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Chapter 1 presents an overview of undirected graphical models in general and Markov models in particular. Chapter 2 presents inference for variables in hidden Markov random fields (MRFs) while Chapter 3 presents inference for the parameters of Gaussian MRFs. Chapter 4 outlines the four applications and how the Markov model framework is utilised in each case. For each application, the associated publication is also provided.

In Publication 1, hidden Markov models (HMMs) are used to achieve an alignment and classification of time series data. Publications 2 and 3 concern inference with hidden MRFs to obtain a segmentation of both digital image data and network data respectively. Spatial analysis with Gaussian MRFs is presented in Publication 4. We show that our particular use of Markov models in each of our applications enables us to achieve our aims.

Tiivistelmä

Tässä väitöskirjassa esitellään neljä Markovin mallien bioinformatiikan sovellusta. Väitöskirjassa laajennetaan Markovin mallien käyttöä monelta eri sovellusalalta kerätyn biologisen datan matemaattiseen ja tilastolliseen analyysiin. Malleja hyödynnetään genomitasolla aikasarjoissa ja verkkodatassa sekä solutasolla soluviljelyn ja in vivo -kudoksen mikroskooppikuva-aineistossa.

Kiinnostuksen kohteina tässä tutkimuksessa ovat geeneistä, soluista ja pikseleistä koostuvat objektien joukot. Työssä käytetään hyväksi näiden joukkojen sisällä vallitsevia spatiaalisia, temporaalisia tai funktionaalisia assosiaatiota olettaen, että toisiaan lähempänä olevat objektit ovat keskenään vahvemmin yhteyksissä kuin toisistaan kauempana olevat. Tämä oletus mahdollistaa tehokkaan päättelyn Markov-malliperheessä sekä ehdollisten riippumattomuuksien esittämisen satunnaismuuttujien välillä, joita kuvataan suuntaamattomissa graafeissa pisteillä ja viivoilla.

Luvussa 1 tarkastellaan yleisellä tasolla suuntaamattomia malleja, joista tarkemmin esitellään Markovin mallit. Luvussa 2 käsitellään muuttujia koskevaa päättelyä piilo-Markovin satunnaiskentissä (MRF) ja luvussa 3 keskitytään Gaussisten MRF -mallien parametreja koskevaan päättelyyn. Luvussa 4 esitellään neljä tutkimuksen sovellusta ja miten Markovin malleja on niissä laajennettu ja hyödynnetty. Sovelluksiin liittyvät osatyöt muodostavat väitöskirjan viimeisen luvun.

Osatyössä 1 Markovin piilomalleja (HMM) käytetään aikasarjadatan kohdennukseen ja luokitteluun. Osatöissä 2 ja 3 käsitellään päättelyä piilo-MRF-malleissa niiden hyödyntämiseksi digitaalisen kuva-ja verkkodatan segmentoimisessa. Osatyössä 4 käsitellään Gaussisten MRF -mallien käyttöä spatiaalisessa analyysissa. Huolellisesti rakennettujen Markovin mallien käyttö osoittautuu kaikissa sovelluksissa keskeiseksi osatutkimusten tavoitteiden saavuttamiseksi.

Résumé

Dans cette thèse nous présentons quatre applications en bioinformatique avec des modèles de Markov. Plus précisément, nous étendons ces modèles à l'analyse statistique et mathématique de données biologiques. Les données que nous étudions viennent de différentes sources. Nous considérons les applications au niveau génomique avec des séries temporelles et des données de réseau ainsi que les applications au niveau cellulaire avec des données d'images de microscopie de cultures cellulaires et de tissus in vivo.

Les ensembles d'objets tels que gènes, cellules ou pixels, présentent un intérêt dans leur intégralité. Nous utilisons des associations spatiales, temporelles ou fonctionnelles au sein de ces ensembles et nous supposons que les objets qui sont plus proches les uns des autres sont plus fortement liés que ceux qui sont plus éloignés. Cela permet une inférence efficace dans le cadre des modèles de Markov et est codé par des indépendances conditionnelles entre variables qui sont représentées par des sommets et arêtes dans un graphe non orienté.

Le chapitre 1 présente une vue d'ensemble des modèles graphiques non orientés en général et des modèles de Markov en particulier. Le chapitre 2 présente l'inférence des variables des champs aléatoires de Markov (MRFs) cachés tandis que le chapitre 3 présente l'inférence des paramètres des MRFs de Gauss. Le chapitre 4 expose les quatre applications traitées et comment le cadre des modèles de Markov est utilisé dans chaque cas. Pour chacune des applications, la publication associée est fournie. 

Introduction

Markov models are a type of undirected graphical model, a collection of random variables whose conditional independence properties can be represented by an undirected graph. They are used for many different applications in a broad range of areas including the analysis of time series data, image data, network data and spatial data among many others [START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF][START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques[END_REF], Blake et al. 2011[START_REF] Banerjee | Hierarchical Modeling and Analysis for Spatial Data[END_REF]. Markov (1856Markov ( -1922)), such models are especially popular since the Markov structure allows for complex conditional independences to be modelled while still allowing for efficient inference. Moreover, the graphical representation of the conditional independence properties provides a valuable and intuitive visualisation of the model.

Named after Russian mathematician Andrei

Below we define undirected graphical models in general before defining Markov models in particular. We then consider the Hammersley-Clifford Theorem, a fundamental result allowing for the factorisation of the model density. The content of this chapter is primarily based on the presentations of [START_REF] Whittaker | Graphical Models in Applied Multivariate Statistics[END_REF] and [START_REF] Lauritzen | Graphical Models[END_REF].

Graphical Models

We use p to denote a probability density or probability mass function and use the argument to identify the random variable concerned. Hence for the random variables X and Z we write p(x) to represent the marginal density function, p(x, z) to represent the joint density function and p(x|z) to represent the conditional density function. A random variable X takes values in its support Ω X .

For collections of random variables indexed by scalar subscripts, {X 1 , X 2 , . . .} we use set notation in the subscript, X A = {X i | i ∈ A} along with standard set notation operations. 

for all x ∈ Ω X , y ∈ Ω Y and z ∈ Ω Z such that p(z) > 0. Definition 1.2 Undirected Graph. † An undirected graph G is a set of vertices V and a set of edges E, written G = (V, E) where E is a subset of the set V × V of pairs of distinct vertices such that (i, j) ∈ E ⇔ (j, i) ∈ E for all i, j ∈ V. Definition 1.3 Conditional Independence Graph. † The conditional independence graph of the collection of random variables X V is the undirected graph G = (V, E) where (i, j) / ∈ E ⇔ X i ⊥ ⊥ X j | X V\{i,j} (1.1) 
for all i = j ∈ V.

