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Résumé

Les analyses statiques ont pour but d’inférer des propriétés sémantiques de programmes.
Nous distinguons deux importantes classes d’analyses statiques : les analyses d’états et
les analyses relationnelles. Alors que les analyses d’états calculent une sur-approximation
de l’ensemble des états atteignables d’un programme, les analyses relationnelles calculent
des propriétés fonctionnelles entre les états d’entrée et les états de sortie d’un programme.
Les analyses relationnelles offrent plusieurs avantages, comme leur capacité à inférer des
propriétés sémantiques plus expressives par rapport aux analyses d’états. De plus, elles
offrent également la possibilité de rendre l’analyse compositionnelle, en utilisant les re-
lations entrée-sortie comme des résumés de procédures, ce qui est un avantage pour le
passage à l’échelle. Dans le cas des programmes numériques, plusieurs analyses ont été
proposées qui utilisent des domaines abstraits numériques relationnels, pour décrire des
relations. D’un autre côté, modéliser des abstractions de relations entre les états mé-
moires entrée-sortie tout en prenant en compte les structures de données est difficile.
Dans cette Thèse, nous proposons un ensemble de nouveaux connecteurs logiques, re-
posant sur la logique de séparation, pour décrire de telles relations. Ces connecteurs
peuvent exprimer qu’une certaine partie de la mémoire est inchangée, fraîchement al-
louée, ou désallouée, ou que seulement une seule partie de la mémoire est modifiée (et
de quelle manière). En utilisant ces connecteurs, nous construisons un domaine abstrait
relationnel et nous concevons une analyse statique compositionnelle par interprétation
abstraite qui sur-approxime des relations entre des états mémoires contenant des struc-
tures de données inductives. Nous avons implémenté ces contributions sous la forme
d’un plug-in de l’analyseur Frama-C. Nous en avons évalué l’impact sur l’analyse de
petits programmes écrits en C manipulant des listes chaînées et des arbres binaires, mais
également sur l’analyse d’un programme plus conséquent qui consiste en une partie du
code source d’Emacs. Nos résultats expérimentaux montrent que notre approche permet
d’inférer des propriétés sémantiques plus expressives d’un point de vue logique que des
analyses d’états. Elle se révèle aussi beaucoup plus rapide sur des programmes avec un
nombre conséquent d’appels de fonctions sans pour autant perdre en précision.
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Abstract

Static analyses aim at inferring semantic properties of programs. We distinguish two
important classes of static analyses: state analyses and relational analyses. While state
analyses aim at computing an over-approximation of reachable states of programs, re-
lational analyses aim at computing functional properties over the input-output states
of programs. Relational analyses offer several advantages, such as their ability to infer
semantics properties more expressive compared to state analyses. Moreover, they offer
the ability to make the analysis compositional, using input-output relations as summaries
for procedures, which is an advantage for scalability. In the case of numeric programs,
several analyses have been proposed that utilize relational numerical abstract domains
to describe relations. On the other hand, designing abstractions for relations over input-
output memory states and taking shapes into account is challenging. In this Thesis, we
propose a set of novel logical connectives to describe such relations, which rely on sep-
aration logic. This logic can express that certain memory areas are unchanged, freshly
allocated, or freed, or that only part of the memory is modified (and how). Using these
connectives, we build an abstract domain and design a compositional static analysis by
abstract interpretation that over-approximates relations over memory states containing
inductive structures. We implement this approach as a plug-in of the Frama-C ana-
lyzer. We evaluate it on small programs written in C that manipulate singly linked lists
and binary trees, but also on a bigger program that consists of a part of Emacs. The
experimental results show that our approach allows us to infer more expressive semantic
properties than states analyses, from a logical point of view. It is also much faster on
programs with an important number of function calls without losing precision.
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Chapter 1

Introduction

This chapter presents the context and the motivations for this The-
sis. First, Section 1.1 makes a global presentation of program anal-
ysis. Then, Section 1.2 presents several verification techniques, de-
scribing their advantages and drawbacks. The different classes of
semantic properties that aim at proving program analyses, specifi-
cally traces, relational and states properties, are introduced in Sec-
tion 1.3. These classes of properties are defined using correspond-
ing semantics, and compared between them using a hierarchy. Sec-
tion 1.4 focuses on state and relational properties in the case of
numeric and memory analyses. In particular, it insists on the fact
that relational shape properties are few. Finally, Section 1.5 de-
scribes the contributions of this Thesis and establishes its outline.

1.1 Program Analysis and Verification

1.1.1 Motivations
Nowadays, programs are ubiquitous and are increasely used in all branches of activity
of our industry, such as aeronautics, automotive, medical or nuclear. Moreover, besides
their number, the programs themselves can be very complex and huge. For instance, in
2011, the Linux kernel consisted in 15 million lines of code. Both this immensity and
complexity are propitious to bugs. A bug is a design defect in a computer program that
leads to an unexpected behavior or that may produce an incorrect result. The severity of
a bug differs according to what the program is designed for. If a text editor crashes, the
unsaved data before the crash may be lost, but it should be possible to simply restart this
program and to use it without any difficulty. However, if the program of a nuclear power
plant contains a bug, the consequences can be disastrous economically, ecologically and
humanly.

To detect bugs in a program, the most natural approach is to review the program.
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However, inspecting manually each line of code of a program is a hard, painful and costly
task, and it cannot guarantee formally that the program acts exactly the way we expect.
Indeed, nothing ensures that the person who checked the program found all the bugs it
contained.

Program analysis automates the verification process of a program. One of its main
goals is to ensure that a program does what it is supposed to do, to avoid potential
(severe) errors during its execution.

1.1.2 Decidability, Soundness and Completeness
Generally, program analysis aims at computing semantic properties of programs. How-
ever, Rice’s theorem [Ric53] states that computing such properties is undecidable. In
other words, there is no program analysis that can ensure that every programs are cor-
rect. On the other hand, it is possible to compute semantic properties specific to some
kinds of programs with sound or complete program analyses.

A sound program analysis ensures that if no error has been found by the analysis,
then the program is definitely correct. However, if an error is found it cannot ensure that
this later is a true error but only that it may be an error. Conversely, when a complete
program analysis finds an error, this latter is a real error. However, it cannot ensure that
a program does not contain any error (i.e. that the program is correct), whereas a sound
program analysis can.

Thus, some program analyses are only sound like abstract interpretation [CC77,
CC92], or only complete like runtime verification [LS09]. Also, there are program analy-
ses that are both sound and complete like deductive verification [Flo67] or model check-
ing [EC80, CES86], but they make some compromises. For instance, deductive verifica-
tions give up the complete automation of the analysis and model checkers focus on finite
state systems. All these program verifications are briefly described in Section 1.2.

1.2 Main Verification Techniques
We can distinguish two main classes of program analysis: the dynamic analyses and
the static analyses. While dynamic analyses are performed during the execution of the
program, static analyses are performed without executing it. In this section, we describe a
(non-exhaustive) list of verification techniques: runtime verification, as dynamic analysis,
and deductive verification, model checking and static analysis by abstract interpretation
as static analyses.

1.2.1 Runtime Verification
Runtime verification [LS09] consists in checking formal properties during the execution
of a program. As a dynamic analysis, it does not ensure that the program is correct
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for any input, but only for the inputs from which it has been executed. However, when
a property is not verified, this proves that the program is not correct. Moreover, it is
automatic and easier to use than other verification techniques.

1.2.2 Deductive Verification

Deductive verification [Flo67] consists in taking a program with its specification, given
as a pre and postcondition [Hoa69] and other annotations such as loop invariants, and
generating correction theorems of this program. These theorems allow us to formalize
the expected behavior of the program. The proofs of these theorems are discharged to in-
teractive theorem provers, automatic theorem provers, or SMT solvers. While deductive
verification is both sound and complete, it is limited to annotated programs. Annotating
programs involves understanding exactly what the program is supposed to do, and ex-
pressing its specification is often a very hard and long task. Furthermore, this technique
is too costly: to prove a program of many millions of lines, it requires to understand and
annotate it completely.

1.2.3 Model Checking

Model Checking [EC80, CES86] verifies if the model of a system satisfies some properties.
Typically, the model is represented as an automaton with states and transitions and the
properties to verify are described in temporal logic [Pnu77]. The model checker tries
to prove these properties by searching exhaustively and automatically all the possible
reachable states of the execution of the system. If a property is not verified, a counter
example can be generated. Model checkers are generally both sound and complete, but
are limited to finite systems. Moreover, some model checkers can reason over infinite
systems, but give up on soundness (e.g. bounded model checking) or completeness.

1.2.4 Static Analysis by Abstract Interpretation

In 1977, Patrick Cousot and Radhia Cousot introduced the abstract interpretation frame-
works [CC77, CC92]. Abstract interpretation is a formal framework where static analyses
can be formally designed. This framework relies on defining a computable abstract seman-
tics JPK] that is a sound over-approximation of the concrete semantics JPK of a program
P. The relation between the concrete and the abstract semantics is established with a
Galois connection.
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Definition 1.1 (Galois connection). Let (A,6A) and (B,6B) be two partially
ordered sets. A Galois connection between these two sets consists of two monotone
functions: an abstraction function α ∈ A → B and a concretization function γ ∈
B → A, such that ∀a ∈ A and ∀b ∈ B, we have:

a 6A γ(b) ⇐⇒ α(a) 6B b

We observe that if an element a of A is lower than the concretization of an element b of B,
the abstraction of a will be also lower than b, and reciprocally. In the case of abstract
interpretation, the concrete semantics of a program P returns the set of all the behaviors
of P. Its binary relation is thus the set inclusion ⊆. Regarding the abstract semantics,
the binary relation is noted v] and depends on how the abstract semantics is defined.
Defining a Galois connection between the concrete semantics (JPK,⊆) and the abstract
semantics (JPK],v]) allows us to have the following property:

JPK ⊆ γ(JPK]) ⇐⇒ α(JPK) v] JPK]

This means that JPK] is an over-approximation of JPK.
Generally, the goal of a static analysis is to prove semantic properties. A semantic

property Prop describes the set of the desired behaviors for a program P. To prove that
Prop is satisfied by P, we need to prove that the concrete semantics of P is included in
Prop:

JPK ⊆ Prop

However, JPK is not computable and such an inclusion cannot be checked. The abstract
interpretation framework, as for it, can compute the abstract semantics JPK] of P to
prove the semantic property. Thus, the semantic property can be proven using the
concretization function of the Galois connection:

γ(JPK]) ⊆ Prop

The property Prop is well proven because we have JPK ⊆ γ(JPK]).
As the abstract interpretation framework reasons on an over-approximation of the

concrete semantics, the choice of this latter is crucial to prove specific semantics proper-
ties.

1.3 Semantic Properties
In this section, we provide a (non comprehensive) list of semantic properties and we
define relevant concrete semantics that can express them. Before defining them, we
define a model of program that is at the base of the following program semantics.



Chapter 1. Introduction 5

s0 s1 s2

Figure 1.1: Some program for the transition system S = (S,→) with S = {s0, s1, s2}. We
admit that the state s0 is the initial state, and that s0, s1 and s2 are all final states.

1.3.1 A Model of Programs: Transition System
A program can be characterized by a set of states and a transition relation. A state s ∈ S
describes a program status at an instant of its execution. A transition relation s0 → s1,
such that →⊆ P(S × S), describes that we can move from the state s0 to the state s1.
Note that both the set of states S and the set of transitions → may be infinite. The pair
S = (S,→) defines a transition system. A transition system is also characterized by the
set of initial states SI ⊆ S, that denotes states where the execution should start, and by
the set of final states SF ⊆ S, that denotes states where the execution should reach at
the end of the program. Figure 1.1 shows a program using this transition system with
S = {s0, s1, s2} and →= {(s0, s1), (s0, s2), (s1, s2), (s2, s1)}.

1.3.2 Classes of Semantics and Properties
Trace Semantics and Properties

A trace allows us to represent an execution of a program as a sequence of program states.
There are two kinds of traces. A finite trace is a finite sequence of program states
s0, . . . , sn and is noted 〈s0, . . . , sn〉. An infinite trace is an infinite sequence of states and
is noted 〈s0, . . .〉. We write S∗ for the set of finite traces, Sω for the set of infinite traces
and S∞ = S∗ ∪ Sω for the set of finite or infinite traces.

Both the finite and infinite traces define their own semantics. To define them, we
consider the transition system S = (S,→).

Definition 1.2 (Semantics of finite traces). The finite traces semantics JSK∗T ∈
P(S∗) is defined by:

JSK∗T = {〈s0, . . . , sn〉 ∈ S∗ | ∀i, si → si+1}

Definition 1.3 (Semantics of infinite traces). The infinite traces semantics
JSKωT ∈ P(Sω) is defined by:

JSKωT = {〈s0, . . .〉 ∈ Sω | ∀i, si → si+1}
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The semantics of finite or infinite traces is simply the union of the semantics of finite
and infinite traces.

Definition 1.4 (Semantics of traces). The traces semantics JSK∞T ∈ P(S∞) is
defined by:

JSK∞T = JSK∗T ∪ JSKωT

A trace property PropT is a set of traces such that PropT ⊆ S∞. It is verified if and
only if all traces belong to PropT :

JSK∞T ⊆ PropT

The decomposition theorem [AS87] states that any trace property can be decomposed
into the conjunction of a safety property and a liveness property. A safety property is a
property that specifies that some finite "bad" behavior will never happen. For instance,
"the program does not reach the state s′ after having visited the state s" is a safety prop-
erty. A liveness property is a property that specifies that some "good" finitely observable
behavior will eventually happen. For instance, "state s will eventually be reached by all
executions" is a liveness property.

Relational Semantics and Properties

A relational semantics computes the set of the input-output states of a program [MT91].
We consider the transition system S = (S,→) to define it.

Definition 1.5 (Relational Semantics). The relational semantics JSKR ∈ P(S×
S) is defined by:

JSKR = {(s0, sn) ∈ S× S | 〈s0, . . . , sn〉 ∈ JSK∗T }

A relational property PropR is a set of pairs such as PropR ⊆ S × S. The relational
property PropR is satisfied if and only if all input and output states belong to PropR:

JSKR ⊆ PropR

Relational properties allow us to describe functional properties, such as "the function abs
inputs an integer x and outputs its absolute value". Also, this kind of properties can be
expressed with class contract languages [BFM+08, LBR98], that let functions be specified
by formulas that may refer both to the input and to the output states. We also observe
that all relational properties are safety properties.



Chapter 1. Introduction 7

(P(S),⊆S) (P(S× S),⊆S×S)

(P(S∗),⊆S∗)

γS→R

αR→S
γ
S→
Tα

T →
S

γR
→
T

α T
→
R

Figure 1.2: Galois connections between state, relational and finite trace semantics.

State Semantics and Properties

A state semantics computes all the reachable states of a program. As usual, we consider
the transition system S = (S,→).

Definition 1.6 (State Semantics). The state semantics JSKS ∈ P(S) is defined
by:

JSKS = {sn ∈ S | ∃s0 ∈ S, 〈s0, . . . , sn〉 ∈ JSK∗T }

A state property is a set of states PropS , such as PropS ⊆ S. The state property PropS
is satisfied if and only if all reachable states belong to PropS :

JSKS ⊆ PropS

Absence of runtime errors is a state property, for instance when PropS = S \ {Ω}
and Ω is the error state. Another kind of state property is non termination, when
PropS = {s ∈ S | ∃s′, s → s′}. Also, like relational properties, all state properties are
safety properties.

1.3.3 Hierarchy of Semantics
These different semantics of programs form a hierarchy [Cou97]. With a hierarchy be-
tween semantics, we can establish which kind of properties can be proven using which
semantics and conversely, which kind of properties cannot be proven using which seman-
tics. This means that we can prove different kind of properties using a single class of
semantics. This indicates the importance of the choice of the semantics according to the
properties we want to prove.

A hierarchy between semantics can be established with Galois connections. Figure 1.2
shows three Galois connections that link the state, relational and finite trace semantics.
We consider only finite trace semantics and not infinite trace semantics because the
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state and relational semantics are built from finite trace semantics. Note that we equip
each semantics with its own inclusion operator, ⊆S for the state semantics, ⊆S×S for the
relational semantics and ⊆S∗ for the finite trace semantics. The first Galois connection
(αT →S , γS→T ) abstracts finite traces into states with αT →S and concretizes states into
finite traces with γS→T . The second Galois connection (αR→S , γS→R) abstracts relations
into states with αR→S and concretizes states into relations with γS→R. Finally, the Galois
connection (αT →R, γR→T ) abstracts finite traces into relations with αT →R and concretizes
relations into finite traces with γR→T . These Galois connections are defined as follows:

Definition 1.7 (Galois connections between finite traces and states). Let
S∗i ⊆ S∗ and Si ⊆ S. The Galois connection (αT →S , γS→T ) is defined such as:

αT →S(S∗i ) = {sk | 〈s0, . . . , sn〉 ∈ S∗i ∧ 0 6 k 6 n}

γS→T (Si) = {〈s0, . . . , sn〉 | ∀k, 0 6 k 6 n⇒ sk ∈ Si}

Definition 1.8 (Galois connections between states and relations). Let S0×
Sn ⊆ S× S and Si ⊆ S. The Galois connection (αR→S , γS→R) is defined as follows:

αR→S(S0 × Sn) = S0 ∪ Sn

γS→R(Si) = {(s0, sn) | s0 ∈ Si ∧ sn ∈ Si}

Definition 1.9 (Galois connections between finite traces and relations).
Let S∗i ⊆ S∗ and S0 × Sn ⊆ S × S. The Galois connection (αT →R, γR→T ) is defined
as follows:

αT →R(S∗i ) = {(s0, sn) | 〈s0, . . . , sn〉 ∈ S∗i }

γR→T (S0 × Sn) = {〈s0, . . . , sn〉 | s0 ∈ S0 ∧ sn ∈ Sn}

Example 1.1 (Abstraction of traces into relations). We consider a set of finite
traces for the program in Figure 1.1 and we abstract it into a set of relations:

αT →R({〈s0〉, 〈s0, s1〉, 〈s0, s2〉, 〈s0, s1, s2〉, 〈s0, s1, s2, s1〉}) = {(s0, s0), (s0, s1), (s0, s2)}

The trace 〈s0〉 is abstracted into the relation (s0, s0), the traces 〈s0, s1〉 and 〈s0, s1, s2, s1〉
are abstracted into the relation (s0, s1), and finally the traces 〈s0, s2〉 and 〈s0, s1, s2〉
are abstracted into the relation (s0, s2).
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Example 1.2 (Abstraction of relations into states). We give the abstraction
into states of the relations computed in Example 1.1:

αR→S({(s0, s0), (s0, s1), (s0, s2)}) = {s0, s1, s2}

Example 1.3 (Concretization of states into relations). We now concretize
the set of states obtained in Example 1.2 into relations.

γS→R({s0, s1, s2}) = {(si, sj) | i, j ∈ {0, 1, 2}}

A relational property PropR can be verified with the finite trace semantics JSK∗T , either
(1) directly by abstracting the traces into relations, or (2) by concretizing PropR into a
trace property, More formally, PropR can be verified by:

(1) αT →R(JSK∗T ) ⊆S×S PropR
or
(2) JSK∗T ⊆S∗ γR→T (PropR)

Similarly, every state property PropS can be verified with the relational semantics JSKR,
either (1’) by abstracting the relations into states, or (2’) by concretizing PropS into a
relational property. Thus, PropS can be verified by:

(1′) αR→S(JSKR) ⊆S PropS
or
(2′) JSKR ⊆S×S γS→R(PropS)

By transitivity, every state property can also be verified with the finite trace seman-
tics. However, in general a relational property PropR cannot be verified with the state
semantics, since the abstraction function may abstract relations into states that can be
concretized into relations that are not in PropR. For the same reason, a trace property
cannot be verified neither by the relational semantics nor the state semantics.

This means that trace properties are more expressive than relational properties, that
are intrinsically more expressive than states.

1.3.4 Compositionality
Until now, we considered the semantics of a program as a global definition of the whole
system. Consequently, the semantic property inferred by the analysis is valid for the
whole program.

Many programming languages allow us to decompose syntactically programs into sub-
programs. For instance, in common imperative programming languages, a program p can
be decomposed into a sequence of two sub-programs p1; p2. If the analysis of a program
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is able to infer local properties for each of its sub-programs, an interesting feature is the
compositionality of these properties.

Definition 1.10 (Composable property). Let p be a program that is syntac-
tically decomposed into two sub-programs p1 and p2, and JpK its semantics. Let
JpK = Prop, Jp1K = Prop1 and Jp2K = Prop2, the property Prop is compositional if
it exists an operator ◦ such as:

Prop = Prop1 ◦ Prop2

Composable properties allow us to make the analyses modular [CC02, PC06, JLRS10,
CRL99, CDOY09] and compositional. Indeed, to analyze a sequence of two sub-programs,
the analysis can simply analyze each sub-program separately, and compose the resulting
properties. When sub-programs are functions, the analysis may analyze each function
separately, and compute one summary per function, so that the analysis of a function
call does not require re-analyzing the body of the function, which is an advantage for
scalabilty.

Finite traces and relational properties are composable properties. However, state
properties (thus for sets of states) are not. Consequently, to perform modular and com-
positional analyses, we must at least base our analysis on a relational semantics, that
infers composable properties. We finally define the composition operator of the finite
traces and relations.

Definition 1.11 (Composition of finite traces). Let S∗i ,S∗j ⊆ S∗. The compo-
sition operator ◦T ∈ P(S∗)× P(S∗)→ P(S∗) of finite traces is defined as follows:

(S∗i ) ◦T (S∗j) = {〈s0, . . . , sn〉 | ∃sk, 〈s0, . . . , sk〉 ∈ S∗i ∧ 〈sk, . . . , sn〉 ∈ S∗j}

Definition 1.12 (Composition of relations). Let S0,Si,Sj,Sn ⊆ S, the compo-
sition operator ◦R ∈ P(S × S) × P(S × S) → P(S × S) of relations is defined as
follows:

(S0 × Si) ◦R (Sj × Sn) = {(s0, sn) | ∃sk, (s0, sk) ∈ (S0 × Si) ∧ (sk, sn) ∈ (Sj × Sn)}

We remark that for both finite traces and relations, the properties of the two sub-
programs must share states sk in common, that are the output state of the first sub-
program and the input state of the second sub-program.

1.4 Numeric and Memory Analyses
Previously, we saw different classes of semantic properties: trace, relational and state
properties. This section focuses on the different ways to express state and relational
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properties for both numeric and memory analyses. A numeric analysis aims at computing
properties about the different values of a program, for instance, integer or floating values.
On the other hand, a memory analysis aims at computing properties about pointers and
data structures. Regarding memory, we will see that most state of the art memory
analyses (more precisely shape analyses) compute only state properties.

1.4.1 Numeric Analysis
A numeric analysis is a program analysis that discovers and verifies properties about the
values of a program. Let us consider the following program, that computes the sum of
all the values from 0 to an integer n.
1 int sum = 0;
2 while(n >= 0) {
3 sum = sum + n;
4 n = n - 1;
5 }

At the end of this program, it is obvious that the value of variable sum is non-negative
(we admit that the variable n has been well initialized, and that there is no arithmetic
overflows). This property can be verified by a state analysis, using a description of all
the possible values of sum at each program state such as intervals [CC76] or signs [CC77].

Recall that the sum from 0 to n is equal to (n× (n+ 1))/2. Regarding our program,
this is a relational property. Indeed, it means that the output value of the variable sum is
equal to the half of the product between the input value of variable n and the input value
of variable n + 1. A common way to express numeric relations between input and output
states consists in defining for each variable x a primed version x′ that describes the value
of x in the output state whereas the non-primed version denotes the value of x in the
input state. Applied to our program, primed variables sum′ and n′ describe respectively
the output values for variables sum and n .

In this context, state descriptions of values such as intervals or congruences [Gra89]
cannot capture any interesting relation between input and output states. Conversely, re-
lational numerical abstractions such as convex polyhedra [CH78], affine equalities [Kar76]
or octagons [Min06] can effectively capture relations between input and output states, as
shown in [PC06, ACI10]. Moreover, the relational numerical abstraction of [RCK07] can
capture the relation sum′ = (n× (n + 1))/2, when applied to our example program.

1.4.2 Pointer and Alias Analyses
Pointer Analysis. A pointer analysis is a program analysis that attempts to determine
which pointers can point to which memory locations. For the following program, a pointer
analysis should infer that the pointer p points to either the address of x or the address
of y.
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1 int x;
2 int y;
3 int *p;
4 i f (...) {p = &x;} e l se {p = &y;}

Two examples of pointer analyses are Steensgaard’s [Ste96] and Andersen’s [And94]
pointer analyses.

Alias Analysis. Pointer analyses are specific cases of alias analyses. Alias analyses
differ from pointer analyses in the sense that they aim at specifying if two l-value expres-
sions designate the same memory location. In the program below, the l-values ∗p and
∗q are aliased if p and q point to the same memory location. If they are aliased, the
instruction ∗q = 2; also assigns the value 2 to ∗p, and thus, the value of x will be 5. If
they are not aliased, the value of ∗p will not be modified and the value of x will be 4.

1 *p = 1;
2 *q = 2;
3 int x = *p + 3;

Most of the state of the art alias analyses such as [LH88, JM82, CBC93, CWZ90,
HN90, HHN92, Deu92, LR92, Deu94] are state analyses. Indeed, aliases are binary rela-
tions, but inside a single program state and not between an input state and an output
state. In the last years, [DDAS11] proposed a relational alias analysis, that infers precise
and compact procedure summaries describing all the possible configurations at the end
of a procedure accordingly to the different alias configurations at the beginning of the
procedure.

Generally, alias analyses are able to compute alias information for recursive and dy-
namically allocated data structures. However, they are not expressive enough to capture
properties such as structural invariant or memory safety for such data structures. There-
fore, more expressive analyses, named shape analyses, have been proposed to capture
such properties.

1.4.3 Shape Analysis
A shape analysis aims at inferring complex structural invariants and proving functional
properties for programs manipulating dynamically allocated data structures, like linked
lists or trees. Let us consider the program of Figure 1.3, which implements the insertion of
an element inside a non-empty singly linked list containing integer values. When applied
to a pointer to an existing non-empty list l and an integer v, this function traverses it
partially (based on a condition that is elided in the figure). It then allocates a new list
element, insert it a the selected position, and assigns to its data field the value of the
variable v.
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1 typedef struct list { struct list ∗ next ; int data ; } list ;
2
3 void insert_non_empty ( list ∗l , int v ) {
4 list ∗c = l ;
5 while ( c−>next != NULL && . . . ){
6 c = c−>next ;
7 }
8 list ∗e = malloc ( s izeof ( list ) ) ;
9 e−>next = c−>next ; c−>next = e ; e−>data = v ;
10 }

Figure 1.3: A list insertion program.

State Shape Analysis. A state analysis for this program consists of capturing the fact
that the input list must be a non-empty well-formed linked list and that no null pointer
or dangling pointer is ever dereferenced. Moreover, it should express that the output list
is a well-formed linked list of at least two consecutive elements.

Several shape analyses have been proposed like automata-based shape analyses (like
[HHR+11, HHL+15]) that use automata to represent memory states, graph-based shape
analyses [GH96, LAIS06, MHKS08, BDES09] that describe memory states as graphs, and
the three-valued logic based shape analysis [SRW99, LAS00, SRW02] (TVLA) that uses
Kleene’s 3-valued logic [Kle52] to describe memory states. Also, separation logic [Rey02]
provides an elegant description for memory states and is at the foundation of many anal-
yses for heap properties [DOY06, CR08, BCO05, GVA07]. In particular, the separating
conjunction connective ∗ expresses that two memory regions are disjoint and allows lo-
cal reasoning. All of these shape analyses infer memory state properties; they cannot
describe memory relations.

Relational Shape Analysis. For the program of Figure 1.3, a relational analysis could
capture the fact that both the part of the list that is traversed and the tail of the list
are not modified at all. More precisely, they are respectively physically equal (the same
memory cells containing the same data) in the input and output states. Moreover, it
could express that the new element has been freshly allocated by the function; that the
modified node pointed to the tail of the list and now points to the allocated node.

To our knowledge, there is only one existing work that is able to compute such rela-
tional properties [JLRS04]. It consists of an extension of the TVLA framework that uses
a doubled vocabulary that describes relations between the input and output states. On
the other hand, we observe that there is no similar work that extends and takes advantage
of the precise abstract states described by separation logic to abstract relations.
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1.5 Contributions and Outline
In this Thesis, we propose a set of new logical connectives inspired by separation logic,
that can describe relational shape properties. These connectives abstract relations (sets
of pairs of states) instead of just sets of states, and seek for compositional static analysis
algorithms. These connectives can express that a memory region has been left unmodified
by a program fragment, or that memory states can be split into disjoint sub-regions that
undergo different transformations. We build a relational shape abstract domain upon
these connectives, and apply it to design a static analysis by abstract interpretation
for programs manipulating dynamic data structures. This static analysis can compute
expressive relational shape properties, and takes benefit of the inferred relations to make
the analysis modular and compositional, without losing too much precision.

• Chapter 2 provides a global overview of this Thesis through a motivating example.

• Chapter 3 presents the target programming language of our static analysis. It
consists of a C-like imperative programming language. We define its syntax, its
memory states and its relational semantics.

• In Chapter 4 we first formalize a heap states abstraction based on separation logic.
We then design a relational heap abstraction based on new relational logic connec-
tives, the operands of which are abstract heaps. We finally define an abstraction
for memory relations.

• In Chapter 5 we design a static analysis by abstract interpretation, that infers
abstract memory relations. This relational analysis is intra-procedural: it does not
handle function calls.

• In Chapter 6 we propose a generic extension of abstract heap relations defined in
Chapter 4 that allows us to capture more precise heap relations. We also integrate
this extension in the relational intra-procedural analysis of Chapter 5.

• In Chapter 7 we formalize an operator, that over-approximates the composition of
relations without losing too much precision.

• In Chapter 8 we lift the relational intra-procedural analysis into a compositional
inter-procedural analysis. This analysis still infers relational heap properties, but
uses them as function summaries in order to compose them at call site instead of
re-analyzing the function. We extend this analysis in Chapter 9 to handle recursive
functions.

• Finally, in Chapter 10 we conclude this Thesis and we discuss perspectives for future
directions.
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Chapter 2

Overview

In this chapter, we present an overview of the Thesis. We first
present a relational intra-procedural shape analysis, without func-
tion calls. This later introduces abstract heap relations, that de-
scribe relations between the input and output heap regions of a pro-
gram. We then propose an extension of abstract heap relations,
called abstract heap transformation predicates, that improves their
precision. Finally, we present a compositional inter-procedural
shape analysis, that composes functions when they are called in-
stead of re-analyzing them. It mainly relies on a composition oper-
ator over abstract heap relations, that benefits from these relations
to preserve information about the calling context.

2.1 Relational Intra-procedural Analysis
In this section, we present the relational shape analysis that computes relations between
the input and output states of programs. This kind of analysis infers stronger properties
than non-relational analyses.

To illustrate it, we consider the code shown in Figure 2.1 which implements the
concatenation of two singly linked lists, l1 and l2. When the list l1 is empty, the
function concat simply returns the second list l2. When the list l1 is non-empty, the
function traverses it until its last element, and makes its next field point to l2.

Our analysis is based on a relational shape abstract domain, inspired by separation
logic [Rey02]. The abstract domain is formally defined in Chapter 4 and the relational
analysis in Chapter 5.

2.1.1 Abstract Heaps and the Needs for Relations
We first present an abstraction of memory heaps based on separation logic [Rey02] and
demonstrate why we require relations to describe more precisely the behaviour of pro-
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1 list * concat (list *l1 , list *l2) {
2 i f (l1 == NULL) {
3 return l2;
4 }
5 list *t = l1;
6 while(t->next != NULL) {
7 t = t->next;
8 }
9 t->next = l2;

10 return l1;
11 }

Figure 2.1: Concatenation of two linked lists.

grams.

Abstract Heaps

Separation logic[Rey02] relies on separating conjunction ∗ that expresses disjoint heap
regions and allows local reasoning on complex data structures. If h]0 and h]1 describe two
memory regions, h]0 ∗ h]1 ensures that h]0 and h]1 are disjoint.

We first discuss the Figure 2.2(a) that shows two possible concrete input lists for the
function concat. The first one contains three list nodes whose addresses are a0, a1 and
a2. The second one contains four list nodes whose addresses are a3, a4, a5 and a6. These
two lists can both be abstracted with inductive predicates, as used in [DOY06, CR08]. We
assume that list(α) describes heap regions that consist of a well-formed singly linked list
starting at address α (Greck letters α, β, δ, ... are symbolic values used in the abstraction
to denote a concrete value or address). This predicate is intuitievly defined by induction
as follows:

list(α) = (emp, α = 0)
∨ (α · data 7→ δ ∗ α · next 7→ β ∗ list(β), α 6= 0)

It means either the region is empty (the predicate emp describes an empty heap region)
and α is the null pointer, or the region is not empty and consists of a list element at
address α with two fields, data and next. The data field contains a value described by
the symbolic value δ, and the next field contains a value described by the symbolic value
β, which is itself a region described by the predicate list(β). Thus, the two inputs lists
can be abstracted with the abstract heap list(α0) ∗ list(α3), the graphical representation
of which is shown in the top of Figure 2.2(b). The symbolic values α0 and α3 respectively
denote the concrete addresses a0 and a3.
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input:
l1 l2a0

7

a1

0

a2

4

a3

1

a4

9

a5

3

a6

2

• • • • •0x0 0x0

output:
l1 l2a0

7

a1

0

a2

4

a3

1

a4

9

a5

3

a6

2

• • • • •• 0x0

(a) A pair of concrete input and output states.

input:
l1 l2

α1α0 α1α3
list list

output:
l1 l2

α1α0 α1α3α1α2

α1δ4

listlistseg next

data

(b) A pair of abstract input and output states.

l1 l2
Id

α1α0 α1α2
listseg 99K

α1α2 α10x0

α1δ4

next

data

α1α2 α1α3

α1δ4

next

data

Id

α1α3
list

(c) Abstract input-output relations.

Figure 2.2: Abstract states and relations corresponding to the cases where l1 is non-
empty for the function concat of Figure 2.1.
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The bottom of Figure 2.2(a) shows the resulting output state of the concatenation
function. We observe that the last node of the list l1 points to the first node of the
list l2. Thus, the analysis needs to describes a heap region starting at an address and
ending at another. This requires a list segment predicate listseg(α, β), that is defined in
a similar way as for list(α):

listseg(α, β) = (emp, α = β)
∨ (α · data 7→ δ ∗ α · next 7→ γ ∗ listseg(γ, β), β 6= 0)

It describes a region that stores a list starting at address α and whose last element points
to β. If the list is empty, we have α = β. Using this predicate, we can use the separation
logic formula listseg(α0, α2) ∗ α2 · data 7→ δ4 ∗ α2 · next 7→ α3 ∗ list(α3) to abstract
the output states of the concatenation function (in the case where l1 is non-empty), as
shown in the bottom of Figure 2.2(b). Indeed, it describes a list of any length whose last
element points to α2, that itself points to α3.

The Needs for Relations

We also observe that this abstraction allows us to express and verify that the function
is memory safe, and returns a well-formed linked list. First, it captures the fact that
no null or dangling pointer is ever dereferenced. Second, all states described by the
abstract post-condition consist of a well-formed list, followed by another well-formed
linked list. On the other hand, it does not express anything about the locations of the
lists in the output state with respect to the lists in the input state. More precisely, it
cannot capture the fact that the elements stored at addresses a3, a4, a5 and a6 are left
unmodified physically. Then, it does not express that the modified element (here at
address a2) belongs to the input list pointed by l1. Finally, in Figure 2.2(b), the input
abstract state just describes two well-formed list, starting respectively at address α0 and
at address α3, and the output abstract state just describes a well-formed list starting at
address α0 followed by a list node whose address is α2, that points to another list starting
at address α3, but nothing more. This is a consequence of the fact that each abstract
state in Figure 2.2(b) independently describes a set of concrete states.

2.1.2 Abstract Heap Relations
To abstract relations, instead of sets of states, we now propose to define a new logical
structure, shown in Figure 2.2(c), that is based on new predicates inspired by separation
logic and that partially overlays the abstractions of input and output states. These new
predicates are called abstract heap relations. They are presented in Chapter 4.

First, we observe that the list pointed by l2 is not modified at all, and that the list
pointed by l1 is also not modified until its last element. Thus, we describe the non-
modification with a single predicate Id(h]), that is named identity relation. It denotes
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pairs made of an input heap and an output heap, that are physically identical and that
can both be abstracted by h]. For instance, the abstract heap relations Id(list(α3)) and
Id(listseg(α0, α2)) ensure respectively that the list starting at address α3 and the list
starting at address α0 and ending at address α2 are both not modified by the concate-
nation function. An identity relation is graphically represented by a box, labeled by the
word ’Id’ containing the unmodified abstract heap, as shown on the left and on the right
of Figure 2.2(c).

Second, the concatenation function modified the last list node of the first list. In the
input state, this node pointed to the null pointer, and in the output state, it points to
the first node of l2. Thus, we need to describe relations between states where a region
has been modified. To account for this, we need a new connective [h]0 99K h]1] which is
applied to the two abstract heaps h]0 and h]1, both expressed by formulas in the usual
separation logic with inductive predicates. The abstract relation [h]0 99K h]1] describes the
local transformation of an input heap abstracted by h]0 into an output heap abstracted
by h]1. This abstract relation is called a transform-into relation. This is represented in
the middle of Figure 2.2(c) by a box containing a dashed arrow that separates the input
and output states.

Finally, we need to define a counterpart for separating conjunction at the relation
level. Indeed, the effect of the concatenation function can be decomposed as its effect
of the list pointed by l1 (whose only last node is modified) and the list pointed by
l2 (that is left unmodified). This relational separating conjunction is noted ∗R. If r]0
and r]1 are two abstract heap relations, then r]0 ∗R r]1 ensures that r]0 and r]1 describe
totally independent relations. To avoid confusion, from now on, we write ∗S for the
usual separating conjunction. Thus, a valid abstract heap relation for the concatenation
function for the case where l1 is non-empty is:

Id(listseg(α0, α2))
∗R [(α2 · data 7→ δ4 ∗S α2 · next 7→ α5) 99K (α2 · data 7→ δ4 ∗S α2 · next 7→ α3)]
∗R Id(list(α3))

To describe precisely the different cases of the function concat (where l1 is empty
and non-empty), we use a disjunction of abstract heap relations r]0∨r]1, where its disjunct
corresponds to one case. Remark that the case where l1 is empty is simply described by
Id(list(α3)).

2.1.3 Analysis Algorithm

We now present informally how our analysis uses these new connectives to compute
a sound over-approximation of the input-output memory states relations. We do not
consider function calls.
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Forward abstract interpretation. The analysis algorithm proceeds by forward ab-
stract interpretation [CC77]. It computes for each program point an abstract relation
between the input memory state and the memory state at this current program point.
Thus, when the analysis reaches the last program point, it has computed an abstract
relation between the input and output memory states of the program.

Initial abstract relation. The analysis starts with the identity abstract heap relation
of a given pre-condition at function entry. Indeed, the first abstract relation of the
analysis should describe an abstract relation between the input state and the input state
itself, and this can be described by the identity relation. For instance, the analysis of the
concatenation function starts with the abstract heap relation Id(list(α0) ∗S list(α3)):

Id

α1α0
listl1 l2

α1α3
list

Reasoning about relational connectives. To infer new abstract heap relations, the
analysis needs to reason about the relational connectives. Thus, the analysis mainly relies
on three properties about abstract heap relations:

(1) Id(h]0 ∗S h]1) ⇔ Id(h]0) ∗R Id(h]1)
(2) Id(h]) ⇒ [h] 99K h]]
(3) [h]0 99K h]1] ∗R [h]2 99K h]3] ⇒ [(h]0 ∗S h]2) 99K (h]1 ∗S h]3)]

Property (1) allows us to split and merge identity relations as needed. Then, property
(2) allows us to forget the identity relation, weakening it into a transform-into relation.
Finally, property (3) allows us to forget that two transformations are independent by
merging respectively their input and output abstract heaps. For instance, the initial
abstract relation of the function concat is equivalent to the following abstract relation:

Id

α1α0
listl1

Id

l2
α1α3

list

These three properties are formally expressed and proven in Theorem 4.1 (page 48).

Unfolding operation. The analysis algorithm needs to unfold inductive predicates to
materialize cells. For instance, after the condition test at line 2 of Figure 2.1, the analysis
needs to take into account the effects of the test l1 == NULL in each of the branches. The
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analysis requires to unfold the predicate list(α0) using its definition. At this program
point, this predicate is still under the Id(.) connective (it has not been modified yet).
Unfolding list(α0) under this connective produces a disjunction made of the cases of the
definition of list(α0) under the identity relation:

Id

α10x0
l1

Id

l2
α1α3

list

∨
Id

α1α0 α1α1

α1δ

listnext

data

l1

Id

l2
α1α3

list

In the branch where the test l1 == NULL holds, only the disjunct where l1 points to the
null pointer is kept. In the branch where the test does not hold, only the second disjunct
is kept.

Folding operation. In order to analyze condition tests, loops, and to ensure its termi-
nation, the analysis also needs to fold inductive predicates. The analysis first proceeds to
the folding operation at the abstract heap level, and then at the abstract heap relation
level, accordingly. This step attempts to preserve identity relations whenever it is possible
to do so, and weakens or merges the other abstract relations as needed, using properties
(1), (2) and (3). For example, the loop invariant at line 6 for the concatenation function
that is computed by the folding operation is:

Id

α1α0 α1α2 α1α5

α1δ4

listseg listnext

data

l1

t Id

l2
α1α3

list

To express that the pointer t points somewhere in the list l1, the folding operation
introduced a list segment between the addresses α0 and α2. The pointer t thus points to
α2 (that is not null) and l1 still points to α0. Both lists pointed by l1 and l2 are not
modified at this program point, thus the identity relation is preserved.
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Transfer functions. At each program statement, the analysis performs the corre-
sponding transfer function, such as assignment, allocation or deallocation. Each of these
operations relies on properties (1) and (2). This allows us to preserve the identity relation
over the heap regions that are not modified and to express the effect of the operation on
the concerned heap region. It results in a new abstract heap relation, that expresses a
relation between the input state and the state after analyzing the last visited statement.

As an example, we discuss the case of the abstract assignement at line 9. After exiting
the loop, we have that t−>next = NULL, the current abstract relation of the analysis is
thus:

Id

α1α0 α1α2 α10x0

α1δ4

listseg next

data

l1

t Id

l2
α1α3

list

To perform the assignement t−>next = l2 from the abstract relation, many steps are
necessary. First, only the part related to α2 is going to be modified. Thus, the analysis
cannot keep the identity relation over this part. To keep the identity relation over the
part that is not modified by the assignment, the analysis applies property (1):

Id

α1α0 α1α2
listseg

Id

α1α2 α10x0

α1δ4

next

data

l1 t

Id

l2
α1α3

list

Then, the analysis applies properties (2) to weaken the identity relation of modified
memory part into a transform-into relation:

l1 l2

Id

α1α0 α1α2
listseg 99K

t

α1α2 α10x0

α1δ4

next

data

α1α2 α10x0

α1δ4

next

data

Id

α1α3
list
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1 list *sort(list *l) {
2 list *res = NULL;
3 while(l) {
4 list *p_max = l;
5 int v_max = l->data;
6 list *c = l;
7 while(c->next) {
8 i f (c->next ->data > v_max) {
9 v_max = c->next ->data;

10 p_max = c;
11 }
12 c = c->next;
13 }
14 list *tmp;
15 i f (p_max == l && v_max == l->data) {
16 // the maximum is the head
17 tmp = l;
18 l = l->next;
19 } e l se {
20 tmp = p_max ->next;
21 p_max ->next = p_max ->next ->next;
22 }
23 tmp ->next = res;
24 res = tmp;
25 }
26 return res;
27 }

Figure 2.3: An in-place list sorting in place program.

