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Abstract

In this thesis we present four applications in bioinformatics with Markov models. That is, we

extend the use of such models in the mathematical and statistical analysis of biological data. The

data we consider are drawn from a broad range of areas. We consider applications at the genomic

level with time series and network data as well as applications at the cellular level with microscopy

image data of both cell culture and in vivo tissue.

Collections of objects such as genes, cells or pixels are of particular interest as a whole. We make

use of associations within these collections, spatial, temporal or functional, and assume that closer

objects are more strongly associated than those further apart. This allows for efficient inference

within a Markov model framework and is encoded in terms of conditional independences between

variables as represented by vertices and edges in an undirected graph.

Chapter 1 presents an overview of undirected graphical models in general and Markov models

in particular. Chapter 2 presents inference for variables in hidden Markov random fields (MRFs)

while Chapter 3 presents inference for the parameters of Gaussian MRFs. Chapter 4 outlines

the four applications and how the Markov model framework is utilised in each case. For each

application, the associated publication is also provided.

In Publication 1, hidden Markov models (HMMs) are used to achieve an alignment and classi-

fication of time series data. Publications 2 and 3 concern inference with hidden MRFs to obtain

a segmentation of both digital image data and network data respectively. Spatial analysis with

Gaussian MRFs is presented in Publication 4. We show that our particular use of Markov models

in each of our applications enables us to achieve our aims.
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Tiivistelmä

Tässä väitöskirjassa esitellään neljä Markovin mallien bioinformatiikan sovellusta. Väitöskirjassa

laajennetaan Markovin mallien käyttöä monelta eri sovellusalalta kerätyn biologisen datan mate-

maattiseen ja tilastolliseen analyysiin. Malleja hyödynnetään genomitasolla aikasarjoissa ja verk-

kodatassa sekä solutasolla soluviljelyn ja in vivo -kudoksen mikroskooppikuva-aineistossa.

Kiinnostuksen kohteina tässä tutkimuksessa ovat geeneistä, soluista ja pikseleistä koostuvat

objektien joukot. Työssä käytetään hyväksi näiden joukkojen sisällä vallitsevia spatiaalisia, tem-

poraalisia tai funktionaalisia assosiaatiota olettaen, että toisiaan lähempänä olevat objektit ovat

keskenään vahvemmin yhteyksissä kuin toisistaan kauempana olevat. Tämä oletus mahdollistaa

tehokkaan päättelyn Markov-malliperheessä sekä ehdollisten riippumattomuuksien esittämisen sa-

tunnaismuuttujien välillä, joita kuvataan suuntaamattomissa graafeissa pisteillä ja viivoilla.

Luvussa 1 tarkastellaan yleisellä tasolla suuntaamattomia malleja, joista tarkemmin esitellään

Markovin mallit. Luvussa 2 käsitellään muuttujia koskevaa päättelyä piilo-Markovin satunnaisken-

tissä (MRF) ja luvussa 3 keskitytään Gaussisten MRF -mallien parametreja koskevaan päättelyyn.

Luvussa 4 esitellään neljä tutkimuksen sovellusta ja miten Markovin malleja on niissä laajennettu

ja hyödynnetty. Sovelluksiin liittyvät osatyöt muodostavat väitöskirjan viimeisen luvun.

Osatyössä 1 Markovin piilomalleja (HMM) käytetään aikasarjadatan kohdennukseen ja luokit-

teluun. Osatöissä 2 ja 3 käsitellään päättelyä piilo-MRF-malleissa niiden hyödyntämiseksi digi-

taalisen kuva- ja verkkodatan segmentoimisessa. Osatyössä 4 käsitellään Gaussisten MRF -mallien

käyttöä spatiaalisessa analyysissa. Huolellisesti rakennettujen Markovin mallien käyttö osoittautuu

kaikissa sovelluksissa keskeiseksi osatutkimusten tavoitteiden saavuttamiseksi.
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Résumé

Dans cette thèse nous présentons quatre applications en bioinformatique avec des modèles de

Markov. Plus précisément, nous étendons ces modèles à l’analyse statistique et mathématique de

données biologiques. Les données que nous étudions viennent de différentes sources. Nous consi-

dérons les applications au niveau génomique avec des séries temporelles et des données de réseau

ainsi que les applications au niveau cellulaire avec des données d’images de microscopie de cultures

cellulaires et de tissus in vivo.

Les ensembles d’objets tels que gènes, cellules ou pixels, présentent un intérêt dans leur intégra-

lité. Nous utilisons des associations spatiales, temporelles ou fonctionnelles au sein de ces ensembles

et nous supposons que les objets qui sont plus proches les uns des autres sont plus fortement liés

que ceux qui sont plus éloignés. Cela permet une inférence efficace dans le cadre des modèles de

Markov et est codé par des indépendances conditionnelles entre variables qui sont représentées par

des sommets et arêtes dans un graphe non orienté.

Le chapitre 1 présente une vue d’ensemble des modèles graphiques non orientés en général et

des modèles de Markov en particulier. Le chapitre 2 présente l’inférence des variables des champs

aléatoires de Markov (MRFs) cachés tandis que le chapitre 3 présente l’inférence des paramètres

des MRFs de Gauss. Le chapitre 4 expose les quatre applications traitées et comment le cadre

des modèles de Markov est utilisé dans chaque cas. Pour chacune des applications, la publication

associée est fournie.

Dans la publication 1, les modèles de Markov cachés (HMMs) sont utilisés pour atteindre un

alignement et une classification des données de séries temporelles. Les publications 2 et 3 concernent

l’inférence à la fois avec des MRFs cachés pour obtenir une segmentation des données d’images

numériques et des données de réseau. Une analyse spatiale avec des MRFs de Gauss est présentée

dans la publication 4. Nous montrons que notre utilisation particulière des modèles de Markov

dans chaque publication nous a permis d’atteindre nos objectifs.
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Chapter 1

Introduction

Markov models are a type of undirected graphical model, a collection of random variables whose

conditional independence properties can be represented by an undirected graph. They are used

for many different applications in a broad range of areas including the analysis of time series

data, image data, network data and spatial data among many others (Rue & Held 2005, Koller &

Friedman 2009, Blake et al. 2011, Banerjee et al. 2014).

Named after Russian mathematician Andrei Markov (1856–1922), such models are especially

popular since the Markov structure allows for complex conditional independences to be modelled

while still allowing for efficient inference. Moreover, the graphical representation of the conditional

independence properties provides a valuable and intuitive visualisation of the model.

Below we define undirected graphical models in general before defining Markov models in

particular. We then consider the Hammersley-Clifford Theorem, a fundamental result allowing

for the factorisation of the model density. The content of this chapter is primarily based on the

presentations of Whittaker (1990) and Lauritzen (1996).

1.1 Graphical Models

We use p to denote a probability density or probability mass function and use the argument to

identify the random variable concerned. Hence for the random variables X and Z we write p(x) to

represent the marginal density function, p(x, z) to represent the joint density function and p(x|z)

to represent the conditional density function. A random variable X takes values in its support ΩX .

For collections of random variables indexed by scalar subscripts, {X1, X2, . . .} we use set notation

in the subscript, XA = {Xi | i ∈ A} along with standard set notation operations.

1



2 CHAPTER 1. INTRODUCTION

Definition 1.1 Conditionally Independent Random Variables.† Random variables X and

Y are conditionally independent given Z, written X ⊥⊥ Y | Z, if and only if

p(x, y|z) = p(x|z)p(y|z)

for all x ∈ ΩX , y ∈ ΩY and z ∈ ΩZ such that p(z) > 0.

