . . , k}.
Therefore, each layer is pre-trained as a shallow autoencoder for a fixed number of
iterations. The learnt hidden layer vector h(i) is stored and used to learn the next layer
h(i+1). Greedy pre-training is progressively performed in this way starting with h(i+1)

as shown by Figure 2.3. After pre-training the last layer, a fine-tuning is performed
on the entire stack of hidden layers to obtain a generative model providing different
levels of abstractions for the input vector x.

Denoising Autoencoder (DAE)
The aim of an autoencoder is to build a robust generative model to encode and
decode a given input vector x in a latent space h. During the learning process, the
autoencoder fails to completely separate relevant information from residual noise for
a given input distribution (Vincent et al., 2010). For this reason, (Vincent et al., 2010)
propose to corrupt the inputs before the encoding process and then decode this noisy
representation to a clean one with a Denoising Autoencoder (DAE). In this way, the
DAE is expected to recover a clean representation from a noisy input by learning a
robust generative model. In this model, the input vectors x are considered as “clean”
representations. The aim of this DAE is to obtain a robust reconstruction from an input
vector to a clean output one. Therefore, x is artificially corrupted via a function that
can be:

• An Additive isotropic Gaussian Noise (GS) x(corrupted)|x ∼ N
(
x, σ2 I

)
• A Masking Noise (MN) which forces a fraction of the element of x to 0.

• A Salt-and-pepper Noise (SN) which forces the values of some elements of x to their
minimum or maximum possible value (0 or 1) according to a fair coin flip (Vincent
et al., 2010).

This corrupted input x(corrupted) is then mapped to a hidden layer with the (3) by
replacing x with x(corrupted). During the learning process, the denoising autoencoder
learns the parameters θ = {W(1), b(1), W(2), b(2)} to minimize the reconstruction error
L(x, x̃). The motivation for using this type of DAE is that a good representation h of
a corrupted or partially destroyed representation of an input vector x is informative
of x and invariant to a perturbation x(corrupted) of x due to noise. The conditional
distribution used to generate the corrupted version x(corrupted) is artificially induced.
The problem considered in this chapter is different since input features are extracted
from already noisy real-life data. In fact, input features originate from conversations
recorded with real-life background noise. Such a noise is unpredictable and a noise
model cannot be identified as the corruption of a clean input. This motivates the
proposal of a new approach based on hidden bottleneck features and the incorporation

42

2.2. Autoencoder neural networks based systems

of both noisy and clean documents in the learning process.

Basics Concepts on Supervised Bottleneck Features
Multi-Layer Perceptron (MLP) are feed-forward neural network made of an input
layer, an output layer and at least one hidden layer. MLP networks are known to be
a universal function approximator (Haykin et Network, 2004). In the work described
in this chapter, the MLPs are used for document classification. For each hidden layer,
a latent representation of the input is computed using the (3) with the same setting as
for the stacked autoencoders. Usually the class is predicted by output layers using a
non-linear Softmax function defined by:

σ(y) =
eyj

∑K
k=0 eyk

for j ∈ 1, . . . , K (2.7)

Where K is the number of elements in y. The learning process attempts to reduce
the parameters θ = W0, ..., Wj, b0, ..., bj to minimize the prediction error L(x,x̃). The
state-of-the-art loss function used in an MLP is the Cross Entropy Error (Nasr et al.,
2002). If the MLP parameters are estimated with output supervision, the latent
representation encoded in each hidden layer is more abstract and more meaningful
for the task than the one computed just for reconstructing the previous layer (Haykin
et Network, 2004). Bottleneck features are those of the hidden layer that provides the
more meaningful, abstract and if possible compressed latent representation preserving
at the same time enough information of the original distribution useful for higher
level processing. Bottleneck features have been intensively used in neural acoustic
models (Grèzl et al., 2007) (Dong Yu, 2011). The MLP based classification is used in
this chapter for comparing the performance a variety of autoencoder latent features.
This choice is considered to be acceptable, at least for the considered application type,
since the best classification results obtained in this way are superior to those reported
in (Esteve et al., 2015) using a deep neural network and the addition of semantic and
LDA input features.

Proposed Features from a Supervised Deep Autoencoder
The goal of this chapter is to obtain a robust representation of a malformed and noisy

document transcribed by an ASR system. This robust representation is based on latent
features of a Supervised Deep Autoencoder (SDAE), using both automatic and manual
transcriptions. For this reason, a new architecture shown in Figure 2.4-(c) is proposed
in this chapter. The parameter estimation of some components of this architecture is
initialized using the estimations obtained with the networks shown in Figures 2.4-(a)
and 2.4-(b). The architecture in Figure 2.4-(c) uses, as input, a feature vector from
imperfect automatic transcripts (ASR) (considered as a corrupted input), and an output
feature vector from clean manual transcripts (TRS).
In this architecture, ASR bottleneck features represented by vector hASR are mapped
into TRS bottleneck features represented by vector hTRS by introducing a mapping
layer of hidden features represented by vector h .
Initialization: As emphasized in (Hinton et al., 2006), the parameters initialization
in the architecture of Figure 2.4-(c) is critical. For this reason, the estimation should

43

Chapter 2. Encoder-Decoder Neural Networks

Figure 2.4: Illustration of the proposed Supervised Deep Autoencoder (c) (SDAE) initialized with
weight matrices from autoencoders (ASR (a) and TRS (b)).

include appropriately pre-trained weight matrices to reach optimal performance.
For this purpose, the SDAE weight matrices W(ASR) and W(TRS) are initialized with
straightforward autoencoders as shown in Figures 2.4-(a) and 2.4-(b).
Learning process: A shallow autoencoder (dashed square in Figure 2.4 (c)) is then
learnt to define the non-linear transformation from the corrupted or noisy hidden
space h(ASR) (green) to the clean one h(TRS) (blue) through a bottleneck hidden layer
h that represents an encoding of the corrupted input x(ASR). The total reconstruction
error LMSE defined in eq. 2.6 is computed with an error lMSE evaluated between the
output vector x̃(TRS) and the “clean” corresponding TRS vector x(TRS):

lMSE(x(TRS), x̃(TRS)) = ||x(TRS) − x̃(TRS)||2 (2.8)

The Heterogeneous bottleneck features extraction process for a given noisy document
x(ASR) from the architecture presented in Figure 2.4-(c) with an encoding and a
decoding phase is described as follows. Encoding phase: an input ASR vector x(ASR) is
encoded to obtain a vector h in the bottleneck hidden layer through the hidden space
h(ASR); Decoding phase: the vector h is then mapped in the “clean” latent space to
obtain the vector h(TRS) to reconstruct x̃(TRS) close to the clean vector representation of
the document manually transcribed x(TRS). The Supervised Deep Autoencoder (SDAE)

44

2.2. Autoencoder neural networks based systems

is not fine-tuned to preserve both transformations by keeping unchanged W(ASR) and
W(TRS). This is consistent with the initial intuition that reconstruction error between the
observed output x̃(TRS) and the desired one x(TRS), should not modify the meaningful
weight matrices W(ASR) and W(TRS) from the dedicated Autoencoders. For the sake of
comparison and to evaluate the relevance of this assumption an equivalent fine-tuned
supervised autoencoder (FSDAE) which learnt W(1), W(2), W(ASR) and W(TRS) during
the last training step, is proposed.

Task-specific Denoising Autoencoder
The second new architecture proposed has the purpose of obtaining a denoised
representation of a document which is best suited for the classification task. As TRS
and ASR embeddings are obtained with a theme classifier, these components are
estimated with the train data of the application domain corpus. This representation

Figure 2.5: Illustration of the proposed Task-specific Denoising Autoencoder (TDAE) with bottle-
neck features from MLP trained on ASR (a) and TRS (b).

is close to the SDAE using both features from manual documents and features from
noisy documents. This structure of the proposed architecture is shown in the Figure
2.5-(c). Its input is a noisy representation and its output is a clean one for the same
document. Instead of relying on the denoising capacity of two DAEs, this network
uses latent task meaningful features estimated by training the task classification. The
architecture in Figure 2.5-(c) uses as input both the corrupted transcriptions (ASR) and
the clean manual transcriptions (TRS).
First learning step: The TDAE is based on task specific features learnt with supervi-

45

Chapter 2. Encoder-Decoder Neural Networks

sion. These features are computed by two MLPs one trained in noisy condition and
one trained in clean condition. Bottleneck features are extracted from both MLPs.
Second learning step: During this step, the first and last layers are locked using
the representation extracted from the two previously trained MLPs. A shallow
autoencoder is then trained to obtain the non-linear transformation from the corrupted
supervised hidden space to the clean supervised hidden space through a hidden
layer that represents the robust encoding of the corrupted input xASR. The total
reconstruction error LMSE defined in equation (2.6) is evaluated between the shallow
AE output ˜hTRS and the MLP encoded version of the clean document hTRS.

2.3 Experiments

The effectiveness of the semantic content encoded in the proposed bottleneck features
is evaluated for the theme identification task of the DECODA corpus (Bechet et al.,
2012). Theme identification is casted as a classification task performed by an MLP.
The MLP has one hidden layer with 256 neurons. The parameters are estimated by
Adam gradient descent (Kingma et Ba, 2014) with an initial learning rate of 10−3. The
number of iterations is determined by early stopping on a development corpus.

2.3.1 DECODA framework

The DECODA corpus, labeled by human annotators and made available as described
in (Bechet et al., 2012), is a set of human-human telephone conversations between
agents and customers of the customer care service (CCS) of the Paris transportation
system RATP. This corpus is composed of 1,242 telephone conversations, correspond-
ing to about 74 hours of signal, split as described in Table 2.1. Conversations have
been manually transcribed and labelled with one theme corresponding to the principal
concern mentioned by the customer. The train set is used to compose the subset of dis-
criminative wordswith the TF-IDF-Gini method. A “stop list” of 126 words1 is removed
since they are considered as unnecessary words for the task. The train corpus contains
7,920 words, while the test corpus contains 3,806 words, only 70.8% of which occurring
in the train corpus. This is due to the fact that users may mix the expression of their con-
cerns with application domain irrelevant facts while the agents follow a protocol using
words expressing domain facts. Following the protocol, agents tend to influence the
users to mention, among other things, application domain related facts. This suggests
focusing of words that express domain semantic facts for estimating probability distri-
butions of pertinent conversation features. Relevant word selection using the train set
is discussed in (Morchid et al., 2014b) showing that there is no advantage in theme iden-
tification with manual transcriptions of the development set if more than 800 words are
used for the DECODA corpus. Based on the above findings, a set of 100 theme specific
words is selected for the experiments described in the following. These words are then

1http://code.google.com/p/stop-words/

46

2.3. Experiments

merged to form a vocabulary of 707 words with which the classifier input features are
obtained. For each word, an input TF-IDF-Gini features is computed. Hidden topic
LDA features, computed starting with probabilities of 800 words, have been used in
(Morchid et al., 2014b). As large variations in classification accuracies were observed
for different topic space dimensions in the development set, the topic space for which
the best classification results were observed with the development set was also used for
the test set. It was also observed that the optimal hidden space for the development set
was not optimal for the test set. This suggested considering in (Morchid et al., 2015a)
a large number (300) of hidden LDA spaces and integrate the features obtained with
all these spaces into a single c-vector of reduced dimension. Results obtained with the
development set showed that only 116 theme specific words should be considered to
obtain the best results. In (Esteve et al., 2015) the same set of 116 words was used with
the same ASR system together with 58 semantic features automatically extracted to ex-
press domain relevant facts. These features were used for classification with a simple
MLP. For each theme, a set of 100 specific words is then selected. These words are then
merged to form a vocabulary of 707 words with which the classifier input features are
obtained.

Table 2.1: Composition of the DECODA corpus.

Class Number of samples
label training dev. text

problems of itinerary 145 44 67
lost and found 143 33 63
time schedules 47 7 18

transportation cards 106 24 47
state of the traffic 202 45 90

fares 19 9 11
infractions 47 4 18

special offers 31 9 13
Total 740 175 327

2.3.2 Automatic Speech Recognition System

Experiments are performed with a large vocabulary continuous speech recognition
(LVCSR) system with 230,000 Gaussians used in triphone acoustic models. Model pa-
rameters are estimated with maximum a-posteriori probability (MAP) adaptation from
150 hours of speech in telephone condition. The vocabulary contains 5,782 words.
A 3-gram language model (LM) was obtained by adapting a basic LM with the tran-
scriptions of the DECODA train set. The ASR word error rate (WER) is 33.8% on the
train, 45.2% on the development, and 49.5% on the test subset of the corpus. These
high error rates are mainly due to speech disfluencies and to adverse acoustic envi-
ronments for some dialogues (calls from train stations, noisy and crowded streets with
mobile phones...). The same corpus was recently processed with a novel ASR system

47

Chapter 2. Encoder-Decoder Neural Networks

(Rousseau et al., 2014) with advanced neural components that performed very well in
international competitions. WER of 33.8% for the development and 34,5% for the test
sets were obtained, still showing rather frequent errors due to above mentioned unpre-
dictable real-life environments and situations.Nevertheless, the impact on the selected
topic specific words does not seem to prevent obtaining classification results close with
the ones observed with manual transcriptions. In fact, as reported in (Morchid et al.,
2014b), a maximum 89.7% accuracy was obtained with the same word set and ASR sys-
tem as in this chapter. Such an accuracy is close to the reported best 92.2% accuracy
obtained with manual transcriptions. Even if the optimal choice on the development
set does not lead to the best accuracy with the test set, it is evident that the features used
in this chapter are adequate to evaluate and compare the effects of the different feature
denoising methods considered in this chapter. The manual transcriptions (TRS) are also
used to show the maximum classification performance that could be achieved (i.e. best
condition if no transcription error has been made by an ASR system). It is worth notic-
ing that a similar WER has been reported on a similar corpus type (conversations from
call-center) (Garnier-Rizet et al., 2008).

2.4 Results and Discussion

Table 2.2 compares the best accuracies of the different architectures and features pro-
posed in this chapter. Although AEASR and SAE are simpler compared to others and
are trained in a completely unsupervised way, they are among the more robust evalu-
ated approaches. This can be explained by the fact that these neural networks are both
able to remove an important portion of the erratic noise contained in the automati-
cally transcribed documents. However, both methods cannot achieve the performance
obtained with the original clean corpus. This means that there is still another kind of
noise introduced by the automatic transcription step that cannot be compensated with
noisy examples only. The smaller relative improvement obtained by an AE on clean
data (0.83%) compared to the improvement on the data from ASR (3.76%), as shown
in Table 2.2, pointed out that there is multiple factors for the noise present in ASR data
and one of them is the automatic transcription process. The accuracy of the SDAE
approaching 83.2% suggests the following observations. Table 2.2 shows that SDAE ac-
curacy is just 0.9 point under the accuracy obtained with clean documents (TRS). This
result shows that reconstructed feature vectors are still perturbed by a residual noise
resulting in a decrease of classification performance with respect to using TRS features
in AETRS.
The second is that introducing a form of supervision with manual transcriptions in the
denoising process improves the quality of the learnt representation and lets the model
remove a large portion of the type of noise that is the only one affecting manual tran-
scriptions. Thirdly, the relatively poor results reported in Table 2.2) for DDAE, DAE,
FSDAE show that it is difficult to remove general- and task-dependent ASR noise at the
same time. In the proposed SDAE, the first and last layers capitalize on the capacity of
AEASR and AETRS to remove residual noise by reducing the more complex or abstract
form of noise thanks to a cleaner latent representation. The fixed matrix during the

48

2.4. Results and Discussion

second learning phase forces the network to denoise only the latent representations.
Overall, the best results are obtained with TDAE. With this solution, most of the noise
affecting manual and ASR features is removed from the latent representations. In this
way, the accuracy obtained with the ASR features equals the one achieved with TRS
features, i.e. 84.1%. This is due to a pre-training supervision that makes it possible to
remove most of the noise harmful for the classification task.
The latent representations from different environments let both TDAE and SDAE be-
ing able to construct a robust mapping representation for two reasons. First, the latent
information carried by a document is related to the semantics of this document. Both
clean and noisy versions of documents should share the same semantic independently
of the actual words used. Secondly, the latent representation compresses the documents
and force them to keep only the relevant information. In these latent spaces, noisy and
clean versions of the same document have more in common than their visible form
which makes them easier to remove the noise. The improvement obtained by the these
networks compared to the very similar networks (in an unsupervised way) SAE and
MLP-AE respectively shows that the supervision brought by the manual transcription
is favorable for the posterior denoising process. We plan to continue the study of robust

Table 2.2: Best theme classification accuracy (%) observed for each set of features from ASR.

Method Feature Test
employed vector Accuracy

MLP bottleneck h2 71.3
DDAE h(1) 72.5
DAE h 74.3

FSDAE h 76.5
TF.IDF – 77.1
AEASR h 81

MLP-AE h2 81.3
SAE h(2) 82.0

Proposed SDAE h 83.2
Proposed TDAE h2 84.1

features from neural networks of spoken documents with novel generative adversarial
networks (GAN), and a first investigation is reported in chapter 6. GAN models will
be a main part of my future direction due to their capability to learn complex mapping
from random inputs and require few supervision.

49

Chapter 2. Encoder-Decoder Neural Networks

50

Part II

Quaternion Neural Networks for
Natural Language Processing

51

Chapter 3

Quaternion Convolutional Neural
Networks

Contents
3.1 Introduction . 54
3.2 Motivations . 55
3.3 Quaternion algebra . 57
3.4 Quaternion Convolutional Neural Networks 57
3.5 Experiments . 58
3.6 Results and Discussion . 60

Abstract

This chapter presents a novel model based on convolutional neural networks and the
Quaternion hyper-complex numbers called “Quaternion Convolutional Neural Network”
(QCNN). The proposed QCNN is evaluated on NLP related tasks (Theme identifica-
tion task of spoken dialogues). This work has been realized during the Ph.D. thesis
of Titouan Parcollet co-supervised with Georges Linarès (LIA) while Titouan Parcol-
let was an intern at the MILA (Canada) under the co-supervision of Yoshua Bengio.