Actually, the analysis could also keep the data field of α2 under the identity relation,
but we do not show it for clarity. Finally, the analysis proceeds to the assignment and
obtains the abstract relation of Figure 2.2(c).

2.2 Abstract Heap Transformation Predicates
Previously, we demonstrated that abstract heap relations improve the way to describe the
behaviour of programs. However, in some cases, abstract heap relations cannot express
precisely how a heap region has been transformed into another.

As illustration, we consider the code shown in Figure 2.3, that implements an in-place
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input:
l a0

1

a1

3

a2

9

a3

2

• • • 0x0

output:
res

l = 0x0

a0

1

a3

2

a1

3

a2

9

• • • 0x0

Figure 2.4: Example of pair of concrete input and output states for the sort program of
Figure 2.3.

list sorting. This function, proceeds as follows: it first initializes the resulting list res to
the null pointer. Then, it traverses in the input list until it points to the null pointer. At
each iteration, it searches for the maximum element of the input list, deletes it, and adds
it at the first position in the resulting list. We observe that the sort is in place: it works
directly on the input list, without allocating or deleting cells. Figure 2.4 shows a possible
pair of input and output states for this function. We can see that exactly all the memory
cells in the input list (at addresses a0, a1, a2 and a3) are physically present in the output
list. We also notice that each value of the data field of each list element is unchanged
(the data field at address a0 is 1, at address a1 is 3, ...), but that only the next field of
some list elements has been modified. For instance, the next field of the list element at
address a3 pointed to the null pointer, now it points to the address a1. However, the list
element at address a1 points to the address a2 both in the input and the output state.
We can say that the list is partially modified.

A valid abstract heap relation for all input and output states of this function is:

[list(α) 99K list(β)]

However, it only describes that the function inputs a well-formed linked list list(α) and
outputs a well-formed linked list list(β). It does not describe any information about how
the output list is obtained. Abstract heap relations are expressive enough to describe
precise relations for programs that do not modify some heap regions, or only modify a
finite number of memory cells. It reaches its limit of precision when a program modifies
partially an unbounded number of memory cells. More generally, this loss of precision
occurs when the [. 99K .] connective is applied to inductive or segment predicates on both
sides.

To fix this kind of imprecision, we propose to extend abstract heap relations, and
more particularly transform-into relations. Instead of creating a new connective for each
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specific property to describe, we parameterize the [. 99K .] connectives with a generic
set of predicates T] that express specific transformations. We named these predicates
abstract heap transformation predicates. If t] ∈ T] is an abstract heap transformation
predicate, then the abstract heap relation [h]0 99K h]1]t] describes the transformation of
the input heaps abstracted by h]0 into the output heaps abstract by h]1, respecting the
conditions defined by t].

Abstract heap transformation predicates are introduced in Chapter 6. We specifically
propose an example of such predicates that allow us to express that the function in
Figure 2.3 returns a in-place permutation of the input list. These example predicates
have the advantage of being available for any data structure. We also integrate abstract
heap transformation predicates in our analysis algorithm. The analysis does not depend
on a specific set of such predicates T], it only requires that each set of predicates provides
the same interface.

2.3 Compositional Inter-procedural Analysis
Until now, we provided an overview of our relational shape analysis without taking into
account function calls. We now lift this restriction and we present an inter-procedural
analysis, that uses the abstract heap relations for composing functions, instead of always
reanalyzing them at each call-site.

Generally, composing functions makes the shape analysis scalable but it may suffer of
some loss of precision. We first propose a composition operator, that computes directly the
effects of a function call using the abstract heap relation at the call-site and the abstract
heap relation of the called function. This operator benefits from the expressiveness of
abstract heap relations to avoid loss of precision.

We then present an algorithm that detects when it is possible to perform the compo-
sition, and when it is not the case, computes a new composable abstract relation for the
called function. Formalizations of the composition operator and the analysis algorithm
are presented in Chapter 8.

2.3.1 Composition of Abstract Heap Relations
In this section, we present the composition operator ◦R] of abstract heap relations. It
takes two abstract heap relations r]0 and r]1 and returns a new abstract heap relation
r], which represents the application of the relations described by r]1 from the relations
described by r]0.

The strength of abstract heap relations is that they describe local relations between
input and output states of programs. This allows us to compose independently each heap
region, and thus to express precisely the effect of the called function on each region. To
illustrate it, we discuss the effects of our composition operator, applied to the call to
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1 list * add_last (list *l, int v) {
2 list *node = malloc ( s i z e o f (list));
3 node ->next = NULL;
4 node ->data = v;
5 return concat (l, node);
6 }

Figure 2.5: Creation of an element at the end of a list.

function concat in the function add_last of Figure 2.5. The function add_last inserts
a new list node at the end of a list. This function inputs a list l and a value v, allocates
a new list node, whose next field points to NULL and data field is assigned to v. The
function concat is then called to add the new node at the end of the list l. For simplicity,
we elide abstract heap transformation predicates and we do not consider the variable v.

Just before the function concat is called, at line 5, we assume that the current abstract
heap relation r]0 for the function add_last is:

l1 l2

l node

Id

α1α0
list 99K

emp

α1α3 α10x0

α1αv

next

data

When the function concat is called, its parameters l1 and l2 are respectively assigned
to l and node. If α0 is the address pointed by l and α3 the address pointed by node, this
abstract heap relation describes a relation between the input state of add_last and the
state before the call to concat. Indeed, at this program point, the list pointed by l is not
modified and node points to a list element made of two fields next and data, and both
of them have been freshly allocated. Note that the abstract heap relation [emp 99K h]]
means that the concrete heap region abstracted by h] has been allocated, as an empty
heap region has been transformed into another.

We also assume that the function concat is described by a disjunction of two abstract
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heap relations r]1 ∨ r]2 that are the ones we presented in the previous section:

l1 l2
Id

α1α0 α1α2
listseg 99K

α1α2 α10x0

α1δ4

next

data

α1α2 α1α3

α1δ4

next

data

Id

α1α3
list

∨
Id

α10x0
l1

Id

l2
α1α3

list

The composition between r]0 and this disjunction is defined as follows:

r]0 ◦R] (r]1 ∨ r]2) = (r]0 ◦R] r]1) ∨ (r]0 ◦R] r]2)

We first focus on r]0 ◦R] r]1. Without relation between input and output states, it is
not possible to express that the list pointed by l2 is not modified by the concatenation
function. Therefore, a sound composition of this function must lose information about
this list and must return another list of any length. For instance, after the call to concat,
it would lose the information that the variable node points to a single list node. Thanks to
the identity relation, this loss of precision is avoided. Using this relation, our composition
operator is able to preserve the fact the variable node still points exactly to the same list
node it pointed to before the function call. Moreover, it preserves the information that
this same node has been allocated in the function add_last. Regarding the list pointed
by l1, the composition operator infers that only its last element has been modified (and
that this latter points to l2).

We now focus on r]0 ◦R] r]2. The only difference with the previous case is related to the
list pointed to l1. As l1 points to the null pointer in r]2, the composition operator infers
that l1 also points to the null pointer in the resulting abstract relation.
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1 list * create3 ( int x, int y, int z) {
2 list *h = add_last (NULL , x);
3 h = add_last (h, y);
4 h = add_last (h, z);
5 h = sort(h);
6 return h;
7 }

Figure 2.6: Creation of a sorted list of three elements.

Finally, the result of (r]0 ◦R] r]1) ∨ (r]0 ◦R] r]2) is:

l1

l

l2

node

Id

α1α0 α1α2
listseg 99K

α1α2 α10x0

α1δ4

next

data

α1α2 α1α3

α1δ4

next

data

99K

emp

α1α3 α10x0

α1αv

next

data

∨

Id

α10x0
l1

l

l2

node

99K

emp

α1α3 α10x0

α1αv

next

data

2.3.2 Analysis Algorithm
In the previous section, we presented how the composition operator was defined. We now
present when and how it is applied by the analysis algorithm.
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We consider the analysis of the function create3 of Figure 2.6 that creates a list
containing three values x, y and z, and sorts this list. This function calls add_last three
times to create each list node and calls sort to perform the sort.

Computing a first abstract heap relation. We assume that the function add_last
has never been analyzed before its first call at line 2 of Figure 2.6. Thus, during the first
call to add_last, the algorithm needs to analyze it a first time in order to obtain an
abstract heap relation that describes its behavior.

To do that, the algorithm assigns the expressions of the function call corresponding
to the arguments. Here, it assigns the null pointer to the argument l to and the value of
x to the argument v. The parts of memory that are not reachable from the arguments of
the called function are discarded for its analysis, as the function will have not effect on
them.

The analysis of add_last starts with the identity relation where l points to the null
pointer and v contains the value of x. Similarly, when the analysis reaches the call to
concat, there is no abstract heap relation to describe this function. The algorithm then
proceeds to the analysis of concat from the identity relation where l1 points to the null
pointer and l2 points to a list node. In this calling context, the returned abstract heap
relation is simply the identity relation of a list node, such as l1 is null and the function
concat returns l2. Thus, the first abstract heap relation describing the function concat
is:

Id

α10x0
l1 l2

Id

α1α3 α10x0

α1αv

next

data

After computing this abstract heap relation for the function concat, the algorithm en-
riches it with the identity relation of the part of the memory that is not reachable from
the arguments of concat. This allows the analysis to compose the abstract heap relation
at call site with the abstract heap relation describing the called function.

Reanalyzing the function with a more general pre-condition. For the second
call to add_last, the algorithm cannot perform directly the composition. Indeed, the
abstract heap relation previously computed for add_last describes the behavior of this
function when it is called with the null pointer. Whereas in this calling context, it is
called with the list node pointed by h. This is detected automatically by means of an
inclusion checking operator. The algorithm thus requires an abstract heap relation whose
pre-condition is valid both for the null pointer and for a list node.

To obtain it, the algorithm uses a join operator that folds the null pointer and the
list node into a list inductive predicate list(α). The creation of this predicate relies
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on the definition the of inductive predicates provided by the user. The algorithm then
reanalyzes the function add_last from the identity relation of the joined abstract heap.
In turn, the algorithm computes a new abstract heap relation for this function, whose
pre-condition is valid for any linked list. The previous abstract heap relation computed
from the null pointer is then forgotten by the algorithm and substituted with the new
one. For similar reasons, the algorithm must reanalyze the function concat and compose
it when it is called in add_last.

Finally, the algorithm can compose soundly the second call to add_last and continue
the analysis.

Composing without reanalyzing the function. For the third call to add_last, the
algorithm does not need to reanalyze this function. Indeed, the last computed abstract
heap relation for add_last describes the behavior of this function when it is called with
a list of any length. Thus, the algorithm can perform the composition directly, whatever
the length of the list pointed to by h.

The algorithm always keeps the last computed abstract heap relation for a function.
For instance, if add_last is called in another function than create3, the algorithm
will perform the composition without reanalyzing it (if the calling context is included
in the pre-condition of the abstract heap relation). We also extended this algorithm in
Chapter 9 to analyze recursive functions. After the three calls to add_last, the analysis
has inferred the abstract relation:

h

99K

emp

α1α0 α1α1

α1αx

next

data

x

99K

emp

α1α1 α1α2

α1αy

next

data

y

99K

emp

α1α2 α10x0

α1αz

next

data

z

Observe that the analysis did not lose any precision. Indeed, the abstract heap relation
above describes precisely a list where three nodes have been allocated, and that contains
the values of x, y and z in the right order.

Benefits of abstract heap transformation predicates for the composition. We
first assume that our compositional analysis does not consider abstract heap transforma-
tion predicates, and that the function sort is described by the abstract heap relation
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[list(α) 99K list(β)]. During the call to sort in the function create3, the analysis
should perform the composition between the abstract heap relation of the last paragraph
and [list(α) 99K list(β)] (that describes the behavior of sort). The composition should
produce:

h

99K

emp

α1β0
list

It does not describe that a list made of exactly three elements has been allocated, but only
that a list of any length has been allocated. Indeed, the abstract heap relation attached
to sort only expresses the transformation of a linked list into another. Consequently, the
composition operator does not have enough information to infer more precise properties
about the output list.

This loss of precision can be fixed with abstract heap transformation predicates, in-
troduced in Section 2.2. The gain of precision depends on the precision of the predicates.
For instance, with the abstract heap transformation predicates defined in Chapter 6 that
allow the analysis to express an in-place permutation (but not only) of any data structure,
the composition is able to infer that the output list is made of exactly three elements:

h

99K

emp

α1β0 α1β1

α1β4

next

data

99K

emp

α1β1 α1β2

α1β5

next

data

99K

emp

α1β2 α1β3

α1β6

next

data

However, it does not express precisely which node contains the value of x, y or z.
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Chapter 3

Concrete Semantics

The C language is the target language for our program analysis.
Thus, in this chapter, we introduce an imperative programming
language, that is a fragment of the C language. This language han-
dles neither arrays nor unions, but features pointers, recursive data
structures and dynamic allocations. This allows us to illustrate the
family of programs our work aims to analyze. We also define a
trace semantics and a relational semantics based on a transition
system of this language.

3.1 A C-Like Programming Language

The syntax of the language is defined in Figure 3.1. A program p ∈ Prog consists of
a sequence of function definitions. Each function f ∈ Fun is defined by its arguments
and its body, a command c ∈ Cmd . For simplicity, all functions end with the returned
command ret and do not return values. The commands consist of assignments, memory
allocations and deallocations, sequences of programs, conditionals, loops and function
calls. The command skip denotes the command that does nothing. The sets Lval and
Expr define the sets of l-values and expressions. An l-value l ∈ Lval denotes the address
of a memory cell (also named memory location). It can be either a program variable
x ∈ X, an l-value offset by a field (l · f), or the value of a pointer expression (*exp). We
assume that all field names f ∈ F are implicitly converted into numeric offsets, and that
∅ denotes the null offset. We also write e ->f as a syntactic sugar for the location (*e) ·f.
An expression e ∈ Expr denotes a value. It can be the content at a memory location
(l ), the address of a memory location (&l ), any value v (signed integers), or a binary
expression e1 ⊕ e2. The operator ⊕ designs any standard binary operator, like addition,
substraction, equality test, etc.
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l (∈ Lval ) ::= x (x ∈ X)
| l1 · f (l1 ∈ Lval ; f ∈ F)
| *e (e ∈ Expr )

e (∈ Expr ) ::= l (l ∈ Lval )
| &l (l ∈ Lval )
| v (v ∈ V)
| e1 ⊕ e2 (e1, e2 ∈ Expr )

⊕ ::= +| − | = | ...

c (∈ Cmd ) ::= l = e (l ∈ Lval ; e ∈ Expr )
| l = malloc({f1, . . . , fn}) (l ∈ Lval ; fi ∈ F)
| free(l ) (l ∈ Lval )
| c1 ; c2 (c1, c2 ∈ Cmd )
| if (e) c1 else c2 (e ∈ Expr ; c1, c2 ∈ Cmd )
| while (e) c1 (e ∈ Expr ; c1 ∈ Cmd )
| f (e1, . . . , en) (l ∈ Lval ; f ∈ Fun ; ei ∈ Expr )
| ret
| skip

p (∈ Prog) ::= f (x1, . . . , xn){c; ret} (f ∈ Fun ; xi ∈ X; c ∈ Cmd )
| p1; p2 (p1, p2 ∈ Prog)

Figure 3.1: Programming Language Syntax.
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3.2 Concrete Memory States
In the following, we define concrete states and provide both trace and relational semantics
for this language.

Let A be the set of addresses and V the set of values, we assume that any address
a ∈ A is also a value v ∈ V, i.e. A ⊆ V. A concrete heap h ∈ H = A ⇀ V is a partial
function from addresses to values. We write [a1 7→ v1; . . . ; an 7→ vn] for the concrete heap
where each cell at address ai contains the value vi, with 1 ≤ i ≤ n. For simplcity, we
suppose that all cells have the same size, and are well aligned. We also denote h[a ← v]
the heap where we update the content of the cell at address a with value v in the heap h.
We let the domain of h, denoted by dom(h), be the set of addresses at which it is defined.
For example, the domain for the concrete heap [a1 7→ v1; a2 7→ v2; a3 7→ v3] is {a1, a2, a3}.
Additionally, if h0 and h1 are two concrete heaps such that dom(h0) ∩ dom(h1) = ∅,
we let h0 � h1 denote the concrete heap obtained by merging h0 and h1 (its domain is
dom(h0) ∪ dom(h1)). Moreover, im(h) denotes the set of values that are pointed to by
at least an address in h. Finally, if A is a set of addresses such as A ⊆ A and h a concrete
heap, we denote h�A the concrete heap obtained by removing all the addresses of A in
h. For instance [a1 7→ v1; a2 7→ v2; a3 7→ v3]� {a1, a3} = [a2 7→ v2].

Let X be the set of program variables. A concrete environment e ∈ E = X→ A binds
each program variable x ∈ X to its numerical address a ∈ A. Thus, an environment
indicates the address of a variable in the heap. We denote [|x1 = a1, . . . , xn = an|], the
concrete environment where the address of each variable xi is equal to ai. We also denote
e[|x1 = a1, . . . , xn = an|] the operation that adds in the environement e the new variables
x1, . . . , xn with respectively the value of their address a1, . . . , an. In the same way as
concrete heaps, we denote dom(e) for the set of variables to which e is defined and im(e)
the set of addresses that are associated to a variable in e.

A concrete memory state m ∈ M = E × H is simply a pair made of a concrete
environment and a concrete heap. The addresses of variables are also allocated in the
heap. Remark that we do not need stores, as all numerical information are in the heap.

Example 3.1 (A concrete memory state). We consider the following code:
1 x = 13;
2 y = 182;
3 p = &y;

At the end of this code, a possible concrete memory state is the pair (e, h) such as:

e = [|&x = 1, &y = 2, &p = 3|] and h = [1 7→ 13, 2 7→ 182, 3 7→ 2]

Indeed, the environment e maps each variable to its address: x to the address 1, y to
the address 2 and p to the address 3. The concrete heap h describes each memory
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LJxK(e, h) def= e(x)
LJl · fK(e, h) def= LJl K(e, h) + f
LJ*eK(e, h) def= EJeK(e, h)

EJl K(e, h) def= h(LJl K(e, h))
EJ&l K(e, h) def= LJl K(e, h)
EJvK(e, h) def= v
EJe1 ⊕ e2K(e, h) def= EJe1K(e, h)⊕ EJe2K(e, h)

Figure 3.2: Concrete semantics for l-values and expressions.

cell: the memory cell at the address of x contains the value 13, the memory cell at the
address of y contains the value 182 and the memory cell at the address of p contains
the address of y (here the value 2).

3.3 Concrete Trace Semantics
The semantics of locations and expressions are defined by two partial functions, LJlocK ∈
M⇀ A and EJexpK ∈M⇀ V, respectively from memory states into addresses and from
memory states into values. They are mutually defined by induction on the structures of
l-values and expressions, as shown in Figure 3.2. The environment provides the address
of the variable x for LJxK(e, h) whereas EJl K(e, h) first evaluates the address of the l-value
l , then returns the value contained in h at this address.

Figure 3.3 defines a transition system S = (S,−→) for commands. The set of states
S is defined as follows. First, a program configuration is a pair of a command and a
memory state denoted by 〈c | m〉 (or 〈c | (e, h)〉). It associates the current memory state
to a command. The program configuration 〈skip | m〉 is the final configuration (if ever).
Second, to handle function calls (recursive or not), the transition system requires a stack
to save the program configuration before executing a function call. Thus, the set of the
transition system S is a stack σ ∈ Σ of program configurations. We denote ε for the
empty stack. The stack 〈c | m〉 :: σ is the stack of which the first element is 〈c | m〉.

We now describe the transition system of commands for assignments, conditionals,
loops, allocations, deallocations and function calls and returns. Note that only function
calls and function returns modify the stack. Assignments are standard: they just consist
of evaluating the lvalue and the expression, and to update the concrete heap accordingly.
To allocate a new address in a heap h, the semantics generates a fresh base address. A
base address is an address a ∈ A such that for some set of fields F ⊆ F and for any f ∈ F ,
we have (a + f) ∈ dom(h). Regarding deallocations, the system evaluates the lvalue as
an expression to a base address, and removes in the concrete heap all the memory block
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EJeK(e, h) = v LJl K(e, h) = a
〈l = e | (e, h)〉 :: σ −→ 〈skip | (e, h[a← v])〉 :: σ

c1 6= ret 〈c1 | m〉 :: σ −→ 〈c ′1 | m′〉 :: σ′
〈c1 ; c2 | m〉 :: σ −→ 〈c ′1 ; c2 | m′〉 :: σ′ 〈skip ; c2 | m〉 :: σ −→ 〈c2 | m〉 :: σ

LJl K(e, h) = a ∃a′ ∈ A,∀f ∈ F, (a′ + f) /∈ dom(h) ∃v1, . . . , vn ∈ V
h′ = [a′ + f1 7→ v1, . . . , a′ + fn 7→ vn]

〈l = malloc({f1, . . . , fn}) | (e, h)〉 :: σ −→ 〈skip | (e, h[a← a′] � h′)〉 :: σ

EJl K(e, h) = a h′ = h� {a + f | ∀f ∈ F, (a + f) ∈ dom(h)}
〈free(l ) | (e, h)〉 :: σ −→ 〈skip | (e, h′)〉 :: σ

EJeK(m) 6= 0
〈if (e) c1 else c2 | m〉 :: σ −→ 〈c1 | m〉 :: σ

EJeK(m) = 0
〈if (e) c1 else c2 | m〉 :: σ −→ 〈c2 | m〉 :: σ

EJeK(e, h) 6= 0
〈while (e) c | m〉 :: σ −→ 〈c ; while (e) c | m〉 :: σ

EJeK(e, h) = 0
〈while (e) c | m〉 :: σ −→ 〈skip | m〉 :: σ

f (x1, . . . , xn){c; ret} ∈ Prog
∃a1, . . . , an ∈ A,∀1 6 i 6 n, ai /∈ dom(h)

e′ = [|x1 = a1, . . . , xn = an|]
h′ = [a1 7→ EJe1K(e, h), . . . , an 7→ EJenK(e, h)] � h

〈f (e1, . . . , en) | (e, h)〉 :: σ −→ 〈c; ret | (e′, h′)〉 :: 〈f (e1, . . . , en) | (e, h)〉 :: σ

h′′ = h� im(e)
〈ret | (e, h)〉 :: 〈f (e1, . . . , en) | (e′, h′)〉 :: σ −→ 〈skip | (e′, h′′)〉 :: σ

〈ret; c | m〉 :: σ −→ 〈ret | m〉 :: σ

Figure 3.3: Transition system.
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from this base address. For conditionals and loops, the value 0 is evaluated as false, any
other value is evaluated as true.

Regarding function calls, the addresses of arguments are first allocated. These ad-
dresses are then associated to the arguments in a new environment e′. Remark that e′
does not contain variables of the caller: this is to handle recursive calls. Then, each
expression of the function call is evaluated and assigned to the address of the correspond-
ing argument, and added in the concrete heap h. This results in the new concrete heap
h′. A new program configuration is pushed on the stack: it is made of the body of the
called function c; ret; and memory state (e′, h′) previously created. Regarding function
returns, all the addresses in current environment are deleted in the current heap (this
produces the heap h′′). These addresses correspond to the argument of the function. The
environment before the function called (e′) is restored and the stack is popped. The rule
at the bottom of the figure enforces to exit the current function, if ever the command
ret is followed by another command.

Remark 1 (Local and global variables). Functions can contain local variables. They are
allocated at the beginning of the function they are declared and deallocated at the exit of
this function exactly as for its arguments. However, for concision we do not explicit it
in the concrete semantics. We admit for simplicity that this language does not make it
possible to declare global variables, even if they could be integrated easily.

Definition 3.1 (Trace semantics of commands). Given a command c ∈ Cmd ,
we define the finite trace, infinite trace and trace semantics of c. We start by defining
the finite trace semantics JcK∗T ∈ P(Σ∗) of c:

JcK∗T = {〈〈c | m0〉 :: ε, . . . , 〈skip | mn〉 :: ε〉 | ∀i, 0 6 i < n, σi −→ σi+1}

Then, we define the infinite trace semantics JcKωT ∈ P(Σω) of c:

JcKωT = {〈〈c | m0〉 :: ε, . . .〉 | ∀i, 0 6 i, σi −→ σi+1}

Finally we define the trace semantics JcK∞T ∈ P(Σ∞) of c:

JcK∞T = JcK∗T ∪ JcKωT

The initial state of a trace (finite or infinite) of a command is a stack with a single
program configuration, that is made of the command itself and input memory state.
The final state of a finite trace is a stack with a single program configuration: the final
configuration 〈skip | mn〉 where mn is the output memory state.

Example 3.2 (Function call and return). We consider the following function
incr
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1 void incr( int *p) {
2 *p = *p + 1;
3 }

We describe the effects of a call of this function incr(&x) applied from a memory
state composed of two variables x and y, that contain respectively the values 17 and
41. More formally, we are reducing 〈incr(&x) | (e, h)〉 :: σ , with:

e = [|&x = 1, &y = 2|] and h = [1 7→ 17, 2 7→ 41]

A new address that is not already in h (thus neither 1 nor 2) is generated (in this
example the address 3). This produces a new environment e′ = [|&p = 3|]. Then,
the expression &x is evaluated to 1, and the heap [3 7→ 1] is merged with the original
heap h. This results in the heap h′ = [1 7→ 17, 2 7→ 41, 3 7→ 1].

The body of incr c is then reduced from the stack:

〈c | (e′, h′)〉 :: 〈incr(&x) | (e, h)〉 :: σ

After the reduction of c, we obtain the heap h′′ = [1 7→ 18, 2 7→ 41, 3 7→ 1] where the
value of x has been incremented. The return of the function incr deallocates the cell
corresponding to the argument p with h′′ � {3}, restores the original environment e,
and pops the stack. We thus obtain:

〈skip, (e, [1 7→ 18, 2 7→ 41])〉 :: σ

An important feature with our program semantics is that we must consider that the
set of addresses A is infinite, and that every allocation generates fresh addresses. In a
real imperative programming language like C, the same address can be deallocated, then
allocated randomly (if it is available) during the execution of a program. This feature
does not allow us to express that some parts of memory have been freshly allocated or
deallocated between two program points whereas these are exactly the kind of properties
that our work attempts to prove. Therefore, we admit for sake of simplicity that when
a program needs to allocate a memory region, fresh addresses and values are generated.
Note: the actual behavior of C programs could be modeled by considering addresses as
pairs of (numeric address, number of allocations in the program). As this makes the
formalization heavier, we have chosen to simplify it by fresh allocations.

Table 3.1 summarizes the notations for the concrete trace semantics of this language.

3.4 Concrete Relational Semantics

Given a command c ∈ Cmd , we define its relational semantics JcKR ∈ P(M×M).
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Program Syntax
Name Set Element Evaluation
Field F f,∅
Function Fun f
L-value Lval l LJl K ∈M⇀ A
Expression Expr e EJeK ∈M⇀ V
Command Cmd c JcK∗T ∈ P(Σ∗)

Memory State
Name Set Element Property
Value V v
Address A a A ⊆ V
Variable X x
Heap H h H = A⇀ V
Environment E e E = X→ A
Memory M m M = E×H

Transition System S = (S,−→)
Name Set Element Property
Program Configuration Cmd ×M 〈c | m〉
Stack Σ σ, ε S = Σ = (Cmd ×M) stack

Table 3.1: Notations for the concrete trace semantics.

Definition 3.2 (Relational semantics of commands). The relational semantics
of commands JcKR ∈ P(M×M) is defined by:

JcKR = {(min,mout) | 〈〈c | min〉 :: ε, . . . , 〈skip | mout〉 :: ε〉 ∈ JcK∗T }

We observe that JcKR describes the set of pairs made of an input memory state min
and an output memory state mout, where mout is obtained by executing the sequences of
commands c from min. Thus, it can describe a relation between the input and output
memory states of a function f , if c is its command body.

Note that this relational semantics only returns pairs of memory states, without
associating them with a command. Indeed, in this case it is not necessary to explicit it,
as the command associated to the input memory state is c and the command associated
to the output memory state is just skip.

In this Thesis, we define an analysis to compute an over-approximation of JcKR.
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Chapter 4

Abstraction

In this chapter, we design a relational shape abstract domain that
over-approximates input-output relations over memory states. This
abstract domain relies on new relational connectives, that extends
separation logic. Thus, we define first an abstraction of memory
heaps based on separation logic that supports inductive data struc-
tures. Then, we introduce our new relational connectives and for-
malize an abstract domain that describes input-output heaps rela-
tions and that is built upon the heaps abstraction. We finally design
an abstraction for complete memory relations.

4.1 Abstract Heaps
Before defining abstraction relations over memory states, we need to define an abstraction
of memory states, that will be at the base of our abstract relations. In this section, we
introduce abstract heaps directly derived from [CRN07, CR08, CR13], that represent a
set of memory heaps and are based on separation logic [Rey02]. First, we consider finite
abstract heaps, without unbounded data structures, that enumerate memory cells. Then,
we extend abstract heaps to support such data structures.

4.1.1 Exact Abstract Heaps based on Separation Logic
We first consider an exact heap abstraction without unbounded dynamic data structures,
that is, an abstraction of a finite number of memory cells. We assume a countable set
V] = {α, β, δ, . . .} of symbolic values that abstract concrete addresses and values. An
abstract heap h] ∈ H] is a separating conjunction of region predicates that abstract
separated memory regions [Rey02] (as mentioned in Chapter 2, separating conjunction
is denoted by ∗S). Thus we write h]1 ∗S h]2 for the abstract heap that can be split into
the two independent sub-abstract heaps h]1 and h]2. An individual cell is abstracted by
an exact points-to predicate α · f 7→ β where the memory cell at the address abstracted
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by α with the offset f contains the value abstracted by β. We note α 7→ β as syntactic
sugar of α ·∅ 7→ β (∅ is the null offset). We also use emp to describe an empty memory
region.

Definition 4.1 (Syntax of exact abstract heaps). Exact abstract heaps are
defined by the following syntax:

h] (∈ H]) ::= emp
| α · f 7→ β (α, β ∈ V]; f ∈ F)
| h]1 ∗S h]2 (h]1, h]2 ∈ H])

We now define the meaning of exact abstract heaps using a concretization func-
tion [CC77], that associates abstract elements to the set of concrete elements that they
describe. To concretize an abstract heap, we first need a valuation ν ∈ V] → V, a
function that defines how symbolic values are bound to concrete values and addresses.
We recall that h1 � h2 denotes the concrete heap obtained by merging h1 and h2 when
dom(h1) ∩ dom(h2) = ∅ (see Section 3.2).

Definition 4.2 (Concretization of exact abstract heaps). The concretization
function γH] ∈ H] → P(H × (V] → V)) maps an abstract heap into a set of pairs
made of a concrete heap and a valuation. It is defined by induction on the structure
of abstract heaps as follows:

γH](emp) = {([], ν) | ν ∈ V] → V}
γH](α · f 7→ β) = {([ν(α) + f 7→ ν(β)], ν) | ν ∈ V] → V}
γH](h]1 ∗S h]2) = {(h1 � h2, ν) | (h1, ν) ∈ γH](h]1) ∧ (h2, ν) ∈ γH](h]2)}

Example 4.1 (Exact abstract heap). The following exact abstract heap

(α0 7→ α1) ∗S (α1 · data 7→ α2) ∗S (α1 · next 7→ α3) ∗S (β0 7→ β1)

describes a possible input heap for the add_last function of Figure 2.5 (Page 26),
where the address of l is α0 and l points to a list of one element, and the address of
v is β0.

4.1.2 Abstract Heaps with Summarization
This exact abstraction of memory cells does not allow us to describe all the states of
unbounded dynamic data structures, such as singly linked list or trees. Thus, we must
extend abstract heaps with inductive predicates to summarize memory regions of un-
bounded size [DOY06, CR08]. For instance, the inductive predicate list(α) describes a
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singly linked list of any length starting at the address α, (where the list is empty, α is
the null pointer). The set I] describes the set of all inductive predicates (for example we
have list(α) ∈ I]), and we note ind for any inductive predicate.

Definition 4.3 (Extended syntax of abstract heaps). We extend the syntax
of abstract heaps to support inductive predicates.

h] (∈ H]) ::= emp
| α · f 7→ β (α, β ∈ V]; f ∈ F)
| h]1 ∗S h]2 (h]1, h]2 ∈ H])
| ind (ind ∈ I])

Now, abstract heaps are parameterized by the set of inductive predicates I].
More generally, an inductive predicate ind ∈ I] is defined by a finite set of rules.

Each rule is a pair made of an abstract heap h] and a pure formula p] ∈ P] that describes
numerical constraints over symbolic values.

Definition 4.4 (Syntax of pure formulas). We give the syntax for pure formulas
over symbolic values:

p] (∈ P]) ::= α (α ∈ V])
| v (v ∈ V)
| p]1 ⊕ p]2 (p]1, p]2 ∈ P])
| true
| false

⊕ ::= +| − | = | ...

The ⊕ operators of pure formulas are exactly the same as Figure 3.1 (Page 34).

Example 4.2 (List inductive predicate). The list predicate list(α) describes
the structure of a singly linked list and is defined by induction as follows:

list(α) ::= {(emp, α = 0),
(α · data 7→ δ ∗S α · next 7→ β ∗S list(β), α 6= 0)}

The first rule of that definition corresponds to the empty list, so that α is the null
pointer. The second rule describes the case where the list contains one element and
points to another list (α cannot be the null pointer).
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Example 4.3 (Binary tree inductive predicate). We can define similarly the
tree predicate to describe the structure of a binary tree. We also can enrich the
numerical constraint of the second rule to specify that all the elements of the tree are
strictly positive:

tree(α) ::= {(emp, α = 0),
(α · e 7→ δ ∗S α · l 7→ βl ∗S α · r 7→ βr

∗S tree(βl) ∗S tree(βr), α 6= 0 ∧ δ > 0)}

Generally, inductive predicates such as list(α) or tree(α) summarize a memory region
from a specific address. However, we often need to describe properties on different parts
of a whole summarized memory region and inductive predicates are not precise enough
to do that. For instance, in Figure 2.1 (Page 16), we need to express that the pointer t
points to the last node of the list, that itself needs to be summarized. Such a property
requires a segment predicate [CR08] to be expressed. Segment predicates summarize a
memory region between two addresses and allow us to split a whole summarized region
into many contiguous summarized sub-regions. For the sake of simplicity, we consider
segment predicates as inductive predicates with an additional parameter that specifies
the ending address of the summarized region. For example, the list segment predicate
listseg(α, β) is defined by induction as follows:

listseg(α, β) ::= {(emp, α = β),
(α · data 7→ δ ∗S α · next 7→ γ ∗S listseg(γ, β), α 6= 0)}

Thus, the listseg predicate denotes a list of any length starting at α and ending at β
(when the list is empty we have α = β).

The concretization of inductive predicates is based on a function ∆ ∈ I] → Pfin(H] ×
P]) that maps an inductive predicate into the finite set of rules of its definition.
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Definition 4.5 (Concretization of inductive predicates). The concretization
function γP] ∈ P] → P(V× (V] → V)) maps a pure formula into a set of pairs made
of a concrete value and a valuation whereas γΣ ∈ H] × P] → P(H] × (V] → V))
concretizes pairs of abstract heap and pure formula. The concretization of inductive
predicates extends the concretization of abstract heaps γH]:

γP](α) = {(ν(α), ν) | ν ∈ V] → V}
γP](v) = {(v, ν) | ν ∈ V] → V}

γP](p]1 ⊕ p]2) = {(v1 ⊕ v2, ν)|(v1, ν) ∈ γP](p]1) ∧ (v2, ν) ∈ γP](p]2)}
γP](true) = {(v, ν) | v 6= 0 ∧ ν ∈ V] → V}
γP](false) = {(0, ν) | ν ∈ V] → V}

γΣ(h], p]) = {(h, ν) | (h, ν) ∈ γH](h]) ∧ ∃v, (v, ν) ∈ γP](p]) ∧ v 6= 0}

γH](ind) = ⋃
(h],p])∈∆(ind)

γΣ(h], p])

Remark 2 (Minimality). The result of γH] is the smallest set satisfying the constraints
from the previous definition.

Remark 3 (Value in the concretization of pure formulas). Let p] ∈ P] a pure formula and
(v, ν) ∈ γP](p]). If v = 0, that means that p] is not a satisfiable pure formula (0 means
false in the concrete semantic). As an example, consider that p] = (α = 1) ∧ (α = 2).
It is obvious that p] cannot be satisfied, its concretization is thus {(0, ν) | ν ∈ V] → V}.
Therefore, we can express that a pure formula p] is satisfiable using the constraint v 6= 0
if (v, ν) ∈ γP](p]), like we did in the definition of γΣ in Definition 4.5.

Example 4.4 (Abstract heap with a summarized region). The following
abstract heap

α0 7→ α1 ∗S α4 7→ α3
∗S listseg(α1, α2)
∗S α2 · next 7→ α3 ∗S α2 · data 7→ δ

∗S list(α3)
describes all the possible output heaps for function concat of Figure 2.1 (Page 16)
for the case where the first list is non-empty, where the addresses of l1 and l2 are
respectively α0 and α4.

4.2 Abstract Heap Relations
We now define abstract heap relations, that describes input-output relations over mem-
ory heaps. They consist of new relational connectives, that rely on abstract heaps (i.e.
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separation logic formulas).

4.2.1 Relational Connectives
As explained in Chapter 2, two abstract heaps at different program points cannot describe
precise enough relations (they describe any relation made of a pair of states that satisfy
the state constraints). Thus, we propose abstract heap relations that describe a set of
pairs made of an input heap hi and an output heap ho. Abstract heap relations are defined
by new logical connectives over abstract heaps as follows:

• the identity relation Id(h]) describes pairs of heaps that are equal and both ab-
stracted by h].

• the transform-into relation [h]i 99K h]o] describes pairs corresponding to the trans-
formation of a heap abstracted by h]i into a heap abstracted by h]o.

• the relational separating conjunction r]1 ∗R r]2 of two abstract heap relations r]1 and r]2
denotes a relation that can be described by combining independently the relations
described by r]1 and r]2 on disjoint memory regions.

Definition 4.6 (Syntax of abstract heap relations). Abstract heap relations
are defined by the following syntax:

r] (∈ R]) ::= Id(h]) (h] ∈ H])
| [h]i 99K h]o] (h]i , h]o ∈ H])
| r]1 ∗R r]2 (r]1, r]2 ∈ R])

The concretization of abstract heap relations also requires using valuations as it also
needs to define the concrete values that symbolic values denote.

Definition 4.7 (Concretization of abstract heap relations). The concretiza-
tion function γR] ∈ R] → P(H×H× (V] → V)) maps an abstract heap relation into
a set of triples made of an input heap, an output heap and a valuation. It is defined
by induction on the structure of r]:

γR](Id(h])) = {(h, h, ν) | (h, ν) ∈ γH](h])}
γR]([h]i 99K h]o]) = {(hi, ho, ν) | (hi, ν) ∈ γH](h]i ) ∧ (ho, ν) ∈ γH](h]o)}

γR](r]1 ∗R r]2) = {(hi,1 � hi,2, ho,1 � ho,2, ν) |
(hi,1, ho,1, ν) ∈ γR](r]1) ∧ dom(hi,1) ∩ dom(ho,2) = ∅

∧ (hi,2, ho,2, ν) ∈ γR](r]2) ∧ dom(hi,2) ∩ dom(ho,1) = ∅}

In the case of identity relations, we observe that the two concrete heaps are physically
and totally identical: the same memory cells containing the same data. In the case of
transform-into relations, we have no information about how the input concrete heap has
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been transformed into the output concrete heap. They may share common memory cells,
or not, or they may even be identical. In the case of the relational separating conjunction,
we observe two important points. The first point is that the concrete input (respectively
output) concrete heap of the first abstract relation is disjoint from the input (respectively
output) concrete heap of the second abstract relation. The second point is that the input
concrete heap of the first abstract relation is also disjoint from the output concrete heap
of the second one (and vice versa). These two points make abstract heap relations totally
independent: an abstract heap relation describes a local transformation. The figure below
gives a graphical representation of the concretization of r]1 ∗R r]2.

hi,1 hi,2

ho,1 ho,2

input

output

disjoint

disjoint

disjointdis
joi
nt

γR](r]1) 3 ∈ γR](r]2)

We remark that ∗R is commutative and associative. We can also define the neutral
element empR for ∗R that is syntactic sugar for both Id(emp) and [emp 99K emp]: we
have γR](Id(emp)) = γR]([emp 99K emp]).

Example 4.5. The following abstract heap relation

Id(α0 7→ α1 ∗S α4 7→ α3)
∗R Id(listseg(α1, α2))
∗R [(α2 · next 7→ α5) 99K (α2 · next 7→ α3)] ∗R Id(α2 · data 7→ δ)
∗R Id(list(α3))

describes the inferred abstract heap relation for function concat of Figure 2.5 (Page
16) for the case where the first list is non-empty, where the addresses of l1 and l2
are respectively α0 and α3.

4.2.2 Properties

We observe that abstract heap relations satisfy the following properties:
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Theorem 4.1 (Equivalence and weakening properties of abstract heap re-
lations). Let h], h]0, h]1, h]i,0, h]i,1, h]o,0, h]o,1 be abstract heaps. Then, we have the fol-
lowing properties:

1. γR](Id(h]0 ∗S h]1)) = γR](Id(h]0) ∗R Id(h]1))
2. γR](Id(h])) ⊆ γR]([h] 99K h]]) (the opposite inclusion may not hold, as observed

in Example 4.6);
3. γR]([h]i,0 99K h]o,0] ∗R [h]i,1 99K h]o,1]) ⊆ γR]([(h]i,0 ∗S h]i,1) 99K (h]o,0 ∗S h]o,1)]) (the

opposite inclusion may not hold, as observed in Example 4.7).

Property 1 allows us to split and merge identity relations. Property 2 allows us to
forget the identity relation on a heap, weakening it into a transform-into relation whereas
Property 3 allows us to forget that two relations are independent by merging respectively
their inputs and output states. The relational static analysis described in Chapter 5 is
mainly based on these properties.

Example 4.6 (Expressiveness 1). Let r]1 = Id(list(α)) and r]2 = [list(α) 99K
list(α)]. We observe that r]1 describes the identity relation applied to a well-formed
linked list starting from the address α, whereas r]2 describes any transformation that
inputs such a list and outputs such a list, but may modify its content, add or remove
elements, or may modify the order of list elements (except for the first one which
remains at address α). This means that γR](r]1) ⊂ γR](r]2).

Example 4.7 (Expressiveness 2). Let r]1 = [list(α) 99K emp] ∗R [emp 99K
list(β)] and r]2 = [list(α) 99K list(β)]. The abstract heap relation r]1 describes two
distinct transformations: the first one expresses the deallocation of a list starting
from the address α and the second one expresses the allocation of a list starting from
the address β. The abstract heap relation r]2 describes simply the transformation of
a list starting from α into a list starting from β. In r]1, we know that the two lists
are physically different but in r]2, we have no information about the output list is
obtained from the input list. This means that the two lists may be either physically
different, may share some memory cells, or may even be totally equal. Actually, we
have γR](r]1) ⊂ γR](r]2).