Definition 1.2 Undirected Graph.† An undirected graph G is a set of vertices V and a set of

edges E, written G = (V, E) where E is a subset of the set V × V of pairs of distinct vertices such

that (i, j) ∈ E ⇔ (j, i) ∈ E for all i, j ∈ V.

Definition 1.3 Conditional Independence Graph.† The conditional independence graph of

the collection of random variables XV is the undirected graph G = (V, E) where

(i, j) /∈ E ⇔ Xi ⊥⊥ Xj | XV\{i,j} (1.1)

for all i 6= j ∈ V.

We have defined a conditional independence graph in terms of the pairwise Markov prop-

erty (1.1). Given a collection of random variables with a set of conditional independence proper-

ties, we are able to construct the corresponding conditional independence graph. Under certain

conditions that are given below, we are able to deduce further conditional independence properties

of the model directly from the corresponding graph.

Definition 1.4 Paths and Separation.† In an undirected graph G, a path between two ver-

tices i, j ∈ V is a sequence a1, a2, . . . , aK such that a1 = i, aK = j and (ak−1, ak) ∈ E for

k = 2, 3, . . . ,K. Two vertices i, j ∈ V are separated by the subset C ⊆ V\{i, j} if and only if all

paths between i and j contain at least one member of C.

Theorem 1.1 Separation Theorem. Let the collection of random variables XV have density

function p(xV) > 0 for all xV ∈ ΩXV and conditional independence graph G. For disjoint subsets

of vertices A,B, C ⊂ V, if in the conditional independence graph G each vertex in A is separated

from each vertex in B by the subset C, then

XA ⊥⊥ XB | XC . (1.2)

Proof of Theorem 1.1. A proof is given by Lauritzen (1996).
†These definitions are taken directly from my Master of Philosophy thesis (Robinson 2012).



1.2. MARKOV MODELS 3

Theorem 1.1 is given in terms of the global Markov property (1.2). Hence for a collection of

random variables with strictly positive density function, the corresponding conditional indepen-

dence graph is equivalent to statements of the conditional independence properties of the model.

That is, the conditional independence graph is a graphical visualisation of the model.

Lemma 1.2 Pairwise and Global Markov Properties. If the collection of random variables

XV has density function p(xV) > 0 for all xV ∈ ΩXV then the pairwise (1.1) and global (1.2)

Markov properties are equivalent.

Proof of Lemma 1.2. The global Markov property clearly implies the pairwise Markov property

while the pairwise Markov property implies the global Markov property if the collection of random

variables has a strictly positive density function (Theorem 1.1).

1.2 Markov Models

Definition 1.5 Neighbours and Cliques. In an undirected graph G the neighbours of a vertex i

are the members of the set ν(i) = {j ∈ V | (i, j) ∈ E}. A clique is a subset of vertices, C ⊂ V such

that for all i ∈ C, if j ∈ C\i then j ∈ ν(i). A clique C is maximal if there exists no other clique

C∗ ⊆ V such that C ⊂ C∗.

Each vertex is a clique and each pair of neighbouring vertices is also a clique. If a pair of

neighbouring vertices have a mutual neighbour, then these three vertices are another clique. If all

members of a clique don’t have a mutual neighbour not already in the clique, then the clique is

maximal.

Definition 1.6 Markov Model. The collection of random variables XV with conditional inde-

pendence graph G is a Markov model if

Xi ⊥⊥ XV\{i,ν(i)} | Xν(i) (1.3)

for all i ∈ V.

Definition 1.6 is given in terms of the local Markov property (1.3) which is the classic definition

of a Markov chain. That is, each random variable is conditionally independent of all other random

variables in the model given its ‘neighbours’ as represented in the conditional independence graph.
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Theorem 1.3 Equivalency of the Markov Properties. If the collection of random variables

XV has density function p(xV) > 0 for all xV ∈ ΩXV then the pairwise (1.1), global (1.2) and

local (1.3) Markov properties are equivalent.

Proof of Theorem 1.3. The global Markov property clearly implies the local Markov property,

which in turn implies the pairwise Markov property. From Lemma 1.2, all three properties are

equivalent if the collection of random variables has a strictly positive density function.

Hence a collection of random variables with strictly positive density function has a conditional

independence graph for which Theorem 1.1 holds and hence is a Markov model. For all of the

conditional independence graphs that we consider in the following we always assume that the

corresponding collection of random variables has a strictly positive density function.

Definition 1.7 Trees. An undirected graph G is a tree if there exists a unique path between each

pair of vertices i, j ∈ V such that no vertex is contained in the path more than once.

Figure 1.1 shows conditional independence graphs corresponding to a number of different

Markov models. Note that the vertices are labelled by the corresponding random variables. The

major differences between the models in Figure 1.1 are whether they are trees or not (above and

below) and whether the Markov components are observed or ‘hidden’ (left and right). In the

‘hidden’ models it is taken that the random variables ZV are observed while the random variables

XV , constituting the Markov component of the model, are unobserved or missing. The defining

difference between a Markov chain or hidden Markov model (HMM) as against a Markov random

field (MRF) is that the latter is not a tree.

These differences determine the possible inference that can be achieved in the different models.

It is the tree structure of both Markov chains and HMMs that allows for relatively straightforward

inference of both the hidden variables and model parameters (Robinson 2012). In the following

we consider inference for the variables in hidden MRFs (Chapter 2) and the model parameters of

Gaussian MRFs (Chapter 3). Note that in all of these cases the conditional independence graph

itself is assumed to be known. Furthermore the graphs are also assumed to be sparse, that is, there

are few edges between the vertices compared to all those possible. This sparsity is implicit in the

notion of a local neighbourhood and the local Markov property.
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Markov chain

Xa Xb Xc

Markov random field (MRF)

Xg Xh Xi

Xd Xe Xf

Xa Xb Xc

Hidden Markov model (HMM)

Xa Xb Xc

Za Zb Zc

Hidden MRF

Xg Xh Xi

Xd Xe Xf

Xa Xb Xc

Zg Zh Zi

Zd Ze Zf

Za Zb Zc

Figure 1.1: Conditional independence graphs corresponding to different Markov models.
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1.3 Hammersley-Clifford Theorem

Theorem 1.4 Hammersley-Clifford Theorem. If the collection of random variables XV has

conditional independence graph G and density function p(xV) > 0 for all xV ∈ ΩXV then

p(xV) ∝
∏
C∈M

FC(xC)

whereM is the set of all maximal cliques in the graph and the factors FC(xC) are strictly positive.

Proof of Theorem 1.4. Details of a proof are given by Lauritzen (1996).

The factors FC(xC) must be strictly positive but are otherwise arbitrary functions of their argu-

ments. The Hammersley-Clifford Theorem is named after the unpublished paper by Hammersley

& Clifford (1971).

Theorem 1.5 The Hammersley-Clifford Theorem and the Markov Properties. If the

collection of random variables XV has density function p(xV) > 0 for all xV ∈ ΩXV then all three

Markov properties and the Hammersley-Clifford Theorem are equivalent.

Proof of Theorem 1.5. A proof is given by Lauritzen (1996).

This equivalency and the fact that the Hammersley-Clifford Theorem was not originally pub-

lished means that it appears in many different forms (Besag 1974, Lauritzen 1996, Cressie &

Wikle 2015). We follow Lauritzen (1996) as this is the most convenient for us. It is the three

Markov properties and the Hammersley-Clifford Theorem that allow for efficient inference so that

Markov models can be gainfully used in practice.