We have defined a conditional independence graph in terms of the pairwise Markov property (1.1). Given a collection of random variables with a set of conditional independence properties, we are able to construct the corresponding conditional independence graph. Under certain conditions that are given below, we are able to deduce further conditional independence properties of the model directly from the corresponding graph.

Definition 1.4 Paths and Separation. † In an undirected graph G, a path between two vertices i, j ∈ V is a sequence a 1 , a 2 , . . . , a K such that a 1 = i, a K = j and (a k-1 , a k ) ∈ E for k = 2, 3, . . . , K. Two vertices i, j ∈ V are separated by the subset C ⊆ V\{i, j} if and only if all paths between i and j contain at least one member of C.

Theorem 1.1 Separation Theorem. Let the collection of random variables X V have density function p(x V ) > 0 for all x V ∈ Ω X V and conditional independence graph G. For disjoint subsets of vertices A, B, C ⊂ V, if in the conditional independence graph G each vertex in A is separated from each vertex in B by the subset C, then

X A ⊥ ⊥ X B | X C . (1.2)
Proof of Theorem 1.1. A proof is given by [START_REF] Lauritzen | Graphical Models[END_REF]. † These definitions are taken directly from my Master of Philosophy thesis [START_REF] Robinson | Alignment of Time Course Microarray Data with Hidden Markov Models[END_REF]). 

(i) = {j ∈ V | (i, j) ∈ E}. A clique is a subset of vertices, C ⊂ V such
that for all i ∈ C, if j ∈ C\i then j ∈ ν(i). A clique C is maximal if there exists no other clique

C * ⊆ V such that C ⊂ C * .
Each vertex is a clique and each pair of neighbouring vertices is also a clique. If a pair of neighbouring vertices have a mutual neighbour, then these three vertices are another clique. If all members of a clique don't have a mutual neighbour not already in the clique, then the clique is maximal.

Definition 1.6 Markov Model. The collection of random variables X V with conditional independence graph G is a Markov model if

X i ⊥ ⊥ X V\{i,ν(i)} | X ν(i) (1.3)
for all i ∈ V. Trees. An undirected graph G is a tree if there exists a unique path between each pair of vertices i, j ∈ V such that no vertex is contained in the path more than once. Markov models. Note that the vertices are labelled by the corresponding random variables. The major differences between the models in Figure 1.1 are whether they are trees or not (above and below) and whether the Markov components are observed or 'hidden' (left and right). In the 'hidden' models it is taken that the random variables Z V are observed while the random variables X V , constituting the Markov component of the model, are unobserved or missing. The defining difference between a Markov chain or hidden Markov model (HMM) as against a Markov random field (MRF) is that the latter is not a tree.

These differences determine the possible inference that can be achieved in the different models.

It is the tree structure of both Markov chains and HMMs that allows for relatively straightforward inference of both the hidden variables and model parameters [START_REF] Robinson | Alignment of Time Course Microarray Data with Hidden Markov Models[END_REF]). In the following we consider inference for the variables in hidden MRFs (Chapter 2) and the model parameters of Gaussian MRFs (Chapter 3). Note that in all of these cases the conditional independence graph itself is assumed to be known. Furthermore the graphs are also assumed to be sparse, that is, there are few edges between the vertices compared to all those possible. This sparsity is implicit in the notion of a local neighbourhood and the local Markov property.

Markov chain 

X a X b X c Markov random field (MRF) X g X h X i X d X e X f X a X b X c Hidden Markov model (HMM) X a X b X c Z a Z b Z c Hidden MRF X g X h X i X d X e X f X a X b X c Z g Z h Z i Z d Z e Z f Z a Z b Z c
(x V ) > 0 for all x V ∈ Ω X V then p(x V ) ∝ C∈M F C (x C )
where M is the set of all maximal cliques in the graph and the factors F C (x C ) are strictly positive.

Proof of Theorem 1.4. Details of a proof are given by [START_REF] Lauritzen | Graphical Models[END_REF].

The factors F C (x C ) must be strictly positive but are otherwise arbitrary functions of their arguments. The Hammersley-Clifford Theorem is named after the unpublished paper by [START_REF] Hammersley | Markov Fields on Finite Graphs and Lattices[END_REF].

Theorem 1.5 The Hammersley-Clifford Theorem and the Markov Properties. If the collection of random variables X V has density function p(x V ) > 0 for all x V ∈ Ω X V then all three Markov properties and the Hammersley-Clifford Theorem are equivalent.

Proof of Theorem 1.5. A proof is given by [START_REF] Lauritzen | Graphical Models[END_REF].

This equivalency and the fact that the Hammersley-Clifford Theorem was not originally published means that it appears in many different forms [START_REF] Besag | Spatial Interaction and the Statistical Analysis of Lattice Systems (with Discussion)[END_REF][START_REF] Lauritzen | Graphical Models[END_REF][START_REF] Cressie | Statistics for Spatio-Temporal Data[END_REF]. We follow [START_REF] Lauritzen | Graphical Models[END_REF] as this is the most convenient for us. It is the three Markov properties and the Hammersley-Clifford Theorem that allow for efficient inference so that Markov models can be gainfully used in practice.

Chapter 2

Inference for Hidden MRFs

Markov random fields (MRFs) have been extensively utilised in computer vision and in particular for digital image segmentation (Blake et al. 2011). Segmentation is the task of assigning a label to each pixel so that the image is partitioned into regions of pixels corresponding to mutually relevant features. Many different labelling problems can be approached as an inference problem in a suitably defined hidden MRF.

We consider inference for the random variables X V in a hidden MRF. In general such inference in graphical models is NP-hard [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques[END_REF]. However under certain conditions exact inference is computationally feasible for hidden MRFs while in other cases there exist efficient algorithms for approximate inference.

We first review the binary labelling problem as an inference problem for hidden MRFs. We present the energy minimisation framework and the use of graph cuts to find a computationally efficient and exact solution to the corresponding inference problem. Then we consider the multilabel problem and the established α-expansion algorithm for approximate energy minimisation.

Energy Function

For each i ∈ V, let X i be the random variable for the unobserved label we aim to infer and let Z i be the random variable for the observed data. Let the collection of these random variables {X V , Z V } be an hidden MRF with a conditional independence graph G, an example of which is given in the bottom right of Figure 1.1. In this case, the model has a regular grid structure but this is not necessary in general, just that each Z i has only X i as a unique neighbour. We consider that the random variables are simply indexed by scalar values for generality and convenience.

CHAPTER 2. INFERENCE FOR HIDDEN MRFS

The labelling task set as an inference problem is, given the hidden MRF {X V , Z V } and having observed the data Z V = z V , find the maximum a posteriori labels

xV = argmax x V p(x V |z V ) = argmax x V p(x V , z V ) p(z V ) = argmax x V p(x V , z V ).
For notational convenience let G be the conditional independence graph of only the random variables X V . That is, following our example graph in the bottom right of Figure 1.