Proof of Theorem 4.1. We are now going to prove Theorem 4.1. For each property, we
just reduce both concretizations using their definition to show that the equality (for
Property 1) or the inclusion (for Property 2 and Property 3) holds:
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1. Proof of γR](Id(h]0 ∗S h]1)) = γR](Id(h]0) ∗R Id(h]1)):

γR](Id(h]0 ∗S h]1))
= {(h, h, ν) | (h, ν) ∈ γH](h]0 ∗S h]1)}
= {(h0 � h1, h0 � h1, ν) | (h0, ν) ∈ γH](h]0) ∧ (h1, ν) ∈ γH](h]1)}

γR](Id(h]0) ∗R Id(h]1))
= {(h0 � h1, h′0 � h′1, ν) |

(h0, h′0, ν) ∈ γR](Id(h]0)) ∧ (h1, h′1, ν) ∈ γR](Id(h]1))∧
dom(h0) ∩ dom(h′1) = ∅ ∧ dom(h1) ∩ dom(h′0) = ∅}

= {(h0 � h1, h0 � h1, ν) | (h0, ν) ∈ γH](h]0) ∧ (h1, ν) ∈ γH](h]1)}}

So γR](Id(h]0 ∗S h]1)) = γR](Id(h]0) ∗R Id(h]1))

2. Proof of γR](Id(h])) ⊆ γR]([h] 99K h]]):

γR](Id(h]))
= {(h, h, ν) | (h, ν) ∈ γH](h])}

γR]([h] 99K h]])
= {(h0, h1, ν) | (h0, ν) ∈ γH](h]) ∧ (h1, ν) ∈ γH](h])}

We clearly have: γR](Id(h])) ⊆ γR]([h] 99K h]])

3. Proof of
γR]([h]i,0 99K h]o,0] ∗R [h]i,1 99K h]o,1]) ⊆ γR]([(h]i,0 ∗S h]i,1) 99K (h]o,0 ∗S h]o,1)]):
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γR]([h]i,0 99K h]o,0] ∗R [h]i,1 99K h]o,1])
= {(hi,0 � hi,1, ho,0 � ho,1, ν) |

(hi,0, ho,0, ν) ∈ γR]([h]i,0 99K h]o,0])∧
(hi,1, ho,1, ν) ∈ γR]([h]i,1 99K h]o,1])∧
dom(hi,0) ∩ dom(ho,1) = ∅ ∧ dom(hi,1) ∩ dom(ho,0) = ∅}

= {(hi,0 � hi,1, ho,0 � ho,1, ν) |
(hi,0, ν) ∈ γH](h]i,0) ∧ (ho,0, ν) ∈ γH](h]o,0)∧
(hi,1, ν) ∈ γH](h]i,1) ∧ (ho,1, ν) ∈ γH](h]o,1)∧
dom(hi,0) ∩ dom(ho,1) = ∅ ∧ dom(hi,1) ∩ dom(ho,0) = ∅}

γR]([(h]i,0 ∗S h]i,1) 99K (h]o,0 ∗S h]o,1)])
= {(hi, ho, ν) |

(hi, ν) ∈ γH](h]i,0 ∗S h]i,1) ∧ (ho, ν) ∈ γH](h]o,0 ∗S h]o,1)}
= {(hi,0 � hi,1, ho,0 � ho,1, ν) |

(hi,0, ν) ∈ γH](h]i,0) ∧ (ho,0, ν) ∈ γH](h]o,0)∧
(hi,1, ν) ∈ γH](h]i,1) ∧ (ho,1, ν) ∈ γH](h]o,1)}

So finally:

γR]([h]i,0 99K h]o,0] ∗R [h]i,1 99K h]o,1]) ⊆ γR]([h]i,0 ∗S h]i,1 99K h]o,0 ∗S h]o,1])

4.3 Abstract Memory Relations and Disjunctive Ab-
stract Domain

Until now, we have defined abstractions for relations between two heaps. In this section,
we give an abstraction for relations between two memory states. We also define an
abstraction for a disjunction of memory relations.

4.3.1 Numerical Abstract Domains
In our heap abstraction, we simply name addresses and values with symbolic values. We
have no information about their concrete values. However, it is crucial in our analysis to
remember whether a pointer is null or not. Moreover, it is also necessary to be able to
capture numerical invariants to increase the precision of the analysis. Such information
can be captured with numerical abstract domains such as intervals [CC77] or convex
polyhedra [CH78]. Thus, we enrich our abstraction with a numerical abstract domain
N]. We do not fix a particular numerical abstract domain, as it does not change our
analysis. It just requires to implement all the functions for numerical abstract domains
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given all along Chapter 5 and to satisfy their soundness conditions.
A numerical abstract value n] ∈ N] abstracts the numerical value of the symbolic

values that appear in an abstract heap relation.
The concretization of abstract numerical domains γN] gives a concrete value to each

symbolic value. Thus, it just binds a numerical abstract value into a set of valuations:

γN] ∈ N] → P(V] → V)

Example 4.8 (A numerical abstract domains). We this example, we provide a
simple numerical abstract domain, that can express if the concrete value of a symbolic
value is null, non-null or unknown. This numerical abstract domain can be designed
with the following syntax:

n] ∈ N] ::= α = 0 (α ∈ V])
| α 6= 0 (α ∈ V])
| α = > (α ∈ V])
| α = ⊥ (α ∈ V])
| n]1 ∧ n]2 (n]1, n]2 ∈ N])

We observe that this numerical abstract domain is simply a conjunction of constraints
over symbolic values. The concrete meaning of such a numerical abstract domain is
provided by the following concretization function γN] ∈ N] → P(V] → V):

γN](α = 0) = {ν ∈ V] → V | ν(α) = 0}
γN](α 6= 0) = {ν ∈ V] → V | ν(α) 6= 0}
γN](α = >) = V] → V
γN](α = ⊥) = {}
γN](n]1 ∧ n]2) = {ν | ν ∈ γN](n]1) ∧ ν ∈ γN](n]2)}

4.3.2 Abstract Memory Relations

To have a complete abstraction of memory relations, we have to abstract environments.
An abstract environment e] ∈ E] is simply a function that maps program variables to
symbolic values that correspond to their concrete addresses (thus E] = X→ V]).

Finally, an abstract memory relation m]
R ∈M]

R = E]×R]×N] is a triple made of an
abstract environment e], that binds program variables into their symbolic values in the
abstract heap relation r], and a numerical abstract value n] that abstracts the value of
symbolic values of r].
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Definition 4.8 (Concretization of abstract memory relations). The con-
cretization of abstract memory relations γM]

R
∈ M]

R → P(M×M) maps an abstract
memory relation m]

R = (e], r], n]) into the set of the pairs made of its concrete input
and output memories.

γM]
R

(e], r], n]) = {((ν ◦ e], hi), (ν ◦ e], ho)) |
(hi, ho, ν) ∈ γR](r]) ∧ ν ∈ γN](n])}

We observe that the concrete environment is always the same in the input and in the
output memory as the address at which a variable is stored never changes between two
program points.

Example 4.9 (Abstract memory relation). Let m]
R = (e], r], n]) be an abstract

memory relation. if e](l1) = α0 and e](l2) = α4 and r] is:

Id(α0 7→ α1 ∗S α4 7→ α3)
∗R Id(listseg(α1, α2))
∗R [(α2 · next 7→ α5) 99K (α2 · next 7→ α3)] ∗R Id(α2 · data 7→ δ)
∗R Id(list(α3))

describes the inferred abstract heap relation for function concat of Figure 2.5 (Page
16) for the case where the first list is non-empty. The abstract numerical value n]
should express that α2 6= 0 and that α5 = 0. For instance, the numerical abstract
domain presented in Example 4.8 can quite express this constraint.

4.3.3 Abstract Memory States
Although our analysis mainly manipulates abstract memory relations, it requires to ma-
nipulate abstract memory states, specifically in Chapter 8. An abstract memory state
m] ∈ M] abstracts a set of concrete memory states and consists of a triple made of an
abstract environement, an abstract heap and an abstract numerical value.

Definition 4.9 (Concretization of abstract memory states). The concretiza-
tion of abstract memory states γM ∈ M] → P(M) maps an abstract memory state
m] = (e], h], n]) into the set of its concrete memory states.

γM(e], h], n]) = {(ν ◦ e], h) | (h, ν) ∈ γR](h]) ∧ ν ∈ γN](n])}

4.3.4 Abstract Disjunctions
The analysis algorithm may require to unfold inductive predicates (see Section 5.3).
Unfolding such predicates may generate a finite set of abstract memory relations. Con-
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sequently, the analysis needs an abstraction layer that reasons over it. We thus let
R
∨ = Pfin(M]

R) be the set of disjunctions of abstract memory relations. A disjunction
of abstract memory relations r∨ ∈ R∨ simply represents a finite set of abstract memory
relations.

Definition 4.10 (Concretization of the disjunction of abstract memory re-
lations). The concretization function γR∨ ∈ R∨ → P(M ×M) maps a disjunction
of abstract memory relations r∨ into the set of the pairs made of its concrete input
and output memories.

γR∨(r∨) =
⋃

m]
R∈r∨

γM]
R

(m]
R)

Similarly, we defineM∨ = Pfin(M]), the set of disjunctions of abstract memory states.
A disjunction of abstract memory states m∨ ∈ M

∨ simply represents a finite set of
abstract memory relations.

Definition 4.11 (Concretization of the disjunction of abstract memory
states). The concretization function γM∨ ∈ M∨ → P(M) maps a disjunction of
abstract memory states m∨ into the sets of its concrete memory states.

γM∨(m∨) =
⋃

m]∈m∨
γM(m])

Example 4.10 (Disjunction of abstract memory relations). In this example,
we provide the disjunction of abstract memory relations inferred for function concat
of Figure 2.5 (Page 16). It is made of two disjuncts, whose the first one is already
provided in Example 4.9. The second disjunct m]

R = (e], r], n]) corresponds to the
case where l1 is empty, where e](l1) = α0, e](l2) = α4 and r] is:

Id(α0 7→ α1 ∗S α4 7→ α3) ∗R Id(list(α3))

The abstract numerical value n] should express that α1 = 0.

4.4 Graphical Representation
Table 4.1 summarizes all the notations for the abstract domains defined in this chapter.
In this section, we give the graphical representations of abstract heaps, abstract heap
relations and abstract memory states and relations.
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Name Set Element Abstracts
Symbolic Values V] α, β, δ, . . . V
Pure Formulas P] p] P(V× (V] → V))
Inductive Predicates I] list(α), . . . P(H× (V] → V))
Abstract Heaps H] h] P(H× (V] → V))
Abstract Heap Relations R] r] P(H×H× (V] → V))
Numerical Abstract Domains N] n] P(V] → V)
Abstract Environments E] e] P(E)
Abstract Memory States M] m] P(M)
Abstract Memory Relations M]

R m]
R P(M×M)

Disjunction of Abs. Memory States M
∨

m
∨ P(M)

Disjunction of Abs. Memory Relations R
∨

r
∨ P(M×M)

Table 4.1: Notations for the abstract domains and meta-variables used to denote an
element of the corresponding domain.

Abstract heaps. Abstract heaps are graphically represented by shape graphs. A sym-
bolic value corresponds to a node. A points-to predicate α · f 7→ β is represented by an
edge labeled by the field f, from the node α to the node β.

α1α α1β
f

An inductive predicate (such as list(α)) is represented by a thick edge labeled by the
name of the predicate, without destination node.

α1α
list

A segment predicate is represented similarly to inductive predicates, except that the
destination node is represented. For instance for the segment list(α, β):

α1α α1β
listseg

Example 4.11 (Graphical representation of an abstract heap). The follow-
ing abstract heap

α · next 7→ β ∗S α · data 7→ δ ∗S list(β)
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is graphically represented by:

α1α α1β

α1δ

next list

data

Abstract heap relations. An abstract heap relation r] is graphically represented by a
box. There are two kinds of boxes, one for identity relations and the other for transform-
into relations. The graphical representation of two independent abstract heap relations
r]1 ∗R r]2 is simply two boxes: a box for r]1 and a box for r]2. The box corresponding to
Id(h]) contains the shape graph corresponding to h]. Its left top corner is labeled by the
word ’Id’. For instance, the box corresponding to Id(list(α)) is:

Id

α1α
list

The box corresponding to [h]i 99K h]o] is divided into two parts: the first one (on the
top) contains the shape graph corresponding to h]i and the second one (on the bottom)
the shape graph corresponding to h]o. The box contains a vertical dashed arrow (that
looks like ’99K’) to distinguish these two parts. For instance, the box that corresponds
to [list(α) 99K list(β)] is:

99K

α1α
list

α1β
list

Example 4.12 (Graphical representation of an abstract heap relation).
The following abstract heap relation

Id(α · data 7→ δ) ∗R [α · next 7→ β 99K α · next 7→ γ] ∗R [list(β) 99K list(γ)]
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is graphically represented by:

Id

α1α α1δ
data

99K

α1α α1β
next

α1β α1γ
next

99K
α1β

list

α1γ
list

Abstract memory states and relations. The graphical representation of abstract
memory states and relations is similar to the one of abstract heaps and abstract heap
relations, except that we make the program variables of the abstract environment explicit.
For all variables x ∈ X, if e](x) = α, we write ’&x’ near the node corresponding to α. For
instance, for the abstract heap α 7→ β ∗S list(β), we have:

α1α

α1β
list

&x

To simplify our figures, we sometimes do not explicit graphically the node corresponding
to the address of a variable x, we only write ’x’ near the node pointed by x. For the same
abstract heap above, we have:

α1β
list

x

4.5 Related Works

4.5.1 State Shape Abstractions with Separation
Our separation logic based shape abstraction is directly derived from [CRN07, CR08,
CR13]. It is very similar to other shape abstractions based on separation logic, such as
[DOY06, MNCL06] that use a list segment abstraction, whereas ours is parametrized by
inductive definitions. Another shape abstraction based on separation logic is [BCC+07],
that proposes generic high-order inductive predicates. This kind of inductive predicates
allows the abstraction of different kinds of linked list, such as cyclic doubly-linked list
of acyclic singly-linked lists, or singly-linked lists of cyclic doubly linked lists with back-
pointers to head nodes. All these states abstractions describe memory cells. However,
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there are several works that use another approach like [HR05, Kas06, ABB06, BNR08],
that partition the heap using region inference.

Another nature of separated memories has been proposed in [HHR+11, HHL+15],
that makes use of tree or forest of automata, where each automaton describes a separated
memory region.

4.5.2 Extension of Separation Logic
To our knowledge, our extension of separation logic is the first that expresses input-output
heap relations through a single formula (and not a pair of formulas), while supporting
inductive predicates. However characteristic formulas [Cha11], used in the CFML tool,
can express with a single formula (with specifications in separation logic) a sound and
complete description of whole semantics of a program (not only input-output relations).
Such formulas can express very strong properties, but aim at being exploited in an in-
teractive proof assistant. Thus, the formal proof of the program is not automatic, while
our work aims at inferring input-output relations automatically. Moreover, characteristic
formulas are not really an extension of separation logic, but are rather an alternative to
Hoare triples that integrates separation logic (notably the frame rule), where separation
logic formulas describe states.

Several works actually extended separation logic. For instance, [Cha16] extended sep-
aration logic with high-order representation predicates, that are themselves an extension
of the high-order separation logic [BBTS05]. Such high-order predicates aim at repre-
senting polymorphic data structures. This extension of separation logic describes states
properties, but not input-output relations (they notably use the this paper Hoare triples
to express functional specifications). Also, Charguéraud et al. [CP17] introduced the
temporary read-only permission through a new connective for separation logic. This con-
nective offers read-only access to any heap fragment described with a separation logic
formula. Like our relational connectives, this read-only connective can ensure that some
part of a heap is left unchanged, as it can only be read. The main difference of these
extensions and our connectives is that they modify directly the original separation logic;
whereas in our extension, the relational connectives encompass the terms of separation
logic, without modifying them. Moreover, we care for relations, and not just states (con-
cretization). The fact that we encompass separation logic is a consequence of that, as we
sometimes also talk about states with regular separation logic.

An important extension of separation logic is the concurrent separation logic [O’H07],
which allows independent reasoning about threads that access separate storage. The new
connective ‖ allows the evaluation of two terms of separation logic in parallel.

Fu et al. [FLF+10] introduced extension of separation logic to specify historical exe-
cution traces of heaps in the context of concurrent programs. They also have a new sep-
arating conjunction connective but for disjoint traces, whereas our relational separating
conjunction expresses independent transformations. Desynchronized separation [CCR15]
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also introduces a notion of overlaid state in separation logic, but does not support induc-
tive predicates as our abstraction does. Instead, it allows the reasoning on abstractions
of JavaScript open objects seen as dictionaries.

4.5.3 Other Kinds of Relational Properties
Our relational abstraction describes input-output states relations. However, many other
works describe other kinds of relations. For instance, [FFJ12] and [BDES12] describe
relations between the structures and their content, and [CR08] describes relations over
disjoint regions in the same memory state. As our input-output states abstract relations
are an extension of [CR08], they directly take benefits of its expressiveness. Also, [Rug04]
describes the balance invariant in AVL trees, [CR07] the previous-next relationship in
doubly-linked lists, and [MBCC07] maintains a relation between the shape of a linked
list and its length. Related works that present input-output relations are discussed in
Section 5.11.



59

Chapter 5

Relational Intra-procedural Shape
Analysis

In this chapter, we define the abstract relational semantics, that
is an over-approximation of the concrete relational semantics of
our programming language. It is computed by a forward abstract
interpretation that starts from the identity relation of a given pre-
condition, and infers abstract memory relations between the input
and output states of the program. This analysis does not handle
function calls and function returns.

5.1 Introduction
In this chapter, we propose a static analysis to compute the abstract memory relations
that we defined in Section 4.3. It proceeds by forward abstract interpretation [CC77],
starting from the abstract heap relation Id(h]) where h] is a pre-condition supplied by
the user. Indeed, before executing a program, any transformation has been performed
on its initial state, so the initial relation of the analysis is the identity relation.

More generally, the analysis of a command c ∈ Cmd is a function JcK]R that over-
approximates the concrete relational semantics JcKR defined in Section 3.4. It inputs an
abstract disjunction describing a previous transformation T done on the input before
running c and returns another abstract disjunction describing that transformation T
followed by the execution of c. Thus, JcK]R should meet the following soundness condition:

∀r∨ ∈ R∨,∀(m0,m1) ∈ γR∨(r∨),∀m2 ∈M,

(m1,m2) ∈ JcKR =⇒ (m0,m2) ∈ γR∨(JcK]R(r∨))

The abstract relational semantics JcK]R is defined by induction over the syntax of com-
mands, similarly to JcKR. To design it, it thus requires to define abstract evaluations of
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e](x) = α

evalL(x, e], r]) = (α,∅)

evalL(l , e], r]) = (α, f)
evalL(l · g, e], r]) = (α, f + g)

evalE(e, e], r]) = (α, α)
evalL(*e, e], r]) = (α,∅)

evalL(l , e], r]) = (α, f) r] = r]0 ∗R Id(h] ∗S α · f 7→ β)
evalE(l , e], r]) = (β, β)

evalL(l , e], r]) = (α, f) r] = r]0 ∗R [h]i 99K (h]o ∗S α · f 7→ β)]
evalE(l , e], r]) = (β, β)

evalL(l , e], r]) = (α,∅)
evalE(&l , e], r]) = (α, α)

α fresh
evalE(v, e], r]) = (α, v)

evalE(e1, e], r]) = (α1, p]1) evalE(e2, e], r]) = (α2, p]2) α3 fresh
evalE(e1 ⊕ e2, e], r]) = (α3, p]1 ⊕ p]2)

Figure 5.1: Abstract evaluation of locations evalL ∈ Lval × E] × R] → V] × F and
expressions evalE ∈ Expr × E] × R] → V] × P]. We recall that ∅ denotes the null offset.

l-values and expressions (Section 5.2), abstract assignments (Section 5.4), abstract allo-
cations and deallocations (Section 5.5), and abstract condition tests (Section 5.6). This
abstract relational semantics also defines an unfolding operator over inductive predicates
to materialize memory cells (Section 5.3), and standard lattice operations to handle deal
with control flow joins and loops (Section 5.7 and Section 5.8).

Remark 4 (Proofs of the soundness theorems). In this Chapter, but also in the next
Chapters, we do not provide the proofs of to the soundness theorems. These theorems
express the properties that should be satisfied to ensure the soundness of our approach.
All these theorems can be proven using the concretization functions and the properties
(that are proven) of Chapter 4.
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5.2 Abstract Evaluation of L-values and Expressions
In this section, we define how l-values and expressions are evaluated in our static analysis
from abstract memory relations. We first consider only the abstract heap relations that
do not contain inductive predicates.

We start by defining the abstract evaluation of l-values evalL ∈ Lval ×E]×R] → V]×F
and expressions evalE ∈ Expr×E]×R] → V]×P] from an abstract environment e] and an
abstract heap relation r]. They follow the same principles as LJlocK and EJexpK defined
in Section 3.3 and their definition rules are given in Figure 5.1.

The function evalL evaluates a l-value into a pair of an abstract value and an offset
that corresponds to the address of the l-value in r] in the post state.

The abstract evaluation evalE should return the symbolic value α ∈ V] in r] corre-
sponding to the result of the concrete evaluation of an expression exp likewise. However,
if exp is of the form exp1 ⊕ exp2 or v, then there is no symbolic value α in r] that can
result from the abstract evaluation of exp. To deal with this, the function evalE returns
a pair of a symbolic value α ∈ V] and a pure formula p] ∈ P]. The pure formula p] is
simply a translation of the expression, and α is a (potentially fresh) name for p]. The
concretization of this pair is such that if (v, ν) ∈ γP](p]), then ν(α) = v.

When the evaluation needs to read the content of a cell (when we apply evalE

on a l-value loc), it needs to look at the value stored in the cell. For instance, if
evalL(loc, e], r]) = (α, f), in the case where r] = Id(α · f 7→ β), it is obvious that the cell
at address α · f contains β. In the case where r] = [(α · f 7→ δ) 99K (α · f 7→ β)], we
remark that δ was the value in the cell at address α ·f in the heap at the beginning of the
analysis whereas β corresponds to its last value. Thus, evalE(loc, e], r]) returns (β, β).

Theorem 5.1 (Soundness of evalL and evalE). The functions evalL and evalE

are sound: Let e] ∈ E], r] ∈ R], (hi, ho, ν) ∈ γR](r]), exp ∈ Expr and loc ∈ Lval then:

evalL(l , e], r]) = (α, f)
⇒ LJl K(ν ◦ e], ho) = ν(α) + f

evalE(e, e], r]) = (α, p])
⇒ EJeK(ν ◦ e], ho) = ν(α) ∧ (ν(α), ν) ∈ γP](p])

Example 5.1 (Abstract evaluation of the expression ((*x)·f)+2). We assume
that e](x) = α0 and r] = Id(α0 7→ α1) ∗R [(α1 · f 7→ α2) 99K (α1 · f 7→ α3)]t] .

This expression is of the form e1 ⊕ e2, thus its abstract evaluation starts with
the abstract evaluation of e1 (here: (*x) · f). Consequently, the analysis evaluates
successively:

1. evalE((*x) · f, e], r])
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2. evalL((*x) · f, e], r])
3. evalL(*x, e], r])
4. evalE(x, e], r])
5. evalL(x, e], r]) = (α0,∅)

We remark that evalL(*x, e], r]) = (α1,∅) and that evalE((*x) · f, e], r]) = (β1, α3),
where β1 is a fresh symbolic value.

The evaluation of e2 is simply evalE(2, e], r]) = (β2, 2) where β2 is a fresh symbolic
value.

Finally, we obtain that evalE(((*x) · f) + 2, e], r]) = (β3, α3 + 2), where β3 is a
fresh symbolic value.

5.3 Unfolding
In the previous section, we considered only abstract heap relations without inductive
predicates. We now lift this restriction.

Unfolding Abstract Memory Relations

The abstract evaluation of a l-value may require to unfold inductive predicates. Indeed,
when an l-value is summarized by an inductive predicate, there is no points-to predicate
corresponding to this l-value and so, its abstract evaluation cannot be done. The analysis
first proceeds to the unfolding [CR08] of the inductive predicate in order to materialize
it into points-to predicates. This is performed by the function unfoldM]

R
. This step

generates a finite disjunction of abstract memory relations, where the inductive predicate
has been syntactically substituted by the rules of its definition, as defined in Section 4.1
(one disjunct per rule of the inductive predicate). Also, the pure formula of each rule
is evaluated and added in each disjunct of abstract memory relations. The irrelevant
disjuncts with the l-value are discarded (for example the case where the summarized cell
is null). The abstract evaluation of the l-value is then performed for each valid disjunct.
This process is known in shape analysis as materialization [SRW02, DOY06, CR08]. The
abstract memory relations unfolding operator unfoldM]

R
builds upon the abstract heap

relations unfolding operator unfoldR] .
The definition of unfoldR] itself builds upon the (provided) abstract heap unfolding

operator unfoldH] ∈ V] × H] → Pfin(H] × P]). It takes a symbolic value α which is
the origin of an inductive predicate and an abstract heap h] that contains this inductive
predicate. It returns the set of pairs {(h]u, p])} where each h]u refines h] following each
definition rule of the inductive predicate and p] is the pure formula of the corresponding
rule. For instance, unfoldH](α, list(α)) is {(emp, α = 0), (α · next 7→ αn ∗S α · data 7→
αd ∗S list(αn), α 6= 0)}. If there is no inductive predicate attached to α in h], we
let unfoldH](α, h]) = {(h], true)}. This operator is sound in the sense that γH](h]) is
included in ∪{γΣ(h]u, p]) | (h]u, p]) ∈ unfoldH](α, h])}.
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The unfolding operator over abstract heap relations unfoldR] ∈ V]×R] → Pfin(R]×
P]) uses unfoldH] to unfold the inductive predicate at abstract heap relations level.

Definition 5.1 (Abstract Heap Relation Unfolding). Let r] ∈ R], we define
the unfolding operator for abstract heap relations
unfoldR] ∈ V] × R] → Pfin(R] × P]):

• unfoldR](α, Id(h])) = {(Id(h]u), p]) | (h]u, p]) ∈ unfoldH](α, h])}

• unfoldR](α, [h]i 99K h]o]t]) = {([h]i,u 99K h]o,u]t] , p]i,u ∧ p]o,u) |
(h]i,u, p]i,u) ∈ unfoldH](α, h]i ) ∧ (h]o,u, p]o,u) ∈ unfoldH](α, h]o)}

• unfoldR](α, r]0 ∗R r]1) = {(r]0,u ∗R r]1, p]) | (r]0,u, p]) ∈ unfoldR](α, r]0)}, when α

carries an inductive predicate in r]0.

Unfolding an inductive predicate under an identity relation only consists on unfold-
ing the abstract heap and conserving the identity relation over the unfolded abstract
heap. Unfolding under a transform-into relation requires to unfold independently both
the input and the output abstract heaps of the relation. The resulting pure formula is
the conjunction of the pure formulas of each unfolded abstract heaps. Finally, unfolding
an inductive under a relational separating conjunction consists on unfolding locally the
abstract heap relation where the inductive predicate appears.

Definition 5.2 (Abstract Memory Relation Unfolding). Let m]
R =

(e], r], n]) ∈ M]
R, we define the unfolding operator for abstract memory relations

unfoldM]
R
∈ V] ×M]

R → Pfin(M]
R):

unfoldM]
R

(α,m]
R) = {(e], r]u,guardN](p], n])) | (r]u, p]) ∈ unfoldR](α, r])}

The function unfoldM]
R
applies the numerical conditions returned by unfoldR] using

guardN] . In order to discard unrelevant numerical constraints, such as α = 0∧α 6= 0, the
function unfoldM]

R
asks to the numerical abstract domain if the generated pure formula

p] is satisfiable. If it is satisfiable, it also requires to save the constraint expressed by p],
in order to be able to check if the potential future constraints (obtained for instance latter
in the analysis) can match. This relies on the numerical guard guardN] ∈ P] × N] → N]

that updates an abstract numerical value n] taking into account the effects of a pure
formula p]. This numerical guard should satisfy the following condition:

Assumption 5.1 (Soundness of guardN]). Let p] ∈ P], n] ∈ N]. The function
guardN] is sound if:

ν ∈ γN](n]) ∧ (v, ν) ∈ γP](p]) ∧ v 6= 0 =⇒ ν ∈ γN](guardN](p], n]))
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Theorem 5.2 (Soundness of unfolding operators). Let γΠ ∈ R]×P] → P(H×
H×V] → V) be the concretization function of pairs of abstract heap relation and pure
formula defined as follow:

γΠ(r], p]) = {(hi, ho, ν) | (hi, ho, ν) ∈ γR](r]) ∧ (v, ν) ∈ γP](p]) ∧ v 6= 0}

Let r] ∈ R],m]
R ∈ M]

R and α ∈ V]. Then, the unfolding operators are sound, in the
sense that:

γR](r]) ⊆
⋃
{γΠ(r]u, p]) | (r]u, p]) ∈ unfoldR](α, r])}

γM]
R

(m]
R) ⊆

⋃
{γM]

R
(m]
Ru) | (m]

Ru) ∈ unfoldM]
R

(α,m]
R)}

Example 5.2 (Unfolding a transform-into relation). Consider the following
abstract heap relation r] = [list(α) 99K list(α)]. Unfolding r] at symbolic value α
should generate four pairs of abstract heap relations and pure formulas, included two
cases where the pure formula is α = 0 ∧ α 6= 0:

([emp 99K (α · data 7→ δ ∗S α · next 7→ β ∗S list(β))], α = 0 ∧ α 6= 0)

and

([(α · data 7→ δ ∗S α · next 7→ β ∗S list(β)) 99K emp], α 6= 0 ∧ α = 0).

These two non-relevant cases should be discarded by guardN] at the abstract memory
relation level. The other remaining cases are thus:

([emp 99K emp]t] , α = 0 ∧ α = 0)

and
([(α · data 7→ δi ∗S α · next 7→ βi ∗S list(βi)) 99K

(α · data 7→ δo ∗S α · next 7→ βo ∗S list(βo))], α 6= 0 ∧ α 6= 0).
Remark that in the latter case we obtained different symbolic values for the data and
next fields of α because we have unfolded independently each abstract heap.

Example 5.3 (Abstract memory relation unfolding). Let us consider the anal-
ysis of the insertion function of Figure 1.3 (Page 13). This function should be applied
to states where l is a non null list pointer (the list should have at least one element).
The analysis should start from the abstract memory relation (e]0, r]0, n]0) where:

r]0 = Id(α0 7→ α1 ∗S list(α1)) and e]0(l) = α0
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In this example, we omit v for the sake of concision. Note that we did not specify
that α1 is not null. Before the loop entry, the analysis computes the abstract memory
relation (e]1, r]1, n]1) where:

r]1 = Id(α0 7→ α1 ∗S list(α1)) ∗R [emp 99K α2 7→ α1] and e]1(l) = α0 and e]1(c) = α2

To deal with the test c−>next != NULL, the analysis should materialize α1. This
unfolding is performed under the Id connective, and produces the following abstract
heap relation:

(Id(α0 7→ α1 ∗S α1 · next 7→ α3 ∗S α1 · data 7→ β0 ∗S list(α3))
∗R [emp 99K (α2 7→ α1))], α1 6= 0)

with e]1(l) = α0 and e]1(c) = α2

Then, the condition α1 6= 0 is kept in the numerical abstract value. We observe that
we have automatically inferred that the input of the function must be non-empty, as
this condition also applies to the abstract input memory. In turn, the effect of the
condition test and of the assignment in the loop body can be precisely analyzed from
this abstract memory relation.

Remark 5. In the next of this Chapter, we assume that unfolding is already performed
before reading a l-value or an expression. So that we do not make the steps when unfolding
occurs explicit.

5.4 Assignment
In this section, we define the transfer function for assignments assignM]

R
∈ Lval ×Expr ×

M]
R → M]

R. Recall that the concrete assignment over a pair of memory states (mi,mo)
results in another pair of memory states (mi,m′o) where only the output state mo has been
modified. Likewise the abstract assignment will keep the abstract input state unmodified.
It will also preserve as many relations between the abstract input and output states as
possible.

The main part of the algorithm consists in the function assignR] that inputs a sym-
bolic value α and a field f (the address), a symbolic value β (the value) and an abstract
heap relation r]. It performs the following steps:

1. Decompose inductively r] when it is of the form r]0 ∗R r]1 until we find the points-to
predicate whose address is α ·f. The remainder of the abstract relation is integrally
preserved (we apply the Frame rule [Rey02] but for abstract heap relations).

2. If the abstract heap relation that was found is of the form [h]i 99K h]o], replace it by
[h]i 99K h]o′ ] where h]o′ reflects the assignment in the abstract heap h]o.
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3. If step 1 leads to an abstract heap relation of the form Id(h]) to be found, de-
compose it into Id(h]1) ∗R Id(h]2) where h]2 only contains the points-to predicate
whose address is α · f. Then weaken Id(h]2) into [h]2 99K h]2]. Finally, proceed to
the assignment in [h]2 99K h]2] and let Id(h]1) unchanged.

For example:

assignR](α, f, β, Id(h] ∗S α · f 7→ δ))
= Id(h]) ∗R [(α · f 7→ δ) 99K (α · f 7→ β)]

On top of this algorithm, assignM]
R
evaluates the assignment l = e over the abstract

memory relation m]
R = (e], r], n]) using the following steps:

1. Evaluate l and e with respectively evalL and evalE . Note that this may require
prior unfoldings.

2. Update the abstract numerical value n] with the result of the evaluation of e, using
the function assignN] .

3. Update r] with assignR] .

Definition 5.3 (Assignments for abstract heap relations). We define the
assignment function for abstract heap relations assignR] ∈ V] × F× V] × R] → R]:

• assignR](α, f, β, r]0 ∗R r]1) = r]0 ∗R r]2, if assignR](α, f, β, r]1) = r]2

• assignR](α, f, β, [h]i 99K h]o ∗S (α · f 7→ γ)]) = [h]i 99K h]o ∗S (α · f 7→ β)]

• assignR](α, f, β, Id(h]0 ∗S α · f 7→ δ)) = Id(h]0) ∗R [α · f 7→ δ 99K α · f 7→ β]

Case of a Relational Separating Conjunction. We now assume that r] = r]0 ∗R r]1.
The points-to predicate at address α · f can only appear in one of r]0 or r]1. If it appears
in r]0, the assignment should have no effect on r]1 (and vice versa).

The function assignR] can thus be applied recursively on the sub-abstract heap re-
lation where the points-to predicate appears. This relies on the same principle as the
Frame rule [Rey02] for separation logic, but for abstract heap relations. More generally,
if assignR](α, f, β, r]1) = r]2, then assignR](α, f, β, r]0 ∗R r]1) = r]0 ∗R r]2 .

Case of a Transform-into Relation. In the case where r] = [h]0 99K h]1], assignR]

applies on h]1 the Frame rule [Rey02] of separation logic (separating the points-to predicate
at address α · f from the rest). Then it updates this points-to predicate to point to β,
producing a new abstract heap h]2. So a valid definition for this assignment is [h]0 99K h]2].

Case of an Identity Relation. We now assume that r] = Id(h]). If h] = α · f 7→
δ ∗S h]0, two preliminary steps are necessary before updating α ·f. Indeed, two important
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points need to be considered: first the points-to predicate α ·f 7→ δ cannot be substituted
by α·f 7→ β under the Id connective, because the assignment breaks the identity relation.
Second, the assignment should only modify the points-to predicate α · f 7→ δ, and should
preserve the identity relation over h]0, to improve precision.

The first step consists in splitting the identity relation into two identity relations. As
observed in Theorem 4.1, γR](Id(h]0 ∗S h]1)) = γR](Id(h]0) ∗R Id(h]1)). In our case, r] is
split into Id(α · f 7→ δ) ∗R Id(h]0). The first identity relation contains only the points-to
predicate that is going to be modified and the second identity relation contains the other
parts of h] that may only be read (but not written) the assignment.

The second step consists on weakening Id(α · f 7→ δ) into a transform-into relation.
In Theorem 4.1, we also have γR](Id(h])) ⊆ γR]([h] 99K h]]). This property allows us to
weaken Id(α · f 7→ δ) into [(α · f 7→ δ) 99K (α · f 7→ δ)].

After these steps, the analysis can perform the assignment in the obtained transform-
into relation and left unchanged the split identity relation. This relies on the combi-
nation of the assignment in the cases of relational separating conjunction relations and
transform-into relations. Thus, a valid definition for this assignment is:

Id(h]0) ∗R [α · f 7→ γ 99K α · f 7→ β]

Recall that h[a ← v] is the concrete heap where we update the content of the cell at
address a with the value v in the concrete heap h. We now give the soundness theorem
for the functions assignR] .

Theorem 5.3 (Soundness of assignR]). Let α, β ∈ V], f ∈ F and r]0 ∈ R]. The
function assignR] is sound:

∀(h0, h1, ν) ∈ γR](r]0)
=⇒ (h0, h1[ν(α) + f← ν(β)], ν) ∈ γR](assignR](α, f, β, r]0))

Definition 5.4 (Assignment in abstract memory relations). Let m]
R =

(e], r]0, n]0) be an abstract memory relation. If evalL(l , e], r]0) = (α, f) and
evalE(e, e], r]0) = (β, p]), and if assignN](β, p], n]0) = n]1 and assignR](α, f, β, r]0) = r]1,
then:

assignM]
R

(l , e, (e], r]0, n]0)) = (e], r]1, n]1)

The function assignM]
R

applies respectively evalL and evalE on l and e. Remark
that this step may unfold inductive predicates, as explained in the previous section. It
then applies assignR] on the address returned by evalL and the value returned by evalE .
Remind that evalE returns a pair (β, p]), such as β ∈ V] and p] ∈ P]. To keep track
of the numerical constraint β = p], the abstract assignment requires a function that
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over-approximates this constraint and put it in the abstract numerical value n]. This is
performed by the function assignN] ∈ V] × P] × N] → N], whose soundness assumption
is:
Assumption 5.2 (Soundness of assignN]). Let β ∈ V], p] ∈ P] and n] ∈ N], then
assignN] is sound if:

∀(v, ν) ∈ γP](β = p]) ∧ ν ∈ γN](n]) ∧ v 6= 0 =⇒ ν ∈ γN](assignN](β, p], n]))

Theorem 5.4 (Soundness of assignM]
R
). Let l ∈ Lval , e ∈ Expr and m]

R ∈ M]
R.

Let (m0,m1) ∈ γM]
R

(m]
R) such that m1 = (e1, h1), then:

(m0, (e1, h1[LJl K(m1)← EJeK(m1)])) ∈ γM]
R

(assignM]
R

(l , e,m]
R))

Example 5.4 (Assignment in transform-into relation). In this example, we
consider the effect of assignR](α1, f, β2, [h]0 99K h]1], with

h]1 = α1 · f 7→ β1 ∗S α2 · g 7→ β2

Performing the assignment in h]1 produces the following abstract heap:

h]2 = α1 · f 7→ β2 ∗S α2 · g 7→ β2

Finally, assignR](α1, f, β2, [h]0 99K h]1]) = [h]0 99K h]2].

Example 5.5 (Assignment in an identity relation). In this example, we con-
sider the effect of assignR](α0, f, β1, r]) with

r] = Id(α0 · f 7→ β0 ∗S h]1)

After splitting r] into r]0 ∗R r]1 such as r]0 = Id(α0·f 7→ β0) and r]1 = Id(h]1), the analysis
needs to weaken r]0. Then, the weakening of r]0 is [(α0 · f 7→ β0) 99K (α0 · f 7→ β0)].
In turn, the analysis performs the assignment for abstract heap relations on the form
r]0 ∗R r]1 and results:

[(α0 · f 7→ β0) 99K (α0 · f 7→ β1)] ∗R Id(h]1)

5.5 Allocation and Deallocation
In this section, we define the transfer functions for allocations allocM]

R
and deallocations

freeM]
R
when reasoning abstract memory relations. We first comment on allocations.
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Allocations

The function allocM]
R

(l , {f1, . . . , fn},m]
R) returns an abstract memory relation that over-

approximates the effect of allocation l = malloc({f1, . . . , fn}) in m]
R. It represents the

creation of a new memory block of n cells (one cell per field of {f1, . . . , fn}), and assigns
the address of this new block to the l-value l . The resulting abstract memory relation
should express that the new block has been freshly allocated, and the rest of the memory
was left untouched.

The major part of the algorithm consists in the creation of a single memory cell. This
is performed by the function allocR] that inputs an abstract value β, a field f and an
abstract heap relation r]. It creates the cell β · f 7→ δ (where δ is a fresh abstract value)
and returns an abstract heap relation that expresses the allocation of this cell.

Definition 5.5 (Allocation for abstract heap relations). We define the allo-
cation function for abstract heap relations allocR] ∈ V] × F× R] → R]:

allocR](β, f, r]) = r] ∗R [emp 99K (β · f 7→ δ)],

where δ is a fresh symbolic value.

The definition of allocR] ensures that the new cell has been freshly allocated thanks to
the transform-into relation [emp 99K (β · f 7→ δ)]. It also ensures that the input abstract
heap r] is not affected by the allocation, by separating it from the latter transform-into
relation with the relational separating conjunction ∗R. This definition is correct because
of the assumption that the program never reallocates the same memory cell.

Theorem 5.5 (Soundness of allocR]). Let β ∈ V], f ∈ F and r] ∈ R]. The
function allocR] is sound:

∀(hi, ho, ν) ∈ γR](r]) =⇒
∃v ∈ V, (hi, ho � [ν(β) + f 7→ v], ν) ∈ γR](allocR](β, f, r]))

Definition 5.6 (Allocation in abstract memory relations). Let (e], r]0, n]0) be
an abstract memory relation and n > 1 the number of cells to allocate. We assume
that evalL(l , e], r]0) = (α, g) and that β is a fresh symbolic value. The abstract heap
relations r]1, . . . , r]n are defined as follow:
∀i s.t. 1 6 i 6 n, r]i = allocR](β, fi, r]i−1).
Finally, if n]1 = guardN]((β 6= 0x0), n]0) and r]n+1 = assignR](α, g, β, r]n), then:

allocM]
R

(l , {f1, . . . , fn}, (e], r]0, n]0)) = (e], r]n+1, n]1)
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Like abstract assignments, the function allocM]
R

evaluates the l-value l with evalL

into a pair (α, g) (this step may also unfold inductive predicates). It then generates a
fresh symbolic value β, that is the base address of the block being created. For each
field fi ∈ {f1, . . . , fn}, it applies assignR](β, fi, r]i−1), where r]i−1 has accumulated the
allocations of the previous cells. Once the full block is allocated, it keeps track of the fact
that the address of the new block is not null with guardN]((β 6= 0x0), n]0) and assigns
this address to the given l-value with assignR](α, g, β, r]n).