53

Chapter 3. Quaternion Convolutional Neural Networks

3.1 Introduction

The previous chapters have presented the first research directions on Machine Learn-
ing (ML) models for NLP related applications. However, ML models, such as neural
networks, employ document or signal representations based on basic low level fea-
tures. Therefore, these basic representations reveal little in way of document statis-
tical structure by only considering these features as a “bag-of-words”, ignoring rela-
tions between them; moreover, the number of parameters are often large, even huge.
During the last 5 years, we have proposed to remedying this weaknesses by extend-
ing the complex features based on Quaternion algebra presented in (Morchid et al.,
2013) to neural networks. The effectiveness of such as algebra to represent multidimen-
sional objects have been studied for speech recognition (Parcollet et al., 2018c,d,a, 2019;
Titouan et al., 2019b), spoken language understanding (Parcollet et al., 2017; Titouan
et al., 2017; Parcollet et al., 2016) and image processing (Parcollet et al., 2019); moreover,
different quaternion based neural networks have been studied such as multi-layer per-
ceptron (Parcollet et al., 2016, 2017), encoder-decoders (Titouan et al., 2017), recurrent
neural networks (Parcollet et al., 2018c, 2019) and convolutional neural networks called
QCNN (Parcollet et al., 2018d, 2019). One can refer to these papers for further details.
The two newt chapters focus on the studies evaluating the effectiveness and efficiency
of QCNN and QRNN architectures. QCNN are compared in this chapter to the real-
valued CNN in a speech recognition (TIMIT) task. CNNs employ document represen-
tations based on features basic level. Therefore, these basic representations reveal little
in way of document statistical structure by only considering signal, words or topics
contained in the document ignoring relations between them. We propose in this chap-
ter, to remedy this weakness by extending the complex features based on Quaternion
algebra presented in (Morchid et al., 2013) to neural networks called QCNN. This orig-
inal QCNN approach is based on hyper-complex algebra to take into account features
dependencies in documents. Moreover, such models rely on unidimensional represen-
tations of the input information based on real numbers. Many realistic tasks require
an adapted representation to fit the multidimensionality of the input features, such as
pixels of an image, acoustic features, 3D models, or the different speech turns in a con-
versation. Therefore, traditional NNs process each component independently while a
more natural way is to process each group of components as a single entity to learn both
internal and contextual dependencies. Indeed, it is known that human-human conver-
sations about specific items contain contextual relations between mentions of different
speakers. In order to capture a part of these relations, it has been proposed to model a
conversation with hyper-complex numbers (Parcollet et al., 2016; Morchid et al., 2013),
the Quaternions, that integrate specific features for each speaker.
Quaternions are hypercomplex numbers that contain a real and three separate imagi-
nary components, fitting perfectly to 3 and 4 dimensional input feature vectors, such as
for image processing and robot kinematics (Sangwine, 1996; Pei et Cheng, 1999; Aspra-
gathos et Dimitros, 1998). The idea of bundling groups of numbers into separate entities
is also exploited by the recent capsule network (Sabour et al., 2017). Conversely to tra-
ditional homogeneous representations, capsule and quaternion networks bundle sets
of features together. Thereby, quaternion neural network based models are able to code

54

3.2. Motivations

latent inter-dependencies between groups of input features during the learning process
with less parameters than traditional NNs, by taking advantage of the Hamilton product
as the equivalent of the ordinary product, but between quaternions. Quaternion neural
networks (Isokawa et al., 2003; Arena et al., 1994, 1997) have been proposed to solve dif-
ferent tasks that involve composed entities as input features (Arena et al., 1994, 1997).
More precisely, good results have been obtained in the past for theme identification
of telephone conversations (Parcollet et al., 2016) using a quaternion-based multilayer
perceptron (QMLP) with adapted features for each speaker. However, the QMLP used
as a solution to this task does not take into consideration the external and contextual
informations that can exist between different turns of a dialogue.

3.2 Motivations

A major challenge of current machine learning models is to obtain efficient repre-
sentations of relevant information for solving a specific task. Consequently, a good
model has to efficiently code both the relations that occur at the feature level, such
as between the Mel filter energies, the first, and second order derivatives values of a
single time-frame, and at a global level, such as a phonemes or words described by a
group of time-frames. Moreover, to avoid overfitting, better generalize, and to be more
efficient, such models also have to be as small as possible. Nonetheless, real-valued
neural networks usually require a huge set of parameters to well-perform on speech
recognition tasks, and hardly code internal dependencies within the features, since
they are considered at the same level as global dependencies during the learning. In
the following, we detail the motivations to employ quaternion-valued neural networks
instead of real-valued ones to code inter and intra features dependencies with less
parameters.

First, a better representation of multidimensional data has to be explored to nat-
urally capture internal relations within the input features. For example, an efficient
way to represent the information composing an acoustic signal sequence is to consider
each time-frame as being a whole entity of three strongly related elements, instead of a
group of unidimensional elements that could be related to each others, as in traditional
real-valued neural networks. Indeed, with a real-valued NN, the latent relations
between the Mel filter banks energies, and the first and second order derivatives of a
given time-frame are hardly coded in the latent space since the weight has to find out
these relations among all the time-frames composing the sequence. Quaternions are
fourth dimensional entities and allow one to build and process elements made of up to
four elements, mitigating the above described problem. Indeed, the quaternion algebra
and more precisely the Hamilton product allows quaternion neural network to capture
these internal latent relations within the features of a quaternion. It has been shown
that QNNs are able to restore the spatial relations within 3D coordinates (Matsui et al.,
2004), and within color pixels (Isokawa et al., 2003), while real-valued NNs failed. In
fact, the quaternion-weight components are shared through multiple quaternion input
parts during the Hamilton product , creating relations within the elements. Indeed,

55

Chapter 3. Quaternion Convolutional Neural Networks

Figure 3.1: Illustration of the input features (Qin) latent relations learning ability of a quaternion-
valued layer (right) due to the quaternion weight sharing of the Hamilton product (Eq. 3.5),
compared to a standard real-valued layer (left).

Figure 3.1 shows that the multiple weights required to code latent relations within
a feature are considered at the same level as for learning global relations between
different features, while the quaternion weight w codes these internal relations within
a unique quaternion Qout during the Hamilton product (right).

Second, quaternion neural networks make it possible to deal with the same sig-
nal dimension than real-valued NN, but with four times less neural parameters.
Indeed, a 4-number quaternion weight linking two 4-number quaternion units only
has 4 degrees of freedom, whereas a standard neural net parametrization have
4× 4 = 16, i.e., a 4-fold saving in memory. Therefore, the natural multidimensional
representation of quaternions alongside with their ability to drastically reduce the
number of parameters indicate that hyper-complex numbers are a better fit than real
numbers to create more efficient models in multidimensional spaces such as speech
recognition. Indeed, modern automatic speech recognition systems usually employ
input sequences composed of multidimensional acoustic features, such as log Mel
features, that are often enriched with their first, second and third time derivatives
(Davis et Mermelstein, 1990; Furui, 1986), to integrate contextual information. In
standard NNs, static features are simply concatenated with their derivatives to form
a large input vector, without effectively considering that signal derivatives represent
different views of the same input. Nonetheless, it is crucial to consider that these three
descriptors represent a special state of a time-frame, and are thus correlated. Following
the above motivations and the results observed on previous works about quaternion
neural networks, we hypothesize that for acoustic data, quaternion NNs naturally
provide a more suitable representation of the input sequence, since these multiple
views can be directly embedded in the multiple dimensions space of the quaternion,
leading to smaller and more accurate models.

56

3.3. Quaternion algebra

3.3 Quaternion algebra

The quaternion algebra H defines operations between quaternion numbers. A quater-
nion Q is an extension of a complex number to the hyper-complex plane defined in a
four dimensional space as:

Q = r1 + xi + yj + zk, (3.1)

where r, x, y, and z are real numbers, and 1, i, j, and k are the quaternion unit basis.
In a quaternion, r is the real part, while xi + yj + zk with i2 = j2 = k2 = ijk = −1 is
the imaginary part, or the vector part. Such a definition can be used to describe spatial
rotations. A quaternion Q can also be summarized into the following matrix of real
numbers, that turns out to be more suitable for computations:

Qmat =

r −x −y −z
x r −z y
y z r −x
z −y x r

 . (3.2)

The conjugate Q∗ of Q is defined as:

Q∗ = r1− xi− yj− zk. (3.3)

Then, a normalized or unit quaternion Q/ is expressed as:

Q/ =
Q√

r2 + x2 + y2 + z2
. (3.4)

Finally, the Hamilton product ⊗ between two quaternions Q1 and Q2 is computed as
follows:

Q1 ⊗Q2 =(r1r2 − x1x2 − y1y2 − z1z2)+

(r1x2 + x1r2 + y1z2 − z1y2)i+
(r1y2 − x1z2 + y1r2 + z1x2)j+
(r1z2 + x1y2 − y1x2 + z1r2)k. (3.5)

The Hamilton product is used in QCNNs to perform transformations of vectors repre-
senting quaternions, as well as scaling and interpolation between two rotations follow-
ing a geodesic over a sphere in the R3 space as shown in (Minemoto et al., 2017).

3.4 Quaternion Convolutional Neural Networks

This section describes the quaternion features employed as well as the convolution
process.

57

Chapter 3. Quaternion Convolutional Neural Networks

Quaternion internal representation. The QCNN is a quaternion extension of
well-known real-valued and complex-valued convolutional neural networks (CNN)
(He et al., 2016; Trabelsi et al., 2017). The quaternion algebra is ensured by ma-
nipulating matrices of real numbers. Consequently, a traditional 2D convolutional
layer, with a kernel that contains N feature maps, is split into 4 parts: the first
part equal to r, the second one to xi, the third one to yj and the last one to zk of a
quaternion Q = r1 + xi + yj + zk. Nonetheless, an important condition to perform
backpropagation in either real, complex or quaternion neural networks is to have
cost and activation functions that are differentiable with respect to each part of the
real, complex or quaternion number. Many activation functions for quaternion have
been investigated (Xu et al., 2017) and a quaternion backpropagation algorithm have
been proposed in (Nitta, 1995). Consequently, the split activation (Arena et al., 1994;
Parcollet et al., 2016) function is applied to every layer and is defined as follows:

α(Q) = α(r) + α(x)i + α(y)j + α(z)k, (3.6)

with α corresponding to any standard activation function.

Quaternion-valued convolution. Following a recent proposition for convolution
of complex numbers(Trabelsi et al., 2017) and quaternions (Chase Gaudet, 2017),
this chapter presents basic neural networks convolution operations using quaternion
algebra. The convolution process is defined in the real-valued space by convolving
a filter matrix with a vector. In a QCNN, the convolution of a quaternion filter
matrix with a quaternion vector is performed. For this computation, the Hamilton
product is computed using the real-valued matrices representation of quaternions. Let
W = R + Xi + Yj + Zk be a quaternion weight filter matrix, and Xp = r + xi + yj + zk
the quaternion input vector. The quaternion convolution w.r.t the Hamilton product
W ⊗ Xp is defined as follows:

W ⊗ Xp =(Rr− Xx−Yy− Zz)+
(Rx + Xr + Yz− Zy)i+
(Ry− Xz + Yr + Zx)j+
(Rz + Xy−Yx + Zr)k, (3.7)

and can thus be expressed in a matrix form:

W ⊗ Xp =

R −X −Y −Z
X R −Z Y
Y Z R −X
Z −Y X R

 ∗

r
x
y
z

 =

r′

x′i
y′j
z′k

 , (3.8)

An illustration of such operation is depicted in Figure 3.2.

58

3.5. Experiments

Figure 3.2: Illustration of the quaternion convolution

3.5 Experiments

The performance and efficiency of the QCNNs are evaluated on a phoneme recognition
task on the TIMIT framework.

Data-set and acoustic features of quaternions. The TIMIT (Garofolo et al., 1993)
dataset is composed of a standard 462-speaker training dataset, a 50-speakers de-
velopment dataset and a core test dataset of 192 sentences. During the experiments,
the SA records of the training set are removed and the development set is used for
early stopping. The raw audio is transformed into 40-dimensional log mel-filter-bank
coefficients with deltas, delta-deltas, and energy terms, resulting in a one dimensional
vector of length 123. An acoustic quaternion Q(f , t) associated with a frequency f and
a time frame t is defined as follows:

Q(f , t) = 0 + e(f , t)i +
∂e(f , t)

∂t
j +

∂2e(f , t)
∂2t

k. (3.9)

It represents multiple views of a frequency f at time frame t, consisting of the energy
e(f , t) in the filter band corresponding to f , its first time derivative describing a
slope view, and its second time derivative describing a concavity view. Finally, a
unique quaternion is composed with the three corresponding energy terms. Thus, the

quaternion input vector length is 41 (
123
3

).

Connectionist Temporal Classification (CTC). In the acoustic modeling part of
ASR systems, the task of sequence-to-sequence mapping from an input acoustic signal
X = [x1, ..., xn] to a sequence of symbols T = [t1, ..., tm] is complex due to:

• X and T could be in arbitrary length.

• The alignment between X and T is unknown in most cases.

Specially, T is usually shorter than X in terms of phoneme symbols.

To alleviate these problems, connectionist temporal classification (CTC) has been
proposed (Graves et al., 2006). First, a softmax is applied at each timestep, or frame,

59

Chapter 3. Quaternion Convolutional Neural Networks

providing a probability of emitting each symbol X at that timestep. This probability
results in a symbol sequences representation P(O|X), with O = [o1, ..., on] in the latent
space O. A blank symbol ′−′ is introduced as an extra label to allow the classifier to
deal with the unknown alignment. Then, O is transformed to the final output sequence
with a many-to-one function g(O) defined as follows:

g(z1, z2,−, z3,−)
g(z1, z2, z3, z3,−)
g(z1,−, z2, z3, z3)

 = (z1, z2, z3). (3.10)

Consequently, the output sequence is a summation over the probability of all possible
alignments between X and T after applying the function g(O). Accordingly to (Graves
et al., 2006) the parameters of the models are learned, based on the cross entropy loss
function. During the inference, a best path decoding algorithm is performed. Therefore,
the latent sequence with the highest probability is obtained by performing argmax of
the softmax output at each timestep. The final sequence is obtained by applying the
function g(.) to the latent sequence.
Weight initialization is crucial to efficiently train neural networks. An appropriate ini-
tialization improves training speed and reduces the risk of exploding or vanishing gra-
dient. A quaternion initialization is composed of two steps. First, for each weight to
be initialized, a purely imaginary quaternion qimag is generated following an uniform
distribution in the interval [0, 1]. The imaginary unit is then normalized to obtain q/imag
following the quaternion normalization equation. The later is used alongside to other
well known initializing criterion such as (Glorot et Bengio, 2010) or (He et al., 2015)
to complete the initialization process of a given quaternion weight named w. More
information on weight initialization are available in (Parcollet et al., 2018c).

3.6 Results and Discussion

Results on the phoneme recognition task on the TIMIT dataset are reported in Table 3.1.
It is worth noticing the important difference in terms of the number of learning parame-
ters between real and quaternion valued CNNs. It is easily explained by the quaternion
algebra. In the case of a dense layer with 1, 024 input values and 1, 024 hidden units,
a real-valued model will have 1, 0242 ≈ 1M parameters, while to maintain equal in-
put and output nodes (1, 024) the quaternion equivalent has 256 quaternions inputs
and 256 quaternion-valued hidden units. Therefore, the number of parameters for the
quaternion model is 2562 × 4 ≈ 0.26M. Such a complexity reduction turns out to pro-
duce better results and may have other advantages such as a smallest memory footprint
while saving NN models. Moreover, the reduction of the number of parameters does
not result in poor performance in the QCNN. Indeed, the best PER reported is 19.64%
from a QCNN with 256 feature maps and 10 layers, compared to a PER of 20.57% for
a real-valued CNN with 64 feature maps and 10 layers. It is worth underlying that
both model accuracies are increasing with the size and the depth of the neural network.
However, bigger real-valued feature maps leads to overfitting. In fact, as shown in Ta-
ble 3.1, the best PER for a real-valued model is reached with 64 (20.57) feature maps

60

3.6. Results and Discussion

and decreasing at 128 (20.62%) and 256 (21.23). The QCNN does not suffer from such
weaknesses due to the smaller density of the neural network and achieved a constant
PER improvement alongside with the increasing number of feature maps. Furthermore,
QCNNs always performed better than CNNs independently of the model topologies.

Table 3.1: Experiment results expressed in term of phoneme error rate (PER) percentage of both
QCNN and CNN based models on the TIMIT phoneme recognition task. The results are from a 3
folds average. ’L’ stands for number of Layers, ’FM’ for number of feature maps, and ’Params’ for
number of learning parameters. The latter is expressed in order to be equivalent for both models.
Therefore, 32FM is equal to 32FM for real numbers and 8 quaternion-valued FM

Models Dev
PER %

Test
PER %

Params

R-CNN-6L-32FM 22.18 23.54 3.3M
H-QCNN-6L-32FM 22.16 23.20 0.87M
R-CNN-10L-32FM 21.77 23.43 3.4M
H-QCNN-10L-32FM 22.25 23.23 0.9M
R-CNN-6L-64FM 21.19 22.12 4.8M
H-QCNN-6L-64FM 21.44 21.99 1.2M
R-CNN-10L-64FM 19.53 20,57 5.4M
H-QCNN-10L-64FM 19.78 20.44 1.4M
R-CNN-6L-128FM 20.33 22.14 9M
H-QCNN-6L-128FM 20.12 21.33 2.3M
R-CNN-10L-128FM 19.37 20.62 11.5M
H-QCNN-10L-128FM 19.02 19.87 2.9M
R-CNN-6L-256FM 20.43 22.25 22.3M
H-QCNN-6L-256FM 19.94 20.54 5.6M
R-CNN-10L-256FM 18.89 21.23 32.1M
H-QCNN-10L-256FM 18.33 19.64 8.1M

With much fewer learning parameters for a given architecture, the QCNN performs
always better than the real-valued one on the reported task. In terms of PER, an av-
erage relative gain of 3.25% (w.r.t CNNs result) is obtained on the testing set. It is
also worth recalling that the best PER of 19.64% is obtained with just a QCNN without
HMMs, RNNs, attention mechanisms, batch normalization, phoneme language model,
acoustic data normalization or adaptation. Further improvements can be obtained with
exactly the same QCNN by just introducing a new acoustic feature in the real part of
the quaternions.

61

Chapter 3. Quaternion Convolutional Neural Networks

62

Chapter 4

Quaternion Recurrent Neural
Networks

Contents
4.1 Introduction . 64
4.2 Quaternion Recurrent Neural Networks 64
4.3 Experiments . 64
4.4 Results and Discussion . 65

Abstract

This chapter introduces the Quaternion Recurrent Neural Networks (QRNN) and an exten-
sion of the Long Short-Term Memory to Quaternion algebra called QLSTM. These models
are evaluated during the speech recognition task of TIMIT. This work has been realized
during the Ph.D. thesis of Titouan Parcollet co-supervised with Georges Linarès (LIA).