1, G = (V, E)
is the graph given in the bottom left of Figure 1.1. Recall we assume that all Markov models we consider have a strictly positive density function and hence we use the Hammersley-Clifford Theorem (Theorem 1.4) to write

p(x V , z V ) ∝ i∈V F i (x i , z i ) (i,j)∈E F (i,j) (x i , x j )
where F i (x i , z i ) and F (i,j) (x i , x j ) are arbitrary, strictly positive functions of their arguments.

Definition 2.1 Energy Function. Given the hidden MRF {X V , Z V } with density function

p(x V , z V ) > 0 for all x V ∈ Ω X V and z V ∈ Ω Z V , and conditional independence graph G = (V, E)
only corresponding to the random variables X V , the associated energy function is

E(x V ) = i∈V φ i (x i ) + (i,j)∈E φ (i,j) (x i , x j ) (2.1)
with energy potentials

φ i (x i ) = -log(F i (x i , z i )) and φ (i,j) (x i , x j ) = -log(F (i,j) (x i , x j )).
This is just rewriting the factorisation given by Theorem 1.4 for a hidden MRF although note that we have not explicitly included z V in the energy function (2.1) as these terms are now accounted for in the subscripts of the energy potentials. Now we have that p(x V , z V ) ∝ exp{-E(x V )} and so the maximum a posteriori /minimum energy labels are therefore

xV = argmax x V p(x V |z V ) = argmin x V E(x V ).
The use of an energy function in computer vision goes back to [START_REF] Geman | Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[END_REF], who established the connection with Gibbs distributions (Josiah Willard Gibbs (1839-1903) was an American mathematician and physicist). [START_REF] Geman | Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[END_REF] also coined the term 'Gibbs sampling' in their approach to energy minimisation, which was superseded by the iterated conditional modes (ICM) algorithm in computer vision [START_REF] Besag | On the Statistical Analysis of Dirty Pictures (with Discussion)[END_REF]).

The current use of energy minimisation in computer vision was brought about by the development of techniques based on graph cuts in the early 2000s, which allowed for much greater computational efficiency and improved performance as against ICM [START_REF] Szeliski | A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors[END_REF][START_REF] Kappes | A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems[END_REF]. Note that in the hidden MRF given in Figure 1.1 the maximal cliques are pairs of vertices and for arbitrary graphs the maximal cliques may be larger than just pairs. However when the graph is still sparse a general approach is to just consider pairwise cliques in order to have an approximate energy function that can be optimised in practice [START_REF] Boykov | Fast Approximate Energy Minimization via Graph Cuts[END_REF]).

Graph Cuts

We first consider the binary label minimisation problem of (2.1), that is, where x i ∈ {0, 1} for all i ∈ V. Rewrite the energy potentials

φ i (x i ) =      θ i;0 if x i = 0 θ i;1 if x i = 1 and φ (i,j) (x i , x j ) =                  θ ij;00 if x i = x j = 0 θ ij;01 if x i = 0, x j = 1 θ ij;10 if x i = 1, x j = 0 θ ij;11 if x i = x j = 1
for all i ∈ V and (i, j) ∈ E. Hence we can rewrite the energy function (2.1) as

E(x V ) = i∈V θ i;1 x i + θ i;0 (1 -x i ) + (i,j)∈E θ ij;11 x i x j + θ ij;10 x i (1 -x j ) + θ ij;01 (1 -x i )x j + θ ij;00 (1 -x i )(1 -x j ) . (2.
2)

The approach used to minimise the energy (2.2) is to recast the problem as one of finding the maximum flow in a suitably defined network. Then, provided the energy potentials satisfy certain conditions, the minimum energy solution exists and can be found using graph cuts. The following material on network flow is based on the presentation of [START_REF] Bondy | Graph Theory[END_REF].

Definition 2.2 Directed Graph. A directed graph - → G is a set of vertices V and a set of edges - → E , written - → G = (V, - → E ), where - → E is a subset of the set V × V of pairs of distinct vertices.
A directed graph is an undirected graph (Definition 1.2) without the condition that if

(i, j) ∈ - → E then (j, i) ∈ - → E for all i, j ∈ V.
That is, it may be the case that only one of the two possible edges between vertices i and j are in the edge set -→ E . Hence there is a direction to each edge that allows for a different definition of neighbouring vertices. 

→ ν (i) = {j ∈ V | (i, j) ∈ - → E } and ← - ν (i) = {j ∈ V | (j, i) ∈ - → E }. Definition 2.4 Network. A network N is a directed graph - → G with specified vertices s, t ∈ V,
known as the source and the sink respectively, and associated capacity function c :

V × V → [0, ∞) where c(i, j) = 0 if (i, j) / ∈ - → E , written N = (V, - → E , c).
A network is a particular type of directed graph where each edge has an associated capacity allowing for a flow between the specially designated source s and sink t vertices to be defined.

Definition 2.5 Flow in a Network. A flow in a network N is a function f : V × V → [0, ∞) such that 0 ≤ f (i, j) ≤ c(i, j) for all (i, j) ∈ - → E and j∈ - → ν (i) f (i, j) = j∈ ← -ν (i) f (j, i)
for all i ∈ V\{s, t}. The value of the flow is

val(f ) = j∈ - → ν (s) f (s, j) - j∈ ← -ν (s)
f (j, s).

(2.

3)

The flow on an edge is less than or equal to the capacity of that edge and for any network there exists a zero flow where f (i, j) = 0 for all (i, j) ∈ -→ E . Flow is conserved for all vertices except the source s and sink t. That is, the flow into any vertex i ∈ V\{s, t} (the sum of the flows on the edges (j, i) ∈ -→ E ) is equal to the flow out of i (the sum of the flows on the edges (i, j) ∈ -→ E ).

Lemma 2.1 Value of the Flow. For a flow f in a network N the value of the flow is equivalently

val(f ) = i∈ ← -ν (t) f (i, t) - i∈ - → ν (t)
f (t, i).

(2.4)

Proof of Lemma 2.1. A proof is given by [START_REF] Bondy | Graph Theory[END_REF].

That is, the value of the flow is defined to be the flow out of the source minus the flow into the source (2.3), which is equal to the flow into the sink minus the flow out of the sink (2.4).

Definition 2.6 Graph Cut. For a subset of vertices S ⊂ V in a network N with s ∈ S and t / ∈ S, a cut is the set of edges

[S] = {(i, j) ∈ - → E | i ∈ S, j / ∈ S}
and the value of the cut is

val[S] = (i,j)∈[S]
c(i, j).

A cut in a network N is the set of edges from the subset S to its complement that effectively 'cut' the network in two and hence 'graph cuts'. Proof of Theorem 2.2. A proof is given by [START_REF] Bondy | Graph Theory[END_REF].