Theorem 5.6 (Soundness of allocM]
R
). Let l ∈ Lval , f1, . . . , fn ∈ F and m]

R ∈
M]
R. If (m0, (e, h)) ∈ γM]

R
(m]
R) then:

∃a′ ∈ A, v1, . . . , vn ∈ V,

(m0, (e, h[LJl K(e, h)← a′] � [a′ + f1 7→ v1, . . . , a′ + fn 7→ vn]))
∈

γM]
R

(allocM]
R

(l , {f1, . . . , fn},m]
R)

Example 5.6 (Allocation of a list node). We consider the analysis of the fol-
lowing statement, from the abstract memory relation (e], r], n]), with e](p) = α0 and
r] = Id(α0 7→ α1):

p = malloc({next; data})
The abstract heap relation computed in this case is:

[(α0 7→ α1) 99K (α0 7→ β)] ∗R [emp 99K (β · next 7→ β1)]
∗R [emp 99K (β · data 7→ β2)]

We observe that the value of p has been modified: it now points to the symbolic value
β. This latter represents the address of a list node, that has been freshly allocated.
Indeed, the abstract relation [emp 99K (β · next 7→ β1)] ensures that the memory
cell corresponding to the next field of β was the empty memory in the input state
(we observe the same thing for its data field).

Deallocations

The function freeM]
R

(l ,m]
R) returns an abstract memory relation that over-approximates

the effect of the statement free(l ). It represents the deletion of the memory block pointed
by l . The resulting abstract memory relation should express the absence of cells that
were present in its input state. Similarly to abstract allocation, the abstract deallocation
of the memory block can be done cell per cell.
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The function freeR] inputs a symbolic value α, a field f and an abstract heap relation
r]. It returns an abstract heap relation where the points-to predicate whose address is
α · f has been deleted in the output abstract heap of r].

Definition 5.7 (Deallocation for abstract heap relations). We define the deal-
location function for abstract heap relations freeR] ∈ V] × F× R] → R]:

• freeR](α, f, r]0 ∗R r]1) = r]0 ∗R r]2, if freeR](α, f, r]1) = r]2

• freeR](α, f, [h]i 99K h]o ∗S (α · f 7→ β)]) = [h]i 99K h]o]

• freeR](α, f, Id(h] ∗S α · f 7→ β)) = Id(h]) ∗R [α · f 7→ β 99K emp]

To perform the deallocation in an abstract heap relation r], the function freeR](α, f, r])
should express the absence of the memory cell at address α · f in the concrete output
heaps of r]. If (hi, ho � [ν(α) + f 7→ v], ν) ∈ γR](r]), then (hi, ho, ν) must be in
γR](freeR](α, f, r])). The definition of freeR] follows the same principles as assignR] in
Section 5.4:

• When r] = r]0 ∗R r]1, if the cell to delete is in r]0, freeR] is called recursively on r]0 (we
apply the Frame rule [Rey02] but for abstract heap relations). Similarly to abstract
assignment, if freeR](α, f, r]1) = r]2, then freeR](α, f, r]0 ∗R r]1) = r]0 ∗R r]2.

• When r] = [h]i 99K (h]o ∗S α ·f 7→ β)], the function freeR](α, f, r]) should return the
abstract heap relation [h]i 99K h]o].

• When r] = Id(h] ∗S α · f 7→ β), the abstract deallocation proceeds exactly like
the abstract assignment. It first splits r] into Id(h]) ∗R Id(α · f 7→ β), then
weakens the right hand identity relation into [(α · f 7→ β) 99K (α · f 7→ β)], and
performs the deallocation in the obtained transform into relation. It finally produces
Id(h]) ∗R [α · f 7→ β 99K emp].

Theorem 5.7 (Soundness of freeR]). Let α ∈ V], f ∈ F and r] ∈ R]. Then the
function freeR] is sound:

∃v ∈ V, ∀(hi, ho � [ν(α) + f 7→ v], ν) ∈ γR](r]) =⇒
(hi, ho, ν) ∈ γR](freeR](α, f, r]))

The function freeM]
R
mainly builds upon freeR] . It also requires to evaluate the base

address of the block to delete and to obtain the set of fields of the block. For simplicity,
we assume that those fields are provided by the function get_fields, that we do not
define. It inputs an abstract value α (that corresponds to the base address of the block),
an abstract heap relation r] and returns the set of fields attached to α in r].
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Definition 5.8 (Deallocation in abstract memory relations). Let (e], r]0, n]) be
an abstract memory relation and n > 1 the number of cells to deallocate. We assume
that evalE(l , e], r]0) = (α, α) and {f1, . . . , fn} = get_fields(α, r]0). The abstract heap
relations r]1, . . . , r]n are defined as follow:
∀i, 1 6 i 6 n, r]i = freeR](α, fi, r]i−1).
Finally we have:

freeM]
R

(l , (e], r]0, n])) = (e], r]n, n])

The function freeM]
R

evaluates the base address α of the block pointed by l with
evalE . It obtains the fields of the cells to delete {f1, . . . , fn} with get_fields(α, r]0). For
each field fi ∈ {f1, . . . , fn}, it applies freeR](α, fi, r]i−1) where r]i−1 has accumulated the
deletion of the previous cells. Finally, r]n describes the deallocation of the entire block.
Note that before performing freeR](α, fi, r]i−1), the analysis may perform unfolding on
α in order to materialize all its fields, if an inductive predicate is attached to α. For
simplicity, we do not explicit this step and assume that α is already unfolded.

Theorem 5.8 (Soundness of freeM]
R
). Let l ∈ Lval and m]

R ∈ m]
R.

If (m0, (e, h1 � h′1)) ∈ γM]
R

(m]
R) such that:

dom(h′1) = {EJl K(e, h1) + f | f ∈ F}

then:
(m0, (e, h1)) ∈ γM]

R
(freeM]

R
(l ,m]

R))

Example 5.7 (Deallocation of a list element). We show the effect of the analy-
sis of the deallocation of a list element, from the abstract memory relation (e], r], n]),
with e](p) = α0 and

r] = Id(α0 7→ α1 ∗S α1 · next 7→ α2) ∗R [h]i 99K (h]o ∗S α1 · data 7→ α3)]

Thus, the abstract heap relation computed for the instruction free(p) is:

Id(α0 7→ α1) ∗R [(α1 · next 7→ α2) 99K emp] ∗R [h]i 99K h]o]

Local Variables Initialization and Deletion

The declaration or the initialization of a local variable to a function is also considered
as an allocation. This is justified by the fact that we do not distinguish the heap and
the stack, and that a new program variable does not belong to the initial input memory
state. Similarly, when we exit a function, we deallocate all the addresses of local variables
to this function.
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5.6 Condition Test
In this section, we define the transfer function guardM]

R
∈ Expr ×M]

R →M]
R for condi-

tion tests. It evaluates the Boolean expression of a condition test and returns an abstract
memory relation that takes into account the effects of the expression. It first translates
the expression into a pure formula with evalE (note that this step may perform materi-
alization). Finally, it updates the abstract numerical value interpreting the pure formula
with the function guardN] , introduced in Section 5.3.

Definition 5.9 (Condition test in abstract memory relations). Let (e], r], n]0)
be an abstract memory relation and e an expression.

If evalE(e, e], r]) = (α, p]) and n]1 = guardN](p], n]0), then:

guardM]
R

(e, (e], r], n]0)) = (e], r], n]1)

Theorem 5.9 (Soundness of guardM]
R
). Let e ∈ Expr and m]

R0 ,m]
R1 ∈M]

R.

If m]
R1 = guardM]

R
(e,m]

R0), then:

(mi,mo) ∈ γM]
R

(m]
R0) ∧ EJeK(mo) 6= 0 =⇒ (mi,mo) ∈ γM]

R
(m]
R1)

Example 5.8 (Condition test). Consider the following condition test:

if(l -> next == 0x0)

applied to the abstract memory relation m]
R = (e], r], n]) where

r] = Id(α0 7→ α1 ∗S list(α1)) and e](l) = α0

The analysis first unfolds the inductive predicate list(α1) into a points-to predicate
and obtains the following abstract heap relation:

Id(α0 7→ α1 ∗S α1 · data 7→ δ ∗S α1 · next 7→ α2 ∗S list(α2))

It then stores the constraint α2 = 0x0 in the abstract numerical value n].

5.7 Inclusion
Like classical shape analyses [DOY06, CR08], our analysis needs to fold inductive predi-
cates so as to (conservatively) decide inclusion and join abstract states. We first present
the inclusion checking algorithm in this section.
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emp vH] emp (vemp)
Ψ(α1) = α0 h]0 vH] h]1 Ψ(β1) = β0

α0 · f 7→ β0 ∗S h]0 vH] α1 · f 7→ β1 ∗S h]1
(vpt)

Ψ(α1) = α0 h]0 vH] h]1
list(α0) ∗S h]0 vH] list(α1) ∗S h]1

(vind)

Ψ(α1) = α0 h]0 vH] list(β1) ∗S h]1 Ψ(β1) = β0 (β1 fresh)
listseg(α0, β0) ∗S h]0 vH] list(α1) ∗S h]1

(vindseg)

Ψ(α1) = α0 h]0 vH] listseg(α′1, β1) ∗S h]1 Ψ(α′1) = α′0 (α′1 fresh)
listseg(α0, α

′
0) ∗S h]0 vH] listseg(α1, β1) ∗S h]1

(vseg)

Figure 5.2: Inclusion checking rules for abstract heaps, directly derived from [CR08]. For
simplicity, we only consider the list predicate, but this system rules can be generalized
to any inductive predicate.

Inclusion checking is used to verify logical entailment, to check the convergence of loop
iterations, and to support the join / widening algorithm. It consists of a conservative
function isleM]

R
that inputs two abstract memory relations m]

R0 = (e]0, r]0, n]0) and m]
R1 =

(e]1, r]1, n]1), that either returns true (meaning that the inclusion of concretizations holds)
or false (meaning that the analysis cannot decide whether inclusion holds).

An important feature of inclusion checking is that the underlined abstract heaps may
have distinct sets of symbolic values. Yet, to compare abstract heaps, the algorithm
requires to compare symbolic values. That is, the inclusion checking algorithm requires a
renaming function Ψ ∈ V] → V] that maps symbolic values of m]

R1 into symbolic values
of m]

R0 in order to maintain a notion of equivalence between symbolic values.
The definition of inclusion checking consists in three steps: the initialization of the

renaming function that creates the initial renaming function of inclusion checking from
the abstract environments of the two abstract memory relations, the inclusion checking in
abstract heap relations that performs inclusion checking at abstract heap relations level,
and the inclusion checking in the numerical abstract domain that performs inclusion
checking at abstract numerical domains level.

Initialization of the renaming function. First, the abstract environment domain
generates an initial renaming function Ψinit. It is clear that each program variable must
be mapped to the same address, thus the initial renaming function is defined as follows:
∀x ∈ X,Ψinit(e]1(x)) = e]0(x).
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α carries an inductive predicate in r]1 (r]u, p]) ∈ unfoldR](α, r]1) r]0 vR] r]u
r]0 vR] r]1

(vunfold)

h]0 vH] h]1
Id(h]0) vR] Id(h]1)

(vId)
h]i,0 vH] h]i,1 h]o,0 vH] h]o,1

[h]i,0 99K h]o,0] vR] [h]i,1 99K h]o,1]
(v99K)

r]0,0 vR] r]1,0 r]0,1 vR] r]1,1
r]0,0 ∗R r]0,1 vR] r]1,0 ∗R r]1,1

(v∗R)

Id(h]0) ∗R Id(h]1) ∗R r] vR] r]1
Id(h]0 ∗S h]1) ∗R r] vR] r]1

(vId−splitL) r]0 vR] Id(h]0) ∗R Id(h]1) ∗R r]

r]0 vR] Id(h]0 ∗S h]1) ∗R r]
(vId−splitR)

r] ∗R [h] 99K h]] vR] [h]i 99K h]o]
r] ∗R Id(h]) vR] [h]i 99K h]o]

(vId−weak)

r] ∗R [h]i,0 ∗S h]i,1 99K h]o,0 ∗S h]o,1] vR] [h]i 99K h]o]
r] ∗R [h]i,0 99K h]o,0] ∗R [h]i,1 99K h]o,1] vR] [h]i 99K h]o]

(v99K−weak)

Figure 5.3: Inclusion checking rules for abstract heap relations.

Inclusion checking in abstract heap relations. Then, the inclusion checking al-
gorithm proceeds to the inclusion checking of two abstract heap relations. It consists
of a function isleR](Ψ, r]0, r]1) over the abstract heap relations r]0 and r]1 where Ψ is an
initial renaming function. The inclusion holds if it returns (Ψ′, true) where Ψ′ is the
final renaming function. It requires a function isleH](Ψ, h]0, h]1) that returns (Ψ′, true) if
the inclusion of abstract heaps h]0 and h]1 holds and extends Ψ into Ψ′.

The definition of isleH] relies on a conservative algorithm, that implements a proof
search, based on the rules shown in Figure 5.2. This system rules is directly derived
from [CR08, Figure 6] For simplicity we only consider the list inductive predicate, but
this system rules can be applied with any inductive definition. In this system rules, we
assume that the "final" renaming function Ψ is given. However, the underlying constraints
such that Ψ(β1) = β0 indicates informally how Ψ is extended. This system rules is based
on the operator vH] , that satisfies the following property:

Theorem 5.10 (Soundness of vH]). Let h]0, h]1 ∈ H]. Then:

h]0 vH] h]1 =⇒ γH](h]0) ⊆ γH](h]1)

The implementation of isleH] detects which rule to apply thanks to the renaming function
Ψ. When two symbolic values α0 and α1 match (i.e. when Ψ(α1) = α0), isleH] tries
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to apply the corresponding rule. If the rule cannot be applied, isleH] returns false,
otherwise it continues. We do not detail the rules of this system, as our contributions are
only related to abstract heap relations.

The definition of isleR] also relies on a conservative algorithm, that implements a proof
search, based on the rules shown in Figure 5.3 (for clarity, we omit the pure formulas
inclusion checking). This system rules is based on two operators, vH] (from Figure 5.2),
and vR] that reasons over abstract heap relations. It satisfies the following properties:

Theorem 5.11 (Soundness of vR]). Let r]0, r]1 ∈ R]. Then:

r]0 vR] r]1 =⇒ γR](r]0) ⊆ γR](r]1)

We observe that the renaming function Ψ does not appear in this system rules. However,
it is also used in the definition of isleR] . Indeed, if we have Ψ(α1) = α0, isleR] first
detects which abstract heap relation is attached respectively to α0 and α1, and tries to
apply accordingly a rule from Figure 5.3.

The rule (vunfold) unfolds the right-hand side abstract heap relation and tries to match
the left-hand side with one of the disjuncts. The rules (vId) and (v99K) are the canonical
rules for abstract heap relations. They apply vH] on the abstract heaps contained in the
abstract heap relations. The rule (v∗R) makes inclusion checking as local. Finally, the
rules (vId−splitL), (vId−splitR), (vId−weak), and (v99K−weak) allow us to derive inclusion over
abstract heap relations, and implement the properties observed in Theorem 4.1 (page 48).
Thus, their correctness derives from these properties.

Inclusion checking in the numerical abstract domain. Finally, the analysis pro-
ceeds to the inclusion checking between the two abstract numerical values n]0 and n]1,
modulo the renaming function Ψ′ that results from isleR] . Thus the numerical abstract
domain should provide a function isleN] ∈ (V] → V])× N] × N] × {true, false}.

Assumption 5.3 (Soundness of isleN]). Let Ψ ∈ (V] → V]) and n]0, n]1 ∈ N]. Then:

isleN](Ψ, n]0, n]1) = true ⇒ ∀ν ∈ γN](n]0), Ψ ◦ ν ∈ γN](n]1)

Definition 5.10 (Inclusion checking for abstract memory relations). Let
m]
R0 = (e]0, r]0, n]0) ∈M]

R and m]
R1 = (e]1, r]1, n]1) ∈M]

R.

∀x ∈ X,Ψinit(e]1(x)) = e]0(x).

If isleR](Ψinit, r]0, r]1) = (Ψ′, true) and isleN](Ψ′, n]0, n]1) = true, then:
isleM]

R
(m]
R0 ,m]

R1) = true
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That is, the function isleM]
R

calls isleR] with the initial renaming function Ψinit. If
the inclusion holds for the two abstract heap relations r]0 and r]1, it tests the inclusion of
the abstract numerical values n]0 and n]1 with the resulting renaming function of isleR] .

Theorem 5.12 (Soundness of inclusion checking). If h]0, h]1 ∈ H], r]0, r]1 ∈ R],
Ψ,Ψ′ ∈ V] → V] and m]

R0 ,m]
R1 ∈M]

Rthen:

isleH](Ψ, h]0, h]1) = (Ψ′, true)
=⇒ ∀(h, ν) ∈ γH](h]0), (h,Ψ′ ◦ ν) ∈ γH](h]1)
∧ ∀α, β ∈ V],Ψ(α) = β ⇒ Ψ′(α) = β

isleR](Ψ, r]0, r]1) = (Ψ′, true)
=⇒ ∀(hi, ho, ν) ∈ γR](r]0), (hi, ho,Ψ′ ◦ ν) ∈ γR](r]1)
∧ ∀α, β ∈ V],Ψ(α) = β ⇒ Ψ′(α) = β

isleM]
R

(m]
R0 ,m]

R1) = true
=⇒ γM]

R
(m]
R0) ⊆ γM]

R
(m]
R1)

Example 5.9 (Inclusion checking). Let us discuss the computation of the inclu-
sion checking of the two following abstract memory relations:

Id

α1α0&h α1α1

Id

α1α1 α1α2
next

99K

α1α1 α1α3
data

α1α1 α1α4
data

Id

α1α2
list

vR]

Id

α1β0&h α1β1

99K

α1β1
list

α1β1
list

We distinguish only one variable: h, thus the initial renaming function Φ maps β0
to α0 (Ψ(β0) = α0). Symbolic values α0 and β0 are both attached to a points-to
predicate under the identity relation. Thus, rules (vId) and (vpt) are applied and Ψ
is extended with Ψ(β1) = α1. The inclusion checking now searches a rule α1 and β1.
In the left-hand side, we observe that α1 is attached to two abstract heap relations:
the identity relation for its next field and a transform-into relation for its data field.
Consequently, the inclusion checking applies rule (vId−weak), then rule (v99K−weak), in
order to make α1 is only attached to a single transform-into relation. In turns, the
inclusion checking follows from rule (vunfold) to unfold β1 in the right-hand side.

After applying many other rules, the inclusion checking should return true.
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Φ(α) = (α0, α1) Φ(β) = (β0, β1)
α0 · f 7→ β0 tH] α1 · f 7→ β1  α · f 7→ β

(tpt)
Φ(α) = (α0, α1)

list(α0) tH] list(α1) list(α) (tind)

Φ(α) = (α0, α1) h]1 vH] list(α)
list(α0) tH] h]1  list(α)

(twind)

Φ(α) = (α0, α1) Φ(β) = (β0, β1) h]1 vH] listseg(α, β)
listseg(α0, β0) tH] h]1  listseg(α, β)

(twseg)

Φ(α) = (α0, α1) Φ(β) = (α0, β1) h]1 vH] listseg(α, β)
emp tH] h]1  listseg(α, β)

(tseg−intro)

Figure 5.4: Join rewriting rules for abstract heaps, directly derived from [CR08]. For
simplicity, we only consider the list predicate, but this system rules can be applied with
any inductive predicate.

5.8 Join and Widening

5.8.1 Join

In the following, we define the abstract operator joinM]
R
that computes an over-approximation

of the union of abstract memory relations. Like for the inclusion checking, joinM]
R
inputs

two abstract memory relations m]
R0 = (e]0, r]0, n]0) and m]

R1 = (e]1, r]1, n]1), but instead of
a Boolean, outputs a new abstract memory relation m]

R = (e], r], n]). It is defined such
that the union of the concretizations of m]

R0 and m]
R1 is included in the concretization of

m]
R.
The creation of a new abstract memory relation implies the creation of new symbolic

values. Thus, the join operator needs to maintain a relation between the symbolic values
of its two arguments and the resulting symbolic values. Slightly differently than the
inclusion checking, the join requires a pair of renaming functions Φ = (Ψ0,Ψ1) that
map each output symbolic value to the pair of the two corresponding input symbolic
values. For instance, if α is a resulting symbolic value of the join operator, we note
Φ(α) = (α0, α1) if Ψ0(α) = α0 and Ψ1(α) = α1. The join algorithm proceeds in the same
way as the inclusion checking, following the three same main steps: initialization that
creates the initial pair of renaming functions, join of abstract heap relations that joins
two abstract heap relations and join in the numerical abstract domain that joins the two
abstract numerical values.
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h]0 tH] h]1  h]

Id(h]0) tR] Id(h]1) Id(h])
(tId)

h]i,0 tH] h]i,1  h]i h]o,0 tH] h]o,1  h]o
[h]i,0 99K h]o,0] tR] [h]i,1 99K h]o,1] [h]i 99K h]o]

(t99K)

r]0,0 tR] r]1,0  r]0 r]0,1 tR] r]1,1  r]1
r]0,0 ∗R r]0,1 tR] r]1,0 ∗R r]1,1  r]0 ∗R r]1

(t∗R)

[h]0 99K h]0] tR] [h]i,1 99K h]o,1] r]

Id(h]0) tR] [h]i,1 99K h]o,1] r]
(tId−weak)

Id(h]0 ∗S h]1) ∗R r]0 tR] r]1  r]

Id(h]0) ∗R Id(h]1) ∗R r]0 tR] r]1  r]
(tId−merge)

[h]i,0 ∗S h]i,1 99K h]o,0 ∗S h]o,1] ∗R r]0 tR] r]1  r]

[h]i,0 99K h]o,0] ∗R [h]i,1 99K h]o,1] ∗R r]0 tR] r]1  r]
(t99K−weak)

[h]0 99K h]0] ∗R [h]i,1 99K h]o,1] ∗R r]0 tR] r]1  r]

Id(h]0) ∗R [h]i,1 99K h]o,1] ∗R r]0 tR] r]1  r]
(t99K−intro)

Figure 5.5: Join rewriting rules for abstract heap relations.

Initialization. The join operation starts with the initialization of the pair of renaming
functions and the generation of the resulting abstract environment e] as follows: ∀x ∈
X,Φinit(α) = (e]0(x), e]1(x)) and e](x) = α.

Join of abstract heap relations. The join operation then proceeds to the computa-
tion of the new abstract heap relation r]. This is done by the functions joinR] and joinH]

that operate respectively on abstract heap relations and abstract heaps. They also input
and extend the pair of renaming functions.

The algorithm to compute these functions follows the same principle than inclusion
checking. The definition of joinH] implements rewriting rules of Figure 5.4, based on the
operator tH] , directly derived from [CR08, Figure 7]. It satisfies the following property:

Theorem 5.13 (Soundness of tH]). Let h]0, h]1 ∈ H]. Then:

h]0 tH] h]1  h] =⇒ γH](h]0) ∪ γH](h]1) ⊆ γH](h])

In this system rules, we also assume that the "final" pair of renaming functions is given
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(the underlying constraints show informally how it is extended). Similarly to inclusion
checking, the pair of renaming functions detects which rule to apply. For instance, if
Φ(α) = (α0, α1), joinH] will search for a corresponding rule. We do not detail the rules
of Figure 5.4, as the issue is orthogonal to the reasoning over abstract heap relations.

The definition of joinR] implements the rewriting rules in Figure 5.5. This system
rules is based on two operators: tH] (from Figure 5.4) and tR] that reasons over abstract
heap relations. It satisfies the following property:

Theorem 5.14 (Soundness of tR]). Let r]0, r]1 ∈ R]. Then:

r]0 tR] r]1  r] =⇒ γR](r]0) ∪ γR](r]1) ⊆ γR](r])

The implementation of joinR] uses Φ to detect in which abstract heap relations are
attached to the two mapped symbolic values, in order to detect which rule to apply.

The rules (tId) and (t99K) are applied on two abstract heap relations that consist of
the same relational connective (respectively Id(.) and [. 99K .].). They simply apply tH]

on the abstract heaps they contain and conserve the relational connective. The rule (t∗R)
is based on the separation principle and allows us to apply the other rules independently.
The next rules can all be applied symmetrically and follow the principles of Theorem 4.1
(page 48). When applied to an identity relation and a transform-into relation, the rule
(tId−weak) first weakens the identity relation into a transform-into relation and applies
recursively tR] . When the left operand of tR] contains two identity relations, the rule
(tId−merge) merges them. When the left operand contains two transform-into relations,
the rule (t99K−weak) weakens them into one transform-into relation. Finally, when the left
operand contains an identity relation and a transform-into relation, the rule (t99K−intro)
weakens the identity relation into a transform-into relation and applies recursively tR] .

Join in the numerical abstract domain. Finally, the join operation proceeds to the
join in the numerical abstract domain. Like for the inclusion checking, the numerical
abstract values have to take into account the renaming performed by the abstract heap
relations. Thus, the join in the numerical abstract domain is performed by the function
joinN] ∈ (V] → V])2 × N] × N] → N], which must satisfy the following assumption:

Assumption 5.4 (Soundness of joinN]). Let Ψ0,Ψ1 ∈ V] → V] and n]0, n]1 ∈ N],
then:

(Ψ0 ◦ ν) ∈ γN](n]0) ∨ (Ψ1 ◦ ν) ∈ γN](n]1) =⇒ ν ∈ γN](joinN]((Ψ0,Ψ1), n]0, n]1))
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Definition 5.11 (Join of abstract memory relations). Let m]
R0 = (e]0, r]0, n]0)

and m]
R1 = (e]1, r]1, n]1) be two abstract memory relations.

∀x ∈ X,Φinit(α) = (e]0(x), e]1(x)) and e](x) = α.

If joinR](Φinit, r]0, r]1) = (Φ′, r]) and joinN](Φ′, n]0, n]1) = n] then:
joinM]

R
(m]
R0 ,m]

R1) = (e], r], n])

Similarly as inclusion checking, joinM]
R
first initializes the pair of renaming functions

Φinit and creates the joined environment e]. It then proceeds to the join of the abstract
heap relations and to the join with Φinit. Finally, it joins the abstract numerical values
with the final pair of renaming functions returned by joinR] .

Theorem 5.15 (Soundness of joinH]). Let Ψ0,Ψ1 ∈ V] → V] and h]0, h]1 ∈ H], if
joinH]((Ψ0,Ψ1), h]0, h]1) = ((Ψ′0,Ψ′1), h]), then:

∀α, β ∈ V],Ψ0(α) = β =⇒ Ψ′0(α) = β
∀α, β ∈ V],Ψ1(α) = β =⇒ Ψ′1(α) = β

(h,Ψ′0 ◦ ν) ∈ γH](h]0) ∨ (h,Ψ′1 ◦ ν) ∈ γH](h]1) =⇒ (h, ν) ∈ γH](h])

Theorem 5.16 (Soundness of joinR]). Let r]0, r]1 ∈ R] and Ψ0,Ψ1 ∈ V] → V]. If
joinR]((Ψ0,Ψ1), r]0, r]1) = ((Ψ′0,Ψ′1), r]) then:

∀α, β ∈ V],Ψ0(α) = β =⇒ Ψ′0(α) = β
∀α, β ∈ V],Ψ1(α) = β =⇒ Ψ′1(α) = β

(hi, ho,Ψ′0 ◦ ν) ∈ γR](r]0) ∨ (hi, ho,Ψ′1 ◦ ν) ∈ γR](r]1) =⇒ (hi, ho, ν) ∈ γR](r])

Theorem 5.17 (Soundness of joinM]
R
). Let m]

R0 ,m]
R1 ∈M]

R.
If joinM]

R
(m]
R0 ,m]

R1) = m]
R then:

γM]
R

(m]
R0) ∪ γM]

R
(m]
R1) ⊆ γM]

R
(m]
R)

Example 5.10 (Join with weakening). We discuss the computation of the join
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between these two abstract memory relations:

Id

α1α0&h α1α1

Id

α1α1 α1α2
next

99K

α1α1 α1α3
data

α1α1 α1α4
data

Id

α1α2
list

tR]

Id

α1β0&h α1β1

Id

α1β1
list

The initial pair of renaming functions is obtained by mapping the unique variable
h of the two abstract memory relations (we have Φ(γ0) = (α0, β0)). Then, the join
operator applies rule (tId), that performs (tpt) on α0 and β0. This extends Φ with
Φ(γ1) = (α1, β1). We observe that the data field of α1 is attached to a transform-into
relation. Consequently, the join operator requires to apply rule (t99K−intro), then rule
(t99K−weak) on the left-hand side to merge the predicates attached to α1. Moreover,
it requires to apply rule (tId−weak) on the right-hand side to weaken Id(list(β1)) into
[list(β1) 99K list(β1)]. Finally, the join operator tries to apply rule (twind) between
α1 and β0. However, a last weakening at abstract heap relation level is required.
Indeed, the next field of α1 points to α2. Thus, the predicate Id(list(α2)) should
also be merged with the abstract heap relation attached to α1 (this is done by rule
(t99K−intro) then rule (t99K−weak)). The resulting abstract memory relation is:

Id

α1γ0&h α1γ1

99K

α1γ1
list

α1γ1
list

We observe that just because the data field of the left-hand side was modified, the
join operator has lost the information that the other parts of the list was unmodified.
We fix this loss of precision by extending abstract heap relations in Chapter 6.

5.8.2 Widening
During the analysis of loops and recursive programs, the number of iterations of the static
analysis has to be finite. To always terminate in a finite number of steps, the analysis
requires a widening operator widM]

R
that joins abstract memory relations and provides

a convergence acceleration for the iteration process.
The widening operator widR] for abstract heap relations can be implemented using

the same rules system of Figure 5.5. Indeed, each rule strictly decreases the number of
abstract heap relations, which ensures termination in a finite number of steps. Moreover,
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tH] is already a widening operator, as it converges in a finite number of steps, as explained
in [CR08].

However, joinN] cannot be used as a widening operator. Indeed, some numerical
abstract domains such as intervals [CC76] or convex polyhedra [CH78] require a specific
widening operation. Thus, the abstract numerical domain should implement its own
widening operator widN] .

Assumption 5.5 (Soundness of widN]). Let Ψ0,Ψ1 ∈ V] → V] and n]0, n]1 ∈ N],
then:

(Ψ0 ◦ ν) ∈ γN](n]0) ∨ (Ψ1 ◦ ν) ∈ γN](n]1) =⇒ ν ∈ γN](widN]((Ψ0,Ψ1), n]0, n]1))

The function widN] also enforces termination.

The widening of abstract memory relation widM]
R

can be defined like joinM]
R

by
substituting in its definition joinN] by widR] and by substituting joinR] by widN] .

Definition 5.12 (Widening for abstract memory relations). Let m]
R0 =

(e]0, r]0, n]0) and m]
R1 = (e]1, r]1, n]1) be two abstract memory relations.

∀x ∈ X,Φinit(α) = (e]0(x), e]1(x)) and e](x) = α.

If widR](Φinit, r]0, r]1) = (Φ′, r]) and widN](Φ′, n]0, n]1) = n] then:
widM]

R
(m]
R0 ,m]

R1) = (e], r], n])

Theorem 5.18 (Soundness of widM]
R
). Let m]

R0 ,m]
R1 ∈M]

R.
If widM]

R
(m]
R0 ,m]

R1) = m]
R then:

γM]
R

(m]
R0) ∪ γM]

R
(m]
R1) ⊆ γM]

R
(m]
R)

The function widM]
R
also enforces termination

Example 5.11 (Widening). In this example, we discuss the computation of the
widening that occurs after a first iteration of the loop in the concat function of
Figure 2.1 (page 16), at line 6. The analysis performs the widening between the
abstract relation at the head of the loop before the first iteration, where l1 and t
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point to the same list:

Id

α1α0 α1α1

α1α4

listnext

data

Id

α1α3
list

l1 t l2

and between the abstract relation after the first iteration of the loop, where t points
to the next field of l1:

Id

α1β0 α1β1

α1β4

listnext

data

Id

α1β3
list

l1 t l2

We observe in the two abstract relations that the lists pointed by l1 and l2 are under
the identity relation, this means that the loop does not modify them. In the resulting
of the widening, these lists should also be under the identity relation. At the abstract
heap level, the widening introduces a list segment to express the fact that t can point
anywhere in the list. Indeed, we have Φ(γ0) = (α0, β0) and Φ(γ2) = (α0, β1), this
allows the widening to apply rule (tseg−intro):

Id

α1γ0 α1γ2 α1γ1

α1γ4

listseg listnext

data

Id

α1γ3
list

l1 t l2

5.9 Analysis Algorithm

Manipulating Disjunctions in the Analysis. Because of unfolding operations (Sec-
tion 5.3), the analysis must deal with disjunctions. This is exactly the role of the disjunc-
tions of abstract memory relations defined in Section 4.3.4. They are built on top abstract
memory relations domain and allow the analysis to perform standard abstract operations
(assignment, allocation, ...) over finite sets of abstract memory relations. Their interface
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is given below:

assign
R∨ ∈ Lval × Expr × R∨ → R

∨

allocR∨ ∈ Lval × Pfin(F)× R∨ → R
∨

freeR∨ ∈ Lval × R∨ → R
∨

guard
R∨ ∈ Expr × R∨ → R

∨

isleR∨ ∈ R
∨ × R∨ → {true, false}

join
R∨ ∈ R

∨ × R∨ → R
∨

widR∨ ∈ R
∨ × R∨ → R

∨

partition
R∨ ∈ Pfin(R∨) → R

∨

collapse
R∨ ∈ R

∨ → R
∨

Each function of this interface applies the function of the same name, but at the abstract
memory relation level. The functions partition

R∨ and collapse
R∨ respectively create

and collapse disjunctions. The function collapse
R∨ may also be used to limit the number

of disjunctions and to ensure the termination of the analysis. They should satisfy the
following condition.

Theorem 5.19 (Soundness of partition
R∨ and collapse

R∨). Let R] ∈ Pfin(M]
R)

and r∨ ∈ R∨. ⋃{γM]
R

(m]
R) | m]

R ∈ R]} ⊆ γR∨(partition
R∨(r∨))

γR∨(r∨) ⊆ collapse
R∨(r∨)

The soundness of the other functions of this interface and more details are discussed
in [CR13].

Abstract Relational Semantics. The abstract semantics J.K]R relies on the abstract
operations defined in Sections 5.4, 5.5 and 5.6, on the unfolding of Section 5.3 to analyze
basic statements, and on the folding operations defined in Sections 5.7 and 5.8 to cope
with control flow joins and loop invariants computation. It is defined by induction over
the syntax of the programming language defined in Section 3.4 and operates over abstract
disjunctions, as shown in Figure 5.6.

Soundness of J.K]R follows from the soundness of the basic operations.

Theorem 5.20 (Soundness). The analysis is sound in the sense that, for all
command c and for all disjunction of abstract memory relations r∨:

∀(m0,m1) ∈ γR∨(r∨), ∀m2 ∈M,

(m1,m2) ∈ JcKR =⇒ (m0,m2) ∈ γR∨(JcK]R(r∨))
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Structure Function Time (in ms) Logical Strength
State Rel. State vs Rel.

singly linked list allocation 0.56 0.77 <
singly linked list deallocation 0.46 0.80 <
singly linked list traversal 0.58 0.79 <
singly linked list head_insertion 0.43 0.43 <
singly linked list insert (Figure 1.3) 1.11 1.92 <
singly linked list reverse 0.60 1.01 =
singly linked list map 0.59 0.92 =
singly linked list tail 0.42 0.55 <
singly linked list nth 0.70 1.17 <
singly linked list partition 2.18 4.85 =
singly linked list append 0.88 1.60 <
singly linked list contains 0.82 1.22 <
singly linked list deep_copy 1.15 2.08 <
singly linked list sort (Figure 2.3) 4.09 21.95 =
singly linked list filter 1.21 2.70 =
binary search tree allocation 0.71 1.11 <
binary search tree search 0.97 1.63 <
binary search tree insert 2.25 6.10 <

Table 5.1: Experiment results. Time in milliseconds over 1000 runs on a laptop with
Intel Core i5 running at 2.4 GHz, with 4 Gb RAM, for the state and relational analyses;
the last column compares the logical strength of the inferred result of each analysis.
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Jl = eK]R(r∨) = assign
R∨(l , e, r∨)

Jl = malloc({f1, . . . , fn})K]R(r∨) = allocR∨(l , {f1, . . . , fn}, r∨)

Jfree(l )K]R(r∨) = freeR∨(l , r∨)

Jc1; c2K]R(r∨) = Jc2K]R(Jc1K]R(r∨))

Jif (e) c1 else c2K]R(r∨) = join
R∨(Jc1K]R(guard

R∨(e, r∨)),
Jc2K]R(guard

R∨(¬e, r∨)))

Jwhile(e) cK]R(r∨0 ) = If isleR∨(r∨1 , r∨0 ) = true
Then guard

R∨(¬e, join
R∨(r∨0 , r∨1 ))

Else Jwhile(e) cK]R(widR∨(join
R∨(r∨0 , r∨1 ), r∨0 ))

where r∨1 = JcK]R(guard
R∨(e, r∨0 ))

Figure 5.6: Abstract semantics for the programing language defined in Section 3.4, except
for function calls and returns. The expression ¬e is the negation of e.

5.10 Implementation and Experimental Evaluation
In this section, we report on the implementation of our analysis and try to evaluate:

1. whether it can infer precise and useful relational properties,
2. how it compares with a state shape analysis that does not compute relations.
Our implementation supports built-in inductive predicates to describe singly linked

lists and binary trees. It provides both the analysis described in this paper, and a basic
state shape analysis in the style of [CR08], supporting the same inductive predicates. It
was implemented as a Frama-C [KKP+15] plug-in consisting of roughly 18000 lines of
OCaml (including the extensions of the following chapters).

We have run both the state shape analysis and the relational shape analysis on series
of small programs manipulating lists and trees listed in Table 5.1. This allows us to not
only assess the results of the analysis computing abstract relations, but also to compare
them with an analysis that infers abstract states.

The results obtained are listed in Table 5.1. The word ’State’ means the result of
the state analysis. The word ’Rel.’ means the inferred abstract heap relation with the
relational analysis. The analysis runtimes are averaged over 1000 runs of the analysis.
The last column compares the logical strength of the inferred abstract states and abstract
relations. This is indicated in the cells by comparison symbols (<, > or =). For instance,
if we find ’<’ in a cell of the State vs Rel. column, that means that relational analysis
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inferred a stronger property than the state analysis for the given function.

Logical Strength Comparison

We first discuss the logical strength. We observe the inferred abstract relations are never
less strong than the inferred abstract states inferred by state analysis (there is no ’>’ in
the State vs Rel. column). In most cases, the relational analyses has inferred stronger
properties than the state analysis. We discuss some of these cases in the next paragraphs.

When the relational analysis inferred stronger properties. We consider the
function head_insertion for which the relational analysis inferred the following abstract
heap relation:

[α0 7→ α1 99K α0 7→ β] ∗R [emp 99K β · next 7→ α1]
∗R [emp 99K β · data 7→ δ] ∗R Id(list(α1))

It describes exactly the effects of the insertion of a new allocated element at the head of a
given list. Indeed, it expresses explicitly that the input list (abstracted by the inductive
predicate list(α1)) has not been modified by the function. Moreover, it expresses the
allocation of a new list element at address β whose next field points to the input list.
This abstract relation is clearly more expressive than the result of the state analysis, that
cannot capture the relational properties described above.

Another case where the relational analysis inferred stronger property is the function
deep_copy. The inferred abstract heap relation for this function is:

Id(list(α)) ∗R [emp 99K list(β)]

It expresses that the input list list(α) has not been modified and that a new list list(β)
has been freshly allocated. These properties cannot be inferred by the state analysis, that
simply expresses that the function inputs the list list(α) and outputs two lists list(α)
and list(β).

When the relational analysis did not infer stronger properties. We now discuss
some cases where the abstract heap relation inferred by the relational analysis is not
stronger than the result of the state analysis. For example, the inferred abstract heap
relation for the function map, that traverses a list and increments each data field, is:

[list(α) 99K list(α)]

It just indicates that the input and output lists start at the same address. We have no
more information compared to the state analysis.
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Moreover, for the functions reverse, sort and filter, the relational analysis inferred
the same abstract heap relation for these three functions:

[listseg(α0, α1) 99K list(α2)]

The functions reverse and sort respectively reverse and sort a list in place. On the
other hand, the function filter deallocates all the negative elements of the input list.
The inferred abstract heap relation does not express any interesting properties compared
to the result of the state analysis (only the transformation of a list into another). In
Chapter 6, we propose an extension of abstract heap relations to improve their logical
strength.

Runtime Comparison

We now compare the runtime of the relational analysis and of the state analysis. We ob-
serve in most cases that the relational analysis is slower than the state analysis, although
the slow down factor is reasonable. Indeed, the time of relational analysis rarely exceeds
the double of the state analysis (this is the case for the functions partition, filter and
tree insert). An exception is the list sort, which is approximately 5 times slower. This
is explained by the fact that this function contains a condition test in a nested loop and
another condition test in the main loop. This implies to perform an important number of
abstract joins and widenings. Conversely, the function head_insertion, that does not
perform either abstract join or widening, incurs no slowdown. Moreover, we believe that
we can optimize the implementation of these operators in our prototype analyzer, using
a better strategy to detect the rules to apply.

While these test cases are not large, these results show that the relational analyses
have a reasonable overhead and that they bring additional information compared to a
classical state analysis. The difference in time between the analyses is due to the fact that
the relational analysis manipulates pairs of states whereas the state analysis manipulates
only one state. In general, the relational analysis infers stronger properties.

5.11 Related Works
Our analysis computes an abstraction of the relational semantics of programs so as to
capture the effect of programs using an element of some specifically designed abstract
domain.

This technique has been applied to other abstractions in the past, and often applied to
design modular static analyses [CC02], where program components can be analyzed once
and separately. For numerical domains, it simply requires to duplicate each variable into
two instances respectively describing the old and the new value, and to use a relational
domain to the inputs and outputs. For instance, [PC06] implements this idea using
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convex polyhedra and so as to infer abstract state relations for numerical programs. It has
also been applied to shape analyses based on Three Valued Logic [SRW02] in [JLRS04,
JLRS10]. This work is probably the closest to ours, but it relies on a very different
abstraction using TVLA whereas we use a set of relational predicates based on separation
logic. It uses the same variable duplication technique as mentioned above. Our analysis
also has a notion of overlaid old / new predicates, but these are described heap regions,
inside separation logic formulas.

Several other techniques have been used to specify memory properties. For instance,
[YRSW03] uses temporal logic to specify temporal properties of heap evolutions and
[TJ07] checks structural properties of codes using a specification language.

In the context of concurrent programs, [ARR+07] verify linearizability of concur-
rent objects (unbounded linked list) maintaining isomorphism between two instances of
memory layout. Also, [DKR04] uses an extension of temporal linear temporal logic and
a tableau-based model-checking algorithm to specify the dynamic evolution of pointer
structures. This latter technique has been applied in [DKR05] to prove the correctness
of concurrent programs manipulating linked lists.

In the context of functional languages, [KJ14] allows us to write down relations be-
tween function inputs and outputs, and relies on a solver to verify that constraints hold
and [ZPJ16] computes shape specification by learning.

Regarding shape analyses based on separation logic, [BDE+10] infers combined list-
data relations and has been extended in [BDES11] for inter-procedural analysis. They
can infer precise relations between the data contained in a list, such as the sum of all
data in a list is inferior to the length of this list. They also use a multi-set to represent
the data of a list. For example, to prove a sort function, they compare the multi-set
of the input list with the multi-set of the output list. If these multi-sets are the same
(this means a permutation), and if the output list is sorted, then the sort function is
proven. However, they do not have this notion of physical equality between the different
memory cells that our relational domain can express. Consequently, they cannot express
the physical identity relation of a program. Moreover, our relational properties do not
focus on a specific data structure, but aim at being generic for any data structure.