Chapter 2

Inference for Hidden MRFs

Markov random fields (MRFs) have been extensively utilised in computer vision and in particular

for digital image segmentation (Blake et al. 2011). Segmentation is the task of assigning a label

to each pixel so that the image is partitioned into regions of pixels corresponding to mutually

relevant features. Many different labelling problems can be approached as an inference problem in

a suitably defined hidden MRF.

We consider inference for the random variables XV in a hidden MRF. In general such inference

in graphical models is NP-hard (Koller & Friedman 2009). However under certain conditions exact

inference is computationally feasible for hidden MRFs while in other cases there exist efficient

algorithms for approximate inference.

We first review the binary labelling problem as an inference problem for hidden MRFs. We

present the energy minimisation framework and the use of graph cuts to find a computationally

efficient and exact solution to the corresponding inference problem. Then we consider the multi-

label problem and the established α-expansion algorithm for approximate energy minimisation.

2.1 Energy Function

For each i ∈ V, let Xi be the random variable for the unobserved label we aim to infer and let

Zi be the random variable for the observed data. Let the collection of these random variables

{XV , ZV} be an hidden MRF with a conditional independence graph G, an example of which is

given in the bottom right of Figure 1.1. In this case, the model has a regular grid structure but

this is not necessary in general, just that each Zi has only Xi as a unique neighbour. We consider

that the random variables are simply indexed by scalar values for generality and convenience.

7



8 CHAPTER 2. INFERENCE FOR HIDDEN MRFS

The labelling task set as an inference problem is, given the hidden MRF {XV , ZV} and having

observed the data ZV = zV , find the maximum a posteriori labels

x̂V = argmax
xV

p(xV |zV)

= argmax
xV

p(xV , zV)

p(zV)

= argmax
xV

p(xV , zV).

For notational convenience let G be the conditional independence graph of only the random vari-

ables XV . That is, following our example graph in the bottom right of Figure 1.1, G = (V, E)

is the graph given in the bottom left of Figure 1.1. Recall we assume that all Markov models

we consider have a strictly positive density function and hence we use the Hammersley-Clifford

Theorem (Theorem 1.4) to write

p(xV , zV) ∝
∏
i∈V

Fi(xi, zi)
∏

(i,j)∈E

F(i,j)(xi, xj)

where Fi(xi, zi) and F(i,j)(xi, xj) are arbitrary, strictly positive functions of their arguments.

Definition 2.1 Energy Function. Given the hidden MRF {XV , ZV} with density function

p(xV , zV) > 0 for all xV ∈ ΩXV and zV ∈ ΩZV , and conditional independence graph G = (V, E)

only corresponding to the random variables XV , the associated energy function is

E(xV) =
∑
i∈V

φi(xi) +
∑

(i,j)∈E

φ(i,j)(xi, xj) (2.1)

with energy potentials

φi(xi) = − log(Fi(xi, zi)) and φ(i,j)(xi, xj) = − log(F(i,j)(xi, xj)).

This is just rewriting the factorisation given by Theorem 1.4 for a hidden MRF although note

that we have not explicitly included zV in the energy function (2.1) as these terms are now accounted

for in the subscripts of the energy potentials. Now we have that p(xV , zV) ∝ exp{−E(xV)} and so

the maximum a posteriori/minimum energy labels are therefore

x̂V = argmax
xV

p(xV |zV) = argmin
xV

E(xV).

The use of an energy function in computer vision goes back to Geman & Geman (1984), who

established the connection with Gibbs distributions (Josiah Willard Gibbs (1839–1903) was an

American mathematician and physicist). Geman & Geman (1984) also coined the term ‘Gibbs

sampling’ in their approach to energy minimisation, which was superseded by the iterated condi-

tional modes (ICM) algorithm in computer vision (Besag 1986).
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The current use of energy minimisation in computer vision was brought about by the devel-

opment of techniques based on graph cuts in the early 2000s, which allowed for much greater

computational efficiency and improved performance as against ICM (Szeliski et al. 2008, Kappes

et al. 2015). Note that in the hidden MRF given in Figure 1.1 the maximal cliques are pairs of

vertices and for arbitrary graphs the maximal cliques may be larger than just pairs. However when

the graph is still sparse a general approach is to just consider pairwise cliques in order to have an

approximate energy function that can be optimised in practice (Boykov et al. 2001).

2.2 Graph Cuts

We first consider the binary label minimisation problem of (2.1), that is, where xi ∈ {0, 1} for all

i ∈ V. Rewrite the energy potentials

φi(xi) =

 θi;0 if xi = 0

θi;1 if xi = 1
and φ(i,j)(xi, xj) =



θij;00 if xi = xj = 0

θij;01 if xi = 0, xj = 1

θij;10 if xi = 1, xj = 0

θij;11 if xi = xj = 1

for all i ∈ V and (i, j) ∈ E . Hence we can rewrite the energy function (2.1) as

E(xV) =
∑
i∈V

(
θi;1xi + θi;0(1− xi)

)
+
∑

(i,j)∈E

(
θij;11xixj + θij;10xi(1− xj) + θij;01(1− xi)xj + θij;00(1− xi)(1− xj)

)
. (2.2)

The approach used to minimise the energy (2.2) is to recast the problem as one of finding the

maximum flow in a suitably defined network. Then, provided the energy potentials satisfy certain

conditions, the minimum energy solution exists and can be found using graph cuts. The following

material on network flow is based on the presentation of Bondy & Murty (2008).

Definition 2.2 Directed Graph. A directed graph
−→
G is a set of vertices V and a set of edges

−→
E , written

−→
G = (V,

−→
E ), where

−→
E is a subset of the set V × V of pairs of distinct vertices.

A directed graph is an undirected graph (Definition 1.2) without the condition that if (i, j) ∈
−→
E

then (j, i) ∈
−→
E for all i, j ∈ V. That is, it may be the case that only one of the two possible edges

between vertices i and j are in the edge set
−→
E . Hence there is a direction to each edge that allows

for a different definition of neighbouring vertices.

Definition 2.3 Directed Neighbours. In a directed graph
−→
G , the directed neighbours of a

vertex i are the members of the sets −→ν (i) = {j ∈ V | (i, j) ∈
−→
E } and ←−ν (i) = {j ∈ V | (j, i) ∈

−→
E }.
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Definition 2.4 Network. A network N is a directed graph
−→
G with specified vertices s, t ∈ V,

known as the source and the sink respectively, and associated capacity function c : V × V → [0,∞)

where c(i, j) = 0 if (i, j) /∈
−→
E , written N = (V,

−→
E , c).

A network is a particular type of directed graph where each edge has an associated capacity

allowing for a flow between the specially designated source s and sink t vertices to be defined.

Definition 2.5 Flow in a Network. A flow in a network N is a function f : V × V → [0,∞)

such that 0 ≤ f(i, j) ≤ c(i, j) for all (i, j) ∈
−→
E and

∑
j∈−→ν (i)

f(i, j) =
∑

j∈←−ν (i)

f(j, i)

for all i ∈ V\{s, t}. The value of the flow is

val(f) =
∑

j∈−→ν (s)

f(s, j)−
∑

j∈←−ν (s)

f(j, s). (2.3)

The flow on an edge is less than or equal to the capacity of that edge and for any network there

exists a zero flow where f(i, j) = 0 for all (i, j) ∈
−→
E . Flow is conserved for all vertices except the

source s and sink t. That is, the flow into any vertex i ∈ V\{s, t} (the sum of the flows on the

edges (j, i) ∈
−→
E ) is equal to the flow out of i (the sum of the flows on the edges (i, j) ∈

−→
E ).