Given a network N , the problem is to find a flow f and a cut [S] such that val(f

) = val[S].
That is, the value of the flow is maximised and the value of the cut is minimised. There exist classic algorithms for this task [START_REF] Ford | Maximal Flow Through a Network[END_REF]).

We will now consider how the maximum flow/minimum cut framework can be applied to the energy minimisation problem with a binary label energy function (2.2). First, we create a suitable network using the conditional independence graph of X V .

Algorithm 2.1 Network Creation Algorithm. Given the collection of random variables

X V with conditional independence graph G = (V, E), create a corresponding network N * = (V * , - → E * , c * )
by defining:

1. The set of vertices V * = V ∪ {s, t} where s is the source and t is the sink.

The edge set

- → E * = (s, i), (i, s), (t, i), (i, t) | i ∈ V ∪ (i, j), (j, i) | (i, j) ∈ E .
3. The capacity function

c * (i, j) = ω ij ≥ 0 for all (i, j) ∈ - → E * with c * (i, s) = 0 for all i ∈ V and c * (t, j) = 0 for all j ∈ V.
Consider that any cut [S] in the network N * can be viewed as a binary labelling

x i =      0 if i ∈ S 1 if i / ∈ S (2.5)
for all i ∈ V and consider the energy function

E * (x V ) = i∈V ω si x i + ω it (1 -x i ) + (i,j)∈E ω ij (1 -x i )x j + ω ji x i (1 -x j ) .
(2.6) Theorem 2.3 Graph Cut Energy. Given the collection of random variables X V with conditional independence graph G = (V, E), the value of a cut [S] in the corresponding network N * is given by (2.6) when utilising the labelling (2.5). That is, val[S] = E * (x V ).

Proof of Theorem 2.3. for all (i, j) ∈ E.

val[S] = (i,j)∈[S] ω ij = (i,j)∈ - → E * ω ij I{i ∈ S, j / ∈ S} = (s,i)∈ - → E * ω si I{i / ∈ S} + (i,t)∈ - → E * ω it I{i ∈ S} + (i,j)∈ - → E * ω ij I{i ∈ S\s, j / ∈ S ∪ t} = i∈V ω si I{i / ∈ S} + ω it I{i ∈ S} + (i,j)∈E ω ij I{i ∈ S, j / ∈ S} + ω ji I{i / ∈ S,
For the binary label energy function (2.2), constants can be added and subtracted to the potentials so that the energy function remains unchanged, that is the function still gives the same output for the same input. This is known as a reparameterisation of the energy function and if the potentials are submodular, then the energy function (2.2) can be reparameterised so that the potentials are in the form (2.7) in a finite series of basic prescribed operations [START_REF] Kolmogorov | What Energy Functions Can Be Minimized via Graph Cuts?[END_REF]. There are standard energy minimisation algorithms based on graph cuts for the binary label, submodular potential problem [START_REF] Boykov | An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision[END_REF]). Below, we consider the case where there are more than 2 labels.

Alpha-Expansion Algorithm

Now consider the case where we have more than 2 labels, that is x i ∈ L for all i ∈ V where L is a set of more than 2 elements. Consider the original energy function (2.1) and rewrite

φ i (x i = l) = θ i;l and φ (i,j) (x i = l, x j = k) = θ ij;lk
for all i ∈ V, (i, j) ∈ E and l, k ∈ L so that [START_REF] Boykov | Fast Approximate Energy Minimization via Graph Cuts[END_REF]).

E(x V ) = i∈V l∈L θ i;l I{x i = l} + (i,j)∈E l∈L k∈L θ ij;lk I{x i = l, x j = k}. ( 2 
However, we can approximate the minimum energy solution using an algorithm that is based on graph cuts [START_REF] Boykov | Fast Approximate Energy Minimization via Graph Cuts[END_REF][START_REF] Boykov | An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision[END_REF][START_REF] Kolmogorov | What Energy Functions Can Be Minimized via Graph Cuts?[END_REF]. The main idea is to recast the multi-label problem in terms of a binary label problem by considering an initial labelling and then a binary choice for each variable: either change label or stay the same. In order to properly determine the problem, 'changing label' needs to be defined and one option is to only allow a change to a specified label, α ∈ L. The following material is based on the presentation of [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques[END_REF].

Let the initial labelling be x * V . We construct a binary label problem with dummy variables Y V such that y i ∈ {0, 1} for all i ∈ V. Consider that from the initial labelling x * V , the dummy variables Y V and a specified label α ∈ L, we obtain a new labelling xV given by

xi =      x * i if y i = 0 α if y i = 1
for all i ∈ V. Hence each variable either keeps its initial label x * i or changes to α depending on the value of y i . By substituting xV into (2.8) we obtain the equivalent energy function

Ẽ(y V ) = i∈V φi (y i ) + (i,j)∈E φ(i,j) (y i , y j ) (2.9) where φi (y i ) =      θ i;x * i if y i = 0 θ i;α if y i = 1 and φ(i,j) (y i , y j ) =                  θ ij;x * i x * j if y i = y j = 0 θ ij;x * i α if y i = 0, y j = 1 θ ij;αx * j if y i = 1, y j = 0 θ ij;αα if y i = y j = 1.
That is, we have a binary label energy function (2.9) for the binary label problem for Y V . By construction, Ẽ(y V ) = E(x V ) and hence finding the optimal labels ŷV is equivalent to finding the optimal labels xV in the restricted space of only allowing each variable to keep its initial label or change to α. This is a constrained energy minimisation problem where we are only (potentially)

increasing the number of vertices with the label α and hence known as 'alpha-expansion'. In practice, all of the possible labels are considered iteratively and multiple times. 2. Solve the binary label problem for Y V using graph cuts as outlined in Section 2.2.

3. Update the labelling and repeat for another label until some convergence criteria is satisfied.

Recall that in order to use graph cuts for the binary label problem, the energy potentials must be submodular. The potentials for the above binary label energy (2.9) are submodular when

θ ij;αα + θ ij;x * i x * j ≤ θ ij;x * i α + θ ij;αx * j
for all (i, j) ∈ E. This condition is satisfied when the energy potentials are a metric.

Definition 2.9 Semi-metric and Metric. A function

D : V × V → [0, ∞) is a semi-metric if D(i, j) = 0 ⇔ i = j and D(i, j) = D(j, i)
for all i, j ∈ V, and is a metric if in addition

D(i, k) ≤ D(i, j) + D(j, k)
for all i, j, k ∈ V.

However, even when the energy potentials are only a semi-metric, the α-expansion algorithm may still be gainfully used in practice [START_REF] Boykov | Fast Approximate Energy Minimization via Graph Cuts[END_REF].