63

Chapter 4. Quaternion Recurrent Neural Networks

4.1 Introduction

The work presented in this chapter is another extension to quaternion algebra to a real-
valued neural network. The Quaternion recurrent neural network and different exten-
sions have been proposed during the Ph.D. thesis of Titouan Parcollet and presented
at different international conferences (Parcollet et al., 2018b,a, 2019). In this chapter we
limit ourselves to the QRNN/QLSTM (Parcollet et al., 2018b) and an comparaison to
RNN during an application of speech recognition (TIMIT). This chapter proposes then
to integrate local features in a novel model called quaternion recurrent neural network
(QRNN) and its gated extension called quaternion long-short term memory neural net-
work (QLSTM). The model learns both inter- and intra-dependencies between multidi-
mensional input features and the basic elements of a sequence with drastically fewer
parameters, making the approach more suitable for low-resource applications. The
effectiveness of the proposed QRNN and QLSTM is evaluated on the realistic TIMIT
phoneme recognition task that shows that both QRNN and QLSTM obtain better per-
formances than RNNs and LSTMs with a best observed phoneme error rate (PER) of
18.5% and 15.1% for QRNN and QLSTM, compared to 19.0% and 15.3% for RNN and
LSTM. Moreover, these results are obtained alongside with a reduction of 3.3 times of
the number of free parameters. Similar results are observed with the larger Wall Street
Journal (WSJ) dataset.

4.2 Quaternion Recurrent Neural Networks

The QRNN is an extension of the real-valued (Medsker et Jain, 2001) and complex-
valued (Hu et Wang, 2012; Song et Yam, 1998) recurrent neural networks to hypercom-
plex numbers. The quaternion internal representation is the same that defined in sec-
tion 3.4. The QRNN differs from the real-valued RNN in each learning sub-processes.
Therefore, let xt be the input vector at timestep t, ht the hidden state, Whx, Why and Whh
the input, output and hidden states weight matrices respectively. The vector bh is the
bias of the hidden state and pt, yt are the output and the expected target vectors. More
details of the learning process and the parametrization are available on (Parcollet et al.,
2018b).

4.3 Experiments

This Section details the acoustic features extraction and the experimental setups.

Quaternion acoustic features. The raw audio is first split every 10ms with a
window of 25ms. Then 40-dimensional log Mel-filter-bank coefficients with first,
second, and third order derivatives are extracted using the pytorch-kaldi1 (Ravanelli

1pytorch-kaldi is available at https://github.com/mravanelli/pytorch-kaldi

64

https://github.com/mravanelli/pytorch-kaldi

4.4. Results and Discussion

et al., 2018b) toolkit and the Kaldi s5 recipes (Povey et al., 2011). An acoustic quaternion
Q(f , t) associated with a frequency f and a time-frame t is formed as follows:

Q(f , t) = e(f , t) +
∂e(f , t)

∂t
i +

∂2e(f , t)
∂2t

j +
∂3e(f , t)

∂3t
k. (4.1)

Q(f , t) represents multiple views of a frequency f at time frame t, consisting of the
energy e(f , t) in the filter band at frequency f , its first time derivative describing
a slope view, its second time derivative describing a concavity view and the third
derivative describing the rate of change of the second derivative. Quaternions are used
to learn the spatial relations that exist between the 3 described different views that
characterize a same frequency (Tokuda et al., 2003). Thus, the quaternion input vector
length is 160/4 = 40. Decoding is based on Kaldi (Povey et al., 2011) and weighted
finite state transducers (WFST) (Mohri et al., 2002) that integrate acoustic, lexicon and
language model probabilities into a single HMM-based search graph.

The TIMIT corpus and neural networks configurations. The training process is
based on the standard 3, 696 sentences uttered by 462 speakers, while testing is
conducted on 192 sentences uttered by 24 speakers of the TIMIT (Garofolo et al., 1993)
dataset. A validation set composed of 400 sentences uttered by 50 speakers is used
for hyper-parameter tuning. The models are compared on a fixed number of layers
M = 4 and by varying the number of neurons N from 256 to 2, 048, and 64 to 512 for
the RNN and QRNN respectively. Indeed, it is worth underlining that the number
of hidden neurons in the quaternion and real spaces do not handle the same amount
of real-number values. Indeed, 256 quaternion neurons output are 256 × 4 = 1, 024
real values. Tanh activations are used across all the layers except for the output
layer that is based on a softmax function. Models are optimized with RMSPROP
with vanilla hyper-parameters and an initial learning rate of 8 · 10−4. The learning
rate is progressively annealed using a halving factor of 0.5 that is applied when no
performance improvement on the validation set is observed. The models are trained
during 25 epochs. All the models converged to a minimum loss due to the annealed
learning rate. A dropout rate of 0.2 is applied over all the hidden layers (Srivastava
et al., 2014) except the output one. The negative log-likelihood loss function is used as
an objective function. All the experiments are repeated 5 times (5-folds) with different
seeds and are averaged to limit any variation due to the random initialization.

4.4 Results and Discussion

We discuss in this section the results obtained with QRNNs, QLSTMs, RNNs and
LSTMs on the TIMIT speech recognition tasks. The results reported in bold on tables
are obtained with the best configurations of the neural networks observed with the
validation set.

Quaternion recurrent neural networks (QRNN). The results on the TIMIT task

65

Chapter 4. Quaternion Recurrent Neural Networks

Table 4.1: Phoneme error rate (PER%) of QRNN and RNN models on the development and test
sets of the TIMIT dataset. “Params” stands for the total number of trainable parameters.

Models Neurons Dev. Test Params

RNN

256 22.4 23.4 1M
512 19.6 20.4 2.8M
1,024 17.9 19.0 9.4M
2,048 20.0 20.7 33.4M

QRNN

64 23.6 23.9 0.6M
128 19.2 20.1 1.4M
256 17.4 18.5 3.8M
512 17.5 18.7 11.2M

are reported in Table 4.1. The best PER in realistic conditions (w.r.t to the best valida-
tion PER) is 18.5% and 19.0% on the test set for QRNN and RNN models respectively,
highlighting an absolute improvement of 0.5% obtained with QRNN. These results
compare favourably with the best results obtained so far with architectures that do
not integrate access control in multiple memory layers (Ravanelli et al., 2018a). In the
latter, a PER of 18.3% is reported on the TIMIT test set with batch-normalized RNNs.
Moreover, a remarkable advantage of QRNNs is a drastic reduction (with a factor
of 2.5×) of the parameters needed to achieve these results. Indeed, such PERs are
obtained with models that employ the same internal dimensionality corresponding
to 1, 024 real-valued neurons and 256 quaternion-valued ones, resulting in a number
of parameters of 3.8M for QRNN against the 9.4M used in the real-valued RNN. It is
also worth noting that QRNNs consistently need fewer parameters than equivalently
sized RNNs with an average reduction factor of 2.26 times. This is easily explained by
considering the content of the quaternion algebra. Indeed, for a fully-connected layer
with 2, 048 input values and 2, 048 hidden units, a real-valued RNN has 2, 0482 ≈ 4.2M
parameters, while to maintain equal input and output dimensions the quaternion
equivalent has 512 quaternions inputs and 512 quaternion hidden units. Therefore,
the number of parameters for the quaternion-valued model is 5122 × 4 ≈ 1M. Such
a complexity reduction turns out to produce better results and has other advantages
such as a smaller memory footprint while saving models on budget memory systems.
This characteristic makes our QRNN model particularly suitable for speech recognition
conducted on low computational power devices like smartphones (Chen et al., 2014).
QRNNs and RNNs accuracies vary accordingly to the architecture with better PER on
bigger and wider topologies. Therefore, while good PER are observed with a higher
number of parameters, smaller architectures performed at 23.9% and 23.4%, with 1M
and 0.6M parameters for the RNN and the QRNN respectively. Such PER are due to a
too small number of parameters to solve the task.

Quaternion long-short term memory (QLSTM). We propose to extend the QRNN to
state-of-the-art models such as long-short term memory neural networks (LSTM), to
support and improve the results already observed with the QRNN compared to the
RNN in more realistic conditions. LSTM (Hochreiter et Schmidhuber, 1997) neural

66

4.4. Results and Discussion

Table 4.2: Phoneme error rate (PER%) of QLSTM and LSTM models on the development and test
sets of the TIMIT dataset. “Params” stands for the total number of trainable parameters.

Models Neurons Dev. Test Params

LSTM

256 14.9 16.5 3.6M
512 14.2 16.1 12.6M
1,024 14.4 15.3 46.2M
2,048 14.0 15.9 176.3M

QLSTM

64 15.5 17.0 1.6M
128 14.1 16.0 4.6M
256 14.0 15.1 14.4M
512 14.2 15.1 49.9M

networks were introduced to solve the problems of long-term dependencies learning
and vanishing or exploding gradient observed with long sequences. Based on the
equations of the forward propagation and back propagation through time of QRNN
described in Appendix (Parcollet et al., 2018b), one can easily derive the equations
of a quaternion-valued LSTM. Gates are defined with quaternion numbers following
the proposal of (Danihelka et al., 2016). Therefore, the gate action is characterized
by an independent modification of each component of the quaternion-valued signal
following a component-wise product with the quaternion-valued gate potential. Let
ft,it, ot, ct, and ht be the forget, input, output gates, cell states and the hidden state of a
LSTM cell at time-step t:

ft =α(W f ⊗ xt + R f ⊗ ht−1 + b f), (4.2)

it =α(Wi ⊗ xt + Ri ⊗ ht−1 + bi), (4.3)
ct = ft × ct−1 + it × tanh(Wc ⊗ xt + Rc ⊗ ht−1 + bc), (4.4)
ot =α(Wo ⊗ xt + Ro ⊗ ht−1 + bo), (4.5)
ht =ot × tanh(ct), (4.6)

where W are rectangular input weight matrices, R are square recurrent weight matrices
and b are bias vectors. α is the split activation function and × denotes a component-
wise product between two quaternions. Both QLSTM and LSTM are bidirectional and
trained on the same conditions than for the QRNN and RNN experiments.

The results on the TIMIT corpus reported on Table 4.2 support the initial intu-
itions and the previously established trends. We first point out that the best PER
observed is 15.1% and 15.3% on the test set for QLSTMs and LSTM models respectively
with an absolute improvement of 0.2% obtained with QLSTM using 3.3 times fewer
parameters compared to LSTM. These results are among the top of the line results
(Graves et al., 2013b; Ravanelli et al., 2018a) and prove that the proposed quaternion
approach can be used in state-of-the-art models. We have also evaluated both QLSTMs
and LSTMs with a larger and more realistic corpus to validate the scaling of the
observed TIMIT results (Section 6.4). Acoustic input features are described in Section

67

Chapter 4. Quaternion Recurrent Neural Networks

6.3, and extracted on both the 14 hours subset “train-si84” and the full 81 hours dataset
“train-si284” of the Wall Street Journal (WSJ) corpus. The “test-dev93” development
set is employed for validation while “test-eval92” composes the testing set. Models
architectures are fixed with respect to the best results observed with the TIMIT corpus
(Section 6.4). Therefore both QLSTMs and LSTMs contain four bidirectional layers
of internal dimension of size 1, 024. Then an additional layer of internal size 1, 024 is
added before the output layer. The only modification in the training process compared
to the TIMIT experiments reported in Section 4.4, concerns the model optimizer which
is set to Adam (Kingma et Ba, 2014) instead of RMSPROP. Results are from a 3-folds
average.

Table 4.3: Word error rates (WER %) for WSJ14h and WSJ81h. “test-dev93” and “test-eval92”
are used as validation and testing sets respectively. L stands for the number of recurrent layers.

Models WSJ14
Dev.

WSJ14
Test

WSJ81
Dev.

WSJ81
Test

Params

LSTM 11.2 7.2 7.4 4.5 53.7M
QLSTM 10.9 6.9 7.2 4.3 18.7M

It is worth noticing that the results on Table 4.3 are promising (Graves et al., 2013a)
(WER of 11.7% on “test-dev93”) and competitive with state-of-the-art but more com-
plex models based on better engineered features (Chan et Lane, 2015)(WER of 3.8%
with the 81h on “test-eval92”). Table 4.3 shows that QLSTMs outperform LSTMs in all
training conditions (14h or 81h) and with respect to both the validation and the testing
sets. Moreover, QLSTMs need 2.9 times less parameters than LSTMs to achieve equiv-
alent performances. These experiments demonstrate that QLSTMs scale well to larger
and more realistic speech datasets and are still more efficient than real-valued LSTMs.

68

Part III

Ongoing Research, Future
Directions & General Perspectives

69

Chapter 5

Parsimonious Neural Networks

Contents
5.1 Introduction . 72
5.2 Parsimonious Memory Unit (PMU) . 72
5.3 Experiments . 76
5.4 Results and Discussion . 76

5.4.1 Gates activity of GRU and PMU 76
5.4.2 Short-term dependencies from spoken dialogues 79
5.4.3 Long-term dependencies from 20-Newsgroups documents . . . 80

Abstract

The previous chapters chart the path of my research throughout different neural net-
works based topics and language processing tasks. These models compose the first
step of my research in the area of machine learning for NLP applications and re-
quire a large, even huge processing time during the learning process. In this chap-
ter I give novel promising research perspectives for faster and more efficient neu-
ral networks based models. This work is an overview of part of my futur direction
on terms of domain (deep learning) and interest (find out more efficient algorithms).

71

Chapter 5. Parsimonious Neural Networks

5.1 Introduction

My activities in the field of recurrent neural networks started with the Ph.D. thesis of
Mohamed Bouaziz and compose an important part of my ongoing research and this
chapter presents a parsimonious RNN suitable to process small corpuses with less pro-
cessing time. The processing time required to learn the models with large amount of
data is huge; moreover, these applications are inclined to be executed on the client
side on mobile devices for example. Therefore, ML based systems have to be efficient
enough in terms of processing time and obtained performances to be acceptable for
mobile devices users. This research direction aims to propose novel neural network
architectures and paradigms to better handle this large amount of uncontrolled data-
sets alongside to maintain even improve the performances. The chapter proposes a re-
current neural network architecture that manages short- and long-term dependencies
differently than an Long Short-Term Memory (Sundermeyer et al., 2012; Greff et al.,
2017) (LSTM) or Gated Recurrent Unit (GRU) (Cho et al., 2014) with a single gate called
“Parsimonious Memory Unit Recurrent Neural Network” (PMU). Indeed, LSTM takes
into account both short- and long-term dependencies to the word properly in different
contexts, but needs to process the information in different memory blocks composed of
a set of cell-related gates. Even if the results of LSTM-RNNs are promising, the process-
ing time required to treat large documents data sets is quite huge due to the different
gates activation sub-processes. A recent addition to the RNN set of models called the
GRU has been proposed by (Wu et al., 2017b) to address this issue and has shown good
performances in several tasks such as speech recognition (Graves et al., 2013b) or ma-
chine translation (Sutskever et al., 2014). GRU is very similar to LSTM, in that it uses a
combination of gates to adjust exposure from input to the hidden states. It does how-
ever not use a memory cell but opting to fully expose its state to the output and doing
away with the output gate. Switching between full retention, mixed and forget mode
is implemented using a reset gate r and an update gate z. This is the main drawback of
the GRU in that the role and the management of the gates are not based on the relation
between short- and long-term dependencies. For example, the reset of the hidden state
is provided by both update and reset gates of the GRU; moreover, the role of the reset
gate is to avoid the hidden state candidate but the update gate z can remove this part of
the hidden state information without the reset gate r. Therefore, all hidden states share
the same distribution between short- and long-term dependencies. The PMU in which
every cell is an efficient integrator with a single gate u that makes a strong assumption
to reduce the processing time and better manage the latent relations between short- and
long-term dependencies: short and long-term dependencies are related, and the more
the RNN-based model learns from short dependencies, the less it learns from long ones.

5.2 Parsimonious Memory Unit (PMU)

The proposed PMU is related to RNN and more precisely to the Gated Recurrent Unit
(GRU) introduced by (Cho et al., 2014). GRU is a LSTM-like adaptive “reset” and “up-

72

5.2. Parsimonious Memory Unit (PMU)

date” memory unit. More information about LSTM and GRU are available in the an-
nexe. The LSTM input gate ij(t) is replaced in the GRU by an update gate zj(t), and the
forget gate f j(t) by a reset gate rj(t) for the GRU. The main idea behind the GRU unit is
that the GRU exposes the memory content at each time step and balances the previous
and new memory content strictly using leaky integration. This is particularly shown
during the update process of the weight matrices. For brevity and clarity we detail here
only the update of the weight matrix whjm of the hidden state hj for the state xhj (more
details are available in the appendix:

∆whjm = α ehj(t)
∂hj(t)
∂whjm

∂hj(t)
∂whjm

=
∂hj(t− 1)

∂whjm

(
1− zj(t)

)
+ zj(t)rj(t)σ′(xhj(t))hm(t− 1) . (5.1)

Short and long-term dependencies for the GRU
One can note that the update of the weight matrix depends on both short-term de-

pendencies (
∂hj(t− 1)

∂whjm
) controlled by the inverse of the update gate (1 − zj(t)), and

long-term dependencies (σ′(xhj) hm(t− 1)) balanced by the reset rj(t) and the update
zj(t) gates (if active). The derivative of the hidden state has a restricted behaviour. In-
deed, for example, to learn from only long-term dependencies, equation (5.1) shows
that the conditions zj = 1 and rj = 1 have to be jointly satisfied. The GRU makes the
assumption that long and short-term dependencies are not related and the short-term
dependencies are controlled only by the reset gate rj(t). Indeed, the reset gate rj(t) con-
trols directly the long-term dependencies and (1 − zj(t)) controls also the long-term
dependencies throughout a non-linear transformation. Thus, the weight matrix update
does not reflect this balance between rj(t) and (1− zj(t)). This model is a variant of
the leaky-integration unit (LIU) proposed by (Bengio et al., 2013b) and, in the case of
rj(t) = 1 ∀t ∈ T, the GRU is a straightforward LIU. Therefore, the reset gate rj(t) and
(1− zj(t)) play the same role since short and long-term dependencies are correlated:
the more the memory unit has to learn from short-term dependencies, the less the long-
term dependencies are required to evaluate a relevant current hidden state. Based on
this assumption, we have:

zj(t) ' rj(t) (5.2)
∂hj(t)
∂whjm

=
∂hj(t− 1)

∂whjm

(
1− zj(t)

)
+ zj(t)2σ′(xhj(t))hm(t− 1) . (5.3)

Equation (5.3) allows the GRU to maintain a balance between short (rj in σ′) and long
(zj and (1 − zj)) term dependencies. We propose a novel memory unit called “Par-
simonious Memory Unit” (PMU) that addresses these three main issues of the GRU
alongside reducing the processing time (Parsimonious):

73

Chapter 5. Parsimonious Neural Networks

(a) GRU (b) PMU

Figure 5.1: The graphical illustration of the (a) GRU and the proposed (b) PMU. The u represents
the self-balanced PMU gate and h and h̃ are the activation and the new activation state for the
PMU. Long and short-term dependencies are also represented in the graphics with a single gate u
for the PMU and both r and z gates for the GRU.