Lemma 2.1 Value of the Flow. For a flow f in a network N the value of the flow is equivalently

val(f) =
∑

i∈←−ν (t)

f(i, t)−
∑

i∈−→ν (t)

f(t, i). (2.4)

Proof of Lemma 2.1. A proof is given by Bondy & Murty (2008).

That is, the value of the flow is defined to be the flow out of the source minus the flow into the

source (2.3), which is equal to the flow into the sink minus the flow out of the sink (2.4).

Definition 2.6 Graph Cut. For a subset of vertices S ⊂ V in a network N with s ∈ S and

t /∈ S, a cut is the set of edges

[S] = {(i, j) ∈
−→
E | i ∈ S, j /∈ S}

and the value of the cut is

val[S] =
∑

(i,j)∈[S]

c(i, j).

A cut in a network N is the set of edges from the subset S to its complement that effectively

‘cut’ the network in two and hence ‘graph cuts’.
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Definition 2.7 Maximum Flow and Minimum Cut. A cut [S] is a minimum cut if there

exists no other cut [S∗] such that val[S∗] < val[S]. A flow f is a maximum flow if there exists no

other flow f∗ such that val(f) < val(f∗).

Theorem 2.2 Maximum Flow/Minimum Cut. For a network N , the value of the maximum

flow is equal to the value of the minimum cut.

Proof of Theorem 2.2. A proof is given by Bondy & Murty (2008).

Given a network N , the problem is to find a flow f and a cut [S] such that val(f) = val[S].

That is, the value of the flow is maximised and the value of the cut is minimised. There exist

classic algorithms for this task (Ford & Fulkerson 1956).

We will now consider how the maximum flow/minimum cut framework can be applied to the

energy minimisation problem with a binary label energy function (2.2). First, we create a suitable

network using the conditional independence graph of XV .

Algorithm 2.1 Network Creation Algorithm. Given the collection of random variables XV

with conditional independence graph G = (V, E), create a corresponding network N ∗ = (V∗,
−→
E ∗, c∗)

by defining:

1. The set of vertices V∗ = V ∪ {s, t} where s is the source and t is the sink.

2. The edge set

−→
E ∗ =

{
(s, i), (i, s), (t, i), (i, t) | i ∈ V

}
∪
{

(i, j), (j, i) | (i, j) ∈ E
}
.

3. The capacity function

c∗(i, j) = ωij ≥ 0

for all (i, j) ∈
−→
E ∗ with c∗(i, s) = 0 for all i ∈ V and c∗(t, j) = 0 for all j ∈ V.

Consider that any cut [S] in the network N ∗ can be viewed as a binary labelling

xi =

 0 if i ∈ S

1 if i /∈ S
(2.5)

for all i ∈ V and consider the energy function

E∗(xV) =
∑
i∈V

(
ωsixi + ωit(1− xi)

)
+
∑

(i,j)∈E

(
ωij(1− xi)xj + ωjixi(1− xj)

)
. (2.6)
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Theorem 2.3 Graph Cut Energy. Given the collection of random variables XV with conditional

independence graph G = (V, E), the value of a cut [S] in the corresponding network N ∗ is given by

(2.6) when utilising the labelling (2.5). That is, val[S] = E∗(xV).

Proof of Theorem 2.3.

val[S] =
∑

(i,j)∈[S]

ωij

=
∑

(i,j)∈
−→
E ∗
ωijI{i ∈ S, j /∈ S}

=
∑

(s,i)∈
−→
E ∗
ωsiI{i /∈ S}+

∑
(i,t)∈

−→
E ∗
ωitI{i ∈ S}+

∑
(i,j)∈

−→
E ∗
ωijI{i ∈ S\s, j /∈ S ∪ t}

=
∑
i∈V

(
ωsiI{i /∈ S}+ ωitI{i ∈ S}

)
+
∑

(i,j)∈E

(
ωijI{i ∈ S, j /∈ S}+ ωjiI{i /∈ S, j ∈ S}

)
Hence the energy (2.6) is minimised when we find the maximum flow/minimum cut in the

networkN ∗ and use the labelling (2.5). The original binary label energy function (2.2) is equivalent

to the graph cut energy function (2.6) when

θi;1 = ωsi, θi;0 = ωit, θij;01 = ωij , θij;10 = ωji and θij;11 = θij;00 = 0. (2.7)

Hence, under certain conditions on the potentials, we are able to reformulate the binary label

energy minimisation problem into a network flow problem and find the minimum energy solution

using graph cuts. Let us briefly consider that the potentials simply need to be submodular.

Definition 2.8 Submodular Potentials. Let the collection of random variables XV have con-

ditional independence graph G = (V, E) and energy function (2.2). The corresponding energy

potentials are submodular if

θij;00 + θij;11 ≤ θij;10 + θij;01

for all (i, j) ∈ E.

For the binary label energy function (2.2), constants can be added and subtracted to the

potentials so that the energy function remains unchanged, that is the function still gives the same

output for the same input. This is known as a reparameterisation of the energy function and

if the potentials are submodular, then the energy function (2.2) can be reparameterised so that

the potentials are in the form (2.7) in a finite series of basic prescribed operations (Kolmogorov

& Zabih 2004). There are standard energy minimisation algorithms based on graph cuts for the

binary label, submodular potential problem (Boykov & Kolmogorov 2004). Below, we consider the

case where there are more than 2 labels.
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2.3 Alpha-Expansion Algorithm

Now consider the case where we have more than 2 labels, that is xi ∈ L for all i ∈ V where L is a

set of more than 2 elements. Consider the original energy function (2.1) and rewrite

φi(xi = l) = θi;l and φ(i,j)(xi = l, xj = k) = θij;lk

for all i ∈ V, (i, j) ∈ E and l, k ∈ L so that

E(xV) =
∑
i∈V

∑
l∈L

θi;lI{xi = l}+
∑

(i,j)∈E

∑
l∈L

∑
k∈L

θij;lkI{xi = l, xj = k}. (2.8)

Clearly the multi-label energy function (2.8) is equal to the binary label energy function (2.2) if

L = {0, 1}. Minimising the multi-label energy function (2.8) is NP-hard (Boykov et al. 2001).

However, we can approximate the minimum energy solution using an algorithm that is based on

graph cuts (Boykov et al. 2001, Boykov & Kolmogorov 2004, Kolmogorov & Zabih 2004). The

main idea is to recast the multi-label problem in terms of a binary label problem by considering an

initial labelling and then a binary choice for each variable: either change label or stay the same. In

order to properly determine the problem, ‘changing label’ needs to be defined and one option is to

only allow a change to a specified label, α ∈ L. The following material is based on the presentation

of Koller & Friedman (2009).