Chapter 3

Inference for Gaussian MRFs

Gaussian Markov random fields (MRFs) are multivariate Gaussian distributions parameterised by a mean vector and a correlation matrix where there is a one-to-one relationship between the graphical representation of the model and the inverse correlation (precision) matrix [START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF]. They are used in particular as the spatial random effects component within larger hierarchical models for the analysis of spatial data [START_REF] Banerjee | Hierarchical Modeling and Analysis for Spatial Data[END_REF][START_REF] Cressie | Statistics for Spatio-Temporal Data[END_REF].

We are interested in inference for the parameters of a Gaussian MRF with a spatial interpretation through the precision matrix. This inference is considered in a Bayesian framework where the model parameters are considered as random variables and the posterior density of the parameters is proportional to the likelihood of the model multiplied by a prior density of the parameters.

We first consider multivariate Gaussian distributions, their precision matrices and how this leads to a natural definition of Gaussian MRFs. Then we consider how Gaussian MRFs can be defined in terms of full conditional distributions which allows for the construction of the precision matrix of the whole model. We then outline finding the posterior densities for the model parameters which can be used for sampling and inference in a Bayesian framework.

Precision Matrix

In the following we consider vectors rather than sets of random variables but still use set notation in the subscripts, X V = [X 1 , X 2 , . . . , X n ] T when the meaning is unambiguous. For a matrix A we write the individual elements of the matrix as A ij and use standard vector and matrix notation. 

X i |X V\i ∼ N j∈V\i ω ij X j , σ 2 i (3.1)
for all i ∈ V.

That is, each random variable has a conditional Gaussian distribution given all the other variables with mean, a weighted sum of the other variables and a given variance. We now consider finding the joint distribution of the CAR model.

Lemma 3.3 Brook's Lemma. Consider the collection of random variables X V with density

function p(x V ) > 0 for all x V ∈ Ω X V . For any x V , x V ∈ Ω X V we have p(x V ) p(x V ) = n i=1 p(x i |x 1 , . . . , x i-1 , x i+1 , . . . , x n ) p(x i |x 1 , . . . , x i-1 , x i+1 , . . . , x n ) (3.2) = n i=1 p(x i |x 1 , . . . , x i-1 , x i+1 , . . . , x n ) p(x i |x 1 , . . . , x i-1 , x i+1 , . . . , x n ) . (3.3)
Proof of Lemma 3.3. A proof is given by [START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF].

Lemma 3.3 [START_REF] Brook | On the Distinction Between the Conditional Probability and the Joint Probability Approaches in the Specification of Nearest-Neighbour Systems[END_REF]) allows for the construction of the joint density of a CAR model from the full conditionals. However, there are conditions on the full conditionals in order that the density is proper. It is not the case that any arbitrary set of full conditionals will determine a proper distribution [START_REF] Gelfand | Proper Multivariate Conditional Autoregressive Models for Spatial Data Analysis[END_REF].

Theorem 3.4 Joint Density of a CAR Model. If the collection of random variables X V has full conditional distributions

X i |X V\i ∼ N φ j∈V\i e ij ∂ i X j , σ 2 ∂ i (3.4)
for all i ∈ V where e ij ≥ 0, e ij = e ji , e ii = 0, ∂ i = j∈V e ij and with parameters φ ∈ (-1, 1) and σ 2 > 0, the joint distribution of the model is

X V ∼ N (0, σ 2 (D(I -φW )) -1 ) (3.5) 
where D = diag(∂ i ) and W is the symmetric matrix with entries e ij .

Proof of Theorem 3.4. First consider that for a zero-mean multivariate Gaussian distribution we have

log(p(x V )) ∝ - 1 2 x T V Qx V = - 1 2 i∈V j∈V Q ij x i x j = - 1 2 i∈V Q ii x 2 i + i∈V j∈V\i Q ij x i x j . (3.6) 
Consider the full conditionals as given as (3.1). We have the density functions

p(x i |x V\i ) ∝ 1 σ i exp - 1 2σ 2 i (x i - j∈V\i ω ij x j ) 2
for all i ∈ V. Using (3.2) we can write

p(x V ) p(0) = n i=1 1 σi exp -1 2σ 2 i (x i - i-1 j=1 ω ij x j ) 2 1 σi exp -1 2σ 2 i ( i-1 j=1 ω ij x j ) 2 = n i=1 exp - 1 2σ 2 i x i - i-1 j=1 ω ij x j 2 + 1 2σ 2 i i-1 j=1 ω ij x j 2 = n i=1 exp - 1 2σ 2 i x 2 i -2 i-1 j=1 ω ij x i x j . Hence log p(x V ) p(0) = - 1 2 n i=1 1 σ 2 i x 2 i - n i=2 i-1 j=1 ω ij σ 2 i x i x j . (3.7) 
Now we use (3.3) to obtain the corresponding expression

log p(x V ) p(0) = - 1 2 n i=1 1 σ 2 i x 2 i - n-1 i=1 n j=i+1 ω ij σ 2 i x i x j . (3.8) 
Since (3.7) and (3.8) are equal,

log(p(x V )) ∝ - 1 2 n i=1 1 σ 2 i x 2 i + n i=1 j =i ω ij σ 2 i x i x j .
Comparing this to the form of the zero-mean multivariate Gaussian distribution (3.6), we have

Q ii = 1 σ 2 i and Q ij = ωij σ 2 i with ωij σ 2 i = ωji σ 2 j . Finally we write ω ij = φ eij ∂i and σ 2 i = σ 2 ∂i .
Hence the CAR model (3.5) is a Gaussian MRF with Q = 1 σ 2 D(I -φW ). There is a one-toone connection between the adjacency matrix W and the corresponding conditional independence graph since e ij = 0 if and only if Q ij = 0 and e ij > 0 if and only if (i, j) ∈ E. That is, the sum over j ∈ V\i in (3.4) may as well be over j ∈ ν(i) due to the zero pattern of W . Note that in general the adjacency matrix W is taken as a sparse matrix and hence Q is sparse. Recall that this is the point of constructing the precision matrix in this way and is necessary for efficient inference.

We additionally have interpretations for the parameters when considering X V as spatially embedded variables through the adjacency matrix W . If φ = 0 then the variables X V have a multivariate Gaussian distribution with a diagonal covariance matrix and hence the marginal distributions are independent. A value of φ > 0 results in spatial autocorrelation between neighbouring variables while a value of φ < 0 results in spatial anti-autocorrelation (easiest to see in the full conditional distributions (3.4)). Hence φ is known as the spatial autocorrelation parameter while σ 2 is a general variance term.