Modular analyses that compute invariants by separate analysis of program compo-
nents [CRL99, DDAS11, CNR+15] use various sorts of abstractions for the behavior
of program components. A common pattern uses tables of pairs made of an abstract
pre-condition and a corresponding abstract post-condition, effectively defining a sort of
cardinal power abstraction [CC79]. This technique has been used in several shape anal-
yses based on separation logic [CDOY09, GCRN09, LGQC14, CDOY07]. We believe
this tabular approach could benefit from abstractions of relations such as ours to infer
stronger properties, and more concise summaries.
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Chapter 6

Abstract Heap Transformation
Predicates

In this chapter, we propose to extend abstract heap relations in
order to capture stronger relational properties. This extension is
generic: abstract heap relations are parameterized by abstract do-
mains that describe specific relations. We propose three examples of
such abstract domains, that are all data structure agnostic. We also
integrate this extension in our relational intra-procedural analysis.

6.1 Motivations
Until now, we have two relational connectives that describe heap transformations: the
identity relation and the transform-into relation. While the identity relation is very
strong (it ensures that the heap is left unmodified), the transform-into relation is quite
weak. Indeed, [h]i 99K h]o] just indicates that the input heap abstracted by h]i has been
transformed into the output heap abstracted by h]o, but without describing specifically
how the transformation occurred. For instance in Figure 2.3 (page 23), the function
sort performs a list sort in place, modifying only the order of its elements. A reasonable
abstraction of the effects of this function is that the output list is an in-place permutation
of the input list.
Remark 6 (Properties to ensure). We remark that an in-place permutation of a list can
be expressed ensuring these two properties:
(a) the permutation is in-place, so that the output list is obtained by manipulating directly

the input list (the footprint of the two lists is the same).
(b) the data in the input and output lists are exactly the same (but may appear in a

different order).
If we look at the abstract heap relation computed for the function sort:

[list(α) 99K list(β)]
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We observe that this abstraction is too weak to ensure the points (a) and (b), as it
describes only a transformation of a well-formed linked list into a well-formed linked list.
More generally, to capture stronger relations, abstract heap relations should be extended.

6.2 Abstraction

To fix this imprecision, we could enrich abstract heap relations with a new connective
that would express specifically these two points. The problem with this approach is
that it would be certainly useless to describe the behavior of other functions using other
data structures. Moreover, creating a relational connective in abstract heap relations to
express a specific property when needed is too costly. Indeed, this requires to update all
the functions related to abstract heap relations for each new relational connective.

An elegant and efficient approach to describe any binary relational properties between
memory heaps without adding new connectives is to annotate transform-into relations
by abstract heap transformation predicates. We henceforth write [h]i 99K h]o]t] for the
transform-into relation annotated by the abstract heap transformation predicate t]. It
describes the transformation abstracted by t] of the heaps abstracted by h]i into the heaps
abstracted by h]o.

We name an abstract heap transformation predicates domain a set T] of abstract heap
transformation predicates. To be as generic as possible, we do not fix a specific abstract
heap transformation predicates domain T]. Instead, we parametrize the analysis with an
interface of such T].

The concretization function γT] of an abstract heap transformation predicates domain
T] should have the signature:

Condition 6.1 (Concretization). Let T] be an abstract heap transformation pred-
icates domains. Its concretization should have the following signature:

γT] : T] → P(H×H× (V] → V))

It simply maps an abstract heap transformation predicate into a set of triples made
of an input concrete heap, an output concrete heap and a valuation function.

We can now update the concretization function γR] defined in Section 4.2 (page 46)
of abstract heap relations to take into account transform-into relations annotated by the
abstract heap transformation predicates.
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Definition 6.2 (Concretization of annotated transform-into relations). Let
T] be an abstract heap transformation predicates domain and t] ∈ T], h]i , h]o ∈ H].
Then, the concretization of transform-into relations annotated by abstract heap trans-
formation predicates is defined as follows:

γR]([h]i 99K h]o]t]) = {(hi, ho, ν) | (hi, ν) ∈ γH](h]i ) ∧ (ho, ν) ∈ γH](h]o)
∧ (hi, ho, ν) ∈ γT](t])}

Like abstract heap relations, abstract heap transformation predicates can express
identity (resp. independent transformations).

To that end, each abstract heap transformation predicates domain T] should define the
identity idT] ∈ H] → T] (resp. the separating conjunction operator ∗T ∈ T] × T] → T]),
for abstract heap transformation predicates. These operators should satisfy the following
assumptions:

Assumption 6.1 (Soundness of idT]). Let T] be an abstract heap transformation
predicates domain, t] ∈ T] and h] ∈ H]. Then idT](h]) is sound if:

{(h, h, ν) | (h, ν) ∈ γH](h])} ⊆ γT](idT](h]))

Assumption 6.2 (Soundness of ∗T). Let T] be an abstract heap transformation pred-
icates domain and t]0, t]1 ∈ T]. Then t]0 ∗T t]1 is sound if:

γT](t]0 ∗T t]1) ⊇ {(hi,0 � hi,1, ho,0 � ho,1, ν) | (hi,0, ho,0, ν) ∈ γT](t]0)
∧ (hi,1, ho,1, ν) ∈ γT](t]1)}

Using these two operators, we can define new properties, similar to Theorem 4.1
(page 48), on abstract heap relations taking into account abstract heap transformation
predicates.

Theorem 6.1 (Properties on abstract heap relations with abstract heap
transformation predicates). Let h], h]i,0, h]i,1, h]o,0, h]o,1 be abstract heaps, T] be
an abstract heap transformation predicates domain and t], t]0, t]1 ∈ T]. Then, we have
the following properties:

1. γR](Id(h])) ⊆ γR]([h] 99K h]]t]) with t] = idT](h])
2. γR]([h]i,0 99K h]o,0]t]

0
∗R [h]i,1 99K h]o,1]t]

1
) ⊆ γR]([(h]i,0 ∗S h]i,1) 99K (h]o,0 ∗S h]o,1)]t])

with t] = t]0 ∗T t]1

We observe with the property 1. that the identity of abstract heap transformation
predicates may be less precise than the identity relation of abstract heap relations.
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Proof of Theorem 6.1. To prove Theorem 6.1, we use the proof of the properties 2 and
3 of Theorem 4.1.

1. Proof of γR](Id(h])) ⊆ γR]([h] 99K h]]t]) with t] = idT](h]):
We can prove this property exactly like we proved the property 2 of Theorem 4.1.

γR](Id(h]))
= {(h, h, ν) | (h, ν) ∈ γH](h])}

γR]([h] 99K h]]t])
= {(h0, h1, ν) | (h0, ν) ∈ γH](h]) ∧ (h1, ν) ∈ γH](h])

∧ (h0, h1, ν) ∈ γT](idT](h]))}

By soundness of idT] , it is obvious that:

γR](Id(h])) ⊆ γR]([h] 99K h]]t]), with t] = idT](h])

2. Proof of
γR]([h]i,0 99K h]o,0]t]

0
∗R [h]i,1 99K h]o,1]t]

1
) ⊆ γR]([(h]i,0 ∗S h]i,1) 99K (h]o,0 ∗S h]o,1)]t])

with t] = t]0 ∗T t]1:
A major part of this property has been proven in the proof of Theorem 4.1 (prop-
erty 3), the rest only relates to t]0, t]1 and t]. So for the sake of clarity, we write ". . ."
for the parts of the proof that already are in the proof of Theorem 4.1, property 3.

γR]([h]i,0 99K h]o,0]t]
0
∗R [h]i,1 99K h]o,1]t]

1
)

= {(hi,0 � hi,1, ho,0 � ho,1, ν) |
(h]i,0, h]o,0, ν) ∈ γR]([h]i,0 99K h]o,0]t]

0
)∧

(h]i,1, h]o,1, ν) ∈ γR]([h]i,1 99K h]o,1]t]
1
)∧

. . .}
= {(hi,0 � hi,1, ho,0 � ho,1, ν) |

(h]i,0, h]o,0, ν) ∈ γT](t]0)∧
(h]i,1, h]o,1, ν) ∈ γT](t]1)∧
. . .}
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γR]([(h]i,0 ∗S h]i,1) 99K (h]o,0 ∗S h]o,1)]t])
= {(hi, ho, ν) |

(hi, ν) ∈ γH](h]i,0 ∗S h]i,1)∧
(ho, ν) ∈ γH](h]o,0 ∗S h]o,1)∧
(hi, ho, ν) ∈ γT](t])}

= {(hi,0 � hi,1, ho,0 � ho,1, ν) |
(hi,0 � hi,1, ho,0 � ho,1, ν) ∈ γT](t])
∧ . . .}

= {(hi,0 � hi,1, ho,0 � ho,1, ν) |
(hi,0 � hi,1, ho,0 � ho,1, ν) ∈ γT](t]0 ∗T t]1)
∧ . . .}

By the soundness of ∗T, we observe that:

{(hi,0 � hi,1, ho,0 � ho,1, ν) |
(h]i,0, h]o,0, ν) ∈ γT](t]0) ∧ (h]i,1, h]o,1, ν) ∈ γT](t]1)}

⊆
{(hi,0 � hi,1, ho,0 � ho,1, ν) |

(hi,0 � hi,1, ho,0 � ho,1, ν) ∈ γT](t]0 ∗T t]1)}

So finally:
γR]([h]i,0 99K h]o,0]t]

0
∗R [h]i,1 99K h]o,1]t]

1
)

⊆
γR]([(h]i,0 ∗S h]i,1) 99K (h]o,0 ∗S h]o,1)]t])

In the following, we give two examples of abstract heap transformation predicates that,
when combined together, are expressive enough to ensure the properties (a) and (b) of
Remark 6. The first one describes relations between the sets of addresses that define the
input and output heaps. The second one describes the set of fields for which the value
of all cells may have been modified. Finally we define the combination of two abstract
heap transformation predicates domains.

6.3 The Footprint Predicates Domain
Recall the property (a) of Remark 6. To ensure that the sorting algorithm operates
in-place, we need to express that the set of addresses of the input and the output lists
are strictly equal. To do that, we can design an abstract heap transformation predicates
domain that compares the set of addresses of the input and output heaps. We name the
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footprint predicates domain the abstract heap transformation predicates domain where
T] = {=],⊆],⊇],>}. Each element of T] compares the set of addresses that define the
input heap with the set of addresses that define the output heap. They do not provide
relations between the content of the memory cells.

Let [h]i 99K h]o]t] be a transform-into relation annotated by t]. If t] is =], then the
input heaps abstracted by h]i and the output heaps abstracted h]o are defined by the same
set of addresses. It indicates that any allocation or deallocation may occur. When t]
is ⊆] (respectively ⊇]), the set of addresses of the heaps abstracted by h]i is included in
(respectively includes) or is equal to the set of addresses of the heaps abstracted by h]o.
This indicates that only allocations (respectively deallocations) may have taken place, as
the output heap is bigger than (respectively smaller than) or is equal to the input heap.
Finally, if t] = >, then it indicates no specific relations between the input and the output
heap.

Definition 6.3 (Concretization of the footprint predicates domain). We
give a formal meaning to the set footprint predicates domain by defining its con-
cretization function γT] ∈ T] → P(H×H× (V] → V)):

γT](=]) = {(hi, ho, ν) ∈ H×H× (V] → V) | dom(hi) = dom(ho)}
γT](⊆]) = {(hi, ho, ν) ∈ H×H× (V] → V) | dom(hi) ⊆ dom(ho)}
γT](⊇]) = {(hi, ho, ν) ∈ H×H× (V] → V) | dom(hi) ⊇ dom(ho)}
γT](>) = H×H× (V] → V)

Example 6.1 (Expressiveness). In this example, we discuss the expressiveness
of the footprint predicates domain, for each value of t] in the following transform-into
relation:

[list(α) 99K list(β)]t]

• If t] is >, we have no interesting information about the transformation of the
input list into the output list. This case is equivalent to the transform-into
relations that we defined in Chapter 4, without any specific transformation.

• If t] is =], then we know no allocation or deallocation occurred: the two lists
have the same size and the same physical memory cells. However, we have no
information about the order or the value of each memory cell. We juste know
that the list may have been modified in place.

• If t] is ⊆] (respectively t] is ⊇]), then the output list may contain more (respec-
tively fewer) elements than the input list. Here too, any information about the
order or the value of the elements. This simply means that some allocations
(respectively deallocations) may occur.

More generally, we have the following properties:



Chapter 6. Abstract Heap Transformation Predicates 97

Theorem 6.2 (Properties of the footprint predicates domain). We observe
the following properties about the footprint predicates domain:

1. γT](=]) ⊆ γT](⊆]) ⊆ γT](>)
2. γT](=]) ⊆ γT](⊇]) ⊆ γT](>)
3. γT](⊆]) ∪ γT](⊇]) ⊆ γT](>)

Proof of Theorem 6.2. The proof of these three properties is trivial using the definition
of the concretization function. Thus we do not detail it.

We can deduce from these properties that > is the less precise element of T] (it
provides any relation). On the contrary, =] is the most precise: the set of addresses of
the input and output heaps are the same but not necessarily the content of each memory
cell. As well, it is relevant to express that the input heap has been manipulated in place
(point (a)).

Definition 6.4 (Function idT] of the footprint predicates domain).

Let h] ∈ H], then: idT](h]) = =]

Definition 6.5 (Operator ∗T of the footprint predicates domain). For sim-
plicity, we define this operator with a table as follows:

∗T =] ⊆] ⊇] >
=] =] ⊆] ⊇] >
⊆] ⊆] ⊆] > >
⊇] ⊇] > ⊇] >
> > > > >

Theorem 6.3 (Soundness of idT] and ∗T). The functions idT] and ∗T of the
footprint predicates domain satisfy respectively Assumption 6.1 and Assumption 6.2.

Proof of Theorem 6.3. The proof of this theorem is trivial. For idT] , we could choose
any other predicate of the domain, but the chosen one is the most precise, as expressed
by Theorem 6.2.

6.4 The Fields Predicates Domain
When manipulating data structures, it is common that a function modifies partially the
memory. For instance in Figure 2.3, the sort function may modify the order of the input
list manipulating the next fields whereas the values of the data fields do not change.
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However, as data structures like linked lists are abstracted by inductive predicates that
summarize memory heaps, we cannot capture the partial modification property. In our
sort function, proving that only the values of the next fields may have been modified
would prove that the values of data fields have not been modified. More specifically, it
would ensure that all the data in the input and output lists are the same.

We can express the set of structure fields whose value may have changed designing
an abstract heap transformation predicates domain such as T] = P(F). We name this
domain the fields predicates domain. Let [h]i 99K h]o]F be the transform-into relation
annotated by F ∈ P(F). If f is a structure field that is not in F , then each field
f of elements of the structure that is both in the input and output heaps abstracted
respectively by h]i and h]o has the same value.

Definition 6.6 (Concretization of the fields predicates domain). Let F ∈
P(F). We define the concretization of the fields predicates domain γT] ∈ P(F) →
P(H×H× (V] → V)) as follows:

γT](F ) = {(hi, ho, ν) ∈ H×H× (V] → V) |
∀f /∈ F, ∀a ∈ A, (a + f) ∈ dom(hi) ∧ (a + f) ∈ dom(ho)
⇒ hi(a + f) = ho(a + f)}

Example 6.2 (Expressiveness). We know discuss the expressiveness of the fields
predicates domain for the following transformation-into relation:

[list(α) 99K list(β)]t]

If t] = {next}, then only the next fields of the elements of the two lists may have
been modified. Consequently, all the data fields of the lists elements are unchanged.
However, it does not tell anything about the size of the two lists (we may have a
different number of elements between the input and output lists). For instance, the
output list can be the input where we deallocated randomly some elements, without
modifying the value of the data fields. Generally, {next} may be inferred when we
remove randomly some elements in a list, or when we permute its elements.

Also, the predicate {data} is generally inferred when we modify only the data of
a list, for instance in a map function. Indeed, {data} means that only data fields
may have been modified.

Theorem 6.4 (Property of the fields predicates domain). We observe the
following property about the fields predicates domain:

∀F1, F2 ∈ P(F), F1 ⊆ F2 ⇒ γT](F1) ⊆ γT](F2)
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This property means that the bigger the set of fields is, the less precise the predicate
is. Indeed if a field is not in the set, then we know that all its values have not changed. On
the contrary for all the fields in the set, we do not know if their values have changed or not.

Proof of Theorem 6.4. This proof is trivial using the definition of the concretization
function.

We made the choice to use the set of fields that may have changed instead of the set
of fields that have not changed for the sake of simplicity. Indeed, if we would, we would
have the following property: ∀F1, F2 ∈ P(F), F1 ⊇ F2 ⇒ γT](F1) ⊆ γT](F2) that is not
relevant and easy to manipulate.

Definition 6.7 (Function idT] of the fields predicates domain).

Let h] ∈ H], then: idT](h]) = {}

Definition 6.8 (Operator ∗T of the fields predicates domain).

Let F1, F2 ∈ P(F), then: F1 ∗T F2 = F1 ∪ F2

Theorem 6.5 (Soundness of idT] and ∗T). The functions idT] and ∗T of the
fields predicates domain satisfy respectively Assumption 6.1 and Assumption 6.2.

Proof of Theorem 6.5. The proof of this theorem is trivial. For idT] , we can see from
Theorem 6.4 that the empty set is the most precise element of T]. This is why we use
it to define this function.

6.5 The Combined Predicates Domain
The footprint predicates domain expresses relations between the set of addresses of the
input and the output heaps but does not express information about the content of memory
cells. On the other side, the fields predicates domain provides information about the
content of memory cells but not about addresses. If we can combine the informations
given by both of these abstract heap predicates domains, we can ensure the properties
(a) and (b) of Remark 6.

A reduced product [CC79] between the footprint and the fields predicates domains
is sufficient but not modular enough. Indeed, to analyze other programs, we have to
combine other abstract heap transformation predicates domains. To be the most generic
as possible, we define the combined predicates domain, the abstract heap transformation
predicates domain T] = T]1 × T]2 as the reduced product of any abstract heap transfor-
mation predicates domains T]1 and T]2.



100 Chapter 6. Abstract Heap Transformation Predicates

Let [h]i 99K h]o]t] be a transform-into relation annotated by t]. If t] is the product
between two abstract heap transformation predicates t]1 ∈ T]1 and t]2 ∈ T]2, then it
describes the transformation of the heap abstracted by h]i into the heap abstracted by h]o
by combining the transformations described both by t]1 and t]2.
Definition 6.9 (Concretization of the combined predicates domain). Let
T]1 and T]2 be two abstract heap transformation predicates domains and t]1 ∈ T]1 and
t]2 ∈ T]2. Let γT]

1
and γT]

2
be the concretization function of respectively T]1 and T]2, we

define the concretization function of the product between t]1 and t]2, γT] ∈ T]1 × T]2 →
P(H×H× (V] → V)) as follows:

γT](t]1, t]2) = γT]
1
(t]1) ∩ γT]

2
(t]2)

Theorem 6.6 (Property of the combined predicates domain). Let T]1 and
T]2 be two abstract heap transformation predicates domains and T] their product. Let
γT]

1
, γT]

2
and γT] be respectively their concretization functions. Then:

∀t]1,a, t]1,b ∈ T]1, ∀t]2,a, t]2,b ∈ T]2,

γT]
1
(t]1,a) ⊆ γT]

1
(t]1,b) ∧ γT]

2
(t]2,a) ⊆ γT]

2
(t]2,b) ⇒ γT](t]1,a, t]2,a) ⊆ γT](t]1,b, t

]
2,b)

Proof of Theorem 6.6. To prove this property we simply substitute γT] by its definition
and we obtain:

∀t]1,a, t]1,b ∈ T]1, ∀t]2,a, t]2,b ∈ T]2,

γT]
1
(t]1,a) ⊆ γT]

1
(t]1,b) ∧ γT]

2
(t]2,a) ⊆ γT]

2
(t]2,b)

⇒
γT]

1
(t]1,a) ∩ γT]

2
(t]2,a) ⊆ γT]

1
(t]1,b) ∩ γT]

2
(t]2,b)

Definition 6.10 (Function idT] of the combined predicates domain). Let T]1
and T]2 be two abstract heap transformation predicates domains and T] their product.
Let h] ∈ H], then :

idT](h]) = (idT]
1
(h]), idT]

2
(h]))

Definition 6.11 (Operator ∗T of the combined predicates domain). Let T]1
and T]2 be two abstract heap transformation predicates domains and T] their product.
If t]1,a, t]1,b ∈ T]1 and t]2,a, t]2,b ∈ T]2 then:

(t]1,a, t]2,a) ∗T (t]1,b, t
]
2,b) = (t]1,a ∗T1 t]1,b , t]2,a ∗T2 t]2,b)



Chapter 6. Abstract Heap Transformation Predicates 101

Theorem 6.7 (Soundness of idT] and ∗T). The functions idT] and ∗T of the
combined predicates domain satisfy respectively Assumption 6.1 and Assumption 6.2.

Proof of Theorem 6.7. The function idT] is simply the product of the functions idT]
1
and

idT]
2
of the sub-domains. It is easy to prove its soundness if we suppose that idT]

1
and

idT]
2
are both sound. Similarly, we can prove that ∗T is sound supposing that ∗T1 and

∗T2 are sound.

Example 6.3 (Computed transform-into relation for the list sort). Using
the product of the fields and the footprints predicates domains, we obtain the follow-
ing transform-into relation for the list sort program in Figure 2.3:

[list(α) 99K list(β)]t] , with t] = ({next},=])
This abstract heap relation describes exactly the points (a) and (b) of Remark 6:

the function works in place and the input and output lists have the same length, as
they are defined by the same set of addresses (a). Furthermore, only the next fields
of the list may have been modified, so this implies that the lists have exactly the
same data (b).

The footprint and the fields predicates domains offer the advantages to be comple-
mentary and totally independent from data structures (they are not specific to linked
lists). They can also express other properties like for example, if we traverse a binary
tree and increment its data elements, the product of these domains is able to prove that
only data may have been modified. For more specific relational properties, designing new
abstract heap transformation predicates domains is possible.

6.6 Integration to the Analysis
Abstract heap transformation predicates extend abstract heap relations. Thus, to inte-
grate them in the relational analysis of Chapter 5, it needs to update the functions related
to abstract heap relations, that is unfoldR] , assignR] , allocR] , freeR] , isleR] , joinR] and
widR] . All of these functions are extended using their corresponding function at abstract
heap transformation predicates level, whose signatures are provided in Figure 6.1.

6.6.1 Refined Unfolding
Abstract heap transformation predicates can also help to gain more precision. As an
example, we consider the following abstract heap relation: [list(α0) 99K list(α0)]t] . Un-
folding α0 will generate the disjuncts ([emp 99K emp]t] , α0 = 0) and ([(α0 ·data 7→ β1 ∗S

α0 · next 7→ β2 ∗S list(β2)) 99K (α0 · data 7→ δ1 ∗S α0 · next 7→ δ2 ∗S list(δ2))]t] , α0 6= 0).



102 Chapter 6. Abstract Heap Transformation Predicates

idT] ∈ H] → T]
∗T ∈ T] × T] → T]

assignT] ∈ V] × F× V] × T] → T]
unfoldT] ∈ V] ×H] ×H] × T] → Pfin(H] ×H] × P])

allocT] ∈ V] × F× V] → T]
freeT] ∈ V] × F× T] → T]
isleT] ∈ (V] → V])× T] × T] → {true, false}
joinT] ∈ (V] → V])2 × T] × T] → T]
widT] ∈ (V] → V])2 × T] × T] → T]

Figure 6.1: Interfaces for abstract heap transformation predicates domains.

In the second disjunct, we observe that we have no information that says whether the
values of the fields next and data of α0 are respectively the same in both sides of the
[. 99K .] relation. However, if we consider that we use the fields predicates domain defined
in Section 6.4 and that t] = {data}, we know that all next fields in this abstract relation
are left unmodified. Thus, unfolding α0 taking in account this information will generate
as second disjunct ([(α0 · data 7→ β1 ∗S α0 · next 7→ α2 ∗S list(α2)) 99K (α0 · data 7→
δ1 ∗S α0 · next 7→ α2 ∗S list(α2))]t] , α0 6= 0) (as only the value of data fields may have
changed, we can use the same variable α2 in both sides of the relation).

The refinement of materialization is performed by the function unfoldT] ∈ V]×H]×
H] × T] → Pfin(H] ×H] × P]) that refines the unfolded input and output abstract heaps
at the given address, taking in account the information provided by the transformation
predicate. This function should satisfy the following assumption:
Assumption 6.3 (Soundness of unfoldT]). Before giving the soundness condition of
unfoldT], we define the concretization function γΠ ∈ H]×H]×P] → P(H×H×(V] → V))
of a triplet (h]i,u, h]o,u, p]) ∈ unfoldT](α, h]i , h]o, t]):

γΠ(h]i,u, h]o,u, p]) = {(hi, ho, ν) | (hi, ν) ∈ γH](h]i,u) ∧ (ho, ν) ∈ γH](h]o,u)
∧∃v, (v, ν) ∈ γP](p]) ∧ v 6= 0}

Let T] be an abstract heap transformation predicates domain, t] ∈ T], h]i , h]o ∈ H] and
α ∈ V]. Then unfoldT] is sound if:

{(hi, ho, ν) | (hi, ho, ν) ∈ γT](t]) ∧ (hi, ν) ∈ γH](h]i ) ∧ (ho, ν) ∈ γH](h]o)}
⊆⋃{γΠ(h]i,u, h]o,u, p]) | (h

]
i,u, h]o,u, p]) ∈ unfoldT](α, h]i , h]o, t])}}

Intuitively, we can see that unfoldT](α, h]i , h]o, t]) propagates the information provided
by t] into h]i and h]o. The result of this propagation should not introduce more information
than t].
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Definition 6.12 (Extended definition of unfoldR]). We now extend the defini-
tion of unfoldR] (page 63) taking into account abstract heap transformations predi-
cates:

unfoldR](α, [h]i 99K h]o]t]) = {([h]i,t 99K h]o,t]t] , p]t ∧ p]i,u ∧ p]o,u) |
(h]i,u, p]i,u) ∈ unfoldH](α, h]i ) ∧ (h]o,u, p]o,u) ∈ unfoldH](α, h]o)
∧(h]i,t, h]o,t, p]t) ∈ unfoldT](α, h]i,u, h]o,u, t])}

6.6.2 Assignment
The assignment computed on abstract heap transformation predicates level is defined
by the function assignT] . It inputs the same arguments as assignR] : a symbolic value
α and a field f, such as α · f is the address of the points-to predicate being modified,
another symbolic value β which denotes the value being assigned, and an abstract heap
transformation predicate t]. It returns a new abstract heap transformation predicate that
expresses the assignment from t]. It should satisfy the following assumption:

Assumption 6.4 (Soundness of assignT]). Let T] be an abstract heap transformation
predicates domain and t] ∈ T]. Let α, β ∈ V] and f ∈ F, then assignT] is sound if:

{(hi, ho[ν(α) + f← ν(β)], ν) | (hi, ho ν) ∈ γT](t])}
⊆ γT](assignT](α, f, β, t]))

Definition 6.13 (Extended definition of assignR]). We extend the definition of
assignR] (page 66) to take into account abstract heap transformation predicates:

• assignR](α, f, β, [h]i 99K h]o ∗S (α · f 7→ γ)]t]
1
) = [h]i 99K h]o ∗S (α · f 7→ β)]t]

2
with

t]2 = assignT](α, f, β, t]1)

• assignR](α, f, β, Id(h]0 ∗S α · f 7→ δ)) = Id(h]0) ∗R [α · f 7→ δ 99K α · f 7→ β]t]

with t] = assignT](α, f, β, idT](α · f 7→ δ))

Case of a Transform-into Relation. This case is obvious. The assignment is ex-
pressed on abstract heap transformation predicates level by applying assignT](α, f, β, t]1),
when α, f, β are arguments of assignR] and t]1 the abstract heap transformation pred-
icate attached the transform-into relation being modified. The resulting abstract heap
transformation predicate t]2 is attached to the resulting transform-into relation.

Case of an Identity Relation. After splitting Id(h]0 ∗S (α · f 7→ δ)) into Id(h]0) ∗R

Id(α · f 7→ δ) as explained in Section 5.4, the analysis needs to weaken Id(α · f 7→ δ)
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into a transform-into relation. In the first version of assignR] , we used Theorem 4.1
(page 48) to perform this weakening. However, we now should take into account abstract
heap transformation predicates. As observed in Theorem 6.1, we have γR](Id(h])) ⊆
γR]([h] 99K h]]t]) with t] = idT](h]). Thus, we can weaken Id(α · f 7→ δ) into [(α ·
f 7→ δ) 99K (α · f 7→ δ)]t]

0
with t]0 = idT](α · f 7→ δ). Finally, the analysis performs

the assignment in the weakened transform-into relation, similarly as in the previous
paragraph.

Definition 6.14 (Assignment for abstract heap transformation predicates
domains). We define the assignment function assignT] ∈ V] × F × V] × T] →
T] for each abstract heap transformation predicates domain defined respectively in
Section 6.3, Section 6.4 and Section 6.5.

1. The footprint predicates domain, T] = {=],⊆],⊇],>}:

assignT](α, f, β, t]) = t]

2. The fields predicates domain, T] = P(F):

assignT](α, f, β, t]) = t] ∪ {f}

3. The combined predicates domain, T] = T]1 × T]2:

assignT](α, f, β, (t]1, t]2)) = (assignT]
1
(α, f, β, t]1), assignT]

2
(α, f, β, t]2))

Theorem 6.8 (Soundness of Definition 6.14). The operators from Defini-
tion 6.14 are sound in the sense of Assumption 6.4.

For the footprint predicates domain, an assignment does not modify the set of ad-
dresses of a heap, that is why assignT] returns the input abstract heap transformation
predicate. For the fields predicate domain, the assignment modifies the content of cell
at address α · f, consequently we have to add f to the set of the possible unpreserved
fields. Finally, for the combined predicates domain, assignT] simply applies recursively
this function for its sub-predicates domains.

6.6.3 Allocation and Deallocation
Allocation

The allocation at abstract heap transformation predicates level is performed by the func-
tion allocT] ∈ V]× F×V] → T], such as allocT](α, f, δ) returns an abstract heap trans-
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formation predicate that over-approximates the allocation of the abstract heap α ·f 7→ δ.
It should satisfy the following condition.

Assumption 6.5 (Soundness of allocT]). Let T] be an abstract heap predicates do-
main. Let β, δ ∈ V] and f ∈ F. The function allocT] ∈ V]×F×V] → T] is sound if and
only if:

{([], [ν(β) + f 7→ ν(δ)], ν) ∈ H×H× (V] → V)} ⊆ γT](allocT](β, f, δ))

Definition 6.15 (Extended definition of allocR]). We extend the definition of
allocR] (page 69) to take into account abstract heap transformation predicates:

allocR](β, f, r]) = r] ∗R [emp 99K (β · f 7→ δ)]t] ,

where δ is fresh and t] = allocT](β, f, δ)

This definition is simple. It just creates the abstract heap transformation predicate
t] using allocT] with the address given in allocR] and with the initial value δ freshly
generated. It then attaches t] to the resulting transform-into relation.

Definition 6.16 (Allocation for abstract heap transformation predicates
domains). We define the allocation function allocT] ∈ V] × F× V] → T] for each
abstract heap transformation predicates domain defined respectively in Section 6.3,
Section 6.4 and Section 6.5.

1. The footprint predicates domain, T] = {=],⊆],⊇],>}:

allocT](β, f, δ) =⊆]

2. The fields predicates domain, T] = P(F):

allocT](β, f, δ) = {}

3. The combined predicates domain, T] = T]1 × T]2:

allocT](β, f, δ) = (allocT]
1
(β, f, δ), allocT]

2
(β, f, δ))

Theorem 6.9 (Soundness of Definition 6.16). The operators from Defini-
tion 6.16 are sound in the sense of Assumption 6.5.
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Regarding the footprint predicates domain, there are two predicates that satisfy As-
sumption 6.5: ⊆] and >. The predicate ⊆] is the most precise, and it expresses that some
memory cells have been allocated, thus it is the most relevant predicate for this operation.
Regarding the fields predicates domain, an allocation does not modify a memory cell of
the input heap, thus no field may be modified. That is why the function returns the empty
set. Finally, for the combined predicates domain, allocT] simply applies recursively this
function for its sub-predicates domains.

Deallocation

The deallocation at abstract heap transformation predicates level is performed by the
function freeT] ∈ V] × F × T] → T], such as freeT](α, f, t]) returns an abstract heap
transformation predicate that over-approximates the deallocation of the cell at address
α · f from t]. Its soundness assumption is given below.

Assumption 6.6 (Soundness of freeT]). Let T] be an abstract heap transformation
predicates domain and t] ∈ T]. Let α ∈ V] and f ∈ F. The function freeT] is sound if
and only if:

{(hi, ho, ν) | ∃v ∈ V, (hi, ho � [ν(α) + f 7→ v], ν) ∈ γT](t])}
⊆

γT](freeT](α, f, t]))

Definition 6.17 (Extended definition of freeR]). We extend the definition of
freeR] (page 71) to take into account abstract heap transformation predicates:

• freeR](α, f, [h]i 99K h]o ∗S (α ·f 7→ β)]t]
0
) = [h]i 99K h]o]t]

1
with t]1 = freeT](α, f, t]0)

• freeR](α, f, Id(h] ∗S α · f 7→ β)) = Id(h]) ∗R [α · f 7→ β 99K emp]t]

with t] = freeT](α, f, idT](α · f 7→ β))

When applied to a transform-into relation r] of the form [h]i 99K (h]o ∗S α · f 7→ β)]t]
0
,

freeR](α, f, r]) returns the transform-into relation [h]i 99K h]o]t]
1
, where t]1 = freeT](α, f, t]0).

When applied to an identity relation r] of the form Id(h] ∗S α·f 7→ β), freeR](α, f, r]) pro-
ceeds like abstract assignment. It first splits r] into Id(h]) ∗R Id(α · f 7→ β) and weakens
the new transform into relation into [α ·f 7→ β 99K α ·f 7→ β]t]

0
, with t]0 = idT](α ·f 7→ β).

It finally proceeds to the deallocation in the latter transform-into relation.
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Definition 6.18 (Deallocation for abstract heap transformation predicates
domains). We define the deallocation function freeT] ∈ V]×F×T] → T] for each
abstract heap transformation predicates domain defined respectively in Section 6.3,
Section 6.4 and Section 6.5.

1. The footprint predicates domain, T] = {=],⊆],⊇],>}:

freeT](α, f,=]) =⊇]
freeT](α, f,⊇]) =⊇]
freeT](α, f,⊆]) = >
freeT](α, f,>) = >

2. The fields predicates domain, T] = P(F):

freeT](α, f, t]) = t]

3. The combined predicates domain, T] = T]1 × T]2:

freeT](α, f, (t]1, t]2)) = (freeT]
1
(α, f, t]1), freeT]

2
(α, f, t]2))

Theorem 6.10 (Soundness of Definition 6.18). The operators from Defini-
tion 6.18 are sound in the sense of Assumption 6.6.

The deallocation for the footprint predicates domain is more complex than the other
operations. When applied to the predicate =], it returns the predicate ⊇], as we have to
express that some memory cells have been deallocated from the predicate that ensures
that neither deallocations nor allocations occured. When applied to the predicate ⊇],
it also returns ⊇] because some memory cells still may have been deallocated. Finally,
when applied to the predicate ⊆] or >, we cannot capture any information about if some
allocations, deallocations, or even if nothing occured. That is why the function returns
>.

Regarding the fields predicates domain, deleting a cell does not modify its content,
thus the deallocation returns the same set of fields.

Finally, as usual for the combined predicates domain, freeT] simply applies recursively
this function for its sub-predicates domains.

6.6.4 Inclusion
Some inclusion checking rules of Figure 5.3 (page 75) should be updated and take into
account abstract heap transformation predicates. This requires to add a new operator
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t]0 vT] t]1 h]i,0 vH] h]i,1 h]o,0 vH] h]o,1
[h]i,0 99K h]o,0]t]

0
vR] [h]i,1 99K h]o,1]t]

1

(v99K)

t]0 = idT](h]) r] ∗R [h] 99K h]]t]
0
vR] [h]i 99K h]o]t]

1

r] ∗R Id(h]) vR] [h]i 99K h]o]t]
1

(vId−weak)

t]2 = t]0 ∗T t]1 r] ∗R [h]i,0 ∗S h]i,1 99K h]o,0 ∗S h]o,1]t]
2
vR] [h]i 99K h]o]t]

r] ∗R [h]i,0 99K h]o,0]t]
0
∗R [h]i,1 99K h]o,1]t]

1
vR] [h]i 99K h]o]t]

(v99K−weak)

Figure 6.2: Update of some inclusion checking rules from Figure 5.3 (page 75).

vT] at the rules system, in order to reason about abstract heap transformation predicates.
This operator is sound, in the sense that it should satisfy the following property:

Theorem 6.11 (Soundness of vT]). Let t]0, t]1 ∈ T]. Then:

t]0 vT] t]1 =⇒ γT](t]0) ⊆ γT](t]1)

The updated rules are shown in Figure 6.2. In its original version, rule (v99K) only
checked the inclusion of the input abstract heaps and the output abstract heaps accord-
ingly. In its updated version, rule (v99K) also checks the inclusion of the abstract heap
transformation predicates of the two transform-into relations. Finally, rules (vId−weak)
and (v99K−weak) are directly derived from Theorem 6.1.

The function isleT](Ψ, t]0, t]1) implements the operator vT] , such as isleT](Ψ, t]0, t]1)
returns true if the set of relations that describes t]0 is included in the set of relations
described by t]1 modulo the renaming function Ψ. It should satisfy the following assump-
tion.

Assumption 6.7 (Soundness of isleT]). Let Ψ ∈ V] → V] and t]0, t]1 ∈ T],
if isleT](Ψ, t]0, t]1) = true then:

(hi, ho, ν) ∈ γT](t]0)⇒ (hi, ho,Ψ ◦ ν) ∈ γT](t]1)
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Definition 6.19 (Inclusion for abstract heap transformation predicates
domains). We define the inclusion function isleT] ∈ (V] → V]) × T] × T] →
{true, false} for each abstract heap transformation predicates domain defined respec-
tively in Section 6.3, Section 6.4 and Section 6.5.

1. The footprint predicates domain, T] = {=],⊆],⊇],>}: the function isleT] is
defined using the Hasse diagram of T]:

=]

⊆] ⊇]

>

2. The fields predicates domain, T] = P(F):

isleT](Ψ, t]0, t]1) = t]0 ⊆ t]1

3. The combined predicates domain, T] = T]a × T]b:

isleT](Ψ, (t]a,0, t]b,0), (t]a,1, t]b,1)) = isleT]
a
(Ψ, t]a,0, t]a,1) ∧ isleT]

b
(Ψ, t]b,0, t

]
b,1)

Theorem 6.12 (Soundness of Definition 6.19). The operators from Defini-
tion 6.19 are sound in the sense of Assumption 6.7.

The soundness of this definition is proven using respectively Theorem 6.2 (page 97),
Theorem 6.4 (page 98) and Theorem 6.6 (page 100).

6.6.5 Join and Widening
Join

Like inclusion checking, the join should take into account abstract heap transformation
predicates. Consequently, some rules of the system defined in Figure 5.5 should be
updated, by adding a new operator tT] that reasons about abstract heap transformation
predicates. This operator is sound if it satisfies the following property:

Theorem 6.13 (Soundness of tT]). Let t]0, t]1 ∈ T]. Then:

t]0 tT] t]1  t] =⇒ γT](t]0) ∪ γT](t]1) ⊆ γT](t])
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t]0 tT] t]1  t] h]i,0 tH] h]i,1  h]i h]o,0 tH] h]o,1  h]o
[h]i,0 99K h]o,0]t]

0
tR] [h]i,1 99K h]o,1]t]

1
 [h]i 99K h]o]t]

(t99K)

t]0 = idT](h]0) [h]0 99K h]0]t]
0
tR] [h]i,1 99K h]o,1]t]

1
 r]

Id(h]0) tR] [h]i,1 99K h]o,1]t]
1
 r]

(tId−weak)

t] = t]0 ∗T t]1 [h]i,0 ∗S h]i,1 99K h]o,0 ∗S h]o,1]t] ∗R r]0 tR] r]1  r]

[h]i,0 99K h]o,0]t]
0
∗R [h]i,1 99K h]o,1]t]

1
∗R r]0 tR] r]1  r]

(t99K−weak)

t]0 = idT](h]0) [h]0 99K h]0]t]
0
∗R [h]i,1 99K h]o,1]t]

1
∗R r]0 tR] r]1  r]

Id(h]0) ∗R [h]i,1 99K h]o,1]t]
1
∗R r]0 tR] r]1  r]

(t99K−intro)

Figure 6.3: Extension of join rewriting rules from Figure 5.5 (page 79).

Figure 6.3 presents the modified rules. Rule (t99K) applies tT] to the abstract heap
transformation predicates of the two transform-into relations and attaches the rewrited
abstract heap transformation to the rewrited transform-into relation. Rules (tId−weak),
(t99K−weak) and (t99K−intro) are all directly inspired from Theorem 6.1

Every abstract heap transformation predicates domain should provide a function
joinT] ∈ (V] → V])2 × T] × T] → T] that implements the operator tT] . It should
satisfy the following assumption.

Assumption 6.8 (Soundness of joinT]). Let Ψ0,Ψ1 ∈ V] → V] and t]0, t]1 ∈ T], if
joinT]((Ψ0,Ψ1), t]0, t]1) = t], then:

(hi, ho,Ψ0 ◦ ν) ∈ γT](t]0) ∨ (hi, ho,Ψ1 ◦ ν) ∈ γT](t]1) =⇒ (hi, ho, ν) ∈ γT](t])
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Definition 6.20 (Join for abstract heap transformation predicates do-
mains). We define the join function joinT] ∈ (V] → V])2 × T] × T] → T] for each
abstract heap transformation predicates domain defined respectively in Section 6.3,
Section 6.4 and Section 6.5.

1. The footprint predicates domain, T] = {=],⊆],⊇],>}: the definition of
joinT](Φ, t]0, t]1) = t] is given by the following table (each line for t]0 and each
column for t]1).

t] =] ⊆] ⊇] >
=] =] ⊆] ⊇] >
⊆] ⊆] ⊆] > >
⊇] ⊇] > ⊇] >
> > > > >

2. The fields predicates domain, T] = P(F):

joinT](Φ, t]0, t]1) = t]0 ∪ t]1

3. The combined predicates domain, T] = T]a × T]b:

joinT](Φ, (t]a,0, t]b,0), (t]a,1, t]b,1)) = (joinT]
a
(Φ, t]a,0, t]a,1), joinT]

b
(Φ, t]b,0, t

]
b,1))

Theorem 6.14 (Soundness of Definition 6.20). The operators from Defini-
tion 6.20 are sound in the sense of Assumption 6.8.