Let the initial labelling be x∗V . We construct a binary label problem with dummy variables YV

such that yi ∈ {0, 1} for all i ∈ V. Consider that from the initial labelling x∗V , the dummy variables

YV and a specified label α ∈ L, we obtain a new labelling x̂V given by

x̂i =

 x∗i if yi = 0

α if yi = 1

for all i ∈ V. Hence each variable either keeps its initial label x∗i or changes to α depending on the

value of yi. By substituting x̂V into (2.8) we obtain the equivalent energy function

Ẽ(yV) =
∑
i∈V

φ̃i(yi) +
∑

(i,j)∈E

φ̃(i,j)(yi, yj) (2.9)

where

φ̃i(yi) =

 θi;x∗i if yi = 0

θi;α if yi = 1
and φ̃(i,j)(yi, yj) =



θij;x∗i x∗j if yi = yj = 0

θij;x∗iα if yi = 0, yj = 1

θij;αx∗j if yi = 1, yj = 0

θij;αα if yi = yj = 1.
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That is, we have a binary label energy function (2.9) for the binary label problem for YV . By

construction, Ẽ(yV) = E(x̂V) and hence finding the optimal labels ŷV is equivalent to finding the

optimal labels x̂V in the restricted space of only allowing each variable to keep its initial label or

change to α. This is a constrained energy minimisation problem where we are only (potentially)

increasing the number of vertices with the label α and hence known as ‘alpha-expansion’. In

practice, all of the possible labels are considered iteratively and multiple times.

Algorithm 2.2 Alpha-Expansion Algorithm. Given the collection of random variables XV

with conditional independence graph G = (V, E), energy function (2.8), initial labelling x∗V and

specified label α ∈ L,

1. Construct the binary label problem for the dummy variables YV as outlined above.

2. Solve the binary label problem for YV using graph cuts as outlined in Section 2.2.

3. Update the labelling and repeat for another label until some convergence criteria is satisfied.

Recall that in order to use graph cuts for the binary label problem, the energy potentials must

be submodular. The potentials for the above binary label energy (2.9) are submodular when

θij;αα + θij;x∗i x∗j ≤ θij;x∗iα + θij;αx∗j

for all (i, j) ∈ E . This condition is satisfied when the energy potentials are a metric.

Definition 2.9 Semi-metric and Metric. A function D : V × V → [0,∞) is a semi-metric if

D(i, j) = 0⇔ i = j and D(i, j) = D(j, i)

for all i, j ∈ V, and is a metric if in addition

D(i, k) ≤ D(i, j) +D(j, k)

for all i, j, k ∈ V.

However, even when the energy potentials are only a semi-metric, the α-expansion algorithm

may still be gainfully used in practice (Boykov et al. 2001).



Chapter 3

Inference for Gaussian MRFs

Gaussian Markov random fields (MRFs) are multivariate Gaussian distributions parameterised by a

mean vector and a correlation matrix where there is a one-to-one relationship between the graphical

representation of the model and the inverse correlation (precision) matrix (Rue & Held 2005). They

are used in particular as the spatial random effects component within larger hierarchical models

for the analysis of spatial data (Banerjee et al. 2014, Cressie & Wikle 2015).

We are interested in inference for the parameters of a Gaussian MRF with a spatial interpreta-

tion through the precision matrix. This inference is considered in a Bayesian framework where the

model parameters are considered as random variables and the posterior density of the parameters

is proportional to the likelihood of the model multiplied by a prior density of the parameters.

We first consider multivariate Gaussian distributions, their precision matrices and how this

leads to a natural definition of Gaussian MRFs. Then we consider how Gaussian MRFs can be

defined in terms of full conditional distributions which allows for the construction of the precision

matrix of the whole model. We then outline finding the posterior densities for the model parameters

which can be used for sampling and inference in a Bayesian framework.

3.1 Precision Matrix

In the following we consider vectors rather than sets of random variables but still use set notation

in the subscripts, XV = [X1, X2, . . . , Xn]T when the meaning is unambiguous. For a matrix A we

write the individual elements of the matrix as Aij and use standard vector and matrix notation.

Definition 3.1 Symmetric Matrix. A square matrix A is symmetric if and only if AT = A.

15
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Definition 3.2 Positive Definite Matrix. A square matrix A is positive definite if and only if

vTAv > 0 for all vectors v 6= 0.

Lemma 3.1 Inverse of a Symmetric Positive Definite Matrix. If A is symmetric positive

definite then A−1 is symmetric positive definite.

Proof of Lemma 3.1. Symmetry is clear and for any vector u 6= 0 take v = A−1u. Since A is

invertible, v 6= 0 and hence vTAv > 0 implies uTA−1u > 0.

Definition 3.3 Multivariate Gaussian Distribution. The collection of random variables

XV = [X1, X2, . . . , Xn]T has an n-variate Gaussian distribution with mean vector µ ∈ Rn, symmet-

ric positive definite covariance matrix Σ ∈ Rn×n and support ΩXV = Rn, written XV ∼ N(µ,Σ),

if and only if its density function has the form

p(xV) ∝ |Σ|− 1
2 exp

{
− 1

2
(xV − µ)TΣ−1(xV − µ)

}
.

Gaussian distributions are named after German mathematician Carl Friedrich Gauss (1777–

1855). Consider the matrix Q = Σ−1 known as the precision matrix and note that since Σ

is symmetric positive definite, Q is symmetric positive definite (Lemma 3.1). There is a direct

connection between the Markov properties of the model and the precision matrix Q. The content

of this section is based on the presentation of Rue & Held (2005).

Theorem 3.2 Conditional Independence and the Precision Matrix. Let the collection of

random variables XV have a multivariate Gaussian distribution with precision matrix Q = Σ−1.

Then

Qij = 0 ⇔ Xi ⊥⊥ Xj |XV\{i,j}

for all i 6= j ∈ V.

Proof of Theorem 3.2. A proof is given by Rue & Held (2005).

That is, for any multivariate Gaussian model, we have a connection between the form of the

precision matrix and the conditional independence properties of the model. The covariance matrix

Σ gives information about the marginal dependence structure of the model whereas the precision

matrix Q gives information about the conditional independence structure of the model. This leads

to a natural definition of a Gaussian MRF through the precision matrix.
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Definition 3.4 Gaussian MRF. The collection of random variables XV is a Gaussian MRF

with respect to a graph G = (V, E) with mean vector µ ∈ Rn, symmetric positive definite precision

matrix Q ∈ Rn×n and support ΩXV = Rn if and only if its density function has the form

p(xV) ∝ |Q| 12 exp
{
− 1

2
(xV − µ)TQ(xV − µ)

}

and
Qij = 0 ⇔ (i, j) /∈ E

for all i 6= j ∈ V.

It is clear that the three Markov properties (pairwise (1.1), global (1.2) and local (1.3)) are all

equivalent for Gaussian MRFs since p(xV) > 0. Hence a Gaussian MRF is defined through the

precision matrix Q which is one-to-one with a graphical representation of the model. The non-zero

pattern of Q determines the conditional independence graph G. That is, if Qij = 0 then there is

no edge between vertices i and j in the conditional independence graph and hence Xi and Xj are

conditionally independent given XV\{i,j}. So we can simply read from the elements of Q whether

two variables in the model are conditionally independent.

Now Q is generally taken as a sparse matrix (most of its elements are zero) while Σ may be very

dense (most elements are non-zero). The Markov structure of a Gaussian MRF allows for efficient

inference due to a sparse precision matrix, which corresponds to a sparse conditional independence

graph (Chapter 1). Although it is possible to define reasonable dependence structures through a

covariance function, there are no guarantees on the sparsity of the inverse covariance matrix and it

is non-trivial to construct reasonable dependence structures ensuring sparsity (Rue & Held 2005).

So rather than considering covariance matrices, we consider conditional independencies and the

construction of reasonable and useful precision matrices.