Posterior Densities

We consider inference for the parameters φ and σ 2 of the CAR model (3.5). Although CAR models are most often used as a spatial random effects component within larger hierarchical models in the analysis of spatial data [START_REF] Banerjee | Hierarchical Modeling and Analysis for Spatial Data[END_REF][START_REF] Cressie | Statistics for Spatio-Temporal Data[END_REF], inference for the parameters can also be considered when the models are used directly [START_REF] Bell | A Bayesian Analysis for Spatial Processes with Application to Disease Mapping[END_REF][START_REF] De Oliveira | Bayesian Analysis of Conditional Autoregressive Models[END_REF][START_REF] Ren | Objective Bayesian Analysis for CAR Models[END_REF]. This section is primarily based on the work of [START_REF] Bell | A Bayesian Analysis for Spatial Processes with Application to Disease Mapping[END_REF]. Theorem 3.5 Bayes' Theorem. For random variable Y with associated parameters θ and taking the parameters themselves as random variables we have

p(θ|y) = p(y|θ)p(θ) p(y) ∝ p(y|θ)p(θ).
Proof of Theorem 3.5. This is the definition of conditional probability density, p(x|z) = p(x,z) p(z) .

That is, the posterior density of the parameters is proportional to the likelihood of the model and a prior density of the parameters. This is the cornerstone of 'Bayesian inference' named after English mathematician Thomas Bayes . Rather than point estimates of model parameters, treating the parameters as random variables results in a posterior distribution that if not in an analytical form can usually be numerically sampled from.

Consider the CAR model with joint density given by (3.5) and parameters φ and σ 2 . We use the re-parameterisation σ 2 = τ -1 > 0 so that the model density can be written

p(x V |φ, τ ) ∝ |τ B(φ)| 1 2 exp - τ 2 x T V B(φ)x V
where B(φ) = D(I -φW ). We set priors p(φ) ∝ constant and p(τ ) ∝ τ -1 . We assume a priori that φ and τ are independent, that is p(φ, τ ) = p(φ)p(τ ) = τ -1 . Hence using Bayes' Theorem (Theorem 3.5) the joint posterior density is Now for fixed φ it can be seen from (3.9) that τ has a Gamma distribution. That is,

p(φ, τ |X V = x V ) ∝ p(x V |φ, τ )p(φ, τ ) ∝ |τ B(φ)| 1 2 exp - τ 2 x T V B(φ)x V τ -1 = |B(φ)| 1 2 τ n 2 -1 exp - τ 2 x T V B(φ)x V . ( 3 
τ |{φ, X V = x V } ∼ Γ n 2 , 1 2 x T V B(φ)x V .
In order to find the posterior density of φ we integrate p(φ, τ |X V = x V ) with respect to τ using the identity (3.11) to obtain

p(φ|X V = x V ) = ∞ 0 p(φ, τ |X V = x V )dτ = |B(φ)| 1 2 ∞ 0 τ n 2 -1 exp - τ 2 x T V B(φ)x V dτ = |B(φ)| 1 2 1 2 x T V B(φ)x V -n 2 G n 2 ∝ |B(φ)| 1 2 (x T V B(φ)x V ) -n 2 .
(3.12)

Hence in order to sample from the joint posterior p(φ, τ

|X V = x V ) = p(τ |φ, X V = x V )p(φ|X V = x V )
we first sample from p(φ|X V = x V ) and then sample from p(τ |φ, X V = x V ) for fixed φ. ). By a regular grid we again mean that all vertices corresponding to the variables X V have the same degree (except the border vertices). This was an image analysis application concerning microscopy image data of cell culture models. In this case the vertices represent pixels in digital images and the modelling is carried out for each pixel and its four immediate neighbours, above, below, left and right in the digital image.

The graph for Publication 3 is also a hidden MRF but rather than a regular grid appears to be scale free. That is, in general terms, there are a few vertices with many edges and many vertices with a few edges. This isn't completely apparent in Figure 4.1 with only nine vertices constituting the Markov component of the model but we can still see the contrast to the regular grid case where every vertex has the same degree. Here the application was to do with genomic network data and the edges represent interactions between genes. While some genes may interact with most other genes, the majority of genes interact with only a few others.

The final graph corresponding to Publication 4 is also an MRF, however in this case the variables X V are not 'hidden'. In this application the vertices represent neurons and connections between vertices represent spatial interactions between neurons modelled by their relative spatial positions as obtained from image data. The neurons are not distributed within the image in the same way as the actual pixels, that is, they are not laid out in rows and columns. Hence each vertex may have a different number of edges but unlike the scale free case in Publication 3, the degree in this application is bounded in practice (see Publication 4). Note that final results for each application are summarised in Table 4.4 while the comparison and evaluation of our use of Markov models against the diverse literature associated to each application is covered within the publications themselves.

Publication 1 X a X b X c Z a Z b Z c Publication 3 X g X b X f X d X e X h X c X i X a Z g Z b Z f Z d Z e Z h Z c Z i Z a Publication 2 X g X h X i X d X e X f X a X b X c Z g Z h Z i Z d Z e Z f Z a Z b Z c Publication 4 X p X o X c X g X b X e X d X m X n X j X k X i X l X h X a X f
Our first application concerns time course gene expression data from grapevine plants undergoing berry development at multiple vineyards. The time series are modelled as HMMs where Z V are the observed gene expression measurements and X V are hidden underlying states (note that in Publication 1 the notation for hidden states is S and observed variables are X, W and C).

An alignment between expression profiles from different vineyards is achieved by parameterising a mapping to a common state sequence for each gene. Exact inference of the underlying 'hidden'

states is computationally feasible for HMMs owing to their tree structure while parameter inference is carried out with the EM algorithm [START_REF] Robinson | Alignment of Time Course Microarray Data with Hidden Markov Models[END_REF].

Both Publications 2 and 3 concern inference of the 'hidden' Markov component of hidden MRFs.

For Publication 2 this results in a segmentation of digital image data corresponding to different biological structures. The structures of interest are represented as contiguous objects within the digital images and hence using a MRF, where neighbouring pixels are induced to have the same segmentation label, is inherently appropriate for this application. Moreover, the smoothness of the segmentation output is particularly complimentary for the subsequent investigation of physical contact between the different cell types. The inference for Publication 2 is carried out using energy minimisation and requires the material from Chapter 2 concerning graph cuts and the α-expansion algorithm (Algorithm 2.2).