Widening

In Section 5.8, we saw that the operators tH] and tR] can be used as widening operators.
However, the operator tT] cannot be used as a widening operator: it may not converge in
a finite number of steps. Indeed, the used abstract heap transformation predicates domain
T] may denote an infinite set. The solution is to define a converging widening operator
OT] for abstract heap transformation predicates. This operator is then implemented by
a function widT] ∈ (V] → V])2 × T] × T] → T] that is assumed to ensure termination.
Its soundness property is the same that the function joinT] , except that it also enforces
termination.
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Assumption 6.9 (Soundness of widT]). Let Ψ0,Ψ1 ∈ V] → V] and t]0, t]1 ∈ T], if
widT]((Ψ0,Ψ1), t]0, t]1) = t], then:

(hi, ho,Ψ0 ◦ ν) ∈ γT](t]0) ∨ (hi, ho,Ψ1 ◦ ν) ∈ γT](t]1) =⇒ (hi, ho, ν) ∈ γT](t])

The function widT] also enforces termination.

Definition 6.21 (Widening for abstract heap transformation predicates do-
mains). We define the widening function widT] ∈ (V] → V])2 × T] × T] → T]
for each abstract heap transformation predicates domain defined respectively in Sec-
tion 6.3, Section 6.4 and Section 6.5.

1. The footprint predicates domain, T] = {=],⊆],⊇],>}:

widT](Φ, t]0, t]1) = joinT](Φ, t]0, t]1)

2. The fields predicates domain, T] = P(F):

widT](Φ, t]0, t]1) = joinT](Φ, t]0, t]1)

3. The combined predicates domain, T] = T]a × T]b:

widT](Φ, (t]a,0, t]b,0), (t]a,1, t]b,1)) = (widT]
a
(Φ, t]a,0, t]a,1),widT]

b
(Φ, t]b,0, t

]
b,1))

Theorem 6.15 (Soundness of Definition 6.21). The operators from Defini-
tion 6.21 are sound in the sense of Assumption 6.9.

Regarding the footprint and the fields predicates domains, the function widT] is
defined similarly as the function joinT] . These definitions are valid because the footprint
and the fields predicate domains are both finite. On the other hand, the combined
predicates domain applies recursively the widening of its two sub-predicates domains.

6.7 Implementation and Experimental Evaluation
In this section, we evaluate whether abstract heap transformation predicates improve
the logical strength of the relational analysis for the functions analyzed in Section 5.10.
Then, we verify if our enriched relational analysis is able to express similar relational
properties than other approach of program verification: we study the case of the analysis
of a list module of the operating system Contiki [DGV04].
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Structure Function Time (in ms) Logical Strength
Rel. Rel.+ Rel. vs Rel.+

singly linked list allocation 0.77 0.78 =
singly linked list deallocation 0.80 0.79 =
singly linked list traversal 0.79 0.77 =
singly linked list head_insertion 0.43 0.44 =
singly linked list insert (Figure 1.3) 1.92 1.93 =
singly linked list reverse 1.01 1.06 <
singly linked list map 0.92 0.91 <
singly linked list tail 0.55 0.54 =
singly linked list nth 1.17 1.15 =
singly linked list partition 4.85 4.93 <
singly linked list append 1.60 1.59 =
singly linked list contains 1.22 1.24 =
singly linked list deep_copy 2.08 2.16 =
singly linked list sort (Figure 2.3) 21.95 22.16 <
singly linked list filter 2.70 2.79 <
binary search tree allocation 1.11 1.45 =
singly linked list search 1.63 1.67 =
singly linked list insert 6.10 6.22 =

Table 6.1: Experiment results (time in milliseconds over 1000 runs on a laptop with Intel
Core i5 running at 2.4 GHz, with 4 Gb RAM, for basic and enriched relational analyses;
the last column compares the expressiveness of the inferred result of each analysis). These
functions are the same than in Table 5.1, the times for the basic relational analysis are
also the same than in this table.

6.7.1 A Standard Library of Lists and Trees

In this section, we re-analyze the functions in Section 5.10 with abstract heap trans-
formation predicates. The goal of this analysis is to evaluate whether abstract heap
transformation predicates improve in practice the logical strength of the relational analy-
sis. In this section, we name the relational analysis without abstract heap transformation
predicates the basic relational analysis and the relational analysis with these predicates
the enriched relational analysis. The results of the evaluation are given in Table 6.1. The
word ’Rel’ still denotes the basic relational analysis whereas ’Rel+’ denotes the enriched
relational analysis.

The used abstract heap transformation predicates domain is the combined predicate
domain (Section 6.5), that combines the footprint (Section 6.3) and the fields (Section 6.4)
domains.
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We observe that for all the functions for which the basic relational analysis did not
infer stronger properties than the state analysis (reverse, map, partition, sort and
filter), the enriched relational analysis inferred stronger properties than the basic re-
lational analysis (and thus also the state analysis).

For instance, for the map function, the inferred abstract heap relation by the basic
relational analysis was:

[list(α) 99K list(α)]
The enriched relational analysis added to this abstract heap relation the abstract transfor-
mation predicate (=], {data}), that expresses that the footprint of the input and output
lists are the same and that only the data fields may have been modified. Regarding the
functions reverse, sort and filter, for which the basic relational analysis inferred the
same abstract heap relation:

[listseg(α0, α1) 99K list(α2)]

the enriched relational analysis inferred the same abstract heap transformation predicates
for reverse and sort, the predicate (=], {next}) that expresses that the output list is a
permutation in place of the input list. For the function filter, the enriched relational
analysis inferred the abstract heap transformation predicate (⊇], {next}), which means
that some deallocations may occur and that no data field has been modified. Finally,
for the function partition, the basic relational analysis inferred the following abstract
heap relation:

[list(α) 99K list(β1) ∗S list(β2)]
that only indicates the presence of two well-formed linked lists in the output state. The
enriched relational analysis inferred for this abstract heap relation the predicate (=]

, {next}) that indicates that these two output lists are composed by the elements of the
input list, and that the data fields of the latter have not been modified.

For the other cases, the enriched relational analysis often does not infer more infor-
mation. The main reason is that the inferred relation already describes a very precise
relation.

6.7.2 The List Module of The Operating System Contiki
In this section, we evaluate the ability of our relational analysis to infer similar properties
than a less automatic but more precise approach of program verification. We compare
our approach with the one of Blanchard et al. [BKL18] for the verification of the linked
list module of the operating system Contiki [DGV04]. Their work performs a deductive
verification of this list module and is based on a parallel view of a linked list via a
companion ghost array. This approach requires the user to specify both the pre and post
conditions of each function, to annotate the source code with many invariants (mostly
loop invariants), to write ghost functions and to prove different lemmas using SMT solvers
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Function Similar properties Num. of pre-conditions times (in ms)
list_add yes 2 211 + 207
list_chop yes 1 204
list_copy yes 1 207
list_head yes 1 201
list_init yes 1 203
list_insert yes 3 208 + 203 + 204
list_item_next yes 1 202
list_length almost 1 203
list_pop yes 1 200
list_push yes 2 208 + 204
list_remove yes 2 201 + 202
list_tail yes 1 201

Table 6.2: Experiment results for the linked list module of the operating system Contiki.
It Indicates if our relational analysis proved similar relational properties than Blanchard
et al.’s one. The third column indicates with how many different pre-conditions we run
the analysis of the function. The last column indicates the execution times (in ms) from
each pre-condition of the function.

or the Coq proof assistant. In total, for about 176 lines of C code in the list module, they
wrote 46 lines for ghost functions and about 1400 lines of annotations. Their verification
has generated 798 goals to prove. Among these goals, 770 have been proven automatically
by SMT solvers, 4 interactively and 24 proven using the Coq proof assistant.

While this approach is less automatic than ours, it has the advantage to prove formally
programs. Thus, we aimed to check if our relational abstract domain was able to express
similar properties but more automatically. We have analyzed all the functions given in
their paper, using the source codes they provide. These functions are listed in Table 6.2.
It shows that for all of the functions, our analysis proved similar properties as Blanchard
et al. We did not analyze the files that manipulate arrays such as array_pop.c, as our
relational abstract domain does not require ghost array companions.

An important feature in this list module is that each element of a list has to be unique.
So if a function adds an element into a list, and if this element is already in this list, the
element first has to be removed from the list and then added at the desired position. This
is why all the functions that add an element into a list (list_push, list_add) call the
function list_remove. This latter removes the given list element from the input list if it
is inside, or leaves the list unchanged otherwise. For these functions we run our analysis
twice with these 2 different preconditions: when the input list contains the given element
and when it does not contain it. We could have to run the analysis once with only one
pre-condition consisting of a disjunction of these to previous pre-conditions, but these
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disjuncts may have been joined during a widening. This would have begotten a too high
loss of precision.

The function list_insert inserts a given list element into a list at a given position.
We analyzed this function with three different pre-conditions: when the element to insert
is not in the list, when the element is in the list but before the position it is supposed to
be inserted, and when the element is in the list but after the desired position insertion.
This function actually contains a bug. Indeed, if the element is already in the list (no
matter before or after the position of insertion), the function adds directly the element
at the given position without removing it from the list. This breaks the structure of the
list. Like Blanchard et al., we found this bug with our analysis.

For the function list_length, we wrote ’almost’ because our analysis did not prove
that the returned integer is indeed the length of the input list, whereas the work of
Blanchard et al. does. Our relational abstract domain does not express this kind of
properties.
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Chapter 7

Abstract Composition

Abstract memory relations are binary relations over input and out-
put memory states: they are thus composable. Composing two ab-
stract memory relations produces a new abstract memory relation
that describes a relation between the input memory states of the
first one and the output memory states of the second one. This
brings the advantage to make a compositional analysis, where sub-
programs are analyzed independently and then composed, without
losing too much precision. In this chapter, we define an opera-
tor that performs such composition for abstract memory relations.
This operator mainly relies on the intersection of abstract memory
states.

h]0

h]1

h]0

h]0

r]1

h]2

h]3

h]0

h]2

r]2

uH]

h]0

h]2

r] ∈ r]1 ◦R] r]2

Figure 7.1: Graphical representation of the abstract composition.
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7.1 Introduction
In mathematics, if R1 ⊆ X×Y and R2 ⊆ Y ×Z are two binary relations, the composition
of R1 and R2 is defined by:

R1 ◦R2 = {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R1 ∧ (y, z) ∈ R2}

We observe that R1 ◦ R2 is defined by the rule that says (x, z) ∈ R1 ◦ R2 if and only if
there is an element y ∈ Y such that (x, y) ∈ R1 and (y, z) ∈ R2.

Abstract memory relations describe binary relations over concrete memory states:
they are consequently composable. Concretely, if m]

R1 and m]
R2 are two abstract memory

relations, the composition of the concrete relations described by m]
R1 and the concrete

relations described by m]
R2 corresponds to γM]

R
(m]
R1)◦γM]

R
(m]
R2) and is defined as follows:

{(m1,m2) | ∃m ∈M : (m1,m) ∈ γM]
R

(m]
R1) ∧ (m,m2) ∈ γM]

R
(m]
R2)}

In this chapter, we define an over-approximation of γM]
R

(m]
R1) ◦ γM]

R
(m]
R2). This

brings the advantage to make a compositional analysis. When abstract memory relations
represent program fragments, these fragments are composed instead of re-analyzing them,
which is an advantage for scalability. To define an over-approximation of composition, it
requires to compute an over-approximation of the set of the common concrete memory
states m of the two abstract memory relations. Naturally, this implies to define the
intersection of abstract memory states.

Figure 7.1 represents graphically the abstract composition of two abstract heap rela-
tions r]1 and r]2. The abstract heaps h]1 and h]2 are respectively the output abstract heap
of r]1 and the input abstract heap of r]2. First, the abstract composition r]1 ◦R] r]2 performs
the abstract intersection uH] between h]1 and h]2 to compute an over-approximation of
common heaps between r]1 and r]2, on the form of a finite set of abstract heaps. Then,
for all these common abstract heaps, it deduces a finite set of abstract heap relations de-
scribing relations between the input abstract heaps of r]1 and the output abstract heaps
of r]2.

This chapter is organized as follows: Section 7.2 defines the intersection of abstract
memory states, Section 7.3 presents the composition of abstract heap transformation
predicates, that are necessary to define the composition of abstract memory relations in
Section 7.4. Finally, Section 7.5 discusses related works.

7.2 Intersection of Abstract Memory States
We define the abstract operator interM] that computes an over-approximation of the
intersection of two abstract memory states. This operation follows the same principles as
the abstract join operator, except that it outputs a finite set of abstract memory states. It
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emp uH] emp {emp} (uemp)

h]l,0 uH] h]r,0  H]
0 h]l,1 uH] h]r,1  H]

1

h]l,0 ∗S h]l,1 uH] h]r,0 ∗S h]r,1  {h]0 ∗S h]1 | h]0 ∈ H]
0 ∧ h]1 ∈ H]

1}
(u∗S)

Φ(αl, αr) = α Φ(βl, βr) = β

αl · f 7→ βl uH] αr · f 7→ βr  {α · f 7→ β} (upt)

Φ(αl, αr) = α

list(αl) uH] list(αr) {list(α)} (uind)

Φ(αl, αr) = α list(βl) uH] h]r  H] Φ(βl, βr) = β (βl fresh)
list(αl) uH] listseg(αr, βr) ∗S h]r  {listseg(α, β) ∗S h] | h] ∈ H]}

(uindseg)

Φ(αl, αr) = α Φ(βl, βr) = β

listseg(αl, βl) uH] listseg(αr, βr) {listseg(α, β)} (usegseg)

Φ(αl, αr) = α listseg(α′l, βl) uH] h]r  H] (α′l fresh) Φ(α′l, βr) = α′

listseg(αl, βl) uH] listseg(αr, βr) ∗S h]r  {listseg(α, α′) ∗S h] | h] ∈ H]}
(useg)

Φ(αl, αr) = α
there is no inductive or segment predicate attached to αr in h]r

H]
u = unfoldH](αl, list(αl) ∗S h]l)

H] = {h] | ∀h]u ∈ H]
u, h]u uH] h]r  H]

0 ∧ h] ∈ H]
0}

list(αl) ∗S h]l uH] h]r  H]
(uu−ind)

Φ(αl, αr) = α
there is no inductive or segment predicate attached to αr in h]r

H]
u = unfoldH](αl, listseg(αl, βl) ∗S h]l)

H] = {h] | ∀h]u ∈ H]
u, h]u uH] h]r  H]

0 ∧ h] ∈ H]
0}

listseg(αl, βl) ∗S h]l uH] h]r  H]
(uu−seg)

Figure 7.2: Intersection rewriting rules. These rules can be generalized to any inductive
predicate.
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returns a finite set because it may require to unfold inductive or segment predicates, that
also returns a finite set. The intersection of the concretizations of the two intersected
abstract memory states should be included in the union of the concretizations of the
resulting abstract memory states.

Similarly to abstract join, abstract intersection creates new abstract memory relations.
This implies to create new symbolic values. Consequently, the abstract intersection also
requires a pair of renaming functions Φ = (Ψ0,Ψ1), that map each output symbolic
value with the pair of its two corresponding input symbolic values. If α is a resulting
symbolic value of the intersection operator, we denote Φ(α0, α1) = α for Ψ0(α) = α0 and
Ψ1(α) = α1. Concretely, the mapping Φ(α0, α1) = α means that α0 and α1 correspond
to the same concrete value, that is abstracted by α.

The abstract intersection algorithm follows the same three steps as the abstract join
and the abstract inclusion: initialization that creates the initial pair of renaming func-
tions, abstract intersection of abstract heaps that intersects two abstract heaps, and
abstract intersection in the numerical abstract domain that intersects the two abstract
numerical values.

Initialization. The abstract intersection operation starts with the initialization of the
pair of renaming functions and the generation of the resulting abstract environment e]
as follows: ∀x ∈ X,Φinit(e]0(x), e]1(x)) = α and e](x) = α.

Abstract intersection of abstract heaps. The intersection of abstract heaps is per-
formed by the function interH] ∈ (V] → V])2 ×H] ×H] → Pfin((V] → V])2 ×H]), that
inputs a pair of renaming functions Φ and two abstract heaps, and returns a finite set
of pairs of renaming functions (that are an extension of Φ) and of abstract heaps. This
function implements the rewriting rules of Figure 7.2. In this figure, for simplicity we
only consider rules related to the list predicate. However, these rules are valid for any
other inductive predicate. This system rules is based on the operator uH] that statisfies
the property:

Theorem 7.1 (Soundness of uH]). Let h]0, h]1 ∈ H], H] ∈ Pfin(H]). Then:

h]0 uH] h]1  H] =⇒ γH](h]0) ∩ γH](h]1) ⊆
⋃
{γH](h]) | h] ∈ H]}

In this rules system, we indicate informally how the pairs of renaming function is ex-
tended, this is shown by underlined constraints on Φ such as Φ(βl, βr) = β. We also
denote H] for a finite set of abstract heaps (H] ∈ Pfin(H])). Rule (upt) is specific to
points-to predicates. It is obvious that the intersection of two points-to predicates is
a points-to predicate, modulo the renaming. Rules (uind) and (usegseg) follow the same
principle, but for respectively inductive and segment predicates. Rule (u∗S) allows us
to intersect abstract heaps independently. Rules (uindseg) and (useg) are directly inspired
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by respectively the inclusion rules (vindseg) and (vseg) of Figure 5.3 (page 75), except
that they produce a segment predicate. Rules (uu−seg) and (uu−ind) unfolds respectively
segment and inductive predicates. These are the rules that may generate a set made of
several abstract memory states in the result of the abstract intersection (one element per
unfold path).

If one of these rules cannot be satisfied, the algorithm returns the empty set. For
instance, for the intersection of a points predicate α0 · data 7→ α1 ∗S α · next 7→ α2
with a list inductive predicate list(β0), the algorithm applies rule (uu−ind) to unfold the
inductive predicate into emp and β0 · data 7→ β1 ∗S β · next 7→ β2 ∗S list(β2). It then
continues the intersection recursively with the two cases of the unfolding. The first case,
that tries to intersect α0 · data 7→ α1 ∗S α · next 7→ α2 with emp fails, it thus returns
the empty set. The second case succeeds: it applies rule (upt) for the next fields and the
data fields, then applies (uu−ind) on list(β2) (this time, only the case where the predicate
is unfolded to emp succeeds). Finally, the algorithm returns a singleton set of the form
γ0 · data 7→ γ1 ∗S γ · next 7→ γ2.

Theorem 7.2 (Soundness of interH]). Let Ψ0,Ψ1 ∈ V] → V] and h]0, h]1 ∈ H].
∀(h, ν) ∈ (H× (V] → V)), ∀Ψ′0,Ψ′1 ∈ V] → V], we have:

(h,Ψ′0 ◦ ν) ∈ γH](h]0) ∧ (h,Ψ′1 ◦ ν) ∈ γH](h]1)
=⇒ ∀h] such that ((Ψ′0,Ψ′1), h]) ∈ interH]((Ψ0,Ψ1), h]0, h]1) : (h, ν) ∈ γH](h])

There is a very important property about the pair of renaming functions Φ. It allows
us to establish equality constraints between the symbolic values of the resulting abstract
heap, and thus, to simplify this later abstract heap.

Theorem 7.3 (Property). Let α, β1, β2 ∈ V], we have:

Φ(α, β1) = γ1 ∧ Φ(α, β2) = γ2 =⇒ γ1 = γ2

Remark that this property holds true for both sides (i.e. Φ(α1, β) = γ1 ∧ Φ(α2, β) =
γ2 =⇒ γ1 = γ2). This allows us to rename all occurrences of γ1 by γ2 (or vice versa) in
the resulting abstract heap. Thus, after applying each rule, the interH] proceeds to a
symbolic values substitution phase using the equality constraints generated by Ψ.

Abstract intersection in the numerical abstract domain. Finally, the abstract
intersection proceeds to the intersection in the numerical domain, using the renaming
functions generated by interH] . This is performed by the function interN] ∈ (V] →
V])2 × N] × N] → N]. It should satisfy the following soundness assumption.
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Assumption 7.1 (Soundness of interN]). Let Ψ0,Ψ1 ∈ V] → V] and n]0, n]1 ∈ N],
then, ∀ν ∈ V] → V:

(Ψ0 ◦ ν) ∈ γN](n]0) ∧ (Ψ1 ◦ ν) ∈ γN](n]1) =⇒ ν ∈ γN](interN]((Ψ0,Ψ1), n]0, n]1))

Definition 7.1 (Intersection of abstract memory states). Let m]
0 = (e]0, h]0, n]0)

and m]
1 = (e]1, h]1, n]1) be two abstract memory states.

∀x ∈ X,Φinit(e]0(x), e]1(x)) = α and e](x) = α.

interM](m]
0,m]

1) = {(e], h], interN](Φ′, n]0, n]1)) | (Φ′, h]) ∈ interH](Φinit, h]0, h]1)}

Theorem 7.4 (Soundness of interM]). Let m]
1,m]

2 ∈M], then:

γM(m]
1) ∩ γM(m]

2) ⊆
⋃
{γM(m]) | m] ∈ interM](m]

1,m]
2))}

Example 7.1 (Intersection with symbolic value substitution). We discuss
the result of the intersection of the following two abstract memory states.

α1α0 α1α4

α1α1 α1α2

α1α3

next

data

&l1 &l2

list uH]

α1β0 α1β4

α1β1 α1β2 α1β5

α1β3

next

data

&l1 &l2

list

The algorithm starts by initializing the renaming functions, according to the vari-
ables l1 and l2, Φ(α0, β0) = γ0 and Φ(α4, β4) = γ4. Then, the algorithm applies
the rule (upt) respectively for Φ(α0, β0) = γ0 and Φ(α4, β4) = γ4. This extends the
renaming function with Φ(α1, β1) = γ1 and Φ(α2, β5) = γ5, and produces the points
to predicates γ0 7→ γ1 and γ4 7→ γ5. Finally, the algorithm applies respectively the
rule (upt) for Φ(α1, β1) = γ1 and the rule (uind) for Φ(α2, β5) = γ5. This produces
the following abstract memory state:

α1γ0 α1γ4

α1γ1 α1γ2 α1γ5

α1γ3

next

data

&l1 &l2

list
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In the final renaming functions, we have Φ(α2, β2) = γ2 ∧ Φ(α2, β5) = γ5. According
to Theorem 7.3, this means that γ2 = γ5. We can thus rename all occurrences of γ5
by γ2 and obtain:

α1γ0 α1γ4

α1γ1 α1γ2

α1γ3

next

data

&l1 &l2

list

Example 7.2 (Intersection with unfolding). We consider the abstract inter-
section of the two abstract memory states.

α1α0 α1α2

α1α1

&l1 &l2

list uH]

α1β0 α1β2

α1β1 α1β3

&l1 &l2

listseg list

First, the algorithm applies rule (upt) for respectively Φ(α0, β0) = γ0 and Φ(α2, β2) =
γ2. This extends Φ with Φ(α1, β1) = γ1 and Φ(α1, β3) = γ3. Then, rule (uind) is ap-
plied with the two inductive predicates and produces list(γ3). As the inductive pred-
icate list(α1) has been consumed by rule (uind), the algorithm applies rule (uu−seg)
between emp and listseg(β1, β3). This is clear the segment must be unfolded to the
empty memory, and this means that β1 = β3, and by Theorem 7.3, that γ1 = γ3.
Finally, the abstract intersection produces the following abstract memory state:

α1γ0 α1γ2

α1γ1

&l1 &l2

list

Example 7.3 (Intersection that produces a set of several abstract states).
Until now, we saw examples of abstract intersection that produce only one result.
We now show an example that produces a disjunction of abstract memory states. We
thus consider the abstract of the two abstract memory states that denote both a tree
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of at least one node.

α1α0

α1α1

α1α2

α1α3

l

r

&l1 tree

tree
uH]

α1β0

α1β1 α1β2

α1β3

α1β4

treeseg

&l1
l

r

The abstract intersection of these two abstract memory states produces a disjunction
of tree abstract memory states:

α1γ0

α1γ1

α1γ2 α1γ4

α1γ3

α1γ5

α1β6

l

r

&l1 treeseg

tree

l

r ∨

α1γ0

α1γ1

α1γ2

α1γ4α1γ3

α1γ5

α1β6

l

r

&l1

treeseg

tree

l

r

∨

α1γ0

α1γ1

α1γ2

α1γ3

l

r

&l1

These three disjuncts are direct consequences of the definition of a tree segment
predicate:

treeseg(α0, α1) := (emp, α0 = α1)
∨(α0 · r 7→ α2 ∗S treeseg(α2, α1) ∗S α0 · l 7→ α3 ∗S tree(α3), α0 6= 0)
∨(α0 · r 7→ α2 ∗S tree(α2) ∗S α0 · l 7→ α3 ∗S treeseg(α3, α1), α0 6= 0)

7.3 Composition of Abstract Heap Transformation
Predicates

Abstract heap transformation predicates describe specific relations over the two abstract
heaps of transform-into relations. It is necessary to compose them in order to compose
abstract heap relations. We thus define the function compT] ∈ (V] → V])2×T]×T] → T]
that performs the composition of two abstract heap transformation predicates. Similarly
to abstract intersection, this function inputs a pair of renaming functions Φ that maps
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the symbolic values that should correspond to the same concrete value. The function
compT] should satisfy the following assumption.

Assumption 7.2 (Soundness of compT]). Let Ψ0,Ψ1 ∈ V] → V] and t]0, t]1 ∈ T],
compT]((Ψ0,Ψ1), t]0, t]1) = t], we have:

{(h0, h1, ν) | ∃h, (h0, h,Ψ0 ◦ ν) ∈ γT](t]0) ∧ (h, h1,Ψ1 ◦ ν) ∈ γT](t]1)} ⊆ γT](t])

Compositing abstract heap transformation predicates can compute interesting infor-
mation. For instance, for a predicate rev that can express the reversal of a linked list, the
composition of rev with rev should compute (if compT] is defined as such) a predicate
id that expresses the identity relation (this means that reversing a list twice restores the
original list).

We now give the definition of compT] for the abstract heap transformation predicates
domains of Chapter 6.

Definition 7.2 (Composition for abstract heap transformation predicates
domains). We define the function compT] ∈ (V] → V])2 × T] × T] → T] for each
abstract heap transformation predicates domain defined respectively in Section 6.3,
Section 6.4 and Section 6.5.

1. The footprint predicates domain, T] = {=],⊆],⊇],>}: the definition of
compT](Ψ, t]0, t]1) is given by the following table (each line for t]0 and each col-
umn for t]1).

t] =] ⊆] ⊇] >
=] =] ⊆] ⊇] >
⊆] ⊆] ⊆] > >
⊇] ⊇] > ⊇] >
> > > > >

2. The fields predicates domain, T] = P(F):

compT](Φ, t]0, t]1) = t]0 ∪ t]1

3. The combined predicates domain, T] = T]a × T]b:

compT](Φ, (t]a,0, t]b,0), (t]a,1, t]b,1)) = (compT]
a
(Φ, t]a,0, t]a,1), compT]

b
(Φ, t]b,0, t

]
b,1))

Regarding the footprint and the fields predicates domains, the definition of compT] is
totally similar to the function joinT] , the over-approximation of the union of two abstract
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heap transformation predicates (page 111). Indeed, in these cases, join is the most precise
operation that satisfies Assumption 7.2.

Theorem 7.5 (Soundness of Definition 7.2). The operators from Definition 7.2
are sound in the sense of Assumption 7.2.

To define the composition of abstract heap relations, the abstract composition imple-
ments a rules system, in the style of the one in Figure 6.3 (page 110). To design such a
rules system for the composition of abstract heap relations, it also requires a composi-
tion operator ◦T] related abstract heap transformation predicates. It should satisfy the
following soundness property:

Theorem 7.6 (Soundness of ◦T]). Let t]0, t]1, t] ∈ T]. Then:

t]0◦T]t]1  t] =⇒ {(h0, h1, ν) | ∃h, (h0, h, ν) ∈ γT](t]0)∧(h, h1, ν) ∈ γT](t]1)} ⊆ γT](t])

The function compT] can be considered as an implementation of the operator ◦T] .

7.4 Composition of Abstract Memory Relations
We now define the composition of abstract memory relations compM]

R
∈ (V] → V])2 ×

M]
R ×M]

R → Pfin(M]
R) that is built upon the abstract intersection. Since the abstract

intersection returns a finite set, the abstract composition also returns a set. For each
common abstract memory states of the two abstract memory relations, the abstract
composition returns a corresponding abstract memory relations. The composition of the
concretizations of the input abstract memory relations should be included in the union
of the concretizations of the resulting abstract memory relations.

Like the abstract intersection, the abstract composition also manipulates pairs of
renaming functions Φ, that map the symbolic values that should correspond to the same
concrete value (note that this is the same meaning that for abstract intersection).

The abstract composition algorithm follows three main steps: extension that extends
the initial pair of renaming functions Φinit and creates the resulting abstract environment,
abstract composition of abstract heap relations that composes two abstract heap relations,
and abstract composition of abstract numerical abstract domains that intersects the two
abstract numerical values and projects away the result.

7.4.1 Extension of the initial pair of renaming functions
While standard lattice operations such as join or inclusion proceed to an initialization
step, abstract composition inputs an initial pair of renaming functions Φinit and extends
it according to the abstract environments. This initial pair is necessary, as some symbolic
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values of the given abstract memory relations may be unreachable from the variables of
the abstract environments. This specificity is made fully explicit in Chapter 8 and is out
of scope of this current Chapter.

The extension step simply extends Φinit into another pair of renaming functions Φext.
This first consists of creating a temporary pair of renaming functions Φtmp, and creating
the resulting abstract environment e], such that ∀x ∈ X, Φtmp(e]0(x), e]1(x)) = α and
e](x) = α. The extended pair of renaming functions Φext is then obtained by merging
Φinit and Φtmp (we have Φext = Φinit ] Φtmp).

7.4.2 Abstract composition of abstract heap relations
The composition of abstract heap relations is perfomed by the function compR] ∈ (V] →
V])2×R]×R] → Pfin((V] → V])2×R]), that is built upon the intersection of abstract heap
interH] and the composition of abstract heap transformation predicates (both defined
previously).

The Rules System. The function compR] implements the rules system of Figure 7.3,
that is based on a new operator ◦R] that reason over abstract heap relations, and on the
operators uH] and ◦T] . The operator ◦R] satisfies the property:

Theorem 7.7 (Soundness of ◦R]). Let r]0, r]1 ∈ R] and R] ∈ Pfin(R]). Then:

r]0 ◦R] r]1  R]

=⇒ {(h0, h1, ν) | ∃h, (h0, h, ν) ∈ γR](r]0) ∧ (h, h1, ν) ∈ γR](r]1)} ⊆ ⋃{γR](r]) | r] ∈ R]}

In this rules system, we denote H] a finite set of abstract heaps and R] a finite set of
abstract heap relations (we have H] ∈ Pfin(H]) and R] ∈ Pfin(R])). Rules (◦Id), (◦99K),
(◦99K−Id) and (◦Id−99K) all follow the same principle: they intersect the output abstract
heap of the left abstract heap relation with the input abstract heap of the right abstract
heap relation. In the case of rule (◦Id), the composition of two identity relations is
the identity relation of the intersection between their respective abstract heaps. Rules
(◦99K−Id) and (◦Id−99K) are both a kind of mix between rule (◦Id) and rule (◦99K). Rule
(◦∗R) allows us to compose independently abstract heap relations. Rules (◦introL) and
(◦weakL) both rely on Theorem 6.1 (page 93). Finally, rule (◦unfoldL) is inspired by rules
(uu−ind) and (uu−seg) of Figure 7.2 except that the unfolding is performed at abstract
heap relations level instead of abstract heaps level, in order to propagate the information
provided by the unfolding to the whole abstract heap relations. A consequence of this rule
is that (uu−ind) and (uu−seg) should never be applied during the abstract composition.
This also means that the operator uH] in Figure 7.3 should only produce singleton or
empty sets.
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h]0 uH] h]1  H]

Id(h]0) ◦R] Id(h]1) {Id(h]) | h] ∈ H]}
(◦Id)

t]0 ◦T] t]1  t] h]o,0 uH] h]i,1  H] H] 6= {}
[h]i 99K h]o,0]t]

0
◦R] [h]i,1 99K h]o]t]

1
 {[h]i 99K h]o]t]}

(◦99K)

r]0,0 ◦R] r]1,0  R]
0 r]0,1 ◦R] r]1,1  R]

1

r]0,0 ∗R r]0,1 ◦R] r]1,0 ∗R r]1,1  {r]0 ∗R r]1 | r]0 ∈ R]
0 ∧ r]1 ∈ R]

1}
(◦∗R)

t]1 = idT](h]1) t]0 ◦T] t]1  t] h]o,0 uH] h]1  H]
o

[h]i 99K h]o,0]t]
0
◦R] Id(h]1) {[h]i 99K h]o]t] | h]o ∈ H]

o}
(◦99K−Id)

t]0 = idT](h]0) t]0 ◦T] t]1  t] h]0 uH] h]i,1  H]
i

Id(h]0) ◦R] [h]i,1 99K h]o]t]
1
 {[h]i 99K h]o]t] | h]i ∈ H]

i}
(◦Id−99K)

t]0 = idT](h]0) [h]0 99K h]0]t]
0
∗R [h]i,1 99K h]o,1]t]

1
∗R r]0 ◦R] r]1  R]

Id(h]0) ∗R [h]i,1 99K h]o,1]t]
1
∗R r]0 ◦R] r]1  R]

(◦introL)

t]2 = h]0 ∗T h]1 [h]i,0 ∗S h]i,1 99K h]o,0 ∗S h]o,1]t]
2
∗R r]0 ◦R] r]1  R]

[h]i,0 99K h]o,0]t]
0
∗R [h]i,1 99K h]o,1]t]

1
∗R r]0 ◦R] r]1  R]

(◦weakL)

Φ(α0, α1) = α α0 carries an inductive or a segment predicate in r]0
there is no inductive or segment segment predicate attached to α1 in r]1

R]
u = unfoldR](α0, r]0)

R] = {r] | ∀r]u ∈ R]
u, r]u ◦R] r]1  R]

0 ∧ r] ∈ R]
0}

r]0 ◦R] r]1  R]
(◦unfoldL)

Figure 7.3: Composition rewriting rules. The rules (◦introR), (◦weakR) and (◦unfoldR) are
not given, as they are respectively symmetric to the rules (◦introL), (◦weakL) and (◦unfoldL).
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Implementation of the Rules System. We now detail the implementation of the
function compR] . Similarly to inclusion checking or join, the function compR] uses the
pair of renaming functions Φ to detect which rule to applied. If Φ(α0, α1) = α, the
algorithm extracts the abstract heap relations attached respectively to α0 and α1, and
tries to apply the corresponding rule. Note that rules (◦unfoldL) and (◦unfoldR) should be
applied in priority compared to the other rules, as they have constraints on the form of
the abstract heaps. If the abstract intersection of two abstract heaps fails (returns the
empty set), the abstract composition also fails (and also returns the empty set). Thus,
the returned finite set contains only the abstract heap relations for which the abstract
composition is valid. The pair of renaming functions Φ is extended by the abstract
intersection. All symbolic values that appear in the "final" Φ should be renamed in the
resulting abstract heap relations. To illustrate it, we consider the following abstract
composition with Φ(α0, β0) = γ0:

[α0 · f 7→ α1 99K α0 · f 7→ α2]t]
0
◦R] [β0 · f 7→ β1 99K β0 · f 7→ β2]t]

1

This is clear that rule (◦99K) should be applied. In turn, the algorithm should perform
the abstract intersection:

α0 · f 7→ α2 uH] β0 · f 7→ β1

This abstract intersection should extend Φ with Φ(α2, β1) = γ1. In a first time, rule (◦99K)
should produce the resulting singleton:

{[α0 · f 7→ α1 99K β0 · f 7→ β2]t]}

In the final Φ, we thus should have Φ(α0, β0) = γ0 and Φ(α2, β1) = γ1. Thus, all
occurrences of α0 and β0 should be renamed by γ0 and all occurrences of α2 and β1 should
be renamed by γ1 in the resulting abstract heap relation. As there is no occurrence of α2
and β1 in it, we should obtain:

{[γ0 · f 7→ α1 99K γ0 · f 7→ β2]t]}

Theorem 7.8 (Soundness of compR]). Let Ψ0,Ψ1 ∈ V] → V] and r]0, r]1 ∈ R].
∀(h0, h1, ν) ∈ (H×H× (V] → V)), ∀Ψ′0,Ψ′1 ∈ V] → V], we have:

∃h, (h0, h,Ψ′0 ◦ ν) ∈ γR](r]0) ∧ (h, h1,Ψ′1 ◦ ν) ∈ γR](r]1)
=⇒ ∀r] such that (Ψ′0,Ψ′1, r]) ∈ compR]((Ψ0,Ψ1), r]0, r]1) : (h0, h1, ν) ∈ γR](r])

Remark that Theorem 7.3 is also valid for the abstract composition. This means that
some simplifications can be performed in the resulting abstract heap relations.

7.4.3 Abstract Composition in the Numerical Abstract Domain
The abstract composition in the numerical abstract domains consists of intersecting the
two numerical abstract values and projecting away the result.
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Abstract intersection. The first step of the numerical abstract composition simply
consists of the abstract intersection in the numerical abstract domain interN] introduced
previously. Indeed, there is one abstract numerical value per abstract memory relation to
compose. A resulting abstract memory relation should thus contain an abstract numerical
value common to the abstract numerical values of the two composed abstract memory
relations.

Projection. The intersected abstract numerical value may contain information about
some symbolic values that are not in the composed abstract heap relation. These symbolic
values should be then deleted. To do that, the abstract numerical domain requires a
function projN] ∈ Pfin(V])×N] → N]. This function takes a finite set of symbolic values
E , an abstract numerical value n], and returns a new abstract numerical value that is n]
without the symbolic values that are not in E .

Assumption 7.3 (Soundness of projN]). Let E ∈ Pfin(V]) and n] ∈ N]. Then the
function projN] ∈ Pfin(V])× N] → N] is sound if and only if:

γN](n]) ⊆ γN](projN](E , n]))

The set of symbolic values can be computed by a function get_svR] ∈ R] → Pfin(V]),
that takes an abstract heap relation r] and returns a set containing all the symbolic values
that appear in r]. As this operation is obvious, we do not detail it.

7.4.4 Abstract Composition of Abstract Memory Relations
The steps described previously allow us to define the abstract composition of abstract
memory relations as follows:

Definition 7.3 (Composition of abstract memory relations). Let m]
R0 =

(e]0, r]0, n]0), m]
R1 = (e]1, r]1, n]1) be two abstract memory relations, and Ψinit ∈ (V] →

V])2 be a pair of renaming functions.

∀x ∈ X,Φtmp(e]0(x), e]1(x)) = α and e](x) = α and Φext = Φinit ] Φtmp

compM]
R

(Φinit, (e]0, r]0, n]0), (e]1, r]1, n]1)) =
{(e], r], (projN](get_svR](r]), n])) | (Φ′, r]) ∈ compR](Φext, r]0, r]1) ∧

n] = interN](Φ′, n]0, n]1)}

Theorem 7.9 (Soundness of compM]
R
). Let m]

R0 ,m]
R1 ∈M]

R and Φinit ∈ (V] →
V])2, then:

γM]
R

(m]
R0) ◦ γM]

R
(m]
R1) ⊆

⋃
{γM]

R
(m]
R) | m]

R ∈ compM]
R

(Φinit,m]
R0 ,m]

R1)}
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We now discuss two examples of the abstract composition.

Example 7.4 (Composition). In this example, we perform the composition of
two abstract heap relations containing linked lists. For clarity, we omit the data
fields of all the list nodes in this example. We assume that we have Φ(α0, β0) = γ0.

[emp 99K α0 · next 7→ α1]t]
0
◦R] [emp 99K β1 · next 7→ β0]t]

1
∗R Id(list(β0))

Rule (◦∗R) allows us to perform [emp 99K α0 · next 7→ α1]t]
0
◦R] Id(list(β0)) in-

dependently. The inductive predicate Id(list(β0)) is unfolded into Id(emp) and
Id(β0 · next 7→ β2 ∗S list(β2)) with rule (◦unfoldR).

Then the algorithm tries to compute an abstract heap relation both for

[emp 99K α0 · next 7→ α1]t]
0
◦R] Id(emp)

and
[emp 99K α0 · next 7→ α1]t]

0
◦R] Id(β0 · next 7→ β2 ∗S list(β2))

The first case obviously fails. However, the second case succeeds by applying succes-
sively rules (◦99K−Id) (for the points-to predicates) and (◦unfoldR) (to unfold list(β2)
into Id(emp)). This extends Φ with Φ(α1, β2) = γ2 and produces:

[emp 99K γ0 · next 7→ γ2]t]
2

The next step of the algorithm is to compose [emp 99K β1 · next 7→ β0]t]
1
. As

β1 is not mapped with a symbolic value, the algorithm tries to compose it with the
neutral element of abstract heap relations:

[emp 99K emp]idT] (emp) ◦R] [emp 99K β1 · next 7→ β0]t]
1

This composition succeeds with rule (◦99K). Finally, the algorithm also renames
β0 by γ0 and the resulting abstract heap relation is:

[emp 99K β1 · next 7→ γ0]t]
3
∗R [emp 99K γ0 · next 7→ γ2]t]

2

Example 7.5 (Composition with weakening). We consider the composition of
the following abstract heap relations with Φ(α0, β0) = γ0 and Φ(α1, β1) = γ1:

[h]0 99K list(α0)]t]
0
∗R [h]1 99K list(α1)]t]

1
◦R] [list(β0) ∗S list(β1) 99K h]2]t]

3

In the right abstract heap relation, we observe that list(β0) and list(β1) are in the
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same transform-into relation. Consequently, we cannot apply rule (◦∗R). The rule to
applied is (◦weakL) that merges the two transform-into relations of the left abstract
heap relation. In turn, the algorithm performs rule (◦99K).

7.5 Related Works
In this chapter, we used abstract relations to define an over-approximation of their com-
position. Other static analyses do not perform such an abstract composition, but perform
the application of a relation. This is notably the case for typing systems, like [DM82].
Given a function f , its type is represented by a relation over two types t→ t′, that means
that f inputs an element of type t and outputs and element of type t′. The typing rule of
a function call ’f e’ states that if the type of e is t, and if the type of f is t→ t′, then the
type of ’f e’ is t’. We can use our abstract composition to perform such an application.
Indeed, if r] describes a relation for a function f and h] the calling state, we can perform
Id(h]) ◦R] r] and reconstruct the output state to get the result of the application of r] by
h]. Conversely, typing systems cannot use the application to perform a composition of
two relations.

In the context of works that define a composition of abstract relations, the work in
[JLRS10] is probably the closest to ours. They also design a composition operator for
input-output relations over memory states containing data structures, that is also based
of the abstract intersection. The main difference is that their relations are described
by a two-vocabulary of TVLA [SRW02] formulas, whereas we use relational connectives
over separation logic [Rey02] formulas. Their composition operator is defined as follows:
they promote the two two-vocabularies structures into two three-vocabularies structures,
perform the intersection of the three-vocabularies and project away the middle vocab-
ulary. Our approach is different in the sense that we implement a system rules over
our relational connectives that performs the intersection over the common states, and
unfolds inductive predicates. The work in [BDES11] is also very close to ours. They use
a mechanism based on unfolding-fold/folding operations that allows them to define an
abstract intersection operator that can be used at function calls and returns, in order to
minimize the loss of precision. The difference with our work is that these operations are
over first order formulas and multiset constraints.
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Chapter 8

Compositional Inter-procedural
Shape Analysis

In this chapter, we present a compositional inter-procedural shape
analysis that takes benefit of the abstract relations computed in the
previous chapters, to lose a minimum of precision during the com-
position step. The analysis proceeds as follows: it maintains a
mapping that associates for each function an abstract relation that
is composed with the contextual abstract relation when the function
is called. We demonstrate this process makes the shape analysis
scalable without losing too much precision.