• controlling uniformly for forward and update phases, the short-term dependen-
cies by evaluating these term dependencies with a same gate (rj for previous hid-
den state and zj(t) for the hidden state candidate),

• taking into consideration the relation between short- and long-term dependencies
(zj(t) ' rj(t)),

• managing short and long-term dependencies with dedicated hidden neurons.

The proposed PMU depicted in Figure 5.1-(b) is based on the assumption that the more
the memory unit learns from short-term dependencies rj and the less it needs to learn
from long-term dependencies zj. Let us describe how the activation of the j-th hidden
unit hj of the PMU is computed. First, the PMU gate uj is computed as follows:

uj(t) = σ(xuj(t))

xuj(t) = ∑
m

sujmvm(t) + wujmhm(t− 1) .

The activation of the proposed unit hj is defined as:

hj(t) = (1− uj(t))hj(t− 1) + h̃j(t) (5.4)

h̃j(t) = tanh(xhj)

xhj = ∑
m

shjmvm(t) + whjmhm(t− 1)uj(t) . (5.5)

Finally, the output unit yk is computed by:

yk(t) = tanh(xk(t))

xk(t) = ∑
m

wkmhm(t− 1) .

74

5.2. Parsimonious Memory Unit (PMU)

The hidden state matrix whjm is update as follows:

∆whjm = α ehj(t)
∂hj(t)
∂whjm

∂hj(t)
∂whjm

=
∂hj(t− 1)

∂whjm

(
1− uj(t)

)
+ tanh′(xhj(t))uj(t)hm(t− 1) . (5.6)

More details about PMU are available in (Morchid, 2018).

Short and long-term dependencies for the PMU
Equations (5.4), (5.5) and (5.6) are homogeneous with regards to the representation of
short and long-term dependencies and the update process described in equation (5.6)
of the weight matrix of the hidden state is detailed thereafter:

uj(t)→ 1⇒
∂hj(t)
∂whjm

→ hm(t− 1)σ′(xhj) (long-term) (5.7)

uj(t)→ 0⇒
∂hj(t)
∂whjm

→
∂hj(t− 1)

∂whjm
(short-term) (5.8)

In a same manner, the hidden state of the proposed PMU described in equa-
tions (5.4), (5.5), behaves during the forward pass as follows:

uj(t)→ 1⇒ hj(t)→ h̃j(t) (long-term) (5.9)

uj(t)→ 0⇒ hj(t)→ hj(t− 1) + β j (short-term) (5.10)

Table 5.1 presents how the short or long-term dependencies are considered with respect
to the u gate of the PMU (β j = σ(∑

m
shjmvm(t))). All intermediate-term dependencies

(1 < uj < 0) give a balance between short and long-term memory.

Table 5.1: Hidden state derivative behaviour for exclusive short or long-term dependencies for the
PMU.

Dependencies Pass uj Value
Long-term (5.4)-(5.5) Forward 1 h̃j(t)
Short-term (5.4)-(5.5) Forward 0 hj(t− 1) + β j

Long-term (5.6) Backward 1 σ′(xhj)hm(t− 1)

Short-term (5.6) Backward 0
∂hj(t− 1)

∂whjm

The difference between the classical GRU and the proposed PMU is observed when
short-term dependencies are required for the hidden state during the forward pass (sec-
ond column in these tables) with an additional value (β j). This value is not related to
the hidden state and is evaluated with the input vector (vm(t)) and the input-to-hidden
matrix (shjm). Therefore, the short-term dependencies are not affected by β j.

75

Chapter 5. Parsimonious Neural Networks

The PMU requires only one gate viewed as a balance between short and long term
dependencies. Moreover, the PMU manages short and long-term dependencies with
dedicated neurons.

5.3 Experiments

Data-sets and metrics. The DECODA corpus as well as on the Automatic Speech
Recognition (ASR) system employed are available in sections 2.3.1 and 2.3.2. The cat-
egorization task of the 20-Newsgroups (Xu et al., 2013) dataset is employed to exhibit
long-term dependencies. This corpus is described in the official website1. The same
metric is employed to make the comparison between the results obtained by the pro-
posed PMU-RNN model in “long-term” (20Newsgroups) and “short-term” (DECODA)
dependencies easier. To evaluate the effectiveness of the proposed method, the authors
in (Albishre et al., 2015; Srivastava et al., 2013; Bouallegue et al., 2014; Morchid et al.,
2014a) used the accuracy. More information are available in (Van Asch, 2013).
Recurrent Neural Networks Setup. The RNN, LSTM, GRU and the proposed PMU
are composed of 3 layers: input layer s of the size of the discriminative vocabu-
lary (Morchid et al., 2014c) (50 words for each class gives 166 words for DECODA and
908 for the 20-News group data set), a hidden layer h of size varying from 10 to 300
for all RNN and an output layer yk with a size equal to the number of classes (8 for
DECODA and 20 for the 20-Newsgroups respectively).

5.4 Results and Discussion

The short and long-term dependencies are measured in the gates activity (update and
reset gates for GRU and the gate of PMU) and depicted in Section 5.4.1. Section 5.4.2
and Section 5.4.3 compare RNN, LSTM, GRU and the proposed PMU in terms of accu-
racy and time processing.

5.4.1 Gates activity of GRU and PMU

This section presents both GRU and PMU gates activity to demonstrate that the
role of GRU’s gates is similar for all hidden neurons while the PMU gates behave
differently across its hidden neurons. The optimal point corresponds to the number of
hidden neurons required to reach the best performances for short-term (Table 5.2) and
long-term (Table 5.3) dependencies.

Short-term gates activity from a small corpus of spoken dialogues
Figure 5.2 a) presents the gates activity of a GRU-RNN with 8 hidden states 2 in the

1http://qwone.com/∼jason/20Newsgroups/
2The term “hidden state” is employed even if the GRU and PMU have a hidden state rather than a

hidden state as the LSTM.

76

5.4. Results and Discussion

hidden layer. The dashed curves represent the activity of the update gate z and the
plain black curves the reset gate r of the GRU-RNN.

0 100 211 300 400 500
0

0.2

0.4

0.6

(a) Memory block 1

Optimal point

0 100 211 300 400 500
0

0.2

0.4

0.6

(b) Memory block 2

Optimal point

0 123 200 300 400 500

0.49

0.5

0.51

Optimal point

0 100 211 300 400 500
0

0.2

0.4

0.6

(c) Memory block 3

Optimal point

0 100 211 300 400 500
0

0.2

0.4

0.6

(d) Memory block 4

Optimal point

0 100 211 300 400 500
0

0.2

0.4

0.6

(e) Memory block 5

Optimal point

0 100 211 300 400 500
0

0.2

0.4

0.6

(f) Memory block 6

Optimal point

0 100 211 300 400 500
0

0.2

0.4

0.6

(g) Memory block 7

Optimal point

0 100 211 300 400 500
0

0.2

0.4

0.6

(h) Memory block 8

Optimal point

a) b)

Figure 5.2: An example a) of the update (z black dashed curves) and reset (r black curves) gates
activity and b) of the PMU gate u activity for short-term-dependencies for short-term depen-
dencies from the Decoda corpus for each iteration (from 0 to 500 X-axis) for the 8 memory blocks
(hidden units).

One can easily point out that the update gate z converges to 0 and then let the reset
r gate to manage both long- and short-term dependencies. Therefore, the reset gate
r controls the short-term dependencies and the long-term dependencies are avoided.
This is also mainly due to the small size of the training corpus that contains 740
documents alongside with the small number of themes (or classes) 8. Thus the prior
for a given sequence to be met is quite high. Figure 5.2 a) underlines that the update
gate z ' 0 after 500 iterations and z ' 0.2 for the optimal point (real test accuracy).
The reset gate r ' 0.5 regardless of the number of iterations. Figure 5.2 b) shows the
u gate activity of the proposed PMU-RNN for the 8 hidden neurons. For convenience

77

Chapter 5. Parsimonious Neural Networks

and readability, part of the neurons (3) are in dashed curves and the others in plain
curves. It is worth emphasizing that the role of short and long-term dependencies
is split between the 8 gates. Indeed, the Figure 5.2 b) shows that 3 dashed curves of
the gates u of the PMU-RNN hidden layer move down and are devoted to short-term
dependencies (see Table 5.1) while the 5 others move up and code the long-term
dependencies. The proposed PMU allows the RNN to separate well the learning
process of short- and long-term sequences in different distinct hidden states (3 for
short-term and 5 for long-term).

0 100 200 300 415 500
0

0.2

0.4

0.6

(a) Memory block 1

Optimal point

0 100 200 300 415 500
0

0.2

0.4

0.6

(b) Memory block 2

Optimal point

010 50 100 250300 400 500

0.49

0.5

0.51
Optimal point

0 100 200 300 415 500
0

0.2

0.4

0.6

(c) Memory block 3

Optimal point

0 100 200 300 415 500
0

0.2

0.4

0.6

(d) Memory block 4

Optimal point

0 100 200 300 415 500
0

0.2

0.4

0.6

(e) Memory block 5

Optimal point

0 100 200 300 415 500
0

0.2

0.4

0.6

(f) Memory block 6

Optimal point

0 100 200 300 415 500
0

0.2

0.4

0.6

(g) Memory block 7

Optimal point

0 100 200 300 415 500
0

0.2

0.4

0.6

(h) Memory block 8

Optimal point

a) b)

Figure 5.3: An example a) of the update (z black dashed curves) and reset (r black curves)
gates activity for long-term dependencies and b) of the PMU gate u activity for long-term-
dependencies from the 20-Newsgroups corpus for each iteration (from 0 to 500 X-axis) for the
8 memory blocks (hidden units).

Long-term gates activity from a large microblogging data set
The activity for the 8 hidden states of the two z and r gates of a GRU-RNN during the

78

5.4. Results and Discussion

learning process for a given (randomly selected) document is detailed in Figure 5.3
a). The dashed curves represent the activity of the update gate z and the plain black
curves the reset gate r of the GRU-RNN. We can first underline that the curves follow
the same trend as those for short-term dependencies of spoken dialogues corpus.
Nevertheless, the curves are steeper and z converges such as in the case of short-term
dependencies from the DECODA corpus, to 0. The reset r gate also manages as in
the case of DECODA corpus both long- and short term dependencies. Consequently,
the reset gate r controls the short-term dependencies and the long term dependencies
are avoided. Figure 5.3 b) shows the u gate activity of the proposed PMU-RNN for
the 8 hidden neurons. For convenience and readability part of the neurons (4) is in
dashed curves and the others in plain ones. It is worth emphasizing that the role of
short and long-term dependencies are well-split between the 8 PMU gates. Indeed,
figure 5.3 b) shows that 4 dashed gates u of the PMU-RNN hidden layer move down
and are devoted to short-term dependencies (see Table 5.1) while the 4 others move
up and code long-term dependencies. The PMU allows the RNN to split the learning
process of short and long-term sequences in different distincts hidden states better (4
for short-term and 4 for long-term).

5.4.2 Short-term dependencies from spoken dialogues

This section studies the performances of RNN-based models during a theme identifi-
cation task of spoken dialogues from the small DECODA corpus with a small training
data set that tends to mostly reveal short-term dependencies; moreover this corpus
contains a small number of close themes (8) (Morchid et al., 2014c, 2016). We compare
RNN, LSTM, GRU to the proposed PMU in terms of accuracy and processing time
required for learning. Table 5.2 sums up the accuracies and processing times with the
confidence interval (CI).

Accuracies on a theme identification of spoken dialogues
We underlines first that the best accuracies observed for RNN, LSTM, GRU and
PMU are equal (88.6%) but the RNN reaches the lowest accuracy (84.6%) with the
development data set. Nonetheless, Table 5.2 shows that the accuracy obtained in
real conditions3 on the test data set is obtained with the PMU (82.3%) which is better
than the performance of the RNN (81.9%) and the LSTM (81.7%). The GRU which is
the most related model to the proposed PMU-RNN, real accuracy on the test data set
80.4% is 1.9 point under the PMU one. The best configuration point is close to the
maximum for the test set in the case of the RNN. Indeed, the gap for the PMU between
the maximum and optimal configuration points is 1 (36 for the maximum and 37 for
the optimal) and is lower than the gap for the RNN (gap=2).

PMU vs. other RNNs in terms of processing time
We have noticed during the experiments that the processing time observed for the

3The best operating point (number of neurones in the hidden layer) estimated on the development set
is applied to the test set.

79

Chapter 5. Parsimonious Neural Networks

RNNs (RNN, LSTM, GRU and PMU) follows the same trend as the number of itera-
tions. Nevertheless, the high gap between the maximum of the RNN (500 iterations)
and the others (roughly 250 iterations) is not observed for the processing time curves
(about 200 seconds for RNN, LSTM and GRU). Moreover, the maximum PT required
for the proposed PMU is 174 with a gain of more than 20% compared to the GRU
maximum PT. An interesting remark regarding these curves is that the PMU is well
adapted to small data sets (requiring a low number of neurons in the hidden layer and
a small number of basic operations). These observations are confirmed in Table 5.2.
Moreover, the best accuracy reached after the PMU one is 81.9% with the mere RNN.
The PMU require only 23 sec. (for the RNN) to reach this accuracy, that represents only
one quater of the PT of the RNN (83 sec.).

Table 5.2: Sum up of accuracies (± confidence interval), number of iterations and processing time
(seconds) with the DECODA corpus.

Neural hidden Test Number of Proc. time
model size acc. % iterations in seconds
RNN 38 81.9 (±4.16) 500 83

LSTM 25 81.7 (±4.18) 162 69
GRU 16 80.4 (±4.29) 211 40
PMU 37 82.3 (±4.13) 123 37

5.4.3 Long-term dependencies from 20-Newsgroups documents

The high number of documents (20, 000) alongside with the small number of subjects
(20 classes) discussed lead to long-term dependencies between words and topics in the
20-Newsgroups corpus. The next sections evaluate the RNNs by varying the number
of neurons in the hidden layer from 10 to 300 with a step of 5 in terms of accuracy
and time processing. Table 5.3 sums up the performances in terms of accuracy and
processing time.

Classification accuracies on a large data set of documents
The curves of gated-RNNs are more stable with a gap between the lowest and highest
accuracies equal to about 3 points for both LSTM, GRU and PMU. The number of
hidden neurons required to reach the best accuracy on the development data set is
small for the PMU (155) compared to those for the RNN (290), LSTM (230) and GRU
(215). Nonetheless the real accuracy on the test data set is obtained with the LSTM
and GRU (75.0) but is close to the one from the PMU (74.9%) which is better than the
performance of the RNN (74.4%). The gain observed for the gated RNNs is more than
5 points compared to the RNN. The large data set allows the RNNs to not observe the
drawback related to the gap between the real and maximum accuracies reached on the
test data set. Table 5.3 sums up the real accuracies for each RNN. The second column
of Table 5.3 depicts the number of required neurons from the hidden layer to reach
the optimal configuration on the development data set. During the experiments, the

80

5.4. Results and Discussion

number of neurons varies from 10 to 300 with a step of 5 and Table 5.3 shows that a
large number of neurons are needed to reach this optimal point (higher of 200 neurons
for RNN, LSTM and GRU). Nonetheless, the proposed PMU reaches its best accuracy
on the development data set with fewer neurones (155) and shows its capability to
better code long-term dependencies in fewer hidden states.

PMU vs. others RNNs in terms of processing time for the classification task of
20-Newsgroups
It is worth pointing out that the maximum processing time (PT) of the RNN, LSTM
and GRU (more than 5, 000 sec.) is 20% higher than the maximum PT of the PMU
(3, 980 sec.). We can remark that the minimum PT of the PMU is 156 seconds and quite
low compared to the minimum of the RNN (272 sec.), GRU (410 sec.) and LSTM (545
sec.) with a gain of more than 43%. Moreover, the PMU has a flat curve compared to
the other RNNS with a small gap between the minimum and maximum PT of 3, 824 in
regards with those of the RNN (4, 815), LSTM (5, 215) and the GRU (5, 165). Therefore,
the proposed PMU is more stable in relation to the variation of the hidden size, and
thus, to the size of the corpus (more documents requires more neurons in the hidden
layer to well-code the latent relations between the input features). The last column of
Table 5.3 shows the PT needed to obtain the real test accuracies. We can easily remark
that the best PT is observed in real conditions for the test data set since the PMU-RNN
is employed (2, 282 sec.). The RNN, LSTM and GRU obtain worse performances (more
than 5, 100 sec.) than the PMU. The proposed Parsimonious Memory Unit allows

Table 5.3: Sum up of the classification task of 20-Newsgroups corpus performances in terms of
accuracies and processing time.

Neural hidden Test Number of Proc. time
model size acc. % iterations in seconds
RNN 290 74.4 (±0.98) 500 5,053

LSTM 230 75.0 (±0.98) 480 5,554
GRU 215 75.0 (±0.98) 415 5,127
PMU 155 74.9 (±0.98) 250 2,282

the RNN to reach equivalent even better accuracies than state-of-the-art GRU- or
LSTM-RNN with less processing time and a smaller hidden layer size. Moreover, the
PMU better-manage short and long-term dependencies. Indeed, each hidden neuron
deals with a particular aspect of the term dependencies (short or long) which is not the
case for the GRU (same gate activity for all hidden units). The experiments underline
that the number of hidden units required for learning is correlated with the size of the
corpus and a huge number of hidden units lead to model over-fitting for small data-
sets (DECODA). This phenomenon is not observed since the data-set is large enough
to require a large number of hidden units to code internal statistical dependencies
(20Newsgroups). Overall, the proposed PMU-RNN obtains better performances on
the language modeling task than the other RNNs with less processing time; moreover,
the PMU requires the same period for training than the straightforward RNN while
the PMU manages better both short- and long-term dependencies.

81

Chapter 5. Parsimonious Neural Networks

82

Chapter 6

Generative Adversarial Networks

Contents
6.1 Introduction . 84
6.2 Generative neural models . 84
6.3 Experiments . 86
6.4 Results and Discussion . 88

Abstract

This chapter presents the first effort on studying Generative Adversarial Networks (GAN)
for NLP. GAN is a dedicated sud domain of deep learning and attracts a wide range
of AI researchers. We present in this chapter how GAN based models can allow the
NLP system to extract from ASR transcripts robust features based on human transcribed
documents (TRS) to better predict the most related theme of a given spoken dialogue.