3.2 Conditional Autoregressive Models

To utilise a Gaussian MRF in practice, instead of specifying the full covariance matrix for every pair

of variables, we consider the ‘local’ behaviour for each variable and the full conditional distributions,

as introduced by Besag (1974). That is, rather than defining a joint density p(xV), we consider

the much simpler task of defining the conditional densities p(xi|xV\i) for all i ∈ V.
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Definition 3.5 Conditional Autoregressive Model. The collection of random variables XV

is a conditional autoregressive (CAR) model with parameters ωij ∈ R and σ2
i > 0 if and only if the

collection of full conditionals distributions are

Xi|XV\i ∼ N
( ∑
j∈V\i

ωijXj , σ
2
i

)
(3.1)

for all i ∈ V.

That is, each random variable has a conditional Gaussian distribution given all the other

variables with mean, a weighted sum of the other variables and a given variance. We now consider

finding the joint distribution of the CAR model.

Lemma 3.3 Brook’s Lemma. Consider the collection of random variables XV with density

function p(xV) > 0 for all xV ∈ ΩXV . For any xV , x′V ∈ ΩXV we have

p(xV)

p(x′V)
=

n∏
i=1

p(xi|x1, . . . , xi−1, x′i+1, . . . , x
′
n)

p(x′i|x1, . . . , xi−1, x′i+1, . . . , x
′
n)

(3.2)

=

n∏
i=1

p(xi|x′1, . . . , x′i−1, xi+1, . . . , xn)

p(x′i|x′1, . . . , x′i−1, xi+1, . . . , xn)
. (3.3)

Proof of Lemma 3.3. A proof is given by Rue & Held (2005).

Lemma 3.3 (Brook 1964) allows for the construction of the joint density of a CAR model from

the full conditionals. However, there are conditions on the full conditionals in order that the

density is proper. It is not the case that any arbitrary set of full conditionals will determine a

proper distribution (Gelfand & Vounatsou 2003).

Theorem 3.4 Joint Density of a CAR Model. If the collection of random variables XV has

full conditional distributions

Xi|XV\i ∼ N
(
φ
∑
j∈V\i

eij
∂i
Xj ,

σ2

∂i

)
(3.4)

for all i ∈ V where eij ≥ 0, eij = eji, eii = 0, ∂i =
∑
j∈V eij and with parameters φ ∈ (−1, 1) and

σ2 > 0, the joint distribution of the model is

XV ∼ N(0, σ2(D(I − φW ))−1) (3.5)

where D = diag(∂i) and W is the symmetric matrix with entries eij.
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Proof of Theorem 3.4. First consider that for a zero-mean multivariate Gaussian distribution we

have

log(p(xV)) ∝ −1

2
xTVQxV

= −1

2

(∑
i∈V

∑
j∈V

Qijxixj

)
= −1

2

(∑
i∈V

Qiix
2
i +

∑
i∈V

∑
j∈V\i

Qijxixj

)
. (3.6)

Consider the full conditionals as given as (3.1). We have the density functions

p(xi|xV\i) ∝
1

σi
exp

{
− 1

2σ2
i

(xi −
∑
j∈V\i

ωijxj)
2
}

for all i ∈ V. Using (3.2) we can write

p(xV)

p(0)
=

n∏
i=1

1
σi

exp
{
− 1

2σ2
i
(xi −

∑i−1
j=1 ωijxj)

2
}

1
σi

exp
{
− 1

2σ2
i
(
∑i−1
j=1 ωijxj)

2
}

=

n∏
i=1

exp
{
− 1

2σ2
i

(
xi −

i−1∑
j=1

ωijxj

)2
+

1

2σ2
i

( i−1∑
j=1

ωijxj

)2}

=

n∏
i=1

exp
{
− 1

2σ2
i

(
x2i − 2

i−1∑
j=1

ωijxixj

)}
.

Hence

log
(p(xV)

p(0)

)
= −1

2

n∑
i=1

1

σ2
i

x2i −
n∑
i=2

i−1∑
j=1

ωij
σ2
i

xixj . (3.7)

Now we use (3.3) to obtain the corresponding expression

log
(p(xV)

p(0)

)
= −1

2

n∑
i=1

1

σ2
i

x2i −
n−1∑
i=1

n∑
j=i+1

ωij
σ2
i

xixj . (3.8)

Since (3.7) and (3.8) are equal,

log(p(xV)) ∝ −1

2

( n∑
i=1

1

σ2
i

x2i +

n∑
i=1

∑
j 6=i

ωij
σ2
i

xixj

)
.

Comparing this to the form of the zero-mean multivariate Gaussian distribution (3.6), we have

Qii = 1
σ2
i
and Qij =

ωij

σ2
i

with ωij

σ2
i

=
ωji

σ2
j
. Finally we write ωij = φ

eij
∂i

and σ2
i = σ2

∂i
.
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Hence the CAR model (3.5) is a Gaussian MRF with Q = 1
σ2D(I − φW ). There is a one-to-

one connection between the adjacency matrix W and the corresponding conditional independence

graph since eij = 0 if and only if Qij = 0 and eij > 0 if and only if (i, j) ∈ E . That is, the sum over

j ∈ V\i in (3.4) may as well be over j ∈ ν(i) due to the zero pattern of W . Note that in general

the adjacency matrix W is taken as a sparse matrix and hence Q is sparse. Recall that this is the

point of constructing the precision matrix in this way and is necessary for efficient inference.

We additionally have interpretations for the parameters when considering XV as spatially em-

bedded variables through the adjacency matrixW . If φ = 0 then the variables XV have a multivari-

ate Gaussian distribution with a diagonal covariance matrix and hence the marginal distributions

are independent. A value of φ > 0 results in spatial autocorrelation between neighbouring variables

while a value of φ < 0 results in spatial anti-autocorrelation (easiest to see in the full conditional

distributions (3.4)). Hence φ is known as the spatial autocorrelation parameter while σ2 is a general

variance term.

3.3 Posterior Densities

We consider inference for the parameters φ and σ2 of the CAR model (3.5). Although CAR models

are most often used as a spatial random effects component within larger hierarchical models in the

analysis of spatial data (Banerjee et al. 2014, Cressie & Wikle 2015), inference for the parameters

can also be considered when the models are used directly (Bell & Broemeling 2000, De Oliveira

2012, Ren & Sun 2013). This section is primarily based on the work of Bell & Broemeling (2000).

Theorem 3.5 Bayes’ Theorem. For random variable Y with associated parameters θ and taking

the parameters themselves as random variables we have

p(θ|y) =
p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ).

Proof of Theorem 3.5. This is the definition of conditional probability density, p(x|z) = p(x,z)
p(z) .

That is, the posterior density of the parameters is proportional to the likelihood of the model

and a prior density of the parameters. This is the cornerstone of ‘Bayesian inference’ named

after English mathematician Thomas Bayes (1701–1761). Rather than point estimates of model

parameters, treating the parameters as random variables results in a posterior distribution that if

not in an analytical form can usually be numerically sampled from.
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Consider the CAR model with joint density given by (3.5) and parameters φ and σ2. We use

the re-parameterisation σ2 = τ−1 > 0 so that the model density can be written

p(xV |φ, τ) ∝ |τB(φ)| 12 exp
{
− τ

2
xTVB(φ)xV

}
where B(φ) = D(I − φW ). We set priors p(φ) ∝ constant and p(τ) ∝ τ−1. We assume a priori

that φ and τ are independent, that is p(φ, τ) = p(φ)p(τ) = τ−1. Hence using Bayes’ Theorem

(Theorem 3.5) the joint posterior density is

p(φ, τ |XV = xV) ∝ p(xV |φ, τ)p(φ, τ)

∝ |τB(φ)| 12 exp
{
− τ

2
xTVB(φ)xV

}
τ−1

= |B(φ)| 12 τ n
2−1 exp

{
− τ

2
xTVB(φ)xV

}
. (3.9)

Definition 3.6 Gamma Distribution. The random variable Y has a Gamma distribution with

parameters α > 0, β > 0 and support ΩY = (0,∞), written Y ∼ Γ(α, β), if and only if its density

function is

p(y) =
1

G(α)
βαyα−1 exp{−yβ} (3.10)

where G(z) =
∫∞
0
xz−1 exp{−x}dx.