8.1 Introduction
In this chapter, we complete the relational intra-procedural shape analysis that has been
defined in Chapter 5 and extended in Chapter 6. We now allow JcK]R to handle func-
tion calls and function returns. If f (e1, . . . , en) is a call to the function f , the abstract
relational semantics JcK]R computes an over-approximation of Jf (e1, . . . , en); KR. Thus,
Jf (e1, . . . , en); K]R should meet the following soundness condition:

∀r∨ ∈ R∨, ∀(m0,m1) ∈ γR∨(r∨), ∀m2 ∈M,
(m1,m2) ∈ Jf (e1, . . . , en); KR =⇒
(m0,m2) ∈ γR∨(Jf (e1, . . . , en); K]R(r∨))

This analysis is a top-down analysis, that goes from a root function to leaf functions.
It is a natural extension of our intra-procedural analysis, it only requires to provide a
pre-condition for the root function. An Abstract relation describes a function summary
(e.g. a precise description of the behaviour of a function), and is stored in a table τ ] that
associates a function to its summary (Section 8.2). A function summary is a pair made
of a pre-condition (an abstract state) and an abstract relation. All function summaries
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h]0

h]1

h]2

h]3

h]4

f (e1, e2)

= h]u ∗S h]r

h]0

h]2

r]2

h]0

h]3

r]3 ∈
r]2
◦R]

instR](r]f ) ∗R Id(h]u)
h]a

h]b

h]c
f (x1, x2)

h]a

h]c

r]fτ ](f ) = (h]f , r
]
f )

h]r vH] h]f = true

• h]u : unreachable abstract heap from f
• h]r : reachable abstract heap from f

Figure 8.1: Graphical representation of the main steps of the inter-procedural composi-
tional analysis (first case).
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τ ](f )← (h], r])
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Id(h])h]a

h]c

r]

• h]u : unreachable abstract heap from f
• h]r : reachable abstract heap from f

Figure 8.2: Graphical representation of the main steps of the inter-procedural composi-
tional analysis (second case).
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are initialized to the bottom element (of which the concretization is the empty set), and
composed with the abstract composition of Chapter 7 at each call.

There are two cases during the abstract evaluation of function calls: when a function
summary is not updated and when it is. These two cases are represented respectively
in Figure 8.1 and Figure 8.2. In these figures, nodes correspond to abstract states and
edges to commands. Abstract relations are thus related to nodes.

We first comment on Figure 8.1. On the left, we observe a call to the function f ,
whose the abstract relation r]f is represented on the right. To evaluate this function call,
the analysis splits the calling abstract state h]2 of the current abstract relation r]2, into
two parts: h]u that represents the unreachable abstract heap from the actual parameters
of f and h]r that represents the reachable abstract heap. Then, the analysis tests if h]r is
included in the pre-condition h]f of f , in order to check if the function summary is valid
according to the calling context. In Figure 8.1, the inclusion test returns true. Thus,
the analysis can directly compose the current abstract relation r]2 with an instantiated
version of r]f (where fresh symbolic values have been generated) and the identity relation
of h]u (by the compositional frame rule). All steps related to the abstract evaluation of
function calls (including the instantiation and the compositional frame rule) are presented
in Section 8.3.

We now comment on Figure 8.2, where h]r is not included in h]f . In this case, the
function summary of f is not valid for the calling context, the analysis then computes a
new function summary for f , more general than the previous one. To do that, the analysis
first computes a new pre-condition h] for f , by joining h]r with h]f , and reanalyzes the body
of f from the identity relation of h]. The previous function summary of f is substituted
by the new one.

Section 8.4 defines both the abstract evaluation of function returns and the abstract
relational semantics. Section 8.5 discusses how our analysis can track cutpoints. In
Section 8.6, we evaluate the analysis on a real benchmark, and we compare our approach
with related works in Section 8.7.

8.2 Abstract Function Summaries

This section formalizes how our abstract relations are used to represent function sum-
maries. In Section 8.2.1, we first explicit the meaning of function summaries in the
concrete semantics from Chapter 3. Concrete function summaries are traces of function
events, where function events is function calls and function returns. In Section 8.2.2,
we define an abstraction of these traces of function events, that consists of a table that
associates a function to a pair made of an abstract pre-condition and an abstract relation.
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8.2.1 Traces of Function Events
An important feature of the compositional inter-procedural analysis is to compute for
each function a summary, and compose this summary when the function is called instead
of reanalyzing it.

Informally, a function summary abstracts the relations between the states at the entry
of the function (before executing its first instruction) and the states at the exit of the
function (after executing its last instruction). Before defining how these summaries are
formally represented, it is important to give them a meaning in the concrete semantics.
In the concrete semantics, this is not obvious how to associate each function call to
its input and output states. Thus, the idea is to simplify the trace semantics defined
in Chapter 3 by discarding all the elements of the trace except those corresponding to
function calls and function returns, and to abstract them into function events. A function
event is simply a triplet that associates a function to an event (In for input or Out for
output) and a memory state. For instance, the function event (f , In,m) indicates that
the function f has been input with the memory state m.

To abstract the trace semantics into a set of traces of function events, we first need a
function to_event ∈ Σ∞ → (Fun ×{In, Out}×M)∞ that converts a trace of stacks into
a trace of function events. We remind that a stack σ ∈ Σ contains pairs 〈c | m〉 where c
is a command and m is a concrete memory state.

Remark 7 (Notation for traces). We use the symbol τ to denote any trace, finite or
infinite. We also define the trace τ0 • τ1 as the concatenation of the traces τ0 and τ1, if
τ0 is a finite trace. Finally, we let the empty trace 〈〉 be the neutral element for •.

Definition 8.1 (Conversion of traces of stacks into traces of function
events). We define by induction over traces of stacks the conversion function
to_event ∈ Σ∞ → (Fun × {In, Out} × M)∞ from traces of stacks into traces of
function events:

to_event(〈 〈f (e1, . . . , en) ; c | m〉 :: σ, 〈c ′ | m′〉 :: 〈f (e1, . . . , en) ; c | m〉 :: σ 〉 • τ)
= 〈(f , In,m′)〉 • to_event(τ)

to_event(〈 〈ret | m〉 :: 〈f (e1, . . . , en) ; c | m′〉 :: σ 〉 • τ)
〈(f , Out,m)〉 • to_event(τ)

to_event(〈σ〉 • τ) = to_event(τ)

to_event(〈〉) = 〈〉

We remark that the first two cases of to_event correspond to the two last rules in
Figure 3.3 (page 37): function calls and function returns. Regarding function calls, the
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memory state of the function event is the one from which we enter in the function but not
the one from which we call the function. The third case discards all the other instructions
of the trace. Also, to_event is defined both for finite and infinite traces.

Definition 8.2 (Abstraction of the trace semantics). We define the abstraction
function of the trace semantics αT ∈ P(Σ∞)→ P((Fun×{In, Out}×M)∞) that maps
a set of traces of stacks into a set of traces of function events:

αT (Σ∞) = {to_event(τ) | τ ∈ Σ∞}

Example 8.1 (Finite trace of function events). We consider the following
function f that calls a function g if its integer argument n is not null. We assume
that there is no function call neither in the else of f nor in the body of g.
1 void f( int n) {
2 i f (n != 0) g(n);
3 e l se {
4 ...
5 }
6 }

We now consider two consecutive calls to the function f:
1 f(1);
2 f(0);

A possible trace of function events for this sequence is the following trace:

〈(f, In,m0), (g, In,m1), (g, Out,m2), (f, Out,m3), (f, In,m4), (f, Out,m5)〉

Example 8.2 (Infinite trace of function events). We consider the following
recursive function f that does not terminate:
1 void f( int n) {
2 f(n+1);
3 }

The only possible trace of function events for the execution of this function is the
infinite trace of the form:

〈(f, In,m0), (f, In,m1), . . .〉
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8.2.2 Function Summaries Table
In this section, we define an abstraction of traces of function events, named a function
summary table. A first and intuitive approach to define such an abstraction is to associate
to each function a disjunction of abstract memory relations. However, abstract memory
relations describe relations between input states and output states. Here, the important
point is that this is not true that for all input states there exists an output state. More
concretely, a function can terminate from some input states but can also loop indefinitely
or crash from some other input states. Thus, using only abstract memory relations is not
enough to define a sound abstraction of function events.

The solution is to associate at each function a pair made of a disjunction of abstract
memory statesm∨ and a disjunction of abstract memory relations r∨, wherem∨ describes
all the input states of the function, even those from which the function does not terminate;
and where r∨ describes relations between the input and output states of the function.
Thus, a function summary table τ ] ∈ T ] = Fun →M

∨×R∨ is a function that associates
a function name to a disjunction of abstract memory states and a disjunction of abstract
memory relations. We name the disjunction of abstract memory states the pre-condition
of the function summary and the disjunction of abstract memory relations the relation
of the function summary.

The concretization function γτ ] ∈ T ] → P((Fun × {In, Out} ×M)∞) of a function
summary table simply maps it into a set of traces of function events. For clarity, we split
this concretization function into two concretization functions: γ[τ ],H]] and γ[τ ],R]], that
respectively concretize the pre-condition of all the functions and concretize the relation
of all the functions. We first define γ[τ ],H]].

Definition 8.3 (Concretization of the pre-conditions T ]). The concretization
function γ[τ ],H]] ∈ T ] → P((Fun × {In, Out} ×M)∞) of a function summary table τ ]
is defined as follows:

γ[τ ],H]](τ ]) = {τ0 • 〈(f , In, (e, h))〉 • τ1 | ∀m∨ ∈M∨, r∨ ∈ R∨ :
τ ](f ) = (m∨, r∨) =⇒ ∃h′, h′′ ∈ H : h = h′ � h′′ ∧ (e, h′) ∈ γM∨(m∨)}

We notice that function summary tables are concretized only in traces that relate
the input states of functions. Moreover, the concrete heap h of the function event must
be splittable into two concrete heaps h′ and h′′, where h′ is a concrete heap in the
concretization of m∨. This allows m∨ to describe a specific part of the input heap that
is relevant only for the function called. We operate this property to make m∨ modular :
it can be valid for many calling contexts.

We now focus on the definition of γ[τ ],R]]. A prerequisite of this definition is a way
to associate corresponding pairs of input and output states in a trace of function events.
Indeed, the same function may be called many times, and thus the trace of function
events may contain many function events that related both input or output states for
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this function. It is not automatic to associate an output state to its corresponding input
state. To illustrate this, we consider the following trace:

〈(f , In,m1), (f , Out,m2), (f , In,m3), (f , In,m4), (f , Out,m5), (f , Out,m6)〉

In this trace, we have many input states (m1, m3 and m4) and many output states (m2, m5
and m6) for the function f . To associate the corresponding pairs of input-outputs states
((m1,m2), (m3,m6) and (m4,m5)) of this trace, we need a notion of well-parenthesized
trace. If a trace τ starts by a function event of the form 〈(f , In,m), . . . , (f , Out,m′)〉 and
if τ is well-parenthesized, this means that m′ is the corresponding output state of the
input state m. This requires to define a predicate well_parenthesized over traces of
function events.

Definition 8.4 (The well-parenthesized predicate). The following inference
rules define the predicate well_parenthesized by induction on the syntax of traces
of function events:

well_parenthesized(〈〉)

well_parenthesized(τ1) well_parenthesized(τ2)
well_parenthesized(τ1 • τ2)

well_parenthesized(τ)
well_parenthesized(〈(f , In,m0)〉 • τ • 〈(f , Out,m1)〉)

Note that the empty trace is well-parenthesized and a non empt well-parenthesized trace
necessarily starts by a function event associating a function to an input state and ends
by a function event associating the same function to an output state. We can now define
γ[τ ],R]]:

Definition 8.5 (Concretization of the relations of T ]). The concretization
function γ[τ ],R]] ∈ T ] → P((Fun × {In, Out} ×M)∞) of a function summary table τ ]
is definied as follows:

γ[τ ],R]](τ ]) = {τ0 • 〈(f , In, (e, hi))〉 • τ1 • 〈(f , Out, (e, ho))〉 • τ2 | ∀m∨ ∈M∨, r∨ ∈ R∨ :
τ ](f ) = (m∨, r∨) ∧well_parenthesized(τ1)
=⇒ ∃h′i, h′o, h′ ∈ H :

hi = h′i � h′ ∧ ho = h′o � h′ ∧ ((e, h′i), (e, h′o)) ∈ γR∨(r∨)}

This definition is similar to Definition 8.3. The abstract memory relations of τ ] form
well-parenthesized traces of function events. We also remark that all abstract memory
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relations are modular : they abstract a specific part of the heaps of the input and output
states of the function events.

Using Definition 8.3 and Definition 8.5, we can give a definition for the concretization
of function map tables.
Definition 8.6 (Concretization of function map tables). The concretization
function γτ ] ∈ T ] → P((Fun × {In, Out} × M)∞) of function summary tables is
defined as follows:

γτ ](τ ]) = γ[τ ],H]](τ ]) ∩ γ[τ ],R]](τ ])

Example 8.3. In this example, we consider the following function tail that inputs
a list l and return its tail.
1 list *tail(list *l) {
2 return l->next;
3 }

Let τ ] ∈ T ]. We assume that:

τ ](tail) = ({(e], h], n])}, {(e], r], n])})

where

h] = list(α) and r] = Id(α · data 7→ δ ∗S α · next 7→ β ∗S list(β))

This is an example of abstraction of the semantics of the functions tail. Indeed, a
valid pre-condition of this function is h] = list(α), and the relational analysis should
consequently start with Id(list(α)). To evaluate the expression l->next, the analysis
unfolds the predicate list(α), that generates the abstract heap relation r] above.

8.3 Abstract Function Calls
This section formalizes the different steps of the abstract evaluation of function calls.
This section is organized as follows: while Section 8.3.1 and Section 8.3.2 are related to
the steps that manipulate the calling abstract relation, Section 8.3.3 and Section 8.3.4 are
related to the steps that reason over the abstract relation of the called function. Finally,
Section 8.3.5 describes how all these steps are combined to perform the abstract function
calls.

8.3.1 Initialization of Function Calls
In this section, we define the binding operation on the calling abstract memory relation
m]
R. This operation corresponds to the initialization of function calls. Suppose that the
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function call to analyze is f (e1, . . . , en) and that the arguments of f are the variables
x1, . . . , xn. The goal of the binding is to perform from m]

R the following assignments
x1 = e1, . . . , xn = en.

The binding proceeds as follows: it first creates a new abstract environment, that
contains only the arguments of the called function. Then, for each argument, it requires to
allocate a new memory cell, and to assign it the evaluation of its corresponding expression.

The creation of the new abstract environment is performed by the function createE] ∈
Pfin(X)→ E] that takes a set of variables and returns an abstract environment that maps
each variable to a fresh symbolic value.

Definition 8.7 (Creation of the abstract environment). The function
createE] ∈ Pfin(X) → E] that creates a new abstract environment from a set of
variables is defined as follows:

createE]({x1, . . . , xn}) = e], such that ∀i, 1 6 i 6 n, e](xi) = αi (with αi fresh)
and e] is defined only for these variables

The function bind_cellM]
R
∈ V] × F × Expr ×M]

R → M]
R proceeds to the binding

of one memory cell. This means that bind_cellM]
R

(α, f, e,m]
R) binds the cell at address

(α, f) to the evaluation of e in m]
R. It uses the functions defined in Chapter 5 evalE

(Section 5.2) to evaluate the expression, allocR] (Section 5.5) to allocate the new cell,
and assignN] and assignR] (Section 5.4) to perform the assignment of the memory cell.

Definition 8.8 (Binding of a single cell). Let α ∈ V], f ∈ F, e ∈ Expr and let
m]
R = (e], r]0, n]0) be an abstract memory relation. Then:

bind_cellM]
R

(α, f, e,m]
R) =

Let (β, p]) = evalE(e, e], r]0) in
Let n]1 = assignN](β, p], n]0) in
Let r]1 = allocR](α, f, r]0) in
Let r]2 = assignR](α, f, β, r]1) in
(e], r]2, n]1)

Theorem 8.1 (Soundness of bind_cellM]
R
). Let α ∈ V], f ∈ F, e ∈ Expr and

m]
R ∈M]

R.
∀(mi, (e, ho)) ∈ γM]

R
(m]
R) =⇒

∃ν ∈ V] → V, (mi, (e, ho�[ν(α)+f 7→ EJeK(e, ho)])) ∈ γM]
R

(bind_cellM]
R

(α, f, e,m]
R))
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Finally, the function bindM]
R
∈ Pfin((X×Expr ))×M]

R →M]
R proceeds at the binding

for all the arguments of the called function. It inputs a set of pairs that associate each
function argument to an expression, the calling abstract memory relation and outputs the
initialized abstract memory relation. This latter should contain the abstract environment
containing the addresses of the function arguments.

Definition 8.9 (Binding). Let m]
R0 = (e]0, r]0, n]0) be an abstract memory relation.

Let e]1 = createE]({x1, . . . , xn}). The abstract memory relations m]
R1 , . . . ,m]

Rn are
defined as follows:

∀i, 1 6 i 6 n, if evalE(xi, e]1, r]0) = (αi, fi)

then m]
Ri = bind_cellM]

R
(αi, fi, ei,m]

Ri−1)

If m]
Rn = (e]0, r]n, n]n):

bindM]
R

({(x1, e1), . . . , (xn, en)},m]
R0) = (e]1, r]n, n]n)

Theorem 8.2 (Soundness of bindM]
R
). Let x1, . . . , xn ∈ X, e1, . . . , en ∈ Expr and

m]
R0 ∈M]

R. Let m]
R1 = bindM]

R
({(x1, e1), . . . , (xn, en)},m]

R0).

∀((e0, hi), (e0, ho)) ∈ γM]
R

(m]
R0)

=⇒
∃e1 ∈ E, ((e1, hi), (e1, ho � [LJx1...nK(e1, h0) 7→ EJe1...nK(e0, ho)])) ∈ γM]

R
(m]
R1)

Example 8.4 (Binding). In this example, we consider the binding step for the
call to concat in the function add_last of Figure 2.5 (page 26). The binding is
performed from the abstract memory relation below:

Id

α1α0

α1α2

&l

&v

α1α1

α1α3

list

99K

emp

α1α4 α1α5

&node

99K

emp

α1α5 α10x0

α1α3

next

data
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The binding creates two new variables l1 and l2, that are parameters of the called
function concat, that point to the same addresses than l and node. The resulting
abstract environment only contains the variables l1 and l2.

99K

emp

α1β0 α1α1&l1

99K

emp

α1β2 α1α5&l2

Id

α1α0

α1α2

α1α1

α1α3

list
99K

emp

α1α4 α1α5

99K

emp

α1α5 α10x0

α1α3

next

data

8.3.2 Cut

After the initialization step, the abstract environment of the calling abstract memory
relation is only related to the arguments of the called function. Consequently, some
parts of the abstract heap relation may be unreachable from these arguments. Indeed, it
discards the abstract environment of the calling abstract memory relation, and substitutes
it by a new one. We name the reachable abstract heap the part of the calling abstract
heap that is reachable from the arguments of the calling function, after the initialization
step. We also name the unreachable abstract heap the part of the calling abstract heap
that is provably not reachable from the arguments of the calling function.

The goal of splitting the calling abstract heap is multiple. First, it allows us to
identify which part of the memory cannot be modified, or cannot be even read by the
called function. During the composition step, the identity relation of the unreachable
abstract heap will be added to the abstract heap relation of the function summary of
the called function. Second, the reachable abstract heap is used by the analysis to
perform the inclusion checking with the pre-condition of the function summary. If the
inclusion holds, this means that the function summary is valid from this calling context.
Conversely, if the inclusion does not hold, this means that the function summary does
not express a valid relation from this calling context. In this case, the analysis joins the
reachable abstract state with the pre-condition of the function summary, and reanalyzes
completely the called function from the identity relation of the joined abstract state in
order to obtain a new function summary, more general than the previous one.
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In this section, we define the function cutM]
R
∈M]

R →M]×H] that takes an abstract
memory relation and returns a pair (m], h]), where the abstract memory state m] denotes
the reachable abstract memory state the input abstract memory relation, and h] its
unreachable abstract heap.

Getting the Calling Abstract Heap

To be able to get the unreachable and the reachable abstract heaps, it requires to get
the calling abstract heap of the current abstract heap relation. Let r] be an abstract
heap relation. For all the triplets (hi, ho, ν) that are in the concretization of r], the
calling abstract heap of r] is simply an abstract heap that abstracts ho. The function
get_outR] ∈ R] → H] returns such abstract heaps.

Definition 8.10 (Definition of get_outR]). The function get_outR] ∈ R] → H]

is defined by induction on abstract heap relations as follows:

get_outR](Id(h])) = h]
get_outR]([h]i 99K h]o]t]) = h]o

get_outR](r]0 ∗R r]1) = get_outR](r]0) ∗S get_outR](r]1)

This definition is trivial for each of these cases using the definition of γR] (page 46).

Theorem 8.3 (Soundness of get_outR]). Let r] ∈ R] and h] ∈ H].

If get_outR](r]) = h], then:

∀(hi, ho, ν) ∈ γR](r]) =⇒ (ho, ν) ∈ γH](h])

Cutting the Calling Abstract Heap

This step consists in a depth-first search of an abstract heap h] from a set of symbolic
values. All the regions of h] visited during this search describe the reachable abstract heap
and the non-visited regions describe the unreachable abstract heap of the called function.
The depth-first search is performed by the function cutH] ∈ H]×H]×Pfin(V])×Pfin(V])→
H] ×H] ×Pfin(V]). At any point in the search, cutH](h]u, h]r,E ,F ) means that h]u is the
unreachable abstract heap, h]r is the reachable abstract heap, E is the set of symbolic
values to visit, and F is the set of the visited symbolic values. The depth-first search
initially starts with cutH](h], emp, im(e]), {}), where h] is the abstract heap to cut, and
im(e]) is the set of symbolic values corresponding to the addresses of the variable in the
abstract environment e].
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Definition 8.11 (Cut of abstract heaps). We define by induction over the ab-
stract heap h]u and over the set of symbolic values E , the cut function cutH] of abstract
heaps:

• cutH](α · f 7→ β ∗S h]u, h]r, {α} ] E , F ) =
cutH](h]u, α · f 7→ β ∗S h]r, {β} ∪ ({α} ] E ), F )

• cutH](listseg(α, β) ∗S h]u, h]r, {α} ] E , F ) =
cutH](h]u, listseg(α, β) ∗S h]r, {β} ∪ E , {α} ∪F )

• cutH](list(α) ∗S h]u, h]r, {α} ] E , F ) =
cutH](h]u, list(α) ∗S h]r, E , {α} ∪F )

• cutH](h]u, h]r, {α} ] E , F ) =
cutH](h]u, h]r, E , {α} ∪F )

if there is no predicate attached to α in h]u

• cutH](h]u, h]r, {}, F ) = (h]u, h]r, F )

All along the depth-first search, some parts of h] will be consumed and will enrich the
reachable abstract heap. The depth-first search ends when E is empty and returns the
unreachable and the reachable abstract heaps with the set of all visited symbolic values.

Theorem 8.4 (Soundness of cutH]). Let h]u,0, h]u,1, h]r,0h]r,1 ∈ H] and E0,F0,F1 ∈
Pfin(V]). If cutH](h]u,0, h]r,0,E0,F0) = (h]u,1, h]r,1,F1) then:

∀hu,0, hu,1, hr,0hr,1 ∈ H,∃ν ∈ V] → V such that:

(hu,0, ν) ∈ γH](h]u,0) ∧ (hu,1, ν) ∈ γH](h]u,1)∧
(hr,0, ν) ∈ γH](h]r,0) ∧ (hr,1, ν) ∈ γH](h]r,1)
=⇒ (hu,0 � hr,0, ν) ∈ γH](h]u,0 ∗S h]r,0)∧

(hu,1 � hr,1, ν) ∈ γH](h]u,1 ∗S h]r,1)∧
γH](h]u,0 ∗S h]r,0) = γH](h]u,1 ∗S h]r,1)∧
{ν(α) | α ∈ F1} ⊆ dom(hr,1) ∪ im(hr,1)

This soundness theorem means that the reachable and unreachable abstract heaps
must describe distinct regions, that cutH] moves some regions of the unreachable abstract
heap into the reachable abstract heap, and that all the concrete values of F1 must be in
the concrete heaps of h]r,1
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Example 8.5 (Cut an abstract heap). In this example, we consider the func-
tion call at line 4 of Figure 2.6 (page 28). We consider the initialization step already
performed, and that get_outR] returns the abstract heap h] graphically represented
below. The symbolic values α0, α6 and α8 respectively denote the addresses of vari-
ables l1, l2 and z, that where in the abstract environment before the initialization
step. For clarity, we ommit the symbolic values denoting the addresses of variables x
and y. We provide the result for cutH](h], emp, {α7, α10}, {}).

α0 α6 α7

α1 α2 α3

α4 α5

next next

data data

&l α8

α9

α9α10 &v

On this abstract heap, cutH] will produce the following reachable abstract heap:

α7

α2 α3

α5

next

data

&l

α9

α9α10 &v

and the following unreachable abstract heap:

α0 α6

α1 α2

α4

next

data

α8

α9

The resulting set of visited symbolic values is:

{α7, α2, α3, α5, α10, α9}

Remark 8. The function cutH] removes elements that are not provably reachable. It
may also remove some elements that are reachable in some concrete states. For instance
in Example 8.5, the concretization of the heap may be such that α9 and α1 are actually
equal. However, this does not make our analysis unsound. Indeed, if the analysis of
the function body depends on this equality, it will fail anyway (as the equality is absent
from the abstract state). Thus, it loses no further information. This is exactly the same
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phenomenon explained in [GBC06].

Then, the analysis requires a function cutN] ∈ N]×Pfin(V])→ N] to perform the cut
in the numerical abstract domain. The function cutN](n]0,F ) should simply discard all
occurences of the symbolic values from n]0 that are not in F .

Assumption 8.1 (Soundness of cutN]). The soundness assumption of the function
cutN] ∈ N] × Pfin(V])→ N] is:

cutN](n]0,F ) = n]1 =⇒ γN](n]0) ⊆ γN](n]1)

That is, cutN] loses information about some symbolic values, for instance those that are
not in F .

We can now define the cut function cutM]
R
∈ M]

R → M] × H] of abstract memory
relations.

Definition 8.12. Let m]
R = (e], r], n]0) ∈M]

R.
if:

get_outR](r]) = h] and cutH](h], emp, im(e]), {}) = (h]u, h]r,F )

and cutN](n]0,F ) = n]1
then:

cutM]
R

(e], r], n]0) = ((e], h]r, n
]
1), h]u)

Theorem 8.5 (Soundness of cut). Let e] ∈ E], r] ∈ R], n]0, n]1 ∈ N] and h]r, h]u ∈
H].

if cutM]
R

(e], r], n]0) = ((e], h]r, n
]
1), h]u)

then γM(e],get_outR](r]), n]0) ⊆ γM(e], h]r ∗S h]u, n
]
1)

Discussion for shared data structures

In the definition of cutH] , we only used the list inductive (list(α)) and the segment
(listseg(α, β)) predicates. As acyclic singly linked lists are unshared data structures
(they do not contain an element that can be pointed by several other elements), this
definition of cutH] is sound. Indeed, the visited part of the depth-first search is well the
unreachable abstract heap. However, the definition of cutH] could be extended to take
into account shared data structures, that may contain an element that can be pointed by
other elements.

For instance, data structures with backward pointers, like double linked lists, are
shared data structures. Such shared data structures have structured sharing, as they have
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exactly one sharing. They are often abstracted with inductive and segment predicates
that contain additional arguments that refer to the previous element of the data structure,
that is abstracted by another predicate. For example, the inductive predicate (this is not
a segment predicate) of doubly linked lists is defined as follows:

dll(α, γ) ::=
(emp, α = 0x0)

∨ (α · prev 7→ γ ∗S α · next 7→ β ∗S dll(β, α), α 6= 0x0)

In this definition, we can see that the prev field of the list points-to a symbolic value
γ that is not folded in the inductive definition. In turn, during the depth-first search, it
is crucial to visit this element, as it belongs to the reachable abstract heap.

Also, [LRC15] defines an elegant abstraction based on separation logic for data struc-
tures with unstructured sharing (that have an unbounded number of sharing), such as
acyclic graphs. In this abstraction, inductive definitions are parameterized by sets of
symbolic values, that denote outer elements that are reachable from the folded region.
Thus, the depth-first search could take into account the sets constraints of this kind
of abstraction. More generally, the dept-first search should proceed similarly for others
abstraction of data structures with unstructured sharing like [HV13].

8.3.3 Instantiation of the Function Summary

Before performing abstract composition on the abstract relation of a function summary,
many steps are necessary, included the instantiation step that we define in this section.

To support function calls that may generate fresh allocation, the analysis cannot use
the same abstract relation for the abstract composition several times. Indeed, we saw
in Chapter 5 that the abstract evaluation of memory allocation generates fresh symbolic
values. If an abstract relation corresponding to a function performing memory allocation
is composed many times, then the abstract composition produces false abstract relations.
Indeed, using the same abstract relation does not generate fresh symbolic values, but
duplicates existing ones.

In order to be able to compose functions that may allocate memory cells, the analyse
should use a different abstract relation at each abstract composition. To obtain a new
abstract relation for a function, the analysis generates a fresh symbolic for each symbolic
value of the abstract relation of the called function. We name this operation instantiation.

The function instM]
R
∈ M]

R → M]
R instantiates an abstract memory relation m]

R.
This function simply generates a new abstract memory relation, where each symbolic
value in m]

R has been replaced by a fresh symbolic value. As this operation is totally
obvious, we just provide its soundness theorem and an example.
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Theorem 8.6 (Soundness of instM]
R
). Let m]

R0 ,m]
R1 ∈M]

R. The function instM]
R

is sound if and only if:

γM]
R

(m]
R0) ⊆ γM]

R
(instM]

R
(m]
R0))

Example 8.6 (Instantiation of an abstract memory relation). In this exam-
ple, we give the instantation of the abstract memory relation corresponding to the
case where the list l is not empty in the function add_last of Figure 2.5 (page 26).

Id

α1α0 α1α1 α1α2

&l

α1α7 α1α8

&v

listseg 99K

α1α2 α1α5

α1α4

next

data

α1α2 α1α3

α1α4

next

data

99K

emp

α1α3 α1α6

α1α8

next

data

From the abstract memory relation above, the instantation step will produce:

Id

α1β0 α1β1 α1β2

&l

α1β7 α1β8

&v

listseg 99K

α1β2 α1β5

α1β4

next

data

α1β2 α1β3

α1β4

next

data

99K

emp

α1β3 α1β6

α1β8

next

data

8.3.4 Compositional Frame Rule
In this section, we define the principle of the compositional frame rule. When a function is
called, it can have only effects on a specific part of the calling memory. This specific part
is the reachable heap from the actual arguments of the called function. Consequently,
the unreachable heap cannot be modified, or even read by the called function. The
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compositional frame rule is an application of this property, and allows us to preserve
identically the unreachable heap during the abstract composition.

We now discuss how to apply it. Let r]0 and r]1 be two abstract heap relations, where
r]0 is the caller and r]1 the called. A first intuition is to split r]0 into two abstract heap
relations r]2 and r]3, such that r]0 = r]2 ∗R r]3, where r]2 is only related to the reachable heap
and r]3 is related to the unreachable heap. Then, to compute an abstract heap relation
that describes the composition of r]0 by r]1, we could use (r]2 ◦R] r]1) ∗R r]3. However, this
solution cannot be applied. Indeed, Theorem 6.1 (page 93) allows us to merge transform-
into relations but does not allow us to split them: we cannot split r]0 into r]2 ∗R r]3 if r]0 is
a transform-into relation.

Another solution, that is less local but that can be applied in any cases, is to add
the identity relation of the unreachable abstract heap of r]0 to r]1. In Section 8.3.2,
we defined a function that extracts both the reachable and the unreachable abstract
heaps. The analysis uses this function to get the unreachable abstract heap h]u of r]0, and
applies r]0 ◦R] (r]1 ∗R Id(h]u)). This operation is implemented by the function enrichM]

R
∈

M]
R×H] →M]

R, that takes an abstract memory relation and an abstract heap, and that
returns a new abstract memory relation where we added the identity relation of the given
abstract heap.
Definition 8.13 (Enrich an abstract memory relation). The function
enrichM]

R
is defined as follows:

enrichM]
R

((e], r], n]), h]) = (e], r] ∗R Id(h]), n])

Theorem 8.7 (Soundness of enrich). Let m]
R1 ∈ M]

R and h] ∈ H]. If
enrichM]

R
(m]
R1 , h]) = m]

R2, then:

((e, hi), (e, ho)) ∈ γM]
R

(m]
R1)∧(h, ν) ∈ γH](h]) =⇒ ((e, hi�h), (e, ho�h)) ∈ γM]

R
(m]
R2)

Before composing m]
R0 with m]

R1 , the analysis adds the identity relation of the un-
reachable abstract heap of m]

R0 to m]
R1 .

8.3.5 Abstract Call
The analysis of abstract function calls performs all the operations introduced in this
section.

Informal Definition

We start with an informal definition of the analysis of abstract function calls, where we
detail each step.
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Preparation of the calling relation to the composition. It first proceeds to the
initialization of the function call (Section 8.3.1) and then cuts (Section 8.3.2) the calling
abstract heap to extract the reachable and the unreachable abstract heaps from the actual
arguments of the called function.

Checking process of the function summary. The next step is probably the most
crucial of the algorithm. As shown in Figure 8.1 and Figure 8.2, it tests if the reachable
abstract heap is included in the pre-condition of the function summaries table τ ]. If the
inclusion does not hold, this means that τ ] does not express a valid relation from the
actual calling context.

Computation of a new abstract relation. If the reachable abstract heap is included
in the pre-condition, this step is not performed, as this means that the function summary
already describes a relation valid from the calling context. Otherwise, the algorithm
computes a new summary for the called function and puts this new summary instead of
the previous one in τ ]. To do this, the algorithm joins the pre-condition with the reachable
abstract heap, in order to obtain a new abstract memory that over approximates all
concrete memory states described by both of them. This joined abstract memory is the
new pre-condition of the function summary. To obtain the new relation, the algorithm
reanalyzes the body of the function, from the identity relation of the new pre-condition.

Preparation of the function summary to the composition. At this step, the
function summaries table contains a valid relation for the calling context, the analysis can
thus prepare the relation of the called function to the abstract composition. It instantiates
(Section 8.3.3) it, and enriches (Section 8.3.4) it with the unreachable abstract heap of
the calling context.

Initialization of the abstract composition. This is the most technical step of the
abstract function call. Remind in Chapter 7, we saw that the abstract composition
requires an initial pair of renaming functions. We now explain why it is required and
how it is initialized. In standard lattice operations such as join or inclusion checking,
we initialize the renaming functions directly from the abstract environments, in order to
know which symbolic values to map together. Regarding the abstract composition, the
principle is the same, except that the initialization of the function call (Section 8.3.1)
deletes the abstract environment of calling abstract relation, and creates a new one only
related to the parameters of the called function. All the symbolic values corresponding
to the addresses of the deleted variables belong to the unreachable abstract heap of the
calling context, that is itself added to the abstract relation of the called function, by the
compositional frame rule (Section 8.3.4). The abstract composition cannot know how to
map these symbolic values, it thus requires to input an initial pair of renaming functions.
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To create such a pair, the algorithm first extracts the abstract environment from
an abstract memory relation with the function get_envM]

R
∈ M]

R → E], such that
get_envM]

R
(e], r], n]) = e]. Second, it uses the function initE] ∈ E] → (V] → V])2 to

create a pair of renaming functions from an abstract environment. This function is defined
as follows: initE](e]) = Φ, such that ∀x ∈ X,Φ(e](x), e](x)) = e](x). The algorithm cre-
ates the initial pair of the abstract composition by performing initE](get_envM]

R
(m]
R)),

where m]
R is the "original" calling abstract memory relation (the one before the initial-

ization step).

Abstract composition. After creating such a pair of renaming functions, the algo-
rithm can effectively perform the abstract composition between the calling abstract re-
lation and the abstract relation of the function summary.

Formal Definition

We now give the formal definition of the analysis of abstract function calls. It is performed
directly at the disjunction of abstract memory relations level. Consequently, it is built
upon the implementation of the functions defined in this chapter but at the disjunction
level (bindR∨ , cutR∨ , instR∨ , enrichR∨ , initR∨ , get_env

R∨ , comp
R∨). Their soundness

theorem is similar to the respective soundness theorem at abstract memory relations level.
Their interface is given below:

comp
R∨ ∈ Pfin((V] → V])2)× R∨ × R∨ → R

∨

bindR∨ ∈ Pfin(X× Expr )× R∨ → R
∨

cutR∨ ∈ R
∨ → M

∨ × Pfin(H])
instR∨ ∈ R

∨ → R
∨

enrichR∨ ∈ R
∨ × Pfin(H]) → R

∨

get_env
R∨ ∈ R

∨ → Pfin(E])
initR∨ ∈ Pfin(E]) → Pfin((V] → V])2)

returnR∨ ∈ R
∨ × Pfin(E]) → R

∨

callR∨ ∈ Fun × Pfin(Expr )× R∨ → R
∨

Abstract function calls, requires inclusion checking isleM∨ ∈M∨×M∨ → {true, false}
and join operator join

M∨ ∈ M∨ ×M∨ → M
∨ for disjunction of abstract memory states,

in order to compare and weaken pre-conditions.
It also requires the function idM∨ ∈ M∨ → R

∨, that lifts a disjunction of abstract
memory states into a disjunction of abstract memory relations (the obtained relations
are simply the identity relations of the given memory states):

idM∨(m∨) = {(e], Id(h]), n]) | (e], h], n]) ∈ m∨}
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Definition 8.14 (Abstract function calls). Let e1, . . . , en ∈ Expr , r∨0 ∈ R
∨,

τ ] ∈ T ], and f ∈ Fun such that:

f (x1, . . . , xn){c; ret} ∈ Prog

The function callR∨ is defined by the following algorithm:

callR∨(f , {e1, . . . , en}, r∨0 ) =
Let (m∨f , r∨f ) = τ ](f ) in
Let r∨1 = bindR∨({(x1, e1), . . . , (xn, en)}, r∨0 ) in
Let (m∨,H]) = cutR∨(r∨1 ) in
If isleM∨(m∨,m∨f ) = false
Then (

Let m∨f = join
M∨(m∨,m∨f ) in

Let r∨f = JcK]R(idM∨(m∨f )) in
τ ](f )← (m∨f , r∨f )

)
Let (m∨f , r∨f ) = τ ](f ) in
Let r∨f = instR∨(r∨f ) in
Let r∨f = enrichR∨(r∨f ,H]) in
comp

R∨(initR∨(get_env
R∨(r∨0 )), r∨1 , r∨f )
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Theorem 8.8 (Soundness of callR∨). Let f ∈ Fun, e1, . . . , en ∈ Expr , r∨ ∈ R∨,
m
∨
0 ∈M∨, r∨0 ∈ R∨, and f ∈ T ] such that:

f (x1, . . . , xn){c; ret} ∈ Prog and τ ](f ) = (m∨0 , r∨0 )

Then:

1. Soundness of the result

∀((e, h0), (e, h1)) ∈ γR∨(r∨), ∃e′ ∈ E, h′, h2 ∈ H, such that:
im(e′) = {x1, . . . , xn}
∧h′ = [e′(x1) 7→ EJe1K(e, h1), . . . , e′(xn) 7→ EJenK(e, h1)]
∧((e′, h1 � h′), (e′, h2 � h′)) ∈ JcKR

=⇒ ((e′, h0), (e′, h2 � h′)) ∈ γR∨(callR∨(f , {e1, . . . , en}, r∨))

2. Soundness of the table

If callR∨(f , {e1, . . . , en}, r∨) =⇒ τ ](f ) = (m∨1 , r∨1 )
Then γM∨(m∨0 ) ⊆ γM∨(m∨1 ) ∧ γR∨(r∨0 ) ⊆ γR∨(r∨1 )

We observe that callR∨ is an over-approximation of the analysis of the body c of
the function f . The concrete environment e′ contains only the arguments of the called
function and the concrete heap h′ contains the allocated cells for these arguments. The
concrete h2 is the resulting heap of the evaluation of the body of the function. The
resulting disjunction of abstract memory relations still contains the arguments of the
function. Moreover, callR∨ can update the function summary table, with a more general
function summary for the called function.

8.4 Abstract Function Returns and Abstract Rela-
tional Semantics

In this section, we define the abstract evaluation of function returns and we finally for-
malize the semantics of our compositional inter-procedural analysis.

8.4.1 Abstract Function Returns
The analysis of abstract function returns should deallocate the arguments of the called
function, and restore the abstract environment of the calling abstract relation. This is
implemented by the function returnM]

R
∈ M]

R × E] → M]
R. It deallocates with the
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function freeM]
R

(Section 5.5) all variables contained in its abstract environment, and
substitutes its abstract environment by the other given abstract environment.

Definition 8.15 (Abstract function returns). Let (e]0, r]0, n]0) be an abstract
memory relation and e] an abstract environment. We let {x1, . . . , xn} = dom(e]0) be
the set of variables in e]0. The abstract memory relations (e]1, r]1, n]1), . . . , (e]n, r]n, n]n)
are defined as follows:

∀i, 1 6 i 6 n, (e]i, r
]
i, n

]
i) = freeM]

R
(&xi,m]

Ri−1)

Then, we have:
returnM]

R
((e]0, r]0, n]0), e]) = (e], r]n, n]n)

Theorem 8.9 (Soundness of returnM]
R
). Let m]

R ∈M]
R and e] ∈ E]. Then:

∀((e0, h0), (e0, h1)) ∈ γM]
R

(m]
R)

=⇒
∀ν ∈ V] → V, ((ν ◦ e], h0), (ν ◦ e], h1 � im(e0))) ∈ γM]

R
(returnM]

R
((e]0, r]0, n]0), e]))

8.4.2 Abstract Relational Semantics
We now define the abstract relational semantics Jf (e1, . . . , en)K]R that over-approximates
both a call to a function and its return.

Jf (e1, . . . , en)K]R(r∨0 ) = returnR∨(callR∨(f , {e1, . . . , en}, r∨0 ), get_env
R∨(r∨0 ))

Theorem 8.10 (Soundness of the analysis). Let f ∈ Fun, e1, . . . , en ∈ Expr ,
r
∨ ∈ R∨, m∨0 ∈M∨, r∨0 ∈ R∨, and τ ] ∈ T ] such that τ ](f ) = (m∨0 , r∨0 ).

Then:

1. Soundness of the result

∀(m0,m1) ∈ γR∨(r∨), ∀m2 ∈M,
(m1,m2) ∈ Jf (e1, . . . , en); KR
=⇒ (m0,m2) ∈ γR∨(Jf (e1, . . . , en); K]R(r∨))

2. Soundness of the table

If Jf (e1, . . . , en); K]R(r∨) =⇒ τ ](f ) = (m∨1 , r∨1 )
Then γM∨(m∨0 ) ⊆ γM∨(m∨1 ) ∧ γR∨(r∨0 ) ⊆ γR∨(r∨1 )



156 Chapter 8. Compositional Inter-procedural Shape Analysis

8.5 Discussion for Cutpoints
In this section, we discuss how our inter-procedural analysis deals with cutpoints. Infor-
mally, cutpoints are points in the heap accessible from both variables of the caller and
the parameters of the callee. To restore after the function call the path from the variables
of the caller to the cutpoints, it is important to track cutpoints. This makes the analysis
hard, as the function summaries give information only related to the parameters of the
function called. Contrary to other inter-procedural analyses, our analysis does not need
anything special for cutpoints, like in [RBR+05, RSY05, GBC06, RPHR+07, KRR+13],
but may need precise enough relations. We start with a short introduction to cutpoints.
We then discuss how our analysis deals with cutpoints according to the different kinds of
our abstract relations (identity and transform-into relations).