In Publication 3, genomic networks are similarly segmented by genes being labelled as a 'hit'

or not, that is, whether they are identified as valuable for further subsequent analysis. iments. Moreover we show that the alignment obtained under the model is robust against subsets of genes that do not align. We subsequently use a measure of alignment based on the inferred Viterbi paths to classify genes as likely to be developmentally driven or not and additionally validate the classification accuracy. This results in a set of ∼1200 genes with no current annotated function for which we have found new evidence that they are likely to be controlled in a developmental manner. tering allows for a segmentation with multiple labels to be achieved in an automatic and principled way. The segmentation output subsequently allows for the investigation of physical contact between tumour cells and CAFs on the surface of tumour organoids, which has important implications for tumour biology (Åkerfelt et al. 2015). We demonstrate how each step of our proposed method improves segmentation performance. Additionally we show our MRF based method is more generally applicable to other types of image data, not just fluorescence microscopy. proposed approach is inherently suitable for the complexity and resolution of the image data and allows for the analysis of upwards of thousands of neurons over hundreds of time points. We analyse data specifically developed for this study as well as from the literature. The quantification results both support and conform to previous analysis as well as demonstrate that our method has potential for screening applications.
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 1 les modèles de Markov cachés (HMMs) sont utilisés pour atteindre un alignement et une classification des données de séries temporelles. Les publications 2 et 3 concernent l'inférence à la fois avec des MRFs cachés pour obtenir une segmentation des données d'images numériques et des données de réseau. Une analyse spatiale avec des MRFs de Gauss est présentée dans la publication 4. Nous montrons que notre utilisation particulière des modèles de Markov dans chaque publication nous a permis d'atteindre nos objectifs.
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Figure 1 .

 1 Figure 1.1 shows conditional independence graphs corresponding to a number of different

Figure 1 . 1 :

 11 Figure 1.1: Conditional independence graphs corresponding to different Markov models.

Definition 2 . 3

 23 Directed Neighbours. In a directed graph -→ G , the directed neighbours of a vertex i are the members of the sets -

Algorithm 2 . 2

 22 Alpha-Expansion Algorithm. Given the collection of random variables X V with conditional independence graph G = (V, E), energy function (2.8), initial labelling x * V and specified label α ∈ L, 1. Construct the binary label problem for the dummy variables Y V as outlined above.

  .9) Definition 3.6 Gamma Distribution. The random variable Y has a Gamma distribution with parameters α > 0, β > 0 and support Ω Y = (0, ∞), written Y ∼ Γ(α, β), if and only if its

Figure 4 . 1 :

 41 Figure 4.1: Representative conditional independence graphs corresponding to each application.

  Each gene is assumed to have similar behaviour to the others it interacts with in the genomic experiments considered as represented by edges in the genomic network. We utilise an MRF to incorporate the additional network information in the identification of network based gene hits in the same way that adjacent pixels in a digital image are induced to have the same segmentation label. Hence Publication 3 also requires the material from Chapter 2 and we again use graph cuts and the α-expansion algorithm (Algorithm 2.2) for energy minimisation. Publication 4 concerns modelling the spatial component of neuronal synaptic activity in image data. In this case the variables X V are observed directly rather than 'hidden' and it is the spatial autocorrelation parameter within the Gaussian MRF (CAR) model that is of interest. Similar to the consideration of interacting genes, we model the mutual synaptic interaction of individual neurons through their neighbours as defined by relative spatial distance. Publication 4 requires the theory reviewed in Chapter 3 and sampling from the posterior distribution of the parameters of a CAR model in a Bayesian framework.

Publication 2

 2 We extend the established use of hidden Markov random fields (MRFs) for digital image segmentation of 3D fluorescence image data of cell culture models containing both multicellular tumour and cancer associated fibroblast (CAF) structures. Using both Gaussian mixture distributions and local entropy fil-

Table 4 . 4 -

 44 Continued from the previous page Publication 3 As an analogue to segmentation of image data, we use a hidden MRF based method to label 'hit' genes across genomic networks together with genomic screening data. The particular advance here concerns multiple 'hit' labels being easily achieved within the MRF framework. This allows for applications with multivariate measurements for each gene as well as further discrimination of the labelling. Such an approach had not been considered up until now and we demonstrate its advantages by finding additional pathway enrichment in previously analysed data concerning lymphoma. We show that our MRF based method is widely applicable to genomic screening data in general, including from RNA interference experiments. Additionally we compared to other competing methods using an independent simulation experiment and obtained the best performance results. Publication 4 We use a Gaussian MRF (CAR) model to quantify the synaptic activity phenotype of large populations of neurons. Previous analysis was limited to spike binning in an artificial square grid defined across the field of view whereas our model is based directly on the relative spatial positions of the individual neuronal somata. Spatial autocorrelation of the neuronal activity is then quantified through a Bayesian posterior density of the model parameters. Our

  

  Definition 1.1 Conditionally Independent Random Variables. † Random variables X and Y are conditionally independent given Z, written X ⊥ ⊥ Y | Z, if and only if

	p(x, y|z) = p(x|z)p(y|z)

  Equivalency of the Markov Properties. If the collection of random variables X V has density function p(x V ) > 0 for all x V ∈ Ω X V then the pairwise (1.1), global (1.2) and

	Theorem 1.3 local (1.3) Markov properties are equivalent.
	Proof of Theorem 1.3. The global Markov property clearly implies the local Markov property,
	which in turn implies the pairwise Markov property. From Lemma 1.2, all three properties are
	equivalent if the collection of random variables has a strictly positive density function.
	Hence a collection of random variables with strictly positive density function has a conditional
	independence graph for which Theorem 1.1 holds and hence is a Markov model. For all of the
	conditional independence graphs that we consider in the following we always assume that the
	corresponding collection of random variables has a strictly positive density function.
	Definition 1.7
	Definition 1.6 is given in terms of the local Markov property (1.3) which is the classic definition
	of a Markov chain. That is, each random variable is conditionally independent of all other random
	variables in the model given its 'neighbours' as represented in the conditional independence graph.

  Definition 2.7 Maximum Flow and Minimum Cut. A cut [S] is a minimum cut if there exists no other cut [S * ] such that val[S * ] < val[S]. A flow f is a maximum flow if there exists no other flow f * such that val(f ) < val(f * ). Theorem 2.2 Maximum Flow/Minimum Cut. For a network N , the value of the maximum flow is equal to the value of the minimum cut.

  Definition 3.5 Conditional Autoregressive Model. The collection of random variables X V is a conditional autoregressive (CAR) model with parameters ω ij ∈ R and σ 2 i > 0 if and only if the collection of full conditionals distributions are

Definition 3.1 Symmetric Matrix. A square matrix A is symmetric if and only if A T = A.

Table 4 .

 4 2:The graphical model structure corresponding to each application. chain for Publication 1 we mean a classic Markov chain where all vertices corresponding to the variables X V have the same degree (except the beginning and end vertices). This application concerned time course gene expression data and we model each instance of the gene expression in time using a hidden Markov model (HMM). In Publication 2 we are now considering a non-tree Markov random field (MRF

		Non-tree Variables X V are 'hidden' Markov Model	Description
	Publication 1		X	HMM	Regular chain
	Publication 2	X	X	Hidden MRF	Regular grid
	Publication 3	X	X	Hidden MRF	Scale free
	Publication 4	X		Gaussian MRF Triangulation
	By a regular				

Table 4 .