83

Chapter 6. Generative Adversarial Networks

6.1 Introduction

The work presented in this chapter reflect my recent interest in generative models to
extract robust representations of noisy documents. The models proposed here is the
logical continuation to autoencoders studied in chapter 2 and more precisely with the
TSDAE et SDAE for NLP. But NLP neural based systems are powerful to express rele-
vant content when the spoken documents are recorded in controlled conditions. These
systems are also limited by the quality of transcripts from the automatic speech recog-
nition system (ASR). In chapter 2, we have proposed to use the knowledge available
at training time through the TRS transcriptions to enhance the input representation of
the ASR versions. This enhancement is made possible with the use of stacked and deep
stacked auto-encoders to learn a static mapping that projects the ASR representation to
the TRS latent space. Based on the promising results observed with this approach we
have proposed to further investigate the distillation of the TRS knowledge to the ASR
representation with the recent generative adversarial networks (GAN). GANs are an
very active field of research and offer an interesting approach that focuses on a game-
theoretic method to train a generative model (Goodfellow et al., 2014). Numerous ar-
chitectures have been proposed to address various tasks (Radford et al., 2015; Wu et al.,
2017a). From a simplified perspective GANs are commonly used to learn a mapping
from a random noise space to a target one, making it possible to generate new unseen
samples. In NLP tasks the noise space is commonly replaced with a well defined input
representation such as text written in a specific language for neural machine transla-
tion (Yang et al., 2017). Then GANs project this latent representation to a different
target language. In the task of theme identification of telephone conversations investi-
gated, we consider the latent ASR transcription as the noise space and the TRS versions
as the target one. After training the model is expected to enhance the ASR latent rep-
resentation with TRS knowledge to further improve the results when classifying the
documents. We propose a task adapted model called Machine-to-Human GAN (M2H-
GAN) by merging the GAN with a semi-supervised GAN (SGAN) to better represent
and classify telephone conversations. This chapter Introduces first a new GAN archi-
tecture called M2H-GAN to efficiently map the automatically transcribed representa-
tion of conversations, to a latent representation of their manually transcribed version
and then compares the classification accuracy obtained with this new representation to
other methods on a theme identification of telephone conversations task (Section 6.3).

6.2 Generative neural models

We propose a GAN merged with a semi-supervised SGAN to allow a projection of an
automatically transcribed document, to its manual transcription representation with
the Machine-to-Human GAN (M2H-GAN).

Generative Adversarial Networks
In a generative adversarial network (Goodfellow et al., 2014), two neural networks are

84

6.2. Generative neural models

trained in opposition. First, a generator G outputs a fake object named x̃ from an input
random noise vector z:

x̃ = G(z) (6.1)

Then a discriminator D receives alternatively a true sample x or a fake one x̃ from G,
and outputs a probability distribution of the input being a fake or not. During training,
D tries to maximize the log-likelihood of the correctly assigned source:

L = E[log p(real|x)] + E[log p(fake|x̃)] (6.2)

In the same manner G is trained to fool D by minimizing the second term of Eq. 6.2.
Indeed, reducing the probability of correct classification of fake inputs increases the
generating capability of G.

Figure 6.1: Illustration of the M2H-GAN architecture at training (top) and testing (bottom) time.
Red and blue lines show the ASR and TRS representation signal. Note that the output of the
generator G goes from red to blue during the training phase.

Auxiliary and semi-supervised GANs (Mirza et Osindero, 2014; Odena, 2016) have
been proposed to take into consideration the labels in both the generator and the
discriminator to drive the generation process toward a specific class. In an SGAN, D
is trained to determine if the input signal is fake and select the most suitable label.
Consequently the output dimension of D is of size N + 1 with N being the number
of classes and +1 representing the fake case. The loss function remains unchanged.
SGANs use labels to add a condition on the generation process, making it possible to
generate samples of a specific class, such as car or bird for image generation.

85

Chapter 6. Generative Adversarial Networks

Machine-to-Human representation with generative models
We propose to merge the initial GAN with its semi-supervised version SGAN in a
model named Machine-to-Human GAN(M2H-GAN). An overview of the M2H-GAN
architecture is depicted in Figure 6.1. In M2H-GAN, x̃ is the generated representation
of an automatically transcribed document (ASR) from G and x is the “clean” TRS
version of the same sample. D is trained to determine if the input has been generated,
or belongs to a certain class (SGAN), and thus contains N + 1 output neurons. Con-
sequently G is jointly trained to map the ASR transcripts to a latent TRS and “clean”
space in order to fool the discriminator. Unlike for SGAN, the generator of M2H-GAN
does not have access to the label due to the fact that conversations classes are unknown
during the testing phase. This modification allows the discriminator to have more
room to discover if an input is fake or not, making it more powerful. As a consequence
the generator must create a more convincing representation of the ASR signal, and
receives gradients according to the label, without any conditioning on the input. An
overview of M2H-GAN is depicted in Figure 6.1.

6.3 Experiments

This section introduces the theme classification of telephone conversations task with
the DECODA dataset along with the proposed representation of the document.

Spoken conversations dataset
The corpus of spoken conversations is a set of automatically transcribed and anno-
tated human-human telephone conversations of the Paris transportation system CCS
(RATP). This corpus comes from the first version of the DECODA project detailed in
section 2.3.1 and is employed to evaluate the effectiveness of the proposed M2H-GAN
on a conversation theme identification task. The DECODA corpus is composed of
1, 242 telephone conversations recorded during high traffic days in the capital, which
is equivalent to about 74 hours of signal. The dataset was split into 8 categories or
dominant themes that are detailed in Table 2.1. An example of a manually transcribed
conversation of DECODA.

Abstract document representation with LDA
The latent Dirichlet allocation or LDA is an effective method to represent documents
in an unsupervised manner, as probability distributions of hidden topics (Blei et al.,
2003) in a document, and have shown their efficiency in many previous related works
(Morchid et al., 2013; Parcollet et al., 2016). For the experiments described in this
section LDA models are trained over the training set of DECODA following the
standard hyper-parameters heuristic (Blei et al., 2003). It is important to note that
two LDA models are trained with either the ASR or TRS conversations from the
training sub-set of the DECODA data-set. Consequently α =

50
T

, with T the number of
topics, and β = 0.01. The number T has been previously investigated for this task in
(Parcollet et al., 2016, 2017), and is set to 25. More precisely, 10 runs of the T = 25 LDA

86

6.3. Experiments

model are concatenated to obtain a final vector of size 25× 10 = 250 to alleviate any
variations. Then every conversation is projected into the corresponding LDA space,
and is embedded in a vector of size 250.

Experimental protocol
To evaluate the effectiveness of the M2H-GAN to generate TRS-like representations of
ASR transcripts we compare M2H-GAN to a GAN model on the theme classification of
telephone conversations. Deep feed-forward NNs trained on TRS and ASR transcripts
are used as baselines. We also compare M2H-GAN to previously investigated genera-
tive models (Janod et al., 2016). Training and testing steps are detailed in Algorithm 1,
and can be summarized as follows: 1) Train GAN or M2H-GAN models; 2) Freeze the
generator and train a DNN classifier from the generated features. Finally, Figure 6.1
represents the global architecture of the model.

Algorithm 1 Training procedures.

1: procedure TRAIN GANS(Xtrs,Xasr)
2: Project Xtrs, Xasr in LDA to obtain Ztrs, Zasr.
3: Generate X̃asr with G from Zasr.
4: Train D and G based on X̃asr, Ztrs. (Goodfellow et al., 2014).
5: procedure TRAIN DNNS(Xasr)
6: Project Xasr in LDA to obtain Zasr.
7: Generate X̃asr with frozen G from Zasr.
8: Train a DNN to classify X̃asr.

DNNs. Classifiers rely on 2 hidden layers of size 256 with tanh activations, and a
final softmax layer corresponding to the 8 themes of the DECODA dataset (Bechet et al.,
2012). They are trained during 40 epochs based on the Adam optimizer (Kingma et Ba,
2014) with vanilla hyper-parameters and no regularization techniques. After training
the maximum accuracy obtained on the test, along with the best result w.r.t to the best
validation performances are saved.

GAN. The generator is made of 2 hidden layers of size 512 and 250 (corresponding to
the size of the LDA vector) with layer-wise normalization (Ba et al., 2016) and tanh
activations, while the discriminator is composed of 2 layers of 128 and 8 neurons with
tanh and sigmoid activation functions. The discriminating labels are smoothed by being
sampled from a uniform distribution bounded by [0.0, 0.7] for the valid ones and by
[0.7, 1.0] for the fake ones as proposed in (Salimans et al., 2016).

M2H-GAN. The generator is identical to the GAN baseline. The discriminator also
includes a semi-supervised classification task. Consequently the output layer is made
of 9 neurons for the 8 themes of the DECODA framework plus the FAKE label.
Both GAN and M2H-GAN generators are trained to minimize the binary cross-entropy
loss observed with the discriminator predictions on their fake generated features while
their discriminators maximize the binary and traditional cross-entropy loss functions
of correctly classified sources. Finally, models are trained in an adversarial manner as
proposed in (Goodfellow et al., 2014) during 25 epochs with SGD, no momentum, and

87

Chapter 6. Generative Adversarial Networks

with a learning rate set to 0.02.

6.4 Results and Discussion

Two baselines DNN classifiers are tested on both the ASR and TRS versions of the DE-
CODA corpus. Then, GAN-based approaches are trained following Algorithm 1. All
the experiments are performed 10 times and averaged to alleviate variations due to the
random initialization of the parameters.
Table 6.1 reports the average accuracies observed with the GAN, and the more adapted
M2H-GAN approaches compared to simple DNN classifiers on the DECODA task. It
is firstly important to note the difference in term of accuracy between the two base-
lines during the theme identification on both ASR and TRS transcripts. Indeed, while
the standard deviation remains almost equal both real (w.r.t to the validation set) and
max test accuracies are different. More precisely, the ASR-based DNN obtains a real
test accuracy of 83.4% compared to 88.0% for the TRS-based DNN, representing a drop
of 4.6%. This is easily explained by the high WER observed on the ASR transcriptions
that alter significantly the LDA representation and the final classification performances.
These results support the initial intuition that a translation of ASR documents to TRS-
like representations allow us to better identify the most related theme of a spoken dia-
logue.
As a first step to reduce this gap ASR transcripts inputs are mapped to the TRS ones
with a GAN. This approach obtains a best test accuracy of 84.1% for ASR inputs, re-
ducing the absolute difference with TRS performances to 3.9%. The standard deviation
is also lowered to 0.012 resulting in a slightly more stable model. Validation perfor-
mances are altered with an average accuracy of 87.0% compared to 89.5% and 92.5%
for the DNNs trained on the ASR and TRS respectively.

Table 6.1: Accuracies obtained by various models on the DECODA corpus. “Real Test” stands for
the performances observed on the test set w.r.t to the validation set, while “Max Test” are the best
results obtained. The ‘Data” column gives information on the data used for training. Results are
averaged over 10 runs. The standard deviation is computed over these runs and concern the “Real
Test” performances.

Models Data Dev. Real
Test

Max
Test

Std.
Dev.

DNN TRS 92.5 88.0 88.5 0.016
DNN ASR 89.5 83.4 84.6 0.017
GAN ASR 87.0 84.1 85.2 0.012
M2H-GAN ASR 90.0 85.5 85.8 0.007

The Machine-to-Human mapping is then performed with the M2H-GAN. The real
test accuracy is increased to 85.5% representing a absolute gain of 1.4% and 2.1% com-
pared to the simpler GAN and DNN classifier respectively. The gap between the ASR
classification performances and the TRS ones is also reduced to 2.5%. It is also worth

88

6.4. Results and Discussion

underlying that the standard deviation is halved (0.007) in comparison to all the other
models, resulting in a more robust representation of the spoken document content.

Table 6.2: Accuracies obtained by proposed generative models compared to previous works on the
DECODA corpus. “Real Test” stands for the performances observed on the test set w.r.t to the
validation set while “Max Test” are the best results obtained. The ‘Data” column informs on the
data used for training. Results are averaged over 10 runs. The standard deviation is computed over
these runs and concerns the “Real Test”.

Models Data Dev. Real
Test

Max
Test

Std.
Dev.

AE(Janod et al., 2016) ASR - 81 - -
DAE(Janod et al., 2016) ASR - - 74.3 -
DSAE(Janod et al., 2016) ASR 88.0 82.0 83.0 -
QDAE(Titouan et al., 2017) ASR 90.0 85.2 85.2 -
GAN ASR 87.0 84.1 85.2 0.012
M2H-GAN ASR 90.0 85.5 85.8 0.007

Table 6.2 shows the results observed with GAN and M2H-GAN models compared
to previously investigated generative models. Both GAN and M2H outperform the
auto-encoders (AE), denoising auto-encoders (DAE), and deep stacked auto-encoders
(DSAE) proposed in (Janod et al., 2016, 2017). Indeed, encoder and decoder are trained
jointly to minimize the reconstruction error while the generator and discriminator are
trained on different objectives impacting on each other. M2H-GAN also give better
results than the recent quaternion-valued denoising auto-encoder (QDAE) despite the
fact that the QDAE is based on a better document representation and a specific segmen-
tation with the quaternion algebra.

89

Chapter 6. Generative Adversarial Networks

90

Chapter 7

General Perspectives

The previous chapters depict novel research directions. Nonetheless, the efforts
for real-valued neural networks (Part I) and for complex-valued neural networks
(Part II) will continu throughout different Ph.D. thesis and projects. All these research
directions will also be followed during the AISSPER project (ANR AAPG 2019) in
collaboration with the LIUM and Orkis (from 2020 to 2023). Indeed, AISSSPER aims to
provide robust NLP systems that extract relevant information from spoken documents
based on neural networks based models such as QNNs and autoencoders. As scientific
coordinator of the project, my expertise will be at the hart of the proposed neural
networks based models. The will lead me to explore all these promising researches
with different M.Sc. and Ph.D. students and PostDocs.

Real-valued Neural Networks
Chapter 1 presents the parallel long short-term memory recurrent neural network.
This model aims to code latent dependencies between parallel sequences. This model
consider that an information from a given sequence (or stream) s is able to be predicted
with the effort of other sequences s′ and s. Indeed, the LSTM takes the decision to
retain or forget the previous hidden state and decides how much from the hidden
state candidate is required to predict the next element of the considered sequence.
Nonetheless, the process of forgetting the previous hidden state and the part of the
hidden state exposed to the output can be made with the collaboration of all sequences
but the decision to select the best hidden state candidate (input gate) have to be made
by the concerned sequence (sequence to predict). Indeed, the other sequences have not
enough information to select the best candidate for the next element composing the
sequence. Therefore this process has to be made by s.
The works on encoder-decoder in collaboration with Killian Janod during his Ph.D.
thesis presented in chapter 2 are based on mere neural networks. Nowadays novel
architectures allow the neural networks based systems to better handle latent relations
between spoken/transcribed features from spoken documents. Among these models
Generative Adversarial Networks (GAN) and conditional GAN learn the mapping
from a document to another. Therefore a perspective of this work is to employ
automatically transcribed from an ASR and human transcriptions of spoken docu-

91

Chapter 7. General Perspectives

ments as “true” and “fake” version of the spoken documents content. The important
interest from researchers for GAN is mostly due to their capability to learn from noise
documents how to build robust representations.

Quaternion-valued Neural Networks
Chapters 3 and 4 presents the Quaternion-valued neural networks (QNN). QNNs
have encountered a great interest from researchers. This study have been made in
collaboration with Titouan Parcollet during his Ph.D. thesis. His application for an
internship at the MILA 1 has been selected to start an collaboration to develop the
quaternion neural networks for different NLP elated tasks. The promise of QNNs
has been shown in different NLP domains (speech recognition, theme identification,
image processing) and different configurations (MLP, DNN, denoising auto-encoders,
recurrent and convolutional neural networks). I plan to continue these works to extend
these models to state-of-the-art algorithms and to evaluate these models in other
domains (medical, economics, etc.).
The main issue related to Quaternion-based neural networks, is the representation
of documents. In chapter 3 and 4 we have proposed to representing the document
content with LDA based features for the user, the agent and the whole document.
Therefore we obtain three sub-features for each topic from LDA. This representation
reveals little in the way of interdependence between these sub-features; moreover, the
dependance between a given topic for the user and agent is not trivial and difficult to
understand. For these reasons we plan to discover novel features of document content
to better code the information in the quaternion. We can base this research on image
features such as the Red, Green, Blue (RGB) that code a pixel.

Long-term Perspectives for Efficient Neural Networks
My ongoing projects are centered on recurrent neural networks (RNN). The aim of
this direction is to better understood how RNNs learn to learn and how the memory
is retained throughout the time. The study presented in Chapter 5 proposes a novel
RNN-based model that better manages short- and long-term dependencies with less
processing time required during the learning phase than GRU. The results obtained
show that the PMU model is able to compute models from huge data-sets with
less parameters. Therefore such algorithms may have a strong impact on artificial
intelligence on mobile devices. Since the number of documents available on Internet
is exponentially growing the needs for such models and algorithms become crucial
for academics and industrials. Therefore I plan to extend these works during differ-
ent projects involving industry. Chapter 6 shows that GANs learn from manually
transcribed spoken documents robust mapping during a SLU task. The expressive
power of GAN will be studied during future investigations. For example this study
has underlined the instability during the learning process of both generator and
discriminator networks. We plan to propose neural based architectures that focus only
on maintaining the optimal balance between generator and discriminator during the
learning process of a GAN.

1https://mila.quebec

92

Part IV

Appendix

93

Recurrent Neural Networks

Basic of Recurrent Neural Networks

Figure 1 presents the conventional RNN folded (a) and unrolled (b). The hidden state
ht is processed with different cells.

Output y(t)

h(t)

Input v(t)

a)

Recurrent

yt−1 y(t) y(t + 1)

. . . h(t− 1) ht h(t + 1) . . .

v(t− 1) v(t) v(t + 1)

b)

Figure 1: Illustration of (a) an Recurrent Neural Network (RNN) with loops and (b) an unrolled
RNN for input xt and its associated output yt presented as a chain-like that reveals the link between
sequences throughout the time.

The Recurrent Neural Network (RNN) is an extension of a straightforward feed-
forward neural network that handles a variable-length sequence as input by receiving
a recurrent hidden state. The activation of this hidden state depends on the previous
hidden state at each time-step. Therefore the activation of the j-th hidden state hj at
time-step t is computed as a state-to-state transition function σh of the current input
vector vt and the previous hidden states:

hj(t) = σ(xhj(t)) (1)

xhj(t) = ∑
m

shjmvm(t) + whjmhm(t− 1) (2)

where xhj(t) is the network sum at time step t, whjm (from unit m to hj) and slm are the
state-to-state recurrent and input-to-hidden weight connection respectively; σh is the
logistic sigmoid function. For brevity the biases are not considered. RNNs are able to
output a probability distribution over the next element of a sequence given its current

95

hidden state ht. The RNNs factorize the probability of a sequence of length T into:

p(x1, . . . , xT) = p(x1)p(x2|x1) . . . p(xT|x1, . . . , xT−1)

where the last element is a special end-of-sequence value. We model each conditional
probability distribution with

p(xt|x1, . . . , xt−1) = φ(hj(t))

where hj(t) is evaluated with Eq.(1). (Bengio et al., 2003; Mikolov, 2012) have already
proposed neural networks to model a probabilistic distribution over sequences. (Ben-
gio et al., 1994; Hochreiter, 1998) expose the difficulty for a RNN to capture long-term
dependencies due to the vanishing and exploding gradient problems. The first attempt
to address this drawback of RNNs was to introduce an affine transformation followed
by a simple element-wise non-linearty from gates units called Long Short-Term Mem-
ory (Hochreiter et Schmidhuber, 1997). (Cho et al., 2014) propose a new recurrent unit
called Gated Recurrent Unit close to the LSTM. The next sections detail the LSTM and
GRU to better underline the benefits of the proposed Parsimonious Memory Unit.

Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) (Hochreiter et Schmidhuber, 1997) network de-
picted in Figure 2, is a special case of RNNs (Elman, 1990). The goal of this architecture
is to create an internal cell state of the network which allows it to exhibit dynamic
temporal behaviour and to process arbitrary sequences of inputs, such as sequences of
words (Sundermeyer et al., 2012) for language modeling, time series (Gers et al., 2001),
etc. The basic unit in the hidden layer of the LSTM is a memory block that replaces
the hidden unit in the RNN. The memory block allows cells to share the same gates to
reduce the number of adaptive parameters.

Figure 2: The graphical illustration from (Chung et al., 2014) of a LTSM. The i, f , and o are the
input, forget and output gates respectively.

This memory cell has in its core a recurrently self-connected gate called forget gate
that learns to forget the previous cell state c. The cell state c is updated based on both

96

the three previously defined gates and its current state. For brevity, the biases are not
considered. The input ij(t), output oj(t) and forget f j(t) gates depend on the current
input (vm) and the previous hidden state hm(t − 1)) and are computed as follows for
the j-th memory block:

ij(t) = σ(xij(t)) (3)

with xij(t) = ∑
m

sijmvm(t) + wijmhm(t− 1) (4)

oj(t) = σ(xoj(t)) (5)

with xoj(t) = ∑
m

sojmvm(t) + wojmhm(t− 1) (6)

f j(t) = σ(x f j(t)) (7)

with x f j(t) = ∑
m

s f jmvm(t) + w f jmhm(t− 1) (8)

where σ is the logistic function; wlm is the weight connection from unit m to unit l (wijm
connect unit m to gate ij); sljm is the state-to-state recurrent weight connection and σ is a
logistic sigmoid function and j indexes memory blocks and the cell c of the j-th memory
block is:

cj(t) = f j(t)cj(t− 1) + ij(t)c̃j(t) (9)

c̃j(t) = tanh(∑
m

scjmvm(t) + wcjmhm(t− 1)) . (10)

Finally the hidden state hj is computed as follows:

hj(t) = oj(t) tanh(cj(t)) (11)

The output gate oj controls how the memory content (cj) is exposed. Finally, assuming
that the neural network topology contains an input, a hidden and an output layers, the
output units yk of all gates of a given unit are computed by:

yk(t) = tanh(xk(t)) (12)

xk(t) = ∑
m

sykmvm(t) + wykmhm(t− 1) . (13)

The backward pahse is detailed in (Hochreiter et Schmidhuber, 1997).

Bidirectional Long Short-Term Memory (BLSTM)

LSTM networks use only the previous context to predict the next segment for a given
sequence. Bidirectional RNN (BRNN) (Schuster et Paliwal, 1997), presented in Figure 3
can process both directions with two separate hidden layers (one for each direction).
This type of RNN feeds to a same output layer fed forwarded inputs through the two
hidden layers. Therefore the BRNN computes both forward hidden sequence

−→
h and

97

Outputs yt−1 yt yt+1

Backward layer ←−
h t−1

←−
h t

←−
h t+1

Forward layer −→
h t−1

−→
h t

−→
h t+1

Inputs xt−1 xt xt+1

Figure 3: Bidirectional Recurrent Neural Network (BRNN).

backward sequence
←−
h as well as the output vector y by iterating

−→
h from t = 1 to T, and

←−
h from t = T to 1:

−→
h j(t) = H(s−→

h jm
vm(t) + w−→

h jm

−→
h m(t− 1)) (14)

←−
h j(t) = H(s←−

h jm
vm(t) + w←−

h jm

←−
h m(t− 1)) (15)

yj(t) = s−→
h y

−→
h j(t) + w←−

h y

←−
h j(t) (16)

By replacing the BRNN cells with LSTM cells the Bidirectionnal LSTM
(BLSTM) (Graves et Schmidhuber, 2005) is obtained. The BLSTM allows to exhibit long
range context dependencies and takes advantage from the two directions structure. The
output vector y is processed by evaluating simultaneously the two directions hidden
sequences by computing the composite function H in the forward (

−→
h) and backward

(
←−
h) directions.

Gated Recurrent Unit

Figure 4: The graphical illustration from (Chung et al., 2014) of a GRU. r and z represent the reset
and update gates; h and h̃ are the activation and the new activation state for the GRU.

The basic unit in the GRU depicted in Figure 4 is a hidden state learned during the
forward and backward processes.

98

Forward pass: Reset r and update z gates are computed as:

rj(t) = σr(xrj(t)) (17)

xrj(t) = ∑
m

wrjmhm(t− 1) and (18)

zj(t) = σz(xzj(t)) (19)

xzj(t) = ∑
m

wzjmhm(t− 1) . (20)

The activation of the proposed unit hj is defined as:

hj(t) = (1− zj(t))hj(t− 1) + zj(t)h̃j(t) (21)

h̃j(t) = σh(xhj) (22)

xhj = ∑
m

whjmhm(t− 1)rj(t). (23)

Finally, the output units yk are computed by:

yk(t) = σk(xk(t)) (24)

xk(t) = ∑
m

wkmhm(t− 1). (25)

Backward pass: The standard error objective function based on the target output tk
is defined as for the PMU. In the same way as for the PMU unit, the weight changes
∆wykm for output units are processed as:

∆wykm = α σ′k(xk(t)) ek(t) hm(t− 1) . (26)

The weight changes for the the reset (l = r) and the update (l = z) gates and the
hidden state (l = h) are:

∆wlm = α ehj(t)
∂hj(t)
∂wlm

(27)

and its internal error state ehj(t) is:

ehj(t) = ∑
k

σ′k(xk(t)) whj l ek(t) . (28)

To calculate the partial
∂hj(t)
∂wlm

from Eq.(27), we differentiate Eq.(21) and obtain a sum

of three terms:

∂hj(t)
∂wlm

=
∂hj(t− 1)

∂wlm
(1− zj(t)) + zj(t)

∂h̃j(t)
∂wlm

+
∂zj(t)
∂wlm

(h̃j(t)− hj(t− 1)). (29)

Differentiating the forward pass equations (17), (18), (19), (20), (21) and (23) for r, z and
h we can substitute the unresolved partials and split the expression on the right hand

99

of equation (29) into three separate equations for the reset (l = r), update (l = z) gates
and for the hidden state (l = h):

∂hj(t)
∂wrjm

=
∂hj(t− 1)

∂wrjm
(1− zj(t)) + zj(t)

∂h̃j(t)
∂wrjm

+
∂zj(t)
∂wrjm

(h̃j(t)− hj(t− 1))

with
∂zj(t)
∂wrjm

= 0 and
∂h̃j(t)
∂wrjm

=
∂σh(xhj(t))

∂wrjm
, Therefore

∂hj(t)
∂wrjm

=
∂hj(t− 1)

∂wrjm

(
1− zj(t)

)
+ zj(t)

∂σh(xhj(t))
∂xhj

∂xhj

∂rj(t)
∂rj(t))
∂xrj(t)

∂xrj(t))
∂wrjm

finally for the reset gate r:

∂hj(t)
∂wrjm

=
(
1− zj(t)

) ∂hj(t− 1)
∂wrjm

+ zj(t)σ′h(xhj(t))whjmhm(t− 1)2σ′r(xrt(t))

in the same way with
∂h̃j(t)
∂wzjm

= 0, we obtain for gate z:

∂hj(t)
∂wzjm

=
∂hj(t− 1)

∂wzjm

(
1− zj(t)

)
+

+
(
σh(xhj(t))− hj(t− 1)

)
σ′z(xzj(t))hm(t− 1) . (30)

In a same manner with
∂zj(t)
∂whjm

= 0, we calculate the partial for the hidden state (l = hj):

∂hj(t)
∂whjm

=
∂hj(t− 1)

∂whjm

(
1− zj(t)

)
+ zj(t)rj(t)σ′h(xhj)hm(t− 1). (31)

Based on equation (27) and the partials in equations (30) and (31) we can calculate
the corresponding weight updates with the internal state error ehj(t) defined in equa-
tion (28):

∆wrjm = α ehj(t)
∂hj(t)
∂wrjm

∆wzjm = α ehj(t)
∂hj(t)
∂wzjm

∆whjm = α ehj(t)
∂hj(t)
∂whjm

100

finally the weight matrices are updated for the reset r, update z gates, the output unit
yk and for the hidden state h with:

∆wrjm = α ehj(t)

(
∂hj(t− 1)

∂wrjm

(
1− zj(t)

)
+ zj(t)σ′h(xhj(t))whjmhm(t− 1)2σ′r(xrt(t))

)
∆wzjm = α ehj(t)

(
∂hj(t− 1)

∂wzjm

(
1− zj(t)

)
+
(
σh(xhj(t))− hj(t− 1)

)
σ′z(xzj(t))hm(t− 1)

)
∆whjm = α ehj(t)

(
∂hj(t− 1)

∂whjm

(
1− zj(t)

)
+ zj(t)rj(t)σ′h(xhj(t))hm(t− 1)

)
∆wykm = α ek(t) σ′k(xk(t))hm(t− 1) .

101

102

List of Figures

1 Neural Networks in some of the main dates. 12

1.1 Combination of parallel sequences: an illustrative example with 3
streams on the last 3 events : Et coressponds to the tth event. 29

1.2 Parallel Long Short-Term (PLSTM) neural network. 31
1.3 F1 score for n-gram and LSTM models, the two least frequent genres

Reality TV and Documentary not being included. 36

2.1 Example of a dialogue from the DECODA corpus labelled by the agent
as a transportation card issue but also containing the infraction theme. . . 39

2.2 Autoencoder model. Biases are omitted for the sake of simplicity. 40
2.3 Stacked autoencoder (SAE) architecture (Janod et al., 2016). The parame-

ters of each layer are estimated as for a shallow autoencoder (left). After
a pre-training step, the hidden layers are stacked to form a denoising
autoencoder (right) whose parameters are further fine-tuned by global
error back propagation. 41

2.4 Illustration of the proposed Supervised Deep Autoencoder (c) (SDAE)
initialized with weight matrices from autoencoders (ASR (a) and TRS (b)). 44

2.5 Illustration of the proposed Task-specific Denoising Autoencoder
(TDAE) with bottleneck features from MLP trained on ASR (a) and TRS
(b). 45

3.1 Illustration of the input features (Qin) latent relations learning ability of a
quaternion-valued layer (right) due to the quaternion weight sharing of
the Hamilton product (Eq. 3.5), compared to a standard real-valued layer
(left). 56

3.2 Illustration of the quaternion convolution 59

5.1 The graphical illustration of the (a) GRU and the proposed (b) PMU. The
u represents the self-balanced PMU gate and h and h̃ are the activation
and the new activation state for the PMU. Long and short-term depen-
dencies are also represented in the graphics with a single gate u for the
PMU and both r and z gates for the GRU. 74

103

List of Figures

5.2 An example a) of the update (z black dashed curves) and reset (r black
curves) gates activity and b) of the PMU gate u activity for short-term-
dependencies for short-term dependencies from the Decoda corpus for
each iteration (from 0 to 500 X-axis) for the 8 memory blocks (hidden units). 77

5.3 An example a) of the update (z black dashed curves) and reset (r black
curves) gates activity for long-term dependencies and b) of the PMU
gate u activity for long-term-dependencies from the 20-Newsgroups
corpus for each iteration (from 0 to 500 X-axis) for the 8 memory blocks
(hidden units). 78

6.1 Illustration of the M2H-GAN architecture at training (top) and testing
(bottom) time. Red and blue lines show the ASR and TRS representation
signal. Note that the output of the generator G goes from red to blue
during the training phase. 85

1 Illustration of (a) an Recurrent Neural Network (RNN) with loops and
(b) an unrolled RNN for input xt and its associated output yt presented
as a chain-like that reveals the link between sequences throughout the
time. 95

2 The graphical illustration from (Chung et al., 2014) of a LTSM. The i, f ,
and o are the input, forget and output gates respectively. 96

3 Bidirectional Recurrent Neural Network (BRNN). 97
4 The graphical illustration from (Chung et al., 2014) of a GRU. r and z

represent the reset and update gates; h and h̃ are the activation and the
new activation state for the GRU. 98

104

List of Tables

1.1 Genres Distribution for train, validation and test sets in M6 channel output. 32
1.2 Training times (in seconds) of models employed during the experiments

for different telecast genres sequence sizes. 33
1.3 F1-score (%) of each n-gram and LSTM models. 33
1.4 Error rates (ER) observed for each n-gram and LSTM models for different

sequence sizes. 34
1.5 Confusion matrix for the 4n-gram output: labels are shown according to

their decreasing frequency as in Table 1.1. 34
1.6 Confusion matrix for the P4LSTM output: labels are shown according to

their decreasing frequency as in Table 1.1. 35
1.7 F1 score (%) of n-gram and LSTM models, the two least frequent genres

Reality TV and Documentary not being included. 35

2.1 Composition of the DECODA corpus. 47
2.2 Best theme classification accuracy (%) observed for each set of features

from ASR. 49

3.1 Experiment results expressed in term of phoneme error rate (PER) per-
centage of both QCNN and CNN based models on the TIMIT phoneme
recognition task. The results are from a 3 folds average. ’L’ stands for
number of Layers, ’FM’ for number of feature maps, and ’Params’ for
number of learning parameters. The latter is expressed in order to be
equivalent for both models. Therefore, 32FM is equal to 32FM for real
numbers and 8 quaternion-valued FM . 61

4.1 Phoneme error rate (PER%) of QRNN and RNN models on the develop-
ment and test sets of the TIMIT dataset. “Params” stands for the total
number of trainable parameters. 66

4.2 Phoneme error rate (PER%) of QLSTM and LSTM models on the devel-
opment and test sets of the TIMIT dataset. “Params” stands for the total
number of trainable parameters. 67

4.3 Word error rates (WER %) for WSJ14h and WSJ81h. “test-dev93” and
“test-eval92” are used as validation and testing sets respectively. L
stands for the number of recurrent layers. 68

105

List of Tables

5.1 Hidden state derivative behaviour for exclusive short or long-term de-
pendencies for the PMU. 75

5.2 Sum up of accuracies (± confidence interval), number of iterations and
processing time (seconds) with the DECODA corpus. 80

5.3 Sum up of the classification task of 20-Newsgroups corpus performances
in terms of accuracies and processing time. 81

6.1 Accuracies obtained by various models on the DECODA corpus. “Real
Test” stands for the performances observed on the test set w.r.t to the
validation set, while “Max Test” are the best results obtained. The ‘Data”
column gives information on the data used for training. Results are aver-
aged over 10 runs. The standard deviation is computed over these runs
and concern the “Real Test” performances. 88

6.2 Accuracies obtained by proposed generative models compared to previ-
ous works on the DECODA corpus. “Real Test” stands for the perfor-
mances observed on the test set w.r.t to the validation set while “Max
Test” are the best results obtained. The ‘Data” column informs on the
data used for training. Results are averaged over 10 runs. The standard
deviation is computed over these runs and concerns the “Real Test”. . . 89

106

Bibliography

(Albishre et al., 2015) K. Albishre, M. Albathan, & Y. Li, 2015. Effective 20 newsgroups
dataset cleaning. Dans les actes de 2015 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT), Volume 3, 98–101. IEEE.

(Arena et al., 1997) P. Arena, L. Fortuna, G. Muscato, & M. G. Xibilia, 1997. Multilayer
perceptrons to approximate quaternion valued functions. Neural Networks 10(2),
335–342.

(Arena et al., 1994) P. Arena, L. Fortuna, L. Occhipinti, & M. G. Xibilia, 1994. Neural
networks for quaternion-valued function approximation. Dans les actes de Circuits
and Systems, 1994. ISCAS’94., 1994 IEEE International Symposium on, Volume 6, 307–
310. IEEE.

(Aspragathos et Dimitros, 1998) N. A. Aspragathos & J. K. Dimitros, 1998. A compara-
tive study of three methods for robot kinematics. Systems, Man, and Cybernetics, Part
B: Cybernetics, IEEE Transactions on 28(2), 135–145.

(Ba et al., 2016) J. L. Ba, J. R. Kiros, & G. E. Hinton, 2016. Layer normalization. arXiv
preprint arXiv:1607.06450.

(Babcock et al., 2002) B. Babcock, S. Babu, M. Datar, R. Motwani, & J. Widom, 2002.
Models and issues in data stream systems. Dans les actes de Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 1–16.
ACM.

(Bahdanau et al., 2014) D. Bahdanau, K. Cho, & Y. Bengio, 2014. Neural machine
translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

(Bastien et al., 2012) F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow,
A. Bergeron, N. Bouchard, & Y. Bengio, 2012. Theano: new features and speed im-
provements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Work-
shop.

(Bechet et al., 2012) F. Bechet, B. Maza, N. Bigouroux, T. Bazillon, M. El-Beze,
R. De Mori, & E. Arbillot, 2012. Decoda: a call-centre human-human spoken con-
versation corpus. LREC’12.

(Bengio, 2009) Y. Bengio, 2009. Learning deep architectures for ai. Foundations and
trends® in Machine Learning 2(1), 1–127.

107

Bibliography

(Bengio et al., 2013a) Y. Bengio, N. Boulanger-Lewandowski, & R. Pascanu, 2013a.
Advances in optimizing recurrent networks. Dans les actes de 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 8624–8628. IEEE.

(Bengio et al., 2013b) Y. Bengio, N. Boulanger-Lewandowski, & R. Pascanu, 2013b.
Advances in optimizing recurrent networks. Dans les actes de 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 8624–8628. IEEE.

(Bengio et al., 2003) Y. Bengio, R. Ducharme, & P. Vincent, 2003. A neural probabilistic
language model. Journal of Machine Learning Research 3, 1137–1155.

(Bengio et al., 2007) Y. Bengio, Y. LeCun, et al., 2007. Scaling learning algorithms
towards ai. Large-scale kernel machines,L. Bottou, O. Chapelle, D. DeCoste, J. Weston
(eds), MIT Press 34(5).

(Bengio et al., 1994) Y. Bengio, P. Simard, & P. Frasconi, 1994. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural net-
works 5(2), 157–166.

(Berthelot et al., 2017) D. Berthelot, T. Schumm, & L. Metz, 2017. Began: Boundary
equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717.