Since (3.10) is a properly scaled density function we have the identity∫ ∞
0

1

G(α)
βαyα−1 exp{−yβ}dy = 1. (3.11)

Now for fixed φ it can be seen from (3.9) that τ has a Gamma distribution. That is,

τ |{φ,XV = xV} ∼ Γ
(n

2
,

1

2
xTVB(φ)xV

)
.

In order to find the posterior density of φ we integrate p(φ, τ |XV = xV) with respect to τ using

the identity (3.11) to obtain

p(φ|XV = xV) =

∫ ∞
0

p(φ, τ |XV = xV)dτ

= |B(φ)| 12
∫ ∞
0

τ
n
2−1 exp

{
− τ

2
xTVB(φ)xV

}
dτ

= |B(φ)| 12
(1

2
xTVB(φ)xV

)−n
2

G
(n

2

)
∝ |B(φ)| 12 (xTVB(φ)xV)−

n
2 . (3.12)

Hence in order to sample from the joint posterior p(φ, τ |XV = xV) = p(τ |φ,XV = xV)p(φ|XV = xV)

we first sample from p(φ|XV = xV) and then sample from p(τ |φ,XV = xV) for fixed φ.
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We consider some final details about sampling using the posterior density function (3.12).

Firstly, in applications with large n, the calculation of the determinant of B(φ) can easily become

computationally infeasible while the exponent −n2 will result in computational zeros. For the later

problem we consider log space (scaling and then converting back as necessary) and write

log(p(φ|XV = xV)) = log(|B(φ)| 12 )− n

2
log
(
xTVB(φ)xV

)
.

Hence the exponent is no longer a problem but a potential problem with the calculation of the

determinant remains.

Definition 3.7 Cholesky Decomposition. Every symmetric positive definite matrix A can be

written as

A = LLT

where L is a unique lower triangular matrix with positive diagonal entries.

We use this decomposition, named after French mathematician André-Louis Cholesky (1875–

1918), to rewrite

log(|A| 12 ) = log(|LLT | 12 )

= log((|L||L|) 1
2 )

= log(|L|)

= log
( n∏
i=1

Lii

)
=

n∑
i=1

log(Lii).

Now B(φ) = τ−1Q is symmetric positive definite and so by making use of the Cholesky de-

composition the calculation of log(|B(φ)| 12 ) is greatly simplified. Although finding the Cholesky

decomposition may be difficult in general, since Q is sparse it is possible to use numerical methods

for sparse matrices to efficiently find the Cholesky decomposition and hence use CAR models in

practice (Rue & Held 2005).



Chapter 4

Presentation of Publications

We make use of Markov models in four bioinformatics applications each of which has a correspond-

ing publication presented below. Firstly, Table 4.1 sets out the different objects of interest and

what the elements of the Markov model represent in each case. This ranges from vertices repre-

senting genes (Publications 1 and 3) to cells (Publication 4) along with pixels in digital images of

cell culture models (Publication 2). The edges may represent either spatial or temporal relations

between the variables as well as functional interactions that are neither spatial nor temporal.

Table 4.1: The objects and relations represented in the graphical model for each application.

Vertices Edges

Publication 1 Genes Temporal relations (gene expression in time)

Publication 2 Pixels Spatial relations

Publication 3 Genes Functional relations

Publication 4 Neurons Spatial relations

Figure 4.1 shows a representative conditional independence graph for each application, a de-

scription of which is summarised in Table 4.2. Note that in this discussion we focus on the Markov

components XV within each model. The most important differences between the models as seen

in Figure 4.1 are whether the models are trees or not and whether the variables XV are ‘hidden’

or not (compare to Figure 1.1). Recall that these difference define the particular type of Markov

model and determine the possibilities for inference. We briefly consider general descriptions of the

models and how they relate to each application.

23
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Table 4.2: The graphical model structure corresponding to each application.

Non-tree Variables XV are ‘hidden’ Markov Model Description

Publication 1 X HMM Regular chain

Publication 2 X X Hidden MRF Regular grid

Publication 3 X X Hidden MRF Scale free

Publication 4 X Gaussian MRF Triangulation

By a regular chain for Publication 1 we mean a classic Markov chain where all vertices corre-

sponding to the variables XV have the same degree (except the beginning and end vertices). This

application concerned time course gene expression data and we model each instance of the gene

expression in time using a hidden Markov model (HMM). In Publication 2 we are now considering

a non-tree Markov random field (MRF). By a regular grid we again mean that all vertices cor-

responding to the variables XV have the same degree (except the border vertices). This was an

image analysis application concerning microscopy image data of cell culture models. In this case

the vertices represent pixels in digital images and the modelling is carried out for each pixel and

its four immediate neighbours, above, below, left and right in the digital image.

The graph for Publication 3 is also a hidden MRF but rather than a regular grid appears to be

scale free. That is, in general terms, there are a few vertices with many edges and many vertices

with a few edges. This isn’t completely apparent in Figure 4.1 with only nine vertices constituting

the Markov component of the model but we can still see the contrast to the regular grid case where

every vertex has the same degree. Here the application was to do with genomic network data and

the edges represent interactions between genes. While some genes may interact with most other

genes, the majority of genes interact with only a few others.

The final graph corresponding to Publication 4 is also an MRF, however in this case the variables

XV are not ‘hidden’. In this application the vertices represent neurons and connections between

vertices represent spatial interactions between neurons modelled by their relative spatial positions

as obtained from image data. The neurons are not distributed within the image in the same way

as the actual pixels, that is, they are not laid out in rows and columns. Hence each vertex may

have a different number of edges but unlike the scale free case in Publication 3, the degree in this

application is bounded in practice (see Publication 4).
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Publication 1

Xa Xb Xc

Za Zb Zc

Publication 3

Xg

Xb

Xf

Xd

Xe

Xh

Xc

Xi

Xa

Zg

Zb

Zf

Zd

Ze

Zh

Zc

Zi

Za

Publication 2

Xg Xh Xi

Xd Xe Xf

Xa Xb Xc

Zg Zh Zi

Zd Ze Zf

Za Zb Zc

Publication 4

Xp

Xo

Xc

Xg

Xb

Xe
Xd

Xm

Xn

Xj

Xk

Xi

Xl

Xh

Xa

Xf

Figure 4.1: Representative conditional independence graphs corresponding to each application.
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Table 4.3: The inference carried out in each application.

Infer ‘hidden’ XV Infer parameters Framework Reference

Publication 1 X X
Maximum

likelihood
(Robinson 2012)

Publication 2 X
X

X

Maximum

a posteriori
Chapter 2

Publication 3 X
Maximum

a posteriori
Chapter 2

Publication 4
X

X
X Bayesian Chapter 3

We are now able to consider how each of the Markov models are utilised, what kind of inference

is carried out and for what aims based on the type of Markov model and what the vertices and

edges represent in each application. As noted, the most important information in Table 4.2 is given

in the first two columns corresponding to the particular type of Markov model. This determines the

inference that can be achieved in each application, which is set out in Table 4.3 and discussed below.