 4 3: The inference carried out in each application. We are now able to consider how each of the Markov models are utilised, what kind of inference is carried out and for what aims based on the type of Markov model and what the vertices and edges represent in each application. As noted, the most important information in Table4.2 is given in the first two columns corresponding to the particular type of Markov model. This determines the inference that can be achieved in each application, which is set out in Table4.3 and discussed below.

		Infer 'hidden' X V Infer parameters	Framework	Reference
	Publication 1	X	X	Maximum	(Robinson 2012)
				likelihood	
	Publication 2	X	X	Maximum	Chapter 2
			X	a posteriori	
	Publication 3	X		Maximum	Chapter 2
				a posteriori	
	Publication 4	X	X	Bayesian	Chapter 3
		X			

Table 4 .

 4 [START_REF] Robinson | Spatial Quantification of the Synaptic Activity Phenotype Across Large Populations of Neurons with Markov Random Fields[END_REF] summarises the results for each application. Hence we have shown that Markov models can be used to generate new knowledge in diverse applications relating to multiple domains of biological research. The Markov structure allows for a graphical and intuitive model of conditional independencies within a standard and general framework, making such models very popular in many different areas. Furthermore, as we have shown, there are many associated computational schemes and algorithms available in order to efficiently utilise Markov models in practice.

Table 4 .

 4 4: The results for each application. Publication 1 We propose a novel alignment method for time series gene expression data based on hidden Markov models (HMMs). The modelling extensions we employ account for specific features of the data, in particular the sparsity of the time series commonly encountered in such gene expression time course exper-
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Proof of Lemma 3.1. Symmetry is clear and for any vector u = 0 take v = A -1 u. Since A is invertible, v = 0 and hence v T Av > 0 implies u T A -1 u > 0.

Definition 3.3 Multivariate Gaussian Distribution. The collection of random variables X V = [X 1 , X 2 , . . . , X n ] T has an n-variate Gaussian distribution with mean vector µ ∈ R n , symmetric positive definite covariance matrix Σ ∈ R n×n and support Ω X V = R n , written X V ∼ N (µ, Σ), if and only if its density function has the form

Gaussian distributions are named after German mathematician Carl Friedrich Gauss (1777-1855). Consider the matrix Q = Σ -1 known as the precision matrix and note that since Σ is symmetric positive definite, Q is symmetric positive definite (Lemma 3.1). There is a direct connection between the Markov properties of the model and the precision matrix Q. The content of this section is based on the presentation of [START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF].

Theorem 3.2 Conditional Independence and the Precision Matrix. Let the collection of random variables X V have a multivariate Gaussian distribution with precision matrix Q = Σ -1 .

Then

for all i = j ∈ V.

Proof of Theorem 3.2. A proof is given by [START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF].

That is, for any multivariate Gaussian model, we have a connection between the form of the precision matrix and the conditional independence properties of the model. The covariance matrix Σ gives information about the marginal dependence structure of the model whereas the precision matrix Q gives information about the conditional independence structure of the model. This leads to a natural definition of a Gaussian MRF through the precision matrix.

Definition 3.4 Gaussian MRF. The collection of random variables X V is a Gaussian MRF with respect to a graph G = (V, E) with mean vector µ ∈ R n , symmetric positive definite precision matrix Q ∈ R n×n and support Ω X V = R n if and only if its density function has the form

and

It is clear that the three Markov properties (pairwise (1.1), global (1.2) and local (1.3)) are all equivalent for Gaussian MRFs since p(x V ) > 0. Hence a Gaussian MRF is defined through the precision matrix Q which is one-to-one with a graphical representation of the model. The non-zero

no edge between vertices i and j in the conditional independence graph and hence X i and X j are conditionally independent given X V\{i,j} . So we can simply read from the elements of Q whether two variables in the model are conditionally independent. Now Q is generally taken as a sparse matrix (most of its elements are zero) while Σ may be very dense (most elements are non-zero). The Markov structure of a Gaussian MRF allows for efficient inference due to a sparse precision matrix, which corresponds to a sparse conditional independence graph (Chapter 1). Although it is possible to define reasonable dependence structures through a covariance function, there are no guarantees on the sparsity of the inverse covariance matrix and it is non-trivial to construct reasonable dependence structures ensuring sparsity [START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF].

So rather than considering covariance matrices, we consider conditional independencies and the construction of reasonable and useful precision matrices.

Conditional Autoregressive Models

To utilise a Gaussian MRF in practice, instead of specifying the full covariance matrix for every pair of variables, we consider the 'local' behaviour for each variable and the full conditional distributions, as introduced by [START_REF] Besag | Spatial Interaction and the Statistical Analysis of Lattice Systems (with Discussion)[END_REF]. That is, rather than defining a joint density p(x V ), we consider the much simpler task of defining the conditional densities p(x i |x V\i ) for all i ∈ V.

We consider some final details about sampling using the posterior density function (3.12).

Firstly, in applications with large n, the calculation of the determinant of B(φ) can easily become computationally infeasible while the exponentn 2 will result in computational zeros. For the later problem we consider log space (scaling and then converting back as necessary) and write

Hence the exponent is no longer a problem but a potential problem with the calculation of the determinant remains.

Definition 3.7 Cholesky Decomposition. Every symmetric positive definite matrix A can be written as

where L is a unique lower triangular matrix with positive diagonal entries.

We use this decomposition, named after French mathematician André-Louis Cholesky , to rewrite ) is greatly simplified. Although finding the Cholesky decomposition may be difficult in general, since Q is sparse it is possible to use numerical methods for sparse matrices to efficiently find the Cholesky decomposition and hence use CAR models in practice [START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF].

Chapter 4

Presentation of Publications

We make use of Markov models in four bioinformatics applications each of which has a corresponding publication presented below. Firstly, Table 4. 4.2. Note that in this discussion we focus on the Markov components X V within each model. The most important differences between the models as seen in Figure 4.1 are whether the models are trees or not and whether the variables X V are 'hidden'

or not (compare to Figure 1.1). Recall that these difference define the particular type of Markov model and determine the possibilities for inference. We briefly consider general descriptions of the models and how they relate to each application.

Following my Master of Philosophy thesis [START_REF] Robinson | Alignment of Time Course Microarray Data with Hidden Markov Models[END_REF], the underlying research framework of the use of Markov models was driven by me while biologically relevant applications were developed within multiple research groups. Table 4.5 lists the published author contributions.

For each application I was primarily responsible for:

• Methodological development, implementation and analysis of results

• Literature review, evaluation and presentation of results

• Production of figures, movies and code for publication

• Writing the manuscript and organising the contributions of co-authors

• Submission of the manuscript and responding to reviewers Table 4.5: The author contributions for each application.