(Bishop et al., 1995) C. M. Bishop et al., 1995. Neural networks for pattern recognition.
Oxford university press.

(Blei et al., 2003) D. Blei, A. Ng, & M. Jordan, 2003. Latent dirichlet allocation. The
Journal of Machine Learning Research 3, 993–1022.

(Bouallegue et al., 2014) M. Bouallegue, M. Morchid, R. Dufour, M. Driss, G. Linarès,
& R. De Mori, 2014. Subspace gaussian mixture models for dialogues classification.
Dans les actes de Conference of the International Speech Communication Association (IN-
TERSPEECH) 2014. ISCA.

(Bouaziz et al., 2016) M. Bouaziz, M. Morchid, R. Dufour, G. Linarès, & R. De Mori,
2016. Parallel long short-term memory for multi-stream classification. Dans les actes
de 2016 IEEE Spoken Language Technology Workshop (SLT), 218–223. IEEE.

(Bouchekif et al., 2013) A. Bouchekif, G. Damnati, & D. Charlet, 2013. Complementar-
ity of lexical cohesion and speaker role information for story segmentation of french
tv broadcast news. Dans les actes de Statistical Language and Speech Processing, 51–61.
Springer.

(Bowman et al., 2015) S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz,
& S. Bengio, 2015. Generating sentences from a continuous space. arXiv preprint
arXiv:1511.06349.

(Bredin et al., 2014) H. Bredin, A. Laurent, A. Sarkar, V.-B. Le, S. Rosset, & C. Barras,
2014. Person instance graphs for named speaker identification in tv broadcast. Dans
les actes de Proceedings of Odyssey.

108

Bibliography

(Chan et Lane, 2015) W. Chan & I. Lane, 2015. Deep recurrent neural networks for
acoustic modelling. arXiv preprint arXiv:1504.01482.

(Chao et al., 2015) L. Chao, J. Tao, M. Yang, Y. Li, & Z. Wen, 2015. Long short term
memory recurrent neural network based multimodal dimensional emotion recogni-
tion. Dans les actes de Proceedings of the 5th International Workshop on Audio/Visual
Emotion Challenge, 65–72. ACM.

(Chase Gaudet, 2017) A. M. Chase Gaudet, 2017. Deep quaternion networks. arXiv
preprint arXiv:1712.04604v2.

(Che et al., 2016) T. Che, Y. Li, A. P. Jacob, Y. Bengio, & W. Li, 2016. Mode regularized
generative adversarial networks. arXiv preprint arXiv:1612.02136.

(Chen et al., 2014) G. Chen, C. Parada, & G. Heigold, 2014. Small-footprint keyword
spotting using deep neural networks. Dans les actes de 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 4087–4091.

(Chen, 2017) M. Chen, 2017. Minimalrnn: Toward more interpretable and trainable
recurrent neural networks. arXiv preprint arXiv:1711.06788.

(Chen et Jin, 2015) S. Chen & Q. Jin, 2015. Multi-modal dimensional emotion recogni-
tion using recurrent neural networks. Dans les actes de Proceedings of the 5th Interna-
tional Workshop on Audio/Visual Emotion Challenge, 49–56. ACM.

(Chen et al., 2017) Y. Chen, J. Yang, & J. Qian, 2017. Recurrent neural network for facial
landmark detection. Neurocomputing 219, 26–38.

(Chihi, 1998) I. Chihi, 1998. Understanding kohonen networks. ENSI, National School
for Computer Sciences, 1–10.

(Cho et al., 2014) K. Cho, B. Van Merriënboer, D. Bahdanau, & Y. Bengio, 2014. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259.

(Chollet, 2015) F. Chollet, 2015. keras. https://github.com/fchollet/keras.

(Chung et al., 2014) J. Chung, C. Gulcehre, K. Cho, & Y. Bengio, 2014. Empirical eval-
uation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555.

(Creswell et al., 2018) A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sen-
gupta, & A. A. Bharath, 2018. Generative adversarial networks: An overview. IEEE
Signal Processing Magazine 35(1), 53–65.

(Dai et al., 2004) B.-R. Dai, J.-W. Huang, M.-Y. Yeh, & M.-S. Chen, 2004. Clustering on
demand for multiple data streams. Dans les actes de Data Mining, 2004. ICDM’04.
Fourth IEEE International Conference on, 367–370. IEEE.

(Danihelka et al., 2016) I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, & A. Graves,
2016. Associative long short-term memory. arXiv preprint arXiv:1602.03032.

109

https://github.com/fchollet/keras

Bibliography

(Davis et Mermelstein, 1990) S. B. Davis & P. Mermelstein, 1990. Comparison of para-
metric representations for monosyllabic word recognition in continuously spoken
sentences. Dans les actes de Readings in speech recognition, 65–74. Elsevier.

(Donahue et Rumshisky, 2018) D. Donahue & A. Rumshisky, 2018. Adversarial text
generation without reinforcement learning. arXiv preprint arXiv:1810.06640.

(Dong Yu, 2011) M. S. Dong Yu, 2011. Improved bottleneck features using pretrained
deep neural networks. Dans les actes de Conference of the International Speech Commu-
nication Association (INTERSPEECH). International Speech Communication Associa-
tion.

(Eisenstein et Barzilay, 2008) J. Eisenstein & R. Barzilay, 2008. Bayesian unsupervised
topic segmentation. Dans les actes de Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, 334–343. ACL.

(Elman, 1990) J. L. Elman, 1990. Finding structure in time. Cognitive science 14(2),
179–211.

(Esteve et al., 2015) Y. Esteve, M. Bouallegue, C. Lailler, M. Morchid, R. Dufour,
G. Linarès, D. Matrouf, & R. De Mori, 2015. Integration of word and semantic fea-
tures for theme identification in telephone conversations. Dans les actes de Natural
Language Dialog Systems and Intelligent Assistants, 223–231. Springer.

(Fan et al., 2014) Y. Fan, Y. Qian, F.-L. Xie, & F. K. Soong, 2014. Tts synthesis with
bidirectional lstm based recurrent neural networks. Dans les actes de Interspeech,
1964–1968.

(Fernandez et al., 2014) R. Fernandez, A. Rendel, B. Ramabhadran, & R. Hoory, 2014.
Prosody contour prediction with long short-term memory, bi-directional, deep recur-
rent neural networks. Dans les actes de Interspeech, 2268–2272.

(Fox et Roberts, 2012) C. W. Fox & S. J. Roberts, 2012. A tutorial on variational bayesian
inference. Artificial intelligence review 38(2), 85–95.

(Furui, 1986) S. Furui, 1986. Speaker-independent isolated word recognition based
on emphasized spectral dynamics. Dans les actes de Acoustics, Speech, and Signal
Processing, IEEE International Conference on ICASSP’86., Volume 11, 1991–1994. IEEE.

(Gajecki, 2014) L. Gajecki, 2014. Architectures of neural networks applied for lvcsr
language modeling. Neurocomputing 133, 46–53.

(Gal et Ghahramani, 2015) Y. Gal & Z. Ghahramani, 2015. On modern deep learning
and variational inference. Dans les actes de Advances in Approximate Bayesian Inference
workshop, NIPS, Volume 2.

(Garnier-Rizet et al., 2008) M. Garnier-Rizet, G. Adda, F. Cailliau, J. Gauvain,
S. Guillemin-Lanne, L. Lamel, S. Vanni, & C. Waast-Richard, 2008. Callsurf-automatic
transcription, indexing and structuration of call center conversational speech for
knowledge extraction and query by content. Dans les actes de Proceedings of LREC.

110

Bibliography

(Garofolo et al., 1993) J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, & D. S.
Pallett, 1993. Darpa timit acoustic-phonetic continous speech corpus cd-rom. nist
speech disc 1-1.1. NASA STI/Recon technical report n 93.

(Gers et al., 2001) F. A. Gers, D. Eck, & J. Schmidhuber, 2001. Applying lstm to time se-
ries predictable through time-window approaches. Dans les actes de Artificial Neural
Networks at ICANN 2001, 669–676. Springer.

(Glorot et Bengio, 2010) X. Glorot & Y. Bengio, 2010. Understanding the difficulty of
training deep feedforward neural networks. Dans les actes de International conference
on artificial intelligence and statistics, 249–256.

(Goodfellow et al., 2016) I. Goodfellow, Y. Bengio, & A. Courville, 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org.

(Goodfellow et al., 2014) I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, & Y. Bengio, 2014. Generative adversarial nets. Dans
les actes de Advances in neural information processing systems, 2672–2680.

(Graves, 2012) A. Graves, 2012. Neural networks. Dans les actes de Supervised Sequence
Labelling with Recurrent Neural Networks, 15–35. Springer.

(Graves et al., 2006) A. Graves, S. Fernández, F. Gomez, & J. Schmidhuber, 2006. Con-
nectionist temporal classification: labelling unsegmented sequence data with recur-
rent neural networks. Dans les actes de Proceedings of the 23rd international conference
on Machine learning, 369–376. ACM.

(Graves et al., 2007) A. Graves, S. Fernández, & J. Schmidhuber, 2007. Multi-
dimensional recurrent neural networks. Dans les actes de Artificial Neural Networks
- ICANN 2007, 17th International Conference, Porto, Portugal, September 9-13, 2007, Pro-
ceedings, Part I, 549–558.

(Graves et al., 2013a) A. Graves, N. Jaitly, & A.-r. Mohamed, 2013a. Hybrid speech
recognition with deep bidirectional lstm. Dans les actes de Automatic Speech Recog-
nition and Understanding (ASRU), 2013 IEEE Workshop on, 273–278. IEEE.

(Graves et al., 2013b) A. Graves, A.-r. Mohamed, & G. Hinton, 2013b. Speech recog-
nition with deep recurrent neural networks. Dans les actes de Acoustics, speech and
signal processing (icassp), 2013 ieee international conference on, 6645–6649. IEEE.

(Graves et Schmidhuber, 2005) A. Graves & J. Schmidhuber, 2005. Framewise
phoneme classification with bidirectional lstm networks. Dans les actes de Neural
Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference on, Vol-
ume 4, 2047–2052. IEEE.

(Graves et Schmidhuber, 2009) A. Graves & J. Schmidhuber, 2009. Offline handwrit-
ing recognition with multidimensional recurrent neural networks. Dans D. Koller,
D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in Neural Information Process-
ing Systems 21, 545–552. Curran Associates, Inc.

111

http://www.deeplearningbook.org

Bibliography

(Greff et al., 2017) K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, & J. Schmid-
huber, 2017. Lstm: A search space odyssey. IEEE transactions on neural networks and
learning systems.

(Gregor et al., 2015) K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, & D. Wier-
stra, 2015. Draw: A recurrent neural network for image generation. arXiv preprint
arXiv:1502.04623.

(Grèzl et al., 2007) F. Grèzl, M. Karafiàt, S. Kontàr, & J. Cernocky, 2007. Probabilistic
and bottle-neck features for lvcsr of meetings. Dans les actes de International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), IV–757. IEEE.

(Haykin et Network, 2004) S. Haykin & N. Network, 2004. A comprehensive founda-
tion. Neural Networks 2.

(Hazen, 2011) T. Hazen, 2011. Topic identification. Spoken Language Understanding:
Systems for Extracting Semantic Information from Speech, 319–356.

(He et al., 2015) K. He, X. Zhang, S. Ren, & J. Sun, 2015. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. Dans les actes de
Proceedings of the IEEE international conference on computer vision, 1026–1034.

(He et al., 2016) K. He, X. Zhang, S. Ren, & J. Sun, 2016. Deep residual learning for
image recognition. Dans les actes de Proceedings of the IEEE conference on computer
vision and pattern recognition, 770–778.

(Hinton et al., 2006) G. E. Hinton, S. Osindero, & Y.-W. Teh, 2006. A fast learning
algorithm for deep belief nets. Neural computation 18(7), 1527–1554.

(Hinton et Salakhutdinov, 2006) G. E. Hinton & R. R. Salakhutdinov, 2006. Reducing
the dimensionality of data with neural networks. Science 313(5786), 504–507.

(Hirose et Yoshida, 2012) A. Hirose & S. Yoshida, 2012. Generalization characteris-
tics of complex-valued feedforward neural networks in relation to signal coherence.
IEEE Transactions on Neural Networks and learning systems 23(4), 541–551.

(Hochreiter, 1998) S. Hochreiter, 1998. The vanishing gradient problem during learn-
ing recurrent neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6(02), 107–116.

(Hochreiter et Schmidhuber, 1997) S. Hochreiter & J. Schmidhuber, 1997. Long short-
term memory. Neural computation 9(8), 1735–1780.

(Hu et Wang, 2012) J. Hu & J. Wang, 2012. Global stability of complex-valued recurrent
neural networks with time-delays. IEEE Transactions on Neural Networks and Learning
Systems 23(6), 853–865.

(Huang et al., 2016) M. Huang, Y. Cao, & C. Dong, 2016. Modeling rich contexts for
sentiment classification with lstm. CoRR abs/1605.01478.

112

Bibliography

(Isokawa et al., 2003) T. Isokawa, T. Kusakabe, N. Matsui, & F. Peper, 2003. Quaternion
neural network and its application. Dans les actes de International Conference on
Knowledge-Based and Intelligent Information and Engineering Systems, 318–324. Springer.

(Isokawa et al., 2009) T. Isokawa, N. Matsui, & H. Nishimura, 2009. Quaternionic
neural networks: Fundamental properties and applications. Complex-Valued Neural
Networks: Utilizing High-Dimensional Parameters, 411–439.

(Janod et al., 2016) K. Janod, M. Morchid, R. Dufour, G. Linarès, & R. De Mori, 2016.
Deep stacked autoencoders for spoken language understanding. Dans les actes
de Conference of the International Speech Communication Association (INTERSPEECH).
ISCA.

(Janod et al., 2017) K. Janod, M. Morchid, R. Dufour, G. Linares, & R. De Mori, 2017.
Denoised bottleneck features from deep autoencoders for telephone conversation
analysis. IEEE/ACM Transactions on Audio, Speech, and Language Processing 25(9),
1809–1820.

(Janod et al., 2016) K. Janod, M. Morchid, R. Dufour, G. Linarès, & R. D. Mori, 2016.
Deep stacked autoencoders for spoken language understanding. Dans les actes de
Interspeech 2016, 720–724.

(Kim et al., 2017) T. Kim, M. Cha, H. Kim, J. K. Lee, & J. Kim, 2017. Learning to
discover cross-domain relations with generative adversarial networks. Dans les actes
de Proceedings of the 34th International Conference on Machine Learning-Volume 70, 1857–
1865. JMLR. org.

(Kingma et Ba, 2014) D. Kingma & J. Ba, 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

(Kingma et Welling, 2013) D. P. Kingma & M. Welling, 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.

(Kohonen, 1982) T. Kohonen, 1982. Self-organized formation of topologically correct
feature maps. Biological cybernetics 43(1), 59–69.

(Kulkarni et al., 2015) T. D. Kulkarni, W. F. Whitney, P. Kohli, & J. Tenenbaum, 2015.
Deep convolutional inverse graphics network. Dans les actes de Advances in neural
information processing systems, 2539–2547.

(Lagus et Kuusisto, 2002) K. Lagus & J. Kuusisto, 2002. Topic identification in natural
language dialogues using neural networks. Dans les actes de Proceedings of the Third
SIGdial Workshop on Discourse and Dialogue, Philadelphia, Pennsylvania, USA, 95–102.
Association for Computational Linguistics.

(Larsen et al., 2015) A. B. L. Larsen, S. K. Sønderby, H. Larochelle, & O. Winther,
2015. Autoencoding beyond pixels using a learned similarity metric. arXiv preprint
arXiv:1512.09300.

113

Bibliography

(LeCun et al., 2015) Y. LeCun, Y. Bengio, & G. Hinton, 2015. Deep learning. Na-
ture 521(7553), 436–444.

(LeCun et al., 1989) Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, & L. D. Jackel, 1989. Backpropagation applied to handwritten zip code
recognition. Neural computation 1(4), 541–551.

(LeCun et al., 1998) Y. LeCun, L. Bottou, Y. Bengio, & P. Haffner, 1998. Gradient-based
learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324.

(Li et al., 2017) J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, & D. Jurafsky, 2017. Adver-
sarial learning for neural dialogue generation. arXiv preprint arXiv:1701.06547.

(Ma et al., 2019) C.-Y. Ma, M.-H. Chen, Z. Kira, & G. AlRegib, 2019. Ts-lstm and
temporal-inception: Exploiting spatiotemporal dynamics for activity recognition.
Signal Processing: Image Communication 71, 76–87.

(Makhzani et al., 2015) A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, & B. Frey, 2015.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644.

(Matsui et al., 2004) N. Matsui, T. Isokawa, H. Kusamichi, F. Peper, & H. Nishimura,
2004. Quaternion neural network with geometrical operators. Journal of Intelligent &
Fuzzy Systems 15(3, 4), 149–164.

(McClelland et al., 1986) J. L. McClelland, D. E. Rumelhart, P. R. Group, et al., 1986.
Parallel distributed processing. Explorations in the Microstructure of Cognition 2, 216–
271.

(McCulloch et Pitts, 1943) W. S. McCulloch & W. Pitts, 1943. A logical calculus of
the ideas immanent in nervous activity. The bulletin of mathematical biophysics 5(4),
115–133.

(Medsker et Jain, 2001) L. R. Medsker & L. J. Jain, 2001. Recurrent neural networks.
Design and Applications 5.

(Melamed et Gilbert, 2011) I. Melamed & M. Gilbert, 2011. Speech analytics. Spoken
Language Understanding: Systems for Extracting Semantic Information from Speech, 397–
416.

(Mikolov, 2012) T. Mikolov, 2012. Statistical language models based on neural net-
works. Presentation at Google, Mountain View, 2nd April.

(Minemoto et al., 2017) T. Minemoto, T. Isokawa, H. Nishimura, & N. Matsui, 2017.
Feed forward neural network with random quaternionic neurons. Signal Process-
ing 136, 59–68.

(Mirza et Osindero, 2014) M. Mirza & S. Osindero, 2014. Conditional generative ad-
versarial nets. arXiv preprint arXiv:1411.1784.

(Mohri et al., 2002) M. Mohri, F. Pereira, & M. Riley, 2002. Weighted finite-state trans-
ducers in speech recognition. Computer Speech and Language 16(1), 69 – 88.

114

Bibliography

(Morchid, 2018) M. Morchid, 2018. Parsimonious memory unit for recurrent neural
networks with application to natural language processing. Neurocomputing 314, 48–
64.

(Morchid et al., 2015a) M. Morchid, M. Bouallegue, R. Dufour, G. Linarès, D. Matrouf,
& R. De Mori, 2015a. Compact multiview representation of documents based on
the total variability space. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 23(8), 1295–1308.