Note that final results for each application are summarised in Table 4.4 while the comparison and

evaluation of our use of Markov models against the diverse literature associated to each application

is covered within the publications themselves.

Our first application concerns time course gene expression data from grapevine plants under-

going berry development at multiple vineyards. The time series are modelled as HMMs where ZV

are the observed gene expression measurements and XV are hidden underlying states (note that

in Publication 1 the notation for hidden states is S and observed variables are X, W and C).

An alignment between expression profiles from different vineyards is achieved by parameterising

a mapping to a common state sequence for each gene. Exact inference of the underlying ‘hidden’

states is computationally feasible for HMMs owing to their tree structure while parameter inference

is carried out with the EM algorithm (Robinson 2012).

Both Publications 2 and 3 concern inference of the ‘hidden’ Markov component of hidden MRFs.

For Publication 2 this results in a segmentation of digital image data corresponding to different

biological structures. The structures of interest are represented as contiguous objects within the

digital images and hence using a MRF, where neighbouring pixels are induced to have the same

segmentation label, is inherently appropriate for this application. Moreover, the smoothness of
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the segmentation output is particularly complimentary for the subsequent investigation of physical

contact between the different cell types. The inference for Publication 2 is carried out using energy

minimisation and requires the material from Chapter 2 concerning graph cuts and the α-expansion

algorithm (Algorithm 2.2).

In Publication 3, genomic networks are similarly segmented by genes being labelled as a ‘hit’

or not, that is, whether they are identified as valuable for further subsequent analysis. Each gene

is assumed to have similar behaviour to the others it interacts with in the genomic experiments

considered as represented by edges in the genomic network. We utilise an MRF to incorporate the

additional network information in the identification of network based gene hits in the same way

that adjacent pixels in a digital image are induced to have the same segmentation label. Hence

Publication 3 also requires the material from Chapter 2 and we again use graph cuts and the

α-expansion algorithm (Algorithm 2.2) for energy minimisation.

Publication 4 concerns modelling the spatial component of neuronal synaptic activity in image

data. In this case the variables XV are observed directly rather than ‘hidden’ and it is the spatial

autocorrelation parameter within the Gaussian MRF (CAR) model that is of interest. Similar

to the consideration of interacting genes, we model the mutual synaptic interaction of individual

neurons through their neighbours as defined by relative spatial distance. Publication 4 requires

the theory reviewed in Chapter 3 and sampling from the posterior distribution of the parameters

of a CAR model in a Bayesian framework.

Table 4.4 summarises the results for each application. Hence we have shown that Markov models

can be used to generate new knowledge in diverse applications relating to multiple domains of

biological research. The Markov structure allows for a graphical and intuitive model of conditional

independencies within a standard and general framework, making such models very popular in

many different areas. Furthermore, as we have shown, there are many associated computational

schemes and algorithms available in order to efficiently utilise Markov models in practice.
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Table 4.4: The results for each application.

Publication 1 We propose a novel alignment method for time series gene expression data

based on hidden Markov models (HMMs). The modelling extensions we em-

ploy account for specific features of the data, in particular the sparsity of the

time series commonly encountered in such gene expression time course exper-

iments. Moreover we show that the alignment obtained under the model is

robust against subsets of genes that do not align. We subsequently use a mea-

sure of alignment based on the inferred Viterbi paths to classify genes as likely

to be developmentally driven or not and additionally validate the classification

accuracy. This results in a set of ∼1200 genes with no current annotated func-

tion for which we have found new evidence that they are likely to be controlled

in a developmental manner.

Publication 2 We extend the established use of hidden Markov random fields (MRFs) for dig-

ital image segmentation of 3D fluorescence image data of cell culture models

containing both multicellular tumour and cancer associated fibroblast (CAF)

structures. Using both Gaussian mixture distributions and local entropy fil-

tering allows for a segmentation with multiple labels to be achieved in an

automatic and principled way. The segmentation output subsequently allows

for the investigation of physical contact between tumour cells and CAFs on

the surface of tumour organoids, which has important implications for tumour

biology (Åkerfelt et al. 2015). We demonstrate how each step of our proposed

method improves segmentation performance. Additionally we show our MRF

based method is more generally applicable to other types of image data, not

just fluorescence microscopy.

Continued on the next page
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Table 4.4 – Continued from the previous page

Publication 3 As an analogue to segmentation of image data, we use a hidden MRF based

method to label ‘hit’ genes across genomic networks together with genomic

screening data. The particular advance here concerns multiple ‘hit’ labels be-

ing easily achieved within the MRF framework. This allows for applications

with multivariate measurements for each gene as well as further discrimination

of the labelling. Such an approach had not been considered up until now and we

demonstrate its advantages by finding additional pathway enrichment in pre-

viously analysed data concerning lymphoma. We show that our MRF based

method is widely applicable to genomic screening data in general, including

from RNA interference experiments. Additionally we compared to other com-

peting methods using an independent simulation experiment and obtained the

best performance results.

Publication 4 We use a Gaussian MRF (CAR) model to quantify the synaptic activity phe-

notype of large populations of neurons. Previous analysis was limited to spike

binning in an artificial square grid defined across the field of view whereas

our model is based directly on the relative spatial positions of the individ-

ual neuronal somata. Spatial autocorrelation of the neuronal activity is then

quantified through a Bayesian posterior density of the model parameters. Our

proposed approach is inherently suitable for the complexity and resolution of

the image data and allows for the analysis of upwards of thousands of neurons

over hundreds of time points. We analyse data specifically developed for this

study as well as from the literature. The quantification results both support

and conform to previous analysis as well as demonstrate that our method has

potential for screening applications.
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Following my Master of Philosophy thesis (Robinson 2012), the underlying research framework

of the use of Markov models was driven by me while biologically relevant applications were

developed within multiple research groups. Table 4.5 lists the published author contributions.

For each application I was primarily responsible for:

• Methodological development, implementation and analysis of results

• Literature review, evaluation and presentation of results

• Production of figures, movies and code for publication

• Writing the manuscript and organising the contributions of co-authors

• Submission of the manuscript and responding to reviewers

Table 4.5: The author contributions for each application.

Publication 1 Conceived and designed the time course microarray experiments:

MT CD. Performed the experiments: MT CD. Developed the align-

ment methodology: SR GG IK. Implemented the methodology:

SR. Analysed the data: SR GG IK. Contributed to the analysis

and drafting of the paper: IK MT. Wrote the paper: SR GG CD.

Publication 2 Conceived and designed the experiments: MÅ MN. Performed the

experiments: MT MÅ. Wrote the paper: SR MÅ MN. Manually

segmented the image data: MT MÅ. Developed the segmentation

methodology: SR LG JN. Implemented the methodology and anal-

ysed the data: SR. Contributed to the analysis and drafting of the

paper: LG JN MT.

Publication 3 Developed and implemented the methodology; wrote the paper:

SR. Proposed the project; supervised development of the method-

ology and writing of the paper: LG. Contributed to the analysis

and drafting of the paper: JN GP JPR. Conceived, designed and

performed the RNAi screen: GP AC JPR.

Publication 4 Conceived, designed and performed the experiments: MJC. Devel-

oped and implemented the modelling methodology; analysed the

data: SR. Contributed to the development and analysis: MJC.

Wrote the paper: SR MJC.
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