8.5.1 Introduction to Cutpoints
Let us consider the following abstract memory state.

α1α0 α1α4

α1α1 α1α2

α1α3

next

data

&x &y

list

We now admit that we have a function f, that has only a linked list l as argument. If this
function is called with the local variable x (i.e. f(x)) from the above abstract memory
state, the binding step (Section 8.3.1) will produce the following abstract memory state.

α1α0 α1α4

α1α1 α1α2

α1α3

next

data

list
α1α5

&l

We observe that the abstract heap α0 7→ α1 ∗S α4 7→ α2 is the unreachable abstract heap
obtained by the cut step (Section 8.3.2), and the rest is the reachable abstract heap. The
common symbolic values shared by the unreachable and the reachable abstract heaps are
named cutpoints. In this case, the cutpoints are thus α1 and α2. It is important to track
cutpoints, as they represent locations reachable from some variables of the caller state.
The challenge is that modular function summaries do not explicit them, and so on, it is
not obvious what effects can have the called function on them, and as the relations with
these are needed to produce precise post-states.
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In our inter-procedural analysis, function summaries are represented by abstract mem-
ory relations. When a function summary is composed, some cutpoints could be lost: it
depends on the precision of its abstract relation. Consequently, in the two following sec-
tions, we discuss how cutpoints are tracked when the function summary is an identity
relation and a transform-into relation.

8.5.2 Tracking Cutpoints with Identity Relations
When the function summary is an identity relation, all cutpoints are tracked, without any
loss of precision. Indeed, this relation is the most precise: it ensures that the function left
the heap physically unmodified. Thus, the abstract composition can restore identically
the calling heap, included all cutpoints.

We illustrate how cutpoints are tracked with an identity relation through an exam-
ple.

Example 8.7 (Case of an identity relation). In this example, we consider the
following abstract composition, that occurs during some function call:

Id

α1α0 α1α4

α1α1 α1α2

α1α3

next

data

list

99K

emp

α1α5 α1α1
&l

◦R] m]
R

Id

α1α0 α1α4

α1α1 α1α2

Here, m]
R is the abstract memory relation of the called function. We assume that m]

R
is of the form:

Id

α1β0

α1β1

&l

list

The unreachable heap α0 7→ α1 ∗S α4 7→ α2 has been added to m]
R under the identity

relation, by the compositional frame rule (Section 8.3.4). We observe two cutpoints:
α1 and α2. Let us detail how these cupoints are tracked.

In a first time the abstract composition computes the following abstract memory
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relation:

Id

α1γ1 α1γ2

α1γ3

next

data

list99K

emp

α1γ0 α1γ1
&l

Id

α1α0 α1α4

α1α1 α1α2

As explained in Section 8.3.5, the abstract composition starts with the initial pair
of renaming values Φ where Φ(α0, α0) = α0 and Φ(α4, α4) = α4. The abstract
composition has extended Φ with Φ(α5, β0) = γ0, Φ(α1, β1) = γ1, Φ(α1, α1) = α1,
Φ(α2, β2) = γ2 and Φ(α2, α2) = α2. This is at this step that Theorem 7.3 (page 121)
is important. Indeed, it allows us to establish that in the resulting abstract memory
relation, we have γ1 = α1 and γ2 = α2, and so on to rename the resulting abstract
memory relation accordingly, like in Example 7.1 (page 122).

Actually, adding the identity relation of the unreachable abstract heap to the
summary of the function called is not really a limitation, as it allows us to track
simply all cutpoints.

8.5.3 Tracking Cutpoints with Transform-into Relations
When the function summary is a transform-into relation, cutpoints tracking mainly de-
pends on the precision of its attached abstract heap transformation predicate. The more
its predicate describes precisely the behaviour of the function, the more cutpoints can be
tracked. The next example illustrates this point.

Example 8.8 (Case of a transform-into relation). In this example, we consider
the same abstract composition as in Example 8.7:

Id

α1α0 α1α4

α1α1 α1α2

α1α3

next

data

list

99K

emp

α1α5 α1α1
&l

◦R] m]
R

Id

α1α0 α1α4

α1α1 α1α2
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However, in this case, we assume that m]
R is of the form:

99K

t]

α1β1
list

α1β1
list

Id

α1β0 α1β1
&l

The track of the cutpoints α1 and α2 mainly depends on what can express the abstract
heap transformation predicate t]. If it does not express any specific transformation,
the abstract composition should produce:

99K

t]

α1γ1 α1γ2

α1γ3

next

data

list

α1γ1 α1γ4

α1γ5

next

data

list

Id

α1γ0 α1γ1
&l

Id

α1α0 α1α4

α1γ1 α1γ2

Thanks to Theorem 7.3 (page 121), the abstract composition has inferred that α0
points to γ1 and α4 points to γ2. However, while γ1 is present both in the input and
output abstract heaps, γ2 is only present in the input abstract heap. This means that
the abstract composition has lost where α4 points to after the function call. This
problem can be partially fixed thanks to more precise abstract heap transformation
predicates. For instance, if t] = ({=], data}), this means that no allocation or
deallocation occurred, and that only some data fields may have been modified. This
allows us to infer that γ2 = γ4.

8.6 Experimental Evaluations
In this section, we report on the evaluation of our compositional inter-procedural shape
analysis. The goal is to evaluate the efficiency and the precision of our analysis compared
to a classical state shape analysis. Indeed, our analysis should be more efficient than a
state analysis but does not suffer loss of precision. We analyzed two different programs
that both manipulate linked lists: a small program, of approximately 300 lines of C codes,
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that implements a Battle (the card game), and a larger program, of approximately 2000
lines of C codes, that consists of a part of Emacs (the text editor).

8.6.1 Battle Game
This program was originally written in Java, and used the LinkedList class of the stan-
dard library to represent desks. We completely translated this program in C, using the
usual structure definition for linked lists. In addition, we wrote functions to deallocate
the memory when necessary, as the original Java program is garbage-collected. This
benchmark is important because it allows us to understand when the composition boosts
the speed-up of the analysis. Also, it is relevant with our relational shape analysis, as it
mainly manipulates linked lists, traversing them, or adding or deleting elements. These
are the kind of relational properties that our analysis can infer.

The code excerpt below defines the data structures used in this program.
1 typedef struct list {
2 int data;
3 struct list *next;
4 } list;
5
6 typedef struct deck {
7 list * pack_of_cards ;
8 } deck;
9

10 typedef struct battle {
11 int nbVals ;
12 deck *trick;
13 deck * player1 ;
14 deck * player2 ;
15 } battle ;

That is, a deck is simply a linked list (where data fields represent the value of a card),
and a battle is composed of two players and a trick, all represented by a deck.

We give in Figure 8.3 a static call graph of this program. It does not indicate how
many times a function is called by another one, but which function can call another. It
allows us to interpret the result of the experimentation evaluation given in Table 8.1. The
first two columns give the execution times of both analyses in seconds. These times in
seconds correspond to the sum of 1000 runs of each function. The last column indicates
if the compositional analysis produced a loss of precision compared to the state analysis,
except for leaf functions, that obviously do not perform function calls. We mean by loss
of precision if the abstract heaps of the compositional analysis are not included in the
abstract heaps of the state analysis.

We observe that the deepest functions in the call graph (like initDeck or pick),



Chapter 8. Compositional Inter-procedural Shape Analysis 161

Figure 8.3: Static call graph of the Battle.
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Structure Function State Composition Precision Depth
List empty_list 0.236 0.252 - 5
List removeFirst 0.248 0.268 - 6
List append 0.608 1.124 - 7
List addLast 0.872 1.584 no loss 6
List dealloc 0.312 0.540 - 4
List sizeList 0.456 0.648 - 5
List copyList 0.808 1.520 - 4
List equalList 1.096 2.364 - 4
Deck emptyDeck 0.240 0.280 no loss 4
Deck initDeck 3.888 4.124 no loss 2
Deck sizeDeck 0.572 0.808 no loss 5
Deck pick 1.364 2.348 no loss 5
Deck pickAll 1.616 3.604 no loss 4
Deck isDeck 1.052 1.812 no loss 0
Deck freeDeck 0.420 0.6280 no loss 3
Deck cut 1.700 1.844 no loss 4
Deck split 4.932 6.972 no loss 3
Deck riffleWith 15.064 14.548 no loss 3
Deck riffleShuffle 53.024 22.992 no loss 2
Deck equalDeck 1.592 2.544 no loss 3
Deck copyDeck 1.072 1.696 no loss 3
Battle createBattle 78.816 30.132 no loss 1
Battle freeBattle 1.188 1.224 no loss 2
Battle oneRound 28.816 22.736 no loss 2
Battle winner 3.088 2.412 no loss 2
Battle copyBattle 4.676 2.852 no loss 2
Battle equalBattle 13.756 8.736 no loss 2
Battle game 39.280 26.876 no loss 1
Battle game2 185.252 51.396 no loss 1
Battle main (with game) 188.588 78.962 no loss 0
Battle main (with game2) 5319.648 864.282 no loss 0

Table 8.1: Measured time (in second) corresponding to the sum of 1000 iterations of each
function. The column ’Precision’ indicates if the compositional analysis loses precision
compared to the state analysis. We node ’-’ for leaf functions in the control flow graph,
as no composition operation is required for their analysis. The column ’depth’ gives the
depth of each function in the control flow graph. Performed on a laptop with Intel Core
i7 running at 2.3 GHz, with 16 Gb RAM.
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Fx_show_tip

Fassq

compute_tip_xy Fnth Fcar

Fcdr Fnthcdr

Fx_display_monitor_attributes_list

x_get_monitor_attributes

x_get_monitor_attributes_fallback

x_make_monitor_attribute_list

x_get_monitor_for_frame

check_x_display_info

make_monitor_attribute_list

list2

list4

x_create_tip_frame x_default_font_parameter

x_default_parameter

x_frame_get_arg

Fcons

x_get_arg

Figure 8.4: Static call graph of the analyzed part of Emacs.

the compositional analysis is reasonably slower (never more than the double, except for
pickAll and equalList). However, for the shallower functions in the call graph the
compositional analysis we observe a significant raise of the execution time (more than
twice faster for some functions like game2 or createBattle, more than six times for main
(with game2). We also observe that the compositional analysis never produces a loss of
precision compared to the state analysis.

8.6.2 Function of Emacs Manipulating Cons Lists
We now report on the evaluation of a larger program, a part of Emacs 25.3. The analyzed
part is the function Fx_show_tip, from file src/xfns.c This program, written is C, mainly
manipulates Lisp Objects that denote a set of primitive types of Lisp such as Strings,
Integers, Vectors or Cons pairs. The primitive type we are interested in is the Cons
pairs, as they are used to implement linked lists.

A cons pair is composed of two elements (x, y), provided by two operations: car and
cdr. The operation car(x, y) returns the first element of the pair, so x, and the operation
cdr(x, y) returns the second element of the pair, y. It should be noted that the elements
x and y are both pointers to Lisp Objects. Consequently, we can implement linked lists
on top of cons pairs, where car allows us to access to the first element of the list and cdr
allows us to access the rest of the list. For instance, the following Lisp Object represents
a linked list of three integers that ends by the special Lisp Object Nil that denotes the
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Function Time (in seconds) Precision Depth
State Comp.

Fcons 0.329 0.337 - 8
list2 0.322 0.324 no loss 7
list4 0.334 0.324 no loss 7
Fassq 2.163 6.463 - 6
Fcar 0.318 0.332 - 3
Fcdr 0.330 0.332 - 2
Fnthcdr 0.332 0.345 - 3
Fnth 0.340 0.341 no loss 2
make_monitor_attribute_list 0.330 0.741 no loss 6
x_get_arg 11.817 8.760 no loss 5
x_default_parameter 23.001 8.908 no loss 3
check_x_display_info 0.327 0.330 - 3
Fx_display_monitor_attributes_list 0.412 0.856 no loss 2
Fx_show_tip 877.12 14.201 no loss 0
x_frame_get_arg 21.747 8.870 no loss 4
x_get_monitor_for_frame 0.395 0.369 - 6
x_make_monitor_attribute_list 0.475 0.867 no loss 5
x_get_monitor_attributes_fallback 0.350 1.014 no loss 4
x_get_monitor_attributes 0.348 1.106 no loss 3
compute_tip_xy 38.239 16.803 no loss 1
x_default_font_parameter 39.062 7.172 no loss 2
x_create_tip_frame 321.774 6.962 no loss 1

Table 8.2: Measured times in seconds for the analysis of each function. The column
’Precision’ indicates if the abstract states contained in the abstract relation inferred by
the compositional analysis were less precise than the abstract states inferred by the state
analysis. We note ’-’ for functions that do not perform function calls (leaf functions).
The column ’Depth’ indicates the maximum depth of each function in the control flow
graph. Performed on a laptop with Intel Core i7 running at 2.3 GHz, with 16 Gb RAM.
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empty list:
(13, (10, (92, Nil)))

To abstract such Lisp Objects, we defined the following inductive and segment pred-
icates:

lisp_object(α) := (emp, α = Nil)
∨ (α · car 7→ β ∗S lisp_object(β) ∗S

α · cdr 7→ γ ∗S lisp_object(γ), α 6= Nil)

lisp_objectseg(α, γ) := (emp, α = γ)
∨ (α · car 7→ δ ∗S lisp_object(δ) ∗S

α · cdr 7→ β ∗S lisp_objectseg(β, γ), α 6= Nil)

Observe that these predicates look like tree predicates. Indeed, both fields of a List
Object point to another Lisp Object. The difference with trees is that the field car
represents the data of the list, that can be any Lisp Object. For instance, the analyzed
program mainly manipulates association lists, where the elements of the list are pairs of
Lisp Object, for instance:

((13, ′d′), ((10, ′m′), ((92, ′y′), Nil)))

This kind of lists can be abstracted by the definitions above, thanks to the field car that
is also a Lisp Object. Remark that we added other cases in these definitions, for instance
to handle the case where a Lisp Object is a frame.

We remark that these definitions do not allow sharing between Lisp Objects whereas
their implementation allows this. In the part of Emacs that we analyse, only one com-
mand introduces shared data structures. It is the parms = Fcopy_alist(parms) as-
signment, at the beginning of function x_create_tip_frame. Function Fcopy_alist
copies partially an association list. The output list does not share the structure of the
input list but shares its elements. As our implementation does not support abstraction
for shared data structures and the original list parms is not used anymore in the rest of
the program, we decided to delete the call to Fcopy_alist.

Our analysis also ignores functions that manipulate types not supported by our anal-
ysis, such as strings or vectors. It simply raises a warning when such a function is called.
This makes our analysis sound only with respect to some behaviors (when the program
manipulates data types supported by our inductive definitions), and does not produce
meaningful behaviors to other kind of Lips Objects (like the vectors). However, the goal
of this evaluation is only to evaluate how the precision and scalability of our compositional
analysis compare with a more classical state shape analysis.

Figure 8.4 presents the static call graph of analyzed functions, and Table 8.2 the
measured times (in seconds) for the analysis of each of them, both for the state and
the relational analyses. For the leaf functions, such as Fcons or Fcar, the measured
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times are of course negligible (approximately 0.3 seconds). An exception occurred for
function Fassq. This function performs many conditional tests in the body of a loop,
that generates many disjunctions and a combinatorial explosion when the analysis com-
pares and widens them. We observe other functions for which the measured time of
the state analysis is negligible but quite slower for the relational analysis, for instance
make_monitor_attribute_list or x_get_monitor_attributes_fallback. This is
because these functions perform few function calls, and consequently the relational anal-
ysis does not gain to perform composition. However, for the shallower functions in the
call graph, the gain of the compositional analysis is in practice exponential, for instance
for the functions x_create_tip_frame and x_default_font_parameter. Especially,
for the root function Fx_show_tip, we observe that the compositional analysis is more
than 60 times faster than the state analysis, and all of this without losing any precision.

In Table 8.3, we explicit how many times a function has been called during the
analysis of the root function Fx_show_tip. For the state analysis, every function is
analysed each time it is called, we thus indicate the number of calls in the column ’State’.
For the compositional analysis, when a function is called, it is either composed directly,
or re-analyzed if the composition is not possible. The column ’analyzed’ indicates how
many times a function has been analyzed, the column ’composed’ indicates how many
times the function has been directly composed (this means composed without reanalyzing
the function). The column ’total’, the sum of these two previous columns, indicates the
total number of calls for a function. Thanks to this Table, we can see that the deepest
functions are called considerably less often in the compositional analysis compared to the
state analysis. Also, all functions except Fcons are analyzed only once, and composed
directly the other times. This improves strongly the execution time of the compositional
analysis.

8.7 Related Works
To our knowledge, our inter-procedural analysis is the first to use abstraction rela-
tions that rely on separation logic. However, some analyses [RSY05, GBC06, MHKS08,
BDES11] proceed similarly to ours by extracting the reachable abstract heap from the
actual arguments of a function. This technique is probably the most intuitive when con-
sidering function calls for an inter-procedural analysis. We believe that the use of our
abstract relations makes this kind of analysis much more precise. Indeed, none of these
analyses (except [BDES11]) defines a composition operator between abstract relations
describing the shape of the heap.

Another important approach to compositional inter-procedural shape analysis is the
analyses using the bi-abduction inference [CDOY09, GCRN09, LGQC14, CDOY07].
They aim at finding and using smaller specifications, that describe only what can be
read (and thus written) by the function. While this method is more local than ours,
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Function State Compositional
analyzed composed total

Fcons 296 3 44 47
list2 12 1 1 2
list4 24 1 3 4
Fassq 64 1 15 16
Fcar 24 1 0 1
Fcdr 12 1 3 4
Fnthcdr 24 1 0 1
Fnth 24 1 7 8
make_monitor_attribute_list 6 1 1 2
x_get_arg 19 1 4 5
x_default_parameter 15 1 14 15
check_x_display_info 3 1 0 1
Fx_display_monitor_attributes_list 3 1 0 1
Fx_show_tip 1 1 0 1
x_frame_get_arg 15 1 0 1
x_get_monitor_for_frame 6 1 1 2
x_make_monitor_attribute_list 3 1 0 1
x_get_monitor_attributes_fallback 3 1 0 1
x_get_monitor_attributes 3 1 0 1
compute_tip_xy 3 1 2 3
x_default_font_parameter 1 1 0 1
x_create_tip_frame 1 1 0 1

Table 8.3: Number of calls for each function during the analysis of Fx_show_tip. For
the compositional analysis, the column ’analyzed’ indicates how many times a function
has been fully analyzed, the column ’composed’ indicates how many times the function
has been directly composed. The column ’total’, indicates the total number of calls for a
function.
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their function summaries are tabulations of pre and post conditions of abstract memory
states. We believe that our abstract relations are more compact and more expressive.
Also, their method does not require to specify the pre-condition of any functions, whereas
ours requires to specify only the pre-condition of the root function. This makes it more
modular than ours but may generate specifications that are never used in the analysis.
Moreover, it would be very interesting to combine the bi-abduction inference with our
abstract relations, instead of using pre-post conditions. We could obtain more precise
and compact results than these analyses and more efficient than ours.

Several other works rely one computing very precise and compact summaries for
functions and composing them. For instance, [YYC08] computes precise and concise
summaries that can encode IFDS [RHS95] and IDE [SRH96] problems. The composition
of a summary does not generate any loss of precision. However, they are specialized in
typestates properties and do not support inductive data structures. Also, the function
summaries of [DDAS11] describe all the possible configurations of the heaps, according
to the input alias relations in a very precise and compact way. However, this work does
not address to compute summaries about shapes of data structures.
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Chapter 9

Extension: Analysis of Recursive
Functions

Until now, the compositional inter-procedural analysis we defined
does not allow us to analyse recursive functions. Indeed, the algo-
rithm will loop indefinitely for the analysis of such functions. In
this chapter, we thus extend the analysis to handle recursive func-
tions.

9.1 Overview
Before formalizing the extension, we provide an overview on a running example. Consider
the function dealloc_tree of Figure 9.1, that performs recursively the deallocation of a
binary tree. The first version of the analysis of this function will loop indefinitely: at line
5 for the first recursive call, the analysis algorithm tests if the calling state is included
in the pre-condition of the function summary. As this pre-condition is initialized to ⊥H] ,
the test returns false and the algorithm re-analyzes the body of the recursive function.
This process is repeated indefinitely.

The extended algorithm proceeds thus as follows:
1. At each recursive call, it widens the calling state with the pre-condition, and directly

updates the function summary with the widened pre-condition, then reanalyzes the
function. It repeats this operation until the inclusion of the calling state in the
pre-condition holds.

2. When the inclusion holds, the algorithm, like in the first version, proceeds to the ab-
stract composition. However until now, the analysis only updated the pre-condition
of the function summary, but not its relation that is still to ⊥R] . Consequently, the
abstract composition returns ⊥R] . The element ⊥R] is propagated until the end of
the conditional branch, and joined with the inferred abstract relation of the other
branch. This allows us to finish the analysis of the recursive function for the first
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1 void dealloc_tree (tree *t) {
2 i f (t != NULL){
3 tree *t_l = t->l;
4 tree *t_r = t->r;
5 dealloc_tree (t_l);
6 dealloc_tree (t_r);
7 free(t);
8 }
9 }

Figure 9.1: Recursive deallocation of a binary tree.

time. At this step, the algorithm obtains a relation corresponding to the terminal
case of the function.

3. The algorithm should compute a relation describing all cases of the function, not
only the terminal case. In turn, the algorithm widens the obtained abstract relation
with the one contained in the function summary, stores it in the function summary,
and reanalyzes the recursive functions using the widened abstract relations during
the abstract composition. The algorithm proceeds to these operations until the
inferred abstract relation is included in the relation of the function summary.

Figure 9.2 shows the analysis of function dealloc_tree after reaching the fixpoint
of the pre-condition. The algorithm can perform the abstract composition at the first
recursive call. However, the relation of the current function summary is ⊥R] . Conse-
quently, ⊥R] is propagated until the end of the conditional branch, and joined with the
inferred abstract relation of the other branch. The algorithm thus inferred the abstract
relation for the terminal case. As this later is not included in ⊥R] , the algorithm widens
them (the result of the widening is obviously the abstract relation of the terminal case),
and updates the function summary. The algorithm must reanalyse the function.

Figure 9.3 represents the next iteration of the analysis. For the two recursive calls, the
algorithm uses the relation describing the terminal case for the abstract composition. As
this relation describes the identity relation of the null pointer, the abstract composition
of the two recursive calls infers that t_l and t_r are both the null pointer. After the
recursive calls, the algorithm proceeds to the deallocation of t, and finishes the itera-
tion by joining the two branches. As the inferred abstract relation that describes the
deallocation of a tree is not included in the current relation of the function summary,
the algorithm widen them, and updates the function summary. A third iteration is thus
required.

Figure 9.4 shows the third iteration, at which fixpoint is reached. For the recursive
calls, the algorithm uses the relation of the current function summary that describes
the deallocation of a tree. That is, after the abstract composition of the two recursive
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Figure 9.2: First iteration. This iteration generates the abstract relation corresponding
to the terminal case of the function. During the abstract composition, the algorithm uses
the relation of the current function summary ⊥R] . The widened relation is obtained by
widening the current relation on the right top with the inferred relation on the bottom.
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the current function summary, that corresponds to the relation for the terminal case of
the function generated in Figure 9.2.
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calls, the algorithm has inferred that both the left and right children (respectively t_l
and t_r) have been fully deallocated. This is also the case for the pointer t, after the
command free(t). Thus, the abstract relation inferred for this branch describes the full
deallocation of the given tree. The inferred abstract relation, obtained by joining the two
branches also describes the full deallocation of the tree. This abstract relation is included
in the relation of the function summary, the fixpoint is thus reached.

9.2 Algorithm
This extension of the compositional analysis is very similar to the original version, except
that it first computes a fixpoint for the pre-condition of the function summary, and then
computes a fixpoint for the relation.

To compute a fixpoint for the relation of a function summary, the algorithm relies on
a function compute_fp(f ) that analyses the body of function f , widens the resulting
abstract relation with the relation contained in the function summary for f , and continues
until reaching a fixpoint.

Definition 9.1. Let f ∈ Fun such that:

f (x1, . . . , xn){c; ret; } ∈ Prog

The function compute_fp is defined as follows:

compute_fp(f ) =
Let (m∨f , r∨f ) = τ ](f ) in
Let r∨1 = JcK]R(idM∨(m∨f )) in
If isleR∨(r∨1 , r∨f ) = false
Then (

Let r∨f = widR∨(r∨1 , r∨f ) in
τ ](f ) := (m∨f , r∨f );
compute_fp(f )

)

Theorem 9.1 (Soundness of function compute_fp). Let f ∈ Fun, m∨0 ∈ M∨,
r
∨
0 ∈ R∨, and τ ] ∈ T ] such that τ ](f ) = (m∨0 , r∨0 ).

If compute_fp(f ) =⇒ τ ](f ) = (m∨1 , r∨1 )
Then γM∨(m∨0 ) ⊆ γM∨(m∨1 ) ∧ γR∨(r∨0 ) ⊆ γR∨(r∨1 )

The algorithm also defines the function rec_callR∨ ∈ Fun × Pfin(Expr ) × R∨ → R
∨

that is applied for calls of recursive functions. It is similar than callR∨ , except that it
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widens (with the function widM∨ ∈ M∨ × M∨ → M
∨) the calling state with the pre-

condition of the function summary instead of joining them when the inclusion does not
hold, and uses the function compute_fp to widen the abstract relations.

Definition 9.2. Let e1, . . . , en ∈ Expr , r∨0 ∈ R∨ and f ∈ Fun such that:

f (x1, . . . , xn){c; ret; } ∈ Prog

The function rec_callR∨ is defined as follows:

rec_callR∨(f , {e1, . . . , en}, r∨0 ) =
Let (m∨f , r∨f ) = τ ](f ) in
Let r∨1 = bindR∨({(x1, e1), . . . , (xn, en)}, r∨0 ) in
Let (m∨,H]) = cutR∨(r∨1 ) in
If isleM∨(m∨,m∨f ) = false
Then (

Let m∨f = widM∨(m∨,m∨f ) in
τ ](f )← (m∨f , r∨f );
compute_fp(f )

)
Let (m∨f , r∨f ) = τ ](f ) in
Let r∨f = instR∨(r∨f ) in
Let r∨f = enrichR∨(r∨f ,H]) in
comp

R∨(initR∨(get_env
R∨(r∨0 )), r∨1 , r∨f )

The soundness theorem of rec_callR∨ is the same as the soundness theorem of callR∨
(Theorem 8.8) (page 154), we thus do not explicit it.

The particularity with our analysis is that it does not require explicit stack abstrac-
tions, as in [RS01] or [RC11]. Indeed, our approach is the functional approach [SP81]
that is valid even in the presence of recursion. Our analysis simply uses intermediate
function summaries that it composes to treat recursive function calls, and widens these
intermediates summaries until reaching a fixpoint.

9.3 Experimental Evaluation
We report on the implementation of this compositional analysis. The goals of this eval-
uation is to check whether:

1. the analysis of the recursive version of some functions inferred similar relations as
the analysis of the iterative version.

2. the analysis works for functions that is not obvious to implement iteratively, for
example for functions manipulating trees.
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Structure Function Time (in s) Similar to iterative?
List length 1.256 yes
List get_n 2.179 yes
List alloc 1.139 yes
List dealloc 0.842 yes
List concat 1.833 no
List map 0.904 yes
List deep_copy 1.540 yes
List filter 3.357 yes
Tree visit 1.078 -
Tree size 1.951 -
Tree search 3.818 yes
Tree dealloc 1.391 -
Tree insert 5.083 no
Tree deep_copy 2.603 -

Table 9.1: Measured time (in second) over the sum of 1000 runs of each function. Last
column indicates whether the inferred relation is similar to the iterative version. We note
’-’ for the functions we cannot implement iteratively without an explicit stack. Performed
on a laptop with Intel Core i7 running at 2.3 GHz, with 16 Gb RAM.

Consequently, we selected some functions manipulating linked lists that are natural
to implement recursively, and some functions manipulating binary trees, including some
that are not obvious to implement iteratively (as they require an explicit stack). These
functions are listed in Table 9.1 In this table, each timing measurement is the sum over
1000 runs of a function. The last column indicates if the analysis of the recursive version
inferred a similar relation as the iterative one.

We observe that all of the functions has been analyzed in a reasonably time (recall
that the given times are over the sum of 1000 runs). For the majority of the functions,
the analysis of the recursive version inferred a similar relational property as the iterative
version.

For instance, the analysis of the recursive version of length inferred Id(list(α)),
whereas the analysis of the iterative version inferred Id(listseg(α,0x0)). Even if they
are not the same, they are very similar. This difference is explained by the fact that in
the iterative version, the function uses a temporary cursor to traverse the list that makes
the analysis introduce a segment definition, whereas the recursive version does not. We
observe this phenomenon for all the functions.

We now discuss the case of function concat, for which we obtained a non-similar re-
lational property compared to the iterative version. The iterative version of this function
is given in Figure 2.1 (page 16) and the recursive version just below.
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1 list * concat (list *l1 , list *l2) {
2 i f (l1 == NULL) {
3 return l2;
4 }
5 l1 ->next = concat (l1 ->next , l2);
6 return l1;
7 }

For the iterative version, we obtained a disjunction of two abstract relations: one for
the case where the list l1 is empty and the other where it is not empty. For the recursive
version, we also obtained a disjunction of two abstract relations for the same cases. While
the cases for where l1 is empty are identical, the cases where it is not empty are quite
different. The abstract relation below represents the inferred disjunct for the case where
l1 is not null.

α1α0 α1α1

α1α2

next

data

l1

α1α0 α1α3

α1α2

next

data

l1
99K

(=], {next})

α1α1
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α1α3 α1α4
listseg

99K

(=], {next})

Id

α1α4
list

l2

We observe that in the input state, the next field of l1 pointed to a list that ends by the
null pointer and that in the output state, it points to another list that is connected to
l2. Between these two lists, we know that they describe exactly the same addresses and
that only next fields may have been modified. We can explain this difference with the
iterative version by the fact that they do not concat the lists in the same way. Indeed,
the command ’l1->next = concat(l1->next, l2);’ may modify at each execution of
the function the next field of l1, whereas in the iterative version, it does it only once
after traversing the list until its last element.

9.4 Related Works
According to [SP81], most of the inter-procedural analyses are derived from two ap-
proaches: the call-strings approach and the functional approach. While the call-strings
approach consists of considering a whole program as a single flow-graph, the functional
approach considers a program as a collection of blocks and aims at inferring input-output
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relations for these blocks. Both of these approaches have drawbacks and advantages. The
functional approaches require to abstract relations, whereas the call-strings approaches
only require to abstract states (that is simpler). In the context of inter-procedural analy-
ses, functional approaches compose their input-output relations to analyze function calls
without reanalyzing the function. This technique is also valid in present of recursion
and has been applied in several works ([JLRS04], [BDES11]). Our work is obviously
a derivation of the functional approach. The call-strings based analyses inline function
calls. As this operation is simpler than the composition of abstract relations, it cannot
be applied in presence of recursion. To fix this limitation, several solutions have been
proposed, and most of them make the analysis much more difficult. The first one is
to consider the recursive function into an iterative function with a loop. However, this
technique is limited to tail-recursive functions. In the case of shape analyses, functions
manipulating linked list can often be implemented in tail-recursive fashion, whereas much
functions manipulating trees cannot, as they may require an implicit (or explicit) stack.
To deal with non-tail recursive function, some techniques have been proposed like [RS01]
and [RC11]. These techniques require to abstract the call stack. The work in [RS01] is
specific to the analysis of recursive functions that manipulate linked list, and is based on
three-valued logic [SRW02]. The work in [RC11] is based on separation logic [Rey02] and
uses inductive definitions to abstract the call stack. However, abstracting the call stack
is very hard.
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Chapter 10

Conclusion and Future Directions

In this chapter, we conclude this Thesis and we discuss future di-
rections.

10.1 Conclusion
While relational properties are harder to abstract than state properties, they are in-
trinsically more expressive and they offer the ability to make the analysis modular and
compositional. In the context of data structures, shape analyses based on separation
logic rely on the separating conjunction (∗) that ensures that two memory regions are
disjoint, and on inductive predicates that describe precise structural invariant over com-
plex dynamic data structures. However, separation logic formulas describe a set of states,
they cannot describe relations.

The stakes of this Thesis were multiple:
1. to describe expressive input-output relations taking into account inductive data

structures.
2. to infer automatically such relations.
3. to take advantage of these relations to perform a compositional analysis that im-

proves the scalability of the analysis without losing too much precision.
The following paragraphs sum up how we tackled each of these stakes.

Abstract relations. In Chapter 4, we have introduced a new set of logical connectives
that rely on separation logic, and that can express input-output relations over memory
states. In particular, the identity relation Id(h]) ensures that the heaps abstracted by
h] are totally identical in the input and the output states. The transform-into relation
[h]i 99K h]o] expresses that the heaps abstracted by h]i have been transformed into the
heaps abstracted by h]o. Moreover, the relational separating conjunction ∗R describes
independent relations and allows local reasoning on them. With these new connectives,
we have built an abstract domain that supports inductive data structures and that over-
approximates input-output relations over memory states.
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However, transform-into relations do not describe any specific relation, but only the
transformation of some part of the memory into another. Thus, in Chapter 6, we have
proposed a generic extension of our relational connectives to improve their precision.
More precisely, the transform-into predicates are now parameterized by sets of relational
predicates, called abstract heap transformation predicates domains. The abstract relation
[h]i 99K h]o]t] signifies that the heaps abstracted by h]i has been transformed into the
heaps abstracted by h]o according to the relation described by the predicate t]. We have
formalized three abstract domains of such predicates, that are all data structures agnostic.

Automatic inference of abstract relations. In Chapter 5, we have designed a static
analysis by abstract interpretation that infers automatically abstract relations over mem-
ory states. This analysis starts from the identity relation of a given pre-condition, and
applies a corresponding transfer function to each program command (assignment, alloca-
tion, deallocation) to compute new abstract relations. This analysis needs also to unfold
inductive predicates in order to materialize summarized memory cells. Moreover, it de-
fines standard operations over lattices such as inclusion test, join and widening to deal
with condition tests, loops, and to ensure termination. This analysis is intra-procedural:
it does not handle function calls. We have implemented a prototype static analyzer as
a Frama-C plug-in that supports both a classic state shape analysis and our relational
shape analysis. We have obtained positive results by running both analyses on short
functions manipulating singly linked lists and binary trees. In most of the cases, our
relational analysis inferred stronger properties than the state analysis in a reasonable
time.

Moreover, we have designed an extension of our relational intra-procedural shape
analysis, that can take into account generically any abstract heap transformation predi-
cates domains in Chapter 6. We have experimented this extended relational analysis and
improved the results obtained for the first version without the relational predicates, and
obtained similar results to an approach by verification deductive for the verification of a
list module of the Contiki operating system.

Compositional analysis. In Chapter 8, we have lifted our relational intra-procedural
shape analysis into a compositional inter-procedural shape analysis. Now, our analysis
handles function calls, and takes advantage of the abstract relations. Indeed, they are
used as function summaries that are composed with the current abstract relation when
a function is called. It mainly relies on the composition operator over abstract relations
that is itself built upon the abstract intersection of abstract memory states, both defined
in Chapter 7. Composing abstract relations makes the relational analysis much more
efficient: this allows the analysis to not reanalyze the body of functions every time they
are called. Moreover, the expressiveness of our abstract relations allows a minimal loss of
precision during the abstract composition, compared to an analysis that inlines functions.
Our experimental evaluations show that our compositional analysis exponentially more
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efficient than a state analysis that inlines functions but with no loss of precision for
programs manipulating shapes with deep function calls. Finally, we have designed an
extension of this compositional inter-procedural shape analysis that handles recursive
functions in Chapter 9.

10.2 Future Directions
In this section, we discuss some possible future directions for our works. They are divided
into three main axes: some that could improve the result of the analysis defined in this
Thesis, some that could allow us to express more relational properties, and some that
could use our abstract relation for other kinds of analyses.

10.2.1 Improvement of our Analysis
Analysis of mutually recursive functions. We believe that our technique to analyze
recursive functions can also be applied to mutually recursive functions. Indeed, it widens
the function summaries of functions until reaching a fixpoint. This process should then
work for mutually recursive functions.

Using silhouettes abstractions. The recent work in [LBCR17] introduces silhouettes,
that abstract path relations between live program variables. Silhouettes are applied
not only to clump relevant disjuncts of abstract memory states but also to guide the
weakening operations over abstract memory states. We could adapt silhouettes to our
abstract memory relations. In a first time, we could only use silhouettes for clumping
and the weakening operations. As this improves the performance of state shape analyses,
this could also improve the performance of our relational analysis. In a second time, we
could use silhouettes to guide our abstract composition operator. Indeed, the current
implementation of our abstract composition tries to compose all the disjuncts of the
first disjunction with all the disjuncts of the second disjunction, the not composable
abstract memory relations are automatically detected and discarded dynamically during
the composition. We believe that silhouettes can help to detect before performing the
abstract composition relevant abstract memory relations to compose.

10.2.2 Abstracting More Relational Properties
Designing other abstract heap transformation predicates domains. The ab-
stract heap transformation predicates domains designed in this Thesis are totally inde-
pendent from data structures. While they can prove interesting relational properties,
they cannot prove properties specific to data structures, such as a list reversal or a list
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sort. As we have designed an analysis parameterized by any abstract heap transforma-
tion predicates domain, we could formalize new ones to describe more specific relational
properties.

Expressing non local abstract relations. An abstract heap transformation predi-
cates describes a specific relation for its attached transform-into relation. This specific
relation is local: it does not describe anything about the other abstract relations. Con-
sequently, our abstract relations cannot express that two disjoint data structures have
the same size, or contain the same data. We could draw inspiration from the work in
[BDE+10] that can describe and infer such properties for linked lists.

10.2.3 Designing other Analyses
Combining state and relational analyses. In this Thesis, we have proposed an
analysis that is fully relational, in contrast with a full state analysis. The inferred abstract
relations are used to describe the behavior of functions. However, we can imagine that
the abstract relations describe the behavior of more specific pieces of programs that
are expensive to analyse, such as branches or loops. In turn, we could perform a state
analysis, that is switched into a relational analysis for some pieces of programs. The
inferred abstract relation could then be composed with the switched abstract state. This
process could improve the performance of the state analysis, and make it faster than our
compositional analysis.

Use the relational abstract domain with other kind of analyses. In this Thesis,
we have used our relational abstract domain to designed a Top-down program analysis,
that starts from a root function and that analyzes the program until its leafs. However, we
could apply it for Bottum-up analyses, that begin from leaf functions and proceed from
callees to callers, in the style of [CDOY09, GCRN09]. We believe that these analyses,
based on the bi-abduction inference, could benefit of our abstract relations to obtain more
compact and more precise summaries, instead of using tabulations of pre-post conditions.
We also could inspire from [ZMNY14], that combines both Top-down and Bottom-up
analyses in a manner that gains their benefits without suffering their drawbacks.
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RÉSUMÉ

Les analyses statiques ont pour but d’inférer des propriétés sémantiques de programmes. Nous distinguons deux im-
portantes classes d’analyses statiques : les analyses d’états et les analyses relationnelles. Alors que les analyses
d’états calculent une sur-approximation de l’ensemble des états atteignables d’un programme, les analyses relationnelles
calculent des propriétés fonctionnelles entre les états d’entrée et les états de sortie d’un programme. Les analyses re-
lationnelles offrent plusieurs avantages, comme leur capacité à inférer des propriétés sémantiques plus expressives par
rapport aux analyses d’états. De plus, elles offrent également la possibilité de rendre l’analyse compositionnelle, en util-
isant les relations entrée-sortie comme des résumés de procédures, ce qui est un avantage pour le passage à l’échelle.
Dans le cas des programmes numériques, plusieurs analyses ont été proposées qui utilisent des domaines abstraits
numériques relationnels, pour décrire des relations. D’un autre côté, modéliser des abstractions de relations entre les
états mémoires entrée-sortie tout en prenant en compte les structures de données est difficile. Dans cette Thèse, nous
proposons un ensemble de nouveaux connecteurs logiques, reposant sur la logique de séparation, pour décrire de telles
relations. Ces connecteurs peuvent exprimer qu’une certaine partie de la mémoire est inchangée, fraîchement allouée,
ou désallouée, ou que seulement une seule partie de la mémoire est modifiée (et de quelle manière). En utilisant ces con-
necteurs, nous construisons un domaine abstrait relationnel et nous concevons une analyse statique compositionnelle par
interprétation abstraite qui sur-approxime des relations entre des états mémoires contenant des structures de données
inductives. Nous avons implémenté ces contributions sous la forme d’un plug-in de l’analyseur FRAMA-C. Nous en avons
évalué l’impact sur l’analyse de petits programmes écrits en C manipulant des listes chaînées et des arbres binaires,
mais également sur l’analyse d’un programme plus conséquent qui consiste en une partie du code source d’Emacs. Nos
résultats expérimentaux montrent que notre approche permet d’inférer des propriétés sémantiques plus expressives d’un
point de vue logique que des analyses d’états. Elle se révèle aussi beaucoup plus rapide sur des programmes avec un
nombre conséquent d’appels de fonctions sans pour autant perdre en précision.

MOTS CLÉS

analyse statique, analyse compositionnelle, propriétés relationnelles, structures de données dynamiques,
logique de séparation, interprétation abstraite

ABSTRACT

Static analyses aim at inferring semantic properties of programs. We distinguish two important classes of static analyses:
state analyses and relational analyses. While state analyses aim at computing an over-approximation of reachable
states of programs, relational analyses aim at computing functional properties over the input-output states of programs.
Relational analyses offer several advantages, such as their ability to infer semantics properties more expressive compared
to state analyses. Moreover, they offer the ability to make the analysis compositional, using input-output relations as
summaries for procedures, which is an advantage for scalability. In the case of numeric programs, several analyses have
been proposed that utilize relational numerical abstract domains to describe relations. On the other hand, designing
abstractions for relations over input-output memory states and taking shapes into account is challenging. In this Thesis,
we propose a set of novel logical connectives to describe such relations, which rely on separation logic. This logic can
express that certain memory areas are unchanged, freshly allocated, or freed, or that only part of the memory is modified
(and how). Using these connectives, we build an abstract domain and design a compositional static analysis by abstract
interpretation that over-approximates relations over memory states containing inductive structures. We implement this
approach as a plug-in of the FRAMA-C analyzer. We evaluate it on small programs written in C that manipulate singly
linked lists and binary trees, but also on a bigger program that consists of a part of Emacs. The experimental results
show that our approach allows us to infer more expressive semantic properties than states analyses, from a logical point
of view. It is also much faster on programs with an important number of function calls without losing precision.

KEYWORDS

static analysis, compositional analysis, relational properties, dynamic data structures, separation logic, ab-
stract interpretation
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