(Morchid et al., 2014a) M. Morchid, R. Dufour, M. Bouallegue, G. Linarès, &
R. De Mori, 2014a. Theme identification in human-human conversations with fea-
tures from specific speaker type hidden spaces. Dans les actes de Conference of the
International Speech Communication Association (INTERSPEECH) 2014. ISCA.

(Morchid et al., 2014b) M. Morchid, R. Dufour, P.-M. Bousquet, M. Bouallegue,
G. Linarès, & R. De Mori, 2014b. Improving dialogue classification using a topic
space representation and a gaussian classifier based on the decision rule. Dans les
actes de International Conference on Acoustics, Speech and Signal Processing (ICASSP),
126–130. IEEE.

(Morchid et al., 2014c) M. Morchid, R. Dufour, P.-M. Bousquet, M. Bouallegue,
G. Linarès, & R. De Mori, 2014c. Improving dialogue classification using a topic
space representation and a gaussian classifier based on the decision rule. Dans les
actes de International Conference on Acoustic, Speech and Signal Processing (ICASSP)
2014. IEEE.

(Morchid et al., 2015b) M. Morchid, R. Dufour, & G. Linarès, 2015b. Topic-space based
setup of a neural network for theme identification of highly imperfect transcriptions.
Dans les actes de Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE
Workshop on, 346–352. IEEE.

(Morchid et al., 2016) M. Morchid, R. Dufour, & G. Linarès, 2016. Impact of word error
rate on theme identification task of highly imperfect human–human conversations.
Computer Speech & Language 38, 68–85.

(Morchid et al., 2013) M. Morchid, G. Linarès, M. El-Beze, & R. De Mori, 2013. Theme
identification in telephone service conversations using quaternions of speech fea-
tures. Dans les actes de Conference of the International Speech Communication Association
(INTERSPEECH) 2013. ISCA.

(Nasr et al., 2002) G. E. Nasr, E. Badr, & C. Joun, 2002. Cross entropy error function in
neural networks: Forecasting gasoline demand. Dans les actes de FLAIRS Conference,
381–384.

(Nasrabadi et Feng, 1988) N. M. Nasrabadi & Y. Feng, 1988. Vector quantization of
images based upon the kohonen self-organizing feature maps. Dans les actes de
Proc. IEEE Int. Conf. Neural Networks, Volume 1, 101–105.

115

Bibliography

(Nguyen et al., 2017) A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, & J. Yosinski,
2017. Plug & play generative networks: Conditional iterative generation of images in
latent space. Dans les actes de Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 4467–4477.

(Nitta, 1995) T. Nitta, 1995. A quaternary version of the back-propagation algorithm.
Dans les actes de Proceedings of the IEEE International Conference on Neural Networks,
Volume 5, 2753–2756.

(Odena, 2016) A. Odena, 2016. Semi-supervised learning with generative adversarial
networks. arXiv preprint arXiv:1606.01583.

(Parcollet et al., 2016) T. Parcollet, M. Morchid, P.-M. Bousquet, R. Dufour, G. Linarès,
& R. De Mori, 2016. Quaternion neural networks for spoken language understanding.
Dans les actes de Spoken Language Technology Workshop (SLT), 2016 IEEE, 362–368.
IEEE.

(Parcollet et al., 2017) T. Parcollet, M. Morchid, & G. Linarès, 2017. Deep quaternion
neural networks for spoken language understanding. Dans les actes de Automatic
Speech Recognition and Understanding Workshop (ASRU), 2017 IEEE, 504–511. IEEE.

(Parcollet et al., 2019) T. Parcollet, M. Morchid, & G. Linarès, 2019. Quaternion con-
volutional neural networks for heterogeneous image processing. Dans les actes de
Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP., Vol-
ume 44, 1–6. IEEE.

(Parcollet et al., 2019) T. Parcollet, M. Morchid, G. Linarès, & R. De Mori, 2019. Bidi-
rectional quaternion long-short term memory recurrent neural networks for speech
recognition. Dans les actes de Acoustics, Speech, and Signal Processing, IEEE Interna-
tional Conference on ICASSP., Volume 44, 1–6. IEEE.

(Parcollet et al., 2018a) T. Parcollet, M. Ravanelli, M. Morchid, G. Linarès, &
R. De Mori, 2018a. Speech recognition with quaternion neural networks.
IRASL@NIPS.

(Parcollet et al., 2018b) T. Parcollet, M. Ravanelli, M. Morchid, G. Linarès, C. Trabelsi,
R. De Mori, & Y. Bengio, 2018b. Quaternion recurrent neural networks. arXiv preprint
arXiv:1806.04418.

(Parcollet et al., 2018c) T. Parcollet, M. Ravanelli, M. Morchid, G. Linarès, C. Trabelsi,
R. D. Mori, & Y. Bengio, 2018c. Quaternion recurrent neural networks.

(Parcollet et al., 2018d) T. Parcollet, Y. Zhang, M. Morchid, C. Trabelsi, G. Linarès,
R. de Mori, & Y. Bengio, 2018d. Quaternion convolutional neural networks for end-
to-end automatic speech recognition. Dans les actes de Interspeech 2018, 19th Annual
Conference of the International Speech Communication Association, Hyderabad, India, 2-6
September 2018., 22–26.

(Pearlmutter, 1989) B. A. Pearlmutter, 1989. Learning state space trajectories in recur-
rent neural networks. Neural Computation 1(2), 263–269.

116

Bibliography

(Pedregosa et al., 2011) F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., 2011. Scikit-learn:
Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830.

(Pei et Cheng, 1999) S.-C. Pei & C.-M. Cheng, 1999. Color image processing by us-
ing binary quaternion-moment-preserving thresholding technique. Image Processing,
IEEE Transactions on 8(5), 614–628.

(Povey et al., 2011) D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer,
& K. Vesely, 2011. The kaldi speech recognition toolkit. Dans les actes de IEEE 2011
Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing
Society. IEEE Catalog No.: CFP11SRW-USB.

(Purver, 2011) M. Purver, 2011. Topic segmentation. Spoken Language Understanding:
Systems for Extracting Semantic Information from Speech, 291–317.

(Radford et al., 2015) A. Radford, L. Metz, & S. Chintala, 2015. Unsupervised repre-
sentation learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434.

(Raina et al., 2009) R. Raina, A. Madhavan, & A. Y. Ng, 2009. Large-scale deep unsu-
pervised learning using graphics processors. Dans les actes de Proceedings of the 26th
annual international conference on machine learning, 873–880. ACM.

(Rajeswar et al., 2017) S. Rajeswar, S. Subramanian, F. Dutil, C. Pal, & A. Courville,
2017. Adversarial generation of natural language. arXiv preprint arXiv:1705.10929.

(Ravanelli et al., 2018a) M. Ravanelli, P. Brakel, M. Omologo, & Y. Bengio, 2018a. Light
gated recurrent units for speech recognition. IEEE Transactions on Emerging Topics in
Computational Intelligence 2(2), 92–102.

(Ravanelli et al., 2018b) M. Ravanelli, T. Parcollet, & Y. Bengio, 2018b. The pytorch-
kaldi speech recognition toolkit. arXiv preprint arXiv:1811.07453.

(Reed et al., 2016) S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, & H. Lee, 2016.
Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396.

(Rosenblatt, 1958) F. Rosenblatt, 1958. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review 65(6), 386.

(Rousseau et al., 2014) A. Rousseau, G. Boulianne, P. Deléglise, Y. Estève, V. Gupta, &
S. Meignier, 2014. Lium and crim asr system combination for the repere evaluation
campaign. Dans les actes de International Conference on Text, Speech, and Dialogue,
441–448. Springer.

(Rumelhart et MacClelland, 1986) D. Rumelhart & J. MacClelland, 1986. Learning in-
ternal representations by error backpropagation. chapter 8 from parallel distributed
processing. vol. 1: Foundations.

117

Bibliography

(Rumelhart et al., 1985) D. E. Rumelhart, G. E. Hinton, & R. J. Williams, 1985. Learning
internal representations by error propagation. Rapport technique, California Univ
San Diego La Jolla Inst for Cognitive Science.

(Rumelhart et al., 1986) D. E. Rumelhart, J. L. McClelland, P. R. Group, et al., 1986.
Parallel distributed processing. Explorations in the Microstructure of Cognition 1, 216–
271.

(Sabour et al., 2017) S. Sabour, N. Frosst, & G. E. Hinton, 2017. Dynamic routing
between capsules. arXiv preprint arXiv:1710.09829v2.

(Salimans et al., 2016) T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
& X. Chen, 2016. Improved techniques for training gans. Dans les actes de Advances
in neural information processing systems, 2234–2242.

(Sangwine, 1996) S. J. Sangwine, 1996. Fourier transforms of colour images using
quaternion or hypercomplex, numbers. Electronics letters 32(21), 1979–1980.

(Schuster, 1999) M. Schuster, 1999. On supervised learning from sequential data with
applications for speech recognition. Daktaro disertacija, Nara Institute of Science and
Technology.

(Schuster et Paliwal, 1997) M. Schuster & K. K. Paliwal, 1997. Bidirectional recurrent
neural networks. Signal Processing, IEEE Transactions on 45(11), 2673–2681.

(Severyn et Moschitti, 2015) A. Severyn & A. Moschitti, 2015. Twitter sentiment anal-
ysis with deep convolutional neural networks. Dans les actes de Proceedings of the
38th International ACM SIGIR Conference on Research and Development in Information
Retrieval, 959–962. ACM.

(Singh et al., 2016) B. Singh, T. K. Marks, M. Jones, O. Tuzel, & M. Shao, 2016. A
multi-stream bi-directional recurrent neural network for fine-grained action detec-
tion. Dans les actes de Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1961–1970.

(Siniscalchi et al., 2013) S. M. Siniscalchi, D. Yu, L. Deng, & C.-H. Lee, 2013. Exploiting
deep neural networks for detection-based speech recognition. Neurocomputing 106,
148–157.

(Song et Yam, 1998) J. Song & Y. Yam, 1998. Complex recurrent neural network for
computing the inverse and pseudo-inverse of the complex matrix. Applied mathemat-
ics and computation 93(2-3), 195–205.

(Srivastava et al., 2014) N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, &
R. Salakhutdinov, 2014. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15(1), 1929–1958.

(Srivastava et al., 2013) N. Srivastava, R. Salakhutdinov, & G. Hinton, 2013. Modeling
documents with a deep boltzmann machine. Dans les actes de Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, 616–624. AUAI Press.

118

Bibliography

(Stolcke et al., 2002) A. Stolcke et al., 2002. Srilm-an extensible language modeling
toolkit. Dans les actes de INTERSPEECH, Volume 2002, 2002.

(Stollenga et al., 2015) M. F. Stollenga, W. Byeon, M. Liwicki, & J. Schmidhuber, 2015.
Parallel multi-dimensional lstm, with application to fast biomedical volumetric im-
age segmentation. Dans les actes de Advances in neural information processing systems,
2998–3006.

(Sundermeyer et al., 2012) M. Sundermeyer, R. Schlüter, & H. Ney, 2012. Lstm neural
networks for language modeling. Dans les actes de INTERSPEECH, 194–197.

(Sutskever et al., 2014) I. Sutskever, O. Vinyals, & Q. V. Le, 2014. Sequence to sequence
learning with neural networks. Dans les actes de Advances in neural information pro-
cessing systems, 3104–3112.

(Titouan et al., 2019a) P. Titouan, M. Morchid, X. Bost, & G. Linares, 2019a. M2h-gan:
A gan-based mapping from machine to human transcripts for speech understanding.
Proc. Interspeech 2019, 3325–3328.

(Titouan et al., 2017) P. Titouan, M. Morchid, & G. Linarès, 2017. Quaternion denois-
ing encoder-decoder for theme identification of telephone conversations. Proc. Inter-
speech 2017, 3325–3328.

(Titouan et al., 2019b) P. Titouan, M. Morchid, G. Linares, & R. De Mori, 2019b. Real to
h-space encoder for speech recognition. Proc. Interspeech 2019, 3325–3328.

(Titouan et al., 2018) P. Titouan, Z. Ying, M. Mohamed, T. Chiheb, L. Georges, D. M.
Renato, & B. Yoshua, 2018. Quaternion convolutional neural networks for end-to-end
automatic speech recognition. arXiv preprint arXiv:1806.07789.

(Tokuda et al., 2003) K. Tokuda, H. Zen, & T. Kitamura, 2003. Trajectory modeling
based on hmms with the explicit relationship between static and dynamic features.
Dans les actes de Eighth European Conference on Speech Communication and Technology.

(Trabelsi et al., 2017) C. Trabelsi, O. Bilaniuk, D. Serdyuk, S. Subramanian, J. F. Santos,
S. Mehri, N. Rostamzadeh, Y. Bengio, & C. J. Pal, 2017. Deep complex networks.
arXiv preprint arXiv:1705.09792.

(Tur et De Mori, 2011) G. Tur & R. De Mori, 2011. Spoken language understanding:
Systems for extracting semantic information from speech. John Wiley & Sons.

(Turian et al., 2010) J. Turian, L. Ratinov, & Y. Bengio, 2010. Word representations: a
simple and general method for semi-supervised learning. Dans les actes de Proceed-
ings of the 48th annual meeting of the association for computational linguistics, 384–394.
Association for Computational Linguistics.

(Tygert et al., 2016) M. Tygert, J. Bruna, S. Chintala, Y. LeCun, S. Piantino, & A. Szlam,
2016. A mathematical motivation for complex-valued convolutional networks. Neu-
ral computation 28(5), 815–825.

119

Bibliography

(Ulyanov et al., 2018) D. Ulyanov, A. Vedaldi, & V. Lempitsky, 2018. It takes (only)
two: Adversarial generator-encoder networks. Dans les actes de Thirty-Second AAAI
Conference on Artificial Intelligence.

(Van Asch, 2013) V. Van Asch, 2013. Macro-and micro-averaged evaluation measures
[[basic draft]].

(Vincent et al., 2010) P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, & P.-A. Manzagol,
2010. Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. The Journal of Machine Learning Research 11,
3371–3408.

(Vinyals et al., 2015) O. Vinyals, A. Toshev, S. Bengio, & D. Erhan, 2015. Show and tell:
A neural image caption generator. Dans les actes de Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 3156–3164.

(Warde-Farley et Bengio, 2016) D. Warde-Farley & Y. Bengio, 2016. Improving genera-
tive adversarial networks with denoising feature matching.

(Werbos, 1974) P. Werbos, 1974. Beyond regression:" new tools for prediction and
analysis in the behavioral sciences. Ph. D. dissertation, Harvard University.

(Wisdom et al., 2016) S. Wisdom, T. Powers, J. Hershey, J. Le Roux, & L. Atlas, 2016.
Full-capacity unitary recurrent neural networks. Dans les actes de Advances in Neural
Information Processing Systems, 4880–4888.

(Wu et al., 2017a) L. Wu, Y. Xia, L. Zhao, F. Tian, T. Qin, J. Lai, & T.-Y. Liu, 2017a.
Adversarial neural machine translation. arXiv preprint arXiv:1704.06933.

(Wu et al., 2017b) Y. Wu, M. Yuan, S. Dong, L. Lin, & Y. Liu, 2017b. Remaining useful
life estimation of engineered systems using vanilla lstm neural networks. Neurocom-
puting.

(Wu et al., 2016) Z. Wu, Y.-G. Jiang, X. Wang, H. Ye, & X. Xue, 2016. Multi-stream multi-
class fusion of deep networks for video classification. Dans les actes de Proceedings
of the 24th ACM international conference on Multimedia, 791–800. ACM.

(Xu et al., 2017) D. Xu, L. Zhang, & H. Zhang, 2017. Learning alogrithms in quaternion
neural networks using ghr calculus. Neural Network World 27(3), 271.

(Xu et al., 2013) X. Xu, L. Lu, P. He, Z. Pan, & L. Chen, 2013. Improving constrained
clustering via swarm intelligence. Neurocomputing 116, 317–325.

(Yang et al., 2017) Z. Yang, W. Chen, F. Wang, & B. Xu, 2017. Improving neural machine
translation with conditional sequence generative adversarial nets. arXiv preprint
arXiv:1703.04887.

(Yao et al., 2015) K. Yao, T. Cohn, K. Vylomova, K. Duh, & C. Dyer, 2015. Depth-gated
recurrent neural networks. arXiv preprint.

120

Bibliography

(Zaremba, 2015) W. Zaremba, 2015. An empirical exploration of recurrent network
architectures. Journal of Machine Learning Research.

(Zhang et al., 2015) X. Zhang, J. Zhao, & Y. LeCun, 2015. Character-level convolutional
networks for text classification. Dans les actes de Advances in neural information pro-
cessing systems, 649–657.

(Zhou et al., 2016) G.-B. Zhou, J. Wu, C.-L. Zhang, & Z.-H. Zhou, 2016. Minimal gated
unit for recurrent neural networks. International Journal of Automation and Comput-
ing 13(3), 226–234.

(Zhu et al., 2016) J.-Y. Zhu, P. Krähenbühl, E. Shechtman, & A. A. Efros, 2016. Genera-
tive visual manipulation on the natural image manifold. Dans les actes de European
Conference on Computer Vision, 597–613. Springer.

(Zhu et al., 2017) J.-Y. Zhu, T. Park, P. Isola, & A. A. Efros, 2017. Unpaired image-
to-image translation using cycle-consistent adversarial networks. Dans les actes de
Proceedings of the IEEE International Conference on Computer Vision, 2223–2232.

121

Bibliography

122

Bibliography

123

	Introduction
	I Real-valued Neural Networks for Natural Language Processing
	Parallel Recurrent Neural Networks
	Introduction
	Parallel Long Short-Term Memory (PLSTM)
	Experiments
	Results and Discussion

	Encoder-Decoder Neural Networks
	Introduction
	Autoencoder neural networks based systems
	Experiments
	DECODA framework
	Automatic Speech Recognition System

	Results and Discussion

	II Quaternion Neural Networks for Natural Language Processing
	Quaternion Convolutional Neural Networks
	Introduction
	Motivations
	Quaternion algebra
	Quaternion Convolutional Neural Networks
	Experiments
	Results and Discussion

	Quaternion Recurrent Neural Networks
	Introduction
	Quaternion Recurrent Neural Networks
	Experiments
	Results and Discussion

	III Ongoing Research, Future Directions & General Perspectives
	Parsimonious Neural Networks
	Introduction
	Parsimonious Memory Unit (PMU)
	Experiments
	Results and Discussion
	Gates activity of GRU and PMU
	Short-term dependencies from spoken dialogues
	Long-term dependencies from 20-Newsgroups documents

	Generative Adversarial Networks
	Introduction
	Generative neural models
	Experiments
	Results and Discussion

	General Perspectives

	IV Appendix
	List of illustrations
	List of tables
	Bibliography

